
Chapter VI.

Meromorphic functions of several variables

This chapter presents the analogues of the Mittag-Leffler and Weierstrass theorems for functions of
several complex variables. To this end it develops fundamental methods of multivariable complex
analysis that reach far beyond the applications we are going to give here. –Meromorphic functions of
several variables are defined as local quotients of holomorphic functions (VI.2); the definition requires
some information on zero sets of holomorphic functions (VI.1). After introducing principal parts and
divisors we formulate the main problems that arise: To find a meromorphic function with i) a given
principal part (first Cousin problem) ii) a given divisor (second Cousin problem); iii) to express a
meromorphic function as a quotient of globally defined holomorphic functions (Poincaré problem).
These problems are solved on polydisks – bounded or unbounded, in particular on the whole space
– in VI.6–8. The essential method is a constructive solution of the inhomogeneous Cauchy-Riemann
equations (VI.3 and 5) based on the one-dimensional inhomogeneous Cauchy formula – see Chap-
ter IV.2. Along the way, various extension theorems for holomorphic functions are proved (VI.1
and 4). Whereas the first Cousin problem can be completely settled by these methods, the second
requires additional topological information which is discussed in VI.7, and for the Poincaré problem
one needs some facts on the ring of convergent power series which we only quote in VI.8.

The main results on principal parts and divisors go back to P. Cousin 1895 and H. Poincaré 1883.
It was remarked somewhat later (Gronwall 1917) that the second Cousin problem meets with a
topological obstruction whose nature was finally cleared up by K. Oka in 1939 [Ok, Ra]. It was
also Oka who solved these problems on the class of domains where they are most naturally posed:
on domains of holomorphy of which polydisks are the simplest example [Ok]. The solution of the
inhomogeneous Cauchy-Riemann equation in VI.5 is given by a method due to S. Bochner [Bo]; the
result is usually referred to as Dolbeault’s lemma, because P. Dolbeault exploited it systematically in
his study of complex manifolds. The connection of compactly supported solutions and holomorphic
extension theorems was discovered by L. Ehrenpreis in 1961 [Eh]; the Kugelsatz in VI.4 is due to
F. Hartogs. Hartogs’ work of 1906 ff [Ha] can be seen as the beginning of modern complex analysis
in n variables. The language of cocycles and their solutions that we have used throughout the last
sections was worked out, in this context, by H. Cartan and J. P. Serre around 1950. All the above
problems can be solved on arbitrary plane domains [FL1].

A modern comprehensive exposition of the theory on general domains of holomorphy – even on Stein
manifolds – can be found in [GR], [Hö], and [Ra]. Our presentation follows Hörmander and Range.
For historical aspects see also [Li].

1. Zero sets of holomorphic functions

Let f be a function holomorphic on some subdomain G of Cn; we assume f 	≡ 0. The
zero set

V (f) = {z : f(z) = 0}
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of f is clearly a relatively closed nowhere dense subset of G. We can say more:

Proposition 1.1. G \ V (f) is connected.

This will be deduced from the following fundamental result:

Theorem 1.2 (Riemann’s extension theorem). If a function h is holomorphic on

G \ V (f) and locally bounded on G, then it extends to a holomorphic function ĥ on
all of G:

ĥ ∈ O (G) , ĥ|G \ V (f) = h.

Proof: Since V (f) is nowhere dense in G, the extension ĥ, if it exists, is uniquely
determined by h. So we only have to find a local holomorphic extension (near an
arbitrary point z0 ∈ V (f)). We choose coordinates z = (z′, zn), z′ ∈ Cn−1, zn ∈ C,
such that z0 = 0 = (0′, 0) and f(0′, zn) 	≡ 0. Because f is continuous, there are
polydisks D′ ⊂ Cn−1 and Dn ⊂ C with centres 0′ and 0, respectively, with the
following properties: D = D′ ×Dn ⊂⊂ G and f(z) 	= 0 on D′ × ∂Dn. Therefore, for
each z′ ∈ D′, the function zn �→ f(z′, zn) is holomorphic on Dn and not identically
zero; its zeros are consequently isolated in Dn. This shows that the function h(z′, zn)
is, for fixed z′ ∈ D′, holomorphic in zn, as long as (z′, zn) /∈ V (f), and bounded
on Dn; Riemann’s extension theorem in one variable yields a holomorphic (in zn)

extension ĥ(z′, zn) to all of Dn. It remains to show that ĥ is holomorphic on D as a
function of z = (z′, zn). But this follows from the Cauchy integral representation

ĥ(z′, zn) =
1

2πi

∫
∂Dn

h(z′, ζn)
ζn − zn

dζn :

the right hand side is holomorphic in (z′, zn).

The proof of Prop. 1.1 is now easy: if G \ V (f) could be decomposed into two open
non-empty sets U0 and U1,

G \ V (f) = U0 ∪ U1, U0 ∩ U1 = ∅,

the function f = 0 on U0 and = 1 on U1 would be holomorphic on G \ V (f) but
clearly not holomorphically extendible to G.

We will consider a slightly more general situation.

Definition 1.1.

i. An analytic hypersurface S of a domain G is a non-empty subset S ⊂ G with
the following property: for each z0 ∈ G there exists an open neighbourhood U of
z0 and a holomorphic function f on U , nowhere ≡ 0, such that

S ∩ U = V (f) = {z ∈ U : f(z) = 0}.
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ii. A subset M ⊂ G is called thin, if it is relatively closed in G and if for each
z ∈ M there is a neighbourhood U and a holomorphic function f 	≡ 0 on U with
M ∩ U ⊂ V (f).

Analytic hypersurfaces are clearly closed in G, hence thin. The same proof as above
carries Prop. 1.1 over to thin sets:

Proposition 1.3. If M is a thin subset of a domain G then G \M is connected.

Exercises

1. The 2n-dimensional (Lebesgue-)measure of a thin set is zero. Proof! Hint: Apply the Weierstrass
preparation theorem.

2. The function z−1
2 cannot be holomorphically extended to all of C2. Is it locally integrable? Is it

locally square integrable?

2. Meromorphic functions

Meromorphic functions of one complex variable were defined, in Chapter II, as func-
tions which are holomorphic up to isolated singularities; the singularities were required
to be poles. Since, in more than one variable, there are no isolated singular points,
we use the alternative characterisation of meromorphic functions as local quotients of
holomorphic functions for our definition.

Definition 2.1. A meromorphic function on a domain G ⊂ Cn is a pair (f, M),
where M is a thin set in G and f a holomorphic function on G\M with the following
property: for each point z0 ∈ G there is a neighbourhood U of z0 and there are
holomorphic functions g and h on U , such that V (h) ⊂ M and

f(z) =
g(z)

h(z)
for z ∈ U \M. (1)

Examples:

a) f = g/h, M = V (h), where g and h are holomorphic on G and h 	≡ 0, is a
meromorphic function.

b) In particular, holomorphic functions are meromorphic.

The representation (1) is of course not unique. A closer study of the ring of convergent
power series allows to define a representation (1) by a reduced fraction which is
essentially unique. We do not need that here. We therefore introduce, for general
(f, M), the set

P = {z ∈ G : h(z) = 0 for all (g, h) with (1)}
Then P is obviously contained in M and closed, and f can be extended to a holomor-
phic function f̂ on G \ P . We identify (f, M) with (f̂ , P ).
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Definition 2.2. The set P as defined above is called the polar set of f .

Since P is uniquely determined by the holomorphic function f on G \ M , we will
denote meromorphic functions (f, M) simply by f , assuming, if necessary, that f is
holomorphically continued to all of G \ P . It can even be shown that the polar set
is a hypersurface or empty, but this requires a more detailed study of the ring of
convergent power series. The polar set can alternatively be described as the set of
points where f is unbounded.

We continue our examples:

c) The function f(z1, z2) = z1/z2 is meromorphic in C2, with the polar set
P = V (z2) = {(z1, z2) : z2 = 0}. Note that f is unbounded at all points of P ,
but that |f(z1, z2)| → ∞ only for (z1, z2) → (a, 0) with a 	= 0. This is a general phe-
nomenon: a meromorphic function need not yield a continuous map into the Riemann
sphere Ĉ – except in the case of one variable.

d) The most common way of defining a meromorphic function is the following: Let
{Ui : i ∈ I} be an open covering of G and gi, hi ∈ O (Ui) satisfy

i. hi nowhere ≡ 0

ii. gihj ≡ gjhi on Uij = Ui ∩ Uj .

Then, setting

f =
gi
hi

on Ui,

we obtain a well-defined meromorphic function f on G. It is holomorphic outside the
thin set

M = {z : hi(z) = 0 for all i with z ∈ Ui}.

Let us now state the identity theorem for meromorphic functions:

Proposition 2.1. If two meromorphic functions f1 and f2 on G coincide on a non-
empty open set where both are holomorphic, they are identical on G.

Proof: G \ (P1 ∪ P2), where Pj is the polar set of fj , is connected; consequently,
f1 ≡ f2 there. This says that (f1, P1∪P2) and (f2, P1∪P2) are the same meromorphic
function and implies, in fact, that P1 = P2.

Addition or multiplication of meromorphic functions at the points where they are holo-
morphic clearly yield meromorphic functions: the polar set of the resulting function
is contained in the union of the polar sets of the summands resp. factors. Also, if f is
meromorphic and does not vanish identically, 1/f is again a meromorphic function.
Namely, let f = g/h on an open connected set U ⊂ G; then g 	≡ 0, and 1/f = h/g
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defines a meromorphic function on U . Since G can be covered by open sets as above,
we are in the situation of example d) to define 1/f .

Note that the polar set Q of 1/f is locally contained in the zero set V (g), and that

Q ∩ (G \ P ) = V (f),

where P is the polar set of f . All this is summed up in

Proposition 2.2. The meromorphic functions on a domain G form a field, denoted
by M (G).

At this point we ask an important – and deep – question: Is M (G) the quotient
field of O (G)? The answer is positive for polydisks (including Cn) and more general
classes of domains, but not for arbitrary domains.

Exercises

1. Consider the function f(z1, z2) = z1/z2. Prove: the set of accumulation points of sequences
f(zj), zj → 0, is the Riemann sphere.

2. (A more precise description of the above situation) Let f : C2\{0} → Ĉ be given by f(z) = z1/z2.

Let M ⊂ (C2 \{0})× Ĉ be its graph. Consider M as a subset of C2× Ĉ and show that its closure
M is M ∪ ({0} × Ĉ). Introduce homogeneous coordinates ζ1, ζ2 on Ĉ and describe M by a
homogeneous quadratic polynomial in z1, z2, ζ1, ζ2.

3. The inhomogeneous Cauchy-Riemann equation in
dimension 1

Holomorphic functions of n variables are solutions of the homogeneous Cauchy-
Riemann equations

∂f

∂z̄ν
= 0, ν = 1, . . . , n. (1)

In the next sections we shall construct holomorphic or meromorphic functions with
prescribed additional properties by the following method: We will, in a first step, con-
struct a smooth but not holomorphic solution with the required additional properties,
say f . Then f does not satisfy (1), that is

∂f

∂z̄ν
= fν 	= 0.

In a second step we will find a solution of the inhomogeneous Cauchy-Riemann sys-
tem

∂u

∂z̄ν
= fν , (2)
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such that f − u still has the required properties; the function f − u is then clearly
holomorphic. – This method is based on a careful study of (2); note that (2) can only
be solved if the right-hand side satisfies the integrability condition

∂fν
∂z̄μ

=
∂fμ
∂z̄ν

, ν, μ = 1, . . . , n. (3)

This condition is automatically fulfilled if the fν are given as above.

The main work will be done in one variable, so from now on we take n = 1. The
integrability condition (3) is then empty.

Theorem 3.1. Let D′ ⊂⊂ D be two disks in C and G ⊂ Rk a domain. There is a
linear operator

T : C∞ (D ×G) → C∞ (D′ ×G) (4)

with

∂Tf

∂z̄
= f |D′ ×G (5)

and

∂

∂tj
Tf = T

∂f

∂tj
, j = 1, . . . , k. (6)

(We have denoted the variable in C by z, the variables in Rk by tj . C∞ is the space
of smooth - i.e. infinitely differentiable - functions. – The theorem holds with the
same proof for any pair of domains D′ ⊂⊂ D ⊂ C, but we only need it in the above
situation.)

Proof: 0) We choose a smooth real-valued function ϕ with compact support in D,
ϕ ≡ 1 on D′, and define, for f ∈ C∞ (D ×G), z ∈ D′, t ∈ G:

Tf(z, t) =
1

2πi

∫
C

ϕ(ζ)f(ζ, t)

ζ − z
dζ ∧ dζ̄. (7)

This operator will be shown to have the required properties.

1) The substitution w = ζ − z leads to

Tf(z, t) =
1

2πi

∫
C

ϕ(w + z)f(w + z, t)

w
dw ∧ dw, (8)

which immediately shows that Tf is smooth on C × G; differentiation under the
integral (7) yields (6).
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2) The inhomogeneous Cauchy formula – see IV.2 – gives for the compactly supported
function ϕf

ϕ(z)f(z, t) =
1

2πi

∫
C

∂/∂ζ̄[ϕ(ζ)f(ζ, t)]

ζ − z
dζ ∧ dζ̄; (9)

a boundary integral does not occur because ϕ(ζ)f(ζ, t) ≡ 0 for |ζ| large enough. –
On the other hand, differentiation of (8) with respect to z̄ leads to

∂

∂z̄
Tf(z, t) =

1

2πi

∫
C

∂/∂z̄[ϕ(z + w)f(z + w, t)]

w
dw ∧ dw

=
1

2πi

∫
C

∂/∂ζ̄[ϕ(ζ)f(ζ, t)]

ζ − z
dζ ∧ dζ̄.

(10)

Comparison of (9) and (10) shows the claim: for z ∈ D′ one has

f(z, t) = ϕ(z)f(z, t) =
∂

∂z̄
Tf(z, t).

Remark: If f is holomorphic in some of the parameters, then Tf is holomorphic in
the same parameters.

In fact, assume f holomorphic in t0 – so now G is a subdomain of C × R� with
coordinates t0 and t – then in view of (6)

∂

∂t0
Tf(z, t0, t) = T

∂

∂t0
f(z, t0, t) = 0.

Exercises

1. Justify in detail the differentiation under the integral sign used in the proof of Thm. 3.1.

4. The Cauchy-Riemann equations with compact
support

We will solve, for n = 1, 2, . . . , the Cauchy-Riemann differential equations

∂u

∂z̄ν
= fν , ν = 1, . . . , n, (1)

where the fν are smooth functions in Cn with compact support satisfying the integra-
bility condition

∂fν
∂z̄μ

=
∂fμ
∂z̄ν

, ν, μ = 1, . . . , n. (2)

The main result is
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Theorem 4.1. (1) has a smooth solution u. If n > 1, then u can be chosen with
compact support.

More precisely: If fν ≡ 0, ν = 1, . . . , n, outside a compact set K then there is, in case
n > 1, a solution which vanishes on the unbounded component of the complement of
K. – Note that solutions are of course not unique: we can always add a holomorphic
function to obtain a new solution from a given one.

Proof: We define

u(z1, . . . , zn) =
1

2πi

∫
C

f1(ζ, z2, . . . , zn)

ζ − z1
dζ ∧ dζ̄; (3)

this is a smooth function on Cn satisfying – see the previous section –

∂u

∂z̄1
= f1.

In fact, (3) is the solution Tf1 of section 3 constructed for a sufficiently large disk D′

and D = C. Now, for ν > 1,

∂u

∂z̄ν
=

1

2πi

∫
C

∂f1/∂z̄ν(ζ, z2, . . . , zn)

ζ − z1
dζ∧dζ̄ =

1

2πi

∫
C

∂fν/∂ζ̄(ζ, z2, . . . , zn)

ζ − z1
dζ∧dζ̄,

because of (2). Since fν has compact support, the last integral is, by the inhomo-
geneous Cauchy integral formula, fν(z1, . . . , zn). So u solves (1). – Moreover, let
the support of the functions fν be contained in a compact set K, and let U0 be the
unbounded component of Cn \K. If n > 1, there is an affine hyperplane E contained
in U0. The function u is holomorphic outside K, in particular its restriction to E is
an entire function of n− 1 variables. Now, the integration in (3) only has to extend
over a bounded domain (again because the support of f1 is compact). This shows
that u(z) → 0 for |z| → ∞. By Liouville’s theorem, u|E ≡ 0. As E could be chosen
arbitrarily in U0, the identity theorem gives u ≡ 0 on U0.

Remark: For n = 1 the above solution need not have compact support – see Ex. 1.

A striking consequence of the above theorem is

Theorem 4.2 (Hartogs’ Kugelsatz). Let K be a compact subset of an open set
U ⊂ Cn, with n > 1, and suppose that U \ K is connected. Then any function f

holomorphic on U \K is the restriction to U \K of a holomorphic function f̂ on U .

Proof: We choose a smooth real-valued function ϕ with compact support in U , ϕ ≡ 1
in a neighbourhood of K, and set, for f ∈ O (U \K),

f̃ = (1− ϕ)f. (4)
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This function is smooth on all of U – where f is not defined, the right-hand side of
(4) is 0. The derivatives

gν =
∂f̃

∂z̄ν
(5)

are smooth in Cn, with support contained in the support of ϕ, because outside that
support f̃ = f is holomorphic. They obviously satisfy the integrability conditions (2)
and therefore there exists a solution u of

∂u

∂z̄ν
= gν , (6)

which vanishes in the unbounded component of the complement of the support of ϕ.
But the boundary of U belongs to that component. So

f̂ = f̃ − u (7)

coincides with f on a non-empty open set in U \ K, hence on all of U \ K, and is
holomorphic on U because of (5) and (6).

The theorem applies in particular to a spherical shell: this explains the name.

Exercises

1. Let f ∈ C∞ (C) be a smooth function with compact support; set g = fz . Compute the integral∫
C

g(z) dx dy

with the help of Stokes’ theorem. Use the information obtained that way to construct a compactly
supported smooth function g in the plane that has no solution f of fz = g with compact support.

5. The Cauchy-Riemann equations in a polydisk

The problem of solving the Cauchy-Riemann equations is more difficult if one drops
the assumption of compact support; we study it here in polydisks. In all that follows,
D, D′, D0, . . . will stand for polydisks in Cn centred at the origin. Let the functions
fν , for ν = 1, . . . , n, be smooth on D and satisfy the integrability conditions

∂fν
∂z̄μ

=
∂fμ
∂z̄ν

, ν, μ = 1, . . . , n. (1)

We want to solve

∂u

∂z̄ν
= fν , ν = 1, . . . , n, (2)

by a smooth function u on D.
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Proposition 5.1. Let D0 ⊂⊂ D be relatively compact in D. Then (2) can be solved
by a function u ∈ C∞ (D0).

Proof: We denote by Ak(D
′) the set of n-tuples of smooth functions

(f) = (f1, . . . , fn)

on D′ satisfying fν ≡ 0 for ν > k and condition (1). Here, D′ stands for any polydisk
contained in D. Let us prove, for arbitrary pairs of polydisks D0 ⊂⊂ D′, the claim in
case the right-hand side of (2) belongs to Ak(D

′); the case k = n is what we want.

We proceed by induction with respect to k. If k = 0, then (f) = (0), and the function
u ≡ 0 solves. Now consider (f) ∈ Ak(D

′), and assume the claim for k − 1 � 0. So

(f) = (f1, . . . , fk, 0, . . . , 0).

By (1) we have for μ > k:

∂fk
∂z̄μ

=
∂fμ
∂z̄k

≡ 0,

since fμ ≡ 0. Hence fk is holomorphic in the variables zk+1, . . . , zn. We now choose
the solution v of

∂v

∂z̄k
= fk (3)

constructed in section 3 on a polydisk D′′ with D0 ⊂⊂ D′′ ⊂⊂ D′:

v(z1, . . . , zn) = Tfk(z1, . . . , zn).

Then v is holomorphic in zk+1, . . . , zn, so

∂v

∂z̄μ
= 0 = fμ, μ > k. (4)

The system (g) = (g1, . . . , gn) with

gj = fj − ∂v

∂z̄j

belongs to Ak−1(D
′′) and satisfies the integrability conditions: in fact, for j > k we

have fj = 0 = ∂v/∂z̄j , and for j = k we have gk = 0 in view of (3); finally (1)
is satisfied for (g) because it is satisfied for (f) and for the derivatives of v. The
induction hypothesis yields a solution w ∈ C∞ (D0) with

∂w

∂z̄j
= gj ;

setting u = v+w on D0 we thus solve (2). – This concludes the induction and proves
our claim.
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An approximation argument will finally give a solution of the Cauchy-Riemann system
on the whole polydisk:

Theorem 5.2. The system

∂u

∂z̄ν
= fν , ν = 1, . . . , n, (2)

with fν ∈ C∞ (D) has a solution u ∈ C∞ (D) if and only if it satisfies the integrability
conditions

∂fν
∂z̄μ

=
∂fμ
∂z̄ν

, ν, μ = 1, . . . , n. (1)

Proof: We choose a sequence of polydisks

D0 ⊂⊂ D1 ⊂⊂ D2 ⊂⊂ . . . ⊂⊂ D

with ⋃
κ�0

Dκ = D

and functions u′κ ∈ C∞ (Dκ) which solve (2) on Dκ . If the sequence u′κ – which is
defined on each fixed Dk for all κ � k – were convergent on Dk, we would simply
define our solution u as the limit of that sequence. So our task is to modify the u′κ
in order to obtain a convergent sequence. We set u0 = u′0, u1 = u′1 and assume that
we have found solutions uκ of (2) on Dκ , for κ = 1, . . . , k, such that

|uκ − uκ−1|Dκ−2
< 21−κ . (5)

Here |·|M denotes the supremum norm of a function on M . Now u′k+1 and uk both
solve (2) on Dk and consequently differ by a holomorphic function fk on Dk. Power
series development of fk around 0 yields a polynomial pk such that

|fk − pk|Dk−1
= |u′k+1 − uk − pk|Dk−1

< 2−k.

Setting

uk+1 = u′k+1 − pk,

we get a new solution of (2) on Dk+1 which now satisfies (5) for κ = k + 1. Let us
now define, for z ∈ D,

u(z) = lim
κ→∞uκ(z).

The limit is well-defined – see our remark above. Moreover, for κ � λ � k + 2 and
z ∈ Dk

|uκ(z)− uλ(z)| � |uκ(z)− uκ−1(z)|+ · · ·+ |uλ+1(z)− uλ(z)|
� 2−κ+1 + · · ·+ 2−λ � 2 · 2−λ;
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so the limit exists uniformly on Dk. This shows that u is a continuous function on D.
Now, on Dk we have

u− uk = lim
κ�k+2

(uκ − uk),

and the terms on the right-hand side are holomorphic on Dk – which implies that
their uniform limit is holomorphic as well. Hence, u − uk and therefore u is smooth
on Dk, and u thus solves (2) because it differs from the solution uk by a holomorphic
function.

6. Principal parts: the first Cousin problem

Let G ⊂ Cn be a domain.

Definition 6.1. A Cousin-I-distribution on G is a system (fi, Ui), i ∈ I, where the
Ui are open subsets of G which form a covering of G and the fi are meromorphic
functions on Ui such that

fij = fj − fi ∈ O (Uij) , (1)

i.e. fij is holomorphic on Uij = Ui ∩ Uj.

If Uij = ∅, condition (1) is of course void. The principal part of a meromorphic
function can be defined as follows: two meromorphic functions f and g have the same
principal part if their difference is holomorphic. In particular, their polar sets coincide
in that case. So in the above definition, the principal parts of fi and fj coincide where
both functions are defined. – Instead of Cousin-I-distribution we could also speak of
a distribution of principal parts or simply of a principal part on G. Note that on C
the Mittag-Leffler data define naturally a Cousin-I-distribution, and vice versa – see
exercises.

Definition 6.2. A solution of a Cousin-I-distribution (fi, Ui) is a meromorphic func-
tion f on G such that f − fi is holomorphic on Ui for all i.

In other words: f should be a meromorphic function with the given principal parts.
The Mittag-Leffler theorem gives a solution of any Cousin-I-distribution in the com-
plex plane. In general, on an arbitrary domain in Cn, with n > 1, not every Cousin-
I-distribution is soluble; for n = 1, it is – see [FL1]. We will show that any Cousin-I-
distribution on a polydisk is soluble. So from now on, we will choose for G a (bounded
or unbounded) polydisk D ⊂ Cn. The main work will be done in proving the next
theorem.
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Theorem 6.1. Let {Ui : i ∈ I} be an open covering of the polydisk D. Suppose that
for each pair of indices i, j ∈ I with Uij 	= ∅ a holomorphic function gij ∈ O (Uij) is
given such that the following conditions are fulfilled:

gij = −gji (2)

gjk − gik + gij = 0 on Uijk. (3)

Then there are holomorphic functions gi ∈ O (Ui) with

gj − gi = gij on Uij . (4)

We have used the notation Uij = Ui ∩ Uj , Uijk = Ui ∩ Uj ∩ Uk. If Uijk = ∅, then
condition (3) is void.

Proof: Let us choose a partition of unity subordinate to the covering, i.e. functions
ϕi ∈ C∞ (D), 0 � ϕi � 1, suppϕi ⊂ Ui, such that the system of supports of the ϕi is
locally finite, and∑

i∈I
ϕi(z) ≡ 1. (5)

Then for each i

hi =
∑
k∈I

ϕkgki (6)

is a well-defined smooth function on Ui, and we have on Uij

∂hi
∂z̄ν

− ∂hj
∂z̄ν

=
∑
k∈I

∂ϕk

∂z̄ν
(gki − gkj) =

∑
k∈I

∂ϕk

∂z̄ν
gji =

(
∂

∂z̄ν

∑
k∈I

ϕk

)
gji = 0 (7)

because of (3) and (5). Hence, for each ν, the function

Fν(z) =
∂hi
∂z̄ν

(z), z ∈ Ui, (8)

is well-defined on all of D, and the Fν satisfy, in view of their definition (8) as
derivatives, the integrability conditions for the Cauchy-Riemann system. The previous
section yields a smooth function u ∈ C∞ (D) with

∂u

∂z̄ν
= Fν . (9)

Now set on Ui

gi = hi − u. (10)

Then gi ∈ O (Ui) and

gj − gi = hj − hi =
∑
k∈I

ϕk(gkj − gki) =

(∑
k∈I

ϕk

)
gij = gij ,

again by (2), (3) and (5). So the gi solve (4).
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Let us point out that we only used solubility of the Cauchy-Riemann equations in the
proof. It is worthwhile to state this explicitly as

Theorem 6.2. If G is a domain where the Cauchy-Riemann equations for smooth
data are always soluble, then for all data

(
Ui, gij

)
as in Thm. 6.1 there are holomor-

phic functions gi ∈ O (Ui) with gij = gj − gi.

It is equally worthwhile to introduce a new word in order to express the above results,
and also for later use:

Definition 6.3. The data
(
Ui, gij

)
with the properties (2) and (3) of Thm. 6.1 is

called an O-cocycle; the
(
Ui, gi

)
satisfying (4) are an O-solution of this cocycle.

So we can say more conveniently: An arbitrary O-cocycle on a polydisk has an
O-solution; the same result holds on domains where the Cauchy-Riemann system
is soluble.

From here we deduce easily

Theorem 6.3. Any Cousin-I-distribution on a polydisk – more generally: on a do-
main satisfying the assumption of Thm. 6.2 – is soluble.

Proof: Let (fi, Ui) be such a distribution. Then the fij given by (1) define an
O-cocycle, which therefore has an O-solution (gi). Let us now set

f = fi − gi on Ui. (11)

In view of (4) the definition is independent of the choice of i and yields a meromorphic
function on D which, by (11), solves the distribution.

Exercises

1. Let G ⊂ Cn be an arbitrary domain and fj , j = 1, . . . , n, be smooth functions on G satisfying
the integrability conditions (1) from section 5. Show that every point a ∈ G has a neighbourhood
U such that there is a smooth function u on U with

∂u

∂zj
= fj |U.

Choose an open covering Ui with corresponding solutions ui of the above equation. Consider
the differences uj − ui on Uij . From here, state and prove a converse to Thm. 6.2.
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7. Divisors: the second Cousin problem

We now carry over Weierstrass’ product theorem to higher dimensions. We shall even
consider a slightly more general situation. In all that follows, G will be a domain in
Cn; later on it will be taken to be a polydisk. M∗(U) denotes the set of meromorphic
functions on the open set U which nowhere vanish identically, O∗(U) is the set of
holomorphic functions on U without zeros. Both sets are multiplicative groups: the
groups of units in the rings M (U) resp. O (U).

Definition 7.1. A divisor on G is a system

Δ =
(
Ui, fi

)
i∈I , I an index set,

where the Ui ⊂ G form an open covering of G and the fi are elements of M∗(Ui),
such that for all i, j ∈ I with Uij = Ui ∩ Uj 	= ∅ one has

fj
fi

= gij ∈ O∗(Uij) . (1)

Two divisors Δ and Δ′ are – by definition! – equal if their union Δ∪Δ′ is a divisor.

Condition (1) means, intuitively, that on Uij the polar sets of fi and fj coincide,
including multiplicities, and that also the zero sets of fi and fj are identical, and that
the two functions vanish there with the same multiplicity. By sticking to the above
definition one circumvents the need to explicitly define the notion of multiplicity. –
A positive divisor is a divisor given by holomorphic functions fi satisfying (1).

If f 	≡ 0 is a meromorphic function on G, then (G, f) is a divisor. We call these
divisors principal – notation: div f . Now suppose that Δ =

(
Ui, fi

)
is an arbitrary

divisor. Then clearly,

Δ = div f, f ∈ M∗(G) ,

if and only if the quotients f/fi are holomorphic without zeros on Ui, for all i. We
define:

Definition 7.2. A solution of Δ is a meromorphic function f with Δ = div f .

Such a solution – if it exists – is obviously determined up to multiplication with an
element of O∗(G). In the case of a positive divisor it is a holomorphic function with
prescribed zeros (including multiplicities): that is just what is given in the Weierstrass
product theorem.

Divisors – more precisely, the
(
Ui, fi

)
satisfying (1) – are also called Cousin-II-

distributions. The second Cousin problem can now be briefly stated:

Is each divisor on G a principal divisor?
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The problem is by now completely understood for large classes of domains (domains
of holomorphy); here we shall give a positive answer in the case of polydisks. Our
discussion will show that certain topological conditions play a role, conditions which
are fulfilled on a polydisk but not in general. The method of proof reaches beyond
our immediate aim.

We start with a topological result:

Lemma 7.1. Let f : U → C∗ be a continuous function in a simply connected domain
U ⊂ Rk. Then f has a continuous logarithm, i.e. there is a continuous function F
on U with

f = expF. (2)

In fact, the universal cover of the punctured plane C∗ is the exponential map
exp: C → C∗, so f lifts to a continuous map F to C.

Before proving the multiplicative analogue of Thm. 6.1 we introduce a convenient
terminology:

Definition 7.3.

i. An O∗-cocycle in a domain G is a data g =
(
Ui, gij

)
, where the Ui, i ∈ I, are

an open covering of G and gij ∈ O∗(Uij) such that

gij = gji
−1, (3)

gjkgik
−1gij = 1 on Uijk, (4)

provided Uijk 	= ∅.

ii. An O∗-solution h of g is a system hi ∈ O∗(Ui) of holomorphic functions with

gij =
hj
hi

on Uij .

If we replace O∗ by C∗, the space of continuous functions without zeros, we obtain
in the same way the notion of a C∗-cocycle and a C∗-solution. Since an O∗-cocycle is
also a C∗-cocycle, we can speak of C∗-solutions of an O∗-cocycle.

The analogue of Thm. 6.1 and 6.2 now comes up with a surprise:

Theorem 7.2. Let D be a polydisk – or, more generally, a domain where the Cauchy-
Riemann system is always soluble. Then an O∗-cocycle has an O∗-solution if and only
if it has a C∗-solution.

Proof: Let
(
Ui, gij

)
be the given cocycle.
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1) We first assume that the Ui are simply connected. By our assumption,

gij = cjci
−1 (5)

with non-vanishing continuous functions ci, cj on Ui and Uj , respectively.
By Lemma 7.1, for each i,

ci = exp bi,

bi continuous on Ui. Now, on the intersection Uij :

gij = exp(bj − bi),

which means that

bij = bj − bi (6)

is holomorphic. The bij are clearly an O-cocycle and Thm. 6.1 provides us with a
solution ai ∈ O (Ui):

bij = aj − ai (7)

on Uij . Let us now set hi = exp ai. Then

hj
hi

= exp(aj − ai) = exp bij =
cj
ci

= gij ,

as required.

2) The general case will now be reduced to the above special case. Let the O∗-cocycle
g =

(
Ui, gij

)
i∈I be given with a C∗-solution c =

(
Ui, ci

)
i∈I . We choose a covering

Vα, α ∈ A, of simply connected open sets which is finer than the covering by the Ui,
i.e. each Vα is contained in some Ui, and there is a refinement map τ : A → I such
that always Vα ⊂ Uτ(α). We now set

g′αβ = gτ(α)τ(β); c′α = cτ(α),

restricted to Vαβ and Vα resp. Then
(
Vα, g

′
αβ

)
is again an O∗-cocycle with a C∗-

solution
(
Vα, c

′
α

)
, and by the first part of the proof we obtain an O∗-solution

h′α ∈ O∗(Vα) with

g′αβ =
h′β
h′α

. (8)

We now define hi ∈ O∗(Ui) by

hi = h′αgτ(α)i on Ui ∩ Vα. (9)

On Ui ∩ Vαβ we have in view of (4):

h′αgτ(α)ih
′
β
−1

giτ(β) = g′βαgτ(α)τ(β) = g′βαg
′
αβ = 1,
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so (9) defines hi on Ui uniquely. The definition yields on Uij ∩ Vα

hjhi
−1 = h′αgτ(α)jh

′
α
−1

giτ(α) = gτ(α)jgiτ(α) = gij ;

so (9) solves our problem.

As in the previous section we point out that, among the various properties of D, we
only need the solubility of the Cauchy-Riemann equations for smooth data. We state
this explicitly as

Theorem 7.3. If G ⊂ Cn is a domain where the Cauchy-Riemann system is soluble,
then an O∗-cocycle on G has an O∗-solution if and only if it has a C∗-solution.

To express this more briefly we introduce

Definition 7.4. A domain G ⊂ Cn has the Oka property if each C∗-cocycle has a
C∗-solution.

It now follows easily

Theorem 7.4. Let G be a domain with the Oka property where the Cauchy-Riemann
system is soluble. Then all divisors on G are principal.

Proof: Let Δ =
(
Ui, fi

)
be a divisor. By the Oka property there are continuous

functions without zeros ci on Ui such that

fj
fi

=: gij =
cj
ci
.

The previous theorem gives us holomorphic functions hi ∈ O∗(Ui) with

gij =
hj
hi

.

Then

f :=
fi
hi

on Ui

is a well-defined meromorphic function on G with divisor Δ.

In order to apply this to the polydisk we need

Theorem 7.5. Polydisks have the Oka property.

We do not give the – purely topological – proof, but refer the reader to [Ra]. The
main consequence now is

Theorem 7.6. All divisors on a polydisk are principal.
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8. Meromorphic functions revisited

We go back to the quotient representation of meromorphic functions. We have to
use certain algebraic properties of the ring of convergent power series which can be
deduced from the Weierstrass preparation theorem which has been proved in Chap-
ter IV; the details of the deduction, however, will not be given in our book. So this
is one instance where we rely on a bit more than just the previous arguments.

Let f be holomorphic in a domain G. If z0 ∈ G, then, as a consequence of Cauchy’s
integral formula, f can be developed into a convergent power series in z − z0; let us
call this series fz0 . We now need

Theorem 8.1. The ring H of convergent power series of n variables is factorial.

Moreover, again as a consequence of the Weierstrass preparation theorem, we have

Proposition 8.2. If f and g are holomorphic and their power series fz0 and gz0 are
coprime, then for all points z in a sufficiently small neighbourhood of z0 the series fz
and gz are also coprime.

For the proofs we refer to [Hö].

The upshot of the previous statements is: A meromorphic function f can always lo-
cally be represented by quotients g/h of holomorphic functions with gz and hz coprime
for all z in a sufficiently small open set.

We apply this information to divisors. Let us first note that a divisor Δ given as

Δ =
(
Ui, fi

)
i∈I

can equally well be given as

Δ =
(
Vj , gj

)
j∈J ,

where the Vj are a refinement of the covering Ui and

gj = fσ(j)|Vj ,
with σ : J → I a refinement map, i.e. Vj ⊂ Uσ(j). Different refinement maps yield
different gj but the same divisor. So two divisors Δ and Γ can always be given by a
Cousin-II-distribution defined over the same open covering: just pass to a common
refinement of the original coverings! Now, if

Δ =
(
Ui, fi

)
i∈I ,

Γ =
(
Ui, gi

)
i∈I

are given, we define their product as

ΔΓ =
(
Ui, figi

)
i∈I .
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It is easy to check that this is again a divisor, and that the divisors on G form an
abelian group under this multiplication; for instance

Δ−1 =
(
Ui, 1/fi

)
i∈I .

Let now

Δ =
(
Ui, fi

)
i∈I

be a divisor. We can choose the Ui so small that we have a representation

fi = gi/hi, gi, hi ∈ O (Ui)

with giz and hiz coprime for each z ∈ Ui.

This implies that

Δ+ =
(
Ui, gi

)
i∈I

and

Δ− =
(
Ui, hi

)
i∈I

are again – necessarily positive – divisors. We show it for Δ+:

On Uij there are holomorphic non-vanishing functions aij ∈ O∗(Uij) with

fj = aijfi on Uij .

So

gj = aij
hj
hi

gi.

Since giz and hiz are coprime, the right-hand side can only be holomorphic if hj/hi
is holomorphic – without zeros, because we can apply the same argument to hi/hj .
This shows

aij
hj
hi

∈ O∗(Uij)

and verifies our claim for Δ+. Hence

Proposition 8.3. Every divisor is the quotient of positive divisors.

Now let f 	≡ 0 be a meromorphic function on a polydisk D. Its divisor decomposes

div f = Δ+/Δ−

into the quotient of two positive divisors. Since these are principal – by what we know
by now – we find holomorphic functions g and h on D with

div g = Δ+, div h = Δ−.
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This implies

div f = div(g/h),

and so f and g/h differ by a function a ∈ O∗(D).

f = a · g
h
.

Hence

Theorem 8.4. Meromorphic functions on a polydisk are quotients of globally defined
holomorphic functions; the field M (D) is the quotient field of the ring O (D).

Exercises

1. Use the Mittag-Leffler and Weierstrass theorems from Chapter III to explicitly solve the Cousin
and Poincaré problems in the plane. (This has been mentioned in the main text without expla-
nation of the details.)
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