

Karsten Berns | Ewald von Puttkamer

Autonomous Land Vehicles

Karsten Berns | Ewald von Puttkamer

Autonomous
Land Vehicles
Steps towards Service Robots

With 246 Illustrations, 4 Tables and 16 Algorithms

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

1st Edition 2009

All rights reserved
© Vieweg+Teubner |GWV Fachverlage GmbH, Wiesbaden 2009

Editorial Office: Sybille Thelen | Maren Mithöfer

Vieweg+Teubner is part of the specialist publishing group Springer Science+Business Media.
www.viewegteubner.de

No part of this publication may be reproduced, stored in a retrieval system or
transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the copyright holder.

Registered and/or industrial names, trade names, trade descriptions etc. cited in this publication
are part of the law for trade-mark protection and may not be used free in any form or by any means
even if this is not specifically marked.

Cover design: KünkelLopka Medienentwicklung, Heidelberg
Printing company: Krips b.v., Meppel
Printed on acid-free paper
Printed in the Netherlands

ISBN 978-3-8348-0421-1

Preface

This textbook results from a series of lectures concerning autonomous
mobile robots which have been held at the University of Kaiserslautern be-
tween 1999 and 2009. Methods and algorithms are introduced which can be
used for developing complex autonomous land vehicles. Starting from histor-
ical remarks and application areas of service robots, the vehicle kinematics
modeling is introduced and examples of the drive kinematics of different
vehicles are given. Thereafter, typical sensors and sensor systems are de-
scribed which are used to determine the internal state of the machine and
its operational environment. Localization, i.e the determination where the
robot is, is still a difficult problem. In the textbook, several methods are
discussed which can be used under specific preconditions. Map building as
well as navigation strategies complement the set of basic methods. The last
two chapters deal with the questions of how to compile the above mentioned
methods using powerful control architecture and what frameworks to use to
support the development process.

This textbook is written for beginners and advanced students from the
fields of computer science, mechanical engineering, and electrical engineer-
ing, specializing in autonomous mobile systems. The book is also suited for
engineers with a special interest in the development of wheel driven service
robots.

The writing of the manuscript was only possible with the assistance of
several researchers of our Robotics Research Lab. Special thanks to Sebas-
tian Blank, Tim Braun, and Martin Proetzsch for proof-reading and editing.
Helpful contribution has been given by Daniel Schmidt (chapter kinemat-
ics), Carsten Hillenbrand and Sebastian Prehm (chapter sensors), Jan Koch,
Bernd-Helge Schfer, and Norbert Schmitz (chapter localization), Christo-
pher Armbrust, Tim Braun, and Jens Wettach (chapter mapping), Tobias
Fhst (chapter SLAM), Tobias Fhst and Jens Wettach (chapter navigation),
Christopher Armbrust and Martin Proetzsch (chapter control architecture),
Max Reichardt (chapter frameworks).

Karsten Berns Ewald von Puttkamer

Contents

1 Introduction 1
1.1 Autonomous mobile robots 1
1.2 Applications of autonomous mobile robots 4
1.3 Historical overview . 7
1.4 Book overview . 13

2 Kinematics 15
2.1 Basics . 15
2.2 Wheel kinematics . 19

2.2.1 Kinematics of a differential drive vehicle 22
2.2.2 Kinematics of an omnidirectional vehicle 23
2.2.3 Kinematics of a vehicle with Mecanum wheels 25
2.2.4 Pose calculation based on velocities 27

2.3 Geometrical solution for vehicle kinematics 28
2.3.1 Differential drive . 28
2.3.2 Tricycle drive . 30
2.3.3 Ackermann steering 31
2.3.4 Double Ackermann steering 32
2.3.5 Synchro drive . 34
2.3.6 Omnidrive . 35

2.4 Applying mobile robot kinematics 37

3 Sensors 39
3.1 Tactile sensors . 40

3.1.1 Switches . 40
3.1.2 Bumper . 40
3.1.3 Force sensors . 41

3.2 Pose measurement . 42
3.2.1 Odometry sensors . 42
3.2.2 Compass . 44
3.2.3 Inclinometers . 44

3.3 Sensors for inertial systems 46

3.3.1 Acceleration sensors 46
3.3.2 Turning rate sensors 50

3.4 Distance sensors . 55
3.4.1 Infrared sensors . 56
3.4.2 Ultrasonic sensors . 58
3.4.3 Correlation of ultrasound signals 60
3.4.4 Laser sensors . 63

3.5 Vision sensors . 66
3.5.1 CCD camera . 66
3.5.2 CMOS camera . 66
3.5.3 Stereo-camera systems 66

4 Localization 73
4.1 Pose calculation from odometry 73
4.2 Inertial measurement units (IMU) 76

4.2.1 Simplified inertial calculation 78
4.2.2 Implementation example with heuristics for absolute

orientation measurement 80
4.3 Localization based on optical flow 83
4.4 Feature extraction from laser radar data 86

4.4.1 Obstacles . 86
4.4.2 Line extraction . 86

4.5 Landmarks . 90
4.5.1 Natural landmarks . 90
4.5.2 Artificial landmarks 90
4.5.3 Triangulation using landmarks 90
4.5.4 Measuring distances to artificial landmarks 94
4.5.5 Artificial active landmarks 95

4.6 Global positioning system (GPS) 99
4.7 Kalman filter . 100

4.7.1 General idea . 101
4.7.2 Guessing error . 102
4.7.3 Example application 103

5 Mapping 106
5.1 Metrical maps . 108

5.1.1 Line based metrical maps 108
5.1.2 Plane based metrical maps 113
5.1.3 Feature-based metrical maps 119

5.2 Grid maps . 126
5.2.1 Occupancy grid maps 127

5.3 Sector maps . 129
5.4 Topological maps . 134

5.4.1 Growing neural gas net 137
5.5 Hybrid maps . 143

6 Simultaneous localization and mapping (SLAM) 146
6.1 The general approach . 146
6.2 Merging local maps . 148

6.2.1 Correlation of laser scans 149
6.2.2 Correlation of point clouds 153
6.2.3 Loop closing . 158

6.3 Probabilistic methods . 159
6.3.1 An uncertainty model 159
6.3.2 SLAM as Bayesian network 160
6.3.3 The path estimator . 162
6.3.4 The landmark estimators 163
6.3.5 Numeric computation of FastSLAM 164

6.4 Exploration of the environment 169

7 Navigation 173
7.1 Global path planning . 173

7.1.1 A*-algorithm . 173
7.1.2 Solving a maze . 178
7.1.3 Back tracking algorithm 178

7.2 Local path planning . 181
7.2.1 Path planning on geometric maps 181

Large free space . 182
Narrow free room . 186

7.2.2 Navigation on a raster map 193
7.2.3 Quadtree based path planning 196
7.2.4 Area covering paths 197
7.2.5 Exploration . 201
7.2.6 Obstacle avoidance . 203
7.2.7 Potential field method 206
7.2.8 Basic abilities . 208

7.3 Path control . 218

8 Control Architectures 222
8.1 The hierarchical task-oriented control architecture RCS . 224
8.2 Behavior-based control architectures 227

8.2.1 The Subsumption Architecture 229

8.2.2 Reuse and temporal sequences of behaviors 231
8.3 The integrated behavior-based control architecture iB2C . 232

8.3.1 The basic behavior module 233
Example behavior Turn to object 236

8.3.2 Fusion behavior module 236
Maximum fusion (winner takes all) 238
Weighted fusion . 238
Weighted sum fusion 239

8.3.3 Behavior interaction 240
8.3.4 Behavior coordination 241
8.3.5 Design guidelines . 243
8.3.6 Analysis of iB2C networks 246

9 Software frameworks 249
9.1 The Player Project . 250
9.2 Microsoft Robotics Developer Studio 253
9.3 Orca . 257
9.4 MCA – Modular Controller Architecture 261
9.5 Summary and comparison of robotic frameworks 264

Bibliography 267

Index 280

1 Introduction

Industrial robots, which are among the most important elements for indus-
trial automation, are the biggest commercial market for robotics. Since the
1970s more than one million units are in use in fields like car manufacturing
or the chemical industry. These robots are operating in highly structured
environments. The tasks performed by this type of robots are monotone and
restricted due to a low flexibility. An economic growth of the robotics in-
dustry will only be achieved if the systems become mobile, adaptive to a
dynamic environment and can be used for different tasks. The robots men-
tioned above belong to the class of service robots. A service robot can be
defined as a system which operates semi- or fully autonomously to perform
services useful to the well-being of humans and equipment, excluding man-
ufacturing operations.1

Starting from autonomous guided vehicles, sewer inspection robots, clean-
ing robots or systems for entertainment, the number of service robots has
increased tremendously during the last 15 years. It is expected that the ser-
vice robot market will be growing by a factor of eight to about 50 billion
usd in 2025. Most of these service robots belong to the class of autonomous
mobile robots (amr).

This book is an introduction to basic techniques and methods which
allow the development of such machines. In the following, a short overview
of the problem areas of amrs, their applications and a historical survey are
given.

1.1 Autonomous mobile robots

Autonomous mobile robots (amr) can be defined as robots able to navi-
gate through the environment in an autonomous way while performing goal-
oriented tasks. They can be classified according to their operational envi-
ronment into unmanned ground vehicles (ugv), unmanned water vehicles
(uwvs), autonomous underwater vehicles (auvs) and unmanned aerial vehi-
cles (uav). They can be used for different service tasks like autonomous
inspection, surveillance or maintenance. Figure 1.1 demonstrates typical
1 World Robotics 2003, United Nations and International Federation of Robotics

2 1 Introduction

amrs. The insect-type robot lauron [GB01] developed at fzi, Karlsruhe
(Germany) is designed for navigation in rough terrain. The autonomous
helicopter H3 of the tu Berlin (Germany)2 was built for search and trans-
portation tasks while the RoboTuna project of mit, Boston (usa)3 examines
biologically inspired underwater locomotion.

Figure 1.1 lauron III (left), uav H3 (middle), and RoboTuna II (right)

This textbook focuses on ugvs that make use of wheels for locomotion
purposes. Most methods concerning localization, mapping and navigation
can also be transferred to other types of amrs. Common requirements for
amrs are autonomy and autarchy. Autonomy means that the system can de-
cide self-dependently. One can separate between fully autonomous, in which
the system decides totally by itself, and semi-autonomous, in which some
decisions are made by a human operator. The decisions are normally based
on incomplete knowledge about the environment and might be wrong con-
sidering the global task. The term autarchy signifies that the energy supply
is carried along on the robot. It is clear that these are requirements essential
for tasks in which a mobile robot is necessary.

To fulfill the requirements for autonomy of an amr, the following fea-
tures are essential:

Mobility This term describes the ability of the robot to move to specific
positions in the operational environment. These positions could be in
the local surrounding but also far away.

Adaptivity to unknown situations Because of a high dynamic of the en-
vironment the amr will be confronted with situations which have not
been specified before. Therefore, adaptivity is a key feature for amrs.

Perception of environment For navigation and the ability to fulfill ap-
plication tasks it is essential to retrieve information of the environment

2 http://pdv.cs.tu-berlin.de/lfafr/index.html
3 http://web.mit.edu/towtank/www/Tuna/Tuna2/tuna2.html

1.1 Autonomous mobile robots 3

around the vehicle. The main problems arise from incomplete and noisy
basic data.

Knowledge acquisition Because a complete model of the operational en-
vironment of the robot cannot be described a priori, the amr must have
the ability to acquire new knowledge while operating.

Interaction ability amrs must also be able to get commands and new tasks
from an operator. Very often speech and gesture are more suitable than
standard techniques.

Safety The amr must not destroy itself, damage any objects or hurt hu-
mans. An emergency stop is the simplest technique and should be
avoided by using a prediction of critical situations.

Realtime processing Computer and software architecture able to deal
with hard real-time requirements.

To implement the above mentioned features, different problem areas
have to be handled. Given a mobile robotic platform, the first step towards
a solution to a service robot problem is the modelling of its kinematics and
dynamics. This includes e. g. the relation between wheel velocities and the
robot movements or the influence of wheel slippage. Based on these models,
simple navigation tasks can be described that do not consider obstacles in
the environment. To avoid collisions, sensor systems are needed to detect
different types of obstacles like stairs, furniture or vegetation. Based on the
measurement principle, the extracted information is often noisy and incom-
plete. This makes it necessary to use different sensors and fusion algorithms
for the measured values. The information is used by the collision avoidance
strategies to decide whether an emergency stop or an evasion of obstacles is
the best solution.

If the robot is supposed to be able to drive along a predefined path given
as intermediate positions and orientations according to a fixed frame, it has
to know where it is. This problem is called the localization problem. Because
of disturbances from the environment (e. g. slippage of the wheel) it is not
possible to solve this problem using solely kinematic or dynamic models in
a precise way. Therefore, additional methods have to be taken into account.

For the execution of navigation tasks it is often helpful to describe the
operational environment with maps. Therefore, one has to decide which fea-
tures are extractable from the environment, and how to represent them.
These maps can be used for navigation. This includes path planning under
given quality criteria like time-optimum or length of the travelled path. De-
pending on the application, the amr must recognize whole scenes or only

4 1 Introduction

specific objects that are to be manipulated. Problems are the extraction of
features which lead to an unique identification and dynamic changes of the
situation.

In the following, methods and techniques for the solution of the described
problems will be introduced.

1.2 Applications of autonomous mobile robots

In general, all robotics applications can be classified according to the degree
of unstructuredness of the environment and the degree of autonomy that is
necessary for executing the task (see figure 1.2). Industrial robots are nor-
mally used in a well defined structured environment. For example, welding
robots in car manufacturing get the exact position and orientation of where
the segments of the chassis have to be welded together and where these parts
are located. Therefore, the number of sensors that have to observe the man-
ufacturing process is very low. The task execution is restricted to a fixed
set of commands, which cannot cope with unforeseen conditions. Thus, the
degree of autonomy of the task execution is also low.

Figure 1.2 Classification of amr systems with respect to the field of application

In contrast to that service robots have to operate within more unstruc-
tured environments. It is not possible to depict these environments com-
pletely. Consider for example an underwater robot that is intended to in-
spect a pipeline. In this case a model of the environment and its dynamic
conditions like critical flows could not be given a priori. Furthermore, the use
of specific sensor systems like camera systems will deliver a limited model
of the environment because of e. g. the water turbidity. These disturbances
cause a strong need to adapt to the current situation for he task execution.

1.2 Applications of autonomous mobile robots 5

Personal robots on the other hand are designed to be general purpose
machines suitable for performing a huge amount of different tasks in arbi-
trary environments. A humanoid robot, for example, can be applied as a
servant in a household. It should be able to clean dishes and windows or
wash clothes. The operational environment is located both inside the house
and in the garden. In the following only application areas and some examples
in which specific service robots are used will be presented.

Service robots can be classified based on their application areas. A de-
tailed description of these systems and its applications can be found in [SS04,
Ich05].

Transportation Typical transportation systems are industrial automated
guided vehicle (agv), transportion systems for goods or support sys-
tems for handicapped persons. Because these vehicles operate mainly
in the proximity of humans, the safety requirements are very high. The
main focus lies on path planning under different environmental condi-
tions and taking obstacles into account. A typical example of an agv is
TransCar of the company Telelift, Puchheim (Germany).4 It moves rou-
tine and on-demand deliveries of medical supplies across multiple-floor
facilities. Another transportation system is the autonomous truck Ac-
tros of the company uzin, Ulm (Germany)5, which carries production
materials on the factory premises. The wheelchair Rolland of the Uni-
versity of Bremen (Germany)6 is developed for the transport of elderly
and handicapped people.

Surveillance Surveillance robots have the task of monitoring buildings and
areas both in- and outdoor. Normally, a fixed path or waypoints are
given, which are frequently visited. Besides the implementation of ade-
quate navigation strategies, the detection of irregularities in structured
and unstructured terrain has to be solved. In addition, the system has
to distinguish between intruders and authorized persons. The robots
Mosro and the Ofro of Robowatch, Berlin (Germany)7 are representa-
tives for this application.

Exploration Several robot systems for the application in environments that
are either hazardous or non-accessible for humans were developed in
the last years. These systems have to be immune to any disturbances

4 http://www.swisslog.com/index/hcs-index/hcs-systems/hcs-agv/

hcs-agv-transcar.htm
5 http://www.goetting.de/de/multimedia/videos/fox_auf_vox.flv.html
6 http://www.informatik.uni-bremen.de/rolland/
7 http://www.robowatch.de/index.php

6 1 Introduction

and unforeseen situations. They must be implemented in a way that
an interaction of a human operator with the system via telecontrol is
possible. The planetary rovers Spirit and Opportunity of the National
Aeronautics and Space Administration (nasa, usa) landed on Mars in
2004 and are still operating.8 The robovolc vehicle developed in the
course of an eu project led by the University of Catania (Italy)9 was
used to explore the Etna volcano.

Inspection and maintenance Inspection and maintenance tasks represent
one of the biggest application areas for service robots. They are used
to analyze plants, buildings or large technical devices like ships. They
can also be employed to clean or repair them. The operational envi-
ronment could be subjected to extreme conditions like high and low
temperatures or any kind of liquids. Besides methods for inspection
and maintenance, the exact positioning is a great challenge. In sewer
inspection, for instance, robots are used to detect broken pipes or other
damages, which may lead to ground contamination. Kairo of the fzi,
Karlsruhe (Germany) is a snake-like robot for the autonomous inspec-
tion of pipe networks [SKBD01]. The Robair system of the London
South Bank University was developed to inspect rows of rivets for loose
ones and cracks at the wings and fuselage of airplanes [SPCB06]. Other
applications are underwater, like inspection and repairing of pipelines.
The teleoperated vehicle Spider was designed by the company Cyber-
netix, Marseille (France) [SHW04] and visually analyses pipelines up to
a depth of 1500 m.

Harvesting For forestry and agriculture, different service robots have been
developed to reduce costs and to save resources. One problem area arises
from the motion in uneven and unstructured terrain; another from the
detection of the crop. The six-legged robot Harvester developed by the
company Plustech, a Finnish John Deere subsidiary, is used for cut-
ting trees in rough forests [SS00]. An autonomous fruit picking machine
(afpm) is a further example used for apple harvesting [BDB+07].

Housekeeping Housekeeping robots are an old dream presented in several
science fiction stories. In the last years, several robots have been de-
signed to vacuum-clean, to clean windows or to support people with
their housework. Beside complex manipulation and navigation tasks,

8 http://marsrovers.nasa.gov/home/
9 http://www.robovolc.dees.unict.it/activity/activity.htm

1.3 Historical overview 7

these robot systems often have to interact with human operators ver-
bally or based on gestures and mimic. Trilobite of the company Elec-
trolux was one of the first vacuum cleaner products.10 Equipped with
ultrasonic sensors, Trilobite is able to avoid obstacles. When the bat-
tery load runs low, the robot drives back to the charging station. More
sophisticated research robots for housekeeping are the humanoid robots
armar of the University of Karlsruhe (Germany)11 and Care-O-bot12

of the Fraunhofer Institute ipa, Stuttgart (Germany). Both machines
are able to perform manipulation tasks, like dish washing, or fetch and
carry operations.

Edutainment Edutainment robots combine education and entertainment.
The idea to motivate learning with the help of interesting robot systems
can be found on all education levels. For pupils, Lego Mindstorms13

is often used to introduce them to mechatronics as well as program-
ming robotic systems. The RoboCup competition14 inspires students
worldwide to delve into robotics methods and technologies. Research
areas are multi-agent systems, object tracking and game strategies.
Other projects for edutainment are museum guides like tourbot.15

This robot can be used as an interactive tour guide, providing individ-
ual access to museums’ exhibits and cultural heritage over the Internet,
or as a flexible, on-site museum guide.

1.3 Historical overview

Among the first amrs to be mentioned in the literature is a machine called
elsie (Electro-light-sensitive Internal-External)16, designed by W. Grey Wal-
ter in the 1940s and 50s in England. It is a rather simple device equipped
with very basic sensors and actors in order to enable elsie to localize a
light source in its environment and approach the source’s position. A simple
collision avoidance mechanism was available. elsie could be regarded as the
first autonomous mobile robot able to react by itself to specific stimuli of
the operation environment. The control was based on analog circuits.
10 http://trilobite.electrolux.de/
11 http://www.sfb588.uni-karlsruhe.de/
12 http://www.care-o-bot.de/
13 http://mindstorms.lego.com/
14 http://www.robocup.org/
15 http://www.ics.forth.gr/tourbot/
16 See http://www.extremenxt.com/walter.htm

8 1 Introduction

It took until the late 1960s for the first more serious amr to be devel-
oped. The new robot developed by the Stanford Research Institute (sri)
was named Shakey, see figure 1.3.17 It was equipped with a tv camera, a
triangulating range finder, and bump sensors and made use of programs for
perception, world-modeling, and acting. Due to the increased need for com-
putation performance, it consisted of both an on-board and an off-board
computer (PDP-10) connected via a radio link. Vision and planning were
performed off-board, while all other functions were performed by the on-
board unit. The revolutionary new approach introduced with this platform,
however, was hierarchical control, still a common principle used in modern
robots.

Figure 1.3 Shakey, the forefather of autonomous mobile indoor robots

17 http://www.ai.sri.com/shakey/images.php

1.3 Historical overview 9

Shakey’s control architecture consists of three levels: Low-level rou-
tines take care of simple tasks like moving, turning, or route planning.
Intermediate-level routines combine the low-levels ones in order to be able
to perform more complex tasks. On the highest hierarchy level routines to
make and execute plans are found. Shakey can therefore be seen as the first
cognitive robot which was able to solve complex task planning problems.
Shakey had the task, for example, to move an object located on a platform
in its operational environment. Because it was unable to move on the plat-
form, Shakey first plans how to reach it. The solution was to move a ramp
to the platform first and then drive over the ramp to the object. There-
fore, the general problem solver strips was used. The control programs are
implemented with the programming languages Fortran and Lisp.

A few years later, in the early 1970s, the nasa in cooperation with
Jet Propulsion Laboratory (jpl) at Pasadena (usa), launched a program
intended to provide real-time control, reduce support requirements, and en-
hance performance and reliability. One result of this program was the Mars
rover. Unfortunately, its degree of autonomy wasn’t significantly higher than
the one of other platforms developed in those early days of amr research.
However, it was equipped with a modified Stanford arm as manipulator and
a variety of sensors like laser range-finders, or stereo tv cameras, as well as
tactile and proximity sensors.

Its navigation system was based on a gyroscopic compass and optical
wheel encoders employed for dead-reckoning. Again the need for the compu-
tational performance made an off-board computer inevitable as an addition
to the 32 K memory on-board system to construct a “world model” and per-
form planning. The robot’s basic ability was to analyze a simple environment
with a limited number of objects, plan a path and follow it to a goal.

The representation of the world used for this purpose was a segmented
terrain model consisting of map sectors of reasonable size. Each sector was
assigned an attribute representing the accessibility for the robot: Hence, a
certain sector was either not traversable or unknown. All other sectors were
assumed to be traversable.

The Stanford Cart was developed by Hans Moravec of ai Lab, Stanford
(1973–1981). This semi-autonomous controlled robot was equipped with a
stereo-camera system, in order to generate 3D images. Since image processing
on board was not possible, the image was sent to an external computer. After
the image was processed, the distance information of the objects was sent
back. The objects were described in polar-coordinates.

For the determination of an optimal path, a tree-search approach was
used. The cmu mobile Robot (1981–1984) continued the Moravec research.
This cylindrically shaped vehicle with a height of 1 m and a diameter of 30 cm

10 1 Introduction

had 12 on-board processors. As control architecture, a three level task-based
approach was used, consiting of a planner, initiator, sensor processing and
the motor control. Until now, several mobile robots apply such a control
architecture.

Meldog was a remarkable approach to develop a autonomous robot. Mel-
dog, which was built as a kind of motor cycle, was developed at the Mechan-
ical Engineering Lab in Japan (1979–1983). It was a mobility aide to blind
people and acted as a kind of robotic seeing-eye dog. The vehicle was able to
detect obstacles in the nearby environment with ultrasonic sensors. Based on
this information collision avoidance was performed. Furthermore, the speed
adjustment to keep a distance of 1m to the operator was triggered by ul-
trasonic measurements. With the help of a wired link, the operator was able
to control the machine (left, right, straight, stop). Maps were also used to
support path planning.

In Europe the development of amrs was pushed forward by euromicro,
organizing micromouse contests from 1980 on at their annual meetings. The
competition was to let a vehicle find the middle of a maze, made up of small
walls of 10 mm thickness and 50 mm height in tiles of 17 cm side length. In
1981 a first Micromouse, as sketched in figure 1.4 [GHvP81], with a diam-
eter of 15 cm, equipped with two coupled microprocessors, was brought to
the meeting at Kopenhagen by the researchers of the University of Kaiser-
slautern. One of the microcontrollers was used to control the vehicle, the
other one to solve the maze. Afterwards, a new design was developed for a
much smaller vehicle. This was the micro mouse Speedy Gonzales (dimen-
sions 130 mm×100 mm) [HK88] which managed to solve the maze success-
fully. Figure 1.5 shows a sketch of the robot and a picture of the vehicle in
a maze.

Figure 1.4 Concept of the Micromouse

1.3 Historical overview 11

150 mm

power connector
on/off switch

 DC/DC
converter

motor power stage
driving wheel

gear 8,3:1

driving
 motor

driving
 motor

tacho
100 mm

driving wheel
motor power
 stage

130 mm

accu

CCD camera

CCD camera

Figure 1.5 Micro mouse Speedy Gonzales

Besides this, several other activities were started in Germany in the
1980s. Several groups in Munich, Darmstadt, Berlin and Aachen developed
mobile robots. At the th Karlsruhe Prof. Rembold and his group started
the kamro project (Karlsruhe Autonomous Mobile Robot, 1985–1995). The
autonomous mobile robot kamro (see figure 1.6) was one of the first robots
to perform assembly tasks autonomously. It was equipped with two arms
(Puma 260 manipulators) with a gripper and an integrated camera, a mo-
bile platform with an omnidirectional drive system, and different sensors
for navigation, docking and manipulation. The tasks could be described on
different levels: assembly precedence graphs, implicit elementary operations
(pick, place) and explicit elementary operations (grasp, transfer, fine mo-
tion, join, exchange, etc.). kamro provided the basis of a whole series of
autonomous vehicles at the University of Kaiserslautern.

12 1 Introduction

In the 1990s, a lot of wheel-driven robots have been developed all over
the world. Several companies started to build wheel-driven robots which
were mainly sold to the research market. Besides this, service robots like
vacuum cleaners, sewer inspection robots or autonomous transport vehicles
have been used.

From the research point of view, Sojourner (see figure 1.7), developed
at the jpl (1994–1997), was certainly one of the robotic highlights of the
1990s. This small robot driven by 6 wheels was the first machine on Mars.
The machine was controlled by teleoperation from Earth. Path planning, for
example, was done with the help of a simulation system. When an optimal
path was selected, its parameters were transferred to Sojourner on Mars.
Obstacle detection and avoidance was directly performed on the machine.
Sojourner was equipped with a gripper able to collect samples. A first anal-
ysis of the collected material was also done on the machine.

Figure 1.6 kamro of the Univer-
sity of Karlsruhe (Germany) designed
for a flexible production (courtesy of
Prof. Dillmann, th Karlsruhe)

Figure 1.7 The Mars explo-
ration rover Sojourner devel-
oped by nasa and jpl (from
http://www-robotics.jpl.
nasa.gov/roboticImages/
img811-67-browse.jpg)

This short historical survey is certainly not complete. In the 1970s and
80s there have been further autonomous mobile robot research projects
mainly in the us, Japan and Europe. During this period, the first agv were
used in factories to automatize production. Starting in the 1990s, service

1.4 Book overview 13

robots have been developed for all the above mentioned application areas.
Most of the systems did not get beyond a prototype stage. Besides technical
problems, the high cost was the main reason that these robot systems have
not been placed on the market.

1.4 Book overview

After the above overview of the amr topics, problems and applications,
a short historical survey is given. Chapter 2 focuses on the kinematics of
wheel-driven amrs. Based on the rotational speed of typical wheel types, a
kinematic model for the computation of the vehicle’s linear and angular ve-
locities is derived. For specific drive systems it is easier to apply a geometrical
solution to the kinematic problem. Some examples of this are given.

The kinematic model is a foundation for several topics presented in the
book. The description of the robot’s state and the detection of objects in
its environment are essential for tasks like localization and navigation. In
chapter 3, the most important sensors and sensor systems for this purpose are
introduced. Starting from tactile and pose18 measurement sensors, different
types of ranging and vision sensors are presented. Distance sensors are often
the main source of information because they can be used in manifold ways
e. g. for safety, 3D reconstruction or collision avoidance.

Despite sophisticated sensor systems like gps, precise localization is still
an open research problem. In chapter 4, the problem of localization is intro-
duced and different techniques are presented. This includes dead-reckoning,
localization based on optical flow, feature based methods and approaches
using landmarks.

Complex amr applications need an adequate map for the representation
of the environment and for planning. In chapter 5, a classification of the
different map types is given. Later, the concept for building different types
of maps like metrical, grid, sector, topological and hybrid maps is discussed.

A precise determination of the position and orientation of the robot is
required for map building. On the other hand, if a map exists and features
of the environment can be correlated with it, one can derive the robot pose.
slam methods generate new maps and estimate the pose of the robot in a
simultaneous way. Chapter 6 gives a short overview of slam and presents
solutions to some subproblems like the merging of maps.
18 The pose describes the position and the orientation.

14 1 Introduction

Strategies for moving from one location to another one in known or
unknown environments are summarized under the term navigation. In chap-
ter 7, algorithms for local and global path planning as well as path control
are described. Local path planning covers both algorithms for planning based
on different map types and methods of basic navigation abilities like collision
avoidance.

The structuring of all control components according to functional and
non functional requirements is done using control architecture. Chapter 8
introduces different standard architectures for amrs. The main focus of the
chapter is behavior based control architectures. The iB2C architecture is
presented as an example and applied to specific control problems.

The book ends with an survey of software frameworks for robotic appli-
cations (chapter 9). Robotic frameworks support the development process.
The implementation of control algorithms for complex amrs is not possible
without a suitable framework. In this chapter different features of frameworks
are discussed and a comparison of well known examples from literature is
given.

2 Kinematics

In this chapter, the foundation for path planning and navigation of a wheel-
drive robot is given. First the basic formulas, which allow to describe the
motion of the vehicle in a 3D environment, are introduced. Then the solution
to the kinematics problem considering different types of wheels fixed at spe-
cific positions on the vehicle platform is described. At the end of the chapter,
geometric kinematics solutions for typical wheel-driven robotic platforms are
presented.

2.1 Basics

In the following section, a short introduction to the kinematics calculation
(pose and velocity) is given and applied to a standard wheel-driven robot.
Figure 2.1 shows two successive positions of a vehicle in a 3D environment.
The pose of the robot is represented by a frame through the kinematic center
of the robot (see figure 2.2). Path planning can be reduced to finding a
navigation strategy which transforms the starting frame to the next frame.
In a 2D scenario (e. g. driving in an office environment) a transfer vector
(x,y,α) is determined which describes the displacement in x- and y-direction
as well as the orientation represented as rotation around the z-axis. In the
next section it is shown how – based on the rotational speed of the vehicle
wheels – the velocity of the kinematic center can be calculated. Through the
integration of the velocity vector over time, the pose change is determined.

In general the pose of an arbitrary object in the Cartesian space can be
described as a six-tuple (x,y,z,α,β,γ). The position vector O�u in an object
frame O can be presented in base frame coordinates B�u by

B�u =

⎛⎝ x
y
z

⎞⎠ + B
OR(α,β,γ)O�u (2.1)

with (x,y,z)T being the translational vector between the origin of the two
frames and R the respective (combined) rotation matrix.

16 2 Kinematics

Figure 2.1 Transformation of robot coordinate systems

Figure 2.2 Schematics depicting the coordinate systems in figure 2.1

Another possibility to express the same as above are homogeneous trans-
formation matrices. Those 4 × 4 matrices (for 3D space) are composed as
shown below: [

R u
P s

]
(2.2)

with

R: 3× 3 rotation matrix

u: position vector u = (ux,uy,uz)
T

P : perspective transformation (in general P = (0,0,0))

s: scaling factor (in general s = 1)

Matrix R usually is a combination of several rotations around the elementary
axis. The rotation matrix Rx(α) describes a rotation around the x-axis of an
arbitrary coordinate system via the angle α. The other two required matrices
are defined the same way.

2.1 Basics 17

Rz(α) =

⎡⎣ cosα − sinα 0
sinα cosα 0

0 0 1

⎤⎦ (2.3)

Rx(α) =

⎡⎣ 1 0 0
0 cosα − sinα
0 sinα cosα

⎤⎦ (2.4)

Ry(α) =

⎡⎣ cosα 0 sinα
0 1 0

− sinα 0 cosα

⎤⎦ (2.5)

There are two possible ways of expressing linked rotations: The roll, pitch,
yaw system and Euler angles. The former implies the linked rotations are
performed around the fixed axes of the coordinate system while the latter
uses variable rotation axes. A linked rotation around, for instance, the z-axis
(angle α) then x-axis (angle β) and finally z-axis (angle γ) can be expressed
as:

Euler: Rs = Rz(α) ·Rx(β) ·Rz′(γ) (2.6)
Roll-pitch-yaw: Rs = Rz(α) ·Ry(β) ·Rx(γ) (2.7)

As one can see, the axes in the latter case remain fixed while in the first
case rotations along “new” axes are performed. In case of terrestrial robotics
the roll, pitch, yaw system is selected to transfer the frames into each other.
An illustration of the concept can be found in figure 2.3.

Figure 2.3 Roll, pitch, yaw: rotation along fixed coordinate axes

18 2 Kinematics

The system originates from the field of aviation. The difference to ter-
restrial robotics is the yaw-axis, which is changed from facing down to up
for usability reasons.

Since an arbitrary orientation in 3D space can be achieved using only
three rotations, the resulting linked rotation Rs can be expressed as pre-
sented in equation 2.8. For writing and reading convenience the abbrevia-
tions sα for sin(α) and respectively cα for cos(α) will be used in the following
equations:

Rs =

⎡⎣ cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ

⎤⎦ (2.8)

The velocity vectors can be calculated similar to the transformation of the
pose from one frame to another. Suppose there is a linear velocity vector B�vQ

of an arbitrary point Q presented in frame B which should be transformed
to frame A. This transformation can be calculated as

A�vQ = A
BR

B�vQ (2.9)

If the origin of frame B has also a linear velocity relative to frame A then

A�vQ = A�vOB + A
BR

B�vQ (2.10)

If in addition point Q is rotating around an arbitrary axis with the rotational
velocity AΩB then the linear velocity can be calculated with

A�vQ = A�vOB + A
BR

B�vQ + AΩB × A
BR

BQ (2.11)

A rotational vector B�ω related to frame B can be transferred to frame A
with

A�ω = A
BR

B�ω (2.12)

If there are several segments which are connected to each other by rotational
joints or prismatic joints, the rotational and the linear velocity can be cal-
culated step by step for each segment starting from the base frame. The
rotational velocity i+1ωi+1 and the linear velocity i+1�vi+1 due to frame i+ 1
can be determined as:

i+1ωi+1 = i+1
i R · iωi + θ̇i+1

i+1ezi+1 (2.13)
i+1�vi+1 = i+1

i R
(
i�vi + iωi × iPi+1

)
(2.14)

2.2 Wheel kinematics 19

with iPi+1 the vector in direction of the segment, i, ωi the rotational ve-
locity and θi the rotation of segment i around the elementary z-axis. It has
to be taken into consideration that i+1

i R is the inverse of the orientation
transformation i

i+1R from frame i to i + 1. Because i
i+1R is an orthogonal

matrix its inverse i
i+1R

−1 = i+1
i R is just the transposed matrix i

i+1R
T (see

equation 2.15).

i+1
i R(θ) = i

i+1R
−1(θ) = i

i+1R
T (θ) =

⎛⎝ cα sα xw

−sα cα yw

0 0 1

⎞⎠ (2.15)

2.2 Wheel kinematics

In the following, the stepwise calculation of the linear and the rotational
velocity will be applied to wheeled vehicles operating in a 2D environment.
The question to be answered is how the rotational velocity of each wheel can
be determined, as the kinematic center is moved with a linear velocity ẋ due
to the x-axis, ẏ due to the y-axis and θ̇ the rotational velocity around the
z-axis. Also the inverse of this problem should be determined. Therefore, the
basic wheel types shown in figure 2.4 will be considered.

Standard
wheel

Steerable
standard

wheel
Castor wheel

Swedish or
Mecanum

wheel

Ball or spher-
ical wheel

Figure 2.4 The basic wheel-types

It is obvious that for the standard and steerable standard wheel there
should be no sliding orthogonal to the wheel plane (the velocity must be
zero). The linear speed of each of these wheels in rolling direction can be
calculated with rψ̇ (r is the radius of the wheel and ψ̇ is the rotational speed
of the wheel). This formula could also be applied for the rolling speed of the
castor wheel and the spherical wheel. If d is the offset between the wheel axis
and the vertical axis of rotation, the linear velocity orthogonal to the wheel

20 2 Kinematics

plane is the rotational velocity around the vertical axis times the length of
the offset (−dcβ̇).

In case of the Swedish or Mecanum wheel, in which passive rollers are
mounted in an angle γ (γ is normally 45◦ or 90◦) on the perimeter of the
main wheel, the linear velocity in rolling direction is rψ̇ cos γ. Because the
Swedish or Mecanum wheel is able to move in an omnidirectional way, the
speed orthogonal to the wheel plane can be calculated as rψ̇ sin γ + rprψ̇pr

(with rpr the radius and ψ̇pr the rotational speed of the roller).
To determine the velocity of a wheel due to the velocity vector �v =

(ẋ,ẏ,θ̇)
T

of the kinematic center, one must first define the robot coordinate
frame, which has its origin in the kinematic center of the vehicle (see fig-
ure 2.5). By definition, α = 0 if the normal vector of the wheel plane is
located on the x-axis and has the same orientation. β determines the angle
between the straight line through the kinematic center and the fixing point
of the wheel and the y-axis of the wheel frame. Parameter d is the distance
from the kinematic center to the fixing point of the wheel on the chassis.
The wheel coordinate system has its x-axis in the rolling direction and the
y-axis as the normal to the wheel plane. The linear speed of the wheel is
in the direction of the x-axis of the wheel frame. This parameter definition
can be used for all wheel types. In case of the Swedish or Mecanum wheel
an additional parameter γ has to be introduced, which describes the angle
between the x-axis of the wheel and rolling axis of the rollers.

α

β

α β

α β

α
βα

β

α
β

α
β

Figure 2.5 The parameters for solving the kinematic problem for different wheel
positions

2.2 Wheel kinematics 21

Supposing the velocity vector �v = (ẋ,ẏ,θ̇)
T

of the kinematic center is
given, equation 2.13 and equation 2.14 should be applied to calculate the
linear velocity of a standard wheel. Thus, we receive 1ω1 = (0,0,θ̇)

T
and

1 �(v)1 = (ẋ,ẏ,0)T . Because there is no additional rotational speed, all iωi =

(0,0,θ̇)
T

(see equation 2.13). A stepwise application of equation 2.14 will
deliver the following i �(v)i.

After the rotation around the z-axis with angle α, 2�v2 is calculated as:

2�v2 =

⎛⎝ cαẋ+ sαẏ
−sαẋ+ cαẏ

0

⎞⎠ (2.16)

Due to the translation d, 3�v3 is:

3�v3 =

⎛⎝ cαẋ+ sαẏ
−sαẋ+ cαẏ + dθ̇

0

⎞⎠ (2.17)

The last rotation around the z-axis with angle β − 90◦ transfers the x-axis
of the last frame to the rolling direction of the wheel. For the calculation of
4�v4 in the next equation, sin(β − 90◦) = − cos(β) and cos(β − 90◦) = sin(β)
is used.

4�v4 =

⎛⎝ s(α+ β)ẋ− c(α+ β)ẏ − cβdθ̇
c(α+ β)ẋ+ s(α+ β)ẏ + sβdθ̇

0

⎞⎠ (2.18)

The last step is to equalize the linear velocity vector of the standard wheel
to that of equation 2.18.

⎛⎝ s(α+ β) −c(α+ β) −cβd
c(α+ β) s(α+ β) sβd

0 0 0

⎞⎠⎛⎝ ẋ
ẏ

θ̇

⎞⎠ =

⎛⎝ rψ̇
0
0

⎞⎠ (2.19)

In case of the steerable standard wheel, equation 2.19 can be used in the
same way, if the fixed angle β is replaced by a function β(t). This equation
could also be applied to the spherical wheel (because of the forces which
affect the wheel and change β(t), only a linear velocity in the rolling direc-
tion exists). If the wheel is a castor wheel, the y-component of the velocity
vector is depending on the angular velocity β̇ and the length of the rod (see
equation 2.20).

22 2 Kinematics⎛⎝ s(α+ β) −c(α+ β) −cβd
c(α+ β) s(α+ β) sβd

0 0 0

⎞⎠⎛⎝ ẋ
ẏ

θ̇

⎞⎠ =

⎛⎝ rψ̇

−dcβ̇
0

⎞⎠ (2.20)

The Swedish or Mecanum wheel is able to move in an omnidirectional way.
Therefore, lateral movement of the wheel should be possible and can be
calculated with equation 2.21.⎛⎝ s(α+ β + γ) −c(α+ β + γ) −c(β + γ)d

c(α+ β + γ) s(α+ β + γ) s(β + γ)d
0 0 0

⎞⎠⎛⎝ ẋ
ẏ

θ̇

⎞⎠
=

⎛⎝ rψ̇ cos γ
rψ̇ sin γ + rprψ̇pr

0

⎞⎠ (2.21)

2.2.1 Kinematics of a differential drive vehicle

To calculate the kinematics of a differential drive, vehicle first the wheel
types used have to be determined. This type of robot has two fixed standard
wheels which are mounted on one axis. The kinematic center is located in
the middle of the axis; the distance between the kinematic center and each
wheel should be d. To solve the kinematics problem the coordinate system
to define the parameters must be specified. The origin of this frame lies on
the kinematic center. One solution for modelling the wheel configuration
is to place the wheels on the y-axis of the coordinate frame. As shown in
figure 2.5, the parameters are αl = 90◦,βl = 0◦,αr = −90◦,βr = 180◦. An
example of a differential drive robot is marvin, the mobile vehicle of the
University of Kaiserslautern (see figure 2.6).

Based on equation 2.19 one obtains for the left and the right wheel:

s(αl + βl)ẋ− c(αl + βl)ẏ − cβldθ̇ = rlψ̇l

c(αl + βl)ẋ+ s(αl + βl)ẏ + sβldθ̇ = 0

s(αr + βr)ẋ− c(αr + βr)ẏ − cβrdθ̇ = rrψ̇r

c(αr + αr)ẋ+ s(αr + βr)ẏ + sβrdθ̇ = 0

(2.22)

If the above mentioned parameters are inserted, the following equation will
result:

ẋ− dθ̇ = rlψ̇l

ẏ = 0

ẋ+ dθ̇ = rrψ̇r

ẏ = 0

(2.23)

2.2 Wheel kinematics 23

After solving the equation system on receives:⎛⎝ ẋ
ẏ

θ̇

⎞⎠ =

⎛⎝ 1
2(rlψ̇l + rrψ̇r)

0
1
2d(−rlψ̇l + rrψ̇r)

⎞⎠ (2.24)

Figure 2.6 The autonomous vehicle marvin of the University of Kaiserslautern

2.2.2 Kinematics of an omnidirectional vehicle

To increase the mobility of a vehicle, an omnidirectional drive can be used.
The climbing robot cromsci (see figure 2.7) of the University of Kaiser-
slautern, for example, is equipped with such a drive, in which 3 steerable
standard wheels are mounted with an angle displacement of 120◦ between
them (see figure 2.8). To set up the kinematics equations one can model the
wheel configuration as shown in figure 2.5 with the kinematic center in the
middle of the robot. The front wheel is located on the x-axis, the two rear
wheels have a displacement to the front wheel of ±120◦. As shown in fig-
ure 2.5 α1 = 0◦,α2 = 120◦,α3 = −120◦. β1,2,3 are the control parameters to
determine the direction of the vehicle movements. The parameter d describes
the distance between the wheel’s contact point and the robot center.

For the navigation of cromsci it is necessary to calculate based on the
desired linear and rotational velocities of the kinematic center (ẋ,ẏ,θ̇)

T
, the

single wheel velocities and the orientations (r1ψ̇1,r2ψ̇2,r3ψ̇3,β1,β2,β3).

24 2 Kinematics

Figure 2.7 The climbing robot cromsci (left) and the wheel settings (right)

Figure 2.8 Typical orientations of the 3 steerable wheels of an omnidirectional
vehicle

Applying equation 2.19 for each wheel leads to the following equation
systems:

s(α1 + β1)ẋ− c(α1 + β1)ẏ − d · c(β1)θ̇ = r1ψ̇1

s(α2 + β2)ẋ− c(α2 + β2)ẏ − d · c(β2)θ̇ = r2ψ̇2

s(α3 + β3)ẋ− c(α3 + β3)ẏ − d · c(β3)θ̇ = r3ψ̇3

c(α1 + β1)ẋ+ s(α1 + β1)ẏ + d · s(β1)θ̇ = 0

c(α2 + β2)ẋ+ s(α2 + β2)ẏ + d · s(β2)θ̇ = 0

c(α3 + β3)ẋ+ s(α3 + β3)ẏ + d · s(β3)θ̇ = 0

(2.25)

2.2 Wheel kinematics 25

Based on the last 3 equations of 2.25, the steering angles βi,i = 1,2,3 are
determined:

c(αi + βi) · ẋ+ s(αi + βi) · ẏ + d · s(βi) · θ̇ = 0
⇒c(αi) · c(βi) · ẋ− s(αi) · s(βi) · ẋ

+ s(αi) · c(βi) · ẏ + c(αi) · s(βi) · ẏ + d · s(βi) · θ̇ = 0

⇒c(βi) · (c(αi) · ẋ+ s(αi) · ẏ) = s(βi) · (s(αi) · ẋ− c(αi) · ẏ − d · θ̇)
⇒ tan(βi) =

s(βi)
c(βi)

=
c(αi) · ẋ+ s(αi) · ẏ

s(αi) · ẋ− c(αi) · ẏ − d · θ̇
⇒βi = atan2

(
(c(αi) · ẋ+ s(αi) · ẏ),(s(αi) · ẋ− c(αi) · ẏ − d · θ̇)

)
(2.26)

From equation 2.25, the angular velocity of the wheel ψ̇i can be calculated
using βi:

ψ̇i =
1
ri

(
s(αi + βi)ẋ− c(αi + βi)ẏ − d · c(βi)θ̇

)
(2.27)

2.2.3 Kinematics of a vehicle with Mecanum wheels

Another drive system suited for an omnidirectional vehicle are Mecanum
wheels. Those are convex cylinders arranged in a 45◦ angle relative to the
wheel plane. Two pairs of independently driven Mecanum wheels are suf-
ficient to enable omnidirectional movement. The orientation of the rollers
of the wheels lying on a common diagonal axis is equal. The rollers of the
other two wheels are oriented in the opposite direction. In figure 2.9 (right
side) 4 typical movements of the vehicle are shown. If all wheels move with
the same velocity in the same direction, the robot drives straight ahead. The
machine will turn if the right and left wheels move in opposite direction with
the same velocity. A sideward motion is possible if the neighboring wheels
move in opposite direction with the same velocity. A diagonal motion results
if the two wheels on the diagonal move in the same direction with the same
velocity. This type of drive was applied for the vehicles priamos of Prof.
Dillmann’s research group at the University of Karlsruhe (see figure 2.10).

26 2 Kinematics

Figure 2.9 Schematic configuration of a Mecanum wheel

Figure 2.10 The mobile robot priamos of the University of Karlsruhe driven by
Mecanum wheels [DKWW95] (courtesy of Prof. Dillmann, TH Karlsruhe)

To set up the kinematic equation, the parameters (α,β,γ) for each wheel
must be determined. The order of the wheels is shown in figure 2.9. The
parameters for four wheels are:

α1 = 45◦, β1 = 45◦, γ1 = −45◦

α2 = 135◦, β2 = −45◦, γ2 = 45◦

α3 = −135◦, β3 = 225◦, γ3 = −45◦

α4 = −45◦, β4 = 135◦, γ4 = 45◦

2.2 Wheel kinematics 27

Using equation 2.21, and supposing all driven wheels have the same
radius r, the same distance d from the kinematic center and the above men-
tioned parameters for α,β,γ are inserted, we receive:

s(45◦)ẋ− c(45◦)ẏ − dθ̇ = r · c(−45◦)ψ̇1 (2.28)

s(135◦)ẋ− c(135◦)ẏ − dθ̇ = r · c(45◦)ψ̇2 (2.29)

s(45◦)ẋ− c(45◦)ẏ − dθ̇ = r · c(−45◦)ψ̇3 (2.30)

s(135◦)ẋ− c(135◦)ẏ − dθ̇ = r · c(45◦)ψ̇4 (2.31)

Based on this equation system, the velocities ẋ,ẏ,θ̇ of the kinematic center
can be calculated:

ẋ =
r

4
(ψ̇1 + ψ̇2 + ψ̇3 + ψ̇4)

ẏ =
r

4
(−ψ̇1 + ψ̇2 − ψ̇3 + ψ̇4)

θ̇ =
r

d
√

2
(ψ̇1 − ψ̇2 − ψ̇3 + ψ̇4)

(2.32)

The velocity vector of the kinematic center can be determined as:

⎛⎝ ẋ
ẏ

θ̇

⎞⎠ =
rwheel

4
·
⎛⎝ 1 1 1 1
−1 1 −1 1
C −C −C C

⎞⎠ ·
⎛⎜⎜⎝

ψ̇1

ψ̇2

ψ̇3

ψ̇4

⎞⎟⎟⎠ (2.33)

with C = 2
√

2
d . In order to assume the absence of slip the following must

hold: ψ̇4 = ψ̇1 + ψ̇2 − ψ̇3

2.2.4 Pose calculation based on velocities

Using equation 2.34 and introducing the time interval Δt, the incremental
paths can be determined for 2D navigation as:⎛⎝ Δx

Δy
Δθ

⎞⎠ =

⎛⎝ vx

vy

ω

⎞⎠ ·Δt (2.34)

Assuming the velocity v = (vx(t),vy(t))A given in a robot fixed coordinate
frame (xA,yA), angular velocity ω(t) and the robot pose (x,y,θ) in the world
coordinate system given, one can compute the trajectory as:

28 2 Kinematics

θ(t) =
∫ t

0
ω(τ)dτ + θ0 (2.35)

x(t) =
∫ t

0
ẋ(τ)dτ + x0 (2.36)

y(t) =
∫ t

0
ẏ(τ)dτ + y0 (2.37)

Vehicle velocities are ẋ due to the x-axis, ẏ due to the y-axis and ω = θ̇
around z-axis.

2.3 Geometrical solution for vehicle kinematics

As presented above, the drive kinematics can be calculated by using the
wheel parameters. Nevertheless, geometrical solutions are commonly used if
the robot is moving only in 2D space. That is because it is much easier to
calculate and comprehend. In the following, some standard vehicle concepts
well known from literature will be presented and the kinematics problem will
be solved geometrically.

2.3.1 Differential drive

A differential drive setup consists of two independently driven wheels and
thus only circular arc trajectories are possible. Therefore, two special cases
occur: R = 0 and R = ∞. The former results in a rotation on the spot while
the latter results in a straight route. Hence differential drives possess two
independent dof. Midway between the driven wheels the kinematic center is
situated. An exemplary robot system based on differential drive is the service
robot artos developed at the RRLab at the University of Kaiserslautern (see
figure 2.11).

Given the single wheel velocities vl and vr of the left respectively right
wheel and a time step Δt, the length of the driven ways for each wheel and
the kinematic center Δsm can be calculated (see figure 2.12):

Δsl = vl ·Δt
Δsr = vr ·Δt
Δsm = (Δsl + Δsr) /2 (2.38)

2.3 Geometrical solution for vehicle kinematics 29

Figure 2.11 Differential drive robot artos of the University of Kaiserslautern

Figure 2.12 Geometrical solution of the differential drive kinematic

Based on this and the distance d between a wheel and the kinematic center,
the radius R can be derived:

R = d · Δsr + Δsl

Δsr −Δsl
(2.39)

Keep in mind that we drive a left curve. Otherwise the radius will be negative
(curve to the right). The change in orientation can be calculated using

Δθ =
Δsm

rm
(2.40)

=
Δsr −Δsl

2 · d (2.41)

30 2 Kinematics

For calculating translation changes one need the length of

Δs = 2 · rm · sin
(

Δθ
2

)
(2.42)

Based on this and the robot’s orientation θ0 at the starting position, the
final changes can be derived:

Δx = Δs · cos
(

Δθ
2

+ θ0

)
Δy = Δs · sin

(
Δθ
2

+ θ0

) (2.43)

2.3.2 Tricycle drive

This very common setup is based on a three wheel concept, see figure 2.13.
The steerable front wheel is driven while the two wheels in the back are
free-wheeling. Again this simply results in circular arc trajectories, but this
time the minimum radius is bigger than zero. Therefore, the robot is unable
to turn on the spot. The kinematics can be derived in an analogue way to
the one of Ackermann steering that will be presented in the next paragraph.

R

v´

d

d

common turning point

supporting
 trianglekinematic

center l
v

Figure 2.13 Tricycle kinematics

2.3 Geometrical solution for vehicle kinematics 31

Suppose the steering angle ϕ and the linear velocity v′ of the driven
wheel are given, one can calculate the Radius R and the velocity v of the
kinematic center with wheel distance d and axis distance l:

R = l · cotϕ

v′ =
v

cosϕ
(2.44)

These two values can be used to derive the velocities of both rear wheels:

vl = v · R+ d

R

vr = v · R− d
R

Based on these values the vehicles kinematics as shown before in section 2.3.1
can be calculated.

2.3.3 Ackermann steering

This specific type of drive system is mostly found in the field of automo-
tive applications. It consists of a fixed axle and another one connecting the
parallel steered wheels. In case the driven wheels are connected to the fixed
axle, a differential has to be included in the setup in order to allow for
curved trajectories. If the steered wheels are driven the differential is obso-
lete. Ackermann drive setups possess three degrees of freedom, however they
are not independent. The control of an Ackermann steering is complex, as all
car owners might already have experienced themselves. Nevertheless, those
setups find various application in the field of robotics, for instance in the
commercial outdoor platform RobuCar. The desired drive speed is denoted
vD while vRR and vLR denote the rear left and right wheel speed. vRF , vLF

denote the respective speeds for the front axles while l denotes the length of
the vehicle and d the distance between wheel and kinematic center.

Based on the introduces parameters and steering angle ϕ one can derive
the circle’s radius

R =
l

tanϕ
(2.45)

and finally the four wheel velocities

32 2 Kinematics

vLR =
(R− d) · vD

R

vRR =
(R+ d) · vD

R

vLF =

√
(R− d)2 + l2 · | tanϕ|

l
· vD

vRF =

√
(R+ d)2 + l2 · | tanϕ|

l
· vD

(2.46)

Figure 2.14 Kinematics of Ackermann steering

2.3.4 Double Ackermann steering

In a double Ackermann steering both axles are steerable, see figure 2.15.
It is obvious that such a setup is kinematically even more complex and
problematic than the Ackermann setup already discussed. When a curve is
steered, two rotation points of the robot motion will occur. This yields slip of
the single wheels. This way positioning the robot becomes quite complicated.
However, the advantages are a smaller turning circle as well as the possibility
of sideward motions in case both axles are steered in parallel. Especially in
off-road applications (e. g. robot ravon in figure 2.16), the errors of this
configuration are lower than those of the interaction between vehicle and
terrain.

2.3 Geometrical solution for vehicle kinematics 33

Figure 2.15 Double Ackermann steering with slip (left) and with common pivot
point (right)

Figure 2.16 Robot ravon of University of Kaiserslautern at an early stage

Using known length l, distance d, desired velocity vD and steering angle
ϕ as already presented in section 2.3.3, one can calculated the radius R and
wheel velocities:

R =
l

tanϕ

vLR =

√
(R

2 − d)
2 + l

4

2 · 2| tanϕ|
l

· vD

vRR =

√
(R

2 + d)2 + l
4

2 · 2| tanϕ|
l

· vD

vLF =

√
(R

2 − d)
2 + l

4

2 · 2| tanϕ|
l

· vD

vRF =

√
(R

2 + d)2 + l
4

2 · 2| tanϕ|
l

· vD

(2.47)

34 2 Kinematics

2.3.5 Synchro drive

The main feature of this type of drive system is that all wheels are equally
steered, see figure 2.17. The minimum amount of motors required is two:
the first one drives the wheels by either a chain or a belt, the second one
is responsible for controlling the steering angle. Thus, all wheels are always
rotating equally fast and are facing the same way. A vehicle equipped with
such a drive setup is able to reach any given point in a plane but is limited to
two dof since it cannot rotate. This is of special importance for the layout of
the sensors since they will not necessarily face the direction of the movement.
An example for a robot that relies on such a drive setup is the industrial
service robot Viper [GRD98].

steering motor steering chain

steering chain

motor

driving wheel

motor

Figure 2.17 Schematics of a basic synchro drive

The deduction of the drive kinematics is straightforward because only
basic trigonometry is applied to derive the solution. Let Δs denote the length
of the travelled path of the driven wheels while ϕ is the steering angle. Thus
we receive

Δx = Δs · cosϕ
Δy = Δs · sinϕ (2.48)

If used the other way around, the above equation will determine the desired
parameters:

Δs =
√

Δx2 + Δy2

ϕ = arctan
Δy
Δx

(2.49)

As already mentioned the synchro drive is unable to perform rotations. This,
however, implies that Δϕ = 0 = const holds true!

2.3 Geometrical solution for vehicle kinematics 35

2.3.6 Omnidrive

An omnidrive system consists of a minimum of two independently steered
wheels with one or more free-wheeling passive wheels serving as supporting
wheels. Thus the vehicle is able to move in a plane with three dof.

Figure 2.18 Omnidrive kinematics

Motion radius R, steering angle ϕ, linear velocity v of the kinematic cen-
ter and wheel distance d are given. To calculate the single wheel orientations
and velocities that are needed, the following helping distances can be used:

xR = R · cosϕ
yR = R · sinϕ (2.50)

Based on this one can calculate the wheel parameters of the first

ϕ1 = arctan
yR − d
xR

R1 = R · cosϕ
cosϕ1

v1 = v · R1

R

(2.51)

and of the second wheel:

ϕ2 = arctan
yR + d

xR

R2 = R · cosϕ
cosϕ2

v2 = v · R2

R

(2.52)

36 2 Kinematics

Regarding a generalized omnidrive one needs different parameters which
describe the kinematic setup. At the distance d from the kinematic center
of a vehicle there is a wheel at coordinates (xi,yi) with radius r. At an
orientation ϕ with respect to the x-axis the vehicle drives at a velocity v and
has an angular speed of ω as shown in figure 2.19.

Figure 2.19 Generalized omnidrive

Given the linear velocity v, angular velocity ω, angle ϕ and the coordi-
nates (xi,yi) of a driving wheel number i one can calculate the pivot point
with coordinates (x0,y0) and the motion radius R:

R =
v

ω
x0 = −R sinϕ
y0 = R cosϕ

(2.53)

2.4 Applying mobile robot kinematics 37

By using these values the steering angle ϕi and the angular velocity ψi of
wheel i can be derived:

Ri =
√

(x0 − xi)
2 + (y0 − yi)

2

ψi = ω
Ri

r

ϕi = sin−1

(
x0 − xi

Ri

) (2.54)

Driving straight on means R→∞ =⇒ ϕi = ϕ ; ψi = v/r.

2.4 Applying mobile robot kinematics

With the kinematic models obtained above, it is now possible to solve simple
navigation tasks. These models are the basis for any mobile robot applica-
tion. The first problem to be solved is localization. Based on the angular
velocities of the wheels and the kinematic parameters of the vehicle, one can
determine the robot pose on a 2D plane. The resulting pose is only a first
estimation because of slip effects of the wheels.

In figure 2.20, a typical scenario is presented in which a differential drive
robot is supposed to move along a square of 10m× 10 m. The wheel velocities
are calculated due to its kinematics and the desired path. These velocities
could directly be used for the closed-loop controllers, which determine e. g.
the power of the motors. The ellipses show the area in which the real position
of the robot could be for each step of movement. This error is dependent
on the kinematics of the vehicle. One can observe that the size of the area
is increasing with movement, because of the summation of slippage error.
It is also shown that the distance error is smaller than the rotational error
for a differential drive robot. This results in the elliptic shape of the areas.
The orientation of the different ellipses depends on the orientation of the
robotic system. This so-called dead reckoning localization is sufficient for
short paths but not precise enough for navigation. In chapter 4 different
methods for solving the localization problem will be introduced.

The kinematics could also be used to determine the dof (degree of free-
dom) of the robot. In [SN04] the dof are separated in degree of mobility and
degree of steerability. The mobility describes possible independent motions
based on changes to wheel velocities which are not restricted by kinematic
constraints like the sliding condition. In the case of a differential drive robot
the mobility degree is 2, because a movement along the robots’ y-axis is re-
stricted. Not all three motions of a vehicle in a plane (x-direction, y-direction,

38 2 Kinematics

rotation) are possible at the same time. The steerability indicates the num-
ber of steerable wheels, which could be independently controlled. In case of
a differential drive robot the steerability is 0, in case of a tricycle it is 1.
The summation of both degrees leads to the maneuverability of the robot
system.

Overall, kinematics is the foundation for solving different problems like
localization, navigation, or slam, which will be presented in the next chap-
ters.

Figure 2.20 Typical error caused by odometry using a differential drive

3 Sensors

This chapter introduces sensors often usedcome on autonomous mobile ve-
hicles. In general, a sensor or a sensor system transforms different kinds of
physical values (e. g. a force or a velocity) into electrical signals. One can
distinguish sensors according to the integration level (see also figure 3.1):

Basic sensor: measurement and transformation of the physical signals,

Integrated sensor: basic sensor with signal processing including amplifi-
cation, filtering, linearization and normalization,

Intelligent sensor: integrated sensor with computer-controlled analysis of
the processed signal.

Figure 3.1 Sensor integration levels

Another way of classifying sensors often used in literature is the sepa-
ration into proprioceptive sensors and exteroceptive sensors. Proprioceptive
sensors measure internal states of a robot (e. g. wheel velocity or accelera-
tion), while exteroceptive sensors observe the state of the robot in relation
to its environment (e. g. distance to an obstacle or object identification).

On the other hand, one can also distinguish between active and passive
sensors. Active sensors stimulate the environment and analyze the respond-
ing signal (e. g. ultrasound sensors, laser scanners) while passive sensors mea-
sure a present signal (camera, microphone).

All sensors share an inability to measure their respective variable per-
fectly. There always is a measurement error, depending on the measurement
principle.

40 3 Sensors

In the following, sensors that are useful for autonomous land vehicles are
summarized according to perception characteristics and operating principles.
It makes no sense to describe specific products on the market in this section,
since they change continuously.

3.1 Tactile sensors

Tactile sensors detect physical contact between the vehicle and an obstacle.
This type of sensor is often used in simple mobile robots as a cheap possibility
to describe the environment of the robot. On the other hand, tactile sensors
are often used to fulfill safety requirements imposed on a robot: physical
contact of the vehicle with an obstacle causes an emergency stop.

3.1.1 Switches

Operated by a force larger than a defined minimal force, a spring loaded
contact, which closes or opens an electric circuit, induces a signal. This might
be used to detect more than an unwanted contact with the environment.

3.1.2 Bumper

As a last resort before crashing into an obstacle a bumper activates an emer-
gency break and consumes some part of the impulse like passive bumpers on
cars. This is done by a more or less elastic shield, fastened by springs to the
vehicle chassis. Switches detect the deformation of the shield (see figure 3.2).

spring
 micro
switch spring

transparent
 shirt

micro
switch

1 - 3 cm
movable
 glider

Figure 3.2 Sketch of a simple bumper fixed to the robot chassis (sideview and
bird’s eye view)

3.1 Tactile sensors 41

3.1.3 Force sensors

Typically, force sensors use the physical deformation of elastic materials.
This deformation changes properties of the material like electrical resistance
or capacity. The parameters of a force sensor are the minimal detectable
force, the maximal allowed force and the speed at which a changing force
can be measured. In wheel-driven vehicles, force sensors fixed on the wheels
are often used to prevent tilting over. Also slipping of the vehicle can be
detected with the help of force sensors.

For example, the climbing robot cromsci of the University of Kaiser-
slautern possesses 3 steerable wheels. In each wheel a 3-component force
sensor is integrated which measures contact forces in x-, y-, and z-direction,
see figure 3.3 and 3.4. The maximum forces in x- and y-direction are 150 N
while in z-direction 1500 N could be detected with a resolution of 1 N.

Figure 3.3 Measurement principle of wheel-mounted force sensors. Strain gages
are glued to specific parts of the sensor box. The forces in the wheels lead to a
deformation of these parts which cause a change in the resistance of the strain
gages. The measured fall of voltage is proportional to the change of forces.

42 3 Sensors

Figure 3.4 The driven wheel of cromsci equipped with a force sensor (left) and
the force sensor with integrated electronics (right)

3.2 Pose measurement

The pose of a vehicle is its position and orientation with respect to a world co-
ordinate system. There are different possibilities to determine this pose. Most
techniques are based on odometry sensors, landmarks, magnetic compasses
or inclinometers. The sensors which belong to these classes have in common
that they are not precise enough to solve the pose estimation problem inde-
pendently. In chapter 4, some methods of improving postion estimates are
shown.

3.2.1 Odometry sensors

A robot’s trajectory derived from the summation of wheel speeds is called
odometry. However without orientation sensor, this odometry works only in
2D.

Wheel encoders are mainly used for the determination of the wheel
speed. Based on the measurement principle one can discern magnetic and
optical wheel encoders. Magnetic wheel encoders measure the number of
magnetic pole changes of magnets at the perimeter of a disk either by hall
effect sensors or by the voltage produced by an electric generator turned by
the wheel (tacho generator).

Optical wheel encoders measure distances by the number of ticks pro-
duced by a grid passing a light barrier. There are two grids: one fixed to the
vehicle chassis, the other one turning with the wheel. Hence, the movement

3.2 Pose measurement 43

of the vehicle might be tracked simply counting the number of ticks at the
wheels resulting in the distance travelled.

Let n be the number of ticks measured and n0 the number of ticks for
a full revolution of the wheel with radius r. The distance travelled then is
s = 2πr · n

n0
.

As presented in figure 3.5, the encoder is also capable of measuring the
direction of the rolling wheel. Two grids, fixed to the vehicle chassis

((
n+1

4

))
grid constants apart, emit two signals with a phase difference of 90◦ from
which the direction may be derived. Typical wheel encoders have grids of
4096 equidistant transparent and nontransparent areas. These encoders have
a resolution of 12 Bit or 0.1◦. The calculations towards the vehicle pose are
to be found in chapter 4.

detectors

LED´s

g

(n + 1/4)g
L R

L

R

10 11 01 00 10 11 01 00

R
11 10 00 01 11 10 00 01

4096 steps/revolution ==> 12 Bit

resolution < 0,1°

Quadraturzähler

no light

movable
grid

fixed
grid

fixed
grid

t

T

full light

encoder wheel
grid constant g

Figure 3.5 Measurement principle of a wheel-encoder

44 3 Sensors

3.2.2 Compass

A magnetic compass can be used to keep a direction, measuring the hori-
zontal component of the earth’s magnetic field assumed to be constant in
its direction over short distances. Apart from the classical compass as used
on ships for hundreds of years, this can be done using a ferrite slab with a
rectangular hysteresis loop. Any external magnetic field in the long direction
of the slab shifts the magnetization where the slab goes into saturation.

In a coil wound around the slab driven by a varying current the point
of saturation shows up in a voltage peak induced in the coil by the sudden
change of magnetization. Driving the coil with a time varying current ramp,
the hysteresis loop is scanned periodically. The component of the field in
the direction of the slab can thus be measured as shown in figure 3.6. Two
crossed slabs give the direction of the earth’s magnetic field as seen from
the vehicle. In indoor applications, the magnetic field in the room is mostly
disturbed by metallic parts in concrete walls and ceilings.

H

scanned region of H

B

H

t

J, H

t

Uind

Uind ~ - dB
dt

I(t)

Uind

external field shifts
hysteresis loop

Figure 3.6 Principle of the flux-gate sensor

3.2.3 Inclinometers

In order to measure whether an autonomous vehicle moves up or down a
steep incline or shifts to a side, with the danger of toppling or falling to the

3.2 Pose measurement 45

side, the inclination must be measurable in two axes. This can be done using
a droplet of liquid under the influence of gravity as shown in figure 3.7. In
a transparent hemispherical plastic bowl filled with oil, a droplet of water
forms a lens at the bottom, because water is more dense than oil. The light
of a led is projected by that lens onto a ccd-matrix. Any inclination shifts
the droplet and so the image of the led on the ccd-matrix, indicating the
amount of inclination. An oil of suitable viscosity damps the movement of
the water droplet to damp jitter from movements over uneven ground.

oil

bubble of water

CCD- or PSD-matrix

LED
LED

Figure 3.7 Measuring principle of an optical inclinometer

Figure 3.8 shows the principle of another device; a dielectric liquid drop
floats between the plates of a capacitance. Any tilt shifts the drop to the
side and changes the capacitances in a quad capacitance measuring device.
Typical parameters for a specific sensor of this type are also shown.1

AccuStar inclinometer

dielectric liquid

4 capacitances
measuring range ±20 °
resolution 0.01 °
time constant 0.3 s
pulse width
modulated output 0° -- 50 %
scale factor 0.7%/ Grad
duty cycle T2/(T1 + T2)
frequency 1 kHz

AccuStar II Mini

ca 80 Ø

Figure 3.8 Measurement principle of a capacitive inclinometer

1 Althen GmbH, Frankfurterstr. 150–152, D65779 Kelkheim, Germany; http://www.

althen.de/neigungssensoren

46 3 Sensors

3.3 Sensors for inertial systems

Determining the pose of a vehicle may be done by measuring only acceler-
ations and turning rates and integrating these signals. These measurements
are independent from any disturbances of the outside world.

3.3.1 Acceleration sensors

Accelerometers measure the component of the acceleration in one direc-
tion.

Apart from a crash the accelerations in a vehicle driving around are in
general a lot smaller than the earth acceleration of 1 g.

Driving through a curve in a car will result in accelerations in the mag-
nitude of approximately 0.1 g. Measuring devices found in an airbag system
can also be used for autonomous vehicles.

An example is the AD-XL 105 by Analog Devices.2 It is a device fab-
ricated as a mems, a micro electro-mechanical system, etched out of silicon
and housed in a 14 pin dip (dual inline package) like a small integrated
circuit.

Its parameters are

AD XL 105
measuring range ± 5 g
smallest detectable acceleration 0.02 g
operating voltage 5 V
output 0.25V/g (analog)
bandwidth 10 kHz

The device includes an uncommitted amplifier to amplify the output A
by the quotient of two external resistors: output = (R1/R2) · A · 0.25 V/g
with acceleration A.

There are other sensors available that can measure more than one axis
at the same time. An example for such a sensor is presented in figure 3.9.
The AD-XL 202 is a two axis system by Analog Devices housed in a 14 pin
dip with parameters

AD XL 202
measuring range ±5 g
smallest detectable acceleration 0.01 g

2 http://www.analog.com/en/mems-and-sensors/imems-accelerometers/

3.3 Sensors for inertial systems 47

operating voltage 5 V
output 2 PWM TTL signals
pulse period 1–10 ms
measured acceleration A A = (T2/T1)−0.5

12.5

DEMOD

32 k

32 k

oscillator

DEMOD

Y-SENSOR

X-SENSOR

 PMW
modulator

VDD

COM

XOUT

YOUT

VSS
SELF TEST

RSET

filter

filter

C
O
U
N
T
E
R

μP

13 14 12 3

10

9

81174

AD XL202

CDC

3.0 - 5.25 V

CX

CY

YFILT

XFILT

T2

t

T1

T2

T2 =
RSET

125 M
[s]

XOUT, YOUT

A [g] = (T1/T2 - 0,5) /12,5%

1 g <-- 12,5%
0 g <-- 50 %

Figure 3.9 Two axis accelerometer AD XL 202

The pulse width is externally adjustable with 1 g equalling 12,5% and
0 g equalling 50%. Two built in filters at the output of the demodulator
integrate the measured different signals. The integration time constant is set
with the capacitors Cx and Cy. The period of the pulse width modulator at
the output is set by resistor RSET. Figure 3.10 shows a mems-version of this
accelerometer.

Nowadays, usually micro electro-mechanical systems (mems) are used.
They integrate complex electro-mechanical systems into bulk silicon. Silicon
is a material with good properties for this type of application and it is very
well understood in its physical and crystallographic properties from decades
of producing integrated circuits. The same technique that is used to form

48 3 Sensors

ics may also be applied to etch out free swinging beams of silicon anchored
to the bulk material at a few points only.

Example: Analog Devices AD XL 202

measuring range ± 2 g
smallest detectable acceleration 1 mg
operating voltage 5 V
housing 14 DIP
output 2 PWM TTL signals
pulse period 1-10 ms externally adjustable

μ machined two axis accelerometer

springs

anchor

C1

C2

seismic mass

Figure 3.10 Two axis accelerometer

The measurement principle here is a pair of capacitors to measure very
small distance variations under acceleration. A central difficulty with ac-
celeration sensors is given by earth acceleration which in most cases is far
larger than the acceleration of the vehicle to be measured. Therefore, the
orientation information is crucial to remove unwanted gravity forces from
the measurement results.

3.3 Sensors for inertial systems 49

Figure 3.11 depicts the principle. A mass anchored to the bulk by plate
springs is forced into oscillations by a comb of slabs acting as capacitors.
Typical dimensions of the slabs are length s = 125μm, thickness b = 1μm
and distance to the next slab d = 1μm. The force is multiplied by the
number of combs gripping into each other. It acts in one direction only, but
activating two combs at each side of the masses by alternatively switching
the voltage driving the combs will set the system into oscillations. Typical
frequencies are in the order of approx. 20 kHz. The forces are small, but as
the damping of the system is very small, they are sufficient to drive the block
into oscillations with voltages of 5 V.

U1
U2

 plate
springs

force

U1

U2

F

anchor

F

Figure 3.11 Forced oscillations

To measure small deviations down to 1 nm the slabs may be used as
differential capacitors as shown in figure 3.12.

Driving the capacitors by two voltages with 180◦ phase shift, the result-
ing signal after synchronous demodulation is proportional to the difference
in capacitances and measures the deviation Δd. Since the measuring fre-
quency is much larger than the frequency driving the oscillation they do not
interfere with each other.

50 3 Sensors

C2C1

 seismic
 mass

spring

anchor
 point

differential-
 capacitor

C1 = 0 F/(d - d)

C2 = 0 F/(d + d)

d

C2C1U1 U2

Us

U1

U2

Us C1 > C2

C1 - C2 = 0 F(2 d/(d2 - d2)

Us ~ C1 - C2

≈ (C1 + C2) d/d

measuring of Us by synchroneous demodulation with U1 and integration

* ∫

U1 f ≈ 500 kHz

Us

≈ 1 ms

125 μ

d = 1 μ F = 250 μ2

differential capacitor

deformation

Figure 3.12 Differential capacitor

3.3.2 Turning rate sensors

Angular velocity sensors are intended to measure the turning rate of the
vehicle. Their precision need not be too high: it is neither necessary to see
the rotation of the earth with 15◦/h at a pole, nor the slow rotation of the
short arm of a clock of 30◦/h or 0,008◦/s if the position and orientation has to
be kept for minutes only until the vehicle can reorient itself from landmarks
again.

Cheap sensors for this application are again mems devices. Figure 3.13
shows such a sensor. Two seismic masses are forced into oscillations by comb
drivers, operating 180◦ out of phase. Inside each mass a measuring comb
forming the differential capacitors Ca, Cb, Cc and Cd respectively measure
any deviation due to the Coriolis force and the amplitude of the driving
oscillation.

3.3 Sensors for inertial systems 51

leaf springs

oscillation driver

anchor

measuring
electrodes

2. leaf spring

z

z
x

y

oszillation in
 x-direction

 (frame and
 seismic mass)

turning rate sensor

frame

 seismic
 mass

 deflection
 by
Coriolis force

 leaf springs

 in counter phase

anchor

measuring
electrodes

2. leaf spring

oszillation in
 x-direction

 (frame and
 seismic mass)

frame

 seismic
 mass

 deflection
 by
Coriolis force

momentary
 movement

 gravity

momentary
 movement

 gravity

oscillation drivers

compensation of gravity on the seismic mass

 measuring
the oscillation
 amplitude

 compensation
of seismic mass :
C1 = C1a + C1b

C1a

C2a

C1b

C2b

Figure 3.13 Turning rate sensor

52 3 Sensors

The amplitude of the driving oscillation is Aω sinωt using the differential
capacitors as (Ca+Cc)−(Cb+Cd), while the amplitude of the turning rate Ω
is measured through ΩAω sinωt using (Ca+Cb)−(Cc+Cd) in a synchronous
detector.

An example of a turning rate sensor is ADXRS150 from Analog-Devices.3

ADXRS150
measuring range ±150◦/s i. e. ±2,62 rad/s
non linearity 0,1%
acceleration influence 0.023◦/s/g
temperature influence 15% or 21.7◦/s(−40◦ C to +85◦C), 0.17◦/s/◦C

The latest mems devices include 3-axis accelerometers with dimensions
of 4 mm × 4 mm × 1.45 mm in a 16-pin plastic lead frame chip scale pack-
age (lfcsp) as for instance the ADXL330 from Analog Devices. It offers a
measuring range of ±3 g and a sensitivity of 300 mV/g. Packing a three-axis
accelerometer and three turning rate sensors into one package gives a six-axis
movement sensor, the ADIS16355 from Analog Devices.

In order to find the position and orientation of a vehicle without reference
to external landmarks there must be precise sensors on board to measure the
turning of the vehicle using inherent physical properties. If the position and
orientation have to be maintained for longer times, the turning rate sensors
must be precise – and consequently be expensive.

Laser Gyros use the so-called Sagnac effect. It exploits the fact that
the speed of light stays constant regardless of the velocity of the sender. In a
material with the refractive index n(λ) and the speed of light in vacuum c0,
light travels at a velocity of c = c0/n(λ) irrespective of the velocity of the
material itself. A comparatively cheap measuring device based on this effect
is a laser fiber coil gyro.

Two light beams run in opposite directions in a fiber coil: one clockwise
the other one counterclockwise. If the coil itself turns, a phase shift between
entrance and exit of ϕ = 2ωLD/(λc) will occur with L being the fiber length,
D the diameter and ω the turning rate of the coil. Figure 3.14 illustrates the
principle.

The system’s specifications are:

Hitachi Optical Fiber Gyroscope
maximum input rotation rate ±100◦/s
minimum detectable rotation rate ±0,01◦/s
zero point drift ≤ 10◦/h

3 http://www.analog.com/en/mems-and-sensors/imems-gyroscopes/

3.3 Sensors for inertial systems 53

dimensions 100 mm×100 mm×60 mm
weight 0.5 kg
analog output ±2.5V at 350 mA
digital output TTL, 9600 Bit/s
answer time 10 ms
warm up time ≤1 min

A zero point drift of 10◦/h is just the rotation of the earth at 40◦ latitude.
A rotation rate of 0.01◦/s equals 36◦/h and is enough to detect the earth
rotation. In order to derive the turning angle the signal from the rate sensor
has to be integrated:

ψ(t) =
∫ t

0
ω(τ)dτ (3.1)

fiber coil

D = 10 cm
detector

polarizer

filter

phase modulator

beam splitterbeam splitter

laser

Figure 3.14 Principle of Hitachi Fiber Coil Gyro

Mechanical Gyros make use of the fact that a system with a con-
stant angular momentum isolated from external torques keeps its angular
momentum and thus its direction.

A torque
→
D acting upon a system with angular momentum

→
J induces a

precession ωp with �Jωp = �D in the system.

Its direction is perpendicular to the plane spanned by
→
D and

→
J .

Its magnitude is the product of the magnitudes of �D and �J and the sinus
of the included angle γ as shown in figure 3.15 – the cross-product of the
vectors of torque and angular momentum.

This is directly exploited in mechanical gyros – costly but precise. For
autonomous vehicles, maintaining a desired direction is necessary for rather
short periods only when there is no external reference available. In this case
turning rate sensors based on the Coriolis force may be used: A swinging

54 3 Sensors

mass represents an angular momentum too and a forced precession ωp is
translated into a force F perpendicular to the swinging motion and the
forced precession, as shown in the same figure as above and exploited in
mems turning rate sensors described above.

F

l

J = [kg m2 s-1]

D = F l

[N m] = [kg m2 s-2]

p

J x p = D

F

J

oscillating

mass

p

Coriolis force

Figure 3.15 Precession and Coriolis force

Murata Gyro Star4 An explicit Coriolis force based sensor is built
around a triangular quartz prism set into vibrations like a quartz slab in an
electronic clock. Any turning along the main axis causes the prism to swing
in other directions as well.

Two electrodes measure these vibrations. Their signal is proportional to
the turning rate as shown in figure 3.16.

oscillator
 phase
compensation

difference
amplifier

synchroneous
 detector

without rotation

with rotation

L R

L R

high pass filter
+ amplifier x 10
+ low pass filter
==> signal ± 2V

Figure 3.16 Principle of the Murata gyro compass

4 http://www.murata.com/catalog/s42e.pdf

3.4 Distance sensors 55

Typical specifications are listed below:

Murata Gyrostar EBNC o3J
external voltage [+2.7V,+ 5.5V]
current 5mA
max. angular velocity ±300◦/s
output at ω = 0 + 1.35 V
scale factor 0,67 mV

◦/s

temperature coefficient ±20%
linearity ±0,5% of maximum signal
dimensions 15.5 mm×8.0 mm×4.3 mm
measuring rate 50 Hz maximum
weight 1.0 g

3.4 Distance sensors

Distance or proximity sensors are crucial for autonomous vehicles regarding
collision avoidance and mapping. Distance sensors can be active or passive.
Besides passive camera systems, there are active systems based on measure-
ment principles like ultrasonic, infrared or lasers, see figure 3.17.

sender

receiver

objectR

Figure 3.17 An active distance measuring system

For this kind of sensors the energy taken up at the site of the sensor
depends on

• the sensing surface B of the receiver,

• the surface A of the object hit by the beam,

• the reflection ρ(α) of the beam from the object, being dependent on the
angle of incidence to the surface normal and the reflectivity (≥ 99% for
mirrors down to 0,01% for strong absorbing surfaces like black soot).

56 3 Sensors

The light intensity at the object f(R) depends on the type of light
source:

• f(R) = α = const for a laser beam hitting the object fully.

• f(R) = a/R2 for other light sources with large radiation cones compared
to the object,

• f(R) = e−R/γ · a/R2 holds true if the light is being absorbed in the
medium like e. g. light in fog or ultra sound in air.

At the object the reflected signal is I1 = A·ρ(α)·I(R) with A the surface
of the object for a normal source or surface of the laser beam with diameter
Φ if the surface of the object is larger than π/4 · Φ2.

ρ(α) is the reflectivity depending on impact angle α. At the site of the
detector, the intensity is I(D) = I1 · f2(R) · B with f2(R) = b/R2, b the
proportion cut out of the reflected beam by the detector, and B the surface
of the detector. Together this can be summarized to

I(D) = A · I0 · ρ(α) · f(R) · f2(R) ·B (3.2)

I(D) = A ·B · 1/R4 · I0 · ρ(α) · a · b (3.3)

This is the Radar equation without a laser and without absorption. Note
the strong dependency on the distance with the inverse fourth power in R.
Using a laser beam with a surface area of π/4·Φ2 the radar equation becomes

I(D) = π/4 · Φ2 ·B · 1/R2 · I0 · ρ(α) · a · b (3.4)

The advantage of using a sharply bundled illuminating source like a laser
beam is the reduced dependency on R:
I(D) ∝ R−4 −→ I(D) ∝ R−2.

In the following text different types of distance sensor for which the
radar equation can be used are presented.

3.4.1 Infrared sensors

Distance measurement with infrared light is typically used as proximity sen-
sors to detect nearby obstacles (5–80 cm).

In autonomous vehicles it is often applied as safety sensor, e. g. for the
detection of a step or, in small robots, as a cheap sensor to explore the
environment.

3.4 Distance sensors 57

A triangulation sensor based on infrared was introduced by Sharp.5 This
sensor has a close-up range of 8–80 cm and delivers distance data with high
precision and high resolution. In this sensor type the reflected light is pro-
jected onto a psd or a 1D ccd-camera. The position x of the reflected light
on the line camera with distance l to the infrared sender can directly be
converted into the distance d to an obstacle with d = f · l/x (f is the focal
length). Figure 3.18 shows the principle. The angular shift of ε between the
focal plane of the lens and the ccd-line corrects for the shift in focal length
for different distances. Figure 3.19 shows the principle of two reflective sen-
sors for small distances.

D

x´

x

CCD-line

CCD-line

x0

xo´

laser

f
intensity at the

obstacle

x´
xo´

laser triangulation

Figure 3.18 Measurement principle of an infrared triangulation sensor. x is the
distance, f the focal length, D the distance between sender and linear camera and
x′ the intensity maximum in the linear camera picture.

reflector

range up to 4 m
range < 0,4 msurface

Figure 3.19 Reflexion light sensors; larger and short range

5 http://www.sharpsme.com/Page.aspx/europe/en/

58 3 Sensors

Figure 3.20 This forklift robot uses infrared sensors for collision avoidance.

3.4.2 Ultrasonic sensors

An ultrasound sensor bounces off a broad cone of ultrasound and measures
an echo signal from obstacles in this cone. Ultrasonic sensors are often used
as safety sensors in autonomous vehicles. To create ultrasound waves two
principals are used: oscillating membranes and piezo crystals.

A thin metallic membrane of 50 mm diameter is electrostatically set
into oscillations at a frequency around 50 kHz. The membrane sends out
ultrasound pressure waves at a velocity of cus = 330m/s towards an obstacle.
A reflected signal is picked up by the same membrane that is now used as
a receiver. The time-of-flight is a measure for the distance to an object. In
contrast to audible sound, ultrasound signals are attenuated severely in air,
11 m are the limit for 50 kHz signals. From the time tL between start and
first echo the distance is calculated as L = custL/2. The velocity of sound
changes with temperature, air pressure and moisture content but may be
treated as constant for the small distances of interest here. At 50 kHz the
wavelength is λ = 6,6 mm.

The other type of ultrasound sensor is based on a piezo crystal. A piezo
crystal changes its width if a voltage is applied to both sides of a crystal
plate or produces a voltage under compression. A Sick sensor6 presented in
figure 3.23 uses this principle.
6 http://www.sick.de/products/categories/industrial/ultrasonic/de/html

3.4 Distance sensors 59

INIT

16 Soscillations
receiver
dead time

echo

2, 38 ms

L

t

Figure 3.21 The operating principle of a emitter-receiver-module (Transducer)
developed by Polaroid. After an initialization phase the polaroid sensor, with a
membrane diameter 50 mm and a frequency of f = 49.1 kHz, sends out 16 oscil-
lations in a cone angle of 30◦. The time to the return of the reflected signal is
measured. The measure range of the sensor is 20 cm–10.5 m with a resolution of 1%.

Figure 3.22 Cone of an ultrasound transceiver

Figure 3.23 Ultrasound sensor

D2
D1

Figure 3.24 Hard surface re-
flecting like a mirror

60 3 Sensors

Ultrasonic distance measurement also has disadvantages:

Surface roughness Any surface with a roughness that is small compared to
the ultrasound wavelength used acts as a mirror, deflecting the sound
without a return signal. For 50 kHz ultrasound any wall with surface
roughness less than 5 mm behaves this way.

Multiple Reflections Misreadings are possible if the reflected signal hits
an obstacle before it is bounced back to the sensor. In this case a dis-
tance much larger than the real one is calculated (in figure 3.24 D1+D2

instead of D1).

Soft materials Soft materials like pillows or curtains are strong ultrasound
absorbers and can not be seen by the sensor.

Similar external signal An external ultrasound signal like pressurized air
leaking into the environment could be misinterpreted if it has the same
frequency range as the ultra sound sensor.

Crosstalk If more than one sender is firing simultaneously, the returning
signals might overlap. This is called crosstalk.

3.4.3 Correlation of ultrasound signals

Some of the deficiencies occurring with ultrasonic measurements can be pre-
vented by introducing correlation techniques [Joe98]. How similar are two
given signals x(t) and y(t) to each other? The idea is to multiply the signals
with a built-in time shift τ in one signal and integrate the product. The time
shift is the characterizing parameter.

Crosscorrelation

Pxy(τ) =
1

2T

∫ +T

−T
x(t)y(t− τ)dt (3.5)

We see that a strong peak will occur whenever the signals are similar if
shifted by a time τ0 as shown in figure 3.25.

Autocorrelation

Pxx(τ) =
1

2T

∫ +T

−T
x(t)x(t− τ)dt (3.6)

3.4 Distance sensors 61

This causes a peak whenever there are periods in a signal. For uncorrelated
signals there is a single peak at τ = 0, as shown in figure 3.26. Signals in the
form of broadband noise have small crosscorrelation and good autocorrela-
tion, as shown in figure 3.27.

x(t)

t

y(t)

t

Pxy() =
1

2T
x(t) . y(t -) dt

0

-T

+T

Pxy()

0

t < -T ==> x(t) = 0
t > +T ==> x(t) = 0

t < -T ==> y(t) = 0
t > +T ==> y(t) = 0

crosscorrelation

Figure 3.25 Crosscorrelation

 Pxx() =
1

2T
x(t) . x(t -)dt

+T

-T

x(t)

t

Pxx()

Figure 3.26 Autocorrelation

62 3 Sensors

Pxx()
x(t)

t

y(t)

t

Pxy(

good auto correlation

small cross correlation to other pulses

pseudo random sender pulse
of several ms duration

Figure 3.27 Pseudo random pulse

The correlation of signals x(t) and y(t − τ) may be calculated using
Fourier transforms:

Pxy(τ) =
1
2π

∫ +∞

−∞
F ∗(ω) ·G(ω)e−iωτdτ (3.7)

F ∗(ω) =
∫ ∞

−∞
x(t) · e−iωtdt (3.8)

G(ω) =
∫ +∞

−∞
y(t− τ)eiωtdt (3.9)

Let x(t) = 0 and y(t) = 0 for t < 0 and t ≥ N · Δt denote two signals.
Discretizing x(t) −→ [xj] and y(t) −→ [yj] under the discretization xj =
x(j ·Δt) allows us to calculate the Fast Fourier Transforms (fft) F (ω) −→
[Fk] and G(ω) −→ [Gk].

F ∗k =
N−1∑
j=0

xj · e−i2πjk/N (3.10)

Gk =
N−1∑
j=0

yj · ei2πjk/N (3.11)

3.4 Distance sensors 63

where j,k = 0, . . . ,N − 1 and N = 2n. The back transformation delivers
Pxy(τ) −→ [Pxy(τm)] with τm = m ·Δt

Pxy(τm) =
1
2π

N−1∑
j=0

F ∗k ·Gke
−i2πmk/N (3.12)

Using suitable pseudo random signals of 10ms duration correlating the
transmitted and received impulses allows a precise measurement of distances
despite crosstalk. Two objects nearby each other may be discriminated as
shown in figure 3.28.

s

 s < cus . Ts

x(t)

t

t

Ts
e(t)

Pxe()

sender/receiver

objects

L1 L2

Figure 3.28 Better distance resolution

3.4.4 Laser sensors

Laser radar sensor The most prominent sensor of this type is the Sick pls
sensor.7 It is an active laser sensor operating on narrow pulses of 1 ns length
but 10W power with 4500 pulses/s (eye safe) in the near infrared section of
7 Sick Optoelectronic Waldkirch, Baden, Germany; http://www.sick.de/de/products/
categories/safety/de.html

64 3 Sensors

the spectrum. On emission of a pulse, a fast counter is started and stopped
again at the first return of a signal, picked up by a rather large mirror and
an avalanche photo diode. The counter directly measures the distance to
an obstacle. Within 1 ns the light travels 15 cm from the sender towards an
obstacle and the same distance back again towards the receiver. Figure 3.29
illustrates this principle.

stop

start

counter

 pulse
former

detector

run time

(distance)

clock

laser

1 ns = 15 cm

rotating mirror

fixed mirror

laser distance meter

Figure 3.29 Principle of the Sick laser scanner

Each tick of the counter denotes a distance of 5 cm. As the emitted
signal is rather strong, every surface with a reflectivity larger than 1.8%
(black leather, dust on a polished glass surface or a fly in the beam) gives
enough reflection to see a return signal and detect an obstacle. The scanning
range of the sensor is 180◦. 361 measured distances taken every 0,5◦ form a
laser scan (running period 80ms). Further information is printed in the table
below. The sensor is licensed in the eu to be used to trigger an emergency
stop for distances less than 4 m. Figure 3.30 shows a picture of the sensor.8

Figure 3.31 shows a laser radar scan of a room with some furniture in it; the
grid width is 1 m.
8 http://www.sick.de/

3.4 Distance sensors 65

The main parameters of a Sick laser range sensor are listed below:

Cone angle 180◦
Angle resolution 1◦/0.5◦ / 0.25◦
Response time 13 ms / 26 ms / 53 ms
Resolution 10 mm
Systematic error ±15 mm
Statical error at 1 σ 5 mm
Measurement range 8 m, 16 m, 32 m, 80 m
Transfer rate 9.6/19.2/38.4/500 kBaud
Working temperature 0. . .+50◦C
Supply voltage 24V ±15%
Weight ca. 4.5 kg
Size (H × L × W) 210 mm × 156 mm × 155 mm

Figure 3.30 The Sick laser scanner LMS200

Figure 3.31 Typical laser scan of a room

66 3 Sensors

3.5 Vision sensors

There are two important semiconductor sensors available for computer vi-
sion: ccd and cmos. The basis of semiconductor cameras is the “inner pho-
toelectric effect”: In certain materials electrons are set free under photon
absorption (light). The amount of electrons is correlated to the amount of
photons. While cmos sensors offer small size, bigger dynamics and show no
blooming effects, the ccd sensor has higher photo sensitivity, higher unifor-
mity and less noise.

3.5.1 CCD camera

ccd chips are sensitive to the complete visible spectrum, but especially to
red light. Color images are created through application of rgb filters and
a combination of 4 photo diodes for 1 pixel. One problem with ccd tech-
nology is the evaluation per column. Under intense light this leads to the
so-called “blooming” where a column seems to be fully illuminated. During
integration of charges the pool may be flooded. This effect can be avoided
with “drain canals” on the chip, reduction of exposure time or reduction of
shutter opening time.

3.5.2 CMOS camera

cmos technology offers a continuous conversion of the photon beam into
output voltage while each cell or pixel can be accessed directly. Therefore,
cmos is more expensive than ccd.

3.5.3 Stereo-camera systems

Binocular stereo vision Humans are able to perceive depth information
with their two eyes. A distant object is projected onto the retina of the left
and right eye. The object’s projections differ in their position. The human
brain is able to generate a depth judgment for that object by analyzing the
two images.

Computer stereo vision copies this concept. The goal is to reconstruct a
depth map from at least two 2D camera images showing a 3D scene from dif-
ferent observation points. The depth information can be inferred by matching
a point in both images and looking at the displacement between the matched

3.5 Vision sensors 67

pair. Figure 3.32 visualizes the general case of stereo vision geometry with
two input images.

Figure 3.32 General stereo vision geometry (pin-hole camera model). Eleft, Eright:
epipolar points; Fleft, Fright: focal points; P : point in 3D space; Pleft, Pright: projec-
tions on image planes

A 3D scene is projected onto two 2D virtual image planes. The plane
defined by point P and both focal points Fleft and Fright is called epipolar
plane.

The projected line from focal point Fleft to P in the right image is
called an epipolar line. The right image projection Pright of point P can
always be found on this epipolar line. This is called the epipolar constraint
and simplifies the correspondence problem. This constraint only holds for
the perfectly rectified images of a pin-hole camera. In reality, raw camera
images are usually distorted. The images have to be rectified prior to stereo
vision processing.

A binocular stereo vision system with canonical stereo geometry consists
of two identical cameras mounted in parallel. The cameras are placed so
that their virtual image planes and both epipolar lines fall together (see
figure 3.33). The epipolar lines are aligned parallel to the x-axis of the image
planes.

68 3 Sensors

Each point in the observed scene will be projected to the same row in the
left and right image but on different pixels here. The displacement between
left and right projection is called disparity d.

In order to reconstruct the 3D scene from disparity values, the fixed
distance between the cameras called baseline b and the focal length f of the
cameras has to be known.

The stereo vision head coordinate system lies between both cameras
on the baseline. Its orientation is defined according to common decisions in
robotics as a right-hand coordinate system. The x-axis pierces perpendicular
through the image plane (see figure 3.33).

Figure 3.33 Binocular stereo vision setup

In computer vision, the origin of an image usually lies in its top left
corner. Here, the image coordinate systems have their origins translated to
the very middle of each picture, closest to the focal point (see figure 3.33).
This is not a restriction. It only simplifies the following derivation and is a
common assumption in physics for the pin-hole camera model.

The exact 3D coordinates x, y and z for two matching pixel (xl,yl) and
(xr,yr) can be calculated using triangulation as shown in figure 3.34.

3.5 Vision sensors 69

tan(αl) =
xl

f
=

b
2 − y
x

(3.13)

tan(αr) =
−xr

f
=

b
2 + y

x
(3.14)

Figure 3.34 X-y-plane triangulation (top view on stereo vision head)

Solving 3.13 and 3.14 for y yields:

y =
−xl · x
f

+
b

2
(3.15)

y =
−xr · x
f

− b

2
(3.16)

Equating 3.15 and 3.16 and solving for x results in:

x =
b · f

xl − xr
(3.17)

70 3 Sensors

Solving for z is even simpler. Since both pixels lie on the same image row
yr = yl holds, see figure 3.35.

tan(β) =
yl

f
=
z

x
(3.18)

z =
x · yl

f
(3.19)

Figure 3.35 X-z-plane triangulation (side view on stereo vision head)

Substitution of equation 3.17 into 3.19 and 3.15 yields the following
formulas for straight forward computation of y and z.

y =
− b

2 · (xl + xr)
xl − xr

(3.20)

z =
yl · b
xl − xr

(3.21)

The disparity value d calculated by a stereo vision algorithm already equals
xl − xr. Note that the translation of the image origin along the x-axis has
no effect on the disparity. Let the left image be the reference image. Then
xl and d are known. xr can easily be calculated as xr = xl − d.

Stereovision algorithms The challenge for a stereo vision algorithm is
to solve the correspondence problem, i. e. finding the right match in the left
and right image for a given point in the real world. The common approach is
to declare one input image as the reference image. For a pixel in the reference
image the corresponding pixel is then searched for in the second input image.

3.5 Vision sensors 71

However, finding the correct match is ambiguous. Due to occlusion some
points may not have a match in the other projection (see figure 3.36). Fur-
thermore, repetitive textures may produce multiple matches. Detecting oc-
clusion and finding the right match determines the quality of a stereo vision
algorithm.

(a) (b) (c)

Figure 3.36 Scene configurations with half-occluded regions (highlighted in red):
(a) occlusions due to thin object at the foreground-scene discontinuity, (b) occlusion
due to a small hole at the foreground-scene discontinuity, (c) occlusion due to surface
variation-surface discontinuity (source [Kos02]).

Stereo vision strategies can be dense or sparse. Sparse stereo vision con-
centrates on selected feature points only. A feature point can be a point
of special interest. Alternatively, a feature point may be a point with high
likelihood for a good match. This approach can potentially result in a fast
stereo vision algorithm due to the reduced amount of analyzed points. Dense
stereo vision algorithms find matches for all points in the reference image
(a dense approach was chosen here since distance information for the whole
image is required for further processing steps). In a complete run of a dense
stereo vision algorithm, a disparity value is calculated for each pixel in the
reference image. Typically this result is visualized as a gray scale image, also
known as disparity map. In this image each pixel’s brightness corresponds
to a disparity level. High disparity values result in lighter pixels.

Instead of finding suitable feature points in a pre-processing step, the
disparities for all pixels are computed in parallel. Therefore, points with high
confidence can serve as sparse feature points if needed.

Global vs. window-based optimization Recently, high quality results
have been achieved in cpu stereo vision by applying global optimization
techniques to the stereo vision problem (see [SS02]). Such algorithms rank
top at the Middlebury evaluation page.9 However, these approaches tend to
be slow and thus are not suitable for our near-real-time task. Yang and Polle-
feys [YP05] claim that only correlation-based stereo algorithms can provide
9 http://vision.middlebury.edu/stereo/

72 3 Sensors

a dense depth map in real time on standard computer hardware. However,
a fast optimizing stereo vision algorithm for the gpu could be an interesting
future research topic.

gpu computation profits from parallelizing, while inter-process commu-
nication is extremely limited10 or expensive11. In this work a window-based
approach was chosen.

Window-based stereo algorithms take two parameters: window width
and window height. The window describes a rectangle area around the ref-
erence pixel. Around a match candidate in the second image a rectangle of
equal size is compared to the reference window, see figure 3.37. The most
similar areas are taken to be the correct match.

Figure 3.37 Window-based stereo vision

For each disparity step a window-based strategy shifts the window along
the epipolar line in the second image. The region in both images is then
compared by a similarity function. The disparity step with the highest sim-
ilarity most likely provides the correct match. Common similarity functions
are cross correlation, sum of squared differences (ssd) or sum of absolute
differences (sad).

The performance and quality of a window-based algorithm depends on
the window size. Large support regions provide a higher certainty for a cor-
rect match even for low textured input images. Small window sizes speed
up the computation and produce finer grained results. Window-based stereo
vision requires good textures in the input images. Luckily, in the application
field of outdoor robotics such textures prevail.

10 shared memory accessible for threads in same block only
11 global memory access is slow

4 Localization

For autonomous navigation, a mobile robot needs to consider its position
and orientation within a certain working coordinate frame. The so-called lo-
calization problem is usually solved by a mixture of different principles con-
tributing to the state variables of position and orientation, called “pose” in
the following. Generally two different approaches are being considered: abso-
lute pose determination and relative pose determination. For each time step,
the incremental observation of velocities, angular velocities, forces, or visual
characteristics give an information update for the pose variables. Absolute
information derived from global landmarks like gps, however, directly pro-
vides position information. In the following, the important variants of pose
measurement as well as the required principles of selected sensor systems
are described. Also some exemplary implementations are explained in more
detail. There are several possibilities to group the different techniques, such
as regarding absolute or incremental information or position and orientation
sensors. However, it seems most logical to present the measurement princi-
ples in an order they can be put together as a whole localization system,
supplementing each other.

4.1 Pose calculation from odometry

A robot’s trajectory derived from the summation of wheel velocities is called
odometry. In order to exemplify the techniques involved, the calculations for
a differential drive are presented in the following.

Let two wheels roll on the ground with distance d between them, see
figure 4.1. While driving in a circle with a radius R, the driven distance of
each wheel (s1 and s2) and the angle ϕ at which the vehicle turns measured
by the difference in ticks of the right and the left wheel n1 and n2 are
calculated as given in equations 4.1 to 4.3. Here n0 denotes the number of
ticks per wheel revolution and r denotes the wheel radius.

74 4 Localization

s1 = 2π(R+ d/2)ϕ/360◦ = n1
2πr
n0

(4.1)

s2 = 2π(R+ d/2)ϕ/360◦ = n2
2πr
n0

(4.2)

ϕ =
360◦(n1 − n2)r

d · n0
(4.3)

Figure 4.1 Measuring turning angles

Any small difference in the radii of the right and left wheel shows up in
an angle indistinguishable from a real turning.

Let r2 = r and r1 = r+δr. Then δϕ = 360◦ ·n1/n0 ·δr/d. So after a while,
the measurement significantly deviates from the actual rotation performed
by the vehicle. As an example let r = 100 mm, δr = 1 mm, s = 6 m and
d = 500mm. This leads to a deviation of δϕ = 7.2◦.

Measuring path lengths is a lot more precise as the weighted sum of the
radii are taken:

s =
s1 + s2

2
=
n1 + n2

2
2πr
n0

(4.4)

As already discussed in section 2.2.4, the position and orientation of a
vehicle can be determined using equations 2.35 through 2.37. These integrals
are generally not solvable in closed form. If v(t) and ω(t) are measured every
Δt, the integrals have to be calculated from sets [vi] and [ωi]. The time
interval Δt must be short enough to allow the proper reconstruction of ψ(t)
according to figure 4.2. The numerical integration, using the simple trapezoid
formula, gives the formulas 4.5 to 4.7.

4.1 Pose calculation from odometry 75

ψi ≈ ψi−1 + (ωi−1 + ωi) ·Δt/2 (4.5)
xi ≈ xi−1 + (vi−1 cos(ψi−1) + vi cos(ψi)) ·Δt/2 (4.6)
yi ≈ yi−1 + (vi−1 sin(ψi−1) + vi sin(ψi)) ·Δt/2 (4.7)

i-1

i
i-1

t

Figure 4.2 Principle of numerical integration

While the distance s(t) driven can be measured by internal odometry rather
precisely to better than 1%, the calculation of x(t) and y(t) requires the
knowledge of the angle ψ(t). Using wheel encoders only, the differences in
wheel radii sum up integrating ω(t), while in the measured distance only
the weighted sums of the radii are integrated. Figure 4.3 shows the error
summing up. Using only wheel encoder data typical error ranges for ψ are
approximately 1◦/m, i. e. 0.174m deviation to the side over a path length of
10 m.

error in si

deviation by error in

t = 0

at (xi, yi, i)

and t = t0 + i t

(x0, y0, 0)
error ellipsis

Figure 4.3 Position error ellipsis

As the error in s is small and the error in ψ large in comparison, this
results in an elongated error ellipsis. The error ellipsis describes the distri-
bution of measured points around the calculated point (xi,yi). Under the
assumption of equal distributed errors, the probability of finding a distance
s although the distance si has been travelled, is

p(s) =
1√
2σs

exp

(
−(s− si)2

2σ2
s

)
(4.8)

76 4 Localization

This is a Gauss normal distribution. In figure 4.3 the width of the ellipsis is
just σs. By the same argument the distribution in ψ is given by

p(ψ) =
1√
2σψ

exp

(
−(ψ − ψi)

2

2σ2
ψ

)
(4.9)

The general problem of odometry in its incremental nature is that real sys-
tems show no longterm stability. Slippage, measurement errors, and in the
case of 3D (outdoor) environments one missing measurement direction, lead
to the problem of the calculated pose information going wrong after a certain
amount of time. Odometry has therefore to be combined with information
from absolute pose measuring sensor systems.

4.2 Inertial measurement units (IMU)

The name inertial measurement unit, also called inertial system, derives from
the fact that only inner information of a system, forces and angular velocities
(in three dimensions in this case) are regarded and therefore the system is not
vulnerable to errors like slippage that influence for example the odometry
calculation. The important components of such a system are depicted in
figure 4.4. Physics teaches us that each change in direction of a movement
manifests itself in a measurable acceleration force. Being in free space, a
moving system therefore needs to be accelerated to change direction and/or
velocity. Therefore, measuring acceleration forces allows us to reason about
state changes in this respect and to interpret the pose change occurring, with
given knowledge about the initial unaccelerated state, possibly including a
fixed velocity component.

Two important aspects are mentioned in advance. Firstly, we are not
in free space, therefore the earth’s rotation and gravity force lead to some
more or less disastrous impact on our measurements. Secondly, the pose
information derived is, as with odometry, of incremental nature. However,
the example described in section 4.2.2 contains some heuristics that enhance
inertial systems to work at least as an absolute sensor for orientation, turning
the necessity to deal with gravity force into a virtue. The general algorithm
for calculation of pose information from inertial measurement considering all
effects on or in proximity of our planet is depicted in figure 4.5. The Coriolis
force, earth rotation etc. have to be considered, for example when using
inertial systems as navigation support in planes. Inertial measurement units
have been used on autonomous robots for a long time, see [BF94, NDW99,

4.2 Inertial measurement units (IMU) 77

HKNO01]. However, in mobile robotics a simplified approach can be used as
described in section 4.2.2.

Figure 4.4 Components of an inertial measurement unit

Figure 4.5 General algorithm for inertial pose calculation

78 4 Localization

4.2.1 Simplified inertial calculation

As described at the beginning of this section, the pose information is derived
using sensors for angular velocity ωx,y,z and linear acceleration ax,y,z. The
following notations are used:

Inertial calculation expressions:
�ω: measured angular velocities
�σ: angles from integration of angular velocity
φ: roll-angle around x-axis
θ: pitch-angle around y-axis
ψ: yaw-angle around z-axis
�a: accelerations
�g: gravity force
�v: velocities
�s: position
�u: rotation axis for attitude correction heuristic
α: rotation angle for attitude correction heuristic
t: time interval
W : matrix with unit vectors of global frame
B: matrix with unit vectors of local frame
T : rotation tensor, translates from local to global frame
ε: tolerance interval
lower index b: vector/matrix referred to local frame
lower index w: vector/matrix referred to global frame
double lower index �α,β: tensor rotates around axis �α by angle β
upper index k: vector/matrix/tensor in kth time step

The world model shall be an unaccelerated plane surface only interfered
with by the gravity force. The matrix Bw with axis vectors of the body frame
from world view contains the attitude information of the imu. At this part
the common strap-down approach [TW97] is modified, where the attitude
information is only stored in three angle variables. Using this axis matrix
Bw has the advantage that the attitude is well known and a calculation of
angles necessary for an representation by individual rotations can be done if
necessary. The matrix, however, is updated in every step of the calculation.

4.2 Inertial measurement units (IMU) 79

Ww =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ (4.10)

Bw =

⎛⎝b11 b12 b13

b21 b22 b23

b31 b32 b33

⎞⎠ (4.11)

The angle change per time step is deduced by trapezoid integration of the
current and last angular velocity measurement. This angle needs to be trans-
formed to the global frame.

�σk
b = tk

(
�ωk

b + �ωk−1
)
/2 (4.12)

�σk
w = Bk

w�σ
k
b (4.13)

Attitude information is updated by multiplication of Bw with a rotation
tensor. This is possible as this matrix contains the axis vectors of the body
frame. These vectors are rotated at this point. The rotation axis represented
by the tensor equals the angular rate. The rotation angle is derived as the
length of the current angular velocity vector. Only two of three normal vec-
tors (rows in the orientation matrix Bw) are rotated variantly. The third one
is calculated by cross product. On one hand, this saves calculating time and
on the other hand, it guarantees the rectangularity and normalization of the
unit vectors in the transformation matrix.

Bk+1
w = T�σk,|�σk| ·Bk

w (4.14)

The matrix which transforms from the local coordinate frame to the global
frame is conveniently the attitude representation itself, as shown below. D
shall be the initially unknown transformation matrix here.

Bw = DWw (4.15)
Ww = I (4.16)
Bw = D (4.17)

For sensor fusion and graphical output, the attitude needs to be represented
by Euler angles. The combined Euler matrix represents three sequential ro-
tations by the angles φ, θ and ψ around the world axes x, y, and z, or the
body axes in opposite order (c: cos, s: sin):

D =

⎛⎝cψcθ −sψcφ+ cψsθsφ sψsφ+ cψsθcφ
sψcθ cψcφ+ sψsθsφ −cψsφ+ sψsθcφ
−sθ cθsφ cθcφ

⎞⎠ (4.18)

80 4 Localization

The angles can be determined by coefficient comparison from Bw.

φ = arctan
(
b32

b33

)
(4.19)

θ = arcsin (−b31) (4.20)

ψ = arctan
(
b21

b11

)
(4.21)

Knowing the orientation, the measured acceleration forces can be translated.
By multiplication the matrix Bw, they are mapped to the global frame and
are used to continuously integrate the acceleration of the system to get ve-
locity and position. The force of gravity has to be subtracted in every time
step. Here we have the largest source of position errors. A wrong attitude
causes a wrong difference and an incorrect acceleration vector is processed.

�gw =

⎛⎝ 0
0

9,80665 m/s2

⎞⎠ (4.22)

�aw = Bw�ab − �gw (4.23)

�vk
w = �vk−1

w + tk
(
�ak

w + �ak−1
w

)
/2 (4.24)

�sk
w = �sk−1

w + tk
(
�vk

w + �vk−1
w

)
/2 (4.25)

Unfortunately, a number of errors is totalized due to integration and
lead to an unbearable pose error in a rather short time. The errors which
can be identified are assembly errors (alignment on board, rectangularity),
electrical errors (voltage fluctuations, system noise, digital jitter), and sensor
errors (temperature dependence, cross axis influence, characteristic curve).

4.2.2 Implementation example with heuristics for absolute orien-
tation measurement

The inertial system shown in figure 4.6 was developed at the Robotics Re-
search Lab and is currently used primarily as orientation sensor for the
autonomous outdoor robot ravon. One major aspect for the success of the
system as a sensor on ravon is the absolute orientation information that
improves calculation of trajectory from odometry. As stated already, the
odometry consists of a scalar velocity information of each wheel and there-
fore gives only limited information about angular velocity which, however,
is crucial for localization. Therefore, a 3D orientation sensor adds the miss-
ing information to the incremental information from the wheels. However,

4.2 Inertial measurement units (IMU) 81

without global positioning with visual landmarks or gps, the combined sys-
tem would still lack long term-stability. A more detailed description of the
system used in this localization approach can be found in [KHB05].

Figure 4.6 Inertial system developed at the RRLab

Gravity correction heuristic The absolute orientation information men-
tioned above is derived via a heuristic depending on knowledge about the
earth’s gravity force. A component for inertial gravity correction provides the
orientation towards the earth’s surface ϕ,θ by comparison with an estimated
gravity vector.

In order to minimize drift in position and attitude, one possibility is
to adjust the attitude with respect to the gravity force. In each calculation
step, an attitude information is determined. If the total of the acceleration
vector equals the standard gravity force, a first criterion is fulfilled.

|| �aw| − |�g|| ≤ ε (4.26)

If it differs in direction and not in length from the current acceleration vector,
a correction of the attitude representation is done by rotating it so that the
two vectors point in the same direction. The rotation is done respective to
the axis built from the cross product of the two vectors while the rotation
angle arises from their different directions.

α = arccos
(

�aw�g

| �aw||�g|
)

(4.27)

82 4 Localization

As a result of the lack of one dimension, only the roll and pitch values can
be corrected by this method.

�u = �aw × �g (4.28)
Bw = T�u,α ·Bw (4.29)

This attitude correction is only heuristic and therefore is only applied if
the deviation reaches a certain amount. Additionally, the correction is sup-
pressed while the acceleration data is fluctuating. However, the acceleration
vector might have the same length as the gravity vector. Nevertheless, in
all experiments the correction helped greatly to improve the overall perfor-
mance.

Calibration To get the best possible results despite of the listed error
sources, a system should be calibrated thoroughly. The measured value x̃
can be described as polynomial function of the true value x and the error
coefficients ei.

x̃ = enx
n + en−1x

n−1 + · · ·+ e1x+ e0

=
n∑

n=0

enx
n (4.30)

The coefficients of a suitable linear error model can be determined by tak-
ing representative measurements. This model consist of offsets, linear scale
factors and a cross correlation matrix. These are 12 unknown variables for
the set of angular velocity sensors and another 12 for the set of accelera-
tion sensors if we move the scale factors to the diagonal elements of the
correlation matrix. The unknown coefficients could be determined by taking
a couple of linear independent measurements and solving an equation sys-
tem, but indeed a gradient descent procedure shows better results. The test
measurements are compared to their goal results. An error sum represents a
simple fitness function. The gradient descent is done by starting with plau-
sible initial values for the unknown variables and making random changes
trying to minimize the differences between measured test vectors and their
corresponding goals. If the error decreases in one loop, the achieved set of
values becomes the basis for the next step. This strategy leads to an optimal
solution as the model is linear.

⎛⎝ x1

x2

x3

⎞⎠ =

⎛⎝k11 k12 k13

k21 k22 k23

k31 k32 k33

⎞⎠ ·
⎡⎣⎛⎝ a1

a2

a3

⎞⎠ +

⎛⎝ x̃1

x̃2

x̃3

⎞⎠⎤⎦ (4.31)

4.3 Localization based on optical flow 83

The output of the angular velocity sensors depends on their temperature.
Therefore, at least the offset has to be gathered at different temperatures to
make linear interpolation possible.

4.3 Localization based on optical flow

The idea of visual odometry was first developed by L. Matthies [Mat89].
His approach was refined and deployed on several Mars robots [CMM06]
and other researchers implemented different flavors to the original concept.
The approaches mostly differ in the camera system which is the basis for
computing visual odometry. In [CSNP05] a monocular, in [CSS04] an omni-
directional and in [Mat89] a stereo system is used. In principle most visual
odometry approaches follows the pattern outlined in figure 4.7.

Figure 4.7 Overview of visual odometry

The camera system captures a frame, and a set of features suitable for
tracking is selected. After a while, another frame is captured. The features
that have been detected in the previous frame are now tracked into the
current frame. The vectors between these points contain the information
about the change in orientation and translation of the robot between the
two subsequent frames. The last step is an ego-motion estimation on the
basis of the vectors to receive the robot pose according to a given starting
point.

84 4 Localization

In the following a visual odometry approach based on stereo-vision is
described. This concept, shown in figure 4.8, is deployed on the outdoor
robot ravon of the University of Kaiserslautern.

Figure 4.8 Concept of visual odometry for the outdoor robot ravon

In the first step features in the left image are selected. For stereo-ego-
motion, feature points with high contrast and minimal spacing are adequate.
Such features can be calculated using a Harris corner detector [Der04] (see
figure 4.9). In the next step the selected feature points are matched into the
right image using a Lucas-Kanade-tracker [LK81] to obtain 3D coordinates.

Figure 4.9 Feature selection

The third step is the tracking of the selected features into the subse-
quent left image of the stereo pair, see figure 4.10. After that, another stereo
matching step is carried out. The above procedure yields pairs of consecutive
3D feature locations. These can now be used to determine the translation
vector (T) and rotation matrix (R) which describe the movement of the
robot between the two frames in question.

4.3 Localization based on optical flow 85

Figure 4.10 Feature tracking

Equation 4.32 shows the mathematical connection between robot pose
transition and the tracked features where La

i are the features at the previous
and Lb

i the features at current robot position.

Lb
i = RLa

i + T + ei (4.32)

ei denotes the position error. To obtain an optimal motion estimation this
error has to be minimal for all pairs of features. To solve this problem, a
least square optimization is carried out (see equation 4.33).

e2 =
1
N

n∑
i=1

‖L− ib − (RLa
i + T) ‖ (4.33)

The visual odometry calculation was applied in a realistic simulation of
ravon in a typical test scenario. The driven track has a length of 21m.
The endpoint deviation was about 1.75% (0.38 m) and the mean deviation
0.15 m. Because of the large amount of disturbances when driving in outdoor
terrain, the mean error increases for a track of 100 m to about 10%. One of
the main problems of error rise are dynamical objects like cars, people or
moving plants, because it has to be decided if the movement of the features
is based on robot motion or on object movement.

86 4 Localization

To eliminate this error, odometry could be used as a filter. Therefore, the
difference of captured and predicted 3D position (using pose estimation of
the odometry) of the feature points is computed in each step. All differences
above a specific threshold indicate that with a high probability features of a
dynamical object have been tracked. These features are not used to calculate
the new position of the vehicle.

4.4 Feature extraction from laser radar data

Distance sensors, notably laser range sensors, give a set of ordered distance
points (ri,φi) with respect to the vehicle coordinate system. From this cloud
of points, information about the environment of the vehicle can be obtained.

4.4.1 Obstacles

A simple information from a laser radar set regards obstacles in the vicinity
of the vehicle. Any point in a cone of angle α with distances less than r0 is an
obstacle to be avoided. Given the momentary direction, the free zone depends
on the dimensions of the vehicle. There are two critical distances: r02, where
the vehicle control can still react to find a path around the obstacle, and
r01, where an emergency break has to be raised. Let b be the width of the
vehicle. Therefore, the cone angle is given by α = 2 arctan(b/2r0). This
defines a safety fence around the vehicle.

4.4.2 Line extraction

Any straight structure in the environment of the vehicle, indoors mainly
straight walls, presents itselves as a group of distance points lying more or
less in a line. To extract these lines a histogram may be used.

Histogram algorithm A scan of the environment with distance points
(ri,φi) as shown in figure 4.11 and figure 4.12 is given. The angle φi modulo
180◦ of a line connecting a pair of distance points (ri,φi) and (ri+k,φi+k) and
the vehicle axis can be calculated. k has to be chosen in a way such that the
inevitable errors in distances are smoothed out. In many cases k=3 to 5 will
do.

4.4 Feature extraction from laser radar data 87

Figure 4.11 A real scene and its histogram

i

x*

y*

i

ri

yi*

xi*

Figure 4.12 Determination of angles of walls

In a vehicle centered coordinate system a measured point (ri,φi) has the
coordinates

xi = ri cosφi (4.34)
yi = ri sinφi (4.35)

88 4 Localization

Then the angle αi is given by

tanαi =
yi − yi+k

xi − xi+k
(4.36)

tanαi =
ri sinφi − ri+k sinφi+k

ri cosφi − ri+k cosφi+k
(4.37)

Afterwards a weight function is applied to the angle and it is sorted into
a histogram with a box width δα. The box width should preferably be the
angular resolution of the distance sensor. The last step is to be repeated for
all indices i. Once all points are processed, the number of weights in each
box has to be determined. Figure 4.13 shows the distribution of angles of the
point cloud with respect to the vehicle axis. In a rectangular room there are
two peaks in the histogram 90◦ apart. Subsequently the center of gravity as
the weighted sum over the number nj in box jδα for all j around a peak in
the distribution has to be determined.

Φ =
j2∑

j=j1

njjδα/

j2∑
j=j1

nj (4.38)

N()

180°

histogram with resolution

0

 maximum
=> main direction

Figure 4.13 Angle histogram of a room

Φ gives the direction of the walls with respect to the vehicle axis. In order
to emphasize walls far away rather than those close by, αi is counted with
the weight wi = (ri + ri+k)/2:

nj =
j2∑

j=j1

wi with jδα ≤ αi < (j + 1)δα (4.39)

4.4 Feature extraction from laser radar data 89

The next step is an alignment of the vehicle axis to the structure of the
room: Take the largest of the peak angles and rotate the picture of the room
by this angle. Then the picture is aligned to one of the main directions of
the room and the peak angle is the direction of the vehicle with respect
to the room. For indoor systems this is a much better description than the
alignment with respect to true north. The point cloud is now described in a
coordinate system centered around the vehicle but aligned to the room.

Box feature Two new histograms projecting the points to the x-axis and
the y-axis are set up. The distances of the peaks directly give the dimensions
of the rectangular room. This is an invariant of the room and a landmark in
itself. The user is then asked to give a “name” to this box and later on the
position of the vehicle can be described in a natural way: as being in room
“name”. As the dimensions of the room are larger than the dimensions of
the vehicle, it is much simpler to find the room again than the exact position
of the former. Figure 4.14 shows an example.

y*
x*

i

direction || wall
y

ri

x

Figure 4.14 Determination of the box feature

Edge extraction It it also possible to extract edges from the point cloud:
the angles are calculated as described before but form a data vector instead
of a histogram: (→ φi) and describe the distances as a the distance vector (→
r). If (ri−1−ri) >> (ri−ri+1) or (ri−1−ri) << (ri−ri+1), a discontinuity in
the environment is detected. This might be an edge or two objects obscuring

90 4 Localization

each other. Edges can also indicate themselves in sudden changes in the
measured angles. If φi >> φi+k or vice versa, an edge in the environment
has been detected. By (ri,φi) the coordinates of the edge are given and may
be used as landmarks.

4.5 Landmarks

Landmarks are easily detectable features in a scene which make it possible
to find the position and orientation of a vehicle.

4.5.1 Natural landmarks

Natural landmarks could be anything from the box feature in an indoor en-
vironment, edges of stationary objects to markers found in the environment
or readily recognizable objects.

4.5.2 Artificial landmarks

While boxes and edges are natural landmarks, the environment might also be
equipped with artificial landmarks. Examples for the latter are lighthouses
on a coast or easily recognizable markers brought into the environment to
ease finding positions, like barcode strips. They directly tell their position
but are rather disturbing in a living environment. Better landmarks making
recognition easier for humans are numbers on a door or name plates. In
our own home we would dislike the idea of mounting artificial markers. Thus
other hints are needed to tell us our position with respect to the environment.
This leads into the vast area of object recognition, handled later on in this
book.

4.5.3 Triangulation using landmarks

To find out position and orientation in closed rooms where gps cannot be
used, other landmarks are needed. Those could be either natural or artificial
landmarks both active or passive. Sensors on board the vehicle must be able
to detect these marks. With active landmarks the task of finding position
and orientation is rather simple: they emit some sort of energy like light
preferably in the near infrared, so they do not disturb human beings in a
room. The light is coded with a characteristic number unique to this specific

4.5 Landmarks 91

landmark. This light is then detected by a rotating sensor on board the
vehicle. It provides the angle between a symmetry axis of the vehicle and
the source of light as well as the number of the landmark as output signal.
The same principle was used for lighthouses in the 19th and 20th century.
From three angles measured, the position and orientation of the vehicle with
respect to the room can be deduced. Let P1, P2 and P3 be three landmarks
with coordinates (x1,y1), (x2,y2) and (x3,y3) respectively, not arranged in a
line. The measured angles are α,β and γ. Let P be the position of the vehicle
itself with coordinates (x,y). Figure 4.15 depicts the situation described.
P (x,y) is located on a circle through P1 and P2. The difference angles φ12 =
β − α and φ23 = γ − β are invariants under the rotation of the vehicle. The
radius of the circle is R1.

P1

P2

P3

P(x,y)1

- 3

2

Figure 4.15 Position from angles to three landmarks

Let a∗ be the distance between P1 and P2, then

R1 =
a∗

2 sinφ12
(4.40)

a∗ =
√

(x2 − x1)
2 + (y2 − y1)

2 (4.41)

The midpoint of a∗ is PM with its coordinates

xm =
x2 − x1

2
(4.42)

ym =
y2 − y1

2
(4.43)

With

z = R1 cosφ12 (4.44)

tanα1 =
y2 − y1

x2 − x1
(4.45)

the coordinates of the midpoint M1 of the circle are

xM1 = xm + z cosα1 (4.46)
yM1 = ym + z cosα1 (4.47)

92 4 Localization

The position of P looked for then has coordinates implicitly given by the
circle equation

R2
1 = (x− xM1)

2 + (y − yM1)
2 (4.48)

Accordingly, for the circle through P , P2 and P3 including an angle φ13 as
shown in figure 4.16 there is

b∗ =
x3 − x2

sinα2
, (4.49)

R2 =
b∗

sinφ23
, (4.50)

tanα2 =
y3 − y2

x3 − x2
(4.51)

P

a*

b*
P1

P2

P3

R1 R2

M1

M2

x1 xM1 x x2 xM2 x3

y´

x´

x´

y´

y

yM2
y3

y2

y1

yM1

y

x

R1
R2

Figure 4.16 Triangulation using landmarks

The coordinates of the midpoint of the circle through P , P2 and P3 are

xM2 =
x3 − x2

2
− b∗

2 cotφ23 sinα2
(4.52)

yM2 =
y3 − y2

2
+

b∗
2 cotφ23 cosα2

(4.53)

The calculation of the coordinates of the point P is first done in a coordinate
system (x′,y′) running through the points M1 and M2 and with M1 as center
point as shown in figure 4.17. Let L be the distance between M1 and M2

then

4.5 Landmarks 93

L =
√

(xM2− xM1)2 + (yM2− yM1)2 (4.54)

The point P lies on a circle with radius R1 around M1:

((x′)2 + (y′)2) = (R1)
2 (4.55)

and also on a circle with radius R2 around M2:(
(L− x′)2 + (y′)2

)
= (R2)

2 (4.56)

The coordinates of point P are thus

x′ =
(R1)

2 − (R2)
2 + L2

2L
(4.57)

y′ =
√

(R1)
2 − (x′)2 (4.58)

The last step in this calculation is the coordinate transformation into the
world coordinate system (x,y) according to figure 4.17. Errors in the an-
gles measured show up in circles of different radii and give rise to an error
quadrangle as shown in figure 4.18

M2M1

P
y´

x´

x´

y´

x

y

yM2

yM1

xM1 xM2

tg =
yM2 - yM1
xM2 - xM1

x = xM1 + x´cos y´sin

y = yM1 + x´sin y´cos

Figure 4.17 Coordinate transformation

P

Figure 4.18 Position error by error in angles

94 4 Localization

4.5.4 Measuring distances to artificial landmarks

If the distances to artificial landmarks can be obtained, the position of the
vehicle is much simpler to deduce. According to figure 4.19, distances R1 to
landmark P1 and R2 to landmark P2 are measured from the current position
P . P is thus the cutting point of a circle with radius R1 around P1 and
R2 around P2. The calculation gets simple in a coordinate system x′ and y′
through P1 and P2 according to figure 4.20.

x′ =
(
R2

2 −R2
1 + L2

)
/2L (4.59)

y′ =
√

(R2
1 − x′2) (4.60)

P1

P2

R2

R1

P

Figure 4.19 Measuring distance to landmarks

P1 P2

y´

x´
x´

y´

L

R2R1

Figure 4.20 Position from measured distances

The transformation into the world coordinate system follows figure 4.17.
An error in position will stem from errors in distance measurements forming
an error square of ΔR1 ×ΔR2 around position (x,y).

4.5 Landmarks 95

4.5.5 Artificial active landmarks

Artificial active landmarks send out signals so that a vehicle may find its
position and orientation from analyzing these signals.

• Lighthouses on a coast are examples: they send out their signature in
regular intervals

• Two parallel lasers rotating at a constant angular velocity allow the
calculation of the distance to that landmark. Figure 4.21 shows an ex-
ample [PKEv00]

• A rotating sheet of light successively hitting three sensors on board a
vehicle allows the measurement of position and orientation simultane-
ously. Figure 4.22 and figure 4.23 show the principle. From the known
rotation rate of the landmark beam, the starting time when the beam
angle is zero with respect to the x-axis and the triangle side length the
distance r between the coordinate center (0,0) of the light house and
the kinematic center of the vehicle, the angle ϕ between the x-axis and
the kinematic center and the orientation of the vehicle ψ = ϕ− α may
be deduced. The calculation is left to the reader as an exercise.

• Two parallel lasers and one single laser rotating at a constant angular
velocity allow the calculation of the position of the robot.

• Satellites sending out their position at regular intervals allow the world-
wide determination of positions (see also section 4.6).

To determine not only the distance between the rotating laser beams
(artificial active landmark) and the robot but also the position of the robot
due to the coordinate system of the landmark, it is necessary to extend
the system by an additional laser. This laser is counterrotating to the twin
laser as shown in figure 4.24. On the vehicle a plastic fiber antenna is fixed,
receiving the optical impulses of the laser points. Based on the time shift
between the laser impulses, the rotation frequency of the disks f and the
displacement of the twin laser a the distance d and the orientation ω of the
robot to the landmark coordinate system is calculated (see equation 4.62).
The parameters used for the calculation are presented in figure 4.25.

distance: d =
a

2 sin
(

TZw
T

)
· π

(4.61)

angle: ω = 180◦ · TZw−E + TZw
2

T
(4.62)

96 4 Localization

d

r

laser

 omni directional
 sensor
 on board the robot
(, d, and t0 known)

t

t
t0

= . (t - t0)

r =

sensor signal

t

d
 . t

t1 t2

sync.

Figure 4.21 Twin-laser system

 rotating
sheet of light

trace on ground

photodiodes laser
lighthouse

Figure 4.22 Rotating sheet of light

photodetector

d
2

3
r

X

Y
1

d

d

known: • the rotation rate of the beam

• the start time t0 when the beam angle is zero

• the triangle side length d

Figure 4.23 Sheet of light hits three photosensors

4.5 Landmarks 97

Figure 4.24 Measurement concept of an active landmark with 3 lasers. The po-
sition of the lasers on the rotating disks is shown as well as the diagram of the
received light impulses over time.

Figure 4.25 Parameter for the calculation of position of the vehicle. TZw is the
time shift between the twin lasers, TZw−E determines the time shift between twin
and single laser, and T duration for one rotation of the disks.

It is obvious that there exist positions in which the measurements are
ambiguous. In figure 4.26 a typical situation is shown in which it is not pos-
sible to determine the correspondence between the laser and detected laser
impulse. This means that there are situations in which the position cannot be
calculated. For practical use of the measurement system, one can calculate
the ambiguous areas. If the robot is located in these areas additional infor-
mation like odometry or pose of the robot during the recent measurements
have to be used to solve the ambiguity.

In [Hac06] such a localization system for a small forklift robot is de-
scribed. This laser beacon consists of two disks with diameters of 160mm,
a distance between the disks of 6 mm and the distance a between the twin
lasers of 100mm. The actuation system for the disks is realized with dc mo-
tors. A rotational frequency of the disks of 5 Hz is used for the experiment

98 4 Localization

presented below. The laser diode generates a laser point of 5mm diameter.
The divergence of the laser beam is 0.5 mrad. Because the lasers have to be
eye safe, the power consumption of the laser diodes are less than 2 mW. In
figure 4.27, the laser beacon and the forklift robot are shown.

Figure 4.26 Ambiguity of the signals. The angles in the diagram are correspond-
ing to the situation that the twin and single laser are oriented in the same direction.

Figure 4.27 Laser beacon and the placement of the antenna on the forklift robot

Experiments to determine a position expressed in polar coordinates show
that the angle precision is less than ±0.5◦. Based on the measurement prin-
ciple the derivation of the radius is ± 0.5 cm (below 1m) and ± 9 cm (at
17 m). In figure 4.28 several experiments for different distances are presented
with the deviation. The precision of the system can be improved by the op-
timization of the actuation system (constant rotational velocity of the disks)
and fixing of the lasers (the twin lasers have to be parallel).

4.6 Global positioning system (GPS) 99

Figure 4.28 Distance and deviation (in m) of several measurements up to 17m
is shown

4.6 Global positioning system (GPS)

Born from military needs during the 1970s, the us Department of Defense
installed a system of 24 satellites in 6 orbit levels at a height of 20.051 km.
Each satellite covers 1/6 of the earth surface and they are arranged at such
orbits that the 24 satellites cover each point on earth fourfold, i. e. at least
four satellites can be seen at an arbitrary moment from every point on earth.

The satellites are equipped with an atomic clock and synchronized with
each other. They are sending out signals containing the number of the satel-
lite, its position at the moment of the timing signal, and a timing signal
itself. The signals are picked up by earthbound receivers. Using the signals
from four satellites, a receiver can find out its position on earth measuring
the time differences between sender signals, given their positions known at
the moment of a timing signal. Intended in the beginning for military pur-
poses only, a crude form of the system was made available to the public after
the first Gulf war and became a tremendous success. It operates worldwide
with an accuracy of approximately 10 m. It is used in navigation systems in
cars, ships, and on board of agricultural machines. Even hikers may use it
to find their way through the wilderness or in the maze of a medieval town.

Evaluating the time differences between the position signals from four
satellites, three sources of position information may be gathered: the longi-
tude, the latitude and the height above ground. So at any time at least four
satellites should be visible. Using the measured time differences, the calcula-
tion for the Standard Positioning Service (sps) can be performed solving the
following equation system with four unknowns for the receiver coordinates
with satellite’s coordinates (SV), receiver’s coordinates (R), and distance
receiver/satellite (D):

100 4 Localization√
(SVx0 −Rx)2 + (SVy0 −Ry)

2 + (SVz0 −Rz)
2 = D0 + ΔD√

(SVx1 −Rx)2 + (SVy1 −Ry)
2 + (SVz1 −Rz)

2 = D1 + ΔD√
(SVx2 −Rx)2 + (SVy2 −Ry)

2 + (SVz2 −Rz)
2 = D2 + ΔD√

(SVx3 −Rx)2 + (SVy3 −Ry)
2 + (SVz3 −Rz)

2 = D3 + ΔD
Deviations are unavoidable and are dependent on reference satellite align-
ment. The best results are obtained at a 90◦ angle between the receiver and
the satellite, the worst in a situation where all available satellites are located
in close proximity to each other or are in a collinear alignment. Possible po-
sition errors could emerge from satellite position (3m), ionosphere refraction
(5 m), troposphere refraction (2 m), multiple reflection (5 m), and a “selec-
tive availability” (30 m). Their microwave signals may be obscured by trees
or high rising buildings and vanish inside buildings or in tunnels.

There are other systems planned or being installed: The Russian glo-
nass, to become operative in 2009 and the European Galileo-system, planned
to start operation in 2013, the latter with 64 satellites and a position error
of less than 1 m.

To enhance distance resolution, two gps receivers can be used. One is
positioned at a known fixed location and the other one at an unknown posi-
tion nearby at a distance of less than a few kilometers apart. The measured
signal at the fixed location and the signal measured at the unknown position
are compared. The latter may be calculated then to fractions of a centime-
ter resulting in a so called differential gps. Measuring a new position every
100 ms, the orientation of a vehicle may also be calculated. With the receiver
and the calculating electronics shrunken to the size of a cigarette box and
equipped with a digital map of the region of interest, the gps has solved
the problem of localization outdoors in open terrain. The landmarks used
are the known positions of satellites transferred to a navigation system via
precise timing signals.

4.7 Kalman filter

Kalman filters are optimal estimators for unobservable system states if some
preconditions are met. These conditions are

• the system and measurement models have to be linear,

• the additive noise of system and measurement models have to be “white”
and Gaussian distributed.

4.7 Kalman filter 101

If and only if these conditions are met, the filter guarantees to generate
the optimal estimate for the modelled system. In fact it turns out that system
transitions and sensor errors are very well described using linear models and
Gaussian noise models. This enables the user to apply a Kalman filter even if
the required properties are approximated. The Kalman filter has shown to be
stable and correct in a broad range of applications. One of these applications
is the localization of mobile robots.

4.7.1 General idea

More often than not a system is given with observable outputs �y(tk) at time
step tk but an unobservable internal state �x(tk). The idea of a Kalman filter
is to build a model of this system in which the internal state is observable
and to correct this state comparing the output of the real system and the
output of the model. The system to be modeled is described by

�y(tk) =

⎛⎜⎝y1(tk)
...

yn(tk)

⎞⎟⎠ �x(tk) =

⎛⎜⎝x1(tk)
...

xm(tk)

⎞⎟⎠ (4.63)

and an input vector �u(tk). Let the operation of the system be as sketched
in figure 4.29: With an initial state �x(t0) and matrices A(tk) and B(tk) and
H(tk) the next internal state is �x(tk+1).

�x(tk+1) = A(tk)�x(tk) +B(tk)�u(tk) + �v(tk) (4.64)
�y(tk) = H(tk)�x(tk) + �w(tk) (4.65)

There is inevitable noise in the system: �v(tk) is the system noise and
�w(tk) the measurement noise. To get the still unknown internal state �x(tk),
a noise free model is run in parallel to the real system: with matrices A,B
and H and an initial value �x∗(t0) = 0.

The output of the model is

�y∗(tk) = H(tk)�x∗(tk) (4.66)

Let A,B and H be treated as time invariant: The model internal state �x∗(tk)
is enhanced using the measured output �y(tk) and a Kalman amplification
K(tk):

�x∗∗(tk) = �x∗(tk) +K(tk)(�y(tk)− �y∗(tk)) (4.67)

102 4 Localization

optimal guess of system state

B(tk)

A(tk)

H(tk)

x**(t0)

x*(tk+1) x*(tk)
H(tk)

K(tk)A(tk)

B(tk)
+

-

x(tk)

x(t0)
v(tk) w(tk)

x**(tk)

x(tk+1)

u(tk)

y(tk)

y*(tk)

Kalman filter

 system
under observation

model

system noise measurement
 noise

Figure 4.29 Overview of the Kalman filter: The unobservable system is modelled
using the system model A, the input model B and the measurement model H. The
difference between estimated and measurement output influences the Kalman Gain
K which realizes an optimal weighting factor between observation and estimation.

Then the next internal value of the model is calculated

�x∗(tk+1) = A(tk)�x∗∗(tk) +B(tk)�u(tk) (4.68)

The Kalman amplification is calculated so that the sum of the variances of
the error gets minimal: Let P be the covariance matrix of the guessing error
E[(�x− �x∗∗)(�x− �x∗∗)T]. Then the trace of that matrix shall be minimal:

trace(P) =
n∑

j=1

σ2
i = minimal (4.69)

4.7.2 Guessing error

If trace(P) = f(K), then ∂(trace(K))/∂K = 0 minimizes the sum of the
guessing errors and gives an equation for K. The guessing error is (�x− �x∗∗).

4.7 Kalman filter 103

Let each of its components (xi − x∗∗i) be normally distributed. Then the
probability (see also figure 4.30) to find in the component i the error (xi−x∗∗i)
is

p(xi − x∗∗i) =
1

σi
√
π

exp[(xi−x∗∗
i)/σi]

2

(4.70)

with ∫ +∞

−∞
p(xi − x∗∗i)d(xi − x∗∗i) = 1 (4.71)

σ2
i is the variance of the guessing error of component i; it is the awaited

value of (xi − x∗∗i)2 or the mean value of M measurements for M >> 1.
The theory of a Kalman filter shows how to calculate the Kalman ampli-

fication from the given variances of the measured output values. This gives a
rather good enhancement of the calculation of the vehicle pose and shrinks
the remaining error considerably.

i

p(xi - xi**)

(xi - xi**)

1

1/e

Figure 4.30 Normal distribution of an error

4.7.3 Example application

Let us assume that a mobile robot is driving along a very long and straight
corridor. The one dimensional position of the robot can be measured with a
set of ceiling-mounted cameras. Unfortunately there is a gap in the camera
views. In these gaps the position of the robot is not observable. Assume fur-
ther that position and speed of the robot in that corridor should be estimated
using a linear discrete Kalman filter.

The state vector is defined to be x(tk) = [p,s]T with position p and
speed s. The measurement vector consists only of the position and is defined
as y(tk) = [p]. The system model uses the basic motion equation p(tk+1) =
p(tk) + Δt · s(tk). The motion equation results in the system model

104 4 Localization

A =
[

1 Δt
0 1

]
⇒

�x(tk) = A · �x(tk−1) (4.72)(
p(tk)
s(tk)

)
=
(
p(tk−1) + Δt · s(tk−1)

s(tk−1)

)
(4.73)

The measurement model simplifies toH = [10] since the position is measured
directly and the speed is not measured at all. The input model is set to
B = [0] since no inputs are used.

The selection of the noise vectors �v(tk) and �w(tk) is, at least to some ex-
tent, based on experiments and knowledge. The system noise in this example
is chosen to be very small since it is assumed that the velocity of the robot
is constant between two time steps. In comparison to the system noise, the
measurement noise is variable since it heavily depends on the observation. In
this example it is chosen to increase dramatically if the robot is not visible.

�v(tk) =
(

0.00001
0.00001

)
(4.74)

�w(tk)
visible =

(
1
)

(4.75)

�w(tk)
not visible =

(
10
)

(4.76)

Now assume the following experiment: A mobile robot is driving down a cor-
ridor of 100 m length. The speed of the robot is constant 0.5 m

s . The corridor
is equipped with a set of cameras for position measurements with an unob-
servable gap between 25 m and 50 m. The cameras measure the position once
a second which results in 200 measurements during the whole experiment.
Whenever the robot is not observable, the last known position is returned.

Figure 4.31 plots the output of the Kalman filter during the experiment.
It can be seen that the state of the filter converges to the true position
and speed about measurement 20. Between measurement 50 and 100, the
measurement gap occurs. It is obvious that both position and speed are
divergent and the position variance is increasing. After time step 100 the
filter is again converging to the correct values.

4.7 Kalman filter 105

Figure 4.31 Output of the Kalman filter during the localization of a mobile robot
in a corridor. The diagrams show the estimation of the state (position and speed)
and the variance of the position. It can be seen that between time step 50 and
100 the variance is increasing and position and speed are not converging to the
dotted lines. During that period, position measurements are not available and the
estimation error is dramatically increasing.

5 Mapping

Whenever a mobile robot is required to navigate beyond its sensory hori-
zon, it must either rely on potentially ineffective or misleading local search
strategies (such as the ‘bug algorithms’ [Lum87]) or use some kind of world
model to store cues for navigation. Such a world model is generally called a
‘map’ and can either be provided a priori or built online using a mapping
algorithm. The mapping approaches can be separated into world-centric or
robot-centric. World-centric systems represent the pose of all objects includ-
ing the robot of the environment according to a fixed coordinate frame. In
indoor scenarios, a corner of a room or a fixed position in the entrance area
of an apartment is often used. To specify positions in the operational en-
vironment of the robot in outdoor applications, global coordinate systems
like the latitude, longitude, and height system, the Earth Centered, Earth
Fixed Cartesian coordinate system, the World Geographic Reference System
or WGS 84 (gps) are often used. World-centric mapping is mainly employed
for tasks like navigation or path planning while robot-centric approaches
are used for piloting tasks such as collision avoidance. Using matrix-based
coordinate transformations, it is possible to convert between these different
reference frames.

The main problem of generating maps is the inaccuracy of the sensor
systems being used for solving the localization problem and measuring ob-
jects in the environment of the robots. Therefore, it is very difficult to build
global maps based on local ones, to update existing maps or to correspond
the objects stored in the map with those measured in the environment of
the robot.

Concerning map types, there are numerous ways to model the environ-
ment of a vehicle. The data structures found in literature can be broadly
divided into the four classes of metrical, grid, topological and hybrid maps
(see figure 5.1).

Purely metrical maps are probably the most common type. Systems
relying on these maps are characterized by using one global, metrically con-
sistent frame of reference. The accuracy of the stored map is approximately
equal to the quality of available sensor data. Also, all metrical locations are
equally important. Metrical maps comprise geometric features and their spa-
tial locations. The features actually used can range from very basic (such
as 3D points calculated from range measurements) over geometrically more

107

expressive line or box features up to semantically very distinct landmarks,
which can be uniquely identified from a large body of sensor data.

y

x

Metrical maps

Grid maps

Hybrid maps

Topological maps

Abstra
ction level

Sector maps

Figure 5.1 Abstraction level of the different mapping approaches

Grid maps, which are very often used for mobile robots, are popular due
to their simplicity and intuitive representation. A grid map divides space
into adjacent portions of equal metrical sizes. For a two-dimensional map,
this results in a square grid, while the three-dimensional grid map resembles
a Rubic’s cube. Both dimensionalities have been used [Elf89, Mor96], but
three-dimensional grid maps are rare due to their excessive storage require-
ments. Two major variants of grid maps are occupancy grids and elevation
maps.

Unfortunately, the highly detailed metrical world representation requires
a lot of memory and leads to algorithms with high computational demands.
These properties limit the scalability of both grid and metrical maps [Bro87].

Motivated by these drawbacks, researchers aiming at large scale navi-
gation early on began looking at the topological world model, which repre-
sents the environment in a more compact, qualitative fashion. Topological
approaches focus on representing navigation-relevant places and their con-
nections on an abstract level rather than the exact metrical layout of the
surroundings. Thus, imprecise localization is less of a problem for topologi-
cal approaches and algorithms can run faster because they have to cope with

108 5 Mapping

much less data. Topological maps commonly use graphs as their underlying
data structure. Graph nodes identify locations of interest and their charac-
teristic features, while knowledge about travel between nodes is encoded in
the connecting graph edges.

More recently, many researchers have proposed to attack the problems
of autonomous mapping using combinations of the metrical and topological
methodologies. Generally, these hybrid approaches are designed to combine
the benefits of both representational forms, ideally allowing localization and
map building with the high precision of metrical maps while retaining the
computational tractability and compactness of topological data structures.

In the following, several successful examples of mapping techniques using
different map types are presented.

5.1 Metrical maps

In metrical maps, the environment is described with the help of geometrical
features. These geometrical features can be 2D or 3D points, lines, polygons
or 2D areas like rectangles. As an example for indoor scenarios, lines could
describe the walls of rooms. In outdoor scenarios, lines could denote streets
or highways.

Metrical mapping offers several advantages. Geometrical features can
be maintained over time even if their positions change. Thus it is obvious
that this type of map is also suited for dynamic environments. Another
advantage is that metrical feature maps offer a more compact description
of the surroundings than grid maps. Hence they are superior especially in a
scenario with a rather structured environment.

In the following the line-based and plane based metrical maps, which
can both be generated by a robot based on distance measurements, are
introduced.

5.1.1 Line based metrical maps

Lines extracted from distance measuring sensors form borders between re-
gions that can be divided into either free space, obstacles or unknown regions.
Obstacles may be represented by clusters or border lines. In the following, a
method is presented to extract both from (laser) distance measurements.

5.1 Metrical maps 109

Line segmentation The idea of the line segmentation technique is to
cluster a radar scan into groups of distance points that lie close together.
Let us take a radar scan {ri,ϕi} with i = 1, . . . ,n measured from position
Q = (x0,y0,ψ). Let Pi = (ri,ϕi). As results, corners Cj , segments Sk and
auxiliary clusters Hm will be formed.

The procedure is shown in algorithm 5.1.

Algorithm 5.1 Line segmentation
Initialization: i := 1; j := 1; k := 1; m := 1; H1 := (P1)
while i < n− 1 do

if |Pi+1 − Pi| < d then
Hm := Hm ∪ Pi+1; i := i+ 1;

else if |Pi+2 − Pi| < d then
Hm := Hm ∪ Pi+2;Cj := (Pi+1); j := j + 1; i := i+ 1;

else if |Pi+2 − Pi+1| < d then
m := m+ 1;Hm := (Pi+1,Pi+2); i := i+ 2;

else
Cj := (Pi+1); j := j + 1;m := m+ 1;Hm := (Pi+2);

end if
end while
while m > 0 do

if number in (Hm) ≤ c then
Cj := Hm; j := j + 1;m := m− 1;
(* c is the maximal number in a cluster*)

else
Sk := Hm; j := j + 1;m := m− 1;

end if
end while

Iterative end point fit [DH73]
Take a segment Sk with points Pq, . . . ,Pr according to figure 5.2 and

form the distances hr−1, . . . ,hq−1. They are calculated following figure 5.3
for two points Pq and Pr. Let ψ be the angle of the line connecting both
points with respect to the common coordinate system.

tanψ =
yq − yr

xq − xr
(5.1)

hi = ((yi − yq)− (xi − xq) tanψ) cosψ (5.2)

⇒ hi = (y − i− yq) cosψ − (xi − xq) sinψ (5.3)

110 5 Mapping

(xi - xq)tg

hi

Pi

Pq

Pr
yi - yq

Figure 5.2 Distance to line

Pq

Pr
Pi

hi

Figure 5.3 Iterative
endpoint fit

Take the line between Pq and Pr. If hj = max(hi) > ε for r < i < q; (*ε is
the allowed fuzziness in deviations from a line*) then form two lines (Pr,Pj)
and (Pj ,Pq) and repeat the calculation, else the line (Pr,Pq) is established.
The effort is equal to the number of lines to be inserted between Pq and Pr.

Regression line Find a line through N points Pq, . . . ,Pr so that the sum
of the squared distances to that line gets minimal. There are hi = (yi −
yq) cosψ − (xi − xq) sinψ the distances to that line. Set for a moment Pq =
(0,b), then the distances become hi = (yi − b) cosψ − xi sinψ.

The sum of the squares is∑
i

h2
i =

∑
i

(yi − b)2 cos2 γ − 2(yi − b)xi sin γ cos γ + x2
i sin2 γ (5.4)

This is to be minimized with respect to b:

∂(
∑

(. . .))
∂b

!= 0∑
i

−2(yi − b) cos2 γ + 2xi sin γ cos γ != 0 (5.5)∑
i

−(yi − b) cos γ + xi sin γ = 0 (5.6)∑
i

b− yi + xi tan γ = 0 (5.7)

N · b =
∑

i

yi − tan γ
∑

i

xi (5.8)

ys = tan γxs + b (5.9)

This is a line through the center of gravity of the points. The next step now
is to minimize the squares of distances: The squares of the distances are∑

i

h2
i =

∑
i

(yi − b)2 cos2 γ − 2(yi − b)xi sin γ cos γ + x2
i sin2 γ (5.10)

5.1 Metrical maps 111

The angle γ is to be minimized:
∂(
∑

(. . .))
∂γ

!= 0

N∑
i

−2(yi − b) cos γ sin γ−2(yi − ys)(xi − xs)(− sin2 γ + cos2 γ)

+
N∑
i

2(xi − xs)
2 sin γ cos γ !=0 (5.11)

N∑
i

(yi − ys)
2 tan γ + (xi − xs)(yi − ys)(1− tan2 γ) + (xi − xs)

2 tan γ = 0

(5.12)
N∑
i

(yi − ys)(xi − xs) tan2 γ +
N∑
i

(−(yi − ys)
2 + (xi − xs)

2) tan γ

−
N∑
i

(yi − ys)(xi − xs) = 0 (5.13)

The last equation is a quadratic equation in z = tan γ:

a · z2 + b · z − a = 0 (5.14)

a =
N∑
i

(yi − ys)(xi − xs) b =
N∑
i

(yi − ys)(xi − xs) (5.15)

z1,2 = − b

2a
±
√

1 + b2/4a2 (5.16)

Shift of line end points Given a line through the center of gravity for
a couple of points, find proper endpoints Q and R in the vicinity of Pq and
Pr. Figure 5.4 shows the situation.
Let ψ ≈ γ. Then

hs = (ys − yq) cosψ − (xi − xs) sinψ (5.17)∑
hi − hs =

∑
(yi − ys) cosψ − (xi − xs) sinψ (5.18)∑

hi − hs = cosψ(
∑

yi −N · ys)− sinψ(
∑

xi −N · xs) = 0 (5.19)

This means a shift of the line end points by hs:

Pq −→ Q = (xq + Δx,yq + Δy) Δx = hs sinψ (5.20)
Pr −→ R = (xr + Δx,yr + Δy) Δy = hs cosψ (5.21)

112 5 Mapping

hi

Pi
(xs,ys)

Pq

b

y

x

median linePr

R

Q

Figure 5.4 Fitting the regression line

Fusion of lines Let the vehicle take radar pictures from different positions
P0 and P1. Let (Pi,Pk) be a line extracted from radar scan R1 at P0 and
(P ′i ,P

′
k) extracted from radar scan R2 at P1. Let the angles be ψ and ψ′ =

ψ + ε. Figure 5.5 shows two cases of fusions:

• Let h′i < δ for P ′i with respect to the line (Pi,Pk) and P ′i between Pi

and Pk and moreover |P ′i ,Pk| > |P ′i ,Pk| then both lines are condensed
into one line (Pi,P

′
k).

• Let |Pk,P
′
i | < d then both lines are fused into one line (Pi,P

′
k), too.

Pi

Pk

Pi´

Pk´

Pi

Pk´
hi´

Pi

Pk
Pi´

Pk´

Pi

Pk´

Figure 5.5 Fusion of lines

5.1 Metrical maps 113

Obstacles vs. free space Introducing a direction in a line allows to dif-
ferentiate between free space and possible obstacles for a vehicle, as shown
in figure 5.6: to the right of a line from P1 to P2 there is a free space open,
otherwise it could not have been constructed. To the left is unknown terri-
tory, possibly the line is the border of an obstacle. A room may be described
by a polygon with lines oriented clockwise; they might also describe isolated
obstacles if the lines are oriented counter clockwise.

P1

P2

P1

P2

P3

P4P5P1

P2

P3

P4P5

P6 P7

P8

Figure 5.6 Defining free space

Given a radar scan with some lines extracted, a certain amount of free
space is established. Driving around, this free space can be enlarged as shown
in figure 5.7. In general some parts of the environment remain unknown.

P1

P2
P3

P4

P5

free space P1 free space

P2
P3

P4 P5
? ?

after driving

P6

Figure 5.7 Enlarging free space by driving around

5.1.2 Plane based metrical maps

Planes are often used as features to define reliable landmarks such as floor,
ceiling, walls, doors and big objects of furniture like desks and cupboards.
The main problem of this environment representation is the extraction of
planes. A typical plane extraction algorithm [WGS03] is based on a 3D

114 5 Mapping

point cloud. The corresponding data acquisition is based on 3D sensor sys-
tems as rotating 2D laser scanners (see figure 5.8) or time-of-flight cameras.
Figure 5.9 shows a typical 3D point cloud of a real cluttered indoor scene.

Figure 5.8 3D data acquisition in a virtual indoor scene. The laser beams are
visualized as rays and the measurement points as black dots.

Figure 5.9 3D point cloud of a typical indoor scene

The goal is to approximate the input data by a set of planar patches so
that each set of points is optimally represented in a least square sense by
its plane. Features represented by a large amount of samples (e. g. corridor
walls) are reduced to one large planar patch. Figure 5.10 shows a result of
this process applied to the 3D point cloud shown in figure 5.9.

5.1 Metrical maps 115

Figure 5.10 Planes extracted from the 3D point cloud of figure 5.9. The ground
and ceiling plane are marked by a bounding box.

The following gives a summary of the different steps of the extraction
method. The complete strategy is described in more detail in [Ast07]. Fig-
ure 5.11 shows a flow chart of the whole procedure and algorithm 5.2 sketches
the different processing steps.

Figure 5.11 Flow chart of ransac based plane extraction

In step 1 and 2 the whole point cloud is split into a regular grid of cubic
cells (see figure 5.12) in order to perform plane fitting locally. In this way
smaller features as chairbacks and screens can be extracted. Big planes from
floor, walls and ceiling are detected via region growing in step 4. The ransac
algorithm in step 3 repeatedly calculates planes approximating the local set
of points within one cell. As the cells are handled independently, this step can
be executed in parallel on modern cpus. In each iteration three (not colinear)

116 5 Mapping

points are selected randomly within the local set. Then a plane through these
points is calculated and the number of inliers are counted (points in the cell
which lie within a certain distance threshold to this plane). This number of
supporting points is the maximization criterion: the calculated plane is used
as best plane when its number of supporting points is bigger than the one
of the best plane calculated during the previous iterations.

Algorithm 5.2 ransac algorithm for plane extraction
Given: a set of 3D distance measurement samples (data points)
Return: a set of planes approximating disjunctive subsets of the input
points
Step 1: split the whole 3D scene into a regular grid of cubic cells
Step 2: assign the input points to the corresponding cells
Step 3: calculate fitting plane for each cell:
for every cell do

find approximating plane using ransac algorithm (output: best fitting
plane after certain number of ransac iterations)
remove outliers with respect to the best ransac plane
calculate least-square fitting plane for inliers

end for
Step 4: region growing – fuse matching planes of neighboring cells:
for every cell do

compare plane parameters with those of all neighboring cells
if the angle between plane normals is below the angular threshold and
the distance of the center of gravity of points of neighboring cell to the
plane is below the distance threshold then

mark both cells as belonging to the same region
end if

end for
for all regions do

calculate best fitting plane for all points of cells belonging to the same
region

end for
Step 5: remove small planes supported only by a small amount of cells

This procedure is motivated by the fact that the repeated random selec-
tion of points and plane approximation converges to a “good” fitting plane
if such a plane exists at all (model valid) and the number of iterations is
high enough.

5.1 Metrical maps 117

Figure 5.12 Splitting of a 3D point cloud into local sets via cubic grid cells

The plane fitting for all inliers within one cell as well as for all samples
of one merged region is calculated via principal component analysis. A plane
is described by its normal −→n and distance from origin d (equation 5.22).

< −→n ,−→x >= d (5.22)

According to [WGS03], the normal of the least-square fitting plane is the
eigenvector of the smallest eigenvalue of covariance matrix A (equation 5.23).

A =

⎛⎝ ∑N
i=0wix

2
i

∑N
i=0wixiyi

∑N
i=0wixizi∑N

i=0wixiyi
∑N

i=0wiy
2
i

∑N
i=0wiyizi∑N

i=0wixizi
∑N

i=0wiyizi
∑N

i=0wiz
2
i

⎞⎠ (5.23)

Here, xi = xraw
i − x, yi = yraw

i − y and zi = zraw
i − z are input points

centered around mean and weights wi represent measurement uncertainty of
the samples (set to 1 as uncertainty is not yet taken into account). d is given
by equation 5.24

d =< −→cog,−→n > (5.24)

where −→cog = (x,y,z)T is the center of gravity of points belonging to the fitted
plane. As A is a square symmetric matrix, its eigenvalues can be computed
efficiently via singular value decomposition.

118 5 Mapping

Table 5.13 lists all adjustable parameters used by the described algo-
rithm. One question is how to choose reasonable values for the size of cubic
cells and the minimum number of points within each cell needed for ex-
tracting stable features. Naturally, the density of 3D samples decreases with
increasing distance between sensor and object (see figure 5.14). Assuming
an angular scan resolution of α = 0.5◦ horizontally and vertically and a
distance between adjacent laser beams of e =10 cm, a regular grid of 3×3
samples fits within a cell of 20×20×20 cm3. In this case the maximum dis-
tance between sensor and objects is d = e

tan α ≈ 11.5 m. This example shows
that objects which are further away than ≈ 11.5 m from the sensor gener-
ate too few samples for reliable plane extraction. Consequently, cell size and
minimum number of samples have to be chosen depending on sensor setup,
environmental conditions and size of features of interest.

step parameter value
1 cell size 200 mm
3 min. amount of points in a cell to start ransac alg. 10
3 number of ransac iterations 50
3 max. point-to-plane distance for inliers 50 mm
4 angular threshold for normals of neighboring planes 15◦
4 distance threshold for cog of one plane to neighb. plane 50 mm
5 min. amount of supporting cells for plane filtering 10

Figure 5.13 Parameters used for plane extraction

Figure 5.14 Distance between adjacent sampling points depends on distance be-
tween sensor and object

5.1 Metrical maps 119

An example run of the described algorithm is shown in figure 5.10, with
input data from figure 5.9. The scan resolution is 0.5◦ horizontally and 0.3◦
vertically and the number of samples is about 92000. The parameters have
been chosen as shown in table 5.13. The plane extraction procedure took
less than 2 seconds. For visualization, the resulting planes are clipped by
the bounding boxes of their supporting samples. As expected, most stable
features arise from floor and ceiling, followed by walls and cupboards. The
window frames in the central part of the figure are represented by several
small planes where region growing sometimes failed due to chosen plane
orientation thresholds.

The output of the presented algorithm is a collection of 3D planes. At a
higher level of environmental representation, these planes can now be used
to extract semantically meaningful features such as the walls of a room and
objects of furniture. However, corresponding strategies for this are beyond
the scope of this book.

5.1.3 Feature-based metrical maps

Geometric invariants of a scan At first, the regions of the map and the
current scans which can be matched must be determined as the algorithms
try to do partial matching. At least the extending information in the current
scan cannot be part of the global map and therefore cannot be matched. The
relative movement between two scans can be estimated using odometry, as
the typical error does not accumulate over time if we do not try to estimate
the global pose of the robot. This helps to identify the correct region. Another
way of finding a good initial estimate is the usage of invariant attributes,
that allow to compare two consecutive scans, despite to slight changes in
position.

An example of invariants is the afore mentioned box feature. Slight
variations in furniture or in the position of the vehicle in the room do not
change the boxes seen. Another invariant is the center of gravity of a
scan. Slight variations in the position and a turning at the same place will
not change the center of gravity.

Let (xi,yi) be a scan taken in an robot centered coordinate system, then
the center of gravity is given by

120 5 Mapping

xs = 1/N
i=1∑
N

xi (5.25)

ys = 1/N
i=1∑
N

yi (5.26)

The center of gravity is an example of the concept of general moments
Mp,q = 1/N

∑i=1
N (xi)

p(yi)
q. For instance M10 = xs and M01 = ys. Second

order moments are the moments of inertia with respect to an axis under
angle ψ through the center of gravity (xs,ys): Let di be the distance to the
axis from point Pi with coordinates (xi,yi) then

f(ψ) =
N∑

i=1

(di)
2 (5.27)

⇒ The line through (xs,ys) under an angle ψ is given by

y = m · x+ b (5.28)

Then the distance of the line to the point(xs,ys) is calculated as shown:

ys = m · xs + b (5.29)
m = tanψ (5.30)
b = ys −m · xs (5.31)
yq = m · xi + b (5.32)

cosψ = di/(yi − yq) (5.33)
di = (yi − y − q) · cosψ (5.34)

(di)
2 = (yi − tanψ · xi − ys − tanψ · xs)

2 · cos2 ψ (5.35)

Figure 5.15 shows the relation.
From here the moment of inertia through (xs,ys) with respect to angle

ψ is

f(ψ) =
N∑

i=1

(di)
2 (5.36)

5.1 Metrical maps 121

xs

ys

Pi (xi, yi)

di

(xs, ys)

xi

yi

yq

Figure 5.15 Distance with respect to the center of gravity and the angle psi

f()
(xs ,ys)

Figure 5.16 f (ψ) forming the inertia ellipsis

Running through all angles ψ f(ψ) forms an ellipsis, regardless of the
given point cloud. The quotient of the length of the small and the long axis
of the ellipsis as well as their direction are invariants of the point cloud as
sketched in figure 5.16.

As the influence of points far away from the center of gravity is rather
strong, a smoothing function is introduced: let d0 be the medium distance
to the center of gravity and di be calculated as above. Then di is smoothed
by a function as shown in figure 5.17.
Here, a parameter α defines the steepness of the function described by

d0 =
1
N
·

N∑
i=1

√
(xi − xs)

2 + (yi − ys)
2 (5.37)

di :=
di

1 + exp (α · (di − d0)/d0)
(5.38)

122 5 Mapping

d0

(xs, ys)

1

1/2

d0

di

g(di)

Figure 5.17 Left: center of gravity in a scan and medium distance of scan points
right: a smoothing function, a parameter α describes the steepness of the function

While analyzing the data gathered during a scan of a laser distance
sensor, one is able to distinguish four different kind of features as depicted
in figure 5.18:

1. false edges: a sudden change in distances but no real edge

2. limit wall/ round edge

3. edge between two walls

4. real jump edge

Scanner

1

2
3

4

-90° +90°0°

angle

scan
angle

Figure 5.18 Different types of anchor points

Other than that, virtual edges occur. They can be found by applying a
histogram based criterion. First of all, the scan image is rotated according
to the main preferential orientation. Afterwards histograms are generated
based on the scan data as illustrated in figure 5.19. Hence one is now able
to determine the virtual intersection points of wall segments. The edge ex-
traction process is presented in figure 5.20.

5.1 Metrical maps 123

Using a scan (ri,φi), segmentation can be performed according to algo-
rithm 5.3, assuming Δri = ri+1 − ri. Feature numbers 2 through 4 as well
as virtual edges serve as anchor points of a scan. The distance of two anchor
points Pi and Pj (with their coordinates (ri,φi) and respectively (rj ,φj)) can
be determined as shown in equation 5.39.

dij =
√

(ri)
2 + (rj)

2 − 2rirj cos(φj − φi) (5.39)

These distances are invariants of a scene.

y*
x*

i

direction || wall
y

ri

x

Figure 5.19 Anchor points from wall edges

ri

Figure 5.20 Finding edges in a radar scan

124 5 Mapping

Algorithm 5.3 Segmentation
for i = 1 to N do

if |Δri| ≤ s then
form segment of (ri,φi) and (ri+1,φi+1)
i := i+ 1

else if |Δri| > s and |(ri+2 − ri)| ≤ s then
add (ri+2,φi+2) to segment
mark (ri+1,φi+1) as singular point
i := i+ 2

else if |Δri| > s and |δri+1| < s then
start new segment for (ri+1,φi+1)
mark edge at (ri,φi)
i := i+ 1

else if |Δri| > s and |δri| > s then
false edge detected
mark (ri+1,φi+1) is a singular point
i := i+ 2

else
mark (ri,φi) is a singular point
i := i+ 1

end if
end for

Extraction of anchor point type Let us assume the segments α(φi)
are given. Parts that are parallel to the φ-axis correspond with parts with
a constant angle with respect to the orientation of the vehicle. Traversing
from one parallel part to another, one denotes an edge (type 3). Straight
parts not parallel to the φ-axis denote curved parts in the scene. Going from
one part to another denotes a (type 2) edge. A discontinuity in the ri-values
denotes a real jump-edge (type 4). Hence, the scan can be transformed into
a graph with vertices annotated with the type of edge and the edges with the
distances as shown in figure 5.21 taken from [Web02]. The graph at hand is
a compact description of a scene, invariant to slight changes in position and
the orientation of the vehicle. In order to find the location of the vehicle, a
graph corresponding to the scene just captured can be matched with graphs
generated earlier. This approach remains within manageable dimensions as
long as there are only a few graphs to be compared. This is the case if the
vehicle position is approximately known.

5.1 Metrical maps 125

anchor point

scanner anchor point
 graph

Figure 5.21 Generation of an Anchor Point graph (AP-graph) based on laser
scanner measurements

Graph comparison
As one can see in figure 5.21, the anchor points found earlier can be con-

nected in order to form a complete graph. This graph does not simply include
the anchor points, but rather their relation is expressed by the help of edges
that contain distance information as well. Assume two complete graphs G
and G∗ of a scene as given. Let us further assume that G features n an-
chor points and n(n − 1) distances and G∗ contains m anchor points and
m(m− 1) distances. The comparison of the two graphs can thus be reduced
to a subgraph matching problem.

The momentary scan may involve ‘ghost edges’: Those can be either
temporary object edges of obstacles (rather rare, only occurring with large
obstacles) or the more common case of real edges that are obscured by
obstacles.

In general only partial matching can be performed. In order to still
be able to assign corresponding scenes, a particular search beginning with
large distances in a data bank has to be implemented. Hence, if the number
of found matches exceeds a preset threshold, the scene can be assumed as
recognized.

Feature matching, continuous values Let there be two scenes with
invariant features Mi,. . . ,Mk and M∗

i ,. . . ,M∗
k . Further, let the range of pos-

sible values of each feature Mi be continuous and thus Mi ∈ [mia,mie].
Therefore, scenes are described by feature vectors MT = (M1, . . . ,Mk) and

126 5 Mapping

M∗T = (M∗
1 , . . . ,M

∗
k) interpreted as points in a room of k dimensions. A

comparison is then based on the distance of the end points. In order to do
that, the values have to be normalized Mi ∈ (mia,mie) →Mi ∈ [0,1]:

Mi −→ Mi −mia

mie −mia
(5.40)

This assures all features are treated equally and the vector end-points
define points in a k-dimensional unit cube. The Euclidean distance between
M and M∗ can be denoted as

d =

√√√√ k∑
i=1

(Mi −Mi∗)2 (5.41)

d ∈ [0,
√
k] (5.42)

Feature matching, discrete range of values Let us assume the exis-
tence of a discrete range of values for the features Mi ∈ (mi1,mi2, . . . ,min).
If a relation mi1 < mi2 < · · · < min exists, then mir −→ r and nor-
malized Mi −→ (Mi − 1)/(n − 1). If however this is not the case, only
complete equivalence is considered: let Mi = mir and M∗

i = mis then
di = (Mi − M∗

i) = (1 − δrs). If this equivalence is a condition sine qua
non then

d = δrs ·
√∑

j �=i

(Mj −M∗
j)2 +

√
k · (1− δrs) (5.43)

and otherwise d = dmax.

5.2 Grid maps

Grid maps model the environment as a regular grid of cells with constant
areas. The cells are filled with information extracted from noisy sensors.
In order to produce consistent maps, this process requires either a known
robot pose or a good pose estimate. The sensors used are predominantly
ranging sensors like sonar or laser scanners. The lack of precise knowledge is
expressed through various kinds of regions: high occupancy regions indicate
objects, while lower values most likely represent free space. The advantage
of this specific kind of map is the robustness and easy implementation. Their
disadvantage is that they rely on exact pose estimation.

5.2 Grid maps 127

5.2.1 Occupancy grid maps

For many tasks it is useful to raster the environment. In general, a square
raster with tiles of d cm width is used. Each tile gets a pair of indices (i,k),
with d adjusted to the task at hand.

It is simple to build a grid map from laser radar distance readings. The
dimension of a tile should be the resolution of the grid map. With Δr ≈
±2.5 cm and a radar cone of 0.5◦ up to a distance of r = s · 360/(2π · 0.5) =
570 cm a radar point occupies one tile and the cone denotes free space as
shown in figure 5.22.

r

x

y

(xp,yq)

vehicle
position

k

i

Figure 5.22 Building a grid map from laser radar measurements

Let x = r cosϕ and y = r sinϕ be the coordinates of the radar point and
(xp,yq) the coordinates of the vehicle in a 2D scenario. The corresponding
tile with index i,k and center (xi,yk) is given by

xi − d

2
< x+ xp ≤ xi +

d

2
xi = i · d (5.44)

yk − d

2
< y + yq ≤ yk +

d

2
yk = k · d (5.45)

Each of the tiles described above is marked as free space (white) or
obstacle (hatched) or partly free space (gray). Figure 5.23 shows a typical
grid map with the mentioned parameters. If tiles are marked as occupied for
vehicle navigation, there should remain a safety clearance of n of free space
between the vehicle and the occupied region. E.g. suppose that n = 7 cm;
with d = n/

√
2 ⇒ d = 5 cm. In this case a grid map with 400 tiles/m2 will

be generated (for a field of 100m×100 m, 4 · 106 tiles will be built up).
For a compact description of grid maps a quadtree representation can

be applied. The environment is split recursively into blocks of 2i× 2i tiles as
shown in figure 5.24.

A node in the tree represents a 2i × 2i square part of the environment.
It is either a free space or represents an obstacle or is a mixture of both. If a
node is marked as obstacle or free it will not be split any further. A mixed

128 5 Mapping

node will be recursively split in 4 equal areas, represented as 4 new nodes of
the tree. If the whole environment is made up of 2k×2k tiles, then in general
the quadtree will have much less than 22k nodes. The procedure is shown in
algorithm 5.4.

i

k

Figure 5.23 A typical grid map. White tiles represent free space, hatched tiles
obstacles, and gray ones mixed spaces.

0 1

2 3

64 tiles

38 inputs to Quadtree

Figure 5.24 Quadtree representation of a grid map with 64 tiles.

Algorithm 5.4 Quadtree representation of a grid map
if n = 0 then

it is a leaf node
else

the map becomes the root node of a quad tree
end if
if the map is not uniformly colored then

split the 2n × 2n tiles into four maps of 2n−1 × 2n−1 tiles each
handle them the same way

else if a map is uniformly colored then
it is a leaf node of the tree, denoting a block of 2k × 2k tiles

end if

5.3 Sector maps 129

The concept may also be extended to three dimensions: splitting a 3D-
space of 2n×2n×2n voxels recursively into blocks of 2k×2k×2k. In figure 5.25
a 3D object is represented in a grid map.

Figure 5.25 An object in a 3D grid

Probabilities Especially when using ultrasonic sensors with their rather
unreliable measurements, it makes sense to include obstacle probability in
the specification of the raster points. Performing more than one independent
measurement, the probability of the presence of an obstacle at the specified
location can be determined in a very simple manner. For each cell C(i,j) the
likelihood of occupancy can be computed as:

C(i,j) =
hits(i,j)

hits(i,j) + miss(i,j)
(5.46)

where hits(i,j) represents the number of scans that indicated the presence of
an obstacle at this cell while miss(i,j) stands for the times the cell appeared
to be empty. Thus the computation effort affiliated with e. g. Bayesian Filters
can be reduced to the simple counter approach above.

5.3 Sector maps

A sector map widens the rigid structure of a grid map and allows to partition
space in a more flexible way (see [AKSB07]). A sector map is divided up into

130 5 Mapping

one or more sectors, hence its name. The most common separations consist
of uniform polar or rectangular sectors. Typically, a sector then contains the
following information:

• polar sector: angle and distance to the closest obstacle in the area the
sector covers

• rectangular sector: x- and y-coordinates of the closest obstacle in the
area the sector covers

While this is information about the presence of obstacles (and used for col-
lision avoidance), a sector map can also contain other information, such as
the slope of the ground or overall terrain traversability.

In case of polar sector maps, space in front of an autonomous vehicle
is divided into sectors of some degree; e. g. Δϕ = 5◦ from −120◦ to +120◦.
Let the distance ri to an obstacle be measured from the kinematic center at
an angle ϕi and the distance to the border of the vehicle be ki. Then the
distance between vehicle and obstacle is di = ri − ki.

Figure 5.26 shows the sectors and figure 5.27 a typical sector map made
up of 24 sectors of 5◦ each, spanning 120◦.

90°

120°
180°

240°

sectors for an obstacle map

polar diagram

ri
i

ki

di

robot centered

Figure 5.26 Typical angle range in front of the mobile robot, used for sector maps
(left). Obstacle representation inside a sector (right).

A sector map can be transferred into a grid map. Figure 5.27 shows a
typical sector map and its transfer to a robot-centered grid map. Its trans-
formation into a world-centered grid map is presented in figure 5.28. In both
pictures free space and obstacles are marked in the tiles; blank tiles mark
unknown regions.

The transformation from a robot-centered sector map to world-centered
grid map is shown in figure 5.29.

5.3 Sector maps 131

sector map raster sector map robot centered

Figure 5.27 Transformation of a sector map to a grid map

robot centered raster raster in world coordinates

 robot
orientation

Figure 5.28 Robot-centered vs. world-centered grid map

i
ri

m

n

N

MM N

robot centered sectors

Figure 5.29 Transformation of a robot-centered sector map to a world-centered
grid map

132 5 Mapping

Let ψ �= 0 be the orientation and (x,y) = (M · δ+ εM ,N · δ+ εN) be the
position of the kinematic center of the vehicle in world coordinates. (M,N)
is the index of the tile in which the kinematic center is located. εM and εN
is the offset of the kinematic center in x- and y-direction due to the origin
of the tile. δ is the edge length of the tiles. Suppose there is an obstacle at
distance ri in the sector i with an opening angle Δϕ. Then all tiles with
index (n,m), which fulfill one of the 3 pairs of inequations listed below have
to be marked as obstacles and the space covered by the cone up ri as free
space.

(M +m) · δ − εM ≤ ri cos(ϕi + ψ) ≤ (M +m+ 1)δ − εM (5.47)
(N + n) · δ − εN ≤ ri sin(ϕi + ψ) ≤ (N + n+ 1)δ − εN (5.48)

(M +m) · δ − εM ≤ ri cos(ϕi + ψ + Δϕ/2) ≤ (M +m+ 1)δ − εM (5.49)
(N + n) · δ − εN ≤ ri sin(ϕi + ψ + Δϕ/2) ≤ (N + n+ 1)δ − εN (5.50)

(M +m) · δ − εM ≤ ri cos(ϕi + ψ −Δϕ/2) ≤ (M +m+ 1)δ − εM (5.51)
(N + n) · δ − εN ≤ ri sin(ϕi + ψ −Δϕ/2) ≤ (N + n+ 1)δ − εN (5.52)

For a sector up to 3 tiles may be marked as obstacles in the world-centered
grid map.

A sector map has an arbitrary position and orientation in terms of the
robot coordinate system. It is important to note that although the content
of a sector map is usually generated by the data of a specific sensor, a sector
map does not have to be aligned with this sensor. Instead, it can be placed
anywhere in the area around the robot as a so-called “virtual sensor”.

On the autonomous mobile robot artos [AKSB07] of the TU Kaiser-
slautern sector maps are not only used for collision avoidance, but also as
data source for an occupancy grid map built by the mapping system. The
data of a laser range finder and two chains of ultrasonic sensors is put into
three polar sector maps with uniform sectors. The two-step algorithm de-
scribed in the following is used to extract the information from the sector
maps and alter the occupancy counters of the grid map.

The first step of the algorithm deals with the grid cells whose counters
have to be increased and the second one deals with the grid cells whose
counters have to be decreased. The algorithm will be explained with the
following example. Figure 5.30(a) depicts four obstacles o1–o4, the grid of a
grid map and a sensor together with the sector boundaries of a sector map
belonging to it.

5.3 Sector maps 133

In the first step, all sectors are traversed and the occupancy counters of
the grid cells in which a sector’s obstacle lies are incremented. The sector in
which o1 lies is not marked as occupied as o1 is not in any of the sectors.
The resulting grid map is shown in figure 5.30(b).

Obstacle o2

Obstacle o3

Obstacle o4

Obstacle o5

Obstacle o1

(a) Five obstacles lie in the area around the
sensor. One of them, o1, is currently not seen.
The grid map is in its initial state.

(b) The cells in which visible obstacles lie
have been marked as occupied.

Figure 5.30 First part of the creation of a grid map using a polar sector map as
data source.

In the second step, the counters of the cells which are covered by a sector
and are closer to the sensor than the obstacle in this sector are decremented.
The problem is to determine the cells to which this applies. A comfortable
way would be to have a list of these cells. But then the problem would be
how to update this list when the robot’s pose changes. So instead of calcu-
lating for each sector a list of the cells it covers, all cells in a user-specified
rectangular area around the sensor are processed. For each of them the con-
taining sector is determined. If the center of the grid cell is closer to the
sensor than this sector’s obstacle, its counter is decremented. Figure 5.31(a)
shows an intermediate result of the map creation process, and figure 5.31(b)
depicts the final grid map.

134 5 Mapping

(a) The second step of the grid map cre-
ation algorithm is being executed. The
cell with the bold frame has just been
processed and marked as free.

(b) The second step of the grid map cre-
ation algorithm has been completed. All
cells between the sensor and visible ob-
stacles have been marked as free.

Figure 5.31 Second part of the creation of a grid map using a polar sector map
as data source.

Note that in the second step, the counter decrementation is not limited to
cells that are traversed by a sensor beam. Instead, the fact that the relevant
obstacle in a sector is also the closest one is utilized to update the counters
of more cells.

5.4 Topological maps

Compared to metrical maps, topological maps are more abstract descriptions
of large-scale structures of the environment. Topological maps are typically
represented as graphs in which navigation-relevant places are modeled as
graph nodes and connections between places are indicated by graph edges.
Often, some metrical information is also stored in a topological map, such as
the coordinates of a place or the metrical length of the topological edge. Even

5.4 Topological maps 135

if topological maps also contain such information, processing topological
maps (generation, path finding) need less computation than metrical maps.
Typical examples of topological maps are:

• bus lines and bus stops in a town,

• a highway network of a country,

• a network of stations and railway lines for a subway or railway system,

• a grid of the high voltage transmission lines of a country,

• the sewage system of a town.

Typical questions to be answered with help of a topological map are:

• Where do I change buses between stations A and B?

• Can I also drive from A to B via C or via D?

• How many stops are there on the way from A to B?

• If one transmission line fails, are there lines to circumvent the failed
one?

• Where is the entrance to a main sewage line?

These questions are difficult to answer using geometric maps only. There-
fore, for the solution of many mapping problems the transformation of a
geometric map into a topological one is necessary, as shown in figure 5.32
and figure 5.33. In figure 5.32 three rooms are presented which are connected
to each other by a passageway. Connecting the corners with edges which are
not crossing any objects is shown in figure 5.33. This decomposes the map
into regions free from objects.

This graph can easily be generated by visibility graph algorithms. The
emerging regions can be represented by a graph as shown in figure 5.33.
The nodes in this graph represent regions of the metrical map. The edges
between nodes denote a passageway between the regions. This graph can
be transformed into a decomposition tree. Here, all nodes belonging to
one room are mapped to subgraphs; interconnection graphs represent the
passageways between rooms. The decomposition tree algorithm divides the
whole graph into subgraphs, in which nodes exist with one connection to
another subgraph.

A possible interpretation of the generated decomposition tree is shown
in figure 5.34.

136 5 Mapping

1

2

4
3

15 16

7
8

6

5

9
11

10

14

12

13

20
19

17

21 18

geometric map connecting edges

Figure 5.32 Interconnecting edges in a map of 3 rooms

1

2
4

3

15
16

7

8

6

5

9
11

10

14

12

13

20

19

17

21 18

1

2
4

3

15
16

7

8

6

5

9
11

10

14

12

13

20

19

17

21 18

cell graph

Figure 5.33 Interconnecting regions and the corresponding graph

5.4 Topological maps 137

1

42

3

17
18

19

20

13
12

11

14

10

15

5

6

7
16

89

3

9

17

18
21

room

room

room

room

room

door

K1

K2

K3

K4

K5

K1

K2

K3

K4

K5

door

door

door

Figure 5.34 Decomposition tree

5.4.1 Growing neural gas net

Fritzke [Fri96] gave an algorithm to build a topological map of a scene from
multiple measurements by different sensors.

Let the representation be a net with m nodes Ki made up from n-
dimensional vectors Ki = (bn−1,i, . . . ,b0,i) with normalized components br,i ∈
[0,1]. The representation will be a net withm nodesKi, i = 1, . . . ,m. In order
to keep the number of nodes manageable, relevant nodes Ki will have to be
calculated from many scene vectors S = (sn−1, . . . ,s0). Each scene vector
describes one set of normalized measured values sr ∈ [0,1]. If the components
of S are independent from each other – their covariance cr,q = δr,q – then
the Euclidean distance between a node Ki and S is well defined:

‖Ki,S‖ =

√√√√n−1∑
r=0

(br,i − sr)
2 (5.53)

Let a visiting counter zm be attached to each node Km and let D be
a critical distance. Building up a growing neural gas net runs as shown in
algorithm 5.5.

Having read in G scene vectors, then G =
∑m

i=1 zi and m = number of
nodes. There is still a difficulty to be solved: looking for the bmu in a large
net given a scene vector S.

138 5 Mapping

Algorithm 5.5 Growing Neural Gas Net
initialize: m := 1; take a first measurement Km = S; zm := 0
repeat

read S
for all j = 1, . . . ,m do
‖Kj ,S‖

end for
for all j �= i do
‖Ki,S‖ ≤ ‖Kj ,S‖ {– Ki is the node with minimum distance to S – }

end for
if ‖Ki,S‖ > D then
{a new node is inserted}
m := m+ 1
Km := S
zm := 0

else
{– Ki is the best matching unit – bmu – }
if zi < Z then
zi := zi + 1 {– the visiting counter is increased – }
for all r = 1, . . . ,n do
br,i := br,i + ε(sr − br,i)/zi {– the components of Ki are shifted
into the direction of S while the weight of Ki increased – }

end for
else if zi = Z then
{– the region around Ki is under represented and S gets a new
node – }
m := m+ 1; zi := Z/2; Km := S; zm := Z/2

end if
end if

until FOREVER

The number of nodes to be checked should be kept manageable. The
scene vectors as well as the nodes describe points in an n-dimensional unit
cube. The direct approach as described in the algorithm to calculate ‖Kj ,S‖
for all j = 1, . . . ,m and look for the minimum has an effort of (2 ·m ·n). The
idea is to preselect the nodes Ki, see figure 5.35.

• By multiplying the values of the components of the nodes by 2p, the
components of Ki = (b(n−1),i, . . . ,b0,i) become integer numbers br,i ∈
(0, . . . ,2p − 1).

5.4 Topological maps 139

• Chop the interval 0, . . . ,2p − 1 into 2k parts tq with q = 0, . . . ,2k − 1.
The interval tq contains the numbers q2p−k ≤ b < (q + 1)2p−k.

• The uppermost k bits of the values of br and br,i form the indices qr or
qr,i.

• Choose k such that D = 2p−k.

• Form a list at index q in dimension r of all Ki with (q− 1)2p−k ≤ bri <
(q + 2)2p−k under their number i. The list is ordered with respect to i.
The storage effort is (n2k) lists with indices j and the values br,j .

• Candidates for the bmu are only those Kj whose number is to be found
at all indices qr, belonging to br.

• If the search fails, then S is a new node; there is no node Kj at a
distance less than D around S.

• Let the indices j1,j2, . . . ,jl be found in all boxes qr then only the dis-
tances from S to Kj1,Kj2, . . . ,Kjl have to be calculated to find the
minimum, the bmu.

0 2p -1

q=0 q = 2k -1

q 2(p-k) ≤ b < (q +1) 2(p-k)

0 2p -1

q=0 q = 2k -1
br

br

qr

tq

Figure 5.35 Splitting the realm of possible values

There are three parameters to be adapted to the scene at hand:

• The distance D, describing the influence of a node,

• the maximum value Z of a visiting counter zj describing the number of
matches before a split at the node Kj occurs,

• and the shift ε describing how much the current scene vector affects the
bmu.

140 5 Mapping

steering
 motor

view from
 below

sensor
whisker

Figure 5.36 Sketch of alice

An example of building a topological map using a very simple vehicle, alice
is described in [ZvP94]. Figure 5.36 shows the structure of the vehicle.

The robot has a circular shape with a diameter of 30 cm and is actuated
by a synchro drive. alice is equipped with 24 photo sensors with an angle of
beam spread of 15◦ each. The same number of touch sensors detect contact
with walls as shown in figure 5.37.

 photo
 resistor

isolator
steel wire

metal tube

15°

F

Figure 5.37 The touch sensor and the photo sensor of alice. The touch sensor
is realized as a simple electrical switch. If the steel wire hits an obstacle the wire is
bended and closes the contacts of the switch.

The measurements of 24 photo sensor (I0, . . . ,I23) are normalized to
Ĩi = Ii/Imax ∈ [0,1]. The 24 touch sensor values (T1, . . . ,T24) ∈ [0,1] are
smoothed to cope with the rather large uncertainty of these sensors: T̃i =
(2Ti+Ti−1+Ti+1)/4, i = i mod 24. Only these 48 measurements describe the
environment around alice. For the calculation of position and orientation
of the vehicle the movement of the chain of the synchro drive is detected by
light barriers and the wheel velocity measured by optical encoders.

The alice scene vector has 48 components. They provide input for a
neural gas net modified slightly bit for the task of building a representation
of the environment alice finds itself in.

5.4 Topological maps 141

• A first modification is to use the position information to build a graph:
the vehicle actually has been driven from one best matching unit to the
next, so there a line is drawn. The node is annotated with the position.

• The line is annotated with a visiting counter. It is used to cope with
wrong measurements: once in a while a measurement gives wrong values.
The sensor situation becomes unique and becomes a new best matching
unit (bmu). From the last bmu to this new one a line is drawn and a
visiting counter counted up. All the other counters attached to edges
from that last bmu are diminished. It is highly improbable that a false
measurement will be repeated. So the line will never be driven again. If
the value of a visiting counter drops below the limit, the line is taken
from the graph. This eliminates wrong measurements after a while.

• In order to get a reliable representation of the environment, the in-
evitable drift in direction has to be corrected. To this end the light
impression of the photo sensors is used to correct a drift in direction.

Figure 5.38 shows a typical sensor situation of alice. Aside from the sensor
values, the position and an identifier for the bmu part of the sensor situation.
Figure 5.39 shows a test environment for alice and figure 5.40 a neural net
formed after a while. Despite the primitive sensors, the environment can be
recognized in form of the free space for alice.

0 0
0

0

0

0

0

0

0

16

16
35103102

100

121

53

16

15

16

0

0

0
0

190230
172

126

71

0

0

0

0
0

0

2
21

112

255

226

-106
-294

0

0

64

65
17

0

0

0

112

ID = 135

position

lightintensities

smoothed
tochsensor
 values

number of node

Figure 5.38 Example of sensor measurements (touch sensor values and light in-
tensities) at an estimated position

142 5 Mapping

3.78m

1.35m

1.05m

1.0m
1.0m

1.0m

2.20m

0.95m

0.25m

glas window 0.5m

lamp
1.10m

0.49m

illuminated

environment of ALICE

illuminated

Figure 5.39 alice test environment

Figure 5.40 Topological graph of environment

5.5 Hybrid maps 143

5.5 Hybrid maps

As discussed before, metrical and topological mapping algorithms feature
different characteristics (see figure 5.41). Hybrid approaches try to combine
both types, allowing localization and map building with the high precision
of metrical maps while retaining the compactness of topological maps.

Topological Maps Metrical Maps
Scale Large-scale space Small-scale space
Sensor inputs Abstracts sensor inputs Stores sensor inputs
Computational power Low High
Memory consumption Low High
Sensitive to noise Less More
Real-time mapping Yes Depends on

computational power
Figure 5.41 Comparison of features of metrical and topological maps

Hybrid maps found in literature can be classified as two main types:
abstraction-based and hierarchical hybrid maps. In abstraction-based hy-
brid maps, a metrical map of the environment is typically constructed as
a basis, and an abstraction of the map is performed in order to create a
compact topological representation. The benefit of this abstraction is more
efficient planning of an approximate path to a given goal location than a
detailed metrical map. However, the metrical map must often be kept for
relocalization and obstacle avoidance purposes.

An example of a hybrid mapping strategy that derives a Voronoi-graph
based topological map through abstraction of a long-lived, complete metrical
map is presented in [Thr98]. Here, topological map building is initiated by
thresholding an occupancy grid map built using Bayesian probability tech-
niques. Then, the Voronoi diagram is built by selecting all free grid cells, with
two nearest occupied grid cells (the base points) being equidistant. Cells on
the Voronoi diagram are termed critical points if the base point distance is
a local minimum. Lines between critical points and their base points divide
metrical space into separate topological regions at locally narrow passages.
From this regional decomposition, a topological graph can be generated.
Figure 5.42 shows an example of the procedure.

With the help of this graph, fast path planning is possible without re-
sorting to the detailed, underlying metrical map. During travel, however,
the arrival at a topological node can only be detected by using localiza-
tion techniques based on the detailed map, since the topological nodes are

144 5 Mapping

only characterized by their spatial position in the metrical map’s frame of
reference.

Figure 5.42 Steps in the topological abstraction scheme of [Thr98]. (a) Original
thresholded occupancy map (b) Overlaid Voronoi diagram (c) critical points (d)
critical lines (e) topological regions (f) resulting topological graph

Hierarchical hybrid maps on the other hand try to arrange the two map
methodologies in a hierarchical fashion. This is accomplished by creating
several local metrical maps with a limited scale and tying them together
using a global topological map (figure 5.42). This approach uses the clas-
sical divide-and-conquer paradigm to address the scalability problems that
are inherent in large metrical maps. Also, it prevents errors incurred dur-
ing metrical mapping from spreading over the entire mapped area. However,
one also has to pay a price for the segmented map structure, as informa-
tion contained in partially overlapping local maps cannot be used to enforce
global consistency. This can lead to increased uncertainty for each local map,
especially if they are closely spaced.

In [TNS03], a hierarchical hybrid map of an indoor environment is pre-
sented which combines a global topological map with local metrical maps.
On the global level, a topological map is constructed which contains interme-
diate nodes spanning the topological graph, leafs that signify metrical places
and corner lists on the links between nodes (see figure 5.43). The corners
can be extracted easily from the data of a 360◦ laser scanner and serve as
landmarks for localization on the topological scale.

While the landmark-based localization strategy is used during robot
travel along edges, the approach switches to a metrical method once the

5.5 Hybrid maps 145

robot has arrived at a leaf node marked ‘place’. The local map stored in
this leaf is a line-based metrical map. For each line segment a ‘line feature’
is generated that is described by the angle of the perpendicular to the line
and its length. The local feature map can be used for localization by mod-
eling all feature parameters and the current robot pose as the state vector
of an extended Kalman filter. With the use of this local metrical representa-
tion, the robot can travel freely in the vicinity of the leaf node, performing
navigational tasks with high metrical precision.

Figure 5.43 Hierarchical hybrid map of [TNS03]. (a) shows a portion of a hallway
with extracted corner and opening features. (b) represents the resulting topological
map with nodes and corner landmarks. Open arches either lead to metrical places
or other hallways.

6 Simultaneous localization and

mapping (SLAM)

In chapter 4 the localization problem is introduced, which is the estimation
of the position and orientation of the amr in its environment. It is shown
that this problem can be solved with specific sensors or based on specific
features of the environment. The selected features are those which could
easily be detected by the robot sensor system. Additionally, chapter 5 de-
scribes different map generation techniques, for which a precise position and
orientation of the robot is necessary.

For an autonomous system operating in unknown environment, a new
challenge emerges: What needs to be done if the amr is activated without
precise information about its pose and no map of the environment exists?
In this case the vehicle has to explore the surroundings, create a map, and
track the pose. This somehow paradox situation is called the slam prob-
lem [SSC90, LDW91] (Simultaneous Localization And Mapping).

6.1 The general approach

Suppose the amr can extract features from its local environment that can be
used as identifiers for landmarks. A precondition for the use of the landmark
is the knowledge about its pose. The local configuration of these features
(e. g. angle and distance due to the robot’s coordinates system) yields a
local feature map. For small movements it is easy to use these features to
track the changing pose of the robot. In figure 6.1 (a) the robot measures
the distances to three landmarks using e. g. a laser scanner. While moving,
it can use its odometry to estimate the new pose as shown in figure 6.1 (b).
This odometry-based robot pose could be used to estimate the new distances
to the features extracted in figure 6.1 (a). Comparing the distances between
robot and features with the measured ones, the amr is able to correct its
estimated pose as shown in figure 6.1 (c).

So far this is a localization with landmarks within the initial local feature
map. By adding new features to this map, it can be incrementally extended
until it covers the whole working space of the amr. If one supposes that
the distance measurement is absolutely precise and that enough of the old
known features are observed in every extension step, then the slam problem

6.1 The general approach 147

is solved. In reality, we must assume that even after localization minimal
errors in position and orientation persist due to the sensor systems used.
These would not propagate through a pure relocalization process. If based on
relocalization new features are added to the map however, the corresponding
error results in wrong positions. Such errors accumulate during the whole
map building process, resulting in unusable maps like the one shown in
figure 6.2.

(a) (b) (c)

Figure 6.1 Relocalization relative to landmarks. In (a) the initial state with dis-
tances to three landmarks, in (b) the odometry-based pose with an error after some
maneuvers and in (c) the corrected pose using the information from the distance
sensors is shown.

(a) A map resulting from pure integration
of single scans

(b) Correct representation of the map

Figure 6.2 Pure integration of single scans from different poses leads to an unus-
able map.

The solution of this problem is depicted in figure 6.3. The main idea is to
make small movements and stay within the range of as many known features
as possible. Then new landmarks can be aligned properly. Figure 6.3 (a) is
the situation at the end of the relocalization process (see also figure 6.1). In
figure 6.3 (b) the vehicle has moved ahead and is properly relocated using
two landmarks from the last local map. Because of the distance error when

148 6 Simultaneous localization and mapping (SLAM)

measuring the landmarks, the global vehicle pose is imprecise. Therefore,
all currently observed features are displaced (the dashed landmarks show
the correct poses). Via the relocalization process, the new landmarks on the
right are properly located relative to the old ones. The displacement of the
old landmarks can be estimated and used to align the new segment of the
feature map. The resulting extended map is depicted in figure 6.3 (c).

(a) (b)

(c)

Figure 6.3 Relocalization relative to landmarks

This approach works if more than one old landmark is involved in the
matching process. Thus, the best results are achieved by moving in small
steps and performing updates frequently to extend the map only by a few
(maybe just one) new landmarks.

6.2 Merging local maps

The example used above points out that one main problem of the slam
approach is the merging of the feature maps. Using slam in indoor scenarios
like that presented in figure 6.2 (b) usually involves line or point features
that can be extracted by a 2D laser scanner. In the following two algorithms
are presented that merge this type of feature maps.

6.2 Merging local maps 149

6.2.1 Correlation of laser scans

Two laser scans are given, one from position (x0,y0,ψ0), the other one from an
unknown position (x,y,ψ) nearby. The setting is illustrated in figure 6.4. Let
ψ0 be the main direction in the scene. A scan from P0 = (x0,y0,ψ0) is taken
in a robot centered coordinate system as a point set (ϕ0,i,r0,i), The same
holds for a radar picture taken from P1 = (x1,y1,ψ) in the robot coordinate
system centered at P1. Both scans describe more or less the same scene. The
calculation aimed to find the angular shift Δα and the lateral shifts Δx and
Δy is performed in two steps:

x0

y0

x

y

y

x

0

Figure 6.4 Two poses shifted by Δx and Δy

• Form the angle histograms (compare to figure 4.12) and correlate them
with respect to turning by an angle. Let Δα be the angle with maximum
correlation, then ψ = ψ0 + Δα.

• Correlate the angle adjusted scans with respect to lateral shifts (point
histogram). Let Δx and Δy be the maxima in these correlations. The
unknown position is then given by x = x0 + Δx and y = y0 + Δy

The correlation of angle histograms is done as follows: Let {Nk}0 and
{Nk}1 be two angle histograms over the full circle taken from positions P0

and P1 respectively with (k −m) mod K. Here k counts the angular boxes
of width δα. Let the medians of these histograms be

Ñ0 =
1
K

K−1∑
k=0

Nk,0 (6.1)

Ñ1 =
1
K

K−1∑
k=0

Nk,1 (6.2)

150 6 Simultaneous localization and mapping (SLAM)

The discrete correlation is

R0,1(m) =
1

2K

K−1∑
k=0

(Nk,0 − Ñ0) · (Nk−m,1 − Ñ1) (6.3)

This is a function of the discrete shifts m of the angle histograms as shown in
figure 6.5. There is one pronounced maximum between zeros at ml and mr.
The maximum is described here by the center of gravity of the correlation
values.

ma =

mr∑
m=ml

R0,1(m) ·m
mr∑

m=ml

R0,1(m)

(6.4)

R 0,1(m)

m

m 1 m r

m a

Figure 6.5 Correlations of angular histograms

The most probable angle of rotation is Δα = ma · δγ. Turn the radar
pictures:

• turn radar picture at P0 with γ0 = ψ0 into the main axis direction of the
scan as shown in figure 6.6, then radar point (ri,ϕi)0 −→ (ri,φi − γ0)0

x0,i = r0,i · cos(ϕ0,i − γ0) (6.5)
y0,i = r0,i · sin(ϕ0,i − γ0) (6.6)

6.2 Merging local maps 151

• turn radar picture at P1 with γ0 +Δα into the same direction, as shown
in figure 6.7 and radar point (ri,ϕi)1 −→ (ri,ϕi − γ)1

x1,i = r1,i · cos(ϕ1,i − (γ0 + Δα)) (6.7)
y1,i = r1,i · sin(ϕ1,i − (γ0 + Δα)) (6.8)

y0

x0

y0*

x0*

r0,i

x0i0,i

0

y0i

Figure 6.6 Turning P0 by γ

y1

x1
P1

x1i

1,i

r1,i

y1i

x1*

y1*

0 +

Figure 6.7 Turning P1 by the same angle γ

The radar pictures form sets {x0,i} , {y0,i} , {x1,i} , {y1,i} with i = 0, . . . ,719.
Their coordinate systems are aligned pointing into the same direction.

Now the point histograms may be calculated to find the lateral displace-
ment: Take the set{x0,i}, i = 0, . . . ,719 and form boxes of width δx. Let
δx = 6 cm be the resolution of the laser scanner taking the radar pictures.
Let Pδx be the maximum detectable distance, thus outside ±Pδx the boxes
remain empty. Choose N ≈ 2P . The histogram then has 2N boxes. Form a
histogram H0x = {h0xn} as shown in figure 6.8. Put all points with values
between nδx and (n+ 1)δx into box h0,xn .

152 6 Simultaneous localization and mapping (SLAM)

Do the same with points y0,x1 and y1 forming point histogramsH0y,H1x

and H1y. The centers of gravity of these histograms can be expressed as:

h̃0x =
1

2P

+P∑
n=−P

h0xn (6.9)

h̃0y =
1

2P

+P∑
n=−P

h0yn (6.10)

h̃1x =
1

2P

+P∑
n=−P

h1xn (6.11)

h̃1y =
1

2P

+P∑
n=−P

h1yn (6.12)

h0n

-N +Nx-P +P

Figure 6.8 Point histogram

Afterwards H0x with H1x and H0y with H1y are correlated in x- and y-
direction:

Qx01(m) =
1

2P

+P∑
n=−P

(h0xn − h̃0x) · (h1xn−m − h̃1x) (6.13)

Qy01(m) =
1

2P

+P∑
n=−P

(h0yn − h̃0y) · (h1yn−m − h̃1y) (6.14)

This procedure is repeated for all −(N − P) ≤ m < (N − P). The maxima
mx and my can be found in these correlations.

6.2 Merging local maps 153

Then Δx = mx · δx and Δy = my · δx

=⇒ P1 = (Δx,Δy)0 (6.15)

in a coordinate system [x∗0,y∗0] centered at P0. Figure 6.9 shows the result of
these correlations.

x0

y0

x

y

y

x

0

Figure 6.9 Correlating the Pose of P0 to P1

6.2.2 Correlation of point clouds

If the operational environment of the vehicle cannot be described with a set
of line features, the above algorithm is not feasible. In this case it is often
possible to extract point features of the environment (e. g. the point cloud
of the laser scanner). [Bre04] describes a method which uses an adaption
of the icp algorithm [BM92] (see figure 6.10) and is able to compute the
transformation between two point clouds.

(a) (b) (c) (d)

Figure 6.10 The icp algorithm. After building the correspondence pairs (a) the
mse is minimized (b). The resulting transformation allows to build new (better) cor-
respondence pairs (c). The next minimization step leads to the final transformation
which matches the two point sets correctly (d).

Given two point sets, M and D with |M | = |D| that correspond (i. e.
every point mi matches with one point in di), the transformation from D

154 6 Simultaneous localization and mapping (SLAM)

to M can be determined by minimizing the mean squared distances (mse)
between these corresponding pairs:

mse =
1
|M |

|M |∑
i=1

‖mi − di‖2 (6.16)

At first, the corresponding pairs are those which have the minimal
Euclidean distance to each other. This is a search-problem (average time-
complexity is O (n logn)) that can be solved using a kd-tree. The resulting
corresponding pairs are not necessarily correct. The algorithm calculates a
rotation and translation of the point cloud D in a way that equation 6.16
is minimized. After applying this transformation to the points in D, other
pairs will be chosen as correspondence pairs. These two steps are repeated
until the mse falls below an error threshold or a fixed number of iterations
are executed.

To calculate the transformation for the minimization of equation 6.16
the following method can be applied: The correspondence of mi and di can
be expressed by

mi = Rdi + T + εi , (6.17)
with R being a rotation matrix, T being a translation vector and εi being a
noise vector.

The vector εi reflects that the point clouds will not completely match
because of sensor measurement errors. The optimal transformation (R̂,T̂)
maps D to M while minimizing the mse. Therefore, is can be written as

mse =
1
|M |

|M |∑
i=1

∥∥∥mi − R̂di − T̂
∥∥∥2

. (6.18)

The first step is to compute the rotation matrix R̂. Thus, the point sets
should have the same centroid, which can be calculated by subtracting the
center of gravity of the whole set from each point.

x =
1
|X|

|X|∑
i=1

xi xi = xi − x (6.19)

Equation 6.18 can be rewritten and reduced:

mse =
1
|M |

|M |∑
i=1

∥∥∥mi − R̂di

∥∥∥2
(6.20)

=
1
|M |

|M |∑
i=1

(
mT

i mi + d
T
i di − 2mT

i R̂di

)
(6.21)

6.2 Merging local maps 155

To minimize this equation, the last term must be maximized. This can
be done by exploiting properties of unit quaternions [Hor87] or using a svd1-
based approach [AHB87] as described in the following.

For all real n-dimensional vectors a and b the following relationship
between scalar products and traces of outer products is true:

aT b =
n∑

i=1

aibi = tr

⎛⎜⎝b1a1 · · · b1an
...

. . .
...

bna1 · · · bnan

⎞⎟⎠ = tr
(
baT

)
(6.22)

Thus, maximizing
|M |∑
i=1

mT
i R̂di means maximizing

tr

⎛⎝ |M |∑
i=1

R̂dim
T
i

⎞⎠ = tr
(
R̂H

)
, H =

|M |∑
i=1

dim
T
i (6.23)

Now, as the singular value decomposition yields

H = UΣVT (6.24)

with the orthonormal matrices U and V and a non-negative diagonal matrix
Σ, defining X = VUT leads to a symmetric positive definite matrix:

XH = VUTUΣVT (6.25)

= VUΣVT (6.26)

For positive definite matrices the Cholesky decomposition yields

XH = AAT (6.27)

and as the scalar product of two vectors has the largest positive value, if
these vectors point into the right direction for every orthonormal matrix B
it is true that:

tr
(
AAT

)
=
∑

aT
i ai ≥

∑
aT

i Bai = tr
(
BAAT

)
(6.28)

with ai being the i-th column of A. That means tr (XH) ≥ tr (BXH) is
true for every possible rotation matrix B, and as X already is the product
of two orthonormal matrices it solves the problem:

R̂ = X = V UT (6.29)

1 singular value decomposition

156 6 Simultaneous localization and mapping (SLAM)

After aligning the rotation, the optimal translation aligns the centroids
of both point sets:

T̂ = m− R̂d (6.30)

Because this algorithm tries to match each point in D with one point
in M , outliers (i. e. points that do not correspond) must be detected and
filtered before the algorithm is applied.

An example for the detection of outliers for the use of two-dimensional
laser range finders is mentioned in [Bre04]. A scan S is a set of measurements
si = (ri,αi) in the form of polar coordinates with fixed angular resolution
Δα:

S = {si = (ri,αi) | 0 ≤ i < n} ,n = 360/Δα (6.31)

The single measurements can be ordered by their angles:

αi < αk ⇔ i < k (6.32)

This allows for the use of a projection filter (see figure 6.11) to decide which
scan points are visible from both locations and which are only visible from
one location.

P P’ref neu

a)

b)

1

2

3

4

5

6

7

8

9

10

Figure 6.11 The projection filter. Only points 1–4 and 6 and are visible to P ′
new.

The others have to be purged using the proposed criteria.

This is important to reduce both scans to the possible correspondence
set. The reference scan Sref was taken from the position Pref. A second scan
that should be matched against S, was taken from the estimated position
P ′new. The projection filter checks which scan points of S are visible from
P ′new. Other points cannot be matched and have to be ignored by the icp
algorithm. This check is rather simple:

(a) Use equation 6.32 to determine points with reversed order. These are
on the faces that pointed towards Pref but point backwards for P ′new.

6.2 Merging local maps 157

(b) In case of multiple points on one straight line connecting a point of S
with P ′new, only the first point (closest distance to P ′new) can be visible.
Little deviations of this line must be taken into consideration.

An example for the application of the slam algorithm utilizing icp is
shown in figure 6.12, where an amr drives along a corridor, entering a room
with maybe a locker on the right and a table with a chair on the left. Then
it passes a second door and moves into another room.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

Figure 6.12 An example for the application of a icp-based slam algorithm

Figure 6.12 (a) shows the initial configuration of the robot (blue) and
a second configuration after some maneuvers (red). The range of the laser
scanner used is visualized by a distance circle. In this example the distance
sensor can observe 360◦. This is typically not the case. However, it allows
larger movements and makes the example more compact. As one can see,
the observation from one single pose is precise enough as mentioned in 6.1.
However, the two configurations are misaligned. The first step is to use only
those scan points located within the intersection of both distance circles.
Any other point cannot be measured from both positions. Now the projection
filter can be applied to the remaining points leaving only a few corresponding

158 6 Simultaneous localization and mapping (SLAM)

candidates which can be matched by the icp algorithm as can be seen in
(b). The resulting transformation aligns both scans, extending the map in
(c). After some more maneuvers a third scan is created in (d), reduced to
the corresponding information in (e) and aligned in (f). After adding two
additional scans the resulting map is shown in (m).

6.2.3 Loop closing

When implementing a pixel-based algorithm that registers point clouds and
merges them, it is important to not integrate them into one resulting global
map. That is because the relations between the successive measured local
pixel maps are lost, and therefore backpropagation of errors cannot be per-
formed. To overcome this problem a dense topological map is introduced. It
contains the measured pixel maps as nodes. Two nodes that are connected
to each other represent two successive measurements. The relation between
these nodes is the estimated translation and rotation as described in the
previous section.

One possible approach is the use of a circle around the position of the
map node added last. The square of the pose displacement (see section 6.1)
could be chosen as radius. If there is at least one other old node within this
circle, a loop candidate exists (see figure 6.13). The pixel map of each node
inside the circle must be compared with the pixel map of the new node. The
node which matches the new node best and has a correlation error below a
specific threshold closes a loop.

P

P

P

P

P P P P P

P

PPPPP

0

1

2

3

4 5
6

7
8

9

101112
13

14

Figure 6.13 Loop closing problem. After 14 steps, the vehicle reaches a node with
a distance circle that contains the existing node P2. It should be investigated for
closing the path.

6.3 Probabilistic methods 159

6.3 Probabilistic methods

Current popular approaches to the slam problem are based upon stochastic
observations. They take the positioning errors and noisy feature measure-
ments into account and try to extract the positions of measured features
and the robot’s pose using an uncertainty model.

At the beginning of the process, the uncertainty model delivers fuzzy
pose estimations. After each iteration a refinement of the model is performed,
which leads to a precise map in the end.

6.3.1 An uncertainty model

To apply a probabilistic slam algorithm, first an uncertainty model of the
robot’s movement is required. With the robots pose d̂i measured by odometry
and the error d̃i, the real position is di = d̂i+d̃i. Then, the uncertainty model
basically consists of the expectation μi and the variance σ2

i :

μi = E
(
d̃i

)
= E

([
di − d̂i

])
(6.33)

σ2
i = Var

(
d̃i

)
= E

([
di − d̂i

] [
di − d̂i

]T
)

(6.34)

Typically the estimated pose of the robot is within an ellipsoid, as shown
in figure 6.14.

y

x

μ

Figure 6.14 Typical uncertainty distribution for the robot position estimated by
odometry

160 6 Simultaneous localization and mapping (SLAM)

For vehicles with differential drive, the resulting distribution is as de-
picted in figure 2.20. There, a 2D ellipsoid is used for the position of the ve-
hicle in a 2D environment. At the beginning of the robot movement straight
ahead, the ellipsis is very small at the semi-minor axis because of the low
slipping. Due to the bigger rotational error the semi-major axis grows faster.
After the rotation at the corner, the ellipsis is turned as shown in figure 2.20.
It can be observed that the semi-minor axis is not aligned with the straight
forward direction of the robot movement. Depending on the drive character-
istics of the vehicle, the distribution of the estimated pose may look different.

The same observations must be applied to the sensor measurements that
detect the positions of the features. This leads to a sensor uncertainty model.
In figure 6.15 the robot measures the distances to objects in its environment.
In this example the distance sensor has a small angular error but a high
distance error. The sensor uncertainty model results in elongate ellipses as
shown in figure 6.15. The uncertainty models can be calculated using Kalman
filters that can be found in section 4.7.

Figure 6.15 Uncertain distance measurements

6.3.2 SLAM as Bayesian network

Fastslam [MTKW02] as a probabilistic approach describes a solution for the
slam problem from a Bayesian point of view (see figure 6.16). Fastslam fac-
tors the problem into the localization (i. e. the knowledge about the robot’s
path s1,s2, . . . ,st) and a collection of single landmark estimations θk that
depend on the robot’s estimated pose.

6.3 Probabilistic methods 161

Figure 6.16 The slam problem as Bayesian network. The random variables are
the position of the robot st, the control values ut, the measured landmark positions
zt and the position of the landmarks θk. The directed edges represent condition de-
pendencies. In the example the robot moves from s1 to st with a sequence of control
inputs u2, . . . ,ut. At the time t = 1 it observes landmark θ1 via the measurement
z1. At t = 2 it observes θ2 at z2 and at t = 3 θ1 again at z3. It can be seen that the
robot path depends only on the previous position and control input. (Image taken
from [MTKW02])

In terms of the probabilistic approach, the robot’s poses evolve according
to the motion model :

p (st | ut,st−1) (6.35)

st is a probabilistic function of a control ut and the previous pose st−1.
The landmarks in the environment of the robot are characterized by their
location, denoted as θk. By serializing the observation of multiple landmarks
at the same time, sensor measurements for these landmarks are underlying
the measurement model :

p (zt | st,θ,nt) (6.36)

θ is the set of all landmarks and nt is the index of the landmark observed as
zt at the time t. To simplify the following description, the correspondence
(value of nt) is assumed to be known.

Given these two models, slam can be solved by determining the location
of all landmarks and the robot poses based on measurements zt and control
inputs ut:

p
(
st,θ | zt,ut,nt

)
(6.37)

The superscript t describes a set of variables from time 1 to time t.

162 6 Simultaneous localization and mapping (SLAM)

All individual landmark estimation problems are independent if the
robot’s path st and the correspondence nt are known. So the rather diffi-
cult solution for (6.37) can be found by solving k+ 1 more simple problems:

p
(
st,θ | zt,ut,nt

)
= p

(
st | zt,ut,nt

)∏
k

p
(
θk | st,zt,ut,nt

)
(6.38)

6.3.3 The path estimator

Fastslam implements a path estimator

p
(
st | zt,ut,nt

)
(6.39)

using a particle filter that is similar to Monte Carlo Localization [TFBD01]:
At each point in time, the algorithm maintains a set St of particles rep-
resenting the posterior distribution p

(
st | zt,ut,nt

)
. Each particle st,[m] is

considered as a guess of the robot’s path, using the superscript notation [m]

to refer to the m-th particle in the set. Each particle set St is calculated
incrementally from the set St−1, a control ut and a measurement zt. This
is done by generating a temporary guess s[m]

t using the prior distribution
p
(
st | ut,s

[m]
t−1

)
. This basically means that the last guess together with the

last control command are used to deduce the new guess (a similar process
to the dead reckoning case). Assuming that St−1 was distributed accord-
ing to p

(
st−1 | zt−1,ut−1,nt−1

)
, the new set St is distributed according to

p
(
st | zt−1,ut,nt−1

)
as a proposal distribution. The new set St is then ob-

tained by sampling from the temporary guesses with a probability that is
proportional to an importance factor w[m]

t . This results in a new distribution:

p
(
st,[m] | zt,ut,nt

)
= w

[m]
t p

(
st,[m] | zt−1,ut,nt−1

)
(6.40)

In the following derivation, the conditional Bayes’ theorem with the two
events x,y and additional information e is applied

p (x | y,e) =
p (y | x,e) p (x | e)

p (y | e) (6.41)

In addition, zt = zt−1∪ zt and nt = nt−1∪nt is used to compute the weights
w

[m]
t :

6.3 Probabilistic methods 163

w
[m]
t =

p
(
st,[m] | zt,ut,nt

)
p
(
st,[m] | zt−1,ut,nt−1

) (6.42)

=
p
(
st,[m] | zt,nt,z

t−1,ut,nt−1
)

p
(
st,[m] | zt−1,ut,nt−1

)
Bayes
=

p(zt,nt|st,[m],zt−1,ut,nt−1)
p(zt,nt|zt−1,ut,nt−1)

p
(
st,[m] | zt−1,ut,nt−1

)
p
(
st,[m] | zt−1,ut,nt−1

)
=

p
(
zt,nt | st,[m],zt−1,ut,nt−1

)
p (zt,nt | zt−1,ut,nt−1)

∝ p
(
zt,nt | st,[m],zt−1,ut,nt−1

)
Total prob.

=
∫

p
(
zt,nt | θ,st,[m],zt−1,ut,nt−1

)
p
(
θ | st,[m],zt−1,ut,nt−1

)
dθ

Markov=
∫
p
(
zt,nt | θ,st,[m]

)
p
(
θ | st−1,[m],zt−1,ut−1,nt−1

)
dθ

=
∫

p
(
zt | θ,st,[m],nt

)
p
(
nt | θ,st,[m]

)
p
(
θ | st−1,[m],zt−1,ut−1,nt−1

)
dθ

∝
∫
p
(
zt | θ,st,[m],nt

)
p
(
θ | st−1,[m],zt−1,ut−1,nt−1

)
dθ

=
∫
p
(
zt | θ[m]

nt
,st,[m],nt

)
p
(
θ[m]
nt

)
dθ[m]

nt

The last step assumes p
(
nt | θ,s[m]

t

)
being uniform and the landmark es-

timation relying on a Gaussian posterior p
(
θ
[m]
nt

)
, specified by the mean

μ
[m]
nt and covariance Σ[m]

nt of the estimated position of θnt . Now (6.42) can be
solved in closed form.

6.3.4 The landmark estimators

The landmark estimators

p
(
θk | st,zt,ut,nt

)
(6.43)

as the remaining part of equation 6.38 are implemented via Kalman filters.
These estimators are conditioned on the robot pose, so each particle in St is
extended by its own set of Kalman filters for the landmark estimators.

164 6 Simultaneous localization and mapping (SLAM)

Path θ1 θ2 θk

1st Particle st μ1,Σ1 μ2,Σ2 · · · μk,Σk

2nd Particle st μ1,Σ1 μ2,Σ2 · · · μk,Σk

...

mth Particle st μ1,Σ1 μ2,Σ2 · · · μk,Σk

Assume nt = k. This means that the landmark θk is visible at time t
and the estimation of θ[m]

k can easily be obtained:

p
(
θk | st,zt,ut,nt

)
= p

(
θk | zt,st,zt−1,ut,nt

)
(6.44)

Bayes
=

p
(
zt | θk,s

t,zt−1,ut,nt
)
p
(
θk | st,zt−1,ut,nt

)
p (zt | st,zt−1,ut,nt)

∝ p
(
zt | θk,s

t,zt−1,ut,nt
)
p
(
θk | st,zt−1,ut,nt

)
Markov= p (zt | θk,st,ut,nt) p

(
θk | st−1,zt−1,ut−1,nt−1

)
For nt �= k, meaning landmark θk is not visible at time t, the distribution is
not changed.

p
(
θk | st,zt,ut,nt

)
= p

(
θk | st−1,zt−1,ut−1,nt−1

)
(6.45)

The updated equation (6.44) can be implemented using an extended
Kalman filter, resulting in O (MK) computations for M particles and K
landmarks per step t.

6.3.5 Numeric computation of FastSLAM

The following example with one landmark at position θ1 = (28,24) is com-
puted using a matlab implementation of Tim Bailey.2 The vehicle starts
its exploration in (0,0,0) (position and orientation) and after the first move-
ment it reaches (0.67,0.03,0.00). As long as no landmark is measured, only
the prediction step of the path estimator is evaluated to get one estimated
position for each particle, as shown in table 6.1. As this example uses five
particles, each has a weight of 0.2.

This way the particles integrate their position from odometry according
to the underlying uncertainty model, until the first landmark θ1 is measured
at t = 1 with z1 = (29.34,0.38) (distance and angle). The true pose of the
vehicle is (7.45,2.96,0.38) and as up to this point no old landmark-estimations
exist, no path-correction is performed. The new landmark estimation for each
particle is the sum of the measurement and the estimated position:
2 The slam package of T. Bailey is available at http://www.openslam.org

6.3 Probabilistic methods 165

μ
[1]
1 =

⎡⎣s[1]
1,1 + z1,1 cos

(
s
[1]
1,3 + z1,2

)
s
[1]
1,2 + z1,1 sin

(
s
[1]
1,3 + z1,2

)⎤⎦ (6.46)

=
[
7.54 + 29.34 · cos (0.37 + 0.38)
2.94 + 29.34 · sin (0.37 + 0.38)

]
=
[
28.93
23.03

]

Table 6.1 Particle states at t = 0

[m] 1 2 3 4 5
w

[m]
0 0.2 0.2 0.2 0.2 0.2

s
[m]
0

⎡⎣0.67
0.01
0.00

⎤⎦ ⎡⎣0.68
0.04
0.01

⎤⎦ ⎡⎣0.65
0.05
0.01

⎤⎦ ⎡⎣0.67
0.04
0.01

⎤⎦ ⎡⎣0.68
0.01
0.00

⎤⎦
In addition, the covariance of this landmark must be initialized. There-

fore, the expected observation noise of the sensor, which consists of the
average distance error σ1 = 0.1 meters and average angular error σ2 = π

180
radians (1◦) must be known.

R =
[
σ2

1 0
0 σ2

2

]
Together with the observation matrix

G =

⎡⎣cos
(
s
[1]
1,3 + z1,2

)
−z1,1 sin

(
s
[1]
1,3 + z1,2

)
sin

(
s
[1]
1,3 + z1,2

)
z1,1 cos

(
s
[1]
1,3 + z1,2

) ⎤⎦
the covariance can be derived as

Σ1,[1] = GRGT (6.47)

=
[

0.13 −0.13
−0.13 0.14

]
The remaining particles can be computed analog (see table 6.2 and fig-
ure 6.17).

At t = 2 the same landmark θ1 is measured again with z2 = (28.66,0.39),
but this time it is already known and the first update step can be executed.
Therefore, the weights must be adjusted. The true pose of the vehicle is
(8.05,3.26,0.39). Together with the predicted pose in every particle, this can
be used to predict the observation of θ1 in this step for each particle:

166 6 Simultaneous localization and mapping (SLAM)

d[m] =

[
μ

[m]
1,1 − s[m]

2,1

μ
[m]
1,2 − s[m]

2,2

]
(6.48)

z
[m]′
2 =

(∣∣∣d[m]
∣∣∣ ,atan2

(
d

[m]
2 ,d

[m]
1

)
− s[m]

2,3

)
(6.49)

Table 6.2 Particle states at t = 1

[m] 1 2 3 4 5
w

[m]
1 0.2 0.2 0.2 0.2 0.2

s
[m]
1

⎡⎣7.54
2.94
0.37

⎤⎦ ⎡⎣7.56
2.83
0.36

⎤⎦ ⎡⎣7.56
2.93
0.37

⎤⎦ ⎡⎣7.57
2.91
0.36

⎤⎦ ⎡⎣7.64
2.73
0.34

⎤⎦
μ

[m]
1

[
28.93
23.03

] [
29.24
22.59

] [
28.99
22.98

] [
29.20
22.72

] [
29.60
22.19

]
Σ[m]

1

[
0.13 −0.13
−0.13 0.14

] [
0.12 −0.13
−0.13 0.15

] [
0.13 −0.13
−0.13 0.14

] [
0.13 −0.13
−0.13 0.15

] [
0.12 −0.13
−0.13 0.15

]

estimated landmark

true landmark

vehicle

Figure 6.17 The first measurement of the landmark is observed. A model of the
landmark is added to each particle.

To solve (6.42), the Jacobian matrices with respect to the vehicle state
and the landmark state are needed:

H
[m]
vehicle =

⎡⎢⎣− d
[m]
1

|d[m]| − d
[m]
2

|d[m]| 0

d
[m]
2

|d[m]|
2

− d
[m]
1

|d[m]|
2

−1

⎤⎥⎦ (6.50)

H
[m]
landmarks =

⎡⎢⎣ d
[m]
1

|d[m]|
d
[m]
2

|d[m]|
− d

[m]
2

|d[m]|
2

d
[m]
1

|d[m]|
2

⎤⎥⎦ (6.51)

6.3 Probabilistic methods 167

Using these, the covariance matrix can be predicted, too.

Σ[m]′
2 = H

[m]
landmarks ∗ Σ[m]

1 ∗H [m]T

landmarks +R (6.52)

Knowing the error with respect to the observation ε[m] = z2 − z[m]′
2 the

weights w[m1]
2 can be computed:

w
[m1]
2 =

e−
ε[m]T Σ

[m]′−1

2 ε[m]

2

2π
√∣∣∣Σ[m]′

2

∣∣∣ (6.53)

The resulting weights are (28.51,32.63,33.15,24.86,31.2) and must be nor-
malized to sum up to one as can be seen in table 6.3.

The landmark estimations can be updated using a Kalman Filter with
the prior state μ[m]

1 ,Σ[m]
1 , the innovation ε[m],R, and the linearized observa-

tion model H [m]
landmarks applying Cholesky factorization.

At last, the resampling is done which does not change anything in this
step due to the still relative equal weights. They are all larger than 3

4 of the
average weight, which is chosen as limit to be kept.

The resulting values can be seen in table 6.3 and figure 6.18.

estimated landmark

true landmark

vehicle

Figure 6.18 The next measurement can be used to weigh the particles and reduce
the variance in the model of the landmark position.

At t = 5 of this example, the resampling part changes. Here, the weights
are (3.89,6.13,13.97,3.91,13.18) with an average of 8.22. So three of the par-
ticles are weighted below 3

4 of the average weight and are resampled from
the better ones. With five particles and the remaining weights it is easy to
see that the third particle will be copied twice and the fifth particle once to
fill the gaps. After this the weights are reset. The true position of the vehicle
is (9.86,4.18,0.42) and the result is shown in table 6.4 and figure 6.19.

168 6 Simultaneous localization and mapping (SLAM)

Table 6.3 Particle states at t = 2

[m] 1 2 3 4 5
w

[m]
2 0.19 0.22 0.22 0.17 0.21

s
[m]
2

⎡⎣8.22
3.30
0.39

⎤⎦ ⎡⎣8.22
3.17
0.37

⎤⎦ ⎡⎣8.21
3.27
0.39

⎤⎦ ⎡⎣8.22
3.27
0.38

⎤⎦ ⎡⎣8.29
3.06
0.36

⎤⎦
μ

[m]
2

[
28.73
23.28

] [
29.07
22.81

] [
28.81
23.18

] [
28.96
23.02

] [
29.4
22.43

]
Σ[m]

2

[
0.06 −0.06
−0.06 0.07

] [
0.06 −0.06
−0.06 0.07

] [
0.06 −0.06
−0.06 0.07

] [
0.06 −0.06
−0.06 0.07

] [
0.06 −0.06
−0.06 0.07

]

Table 6.4 Particle states at t = 5

[m] 1 2 3 4 5
w

[m]
5 0.2 0.2 0.2 0.2 0.2

s
[m]
5

⎡⎣9.96
4.11
0.41

⎤⎦ ⎡⎣9.96
4.11
0.41

⎤⎦ ⎡⎣9.96
4.11
0.41

⎤⎦ ⎡⎣10.08
3.83
0.38

⎤⎦ ⎡⎣10.08
3.83
0.38

⎤⎦
μ

[m]
5

[
28.54
23.52

] [
28.54
23.52

] [
28.54
23.52

] [
29.2
22.71

] [
29.2
22.71

]
Σ[m]

5

[
0.02 −0.02
−0.02 0.03

] [
0.02 −0.02
−0.02 0.03

] [
0.02 −0.02
−0.02 0.03

] [
0.02 −0.02
−0.02 0.03

] [
0.02 −0.02
−0.02 0.03

]

estimated landmark

true landmark

vehicle

Figure 6.19 Resampling removed the worst particles and copied the better ones.

After some more steps the relation between the landmark and the esti-
mated vehicle are stabilized, even if they differ from the true positions. The
map and the vehicle’s pose within the map are consistent (figure 6.20).

6.4 Exploration of the environment 169

true landmark

estimated landmark

estimated vehicle pose

true vehicle pose

true landmark

estimated landmark

estimated vehicle pose

true vehicle pose

Figure 6.20 The algorithm created a consistent map.

6.4 Exploration of the environment

Task: The vehicle wakes up in an unknown environment, thus it has to
explore. Method: Take crude scans of the environment, combining readings
from ultrasound and laser distance sensors with an angular resolution of e. g.
δϕ = 6◦ as shown in figure 6.21.

x0

y0

P0

yk

xk

Pk

k

rn

x1n

y1n

y2n

x2n

n.

CSM element

Figure 6.21 csm element

These elements form the current sensor map (csm) from the momentary
position of the vehicle.

• Set a counter to i = 0

• Take a csm. Label the current position Pi. Let there be possible passages
at the perimeter of the scan. They are broad enough to let the vehicle
pass through.

170 6 Simultaneous localization and mapping (SLAM)

• Name the middle of these passages points of interest (poi) as shown
in figure 6.22. Pack still unnamed pois except one on a stack and set
i := i+ 1. Drive towards the middle of this one passage, label it Pi and
take a new current sensor map from this point. Both csms will overlap
and may be fused. From the current position Pi there is at least one
way back to P0.

2 m

Pk Pk-1POI

POI
Rv

(xi,yi)

i

 points of interest, POI

Figure 6.22 Points of Interest (poi)

• if in the csm there is no unknown passage detected, take a poi from the
stack and drive to it. Take a new csm and set i := i+ 1.

• when the stack is empty, the exploration is complete.

While driving through the environment, a representation in form of a
graph consisting of pois as nodes and driven ways as edges is built. Seeing
a known poi Pj from the current point Pi, form an edge between both pois
instead of packing it onto the stack. This defines alternative paths through
the environment.

6.4 Exploration of the environment 171

There are two weak points in this algorithm:

• The vehicle must be able to detect the second floor in a park deck: it
finds itself at exactly the same location but one floor upwards. Though
the position is the same, the environment looks completely different.
To circumvent this problem, the signal of an inclinometer must be in-
tegrated to show the height reached. The integrated error of the incli-
nometer signal must not be larger than ±1m to decide wether the ve-
hicle is still at the same level or one floor up/downwards. This problem
increases for a vehicle running through a 3-dimensional sewage system.

• the odometry must be precise enough to detect the beginning of a large
circular way as one already visited. This is difficult if the vehicle comes
to the same location but from the other side. This is a general problem
of map building that plagued the explorers of former times more than
once. A possible solution is described in the next section.

The figures 6.23 and 6.24 show an experimental environment and a run
through a large university building.

test environment
 = 6°

Figure 6.23 Test environment with csms

172 6 Simultaneous localization and mapping (SLAM)

University of Kaiserslautern

- hallways in building 48/4 -

10 m

Figure 6.24 Experiment with csms in a test environment

7 Navigation

The aim of navigation is to drive the vehicle through its environment. This
task splits into three different subtasks: The global path planning deals with
finding a suitable path from a starting point to a goal point using a given rep-
resentation of the environment. The local path planning defines path points
taking into account the vehicle dimensions and kinematic constraints. Path
control describes the task of generating suitable steering commands for fol-
lowing a precomputed path represented by reference points.

The following sections give more detailed information on these three
subtasks and introduce typical application scenarios.

7.1 Global path planning

The aim of global path planning is to describe a path through the environ-
ment from a starting point S to a goal point Z, fulfilling some side conditions.
One is to find the path with the lowest costs. This can depend on the length
of the way, energy consumption for travelling, required time or a balanced
mixture of that. Another condition can be that a path must be found to
cover all free space, e. g. for cleaning vehicles.

The complete path is described by a set of points connecting subgoals.
Often these points are nodes in a topological graph (i. e. in road maps: drive
from A to B) with the details to be planned later on a geometric map.

The following sections describe three different scenarios. The first one is
to plan a path minimizing the “costs” of the journey. The algorithm is the
A*-algorithm, operating on a topological graph. The second one is solving a
maze: you have a goal; find a path that ends at this goal. The third one is
the task of finding back to the entrance of a maze.

7.1.1 A*-algorithm

Take an interconnected topological graph with nodes K1, . . . ,Kn and edges
sij between nodes Ki and Kj . The edges are annotated with “prizes” pij

which may be costs for a ticket, path lengths, number of narrow curves etc.
The aim is to find the cheapest connection from a start node S to a goal

174 7 Navigation

node Z. Let an optimistic guess be annotated to each node Ki: the prize hi

to be payed for the direct route from Ki −→ Z. At Z the prize is h = 0. The
total costs of a path (S,Ki,Kj , . . . ,Kq,Kr) are g = (psi + pij + · · ·+ pqr)+hr

as sketched in figure 7.1. In 1968 Nilson [HN68] found the A*-algorithm to
solve this task.

S

KrKq

Kj
Ki Z

psi pij

pqr hr

Figure 7.1 Costs of a path in a topological graph with annotated edges

Let Wr be the cheapest path from the starting point S to the goal Z up
to node Kr. Let node Kq be the last node visited. Directly connected with
node Kr apart from node Kq are nodes Ks1, . . . ,Ksn with costs gs1, . . . ,gsn.
Let the path via Kv be the cheapest one. Kv need not be one of the nodes
Ks1, . . . ,Ksn, but may be the end point of another path already checked.
Then develop node Kv further on. Memorize all paths and their costs which
were already checked. Once h = 0 then the goal Z has been reached and a
cost minimal path found.

start point

goal point
0

32

4747

30
32

46

82

68

2725

60

32

75

84 45

42
37

30

1
2

3

6

5

4

7

Figure 7.2 Exemplified graph used as an example for the A*-algorithm

In order to exemplify the algorithm, figure 7.2 shows an example of a
topological graph. At each node the optimistic costs to the goal – in this case
direct distance – are given and the prize pqr at each edge – in this case the

7.1 Global path planning 175

distance between the nodes. Figure 7.3 shows the steps in the development
of the A*-algorithm. Notice the switching from one path to the next, once
the costs of the former get higher: (S,2,3) to (S,1) and (S,1,4) to (S,2,3).

Figure 7.3 Development of A*-algorithm for the example given in figure 7.2

The implementation may describe the graph as an adjacency list with
additional information regarding the prizes and an optimistic guess of the
costs to reach the goal. Figure 7.4 shows this list for the example graph.

Aside from the adjacency list, a leaf list is formed as shown in figure 7.5,
denoting the paths already checked. On this leaf list the algorithm develops:
Pointers go from the momentary end node to the start node. Once h = 0,
an optimal path has been found and the pointers in this list are reversed to
point from the start to the goal. Figure 7.5 and figure 7.6 show the different
steps in developing the solution.

176 7 Navigation

S

1

2

Z

1
32
75

2
25
60

4
30

S
32

8482

3

4

5

6

7

3
27

S
25

6882

6
37

2
27

3260

5
45

1
30

4275

7
30

4
45

4784

Z
47

5
30

042

7
47

6
32

4732

6
46
32

3
37

5
46

6842

Z
32
0

s
h

Figure 7.4 Adjacency list for the example graph given in figure 7.2

7.1 Global path planning 177

g

S S

2

10785 g

S

S

1

2

107 120

3

g

S S

2

146120

41 3

1

leaf_ lists ordered to costs

Figure 7.5 Leaf list 1

g

S

S

1

2

146121

3

46

g

S

S

1

2

3

4

6

S

2

121

3

6

176

7Z

146

Figure 7.6 Development of the algorithm

178 7 Navigation

7.1.2 Solving a maze

The classical algorithm to solve a maze is the string of Ariadne to find a
path to a hidden goal somewhere in a (3-dimensional) maze and back home
again without a map of the maze. The princess Ariadne of Crete offered a roll
of string to Theseus when he set out to find the Minotaur sitting somewhere
in a huge maze. Given a large ball of string and the ability to

• follow a wall

• turn back

• recognize junctions

• recognize the goal

• lay out a string and take it up again

• recognize a string on the ground

• follow a string to the next junction

the problem can be solved according to algorithm 7.1.

1 2 3 4

Figure 7.7 Using a String to Solve a Maze

For practical purposes, this algorithm is not very useful. But based on
this general scheme a very useful one is shown as follows.

7.1.3 Back tracking algorithm

Let the maze be represented by a topological graph as shown in figure 7.8,
described by an adjacency list as figure 7.9 shows.

Each node in the list gets a pointer to the adjacent nodes Kj , . . . ,Km

and as additional information the length wij of the edge connecting nodes Ki

and Kj and a marker mij ∈ [nil,free,occupied,visited]. Then the back
tracking runs as described in algorithm 7.2.

7.1 Global path planning 179

Algorithm 7.1 String of Ariadne
(�)
if the goal has been recognized then

turn; roll up the string again; follow the string up to the entrance
else
{– the goal has not been recognized yet – }
drive and lay out the string behind you until you reach a junction.
At a junction check the exits
if there is an exit to the right then

if there is no string at this exit then
follow this exit and go on at (�) {– figure 7.7 (1) – }

else if you find a string there already then
look for the first free exit to the left {– figure 7.7 (2) – }
follow this exit and go on at (�)

else
{you do not find an exit without a string}
turn back; follow the string to the next junction {– figure 7.7 (3)
and (4) – }
go on at (�)

end if
end if

end if

Ks

Kz

Ki

Kk
wik

Figure 7.8 A maze as a topological graph

Ki Kj
wij
mij

Km
wim

mim

sij sim

Figure 7.9 The adjacency list for the maze

180 7 Navigation

Algorithm 7.2 Back tracking algorithm
initialization: i := a;W := 0;mik =nil
for all edges do

(�)
if Ki = KZ then
{– goal found – }
w = path length to goal �

else
in node Ki look at all n edges sij , . . . ,sim beginning at Ki;
{– Ki itself was reached from node Kh – }
if mij = nil then
{– it was the first visit at Ki – };
mij := visited
if there are edges going out from Ki marked nil then

mark them as free;take an edge sik;
mark it mik := visited and drive to node Kk;
w := w + wik; i := k; go to (�)

else
{– a leaf of the graph was detected – }
mij := occupied marked as a dead end;
go back to node Kj ; w := w − wij ; i := k; go to (�)

end if
else if mij = free then
{– a node is unexpectedly visited again – }
mij := occupied {– it is a dead end – };
drive back to Kj ; w := w − wij ; i := j: go to (�)

else if mij = visited then
{– draw back from a dead end – }
mij := occupied

else if there is an edge sik marked free then
mik := visited; drive to node Kk;
w := w + wik; i := k; go to (�)

else
{– all edges up to sir are marked occupied – }
mir := occupied; drive back to Kr;
w := w − wir; i := r; go to (�);

end if
end if

end for

7.2 Local path planning 181

7.2 Local path planning

Depending on the task specification and the representation of the environ-
ment the local path planning defines how a vehicle can traverse a given
environment. The following sections present different aspects in this field:

Local path planning can be done on different representations of the en-
vironment,

• Geometric maps: either with large free room available, or with narrow
passages

• Raster maps: by flooding the raster or using quadtree representations
in a one or two step planning

Then there are different goals of planned paths:

• Area covering paths on polygon maps driving along a wall

• Exploration of the environment: every part of the environment should
be inspected at least once

Another more fundamental aspect is obstacle avoidance with movements to
surround an obstacle using

• a wandering standpoint algorithm or

• a potential field method.

There are some basic abilities a vehicle should have:

• Driving an s-curve

• Forward and backward docking

• Path planning under geometric restrictions imposed by the vehicle itself

• Calculating velocity and turning rates

Finally a little bit beyond the scope of this chapter is looking for a stable
equilibrium of a planned path: small deviations should not lead to completely
different paths.

7.2.1 Path planning on geometric maps

The task of path planning on geometric maps is to define path points on
a way from start to goal as paths which are suitable for a vehicle. As the
dimensions of the vehicle and its kinematic restrictions begin to play a role,
they must be taken into account.

182 7 Navigation

Large free space

Let us assume that the free space is large compared to the dimensions of
the vehicle. Let further the distance to an obstacle be not smaller than dmin

and dmin >> vehicle dimensions. Then planning a path around an obstacle
is shown in figure 7.10.

Figure 7.10 Path planning around an obstacle

At the most prominent part of the obstacle, a circle with r = dmin is
drawn. Go towards the goal as far as possible: a tangential line from there
to the circle does not come closer to the obstacle than dmin. This is a first
path point. Let the same be true for the tangential line from the goal. Then
a second path point is the crossing point of both tangents. Between path
points, the vehicle can drive straight on. Due to the fact that the vehicle
has to change its direction at the path points, the “point” really is a curved
path, dictated by the velocity of the vehicle and its kinematic restrictions as
the inset in figure 7.10 shows. Under the assumption of large free space, this
is no problem.

Driving around the obstacles is realized as shown in algorithm 7.3 and
sketched in figure 7.11 which is an extension of figure 7.10.

P0

S

Z

P1

P2

Figure 7.11 Iterative path planning around complex obstacles

7.2 Local path planning 183

Algorithm 7.3 Driving around an obstacle
check the line between start and end point B = S and E = Z
(∗∗)
if the line cuts through an obstacle then

look for points farthest away from the line
take the side with the point of smallest distance to the line
as shown in figure 7.11;
Draw a circle with r = dmin around this point;
(∗)
Draw the tangents to this circle from B and E. They will meet at point
M = P0.
check the lines B −M and M − E for obstacles going to (∗∗);

else
if if there is no obstacle on the way then

look for the point of minimal distance to the line
draw a circle with r = dmin around this point
if the circle cuts the line then

go to (∗)
end if

end if
end if

Finding path points according to Schweikard [SW95] Originally
Schweikard planned paths for a robot arm reaching around obstacles. This
may be extended for the movement of a vehicle around obstacles. Path points
need to be found which allow a path of width 2h to pass around all obstacle.
The algorithm runs as given in algorithm 7.4. Figure 7.12 shows the algo-
rithm handling a convex obstacle, figure 7.13 a concave obstacle. Here the
distance update δ is larger than the circles radius d.

The algorithm finds a path from a starting point S to a goal G.
Figure 7.14 shows two obstacles with different possible paths running

from starting point S to goal G.

Grow obstacles according to Lozano-Perez [LP79] Let the vehicle
be round with its radius r < dmin or it may be treated as a point if dmin is
very large compared to the vehicle dimensions. In both cases the obstacles
may be enlarged by dmin. Then the calculation looks for path points only
and any calculations of tangents and minimal distances may be skipped as
shown in figure 7.15

184 7 Navigation

Algorithm 7.4 Path points according to [SW95]
P := S;Q := G
if the line P → Q cuts an obstacle then
{as shown in figure 7.12}
form a line through the cutting point at right angles
if the line goes into free room then

place a path point P ′ at distance d there;
check (P → P ′) and (P ′ → Q) wether they cut an obstacle

else
{the line cuts through the obstacle for a distance δ going into free
room again}
place a path point P ′′ at distance δ + d into free room;
check (P → P ′′) and (P ′′ → Q) wether they cut an obstacle

end if
else
{(P → Q) does not cut an obstacle}
check a path of width 2h between P and Q;
if the side lines do not cut an obstacle then

(P → Q) is an established path;
check for the next part of the path;

else
{one of the side lines of the path cuts through an obstacle}
form a line at right angles through the cutting point;
place a path point P ′ at a distance h into the free room;
check the paths (P → P ′),(P ′ → Q) if they cut an obstacle

end if
end if

convex obstacle

2h

d

d

d
P

Q

Figure 7.12 Path points around a convex obstacle

7.2 Local path planning 185

d

d

P Q

P´

P´´

d

d

Figure 7.13 Planning path points around a concave obstacle

S

G

d

d

2h
P

H

Q

d
d

Figure 7.14 Determination of path points according to [SW95]

S

Z

P0
P1

Figure 7.15 Grown obstacles

186 7 Navigation

Narrow free room

In case of a narrow free room the vehicle has to move between nearby ob-
stacles like a boat on a small river. The best thing to do is to move in the
middle of the free room. The distances between opposite shores are still large
compared to the vehicle dimensions. Let the map be given as a polygon map.
The result of path planning is a set of path points as shown in figure 7.16.
The search for path points follows this algorithm:

• look for convex obstacle points

• build the normal through this point towards the free space

• take into account only normals with foot points at the other shore

• the mid points of these normals are the path points wanted

?

?

Figure 7.16 Narrow river path points

Finding a path point Let (R,P) and (P,S) be polygon lines on one shore,
(P1,P2) be a polygon line at the other shore according to figure 7.17. Let the
angle (S,P,R) = γ < 180◦ then P is a convex point. Let Q be the footpoint
of the normal on (P1,P2) through P . Then

tanϕ =
y2 − y1

x2 − x1

d = (y2 − y1 + tanϕ · (x− x1)) cosϕ
xq = x+ d sinϕ
yq = y − d cosϕ

(7.1)

If (x1 ≤ xq ≤ x2) ∧ (y1 ≤ yq ≤ y2) then there is a path point K with
kx = x+ (xq − x)/2 and ky = y + (yq − y)/2, else look for a new line.

7.2 Local path planning 187

dP

P1
P2

Q

x

y

x1 xq x2

y1
yq
y2

R
S

K

Figure 7.17 Finding a path point at a narrow

Mid point between smooth shores Let the map be given as continuous
curves f1(x) and f2(x), e. g. splines through path points. The mid points
between the shores may be found by literally pressing a balloon through
the narrows: its mid point defines the curve with maximal distance to the
shores as sketched in figure 7.18. Let P be a convex point on f1(x) defined by
(d2f1(x))/(dx2) < 0. Form the normal at P : y = mx+b with m = −1/f ′1(xp)
and b = yp −mxp. Form the normal from a point Q from f2(x) cutting the
normal on P at M . Vary Q until rp = |M,P | = rq = |M,Q|. Then M
is the mid point of the touching circle and one of the points wanted. The
algorithm 7.5 runs as shown in figure 7.19.

P

Q

rp
rq

f1(x)

f2(x)

M

curvature circle at P
inside obstacle

Figure 7.18 Path points as mid points of balloons

188 7 Navigation

r0
M

rq

Q

r1

r2

r3

P

Figure 7.19 Finding the radius of the touching circle

Algorithm 7.5 Finding the radius of the balloon
r := r0; Δr = r0;
(∗)
form a circle with r cutting P with its center on
line orthogonal to tangent in P ;
if the circle cuts f2(x) then

if the distance of the cutting points is < ε then
rq := r; M is a path point

else
Δr := Δr/2; r := r −Δr; go to (∗)

end if
else
r := r + Δr; go to (∗)

end if

Elastic bands The elastic band method introduced by [QK93] is used to
adapt a planned path online according to the robot motion and dynamic
obstacles. The band consists of n bubbles bi, i = 1, . . . ,n, representing the
free space along the path where the robot can move. An example based on
a gridmap representation of obstacles is shown in figure 7.20.

In the following, the main idea and algorithmic procedure are intro-
duced according to [PS03]. Each bubble is defined by its center −→c bi, radius
rbi and obstacle masking distance Dmi. The bubbles are spread along the
path to guarantee an overlapping according to the robot dimensions (see al-
gorithm 7.6). Thus, the area covered by the bubbles mark the collision-free
motion space of the robot.

7.2 Local path planning 189

Figure 7.20 Elastic band along path representing free space between obstacles

Li =
i∑

j=1

‖−→c bj−1 −−→c bj‖ (7.2)

The masking distance Dmi is related to the position Li of the bubble along
the path according to equation 7.2. It specifies the range around each bubble
center in which obstacles are ignored (see equation 7.3).

Dmi = Dm, max ·

⎧⎪⎪⎨⎪⎪⎩
0 if Li ≤ Lmin

1 if Li ≥ Lmax

Li − Lmin

Lmax − Lmin
otherwise

(7.3)

The parameters Lmin and Lmax represent the stretching limits of Dmi (ac-
cumulated path lengths). Dm, max is the maximum range at which obstacles
are neglected. Suitable parameter values are listed in figure 7.21.

Obstacles are represented by the center points −→p j = (xpj ,ypj) of the grid
cells. Each bubble is related to a set of masked obstacles {−→p m,ij} according
to equation 7.4.

{−→p m,ij} = {−→p j : ‖−→c bi −−→p ‖ > Dmi} (7.4)

The obstacle −→p ∗i closest to bi is the critical one (see equation 7.5).

−→p ∗i = arg(min−→p ∈{−→p m,ij}
‖−→c bi −−→p ‖) (7.5)

It defines the bubble radius rbi (space guaranteed to be free) according to
equation 7.6.

rbi = min−→p ∈{−→p m,ij}
‖−→c bi −−→p ‖ (7.6)

190 7 Navigation

parameter value
Lmin 2000 mm
Lmax 8000 mm
Dm, max 0.0 mm
rlim 1600.0 mm
αint 10.0
αext 10.0
ε 50.0 mm
to compare:
robot radius 400.0 mm

Figure 7.21 Parameters and exemplary values used for elastic band algorithm

Based on these relationships, the bubbles are completely defined. The first
step of the elastic band method is to translate a given path into a minimal set
of bubbles covering the free space, corresponding to the robot dimensions.
The next step is to adapt these bubbles in size and position while the robot
is moving along the path. For that purpose, the first bubble follows the robot
and the last one is stuck fixed at the goal. All other bubbles move iteratively
due to the influence of two forces

−→
f int and

−→
f ext on their center −→c bi. This

shift from time t to t+ 1 is given in equation 7.7.
−→c bi,t+1 = −→c bi,t + Δ−→c bi with
Δ−→c bi = αtot,i ·

(−→
f int,i,i−1 +

−→
f int,i,i+1 +

−→
f ext,i

)
and

αtot,i =

⎧⎨⎩1 if rbi > rlim
rbi
rlim

otherwise

(7.7)

The internal force
−→
f int,ij determines the strength of cohesion between ad-

jacent bubbles i,j (see equation 7.8).

−→
f int,ij = αint ·

⎧⎨⎩
0 if ‖−→c bi −−→c bj‖ ≤ ε−→c bj −−→c bi

‖−→c bi −−→c bj‖ otherwise
(7.8)

The external force
−→
f ext,i represents a repulsion of bubble i from its critical

obstacle −→p ∗i (see equation 7.9).

−→
f ext,i = αext ·

⎧⎨⎩0 if rbi ≤ ε or rbi ≥ rlim
rlim − rbi

rbi
(−→c bi −−→p ∗i) otherwise

(7.9)

7.2 Local path planning 191

The parameter rlim specifies the distance limit at which the elastic band
is influenced by obstacles, αint and αext are force weighting factors, αtot,i

creates a proportional relation between bubble size and agility and ε avoids
division by zero. Figure 7.21 lists all parameters introduced so far and their
values used during tests with mobile robot marvin (see figure 7.20).

Based on equations 7.7 to 7.9, the bubble centers are iteratively moved at
each cyclic calculation step. Their respective radii are calculated according to
equation 7.6, taking possible dynamic obstacles into account. Whenever the
robot-fixed bubble is approximately coincident with its neighbor, it is deleted
and replaced by this one. Consequently the band represents a dynamically
smoothed version of the path around obstacles from the robot to the goal
position. Its changing thickness marks narrow passages and free areas where
the robot can move faster.

The whole procedure stops when the robot has reached the goal of the
path (last bubble). Algorithm 7.6 summarizes the different calculation steps.

Algorithm 7.6 Elastic band algorithm
{Given:}
1. grid map with obstacles as center of occupied cells −→p j = (xpj ,ypj)
2. path represented by center of visited grid cells

{– preparation – }
calculate minimal set of n bubbles bi with center −→c bi, radius rbi
- −→c b1 = robot pose
- −→c bn = goal pose
- ‖−→c bi+1 −−→c bi‖ according to robot dimension
- rbi according to equation 7.6

{– online update (robot moving along path)– }
while robot is not at goal do

update grid map (dynamic obstacles)
remove b1 if ‖b2 − b1‖ too small
for every remaining bubble do

determine critical obstacle −→p ∗i
calculate rbi according to equation 7.6
calculate external and internal forces
apply shift to bubble center (cf. equation 7.7)

end for
end while

192 7 Navigation

One remaining problem is what to do if some bubbles shrink below
robot dimensions. In this case, there is not enough free space for the robot
to follow the path. When this situation is stable for a certain amount of
time, a replanning has to be triggered to take new obstacles into account. Of
course, the planning should not be started immediately when it gets invalid
as obstacles might vanish before the robot is getting close to them (e. g. a
person crossing the path). The new plan is then given as input for a new run
of the elastic band algorithm.

Generalized cones Following Brooks [Bro82] in a map built from poly-
gons a path with maximum distance to obstacles may be found using gener-
alized cones as shown in figure 7.22. Look into the free space; find half angle
lines between opposite shores, they define points of equal distance to either
shore. Let P be a convex point. The normal to the other shore hitting P
defines a narrow in the free room. Let the angle between the counter shore
and the line through P be < 90◦ as shown in the left part of the drawing.
Draw a parallel line to the counter shore through P . The parallel line at half
the distance of the narrow hits the half angle line at a way point. In the
right part of the drawing, the situation with an angle > 90◦ is shown: take
the other half angle line: it cuts the normal to the counter shore through P
forming a way point for this type of narrow in the path.

 half
 angle
 line

narrow

parallel
P

 half
 angle
 line

narrow

P

angle < 90° angle > 90°

 half
angle
 line

Figure 7.22 Generalized cones

Half angle line Following figure 7.23 let the shores be defined by lines
(P1,Q1) and (P2,Q2).

A line through P1 an Q1 is given by

y =
yq1 − yp1

xq1 − xp1
(x− xp1) + yp1 (7.10)

y = α1(x− xp1) + yp1 (7.11)

7.2 Local path planning 193

A line through P2 is given by

y =
yq2 − yp2

xq2 − xp2
(x− xp2) + yp2 (7.12)

y = α2(x− xp2) + yp2 (7.13)

The cutting point S = (xs,ys) is given by
(tanα1 − tanα2)xs = tanα1xp1 − tanα2xp2 + yp2 − yp1

xs =
tanα1xp1 − tanα2xp2 + yp2 − yp1

tanα1 − tanα2
(7.14)

ys = tanα1(xs − xp1) + yp1 (7.15)

The half angle line then is

y = tan(α2 + α1)/2 · (x− xs) + ys (7.16)

and can be used to calculate the waypoint P lying at the intersection of two
half angle lines.

P1

Q1

P2
Q2

S

Figure 7.23 Half angle line

7.2.2 Navigation on a raster map

A map is given in form of a binary raster with obstacles and free space
only. The task is to find the shortest way from a starting point to a goal.
At first the raster is flooded beginning with the starting point as shown in
figure 7.24. A wave runs around obstacles and fills the whole obstacle free
room. From the goal point go downwards until the starting point is reached
again forming a list of passed raster points. Then go again through this list:
it is a shortest path from start to goal. Figure 7.25 shows the first three steps
in flooding a raster in a yet empty map.

194 7 Navigation

1

2

2

3

3

3

4

4 5

4
5

6

5
6

6

7
7

7

7

5 6

6 7

7

8

8

8

8

9

9
10

10

11

11

11

12

12

12

8 9

9
10

10
11

11 13

13

12 13 14

14
15

10
11

11
12

Figure 7.24 Flooding a raster map

1

2

22

23

3

3
3

3
3

3

34

4

4
4

4

4

4

4

44

4

4

1 1

2

22

2

Figure 7.25 Flooding an empty raster

Using the neighbor points as shown in figure 7.26, an algorithm to flood
a raster runs as given in algorithm 7.7. If a raster point got a number, it
keeps that number. In order not to go through all the raster points many
times the algorithm uses two stacks S1 and S2 which are filled and emptied
alternately. Cells denoting free room are z = 0, obstacle cells z = −1. In the
beginning, both stacks are empty.

W
S

O

N
z

Figure 7.26 Neighbor points of a raster point z

As an example, solving a maze in a raster map is shown in figure 7.27
by flooding the raster. The assumption here is that the passages are broad
compared to the thickness of walls as shown in the figure.

7.2 Local path planning 195

Algorithm 7.7 Flooding a raster with thick walls
Initialization: i := 1; j := 0;
starting cell z := 1; push Si;
repeat
i := (i+ 1) mod 2; j := (j + 1) mod 2
repeat

pop stack Si; check surrounding of the cell taken out of stack:
for all cells with z = 0 do

if minz>0(O,S,W,N) > 0 then
z := minz>0(O,S,W,N) + 1; push to stack Sj ;

else
do nothing;

end if
end for

until stack Si is empty
until stack Sj is empty

1 6 10

10

12 18

20
24

18

19
2026

31

2425

28

27
3030

34

14

21

23
27

28

30

35

3837 37

20 22

26

262525
34

30
42

41
41

32

30

Figure 7.27 Solving a maze by flooding a raster map

196 7 Navigation

7.2.3 Quadtree based path planning

One step planning A map is given as a quadtree with white and black
nodes. Then path planning with an A*-algorithm can be undertaken with

• expansion of a node: look for neighboring nodes with free room

• expansion of a node in the next step

• expansion of vertical or horizontal obstacle-free neighboring nodes

• expand the node with the minimal value of the weight function

The weight function is

f(C) = g(P) + d(P,C) + α · (Omax −O(C)) + h(C) (7.17)

with

C: obstacle-free node

P : predecessor of C on this path

g(P): costs of the path from starting point S to P

d(P,C): actual distance from P to C

O(C): distance from C to the next obstacle

Omax : maximal distance from any C to the next obstacle

α: constant, describing the minimally allowed distance value to obstacles

h(C): optimistically guessed distance between C and the goal Z

The result is a list of obstacle-free nodes of different sizes. The merits of
this one step planning are

• efficient calculation of the path

• α gives the minimum distance to obstacles

• no large overhead in the quadtree representation

7.2 Local path planning 197

Two step path planning Let a map be given as a quadtree representation
with white, gray and black nodes.

• the path is planned on as high a level as possible

• in a second step the gray nodes are expanded

• gray nodes are expanded only to the extent that is absolutely necessary

• smallest squares have vehicle dimension

The merits of a two step planning are:

• the algorithm is cost effective if many small obstacles allow only a few
large white nodes

• unknown regions may be treated efficiently as gray nodes with large
costs

7.2.4 Area covering paths

Let a raster map be given. The vehicle has the task to clean or paint (with
a brush) all free raster points. Within a raster point, the vehicle can turn or
change its direction. The raw version of a cleaning algorithm runs as given
in algorithm 7.8.

Algorithm 7.8 Area covering algorithm
(∗)
try to drive straight paths
check parallel raster points
mark beginning and end points of paths on a stack
mark points already driven through
if the path ends then
{there is either an obstacle or a marked raster point hit}
pop the stack

else if the stack is not empty then
the mark of the beginning of a path not yet driven is taken from the
stack
drive to that point; go on at (∗)

else
the area is filled

end if

198 7 Navigation

Figure 7.28 shows a typical situation in an area covering algorithm. The
open circles denote starting points to be laid down on the stack with the
direction of where to go later. If there is no free room left at the moment,
the robot will drive through a region already cleaned to a next starting point.
An example of covering an area using a raster map is given in figure 7.29.

Figure 7.28 Typical situation during area covering using a grid map

S S S S

S S SS

S S S S

Figure 7.29 Example of area covering using a raster map

Area covering using a polygon map A typical application for area
covering navigation is the task to clean or paint a room by using a brush
of a suitable diameter. For such an application neighboring paths should
sufficiently overlap. Assuming that a polygon map of a room is given, algo-
rithm 7.9 runs as shown in figure 7.30.

7.2 Local path planning 199

1

2

3

4

5

6 7

8
9

10

11

Figure 7.30 Determination of overlaying paths in a polygon map for cleaning
applications

Algorithm 7.9 Area covering algorithm in a polygon map
initialization: find the main direction in the map
begin at a wall to plan paths in that direction (1)
repeat

place path end points to the left and right in free room parallel to that
path on the stack (5), (3);
if there is an obstacle to the right or the left then

place beginning points to the right or the left of the planned path on
the stack (6), (4);

else if there is free room again then
place path end point on the stack (7);

else if the path hits a wall then
place path beginning points on the stack (2);

else
pop path beginning- or end-point from stack; plan a path to there
through already cleaned area; follow the path given by top of stack
(8);

end if
until stack is empty

To produce such an area covering path, only four basic abilities of the
vehicle are required as shown by Hofner [Hof97] sketched in figure 7.31.

200 7 Navigation

straight driving change the lane U-turn going backwards
 and turning

backwards

Figure 7.31 Elementary abilities to fill an area

Area covering by following a wall In a continuous map area cover-
ing paths may be constructed according to algorithm 7.10 as sketched in
figure 7.32.

Algorithm 7.10 Area covering by following a wall
start at a wall, follow that wall and mark the path driven (i.e by painting
the floor);
repeat

if the wall changes into into a painted path then
follow that path (spiralling inwards);
if an obstacle is hit then

follow that new wall – It might be necessary to change direction -.
put this corner point on a stack;

else
{there is no room left} Put this corner point on a stack too
take a corner point from the stack and drive to this point through
an already painted region

end if
end if

until there is no corner point left
the floor is painted;

Figure 7.32 Area covering path by following a wall

7.2 Local path planning 201

7.2.5 Exploration

The task is to find a path covering all parts of a map. The vehicle has
dimensions r, a sensor reaching R out into the environment and typical
distances d in its vicinity. Let r << d < R. The idea is to find points
of interest (poi) in the vicinity of the vehicle to drive to for exploring the
environment. Seen from the vehicle, a typical sensor situation is shown in
figure 7.33. The exploration is performed as described in algorithm 7.11. An
example exploration is given in figure 7.34.

R

Figure 7.33 A typical sensor situation

Figure 7.34 Driving in a circle

202 7 Navigation

Algorithm 7.11 Exploration
(∗)
check the map from the momentary point of view
if there are through ways between obstacles (width ≥ 3r; beyond is free
room up to R) then

place points of interest (poi) at a distance ≈ 4/5R from the vehicle
in the middle of through ways; mark them as “free”; pack them on a
stack; {– Beyond the poi there should be room left for the vehicle to
turn back – }

end if
if there are no obstacles around the vehicle then

place pois in the free room at an angle of 90◦ to other pois in the free
room
at a distance of 2/3R keeping away≈ 3/2r from obstacle; {– the distance
is taken again to give the vehicle room for maneuvers beyond, more than
in through ways between obstacles – }
mark them as “free”; pack them on a stack;

end if
if within d there is a poi marked as already visited then

a loop has been closed;
end if
(∗∗)
if the stack is not empty then

pop poi from stack;
if the poi is marked as “free” then

mark it as “visited”; drive through explored regions to this poi;
go on at (∗);

else
{a loop has been detected}
go on at (∗∗)

end if
else
{the map is explored}

end if

7.2 Local path planning 203

7.2.6 Obstacle avoidance

One of the basic abilities of a vehicle should be driving around obstacles even
if the available map does not them all. At a given velocity v obstacles at a
distance d > r0 may be circumvented: Any obstacle nearer than r0 in the
path of the vehicle leads to a collision if no emergency break is commanded.
Figure 7.35 shows an example of obstacle avoidance.

v vplanned
 path

avoiding movement

planned
 path

 avoiding
movement

minimal distance

instant change of not possible
--> slower change of path

Figure 7.35 Maneuvers for avoiding an obstacle

In the left part of the drawing the vehicle runs straight forward. Then
ω = 0. Insert a Δω so that a minimum distance to the obstacle is kept. The
right part of the figure shows a vehicle just turning at ω �= 0. Insert a Δω so
that the vehicle passes the obstacle at a safe distance. Figure 7.36 shows the
complete turn around that obstacle. The same figure shows the paths on a
larger scale, too. At the end of the deviating movement the vehicle follows
the originally planned path again.

Wandering standpoint algorithm, WSA Often a goal may be seen
from far away but there are obstacles on the way to the goal. Given a maximal
sensor distance rs and a minimal distance r0 << rs where a deviation from a
straight path has to be commanded, a wandering standpoint algorithm (see
algorithm 7.12) is sketched in figure 7.37.

204 7 Navigation

v

planned path

deviating
movement

taking vehicle dimensions
 into account

vehicle dimensions
small wrt obstacle

Figure 7.36 Driving around an obstacle

goalstart r

l
rs

l > r ==> turn right
 keep minimum
distance to obstacle path towards goal free

==> drive towards
 goal

r > l ==> turn left

 local decisions

max. sensor
 distance

Figure 7.37 Avoiding obstacles using the wsa

7.2 Local path planning 205

Algorithm 7.12 Wandering standpoint algorithm
(∗)
run towards the goal until the goal is reached
if the sensor detects an obstacle at a distance d > r0 then

drive towards the obstacle till rs < r < r0;
measure the angles αl and αr to the obstacle;
turn towards the smaller angle and keep the distance to the obstacle
constant;

else
go to (∗); {the direction to the obstacle is free again}

end if

Apart from pathological situations, this strategy will find a way to the
goal. There are two possible cases of failure:

• A movable obstacle may push the vehicle away from the goal like a
defender pushes away an attacking player from the goal.

• A pathological form of the obstacle lets the algorithm fail as figure 7.38
shows:

The form of the border line lets the vehicle drive until the goal can be
seen again, but the distance to the goal remains constant, though the
vehicle went straight towards the goal for a while.

critical
sector

goal

start

start

Figure 7.38 A pathological case for wsa

206 7 Navigation

In order to cope with this case, the vehicle should know its overall turn-
ing: having turned 360◦ either the distance to the goal has become smaller
then the vehicle is spiralling inwards according to figure 7.39, or the distance
stood constant: then for a moment prefer to turn to the larger angle: if there
is a way towards the goal this altered strategy will find it.

Figure 7.39 An obstacle in form of a spiral

7.2.7 Potential field method

Forces on a Vehicle A sector map with obstacles is given. At any point
(x,y) the influence of an obstacle is modeled by a retarding force felt by the
vehicle, driving the vehicle away from the obstacle as shown in figure 7.40.
The force added by a sector with an obstacle at distance di in sector ϕi is
Fi = cosϕi

1
di

. At the same time a driving force FZ is felt, drawing the vehicle
towards the goal.

The total force is Fg(x,y) = FZ(x,y) +
∑n

i=1 F
i
h(x,y) with n obstacles in

the near vicinity of the vehicle. At any moment the vehicle is running in the
direction of the total force. Fg is a potential field: it may be described by
the gradient of a scalar field: Fg(x,y) = −gradφ(x,y). The gradient describes
the direction of steepest incline of a scalar field: grad = (∂φ/∂x,∂φ/∂y). As
long as the driving force towards the goal is large enough, the vehicle will
follow this force and even surmount a ridge in between.

Polar histogram Instead of calculating the forces, compile a polar his-
togram of the obstacle density according to figure 7.41.

Look for a minimum in the histogram: If the obstacle density is zero
there, then this is the intended control angle ϕ∗. Choose ω(t) such that
ϕ∗(t) =

∫ t
0 ω(τ)dτ . This task may be solved for a given change in direction

Δϕ using a special form of ω(t): let ω(t) = ω0 · (1− cos(2π · t/T)).

7.2 Local path planning 207

di
i

Fi

Figure 7.40 Potential forces on a vehicle resulting from obstacles and goal point

obstacle weight
 ~ 1/r

guide angle *
sector map polar histogram

Figure 7.41 A polar histogram based on a sector map

Then Δϕ =
∫ T
0 ω(τ)dτ = ω0 · T . The time T is restricted by the maximal

angular acceleration

dω/dt = ω0 · 2π/t · sin(2π/T · t); (7.18)
(dω/dt)max = ω0 · 2π/T (7.19)

Now the angular velocity ω0 and the time T may be calculated from

ω2
0 = Δϕ · (dω/dt)max/2π (7.20)

T 2 = 2π ·Δϕ/(dω/dt)max (7.21)

208 7 Navigation

To change direction by Δϕ without changing velocity takes time T and the
vehicle will have run through a distance s = v · T before the new direction
is reached.

To ease the calculations, the functions ω(t) and dω/dt may be calculated
beforehand as shown in figure 7.42. It is a list of 1024 values spanning the
time from 0 −→ T , read off every δt seconds interpolating in the list and
given as commands to the vehicle.

t
t

i

T

d /dt

t
T

i´

2

-2

2

Figure 7.42 Function to drive smoothly through a curve

7.2.8 Basic abilities

Aside from avoiding obstacles, there are some basic abilities an autonomous
vehicle should have:

change direction by Δϕ As shown before, this is done commanding a
turning by ω(t) for a time T until the integral of ω is the wanted angle Δϕ

drive through an s-curve with Driving through an s-curve with an an
inclination angle ϕ0 and a deviation d as shown in figure 7.43, is realized by
driving on a circle with radius r = v · ω0 until the angle driven on the circle
is ϕ0, then switching to a circle with the same radius r but driving to the
other side as shown in figure 7.44. This form of movement is a simplification
of reality: it is not possible to change ω(t) instantly.

Once driving through an s-curve is possible, an application like a docking
maneuver as shown in figure 7.45 is possible.

7.2 Local path planning 209

d
t

(t)
0

0 T
x

 . T

Figure 7.43 Driving an S-curve

t

pessimistic approximation

d > dreal

L > Lreal

r

0

0

d/2

d = 2 . r . (1 - cos

d = 2 . v . .(1 - cos

d shift

L
L = 2r sin

Figure 7.44 S-curve by two circles

 angle

may be steep
angle must

 be more flat

backwards or forwards

using s-curves

Figure 7.45 Forward and backward docking maneuver

210 7 Navigation

Avoiding a Wall Running straight towards a wall a deviating maneuver
must be commanded: a turn of 90◦, then to run parallel to the wall ac-
cording to figure 7.46. This picture is a simplification: the angular velocity
cannot change from 0 → ω0 instantly. With v= 1 m/s and ω0 = 45◦/s and
a commanded Δϕ = 90◦, the vehicle will still drive for T = Δϕ/ω0 =2 s
and go for s =2 m until the new path has been reached. During this time
the vehicle came nearer to the wall by the radius of the circle driven: r =
2/π · v · 90◦/ω0 m= 4/πm= 1.275 m. This plus a safety margin is the nearest
distance to the wall where the deviating maneuver has to be commanded to
avoid an emergency break.

v

s = 2 m

more precise curve form

 --> r

approximation

real end point

r

r

r
b)a)

Figure 7.46 Driving towards an obstacle; (a) shows the general behavior, (b) the
deviating maneuver in more detail as the vehicle cannot drive a curvature unsteady
path.

Driving Through a Curve Ideally, a vehicle should be able to turn on
a spot: driving straight to a point P0 and turning in a new direction. In fact
the possible curve will look like figure 7.47 because of kinematic restrictions
imposed by physics

P0 P0

P1

P2Rv

v

Figure 7.47 Kinematic restrictions driving through a curve

7.2 Local path planning 211

• the velocity v of the vehicle determines the radius R of the minimal
curvature circle. Driving through a curve, side forces occur at the ve-
hicle, limited by the allowed resistance against sliding. The side force
Fside ∝ ω2 and ω = v/R

• going from a straight line into a curve needs a steady curvature behavior
as shown in figure 7.48. To calculate the necessary steering function, go
into a coordinate system with its x-axis through P1 and P2 and its y-axis
through P0 then

y′(x0) = − tanα y′(−x0) = tanα y′(0) = 0
y′′(x0) = 0 y′′(−x0) = 0

The curvature is

K(x) =
y′′(x)

[1 + y′2(x)]2/3
(7.22)

K(0) = y′′(0) with |K(0)| = 1/R

-x0 +x0

d
x

y

hA

Figure 7.48 Steady curvature path

Two possible solutions to a curvature steady path will be given

• (1) a trigonometric curve

y(x) = A · cos(π/2 · x/x0) (7.23)

y′(x) = −A · π

2x0
· sin πx

2x0

y′′(x) = −A · (π

2x0
)
2
cos

πx

2x0

212 7 Navigation

y(x0) = y(−x0) = 0

y′(x0) = −A · π

2x0
= − tanα =⇒ A = 2x0/π · tanα

y′′(x0) = −A(
π

2x0
)
2

=⇒ R =
4x2

0

π2A
=

2x0

π tanα

x0 = π/2R tanα A = R tan2 α (7.24)

– path planning gives α

– kinematic restrictions give R

=⇒ x0 = π/2 ·R tanα and h = x0 · tanα
The deviation of h from A is
h−A = x0 · tanα(1− 2/π) = R tan2 α(π/2− 1)

• (2) a polynom of degree 4

y(x) = ax4 + bx3 + cx2 + dx+ e (7.25)

y′(x) = 4ax3 + 3bx2 + 2cx+ d y′′(x) = 12ax2 + 6bx+ 2c

y(x0) = y(−x0) = 0 =⇒ b = d = 0

y′(x0) = 0 =⇒ ax4
0 + cx2

0 + e = 0
y(0) = A =⇒ e = A

y′(−x0) = −4ax3
0 − 2cx0 = tanα

y′′(0) = 2c = −1/R =⇒ c = −1/(2R)

y′′(x0) = 12ax2
0 + 2c = 0 =⇒ a = −c/(6x2

0) =
1

12Rx2
0

y′(x0) = −4ax3
0 − 2cx0 = tanα =⇒ x0(

1
R
− 1

3R
) = tanα

=⇒ x0 = 3R/2 · tanα

=⇒ (3R/2 · tanα)2/(12R)− 1/(2R)(3R/2 · tanα)2 + e = 0

e = 9/4 ·R2 tan2 α(1/2R− 1/12R)

7.2 Local path planning 213

e = 15/16 ·R tan2 α x0 = 3R/2 · tanα p = x0/ cosα

In the end the polynom of degree 4 is

y = − 1
27R3 tan2 α

x4 +
1

2R
x2 + 15/16r tan2 α (7.26)

Figure 7.49 shows a rather narrow curve and the relevant distances.

y

-x0 +x0
x

R
p

A

h

Figure 7.49 A rather narrow curve

For the curve of degree 4 the distances h−A is

h−A = 3R/2 · tan2 α− 15/16 ·R · tan2 α (7.27)

h−A = 9/16 ·R · tan2 α p =
3R tanα
2 cosα

(7.28)

For a trigonometric curve the same distances are

h−A = (π/2− 1) ·R · tanα p =
πR tanα
2 cosα

(7.29)

The difference is 9/16 = 0.56 and 3 vs (π/2− 1) = 0.57 and π

Driving a path of given length Following figure 7.49 the path length
from point (−x0,0) to (0,y0) is given by the integral

s =
∫ 0

−x0

(1 + y′2)1/2
dx

This integral is generally not solvable in a closed form. So in order to calculate
s, numerical methods have to be used. For a vehicle it is important to find
control functions ω(t) in real time, to drive through the wanted path at
constant velocity. A set ωi = ωi(t) is to be calculated at times ti = t0 + iΔt.
Provided the curvature K(x) is known, then ω(x) = v · (x). The curvature is

214 7 Navigation

K(x) =
y′′(x)

(1 + y′2)3/2
(7.30)

To calculate ωi the curvature Ki(x) is to be calculated at points xi. They
are a distance Δs apart with ΔS = vΔt = (1 + y′′(x))1/2 ·Δx according to
figure 7.50.

v
s

x
xi

Figure 7.50 Δx and Δs for curvature calculation

In effect
xi+1 = xi +

vΔt
(1 + y′2)1/2

(7.31)

The integration of the curve length follows numerical methods to find the
length s of the trigonometric function.

• Given a constant velocity v the time needed is T = s/v.

• Slow down the vehicle from v1 so that at P1 the velocity is v. Set t = t0.

• During the time T produce a linear growing ω(t) = a(t − t0) with
a = v/R · T . At t = t0 + T , the angular velocity is ω = v/R

• Slow down ω(t) for a time T from v/R to zero; then the vehicle is at P2

• accelerate again to v2
The time development of ω(t) is

ω(t) =

{
v

R·T (t− t0) t0 ≤ t ≤ t0 + T

v/R− v (t−t0−T)
R·T t0 + T ≤ t ≤ t0 + 2T

ϕ(t) =
∫
a(t− t0)dt = (1/2at2 − at0t) (7.32)

x(t) = a

∫
v cos(1/2t2 − t0)dt (7.33)

y(t) = a

∫
v sin(1/2t2 − t0)dt (7.34)

x(t) and y(t) describe a clothoid not readily integrable. The approximation
in form of a cosine function for y(t) is easier to handle, but there is an error
involved. To cope with this, a correction is made as shown in figure 7.51.

7.2 Local path planning 215

x x

(t)

t

(t)

tT

x = 0 x = 0

if x = 0 at t - t0 < T

=> run (t) backwards

if x < 0 at t = t0 + T
=> stop (t) till t = t0 + T

then run (t) backwards

Figure 7.51 Method to correct the driving through a curve

Path planning under geometric restrictions The restrictions are im-
posed on path planning by the vehicle geometry. If the vehicle is round, then
enlarging the obstacles by the radius r plus a safety margin δ will do. If the
vehicle is rectangular as shown in figure 7.52, with a length L, broadness B,
and a safety margin δ as well as a kinematic center which is not in the vehicle
center, then obstacle avoidance is performed using the following rules:

• When driving straight forward, just check for obstacles within a path-
way of B + δ.

• When driving on a curve y = f(x), check for obstacles on a path (x∗,y∗)
defined by the side movements of the vehicle according to figure 7.53.

de

L
B

4 2

3 1

Figure 7.52 Parameter of a rectangular vehicle

Corner point 1 runs on a curve with ϕ = arctan f ′(x) and x∗1 = x+d cos(α+
ϕ) and y∗1 = y + d sin(α+ ϕ).
Corner point 4 runs on a curve x∗4 = x − e cos(90◦ − β − ϕ) and y∗4 =
y − e sin(90◦ − β − ϕ).

216 7 Navigation

d

e

x*x

y

y*
1

f(x)
4

Figure 7.53 Obstacle checking based on vehicle parameters when driving through
a curve

Planning a curved path for a long vehicle may need an appreciable free
room to the side as shown in figure 7.54

Figure 7.54 Path characteristics of a long vehicle

Driving through a door This is another basic ability a vehicle should
have in an indoor environment. Finding a suitable passage could be taught
to the vehicle by building a growing neural gas net. The nodes of the net are
sensor situations, the position and orientation, and actions (v,ω) taken at a
the moment. Edges of the net connect different sensor situations following
each other by driving through a door. From different starting positions, the
vehicle is commanded through a door. After a while the passages should be
learned: in replay to a given sensor situation and position the vehicle should
find the most similar node in the net. Interpolating the actions to the next
action to be taken, the vehicle will find its way through the door as shown
in figure 7.55.

7.2 Local path planning 217

taught trajectories
replayed trajectories

Figure 7.55 Passing through a door

Following a wall Using sector maps only, a vehicle may find its way
between obstacles using polar histograms to calculate the steering angles as
shown in figure 7.56.

Figure 7.56 Wall following between obstacles

The vehicle tries to find a path between obstacles using polar histograms
and tries to stay next to a wall,following a wall once detected.

218 7 Navigation

7.3 Path control

Let a reference path zr be given, with a reference point (xr,yr) at a time
t running at a reference velocity. The vehicle will find itself at a time t at
a position and orientation (x,y,ϕ) = z(t) not on the reference path, ac-
cording to figure 7.57. The task of path control is to find steering functions
v∗(t) and ω∗(t) with which the vehicle goes from an arbitrary starting point
(z(t0),z′(t0)) into the reference path after a while: lim

t→∞ z(t) = zr(t).

v

y

x xr

yr
zr(t)

z(t)

Figure 7.57 Vehicle, reference path, and reference point during path control

Let the velocities

x′ = v cosϕ x(t0) = x0 ϕ′ = ω ϕ(t0) = ϕ0

y′ = v sinϕ y(t0) = y0

and the accelerations

x′′ = v′ cosϕ− vω sinϕ x′(t− 0) = x0

y′′ = v′ sinϕ+ vω cosϕ y′(t0) = y0

be measured. The error vector is ze = (xe,ye)
T = (xr − x,yr − y)T and its

velocity v

x′e = x′r − v cosϕ xe(t0) = xe0 = xr0 − x0

y′e = y′r − v sinϕ ye(t0) = ye0 = yr0 − y0

and acceleration

x′′ = xr
′′ − (v cosϕ− v · ω sinϕ) x′e(t0) = x′e0

y′′ = yr
′′ − (v sinϕ+ v · ω cosϕ) y′e(t0) = y′e0

7.3 Path control 219

Calculating v(t) and ω(t) If x′′(t) and y′′(t) are given, v(t) and ω(t) can
be calculated. From x′′ = v′ cosϕ− v · ω sinϕ and y′′ = v′ sinϕ+ v · ω cosϕ

=⇒ (y′′ cosϕ− x′′ sinϕ) = v · ω (7.35)
=⇒ (x′′ cosϕ+ y′′ sinϕ) = v′(t) (7.36)

Integrating v′(t) the velocity v(t) can be calculated and from v(t) also ω(t)

=⇒ v(t) = v(t0) +
∫ t

t0

(x′′(t) cosϕ(t) + y′′(t) sinϕ(t))dt (7.37)

=⇒ ω(t) =
y′′(t) cosϕ(t)− x′′(t) sinϕ(t)

v(t)
(7.38)

Looking for a stable equilibrium (ze,z′e) = 0 If the vehicle stays on
the reference path and follows the reference point, the error in position and
velocity is and stays zero. In terms of control theory this is equivalent to the
existence of a Ljapunov function V (ze,z′e) characterized by

• V (ze,z′e) = 0 for [ze,z′e] = 0

• V (ze,z′e) > 0 for [ze,z′e] �= 0

• V ′(ze,z′e) ≤ 0 for all [ze,z′e]

If such a function exists, then (ze,z′e) is asymptotically stable: for each start-
ing point (z0,z′0) and each reference path s with (xr,yr,x

′
r,y

′
r), the reference

point can be reached; lim
t→∞ z(t) = zr(t). Moreover, an additional functional

form can be minimized: the weighted sum of the square error vector and its
time derivative; this gives a smooth curve.

J(v(t),ω(t),t) =
∫ t

t0

(
zT
e ze + z′Te R1z

′
e + z′,Te R2ze

′′) dt (7.39)

A Ljapunov function shall now be constructed: Let z′′ = zr
′′ + Q1z

′
e +

Q0ze be a solution of a differential equation with

Q1 =
(
q1x 0
0 q1y

)
Q0 =

(
q0x 0
0 q0y

)
(7.40)

q1x,q1y > 0 and q0x,q0y > 0; R1 and R2 are positive definite and symmetric.
=⇒ (ze,z′e) is a stable equilibrium state.

A proof runs over the construction of a Ljapunov function as a quadratic
form: Let V (ze,z′e) = 1/2(zT

e Q0ze + z′Te ze) then show it fulfills the require-
ments of a Ljapunov function

220 7 Navigation

• [ze,z′e] = 0 −→ V (ze,z′e) = 0

• V (ze,z′e) = 1/2((q0xx
2
e + q0yy

2
e) + (x′2e + y′2e))

V (ze,z′e) > 0 for all [ze,z′e] �= 0 because of q0x,q0y > 0

• V ′(ze,z′e) = z′Te Q0ze + z′Te ze′′
because of ze′′ +Q1z

′
e +Q0ze = 0

V ′(ze,z′e) = z′Te Q0ze + z′Te (−Q1ze
′′ −Q0ze)

V ′(ze,z′e) = −z′Te Q1z
′
e.

Now from construction q1x and q1y > 0
−→ V ′(ze,z′e) = −z′Te Q1z

′
e ≤ 0 for all [ze,z′e]

−→ V ′(ze,z′e) = 1/2(zT
e Q0ze + z′Te Q1z

′
e) is a Ljapunov function.

−→ (ze,z′e) is globally asymptotically stable as depicted in figure 7.58.

The vehicle following the dashed curve finally catches up the reference point
running along the black reference path.

Figure 7.58 Convergence of the vehicle movement according to the planned tra-
jectory defined by the reference point

Calculating x(t) and y(t) As xr
′′,yr

′′ and ze and z′e are given, the differ-
ential equations for x(t) and y(t) can be solved

x′′ = xr
′′ + q1x(x′r − x′) + q0x(xr − x) q0x > 0q1x > 0 (7.41)

y′′ = yr
′′ + q1y(y′r − y′) + q0y(yr − x) q0y > 0q1y > 0 (7.42)

These are linear second order differential equations. Their solutions are
damped oscillations. Of interest are solutions near the aperiodic limit.

Let vmax = be the maximum value of the control function and v′max =
the maximum value of the velocity of the control function then choose q0x =
q0y = 0,01(v′max/vmax)

2 and q1x = q1y = 2 · ξ · 0,1(v′max/vmax) with ξ =
0,7 . . . 1,0. Figure 7.59 shows the development of x(t) for the asymptotic
limit ξ = 0,7 and a value slight out of it. In both cases x(t) runs towards xr.

7.3 Path control 221

txr

x

aperiodic limit = 0,7

Figure 7.59 Convergence of x(t) towards xr for two values of ξ

Global stable path by Ljapunov function The criteria for a Ljapunov
function were

• V (z,z′) = 0 for (z,z′) = 0

• V (z,z′) > 0 for (z,z′) �= 0

• V ′(z,z′) ≤ 0 for all (z,z′)

=⇒ (z,z′) asymptotically stable:

lim
t→∞ z(t) = 0 lim

t→∞ z
′(t) = 0V (z,z′) = V (x(t),y(t),x′(t),y′(t)) = V (x,y; t)

(7.43)

Figure 7.60 shows the situation: the third criterion is sketched on the left
and in the middle of the figure: going from t −→ t + Δt, V (x,y; t) shrinks.
On the right the first and second criterion are sketched: at (z,z′) = 0 the
value of V is zero. For all (z,z′) �= 0 V > 0, but shrinking towards V = 0
over t.

V(x,y) = const

V(x,y) = 0
==> (z, z´) = 0

V = V1

V = V2 < V1

t

V = const

V1
V2

t

z(t)

z(t + t)

z(t0)
z(t0 + t) x

Figure 7.60 Development of V (z,z′)

8 Control Architectures

The generation of designated robot behavior is one of the most difficult prob-
lems when designing the control system for robotic applications with many
sensors and actuators. Due to the diversity of tasks an autonomous vehicle
has to fulfill, the control has to be embedded into a convenient framework.
The process of building up a control system should be supported by an
adequate methodology to help overcoming difficulties common to complex
robotic systems, e. g. ensuring secure operation, modularity, or handling a
system of growing complexity. Therefore, different types of control archi-
tectures have appeared with contrary approaches for tackling the emerging
problems.

A control architecture is a framework enabling a system to fulfill the
following tasks:

Fusion of sensor data into logical sensors Sensor data has to be pre-
processed for usage for localization, generation of obstacle maps, gener-
ation of maps for navigation and planning, object recognition, display
and representation of knowledge.

Motor controller Access to the hardware has to be provided by the re-
alization of a convenient motion control interface, e. g. velocity v and
angular velocity ω.

Pilot function A Pilot realizes the path control via specification of mo-
tion commands which are required for e. g. collision avoidance, driving
through narrow passages, turning in dead-end situations.

Navigation The navigator calculates accessible tracks to be traversed via
the pilot function. The plan includes avoidance of obstacles and requires
knowledge about the surrounding area.

Planning function A planning component generates actions and sets tar-
gets for the navigation component. This includes strategic decisions and
keeping the overview concerning given tasks.

User interaction Access to the control software has to be provided by a
suitable Human-Machine-Interface (HMI).

223

For all tasks mentioned above world knowledge has to be considered, which
has to be provided adequately.

In general, control architectures in the field of robotics can be distin-
guished into hierarchical vs. distributed and task-oriented vs. behavior-based
(see figure 8.1).

Figure 8.1 Overview over control architectures commonly used in the field of
robotics

Hierarchical architectures depend on the assumption that tasks can be
divided into subtasks which are arranged so that higher level components
generate subgoals for lower level components. In contrast to this, distributed
architectures allow the assignment of subtasks to independent components.
A suitable communication mechanism is required for data transfer between
the parts involved.

The distinction between task-oriented and behavior-based control ar-
chitectures is reflected in the decomposition of a given task. Task-oriented
architectures depend on a central world model which is manipulated and
evaluated by the different components (sensing, modeling, planning, execu-
tion). The tasks of processing sensor data as well as generating control values
for the robot are encapsulated into responsible components with exclusive
access. Behavior-based control architectures, however, are designed by de-
composing a given task into independent behaviors, each of which keeps its
own compact representation of the environment which is required for task
execution. Here all components have unlimited access to sensor data and to
the control interface. This, however, requires mechanisms for the coordina-
tion of conflicting data.

Besides the given distinction of control architectures into task-oriented
vs. behavior-based and hierarchical vs. distributed, [Mat97] emphasizes the
difference of architectures in respect to the degree of deliberation, see fig-
ure 8.2. Reactive architectures not supporting knowledge storage are con-
trasted with deliberative architectures with an elaborate model of the world.
The former supports immediate reaction on occurring situations but has

224 8 Control Architectures

weaknesses in respect to planning tasks requiring a certain degree of mem-
ory. The latter is suited to complex tasks but has drawbacks concerning
outdated knowledge, false sensor readings, or reaction time.

Figure 8.2 Properties of deliberative and reactive control

In order to combine the advantages of both characteristics, hybrid archi-
tectures have emerged with a lower reactive layer and a higher deliberative
one. This, however, breaks the control system into two inhomogeneous parts
with different characteristics. In contrast to this, behavior-based control sys-
tems store a representation of the environment which is distributed among
the single components and therefore can combine reactive and deliberative
components into one architectural design.

In the following, a task-oriented as well as several behavior-based control
architectures are discussed in more detail.

8.1 The hierarchical task-oriented control architecture RCS

As an example of a hierarchical task-oriented control architecture, the Real-
Time Control System (rcs) by James S. Albus [Alb92] is presented here.
Since its beginning in the 1970s at the NIST (National Institute of Standards
and Technology), the architecture has constantly advanced and been applied
to several projects, e. g. the DEMO III project [LMD02].

rcs is composed of hierarchically arranged layers consisting of one or
more rcs nodes. As depicted in figure 8.3, each of them has 4 modules:
Behavior Generation (BG), World Modeling (WM), Sensory Perception (SP)
and Value Judgment (VJ). Additionally, the Knowledge Database (KD) and
the Operator Interface (OI) are provided.

8.1 The hierarchical task-oriented control architecture RCS 225

Figure 8.3 A rcs-4 node and the data flow between the included modules [Alb92]

The BG module plans and controls the actions of the system. For this
purpose a complex plan is decomposed into simpler tasks by using the in-
formation provided by the higher layer as well as WM and VJ of the same
layer.

The SP module processes sensor data and compares them with predic-
tions of the WM module. Additionally, SP perceives objects, events, and
situations and transfers them to the WM module.

The WM module uses information given by SP to update the Knowledge
Database. Predictions of sensor values as well as the simulation of plans
proposed by the BG module are additional tasks of this module.

The VJ module calculates cost, risk, and benefit of simulated plans.
It distinguishes between important and irrelevant objects and events and
transfers the results to the BG module.

The Knowledge Database contains data about the environment. Each of
the modules has access to the KD, either directly or indirectly via the WM
module.

Finally, the OI is the interface for observing or manipulating the system
behavior by a human operator.

rcs supports two kinds of communication. On the one hand, commu-
nication between rcs nodes of different layers involves the transfer of new
tasks to the BG module of the lower layer and newly perceived objects and
events to the SP module of the higher layer. On the other hand, modules
inside a rcs node communicate as depicted in figure 8.3.

226 8 Control Architectures

This results in two main data flow directions: One top down information
flow consisting of tasks and goals between the BG modules and one bottom
up information flow consisting of processed sensor data. Due to the growing
complexity of higher layers, the higher a layer is, the longer the cycle takes.
An example for a timing diagram is depicted in figure 8.4

Figure 8.4 Example for the time horizon of different layers in rcs [Alb92]

8.2 Behavior-based control architectures 227

Here, seven layers are covering a time range between milliseconds and
days. The horizontal axis consists of historical traces (left) and future plans
(right). Both of them are processed within the same time scale.

While the applicability of hierarchical task-oriented control architectures
like rcs was shown in several applications, some disadvantages have emerged.
At first the control depends on a consistent world model. However, this
central representation of the environment is prone to errors due to false
sensor readings or outdated information. Here the immediate usage of sensor
data leads to a more responsive and correct behavior.

Second, the functionality of the whole system depends on the proper
operation of all components. A different approach, in which malfunctions
of single modules can be caught by others is the behavior-based approach,
presented in the next section.

Finally, hierarchical task-oriented control architectures tend to limit the
extensibility of the system as a new functionality is reflected in the change
of a multitude of existing components. Therefore, the scalability of these
systems is limited.

8.2 Behavior-based control architectures

The development of robotics was heavily influenced by paradigms in Arti-
ficial Intelligence (ai) like the following (Marvin Minsky [MMN55]): “[An
intelligent machine] would tend to build up within itself an abstract model
of the environment in which it is placed. If it were given a problem it could
first explore solutions within the internal abstract model of the environ-
ment and then attempt external experiment.” Therefore, knowledge repre-
sentation, planning reasoning and hierarchical composition were the main
fields of research reflecting the human understanding of intelligence (e. g.
strips [FN71], abstrips [Sac74], noah [Sac75]).

Inspired by observations in biology, these traditions were questioned.
According to Brooks, “planning is just a way of avoiding figuring out what
to do next” [Bro87]. Therefore, a shift in paradigm took place, moving from
sensing and acting to behavior-based robotics where preferably simple agents
show intelligence through coordinated behavior.

The motivations for this change were the following:

• Complex behavior does not necessarily arise from complex control sys-
tems.

• The real world is the best model.

228 8 Control Architectures

• Programming should be kept simple.

• Systems should show robustness at noisy sensor readings.

• Systems should provide the possibility of incremental design.

• All calculations should be performed on-board and therefore fit the
machine time available.

The motivation for the change from task-oriented to behavior-based control
would be best expressed by Thomas Huxley: “The great end of life is not
knowledge, but action”.

The following examples of behaviors could appear in wheel-driven or
legged mobile autonomous robots:

• Exploration (movement in a general direction)

• Targeted (movement in direction of attractors)

• Avoidance (avoid collision with objects and environment)

• Path following (e. g. wall, planned path, stripe)

• Posture control (balance, stability)

• Social behavior (e. g. parting, hives, flocks)

• Remote-autonomous behavior (user interaction, coordination)

• Perceptual behavior (visual search, . . .)

• Walking behavior

• Manipulator behavior, grip behavior

In contrast to task-oriented control architectures, behavior-based ap-
proaches have proven to handle emerging difficulties rather well. They do
not depend on the correctness of a central world model, make it easy to in-
crementally add functionality while handling increasing complexity and show
robustness to unknown sensor data due to an overall functionality emerging
from the interaction of multiple generalizing behaviors.

8.2 Behavior-based control architectures 229

Still, the problem of controlling complex robotic systems is not solved
by the behavior-based paradigm alone. Rather, while helping with some
common problems, behavior-based architectures introduce new difficulties.
Among those is the question of how to coordinate multiple and possibly
competing behaviors running in parallel and trying to act on the same ac-
tuators. Another issue is the identification of error sources in a control that
shows an emergent system behavior rather than an explicitly implemented
one. Also, there is the matter of how the architecture can help structuring
the design process, e. g. giving support in the process of selecting the best
set of behaviors and coordinating their action.

Several variants of behavior-based architectures have been developed
in order to tackle the presented problems. In the following section, the
Subsumption Architecture by R. Brooks [Bro86], reuse and temporal se-
quences of behaviors by Nicolescu and Mataric [NM00, NM02], and the
iB2C1 architecture of the Robotics Research Lab in Kaiserslautern are pre-
sented. Other behavior-based architectures include R. Arkin’s works [Ark89,
Ark98] on schema-based and potential field approaches, further methods
by M. Mataric [Mat92, Mat97], miscellaneous fuzzy approaches [LRM94,
SKR95, KS97, Ros97, SDC05], the Dynamical System Approach by Al-
thaus/Christensen [AC02], Behavior Oriented Design [Bry01], parallel be-
havior execution without action selection mechanism [Ste94], or activation-
based [BILM03, CA07] as well as neural-network-based architectures [FM96,
Bee96].

8.2.1 The Subsumption Architecture

The first architecture implementing the presented ideas was the Subsumption
Architecture developed by Rodney Brooks, MIT, 1986 [Bro86]. He proposed
the alignment of behaviors along horizontal layers, with all behaviors having
access to all sensor data to generate actions for all actuators. The interaction
of behaviors is carried out through interdiction of inputs and overruling of
outputs. The primary feedback between behaviors occurs via the environ-
ment. Using the special C derivative interactive C allows for system state
analysis during runtime. The approach was applied to several mobile vehicles
as well as to the walking machines Genghis and Attila.

This approach has many advantages. Inherently, the architecture sup-
ports running behaviors asynchronously in parallel while data connections
can be prone to errors and delays. Due to the independence of the compo-
nents, extending the system with sensors and behaviors is directly supported.
1 iB2C: integrated behavior-based control

230 8 Control Architectures

The implementation of the individual modules is kept simple and the sys-
tem shows a certain robustness in case of malfunction of behavior modules
or behavior levels. Finally, simultaneously achieving multiple goals can be
easily implemented.

The structure of the basic elements of the Subsumption Architecture is
shown in figure 8.5. Each of them has input and output lines. Via a suppress-
ing mechanism, input signals can be replaced by the suppressing signal given
into the circle. Output signals of modules can be inhibited, i. e. any output
signal is blocked for the given time. Each module internally implements a
finite state machine which can be reset to state NIL via the corresponding
input.

Figure 8.5 Basic module of the Subsumption Architecture

The system design follows the structure given in figure 8.6. Its control is
split up into layers with higher layers subsuming the functionality of lower
level layers when desired. The system can be partitioned at any layer so
that the lower layers form a complete operational system. An example of the
functionality of layers is depicted in figure 8.7.

Figure 8.6 Layout of the behavior levels in the Subsumption Architecture

This architecture has proven suitable for small systems and has suc-
cessfully managed navigation in an office environment with many obstacles.
However, this approach tends to run into scalability problems due to lim-
itations concerning the amount of internal representation. Also, the reuse

8.2 Behavior-based control architectures 231

of components is often not possible and weaknesses occur when behaviors
are added to an existing system. Therefore, further enhancements have been
undertaken in the years after the introduction of Subsumption Architecture.

Figure 8.7 Example for the functionality of layers in the Subsumption Architec-
ture

8.2.2 Reuse and temporal sequences of behaviors

The work of Nicolescu and Mataric (see [NM00, NM02]) identifies common
deficiencies of behavior-based architectures: the difficulties in reusing existing
behaviors for new tasks, the inability to easily realize temporal sequences of
behavior activations, and the lack of support for the automatic creation of
behavior networks.

The first problem is addressed by splitting up a behavior into an “ab-
stract” and a “primitive” part, with the former constituting the interface of
a behavior and the latter containing the actual functionality (see figure 8.8).
The abstract part also contains checks to ensure that the preconditions of the
behavior are fulfilled. So when using a behavior for different tasks with dif-
ferent preconditions, the primitive part can be reused and only the interface
part has to be altered.

Behavior networks can be created by connecting abstract behaviors. This
can either be done by hand or by an algorithm which analyzes the precon-
ditions and effects of behaviors and uses backtracking to create a network
for a specific task. Dealing with large networks containing many behaviors
is facilitated by the support for grouping behaviors and thus building hier-
archical networks. The architecture provides different types of connections
between behaviors, allowing the creation of temporal sequences. By encoding
task-specific aspects into behavior connections instead of directly into the
behaviors, behaviors can be built in a more general way and thus be reused
more easily.

232 8 Control Architectures

Figure 8.8 An abstract and a primitive behavior and the connection between the
two [NM02].

[NM03] describes an extension of the architecture that allows robots to
learn tasks from a robot or human teacher. During a demonstration phase,
the learning robot makes observations and logs which of his behaviors can
be used to achieve a certain situation. In a second phase, it uses these ob-
servations to build a behavior network for fulfilling the demonstrated task.
So what is learned is when to use which behavior. New behaviors are not
learned.

8.3 The integrated behavior-based control architecture iB2C

As an example for a behavior-based control architecture which addresses the
issues mentioned before, the iB2C architecture of the Robotics Research Lab
(University of Kaiserslautern) is presented here [PLB10]. The goal is to find a
behavior-based architecture of modular structure with control units ranging
from motor schemes up to deliberative planning layers. Common interfaces
help in reusing and easily adding modules, and the arbitration mechanism
allows for separating the control data from the coordination data flow.2 The
architecture is applicable to a wide range of robotic systems. It also shows
design guidelines to simplify the creation of a consistent, robust and main-
tainable system. Last but not least, a programming framework supports
the implementation by providing suitable tools for designing, debugging and
2 Here control data is referred to as values for actuators, e. g. velocity, while the coordi-

nation data flow provides information about behavior states and is used for the internal
behavior interaction of the system.

8.3 The integrated behavior-based control architecture iB2C 233

inspecting a control system of growing complexity. The proposed architec-
ture is a further development of the behavior-based control as previously
introduced in [ALBD03], where it has mainly been used to control walking
machines.

8.3.1 The basic behavior module

The fundamental unit of the proposed control architecture is the behavior
module (see figure 8.9) which is based on [Alb07] and [PLB05]. Each atomic
behavior is wrapped into such a module with a uniform interface.

s

�ı

�a

r

�e

�u

F (�e, ι)

Figure 8.9 Basic iB2C behavior module

Behaviors can be described as three-tuples of the form

B = (fa,fr,F) (8.1)

where fa is the activity function, fr is the target rating function, and F is the
transfer function of the behavior. These functions generate activity informa-
tion �a, a target rating r, and an output vector �u, respectively. Additionally,
each behavior receives an input vector �e, a stimulation s, and an inhibition
vector �ı. In the following, these characteristics are explained in more detail.

Behaviors receive data required for fulfilling their work via the input
vector �e ∈ Rm which can be composed of sensory data (e. g. distance mea-
surements) or information from other behaviors (e. g. their target rating).
The output vector �u ∈ Rn transmits data generated by the behavior (e. g.
intended velocity values). This output describes the data which is used for
actuator control or as input for other behaviors.

Each behavior provides standardized inputs for adjusting its relevance:

Definition 8.1 (Stimulation). The stimulation s ∈ [0,1] of a behavior B
is an input determining the intended relevance of B. In this notation, s =
0 indicates no stimulation and s = 1 a fully stimulated behavior. Values
between 0 and 1 refer to a partially stimulated behavior.

234 8 Control Architectures

Stimulation can be used to adjust the influence of competing behav-
iors or to allow higher-level behaviors to recruit lower-level behaviors and
their functionality by explicitly stimulating them. Certain behaviors require
constant stimulation, e. g. safety behaviors or reflexes. These behaviors are
depicted by a filled triangle at the stimulation port in the figures.

Definition 8.2 (Inhibition). Each behavior can be inhibited by k other
behaviors via its input �ı ∈ [0,1]k. The inhibition i ∈ [0,1],i = max

j=0,...,k−1
(ij) of

a behavior B reduces the relevance of B. Here i = 1 refers to full inhibition,
i = 0 to no inhibition. Values between 0 and 1 refer to a partially inhibited
behavior.

Therefore, inhibition has the inverse effect of stimulation.

Definition 8.3 (Activation). The activation ι of a behavior B indicates
the effective relevance of B in the behavior network. It is composed of the
stimulation s and the inhibition i, with

ι = s · (1− i) (8.2)

The calculation of the outputs of a behavior is implemented by the
transfer function F , the activity function fa, and the target rating function
fr. The transfer function F (�e,ι) determines the output vector �u, where

F : Rm × [0,1]→ Rn, F (�e,ι) = �u (8.3)

F provides the intelligence of a behavior, calculating actions depending on
input values and internal representations. This can be a reactive response
to input values, but also a more complex calculation like a state machine or
sophisticated algorithms. This way, both reflexive sensor-actor coupling and
deliberative behaviors can be implemented (as postulated for behavior-based
architectures by [Mat97]).

Each behavior provides two behavior signals that allow for deducing
information about its state and its assessment of the current situation:

Definition 8.4 (Activity). The behavior signal activity a ∈ [0,1] of a be-
havior B represents the amount of influence of B in the current system state.
a = 1 refers to a state where all output values are intended to have highest
impact, whereas a = 0 indicates an inactive behavior. Values between 0 and
1 refer to a partially active behavior.

The activity a and the derived activities �a are defined by the activity
function fa with

8.3 The integrated behavior-based control architecture iB2C 235

fa : Rm × [0,1]→ [0,1]× [0,1]q, fa (�e,ι) = �a = (a,�a)T (8.4)

where
�a =

(
a0,a1, . . . ,aq−1

)T (8.5)

with
ai ≤ a ∀i ∈ {0,1, . . . ,q − 1} (8.6)

The derived activities �a allow a behavior to transfer only a part of its
activity to other behaviors.

Definition 8.5 (Target rating). The behavior signal target rating r ∈ [0,1]
is an indicator for the contentment of a behavior. A value of r = 0 indicates
that the behavior is content with the actual state, while r = 1 shows maximal
dissatisfaction. Values between 0 and 1 refer to a partially content behavior.

To ensure a consistent behavior network during the development process,
some principles have to be complied with. Similar to [HA01] these principles
allow some basic assumptions about the structure of the control system.
These are required for the analysis of system properties.

As the activation defines the upper bound of a behavior’s influence, the
following principle must be observed:

Principle 8.1 (Activity limitation). The activity a of a behaviorB is limited
by the activation ι of B: a ≤ ι

Furthermore, if the system is in the goal state of a behavior (character-
ized by r = 0), it intends to maintain its adjusted influence. Therefore, the
following principle is postulated:

Principle 8.2 (Goal state activity). The activity a of a behavior B does
not change in case r = 0 and ι = const.

Usually a behavior’s activity is a = 0 in case it is situated in its goal
state, but there are cases where a constant influence is required, i. e. a > 0.
An example is a behavior generating torque for an arm joint. If, in this
case, the behavior’s activity was lowered in the goal state, external forces or
competing behaviors could change the adjusted joint angle.

In contrast to the influence of the activation on the activity, the target
rating only depends on the input vector and the behavior-internal state.
This way, the target rating is an indicator for a behavior’s state assessment,
leaving out external adjustments of its influence:

236 8 Control Architectures

Principle 8.3 (Target rating independence). There is no (direct, i. e. inside
a behavior) influence of the activation ι on r.

As described before, behavior-based architectures do not work with a
centralized world model. This is represented by the fact that actions of a be-
havior only depend on the input vector �e, their activation and the behavior-
internal representation of the current situation, which can be non-existent
for certain behaviors.

Example behavior Turn to object

In order to exemplify the calculation of the described behavior properties,
this section describes a showcase behavior rotating a vehicle to a detected
object in front. As input vector �e the behavior receives the angle β to the
object to be followed. The output �u is a normalized rotation value rot ∈
[−1,1]. As the rotation output shall point the robot into the direction of the
object, the transfer function can be defined as:

rot =

⎧⎨⎩
−1 if β < −βmax

β
βmax

if − βmax ≤ β ≤ βmax

1 if β > βmax

(8.7)

The target rating indicates the contentment of the behavior with the current
situation. As the goal is to point the vehicle into the direction of the object,
the behavior becomes discontent according to the angle to the object:

r = h(β) (8.8)

with

h(β) =

{
|β|

βmax
if |β| ≤ βmax

1 else
(8.9)

As the behavior intends to reduce the deviation to the object, its activity
has to increase if the angle to the object grows. The activation ι limits a in
order to meet Principle 8.1:

a = ι · h(β) (8.10)

8.3.2 Fusion behavior module

A behavior-based system certainly is not completed with the implementation
of the single behaviors. As the influence of behaviors on control values or
on other behaviors interleaves, and as they can have contrary goals, their
outputs must be usefully combined. This question of behavior coordination
is often considered the main problem in developing such an architecture.

8.3 The integrated behavior-based control architecture iB2C 237

The behavior coordination within iB2C networks is achieved by so-called
fusion behaviors (see figure 8.10). These are integrated in the case of com-
peting behaviors.

s

�ı

�a

r

�e

�u

F (�e, ι)

Figure 8.10 Fusion behavior module in iB2C

Fusion behaviors have the same interface as defined by the basic behavior
module. For the coordination of p competing behaviors Bc, the input vector
�e is composed of

• the activities ac (or the derived activities ai
c of the vector �ac respec-

tively),

• the target ratings rc, and

• the output vectors �uc.

The transfer function F is the fusion function processing input values to a
merged output control vector �u.

An example of the fusion of three competing behaviors Bc, c ∈ {0,1,2} is
depicted in figure 8.11. Each of the Bc is connected to the fusion behavior by
its behavior signals ac and rc as well as the output vector �uc. For clarification,
the input vector of the fusion behavior is drawn separately.

Figure 8.11 Exemplary fusion of three behavior outputs

The underlying assumption of the fusion of output values is that behav-
iors with a high activity deserve a higher influence on the control output than

238 8 Control Architectures

those with a lower activity. By using the behavior signal activity as a means
for coordinating the behaviors, the control data flow and the coordination
data flow are separated.

The behavior signal calculation of fusion behaviors has to comply with
the following principle:

Principle 8.4 (Fusion behavior neutrality). The calculation of the activ-
ity a and the target rating r of a fusion behavior must keep the following
conditions:

min
c

(ac) · ι ≤ a ≤ min

⎛⎝1,
p−1∑
j=0

aj

⎞⎠ · ι (8.11)

min
c

(rc) ≤ r ≤ max
c

(rc) (8.12)

This way, it is guaranteed that a fusion behavior does not inject or
remove activity, as expected from a coordination component. Furthermore,
there is no improvement or deterioration of satisfaction. This accounts for
the fact that calculations concerning the assessment of state are only located
in non-fusion behavior modules.

The following sections describe the set of fusion function implementa-
tions being used.

Maximum fusion (winner takes all)

In the case of maximum fusion the control value of the most active behavior
is forwarded. Other behaviors obtain no influence. The transfer function F
is defined as:

�u = �us where s = argmax
c

(ac) (8.13)

Activity and target rating are set according to the most active behavior:

a = max
c

(ac) r = rs where s = argmax
c

(ac) (8.14)

The maximum fusion implements a switching between behaviors and is suit-
able when a combination of control outputs leads to unwanted results.

Weighted fusion

In the case of weighted fusion the control values of the competing behaviors
are weighted with the activity of the corresponding behavior. This way, a
subtle gradation of coordinating behavior control outputs regarding their
activity is achieved.

8.3 The integrated behavior-based control architecture iB2C 239

The transfer function F is defined as:

�u =

p−1∑
j=0

aj · �uj

p−1∑
k=0

ak

(8.15)

The activity is defined as:

a =

p−1∑
j=0

a2
j

p−1∑
k=0

ak

· ι (8.16)

The target rating of a fusion behavior indicates its goal to satisfy highly
activated input behaviors and is calculated as follows:

r =

p−1∑
j=0

aj · rj
p−1∑
k=0

ak

(8.17)

Weighted sum fusion

The weighted sum fusion is used for summing up the control values of the
competing behaviors according to their activity. Applications for this fusion
function are cases where several behaviors contribute to a torque of a joint
or in cases where vectors are added up.

The transfer function F is defined as:

�u =
p−1∑
j=0

aj · �uj

max
c

(ac)
(8.18)

The activity is defined as:

a = min

⎛⎝1,
p−1∑
j=0

a2
j

max
c

(ac)

⎞⎠ · ι (8.19)

The target rating calculation is the same as for the weighted fusion:

r =

p−1∑
j=0

aj · rj
p−1∑
k=0

ak

(8.20)

240 8 Control Architectures

8.3.3 Behavior interaction

Besides communication between behaviors through the environment or by
using arbitrary data, the behavior interaction mainly takes place by trans-
ferring activity data between behaviors. As activity defines the relevance
of behaviors and their outputs, the transfer inside the behavior network is
restricted as follows:

Principle 8.5 (Stimulation/inhibition restriction). Inside iB2C behavior
networks a behavior B may only be stimulated or inhibited by the activity
a or ai of the vector �a of other behaviors.

This way, it is clearly defined where activity is injected into the behav-
ior network and how it is transferred to other behaviors. Consequently, it is
impossible for a behavior to gain influence without being sufficiently stimu-
lated. The flow of activity through iB2C networks therefore allows statements
about the overall system behavior.

In contrast to the activity signal, the target rating of behaviors counts as
local situation assessment. It is used as abstract sensor value or for evaluating
regions of dissatisfaction but is not transferred through the whole behavior
network.

Due to the importance of the behavior signals activity and target rating,
these values must be present everywhere inside the behavior network:

Principle 8.6 (Behavior signal availability). Each control value entering
a behavior network must be provided with a suitable activity and target
rating value. Activity and target rating must not be dropped until control
values leave the behavior network, i. e. until they are transformed to actuator
commands.

This principle guarantees that for each control value an assessment of
the relevance is provided. This is a key aspect which allows further processing
of the data in the behavior network.

More precisely, the following sources and sinks of activity can be speci-
fied:

Sources of activity: Activity can enter the behavior network as follows:

1. Behaviors are stimulated from outside the behavior network.

2. Behaviors are constantly stimulated.

3. The activity of a behavior is used as stimulation for several other
behaviors.

8.3 The integrated behavior-based control architecture iB2C 241

Sinks of activity: Activity can be reduced inside the behavior network as
follows:

1. Fusion Behaviors combine several input activities to one output
activity.

2. An activated behavior can emit an activity a < ι or a derived
activity ai < ι of the vector �a.

3. A behavior which is inhibited reduces the amount of activity at
that place in the network.

4. If a behavior’s activity output is not connected to another behavior,
its activity is lost (e. g. in case a control value leaves the behavior
network).

The previously defined principles allow the usage of the flow of activity for
deriving each behavior’s influence on other parts of the behavior network.

8.3.4 Behavior coordination

The behavior-based approach implies that several behaviors can contribute
to the same control value. Therefore, the coordination of behaviors requires
suitable mechanisms. This is where behavior architectures differ most. The
following shows how a multitude of coordination mechanisms can be imple-
mented in iB2C based on the uniform behavior module model (including the
fusion behaviors).

A distinction of mechanisms for behavior coordination is presented in
[Pir99]. Here, the first criterion distinguishes if several behaviors are arbi-
trated, i. e. one behavior or a set of them has control for a period of time,
or if their commands are fused, i. e. a combination of control outputs of the
behaviors takes place.

Arbitration makes sense when behavior actions have to be transferred
without modification. The following types can be distinguished [Pir99]:

Priority-based mechanisms: Behaviors are selected according to priori-
ties assigned to each of them (e. g. [Bro86]).

Priority-based arbitration in iB2C is implemented using inhibition of
behaviors, see figure 8.12. The order of the behaviors determines the
priority of each component. The maximum fusion behavior selects the
most active behavior.

State-based mechanisms: Behaviors are selected in respect to the cur-
rent state and the competence of behaviors for handling the situation
(e. g. [KCB97]).

242 8 Control Architectures

Figure 8.12 Priority-based arbitration in iB2C

State-based arbitration is realized using a behavior containing state
evaluation mechanisms which stimulates action generating behaviors.
Coordination takes place using a maximum fusion behavior.

If the state evaluation relies on feedback of the action generating be-
haviors, the activity and the target rating of the respective behaviors
can be used.

Winner-takes-all mechanisms: One of the behaviors is selected as a re-
sult of a competition between them (e. g. [Mae89]).

The Winner-takes-all mechanism is directly supported in iB2C by the
maximum fusion. Here, the competition between the behaviors is im-
plemented as activity calculation.

In contrast to arbitration, command fusion supports the combination of be-
havior outputs. Several solutions for representing the desired commands and
for determining the relevance of commands have been developed [Pir99]. Be-
sides command fusion using the weighted sum fusion function, iB2C directly
supports the superposition and voting mechanisms.

Voting: Each behavior votes for different actions. After combining them, the
action receiving the highest number of votes is chosen (e. g. [PRK91]).

In iB2C, voting is implemented using a standard fusion behavior and
a mapping behavior (see figure 8.13). Each behavior involved provides
votes for each of the n possible options (e. g. driving directions) which

8.3 The integrated behavior-based control architecture iB2C 243

are transferred to the fusion behavior implementing the weighted fusion
function. The output of the fusion behavior consists of the weighted
votes for each voting option. A mapping behavior stimulated by the
fusion behavior then maps the maximal option rating to a command
for further processing.

Figure 8.13 Voting mechanism in iB2C

Superposition: Behavior actions are represented as vectors which are lin-
early combined (e. g. [Ark87]).

Superposition in iB2C is implemented by the weighted sum fusion,
where a component-wise fusion takes place with the activity represent-
ing the relative scale of each vector.

Fuzzy: Similar to voting mechanisms, here fuzzy inferencing techniques are
used (e. g. [SKR95]).

Multiple objective: Also similar to voting, the desirability of actions is
defined by each behavior’s objective function. Coordination is carried
out by looking for actions that sufficiently satisfy all objective functions
by using multiple objective decision theory methods (e. g. [PHTO+00]).

As fuzzy inferencing techniques and multiple objective mechanisms imple-
ment functionality similar to voting, they are not treated here.

8.3.5 Design guidelines

Designing a control system for robotic applications requires a systematic
methodology in order to cope with the complexity of sensor processing and

244 8 Control Architectures

control data generation. In iB2C, the development begins by figuring out the
relevant degrees of freedom (dof), e. g. rotation and velocity of a vehicle,
emotional actuators of a humanoid head, or joint motions of legs. Each of the
dof is divided into positive and negative direction, leading to two control
data paths for every motion possibility. The conflation of the data flow is
accomplished using a fusion behavior for each of the dof. Depending on the
mechanical construction, the described approach may be performed several
times for each kinematic chain involved, e. g. for a pan tilt unit of a camera
head or for a multitude of legs.

In order to fulfill basic safety requirements, the next step is introducing
behaviors reacting on safety related sensor input (e. g. stopping or turning
away a vehicle because of data provided by a proximity sensor). Each of the
safety behaviors influences a dof by using its activity output for inhibiting
fusion behaviors of the layer above and by propagating a new command to a
fusion behavior in the layer below. As each of the dof is divided into positive
and negative direction, behaviors can be integrated in such a way that only
the supervised direction is influenced.

This procedure results in an interface for higher level behaviors and
encapsulates the functionality of a safety behavior system. High-level be-
haviors are then added using a top-down task-oriented approach. Methods
like those proposed in [Bry01], asking for what to do how and when and
iteratively revising the structure can be applied here.

Hierarchical abstraction One advantage of the decomposition of tasks
into behaviors is the low complexity of each behavior. However, the result
of this approach often is a network with a large number of behaviors. In
order to simplify the structure and to clarify the functionality, a hierarchical
abstraction becomes necessary. In the case of iB2C this can be accomplished
using behavioral groups (see figure 8.14). These are groups in the sense of the
embedding programming framework3, i. e. a collection of modules or further
groups with a new interface and dedicated connections between group and
modules. A behavioral group acts as a new behavior, providing the same
standardized input and output signals described in section 8.3.1.

The challenge for the developer is finding sets of behaviors representing
new semantic groups. One approach is to reflect the implemented decom-
position in the hierarchical structure of groups. Another hint for grouping
behaviors stems from the influence of multiple behaviors on a dof. If several
behaviors work in the same domain and have an influence on the same data
3 in this case the modular control architecture mca, [SAG01]

8.3 The integrated behavior-based control architecture iB2C 245

path in the network (e. g. behaviors using different sensor systems for bring-
ing a vehicle to a halt), these behaviors are good candidates for forming a
new group.

When constructing a behavior network, the designer has to question
himself about the semantics behind behaviors and whether a group of be-
haviors separates from the individuals to form a new semantic unit. If this
is the case, a new behavioral group should be introduced.

Figure 8.14 Example for a behavioral group in iB2C with a fusion behavior pro-
viding the behavior signals for the group interface.

Behavior signal usage The main challenge when coping with systems
growing in complexity is making statements about the current system status.
This is not only necessary for a developer trying to find out if an implemented
feature works, but also for system components trying to reason about the
result of a given command. In this sense it becomes invaluable having a
common interface of behaviors representing their internal state in an abstract
way. In iB2C, behaviors generate the behavior signals activity (a) and target
rating (r) which can be used for detecting several important aspects of the
system (for examples see [HBB07]):

• deadlock detection (e. g. by supervising obstacle detection behaviors),

• risk determination (e. g. by supervising slope detection behaviors)

• effort (e. g. by supervising behaviors supervising current measurement
of motors)

• oscillation detection (e. g. by supervising behavior activities over time)

246 8 Control Architectures

8.3.6 Analysis of iB2C networks

Developing robotic systems requires some kind of support for system analy-
sis in order to tackle the complexity of the evolving structure. The aim is to
accelerate system development and to reduce time spent for testing. IB2C
makes extensive use of the Modular Controller Architecture (mca). Each be-
havior is derived from a mca-module with a standard interface as presented
in section 8.3, and with predefined methods for the transfer function and
behavior signal calculation. The behaviors are then arranged in a layered
network using defined behavior interfaces and interconnections.

Therefore, the behaviors form a graph of interconnected components
with a flow of activity which enables analysis using graph theory methods.
Figure 8.15 gives an example of an automatically generated iB2C graph
containing the flow of activity between behaviors influencing the forward
and backward motion of a vehicle. Within this graph, properties like cycles
as well as stimulation and inhibition successors and predecessors can be
automatically identified to retrieve static information about the influence
of behavior modules on the robot’s behavior. This way, possible sources of
oscillations inside the behavior and interconnections contradicting with the
introduced principles have successfully been spotted.

During runtime of the robotic system the software can be supervised by
the mca tools mcagui and MCABrowser. The mcagui serves as the user
interface for the robot which can be configured using predefined widgets and
plug-ins. The tool MCABrowser lets the developer have a detailed look at
the flow of data during runtime.

For iB2C, the user interface inside MCABrowser is complemented by
indicators for the behavior signals. While the robot performs its tasks, a
condensed view of the current distribution of activation, activity, and target
rating is given using colored bars (see figure 8.16). Additionally, the flow
of activity is indicated by colored edges between behavior modules. This
way, sources of the current robot behavior can be easily identified and an-
alyzed. The example depicted in figure 8.17 presents three snapshots of the
behavior signal visualization. At first the robot is in an idle state where no
command is to be executed (top left). Therefore, all behaviors remain inac-
tive. Afterwards, a normal forward motion situation (top right) is indicated
by a flow of activity from the top interface to the bottom interface pass-
ing through fusion behaviors of different layers. Finally, a situation where
the Forward Tactile Creep behavior inhibits slow down behaviors while FW
Limit Creep Vel maintains a minimal creep velocity in order to slowly move
into vegetated regions is presented (bottom). This serious situation is clearly
visualized by a high target rating of several behaviors as well as the massive

8.3 The integrated behavior-based control architecture iB2C 247

Legend:

behavior

fusion behavior

behavioral group

stimulation

inhibition

activity transfer

Figure 8.15 Example for an activity graph of an iB2C behavior network influ-
encing the forward and backward motion of a vehicle. The different styles of the
arrows indicate the type of interaction between behaviors, i. e. stimulation, inhibi-
tion, or activity transfer. This allows the evaluation of the activity flow through the
behavior network.

inhibitory interaction between behaviors. This way, several flaws in imple-
mented iB2C networks have been detected, e. g. behaviors showing no ac-
tivity due to missing sensor information or errors in the transfer function
resulting in contradictory values for activity and target rating.

Figure 8.16 Behavior signal visualization in MCABrowser

248 8 Control Architectures

Figure 8.17 Two exemplary snapshots of the on-line behavior signal visualization
in MCABrowser (Top: Normal forward motion is indicated by the course of activity
through the forward behaviors. Bottom: Obstacles in the robot’s proximity result
in a high activity of the Forward Tactile Creep behavior which inhibits the slow
down behaviors in order to move slowly forward)

In cases where it is necessary to guarantee certain system properties, an
approach for the formal verification of a subset of behaviors can be followed
as described in [PBSS07]. With this method a subset of interconnected be-
haviors is implemented in the synchronous language Quartz and verified con-
cerning given properties using model checking techniques. Afterwards, code
is generated which is periodically called inside a mca module and which is
proven to meet given specifications.

9 Software frameworks

Developing software for autonomous robots from scratch is a complex, time-
consuming and error-prone task. There are many issues that need to be dealt
with, including hardware access, modeling of the environment, behavior syn-
thesis as well as providing convenient debugging and teleoperation facilities.
Especially in larger projects, the software needs to be clearly structured in
order to stay maintainable. Ideally, software entities can be easily reused
in other projects. Software efficiency and fault-tolerance are further critical
aspects.

Therefore, complex robotic applications are typically based on frame-
works. These frameworks contain common functionality regarding robotic
software and completely or partially support many of the issues a program-
mer would otherwise have to tackle. Hence, a framework has a critical impact
on software quality and features of a robot control, as well as the develop-
ment process in general. It should provide all necessary facilities so that
a developer can concisely and conveniently address problems arising in his
specific domain.

Many frameworks have been proposed and developed in the past. In fact,
“it is only a small overstatement to say that almost every lab has brewed its
own solution for robot control architecture, middleware and software integra-
tion concepts” [SP07], p. 1. However, not many frameworks are used outside
of these labs. Regarding the darpa Urban Challenge, [MBK07], p. 2, state:
“To our knowledge, none of the numerous teams participating in the com-
petition use any of the Robotics Software Systems outside of their original
circle of developers”.

Different frameworks focus on different aspects such as robustness, effi-
ciency or ease of use. These are supported very well while others are some-
times neglected. Currently, there is no solution which is clearly superior to
all the others [MBK07].

Using the vast majority of robotic frameworks, applications are con-
structed in a modular fashion. Software entities (“modules”, “components”,
“services”) are instantiated and can be connected in a network-transparent
way. This way, robot controls can be easily distributed across several com-
puting nodes. Therefore, network throughput and latency are critical factors
in robotic frameworks.

250 9 Software frameworks

Other important aspects include ease of use, supported programming
languages, generality, flexibility, extensibility, efficiency, scalability, robust-
ness and reliability, real-time capabilities, interoperability, portability and
promoting software reuse.1 Ideally, a framework already provides many hard-
ware drivers and algorithm implementations.

In the following, a small selection of frameworks is presented in more
detail. They are used at several labs and are available to the public. First,
the Player Project will be introduced. It is arguably the most well-known
open source robotics framework. Then, Microsoft Robotics Developer Studio
is covered. It provides extensive tool support and was designed to be simple
to use. After that, the open source frameworks Orca and mca are discussed.

The frameworks are presented briefly – with a focus on concepts and
general information, since the details will quickly become outdated (major
parts are excerpts from [Rei08]).

Other important and interesting frameworks that are not covered in this
book include CLARAty [Nes07], ROCI [CCT07], CoolBot [DBHSIGCG07],
marie [CLR07], Orocos [Bru01], Urbi [Bai07], Robotics4.net [CCAC07],
xcf [FW07], Pyro [BKMY03], aria2 and many more.

9.1 The Player Project

The Player Project3 is also known as “Player/Stage Project” or “Play-
er/Stage/Gazebo Project”. According to [CMG05], the “Player/Stage/Ga-
zebo tools have become a de facto standard in the Open Source robotics
community”.

Development began in 1999 at the Robotics Research Lab of the Univer-
sity of Southern California4, “to address an internal need for interfacing and
simulation for Multi-Robot Systems” [GVH03], p. 1. In 2001, the project
was released under the terms of the gnu General Public License (version
2.1). Since then, it has been downloaded more than 100,000 times and is
used in many labs and educational institutions worldwide.5 In 2006, version
2.0 of the framework was released, a major rework that addressed some of
the shortcomings identified in the previous releases. Details concerning these
changes can be found in [CMG05]. The framework is still being actively de-
veloped.
1 A detailed discussion of these aspects can be found in [Rei08]
2 http://robots.mobilerobots.com/wiki/ARIA
3 http://playerstage.sourceforge.net/
4 http://www.usc.edu/
5 A list can be found on http://playerstage.sourceforge.net/wiki/PlayerUsers

9.1 The Player Project 251

The Player Project consists of three major parts – “Player”, “Stage”
and “Gazebo”. Central instance of the project is the Player Server. Stage
and Gazebo are robot simulators. Stage is a 2D simulator designed to sim-
ulate large populations of robots with reasonable accuracy. Gazebo is a 3D
simulator with high accuracy and therefore only suited for a small number
of robots.

The Player server is a device server that is usually installed on robots,
providing access to its sensors and actuators over a network interface. Simply
put, the server provides a convenient api to a broad range of commercial
robots and robotic hardware from multiple programming languages.

Central design goals were minimalism and simplicity concerning server
and message protocol [GVS+01].

Robot controls are implemented as clients of the Player server. A control
can run on the same system as the server, as well as on any other system
connected to the robot via network. It may also be distributed across sev-
eral systems. One design philosophy regarding the player framework was to
constrain the development of clients as little as possible and not to impose
any architectural or design decisions on them. Furthermore, many hetero-
geneous devices should be concurrently accessible by many heterogeneous
clients [GVS+01].

Virtually any programming language and any platform with support for
tcp sockets can be used for the implementation of clients. However, in prac-
tice client-side libraries are used [VGH03] that hide the internals of the player
message protocol from the programmer and facilitate development. Such li-
braries exist for many programming languages including C, C++, Python,
Java, LISP, Ruby and Ada. Apart from these libraries, the Player distribu-
tion does not contain any facilities or libraries supporting the development
of robot controls.

Since Player 2.0, the network interface and protocol are an interchange-
able component called “transport”. This way, support for technologies like
Corba [Obj98] or jini [Wal99] can be implemented if needed. Currently, a
jini-based transport is available. The original transport mechanism – still
the standard mechanism included in the Player distribution – is a clean,
simple and efficient protocol based on tcp sockets.

The Player project itself is implemented in C++ and can be compiled
and run on many posix-compliant platforms including Linux, Solaris, Mac
osx and different variants of bsd. On a Windows host, it may be used inside
a Cygwin environment.

Regarding real-time capabilities, the Player project is not suited for
meeting hard real-time requirements [CMG05].

252 9 Software frameworks

The network interfaces that a Player server provides are of particular
interest when programming a client. Each hardware device on a robot may
provide one or more interfaces for access. These can be existing interfaces,
as well as new custom ones.

In the beginning, Player was only supposed to provide simple and flex-
ible interfaces for the “Pioneer” robots used at the University of Southern
California [VGH03]. The simulators support the same interfaces, so the con-
trol software can be run with either the simulator or the real robots, which
is useful for testing. Over time, drivers for further robots were implemented
that reused parts of these interfaces. Eventually, the interfaces had signifi-
cant overlaps. It became apparent that it would be advantageous if robots
providing similar functionality implemented the same interfaces. This way,
the simulators can be used for different robots. Furthermore, reuse in general
is facilitated: The same robot control could possibly be run unchanged on
different robot platforms [VGH03] and would therefore be device indepen-
dent and portable. Defining suitable abstract interfaces general enough to
support a wide range of similar hardware without becoming too complex is
a critical task in this context. Eventually, this led to the Player Abstract De-
vice Interface (padi) that currently contains 42 interfaces for different areas
of functionality.6

A player server provides a set of such interfaces to access hardware
devices. There may be several instances of the same interface type if a robot
has multiple sensors of the same type, or other similar subsystems.

The padi specification is not bound to the Player framework. [VGH03]
suggests that a standard robot interface specification like the padi might be
relevant for other robot frameworks as well.

Figure 9.1 (informally) illustrates how a Player server is structured inter-
nally. An instance of a Player server manages a set of hardware devices and
virtual devices. It has a modular structure so devices can be easily and inde-
pendently added, exchanged or removed. In order to use a hardware device
with the Player server, a driver needs to be implemented that supports the
interfaces the device ought to provide. The Player server makes the devices
interfaces available to clients. An arbitrary number of clients may connect
to a single interface.
6 http://playerstage.sourceforge.net/doc/Player-2.0.0/player/group_

_interfaces.html

9.2 Microsoft Robotics Developer Studio 253

Figure 9.1 Structure of the Player server (from [Rei08])

9.2 Microsoft Robotics Developer Studio

In December 2006, Microsoft released the “Microsoft Robotics Studio” soft-
ware development kit.7 The name was changed to “Microsoft Robotics Devel-
oper Studio” in 2008. A major design goal was to make developing robotic
applications significantly easier than it had been in the past. Developers
with little programming experience (“non-programmers” [Mic07]) explicitly
belong to the targeted audience. Particularly for them, the Microsoft Visual
Programming Language (vpl) was developed, allowing creation of robot con-
trols graphically by connecting services and functional blocks. Apart from
that, Microsoft Robotics Developer Studio includes a powerful simulator –
the Microsoft Visual Simulation Environment. Microsoft Robotics Developer
Studio is currently available in three editions8 – the “Standard Edition” for
$499.95, the “Academic Edition”, and the free “Express Edition” with some
limitations.

A variety of commercially available robots and other hardware is sup-
ported by Robotics Developer Studio. Robotic applications based on Mi-
crosoft Robotics Developer Studio require a Microsoft operating system to
run. Apart from the desktop operating systems Windows XP, Vista and
Server 2003, the operating systems Windows XP Embedded CE 6.0 and Mo-
bile 6.0 are supported. Robot controls are developed using the .net frame-
7 http://www.microsoft.com/robotics/
8 Information valid as of June 2009

254 9 Software frameworks

work and Visual Studio ides9. Embedded devices require the .net Compact
Framework.

Microsoft Robotics Developer Studio has a strongly service-oriented ar-
chitecture – in some areas identical to web services. A robotic application
consists of numerous loosely coupled software components that offer services
and are called Decentralized Software Services (dss). These dss execute in-
side runtime environments named dss Nodes. The services making up a robot
control can be distributed across several nodes running on different systems
to form a distributed robot control. Almost anything can be implemented
and wrapped as a dss, including sensors, actuators and different algorithms,
but also graphical user interface, or services like “storage”.

The dss infrastructure is implemented on top of the Concurrency and
Coordination Runtime (ccr). This is a common Microsoft Library that
provides sophisticated mechanisms to “manage asynchronous operations,
deal with concurrency, exploit parallel hardware and deal with partial fail-
ure” [Mic07]. It is used to manage access to shared resources and to imple-
ment the loose coupling of dss through a non-blocking mechanism for send-
ing messages and making remote procedure calls. According to [QFY+07],
ccr is implemented in C# and there are plans to develop a C++ version
with higher performance.

Important elements of the ccr library are “Ports and PortSet queuing
primitives” as well as Arbiters. A Port is a fifo (First In First Out) queue
with items of a specified type [Mic07]. A PortSet is a set of such ports.
A dss, for example, provides a PortSet to receive messages. Arbiters are
instances that are assigned to and observe a Port. Whenever the Ports’
contents change, they are notified and possibly execute user defined code.
There are many different types of Arbiters including variants for conditional
and nested execution of user code. Apart from that, the ccr contains the
Dispatcher, DispatcherQueue and Task classes that are used for scheduling
and load balancing [Mic07].

dss can be implemented in any programming language supported by
the Microsoft .net framework10 including C#, vb.net and IronPython.
The Microsoft Visual Programming Language (vpl) provided by Robotics
Developer Studio may be used as well. Code may also be implemented in
unmanaged C++. This is important if performance is critical. Concerning
ides, any edition of Visual Studio, including the free Express Editions11, can
be used for development. Services can be built either directly using a .net

9 Integrated Development Environments
10 http://msdn2.microsoft.com/de-de/netframework/default.aspx
11 http://www.microsoft.com/express/

9.2 Microsoft Robotics Developer Studio 255

ide or with the MSBuild build tool12 which is in some respects similar to
Apache Ant13.

Figure 9.2 shows how a dss is structured.

Figure 9.2 Decentralized Software Service structure (from [Mic07])

Each instance of a dss has a uri as service identifier. If a service is, for
example, called exampleservice and is a singleton, the default uri is:

http://host:port/exampleservice

If a service may be instantiated more than once, a unique identifier is ap-
pended.

In order to be accessible, each service has a contract. .net proxy dlls are
automatically generated from that contract when the binaries of the service
are built. These dlls can be used to access the service. Identifiers of such
contracts have the following form [Mic07]:

http://schemas.tempuri.org/[year]/[month]/[name].html

Furthermore, each service has a state. “Any information that is to be re-
trieved, modified, or monitored as part of a dss service must be expressed
as part of the service state.” [Mic07]

Some services require other services for operation. These are the Partner
Services. A dss specifies which other services it depends on and which are
optional. The dss Node runtime will attempt to connect the service to its
Partner Services at start-up. It can be specified that a service should not
start at all if dependencies are missing.
12 http://msdn2.microsoft.com/en-us/library/0k6kkbsd.aspx
13 http://ant.apache.org/

256 9 Software frameworks

The Main Port is a PortSet (see above) and receives messages from
other services. The Main Port must support at least one of these protocols.

For each of the required Ports, a Service Handler needs to be imple-
mented. Every time a message is received on that Port, its Service Handler
is executed. There is, however, a default implementation of two dssp oper-
ations (DsspDefaultLookup and DsspDefaultDrop).

A service may subscribe to another service. This way, it will receive
a message whenever there is a relevant state change in that other service
(Notifications). These messages arrive on a separate PortSet. There is one
such PortSet for each subscription.

Typically, a robot control application acquires and processes sensor data
and operates actuators accordingly. Figure 9.3 illustrates what a typical
robot control in Microsoft Robotics Developer Studio looks like:

Camera
(Sensor)

Bumper
(Sensor)

Laser Scanner
(Sensor)

Blob Detector Orchestrator

Motor
(Actuator)

Motor
(Actuator)

Figure 9.3 Typical structure of a robot control (each box represents a dss;
from [Rei08])

Each sensor and actuator is implemented as a service. Then there are
services that depend on other services – the Blob Detector in this example.
All these services are combined by an Orchestrator that ties them together.

As mentioned above, all services are executed inside of a runtime envi-
ronment referred to as dss Node. A dss Node provides facilities for creating,
managing and deleting services. This functionality is accessible through a
web-based user interface.

Furthermore, running services can be inspected and possibly configured
depending on which operations from the http and dssp protocols they im-
plement. By default, the state of a Service is output in plain xml. Using
XSL Transformation Templates, the xml can be transformed to match the
look and feel of other running services and the web interface in general.

9.3 Orca 257

Regarding security, dss Nodes provide several mechanisms: ntlm Au-
thentication14, restricting Service Assembly Loading to Authenticode-signed
assemblies, and Network Access Permissions (for details see [Mic07]).

Generally, Microsoft Robotics Developer Studio is not capable of meet-
ing hard real-time requirements since it is based on .net, and desktop Win-
dows platforms do not have real-time kernels. Regarding this topic, George
Chrysanthakopoulos from Microsoft stated, “for hard real time, we recom-
mend a native or even kernel mode component that sits close to the hardware
or process that needs strict timing (isochronous), and then communicates fil-
tered, lower frequency data to an msrs service”.15

For communication, Microsoft Robotics Developer Studio uses a network
protocol referred to as dssp. dssp is based on soap which is commonly used
for web services. soap is itself based on xml for data representation and
typically http/https for transport. A short “Specification” of dssp was
released in 2007 (see [NC07]).

dssp provides commands for creating, inspecting, manipulating and
deleting services, as well as subscribing to events that other services pro-
duce. This is especially useful for clients to regularly receive updated sensor
values. A dssp connection is established between two services. There are
two communication patterns: one-way messages and request/response inter-
actions [NC07].

9.3 Orca

The Orca framework16 has emerged from parts of the Orocos (“Open Robot
Control Software”) project which was funded by the eu. Originally, the Oro-
cos project was planned to be developed cooperatively by three universities
in Europe:

• the Royal Institute of Technology in Stockholm (kth), Sweden17

• the Katholieke Universiteit Leuven in Belgium18

• the Laboratory for Analysis and Architecture of Systems (laas) in
Toulouse, France19

14 “NT LAN Manager” – an authentication protocol from Microsoft
15 from http://www.eggheadcafe.com/software/aspnet/29574415/

microsoft-robotics-and-re.aspx
16 http://orca-robotics.sourceforge.net/orca/index.html
17 http://www.kth.se/
18 http://www.kuleuven.be/
19 http://www.laas.fr/

258 9 Software frameworks

Work started in 2001. Although not an official partner, the faw in Ulm,
Germany, also contributed to the Orocos project.

However, the separate projects never merged and remained largely in-
dependent. In 2004, members of the Australian Centre for Field Robotics at
the University of Sydney20 adopted the Swedish part of the Orocos project21.
Today, they are the maintainers and major contributors of the project. The
project was renamed to Orca in 2004 – the part originally developed in Bel-
gium retained the name Orocos22. At the end of 2005, Orca 2 was released,
addressing some of the shortcomings identified in the previous versions. The
most significant change was the switch from corba [Obj98] and a custom
middleware to a single middleware called ice23 (“Internet Communications
Engine” – see [HS07] for details).

Orca is an open source project. Large portions of the source code are
licensed under the terms of the gnu Lesser General Public License (lgpl) –
the remaining parts are available under the gpl, with some minor exceptions.

Orca is mainly developed and used on Linux platforms. However, parts
of the framework also run on qnx and Windows operating systems. Further-
more, there are “experimental builds” on Mac osx platforms.

The central design goal in Orca is promoting software reuse in robotics
since this is “the key to making progress in this area” [MBK06], p. 1. There-
fore, Orca explicitly follows a component-based approach commonly known
as Component-Based Software Engineering (CBSE) [BKM+07].

Orca is designed to provide the infrastructure for a functioning com-
ponent market. Ideally, this would enable using and integrating well-tested
third-party components to quickly implement robotic applications with high
quality. However, “the benefits of a component-based approach only be-
come apparent when a critical mass of component developers and users
arises” [BKM+07], p. 3. According to [BKM+07], the Player Project (see
chapter 9.1) is the only robotics framework to have established a significant
market.

Orca is meant to be a general purpose framework. It is intended to be
suitable for a broad range of robotic systems by imposing “as few constraints
as possible” [BKM+07], p. 2 on components and applications. It targets
academic as well as commercial applications.
20 http://www.acfr.usyd.edu.au/
21 http://orca-robotics.sourceforge.net/orca/orca_doc_history.html
22 http://www.orocos.org/
23 http://www.zeroc.com/ice.html

9.3 Orca 259

Furthermore, multiple languages and multiple platforms for implement-
ing and running components are supported. Orca is implemented in C++
using “Cross-platform Make”24 as a building tool.

[BKM+07], p. 2 concisely sums up Orca’s architecture: “The design of
the Orca framework is conceptually simple. A system consists of a set of com-
ponents which run asynchronously, communicating with one another over a
set of well-defined interfaces. Each component has a set of interfaces it pro-
vides and a set of interfaces it requires. The fundamental purpose of the
framework is to provide the means for defining and implementing these in-
terfaces. Standardizing the definitions and implementations of interfaces en-
sures that components are likely to be inter-operable, and hence re-useable.”

OgMapLoader
local/OGMapLoader
[ogmaploader/localhost]

PathPlanExecutor
local/PathPlanExecutor
[pathplanexecutor/localhost]

AdaptiveMCL
local/AdaptiveMCL
[adaptivemcl/localhost]

SlamLocalizer
local/SlamLocalizer
[slamlocalizer/localhost]

VfhObsAvoid
local/VfhObsAvoid
[vfhobsavoid/localhost]

SickLaser
local/SickLaser
[sicklaser/localhost]

SegwayRmp
local/SegwayRmp
[segwayrmp/localhost]

TeleopControl
local/TeleopControl
[teleopcontrol/localhost]

WaypointList
local/WaypointList
[waypointlist/localhost]

Figure 9.4 Typical Orca-based robot control (here: for Segway robots;
source: [BKM+07], p. 15)

The interfaces are specified in “Slice”, which is the interface specification
language from the ice middleware. ice allows using such interfaces in C++,
24 http://www.cmake.org/HTML/Index.html

260 9 Software frameworks

Java, Python, php, C#, Visual Basic and Ruby, so any of these languages
can be selected to implement components for the Orca framework.

Apart from the interfaces, Orca imposes no architectural constraints on
how the components are implemented. There are guidelines for orientation,
however. Orca allows defining new custom interfaces. However, the creation
of new interfaces which differ only slightly from existing ones should be
avoided. If there were, for example, ten slightly different interfaces for laser
scanners, it would be cumbersome for providers of laser scanner drivers to
support all of them.

Orca does not provide any mechanisms for real-time communication be-
tween components. This choice was taken so as not to impose “unnecessary
constraints on those parts of the system which do not require it” [BKM+07],
p. 5. If there are real-time requirements, they should be handled within a
single component – independent from Orca. The same is true regarding ef-
ficiency. Elements requiring maximum efficiency may be implemented in a
single Orca component, usually making them less reusable [MBK06], how-
ever.

Another aim in Orca was to minimize the code size of Orca’s core or
“infrastructure” [MBK06]. The switch to the ice middleware significantly
reduced that code size. Currently, the core merely consists of approximately
5500 lines of code.

As mentioned above, a major design change (and arguably improve-
ment) in Orca 2 was the switch from corba and a custom middleware to
ice. ice [HS07] (Internet Communications Engine) is an efficient, object-
oriented middleware developed by ZeroC, Inc.25 and is available both under
terms of the gpl as well as under commercial licenses. It is used in many
projects around the world. Simply put, the design goal of ice was to “build
a middleware platform that is as powerful as corba, without making all of
corbas mistakes” [HS07], p. 4.

ice supports several programming languages. Currently, these are C++,
C#, Java, Python, Ruby, php and Visual Basic. Regarding protocols, tcp
as well as udp can be used. Furthermore, ice supports features such as data
compression or ssl encryption.

Several tools and features provided by ice are exploited in Orca 2. These
include the centralized registry “IceGrid”, the application server “IceBox”
and the event service “IceStorm”.
25 http://www.zeroc.com/

9.4 MCA – Modular Controller Architecture 261

9.4 MCA – Modular Controller Architecture

The development of the mca framework began at the end of the 1990s in
the fzi26 (“Forschungszentrum Informatik”) in Karlsruhe, Germany, when
a common platform for all robots at the institute was required [SAG01].
Version two of the framework was released in 2001 under the terms of the
gplv2.27

The mca framework is also used and developed at the Robotics Research
Lab at the Technical University of Kaiserslautern. This led to an independent
branch that was publicly released in 2007.28 Having identified some areas for
improvement – especially regarding the current networking implementation
(see [Rei08]) – a major rework of the framework is almost completed. Java
support has already been added (see [KRB08]).

mca is implemented in C++ and the core of mca can be compiled on
Linux, Windows and Mac OS platforms.

mca has a modular architecture with unified interfaces that enables
reuse of many general purpose parts in robot controls. Practice has shown
that reuse in mca actually works well.

Basically, applications based on mca are divided into “parts”, “groups”
and “modules”. A part is compiled into a binary executable and contains
groups and modules. A robot control consists of at least one such part.
Different parts may be executed on different systems connected via network
to create distributed robot controls. This can also be exploited for testing
and debugging purposes. Large portions of a robot control can be executed
and debugged on an ordinary desktop computer. When everything works
satisfactorily, it can simply be moved to the robot completely.

Modules are the basic structural units in mca. “The concept of mca
is to put basic functional blocks in modules” [SAG01], p. 2. Groups in turn
contain modules and other groups. They are used to structure modules inside
of parts.

Modules, groups and parts have input and output channels that can be
connected with edges following data flow pattern – an output of one entity
may be used as an input for the next. Figure 9.5 depicts the central elements
of a module in mca:

A typical module in mca has two sets of input channels – SensorInputs
and ControllerInputs –, and two sets of output channels – SensorOutputs
and ControllerOutputs. Each channel has a name and a current value. If
26 http://www.fzi.de/ids/
27 http://www.mca2.org
28 http://rrlib.cs.uni-kl.de/mca2-kl/

262 9 Software frameworks

SensorInputs

SensorOutputs ControllerInputs

ControllerOutputs

ParametersParameters

Internal variablesInternal variables

sense() control()

Figure 9.5 Module in mca (from [Rei08])

two channels are connected with an edge, a value change is automatically
forwarded to the destination module. A module has two central methods
– sense() and control() – which are invoked by the framework with a
specified rate (usually 1–100 ms). The methods of the different modules are
called sequentially in the order of the data flow and this way form a control
cycle. There are basically two kinds of data in mca: sensor data and control
data. The first originates from hardware sensors, is subsequently processed
by different modules and may reach some kind of user interface. The latter is
usually created in some high-level modules or the user interface and finally
reaches the actuators of a robot. Obviously, SensorInputs, SensorOutputs
and sense() deal with sensor data, while ControllerInputs, ControllerOut-
puts and the control() method relate to controller data.

Modules also have parameters. These are variables of several simple data
types that can be set from the outside. They typically do not change as
frequently as data on the sensor and control data paths do. With their help,
the behavior of modules can be adapted and optimized at runtime. Finally,
modules often have internal variables that, for example, can store a model
of the environment or simply the last few sensor values in case of a filter
module.

Edges can only be used to forward numbers between modules, which
is sometimes a limitation of mca. The rework, however, will allow any data
type. mca provides a blackboard mechanism which can be used to share more
complex data between different modules or even parts. Blackboards are ar-
eas of shared memory that can be accessed from any module which is part
of a robot control. If parts are run on different computers, blackboards can
be replicated and synchronized via the network. To avoid conflicts, black-
boards may be locked when accessed. Such a lock is mandatory for writing.

9.4 MCA – Modular Controller Architecture 263

One drawback of the current single-buffered blackboard implementation is,
however, that threads in robot controls often block waiting for a blackboard
lock if the application is not carefully engineered.

There are different types of blackboards which contain all sorts of data
such as images, geometry data, text or behavior information. Further types
can easily be added.

Figure 9.6 shows an example of how parts and modules are connected
on a real robot (screenshots from the MCABrowser tool).

Figure 9.6 Connected mca parts (top) and mca modules inside a group (bottom)

264 9 Software frameworks

Classically, robot controls in mca have a hierarchical structure with
groups and modules interacting directly with hardware on the lowest level
and more abstract modules on higher levels. Nevertheless, it is also possible
to implement robot controls with a flat hierarchy in mca without problems.

The core of the mca framework is rather compact, containing only the
essential classes for building applications, as well as some tools. It can be
extended with mca libraries that seamlessly integrate into the framework. By
now, there is a repository with a large set of libraries that provide modules,
groups, hardware support and tool extensions for a wide range of application
areas – for example, facilities for mapping, speech synthesis or computer
vision. A considerable range of hardware can be accessed using mca.

mca was implemented with a focus on efficiency, which is of central
importance on robots with tightly limited computing resources. In many
places, optimized data structures and shared memory are used to keep the
cpu load low.

On platforms running a Real-Time Linux kernel (rtai and rt-Linux),
mca is generally capable of meeting hard real-time requirements. However,
this requires that all the libraries which are used also provide hard real-time
guarantees. Many libraries do not. Thus, only parts of the framework are
suited for real-time requirements. Apart from that, the blackboard mecha-
nism is only suitable for implementations with real-time requirements when
used very carefully.

9.5 Summary and comparison of robotic frameworks

As mentioned in the introduction, there is currently no framework that is
clearly superior compared to the others.

Player is popular and easy to use. It provides a convenient api to a
wide range of robots. Since “Player seeks to constrain controller design as
little as possible” [GVH03], p. 1, however, it hardly provides any facilities
for controller design. For complex robotic applications, it is arguably recom-
mendable to use another framework on top of Player as [GCM04] have done.
The Player Project is actually used in several other frameworks for accessing
hardware including Orca, marie and Pyro.

Microsoft Robotics Developer Studio is designed to be easy to use and
provides powerful tools. Since it is based on .net, any programming lan-
guage supported by the .net framework can be used to implement robotic
applications. However, creating applications with Robotics Developer Stu-
dio at some stage requires understanding its service-oriented architecture as

9.5 Summary and comparison of robotic frameworks 265

well as xml, which is arguably hard for novices – compared to using Player,
for instance. [Bai07], p. 5 backs this observation: “Generally speaking, sev-
eral users have reported that MRS remains relatively complex to master for
the moment”. Regarding efficiency, the xml-based encoding used in the net-
working mechanism (dssp) is not a good choice, since data encoded in xml
is much larger than the same data encoded in a binary format. Apart from
that, applications developed with Robotics Developer Studio are limited to
Windows platforms.

Orca focuses on bringing Component-Based Software Engineering to the
Robotics domain. Looking at the author’s targets, it appears to be an excel-
lent approach without any major shortcomings. Notably, significant parts of
Orca depend on the ice middleware. Therefore, ice has a major impact on
Orca’s performance as well as other critical aspects discussed in the introduc-
tion. If maximum efficiency or real-time capabilities are required, the authors
recommend implementing all relevant functionality in a single component.
There is no support from the framework here.

mca is one of only very few robotic frameworks with support for hard
real-time requirements and it is certainly suitable for large projects. However,
the current implementation has a few shortcomings such as the completely
synchronous communication mechanism and complex installation and use.
A major rework will address these weaknesses and introduce many new fea-
tures. Experimental versions of this already exist (see [Rei08]).

266 9 Software frameworks

Fr
am

ew
or

ks
 fo

r R
ob

ot
ic

 S
ys

te
m

s
Fr

am
ew

or
k

M
C

A
Pl

ay
er

 P
ro

je
ct

M
ic

ro
so

ft
R

ob
ot

ic
s

D
ev

el
op

er
 S

tu
di

o
(O

rig
in

al
) D

ev
el

op
er

M
ic

ro
so

ft
C

or
p.

Li
ce

ns
e

G
P

L
(v

er
si

on
 2

 o
r l

at
er

)
G

P
L

(v
er

si
on

 2
.1

 o
r l

at
er

) o
r L

G
P

L
(e

xc
ep

t o
f d

riv
er

s)
LG

P
L

an
d

G
P

L

H
om

ep
ag

e
ht

tp
://

w
w

w
.m

ca
2.

or
g/

D
ev

el
op

m
en

t P
er

io
d

si
nc

e
19

98
si

nc
e

19
99

si
nc

e
20

04
si

nc
e

20
01

Fi
rs

t p
ub

lic
 re

le
as

e
20

01
20

01
20

06
Pl

at
fo

rm
O

pe
ra

tin
g

S
ys

te
m

s
Li

nu
x,

 (W
in

do
w

s,
 M

ac
 O

S
)

Li
nu

x,
 S

ol
ar

is
, *

B
S

D
, M

ac
 O

S
X

Li
nu

x,
 (Q

N
X

, W
in

do
w

s
X

P
, M

ac
 O

S
X

)

H
ar

dw
ar

e
an

y
su

ite
d

fo
r a

bo
ve

 O
S

G
en

er
al

A
rc

hi
te

ct
ur

e
si

m
pl

e,
 m

od
ul

ar
, s

er
ve

r/c
lie

nt
m

od
ul

ar
, s

er
vi

ce
-o

rie
nt

ed
 -

si
m

ila
r t

o
w

eb
 s

er
vi

ce
s

co
m

po
ne

nt
-b

as
ed

, m
in

im
al

 c
or

e

S
tru

ct
ur

al
 e

le
m

en
ts

“p
ar

ts
”,

“g
ro

up
s”

, “
m

od
ul

es
”

“p
la

ye
r s

er
ve

rs
”,

“c
lie

nt
s”

, “
(v

irt
ua

l)
de

vi
ce

s”
D

ec
en

tra
liz

ed
 S

ys
te

m
 S

er
vi

ce
s

(D
S

S
),

D
S

S
 N

od
es

co
m

po
ne

nt
s

R
un

tim
e

M
od

el
cl

ie
nt

s
re

ce
iv

e
da

ta
 p

er
io

di
ca

lly
ev

en
t-d

riv
en

In
te

rfa
ce

 ty
pe

se
ts

 o
f p

or
ts

 o
r p

in
s

w
ith

 n
um

be
rs

R
ea

l-t
im

e
ca

pa
bi

lit
ie

s
ha

rd
 re

al
-ti

m
e

in
 s

om
e

pa
rts

 o
f t

he
 fr

am
ew

or
k

no
 h

ar
d

re
al

-ti
m

e
no

 re
al

-ti
m

e
in

te
r-

se
rv

ic
e

co
m

m
un

ic
at

io
n

no
 re

al
-ti

m
e

in
te

r-
co

m
po

ne
nt

 c
om

m
un

ic
at

io
n

In
te

ro
pe

ra
bi

lit
y

-
w

ith
 P

la
ye

r P
ro

je
ct

 (f
or

 h
ar

dw
ar

e
ac

ce
ss

)
D

ev
el

op
m

en
t

C
++

C
++

C
++

S
up

po
rte

d
la

ng
ua

ge
s

C
++

, J
av

a,
 P

yt
ho

n,
 P

H
P

, C
#,

 V
is

ua
l B

as
ic

, R
ub

y

B
ui

ld
 to

ol
m

ak
e

E
ffi

ci
en

t s
ha

re
d

m
em

or
y

m
ec

ha
ni

sm
 fo

r d
at

a
ye

s
–

ho
w

ev
er

, c
on

cu
rr

en
t a

cc
es

s
ca

n
bl

oc
k*

in
si

de
 P

la
ye

r s
er

ve
r

no
as

 fa
r a

s
pr

ov
id

ed
 b

y
IC

E
(S

I)
un

its
co

nv
en

tio
ns

: d
is

ta
nc

e
in

 m
et

re
s,

 a
ng

le
s

in
 ra

di
an

s
no

 e
xp

lic
it

co
nv

en
tio

ns
 (t

o
ou

r k
no

w
le

dg
e)

co
nv

en
tio

ns
: d

is
ta

nc
e

in
 m

et
re

s,
 a

ng
le

s
in

 ra
di

an
s

C
om

m
un

ic
at

io
n

M
ec

ha
ni

sm
 e

xc
ha

ng
ea

bl
e

no
*

ye
s

no
no

S
ta

nd
ar

d
pr

ot
oc

ol
cu

st
om

, b
as

ed
 o

n
TC

P
 (m

or
e

th
an

 8
0

co
m

m
an

ds
)*

cu
st

om
, s

im
pl

e,
 b

as
ed

 o
n

TC
P

D
at

a
en

co
di

ng
X

D
R

X
M

L
st

an
da

rd
 IC

E
 e

nc
od

in
g

A
sy

nc
hr

on
ou

s
no

*
ye

s
ye

s
ye

s
P

ul
l s

tra
te

gy
 /

pu
sh

 s
tra

te
gy

C
om

pr
es

si
on

-*
-

-
A

ut
om

at
ic

 re
so

ur
ce

 d
is

co
ve

ry
no

*
no

no
t r

ea
lly

W
eb

 in
te

rfa
ce

no
*

no
ye

s,
 fo

r a
dm

in
is

tra
tio

n
&

 d
ia

gn
os

is
no

S
ec

ur
ity

pa
ss

w
or

d
au

th
en

tic
at

io
n

no
ne

N
TL

M
 a

ut
he

nt
ic

at
io

n,
 p

ol
ic

ie
s/

pe
rm

is
si

on
s

fir
ew

al
l,

da
ta

 e
nc

ry
pt

io
n

To
ol

s
G

U
I E

di
to

r
?

To
ol

 s
up

po
rt

in
cl

ud
es

D
eb

ug
gi

ng
/D

ia
gn

os
is

, S
im

ul
at

io
n

(3
D

)
D

eb
ug

gi
ng

/D
ia

gn
os

is
, S

im
ul

at
io

n
(2

D
 &

 3
D

)
D

eb
ug

gi
ng

/D
ia

gn
os

is

*
ad

dr
es

se
d

in
 m

aj
or

 re
w

or
k

O
rc

a
F o

rs
ch

un
gs

ze
nt

ru
m

 In
fo

rm
at

ik
 (F

ZI
),

K
ar

ls
ru

he
R

ob
ot

ic
s

R
es

ea
rc

h
La

b,
 U

ni
ve

rs
ity

 o
f S

ou
th

er
n

C
al

ifo
rn

ia
 (U

S
C

)
A

C
FR

, U
ni

ve
rs

ity
 o

f S
yd

ne
y,

 A
us

tra
lia

; C
A

S
,

K
un

gl
ig

a
Te

kn
is

ka
 H

ög
sk

ol
an

, S
to

ck
ho

lm
;

S
ta

nd
ar

d
E

di
tio

n
(4

99
$)

, A
ca

de
m

ic
 E

di
tio

n,
 E

xp
re

ss

E
di

tio
n

ht
tp

://
pl

ay
er

st
ag

e.
so

ur
ce

fo
rg

e.
ne

t/
ht

tp
://

w
w

w
.m

ic
ro

so
ft.

co
m

/ro
bo

tic
s/

ht
tp

://
or

ca
-r

ob
ot

ic
s.

so
ur

ce
fo

rg
e.

ne
t/

20
04

 (a
s

“O
rc

a”
)

W
in

do
w

s
X

P
, V

is
ta

, S
er

ve
r 2

00
3,

 X
P

 E
m

be
dd

ed
 C

E

6.
0

an
d

M
ob

ile
 6

.0
an

y
su

ite
d

fo
r a

bo
ve

 O
S

–
on

ly
 u

se
d

on
 x

86
;

ne
tw

or
ki

ng
 re

qu
ire

s
pl

at
fo

rm
s

w
ith

 s
am

e
C

 s
tru

ct

la
yo

ut

an
y

su
ite

d
fo

r a
bo

ve
 O

S
, i

nc
lu

di
ng

 x
86

, x
64

, A
R

M
,

P
P

C
, S

pa
rc

an
y

su
ite

d
fo

r a
bo

ve
 O

S
, i

nc
lu

di
ng

 x
86

, x
64

, A
R

M
,

M
IP

S
, S

up
er

H

m
od

ul
ar

, d
at

af
lo

w
-o

rie
nt

ed
, b

la
ck

bo
ar

ds

lo
op

-b
as

ed
, o

ne
 m

ai
n

lo
op

 th
re

ad
 p

er
 p

ar
t,

th
re

ad
-

co
nt

ai
ne

rs
 fo

r f
ur

th
er

 th
re

ad
s*

ty
pi

ca
lly

 lo
op

s
in

si
de

 c
om

po
ne

nt
s,

 a
t l

ea
st

 o
ne

th

re
ad

 p
er

 c
om

po
ne

nt
ob

je
ct

-o
rie

nt
ed

 /
R

P
C

s,
 s

et
 o

f s
ta

nd
ar

d
in

te
rfa

ce
s

ob
je

ct
-o

rie
nt

ed
 /

R
P

C
s,

 s
et

 o
f s

ta
nd

ar
d

in
te

rfa
ce

s
ob

je
ct

-o
rie

nt
ed

 /
R

P
C

s,
 s

et
 o

f s
ta

nd
ar

d
in

te
rfa

ce
s

(H
TT

P
 in

te
rfa

ce
 w

ith
 J

av
aM

C
A)

*
us

ed
 in

 O
rc

a,
 M

ar
ie

 a
nd

 P
yr

o

Im
pl

em
en

tio
n

la
ng

ua
ge

lim
ite

d
in

fo
rm

at
io

n;
 d

ef
in

ite
ly

 C

an
d

C
++

, m
ay

be

ot
he

rs
C

++
 (J

av
a

w
ith

 J
av

aM
C

A)
*

cl
ie

nt
 li

br
ar

ie
s

fo
r C

, C
++

, P
yt

ho
n,

 J
av

a,
 R

ub
y,

 G
ui

le
,

O
ct

av
e,

 L
IS

P
, A

da
 a

nd
 M

at
la

b
A

ll
C

LI
 la

ng
ua

ge
s

in
cl

ud
in

g
C

++
, C

#,
 V

B
.N

E
T,

Iro

nP
yt

ho
n;

 M
ic

ro
so

ft
V

is
ua

l P
ro

gr
am

m
in

g
La

ng
ua

ge

(V
P

L)
; T

hi
rd

 p
ar

ty
 la

ng
ua

ge
s

SC
on

s
.N

E
T

ID
E

 o
r M

S
B

ui
ld

C
M

ak
e

no
 e

xp
lic

it
co

nv
en

tio
ns

, s
up

po
rt

in
 s

om
e

bl
ac

kb
oa

rd

ty
pe

s*

D
S

S
P

: “
si

m
pl

e”
, b

as
ed

 o
n

S
O

A
P

; H
TT

P
 fo

r w
eb

br

ow
se

rs
ba

se
d

on
 IC

E
 m

id
dl

ew
ar

e

ra
w

 C
 s

tru
ct

s*

 /
- *

 /
 /

 /

vi
a

U
P

nP

(.N
E

T
ID

E
)

V
is

ua
l P

ro
gr

am
m

in
g

La
ng

ua
ge

 ID
E

, a
dv

an
ce

d
S

im
ul

at
io

n
(3

D
),

Te
st

in
g

Figure 9.7 Tabular comparison of presented frameworks (June 2009)

Bibliography

[AC02] P. Althaus and H. I. Christensen. Behaviour coordination
for navigation in office environments. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 2298–2304, 2002.

[AHB87] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares
fitting of two 3-d point sets. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 9(5):698–700, Septem-
ber 1987.

[AKSB07] C. Armbrust, J. Koch, U. Stocker, and K. Berns. Mo-
bile robot navigation support in living environments. In
20. Fachgespräch Autonome Mobile Systeme (AMS), pages
341–346, Kaiserslautern, Germany, October 2007.

[Alb92] J.S. Albus. A reference model architecture for intelligent
systems design. In P. J. Antsaklis and K. M. Passino, edi-
tors, An Introduction to Intelligent and Autonomous Con-
trol, pages 57–64, Boston, MA, 1992. Kluwer Academic
Publishers.

[Alb07] Jan Albiez. Verhaltensnetzwerke zur adaptiven Steuerung
biologisch motivierter Laufmaschinen. GCA Verlag, 2007.

[ALBD03] J. Albiez, T. Luksch, K. Berns, and R. Dillmann. An
activation-based behavior control architecture for walking
machines. The International Journal on Robotics Research,
Sage Publications, vol. 22:pp. 203–211, 2003.

[Ark87] R.C. Arkin. Towards Cosmopolitan Robots: Intelligent Nav-
igation in Extended Man-made Environments. PhD the-
sis, Graduate School of the University of Massachusetts,
September 1987.

[Ark89] R.C. Arkin. Motor schema-based mobile robot navigation.
International Journal of Robotics Research, pages 92–112,
August 1989.

[Ark98] R. Arkin. Behaviour-Based Robotics. MIT Press, 1998.

268 9 Bibliography

[Ast07] X. Astigarraga. 3d reconstruction of structured indoor en-
vironments. Master’s thesis, University of Kaiserslautern,
March 2007.

[Bai07] J.-C. Baillie. Design principles for a universal robotic soft-
ware platform and application to urbi. In 2nd National
Workshop on Control Architectures of Robots (CAR’07),
pages 150–155, Paris, France, May 31-June 1 2007.

[BDB+07] J. Baeten, K. Donne, S. Boedrij, W. Beckers, and E. Clae-
sen. Autonomous fruit picking machine: A robotic apple
harvester. In 6th International Conference on Field and
Service Robotics - FSR 2007, 2007.

[Bee96] R.D. Beer. Toward the evolution of dynamical neural net-
works for minimally cognitive behavior. From Animals to
Animats 4: Proceedings of the Fourth International Confer-
ence on Simulation of Adaptive Behavior, 1996.

[BF94] J. Borenstein and L. Feng. A method for measuring,
comparing and correcting dead-reckoning errors in mobile
robots. Technical report, University of Michigan, 1994.

[BILM03] A. Bonarini, G. Invernizzi, T.H. Labella, and M. Matteucci.
An architecture to coordinate fuzzy behaviors to control an
autonomous robot. Fuzzy Sets and Systems, 134(1):101–
115, 2003.

[BKM+07] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and
A. Orebäck. Orca: A component model and repository. In
Brugali [Bru07].

[BKMY03] D. Blank, D. Kumar, L. Meeden, and H. Yanco. Pyro: A
python-based versatile programming environment for teach-
ing robotics. Journal on Educational Resources in Comput-
ing (JERIC), 3(4), 2003.

[BM92] P. Besl and N. McKay. A method for registration of 3-
d shapes. In IEEE Transactions on Pattern Analysis and
Machine Intelligence, volume 14, pages 239–258, February
1992.

269

[Bre04] Christian Brenneke. Ein scanbasierter Ansatz zur ex-
ploratorischen Navigation mobiler Systeme in unstrukturi-
erten Outdoor-Umgebungen. dissertation.de - Verlag im In-
ternet GmbH, 2004.

[Bro82] R. A. Brooks. Solving the find-path problem by represent-
ing free space as generalized cones. Memorandum MIT-
Artificial Intelligence Lab, 1982.

[Bro86] R.A. Brooks. A robust layered control system for a mo-
bile robot. IEEE Journal of Robotics and Automation, RA-
2(1):14–23, April 1986.

[Bro87] Rodney A. Brooks. Visual map making for a mobile robot.
In Readings in computer vision: issues, problems, principles,
and paradigms, pages 438–443. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1987.

[Bru01] H. Bruyninckx. Open robot control software: the orocos
project. In Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA), pages 2523–
2528, Seoul, Korea, May 21-26 2001.

[Bru07] D. Brugali, editor. Software Engineering for Experimen-
tal Robotics, volume 30 of Springer Tracts in Advanced
Robotics. Springer - Verlag, Berlin / Heidelberg, April 2007.

[Bry01] J. Bryson. Intelligence by Design: Principles of Modu-
larity and Coordination for Engineering Complex Adaptive
Agents. PhD thesis, Massachusetts Institute of Technology,
September 2001.

[CA07] S. Chernova and R.C. Arkin. From deliberative to rou-
tine behaviors: a cognitively-inspired action selection mech-
anism for routine behavior capture. Adaptive Behavior
Journal, 15(2):199–216, 2007.

[CCAC07] A. Cisternino, D. Colombo, V. Ambriola, and M. Combetto.
Increasing decoupling in the robotics4.net framework. In
Brugali [Bru07].

[CCT07] A. Cowley, L. Chaimowicz, and C. J. Taylor. Roci: Strongly
typed component interfaces for multi-robot teams program-
ming. In Brugali [Bru07].

270 9 Bibliography

[CLR07] C. Cote, D. Letourneau, and C. Ra. Using marie for mobile
robot component development and integration. In Brugali
[Bru07].

[CMG05] T. H. J. Collett, B. A. MacDonald, and B. Gerkey. Player
2.0: Toward a practical robot programming framework.
In Australasian Conference on Robotics and Automation
(ACRA), Sydney, Australia, December 5-7 2005.

[CMM06] Y. Cheng, M.W. Maimone, and L. Matthies. Visual odome-
try on the mars exploration rovers. IEEE ROBOTICS AND
AUTOMATION MAGAZINE, 13(2):54, 2006.

[CSNP05] J. Campbell, R. Sukthankar, I. Nourbakhsh, and A. Pahwa.
A robust visual odometry and precipice detection system
using consumer-grade monocular vision. In Proceedings of
the IEEE International Conference on Robotics and Au-
tomation, pages 3421–3427, 2005.

[CSS04] P. Corke, D. Strelow, and S. Singh. Omnidirectional visual
odometry for a planetary rover. In Intelligent Robots and
Systems (IROS 2004), 2004.

[DBHSIGCG07] A. C. Dominguez-Brito, D. Hernandez-Sosa, J. Isern-
Gonzalez, and J. Cabrera-Gamez. Coolbot: A component
model and software infrastructure for robotics. In Brugali
[Bru07].

[Der04] K.G. Derpanis. The harris corner detector. Technical re-
port, York University, 2004.

[DH73] R.O. Duda and P.E. Hart. Pattern Classification and Scene
Analysis. WV, 1973.

[DKWW95] R. Dillmann, M. Kaiser, F. Wallner, and P. Weckesser. Pri-
amos: Service, inspection and surveillance tasks. Technical
report, Institute for Process Control and Robotics, Univer-
sity of Karlsruhe, 1995.

[Elf89] A. Elfes. Occupancy Grids: A Probabilistic Framework for
Robot Perception and Navigation. PhD thesis, Department
of Electrical and Computer Engineering, Carnegie Mellon
University, Pittsburgh, 1989.

271

[FM96] D. Floreano and F. Mondada. Evolution of homing naviga-
tion in a real mobile robot. Systems, Man and Cybernetics,
Part B, IEEE Transactions on, 26(3):396–407, 1996.

[FN71] R. Fikes and N.J. Nilsson. Strips: A new approach to the
application of theorem proving to problem solving. Artifi-
cial Intelligence, 2(3/4):189–208, 1971.

[Fri96] B. Fritzke. Handbook of Neural Computation, chapter Un-
supervised ontogenic networks. IOP Publishing and Oxford
University Press, 1996.

[FW07] J. Fritsch and S. Wrede. An integration framework for de-
veloping interactive robots. In Brugali [Bru07].

[GB01] B. Gassmann and K. Berns. Local navigation of lauron iii
walking in rough terrain. In CLAWAR 2002, Paris, France,
2001.

[GCM04] J. Giesbrecht, J. Collier, and S. Monckton. Staged experi-
ments in mobile vehicle autonomy - procedures and results
with the segwayrmp. Technical report, Defense Research
and Development Canada - Suffield, December 2004.

[GHvP81] R. Gerten, R. Hinkel, and E. v. Puttkamer. Coupling two
microprocessors for the data processing in a micromouse.
Implementing Functions; Euromicro 1981; Ed L. Richter,
P. Le Beux, G. Nagues, 1981.

[GRD98] R. Graf, M. Rieder, and R. Dillmann. A nearly holonomous
driving concept for a mobile robot. Technical report, Insti-
tute for Process Control and Robotics, University of Karls-
ruhe, 1998.

[GVH03] B. Gerkey, R. Vaughan, and A. Howard. The play-
er/stage project: Tools for multi-robot and distributed sen-
sor systems. In 11th International Conference on Advanced
Robotics (ICAR 2003), pages 317–323, Coimbra, Portugal,
June 30 - July 3 2003.

[GVS+01] B. Gerkey, R. Vaughan, K. Sty, A. Howard, G. Sukhatme,
and M. Mataric. Most valuable player: A robot device server
for distributed control. In Proc. of the IEEE/RSJ Internati-
nal Conference on Intelligent Robots and Systems (IROS),
pages 1226–1231, Wailea, Hawaii, October 2001.

272 9 Bibliography

[HA01] C. Harper and A.Winfield. Designing behaviour based sys-
tems using the space-time distance principle. In Towards
Intelligent Mobile Robots (TIMR), 2001.

[Hac06] A. Hach. Entwicklung eines positionsbestimmungssystems
für mobile roboter, optimiert für dsp strukturen. Projektar-
beit, Technische Universität Kaiserslautern, Januar 2006.

[HBB07] J. Hirth, T. Braun, and K. Berns. Emotion based con-
trol architecture for robotics applications. In Proceedings
of the Annual German Conference on Artificial Intelligence
(KI), pages 464–467, Osnabrück, Germany, September 10-
13 2007.

[HK88] R. Hinkel and T. Knieriemen. Environment perception with
a laser radar in a fast moving robot. In IFAC Symposium
on Robot Control, pages pp. 68.1–68.7, October 5-7 1988.

[HKNO01] M. Hashimoto, H. Kawashima, T. Nakagami, and F. Oba.
Sensor fault detection and identification in dead-reckoning
system of mobile robot: Interacting multiple model ap-
proach. Technical report, Department of Mechanical Sys-
tem Engineering, Hiroshima University, 2001.

[HN68] P. E. Hart and N. J. Nilsson. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions
on System Science and Cybernetics, 4(2):100 – 107, 1968.

[Hof97] C. Hofner. Automatische Kursplanung und
Fahrzeugführung für mobile Roboter bei flächendeckenden
Bearbeitungsaugaben. PhD thesis, Technische Universität
München, Lehrstuhl für Steuerungs- und Regelungstechnik,
Prof Dr. Ing G. Schmidt, 1997.

[Hor87] B. Horn. Closed-form solution of absolute orientation using
unit quaternions. Journal of the Optical Society of America,
4:629–642, April 1987.

[HS07] M. Henning and M. Spruiell. Distributed Programming with
Ice. ZeroC, Inc., August 2007.

[Ich05] D. Ichbiah. Roboter - Geschichte, Technik, Entwicklung.
Knesebeck GmbH und Co Verlags KG, erstausgabe edition,
2005.

273

[Joe98] K. W. Joerg. Mobile robot sonar sensing with pseudo-
random codes. In Proc. IEEE Int. Conf. on Robotics and
Automation (ICRA 98) Leuven, Belgium, 1998.

[KCB97] J. Kosecka, H. Christensen, and R. Bajcsy. Experiments in
behavior composition. Robotics and autonomous systems,
19(3-4):287–298, 1997.

[KHB05] J. Koch, C. Hillenbrand, and K. Berns. Inertial naviga-
tion for wheeled robots in outdoor terrain. In 5th IEEE
Workshop on Robot Motion and Control (RoMoCo), pages
169–174, Dymaczewo, Poland, June 23-25 2005.

[Kos02] Jana Kostkova. Stereoscopic matching: Problems and solu-
tions, 2002.

[KRB08] J. Koch, M. Reichardt, and K. Berns. Universal web in-
terfaces for robot control frameworks. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), Nice, France, September 22-26 2008.

[KS97] K. Konolige and A. Saffiotti. The saphira architecture: A
design for autonomy. In Journal of Experimental and Theo-
retical Artificial Intelligence (JETAI) 9, pages pp. 215–235,
1997.

[LDW91] J.J. Leonard and H. F. Durrant-Whyte. Simultaneous map
building and localization for an autonomous mobile robot.
In IEEE/RSJ International Workshop on Intelligent Robots
and Systems IROS, Osaka, Japan, Nov 1991.

[LK81] B.D. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. In IJCAI81,
pages 674–679, 1981.

[LMD02] A. Lacaze, K. Murphy, and M. DelGiorno. Autonomous
mobility for the demo iii experimental unmanned vehicle,
2002.

[LP79] T. Lozano-Perez. An algorithm for planning collision-free
paths among polyhedral obstacles. Communications ACM,
22(10):560 –570, October 1979 1979.

274 9 Bibliography

[LRM94] D. Langer, J. Rosenblatt, and M.Hebert. A behavior-based
system for off-road navigation. In IEEE Journal of Robotics
and Automation, 1994.

[Lum87] Vladimir J. Lumelsky. Path-planning strategies for a point
mobile automaton moving amidst unknown obstacles of ar-
bitrary shape. Algorithmica, 2(1):403–430, 1987.

[Mae89] P. Maes. The dynamics of action selection. In IJCAI, pages
991–997, 1989.

[Mat89] L.H. Matthies. Dynamic stereo vision. PhD thesis, Carnegie
Mellon University Pittsburgh, PA, USA, 1989.

[Mat92] M. Mataric. Integration of representation into goal-driven
behavior-based robots. IEEE Transactions on Robotics and
Automation, pages 304–312, June 1992.

[Mat97] Maja J. Matarić. Behavior-based control: Examples from
navigation, learning, and group behavior. Journal of Exper-
imental and Theoretical Artificial Intelligence, Special issue
on Software Architectures for Physical Agents, 9(2-3):323–
336, 1997.

[MBK06] A. Makarenko, A. Brooks, and T. Kaupp. Orca: Compo-
nents for robotics. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2006), Beijing,
China, October 9-15 2006.

[MBK07] A. Makarenko, A. Brooks, and T. Kaupp. On the benefits
of making robotic software frameworks thin. In IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS 2007), San Diego, California, USA, October
29-November 2 2007.

[Mic07] Microsoft Corp. Microsoft Robotics Studio User Guide,
2007.

[MMN55] J. McCarthy, ML Minsky, and N. Nets. A proposal for
the dartmouth summer research project on artificial intel-
ligence, 1955.

[Mor96] Hans Moravec. Robot spatial perception by stereoscopic
vision and 3d evidence grids. Technical Report CMU-RI-
TR-96-34, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, September 1996.

275

[MTKW02] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and
Ben Wegbreit. Fastslam: A factored solution to the simul-
taneous localization and mapping problem. In Proceedings
of the 18th National Conference on Artificial Intelligence
and 14th Conference on Innovative Applications of Artifi-
cial Intelligence, pages 593–598, aug 2002.

[NC07] H. F. Nielsen and G. Chrysanthakopoulos. Decentralized
Software Services Protocol - DSSP/1.0. Microsoft Corp.,
July 2007.

[NDW99] E. Nebot and H. Durrant-Whyte. Initial calibration and
alignment of low cost inertial navigation units for land ve-
hicle applications. Technical report, Department of Me-
chanical an Mechatronic Engineering, University of Sidney,
1999.

[Nes07] I. A. Nesnas. The claraty project: Coping with hardware
and software heterogeneity. In Brugali [Bru07].

[NM00] M.N. Nicolescu and M.J. Mataric. Extending behavior-
based systems capabilities using an abstract behavior repre-
sentation. In Working Notes of the AAAI Fall Symposium
on Parallel Cognition, pages 27–34, North Falmouth, MA,
November 3–5 2000.

[NM02] M.N. Nicolescu and M.J. Mataric. A hierarchical architec-
ture for behavior-based robots. In Proceedings of the First
International Joint Conference on Autonomous Agents and
Multi-Agent Systems, pages 227–233, Bologna, Italy, July
15–19 2002.

[NM03] M.N. Nicolescu and M.J. Mataric. Linking perception and
action in a control architecture for human-robot domains.
In Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS-36). IEEE Com-
puter Society, January 6–9 2003.

[Obj98] Object Management Group, Inc., Framingham, Mas-
sachusetts, USA. The Common Object Request Broker: Ar-
chitecture and Specification – Version 2.2, July 1998.

276 9 Bibliography

[PBSS07] M. Proetzsch, K. Berns, T. Schuele, and K. Schneider. For-
mal verification of safety behaviours of the outdoor robot
ravon. In Fourth International Conference on Informatics
in Control, Automation and Robotics (ICINCO), Angers,
France, pages 157–164. INSTICC Press, May 2007.

[PHTO+00] P. Pirjanian, T. Huntsberger, A. Trebi-Ollennu, H. Aghaz-
arian, H. Das, S. Joshi, and P. Schenker. Campout: a
control architecture for multirobot planetary outposts. In
Proc. SPIE Conf. Sensor Fusion and Decentralized Control
in Robotic Systems III, November 2000.

[Pir99] P. Pirjanian. Behaviour coordination mechanisms — state-
of-the-art. Technical Report IRIS-99-375, Institute for
Robotics and Intelligent Systems, School of Engineering,
University of Southern California, October 7 1999.

[PKEv00] F. Peters, M. Kasper, M. Eßling, and E. v.Puttkamer.
Flächendeckendes explorieren und navigieren in a pri-
ori unbekannter umgebung mit low-cost robotern. vol-
ume 16. Fachgespräch Autonome Mobile Systeme (AMS
2000), Karlsruhe, Germany, November 2000. Springer-
Verlag, Reihe.

[PLB05] M. Proetzsch, T. Luksch, and K. Berns. Fault-tolerant
behavior-based motion control for offroad navigation. In
20th IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 4697–4702, Barcelona, Spain, April
18-22 2005.

[PLB10] M. Proetzsch, T. Luksch, and K. Berns. Development of
complex robotic systems using the behavior-based control
architecture ib2c. Robotics and Autonomous Systems, 58(1),
2010.

[PRK91] D. W. Payton, J. K. Rosenblatt, and D. M. Keirsey. Plan
guided reaction. In S. S. Iyengar and A. Elfes, editors, Au-
tonomous Mobile Robots: Control, Planning, and Architec-
ture (Vol. 2), pages 184–196. IEEE Computer Society Press,
Los Alamitos, CA, 1991.

[PS03] R. Philippsen and R. Siegwart. Smooth and efficient ob-
stacle avoidance for a tour guide robot. In ICRA, pages
446–451, 2003.

277

[QFY+07] X. Qiu, G. Fox, H. Yuan, S.-H. Bae, G. Chrysanthakopou-
los, and H. F. Nielsen. High performance multi-paradigm
messaging runtime integrating grids and multicore systems.
In Proceedings of the 3rd IEEE International Conference on
e-Science and Grid Computing (eScience 2007), Bangalore,
India, December 10-13 2007.

[QK93] S. Quinlan and O. Khatib. Elastic bands: Connecting path
planning and control. In Proceedings of IEEE Int. Confer-
ence on Robotics and Automation, pages 802–807, Atlanta,
1993.

[Rei08] M. Reichardt. An advanced framework for robotics.
Diploma thesis, Robotics Research Lab - University of
Kaiserslautern, Mai 5 2008. unpublished.

[Ros97] J. Rosenblatt. Utility fusion: Map-based planning in a
behavior-based system. In Proceedings of FSR ‘97 Inter-
national Conference on Field and Service Robotics, 1997.

[Sac74] E.D. Sacerdoti. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence, 5(2):115–135, 1974.

[Sac75] E.D. Sacerdoti. The nonlinear nature of plans. IJCAI, 1975.

[SAG01] K. U. Scholl, J. Albiez, and G. Gassmann. Mca- an ex-
pandable modular controller architecture. In 3rd Real-Time
Linux Workshop, Milano, Italy, 2001.

[SDC05] M.F. Selekwa, D.D. Dunlap, and E.G. Collins. Implementa-
tion of multi-valued fuzzy behavior control for robot naviga-
tion in cluttered environments. In IEEE International Con-
ference on Robotics and Automation, ICRA, pages 3688–
3695, April 2005.

[SHW04] R. D. Schraft, M. Hägele, and K. Wegener. Service Roboter
Visionen. Hanser Fachbuchverlag, 2004.

[SKBD01] K.-U. Scholl, V. Kepplin, K. Berns, and R. Dillmann. Au-
tonomous sewer inspection: Sensorbased navigation. In FSR
2001, Int. Conference on Field and Service Robotics, 2001.

[SKR95] A. Saffiotti, K. Konolige, and E.H. Ruspini. A multivalued
logic approach to integrating planning and control. Artifi-
cial Intelligence, 76(1-2):481–526, 1995.

278 9 Bibliography

[SN04] R. Siegwart and I. Nourbakhsh. Introduction to Au-
tonomous Mobile Robots. The MIT Press, 2004.

[SP07] A. Shakhimardanov and E. Prassler. Comparative eval-
uation of robotic software integration systems: A case
study. In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS 2007), San Diego, CA,
USA, October 29-November 2 2007.

[SPCB06] J. Shang, T. P.Sattar, S. Chen, and B. Bridge. Design of a
climbing robot for inspecting aircraft wings and fuselage. In
Climbing and Walking Robots, Brussels, Belgium, Septem-
ber 2006.

[SS00] R. Schraft and G. Schmierer. Servive Robots. A K Peters,
2000.

[SS02] D. Scharstein and R. Szeliski. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. In-
ternational Journal of Computer Vision, 47(1):7–42, 2002.

[SS04] R. D. Schraft and F. Simons. Concept of a miniature win-
dow cleaning robot - development potentialities for a mass
product. In ISR 2004: 35th International Symposium on
Robotics. Proceedings., Paris, France, March 2004. Interna-
tional Federation of Robotics.

[SSC90] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain
spatial relationships in robotics. Autonomous robot vehicles,
pages 167–193, 1990.

[Ste94] L. Steels. A case study in the behavior-oriented design of
autonomous agents. From Animals to Animats 3: Proceed-
ings of the Third International Conference on Simulation
of Adaptive Behavior, 1994.

[SW95] A. Schweikard and H. R. Wilson. Assembly sequences for
polyhedra. Algorithmica, 13:539 – 552, 1995.

[TFBD01] Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank
Dellaert. Robust monte carlo localization for mobile robots.
Artificial Intelligence, 128(1-2):99–141, 2001.

279

[Thr98] S. Thrun. Learning metric-topological maps for indoor mo-
bile robot navigation. In Artificial Intelligence, volume 99
of 1, pages 21–71, 1998.

[TNS03] Nicola Tomatis, Illah R. Nourbakhsh, and Roland Siegwart.
Hybrid simultaneous localization and map building: a nat-
ural integration of topological and metric. Robotics and
Autonomous Systems, 44(1):3–14, 2003.

[TW97] David H. Titterton and John L. Weston. Strapdown inertial
navigation technology. Peter Peregrinus Ltd. London, 1997.

[VGH03] R. Vaughan, B. Gerkey, and A. Howard. On device ab-
stractions for portable, reusable robot code. In IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS 2003), pages 2121–2427, Las Vegas, Nevada, USA,
October 27-31 2003.

[Wal99] J. Waldo. The Jini architecture for network-centric com-
puting. Communications of the ACM, 42(7):76–82, 1999.

[Web02] J. Weber. Globale Selbstlokalisierung für mobile Service-
Roboter. PhD thesis, Universität Kaiserslautern, April 2002.

[WGS03] J. Weingarten, G. Gruener, and R. Siegwart. A fast and
robust 3d feature extraction algorithm for structured en-
vironment reconstruction. In Proceedings of the 11th In-
ternational Conference on Advanced Robotics (ICAR), July
2003.

[YP05] Ruigang Yang and Marc Pollefeys. A versatile stereo im-
plementation on commodity graphics hardware, 2005.

[ZvP94] U. R. Zimmer and E. von Puttkamer. Realtime-learning
on an autonomous mobile robot with neural networks. In
Euromicro - Realtime-Workshop, 1994.

Index

A
A*-algorithm 174
accelerometer 46
Actros 5
AFPM 6
AGV 5
AMR 1
application 4
area covering paths 197
ARMAR 7
artificial landmarks 90, 95
autarchy 2
autocorrelation 60
autonomous mobile robot 1
autonomy 2
AUV 1
avoiding a wall 210

B
back tracking algorithm 178
Bayesian network 160
box feature 89
bumper 40

C
Care-O-bot 7
center of gravity 110
CMU mobile Robot 9
compass 44
conditional Bayes theorem 162
control architecture 222
— behavior-based 227
— hierarchical 224
— iB2C 232
— RCS 224
— Subsumption Architecture 229
Coriolis force 53
correlation of scans 149
crosscorrelation 60
crosstalk 60
CSM 169
current sensor map 169

curvature steady path 211

D
decomposition tree 135
differential GPS 100
distance sensor 55
distances to artificial landmarks 94
DOF 37
— maneuverability 38
— mobility 37
— steerability 37
driving through a door 216

E
edge extraction 89
elastic bands 188
Elsie 7
error in angles 93
exploration 169, 201

F
false edges 122
FastSLAM 160
feature extraction 86
Feature matching
— continuous values 125
— discrete range of values 126
feature-based metrical maps 119
finding path points 186
frameworks 249
— MCA 261
— Microsoft Robotics Developer Studio

253
— Orca 257
— Player Project 250
fusion of lines 112

G
Galileo-system 100
generalized cones 192
generalized moments 120
geometric invariants 119

Index 281

geometric restrictions 215
ghost edges 125
global path planning 173
global positioning system 99
global stable path 221
GLONASS 100
GPS 99
graph comparison 124
growing neural gas net 137
gyro star 54

H
H3 2
Harvester 6
histogram 86

I
iB2C 232
— basic behavior module 233
— behavior coordination 241
— behavior interaction 240
— design guidelines 243
— fusion behavior module 236
— network analysis 246
ICP 153
inclinometer 44
inertial measurement unit 76
inertial sensor 46
Iterative Closest Points 153
iterative end point fit 109

J
jump edge 122

K
Kairo 6
Kalman amplification 101
Kalman filter 100
— modeling 101
— robot localization 103
Kamro 11
kinematics 15
— ackermann steering 31
— differential drive 22, 28
— double ackermann steering 32

— mecanum wheel drive 25
— omnidirectional drive 23
— omnidrive 35
— synchro drive 34
— tricycle drive 30

L
landmark 73
landmark estimates 163
landmarks 90
laser radar 63
laser scan 64
LAURON 2
Lego Mindstorms 7
line based metrical maps 108
line extraction 86
line segmentation 108
Ljapunov 219
local path planning 181
localization 73
loop closing 158

M
mapping 106
— grid maps 126
— metrical maps 108
— plane based maps 113
maps
— hybrid maps 143
— sector maps 129
measurement model 161
Mechanical Gyros 53
Meldog 10
MEMS 47
Micromouse 10
moment of inertia 120
Mosro 5
motion model 161

N
navigation 173
navigation on raster maps 193

O
obstacle avoidance 203

282 Index

obstacle probability 129
odometry 42
Ofro 5
Opportunity 6
optical flow 83
oriented lines 112

P
particle filter 162
path control 218
path estimator 162
PixelSLAM 153
point of interest 201
polar histogram 206
pose 73
potential field method 206
projection filter 156
pseudo random signals 63

Q
quad tree based planning 196
quadtree 127

R
radar equation 56
raster flooding 194
regression line 110
relocalization 146
Robair 6
RoboCup 7
robot
— Artos 28
— Cromsci 23
— Marvin 22
— Priamos 25
— Ravon 32
— Viper 34
RoboTuna 2
Rolland 5

S
Sagnac effect 52
sensor 39
— active 39
— basic 39

— exteroceptive 39
— integrated 39
— intelligent 39
— passive 39
— proprioceptive 39
— tactile 40
Shakey 8
shift of line end points 111
Sick sensor 63
Simultaneous Localization And

Mapping 146
SLAM 146
software framework 249
Sojourner 12
Speedy Gonzales 10
Spider 6
Spirit 6
Stanford Cart 9
string of Ariadne 178
STRIPS 9
Subsumption Architecture 229
switch 40

T
topological maps 134
TOURBOT 7
TransCar 5
triangulation 90

U
UAV 1
UGV 1
ultra sound sensor 58
uncertainty model 159
UWV 1

V
variance of guessing error 103
virtual edges 122
Vision sensors 66

W
wall following 200, 217
wandering standpoint algorithm 203
wheel

Index 283

— mecanum 20
— standard 19
— steerable standard 19
wheel encoder 42
WSA 203

	Preface
	Contents
	1 Introduction
	1.1 Autonomous mobile robots
	1.2 Applications of autonomous mobile robots
	1.3 Historical overview
	1.4 Book overview

	2 Kinematics
	2.1 Basics
	2.2 Wheel kinematics
	2.2.1 Kinematics of a differential drive vehicle
	2.2.2 Kinematics of an omnidirectional vehicle
	2.2.3 Kinematics of a vehicle with Mecanum wheels
	2.2.4 Pose calculation based on velocities

	2.3 Geometrical solution for vehicle kinematics
	2.3.1 Differential drive
	2.3.2 Tricycle drive
	2.3.3 Ackermann steering
	2.3.4 Double Ackermann steering
	2.3.5 Synchro drive
	2.3.6 Omnidrive

	2.4 Applying mobile robot kinematics

	3 Sensors
	3.1 Tactile sensors
	3.1.1 Switches
	3.1.2 Bumper
	3.1.3 Force sensors

	3.2 Pose measurement
	3.2.1 Odometry sensors
	3.2.2 Compass
	3.2.3 Inclinometers

	3.3 Sensors for inertial systems
	3.3.1 Acceleration sensors
	3.3.2 Turning rate sensors

	3.4 Distance sensors
	3.4.1 Infrared sensors
	3.4.2 Ultrasonic sensors
	3.4.3 Correlation of ultrasound signals
	3.4.4 Laser sensors

	3.5 Vision sensors
	3.5.1 CCD camera
	3.5.2 CMOS camera
	3.5.3 Stereo-camera systems

	4 Localization
	4.1 Pose calculation from odometry
	4.2 Inertial measurement units (IMU)
	4.2.1 Simplified inertial calculation
	4.2.2 Implementation example with heuristics for absolute orientationmeasurement

	4.3 Localization based on optical flow
	4.4 Feature extraction from laser radar data
	4.4.1 Obstacles
	4.4.2 Line extraction

	4.5 Landmarks
	4.5.1 Natural landmarks
	4.5.2 Artificial landmarks
	4.5.3 Triangulation using landmarks
	4.5.5 Artificial active landmarks

	4.6 Global positioning system (GPS)
	4.7 Kalman filter
	4.7.1 General idea
	4.7.2 Guessing error
	4.7.3 Example application

	5 Mapping
	5.1 Metrical maps
	5.1.1 Line based metrical maps
	5.1.2 Plane based metrical maps
	5.1.3 Feature-based metrical maps

	5.2 Grid maps
	5.2.1 Occupancy grid maps

	5.3 Sector maps
	5.4 Topological maps
	5.4.1 Growing neural gas net

	5.5 Hybrid maps

	6 Simultaneous localization andmapping (SLAM)
	6.1 The general approach
	6.2 Merging local maps
	6.2.1 Correlation of laser scans
	6.2.2 Correlation of point clouds
	6.2.3 Loop closing

	6.3 Probabilistic methods
	6.3.1 An uncertainty model
	6.3.2 SLAM as Bayesian network
	6.3.3 The path estimator
	6.3.4 The landmark estimators
	6.3.5 Numeric computation of FastSLAM

	6.4 Exploration of the environment

	7 Navigation
	7.1 Global path planning
	7.1.1 A*-algorithm
	7.1.2 Solving a maze
	7.1.3 Back tracking algorithm

	7.2 Local path planning
	7.2.1 Path planning on geometric maps
	7.2.2 Navigation on a raster map
	7.2.3 Quadtree based path planning
	7.2.4 Area covering paths
	7.2.5 Exploration
	7.2.6 Obstacle avoidance
	7.2.7 Potential field method
	7.2.8 Basic abilities

	7.3 Path control

	8 Control Architectures
	8.1 The hierarchical task-oriented control architecture RCS
	8.2 Behavior-based control architectures
	8.2.1 The Subsumption Architecture
	8.2.2 Reuse and temporal sequences of behaviors

	8.3 The integrated behavior-based control architecture iB2C
	8.3.1 The basic behavior module
	8.3.2 Fusion behavior module
	8.3.3 Behavior interaction
	8.3.4 Behavior coordination
	8.3.5 Design guidelines
	8.3.6 Analysis of iB2C networks

	9 Software frameworks
	9.1 The Player Project
	9.2 Microsoft Robotics Developer Studio
	9.3 Orca
	9.4 MCA – Modular Controller Architecture
	9.5 Summary and comparison of robotic frameworks

	Bibliography
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

