

IV. Synopsis

This is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.

Winston Churchill

Now, this last part finishes this thesis. At first, a short summary of the achieved
results of this research project is provided. This is then followed by a prospectus
of possible further questions to continue research on, either improving the current
features set of R2A or more general on the research topics of this thesis. At the
end, the author tries to summarize the general conclusions to draw from this the-
sis.

IV.25 Summary of the Achieved Research
Results

To achieve anything worthy to be called quality you will have
to do a good deal more than follow a drawing or specification,

 whoever made them and however carefully.
There is a good and close parallel to music.

The quality of a performance depends
 on the performers as much as on the score.

The performers are said to be interpreting the score,
 but in fact they are adding intention of their own

to those of the composer, recognising that no score
 in practice can fully express the intentions of the composer,

 that it can never be more than an indication, a sketch;
 and no designer can in practice ever produce more than a sketch

 even though his drawing is dimensioned in thousandths
 of an inch and his specification is as long as your arm.

[Py78; p.80]

In the following the main technical innovations achieved through PROVEtech:
R2A (in the further called R2A) are summarized:
• Hierarchic decomposition of a system (or software) is an old idea in SE (see

structured analysis and design [De78]). In UML based design, this view is
seen as one besides many others with equal rights (see, e.g., the view concept
“4+1 View Model” by Kruchten [Kr95]). UML does not prefer any view or

B. Turban, Tool-Based Requirement Traceability between Requirement and Design Artifacts,
DOI 10.1007/978-3-8348-2474-5_5, © Springer Fachmedien Wiesbaden 2013

380 IV. Synopsis

make relations between views explicit. Instead, defining views and their
relations are left open to architecture documentation. However, this leads to a
more difficult understanding of a designed model since all views and elements
are mixed up in one egalitarian repository (see fig. 15-3 in ch. III.15).
Besides, the heterogeneous view concept of UML makes UML incompatible
with other modeling techniques used in embedded development such as ETAS
ASCET or Matlab, which only use one hierarchic decomposition view. As
R2A makes only one necessary assumption: that a design must be made using
a hierarchic decomposition (in fact a claim that can be called state-of-the-art),
the approach should be compatible to any other computer tool-based design
approach and even to HW or computer aided design (CAD). To include such a
tool, only an interface implementation for R2A's modeling tool variation
point connecting to the corresponding tool would be necessary. Development
experiences within the R2A-project have shown that this is possible within a
two to three person month's development effort.

• As shown in ch. III.16.2, the mechanism of coupling modeling tools in R2A is
even capable to integrate models of different modeling tools in one integrated
model. In this way, all achievements described below can also be used as an
embracing method to generate an integrated model, crossing tool gaps
between different modeling tools. This allows using specific modeling tools
together in an integrated model. In this way, it is possible to employ the
specific strengths of the specific tools in one integrated model.

• As not explicitly discussed yet, but the approach for traceability can be
equally used to establish traceability between requirements and an AM, when,
e.g., a UML-tool is used to create the AM.

• In the approach shown here, the hierarchic decomposition builds the spine of
the complete model because each element of the design model gets explicitly
included into the abstraction hierarchy tree and is extended to a so called
abstraction node (AN) having extended semantics (cf fig. 15-2 in ch. III.15).
To each AN further diagrams can be added as additional views. Through this
way, the orientation of the designers is alleviated as at first navigation into the
abstraction hierarchy to the desired element can take place (vertical
direction). Starting from this, also navigation along the further attached views

IV.25 Summary of the Achieved Research Results 381

is possible267 (horizontal direction). However, the problem is still unsolved
that some of the remaining views of a model may go crosscutting over
different abstraction layers and ANs. At the moment, it is possible to add
diagrams with such characteristics to all ANs touched by the view, but finding
an even more consistent solution for this, is an open point for further research.

• Additionally, the ANs tree arisen through hierarchic decomposition also
builds the spine for the structured approach for requirements traceability to
design establishment. Differently to approaches, where requirements are
simply added to a design element via direct linking, the R2A provides a
complete new approach to the problem called the requirement dribble process
(RDP). In this approach, developers at first do not need to know by which
design solution a requiremental item (RI) will exactly be fulfilled. Instead a
designer can at first assign an RI to ANs, where she roughly grasps that the RI
may be fulfilled by. Then, when the designer's vision gets clearer about an RI,
the designer may use the dribble-down and dribble-up actions to reallocate
the RI. In this way, on one side Simon's idea about stable intermediate forms
(ch. I.6.2.1) is supported, and on the other side the uncertainty and flexibility
of the approach directly supports designers in their knowing-in-action phase.

• Through the support of a dedicated process for assigning RIs, it is ensured
that each RI is adequately considered in the design process: If new RIs are
assigned to an AN 'from above' (a higher-level AN), these RIs get highlighted
in the AN by a bold font style Now, the designer of the AN must try to find an
adequate solution for the newly assigned RIs. If the designer of this AN is
again able to delegate these requirements to a sub AN of the design, then these
RIs 'dribble down' one level deeper to a sub AN, and the problem is solved for
the corresponding AN. However, if the designer is not able to clearly delegate
these RIs to any sub AN, then the RIs stick to this AN and are inherited to all
lower-level sub ANs (marked 'gray' at these lower levels) indicating that all
ANs must work together to fulfill these RIs. But, if the designer responsible
for the AN realizes that these newly assigned RIs cannot be fulfilled in the
current state of design, the designer is able to repel these RIs back to the
higher-level AN (its origin) accompanied with a corresponding note. In this

267 As described in the point before, the usual orientation within modeling tools is in most

cases realized by a repository concept, where all items present in a model are shown
(see fig. 15-3 in ch. III.15). This repository is not touched by R2A. On the contrary,
R2A's AN concept with its representation in an ANH tree can be seen as a distillate of
the most important information on the most important items and their relationships
present in the modeling tool repository. Whereas, the modeling tool repository is more
a dictionary containing all someway present items in a model.

382 IV. Synopsis

case, the designer of the higher-level AN must take care for a solution under
consideration of the created notes.

• As a dedicated goal of the RDP, the process set aims on principles leading to
a way to find an allocation for a requirement at an AN at the lowest level of
abstraction to ensure that a requirement is implemented as local as possible.
In this way, the impacts of a later requirement change are also limited as local
as possible.

• In the wake of this goal, the concept of the requirement influence scope (RIS)
has been developed. The concept includes that a requirement being associated
to an AN also is propagated to the child ANs as “inherited” requirement. In
this way, on one side pressure is imposed on the project team members to
bring requirements to the most possible local level in the ANH tree. Thus, a
later possible change of the requirement has only minimal impact (cf. ch.
III.18.2.2). The RIS thus promotes a heuristic enforcing a design with
emphasis on localization of the requirements. This heuristic is an essential
part of the ideas behind the RDP.

• As a further plus, the history of the different requirement allocations and
reallocations during the RDP are automatically tracked via configuration
management features. In this way, the decision process of the designer taking
the decision can be reconstructed later. This follows ideas of Gruber and
Russell [GR96a] or Schneider [Sch06] to capture important information
during performed action and extracting important rationale information later
as a by-product.

• Some traceability research rather neglects the aspects about the process of
traceability establishment (see, e.g., [Kn01a], [Kn01b]). In the author's view,
however, this issue might be the central key problem of traceability since
traceability faces a significant benefit problem (see ch. II.10.5) in a similar
way as RatMan approaches do (ch. II.9.4.2). As a consequence, R2A's
traceability mechanisms try to allow capturing traceability as a mere by-
product of normal design activities, where designers can perceive direct
benefit from recording traceability information. To achieve this goal, R2A at
first allows capturing traceability by several possible drag-and-drop
operations being performed easily and quickly as by-product of the decisions
performed. Secondly, R2A directly shows the RIs assigned to each AN, thus
directly giving designers benefit for their traceability work as this work is
used to provide a sorted out view on the RIs important for the currently
considered design aspect from the otherwise numerous manifold of RIs
present in a requirements specification. Further, with the RIS and RDP
concepts, design decisions about requirements allocation are automatically
captured, following the principles of Simon's idea about stable intermediate

IV.25 Summary of the Achieved Research Results 383

forms (ch. I.6.2.1). In the author's view, the principle of stable intermediate
forms directly reflects how designers usually develop a design out of the
requirements at hand. Thus, through RIS and RDP, traces can be directly
captured according to their occurrence with special emphasis on flexibility
and optimal adaption into a SPICE-conforming process landscape. These
concepts can also be seen as an attempt to adapt traceability establishment
activities to the way designers are thinking, thus preventing a cognitive
dissonance for designers. In this way, R2A tries to be less intrusive to
designers' thinking, thus supporting designers in both, their knowing-in-action
and reflection-in-action phases (see Schön, ch. I.6.2.3).

• Significant parts of the research about traceability concentrate on proposals to
use richer traceability models as a kind of conceptual trace model (cf. ch.
II.10.4.2). In the author's view, these approaches provide important points.
However, it is questionable whether their formality is not too complex (i.e.
complicated; see footnote 80 (p.77)) for activities that should best be
performed as a by-product (see ch. II.10.5 and ch. II.9.4.2). The research
attempt shown here tries to integrate good ideas from these research attempts
into a complete concept. As a result, a requiremental items taxonomy has been
developed, distinguishing real requirements from the customer from RIs (DCs
and BRCs) arising as consequences from design decisions.

• This – as a further result – also has sparked the idea to enhance R2A's
traceability concepts by an integrated decision model for documenting
requiremental and design-based decisions (cf. ch. III.20). Thus, the developed
decision model is called integrated because it directly integrates information
about design decisions into a traceability concept. Again following the idea
that this additional information must be rather captured as a by-product, the
decision model is construed as a semi-formal model, where the formalisms
build a skeleton to easily sketch the basic information about a decision and to
add more detailed information on demand. In this way, the decision model on
one side addresses benefit problems encountered for capturing rationale (ch.
II.9.4.2) but on the other side also allows capturing deeper rationale
information for problems of rather wicked nature (cf. ch. I.6.2.2). As ch.
III.20.4 has outlined, the decision model is also a good means for fulfilling
demands on decision documentation, imposed by research about architecture
documentation (e.g., cf. [Ha06], [CBB+03]), and much closer integrating the
thus captured information with the design model.

• The decision model's concept of modeling conflict situations and consequenc-
es resembles to the pattern concept expressed by Alexander (ch. I.6.2.4). In
fact, as ch. III.20.5.1 shows, R2A's decision model can be a decisive means to
document the rationale behind pattern usages to directly integrate the pattern

384 IV. Synopsis

concept with the traceability concept, to help to better include consequences
of pattern usages with other decisions and to help to discover new patterns.

• As embedded design (but also other design) must often care for adequately
managing resource restrictions, the R2A approach offers a second decision
model to capture decisions about resource restrictions that can be managed as
budget. The decision results are again expressed as new RIs assigned to ANs,
expressing the need that an AN does not exceed the resource budget that was
assigned to it. To cover this aspect, the requiremental items taxonomy has
been extended by the RI called BRC expressing the budget character of the RI
and the budgeting decision process.

• The arrangement of the design models in an abstraction hierarchy tree and
the way requirements consideration in design can be handled by the RDP,
suggest the conclusion that adequate mechanisms can help to significantly
improve the flow of communication between project stakeholders. In R2A,
this can be achieved by temporal decoupling (asynchronous temporal com-
munication) of messages preventing, for example, that important information
is not adequately propagated if the responsible developer is not present. Such
a mechanism is intended to support goal-oriented creation of notes (cf. ch.
III.17.2) for any entity present in the data model and actions performable on
the entities. These notes allow sketching occurring problems with references
to all affected model entities and propagating this information to concerned
stakeholders.

• At the same time, these notes are included into the history function (cf. ch.
III.17.5) in order to better enable later reconstruction of the incident's occur-
rence268 (e.g., helpful during a SPICE assessment). In this context, further re-
search attempts could enhance the mechanism described here by state-based
notes (e.g., with the states: 'New', 'In work', 'Processes', or 'New solution'), or
escalation paths in a consistent process-driven model.

• Additionally, all these concepts allow a high degree of flexibility to change
traceability information again. This flexibility is also especially helpful to
support design refactorings, where traceability information is also adapted
correspondingly, thus preventing significant degradation of traceability in-
formation captured once.

• This directly segues to the next topic: Traceability is intended as means to
manage requirement changes. Through the graphical impact analysis concept
(see ch. III.22.1.1), R2A allows proposed requirement changes to be better
predicted and helps to implement once decided requirement changes. An es-
pecially important point is to consistently infer and propagate all requirement

268 Up to now, results are often only discussed and tracked orally.

IV.26 Perspectives for Further Research 385

changes throughout the complete model. R2A achieves this through the con-
sistency management mechanism described in ch. III.22.2.

• In many development projects, parts of a project are delivered by a supplier.
Correspondingly, supplier management is an important task in these projects.
One of the most essential issues addressed is that the requirements for the
supplied parts must be formulated in a way that the supplied parts fit together
with the other designed parts of the system. R2A allows generating a require-
ments specification directly for a part of a design (an AN or a sub tree in the
ANH), which can then be used as supplier requirements specification. In this
way, all information about requirements, design and decisions performed in a
R2A project relevant for a supplier of a part can be directly propagated to the
supplier without unintended information loss due to tool gaps or other poten-
tial breaks in the information chain (see ch. III.23.1).

• Last but not least to mention, the mechanisms of generating requirements
specifications for parts of a design described in ch. III.23.1 can also be used
to implement a direct and seamless information propagation for situations,
where a project has several requirement and design processes at different lay-
ers of abstraction as it is demanded by SPICE. Even though the author him-
self rather prefers an integrated design process for the different layers as it is
described by fig. 23-1 in ch. III.23.2, fig. 23-2 in ch. III.23.2 shows that R2A
also has the potential to improve the information flow in cases the process
demands of SPICE shall be fulfilled word for word. As the ch. III.23.3 shows,
R2A can even be used to achieve a temporal decoupling of the development
of the different requirement and design artifacts.

IV.26 Perspectives for Further Research

It’s like deja-vu, all over again.
Yogi Berra

The current research results of the R2A-project also provide perspectives for
possible further research. In the following, problems or ideas are outlined that
may raise interesting research questions:
• The current solution of R2A has made a significant simplification concerning

the view concept. In R2A, views are merely represented by one diagram. This
does not consider more complex views. However, in design documentation
theory, a view often consists of a set of diagrams that must be considered
together. R2A currently only considers this fact by the ANH. This brought the

386 IV. Synopsis

advantage that the user can more easily navigate in the model, but on the
other side other view's being more complex than one diagram might be
scattered over several ANs and the relationships between these diagrams may
not be adequately surfaced by a model. Further research could concentrate on
finding a solution, in which several diagrams could be integrated into a more
complex view other than the ANH view, and where, however, the advantages
of better model navigation as provided by the current R2A-solution are still
present.

• In the context of the RIS (ch. III.18.2.2) and the RDP (ch. III.18.2.4), the
author has only spoken from RIs 'assigned' to an AN. This leaves open space
for interpretation of the concrete semantics of any relationship. In fact,
different traceability CTMs (see ch. II.10.4.2.3) know different relationship
types between RIs and design. The R2A-approach could be extended to allow
designers to define a concrete semantics of a relationship. However, further
research should then also ensure that this extension is not just leading to
further complication without significant gains of value.

• In this context, a further interesting idea may be to have a relationship
describing fuzziness concerning the kind of connection between an RI and an
AN. Instead of 'assigned' relationships, currently describing the fact that an
AN is directly influenced by an RI, there might exist relationships having
notions like 'bordering' (the requirement is fulfilled nearby, thus the RI should
be monitored whether it possibly has some influence), 'keep in mind' and 'I
don't know, but might be important'. By such fuzzy relationships designers
could identify connections, for which they 'feel' that there is a dependency
they cannot describe rationally. This corresponds to Schön's observation that
designers also work in a state of intuitive knowing-in-action, where they use
tacit knowledge and thus cannot rationally explain their exact thoughts.

• Ch. III.18.2.2 describes a mechanism where the scope of a requirement is
determined by the so-called RIS. When RIs are added to an AN, these RIs are
automatically inherited to all child ANs of the AN in the ANH. In this way,
developers are spurred to find the most local solutions for an RI. On the other
side, effects of nonfunctional RIs can be made more transparent as than it is
possible by other approaches. Nonfunctional RIs can be added to a very high-
level AN, where they are inherited by large extents of ANs. Taming
nonfunctional RIs is rather difficult. In the author's opinion, the decision
model introduced in ch. III.20 proves very helpful as it allows documenting
decisions about the taming strategies of nonfunctional RIs, allowing deriving
more concrete DCs as decision consequences. Now, if this is thought through
consequently, it may be possible that a nonfunctional RI is tamed by
decisions, where more concrete RIs (DCs or BRCs) are derived. It should be

IV.26 Perspectives for Further Research 387

considered whether a feature may be helpful to specify that a decision or
several decisions together completely tame an RI. It must be analyzed whether
it would be a logical consequence that an RI tamed by one or more decisions
may lose its inheritance status to lower-level ANs (lose its RIS) because its
influence would rather take effect through the decisions and the effects of the
RIs resulting as consequences. Such considerations, however, must also
consider that such an effect may not be realized for any decisions, but it
would rather be necessary to mark certain decisions as the taming decisions of
an RI leading to the deactivation of the RI's RIS. In this way, it is questionable
to a certain degree whether such a feature brings significant extra value to
designers or whether it just implies a further complication to the design (see
footnote 80 (p.77)). In the case of the latter, the author would recommend
leaving out the question, even though it might be slightly more logical than
the current solution.

• At the moment, consistency checking is a rather neglected topic of this
research even though rudimentary consistency checking can be provided by
the rule engine. Analyses on what consistency reporting is necessary for users
could be performed. A further problem may arise with the fact that R2A rather
relies on heuristics such as the RDP (ch. III.18.2.4) and the decision models.
These heuristics imply a certain non-linearity. As here traces cannot be
followed so directly, this could make consistency checking more difficult. For
example, usually consistency checking mechanisms rely on checking whether
all requirements are someway associated to a design model. If this is the case,
it is assumed that the requirement is adequately considered in the design
process. The author, however, is rather skeptical towards the real
expressiveness of such rather simple checks. With R2A, however, such simple
checks are even not possible because the RDP heuristics allows assigning
requirements to design elements not being the final destination of the
requirement. Instead, the requirement assignment can change with dribble-
down or dribble-up operations in order to support design decision-making. In
this case, a requirement can only be seen as adequately considered after the
requirement has reached its final destination. The situation can get even more
complicated when a requirement is part of documented decisions. Here, e.g.,
the question arises whether a requirement can only be seen as adequately
considered when all consequential items of all decisions involved have
reached their final destination. In the author's view such a developed
consistency checking mechanism would provide significantly more fine-
grained information than current consistency checking approaches and thus
provide even stronger expressiveness. But, because all effects of such a

388 IV. Synopsis

consistency checking heuristics are not yet analyzed, this point is rather an
open question for further research.

• Pinheiro indicates that for capturing nonfunctional traces, hypermedia
(multimedia) systems could provide significant support ([Pi04; p.104-105],
see ch. II.10.4.2.2). The approach proposed here offers possibilities to tackle
nonfunctional traces via the integrated decision model (cf. ch. III.20). It
would be possible to couple the decision model approaches with rationale
tools like Compendium, supporting rationale capturing on the fly as well as
with other media objects such as tape or video recordings of meetings, in
which the corresponding decisions are discussed.

• A design process is also driven by other documents such as meeting protocols,
review protocols or documentation of the used COTS269-components. In the
author's opinion, it will never be possible to integrate all documents important
for development into one tool solution. Correspondingly, it should be possible
to have a hyperlink concept to give developers the freedom to link to further
documentation, someway not manageable in R2A. As projects usually use
configuration management tools to manage versions of all documents in a
project, it may be interesting to integrate R2A with configuration management
systems via the standardized CVS270-interface.

• In issue tracking (i.e. change management) systems open issues (e.g.,
problems or bugs) can be managed. A direct connection of R2A to issue
tracking systems could help to make influences of issues transparent, because
often issues beyond requirements or requirement changes exist having
influences on design decisions. The exact way of integration should be
analyzed by further research. However, a starting point for integration could
be to shape the integration in a similar way as the integration of REM-tools
has been made: A continuous synchronization process cares to have all issues
in an accurate state in R2A and these issues are then treated analogously to
requiremental items. As the description to arrow '1.' of fig. 20-8 (see ch.
III.20.4) describes, a better integration with change management tools might
help to solve information backlashes to requirements occurring during design
and especially during processes of discovering rationale in decision
processes. However, it must be noticed that issues are slightly different to
requirements because only certain issues may be interesting for design and

269 Commercial Off The Shelf
270 Concurrent Versioning System: This interface is an international standard for integrat-

ing configuration management systems with other environments such as programming
IDEs.

IV.26 Perspectives for Further Research 389

should therefore be synchronized in R2A. This means a filter must distinguish
the architecturally significant issues from the insignificant issues.

• Impact analysis (IA) approaches as [Ha99] propose combining a tracing
approach with a kind of dependency analysis approach using the relationships
in a model. In this way, effort to capture traceability information is reduced
by using the model relationships present in a model. As ch. II.10.6.2 has
shown, however, such approaches often lead to the so-called fan-out effect
[Al03] because models contain manifold relationships having other purposes
leading to many unnecessary traces. Correspondingly, the R2A approach
rather concentrates on achieving more exact results by allowing establishing
dedicated more fine-grained traceability information as a by-product of usual
development effort, thus reducing efforts for traceability. However, on the
other side, dependency information in the model can be valuable to indicate
other possible impacts resulting from interconnections within the model.
Thus, it may be possible to combine the current R2A approach with a
dependency approach automatically analyzing all other relationships created
in the design model. To avoid the fan-out effect, R2A's IA could show these
impacts identified from dependency analysis with a different iconification (as
it is already done for distinguishing direct impacts from indirect impacts
derived from decisions or inherited impacts derived from the RIS) to
distinguish them from impacts derived from captured traceability information
within R2A. Further, it could be possible that this additional dependency
analysis can be activated or deactivated for IA. In this way, designers could
have additional support for identifying possible impacts from
interconnections within the model but also ignore the information if they feel
it is not helpful.

• Ch. II.10.2 further indicates that with model-driven development methods and
tools a new problem arises concerning traceability: As code then often is
generated from models, some requirements are not necessarily implemented
through the models but by setting parameters or choosing specific model
transformation procedures over other procedures [AIE07]. This means that
traceability tools should also need to map requirements to parameter choices
or transformation procedures of the modeling tool. Currently in R2A,
traceability to these items could be achieved by a documented decision,
where the requirements are in the conflicts section and the resulting section
contains DCs with the chosen parameter settings or transformation
procedures. Further research, however, could also try to find more adequate
support by R2A for this tracing problem.

• Another research direction may be to integrate a metrics approach with R2A.
Ch. III.20.5.3 indicates that architectural evaluation and identification of

390 IV. Synopsis

neuralgic points can be supported by combining R2A with metrics. Further
research could evaluate the potential of the ideas about metrics sketched in ch.
III.20.5.3.

)***()(Re ReAN ++= qDecinherinherdirect DecscoeffANscoeffLevelANqCEF (26.1)
)(Re qLevellLowestLeve

lvlANH coeffLevel −= where 1>lvlcoeff (26.2)

qsCount
qCEF

CEFAvrg
Re

))(Re(
)(= (26.3)

• A further metric possibly interesting to evaluate could help to determine the
changeability of an RI. As indicated by ch. III.18.2.2 and ch. III.18.2.4, a RI
should be as local as possible. A change effort factor (CEF) metric could
measure the locality of a requirement by calculating the directly assigned ANs
in relation to the hierarchical level in the ANH (is it high or low in the
hierarchy?), the number of ANs where the RI has been inherited to and the
number of decisions the RI is involved in. Formula (26.1) sketches a possible
measurement formula for the CEF metric. The formula uses a level factor271
calculating (formula (26.2)) a factor to determine the hierarchy level
dependent complexity of each directly assigned AN. In this way, the metric
could help to estimate the effort for changing a RI. From a higher perspective,
this metric could also be used to create a metric to evaluate an architecture
according to the average changeability of requirements. The average
changeability could be calculated by the sum over the changeability of all
requirements divided through the number of requirements (e.g., formula
(26.3). Here, it is to mention that the metrics as proposed here are just rough
sketches. Further research could deal with how to adapt parameters (different
'coeff' variables) in the sketched formulas to achieve distinctive, meaningful
results. Afterward, the metrics need to be evaluated in several practical
projects to get measuring scales for the practical meaning of the measured
metrics.

• As described in ch. I.7.4, verification criteria for design artifacts must be
defined and these must be made traceable [MHD+07; p.225ff]. At the

271 Through the level factor with its level coefficient, the complexity of the design model

is taken into account because the coefficient grows exponentially with the number of
abstraction levels present in a design. When, e.g., a design grows by new abstraction
levels, requirements added to higher level (resp. more abstract) abstraction levels lead
to a significantly higher CEF (assumed a corresponding adequate value for the coeffi-
cient is chosen). In this way, the author assumes that the 'Avrg(CEF)' function also
grows stronger for designs having more abstraction levels.

IV.26 Perspectives for Further Research 391

moment, this can be achieved in R2A via using the notes mechanism (ch.
III.17.2). Such notes are only added to the assigned R2A-items and nowhere
stored centrally, which leads to an unstructured approach with no complete
overview about present verification criteria. Further research could try to find
a better solution, where easiness of usage and usability should play a central
role.

• The R2A approach introduced here leaves one major field of problems
concerning development of automotive systems and software untouched: Ch.
I.2.3 indicates that buyers of cars can select hundreds of different options of
their car individually, where also different options are connected with each
other. This, however, implies that the different ECUs employed in a car can
significantly vary between different cars and that in different cars individual
variants of the ECUs must communicate with each other. As HW costs are
significant constraints, different ECU variants also have different HW
assemblies. Nevertheless, all different ECU variants and the different ECUs
with their variants in interplay must fulfill their requirements, especially all
safety-related issues. This together implies significant higher complexity than
if all ECUs had only one fixed version. In SysEng and SE theory, management
strategies for this complexity are called variation management. Hull et al.
[HJD02; p.180-183] show that managing variation implies significant higher
complexity concerning variants, version management and change
management of requirements in connection with their traceability (see also
[Si98], [BP06], [PR09; p.141f]) because the different variants must fulfill
partially different requirements and the valid requirements must be – despite
the variation – consistent to each other. In other words, version baselines and
change management must in principle be performed and managed
individually for each variant [HJD02; p.180-183]. On the other side,
variation management issues also impose high influence on SW architecture
and design theory (e.g., cf. [PBG04; ch. 10]), because decisions about
strategies for handling the variation at the variation points ([PBG04; p.276],
[Si98]; also cf. ch. III.16.1) significantly influence design272. As R2A also has
its two major involvements in REM and design issues, R2A has potential to

272 As an example, it must be determined whether a variation can be simply handled

through a configuration parameter or whether the variation requires significantly more
complex mechanisms to be integrated into design considerations (e.g., flexibility needs
for a variation point can also lead to the decision that significant parts of the applica-
tion must be created through the abstract factory pattern in order to allow activation of
different component implementations according to the variation need).

392 IV. Synopsis

improve variation management. However, to find suitable features, further
research is needed.

IV.27 Conclusions

After you find the gold, there's still the job
of picking out your particular nuggets.

[BT04; p.147]

Now, finally, the reader has reached the end of this thesis. The author hopes that
this thesis could provide valuable information to the reader so that he considered
it worth, while reading it.

The main topic of interest has been requirements traceability between re-
quirements and design artifacts in the development of safety-critical systems. As
this thesis – hopefully – has shown, manifold factors must be considered, because
the topic traceability is cross-cutting through research theories of embedded
systems development, systems engineering, software engineering, requirements
engineering and management, design theory and process standards for safety-
critical systems. Despite all promising effects ascribed to traceability over the last
two decades, the traceability concept did not broadly succeed in practice except
for development organizations using process standards such as SPICE or CMMI,
where, in most cases, safety-critical systems may be in the focus of development.

A reason may be the significantly higher effort and costs involved to make
all requirements traceable throughout the complete development endeavor. Most
probably, the effort and costs can only be justified, when issues of safety or secu-
rity are involved. On the other side, costs will only be such a decisive factor if
they are not outweighed by the benefits. This seems to be a core issue of the
traceability problem.

Further, the thesis has shown that requirements traceability between re-
quirements and design is especially wicked because this involves crossing a two-
fold gap: First, different tools are used for requirements specification and design
that make it necessary to bridge them. Secondly, a transition from requirements to
design means a transition from a problem description to a solution description,
involving a substantial, non-linear gap that is usually mentally bridged by de-
signers but is difficult to cope with an ordinary link concept usually employed by
traceability methods.

When analyzing different design theories, the author found out that design
must rather be seen as a continuous decision process, where only parts of the
decisions can be rationally describable by designers, but other extensive parts

IV.27 Conclusions 393

arise by intuitive usage of tacit knowledge, cook-booky heuristics, and creativity.
As the author has tried to show, exactly this “tacit dimension” [Po66] may be the
major obstacle for valuable traceability information concerning design, because it
infers the non-linearity in the relations between requirements and design and also
hinders designers to make the transition process rationally explicable.

As a consequence, the author has invented a new tool solution called
PROVEtech:R2A, aiming to narrow the twofold gap between requirements and
design to a degree that traceability endeavors bring a real benefit to development.

To achieve this, PROVEtech:R2A has been developed to allow establishing
traceability as a by-product of designers' usual development activities. Through
this, additional benefit shall be provided to designers as an incentive to establish
valuable traceability information. One of these benefits is that recorded tracea-
bility information can be directly used to improve communication and collabora-
tion between designers. The tool further orients itself on the view of design as a
sequence of decisions. Correspondingly, R2A allows recording traces of the deci-
sions made. This starts with automatically recording traces of decisions about
simple requirement allocation and design structure building (e.g., see ch. III.15)
and continues by providing two different decision models allowing designers to
document rationale information on more complex decisions.

Besides all these considerations, one further, very important, consideration
has been that such a tool must also be integrated into a process landscape compat-
ible with process models for safety-critical systems. This thesis has shown that
this is in principle the case. As a further very important plus, the thesis identified
major drawbacks of these process models, involving unnecessary redundancy
concerning process transitions from requirements to design. The author could
identify the underlying core idea that also design processes spark new “require-
ments” as consequences from decisions taken earlier. Once having identified this
idea, the author could develop a taxonomy of requiremental items, where re-
quirements originating from demands of the customer could be distinguished
from design constraints originating from taken design decisions.

As it has further turned out, the first decision model could be used as a
means to transform processes in a way that the original ideas of the process mod-
els were preserved, but unnecessary redundancy could be avoided. The decision
model, allowing modeling conflict situations of requirements and then deriving
consequences as new design constraints, can be seen as a new major extension of
current traceability linking concepts by a more complex traceability concept that
allows a better bridging of the gaps in a complex design decision process, leading
to the non-linear gap between requirements and design. As a further major plus,
the four major design theories introduced in this thesis could be adequately

394 IV. Synopsis

weaved together with theories about traceability and rationale management,
forming a tool set of supportive actions for designers.

Through significant research and development funding by the support pro-
gram IUK-Bayern of the bavarian ministry of economics, it has been possible to
develop PROVEtech:R2A to a solution now commercially available at the
MBtech Group. First practical experiences at the MBtech Group are promising
that the solution provides significant support for designers at their daily practical
design work. In the meantime, through the coupling of the tool PROVEtech:TA
(a solution of the MBtech Group for test automation) the usage context of
PROVEtech:R2A has been even enlarged to a means for also bridging the gaps
between a test specification and automatically executable testing code.

	IV. Synopsis
	IV.25 Summary of the Achieved Research Results
	IV.26 Perspectives for Further Research
	IV.27 Conclusions

