
 

III.  PROVEtech:R2A – A Tool for Dedicated 
Requirements Traceability 

A fool with a tool is still a fool 
  - unknown 

 
This part describes the traceability tool solution PROVEtech:R2A (R2A) espe-
cially dedicated to cross the substantial gap between the requirements (i.e. prob-
lem space) and the design solutions (i.e. solution space). 

The author is convinced that a successful development of SW based systems 
is not alone guaranteed by strict compliance to SE processes someway developed 
in theory, but it is at least in the same way (or maybe even higher) influenced by 
both the real unique constellations of projects (so called practice) and by soft 
factors as humans and their communications (e.g., cf. [Mu06a]). 

Correspondingly, the solution proposed here tries to account for all three 
factors. The next chapter (ch. III.11) outlines this in more detail deriving the 
goals of the tool approach described here. To better illustrate the mechanisms and 
findings of research about R2A, the author has tried to use an accompanying case 
study whose basic characteristics are described in ch. III.12.  

As derived in ch. III.11, two fundamental gaps must be addressed by the 
R2A approach. Concerning the first merely tool related gap, ch. III.13 shows how 
R2A intends to address this gap. In the author's opinion, the transition between 
requirements and design generally is difficult, because designers perform a sig-
nificant mental transfer process from the requirements to the resulting solution 
design leading to a substantial gap between both. This second gap is the core 
problem. Correspondingly, ch. III.14 describes R2A's principal ideas to ame-
liorate the problem.  

From ch. III.15 to ch. III.21 different mechanisms of R2A are introduced 
helping to better overcome the second gap. To achieve this goal two major strate-
gies are employed.  

The first strategy is to better support designers on documenting design in-
formation and providing means for capturing traceability information as a mere 
by-product of normal design activities. Ch. III.15 to ch. III.17 describe mecha-
nisms to generally improve the design processes without yet considering the 
requiremental dimension. Basing on these mechanisms, ch. III.18 shows then 
how a more requirement-centered design process (see requirement dribble pro-
cess ch. III.18.2.4) can be employed where traceability information is rather es-
tablished and information on basic design decisions is rather captured as a by-
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product of the design activities. This first strategy part from ch. III.15 to ch. 
III.18 can be considered as a whole complete in itself topic where the design 
theory of Simon (cf. ch. I.6.2.1) dominating in the design theory about SysEng 
and SE is set into context with traceability needs usually expressed by process 
standards for safety-critical processes. These two aspects are then also combined 
with findings of Schön’s design theory about design as situated action (cf. 
I.6.2.3). So far, however, the design theories considered yet rather represent a 
view on design assuming that the development of a design is rather a linear pro-
cess of step to step actions transforming information into a design at the end. The 
design theories about wicked problems (see ch. I.6.2.2) and patterns (see. ch. 
I.6.2.4) rather suggest that the design process is not such a linear process but 
rather a complex nonlinear process driven by complex design decisions. In the 
author’s opinion, design is both – in some situation design is rather a linear pro-
cess of step by step transformation of information into a design, however in other 
situations complex decisions must be taken where the design rather emerges out 
in a nonlinear fashion. To cover these nonlinear aspects of design, decision mod-
els have been developed allowing the documentation of rationale behind com-
plex decisions. These decision models are tightly integrated into the traceability 
information and the design process building a tightly woven network supporting 
all four design theories described in ch. I.6.2 by a unique integrated way. This 
second major strategy to address the second gap is treated in ch. III.19, ch. III.20 
and ch. III.21. 

After the ch. III.15 to ch. III.21 describe the core innovational ideas how to 
address the two-fold gap between requirements and design domain, ch. III.22 
then shows how traceability information once gathered can be used in R2A for 
impact analyses and requirement change propagation in order to ensure con-
sistency. 

Ch. III.23 then discusses issues about embedding R2A and the R2A design 
processes into a higher level process environment. This starts with a description, 
how R2A can be used to improve supplier management. The sub chapters follow-
ing then describe how this mechanism can also be used to reduce redundancies 
when different artifact models are crossed in a development project and how this 
may help to have a decoupled development of different requirement and design 
artifacts. 

The core of R2A's innovations can be considered in the orientation on its 
mechanisms. Correspondingly, R2A has been designed in a way to provide an 
optimal support for the mechanisms. Last but not least, ch. III.24 provides an 
overview of the architecture and meta-model of R2A that realize the mechanisms. 
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III.11  Research Goals 

The biggest problem of system development has always been the confusion of requirements and de-
sign. 

Hatley et al. [HHP03; p.27 (*)] 
 

Concerning traceability, the transition from requirements to design has been 
identified as one of the most critical issues as it includes a twofold structural gap: 
• At first, requirement activities and design activities are usually performed in 

different tool environments. Correspondingly, the transition usually implies 
to cross a tool gap. 

• More important, requirement activities deal with exploring the problem 
space and design activities deal with exploring the solution space. Thus a 
substantial conceptual gap exists between requirements and design.  
A useful solution must try to bridge both gaps. The first gap seems more to 

be a technical issue of how to couple two tools into an integrated environment. 
However, as mentioned in ch. I.6 projects often use a combination of multiple 
design tools for design. Thus, an adequate solution for automotive purposes must 
also consider a way to couple several design tools in an integrated way. The next 
chapter will discuss the issue from the merely technical coupling perspective, but 
questions remain whether this gap also involves incompatible methods due to 
different task performed in REM or design.  

This leads to the second mentioned gap about requirements and design dis-
cussed in ch. II.10.2. Today's traceability models, as seen by theory or process 
standards as SPICE, assume that requirements and its realizing design are con-
nected by simple linear relationships mappable by a simple traceability linking 
schema. In reality, however, a considerable gap between requirements and design 
arises from the design process as it represents a creative and complex mental 
transfer process of a unique problem constellation into a sustainable solution that 
is per se difficult to reproduce. During design, designers make decisions. This 
gap is mentally bridged by designers by taking design decisions. Each decision 
involves consequences and constrains the solution space until the solution space 
(hopefully) converges to a solution fulfilling the requirements.  

From the author’s perspective, the second point is the rather neuralgic issue. 
The author even considers that point one actually is just a symptom for the deeper 
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underlying problem described in point two, because tools were at first developed 
around the two core topics requirements and design having a higher cohesion202. 

Now, the question arises what exactly may be the cause for the second point. 
Considering the problems that RatMan solutions have with succeeding in prac-
tice, Dutoit et al. [DMM+06a; p.7] emphasize that rationale documentation 
schemes usually differ from the way a rationale bearer would structure rationale 
intuitively, thus creating “a cognitive dissonance that adds to the cognitive over-
head that designers must cope with” [DMM+06a; p.7]. 

In the author's opinion, this also is exactly the issue for a traceability solu-
tion to address in order to help to bridge the gap. When a traceability solution 
helps designers to easily203 capture traceability information as a by-product with-
out imposing significant cognitive dissonance and bringing early benefit to de-
signers, it is more likely to achieve better traceability information actually useful 
for projects. In this way, the promises of the traceability concept may be achieva-
ble. 

Ch. I.6 has described four different theoretical views on design. All these 
views describe different – in the author's view essential – characteristics of design 
and its processes. However, current systems and SW design theories rather con-
centrate on design structural aspects as provided by the theories of Simon (ch. 
I.6.2.1) and the pattern theory of Alexander (ch. I.6.2.4), neglecting other – ad-
mittedly more ambiguous – theories about designers' thinking and decision mak-
ing (cf. ch. I.6.2.2 and ch. I.6.2.3). The author considers improving support on 
designers' thinking in order to avoid cognitive dissonance as the neuralgic point. 
In R2A, this shall be achieved by a requirement centered modeling: Supported by 
a suitable methodology and a newly developed tool, the necessary work for es-
tablishing traceability to design shall be intuitive for designers and support their 
normal design work in a way that traceability occurs as a by-product of the usual 
design process. To achieve this, also the design theories about designers' thinking 
and decision making are significantly considered in the concepts of R2A. 

One dedicated goal for the research was to find a tool solution whose usage 
in practice really brings early benefit (ch. II.10.5). As Moro [Mo04; p.26 (*)] 
points out in reference to modeling: “The primary decision criterion about what 
modeling technique or level of detail is used always is the benefit for the archi-
tect”. In the author's eyes, this is correspondingly true for design traceability. The 
                                                           
202 In terms of software theory, it may be said that the topics requirements and design 

have within each other a significantly higher cohesion within each other leading to the 
development of tools within their specific topics. Later, it was then discovered that 
coupling both may be a good idea. 

203 In this context, 'easily' means 'does not infer further complication' or even 'helps to 
reduce complication' (see footnote 80 (p. 77 )). 
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benefit for the development team members must be in the center of traceability 
approaches. Otherwise, traceability usage will fail due to Grudin's principle. A 
symptom connected to this problem is the problem that traceability establishment 
is often performed later after design has reached a relatively stable state (see ch. 
I.7.2.3, comment on BP.2 and ch. II.10.5). In this way, the development team 
especially avoids effort for traceability establishment when design must be 
changed; however, paying the price that a lot of relevant traceability information 
is lost. Correspondingly, a major goal is to lower the burdens for traceability 
establishment and raise benefit for designers to an extent that designers rather 
establish traceability as a by-product. 

As traceability is mainly established by hand [EGH+07], it is often very cost 
intensive and bureaucratic with little use for the development team [RJ01], 
[EGH+07]. The author disagrees with the idea to lower traceability effort by 
using coarser traceability to abstract high-level design elements (see, e.g., 
[EGH+07]), because feedback from practice [Pe04], [Al03] indicates the need for 
detailed traceability even at lower-level design elements, but the author agrees 
that traceability efforts must be lowered and benefits for the bearers of traceabil-
ity information must be significantly raised. Otherwise, traceability will always 
face the benefit problems as all collaborative systems do in danger of failing due 
to Grudin's principle [Gr96b] (cf. also ch. II.9.4.2).  

R2A offers several characteristics contributing to lowering the effort of es-
tablishing traceability and raising benefits for the traceability bearers: 
• Traceability can be easily and fast established via drag-and-drop and other 

simple operations, by which multiple requirements can be selected in parallel 
to perform the operations. 

• The operations adapt to how designers think and perform their design steps 
so that the designers can establish traceability information as a side-effect204. 
The same principles guide the operations that are possible to document deci-
sions. 

• All important information for a designer's situation is adequately presented 
in-time to support the designer's cognitive flow. Especially in-time infor-
mation that is easily comprehensible supports designers in their phases of in-
tuitive knowing-in-action (Schneider) by preventing that important aspects 
are missed. In the same way, the in-time information supports designers in 
their thinking-in-action phases of rational thinking, because the facts that are 
considered are directly presented. One of the most important information to 

                                                           
204 As already stated in ch. II.10.5, Dömges and Pohl [DP98] emphasize that traceability 

should evolve as a side-effect of the daily development activities and not cause extra 
bureaucracy. 
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mention here are requirement information and recorded traceability infor-
mation accompanied with information about important decisions. 

• Connected to the points above, the author is convinced that a tool solution 
for practice should be as easy to use as possible. Theoretic research often 
bears theoretically sound (often in connection with strict formality), but 
complex and formal solutions (e.g., cf. Knethen's solution via meta-models 
[Kn01b]). However, in practice, developers often do not have the time to 
work into such complex solutions but rather prefer solutions with low entry 
barriers and a possibility for 'learning by doing'. This point is closely con-
nected with the discussion about formality in development methods (see ch. 
II.9.4.2). The author tried to address these problems by providing an easy to 
understand, basic skeleton of formal concepts in R2A. R2A then allows en-
riching this formal skeleton with further informal information205 at nearly 
any location. 

• R2A provides a collaborative environment where all created information is 
automatically shared with other designers, who can immediately use and ex-
tend the information to evolve their further design. 

• Operations for recording traceability information provide possibilities for 
designers to delegate requirements to other designers, who can immediately 
analyze and further process the requirements. In case of problems, possibili-
ties to reissue the requirements back to the delegating designer accompanied 
by a note about the problem support the designers to communicate with each 
other. 

• Short communication paths between developers and designers responsible 
for the model are often the decisive factor to ensure flexibility in identifying 
and handling necessary and reasonable model changes [Mo04; p.25]. Since 
all the steps of design work above are recorded, the communication actions 
between the designers can also happen asynchronously. This improves situa-
tions in which important designers are absent, because the other designers 
can delegate information (e.g., requirements or notes) to the absent designers 
through R2A. The absent designers are then able to consider this information 
and take actions after they have returned back. 
 
 

                                                           
205 At minimum informal notes can be added on any item present in R2A (see ch. 

III.17.2), but also other mechanisms exist at specific locations to add informal descrip-
tions, etc.. 
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III.12  Accompanying Case Study 

Every module … is characterized by its knowledge of a design decision which it hides from all others. 
 Its interface is chosen to reveal as little as possible about its inner workings. 

Parnas [Pa72; p.1056] 
 

In the following chapters, R2A and its features are described. To explain these 
features, a practice-oriented case study shows how the features interact with each 
other to support a good design process. Here, the basic characteristics of the case 
study are introduced. Later, extra chapters show the case study outcome with the 
features described.  

 

Figure 12-1  Example use case of the case study 

The case study starts with an example use case (fig. 12-1) for a lights steer-
ing device in an automotive context: At first, the system retrieves different signals 
from the controller area network (CAN) bus. Then, the lights steering task de-
termines whether some lights must be activated or deactivated. Finally, the lights 
are steered via pulse-width modulation (PWM) and diagnostic information is 
retrieved via analog feedback, which must be analyzed. 

Fig. 12-2 shows an example requirements specification for the case study in 
IBM Rational DOORS. The requirements ReqSpec_2 to ReqSpec_6 are func-
tional requirements describing the use case of fig. 12-1. It is here important to 
mention that requirement ReqSpec_2 is a special case as it also describes the 
context of the system. In this way, according to the view of Hruschka and Rupp 
[HR02; p.86ff] (see fig. 5-1 in ch. I.5.1), it can also be seen as a system constraint 
and thus as nonfunctional requirement. In practice, often requirements exist not 
clearly identifiable as being of one specific type. 
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Figure 12-2  Requirements specification for the case study in IBM Rational DOORS 

The items ReqSpec_1, ReqSpec_7, ReqSpec_10 and ReqSpec_12 are no re-
quirements but just headings structuring the requirements specification text, 
whereas ReqSpec_13 and ReqSpec_14 are clearly nonfunctional quality require-
ments, and ReqSpec_15 is a nonfunctional management constraint. 

The corresponding ECU’s SW design outcome is shown in fig. 12-3. A high 
level SW architect206 has partitioned the SW into three subsystems (the three 
packages LightsManagement, Communications, and Drivers). For each subsys-
tem a subsystem designer determines their sub components207.  

                                                           
206 The term high-level does not impose any specific role such as system designer. High-

level and lower lever are rather seen in relativity to the current design task. Design ac-
tivities take place in different levels of abstraction. A high-level architect is involved in 
designing at a high level of abstraction, e.g., determining the overall structure of an ar-
chitecture, whereas for other parts of the design – e.g., for a component – a designer at 
a lower level of abstraction will work. 

207 This example illustrates aspects of collaboration. In a real project of this size, only one 
designer could most probably cope with it. But in larger projects with complex appli-
cation domains, a separation into several layers of design liability is common. In the 
automotive industry, a current trend exists to merge several previously independent 
devices into one powerful multifunctional device (cf. [Br06]). 
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Figure 12-3  Example SW design for the requirements specification in fig. 12-2 

The following project decisions have been made: 
• The lights management contains an active process Light_Task with a complex 

state machine. An underlying light handler Light_hdl knows how to manage 
the underlying drivers according to the light signals to set. Both components 
are being developed in-house. 

• The drivers (PWM_drv, ADC_drv and CAN_drv) are supplied by different 
subcontractors. Code size, performance and other parameters are highly de-
pendent on their individual configuration. Therefore, a subcontractor manager 
shall monitor each driver for these parameters. 

• The CIL_hdl (CIL=CAN Interaction Layer) depends on the types of signals 
relevant for the device. These settings are defined by the customer (OEM) be-
cause it affects communication. 

This example case study has been chosen being as easy and clear as possible 
to illustrate the concepts of R2A. However, its easiness turned out to be a disad-
vantage for illustrating complex decision situations in ch. III.20.4. Correspond-
ingly, in ch. III.20.4, the author deviates from the case study by referring to some 
further requirements and components not mentioned here in the case study. This 
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decision situation is then again referred to in ch. III.22.1.1 describing impact 
analysis. The author thinks this deviation from the case study is no problem, 
because the reader can imagine (as it is in reality) that the ECU-project involves 
more use cases and components than just one use case for internal lights steering. 

 
 

III.13  Closing the Tool Gap 

How does a project get to be a year late? ... One day at a time. 
[Br95; p.153] 

 
 

To close the gap about proper tool coupling mentioned first, R2A is designed to 
work as an enhancement for a design tool. Fig. 13-1 shows R2A in combination 
with the design tool Enterprise Architect. R2A docks its main GUI208 window 
(right side) onto the main GUI window of the corresponding design tool generat-
ing an user experience in which both tools seem to be one tool. 
 

 

Figure 13-1  R2A in combination with a design tool (Sparx Systems Enterprise Architect) 

                                                           
208 Graphical User Interface 
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From the logical architecture viewpoint (see fig. 13-2), R2A can be seen as 
an interlayer between an REM-tool providing the requirements and a supported 
design tool.  
First of all, the requirements are imported from the REM-tool as direct representa-
tions (so called ‘surrogate requirements’) into R2A. Later, these representations 
can be synchronized with the requirement changes in the REM-tool by a regular 
controlled synchronization process. This is described in detail in ch. III.18.1. 

All relationships relevant for traceability and IAs are consistently modeled 
and stored in R2A. Currently, the following relationships are considered: 

• Satisfy relationships between requirements and design model elements (‘req 
model dependency’). 

• Hierarchic relationships between design model elements (‘refinement de-
pendency’). 

• Other relationships between design model elements (‘between model depend-
ency’). 
All other not traceability-relevant relationships occurring in design activities 

are not considered in R2A but must be covered by the features of the used design 
tools. 
This structure provides the following advantages in comparison to other methods: 
• The traceability relationships between requirements and design are managed 

directly, whereas only some distinct model relationships (the refinement and 
between model dependency mentioned above) are taken into account for IAs. 
This prevents the requirements fan-out effect (cf. [Al03] and ch. II.10.6.2) 
during IAs. 

• The synchronization between the requirements in the REM-tool and the sur-
rogate representations can be performed at specific points in time and thus 
requirement changes between the old requirement version, present as surro-
gate representation and the new version in the REM-tool can be tracked in 
R2A to support a consistent change of the design to fit to the requirement 
changes (cf. ch. III.22). 

• Besides, the surrogate representations concept allows that change works on 
the requirements baseline for the next release is decoupled from the require-
ments baseline for the current release. In this way, requirements engineers 
can already work on the requirements specification for the next release, 
whereas designers can design the system according to the requirements spec-
ification baseline of the current release in parallel. Details on this are provid-
ed in ch. III.23.3. 
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Figure 13-2  Logical structure of the R2A tool approach 
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III.14  Closing the Gap between Requirements 
and Design 

 
Technology evolves from the primitive over the complicated to the simple. 

Antoine de Saint-Exupéry 
 
Besides the structural advantages mentioned above helping to close gap one, the 
R2A approach shall go beyond closing the first gap. It shall also change the way 
how designers treat requirements and design by establishing an intuitive process 
that allows to establishing traceability information between requirements and 
design as a by-product of the usual design activities.  

According to the experiences of Moro [Mo04; p.351], it makes no sense to 
consider a design model without also considering the corresponding requirements 
specification or software architecture documentation. Following this finding, the 
author considers these items as a threefold unity. Correspondingly, R2A tries to 
find a solution in which all three aspects can be considered in an integrated way 
during design activities. The following chapters deal with the different features 
that try to provide a solution to better address this structural gap. 

In a lot of cases, design is the result of a collaborative work between several 
designers working together to find a solution for fulfilling the requirements. Cor-
respondingly, several designers must work in parallel on the same model and they 
must be able to easily share information. Thus, ch. III.18.2.4 shows how estab-
lishing traceability as part of a design process can be used as an essential means 
to organize collaboration and sharing contemporary requirement information 
between designers, working together to find a solution for all requirements. Find-
ing good solutions essentially involves making design decisions in a collaborative 
manner and information about decisions must be propagated as soon as possible 
to all stakeholders affected by the decision. As a consequence, a design solution 
should also support a collaborative decision process as rationale management 
systems do. 
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III.15  Abstraction Layers and Abstraction 
Nodes 

There are a lot of advantages of hierarchically organized systems and sub systems. ... 
 If we work on a certain level of abstraction, we will be able to concentrate on this level without 

having to go into detail too fastly. 
[HHP03; p.52 (*)] 

 
Following the design theory of Simon (see ch. I.6.2.1), design deals with manag-
ing complexity. Central concepts for managing complexity are abstraction hier-
archies (also called hierarchic decomposition) and posing different views on 
design aspects. 

To simplify the understanding and the structure of the design, R2A empha-
sizes the hierarchical abstraction structure view (hierarchical decomposition) as 
nodes in an abstraction tree. Fig. 15-1 shows an example of such a hierarchical 
decomposition. In the further of this document, such a node is called abstraction 
node (AN), whereas the tree is called abstraction nodes hierarchy (ANH). An AN 
is formed out of two aspects. On the one side, it represents a design element usa-
ble as a symbol in diagrams. On the other side, an AN contains a diagram show-
ing its internal structure composed of new design elements and thus a new AN in 
a more detailed abstraction level. In this way, detailing relationships (refinement 
dependencies) arise between an AN and its sub AN, in which the diagram of an 
AN contains the design elements (symbols) of the AN it is built of (composed) of.  

Concerning this issue, it must be mentioned that all ANs at one level in the 
hierarchy represent one level of abstraction (or detail) in the design. This is called 
an abstraction layer (AL) in the further. In other words, an AL builds a compre-
hensive view on a system at a certain level of abstraction209. With increasing 
depth of an AL, the design gets more specific. 

An AN is more than a node in an abstraction tree. ANs build the central start-
ing point to connect to further design related information. Below, fig. 15-2 shows 
the conceptual characteristics of an AN in R2A on the basis of an example AN 
“SubSystem1” enriched with further information. 

                                                           
209 = levelalhierarchiconeatANAL ___

 – this is similar to refinements of data flows in structured 

analysis (SA) [De78]. 
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Figure 15-1  Hierarchical decomposition of a system shown as abstraction tree 
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Figure 15-2  Detailed content and structure of an abstraction node (SubSystem1) 

The goal is to present as much relevant information as possible for an AN and 
its realization. Consequently, one idea of R2A is using the AN concept to repre-
sent the following information to designers: 
• Each AN consists of a representation element (symbol) that represents the 

abstraction node in other diagrams.  
• Each AN has one central diagram (‘Main View’) as main entry point. The 

diagram represents a decomposition view showing how the AN is decomposed 
by sub ANs, in which the design elements of the sub ANs are shown in the di-
agram. 

• Other views or diagrams can be attached to an AN as further views (‘Sub 
view’) to allow detailed modeling of other important aspects (e.g., dynamic 
behavior, concurring processes, complex behavior).  

• Diagrams without further explanation can be misinterpreted. Consequently, a 
design must be accompanied by textual descriptions. R2A supports adding a 
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textual description as a rich text document for each AN (‘Textual Descrip-
tion’). This allows the designers to document each AN separately. 

• Requirements can be linked to ANs to indicated that the AN satisfies the re-
quirements. Requirements associated to an AN of a higher abstraction level 
get inherited by ANs of lower abstraction levels. All these connections of an 
AN with requirements can be shown to the designers (‘Allocated require-
ments’). The details about requirements and ANs are described in the follow-
ing ch. III.18. 

• As described in ch. II.9, important aspects about taken design decisions 
should be documented. The AN concept makes all decisions connected to 
structure building of the design leading to the ANs automatically visible to the 
designers. Additionally, through the history function described in ch. III.17.5, 
the decision history is collected. This is close to ideas of Gruber and Russel 
[GR96a] (see ch. II.9.4.2) to automatically capture side information on pro-
cesses providing rationale in a way that allows to inferring rationale later 
when it is needed. 

The first two points have a strong analogy to the concept of different abstrac-
tions in structured analysis and design (SA/SD) [De78]. Currently, the concepts of 
SA/SD have mostly been ousted by the concepts of UML. 

Concerning the design language UML, a central concept is the usage of dif-
ferent views on a system under development. UML as well as UML-tools usually 
do not impose any demands on the definition or usage of views and their relation-
ships. Instead all views are treated with the same priority. In UML-tools like 
Enterprise Architect, all elements present in a design are stored in one project 
repository browser. Fig. 15-3 shows an example of a project repository browser as 
it is provided by the UML-tool Enterprise Architect. A project repository contain-
ing all elements of a design is important for a project to have an overview of the 
available elements of a design. Besides the rich tool set, the relative freedom of 
not imposing demands for a structured approach has probably contributed to the 
vast success of UML in the development community. This egalitarian treatment of 
all design concepts, however, also makes it difficult to understand the design and 
the relationships between the different views210 (resp. diagrams). 

                                                           
210 Broy and Rumpe [BR07b] speak of incondite consistency between the different model 

views in UML (see also ch. I.6.6.1). 
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Figure 15-3  Example of a UML project repository in Enterprise Architect 
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This is where R2A with its AN concept can help designers to master com-
plexity as it extracts and visualizes the most important structural information of a 
design repository. At first, R2A breaks down the information contained in a pro-
ject repository into the abstraction hierarchy described in the points one and two 
resulting in the main view connecting the strength of the SA/SD concept with the 
strength of UML. In the next step, described in point three, each of the ANs in the 
ANH can contain further diagrams as further views fulfilling the concepts of view 
partitioning as inspired by Simon’s design theory (ch. I.6.2.1). To master design 
complexity for designers, this structure provides an easy way to mentally struc-
ture a model with specific navigation support in two ways: 
1. As main view, the ANH allows the designers to order the design into a struc-

ture easy to overview for a designer. This can be seen as navigation into the 
vertical of the design model. 

2. To each node in the ANH, further associated views can be seen as a parallel 
view on other aspects of an AN. This can be seen as navigation into the hori-
zontal of the design model. 
Resembling accordance express the remarks from Hatley et al. [HHP03; 

p.47] that, if several models for a system shall be created, these models must be 
organized in a way orienting themselves on the relationships between the models 
and the system. They use the metaphor “scaffold” [HHP03; p.47]. From this 
perspective, R2A imposes a kind of scaffold to structure a design. Other model-
ing approaches as Matlab or ETAS ASCET do not provide different views but 
only have one view showing the abstraction hierarchy (corresponds to the ANH) 
of the design. As R2A’s only required assumption about design is that an abstrac-
tion hierarchy is present, these design methods are fully compatible to R2A ex-
cept for the only difference that these modeling approaches do not provide mod-
eling of further views.  

Nevertheless, the ANs concept has one major drawback: The ANH is a re-
dundancy to the design elements hierarchy modeled in the modeling tools. This 
means that this information must be modeled twice and later changes must also 
be maintained twice – once in the modeling tool and once in R2A. Mechanisms 
to manage this redundancy should offer relief for these situations and explicitly 
prevent information drift between the redundant information. R2A offers three 
mechanisms: 
1. As basic mechanism, a wizard helps the designers with combining design 

elements in a modeling tool to ANs in the ANH. 
2. For better convenience, it is also possible to perform drag-and-drop opera-

tions dragging design elements from a modeling tool to R2A. If R2A can re-
cover enough information about the design elements to fit them directly into 
the ANH, the elements will be directly added (as mentioned above, UML-
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tools do not provide as clear hierarchy dependencies as tools such as Matlab 
or ETAS ASCET do). Otherwise, the wizard mentioned in point one opens, 
containing all automatically retrievable information, to which the designer 
only has to add the missing information which could not be automatically re-
trieved. 

3. An automatic synchronization mechanism explicitly helps to resynchronize 
the design elements and their hierarchy in the modeling tool with the ANH in 
R2A. Before really synchronizing, the mechanism analyzes both structures 
and displays a synchronization wizard, where the differences and proposals 
for potential changes to overcome the differences are shown. Using the wiz-
ard, the designer can analyze the proposed changes for correctness or adapt 
the proposed changes in order to perform the changes according to the de-
signer's intention. After the designer has approved the changes highlighted 
by the wizard, the synchronization mechanism applies them. The mechanism 
is explicitly helpful, when changes in a modeling tool shall be adapted to an 
already existing ANH, but the mechanism can also be applied to create an 
ANH from scratch using the design elements' abstraction hierarchy in the 
modeling tool. However, experience has shown that this mechanism only 
works frictionless for tools with a definite hierarchy (such as Matlab or 
ETAS ASCET), whereas for modeling tools in which the hierarchy cannot be 
determined definitely (e.g., UML-tools), the synchronization wizard often 
identifies unintended changes due to false-positive or misleading interpreta-
tions of the automatic synchronization mechanism. It is possible in the wiz-
ard to correct all these unintended changes and turn them into intended 
changes, but this can become cumbersome for designers. In these cases, us-
ing the two mechanisms mentioned first to create the ANH and then using the 
synchronization mechanism to synchronize later adaptations on the hierarchy 
may be the better alternative. 
A design scaffold also is a central concern for design documentation purpos-

es (cf. [IEEE1471], [GP04], [CBB+03] and [Ha06]). Design documentation aims 
at documenting design to communicate it to persons not directly involved with 
the design or even non project members. Besides the documentation of design 
elements and their relations documented in diagrams arising out of design, also 
the relations between the diagrams must be documented. This is implicitly ful-
filled by R2A's scaffold (i.e. skeleton)  structuring the relations between dia-
grams. Beyond these points, design documentation also demands a textual de-
scription of the design. Textual documentation is supported in R2A by the possi-
bility to add a textual description to each AN, as described in point four of the 
listing about information possible to add to an AN (see p.274 in this ch. III.15). 
To ensure a certain quality of the textual design description, documentation tem-
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plates can be defined and used for the documents. Last but not least, design doc-
umentation literature also demands for documenting other important information 
as assigned requirements and important decisions. As these points are also part of 
R2A, R2A is a valuable support for design documentation. 

 

Figure 15-4  With the AN tree view and the tab “Views and Description” 
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A further point to mention here is the fact that for modeling an ECU, often 
several different models are used, where even several different modeling tools 
may be used in parallel. To reduce design complexity within such a heterogene-
ous model environment, R2A also provides mechanisms to manage different 
models and their relations in an integrated manner using the AN concept. Ch. 
III.16.2 describes this in detail. 

Now, after elucidating the theory, the concrete realization of the AN concept 
in R2A is described. Fig. 15-4 shows a design model in R2A. In the upper part, a 
tree view contains all ANs building the hierarchical composition structure as the 
main view. When the user selects an AN in the tree view, the AN’s main view 
diagram is selected in the design tool and all other information related to the AN 
is shown in the lower part. This part is segmented into three tab pages (see fig. 
15-4):  
• The tab “Views and Description” contains a control to add diagrams as fur-

ther related views to an AN and a control to add a description to an AN in 
rich text format (RTF). 

• The tab “Requirements” contains a control that helps to maintain require-
ments traceability information with ANs. This is further described in ch. 
III.18. 

• The tab “Decisions” deals with relating important design decisions to ANs. 
This is further described in ch. III.20. 
 
 

III.16  Models Crossing Tool-Barriers 

Couplings between textual specification and modeling tools are immature and seldom used. 
[WW02; p.22] 

 

III.16.1  Insertion: Coupling Different REM- and Modeling  
Tools 

In engineering practice, different REM- and modeling tools are used. The tool-
based methodology proposed by the R2A project is very general and could be 
used by all kinds of systems or SW design projects. Thus, R2A is designed to be 
open for different kinds of REM- and modeling tools to provide flexibility in the 
usage of REM- and modeling tools in order to allow the usage of the best-suited 
tool support for a project. 
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To ensure this flexibility with minimal effort at maximal benefit, R2A is de-
signed according to concepts of software product line design [PBG04; p.259-
298]. A software product line is “a set of software-based systems sharing a con-
joint, controlled set of product characteristics, orienting itself on the specific 
needs of a specific domain and being developed on the basis of a collective pool 
of software artifacts” [PBG04; p.262 (*)]. 

Here, the focus is to adapt R2A and its processes as a common development 
approach to fit with different REM- and modeling tool environments. In this way, 
R2A is not a classical product line, but is merely a tool framework allowing dif-
ferent REM- and modeling tools to be coupled. However, product line design 
differentiates a system into the invariable product line core and its variation 
points. The invariable core contains the constant characteristics of the systems, 
whereas the variation points define the differing characteristics of the systems 
[PBG04; p.276]. R2A could be differentiated in the invariant core of concepts 
described in this thesis and the variation points of different tool couplings to 
embed R2A into an integrated tool chain. Correspondingly, the REM- and model-
ing tool couplings have been identified as variation points. For each identified 
variation point, adequate strategies and design concepts to handle the variation 
must be found. A common problem at product line development is that the prod-
uct line core is in constant danger of creeping erosion. This means that the varia-
tions along the boundaries between the core and a variation point always demand 
variations at parts of the core leading to a growing extent of the variation point, 
whereas the invariable core's extent shrinks (erodes) with passing time in a prod-
uct line project.  

To address creeping erosion in R2A, the main strategy for both variation 
points was to ensure strong encapsulation between R2A's core and its variation 
points. This is accomplished by the usage of concepts and patterns such as the 
interface concept, proxy, observer and abstract factory pattern (cf. ch. I.6.2.4).  

III.16.2  Integrating Several Modeling Tools in a Single 
Model  

As described in ch. I.6.6.1, often several design tools are used simultaneously in 
an automotive embedded project, due to different strengths of the different tools. 
Correspondingly, R2A supports to handle several design tools in one integrated 
model211. 

                                                           
211 See also Medvidovic et al. [MGE+03; p.199]: “While individual models help to clarify 

certain system aspects, the large number and heterogeneity of models may ultimately 
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Fig. 16-1 shows an example of such a model basing on the accompanying 
case study about internal lights control. The model starts with the AN “SW De-
sign” that refers to the high-level design diagram of the software. This diagram is 
modeled in a UML-tool (in the example Sparx Systems Enterprise Architect). In 
the diagram, several design elements are shown, among them the elements 
“CIL_hdl”, “Light_hdl” and “Light_Task”. These elements become further ANs 
in R2A. 

Due to the different roles and characteristics of the ANs, different modeling 
tools are used to model the diagrams showing the internal design structure of the 
individual ANs: 
• The “Light_Task” contains a complex state machine. In order to tame the 

complexity, the state machine can be modeled, early simulated and then be 
converted to code via Matlab Stateflow. Thus, the diagram of the 
“Light_Task” AN refers to a Matlab model diagram. 

• The “Light_hdl” maps abstract signal definitions used in the “Light_Task” to 
concrete signals according to the used HW and manages HW diagnosis func-
tions. This involves complex algorithms that are sketched best via UML activ-
ity diagrams and then manually implemented in C. Therefore, the “Light_hdl” 
AN is also modeled best in a UML-Tool.  

• The “CIL_hdl” (CAN Interaction Layer Handler) cares about managing dif-
ferent signals sent or retrieved via CAN. The signals are usually described in 
a so-called CAN matrix. A CAN matrix is often described in Microsoft Excel 
or a dedicated CAN configuration tool. Correspondingly, R2A could212 refer 
to this application and the corresponding CAN matrix file.  

Once an R2A-model is setup, where the ANs with their diagrams are realized 
in the different modeling tools, the designers can use R2A to navigate in the inte-

                                                                                                                                    
hamper the ability of stakeholders to communicate about a system. A major reason for 
this is the discontinuity of information across different models”. As a solution, Medvi-
dovic et al. [MGE+03] propose using a model connector concept, where relationships 
between models can be modeled. This model connector concept rather seems to be an 
extended link concept (link with different assignable properties) and seems not to be in 
significant practical application. Nevertheless, the model connector concept may be 
significantly more flexible than the functionality of R2A. On the other side, the model 
connector concept leaves open how these connections may be adequately visualized to 
provide an overview for designers. In this aspect, R2A's concept provides a clear 
structure, well-known to designers. 

212 Currently, R2A does not support to include Excel or any other application for manag-
ing CAN matrices, but it will be possible similar to the support for a UML-tool or 
Matlab, if a coupling of the tool with R2A is implemented. In this way, this indicates a 
possibly promising extension of R2A's current state of development. 
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grated model built up from the parts modeled in the different modeling tools. For 
example, when a designer selects “SW Design” or the “Light_hdl” AN, R2A will 
dock to the UML-tool and show the corresponding diagram. In the case of the 
“Light_Task”, R2A will dock to Matlab and shows the corresponding Matlab 
diagram, and so on.  

If a modeling tool is not available (e.g., the designer does not have a license 
for the corresponding tool), R2A provides a model viewer mode, where R2A 
shows a snapshot of the model as bitmap taken by R2A the last time a designer 
worked with the corresponding modeling tool. In this way, R2A provides one 
integrated design model to the designers even though different tools are used. The 
AN concept once again proves its value as the integrative scaffold.  

In most cases, design is a collaborative task, where several designers must 
work together. Following the example above, it is very likely that the “SW De-
sign” AN and its connected information is designed by a SW architect, whereas 
the details of the individual sub ANs (“Light_Task”, “Light_hdl” and “CIL_hdl”) 
are designed by developers being specifically responsible for their component 
(so-called component designers or module designers). Thus, immediate infor-
mation sharing between the designers is essential. Such cases are especially im-
portant in the context of sharing information about requirements, requirements 
traceability and decisions. 

 

 

Figure 16-1  Different modeling tools integrated into one design model via R2A 
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As the following chapters describe, the AN concept plays the key role in 
connecting those information with the modeling information in a collaborative 
way. A possible scenario can be that the software architect makes the decision 
that a certain requirement must be handled by the “Light_Task”. The software 
architect can document this decision by assigning the requirement to the 
“Light_Task” AN. R2A then immediately notifies the component designer of the 
“Light_Task” about the newly assigned requirement, and the component designer 
can immediately use the information to adapt his component design. 

Details to these options are presented in the following chapter. In this con-
text, the reader should note that all statements about information propagation 
between ANs also imply that it is possible to cross the information beyond model-
ing tool boundaries by the integrated model concept described here. 

 
 

III.17  Basic Support Features of R2A 

Design is the most demanding activity within the development cycle. 
[ER03; p.34] 

 
R2A also contains some features that are well-known in other tool environments, 
but the combination of these features with the innovative concepts of R2A brings 
interesting bonus values. In the following these features are sketched. 

III.17.1  Support for Collaborative Design Tasks 

As already stated above, design is usually a collaborative task. Consequentially, 
R2A is also construed to support collaborative aspects of design. When a user 
performs and saves a change in a R2A model, the change is automatically distrib-
uted and updated in all other R2A instances connected to the model. 

For improving communication between users, a notes mechanism has been 
realized in R2A. Details to the notes mechanism are described in the next chapter. 
One big advantage is that it allows asynchronous communication between the 
users.  

Later in ch. III.18.2.4, the process heuristic requirement dribble process 
(RDP) is introduced that extends the collaborative mechanisms described here to 
a heuristic to collaboratively find the best design solution for requirements and 
simultaneously documenting the traceability information with a history of the 
decision-making process leading to the solution. 
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III.17.2  The Notes Mechanism 

Design is a collaborative task, where information sharing is essential for project 
success. Thus, a notes mechanism213 provides decisive means to improve com-
munication, i.e., reconciliation between the project members. Concerning com-
munication, three factors must be considered: 
• At first, good design lives from good (i.e. creative) ideas. Unfortunately, often 

creative ideas emerge from a designer's mind for particular aspects of the de-
sign, for which no specific structure around the idea has shaped yet. This 
means a good idea may not be immediately integrated into the current stable 
intermediate form of the design. This point appears to be closely connected to 
what is discussed in the course of Schön's theory (ch. I.6.2.3) about sketching 
as an essential activity in design. According to Goel ([Go99], [Go95]), sketch-
ing occurs at the beginning of design. Sketches often shape ideas in a kind of 
ill-structured nature. A notes mechanism provides a flexible, easy to use and 
fast way for sketching and documenting such ideas.  

• R2A allows attaching these notes to any item present in R2A. This enables 
designers to notify other designers about their ideas. As an example, it often 
occurs that a designer has a good idea about the solution for a specific re-
quirement, but it is not clear yet what part of the system will handle the re-
quirement. In this case, the designer can attach a note to the requirement and 
easily sketch the idea in the note text. At a later time, the requirement gets as-
signed to an AN that shall provide the solution for the requirement. Often, a 
different designer will be responsible for finding the solution to this specific 
AN. In this case, this designer now can open the note attached to the require-
ment and retrieve a hint about the idea of the other designer how to solve the 
problem imposed by the requirement at best. Obviously, the example shows 
that the notes mechanism214 is a means for communication between the de-
signers inferring the advantage of enabling indirect, asynchronous communi-
cation215 between the designers at their collaborative work.  

• Additionally to sketching ideas, designers sometimes also identify intercon-
nections between parts of their design and requirements that are difficult to 
express in normal design documentation. For these cases, R2A's notes-

                                                           
213 See fig. 17-1 (p.289) for a description of the user interface implementation in R2A 
214 Here, in combination with the requirements traceability mechanisms described in ch. 

III.18. 
215 For detailed information on implementation, advantages, and disadvantages of syn-

chronous and asynchronous team communication mechanisms in collaborative envi-
ronments refer to [GK07; p.103-114]. 
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mechanism also allows attaching several items to one note helping designers 
to document these interconnections (and perhaps also sketching an idea how 
these interconnections may influence the further design). 

• Another source of communication problems between designers are often 
interdependencies between the designers' work. For example, it is possible 
that a designer cannot design a solution for a requirement because another de-
signer has not yet designed a solution for another part of the design (e.g., an-
other AN), on which the solution of this requirement bases. In this case, the 
notes mechanism allows the designer of the requirement to apply a note on 
the requirement and the AN not yet fulfilling the necessary design. In this 
note, the designer can sketch what the other AN misses so that he cannot find 
a design solution for his design problem. Through this, the designer of the 
other AN retrieves then the information that he must find a design solution for 
the specific problem the other designer's work depends on. 

As a side-effect, such notes also provide valuable information when later 
changes on the design must be maintained at later phases. In this way, notes also 
provide weak support for traceability. However, it must be mentioned here that a 
few chapters later a significantly stronger support for traceability with slightly 
overlapping possibilities is introduced. This mechanism deals with describing 
design decisions for problems and their consequences in a traceable way. It is 
highly possible that some notes sketching ideas about a problem, later become a 
documented decision. 

III.17.3  Extensibility: XML-Reporting and User Tagging 

No ever so big tool development effort can anticipate all user needs. This is espe-
cially true for all usages of once gathered information. To provide additional 
flexibility all gathered model information of R2A can be exported to XML and 
developers can add individual user tags in free text form. This allows organiza-
tions to reuse the R2A information in other tools or to develop own special pur-
pose tools using the information for their specific needs.  

Experiences with pilot users of R2A revealed that this is especially im-
portant for extended information analysis and specific reporting to management. 
Through the user tags216 it is possible to add additional meta-information on R2A 
items which is often important to steer information analysis and reporting. 

                                                           
216 See fig. 17-1 (p. 289) for information on how user tagging is integrated in R2A's user 

interface 
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For the future, the currently discovered reporting needs can be further inte-
grated into R2A as a standard reporting concept, however the mechanisms de-
scribed here further allow users to quickly check out and adapt new promising 
uses217 of the gathered R2A information. 

III.17.4  Unique Identifier Support for any Item in R2A 

Any item created in R2A automatically receives a unique identifier. As described 
in ch. II.10.4.2.1, the unique identifier concept is essential to allow textual refer-
ences as linking is not always possible. In this way, items can also be textually 
referenced in other development tools, where no direct connection exists. Thus, 
e.g., in the case of R2A any item in R2A can be referenced in a textual change 
proposal issued in a change management tool by simply writing the unique iden-
tifier of the R2A-item in the change proposal's text. To ensure that R2A's identifi-
ers are unique R2A uses the GUID218-mechanism provided by the Microsoft 
Windows operating system. 

III.17.5  Evolutionary Traceability – Recording History and 
Baselines 

As ch. II.10 has exposed, traceability also involves recording the evolution histo-
ry in project development. This means that all operations performed in R2A must 
be comprehensible in retrospect. Correspondingly, R2A provides a history mech-
anism to record the history of every operation performed in R2A accompanied by 
information about the performing user and a time-stamp of the time when the 
operation has been performed. This history information can be regathered any 
time by the users if needed (see fig. 17-1 (p. 289)). 

                                                           
217 One issue regularly showing up at discussions with potential users is the idea to inte-

grate the information with project planning information to measure accuracy of project 
planning and getting a deeper insight about the real status of a project. 

218 GUID stands for General Unique IDentifier and is a well-tested mechanism in Win-
dows ensuring that each generated GUID is world-wide unique (e.g., Microsoft Win-
dows heavily relies on the mechanism to ensure that system internal interfaces or ser-
vices have a unique identifier). 
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R2A's history mechanism also provides a possibility for users to save a cer-
tain status of the model as a fixed version baseline219. Any baseline can be any 
time reopened in a baseline viewer to analyze the status of the design at a certain 
point in time. Additionally to all information gathered in R2A at that time, such a 
baseline also records snapshots of all diagrams modeled in the connected design 
tools. Thus, when a baseline is opened in the baseline viewer, also the state of all 
modeled diagrams at that time can be viewed and analyzed. This is especially 
helpful to provide an overview over a certain baseline state when more than one 
modeling tool is used in a model. 

III.17.6  The Properties Dialog 

For any item present in R2A, a properties dialog shows its properties, evolution 
history and attached notes. Fig. 17-1 shows the properties dialog of the AN “SW 
Design”. On the left, the properties of the item are shown. This dialog varies 
corresponding to the item type because each item type has different properties. 
E.g., a requirement mainly has the requirement text as properties, whereas an AN 
type has the properties shown in fig. 17-1. Only the last property “User Tags” is 
an exception because this property is shown for any R2A item as it enables the 
user tagging mechanism described in ch. III.17.3. 

Through the tab button “History”, the user can navigate to the history tab 
shown in the middle of fig. 17-1. The history tab is segmented in an upper part 
showing different version entries of the item (here two). In the part below, the 
differences of versions selected in the upper part are highlighted (cf. ch. III.17.5). 

Via the “Notes” tab shown at the right side, the user can add notes to the 
item according to the notes mechanism described in ch. III.17.2. This tab is di-
vided into three sections. The lower right section contains an overview of all 
notes attached to the item. In the upper section, the selected note's text can be 
viewed or edited. All items to which the note is attached are displayed in the 
lower right section. To attach the note to other items, the designer can drag-and-
drop the items in the lower right control. 

 

                                                           
219 “A baseline is a configuration assembled and verified that it is considered as stable and 

works as referring point for further development. A release is a baseline defined for de-
livery to the customer” [LL07; p.521]. 
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Figure 17-1  The properties dialog in R2A 
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III.18  Requirements and Requirements Traceability 

If the language is not right, the spoken is not the meant. 
Confucius (*) 

 
In the following, R2A's handling of requirements and how requirements tracea-
bility is established is described. Both points have a slightly different meaning. 
Correspondingly, the first sub chapter discusses managing requirement sources 
and how basic requirements traceability can be established with R2A. The later 
ch. III.19 and ch. III.20 then discuss how basic requirements traceability can be 
extended to improve quality of traceability information and to improve problems 
of SPICE in connection with traceability (see ch. I.7.3.2). 

Afterward, ch. III.22 discusses how all the collected information can be used 
to predict effects of requirement changes and how changes can be consistently 
inferred into a R2A model in order to avoid degradation of traceability infor-
mation. Finally, ch. III.23 discusses how R2A can be integrated in a more general 
process context to manage suppliers or to manage decoupled development for 
different versions. 

III.18.1  Managing Requirement Sources 

At first, it should be mentioned that R2A is not intended for the usage as a com-
plete REM-tool like IBM Rational DOORS. Thus, R2A does not concentrate on 
features for requirement elicitation, documentation or management. Instead R2A 
is assumed to be a broker, who can retrieve requirement documents from different 
sources. In this way, different requirement documents and their sources can be 
managed in the “Requirement Sources” part of R2A (see fig. 18-1). 

Here the different documents containing requirements from a source can be 
managed. These documents are called in the further requirements source docu-
ment (RSD). An open RSD can be seen in fig. 18-2. 

 
Currently two220 different types of RSD exist: 
• Documents originating from an REM-tool (requirements specification items), 
• Sources that can be manually managed to allow documenting information 

otherwise neglected; 
                                                           
220 Actually, the figure also contains the items “Decisions”, “Design Constraints” and 

“Resource Constraints”. These items are not RSDs in the sense discussed here. These 
documents are rather containers for all items discussed in ch. III.19, ch. III.20, and ch. 
III.21.  
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Figure 18-1  Managing different requirement sources in R2A 

 

Figure 18-2  Requirements source document synchronized with IBM Rational DOORS 
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Point one refers to requirement documents that are edited and managed in an 
REM-tool. In this case, the REM-tool functions as data source from where the 
available requirements can be continuously synchronized221. Fig. 18-2 shows a 
RSD being synchronized with the case study's requirement document managed in 
the REM-tool IBM Rational DOORS shown in fig. 12-2 (ch. III.12). A filtering 
mechanism allows importing only the requirements from the REM-tool that are 
important for the design model managed in the R2A project. For better orienta-
tion of the designers, REM-tool items not included by the filter criterion but con-
taining items as sub items that are included by the filter criterion are imported 
into R2A as headings. Fig. 18-2 shows items “ReqSpec_1”, “ReqSpec_7”, 
“ReqSpec_10”, and “Req–Spec_12” as headings in italic.  

Once an RSD has been synchronized with the REM-tool, the present re-
quirements can be related to design elements via the traceability operations de-
scribed in the following chapter. Headings are only there for structuring the doc-
ument and have no further meaning. This means, none of the traceability opera-
tions described in the following chapters can be performed for headings.  

If requirements are changed in the REM-tool then, continuous synchroniza-
tion procedures allow the requirement changes to be introduced into the design in 
a consistent way. This is described later in ch. III.22. 

Point two offers additional freedom for the users as easy and fast way to 
document information that would otherwise be omitted. As Hörmann et al. 
[HDH+06; p.93] emphasize, many requirements have other sources (e.g., compa-
ny-internal requirements deriving from product politics or the product architec-
ture). As outlined by ch. I.7.3.2 and ch. III.19, the author demands to consider 
negotiability as a criterion for requirements specifications. In the author's opin-
ion, the requirements specification should only contain the requirements that 
must be negotiated with the customer. Company-internal requirements222 (not 

                                                           
221 The coupling of REM-tools is much looser than the coupling of modeling tools be-

cause R2A docks its user interface directly to a modeling tool, whereas REM-tools on-
ly function as data source. Thus, the interface for REM-tools is not as complex as the 
interface for the modeling tools. 

222 The probably most often occurring company-internal requirements are what the author 
calls internal management requirements. In most cases, internal management require-
ments might probably deal with ensuring cost efficiency and ensuring monetary bene-
fit. Parts of these requirements have impact on design. For example, management can 
require using COTS (components off the shelf) components or components originally 
developed in other projects to avoid development effort. A significant problem for de-
sign often having significant influence on the design outcome is then how to integrate 
these components with the other parts of the design. Including such requirements in an 
extra requirement document helps to separate real requirements from the customer 
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originating from the customer) could thus be stored in a second requirements 
specification, or in more pragmatic processes, just be documented in a manually 
managed RSD, or derived from former design decisions (discussed later in ch. 
III.19 and ch. III.20). 

Another scenario to consider here is that requirements specifications often 
refer to industry standards to be fulfilled. In this case, often the requirements 
imposed by the standard are not directly referenced in the requirements specifica-
tion because these requirements are fixed. Now, the feature to manually write 
down requirements would allow defining a requirement source referring to the 
standard (e.g., IEC 61508 in fig. 18-1). In this document, the designers can now 
note down requirements for the design derived from the IEC 61508 standard.  

A manually managed RSD looks like and is treated in the same way as a 
synchronized RSD shown in fig. 18-2, except that its containing requirements can 
be edited in R2A. The handling of the requirements described in the following is 
also the same as for synchronized requirements. 

As described in ch. II.10.4.2.2, requirements can be managed via decompo-
sition hierarchies and decomposition hierarchies are the state-of-the-art manage-
ment technique offered by REM-tool. Correspondingly, RSDs originating from 
REM-tools take over the decomposition hierarchy in the REM-tool. Fig. 18-2, 
e.g., shows the requirements in a hierarchic tree directly taken over from the 
hierarchic decomposition in the IBM Rational DOORS document shown in the 
left column of fig. 12-2 (ch. III.12). In manually managed RSDs, the users can 
manually arrange the requirements' hierarchic decomposition in R2A. 

III.18.2  Establishing Requirements Traceability 

Before going into R2A's support for traceability establishment, some preliminary 
considerations shall lead to a better understanding of the ideas. 

First of all to mention, different traceability models have identified different 
relationship types between requirements and design. As discussed in ch. 
II.10.4.2.3, e.g., SysML differentiates between <<DeriveReqt>>, <<Satisfy>>, 
<<Verify>>, <<Refine>>, <<Trace>>, and <<Copy>> relationship types 
[SV08], Ramesh and Jarke [RJ01] identify four different relations 'allocated to', 
'satisfy', 'drive' and 'addressed by' in their high-end traceability model, other re-
                                                                                                                                    

from requirements originating somewhere in the developing organization. This already 
reflects an idea further discussed in ch. III.19 that requirements must be separated ac-
cording to their negotiability. Surely, requirements originating within the developing 
organization are easier negotiable within the developing organization than require-
ments originating from the customer building the contractual basis of the development. 
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search as, e.g., [Wi98] even surfaced more relationship types. The probably most 
usual link type is the 'satisfy' type, indicating that a requirement related to a de-
sign element is satisfied by the design element. In fact, the author believes that, 
e.g., the three types of SysML are only a little more special variation of the 'satis-
fy' link type, as it is the same case for the 'allocated to' 223 and 'addressed by' 224 

link types in the high-end traceability model of Ramesh and Jarke225 [RJ01]. 
In the context of this research, the question of the relationship type has been 

left open as research concentrated on an efficient way to establish significant 
requirements traceability providing support for helpful IAs. In the author's practi-
cal experience, the question whether a relationship has been recorded and thus an 
IA identifies a possible impact has higher priority than the correct kind of a rela-
tionship, because relationships identified by an IA will still be interpreted by the 
developers leading to the exclusion of false-positive relationships, whereas rela-
tionships not found may just never come to the minds of the interpreting devel-
opers. In this way, R2A leaves the question about a particular kind of relationship 
open by using the term a requirement is assigned to a design element which 
equally corresponds to a satisfy-link type. Later, if usage of R2A in practice 
proves the necessity to further differentiate different kinds of recorded relation-
ships, the R2A approach can be easily enhanced by a feature to provide more 
specific relationship type information.  

Following Simon's design theory (ch. I.6.2.1), the design process is a con-
tinuous decision process, where a lot of the decisions are performed on the basis 
of the requirements. R2A directly supports this decision-making, because R2A 
directly shows these requirements to the designers that are important in the de-
sign situational context. 

Another issue to consider is that continuous refactoring of the design struc-
ture is necessary due to bounded rationality, arbitrary complexity and Berry's 
findings about the need to restructure modularization [Be04; p.56], (see ch. 

                                                           
223 Definition of 'allocated to': “REQUIREMENTS are ALLOCATED to COMPONENTS 

that are supposed to satisfy them” [RJ01; p.73]. 
224 Definition of addressed by': “Several focus groups mentioned that it was important to 

identify the FUNCTIONS PERFORMED BY COMPONENTS. These FUNCTIONS 
are typically traced to the functional REQUIREMENTS explicitly identified in re-
quirements documents.” [RJ01; p.74]. 

225 The 'drive' relationship only expresses that requirements drive the design (“REQUIRE-
MENTS DRIVE DESIGN, that are often BASED ON MANDATES such as STAND-
ARDS or POLICIES or METHODS that govern the system development activity” 
[RJ01; p.73]). Correspondingly, the author is not even sure whether this is really in-
tended as a link type by Ramesh and Jarke. Instead, the author considers the 'drive' re-
lationship as a conceptual metaphor for the design process. 
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I.6.2.1.2). Accordingly, it must also be possible to easily refactor traceability 
structures. Today's current state-of-the-art methods of relating requirements are 
not very flexible for changing requirements assignments. As an effect, designers 
often perform their design process first to such an extent that the design has 
shaped to a relatively fixed state and then establish traceability information.  

This has the effect that the requirements are the basis for a lot of performed 
decisions, but on the other side the connections between requirements and design 
are documented afterwards. In this way, a lot of information on certain decisions 
is lost226. As described in ch. II.10.4.3.1, capturing and description of traces 
should orient themselves on the way the traces occur in the real world. Other-
wise, a mismatch between reality and the actually captured information occurs 
significantly diminishing the quality of captured information [Pi04; p.104]. In 
R2A, all these issues are achieved by the requirement dribble process heuristic 
described in ch. III.18.2.4. 

Taking into account Schön's Theory of Reflective Practice (ch. I.6.2.3), most 
design decisions are taken in an intuitive, non-reflective state of knowing-in-
action. Former experiences and tacit knowledge (see ch. II.9.4.2) are important 
factors in this state. In this phase, tools must not interrupt the cognitive flow of 
the designers (see Schön; ch. I.6.2.3). Since R2A's traceability concept bases on 
the ANH concept, the R2A's traceability operations do not produce a cognitive 
dissonance for designers, thus establishing traceability as a by-product should 
not impose significant barriers for designers even in their knowing-in-action 
phases. 

In summary, the real value of gathered traceability information mainly de-
pends on the following criteria (see ch. II.10): 
• Most traceability information must be recorded manually. Thus, the efficien-

cy of how traceability can be established is crucial. This means that the ef-
fort for traceability must be outweighed by the reduced efforts and the high-
er quality, reached through improved IA and change processes. 

• Accurateness of the traceability information is decisive. Approaches that 
establish traceability after the design process involve the danger that certain 
traceability information is not recorded. Thus, traceability should be estab-
lished as a by-product. 

• Besides efficiency itself, it is a central issue that the process does not inter-
fere with the designers' way of thinking.  

                                                           
226 For details see for details ch. I.7.2.3 description to ENG.3 BP.2, where it is described 

that allocations of requirements to design are often not possible at first because im-
portant design decisions are missing. 
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• On the other side, designers must perceive enough benefit for themselves 
because otherwise they will only record insufficient traceability information. 
One benefit can be the improved communication and collaboration between 
designers as, e.g., R2A offers with the requirement dribble process heuristic 
(cf. ch. I.18.2.4). 

• As, e.g., ch. II.10.6.2 outlines, traceability information should be detailed 
(go deep into a design model) to achieve good results. It should rather be 
recorded directly than derived from other information such as relationships 
within a design model with other purpose because the manifold meanings of 
these non-traceability-specific relationships rather lead to a requirements fan 
out effect during IAs (ch. II.10.6.2). 
To ensure these criteria and thus to ensure that the recorded traceability in-

formation brings a real practical benefit to projects, R2A is designed to be em-
bedded into a process specifically addressing these issues. The following sub 
chapters illustrate the core concepts employed to achieve this. However, the real 
implementation of such a process in practice requires substantially flexible pro-
cesses due to the complex connections involved in design processes. Thus, a 
dedicated goal of this documented research also was to find the optimal, neces-
sary process set for these criteria, where additionally maximal flexibility to adopt 
processes to project specific needs is possible. In other words, the process 
sketched here is proposed as a possible way to use R2A, but the offered opera-
tions used in a process can also be used to perform different design processes. 

Last but not least to mention, this chapter only shows mechanisms for gen-
eral improvements for rudimentary traceability as demanded in today's traceabil-
ity theory and process standards (e.g., SPICE). Then, in the next ch. III.20 and ch. 
III.21, this rudimentary traceability information is extended by decision models 
allowing much richer traceability information taking more complex design deci-
sions into account to be recorded. 

III.18.2.1  Traceability Operations in R2A 

In order to prevent disturbing designers during their knowing-in-action cognitive 
phase, but nonetheless to help to document traceability information, R2A aims to 
lower the burden for documenting the traces as soon as they occur. In this way 
traceability more or less emerges as a by-product of the design process.  

To address this point, the R2A's traceability approach has five key charac-
teristics: 
1. The approach takes advantage of the AN concept basing on the abstraction 

hierarchies principle strongly resembling the designers' way of thinking (cf. 
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ch. III.15). An approach basing on this principle, thus easily fits into the 
cognitive processes of the designers. If an approach does not really match 
with the designers' way of thinking, the designers will have to bridge the 
cognitive gap between their thinking and the thinking required by the ap-
proach. This would significantly disturb the designers in their knowing-in-
action phase and therefore would increase the usage barriers for the ap-
proach. 

2. Design involves processing of an extended amount of information leading to 
the extended complexity to be managed during design. Following Simon's 
theory (ch. I.6.2.1), the abstraction hierarchies principle addresses taming 
the complexity of the information produced during design. Another complex-
ity source to be tamed in the design process is the multitude of requirements 
influencing the design. R2A here provides a simple answer: Only show what 
is relevant in the design situational context. Again referring to point one, the 
AN concept is used to set up the situational context. Fig. 18-3 shows a design 
situation in R2A, where the designer has selected the AN “SW Design”. Be-
neath the AN tree view, now the tab “Requirements” is opened showing the 
requirements assigned to the AN “SW Design”. In ch. III.18, the used mech-
anisms, and GUI controls with its representation features are discussed. 

3. Recording traceability information when the traces occur but not disturbing 
the designers, involves that traceability information must be maintained in an 
easy and fast manner. R2A achieves this by offering an establishment of 
traceability information via drag-and-drop operations. As illustrated by the 
arrows in fig. 18-3, principally three different traceability-relevant drag-and-
drop operations are possible. Via possible multi-selection of items in R2A, 
all drag-and-drop operations can be performed for several requirements at 
the same time, making the traceability establishment process more effective. 
Again, the AN concept appears as useful for providing central orientation to 
all three drag-and-drop operations. Operation “1.)” allows assigning re-
quirements from the requirement source document (described in the chapter 
above) to any AN in the AN tree view, whereas operation “2.)” allows assign-
ing the requirements to the currently selected AN. As also described above, 
design must also allow easy refactoring. In this course of action, other com-
ponents than previously intended may become responsible for a requirement. 
Thus, requirement assignment must be changed from the formerly responsi-
ble component to the now responsible component. To easily make this possi-
ble, operation “3.)” allows reassigning requirements from the currently se-
lected AN to any other AN. In the course of refactoring, it can also be evident 
that a requirement may just also have influence on another design element, 
but the element shall still be handled by the currently selected AN. In this 
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case, the operation “3.)” accompanied by pressing the 'CTRL'-key just al-
lows copying the assignment information to the other AN, but the assignment 
information of the currently selected AN stays untouched.  

4. Requirements can significantly differ in its influence on design. RE theory 
refers to this notion by distinguishing FRs from NFRs. R2A provides a con-
cept to characterize the influence scope of requirements in a more fine-
grained manner. Again, the AN concept builds the basis for this concept fur-
ther described in ch. III.18.2.2. 

5. Last but not least, Simon described the phenomenon that design usually 
evolves from one stable intermediate form to another (ch. I.6.2.1). This 
means design usually not emerges in a kind of big-bang process but more in 
an evolutionary process, where design reaches stable states forming the basis 
of evolution to the next stable state. The R2A approach takes this into ac-
count by proposing a process heuristic called the requirement dribble process 
described in ch. III.18.2.4. 

 

 

Figure 18-3  Ways of establishing requirements traceability via drag-and-drop in R2A. 
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In opposition to the knowing-in-action cognitive state, Schön has discovered 
that designers also switch to a cognitive state he termed reflection-in-action. 
Designers usually switch to this state when they step into a problem they cannot 
handle by their usual tool-set of internalized everyday problem solving experi-
ences and knowledge. In this state, concrete rationally gauged decisions on a 
usually very difficult problem. In the author's view, such problems can be seen as 
what Rittel's design theory terms as wicked problems and the decisions taken to 
solve these problems often have drastic impact on the further outcome of the 
design. Correspondingly, here is the point where decision documentation and 
RatMan concepts can provide significant support to record this information. As 
ch. III.20 will further outline, this collected information also has strong im-
portance for traceability. 

III.18.2.2  The Requirement Influence Scope (RIS) 

As shortly discussed in ch. I.6.2.1, strictly modularization-oriented compositional 
structures are again softened by design theories about architectural aspects, cross 
cutting concerns [CRF+06] or nonfunctional requirements. What this actually 
expresses is the phenomenon that not all requirements can be tamed by confining 
them in one module. Instead some requirements are fulfilled as a consequence of 
collaboration between several modules, by architectural aspects, architectural 
styles, patterns or other techniques acting on a wider scope than a single module. 
In order to provide meaningful traceability, these situations must be taken into 
consideration. For these situations the author will use the term requirement influ-
ence scope (RIS). 

Due to the knowing-in-action cognitive phase, an easy way to define and 
manage a requirement's influence scope to design should be possible.  

Again, the ANs concept provides a valuable aid: If a requirement is assigned 
to an AN, all sub ANs beneath inherit the responsibility for the requirement. The 
idea behind this can be described that all ANs at the lower level must work to-
gether or at least share some common concern together to fulfill the requirement. 
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Figure 18-4  Requirements and the requirement influence scope 

Fig. 18-4 shows an example227. Requirement “Req1” is assigned to the AN 
“SW Design”. Its concern is then inherited by all sub ANs of the model, whereas 
requirement “Req2” is assigned to the “Light_hdl” module as a whole. This 
means all methods and contained data in the “Light_hdl” module must work 
together to fulfill “Req2”. A very local requirement is then again seen by “Req3”, 
whose influence scope only reaches to the method “setLights” within the 
“Light_hdl” module. 

In this way, a requirement's RIS contains the ANs it is directly assigned to 
and the child ANs inheriting the responsibility. Inherited requirements of an AN 
are shown in the “Requirements” tab (cf. fig. 15-4 in ch. III.15) like all other 
requirements but with a gray colored requirement text. 

The RIS has strong connection to the differentiation of functional and non-
functional requirements in REM theory as NFRs per se have a higher influence 

                                                           
227 Another striking analogy to this concept can be found considering a hierarchy of a 

company organization. If a requirement (or here rather to say issue) concerns the Chief 
Executing Officer of the company (corresponds to the “SW Design” AN on top of the 
design hierarchy), the issue will most likely become a concern of all other employees, 
whereas an issue concerning an employee at the lowest hierarchy level will be just a 
concern of this employee. 



III.17  Basic Support Features of R2A 301 

scope than functional requirements. However, the concepts are not the same. 
NFRs defining quality characteristics will most likely have the same influence 
scope as “Req1” meaning the whole software is responsible for fulfilling the 
issue. For other NFRs as, e.g., the demand for a user access rights management, 
the designers may find a realization that does not have such a high influence 
scope. As an example, it could be possible to define a three layers architecture 
([BMR+00; p.31ff], ch. I.6.2.4), where the user access management – except for 
the graphical user interface dialog to assign rights – is handled in the data storage 
layer. 
This example also points to three other aspects that must be considered: 
• The lower the RIS of a requirement is in a design, the lower will be the im-

pact of a requirement change to the design. Thus, designers should try to 
minimize the RIS of requirements in order to minimize the impact of the re-
quirement. This topic will be a central goal in the next chapter discussing the 
requirement dribble process heuristic. 

• On the other side, the RIS highlights requirements with high influence on a 
design, as they will stay at a very high level of abstraction being inherited by 
a lot of requirements. This is what Obbink et al. [OKK+02] term architectur-
ally significant requirements228 (ASR) and what most probably imposes close 
connection to requirements imposing neuralgic points in the view of Moro 
[Mo04; p.326] (also cf. ch. II.9.4.1). In most cases, NFRs will be most of the 
ASRs (but also FRs could be ASRs) staying at the very high-level ANs. 

• The RIS of a requirement can be influenced by the designers' decisions. As 
ch. I.5.1 and ch. II.10.4.2.2 indicate, a promising strategy to tame NFRs is to 
refine them into several FRs (cf. [PKD+03; p.145], [Pi04; p.99], [Mo04; 
p.339]). Often, these FRs then might have a lower RIS than the NFR would 
have had. In this way, a NFR's higher RIS is reexpressed through several FRs 
with a lower RIS. Such a step is a decision process. Due to the importance of 
NFRs concerning the general outcome of design (cf. ch. II.9.5), a dedicated 
support for documenting such decisions can prove very helpful. Ch. III.20 
will discuss the decision problem and how R2A provides support to tame 
nonfunctional aspects with high RIS to a lower influence scope in a traceable 
way. 

                                                           
228 ‘‘A requirement upon a software system which influences its architecture’’ [OKK+02; 

p.53]. 
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III.18.2.3  Representing Requirement Contextual Data 

As mentioned in the chapters above, R2A helps designers to cope with the com-
plexity imposed by the high numbers of requirements by providing only require-
ment information relevant in the design situational context.  

When the user selects an AN, the control shown in fig. 18-5 will show all re-
quirements relevant for the selected AN. Directly assigned requirements are dis-
played in normal black text color. Inherited requirements are displayed in gray 
text color. 

Fig. 18-5 also highlights two buttons for the operations “dribble-up” and 
“dribble-down” essential for the requirement dribble process described in the 
following chapter. Both buttons allow changing the requirement assignment in 
orientation to the AN-hierarchy. A requirement assigned to an AN can be moved 
up to the AN's parent AN via the dribble-up operation. This means to change the 
realization of a requirement to a higher abstraction level implying that the RIS of 
the requirement is widened. Vice versa, a dribble-down operation allows delegat-
ing the realization of a requirement down from the currently assigned AN to one 
or more of its child ANs (the user can choose any combination of the child ANs). 
This corresponds to a narrowing of the influence scope of the requirement. In this 
way, a requirement becomes more local instead of global. Accordingly, this can 
also be termed as the localization of a requirement. Often, design is performed by 
several designers working together. In such constellations, it is often the case that 
one designer works on a higher AL and the other designer works on the lower AL. 
Dribble-down and dribble-up operations thus also traverse working boundaries. 
In this way also a collaborative information exchange between the designers 
takes place. 
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Figure 18-5  Showing requirements in the design situational context of an AN 
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III.18.2.4  The Requirement Dribble Process (RDP) 

In the following, the requirement dribble process (RDP) heuristic229 is intro-
duced. As primary goal, the RDP's intention is to provide a process for designers 
allowing them to establish traceability information as a by-product of their daily 
design activities and providing immediate benefits for the designers when taking 
the next actions of their daily design activities. In that way, the author hopes to 
solve the traceability benefit problem meaning that designers experience enough 
benefits for themselves to encourage them to record detailed, correct and thus 
valuable traceability information as a by-product of their daily design activities. 

One major leverage to reduce the traceability benefit problem is to avoid 
what Dutoit et al. [DMM+06a; p.7] call “cognitive dissonance”, meaning in 
Schön's view (ch. I.6.2.3) that establishing traceability might interrupt designers 
in their thinking, especially if they are in their knowing-in-action phase. There-
fore, the RDP principles closely orient themselves on the ANH concept (ch. 
III.15) and try to be performable as fast and easily as possible in order to ensure 
that they can be realized without significant extra strains on developers. 

Closely related to this issue is the problem that traceability information, 
once established, must be quickly and easily changeable in order to ensure that 
design is also adapted if assumptions, facts, or other factors spark the need for 
changing the design with its requirement allocation. Otherwise, either important 
design refactorings are just not performed due to more extensive effort, or re-
quirements traceability information fastly degrades. A symptom often observed is 
that if traceability information is not easily changeable, design will be performed 
beforehand and traceability is established afterward when design has reached a 
relative stable state (see ch. I.7.2.3; comment on ENG.3 BP.2, ch. II.10.5, and ch. 
III.11). In these cases, however, much of the important traceability information 
may already be forgotten and thus gets lost. A special concern in this context 
especially is that important information on important decisions is easily lost. 

Additionally, design usually is a collaborative task. Correspondingly, the 
heuristic provides dedicated support for collaborative information sharing be-
tween designers at different levels of abstraction.  
Several ideas form the central pillars of RDP:  

                                                           
229 The term heuristic emphasizes that it is more a guiding principle, where deviations are 

possible. However, the author is convinced that in principle most of the SW-based de-
sign processes – even in those design processes, where design is only present implicit-
ly in code – follow this principle to the one or other extent. The so called bottom-up 
processes can be seen as the only big exception, but later it is shown that bottom-up 
processes are also merely compatible.  



III.17  Basic Support Features of R2A 305 

• The abstraction nodes concept, 
• The concept of stable intermediate forms as developed by Simon (cf. ch. 

I.6.2.1 and ch. III.18.2), 
• The requirement influence scope (RIS) concept; 

III.18.2.4.1  Description of the RDP 

The name 'RDP' derives from a metaphorical analogy to rain water dribbling onto 
a mountain. In a similar way, the RDP heuristics allows design with its corre-
sponding ANs to emerge in a requirement-driven way by letting requirements 
'dribble' through the ANH tree. The basic idea is that requirements are not neces-
sarily directly assigned to the AN that will finally be responsible in the future. 
Instead, a process is possible, where the optimal solution for a requirement is 
found in the course of the process heuristic. At first, this means that a requirement 
can be added to an AN at a very abstract abstraction level (AL), e.g., the highest 
AN of a model. According to the requirement influence scope (RIS) concept, this 
first of all implies that a large extent of the design would be responsible for ful-
filling a requirement. In this constellation, later changes of the requirement would 
have far reaching consequences (impact). Thus, to avoid requirement changes 
having enormous consequences, all further design decisions shall act upon a 
maxim to reduce the RIS of any requirement to a level as local as possible. Keep-
ing this in mind during design, the designer of an AN analyzes the assigned re-
quirements and tries to find solutions which allow delegating the requirements to 
an AN at a lower level of abstraction via dribble-down operations. In this lower 
abstraction level with the lower RIS, the designer responsible for the correspond-
ing AN again tries to find a solution allowing him to delegate the requirement to 
an AN to lower ALs, thus again lowering the RIS. This happens as long as a re-
quirement cannot be realized by ANs of a lower AL in an expedient way. In this 
case, the requirement now either comes to rest at this AN and its sub ANs inherit 
the requirement as obligation to work together to fulfill the requirement's needs, 
or the requirement can be split230 up to be fulfilled by several sub ANs of the 
lower abstraction.  

                                                           
230 A split operation, however, should be omitted if possible. The general goal should be 

to perform “dribble-down”-operations of requirements into disjoint paths, so that most 
of the requirements will only take one way to dribble down into the design; but some-
times a split up may be not avoidable. If not avoidable, such a split up should occur at 
an AL as low as possible in order to avoid a requirement-fan-out as described in ch. 
II.10.6.2 leading to a high RIS. 
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In some cases, the designer of an AN could discover that an assigned re-
quirement cannot be adequately fulfilled by the AN. For example, this can happen 
because the designer having delegated the requirement from a higher level AN to 
the current AN has not been aware of some facts (resp. problems). In this case, 
the designer of the current AN can again redelegate the requirement to its parent 
AN at the higher abstraction level by a dribble-up operation. Such a situation 
occurs when the requirement cannot really be fulfilled by the selected AN. Thus, 
the dribble-up operation will correct the mistake. Often, however, it could also be 
a communication problem when several designers work together at different ALs. 
Such a case can happen when the designer of the higher AL assigns a requirement 
to the AN of the lower AL but forgets to regard some other aspect influencing the 
potency of the AN to fulfill the requirement. For example, it can be the case that 
the AN is missing access to an information of another component necessary to 
fulfill the requirement. Here, R2A allows the designer of the lower AN to redele-
gate the requirement to the designer of the higher AL via a dribble-up operation 
accompanied by a note describing why the requirement cannot be fulfilled by the 
lower AN in the current setting. 

This note information additionally helps the designer of the higher AL to re-
gard the forgotten aspect and – if possible – to solve the problem. For example, 
by designing a solution that allows the AL to access the needed information. Af-
terward, the designer of the higher-level AN can again assign the requirement to 
the lower-level AN via a new dribble-down operation. 

During the RDP, dribble-down and dribble-up operations can be performed 
by all designers involved in the design forming a collaborative form of infor-
mation sharing. At the end, the RDP design process heuristic should converge to 
a design where all requirements are considered in pursuing the goal that each 
requirement has a RIS as low as possible, which leads to a design where changes 
on a requirement – hopefully – has minimal impact. 

A significant advantage of the RDP is that the heuristic always preserves the 
exact current state of a design. Often, requirements important for an AN are scat-
tered over several locations in a requirement document. Therefore in current 
practice, the designer of an AN often must analyze the complete requirements 
specification to identify all requirements important to the AN. In this way, every 
designer must nearly analyze the complete requirements specification to identify 
the requirements important for him. With the RDP approach, a list of the re-
quirements concerning an AN is directly provided by R2A and thus, designers do 
not need to analyze the complete requirements specification but can directly ben-
efit from works other designers have performed. Additionally, the RDP heuristic 
also promotes that a current snapshot of the current design status is available 
supporting the designers to take their next design steps and decisions, thus also 
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promoting that requirements traceability is performed as a by-product of the 
design effort and not afterward. 

III.18.2.4.2  A RDP Case Study 

To explain the heuristic the reader must consider the accompanying case study 
introduced in ch. III.12. At first, it is assumed that only the requirements specifi-
cation as shown in fig. 12-2 (ch. III.12) is present and no design has taken place. 
Thus, a high level software architect (in the further called architect) starts the 
design from scratch.  

At the beginning of the project, the architect starts the process by creating an 
empty diagram intended as the high-level architecture overview and adds this 
diagram to R2A as the first AN (in the further called high-level AN) in the ab-
straction hierarchy tree. When analyzing the requirements, the architect decides 
to care for the “Internal Lights Management” use case. He assigns the require-
ments of the use case to the high-level AN. This means the high-level architecture 
is now responsible for the requirements of the use case. From this first stable 
intermediate form, the designer can now analyze the use case requirements and 
take further actions. Requirement ReqSpec_2 implies that the system has a CAN 
connection. Correspondingly, the design needs a CAN_drv driver to control the 
CAN-HW in the ECU and a CIL_hdl mapping signals from CAN to signals with-
in the software. Thus, the designer creates both design elements in the modeling 
tool, adds both elements to the high-level architecture diagram (see fig 12-2 (ch. 
III.12)), adds the design elements to R2A as new ANs located beneath the high-
level AN and then performs a dribble-down operation relating ReqSpec_2 to the 
CIL_hdl, thus localizing ReqSpec_2 to the CIL_hdl. 

In a similar way, the architect analyzes requirement ReqSpec_3 and 
ReqSpec_4 and determines that he needs a Light_Task component. Correspond-
ingly, the designer creates the Light_Task component in the design tool and adds 
it to R2A's ANH. Now, the designer can delegate ReqSpec_3 and ReqSpec_4 to 
the Light_Task component via dribble-down operation. In this way, the architect 
roughly analyzes the diversity of the requirements and decides the modulariza-
tions, attributes, etc. important from the architectural viewpoint.  

Following the current example, the architect identifies the following mod-
ules and their important roles: 
• Light_Task: is responsible for the evaluation and propagation of the light 

requests received from outside (e.g., via CAN). The Light_Task can involve 
a complex state machine. 
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• Light_hdl: is responsible for translating logical light function requests into 
the different control of light channels provided by the HW. Further, the 
Light_hdl is responsible for error diagnosis functionality on the controlled 
HW light channels and the further processing of measured diagnostic infor-
mation. To achieve this, the Light_hdl also is responsible for timing the di-
agnosis functionality as diagnostic measurements must be exactly timed to 
retrieve valid values. 

• PWM_drv: is responsible for realizing demanded pulse widening modulation 
(PWM) to control the light intensity of the controlled lights. 

• ADC: controls the analog-digital converter component within the microcon-
troller needed to convert analogous feedback currents of the steered lights in-
to digital measurement values for diagnosis on the controlled HW light 
channels. 
As the architect anyhow roughly analyzes the requirements and makes his 

design decisions on the bases of these, the architect can already assign the re-
quirements to the identified and modeled design elements. In this way, he also 
implicitly documents the basic information on the decision leading to the design 
element as well as to its responsibilities and thus creates traceability information 
as a mere by-product. 

In the next step, the module designers of the modules (usually, for each 
module an individual module designer exists) care for realizing the assigned 
requirements in the specific modules. Thus, at the abstraction level of the module, 
every module designer starts to analyze the present requirements in detail to iden-
tify and model the necessary sub-components, data, and operations. For each 
identified item the designer adds an AN in the abstraction nodes tree and assigns 
the requirements for the AN via a dribble-down operation. In this way, the de-
signer automatically documents the basis of his design decision for the corre-
sponding AN. 

At the level of these newly created ANs, the requirements are very likely an-
alyzed in more detail than it happened at the higher-level ANs. Correspondingly, 
the module designers will also encounter contradictions and incompletenesses in 
the entire design. As an example, the module designer of the Light_hdl module 
might recognize that, in order to be able to perform the analysis of diagnostic 
data according to the requirements (indicated by ReqSpec_6), he needs further – 
not yet considered – information currently only available to the Light_Task. As 
the solution of the problem is outside of his decision-making authority, he must 
submit the issue to the designer responsible for the design of the interaction be-
tween Light_Task and Light_hdl. In this case here, this is the SW-architect. For 
this, in a non-R2A project, the module designer of the Light_hdl would now need 
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to have a talk with the architect about the problem, in which both must use a 
synchronous communication mechanism.  

However, in several cases the architect may be busy, or distributed to anoth-
er location, or just absent. In all these cases, constant dangers exist that the issue 
gets somewhere stuck or forgotten. Using R2A, the module designer is able to 
redelegate the requirements back to the higher AL by performing a dribble-up 
operation. To provide further information on the issue, the module designer can 
add a note on the requirements describing the problem. The architect then is noti-
fied about these requirements again at his AL, can read the attached note to un-
derstand the problem, and then take decisive action whether the requirements 
should be fulfilled by a functionality to exchange the needed information be-
tween Light-Task and Light_hdl or an alternative strategy such as remodulariza-
tion (the needed information is relocated into the Light_hdl) is used. 

Through this way, asynchronous communication between the designers is 
possible, where no problems are forgotten, and decisions are implicitly docu-
mented in addition. 

In the further project progress, the module designer can then refine the de-
sign of the module. In case the code is generated automatically, the software 
developer can then directly implement the realization of the module according to 
the design and the assigned requirements. Also, in this case, the implementer 
directly has all necessary requirements for the module at hand and is able to use 
the dribble-up mechanism in any case he discovers problems he cannot solve at 
his level of authorization. 

III.18.2.4.3  Bottom-Up Design Processes within RDP 

The RDP seems to be a method particularly fitting to top-down design processes. 
However, as discussed in ch. I.6.2.1.3, pure top-down design processes are rather 
an exception. In many cases, design evolves in rather non-linear decision pro-
cesses. The other extreme to top-down design is pure bottom-up design. Most 
design processes will be a mixture somewhere between both (see, e.g., [HR02; 
ch.10]).  

As mentioned before, the RDP is just a process heuristic. R2A's features 
provide flexibility to implement different processes. To support bottom-up design 
processes, the following process setting is conceivable: 
• The designers created design elements in the used modeling tool, add the 

elements to R2A as ANs (via the wizard or drag-and-drop; see ch. III.15) and 
assign the requirements the design element is intended to fulfill. 
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• If the hierarchy later changes (e.g., a parent is added to the design elements), 
the ANH synchronization mechanism can easily reconstruct the new ANH. 
The requirements assignment stays untouched. 

• When the ANH grows, the dribble-down and dribble-up operations also pro-
vide valuable support for changing requirement assignment and thus implicit-
ly the RDP principles are again at work. 

III.18.2.4.4  RDP Summary 

The RDP approach offers significant advantages to other known traceability 
methods addressing traceability between requirements and design: 
• The linking between requirements and model elements emerges indirectly as a 

by-product since the assignment of the requirements always resembles the 
current state of decision about a requirement (stable intermediate form). Later 
in ch. III.20 and ch. III.21, the author describes other kinds of decisions also 
addressed by R2A through dedicated decision models. Also products related 
to these decision models (design constraints and budgeted resource con-
straints; see ch. III.19 and ch. III.21) can again be treated by the RDP. 

• In parallel, through the detailed recording of all steps taken to achieve a de-
sign, detailed documentation of the decision-making of a design is enabled al-
lowing easier reconstruction of the original ideas behind individual design de-
cisions in the case changes are needed. 

• Also, the designer has an immediate overview of the remaining, not yet treat-
ed requirements at an AN, because the already treated requirements have been 
delegated – and thus disappeared – to one or several sub ANs. Later, in ch. 
III.22, the principle mentioned here is even extended by a mechanism for en-
suring consistency. 

• Normally, several developers work on a design model. Via R2A, the delega-
tion of responsibilities between the developers can be achieved by interplay of 
the ANs with the RDP concept, building a scaffold (i.e. skeleton)  for collabo-
rative information interchange.  

• Through the support of a dedicated process for assignment and care of a re-
quirement, it is ensured that each requirement is adequately considered in the 
design process: If new requirements are assigned to an AN from a higher-level 
parent AN, these requirements get highlighted in the AN by a different color. 
Now, the designer of the AN must try, to find an adequate solution for the 
newly assigned requirements. If the designer of this AN is again able to dele-
gate these requirements to a sub AN of the design, then these requirements 
'dribble down' one level deeper to a sub AN and the problem is solved for the 
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corresponding AN. However, if the designer is not able to clearly delegate 
these requirements to any sub AN, then the requirements sticks to this AN and 
are inherited to all lower level sub ANs (marked 'gray') indicating that all ANs 
together must deal with fulfilling these requirements. But if the designer re-
sponsible for the AN realizes that these newly assigned requirements cannot 
be fulfilled in the current state of design, the designer is able to repel these re-
quirements back to the higher-level AN (its origin) accompanied with a corre-
sponding note. In this case, the designer of the higher-level AN must care for a 
solution under consideration of the created notes.  

• Effective communication between the designers is alleviated since the ap-
proach relies on mechanisms supporting asynchronous communication via the 
assigned requirements and notes. Thus, less synchronous consultation be-
tween the designers is needed.  

• The documentation of views in design with their textual descriptions and all 
important decision information is essential for architecture documentation 
(AD), (cf. [Ha06], [CBB+03]). Thus, R2A also supports generating reports 
from all recorded information to fulfill AD needs. In this way, also infor-
mation gathered through the RDP heuristic completes information needs for 
AD. 

• When the design process is thought beyond the scope of mind discussed now, 
a similar mechanism for other information to dribble through the designed 
system in a similar fashion could be helpful. Thus, e.g., a design decision (see 
fig. 20-2 (see ch. III.20)) in a high AL often restricts the solution space in the 
lower ALs. If these so-called design constraints are formulated once, they can 
dribble through the system in the same fashion. In order to allow high adapta-
bility to project specific needs, other item categories may be individually de-
finable by additional information for each project. 

III.18.2.5  Overview over Navigation and Handling of 
Requirements Aspects in R2A 

Fig. 18-6 shows an overview how features described in the chapter above are 
integrated into R2A concerning navigation and handling. At the left part, the 
model with the ANH tree as described in fig. 15-4 (see ch. III.15) is shown. Via 
selecting the “Requirement Sources” tab (1.), the control for managing all re-
quirement source documents (RSD) is displayed (see fig. 18-1 (see ch. III.18.1)). 
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Figure 18-6  Overview of how the requirements-related features are integrated into R2A 
concerning navigation and handling 

A double-click (2.) on a document opens the RSD's content window display-
ing the requirements of the RSD (see fig. 18-2 (see ch. III.18.1)). In fig. 18-6 the 
content of the RSD “Requirements Specification” is shown. 

A left-click on the properties-button (4.) opens the properties dialog for the 
RSD. When the new-button (4.*) is clicked, a new, empty properties dialog is 
opened leading to the creation of a new RSD if the 'ok'-button of the properties 
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dialog is clicked. Fig. 18-6 shows the properties dialog of the RSD “Require-
ments Specification”. As the properties show, this RSD is configured to refer to a 
requirements document managed in the REM-tool IBM Rational DOORS. 

Through the synchronization buttons (3.), a synchronization mechanism can 
be invoked to synchronize the requirements contained in the REM-tool (symbol-
ized by the upper right window in fig. 18-6) to the RSD. The synchronization 
mechanism can be continuously invoked to synchronize changes performed in the 
REM-tool to R2A's RSD, keeping it up to date. Ch. III.22.2 shows how this 
mechanism can be used to consistently infer requirement changes into a R2A 
design. Requirements being synchronized from an REM-tool cannot be edited in 
R2A. 

In the properties dialog, a RSD can also be set to status 'Free Edit'. In this 
case, freely editable new requirements can be created in the RSD's content win-
dow. 

In an RSD's content window, the requirements are displayed in the hierar-
chical decomposition structure. A double-click (5.) on a requirement opens the 
properties dialog of the requirement. 

Via drag-and-drop operations (6.), traceability can be established to the ANs 
(also cf. fig. 18-3 (in ch. III.18.2.1)). These in combination with the dribble-up 
and dribble-down operations (7.) form the basis for the requirement dribble pro-
cess heuristic (ch. III.18.2.4). 

 
 

III.19  Taxonomy of Requiremental Items231 

Each definition of a system layer yields some of the requirements for the subjacent layer. 
Hatley et al. [HHP03; p.52 (*)] 

 
The SPICE process model (described in ch. I.7.2) is a layered process model, in 
which problem space descriptions (requirement view: ENG.2, ENG.4) alternate 
with solution space descriptions (designs: ENG.3, ENG.5) at different levels of 
abstraction (cf. ch. I.7.3.2 for detailed exemplification). 

Ch. I.7.3.2 has outlined the problems of this layered process model concern-
ing traceability. Two major problems were discovered: 
• High redundancies between the requirement artifacts lead to higher efforts 

for traceability and consistency management (see fig. 7-2 (see ch. I.7.3.2)). 

                                                           
231 Significant parts of this chapter are taken from [TKT+07] and [TTW07]. 
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Additionally, despite all consistency management efforts, drifts between the 
different requirement artifacts' redundancies are often not avoidable. 

• Between the different artifacts (especially, when also the HW dimension is 
considered) other correlations are not adequately manageable (see fig. 7-2 
(see ch. I.7.3.2) and fig. 7-3 (see ch. I.7.3.2)).  
The first problem with redundancy could already be solved to a great extent 

by a process artifact model described in fig. 7-3 (see ch. I.7.3.2). One prerequi-
site, however, is to acknowledge that process models such as SPICE are to a 
certain degree rather a metaphor providing space for interpretation than a law to 
be obeyed word for word. In the author's opinion, this degree of freedom is pre-
sent in SPICE, because SPICE itself emphasizes that the process model is only an 
example process model and other process models are possible to be defined as 
long as they conform to the original metaphoric ideas of the SPICE standard232. 

Now, the solution shown in fig. 7-3 (see ch. I.7.3.2) still neglects one central 
metaphoric idea of the layered process model that is covered by R2A via the 
concepts described in this chapter, ch. III.20 and ch. III.23.2: System design has 
high impact on its SW design by raising new “requirements” in addition to the 
pristine requirements of the stakeholders. For example, in the automotive sector, 
SW design must be subordinated under constraints of extremely cost-optimized 
HW components. At the moment, SPICE neglects these critical connections be-
tween HW and SW but at least acknowledges this connection concerning system 
design (see ch. I.7.2.4). 

 

 

Figure 19-1  Requiremental items, requirements and design constraints taxonomy 

                                                           
232 It is, however, more difficult for an organization to prove conformance to these meta-

phoric ideas for a different process model than for a process model just taking over the 
ISO/IEC 12207 process model used in the SPICE standard. Thus, most SPICE imple-
mentations in practice just use this process model. 
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However, one issue in SW requirements which might benefit from more in-
tensive discussion is their negotiability. “Real requirements” are forming the 
contractual basis between the stakeholders – particularly with the customer. Oc-
curring changes must be harmonized with the customer via a change control 
board (CCB) [PR09; p.144f], [VSH01; p.184f, p.216]. Whereas, for “require-
ments” to be changed with the origin of the definitions of the design, it is possible 
to search for a project-internal solution first, before escalating the issue to a CCB 
is considered. 

Thus, both kinds of requirements should be strictly separated in their no-
tion233. The author uses the following taxonomy (fig.19-1): 
• Requirements are directly allocated to the SYS_RS since they concern the 

legal agreement between customer and contractor.  
• 'Requirements' derived from requirements or designs are called design con-

straints (DC). 
• Requirements and design constraints have similar qualities and structure. 

Thus, we use the term requiremental234 item (RI) for both items. 
Generally, requirements have to refer to their origin (cf. description to IEEE 830-
1984 in ch. I.5.7). This relation should apply to all RIs. The origin of DCs lies in 
previously made design decisions solving the conflicts/forces between RIs and/or 
architectural items, constraining the broader, more abstract solution space to a 
more concrete one. The decision model connected with the DCs is discussed in 
the following ch. III.20. 

Observations leading to the DC concept are not new. Leffingwell and Widrig 
define constraint as “a restriction on the degree of freedom” the developer has “in 
providing a solution” [LW99; p.55]. DCs also resemble to what the IEEE 610 
defines as design requirements (“A requirement that specifies or constrains the 
design of a system or system component” [IEEE610; p.26]) or implementation 
requirements (“A requirement that specifies or constrains the design of a system 
or system component” [IEEE610; p.39]).  

The DC concept directly corresponds to observations of Hatley et al. that de-
sign decisions235 generate new requirements for sub system components [HHP03; 
p.18]. These new requirements are a result of former design and should be con-

                                                           
233 This directly corresponds to the view of Pieper in [RS02; p.33-35] demanding a clear 

separation between requirements from the customer and internal requirements in the 
project.  

234 The artificial word 'requiremental' has been introduced by the author as a term for 
describing superordinate characteristics of 'real' requirements, design constraints and 
budgeted resource constraints (see ch. III.21). 

235 See also Ebert's remarks that decisions constrain the solution space [Eb05; p.14]. 
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sidered in a development process [HHP03; p.31]. In general, these 'requirements' 
are more numerous than the original requirements [HHP03; p.32]. This matches 
with Glass's note on complexity that “explicit requirements explode by a factor of 
50 or more into implicit (design) requirements as a software solution proceeds” 
[Gl02; p.19], (also cf. ch. I.6.2.1.1).  

Lehman's principle of SW uncertainty describes that assumptions on which 
design decisions depend can be implicit or explicit to developers, but both kinds 
can get invalid due to changes [Le89]. Requirements can be seen as a kind of 
assumptions (however, also other kinds of assumptions may exist). In this case 
and in the face of high volatility rates, changes on explicit assumptions are much 
easier to handle than implicit assumptions. Via the DC concept it is possible to 
make these implicit assumptions more explicit, thus potentially improving IA and 
consistent implementation of changes. 

 
 

III.20  Support for Capturing Decisions236 

A further complication is that the requirements of a software system  
often change during its development, largely because the very existence  

of a software development project alters the rules of the problem. 
 [Bo94; p.4] 

 
Most current state-of-the-art traceability models assume that traceability between 
requirements and design can be expressed by a simple bidirectional linking con-
cept, where each requirement is related to the design elements. The link concept 
can surely be helpful to cover relatively easy situations. However, traceability 
literature ([Kn01a], [Kn01b], [PDK+02], [Pe04], [RJ01], [Al03]) provides strong 
indications that the influence of requirements on design processes – and vice 
versa – is only insufficiently modeled by bidirectional linkages.  

Paech et al. [PDK+02] indicate that these relationships can be of a far more 
complex nature (cf. fig. 20-1). By restraining the solution space, non-functional 
requirements (NFR) restrain functional requirements (FR) and architectural deci-
sions (AD). On the other hand, NFRs are realized by FRs and ADs, whereas FRs 
are realized and restrained by ADs. 

 

                                                           
236  Significant parts of this chapter are taken from [TKT+07] and [TTW07]. 
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Figure 20-1  Interactions between nonfunctional, functional requirements and architectur-
al decisions [PDK+02] 

The simple linking concept indirectly assumes that requirements and design 
are mostly interconnected by linear relationships. As the author tried to elicit in 
part II and ch. I.6 of the thesis, the transitions from requirements to design is 
often nonlinear237 but more a creative mental transfer process of a problem de-
scription (requirements) to a solution, where the taken decisions build the foun-
dation of these transitions (also cf. [TKT+07]). The path from the requirements to 
its realizing design can be described as a sequence of decisions constraining the 
solution space. This circumstance induces that design does not only depend on its 
requirements to be fulfilled, but it depends to a higher extent from the decisions 
taken before. Now, this observation leads to the following two points to consider:  
• Decisions and their effects must be communicated to other designers, devel-

opers and testers within the project. As ch. II.9 shows, approaches for deci-
sion documentation exist. In practice however, if any decision documentation 
is done, the information will be documented in some design documents (as, 
e.g., propose by Clements, Bass et al. in connection with SW architecture 
documentation [BCN+06], [CBB+03]). By such an unstructured way, prob-
lems can then arise then, when this information must be propagated to other 
stakeholders or even is to be processed in the further by other stakeholders.  

• Later requirement changes not only influence the design but can also lead to 
the need to reassess formerly taken decisions and – if necessary – to revise 
them leading to new impacts on the design. 
These considerations suggest the inclusion of a decision model in the trace-

ability information helping to document the origin of new design constraints in a 

                                                           
237 Also interesting in this connection is what Kruchten says about the design process he 

proposes associated with his “4+1 View Model” architecture approach: “Finally, this 
is not a linear, deterministic process leading to an optimal process view; it requires a 
few iterations to reach an acceptable compromise. There are numerous other ways to 
proceed” [Kr95; p.48]. As a consequence the question arises, why the traces of such a 
process should be linear. 
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lightweight and need-oriented way. Fig. 20-2 shows this concept extending to-
day’s traceability models by an explicit decision model. The diagram sketches a 
concrete situation, where a conflict between three requirements (Req_1, Req_2 
and Req_3) and two design model elements (Class1, Class2) is resolved by a 
design decision (Decision1), resulting in two new design contraints (DesCon-
straint1, DesConstraint2). 

The conventional scheme of relating requirements to realizing model ele-
ments is extended by a dialog allowing the capture of documented decisions. In 
this dialog, elements of the requirement model and the design model which are 
conflicting, i.e., causing a problem, can be chosen. Equally, diagrams describing 
aspects of the conflicting situation shall be attached as additional information 
(<<documenting diagrams>>). 

 

Figure 20-2  Documented decisions build the connection between requirements, design 
elements and resulting design constraints 

Furthermore, the decision can be specified on demand via a text component. 
The text component accepts unstructured text, but – when needed – can give 
adequate templates to support the decision documentation. A possible way to 
structure – the user should choose these freely – is given in fig. 20-2 with the 
decision’s attributes assumptions, rationales and solution specification.  
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III.20.1  Relation to Approaches of Rationale Management 

The decision model presented here is strongly connected to RatMan (see ch. II.9), 
since both deal with decisions during SE processes. In classical RatMan, the 
focus lies on documenting, recovering, further usage and reuse of justifications (= 
rationale) behind design decisions. RatMan mainly targets on the information 
about the 'Why' of design decisions in order to alleviate the knowledge transfer of 
decision makers to other involved stakeholders.  

However, existing approaches could not succeed in practice [DMM+06a], 
even though documenting design decisions is regularly called for in literature (cf. 
[IEEE1471], [CBB+03], [BCN+06], [Ri06], [PBG04], [GP04], [Bo94]) and prac-
titioners acknowledge the importance of this type of documentation [TAG+05]. 
Diverse causes for this negligence have been identified, but the problem of cap-
turing the rationale seems to be the main obstacle (cf. [DMM+06a], [HA06a]): 
1. Most approaches are highly intrusive (bothersome and interfering) to the 

design process with extra effort for capturing (ch. II.9.1.4, ch. II.9.4.2, 
[Gr96b], [HA06a]). 

2. The approaches tend to have negative impact on the decision process, since 
not all (aspects of) decisions can be rationally justified but arise from intui-
tive considerations (Schön's “Theory of Reflective Practice” [Sch83] adopted 
by Fischer et al. [FLM+96], [DMM+06a]) basing on diffuse experiences 
(e.g., tacit knowledge [Po66]; also cf. [DMM+06a], [HA06a], [SM99a]). 

3. Decisions must be made despite of unclear circumstances and it is impossible 
to include all relevant information (bounded rationality [Si96], [HA06a]). 
Thus satisfactory solutions must be found although problem knowledge is 
clearly limited [LF06]. 

4. Grudin's principle [Gr96b] suggests that collaborative systems fail if the 
invested value is not returned to the information bearers (ch. II.9.4.2, 
[DMM+06a], [Sch06]). 
The problem mentioned in point one implies that not all decisions can be 

treated exhaustively in any case. For example, Clements, Bass et al. only refer to 
the documentation of the most important decisions ([CBB+03], [BCN+06]). 
Booch [Bo94] gives another lead by dividing decisions238 into strategic (i.e., with 
striking impact on architecture, mostly made on the early stage of a project) and 
tactical (i.e., locally limited impact on the architecture). 

                                                           
238 Also cf. Canfora et al. [CCL00] distinguishing maintenance rationale into two parts: 

Rationale in the large (rationale for higher-level decisions) and rationale in the small 
(rationale for implementing a change and testing). 
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In this context, strategic decisions must/should be thought through carefully 
and should –if possible– be made on explicit rationale grounding. For this rela-
tively small fraction, the investment in more intensive analyzes is highly valua-
ble, as discussed by most approaches on rational management ([RJ01], 
[CBB+03], [BCN+06], [TA05]). These issues may be analyzed in a prescriptive 
schema as IBIS [KR70], or the Rationale Model of Ramesh and Jarke [RJ01], or 
REMAP [RD92], or Clements and Bass [CBB+03], [BCN+06]. R2A's decision 
model (see fig. 20-2) supports this by additionally allowing defining a project 
individual template for the textual description component of the decision (in fig. 
20-2 shortly sketched by the bullets “Assumptions”, “Rationales” and “Solution 
Specification”). 

On the other hand, Booch [Bo94] also demands that tactical decisions 
should be documented. At that time, Booch thought both kinds would disclose 
themselves by applying adequate modeling. Today’s experiences show that such 
modeling just documents the how but not the why of decisions. In this context, 
Dutoit et al. [DMM+06a; p.39] provide the heuristic to concentrate on document-
ing decisions that are not obvious or impact other decisions. Referring back to 
Booch's view, it can be said that modeling captures a certain part of the decisions 
and the R2A decision mechanisms help to document the not obvious and espe-
cially influential decisions. 

In the author's opinion, the developers should at least get the possibility to 
document decisions on demand, but considering aspects mentioned in point 2 and 
3, the intrusion on the development process must be minimized ([Sch06], 
[HA06a], [DMM+06a], [SM99a]). 

Keeping this in mind, a key goal of this decision model approach is to lower 
the barriers to making design decisions explicit as much as possible: Therefore, 
this decision model mechanism offers to designers a simple, semi-formal model 
as a skeletal structure to easily add basic information239. For this, the proposed 
decision model provides a minimal notational framework to identify the conflict-
ing elements (requiremental and design) and to derive the resulting consequences 
as DCs. Thus, the conflicting elements define the area of conflict with the coun-
teracting forces, automatically documenting the basic rationale behind a decision 
as a by-product.  

In that case, however, the model is minimalistic and of a purely descriptive 
nature. Any further users of such minimalistically documented decisions must at 
first derive the actual knowledge about the decision on their own. But at least the 
fact that the context (the conflicting items and the results of the decision as DCs) 
is present for each decision provides evidence to later users: They can infer that a 

                                                           
239 In this way, the approach resembles to the QOC approach (see ch. II.9). 
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decision has been made consciously and first clues are given for recovering the 
rationale (cf. [RLV06]). Further, this modeling of consequences pays tribute240 to 
Horner and Atwood's claim that designers must consider the “holistic affects” of 
problems, their rationale and solutions [HA06a; p.84], (also cf. ch. II.9.1.4 and 
ch. II.9.4.2).  

In that way, not all decisions can be reconstructed. Since the tool discussed 
here shall also automatically record such meta-data like the author(s) of a deci-
sion, the later users of a decision (rationale seekers) can consult the author(s) 
about unclear aspects. Additionally to tool usage, a process rule shall prescribe 
that the rationale seekers must document the results of this decision recovery in 
the decision's textual description to further improve the decision's documentation.  

This procedure –inspired by Schneider ([Sch06; p.97]: “Put as little extra 
burden as possible on the bearer of rationale”) – helps to cope with the problem 
in point four (see above), because by deferring the documentation work to the 
inexperienced rationale seekers, the experienced know-how bearers are signifi-
cantly disburdened from communication resp. documentation work. As a positive 
side-effect, the transferred knowledge is consolidated in the rationale seeker 
during his documentation work.  

On the other side, only unclear decisions will go through this further ra-
tionale request and documentation process. Therefore, the approach indirectly 
minimizes the documentation overhead by orienting itself on the selective infor-
mation need of the further rationale seekers.  

Van der Ven et al. express the observation that design decisions spark these 
new requirements, which then also must be satisfied by an architecture [VJN+06; 
p.340]. Van der Ven et al. [VJN+06] therefore also propagate to capture infor-
mation about design decisions, because this helps to address central problems in 
design [VJN+06; p.332, p.341]: 
• “Design decisions are cross cutting and intertwined” [VJN+06; p.341]: 

Many design decisions affect multiple parts of a design. As usual design pro-
cesses do not explicitly represent design decisions, this knowledge is often 
fragmented across various parts. The designer himself knows these connec-
tions at first but always is in danger to forget it. Also Dutoit et al. [DMM+06; 
p.86] emphasize that much of design is done through evolutionary redesign 
and therefore long-term collaboration is essential. An adequate design deci-
sion representation can help to preserve the knowledge about the intercon-

                                                           
240 Even though, this tribute is far from being holistic, the decision model approach de-

scribed here is a first try to establish rationale in practice. If the decision model con-
cept proves to be sustainably successful in design practice, the model can be enhanced 
by modeling further more holistic connections. 
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nections. Later, designers can again be made aware of such cross-cutting and 
intertwined connections. If then some of the interconnections are no longer 
desirable (e.g., due to newly discovered facts), the structure can be refactored 
more easily.  

• “Design rules and constraints are violated” [VJN+06; p.341]: “During de-
sign evolution, designers can easily violate design rules and constraints aris-
ing from previous decisions” [VJN+06; p.332]. Such violations are usually 
the source of architectural drift. Through an adequate design decision repre-
sentation, designers can be made aware of design rules and constraints im-
posed by former decisions. In this way, architectural drift can be avoided bet-
ter. 

• “Obsolete design decisions are not removed” [VJN+06; p.341]: During evo-
lution of design, some previously taken decisions become obsolete. Record-
ed information about decisions helps to “predict the impact of the decision 
and the effort required for removal” [VJN+06; p.341]. 
The DC and decision model concept proposed here has potential to alleviate 

these issues. Thus, concerning RatMan, R2A tries to balance and connect de-
scriptive pragmatism and structured prescriptive methodologies. RatMan is not 
R2A's central issue, but this chapter shows that requirements traceability and 
RatMan are very closely related to each other and complement one another.  

A further general problem of RatMan not yet discussed here is the retrieval 
of documented decisions. Horner and Atwood [HA06a] argue that fixed schemes 
–in contrast to unstructured text– offer better possibilities for indexing according 
to retrieval. The following chapter shows how the retrieval problem can be 
avoided through usage of the gathered traceability information of this approach. 

III.20.2  Effects on the Traceability Model 

The idea of including decisions into the traceability models has already been 
proposed by Ramesh with his REMAP tool [RD92]. In a later empirical study on 
traceability (see ch. II.10.4.2.3), Ramesh and Jarke ([RJ01]) detected a real need 
by experienced users. Therefore they include a separate traceability sub-model 
(rationale sub-model) for decisions, which is oriented on the former works with 
REMAP. 

The decision model being proposed here has been inspired by the rationale 
sub model, but in the author's view Ramesh and Jarke’s [RJ01] solution lacks 
making concrete proposals for implementation and thus, the RM component ap-
pears loosely connected to the other traceability sub models. Besides, the ra-
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tionale sub model (orienting on REMAP) extends IBIS [KR70], which is a pre-
scriptive and intrusive method (cf. ch. II.9.1.4, [LL00; p.202ff]). 

In contrast, this decision model directly fits into the schema for traceability 
to design. In that way, a semi-formal model has evolved which provides easy 
handling and which has the following characteristics: 
• A constellation (combination) of requirements and design elements leads to 

conflicts. 
• Decisions do not directly influence dedicated design objects, but they bear 

design constraints that can be flexibly assigned to design elements during the 
project.  

• All other important information for documenting a decision can be added on 
demand as unstructured descriptive text. 

• For important strategic decisions, a template can provide prescriptive ele-
ments to assure these decisions have been made thoroughly. 
The usage of the decision model has effects on existing traceability models. 

The traceability model of simple linkage described in ch. III.18 is extended to a 
model briefly sketched in fig. 20-3. Since design elements influence the decision 
process as well, the requirement dimension migrates to a close coupling with the 
design. Simple <<satisfy>> relationships can occur next to (as Req.1 maps to 
DesignElement1) more complex traceability networks. Thus, e.g., Req.2 only 
impacts the design by the decisions Dec.1 and Dec.2. 

 

 

Figure 20-3  The newly emerged and more detailed traceability information scheme 
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Dec.2241 arises from the conflict situation of Req.3, DesignConstr.2 and De-
signElement2, whereas Dec.3 is only derived from requirement Req.1 (which 
then corresponds to a <<derive>>-relationship as described in [Li94; p.33]). 
Consequently, design elements (alone without RIs involved) should also be able 
to invoke a decision (Req1 Dec.3 DesignConstr3). This way, chains of deci-
sion sequences can be modeled corresponding to experiences of Lewis et al. 
[LRB96] describing design as a suite of problems (ch. II.9.3.2).  

With adequate tool support, these traceability relationships indicated in fig. 
20-3 could be visualized as a traceability tree. A kind of browser should support: 
• Detailed IA: Starting with a starting impact set, all subsequent paths would 

firstly be classified as impacted. During the following detailed check, the 
tool should allow to take out paths identified as none-relevant and adding 
paths detected as relevant (cf. ch. III.22.1). 

• An adequate context for the simple retrieval of documented decisions. The 
following chapters show how R2A supports this. 

III.20.3  Example How to Tame the Development Process 
Model of SPICE 

In ch. I.7.3.2, problems of the SPICE process model concerning artifact handling 
and traceability are sketched. The major problems are unnecessary redundancies 
and lacking abilities to make implications between different model artifacts 
transparent (in the example case discussed here between the HW and the SW). 
The process artifact strategy described by fig. 7-3 (see ch. I.7.3.2) could improve 
the redundancy problem, whereas the second problem is still open. 

Directly relating to fig. 7-3 (see ch. I.7.3.2), fig. 20-4 shows how this prob-
lem can be solved by using the decision model described here. The architect dis-
covers the same problem concerning watchdog and EEPROM. He (she) opens a 
decision wizard and marks Req.1 and Req.3 as conflicting and links the decision 
to the “HW design” AN with the diagram documenting the conflict. As further 
rationale, the architect textually documents “synchronization conflict at SPI 
between time intensive EEPROM application and time critical watchdog applica-
tion”. A further click helps the architect to put the conflict into the risk list. As 
resulting DC, the architect sketches the cooperative handshake and links the DC 
to the EEPROM and watchdog design elements in the SW design. 

                                                           
241 Dec.2 is directly mapped to DesignElement4. This may also be possible, when no 

further information for understanding the decision is needed. 
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Our implementation follows the ideas described in the previous chapter. In 
the further project progress necessary changes are early detected by IAs (see ch. 
III.22.1) and the additional costs can be compared to the cost savings of the re-
jected HW change. 

The artifacts HW_RS and SW_RS, which have not been realized, can be gen-
erated out of the model on demand by summing up all requirements related to the 
corresponding design (HW design model for the HW_RS, SW design model for 
the SW_RS). Ch. III.23.2 describes this in detail.  

As it is a known problem in embedded design [Gr05; p.415], this example 
further shows how the decision model improves the design processes by making 
the strong influence of HW design on SW more transparent. 

 
 

 

Figure 20-4  The example of SPICE conforming design processes in the new way 
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III.20.4  Implementation of the Decision Model in R2A 

After the decision model has been theoretically discussed, this chapter will now 
outline how the decision model is implemented in R2A. Fig. 20-5 shows a deci-
sion modeled in R2A's decision dialog (left side). Additionally, fig. 20-5 shows 
possible drag-and-drop operations to relate information between the decision 
dialog and R2A's main window (right side). The modeled decision deals with 
how the NFR “ReqSpec_14: The system must be flexible to change.” can be 
realized concerning HW and SW. 
 

 

Figure 20-5  Decision dialog in R2A 
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The dialog implements the decision model described in fig. 20-2 (p.318), 
and has the following sections (see fig. 20-5): 
• At the top, a summary or topic of the decision must be provided. The sum-

mary is displayed as the decision's item text in all other controls (e.g., see fig. 
20-6). 

• In the “Conflicting items:” section, all R2A items being in conflict with each 
other (and thus need to be decided about) can be added via drag-and-drop 
operation (1.). Once this decision is then saved, the items are related to the 
decision through <<conflicting entities>> relation described in fig. 20-2 
(p.318). In the example, these items are the design ANs representing HW and 
SW in combination with ReqSpec_14. 

• Further assumptions, arguments, and rationale, as well as any other infor-
mation can be added in textual form in the “Description of the Decision” part. 
The approach does not prescribe any information provided here. Through the 
button “Word”, the description can be performed using Microsoft Word, thus 
allowing using formatted text. The “Template” button allows loading specifi-
cation templates if some more structured (prescriptive) rationale approaches 
shall be used. The approach does not rely on a specific rationale structuring 
method. Correspondingly, the conflicts, and results parts form a kind of semi-
formal skeleton for structuring the rationale. But, for further documentation 
of the rationale, the approach does not rely on any specific style documenta-
tion as IBIS, QOC, DRL etc. Instead a word style documentation is possible, 
where a template can be prescribed that could be in any rationale structuring 
template242. This can be seen as an advantage, because the rationale docu-
menter can choose a best-suited structuring schema. As Dutoit et al. empha-
size [DMM+06a; p.7], schemes differing from the way the rationale docu-
menter would intuitively structure it create “a cognitive dissonance” imposing 
additional cognitive strains to the documenters. Freedom of choice can here 
provide a decisive difference alleviating the burdens encountered at rationale 
documentation. 

• To derive consequences from the decision, DCs can be created in section 
“Resulting Items”. Afterward, these newly created DCs can be assigned as 
RIs to any AN via drag-and-drop operations (2.). Correspondingly, DCs could 
also be termed as 'requirements emerging from the design and decision pro-
cesses'. 

                                                           
242 It would even be possible to combine the model described here with other rationale 

capturing tools as gIBIS or Compendium. 
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• For further decision specification any diagrams showing important infor-
mation can be added via drag-and-drop operation (3.) into the 'Further dia-
grams' section. 

The decision modeled in fig. 20-5 is visualized in R2A as shown in fig. 20-
6. Ch. III.22.1 and ch. III.22.2 describe how this decision structure and visualiza-
tion are used to improve IA and consistency management. 

The DC “Handlers and Drivers shall provide callback mechanisms to their 
upper layers (Dependency Inversion Principle)” indicates another aspect to con-
sider. Callback mechanisms can be seen as patterns (or idioms) to decouple mod-
ules. In this way, the decision mechanism can be seen as a way to document pat-
tern usage, where a designer can even prescribe the application of patterns for a 
specific situation through decisions and DCs. This is further discussed in ch. 
III.20.5.1. 

Besides this aspect, the example also shows a situation, where a NFR 
(ReqSpec_14) is reexpressed through several more functional DCs. The strategy 
of taming NFRs by concrete scenarios or reexpress them by more concrete FRs 
has been already discussed in ch. I.5.1, ch. II.9.5, ch. II.10.4.2.2, and ch. 
III.18.2.2. 

 

 

Figure 20-6  R2A's visualization of the decision taken above 

Theory of SW architecture development has developed the so called influ-
ence factors assessment described in ch. II.9.5. This can be seen as a more gen-
eral view on this topic in the context of design.  

Table 20.1 shows an example of an influence factors assessment on the case 
study described here, orienting itself on findings of [PBG04; p.79], [CBB+03], 
[BCK03], [Bo00b], [HNS00], and [BCN+06]. The tabular presentation is taken 
over from Hofmeister et al. [HNS00]. In the first column, the factor is described, 
the second column discusses the priority and flexibility of the factor, the third 
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column identifies the influences and risks that may be involved when the factor 
takes effect, whereas the fourth column describes handling strategies to proac-
tively reduce negative influences and risks of the factor. 
The following factors have been identified and discussed: 
1. Some requests for the ECU must be responded within 5 milliseconds (ms) 

(nonfunctional timing requirements). As these requests must be fulfilled with-
in this timing to ensure that the controlled processes work properly, the priori-
ty is high and the influence of not fulfilling the timing restrictions can lead to 
complete failure of the ECU. Fortunately, the timing restrictions are not com-
pletely fixed but can exceed by 0.5 ms in 5 % of the cases, but 5 ms are still 
difficult to achieve. Correspondingly, continuous measuring and monitoring, 
or schedulability analyses as provided by rate monotonic analysis [KRP+93] 
can be an adequate strategy to ensure that all timing restrictions can be ful-
filled. 

2. A NFR requires minimizing power consumption in order to reduce problemat-
ic battery work load. This issue also has high priority, but only when ignition 
is off. As consequence, a sleep-wake-up manager in SW must manage that the 
ECU goes into a sleep mode when ignition is off. 

3. Current HW design requires reading input signals of shift registers. This issue 
results from internal HW design decisions for cost optimization and is not 
demanded by the customer. Correspondingly, priority is low and flexibility is 
high. As major drawback, the input provided by shift registers must be polled 
continuously. This imposes a direct risk for factor 1. This also induces a high 
risk for factor 2, because some of the input signals are dedicated to wake up 
the ECU, when it is in sleep mode (see factor 2). When shift registers are used 
for these pins, the ECU must wake up continuously and poll these shift regis-
ters during sleep mode, which leads to higher power consumption in sleep 
mode. To fulfill the wake up requirements in the current HW design, the SW 
design for the current SW version must provide an extra timer with a time 
slice of 2.5 ms for polling the shift registers (2.5 ms in order to handle re-
quests concerned with factor 1). Nevertheless, as this again imposes high risk 
for factor 1, the HW design must be changed for the next release to employ 
multiplexers instead of shift registers, because multiplexers allow wake-up-
able pin interrupts at the micro controller to be directly triggered, thus avoid-
ing polling for input signals and reducing risks of not fulfilling factor 1 and 2. 

4. Factor four addresses change flexibility in software as it has been discussed 
above in fig. 20-5. As change flexibility is rather abstract, the NFR is concret-
ed by defining three concrete scenarios for change flexibility: 
a. Scenario one discusses what will happen if input signals currently meas-

ured by the environment are sent from another ECU over CAN. In this 
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project, the scenario could be identified as low priority and is thus not fur-
ther considered. 

b. In scenario two a situation is addressed in which it is not quite clear 
whether some output signals currently sent via CAN may not also be pro-
vided via other out pins. Due to limited output pins of the micro controller, 
the usage of multiplexers (MUX) will then be necessary. The probability 
of this problem is medium and the change must be applicable within one 
month. Consequences would be that these output signals should be con-
figurable by EEPROM parameters, HW must be changed, and a new SW 
component (MUX_hdl) handling these MUXs must be included. Negative 
impacts of the factor can be addressed by a HW reserve243 that allows 
easily integrating the multiplexers on HW and an integration point to easi-
ly integrate a potential MUX_hdl to be easier integrated in SW. 

c. The third scenario discusses the potential that internal SW signals within 
the ECU may have to be propagated to other parts of the ECU's SW. This 
is very likely and must be realizable within a few days, because otherwise 
implementation of other features needing the signals will get retarded. An 
extension of signal propagation imposes new efforts on the different SW 
tasks (processes) and may impose a risk for factor 1. To avoid these risks, 
an RTE244 component as a decoupling layer between tasks and handlers 
may provide a standardized communication mechanism with configurable 
signal propagation through function pointers combined with asynchronous 
messaging mechanisms to decouple processes. 

5. Factor five addresses the effects when development processes with SPICE 
maturity level 2 (ML2) must be employed. The priority is high, because the 
customer demands for high quality and a scalable development process. On 
the other side, SPICE ML2 demands high administrative and bureaucratic ef-
fort for documentation inducing high risks for factor six. This requires a good 
tool support in order to diminish unnecessary effort; but in the same way it 
may be acceptable to use development processes capable for SPICE ML1, as 
SPICE ML1 also requires that all necessary processes are fulfilled; but it does 
not require extensive documentation. 

                                                           
243 German: HW-Vorhalt 
244 RTE is inspired by the run-time environment (RTE) component of the AUTOSAR 

architecture. AUTOSAR (Automotive Open System Architecture) is a standardization 
en–deavor with the goal to define an open standard for automotive SW architectures 
[We07; p.18]. The design case study introduced here is not an AUTOSAR conforming 
design, because it would unnecessarily complicate the case study. However, the RTE 
concept proved a good idea to be integrated into this example about SW architectural 
design decisions. 
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6. Concerning the project resources, budget for three developers for two years is 
available. At first sight, this issue seems not so important, because HW part 
costs are at the end the dominating cost factor in the end. On the other side, 
risks to achieve the goal of factor 6 are significantly imposed by factor 5. This 
issue may at first also just seem to be a matter of planning in the sense that the 
project manager just performed wrong effort estimations, because he did not 
consider the extra effort of SPICE ML 2. In this sense, project staff simply 
must be increased; but on the other side it may also be the case that budget re-
quirements imposed by the customer or management do not allow an increase 
in budget and other strategies must be taken. Generally, it is to say that factors 
5 and 6 seem not to be directly connected to the design; however, as indicated 
by Posch et al. [PBG04; p.74f], the scope of factors to be considered should 
include a wider perspective in which especially organizational factors245 
should be considered. The example shown here is only a snapshot of the fac-
tor analysis at a very early state of the project, where factor 6 is in conflict 
with factor 5, but the effects on the architecture are not yet obvious. Now, in 
the further project progress it may become apparent that the customer insists 
on SPICE ML 2 processes and that project budget is very tight preventing to 
call in further developers. It may turn out at this later point, however, that two 
former projects are existing handling partially similar issues as the example 
project and parts of their SW components can be adapted to the new problem. 
As this promises to significantly reduce development effort and staff needs, it 
is then decided to reuse parts of these projects. In this case, both factors 
would significantly raise their influence on the design, leading to the effect 
that the whole character of the design may change (e.g., the design may then 
rather become an integrative patchwork to integrate the old components with 
adapter components to fulfill the new needs). 
 

                                                           
245 Organizational factors such as staff size, staff skill levels, development organization, 

or available budget often impose significant restrictions on which solution is possible 
and thus significantly influence on the outcome of a design [PBG04; p.74]. Especially 
economic and development process contexts play an important role, because they soon 
become an important factor about the feasibility of an intended solution. 
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Table 20.1  Example of an architectural influence factors assessment 

Factor Priority/Flexibility Influence/Risk Handling Strategies 

1. Response time < 
5ms 

HIGH; in 95% +- 
0.5ms  soft deadline

K.O.-criterion Rate Monotonic Analysis + 
continuous measurements of 
prototypes and release candi-
dates. 

2. Minimize Power 
Consumption 

HIGH; at least when 
ignition is off. 

ECU must go into a 
sleep mode. 

Sleep-wake-up manager in 
SW. 

3. Input signals over 
Shift Register Handler

LOW; High flexibility 
as not prescribed by 
customer 

Through needed 
polling induced risk 
for 1 and 2. 

Timer with t+2.5ms; HW 
change from shift-register to 
multiplexer in next release.  

4. Flexibility to 
change 

MEDIUM   

4.1 Scenario: In-
put signals 
change to CAN. 

LOW; Rather low 
probability 

- - 

4.2 Scenario: 
Output signal via 
CAN or multi-
plexer 

MEDIUM; must be 
realizable within one 
month 

Configuration 
parameter in 
EEPROM; HW 
change; Multiplexer 
handler (MUX_hdl) 
in SW necessary. 

HW reserve; Integration point 
for MUX_hdl in SW. 

4.3 Scenario: In-
ternal signal pro-
cessing must noti-
fy other parts of 
the system. 

MEDIUM; very likely 
 must be realizable 

within a few days 

New communica-
tion effort with 
other tasks  Risk 
for point 1. 

RTE-layer with configurable 
function pointers and asyn-
chronous messaging 

5. SPICE ML2 HIGH, the customer 
demands for high 
quality, but also wants 
a scalable develop-
ment process. 

Increased adminis-
trative effort  
Risk for Point 6 

a) Usage of adequate tools. 
b) Negotiations whether 
SPICE ML1 may also be 
adequate. 
c) Adding 50 % additional 
developer resources  

6. Project resources: 
Three developers for 
two years 

LOW, costs are main-
ly driven by HW 
costs. 

- - 

 

Following the current design theory the influence factor assessment example 
above described would be part of a design description only loosely connected to 
the design model. With the decision model described here, the decision can be 
directly integrated into the design model (cf. fig. 20-7). 
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Figure 20-7  Architectural influence factors assessment with R2A's decision model 

All requiremental items (RIs) or design related elements (ANs) present in 
R2A and being considered as influence factors can be added to the “Conflicting 
Items:” section. The assessment description can be documented in the “Descrip-
tion Of The Decision” section in an equal way as shown in table 20.1 above. The 
arising consequences (column “Handling Strategies” in table 20.1), can again be 
derived as DCs thus allowing directly assigning the DCs to the ANs needing to 
realize the consequences. At first, this helps to ensure that the designers of the 
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corresponding ANs become aware of these demands and thus ensures that these 
demands are considered by the considered in the design. Secondly, this also en-
sures that this information is made directly traceable and thus ensures that this 
information is present later in IAs for change assessment during change manage-
ment processes (cf. ch. III.22.1 and ch. III.22.2). 

 

 

Figure 20-8  Consequences of the architectural influence factors assessment of fig. 20-7 

Fig. 20-8 shows in more detail how the influence factors assessment of fig. 
20-7 could impose consequences (see the different arrows) on the design and 
how they currently can be made explicit in R2A.  
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Arrow '1.' indicates a fact not yet directly discussed but possibly often oc-
curring in design: The process of discovering rationale about a decision can also 
impose backlashes on the original sources of the decision such as the require-
ments involved. During the decision process of the example, the designer discov-
ered that the requirement about minimized power consumption is only important 
if ignition is off, because otherwise the running motor drives the power generator 
generating enough energy to not strain the battery. This discovery could lead to 
the conclusion that the requirement itself should best be adapted to 'Power con-
sumption must be minimized if ignition (KL15246) is off'. Currently, R2A does not 
provide dedicated support for this situation, because the situation can be managed 
by current state-of-the-art tooling. If, e.g., a change management tool with a 
change proposal system is used, the designer can initiate a change request de-
scribing the situation and the designer can directly textually refer to the decision 
via its unique identifier in R2A (cf. ch. III.17.4). Otherwise, if only an REM-tool 
is used, the textual reference to the decision's identifier can be added to the in-
formation about the requirement (e.g., in a comment attribute or 'Origin' attribute 
as described in II.10.4.2.1). However, as ch. IV.26 outlines, further perspectives 
of research about R2A could be supporting a dedicated integration with change 
management tools.  

The first DC in the “Resulting Items” section demands to perform a Rate 
Monotonic Analysis. Arrow '2.' shows how this can be modeled as a nonfunction-
al consequence for the complete SW design. By assigning the DC to the AN “SW 
Design” via a drag-and-drop operation the DC becomes a new nonfunctional RI 
for the SW design. Arrow '4.' indicates a similar situation for a part of the SW 
design. 

On the other side, arrow '3.' imposes consequences on the HW. As indicated 
in fig. 20-8, if the HW design is also somehow represented in the R2A design 
model, this can be performed by a drag-and-drop operation to the corresponding 
AN representing the HW. Currently R2A does not support a modeling tool for 
dedicated HW design, but the product line concept with dedicated support for 
integrating different modeling tools as a variation point should, in principle, 
equally allow connecting any HW design tool.  

                                                           
246 In automotive terminology, ignition is coded by the term “KL15” (In German: Klem-

me15). 
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In the current state of R2A with lacking direct support of a HW modeling 
tool, two alternative strategies are possible to allow tighter integration of HW 
design: 
• A place-holder AN for the HW model can be created, where all issues aris-

ing247 from a design process performed in R2A possibly relevant for the HW 
can be assigned. As further described in ch. III.23.2, this place-holder AN can 
then be used in R2A to generate a requirements specification for HW result-
ing out of the design processes performed in R2A. 

• In the author's experience, any embedded system or SW design model must 
integrate certain HW aspects anyway in order to model certain cross influ-
ences. As these models might need some aspects of HW in their models any-
way, a certain low detailed HW model could be collaboratively maintained 
(resp. sketched) by system designers, HW designers and SW designers togeth-
er to improve a common understanding at this core interface, in which the 
three domains have their significant overlap. If this HW model could be main-
tained in UML, the system and SE activities could seamlessly integrate the 
model. As a side-effect this model could also be an interface communicating 
effects of design processes performed in R2A to the HW designers. In fig. 20-
8, the author indicates this idea by including an AN 'HW Analysis'248. 

Last but not least, arrow '5.' indicates that new DCs might also spark the 
need for modeling new ANs in the design. In fig. 20-8, for example, a DC249 
demands a SleepWakeupManager. This SleepWakeupManager must be modeled 
as a new AN in the design. These situations sparking new ANs are indicated in 
fig. 20-8 by a square containing a question mark. The question mark indicates 
that it is not yet quite exactly sure in the current design situation whether these 
possibly new arising ANs really come to existence and how they might then ex-
actly look like, because creating any new AN would then be some following deci-

                                                           
247 These are at first DCs as consequences of decisions as described here in this example, 

but perhaps also other items in R2A as, e.g., the budgeted resource constraint concept 
introduced in the next chapter, might be relevant. 

248 The author has chosen this name, because such a model concept – in the author's 
opinion – rather resembles to the SW analysis concept as such a model might not really 
anticipate the HW design but might help to analyze certain HW parts that are of cross-
cutting interest for all three design domains. A real HW design might only make sense 
with a dedicated HW design tool allowing modeling of the HW circuits. An alternative 
name for such a model might be 'HW intermediate model'. 

249 The reader should note that in the situation described here actually three DCs might 
spark new ANs. The author has grouped the three items together to one arrow '5.' to 
avoid unnecessary clutter in fig. 20-8. It is very highly possible that the three items 
might spark the existence of three different new ANs. 
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sions of the designer, where other factors may also influence the final decisions. 
As described in ch. II.10.4.2.2, such consequences as indicated by arrow '5.' are 
connected to what Knethen and Paech [KP02; p.14] call 'applicability links' 
meaning that an item can derive its justification from another item. From this 
perspective, the decision and DCs concept might probably also be seen as a spe-
cial form of 'applicability links'. 

In [PKD+03; p.145], Paech et al. indicate that some NFRs can be specified 
via FRs. This is possible with the decision model, in which a NFR can spark a 
decision about handling strategies for the NFRs leading to new DCs as conse-
quences250. Thus, it could be said that this approach is good way to cope with 
nonfunctional restrictions that can be split into some numerical expression as it is 
often the case in embedded systems. 

Chung et al. [CNY+00] developed a NFR framework, where NFRs drive de-
sign creating rationale. The approach allows graphically modeling trade-offs and 
synergies between NFRs (also cf. ch. II.9.5). This can also be achieved by R2A's 
decision model, where the NFRs are referred to as conflicting items. Via the “Fur-
ther Diagrams” section, a model graph can be modeled in the design tool and 
referred to in the decision. In a similar direction, Egyed et al. [EG04] discuss an 
approach, where they map FRs to nonfunctional aspects (or software attributes) 
to identify conflicting and supporting situations. This approach should be equally 
manageable by R2A's decision model. 

III.20.5  Additional Support of the Decision Model for 
Designers251 

In the following, additional connections and advantages of the proposed decision 
model in relation to design-related issues are discussed. 

                                                           
250 As an example, a NFRs demanding code flexibility could be handled by a decision to 

employ the visitor pattern [GHJ+95; p.301-318] to alleviate adding new operations to 
the data model. As consequences, DCs can be derived defining that data model classes 
must fulfill the characteristics (operations to accept a visitor) of concrete (visited) ele-
ments, whereas operations must fulfill characteristics (operations to visit the different 
elements) of a visitor. This example can also be seen as an example for the claims 
made in the following ch. III.20.5.1 that the decision model of R2A has close connec-
tions to the pattern concept.  

251 Extended parts of this chapter have been published in [TKT+09; ch.5]. 
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III.20.5.1  Patterns 

“Patterns, as used in software engineering, constitute one of the most heavily 
used approaches for organizing reusable knowledge” [DMM+06a; p.19]. Pat-
terns (ch. I.6.2.4) define the abstract core of a solution for a continuously recur-
ring problem, thus allowing the solution tailored to the concrete problem to be 
reapplied [GHJ+95]. Patterns are described using a structure template. Even 
though different authors use slightly different templates, the description of the 
problem (often referred to as forces), the solution and its consequences are part of 
all pattern templates. The decision model discussed here can be described in 
terms of such a pattern template (see also [HAZ07; table 1]): The conflict situa-
tion of the decision model corresponds to the problem description part in pat-
terns, whereas the description of consequences in a pattern description could be 
modeled by resulting new DCs in R2A's decision model. Due to this analogy, the 
author believes that this approach can provide valuable support in selecting pat-
terns (e.g., the conflict situation of a decision can indicate the usage of a specific 
pattern). At the same time it can help knowledge engineers to identify interesting 
solutions as new patterns (for the relationship between design decisions and 
patterns also refer to [HAZ07], [PBG04; p.209]). A pattern library for decisions 
in modeling embedded systems could be the ultimate goal of such an effort. 

Horner and Atwood [HA06a; p.76] characterize patterns (ch. I.6.2.4) as 
common solutions resolving conflicting tendencies. The decision model pro-
claimed here also supports analyzing conflicts and results. In the author's eyes, 
the decision model supports identifying matching patterns and identifying new 
patterns as described in [TKT+09]. In this way, the R2A has certain resemblances 
to the DRIMER tool [PV96] (see ch II.9.3.1).  

Cleland-Huang and Schmelzer [CS03] (see also [GG07; p.315]) introduce 
another connected approach. Their concern is to improve traceability of NFRs to 
design. Due to the often global and far reaching effects of NFRs on design, 
traceability of NFRs to design is difficult to handle adequately. As a solution, 
they propose to use design patterns as an intermediary model between NFRs and 
the design. This means that NFRs are not directly mapped to design. Instead, 
NFRs are mapped to a design pattern, which then again is mapped to design. In 
this way, the number of traceability links to be manually captured is reduced. The 
approach then uses this information to automatically derive the relations between 
NFRs and the design through the manually captured relations.  
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In the author's opinion, however, this approach has the following shortcomings: 
• Not all NFRs can be directly mapped to specific design patterns. Some NFRs 

may also be handled through other strategies252.  
• The approach does not consider crossinteractions between NFRs or other 

FRs. 
Correspondingly, ch. III.20.4 shows that R2A's mechanism may be more 

powerful as it also allows describing handling strategies apart from patterns and 
also allows describing crossinteractions (see, e.g., the described influence factors 
assessment in ch. III.20.4). 

III.20.5.2  Ensuring Adequate Realization of Design and 
Decisions 

As Posch et al. [PBG04; p.38] underline, architects also have to ensure that their 
design settings are adequately considered and realized by other designers or cod-
ers. Using this decision model, designers can model the consequences of a deci-
sion as DCs and assign the DCs as new “requirements” (in R2A terminology: RIs) 
to design elements that must then fulfill the DCs. Besides usage in further design 
or coding processes, the list of assigned RIs to a design item can also be used as 
basis for reviews on design and implementation of the item. 

III.20.5.3  Support for Architecture Evaluation 

The R2A approach can also provide valuable support in maintenance and evaluat-
ing architectures [CKK02]. Moro [Mo04; p.321] points out that the usage of 
patterns and other decisions must be documented for later maintenance and archi-
tecture evaluation issues. According to Reißing 80% of change effort is caused 
by wrong architectural decisions [Mo04; p.90]. With documented decisions and 
rationale at hand, potentially wrongly made architectural decisions may be easier 
and earlier identified in architecture evaluation. In this way, implementation of 
wrong decisions and thus later costly changes may be avoided. 

When evaluating design documentation during design evaluation meetings, 
Karsenty [Ka96] found out that questions about rationale have been the most 

                                                           
252 E.g., NFR about security may also be handled by a login and password component 

(prevents unauthorized access) in connection with cryptography mechanisms (prevents 
eavesdropping) and intensified quality assurance methods (prevents bugs susceptible 
for hacking). 
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frequent questions (approx. 50%), but only 41% of these questions could be an-
swered (also cf. [HA06a; p.83], [BB06; p.275]).  

The idea of the decision model is to allow DCs (and budgeted resource con-
straints see ch. III.21) as consequences and attaching them to sub elements also 
provides direct benefit for the designer himself, because he can clearly model his 
demands for components and in later reviews these demands can be assessed 
directly. Through the structure of the decision model, further rationale is already 
present, where designers might even have used the description text to document 
further rationale. 

As already addressed in ch. II.9.4.1, a further helpful concept in this relation 
is the identification and tracking of neuralgic points in design [Mo04; p.310-
330]. As Moro found out, developers are often aware of neuralgic points by 
themselves, because neuralgic points often recur back as issue of discussion. 
R2A's decision mechanism gives designers a means at hand to document new 
discovered rationale at those recurring discussions. Further, the author believes 
that it may also be possible to discover neuralgic points through the sheer amount 
of documentation attached to a decision. In most cases, the most extensive docu-
mentation may thus be provided to decisions touching neuralgic points, because 
the developers are often anyway aware of the neuralgic nature of an issue.  

Other possibilities to identify neuralgic points through documented deci-
sions may be to identify a metric for measuring the complexity of decisions. As a 
start, e.g., it may be possible to assess the number of items identified as part of 
the conflicting area of a decision. If this number exceeds a certain number (e.g., 
15 to 20) the decision can be considered as especially complex. However, this 
topic should be further researched and be filled with experiences from practical 
usage. A further idea might be to implement a mechanism to analyze the click 
behavior of the designers. If certain decisions are often clicked at and further 
analyzed (e.g., when the properties of the decision are opened), it may indicate 
that this decision is more critical than decisions seldom being clicked at. 
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III.21  Resource Allocation as a Special Decision 
Making Case253 

The requirements for design conflict and cannot be reconciled.  
All designs for devices are in some degree failures, either because they flout  

one or another of the requirements or because they are compromises,  
and compromise implies a degree of failure. ... 

It follows that all designs for use are arbitrary. The designer or his client  
has to choose in what degree and where there shall be failure. 

[Py78; p.70] 
 
In design activities for embedded systems an additional decision type can be 
identified dealing with non-functional aspects of limited resources such as 
memory resources (e.g., Read Only Memory (ROM), Random Access Memory 
(RAM), Electrically Erasable Programmable Read Only Memory (EEPROM)) or 
timing restrictions.  

A core goal of embedded design is the effective administration and distribu-
tion of such resources254 and different strategies for handling this problem exist: 
1. The allocation is a more or less unconscious or uncontrolled process (i. e., no 

explicit strategy is established). 
2. A resource estimation is performed as part of the design and estimations are 

checked and adapted at each development cycle. 
3. Resource allocation is explicitly modeled in the design model (e.g., by using 

UML profiles such as the UML Profile for Schedulability, Performance, and 
Timing [Do04, ch.4] or MARTE [EDG+06]. 
With respect to collaboration in complex development teams or organiza-

tions, approaches 2 and 3 have limitations in the following aspects: 
• Propagation and communication of changes to all team members involved in 

the change can be cumbersome. 
• Minimizing redundancies as a major source of inconsistencies can result in 

communication errors. 
• The seamless adoption and refinement of other designers’ design results can 

be extremely difficult. 
                                                           
253 This chapter bases mainly on [TWT+08]. 
254 In fact, also Simon acknowledges resource allocation to be an important aspect of 

design [Si96; p.124-125]. Correspondingly, resource allocation can be considered as 
an important aspect of every design, but in embedded design its importance is highly 
more significant. When the engineering standard Automotive SPICE is applied, ENG.5 
BP5 (“Define goals for resource consumption”) even requests that resource consump-
tion for each software module is explicitly planned and tracked [MHD+07; p.64]. 
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• Sharing project knowledge in general will become more difficult. 
The following example, basing on the accompanying case study (see ch. 

III.12), illustrates these shortcomings in more detail. The design shown in fig. 12-
3 (see ch. III.12) may lead to the following estimation of RAM consumption 
(table 21.1) documented as a separate chapter in the design document of the high 
level designer. 

Table 21.1  Example resource estimation of RAM consumption in design 

Module Light
_Task 

Light
_hdl 

CIL_
hdl 

CAN-
drv 

PWM_
drv 

ADC
_drv 

Buffer 

RAM  
(1500 Bytes available) 

600 
Bytes 

250 
Bytes 

100 
Bytes 

300 
Bytes 

100 
Bytes 

100 
Bytes 

50 Bytes 

 

Such tables are a common format for documenting resource assignments in 
design documents (cf. [Mu04]). The tabular format has the main advantage that it 
easily gives an overview, but it has important weaknesses when collaborative 
aspects are considered: 
• First of all, even though these assignments are typically called estimations, 

they should rather be treated as RIs. This implies that a mechanism must be 
in place to communicate these RIs on time to all interested stakeholders – es-
pecially if changes occur during project progress.  

• Further, the allocation settings are estimated at a certain design stage and 
thus are an integral part of the design documents at this stage. Therefore, fur-
ther processing of this information by other designers is difficult. In the case 
study, the estimations are made at the level of modules and included into the 
documentation of the high-level design. If the module designer of the com-
plex Light_Task wants to refine the resource estimation into a more detailed 
estimation, a problem arises. In this case he would have to copy the infor-
mation “Light_Task == 600 Bytes” into some document of his responsibility. 
This leads to unnecessary redundancy causing consistency problems when 
this setting changes later in the project. 

• These problems are even more critical if some parts of the project are deliv-
ered by a subcontractor – as it happens to be the case in the example. In this 
case, all relevant requirements for the item to supply must be provided (as 
required by SPICE process ACQ.4 Supplier Monitoring, see [MHD+07]). In 
this case, the RAM estimations, since they are RIs, must be communicated as 
requirements to the supplier. This also leads to a high degree of redundancy 
with even worse effects if changes are not communicated. 
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III.21.1  Budgeted Resource Constraints as further 
Requiremental Items 

In consideration of this problem a way to perform such resource allocation deci-
sions in a handy fashion is needed, which also allows communication of the re-
sults for each considered design element throughout the entire project in an effi-
cient way. An additional aspect here is the fact that the results of a decision act as 
new RIs on the design elements they are assigned to. As literature shows (cf. 
[BGT+04], [CBS+02], [FGS+01], [Do04; p.317], [Do03; p.169], [Mu04], 
[Gu03]), most resource allocation activities consist of numerically truncating a 
larger resource amount into smaller subsets –more or less in analogy with the 
abstraction hierarchy of a system's resp. software's design (see ch. III.15, fig. 21-
4 resp. fig. 21-5 in ch. III.21.2.4 below). Obviously, this can be compared to the 
process of preparing and distributing budgets in business administration or pro-
ject management area [HHS64]. Therefore, the taxonomy of requiremental items 
is enhanced by an additional type of RI called budgeted resource constraint 
(BRC) as shown in fig.21-1. 
 

 

Figure 21-1  Requiremental items taxonomy with budgeted resource constraints 

BRCs are similar to design constraints (DCs) as they represent the results of 
a decision making process and can be assigned as RIs to any design element.  

However, there are the following differences when compared with other RIs 
(such as DCs): 
• BRCs represent numerical values, whose associated design elements may not 

exceed the maximum value of the assigned BRC. 
• A BRC can be subdivided into sub BRCs. Thus, BRCs at the same time repre-

sent a decision-making process as well as its results. 
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• As BRCs represent numerical values, whose sub BRCs divide resource 
amounts into smaller budgets for more detailed parts of the design, automatic 
consistency checks (e.g., tests for budget overruns) can avoid wrong alloca-
tions. Budget overruns may be detected at an early project stage.  

• Individual BRCs can be added to one design item only, whereas requirements 
and design constraints may be added to several items. 
 

 

Figure 21-2  Resource allocation example with budgeted resource constraints 

Resuming the example described above, fig. 21-2 illustrates the resource al-
location problem presented using BRCs as implemented in R2A. The connections 
to the design elements illustrate so-called assigned to or satisfy-link types used in 
R2A to relate RIs to design elements (see description in ch. III.18.2). In R2A, all 
RIs assigned to an AN (thus, also BRCs) are displayed via the “Requirements” tab 
(fig. 15-4 in ch. III.15), but for better understanding they are here directly 
mapped on the design diagrams, where the shown elements on the diagram are 
ANs in R2A. 

In this situation, the SW architecture is assigned to fit in a total budget of 
1500 bytes of RAM. This BRC is subdivided into six sub BRCs assigned to the 
six modules in the SW architecture, thus showing a more detailed partitioning of 
the RAM budget. 

Comparing fig. 21-2 with table 21.1 above, it can be seen that both represen-
tations have an equivalent meaning. In fact, the idea of budgets in HW and SW 
engineering is not new (cf. [FGS+01], [Do04; p.317], [Do03; p.169], [Mu04], 
[Gu03]). What this wants to point out beyond the appealing (and well-known) 
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aspect of a more or less easy mathematical model enabling consistency checks 
are the advantages of the budget concept itself, when it comes to collaboration 
and sharing project knowledge between project members. In this sense, the budg-
et concept is used as a means of communication during software design. The 
following chapters will provide more details on this. 

III.21.2  Advantages for Collaboration and Sharing Project 
Knowledge 

The following situations of this example project show the value of the BRC con-
cept for the following communication situations: 
• Within project refinement,  
• Communicating information over organizational boundaries, 
• Change management, 
• Different views on the same problem; 

III.21.2.1  Within Project Refinement 

During the first design cycle of the Light_hdl, the Light_hdl is forecast to have a 
very tight RAM budget. Therefore the designer identifies several specific aspects 
for which he arranges budgets according to his current information and needs 
(see fig. 21-3): 
• In normal mode, the module uses the settings in EEPROM mirrored to RAM 

for steering the lights. RAM consumption depends on the number of steered 
channels and the number of bytes needed for each channel.  

• The diagnostic part supervises regular checks of the electrical current between 
the ECU and the connected lights to detect malfunctions as short circuit or 
open drain. Malfunctions lead to the deactivation of a light channel. 

• In the case of severe error conditions, e.g., loss of EEPROM data, the fail 
over mode assures that at least essential functions like brake lights and indica-
tors work. The code and configurations are fixed in ROM, thus no particular 
portion of RAM is needed. 

With the type of BRCs proposed here, designers of sub levels can directly 
continue to process results produced in previous design decision processes. 
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Figure 21-3  Sub budgeting of the Light_hdl module 

III.21.2.2  Communicating Information across 
Organizational Boundaries 

Information must often be provided across organizational boundaries. Such 
boundaries can be sub projects within the same company or between different 
companies. In the case study, drivers are provided by different subcontractors. 
This implies that all requirements for the drivers must be provided throughout all 
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parties involved. In the author's experience, functional aspects are communicated 
in a quite complete fashion, but such nonfunctional aspects (e.g., restrictions on 
memory, timing, etc.), resulting from former design decisions, are often forgotten. 

The solution described here supports exporting all types of RIs associated 
with a design element as a new requirements specification into requirements 
management tools like IBM Rational DOORS, which can be delivered to the 
subcontractor. Since BRCs are treated as normal RIs, they are directly propagated 
to the subcontractors via automatically generated requirements specifications. In 
later development phases, these requirements specifications can be continuously 
synchronized with the settings in the design element, thus ensuring proper propa-
gation of requirements to subcontractors. 

III.21.2.3  Change Management 

During project progress changes occur that force designers to change decisions 
and assumptions. Managing those changes efficiently is essential to avoid project 
deviations. Two heuristics should be considered: 
• Changes should be kept as local as possible to avoid unnecessary complexity. 
• Changes must be implemented in a consistent way. 

Our model supports handling changes of BRCs as local as possible. Continu-
ing with the example, it might happen that the “runDiagnostic” function needs 
more than 10 bytes of RAM (see fig. 21-3 above). In this case, the designer can 
first try to find an internal solution for the problem (e.g., find a way to cut down 
on some bytes in the “diagInfoTable”). If this is not possible, the designer can 
escalate the problem to a higher-level designer.  

In another situation, new requirements from the customer could make the 
creation of a new, additional module necessary. This case has effects on the de-
sign as a whole since most of the modules already present might suffer a budget 
cut in their BRCs as a consequence. R2A visualizes changed BRCs (in a red color 
coding; cf. ch. III.22.2) to alert designers of sub-layers to analyze the impacts on 
their assignments.  

If the sub designer has made his changes and consistency checks (e.g., de-
tecting budget overruns) pass, the designer can mark the change as implemented. 
After this, the BRC is shown in normal mode. 
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III.21.2.4  Different Views on the Same Problem 

In software design theory, the idea that different aspects of SW can be modeled 
by different views has been proposed (cf. [Kr95]). The same can be claimed for 
non-functional aspects modeled by BRCs. Besides the direct allocation view (see 
fig. 21-2 and fig. 21-3 above), R2A supports creating an enhanced table represen-
tation. Fig. 21-4 shows this tabular lineup between BRCs and their allocated 
design elements. Both columns additionally show their hierarchical break down. 

 

 

Figure 21-4  Tabular view with corresponding abstraction hierarchies. 

Since the structure of the BRCs break down has a strong analogy with the 
breakdown of their associated design elements, design flaws of the assignment be 
can easily detected. Fig. 21-5 shows this situation, where a wrongly associated 
item disturbs the analogy, helping the designers to detect those problems easily. 
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Figure 21-5  Tabular view with assignment inconsistency (selected line) 

III.21.3  Representing Budgeted Resource Constraints in 
SysML 

Another frequently used possibility of modeling resource allocations in UML255-
design is to use UML profiles (e.g., timing constraints can be modeled in the 
UML Profile for Schedulability Performance and Time [Do04; ch. 4]).  
 

                                                           
255 This statement does not refer to any specific version of UML as profiling is a general 

feature of UML. 
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cd RAM

«requirement»
RAM: 1500 byte::

RAM: 600 byte

SW Architecture Lights Steering

«requirement»
RAM: 1500 byte::

RAM: 100 byte

«Driver»
ADC

«requirement»
RAM: 1500 byte::

RAM: 100 byte

«Driver»
PWM

«requirement»
RAM: 1500 byte::

RAM: 100 byte

«Handler»
CIL_hdl

«requirement»
RAM: 1500 byte::

RAM: 250 byte

«Handler»
Light_hdl

«requirement»
RAM: 1500 byte

«Driver»
CAN-Driver

Light_hdl::diagInfoTable

«OSEK_TASK»
Light_Task

«requirement»
RAM: 1500 byte::
RAM: 250 byte::

RAM: 10 byte

runDiagnostic
(Light_hdl::)

«requirement»
RAM: 1500 byte::
RAM: 250 byte::

RAM: 10 byte

setLights_FailOv er
(Light_hdl::)

«requirement»
RAM: 1500 byte::
RAM: 250 byte::

RAM: 10 byte

«requirement»
RAM: 1500 byte::
RAM: 250 byte::
RAM: 140 byte

«EEPROM_RAM_Mirror»
Light_hdl::configTable

«requirement»
RAM: 1500 byte::
RAM: 250 byte::

RAM: 80 byte

«requirement»
RAM: 1500 byte::

RAM: 300 byte

setLights
(Light_hdl::)

«DeriveRqt»

«satisfy»

«DeriveRqt»

«satisfy»

«DeriveRqt»

«satisfy»

«DeriveRqt»

«satisfy»

«DeriveRqt»

«satisfy»

«satisfy»

«satisfy»

«satisfy»

«DeriveRqt»

«satisfy»

«DeriveRqt»

«satisfy»

«DeriveRqt» «DeriveRqt»

«satisfy»

«DeriveRqt»

«satisfy»

«DeriveRqt»

 

Figure 21-6  Representation of the same information as fig. 21-4 but in SysML view 

In 2006, the Object Management Group (OMG) adopted an extension of 
UML called Systems Modeling Language (SysML; cf.[We06] and ch. I.6). 
SysML extends UML to improve support for Systems Engineering activities. A 
goal of SysML was to provide support for modeling dependencies between re-
quirements and design elements. 
R2A's model is compatible to SysML through the following definitions: 
• BRCs are represented by the <<Requirement>> stereotype, 
• Sub BRCs can be derived from the <<DeriveRqt>> relationship, 
• BRCs are assigned to design elements via <<Satisfy>> relationships; 

As a proof of this claim, R2A supports automatic generation of SysML dia-
grams from the BRC-model. Fig. 21-6 shows a SysML diagram generated from 
the model of the case study. However, it shows that such SysML-diagrams seem 
to have only limited value since they quickly can get very complex and cluttered. 
Thus, the real value of SysML might not be in the diagrams but the meta model 
behind it, being shown in different representations as R2A does in fig. 21-4. 
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Similar generation functions could be employed for timing budgets using the 
UML Profile for Schedulability, Performance and Time or the MARTE profile 
([EDG+06]).  

Except for prototypical implementation of the transformation between BRC-
model and SysML described here, these topics have not been further pursued 
because R2A aims to embrace design methodologies and tools beyond the UML 
paradigm (as, e.g., Matlab Simulink or Stateflow). 

III.21.4  Combining both Decision Models 

As already described in [TWT+08], implementing a small change on the first 
decision model described in ch. III.20 allows making both decision models com-
patible with each other. If BRCs are allowed as possible results in decision model 
one, both models support compatible types as their major in- and out-comes 
(since all are RIs (cf. fig. 21-1)). 

The following example described illustrates this in detail (see fig. 21-7). A 
documented decision “Dec1” determines the use of a specific micro-controller. 
This decision also determines a BRC “RAM:1500 byte”. Through several deci-
sion steps, a sub BRC “RAM: 10 byte” is derived that is satisfied by the 
“setLights_FailOver” function in design. Both conflict with a requirement 
“Req3”, resolved by a new documented decision “Dec2”. 

As the example shows, both decision models complement each other and al-
low modeling of more difficult decision problems.  
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cd Compatible Decison Models

«requi rem ent»
Req1

«requi rem ent»
Req2

«Docum entedDecision»
Dec1

Use contro l ler XY.

«BudgetedResourceConstra int»
RAM: 1500 byte

«BudgetedResourceConstraint»
RAM: 250 byte

«BudgetedResourceConstraint»
RAM: 10 byte

setLights_FailOver
(L ight_hdl::)

«requi rem ent»
Req3

«Docum entedDecision»
Dec2

«DesignConstra in t»
DesConstr1

«DesignConstra in t»
DesConstr2

«confl icting enti ties»

«resul ting»

«derive»

«derive»

«confl icting enti ties»

«resul ting»
«satisfy»

 

Figure 21-7  Example for combining both decision models together 

 

III.22  Managing Changes and Consistency 

Complexity is the path of growth. On the other hand, complication is the path of degradation, loss of 
control, evanescence of order. 

Lem O. Ejiogu 
 

Nuseibeh et al. [NER00] describe that it is not always viable resp. advisable to 
resolve all inconsistencies immediately. Even though resolving inconsistencies 
can only imply adding, changing or removing information, it more often involves 
balancing conflicts and taking design decisions. Correspondingly, “the choice of 
an inconsistency-handling strategy depends on the context and the impact it has 
on other aspects of the development process” [NER00; p.26]. 
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The R2A mechanism allows keeping inconsistencies for a certain time but 
keeps also track of the inconsistencies so that they can be resolved later. 

III.22.1  Usage of Traces – Managing Requiremental 
Changes 

Ch. II.10.4.3.3 discusses the usage of traces recorded in traceability approaches. 
Pinheiro terms the usage of traces as trace extraction. Concerning trace extrac-
tion processes, Pinheiro [Pi04; p.105] describes three different tracing modes that 
should be supported. The following listing describes features provided by R2A to 
support the modes described in ch. II.10.4.3.3: 
• Selective tracing is supported by the impact analysis dialog, where each 

element can be selectively applied to an analysis or deactivated. IA with the 
impact analysis dialog is described in the following sub ch. III.22.1.1. 

• Interactive tracing is directly supported by a model browser described in the 
following second sub chapter III.22.1.2. 

• Non-guided tracing is supported by the model browser as well as by other 
features described in the following third sub chapter III.22.1.3. 

 

III.22.1.1  Selective Tracing: Impact Analysis256  

As illustrated in ch. I.5.6, requirements changes occur in project practice. Thus, 
their consequences for the development process must be directly tracked in detail 
to avoid continuous drift between artifacts. For this, so-called impact analyses 
(IA) as described in ch. II.10.3 are the intended means for addressing these prob-
lems.  

R2A offers the possibility to perform IAs, where impacts of requirements 
change on design can be easily made understandable for project members as well 
as for project outsiders (e.g., the customers) via iconographic highlighting.  

Fig 22-1 shows two examples of how the impact results can look like during 
IAs, highlighting the ANH tree in R2A. The left tree shows a very local impact 
(red cross at 'Light_hdl' AN). Oppositional to this, the right situation shows direct 
impacts (red crosses) on the complete 'SW Design' as well as to the modules 
'Light_hdl' and 'RTE'. Here, also inherited impacts (arrows with grey shade point-
ing at the bottom at 'ADC_drv', 'HighPrio_Task', and 'PWM_drv') and indirect 
                                                           
256 Parts of this chapter have been published in [TKT+08]. 
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impacts via decisions (yellow crosses at 'CIL_hdl', 'Light_Task', and 'SHR_hdl') 
are visible. 

 

 

Figure 22-1  Two examples for visualizing impact on the abstraction nodes hierarchy 

These opposed examples show the indisputable advantages of clear icono-
graphic highlighting. Even though, engineering theory concentrates on reproduc-
ible results, the author is convinced that the developers' intuition (see also [LL07; 
ch.2]) is more often a factor of success than usually admitted. The graphical as-
pect of R2A's IA approach supports the intuition of the developers. This means 
even if no complex and detailed IAs are performed, the ease of just identifying a 
few items will also improve the working quality. A second major improvement of 
graphical IAs is that impacts of changes demanded by certain stakeholders can be 
better communicated to these stakeholders, as they can also more intuitively 
grasp the effects of the demanded change. Ebert emphasizes that “lots of changes 
are proposed because the corresponding interest groups think that the change is 
done by only changing a few lines of code or a parameter” [Eb05; p.188 (*)].  

Via R2A's graphical highlighting of impacts such misunderstanding can be 
easily cleared and thus unnecessary change efforts, where change costs do not 
outweigh the change gains, are avoided.  

However, development is not that easy that all effects of a change can be di-
rectly discovered. Often, changes can trigger a dominoes effect [VSH01; p.83] or 
ripple effects (cf. ch. II.10.3). To discover these effects earlier, project members 
must be able to perform more complex IAs because simply following the link 
chain only helps to find the primary change but neglects to identify the second-
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ary change often leading to the dominoes effect. Thus, besides the simple graph-
ical representation, the following characteristics allow significantly more precise 
IAs: 
• Often several requirements in combination are affected by a meaningful 

change. R2A allows to starting an initial starting impact set (SIS) with sever-
al RIs (Requirements, DCs or BRCs). 

• The affected RIs often involve formerly taken decisions and consequences 
(as DCs or BRCs) that must be reassessed. Starting from the initial SIS, R2A 
automatically calculates direct and inherited impacts on ANs derived from 
the RIS (ch. III.18.2.2). Additionally in a next step, indirect impacts through 
modeled decisions and their consequences (DCs and BRCs) are calculated 
with their impacts on ANs. 

• The inherited and indirect impacts are automatically calculated by R2A from 
the formerly gathered traceability information. In order to allow users to dif-
ferentiate between direct impacts and calculated impacts, the different impact 
types have different iconifications.  
After R2A has first calculated the impacts, R2A offers dedicated support to 

perform a more detailed assessment of the IA results:  
• Automatically calculated impact can lead to overestimated impacts. For 

these cases, the user can again determine for all calculated impacts, whether 
they are actually real impacts or rather overestimated impacts.  

• To each element in the IS notes can be attached, by which the user can tell 
the cause why an item is in the IS, or what has to be performed in order to 
implement the change impact on the item. 

• Performed IAs can be saved and shared with other users. This allows already 
performing rough IAs during meetings with the customer (ideally even at the 
site of the customer), early sparking concrete discussions with the customer 
if the customer expresses a change need. In combination with the possibility 
mentioned above to document notes on items in the IS, concretely identified 
steps to be performed on the change or other important information can al-
ready be documented and saved. This helps to capture early rationale on 
changes to perform. In the aftermath of such a meeting the developers then 
can refine the captured information. Estimations on costs and duration are 
one of the important information possible to be added are, thus extending the 
sheer IA to a detailed effort estimation. 

• Once impacts are identified, a decision must be taken whether a proposed 
change is really performed on the project (e.g., by a change control board 
(CCB), [PR09; p.144f], [VSH01; p.184f, p.216]). As basis of such a decision 
the saved detailed IA results can be loaded and viewed in R2A again.  
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• Once a change has been approved, the gathered IA information about the 
change can again be loaded in R2A, providing now a detailed road-map for 
the designer to perform the changes. 
These described actions and information can be steered via R2A's impact 

analysis dialog shown at the left side in fig. 22-2.  
Fig. 22-2 shows the complete set of information displayed in R2A during an 

IA. At the left side, the impact analysis dialog is shown, whereas the right side 
shows an excerpt of R2A's main window with the ANH at the top and the “Re-
quirements” tab at the bottom.  

Impact highlighting on the ANH has already been discussed in the context of 
fig. 22-1. The “Requirements” tab shows the RIs of the selected AN (here 'SW 
Design'), where RIs being in the impact set are correspondingly highlighted to 
provide the user with information about the concrete impact on the AN. 

 

 

Figure 22-2  Impact analysis dialog and R2A's main window with an impact set taking 
decisions into account 
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The impact analysis dialog is divided into the left part showing the impact 
situation for RIs in connection with impact derived through decisions. The figure 
shows a situation of a planned change, affecting in the first instance requirement 
ReqSpec_2 (“The system must read ...”), requirement “The signal must be an-
swered within 5ms” (taken from the documented decision concerning the archi-
tectural influence factors assessment shown in fig. 20-7 (see ch. III.20.4)) and 
BRC “RAM:1500 byte” (taken from the resource estimation described in ch. 
III.21 (see fig. 21-4 in ch. III.21.2.4)). All made decisions and all DCs or BRCs 
derived from the decisions are taken into account and shown beneath the ele-
ments identified in SIS. The right side shows the direct consequences on design 
(ANs) of an item selected in the left side (the complete impact on the ANs is 
shown in the ANH). Via the textual component at the bottom, notes can be edited 
and viewed describing additional information on the need for change of an item 
selected at the left side. Above, the author also mentioned that the dialog can be 
used as a detailed road-map to perform the changes. This is indicated in the figure 
by item ReqSpec_2, being checked and being highlighted via a green cross. Via 
this checking mechanism, changes already performed can be checked. In this 
way, the dialog turns into a checklist for the change to be performed showing the 
current status the designer is in during change implementation. 

IA support is helpful to assess potential influences of changes and the cap-
tured rationale; during assessment it can give important guidance to how these 
changes must be performed. However, most probably not all requiremental 
change will run through a cycle of detailed IA and CCB. Often 'minor' changes 
influx into a requirements specification from all kinds of sources, though. For 
these cases the change management mechanisms described in ch. III.22.2 help to 
keep changes transparent in order to maintain changes to consistently propagate 
to all relevant parts of the design models. 

III.22.1.2  Interactive Tracing: The Model Browser 

Interactive tracing means to allow an interactive browsing mechanism to navi-
gate backward and forward in the model.  

Fig. 22-3 shows the model browser integrated in R2A for fulfilling 
interactive tracing needs. The model browser can be opened for any item present 
in R2A. Fig. 22-3 shows the model browser opened for the NFR “ReqSpec_14: 
The system must be flexible to change.”. In the left part of the model browser, 
direct information on the item (e.g., the text) and several meta-data (e.g., author 
and date of the last change, version, baseline, and internal item id) are shown. At 
the right side, all traceable relationships to other items are shown. 
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Figure 22-3  The model browser in R2A 

There, the user can double-click on any item. Then, the model browser 
changes to this item, thus allowing navigating through the complete model pre-
sent in R2A. The user can also open several model browsers in parallel, allowing 
keeping information on some items currently important to the user open; mean-
while he still can navigate further through model. 

III.22.1.3  Non-Guided Tracing: Additional Features for 
Fast Look-Up 

Non-guided tracing shall allow the user to arbitrarily step from entity to entity 
analyzing contents as demanded. This shall ensure convenient tracing when little 
information on what or how to trace is available. 

Besides IA features and the model browser described in the chapters above, 
being also able to fulfill non-guided tracing needs, the following features provide 
possibilities for fast looking up some information: 
• When the 'quick view' option is activated, a slim version of the model brows-

er automatically appears when the user works with R2A showing the current-
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ly selected item in R2A. When the user changes to the design tool, the quick 
view automatically disappears. In this way, the user can on one side easily 
gather important information on an item. On the other side, the quick view 
can be arranged in a way overlaying the design tool but not overlaying any 
other information in R2A, when the user works with R2A. But when the user 
works with the design tool, again no disturbing window of R2A hinders the 
designer in working with the design tool. 

• On any RI, the 'locate origin' action can be performed opening the require-
ment source document of the RI and selecting the RI in the requirement 
source document. 

• In the same way as 'locate origin' opens the corresponding requirement 
source document in R2A, the 'locate in REM-tool' action can be performed 
on any RI originating (being synchronized) from an REM-tool such as IBM 
Rational DOORS, opening the corresponding document containing the RI in 
the REM-tool and selecting the RI.  

• Vice versa, R2A also integrates a button into the REM-tool environment 
allowing a 'locate in R2A' action, where a requirement selected in the REM-
tool is then again shown in R2A.  

• As described later in ch. III.23.1, parts of an R2A-model can be again ex-
ported into a REM-tool to support supplier management. Similarly to the two 
points above, R2A also allows navigating into such a generated document in 
the REM-tool and back. 

• 'The 'Show related decisions' action can be performed on any item in R2A. 
When performed, a window opens showing all decisions the item is involved 
with (either as conflicting or resulting item) in the style shown in fig. 20-6 
(see ch. III.20.4). 
Through the different locate actions, bidirectional traceability (see ch. 

I.5.7.1) is ensured, where RIs can be traced in the backward and forward direc-
tion. 

III.22.2  Consistency Maintenance of Requirements, 
Traceability and Design257 

In ch. II.10.4.3, establishing traceability has been identified as an important as-
pect to consider because it means significant effort to be spent. This is only one 
facet of the problem. A second equal problematic facet is that later changes must 
be efficiently and consequently inferred throughout the whole development effort 
                                                           
257 This chapter bases on parts of [TKT+08]. 
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in order to ensure consistency throughout the whole development project (see ch. 
II.10.4.3.4). Otherwise, the best traceability establishment processes will be in 
vain if the traces significantly degrade in short time. On the other side, a certain 
degradation of traces may be inevitable even under best support for trace mainte-
nance.  

To ensure traceability information is maintained best possible, obstacles for 
traceability maintenance must be as low as possible. In R2A, maintenance of 
traceability information is easy and intuitive because of the overall drag-and-
drop support as well as operations as dribble-up, dribble-down and copy, and the 
concept to present only the information relevant in the given design situational 
context. 

A main concern addressed in maintenance of traceability is ensuring con-
sistency. The following now shows how R2A supports that requirement related 
changes are consistently inferred to design. 

If a proposed requiremental change is decided to be performed258, it must be 
possible to propagate the changes in a controlled way, ensuring a consistent im-
plementation of the change in all artifacts. For each RI, R2A is able to visualize 
its status by using a colored status bar at the left side of each RI (see fig. 22-4), 
where each RI runs through the life-cycle sketched in fig. 22-4. 

 

                                                           
258 The CCB can also decide not to perform a change. (e.g., if the effort detected via an IA 

is higher than the change's value gain). 
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Figure 22-4  Life-cycle of a requiremental item and its color coding in R2A 

Each RI not yet considered in the R2A design (status 'red') must be assigned 
to the design (change to status 'yellow'). Yellow means that an RI is considered, 
but it did not yet reach its final state of realization in design (see RDP heuristic in 
ch. III.18.2.4). If a designer decides that an RI has reached its final state of reali-
zation, the designer can perform an accept operation on for the RI at the corre-
sponding AN, indicating that the designer considers the RI has reached the ade-
quate location in the design. When the RI is accepted at all ANs259, the RI auto-

                                                           
259 An RI can also be assigned to several ANs. Of course, it should be avoided that the 

realization of an RI is performed by several ANs; however in certain cases this will 
happen. 
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matically changes to status 'green' meaning that the RI has generally reached the 
adequate consideration at all parts of design it must be considered. Later changes 
on the RI (e.g., after a new synchronization of the requirements specification; see 
ch. III.18.1) may require a reassessment of the RI's current realization in design. 
Therefore, the status of the RI changes to 'orange' until the designers have per-
formed the necessary changes on the design to again adequately consider the RI. 
This can also involve that the RI may be relocated to another part of the design 
(assigned to another AN). Once the RI is again accepted by the designers, at all 
assigned locations, it is again promoted to status 'green'. This handling recurs 
every time the RI is changed. 

If an RI becomes obsolete during project progress, the RI can be marked for 
deletion by the designers (change to status 'gray'). As soon as the designers have 
considered the marked RI in design, it can be finally deleted (change to status 
'black'). In this way, it is can be ensured that design settings having become obso-
lete can be removed, thus avoiding clutter and architectural erosion. 

 
 

III.23  Aspects of Embedding R2A in a Process 
Environment 

Getting the formula right entails knowledge, patience, foresight, and communication. 
[BT04; p.99] 

 
A tool alone is not a solution for a problem. Instead, a tool must also be embed-
ded into a process landscape (see beginning of ch. II.10.4.4). After the chapters 
above described the tool R2A and how its integration supports the transition 
processes from requirements to design, this chapter widens the scope of consid-
ered processes in the sense that the requirement and design processes may be 
again embedded in a higher-level process environment, where tight integration is 
essential. These aspects can be that parts of a designed system are supplied by a 
supplier. In this case, design must be tightly integrated with supplier management 
to propagate important information to the supplier. Ch. III.23.1 describes how the 
information gathered during a design process with R2A can be directly used to 
generate a requirements specification for suppliers dedicated to deliver parts of 
the designed system (resp. SW). This helps to avoid redundancies and thus signif-
icantly improves supplier management.  

Another, issue may be that several requirement and design processes may 
occur on different levels of abstraction, where the results on one abstraction level 
induce requirements and design on another level of abstraction (see ch. I.7.3.2). 
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Ch. III.23.2 discusses how this can be achieved best with R2A. Again, the re-
quirements specification generation feature described in ch. III.23.1 also proves 
helpful in this case. 

III.23.1  Avoiding Redundancies in Supplier Management 

“In the development of complex embedded systems, often several companies 
work together on the development. At such an interconnected development, often 
partnerships are built, where mostly one supplier is engaged as the system suppli-
er, having – besides other tasks – the responsibility to coordinate the other sup-
pliers. Therefore, selection and coordination of suppliers is of special importance 
in embedded development. Often, even a hierarchy of client-supplier-
relationships emerges, meaning that a supplier (second tier) acquires further sub 
components of the system from his own suppliers (so called third tier) and coor-
dinates the collaboration. Additionally, the customer often prescribes the supplier 
certain third tier-suppliers” [HDH+06; p.65 (*)]. 

If a partial component of a system or software must be supplied by a suppli-
er, a reliable and efficient supplier management must be installed (see ACQ.1 and 
ACQ.4 process in SPICE [HDH+06]). 

 For this, at minimum a supplier requirements specification (SuppRS) must 
be continuously administered. Such a partial component, however, must be in-
cluded in the design of the higher-level (more abstract) component the partial 
component shall be integrated into260. In the further this design is called the cus-
tomer's system design (CusSysDes). 

As a main problem, high content redundancies arise between the information 
created during design and the writing of the SuppRS leading to high extra effort 
spent on creation, keeping the traceability and applying changes. Especially ap-
plying changes can be seen as a critical issue because redundancies are often 
accompanied by the danger that the changes are not propagated to all redundan-
cies, leading to growing inconsistencies between the redundancies. 

R2A tackles this problem by using the information about the component cre-
ated in the CusSysDes directly to automatically create the SuppRS. This means 
that the partial component is included as AN in the design of the higher-level 
component. The requirements for the component emerge from: 

                                                           
260 For example, a complete system, a sub system, a complete SW system, a partial SW 

sub system 
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• The previously found requirements for the higher-level component that are 
assigned to the partial component as requirements (requirements in R2A-
terminology). 

• The constraints for the partial component, resulting from the decision pro-
cesses during design of the higher-level component (in R2A-terminology 
DECs, DCs, BRCs). 

• Inherited RIs from parent ANs (see ch. III.18.2.2) as they also may be im-
portant for the component. 
R2A offers the possibility to export all this information concerning an AN to 

an REM-tool as a new requirements specification artifact for the supplier. Later 
changes in the R2A can be synchronized into the artifact. However, a SuppRS 
usually should not just include the requiremental information. Instead, the con-
text of the component to supply (embedded in the higher-level system) is im-
portant. Thus, besides this requiremental information mentioned above, R2A can 
also export the following information: 
• Modeled diagrams showing how the component collaborates with the other 

parts of the system. 
• The textual description of the component performed in R2A.  

Of course, not all information created during CusSysDes, concerning the 
component of a supplier need be propagated to the supplier. In fact, often the 
customer must decide which information is necessary to propagate and which 
information must not be propagated in order to protect the customer's know how. 
Thus, R2A's SuppRS generation mechanism contains a wizard, in which it is 
possible for each item to set whether to propagate to the SuppRS or not. After the 
SuppRS is once created, the synchronization mechanism also detects later edit 
changes (i.e., changes through later editing or formatting) in the SuppRS. When 
afterwards the next synchronization with the SuppRS occurs, the changes in R2A 
and the edit changes performed in the SuppRS are equally considered. Besides 
allowing edit changes of the SuppRS, R2A mainly allows covering two other 
points important for the SuppRS: 
1. The SuppRS as a requirement artifact read by humans also must obey the 

rules for a human readable document. Thus, the document must provide a 
continuous reading flow. In most cases, this means the raw version of the 
synchronized SuppRS must be reedited. For these reasons, also new items 
can be added to the SuppRS manually. These items are then handled outside 
of the R2A approach and the development team must use other mechanisms 
to keep these elements up to date. Besides adding new elements not managed 
by R2A, a SuppRS requirement artifact can also be restructured at will in or-
der to improve reading by humans. This works properly when the order or 
hierarchy of the requirements is changed; but it involves some problems if 
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also the text of a requirement must be changed. In principle, changing the 
text of a synchronized element (e.g., to improve readability) is possible but 
this makes the following synchronizations more difficult to manage because 
then both sides to be synchronized (the R2A side and the REM-tool side) 
may have changed. In these cases, it is indicated that the designer must man-
ually merge the texts. Thus, the author rather recommends to perform the 
textual change already within R2A and then again to synchronize the Sup-
pRS. 

2. Decisions not to propagate certain information elements to the customer may 
just occur during the editing phase of the SuppRS. In these situations, it 
would be very long-winded if the synchronization mechanism had to be per-
formed again in order to select information not to propagate in the wizard. 
Instead, it is easier to just delete the elements in the SuppRS. Then the syn-
chronization mechanism detects that these elements are deleted and will not 
again synchronize these elements. 
Such an emerging SuppRS can then be used as user requirements specifica-

tion261 for the supplier. As the information is directly generated out of the previ-
ous design processes by R2A, the single-source-principle ensures that redundan-
cies are avoided. 

III.23.2  Traceability over Several Artifact Models without 
Redundancies 

As discussed in ch. I.7.2.4, the topic traceability between requirements and de-
sign involves different artifacts at different levels of abstraction in process mod-
els such as SPICE. After having all pieces together now, this chapter discusses 
this topic from the process chain and artifacts viewpoint. 

Fig. 23-1 describes the process and artifact model, when system design, SW 
design and perhaps even HW design are performed in one design model. Only a 
common requirements specification with the real requirements from the customer 
(corresponds to the SYS_RS in SPICE) are imported from a REM-tool and are 
related to the corresponding ANs in the system design, SW design and HW design, 
being responsible for fulfilling the requirements. During the design processes 
new 'requirements' arise in the form of DCs and BRCs from design decisions 
made. These 'requirements' enrich the original requirements. In this way, the 
SW_RS, HW_RS and module requirements specifications are all RIs assigned to 

                                                           
261 In German: 'Lastenheft' (see ch. I.7.2.2.1) 
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the ANs, representing the SW design, HW design and module designs and are only 
metaphorically present in development.  
 
 

 

Figure 23-1  Process chain of an integrated design model for system, HW and SW design 

However, the SPICE standard also demands that testing procedures must be 
performed on the corresponding requirements specifications. This can be 
achieved through R2A's feature for creating a requirements specification from a 
partial design model (originally intended for supplier requirements specifications; 
see ch. III.23.1). Now, these created requirements specifications can be used to 
create and link test specifications to the corresponding requirements specifica-
tions. 

The author recommends using this process model because it provides opti-
mal communication for designers, reduces redundancies to a minimum, and pro-
vides best support of R2A's consistency management mechanisms. As described 
in ch. I.7.2.4, Hörmann et al. emphasize that in practice the transition between 
these processes mentioned are anyway mostly fluent and are rather of iterative 
and recursive nature [HDH+06; p.103]. Correspondingly, this model also is clos-
er to practice than the original SPICE process model is.  

However, as mentioned in ch. III.19, a process model deviating from the 
original SPICE model is allowed in principle but requires higher efforts for or-
ganizations to prove that the process model corresponds to the original ideas of 
the SPICE process model. It may even be possible that the process model has 
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lower acceptance by SPICE assessors (the power of assessors assigning negative 
assessment results should not be underestimated). These factors may push organ-
izations to the decision to rather exactly follow the SPICE process model to avoid 
such problems. 

Fig. 23-2 shows how such a process chain may look like when R2A is em-
ployed in an organization using the original SPICE process model. At start, the 
requirements of the customer are collected in the SYS_ RS in the same manner as 
above. Via R2A in connection with a design tool adequate for system design, the 
system design is created. During system design as well as in the other design 
phases described a few lines later, new DCs, BRCs and Decs emerge (emphasized 
in fig. 23-2 by a '+'). In the system design artifact, a placeholder “SW” is created, 
collecting all relevant requirements and other items resulting from the design 
(DCs, Decs and BRCs) having influence on the SW. This placeholder can then be 
used to generate the requirements specification for the SW forming the basis for 
the SW design, again performed in R2A in connection with a design tool adequate 
for SW design. If needed, the same procedure can be applied to modules in the 
SW design if a dedicated module specification is needed (in most cases this may 
be especially interesting, when the realization of modules is delegated to a sup-
plier). Through these controlled import and export actions via R2A, controlled 
copies emerge, whose redundancies are in most cases maintained under automa-
tion support. 

 

 

Figure 23-2  Process chain of multi-layered requirements and design artifacts 
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In this process model implementation, R2A also provides advantages of 
minimized redundancies because SW_RS, HW_RS and the module requirements 
specifications are generated from the design models made earlier with included 
DCs, Decs and BRCs. On the other side, IAs and consistency management be-
come significantly more difficult because the tool barriers between artifacts in 
REM-tools and R2A must be crossed permanently. This leads to friction losses. 

III.23.3  Decoupled Development of Requirement and  
  Design Artifacts 

The process chain introduced in the previous chapter still leaves one central point 
uncovered: Often, different artifacts are developed with a certain time-lag in 
parallel. Thus, after the SYS_RS, the system design is developed with a time-
delay, and after the system design again the requirements specification and design 
of the SW are developed with a certain time delay. During this process, require-
ment changes already occur in the SYS_RS.  

In simple link concepts, the link chain now can be paced off by an IA, but 
controlling a consistent maintenance through all artifacts proofs difficult262. 

R2A addresses this problem by an interplay of synchronization, consistency 
propagation (ch. III.22), and export (ch. III.23.1) mechanisms.  

Fig. 23-3 shows the effects of these mechanisms in cooperation, in which 
the R2A process artifact chain of fig. 23-2263 is extended by a temporal dimen-
sion, showing change deltas (horizontal dimension). From top to bottom, differ-
ent requirement and design artifacts are shown at different levels of abstraction 
(system design, HW design and SW design). R2A is able to perform the synchro-
nization mechanism on different version baselines of requirement artifacts. Thus, 
it is possible to synchronize the requirements according to an existing version 
baseline of the requirement artifact.  

                                                           
262 Current REM-tools such as IBM Rational DOORS provide mechanisms to mark such 

links. In IBM Rational DOORS, e.g., these links are marked as 'suspect links'. Howev-
er, after a baseline is made in a certain artifact all suspect links are cleared, making it 
unfeasible to perform baselines in a time-delayed development for a certain artifact. 
Moreover, the problem increases when tool gaps as the problem of an essential tool 
gap between REM- and design tools as exposed here are involved. 

263 The statements are analogously valid for fig. 23-1 in ch. III.23.2. 
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Figure 23-3  Consistent integration of changes ( ) beyond version barriers 

Through the consistency mechanism, this requirement artifact version can be 
propagated through the designs (with new Decs, DCs and BRCs) and the export 
mechanism then propagates this baseline version state to the requirement artifacts 
at lower levels of abstraction. In the meantime, the requirement changes ( ) for 
the next version can already be performed, being again propagated downward to 
the artifacts at lower levels of abstraction within the following version baseline. 

Subsuming, it is to say that R2A conducts requirement changes into con-
trolled, consistent version pathways (gray pathways in fig. 23-3), but at the same 
time it allows a decoupled, further development of requirement changes for sub-
sequent versions in parallel. 

 
 

 

 

 

 

 



370 III.  PROVEtech:R2A – A Tool for Dedicated Requirements Traceability 

III.24  Overall Architecture of R2A 

Designers have occasionally been urged to seek for 'ideal solutions of design problems' or words to 
the same effect. There can be no ideal solutions.... Design is not like that. There are, however, 

occasions when it is possible to determine temporarily what is the best practicable balance be-
tween opposing requirements.... 

The fact that compromise is inevitable in so many kinds of design has led theorists to classify design 
as a 'Problem-solving activity', as though it were nothing more than that. In is a partial and in-

adequate view.  
Most design problems are essentially similar no matter what the subject of design is.... 

[Py78; p.74f] 
 

After the chapters before have described the features of R2A with their innova-
tive potential, this chapter describes the technical background of the R2A solu-
tion. At first, the general architecture of R2A is described. The core of the R2A 
tool is the conceptual meta-model described in the second sub chapter. Afterward, 
other additional interfaces are described. 

III.24.1  General Architecture 

Fig. 24-1 describes the high-level architecture with the most important packages 
and their interdependencies. The overall structure is divided into three parts: 
• The “General Reusable Libraries” part subsumes libraries with general sup-

portive tool (resp. utility) libraries that can also be used in other development 
projects, thus generating significant alleviations for new development pro-
jects. In the Infrastructure package, general solutions for cross-cutting con-
cerns as error logging, threading support, or integration of unit testing, etc. 
are developed. As it provides very basic support, the Infrastructure library is 
used by all other packages in R2A. Basing on Infrastructure, the GuiFrame-
work package is the equivalent of Infrastructure but for GUI264 support. The 
GuiFramework provides better support for user messaging (a framework, 
where user vocabulary and messages to the user can be defined in a general 
way), encapsulates important GUI-controls to make them exchangeable and 
more stable. Further, the framework provides a general implementation of the 
model-view-controller pattern allowing easily creating new user controls with 
support of the model-view-controller pattern. Several other smaller reusable 
libraries addressing more special cross-cutting aspects exist, not explicitly 
mentioned here. 

                                                           
264 Graphical User Interface 
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• The “Product Line Core” is the actual core of R2A. Its architecture follows 
the three layer architecture pattern [BMR+00; p.31ff]: 

• The Gui package contains all program elements directly related to the 
graphical user interface. 

• The ProgramCore package contains the data model and its operations of 
the R2A application. In ProgramCore, the MetaModel package contains 
the data model, whereas the ModelController package contains and con-
trols operations on the data model. R2A's data model classes have de-
tailed knowledge about their own structure. In this way this data model 
is more a meta-model about the entities represented in the R2A-model. 
This meta-model is described in the following ch. III.24.2. 

• The Opf package is an object persistence framework (OPF) responsible 
for mapping the R2A data from the meta-model to its representation in 
the database. The OPF also can automatically handle the cross-cutting 
concerns of versioning and baselining realizing the features described in 
ch. III.17.5. As the OPF realizes any data changes, it also contains a col-
laboration framework allowing other R2A instances of other developers 
connected to a project to be notified about data changes. These notifica-
tions then trigger the collaboration framework in the other R2A instanc-
es to update the changed model parts, thus allowing direct synchronous 
collaborative work between the designers. 

• The “Variation Points” part contains the packages RemInterface and MdlIn-
terface. RemInterface is the variation point to connect different REM-tools, 
whereas MdlInterface is the equivalent variation point to connect to different 
modeling tools. As both packages have equivalent responsibilities but for dif-
ferent tool types, the internal structure of both packages is equivalent. Both 
contain a general part and a tool specific implementation part. The general 
part shall encapsulate the tool specific part from access of the ProgramCore 
package. The general part contains an abstract interface definition each spe-
cific tool implementation must implement, a factory class that uses the ab-
stract factory pattern to create a specific tool object with the implementation 
of the abstract interface, and objects representing items present in a connected 
tool. These objects (TMdlObject in MdlInterface, TReDocumentItem and 
TReDocument in RemInterface) are used to connect information of a connect-
ed tool with the data model (see ch. III.24.2). 
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Figure 24-1  High-level architecture of R2A 

III.24.2  The Meta-Model 
The concepts mentioned above are embedded in R2A in a meta-model. The meta-
model can be seen as the traceability reference model or conceptual trace model 
(ch. II.10.4.3) of the approach. 
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Although a certain overlapping with concepts of the meta-model of UML 
(with SysML; in the further just referred to as UML) exists, R2A’s meta-model is 
not basing on an implementation of UML, because: 
• The UML meta-model did not yet exist as a standard, when research on the 

meta-model of R2A began. 
• The UML meta-model is substantially more complex since it is very generic 

and it is designed to cover all aspects and concepts of design, whereas R2A 
only uses some specific concepts important for design structuring, traceabil-
ity and design documentation.  

• R2A aims to be open to integrate other design modeling approaches. Thus 
R2A must avoid a too strong concentration on one modeling approach.  

• The usage of the UML meta-model would demand to be conforming to 
UML. R2A involves research on new concepts and ways to establish tracea-
bility in an easy to use fashion. Strong orientation on a standard could prede-
termine the researcher's thinking in an unfavorable way, preventing to find a 
good solution. Or, probably new concepts are necessary that cannot be ade-
quately mapped to the UML meta-model. Such cases of mismatch can be 
seen in the DC concept265 or the decision model concepts. 
Nevertheless, the UML and SysML concepts have been analyzed and in-

spired certain concepts of R2A and its meta-model. 
Fig. 24-2 shows the R2A meta-model with the most important266 classes, its 

properties and relationships. As a convention of the R2A-project, all type names 
start with a capital T as abbreviation for the word 'type'. Through this notation, 
inspired by the hungarian notation, types created within the R2A-project can be 

                                                           
265 The UML has a constraint concept but with very different semantic to what is called a 

design constraint in R2A. However a certain connection between both concepts exists 
in the form that the UML constraint semantic can be seen as a special case of the de-
sign constraint semantic. As the UML constraint semantic bases on a formal language 
concept (called Object Constraint Language (OCL)), it is designed to describe very 
specific design issues in design diagrams in an annotation format. In contrast, a design 
constraint aims to describe all kinds of constraining effects of a design in natural lan-
guage, thus providing significantly higher flexibility for description. 

266 The reader should note that the meta-model shown here is idealized to be understanda-
ble for the reader. In reality, the meta-model contains a few more classes, and the clas-
ses have significantly more properties and relationships. E.g., the access to TMdlOb-
ject objects (associations (5.) and (7.)) is in reality controlled through a proxy object 
TToolsObjectProxy to improve encapsulation of the MdlInterface variation point. This 
is important for the real tool implementation but is an implementation detail not neces-
sary for understanding the fundamental concepts of the meta-model to be introduced in 
connection to this thesis. 
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easily differentiated from original types provided by the Microsoft C# .Net envi-
ronment.  
 

Figure 24-2  The meta-model of R2A 

As mentioned in ch. III.16.1, R2A consists of a core and the two variation 
points for integrating REM- and modeling tools. In fig. 24-2, the REM-tool varia-
tion point is described by the RemInterface package and the modeling tool varia-
tion point by the MdlInterface package. The meta-model is located in the core, 
but information located in the connected REM- or modeling tools must be refer-
enced through proxy objects in the variation points, abstracting from a specific 
implementation in a specific tool. In the case of the RemInterface, the class TRe-
Document represents a document in an REM-tool and TReDocumentItem repre-
sents an item (e.g., a requirement) within an REM-tool's document. TMdlObject, 
on the other side, represents any item available in a modeling tool. 

Concerning the core's meta-model, any item inherits from TPersistentGuifi-
able. In TPersistentGuifiable, central characteristics necessary for any item to be 
part of the meta-model are realized. 
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Their characteristics are: 
• Persistence: The item can be stored in R2A's data base through being a per-

sistent item managed by a persistence framework (OPF).  
• History and baselining: To fulfill demands of evolutionary traceability, the 

change versions' history must be recorded and it must be possible to include 
a version state into a baseline. Both are also accomplished by being a persis-
tent item managed by the persistence framework. 

• Representablity in R2A's GUI: TPersistentGuifiable implements all necessary 
characteristics for representation to be integrated into R2A's GUI concept. 

• Unique identifier (cf. ch. III.17.4): Through the Id property, any item has one 
general unique identifier (GUID), through which the item can be referenced. 

• User tagging (cf. ch. III.17.3): Through the UserTags property, any item can 
be tagged by users. 

• Notes (cf. ch. III.17.2): Through association (1.), any item can be assigned to 
TNote objects representing notes. It is possible to assign several notes to an 
item as well as to assign several items to one note. As TNote is also part of 
the meta-model and inherits from TPersistentGuifiable, it is in principle pos-
sible to make notes of notes. 

• Being part of a conflict based decision (cf. ch. III.20): Association (2.) repre-
sents the conflicting relationship in fig. 20-2 (see ch. III.20). Through this as-
sociation, it is possible that any item of the meta-model can take part on a 
conflict, where a decision to solve the conflict can be modeled. This even in-
cludes notes or other decisions.  
Design aspects are expressed through the concepts TAbstractView, TAbstrac-

tionNode and TView. TAbstractView represents general principles any view con-
cepts in R2A have in common. The general principles are that a view has a name, 
can have a textual description and is expressed through a diagram in a modeling 
tool linked to through association (5.). TAbstractionNode represents the AN con-
cept as described in ch. III.15. An AN consists of a design element in a modeling 
tool expressed through association (7.), a diagram in a modeling tool expressed 
through association (5.) and a description inherited by TAbstractView. The ANH 
concept is built up through association (8.). TView represents further related views 
that can be added to an AN (see description to fig. 15-4 (in ch. III.15)). An AN 
knows its related views through association (6.). 

Requiremental aspects are expressed through the inheritance hierarchy start-
ing from TRequirementalItem. This inheritance hierarchy resembles the require-
mental items taxonomy introduced in fig. 21-1 (see ch. III.21.1), except for the 
fact that the inheritance hierarchy also contains TRequirementSourceDocument, 
representing requirement source documents described in. ch. III.18.1. This can be 
considered as a kind of artifice to create a thorough requiremental decomposition 
hierarchy in R2A. As described in ch. II.10.4.2.2 and ch. III.18.1, decomposition 
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of requirements is a common principle in REM. Association (10.) from TRe-
quirementalItem to TRequirementalItem is a parent-child-relationship used to 
build up requirement decomposition hierarchies. This decomposition hierarchy 
relationship can be used in principle for any RI. In fact, the hierarchy is used by 
requirements to reproduce the decomposition hierarchy present in requirements 
specifications from REM-tools, and it is used for the decomposition discussed in 
the course of BRCs sub budgeting (ch. III.21). Association (10.) is also used for 
requirement source documents (RSDs) to refer to the root RIs being at the start of 
the decomposition structure of a RSD (in fig. 18-2 (see ch. III.18.1), e.g., the 
TRequirementSourceDocument “PH” refers to the requirements “MSG 
Wakeup”,“Internal Lights Control”, “Nonfunctional Requirements” and “HW” 
through association (10.)). In this way, a RSD is a parent of the root RIs in the 
document. This view is not wrong because a RSD as a container of RIs is itself an 
RI in the sense that the RSD demands that all containing RIs must be fulfilled. 
Through the Type property, the TRequirementSourceDocument specifies whether 
it is a free-edit document or whether it origins from a REM-tool. In the latter case, 
association (12.) refers to the corresponding document in the REM-tool. In a 
similar way, association (11.) refers TRequirements originating from an REM-tool 
to the original item representation in the REM-tool.  

As requirements traceability to design elements is the core scope of R2A, RI 
must be linked to the design. This is expressed by association (9.) representing 
the 'assigned to' or resp. 'satisfy' relationship between ANs and RIs described in 
ch. III.18.2. 

The decision model described in fig. 20-2 (see III.20) is realized by the class 
TDecision and its associations. As mentioned above, association (2.) represents 
the conflicting entities relationship. Association (3.), however, refers to the result-
ing consequences derived as TDesignConstraints or TBudgetedResourceCon-
straints. Association (4.) realizes references to further documenting design dia-
grams in a modeling tool.  

 

III.24.3  Further Interfaces 

Additionally to the user interface, R2A has the following other interfaces: 
• REM-tool integration: As described in ch. III.13, R2A provides a variation 

point to integrate REM-tools as source for requirements (ch. III.18.1) and as 
target to export requirements for supplier management (ch. III.23.1). 

• Modeling-tool integration: R2A provides an integration interface for modeling 
tools as variation point described in ch. III.13. 
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• Word interface: For documentation of the design and design decisions, Mi-
crosoft Word is integrated into R2A. The Word documents are saved in the 
R2A database in rich text format (RTF) and are integrated in R2A's other in-
formation meta model through a persistence framework (e.g., the meta model 
items TAbstractionNode, or TDecision contain a persistent property “Descrip-
tion” referring to RTF documents editable with Word). 

• Standard report: A standard report interface allows to generating a HTML-
report of the generated model in R2A. The report includes diagrams modeled 
in the connected modeling-tools, thus enabling to generate extensive design 
documentation. 

• XML-export: Ch. III.17.3 describes the XML-export feature allowing the 
complete model gathered in R2A to be exported for organizations to reuse the 
gathered information in other tools or to develop own special purpose tools 
working on the information. 

• Rule engine: Consistency management is a decisive issue for ensuring quality 
of developed artifacts. Ch. III.22 has described the standard features for con-
sistency management in R2A. However, often projects have individual charac-
teristics influencing the consistency. To cover this, R2A provides a rule en-
gine, where projects can specify individual rules for consistency checking. In 
this way, projects can ensure that the R2A model fulfills consistency criteria 
defined in the project. At the moment, the current rule engine concept imple-
mented in R2A is only a prototypical implementation, showing a proof of 
concept. This point can be seen as a promising perspective for further research 
and improvement of the R2A concept. As an example of the possible uses of 
R2A's rule engine concept, it is possible for designers to define rules that any 
design element with a certain characteristic must obey. When the example of 
the decision modeled in fig. 20-6 (see ch. III.20.4) is considered, the DC 
“Handlers and Drivers shall provide callback mechanisms to their upper lay-
ers (Dependency Inversion Principle).” exists that must be obeyed by any 
handler or driver in the SW design. With the rule engine, a designer can define 
a rule that ensures that the DC is automatically assigned to any handler and 
driver design element currently present in R2A. The rule also ensures, that the 
DC is added to any design element with handler or driver characteristic, added 
later to the R2A model. 

• Special reports with the rule engine: The reporting mechanisms can be com-
bined with the rule engine. In this way, customized reports can be created in 
R2A for special reporting needs of a project. With the rule engine, scripts can 
be written to extract data from the data collected in an R2A-project specially 
prepared for the customized report. Through customized reports, e.g., it is 
possible to create reports about statistical data of a project to report it to man-
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agement (e.g., to report how many RIs are not yet considered in design, par-
tially considered in design and how many RIs have reached the final state in 
design). 
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