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While the discerning layman understands that

in the design of large constructions,

a new town or an airport, the problems are overwhelming,
he probably does not realise so clearly

that there are problems just as pressing

and difficult for the designer

in the design of almost any trivial product.

A bad town will do more harm than a bad toothbrush
but the designer of either will experience his job

as the necessity to make a series of decisions
between alternative courses of action,

each affecting the decisions which come after it;

and if no life hangs on the outcome

of the series of decisions about the toothbrush,

the livelihood of several people does.

David Pye [Py78; p.75]



Foreword

What is the way design decisions are made in Software design and implementa-
tion? What is the relationship between a software artifact and customer require-
ments? What are the reasons, what is the rationale for a specific technical solu-
tion? How should design decisions be documented? These are only some of the
questions which Bernhard Turban tackles in his dissertation on 7ool-Based Re-
quirements Traceability.

One of the major merits of this book is the successful bridging from design
theories to practical tool design for embedded real-time software: Bernhard Tur-
ban actually puts design theory to work, in a way from which software designers
and engineers may directly benefit. At the same time, this effort is firmly rooted
in current software engineering standards like SPICE (Software Process Im-
provement and Capability Determination, ISO/IEC 15 504).

Tackling the documentation needs for software design decisions by imple-
menting a tool using a specific algorithm or forwarding these decisions shows the
authors inventiveness: For a problem many software engineers are constantly
confronted with, this solution provides an innovative solution. At the same time,
this approach generates traceability-relevant information.

In addition, the author does not only present a plausible and functional algo-
rithm for documenting design decisions across different levels of the develop-
ment process, he also realizes a complex interactive interface tool which seam-
lessly adds to the functionality of modeling tools. Based on this work, a commer-
cial software development tool was created.

This work was developed not in an academic context, but in an industrial
setting within a group of software engineers working in the domain of automo-
tive embedded real-time systems. Thus, the author can draw all examples for his
work from immediate observations in the development projects he was working
on. This adds to the credibility of the work presented here, and I am sure that
both academia as well as industrial software design can learn a good deal lot from
Bernhard Turban’s work.

With the complexity of software projects still rising, the demand for better
documentation and traceability will grow beyond typical fields like the engineer-
ing of embedded systems. Therefore, it is to be hoped for that many software
projects will benefit from Bernhard Turban’s theoretical approach towards design
decisions as well as from the tool solutions he has created.

Prof. Dr. Christian Wolff
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Abstract

Developing safety-critical systems imposes special demands for ensuring quality
and reliability of the developed systems. Process standards such as SPICE
(ISO15504) or CMMI have been developed to ensure high quality processes,
leading to the development of high quality systems. Central principles of these
standards are demands for requirements traceability. Traceability means compre-
hensible documentation of all origins and later influences of a requirement
throughout the complete development endeavor. Among other uses ascribed, the
traceability concept tries to ensure that every requirement is adequately consid-
ered in development and that if changes on the requirement are needed, impacts
of these changes can be adequately estimated and consistently implemented later
on. Even though the traceability concept seems promising in theory, it faces sub-
stantial problems in practice. One problem is that despite the needed efforts, the
perceived benefits for developers are often low because the quality of captured
traceability information is often coarse grained, does not prove helpful in the
situational context, or has already degraded.

This thesis tries to show that traceability between requirements and design is
an especially difficult problem. To analyze the problem context, the thesis at first
analyzes theories, in which the problem is cross-cutting. These are embedded
systems development, systems engineering, software engineering, requirements
engineering and management, design theory and process standards for safety-
critical systems.

This analysis mainly identifies a twofold gap between the requirements and
the design domain. Obviously a tooling gap exists because different tools are
used for the requirements and design domain. However, more important, between
requirement descriptions and designs a substantial inherent gap exists because
design is a creative decision process of designers often guided by intuition and
tacit knowledge thus difficult to trace by current traceability concepts. To prove
this argumentation, the author analyzes four design theories (symbolic infor-
mation processing (Simon), wicked problems (Rittel), reflective practice (Schon)
and patterns (Alexander)). As a solution to the gap problem, the thesis introduces
a tool-based traceability method that supports designers in their thinking, avoids
disturbing designers in their intuitive phases of creativity, allows establishing
traceability nearly as a by-product, provides early benefit to designers, improves
collaboration between designers and extends usual traceability concepts by two
integrated decision models allowing further decision information (rationale) to
be documented. The decision models also allow deriving new design internal



XII Abstract

“requirements” (design constraints and budgeted resource constraints) as conse-
quences. In this way, it is possible to clearly distinguish real requirements origi-
nating from customers from ‘requirements’ arising from internal decision pro-
cesses during design leading to the definition of a ‘requiremental items taxono-
my’. As the thesis further shows, these concepts also prove to be helpful to avoid
unnecessary redundancies in the artifact process models of SPICE (ISO15504) or
CMMI, where different requirement (system requirements, hardware require-
ments and software requirements) and design artifacts (system design, hardware
design and software design) are considered in their interplay. Last but not least,
mechanisms for graphical impact analysis, consistency management and supplier
management complete the approach.

Through funding of the support program IUK-Bayern, the results presented
here could be integrated into a commercial tool solution called PROVEtech:R2A,
now offered by the MBtech Group as a decisive means to significantly improve
requirement-based design processes with improved support to achieve real bene-
fit from the traceability concept.
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Introduction

Nothing is more powerful in the world than an idea whose time has come.
Victor Hugo (*)

Introduction to the Topic

Usually, systems developed by humans are not developed for their own sake of
existence. Instead, these systems shall help to achieve certain human goals or
purposes. Goals or purposes, however, are often very abstract and vague in the
same way as the usage situations of these systems are manifold and complex.
Correspondingly, a more precise definition of what a system must exactly per-
form is needed. This leads to the need for defining the exact requirements of a
system. Then, such a system must just be designed and constructed to fulfill the
defined requirements.

Concerning the development of software-based systems, development expe-
riences of the last decades have been rather disenchanting. Often, five out of six
development projects are considered as rather unsuccessful [BMH+98; p.3],
[St95], [St01], [EbOS; p.23ff]. One major issue identified through the years is that
the developed systems often do not achieve the goals and purposes they were
intended for, or if they fulfill them, the resulting system's development project
significantly has exceeded planned budget and (resp. or) effort [St95], [StO1].

Research on the causes for these problems is ongoing. Among others, three
issues can be identified as root causes (cf. ch. 1.5): Unclear requirements, often
changing requirements and inadequate processes for handling.

One approach to solve the first problem is to spend extra effort on identify-
ing and defining clear and adequate requirements upfront. Today, a whole set of
artifacts, heuristics, practices and processes around the topic requirements are
available summarized under the theory of requirements engineering (RE). How-
ever, development experiences have shown that even though extra focus and
effort is spent upfront on the definition of requirements, changing requirements
are still more the norm than the exception. As ch. 1.5.6 shows, reasons are mani-
fold.

B. Turban, Tool-Based Requirement Traceability between Requirement and Design Artifacts,
DOI 10.1007/978-3-8348-2474-5 1, © Springer Fachmedien Wiesbaden 2013
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In the author's opinion, at least two essential causes for the requirements
change problem exist:

1. Software (SW) and SW-based systems are abstract and thus essentially diffi-
cult to define comprehensively.

2. In addition, SW-based systems themselves with their intercorrelations with
other systems and their embedding into processes infer a significant com-
plexity leading to the problem that not all cases and eventualities can be con-
sidered beforehand.

These causes — among others described in ch. 1.5.6 — significantly challenge
the paradigm that the extensive specification and analysis of requirements upfront
will tame the requirements change problem. They might rather be a good lever-
age to mitigate the problem, but changing requirements will still remain a deci-
sive factor for projects. RE-theory also seems to have acknowledged this fact in
the way that it more and more emphasizes the aspect that requirements must also
be adequately managed (see ch. 1.5.3). Thus, the author rather prefers to speak of
requirements engineering and management (REM).

In REM theory, requirements traceability (in the following simply called
traceability) is considered as central means to manage requirement changes.
Traceability means “comprehensible documentation of requirements, decisions
and their interdependencies to all produced information resp. artifacts from pro-
ject start to project end” ([RS02; p.407 (*)]). Through recorded traceability in-
formation, impact analysis of changes is possible allowing estimating the impact
of suggested requirement changes. This information allows project stakeholders
to decide, whether the benefits of a requirement change outweigh its costs, thus
avoiding disadvantageous changes. Once it is decided to perform a change,
traceability helps to consistently propagate the change to all impacted locations
in a project. Thus, consistently inferring the change into the project prevents
dangers of forgetting to change affected locations leading to defects or even fatal
consequences. In this way, the traceability concept is a promising means to im-
prove REM and especially change management processes, thus avoiding incon-
sistencies — introduced during inevitably applied changes — leading to failures in
the system, thus leading to significantly improved quality of developed systems.

Even though the traceability concept is already known for over 20 years and
it always has seemed very promising to be a significant value gain in a project, it
is still not very widely spread in development practice except for development
projects under certain circumstances. As ch. I11.10.5 tries to outline, this seems to
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be the case, because it suffers from a general problem of efficiency and of low
direct benefit perceived by the project members intended to capture the traceabil-
ity information.

The quality of developed systems generally is a decisive factor. On the other
side, ensuring quality involves significant efforts and costs. Even though quality
must not necessarily be seen as a cost factor, but should rather be seen as a factor
of investment, only finite resources can be spent for quality in order to ensure
economic success. For once, this appeals to ensuring a high degree of effective-
ness on quality assurance methods in general. For the other, demands for quality
may differ concerning the purpose of the system. As an example, it may be an
acceptable risk for PC-based SW systems that some minor bugs or other minor
flaws remain undiscovered in a delivered system, because applying an update on
a PC is acceptable as long as the number of updates is acceptable to the users and
it is easy to apply the updates. Concerning embedded systems steering a technical
equipment, it is much more difficult to perform SW-updates, as this in most cases
implies a product recall to apply the new software update. Besides high costs, this
is rather not acceptable for the users and often involves significant image losses
for the involved companies. Beyond that, so called safety-critical systems exist,
where a malfunction can lead to significant damages to values or even impose
hazards for persons' health or lives. In these cases, even minimal probabilities of
failures involving injury or death of persons must be best possibly eliminated.

Another important means to ensure good product quality is to employ good
development processes. In the context of embedded projects and especially for
safety-critical embedded projects, significant efforts have been undertaken to
standardize the processes with their decisive characteristics to be performed in
order to achieve high quality outcomes. Ch. 1.7 describes these efforts and the
demands for these processes. In these process standards, a demand crosscutting
through all engineering processes is the demand for traceability of every re-
quirement to the influences it imposes on every artifact developed in any engi-
neering process.

The implementation of these demands in practice, however, often makes ap-
parent that these demands themselves are difficult to implement and if they are
implemented it is highly questionable whether the effort and resources spent
really bring significant benefit to development projects. Instead, traceability
demands are often rather performed to correspond to the standards' demands.

In this thesis, the author tries to identify several core reasons for these prob-
lems. Besides the benefit problem mentioned above, an essential problem is that
different tools are used for different processes. This, however, implies that the
traceability concept must somehow cross these tool gaps in order to connect the
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information within the different tools. In the author's opinion, this actually is one
essential cause for the benefit problem, as crossing these gaps generally requires
higher efforts, decreases accuracy and significantly increases potentials for in-
consistencies.

Unfortunately, the author considers one problem as even more essential:
This problem origins from the fact that requirements describe a problem space
that must be transformed into a solution. This transformation process is usually
referred to as design. Usual traceability models rather assume that these connec-
tions between requirements and design artifacts are rather linear semantic allow-
ing to trace these connections.

The author, however, believes that a semantic gap exists between the prob-
lem space described by requirements and the solution found. This gap exists,
because design is a complex task of performing sequences of complex design
decisions leading to the solution. There, the connections being rather nonlinear
make it very difficult to record valuable traceability information.

As a way to address these problems identified, this thesis also introduces a
tool environment called PROVEtech:R2A (R2A) to support requirements tracea-
bility to design with specific focus on diminishing both mentioned gaps. In this
way, the author also hopes to diminish the benefit gap to a degree that collecting
traceability information provides direct benefit for the designers thus hoping to
really achieve the promises of the traceability concept.

Context of this Thesis Project

In order to provide a better understanding to the reader how the research results
described in this thesis have emerged, this chapter provides a short overview
about the history of this research project.

First ideas to some core problems and features addressed by R2A arose as a
consequence of the direct development experiences of the author in an automo-
tive ECU development project for lights steering with SPICE level two processes.
At that time, the Micron Electronic Devices AG (MEDAG) and the Competence
Center for Software Engineering (CC-SE) at the University of Applied Sciences
Regensburg have begun a collaboration with the goal to improve the connection
of theoretic research with industrial practice.

In the development project, from 2004 to 2005 the author worked as repre-
sentative of the CC-SE at MEDAG where the author was at first responsible for
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introducing REM-processes with the REM-tool IBM Rational DOORS' to be
newly introduced into the company's project practice. During further develop-
ment, the author was responsible for module design and implementation. In this
way, the author was also responsible for maintaining the requirements traceabil-
ity to the module design directly experiencing the shortcomings and problems
involved.

These experiences have lead to the idea about a tool environment, where de-
signers should directly benefit from gathered traceability information by making
the influences of requirements on design directly visible to designers (basic ideas
of ch. III.13, ch. III.15 and ch. 111.18.2.2) and by improving the collaboration of
all involved designers (basic ideas of ch. 111.18.2.4).

In 2005 the identified key concepts have then been formulated in a theoretic
outline with an extended theoretical case study being reviewed by representatives
from MEDAG and CC-SE. The concepts proved promising. As the concepts also
base on extensive user interaction, where usability is a key factor for success, the
project made contact to the Institute for Media, Information and Cultural Studies
at the University of Regensburg, where usability is one major research topic.

The three organizations have decided to form a partnership to realize the pro-
ject. For this goal, the partners decided to develop a prototype tool evaluating the
theoretical results by practical feedback and to apply for financial aid at the
TUK*-program of the Bavarian Ministry of Economic Development.

During the application phase in 2006, the prototype tool implementation has
been developed and has been continuously assessed by design practitioners of the
partners to achieve immediate feedback of implemented features.

With these granted financial aids, a two years project for six persons could be
realized to transfer the achieved theoretical and prototypical research results into
a solution relevant for practice. The project has been performed from Feb. 2007
to Feb. 2009 leading to the commercial tool PROVEtech:R2A as it is discussed in
this part. Because the tool's features have been considered as very innovative,
where good usability at complex user interactions is essential, and because most
core features have been extensively analyzed upfront by theoretical discussion
and the prototype, the project members decided to develop the project using the
evolutionary prototyping concept from agile development methods. Evolutionary
prototyping means that the project started with a prototype where all identified
features were successively integrated into the prototype so that the prototype

' At that time called Telelogic DOORS

The IUK program (In German: Information Und Kommunikation (Information and
Communication)) is a research funding program to support transferring newest re-
search results into commercial solutions applicable in practice.
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successively evolves to the final product. In this way, new features could at first
be realized via a prototype implementation. These features then could be intro-
duced to design practitioners to acquire direct feedback on the prototypical im-
plementation. This feedback could then be used to improve and refactor the im-
plementation to fully integrate it into the project's program base. Concerning the
tool's architectural design, therefore, only an architectural skeleton has been
developed sketching the core concepts of the tool environment and leaving de-
tails of the architecture open for change.

This proceeding may, at first, seem to contradict principles discussed in this
thesis about REM, but, as discussed in ch. 1.5.6 and ch. 1.6.2.2, prototype-based
requirement evaluation is a common practice to address the problem that highly
innovative projects face a high volatility of requirements.

During the project in the midst of 2008, the MEDAG has been taken over by
the MBtech Group GmbH & Co. KGaA (in the further simply called MBtech) a
subsidiary company of the Daimler AG specialized on engineering services. The
concepts and ideas of the project convinced the MBtech of the innovative poten-
tials of the tool leading to a continued endeavor to develop the results to a com-
mercial solution. In this way, the developed tool has been named
PROVEtech:R2A* (called R2A in the following) and has been integrated into the
PROVEtech tool family.

Currently, R2A is offered as commercial solution of the MBtech to address the
traceability problems described in this thesis. It is continuously maintained and
improved through a half-year release cycle. In this way, the project described
here also is an example of how theoretic research results can be successfully
brought into commercial project practice.

R2A stands for Requirements 2 Architecture. Further information on PROVEtech:R2A
can be found at the company homepage: http://www.mbtech-group.com/eu-
en/electronics_solutions/tools_equipment/provetechr2a_traceability management/trac
eability_management.html (Access: 2010/09).
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General Remarks on this Thesis

Before stepping into the thesis, the reader should note some general remarks.

Registered Trademarks

The reader of this thesis should note that some mentioned techniques and tools
referred to in this thesis are registered trademarks or under protection of copy-
right laws.

Argumentation

The thesis introduced here is not an empirical study, but rather a theoretical work.
The work can be considered somewhere between systems engineering and sofi-
ware engineering theory. As a matter of fact, many of the mentioned theories and
'facts' presented in this thesis have no irrevocable evidence but are to a certain
degree a 'fact' of experience, interpretation and believe. When the author collect-
ed these 'facts' from different sources, dangers of misinterpretation or selective
interpretation by the author cannot be excluded. Facts found in a research paper
cannot always be seen on their own. Often, these 'facts' are embedded in a certain
context (e.g., a special research theory or project). Now, taking conclusions from
these 'facts' should be done with a certain care. To address this problem, the au-
thor often considered not only to cite the pure 'fact' concluded somewhere, but
also tried to outline the context where these 'facts' have arisen and he also tried to
provide available possible alternative interpretations by other authors, or theories
to allow the reader to derive his (her) own conclusions about the evidence and
how cogent the author's argumentation is. As a matter of fact, however, most
theories are not compatible or consistent to each other. Correspondingly, a tech-
nique to outline the context of some argumentation may also result in some in-
consistency or contradictory statements. The reader should consider these incon-
sistencies or contradictions as phenomenon of the manifold complexity that re-
search theories produce in their connection to each other and the limited capabili-
ties of humans to completely cope with these complexities. Besides, the author
generally doubts the potential existence of one grand unified theory about sys-
tems and software development. Rather the author considers inconsistencies and
contradictions as spring of new knowledge in research.
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For some of the encountered inconsistencies and contradictions the author
developed suggestions or assumptions born from the author's own experience and
thinking. To highlight these suggestions or assumptions, where the author could
not find adequate proof derived from 'facts' basing on evidence, the author uses
terms like 'the author feels', 'the author thinks', 'in the author's eyes' and 'the au-
thor believes', where these terms have an increasing weight of evidence possibil-
ity ascribed by the author.

Citations

During the work on this thesis, the author has developed a slightly individual
citation practice. First of all, it is to mention that the author experienced some
citation practices of other authors as unsatisfactory to really follow some argu-
mentation. One problem, e.g., often is that some authors simply refer to an exten-
sive text (e.g., a complete book) as an evidence for a single argument. Really
retrieving the original statement is then very difficult. The author tried to make
the evidence of his thoughts more explicit by referring to the exact page or at
least to a collection of pages, when the evidence was rather a synthesis of several
paragraphs than just a statement. Only if some more general theoretic discussion
has been performed, where the whole book, or article has to be considered the
author cited the source without reference to pages.

Furthermore, the author thinks that an evidence found in several sources has
a higher potential to be true than originating from a single source. Correspond-
ingly, the author also tried to mention all sources he encountered within a certain
argumentation to indicate the potential evidence of the argumentation to the read-
er.

During writing the thesis, the author often stepped over some wordings of
other authors providing a very concise or precise formulation of an argumenta-
tion, where any rewording or changes could only lower the quality of the state-
ment or infer a falsification of the original meaning. Correspondingly, in these
cases the author decided to cite these wordings verbatim to preserve the concise-
ness or preciseness of the argumentation for the reader.

Citing verbatim, however, invoked a further problem about quotation marks.
The author used the following rules. For verbatim quoting of some other author's
argumentation the author has used double quotation marks (“...”). If quotation
marks were used in some verbatim quoted text, these quotation marks have been
transformed to single quotations marks ('..."). In some cases, the author wanted to
refer to a certain jargon-like term generally used by developers or the research
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community associated with a discussed topic or to refer to a term having a doubt-
ful connotation®. In these cases, the author also used single quotation marks ('...").
It is also to mention that the author is a German native speaker. In many cas-
es, it happened that the author has read German publications with interesting
passages to cite. Sometimes, even some books originally published in English
have been only available in German translation. This leads to the fact that some
citations were translated by the author. Any translation, however, imposes the risk
of — hopefully only slightly — changing the meaning of the citation. Therefore, the
author decided to mark any citation translated by himself with an asterisk sur-
rounded in brackets ('(*)') indicating the translation by the author to the reader.

General Structure of this Thesis

This thesis is dissected into four parts. Part I tries to outline the connections of
this research to other general research topics that must be considered for a tool
dealing with traceability concerns in the context of processes for safety-critical
projects. Afterwards, part II discusses the main research topics of interest for this
thesis. These are rationale management and requirements traceability. In part 111,
the problems surfaced in part I and II are picked up again to outline how these
problems can be solved by the innovative concepts of PROVEtech:R2A. Last but
not least, part IV provides a synthesis of the results achieved and an outlook,
where new ideas about further possible research are outlined.

Above, e.g., the author used the connotation 'facts' to indicate that 'facts' in research
are not necessarily absolute facts but are often bound to a certain paradigm. If such an
paradigm is replaced by a new research paradigm, a considerable portion of 'facts' pre-
viously believed as true becomes invalid, obsolete or at least doubtful (e.g., cf.
[Fe86]).



I. General Context and Theories

He who loves practice without theory is like the sailor who boards ship
without a rudder and compass and never knows where he may cast.
Leonardo da Vinci

This part shall provide the fundamental understanding of most core concepts
involved in the construct of ideas leading to this thesis and its results. Conse-
quently, the following chapters provide an overview over the major research
fields having influence on the outcome of this thesis. If employed, requirements
traceability can be seen as a crosscutting concern of all development activities.
Correspondingly these chapters strive a considerable set of very different general
research disciplines.

Stepping into any research topic of considerable depth often implies a steep
entry curve for any reader being non-expert of the research domain. One of the
problems is that topics are often manifold interconnected making it difficult to
find a good start. The author has tried to flatten the entry curve by starting with
chapters with lower entry barriers. These are the chapters that are more independ-
ent of the other chapters. With the understanding and argumentation collected in
the first more independent chapters, the further chapters build on the previous
chapters and then have lower entry barriers.

In this thesis, the model concept is an essential foundation, since different
types of models are referred to in different theories. Correspondingly, this part
starts with a general discussion on the model concept and related terms needed at
later discussions (ch. I1.1). This is followed in ch. 1.2 by a general discussion
about developing embedded systems in general. A certain category of embedded
systems, called safety-critical embedded systems, demand special concerns about
quality, because malfunctions in these systems can involve significant fatal con-
sequences. Correspondingly, special standards for development processes (ch.
1.7) have evolved to ensure quality of the developed systems. One central demand
are especially rigid demands for requirements traceability. As results of this the-
sis arose in the context of companies involved in the automotive domain, a spe-
cial ch. 1.2.3, discusses specific peculiarities of the automotive domain. Even
though the concepts of the developed R2A tool in principle can be applied to any
development project, some of the features provide special help in embedded
projects of the automotive domain. This is, e.g., the case for the special improve-
ments of supplier management (see ch. 111.23.1), as the automotive domain is a
domain with very extensive and deep chains of suppliers.

B. Turban, Tool-Based Requirement Traceability between Requirement and Design Artifacts,
DOI 10.1007/978-3-8348-2474-5 2, © Springer Fachmedien Wiesbaden 2013
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Ch. 1.3 and ch. 1.4 then provide general introductions into the theories of
software engineering and systems engineering. Both theories' concepts are an
integral part of current development process standards such as the quality stand-
ards applied for safety-critical embedded systems (ch. 1.7).

In ch. L5, current requirements engineering and management (REM) theory
is discussed. The traceability concept is a nascent of this theory. Corresponding-
ly, the sub ch. 1.5.7 also discusses the traceability concept in the context of REM-
theory and explains concepts needed in the following chapters of this part. An
extensive discussion of the fraceability concept is then performed in ch. I1.10 of
part II.

Concerning the transition from requirements to design, the author considers
this an especially difficult traceability problem, because this transition is a transi-
tion from the problem space description (requirements) to the solution space
description (design) implying a considerable semantic gap between both. There-
fore, this thesis lies a special focus on this topic. Ch. 1.6 outlines design with its
concepts and theories that are important to understand the problems of traceabil-
ity concerning this transition. Instead of concentrating on a specific modeling
paradigm or method related to software or systems engineering, this chapter ra-
ther tries to outline several general theories about design that describe the role of
design and how design emerges from designers' thinking.

After the previous chapters have outlined fundamental concepts of different
general theories building the theoretical groundwork of this thesis, ch. 1.7 de-
scribes process standards to be fulfilled by organizations developing safety-
critical embedded systems. Due to its extent and complexity, the outlined process
standards cannot be described in full depth. Instead, after a general overview is
provided, the engineering processes concerning requirements and design with
their traceability demands are described in detail. In this way, the author derives
important demands, which the tool-approach described in part III must fulfill in
order to conform to the standards.

Last but not least, ch. 1.8 refers to findings from practice of embedded engi-
neering that should be kept in mind considering a practice-oriented solution for
traceability in the context of design.
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I.1 The Model Concept

We can only make a model of a fact in the world we live in,

i.e. the model must be essentially related to the world we live in
and what's more, independently of whether it's true or false.
Ludwig Wittgenstein (*)

“Models are a fundamental concept of our world's handling. All scientists
and engineers use and create models to prove universal evidences for and to find
more detailed information on their speculations. Often models mark intermediate
step on the road to new artifacts as bridges, cars and mobile telephones. In Soft-
ware Engineering the importance of models is even higher, because they not even
represent the intermediate steps, but the endpoints of our work: a specification
but also a program is a model” [LLO7; p.3 (¥)].

Stachowiak [St73] found several general properties that models have in
common with each other (the following statements are taken from [LLO7; p.5-6]
and [BRO7b; p.4]):

e A purpose (or purposes),

e A reference to the original, also called mapping characteristic’ [LLO7; p.5],

e  Abstraction of certain qualities of the original, also called shortening charac-
teristic®: A diversity of relationships can exist between model and original
emerging by the model's usage purposes [BRO7b; p.4],

e A pragmatic characteristic: “Under certain conditions or problems, models
can supplement the original” [LLO7; p.6 (*)];

Fig. 1-1 shows the connections between original and its model according to
[LLO7; p.6] and [St73]. Together three kinds of properties can be distinguished:

e  Essential properties (also called non-neglected) are the properties of the
original considered in the model.

e Preterated properties (also called neglected) are properties of the original not
considered in the model.

e Abundant properties are properties in the model, not present in the original.
These properties emerge from the nature of the model’ (Simon [Si06; p.113]
calls this the implicit logic of the sign system).

In German: Abbildungsmerkmal

In German: Verkiirzungsmerkmal

Considering the photo of a person, preterated properties of the person would be its
weight, name, type, whereas the quality of the photo paper or the photo's format would
be abundant properties (cf. [LLO7; p.6]).

6
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Original Model
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Figure 1-1 Properties of original and model [LLO7; p.6 (*)]

These properties distinctions lead to two fundamental problems that should
always be considered when working with models:

1. Due to the preterated properties, “models are always a 'simplification, a kind
of idealization' of the aspects to be modeled. ... We choose for our model
these characteristics of the reality that we consider essential for our purpose.
In complex situations ... this act of already distinguishing the essential from
the non-essential must be at least partially an act of judgment, often of politi-
cal or cultural judgments. And this act must then necessarily base on the intu-
itive thinking model of the model constructor” [We76; p.202 (*)].

2. On the other hand, abundant model properties can lead to erroneous conclu-
sions about the original. “The implicit logic of the sign system resp. symbols,
representations, languages, texts, formulas, etc., are in general different to
the represented phenomena or items; If both are mixed up, the danger arises
that peculiarities of the observation method (resp. the observers) and its re-
sults are considered instead of the observed fact” [Si06; 113 (*)].

Generally, two different model types exist according to [LLO7; p.5] (also cf.

[St73], [Mo04; p.641]):

e Descriptive models describe already existing connections or systems.

e  Prescriptive models are manuals for the construction of, e.g., systems.

In the context described here, both types of models occur. Thus, e.g., a SW
documentation is a descriptive model, whereas a model as basis for model based

code generation represents a prescriptive one. Following these interpretations, a
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SW design model can be first a prescriptive model determining the structure of
the code to develop. After coding has been finished, however the model would
become descriptive. Later in ch. 1.7, it is shown that a similar connection may
exist in the area of process models and that users of process models should be
aware of possible misinterpretations sparked by an inadvertent transformation of
descriptive process models into prescriptive process models.

Due to these possible interpretation ambiguities where the real character of a
model is not absolutely clear, Schefe [Sch99; p.132] asks for abandoning mean-
ing from the model concept in software engineering except its clear meaning
emerges from the usage context [Sch99; p.134] (see also [Mo04; p.65]). In fact,
as the discussion in ch. 1.7.3.1 shows, these dangers of interpretation and uncon-
scious shift of meaning can happen.

The main purpose of a model is the communication of ideas and concepts
[Mo04; p.171]. Correspondingly, attention must be paid for conclusiveness of the
modeled ideas. In this context, it seems legitimate to speak of a certain aesthetics
models should have [Kr95; p.43]. Ch. 1.6.1.2 again discusses model esthetics in
connection with SW architectures.

Concerning system and software development, models have some special
characteristics. In more complex development processes, at least two kinds of
models must be considered ([De04], [Br07a]):

e A model® for the targeted system.
e A model for the development project's processes.

This thesis deals with both kinds. In the context of design (but also a bit in
requirement engineering) the first mentioned model kind is essential. When pro-
cess standards as SPICE (see ch. 1.7) or process related concepts such as tracea-
bility are discussed, the second kind is equally essential.

Often, strict formal semantics are also observed as an obstacle to designers
([Sch&3], [HAO6a]). As further discussed in ch. 1.6.2.3 and ch. 11.9.4.2, this is
especially the case in earlier phases of design, or when designers encounter sig-
nificantly complex situations where no solution covering all aspects can be found
at once. In this context, some designers (cf. [AMRO6], [K195; p.49], [G099],
[G095]) emphasize that especially sketching is important because it produces
ambiguity, a widening of the problem scope and general uncertainty about the
final solution as nourishment for designers' creativity to bring up new solution
ideas (see ch. 1.6.2.3).

In most practice, not one model but several models exist. This is the case, because
different models with different semantics are often employed at different levels of ab-
straction. Perhaps it is better to say that it should be the goal to have a model of the
system.
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I.2 Embedded Systems Development

Grey, dear friend, is all theory and green is the golden tree of live.
J. W. v. Goethe (*)

Most of the topics and interrelations discussed in this thesis are not really limited
to the embedded systems development market, but the special conditions of the
embedded area force a much stronger need for employing some of the later de-
scribed concepts and techniques. Therefore, before beginning with other more
specific topics a short introduction into this very complex field shall be given.

1.2.1 Definition and Context

Embedded systems — or better embedded control units (ECUs) — are computer
based systems embedded into a bigger surrounding technical (total) system (au-
tomobiles, airplanes, power plants, consumer electronics etc.) often also referred
as the context of an ECU. In most cases, ECUs perform complex control, regula-
tion, observation and data processing activities on physical-mechanical compo-
nents with decisive impact on functionality and performance of the complete
system (cf. [Sch05], [Ge05; p.5]).

ECUs itself mostly work very integrated into the complete system so that
users are usually not really aware of the ECUs itself, but the bigger processes or
technical components are somehow controlled by humans [Ge05; p.5]. Nonethe-
less due to its broad range of employment from very small systems as RFID’
chips to normal day-life devices (CD-players or washing machines) to high tech-
nology devices (air planes or computer tomographs), over 90 percent of electron-
ic components are embedded systems. This means that of 8.3 billion produced
processors in 2002, 8.15 billion were used for embedded systems whereas only
150 millions of processors were part of ordinary computers [Sch05; p.2]. Due to
the diversity of usages for embedded systems, the embedded market is still one of
the fastest growing markets [Sch05; p.2].

1.2.2 Characteristics

The fact of being embedded in a higher technical system leads to a set of charac-
teristics different to ordinary computers [Sch05; p.3ff], [Ge05; p.5f].

’  Radio Frequency Identification
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An ECU's primary source of interaction is not humans but the surrounding
processes or technical components. Humans indirectly influence ECUs by con-
trolling the processes and devices they are integrated, but, primarily, ECUs re-
trieve input by sensors and perform output by actuators integrated into the sur-
rounding system. Accordingly to the special purposes ECUs often fulfill, the
ECUs in most cases have specialized hardware (HW) specifically designed for
efficiently fulfilling their purposes.

Since the surrounding system mostly is an electronic, physical-mechanical,
chemical or biological device or process, developing ECUs has a strong need for
interdisciplinary development efforts such as systems engineering discussed in
ch. 1.4.

Ordinary computer systems can be described as interactive systems. This
means, the computer system actively determines the interaction process with the
environment. Whenever an interactive system needs input for further processing
the system prompts the user for input and proactively synchronizes with the envi-
ronment.

ECUs on the contrary react more on the settings and changes of the envi-
ronment. They are therefore called reactive systems. This difference has signifi-
cant influence on their behavioral determinism. Interactive systems can be more
seen as non-deterministic (e.g., interactive systems decide on their own how to
schedule different tasks), whereas ECUs have well defined input and reaction
relations with mostly strict temporal interdependencies derived from the needs of
their surroundings. Three implications can be deduced from this fact:

e At first, Scholz emphasizes that “the different characteristics of both system
types must be considered when adequate techniques, methods or tools are
developed” [SchO05; p.4 (*)].

e Secondly, SW designs of reactive systems can heavily rely on the very well
defined and researched concept of state machines. Since state machines are
deterministic and have a complete formal semantics (other to, e.g., the se-
mantics of activity diagrams in UML), they can be properly used for formal
requirements specification, their early simulation, verification and complete
code generation providing very positive effects on complexity handling
[Ma08a; p.19] (see also [MBO05]).

e  Unfortunately, the temporal interdependencies force ECUs to obey timing
limits. In this context, ECUs are often referred as real time systems. Real
time systems can be distinct between systems that must obey their timing
rules at any time (so called hard real time) and systems that should obey their
timing rules as good as possible with exceptions allowed (so called soft real
time) [Do04; p.3], [Sch05; p.4].
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Another not yet explicitly mentioned demand for ECUs is their functional
correctness. Different to programs running on ordinary computer systems, errors
in already delivered ECUs cannot be ecasily fixed by users installing updates.
Instead, expensive product recalls are necessary to fix those problems.

In many application contexts, such as medical equipment, space, aviation,
nuclear power plants, production lines or automotive, system malfunctions and
other defects can cause more severe consequences such as threats to life or physi-
cal condition. Such systems are called safety-critical. Constructing safety-critical
systems demands enforced efforts on avoiding or at least diminishing the proba-
bility of malfunctions, other defects, or fatal consequences. Two factors are the
central means to achieve this goal:

1. Explicit consideration in the design of these systems (e.g., providing redun-
dant system parts).

2. Employing development processes ensuring high quality of the resulting sys-
tem.

Concerning the first point, it is to say that this thesis speaks about design,
but more on a higher meta-level and therefore point one will not be directly' in
the focus of this thesis. The second point, however, is directly addressed in this
thesis, as requirements traceability is seen as an important foundation to achieve
those high quality development processes.

A fundamental principle of these processes is that their potential to ensure
high quality outcomes must be controlled in an objective way. This is achieved by
a set of standards such as the ISO 15504'' (SPICE) defining necessary character-
istics that development processes for safety-critical systems must fulfill. Corre-
spondingly, the solution proposed here must obey the criteria demanded by those
process standards. Ch. 1.7 provides a description of these standards with the de-
manded criteria that are important to this thesis.

Differently to normal PC applications, ECUs are designed for a specific
purpose. To optimize costs, the principle of HW/SW Co-design'? is used, where
HW and SW are designed in parallel with high interdependencies between each
other to only fulfill its specific purpose. Especially for applications with high
volumes, the so called mass market, the costs per part are decisive. Therefore

10 Indirectly it well touches this issue in the sense that design for safety-critical issues

involves decisions to be taken that impose significant consequences on the design out-
come. As communication and documentation of decisions and their consequences is
one of the special concerns of this thesis, this topic is indirectly connected and this
connection is show in part III as real-world example of decision-making in embedded
projects.

Software Process Improvement Capability dEtermination (SPICE).

For more information on this topic cf. [MEO1].

11
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extreme optimization of HW costs has highest priority often leading to highly
specialized SW. This kind of SW has to deal with very tight resource restrictions
leading to a significantly higher complexity to be handled in the SW development
activities.

1.2.3 Embedded Development in the Automotive Domain"

Technical complexity of electronics and software in the automotive
industry is similar complex as avionics and aerospace.

Today, cars are the mass production product with the strongest
cross-linking of separate computers at the smallest space.

Meanwhile, more than 90 % of all functions are realized with

support of software. The quality of a car is substantially

determined through the quality of electronics and software.

For this reason, sofiware quality has become a central competitive factor.
[HDH+06; p.267-268 (*)]

“Modern premium automobiles contain by now up to 100 ECUs, with increasing
tendency accompanied by approx. 3 kilometres of cable and approx. 2000 plug
connectors. In these ECUs, SW with more than 600 000 lines of code regulates
numerous functions and their cooperation. ... In this way, the value creation
changes significantly in Automotive construction. 90% of the innovation in cars
are driven by electronic components, thereof 80% software™ [Sch05; p.12f (*)].
At present as in the near future, the proportion of software (SW) and SW-
based ECUs in everyday products increases exponentially [Br06], (also cf.

[CFG+05], [KCF+04], [HDH+06; p.267]) and this increase is accompanied by a

growth of development complexity. Correspondingly, developing these SW-based

ECUs meanwhile has a central strategic importance for the automotive industry.

The automotive domain has some special conditions imposing special chal-
lenges for embedded systems engineering. Generally, the following special chal-
lenges can be identified playing significant key-roles in automotive embedded

development (cf. [Br06], [Gr05], [KMO06], [SZ06; p.20], [Sch05; p.5]):

1. Safety-criticality: As mentioned in the chapter before, cars involve several
safety-related issues. These issues must be significantly addresses as de-
scribed in the chapter above.

2. Costs: As cars are mass-market products with high unit volumes, costs play a
decisive role. Thus, proportional manufacturing costs dominate the price. In
this way, ECUs' costs are also under strong pressure. The proportional manu-

13" Parts of this chapter base on [TWT+08].



20

I. General Context and Theories

facturing costs of ECUs are mainly dominated by HW costs. This leads to
highly cost-optimized HW with minimal HW resources concerning memory
calculation power, and other components. Correspondingly, software must of-
ten be fitted to handle these, often leading to higher complexity and unnatural
solutions in the software design [SZ06; p.20], [Sch05; p.5].

Quality: Buying a car involves significant costs for the customer. In conse-
quence, cars are intended for long product life-cycles of about 25 years
[SZ06; p.20]. Correspondingly, cars must provide a high overall quality, espe-
cially if they are premium products.

Hard or at least weak timing restrictions"*: Reasons can be physical require-
ments for exact timing (e.g., when controlling motor injection), extremely
cost optimized HW where strong resource restrictions lead to strong demands
for timing; or safety-related issues (e.g., exact timing of inflating airbags dur-
ing crash situations).

Strong cross-linking of ECU systems: Increasing cross-linking of vehicle
functional features leads to increasing cross-linking of ECUs". Such features
are typically realized by a collaboration of several ECUs, leading to higher in-
terdependencies between ECUs. ECUs in automotive development are usually
an integrated system consisting of HW, SW and mechanical components
[MHD+07; p.91]. In most cases not one ECU handles a certain function in a
car, but several ECUs in interplay with each other realize a certain function.
Thus, the different ECUs can communicate with each other using communica-
tion protocols such as Controller Area Network (CAN), Local Interconnect
Network (LIN), Media Oriented System Transport (MOST) or Flexray. In
summary, the interconnected ECUs can be seen as distributed systems with
distributed control logic and changing control hierarchies [Ge0S; p.5].

High demands on inter-organizational collaboration: The development of a
strongly cross-linked car system can only take place in collaboration with the
car manufacturers (Original Equipment Manufacturers (OEM)) and heteroge-
neous chains of suppliers.

High numbers of variants: Today, the buyer of a car has the choice between
hundreds of options being partly connected to each other (e.g., different mo-
tors can be combined with different gearboxes) [SZ06; p.9]. As a plus, cars

Mostly, not all timing restrictions of hard real time systems are strict. Some functions
may also have weaker or even no timing restrictions.

A typical scenario might look like this: A car crash triggers crash sensors which acti-
vate several airbag ECUs and a crash management ECU (CM-ECU). The CM-ECU
sends an 'Unlock Doors' signal to all door ECUs, requests the position from the Glob-
al Positioning System-ECU and sends an automatic emergency call via a Universal
Mobile Telecommunications System-ECU to local rescue organizations.
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are sold to very different countries with different legislation. Car systems are
designed to work as very different variants. As HW costs are a significant
constraint, ECUs' variants also involve different HW assemblies [PS05;
p-112]. In the following of this thesis, this point — although it is important — is
neglected. This topic could be a topic for further research basing on the re-
sults of this thesis.

From the development viewpoint, two fundamentally different perspectives

on ECUs with partly different requirements for them can be observed:

The car manufacturers (OEMs) are engaged in how the complete car system
is assembled and how its parts work together to fulfill the intended require-
ments of the car. From the OEM perspective, the complete system 'car' is in
the focus and this system is divided into several layers of sub systems, where
the individual ECUs are only some parts of a complete system 'car'. The
OEM, thus, mainly cares for partitioning and mapping of the functions and
other technical issues on the different ECUs as subsystems, whereas the ac-
tual development of the ECUs is performed by its suppliers'®. Thus, for the
OEM the focus lies on best possible specification of the ECUs' requirements
as basis for supplier management and the later integration of the developed
ECUs into a complete system car, including extensive acceptance testing
[SZ06; p.19]. Thus, OEMs are more concerned with what is also called sys-
tems engineering (see ch. 1.4) and supplier management.

The suppliers must then use the OEM's specification of the ECU to design
and develop a system with the software. This involves systems engineering,
but also hardware'” and software engineering activities. In some cases, sev-
eral suppliers must cooperate to develop one ECU together. In these cases al-
so one supplier must manage the other suppliers.

At first, this implies that frictionless information exchange between all pro-

ject members is a critical success factor and requirement documents are the cor-
nerstones of this collaboration, since they are the central interfaces between or-
ganizational units of a project. In addition, the strong cross-linkings of ECUs
may even urge partners to employ compatible development processes. A good
step toward this goal are process standards and maturity models like SPICE
(Software Process Improvement and Capability dEtermination, [HDH+06]), its

16

In some cases, however, also the OEM develops ECUs. This is, e.g., the case for high-
ly innovative or research based systems.

In this thesis, the HW engineering domain is someway neglected, but it is assumed
that the principles developed here for traceability and design can be equally applied to
HW engineering. Further, the tool approach shown in part III should be equally able to
integrate with a HW engineering tool.
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new domain specific adoption Automotive SPICE (cf. [HDH+06]], [MHD+07]),
or CMMI (Capability Maturity Model Integration, cf. [Kn06]). These standards
are also important for addressing safety-critical issues that must also be addressed
by additional safety mechanisms in ECUs (e.g., fail safe modes, HW and SW
redundancies) and increasing complexity put additional stress on the quality of
development processes [BHMO1]. Secondly, this implies that the worlds of the

OEMs and the suppliers are in some way different and not completely compara-

ble. Thus, problems may be different in both branches'®.

However, also the OEMs experience a paradigm shift towards intensified
model-based development efforts [CFG+05], [KCF+04]. Conrad et al. [CFG+05]
— interpreted by the author — describe that this model based shift consists of three
cornerstones:

o Usage of enhanced requirements engineering and management techniques.
An experience report of Heumesser and Houdek [HH04] — from formerly
Daimler Chrysler — mentions requirements specifications for the electronics
of the whole system 'car' to contain about 20 000 pages, in which the re-
quirements specifications for the single ECUs contain 200 to 600 pages.
These high numbers of requirements must be adequately handled. Addition-
ally, these requirements form a contractual basis for all further development
activities performed with suppliers (CFG+05; p.5], [RS07; p.481f]).

e Design and implementation are more and more dominated by the continuous
usage of models. “Hereby, the functionality appears in different subsequent
model representations” [CFG+05; p.5 (*)].

e  Both core activities will be accompanied by verification and validation pro-
cedures to assure correctness and reliability of the developed components.
All these points show that automotive development is more and more coined

by flipping interactions between requirements specifications and design models at

different levels of abstraction interacting with each other. This, in combination
with the heterogeneous scattered development of complex, intertwined customer
and supplier relationships press for the need to ensure consistency between these
manifold different artifacts developed in the course of a car development endeav-
or. In theory, requirements traceability is seen as a distinct means for ensuring
consistency between artifacts. Sparked from these findings, two major research
goals of this thesis are requirements traceability in context with heterogeneous
design models and issues of supplier management in order to ensure consistency

'8 Unfortunately, the author sometimes feels that literature about automotive embedded

systems development often neglects this differentiation. In the past, one difference has
been that OEMs mainly concentrated on the textual specification view, whereas sup-
pliers were also forced to translate these specifications into design models and code.
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between the complex and heterogeneous interdependencies arising out of auto-

motive development projects.

Last but not least to mention, automotive ECUs development can be divided
into four different sub domains [SZ06; p.6, p.18f], [CFG+05; p.4]:

e Powertrain deals about control of the motor(s) and gearing.

e  Chassis deals about wheels, steering, breaks, etc., but also concerns persons'
safety systems such as ABS or ESP".

e  Body deals about electrical control of doors, lights, mirrors, wipers, seats,
heating and climate control. Here are also included passive safety systems
such as airbags.

e Telematics® and Infotainment provide multi-media applications such as ra-
dio, CD, DVD, telephone, route navigation, video etc. to the passengers. An
essential part here is the human machine interface and possible interconnec-
tivity with devices not being original equipment of the car (e.g., cell phones,
MP3-players, car-to-car-communication, etc.).

The domains Powertrain, Chassis and Body are comparable to each other
[CFG+05], whereas the Telematics domain significantly differs from them. The
first three deal with controlling and steering of mostly physical process involved
with the usage of a car. Correspondingly, these domains rather deal with complex
calculations and complex steering functions, where relatively low amounts of
data are processed (often only a few bits indicating states of sensors and actors).
These systems often have hard real-time constraints, often involve safety-critical
issues and face the pressure for extremely cost-optimized HW. Concerning de-
velopment techniques, the programming language C and the real-time operating
system standard OSEK-OS*' are employed.

In the Telematics environment, complexity is imposed by human interaction,
high amounts of data, high demands for data processing (comparable to PC-based
systems), data bandwidth, and soft real-time constraints. Correspondingly, higher
programming languages such as C++ or Java are used and more sophisticated
operating systems — with, however, only soft real-time support — such as Mi-
crosoft Windows (Embedded) CE, Linux etc. are used. Altogether, this domain is
more minted by issues of classical computer science. As these systems directly

Antilock Braking System and Electronic Stability Control

The term Telematic is a made-up word deriving from a combination of Telecommuni-
cation and Informatik (German expression for Computer Science) [MEKO03; p.1].

2l OSEK/VDX (“Offene Systeme und deren Schnittstellen fiir die Elektronik im
Kraftfahrzeug / Vehicle Distributed eXecutive”) is an industrial standardization board.
The board has defined the operating system standard OSEK-OS being a standard defi-
nition for the real-time operating system used in the automotive industry.

20
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influence user experience in comparison to the other domains, where the ECUs
are more integrated into a merely technical aspect, these systems also generally
have weaker resource restrictions if this favors better user experiences (e.g., by a
better human machine interface (HMI)) or additional values (e.g., by offering
higher value components for bandwidth).

Concerning this thesis, all four domains generally are of equal interest, since
traceability most probably will be an issue in all four development domains.
However, as the first three domains have significant harder restrictions for timing
and other resources, these restrictions may be important for considerations in this
thesis. Thus, these domains with the hard restrictions are considered in the exam-
ples and case studies of this thesis (see, e.g., ch. 111.12).

Altogether, it can be said that the automotive domain is very heterogeneous
with very different used techniques and technologies. However, all of them must
be concerned with high quality processes leading to high quality outcomes. In
this context, requirements traceability will play a decisive key role as it improves
consistency between work-products being essential for the high distribution of
development tasks over heterogeneous chains of suppliers.

1.3 Software Engineering (SE)

The whole trouble comes from the fact that there is so much tinkering with software.
1t is not made in a clean fabrication process, which it should be.

What we need is sofiware engineering.

F.L. Bauer

The term software engineering (SE) was first coined in 1968 by Friedrich L.
Bauer during a conference of the NATO (North Atlantic Treaty Organization)
science committee [Ja08; p.1] as reaction on experiences that, despite gigantic
efforts, some SW projects could not be completed satisfactorily [LLO7; p.46].
The central idea behind this concept is the application of engineering to
software (SW). According to Sommerville, “sofiware engineering is a technical
discipline that deals with all aspects of software development, from the early
phases of system specification to maintenance of the system, after it has been
commissioned” [So01; p.22 (*)].
The IEEE Standard glossary of Software Engineering Terminology
[IEEE610] defines SE as:
1. “The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the application
of engineering to software. “
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2. “The study of approaches as in (1)”.

Ludewig and Lichter [LLO7; p.47] indicate that this definition is in a way
problematic and idealistic™’, as engineers “more often rely on experience and
intuition than often admitted” [LLO7; p.47 (*)] and propose the following value-
free definition [LLO7; p.47] (see also Jackson on what he calls radical design in
software-intensive systems [Ja08; p.21]):

“SE is any activity concerned with creating or changing SW, where goals are
beyond the SW” [LLO7; p.47 (*)]. This means for Ludewig and Lichter, SE is
involved anywhere, where SW is developed.

In this thesis, the following SE topics are addressed:

1. SW development process models (ch. 1.7),

2. Requirements engineering and management (ch. 1.5),
3. SW design (ch. 1.6).

SW development process models provide a process road map for transform-
ing user needs into a SW product. A SW process can be described as “a set of
activities and thus interrelated results leading to the development of a SW prod-
uct” [So01; p.55 (*)]. The process chain involves transforming user needs into
SW requirements that are again transformed into a design. Then, the design is
implemented in code. Several quality assurance methods — as testing or code
inspections — accompany these processes [[EEE610]. Today, most process models
are iterative incremental which means that the process chain mentioned above is
iterated several times with new user feedback (changed or new requirements)
gathered from the previous developed version [MBP+04; p.425].

The main goal of a structured model is to find and establish clearly defined
processes and process interdependencies for the different development tasks
ensuring structured and reproducible process results. This thesis also deals with
how high quality SW and systems can be achieved using development process
models and standards (see ch. 1.7).

Requirements specification and analysis phases are concerned with the ques-
tions of 'what the user needs' and 'what the SW has to do' (what exactly shall the
SW do?). Thus, requirements specifications are often described as the 'what de-
scription’. In recent years, a more or less independent field of research has
evolved called requirements engineering. This thesis has one of its groundings in
this area. Therefore, this topic is deeper discussed in ch. I.5. Historical experi-

2 In fact, other organizations as the software craftsmanship movement ([Mc01],

http://www.softwarecraftsmanship.org/main/about (Access: 2009/08)) challenge the
paradigm of systematic engineering in software development, but emphasize a view of
software development as a craftsmanship, where “engineering skills and scientific un-
derstanding are required to write good code software ... in combination with a prag-
matic attitude and a sense of quality”.
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ence, however, has shown that describing requirements proves to be very difficult
and even the best requirements specification efforts could not avoid significant
requirement changes during development progress. As a result, SE theory has
acknowledged that requirements and their changes must be adequately managed.
Requirements traceability as discussed in this thesis can be considered as an
activity of requirements management.

After the requirements have described the problem space, software design
deals with finding an adequate solution out of the set of possible different solu-
tion alternatives (solution space). The design phase has the goal to sketch a pos-
sible solution and assess its consequences in order to find out, whether the solu-
tion is sustainable for the problem. Design mainly with about making general
decisions about the structure of a solution that is then implemented into code.

I.4 Systems Engineering (SysEng)

Systems engineering is about creating effective solutions to problems,
and managing the technical complexity of the resulting developments.
At the outset, it is a creative activity, defining the requirements

and the product to be built.

Then the emphasis switches again, to the integration and verification,
before delivering the system to the customer.

[SBJ+98; p.7-8]

In most embedded projects, “it is crucial to consider not only the software as-
pects, but also the system aspects” [Do04; p.29]. Since the first introduction of
the term systems engineering (SysEng) by Goode and Machol [GMS57], SysEng
has evolved to a key success factor for developing large scale complex systems,
because it “deals with all aspects of developing and enhancing complex systems”
[So07; p.34 (*)] and its function “is to guide the engineering of complex sys-
tems” [KSO03, p.3].

The IEEE describes SysEng as “an interdisciplinary collaborative approach
to derive, evolve, and verify a life-cycle balanced system solution which satisfies
customer expectations and meets public acceptability” [IEEE1220; p.12]. Corre-
spondingly, Douglass [Do04; p.29] defines SysEng as “the definition, specifica-
tion, and high-level architecture of a system that is to be realized with multiple
disciplines, typically including electrical, mechanical, software and possibly
chemical engineering”.

As the name SysEng and all these definitions mention, the term system plays
a decisive key role. Several slightly different definitions exist:
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According to the IEEE 610, a system can be described as “a collection of
components organized to accomplish a specific function or set of functions”
[TEEE610; p.73]. This indicates that a system is composed of components
with common goals.

However, Miiller defines a systems as “a set of elements being connected to
each other by relationships and having to pursuit a certain goal together”
[Mu00; p.48 (*)]. This indicates that a system is composed of components
coupled by relationships with each other (IEEE 610 weakly indicates this by
using the term 'organized'; cf. also [So01; p.36ft], [MHD+07; p.41]).
Weilkiens defines a system as “a collection of system components aiming to
fulfill a shared goal. A component can be of software, hardware, mechanics”
[We06; p.10 (*)], or of any other engineering domain. This indicates that a
system can be composed of components from different engineering domains
interacting together.

However, other definitions go beyond this view: “A system is an integrated
composite of people, products, and processes that provide a capability to sat-
isfy a stated need or objective” [DAUOI1; p.7]. In this definition a system is
not just consisting of components (static view), but can also involve hu-
mans” and its processes (dynamic view).

Geisberger®* also emphasizes that “a system as a whole has system bounda-
ries and a context” [Ge05; p.196 (*)]. This implies also a difference between
the system and its environment (elements not part of the system) and indeed
defining the system's context is a central task in SysEng [So01; p.38] leading
to the definition of Hatley et al. of system as “an organized set of compo-
nents that interact with each other and its surrounding in order to provide a
significant benefit to humans” [HHP03; p.16].

Last, but not least, the IEC 61508 defines systems as “a set of elements
which interact according to a design, where an element of a system can be
another system, called a subsystem, which may be a controlling system or a
controlled system and may include hardware, software and human interac-
tion“ [IEC61508; part 4; p.25], (also cf. [MHD+07; p.41]).
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Or, as Hatley et al. put it [HHPO3; p.17 (*)]: “Hardware and software without humans
is not capable of anything ... When we specify systems, we must view the whole sys-
tem — its software, all hardware-technologies, the role of the humans and the question,
how humans can benefit from it”.

The interested reader may be invited to read Geisberger's extended comment on the
term system describing its origins from biological and sociological systems theory and
cybernetics [Ge05; p.196].
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In summary, several — more or less complete — definitions of what a system
is exist. Generally a system may have the following characteristics:

1. A system is composed of several components.

2. These components can again be further decomposable systems (so called sub
systems). This gives way to that SysEng can also deal with developing cas-
cades of systems built up by sub systems, called systems of systems engineer-
ing [Ja09].

3. A system has a surrounding context (i.e. environment) it interacts with. A
part of this context and its interactions can be humans.

4. The system's components have relationships with each other and with the
context. Different kinds of relationships exist, such as 'interaction', 'composi-
tion' or 'other dependencies'.

5. Different components can deal with different engineering disciplines. In the
automotive domain, for example, systems often involve HW, software and
mechanics [MHD-+07; p.41], but components can also involve other disci-
plines such as chemistry, nuclear physics, biology, etc..

6. A system may not only be composed of static aspects as components, but
also humans or processes may be aspects of a system.

SysEng is concerned with regarding the system over his complete life-cycle
from its early ideas to its disposal [We06; p.2], [DAUO1; p.3]. In reference to the
International Council on Systems Engineering25 (INCOSE) [TBI04], Weilkiens
describes the focus of SysEng as the concentration “on the definition and docu-
mentation of system requirements in the early development phase, the preparation
of a system design, and the verification of the system as to compliance with the
requirements, taking the overall problem into account: operation, time, text, crea-
tion, cost and planning, training and support, and disposal” [We07; p.8].

SysEng thus emphasizes a holistic view [We06; p.2] on a system to be de-
veloped: “Detached from specific detailed knowledge, the requirements and
structure of a system, the whole life-cycle from the idea to its disposal are
planned to develop a system that meets the demands of all involved stakeholders”
[We06; p.2 (*)]. As mentioned above developing complex systems can include
several different engineering disciplines. SysEng deals with coordinating those
disciplines and their tradeoffs with each other®. Therefore, Weilkiens also speaks

2 INCOSE can be described as the most important international society concerned with

SysEng.
[We06; p.9] provides an example where all involved disciplines produce best possible
solutions, but lacking interactions make integration impossible. This shows that mak-
ing compromises between the disciplines and their solutions is an essential part of
SysEng.
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of SysEng as a kind of meta-discipline [We06; p.11], [We07; p.8]. To achieve

this, SysEng is split into two significant sub disciplines [DAUO1; p.3]:

1. The technical aspect system engineers work in also referred to as fechnical

knowledge domain.

2. The systems engineering management.

This means SysEng defines a general engineering and management approach
dealing with developing systems [DAUO1] [Sa92], where three concepts form the
cornerstones of interdisciplinary coordination:

e Definition and management of the requirements concerned with the system
as a whole [TBI04]. According to Geisberger, requirements engineering,
therefore, is the key phase (i.e., task) of SysEng [GeO0S5; p.2].

e Proper identification and definition of interfaces between the methods of
different disciplines [We06; p.9].

e  Proper product and project management that coordinates and moderates all
interdisciplinary efforts [We06; p.9].

In the view of Stevens et al., SysEng deals with “coping with risk and com-
plexity” [SBJ+98; p.9]. In this way, SysEng for once mainly deals with defining
the requirements and thus the system to be built. The implementation of these
definitions is then left over to the individual engineering disciplines of the sys-
tem's components. SysEng encompasses these implementation activities with
reviews and testing at the components' boundaries to ensure proper matching
interfaces. Finally, SysEng has to address significant issues of integrating the
components into the system and verifying the assembled system [SBJ+98; p.7-8].

From a similar viewpoint, Weilkiens identifies project management, re-
quirements analysis, requirements management, requirements definition, system
design, system verification, system integration, and risk management as tasks
included into a SysEng effort [We06; p.12], [We07; p.9].

Thus, according to Sage and Rouse, SysEng “is the management technology
that controls a total system life-cycle process, which involves and which results
in the definition, development, and deployment of a system that is of high quality,
trustworthy, and cost effective in meeting user needs” [SR09; p.3].

This thesis also is concerned to a certain degree with interactions of process-
es and corresponding process standards. Accordingly, SysEng must also be taken
into account. In the course of the thesis, the reader may also notice that the topic
of this thesis is even more related to SysEng than maybe originally expected,
since requirements and requirements traceability are the core interface for a close
integration of SysEng and SE activities. Sommerville points out that “system
development is an older discipline than software engineering. Since over 100
years, people have designed and built complex industrial systems like aircrafts
and chemical factories. However, the share of software-based systems has in-



30 I. General Context and Theories

creased and techniques of SE-like modeling of use cases and configuration man-
agement are used in system development processes” [So07; p.34 (*)].

Vice versa, it is to state that SE also is increasingly influenced by the SysEng
discipline, as SW often is developed for ECUs and thus it is very seldom an enti-
ty of its own, but is employed in an higher level system environment. Evidence
for this claim can be found in SE books also mentioning SysEng (e.g., Sommer-
ville provides an extra chapter [So07; chapter 2]) or standards on SW develop-
ment processes as [SO 12207 [ISO12207] or SPICE [ISO15504] embedding the
SW development processes into higher level SysEng processes (e.g., processes
ENG.2, ENG3 in SPICE).

In his analysis of the future about SE and SysEng processes, Bochm [Bo05]
points out his view that the separation between SE and SysEng has been an artifi-
cial one rather manifested by historic development than real needs of develop-
ment. Correspondingly, Boehm forecasts that in the future SE and SysEng will
grow together to one integrated theory and one block of activities in practice.

Currently, a second slightly different notion of SysEng seems to evolve orig-
inating more from engineering practice. Here, Hood et al. [HWF+08] could get a
good catch of this opinion in their book's title “Requirements Management — The
interface Between Requirements Development and All Other Systems Engineer-
ing Processes”. In this point of view, SysEng is either considered as a kind of
synonym for requirements engineering in connection with a certain management
level above a normal SE project. This notion can be seen in the following fig. 4-1
taken from [HWF+08; p.29]. It shows all 'SysEng disciplines' from the perspec-
tive of Hood et al.. Hood et al. now propagate that requirements management
(see fig. 5-3 in ch. [.5.3) interconnects these disciplines with each other.

Project Quality Risk
Management Management Management
Requirements Configuration
Engineering Management
Change Test Version
Management Management Management

Figure 4-1 The view of systems engineering processes of Hood et al. [HWF+08; p.29]
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The author can share this notion as he also sees a certain potential for re-
quirements management to be a decisive interface connecting the 'management'
activities with the requirements engineering activities (information on this notion
is also described in ch. 1.5.3). From the SysEng perspective, however, the author
thinks this view neglects the originally emphasized dimension of design taking
place in SysEng processes and reduces SysEng to a 'little advanced version of
requirements engineering and management'. The similar notion is found by
Douglass [Do04; p.37-38] (and also seems to be present at Geisberger [Ge05]),
when describing the ROPES?’ process model subordinating the SysEng activities
to the analysis activities as a kind of extension to requirement analysis. However,
it is doubtful, whether a 'system design' is just some kind of 'analysis'.

This only reflects the dimension of SysEng management but neglects the
dimension of a technical knowledge domain that has to consider different engi-
neering disciplines and their correlations. Thus, a good system design will
acknowledge the special needs, strength and weaknesses of each involved engi-
neering discipline so that the different parts from the different disciplines can
frictionless cooperate to fulfill the systems tasks, whereas a weak system design
might neglect some characteristics of an engineering discipline resulting in a
system with collaboration problems between the different parts.

I.5 Requirements Engineering and
Management

1 believe the hard part of building sofiware to be the specification,
design, and testing of this conceptual construct, not the labor of
representing it and testing the fidelity of the representation.

We still make syntax errors, to be sure; but they are fuzz compared

to conceptual errors in most systems. If this is true, building software
will always be hard. There is inherently no silver bullet.

[Br87]

“The key to every successful software project is its ability to meet the needs of its
intended customer” [BCM+08; p.139]. Or as Endres and Rombach call it Glass'
law [ERO03; p.16 (*)]: “Requirement deficiencies are the prime source of project
failures”.

7" Rapid Object-oriented Process for Embedded Systems — a kind of adaption of the RUP
(Rational Unified Process) process model [Kr99] for embedded systems development.
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Thus, “in the 1970's, customer needs were documented in a customer re-
quirements specification” [HWF+08; p.39 (*)], but the process “did not have a
fancy name, it was just engineering” [HWF+08; p.39 (*)]. Starting with the
“IEEE International Symposium on Requirements Engineering” in 1993, an in-
dependent discipline called requirements engineering (RE) started to evolve
[PDO4].

Pohl [Po08; p.43 (*)] gives a very concrete definition of RE: “RE is a coop-
erative, iterative, incremental process with the goal to assure that:

1. All relevant requirements are known and understood in the necessary degree
of detail.

2. The involved stakeholders gather a sufficient agreement about the known
requirements.

3. All requirements are specified conforming to documentation, i.e. specifica-
tion, instructions”.

The basic idea behind RE is that the requirements state the needs of the fu-
ture users of a system or SW** therefore requirements form the basis (key driver)
for all development efforts. Experience has shown that requirements are not easy
to gather, because most systems are developed for people not involved in systems
or SW development. This means RE deals with bridging the user worlds (do-
mains®®) and their vocabulary to the world and vocabulary of the developers.

On a second behalf, a system also has its own life cycle. All phases of the
life cycle can also raise® requirements on the system.

Summing it all up, RE activities involve a lot of different people which must
be brought together in an optimal communication process. As Ebert states in the
preface of [Eb05], the RE theories therefore include at least “experiences in sys-
tem techniques, psychology®', business administration, marketing, product man-
agement, project management and computer science” and its application has “less
technical aspects and much more "political’ and psychological aspects than usual-
ly admitted” [EbO5; p.10 (¥)].

Rupp lists seven central problems and risks addressed by RE and thus en-
countered by improper RE [RS02; p.19ff]:

e  Unclear visions on the goals of the system due to different types of stake-
holders with different usage characteristics,

28
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In the further, only the term system is used, but SW is also implied by this term.
Mostly, there is not one type of user but several user types connected to several usage
domains.

For example, the maintenance phase is unavoidable and requires that the developed
system fulfills requirements for good maintainability.

On the importance of psychology in RE see [Ru02]
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e  High complexity of the task to solve,

e  Communication problems due to different languages (vocabulary) of differ-
ent stakeholders,

e Continuously changing goals and requirements (often referred to as 'scope
creep' or 'requirements creep'),

e Poor quality of requirements due to ambiguity, redundancies, contradictions
or imprecise information,

e Unnecessary or unspecified features®

e Imprecise project planning and tracking due to imprecise requirements;

The aspects mentioned above only mention one aspect of the problem. The
core problem closely connected with the problem of bringing very different
stakeholder perspectives together is the problem of inevitable requirement change
during the whole project progress, where “changing requirements is one of the
most significant motivations for software change” [JLOS5; p.120]. A diversity of
reasons for requirement changes exists (see the following sub ch. 1.5.6), but one
of the key reasons surely is that bringing all different user perspectives together
will always lead to compromises and inconsistencies not discoverable at early
stages. This leads to the need that requirements and their changes must be appro-
priately managed. Consequently, this aspect is called requirements management
(RM) (see ch. 1.5.3, cf. also [EbO5; p.18ff]: “Contents of Requirement Manage-
ment”).

The user should note that, in the English speaking community, the term re-
quirements engineering (RE) stands for both aspects described here (cf. [EbOS;

32 Also often referred as gold-plating [RR99; p.275]. The most usual source of gold-

plating are 'ideas' of developers they just implemented without feedback from the cus-
tomer. Unnecessary features increase development costs and complexity of the SW.
Evaluations show that 45% of system features are not used (cf. [[Yo03; p.45]). An also
important role in avoiding gold-plating may play rationale management (see ch. 11.9).
Haynes [Ha06b; p.66] describes a survey on the usage of rationale in an U.S. military
application project, where of 74 discrete features only 19 rendered to be “important or
of high impact”.

However, two other factors must be considered. First of all, the SW product must also
allow possibilities for the developers to bring in their creativity. Thus, the ideas of the
developers must be considered. A good tactic is to manage developer ideas as change
requests that can be discussed with the customer ([RS02; p.23]). Secondly, as Rupp et
al. point out, in certain situations (e.g., when the product aims at a market leading po-
sition), [RS07; p.113f] excellent products must also grasp unknown customer wishes
as enthusiasm factors (In German: Begeisterungsfaktoren). This indicates that gold-
plating can also be useful in certain situations as long as it is some conscious, con-
trolled process.
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p-VII]), but the author agrees with other authors ([Eb05], [RS02], [HWF+08])
that the aspect of managing requirements should be emphasized in the term™.

Thus, in the following, the author will speak generally of requirements engi-
neering and management (REM) and he will only use the term RE if he directly
refers to aspects of requirements engineering, and requirements management
(RM) when directly referring to aspects of RM.

As some indications show, REM seems to emancipate as a separate disci-
pline apart from computer science theory. This is especially true in the embedded
domain, where REM must be an interdisciplinary approach to integrated aspects
of mechanical engineering, electronics engineering and computer science [Ge05]
containing also significant overlaps with the SysEng discipline. Humans and the
handling of requirement information are a central issue of REM. In this aspect,
REM seems also to be a promising field for information science, because certain
parts of REM theory like user interface design already have a strong focus in
information science.

Last but not least, it should be mentioned that not all developed systems are
necessarily driven by requirements [HHPO3; p.33]. As an example, the consumer
market is rather driven by market changes resulting in extended requirement
changes. Requirements analysis and other REM techniques, however, can also
prove helpful in these areas (see also [BCM=+08; p.139]).

I.5.1 The Term 'Requirement’

There are two things success in every respect rests upon.

The one is that purpose and object of the task are correctly determined.

The other, however, consists in finding the actions leading to this final object.
Aristotle (*)

Before different concepts of REM are introduced, the term requirement and its

characteristics shall be defined. The IEEE Standard Glossary of Software Engi-

neering Terminology defines a requirement as [IEEE610; p.62]:

1. “A condition or capability needed by a user to solve a problem or achieve an
objective”.

2. “A condition or capability that must be met or possessed by a system or sys-
tem component to satisfy a contract, standard, specification, or other formally
imposed documents.”

3 A quite good summary about the historical development of the terms Requirements

Engineering, Requirements Management and the historical causes for the confusing
usage of the different terms is provided by [HWF+08; p.39-41].
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3. “A documented representation of a condition or capability as in (1) or (2)*.

Geisberger [Ge05; p.2] defines the term very similar, but instead of the term
user she uses instead of user the term stakeholder giving the definition a wider
scope. This notion is more accurate, because also stakeholders exist being not the
users of the system®*, and these stakeholders also raise requirements. Hatley et al.
[HHPO3; p.29ff] provide a collection of other possible sources for requirements.
Among these a lot of different stakeholders exist:

e The customer: the person or organization ordering and paying the system
development.

e  Users: any person really using the system.

e  Managers: managers in house of the developing party. These people are
mostly concerned about cost optimization and, e.g., reuse.

It is to emphasize that requirements do not alone arise from the customer,
but among others the following sources of requirements exist: the users®’, man-
agers of the developing company, industrial standards, the development process
and many other.

Current REM theory distinguishes two fundamental types of requirements:

e Functional requirements (FR),
e Nonfunctional requirements (NFR), also referred to as quality attributes

[BCKO03], [Bo0O0b];

A FR is concerned with a functional aspect of a system. The scope of a FR
generally is very specific. Thus, FRs are mostly very concrete, its implementation
can be directly localized in code, and testing the SW for its fulfillment is relative-
ly simple.

NFRs are requirements “not specifically concerned with the functionality of
the system” [KS98]. They specify a quality property and / or constraint of a prod-
uct [Eb05; p.298]. In his comment in [RSO07; p.259f (*)], Hruschka points out that
he would rather prefer the term “required constraint”, since he defines NFRs as
“everything constraining the freedom of the designer in fulfilling the functional
requirements”. Mostly, NFRs refer to a so called quality attribute as, e.g., perfor-
mance, usability, scalability or maintainability®® (see [RS07; p.272]).

The scope of a NFR mostly is very general referring to the system to be built
as a whole. Therefore, NFRs are significantly more difficult to specify, implement
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For example, the stakeholders paying for a system are seldom the users of a system.
The users (people using the system/SW) are mostly different to the customer (person
or company ordering and paying for a system/SW).

These are also called the “ilities” [Fi98]. However, also some more detailed differenti-
ations exist in literature. The interested reader may look at [CY04], [RS07; p.256],
[Eb06; p.98f].

36
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and to test than FRs (for more specific information see [CNY-+99], [CY04],
[RSO7; p.259]). In practice, FRs are often identified and specified in a relative
fast fashion [Mo04; p.336], whereas NFRs are often neglected, even though they
have a decisive influence on the overall success of a project [Mo04; p.337]. Of-
ten, projects miss important goals if one or even several important NFRs have
been neglected’’” ([RS07; p.259f], [RS02; p.264], [M0o04; p.337]).

In [HRO2; p.86 ff], Hruschka and Rupp provide a good overview of the dif-
ferent kinds of FRs and NFRs encountered in a project (see fig. 5-1). The inter-
esting part of this view is that NFRs are not just limited to the real requirements
of a system, but it is also acknowledged that the environmental settings pose
important constraints on a project. These constraints can be the future usage envi-
ronment of the system — often referred to as the context of the system —, but also
organizational aspects, as demands on used development processes or manage-
ment related context of the project in the organization, are important key success

37 A colleague of the author working at a different company was once hired to perform

system archeology on a system developed by a near shoring contractual project where
the original system supplier refused any further maintenance support on the system.
The reason was that the developed system turned out to be very slow and not main-
tainable. Even though the system was intended to run on one computer, the designers
of the system chose to use CORBA (Common Object Request Broker Architecture) as
a communication middle ware to connect all different components of the system. In
this way, the designers probably thought to achieve an open architecture flexible to
later changes. As, however, the system just was intended to run on one computer, the
communication middle ware proved to be an overhead causing low performance. Ad-
ditionally, the flexibility of decoupled components lead to the effect at the developing
company that the different project developers used their favorite programming lan-
guage for their components to develop leading to a mixture of different programming
languages used for the different components. This finally resulted in a system not be-
ing maintainable. By addressing on the one side NFRs about flexibility and maintaina-
bility through the decision to use CORBA, the drawbacks on the performance NFRs
were neglected. Finally, the flexibility achieved by the decision for CORBA inadvert-
ently lead to developers disregarding the maintainability NFRs by individually choos-
ing their programming language at will. As a result, the company lost the project and
the customer. The customer in need for the system was forced to spend significant ex-
tra money to find out all aspects about the system in order to start a new endeavor for
developing a running system. Ironically, due to the high losses of the failing project,
management decided to save money in the new project by assigning a far-shoring
company to develop the new system, even though the near-shoring approach disclosed
significant communication problems and significant loss of control over the project. In
retrospect, it might have been a far better and less expensive idea to directly hire a few
well-paid, but also well-trained near-by developers with short communication paths
and a significantly better control of the project by the customer.
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factors for a project. These aspects should not be neglected as important sources
for NFRs.

As mentioned above, it is especially important to not oversee some im-
portant NFRs, since they often determine the success of a project. Rupp et al.
provide here the valuable expression of quality scopes: “A quality scope defines a
limited set of defined quality characteristics” [RS02; p.270 (*)]. Such quality
scopes are — among others — standards such as [ISO9126] or [ISO25000], the
"Wolere Template' propagated by the Robertsons [RR99] or the FURPS™ model
developed by Grady and Caswell at Hewlett Packard [GC87; p.159] or 'Plan-
guage' [Gi05], (see also [Em10]). These scopes have the advantage of providing
structured listings of quality aspects that can be used as check lists for systemati-
cally perusing them, thus identifying and specifying (not forgetting) any im-
portant NFR.

Besides finding, properly specifying, implementing and testing all relevant
NFRs is crucial for project success [RS02; p.264]. Since NFRs do not represent
concrete functionality, NFRs are often minted by malleable terms and weak crite-
ria [Mo04; p.352] especially difficult to handle, often leading to intangibly speci-
fied and thus untestable NFRs*.

Requirements

—1

Constraints

T

Functional Quality

Requirements

Requirements

System or
Product
Constraints

Process
Constraints for
the Process

Management
Constraints

Nonfunctional Requirements

Figure 5-1 Functional and nonfunctional requirements [HR02; p.86 ft]

% Functionality Usability Reliability, Performance Supportability. Later evolved to

FURPS+ ([Gr92]), where '+' reminds that additional requirements as design, imple-
mentation, interface and physical constraints must be considered. FURPS+ is widely
used in the IT industry (e.g., by the Rational Unified Process (RUP), (cf. [Kr03],
[K199; p.142])). Eeles [Ee05] describes how FURPS+ is used by IBM in context of the
RUP.

Therefore, significant parts of literature to REM are concerned with handling NFRs. A
good starting point for research information is found in [CY04].
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Generally, in order to achieve testable requirements, REM theory propagates
that for each requirement also the verification criteria should be equally specified.
If then no concrete verification criteria can be found for a requirement, strong
indications exist that a requirement is not testable and thus realization of the re-
quirement is not sure [RS02; p.711f, p.293-336]. Process standards as described
in ch. 1.7, thus, also explicitly demand that testability of any requirement must be
ensured by specifying verification criteria.

To tackle these problems, Rupp et al. propose using an approach they call
IVENA® [RSO07; p.459], [RS02; p.271ff]. IVENA describes the idea that NFRs
with their verification criteria being considered as very accurate in a project are
collected in a structured data system, where developers of a new project can sys-
tematically search for and retrieve propositions for specified NFRs and their
verification criteria for a project. A further possible cognate heuristic may provide
the application of requirement patterns [RS02; p.337-385] (concerning patterns
see ch. 1.6.2.4). Requirement patterns intend to give support for identifying and
documenting recurring requirement problems. The pattern structure includes
requirements and its verification criteria. An interesting application of a require-
ment pattern, e.g., might be addressing the NFR 'access control' as pattern, as it
has high degrees of recurring requirements such as demands for user authentica-
tion, password control or rights management.

Both experience-based approaches may provide an interesting leverage to
improve tackling the problem in the long run*', but they are no help for concrete
situations, where such collected expert knowledge infrastructures are not yet
present. Literature about sofiware architectures theory proposes handling NFRs
that are difficult to tackle by deriving concrete scenarios™ that are verifiable

" In German: Integriertes Vorgehen zur Ermittlung nicht-funktionaler Anforderungen

(Integrated Approach for non-functional requirements elicitation). The approach bases
on collecting NFRs and other related information (e.g., testing criteria, test cases)
specified in other (older) projects in a database repository ordered by quality topics.
Now, the requirement engineer searching for a good specification of a NFR can re-
search the database for suggestions used in the other projects.

It is interesting to note that both methods in some way can also be considered in the
context of rationale management (see ch. 11.9). In this context, both approaches could
be seen as a way to collect information about a decision process, whose results are lat-
er reused in a new project.

As an example, an ECU in an Automotive project contains the NFR: “The system must
have good performance.”. Such an NFR is not testable, because it is too vague. How-
ever, the NFR can be used to derive the following concrete scenarios for the intended
performance:
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(verification criteria can be defined) [BCKO03; p.78-95], [BoOOb; p.34ff],
[PBGO04; p.82ff], [M0o04; p.339, p.352].

Some REM theory proposes handling NFRs by transforming them into (ex-
pressing them through) several functional requirements [Pi04; p.99], [PKD+03].
As scenarios are closely related to the use case concept being a heuristic for re-
quirement documentation (see ch. 1.5.4), it is very likely that both theories mean
the same at this point.

A further important point here to consider is how FRs and NFRs impose an
influence on software design. In connection to SW architecture, Eeles [Ee05]
claims the existence of 'architectural requirements': “An architectural require-
ment, in turn, is any requirement that is architecturally significant, whether this
significance be implicit or explicit™. This implies at least that also requirements
may exist with no relevance to the architecture. It turns out that the SW architec-
ture is hardly dominated by FRs. Instead, NFRs impose the main influence on the
SW architecture [BCKO03; p.72f], [PBG04; p.72], whereas FRs are then mainly
con-sidered in the detailed design or the code.

Concerning implementation, it is to note that the actual accomplishment of a
requirement is better than the demand imposed by the requirement in order to
guarantee it is actually fulfilled in any situation [HHPO3; p.32]. This is especially
the case, when it involves tackling NFRs, as it is more difficult to guarantee them
for any situation (e.g., this is especially the case for performance requirements.).

A further aspect to be considered in the context of requirements is that re-
quirements form the contractual basis for development [Eb0S5; p.18; p.268ff] (see
also [BCM+08; p.139]). This issue is discussed in detail in ch. 1.7.2.2.

Last, but not least to mention, in order to have a high quality requirements
specification, REM theory also has formulated a set of quality criteria each re-
quirement should fulfill. The following listing orients on Pohl [Po08; p.222 (*)],
but the same (or, at least very similar demands) are listed in any book on REM:

e Completeness: A requirement is complete if it is documented according to
fixed criteria (e.g., templates) and if its content does not contain any gaps in
relation to itself or in relation to other requirements.

e Traceability: A requirement shall be traceable to its origin, its evolution (his-
tory), its realizations in the system (design, code) and its tests.

e Correctness: The requirement is correct if the affected stakeholders
acknowledge its correctness and need to be implemented in the system.

e Unambiguity: A requirement must not allow any ambiguous interpretation.

(1.) “Function 1 must be performed within ... ms”.
(2.) “Function 2 must be performed within ... ms”.

3) ..
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o  Understandability: The requirement is understandable if its content is de-
scribed as simple as possible.

e Consistency: A requirement is consistent if it does not contradict with any
other requirement.

e Testability: It must be possible to test a system whether it correctly fulfills a
requirement or not.

e  FEvaluated: The requirement's importance on the system to develop is as-
sessed and captured.

e Actuality: The requirements must contain the current state of the project.

e Atomicity: A requirement shall only describe one issue, fact, aspect or need.
Equally as quality requirements exist for a requirement, the following quali-

ty demands can be derived for a requirements specification as a whole (see above

for its description of meaning) [HDH+06; p.88]:

Correctness,

Unambiguity,

Completeness,

Verifiability,

Consistent,

Changeability

1.5.2 Phases, Artifacts and Techniques in REM

The field of REM is relatively new and no common understanding of REM has
already condensed. Thus, a lot of publications and proposals for processes, arti-
facts and techniques exist [BHJ+10]. Since all three aspects are related to each
other, this chapter tries to give a short introductory overview of these correla-
tions. However, since REM accompanies the whole development process and a
high variety of establishments to different project situations exist, this chapter
does not claim for completeness. It should further be mentioned that, due to the
high variety of different project situations REM is employed, a full understanding
of a common set of activities to be called a REM theory will most probably be
never achieved. Vice versa, it is questionable if 'a common understanding' of
REM is necessary or even useful, as SW projects vary in high degrees from each
other (and concerning SysEng even a higher variety of disciplines and project are
involved), where REM processes have significantly different appearances.
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understanding
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Solution oriented
requirements

Figure 5-2 The Requirements Engineering framework defined by Pohl [Po08; p.39 (*)]

However, some authors, such as Pohl [Po08], give a valuable structure for under-
standing the correlations in REM. Pohl [Po08], e.g., has developed his so called
RE framework * (see fig. 5-2).

* “The term RE-frameworks refers to generic models describing and structuring the

requirement processes, artifacts, organizations, and roles, or combinations of these”
[BHJ+10; p.6 (*)]. Birk et al. [BHJ+10] report that their working group could identify
about 40 different RE frameworks. Their endeavors to compare these frameworks
sparked the conclusion that “the landscape of RE-frameworks is currently still broadly
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Pohl's framework [Po08] is divided into a core (middle block of fig. 5-2)

and two crosscutting activities.
The core® consists of three major aspects:

No system is self-contained but has an environment it interacts with, there-
fore the systems context and its interactions are important for understanding
the system itself. Pohl further differentiates four different kinds of contexts
(for details refer to [Po08; p.391f; ch.5]) emphasizing the importance of con-
sidering each.

The three core activities of RE consisting of requirement elicitation, re-
quirement documentation and gathering common agreement (resolving all
conflicts — also called requirement negotiation*’) between all stakeholders.
This part also includes the often referred requirement analysis as character-
ized by Gerdom and Posch [GP04; p.64] as the activity of structuring, exam-
ining and prioritizing [PR09; p.129-134] the present requirements, where the
requirement analyst closely works together with the customer and the archi-
tect (see also [BGK+07; p.130]).

The major requirement artifacts consisting of major goals, major usage sce-
narios™ (i.e. use cases) and solution oriented requirements the system shall
accomplish.

The crosscutting activities are:

Validation has the goal to find errors that occur in all three core aspects (for
details refer to [Po08; part V).
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scattered and fragmented. Correspondingly, demand for examination and structuring of
this knowledge exist” [BHJ+10; p.7 (*)]. It should further be mentioned that Broy et
al. in [BGK+07] try to define a so called reference model for REM processes most
probably having a similar purpose as the RE framework idea. The author has decided
to sketch Pohl’s framework, since it provides a relatively compact overview of the cor-
relations important to the author in this context. The reader more interested in a de-
tailed process setup, should also refer to [BGK+07] or [BHJ+10].

The author tends to name this core the actual RE activities. However, as mentioned, no
common agreement on the terms has yet established on this field.

The purpose of negotiation is to discover missing requirements, ambiguous require-
ments, overlapping requirements and unrealistic requirements. The result of the nego-
tiation process is a definition of the system requirements, which are agreed on by re-
quirements engineers and stakeholders [SS97].

Ambler [AmO05] recommends that requirements should at first be analyzed in breadth
(the set of feature shall be explored) and then later in depth (details of the features).
Ambler there also refers to a speech of Jim Johnson, chairman of the Standish Group,
at the XP2002 conference (see http://martinfowler.com/articles/xp2002.html (Access:
2010/06)) claiming that up-front detailed RE and modeling can lead to 80% of rela-
tively unwanted functionality, whereas only 20% of the features are often used.
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e Management involves for Pohl all planning, steering and control activities
concerned with all three core aspects [Po08; p.46] (for details see [Po08; part
VI]). Due to the importance of this part in this thesis this topic is dealt with
in the following ch. 1.5.3.

One dimension not mentioned yet is the correlation between REM and the
different development phases. As Pohl describes in [Po08; p.32], the former view
on REM was phases-driven, i.e. REM was mainly part of early development
phases involving several disadvantages leading to Jarke and Pohl’s [JP94] pro-
posal of continuous REM activities (as described in detail at [Po0S; p.34-35])
during development activities.

Today, continuous REM can be called the state of the art, meaning that REM
are accompanying activities throughout the whole development life-cycle.

1.5.3 Requirements Management

Since the main subject of this thesis is a sub part of requirements management
(RM), some extra words on RM shall better illuminate this context. RM is the
activity of organizing, administrating and supervising requirements during the
whole development process [TKT+07; p.274].

Rupp et al. [RS02; p.15] emphasize that RM establishes methods that enable
the handling of unmanageable numbers of requirements in complex projects.
Among others, it permits parallel and worldwide distributed work on require-
ments.

Hood et al. define RM as “a set of activities which ensure that the require-
ments information is always up to date and can be accessed by all project staff
that may benefit from it. In other words, requirements management integrates all
relevant pieces of information from all the other systems engineering disciplines”
[HWF+08; p.35 (*)].

It should be mentioned that Hood et al. imply a different but interesting per-
spective on RM [HWF+08; p.29]. As Hood et al. define SysEng as a set of the
processes project management, quality management, risk management, configu-
ration management, version management, test management, and change man-
agement (see fig. 4-1 in ch. 1.4 [HWF+08; p.29]).

Now, as Hood et al. call their book “Requirements Management — The inter-
face Between Requirements Development and All Other Systems Engineering
Processes.”, they imply that RM is the interface connecting the processes togeth-
er. Thus, orienting on fig. 4-1 in ch. [.4 from [HWF+08; p.29], fig.5-3 shows
Hood's view [HWF+08] as logical derived interpretation by the author. And RM,
in fact, often uses techniques known from these mentioned management theories,
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but uses them in the limited focus of managing belongings of requirements (indi-
cated by also referring RE in fig. 5-3).

The fact that RM borrows much of its techniques from the other manage-
ment disciplines is not coincidental but directly derives from the fact that these
are the fluent transition points to the other management disciplines in a way that
these management disciplines then also make use of the results of REM. An ex-
ample for this fact is that requirements prioritization [Po08; p.527-544], [PR09;
129-134] and conflict management [Po08; p.399-409] results performed as RM
activities are results that directly influence project management and risk man-
agement.

Project _ Quality Risk
Management Management [~ ~ Management
~
4 \
Requirements Requirements Configuration
Engineering Management Management
\ /
Change ~ Test L~ Version
Management Management Management

Figure 5-3 The view of Hood et al. [HWF+08] logically derived by the author.

At first glance, this now seems to be a trivial insight, but, if it must be con-
sidered that consistency between the findings of these disciplines must be en-
sured in order to have trustworthy results of the different disciplines. This sheds
light to one of the core activities of RM: Requirements traceability is intended for
being the central means to achieve this consistency.

1.5.4 Models in REM

REM is usually accompanied by the usage of models helping to analyze the prob-
lem situation. These models are often referred as analysis models (AM) as they
support analysis of found requirements in order to discover contradictions or
inconsistencies thus indicating missing requirements and thus directly supporting
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requirements elicitation. Design models are discussed separately in the chapter
about design ch. L.6.

According to Sommerville [So07; p.204], user requirements should be for-
mulated in natural language, since they need to be understood by humans being
no technical experts. More detailed system requirements*’, however, can be ex-
pressed in more technical ways.

In this way, a widely used technique is to support documentation of the sys-
tem specification as a collection of system models or AMs. AMs can be catego-
rized as descriptive models, since their main goal is to describe the facts por-
trayed by the requirements. AMs can here be seen as a different view to the ordi-
nary specified requirements. In some projects the analysis model is part of the
requirements specification in other projects it is a separate artifact.

A special case is the so called use case driven approach (see [Co00]). Use
cases describe usage scenarios of the product to develop. These use cases often
consist of a relatively simple schematic drawing such as described by the UML*
use case diagram in addition to a template based textual description of the use
case (the UML only standardizes the use case diagram but formulates no concrete
demands for the template). For further detailing of the use cases so called scenar-
ios are modeled, where in many cases one use case is described by several sce-
narios, e.g., being modeled by UML sequence diagrams. In this way, use cases
can be seen as a kind of hybrid between a textual requirements specification with
a seamless starting point for analysis with AMs. Use cases provide a good means
for grouping the textual requirements through their use case template. However,
Cockburn [Co00; p.28ff] remarks that use cases admittedly document and struc-
ture requirements, but this is only the case for a certain portion of the require-
ments (Cockburn [Co00; p.28ff] estimates one third). Thus, for example, details
for external interfaces, data formats, business rules, complex formulas or NFRs
are very difficult to cover.

Originally, use cases have been intended to improve communication (i.e.
understanding) between user domain experts of the customer not familiar with
computer science and SW developers not familiar with the user domain.

Before this, computer science oriented lingo was often used where under-
standability, however, was difficult for none-computer science specialists.
Through use cases, SW developers are forced to be more geared to the language

47 In ch. 1.7.2.2.1, the differences between user and system requirements are described

and how they can be compared to the German concepts of 'Lastenheft' and
'Pflichtenheft'.

Refer to Booch's first hypothesis [ER03; p.25]: “Object model reduces communication
problems between analysts and users”.

48
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of the users. In this way, the language monopole as well as the critical faculties is
left to the users.

Due to these advantages, a better fitting of the developed system to the real
needs of the users can be achieved. Correspondingly, the technique of eliciting,
structuring and documenting requirements using the use case concept has suc-
ceeded in nearly all development areas except for purely technical systems
[RS02; p.212f]. Such a case is the automotive domain, where technical textual
requirements specifications in combination with formal specification models are
preferred over use case approaches. A cause for this may be that at automotive
system development, the language barriers described above do not exist in this
form, because the customers are often equally accustomed to technical descrip-
tion languages as the developers are.

Grof3 et al. [GDM+10] report an empirical evaluation result comparing use
case specification technique with functional specification techniques usually used
in the automotive industry. As basis for the comparison an “Automotive Door
Steering Device” has been the target for specification. The authors came to the
conclusion that the use cases approach lead to a more complete requirements
specification as it discovered and covered more project goals. On the other side,
the functional specification approach provided more specific and thus better un-
derstandable requirements for the developers.

Concerning REM-techniques in the automotive domain, Weber and
Weisbrod [WWO02; p.23] emphasize: “Although most specification activities are
still document-based, a growing number of specifications require complex mod-
els, such as executable analysis models, system and software design models, and
HMI* models”. Thus, in these cases often more formal domain specific lan-
guages such as state machines can be used. These languages have the advantage
that through their better defined semantics more explicit content and content of
higher information can be specified. For example, state charts have the following
advantages compared to pure textual descriptions [Do04; p.3171]:

e  Precision: Due to the concrete formal semantics, misinterpretations are al-
most impossible.

e Model generation: Due to its deterministic and complete semantics, an exe-
cutable requirements model or executable program code can be generated.

e Jerifiability: Through its mathematical semantics, early model analysis, sim-
ulation, or model execution is possible.

In this way, such formal description techniques are used in combination with
adequate tools (such as Matlab Simulink, Matlab Stateflow [Matlab] or ETAS
ASCET [ASCET])) to analyze extensive parts of the functional requirements of an

4 Human Machine Interface
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automotive system. These AMs can be used to simulate the behavior in early

design phases as executable prototype. In later phases, these models can be used

to directly generate the source code implementation. In this, way these AMs
seamlessly also become DMs and the code but significantly avoid redundancies.

As these techniques allow handling extended parts of the functional requirements

often implying significant complexity in their interdependencies, these techniques

can be a significant means to early reduce development complexity and quality

risks. At the moment, however, these techniques are not capable of modeling a

complete system. Thus, still significant parts of ECUs must be developed in con-

ventional system and software development techniques. If those techniques are
then used, then design activities must additionally find ways to properly integrate
these parts into the complete system (see ch. 1.6.6.1 for a further discussion).

Last but not least to mention, the analysis phase is generally difficult to han-
dle, because on the one hand, the problem and its accompanied requirements
should be sufficiently understood and analyzed in order to avoid disapproving
surprises or inadequate designs, but on the other hand, too extensive analyzes
lead to unnecessary extra efforts and extensive redundancies necessary to main-
tain in later development iterations. Extensive analysis can lead to what Brown et
al. call analysis paralysis®® [BMH+98; p.215-218], [Ec03] describing the fact that
developers defer actions to be taken in order to perform more analysis coming to
a point where they are stuck (see also remarks of Hatley et al. [HHPO03; p.53] on
criteria where and when to stop analysis and start with design). In summary, the
maxim on analysis must be to model as much as it is necessary to achieve a better
understanding of the system. As a result, any analysis method must take care of
an adequate scalability of the method. This must also be taken into account when
considering traceability to AMs.

Concerning traceability in general, AMs must also be taken into account.
The solution discussed here does not directly address this issue, but it well has
two indirect links:

1. The fact described above that parts of the FRs of automotive ECUs are de-
scribed by special tools allowing early AMs become seamless design models
and then code sparks the need to consider this in the design process. This es-
pecially involves that design is often performed using different modeling

0" Brown et al. consider analysis paralysis as a management anti pattern [BMH+98;

p.215-218] (the anti pattern concept is discussed in the course of pattern design theory
ch. 1.6.2.4). A slightly different explanation of analysis paralysis is provided by
Conklin [Co06; p.8ff], who brings it in connection with wicked problems (see details
in ch. 1.6.2.2). According to him, “problem understanding can only come from creating
possible solutions and considering how they might work” [Co06; p.11]. Thus, pure
analysis might automatically lead to analysis paralysis.
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tools in one project. This is described in more detail in ch. 1.6. The solution
discussed here to traceability also explicitly considers this in ch. I11.16.

2. Generally, the tool and methodology developed here (see part I1T) should be
equally possible and valuable to apply for establishing traceability to AMs if
these AMs are modeled in a modeling tool supported by the tool’" described
here. In the following of this thesis, this is not explicitly discussed and may
be part of later research.

I.5.5 Separation between Requirements and Design

SE and REM theory often propagate a clear separation between requirements
specification and design (ch. 1.6) meaning that the requirements must be formu-
lated design independently and must not anticipate the design. This shall ensure
as much freedom in design as possible (e.g., see Hatley et al. [HHPO03; p.252] and
avoid “inextricably mixing up requirements and design” [HHPO3; p.252(*)]).
However, other research has shown that requirements cannot be defined
completely design independent (see [Po08], [NuOl], [IBR+01], [PDK+02],

[PKD+03; p.142], [Yo03; p.52]) demanding a “joint elicitation and specification

of the problem and the structure” [PKD+03; p.142].

Young [Y003; p.52] shows some examples why requirements seldom can be
specified totally independently from the system (resp. SW) design:

e Systems are often targeted for environments already containing other sys-
tems (the context). These surrounding systems have influence on the design,
since the system must interact with them. Young speaks here of the surround-
ing systems constraining the design of the new system.

e “For large systems, some architectural design is often necessary to identify
subsystems and relationships. Identifying subsystems means that the re-
quirements engineering process for each subsystem can go on in parallel”
[YoO03; p.52].

e Reasons as budget, schedule, or quality can raise needs to reuse existing
components sparking influences on the system requirements and the design.

e For systems designed in domains with strong external regulations (e.g., civil
aircraft), approved standard (certified) designs may be necessary.

Young [Yo03; p.52] calls these resulting restrictions design requirements or

design constraints. In ch. 111.19, the author uses the term design constraint in a

similar notion, but the author also uses the concept to clearly separate require-

I For example, if a UML tool such as the supported UML-Tool Enterprise Architect is

used.
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ments from the customer and 'requirements' someway arising from previously
made decisions about the solution (design decisions). This approach is supported
by a taxonomy of both requirement types (ch. II1.19).

Pohl describes similar interactions between requirements and system archi-
tecture. He comes to the conclusion that stakeholders cannot specify detailed
requirements without knowing the architecture [Po08; p.23]. As a consequence,
he and Sikora sketch a process model [PS05; p.113-114] where different layers of
requirements and design alternately interact. In [Po08; p.565-602], Pohl has fur-
ther evolved the COSMOD-RE (sCenario and gOal based System development
methOD) process model being a dedicated REM process model for developing
embedded systems according to a goal and scenario-based requirement elicitation
techniques [Po08; p.565]. The method explicitly addresses a HW/SW-Co-design
approach by defining requirements and design alternately at different levels of
abstraction. The model seems to be independent but compatible with Pohl's RE
framework (see discussions about fig. 5-2 (p.41) and fig. 5-5 (p.61)). The alter-
nating definition of requirement and design artifacts at different levels of abstrac-
tion rather resembles to the process models of SPICE or CMMI and is discussed
in ch. 1.7.3.2). The difference, however, lies in its dedication to REM and the
explicit emphasis on goals and scenarios as requirement elicitation and specifica-
tion techniques.

1.5.6 The Role and Nature of Requirement Change

Who wants the world to stay as it is, does not want it to persist.
Erich Fried (*)

Lientz and Swanson [LS80] performed “a very widely cited survey” (“repeated
by others in different domains®) [BROO; p.74] characterizing four different kinds
of changes (see also [Kn01b; p.24]):

e Adaptive: Concerned with changes of the environment (e. g. new HW),

e  Perfective: Concerned with changing functional and non-functional require-
ments,

e Corrective: Fixing errors. Knethen distinguishes “application faults” result-
ing from incorrect requirement documents and “coding faults” resulting from
incorrect implementation [KnO1b; p.24],

e  Preventive: Concerned with changing a system to prevent errors or to im-
prove the structure of the system for future problems;

“Of these, the survey showed that around 75% of the maintenance effort was
on the first two types, and error correction consumed about 21%. Many subse-
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quent studies suggest a similar magnitude of the problem. These studies show

that the incorporation of new user requirements is the core problem for software

evolution and maintenance” [BR0O; p.74].

These findings are not surprising, since “requirement changes affect all ex-
isting system representations” [JLOS; p.118]. Diverse factors causing require-
ments change exist (see [Po08; p.550f], [So07; p.195f], [JLOS; p.120], [LW99;
p-338)):

e  The problem(s) that the system is intended to solve changes due to changes
in the project's environment (market, economic, political or technological
reasons).

e During project progress, evolving deeper understanding of the problem(s) to
solve leads to new or changing requirements.

e Interviewed stakeholders stating requirements often have implicit assump-
tions and knowledge (so called tacit knowledge [Po58], [Po66]; see ch.
11.9.4.2). It is as essential as difficult to surface this knowledge. Due to the
abstractness of SW and its behavior, this knowledge often cannot be surfaced
until the stakeholders see first concrete versions of the SW not fulfilling the
needs of their implicit assumptions and tacit knowledge [Po08; p.331].

e The users change their minds due to better understanding of their needs or
new users entering the scene.

e The environment the system interacts with changes (e.g., new HW, new
processes, new and other systems).

e A new release of the system lets users discover new needs and new usage
ideas.

e Conceptual changes due to discovered none-sustainability of used architec-
tural concepts or technologies impact requirements [HWF+08; p.176].

e The project's situation concerning costs respectively budget levels, resource
situation (staffing) or schedules changes [HWF+08].

Leffingwell and Widrig [LW99; p.339] also refer to development-internal
problems causing requirement changes:

e  The developers “failed to ask the right people the right questions at the right
time during the initial requirements-gathering effort” [LW99; p.339].

e The project failed to establish “a practical process to help manage changes”
[LW99; p.339]. If processes try to force stable requirement 'freezes', a
change backwater can lead to exploding situations between users and stake-
holders causing stress and rework. On the other side, uncontrolled changes
lead to chaotic, unclear project states.

Due to the high impact requirement changes have on all subsequent process-
es and artifacts, changes should be avoided, if possible. Therefore, acquiring as
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stable set of requirements as early as possible in the project is one of the central
goals and paradigms of REM. A diversity of heuristics and techniques exists to
deal with this issue. Hood et al. [HWF+08] list the following factors, where a
structured REM process can reduce the risk of later requirement change:

e Forgotten requirements,

e Incorrect respectively contradictory requirements,

e  Ambiguously formulated requirements leading to misunderstandings;

However, some heuristics in REM as “ask the right question to the right
people at the right time” [JLO5; p.121] often are a matter of experience, intuition
and luck not controllable beforehand. Generally, another not yet exactly men-
tioned aspect the author wants to point out is that, unless the users see a concrete
implementation of the system, talking about requirements and the intended sys-
tem is always very abstract for the stakeholders and each stakeholder has a cer-
tain picture in his (her) mind (s)he can only insufficiently express®. As soon as a
concrete solution is visible, stakeholders can often more easily express the dis-
crepancy between the concrete solution and the picture in their head leading to
the discovery of new requirements or the need for changing requirements.

Firstly, this is closely connected to the term “unknowable requirements”
stated by Young [Y003; p.49ff] expressing requirements not findable at project
start (see ch. 1.5.1). Secondly, it describes the importance of getting feedback
from the stakeholders as early as possible in order to achieve a stable set of re-
quirements as early as possible. Prototyping™ is here the most frequently em-
ployed technique (see [RS02; p.121] for a detailed description of different availa-
ble prototyping techniques). However, techniques as prototypes have its limita-
tions and can only alleviate the requirement change problem.

“Requirements change from the point in time, when they are elicited until
the system has been rendered obsolete. Changes to requirements reflect how the
system must change in order to stay useful for its users and remain competitive
on the market” [JLOS; p.120]. Or expressed in Lehman's 'first law' of software
evolution ([Le96], [LRW+97]): “A system must be continually adapted, or it will
be progressively less satisfactory in its environment” [LRW+97; p.21].

52 Boehm [Bo00a] calls this the IKIWISI (I’1l Know It When I See It) users.

53 This also refers to what Enders and Rombach call Boehm's first law ([ER03; p.17]):
“Errors are most frequent during the requirements and design activities and are the
most expensive the later they are removed.” and the close connection to Boehms sec-
ond law: “Prototyping (significantly) reduces requirement and design errors, especially
for user interfaces”.
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Lehman's 'second law"™*, when a “system evolves, its complexity increases
unless work is done to maintain or reduce it” [LRW+97; p.21] refers to the expe-
rience that “evolving software becomes more complex, and extra resources are
needed to preserve and simplify its structure” [Ni04; p.276]. Refactoring theory
[Fo99] can be seen as today's key answer to address this problem. Thus, changes
are often initiated by requirement change [JLO5; p.118], but also other sources for
change exist. One of these sources, for example, may be rising complexity or
design erosion sparking the need for refactoring to increase quality of an artifact
as preparation for later change needs.

Taking both laws into account, Nierstrasz deduces that “requirements are not
the only input to our development process, but that legacy artifacts also constitute
an important input. Furthermore, as the artifacts evolve, requirements will also
evolve in a never ending cycle ... and, as complexity increases, quality will de-
grade and productivity will decrease” [Ni04; p.276]. Nierstrasz here implicitly
also refers to two further laws of Lehman: 'Law 6' outlines that software always
underlies a continuing growth of functionality (see [Le96; p.111] for a detailed
description and the differences to the 'first law'), whereas 'law 7' states that evolv-
ing software faces “declining quality unless rigorously maintained and adapted to
a changing operational environment” [Le96; p.111].

Changes always imply high deterioration risks of the involved artifacts
[JLOS5; p.120]. These risks can be diminished by a controlled change management
process [JLOS; p.120]. Diverse suggestions for change management processes
exist (see ch. 1.7.2.7 for a change management process definition in SPICE).
Leffingwell and Widrig [LW99; p.341-347] present a “framework for change”
presenting core factors that must be considered in order to ensure a proper work-
ing change management process (see also comments in [JLO5; p.121]):

e Plan for change: involves that the project's stakeholder must be acknowledge
the fact that changes occur and are necessary and thus must be open for
change.

e Baseline requirements: at certain development states, the current state of the
requirements should be baselined. Subsequent changes can thus be compared
with this 'stable version'.

e A single channel: ensures that no requested changes are forgotten and proper
planning (including the decision whether to perform or not) has been per-

' From his research starting in 1968 till the late nineties, Lehman (cf. [Le96],

[LRW+97]) identified all together eight laws that evolutionary software (he calls them
E-type software) underlies. Only the important subsets for this discussion are referred
here, as the other laws are difficult to discuss without the proper context leading to ex-
tended distraction away from the scope of this discussion.
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formed before implementing the change. In larger projects, often a Change

Control Board (CCB) [PR09; p.144f] [VSHO1; p.184f, p.216] performs this

action. A good description on details about a CCB such as how to be orga-

nized, statutes, involved stakeholders, etc. are provided by Wiegers [Wi05;

p.315-327].

e Change control system: collects and administers change requests “allowing
the stakeholders to track and assess the impact of changes” [JLOS; p.122]
(see ch. I1.10.3).

e Manage hierarchically: shall ensure changes are introduced top-down avoid-
ing that changes are introduced into code neglecting potential effects on re-
quirements, design artifacts and tests™.

This framework for change is more a collection of principles (heuristics)
leaving open the actual change process. Different proposals of change processes
(see, e.g., [Po08; p.545-560] [RSO7; p.426-434], [HWF+08; p.175-191], [KnO1b;
p.27-29], [So01; p.534-542], [HDH+06; p.213-219], [MHD+07; p.160-168],
[Wi05; p.305-327]) exist “with varying levels of detail and explicitness” [JLOS;
p.122]. In most cases, however, details on how to perform these processes in
practice are mostly left out [JLOS; p.118]. Here, the requirement change man-
agement process of Wiegers [Wi05; p.305-327] is an exception as it provides
checklists [Wi05; p.322-323] for developers to apply directly in practice.

The concrete implementation of a process should always underlie the specif-
ic individual project situations (see [HWF+08; p.190], because project individual
factors in most cases influence the change management process)’. Later, ch.

> Knethen [KnO1b; p.24] makes here a different distinction. She claims that perfective

changes and corrective changes concerning “application faults” should be introduced
top-down, since affecting the whole system. Whereas coding faults should be intro-
duced bottom-up starting with the artifact the fault was detected and ending with the
artifact being the source of the fault. The author tends to the opinion that different
kinds of changes may include different strategies. Knethen’s proposal leaves open the
question what to perform with adaptive changes and preventive changes. The author
thinks, adaptive changes are equally requirement related as perfective changes and
should be introduced top-down, whereas preventive changes may be more a matter of
design or coding and should be introduced at the abstraction level they have their first
occurrence (e.g., a simple if in the code ensuring robustness to further changes is very
low, whereas framework-like patterns (ch. 1.6.2.4) for a component to ease later
changes is more an issue of design).

Of course, such a process should be accompanied by a certain set of constraints and
orders from the strategic organization (e.g., company guidelines) the project is embed-
ded in. Moreover, also process standards as SPICE and Automotive SPICE (see ch.
1.7) outline a change management process (SUP.10, see ch. 1.7.2.7) with a set of con-
straints for the implementation of a SPICE conforming change management process.
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1.7.2.7 highlights the essential demands of the development process standard
ISO15504 for a change management process.

An essential foundation of any change management process is the need to
estimate the impact of a change. Impact analysis theory tries to provide the essen-
tial principles necessary for a structured approach on change impact estimation
(ch. 11.10.3). As ch. 11.10.3 shows, requirements traceability is a central means
for most impact analysis concepts.

Practice, however, shows that changes seldom have the small impact they
are initially believed to have [Wi05; p.305], [JLO5; p.117]. A study by Lindvall
and Sandahl [LS98] suggests that the impact of most changes is underestimated
by a factor of three.

Boehm and Turner indicate that change also is connected to a pareto distri-
bution [Pal897] meaning that 20% of the changes drive 80% of the costs as they
have “the most system-wide impact” [BT04; p.219].

In the experience of ReiBing, up to 80% of change effort is caused by cor-
recting wrong design decisions [Re02; p.1] (also cf. [Mo04; p.90]). Lehman
[Le96; p.110] emphasizes that many of the unpredictabilities about changes are
related to what he has called the “software uncertainty principle” [Le89] describ-
ing the fact that assumptions upon which design decisions depend on can be
implicit or explicit to developers, but both kinds can get invalid due to changes.

In the author's opinion, the connection between these statements lays in the
fact that design decisions are usually taken with pending uncertainty of incom-
plete requirements. Later, new requirements and requirement changes cause sig-
nificant numbers of design decisions to get invalid’’. Thus, changes often cause
the adaption of significant aspects of design decisions taken before. When these
decisions have a far reaching influence (e.g., system wide scope), change effort
and risks are correspondingly higher leading to the pareto observation of Boechm
and Turner [BT04; p.219]. As a consequence, the author is convinced that impact
estimations must find a way to adequately include decision information in order
to achieve better results. This, again, is especially important for tackling the deci-
sions involved in the 20% causing 80% of the effort.

However, estimating the possible impact of a change is not the only crucial
point. Once the decision has been made to perform a change, the change must
also be introduced consistently into all affected artifacts. This can be called con-
sistency management (cf. [BCM+08; p.121f]). Here again, the identified impacts

" 1In the author's experience, design decisions often do not get directly invalid by one

change. It is rather a creeping erosion caused by several changes. Correspondingly, the
author finds the term architectural erosion used in some design literature very to the
point.



1.5 Requirements Engineering and Management 55

through impact analysis guides the way to ensuring that no affected part is for-
gotten.

Another aspect to consider is that requirement change can be foreseen to a
certain degree. Knethen [Kn01b; p.40], e.g., proposes that the change probability
of a requirement can be estimated and documented beforehand (also cf. ch.
11.10.4.2.1). With this information at hand, designers could design extra flexibil-
ity mechanisms for parts influenced by requirements with high change probabil-
ity. In the author's opinion, such strategies are usually done informally by design-
ers during design, because designers often try to keep parts flexible, where their
intuition tells them to expect later changes.

In summary, requirement change is a matter of fact and will not be avoidable
(ch. 1.5.6). Further, the rapidity of change has continuously increased [BT04;
p-149] and, thus, probabilities of further growing requirement changes are very
high. One factor in this consideration is that the role of software has changed
over the years. In the early times, software was used to automate activities (e.g.,
type writing by word processing) or replace other solutions (e.g., mechanical
steering of motors by electronic steering), because software provided certain
advantages. In these cases, the scope of these software solutions was relatively
well-defined by the solution to replace [Po08; p.32].

Additionally, it is to mention that these replaced solutions often provided
concrete real world user experience, whereas software often provides very ab-
stract experiences to users". In opposition to this, most today's projects aim to
create innovation basing on earlier created software [Po0S8; p.32]. In these cases,
definitive knowledge about the needed outcome of a solution is exorbitantly more
vague leading to significantly increasing rates of requirements changes.

1.5.7 Traceability in the Context of Requirements
Management

The IEEE Standard Glossary of Software Engineering Terminology (cf. [IEEE-

610; p.78]) defines traceability by the following two definitions:

1. “The degree to which a relationship can be established between two or more
products of the development process, especially products having a predeces-

% For example, a mechanical steering device can be opened and its mechanics can be

analyzed in a very definitive way, but a SW based ECU replacing the mechanical
steering is very difficult to analyze in an equally definitive way. Gerlich and Gerlich
[GGOS; p.91] describe that SW in comparison to HW, where problem are discovered
relatively easily, rather has a characteristic of a gas or chemical.
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sor-successor or master-subordinate relationship to one another; for example,
the degree to which the requirements and design of a given software compo-
nent match. See also: consistency”.

2. “The degree to which each element in a software development establishes its
reason for existing; for example, the degree to which each element in a bubble
chart references the requirement that it satisfies”.

The earliest provided definition the author could find is made by the
IEEE830-1984 ([IEEE830-84]%): “A software requirements specification is
traceable, if (i) the origin of each of its requirements is clear and if (ii) it facili-
tates the referencing of each requirement in future development or enhancement
documentation”.

Currently, the definition of Gotel and Finkelstein “has become the common
definition of requirements traceability” [Pi04; p.92]: “Requirements traceability
refers to the ability to describe and follow the life of a requirement, in both a
forwards and backwards direction (i.e., from its origins, through its development
and specification, to its subsequent deployment and use, and through all periods
of on-going refinement and iteration in any of these phases)” [GF94].

In other words, the basic idea behind requirements traceability is to describe
and track a requirement from its first occurrence (its origin) to all further consid-
ered points (design, code, tests) [Pi04; p.92].

Reading this outline of traceability concept, the ingenuous reader may grasp
a feeling that traceability is very intangible and rightful concerns about the use-
fulness may arise.

In fact, traceability mainly gathers its right for existence by two factors:

1. Consistency gaps arise between different artifacts ([Lin94], [KnO1b], [EbOS;
p-138f]). Traceability information can be seen as bridge between these gaps.

2. The inevitable fact of requirement change.

Point one refers to the problem that different artifacts are not completely
consistent to each other. Chapter I1.10.2 explains this in more detail.

As already described in ch. 1.5.6 above, the second point concerns with the
problem that requirement change is inevitable, but possible to handle if properly
managed. In the authors view, the key issue about proper requirement change
management deals with identifying the actual impact of a change as accurate and
as early as possible. Such attempts are called impact analysis (IA) and are de-
scribed in detail in ch. 11.10.3. When a change management process such as de-
scribed in ch. 1.5.6 is used, /4s provide the necessary information for estimating

% Now replaced by [IEEE830-98] — a good description of the standard is provided by
[Sch00; p.89-101].
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the effort of the change. If the decision was positive for implementing a change,
the /4 supports the developers in consistently implementing the change®.

1.5.7.1 Traceability in Different Aspects of Development
Activities

Traceability can involve different aspects of development activities. For a better
distinction of these aspects, different terms related to the considered aspects exist.
The following description will outline these different aspects and explain the
terms used in relation to these aspects.

At first to mention, Gotel and Finkelstein [GF94] defined the terms pre- and
post-requirements specification (Pre-RS and Post-RS) traceability:

e “Pre-RS traceability refers to those aspects of a requirement's life prior to its
inclusion in the requirements specification” [GF94; p.1] (see also [Pi04;
p.93)).

o “Post-RS traceability refers to those aspects of a requirement's life that result
from inclusion in the requirements specification” [GF94; p.1] (see also
[Pi04; p.93]).

Pre-RS is useful, because it preserves the original origin of the requirement.
In case a change of a requirement comes to discussion, the project members
know which documents or stakeholders they should consult before deciding to
change the requirement.

Post-RS is useful to get the direct implementations (e.g., design, or code
files) or tests of the requirement. This can be the starting point for an impact
analysis.

The terms forward and backward traceability are closely related to this.
They describe the direction of the established traceability (cf. [GF94], [GF95],
[Wi95], [Pi04]):

e Forward traceability: means following the traces in direction to later arti-
facts (as, e.g., from the requirements to design or test artifacts).

e Backward traceability: means following the traces in direction to earlier
artifacts (e.g., from the requirements to its source (a person, customer re-
quirement, institution, law, standard, meeting protocol, etc.)).

5 In other words: Not overseeing (resp. forgetting) an impacted location. As Boehm has

already pointed out in the early 80ies [Bo82; p.40], problems discovered in late devel-
opment phases (e.g., during testing phase) are significantly more expensive to fix and,
thus, finding and fixing all impacted changes at the beginning is crucial to project suc-
cess.
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Figure 5-4 Overview over different traceability terms oriented on Brcina [Br07a; p.4]

Forward traceability is useful when an impact analysis (see ch. 11.10.3) of a
proposed change is made, since it helps to find all impacts of the change.

Backward traceability again refers to the basic reason for the existence of
the item in the development process. In case of an impact analysis for a proposed
change, going back to all reasons for existence of an item helps to ensure the
change conforms to all its needs, which ensures consistency.

Both concepts sound similar, but they are not the same. Knethen [KnO1b;
p.46] provides a good description of the differences: “Forward and backward
traceability does not look at traceability from the perspective of a certain docu-
ment in the way that Pre-RS and Post-RS do. Forward traceability describes
tracing documentation entities to realization documentation entities on succeed-
ing abstraction levels, whereas backward traceability describes tracing documen-
tation entities to source documentation entities on preceding abstraction levels”.
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Forward traceability can also mean tracing a design element to its realiza-
tion in code and backward traceability vice versa; whereas Pre-RS and Post-RS
traceability are limited to the perspective of the requirements specification (see
fig. 5-4).

In the literature, an early agreement (cf. [RE93], [GF94], [Kn01b; p.46]) has
arisen that fraceability should be bidirectional. In other words, traceability
should combine both forward and backward traceability and they should be pos-
sible at the same time.

When it comes to relationships of items within an artifact or between objects
in different artifacts, the terms vertical and horizontal traceability are used. Un-
fortunately, the terms are used by different authors with different meanings.

The following definition seems to origin from Ramesh and Edwards [RE93].
It seems to be preferred in literature (see [Li94], [Br07a], [KnO1b; p.43]):

e Horizontal traceability is the possibility to trace dependencies of an item to
other artifacts or models.

o Jertical traceability is the possibility to trace dependencies of an item within
one artifact or model.

Contrary to this, Bohner [Bo91] — probably orienting himself by the water-
fall model — defined the meanings in the exact opposite direction to the former
definitions. Horizontal traceability at Ramesh and Edwards is vertical traceabil-
ity at Bohner and vertical traceability at Ramesh and Edwards is horizontal
traceability at Bohner (also cf. [Kn01lb; p.41-43], [Li94; p.17]). With the adop-
tion of the process standard Automotive SPICE® (4-SPICE), this problem of
confusing the terms has additionally increased, since A-SPICE again provides
definitions of horizontal and vertical traceability with a deviating semantics to
the ones introduced above (see ch. 1.7.4 for details).

Due to these incompatible usages of the terms horizontal and vertical trace-
ability, the author prefers to avoid these terms in the following. Pinheiro has
avoided these terms by using the terms inter-requirements traceability for tracea-
bility relationships between requirements and extra-requirements traceability for
relationships between requirements and other artifacts [Pi04; p.95]. These terms
seem more adequate. At the moment, however, traceability is seen beyond the
scope of requirements (e.g., there also exists traceability between a design model
and its representing source code). Correspondingly, the author prefers to use the
terms intra-artifact traceability for relationships within one artifact and extra-
artifact traceability, instead of the misleading horizontal and vertical traceability.

1 Automotive SPICE is a domain specific adaptation of the general SPICE standard.

Both standards are described in detail in ch. 1.7.
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Traceability also has a temporal dimension, meaning requirements change
during projects and thus also traceability relations may change. Recording and
retrieving this history is also a necessity in requirements traceability. This aspect
is called evolutionary traceability ([Br07a; p.4], [Po08; p.509]). For more infor-
mation on traceability and configuration management the author recommends
reading [HWF+08; p.114ff], [Kn01b; p.45], [Li94; p.20].

In connection with his RE framework (see also fig. 5-2 (p.41), Pohl [P0o93],
[Po96], [Po08; p.42ff] also provides a model describing the evolutionary trace of
the RE process within three dimensions (see three axes in fig. 5-5):

e  “The specification dimension deals with the degree of requirements under-
standing at a given time. ... Focusing on this dimension, the aim of RE is to
transform the operational need into a complete system specification through
an iterative process of definition and validation (e.g., analysis, trade-off-
studies, prototyping)” [P0o93; p.280].

e  “The representation dimension copes with the different representations (in-
formal and formal languages, graphics, sounds etc.) used for expressing
knowledge about the system” [P093; p.281].

e  The agreement dimension “deals with the degree of agreement reached on a
specification. At the beginning of the RE process each person involved has
its own personal view of the system. Of course, few requirements may be
shared among the team, but many requirements exist only within personal
views of the people, e.g., stemming from the various roles the people have
(system analyst, manager, user, developer etc.)” [P093; p.283]. In the further
project progress, a specification emerges with rising agreement between the
team members.

A RE process in a development project starts at a certain initial stadium (ini-
tial input) and then meanders within these three dimensions, until it reaches the
desired output (fig. 5-5). The RE framework is interesting in the context of trace-
ability as traceability relations can be involved in any of the three dimensions.

Ch. I1.10 discusses the different dimensions of the RE framework in connec-
tion with traceability.
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Figure 5-5 The three dimensions of the RE framework [P0o93; p.284], [Po08; p.42]

1.5.7.2 Traceability as an Issue of Quality

Currently, due to the above outlined significant support potential®® fraceability
can offer a project, as outlined above, requirements traceability is seen more and
more as decisive quality issue of processes for developing safety-critical systems.
This is also reflected by new process standards putting more and more emphasis
on requirements traceability as seen in SPICE, Automotive SPICE, CMM]I, and
IEC61508 (cf. ch. 1.7).

In many projects employing one of these standards, the customer requests
the obedience of the standard as a requirement. As already discussed in ch. 1.5.1,
these requirements for the development process can be seen as nonfunctional
requirements. Since this nonfunctional requirement also includes certain demands

62" In the following chapter, the author will show that this is in fact at first only a potential

not necessarily gathered by most implementations of traceability.
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for requirements traceability, requirements traceability can also be seen as a
process related nonfunctional requirement for a project®.

In Automotive SPICE, discussions have been sparked, whether traceability
should even have the status of a separate support process (cf. ch. 1.7.4). As trace-
ability involves many artifacts of other engineering disciplines apart from re-
quirements and also traceability between none requirement items and artifacts is
already the case (e.g., traceability between design and code), it may be even
possible that traceability further dissects from the REM scope becoming a more
exceptional position as an overall management process.

1.5.7.3 The Potential Uses of Traceability

The following listing summarizes the potential uses of the traceability concept

(also cf. [Wi05; p.3321]):

e Impact analyses (IA) of changes are one of the most important uses of Post-
RS and inter-requirements traceability (see ch. 11.10.3) since it determines
the effects (items to change, efforts and costs) of the change on other re-
quirements and all subsequent requirement artifacts. It has also some im-
portance in Pre-RS traceability since it must become clear whether these
changes (especially changes of requirements effecting of former changes of
requirements) are still conforming to the original needs of the requirements'
originators.

e Pre-RS traceability supports project planning. The relevance of a require-
ment and thus its prioritization is often determined by the importance of the
source of the requirement. It is even possible that found requirements are
considered irrelevant, because the originating stakeholder is not one of the
primary target stakeholders.

o Traceability helps that all found requirements are adequately considered in
all subsequent activities of design, code and testing®. Missing traceability
links of a requirement indicate that it may be forgotten or that certain arti-
facts have not yet developed. In this case, traceability also gives important
indications about the status of a project [Wi05; p.333].

See also [RJO1; p.59]: “Requirements traceability has been identified in the literature
as a quality factor — a characteristic a system should possess and include as a nonfunc-
tional requirement”.

As shown in ch. 1.7, this is even also concerning lower level requirements specifica-
tions, when REM-processes are performed at different levels of abstraction.

64
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Traceability helps to improve the consistency of all development artifacts by
making more interdependencies explicit.

Explicit traceability relationships help in later phases of maintenance, espe-
cially when the original developers are staffed into a new project and thus
different developers must perform the maintenance effort [Wi05; p.333].

In the same way, risks or detrimental effects caused by important developers
leaving a company are diminished because parts of their knowledge about
the connections within the project are kept in the traceability information
[Wi05; p.333].

The traceability concept also includes the evolutionary aspect of require-
ments helping to reproduce older development situations of the project, if
needed.

Traceability can be used to fulfill certain certification criteria. This is espe-
cially important in the field of safety-critical systems, where a certain process
maturity must be proved (see ch. 1.7).

Traceability can be used as a proof in law suits. This fact is especially im-
portant for safety-critical systems to ensure that, if an accident with fatal
consequences occurs the developers can prove they did not act carelessly.
Present traceability information can also be an important help for reverse
engineering or integration of legacy systems.

In a similar direction, traceability information can also help in decisions
about the reuse of components or systems in new projects [Wi05; p.333].
Last but not least, traceability can improve festing. Firstly, the knowledge of
which tests cover which requirements helps to avoid unnecessary redundant
tests. Secondly, traceability can help to identify causes for problems found in
tests because through the traceability connections between tests, require-
ments and design (resp. code) the probable code candidates causing the prob-
lem can be easier identified.

Since the further thesis mainly concerns itself about traceability to design,

the specific uses of traceability in the context of design are now listed again (cf.
[HDH=+06; p.94]):

Ensure adequate consideration of all requirements in the design(s) (and thus
on the resulting system resp. SW).

Support for assessing the impact of requirement changes on the design (/4).
Support for consistent implementation of a requirement change at all affected
places (previously identified by an /4).

Support for verification procedures: It is easier to track which requirement is
relevant for which SW module and thus must be considered by implementa-
tion and testing.
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1.5.8 Deficiencies of Today's REM Practices

At the end of this chapter, it is to say that REM such as all development method-
ologies do not provide a “silver bullet” [Br87]. The following problems may be
most critical issues of today’s REM methodologies:

No clear definition of “best practice” exists [BGK+07; p.131]. Thus, accept-
ed reference models are missing [BGK+07; p.131]. Solution attempts for this
shortcoming are provided by Broy and Geisberger ([BGK+07], [Ge05]), or
Pohl [Po08].

Requirements are often experienced as poorly documented, too solution
oriented, incomplete, inconsistent, not implementable and not scalable
[BGK+07; p.131]. In the eyes of Sousa and Castro, most development ap-
proaches lead to requirements that are specified “in a scattered and tangled
fashion” [SC04; p.350]. This opinion leads them to propose using use cases
in combination with a NFRs framework to systematically identify and docu-
ment requirements [SC04].

Available tools are ineffective, offer only very general concepts, are too
implementation oriented, require high administrative effort and offer low so-
phisticated visualization [BGK+07; p.131].

No homogeneous approaches and communication media exist between prod-
uct management, research and development, marketing and distribution
[BGK+07; p.131].

Frequent and late requirement changes are unavoidable and are often — espe-
cially in sequential processes — not sufficiently handled [BGK+07; p.131].
According to Pohl [Po08; p.32f]%, requirement elicitation has become more
difficult, because today's systems are built on formerly developed systems.
Traditionally, it was easier to identify the real needs of a system to be devel-
oped up-front, because the goals mainly targeted to automation or partial au-
tomation of manual processes, where the workers had concrete experiences.
Thus, the processes were deeply understood. After most of these processes
have been already automated, today's development goals often aim for im-
proving already automated processes or combine them in complete innova-
tive ways. As computerized systems hide the actual complexity and business
logic from the users and only provide abstract feedback (e.g., via human ma-
chine interface controls), today's workers only have partial, abstract experi-
ences of these processes. Pohl [Po08; p.32f] also explicitly references to
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The reader further interested in this topic may consult Pohl [Po08; p.32f], who men-
tions a few further aspects on this topic.
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problems in the automotive industry, where long-running research endeavors
develop new complex systems in research environments (e.g., ABS or ESP%)
that must then be integrated into a real-life car system environment already
containing other complex computer-based ECUs.

In a similar direction, Boehm and Turner [BT04; p.149] argue that up-front
specification techniques, as required by traditional RE, work quite well for
batch, sequential, non-interactive applications of the 1960 and 1970 but have
dwindling significance for applications with interactive user interfaces, be-
cause these applications involve complex, nonlinear combinations of differ-
ent user interactions. In the converse argumentation, as embedded systems
often do not have significant user interfaces, up-front specification may be a
good means for embedded systems development. On the other side, embed-
ded systems are often embedded into complex environments requiring signif-
icant complexity of the ECU's control mechanisms, which might also be dif-
ficult to specify up-front.

1.6 Design in Systems and Software

Development

Although in many fields designers quite frequently make inventions,
designing and inventing are different in kind.

Invention is the process of discovering a principle.

Design is the process of applying that principle.

The inventor discovers a class of system — a generalisation —

and the designer prescribes a particular result,

object, and source of energy he is concerned with.

[Py78; p.21]

“Design is an activity that generates a proposed technical solution that demon-
strably meets the requirements. In that process, we simulate (mentally or other-
wise) what we want to make or do, before making or doing it. We iterate until we
are confident that the design is adequate” [ER03; p.34].
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Most®” current state-of-the-art SysEng and SE theories assume that after the
requirements specification has reached a certain quality degree and before the
system (resp. SW) is implemented, a certain phase of design takes place.

This chapter gives a short introduction to this topic. However, design is a
very complex topic and this thesis is not really concerned with a detailed design
theory in the usual sense that it discusses a way how to design a specific type of
system or a specific design language as the Unified Modeling Language (UML).
In fact, the thesis rather aims at letting open a specific approach for design and is
more interested in design at a higher meta-level. In this way, the author hopes to
identify general principles and techniques that give way to identifying require-
ments a requirements-to-design-traceability-tool must obey in order to provide
value for designers. Such an attempt seems legitimate in the view of the author,
because traceability information and a tool aiming at traceability is per se a tool
working at a higher meta-level.

Nevertheless, only analyzing a higher meta-level can lead to soft, blurry and
unspecific talks. In this way, a certain 'grounding’ shall be achieved by references
to more concrete techniques or facts, where and whenever it is appropriate.

At first, this chapter will introduce different phases of design in course of
applying SysEng and SE. This in mind, the next chapter shall widen the focus by
introducing some very general theories (or even to be called philosophies) about
design that describe important aspects of design and have led to certain trends in
SysEng and SE design theory, which are observable today. At the end, the author
will make a short reference to some design practices in the automotive sector in
order to identify further issues that a design traceability solution should addition-
ally consider to provide uses for automotive projects.

1.6.1 Different Design Phases in SysEng and SE

During development of ECUs, different design phases occur. In this context,
three different phases of design are of concern:

7 In fact, some agile methods such as eXtreme Programming [Be0Oa] seem more to

propagate a kind of architecture evolving out of the development. The heuristics is to
design the code [Be00a, p.57] as simple as it can fulfill all currently planned require-
ments (here often called stories, features or use cases). Since it is not sure that future
requirements are really implemented, the design shall not care for these requirements.
For new features really decided to implement, the old code is refactored [Fo99] until it
also fits with the new requirements. This does not mean no design is present. It is more
that the design implicitly evolves during programming — also called emergent design
[St04; p.65f].
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o  System design in the context of SysEng (ch. 1.4),
e Software architecture as kind of high level design of the SW during SE,
o Detailed software design;

1.6.1.1 System Design

During SysEng phase (ch. 1.4), the system design (i.e., system architecture) cares
for the general outline of the system. Douglass brings this to the point [Do04;
p-37-38]: “In multidisciplinary systems development — that is, those include
software, electronic, mechanics, and possible chemical aspects — the system ar-
chitecture is constructed early and system-level requirements are mapped down
onto the various aspects of the architecture”. So, a major concern is to adequately
partition the complete system into the parts concerned by several engineering
disciplines (SW, HW, mechanics ...), to outline the interactions and interfaces
between those parts and to map (partition) the overall system requirements to the
specific parts. Douglass [Do04; p.29] names the following primary activities in
SysEng:

1. “Capturing, specifying and validating the requirements of the system as a
whole”,

“Specification of the high-level subsystem architecture”,

“Definition of the subsystem interfaces and functionality”,

“Mapping the system requirements onto the various subsystems”,
“Decomposing the subsystems into the various disciplines — electronic, me-
chanical, software, and chemical — and defining the abstract interfaces be-
tween those aspects™;

Apart from the first point, the latter points can be seen as the primary activi-
ties during system design. “In all these activities, systems engineers are not con-
cerned with the design of the discipline-specific aspects of the software or the
electronics, but are concerned with the specification of what those design aspects
must achieve and how they will collaborate” [Do04; p.29].

ok W

1.6.1.2 Software Architecture

In SW development, design is separated into the SW architecture and detailed
design.

SW architecture is the high level design of a SW performed by the archi-
tect(s). It “defines the essential structures of the software system and is the basis
for the development. Thus, it can be seen as the construction plan facilitating the
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development of complex and extensive SW” [DHO03; p.1 (¥)]. In the view of

Douglass [Do04; p.38], “architectural design identifies the strategic design deci-

sions that affect most or all of the application, including the mapping to the phys-

ical deployment model, the identification of runtime artifacts, and the concurren-
cy model. This is typically accomplished through the application of architectural
design patterns”.

As a first definition, Bass et al. define SW architecture as “the structure or
structures of the system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them* [BCKO03; p.3].
Bass et al. provide three reasons for the importance of a SW architecture
[BCKO3; p.26]:

1. “Communication between stakeholders”: “Software architecture represents a
common abstraction of a system that most if not all of the system's stakehold-
ers can use as a basis for mutual understanding, negotiation, consensus and
communication”.

2. Catalog of “early design decisions”: “Software architecture manifests the
earliest design decisions about a system, and these early bindings carry weight
far out of proportion to their individual gravity with respect to the system's
remaining development, its deployment, and its maintenance life. It is also the
earliest point at which design decisions governing the system to be built can
be analyzed”.

3. “Transferable abstraction of a system”: “Software architecture constitutes a
relatively small, intellectually graspable model for how a system is structured
and how its elements work together, and this model is transferable across sys-
tems. In particular, it can be applied to other systems exhibiting similar quali-
ty attribute and functional requirements and can promote large-scale reuse”.

The IEEE 1471 [IEEE1471] defines SW architecture as “the fundamental
organization of a system, embodied in its components, their relationships to each
other and the environment, and the principles governing its design and evolu-
tion”.

Moro characterizes SW architecture as “the carrier of knowledge” [Mo04;
p-29 (*)]. Thus, he [Mo04; p.171] considers the communication of ideas and
concepts as the main task of a design model, where conclusiveness of the mod-
eled ideas is especially important to consider. In this way, he follows the argu-
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mentation of Kruchten [Kr95; p.43] and others that these models must also fulfill
a certain aesthetics®.

In the view of Moro [Mo04; p.171], one significant negative influence on
aesthetics is the occurrence of clones in a model. Additionally, clones are often a
symptom of copy-and-paste reuse®. Copy-and-paste reuse involves the dangers
that flaws in copied code are dispersed over all locations it has been pasted
[Mo04; p.171]. Correspondingly, current SW design literature recommends avoid-
ing code clones, except it is designed on purpose as redundant components for
addressing NFRs such as reliability (e.g., triple modular redundancy) [TCS98].
From a more general perspective, it is to say that redundancies should be general-
ly avoided throughout all development situations. As knowledge and understand-
ing of a project often get unstable very quickly (see ch. 1.5.6), an extensive
amount of time is needed to reorganize and reformulate the documented
knowledge and understanding [HTO03; p.24].

The problem is now is that it is easy to duplicate the knowledge represented
somewhere in specifications, processes and programs, but this invites projects to
become a “maintenance nightmare — one that starts well before the application
ships” [HTO03; p.24].

As a consequence, the author agrees with the recommendation of Hunt and
Thomas [HTO03; p.24-30] to obey a principle, what they call the DRY-principle
(Don't Repeat Yourself): “Every piece of knowledge must have a single, unam-
biguous, authoritative representation within a system” [HT03; p.24]. Thus, for the
following ideas and concepts of this thesis, the author has always tried to follow
this principle.

Fowler [Fo03] expresses a different view about architecture. According to
him, architecture emerges out of design (design can here also be implicit in code
and not explicitly stated via a model etc.) as a kind of shared understanding of the
developers' group consensus of what is important within the design. In this way,
architecture is a “social construct” [Fo03; p.3]. He further points out that archi-
tecture often addresses decisions that are difficult to change later. A system can

68 Bloch [Blo95; p.16] emphasizes that the “physical form or design is an unquestioned

determinant of its marketplace success”. Transferring this to engineering, the architect
must also sell his design ideas to the implementers of her/his design. Therefore, aes-
thetics may have decisive influence, whether a design is abided by a project. Some
specific advices for aesthetics in design documentation can be found in the chapter.
Clements et al. argue in the same direction mentioning that also the presentation of
ideas is important to achieve acceptance [CBB+03; p.321-323].

The term copy-and-paste reuse is taken over by the known anti pattern for design
[BMH+98]. The anti-pattern concept is discussed in the course of pattern design theo-
ry ch. 1.6.2.4.
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usually be solved in different ways. Thus, multiple architectures lie in a system
[Fo02; p.1] and the architect must decide which possible architecture is to be
followed. Over a system's lifetime its usage and purpose can change. In this
way, what is important for the architecture may change during a system's lifetime
[Fo02; p.1]. Thus, architecture is at last all of whatever is important concerning a
system [Fo02; p.1].

1.6.1.3 Detailed Design

Detailed design is a low level design of — for instance — a module in a SW sys-
tem. It “adds low-level information necessary to optimize the final system”
[Do04; p.38]. The detailed design is performed by the developer engaged with
the implementation of a module, or component. A detailed design for a compo-
nent (module, class...) must address the following aspects (see [Do04; chapter 10;
p.589-616]):

e The structuring of the contained and handled data,

Refactorings within the component,

Implementation of associations to other components,

The set of operations defined on the data,

Visibility of data and operations,

Algorithms used to implement those operations,

Strategies for error or exception handling.

1.6.2 General Theories about Design

As a study of Atwood et al. [AMWO02] suggests, different notions about design
exist within the design research community (cf. also [HAO6a; p.74-77]). This
chapter tries to outline a few fundamental design theoretic views on what design
and its processes are about. The collection is oriented on Horner and Atwood
[HAOGa; p.74-77] that, in the author's view, reflect most characteristics of design,
of which designers should be aware’'. All these theories do not actually originate
in SE or SysEng theory but originate from a broader scope on a general theory of
design. It may be a matter of discussion whether these general theoretical find-
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Later in ch. 1.6.2.1.2, it is shown that this decision making process is rather arbitrary.

[AMWO2] provides some additional views, more details and a detailed analysis of
interconnections (co-citations) between the different notions, not discussed here. Thus,
the author recommends the interested reader to read [AMWO02] for further information.
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ings can be directly transferred to SE and SysEng design, since these general
theories embrace wide scopes (as e.g., design of buildings). However, as these
chapters also show, each of the theories discussed here have already been trans-
ferred to SE or SysEng design theory by other researchers as this chapter will also
outline (the most prominent example may be the pattern concept (ch. 1.6.2.4)).

An aspect of design purposely neglected by the author is design theories
about 'aesthetics'. Even though Kruchten [Kr95; p.43] or Moro [Mo04; p.171]
emphasize that also SE design has and needs its own aesthetics, the author thinks
it may be problematic to find a common understanding of this very intangible
concept within such a broad design theory. Some researchers may even object
that SW or systems design should concentrate on pure functionality, or may just
define aesthetics as a kind of attribute improving clarity in design. Indeed, the
author thinks that aesthetics may have a deeper — however very intangible — im-
pact. An indication of this deeper meaning may be the interpretation of the had
smells concept introduced by Fowler [Fo99]. A code having bad smells actually
works; however, the developers have bad feelings about the code. Here, in the
author's experience, bad smelling code is very often connected to bad aesthetics.
On the other hand, Coggins pointed out that [Co90; p.1] (cited after [Bo94;
p.333]) “pragmatics must take precedence over elegance, for Nature cannot be
impressed” meaning that aesthetic-oriented design itself can also be a source of
complexity (or, complication) and designers should search for simple solutions to
avoid complication (cf. footnote 80 (p.77)).

1.6.2.1 Design as Symbolic Information Processing

“Design, so construed, is the core of all professional training; it is the principal
mark that distinguishes the professions from the sciences” [Si96; p.111]. Simon
[Si96] is concerned with artificial worlds (somehow constructed by humans) in
comparison to natural worlds. According to him, the manifestation of an artificial
world is an artifact. Simon [Si96; p.3] sees that an artifact reflects an adaption to
human goals or purposes that must obey natural law. Therefore in his eyes [Si96;
p.111], “everyone’* designs who devises courses of action aiming at changing
existing situations into preferred ones“. However, Simon appeals to a “profes-
sional responsibility” to “discover and teach a science of design, a body of intel-
lectually tough, analytic, partly formalizable, partly empirical, teachable doctrine

2 Taking this statement seriously, also developers just writing code without an explicit

design do also design. Similar notions are know from the agile community, where de-
sign implicitly manifests through implementation and later refactorings.
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about the design process” [Si96; p.113]. As he observed most of the up-to-then

known design theories “as intellectually soft, intuitive, informal and cook-

booky”*” [Si96; p.112], he tried to outline general principles for a general design
theory”* ([Si96; ch.5 (p.111-138)]: “The science of design: Creating the artifi-
cial”):

e A decision theory as a logical framework for rational choice among given
alternatives. Tang et al. [TJHO7; p.5] — also interpreting Simon — refer to de-
sign as “a process of synthesizing through alternative solutions in the design
space. Reasoning to support or reject a design solution is one of the funda-
mental steps in this process”.

e Techniques for actually deducing which of the available alternatives is the
optimum. Simon explicitly remarks here that this is not about finding the best
solution, but a “satisficing” one [S196; p.119], because “so called 'figures of
merit' permit comparison between designs in terms of 'better' or 'worse' but
seldom provide a judgment of 'best' ... in the real world we do not have a
choice between satisfactory and optimal solutions, for we only rarely have a
method of finding the optimum” [Si96; p.119].

e “Adaption of standard logic to search for alternatives. Design solutions are
sequences of actions that lead to possible worlds satisfying specified con-
straints” [Si96; p.124]. Possible solution worlds are seldom unique. Research
should search for sufficient, not necessary, actions to fulfill goals.

e “The exploitation of parallel, or near-parallel, factorizations” [Si96; p.124]
means to factorize the problem into smaller independent partial problems for
easier analysis of alternatives”.

e The allocation of resources is a twofold criterion. “First, conservation of
scarce resources may be one of the criteria for a satisfactory design. Second,
the design process itself involves management of the resources of the de-

7 In the author’s opinion, this observation is still the case as most design literature still

refers to heuristics, patterns (ch. 1.6.2.4) and other rules of thumb. As the next chapters
about wicked problems (ch. 1.6.2.2) and Schon's Theory of Reflective Practice (ch.
1.6.2.3), etc. will show, this may be what design often is about. As design deals with
artifacts made by and for humans, it often involves social aspects inferring high com-
plexity not to be handled by plain analytical and transformational processes.

The author has reworded and interpreted the original principles to better fit the context
mentioned here. Simon's first version on the book dates from 1968. Even though the
book has been updated twice, some of the mentioned techniques in the original formu-
lation are not up to date. However, as this chapter shows, the underlying principles are
still valid up to now. The interested reader may read the original source.

See also thesis 15 by [GGOS5; p.43 (*)]: “If problems are resolved into partial prob-
lems, the solution will be found faster”.

74

75



1.6 Design in Systems and Software Development 73

signer, so that his efforts will not be dissipated unnecessarily in following

lines of inquiry that prove fruitless” [S196; p.124f].

e “The organization of complex structures and its implication for the organiza-
tion of design processes” [S196; p.131].

e  “Alternative representations for design problems” [Si96; p.134] describes the
fact that problems can often be described in different ways (e.g., by different
models).

These points, sketching aspects of a universal design process, lead to a set of
characteristics of design. When looking at the points one to five, making deci-
sions appears to be the central concept of design. Rationale management (Rat-
Man) theory deals with managing decisions and how the underlying rationale of
decisions made can be recorded (ch. I1.9 describes details of this research field in
connection with design). In the points one and two, Simon mainly addresses the
fact that a decision can only be made if alternatives are present. Exploring the
possible alternatives and their impact is a central concept in RatMan from start.
In fact, from RatMan perspective, Bass et al. formulate “design as a sequence of
decisions” [BCN+06; p.258]. One of the most heavily used concepts with close
connections to design rationale in the RatMan sense is the usage of patterns
[DMM+06a; p.19], but patterns also “constitute one of the most heavily used
approaches for organizing reusable knowledge” [DMM+06a; p.19]. Today, pat-
terns are organized in pattern catalogs as a source for search for standard prob-
lems and may thus be seen as today's most heavily used solution for addressing
point three. However, the pattern concept may also be seen as a kind of design
theory and is accordingly discussed in the following ch. 1.6.2.4.

Problem factorization, as discussed in point four, is also an issue of RatMan.
Nevertheless, these kinds of factorizations bear a close connection to point six
which refers to a — in the author's believe — major concern in design. The high
quantities of information involved in design lead to high complexity that must be
adequately organized to enable designers keeping an overview. As the following
sub chapter about complexity shows, Simon's view of design is deeply connected
to this and his research helped laying ground for several connected paradigms
and many concepts encountered today in systems and software design theory.
Among others, hierarchic decomposition and the 'view' concept may be the most
influential ones.

Point seven refers to the problem of proper representation. Representation is
usually performed by models. As models are only abstractions, different kinds of
representations of the same facts are possible. The view concept addresses this
fact, what closes the circle back to point six and the following sub chapter.

Last but not least, point five describes a third major driver of design. As one
of the human-adaptable world's properties is finiteness, any design is limited by
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the available finite resources. The relationship between resource and design can
be described as double-edged. Finite resources are involved in the production and
implementation of a design and design itself cares about the finite resources in-
volved in the described solution.

16.2.1.1 Complexity as a Central Force in Design

“Complexity... is the biggest factor involved in anything having to do with the
software field. It is explosive, far reaching, and massive in its scope” [Gl02;
p-19]. Furthermore, complexity is a significant factor deciding about success or
failure of a developed system or software’®. Therefore, as Brooks [Br87; p.11]
states, “complexity of software is an essential property, not an accidental one”.
This means that complexity can only be mastered but cannot disappear. Corre-
spondingly, complexity must be addressed.

Empirical experiments by Woodfield [Wo79] indicate that a massive in-
crease of complexity happens during the transition between requirements (prob-
lem description) and design (solution description), where a “25 percent increase
in problem complexity results in a 100 percent increase in programming com-
plexity” [Wo79; p.76]. This can also be seen as a strong indication for a pareto
principle-like [Pal897] connection between the problem and solution domain
showing “that the difficulty of solving a problem in software grows exponential-
ly” [G102; p.19]. As explanatory thesis of this fact, somebody could tend to state
that finding a pure solution for the functionality may encounter about 25 percent,
whereas preventing and handling all sorts of potentially occurring errors and
other quality criteria as flexibility or maintainability is about the other 75 percent.
From the requirement engineering perspective — where errors relate somehow to
quality aspects —, it could also be termed that software complexity is dealing with
25 percent functional and 75 percent NFRs, explaining the importance and focus
that REM theory lays on dealing with NFRs.

Another observation is provided by Glass: “Explicit requirements explode
by a factor of 50 or more into implicit (design) requirements as a software solu-
tion proceeds” [G102; p.19]. This expresses the observation that any solution has
a certain structure. In order to ensure proper collaboration of several parts of the
solution, the parts must fit into this structure’’. These needs are the implicit re-
quirements and they can be seen as a consequence of formerly taken decisions.
The author is convinced that it will be important to also write down these re-
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“The more complex the system, the more open it is to total breakdown” [Pe86; p.153].
This characteristic intuitively described here is closely connected to what is called
conceptual integrity [PBG04; p.102£f] and is discussed in the following of this chapter.
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quirements, if they are — as those — rationally explicitly available. This problem is

a central part of the concept, the author has developed for traceability improve-

ment and discussed in detail in ch. I1I.19.

In his first chapter, Booch [B0o94; p.2-24] introduces complexity as the main
driver of analysis and design of SW. His argumentation reveals very close con-
nections to Simon. He [B0o94; p.2] argues that any software but software with
“very limited purpose and a very short life span”, for which it is more profitable
to dispose of it and replace it rather than to reusing it, is complex’®. The “distin-
guishing characteristic” inherent in this kind of software is “that it is intensely
difficult, if not impossible, for the individual developer to comprehend all the
subtleties of its design. Stated in blunt terms, the complexity of such systems
exceeds the human intellectual capacity” [Bo94; p.3]. Booch identifies four
sources for SW complexity’:

e The complexity of the problem domain [Bo94; p.3-5] means that the problem
to be solved involves elements of high complexity resulting in “myriads of
competing, perhaps contradictory requirements”. In addition, imprecise
stakeholder wishes and inter-stakeholder-communication problems lead to
permanent change of requirements. This topic is discussed in detail in chap-
ter 1.5.6. REM is today's answer to this problem.

o The difficulty of managing the development process [Bo94; p.5] arises due to
continuing rapid growth of software program size. One cause is the fact that
a fundamental task of development teams is “to engineer the illusion of sim-
plicity” [Bo94; p.5] to shield users from the complexity of the developed
systems. This, at first positive, effect has also the negative side-effect that the
illusion of simplicity also drives developers to build systems based on for-
merly developed systems leading to exponential growth of program size and
system complexity. Additionally, projects also involve growing project teams
leading to higher complexity concerning communication and coordination.

o The flexibility possible through software [Bo94; p.6] leads to manifold possi-
bilities how to find solutions, but it “turns out to be an incredibly seductive
property” for inconsistencies forcing developers to develop most of the ba-
sics of their solutions again. “While the construction industry has uniform
building codes and standards for the quality of raw materials, few such
standards exist in software industry”.

" According to Booch [B094; p.3], reactive systems (he means embedded systems) have

a very rich set of behaviors. “Software systems as these tend to have a long life span,
and over time, many users come to depend upon their proper functioning”.

The interested reader may also read Broy and Rump providing an overview on source
of complexity [BRO7b; p.3].
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o The problems of characterizing the behavior of discrete systems [Bo94; p.6]
refer to that software based systems are discrete systems containing large
amounts of different variables. Along with the current value of each variable,
the address and call stack of each process and the current state of the applica-
tion is determined. Other than continuous analog systems describable by a
discrete function, such software-based systems can possibly enter uncon-
trollable different states as “in discrete systems all external events can affect
any part of the system's internal state” [Bo94; p.7]. This sparks the need for
vigorous testing, but exhaustive testing proves nearly impossible, because
developers have “neither the mathematical tools nor the intellectual capacity
to model the complete behavior of large discrete systems” [Bo94; p.7].

1.6.2.1.2 Design Means Managing Complexity

As Simon can also be seen as “pioneer of complexity theory” [EFS98; p.23 (*)],
he already emphasized the strong importance of mastering complexity in design
issues. His thoughts about complexity orient themselves on findings of Miller
[Mi56]. Miller's experiments (see also [Si96; p.66f]) on human cognition capabil-
ities indicate that average humans are capable to consider around seven plus,
minus two aspects at the same time. This leads Simon to argue “that people do
not, and cannot, consider all possible conditions, alternatives, and constraints,
and therefore cannot design an optimal course of action .... Rather than exhaust-
ively considering design issues, people choose satisfactory solutions based on the
information available” [HA06a; p.74].

Simon termed this bounded rationality [Si96; p.166]: “The meaning of ra-
tionality in situations where the complexity of the environment is immensely
greater than the computational powers of the adaptive system.” As a conse-
quence, humans must factorize (resp. chunk) the complexity in order to cope with
it (see point 4 above). In this context, Simon proposes to use hierarchic decom-
position to tame the complexity™ of systems as “comparatively little information

80 It is to mention that hierarchic decomposition (as, e.g., the analytic method) has been

used long before Simon. However, it seems that Simon communicated its important
function as means to tame complexity to a broader community. Today, the hierarchic
structure scheme is central for the term complexity [EFS98, p.23] used as central
property to characterize complexity as the following definition of Ebert shows [Eb05;
p-198 (¥)], [EbO8; p.282 (*)]: “A system is termed as complex, if it is linked and in-
terwoven in diverse combinations. The term 'complex' is here understood as a charac-
teristic of a technical system ... containing heterogeneous components, having hetero-
geneous relations between the components, and being able to switch into different
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is lost by representing them as hierarchies” [Si96; p.207]. Leading to what Endres
and Rombach call “Simon's law” [ER03; p.40]: “Hierarchical structures reduce
complexity” [ERO3; p.40]. Due to bounded rationality, Simon also discovered
the principle that design usually not emerges in a kind of big-bang process but
evolves from stable intermediate forms®'. This means that design can rather be
seen as an evolutionary process where design reaches stable states forming the
basis of evolution to the next stable state.

From this perspective, Horner and Atwood describe Simon's view on design
as “symbolic information processing and humans as goal-oriented information
processors” [HAO6a; p.74] where “design involves devising courses of action
aimed at changing current situations into preferred ones” [HAO6a; p.74]. Or, in
other terms, “design is viewed as a process of generating and navigating through
a state-space” [HAO6a; p.74].

Concerning software development, Booch tried to analyze complexity. In his
view [B094; p.7], failures to master complexity have led to the effects that are
called the software crisis, but, as this state now has continued for a long time, it
may be considered as the normal state. Taking account to Simon and other re-
search results of software engineering theory, Booch [B094; p.10-11] derived five
characteristics of complex systems being important for software design:

states. The complexity, thus, describes the connection, i.e., collaboration of a system
and its parts as objects”. In contrast to this, Ebert also provides a definition for com-
plication [Eb05; p.199 (*)], [EbOS; p.282 (*)]: “In literature, 'complicated' is used in
the sense of difficult or embroiled (corresponding to the Latin origin complicare = to
fold together or to confuse). The term 'complicated' is used as summarizing character-
istic of a technical system that is difficult to understand, to figure out or to handle.
Thus, complication denotes the interaction of a system as object and an observer as
subject. The complication is a perceived — psychological — complexity and depends
from the observer. In this way, complication also includes difficulties in the under-
standing of graphical representations as they are often used, e.g., in the form of data
flow diagrams or petri-nets, in software development for the representation of relations
of different components (so-called visual complexity). Such graphical representations
can well create a correlation of technical and psychological complexity. The complica-
tion of a software system depends on the previous knowledge of the observer ..., on
the impression of the representation on him (her) and on the suitability of a chosen
representation for a certain problem. A mastery of complexity, as already demanded by
E. Dijkstra in 1972 in the course of the bestowal of the Turing Award, will only be
possible if the complication is actively reduced.”

Close connection to this seems to have Lehman's fifth law on software evolution
“Conservation of Familiarity” [Le96], [LRW+97].
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Frequently, complex systems can be decomposed in hierarchic dependencies
with interrelated subsystems. Simon argues [Si96; ch.8 (p.183-216)]* that hi-
erarchies and hierarchic systems can be considered as the decisive means to
provide a simplifying description of complexity, even though he admits not all
complex systems appear in hierarchical structures [Si96; p.191]%. Unfortu-
nately, such hierarchic dependencies are nearly decomposable, where “inter-
actions between subsystems are weak but not negligible” [Si96; p.197]. Also
to mention in this context, Simon [Si96; p.209] emphasizes that the discussed
hierarchic structures contain a high degree of redundancy.

In contrast to most science disciplines as physics, “software may also involve
elements of great complexity; however, the complexity is of fundamentally
different kind” [Bo94; p.2]. Booch refers here to Brooks [Br87; p.12] speak-
ing of arbitrary complexity™. This means that decisions concerning hierarchic
decompositions or other aspects performed by designers in order to manage
complexity are to a certain point arbitrary®, because often they could also be
performed according to other criteria leading to different outcomes [B094;
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According to [Si96; p.XIII], the chapter bases on an essay originally published in
Proceedings of the American Philosophical Society, Dec 1962.

As an example, he describes chemical polymers as large chains or single to each other
similar or identical parts. But, he emphasizes in the same moment that this structure
can be described as a hierarchy of only one present level. Interestingly, the software
architectural style pattern 'pipes and filters' has a similar structure [BMR+00; p.54ff]
and can be most probably be seen as a kind of analogy. He even goes beyond by as-
suming that complex systems not providing an apparent hierarchical order “may to a
considerable extent escape our observation and understanding” [Si96; p.207].

See also Hull et al. [HID02; p.1] providing the following comment on arbitrary com-
plexity: “The most complex systems tend to be those with software, often integrated
deep inside the system's components. The complexity of such products is limited only
by the imagination of those who conceive them”.

An interesting point is what Alexander (also cf. ch. 1.6.2.4) says in its introduction to
his first publication on what later became the pattern concept [Al64; p.1]: “Today
functional problems are becoming less simple all the time. But designers rarely con-
fess their inability to solve them. Instead, when a designer does not understand a prob-
lem clearly enough to find the order it really calls for, he falls back on some arbitrarily
chosen formal order. The problem, because of its complexity, remains unsolved”. This
statement strikingly resembles to what Conklin calls taming a wicked problem. It may
be possible that the pattern concept is a kind of strategy to address the wickedness of
problems by proposing abstract standardized solution possibilities for forces within
wicked problems. On the other hand, what is called arbitrariness may only seem arbi-
trary but is in fact a result of a process of knowing in action as proposed by Schon (ch.
1.6.2.3).
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p-11]. As ch. 1.6.2.3 shows, parts of these decisions may even not be made by
rational reflection but by intuitive tacit knowledge.

3. “Intra-component linkages are generally stronger than inter-component link-
ages” [Si96; p.204] indicates “a clear separation of concerns among the vari-
ous parts of a system, making it possible to study each part in relative isola-
tion” [Bo94; p.11].

4. “Hierarchic systems are usually composed of only a few different kinds of
subsystems in various combinations and arrangements” [Si96; p.209]. Booch
[Bo94; p.11] analyzes here that complex systems underlie common patterns.
These patterns may involve the reuse of small components (such as cells in
plants or animals), or of larger structures (such as vascular systems also found
in both plants and animals) [Bo94; p.11]. This bears strong resemblance to the
pattern concept introduced in ch. 1.6.2.4.

5. In [Bo94; p.20], Booch refers to stable intermediate forms as “proven abstrac-
tions and mechanisms” building “a foundation upon which to build new com-
plex systems” [Bo94; p.20]. “Complex systems generally evolve from stable
intermediate forms” [Bo94; p.23]*, where he explicitly mentions that the us-
age of object-models to produce systems leads to systems basing on interme-
diate forms being more open for change [Bo94; p.75].

In [Bo94], Booch has proven to be a follower of Simon's design theory. As
Booch also has been one of the founding fathers of the UML standard (cf.
[BJL98]), the principles and conclusions derived from these findings about de-
sign as a means to handle project complexity may have imposed high influence
on SW and systems design theory. Surely, other researchers may also have influ-
enced today's SW and systems design theory in equal ways.

Altogether, today's SW and systems design theory knows — at minimum — the
following fundamental principles to be obeyed by a sound SW and systems design
(see [PBGO04; p.102ff], [Kn01b; p.12ff], [BRO7b; p.17]), each in some way con-
nected to managing complexity:

Abstraction: “describes the generalization of facts” [Di04a; p.117 (*)]. The
usage of models and different views is “the most important toolbox” for abstrac-
tion [PBG04; p.104]. Abstraction®” helps humans to distinct unimportant facts
from the important ones, but the judgment of what is important and what unim-

8 In this context, Booch [B094; p.11] explicitly refers to findings of Gall: “A complex

system that works is invariably found to have evolved from a simple system that
worked. ... A complex system designed from scratch never works and cannot be
patched up to make it work. You have to start over, beginning with a working simple
system” [Ga86; p.65].

8 See also [HHPO3; p.51ff] and [HHPO3; p.67] for good remarks about how to use hier-
archies and abstractions in practice.
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portant varies from the persons involved. Correspondingly, in development dif-
ferent models (and views) applied [PBG04; p.104].

Structure: “represents a relationship network between the individual ele-
ments of an entity as a whole. It includes a reduced view of the reckoned system
allowing the analysis of the whole. ... At the reckoning of the system, static and
dynamic structures can be differentiated” [Di0O4a; p.117 (*)].

Modularization: means a decomposition principle based on coupling and
cohesion®™ [Di04a; p.32]. In this context, the term 'module’ can be seen as “a
responsibility assignment rather than a subprogram” [Pa72, p.1054], indicating
that modularization is about grouping and assigning functional requirements to
the architecture. 1deally, modules have a strong internal cohesion but low cou-
pling, because designers should obey what Endres and Rombach [ERO03; p.43]
call Constantine's law: “A structure is stable if cohesion is strong and coupling
low”. Parnas [Pa72] discusses the criteria to consider in making modularization
decisions and shows five different alternative aspects to decide on. Alas, the cho-
sen modularization criterion influences what is seen as strong cohesion or cou-
pling. Correspondingly, modularization results may differ if different modulariza-
tion criteria are chosen. With a similar meaning, Simon [Si96; p.197-204] empha-
sizes that complex systems may be approximated by a theory of nearly decom-
posable systems. Booch [Bo94] — in reference to Brooks — speaks of arbitrary
complexity: Design looks different when other decomposition criteria are consid-
ered as the most important. However, in practice, design may not be so arbitrary,
when “Conway's law” is considered [St05; p.24] which indicates an isomorphism
between organization structure and its architectures. According to Conway, de-
veloping organizations design systems in a way that represent copies of the or-
ganization's communication structures [Co68], [Ec04; p.113]. Today, strict modu-
larization oriented compositional structures are also again softened by design
theory about architectural aspects (e.g., cross cutting concerns) leading to new
compositional structures [CRF+06].

Encapsulation supports the principle of information hiding [Pa72] to obtain
higher change flexibility. The underlying assumption is that necessary changes
that only effect parts being behind an encapsulating interface are easier to imple-
ment since only these internal encapsulated parts must be changed, whereas the
latter system parts stay untouched. Encapsulation is a “central principle of object
oriented design” [PBG04; p.104] Modularization and encapsulation could be
seen as entangled twins, where “its success in making future changes easy de-
pends on having identified a right decomposition” [Be04; p.56]. Otherwise new

8 Others as Dunkel and Holitschke [DHO3; p.3] call this the coherence principle, but

seem to mean the same.
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requirements or requirement changes “causes changes that bridge several mod-
ules” [Be04; p.56]. Consequently, refactorings of the design considering new
decomposition criteria may be necessary, otherwise the software tends to decay
[Be04; p.56].

Hierarchy: In complex designs, often more abstractions exist than usually
manageable by designers. Modularization can help designers but this is often not
sufficient. A solution can be to arrange abstractions into a sequence called hierar-
chy [PBGO04; p.106]. Booch refers to two fundamental kinds of hierarchies
[Bo94; p.19], [PBGO04; p.107]:

e Structure: Describes the decomposition structure an item 'consists of’.
o Generalization and inheritance: Describe inheritance hierarchies, where an

item 'is a’.

Besides these 'static' hierarchies, Marwedel refers to a behavioral hierarchy
[Ma08a; p.13ff]. This refers to the point below about views. In a more general-
ized way, it may be the case that each possible view may be structured by a hier-
archy.

View partitioning describes the fact that complex systems have manifold as-
pects difficult to describe from one perspective [PBG04; p.128]. Thus, systems
can be described from different points of perspective called views, or viewtypes®.
Often, different views involve different kinds of models. Or, described in the
point above about abstraction: Different views consider different facts (aspects)
as important and thus show different aspects. The probably most known view
concept is “4+1 View Model” introduced by Kruchten [Kr95] building an essen-
tial part of the RUP process framework [CBB+03; p.344F]. The concept differen-
tiates four main views (logical, development, process and physical) in association
with one overlapping, comprehensive view (scenarios). Concerning the charac-
teristics of views, Kruchten emphasizes that his concept is rather generic and
independent from any tool or any modeling language [Kr95; p.43]. Further, the
views by themselves are neither fully orthogonal nor independent from each other
[K195; p.47]. Correspondingly, relations between views must also be considered,
and in fact theories like architecture documentation explicitly demand for docu-
mentation of inter-view relationships (see ch. 1.6.5). Inspired by Kruchten, litera-
ture has proposed several other views. A comprehensive overview can be found in
[CBB+03; p.343-380], [PBGO04; p.128-167] or [St05; p.86]. Explicitly to mention
here is UML: As it is envisioned as 'unified' modeling language, it contains dif-

8 A view is “a representation of a set of system elements and its relations to each other”

[CBB+03; p.472] (see also [PBG04; p.128]), whereas a viewtype comprises “the ele-
ment types and relation types used to describe the architecture of a software system
from a particular perspective” [CBB+03; p.472].
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ferent sets of diagrams addressing structural, collaboration, behavioral, func-
tional and timing views [Do04; p.43]. From the perspective of a theoretic, formal
modeling theory, Broy and Rumpe could categorize [BR0O7b; p.6] several 'essen-
tial views' that may build a kind of taxonomy for all other views identified in
practice. From the practitioner's viewpoint, Bass et al. [BCKO03; p.39-40] describe
how architectural structures can be identified as sources for views during a de-
sign. As indicated above to hierarchies, it is possible that different views may
follow their own hierarchic order independently from other views. Last but not
least, the question arises, whether certain views may be more important over
others. According to Starke's practical experiences, 60 to 80 percent of effort is
spent on the structural model [St05; p.88]. In the author's view, this may indicate
that indeed the structural model including hierarchical structural decomposition
may have a certain preceding importance. This assumption — supported by the
fact that historically hierarchical, structural decomposition — has been discovered
and used as one of the first principles to structure models (e.g., cf. structured
analysis and design [De78]). As a consequence, the tool introduced in part III
relies on the hierarchical, structural decomposition principles to build a skeletal
structure upon which other views can be related and structured. This principle
helps to reduce complexity as the hierarchical, structural decomposition builds
the first contact point for a designer to get into a design. Starting from this, the
designer can then enrich the structure by adding further additional views on this
basic structure. As a further plus, part III also shows how the hierarchical, struc-
tural decomposition will also build the basis for developing a new process heuris-
tic allowing to establish traceability between requirements and design as collabo-
rative process, orienting itself on Simon's ideas about design as a transgression of
stable intermediate forms.

Conceptual integrity [PBG04; p.102ff] describes the idea of thorough usage
of concepts and design decisions in the complete system in order to avoid extra
solutions and dilution of the original concepts [PBG04; p.108]. Brooks empha-
sizes the importance of conceptual integrity as “the most important consideration
in system design. It is better to have a system omit certain anomalous features and
improvements, but to reflect one set of design ideas, than to have one that con-
tains many good but independent and uncoordinated ideas” [Br95; p.42]. Not
only growth of size, but also growth of structure increases complexity [Di04a;
p-22]. Following Balzert's observation, “the stronger the shape of a structure, the
lower also is its complexity” [Ba98; p.474 (*)], conceptual integrity shall enforce
one strong structure instead of several weak structures and thus “simplicity and
straightforwardness proceed from conceptual integrity. Every part must reflect
the same philosophies and the same balancing of desiderata. Every part must
even use the same techniques in syntax and analogous notions in semantics. Ease
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of use, then, dictates unity of design, conceptual integrity” [Br95; p.44]. Concep-
tual integrity can best be achieved if one chief architect is responsible for it
[Br95; p.42ft], [PBGO04; p.108], [Ec04; p.113]. At the end to mention, conceptual
integrity refers to another general design heuristic about design [Ec04; p.116],
[PBGO04; p.116]: A design should have the goal to be as simple as possible, but
not simpler.

1.6.2.1.3 Shortcomings of this View about Design

Simon's view has the advantage that it provides a sound scientific theoretical
foundation about design as a means to manage complexity. Further, the principles
described here cannot be called as 'cook-booky' but have a deep general meaning
having deeply integrated into current systems and SW design theory. However, as,
e.g., the next chapters show, Simon's design theory also has been heavily criti-
cized and challenged by findings of other researchers and practitioners.

In the author's view, this may be applicable, because Simon admittedly de-
scribes the principles to apply to achieve a good design, but does not provide a
satisfying answer on how to apply the principles. If he does, then Simon's answer
on the 'how' is a linear step-by-step, fop-down approach (cf. [Bu96; p.13]). How-
ever, other authors emphasize that top-down approaches are rather an exception
[Sa05; p.276]. Empirical studies on SW design processes such as provided by
Curtis [Cu90], [Cu92] indicate that designers rather oscillate between abstraction
levels, jump through discrete system states, and develop the problem and solution
space simultaneously (also cf. [ER03; p.60], [HHPO03; p.52]). Accordingly, these
findings drove Endres and Rombach to state that “the idea of a top-down design
is an over-simplification; although it may be a good way to explain a design once
it is completed” [ER03; p.60]. Hruschka and Rupp [HRO2; ch.10] express the
opinion that functional aspects are rather designed bottom-up, but nonfunctional
aspects should be designed fop-down. The author believes that this is also a sim-
plification of a rather situation-dependent decision process.

These findings indicate — in accordance to the author's belief — that Simon's
view rather comes from considering the end results that indeed may be structured
by the principles described here. The following chapters will now introduce de-
sign theories that might rather provide better explanations for the genesis of a
design. As it turns out, most of these theories have open space for intuition, un-
certainty or fuzzyness involved as means to explore and structure the complexity
of the problem and design space by humans. From this perspective, the 'cook-
booky 'nature (i.e., heuristics or patterns) of design theories criticized by Simon
may turn out to be an inherent property of any design's genesis.
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1.6.2.2 Design as Wicked Problems

Rittel and Webber dissented from the views of Simon (cf. [Co05; p.06], [HAO6a;

p.75]) by introducing the term wicked problems™ ([RW73], [RW84]) as “an al-

ternative to the linear, step-by-step model of the design process being explored by

many designers and design theorists” [Bu96; p.13]. In Simon's understanding,

design was merely seen as a linear process of analyzing a problem, defining a

solution and implementing it (cf. [Bu96; p.13], [CBV07; p.9]). “However, some

critics were quick to point out two obvious points of weakness: one, the actual
sequence of design thinking and decision making is not a simple linear process;
and two, the problems addressed by designers do not, in actual practice, yield to

any linear analysis and synthesis yet proposed” [Bu96; p.14].

Here, Rittel and Webber argued that most of the design activities address
solving wicked problems [Bu96; p.14]. Wicked problems mean a “class of social
system problems which are ill-formulated, where the information is confusing,
where there are many clients and decision makers with conflicting values, and
where the ramifications in the whole system are thoroughly confusing” ([Ch67]
quoted in [Bu96; p.14]). In contrast to “fame problems” usually occurring in
natural sciences [RW73], wicked problems — as including social aspects — can be
characterized by ten properties [RW73; p.161-167]:

1. “There is not definitive formulation of a wicked problem” [RW73; p.161]
indicates that an exhaustive formulation with all necessary information can
only be done for a tame problem, whereas the understanding of wicked prob-
lems “depends upon one's idea for solving it. ... The reason is that every
question asking for additional information depends upon the understanding
of the problem — and its resolution — at that time” [RW73; p.161].

2. “Wicked problems have no stopping rule ..., because the process of solving
the problem is identical with the process of understanding its nature, because
there are no criteria for sufficient understanding and because there are no
ends to the causal chains that link interacting open systems, the would-be
planner can always try to do better. ... The planner terminates work on a
wicked problem, not for reasons inherent in the 'logic' of the system. He stops
for considerations that are external to the problem: he runs out of time, or
money, or patience” [RW73; p.162]. This is closely related to Simon's term

% Buchanan [Bu96; p.14] points out that the term was taken from Karl Popper, but “Rit-

tel developed the idea in a different direction” [Bu96; p.14]. Buchanan further remarks
that the first published information on Rittel's concept has been performed by
Churchman [Ch67].
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on satisficing solutions, both showing the inherent nature of finding com-
promises in design activities.

3. “Solutions to wicked problems are not true-or-false, but good-or-bad”, since
“many parties are equally equipped, interested, and/or entitled to judge the
solutions, although none has the power to set formal decision rules to deter-
mine correctness. ... Their assessments of proposed solutions are expressed
as 'good' or 'bad', or, more likely, as 'better' or 'worse' or 'satisfying' or 'good
enough” [RW73; p.163].

4. “There is no immediate and no ultimate test of a solution to a wicked prob-
lem” is a direct consequence of point one. Any work on a wicked problem
“will generate waves of consequences over an extended — virtually an un-
bounded — period of time”, where following works “may yield utterly unde-
sirable repercussions which outweigh the intended advantages or the ad-
vantages accomplished hitherto” [RW73; p.163].

5. “Every solution to a wicked problem is a 'one-shot operation'; because there
is no opportunity to learn by trial-and-error, every attempt counts signifi-
cantly”. As already indicated by point four, “every implemented solution is
consequential. It leaves 'traces' that cannot be undone” [RW73; p.163].

6. “Wicked problems do not have an enumerable (or an exhaustively describa-
ble) set of potential solutions, nor is there a well-described set of permissible
operations that may be incorporated into the plan” [RW73; p.164] directly
results from the ill-defined nature of wicked problems (see point one).

7.  “Every wicked problem is essentially unique” describes that, “despite long
lists of similarities between a current problem and a previous one, there al-
ways might be an additional distinguishing property that is of overriding im-
portance” [RW73; p.164]. Here, the close notion to software projects gener-
ally considered as an “unique undertaking” [MWO03; p.24] must be men-
tioned in the first place and secondly the connection to Alexander's pattern
concept (ch. 1.6.2.4).

8. “Every wicked problem can be considered to be a symptom of another prob-
lem” [RW73; p.165]. Problems have causes. These causes can be considered
as other 'higher level' problem, where the originally considered problems are
mere symptoms.

9. “The existence of a discrepancy representing a wicked problem can be ex-
plained in numerous ways. The choice of explanation determines the nature
of the problem's resolution” [RW73; p.166]. As Simon also stated that dif-
ferent representations (now design theory says view) exist, the chosen repre-
sentation determines the found solution.
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10. “The planner has no right to be wrong” [RW73; p.166]. Unlike the scientific
community, allowing hypotheses to be falsified later, designers are “liable for

the consequences of the actions they generate” [RW73; p.167].

Summing it up, “Rittel saw design problems as wicked in the sense that they
presented fundamental difficulties that could not be overcome using either strictly
scientific methods or purely automated methods” [BCM+08; p.6]. In Conklin's
opinion, “Rittel's contribution is that he distinguished a new domain of problem
type, as opposed to, say, a new way of solving complex problems. Problem wick-
edness 1s not about a higher degree of complexity, it is about a fundamentally
different kind of challenge to the design process, one that makes solution second-
ary and problem understanding central” [CBV07; p.3]. Or, in the words of
Coyne: “The radical point of Rittel and Webber’s characterization of design as
‘wicked problem solving’, is to instil a certain attitude and responsiveness to
research questions. Questions of design do not exist as if issued from some
source of eternal inquiry. Rittel and Webber suggest that certain questions can
now simply go unanswered, or we may riposte with a volley of counter questions,
or offer a challenge to the frame from which the problems are posed in the first
place” [Co05; p.13].

Conklin [Co06; p.14-18] provides a probably more to the point reformulation of
wicked problems characteristics:
1. “You don’t understand the problem until you have developed a solution”
[Co06; p.14].
“Wicked problems have no stopping rule” [Co06; p.14].
“Solutions to wicked problems are not right or wrong” [Co06; p.15].
“Every wicked problem is essentially unique and novel” [Co06; p.15].
“Every solution to a wicked problem is a 'one-shot operation” [Co06; p.15].
“Wicked problems have no given alternative solutions” [Co06; p.15] — instead
“an immense space of options” [Co06; p.18] exists that can be combined.
Wicked problems are also closely related to technical and social complexity.
These three build “the 'centrifugal' fragmenting forces pulling a project apart”
[Co06; p.35]. Especially social complexity is “inseparable from problem wicked-
ness” as “no single stakeholder wicked problems exist” [CBVO07; p.4]. Corre-
spondingly, “because of social complexity, solving a wicked problem is funda-
mentally a social process. Having a few brilliant people or the latest project man-
agement technology is no longer sufficient” [Co06; p.29]. This corresponds to
findings of Starke about SW development claiming that “technology alone is
insufficient” [St05; p.42 (*)], because no pure technical problems exist [St05;
p-42 (*)]. Rather, “they quickly grow to organizational or political difficulties”
[St05; p.42 (%)].

AT e
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In the author's view, Ehn [Eh88], [Eh89] has a similar notion when he de-
scribes design as a collaborative, democratic and participatory process of learning
together. Ehn's view, however, origins from Wittgensteinian language games: “In
a Wittgensteinian approach, focus is not on the 'correctness' of systems descrip-
tions in design, on how well they mirror the desires in the mind of the users, or
on how 'correct' they describe existing and future artifacts and their use. Systems
descriptions are design artifacts, typically linguistic artifacts. The crucial question
is how we use them, which role they play in the design process. ... In the lan-
guage-game of design we use these artifacts as reminders and as paradigm cases
for our reflections of future computer artifacts and their use. The use of design
artifacts brings earlier experiences to our mind and it 'bends' our way of thinking
of the past and the future. I think that this is how we should understand them as
representations. And this is how they 'inform' our practice. If they are good de-
sign artifacts, they support good moves within a specific design language-game”
[Eh8&9; p.147].

Contrasting wicked problems, Rittel and Webber also mentioned tame prob-
lems. Conklin derives from the formulation of wicked problems characteristics
above a set of tame problems characteristics [Co06; p.18f]:

1. “Has a well-defined and stable problem statement” [Co06; p.18].
2. “Has a definite stopping point” [Co06; p.18].
3. “Has a solution that can be objectively evaluated as right or wrong” [Co06;

p-19].

4. “Belongs to a class of similar problems that are all solved in the same similar

way” [Co06; p.19].

5. “Has solutions that can be easily tried and abandoned” [Co06; p.19].
6. “Comes with a limited set of alternative solutions” [Co06; p.19].

Conklin [Co06; p.19] emphasizes that “tame does not mean simple — a tame
problem can be technically very complex®. On the other side, a problem needs
not to encompass all six wicked characteristics to be a wicked problem. “Most
problems have degrees of wickedness. ... There seems to be a natural inclination
to see problems as tame, and to avoid wicked ones. ... The first step in coping
with a wicked problem is to recognize its nature. There is a tendency to treat all
problems as tame, perhaps because tame problems are easier to solve, reinforced
by the lack of understanding about wicked problem dynamics and the tools and
approach they require. There is a psychological dimension here — a shift from
denial to acceptance” [Co06; p.19-20].

In other words, wicked problems are often approached by analyzing and
taming it. Pure analysis — without designing actions — of wicked problems is often
very limited and leads to analysis paralysis [BMH+98; p.215-218], [Ec03] (see
also ch. 1.5.4), “a Catch 22 in which we can’t take action until we have more
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information, but we can’t get more information until someone takes action’
[Co06; p.20]. Taming a wicked problem means that the problem is simplified to
make it more manageable rather than treating the full wickedness ([Co06; p.21]
lists several taming strategies). “However, attempting to tame a wicked problem,
while appealing in the short run, fails in the long run. The wicked problem simply
reasserts itself, perhaps in a different guise, as if nothing had been done. Or,
worse, sometimes the tame solution exacerbates the problem” [Co06; p.22-23].
Since peoples' “education and experience have prepared them to see and solve
tame problems, wicked problems sneak up on them and create chaos” [Co06;
p.36]. Coyne argues in a similar direction: “Wickedness is the norm. It is tame
formulations of professional analysis that stand out as a deviation” [Co05; p.12].
In this context, Rittel’s wicked problems can be seen as a pleading for ex-
tended requirements engineering. However, Rittel emphasizes that the solution
must be equally considered. As shown in ch. 1.5.5 also REM theory acknowledg-
es that requirements cannot be defined unless parts of the solution are considered.
In fact, experience shows that formulated requirements are often abstract to
stakeholders as long as they don't see any concrete solution, where they then can
tell the delta of their needed solution in contrast to the presented solution. Proto-
typing and iterative development directly address these issues. Agile methods
(e.g., cf. [BT04]) with their notion to short iterative release cycles with continu-
ous stakeholder feedback, where evolutionary prototypes stepwise turn into the
productive system, can be seen as a direct addressing strategy to handle the wick-
ed nature of design. In many other projects, however, such a tight integration
with “informed and collaborative stakeholders” [BT04; p.95] as needed by agile
projects is not feasible, or projects demand for more disciplined approaches,
where the final outcome is not as vague as it might be by using the evolutionary
prototype paradigm’'. Thus, in these contexts, pressure on project progress and
pressure to find solutions may press for taming a wicked problem. Besides, the
question arises whether taming a wicked problem must per se be considered as
wrong. In many cases, finding any feasible solution may be satisficing (see ch.
1.6.2.1 above) for a start. This can be rather the case for technical equipment such
as automobiles.
However, when a problem returns back to the agenda, because the first solu-
tion did not prove as satisficing enough, the deciders should reflect on, whether:
e  First, the problem may be an unintentionally tamed wicked problem, and
whether more sophisticated courses of action to elicit the problem may be
more adequate. Otherwise, it may happen that considerable energy is spent

! Examples for more disciplined approaches are the processes for safety-critical embed-

ded systems discussed in ch. I.7.
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on curing continuously new arising symptoms of a basically poor solution ra-

ther than finding a better solution leading to a problem 'smoldering around'

in a project. Often, some stakeholders anyway have themselves intuitions
about such problems they feel uncomfortable about. In this context, it may be
considerable whether the bad smells of Fowler [Fo99] provide a certain
analogy for this. Good processes may play a certain decisive role to avoid
such problems as Janis [Ja72] indicates. According to him, organizations
with poor processes can tend to group-think [Ja72] meaning that the organi-
zation quickly decides on a poor solution, and the rest of the energy is spent
on relatively insignificant issues about this solution. As Janis made his ob-
servations on analyzing foreign policy making and Rittel derived parts of his
experiences in social planning, it is very probable that Janis discovered the
group-think problem in the context of decision making for wicked problems.

e Secondly, if a decision must be reconsidered, it will be important to know
about the reasons leading to the former decisions (so called rationale), about
the reasons now making a reconsideration of the decision necessary (also ra-
tionale), and the consequences arising from a reconsidered decision.

Rittels wicked problems idea resulted in the development of the so called
IBIS system, which can also be seen as the initiating momentum for a research
field today called rationale management (RatMan). RatMan deals with finding
concepts and techniques to support elicitation, documentation and further usage
of rationale about a taken decision. Correspondingly, Rittel can be seen as a
pioneer of RatMan (see very first page of [DMM+06]). Ch. I1.9 describes the
concepts and ideas of RatMan in detail.

1.6.2.3 Design as Situated Action

Schon [Sch83], [Sch87] analyzed the way competent practitioners think when
they perform their actions. His theory bases on the assumption derived from the
work of Polanyi [Po66] on tacit knowledge (see ch. 11.9.4.2) describing that not
all knowledge can be brought to consciousness and/or be rationally described by
the knowing person’. Correspondingly, Schon formulates his assumption as
“competent practitioners usually know more than they can say. They exhibit a
kind of knowing in practice, most of which is tacit” [Sch83; p.8].

Thus, Schon differentiates two very distinct cognitive processes:

°2" For example, it is difficult to describe and teach a person how to ride a bicycle, since it

is an unconscious process skill. The person must learn this on its own. Similar con-
cepts are experience, intuition etc..
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e  “An intuitive process of skillful action” [DMM+06a; p.21], called knowing-

in-action [Sch83; p.54] or professional artistry [Sch87; p.22].

e  “4 reasoned process of reflection” [DMM+06a; p.21-22], called reflection-

in-action [Sch83; p.55].

Design is then a continuous, intertwined alternation between both processes,
where both “cannot be done simultaneously, because reflection disrupts knowing-
in-action” [DMM+06a; p.22]. In knowing-in-action, the practitioner applies
knowledge he knows “how to carry out spontaneously””® [Sch83; p.54], until he
experiences “surprise, puzzlement, or confusion in a situation which he finds
uncertain or unique” [Sch83; p.68]. This leads to reflection-in-action, where he
“reflects on the phenomena before him and on the prior understandings which
have been implicit in his behavior. He carries out an experiment which serves to
generate both a new understanding of the phenomena and the change in the situa-
tion” [Sch83; p.68]. In other words, “reflection is only productive when intuition
fails to cope with some new circumstance arising” [DMM+06a; p.22]. Reflection
not only applies knowledge, but creates new. In this context, “practitioners are
frequently embroiled in conflicts of values, goals, purposes and interests” [Sch83;
p.17] leading to these new unique circumstances.

A big part of these new and unique circumstances may be connected to the
wicked problems concept (see ch. 1.6.2.2 above) as the following statement about
the relations between the clients (other stakeholders the future users) and the
practitioners in a project show: Practitioners “bring to their encounter a body of
understandings which they can only very partially communicate to one another
and much of which they cannot describe to themselves” [Sch83; p.297].

However, as Atwood et al. analyze, “the Reflective Practitioner is not a de-
sign text in the sense that it describes a particular view of design. Rather, it pre-
sents a theory of how professionals learn” [AMWO02; p.128] and — the author
would say — apply knowledge. Horner and Atwood [HAO6a; p.75] interpret
Schon's theory about practitioners' handling of knowledge and action “as a reflec-
tive conversation with the environment”, where the practitioners “reflect on what
they are doing in the action present” [HA06a; p.75] (see also [AMWO02; p.126]).

In the author's opinion, another interesting connection may exist between
Schon's concept of knowing-in-action and what cognition psychology terms as
flow [Cs90]. Flow describes a state of thinking “in which knowledge and experi-

% «“Although we sometimes think before acting, it is also true that in much of the sponta-

neous behavior of skillful practice, we reveal a kind of knowing which does not stem
from a prior intellectual operation.... It seems right to say that our knowing is in our
action” [Sch85; p.157].
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ence come together easily and knowledge workers seem to 'flow' through their
highly demanding work” [HAO6a; p.93].

The author risks another interpretation in connection to Simon: In often en-
countering situations of bounded rationality (see ch. 1.6.2.1 above), practitioners
often use intuitive knowing-in-action strategies to cope with, until they encounter
a direct problem situation (action present), where the intuitively found solution
breaks down (i.e. conflicts with) and a rational process of reflection-in-action
takes over to solve the problem”*.

1.6.2.3.1 Intuitiveness versus Formality of Design Models

Theoretical computer science often demands for highly formal modeling ap-
proaches. Formal approaches are often complex in itself and require a deep un-
derstanding of the approach. In the author's view, this demand directly contradicts
with the view of Schon. Further, as Shipman and Marshall [SM99a] strikingly
have analyzed, users of systems supporting intellectual work often perceive for-
mality as significant obstacles to their work (see ch. 11.9.4.2 for a detailed de-
scription). Thus, formal methods may impose high entry barriers when applied in
practical engineering. In the authors opinion this fact may be one explanation for
the great success of UML in practical engineering, since its first versions did not
rely on a strict formalism but proclaimed a kind of notion 'it’s okay as long as it
says what you wanted to say'. This freedom lowered the entry barriers for practi-
cal engineers significantly and thus supported knowing-in-action.

The author has also encountered this experience in his own practical work as
contact person for the introduction of UML 2.0 into automotive embedded mod-
eling of the Micron Electronic Devices AG. At first, most designers were insecure
and concerned whether their design really was conforming to UML. The fear of
producing non-conforming UML diagrams made designers reluctant to model
diagrams, unless the designers were convinced that UML-conformance is not of
primary importance, as long as the diagrams showed what the designers wanted
to express and as long as they were not used as basis for code generation. This
UML in a sandbox style encouraged the designers to experiment with diagrams
and improved designers' experiences of UML by learning by doing.

Shamonsky [Sh03] emphasizes that Schon's findings rather indicate a strong
need for sketching: “In observations of designers sketching, Schon [Sch87] found
a process of negotiation between designer and sketch. The designer draws, then
interprets his or her own sketch, then continues or redraws the sketch in a process

" In the pattern approach terminology (ch. 1.6.2.4) this would be called 'resolving the

forces'.
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that yields a progressively more refined design” [Sh03; p.63] (see also [Sch87;
p.63]).

Also experiments by [Go99] show strong evidence that design without
sketching phases does not work (see also [BDO03], [BGP06]). Goel [G099],
[G095] approaches the design process by psychological studies. He identifies
four core activity phases in design:

e  Problem structuring (can be seen as something like the requirement phase),
e  Preliminary design (sketching),

e Refinement,

e  Detailed specification;

Referring to Witt et al. [WBM94], Kruchten [Kr95; p.49] states similar find-
ings to design phases in SE describing four phases of design (+12 sub phases):
sketching, organizing, specifying, optimizing. Aliakseyeu et al. provide an over-
view about sketching support in design [AMRO6].

Fig. 6-1 shows Goel's findings™ [Go99] about correlations between the
phases design problem space, cognitive processes and representations. Between
the problem statement (requirements) and the resulting design, a phase of prelim-
inary design leads to the exploration of several design ideas (alternatives) [G099;
p-1]:

“Preliminary design is a classical case of creative, ill-structured problem solv-
ing. It is a phase where alternatives are generated and explored. This generation
and exploration of alternatives is facilitated by the abstract nature of infor-
mation being considered, a low degree of commitment to generated ideas, the
coarseness of detail, and a large number of lateral transformations. A lateral
transformation is one where movement is from one idea to a slightly different
idea rather than a more detailed version of the same idea. Lateral transfor-
mations are necessary for the widening of the problem space and the explora-
tion and development of kernel ideas.

The refinement and detailing phases are more constrained and structured.
They are phases where commitments are made to a particular solution and
propagated through the problem space. They are characterized by the concrete
nature of information being considered, a high degree of commitment to gener-

> In the author's view, these findings can be directly transferred to the topics discussed

here, where the design phase “Problem Structuring” can be considered as REM activity
and the other phases ate considered as design phases. The transition from REM arti-
facts to design then takes place during the sketching phase. This also indicates why
traceability information between requirements and design may be more difficult to
capture than most traceability approaches usually consider (see ch. 11.10.6 for a more
detailed discussion).



1.6 Design in Systems and Software Development 93

ated ideas, attention to detail, and a large number of vertical transformations. A
vertical transformation is one where movement is from one idea to a more de-
tailed version of the same idea. It results in a deepening of the problem space.”

Structure of Symbol Design Cognitive
Representations System Problem Phases Processes
Natural Statement Problem
Language ] 1] Structuring
V —
al,a2 a3 Lateral
Ill—struclured_ Shetehin Prel}'minary Transformations
Representations 9 a1,a2,a3,a4,a5, .. Design (Widen the Problem
Scope)
Drafting & Design Vertical
Well-structured Restricted Refinement Transformations
Representations subset of (Deepen the
Natural al Problem Scope)

Language Detailing

Solution

Figure 6-1 The design problem space according to Goel [G099; fig.1]

Goel [G099], [Go95] claims that the ill-structured nature of sketches facili-
tates lateral transformations (changes of alternatives, ideas) because of ambigui-
ties, syntactical and semantic overlaps. Shamonsky emphasizes that the ambiguity
beared by sketches can be seen as “nourishment for creativity”, where “the de-
signer or other designers opportunistically discover new ideas based on misinter-
pretations or reinterpretations of the sketch” [Sh03; p.63].

Schon reveals a similar notion, when speaking about ambiguity in design:
“When design terms are ambiguous in this way, they may create confusion, but
they also call attention to multiple consequences” [Sch87; p.60f].

1.6.2.3.2 The Role of Expertise in Design

Cognition research on design indicates that sketching is an essential activity for
generating and refining ideas and solving problems [DGN+00]. Research results
of Bilda et al. [BGP06] indicate however that sketching is not essential for expert
architects to develop conceptual ideas, but “the ability to read or produce sketch-
es appears to be the only way to develop expertise in architecture” [BGP06;
p.587].

In the author's opinion, this corresponds to another finding of Reenskaug
[Re97] possibly explaining why software developers often do not use models for
analyzing and design. When training students, Reenskaug observed that the stu-
dents could not model a solution fop-down without any concrete solution experi-
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ence at hand. After the first system of this type has been built, however, the stu-
dents improved in modeling such a system in a top-down fashion. Sensitized by
these finding, Reenskaug then realized that he himself encounters the same prob-
lems when approaching new kinds of systems, because he lacks the knowledge of
specificly needed solution details. Accordingly, Reenskaug assumes this as an
essential property of the design problem. Reenskaug proposes a three point heu-

ristics to cope with this problem [Re97; p.6]:

e  “Choose the modeling idiom that best describes the hard parts of your prob-
lem. A program-centered approach will give overview of the code; a system-
centered approach will give overview of how the system works”.

e “Use an iterative approach to help get both architecture and details right”.

e “Do not over-document, but try to maximize self-documenting code”.

In other words, Reenskaug claims that only domain experts can perform a
model based design solution”®, whereas non domain expert developers should
address the core problems by sketching a design (point one), whereas the remain-
ing non-hard problems should addressed by self-documenting code instead of
models (point three). Both together must be addressed in a continuous iterative
fashion (point two)’.

According to Paech et al., designing is a creative task that “can only be
learned through experience and apprenticeship” [PKD+03; p.142]. Hazzan
[Ha02] provides a general discussion of the reflective practitioner principle in
connection with SE theory and teaching practice. He appeals for using sketching
classes in a design studio’ atmosphere, where students learn from coaches being
“first-class faculty members” [Sch87; p.171].

1.6.2.4 Design as a Language of Patterns

During his research on properties of good design in buildings architecture, Chris-
topher Alexander ([Al64], [AIS77], [Al79]) discovered that problems are often

% This is an indirect explanation why designers are usually referred to as experienced

expert developers.

Reenskaugs findings strongly resemble to important heuristics propagated by the agile
development community.

“Studios are typically organized around manageable projects of design, individually or
collectively undertaken, more or less closely patterned on projects drawn from actual
practice. They have evolved their own rituals, such as master demonstration, design
review, desk crits, and design juries, all attached to a core process of learning by do-
ing” [Sch87; p.43].

97
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recurring in the context of different design situations. This lead Alexander to
propose a concept that addresses these problems referred to as patterns.

Alexander realized that the average designers can only insufficiently cope
with the involved growing complexity: “To match the growing complexity of
problems, there is a growing body of information and specialist experience. This
information is hard to handle; it is widespread, diffuse, unorganized. Moreover,
not only the quantity of information itself is by now beyond the reach of single
designers, but the various specialists who retail it are narrow and unfamiliar with
the form-makers' peculiar problems, so that it is never clear quite how the design-
er should best consult them. As a result ... the average designer scans whatever
information he happens on, consults a consultant now and then when faced by
extra-special difficulties, and introduces this randomly selected information into
forms otherwise dreamt up in the artists' studio of his mind” [A164; p.3-4]".

His discovery, however, was that the complexity is not completely at random
but contains similar problems recurring in different situations. Even though — as
Rittel showed — the problems are not completely the same, they contain certain
similarities. Accordingly, the solutions also show certain similarities. Or, as prob-
lems contain a kind of pattern, the solution may also follow a kind of pattern:
“Each pattern describes a problem which occurs over and over again in our envi-
ronment, and then describes the core of the solution to that problem, in such a
way that you can use this solution a million times over, without ever doing it the
same way twice” [AIS77, p.X]. Or, as Booch puts it: “complex systems have
common patterns. These patterns may involve the reuse of small components,
such as the cells found in both plants and animals, or of larger structures, such as
vascular systems, also found in both plants and animals” [Bo94; p.11].

In short, a pattern describes a commonly recurring problem and a general-
ized description of a core solution generally adaptable to in different shapes for
the individual problems [AIS77; p.X]. Now, if a good solution for such a recur-
ring problem is found in a specific design solution, the designer can document the
general essence'” of the problem and its solution. Such documented patterns can
then be used as a solution alternative in similar design problem situations. When
the designer then decides for applying the pattern, the general solution essence
defines the general structure of the design, whereas the individual local condi-
tions of the current design problem context define the individual peculiarities of

% In the author's eyes, the following statement of Alexander also reveals close connec-

tions to the Simon and Booch's views of arbitrary complexity (ch. 1.6.2.1), Rittel's
wicked problems and Schén's view.

190 Essence emphasizes the need to describe generalized information on the problem and
the solution apart from a specific problem-solution context.
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the applied pattern in the current design context. The problem essence'® is often

referred to as conflicts or forces'* being torn apart [A164; p.20]. Or, as Hagge et

al. put it: “The underlying notion is that patterns help in resolving conflicts or
stress situation— which are frequently perceived as 'being torn apart by ...

forces” [HHL+06; p.412].

In general, at least four essential aspects must be treated by a pattern
[GHIJ+95; p.31], [Do04; p.530]:

e Name of the pattern [GHI+95; p.3] works as a kind of keyword that can be
used as placeholder (vocabulary) to refer to the complex knowledge of the
problem and solution during design talks and documentation.

e A common problem, including a common problem context describing the
forces, or the conflicts to be solved [GHJ+95; p.3], [Do04; p.530].

e A general approach to a solution [Do04; p.530], or general solution essence.
The structure of the pattern. The solution neither describes a specific design
or specific implementation. It can be seen more as a generic template adapta-
ble to different situations [GHJ+95; p.4].

e The consequences arising from the use of the pattern enlist either the ad-
vantages as also the disadvantages involved with the usage of the pattern.
“Although consequences are often left unspoken, when design decisions are
described, they are still of central importance for the assessment of design al-
ternatives and for the understanding of the advantages and disadvantages of a
pattern's application” [GHJ+95; p.4].

In the software development context, the first proposal for the adoption of
Alexander's pattern concept to software development seems to have been made
by Kent Beck and Ward Cunningham [BC87] within the Smalltalk programming
community for developing user interfaces'® [BMH+98; p.7]. Even though other
publications exist [CS95], the book of Gamma et al. [GHJ+95] — often referred to
as Gang of Four (GoF) — sparked broad resonance in the design community lead-

101" See [HHL+06; p.412] for a good discussion on this.

102 A good example is the pattern “A window place” [Al179; p.112] that can be summa-
rized in the following way: “In living rooms where people want to be comfortable, a
sitting area should be located close to the windows. In rooms where the sitting area is
not placed near the windows, people would be caught in a conflict: they would be
drawn to the chairs to sit down and relax, but at the same time they would also be
drawn towards the windows where the light is. Using the window place pattern would
resolve and prevent the stress situation” [HHL+06; p.412].

103 See, e.g., the model-view-controller pattern concept
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ing to the wide influence of patterns in today's SE theory. Patterns can thus be

found and used at different levels

1% of abstraction in design and SE theory:

Requirement patterns can be used to support elicitation and specification of
requirements in combination with their verification criteria and test cases
[RS02; p.346f]. A good description about other RE patterns and their role in
RE is provided by [HHL+06].

Analysis patterns support analysis of requirements and especially can pro-
vide help that important nonfunctional requirements are already considered
during the analysis phase [Mo04; p.142], [HaOla], [Fo97].

Architectural styles'” define “a family of systems in terms of a pattern of
structural organization. More specifically, an architectural style defines a vo-
cabulary of components and connector types, and a set of constraints on how
they can be combined” [SG96; p.20]. In other words, architectural styles de-
scribe global structuring or organization principles to be found over and over
again [PBGO04; p.202]. An example for an architectural style is the three lay-
er architecture separating data storage, functional logic and user interface in-
to three different horizontal layers [BMR+00; p.3 1ff].

Architectural patterns describe rules or methods to address recurring aspects
of system functionality often also referred to as crosscutting concerns
[PBGO04; p.207] such as persistence, multi-threading, distribution or the user
interface [PBG04; p.208]. In this way, architectural patterns do not so much
emphasize the functional domain but address technical aspects [PBG04;
p-208]. An example for this category is the model-view-controller pattern
addressing the crosscutting concern of designing flexible and reusable GUI-
components [BMR+00; p.125ff].

Design patterns describe solutions for recurring design problems. Whereas
architectural styles and architectural patterns rather address the global per-
spective, design patterns address more local perspectives in the way that they
either effect one component or the collaboration of a few components
[PBGO04; p.214] [BMR+00; p.222ff]. In this way, design patterns can be ap-

194" Also cf. Buschmann et al. [BHS07, p.213ff], who admit that these categorizations also
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are in some way arbitrary, as patterns often involve more than one of the different pat-
tern categories described here and thus overlaps are fluent.

It is to note that Buschmann et al. [BMR+00] do not distinct architectural styles from
architectural patterns. This separation seems to be introduced by Posch et al.
[PBGO04]. However, even [BMR+00] provides a kind of segmentation, because the
first are referred to as architectural patterns bringing structure into the overall archi-
tecture, whereas the latter then refer to more detailed implementations of aspects. In
this way, the author finds this distinction between architectural styles and architectur-
al patterns plausible.
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plied without having effect on the overall architecture of a system or soft-
ware [PBG04; p.214]. Furthermore, several design patterns can have effect
on a component in parallel.

Idioms [BMR+00; p.345-358], or implementation patterns [Be08], in pro-
gramming languages or programming practice describe special — often pro-
gramming language specific — peculiarities to provide an elegant solution for
a specific recurring programming problem'®. Beck [Be08] (also cf.
[BMR+00; p.348f]) further shows that idioms can be an elegant mean for
writing self-documenting code helping to improve development communica-
tion, simplicity and thus code flexibility [Be08; p.24ff].

Process patterns describe patterns within a process landscape. Most notably,
the agile development methods community [Co95], [BDS+98], [MWS+07],
[HHLA+06] and the wiki community [Ma08b] have also internalized the pat-
tern language concept as they can be seen as an implementation of so-called
process pattern languages ([Co95], [MWS+07]). A good starting point for
the definition and usage of agile process patterns are found in [BGO06].
Anti-patterns indicate design flaws by enumerating symptoms and their
negative effects [Ak96], [BMH+98], [Mo04; p.149 ff], [Kr08]. Anti-patterns
arise when an originally fitting solution increasingly becomes unfitting due
to changes of the solution's context (e.g., changing requirements) [Mo04;
p-150]. The anti-pattern concept allows to document symptoms in a struc-
tured way to detect recurring unfitting solutions. Therefore, anti-patterns are
also called recognition patterns [Mo04; p.156]. A good description about ar-
chitectural anti-patterns and how they happen is provided by Kruchten
[Kr08].
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As an example, the '?:'operator in the programming language C allows to assign differ-
ent values to a variable basing upon a condition within one line of programming. As an
example for idioms imposed by the automotive industry can be the MISRA standard
for C programming [MISRA2004]. The standard defines idioms to be used in order to
avoid known programming pitfalls encountered in C. In MISRA conforming code,
e.g., the expression 'if (x==1)' is not allowed, because an incautious programmer could
have written 'if (x=1)', where in this case a value assignment would take place and the
‘if” statement would never be reached (besides a construct such as 'if (x=1)' is general-
ly forbidden in MISRA). To avoid such unintended side effects, the MISRA standard
demands to use 'if (1==x)', because if the developer wrote 'if (1=x)' the C compiler
would issue a compiler error, as a value assignment to a constant ('1') is not allowed.
In other domains such as Linux programming, however, the idiom 'if (x=1)" is consid-
ered as an elegant way of programming as it combines a value assignment with an ‘if”
in one line and thus avoids unnecessary code.
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Usability patterns: Borchers [Bo01] describes patterns usable for human
interaction design.

Means: In connection with patterns, Paech et al. [PKD+03] define the term
means: “Means are principles, techniques, or mechanisms that facilitate the
achievement of certain qualities in a SW architecture. They are abstract pat-
terns that capture a way to achieve a certain quality requirement, but are not
concrete enough to be used directly” [PKD+03; p.144]. However, means
may be connected with concrete patterns [PKD+03; p.144], because means
are selected according to NFRs and lead to the identification of the corre-
spondingly usable patterns [PKD+03; p.147]. Hagge et al. refer to a RE pat-
tern “Organize Specification Along Project Structure” (OSAPS) [HHLA+06;
p-419]. SysEng (ch. 1.4) can be seen here as the means to fulfill the OSAPS
pattern.

To support convenience and clarity [AIS77; p.X], Alexander proposes to de-

scribe each pattern in the same format today referred to as a pattern template.
The pattern template provides a formalized skeleton of all important points to
consider and document about a pattern. In this way, a structured method for doc-
umenting patterns that are comparable to each other is enforced.

As an exemplary pattern template, the properties of the GoF pattern tem-

plate [GHJ+95; p.8ff] are shortly introduced in the following (for other sources
about pattern templates the author recommends [PBG04; p.217]):

The pattern's name and classification: as indicated above the name is intend-
ed to become part of the designer's design vocabulary. Thus, the name should
transport concisely and precisely the essential information of the pattern.
Purpose: This section shall provide a brief sketch of the pattern's general
achievement, general principles, general purpose and what general issues or
problems can be addressed by the pattern.

Also known as: Refers to possibly known different names. This is, e.g., used
to refer to other authors having described the pattern by using a different
name.

Motivation: Here, a certain specific exemplary scenario describes a design
problem and how the structure of the pattern can help to solve the problem.
Application: This section describes the problem situations the pattern can be
applied to and how the situations can be recognized by the designer.
Structure: The structure part describes the general structure of the pattern.
For this, usually a structure diagram is provided with a textual description.
Participants: Participating classes and objects are discussed in this part.
Interactions: The interactions between the participants are described in this
section.
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o  Consequences: As described above, the application of a pattern can involve
positive and negative consequences. This part describes all known conse-
quences.

e [mplementation: The implementation section describes tips, techniques and
pitfalls of the pattern to be known in order to be able to apply it successfully.
It further refers to programming language specific aspects and possible ways
of implementation.

e Example code: Example code fragments demonstrate a possible implementa-
tion within a programming language.

o  Known usages: This part shows where the pattern has already been applied
in real systems giving indications where the effecting pattern can be studied
in practice.

e Related patterns: The last section describes how the pattern is related to
other patterns, what the differences are to other patterns. Further, the part
describes what patterns harmonize with the pattern and what patterns may
involve dissonant effects if applied with the pattern.

A single pattern can provide a valuable solution for a problem. Alas, design
deals with a lot of problems and correspondingly several different patterns may
be applied in a design to solve these problems. Hence, the different applied pat-
terns in a design may influence or stay linked to each other. This raised the idea
in Alexander that design may be expressed as a language of patterns [AIST7],
where the different applied patterns and their connections to each other structure
the design. These connections between patterns can be influential (e.g., two de-
sign patterns can benefit or oppose each other) and also be of a kind of hierar-
chical nature, where higher abstraction level patterns are built up by lower ab-
straction level patterns (e.g., a design pattern can be implemented by several
idioms working together, and the design pattern can work together with other
design patterns to implement an architectural pattern) [AIS77; p.XII]. This idea
is considered by Gamma et al. by defining a so called pattern catalog including a
map, where possible connections between the patterns are introduced for design
patterns [GHI+95; p.16]. However, connections to patterns on other levels of
abstraction are not considered. The concept of collecting patterns in a pattern
catalog is usual [Mo04; p.143].

Also to mention is the Portland Pattern Repository'®’ (PPR) wiki providing
a possibility to collect patterns of all possible different categories'”, where inter-

17" See http://www.c2.com/cgi/wiki?PortlandPatternRepository (Access: 2010/03).

1% The PPR even describes socio-political patterns concerned with SW-development such
as 'Melting Pot', describing how immigrants can be integrated into a SW development
company in order to support company growth.
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connections between patterns at even different categories are possible to de-
scribe. According to Greenfield et al. [GSC+04; p.210-211], the formalization of
a pattern language may be a step toward defining a new modeling language. In
fact, some design patterns (such as, e.g., 'Singleton') can be expressed in repeat-
edly the same implementation in code; however for others this may not be always
achievable in the same way. However, Rupp et al. [RS02; p.348] utter the opinion
that such a detailed pattern language may be an unrealistic goal for the software
development community. Nevertheless, it is also to mention that Alexander him-
self does not insist on the opinion that only one pattern language exists, but that
each individual may develop his (her) own unique language [AIS77; p.XVI]. In
this way, a formalized pattern language was not in the focus of Alexander and
may even to a certain extent contradict the original intentions of Alexander.

Evidence exists that patferns may also be implicitly present in expert de-
signers thinking [VMO02], [WVO03]. In the Schonian context, one advantage of
patterns may be that they represent a set of condensed reflective structures
evolved from the design community. In other words, the pattern design commu-
nity often identifies probably knowingly (intuitively) found solutions as 'good'
and then reflectively explores the exact circumstances of their 'goodness"” and
documents this knowledge as a pattern. Even though such an rationalization of
intuitive knowledge may tend to provide falsifications [Sch87; p.23], Alexander’s
“method of capturing expertise was innovative, as it made explicit many of the
'soft' attributes that were previously attainable only through years of experience”
[BMH=+98; p.7].

Thus, patterns can be seen as written-down expert knowledge about a prob-
lem area and an offering of special opportunities to transfer and acquire this
knowledge [HaOla], [RS02; p.344], [Mo04; p.139]. Hereby, “patterns provide
clarity. Patterns alone by their names represent a set of knowledge and meta-
knowledge building a standard language (own set of vocabulary), where issues
are reduced to a handy manner by essence building and abstraction” [RS02;
p.345 (*)]. Thus, the role of patterns can be seen similar to symbols in a lan-
guage, where sheerly mentioning the pattern name transports complex
knowledge to all persons being familiar with the pattern.

In this way, patterns are also a possible answer to the problem of complexity
and rapid change in software development: “Formalizing knowledge is a costly
process. Aiming at achieving a perfect formalization is perhaps not worth, be-
cause software development, as any other intensive human activity, is evolving.
Therefore the focus should be on providing an easy to customize and simple to
apply solutions like the framework of patterns” [BG06; p.389].

199 In the context of anti-patterns, the term 'good' can be replaced by 'bad'.
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As indicated in ch. 1.6.2.1.3, Simon's principles may be the end results of a
design process, but Simon does not provide adequate indications on how to apply
the principles in the design genesis. The problem seems to be that due to the
complexity of factors, which make it impossible to rationally capture all factors
adequately, intuitive knowing-in-action and tacit knowledge (see Schon, ch.
1.6.2.3) are often the means to structure design. Here, patterns help designers in
the decision process by documented expert knowledge. As an example, at the
beginning of a project where nearly no structure is recognizable yet, a style as the
three layer architecture builds a guide to overcome this by building a heuristics
for early decomposing the design according to general aspects most SW-systems
for PCs usually have.

In summary, the following positive effects can be achieved by patterns:

e Novice software designers can significantly improve their design quality
from start [PU99], [Mo04; p.143].

e  Experienced designers can also improve their design quality but more im-
portant, can better communicate their design ideas through patterns, being a
design vocabulary transporting complex knowledge [PU99], [M004; p.143].

e  Generally, only very few situations exist where patterns are weaker in com-
parison to another alternative solution [PU99], [Mo04; p.144].

e Most patterns have very positive effects on flexibility, whereas the impact on
maintainability stays stable if they are not misused (see below for description
of possible misuses) [PU99], [M004; p.144].

e Design patterns often influence nonfunctional requirements in one or the
other direction. In most cases, however, choosing the right design patterns
can significantly affect positive impacts on NFRs otherwise difficult to ad-
dress [PBG04; p.214].

e  Patterns offer proven and tested solutions to problems [RS02; p.344]. How-
ever, its positive effects should be tested, before employing a pattern.

e Douglass proposes using a pattern for each design view (see ch. 1.6.2.1)
employed in a design. In this way, conceptual integrity shall be enforced
[Do04; p.478].

If patterns are used in a design, its usages should be documented in order to
alleviate later maintenance [M004; p.321]. This will also be especially important
when the documentation is the basis for an architectural assessment. In these
cases, pattern can be significant indicators to detect tendencies and overall quali-
ty of a design [Mo04; p.140], [Mo04; p.293], [Mo04; p.381ff].

However, patterns can also provide problems. Dittert [Di04b; p.37] de-
scribes her own practical experiences how the pattern idea can be misused (i.e.
pattern usage anti-patterns):
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o  “The pattern canon” [Di04b; p.37 (*)] has happened, if a simple imple-
mentation would have been sufficient, but some probably somewhere in the
future occurring problem could have spoiled the solution. Correspondingly,
the applied pattern may have prevented problems, if the change case may
have happened some time. On the other side, the — most probably unneces-
sarily — applied pattern has heightened the complexity.

e “Pattern euphoria” [Di04b; p.37 (*)] can occur, if the application of a pat-
tern at first brought significant advantage and then lead to extended use of
the pattern to increase code flexibility, until the code became unreadable and
small changes induced tremendous side effects.

e “Pattern decoration” [Di04b; p.37 (*)] describes properly working code that
is decorated with some additional patterns, because the implementation was
easy enough, whereas no significant new value has been generated.

o “Pattern record” [Di04b; p.37 (*)] indicates attitudes of designers thinking
that a program’s quality will automatically be high, when all known patterns
are someway employed in it.

Last but not least to mention, Alexander saw pattern solutions as “timeless”
[A179]. However, this timelessness refers to the method but not the patterns
themselves. Practice in software development, for example, shows at least in the
software context that patterns also change, during increased usage and gained
experiences [Wi06]. Consequently, their documentation i.e. specification need to
be changed, too [Wi06]. From this perspective, close connections between the
pattern concept and what Simon describes as stable intermediate forms reveal.
Maybe patterns are a — maybe others exist as well — kind of notation for (resp.
manifestation of) stable intermediate forms.

1.6.3 Comparison of General Design Theories

The author does not see that the different views on design expressed here are
fully contradicting. In fact, the views supplement each other at certain states.

As Rittel’s view tells something about social dynamics — as artificial worlds
are created by and for humans they are deeply social — in design, it explains
commonly observed core phenomena as the occurrence of permanent change in
the requirements and the corresponding solution. A major implication may be that
designs underlie stronger forces for change than often admitted.

Heavy-weight design approaches often implicitly assume a certain stability
of the solution design or demand extensively built-in flexibility mechanisms (as,
e.g., extensive frameworks) in the design. However, flexibility has its price in
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higher complexity and thus higher effort and higher costs''’. Correspondingly,
only finite flexibility is possible. Thus, these kinds of approaches must often rely
on the designers’ abilities to foresee changes in order to provide corresponding
flexibility mechanisms. The wicked problems theory strongly challenges the fea-
sibility of this. In other words, design approaches should impose as few obstacles
to changes as possible in order to address the wicked nature of the addressed
problems that necessarily result in extended changes.

Even though Simon’s positivist linear view on design may somehow be
called naive, Simon provides valuable insights into the toolkit available for de-
signers to handle the complexity imposed by the manifold of information to be
considered at design. Principles as abstraction, hierarchical design and views that
have evolved from his pioneering research are state of the art in any kind of de-
sign —may it be aware or ignorant of the wicked nature of design problems.

Schon, on the other side, uncovered that designers do not perform design in
a merely objective-rational cognitive setting but are equally intertwined driven by
intuition, tacit knowledge, experience, taste, style and maybe even wisdom. Cor-
respondingly, the author agrees on Knuth that computer programming — as it
inherently contains design even if not necessarily explicitly present — is a science
and an art [Kn74].

Last but not least, the pattern concept addresses recurring problems in de-
sign and creates possibilities for collecting and communicating design
knowledge.

All views on design sketched here have one common concern. Requirements
constitute a problem space, whereas design constitutes a solution space. Between
both exists a considerable semantic gap that is constantly mentally bridged by
designers. This gap is the result of an irreproducible, non-deterministic and onto-
genetic path of intellectual decisions created by a collaborative collective of hu-
man beings shaping an artificial — in relation with SW even abstract and virtual —
environment. Requirements traceability aims at closing semantic gaps. However,
the ordinary link concept as usually provided by requirements traceability refers
to a linear relationship between requirements and design. As the characteristics of
the design process sketched above suggest, design rather is a nonlinear complex

11 «The problem with building flexible solutions is that flexibility costs. Flexible solu-
tions are more complex than simple ones. The resulting software is more difficult to
maintain in general, although it is easier to flex in the direction. ... Even there, howev-
er, you have to understand how to flex the design” [F099].
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process. Correspondingly, the author suggests considering relationships between
requirements and design as equally nonlinear'"".

In other words, design processes are creative and complex mental transfers
of unique problem constellations into a sustainable solution. Correspondingly, a
substantial gap between requirements and design exists that is — in to the author’s
belief — not really manageable by a linear linking concept as current traceability
theory suggests''. A sustainable design traceability concept must orient itself on
the designers’ way of designing, not interrupt the designers’ thinking, find an
adequate support for decision making, be able to support design as a collabora-
tive process and last but not least provide the necessary flexibility for changing
the design.

1.6.4 Dependency between Design Models and Code

Design models in relation to source code can be either descriptive or prescriptive.
When a code documentation model is generated from developed source code, the
model is descriptive. Otherwise, when a design model is designed before the
code, these models are prescriptive, because they prescribe the further outcome
of the code. Usually, design is performed before the code, thus most design mod-
els are prescriptive.

Generally, design theory recommends that besides the design models also a
programming model must be developed [GP04], [PBG04; p.69]. The program-
ming model deals with defining the transformation regulations for transforming
design models into code. Design models and the programming models must not
be confused with each other [PBGO04; p.69].

Usually, three ways for a programming model to develop code from pre-
scriptive models exist:

e  Manual implementation,
e Partial code generation,

"' Of course, in any project a high amount of fairly linear relationships between require-
ments and design may exist. However, as these are relatively trivial ones, the nonlinear
relationships will often be more critical to identify, if a requirement change shall be
implemented consistently.

Similar findings are expressed by Medvidovic et al. [MGE+03; p.202]: “Unfortunate-
ly, the large semantic gap between high-level, sometimes ambiguous requirements arti-
facts and the more specific architectural artifacts (e.g., modeled in a formal
...(architecture description language)...) often does not allow one to establish mean-
ingful links between them”. As a consequence they developed their so called CBSP
approach, discussed in the ch. I1.10.6 about requirements traceability to design.

112
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e Complete code generation;

From the technological perspective, manual implementation is the simplest
way. However, development efforts are the highest. In the long run, risks that a
significant drift between design model and its code arises are nearly not avoida-
ble, because design models represent a redundancy to the code. Thus, mainte-
nance must care to adapt both the model and the code. Maintenance effort will be
lower, if the models are not very detailed. In fact, design theory emphasizes that
models should just show the core ideas and concepts of a system, but no imple-
mentation details [GP04; p.64].

Partial code generation can be achieved by two possible ways. One way is to
generate complete code for certain parts of an application. It is, e.g., possible to
generate complete code representing a state machine from a state chart model.
Another possible way is that certain aspects of a model can be used to automati-
cally generate certain code outlines that must then be accomplished by manual
implementation. In this way, e.g., variable names and method names in a model
can be used to generate source code files with automatic generation of the varia-
bles definition and method stubs. These method stubs must then be populated by
manual source code development. Both techniques allow saving effort by directly
reusing modeled information for the source code. Further, later changes of a
model can be directly propagated to the source code thus diminishing risks of a
drift between models and source code. On the other side, this method is accom-
panied by the need for more sophisticated tooling. Additionally, automatically
generated code can lead to lesser code efficiency (lower performance or worse
resource efficiency).

Full code generation would completely solve the redundancy problem be-
tween models and its code, because the full code is generated from the model.
Therefore, a drift between models and code is impossible. On the other side, very
sophisticated tooling is necessary and the code efficiency may be significantly
lower than the efficiency of manually or partially generated code. Additionally,
models must be modeled in significantly more detail, as all instructions of the
code must be somehow represented by the models or the code transformation
algorithms. This means that models must also represent implementation details
rather than just ideas or concepts (see, e.g., [Do04; p.589ft]), or the code trans-
formation algorithms contain much of the complexity of the implementation
details. This, however, involves the problem that the developers must either com-
pletely rely on the code transformation algorithms, or the developers must in-
strument the code transformation algorithms by setting complex sets of parame-
ters and performing a certain restricted way of modeling. Both techniques involve
significant intransparencies of the transformation processes that may also be an
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issue for traceability considerations. Additionally, using these tools also requires
having extra expert skills of the developers in using the tools.

Last but not least, it is to mention that requirements traceability between de-
sign models and code is relatively easy to handle due to the redundancies be-
tween both. As both model and code usually use the same names for concepts
being redundant to each other, the traceability technique of name mapping (cf.
ch. 11.10.4.2.2) solves the traceability problems as long as no significant drift be-
tween models and code occurs leading to a drift, where the names drift apart from
each other.

1.6.5 Architecture Documentation

Besides just designing the diagrams of a model, further textual documentation
must be delivered with them. Managing complexity and achieving a common
understanding are core goals of any design. However, diagrams can be ambigu-
ously interpreted by different persons. Correspondingly, the diagrams must be
accompanied by a textual description. The research field architecture documenta-
tion (AD) tries to define important criteria on what must be documented about a
SW architecture in order to be useful. As the R2A tool introduced in part III also
provides certain support for design documentation, some general principles for
AD shall be sketched'" here. Of course, AD actually only cares for SW architec-
tures (one of the three different designs identified in ch. 1.6.1), but in the author's
opinion the points discussed here are equally valid for systems design and up to a
certain point also valid for detailed SW design.
At first to mention, Clements et al. [CBB+03; p.24-28] introduce seven rules
any sound textual documentation should consider (also cf. [PBG04; p.124-125]):
e Documentation should be written from the point of view of the reader, not the
writer: This ensures that the documented information can be really under-
stood by the reader.
o Avoid unnecessary repetition: As discussed before in ch. 1.6.1.2, redundancy
should be generally avoided (DRY-principle).
e Avoid ambiguity: The information provided must be precise and should not
leave open space for misleading interpretation.
e Use a standard organization schema: An architectural template helps to
document information in a certain standard scheme for all projects. In this
way, project members can easier understand new documents.

'3 The interested reader may read [IEEE1471], [CBB+03], [PBG04; p.121-169] or
[HS06] for a deeper understanding.
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e Record rationale: Important decisions must be documented.

e Keep documentation current but not too current: Documentation should be
continuously kept up to date, but updates should not be performed immedi-
ately to avoid unnecessary costs.

e Review documentation for fitness of purpose: Documentation must be re-
viewed whether the documentation fulfills its goals.

Concerning 4D, the following basic requirements must be supported
[PBGO4; p.126-128]:

e FEfficiency of the project must be supported: The documentation must support
the developers to efficiently and easily acquire the information needed for
their current tasks.

e Communication and common understanding of important stakeholders must
be supported: The AD is responsible to enable communication and common
understanding of the architecture throughout all important stakeholders. In
the following, several stakeholder needs are described.

e Minimize risks: The AD must help to reduce risks by making possible risks
transparent. This means, for example, that documentation should be struc-
tured risk-oriented meaning that high-risk issues should be addressed with
higher priority and extent than rather low-risk issues [PBG04; p.127]. An-
other important means to expose risks is structured documentation about de-
cisions taken in order to address certain risks and how taken decisions may
spark new risks.

e  Preserve the core knowledge of the designed system: The core knowledge
about a certain architecture should be preserved throughout the life time of a
project. AD should therefore help to preserve this knowledge in the develop-
ing organization and assist in deriving knowledge and experiences reusable
for new projects.

As point two has mentioned, 4D also is about promoting communication
and common understanding between important stakeholder groups. 4D must at
minimum support the following stakeholders with their goals [PBG04; p.127]:

e The project manager needs an overview of the design in order to take organ-
izational decisions. Further, the project manager must get to know the tech-
nical risks.

e  The architect creates the architectural documentation of the project. For this,
he must capture and understand the important concepts, strategies and tech-
nologies used.

e The software developer realizes parts of the architecture. In this way, he
must understand the basic principles of the overall architecture, the basic
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context of the parts he must realize and — probably most important — detailed

information on the interfaces of the parts to be realized.

An AD must contain the following essential points [PBG04; p.128-131],
[St05; p.105], [CBB+03]:

o All relevant views must be documented in the AD. All views should be doc-
umented in the same manner by a standard organization template [CBB+03;
p-317]. In [CBB+03; p.317-320], Clements et al. introduce such a template
which follows seven criteria.

e As each view only describes a certain aspect of a system, the AD must also
document the intercorrelations, interactions and tradeoffs between the differ-
ent documented views'"”.

e To achieve the efficiency requirements of 4D, the 4D document should in-
clude a description of its structuring and assistance to the reader.
Concerning the last point, Posch et al. [PBG04; p.130-131] provide the fol-

lowing remarks:

e The AD should use a hierarchic structuring. This structuring could, e.g., be
the hierarchic decomposition structure of a system, but also other views may
be organizable in a hierarchic ordering scheme.

e  Descriptions of relationships between views should be explicitly highlighted.

e Finding and retrieving essential information must be easy. Thus, important
information should be in the center of description.

e Documentation must be target-group-specific. This means that information
for a specific target group should be rather located at one cohesive location
than be scattered over the whole documentation.

e The documentation must support target-group-specific navigation. At least,
information about target-group-specific navigation information should be
provided.

Last but not least to mention, the IEEE 1471 standard [TEEE1471] defines a
conceptual model for documenting architectures in combination with recommen-
dations how to apply these concepts. Among other concepts, the correlations
between a system, its architecture, its AD and views are defined. Especially inter-
esting is the fact that the IEEE 1471 derives a view from stakeholders and their
perspectives called viewpoints. From this viewpoint construct, characteristics and

114 “The basic principle of documenting an architecture as a set of separate views brings a
divide-and-conquer advantage to the task of documentation, but if the views were ir-
revocably different, with no relationship to one another, nobody would be able to un-
derstand the system as a whole. Managing how views are related is an important part
of the architect's job, and documenting it is an important part of the documentation
that applies beyond views” [CBB+03; p.200].
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constraints for views shall be derived. As the IEEE 1471 only provides concepts
and recommendations, no specific demands for modeling languages, techniques,
used design models or views, or other AD related concepts are provided. In this
way, the IEEE 1471 only defines a frame for deriving an individual AD approach
[PBGO04; p.132]. Besides the general principles for AD sketched here, the IEEE
1471 with its conceptual framework is not further considered in this thesis. An-
other standard to consider is the IEEE 1016 [IEEE1016] (also cf. [Sch00; p.112-
121]) providing a “recommended practice for describing software designs”
[Sch00; p.112]. The standard specifies the information content and recommended
organization for a software design description as a representation of a software
system that is used as a medium for communicating software design information
[Sch00; p.112].

A comprehensive general treatment of the topic architectural documentation
is provided by the book of Clements et al. [CBB+03] describing the basic princi-
ples of sound documentation and providing a fundamental terminology and
method. According to Hruschka and Starke [HS06; p.56], the proposals for struc-
turing AD documents in general are ,.brilliant™ with its basic structure for docu-
menting views. Hruschka and Starke [HS06; p.57], however, consider Clements
et al. [CBB+03] as hardly suitable for a practice-oriented 4D. In [HS06], Hru-
schka and Starke give an overview on other 4D approaches. Further, they intro-
duce a more pragmatic and practice-oriented approach on 4D they call “arc42-
template”.

1.6.6 Design in the Automotive Domain

After the previous chapters have provided a rather general view on how design
arises, this chapter describes the modeling methods and tools typically used in
automotive development. This helps to derive some extra requirements for the
R2A tool solution described in part III.

Generally, it is to mention that the tool solution described in part III is a
general solution not especially dedicated for the automotive domain. In this way,
this chapter can rather be considered as a kind of exemplar description of model-
ing approaches used in a specific engineering domain. On the other side, the
automotive domain has some peculiarities that should be considered in order to
provide high value for the automotive domain. At the end of this chapter, the
reader will see that the features derived from these peculiarities are also useful for
other domains, but they are especially useful in the automotive domain.

In the following, two peculiarities of the automotive domain are discussed:

e  The usage of different heterogenecous modeling languages and tools,



1.6 Design in Systems and Software Development 111

e The need to integrate other organizations (e.g., suppliers) into the considera-
tions of design;

1.6.6.1 Modeling Methods and Tools Used in Automotive
Design

In the automotive domain, different modeling methods are used:
e Tools basing on UML and (resp. or) SysML,

e Automatic control engineering oriented tools,

e  Tools basing on state charts,

16.6.1.1 UML and SysML

The Unified Modeling Language (UML) has established itself as worldwide
standard for modeling SW [We06; p.3]. UML has also established itself in the
embedded community ([Gr03], [Al03]). In automotive, it is also gaining growing
usage'””, even though the other approaches mentioned here exist. UML's ad-
vantage is its high variety of different design elements and diagram types allow-
ing to flexibly model different aspects concerning SW. Thus, UML directly sup-
ports to model different views. Although UML supports hierarchic decomposition
of systems, UML does not prescribe a hierarchic order. The standard rather con-
centrates on defining the different diagram types with the semantics of the used
elements in these diagrams. Decisions about how to arrange elements and dia-
grams in a model are left open to the designers. It is rather possible to use differ-
ent hierarchies (e.g., it is possible to have different hierarchies for different
views). This leads Broy and Rumpe to the conclusion that UML is rather prag-
matic and practice-oriented without a uniform model, but has rather worked out
partial aspects as views however not being consistent to each other [BRO7b; p.4].

UML also provides extensibility through offering a meta-model and a profil-
ing mechanism. Whereas, first versions of UML have rather concentrated on
usability in practice, UML 2''° defines an action-semantics with improved sup-
port for executable models allowing model simulation and code generation
[Mo04; p.180ff]. Model simulation allows early verification of requirements,
because the models can be used as a simulation prototype (see ch. 1.5.6 for ad-

115" A clear indication of its importance in Automotive is the fact that its notation is used in
defining Automotive SW standards as, e.g., the AutoSAR standard [KF09].

A detailed overview of the major changes between the first UML versions and UML2
is provided by [JRZ04].

116
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vantages of prototypes in REM) to simulate the behavior of the system, before it
is finally constructed thus enabling to identify missing or wrong requirements
earlier [Mo04; p.177ff]. Model simulation can also help to achieve early estima-
tions about NFRs related to the dynamic behavior of a system (e.g., performance,
scalability) [Mo04; p.183]. Known UML-tools employed in practice for model
simulation are IBM Rational Rhapsody and Artisan Realtime Studio (see also
[Ge05; p.42-44], [Sa05]). However, as long as it concerns model simulation and
code generation, often other tools described in the next chapters are mostly em-
ployed in the embedded domain.

For system design as used in SysEng processes, the Systems Modeling Lan-
guage (SysML) has been developed. SysML [SYSML] is defined as standard by
the Object Management Group [OMG] basing on UML 2.1.1 [We07; p.16].
SysML extends UML in certain aspects but also leaves out some aspects of UML
not necessary for systems design. Besides extensions for modeling systems such
as support for time-continuous modeling or block diagrams, a major extension is
that SysML defines a notion for requirements together with several relationship
types that describe traceability mapping between requirements and design. Ch.
11.10.4.2.3 describes this aspect of SysML in more details.

Concerning tool support, SysML can usually be used by UML-tools extend-
ed by a SysML profile. A detailed description of the SysML standard is provided
by Weilkiens [We06], [We07].

16.6.1.2 Automatic Control Engineering Oriented Tools

As Bauer et al. [BRSO05; p.195] point out; automotive SW development has di-
verse connections to mechanical engineering and automatic control engineering.
Accordingly, several design tools exist that have automatic control engineering-
oriented''” semantics.

In ECU development, the most applied tool of this kind is probably Matlab
Simulink [Matlab] (see [Te01]). In the automotive domain, besides Matlab Sim-
ulink, the tool ETAS ASCET [ASCET] is also used in equal project contexts
(ASCET, however, in contrary to Matlab Simulink seems to be used only in the
automotive domain). Marwedel [Ma08a; p.86] describes Matlab Simulink as
simulation and modeling tool basing on mathematical principles (e.g., partial
differential equations). Different elementary mathematical operations as integra-
tors, characteristic diagrams''® or filters are symbolized by so called block librar-
ies (cf. [BRSO5; p.195]), which can be connected together via data flow model-

7" German: Regelungstechnik
' German: Kennlinie
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ing. Matlab Simulink (and equally ETAS ASCET) provides facilities to simulate
the behavior of those models as prototypes for early requirement verification of
complex physical or logical interdependencies between requirements (ch. 1.5.4).
Furthermore, these models can also be used for code generation of large parts of
the application (see also [Sa05], [Ge05; p.42-44], [MBO05]).

As Bauer et al. [BRS05; p.195] point out; this modeling technique empha-
sizes synchronous function blocks, signals, periods connected by data flow tran-
sitions. However, these models depend on a synchronous uniform time basis.
Thus, problems as concurrent tasks or shared resource management are difficult
to handle in those tools (see [BRS05; p.195] for details). Therefore, — as the au-
thor experienced in practice — those tools are often used for modeling certain
components having complex behavior. These components are then integrated
with other components in a higher level architecture.

1.6.6.1.3 State Charts

Most ECUs are reactive systems (see ch. 1.2.2). This means the system reacts on
the settings and changes of the environment. Therefore, ECUs or at least parts of
it are often state based. Due to the long existence of state machine theory, it is
also a well-known theory describing deterministic behavior.

The techniques usual today for modeling complex state based behavior are
state charts"" originally introduced by Harel in 1987 [Ha87]. The semantics of
the language bases on finite deterministic state machines. More on state charts as
modeling technique in the context of ECUs can be seen in ch. 1.5.4, [Ma08a;
p.18ff] or [Do04; p.3171].

Requirements describing state based behavior can be very numerous and
complex and so can also become the state machines. Therefore, advantages and
limitations of this method concerning early model verification for early require-
ment evaluation are comparable to the approaches described in the previous
chapter about automatic control engineering oriented tools (see also ch. 1.5.4).

"9 Pettit [Pe04] provides the following experiences about state charts in embedded design
practice with UML: “In the author’s experience, state charts are one of the most un-
derused UML diagrams in designing embedded software system. The hierarchical state
charts employed by the UML offer significant expressive power for capturing the reac-
tive, state-dependent behavior often found in embedded systems. State charts should
be constructed for each class that encapsulates state dependent behavior” [Pe04; p.4].
Ch. L.8 provides a more detailed discussion on the practical experiences of Pettit in
embedded development.



114 I. General Context and Theories

Due to the possible high complexity of the state machines, the state machine
models can be managed hierarchically, where states can have sub state machines
[Ma08a; p.19], [Do04; p.3171].

The tool Matlab Stateflow is a professional state charts modeling tool offer-
ing the possibilities to simulate gathered state machine models, where the models
can later be used for automatic code generation.

Besides Matlab Stateflow, also the UML-tools IBM Rational Rhapsody and
Artisan Realtime Studio allow similar functions to early simulate modeled state
charts and generate code of it. The advantage of these tools is that the state charts
are integrated into an UML modeling environment.

However, Matlab Stateflow still seems the most used tool for modeling state
charts in automotive development (see also [Sa05], [GeO05; p.42-44]).

1.6.6.1.4 Conclusions

In the automotive industry, different methods are used. Formal methods, as au-
tomatic control engineering and state chart tools, have their individual strength in
early formal validation and verification of requirements or in modeling algo-
rithms, where the gathered resulting models can be directly used to automatically
generate code. This often helps to cover large extents of the functional require-
ments. However, automotive ECUs are complex, where extensive parts of the
code do not cover functional requirements but rather deal with directly handling
the HW or managing special problems caused by the extremely cost-optimized
HW.

For these cases, UML and SysML are better suited with their rather pragmat-
ic, but rich tool set. Moreover, UML and SysML have their focal point on archi-
tectural modeling, whereas the other formal methods rather concentrate on partial
aspects such as state charts or algorithmic modeling.

In this way, UML and SysML can be a notational framework for the overall
design of the architecture. For parts, however, often covering extensive parts of
the FRs, the formal modeling approaches can develop partial models helping to
early verify and stable these requirements with the ability to directly use the
models as basis for code generation. Other parts of the system, however, are not
needed for formal verification, because they cover FRs only to low extents, but
rather deal about fulfilling supportive tasks (e.g., steering of HW or managing
special problems). UML or SysML may then again be the better choice.

In fact, the author thinks that another form of parefo-kind connection might
even exist (see also ch. 11.10.4.2.2): 80% of the FRs might be covered by 20% of
the code. This kind of code can often be covered by modeling tools supporting
early simulation and verification of requirements with subsequent code genera-
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tion. In this way, most functionality of the system can be elicited early in projects.
However, for the other 80% of the code (being mostly the handler and driver
layer in an automotive ECU project) dealing with behavior in error cases and
steering of HW manual coding may still be the best alternative. Another way
around the problem may be to have standardized COTS'?® components such as
the AutoSAR [KF09] standardization endeavor aims for.

As a consequence of these facts collected in the chapters above, automotive
projects often use several design tools in one project together. Correspondingly, a
requirements traceability solution to include design must enable to include sever-
al design tools into one integrated model. Such a notion is also expressed by
Grimm [Gr05]: “Current SW tools are generally dedicated to specific phases and
tasks within software or systems development. Thus, there is an urgent need for
continuous integrated tools in order to achieve that different developed artifacts
and processes can be developed in an concerted way with optimal support of the
defined modeling approach” [Gr05; p.421 (*)]. Such a solution is provided by
R2A (see ch. I11.16.2).

Last but not least, other tools that exist in automotive design need to be men-
tioned. These are, e.g., tools such as IBM Rational DOORS or Aquintos PREEvi-
sion are used by OEMs in practice to design systems of systems, where the OEM
derives the requirements specifications for the singular ECUs to commission
suppliers to develop the ECUs (see the following chapter). In research, tool envi-
ronments such as AutoFOCUS [BRSO05] exist especially dedicated for automotive
development. In the following, these tools are not further considered as design'?'
tools.

1.6.6.2 Integrating other Organizations into a Design

“In the development of complex embedded systems, often several companies
work together on the development. At such an interconnected development, often
partnerships are built, where mostly one supplier is engaged as the system suppli-
er having — besides other tasks — the responsibility to coordinate the other suppli-

120 Components Off The Shelf

12 DOORS is considered as REM-tool but not as a means for design. In fact, DOORS as
design tool also is very limited in the way that it rather supports a text-based design
comparable to Microsoft Word, where pictures can, e.g., be created via Microsoft Vi-
sio. However, also more sophisticated addons for DOORS exist allowing to combine
the textual specifications in DOORS with modeling aspects (see, e.g., http://www-
01.ibm.com/software/awdtools/doors/analyst/ (Access: 2010/07)).
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ers. Therefore, selection and coordination of suppliers is of special importance in
embedded development.

Often, even a hierarchy of client-supplier-relationships emerges, meaning
that a supplier (second tier) acquires further sub components of the system from
his own suppliers (so called third tier) and coordinates the collaboration. Addi-
tionally, the customer often prescribes the supplier certain third tier suppliers”
[HDH+06; p.65 (*)].

As this statement of Hormann et al. indicates, complex relationships be-
tween customer and supplier exist. This makes it necessary to coordinate collabo-
ration between organizations. This also means that often the work of different
suppliers must be integrated into a working system where one of the suppliers is
responsible to coordinate the others. This implies that the coordinating suppliers
must define an architecture where the parts of the other suppliers must be inte-
grated in. As the different suppliers also have strong interest to protect their
knowledge, it is especially important to define interfaces between the different
parts.

This together means that the coordinating suppliers must find ways to effec-
tively communicate parts of their architectural design essential to suppliers whose
delivered parts must be integrated into the architecture, but also avoid communi-
cating essential knowledge to be protected. On the other side, the coordinating
suppliers must also ensure that the supplied parts to be integrated really match the
requirements and directives of the architectural design. The R2A tool solution
introduced in part III addresses this topic through allowing the export of parts of
a design model as direct requirements specification for a supplier (see ch.
I1.23.1). In this way, a direct and frictionless supplier management can be real-
ized.

1.7 Quality Standards for Safety-Critical
Development Processes

If you can't describe what you are doing as a process, you don't know what you're doing.
William Edwards Deming

According to diverse authors (e.g., [Eb0O5; p.23], [GGO03], [HDH+06; p.50],
[St01]), SW quality has been significantly improved due to concentration on SW
processes and their improvement.

In the view of Hatley et al. [HHPO3; p.41], attempts for SW quality im-
provement have their origins in a study on quality by Deming [Deming86] and



1.7 Quality Standards for Safety-Critical Development Processes 117

the Total Quality Management (TOQM) movement in the 1980ies. There, TOM
mostly defines quality as the correspondence of a product with its requirements,
what implies the following core ideas of TOM [HHPO03; p.41-42]:

e Requirements must be defined with extreme precision.

e  The fulfillment of requirements must be measurable.

e Not fulfilled requirements are an error.

e  Maximizing quality, thus, means minimizing the errors.

In summary, TOM is completely dependent on precise definition of require-
ments and management of requirements [HHP03; p.42]. TOM, however, is more
a holistic organization management theory (e.g., cf. [Ro01; p.64-67]) than a qual-
ity practice for the specific quality issues concerning software development.

Around 1986, during the SDI-project (Strategic Defense Initiative), the
United States Department of Defense (DOD) encountered major problems con-
cerning the developed software for high complexity systems [Kn06; p.1]. This
sparked the DOD to perform a study in cooperation with the Software Engineer-
ing Institute (SEI) of the Carnegie Mellon University in Pittsburg. In 1989 the
disclosed study came to the conclusion that only 24 % of software functionality
delivered was actually usable [HDH+06; p.7]. As a consequence, the DOD man-
dated the SEI to develop a quality improvement model for software processes. As
a result, the SEI developed the Capability Maturity Model [PCC+93],
[PWG+93]. In the following years, the CMM model was about to become a major
success story for process improvement for organizations far beyond the scope of
the DOD [Kn06; p.1]. During the years of implementation, besides the SW
CMM, also CMM models for SysEng and product engineering have been devel-
oped leading to the development of the CMMI (CMM integrated) standard model
integrating the different models in 2001 [Kn06]. The original CMM standard has
been set deprecated in 2003 [HDH-+06; p.7].

The major success of CMM also sparked ambitions by the European Union
to develop a similar model by the BOOTSTRAP project [SE96] finally leading to
the definition of an international ISO standard for the assessment of software
process quality. These ambitions finally lead to the international ISO/IEC 15504
[ISO15504] also referred to as SPICE (Software Process Improvement and Ca-
pability dEtermination'*?).

122 Originally, SPICE was called Software Process Improvement and Capability Evalua-
tion [HWF+08; p.28], [HDH+06; p.9]. As the translation into French language would
have changed the semantics, Evaluation has been replaced by Determination without
changing the acronym [HDH+06; p.9].



118 I. General Context and Theories

In contrast to CMM and CMMI being a proprietary model'>* of the SEI insti-
tute [BHV09; p.135], the SPICE model is designed as open international stand-
ard. Even though CMMI currently seems to have a wider pervasion in industry (it
is even widely spread in Automotive industry) [MHD+07; p.4-5], the HIS'*
initiative has decided to use SPICE as their standard for auditing suppliers
[MHD+07; p.3], [HDH+06; p.4]. In the last years also an industry specific adap-
tion of SPICE, called Automotive SPICE (4-SPICE), has been developed to bet-
ter fit to the peculiar needs of the automotive industry.

Due to these facts, the author has decided to use the following chapters to
introduce SPICE as exemplar quality model highlighting the traceability de-
mands of such standards. As the development team of CMMI aimed to be con-
sistent and compatible to SP/CE [Kn06; p.9], and because both process models
base on the ISO 12207 [ISO12207] process model for software development, the
identified discussion points should so far also be valid for CMMI'®. In addition,
after discussing SP/CE a small chapter will outline some minor changes concern-
ing traceability demands, when 4-SPICE is used.

Last but not least, it is to mention that also new quality standards (IEC
61508, ISO 26262) concerning safety-related aspects of embedded systems are
currently gaining importance in the automotive industry also imposing effects on
traceability demands. Consequently, at the end of this chapter, the demands of
these two standards are also discussed.

123 Although the CMMI model is proprietary, it also has become a kind of de-facto stand-
ard [BHV09; p.135].

“Hersteller Initiative Software” (Car Manufacturer Initiative) — A community of Ger-
man automotive OEMs (http://www.automotive-his.de/ (Access 2010/02)) defining
specific stan—dards for the german automotive industry often becoming de-facto
standards for the world-wide automotive industry.

It is to mention that certain differences between CMMI and SPICE exist, but these
differences should not have significant influence on the topics discussed here. For the
more interested reader, [MHD+07; p.273-283] and [BHV09] provide a detailed de-
scription on the differences between CMMI, SPICE and Automotive SPICE and how
organizations can best migrate from CMMI to SPICE or maintain both models in par-
allel.

124

125
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1.7.1 SPICE (ISO 15504)

Today, order mostly is where there is nothing. It is a phenomenon of shortage.
Brecht (*)

SPICE is a standard for assessing the maturity (quality) of development process-
es. It covers the aspects process assessments, requirements for processes and their
assessment as well as guidance principles for how to employ the standard
[HDH+06; p.13]. The standard itself is divided into five parts [HDH+06; p.13-
14]:

1. Part I — “Concepts and Vocabulary”: Offers a general introduction into the
important concepts and terms of the standard.

2. Part II — “Performing an Assessment”: Minimal requirements for performing
an assessment in order to acquire consistent and reproducible benchmarks.
Part I “is the (normative) core of the standard; the other parts have a more
imperative character” [HDH+06; p.13 (*)].

3. Part III — “Guidance on performing an assessment”: Guidance for interpreting
the requirements imposed by Part II.

4. Part IV — “Guidance on use for process improvement and process capability
determination”: “Guidance for usage of process assessments within a process
improvement effort or for determination of the maturity level* [HDH+06;
p-13 (M)].

5. Part V — “An exemplar Process Assessment Model”: Example of a process
assessment model for the application of assessments according to the re-
quirements imposed by part II. According to Hérmann et al. [HDH+06; p.18],
this part has the most importance for practice (cf. ch. .7.1.3).

Two further parts are still in standardization work:

e  Part VI — “An exemplar system life cycle process assessment model”: Exam-
ple about creating an assessment model for life-cycles of human created sys-
tems according to [ISO15288].

e Part VII — “Assessment of organizational maturity”: Defines a framework to
determine organizational maturity.

As normative part, Part II defines the following normative aspects [HDH=+06;

p-14]:

e Requirements for the assessment process including planning, performing,
data collection, data validation, definition and validation of process attributes
and reporting,

e “Requirements on roles and responsibilities” [HDH+06; p.14 (*)],

e “Requirements on the assessment inputs and outputs” [HDH+06; p.14 (*)],

e The framework for measuring the process maturity,
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e  The requirements for process reference and process assessment models;

SPICE is structured in three different models [HDH+06; p.17]:

1. The process reference model (PRM) describes a set of processes as a refer-
ence model. The processes are defined in high level terms of purpose and ex-
pected outcomes [BHV09; p.135].

2. The measurement framework (MF) defines the basic maturity levels, process
attributes and the evaluation scale. As the name framework indicates, the MF
just defines a measuring frame and is not alone sufficient for measuring pro-
cess maturity.

3. The process assessment model (PAM) refers to the MF and is built up by one
or more PRMs. It defines concrete criteria (so called indicators) for maturity
evaluation. The PAM has two dimensions:

o The process dimension defines the indicators for all processes of the
used PRM.

e The maturity dimension defines how to determine the maturity level
from measured results of processes according to the indicators.

1.7.1.1 The Process Reference Model of SPICE

A PRM offers a basis for the development of an individual organization-specific
process model describing the ideal processes to be employed in a company. In
principle, it is possible to create an organization-specific process model without
any PRM, but a PRM helps to improve the development of an organization-
specific process model [FL02; p.9].

In the following, such an activity is called process implementation'* and the
performer of this activity is called process architect. In SPICE, the PRM de-
scribes a set of processes to be adapted for implementation by an organization.
The processes are described with regard to their goals, practices to perform and
outcomes to reach the goals. An example of a widely referred standardized PRM
is the ISO 12207 [ISO12207] process model for software development.

Since SPICE itself is a very generic standard, organizations can also refer to
other PRMs (or even other PAMs) [HDH+06; p.14]. As also discussed in ch. 1.7.4,

126 Concerning adaption of a PRM to an organization, also the standard IEEE 1074

[IEEE1074] provides valuable support for process architects, as it describes how activ-
ities of a PRM can be mapped to an organization to create an organization-specific
process model [Sch00; p.58-79]. Especially concerning process implementation of ISO
12207, the IEEE 12207 [IEEE12207] standard gives valuable guidance how ISO
12207 may be implemented in industry practice [Sch00; p.50-58].
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the automotive industry specific SPICE adoption, called Automotive SPICE (A-
SPICE), uses a slightly different PRM'? specifically adapted to process concerns
of automotive development [HDH+06; p.269].

Nevertheless, when a PRM is used deviating from ISO12207, a separate as-
sessment must clarify whether the process model fulfills the requirements im-
posed by SPICE, part 11 [HDH+06; p.14].

1.7.1.2 The Measurement Framework

The PAM has the goal to assess development processes according to their maturi-
ty. SPICE defines in part II different maturity levels (ML) where each assessed
process can be categorized. Altogether, part II defines 6 MLs [HDH=+06; p.15-
16]:

e Level 0 — Incomplete: The process is not established or the goals of the pro-
cess are not reached.

e Level 1 — Performed: The process is established and fulfills its goals, howev-
er in an uncontrolled manner.

e Level 2 — Managed: The process is planned and its progress is tracked. Re-
sulting work products are adequately performed, are controlled by configura-
tion management, and quality is ensured through dedicated quality manage-
ment.

e Level 3 — Established: An organization-wide standard process is established,
where each project uses a tailored version of this process.

e Level 4 — Predictable: The performance of processes is continuously meas-
ured and monitored leading to a quantitative understanding of the process
with improved predictability.

e Level 5 — Optimizing: Basing on the business goals of the organization,
quantitative goals are derived for processes and its compliance is continuous-
ly tracked.

For each of the levels so called process attributes (PA) define more detailed
criteria for assessment. Altogether, 9 PAs exist shown in table 7.1 in correspond-

ence to their ML.

127 Besides these two PRMs, Bella et al. explicitly name the ISO/IEC 15288 (for Systems
Engineering life cycle processes) as fully compliant to SPICE [BHV09; p.135].
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Table 7.1 Maturity Levels and their Process Attributes (cf.[HDH+06; p.16])

Maturity Level Process Attributes

5 — Optimizing PA 5.1 — Process Innovation
PA 5.2 — Continuous Optimization

4 — Predictable PA 4.1 — Process Measurement
PA 4.2 — Process Control
3 — Established PA 3.1 — Process Definition
PA 3.2 — Process Deployment
2 — Managed PA 2.1 — Performance Manage-
ment
PA 2.2 — Work Product Manage-
ment
1 — Performed PA 1.1 — Process Performance

0 — Incomplete -

During an assessment, for each process, each P4 can get one of the follow-
ing four achievement values as evaluation scale (for details on meaning and
measuring cf. [HDH+06; p.223ff]):

e N — Not achieved,

e P —Partially achieved,
e L — Largely achieved,
e F—Fully achieved;

Then, each process gets its ML by analyzing the achievement values. A ML
is reached when at minimum all P4s of all sub MLs are fully achieved and all PAs
of the ML are largely achieved'*® [HDH+06; p.225].

1.7.1.3 The Process Assessment Model (PAM)

The PAM orients itself on the processes described in the PRM and defines con-
crete indicators for evaluation. SPICE, part V (ISO/IEC 15504-5) illustrates an
example PAM and thus part V is of the highest importance for process implemen-
tation in an organization as well as for process assessments in practice [HDH+06;

p-18].

128 For example, ML 3 is reached, if PA 1.1, PA 2.1 and PA 2.2 are fully achieved, and PA
3.1 and PA 3.2 are largely achieved.
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Concerning process implementation, the PAM defines processes in a standard-
ized way. This definition includes basic indicators (so called base practices) to be
fulfilled at minimum in order to determine that the process is performed. Fig. 7-1
shows the standard set of processes of the standard P4M described in part V bas-
ing on ISO 12207. The process set is divided into 9 process areas with 40 pro-
cesses. Each process is defined by a standardized structure [HDH+06; p.61]:

e Process-ID: A unique identifier for each process. The identifier consists of a

combination of three letters and a number between 1 and 12.

Process name: The name of the process.

Process purpose: The purpose of the process.

Process outcomes: The defined process results.

Base practices (BP): Base practices describe the directly relevant aspects to

pay attention when performing a process.

e JWork products (WP): Define artifacts that can be either an input or output of
a process. Each WP has an unique identifier and is detailed in part V., Annex
B.

PRIMARY Life Cycle Processes ORGANIZATIONAL Life SUPPORTING Life

Cycle Processes Cycle Processes

Acquisition Process Group (ACQ)
ACCL1 Acquisition preparation
ACO.2 Supplier selection

Management Process Group (MAN)
MAN.1 Organizational alignment

Support Process Group (SUP)

ACQ.3 Contract agreement MAN 2 Organizational management SUP.1 Quality assurance
ACQA Suppler monforing MAN.3 Project management SUP2 Vericalon
ACO.5 Customer acceptance MAN 4 Cualy management 3 Validation
MAN.5 Risk management SUP.4 Joint review
Supply Process Group (SPL) il e SO
SPL.1 Supgplier tendering SUP7 Doc N
SPL2 Product release Process Improvement Process Group (PIM) SUP.8 Configuration management
SPL3 Product acceptance support PIN1 Process establishment SUP'9 Problem resciuton management
PIM.2 Process assessment SUP. 10 Change request management
Engineering Process Group (ENG) PIM 3 Process improvement

ENG.1 Requirements elicitaion
ENG 2 System requirements analysis
ENG.3 System architectural design
ENG 4 Software requirements analysis

Resource and Infrastructure Process
Group (RIN)

ENG.5 Software design RIN.1 Human resource management
1 | RIN.2 Training

ENG.7 Software integration RIN.3 Knowdedge management

ENG.8 Software testing RIN4 Infrastructure

ENG.9 System integration

ENG. 10 System testing

ENG. 11 Software installation

ENG.12 Software and system maintenance

Operation Process Group (OPE)
OPE 1 Operational use
OPE 2 Customer support

Figure 7-1 Processes defined in ISO/IEC 15504-5 basing on ISO/IEC 12207

Reuse Process Group (REU)
REU.1 Asset management

REU.2 Reuse program management
REW.3 Domain engineering
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The points one to four have been taken over from ISO 12207, whereas the
latter two points are defined in ISO 15504-5. In this way, the BPs and WPs can
also be seen as the basic indicators for reaching ML 1 meaning that processes
fulfill their goals, but they are not really planned.

Concerning process evaluation for higher maturity levels, the individual PA4s
defined in the measurement framework are again further refined through the
following indicators [HDH+06; p.2221]:

e Generic practices (GP) are generically defined activities or practices sup-
porting the implementation of a specific P4. A lot of the GPs support BPs by
demanding specific activities of process management. As an example, GP
2.1.2 (“Plan and monitor the performance of the process to fulfill the identi-
fied objectives.”) demands to perform basic project management principles
for each process.

e Generic resources can be applied to fulfill GPs.

e Generic work products can be used and created by GPs.

Corresponding to the focus of this thesis, the following discusses the PAM's
demands on processes about requirements and design (ENG.1-ENG.6) with spe-
cial focus on needs for requirements traceability.

1.7.2 Requirements, Design and Traceability in the
Context of SPICE

At first the different processes involved (ENG.1-ENG.6) are briefly sketched.
Categories are purpose, base practices and work products. For a detailed descrip-
tion the user is invited to refer to [HDH+06] or the ISO 15504.

After the introduction to the process demands of SPICE, the author tries to
outline the demands for a SPICE-conforming traceability environment for re-
quirements and design processes. As processes that are important here (ENG.2-
ENG.5) are not an instance of their own but must be considered in context of
other processes, the contextual processes ENG.1, ENG.6 are also considered.
Additionally, support processes such as SUP.10 also impose demands on tracea-
bility or its further usage. Therefore, SUP.10 is also sketched.

1.7.2.1 ENG:.1: Requirements Elicitation

Purpose: All customer requirements for a product or service over the complete
life-cycle shall be identified and collected [HDH+06; p.81-89].
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Base Practices:

BP1 “Obtain customer requirements and requests”: Additionally, not only
pure customer requirements and wishes must be considered. Instead often
standards, guidelines, legal constraints or constraints imposed by the envi-
ronment of a system to develop impose further requirements. According to
Hormann et al. [HDH+06; p.82], the number of documents to analyze and
search for additional requirements can easily become several hundred lead-
ing to enormous complexity as the elicited requirements also often include
inconsistencies or contradictions.

BP2 “Understand customer expectations”: Requirements must not only be
elicited. Instead, customer and supplier must have a common understanding
of the requirements. Practice has proofed joint reviews as helpful to gain a
common understanding of the requirements.

BP3 “Agree on requirements”: All development teams involved in the pro-
ject must express agreement on the customer requirements. This means that
at least one representative of each development team must validate the re-
quirements and determine whether a requirement is feasible'”’, or not.

BP4 “Establish customer requirements baseline”: The agreed status of col-
lected customer requirements must be integrated into a consistent customer
requirements specification (CRS) and a baseline of the CRS must be estab-
lished as basis for the development and to be able to track later changes.

BPS “Manage customer requirements changes”: Starting from this first base-
line all changes or extensions of the customer requirements must be tracked.
Besides changes imposed by the customer changes can also be sparked by
changes of used standards or technologies [HDH=+06; p.87].

BP6 “Establish customer query mechanism”: Demands to establish proce-
dures to notify customers and planning concerning a requirement change re-
quest. In practice, this is often achieved via a change control board (CCB)
[PRO9; p.144£], [VSHO1; p.184f, p.216].

Work Products:

1.

2.

Change control record: See the following ch. 1.7.2.7 about SUP.10: Change
Management.

Customer requirements specification (CRS): Depending on the project, the
customer requirements are either collected by the customer himself, or the
supplier collects the requirements. In the German-speaking community the

129

It is to note that SPICE does not make any claims about how to proceed with not
feasible requirements [HDH+06; p.85].
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CRS is usually documented by the customer'*”. Besides the usual quality de-
mands for a requirements specification (see ch. 1.5), SPICE explicitly de-
mands that each requirement is separated and individually traceable to all
origin artifacts (backward traceability) and all subsequent artifacts (forward
traceability) [HDH+06; p.88 (*)].

Starting from here, it shows that SPICE imposes high demands for traceabil-
ity as each individual requirement must be traceable to all subsequent artifacts.
However, requirements elicitation lies not in the focus of this thesis. Thus, in the
following it is assumed that a CRS is available.

1.7.2.2 ENG.2: System Requirements Analysis

Purpose: Transform the defined customer requirements in a set of technical sys-
tem requirements building the basis for system design. “The system requirements
analysis is one of the most important processes as it prepares the foundation of
the complete further development work” [HDH+06; p.89 (*)]. Hérmann et al.
[HDH+06; p.89] also emphasize that besides the customer requirements other
requirements basing on other stakeholders' input should be considered. This in-
cludes that the coordination of different development areas such as HW devel-
opment, software development and testing must be integrated.

Base Practices:

e BPI1 “Establish system requirements”: The CRS as basis must be used to
identify the demanded functions and abilities of the system to be afterward
documented in a system requirements specification (SYS RS) afterward. The
SYS RS must be baselined and the feasibility of the identified requirements
must be analyzed. Further the project solution shall be analyzed for feasibil-
1ty.

e BP2 “Optimize project solution”: The specification of a SYS RS already
predetermines a certain solution at a very high-level'*'. During determination
of the SYS RS also other alternative solutions must be analyzed here.

e BP3 “Analyze system requirements”: The identified requirements are priori-
tized and analyzed whether they fulfill quality demands (see ch. 1.5.1) and
whether they imply further requirements to be elicited. Analyzing require-
ments often leads to identification of cross-linkings between them and new

139 In the German speaking community, the CRS usually corresponds to what is called
'Lastenheft' (see the following chapter .7.2.2.1).

131 However, it is to mention that the author recommends avoiding an unnecessarily early
determination of a solution and leaving the solution space as wide as possible.
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requirements can be derived. Both kinds of dependencies must be made ex-
plicit [HDH+06; p.92].

BP4 “Evaluate and update system requirements”: Any proposed change on
the system requirements must be assessed for changes on costs, deadlines,
risks and technical impacts. It must be possible to approve or reject proposed
changes and new requirements.

BP5 “Ensure consistency”: Consistency between the CRS and the SYS RS
must be ensured. Consistency is ensured by applying traceability between
CRS and SYS RS [HDH+06; p.93].

BP6 “Communicate system requirements”: System requirements must be
communicated to all stakeholders somehow involved. Correspondingly, a
communication mechanism must keep them up-to-date.

Work Products:

1.

Traceability record: Artifact containing the information for backward and
forward traceability.

2. Interface requirements: Define the requirements for interfaces. Interfaces are

3.

differentiated into external and internal interfaces.

SYS RS: The SYS RS contains all requirements from the customer and the

newly elicited requirements from the system requirement analysis'*?. Alto-

gether, the following aspects must be considered in the SYS RS [HDH+06;

p-90]:

e Functional requirements,

e Functions and abilities of the system, interfaces, system performance
and timing-constraints,

e Nonfunctional requirements,

e  Technical constraints (e.g., the context of the system),

¢ Reuse, maintenance and product servicing,

e Norms and standards,

e Economic constraints (business needs, market constraints, time-to-
market);

According to Hérmann et al., “the SYS RS also provides an overview of the

overall system and the relationships of its sub parts, especially the relationships
between the system elements and the software” [HDH+06; p.96 (*)]. It is true
that the SYS RS already may predetermine a certain high-level solution, however,
as the following intersect chapter shall outline it is also to consider to outweigh
the advantage of a clear description of the characteristics of the system to be
supplied and the disadvantages of imposing unnecessary restrictions of the pro-
ject's solution space.

132 Usually, also the interface requirements (context) are part of the SYS_RS.
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1.7.2.2.1 Remarks on the German Terms 'Lastenheft' and 'Pflichtenheft'

At this point, remarks to some peculiarities of the German-speaking SE commu-

nity and their interpretation of the SPICE standard seem useful. German SE tradi-

ti(gl3 has developed two terms not available in the English-speaking communi-
ty

e 'Lastenheft': According to Balzert, a 'Lastenheft' “contains a collection of all
functional basic requirements to be fulfilled by the software product under
development from the customer's viewpoint. 'Basic requirements' means a
conscious concentration on the essential characteristics of a product and its
description in a sufficient level of abstraction” [Ba96; p.57-58 (*)].

o 'Pflichtenheft': Whereas the 'Pflichtenheft' “contains a collection of all func-
tional requirements that must be fulfilled by the software product under de-
velopment from the customer's viewpoint. ... The 'Pflichtenheftf must be
formulated in a way that it can serve as basis for a jurisdictional contract.
The 'Pflichtenhefi' thus represents the contractual description of the scope of
delivery” [Ba96; p.104-105 (*)].

Usually, the 'Lastenheft' 1is written by the customer whereas the
'Pflichtenheft is usually written by the supplier. However, the direct connections
between these terms and the terms in the English-speaking community often stay
vague. According to Schienmann [Sch02; p.83], the 'Lastenheft' is comparable
with what the Kruchten [Kr99] calls a “vision document” in the context of the
Rational Unified Process.

Concerning SPICE, the concepts of 'Lastenheft' and 'Pflichtenheft' do not ex-
ist [HDH+06; p.64], because the standard just talks about different requirements
specifications, but in the German-speaking SP/ICE adoption practice, the custom-
er requirements specification (ENG.1) is often equalized to the 'Lastenheft' con-
cept, whereas the system requirements are equalized to the 'Pflichtenheft'. The
author agrees that this takeover of the analogous terms is fruitful as it alleviates
communication and because well-established terminology is used. On the other
side, it is important to consider whether taking over may not also bring the dan-
gers that this terminology unconsciously infers new meaning.

One example is that a 'Pflichtenhefi' also has a jurisdictional dimension that
is not treated by the ENG-processes but slightly touched by the acquisition pro-
cesses (ACQ.1-ACQ4) in SPICE. In the author's eyes, this also is fruitful espe-
cially when considering the automotive domain because, in fact, the processes

133 To make the German meaning transparent to the English speaking community, Weber
and Weisbrod [WWO02; p.19] provide the literal translations “demand booklet” for
'Lastenheft' and “duty booklet” for 'Pflichtenheft'.
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and work products of ENG.1 and ENG.2 often mark the transgression point,
where the customer's development efforts melt with the supplier's development
efforts and correspondingly the legal effects of the work products must be taken
into consideration.

This makes way for another point of consideration that will later lead to con-
siderations influencing the further outcome of this thesis. In ENG.2 BP1 and BP2,
the standard also speaks of a 'project solution'. According to Hérmann et al., this
means the “general approach to the solution” [HDH+06; p.96 (*)] and thus does
not mean a detailed description of the solution. In ch. 1.7.3.20, the author de-
scribes how an insufficient separation of problem description and solution de-
scription leads to unnecessary redundancy and problems of identifying the real
requirements from 'requirements' merely originating from some formerly taken
design decisions'**. Both problems impose significant problems concerning re-
quirements traceability and adaption of requirement changes. This gives way to
the author's plea to clearly separate real requirements from 'requirements’ im-
posed by former design decisions (cf. ch. III.19 for a taxonomy of both require-
ment types). However, on the other side, both requirement types have their rights
to exist and both are connected to each other. As a better solution of the problem,
the author shows in ch. II1.20 how both can be connected via a decision model,
thus improving traceability and additionally improving decision documentation.

In general, it is to say that it is very important to mind here what is really ne-
cessary to describe and what can be left open. Because of the fact that the system

13 In [WWO02; p.19], Weber and Weisbrod seem to disagree with the notion that require-
ments specifications such as the 'Lastenheft’ should only contain requirements. Thus,
they rather demand for the notion that these documents also have to contain architec-
tural descriptions beyond the scope of the problem space. They enlist several argu-
ments for their demand. However, this may be a kind of misconception. In the author's
opinion, the arguments rather describe the following situation: When the developers at
an Automotive OEM create different Lastenheft's for the different ECUs, the develop-
ers perform a design activity for the complete system car. The decisions taken at that
design level, however, include that the suppliers of the different ECUs must obey the
consequences of these decisions. In this way these consequences become new re-
quirements for the different ECUs and must be included in the 'Lastenheft'. This does
not mean that the "Lastenheft' contains extensive design aspects, but it may rather be
the relation described here. Later in ch. 1I1.23.1, when it comes to the tool solution, it
is described that a requirements specification can be created for parts of a design mod-
el in order to propagate all design settings of the part to a supplier. This is exactly a
mechanism to solve this problem. In this way, even though part III discusses the tool
with a case study from a supplier perspective, the R2A tool solution can be equally
used by an Automotive OEM to design the complete system, where then requirements
specifications can be generated as 'Lastenheft's for the different suppliers.
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requirements specification also has a contractual relevance, the author recom-
mends to also consider contractual negotiability'®, because if an item is integrat-
ed into the SYS RS, it in principle gets contractual relevance. Correspondingly, a
supplier should concentrate on describing the requirements of the customer in
detail but avoid to unnecessarily restrict the project's solution space by, e.g., ex-
tensively describing the project solution.

In some cases, of course, requirements cannot be described without also
providing some solution stipulations (cf. ch. 1.5.5), but the developer(s) of a
SYS RS should avoid unnecessary stipulations, because if changes on those stipu-
lations are needed, the occurring changes must then be harmonized with the cus-
tomer via a change control board (CCB) [PR09; p.144f], [VSHO1; p.184f, p.216].

This corresponds to the observation of Balzert emphasizing for 'Lastenheft'
[Ba96; p.58] and 'Pflichtenhefi' [Ba96; p.105] that both describe the 'what' but not
the 'how' on different levels of details (the 'Pflichtenheft' is more detailed as the
'Lastenheft'). However, it must also be noted that this does not necessarily repre-
sent a common agreement in German SE community. As for example, the DIN
69905 speaks that a 'Pflichtenheft' contains “... the realization propositions de-
veloped by the supplier basing on the conversion of the 'Lastenheft' supplied by
the customer” [DIN69905 (*)]. In this definition, the 'Pflichtenheft' also contains
a certain 'How'; but — in the author's eyes — this view will be problematic, if it
leads to premature stipulations for the solution.

1.7.2.3 ENG.3: System Architectural Design

Purpose: A system architecture must be developed showing how the system re-

quirements are realized in the system. In this way, one main purpose of this pro-

cess is to show how system requirements are mapped to the system elements.

Base Practices:

e  BPI1 “Describe system architecture”: The system architecture must be creat-
ed. The following aspects must be considered:

e  The realization of the system in different parts is in most cases referred
to as system elements. Different system elements usually need different
engineering disciplines such as, e.g., mechanical, HW, or SW engineer-
ing that must be coordinated.

e The overall processes and operations of the system.

135 Rupp et al. [RS07; p.481-510] emphasize that requirements build the contractual basis
for development. A detailed discussion about contracts, contract negotiations and REM
is provided by Rupp et al. [RS07; p.481-510].
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e BP2 “Allocate requirements”: As a main goal, all system requirements must
be allocated to the elements of the high-level system architecture to ensure
they are properly considered in the overall system design. In this way, trace-
ability between SYS RS and the system architecture shall be established. Of-
ten, however, these allocations are not possible at first because important de-
sign decisions are still lacking [HDH+06; p.99]. This again often leads to the
project practice that the traceability information is established after the de-
sign has reached a very stable state. This again leads to the problem that
traceability is only established after most of the connections to be recorded
have already been forgotten by the designers and thus are not recorded. The
R2A tool solution introduced in part III actively addresses the problem in the
way that it promotes recording fraceability information as a by-product of
the normal design activities, thus avoiding the problem of deferred traceabil-
ity capturing.

e BP3 “Define interfaces”: The external and internal interfaces of each system
element must be designed and documented.

o BP4 “Verify system architecture”: It must be ensured that the system archi-
tecture fulfills all stakeholder and system requirements. “In practice, it is not
possible to specify all factors to consider in the SYS RS. Thus, a broad rec-
onciliation is important. These reconciliations significantly contribute to re-
duce the risk of later needed conceptual changes” [HDH+06; p.100 (*)].

e BPS5 “Evaluate alternative system architectures”: Evaluation criteria for the
system architecture must be defined in order to analyze possible alternative
system solutions according to the criteria. The rationale (see ch. 11.9) for the
choice of the current system architecture must be captured. Hérmann et al.
explicitly emphasize here that in practice architectural and other basic issues
(which seemingly have been cleared) are often recurring back to the agenda
during project progress. In these cases, it is not seldomly decided to change
or perform other compromises imposing considerable changes on the archi-
tecture [HDH+06; p.101]. As this can infer significant risks for project suc-
cess especially in late project phases, Hormann et al. call for a thorough ex-
ploration of these basic issues accompanied by a documentation of the deci-
sions taken where the documentation is later update with the results of later
discussion [HDH+06; p.101]. This again can be seen as an explicit plea for
integrating RatMan (ch. 11.9) into design. Ch. I11.20 describes how this idea
is realized by the R2A tool.

e BP6 “Ensure consistency”: Consistency between SYS RS and system archi-
tecture must be ensured. Consistency is supported by establishing and main-
taining traceability between SYS RS and system architecture.
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e BP7 “Communicate system architecture design”: A communication mecha-
nism for distributing the system architecture design and effected changes to
all involved stakeholders must be employed.

Work Products:

o System architecture design: The system architecture provides a high-level
description of all system-relevant system elements as well as their interde-
pendencies and interfaces to each other [HDH+06; p.97]. It is especially im-
portant to ensure traceability of requirements or functions over several levels
of detail [HDH+06; p.102].

e Traceability record: See ENG.2;

e Jerification results: The results of the verification procedures described in
BP4 must be documented. Documentation can include review protocols,
filled checklists and test protocols [HDH+06; p.102].

1.7.2.4 ENG.4: Software Requirements Analysis

Purpose: This process deals with eliciting all requirements for the software parts

of the system.

Base Practices:

e BPI1 “Specify software requirements”: Software requirements must be de-
fined and prioritized in a software requirements specification (SW_RS).

e BP2 “Determine operating environment impact”: The interfaces between the
software requirements and other elements of the operating environment as
well as the impacts of the requirements on the environment must be deter-
mined.

e BP3 “Develop criteria for software testing”: Verification criteria must be
developed for the software requirements to ensure that the software can later
be tested whether it fulfills the requirements.

e BP4 “Ensure consistency”: Consistency between the SYS RS (ENG.2) and
the SW_RS must be ensured. This is achieved through establishing and main-
taining traceability between both artifacts.

e  BPS5 “Evaluate and update sofiware requirements’: The requirements must be
continuously evaluated and change needs must be identified in accordance
with the customer. Changes must be introduced in a controlled way using the
change management process (SUP.10; see ch. 1.7.2.7).

e BP6 “Communicate software requirements”: A communication mechanism
for distributing requirements and effected changes to all involved stakehold-
ers must be employed.
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Work Products:

e Traceability record: See ENG.2;

o [Interface requirements: See ENG.2;

e SW _RS: Contains all elicited SW requirements. The following requirement

sources must be considered [HDH+06; p.108]:

e Requirements from the customer,

e  Valid norms and standards,

e Relationships of the different SW components to each other'*,

e Performance characteristics, safety and security characteristics and other

NFRs,

e Required interfaces (the context of the SW),

e  Requirements resulting from the data base design,

e Behavior in failure cases and failure fall back mechanisms;

Further, Hormann et al. emphasize that ENG.4 (software requirements anal-
ysis) can be seen as an intermediate step between ENG.3 (system architectural
design) and ENG.5 (software design). In practice, however, the transition between
the three processes are mostly fluent and are rather of iterative and recursive
nature [HDH+06; p.103]. This statement gives way for the author's argumenta-
tion in ch. 1.7.3.20 that a separately maintained S RS mainly infers significant
redundancy being detrimental to the development process. In part III, ch. III.19,
ch. II1.20 and ch. II1.23.2, the author shows how a better suited solution for the
redundancy problem may be found through employing an integrated system(s)
and software design in combination with R2A's decision model concept (ch.
111.20).

1.7.2.5 ENG.5: Software Design

Purpose: A SW design must be created fulfilling and being testable against all SW
requirements.

136 The author disagrees with the view of [HDH+06; p.108] in this point. In the view of

the author, a requirements specification should best possibly only contain the require-
ments and avoid solution specifics, since otherwise a possibly negative solution may
be kept in a project because the solution was specified in the requirements specifica-
tion and thus is later considered as required by the customer. Additionally, as such in-
formation must also be specified in the architectural description, this information ra-
ther represents a redundancy that should be avoided (see DRY-principle in ch. 1.6.1.2).
On the other side, as shown in ch. 1.5.5, requirements cannot be completely defined
unless parts of the solution are considered. Nevertheless, the author rather suggests
minimizing and avoiding parts of the solution, if possible.
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Base Practices:

e BPI “Describe sofiware architecture”: The SW requirements must be trans-
formed in a SW architecture design describing the high-level structure and
the main parts of the SW. At this phase the central design decisions for SW
are taken. Hormann et al. explicitly point out that it is essential to document
these decisions [HDH+06; p.110-111] (cf. also ENG.3 BP5).

e BP2 “Define interfaces”: The external and internal interfaces must be de-
fined and documented.

e BP3 “Develop detailed design”: The software architectural design must be
further refined into a detailed design for all specific software parts describing
all parts to implement and test.

e BP4 “Analyze the design for testability”: The design must be evaluated for
correctness and testability to ensure the SW modules are testable.

e BP5 “Ensure consistency”: Consistency between the SW RS (ENG4) and
the SW design must be ensured. Consistency is supported by establishing and
maintaining traceability.

Work Products:

o SW architecture design: The SW architecture describes the high-level struc-
ture of the software and the collaboration of the different sub-parts of the
SW.

e Low level SW design: Describes the detailed design of a software unit. It
contains the interfaces to other software units, algorithms, memory alloca-
tion, data structure specifications, etc..

e Traceability record: See ENG.2;

1.7.2.6 ENG.6: Software Construction

Purpose: The SW modules must be implemented correctly reflecting the SW

design.

Base Practices:

e BPI1 “Develop unit verification procedures”: Procedures and criteria for unit
verification must be developed and documented.

e BP2 “Develop software units”: Source code for the software module must be
implemented according to the SW requirements and design. Further, testing
requirements and user documentation must be actualized.

e BP3 “Ensure consistency”: Consistency between software design and its
implementation must be ensured. Consistency is supported by establishing
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and maintaining traceability between SW RS, SW design and the sofiware
units.

BP4 “Verify software units”: The unit verification procedures developed
according to BP1 must be applied to ensure that the software unit fulfills its
design requirements. The results must be documented.

Work Products:

e Unit test plan: See ENG.8 (not further discussed here);

e  Software unit: The source code for a software module;

o Testincident report. See ENG.8 (not further discussed here);

o Test case specification: See ENG.8 (not further discussed here);

1.7.2.7 SUP.10: Change Management

Purpose: 1t is to ensure that requests for change are managed, tracked and con-
trolled.
Base Practices [HDH+06; p.214-217]:

BP1 “Develop a change management strategy”: A strategy must be devel-
oped and established to ensure that changes are: described, recorded, ana-
lyzed and maintained.

BP2 “Record the request for change”: Each change request must be docu-
mented and a unique identifier must be provided.

BP3 “Record the status of change requests”: Status indicators shall help to
trace status and status changes of change requests and performed changes.
Hoérmann et al. [HDH+06; p.215] explicitly emphasize with regard to this BP
that also traceability to the reasons for a change must be established (e.g.,
reference to a problem or error report).

BP4 “Establish the dependencies and relationships to other change re-
quests”: Change requests can have dependencies. These dependencies must
be made explicit.

BP5 “Assess the impact of the change”: Proposed changes must be assessed
for effects, needed resources, risks and potential uses. Here, traceability
builds the foundation for impact assessments (i.e., impact analysis; see ch.
11.10.3).

BP6 “Identify the verification and validation activities to be performed for
implemented changes”: Before a change is approved, it must also be clear
how and to what extent verification and validation actions must encompass
the change. Planning verification procedures for a change implies knowing
the impact of a change (BP5) and thus also demands for traceability.
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BP7 “Approve changes”: All proposed changes are approved'’’, i.e. accept-
ed, before they are implemented. Additionally, it must be determined for
what release cycle a change must be performed.

BP8 “Implement the change”: All approved changes must be implemented.
Here, consistent implementation — not forgetting an impacted point — is a
central issue. Also impact assessments (BP5) and thus traceability play a de-
cisive key role to fulfill this BP.

BP9 “Review the implemented change”: After implementation, all imple-
mented changes are reviewed whether they meet the expected goals and ef-
fects.

Work Products:

Change management plan: A plan determining how change requests are
captured, managed, decided, implemented and tested.

Change request. A change request usually involves the following infor-
mation:

e Description of the requested change,

e  Status of the change request,

e  Change initiator (with information how to contact the initiator),

e [mpacted systems,

e [mpacts on documentation,

e  Criticality of the change,

¢  Wanted and planned deadline for implementation;

Change control record: Documentation about a performed change to make
the change traceable in the system in accordance with a specific version
baseline [HDH+06; p.218]. The record includes the wanted change (e.g., as
reference to the change request) and a record of all individually performed
changes on system, or software components and documentation.

The R2A solution introduced in part III covers the demands of this process

by the impact analysis features'*® (ch. 11.10.3). Especially, the demands about a
change control record are addressed by R2A's features to save results of an im-
pact analysis and use such discovered impact sets as a checklist for implementing
a change.

137
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Schienmann [Sch02; p.111-113] gives clear advice what criteria should be clarified
positively in order to approve a change. Otherwise a change should be rejected.

The process SUP.9 (“Problem Management”) [HDH+06; p.202-213] is not discussed
in detail in this thesis, but demands of BP5 “Assess the impact of the problem to de-
termine solution” and BP10 “Track problem status” can also be fulfilled by R2A's
traceability and impact analysis features (ch. 11.10.3).



1.7 Quality Standards for Safety-Critical Development Processes 137

1.7.3 Traceability in SPICE

If you don't know where you go, it can happen that you arrive somewhere else.
Yogi Berra (*)

The processes described above impose a set of demands for traceability. Now,
the question arises which of the traceability demands must be fulfilled at what
maturity level (ML). According to Hormann et al. [HDH+06; p.227-229], MLI
also only demands that a BP is performed in a way that it fulfills the purpose of
the process. This means for MLI the traceability records may not necessarily be
documented. In a more detailed analysis, it would even be possible to achieve a
“Largely” for ML1I and to reach MLI in this way; traceability with deficiencies is
sufficient. Not until for reaching to ML2 needs to be reached, extended planning
documentation, review protocols etc. must be provided in a documented form'*’
[HDH+06; p.229]. This leads to the conclusion that at least to reach a ML2 ex-
tended traceability demands as formulated above must be performed to reach at
least ML2.

Traceability must be maintained to be traceable over several levels of details
(ENG.1-ENG.6), [HDH+06; p.102]. In such a way, traceability must also be con-
sidered at a larger scope than implementing relationships between two artifacts.
For evaluating and ensuring these goals in assessments, the assessors should pick
several random samples of some items to be traceable of some process and then
request the project members to identify all backward and forward traceability
implications [HDH+06; p.95].

A weak point of SPICE is that it merely concentrates on SysEng and SE pro-
cesses neglecting HW, mechanics or other engineering dimensions that can have
significant influence ((MHD+07; p.4-7], [TJHO7; p.3]). In the automotive do-
main, an important example in the following is that the pressure for developing
extremely cost-optimized HW often imposes new constraints and problems for
the software that must handle this HW. Here, it seems that the CMMI model has
some additional support for HW [MHD+07; p.4-5].

Another major problem is imposed because of the high demands for docu-
mentation sparking the danger that development efforts become unnecessarily
bureaucratic with potentially detrimental effects on development efforts [BT04;
p-25-57]. This problem can especially be the case for the high traceability de-
mands imposed by the standards. As discussed again in ch. I1.10.5, the good idea

139 In this context of ML2, also the Process Attribute 2.2 must be considered: "Dependen-
cies between work products are identified and understood. Requirements for the ap-
proval of work products to be controlled are defined." The PA 2.2 additionally defines
a hallmark to be fulfilled only achievable by extended traceability.
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of traceability in theory may face a similar benefit problem in practice as the
demands to capture rationale face it (cf. ch. 11.9.4.2). In the author's opinion
sparked by practical experience, developers often establish traceability in order
to fulfill demands of some standards, but they seldom experience significant
usefulness in comparison to the effort and the 'stupidity’ required by most tasks to
establish traceability. A key to solving or at least improving this dilemma may be
avoiding unnecessary documentation overhead or easing traceability establish-
ment efforts. Egyed et al. [EGH+07] argue that standards demand traceability but
do not explicitly state about the appropriate level of quality of trace links. In this
way, they argue that problems with traceability effort can be reduced by choosing
a more coarse grained traceability model; however, in this context it is to mention
that SPICE defines the demand for the work product customer requirements spec-
ification (see ENG.1) that each requirement is separated and individually tracea-
ble to all origin artifacts (backward traceability) and all subsequent artifacts
(forward traceability) [HDH+06; p.88 (*)].

Correspondingly, alternative solutions like using more coarse grained trace-
ability models may be difficult to employ in a SPICE conforming process envi-
ronment. It should be noted that the author does not say 'impossible'. In fact, a
promising alternative is consequent tailoring. The following chapter describes a
alternative significantly reducing bureaucratic overhead with minimal impact on
quality of most process landscapes.

Further it is to note that in the following of this complete thesis, only the
processes ENG.2-ENG.5 are considered as they are in the focus of this thesis.
Certainly, these processes are also embedded in the processes ENG.1 and ENG.6,
but traceability connections between ENG.1 (customer requirements) and ENG.2
(system requirements) are in general managed using REM-tools such as IBM
Rational DOORS and connections between ENG.5 (software design) and ENG.6
(software implementation) are relatively easily manageable using name mapping
(cf. ch. 11.10.4.2.2). Thus, as the following chapter tries to outline, the processes
ENG.2-ENG.5 dealing with transitions between requirements and design impose
the critical problem concerning traceability.

1.7.3.1 Intersect: Dangers of Prescriptive Process Models

1t is a capital mistake to theorize before one has data.
Insensibly one begins to twist facts to suit theories, instead of theories to suit facts.
Sherlock Holmes, A Scandal in Bohemia

In the author's opinion, the proper adoption of SPICE, CMMI or other quality
standards can significantly support improving process quality of SW-based prod-
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ucts. However, as the word 'proper’ in the preceding sentence indicates, the au-
thor also sees a set of risks that can even lead to results contra-productive to the
originally issued goals of SPICE to support a process landscape leading to high
quality processes and outcomes. In this sense, "proper' does not refer to a process
landscape fully conforming to SP/CE but rather emphasizes the goal to have a
process landscape leading to high quality products meeting their goals.

At first view, SPICE is a heavy-weight plan-driven method and “plan-driven
methods need stability” [BT04; p.31], because “plan-driven methods work best,
when the requirements are largely determinable in advance (including via proto-
typing) and remain relatively stable” [BT04; p.31]. As ch. 1.5.6 has shown,
chances for increasing rates of changes are very high. Thus, in order to avoid
unnecessary overhead, an organization adapting the SP/CE standard should con-
centrate on the problems and try to design a process landscape being open for
change. Being open for change in this case mainly means to provide flexibility
and to avoid unnecessary obstacles to change implementation. A promising ap-
proach avoiding unnecessary changes is to avoid redundant information because
changing redundant information implies that all redundancies must be changed in
concert. Otherwise inconsistencies would arise endangering the common under-
standing in a project, thus leading to inconsistencies in the system to be devel-
oped, leading to higher error rates to be discovered at later times in the project
and finally leading to significantly higher development costs.

According to the author's opinion, a promising starting point is to look deep-
er into the process model of SPICE. In this context, a peculiarly problematic
development exists, usually neglected by theory but in the author's opinion essen-
tial to keep in mind: When standards such as SPICE have been developed, for-
merly descriptive process models describing industry practice of software devel-
opment have now become prescriptive ones. The dangers involved with this are
that preterated elements of the description now turn to prescriptive elements.
SPICE bases on the ISO/IEC 12207 process model. Nevertheless, this process
model — as all models (see ch. I.1) — should be seen as idealization. Seen in the
historic context, however, the question arises whether probably an unrecognized
transformation has taken place. At first in SE research history, process models
have been descriptive models describing development activities. The researchers
created models analyzing how developers approached the development of soft-
ware and the resulting models were idealized abstract descriptions of the real
development steps happened. With high probability, these models contained some
idealizations as the ethos of research publishing demand to consider issues such
as conceptual integrity, clear classification and other idealizing effects. These
idealizations can be compared with abundant properties of a model (see ch. I.1).
In other words, the development model researchers described the — what they
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thought — essential properties of the development effort, neglecting the abundant
properties accompanied by a certain simplification, i.e., idealization. Nierstrasz
[Ni04; p.274] hits this mark when he claims SE, software architecture, etc. as
being rather 'metaphoric'.

Later, these descriptive models now formed the basis for development mod-
els of prescriptive nature as CMMI or SPICE. Now, in the run of adopting these
idealized descriptive process models to process models norming development
activities, these process models have become prescriptive models (see ch. 1.1). In
this unconscious transgression, the dangerous effect could have happened that
previously abundant properties (see ch. 1.1) are now seen as prescriptive manda-
tory properties of the processes to be performed. Now, the question arises which
of the prescriptive models' properties are really essential (correctly passed on)
and which may be abundant properties. As described in ch. 1.1, abundant proper-
ties lead to wrong conclusions. Just as well, abundant properties may exist in
development standards deconvolving negative impact on the development effort.
Correspondingly, the author does not necessarily appeal for abandoning these
standards. A lot of these issues are related to the proper adoption of SPICE.
SPICE is a very flexible and vague standard. It can be compared with the con-
stitution of a state. A law in a constitution will never have a concrete definite
character, otherwise it risks to be unfitting to several concrete problems and thus
loses its general purpose of building a frame of basic agreements on values,
whereupon a set of people (e.g., a nation) build its society.

In the exact same way, SPICE (or CMM]I) can be seen as a frame of basic
agreements on values all projects comply with. But each project develops its own
rules interpreting the abstract and vague rules of the standard. An example of the
flexibility of standards as SPICE or CMMI is the fact that several authors show
[Pa01], [FKO7], [Kn06; p.89] that the principles of agile methods as eXtreme
Programming have the potential to reach maturity level 3 in CMMI'™. Similarly,
a project should also be able to have SPICE-conforming processes when the
processes are not necessarily fulfilled by exact, word-for-word obedience'*' of

149" As shown in the beginning of ch. 1.7, CMMI and SPICE have comparable process
models and needs for traceability. Thus, this claim should be — more or less — equally
valid for the SPICE process landscape.

See also the — in the author's view still valid — criticism of Curtis et al. about process
models resulting from empirical studies: “A typical statement that we heard from par-
ticipants was that, you've got to understand, this isn't the way we develop software
here. This type of comment suggested that these developers held a model of how soft-
ware development should occur, and they were frustrated that the conditions surround-
ing their project would not let them work from the model. The frequency of this com-
ment also suggested that the model most developers envisioned accounted poorly for

141
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the standard. Instead, especially concerning traceability aspects in the ENG pro-
cesses, the author claims that a freer interpretation of the SP/ICE processes may
help to ensure higher flexibility of the process landscape without contradicting
the principal ideas of the SPICE process model on condition that it is accepted
that process models may be — very valuable — metaphors for practice but provide
no claim for strict obedience. This claim is further described in the following
chapter, but its full implications on this research are then again highlighted in ch.
11.19, ch. 111.20 and ch. 1I1.21.

At the end, however, it must also be mentioned that the SPICE assessors de-
cide whether a process landscape conforms to the demands of SPICE. In this
way, the power of the assessors and process designers may not be underestimat-
ed. If these people do not understand or share the view that different interpreta-
tions of a SPICE demand are possible, then the process landscape is determined
as non-conforming. In this way, organizations open to deviating interpretations
undergo a certain risk and should be aware that they must be prepared for water-
tight argumentation.

At least, even SPICE literature for assessors acknowledges indications that
process practice can significantly deviate from the original demand of SPICE and
thus in the author's view also indirectly concede the metaphoric nature of process
models. As an example, [HDH+06; p.104] directly gives further reinforcement
for the argumentation of the next chapter and will be discussed in detail there.

the environmental conditions and organizational context of software development. The
participants we interviewed were uniformly motivated to do a good job, but they had
to mold their development process to navigate through a maze of contingencies. These
interviews provided a clearer understanding of such crucial processes as learning,
technical communication, requirements negotiation, and customer interaction. These
processes are poorly described in software process models that focus instead on how a
software product evolves through a series of artifacts such as requirements, functional
specifications, code, and so on. Existing software process models do not provide
enough insight into actual development processes to guide research on software devel-
opment technologies. Models that only prescribe a series of development tasks provide
no help in analyzing how much new information must be learned by a project staff,
how discrepant requirements should be negotiated, how design teams resolve architec-
tural conflicts, and how these and similar factors contribute to a project's inherent un-
certainty and risk” [CKI88; p.1284].
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1.7.3.2 The Nature of the ENG-Processes, Traceability, and
its Implications142

The SPICE process model concerning the requirement and design related pro-

cesses (ENG.2-ENG.S) is a layer model where problem space descriptions (re-

quirement view: ENG.2, ENG4) alternate with solution space descriptions (de-

signs: ENG.3, ENG.5), (cf. [NuO1], [PS05; p.113f], [Po08; p.565-602], ch. 1.5.4):

e ENG2: Derives from the user requirements specification' a general system
requirements specification (SYS_RS).

e ENGS3: Uses the SYS RS to create a high-level system design with the prior
emphasis on HW-SW-partitioning.

e ENG4: The software requirements specification (SW_RS) derives from

ENG.2 and ENG.3.

e ENGS: Uses the SW_RS for the design of the SW architecture.

SPICE-oriented traceability models require a continuous link chain between
the artifacts of ENG.2, ENG.3, ENG.4 and ENG:.5 to ensure the consistency of the
entire model (cf. [DC04], [Kn01b]).

In the author's practical experience, a strict obedience to the process model
described above can cause several disadvantageous problems. To outline these
problems, the following example SYS RS is given with three requirements caus-
ing a problem encountered by the author at practical work at the former Micron
Electronic Devices AG (since June 2008 part of the MBtech Group) by one of its
projects:

e Req.l: An external watchdog component must monitor the system.

e Req.2: Parametric data must be changeable by the customer during opera-
tion.

e Req.3: Parametric data must be stored on EEPROM.

In current practice, the system design determines that the system will include
a micro controller (controller), an external watchdog component and an external
EEPROM (cf. fig. 7-2).

The HW requirements specification (HW _RS) is derived from the SYS RS
and system design. It again contains Req./ and Req.3 linking back (fig. 7-2: bold
blue arrows) to the SYS RS. The detailed HW design determines that watchdog
and EEPROM will share the connection pins to the controller by an SPI'* com-
munication interface, because other connected components have already used up

12 The following chapter bases on [TKT+07].
3 Le., customer requirements specification
14 Serial Peripheral Interface Bus
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all remaining pins of the controller. Req.1 gets linked to the watchdog symbol
and Req.3 to the EEPROM symbol in the HW design. The SW RS contains
Req.1, Req.2 and Req.3 linking back to the SYS RS.

During SW design, the architect discovers the potential resource conflict in
the shared usage of one SPI for EEPROM and watchdog. Since driving the
EEPROM is very time intensive and triggering the watchdog is very time critical,
the architect rates this combination as risk, but changes of the HW are rejected
due to higher costs. The solution for this conflict, the EEPROM and watchdog
drivers must be “artificially” coupled to implement a cooperative handshake'*
solution (fig. 7-2: association between EEPROM driver and Watchdog driver
marked with ,,!!!”).
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Figure 7-2 The example in current practice of the SPICE process model

4> When triggering of the watchdog is needed soon, the SW module responsible for
triggering the watchdog requests the SPI-bus resource from the EEPROM SW module,
which handles preempting its task in a secure state and then notifies the watchdog SW
module that the SPI-bus is now available to trigger the watchdog.
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The solution implies that the planned original standard drivers of a supplier must
be adapted internally. In the further progress of the project, these adaptions
caused extra efforts not traceable to its background.

In the long run of the project, the following disadvantageous effects have
been discovered:

e Redundancies needed significant extra effort to be maintained up-to-date.

e Despite all efforts, sometimes redundancies have been forgotten to maintain.
This effected in small drifts between the system, HW and SW views leading
to communication problems between the different developer groups.

e As sometimes requirements cannot be reasonably explained without referring
to the solution, also design more and more details crept into requirement
documents leading to redundancies in requirements and design documenta-
tion.

e Problems such as the above described interactions between HW design and
its implications on the SW as described above have still not been plainly elic-
ited yet, leading to further problems.

In summary, this example illustrates the central problem that the require-
ments in HW RS and SW RS are copies of the requirements in the SYS RS, lead-
ing to high redundancy. In many cases, SW or HW functionality is already clearly
demanded for in the user requirements specification. Thus a clear separation of
those requirements must be taken over into the SYS RS and SW RS respectively
HW RS, causing additional effort and redundancies. As the chapter above has
shown, this clear separation between System, HW and SW can also be seen as a
more or less metaphoric one (cf. [Ni04]) providing orientation aid for the devel-
opers as process models do. However, in practical terms, such a clear separation
is mostly not viable ([HDH+06; p.104], [PS05; p.114]). Especially the pro-
claimed specification of SW requirements"® should be cautiously dealt with, since
a really separate SW_RS" faces the following problems:

e  Often, requirements on HW and SW are strongly interwoven (cf. [HDH+06;
p-104]). Even literature on SPICE concedes that in practice the traversals be-
tween ENG.3, ENG4 and ENG.5 are mostly floating and of iterative and re-
cursive nature [HDH+06; p.103]. Thus, in most projects no separate SW RS

146 If the concept of a separate SW requirements specification is consequently followed,

then also a HW requirements specification should be maintained. However, as men-
tioned before, SPICE has the weakness that it does not adequately address HW as-
pects.

147 Boechm [Bo05] points out that the separation between Systems and SW engineering
has been a historical and artificial one.
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is maintained, but functional requirements are collected on the level of
SYS RS™ (ENG.2) [HDH+06; p.104].

In many cases, SW functionality is already clearly demanded in the customer
requirements specification (ENG.1). Thus, if applying such a clear separa-
tion, those requirements must be taken over into the SYS RS (ENG2) and
SW RS (ENG4), causing additional efforts and redundancies.

Other requirement types exist not attributable to either HW or SW (e.g.,
project management, quality management, mechanical construction). Alter-
natively, in current requirements management tools like IBM Rational
DOORS®, a HW-SW-partitioning of requirements is also viable using an at-
tribute (proposed values: 'System', 'HW', 'SW', 'construction’, 'management’).
Generally, linking of different artifacts is a time consuming, unproductive
and errorprone administrative work'*’ that should be minimized (see details
in ch. 11.10.5).

As a way out, the author proposes orienting on more pragmatic views of the

agility scene (e.g., cf. [BT04]) and to concentrate merely on one dependable,

consistent requirement artifact

30 to store all contractually relevant™' require-

ments as one common view i.e. interface to synchronize the views of all stake-
holders in the project. This artifact can be called the SYS RS. The artifacts
HW RS and SW_RS can be indirectly derived from the SYS RS by maintaining an
attribute marking a requirement as important for HW and SW. Starting from this

148

149

150

151

See remarks of [HDH+06; p.104 (*)] to ENG4, BP.1 (“Specify the SW_RS”): “In
many projects, no separate software requirements specification is maintained, but func-
tional requirements are described in one single document at the level of system re-
quirements (e.g., a 'Pflichtenheft'). The underlying reasons are that system functionali-
ty is often mainly determined by software, but it cannot be reasonable separated from
hardware functionality. The requirements of this base practice are completely fulfilled
if it can be proved that the functional and nonfunctional requirements are unambigu-
ously specified and are adequate to the range of functions” [HDH+06; p.104 (*)].

“As systems evolve, it becomes increasingly ineffective to maintain traceability in-
formation. RT (requirements traceability) in practice often suffers from the enormous
effort and complexity of creating and maintaining traces. It also suffers from incom-
plete trace information” [EG04; p.55].

This corresponds to the DRY-principle (don't repeat yourself) in [HT03; p.24] also
more elaborately described in ch. 1.6.1.2.

Contractually obligatory means here to clearly distinguish between requirements
originating from the customer and 'requirements arising internally within the project’
(see also ch. 1.7.2.2.1). The real meaning of this statement can only be described later
in ch. III.19. Roughly speaking, the idea is to distinguish between requirements from
the customer (requirements) and requirements arising within design phases (design
constraints).
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common view on requirements, all further design artifacts (system design, HW
design and SW design) are derived.
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Figure 7-3 The altered example above with less redundancies

Fig. 7-3 shows how the example above (see fig. 7-2) looks like if these prin-
ciples are applied. The system design is done similarly to the example above (fig.
7-2). Additionally, the SYS RS contains an attribute that allows SW-HW parti-
tioning. Req.1 and Req.3 are marked as relevant for HW and SW, Req.2 only for
SW. Correspondingly, the HW RS is not directly applied, since the relevant HW
requirements are marked in the SYS RS. Apart from that, the HW design is done
similarly to the previous chapter and linked to the Req.l and Req.3 in the
SYS RS. In the same way as the HW RS, the SW_RS is not applied, since the
relevant SW requirements are marked in the SYS RS. The SW design will be de-
veloped from the SYS RS and the system design model.

As a comparison between fig. 7-2 and fig. 7-3 shows, redundancies are sig-
nificantly reduced and thus unnecessary project complexity'> is avoided. In

132 As Diederichs [Di04a] shows, unnecessary complexity in processes is one of the major
sources for partial or complete failures of project endeavors. Correspondingly, reduc-
ing unnecessary complexity is one of the best leverages to avoid project failures.
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[HDH+06; p.104] it is indicated that such an approach as adaption to the SPICE
process model is spread in industrial practice (also see footnote 148 (p.145)).

In this way, this concept also gives tribute to Boechm's predictions about the
future of SysEng and SE processes [Bo05]. According to Boehm the separation
between SysEng and SE was an artificial one driven by historical development.
For the future, he predicts a growing together of both disciplines. In fact, this
trend becomes evident in the emphasis of SysEng processes in SW development
standards as the ISO 12207 ([ISO12207]) or SPICE (ISO / IEC 15504) and also
in the SysML [SYSML] standard being an extension of UML as support for Sys-
Eng. Further indications speaking for the latter approach are comments provided
by Hood et al. [HWF+08; p.195] claiming that process thinking must get away
from the document view and turn more toward an information view.

However, the solution sketched here does not yet provide any help for cov-
ering the problem concerning watchdog and EEPROM. This points to a gap be-
tween the adaption following the latter example and an intention of the original
intentions of the SPICE process model: Design activities concerning one design
artifact (in this example HW design) can have serious implications for other re-
quirement or design artifacts (in this example SW design). This fact is partially
considered in the process model of SPICE: System design has high impact on its
SW design by raising new “requirements” in addition to the original requirements
of the stakeholders. Thus, the idea behind a SW_RS is to collect the SW-related
requirements from the SYS RS and to derive new requirements from the system
design. On the other side, especially concerning the automotive sector, SW design
often must be subordinated under constraints of extremely cost-optimized HW
components. At the moment, SPICE completely neglects these critical connec-
tions between HW and SW.

A dedicated goal of this thesis is to find a way out of the dilemma that cur-
rent project practice either has to decide between the dangers of extensive redun-
dancies or lacking means to make intercorrelations between different design
phases that spark new 'requirements' for other designs explicit. As ch. I11.19 and
ch. II1.20 (especially ch. I11.20.3) will describe, the dilemma could be solved in
integrating a decision model directly within design processes and the evolving
traceability information. This follows the basic idea that design decisions taken at
a certain design situation can imply influence upon other parts of design by
sparking new 'requirements' for these parts. Additionally, this decision model
approach has further significant advantages as it provides explicit coverage for
another important demand of SPICE: Several BPs (e.g., ENG.3 BP5 ([HDH+06;
p-101]), ENG.5 BP1 ([HDH+06; p.110-111])) explicitly demand that important
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design decisions must be evaluated and documented'**. This can be easily ful-

filled using the decision model described in ch. I11.19 and ch. 111.20. Additionally,

this also provides an important connection hook to Rittel's design theory (ch.
1.6.2.2) and what is now called RatMan (ch. 1.6.2.2 and ch. I1.9).

Following the saying “no rule without an exception”, at least two cases are
dedicated exceptions which should be dealt with on their own and therefore will
not be part of the discussion of ch. II1.19 and ch. I11.20. They will be discussed
later in connection to ch. I11.23:

o Complex systems (System of systems): If complex systems can be divided
into relatively independent subsystems (with exactly definable interfaces),
then the subsystem specifications should be separated.

e  For development parts delegated to subcontractors the interface and context
of these must be deeply analyzed and defined.

1.7.4 Automotive SPICE

Starting in 2001, the Automotive Special Interest Group (A-SIG) is working on
an industry specific adaption of SPICE, called Automotive SPICE (A-SPICE)
[ASPICEO8a], [ASPICEO8Db], [AutomotiveSPICE], [MHD+07; p.3ff]. Since
2007 all members of the HIS (see beginning of ch. 1.70) have decided to prefer 4-
SPICE for supplier assessments, making 4-SPICE to a de-facto standard in the
automotive industry [HDH+06; p.2671f].

A-SPICE has its own definition of a process reference model (PRM) and a
process assessment model (PAM) [HDH+06; p.267] slightly deviating'** from the
original PRM and PAM of SPICE [HDH+06; p.267ff]. Even though some base
practices have been slightly adapted to the peculiarities of automotive embedded
engineering, concerning the ENG and SUP processes discussed here, the changes

133 In CMMI the generic practice “Decision Analysis and Resolution” must be fulfilled to
reach up to maturity level 4 [Kn06; p.54].

154 The following SPICE processes are left out by A-SPICE [HDH+06; p.269],
[MHD+07; p.7]: MAN.1, MAN.2, MAN.4, ENG.11, ENG.12, SUP.3, SUP.5, SUP.6
(product evaluation), ACQ.1, ACQ.5, RIN.1-4, OPE.1-2, SPL.3, PIM.1-2, REU.1 and
REU.3. Instead five new acquisition processes have been defined: ACQ.11 (“Technical
Requirements™), ACQ.12 (“Legal and administrative requirements”), ACQ.13 (“Pro-
ject requirements”), ACQ.14 (“Request for Proposals”), ACQ.15 (“Supplier qualifica-
tion”). Further, it is to note that the HIS (see beginning of ch. 1.07) has defined a sub-
set of the A-SPICE process model called HIS-Scope. The HIS-Scope defines the min-
imum of processes to be assessed by each assessment of a HIS member.



1.7 Quality Standards for Safety-Critical Development Processes 149

made are not significant concerning this thesis except for the new demands on
traceability discussed below.
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Figure 7-4 Summary of traceability BPs in A-SPICE [ASPICEO8a; Annex E]

A major improvement from the embedded engineering perspective is that the
key concepts of the engineering processes now also explicitly include mechanical
and HW aspects, and these aspects are handled analogously to the handling for
software aspects described above. This means that mechanical and HW require-
ments are derived from the SYS RS and that then these requirements must be
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mapped onto the mechanical and HW design [ASPICE08a; Annex D], [MHD+07;

p-15].

A central change in comparison to the SP/CE standard is that the traceability
concept has been “significantly extended and thereby defined in a more conse-
quent and consistent manner” [MHD+07; p.222 (*)]. Demands for traceability
have thus been changed concerning the following aspects:

e Instead of traceability, bidirectional traceability is demanded now. Even
though, it was already demanded by SPICE that backward and forward
traceability must be established for certain work products, in 4-SPICE, now,
any traceability information must be in any way traceable in both directions
[MHD+07; p.222ff]. These demands make a manual documentation of
traceability information using traceability matrices (e.g., by using Microsoft
Excel) very difficult and press for the need to use dedicated traceability tools
[MHD+07; p.225]. Miiller et al. further indicate that the most critical points
concerning tool based traceability are gaps in the tool chain [MHD+07;
p.225]. Thus, assessors must explicitly search for and analyze dedicated
breaks in the tool chain, verifying whether consistency between the impacted
artifacts is present.

e Subsuming the general traceability demands above, it must be mentioned
that also new BPs have been added with additional traceability demands to
the original of SPICE. Fig. 7-4 taken over from Annex E of the A-SPICE
PAM [ASPICEO8a; Annex E] shows all BPs describing a certain traceability
relation having the characteristics of the points described above.

e Additionally, traceability within the ENG processes shall be extended by
verification criteria (see fig. 7-4; for a detailed description cf. [MHD+07;
p.47, 53, 59, 66, 74, 225ff]). This means that requirements and their realizing
design artifacts must already define verification criteria within their artifacts
and that these criteria must be traceable to the information to be verified
[MHD+07; p.225ft]. The definition of verification criteria is a well-known
practice in REM theory (cf. ch. 1.5.1) and is also already demanded by the
SPICE standard (cf. ENG.4 BP3). In A4-SPICE, verification criteria must be
defined for any ENG process artifact and these verification criteria must be
made traceable to the items they are defined for [MHD+07; p.47, 53, 59, 66,
74, 225ft].

e At the moment, the A-SIG also seems to discuss whether traceability should
become an individual SUP-process as problem management etc. have be-
come, but no definitive decision about this issue has yet been made
[MHD+07; p.222ff]. The summary on traceability demands as referred to in
fig. 7-4 may be the basis for such a process to be defined.
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e Horizontal and vertical traceability: Even though the current standard ver-
sion does not officially employ this terminology, Miiller et al. [MHD+07;
p.222] point out that at the A-SIG debate seems going on about whether to
include the terms horizontal and vertical traceability in the future traceabil-
ity process description. Obviously orienting on the V-cycle process model
[DHMO8], the A-SPICE standard's definition of horizontal and vertical
traceability has its own notion completely different to the notions'> de-
scribed in ch. 1.5.7.1: Horizontal traceability is illustrated as relationships in
horizontal direction in fig. 7-4 (e.g., ENG.10 BPS), whereas vertical tracea-
bility refers to the vertical direction (e.g., ENG.2 BP6) [MHD+07; p.222]. In
[MHD+07; p.225], Miiller et al. emphasize that these definitions have the
advantage that the aspects realization (vertical traceability) in other artifacts
and test coverage (horizontal traceability) can be distinguished. As described
in ch. 1.5.7.1, the author, however, considers the ambiguous usage of the
terms as alarming and rather prefers to avoid these terms. Besides, the author
also considers the obvious preference on the V-cycle process model as prob-
lematic, because such standards usually should be as generic as possible and
should not drive organizations toward a specific implementation of their pro-
cesses as this orientation on the V-cycle process model suggests.

At the moment, traceability generally seems to be a trend topic in the auto-
motive industry and changes of industrial practice in the next years are very like-
ly.

Even though it is mentioned above that the ENG processes do not contain
changes significant for the outcome of this thesis, one other exception exists:
With ENG.5 BP5 “Define goals for resource consumption” the A-SPICE standard
requests that resource consumption for each software module is explicitly
planned and tracked [MHD+07; p.64]. In ch. II1.21, it is shown how this demand
can be fulfilled in a way that these 'resource consumption goals' are even inte-
grated into a larger fraceability structure showing new perspectives beyond the
usual demands of the 4-SPICE standard.

1.7.5 Safety Engineering: IEC 61508, ISO 26262

In the automotive industry, more and more ECUs have influence on safety-related
functions, where malfunctions can lead to significant dangers of injury or death

155 Miiller et al. [MHD+07; p.222] also emphasize that CMMI has a different notion
equal to the notion of Bohner [Bo91] (see ch. 1.5.7.1).
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of humans. Correspondingly, questions about the so-called functional safety of
ECUs are becoming increasingly important.

The IEC 61508"° “Functional safety of electrical/electronic/programmable
electronic safety-related systems (E/E/PES)” [IEC61508] describes a standard for
conception, planning, development, realization, launching, maintenance, modifi-
cation, shutdown and deinstallation of systems containing safety-critical E/E/PES
components, whose breakdowns impose significant risk for humans and the envi-
ronment [LPP10; p.8ff].

The standard demands that a system possibly implying risks for humans or
the environment must be assessed for the probability that these risks become
reality. This includes that the individual components of the system are analyzed
for potential malfunctions leading to safety hazards. If significant risks can be
identified in those components or the system, then these parts or the complete
system are classified as safety-related. Hereby a malfunction or a combination of
malfunctions can lead to safety risks. The rating of the safety-relevance orients on
fixed upper bounds of probabilities leading to a safety hazard. Corresponding to
these probabilities each safety-related component can be classified into four dif-
ferent safety integrity levels (SIL) determining the actions to be taken in order to
reduce hazard entry probabilities (see, e.g., [MHD+07; p.286] showing a risk
probability graph for determining a corresponding S/L for a component).

The IEC 61508 can be seen as a basic norm helping to define industry sector
specific implementations [MHD+07; p.285]. Such an implementation'’’” for the
automotive industry is provided by a new standard ISO 26262 (“Road vehicles —
Functional safety”). The ISO 26262 [1S026262] is a norm draft of the automo-
tive industry for safety of electronic road vehicles derived from IEC61508
[LPP10; p.9]. The SIL levels are called automotive safety integrity levels (ASIL)
but have the same meaning. The difference is that they are classified by grades
from A (SIL 1=ASIL A) to D (SIL 4 = ASIL D).

Benediktsson et al. [BHMO1] empirically proved that to fulfill SIL/ or SIL2
minimum SPICE maturity level 2 (ML) is essential. For higher SILs (SIL3 and
SIL4), the study indicates the need for higher MLs. Concerning A-SPICE,
Mueller et al. emphasize that “reaching ML2 in the processes of the HIS-scope is
a necessary (but not sufficient) premise to develop safety-critical software (SILI
or higher)” [MHD+07; p.288 (*)]. Beyond this (for S/L2, SIL3 or SIL4), no spe-
cific practice of A-SPICE is mappable, because SPICE standards only demand

156 Also known as EN 61508, DIN EN 61508 and VDE 0803.

157" Other industrial sector implementations are for example: IEC 61511 (process indus-
try), IEC 61513 (nuclear power plants), DO-178B (aviation), or EN 50129 (railway).
See [LPP10; p.9] for an overview of standards derived from IEC 61508.
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'what' has to be performed, whereas IEC 61508 (and ISO 26262) additionally
imposes certain demands 'how' activities have to be performed [MHD+07;
p-288]. This leads to the conclusion that traceability demands must be fulfilled
whenever a safety-related function has been identified in a system to be devel-
oped.

1.8 Feedback from Embedded Practice

In theory there is no difference between theory and practice. In practice there is.
Yogi Berra

After the theoretical terrain, an adequate fraceability between requirements and
design solution should consider, has been outlined, the following chapter discuss-
es some feedback from practice that should help in the considerations.

Pettit [Pe04] describes a series of lessons learned “derived from several dif-
ferent embedded software development efforts observed by the author during the
period of 2000-2004” [Pe04; p.1]. The projects'® involve “large-scale embedded
software often with real-time requirements and often with a high degree of con-
current processing” [Pe04; p.2]. As modeling standard, UML 1.4 without any
further profile or real time extensions or special case tool has been applied. Thus,
the presented lessons learned reflect Pettit's experiences with the basic features of
a modeling language as UML not requiring the presence of specialized modeling
features or other sophisticated tool sets [Pe04; p.1-2]. The described experience
divides into lessons about processes and lessons about modeling (design).
Lessons about the processes are:

e A well-defined process is as important as any modeling itself. Pettit distinc-
tively emphasizes the difference between a well-defined development pro-
cess and a general process framework such as SPICE. Many projects go for
the latter, ignoring the individual project implications. “While these frame-
works are a good starting point, it is crucial for each project to capture the
specific process flows, activities, and milestones that will be employed for

158 Even though, the referred projects seem to involve the aerospace domain (This is not
explicitly mentioned in the article, however Pettit's organization is called “The Aero-
space Corporation”) that may not necessarily match with other domains as Automotive
and the reference to UML mentioned before, the author believes that the findings of
Pettit are fundamental and abstract enough to also match with other engineering do-
mains and other modeling paradigms. The reader may decide on his (her) own whether
the author's claim is correct.
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their projects. This is nominally accomplished through the creation of a
software development plan that documents not only the framework being ap-
plied, but the specific process steps applied for the project” [Pe04; p.2].
Simply adopting new process technologies does not reduce the development
effort. At first, mostly higher efforts due to learning phases must be consid-
ered. Concerning the adoption of UML techniques, the most positive experi-
ence is that not necessarily the projects' overall development effort has
changed, but the effort has rather shifted to up-front requirement definition
and problem analysis. If these up-front activities have been performed
soundly, efforts for detailed design and implementation have reduced at least
marginally. However, it has been observed that projects with a solid analysis
model and SW architecture have reduced maintenance efforts including ef-
forts for adding new features in future adaptions [Pe04; p.2].

“One of the most immediate benefits observed from adopting a use case
driven UML design is the improved visibility to stakeholders. Through ap-
plying this highly visual modeling, software engineers are able to more
readily communicate with systems engineers and even to the end customer”
[Pe04; p.2]. In this way, confidence in the developed features and under-
standing of requirements in early development phases could be increased.
Additionally, the usage of a standard language like UML helped developers
to get easier up to speed in new projects, because the standardized modeling
constructs lowered the learning curve for understanding concepts within the
new project [Pe04; p.2].

“The lack of thorough requirements traceability is one of the most common
and critical problem areas observed in current object oriented development
efforts. Often, requirements are traced to the use cases for a particular system
or subsystem, but are not propagated to the individual design elements.
When requirements are not completely traced to the specific design elements
(e.g., classes, messages, state charts, etc.), there is a tendency to lose focus as
to the specific responsibility of the classes being designed. This can lead to
costly changes late in the life cycle and can also lead to incorrect or missing
functionality in the delivered system. Additionally, gaps in requirements
traceability complicate the testing and verification process, especially at the
unit or white-box level” [Pe04; p.2].

Prototyping is a heavily used technique for exploring unknown parts of a
system. This is especially important in embedded development in order to
gain insights and confidence in the employed HW. However, “extreme care”
[Pe04; p.3] should be taken about decisions how to integrate backlashes of
the gathered results. “Specifically, care should be taken to appropriately up-
date the software design based on the results of the prototype” [Pe04; p.2-3].
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Pettit has observed that drifts between design and the implementation are one
major driver for later maintenance and upgrade efforts and problems of the
developed software [Pe04; p.2-3].

Subsuming point one in the context of process standards such as SPICE, the
crux about it is how to adequately adapt a process framework to a specific pro-
ject. The usual answer of such process frameworks is employing a process tailor-
ing concept [HDH+06; p.245], [BT04; p.36f]. The author believes that this is an
issue not yet completely solved issue as the discussion between more disciplined
or more agile processes is also in open discourse (see, e.g., [BT04]). Findings of
projects practice are disillusioning in the sense that process tailoring is often not
performed, because process framework definitions are so complicated that ac-
countable project members do not dare to perform significant tailoring in fear of
being blamed for negative consequences discovered later [BT04; p.152] driving
Boehm and Turner to the recommendation to build methods up rather than to
tailor them down [BT04; p.152]. The point tangents this thesis by the question
how far tools and processes are connected and influence each other. As shown in
ch. 1.7.3.2 and later in part III (ch. II1.20.3), tools such as R2A introduced in part
IIT may also have the potential to infer a different interpretation of artifact con-
nections that allow process standards to be tailored in a different way in order to
avoid problems such as unnecessary redundancies between artifacts. The second
and third point refer to experiences that are generally encountered, when extend-
ed REM practices are used. Besides the technique of use cases, other require-
ments specification techniques exist and it is probable that stakeholders' under-
standing may be improved if a structured method for elicitation and structuring
requirements is used, which is understandable for the stakeholders (e.g., reflects
their vocabulary and understanding) and is somehow standardized so that it must
be learned just once. Use cases fulfill these criteria to a very high degree, what
explains their high preference in projects. Point four directly describes the core
problem this thesis works on. It claims for a fine-grained and detailed traceability
solution. Last but not least, point five addresses the issues of how to explore the
solution space (the possible design alternatives) and how to integrate knowledge
achieved outside the standard development information flow. Further, the prob-
lem of view drift (here the drift of the model and the code) is mentioned. As de-
scribed in ch. 1.6.6.1, these problems can be avoided by specialized design tools
allowing early functional prototyping with automatic code generation.
Concerning the modeling, the following lessons are described:

1. ”Capturing interfaces to external devices is a critical element in the design of
embedded software systems” [Pe04; p.3]. Two kinds of interfaces shall be
considered. The context of the embedded device involves all devices and us-
ers that interact with the system. Therefore, a context analysis (a good de-
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scription of possible context analysis methods with UML is provided by
[HRO2]) is essential for identifying all involved interfaces. Secondly, an em-
bedded SW must interact with the HW. Often the HW interface knowledge is
encapsulated in some kind of controller class. However, to improve flexibility
each interface should be encapsulated by its own controller class.

2. Often an imbalance between static and dynamic models exists, whereby static
aspects are mostly preferred. “This practice results in an unbalanced design
that, while providing a good data model, may not completely capture the be-
havioral aspects of events and messages that are prevalent in embedded soft-
ware systems. Without adequately capturing this dynamic behavior, it is diffi-
cult to assess whether the final design will completely satisfy the functional or
performance requirements of an embedded system” [Pe04; p.3-4].

3. Often dynamic interactions are modeled using sequence charts. However, a
sequence chart often only shows one scenario of interactions, whereas the
overall interaction context is neglected. UML also provides communication
diagrams. “By utilizing both forms of UML interaction diagrams, engineers
can achieve a more complete description of both the sequence of events with-
in a scenario and of the behavior across a set of scenarios” [Pe04; p.4].

4. Identification of concurrency situations is essential in embedded systems
design, if more than one concurrent thread is employed. Often concurrency
situations are described in a different diagram, whereas UML language fea-
tures are neglected. “This leads to a disconnect between the as-built software
and the UML design artifacts” [Pe04; p.4].

5. In the experience of Pettit, state charts are the most underused means for
capturing the reactive, state-dependent behavior often found in embedded sys-
tems. Especially, hierarchical state charts prove helpful to tame complex be-
havior [Pe04; p.4].

Point one discusses that defining the context of a system is an essential task

(see ch. 1.4 and ch. 1.5.2). In the second notion, Pettit emphasizes that access to

HW components from SW shall be encapsulated by controller classes. Even

though not directly discussed in this thesis, in automotive ECU design so-called

'driver' modules perform this encapsulation for HW components of the micro

controller, and 'handler' modules encapsulate knowledge of the control paths of a

specific functionality at the printed circuit board. The accompanying case study

of part III (cf. ch. III.12) uses the encapsulation principles of drivers and han-
dlers.

Point two discusses that there should also be a suitable possibility to get the
connections between the static and the dynamic behavior. Usually, this is per-

formed through the view concept. The traceability solution discussed in part 111
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also provides a way to adequately model connections between different views.
This can help to document connections between the static and dynamic aspects.
Points three and four are rather problems to be addressed by modeling and
are therefore not further discussed in this thesis.
Point five gives further prove for the argumentation provided in ch. 1.6.6.1.



II. Rationale Management and Traceability in
Detailed Discussion

The more you plan in details, the more you are struck by coincidence.
Peter Rithmkorf (*)

After the last part described the different major topics this thesis is related to, this
part now discusses the two central research topics in detail. These topics are ra-
tionale management (RatMan) and requirements traceability. In ch. 11.9, RatMan
is discussed as major research field on how information about important design
decisions can be successfully captured in order to ensure that information im-
portant for change management and long-term collaborative is conserved.

Ch. 11.10 then discusses the current state of research on requirements trace-
ability. At first, this discussion is made from a general perspective. At the end, ch.
11.10.6 discusses traceability research in the special context of the transition from
requirements to design being in the focus of this thesis.

I1.9 Rationale Management in Systems and
Software Engineering

The wise man never takes a step too long for his leg.
African saying

Making decisions is the basis of all development activities. Rationale describes
“the justification behind decisions” [DMM+06a; p.1]. In other words, “the term
rationale denotes the reasoning underlying the creation and use of artifacts. Ra-
tionale research seeks ways of aiding decision-makers by creating explicit rec-
ords of this reasoning. Most other types of research on decision-making, by con-
trast, seek to create formal, computational methods for deriving decisions. Ra-
tionale research primarily deals with informal and semi-formal, verbal reasoning;
but it does not ignore formal reasoning and computation, both because humans
sometimes use these in reasoning about decisions and because they can augment
human reasoning” [BCM+08; p.3].

The general goal of rationale management (RatMan) and its research efforts
can be described as “to use rationale to improve the processes of creating arti-
facts of various kinds, including physical artifacts such as buildings, cities ... as

B. Turban, Tool-Based Requirement Traceability between Requirement and Design Artifacts,
DOI 10.1007/978-3-8348-2474-5 3, © Springer Fachmedien Wiesbaden 2013
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well as cognitive artifacts such as software and government policy” [BCM+08;
p-5]. To achieve these goals, the following aspects are in general considered by
methods and supporting tools developed by rationale research (cf. [BCM+08;
p-5)):
e Elicitation of important and useful rationale from different sources. Mostly
these sources of rationale are stakeholders involved in the decision process
(often called the rationale bearers).
Recording useful rationale,
Structuring and indexing the recorded rationale for retrieval,
Rationale retrieval, when it is needed or useful,
Imparting rationale to all stakeholders if it is needed or useful,
Handling of the rationale by stakeholders;
Historically, rationale research was given birth by the Rittel's design
[RW73] theory about wicked problems [RW84] (see ch. 1.6.2.2) and thus focused
on design processes [DMM+06a; p.1]. Correspondingly, most literature on ra-
tionale uses the term design rationale. However, as “rationale models are used
during all activities of development, including requirements engineering, archi-
tectural design, implementation, testing and system deployment” [DMM+06a;
p.-1], Dutoit et al. [DMM+06a; p.1] propose using the term sofiware engineering
rationale to emphasize that rationale occurs during all phases of software devel-
opment and is not necessarily limited to design contexts. In principle, the author
agrees with this extended context, but as this thesis also considers SysEng ap-
proaches, an even wider scope is needed. In particular, the term sofiware engi-
neering rationale again provides strict limitations to software related contexts
only, whereas the former term design rationale also includes non-software related
design activities as, e.g., social planning. In the context of this thesis, rationale is
only discussed in the context of design. Correspondingly, the term design ra-
tionale would seem adequate for this thesis, but to avoid both limitations, the
author just uses the term rationale.

Burge et al. [BCM+08; p.17-19] enlist the potential benefits of including ra-
tionale into software engineering processes (these results are of either value in
SysEng). The author will enlist all main points. For the points important to this
thesis, the sub points are also listed:

e  Support for requirements engineering can involve identification and explana-
tion of requirements. Here, rationale can help requirement engineers with
decision making through improving underlying reasoning. Additionally, de-
cisions with their reasoning are recorded thus helping to assess impacts of
changes.

e Support for design and implementation: On one side, rationale can provide
traceability of between requirements and design decisions and vice versa. On



I1.9 Rationale Management in Systems and Software Engineering 161

the other side, rationale can help designers to make better decisions through
improving communication and underlying reasoning (e.g., by providing ra-
tionale behind patterns (cf. ch. 1.6.2.4)). Recorded decisions and their rea-
soning further help with change assessments.

e  Supporting sofiware maintenance by helping maintainers to understand the
rationale for requirements, design or implementation decisions.

e  Project management is supported because rationale helps to communicate
decisions to management. As a plus, performed RatMan during project man-
agement can help to make better decisions.

e  Supporting use by providing rationale explaining the functioning of complex
systems.

e Collaborative working in groups can be supported by “using rationale as a
vehicle for communication amongst different kinds of experts and stakehold-
ers” [BCM+08; p.18], because different points of view between stakeholders
can be elicited and the decision making process is made transparent. Addi-
tionally, decisions can be better communicated. In this way, conflicts be-
tween decisions taken by different groups can be surfaced. Besides improved
transparency and exposition of conflicts, also “areas of agreement”
[BCM+08; p.18] can be revealed helping to achieve group consensus.

e Change is supported. On one side, change need can be detected because
rationale denotes information about assumptions and consequences. If cap-
tured assumptions become invalid or unforeseen consequences become ap-
parent, need for change will be indicated. On the other side, changes can be
better handled because dependencies among decisions and other elements
can become apparent helping to identify impacts of changes (impact analy-
sis). Further, rationale can contain evaluations on decision alternatives giv-
ing decisive supportive information for redesign decisions.

o  Software reuse is eased, because rationale can provide explanations why
software components are designed and implemented the way they are.

e Knowledge transfer is supported because rationale helps to learn from suc-
cesses, failures and ideas of former projects. Also, rationale helps to perform
design validation assessments. Such collected knowledge can be transformed
to reusable knowledge for training and education or help researchers for on
research on real-world project practice.

In the context of this thesis, rationale is important in the context of REM and
design. In fact, literature for both research fields recommends the capturing and
use of rationale'. This begins at early design decisions already at the require-

159 As examples for REM theory with extensive focus on traceability, [RJ01] or [Ge05;
p.6] can be mentioned.
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ment elicitation phase, which is especially important to define system interfaces
(context of the system) [Ge05; p.6].

Especially for safety-critical systems, “rationale may facilitate the safety
analysis of the design” [DMM+06a; p.38] and thus provide significant support
for safety-critical processes (cf. ch. 1.7.5). But, surely, not every topic can be
extensively discussed in a project: “If large, complex design and development
projects are to be completed within their inherent resource constraints, not every
decision and relevant factor can be deliberated, and the challenge becomes one of
defining an acceptable level of ambiguity rather than eliminating it altogether.
That said, this ambiguity poses a significant challenge to providing comprehen-
sive explanations.” [Ha06b; p.62].

In other words, “the complete rationale for even a small system is impossi-
ble to represent; consequently, developers are faced with selecting which ra-
tionale to represent” [DMM+06a; p.2].

I1.9.1 Characterization Criteria for Rationale Approaches

Before sketching several rationale approaches, some general characterization
criteria shall be discussed. Several categories characterizing rationale approaches
exist (cf. [DMM+06a]):

e Representation,

e Process implementation,

e Descriptive versus prescriptive approaches,

o [ntrusiveness,

I1.9.1.1 Representation

Captured rationale must be somehow represented. “Although formality is typical-
ly a continuum, not a set of categories with thresholds” [Le97; p.81], Lee [Le97,;
p-81-82] distinguishes three kinds of representation:

e [nformal representation uses unstructured forms such as natural language,
audio or video recordings or raw drawings to capture rationale. Informal
capturing can be created easily; however, further computer-based processing
is difficult due to lacking in formal structure.

e  Semi-formal representation only partially relies on a formal structure analyz-
able by computers. The formal structure builds a scaffold or skeleton of ele-
ment types and relationships, whereon the rationale can be mapped on and
thus structured. The content of the elements and relationships, however, re-
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mains informal. During rationale capturing (e.g., during meetings), a certain
formal structure can be helpful for structuring discussions (similar to check
lists) or suggesting what information is expected. Thus, semi-formal repre-
sentations may even reduce overhead or complexity in discussions and pre-
vent topic digresses.

e Formal representation only includes formally defined items and their rela-
tionships, which allow a computer-based system to perform formal opera-
tions on. “The creation of rationale thus becomes a matter of creating a
knowledge base in some formal language”. The type of formal representation
depends on the types of operations intended to be performed on the gathered
information.

In semi-formal and formal representations, the rationale is “divided into
chunks that are assigned to certain properties and/or relationships” [DMM+06a;
p.2], where “by far, the most common way” [DMM+06a; p.2] is the usage of a
conceptual rationale schema representing the items, properties and relationships
to be captured and represented. Other ways are either to link rationale chunks to
elements of the discussed artifact, or to relate rationale chunks to process des-
criptions about the usage of the discussed artifact [DMM+06a; p.2], [BCM+0S;
p-291].

Lee [Le97; p.82] emphasizes that the more formalization rationale has, the
more services can be provided by a computer-based system. However, formaliz-
ing knowledge is complex and costly. A way to reduce complexity and costs is to
formalize incrementally. In this way it would be possible to first capture rationale
informally, then transform it to a semi-formal representation and — if needed —
transform it further to formal representations [Le97; p.82].

11.9.1.2 Basic Rationale Processes

Rationale approaches can be characterized by how they provide basic rationale

processes. Three basic processes must be considered [DMM+06a; p.4]

e Capturing rationale describes how rationale can be elicited and recorded.
Different possibilities exist. Either the rationale bearer itself, or rationale
specialists document it, or it is extracted from communication recordings of
project participants, or it is captured as a side-effect by the use of another de-
sign-support software [DMM+06a; p.5].

o Formalizing rationale describes processes of rationale transformation into
the desired representation, as, e.g., a rationale schema. “Traditionally, cap-
turing and formalizing rationale were combined in a single operation. In re-
cent years, however, alternative approaches separate the formalizing of ra-
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tionale from its capture” [DMM+06a; p.5]. Either the rationale is formalized
by the rationale bearers, or trained rationale formalizers, or some software
provides support to partially or completely formalize the rationale.

Providing access to rationale deals with how recorded rationale can be
communicated to or retrieved by users: “The most common approach to ac-
cessing ...(rationale)... is through use of a system that lets users browse a hy-
perdocument containing the rationale” [DMM+06a; p.5]. Other techniques
are information retrieval, or knowledge based systems alerting users about
possibly important rationale.

11.9.1.3 Descriptive versus Prescriptive Approaches

Another common way of categorizing rationale approaches is through distinction
between descriptive and prescriptive approaches [DMM+06a; p.5]:

Descriptive approaches purely concentrate on describing the thinking of
designers involved into the decision process. They do not try to influence or
change the way of reasoning of designers, but the recorded rationale infor-
mation may influence other development processes as implementation,
maintenance or later design decisions to be made. Further, they support re-
covering rationale about older decisions, which would have been forgotten
otherwise and support in passing on information to other development team
members or new team members. Lee [Le97; p.80] calls this the documenta-
tion perspective.

Prescriptive approaches, on the other side, aim at improving design process-
es via improving reasoning or altering thinking of designers during the deci-
sion process [DMM+06a; p.5], [BCM+08; p.160]. To achieve this, they pre-
scribe to follow a certain structure for discussing and/or capturing the ra-
tionale information. Lee [Le97; p.80] calls this the argumentation perspec-
tive.

11.9.1.4 Intrusiveness

A further differentiation criterion for rationale approaches is the characterization
of their intrusiveness. “This includes not only how intrusive they are, but in what
respects they intrude. Thus, an approach might be highly non-intrusive during
capture of ...(rationale)... but relatively intrusive during retrieval and display of
rationale. Measures of intrusiveness can include the degree to which a
...rationale... approach dictates the way design is done as well as the amount of
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extra effort required to use the approach” [DMM+06a; p.6]. The tolerable extent
of intrusiveness may also be different concerning the capture, formalization and
access processes. According to Dutoit et al. [DMM+06a; p.6], most rationale
approaches are highly intrusive concerning rationale capture, because they inter-
vene into the design process through enforcing designers to rationale elicitation
as by the usage of a rationale schema.

During the past two decades, less intrusive approaches for rationale capture
and formalization have been aspired by researchers [DMM+06a; p.6], because
intrusiveness is seen by many researchers as central obstacle to success of ra-
tionale capture in practice [DMM+06a; p.6]. Prescriptive approaches are not
necessarily the more intrusive approaches. However, descriptive approaches can
ease the use of less intrusive techniques to capture rationale [DMM+06a; p.6].

11.9.2 Rationale Management Systems (RMS)

The concept of a rationale management system (RMS) denotes a system that
makes capturing and accessing of rationale possible. RMS may offer the follow-
ing potential benefits [DMM+06a; p.2]:

e  Support for project management by providing valuable information about
decisions;

e Improvement of dependency management as, for example, traceability dealt

with in this thesis;

Generally providing greater design support;

Support of development team collaboration;

Supporting later users of design;

Allowing better and more detailed documentation;

Requirement engineering support;

Support of design reuse;

Support for learning about and evaluating design;

Typically, the following RatMan tasks involve an RMS [DMM+06a; p.36ff]:

e Identifying the kind of rationale need involves rationale goal definition,
measurement and identification. Typically this is not part of the RMS itself
but defines the kind of needed RMS.

e  Rationale capture concerned with rationale acquisition and how rationale
can be further developed (i.c., detailed).

e  Rationale usage deals with distribution (i.e., communication), retrieval, use,
and long-term preservation of rationale.
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“Recent research tends to combine these systems with other forms of design
support systems” [DMM+06a; p.36]. The tool discussed in part III also combines
mechanisms to capture rationale with mechanisms to capture traceability infor-
mation in an integrated design environment in order to improve information on
the performed design.

11.9.3 Overview of Different Rationale Approaches

11.9.3.1 Schemas for Argumentation

At the time Rittel and Webber have carved out the wicked nature of design prob-

lems (see ch. 1.6.6.2), Kunz and Rittel developed the Issue-Based Information

System (IBIS) approach [KR70] as “a way of modeling argumentation”

[DMM+06a; p.7]. In Rittel's eyes [Ri72], wicked problems could only be ad-

dressed by an argumentative approach surfacing the pros and cons of different

positions. /BIS relies on a fixed conceptual documentation schema helping to

elicit different positions on an issue [BCM+08; p.6]. Four different elements

build the schema:

e [ssues: The analyzed topic; “Issues have the form of questions” [KR70; p.4].

e  Positions: “The origin of issues are controversial statements” [KR70; p.4].
Position elements represent these controversial statements.

e Arguments: Either support or contradict a position,

e  Resolutions: The resolutions deduced from the discussion;

Fig 9-1 shows an outline of a discussion structured in the /BIS schema ™ el-
ements, represented by the author's thoughts about the usefulness of rationale
approaches. Between the elements different relationships “forming networks
between the items of the 'issue bank" [KR70; p.4] are possible [DMM+06a; p.8].

160

180 The IBIS schema has a resembling connection to Toulmin's model of argumentation
[To58]. The model of argumentation consists of a layout of six interconnected ele-
ments helping to analyze an argument [To58]: A claim is an issue or argument that
must be proved through the argumentation. Grounds describe data or hard facts rein-
forcing a claim. Warrant describes the connections between the claim and the grounds,
thus legitimizing the claim. If a warrant alone is insufficient, a backing verifies a war-
rant. Qualifiers are expressions of certainty (e.g., definitively, surely) or affirmation
(e.g., most, always or sometimes) for the c/aim. Last but not least, a rebuttal describes
possible limitations or refutations on an element. Toulmin considers the first three
items (claim, grounds and warrant) as essential to any argument, whereas the other
(backing, qualifier and rebuttal) can be possibly omitted.
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Rittel himself mainly targeted /BIS for promoting debate on issues of many
very differing points of view (wicked problems), whereas he considered noncon-
troversial design questions as trivial issues not to be dealt with /BIS [DMM-+06a;
p-8]. In the following decades, Rittel applied /BIS to social and political planning
in the United Nations, the European Community and West Germany (cf.
[DMM+06a; p.7]), whereas other researchers discovered its use in general design
questions (cf. [Mc78], [Mc79]).

Originally, the approach based on pen and paper. In the 1980ies Conklin
recognized the wicked problem theory as potentially fruitful for understanding the
crucial difficulties discovered in the course of ongoing software design practice.
Consequentially, Conklin developed the tool gIBIS [CBS88], where the /BIS
schema can be expressed as graphical hypertext argumentation maps. Streitz et al.
[SHT89], [SHH+92] introduced a tool called SEPIA as a hypermedia system
environment for collaborative editing of argumentation [Sch07; p.226]. SEPIA
uses a modification of the IBIS method [SHH+92; p.15].

From the beginning on, /BIS has been “from the outset both prescriptive and
intrusive, as were almost all of his /BIS projects. Other researchers, however,
have sought much less intrusive ways of using /BIS” [DMM+06a; p.8], (see also
[IR97)).

The rationale research field developed from the pioneering work of Rittel
and Kunz. During the research that followed, a diversity of approaches has been
developed. Burge et al. give a good orientation aid by stating that roughly all
approaches can be differentiated between either variations on /BIS or as “funda-
mental alternatives” [BCM+08; p.5]. In the following of this chapter the most
important'®" variations are shortly described. Later in part III of this thesis, the
author describes an approach helping to combine traceability and rationale in-
formation. This approach can be combined with /BIS or any of the following
approaches as a kind of documentation template for rationale. However, its main
concern lies more in alleviating the fundamental difficulties that documentation
and management of rationale faces in SE practice. These issues are part of the
next following chapters.

Procedural Hierarchy of Issues (PHI) [Mc78], [Mc79] is an extension of
IBIS whose “main innovation is to show that frequently the decision on one issue
depends on the decisions made on others” [BCM+08; p.8]. As a central concept,
PHI provides a subissue relationship. An issue can only be resolved by the reso-
lution of its sub issues. In this way a hierarchy of issues evolves, where the root
issue represents the whole project. JANUS [FMMS&9], [FLM+96] and PHIDIAS
[MBO+92] are a tool implementations of PHI.

161 The listing itself orients on [DMM-+06a] and [BCM-+08].
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Issue: How can rationale be included into processes to ensure significant support in de-
velopment?

Position 1: Rationale must be collected for any decision.

Arguments on Position 1:

For: The process of collecting rationale for decisions ensure that decisions are made

on rational facts and not on unconscious implicit criteria.

Arguments on this argument:

For: The noted down facts must be formulated and thus acquire a certain de

gree of rationality.

Against: Generally not all criteria of a decision may be rationally expressible.
This may lead to negligence of these 'fuzzy' criteria.

Against: The extensive number of decisions makes it impossible to collect
rationale for any decision.

Position 2: Rationale must only be collected for the most important decisions.

For: The important decisions matter most. This approach ensures that at least that

the most important decisions are appropriately discussed and considered.

For: Documentation effort is limited to a manageable amount.

Against: Separating the important decisions from the less important ones is a
decision process with a certain degree of arbitrary subjectivity. Corre-
spondingly, important de- cisions may be forgotten.

Position 3: Documenting rationale is not useful at all.

For: A lot of documentation must be produced resulting in extended extra effort and

diminished project documentation overview.

For: The rationale bearers often do not receive adequate benefit.

For: Research on the process of making design decision surfaced that rationale cap-

turing often interrupts the designers in their thinking.

Against: Unreflected decisions are more likely to be wrong decisions.

Against: A high number of wrong decisions can cause complete project failure.

Against: Even one wrong decision with far-reaching consequences can risk
complete project failure.

Resolution: Position 2 represents a capable, promising compromise and should be
employed.

Figure 9-1 IBIS schema example outlining a discussion.

Inspired by /BIS, McLean et al. [MYB+91] proposed a method for design space
analysis, called Question, Options and Criteria (QOC). The approach is inde-
pendent from /BIS but has resembling characteristics. McLean et al. saw QOC as
support in the context of Schon's reflection-in-action design phase [MYB+91;
p.216]. Fig. 9-2 shows the QOC schema as interpreted by Hagge et al. [HHL+06;
p-413]. As IBIS does, QOC approaches rationale issues by design questions (cf.
[BCM+08; p.305]). Questions can be addressed by several options providing
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possible alternative solutions [NS06; p.212]. Vice versa, options can also be a
consequence of several questions. “Criteria as the basis for evaluating options”
[MYB+91; p.234] represent the desirable properties and requirements of the
artifact to be designed. Additionally, arguments provide further means to assess
and justify questions, options and criteria.

QOC's notation has a semi-formal structure [MYB+91; p.219] meaning that
the concept items (question, option, criterion and argument) and their relations
build a formal structure, whereas the actual content within any of the concept
items is informal and unrestricted. Thus, McLean at al. considered QOC repre-
sentations as “effective communication vehicles, because they are simple enough
to be understood by a variety of people, they are flexible enough to represent a
variety of issues from a variety of viewpoints, and they are explicit enough to
expose assumptions that can be challenged by others” [MYB+91; p.219]. Thus,
QOC is mainly a descriptive approach, but requiring designers to perform a thor-
ough description of the design space, makes QOC intrusive.

Question

responds-to ,

objects to /
supports

Option - Argument

positive assessment / objects to / supports

negative assessment

Criterion

Figure 9-2 QOC schema as interpreted by [HHL+06; p.413]

According to McLean et al. [MYB+91], /BIS rather is restricted to capturing
rationale “on the fly”, thus recording the historical development of rationale
during the process. QOC, though, is more interested in the logical representation
of the design space. Thus, it can also be retrospectively restructured [NSO06;
p-212]. In the context of REM, Nguyen and Swatman [NS06] show that /BIS and
QOC can complement each other and propose an approach in which both meth-
ods are used in different situations:

e [BIS provides possibilities to record an “ad-hoc” [NS06; p.222] rationale as
it “describes the on-going evolutionary development of requirement” [NS06;
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p-223] (the history of the decision process) and thus captures “how the re-

quirements develop over time” [NS06; p.223].

e QOC, on the other side, provides the possibilities for a “post-hoc” [NS06;
p-223] conversion of the IBIS rationale to perform “a holistic examination of
the problem space” [NS06; p.224] finding insights “why a requirement mod-
el takes a certain form it does” [NS06; p.224].

Buckingham Shum et al. [BSS+06] analyze g/BIS and QOC after 15 years of
employment. As a result of the experiences with both approaches with the “par-
ticular flavor of ... creating graphical argumentation maps for design deliber-
ations” [BSS+06; p.111], they developed a tool called Compendium [Compen-
dium]. Detailed information on design processes and the use of Compendium can
be found in [Co06] and [BSS+06]. Compendium supports modeling graphical
maps of argumentation in a hypermedia environment meaning that Compendium
is a collaborative system, where the graphical maps can be enriched with other
media such as textual documentation, audio and video recordings of design meet-
ings in combination with time line recording of the individual activities per-
formed by the participants of such a meeting.

Hagge et al. show interconnections between QOC and patterns [HHL+06;
p.413]. In their view, the QOC schema can be mapped to the core concepts of
patterns (cf. ch. 1.6.2.4). As matter of fact, patterns “constitute one of the most
heavily used approaches for organizing reusable knowledge” [DMM+06a; p.19],
where the “pattern concept has rationale explicitly built in, though this rationale
is relatively unstructured” [DMM+06a; p.19]. This opens the way to another
research area within RatMan dealing about rationale as a means for organizing
organizational knowledge bases [DMM+06; part 4].

Inspired by Conklin, Potts and Bruns [PB88] applied /BIS to software de-
sign. They extended the IBIS schema by including “intermediate artifacts” (mod-
els, documents, prototypes and other design artifacts) representing the designed
software. This idea was enhanced by Lee and Lai ([Le90a], [LL91], [LL96]) by
developing the Decision Representation Language (DRL) accompanied by a tool
called Sybil ([Le90b], [LLI6]), a knowledge-based hypertext system. DRL in-
cludes the following main elements [DMM-+06; p.12]:

e Decision problems are the issues to be decided (cf. questions in QOC; issues
in IBIS).

e Alternatives have very similar meaning to options in QOC.

e Goals corresponds to criterion in QOC. Alternatives can be related to goals
by an achieves relationship similar to positive assessment in QOC.

e  Claims can be made about achieves relationships, thus analyzing alternatives
(comparable to arguments in QOC). Claims can have support or deny rela-
tionships to other claims (see similar relationships in QOC and IBIS).
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Groups group objects (decision problems, alternatives, goals ...). The mem-
ber attribute of a group describes the grouping criterion. Any relation can
link to groups in the same way as to single objects.

As striking similarities to /BIS and QOC exist, DRL also provides some new
aspects [DMM+06; p.12]:

Claims can have presupposes relations between each other.

Each Claim has the properties evaluation, plausibility and degree, where the
evaluation property derives its value from the other two values describing
the likelihood for a claim to be true (plausibility) and the degree to which it
is true (degree).

Further, DRL allows hierarchies of goal-subgoal dependencies. As well as it
allows hierarchies of decision-subdecision dependencies corresponding to
the subissue relationship in PHI.

In order to suit it better to SE processes, Burge and Brown [BB04], [BB06]

have developed RATSpeak as an extension of DRL. Besides the DRL concepts,
the RATSpeak schema uses new element types and provides an argument ontolo-
gy tailored for SE [BB06; p.280], [BCM+08; p.305]:

Requirements include FRs and NFRs. Requirements can be modeled within
the RATSpeak schema, or they can be included as references to a require-
ments specification document.

Questions describe questions to be answered in order to find an answer to the
decision problem. “Questions augment the argumentation by specifying the
source of the information used to make the decision (the procedure, program
or person)” [BB06; p.280].

Assumptions are similar to claims, but for assumptions it is not definitively
clear whether they are true and whether they will continue to persist in the
future.

Argument ontology describes a hierarchy of common argument types tailored
for the software development domain serving as claims that can be used in
the system (e.g., development costs, portability). The entries build a basic
vocabulary used for inferencing. Each entry has a default importance that
can be changed by associated claims [BB06; p.281]. RATSpeak handles
NFRs as parts of the argument ontology.

Background knowledge can be seen as a container for all modeled tradeoffs
and co-occurrence relationships between different arguments in the argu-
ment ontology. The container is used to check the gathered rationale for any
violations with these relationships.

Burge and Brown also have developed a tool implementation of RATSpeak

called SEURAT (Software Engineering Using RATionale). SEURAT integrates
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directly into the Eclipse-IDE'®* environment, because Burge and Brown assume
that “the developers are more likely to be willing to record their rationale if they
do not need to start an additional tool to do so” [BB06; p.284].

SEURAT, however, is a prototypical tool environment with the goal to eval-
uate the potential uses of rationale mainly from the maintenance perspective.
Accordingly, rationale capture was not in the focus of the SEURAT environment
BBO06; p.284]. In this way, SEURAT does not address what the author considers
as main obstacle for practical use (see ch. 11.9.4.20; cf. also [DMM+06a; p.33],
[DMM—+06a; p.39]).

The Sysiphus tool developed by Dutoit and Paech [DP02] has “a similar
short-term incentive strategy” [OMO7; p.14] by allowing the combination of
rationale and use case specifications in a collaborative modeling environment.

According to Dutoit et al., “DRL appears to be more prescriptive than QOC,
though less prescriptive than IBIS” [DMM+06; p.12]. Further, Dutoit et al.
[DMM+06; p.13] express the supposition that DRL can be seen as a super-set of
QOC, because all QOC features are somehow represented in DRL, though DRL
also provides new features. In comparison with /BIS, QOC and DRL can be con-
sidered as more expressive as they provide more fine-grained models for argu-
mentation about artifact features [DMM+06; p.13]. On the other hand, QOC and
DRL are more limited to artifact features as topic, whereas /BIS addresses any
design topic [DMM+06; p.13]. However, Dutoit et al. further point out that
schemes of IBIS, QOC and DRL only have such few significant differences that
the differences more appear as possible extension features for the other ap-
proaches. “This suggests that it might be both possible and useful to combine the
three schemes” [DMM+06; p.14], in similar ways as it is proposed by Nguyen
and Swatman [NS06] for /BIS and QOC [NSO06].

REM “is ill-structured, complex and rather domain specific” [NS06; p.213]
and can thus be “described as 'wicked' in Rittel's terms” [NS06; p.213]. Corre-
spondingly, several approaches exist to support argumentation and rationale
capture during REM processes. Here to mention are contribution structures
[GF94] that support modeling of stakeholders and their relationships, WinWin
([BEK+98], [BK06], [WinWin]) as a support for negotiating requirements with
different stakeholders and REMAP providing an /BIS-like argumentation model
integrated in an REM-tool environment. In [MRO07], the authors develop a tool
suite to connect different tools via a traceability framework with dedicated sup-
port for group decision and negotiation. The approaches mentioned here are also
connected to requirements traceability. Correspondingly, they are also discussed
in the following ch. I1.10. For a deeper discussion on rationale as a means for

162 See www.eclipse.org (Access: 2010/06).
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REM processes, the author recommends reading [BCM+08; ch. 11], or Nguyen
and Swatman [NS06] providing insights how rationale approaches may promote
and support creativity in REM processes.

Pena-Mora and Vadhavkar [PV96] describe the Design Recommendation
and Intent Model (DRIM) method with the tool DRIMER. DRIM is a rationale
description language similar to DRL [DMM+06a; p.34] with the purpose to de-
scribe design rationale concerning the usage of patterns in a system. DRIMER
allows documenting rationale concerning the design of software using DRIM.
This rationale can then be used to extract patterns in a pattern catalog with in-
cluded DRIM descriptions. DRIMER then allows searching in the pattern catalog
where the DRIM model can help to find matching patterns for a specific design
problem (see also [OMO7; p.14], [BB06; p.275], [DMM+06a; p.34]).

Concerning tool support, “most tools supporting argumentation-based ap-
proaches are hypertext-based systems that connect all pieces of information
through hyperlinks, e.g., gIBIS [CB88], SYBIL ([Le90b], [LL91], [LL96]), and
the recently developed Compendium [Co06]” [OMO7; p.14].

11.9.3.2 Approaches beyond Argumentation

Some rationale researches suggest that rationale is not just about argumentation.
The following chapter will outline some alternatives.

A different possibility to structure rationale is using the structure of the arti-
fact that rationale is created for [BCM+0S8; p.12]. Approaches of Reeves and
Shipman [RS92] or Domeshek and Kolodner [DK96] use this strategy to com-
bine design models of physical artifacts with textual descriptions of rationale. In
software development, Schneider [Sch06] proposes a similar system to link tex-
tual rationale to source code. As it integrates into the Eclipse IDE, SEURAT
[BBO06] also can be seen in this category even though it is argumentation schema-
based. SEURAT can also directly link to artifacts, showing that argumentation
schemas and artifact structure schemas can be combined. The rationale support
of the tool described in part III also allows combining both methods in order to
take effects of their strengths. In their synopsis on the current state of rationale
research, Burge et al. claim that integrating a rational tool into an artifact-
centered decision-making is essential for being successful [BCM+08; p.245].

In Gruber and Russel's view [GR96a], argumentative schemas do not cover
all rationale designers' needs, because the schemas prejudge which information is
relevant and thus collected. They claim that no advanced collection can foresee
all later information needs and thus a lot of later important rationale, which
would have been important later on, is lost. Instead of forcing designers to elicit
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and document rationale in highly detailed models, it might be better to collect

engineering data and models that can help to later deduce rationale according to

the real information need (cf. also [BCM+08; p.13], [DMM+06a; p.15]). Gruber's
and Russel's arguments inspired a set of other approaches:

e  Myers et al. [MZG99] try to record rationale through automated collection
of data in a none-intrusive manner (see also [Do05]). Their Rationale Con-
struction Framework (RCF) tried to enhance a Computer Aided Design
(CAD) tool with a monitoring module for recording the designer's behavior,
then a rationale generation module tries to infer the design history (the what)
and design intent (the why) (also cf. [BCM+08; p.56-57]).

e Haumer et al. [HPW+99] present an approach to extend traceability infor-
mation with information on decisions by integrating videos or other media
(see [TJHO7; p.4]).

e Schneider [Sch06] outlines on the one side a prototypical tool for collabora-
tive project risks assessment called CoRiskPT. The tool includes an attached
chat system, where discussions on the single risks are recorded to be used as
later rationale. A second tool called FOCUS, allows recording audio, video
and computer screen information together and thus records meeting discus-
sions. The tool integrates into the Eclipse-IDE in order to link the recorded
rationale to source code.

Several approaches [MZG99], [HPW+99], [Sch06] combine Gruber and
Russel’s paradigm [GR96a] with the paradigm to orient on artifact structures. The
rationale approach of the R2A tool (part III) can be seen in this tradition as it on
the one side highly relies on artifact structure of systems and software design.
Then again, the R2A tool — similar to Myers et al. [MZG99] — records the Aistory
of taken actions in combination with other information (e.g., author and time-
stamp of a change) about any item present in R2A via a configuration manage-
ment component. This can be used by the users to infer rationale information in
the sense of Russel and Gruber.

Lewis et al. [LRB96] describe the experience that design is not about solv-
ing one problem after another. Often design must solve a suite of problems at the
same time. Correspondingly, Lewis et al. propose an approach allowing such
suites to be defined and design alternatives to be assessed on how good they
affect solving the problem suite (cf. also [DMM+06a; p.15], [BCM+08; p.12-
13]).

Not all rationale is raised by designers; instead, other stakeholders are in-
volved [BCM+08; p.156]. In the context of user interface design, Carroll and
Rosson [CR92], [CR98] developed the Scenario-Claims Analysis approach where
software system features are evaluated by possible, hypothetical software usage
scenarios with focus on user goals. The approach mainly bases on three concepts:
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o  System features,

e User goals evaluating the system features,

e  Evaluation results of user that can either be positive or negative in respect to
their goals;

The approach includes no deeper argumentation on the evaluation results,
thus it does not represent the decision making process or alternatives evaluation.
A deeper discussion of Scenario-Claims Analysis can be found in [BCM+0S;
p.11-12, p.158-159, p.227] or [DMM+06a; p.15].

Other approaches use techniques of artificial intelligence such as Case-
Based Reasoning (CBR) to develop Case-Based Design Aids (CBDA) for support
and documentation of rationale on human decision processes. Here to mention is
the pioneering work of Kolodner sparking tools such as ARCHIE CBDA [Ko093]
and DesignMuse [DK96] for architectural design of buildings. Burge et al. pro-
vide an overview of current approaches using artificial intelligence [BCM+08;
p.61-66].

11.9.3.3 Alternative Categorization

Ocampo and Miinch [OMO07; p.16] provide an alternative categorization with the

following categories:

e Support for debate, i.e. argumentation: Approaches and tools of this category
focus on collaboratively debating wicked problems. Important functionalities
are rationale capture, management and visualization. Rationale visualization
is typically achieved via graphical browsers connecting the rationale pieces.
Through linking mechanism also information outside of the tool environment
can be referenced.

e Support for editing work and rationale documentation: Within this category,
approaches and tools provide rationale as important additional information,
but their main features concentrate on the original tasks the users aim to per-
form. The front-end of the tools are specializing in the original tasks, where
possibilities to capture, visualize and retrieve rationale to the current original
task to perform are offered.

o Support for integrated editing work and debate i.e. argumentation: These
approaches and tools address encountered problems in the rationale field
concerning costs, intrusiveness, and benefit by seamless integration of their
rationale support into other collaborative tasks. These tools concentrate on
casy switching between tasks, on capturing their rationale and on visual in-
tegration of rationale information into the other tasks' information, where the
tasks and their rationale are seen as a whole.
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Using these categorizations, they provide a table segmenting rationale ap-
proaches into different categories and contrasting approaches'® with their corre-
sponding tool support mechanisms (table 9.1).

Table 9.1 Alternative categorization of rationale approaches [OMO07; p.16]

Approach ‘ Tool / Prototype Support
Category 1
IBIS [KR70] gIBIS [CB88], Compendium [Compendi-
um]

Design Space Analysis (QOC) [MYB+91] Compendium [Compendium]

Decision Representation Language (DRL) SYBIL [Le90b]
[Le90a]

Inquiry Cylce (Potts et al.) [PB8§] Active Hypertext Prototype [PT93]

Category 2

Contribution Structures (Gotel and Finkel-  |Contribution Manager Prototype [GF95]
stein) [GF95]

Como-Kit [DKM96] Como-Kit System [DKM96]

Agile Process Mining [WRW+05] ADEPT [RD98], CBRFlow [WWB04]
Category 3

Hierarchy of Issues (PHI) [Mc78] JANUS [FLM+96], PHIDIAS [MBO+92]

REMAP (Ramesh and Dhar) [RD92] REMAP System [RD92]

SEURAT (Burge and Brown) [BB04], SEURAT System [BB04], [BB06]

[BBO6]

Sysiphus (Dutoit and Paech) [DP02] Sysiphus [DP02]

WinWin (Boehm et al.) [BEK+98] WinWin Negotiation Tool [WinWin]

DRIMER [PV96] SHARED-DRIMS [PV96]

C-ReCS (Klein) [K197] C-ReCS-System [K197]

Ocampo and Miinch [OMO7] introduce an approach with a prototype tool
called REMIS (Rationale-driven Evolution and Management Information Sys-

1% Some of the referred approaches (Como-Kit, Agile Process Mining, C-ReCS) are not
further mentioned, but taken over from the categorization in [OMO07] as additional in-
formation for the reader interested in further research.
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tem). The tool approach is an environment for supporting development of a pro-
cess model (e.g., to develop an organization specific process model from the de-
mands of the SPICE standard). The environment shall support rationale collec-
tion and usage for process designers during activities of designing or changing
processes [OMO7]. The gathered information can be stored together in a — what
the authors call — “process model evolution repository” [OMO07; p.12]. Ocampo
and Miinch do not provide a direct answer to what category their approach be-
longs to. The author tends to category 2, even though they seem to be concerned
about costs and intrusiveness [OMO07].

Concerning the tool approach introduced in part III, the author also tends to
classify it as category 2 approach because the tool in the first instance concen-
trates on improving design processes and fraceability between requirements and
design. On the other side, the author acknowledges the importance of providing
further information on taken decisions in design and tries to actively diminish
potential barriers to that. Further the decision model is directly integrated into
traceability information and design processes. From this perspective, the R2A
tool approach also has tendencies to category 3.

11.9.4 Why Rationale Management Could not yet Succeed
in Practice

A lot of effort has been put into identifying the opportunities the usage of ra-
tionale can provide. However, in the end, these opportunities will only become
reality if the approaches for capturing and further usage of rationale can be suc-
cessfully integrated into the conventional design processes in practice [BCM+08S;
p-155].

Currently, rationale approaches have not yet encountered a breakthrough in
real-world design practice. Successful usage examples of rationale approaches in
real-world settings exist, but these examples mostly resulted from special circum-
stances as, e.g., having a 'rationale usage champion' or professional documenters
at hand [CB96], [BCM+08; p.235]. In most projects, such fortunate conjunctures
cannot be expected [DMM+06a; p.20]. Typically in these 'normal' projects, the
documentation effort is left to the persons participating in the decision-making
process (mostly the designers) with the effect that documenting rationale has
been largely neglected [BCM+08; p.235].
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Concerning the reasons, Horner and Atwood [HAO6a] could identify four
categories of barriers for successful rationale usage in practice:
e Cognitive limitations,
e  Capture limitations,
e Retrieval limitations,
o Usage limitations,

In the following these barriers are discussed. Currently, the capture limita-
tions are seen as the central obstacle to successful rationale approaches. Conse-
quently, this topic will have a more detailed focus.

11.9.4.1 Cognitive Limitations

Humans only have a limited capacity to process and handle information at the
same time [Mi56]. From this point, Simon developed the idea that the designer's
rationality is bounded and not all alternatives can be considered, implying that
designers find rather satisfactory than optimal solutions ([Si96], ch. 1.6.2.1). As
first implication, it is to state that captured rationale will necessarily be incom-
plete [HAO6a; p.78]. Thus, any decision can impose unintended consequences
[Te96]. Rationale may help to ensure extensive explorations of the design space
in order to minimize detrimental risks of unintended consequences. However, any
rationale will be incomplete.

A possible improvement might be to have systems where similar problems
can be identified from other projects providing new insights into possibly over-
seen consequences or problems. Research on this topic is related to rationale as a
body of knowledge (see [DMM+06; part IV]) and especially the pattern move-
ment can be seen as the most successful area slightly pointing in this direction,
but systems really addressing this issue might need to provide mechanisms for
comparing projects with each other as well as such systems must have a rationale
base as body of knowledge large enough for comparing problems.

A second problem encountered is that extensive explorations of the design
space produce high amounts of additional documentation significantly leveraging
project complexity. This problem is enforced by the fact that most systems are de-
signed in team collaboration. Thereby, problems arise in integrating diverse per-
spectives, maintaining conceptual integrity [HAO06a; p.79] (also cf. ch. 1.6.2.1)
and communicating concepts to all team members involved. Horner and Atwood
explicitly mention that these situations require rationale systems “to help de-
signers think about the right issues” [HA06a; p.79]. This has a close connection
to what Moro [Mo04; p.310-330] discusses as neuralgic points of a project,
where he proposes identifying, documenting and continuously tracking neuralgic
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points. Moro proposes the following approached for identification of neuralgic

points:

e Risk assessments [Mo04; p.324] of the used technologies.

e Risk assessments of requirements [Mo04; p.326] where especially NFRs are
in the focus.

e Deriving dominating discussion topics from the project diary or discussion

protocols [Mo04; p.328].

Different designers often have different views on problems and their solu-
tions. Concerning diverging views of designers about design alternatives, “re-
flecting on the why aspect of design can help to identify better solutions”
[HAO6a; p.79], but as long as solution ideas are still formulated, it might often be
better to consider what other alternatives are possible rather than why each alter-
native might be appropriate [HAO6a; p.79].

Organizations can tend to group-think [Ja72], i.e., in organizations with poor
processes, often a poor solution is decided quickly, whereas the rest of the energy
is spent on relatively insignificant issues. Thus, rationale approaches must find
ways to spark discussions about the important issues in decision-making. Ra-
tionale tools, on the other side, should spark reflection in a way to encourage and
enhance good design practices, but they should not expect or press for changing
poor practices [HA06a; p.79]. This matches with Schneider's advice: “Encourage,
but do not insist on further rationale management” [Sch06; p.100] meaning that
rationale capture and usage itself cannot be prescribed but only be encouraged.

11.9.4.2 Rationale Capture Limitations as Central
Challenge in Rationale Management

As Burge et al. emphasize, “the biggest challenge facing the use of rationale in
real-world projects is the rationale capture problem” [BCM+08; p.55], because
“it is extremely difficult to capture rationale in a real-world setting” [BCM+08;
p-55]. Or, as Dutoit et al. put it: “In fact, so little ...(rationale).. has been cap-
tured to date that has been relatively little opportunity to investigate the problem
of ...(rationale).. access in real-world settings” [DMM+06a; p.20]. Consequent-
ly, the author will in the following concentrate on the capture problem as the
central obstacle to successful RatMan in practice [DMM+06a; p.20], [BCM+08S;
p-305]. In other words, even though its importance is widely acknowledged,
rationale currently does not face a breakthrough, because people in project prac-
tice neglect to capture it.

Traditionally, the capture problem involved three aspects in one [BCM+08;
p.262]:
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e  FElicitation of rationale from decision makers,

o Structuring the elicited rationale according to a given schema,

e Recording (documentation) of the elicited rationale in structured form;

Some newer approaches try to cope with the capture problem by separating
the aspects from each other. Especially structuring and documentation of ra-
tionale seem to impose high problems, as they are often highly labor intensive
[BCM+08; p.262]. The following enumerates several reasons rationale research
has collected as possible explanations for the capture problem and shows poten-
tial ideas how to ameliorate the problem in practice. In the author's opinion, two
ideas seem to be very promising:

o Automated capturing of casual information arising as by-product of design
processes (e.g., the change history of items) that allows inferring (resp. de-
ducing) rationale later, when it is needed and, when the real information
need is known (see, e.g., [GR96a]).

e  Concentrate on light-weight capturing of rationale during decision processes
and deferring structuring and detailed documentation (i.e. recording) to later
phases.

First to mention is intrusiveness in the sense that it leads to extensive work
for capturing rationale (see ch. 11.9.1.4). Most rationale approaches require
structuring elicited rationale through a schema demanding significant extra work.
These rationale representation structures can also be inappropriate in a way that
they only inadequately consider information needs of the targeted design domain
or that they simply do not cover all varying kinds rationale expresses itself. More
comprehensive representations allow capturing more rationale, however, they
also can significantly divert cognitive effort from the design process and — as
described in the following paragraphs of this chapter — can intrude as detrimental
effects into the designer's thinking. Flexible notations such as free text impose
high difficulties for retrieval (e.g., indexing) and its later usefulness. Techniques
such as automated recording of meeting conversations are less intrusive, but this
information is then difficult for retrieval as well as they are also very likely to
capture lower amounts of rationale (also cf. [DMM+06a; p.6, p.20], [HAO06a;
p-80-817).

Political and legal factors can make developers reluctant to documenting,
what could later be seen as a mistake. Especially they might fear potential liabil-
ity if a recorded decision may later become responsible for a catastrophic failure
of the designed system [CB96], [BB06; p.274].

Also, designers may want to make themselves irreplaceable by other design-
ers or to justify their expert status, thus using information hiding strategies. This
point also involves concerns about privacy and security playing a decisive role.
Recorded rationale might touch competitive advantages of a company, which
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might not be opportune to be documented (e.g., if companies work together),
[HAOG6a; p.82].

Design itself is an intense, time-consuming activity. As a result, an explana-
tion can be that designers simply lack time and resources for additionally eliciting
and capturing rationale as many of the rationale approaches demand
[DMM+06a; p.20]. Often, many decisions are made in informal situations such as
design meetings or during conversations at breaks, where rationale capturing is
hardly possible [SA96].

Another explanation may be that the original designers are able to effective-
ly reconstruct rationale from other past designs data than rationale recordings
[DMM+06a; p.18]. Therefore, these designers may consider capturing rationale
as not necessarily important enough to spend resources on.

This point has a close interaction with what is called Grudin's principle
([Gr87], [Gr88], [Gr96b]). In his “seminal work™ [Sch06; p.97] about collabora-
tive work and benefit, Grudin ([Gr87], [Gr88], [Gr96b]) discovered that collabo-
rative systems tend to fail, if the persons performing the work are not the benefi-
ciaries of this work. Or as Endres and Rombach put it [ER03; p.60]: “Group
members usually prefer fairness and justice over altruistic appeals”. The persons
providing rationale on a decision (also referred to as rationale bearers) often also
remember later the background of a decision. In this context, they do not have
much benefit from documenting rationale. This is especially the case for descrip-
tive approaches as they just document rationale, whereas prescriptive approach-
es may provide benefits to the rationale bearers due to their guidance on what to
consider during decision making, but either prescriptive approaches did not suc-
ceed better in practice [DMM+06a; p.21]. Directly rewarding knowledge sharing
is also difficult, because it would involve “creating tangible rewards for intangi-
ble ideas” [HAO6a; p.81]. Other alternative ways around the problem are the
ideas of Gruber and Russel [GR96a] to automatically collect data thus disburden-
ing the designers or the idea of Schneider [Sch06] proposing to disburden the
experienced rationale bearers of their communication/documentation work by
deferring the documentation work to the inexperienced rationale seekers.
Schneider's ideas are discussed in detail after the following paragraph.

Rationale approaches may also create a deeper lying intrusiveness onto de-
sign. Referring to Schon's Theory of Reflective Practice (ch. 1.6.2.3), Fischer et
al. [FLM+96] argue that the rationale approaches are disrupting designers' think-
ing when designers in their intuitive knowing-in-action phase are forced to ra-
tionally argue about their doing. In this case, designers would be forced to trans-
form unconscious tacit knowledge [Po66] (“knowledge users employ without
being conscious of its use” ([SM99a; p.341]) into conscious, rationally justifiable
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knowledge'®. Such transformation processes are intrusive during knowing-in-

action design phase and can lead to a degradation of design quality [FLM+96],

[DMM+06a; p.21]. In summary, the following negative effects can be spotted

[FLM+96], [DMM+06a; p.21]:

e One effect can be that intuitive knowledge is omitted in preference to con-
scious knowledge falsifying the results [FLM+96], [DMM+06a; p.21].

e Another effect can be that designers are interrupted in their flow of thinking
[Cs90] endangering motivation and slowing down design work [SchO06;
p-94]. “During the flow state, knowledge workers are typically not willing to
switch tasks and take care for rationale” [HAO6a; p.93].

e As an effect, “designers may not be willing to spend the energy to articulate
their thoughts”, when “designers focus should be on solving problems and
not on capturing their decisions” [HA06a; p.80].

e Incompletely captured rationale can also impose negative consequences on
the design process. Such a case can, e.g., occur during a design review,
where the reviewers inference a wrong understanding of a design decision
basing on incomplete rationale [HA06a; p.82].

As a more radical position, Shipman and Marshall argue that the formality
itself imposed by much approaches imposes a big obstacle as people are seldom
thinking in formal terms [SM99a]. According to them, formalisms impose the
following fundamental problems:

e Cognitive overhead, as the users must learn the formal language. Even
though practitioners use formal languages in electrical engineering and com-
puter science, they “seldom use more generic formal languages, such as pro-
duction rules or frames, for non-computational tasks” [SM99a; p.340], be-
cause “users often must engage in activities that might not ordinarily be part
of their tasks: breaking information into chunks, characterizing content with
a name or keywords, categorizing information, or specifying how pieces of
information are related” [SM99a; p.334].

e Tacit knowledge [Po66] as discussed above.

e Formality enforces premature structure where people must commit them-
selves to structuring information often before they often know their later in-
formation need. This leads later to problems in again retrieving the now real-
ly needed information [SM99a; p.343].

164 Haynes provides strong indications that design significantly involves tacit knowledge:
“Analysis of full-text meeting transcripts suggests that design options sometimes
emerge almost mystically from design discussions. It was sometimes difficult to see
the chain of reasoning that led to a particular design option being proposed and then
being either accepted or rejected” [Ha06b; p.62].
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Further, people simply “aren't always able to chunk intertwined ideas”
[SM99a; p.338] and “people seldom agree on how information can be classi-
fied and related in this general scheme” [SM99a; p.338].

The premature and prescriptive natures of formal approaches also increase
probabilities for group-think [Ja72] effects (see chapter before).

“There is always information that falls between the cracks, no matter how
well thought out the formal representation is” [SM99a; p.338].

Finally, different people often have different tasks. Formal structures must
then represent all peoples' different views. In these cases, “the prospect of
negotiating how information is encoded in a fixed representation is at best
difficult” [SM99a; p.342]'%.

However, in order to have any computer support, information must some-

how be formalized; Shipman and Marshall also show ways how to ameliorate the
problems imposed by formalisms [SM99a; p.344f]:

Any design for a system supporting intellectual knowledge work must identi-
fy the central tasks and their essentials needs for formalization.

The cost and benefit trade-offs must be analyzed for any feature requiring
further formalization.

Incremental formalization strategies can rely on gradual formalization and
restructuring of information, thus alleviating capture of information by de-
laying the overhead imposed by formal structuring to later times or other us-
ers. Nevertheless, incremental formalization techniques are only effective if
they do not overwhelm the users with too many requests to infer structure
[SM99a; p.345], (cf. also [SM99b], [HAO06a; p.76]).

Otherwise, more automated approaches should be considered. In these cases,
structure must be automatically inferred through recognition heuristics for

165

“An analogy can be drawn between collaborative formalization and writing a legal
document for multiple parties who have different goals. The best one can hope for in
either case is a result sufficiently vague that it can be interpreted in an acceptable way
to all the participants; ambiguity and imprecision are used in a productive way”
[SM99; p.342].
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“textual, spatial'®®, temporal, or other patterns” [SM99a; p.345]. As it tends
to more falsely inferred structures, automatically inferred information should
not be treated alike user inferred structure or at least be marked differently.

e Acceptance of formalisms can also be improved by training users to “learn
and understand the expected use of the formalisms through training or
through facilitation” [SM99a; p.346]. In some cases, also the developers of
the formalisms may intervene temporarily to spark the learning process.
Summing up the difficulties described above, leads Schneider to formulate

what he calls the “rationale paradox” [Sch06; p.93]: “When most rationale is

created, chances to capture it are lowest” [Sch06; p.93].

The paradox describes the problem that rationale occurs when key decisions
are made. During such decision-making processes (e.g., meetings), the partici-
pants are very attentive. Thus, the rationale is considered important and 'evident'
when it is created, and nobody can really imagine how it ever may be forgotten;
but it will be forgotten, because decisions base on earlier decisions and new deci-
sions overlay the old rationale. Pressure for fast progresses in projects hinders
documentation as well as extensive rationale capture intrudes detrimental effects
in knowing-in-action design phases.

Due to all these problems, Schneider proposes the “Rationale as a By-
Product” [Sch06; p.94] paradigm. The paradigm consists of two goals [Sch06;
p-94]:

e “Capture rationale during specific tasks within software projects”.

o “Be as little intrusive as possible to the bearer of the rationale”.

As Beck [Be00b] could describe an approach by a list of interconnected
principles [Sch06; p.95], Schneider also defined a set of principles to reach both
goals described above [Sch06; p.95]:

1. “Focus on the project task in which rationale is surfacing”.

2. “Capture rationale during that task (not as a separate activity)”.

3. “Put as little extra burden as possible on the bearer of the rationale (but may-

be on other people)”.

166 An example of spatial inferred structure is provided by the VIKI system [MSC94] a

hypertext environment allowing the user to spatially arrange symbol representing tex-
tual parts. The system infers interconnections between the text parts according to their
spatial arrangement to each other. This means, the system derives an interconnection
between texts when the user has spatially arranged the texts nearby, and vice versa in-
fers that texts are not connected, or opposing when they are spatially arranged far
away from each other. In SW design activities a resembling grouping mechanism can
be observed sometimes. Thus, e.g., the three layer architectural pattern also operates
with spatial grouping in the form that items concerned with the topics persistence, data
model, and user interface are spatially grouped together to three layers.
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4. “Focus on recording during the original activity, defer indexing, structuring
etc. to a follow-up activity carried out by others”.

5. “Use a computer for recording and for capturing additional task-specific in-
formation for structuring”.

6. “Analyze recordings, search for patterns”.

7. “Encourage, but do not insist on further rationale management”.

Principle 1 and 2 emphasize that rationale solutions should not be some-
thing stand-alone, but ask for rationale support being integrated into the really
performed design task'®’ without imposing significant intrusion (principle 3).
Effort for the required structuring and other tedious tasks must be deferred from
the rationale bearers towards the profiting rationale seekers (principle 4). Princi-
ples 5 and 6 demand for computer support and higher-level automation (if possi-
ble). Finally, principle 7 emphasizes that people cannot be forced but well en-
couraged, to record and use rationale.

In the author's view, Schneider's paradigm provides several good ideas on
how the rationale capture problem can be ameliorated in a way that rationale
approaches bring benefit for practice. Accordingly, R2A’s rationale extension to
design traceability developed by the author (cf. ch. II1.19 to ch. II1.21) tries to
incorporate Schneider's principles, as far as possible.

Last but not least, an also possible explanation for the rationale capture
problem could be that current rationale approaches just concentrate on collecting
the wrong information. As introduced in ch. 11.9.3.2, some approaches indicate
that the design information to be captured may be more than the argumentation or
designer's reasoning. Dutoit et al. point out “There are enough dissenters from the
argumentative view of ...(rationale)... to leave room to doubt that we are captur-
ing the right information. Nevertheless, there is little evidence to date that differ-
ences in information recorded have made any difference to the success of
...(rationale)...capture in practice” [DMM+06a; p.22].

In this category also the phenomenon can be accounted that rationale may
also be communicated through omission [HAO6a; p.81]. As an example, a project
manager could ask the design team whether somebody has experience with a
certain technology. In such a situation project members usually communicate
their inexperience by not responding. Similar situations occur when people stay
tacit disagreeing with a certain decision, but they do not want to appear confron-
tational.

At the end, it must also be mentioned that Burge et al. express that software
engineering approaches especially for safety-related applications are changing

'7 Dutoit et al. emphasize that rationale approaches have been most successful if they
have been adapted to a specific activity, or specific goals [DMM+06a; p.18].
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toward favoring rationale capture. Through process standards such as SPICE or
CMMI, demands for rigorous definition, monitoring and adaption of the software
development process are induced demanding structured and reproducible deci-
sion processes. However, Burge et al. are not sure whether these changes are
enough to spark the final breakthrough for the rationale capture problem
[BCM+08; p.262-263].

11.9.4.3 Retrieval Limitations

Between initial rationale bearers and later rationale seekers different notions of
relevance may exist. According to Wilson [Wi73], relevance is determined by the
situational context and concerns of the information seeker independent from truth
[Wi73; p.462]. Thus, besides the temporal gap between the rationale bearers and
seekers, a situational gap of context and concerns may exist with detrimental
effects on the usefulness of recorded rationale [HAO6a; p.83]. The ideas of
Gruber and Russel [GR96a] can also be seen as actively addressing the relevance
problem.

Besides relevance, retrieval imposes technological needs such as the need
for indexing, playing a decisive role. Efficient rationale retrieval techniques
might require a certain formalization of rationale information. As discussed in
ch. 11.9.1.4, rationale formalization imposes significant intrusiveness and burden
onto the documenter. An alternative solution is the idea to shift the formalization
burden to the rationale beneficiaries [Gro6b], [Sch06], but this works only if the
beneficiaries experience the burden as not too strenuous. Otherwise, the whole
endeavor may be jeopardized [HAO06a; p.84]. Further, another alternative is to use
the artifact structure as formal structure for rationale retrieval (see ch. 11.9.3.2).
This is also what the decision models in this thesis (see ch. I11.20 and ch. II1.21)
use.

11.9.4.4 Usage Limitations

Following Rittel's assumption about wickedness of problems, most design prob-
lems have a certain uniqueness. Thus, rationale about a problem has only limited
value for other problems. It can be helpful to evaluate how rationale is connected
with a problem in order to support solving future problems, but design is often
highly interrelated. Thus, rationale can weave connections between several prob-
lems that can even build an area of conflict. As a further type of connection, tak-
en decisions impose new consequences on other problems, where recorded ra-



I1.9 Rationale Management in Systems and Software Engineering 187

tionale about the decision may also include a description of these consequences,
thus also being rationale for the other problems. Accordingly, Horner and At-
wood emphasize that designers must consider the “holistic affects” of problems,
their rationale and solutions [HA06a; p.84]. Due to the complex nature of design,
measuring effectiveness of rationale approaches proves to be extremely difficult.
One problem faced here is that recording rationale and its further usage may
involve a significant temporal gap. Thus, designers recording or documenting
rationale may not immediately be able to know what information will later prove
to be useful and what not [HA06a; p.85].

11.9.4.5 Synopsis of Rationale Limitations Concerning
Alternative Design Theories

Table 9.2 Relation to design theories and rationale in design according to [HAO6a; p.77]

Design Theory

Support

Barriers

Simon — Sym-
bolic
information
processing
(ch.1.6.2.1)

Rationale can help to focus
cognitive energy and pro-
vides opportunities to view
the considerations during
design to reviewers or other
developers.

Additional information increases the
complexity of a design problem. Design-
ers may also be reluctant to capture ra-
tionale, because the decision may be
criticized in later phases by other persons
having more information at hand than the
initial designers. These persons may
analyze the taken decisions with the new
information and would probably come to
a different view on the problem.

Rittel — Wicked

Rationale supports struct-

The wicked nature of design problems

ated action
(ch.1.6.2.3)

designers in reflecting on
decisions during the reflec-
tion-in-action phase and
show the decision influ-
ences on later encountered
problems. Furthermore,
incremental  formalization

problems ured discussions and inte- | limits the possibilities of using the ra-

(ch.1.6.2.2) grates different peoples'|tionale at a different time or a different
perspectives. project.

Schon — Situ- | Rationale  can  support | Using rationale as basis for identifying

solutions could result in less reflection in
the design process through distracting
cognitive resources away from solution
finding. Intrusive rationale capture me-
thods (cf. ch. 11.9.1.4) can influence the
designers' reflection capabilities in disad-
vantageous ways or even hinder the de-
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could support later reflec- |signers in finding good solutions.
tion-in-action and commu-

nication
Alexander  —|Rationale provides mecha- | Because of the rapid advances in software
Patterns nisms to understand the |design, few stable design patterns may
(ch.1.6.2.4) problem context. Especially | exist (see Simon's concept of stable in-

the forces may be better | termediate forms).
analyzed that help to find
the best fitting pattern.

In ch. 1.6, the author has outlined a few fundamental design theoretic views on
what design and its processes are about. In the context of design rationale, Horn-
er and Atwood [HAO6a; p.77] have collected an overview of the potential support
and barriers of rationale management enlisted in table 9.2.

I1.9.5 The Role of Rationale in System and Software
Design

The ultimate goal in documenting architectural decisions is to alleviate a major problem in the
field: architectural knowledge vaporization.
[HAZO07; p.39]

Design can be seen “as a sequence of decisions” [BCN+06; p.258] and therefore
the importance of decisions in design has been widely acknowledged. In the view
of Booch [B094; p.63, p.167], design decisions get apparent through the model-
ing language used. However, newer research rather sees that decisions cannot be
explicitly derived from the design models and merely exists as facit knowledge
[HAZO07; p.39].

Besides attempts to recover assumptions and rationale from design artifacts
[RLVO06], capturing decisions' rationale in the system and SW architecture has
received high attention in recent research (cf. [CBB+03], [BCKO03], [PBG04],
[Ha06], [BCN+06], [HAZO07], [TAO5], [TJHO7], [AKL+07a], [AKL+07b], [LK-
08], [ALKO09]), because a growing recognition exists that decisions may be “the
fundamental construct in engineering design” [WCO1; p.1], [Kr04; p.54]. Archi-
tectural decisions are made early and have a far reaching scope of influence
[BCN+06; p.256]. Additionally, “much of design work is done through evolu-
tionary redesign, thus long-term collaboration is essential” [DMM+06a; p.86],
because the implications of decisions usually cannot be overseen in their entirety
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during taking the decision, which make later adaptions and reassessments of the
decision necessary [BCN+06; p.258].

Due to these facts, also process standards such as SPICE (ch. 17)
acknowledge that important decisions about system and SW architecture must be
carefully explored and documented [HDH+06; p.101]. In CMMI, even an explicit
Decision Analysis and Resolution (DAR) process area has been defined
[BCM+08; p.262] “to evaluate 'high risk' decisions” [BCM+08; p.263].

A main purpose of system and SW architectures is to find handling strategies
for NFRs [BCKO03; p.72f], [PBGO04; p.72], (see also ch. 1.5.1). Correspondingly,
Chung et al. [CNY+00] developed a NFR framework with an approach where
NFRs explicitly drive the software design process that creates the design and its
rationale. Tradeoffs and synergies of NFRs can be modeled in a graph. The graph
can then be used to qualitatively propagate the impact of these decisions into
design models (see also [BB06; p.275]).

In architectural practice, decision documentation is considered in the context
of balancing concurring and conflicting factors through making compromises,
where decisions about the foundation of technical solutions must be taken in
insecure situations due to lacking fundamental information [HS06; p.53]. Ap-
proaches and standards (e.g., IEEE 1471 [IEEE1471]) demand to include these
decisions in architecture documentation. As dedicated practice-oriented tooling is
usually missing [BCN+06; p.265], several available approaches provide tem-
plates for structured decision documentation using text authoring or spreadsheet
applications ([BCKO03], [BCN+06], [Bo0Ob], [CBB+03], [HNS00], [HS06],
[PBGO04], [TAO05]).

Posch et al. [PBG04; p.79] have analyzed the views of Bass, Clements et al.
[CBB+03], [BCKO03], Bosch [Bo00b] and Hofmeister et al. [HNS00]. As a con-
sequence, they have derived an approach for systematically assessing influence
factors'®® for an architecture beforehand in order to identify and document the
most important influence factors and the strategies how to address them in con-
cert with the other influence factors. Ch. 111.20.4 shows how an adaption of this
influence factors assessment can be integrated in the R2A tool approach proposed
here (part III) in order to improve traceability, derivation of consequences, im-
pact analysis, and consistent change implementation.

In [BCN+06], Bass and Clements propose to extend their decision documen-
tation template by a causal graph allowing decisions to be ordered in a temporal,

188 NFRs as addressed by Chung et al. [CNY+00] are here considered as one important
type of influence factor, but also other influence factors exist, such as effects on stake-
holders, available resources, costs, strategic considerations beyond the individual pro-
ject etc..
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causal dimension. Decisions are displayed as nodes linked together according to

their causal dependencies. Lee and Kruchten [LKO08] show different forms of

possible decision visualization. Besides the temporal, causal dimension they call

Decision Chronology Visualization, they identified the following possible views:

o  Tabular listing enlists decisions in a table to provide a better overview of the
decisions.

e Decision structure visualization shows the structure of a decision to increase
the decision's understanding.

e Decision impact visualization makes the influences of decisions on design
transparent.

Ch. I11.20.4 also shows that most of these views are fulfilled by the tool de-
scribed in part III.

In [EbO8; p.332], Ebert argues that software development follows the pareto
principle [Pal897]. In his conclusion, 20% of the implemented functionality
cause high usage value, high potentials for failures and resource consumption. As
a consequence, he recommends marking parts of the application in order to indi-
cate high complexity or shape problematic constellations as early as possible (he
recommends to start within the analysis phase) to ease further planning. Such a
marking often has influence on very important decisions (in design such aspects
are often important) and thus provide important rationale. A similar case is the
proposal of Knethen to include an attribute characterizing the change probability
[KnO1b; p.40].

Tang et al. [TJHO7] show how UML-based design can be extended via an
UML-profile for capturing decisions. Decision elements (class elements having
the stereotype <<decision>>) can be linked to any other element present in a
UML model. This offers the opportunity that any UML environment offering
support for UML-profiles can be easily extended with a decision documentation
mechanism, where decision information can be integrated seamlessly into a UML
design model. On the other side, decisions modeled in usual design diagrams rise
complexity of the diagrams, causing clutter. If the decisions are modeled in extra
diagrams (as different views), they raise the amount of present diagrams in the
modeling repository, thus rising complexity and clutter in the repository. Another
possibility is not to model the decisions, but to use the UML's meta-model as
structure only. In this case, other mechanisms must be found how decision infor-
mation is linked to related elements and how they are visualized. Thus, the author
prefers to avoid raising complexity of modeling languages by including decision
models but rather prefers to provide augmented information that can be faded out
on demand as it is provided by the tool in part III.

Jansen and Bosch [JB05] see decisions mainly as a means to select a solu-
tion from several possible solutions and to deal with the tradeoffs of a solution.
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Once a decision is taken, its results are the major driver for architectural modifi-

cations.

To capture architectural decision information, they propose a conceptual
decision model containing the following elements:

e Design rules describe general rules on how parts of a design (e.g., design
elements) must be designed in order to realize a sustainable solution. Any
potential solution can have one or several design rules.

e Design constraints “define limitations or constraints on the further design of
one or more architectural entities” [JBO5; p.4]. These constraints must be
obeyed in order to ensure that the potential solution can solve its addressed
problem.

e  Pros describe the benefit(s) and impacts on requirements that can be ex-
pected if the solution is employed.

e  Cons describe the drawbacks on the solution, because the negative effects are
equally important as positive.

e Consequences elements describe the expected consequences of the decision's
solution on the architecture and thus provide extra rationale behind the pros
and cons of the selected solution.

For translating the conceptual decision model into practice, Jansen and
Bosch propose an architecture modeling environment called “Archium”, where
the conceptual decision model is integrated into a meta-model for architecture
modeling. The environment can contain a log (stack) of possible solutions, where
the individual decisions can be mapped on to deal with the tradeoffs. The concep-
tual decision model of Jansen and Bosch should be fully compatible to the deci-
sion model introduced in ch. I11.20.

Pointing in a similar direction to [JB0O5], Kruchten [Kr04] describes a gen-
eral ontology of architectural design decisions. He identifies three kinds of deci-
sions, eight fundamental properties a decision can be characterized by, eleven
different relationship types a decision can have to architecture and how decisions
may have connections to other artifacts. The question whether the approach de-
scribed here matches with this general ontology is left open in this research as
well as discussions about how rationale and decision approaches are generally
connected to a general view on architectural knowledge as, e.g., discussed by
Avgeriou et al. [AKL+07a], [AKL+07b], [ALKO09].

Another research field also concerned about decision making in design pro-
cesses are decision trees'® known from operations research. Their focus lies not
directly on documenting a decision process but on providing support for optimiz-

169 At http://www.smartdx].com/content/?page_id=144 (Access 2009/10), an implementa-
tion of decision tree modeling in IBM Rational DOORS DXL is provided.
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ing the decision outcome. Different decision alternatives with their consequences
can be modeled in a tree in combination with probabilities about the achievable
results. A problem, however, is that decision trees require comprehensive
knowledge about the concrete decision situation (e.g., all consequences and their
probabilities), limiting their use to rather very fame problems. Noppen et al.
[NBAO8] acknowledge this problem and introduce a decision process for design-
er situations with imperfect decision situations by combining requirements and
design issues with a decision tree model, allowing fuzzy probabilistic estimations
of probabilities. Thus, Noppen et al. hope to support decision optimization. In
this way, decision trees could also be chosen as a schema or an additional means
for documenting rationale.

As this chapter has shown, manifold approaches for supporting rationale
documentation in systems and software design exist. The tool approach intro-
duced in part III uses an approach to integrate rationale and requirement tracea-
bility approaches together in order to improve design processes in system and
software design (cf. ch. I11.19, I11.20 and I11.21).

I1.10 Requirements Traceability

Despite the importance of traceability, there is surprisingly little written about it.
[KS98]

After ch. 1.5.7 has given a quick overview of fraceability to support an initial
understanding for describing the other chapters of part I, this chapter will now go
into detail.

11.10.1 Overview

Rupp describes the meaning of traceability as the “comprehensible documenta-
tion of requirements, decisions and their interdependencies to all produced in-
formation (resp. artifacts) from project start to project end” [RS02; p.407 (*)].
Pinheiro points out two further considerable points about traceability [Pi04;
p-92]:

e Traceability means “the ability to capture the traces we want to follow”.

e “Traces should be viewed as naturally produced occurrences”.
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Point one means that most likely not all traces of requirements may be cap-
tured and (resp. or) followed due to the high number of possible traces. There-
fore, at a certain point a decision must be taken which traces are followed.

The idea about the second point indicates that the traces are not artificially
made up by something or someone but “are naturally produced as a result of
activities, actions, decisions and events happening during software development”
[Pi00; p.2]. This idea is near to the view of Lindvall who sees traceability as the
means to bridge consistency gaps (see ch. I1.10.2).

This leads to the definition provided by Pinheiro [Pi04; p.93]: “Require-
ments traceability refers to the ability to define, capture, and follow the traces left
by requirements on other elements of the software development environment and
the traces left by those elements on requirements”.

Following this definition, any tracing model contains three major aspects [Pi00;

p.3f]:

e Trace definition: As not all possible traces can be maintained, the traces to
maintain should be defined beforehand.

e Trace production: Defined traces must be recorded somehow. As the follow-
ing ch. I1.10.2 shows, traces are a means to cross consistency gaps between
artifacts. Correspondingly, most traces cannot be recorded automatically and
must therefore be produced manually. Trace production is especially essen-
tial to consider as it may be intrusive to the other development activities (cf.
I1.10.5). In the author's opinion, also maintenance of already captured traces
is equally essential as otherwise artifacts and involved traces continuously
degrade.

e  Trace extraction: In order to be useful, once recorded traces must be extract-
ed. Trace extraction depends on trace definition and trace production in the
sense that only once produced traces can be extracted.

Pinheiro also points out that “the software development environment in-
volves not only the technical, but also the social aspects of software develop-
ment” as “people, policies, decisions, and even less tangible things like goals and
concepts” [Pi04; p.93].
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I1.10.2 Traceability and Consistency Gaps between
Artifacts

Between artifacts (or respectively models) of different development processes
emerging from structural interruptions'”’ — semantic gaps ([Li94], [Kn01b; p.45],
[EbOS; p.138f]) — endanger a project’s consistency and thus the common under-
standing of its stakeholders. Traceability relations between and within artifacts
help to diminish occurring semantic gaps'’'. In development projects without
traceability, these gaps are mentally bridged by the minds of the developers lead-
ing to the known problems when developers leave projects or new team members
are added. Recording and retrieving traceability information shall support the
developers in mentally bridging those gaps'’>. As an example for this mental
help, the traceability heuristic exists that each requirement must have at least one
reference to the design (and resp. or code), otherwise the requirement is regarded
as 'not considered' in the design.

Correspondingly, Finkelstein [Fi91] argues here that the traceability prob-
lems arise from the informality of most system development processes. Accord-
ing to Lindvall [Li94; p.15], applying formal methods can also help to diminish
the semantic gaps to an extent making traceability irrelevant. In the best case, the
usage of formal specification languages with automated code generation — also
called model driven development — would allow different models of different
abstraction levels and different views to be seamlessly connected to each other
[Li94; p.15] (also cf. [KnO1b; p.45]). On the other hand, Sommerville emphasizes
that formal methods are seldom used in practice, because the entry barriers are
high [So07]. As ch. 11.9.4.2 shows in reference to Shipman and Marshall
[SM99a], the usage of formal methods can also involve fundamental drawbacks.
As an example, formal approaches are accompanied by the dangers that informal

170 Examples for these inconsistencies are different levels of abstraction or different view-
points within an abstraction.

As discussed in ch. 11.10.6, besides dedicated traceability relationships several other
kinds of relationships (e.g., ,,depend on®, part of*, ,refine®) exist in a design being
usually modeled in a design model. Several traceability methods also include these re-
lationships for impact analysis (ch. 11.10.3), but can also lead to unwanted overestima-
tion of the impact (so called requirements fan-out effect [Al03]; cf. ch.11.10.6.21 for a
detailed description).

Traceability “focuses on how to trace between models to understand the system struc-
ture and to understand the implications of a certain requirement” [Li94; p.20].

171

172
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information is reduced'” to fit a formal structure falsifying the information and
spoiling the traceability needs [Pi04; p.101].

Pinheiro further points out that “informality is needed to deal with the fun-
damentally unstructured way in which information is gathered and used. ...
Therefore, what should be made traceable is in many cases inherently informal,
e.g., natural language statements, interview's transcripts, and images” [Pi04;
p.101] (also cf. [G096], [Pi00]). On the other hand, a certain formality is needed,
when tracing approaches shall be automated [Pi04; p.100].

Discussing traceability experiences in development practice, Ebert [Eb05;
p-138 f] emphasizes that the transitions from requirements and analysis models
(AM) to solutions involve a structural break, which is especially problematic.
Requirements and AMs (ch. 1.5.4) can have a completely different character than
the structure of the design solutions due to different languages used. A possibility
to avoid the gap is using languages that can integrate all processes from require-
ments specification to analysis, design and implementation in one language. Usu-
ally, these languages must support strong restrictions on its problem focus to
further use the generated models as far reaching and consistent as possible. As a
consequence, Ebert here refers to domain specific languages as a solution to this
problem [EbOS5; p.139]. Other similar but less ambitious attempts can be seen in
UML, where analysis and design modeling are supported through a uniform
language and in such a way minimize the semantic gaps between both worlds'™
[KnO1b; p.45]. With the new SysML standard [SYSML], UML is extended to
promote a unified language for systems analysis, systems design, software analy-
sis and design.

A good example is provided by [Ja08; p.6]: “In a non-formal world there are several
obstacles to reliability in formal reasoning. To make our reasoning useful we must
begin by establishing a correspondence between the formal terms we intend to use and
the physical phenomena they denote. Here there is an immediate difficulty. In a system
to control road traffic, we may decide to reason about pedestrians and their use of the
controlled crossings provided for them: for example, to base some design decisions on
the maximum and minimum time taken to cross the road. But, what, exactly is a 'pe-
destrian'? A child in a pedal car? A cyclist pushing a bicycle with an attached trailer? A
user of a motorized invalid carriage? Whatever alphabet of formal terms — for exam-
ple, of predicates, events, and entities — we choose, there will be some hard cases in
the problem world for which we cannot easily decide whether or not they are properly
denoted by a particular formal term”.

An exactly opposite opinion is expressed by Hatley et al. [HHPO03; p.252]. In their
opinion, object-oriented methods (such as UML) have the weakness that they indissol-
ubly mix up requirements and design.

174
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UML can also be used for model-driven development. “Model-driven design
holds the promise of improving application development significantly by captur-
ing design steps in explicit model transformations” [AIEQ7]. Through this way,
model transformations can lead to the generation of source code and thus con-
sistency can reach to source code. In the context of embedded systems, examples
of formal specification languages can be seen in [PS05; p.120]. However, most
up to date existing languages are very limited, need a very proper application and
often concentrate on partial aspects [Sa05; p.276ft]. In the context of the automo-
tive domain, not UML-tools, but the tools Matlab Simulink resp. Stateflow and
ETAS ASCET are the most heavily used tools concerning model driven devel-
opment with automated code generation (also cf. ch. 1.6.6.1), but these techniques
are fully comparable in the context of the topic addressed here.

Additionally, the usage of model driven development imposes a new prob-
lem concerning consistency and traceability [AIEO7]: In most cases, these trans-
formations do not only depend on the model to be transformed, but the transfor-
mation process is steered by parameter settings and transformation procedures.
This means, requirements can also be implemented by setting parameters or
choosing specific model transformation procedures over other procedures. Ergo,
consistency not only depends on the models but also by these parameter choices.
In these cases these elements should also underlie traceability needs [AIEQ7].

Additionally, Wieringa [Wi98] shows that design principles such as hierar-
chical decomposition are used according to different criteria at different levels of
design. Wieringa [Wi98; p.6] concludes that “a seamless transition between dif-
ferent levels, as is claimed by many object-oriented methodologists” should not
be expected, and because isomorphic design structures cannot be expected at the
different levels, explicit manual links to maintain traceability across levels are
necessary.

Consequently, formal methods without semantic gaps between processes are
not very likely (yet) to replace today's often coarse, informal and incomplete
processes and artifacts. Therefore, traceability is a means to cope with problems
arising from the imperfect world of development and a traceability to design
solution must support a solution for bridging these inhomogeneous processes and
artifacts.

In the view of Chang and Lu [CL09], the gap problem exists, because cur-
rent design approaches only consider the abstraction hierarchies dimension as
criterion for decomposition. In this way, functional dependencies (e.g., between
two requirements) are created by accident. Chang and Lu [CL09] suggest to use a
new design paradigm developed by Suh [Su01] called ,,axiomatic design®. In this
paradigm, a domain dimension is introduced as second dimension. The paradigm
origins from physical engineering and Chang and Lu [CL09] try to transfer it to



I1.10 Requirements Traceability 197

SE design theory. In their case study, Chang and Lu come to the conclusion that
through axiomatic design “the reasoning of each step of the design process and
the mapping through the requirements, abstractions, realizations and technologi-
cal choices are clearly described” [CL09; p.17]. Currently, the described axiomat-
ic design paradigm seems to be at an early stage of research, at which its real
value for practice has not yet come clear. Even though the examples provided in
[CLO09] indicate that axiomatic design may have some strength, the author pre-
serves certain doubts that axiomatic design can close the semantic gap.

At the end, manual traceability and designers' minds may prove as the only
really dependable means for bridging the gap.

11.10.3 Impact Analysis and Traceability

The ability to perform correct impact analysis of changes is often referred to as
the most important motivation for establishing requirements traceability. Tradi-
tionally, as Jonsson and Lindvall point out [JLO5], the idea about requirements
traceability originates from the impact analysis research domain being one of
several techniques to support impact analysis. “Impact analysis (IA) is the activi-
ty of identifying what to modify to accomplish a change, or of identifying the

potential consequences of a change” [AB93; p.292].

Research on /4 traditionally origins'” from research about software mainte-
nance. Thus, most research is only loosely connected with software development
itself. Over time, requirements traceability has become an issue of REM during
normal development. Consequently, Jonsson and Lindvall argue that, as require-
ments traceability more and more became an issue of requirement engineering
and thus of the development processes itself, /4 should be seen analogously.

However, the topic /4 often is only mentioned as one way to use traceability
information. Interpreting Jonsson and Lindvall, the author believes that two his-
torically based misconceptions may exist:

e /A4s have already been performed by developers long time before the name
existed, since “the need ... to determine what to change in order to implement
requirement changes has always been present” [JLO5; p.122]. However, for
the original developers knowing their code, assessing the code change is less
difficult than for others. Software maintenance is often performed by other
often less skilled and experienced people than the original developers
[KnO1b; p.2]. Accordingly, /As were seen as a more urgent issue for software
maintenance, neglecting its usefulness and informal (unconscious) usage in

'7> [Ha72] is often referred to as the first paper on impact analysis [JLO5; p.122-123].
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normal development processes. As the systems to develop grow, the needed

documentation grows and the rates of changes grow, also the need for con-

scious /4 support grows.

e  Requirements traceability may have originated as a sub part strategy of /4.
However, the requirements traceability concept proved its usefulness in
scopes beyond /4 (see ch. 1.5.7.3). Thus, the independence is reasonable.
However, the topic 'gains versus costs' of fraceability cannot be discussed
without considering the needs of /4s. The author often has the feeling that
traceability is established for the sake of conforming to the demands of some
process standard, but the recorded traceability information is seldom really
considered when practitioners think about changes. They rather prefer their
informal methods. Correspondingly, the problem of how to get real gains out
of traceability should be sharply considered. In this context, effective /4 is a
central issue.

In the following the author will outline the /4 concept. It shall furthermore
be mentioned that the author does not see traceability based 14 as a core problem.
Valuable /4s depend on the correctness and usefulness of the analyzed infor-
mation. The value of traceability based 14 depends on the accurateness and a
sufficient level of detail of the traceability information. However, capturing this
high quality traceability information and maintaining its high quality in an effi-
cient way, may be the more important problem (see ch. 11.10.5). Otherwise, val-
ues gained by traceability may not outweigh the costs.

Two types of I4s are distinguished ([BA96], [KnO1b; p.3], [JLO5]):

1. Dependency analysis: extracts detailed dependency relations between pro-
gram entities from source code (e.g., the usage of a variable).

2. Traceability analysis: analyzes relationships that “have been identified dur-
ing development among all types of” artifacts [JLOS; p.119].

This distinction seems to be a bit artificial. Since dependency analysis can
also be seen as a special subset of traceability analysis. However, dependency
analysis is probably the most employed type of traceability analysis since it is
possibly used by any programmer who needs to employ a change.

Jonsson and Lindvall argue that the difference consists in the level of detail,
and in fact Knethen provides in [KnOlb; p.42-43] a more evident distinction
oriented on the level of abstraction (a detailed description of this can be found in
chapter 11.10.4.2.2):

o Dependency analysis of source code,

e Design description techniques,

e Requirements traceability tools;

In the author’s opinion, these kinds of distinctions are some kind of histori-
cal due to formerly independent areas of research. Currently, these areas and their
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understanding grow together to build a more complete view (see ch. 1.7), where

all these dependencies are seen as a subset of traceability.

In the experience of Jonsson and Lindvall [JLOS; p.118], /4 “is an integral
part of every phase in software development”. In some sense, /4 might have been
performed long time before the term was known and it may have been performed
in a very uncontrolled and inefficient way [JLOS5; p.122], since the need for SW
practitioners to determine the effects of a change may have been present as long
as the need for change has existed.

Bohner and Arnold [BA96] further describe (see also [JLOS; p.119]) differ-
ent sets of impact (in the following called impact sets (IS)):

e The system set is the set of all items in the project. This set is the super set of
all other sets.

e The starting impact set (SIS): represents the item initially considered as af-
fected. This is the input for an /4, whereat the SIS is the starting point to
identify further connected items also impacted.

e The estimated impact set (EIS) represents the items estimated to be affected
when the /4 is finished.

o The actual impact set (AIS) consists of the items really affected once the
change has been implemented. “In the best case scenario, EIS and AIS are
exactly the same, meaning the estimation was perfect” ([JLO5; p.119]).

As described in ch. 1.7.2.7, the 14 concept is part of a change management
process'™® and required by process standards such as SPICE. Knethen [Kn01b;
p-36] describes a generic /4 process orienting on the process description of Boh-
ner and Arnold [BA96]. I4 is important in two phases of the change management
process:

e When a change is requested, the /4 helps to identify all effects as a support
for making a decision whether to apply or not to apply a change. In this
phase the changes are predicted as EIS.

e Once the decision has been taken to apply the change, the /4 results can be
used to orient oneself on them for consistent implementation of the change.
The actual change determines AIS. The AIS can then be used to compare the
EIS in order to improve later impact estimation. Knethen [KnO1b; p.53-55]
indicates how impact effectiveness, completeness, correctness, and efficien-
cy can be assessed.

An 14 should address the issues required effort, time, money and available
resources [JLOS; p.122]. Leffingwell and Widrig enlist the following aspects that
must be especially considered in a change assessment [LW99; p.379]:

176 Schienmann [Sch02; p.111-113] also provides a good description for a change man-

agement process.
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o  “The impact of the change on the cost and functionality of the system”,

e [mpact on external stakeholders not well represented in the project (e.g.,
other project contractors, component suppliers etc.),

e  The potentials to destabilize the system;

Besides the impact sets, two other kinds of information can help to predict a
change's impact [JLOS; p.119]:

e The dependencies between affected items;

e Knowledge about the propagation of the changes between the affected items;
The first point clearly is an issue of traceability, the second is “often ex-

pressed in terms of rules or algorithms” [JLOS; p.120]. If the second point is

neglected, the — what Versteegen et al. [VSHO1; p.83]call — dominoes effect can

occur: At first, a requested change seemed to be rather harmless, but during im-

plementation new effects on other project parts are incessantly identified leading

to design erosion and instabilities of the developed system.
Changes are usually distinguished by primary and secondary change [JLOS;
p-120]. Primary change also called direct impact refers to the items (artifacts)
directly identified by the change impact assessment. Secondary change also
called indirect impact expresses in two effects [JLOS; p.120]:
1. “Side effects are unintended behavior resulting from the modifications need-
ed to implement the change. Side effects affect the stability and function of
the system and must be avoided” [JLO5; p.120].
2. Ripple effects are effects occurring when small changes are employed to a
system, imposing affects to many other parts of the system [AB93; p.292].
“Ripple effects cannot be avoided, since they are the consequence of the sys-
tem's structure and implementation. They must, however, be identified and
accounted for when the change is implemented”[JLO5; p.120]. If ripple ef-
fects are not effectively addressed, the dominoes effect mentioned above
[VSHO1; p.83] can be the consequence.
To identify possible impacts, several strategies for /4s exist [JLOS; p.124-130]:
e Automatable strategies or techniques “usually rely on algorithmic methods
to identify change propagation and indirect impacts” [JLOS; p.125]. Howev-
er, the prerequisite of any automated technique are highly structured (e.g.,
formal specifications [JLOS; p.125]. The following possible strategies exist:
o Traceability, as discussed in this chapter.
o Other dependency analysis techniques such as extracting dependencies
from source code (see [Kn01b; p.40] for an overview) or design models
(e.g., [BLO+06]).

e Program slicing (e.g., [We79], [We84], [GLI1]) divides the source code
in the decomposition slice containing the change's location, and a com-
plementary slice. At first, the decomposition slice's scope is as narrow as
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possible. Then, when further dependencies are identified, the scope of
the decomposition slice is widened. Programmers use slicing implicitly
during debugging [We82]. Program slicing can orient itself on analyzing
static code information (so called static program slicing) or also try to
find out dynamic relationships within code (so called dynamic program
slicing [KR98]). Between those two extremes also hybrid methods are
possible as conditioned slicing [GB08]. Also methods for architectural
slicing exist [Zh98].

e  Manual strategies involve consulting available project documentation, or
interviewing knowledgeable developers. Burge et al. [BCM+08; p.120f]
show how information collected through RatMan approaches can be con-
nected to improve /4s.

“The complexity of the change management process makes it necessary to
use some sort of tool support” [JLOS; p.137]. According to Jadlinoja's opinion,
IAs in practice are typically performed manually due to weak tool support [Ja04;
p-37]. Automating /4 is typically difficult, “because it is mainly based on human
experience” [JLO5; p.120] and “human analysis is still required to interpret the
nature of the impact and assess its significance” [Kn01b; p.53].

Wiegers [Wi05; p.322-323] emphasizes that /4 quality can be significantly
improved by using checklists and defined procedures to discover possible impli-
cations. The /4 results must be typically reported from a developer to a CCB. A
standard reporting template can ensure that the CCB receives and easily recog-
nizes all needed information to make a decision [Ja04; p.37].

11.10.4 Core Dimensions for Characterization

Knethen characterizes [Kn01b; p.37] (also cf. [PKD+03]) traceability approaches

by four core dimensions:

e The purpose,

e The conceptual trace model (or what Ramesh and Jarke call traceability refer-
ence model),

e The process,

e Used tools;

The author also sees these dimensions as a valuable structure for ordering
approaches. Therefore, the following chapter will discuss these dimensions ori-
enting itself on Knethen with additional information from other sources. Since
the main interest of this thesis lies on traceability from requirements to design
artifacts, this category will be emphasized.
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11.10.4.1 Purpose

Different traceability approaches may pursue different purposes. In projects,

different stakeholders have to fulfill different needs and tasks. Accordingly, the

different stakeholders may have their “own view on traceability” [Kn01b; p.37].

Correspondingly, the conceptual trace model will be highly influenced by the

purpose.

Knethen [Kn01b; p.38-39] extracted from literature a variety of different
stakeholders and their main purposes:

e Customers want to ensure that all stated requirements are adequately ful-
filled, the project duties are done and changes can be made transparent.

e Project planners mainly need to perform /4s to adapt their plans to changes.

e Project managers want to control project progress. Traceability information
can be used to match requirements to use cases or design modules often
forming the basis for staffing. Traceability to tests can provide information
on which requirements are currently fulfilled (tests have passed) and which
not.

e Requirements engineers want to ensure correctness and consistency of the
requirements. Traceability to the requirements origin helps to consider all
aspects involved in a later requirement change.

e  Designers want to understand interdependencies between requirements,
between requirements and design and between design elements. Additionally,
they are interested in /4s for implementing changes in their designs

e  Jerifiers want to ensure all requirements to be allocated both to design, resp.
code, and to verification procedures. This shall also prevent over-
engineering, i.e., unneeded (unspecified) features.

e Jalidators want to establish testing procedures proving that the system ful-
fills all stated requirements. Correspondingly, traceability between require-
ments and their developed test cases indicating full test coverage of the re-
quirements is their main concern.

e Maintainers want to use traceability for assessing the impacts of new chang-
es to perform.

In the author's eyes, Knethen has forgotten to mention the following other
important stakeholders, as they are not necessarily the same persons as the de-
signers:

e [mplementers or coders are interested in the requirements that must be real-
ized by the components they are assigned to for implementation.

Any purpose, however, is constrained by a fundamental rule [SWG+08;
p-217 (*)]: “Traceability is only of use if its traces are up to date and correct. If
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developers have no trust in the correctness of the traces, they will not use the
gathered information. ... On the other hand wrong or patchy traces lead to wrong
results in /4s or to gaps in the test coverage”.

Table 10.1 Prioritization of stakeholders and usage purposes concerning traceability
between requirement and design artifacts

Priority Stakeholder Rationale

High Designers, Will directly work with the requirement and design
Implementers, | artifacts.

Maintainers As they will also be directly engaged in establishing
and maintaining the traceability information, they
will have concerns about effort and usability of the
approach.

Medium Requirement Requirements should be stated independently from
Engineers the solutions. However, as ch. 1.5.5 indicates this is

not always viable in practice.

Medium, Project Plan- | Might — as the customer, project managers and verifi-

Low ners ers — be more interested in statistical data. On the

other hand, (s)he might also adapt his (her) plans on
the allocation of requirements to design'”’.

Low Validators Testing activities should usually orient themselves on

the requirements not on the design (cf. [Ja04; p.32],
[Tv99; p.373]). However, when module testing is
concerned, the tester should know the exact require-
ments allocated to the module to perform well shaped
module tests for early error discovery before SW
integration.

Low Customers, As they are concerned with overall management, they
Project Man- | are expected to be more interested in statistical meta
agers and | information (e.g.: “how many requirements of all
Verifiers requirements are currently considered in the de-

sign?”).

Correspondingly, when a purpose is considered to be supported by a tracea-
bility approach, the following two criteria are inevitably to be considered as well
[SWGH08; p.217 (*)]:

e “The effort for establishing and maintaining traces must be — sustainably
feasible — by the project”.

"7 According to Conway’s law from 1968: “The structure of an organization and its
architecture are isomorphic.” This means that architectures, organizations and systems
influence each other (see [St05; p.24], [EbOS; p.11]).
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e  The establishment of traceability provides a concrete gain in the project.

As often encountered in REM, it seems that not all stakeholder needs can be
equally fulfilled. Therefore, a prioritization of the stakeholders and their derived
needs must be made. Table 10.1 shows a prioritization of the stakeholders and
purposes reflecting the author's appraisal of the traceability between requirements
and design problem. The R2A tool approach introduced in part III follows this
prioritization. The first column shows the priority values (as one of “High”, “Me-
dium”, “Low”). Column two enlists stakeholders as taken from the above listing.
The last column provides the rationale behind the prioritization decision.

11.10.4.2 Conceptual Trace Model

Pinheiro [Pi04; p.92] points out that too many possible traces exist. This under-

lines the importance to decide which traces should be documented and used. He

recommends using what he calls a traceability model. For trace definition, such a

traceability model should [Pi04; p.110]:

e Define few basic types,

e Allow specification of user-definable traces,

e Allow the use of richer representations of traceable objects such as hyperme-
dia objects (videos, recordings, and images (see nonfunctional traces, ch.
11.10.4.2.20);

A similar notion is expressed by Knethen ([Kn01b]), who uses the term con-
ceptual trace model (CTM) to describe the entities (items) and relationships that
shall be considered in a traceability approach to fulfill the corresponding stake-
holder needs.

Following Knethen [KnO1b: p.38] a CTM consists of two major elements:

e  [Entities,

e Relationships;

11.10.4.2.1 Entities

Entities describe the elements, i.e., artifacts taken into account of a CTM. As
Knethen [KnOlb; p.39] — similarly to Pinheiro [Pi04; p.92] — points out, the pur-
pose of the tracing approach mainly determines what entities are to be consid-
ered.

Entities can be described by three characteristics [Kn01b; p.39]:

e  The kind of entities taken into account,



I1.10 Requirements Traceability 205

e  The granularity,
e The attributes;

a) Kinds of Entities

Concerning the kind of entities to be taken into account, only few hints are pro-
vided in literature. Lindvall [Li94; p.19] emphasizes that basically two kinds of
artifacts (work products) exist (also cf. [KnO1b; p.39]):

e Temporary work products,

e Permanent work products;

In contrast to permanent work products, temporary work products “are not
intended to be saved and maintained in the future” [Li94; p.19]. Lindvall recom-
mends including only permanent work products into the set of artifacts for which
traceability shall be maintained. Indeed, it is doubtful that temporary work prod-
ucts have a life-span long enough to make sense for traceability. However, the
author thinks that an exception of this obvious thought may be what is called
model transformations [KMO5], [AIEQ7], where intermediate models can occur.
As an example, the UML provides mechanisms to automatically transform plat-
form independent models to platform specific models, which are the further basis
of code generation. Such intermediate models must also transform the traceabil-
ity information from its original model to the end model. Now, if the intermediate
model is only a temporary work product, it must also be considered by the frace-
ability process.

The author is not sure whether or not some of the strategies describing au-
tomatable traceability through model transformation indirectly rely on traceabil-
ity to temporary work products as a strategy (algorithms) to bridge the gap. In
these cases, the strategy has an enormous influence on the resulting traceability
information from the start product to the end product of model transformation(s).
Thus, analyzing a traceability model by taking the temporary intermediate mod-
els into account can make sense to verify that the model transformations fulfill
the requirements for the specific traceability need between transformation source
and the transformation outcome.

Pfleeger and Bohner [PB90] refer to a traceability model considering re-
quirements, analysis, design and code. Ramesh and Edwards [RE93] argue to
include requirements, specifications and implementation into traceability consid-
erations. Other very concrete ideas about entities taken into account in traceabil-
ity considerations are provided by process standards as SPICE (or CMMI). Apart
from that, the author agrees with Knethen that the entity kinds to be considered
for tracing depend on the purpose [Kn01b; p.39].
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b) Granularity

Granularity refers to the level of detail (granularity) the entities are considered in
a traceability approach. Lindvall speaks here of “different levels of traceability”
[Li94; p.18]. “The most coarse level is the ability to trace from one document to
another .... The most fine-grain level would be to be able to trace every single
statement” [Li94; p.18]. Undetailed traceability between documents may be suf-
ficient to coordinate development team members [De99], [RUP+90], but for
specific /4s more detailed information is needed. An example of very detailed
approaches for /4 are dependency analyses of source code [KP02; p.6], [Kn01b;
p.40]. These are described in the course of ch. I11.10.3. As Knethen [Kn01b; p.40]
points out, the level of detail is mostly guided by the needs of the purpose to be
followed [KnO1b; p.40]. However, the question about the costs and values of a
specific level of traceability [RE93]'7® is most probably the main concern in mak-
ing a decision for or against a specific level. This is directly connected what
Egyed et al. call the two fundamental problems of traceability [EGH+07; p.115]:
e  “Finding the right level of trace quality with finite budget”,

e “Increasing the quality of trace links comes at an increasingly steep price”;

Lindvall [Li94; p.19] further argues that granularity is connected to “the
problem of comprehension — which models should be included in a traceability
model for a certain system?” This is very similar to what is discussed above
about kinds of entities. Consequently, both topics can be considered as closely
connected.

As ch. 1.7 shows, traceability demands for safety-related development pro-
cesses rather require a very fine-grained granularity of traceability information
(every requirement must be individually traced) and require to take any available
artifact of the engineering processes into account. Correspondingly, significantly
steep prices for traceability issues in safety-related development projects can be
expected.

¢) Attributes of Entity

This concept describes possibilities to add attribute information to entities. Cur-
rent state of the art REM-tools and a lot of design tools as, e.g., UML-tools allow
possibilities to add further information (so called attributes) to entities. In the
REM context, attributes are usually used to collect meta data (as, e.g., the author,
time stamp of last change, responsible developer [Tv99; p.372], responsible test-

78 “It may be unnecessary or even undesirable, considering the overhead involved in
maintaining fraceability, to maintain linkage between every requirement and every
output created during the systems design process” [RE93].
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er, release ...) or other development process related data (e.g., priority seen by

customer [Tv99; p.372], status of the requirement in the development process).
Attribute information can be used as traceability information. As an exam-

ple, fig. 10-1 shows an excerpt taken from the REM-tool IBM Rational DOORS
with the attributes 'ID', 'Origin', 'Priority', 'State' and 'Scope'. Concerning tracea-
bility, these attributes have the following meaning:

e '[D": Assigns a unique identifier to each requirement. The unique identifier is
an essential concept in any REM-tool to allow textual references to a re-
quirement (e.g., in a traceability matrix) as the identifier never changes,
whereas the requirement text does. In fig. 10-1, another kind of possible tex-
tual reference is indicated in attribute 'Origin' of 'Requirementl’, where a tex-
tual reference to an item with identifier 'CRS 1'is set referring to a require-
ment in the customer requirements specification.

e 'Origin": Allows a textual reference to the origin(s) of a requirement for
backward traceability. This allows referring to origins not represented in
IBM Rational DOORS (If a requirement can refer to a origin also present in
IBM Rational DOORS, a link relation can be set).

e  'Priority": Marks the priority of a requirement being often an important ra-
tionale for decisions. For example, 'Requirement3' in fig. 10-1 is marked
with priority 'NiceToHave' being most probably an important rationale to
decide for rejecting (not implementing) it in the project.

e 'State': Shows the current state of the requirement in the project.

e 'Scope': Refers to the expected scope where the requirement must be imple-
mented. 'Requirementl’, e.g., seems to have a general system wide scope
meaning that it influences HW, SW and probably other engineering domains
that must work together on system-level to fulfill the requirement. In this
way, this can be seen as the first step towards forward traceability.
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Figure 10-1 A requirements specification with attributes in IBM Rational DOORS
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Paech and Knethen [KP02; p.6] argue that such attribute information is per
se traceability information as it usually relates information to other information.
The author is not sure whether this is correct for all attributes, but for some it is
correct. Knethen and Paech [KP02; p.6-7] list a set of attributes that can be seen
as traceability information.

Rupp et al. provide a detailed discussion about attributes and document
structuring in REM practice [RS07; p.381-393]. In practice, it is necessary “to
tailor the right set of attributes so that the effort to define and maintain them is
balanced by the benefits of better process control and specification reuse”
[WWO02; p.18].

Some of the possible attributes can also have directing effects to subsequent
design processes such as Knethen's proposal [KnO1b; p.40] to use an attribute
describing change probability for each requirement. Such an attribute can have
impact on design decisions taken, because such an attribute helps to identify the
stability of a requirement and the stability of a requirement can impose direct
influence on design. Gerdom and Posch [GP04], e.g., argue that significant costs
can be avoided, when designers concentrate on modeling only parts considered
stable rather than a complete architecture'”. As another possible strategy, re-
quirements identified with high change probability can be addressed by handling
strategies for flexibility such as encapsulation or patterns to minimize impacts if
the case of change happens.

11.10.4.2.2 Relationships

Traceability mainly relies on relationships. The type and kinds of relationships to
be established and maintained differ. Knethen could distinguish the following
characteristics of relationships and their connected approaches:

e Kind,

Direction,

Attributes,

Setting, and

Representation of relationships;

These characteristics are described in the following sub chapters. Addition-
ally to these characteristics, Pinheiro ([Pi00], [Pi04]) could also find the differen-

7" Gerdom and Posch [GP04] call this modeling an architectural skeleton. This principle
seems rather to be a principle originating from the agile community, because the au-
thor heard similar claims proposed by Ivar Jacobson at his key note speech on re-
quirements and agile development at the Requirement Engineering Conference (RE-
conf) in Munich 2009.
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tiation characteristic between functional and nonfunctional traces discussed in
the last sub chapter.

a) Kind

This describes the kinds or types of relationships in a CTM. Knethen [Kn01b;

p-39], [KP02; p.8] distinguishes “three general kinds”:

e Relationships between documentation entities on the same abstraction"™,

e Relationships between documentation entities at different abstractions,

e Relationships between documentation entities of different versions of a soft-
ware product;

Before discussing different kinds of relationships, the author should note
that relationships are not necessarily distributed in a uniform way. Instead, as an
industrial survey [CSL+01] on requirements interdependencies in SW product
release planning indicates, relations between requirements can be very inhomo-
geneously distributed. They rather follow a kind of pareto-like relation [Pal897]:
e “20% of the requirements are responsible for 75% of the interdependencies”

[CSL+01; p.84].

e 20% of the requirements are singular (with no significant interdependencies)
[CSL+01; p.88].

e  The study also suggests that interdependencies differ according to the project
setting. As an example, customer oriented projects consider more feature-
oriented interdependencies, whereas market driven development projects ra-
ther orient themselves on more abstract values [CSL+01; p.84].

These findings could have significant influence on considerations about new
research approaches to traceability. In the author's opinion, even connections to
the author's pareto presumption described in ch. 1.6.6.1.4 may exist. These 20%
are responsible for extensive portions of complexity (due to the 75% of interde-
pendencies). Now, e.g., if it would be possible to tackle these requirements
through tool methods for early prototypical requirement evaluation with later
automated code generation (see ch. I. 6.6.1.2 and ch. I. 6.6.1.3), extensive por-
tions of complexity could be tackled this way. At the moment, however, these two
points are just suggestions of the author. Further research would be needed to
find out whether these suggestions may have some substance and could be inter-
esting as a new leverage for the traceability problem.

'8 In Knethen's terminology, abstraction means different artifacts in different engineering
processes. For example, systems requirements, systems design, SW requirements and
SW architecture are four different abstractions for her. Later in part III, when the au-
thor introduces his tool approach, abstraction can also mean a different abstraction
level within one artifact.



210 II. Rationale Management and Traceability in Detailed Discussion

Relationships on the Same Abstraction

Knethen [KnO1b; p.41], [KP02; p.8] distinguishes two kinds of relationships:
e  Representation,

e Dependency;

Representation Relationships
Representation relationships connect together documentation entities represent-
ing the same information but providing different views (or viewpoints) on it.

In the requirements domain, different stakeholders have different perspec-
tives on a system [GF95]. Ergo, requirements specifications may contain different
views on a system. This is represented by the representation axis of Pohl's RE
framework (see ch. 1.5.7.1). An aspect is then to avoid or handle inconsistencies.
Here, different answers are given from the translation into formal logic
[FGH+94] to heuristics in conflict recognition and handling [LDL98], or to meta-
model approaches [NJJ+96], [Kn01b].

In the design domain, the view concept is very essential [Kr95] (see ch.
1.6.2.1.2). Here, a vast set of approaches exist in research to support view han-
dling in modeling environments. Endeavors exist [BRO7b] to embed the view
concept into a formal definition of modeling description language to avoid incon-
sistencies. In design practice, above all the UML language [UML] (starting with
Kruchten [Kr95] the UML specifically included view support in its language)
provides support for modeling representation relationships between diagrams
(resp. views) via defined relations in the meta-model. These relationships can be
further detailed (restricted) by constraints formulated as constraints via the object
constraint language (OCL), which is part of the UML standard. Basing on these
relations other tools and approaches offer support for managing consistency
problems and /4s [BLO+06].

Dependency Relations

Dependency relations describe relationships “between two documentation entities

that depend on each other and represent different logical entities on an abstrac-

tion” [KP02; p.10]. Approaches exist on different abstraction levels, or — better to
say — artifact types:

e  Requirement or other specification (e.g., this technique is also very valuable
to administer testing specifications) artifacts are typically handled with
REM-tools such as IBM Rational DOORS or in fraceability research envi-
ronments as PRO-ART [PDJ94], [Po99] or TOOR [PG96], [Pi96], [Pi00].
“Dependent documentation entities are linked manually or automatically and
maintained and represented by the tool.”[KP02; p.11]. Knethen and Paech
emphasize here that commercial tools do not provide guidance on how such
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traces shall be established and maintained. The author thinks this is good
since such tools should allow the projects as much freedom as possible to
adapt them to their needs. It is more an issue for the processes to define pro-
ject specific rules. Process standards as SPICE provide here concrete de-
mands and guidance.

e Design description techniques make use of the modularization principle (see
ch. 1.6.2.1.2) decomposing a system into sub elements interacting together to
fulfill the purposes of the system. Correspondingly, manifold dependencies
between those elements exist and describing those dependencies is an essen-
tial part of design. Rigorous decoupling through definition of capable inter-
faces helps to decouple the elements ensuring independent development of
the elements.

e  Model-based RE approaches try to establish traceability in a similar fashion
as design description techniques. Research projects such as QUASAR
[PSS04], (also see [Ge05; p.171]) or the approach introduced by Geisberger
[Ge05] have developed model-based RE approaches for embedded systems
engineering. An overview of other comparable approaches is provided in
[Ge05; p.167-185].

e For code artifacts, source code dependency analysis tools provide support for
automated identification of dependency information between data, control
and components [BA96]. One of the usable methods is program slicing
[KP02; p.10] as described in ch. I1.10.3. These approaches are limited to
source code level not taking dependencies on other abstractions into account
[KnO1b; p.42], [KP02; p.10].

Relationships between Abstractions

Two kinds of relationships between traceable elements on different abstractions
can be identified [Kn01b; p.43], [KP02; p.12]:

o Within-level refinement,

e Between-level refinement,

Within-Level Refinement

Within-level refinement means relationships between entities at different abstrac-

tion levels within one artifact level (e.g., in system requirements). Several ap-

proaches exist [KP02; p.12]:

e Hierarchically structuring the identified goals of a system [LDL98] allows
defining sub goals to contribute to a higher goal.

e Decomposition of requirements describes the practice of deriving sub re-
quirements from higher level requirements forming a requirement hierarchy
[Ki98], [Pi04]. Kirkman [Ki98] identifies this as an essential heuristic in
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REM. Usually, these relationships are captured by the usage of REM- or
traceability tools such as IBM Rational DOORS. Fig. 10-1 above shows an
excerpt from IBM Rational DOORS, where the four requirements are also
part of a decomposition structure indicated by the tree view component at the
left. According to Pinheiro [Pi04; p.91], it must be considered that several
requirements are derivable from one origin, a requirement can have several
origins, a requirement can be the deriving source for several requirements,
and a derived requirement can also collapse several predecessor require-
ments.

Hierarchical refinement of models is offered by a lot of modeling languages.
It allows designers to refine and decompose elements by sub elements. All
modeling tools discussed in ch. 1.6 support hierarchical refinement. The tool
approach presented here (see part II1) relies on this principle for establishing
the requirement to design traceability.

The Queinsian In-Order-To Rule't' [RS07; p.417] is a heuristics from RE
practice helping to identify the real nature of connections between a formerly
known requirement (in the former called old requirement) and a new arising
requirement if both requirements have nearly similar semantics. It helps to
determine whether the new requirement must replace the old one (old and
new requirement are in a historic versioning relationship), or whether the
new requirement is a refinement of the old requirement (old and new re-
quirement are in a hierarchic decomposition dependency).

Between-Level Refinement

Between-level refinement describes relationships between entities on different
artifact levels (e.g., between system requirements and system design). The fol-
lowing approaches exist:

The specification axis in Pohl's RE framework (see ch. 1.5.7.1) represents this

dimension [KP02; p.14].

Development approaches themselves influence how traceability is estab-

lished. As development processes often focus on different artifact levels and

their corresponding artifacts, they have special influence on between-level
refinement traceability. Several approaches provide certain characteristics:

e  Pre-object-oriented development methods as structured analysis and de-
sign (SA/SD) [De78] propagate strict separation of the problem (re-
quirements) and the solution (design) space. Hatley et al. [HHPO3;
p-252] emphasize this as strength since it prevents uncontrolled inter-
mixing of both areas, which poses a threat to object-oriented methods.

81 In German: “Queins'sche UmZu-Regel”
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However, the semantic gap between the problem and solution space is
very large, thus the need for explicit traceability information is higher
and especially difficult to establish [Kn01b; p.45], [KP02; p.14].
Object-oriented development (OO) approaches as, e.g., the UML [UML]
have a smaller semantic gap between analysis and design. Thus, the
need for explicit traceability is not as needed and easier to establish. Of-
ten traceability is implicitly present.

Four variable model (FVM) as introduced by Parnas [Pa85] propagates
a design process with strict separation between input processing, the in-
ternal core functions and the output processing and relations between
them. The FVM allows separating the system from the environment by
the distinction of four variables: monitored and controlled environment
variables, data read from sensors and data written to actors. These four
variables can be set into formal dependencies. As embedded systems of-
ten relate input signals from sensors to output signals for actors, the
FVM is especially suitable for embedded systems design and is used in
embedded design practice [Fa95], [HHPO3; p.56ff], [HIL96]. Knethen
shows in [KnO1b; p.44] that in embedded systems design the input and
output processing variables are mainly in the focus of systems analysis
and design, whereas the internal core functions are usually allocated to
software analysis and design. Ergo, the F'VM relations are of the type
discussed here. The FVM can be used as an extension to SA/SD
[HHPO3; p.56ff] as well as to OO approaches [KnO1b]. In the course of
the QUASAR project [PSS04] (see also [Ge0S5; p.171]), Knethen devel-
oped her requirement to design traceability approach, whose founda-
tions base on concepts of UML and the FVM (see ch. 11.10.6 for details).
The SPICE process model defines artifact levels and how relations be-
tween the corresponding artifacts of the levels are connected.
Relationships defined in requirements traceability methods for product
line engineering [RTMO02], [BP06] can be seen as between-level refine-
ment traceability relationships.

REM- or traceability tool environments allow linking between different
artifact levels. The environment introduced in part III explicitly addresses
this issue concerning transitions between requirements and design.

In practice, the following approaches are used (see also [KP02; p.14]):

Dependency links between two elements indicating that one element derives
its justification from the other element. Knethen and Paech call this 'applica-
bility links' [KP02; p.14]. A similar dependency is given by the R2A ap-
proach described part III where consequences of decisions can be modeled
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that spark new design constraints (ch. 111.20). From the perspective dis-

cussed here, the decisions justify the design constraints.

e Links between requirements and models:

e Relations between textual requirements and its origins in other docu-
ments.

e Links between textual requirements and analysis models, such as use
cases and other analysis diagrams (ch. 1.5.4).

e Links between requirements and design models. Further relations can
propagate the requirements to detailed design elements as software
components and to source code.

e Links between requirements, test specifications, test cases, test logs and
(resp. or) error listings [Tv99; p.373]. According to Jiilinoja [Ja04; p.32],
these connections are so essential that this kind of linking should always be
established. The author recommends conferring [Ja04; p.31-33] and [WWO03;
p-20-21] for concrete hints about this issue in the embedded domain.

e Links between issue tracking items (bug reports and change requests) and
affected entities [Tv99; p.373]. Application life-cycle management tool suites
like MKS [MKS] offer dedicated support for these actions in practice (see
ch. 11.10.4.4.4).

Relationships between Different Versions
Hamilton and Beeby [HB91] see an important task of traceability to “discover
the history of every feature of a system” to ensure proper impact identifications
when requirements change. This has a twofold meaning. One is to trace the histo-
ry of the documents and can be seen as “an extension to what usually is called
version control, namely to trace all previous versions of a particular documenta-
tion entity to recover its development history” [KP02; p.15]. These relations are
usually called historical links [RUP+90] or evolutionary traceability [P0o96],
[Pi04]. A second, more enhanced meaning is described by the RatMan approach-
es. As these approaches record the rationale behind decisions and changes, they
provide important information about the historical evolution of project artifacts.
Without this information only the “how” of the evolution is recorded, but the
“why” is in the best case covered somewhere in the brains of the developers and
in the worst case simply forgotten. RatMan and traceability is described in detail
in the later ch. 11.10.8.

The following approaches consider evolutionary traceability with respect to
recording artifact history:
e The agreement axis in Pohl's RE framework (see ch. 1.5.7.1) describes this

[KPO02; p.16].
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e Ramamoorthy et al. [RUP+90] introduce the Evolution Support Environment
(ESE) system that can be described as a version control system enhanced by
support for traceability relationships. Besides the history links (trace to an
item's change history), ESE supports hierarchy links (trace to the hierarchical
structure an item is embedded in) and development links (trace how an item
is produced and used in the development project) [RUP+90; p.1230], (cf. al-
so [Li94; p.20]).

e Leite and Oliveira describe a system where configuration management con-
cepts are used to control the evolution of the individual requirements
[LO95].

The following approaches are found in practice:

e Several REM and traceability tool environments as, e.g., IBM Rational
DOORS provide configuration management mechanisms to record the histo-
ry of items and their traces. The approach discussed in part III provides a
similar mechanism. Also tools as MKS [MKS] originating from the configu-
ration and change management domain have developed new approaches to
address evolution and traceability. This is discussed in the following chapter
about traceability tool support.

e The already above described Queinsian In-Order-To Rule [RSO7; p.417 (*)]
can be seen as a practice-oriented heuristics to decide whether to version or
refine a requirement.

b) Direction

Refers to the direction fraceability is established or used in. Terms used here are
PRE-RS, POST-RS, backward or forward traceability as discussed in ch. 1.5.7.1.
Early agreement exists that traceability should be bidirectional (see ch 1.5.7.1).
Standards as A-SPICE (see ch. 1.7.4) oblige to use bidirectional traceability mod-
els.

A lot of approaches can be characterized by their traceability direction or
orientation within a process model. CTMs for PRE-RS are, for example, the con-
tribution structures model by Gotel and Finkelstein [GF95], [GF96] or the RE
framework of Pohl [P093], [P099], (see ch. 1.5.7.1). In the POST-RS direction,
approaches exist for design (ch. I11.10.6), code (ch. I1.10.7), and testing [Tv99;
p-373]. The COSMOD-RE model by Pohl [Po08; p.565ff] is a model combining a
PRE-RS and a POST-RS approach in parallel.

¢) Relationship Attributes

Just as documentation entities, relationships can also be enhanced by attributes.
Examples for valuable attributes for relationships are status, creation date, creat-
ing author.
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Relationship attributes can also support /4s and change implementation.
Knethen and Paech describe here a “weighting attribute”, which enables to dis-
tinguish more important from less important relationships, thus helping to tell the
more important impacts apart from the less important (side) impacts'* [KP02;
p.18].

Such an attribute can also be used to record rationale behind a link, howev-
er, with very limited support for extensive documentation of rationale. Rationale
in context of traceability is discussed in ch. I1.9.

As an example, the REM-tool IBM Rational DOORS supports creation and
management of relationship attributes. Thus, this technique is available for prac-
tice.

The R2A tool approach introduced in part III uses relationship attributes to
automatically capture information about the current status, author, and editing
time of each relationship, where especially the status information is a central
concept to implement a consistency management mechanism (see ch. 111.22.2).

d) Setting (i.e. Traceability Establishment)

This part discusses how traceability is established. Pinheiro calls this trace pro-
duction and stresses out that this issue has high importance, when considering the
applicability of a CTM in practice [Pi04; p.105] (this is discussed in ch. 11.10.5).
Generally, two fundamentally different ways are available [Li94; p.19]:

e Implicit relationships,

o Explicit relationships,

Implicit Relationships
Implicit relationships arise as a by-product of other processes. Knethen and Paech
characterize implicit relationships as “links that do not require manual setting”
[KnOlb; p.47], [KP02; p.18]. This means these relationships can be surfaced
using automatable approaches.

When analyzing different literature ([Li94; p.19], [LW99], [Sm99c]),
Knethen and Paech ([KnO1b; p.47], [KP02; p.18]) were able to identify the fol-
lowing manifestations of implicit relationships:

182 A good example of this method in practice is known by the author in test management.
Requirements are often tested by several test cases. Links between a requirement and
its verifying test cases can be enhanced by an attribute that indicates how much each
test case accounts for fulfilling a requirement. This degree of fulfillment attribute can
have a per cent scale. In this way, e.g., a requirement can have a link with 80% to a
TestCasel and two links with 10% to a TestCase2 and a TestCase3. A positive test re-
sult for TestCasel, but negative for TestCase2 and TestCase3, would indicate that a re-
quirement is fulfilled by 80 per cent.
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o Name mapping (also called name tracing or name referencing) denotes the
possibility to retrieve traceability information from names and abbreviations.
It assumes that names and abbreviations used in different traceable entities
(i.e., artifacts) designate the same items or facts. Name mapping is especially
promising when artifacts have a high degree of formality, because formality
ensures proper naming at all relevant locations. Source code has a high de-
gree of formality since compilers must be able to process it. Corresponding-
ly, names in source code are always identical, otherwise compiler errors oc-
cur. This makes source code to an optimal candidate for name mapping. To-
day's code development tools such as Eclipse or Microsoft Visual Studio of-
fer support for analyzing references (so called dependency analysis) and it is
highly probable the most heavily used technique applied for performing /4s
in practice. Design models are models of portions of source code. Thus, they
should contain the same names as in code. Ergo, name mapping can also be
an effective strategy for tracing dependencies between code and design mod-
els. In the context of SPICE in practice, Hormann et al. [HDH+06; p.94] es-
pecially recommend name mapping as a good strategy for fulfilling tracea-
bility demands between design and code artifacts. Exact name matching,
however, will only be ensured if code is generated for design through formal
automatic transformation processes (automatic code generation). In manual
coding processes, processes must be established to avoid drifts between de-
sign models and code. Specially change processes must ensure that changes
are properly performed in both artifacts, otherwise names can vary between
design and code leading to lost name mappings and thus to lost traceability
links. Name mapping can also be applied in rather document-oriented envi-
ronments such as in requirements specifications. However, in this case simi-
lar processes for ensuring consistent naming throughout the considered arti-
facts must be applied. Fortunately, another heuristic significantly reinforces
name mapping in the requirements field in an implicit way: It is very im-
portant to achieve a common understanding of the project between all differ-
ent stakeholders. This can only be achieved if the project develops a com-
mon vocabulary for its used terms. Therefore, in the field of requirements
specification, using precise terminology and establishing adequate terminol-
ogy management is a central principle and thus name mapping is a very
promising heuristic for requirements specifications.

e Relationships given by structure refer to retrieved traceability information by
capitalizing structures emerging as effect of development methods. In object-
oriented methods, a class contains private data, attributes and operations,
building structures of implicit relationships usable for tracing. In REM prac-
tice, the heuristic of deriving more specific low-level requirements from
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higher-level requirements and documenting these dependencies in a hierar-
chical child parent relation is widely employed [LW99]. From its first de-
scription by Nelsen [Ne90] as so-called fop-down structured analysis and
first experiences with tool support [Li94; p.25], it is supported by many
REM-tools such as IBM Rational DOORS, which organize requirements and
their dependencies by a hierarchical specification tree. In the SysML
[SYSML] a <<derive>>-relationship between requirements is defined with
analogous semantics.

e Relationships given by modeling paradigm refer to implicit relationships
resulting from the usage of certain modeling languages, tools or techniques
[LW99]. An example of this is the diverse possibilities to specify relation-
ships in UML.

e Dynamic relationships between code components refer to techniques for
identifying relationships occurring in code during execution. Here, depend-
ency analysis methods as dynamic program slicing [KR98] (see [GB08] for
an overview on program slicing techniques) can provide valuable support.

Explicit Relationships

Explicit representation [Kn01b; p.48-49] refer to linkages manually documented

by the developers. “Explicit relationships came from external considerations

supplied by the developers. So, for example, the linkage, or relationship, between

a textual requirement and a use case that describes the requirement is determined

solely by the decision of the developers that such a relationship has meaning.

There are no intrinsic relationships between the documentation entities; only

external decisions can establish the relationships” [KnO1b; p.48]. Explicit rela-

tionships can be used for all kinds of relationships. However, if implicit relation-
ships are present, it should be carefully considered whether explicit relationships
shall be established with the same meaning, because this creates redundant infor-
mation. Any redundant information is a source of inconsistency and needs further
maintenance when changes occur. Thus, it is rather preferable to extract the infor-
mation from the implicit relationships. Similar findings are expressed by Pinheiro

[Pi04; p.110] stating to use as much automation as possible.

In practice, the following methods are relevant:

e Simple documentation tools as Microsoft Word or Excel allow mechanisms
as hyperlinks or creating mapping tables (so called traceability matrices as
described below).

e REM-tools as IBM Rational DOORS allow manual linking between entities.
In some tools this is possible via drag-and-drop.

e Modeling tools allow systems to be described by elements, diagrams and
their relations. As an example, the UML tool Sparx Systems Enterprise Ar-
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chitect offers several ways of linking elements with diagrams, elements with
elements and also hyperlinks to external documents are possible. However,
the kinds of relationships also depend on the modeling techniques (e.g., func-
tional decomposition produces relations different from object-oriented de-
composition).

e Some specification languages as RSL [A177] or PSDL [SHB91] exist, allow-
ing references to be specified to requirements but are “not primarily intended
for requirements tracing” [Pi04; p.108].

Automatable Versus Manual Approaches'

Research on traceability has proposed various approaches for establishing or
retrieving traceability dependencies. Rochimah et al. present evaluation results of
about 100 publications to current state-of-the-art traceability approaches con-
cerned with SW evolution [RWAOQ7]. Research has shown that manual creation
and maintenance of fraceability relations requires enormous effort and includes
substantial complexity [EG04], [GF94], [RJO1] (see ch. 11.10.5). The study of
Rochimah et al. further shows that current research on fraceability focuses on
automatic or at least semi-automatic traceability link generation [RWAOQ7; table
4]. Some automation approaches still depend on manually established links that
are then enriched by supporting automation mechanisms while others are fully
automated.

The author has analyzed the scope of automation of these approaches and
can identify two major areas of automation:

1. Finding interdependencies between different requirements artifacts (e.g.,
textual documents, use case descriptions, feature-models or analysis models

(ch. I.5.4)) concerned with requirements.

2. Finding interdependencies between design and code artifacts.

Only the approach suggested by Spanoudakis [Sp02], [SZP04] tries to estab-
lish automated trace links from requirements to models, focusing on analysis
models, though. It is striking that current automated /ink generation approaches
do not concentrate on establishing /inks between the requirements world and the
design world. The author believes that this can be explained by the name map-
ping (cf. ch. 11.10.4.2.2) phenomenon: Instead of creating explicit links between
items, the same names are used [MHD+07; p.224]. If no automatic code genera-
tion is available for a design tool and code must be typed manually, traceability
must also be established between design and code. As design is (and should be) a
more abstract view on the problem modeled, traceability can also be established
by naming corresponding elements in design and code identically. This is an

'3 This chapter bases in parts on [TKT+09].
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explicit heuristic. In addition, another heuristic significantly reinforces this effect
in an implicit way: It is very important to achieve a common understanding of the
project for all different stakeholders. This can only be achieved if the project
develops a common vocabulary for its used terms. Therefore, in the field of re-
quirements specification, using precise terminology and establishing adequate
terminology management is a central principle. However, these approaches pro-
vide no guarantee to identify all interdependencies yet, as name mismatches or
other effects still can happen. Attempts try to ameliorate this problem by using
requirement ontologies as a common representation of mutual understanding of
the semantics of words in the requirements sentences, to establish automatable
traceability links [ASP09].

Other approaches provide a semi-automation such as identification of trace-
ability information from manually documented relationships during modeling
activities [TN97], [TMO00], [Eg03], extending links with notification mechanisms
to automatically propagate change notes to other affected items [CCCO03],[Sa06],
or identifying dependency info.

[ANR+06] and [GGO7] provide an overview of the most recent advances in
technologies to automate fraceability in the context of model-driven develop-
ment. In summary, the author could not identify any significant automation at-
tempts to bridge the gap between requirements and design. This matches with the
author's observation that the transition between requirements and design involves
a significant structural and semantic gap", where automation inevitably is very
difficult (cf. ch. 11.10.2).

Thus, automatable approaches may not be suitable to cross significant se-
mantic gaps and therefore automation may in practice only become a supportive
alleviation for still manual traceability processes. Correspondingly, the author
agrees with Egyed et al. that “while some automation exists, capturing traces
remains a largely manual process” [EGH+07; p.115]. As a result, the approach
described in part III mainly concentrates on improving manual fraceability strat-
egies.

In the R2A solution (part I1I), the concept of the so-called requirement influ-
ence scope (see ch. I11.18.2.2) involves that requirements assigned to a high-level
element in design are inherited to lower-level design elements. This can be seen
as a kind of traceability automation.

18 Research of Gruenbacher, Egyed and Medvidovic [GEMO1], [GEMO03], [MGE+03]
even suggest that this involves such a large semantic gap that it is even impossible to
employ a meaningful link concept between both (see ch. I11.10.6).
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e) Representation of Relationships

Relationships must be presented to the users according to their traceability needs.

Wieringa [Wi95] could identify three different ways for representation:

o Traceability matrices: “A matrix that records the relationship between two or
more products of the development process; for example a matrix that records
the relationship between the requirements and the design of a given software
component” [IEEE610; p.78]. One artifact's documentation entities (e.g., the
requirements) are enlisted horizontally as columns and the other artifact's en-
tities (e.g., the entities of a design) are enlisted vertically as rows. Relations
are then expressed as symbols in the intersecting cells (cf. [So07; p.197].

o Cross references: Relationships between entities are represented as refer-
ences similar to hyperlinks in hypertext languages as HTML. These 'trace
links' allow navigation between the entities.

e Graphical models: Entities and their relationships are represented in some
graphical way. The method described here (part IIT) also provides graphical
preparations of the gathered relationships. Marcus et al. [MXPO05; p.57] pro-
vide an opinion about why and when graphical visualizations may provide
superior support than the methods mentioned above.

REM-tools often rely on one or more of the ways of representation men-
tioned above. As an example, IBM Rational DOORS uses a cross references
approach as a main editing approach. These cross references can also be trans-
formed and viewed as a traceability matrix. As IBM Rational DOORS offers a
scripting extension mechanism via the DOORS eXtension Language (DXL),
some companies also have extended the standard IBM Rational DOORS envi-
ronment via more graphical preparations'™ of the collected data.

f) Functional and Nonfunctional Traces

Pinheiro [Pi00], [Pi04] identifies two fundamentally different types of traces:
o  Functional traces,

e Nonfunctional traces;

Functional traces are related to functional aspects. As they describe map-
pings between entities, they have a precise — narrow — semantic. Pinheiro argues
that these traces occur naturally when well-defined models and notations are
used. In this case, the traces can be directly “derived from the syntactic and se-
mantic connections prescribed by the models or notations” [Pi04; p.96]. In other
words, if precise models are used, functional traces can be directly derived from
the relationships occurring in the models.

185 See http://www.smartdxl.com/content/?page_id=144 (Access: 2009/10).
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Pinheiro lists some model types and their meaning in the context of func-
tional traces [Pi04; p.97]:

e Analysis models (ch. 1.5.4) relate entities from the REM phase (interviews
and transcriptions, documents and the extracted requirements).

e Design models (ch. 1.6) relate entities used in the design phase (classes, dia-
grams, attributes, and methods). These mappings tend to be more structured.

e Process models (ch. 1.7) relate objects of the development process (tools,
activities, artifacts and people).

e  Organizational models (organizational structures, people, goals, activities,
and resources) include environment and social issues.

Pinheiro emphasizes that models may also overlap meaning that representa-
tions of the same entities may be present in several models. Identifying those
overlapping representation is a good starting point to identify mappings between
models.

On the other side, nonfunctional traces relate to goals, reasons, intentions,
purpose, context of the intended system, decisions, and other intangible con-
cepts'®. According to Pinheiro, also nonfunctional requirements can be seen
among these intangible concepts and correspondingly most traces involving non-
functional requirements are nonfunctional [Pi04; p.98].

Functional traces enforce appropriate registration and extraction, promote
uniform understanding, allow automation of the traceability processes, and allow
procedures to verify consistency and correctness [Pi04; p.100].

A common way to handle nonfunctional traces is to reexpress them as func-
tional ones that can be verified [Pi04; p.99] (also cf. [WWO03; p.21]) in an analo-
gous way as nonfunctional requirements can be often expressed by several more
tangible functional requirements [JLO5; p.130], [PKD+03; p.145].

In part III, the author shows how this can be expressed in design by a re-
quirement influence scope concept (cf. ch. II1.18.2.2) and a process heuristic
ensuring that the influence scope is as local as possible (cf. ch. I11.18.2.4).

A reformulation of nonfunctional traces into functional ones can especially
promote uniform understanding, because non-functional traces leave open space
for differences in interpretation leading to potential errors or deviations between

18 «However, not all needs for tracing may be encompassed by using methods and tech-

niques. Certainly not, when what is sought refers to the very use of them. For example,
the answer to what data-flow is input to process X in a certain data-flow diagram in-
volves only elements from the method itself, while asking why a particular process in
the same diagram is described in the way it is can only be answered with recourse to a
meta model, where the use of the model can be assessed. In this case the referential in-
volves a wider context that may include the social environment in which the develop-
ment is carried out” [Pi00; p.4].
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the intended traceability information to be captured and the really captured
traceability information.

However, such transformations involve dangers of significant losses of im-
portant information. To counter these dangers, “traceable objects should allow the
use of hyper-media objects like videos, recordings, and images together with
mechanisms for inspecting these kinds of objects” [Pi04; p.104] to record and
regather real-world observations. The relationships between those hyper-media
objects and parts of formal traces are called extended traceability [HPW+99],
(see also [Pi04; p.104]). In the tool solution discussed in part III, a step towards
nonfunctional tracing is done by the decision models described in ch. 111.20 and
ch. I1.21. The decision model allows capturing non-functional traces into a semi-
Jformal skeleton of functional traces that can be accompanied by a further textual
description, where non-functional aspects can be described. This mechanism
could also be extended. Not only a textual description, but also other hyper-media
objects can be added.

Another strategy to deal with nonfunctional traces is, e.g., providing direct
modeling support as shown by Graham [Gr03], who uses the profile extension for
UML (UML Profile for Schedulability, Performance, and Time [Do04, ch. 4]) to
model nonfunctional performance constraints directly in the design model. Ac-
cording to Pinheiro [Pi04; p.99], nonfunctional aspects can thus be functionally
captured by using some model, but this leads again to a loss of much of the non-
Sfunctionality.

Thus, Pinheiro [Pi04; p.110] concludes that the major obstacles to realizing
traceability are organizational and not technical (see ch. 11.10.5). “The informal
aspects of tracing and the nonfunctional nature of some traces explain most diffi-
culties” [Pi04; p.110].

11.10.4.2.3 Examples of Conceptual Trace Models

As an example for a defined CTM, Knethen refers to the proposals of Ramesh
and Jarke [RJ01], who term their concept as traceability reference model. In the
course of a three-year empirical study analyzing the handling of traceability
information in a broad variety of usage contexts, Ramesh and Jarke [RJO1] were
able to analyze the traceability behavior in practice of 30 target groups from 26
organizations in 11 business units. The following results produced interesting
insights into growing unstructured complexity when fraceability has been em-
ployed [RJO1]:
®  Organizations as the U.S. Department of Defense spend 4% of its IT devel-
opment costs for traceability without achieving adequate value. The authors
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ascribe these findings not at last to a planless realization of traceability link-
ages.

® “A broad variety of traceability strategies is practiced in industry and the
existing models are too simple and/or too rigid to deal with this variety”
[RJOT; p.59].

® In the involved organizations and literature, the analysis of traceability mod-
els surfaced the usage of 18 different link types at 21 different object types
(artifacts or parts of artifacts).

® Concerning the employment of traceability, the user groups could be seg-
mented into low end and high end users. With growing experience the ten-
dency to use richer traceability models towards high end exists (cf. also
[Ra98]). Typical needs of low end users are technical problems (e.g., what
are interconnections between requirements) representable by functional trac-
es, whereas high end users are more interested in managerial issues (deci-
sions etc.) rather manageable by nonfunctional tracing [Pi04; p.100] (cf. also
[BrO07a], [RJO1]). Table 10.2 shows the differencing characteristics between
both user types according to [RJO1; p.65] in detail.

® Ramesh and Jarke [RJO1] further point out that different traceability link
types exist (also cf. [Br07a)): product-related (e.g., dependency and satisfac-
tion) and process-related (e.g., evolution or rationale). However, for the de-
cision to realize a link type, very detailed cost-benefit analyses are employed.

These findings directly match with Pinheiro's differentiation between finc-

tional (corresponds to product-related) and nonfunctional tracing (corre-

sponds to process-related).

According to Ramesh and Jarke, these findings show that establishing
traceability is accompanied by an evolutionary learning curve tending to richer
traceability models, in which each organization traverses rather planless phases
of traceability (simply put, 'playing around with traceability') and in which a
more structured and planned methodology develops tending to richer (high-level)
traceability models.

In this point, the author disagrees to a certain extent to the findings of
Ramesh and Jarke. When analyzing the focus groups of the study [RJO1; p.64], a
broad varie