

Tool-Based Requirement Traceability
between Requirement and Design
Artifacts

Bernhard Turban

Tool-Based Requirement
Traceability between
Requirement and Design
Artifacts

Foreword by Prof. Dr. Christian Wolff

Bernhard Turban
Nabburg, Germany

Turban, Bernhard: Tool-Based Requirements Traceability between Requirement and
Design Artifacts for Safety-Critical Systems
Zugl.: Regensburg, Univ., Diss., 2011

Th is work was accepted as a Ph. D. dissertation thesis by the Faculty of Languages, Lit-
erature and Cultural Studies of the University of Regensburg in 2011.

D 355

 ISBN 978-3-8348-2473-8 ISBN 978-3-8348-2474-5 (eBook)
 DOI 10.1007/978-3-8348-2474-5

 Th e Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografi e;
detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Library of Congress Control Number: 2013933878

Springer Vieweg
© Springer Fachmedien Wiesbaden 2013
Th is work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
soft ware, or by similar or dissimilar methodology now known or hereaft er developed. Ex-
empted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifi cally for the purpose of being entered and executed on
a computer system, for exclusive use by the purchaser of the work. Duplication of this pub-
lication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
Th e use of general descriptive names, registered names, trademarks, service marks, etc. in
this publication does not imply, even in the absence of a specifi c statement, that such names
are exempt from the relevant protective laws and regulations and therefore free for general
use. While the advice and information in this book are believed to be true and accurate at
the date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. Th e publisher makes no
warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer Vieweg is a brand of Springer DE.
Springer DE is part of Springer Science+Business Media.
www.springer-vieweg.de

While the discerning layman understands that
in the design of large constructions,

a new town or an airport, the problems are overwhelming,
 he probably does not realise so clearly
that there are problems just as pressing

and difficult for the designer
in the design of almost any trivial product.

A bad town will do more harm than a bad toothbrush
but the designer of either will experience his job

as the necessity to make a series of decisions
between alternative courses of action,

each affecting the decisions which come after it;
and if no life hangs on the outcome

of the series of decisions about the toothbrush,
the livelihood of several people does.

David Pye [Py78; p.75]

Foreword

What is the way design decisions are made in Software design and implementa-
tion? What is the relationship between a software artifact and customer require-
ments? What are the reasons, what is the rationale for a specific technical solu-
tion? How should design decisions be documented? These are only some of the
questions which Bernhard Turban tackles in his dissertation on Tool-Based Re-
quirements Traceability.

One of the major merits of this book is the successful bridging from design
theories to practical tool design for embedded real-time software: Bernhard Tur-
ban actually puts design theory to work, in a way from which software designers
and engineers may directly benefit. At the same time, this effort is firmly rooted
in current software engineering standards like SPICE (Software Process Im-
provement and Capability Determination, ISO/IEC 15 504).

Tackling the documentation needs for software design decisions by imple-
menting a tool using a specific algorithm or forwarding these decisions shows the
authors inventiveness: For a problem many software engineers are constantly
confronted with, this solution provides an innovative solution. At the same time,
this approach generates traceability-relevant information.

In addition, the author does not only present a plausible and functional algo-
rithm for documenting design decisions across different levels of the develop-
ment process, he also realizes a complex interactive interface tool which seam-
lessly adds to the functionality of modeling tools. Based on this work, a commer-
cial software development tool was created.

This work was developed not in an academic context, but in an industrial
setting within a group of software engineers working in the domain of automo-
tive embedded real-time systems. Thus, the author can draw all examples for his
work from immediate observations in the development projects he was working
on. This adds to the credibility of the work presented here, and I am sure that
both academia as well as industrial software design can learn a good deal lot from
Bernhard Turban’s work.

With the complexity of software projects still rising, the demand for better
documentation and traceability will grow beyond typical fields like the engineer-
ing of embedded systems. Therefore, it is to be hoped for that many software
projects will benefit from Bernhard Turban’s theoretical approach towards design
decisions as well as from the tool solutions he has created.

Prof. Dr. Christian Wolff

Acknowledgements

This work would not have been accomplished without the support of so many
people. I would like to thank them all for their support.

University of Regensburg
To begin with, I would like to thank my supervisors at the University of Regens-
burg Professor Dr. Christian Wolff and Professor Dr. Rainer Hammwöhner for
their constant support. I specially thank them for giving me the chance to write
this thesis.

University of Applied Sciences in Regensburg
Particularly, I would like to thank Professor Dr. Athanassios Tsakpinis from the
University of Applied Sciences Regensburg and director of the Competence Cen-
ter for Software Engineering. Without his very significant support the results
described here might not have been accomplishable.

I further want to thank Professor Dr. Markus Kucera and Professor Dr.
Bernhard Kulla for their advice and support.

Former Micron Electronic Devices AG
Further, I would like to thank Peter Schiekofer and Jörg Aschenbrenner for giv-
ing me a chance to perform my doctor’s thesis with the Micron Electronic Devic-
es AG and specially thank them for their open-mindedness to the vague ideas I
first sketched to them seeing the innovative potential within the ideas.

Mercedes Benz technology (MBtech)
At the MBtech Group, I would like to thank Dr. Nico Hartmann for giving the
R2A-project a home, after the integration of Micron Electronic Devices AG.

The PROVEtech:R2A development team
I also would like to thank the R2A development team for their good work and
enthusiasm.

My Editors
I also want to thank Florian Weiss and my brother Andreas Turban for cross-
reading my thesis. Futher, I especially want to thank Anita Wilke from Springer
Fachmedien Wiesbaden GmbH for helping me bringing this thesis to a book.

X Acknowledgements

Family and Friends
Last but not least, I would like to especially thank my parents, grandparents and
all my friends for their patience and encouragements in difficult situations.

Bernhard Turban

Abstract

Developing safety-critical systems imposes special demands for ensuring quality
and reliability of the developed systems. Process standards such as SPICE
(ISO15504) or CMMI have been developed to ensure high quality processes,
leading to the development of high quality systems. Central principles of these
standards are demands for requirements traceability. Traceability means compre-
hensible documentation of all origins and later influences of a requirement
throughout the complete development endeavor. Among other uses ascribed, the
traceability concept tries to ensure that every requirement is adequately consid-
ered in development and that if changes on the requirement are needed, impacts
of these changes can be adequately estimated and consistently implemented later
on. Even though the traceability concept seems promising in theory, it faces sub-
stantial problems in practice. One problem is that despite the needed efforts, the
perceived benefits for developers are often low because the quality of captured
traceability information is often coarse grained, does not prove helpful in the
situational context, or has already degraded.

This thesis tries to show that traceability between requirements and design is
an especially difficult problem. To analyze the problem context, the thesis at first
analyzes theories, in which the problem is cross-cutting. These are embedded
systems development, systems engineering, software engineering, requirements
engineering and management, design theory and process standards for safety-
critical systems.

This analysis mainly identifies a twofold gap between the requirements and
the design domain. Obviously a tooling gap exists because different tools are
used for the requirements and design domain. However, more important, between
requirement descriptions and designs a substantial inherent gap exists because
design is a creative decision process of designers often guided by intuition and
tacit knowledge thus difficult to trace by current traceability concepts. To prove
this argumentation, the author analyzes four design theories (symbolic infor-
mation processing (Simon), wicked problems (Rittel), reflective practice (Schön)
and patterns (Alexander)). As a solution to the gap problem, the thesis introduces
a tool-based traceability method that supports designers in their thinking, avoids
disturbing designers in their intuitive phases of creativity, allows establishing
traceability nearly as a by-product, provides early benefit to designers, improves
collaboration between designers and extends usual traceability concepts by two
integrated decision models allowing further decision information (rationale) to
be documented. The decision models also allow deriving new design internal

XII Abstract

“requirements” (design constraints and budgeted resource constraints) as conse-
quences. In this way, it is possible to clearly distinguish real requirements origi-
nating from customers from ‘requirements’ arising from internal decision pro-
cesses during design leading to the definition of a ‘requiremental items taxono-
my’. As the thesis further shows, these concepts also prove to be helpful to avoid
unnecessary redundancies in the artifact process models of SPICE (ISO15504) or
CMMI, where different requirement (system requirements, hardware require-
ments and software requirements) and design artifacts (system design, hardware
design and software design) are considered in their interplay. Last but not least,
mechanisms for graphical impact analysis, consistency management and supplier
management complete the approach.

Through funding of the support program IUK-Bayern, the results presented
here could be integrated into a commercial tool solution called PROVEtech:R2A,
now offered by the MBtech Group as a decisive means to significantly improve
requirement-based design processes with improved support to achieve real bene-
fit from the traceability concept.

Contents

Foreword .. VII

Acknowledgements ... IX

Abstract .. XI

Contents ... XIII

List of Figures .. XIX
List of Tables .. XXIII
Abbreviations ... XXV

Introduction .. 1

Introduction to the Topic .. 1
Context of this Thesis Project .. 4
General Remarks on this Thesis .. 7

Registered Trademarks ... 7
Argumentation .. 7
Citations ... 8

General Structure of this Thesis .. 9
I. General Context and Theories .. 11

I.1 The Model Concept .. 13
I.2 Embedded Systems Development ... 16

I.2.1 Definition and Context .. 16
I.2.2 Characteristics ... 16
I.2.3 Embedded Development in the Automotive Domain 19

I.3 Software Engineering (SE) .. 24
I.4 Systems Engineering (SysEng) .. 26
I.5 Requirements Engineering and Management 31

I.5.1 The Term 'Requirement' .. 34
I.5.2 Phases, Artifacts and Techniques in REM 40
I.5.3 Requirements Management ... 43
I.5.4 Models in REM ... 44

XIV Contents

I.5.5 Separation between Requirements and Design 48
I.5.6 The Role and Nature of Requirement Change 49
I.5.7 Traceability in the Context of Requirements Management 55

I.5.7.1 Traceability in Different Aspects of Development
 Activities ... 57

I.5.7.2 Traceability as an Issue of Quality 61
I.5.7.3 The Potential Uses of Traceability 62

I.5.8 Deficiencies of Today's REM Practices 64
I.6 Design in Systems and Software Development 65

I.6.1 Different Design Phases in SysEng and SE 66
I.6.1.1 System Design .. 67
I.6.1.2 Software Architecture ... 67
I.6.1.3 Detailed Design ... 70

I.6.2 General Theories about Design .. 70
I.6.2.1 Design as Symbolic Information Processing 71
I.6.2.2 Design as Wicked Problems .. 84
I.6.2.3 Design as Situated Action ... 89
I.6.2.4 Design as a Language of Patterns 94

I.6.3 Comparison of General Design Theories 103
I.6.4 Dependency between Design Models and Code 105
I.6.5 Architecture Documentation ... 107
I.6.6 Design in the Automotive Domain .. 110

I.6.6.1 Modeling Methods and Tools Used in Automotive
 Design .. 111

I.6.6.2 Integrating other Organizations into a Design 115
I.7 Quality Standards for Safety-Critical Development Processes 116

I.7.1 SPICE (ISO 15504) ... 119
I.7.1.1 The Process Reference Model of SPICE 120
I.7.1.2 The Measurement Framework 121
I.7.1.3 The Process Assessment Model (PAM) 122

I.7.2 Requirements, Design and Traceability in the Context of
SPICE .. 124
I.7.2.1 ENG.1: Requirements Elicitation 124
I.7.2.2 ENG.2: System Requirements Analysis 126
I.7.2.3 ENG.3: System Architectural Design 130
I.7.2.4 ENG.4: Software Requirements Analysis 132
I.7.2.5 ENG.5: Software Design ... 133
I.7.2.6 ENG.6: Software Construction 134
I.7.2.7 SUP.10: Change Management 135

Contents XV

I.7.3 Traceability in SPICE ... 137
I.7.3.1 Intersect: Dangers of Prescriptive Process Models ... 138
I.7.3.2 The Nature of the ENG-Processes, Traceability, and

its Implications .. 142
I.7.4 Automotive SPICE .. 148
I.7.5 Safety Engineering: IEC 61508, ISO 26262 151

I.8 Feedback from Embedded Practice .. 153

II. Rationale Management and Traceability in Detailed Discussion 159

II.9 Rationale Management in Systems and Software
Engineering ... 159
II.9.1 Characterization Criteria for Rationale Approaches 162

II.9.1.1 Representation .. 162
II.9.1.2 Basic Rationale Processes .. 163
II.9.1.3 Descriptive versus Prescriptive Approaches 164
II.9.1.4 Intrusiveness ... 164

II.9.2 Rationale Management Systems (RMS) 165
II.9.3 Overview of Different Rationale Approaches 166

II.9.3.1 Schemas for Argumentation 166
II.9.3.2 Approaches beyond Argumentation 173
II.9.3.3 Alternative Categorization.. 175

II.9.4 Why Rationale Management Could not yet Succeed
in Practice ... 177

II.9.4.1 Cognitive Limitations ... 178
II.9.4.2 Rationale Capture Limitations as Central Challenge

 in Rationale Management ... 179
II.9.4.3 Retrieval Limitations .. 186
II.9.4.4 Usage Limitations .. 186
II.9.4.5 Synopsis of Rationale Limitations

 Concerning Alternative Design Theories 187
II.9.5 The Role of Rationale in System and Software Design ... 188

II.10 Requirements Traceability ... 192

II.10.1 Overview ... 192
II.10.2 Traceability and Consistency Gaps between Artifacts 194
II.10.3 Impact Analysis and Traceability 197
II.10.4 Core Dimensions for Characterization 201

II.10.4.1 Purpose ... 202

XVI Contents

II.10.4.2 Conceptual Trace Model 204
II.10.4.3 Process .. 229
II.10.4.4 Tools .. 234

II.10.5 Traceability and its Benefit Problem 242
II.10.6 Traceability between Requirements and Design 245

II.10.6.1 Theoretic Research Results 245
II.10.6.2 Tool Couplings between REM- and Design

 Tools in Practice .. 248
II.10.7 Traceability between Requirements, Design and Code 254
II.10.8 Rationale Management and Traceability 257

III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability 259

III.11 Research Goals .. 261
III.12 Accompanying Case Study ... 265
III.13 Closing the Tool Gap .. 268
III.14 Closing the Gap between Requirements and Design 271
III.15 Abstraction Layers and Abstraction Nodes 27
III.16 Models Crossing Tool-Barriers .. 280

III.16.1 Insertion: Coupling Different REM- and Modeling
Tools ... 280

III.16.2 Integrating Several Modeling Tools in a Single Model 281
III.17 Basic Support Features of R2A ... 284

III.17.1 Support for Collaborative Design Tasks 284
III.17.2 The Notes Mechanism ... 285
III.17.3 Extensibility: XML-Reporting and User Tagging 286
III.17.4 Unique Identifier Support for any Item in R2A 287
III.17.5 Evolutionary Traceability – Recording History and

 Baselines .. 287
III.17.6 The Properties Dialog .. 288

III.18 Requirements and Requirements Traceability 290
III.18.1 Managing Requirement Sources 290
III.18.2 Establishing Requirements Traceability........................... 293

III.18.2.1 Traceability Operations in R2A 296
III.18.2.2 The Requirement Influence Scope (RIS) 299
III.18.2.3 Representing Requirement Contextual Data 302
III.18.2.4 The Requirement Dribble Process (RDP) 304
III.18.2.5 Overview over Navigation and Handling of

 Requirements Aspects in R2A 311

Contents XVII

III.19 Taxonomy of Requiremental Items .. 313
III.20 Support for Capturing Decisions ... 316

III.20.1 Relation to Approaches of Rationale Management 319
III.20.2 Effects on the Traceability Model 322
III.20.3 Example How to Tame the Development Process Model

 of SPICE .. 324
III.20.4 Implementation of the Decision Model in R2A 326
III.20.5 Additional Support of the Decision Model for Designers 337

III.20.5.1 Patterns .. 338
III.20.5.2 Ensuring Adequate Realization of Design and

Decisions ... 339
III.20.5.3 Support for Architecture Evaluation 339

III.21 Resource Allocation as a Special Decision Making Case 341
III.21.1 Budgeted Resource Constraints as further

Requiremental Items ... 343
III.21.2 Advantages for Collaboration and Sharing Project

 Knowledge .. 345
III.21.2.1 Within Project Refinement 345
III.21.2.2 Communicating Information across
 Organizational Boundaries 346
III.21.2.3 Change Management 347
III.21.2.4 Different Views on the Same Problem 348

III.21.3 Representing Budgeted Resource Constraints in SysML . 349
III.21.4 Combining both Decision Models 351

III.22 Managing Changes and Consistency 352
III.22.1 Usage of Traces – Managing Requiremental Changes 353

III.22.1.1 Selective Tracing: Impact Analysis 353
III.22.1.2 Interactive Tracing: The Model Browser 357
III.22.1.3 Non-Guided Tracing: Additional Features
 for Fast Look-Up ... 358

III.22.2 Consistency Maintenance of Requirements, Traceability
 and Design .. 359

III.23 Aspects of Embedding R2A in a Process Environment 362
III.23.1 Avoiding Redundancies in Supplier Management 363
III.23.2 Traceability over Several Artifact Models without

 Redundancies ... 365
III.23.3 Decoupled Development of Requirement and Design

 Artifacts .. 368

XVIII Contents

III.24 Overall Architecture of R2A .. 370
III.24.1 General Architecture .. 370
III.24.2 The Meta-Model .. 372
III.24.3 Further Interfaces ... 376

IV. Synopsis .. 379

IV.25 Summary of the Achieved Research Results 379
IV.26 Perspectives for Further Research ... 385

 IV.27 Conclusions .. 392

Bibliography ... 395
Index .. 435

List of Figures

Figure 1-1 Properties of original and model [LL07; p.6 (*)] 14
Figure 4-1 The view of systems engineering processes of Hood et al.

[HWF+08; p.29] .. 30
Figure 5-1 Functional and nonfunctional requirements [HR02; p.86 ff] 37
Figure 5-2 The Requirements Engineering framework defined by Pohl

[Po08; p.39 (*)] ... 41
Figure 5-3 The view of Hood et al. [HWF+08] logically derived by the

author. .. 44
Figure 5-4 Overview over different traceability terms oriented on Brcina

[Br07a; p.4] ... 58
Figure 5-5 The three dimensions of the RE framework

[Po93; p.284], [Po08; p.42] ... 61
Figure 6-1 The design problem space according to Goel [Go99; fig.1] 93
Figure 7-1 Processes defined in ISO/IEC 15504-5 basing on

ISO/IEC 12207 .. 123
Figure 7-2 The example in current practice of the SPICE process model .. 143
Figure 7-3 The altered example above with less redundancies 146
Figure 7-4 Summary of traceability BPs in A-SPICE [ASPICE08a;

Annex E] ... 149
Figure 9-1 IBIS schema example outlining a discussion. 168
Figure 9-2 QOC schema as interpreted by [HHL+06; p.413] 169
Figure 10-1 A requirements specification with attributes in IBM Rational

DOORS ... 207
Figure 10-2 Efficiency gains, process orientation and tool support

[Eb08; p.290] .. 235
Figure 10-3 Traceability tool couplings via surrogate modules 250
Figure 10-4 Requirements fan-out effect according to Alderidge [Al03] 253
Figure 12-1 Example use case of the case study ... 265
Figure 12-2 Requirements specification for the case study in IBM

Rational DOORS ... 266
Figure 12-3 Example SW design for the requirements specification

in fig. 12-2 ... 267
Figure 13-1 R2A in combination with a design tool (Sparx Systems

Enterprise Architect) ... 268
Figure 13-2 Logical structure of the R2A tool approach 270

XX List of Figures

Figure 15-1 Hierarchical decomposition of a system shown as
abstraction tree .. 273

Figure 15-2 Detailed content and structure of an abstraction node
(SubSystem1) .. 274

Figure 15-3 Example of a UML project repository in Enterprise Architect . 276
Figure 15-4 With the AN tree view and the tab “Views and Description” ... 279
Figure 16-1 Different modeling tools integrated into one design model

via R2A ... 283
Figure 17-1 The properties dialog in R2A ... 289
Figure 18-1 Managing different requirement sources in R2A 291
Figure 18-2 Requirements source document synchronized with IBM

Rational DOORS .. 291
Figure 18-3 Ways of establishing requirements traceability via drag-

and-drop in R2A. .. 298
Figure 18-4 Requirements and the requirement influence scope 300
Figure 18-5 Showing requirements in the design situational context of

an AN .. 303
Figure 18-6 Overview of how the requirements-related features are

integrated into R2A concerning navigation and handling......... 312
Figure 19-1 Requiremental items, requirements and design constraints

taxonomy .. 314
Figure 20-1 Interactions between nonfunctional, functional requirements

and architectural decisions [PDK+02] 317
Figure 20-2 Documented decisions build the connection between

requirements, design elements and resulting design
constraints .. 318

Figure 20-3 The newly emerged and more detailed traceability
information scheme... 323

Figure 20-4 The example of SPICE conforming design processes in
the new way .. 325

Figure 20-5 Decision dialog in R2A .. 326
Figure 20-6 R2A's visualization of the decision taken above 328
Figure 20-7 Architectural influence factors assessment with R2A's

decision model .. 333
Figure 20-8 Consequences of the architectural influence factors

assessment of fig. 20-7 ... 334
Figure 21-1 Requiremental items taxonomy with budgeted resource

constraints .. 343
Figure 21-2 Resource allocation example with budgeted resource

constraints .. 344

List of Figures XXI

Figure 21-3 Sub budgeting of the Light_hdl module 346
Figure 21-4 Tabular view with corresponding abstraction hierarchies. 348
Figure 21-5 Tabular view with assignment inconsistency (selected line) 349
Figure 21-6 Representation of the same information as fig. 21-4 but

in SysML view .. 350
Figure 21-7 Example for combining both decision models together 352
Figure 22-1 Two examples for visualizing impact on the abstraction

nodes hierarchy ... 354
Figure 22-2 Impact analysis dialog and R2A's main window with an

impact set taking decisions into account 356
Figure 22-3 The model browser in R2A ... 358
Figure 22-4 Life-cycle of a requiremental item and its color coding

in R2A ... 361
Figure 23-1 Process chain of an integrated design model for system, HW

and SW design ... 366
Figure 23-2 Process chain of multi-layered requirements and design

artifacts .. 367
Figure 23-3 Consistent integration of changes () beyond version

barriers .. 369
Figure 24-1 High-level architecture of R2A ... 372
Figure 24-2 The meta-model of R2A .. 374

List of Tables

Table 7.1 Maturity Levels and their Process Attributes
(cf.[HDH+06; p.16]) ... 122

Table 9.1 Alternative categorization of rationale approaches
[OM07; p.16]... 176

Table 9.2 Relation to design theories and rationale in design
according to [HA06a; p.77] ... 187

Table 10.1 Prioritization of stakeholders and usage purposes concerning
traceability between requirement and design artifacts 203

Table 10.2 Characteristics of low-end and high-end traceability users
[RJ01; p.65] ... 225

Table 10.3 Kinds of traceability tools according to [GF94] and
[Kn01b; p.57] .. 236

Table 20.1 Example of an architectural influence factors assessment 332
Table 21.1 Example resource estimation of RAM consumption in

design .. 342

Abbreviations

The following lists the most common abbreviations used in this thesis over sever-
al chapters:

AIS Actual Impact Set
AN Abstraction Node – a concept of R2A (cf. ch. III.15)
ANH Abstraction Nodes Hierarchy – a concept of R2A (cf. ch.

III.15)
A-SPICE Automotive SPICE (cf. ch. I.7.4)
BRC Budgeted Resource Constraint – a concept of R2A (cf. ch.

III.21)
CCB Change Control Board
CMMI Capability Maturity Model integrated (cf. ch. I.7)
COTS Commercial Off The Shelf
CRS Customer Requirements Specification
CTM Conceptual Traceability Model
CusSysDes The Customer's System Design
DC A Design Contraint as a concept of R2A (part III)
DEC A conflict based Decision a concept of R2A (part III)
DOD United States Department of Defense
DRL Decision Representation Language an RatMan approach

(cf. ch. II.9)
DXL DOORS eXtension Language
ECU Embedded Control Unit
EEPROM Electrically Erasable Programmable Read Only Memory
EIS Estimated Impact Set
FR Functional Requirement
GUI Graphical User Interface
GUID General Unique IDentifier
HMI Human Machine Interface

XXVI Abbreviations

HIS Hersteller Initiative Software – Standardization Board of
German Automotive OEMs (cf. ch. I.7)

HW Hardware
HW_RS Hardware Requirements Specification
IBIS Issue Based Information System an RatMan (cf. ch. II.9)

approach (see also gIBIS)
IDE Integrated Development Environment
ISO International Standards Organization
MF Measurement Framework (see SPICE)
NFR Nonfunctional Requirement
OCL Object Contraint Language
PAM Process Assessment Model (see SPICE)
PRM Process Reference Model (see SPICE)
QOC Questions, Options, Criteria an RatMan approach (cf. ch.

II.9)
R2A PROVEtech:R2A – The tool environment resulting from

this research (part III)
RatMan Rationale Management (cf. ch. II.9)
RDP Requirements Dribble Process a heuristic supported by

R2A (part III)
REM Requirements Engineering and Management
REQ Requirement from the customer as a concept of R2A

(part III)
RI Requiremental Item a concept of R2A (part III)
RIF Requirement Interchange Format
RIS Requirement Influence Scope a concept of R2A in con-

nection with the RDP (part III)
ROM Read Only Memory
RUP Rational Unified Process
RE Requirements Engineering
RM Requirements Management
REM Requirement Engineering and Management
RMS Rationale Management System

Abbreviations XXVII

RSD Requirement Source Document as a concept of R2A
(part III)

RTF Rich Text Format
SE Software Engineering
SEI Software Engineering Institute (SEI) of the Carnegie

Mellon University in Pittsburg
SIL Safety Integrity Level as described in IEC 61508
SIS Starting Impact Set
SPICE Software Process Improvement Capability dEtermination

(IS0 15504), (cf. ch. I.7)
SysEng Systems Engineering (ch. I.4)
SYS_RS System Requirements Specification
SuppRS Supplier Requirements Specifications
SW Software
SW_RS Software Requirements Specification
SysML System Modeling Language
TQM Total Quality Management (cf. ch. I.7)
UML Unified Modeling Language

Introduction

Nothing is more powerful in the world than an idea whose time has come.
Victor Hugo (*)

Introduction to the Topic

Usually, systems developed by humans are not developed for their own sake of
existence. Instead, these systems shall help to achieve certain human goals or
purposes. Goals or purposes, however, are often very abstract and vague in the
same way as the usage situations of these systems are manifold and complex.
Correspondingly, a more precise definition of what a system must exactly per-
form is needed. This leads to the need for defining the exact requirements of a
system. Then, such a system must just be designed and constructed to fulfill the
defined requirements.

Concerning the development of software-based systems, development expe-
riences of the last decades have been rather disenchanting. Often, five out of six
development projects are considered as rather unsuccessful [BMH+98; p.3],
[St95], [St01], [Eb05; p.23ff]. One major issue identified through the years is that
the developed systems often do not achieve the goals and purposes they were
intended for, or if they fulfill them, the resulting system's development project
significantly has exceeded planned budget and (resp. or) effort [St95], [St01].

Research on the causes for these problems is ongoing. Among others, three
issues can be identified as root causes (cf. ch. I.5): Unclear requirements, often
changing requirements and inadequate processes for handling.

One approach to solve the first problem is to spend extra effort on identify-
ing and defining clear and adequate requirements upfront. Today, a whole set of
artifacts, heuristics, practices and processes around the topic requirements are
available summarized under the theory of requirements engineering (RE). How-
ever, development experiences have shown that even though extra focus and
effort is spent upfront on the definition of requirements, changing requirements
are still more the norm than the exception. As ch. I.5.6 shows, reasons are mani-
fold.

B. Turban, Tool-Based Requirement Traceability between Requirement and Design Artifacts,
DOI 10.1007/978-3-8348-2474-5_1, © Springer Fachmedien Wiesbaden 2013

2 Introduction

In the author's opinion, at least two essential causes for the requirements
change problem exist:

1. Software (SW) and SW-based systems are abstract and thus essentially diffi-
cult to define comprehensively.

2. In addition, SW-based systems themselves with their intercorrelations with
other systems and their embedding into processes infer a significant com-
plexity leading to the problem that not all cases and eventualities can be con-
sidered beforehand.

These causes – among others described in ch. I.5.6 – significantly challenge
the paradigm that the extensive specification and analysis of requirements upfront
will tame the requirements change problem. They might rather be a good lever-
age to mitigate the problem, but changing requirements will still remain a deci-
sive factor for projects. RE-theory also seems to have acknowledged this fact in
the way that it more and more emphasizes the aspect that requirements must also
be adequately managed (see ch. I.5.3). Thus, the author rather prefers to speak of
requirements engineering and management (REM).

In REM theory, requirements traceability (in the following simply called
traceability) is considered as central means to manage requirement changes.
Traceability means “comprehensible documentation of requirements, decisions
and their interdependencies to all produced information resp. artifacts from pro-
ject start to project end” ([RS02; p.407 (*)]). Through recorded traceability in-
formation, impact analysis of changes is possible allowing estimating the impact
of suggested requirement changes. This information allows project stakeholders
to decide, whether the benefits of a requirement change outweigh its costs, thus
avoiding disadvantageous changes. Once it is decided to perform a change,
traceability helps to consistently propagate the change to all impacted locations
in a project. Thus, consistently inferring the change into the project prevents
dangers of forgetting to change affected locations leading to defects or even fatal
consequences. In this way, the traceability concept is a promising means to im-
prove REM and especially change management processes, thus avoiding incon-
sistencies – introduced during inevitably applied changes – leading to failures in
the system, thus leading to significantly improved quality of developed systems.

Even though the traceability concept is already known for over 20 years and
it always has seemed very promising to be a significant value gain in a project, it
is still not very widely spread in development practice except for development
projects under certain circumstances. As ch. II.10.5 tries to outline, this seems to

Introduction to the Topic 3

be the case, because it suffers from a general problem of efficiency and of low
direct benefit perceived by the project members intended to capture the traceabil-
ity information.

The quality of developed systems generally is a decisive factor. On the other
side, ensuring quality involves significant efforts and costs. Even though quality
must not necessarily be seen as a cost factor, but should rather be seen as a factor
of investment, only finite resources can be spent for quality in order to ensure
economic success. For once, this appeals to ensuring a high degree of effective-
ness on quality assurance methods in general. For the other, demands for quality
may differ concerning the purpose of the system. As an example, it may be an
acceptable risk for PC-based SW systems that some minor bugs or other minor
flaws remain undiscovered in a delivered system, because applying an update on
a PC is acceptable as long as the number of updates is acceptable to the users and
it is easy to apply the updates. Concerning embedded systems steering a technical
equipment, it is much more difficult to perform SW-updates, as this in most cases
implies a product recall to apply the new software update. Besides high costs, this
is rather not acceptable for the users and often involves significant image losses
for the involved companies. Beyond that, so called safety-critical systems exist,
where a malfunction can lead to significant damages to values or even impose
hazards for persons' health or lives. In these cases, even minimal probabilities of
failures involving injury or death of persons must be best possibly eliminated.

Another important means to ensure good product quality is to employ good
development processes. In the context of embedded projects and especially for
safety-critical embedded projects, significant efforts have been undertaken to
standardize the processes with their decisive characteristics to be performed in
order to achieve high quality outcomes. Ch. I.7 describes these efforts and the
demands for these processes. In these process standards, a demand crosscutting
through all engineering processes is the demand for traceability of every re-
quirement to the influences it imposes on every artifact developed in any engi-
neering process.

The implementation of these demands in practice, however, often makes ap-
parent that these demands themselves are difficult to implement and if they are
implemented it is highly questionable whether the effort and resources spent
really bring significant benefit to development projects. Instead, traceability
demands are often rather performed to correspond to the standards' demands.

In this thesis, the author tries to identify several core reasons for these prob-
lems. Besides the benefit problem mentioned above, an essential problem is that
different tools are used for different processes. This, however, implies that the
traceability concept must somehow cross these tool gaps in order to connect the

4 Introduction

information within the different tools. In the author's opinion, this actually is one
essential cause for the benefit problem, as crossing these gaps generally requires
higher efforts, decreases accuracy and significantly increases potentials for in-
consistencies.

Unfortunately, the author considers one problem as even more essential:
This problem origins from the fact that requirements describe a problem space
that must be transformed into a solution. This transformation process is usually
referred to as design. Usual traceability models rather assume that these connec-
tions between requirements and design artifacts are rather linear semantic allow-
ing to trace these connections.

The author, however, believes that a semantic gap exists between the prob-
lem space described by requirements and the solution found. This gap exists,
because design is a complex task of performing sequences of complex design
decisions leading to the solution. There, the connections being rather nonlinear
make it very difficult to record valuable traceability information.

As a way to address these problems identified, this thesis also introduces a
tool environment called PROVEtech:R2A (R2A) to support requirements tracea-
bility to design with specific focus on diminishing both mentioned gaps. In this
way, the author also hopes to diminish the benefit gap to a degree that collecting
traceability information provides direct benefit for the designers thus hoping to
really achieve the promises of the traceability concept.

Context of this Thesis Project

In order to provide a better understanding to the reader how the research results
described in this thesis have emerged, this chapter provides a short overview
about the history of this research project.

First ideas to some core problems and features addressed by R2A arose as a
consequence of the direct development experiences of the author in an automo-
tive ECU development project for lights steering with SPICE level two processes.
At that time, the Micron Electronic Devices AG (MEDAG) and the Competence
Center for Software Engineering (CC-SE) at the University of Applied Sciences
Regensburg have begun a collaboration with the goal to improve the connection
of theoretic research with industrial practice.

In the development project, from 2004 to 2005 the author worked as repre-
sentative of the CC-SE at MEDAG where the author was at first responsible for

Context of this Thesis Project 5

introducing REM-processes with the REM-tool IBM Rational DOORS1 to be
newly introduced into the company's project practice. During further develop-
ment, the author was responsible for module design and implementation. In this
way, the author was also responsible for maintaining the requirements traceabil-
ity to the module design directly experiencing the shortcomings and problems
involved.

These experiences have lead to the idea about a tool environment, where de-
signers should directly benefit from gathered traceability information by making
the influences of requirements on design directly visible to designers (basic ideas
of ch. III.13, ch. III.15 and ch. III.18.2.2) and by improving the collaboration of
all involved designers (basic ideas of ch. III.18.2.4).

In 2005 the identified key concepts have then been formulated in a theoretic
outline with an extended theoretical case study being reviewed by representatives
from MEDAG and CC-SE. The concepts proved promising. As the concepts also
base on extensive user interaction, where usability is a key factor for success, the
project made contact to the Institute for Media, Information and Cultural Studies
at the University of Regensburg, where usability is one major research topic.

The three organizations have decided to form a partnership to realize the pro-
ject. For this goal, the partners decided to develop a prototype tool evaluating the
theoretical results by practical feedback and to apply for financial aid at the
IUK2-program of the Bavarian Ministry of Economic Development.

During the application phase in 2006, the prototype tool implementation has
been developed and has been continuously assessed by design practitioners of the
partners to achieve immediate feedback of implemented features.

With these granted financial aids, a two years project for six persons could be
realized to transfer the achieved theoretical and prototypical research results into
a solution relevant for practice. The project has been performed from Feb. 2007
to Feb. 2009 leading to the commercial tool PROVEtech:R2A as it is discussed in
this part. Because the tool's features have been considered as very innovative,
where good usability at complex user interactions is essential, and because most
core features have been extensively analyzed upfront by theoretical discussion
and the prototype, the project members decided to develop the project using the
evolutionary prototyping concept from agile development methods. Evolutionary
prototyping means that the project started with a prototype where all identified
features were successively integrated into the prototype so that the prototype

1 At that time called Telelogic DOORS
2 The IUK program (In German: Information Und Kommunikation (Information and

Communication)) is a research funding program to support transferring newest re-
search results into commercial solutions applicable in practice.

6 Introduction

successively evolves to the final product. In this way, new features could at first
be realized via a prototype implementation. These features then could be intro-
duced to design practitioners to acquire direct feedback on the prototypical im-
plementation. This feedback could then be used to improve and refactor the im-
plementation to fully integrate it into the project's program base. Concerning the
tool's architectural design, therefore, only an architectural skeleton has been
developed sketching the core concepts of the tool environment and leaving de-
tails of the architecture open for change.

This proceeding may, at first, seem to contradict principles discussed in this
thesis about REM, but, as discussed in ch. I.5.6 and ch. I.6.2.2, prototype-based
requirement evaluation is a common practice to address the problem that highly
innovative projects face a high volatility of requirements.

During the project in the midst of 2008, the MEDAG has been taken over by
the MBtech Group GmbH & Co. KGaA (in the further simply called MBtech) a
subsidiary company of the Daimler AG specialized on engineering services. The
concepts and ideas of the project convinced the MBtech of the innovative poten-
tials of the tool leading to a continued endeavor to develop the results to a com-
mercial solution. In this way, the developed tool has been named
PROVEtech:R2A3 (called R2A in the following) and has been integrated into the
PROVEtech tool family.

Currently, R2A is offered as commercial solution of the MBtech to address the
traceability problems described in this thesis. It is continuously maintained and
improved through a half-year release cycle. In this way, the project described
here also is an example of how theoretic research results can be successfully
brought into commercial project practice.

3 R2A stands for Requirements 2 Architecture. Further information on PROVEtech:R2A

can be found at the company homepage: http://www.mbtech-group.com/eu-
en/electronics_solutions/tools_equipment/provetechr2a_traceability_management/trac
eability_management.html (Access: 2010/09).

General Remarks on this Thesis 7

General Remarks on this Thesis

Before stepping into the thesis, the reader should note some general remarks.

Registered Trademarks

The reader of this thesis should note that some mentioned techniques and tools
referred to in this thesis are registered trademarks or under protection of copy-
right laws.

Argumentation

The thesis introduced here is not an empirical study, but rather a theoretical work.
The work can be considered somewhere between systems engineering and soft-
ware engineering theory. As a matter of fact, many of the mentioned theories and
'facts' presented in this thesis have no irrevocable evidence but are to a certain
degree a 'fact' of experience, interpretation and believe. When the author collect-
ed these 'facts' from different sources, dangers of misinterpretation or selective
interpretation by the author cannot be excluded. Facts found in a research paper
cannot always be seen on their own. Often, these 'facts' are embedded in a certain
context (e.g., a special research theory or project). Now, taking conclusions from
these 'facts' should be done with a certain care. To address this problem, the au-
thor often considered not only to cite the pure 'fact' concluded somewhere, but
also tried to outline the context where these 'facts' have arisen and he also tried to
provide available possible alternative interpretations by other authors, or theories
to allow the reader to derive his (her) own conclusions about the evidence and
how cogent the author's argumentation is. As a matter of fact, however, most
theories are not compatible or consistent to each other. Correspondingly, a tech-
nique to outline the context of some argumentation may also result in some in-
consistency or contradictory statements. The reader should consider these incon-
sistencies or contradictions as phenomenon of the manifold complexity that re-
search theories produce in their connection to each other and the limited capabili-
ties of humans to completely cope with these complexities. Besides, the author
generally doubts the potential existence of one grand unified theory about sys-
tems and software development. Rather the author considers inconsistencies and
contradictions as spring of new knowledge in research.

8 Introduction

For some of the encountered inconsistencies and contradictions the author
developed suggestions or assumptions born from the author's own experience and
thinking. To highlight these suggestions or assumptions, where the author could
not find adequate proof derived from 'facts' basing on evidence, the author uses
terms like 'the author feels', 'the author thinks', 'in the author's eyes' and 'the au-
thor believes', where these terms have an increasing weight of evidence possibil-
ity ascribed by the author.

Citations

During the work on this thesis, the author has developed a slightly individual
citation practice. First of all, it is to mention that the author experienced some
citation practices of other authors as unsatisfactory to really follow some argu-
mentation. One problem, e.g., often is that some authors simply refer to an exten-
sive text (e.g., a complete book) as an evidence for a single argument. Really
retrieving the original statement is then very difficult. The author tried to make
the evidence of his thoughts more explicit by referring to the exact page or at
least to a collection of pages, when the evidence was rather a synthesis of several
paragraphs than just a statement. Only if some more general theoretic discussion
has been performed, where the whole book, or article has to be considered the
author cited the source without reference to pages.

Furthermore, the author thinks that an evidence found in several sources has
a higher potential to be true than originating from a single source. Correspond-
ingly, the author also tried to mention all sources he encountered within a certain
argumentation to indicate the potential evidence of the argumentation to the read-
er.

During writing the thesis, the author often stepped over some wordings of
other authors providing a very concise or precise formulation of an argumenta-
tion, where any rewording or changes could only lower the quality of the state-
ment or infer a falsification of the original meaning. Correspondingly, in these
cases the author decided to cite these wordings verbatim to preserve the concise-
ness or preciseness of the argumentation for the reader.

Citing verbatim, however, invoked a further problem about quotation marks.
The author used the following rules. For verbatim quoting of some other author's
argumentation the author has used double quotation marks (“...”). If quotation
marks were used in some verbatim quoted text, these quotation marks have been
transformed to single quotations marks ('…'). In some cases, the author wanted to
refer to a certain jargon-like term generally used by developers or the research

General Structure of this Thesis 9

community associated with a discussed topic or to refer to a term having a doubt-
ful connotation4. In these cases, the author also used single quotation marks ('…').

It is also to mention that the author is a German native speaker. In many cas-
es, it happened that the author has read German publications with interesting
passages to cite. Sometimes, even some books originally published in English
have been only available in German translation. This leads to the fact that some
citations were translated by the author. Any translation, however, imposes the risk
of – hopefully only slightly – changing the meaning of the citation. Therefore, the
author decided to mark any citation translated by himself with an asterisk sur-
rounded in brackets ('(*)') indicating the translation by the author to the reader.

General Structure of this Thesis

This thesis is dissected into four parts. Part I tries to outline the connections of
this research to other general research topics that must be considered for a tool
dealing with traceability concerns in the context of processes for safety-critical
projects. Afterwards, part II discusses the main research topics of interest for this
thesis. These are rationale management and requirements traceability. In part III,
the problems surfaced in part I and II are picked up again to outline how these
problems can be solved by the innovative concepts of PROVEtech:R2A. Last but
not least, part IV provides a synthesis of the results achieved and an outlook,
where new ideas about further possible research are outlined.

4 Above, e.g., the author used the connotation 'facts' to indicate that 'facts' in research

are not necessarily absolute facts but are often bound to a certain paradigm. If such an
paradigm is replaced by a new research paradigm, a considerable portion of 'facts' pre-
viously believed as true becomes invalid, obsolete or at least doubtful (e.g., cf.
[Fe86]).

I. General Context and Theories

He who loves practice without theory is like the sailor who boards ship
without a rudder and compass and never knows where he may cast.

Leonardo da Vinci

This part shall provide the fundamental understanding of most core concepts
involved in the construct of ideas leading to this thesis and its results. Conse-
quently, the following chapters provide an overview over the major research
fields having influence on the outcome of this thesis. If employed, requirements
traceability can be seen as a crosscutting concern of all development activities.
Correspondingly these chapters strive a considerable set of very different general
research disciplines.

Stepping into any research topic of considerable depth often implies a steep
entry curve for any reader being non-expert of the research domain. One of the
problems is that topics are often manifold interconnected making it difficult to
find a good start. The author has tried to flatten the entry curve by starting with
chapters with lower entry barriers. These are the chapters that are more independ-
ent of the other chapters. With the understanding and argumentation collected in
the first more independent chapters, the further chapters build on the previous
chapters and then have lower entry barriers.

In this thesis, the model concept is an essential foundation, since different
types of models are referred to in different theories. Correspondingly, this part
starts with a general discussion on the model concept and related terms needed at
later discussions (ch. I.1). This is followed in ch. I.2 by a general discussion
about developing embedded systems in general. A certain category of embedded
systems, called safety-critical embedded systems, demand special concerns about
quality, because malfunctions in these systems can involve significant fatal con-
sequences. Correspondingly, special standards for development processes (ch.
I.7) have evolved to ensure quality of the developed systems. One central demand
are especially rigid demands for requirements traceability. As results of this the-
sis arose in the context of companies involved in the automotive domain, a spe-
cial ch. I.2.3, discusses specific peculiarities of the automotive domain. Even
though the concepts of the developed R2A tool in principle can be applied to any
development project, some of the features provide special help in embedded
projects of the automotive domain. This is, e.g., the case for the special improve-
ments of supplier management (see ch. III.23.1), as the automotive domain is a
domain with very extensive and deep chains of suppliers.

B. Turban, Tool-Based Requirement Traceability between Requirement and Design Artifacts,
DOI 10.1007/978-3-8348-2474-5_2, © Springer Fachmedien Wiesbaden 2013

12 I. General Context and Theories

Ch. I.3 and ch. I.4 then provide general introductions into the theories of
software engineering and systems engineering. Both theories' concepts are an
integral part of current development process standards such as the quality stand-
ards applied for safety-critical embedded systems (ch. I.7).

In ch. I.5, current requirements engineering and management (REM) theory
is discussed. The traceability concept is a nascent of this theory. Corresponding-
ly, the sub ch. I.5.7 also discusses the traceability concept in the context of REM-
theory and explains concepts needed in the following chapters of this part. An
extensive discussion of the traceability concept is then performed in ch. II.10 of
part II.

Concerning the transition from requirements to design, the author considers
this an especially difficult traceability problem, because this transition is a transi-
tion from the problem space description (requirements) to the solution space
description (design) implying a considerable semantic gap between both. There-
fore, this thesis lies a special focus on this topic. Ch. I.6 outlines design with its
concepts and theories that are important to understand the problems of traceabil-
ity concerning this transition. Instead of concentrating on a specific modeling
paradigm or method related to software or systems engineering, this chapter ra-
ther tries to outline several general theories about design that describe the role of
design and how design emerges from designers' thinking.

After the previous chapters have outlined fundamental concepts of different
general theories building the theoretical groundwork of this thesis, ch. I.7 de-
scribes process standards to be fulfilled by organizations developing safety-
critical embedded systems. Due to its extent and complexity, the outlined process
standards cannot be described in full depth. Instead, after a general overview is
provided, the engineering processes concerning requirements and design with
their traceability demands are described in detail. In this way, the author derives
important demands, which the tool-approach described in part III must fulfill in
order to conform to the standards.

Last but not least, ch. I.8 refers to findings from practice of embedded engi-
neering that should be kept in mind considering a practice-oriented solution for
traceability in the context of design.

I.1 The Model Concept 13

I.1 The Model Concept

We can only make a model of a fact in the world we live in,
i.e. the model must be essentially related to the world we live in

and what's more, independently of whether it's true or false.
Ludwig Wittgenstein (*)

“Models are a fundamental concept of our world's handling. All scientists

and engineers use and create models to prove universal evidences for and to find
more detailed information on their speculations. Often models mark intermediate
step on the road to new artifacts as bridges, cars and mobile telephones. In Soft-
ware Engineering the importance of models is even higher, because they not even
represent the intermediate steps, but the endpoints of our work: a specification
but also a program is a model” [LL07; p.3 (*)].

Stachowiak [St73] found several general properties that models have in
common with each other (the following statements are taken from [LL07; p.5-6]
and [BR07b; p.4]):
• A purpose (or purposes),
• A reference to the original, also called mapping characteristic5 [LL07; p.5],
• Abstraction of certain qualities of the original, also called shortening charac-

teristic6: A diversity of relationships can exist between model and original
emerging by the model's usage purposes [BR07b; p.4],

• A pragmatic characteristic: “Under certain conditions or problems, models
can supplement the original” [LL07; p.6 (*)];
Fig. 1-1 shows the connections between original and its model according to

[LL07; p.6] and [St73]. Together three kinds of properties can be distinguished:
• Essential properties (also called non-neglected) are the properties of the

original considered in the model.
• Preterated properties (also called neglected) are properties of the original not

considered in the model.
• Abundant properties are properties in the model, not present in the original.

These properties emerge from the nature of the model7 (Simon [Si06; p.113]
calls this the implicit logic of the sign system).

5 In German: Abbildungsmerkmal
6 In German: Verkürzungsmerkmal
7 Considering the photo of a person, preterated properties of the person would be its

weight, name, type, whereas the quality of the photo paper or the photo's format would
be abundant properties (cf. [LL07; p.6]).

14 I. General Context and Theories

Figure 1-1 Properties of original and model [LL07; p.6 (*)]

These properties distinctions lead to two fundamental problems that should
always be considered when working with models:
1. Due to the preterated properties, “models are always a 'simplification, a kind

of idealization' of the aspects to be modeled. … We choose for our model
these characteristics of the reality that we consider essential for our purpose.
In complex situations … this act of already distinguishing the essential from
the non-essential must be at least partially an act of judgment, often of politi-
cal or cultural judgments. And this act must then necessarily base on the intu-
itive thinking model of the model constructor” [We76; p.202 (*)].

2. On the other hand, abundant model properties can lead to erroneous conclu-
sions about the original. “The implicit logic of the sign system resp. symbols,
representations, languages, texts, formulas, etc., are in general different to
the represented phenomena or items; If both are mixed up, the danger arises
that peculiarities of the observation method (resp. the observers) and its re-
sults are considered instead of the observed fact” [Si06; 113 (*)].
Generally, two different model types exist according to [LL07; p.5] (also cf.

[St73], [Mo04; p.64f]):
• Descriptive models describe already existing connections or systems.
• Prescriptive models are manuals for the construction of, e.g., systems.

In the context described here, both types of models occur. Thus, e.g., a SW
documentation is a descriptive model, whereas a model as basis for model based
code generation represents a prescriptive one. Following these interpretations, a

I.1 The Model Concept 15

SW design model can be first a prescriptive model determining the structure of
the code to develop. After coding has been finished, however the model would
become descriptive. Later in ch. I.7, it is shown that a similar connection may
exist in the area of process models and that users of process models should be
aware of possible misinterpretations sparked by an inadvertent transformation of
descriptive process models into prescriptive process models.

Due to these possible interpretation ambiguities where the real character of a
model is not absolutely clear, Schefe [Sch99; p.132] asks for abandoning mean-
ing from the model concept in software engineering except its clear meaning
emerges from the usage context [Sch99; p.134] (see also [Mo04; p.65]). In fact,
as the discussion in ch. I.7.3.1 shows, these dangers of interpretation and uncon-
scious shift of meaning can happen.

The main purpose of a model is the communication of ideas and concepts
[Mo04; p.171]. Correspondingly, attention must be paid for conclusiveness of the
modeled ideas. In this context, it seems legitimate to speak of a certain aesthetics
models should have [Kr95; p.43]. Ch. I.6.1.2 again discusses model esthetics in
connection with SW architectures.

Concerning system and software development, models have some special
characteristics. In more complex development processes, at least two kinds of
models must be considered ([De04], [Br07a]):
• A model8 for the targeted system.
• A model for the development project's processes.

This thesis deals with both kinds. In the context of design (but also a bit in
requirement engineering) the first mentioned model kind is essential. When pro-
cess standards as SPICE (see ch. I.7) or process related concepts such as tracea-
bility are discussed, the second kind is equally essential.

Often, strict formal semantics are also observed as an obstacle to designers
([Sch83], [HA06a]). As further discussed in ch. I.6.2.3 and ch. II.9.4.2, this is
especially the case in earlier phases of design, or when designers encounter sig-
nificantly complex situations where no solution covering all aspects can be found
at once. In this context, some designers (cf. [AMR06], [Kr95; p.49], [Go99],
[Go95]) emphasize that especially sketching is important because it produces
ambiguity, a widening of the problem scope and general uncertainty about the
final solution as nourishment for designers' creativity to bring up new solution
ideas (see ch. I.6.2.3).

8 In most practice, not one model but several models exist. This is the case, because

different models with different semantics are often employed at different levels of ab-
straction. Perhaps it is better to say that it should be the goal to have a model of the
system.

16 I. General Context and Theories

I.2 Embedded Systems Development

Grey, dear friend, is all theory and green is the golden tree of live.
J. W. v. Goethe (*)

Most of the topics and interrelations discussed in this thesis are not really limited
to the embedded systems development market, but the special conditions of the
embedded area force a much stronger need for employing some of the later de-
scribed concepts and techniques. Therefore, before beginning with other more
specific topics a short introduction into this very complex field shall be given.

I.2.1 Definition and Context

Embedded systems – or better embedded control units (ECUs) – are computer
based systems embedded into a bigger surrounding technical (total) system (au-
tomobiles, airplanes, power plants, consumer electronics etc.) often also referred
as the context of an ECU. In most cases, ECUs perform complex control, regula-
tion, observation and data processing activities on physical-mechanical compo-
nents with decisive impact on functionality and performance of the complete
system (cf. [Sch05], [Ge05; p.5]).

ECUs itself mostly work very integrated into the complete system so that
users are usually not really aware of the ECUs itself, but the bigger processes or
technical components are somehow controlled by humans [Ge05; p.5]. Nonethe-
less due to its broad range of employment from very small systems as RFID9
chips to normal day-life devices (CD-players or washing machines) to high tech-
nology devices (air planes or computer tomographs), over 90 percent of electron-
ic components are embedded systems. This means that of 8.3 billion produced
processors in 2002, 8.15 billion were used for embedded systems whereas only
150 millions of processors were part of ordinary computers [Sch05; p.2]. Due to
the diversity of usages for embedded systems, the embedded market is still one of
the fastest growing markets [Sch05; p.2].

I.2.2 Characteristics

The fact of being embedded in a higher technical system leads to a set of charac-
teristics different to ordinary computers [Sch05; p.3ff], [Ge05; p.5f].

9 Radio Frequency Identification

I.2 Embedded Systems Development 17

An ECU's primary source of interaction is not humans but the surrounding
processes or technical components. Humans indirectly influence ECUs by con-
trolling the processes and devices they are integrated, but, primarily, ECUs re-
trieve input by sensors and perform output by actuators integrated into the sur-
rounding system. Accordingly to the special purposes ECUs often fulfill, the
ECUs in most cases have specialized hardware (HW) specifically designed for
efficiently fulfilling their purposes.

Since the surrounding system mostly is an electronic, physical-mechanical,
chemical or biological device or process, developing ECUs has a strong need for
interdisciplinary development efforts such as systems engineering discussed in
ch. I.4.

Ordinary computer systems can be described as interactive systems. This
means, the computer system actively determines the interaction process with the
environment. Whenever an interactive system needs input for further processing
the system prompts the user for input and proactively synchronizes with the envi-
ronment.

ECUs on the contrary react more on the settings and changes of the envi-
ronment. They are therefore called reactive systems. This difference has signifi-
cant influence on their behavioral determinism. Interactive systems can be more
seen as non-deterministic (e.g., interactive systems decide on their own how to
schedule different tasks), whereas ECUs have well defined input and reaction
relations with mostly strict temporal interdependencies derived from the needs of
their surroundings. Three implications can be deduced from this fact:
• At first, Scholz emphasizes that “the different characteristics of both system

types must be considered when adequate techniques, methods or tools are
developed” [Sch05; p.4 (*)].

• Secondly, SW designs of reactive systems can heavily rely on the very well
defined and researched concept of state machines. Since state machines are
deterministic and have a complete formal semantics (other to, e.g., the se-
mantics of activity diagrams in UML), they can be properly used for formal
requirements specification, their early simulation, verification and complete
code generation providing very positive effects on complexity handling
[Ma08a; p.19] (see also [MB05]).

• Unfortunately, the temporal interdependencies force ECUs to obey timing
limits. In this context, ECUs are often referred as real time systems. Real
time systems can be distinct between systems that must obey their timing
rules at any time (so called hard real time) and systems that should obey their
timing rules as good as possible with exceptions allowed (so called soft real
time) [Do04; p.3], [Sch05; p.4].

18 I. General Context and Theories

Another not yet explicitly mentioned demand for ECUs is their functional
correctness. Different to programs running on ordinary computer systems, errors
in already delivered ECUs cannot be easily fixed by users installing updates.
Instead, expensive product recalls are necessary to fix those problems.

In many application contexts, such as medical equipment, space, aviation,
nuclear power plants, production lines or automotive, system malfunctions and
other defects can cause more severe consequences such as threats to life or physi-
cal condition. Such systems are called safety-critical. Constructing safety-critical
systems demands enforced efforts on avoiding or at least diminishing the proba-
bility of malfunctions, other defects, or fatal consequences. Two factors are the
central means to achieve this goal:
1. Explicit consideration in the design of these systems (e.g., providing redun-

dant system parts).
2. Employing development processes ensuring high quality of the resulting sys-

tem.
Concerning the first point, it is to say that this thesis speaks about design,

but more on a higher meta-level and therefore point one will not be directly10 in
the focus of this thesis. The second point, however, is directly addressed in this
thesis, as requirements traceability is seen as an important foundation to achieve
those high quality development processes.

A fundamental principle of these processes is that their potential to ensure
high quality outcomes must be controlled in an objective way. This is achieved by
a set of standards such as the ISO 1550411 (SPICE) defining necessary character-
istics that development processes for safety-critical systems must fulfill. Corre-
spondingly, the solution proposed here must obey the criteria demanded by those
process standards. Ch. I.7 provides a description of these standards with the de-
manded criteria that are important to this thesis.

Differently to normal PC applications, ECUs are designed for a specific
purpose. To optimize costs, the principle of HW/SW Co-design12 is used, where
HW and SW are designed in parallel with high interdependencies between each
other to only fulfill its specific purpose. Especially for applications with high
volumes, the so called mass market, the costs per part are decisive. Therefore

10 Indirectly it well touches this issue in the sense that design for safety-critical issues

involves decisions to be taken that impose significant consequences on the design out-
come. As communication and documentation of decisions and their consequences is
one of the special concerns of this thesis, this topic is indirectly connected and this
connection is show in part III as real-world example of decision-making in embedded
projects.

11 Software Process Improvement Capability dEtermination (SPICE).
12 For more information on this topic cf. [ME01].

I.2 Embedded Systems Development 19

extreme optimization of HW costs has highest priority often leading to highly
specialized SW. This kind of SW has to deal with very tight resource restrictions
leading to a significantly higher complexity to be handled in the SW development
activities.

I.2.3 Embedded Development in the Automotive Domain13

Technical complexity of electronics and software in the automotive
industry is similar complex as avionics and aerospace.

Today, cars are the mass production product with the strongest
cross-linking of separate computers at the smallest space.

Meanwhile, more than 90 % of all functions are realized with
support of software. The quality of a car is substantially

determined through the quality of electronics and software.
For this reason, software quality has become a central competitive factor.

[HDH+06; p.267-268 (*)]

“Modern premium automobiles contain by now up to 100 ECUs, with increasing
tendency accompanied by approx. 3 kilometres of cable and approx. 2000 plug
connectors. In these ECUs, SW with more than 600 000 lines of code regulates
numerous functions and their cooperation. ... In this way, the value creation
changes significantly in Automotive construction. 90% of the innovation in cars
are driven by electronic components, thereof 80% software“ [Sch05; p.12f (*)].

At present as in the near future, the proportion of software (SW) and SW-
based ECUs in everyday products increases exponentially [Br06], (also cf.
[CFG+05], [KCF+04], [HDH+06; p.267]) and this increase is accompanied by a
growth of development complexity. Correspondingly, developing these SW-based
ECUs meanwhile has a central strategic importance for the automotive industry.

The automotive domain has some special conditions imposing special chal-
lenges for embedded systems engineering. Generally, the following special chal-
lenges can be identified playing significant key-roles in automotive embedded
development (cf. [Br06], [Gr05], [KM06], [SZ06; p.20], [Sch05; p.5]):
1. Safety-criticality: As mentioned in the chapter before, cars involve several

safety-related issues. These issues must be significantly addresses as de-
scribed in the chapter above.

2. Costs: As cars are mass-market products with high unit volumes, costs play a
decisive role. Thus, proportional manufacturing costs dominate the price. In
this way, ECUs' costs are also under strong pressure. The proportional manu-

13 Parts of this chapter base on [TWT+08].

20 I. General Context and Theories

facturing costs of ECUs are mainly dominated by HW costs. This leads to
highly cost-optimized HW with minimal HW resources concerning memory
calculation power, and other components. Correspondingly, software must of-
ten be fitted to handle these, often leading to higher complexity and unnatural
solutions in the software design [SZ06; p.20], [Sch05; p.5].

3. Quality: Buying a car involves significant costs for the customer. In conse-
quence, cars are intended for long product life-cycles of about 25 years
[SZ06; p.20]. Correspondingly, cars must provide a high overall quality, espe-
cially if they are premium products.

4. Hard or at least weak timing restrictions14: Reasons can be physical require-
ments for exact timing (e.g., when controlling motor injection), extremely
cost optimized HW where strong resource restrictions lead to strong demands
for timing; or safety-related issues (e.g., exact timing of inflating airbags dur-
ing crash situations).

5. Strong cross-linking of ECU systems: Increasing cross-linking of vehicle
functional features leads to increasing cross-linking of ECUs15. Such features
are typically realized by a collaboration of several ECUs, leading to higher in-
terdependencies between ECUs. ECUs in automotive development are usually
an integrated system consisting of HW, SW and mechanical components
[MHD+07; p.91]. In most cases not one ECU handles a certain function in a
car, but several ECUs in interplay with each other realize a certain function.
Thus, the different ECUs can communicate with each other using communica-
tion protocols such as Controller Area Network (CAN), Local Interconnect
Network (LIN), Media Oriented System Transport (MOST) or Flexray. In
summary, the interconnected ECUs can be seen as distributed systems with
distributed control logic and changing control hierarchies [Ge05; p.5].

6. High demands on inter-organizational collaboration: The development of a
strongly cross-linked car system can only take place in collaboration with the
car manufacturers (Original Equipment Manufacturers (OEM)) and heteroge-
neous chains of suppliers.

7. High numbers of variants: Today, the buyer of a car has the choice between
hundreds of options being partly connected to each other (e.g., different mo-
tors can be combined with different gearboxes) [SZ06; p.9]. As a plus, cars

14 Mostly, not all timing restrictions of hard real time systems are strict. Some functions

may also have weaker or even no timing restrictions.
15 A typical scenario might look like this: A car crash triggers crash sensors which acti-

vate several airbag ECUs and a crash management ECU (CM-ECU). The CM-ECU
sends an 'Unlock_Doors' signal to all door ECUs, requests the position from the Glob-
al Positioning System-ECU and sends an automatic emergency call via a Universal
Mobile Telecommunications System-ECU to local rescue organizations.

I.2 Embedded Systems Development 21

are sold to very different countries with different legislation. Car systems are
designed to work as very different variants. As HW costs are a significant
constraint, ECUs' variants also involve different HW assemblies [PS05;
p.112]. In the following of this thesis, this point – although it is important – is
neglected. This topic could be a topic for further research basing on the re-
sults of this thesis.

From the development viewpoint, two fundamentally different perspectives
on ECUs with partly different requirements for them can be observed:
• The car manufacturers (OEMs) are engaged in how the complete car system

is assembled and how its parts work together to fulfill the intended require-
ments of the car. From the OEM perspective, the complete system 'car' is in
the focus and this system is divided into several layers of sub systems, where
the individual ECUs are only some parts of a complete system 'car'. The
OEM, thus, mainly cares for partitioning and mapping of the functions and
other technical issues on the different ECUs as subsystems, whereas the ac-
tual development of the ECUs is performed by its suppliers16. Thus, for the
OEM the focus lies on best possible specification of the ECUs' requirements
as basis for supplier management and the later integration of the developed
ECUs into a complete system car, including extensive acceptance testing
[SZ06; p.19]. Thus, OEMs are more concerned with what is also called sys-
tems engineering (see ch. I.4) and supplier management.

• The suppliers must then use the OEM's specification of the ECU to design
and develop a system with the software. This involves systems engineering,
but also hardware17 and software engineering activities. In some cases, sev-
eral suppliers must cooperate to develop one ECU together. In these cases al-
so one supplier must manage the other suppliers.
At first, this implies that frictionless information exchange between all pro-

ject members is a critical success factor and requirement documents are the cor-
nerstones of this collaboration, since they are the central interfaces between or-
ganizational units of a project. In addition, the strong cross-linkings of ECUs
may even urge partners to employ compatible development processes. A good
step toward this goal are process standards and maturity models like SPICE
(Software Process Improvement and Capability dEtermination, [HDH+06]), its

16 In some cases, however, also the OEM develops ECUs. This is, e.g., the case for high-

ly innovative or research based systems.
17 In this thesis, the HW engineering domain is someway neglected, but it is assumed

that the principles developed here for traceability and design can be equally applied to
HW engineering. Further, the tool approach shown in part III should be equally able to
integrate with a HW engineering tool.

22 I. General Context and Theories

new domain specific adoption Automotive SPICE (cf. [HDH+06]], [MHD+07]),
or CMMI (Capability Maturity Model Integration, cf. [Kn06]). These standards
are also important for addressing safety-critical issues that must also be addressed
by additional safety mechanisms in ECUs (e.g., fail safe modes, HW and SW
redundancies) and increasing complexity put additional stress on the quality of
development processes [BHM01]. Secondly, this implies that the worlds of the
OEMs and the suppliers are in some way different and not completely compara-
ble. Thus, problems may be different in both branches18.

However, also the OEMs experience a paradigm shift towards intensified
model-based development efforts [CFG+05], [KCF+04]. Conrad et al. [CFG+05]
– interpreted by the author – describe that this model based shift consists of three
cornerstones:
• Usage of enhanced requirements engineering and management techniques.

An experience report of Heumesser and Houdek [HH04] – from formerly
Daimler Chrysler – mentions requirements specifications for the electronics
of the whole system 'car' to contain about 20 000 pages, in which the re-
quirements specifications for the single ECUs contain 200 to 600 pages.
These high numbers of requirements must be adequately handled. Addition-
ally, these requirements form a contractual basis for all further development
activities performed with suppliers (CFG+05; p.5], [RS07; p.481f]).

• Design and implementation are more and more dominated by the continuous
usage of models. “Hereby, the functionality appears in different subsequent
model representations” [CFG+05; p.5 (*)].

• Both core activities will be accompanied by verification and validation pro-
cedures to assure correctness and reliability of the developed components.
All these points show that automotive development is more and more coined

by flipping interactions between requirements specifications and design models at
different levels of abstraction interacting with each other. This, in combination
with the heterogeneous scattered development of complex, intertwined customer
and supplier relationships press for the need to ensure consistency between these
manifold different artifacts developed in the course of a car development endeav-
or. In theory, requirements traceability is seen as a distinct means for ensuring
consistency between artifacts. Sparked from these findings, two major research
goals of this thesis are requirements traceability in context with heterogeneous
design models and issues of supplier management in order to ensure consistency

18 Unfortunately, the author sometimes feels that literature about automotive embedded

systems development often neglects this differentiation. In the past, one difference has
been that OEMs mainly concentrated on the textual specification view, whereas sup-
pliers were also forced to translate these specifications into design models and code.

I.2 Embedded Systems Development 23

between the complex and heterogeneous interdependencies arising out of auto-
motive development projects.

Last but not least to mention, automotive ECUs development can be divided
into four different sub domains [SZ06; p.6, p.18f], [CFG+05; p.4]:
• Powertrain deals about control of the motor(s) and gearing.
• Chassis deals about wheels, steering, breaks, etc., but also concerns persons'

safety systems such as ABS or ESP19.
• Body deals about electrical control of doors, lights, mirrors, wipers, seats,

heating and climate control. Here are also included passive safety systems
such as airbags.

• Telematics20 and Infotainment provide multi-media applications such as ra-
dio, CD, DVD, telephone, route navigation, video etc. to the passengers. An
essential part here is the human machine interface and possible interconnec-
tivity with devices not being original equipment of the car (e.g., cell phones,
MP3-players, car-to-car-communication, etc.).
The domains Powertrain, Chassis and Body are comparable to each other

[CFG+05], whereas the Telematics domain significantly differs from them. The
first three deal with controlling and steering of mostly physical process involved
with the usage of a car. Correspondingly, these domains rather deal with complex
calculations and complex steering functions, where relatively low amounts of
data are processed (often only a few bits indicating states of sensors and actors).
These systems often have hard real-time constraints, often involve safety-critical
issues and face the pressure for extremely cost-optimized HW. Concerning de-
velopment techniques, the programming language C and the real-time operating
system standard OSEK-OS21 are employed.

In the Telematics environment, complexity is imposed by human interaction,
high amounts of data, high demands for data processing (comparable to PC-based
systems), data bandwidth, and soft real-time constraints. Correspondingly, higher
programming languages such as C++ or Java are used and more sophisticated
operating systems – with, however, only soft real-time support – such as Mi-
crosoft Windows (Embedded) CE, Linux etc. are used. Altogether, this domain is
more minted by issues of classical computer science. As these systems directly

19 Antilock Braking System and Electronic Stability Control
20 The term Telematic is a made-up word deriving from a combination of Telecommuni-

cation and Informatik (German expression for Computer Science) [MEK03; p.1].
21 OSEK/VDX (“Offene Systeme und deren Schnittstellen für die Elektronik im

Kraftfahrzeug / Vehicle Distributed eXecutive”) is an industrial standardization board.
The board has defined the operating system standard OSEK-OS being a standard defi-
nition for the real-time operating system used in the automotive industry.

24 I. General Context and Theories

influence user experience in comparison to the other domains, where the ECUs
are more integrated into a merely technical aspect, these systems also generally
have weaker resource restrictions if this favors better user experiences (e.g., by a
better human machine interface (HMI)) or additional values (e.g., by offering
higher value components for bandwidth).

Concerning this thesis, all four domains generally are of equal interest, since
traceability most probably will be an issue in all four development domains.
However, as the first three domains have significant harder restrictions for timing
and other resources, these restrictions may be important for considerations in this
thesis. Thus, these domains with the hard restrictions are considered in the exam-
ples and case studies of this thesis (see, e.g., ch. III.12).

Altogether, it can be said that the automotive domain is very heterogeneous
with very different used techniques and technologies. However, all of them must
be concerned with high quality processes leading to high quality outcomes. In
this context, requirements traceability will play a decisive key role as it improves
consistency between work-products being essential for the high distribution of
development tasks over heterogeneous chains of suppliers.

I.3 Software Engineering (SE)

The whole trouble comes from the fact that there is so much tinkering with software.
 It is not made in a clean fabrication process, which it should be.

What we need is software engineering.
F.L. Bauer

The term software engineering (SE) was first coined in 1968 by Friedrich L.
Bauer during a conference of the NATO (North Atlantic Treaty Organization)
science committee [Ja08; p.1] as reaction on experiences that, despite gigantic
efforts, some SW projects could not be completed satisfactorily [LL07; p.46].

The central idea behind this concept is the application of engineering to
software (SW). According to Sommerville, “software engineering is a technical
discipline that deals with all aspects of software development, from the early
phases of system specification to maintenance of the system, after it has been
commissioned” [So01; p.22 (*)].

The IEEE Standard glossary of Software Engineering Terminology
[IEEE610] defines SE as:
1. “The application of a systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software; that is, the application
of engineering to software. “

I.3 Software Engineering (SE) 25

2. “The study of approaches as in (1)”.
Ludewig and Lichter [LL07; p.47] indicate that this definition is in a way

problematic and idealistic22, as engineers “more often rely on experience and
intuition than often admitted” [LL07; p.47 (*)] and propose the following value-
free definition [LL07; p.47] (see also Jackson on what he calls radical design in
software-intensive systems [Ja08; p.21]):

“SE is any activity concerned with creating or changing SW, where goals are
beyond the SW” [LL07; p.47 (*)]. This means for Ludewig and Lichter, SE is
involved anywhere, where SW is developed.
In this thesis, the following SE topics are addressed:
1. SW development process models (ch. I.7),
2. Requirements engineering and management (ch. I.5),
3. SW design (ch. I.6).

SW development process models provide a process road map for transform-
ing user needs into a SW product. A SW process can be described as “a set of
activities and thus interrelated results leading to the development of a SW prod-
uct” [So01; p.55 (*)]. The process chain involves transforming user needs into
SW requirements that are again transformed into a design. Then, the design is
implemented in code. Several quality assurance methods – as testing or code
inspections – accompany these processes [IEEE610]. Today, most process models
are iterative incremental which means that the process chain mentioned above is
iterated several times with new user feedback (changed or new requirements)
gathered from the previous developed version [MBP+04; p.425].

The main goal of a structured model is to find and establish clearly defined
processes and process interdependencies for the different development tasks
ensuring structured and reproducible process results. This thesis also deals with
how high quality SW and systems can be achieved using development process
models and standards (see ch. I.7).

Requirements specification and analysis phases are concerned with the ques-
tions of 'what the user needs' and 'what the SW has to do' (what exactly shall the
SW do?). Thus, requirements specifications are often described as the 'what de-
scription'. In recent years, a more or less independent field of research has
evolved called requirements engineering. This thesis has one of its groundings in
this area. Therefore, this topic is deeper discussed in ch. I.5. Historical experi-

22 In fact, other organizations as the software craftsmanship movement ([Mc01],

http://www.softwarecraftsmanship.org/main/about (Access: 2009/08)) challenge the
paradigm of systematic engineering in software development, but emphasize a view of
software development as a craftsmanship, where “engineering skills and scientific un-
derstanding are required to write good code software ... in combination with a prag-
matic attitude and a sense of quality”.

26 I. General Context and Theories

ence, however, has shown that describing requirements proves to be very difficult
and even the best requirements specification efforts could not avoid significant
requirement changes during development progress. As a result, SE theory has
acknowledged that requirements and their changes must be adequately managed.
Requirements traceability as discussed in this thesis can be considered as an
activity of requirements management.

After the requirements have described the problem space, software design
deals with finding an adequate solution out of the set of possible different solu-
tion alternatives (solution space). The design phase has the goal to sketch a pos-
sible solution and assess its consequences in order to find out, whether the solu-
tion is sustainable for the problem. Design mainly with about making general
decisions about the structure of a solution that is then implemented into code.

I.4 Systems Engineering (SysEng)

Systems engineering is about creating effective solutions to problems,
 and managing the technical complexity of the resulting developments.

 At the outset, it is a creative activity, defining the requirements
 and the product to be built.

 Then the emphasis switches again, to the integration and verification,
 before delivering the system to the customer.

[SBJ+98; p.7-8]

In most embedded projects, “it is crucial to consider not only the software as-
pects, but also the system aspects“ [Do04; p.29]. Since the first introduction of
the term systems engineering (SysEng) by Goode and Machol [GM57], SysEng
has evolved to a key success factor for developing large scale complex systems,
because it “deals with all aspects of developing and enhancing complex systems”
[So07; p.34 (*)] and its function “is to guide the engineering of complex sys-
tems” [KS03, p.3].

The IEEE describes SysEng as “an interdisciplinary collaborative approach
to derive, evolve, and verify a life-cycle balanced system solution which satisfies
customer expectations and meets public acceptability” [IEEE1220; p.12]. Corre-
spondingly, Douglass [Do04; p.29] defines SysEng as “the definition, specifica-
tion, and high-level architecture of a system that is to be realized with multiple
disciplines, typically including electrical, mechanical, software and possibly
chemical engineering”.

As the name SysEng and all these definitions mention, the term system plays
a decisive key role. Several slightly different definitions exist:

I.4 Systems Engineering (SysEng) 27

• According to the IEEE 610, a system can be described as “a collection of
components organized to accomplish a specific function or set of functions”
[IEEE610; p.73]. This indicates that a system is composed of components
with common goals.

• However, Müller defines a systems as “a set of elements being connected to
each other by relationships and having to pursuit a certain goal together”
[Mu00; p.48 (*)]. This indicates that a system is composed of components
coupled by relationships with each other (IEEE 610 weakly indicates this by
using the term 'organized'; cf. also [So01; p.36ff], [MHD+07; p.41]).

• Weilkiens defines a system as “a collection of system components aiming to
fulfill a shared goal. A component can be of software, hardware, mechanics”
[We06; p.10 (*)], or of any other engineering domain. This indicates that a
system can be composed of components from different engineering domains
interacting together.

• However, other definitions go beyond this view: “A system is an integrated
composite of people, products, and processes that provide a capability to sat-
isfy a stated need or objective” [DAU01; p.7]. In this definition a system is
not just consisting of components (static view), but can also involve hu-
mans23 and its processes (dynamic view).

• Geisberger24 also emphasizes that “a system as a whole has system bounda-
ries and a context” [Ge05; p.196 (*)]. This implies also a difference between
the system and its environment (elements not part of the system) and indeed
defining the system's context is a central task in SysEng [So01; p.38] leading
to the definition of Hatley et al. of system as “an organized set of compo-
nents that interact with each other and its surrounding in order to provide a
significant benefit to humans” [HHP03; p.16].

• Last, but not least, the IEC 61508 defines systems as “a set of elements
which interact according to a design, where an element of a system can be
another system, called a subsystem, which may be a controlling system or a
controlled system and may include hardware, software and human interac-
tion“ [IEC61508; part 4; p.25], (also cf. [MHD+07; p.41]).

23 Or, as Hatley et al. put it [HHP03; p.17 (*)]: “Hardware and software without humans

is not capable of anything ... When we specify systems, we must view the whole sys-
tem – its software, all hardware-technologies, the role of the humans and the question,
how humans can benefit from it”.

24 The interested reader may be invited to read Geisberger's extended comment on the
term system describing its origins from biological and sociological systems theory and
cybernetics [Ge05; p.196].

28 I. General Context and Theories

In summary, several – more or less complete – definitions of what a system
is exist. Generally a system may have the following characteristics:
1. A system is composed of several components.
2. These components can again be further decomposable systems (so called sub

systems). This gives way to that SysEng can also deal with developing cas-
cades of systems built up by sub systems, called systems of systems engineer-
ing [Ja09].

3. A system has a surrounding context (i.e. environment) it interacts with. A
part of this context and its interactions can be humans.

4. The system's components have relationships with each other and with the
context. Different kinds of relationships exist, such as 'interaction', 'composi-
tion' or 'other dependencies'.

5. Different components can deal with different engineering disciplines. In the
automotive domain, for example, systems often involve HW, software and
mechanics [MHD+07; p.41], but components can also involve other disci-
plines such as chemistry, nuclear physics, biology, etc..

6. A system may not only be composed of static aspects as components, but
also humans or processes may be aspects of a system.
SysEng is concerned with regarding the system over his complete life-cycle

from its early ideas to its disposal [We06; p.2], [DAU01; p.3]. In reference to the
International Council on Systems Engineering25 (INCOSE) [TBI04], Weilkiens
describes the focus of SysEng as the concentration “on the definition and docu-
mentation of system requirements in the early development phase, the preparation
of a system design, and the verification of the system as to compliance with the
requirements, taking the overall problem into account: operation, time, text, crea-
tion, cost and planning, training and support, and disposal” [We07; p.8].

SysEng thus emphasizes a holistic view [We06; p.2] on a system to be de-
veloped: “Detached from specific detailed knowledge, the requirements and
structure of a system, the whole life-cycle from the idea to its disposal are
planned to develop a system that meets the demands of all involved stakeholders”
[We06; p.2 (*)]. As mentioned above developing complex systems can include
several different engineering disciplines. SysEng deals with coordinating those
disciplines and their tradeoffs with each other26. Therefore, Weilkiens also speaks

25 INCOSE can be described as the most important international society concerned with

SysEng.
26 [We06; p.9] provides an example where all involved disciplines produce best possible

solutions, but lacking interactions make integration impossible. This shows that mak-
ing compromises between the disciplines and their solutions is an essential part of
SysEng.

I.4 Systems Engineering (SysEng) 29

of SysEng as a kind of meta-discipline [We06; p.11], [We07; p.8]. To achieve
this, SysEng is split into two significant sub disciplines [DAU01; p.3]:
1. The technical aspect system engineers work in also referred to as technical

knowledge domain.
2. The systems engineering management.

This means SysEng defines a general engineering and management approach
dealing with developing systems [DAU01] [Sa92], where three concepts form the
cornerstones of interdisciplinary coordination:
• Definition and management of the requirements concerned with the system

as a whole [TBI04]. According to Geisberger, requirements engineering,
therefore, is the key phase (i.e., task) of SysEng [Ge05; p.2].

• Proper identification and definition of interfaces between the methods of
different disciplines [We06; p.9].

• Proper product and project management that coordinates and moderates all
interdisciplinary efforts [We06; p.9].
In the view of Stevens et al., SysEng deals with “coping with risk and com-

plexity” [SBJ+98; p.9]. In this way, SysEng for once mainly deals with defining
the requirements and thus the system to be built. The implementation of these
definitions is then left over to the individual engineering disciplines of the sys-
tem's components. SysEng encompasses these implementation activities with
reviews and testing at the components' boundaries to ensure proper matching
interfaces. Finally, SysEng has to address significant issues of integrating the
components into the system and verifying the assembled system [SBJ+98; p.7-8].

From a similar viewpoint, Weilkiens identifies project management, re-
quirements analysis, requirements management, requirements definition, system
design, system verification, system integration, and risk management as tasks
included into a SysEng effort [We06; p.12], [We07; p.9].

Thus, according to Sage and Rouse, SysEng “is the management technology
that controls a total system life-cycle process, which involves and which results
in the definition, development, and deployment of a system that is of high quality,
trustworthy, and cost effective in meeting user needs” [SR09; p.3].

This thesis also is concerned to a certain degree with interactions of process-
es and corresponding process standards. Accordingly, SysEng must also be taken
into account. In the course of the thesis, the reader may also notice that the topic
of this thesis is even more related to SysEng than maybe originally expected,
since requirements and requirements traceability are the core interface for a close
integration of SysEng and SE activities. Sommerville points out that “system
development is an older discipline than software engineering. Since over 100
years, people have designed and built complex industrial systems like aircrafts
and chemical factories. However, the share of software-based systems has in-

30 I. General Context and Theories

creased and techniques of SE-like modeling of use cases and configuration man-
agement are used in system development processes” [So07; p.34 (*)].

Vice versa, it is to state that SE also is increasingly influenced by the SysEng
discipline, as SW often is developed for ECUs and thus it is very seldom an enti-
ty of its own, but is employed in an higher level system environment. Evidence
for this claim can be found in SE books also mentioning SysEng (e.g., Sommer-
ville provides an extra chapter [So07; chapter 2]) or standards on SW develop-
ment processes as ISO 12207 [ISO12207] or SPICE [ISO15504] embedding the
SW development processes into higher level SysEng processes (e.g., processes
ENG.2, ENG.3 in SPICE).

In his analysis of the future about SE and SysEng processes, Boehm [Bo05]
points out his view that the separation between SE and SysEng has been an artifi-
cial one rather manifested by historic development than real needs of develop-
ment. Correspondingly, Boehm forecasts that in the future SE and SysEng will
grow together to one integrated theory and one block of activities in practice.

Currently, a second slightly different notion of SysEng seems to evolve orig-
inating more from engineering practice. Here, Hood et al. [HWF+08] could get a
good catch of this opinion in their book's title “Requirements Management – The
interface Between Requirements Development and All Other Systems Engineer-
ing Processes”. In this point of view, SysEng is either considered as a kind of
synonym for requirements engineering in connection with a certain management
level above a normal SE project. This notion can be seen in the following fig. 4-1
taken from [HWF+08; p.29]. It shows all 'SysEng disciplines' from the perspec-
tive of Hood et al.. Hood et al. now propagate that requirements management
(see fig. 5-3 in ch. I.5.3) interconnects these disciplines with each other.

Figure 4-1 The view of systems engineering processes of Hood et al. [HWF+08; p.29]

I.5 Requirements Engineering and Management 31

The author can share this notion as he also sees a certain potential for re-
quirements management to be a decisive interface connecting the 'management'
activities with the requirements engineering activities (information on this notion
is also described in ch. I.5.3). From the SysEng perspective, however, the author
thinks this view neglects the originally emphasized dimension of design taking
place in SysEng processes and reduces SysEng to a 'little advanced version of
requirements engineering and management'. The similar notion is found by
Douglass [Do04; p.37-38] (and also seems to be present at Geisberger [Ge05]),
when describing the ROPES27 process model subordinating the SysEng activities
to the analysis activities as a kind of extension to requirement analysis. However,
it is doubtful, whether a 'system design' is just some kind of 'analysis'.

This only reflects the dimension of SysEng management but neglects the
dimension of a technical knowledge domain that has to consider different engi-
neering disciplines and their correlations. Thus, a good system design will
acknowledge the special needs, strength and weaknesses of each involved engi-
neering discipline so that the different parts from the different disciplines can
frictionless cooperate to fulfill the systems tasks, whereas a weak system design
might neglect some characteristics of an engineering discipline resulting in a
system with collaboration problems between the different parts.

I.5 Requirements Engineering and
Management

I believe the hard part of building software to be the specification,
 design, and testing of this conceptual construct, not the labor of

 representing it and testing the fidelity of the representation.
We still make syntax errors, to be sure; but they are fuzz compared

to conceptual errors in most systems. If this is true, building software
 will always be hard. There is inherently no silver bullet.

[Br87]

“The key to every successful software project is its ability to meet the needs of its
intended customer” [BCM+08; p.139]. Or as Endres and Rombach call it Glass'
law [ER03; p.16 (*)]: “Requirement deficiencies are the prime source of project
failures”.

27 Rapid Object-oriented Process for Embedded Systems – a kind of adaption of the RUP

(Rational Unified Process) process model [Kr99] for embedded systems development.

32 I. General Context and Theories

Thus, “in the 1970's, customer needs were documented in a customer re-
quirements specification” [HWF+08; p.39 (*)], but the process “did not have a
fancy name, it was just engineering” [HWF+08; p.39 (*)]. Starting with the
“IEEE International Symposium on Requirements Engineering” in 1993, an in-
dependent discipline called requirements engineering (RE) started to evolve
[PD04].

Pohl [Po08; p.43 (*)] gives a very concrete definition of RE: “RE is a coop-
erative, iterative, incremental process with the goal to assure that:
1. All relevant requirements are known and understood in the necessary degree

of detail.
2. The involved stakeholders gather a sufficient agreement about the known

requirements.
3. All requirements are specified conforming to documentation, i.e. specifica-

tion, instructions”.
The basic idea behind RE is that the requirements state the needs of the fu-

ture users of a system or SW28 therefore requirements form the basis (key driver)
for all development efforts. Experience has shown that requirements are not easy
to gather, because most systems are developed for people not involved in systems
or SW development. This means RE deals with bridging the user worlds (do-
mains29) and their vocabulary to the world and vocabulary of the developers.

On a second behalf, a system also has its own life cycle. All phases of the
life cycle can also raise30 requirements on the system.

Summing it all up, RE activities involve a lot of different people which must
be brought together in an optimal communication process. As Ebert states in the
preface of [Eb05], the RE theories therefore include at least “experiences in sys-
tem techniques, psychology31, business administration, marketing, product man-
agement, project management and computer science” and its application has “less
technical aspects and much more 'political' and psychological aspects than usual-
ly admitted” [Eb05; p.10 (*)].

Rupp lists seven central problems and risks addressed by RE and thus en-
countered by improper RE [RS02; p.19ff]:
• Unclear visions on the goals of the system due to different types of stake-

holders with different usage characteristics,

28 In the further, only the term system is used, but SW is also implied by this term.
29 Mostly, there is not one type of user but several user types connected to several usage

domains.
30 For example, the maintenance phase is unavoidable and requires that the developed

system fulfills requirements for good maintainability.
31 On the importance of psychology in RE see [Ru02]

I.5 Requirements Engineering and Management 33

• High complexity of the task to solve,
• Communication problems due to different languages (vocabulary) of differ-

ent stakeholders,
• Continuously changing goals and requirements (often referred to as 'scope

creep' or 'requirements creep'),
• Poor quality of requirements due to ambiguity, redundancies, contradictions

or imprecise information,
• Unnecessary or unspecified features32
• Imprecise project planning and tracking due to imprecise requirements;

The aspects mentioned above only mention one aspect of the problem. The
core problem closely connected with the problem of bringing very different
stakeholder perspectives together is the problem of inevitable requirement change
during the whole project progress, where “changing requirements is one of the
most significant motivations for software change” [JL05; p.120]. A diversity of
reasons for requirement changes exists (see the following sub ch. I.5.6), but one
of the key reasons surely is that bringing all different user perspectives together
will always lead to compromises and inconsistencies not discoverable at early
stages. This leads to the need that requirements and their changes must be appro-
priately managed. Consequently, this aspect is called requirements management
(RM) (see ch. I.5.3, cf. also [Eb05; p.18ff]: “Contents of Requirement Manage-
ment”).

The user should note that, in the English speaking community, the term re-
quirements engineering (RE) stands for both aspects described here (cf. [Eb05;

32 Also often referred as gold-plating [RR99; p.275]. The most usual source of gold-

plating are 'ideas' of developers they just implemented without feedback from the cus-
tomer. Unnecessary features increase development costs and complexity of the SW.

 Evaluations show that 45% of system features are not used (cf. [[Yo03; p.45]). An also
important role in avoiding gold-plating may play rationale management (see ch. II.9).
Haynes [Ha06b; p.66] describes a survey on the usage of rationale in an U.S. military
application project, where of 74 discrete features only 19 rendered to be “important or
of high impact”.

 However, two other factors must be considered. First of all, the SW product must also
allow possibilities for the developers to bring in their creativity. Thus, the ideas of the
developers must be considered. A good tactic is to manage developer ideas as change
requests that can be discussed with the customer ([RS02; p.23]). Secondly, as Rupp et
al. point out, in certain situations (e.g., when the product aims at a market leading po-
sition), [RS07; p.113f] excellent products must also grasp unknown customer wishes
as enthusiasm factors (In German: Begeisterungsfaktoren). This indicates that gold-
plating can also be useful in certain situations as long as it is some conscious, con-
trolled process.

34 I. General Context and Theories

p.VII]), but the author agrees with other authors ([Eb05], [RS02], [HWF+08])
that the aspect of managing requirements should be emphasized in the term33.

Thus, in the following, the author will speak generally of requirements engi-
neering and management (REM) and he will only use the term RE if he directly
refers to aspects of requirements engineering, and requirements management
(RM) when directly referring to aspects of RM.

As some indications show, REM seems to emancipate as a separate disci-
pline apart from computer science theory. This is especially true in the embedded
domain, where REM must be an interdisciplinary approach to integrated aspects
of mechanical engineering, electronics engineering and computer science [Ge05]
containing also significant overlaps with the SysEng discipline. Humans and the
handling of requirement information are a central issue of REM. In this aspect,
REM seems also to be a promising field for information science, because certain
parts of REM theory like user interface design already have a strong focus in
information science.

Last but not least, it should be mentioned that not all developed systems are
necessarily driven by requirements [HHP03; p.33]. As an example, the consumer
market is rather driven by market changes resulting in extended requirement
changes. Requirements analysis and other REM techniques, however, can also
prove helpful in these areas (see also [BCM+08; p.139]).

I.5.1 The Term 'Requirement'

There are two things success in every respect rests upon.

The one is that purpose and object of the task are correctly determined.
The other, however, consists in finding the actions leading to this final object.

Aristotle (*)

Before different concepts of REM are introduced, the term requirement and its
characteristics shall be defined. The IEEE Standard Glossary of Software Engi-
neering Terminology defines a requirement as [IEEE610; p.62]:
1. “A condition or capability needed by a user to solve a problem or achieve an

objective”.
2. “A condition or capability that must be met or possessed by a system or sys-

tem component to satisfy a contract, standard, specification, or other formally
imposed documents.”

33 A quite good summary about the historical development of the terms Requirements

Engineering, Requirements Management and the historical causes for the confusing
usage of the different terms is provided by [HWF+08; p.39-41].

I.5 Requirements Engineering and Management 35

3. “A documented representation of a condition or capability as in (1) or (2)“.
Geisberger [Ge05; p.2] defines the term very similar, but instead of the term

user she uses instead of user the term stakeholder giving the definition a wider
scope. This notion is more accurate, because also stakeholders exist being not the
users of the system34, and these stakeholders also raise requirements. Hatley et al.
[HHP03; p.29ff] provide a collection of other possible sources for requirements.
Among these a lot of different stakeholders exist:
• The customer: the person or organization ordering and paying the system

development.
• Users: any person really using the system.
• Managers: managers in house of the developing party. These people are

mostly concerned about cost optimization and, e.g., reuse.
It is to emphasize that requirements do not alone arise from the customer,

but among others the following sources of requirements exist: the users35, man-
agers of the developing company, industrial standards, the development process
and many other.

Current REM theory distinguishes two fundamental types of requirements:
• Functional requirements (FR),
• Nonfunctional requirements (NFR), also referred to as quality attributes

[BCK03], [Bo00b];
A FR is concerned with a functional aspect of a system. The scope of a FR

generally is very specific. Thus, FRs are mostly very concrete, its implementation
can be directly localized in code, and testing the SW for its fulfillment is relative-
ly simple.

NFRs are requirements “not specifically concerned with the functionality of
the system” [KS98]. They specify a quality property and / or constraint of a prod-
uct [Eb05; p.298]. In his comment in [RS07; p.259f (*)], Hruschka points out that
he would rather prefer the term “required constraint”, since he defines NFRs as
“everything constraining the freedom of the designer in fulfilling the functional
requirements”. Mostly, NFRs refer to a so called quality attribute as, e.g., perfor-
mance, usability, scalability or maintainability36 (see [RS07; p.272]).

The scope of a NFR mostly is very general referring to the system to be built
as a whole. Therefore, NFRs are significantly more difficult to specify, implement

34 For example, the stakeholders paying for a system are seldom the users of a system.
35 The users (people using the system/SW) are mostly different to the customer (person

or company ordering and paying for a system/SW).
36 These are also called the “ilities” [Fi98]. However, also some more detailed differenti-

ations exist in literature. The interested reader may look at [CY04], [RS07; p.256],
[Eb06; p.98f].

36 I. General Context and Theories

and to test than FRs (for more specific information see [CNY+99], [CY04],
[RS07; p.259]). In practice, FRs are often identified and specified in a relative
fast fashion [Mo04; p.336], whereas NFRs are often neglected, even though they
have a decisive influence on the overall success of a project [Mo04; p.337]. Of-
ten, projects miss important goals if one or even several important NFRs have
been neglected37 ([RS07; p.259f], [RS02; p.264], [Mo04; p.337]).

In [HR02; p.86 ff], Hruschka and Rupp provide a good overview of the dif-
ferent kinds of FRs and NFRs encountered in a project (see fig. 5-1). The inter-
esting part of this view is that NFRs are not just limited to the real requirements
of a system, but it is also acknowledged that the environmental settings pose
important constraints on a project. These constraints can be the future usage envi-
ronment of the system – often referred to as the context of the system –, but also
organizational aspects, as demands on used development processes or manage-
ment related context of the project in the organization, are important key success

37 A colleague of the author working at a different company was once hired to perform

system archeology on a system developed by a near shoring contractual project where
the original system supplier refused any further maintenance support on the system.
The reason was that the developed system turned out to be very slow and not main-
tainable. Even though the system was intended to run on one computer, the designers
of the system chose to use CORBA (Common Object Request Broker Architecture) as
a communication middle ware to connect all different components of the system. In
this way, the designers probably thought to achieve an open architecture flexible to
later changes. As, however, the system just was intended to run on one computer, the
communication middle ware proved to be an overhead causing low performance. Ad-
ditionally, the flexibility of decoupled components lead to the effect at the developing
company that the different project developers used their favorite programming lan-
guage for their components to develop leading to a mixture of different programming
languages used for the different components. This finally resulted in a system not be-
ing maintainable. By addressing on the one side NFRs about flexibility and maintaina-
bility through the decision to use CORBA, the drawbacks on the performance NFRs
were neglected. Finally, the flexibility achieved by the decision for CORBA inadvert-
ently lead to developers disregarding the maintainability NFRs by individually choos-
ing their programming language at will. As a result, the company lost the project and
the customer. The customer in need for the system was forced to spend significant ex-
tra money to find out all aspects about the system in order to start a new endeavor for
developing a running system. Ironically, due to the high losses of the failing project,
management decided to save money in the new project by assigning a far-shoring
company to develop the new system, even though the near-shoring approach disclosed
significant communication problems and significant loss of control over the project. In
retrospect, it might have been a far better and less expensive idea to directly hire a few
well-paid, but also well-trained near-by developers with short communication paths
and a significantly better control of the project by the customer.

I.5 Requirements Engineering and Management 37

factors for a project. These aspects should not be neglected as important sources
for NFRs.

As mentioned above, it is especially important to not oversee some im-
portant NFRs, since they often determine the success of a project. Rupp et al.
provide here the valuable expression of quality scopes: “A quality scope defines a
limited set of defined quality characteristics” [RS02; p.270 (*)]. Such quality
scopes are – among others – standards such as [ISO9126] or [ISO25000], the
'Volere Template' propagated by the Robertsons [RR99] or the FURPS38 model
developed by Grady and Caswell at Hewlett Packard [GC87; p.159] or 'Plan-
guage' [Gi05], (see also [Em10]). These scopes have the advantage of providing
structured listings of quality aspects that can be used as check lists for systemati-
cally perusing them, thus identifying and specifying (not forgetting) any im-
portant NFR.

Besides finding, properly specifying, implementing and testing all relevant
NFRs is crucial for project success [RS02; p.264]. Since NFRs do not represent
concrete functionality, NFRs are often minted by malleable terms and weak crite-
ria [Mo04; p.352] especially difficult to handle, often leading to intangibly speci-
fied and thus untestable NFRs39.

Figure 5-1 Functional and nonfunctional requirements [HR02; p.86 ff]

38 Functionality Usability Reliability, Performance Supportability. Later evolved to

FURPS+ ([Gr92]), where '+' reminds that additional requirements as design, imple-
mentation, interface and physical constraints must be considered. FURPS+ is widely
used in the IT industry (e.g., by the Rational Unified Process (RUP), (cf. [Kr03],
[Kr99; p.142])). Eeles [Ee05] describes how FURPS+ is used by IBM in context of the
RUP.

39 Therefore, significant parts of literature to REM are concerned with handling NFRs. A
good starting point for research information is found in [CY04].

38 I. General Context and Theories

Generally, in order to achieve testable requirements, REM theory propagates
that for each requirement also the verification criteria should be equally specified.
If then no concrete verification criteria can be found for a requirement, strong
indications exist that a requirement is not testable and thus realization of the re-
quirement is not sure [RS02; p.71ff, p.293-336]. Process standards as described
in ch. I.7, thus, also explicitly demand that testability of any requirement must be
ensured by specifying verification criteria.

To tackle these problems, Rupp et al. propose using an approach they call
IVENA40 [RS07; p.459], [RS02; p.271ff]. IVENA describes the idea that NFRs
with their verification criteria being considered as very accurate in a project are
collected in a structured data system, where developers of a new project can sys-
tematically search for and retrieve propositions for specified NFRs and their
verification criteria for a project. A further possible cognate heuristic may provide
the application of requirement patterns [RS02; p.337-385] (concerning patterns
see ch. I.6.2.4). Requirement patterns intend to give support for identifying and
documenting recurring requirement problems. The pattern structure includes
requirements and its verification criteria. An interesting application of a require-
ment pattern, e.g., might be addressing the NFR 'access control' as pattern, as it
has high degrees of recurring requirements such as demands for user authentica-
tion, password control or rights management.

Both experience-based approaches may provide an interesting leverage to
improve tackling the problem in the long run41, but they are no help for concrete
situations, where such collected expert knowledge infrastructures are not yet
present. Literature about software architectures theory proposes handling NFRs
that are difficult to tackle by deriving concrete scenarios42 that are verifiable

40 In German: Integriertes Vorgehen zur Ermittlung nicht-funktionaler Anforderungen

(Integrated Approach for non-functional requirements elicitation). The approach bases
on collecting NFRs and other related information (e.g., testing criteria, test cases)
specified in other (older) projects in a database repository ordered by quality topics.
Now, the requirement engineer searching for a good specification of a NFR can re-
search the database for suggestions used in the other projects.

41 It is interesting to note that both methods in some way can also be considered in the
context of rationale management (see ch. II.9). In this context, both approaches could
be seen as a way to collect information about a decision process, whose results are lat-
er reused in a new project.

42 As an example, an ECU in an Automotive project contains the NFR: “The system must
have good performance.”. Such an NFR is not testable, because it is too vague. How-
ever, the NFR can be used to derive the following concrete scenarios for the intended
performance:

I.5 Requirements Engineering and Management 39

(verification criteria can be defined) [BCK03; p.78-95], [Bo00b; p.34ff],
[PBG04; p.82ff], [Mo04; p.339, p.352].

Some REM theory proposes handling NFRs by transforming them into (ex-
pressing them through) several functional requirements [Pi04; p.99], [PKD+03].
As scenarios are closely related to the use case concept being a heuristic for re-
quirement documentation (see ch. I.5.4), it is very likely that both theories mean
the same at this point.

A further important point here to consider is how FRs and NFRs impose an
influence on software design. In connection to SW architecture, Eeles [Ee05]
claims the existence of 'architectural requirements': “An architectural require-
ment, in turn, is any requirement that is architecturally significant, whether this
significance be implicit or explicit“. This implies at least that also requirements
may exist with no relevance to the architecture. It turns out that the SW architec-
ture is hardly dominated by FRs. Instead, NFRs impose the main influence on the
SW architecture [BCK03; p.72f], [PBG04; p.72], whereas FRs are then mainly
con-sidered in the detailed design or the code.

Concerning implementation, it is to note that the actual accomplishment of a
requirement is better than the demand imposed by the requirement in order to
guarantee it is actually fulfilled in any situation [HHP03; p.32]. This is especially
the case, when it involves tackling NFRs, as it is more difficult to guarantee them
for any situation (e.g., this is especially the case for performance requirements.).

A further aspect to be considered in the context of requirements is that re-
quirements form the contractual basis for development [Eb05; p.18; p.268ff] (see
also [BCM+08; p.139]). This issue is discussed in detail in ch. I.7.2.2.

Last, but not least to mention, in order to have a high quality requirements
specification, REM theory also has formulated a set of quality criteria each re-
quirement should fulfill. The following listing orients on Pohl [Po08; p.222 (*)],
but the same (or, at least very similar demands) are listed in any book on REM:

• Completeness: A requirement is complete if it is documented according to
fixed criteria (e.g., templates) and if its content does not contain any gaps in
relation to itself or in relation to other requirements.

• Traceability: A requirement shall be traceable to its origin, its evolution (his-
tory), its realizations in the system (design, code) and its tests.

• Correctness: The requirement is correct if the affected stakeholders
acknowledge its correctness and need to be implemented in the system.

• Unambiguity: A requirement must not allow any ambiguous interpretation.

 (1.) “Function 1 must be performed within ... ms”.
 (2.) “Function 2 must be performed within ... ms”.
 (3.) ...

40 I. General Context and Theories

• Understandability: The requirement is understandable if its content is de-
scribed as simple as possible.

• Consistency: A requirement is consistent if it does not contradict with any
other requirement.

• Testability: It must be possible to test a system whether it correctly fulfills a
requirement or not.

• Evaluated: The requirement's importance on the system to develop is as-
sessed and captured.

• Actuality: The requirements must contain the current state of the project.
• Atomicity: A requirement shall only describe one issue, fact, aspect or need.

Equally as quality requirements exist for a requirement, the following quali-
ty demands can be derived for a requirements specification as a whole (see above
for its description of meaning) [HDH+06; p.88]:
• Correctness,
• Unambiguity,
• Completeness,
• Verifiability,
• Consistent,
• Changeability

I.5.2 Phases, Artifacts and Techniques in REM

The field of REM is relatively new and no common understanding of REM has
already condensed. Thus, a lot of publications and proposals for processes, arti-
facts and techniques exist [BHJ+10]. Since all three aspects are related to each
other, this chapter tries to give a short introductory overview of these correla-
tions. However, since REM accompanies the whole development process and a
high variety of establishments to different project situations exist, this chapter
does not claim for completeness. It should further be mentioned that, due to the
high variety of different project situations REM is employed, a full understanding
of a common set of activities to be called a REM theory will most probably be
never achieved. Vice versa, it is questionable if 'a common understanding' of
REM is necessary or even useful, as SW projects vary in high degrees from each
other (and concerning SysEng even a higher variety of disciplines and project are
involved), where REM processes have significantly different appearances.

I.5 Requirements Engineering and Management 41

Figure 5-2 The Requirements Engineering framework defined by Pohl [Po08; p.39 (*)]

However, some authors, such as Pohl [Po08], give a valuable structure for under-
standing the correlations in REM. Pohl [Po08], e.g., has developed his so called
RE framework 43 (see fig. 5-2).

43 “The term RE-frameworks refers to generic models describing and structuring the

requirement processes, artifacts, organizations, and roles, or combinations of these”
[BHJ+10; p.6 (*)]. Birk et al. [BHJ+10] report that their working group could identify
about 40 different RE frameworks. Their endeavors to compare these frameworks
sparked the conclusion that “the landscape of RE-frameworks is currently still broadly

42 I. General Context and Theories

Pohl's framework [Po08] is divided into a core (middle block of fig. 5-2)
and two crosscutting activities.
The core44 consists of three major aspects:
• No system is self-contained but has an environment it interacts with, there-

fore the systems context and its interactions are important for understanding
the system itself. Pohl further differentiates four different kinds of contexts
(for details refer to [Po08; p.39ff; ch.5]) emphasizing the importance of con-
sidering each.

• The three core activities of RE consisting of requirement elicitation, re-
quirement documentation and gathering common agreement (resolving all
conflicts – also called requirement negotiation45) between all stakeholders.
This part also includes the often referred requirement analysis as character-
ized by Gerdom and Posch [GP04; p.64] as the activity of structuring, exam-
ining and prioritizing [PR09; p.129-134] the present requirements, where the
requirement analyst closely works together with the customer and the archi-
tect (see also [BGK+07; p.130]).

• The major requirement artifacts consisting of major goals, major usage sce-
narios46 (i.e. use cases) and solution oriented requirements the system shall
accomplish.
The crosscutting activities are:

• Validation has the goal to find errors that occur in all three core aspects (for
details refer to [Po08; part V]).

scattered and fragmented. Correspondingly, demand for examination and structuring of
this knowledge exist” [BHJ+10; p.7 (*)]. It should further be mentioned that Broy et
al. in [BGK+07] try to define a so called reference model for REM processes most
probably having a similar purpose as the RE framework idea. The author has decided
to sketch Pohl’s framework, since it provides a relatively compact overview of the cor-
relations important to the author in this context. The reader more interested in a de-
tailed process setup, should also refer to [BGK+07] or [BHJ+10].

44 The author tends to name this core the actual RE activities. However, as mentioned, no
common agreement on the terms has yet established on this field.

45 The purpose of negotiation is to discover missing requirements, ambiguous require-
ments, overlapping requirements and unrealistic requirements. The result of the nego-
tiation process is a definition of the system requirements, which are agreed on by re-
quirements engineers and stakeholders [SS97].

46 Ambler [Am05] recommends that requirements should at first be analyzed in breadth
(the set of feature shall be explored) and then later in depth (details of the features).
Ambler there also refers to a speech of Jim Johnson, chairman of the Standish Group,
at the XP2002 conference (see http://martinfowler.com/articles/xp2002.html (Access:
2010/06)) claiming that up-front detailed RE and modeling can lead to 80% of rela-
tively unwanted functionality, whereas only 20% of the features are often used.

I.5 Requirements Engineering and Management 43

• Management involves for Pohl all planning, steering and control activities
concerned with all three core aspects [Po08; p.46] (for details see [Po08; part
VI]). Due to the importance of this part in this thesis this topic is dealt with
in the following ch. I.5.3.
One dimension not mentioned yet is the correlation between REM and the

different development phases. As Pohl describes in [Po08; p.32], the former view
on REM was phases-driven, i.e. REM was mainly part of early development
phases involving several disadvantages leading to Jarke and Pohl’s [JP94] pro-
posal of continuous REM activities (as described in detail at [Po08; p.34-35])
during development activities.

Today, continuous REM can be called the state of the art, meaning that REM
are accompanying activities throughout the whole development life-cycle.

I.5.3 Requirements Management

Since the main subject of this thesis is a sub part of requirements management
(RM), some extra words on RM shall better illuminate this context. RM is the
activity of organizing, administrating and supervising requirements during the
whole development process [TKT+07; p.274].

Rupp et al. [RS02; p.15] emphasize that RM establishes methods that enable
the handling of unmanageable numbers of requirements in complex projects.
Among others, it permits parallel and worldwide distributed work on require-
ments.

Hood et al. define RM as “a set of activities which ensure that the require-
ments information is always up to date and can be accessed by all project staff
that may benefit from it. In other words, requirements management integrates all
relevant pieces of information from all the other systems engineering disciplines”
[HWF+08; p.35 (*)].

It should be mentioned that Hood et al. imply a different but interesting per-
spective on RM [HWF+08; p.29]. As Hood et al. define SysEng as a set of the
processes project management, quality management, risk management, configu-
ration management, version management, test management, and change man-
agement (see fig. 4-1 in ch. I.4 [HWF+08; p.29]).

Now, as Hood et al. call their book “Requirements Management – The inter-
face Between Requirements Development and All Other Systems Engineering
Processes.”, they imply that RM is the interface connecting the processes togeth-
er. Thus, orienting on fig. 4-1 in ch. I.4 from [HWF+08; p.29], fig.5-3 shows
Hood's view [HWF+08] as logical derived interpretation by the author. And RM,
in fact, often uses techniques known from these mentioned management theories,

44 I. General Context and Theories

but uses them in the limited focus of managing belongings of requirements (indi-
cated by also referring RE in fig. 5-3).

The fact that RM borrows much of its techniques from the other manage-
ment disciplines is not coincidental but directly derives from the fact that these
are the fluent transition points to the other management disciplines in a way that
these management disciplines then also make use of the results of REM. An ex-
ample for this fact is that requirements prioritization [Po08; p.527-544], [PR09;
129-134] and conflict management [Po08; p.399-409] results performed as RM
activities are results that directly influence project management and risk man-
agement.

Figure 5-3 The view of Hood et al. [HWF+08] logically derived by the author.

At first glance, this now seems to be a trivial insight, but, if it must be con-
sidered that consistency between the findings of these disciplines must be en-
sured in order to have trustworthy results of the different disciplines. This sheds
light to one of the core activities of RM: Requirements traceability is intended for
being the central means to achieve this consistency.

I.5.4 Models in REM

REM is usually accompanied by the usage of models helping to analyze the prob-
lem situation. These models are often referred as analysis models (AM) as they
support analysis of found requirements in order to discover contradictions or
inconsistencies thus indicating missing requirements and thus directly supporting

I.5 Requirements Engineering and Management 45

requirements elicitation. Design models are discussed separately in the chapter
about design ch. I.6.

According to Sommerville [So07; p.204], user requirements should be for-
mulated in natural language, since they need to be understood by humans being
no technical experts. More detailed system requirements47, however, can be ex-
pressed in more technical ways.

In this way, a widely used technique is to support documentation of the sys-
tem specification as a collection of system models or AMs. AMs can be catego-
rized as descriptive models, since their main goal is to describe the facts por-
trayed by the requirements. AMs can here be seen as a different view to the ordi-
nary specified requirements. In some projects the analysis model is part of the
requirements specification in other projects it is a separate artifact.

A special case is the so called use case driven approach (see [Co00]). Use
cases describe usage scenarios of the product to develop. These use cases often
consist of a relatively simple schematic drawing such as described by the UML48
use case diagram in addition to a template based textual description of the use
case (the UML only standardizes the use case diagram but formulates no concrete
demands for the template). For further detailing of the use cases so called scenar-
ios are modeled, where in many cases one use case is described by several sce-
narios, e.g., being modeled by UML sequence diagrams. In this way, use cases
can be seen as a kind of hybrid between a textual requirements specification with
a seamless starting point for analysis with AMs. Use cases provide a good means
for grouping the textual requirements through their use case template. However,
Cockburn [Co00; p.28ff] remarks that use cases admittedly document and struc-
ture requirements, but this is only the case for a certain portion of the require-
ments (Cockburn [Co00; p.28ff] estimates one third). Thus, for example, details
for external interfaces, data formats, business rules, complex formulas or NFRs
are very difficult to cover.

Originally, use cases have been intended to improve communication (i.e.
understanding) between user domain experts of the customer not familiar with
computer science and SW developers not familiar with the user domain.

Before this, computer science oriented lingo was often used where under-
standability, however, was difficult for none-computer science specialists.
Through use cases, SW developers are forced to be more geared to the language

47 In ch. I.7.2.2.1, the differences between user and system requirements are described

and how they can be compared to the German concepts of 'Lastenheft' and
'Pflichtenheft'.

48 Refer to Booch's first hypothesis [ER03; p.25]: “Object model reduces communication
problems between analysts and users”.

46 I. General Context and Theories

of the users. In this way, the language monopole as well as the critical faculties is
left to the users.

Due to these advantages, a better fitting of the developed system to the real
needs of the users can be achieved. Correspondingly, the technique of eliciting,
structuring and documenting requirements using the use case concept has suc-
ceeded in nearly all development areas except for purely technical systems
[RS02; p.212f]. Such a case is the automotive domain, where technical textual
requirements specifications in combination with formal specification models are
preferred over use case approaches. A cause for this may be that at automotive
system development, the language barriers described above do not exist in this
form, because the customers are often equally accustomed to technical descrip-
tion languages as the developers are.

Groß et al. [GDM+10] report an empirical evaluation result comparing use
case specification technique with functional specification techniques usually used
in the automotive industry. As basis for the comparison an “Automotive Door
Steering Device” has been the target for specification. The authors came to the
conclusion that the use cases approach lead to a more complete requirements
specification as it discovered and covered more project goals. On the other side,
the functional specification approach provided more specific and thus better un-
derstandable requirements for the developers.

Concerning REM-techniques in the automotive domain, Weber and
Weisbrod [WW02; p.23] emphasize: “Although most specification activities are
still document-based, a growing number of specifications require complex mod-
els, such as executable analysis models, system and software design models, and
HMI49 models”. Thus, in these cases often more formal domain specific lan-
guages such as state machines can be used. These languages have the advantage
that through their better defined semantics more explicit content and content of
higher information can be specified. For example, state charts have the following
advantages compared to pure textual descriptions [Do04; p.317f]:
• Precision: Due to the concrete formal semantics, misinterpretations are al-

most impossible.
• Model generation: Due to its deterministic and complete semantics, an exe-

cutable requirements model or executable program code can be generated.
• Verifiability: Through its mathematical semantics, early model analysis, sim-

ulation, or model execution is possible.
In this way, such formal description techniques are used in combination with

adequate tools (such as Matlab Simulink, Matlab Stateflow [Matlab] or ETAS
ASCET [ASCET]) to analyze extensive parts of the functional requirements of an

49 Human Machine Interface

I.5 Requirements Engineering and Management 47

automotive system. These AMs can be used to simulate the behavior in early
design phases as executable prototype. In later phases, these models can be used
to directly generate the source code implementation. In this, way these AMs
seamlessly also become DMs and the code but significantly avoid redundancies.
As these techniques allow handling extended parts of the functional requirements
often implying significant complexity in their interdependencies, these techniques
can be a significant means to early reduce development complexity and quality
risks. At the moment, however, these techniques are not capable of modeling a
complete system. Thus, still significant parts of ECUs must be developed in con-
ventional system and software development techniques. If those techniques are
then used, then design activities must additionally find ways to properly integrate
these parts into the complete system (see ch. I.6.6.1 for a further discussion).

Last but not least to mention, the analysis phase is generally difficult to han-
dle, because on the one hand, the problem and its accompanied requirements
should be sufficiently understood and analyzed in order to avoid disapproving
surprises or inadequate designs, but on the other hand, too extensive analyzes
lead to unnecessary extra efforts and extensive redundancies necessary to main-
tain in later development iterations. Extensive analysis can lead to what Brown et
al. call analysis paralysis50 [BMH+98; p.215-218], [Ec03] describing the fact that
developers defer actions to be taken in order to perform more analysis coming to
a point where they are stuck (see also remarks of Hatley et al. [HHP03; p.53] on
criteria where and when to stop analysis and start with design). In summary, the
maxim on analysis must be to model as much as it is necessary to achieve a better
understanding of the system. As a result, any analysis method must take care of
an adequate scalability of the method. This must also be taken into account when
considering traceability to AMs.

Concerning traceability in general, AMs must also be taken into account.
The solution discussed here does not directly address this issue, but it well has
two indirect links:
1. The fact described above that parts of the FRs of automotive ECUs are de-

scribed by special tools allowing early AMs become seamless design models
and then code sparks the need to consider this in the design process. This es-
pecially involves that design is often performed using different modeling

50 Brown et al. consider analysis paralysis as a management anti pattern [BMH+98;

p.215-218] (the anti pattern concept is discussed in the course of pattern design theory
ch. I.6.2.4). A slightly different explanation of analysis paralysis is provided by
Conklin [Co06; p.8ff], who brings it in connection with wicked problems (see details
in ch. I.6.2.2). According to him, “problem understanding can only come from creating
possible solutions and considering how they might work” [Co06; p.11]. Thus, pure
analysis might automatically lead to analysis paralysis.

48 I. General Context and Theories

tools in one project. This is described in more detail in ch. I.6. The solution
discussed here to traceability also explicitly considers this in ch. III.16.

2. Generally, the tool and methodology developed here (see part III) should be
equally possible and valuable to apply for establishing traceability to AMs if
these AMs are modeled in a modeling tool supported by the tool51 described
here. In the following of this thesis, this is not explicitly discussed and may
be part of later research.

I.5.5 Separation between Requirements and Design

SE and REM theory often propagate a clear separation between requirements
specification and design (ch. I.6) meaning that the requirements must be formu-
lated design independently and must not anticipate the design. This shall ensure
as much freedom in design as possible (e.g., see Hatley et al. [HHP03; p.252] and
avoid “inextricably mixing up requirements and design” [HHP03; p.252(*)]).

However, other research has shown that requirements cannot be defined
completely design independent (see [Po08], [Nu01], [IBR+01], [PDK+02],
[PKD+03; p.142], [Yo03; p.52]) demanding a “joint elicitation and specification
of the problem and the structure” [PKD+03; p.142].

Young [Yo03; p.52] shows some examples why requirements seldom can be
specified totally independently from the system (resp. SW) design:
• Systems are often targeted for environments already containing other sys-

tems (the context). These surrounding systems have influence on the design,
since the system must interact with them. Young speaks here of the surround-
ing systems constraining the design of the new system.

• “For large systems, some architectural design is often necessary to identify
subsystems and relationships. Identifying subsystems means that the re-
quirements engineering process for each subsystem can go on in parallel”
[Yo03; p.52].

• Reasons as budget, schedule, or quality can raise needs to reuse existing
components sparking influences on the system requirements and the design.

• For systems designed in domains with strong external regulations (e.g., civil
aircraft), approved standard (certified) designs may be necessary.
Young [Yo03; p.52] calls these resulting restrictions design requirements or

design constraints. In ch. III.19, the author uses the term design constraint in a
similar notion, but the author also uses the concept to clearly separate require-

51 For example, if a UML tool such as the supported UML-Tool Enterprise Architect is

used.

I.5 Requirements Engineering and Management 49

ments from the customer and 'requirements' someway arising from previously
made decisions about the solution (design decisions). This approach is supported
by a taxonomy of both requirement types (ch. III.19).

Pohl describes similar interactions between requirements and system archi-
tecture. He comes to the conclusion that stakeholders cannot specify detailed
requirements without knowing the architecture [Po08; p.23]. As a consequence,
he and Sikora sketch a process model [PS05; p.113-114] where different layers of
requirements and design alternately interact. In [Po08; p.565-602], Pohl has fur-
ther evolved the COSMOD-RE (sCenario and gOal based System development
methOD) process model being a dedicated REM process model for developing
embedded systems according to a goal and scenario-based requirement elicitation
techniques [Po08; p.565]. The method explicitly addresses a HW/SW-Co-design
approach by defining requirements and design alternately at different levels of
abstraction. The model seems to be independent but compatible with Pohl's RE
framework (see discussions about fig. 5-2 (p.41) and fig. 5-5 (p.61)). The alter-
nating definition of requirement and design artifacts at different levels of abstrac-
tion rather resembles to the process models of SPICE or CMMI and is discussed
in ch. I.7.3.2). The difference, however, lies in its dedication to REM and the
explicit emphasis on goals and scenarios as requirement elicitation and specifica-
tion techniques.

I.5.6 The Role and Nature of Requirement Change

Who wants the world to stay as it is, does not want it to persist.
Erich Fried (*)

Lientz and Swanson [LS80] performed “a very widely cited survey” (“repeated
by others in different domains“) [BR00; p.74] characterizing four different kinds
of changes (see also [Kn01b; p.24]):
• Adaptive: Concerned with changes of the environment (e. g. new HW),
• Perfective: Concerned with changing functional and non-functional require-

ments,
• Corrective: Fixing errors. Knethen distinguishes “application faults” result-

ing from incorrect requirement documents and “coding faults” resulting from
incorrect implementation [Kn01b; p.24],

• Preventive: Concerned with changing a system to prevent errors or to im-
prove the structure of the system for future problems;
“Of these, the survey showed that around 75% of the maintenance effort was

on the first two types, and error correction consumed about 21%. Many subse-

50 I. General Context and Theories

quent studies suggest a similar magnitude of the problem. These studies show
that the incorporation of new user requirements is the core problem for software
evolution and maintenance” [BR00; p.74].

These findings are not surprising, since “requirement changes affect all ex-
isting system representations” [JL05; p.118]. Diverse factors causing require-
ments change exist (see [Po08; p.550f], [So07; p.195f], [JL05; p.120], [LW99;
p.338]):
• The problem(s) that the system is intended to solve changes due to changes

in the project's environment (market, economic, political or technological
reasons).

• During project progress, evolving deeper understanding of the problem(s) to
solve leads to new or changing requirements.

• Interviewed stakeholders stating requirements often have implicit assump-
tions and knowledge (so called tacit knowledge [Po58], [Po66]; see ch.
II.9.4.2). It is as essential as difficult to surface this knowledge. Due to the
abstractness of SW and its behavior, this knowledge often cannot be surfaced
until the stakeholders see first concrete versions of the SW not fulfilling the
needs of their implicit assumptions and tacit knowledge [Po08; p.331].

• The users change their minds due to better understanding of their needs or
new users entering the scene.

• The environment the system interacts with changes (e.g., new HW, new
processes, new and other systems).

• A new release of the system lets users discover new needs and new usage
ideas.

• Conceptual changes due to discovered none-sustainability of used architec-
tural concepts or technologies impact requirements [HWF+08; p.176].

• The project's situation concerning costs respectively budget levels, resource
situation (staffing) or schedules changes [HWF+08].
Leffingwell and Widrig [LW99; p.339] also refer to development-internal

problems causing requirement changes:
• The developers “failed to ask the right people the right questions at the right

time during the initial requirements-gathering effort” [LW99; p.339].
• The project failed to establish “a practical process to help manage changes”

[LW99; p.339]. If processes try to force stable requirement 'freezes', a
change backwater can lead to exploding situations between users and stake-
holders causing stress and rework. On the other side, uncontrolled changes
lead to chaotic, unclear project states.
Due to the high impact requirement changes have on all subsequent process-

es and artifacts, changes should be avoided, if possible. Therefore, acquiring as

I.5 Requirements Engineering and Management 51

stable set of requirements as early as possible in the project is one of the central
goals and paradigms of REM. A diversity of heuristics and techniques exists to
deal with this issue. Hood et al. [HWF+08] list the following factors, where a
structured REM process can reduce the risk of later requirement change:
• Forgotten requirements,
• Incorrect respectively contradictory requirements,
• Ambiguously formulated requirements leading to misunderstandings;

However, some heuristics in REM as “ask the right question to the right
people at the right time” [JL05; p.121] often are a matter of experience, intuition
and luck not controllable beforehand. Generally, another not yet exactly men-
tioned aspect the author wants to point out is that, unless the users see a concrete
implementation of the system, talking about requirements and the intended sys-
tem is always very abstract for the stakeholders and each stakeholder has a cer-
tain picture in his (her) mind (s)he can only insufficiently express52. As soon as a
concrete solution is visible, stakeholders can often more easily express the dis-
crepancy between the concrete solution and the picture in their head leading to
the discovery of new requirements or the need for changing requirements.

Firstly, this is closely connected to the term “unknowable requirements”
stated by Young [Yo03; p.49ff] expressing requirements not findable at project
start (see ch. I.5.1). Secondly, it describes the importance of getting feedback
from the stakeholders as early as possible in order to achieve a stable set of re-
quirements as early as possible. Prototyping53 is here the most frequently em-
ployed technique (see [RS02; p.121] for a detailed description of different availa-
ble prototyping techniques). However, techniques as prototypes have its limita-
tions and can only alleviate the requirement change problem.

“Requirements change from the point in time, when they are elicited until
the system has been rendered obsolete. Changes to requirements reflect how the
system must change in order to stay useful for its users and remain competitive
on the market” [JL05; p.120]. Or expressed in Lehman's 'first law' of software
evolution ([Le96], [LRW+97]): “A system must be continually adapted, or it will
be progressively less satisfactory in its environment” [LRW+97; p.21].

52 Boehm [Bo00a] calls this the IKIWISI (I’ll Know It When I See It) users.
53 This also refers to what Enders and Rombach call Boehm's first law ([ER03; p.17]):

“Errors are most frequent during the requirements and design activities and are the
most expensive the later they are removed.” and the close connection to Boehms sec-
ond law: “Prototyping (significantly) reduces requirement and design errors, especially
for user interfaces”.

52 I. General Context and Theories

Lehman's 'second law'54, when a “system evolves, its complexity increases
unless work is done to maintain or reduce it” [LRW+97; p.21] refers to the expe-
rience that “evolving software becomes more complex, and extra resources are
needed to preserve and simplify its structure” [Ni04; p.276]. Refactoring theory
[Fo99] can be seen as today's key answer to address this problem. Thus, changes
are often initiated by requirement change [JL05; p.118], but also other sources for
change exist. One of these sources, for example, may be rising complexity or
design erosion sparking the need for refactoring to increase quality of an artifact
as preparation for later change needs.

Taking both laws into account, Nierstrasz deduces that “requirements are not
the only input to our development process, but that legacy artifacts also constitute
an important input. Furthermore, as the artifacts evolve, requirements will also
evolve in a never ending cycle … and, as complexity increases, quality will de-
grade and productivity will decrease” [Ni04; p.276]. Nierstrasz here implicitly
also refers to two further laws of Lehman: 'Law 6' outlines that software always
underlies a continuing growth of functionality (see [Le96; p.111] for a detailed
description and the differences to the 'first law'), whereas 'law 7' states that evolv-
ing software faces “declining quality unless rigorously maintained and adapted to
a changing operational environment” [Le96; p.111].

Changes always imply high deterioration risks of the involved artifacts
[JL05; p.120]. These risks can be diminished by a controlled change management
process [JL05; p.120]. Diverse suggestions for change management processes
exist (see ch. I.7.2.7 for a change management process definition in SPICE).
Leffingwell and Widrig [LW99; p.341-347] present a “framework for change”
presenting core factors that must be considered in order to ensure a proper work-
ing change management process (see also comments in [JL05; p.121]):
• Plan for change: involves that the project's stakeholder must be acknowledge

the fact that changes occur and are necessary and thus must be open for
change.

• Baseline requirements: at certain development states, the current state of the
requirements should be baselined. Subsequent changes can thus be compared
with this 'stable version'.

• A single channel: ensures that no requested changes are forgotten and proper
planning (including the decision whether to perform or not) has been per-

54 From his research starting in 1968 till the late nineties, Lehman (cf. [Le96],

[LRW+97]) identified all together eight laws that evolutionary software (he calls them
E-type software) underlies. Only the important subsets for this discussion are referred
here, as the other laws are difficult to discuss without the proper context leading to ex-
tended distraction away from the scope of this discussion.

I.5 Requirements Engineering and Management 53

formed before implementing the change. In larger projects, often a Change
Control Board (CCB) [PR09; p.144f] [VSH01; p.184f, p.216] performs this
action. A good description on details about a CCB such as how to be orga-
nized, statutes, involved stakeholders, etc. are provided by Wiegers [Wi05;
p.315-327].

• Change control system: collects and administers change requests “allowing
the stakeholders to track and assess the impact of changes” [JL05; p.122]
(see ch. II.10.3).

• Manage hierarchically: shall ensure changes are introduced top-down avoid-
ing that changes are introduced into code neglecting potential effects on re-
quirements, design artifacts and tests55.
This framework for change is more a collection of principles (heuristics)

leaving open the actual change process. Different proposals of change processes
(see, e.g., [Po08; p.545-560] [RS07; p.426-434], [HWF+08; p.175-191], [Kn01b;
p.27-29], [So01; p.534-542], [HDH+06; p.213-219], [MHD+07; p.160-168],
[Wi05; p.305-327]) exist “with varying levels of detail and explicitness” [JL05;
p.122]. In most cases, however, details on how to perform these processes in
practice are mostly left out [JL05; p.118]. Here, the requirement change man-
agement process of Wiegers [Wi05; p.305-327] is an exception as it provides
checklists [Wi05; p.322-323] for developers to apply directly in practice.

The concrete implementation of a process should always underlie the specif-
ic individual project situations (see [HWF+08; p.190], because project individual
factors in most cases influence the change management process)56. Later, ch.

55 Knethen [Kn01b; p.24] makes here a different distinction. She claims that perfective

changes and corrective changes concerning “application faults” should be introduced
top-down, since affecting the whole system. Whereas coding faults should be intro-
duced bottom-up starting with the artifact the fault was detected and ending with the
artifact being the source of the fault. The author tends to the opinion that different
kinds of changes may include different strategies. Knethen’s proposal leaves open the
question what to perform with adaptive changes and preventive changes. The author
thinks, adaptive changes are equally requirement related as perfective changes and
should be introduced top-down, whereas preventive changes may be more a matter of
design or coding and should be introduced at the abstraction level they have their first
occurrence (e.g., a simple if in the code ensuring robustness to further changes is very
low, whereas framework-like patterns (ch. I.6.2.4) for a component to ease later
changes is more an issue of design).

56 Of course, such a process should be accompanied by a certain set of constraints and
orders from the strategic organization (e.g., company guidelines) the project is embed-
ded in. Moreover, also process standards as SPICE and Automotive SPICE (see ch.
I.7) outline a change management process (SUP.10, see ch. I.7.2.7) with a set of con-
straints for the implementation of a SPICE conforming change management process.

54 I. General Context and Theories

I.7.2.7 highlights the essential demands of the development process standard
ISO15504 for a change management process.

An essential foundation of any change management process is the need to
estimate the impact of a change. Impact analysis theory tries to provide the essen-
tial principles necessary for a structured approach on change impact estimation
(ch. II.10.3). As ch. II.10.3 shows, requirements traceability is a central means
for most impact analysis concepts.

Practice, however, shows that changes seldom have the small impact they
are initially believed to have [Wi05; p.305], [JL05; p.117]. A study by Lindvall
and Sandahl [LS98] suggests that the impact of most changes is underestimated
by a factor of three.

Boehm and Turner indicate that change also is connected to a pareto distri-
bution [Pa1897] meaning that 20% of the changes drive 80% of the costs as they
have “the most system-wide impact” [BT04; p.219].

In the experience of Reißing, up to 80% of change effort is caused by cor-
recting wrong design decisions [Re02; p.1] (also cf. [Mo04; p.90]). Lehman
[Le96; p.110] emphasizes that many of the unpredictabilities about changes are
related to what he has called the “software uncertainty principle” [Le89] describ-
ing the fact that assumptions upon which design decisions depend on can be
implicit or explicit to developers, but both kinds can get invalid due to changes.

In the author's opinion, the connection between these statements lays in the
fact that design decisions are usually taken with pending uncertainty of incom-
plete requirements. Later, new requirements and requirement changes cause sig-
nificant numbers of design decisions to get invalid57. Thus, changes often cause
the adaption of significant aspects of design decisions taken before. When these
decisions have a far reaching influence (e.g., system wide scope), change effort
and risks are correspondingly higher leading to the pareto observation of Boehm
and Turner [BT04; p.219]. As a consequence, the author is convinced that impact
estimations must find a way to adequately include decision information in order
to achieve better results. This, again, is especially important for tackling the deci-
sions involved in the 20% causing 80% of the effort.

However, estimating the possible impact of a change is not the only crucial
point. Once the decision has been made to perform a change, the change must
also be introduced consistently into all affected artifacts. This can be called con-
sistency management (cf. [BCM+08; p.121f]). Here again, the identified impacts

57 In the author's experience, design decisions often do not get directly invalid by one

change. It is rather a creeping erosion caused by several changes. Correspondingly, the
author finds the term architectural erosion used in some design literature very to the
point.

I.5 Requirements Engineering and Management 55

through impact analysis guides the way to ensuring that no affected part is for-
gotten.

Another aspect to consider is that requirement change can be foreseen to a
certain degree. Knethen [Kn01b; p.40], e.g., proposes that the change probability
of a requirement can be estimated and documented beforehand (also cf. ch.
II.10.4.2.1). With this information at hand, designers could design extra flexibil-
ity mechanisms for parts influenced by requirements with high change probabil-
ity. In the author's opinion, such strategies are usually done informally by design-
ers during design, because designers often try to keep parts flexible, where their
intuition tells them to expect later changes.

In summary, requirement change is a matter of fact and will not be avoidable
(ch. I.5.6). Further, the rapidity of change has continuously increased [BT04;
p.149] and, thus, probabilities of further growing requirement changes are very
high. One factor in this consideration is that the role of software has changed
over the years. In the early times, software was used to automate activities (e.g.,
type writing by word processing) or replace other solutions (e.g., mechanical
steering of motors by electronic steering), because software provided certain
advantages. In these cases, the scope of these software solutions was relatively
well-defined by the solution to replace [Po08; p.32].

Additionally, it is to mention that these replaced solutions often provided
concrete real world user experience, whereas software often provides very ab-
stract experiences to users58. In opposition to this, most today's projects aim to
create innovation basing on earlier created software [Po08; p.32]. In these cases,
definitive knowledge about the needed outcome of a solution is exorbitantly more
vague leading to significantly increasing rates of requirements changes.

I.5.7 Traceability in the Context of Requirements
 Management

The IEEE Standard Glossary of Software Engineering Terminology (cf. [IEEE–
610; p.78]) defines traceability by the following two definitions:
1. “The degree to which a relationship can be established between two or more

products of the development process, especially products having a predeces-

58 For example, a mechanical steering device can be opened and its mechanics can be

analyzed in a very definitive way, but a SW based ECU replacing the mechanical
steering is very difficult to analyze in an equally definitive way. Gerlich and Gerlich
[GG05; p.91] describe that SW in comparison to HW, where problem are discovered
relatively easily, rather has a characteristic of a gas or chemical.

56 I. General Context and Theories

sor-successor or master-subordinate relationship to one another; for example,
the degree to which the requirements and design of a given software compo-
nent match. See also: consistency”.

2. “The degree to which each element in a software development establishes its
reason for existing; for example, the degree to which each element in a bubble
chart references the requirement that it satisfies”.

The earliest provided definition the author could find is made by the
IEEE830-1984 ([IEEE830-84]59): “A software requirements specification is
traceable, if (i) the origin of each of its requirements is clear and if (ii) it facili-
tates the referencing of each requirement in future development or enhancement
documentation”.

Currently, the definition of Gotel and Finkelstein “has become the common
definition of requirements traceability” [Pi04; p.92]: “Requirements traceability
refers to the ability to describe and follow the life of a requirement, in both a
forwards and backwards direction (i.e., from its origins, through its development
and specification, to its subsequent deployment and use, and through all periods
of on-going refinement and iteration in any of these phases)” [GF94].

In other words, the basic idea behind requirements traceability is to describe
and track a requirement from its first occurrence (its origin) to all further consid-
ered points (design, code, tests) [Pi04; p.92].

Reading this outline of traceability concept, the ingenuous reader may grasp
a feeling that traceability is very intangible and rightful concerns about the use-
fulness may arise.

In fact, traceability mainly gathers its right for existence by two factors:
1. Consistency gaps arise between different artifacts ([Lin94], [Kn01b], [Eb05;

p.138f]). Traceability information can be seen as bridge between these gaps.
2. The inevitable fact of requirement change.

Point one refers to the problem that different artifacts are not completely
consistent to each other. Chapter II.10.2 explains this in more detail.

As already described in ch. I.5.6 above, the second point concerns with the
problem that requirement change is inevitable, but possible to handle if properly
managed. In the authors view, the key issue about proper requirement change
management deals with identifying the actual impact of a change as accurate and
as early as possible. Such attempts are called impact analysis (IA) and are de-
scribed in detail in ch. II.10.3. When a change management process such as de-
scribed in ch. I.5.6 is used, IAs provide the necessary information for estimating

59 Now replaced by [IEEE830-98] – a good description of the standard is provided by

[Sch00; p.89-101].

I.5 Requirements Engineering and Management 57

the effort of the change. If the decision was positive for implementing a change,
the IA supports the developers in consistently implementing the change60.

I.5.7.1 Traceability in Different Aspects of Development
Activities

Traceability can involve different aspects of development activities. For a better
distinction of these aspects, different terms related to the considered aspects exist.
The following description will outline these different aspects and explain the
terms used in relation to these aspects.

At first to mention, Gotel and Finkelstein [GF94] defined the terms pre- and
post-requirements specification (Pre-RS and Post-RS) traceability:
• “Pre-RS traceability refers to those aspects of a requirement's life prior to its

inclusion in the requirements specification” [GF94; p.1] (see also [Pi04;
p.93]).

• “Post-RS traceability refers to those aspects of a requirement's life that result
from inclusion in the requirements specification” [GF94; p.1] (see also
[Pi04; p.93]).
Pre-RS is useful, because it preserves the original origin of the requirement.

In case a change of a requirement comes to discussion, the project members
know which documents or stakeholders they should consult before deciding to
change the requirement.

Post-RS is useful to get the direct implementations (e.g., design, or code
files) or tests of the requirement. This can be the starting point for an impact
analysis.

The terms forward and backward traceability are closely related to this.
They describe the direction of the established traceability (cf. [GF94], [GF95],
[Wi95], [Pi04]):
• Forward traceability: means following the traces in direction to later arti-

facts (as, e.g., from the requirements to design or test artifacts).
• Backward traceability: means following the traces in direction to earlier

artifacts (e.g., from the requirements to its source (a person, customer re-
quirement, institution, law, standard, meeting protocol, etc.)).

60 In other words: Not overseeing (resp. forgetting) an impacted location. As Boehm has

already pointed out in the early 80ies [Bo82; p.40], problems discovered in late devel-
opment phases (e.g., during testing phase) are significantly more expensive to fix and,
thus, finding and fixing all impacted changes at the beginning is crucial to project suc-
cess.

58 I. General Context and Theories

Figure 5-4 Overview over different traceability terms oriented on Brcina [Br07a; p.4]

Forward traceability is useful when an impact analysis (see ch. II.10.3) of a
proposed change is made, since it helps to find all impacts of the change.

Backward traceability again refers to the basic reason for the existence of
the item in the development process. In case of an impact analysis for a proposed
change, going back to all reasons for existence of an item helps to ensure the
change conforms to all its needs, which ensures consistency.

Both concepts sound similar, but they are not the same. Knethen [Kn01b;
p.46] provides a good description of the differences: “Forward and backward
traceability does not look at traceability from the perspective of a certain docu-
ment in the way that Pre-RS and Post-RS do. Forward traceability describes
tracing documentation entities to realization documentation entities on succeed-
ing abstraction levels, whereas backward traceability describes tracing documen-
tation entities to source documentation entities on preceding abstraction levels”.

I.5 Requirements Engineering and Management 59

Forward traceability can also mean tracing a design element to its realiza-
tion in code and backward traceability vice versa; whereas Pre-RS and Post-RS
traceability are limited to the perspective of the requirements specification (see
fig. 5-4).

In the literature, an early agreement (cf. [RE93], [GF94], [Kn01b; p.46]) has
arisen that traceability should be bidirectional. In other words, traceability
should combine both forward and backward traceability and they should be pos-
sible at the same time.

When it comes to relationships of items within an artifact or between objects
in different artifacts, the terms vertical and horizontal traceability are used. Un-
fortunately, the terms are used by different authors with different meanings.

The following definition seems to origin from Ramesh and Edwards [RE93].
It seems to be preferred in literature (see [Li94], [Br07a], [Kn01b; p.43]):
• Horizontal traceability is the possibility to trace dependencies of an item to

other artifacts or models.
• Vertical traceability is the possibility to trace dependencies of an item within

one artifact or model.
Contrary to this, Bohner [Bo91] – probably orienting himself by the water-

fall model – defined the meanings in the exact opposite direction to the former
definitions. Horizontal traceability at Ramesh and Edwards is vertical traceabil-
ity at Bohner and vertical traceability at Ramesh and Edwards is horizontal
traceability at Bohner (also cf. [Kn01b; p.41-43], [Li94; p.17]). With the adop-
tion of the process standard Automotive SPICE61 (A-SPICE), this problem of
confusing the terms has additionally increased, since A-SPICE again provides
definitions of horizontal and vertical traceability with a deviating semantics to
the ones introduced above (see ch. I.7.4 for details).

Due to these incompatible usages of the terms horizontal and vertical trace-
ability, the author prefers to avoid these terms in the following. Pinheiro has
avoided these terms by using the terms inter-requirements traceability for tracea-
bility relationships between requirements and extra-requirements traceability for
relationships between requirements and other artifacts [Pi04; p.95]. These terms
seem more adequate. At the moment, however, traceability is seen beyond the
scope of requirements (e.g., there also exists traceability between a design model
and its representing source code). Correspondingly, the author prefers to use the
terms intra-artifact traceability for relationships within one artifact and extra-
artifact traceability, instead of the misleading horizontal and vertical traceability.

61 Automotive SPICE is a domain specific adaptation of the general SPICE standard.

Both standards are described in detail in ch. I.7.

60 I. General Context and Theories

Traceability also has a temporal dimension, meaning requirements change
during projects and thus also traceability relations may change. Recording and
retrieving this history is also a necessity in requirements traceability. This aspect
is called evolutionary traceability ([Br07a; p.4], [Po08; p.509]). For more infor-
mation on traceability and configuration management the author recommends
reading [HWF+08; p.114ff], [Kn01b; p.45], [Li94; p.20].

In connection with his RE framework (see also fig. 5-2 (p.41), Pohl [Po93],
[Po96], [Po08; p.42ff] also provides a model describing the evolutionary trace of
the RE process within three dimensions (see three axes in fig. 5-5):
• “The specification dimension deals with the degree of requirements under-

standing at a given time. ... Focusing on this dimension, the aim of RE is to
transform the operational need into a complete system specification through
an iterative process of definition and validation (e.g., analysis, trade-off-
studies, prototyping)” [Po93; p.280].

• “The representation dimension copes with the different representations (in-
formal and formal languages, graphics, sounds etc.) used for expressing
knowledge about the system” [Po93; p.281].

• The agreement dimension “deals with the degree of agreement reached on a
specification. At the beginning of the RE process each person involved has
its own personal view of the system. Of course, few requirements may be
shared among the team, but many requirements exist only within personal
views of the people, e.g., stemming from the various roles the people have
(system analyst, manager, user, developer etc.)” [Po93; p.283]. In the further
project progress, a specification emerges with rising agreement between the
team members.
A RE process in a development project starts at a certain initial stadium (ini-

tial input) and then meanders within these three dimensions, until it reaches the
desired output (fig. 5-5). The RE framework is interesting in the context of trace-
ability as traceability relations can be involved in any of the three dimensions.

Ch. II.10 discusses the different dimensions of the RE framework in connec-
tion with traceability.

I.5 Requirements Engineering and Management 61

Figure 5-5 The three dimensions of the RE framework [Po93; p.284], [Po08; p.42]

I.5.7.2 Traceability as an Issue of Quality

Currently, due to the above outlined significant support potential62 traceability
can offer a project, as outlined above, requirements traceability is seen more and
more as decisive quality issue of processes for developing safety-critical systems.
This is also reflected by new process standards putting more and more emphasis
on requirements traceability as seen in SPICE, Automotive SPICE, CMMI, and
IEC61508 (cf. ch. I.7).

In many projects employing one of these standards, the customer requests
the obedience of the standard as a requirement. As already discussed in ch. I.5.1,
these requirements for the development process can be seen as nonfunctional
requirements. Since this nonfunctional requirement also includes certain demands

62 In the following chapter, the author will show that this is in fact at first only a potential

not necessarily gathered by most implementations of traceability.

62 I. General Context and Theories

for requirements traceability, requirements traceability can also be seen as a
process related nonfunctional requirement for a project63.

In Automotive SPICE, discussions have been sparked, whether traceability
should even have the status of a separate support process (cf. ch. I.7.4). As trace-
ability involves many artifacts of other engineering disciplines apart from re-
quirements and also traceability between none requirement items and artifacts is
already the case (e.g., traceability between design and code), it may be even
possible that traceability further dissects from the REM scope becoming a more
exceptional position as an overall management process.

I.5.7.3 The Potential Uses of Traceability

The following listing summarizes the potential uses of the traceability concept
(also cf. [Wi05; p.332f]):
• Impact analyses (IA) of changes are one of the most important uses of Post-

RS and inter-requirements traceability (see ch. II.10.3) since it determines
the effects (items to change, efforts and costs) of the change on other re-
quirements and all subsequent requirement artifacts. It has also some im-
portance in Pre-RS traceability since it must become clear whether these
changes (especially changes of requirements effecting of former changes of
requirements) are still conforming to the original needs of the requirements'
originators.

• Pre-RS traceability supports project planning. The relevance of a require-
ment and thus its prioritization is often determined by the importance of the
source of the requirement. It is even possible that found requirements are
considered irrelevant, because the originating stakeholder is not one of the
primary target stakeholders.

• Traceability helps that all found requirements are adequately considered in
all subsequent activities of design, code and testing64. Missing traceability
links of a requirement indicate that it may be forgotten or that certain arti-
facts have not yet developed. In this case, traceability also gives important
indications about the status of a project [Wi05; p.333].

63 See also [RJ01; p.59]: “Requirements traceability has been identified in the literature

as a quality factor – a characteristic a system should possess and include as a nonfunc-
tional requirement”.

64 As shown in ch. I.7, this is even also concerning lower level requirements specifica-
tions, when REM-processes are performed at different levels of abstraction.

I.5 Requirements Engineering and Management 63

• Traceability helps to improve the consistency of all development artifacts by
making more interdependencies explicit.

• Explicit traceability relationships help in later phases of maintenance, espe-
cially when the original developers are staffed into a new project and thus
different developers must perform the maintenance effort [Wi05; p.333].

• In the same way, risks or detrimental effects caused by important developers
leaving a company are diminished because parts of their knowledge about
the connections within the project are kept in the traceability information
[Wi05; p.333].

• The traceability concept also includes the evolutionary aspect of require-
ments helping to reproduce older development situations of the project, if
needed.

• Traceability can be used to fulfill certain certification criteria. This is espe-
cially important in the field of safety-critical systems, where a certain process
maturity must be proved (see ch. I.7).

• Traceability can be used as a proof in law suits. This fact is especially im-
portant for safety-critical systems to ensure that, if an accident with fatal
consequences occurs the developers can prove they did not act carelessly.

• Present traceability information can also be an important help for reverse
engineering or integration of legacy systems.

• In a similar direction, traceability information can also help in decisions
about the reuse of components or systems in new projects [Wi05; p.333].

• Last but not least, traceability can improve testing. Firstly, the knowledge of
which tests cover which requirements helps to avoid unnecessary redundant
tests. Secondly, traceability can help to identify causes for problems found in
tests because through the traceability connections between tests, require-
ments and design (resp. code) the probable code candidates causing the prob-
lem can be easier identified.
Since the further thesis mainly concerns itself about traceability to design,

the specific uses of traceability in the context of design are now listed again (cf.
[HDH+06; p.94]):
• Ensure adequate consideration of all requirements in the design(s) (and thus

on the resulting system resp. SW).
• Support for assessing the impact of requirement changes on the design (IA).
• Support for consistent implementation of a requirement change at all affected

places (previously identified by an IA).
• Support for verification procedures: It is easier to track which requirement is

relevant for which SW module and thus must be considered by implementa-
tion and testing.

64 I. General Context and Theories

I.5.8 Deficiencies of Today's REM Practices

At the end of this chapter, it is to say that REM such as all development method-
ologies do not provide a “silver bullet” [Br87]. The following problems may be
most critical issues of today’s REM methodologies:
• No clear definition of “best practice” exists [BGK+07; p.131]. Thus, accept-

ed reference models are missing [BGK+07; p.131]. Solution attempts for this
shortcoming are provided by Broy and Geisberger ([BGK+07], [Ge05]), or
Pohl [Po08].

• Requirements are often experienced as poorly documented, too solution
oriented, incomplete, inconsistent, not implementable and not scalable
[BGK+07; p.131]. In the eyes of Sousa and Castro, most development ap-
proaches lead to requirements that are specified “in a scattered and tangled
fashion” [SC04; p.350]. This opinion leads them to propose using use cases
in combination with a NFRs framework to systematically identify and docu-
ment requirements [SC04].

• Available tools are ineffective, offer only very general concepts, are too
implementation oriented, require high administrative effort and offer low so-
phisticated visualization [BGK+07; p.131].

• No homogeneous approaches and communication media exist between prod-
uct management, research and development, marketing and distribution
[BGK+07; p.131].

• Frequent and late requirement changes are unavoidable and are often – espe-
cially in sequential processes – not sufficiently handled [BGK+07; p.131].

• According to Pohl [Po08; p.32f]65, requirement elicitation has become more
difficult, because today's systems are built on formerly developed systems.
Traditionally, it was easier to identify the real needs of a system to be devel-
oped up-front, because the goals mainly targeted to automation or partial au-
tomation of manual processes, where the workers had concrete experiences.
Thus, the processes were deeply understood. After most of these processes
have been already automated, today's development goals often aim for im-
proving already automated processes or combine them in complete innova-
tive ways. As computerized systems hide the actual complexity and business
logic from the users and only provide abstract feedback (e.g., via human ma-
chine interface controls), today's workers only have partial, abstract experi-
ences of these processes. Pohl [Po08; p.32f] also explicitly references to

65 The reader further interested in this topic may consult Pohl [Po08; p.32f], who men-

tions a few further aspects on this topic.

I.6 Design in Systems and Software Development 65

problems in the automotive industry, where long-running research endeavors
develop new complex systems in research environments (e.g., ABS or ESP66)
that must then be integrated into a real-life car system environment already
containing other complex computer-based ECUs.

• In a similar direction, Boehm and Turner [BT04; p.149] argue that up-front
specification techniques, as required by traditional RE, work quite well for
batch, sequential, non-interactive applications of the 1960 and 1970 but have
dwindling significance for applications with interactive user interfaces, be-
cause these applications involve complex, nonlinear combinations of differ-
ent user interactions. In the converse argumentation, as embedded systems
often do not have significant user interfaces, up-front specification may be a
good means for embedded systems development. On the other side, embed-
ded systems are often embedded into complex environments requiring signif-
icant complexity of the ECU's control mechanisms, which might also be dif-
ficult to specify up-front.

I.6 Design in Systems and Software
Development

Although in many fields designers quite frequently make inventions,
designing and inventing are different in kind.

Invention is the process of discovering a principle.
Design is the process of applying that principle.

The inventor discovers a class of system – a generalisation –
and the designer prescribes a particular result,

object, and source of energy he is concerned with.
[Py78; p.21]

“Design is an activity that generates a proposed technical solution that demon-
strably meets the requirements. In that process, we simulate (mentally or other-
wise) what we want to make or do, before making or doing it. We iterate until we
are confident that the design is adequate” [ER03; p.34].

66 Antilock Braking System and Electronic Stability Control

66 I. General Context and Theories

Most67 current state-of-the-art SysEng and SE theories assume that after the
requirements specification has reached a certain quality degree and before the
system (resp. SW) is implemented, a certain phase of design takes place.

This chapter gives a short introduction to this topic. However, design is a
very complex topic and this thesis is not really concerned with a detailed design
theory in the usual sense that it discusses a way how to design a specific type of
system or a specific design language as the Unified Modeling Language (UML).
In fact, the thesis rather aims at letting open a specific approach for design and is
more interested in design at a higher meta-level. In this way, the author hopes to
identify general principles and techniques that give way to identifying require-
ments a requirements-to-design-traceability-tool must obey in order to provide
value for designers. Such an attempt seems legitimate in the view of the author,
because traceability information and a tool aiming at traceability is per se a tool
working at a higher meta-level.

Nevertheless, only analyzing a higher meta-level can lead to soft, blurry and
unspecific talks. In this way, a certain 'grounding' shall be achieved by references
to more concrete techniques or facts, where and whenever it is appropriate.

At first, this chapter will introduce different phases of design in course of
applying SysEng and SE. This in mind, the next chapter shall widen the focus by
introducing some very general theories (or even to be called philosophies) about
design that describe important aspects of design and have led to certain trends in
SysEng and SE design theory, which are observable today. At the end, the author
will make a short reference to some design practices in the automotive sector in
order to identify further issues that a design traceability solution should addition-
ally consider to provide uses for automotive projects.

I.6.1 Different Design Phases in SysEng and SE

During development of ECUs, different design phases occur. In this context,
three different phases of design are of concern:

67 In fact, some agile methods such as eXtreme Programming [Be00a] seem more to

propagate a kind of architecture evolving out of the development. The heuristics is to
design the code [Be00a, p.57] as simple as it can fulfill all currently planned require-
ments (here often called stories, features or use cases). Since it is not sure that future
requirements are really implemented, the design shall not care for these requirements.
For new features really decided to implement, the old code is refactored [Fo99] until it
also fits with the new requirements. This does not mean no design is present. It is more
that the design implicitly evolves during programming – also called emergent design
[St04; p.65f].

I.6 Design in Systems and Software Development 67

• System design in the context of SysEng (ch. I.4),
• Software architecture as kind of high level design of the SW during SE,
• Detailed software design;

I.6.1.1 System Design

During SysEng phase (ch. I.4), the system design (i.e., system architecture) cares
for the general outline of the system. Douglass brings this to the point [Do04;
p.37-38]: “In multidisciplinary systems development – that is, those include
software, electronic, mechanics, and possible chemical aspects – the system ar-
chitecture is constructed early and system-level requirements are mapped down
onto the various aspects of the architecture”. So, a major concern is to adequately
partition the complete system into the parts concerned by several engineering
disciplines (SW, HW, mechanics …), to outline the interactions and interfaces
between those parts and to map (partition) the overall system requirements to the
specific parts. Douglass [Do04; p.29] names the following primary activities in
SysEng:
1. “Capturing, specifying and validating the requirements of the system as a

whole”,
2. “Specification of the high-level subsystem architecture”,
3. “Definition of the subsystem interfaces and functionality”,
4. “Mapping the system requirements onto the various subsystems”,
5. “Decomposing the subsystems into the various disciplines – electronic, me-

chanical, software, and chemical – and defining the abstract interfaces be-
tween those aspects”;
Apart from the first point, the latter points can be seen as the primary activi-

ties during system design. “In all these activities, systems engineers are not con-
cerned with the design of the discipline-specific aspects of the software or the
electronics, but are concerned with the specification of what those design aspects
must achieve and how they will collaborate” [Do04; p.29].

I.6.1.2 Software Architecture

In SW development, design is separated into the SW architecture and detailed
design.

SW architecture is the high level design of a SW performed by the archi-
tect(s). It “defines the essential structures of the software system and is the basis
for the development. Thus, it can be seen as the construction plan facilitating the

68 I. General Context and Theories

development of complex and extensive SW” [DH03; p.1 (*)]. In the view of
Douglass [Do04; p.38], “architectural design identifies the strategic design deci-
sions that affect most or all of the application, including the mapping to the phys-
ical deployment model, the identification of runtime artifacts, and the concurren-
cy model. This is typically accomplished through the application of architectural
design patterns”.

As a first definition, Bass et al. define SW architecture as “the structure or
structures of the system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them“ [BCK03; p.3].
Bass et al. provide three reasons for the importance of a SW architecture
[BCK03; p.26]:
1. “Communication between stakeholders”: “Software architecture represents a

common abstraction of a system that most if not all of the system's stakehold-
ers can use as a basis for mutual understanding, negotiation, consensus and
communication”.

2. Catalog of “early design decisions”: “Software architecture manifests the
earliest design decisions about a system, and these early bindings carry weight
far out of proportion to their individual gravity with respect to the system's
remaining development, its deployment, and its maintenance life. It is also the
earliest point at which design decisions governing the system to be built can
be analyzed”.

3. “Transferable abstraction of a system”: “Software architecture constitutes a
relatively small, intellectually graspable model for how a system is structured
and how its elements work together, and this model is transferable across sys-
tems. In particular, it can be applied to other systems exhibiting similar quali-
ty attribute and functional requirements and can promote large-scale reuse”.

The IEEE 1471 [IEEE1471] defines SW architecture as “the fundamental
organization of a system, embodied in its components, their relationships to each
other and the environment, and the principles governing its design and evolu-
tion”.

Moro characterizes SW architecture as “the carrier of knowledge” [Mo04;
p.29 (*)]. Thus, he [Mo04; p.171] considers the communication of ideas and
concepts as the main task of a design model, where conclusiveness of the mod-
eled ideas is especially important to consider. In this way, he follows the argu-

I.6 Design in Systems and Software Development 69

mentation of Kruchten [Kr95; p.43] and others that these models must also fulfill
a certain aesthetics68.

In the view of Moro [Mo04; p.171], one significant negative influence on
aesthetics is the occurrence of clones in a model. Additionally, clones are often a
symptom of copy-and-paste reuse69. Copy-and-paste reuse involves the dangers
that flaws in copied code are dispersed over all locations it has been pasted
[Mo04; p.171]. Correspondingly, current SW design literature recommends avoid-
ing code clones, except it is designed on purpose as redundant components for
addressing NFRs such as reliability (e.g., triple modular redundancy) [TCS98].
From a more general perspective, it is to say that redundancies should be general-
ly avoided throughout all development situations. As knowledge and understand-
ing of a project often get unstable very quickly (see ch. I.5.6), an extensive
amount of time is needed to reorganize and reformulate the documented
knowledge and understanding [HT03; p.24].

The problem is now is that it is easy to duplicate the knowledge represented
somewhere in specifications, processes and programs, but this invites projects to
become a “maintenance nightmare – one that starts well before the application
ships” [HT03; p.24].

As a consequence, the author agrees with the recommendation of Hunt and
Thomas [HT03; p.24-30] to obey a principle, what they call the DRY-principle
(Don't Repeat Yourself): “Every piece of knowledge must have a single, unam-
biguous, authoritative representation within a system” [HT03; p.24]. Thus, for the
following ideas and concepts of this thesis, the author has always tried to follow
this principle.

Fowler [Fo03] expresses a different view about architecture. According to
him, architecture emerges out of design (design can here also be implicit in code
and not explicitly stated via a model etc.) as a kind of shared understanding of the
developers' group consensus of what is important within the design. In this way,
architecture is a “social construct” [Fo03; p.3]. He further points out that archi-
tecture often addresses decisions that are difficult to change later. A system can

68 Bloch [Blo95; p.16] emphasizes that the “physical form or design is an unquestioned

determinant of its marketplace success”. Transferring this to engineering, the architect
must also sell his design ideas to the implementers of her/his design. Therefore, aes-
thetics may have decisive influence, whether a design is abided by a project. Some
specific advices for aesthetics in design documentation can be found in the chapter.
Clements et al. argue in the same direction mentioning that also the presentation of
ideas is important to achieve acceptance [CBB+03; p.321-323].

69 The term copy-and-paste reuse is taken over by the known anti pattern for design
[BMH+98]. The anti-pattern concept is discussed in the course of pattern design theo-
ry ch. I.6.2.4.

70 I. General Context and Theories

usually be solved in different ways. Thus, multiple architectures lie in a system
[Fo02; p.1] and the architect must decide which possible architecture is to be
followed70. Over a system's lifetime its usage and purpose can change. In this
way, what is important for the architecture may change during a system's lifetime
[Fo02; p.1]. Thus, architecture is at last all of whatever is important concerning a
system [Fo02; p.1].

I.6.1.3 Detailed Design

Detailed design is a low level design of – for instance – a module in a SW sys-
tem. It “adds low-level information necessary to optimize the final system”
[Do04; p.38]. The detailed design is performed by the developer engaged with
the implementation of a module, or component. A detailed design for a compo-
nent (module, class...) must address the following aspects (see [Do04; chapter 10;
p.589-616]):
• The structuring of the contained and handled data,
• Refactorings within the component,
• Implementation of associations to other components,
• The set of operations defined on the data,
• Visibility of data and operations,
• Algorithms used to implement those operations,
• Strategies for error or exception handling.

I.6.2 General Theories about Design

As a study of Atwood et al. [AMW02] suggests, different notions about design
exist within the design research community (cf. also [HA06a; p.74-77]). This
chapter tries to outline a few fundamental design theoretic views on what design
and its processes are about. The collection is oriented on Horner and Atwood
[HA06a; p.74-77] that, in the author's view, reflect most characteristics of design,
of which designers should be aware71. All these theories do not actually originate
in SE or SysEng theory but originate from a broader scope on a general theory of
design. It may be a matter of discussion whether these general theoretical find-

70 Later in ch. I.6.2.1.2, it is shown that this decision making process is rather arbitrary.
71 [AMW02] provides some additional views, more details and a detailed analysis of

interconnections (co-citations) between the different notions, not discussed here. Thus,
the author recommends the interested reader to read [AMW02] for further information.

I.6 Design in Systems and Software Development 71

ings can be directly transferred to SE and SysEng design, since these general
theories embrace wide scopes (as e.g., design of buildings). However, as these
chapters also show, each of the theories discussed here have already been trans-
ferred to SE or SysEng design theory by other researchers as this chapter will also
outline (the most prominent example may be the pattern concept (ch. I.6.2.4)).

An aspect of design purposely neglected by the author is design theories
about 'aesthetics'. Even though Kruchten [Kr95; p.43] or Moro [Mo04; p.171]
emphasize that also SE design has and needs its own aesthetics, the author thinks
it may be problematic to find a common understanding of this very intangible
concept within such a broad design theory. Some researchers may even object
that SW or systems design should concentrate on pure functionality, or may just
define aesthetics as a kind of attribute improving clarity in design. Indeed, the
author thinks that aesthetics may have a deeper – however very intangible – im-
pact. An indication of this deeper meaning may be the interpretation of the bad
smells concept introduced by Fowler [Fo99]. A code having bad smells actually
works; however, the developers have bad feelings about the code. Here, in the
author's experience, bad smelling code is very often connected to bad aesthetics.
On the other hand, Coggins pointed out that [Co90; p.1] (cited after [Bo94;
p.333]) “pragmatics must take precedence over elegance, for Nature cannot be
impressed” meaning that aesthetic-oriented design itself can also be a source of
complexity (or, complication) and designers should search for simple solutions to
avoid complication (cf. footnote 80 (p.77)).

I.6.2.1 Design as Symbolic Information Processing

“Design, so construed, is the core of all professional training; it is the principal
mark that distinguishes the professions from the sciences” [Si96; p.111]. Simon
[Si96] is concerned with artificial worlds (somehow constructed by humans) in
comparison to natural worlds. According to him, the manifestation of an artificial
world is an artifact. Simon [Si96; p.3] sees that an artifact reflects an adaption to
human goals or purposes that must obey natural law. Therefore in his eyes [Si96;
p.111], “everyone72 designs who devises courses of action aiming at changing
existing situations into preferred ones“. However, Simon appeals to a “profes-
sional responsibility” to “discover and teach a science of design, a body of intel-
lectually tough, analytic, partly formalizable, partly empirical, teachable doctrine

72 Taking this statement seriously, also developers just writing code without an explicit

design do also design. Similar notions are know from the agile community, where de-
sign implicitly manifests through implementation and later refactorings.

72 I. General Context and Theories

about the design process” [Si96; p.113]. As he observed most of the up-to-then
known design theories “as intellectually soft, intuitive, informal and cook-
booky73” [Si96; p.112], he tried to outline general principles for a general design
theory74 ([Si96; ch.5 (p.111-138)]: “The science of design: Creating the artifi-
cial”):
• A decision theory as a logical framework for rational choice among given

alternatives. Tang et al. [TJH07; p.5] – also interpreting Simon – refer to de-
sign as “a process of synthesizing through alternative solutions in the design
space. Reasoning to support or reject a design solution is one of the funda-
mental steps in this process”.

• Techniques for actually deducing which of the available alternatives is the
optimum. Simon explicitly remarks here that this is not about finding the best
solution, but a “satisficing” one [Si96; p.119], because “so called 'figures of
merit' permit comparison between designs in terms of 'better' or 'worse' but
seldom provide a judgment of 'best' … in the real world we do not have a
choice between satisfactory and optimal solutions, for we only rarely have a
method of finding the optimum” [Si96; p.119].

• “Adaption of standard logic to search for alternatives. Design solutions are
sequences of actions that lead to possible worlds satisfying specified con-
straints” [Si96; p.124]. Possible solution worlds are seldom unique. Research
should search for sufficient, not necessary, actions to fulfill goals.

• “The exploitation of parallel, or near-parallel, factorizations” [Si96; p.124]
means to factorize the problem into smaller independent partial problems for
easier analysis of alternatives75.

• The allocation of resources is a twofold criterion. “First, conservation of
scarce resources may be one of the criteria for a satisfactory design. Second,
the design process itself involves management of the resources of the de-

73 In the author’s opinion, this observation is still the case as most design literature still

refers to heuristics, patterns (ch. I.6.2.4) and other rules of thumb. As the next chapters
about wicked problems (ch. I.6.2.2) and Schön's Theory of Reflective Practice (ch.
I.6.2.3), etc. will show, this may be what design often is about. As design deals with
artifacts made by and for humans, it often involves social aspects inferring high com-
plexity not to be handled by plain analytical and transformational processes.

74 The author has reworded and interpreted the original principles to better fit the context
mentioned here. Simon's first version on the book dates from 1968. Even though the
book has been updated twice, some of the mentioned techniques in the original formu-
lation are not up to date. However, as this chapter shows, the underlying principles are
still valid up to now. The interested reader may read the original source.

75 See also thesis 15 by [GG05; p.43 (*)]: “If problems are resolved into partial prob-
lems, the solution will be found faster”.

I.6 Design in Systems and Software Development 73

signer, so that his efforts will not be dissipated unnecessarily in following
lines of inquiry that prove fruitless” [Si96; p.124f].

• “The organization of complex structures and its implication for the organiza-
tion of design processes” [Si96; p.131].

• “Alternative representations for design problems” [Si96; p.134] describes the
fact that problems can often be described in different ways (e.g., by different
models).
These points, sketching aspects of a universal design process, lead to a set of

characteristics of design. When looking at the points one to five, making deci-
sions appears to be the central concept of design. Rationale management (Rat-
Man) theory deals with managing decisions and how the underlying rationale of
decisions made can be recorded (ch. II.9 describes details of this research field in
connection with design). In the points one and two, Simon mainly addresses the
fact that a decision can only be made if alternatives are present. Exploring the
possible alternatives and their impact is a central concept in RatMan from start.
In fact, from RatMan perspective, Bass et al. formulate “design as a sequence of
decisions” [BCN+06; p.258]. One of the most heavily used concepts with close
connections to design rationale in the RatMan sense is the usage of patterns
[DMM+06a; p.19], but patterns also “constitute one of the most heavily used
approaches for organizing reusable knowledge” [DMM+06a; p.19]. Today, pat-
terns are organized in pattern catalogs as a source for search for standard prob-
lems and may thus be seen as today's most heavily used solution for addressing
point three. However, the pattern concept may also be seen as a kind of design
theory and is accordingly discussed in the following ch. I.6.2.4.

Problem factorization, as discussed in point four, is also an issue of RatMan.
Nevertheless, these kinds of factorizations bear a close connection to point six
which refers to a – in the author's believe – major concern in design. The high
quantities of information involved in design lead to high complexity that must be
adequately organized to enable designers keeping an overview. As the following
sub chapter about complexity shows, Simon's view of design is deeply connected
to this and his research helped laying ground for several connected paradigms
and many concepts encountered today in systems and software design theory.
Among others, hierarchic decomposition and the 'view' concept may be the most
influential ones.

Point seven refers to the problem of proper representation. Representation is
usually performed by models. As models are only abstractions, different kinds of
representations of the same facts are possible. The view concept addresses this
fact, what closes the circle back to point six and the following sub chapter.

Last but not least, point five describes a third major driver of design. As one
of the human-adaptable world's properties is finiteness, any design is limited by

74 I. General Context and Theories

the available finite resources. The relationship between resource and design can
be described as double-edged. Finite resources are involved in the production and
implementation of a design and design itself cares about the finite resources in-
volved in the described solution.

I.6.2.1.1 Complexity as a Central Force in Design

“Complexity... is the biggest factor involved in anything having to do with the
software field. It is explosive, far reaching, and massive in its scope” [Gl02;
p.19]. Furthermore, complexity is a significant factor deciding about success or
failure of a developed system or software76. Therefore, as Brooks [Br87; p.11]
states, “complexity of software is an essential property, not an accidental one”.
This means that complexity can only be mastered but cannot disappear. Corre-
spondingly, complexity must be addressed.

Empirical experiments by Woodfield [Wo79] indicate that a massive in-
crease of complexity happens during the transition between requirements (prob-
lem description) and design (solution description), where a “25 percent increase
in problem complexity results in a 100 percent increase in programming com-
plexity” [Wo79; p.76]. This can also be seen as a strong indication for a pareto
principle-like [Pa1897] connection between the problem and solution domain
showing “that the difficulty of solving a problem in software grows exponential-
ly” [Gl02; p.19]. As explanatory thesis of this fact, somebody could tend to state
that finding a pure solution for the functionality may encounter about 25 percent,
whereas preventing and handling all sorts of potentially occurring errors and
other quality criteria as flexibility or maintainability is about the other 75 percent.
From the requirement engineering perspective – where errors relate somehow to
quality aspects –, it could also be termed that software complexity is dealing with
25 percent functional and 75 percent NFRs, explaining the importance and focus
that REM theory lays on dealing with NFRs.

Another observation is provided by Glass: “Explicit requirements explode
by a factor of 50 or more into implicit (design) requirements as a software solu-
tion proceeds” [Gl02; p.19]. This expresses the observation that any solution has
a certain structure. In order to ensure proper collaboration of several parts of the
solution, the parts must fit into this structure77. These needs are the implicit re-
quirements and they can be seen as a consequence of formerly taken decisions.
The author is convinced that it will be important to also write down these re-

76 “The more complex the system, the more open it is to total breakdown” [Pe86; p.153].
77 This characteristic intuitively described here is closely connected to what is called

conceptual integrity [PBG04; p.102ff] and is discussed in the following of this chapter.

I.6 Design in Systems and Software Development 75

quirements, if they are – as those – rationally explicitly available. This problem is
a central part of the concept, the author has developed for traceability improve-
ment and discussed in detail in ch. III.19.

In his first chapter, Booch [Bo94; p.2-24] introduces complexity as the main
driver of analysis and design of SW. His argumentation reveals very close con-
nections to Simon. He [Bo94; p.2] argues that any software but software with
“very limited purpose and a very short life span”, for which it is more profitable
to dispose of it and replace it rather than to reusing it, is complex78. The “distin-
guishing characteristic” inherent in this kind of software is “that it is intensely
difficult, if not impossible, for the individual developer to comprehend all the
subtleties of its design. Stated in blunt terms, the complexity of such systems
exceeds the human intellectual capacity” [Bo94; p.3]. Booch identifies four
sources for SW complexity79:
• The complexity of the problem domain [Bo94; p.3-5] means that the problem

to be solved involves elements of high complexity resulting in “myriads of
competing, perhaps contradictory requirements”. In addition, imprecise
stakeholder wishes and inter-stakeholder-communication problems lead to
permanent change of requirements. This topic is discussed in detail in chap-
ter I.5.6. REM is today's answer to this problem.

• The difficulty of managing the development process [Bo94; p.5] arises due to
continuing rapid growth of software program size. One cause is the fact that
a fundamental task of development teams is “to engineer the illusion of sim-
plicity” [Bo94; p.5] to shield users from the complexity of the developed
systems. This, at first positive, effect has also the negative side-effect that the
illusion of simplicity also drives developers to build systems based on for-
merly developed systems leading to exponential growth of program size and
system complexity. Additionally, projects also involve growing project teams
leading to higher complexity concerning communication and coordination.

• The flexibility possible through software [Bo94; p.6] leads to manifold possi-
bilities how to find solutions, but it “turns out to be an incredibly seductive
property” for inconsistencies forcing developers to develop most of the ba-
sics of their solutions again. “While the construction industry has uniform
building codes and standards for the quality of raw materials, few such
standards exist in software industry”.

78 According to Booch [Bo94; p.3], reactive systems (he means embedded systems) have

a very rich set of behaviors. “Software systems as these tend to have a long life span,
and over time, many users come to depend upon their proper functioning”.

79 The interested reader may also read Broy and Rump providing an overview on source
of complexity [BR07b; p.3].

76 I. General Context and Theories

• The problems of characterizing the behavior of discrete systems [Bo94; p.6]
refer to that software based systems are discrete systems containing large
amounts of different variables. Along with the current value of each variable,
the address and call stack of each process and the current state of the applica-
tion is determined. Other than continuous analog systems describable by a
discrete function, such software-based systems can possibly enter uncon-
trollable different states as “in discrete systems all external events can affect
any part of the system's internal state” [Bo94; p.7]. This sparks the need for
vigorous testing, but exhaustive testing proves nearly impossible, because
developers have “neither the mathematical tools nor the intellectual capacity
to model the complete behavior of large discrete systems” [Bo94; p.7].

I.6.2.1.2 Design Means Managing Complexity

As Simon can also be seen as “pioneer of complexity theory” [EFS98; p.23 (*)],
he already emphasized the strong importance of mastering complexity in design
issues. His thoughts about complexity orient themselves on findings of Miller
[Mi56]. Miller's experiments (see also [Si96; p.66f]) on human cognition capabil-
ities indicate that average humans are capable to consider around seven plus,
minus two aspects at the same time. This leads Simon to argue “that people do
not, and cannot, consider all possible conditions, alternatives, and constraints,
and therefore cannot design an optimal course of action Rather than exhaust-
ively considering design issues, people choose satisfactory solutions based on the
information available” [HA06a; p.74].

Simon termed this bounded rationality [Si96; p.166]: “The meaning of ra-
tionality in situations where the complexity of the environment is immensely
greater than the computational powers of the adaptive system.” As a conse-
quence, humans must factorize (resp. chunk) the complexity in order to cope with
it (see point 4 above). In this context, Simon proposes to use hierarchic decom-
position to tame the complexity80 of systems as “comparatively little information

80 It is to mention that hierarchic decomposition (as, e.g., the analytic method) has been

used long before Simon. However, it seems that Simon communicated its important
function as means to tame complexity to a broader community. Today, the hierarchic
structure scheme is central for the term complexity [EFS98, p.23] used as central
property to characterize complexity as the following definition of Ebert shows [Eb05;
p.198 (*)], [Eb08; p.282 (*)]: “A system is termed as complex, if it is linked and in-
terwoven in diverse combinations. The term 'complex' is here understood as a charac-
teristic of a technical system ... containing heterogeneous components, having hetero-
geneous relations between the components, and being able to switch into different

I.6 Design in Systems and Software Development 77

is lost by representing them as hierarchies” [Si96; p.207]. Leading to what Endres
and Rombach call “Simon's law” [ER03; p.40]: “Hierarchical structures reduce
complexity” [ER03; p.40]. Due to bounded rationality, Simon also discovered
the principle that design usually not emerges in a kind of big-bang process but
evolves from stable intermediate forms81. This means that design can rather be
seen as an evolutionary process where design reaches stable states forming the
basis of evolution to the next stable state.

From this perspective, Horner and Atwood describe Simon's view on design
as “symbolic information processing and humans as goal-oriented information
processors” [HA06a; p.74] where “design involves devising courses of action
aimed at changing current situations into preferred ones” [HA06a; p.74]. Or, in
other terms, “design is viewed as a process of generating and navigating through
a state-space” [HA06a; p.74].

Concerning software development, Booch tried to analyze complexity. In his
view [Bo94; p.7], failures to master complexity have led to the effects that are
called the software crisis, but, as this state now has continued for a long time, it
may be considered as the normal state. Taking account to Simon and other re-
search results of software engineering theory, Booch [Bo94; p.10-11] derived five
characteristics of complex systems being important for software design:

states. The complexity, thus, describes the connection, i.e., collaboration of a system
and its parts as objects”. In contrast to this, Ebert also provides a definition for com-
plication [Eb05; p.199 (*)], [Eb08; p.282 (*)]: “In literature, 'complicated' is used in
the sense of difficult or embroiled (corresponding to the Latin origin complicare = to
fold together or to confuse). The term 'complicated' is used as summarizing character-
istic of a technical system that is difficult to understand, to figure out or to handle.
Thus, complication denotes the interaction of a system as object and an observer as
subject. The complication is a perceived – psychological – complexity and depends
from the observer. In this way, complication also includes difficulties in the under-
standing of graphical representations as they are often used, e.g., in the form of data
flow diagrams or petri-nets, in software development for the representation of relations
of different components (so-called visual complexity). Such graphical representations
can well create a correlation of technical and psychological complexity. The complica-
tion of a software system depends on the previous knowledge of the observer ..., on
the impression of the representation on him (her) and on the suitability of a chosen
representation for a certain problem. A mastery of complexity, as already demanded by
E. Dijkstra in 1972 in the course of the bestowal of the Turing Award, will only be
possible if the complication is actively reduced.”

81 Close connection to this seems to have Lehman's fifth law on software evolution
“Conservation of Familiarity” [Le96], [LRW+97].

78 I. General Context and Theories

1. Frequently, complex systems can be decomposed in hierarchic dependencies
with interrelated subsystems. Simon argues [Si96; ch.8 (p.183-216)]82 that hi-
erarchies and hierarchic systems can be considered as the decisive means to
provide a simplifying description of complexity, even though he admits not all
complex systems appear in hierarchical structures [Si96; p.191]83. Unfortu-
nately, such hierarchic dependencies are nearly decomposable, where “inter-
actions between subsystems are weak but not negligible” [Si96; p.197]. Also
to mention in this context, Simon [Si96; p.209] emphasizes that the discussed
hierarchic structures contain a high degree of redundancy.

2. In contrast to most science disciplines as physics, “software may also involve
elements of great complexity; however, the complexity is of fundamentally
different kind” [Bo94; p.2]. Booch refers here to Brooks [Br87; p.12] speak-
ing of arbitrary complexity84. This means that decisions concerning hierarchic
decompositions or other aspects performed by designers in order to manage
complexity are to a certain point arbitrary85, because often they could also be
performed according to other criteria leading to different outcomes [Bo94;

82 According to [Si96; p.XIII], the chapter bases on an essay originally published in

Proceedings of the American Philosophical Society, Dec 1962.
83 As an example, he describes chemical polymers as large chains or single to each other

similar or identical parts. But, he emphasizes in the same moment that this structure
can be described as a hierarchy of only one present level. Interestingly, the software
architectural style pattern 'pipes and filters' has a similar structure [BMR+00; p.54ff]
and can be most probably be seen as a kind of analogy. He even goes beyond by as-
suming that complex systems not providing an apparent hierarchical order “may to a
considerable extent escape our observation and understanding” [Si96; p.207].

84 See also Hull et al. [HJD02; p.1] providing the following comment on arbitrary com-
plexity: “The most complex systems tend to be those with software, often integrated
deep inside the system's components. The complexity of such products is limited only
by the imagination of those who conceive them”.

85 An interesting point is what Alexander (also cf. ch. I.6.2.4) says in its introduction to
his first publication on what later became the pattern concept [Al64; p.1]: “Today
functional problems are becoming less simple all the time. But designers rarely con-
fess their inability to solve them. Instead, when a designer does not understand a prob-
lem clearly enough to find the order it really calls for, he falls back on some arbitrarily
chosen formal order. The problem, because of its complexity, remains unsolved”. This
statement strikingly resembles to what Conklin calls taming a wicked problem. It may
be possible that the pattern concept is a kind of strategy to address the wickedness of
problems by proposing abstract standardized solution possibilities for forces within
wicked problems. On the other hand, what is called arbitrariness may only seem arbi-
trary but is in fact a result of a process of knowing in action as proposed by Schön (ch.
I.6.2.3).

I.6 Design in Systems and Software Development 79

p.11]. As ch. I.6.2.3 shows, parts of these decisions may even not be made by
rational reflection but by intuitive tacit knowledge.

3. “Intra-component linkages are generally stronger than inter-component link-
ages” [Si96; p.204] indicates “a clear separation of concerns among the vari-
ous parts of a system, making it possible to study each part in relative isola-
tion” [Bo94; p.11].

4. “Hierarchic systems are usually composed of only a few different kinds of
subsystems in various combinations and arrangements” [Si96; p.209]. Booch
[Bo94; p.11] analyzes here that complex systems underlie common patterns.
These patterns may involve the reuse of small components (such as cells in
plants or animals), or of larger structures (such as vascular systems also found
in both plants and animals) [Bo94; p.11]. This bears strong resemblance to the
pattern concept introduced in ch. I.6.2.4.

5. In [Bo94; p.20], Booch refers to stable intermediate forms as “proven abstrac-
tions and mechanisms” building “a foundation upon which to build new com-
plex systems” [Bo94; p.20]. “Complex systems generally evolve from stable
intermediate forms” [Bo94; p.23]86, where he explicitly mentions that the us-
age of object-models to produce systems leads to systems basing on interme-
diate forms being more open for change [Bo94; p.75].

In [Bo94], Booch has proven to be a follower of Simon's design theory. As
Booch also has been one of the founding fathers of the UML standard (cf.
[BJL98]), the principles and conclusions derived from these findings about de-
sign as a means to handle project complexity may have imposed high influence
on SW and systems design theory. Surely, other researchers may also have influ-
enced today's SW and systems design theory in equal ways.

Altogether, today's SW and systems design theory knows – at minimum – the
following fundamental principles to be obeyed by a sound SW and systems design
(see [PBG04; p.102ff], [Kn01b; p.12ff], [BR07b; p.17]), each in some way con-
nected to managing complexity:

Abstraction: “describes the generalization of facts” [Di04a; p.117 (*)]. The
usage of models and different views is “the most important toolbox” for abstrac-
tion [PBG04; p.104]. Abstraction87 helps humans to distinct unimportant facts
from the important ones, but the judgment of what is important and what unim-

86 In this context, Booch [Bo94; p.11] explicitly refers to findings of Gall: “A complex

system that works is invariably found to have evolved from a simple system that
worked. ... A complex system designed from scratch never works and cannot be
patched up to make it work. You have to start over, beginning with a working simple
system” [Ga86; p.65].

87 See also [HHP03; p.51ff] and [HHP03; p.67] for good remarks about how to use hier-
archies and abstractions in practice.

80 I. General Context and Theories

portant varies from the persons involved. Correspondingly, in development dif-
ferent models (and views) applied [PBG04; p.104].

Structure: “represents a relationship network between the individual ele-
ments of an entity as a whole. It includes a reduced view of the reckoned system
allowing the analysis of the whole. ... At the reckoning of the system, static and
dynamic structures can be differentiated” [Di04a; p.117 (*)].

Modularization: means a decomposition principle based on coupling and
cohesion88 [Di04a; p.32]. In this context, the term 'module' can be seen as “a
responsibility assignment rather than a subprogram” [Pa72, p.1054], indicating
that modularization is about grouping and assigning functional requirements to
the architecture. Ideally, modules have a strong internal cohesion but low cou-
pling, because designers should obey what Endres and Rombach [ER03; p.43]
call Constantine's law: “A structure is stable if cohesion is strong and coupling
low”. Parnas [Pa72] discusses the criteria to consider in making modularization
decisions and shows five different alternative aspects to decide on. Alas, the cho-
sen modularization criterion influences what is seen as strong cohesion or cou-
pling. Correspondingly, modularization results may differ if different modulariza-
tion criteria are chosen. With a similar meaning, Simon [Si96; p.197-204] empha-
sizes that complex systems may be approximated by a theory of nearly decom-
posable systems. Booch [Bo94] – in reference to Brooks – speaks of arbitrary
complexity: Design looks different when other decomposition criteria are consid-
ered as the most important. However, in practice, design may not be so arbitrary,
when “Conway's law” is considered [St05; p.24] which indicates an isomorphism
between organization structure and its architectures. According to Conway, de-
veloping organizations design systems in a way that represent copies of the or-
ganization's communication structures [Co68], [Ec04; p.113]. Today, strict modu-
larization oriented compositional structures are also again softened by design
theory about architectural aspects (e.g., cross cutting concerns) leading to new
compositional structures [CRF+06].

Encapsulation supports the principle of information hiding [Pa72] to obtain
higher change flexibility. The underlying assumption is that necessary changes
that only effect parts being behind an encapsulating interface are easier to imple-
ment since only these internal encapsulated parts must be changed, whereas the
latter system parts stay untouched. Encapsulation is a “central principle of object
oriented design” [PBG04; p.104] Modularization and encapsulation could be
seen as entangled twins, where “its success in making future changes easy de-
pends on having identified a right decomposition” [Be04; p.56]. Otherwise new

88 Others as Dunkel and Holitschke [DH03; p.3] call this the coherence principle, but

seem to mean the same.

I.6 Design in Systems and Software Development 81

requirements or requirement changes “causes changes that bridge several mod-
ules” [Be04; p.56]. Consequently, refactorings of the design considering new
decomposition criteria may be necessary, otherwise the software tends to decay
[Be04; p.56].

Hierarchy: In complex designs, often more abstractions exist than usually
manageable by designers. Modularization can help designers but this is often not
sufficient. A solution can be to arrange abstractions into a sequence called hierar-
chy [PBG04; p.106]. Booch refers to two fundamental kinds of hierarchies
[Bo94; p.19], [PBG04; p.107]:
• Structure: Describes the decomposition structure an item 'consists of'.
• Generalization and inheritance: Describe inheritance hierarchies, where an

item 'is a'.
Besides these 'static' hierarchies, Marwedel refers to a behavioral hierarchy

[Ma08a; p.13ff]. This refers to the point below about views. In a more general-
ized way, it may be the case that each possible view may be structured by a hier-
archy.

View partitioning describes the fact that complex systems have manifold as-
pects difficult to describe from one perspective [PBG04; p.128]. Thus, systems
can be described from different points of perspective called views, or viewtypes89.
Often, different views involve different kinds of models. Or, described in the
point above about abstraction: Different views consider different facts (aspects)
as important and thus show different aspects. The probably most known view
concept is “4+1 View Model” introduced by Kruchten [Kr95] building an essen-
tial part of the RUP process framework [CBB+03; p.344F]. The concept differen-
tiates four main views (logical, development, process and physical) in association
with one overlapping, comprehensive view (scenarios). Concerning the charac-
teristics of views, Kruchten emphasizes that his concept is rather generic and
independent from any tool or any modeling language [Kr95; p.43]. Further, the
views by themselves are neither fully orthogonal nor independent from each other
[Kr95; p.47]. Correspondingly, relations between views must also be considered,
and in fact theories like architecture documentation explicitly demand for docu-
mentation of inter-view relationships (see ch. I.6.5). Inspired by Kruchten, litera-
ture has proposed several other views. A comprehensive overview can be found in
[CBB+03; p.343-380], [PBG04; p.128-167] or [St05; p.86]. Explicitly to mention
here is UML: As it is envisioned as 'unified' modeling language, it contains dif-

89 A view is “a representation of a set of system elements and its relations to each other”

[CBB+03; p.472] (see also [PBG04; p.128]), whereas a viewtype comprises “the ele-
ment types and relation types used to describe the architecture of a software system
from a particular perspective” [CBB+03; p.472].

82 I. General Context and Theories

ferent sets of diagrams addressing structural, collaboration, behavioral, func-
tional and timing views [Do04; p.43]. From the perspective of a theoretic, formal
modeling theory, Broy and Rumpe could categorize [BR07b; p.6] several 'essen-
tial views' that may build a kind of taxonomy for all other views identified in
practice. From the practitioner's viewpoint, Bass et al. [BCK03; p.39-40] describe
how architectural structures can be identified as sources for views during a de-
sign. As indicated above to hierarchies, it is possible that different views may
follow their own hierarchic order independently from other views. Last but not
least, the question arises, whether certain views may be more important over
others. According to Starke's practical experiences, 60 to 80 percent of effort is
spent on the structural model [St05; p.88]. In the author's view, this may indicate
that indeed the structural model including hierarchical structural decomposition
may have a certain preceding importance. This assumption – supported by the
fact that historically hierarchical, structural decomposition – has been discovered
and used as one of the first principles to structure models (e.g., cf. structured
analysis and design [De78]). As a consequence, the tool introduced in part III
relies on the hierarchical, structural decomposition principles to build a skeletal
structure upon which other views can be related and structured. This principle
helps to reduce complexity as the hierarchical, structural decomposition builds
the first contact point for a designer to get into a design. Starting from this, the
designer can then enrich the structure by adding further additional views on this
basic structure. As a further plus, part III also shows how the hierarchical, struc-
tural decomposition will also build the basis for developing a new process heuris-
tic allowing to establish traceability between requirements and design as collabo-
rative process, orienting itself on Simon's ideas about design as a transgression of
stable intermediate forms.

Conceptual integrity [PBG04; p.102ff] describes the idea of thorough usage
of concepts and design decisions in the complete system in order to avoid extra
solutions and dilution of the original concepts [PBG04; p.108]. Brooks empha-
sizes the importance of conceptual integrity as “the most important consideration
in system design. It is better to have a system omit certain anomalous features and
improvements, but to reflect one set of design ideas, than to have one that con-
tains many good but independent and uncoordinated ideas” [Br95; p.42]. Not
only growth of size, but also growth of structure increases complexity [Di04a;
p.22]. Following Balzert's observation, “the stronger the shape of a structure, the
lower also is its complexity” [Ba98; p.474 (*)], conceptual integrity shall enforce
one strong structure instead of several weak structures and thus “simplicity and
straightforwardness proceed from conceptual integrity. Every part must reflect
the same philosophies and the same balancing of desiderata. Every part must
even use the same techniques in syntax and analogous notions in semantics. Ease

I.6 Design in Systems and Software Development 83

of use, then, dictates unity of design, conceptual integrity” [Br95; p.44]. Concep-
tual integrity can best be achieved if one chief architect is responsible for it
[Br95; p.42ff], [PBG04; p.108], [Ec04; p.113]. At the end to mention, conceptual
integrity refers to another general design heuristic about design [Ec04; p.116],
[PBG04; p.116]: A design should have the goal to be as simple as possible, but
not simpler.

I.6.2.1.3 Shortcomings of this View about Design

Simon's view has the advantage that it provides a sound scientific theoretical
foundation about design as a means to manage complexity. Further, the principles
described here cannot be called as 'cook-booky' but have a deep general meaning
having deeply integrated into current systems and SW design theory. However, as,
e.g., the next chapters show, Simon's design theory also has been heavily criti-
cized and challenged by findings of other researchers and practitioners.

In the author's view, this may be applicable, because Simon admittedly de-
scribes the principles to apply to achieve a good design, but does not provide a
satisfying answer on how to apply the principles. If he does, then Simon's answer
on the 'how' is a linear step-by-step, top-down approach (cf. [Bu96; p.13]). How-
ever, other authors emphasize that top-down approaches are rather an exception
[Sa05; p.276]. Empirical studies on SW design processes such as provided by
Curtis [Cu90], [Cu92] indicate that designers rather oscillate between abstraction
levels, jump through discrete system states, and develop the problem and solution
space simultaneously (also cf. [ER03; p.60], [HHP03; p.52]). Accordingly, these
findings drove Endres and Rombach to state that “the idea of a top-down design
is an over-simplification; although it may be a good way to explain a design once
it is completed” [ER03; p.60]. Hruschka and Rupp [HR02; ch.10] express the
opinion that functional aspects are rather designed bottom-up, but nonfunctional
aspects should be designed top-down. The author believes that this is also a sim-
plification of a rather situation-dependent decision process.

These findings indicate – in accordance to the author's belief – that Simon's
view rather comes from considering the end results that indeed may be structured
by the principles described here. The following chapters will now introduce de-
sign theories that might rather provide better explanations for the genesis of a
design. As it turns out, most of these theories have open space for intuition, un-
certainty or fuzzyness involved as means to explore and structure the complexity
of the problem and design space by humans. From this perspective, the 'cook-
booky 'nature (i.e., heuristics or patterns) of design theories criticized by Simon
may turn out to be an inherent property of any design's genesis.

84 I. General Context and Theories

I.6.2.2 Design as Wicked Problems

Rittel and Webber dissented from the views of Simon (cf. [Co05; p.06], [HA06a;
p.75]) by introducing the term wicked problems90 ([RW73], [RW84]) as “an al-
ternative to the linear, step-by-step model of the design process being explored by
many designers and design theorists” [Bu96; p.13]. In Simon's understanding,
design was merely seen as a linear process of analyzing a problem, defining a
solution and implementing it (cf. [Bu96; p.13], [CBV07; p.9]). “However, some
critics were quick to point out two obvious points of weakness: one, the actual
sequence of design thinking and decision making is not a simple linear process;
and two, the problems addressed by designers do not, in actual practice, yield to
any linear analysis and synthesis yet proposed” [Bu96; p.14].

Here, Rittel and Webber argued that most of the design activities address
solving wicked problems [Bu96; p.14]. Wicked problems mean a “class of social
system problems which are ill-formulated, where the information is confusing,
where there are many clients and decision makers with conflicting values, and
where the ramifications in the whole system are thoroughly confusing” ([Ch67]
quoted in [Bu96; p.14]). In contrast to “tame problems” usually occurring in
natural sciences [RW73], wicked problems – as including social aspects – can be
characterized by ten properties [RW73; p.161-167]:
1. “There is not definitive formulation of a wicked problem” [RW73; p.161]

indicates that an exhaustive formulation with all necessary information can
only be done for a tame problem, whereas the understanding of wicked prob-
lems “depends upon one's idea for solving it. … The reason is that every
question asking for additional information depends upon the understanding
of the problem – and its resolution – at that time” [RW73; p.161].

2. “Wicked problems have no stopping rule …, because the process of solving
the problem is identical with the process of understanding its nature, because
there are no criteria for sufficient understanding and because there are no
ends to the causal chains that link interacting open systems, the would-be
planner can always try to do better. … The planner terminates work on a
wicked problem, not for reasons inherent in the 'logic' of the system. He stops
for considerations that are external to the problem: he runs out of time, or
money, or patience” [RW73; p.162]. This is closely related to Simon's term

90 Buchanan [Bu96; p.14] points out that the term was taken from Karl Popper, but “Rit-

tel developed the idea in a different direction” [Bu96; p.14]. Buchanan further remarks
that the first published information on Rittel's concept has been performed by
Churchman [Ch67].

I.6 Design in Systems and Software Development 85

on satisficing solutions, both showing the inherent nature of finding com-
promises in design activities.

3. “Solutions to wicked problems are not true-or-false, but good-or-bad”, since
“many parties are equally equipped, interested, and/or entitled to judge the
solutions, although none has the power to set formal decision rules to deter-
mine correctness. … Their assessments of proposed solutions are expressed
as 'good' or 'bad', or, more likely, as 'better' or 'worse' or 'satisfying' or 'good
enough'” [RW73; p.163].

4. “There is no immediate and no ultimate test of a solution to a wicked prob-
lem” is a direct consequence of point one. Any work on a wicked problem
“will generate waves of consequences over an extended – virtually an un-
bounded – period of time”, where following works “may yield utterly unde-
sirable repercussions which outweigh the intended advantages or the ad-
vantages accomplished hitherto” [RW73; p.163].

5. “Every solution to a wicked problem is a 'one-shot operation'; because there
is no opportunity to learn by trial-and-error, every attempt counts signifi-
cantly”. As already indicated by point four, “every implemented solution is
consequential. It leaves 'traces' that cannot be undone” [RW73; p.163].

6. “Wicked problems do not have an enumerable (or an exhaustively describa-
ble) set of potential solutions, nor is there a well-described set of permissible
operations that may be incorporated into the plan” [RW73; p.164] directly
results from the ill-defined nature of wicked problems (see point one).

7. “Every wicked problem is essentially unique” describes that, “despite long
lists of similarities between a current problem and a previous one, there al-
ways might be an additional distinguishing property that is of overriding im-
portance” [RW73; p.164]. Here, the close notion to software projects gener-
ally considered as an “unique undertaking” [MW03; p.24] must be men-
tioned in the first place and secondly the connection to Alexander's pattern
concept (ch. I.6.2.4).

8. “Every wicked problem can be considered to be a symptom of another prob-
lem” [RW73; p.165]. Problems have causes. These causes can be considered
as other 'higher level' problem, where the originally considered problems are
mere symptoms.

9. “The existence of a discrepancy representing a wicked problem can be ex-
plained in numerous ways. The choice of explanation determines the nature
of the problem's resolution” [RW73; p.166]. As Simon also stated that dif-
ferent representations (now design theory says view) exist, the chosen repre-
sentation determines the found solution.

86 I. General Context and Theories

10. “The planner has no right to be wrong” [RW73; p.166]. Unlike the scientific
community, allowing hypotheses to be falsified later, designers are “liable for
the consequences of the actions they generate” [RW73; p.167].
Summing it up, “Rittel saw design problems as wicked in the sense that they

presented fundamental difficulties that could not be overcome using either strictly
scientific methods or purely automated methods” [BCM+08; p.6]. In Conklin's
opinion, “Rittel's contribution is that he distinguished a new domain of problem
type, as opposed to, say, a new way of solving complex problems. Problem wick-
edness is not about a higher degree of complexity, it is about a fundamentally
different kind of challenge to the design process, one that makes solution second-
ary and problem understanding central” [CBV07; p.3]. Or, in the words of
Coyne: “The radical point of Rittel and Webber’s characterization of design as
‘wicked problem solving’, is to instil a certain attitude and responsiveness to
research questions. Questions of design do not exist as if issued from some
source of eternal inquiry. Rittel and Webber suggest that certain questions can
now simply go unanswered, or we may riposte with a volley of counter questions,
or offer a challenge to the frame from which the problems are posed in the first
place” [Co05; p.13].
Conklin [Co06; p.14-18] provides a probably more to the point reformulation of
wicked problems characteristics:
1. “You don’t understand the problem until you have developed a solution”

[Co06; p.14].
2. “Wicked problems have no stopping rule” [Co06; p.14].
3. “Solutions to wicked problems are not right or wrong” [Co06; p.15].
4. “Every wicked problem is essentially unique and novel” [Co06; p.15].
5. “Every solution to a wicked problem is a 'one-shot operation'” [Co06; p.15].
6. “Wicked problems have no given alternative solutions” [Co06; p.15] – instead

“an immense space of options” [Co06; p.18] exists that can be combined.
Wicked problems are also closely related to technical and social complexity.

These three build “the 'centrifugal' fragmenting forces pulling a project apart”
[Co06; p.35]. Especially social complexity is “inseparable from problem wicked-
ness” as “no single stakeholder wicked problems exist” [CBV07; p.4]. Corre-
spondingly, “because of social complexity, solving a wicked problem is funda-
mentally a social process. Having a few brilliant people or the latest project man-
agement technology is no longer sufficient” [Co06; p.29]. This corresponds to
findings of Starke about SW development claiming that “technology alone is
insufficient” [St05; p.42 (*)], because no pure technical problems exist [St05;
p.42 (*)]. Rather, “they quickly grow to organizational or political difficulties”
[St05; p.42 (*)].

I.6 Design in Systems and Software Development 87

In the author's view, Ehn [Eh88], [Eh89] has a similar notion when he de-
scribes design as a collaborative, democratic and participatory process of learning
together. Ehn's view, however, origins from Wittgensteinian language games: “In
a Wittgensteinian approach, focus is not on the 'correctness' of systems descrip-
tions in design, on how well they mirror the desires in the mind of the users, or
on how 'correct' they describe existing and future artifacts and their use. Systems
descriptions are design artifacts, typically linguistic artifacts. The crucial question
is how we use them, which role they play in the design process. ... In the lan-
guage-game of design we use these artifacts as reminders and as paradigm cases
for our reflections of future computer artifacts and their use. The use of design
artifacts brings earlier experiences to our mind and it 'bends' our way of thinking
of the past and the future. I think that this is how we should understand them as
representations. And this is how they 'inform' our practice. If they are good de-
sign artifacts, they support good moves within a specific design language-game”
[Eh89; p.147].

Contrasting wicked problems, Rittel and Webber also mentioned tame prob-
lems. Conklin derives from the formulation of wicked problems characteristics
above a set of tame problems characteristics [Co06; p.18f]:
1. “Has a well-defined and stable problem statement” [Co06; p.18].
2. “Has a definite stopping point” [Co06; p.18].
3. “Has a solution that can be objectively evaluated as right or wrong” [Co06;

p.19].
4. “Belongs to a class of similar problems that are all solved in the same similar

way” [Co06; p.19].
5. “Has solutions that can be easily tried and abandoned” [Co06; p.19].
6. “Comes with a limited set of alternative solutions” [Co06; p.19].

Conklin [Co06; p.19] emphasizes that “tame does not mean simple – a tame
problem can be technically very complex“. On the other side, a problem needs
not to encompass all six wicked characteristics to be a wicked problem. “Most
problems have degrees of wickedness. ... There seems to be a natural inclination
to see problems as tame, and to avoid wicked ones. ... The first step in coping
with a wicked problem is to recognize its nature. There is a tendency to treat all
problems as tame, perhaps because tame problems are easier to solve, reinforced
by the lack of understanding about wicked problem dynamics and the tools and
approach they require. There is a psychological dimension here – a shift from
denial to acceptance” [Co06; p.19-20].

In other words, wicked problems are often approached by analyzing and
taming it. Pure analysis – without designing actions – of wicked problems is often
very limited and leads to analysis paralysis [BMH+98; p.215-218], [Ec03] (see
also ch. I.5.4), “a Catch 22 in which we can’t take action until we have more

88 I. General Context and Theories

information, but we can’t get more information until someone takes action”
[Co06; p.20]. Taming a wicked problem means that the problem is simplified to
make it more manageable rather than treating the full wickedness ([Co06; p.21]
lists several taming strategies). “However, attempting to tame a wicked problem,
while appealing in the short run, fails in the long run. The wicked problem simply
reasserts itself, perhaps in a different guise, as if nothing had been done. Or,
worse, sometimes the tame solution exacerbates the problem” [Co06; p.22-23].
Since peoples' “education and experience have prepared them to see and solve
tame problems, wicked problems sneak up on them and create chaos” [Co06;
p.36]. Coyne argues in a similar direction: “Wickedness is the norm. It is tame
formulations of professional analysis that stand out as a deviation” [Co05; p.12].

In this context, Rittel’s wicked problems can be seen as a pleading for ex-
tended requirements engineering. However, Rittel emphasizes that the solution
must be equally considered. As shown in ch. I.5.5 also REM theory acknowledg-
es that requirements cannot be defined unless parts of the solution are considered.
In fact, experience shows that formulated requirements are often abstract to
stakeholders as long as they don't see any concrete solution, where they then can
tell the delta of their needed solution in contrast to the presented solution. Proto-
typing and iterative development directly address these issues. Agile methods
(e.g., cf. [BT04]) with their notion to short iterative release cycles with continu-
ous stakeholder feedback, where evolutionary prototypes stepwise turn into the
productive system, can be seen as a direct addressing strategy to handle the wick-
ed nature of design. In many other projects, however, such a tight integration
with “informed and collaborative stakeholders” [BT04; p.95] as needed by agile
projects is not feasible, or projects demand for more disciplined approaches,
where the final outcome is not as vague as it might be by using the evolutionary
prototype paradigm91. Thus, in these contexts, pressure on project progress and
pressure to find solutions may press for taming a wicked problem. Besides, the
question arises whether taming a wicked problem must per se be considered as
wrong. In many cases, finding any feasible solution may be satisficing (see ch.
I.6.2.1 above) for a start. This can be rather the case for technical equipment such
as automobiles.

However, when a problem returns back to the agenda, because the first solu-
tion did not prove as satisficing enough, the deciders should reflect on, whether:
• First, the problem may be an unintentionally tamed wicked problem, and

whether more sophisticated courses of action to elicit the problem may be
more adequate. Otherwise, it may happen that considerable energy is spent

91 Examples for more disciplined approaches are the processes for safety-critical embed-

ded systems discussed in ch. I.7.

I.6 Design in Systems and Software Development 89

on curing continuously new arising symptoms of a basically poor solution ra-
ther than finding a better solution leading to a problem 'smoldering around'
in a project. Often, some stakeholders anyway have themselves intuitions
about such problems they feel uncomfortable about. In this context, it may be
considerable whether the bad smells of Fowler [Fo99] provide a certain
analogy for this. Good processes may play a certain decisive role to avoid
such problems as Janis [Ja72] indicates. According to him, organizations
with poor processes can tend to group-think [Ja72] meaning that the organi-
zation quickly decides on a poor solution, and the rest of the energy is spent
on relatively insignificant issues about this solution. As Janis made his ob-
servations on analyzing foreign policy making and Rittel derived parts of his
experiences in social planning, it is very probable that Janis discovered the
group-think problem in the context of decision making for wicked problems.

• Secondly, if a decision must be reconsidered, it will be important to know
about the reasons leading to the former decisions (so called rationale), about
the reasons now making a reconsideration of the decision necessary (also ra-
tionale), and the consequences arising from a reconsidered decision.
Rittels wicked problems idea resulted in the development of the so called

IBIS system, which can also be seen as the initiating momentum for a research
field today called rationale management (RatMan). RatMan deals with finding
concepts and techniques to support elicitation, documentation and further usage
of rationale about a taken decision. Correspondingly, Rittel can be seen as a
pioneer of RatMan (see very first page of [DMM+06]). Ch. II.9 describes the
concepts and ideas of RatMan in detail.

I.6.2.3 Design as Situated Action

Schön [Sch83], [Sch87] analyzed the way competent practitioners think when
they perform their actions. His theory bases on the assumption derived from the
work of Polanyi [Po66] on tacit knowledge (see ch. II.9.4.2) describing that not
all knowledge can be brought to consciousness and/or be rationally described by
the knowing person92. Correspondingly, Schön formulates his assumption as
“competent practitioners usually know more than they can say. They exhibit a
kind of knowing in practice, most of which is tacit” [Sch83; p.8].
Thus, Schön differentiates two very distinct cognitive processes:

92 For example, it is difficult to describe and teach a person how to ride a bicycle, since it

is an unconscious process skill. The person must learn this on its own. Similar con-
cepts are experience, intuition etc..

90 I. General Context and Theories

• “An intuitive process of skillful action” [DMM+06a; p.21], called knowing-
in-action [Sch83; p.54] or professional artistry [Sch87; p.22].

• “A reasoned process of reflection” [DMM+06a; p.21-22], called reflection-
in-action [Sch83; p.55].
Design is then a continuous, intertwined alternation between both processes,

where both “cannot be done simultaneously, because reflection disrupts knowing-
in-action” [DMM+06a; p.22]. In knowing-in-action, the practitioner applies
knowledge he knows “how to carry out spontaneously”93 [Sch83; p.54], until he
experiences “surprise, puzzlement, or confusion in a situation which he finds
uncertain or unique” [Sch83; p.68]. This leads to reflection-in-action, where he
“reflects on the phenomena before him and on the prior understandings which
have been implicit in his behavior. He carries out an experiment which serves to
generate both a new understanding of the phenomena and the change in the situa-
tion” [Sch83; p.68]. In other words, “reflection is only productive when intuition
fails to cope with some new circumstance arising” [DMM+06a; p.22]. Reflection
not only applies knowledge, but creates new. In this context, “practitioners are
frequently embroiled in conflicts of values, goals, purposes and interests” [Sch83;
p.17] leading to these new unique circumstances.

A big part of these new and unique circumstances may be connected to the
wicked problems concept (see ch. I.6.2.2 above) as the following statement about
the relations between the clients (other stakeholders the future users) and the
practitioners in a project show: Practitioners “bring to their encounter a body of
understandings which they can only very partially communicate to one another
and much of which they cannot describe to themselves” [Sch83; p.297].

However, as Atwood et al. analyze, “the Reflective Practitioner is not a de-
sign text in the sense that it describes a particular view of design. Rather, it pre-
sents a theory of how professionals learn” [AMW02; p.128] and – the author
would say – apply knowledge. Horner and Atwood [HA06a; p.75] interpret
Schön's theory about practitioners' handling of knowledge and action “as a reflec-
tive conversation with the environment”, where the practitioners “reflect on what
they are doing in the action present” [HA06a; p.75] (see also [AMW02; p.126]).

In the author's opinion, another interesting connection may exist between
Schön's concept of knowing-in-action and what cognition psychology terms as
flow [Cs90]. Flow describes a state of thinking “in which knowledge and experi-

93 “Although we sometimes think before acting, it is also true that in much of the sponta-

neous behavior of skillful practice, we reveal a kind of knowing which does not stem
from a prior intellectual operation.… It seems right to say that our knowing is in our
action” [Sch85; p.157].

I.6 Design in Systems and Software Development 91

ence come together easily and knowledge workers seem to 'flow' through their
highly demanding work” [HA06a; p.93].

The author risks another interpretation in connection to Simon: In often en-
countering situations of bounded rationality (see ch. I.6.2.1 above), practitioners
often use intuitive knowing-in-action strategies to cope with, until they encounter
a direct problem situation (action present), where the intuitively found solution
breaks down (i.e. conflicts with) and a rational process of reflection-in-action
takes over to solve the problem94.

I.6.2.3.1 Intuitiveness versus Formality of Design Models

Theoretical computer science often demands for highly formal modeling ap-
proaches. Formal approaches are often complex in itself and require a deep un-
derstanding of the approach. In the author's view, this demand directly contradicts
with the view of Schön. Further, as Shipman and Marshall [SM99a] strikingly
have analyzed, users of systems supporting intellectual work often perceive for-
mality as significant obstacles to their work (see ch. II.9.4.2 for a detailed de-
scription). Thus, formal methods may impose high entry barriers when applied in
practical engineering. In the authors opinion this fact may be one explanation for
the great success of UML in practical engineering, since its first versions did not
rely on a strict formalism but proclaimed a kind of notion 'it’s okay as long as it
says what you wanted to say'. This freedom lowered the entry barriers for practi-
cal engineers significantly and thus supported knowing-in-action.

The author has also encountered this experience in his own practical work as
contact person for the introduction of UML 2.0 into automotive embedded mod-
eling of the Micron Electronic Devices AG. At first, most designers were insecure
and concerned whether their design really was conforming to UML. The fear of
producing non-conforming UML diagrams made designers reluctant to model
diagrams, unless the designers were convinced that UML-conformance is not of
primary importance, as long as the diagrams showed what the designers wanted
to express and as long as they were not used as basis for code generation. This
UML in a sandbox style encouraged the designers to experiment with diagrams
and improved designers' experiences of UML by learning by doing.

Shamonsky [Sh03] emphasizes that Schön's findings rather indicate a strong
need for sketching: “In observations of designers sketching, Schön [Sch87] found
a process of negotiation between designer and sketch. The designer draws, then
interprets his or her own sketch, then continues or redraws the sketch in a process

94 In the pattern approach terminology (ch. I.6.2.4) this would be called 'resolving the

forces'.

92 I. General Context and Theories

that yields a progressively more refined design” [Sh03; p.63] (see also [Sch87;
p.63]).

Also experiments by [Go99] show strong evidence that design without
sketching phases does not work (see also [BD03], [BGP06]). Goel [Go99],
[Go95] approaches the design process by psychological studies. He identifies
four core activity phases in design:
• Problem structuring (can be seen as something like the requirement phase),
• Preliminary design (sketching),
• Refinement,
• Detailed specification;

Referring to Witt et al. [WBM94], Kruchten [Kr95; p.49] states similar find-
ings to design phases in SE describing four phases of design (+12 sub phases):
sketching, organizing, specifying, optimizing. Aliakseyeu et al. provide an over-
view about sketching support in design [AMR06].

Fig. 6-1 shows Goel's findings95 [Go99] about correlations between the
phases design problem space, cognitive processes and representations. Between
the problem statement (requirements) and the resulting design, a phase of prelim-
inary design leads to the exploration of several design ideas (alternatives) [Go99;
p.1]:

“Preliminary design is a classical case of creative, ill-structured problem solv-
ing. It is a phase where alternatives are generated and explored. This generation
and exploration of alternatives is facilitated by the abstract nature of infor-
mation being considered, a low degree of commitment to generated ideas, the
coarseness of detail, and a large number of lateral transformations. A lateral
transformation is one where movement is from one idea to a slightly different
idea rather than a more detailed version of the same idea. Lateral transfor-
mations are necessary for the widening of the problem space and the explora-
tion and development of kernel ideas.

The refinement and detailing phases are more constrained and structured.
They are phases where commitments are made to a particular solution and
propagated through the problem space. They are characterized by the concrete
nature of information being considered, a high degree of commitment to gener-

95 In the author's view, these findings can be directly transferred to the topics discussed

here, where the design phase “Problem Structuring” can be considered as REM activity
and the other phases ate considered as design phases. The transition from REM arti-
facts to design then takes place during the sketching phase. This also indicates why
traceability information between requirements and design may be more difficult to
capture than most traceability approaches usually consider (see ch. II.10.6 for a more
detailed discussion).

I.6 Design in Systems and Software Development 93

ated ideas, attention to detail, and a large number of vertical transformations. A
vertical transformation is one where movement is from one idea to a more de-
tailed version of the same idea. It results in a deepening of the problem space.”

Figure 6-1 The design problem space according to Goel [Go99; fig.1]

Goel [Go99], [Go95] claims that the ill-structured nature of sketches facili-
tates lateral transformations (changes of alternatives, ideas) because of ambigui-
ties, syntactical and semantic overlaps. Shamonsky emphasizes that the ambiguity
beared by sketches can be seen as “nourishment for creativity”, where “the de-
signer or other designers opportunistically discover new ideas based on misinter-
pretations or reinterpretations of the sketch” [Sh03; p.63].

Schön reveals a similar notion, when speaking about ambiguity in design:
“When design terms are ambiguous in this way, they may create confusion, but
they also call attention to multiple consequences” [Sch87; p.60f].

I.6.2.3.2 The Role of Expertise in Design

Cognition research on design indicates that sketching is an essential activity for
generating and refining ideas and solving problems [DGN+00]. Research results
of Bilda et al. [BGP06] indicate however that sketching is not essential for expert
architects to develop conceptual ideas, but “the ability to read or produce sketch-
es appears to be the only way to develop expertise in architecture” [BGP06;
p.587].

In the author's opinion, this corresponds to another finding of Reenskaug
[Re97] possibly explaining why software developers often do not use models for
analyzing and design. When training students, Reenskaug observed that the stu-
dents could not model a solution top-down without any concrete solution experi-

94 I. General Context and Theories

ence at hand. After the first system of this type has been built, however, the stu-
dents improved in modeling such a system in a top-down fashion. Sensitized by
these finding, Reenskaug then realized that he himself encounters the same prob-
lems when approaching new kinds of systems, because he lacks the knowledge of
specificly needed solution details. Accordingly, Reenskaug assumes this as an
essential property of the design problem. Reenskaug proposes a three point heu-
ristics to cope with this problem [Re97; p.6]:
• “Choose the modeling idiom that best describes the hard parts of your prob-

lem. A program-centered approach will give overview of the code; a system-
centered approach will give overview of how the system works”.

• “Use an iterative approach to help get both architecture and details right”.
• “Do not over-document, but try to maximize self-documenting code”.

In other words, Reenskaug claims that only domain experts can perform a
model based design solution96, whereas non domain expert developers should
address the core problems by sketching a design (point one), whereas the remain-
ing non-hard problems should addressed by self-documenting code instead of
models (point three). Both together must be addressed in a continuous iterative
fashion (point two)97.

According to Paech et al., designing is a creative task that “can only be
learned through experience and apprenticeship” [PKD+03; p.142]. Hazzan
[Ha02] provides a general discussion of the reflective practitioner principle in
connection with SE theory and teaching practice. He appeals for using sketching
classes in a design studio98 atmosphere, where students learn from coaches being
“first-class faculty members” [Sch87; p.171].

I.6.2.4 Design as a Language of Patterns

During his research on properties of good design in buildings architecture, Chris-
topher Alexander ([Al64], [AIS77], [Al79]) discovered that problems are often

96 This is an indirect explanation why designers are usually referred to as experienced

expert developers.
97 Reenskaugs findings strongly resemble to important heuristics propagated by the agile

development community.
98 ‘‘Studios are typically organized around manageable projects of design, individually or

collectively undertaken, more or less closely patterned on projects drawn from actual
practice. They have evolved their own rituals, such as master demonstration, design
review, desk crits, and design juries, all attached to a core process of learning by do-
ing’’ [Sch87; p.43].

I.6 Design in Systems and Software Development 95

recurring in the context of different design situations. This lead Alexander to
propose a concept that addresses these problems referred to as patterns.

Alexander realized that the average designers can only insufficiently cope
with the involved growing complexity: “To match the growing complexity of
problems, there is a growing body of information and specialist experience. This
information is hard to handle; it is widespread, diffuse, unorganized. Moreover,
not only the quantity of information itself is by now beyond the reach of single
designers, but the various specialists who retail it are narrow and unfamiliar with
the form-makers' peculiar problems, so that it is never clear quite how the design-
er should best consult them. As a result ... the average designer scans whatever
information he happens on, consults a consultant now and then when faced by
extra-special difficulties, and introduces this randomly selected information into
forms otherwise dreamt up in the artists' studio of his mind” [Al64; p.3-4]99.

His discovery, however, was that the complexity is not completely at random
but contains similar problems recurring in different situations. Even though – as
Rittel showed – the problems are not completely the same, they contain certain
similarities. Accordingly, the solutions also show certain similarities. Or, as prob-
lems contain a kind of pattern, the solution may also follow a kind of pattern:
“Each pattern describes a problem which occurs over and over again in our envi-
ronment, and then describes the core of the solution to that problem, in such a
way that you can use this solution a million times over, without ever doing it the
same way twice” [AIS77, p.X]. Or, as Booch puts it: “complex systems have
common patterns. These patterns may involve the reuse of small components,
such as the cells found in both plants and animals, or of larger structures, such as
vascular systems, also found in both plants and animals” [Bo94; p.11].

In short, a pattern describes a commonly recurring problem and a general-
ized description of a core solution generally adaptable to in different shapes for
the individual problems [AIS77; p.X]. Now, if a good solution for such a recur-
ring problem is found in a specific design solution, the designer can document the
general essence100 of the problem and its solution. Such documented patterns can
then be used as a solution alternative in similar design problem situations. When
the designer then decides for applying the pattern, the general solution essence
defines the general structure of the design, whereas the individual local condi-
tions of the current design problem context define the individual peculiarities of

99 In the author's eyes, the following statement of Alexander also reveals close connec-

tions to the Simon and Booch's views of arbitrary complexity (ch. I.6.2.1), Rittel's
wicked problems and Schön's view.

100 Essence emphasizes the need to describe generalized information on the problem and
the solution apart from a specific problem-solution context.

96 I. General Context and Theories

the applied pattern in the current design context. The problem essence101 is often
referred to as conflicts or forces102 being torn apart [Al64; p.20]. Or, as Hagge et
al. put it: “The underlying notion is that patterns help in resolving conflicts or
stress situation– which are frequently perceived as 'being torn apart by …
forces'” [HHL+06; p.412].

In general, at least four essential aspects must be treated by a pattern
[GHJ+95; p.3f], [Do04; p.530]:
• Name of the pattern [GHJ+95; p.3] works as a kind of keyword that can be

used as placeholder (vocabulary) to refer to the complex knowledge of the
problem and solution during design talks and documentation.

• A common problem, including a common problem context describing the
forces, or the conflicts to be solved [GHJ+95; p.3], [Do04; p.530].

• A general approach to a solution [Do04; p.530], or general solution essence.
The structure of the pattern. The solution neither describes a specific design
or specific implementation. It can be seen more as a generic template adapta-
ble to different situations [GHJ+95; p.4].

• The consequences arising from the use of the pattern enlist either the ad-
vantages as also the disadvantages involved with the usage of the pattern.
“Although consequences are often left unspoken, when design decisions are
described, they are still of central importance for the assessment of design al-
ternatives and for the understanding of the advantages and disadvantages of a
pattern's application” [GHJ+95; p.4].

In the software development context, the first proposal for the adoption of
Alexander's pattern concept to software development seems to have been made
by Kent Beck and Ward Cunningham [BC87] within the Smalltalk programming
community for developing user interfaces103 [BMH+98; p.7]. Even though other
publications exist [CS95], the book of Gamma et al. [GHJ+95] – often referred to
as Gang of Four (GoF) – sparked broad resonance in the design community lead-

101 See [HHL+06; p.412] for a good discussion on this.
102 A good example is the pattern “A window place” [Al79; p.112] that can be summa-

rized in the following way: “In living rooms where people want to be comfortable, a
sitting area should be located close to the windows. In rooms where the sitting area is
not placed near the windows, people would be caught in a conflict: they would be
drawn to the chairs to sit down and relax, but at the same time they would also be
drawn towards the windows where the light is. Using the window place pattern would
resolve and prevent the stress situation” [HHL+06; p.412].

103 See, e.g., the model-view-controller pattern concept

I.6 Design in Systems and Software Development 97

ing to the wide influence of patterns in today's SE theory. Patterns can thus be
found and used at different levels104 of abstraction in design and SE theory:
• Requirement patterns can be used to support elicitation and specification of

requirements in combination with their verification criteria and test cases
[RS02; p.346f]. A good description about other RE patterns and their role in
RE is provided by [HHL+06].

• Analysis patterns support analysis of requirements and especially can pro-
vide help that important nonfunctional requirements are already considered
during the analysis phase [Mo04; p.142], [Ha01a], [Fo97].

• Architectural styles105 define “a family of systems in terms of a pattern of
structural organization. More specifically, an architectural style defines a vo-
cabulary of components and connector types, and a set of constraints on how
they can be combined” [SG96; p.20]. In other words, architectural styles de-
scribe global structuring or organization principles to be found over and over
again [PBG04; p.202]. An example for an architectural style is the three lay-
er architecture separating data storage, functional logic and user interface in-
to three different horizontal layers [BMR+00; p.31ff].

• Architectural patterns describe rules or methods to address recurring aspects
of system functionality often also referred to as crosscutting concerns
[PBG04; p.207] such as persistence, multi-threading, distribution or the user
interface [PBG04; p.208]. In this way, architectural patterns do not so much
emphasize the functional domain but address technical aspects [PBG04;
p.208]. An example for this category is the model-view-controller pattern
addressing the crosscutting concern of designing flexible and reusable GUI-
components [BMR+00; p.125ff].

• Design patterns describe solutions for recurring design problems. Whereas
architectural styles and architectural patterns rather address the global per-
spective, design patterns address more local perspectives in the way that they
either effect one component or the collaboration of a few components
[PBG04; p.214] [BMR+00; p.222ff]. In this way, design patterns can be ap-

104 Also cf. Buschmann et al. [BHS07, p.213ff], who admit that these categorizations also

are in some way arbitrary, as patterns often involve more than one of the different pat-
tern categories described here and thus overlaps are fluent.

105 It is to note that Buschmann et al. [BMR+00] do not distinct architectural styles from
architectural patterns. This separation seems to be introduced by Posch et al.
[PBG04]. However, even [BMR+00] provides a kind of segmentation, because the
first are referred to as architectural patterns bringing structure into the overall archi-
tecture, whereas the latter then refer to more detailed implementations of aspects. In
this way, the author finds this distinction between architectural styles and architectur-
al patterns plausible.

98 I. General Context and Theories

plied without having effect on the overall architecture of a system or soft-
ware [PBG04; p.214]. Furthermore, several design patterns can have effect
on a component in parallel.

• Idioms [BMR+00; p.345-358], or implementation patterns [Be08], in pro-
gramming languages or programming practice describe special – often pro-
gramming language specific – peculiarities to provide an elegant solution for
a specific recurring programming problem106. Beck [Be08] (also cf.
[BMR+00; p.348f]) further shows that idioms can be an elegant mean for
writing self-documenting code helping to improve development communica-
tion, simplicity and thus code flexibility [Be08; p.24ff].

• Process patterns describe patterns within a process landscape. Most notably,
the agile development methods community [Co95], [BDS+98], [MWS+07],
[HHL+06] and the wiki community [Ma08b] have also internalized the pat-
tern language concept as they can be seen as an implementation of so-called
process pattern languages ([Co95], [MWS+07]). A good starting point for
the definition and usage of agile process patterns are found in [BG06].

• Anti-patterns indicate design flaws by enumerating symptoms and their
negative effects [Ak96], [BMH+98], [Mo04; p.149 ff], [Kr08]. Anti-patterns
arise when an originally fitting solution increasingly becomes unfitting due
to changes of the solution's context (e.g., changing requirements) [Mo04;
p.150]. The anti-pattern concept allows to document symptoms in a struc-
tured way to detect recurring unfitting solutions. Therefore, anti-patterns are
also called recognition patterns [Mo04; p.156]. A good description about ar-
chitectural anti-patterns and how they happen is provided by Kruchten
[Kr08].

106 As an example, the '?:'operator in the programming language C allows to assign differ-

ent values to a variable basing upon a condition within one line of programming. As an
example for idioms imposed by the automotive industry can be the MISRA standard
for C programming [MISRA2004]. The standard defines idioms to be used in order to
avoid known programming pitfalls encountered in C. In MISRA conforming code,
e.g., the expression 'if (x==1)' is not allowed, because an incautious programmer could
have written 'if (x=1)', where in this case a value assignment would take place and the
‘if’ statement would never be reached (besides a construct such as 'if (x=1)' is general-
ly forbidden in MISRA). To avoid such unintended side effects, the MISRA standard
demands to use 'if (1==x)', because if the developer wrote 'if (1=x)' the C compiler
would issue a compiler error, as a value assignment to a constant ('1') is not allowed.
In other domains such as Linux programming, however, the idiom 'if (x=1)' is consid-
ered as an elegant way of programming as it combines a value assignment with an ‘if’
in one line and thus avoids unnecessary code.

I.6 Design in Systems and Software Development 99

• Usability patterns: Borchers [Bo01] describes patterns usable for human
interaction design.

• Means: In connection with patterns, Paech et al. [PKD+03] define the term
means: “Means are principles, techniques, or mechanisms that facilitate the
achievement of certain qualities in a SW architecture. They are abstract pat-
terns that capture a way to achieve a certain quality requirement, but are not
concrete enough to be used directly” [PKD+03; p.144]. However, means
may be connected with concrete patterns [PKD+03; p.144], because means
are selected according to NFRs and lead to the identification of the corre-
spondingly usable patterns [PKD+03; p.147]. Hagge et al. refer to a RE pat-
tern “Organize Specification Along Project Structure” (OSAPS) [HHL+06;
p.419]. SysEng (ch. I.4) can be seen here as the means to fulfill the OSAPS
pattern.
To support convenience and clarity [AIS77; p.X], Alexander proposes to de-

scribe each pattern in the same format today referred to as a pattern template.
The pattern template provides a formalized skeleton of all important points to
consider and document about a pattern. In this way, a structured method for doc-
umenting patterns that are comparable to each other is enforced.

As an exemplary pattern template, the properties of the GoF pattern tem-
plate [GHJ+95; p.8ff] are shortly introduced in the following (for other sources
about pattern templates the author recommends [PBG04; p.217]):
• The pattern's name and classification: as indicated above the name is intend-

ed to become part of the designer's design vocabulary. Thus, the name should
transport concisely and precisely the essential information of the pattern.

• Purpose: This section shall provide a brief sketch of the pattern's general
achievement, general principles, general purpose and what general issues or
problems can be addressed by the pattern.

• Also known as: Refers to possibly known different names. This is, e.g., used
to refer to other authors having described the pattern by using a different
name.

• Motivation: Here, a certain specific exemplary scenario describes a design
problem and how the structure of the pattern can help to solve the problem.

• Application: This section describes the problem situations the pattern can be
applied to and how the situations can be recognized by the designer.

• Structure: The structure part describes the general structure of the pattern.
For this, usually a structure diagram is provided with a textual description.

• Participants: Participating classes and objects are discussed in this part.
• Interactions: The interactions between the participants are described in this

section.

100 I. General Context and Theories

• Consequences: As described above, the application of a pattern can involve
positive and negative consequences. This part describes all known conse-
quences.

• Implementation: The implementation section describes tips, techniques and
pitfalls of the pattern to be known in order to be able to apply it successfully.
It further refers to programming language specific aspects and possible ways
of implementation.

• Example code: Example code fragments demonstrate a possible implementa-
tion within a programming language.

• Known usages: This part shows where the pattern has already been applied
in real systems giving indications where the effecting pattern can be studied
in practice.

• Related patterns: The last section describes how the pattern is related to
other patterns, what the differences are to other patterns. Further, the part
describes what patterns harmonize with the pattern and what patterns may
involve dissonant effects if applied with the pattern.
A single pattern can provide a valuable solution for a problem. Alas, design

deals with a lot of problems and correspondingly several different patterns may
be applied in a design to solve these problems. Hence, the different applied pat-
terns in a design may influence or stay linked to each other. This raised the idea
in Alexander that design may be expressed as a language of patterns [AIS77],
where the different applied patterns and their connections to each other structure
the design. These connections between patterns can be influential (e.g., two de-
sign patterns can benefit or oppose each other) and also be of a kind of hierar-
chical nature, where higher abstraction level patterns are built up by lower ab-
straction level patterns (e.g., a design pattern can be implemented by several
idioms working together, and the design pattern can work together with other
design patterns to implement an architectural pattern) [AIS77; p.XII]. This idea
is considered by Gamma et al. by defining a so called pattern catalog including a
map, where possible connections between the patterns are introduced for design
patterns [GHJ+95; p.16]. However, connections to patterns on other levels of
abstraction are not considered. The concept of collecting patterns in a pattern
catalog is usual [Mo04; p.143].

Also to mention is the Portland Pattern Repository107 (PPR) wiki providing
a possibility to collect patterns of all possible different categories108, where inter-

107 See http://www.c2.com/cgi/wiki?PortlandPatternRepository (Access: 2010/03).
108 The PPR even describes socio-political patterns concerned with SW-development such

as 'Melting Pot', describing how immigrants can be integrated into a SW development
company in order to support company growth.

I.6 Design in Systems and Software Development 101

connections between patterns at even different categories are possible to de-
scribe. According to Greenfield et al. [GSC+04; p.210-211], the formalization of
a pattern language may be a step toward defining a new modeling language. In
fact, some design patterns (such as, e.g., 'Singleton') can be expressed in repeat-
edly the same implementation in code; however for others this may not be always
achievable in the same way. However, Rupp et al. [RS02; p.348] utter the opinion
that such a detailed pattern language may be an unrealistic goal for the software
development community. Nevertheless, it is also to mention that Alexander him-
self does not insist on the opinion that only one pattern language exists, but that
each individual may develop his (her) own unique language [AIS77; p.XVI]. In
this way, a formalized pattern language was not in the focus of Alexander and
may even to a certain extent contradict the original intentions of Alexander.

Evidence exists that patterns may also be implicitly present in expert de-
signers thinking [VM02], [WV03]. In the Schönian context, one advantage of
patterns may be that they represent a set of condensed reflective structures
evolved from the design community. In other words, the pattern design commu-
nity often identifies probably knowingly (intuitively) found solutions as 'good'
and then reflectively explores the exact circumstances of their 'goodness'109 and
documents this knowledge as a pattern. Even though such an rationalization of
intuitive knowledge may tend to provide falsifications [Sch87; p.23], Alexander’s
“method of capturing expertise was innovative, as it made explicit many of the
'soft' attributes that were previously attainable only through years of experience”
[BMH+98; p.7].

Thus, patterns can be seen as written-down expert knowledge about a prob-
lem area and an offering of special opportunities to transfer and acquire this
knowledge [Ha01a], [RS02; p.344], [Mo04; p.139]. Hereby, “patterns provide
clarity. Patterns alone by their names represent a set of knowledge and meta-
knowledge building a standard language (own set of vocabulary), where issues
are reduced to a handy manner by essence building and abstraction” [RS02;
p.345 (*)]. Thus, the role of patterns can be seen similar to symbols in a lan-
guage, where sheerly mentioning the pattern name transports complex
knowledge to all persons being familiar with the pattern.

In this way, patterns are also a possible answer to the problem of complexity
and rapid change in software development: “Formalizing knowledge is a costly
process. Aiming at achieving a perfect formalization is perhaps not worth, be-
cause software development, as any other intensive human activity, is evolving.
Therefore the focus should be on providing an easy to customize and simple to
apply solutions like the framework of patterns” [BG06; p.389].

109 In the context of anti-patterns, the term 'good' can be replaced by 'bad'.

102 I. General Context and Theories

As indicated in ch. I.6.2.1.3, Simon's principles may be the end results of a
design process, but Simon does not provide adequate indications on how to apply
the principles in the design genesis. The problem seems to be that due to the
complexity of factors, which make it impossible to rationally capture all factors
adequately, intuitive knowing-in-action and tacit knowledge (see Schön, ch.
I.6.2.3) are often the means to structure design. Here, patterns help designers in
the decision process by documented expert knowledge. As an example, at the
beginning of a project where nearly no structure is recognizable yet, a style as the
three layer architecture builds a guide to overcome this by building a heuristics
for early decomposing the design according to general aspects most SW-systems
for PCs usually have.
In summary, the following positive effects can be achieved by patterns:
• Novice software designers can significantly improve their design quality

from start [PU99], [Mo04; p.143].
• Experienced designers can also improve their design quality but more im-

portant, can better communicate their design ideas through patterns, being a
design vocabulary transporting complex knowledge [PU99], [Mo04; p.143].

• Generally, only very few situations exist where patterns are weaker in com-
parison to another alternative solution [PU99], [Mo04; p.144].

• Most patterns have very positive effects on flexibility, whereas the impact on
maintainability stays stable if they are not misused (see below for description
of possible misuses) [PU99], [Mo04; p.144].

• Design patterns often influence nonfunctional requirements in one or the
other direction. In most cases, however, choosing the right design patterns
can significantly affect positive impacts on NFRs otherwise difficult to ad-
dress [PBG04; p.214].

• Patterns offer proven and tested solutions to problems [RS02; p.344]. How-
ever, its positive effects should be tested, before employing a pattern.

• Douglass proposes using a pattern for each design view (see ch. I.6.2.1)
employed in a design. In this way, conceptual integrity shall be enforced
[Do04; p.478].
If patterns are used in a design, its usages should be documented in order to

alleviate later maintenance [M004; p.321]. This will also be especially important
when the documentation is the basis for an architectural assessment. In these
cases, pattern can be significant indicators to detect tendencies and overall quali-
ty of a design [Mo04; p.140], [Mo04; p.293], [Mo04; p.381ff].

However, patterns can also provide problems. Dittert [Di04b; p.37] de-
scribes her own practical experiences how the pattern idea can be misused (i.e.
pattern usage anti-patterns):

I.6 Design in Systems and Software Development 103

• “The pattern canon” [Di04b; p.37 (*)] has happened, if a simple imple-
mentation would have been sufficient, but some probably somewhere in the
future occurring problem could have spoiled the solution. Correspondingly,
the applied pattern may have prevented problems, if the change case may
have happened some time. On the other side, the – most probably unneces-
sarily – applied pattern has heightened the complexity.

• “Pattern euphoria” [Di04b; p.37 (*)] can occur, if the application of a pat-
tern at first brought significant advantage and then lead to extended use of
the pattern to increase code flexibility, until the code became unreadable and
small changes induced tremendous side effects.

• “Pattern decoration” [Di04b; p.37 (*)] describes properly working code that
is decorated with some additional patterns, because the implementation was
easy enough, whereas no significant new value has been generated.

• “Pattern record” [Di04b; p.37 (*)] indicates attitudes of designers thinking
that a program’s quality will automatically be high, when all known patterns
are someway employed in it.
Last but not least to mention, Alexander saw pattern solutions as “timeless”

[Al79]. However, this timelessness refers to the method but not the patterns
themselves. Practice in software development, for example, shows at least in the
software context that patterns also change, during increased usage and gained
experiences [Wi06]. Consequently, their documentation i.e. specification need to
be changed, too [Wi06]. From this perspective, close connections between the
pattern concept and what Simon describes as stable intermediate forms reveal.
Maybe patterns are a – maybe others exist as well – kind of notation for (resp.
manifestation of) stable intermediate forms.

I.6.3 Comparison of General Design Theories

The author does not see that the different views on design expressed here are
fully contradicting. In fact, the views supplement each other at certain states.

As Rittel’s view tells something about social dynamics – as artificial worlds
are created by and for humans they are deeply social – in design, it explains
commonly observed core phenomena as the occurrence of permanent change in
the requirements and the corresponding solution. A major implication may be that
designs underlie stronger forces for change than often admitted.

Heavy-weight design approaches often implicitly assume a certain stability
of the solution design or demand extensively built-in flexibility mechanisms (as,
e.g., extensive frameworks) in the design. However, flexibility has its price in

104 I. General Context and Theories

higher complexity and thus higher effort and higher costs110. Correspondingly,
only finite flexibility is possible. Thus, these kinds of approaches must often rely
on the designers’ abilities to foresee changes in order to provide corresponding
flexibility mechanisms. The wicked problems theory strongly challenges the fea-
sibility of this. In other words, design approaches should impose as few obstacles
to changes as possible in order to address the wicked nature of the addressed
problems that necessarily result in extended changes.

Even though Simon’s positivist linear view on design may somehow be
called naive, Simon provides valuable insights into the toolkit available for de-
signers to handle the complexity imposed by the manifold of information to be
considered at design. Principles as abstraction, hierarchical design and views that
have evolved from his pioneering research are state of the art in any kind of de-
sign –may it be aware or ignorant of the wicked nature of design problems.

Schön, on the other side, uncovered that designers do not perform design in
a merely objective-rational cognitive setting but are equally intertwined driven by
intuition, tacit knowledge, experience, taste, style and maybe even wisdom. Cor-
respondingly, the author agrees on Knuth that computer programming – as it
inherently contains design even if not necessarily explicitly present – is a science
and an art [Kn74].

Last but not least, the pattern concept addresses recurring problems in de-
sign and creates possibilities for collecting and communicating design
knowledge.

All views on design sketched here have one common concern. Requirements
constitute a problem space, whereas design constitutes a solution space. Between
both exists a considerable semantic gap that is constantly mentally bridged by
designers. This gap is the result of an irreproducible, non-deterministic and onto-
genetic path of intellectual decisions created by a collaborative collective of hu-
man beings shaping an artificial – in relation with SW even abstract and virtual –
environment. Requirements traceability aims at closing semantic gaps. However,
the ordinary link concept as usually provided by requirements traceability refers
to a linear relationship between requirements and design. As the characteristics of
the design process sketched above suggest, design rather is a nonlinear complex

110 “The problem with building flexible solutions is that flexibility costs. Flexible solu-

tions are more complex than simple ones. The resulting software is more difficult to
maintain in general, although it is easier to flex in the direction. ... Even there, howev-
er, you have to understand how to flex the design” [Fo99].

I.6 Design in Systems and Software Development 105

process. Correspondingly, the author suggests considering relationships between
requirements and design as equally nonlinear111.

In other words, design processes are creative and complex mental transfers
of unique problem constellations into a sustainable solution. Correspondingly, a
substantial gap between requirements and design exists that is – in to the author’s
belief – not really manageable by a linear linking concept as current traceability
theory suggests112. A sustainable design traceability concept must orient itself on
the designers’ way of designing, not interrupt the designers’ thinking, find an
adequate support for decision making, be able to support design as a collabora-
tive process and last but not least provide the necessary flexibility for changing
the design.

I.6.4 Dependency between Design Models and Code

Design models in relation to source code can be either descriptive or prescriptive.
When a code documentation model is generated from developed source code, the
model is descriptive. Otherwise, when a design model is designed before the
code, these models are prescriptive, because they prescribe the further outcome
of the code. Usually, design is performed before the code, thus most design mod-
els are prescriptive.

Generally, design theory recommends that besides the design models also a
programming model must be developed [GP04], [PBG04; p.69]. The program-
ming model deals with defining the transformation regulations for transforming
design models into code. Design models and the programming models must not
be confused with each other [PBG04; p.69].

Usually, three ways for a programming model to develop code from pre-
scriptive models exist:
• Manual implementation,
• Partial code generation,

111 Of course, in any project a high amount of fairly linear relationships between require-

ments and design may exist. However, as these are relatively trivial ones, the nonlinear
relationships will often be more critical to identify, if a requirement change shall be
implemented consistently.

112 Similar findings are expressed by Medvidovic et al. [MGE+03; p.202]: “Unfortunate-
ly, the large semantic gap between high-level, sometimes ambiguous requirements arti-
facts and the more specific architectural artifacts (e.g., modeled in a formal
...(architecture description language)...) often does not allow one to establish mean-
ingful links between them”. As a consequence they developed their so called CBSP
approach, discussed in the ch. II.10.6 about requirements traceability to design.

106 I. General Context and Theories

• Complete code generation;
From the technological perspective, manual implementation is the simplest

way. However, development efforts are the highest. In the long run, risks that a
significant drift between design model and its code arises are nearly not avoida-
ble, because design models represent a redundancy to the code. Thus, mainte-
nance must care to adapt both the model and the code. Maintenance effort will be
lower, if the models are not very detailed. In fact, design theory emphasizes that
models should just show the core ideas and concepts of a system, but no imple-
mentation details [GP04; p.64].

Partial code generation can be achieved by two possible ways. One way is to
generate complete code for certain parts of an application. It is, e.g., possible to
generate complete code representing a state machine from a state chart model.
Another possible way is that certain aspects of a model can be used to automati-
cally generate certain code outlines that must then be accomplished by manual
implementation. In this way, e.g., variable names and method names in a model
can be used to generate source code files with automatic generation of the varia-
bles definition and method stubs. These method stubs must then be populated by
manual source code development. Both techniques allow saving effort by directly
reusing modeled information for the source code. Further, later changes of a
model can be directly propagated to the source code thus diminishing risks of a
drift between models and source code. On the other side, this method is accom-
panied by the need for more sophisticated tooling. Additionally, automatically
generated code can lead to lesser code efficiency (lower performance or worse
resource efficiency).

Full code generation would completely solve the redundancy problem be-
tween models and its code, because the full code is generated from the model.
Therefore, a drift between models and code is impossible. On the other side, very
sophisticated tooling is necessary and the code efficiency may be significantly
lower than the efficiency of manually or partially generated code. Additionally,
models must be modeled in significantly more detail, as all instructions of the
code must be somehow represented by the models or the code transformation
algorithms. This means that models must also represent implementation details
rather than just ideas or concepts (see, e.g., [Do04; p.589ff]), or the code trans-
formation algorithms contain much of the complexity of the implementation
details. This, however, involves the problem that the developers must either com-
pletely rely on the code transformation algorithms, or the developers must in-
strument the code transformation algorithms by setting complex sets of parame-
ters and performing a certain restricted way of modeling. Both techniques involve
significant intransparencies of the transformation processes that may also be an

I.6 Design in Systems and Software Development 107

issue for traceability considerations. Additionally, using these tools also requires
having extra expert skills of the developers in using the tools.

Last but not least, it is to mention that requirements traceability between de-
sign models and code is relatively easy to handle due to the redundancies be-
tween both. As both model and code usually use the same names for concepts
being redundant to each other, the traceability technique of name mapping (cf.
ch. II.10.4.2.2) solves the traceability problems as long as no significant drift be-
tween models and code occurs leading to a drift, where the names drift apart from
each other.

I.6.5 Architecture Documentation

Besides just designing the diagrams of a model, further textual documentation
must be delivered with them. Managing complexity and achieving a common
understanding are core goals of any design. However, diagrams can be ambigu-
ously interpreted by different persons. Correspondingly, the diagrams must be
accompanied by a textual description. The research field architecture documenta-
tion (AD) tries to define important criteria on what must be documented about a
SW architecture in order to be useful. As the R2A tool introduced in part III also
provides certain support for design documentation, some general principles for
AD shall be sketched113 here. Of course, AD actually only cares for SW architec-
tures (one of the three different designs identified in ch. I.6.1), but in the author's
opinion the points discussed here are equally valid for systems design and up to a
certain point also valid for detailed SW design.

At first to mention, Clements et al. [CBB+03; p.24-28] introduce seven rules
any sound textual documentation should consider (also cf. [PBG04; p.124-125]):
• Documentation should be written from the point of view of the reader, not the

writer: This ensures that the documented information can be really under-
stood by the reader.

• Avoid unnecessary repetition: As discussed before in ch. I.6.1.2, redundancy
should be generally avoided (DRY-principle).

• Avoid ambiguity: The information provided must be precise and should not
leave open space for misleading interpretation.

• Use a standard organization schema: An architectural template helps to
document information in a certain standard scheme for all projects. In this
way, project members can easier understand new documents.

113 The interested reader may read [IEEE1471], [CBB+03], [PBG04; p.121-169] or

[HS06] for a deeper understanding.

108 I. General Context and Theories

• Record rationale: Important decisions must be documented.
• Keep documentation current but not too current: Documentation should be

continuously kept up to date, but updates should not be performed immedi-
ately to avoid unnecessary costs.

• Review documentation for fitness of purpose: Documentation must be re-
viewed whether the documentation fulfills its goals.
Concerning AD, the following basic requirements must be supported

[PBG04; p.126-128]:
• Efficiency of the project must be supported: The documentation must support

the developers to efficiently and easily acquire the information needed for
their current tasks.

• Communication and common understanding of important stakeholders must
be supported: The AD is responsible to enable communication and common
understanding of the architecture throughout all important stakeholders. In
the following, several stakeholder needs are described.

• Minimize risks: The AD must help to reduce risks by making possible risks
transparent. This means, for example, that documentation should be struc-
tured risk-oriented meaning that high-risk issues should be addressed with
higher priority and extent than rather low-risk issues [PBG04; p.127]. An-
other important means to expose risks is structured documentation about de-
cisions taken in order to address certain risks and how taken decisions may
spark new risks.

• Preserve the core knowledge of the designed system: The core knowledge
about a certain architecture should be preserved throughout the life time of a
project. AD should therefore help to preserve this knowledge in the develop-
ing organization and assist in deriving knowledge and experiences reusable
for new projects.
As point two has mentioned, AD also is about promoting communication

and common understanding between important stakeholder groups. AD must at
minimum support the following stakeholders with their goals [PBG04; p.127]:
• The project manager needs an overview of the design in order to take organ-

izational decisions. Further, the project manager must get to know the tech-
nical risks.

• The architect creates the architectural documentation of the project. For this,
he must capture and understand the important concepts, strategies and tech-
nologies used.

• The software developer realizes parts of the architecture. In this way, he
must understand the basic principles of the overall architecture, the basic

I.6 Design in Systems and Software Development 109

context of the parts he must realize and – probably most important – detailed
information on the interfaces of the parts to be realized.
An AD must contain the following essential points [PBG04; p.128-131],

[St05; p.105], [CBB+03]:
• All relevant views must be documented in the AD. All views should be doc-

umented in the same manner by a standard organization template [CBB+03;
p.317]. In [CBB+03; p.317-320], Clements et al. introduce such a template
which follows seven criteria.

• As each view only describes a certain aspect of a system, the AD must also
document the intercorrelations, interactions and tradeoffs between the differ-
ent documented views114.

• To achieve the efficiency requirements of AD, the AD document should in-
clude a description of its structuring and assistance to the reader.
Concerning the last point, Posch et al. [PBG04; p.130-131] provide the fol-

lowing remarks:
• The AD should use a hierarchic structuring. This structuring could, e.g., be

the hierarchic decomposition structure of a system, but also other views may
be organizable in a hierarchic ordering scheme.

• Descriptions of relationships between views should be explicitly highlighted.
• Finding and retrieving essential information must be easy. Thus, important

information should be in the center of description.
• Documentation must be target-group-specific. This means that information

for a specific target group should be rather located at one cohesive location
than be scattered over the whole documentation.

• The documentation must support target-group-specific navigation. At least,
information about target-group-specific navigation information should be
provided.
Last but not least to mention, the IEEE 1471 standard [IEEE1471] defines a

conceptual model for documenting architectures in combination with recommen-
dations how to apply these concepts. Among other concepts, the correlations
between a system, its architecture, its AD and views are defined. Especially inter-
esting is the fact that the IEEE 1471 derives a view from stakeholders and their
perspectives called viewpoints. From this viewpoint construct, characteristics and

114 “The basic principle of documenting an architecture as a set of separate views brings a

divide-and-conquer advantage to the task of documentation, but if the views were ir-
revocably different, with no relationship to one another, nobody would be able to un-
derstand the system as a whole. Managing how views are related is an important part
of the architect's job, and documenting it is an important part of the documentation
that applies beyond views” [CBB+03; p.200].

110 I. General Context and Theories

constraints for views shall be derived. As the IEEE 1471 only provides concepts
and recommendations, no specific demands for modeling languages, techniques,
used design models or views, or other AD related concepts are provided. In this
way, the IEEE 1471 only defines a frame for deriving an individual AD approach
[PBG04; p.132]. Besides the general principles for AD sketched here, the IEEE
1471 with its conceptual framework is not further considered in this thesis. An-
other standard to consider is the IEEE 1016 [IEEE1016] (also cf. [Sch00; p.112-
121]) providing a “recommended practice for describing software designs”
[Sch00; p.112]. The standard specifies the information content and recommended
organization for a software design description as a representation of a software
system that is used as a medium for communicating software design information
[Sch00; p.112].

A comprehensive general treatment of the topic architectural documentation
is provided by the book of Clements et al. [CBB+03] describing the basic princi-
ples of sound documentation and providing a fundamental terminology and
method. According to Hruschka and Starke [HS06; p.56], the proposals for struc-
turing AD documents in general are „brilliant“ with its basic structure for docu-
menting views. Hruschka and Starke [HS06; p.57], however, consider Clements
et al. [CBB+03] as hardly suitable for a practice-oriented AD. In [HS06], Hru-
schka and Starke give an overview on other AD approaches. Further, they intro-
duce a more pragmatic and practice-oriented approach on AD they call “arc42-
template”.

I.6.6 Design in the Automotive Domain

After the previous chapters have provided a rather general view on how design
arises, this chapter describes the modeling methods and tools typically used in
automotive development. This helps to derive some extra requirements for the
R2A tool solution described in part III.

Generally, it is to mention that the tool solution described in part III is a
general solution not especially dedicated for the automotive domain. In this way,
this chapter can rather be considered as a kind of exemplar description of model-
ing approaches used in a specific engineering domain. On the other side, the
automotive domain has some peculiarities that should be considered in order to
provide high value for the automotive domain. At the end of this chapter, the
reader will see that the features derived from these peculiarities are also useful for
other domains, but they are especially useful in the automotive domain.

In the following, two peculiarities of the automotive domain are discussed:
• The usage of different heterogeneous modeling languages and tools,

I.6 Design in Systems and Software Development 111

• The need to integrate other organizations (e.g., suppliers) into the considera-
tions of design;

I.6.6.1 Modeling Methods and Tools Used in Automotive
Design

In the automotive domain, different modeling methods are used:
• Tools basing on UML and (resp. or) SysML,
• Automatic control engineering oriented tools,
• Tools basing on state charts;

I.6.6.1.1 UML and SysML

The Unified Modeling Language (UML) has established itself as worldwide
standard for modeling SW [We06; p.3]. UML has also established itself in the
embedded community ([Gr03], [Al03]). In automotive, it is also gaining growing
usage115, even though the other approaches mentioned here exist. UML's ad-
vantage is its high variety of different design elements and diagram types allow-
ing to flexibly model different aspects concerning SW. Thus, UML directly sup-
ports to model different views. Although UML supports hierarchic decomposition
of systems, UML does not prescribe a hierarchic order. The standard rather con-
centrates on defining the different diagram types with the semantics of the used
elements in these diagrams. Decisions about how to arrange elements and dia-
grams in a model are left open to the designers. It is rather possible to use differ-
ent hierarchies (e.g., it is possible to have different hierarchies for different
views). This leads Broy and Rumpe to the conclusion that UML is rather prag-
matic and practice-oriented without a uniform model, but has rather worked out
partial aspects as views however not being consistent to each other [BR07b; p.4].

UML also provides extensibility through offering a meta-model and a profil-
ing mechanism. Whereas, first versions of UML have rather concentrated on
usability in practice, UML 2116 defines an action-semantics with improved sup-
port for executable models allowing model simulation and code generation
[Mo04; p.180ff]. Model simulation allows early verification of requirements,
because the models can be used as a simulation prototype (see ch. I.5.6 for ad-

115 A clear indication of its importance in Automotive is the fact that its notation is used in

defining Automotive SW standards as, e.g., the AutoSAR standard [KF09].
116 A detailed overview of the major changes between the first UML versions and UML2

is provided by [JRZ04].

112 I. General Context and Theories

vantages of prototypes in REM) to simulate the behavior of the system, before it
is finally constructed thus enabling to identify missing or wrong requirements
earlier [Mo04; p.177ff]. Model simulation can also help to achieve early estima-
tions about NFRs related to the dynamic behavior of a system (e.g., performance,
scalability) [Mo04; p.183]. Known UML-tools employed in practice for model
simulation are IBM Rational Rhapsody and Artisan Realtime Studio (see also
[Ge05; p.42-44], [Sa05]). However, as long as it concerns model simulation and
code generation, often other tools described in the next chapters are mostly em-
ployed in the embedded domain.

For system design as used in SysEng processes, the Systems Modeling Lan-
guage (SysML) has been developed. SysML [SYSML] is defined as standard by
the Object Management Group [OMG] basing on UML 2.1.1 [We07; p.16].
SysML extends UML in certain aspects but also leaves out some aspects of UML
not necessary for systems design. Besides extensions for modeling systems such
as support for time-continuous modeling or block diagrams, a major extension is
that SysML defines a notion for requirements together with several relationship
types that describe traceability mapping between requirements and design. Ch.
II.10.4.2.3 describes this aspect of SysML in more details.

Concerning tool support, SysML can usually be used by UML-tools extend-
ed by a SysML profile. A detailed description of the SysML standard is provided
by Weilkiens [We06], [We07].

I.6.6.1.2 Automatic Control Engineering Oriented Tools

As Bauer et al. [BRS05; p.195] point out; automotive SW development has di-
verse connections to mechanical engineering and automatic control engineering.
Accordingly, several design tools exist that have automatic control engineering-
oriented117 semantics.

In ECU development, the most applied tool of this kind is probably Matlab
Simulink [Matlab] (see [Te01]). In the automotive domain, besides Matlab Sim-
ulink, the tool ETAS ASCET [ASCET] is also used in equal project contexts
(ASCET, however, in contrary to Matlab Simulink seems to be used only in the
automotive domain). Marwedel [Ma08a; p.86] describes Matlab Simulink as
simulation and modeling tool basing on mathematical principles (e.g., partial
differential equations). Different elementary mathematical operations as integra-
tors, characteristic diagrams118 or filters are symbolized by so called block librar-
ies (cf. [BRS05; p.195]), which can be connected together via data flow model-

117 German: Regelungstechnik
118 German: Kennlinie

I.6 Design in Systems and Software Development 113

ing. Matlab Simulink (and equally ETAS ASCET) provides facilities to simulate
the behavior of those models as prototypes for early requirement verification of
complex physical or logical interdependencies between requirements (ch. I.5.4).
Furthermore, these models can also be used for code generation of large parts of
the application (see also [Sa05], [Ge05; p.42-44], [MB05]).

As Bauer et al. [BRS05; p.195] point out; this modeling technique empha-
sizes synchronous function blocks, signals, periods connected by data flow tran-
sitions. However, these models depend on a synchronous uniform time basis.
Thus, problems as concurrent tasks or shared resource management are difficult
to handle in those tools (see [BRS05; p.195] for details). Therefore, – as the au-
thor experienced in practice – those tools are often used for modeling certain
components having complex behavior. These components are then integrated
with other components in a higher level architecture.

I.6.6.1.3 State Charts

Most ECUs are reactive systems (see ch. I.2.2). This means the system reacts on
the settings and changes of the environment. Therefore, ECUs or at least parts of
it are often state based. Due to the long existence of state machine theory, it is
also a well-known theory describing deterministic behavior.

The techniques usual today for modeling complex state based behavior are
state charts119 originally introduced by Harel in 1987 [Ha87]. The semantics of
the language bases on finite deterministic state machines. More on state charts as
modeling technique in the context of ECUs can be seen in ch. I.5.4, [Ma08a;
p.18ff] or [Do04; p.317f].

Requirements describing state based behavior can be very numerous and
complex and so can also become the state machines. Therefore, advantages and
limitations of this method concerning early model verification for early require-
ment evaluation are comparable to the approaches described in the previous
chapter about automatic control engineering oriented tools (see also ch. I.5.4).

119 Pettit [Pe04] provides the following experiences about state charts in embedded design

practice with UML: “In the author’s experience, state charts are one of the most un-
derused UML diagrams in designing embedded software system. The hierarchical state
charts employed by the UML offer significant expressive power for capturing the reac-
tive, state-dependent behavior often found in embedded systems. State charts should
be constructed for each class that encapsulates state dependent behavior” [Pe04; p.4].
Ch. I.8 provides a more detailed discussion on the practical experiences of Pettit in
embedded development.

114 I. General Context and Theories

Due to the possible high complexity of the state machines, the state machine
models can be managed hierarchically, where states can have sub state machines
[Ma08a; p.19], [Do04; p.317f].

The tool Matlab Stateflow is a professional state charts modeling tool offer-
ing the possibilities to simulate gathered state machine models, where the models
can later be used for automatic code generation.

Besides Matlab Stateflow, also the UML-tools IBM Rational Rhapsody and
Artisan Realtime Studio allow similar functions to early simulate modeled state
charts and generate code of it. The advantage of these tools is that the state charts
are integrated into an UML modeling environment.

However, Matlab Stateflow still seems the most used tool for modeling state
charts in automotive development (see also [Sa05], [Ge05; p.42-44]).

I.6.6.1.4 Conclusions

In the automotive industry, different methods are used. Formal methods, as au-
tomatic control engineering and state chart tools, have their individual strength in
early formal validation and verification of requirements or in modeling algo-
rithms, where the gathered resulting models can be directly used to automatically
generate code. This often helps to cover large extents of the functional require-
ments. However, automotive ECUs are complex, where extensive parts of the
code do not cover functional requirements but rather deal with directly handling
the HW or managing special problems caused by the extremely cost-optimized
HW.

For these cases, UML and SysML are better suited with their rather pragmat-
ic, but rich tool set. Moreover, UML and SysML have their focal point on archi-
tectural modeling, whereas the other formal methods rather concentrate on partial
aspects such as state charts or algorithmic modeling.

In this way, UML and SysML can be a notational framework for the overall
design of the architecture. For parts, however, often covering extensive parts of
the FRs, the formal modeling approaches can develop partial models helping to
early verify and stable these requirements with the ability to directly use the
models as basis for code generation. Other parts of the system, however, are not
needed for formal verification, because they cover FRs only to low extents, but
rather deal about fulfilling supportive tasks (e.g., steering of HW or managing
special problems). UML or SysML may then again be the better choice.

In fact, the author thinks that another form of pareto-kind connection might
even exist (see also ch. II.10.4.2.2): 80% of the FRs might be covered by 20% of
the code. This kind of code can often be covered by modeling tools supporting
early simulation and verification of requirements with subsequent code genera-

I.6 Design in Systems and Software Development 115

tion. In this way, most functionality of the system can be elicited early in projects.
However, for the other 80% of the code (being mostly the handler and driver
layer in an automotive ECU project) dealing with behavior in error cases and
steering of HW manual coding may still be the best alternative. Another way
around the problem may be to have standardized COTS120 components such as
the AutoSAR [KF09] standardization endeavor aims for.

As a consequence of these facts collected in the chapters above, automotive
projects often use several design tools in one project together. Correspondingly, a
requirements traceability solution to include design must enable to include sever-
al design tools into one integrated model. Such a notion is also expressed by
Grimm [Gr05]: “Current SW tools are generally dedicated to specific phases and
tasks within software or systems development. Thus, there is an urgent need for
continuous integrated tools in order to achieve that different developed artifacts
and processes can be developed in an concerted way with optimal support of the
defined modeling approach” [Gr05; p.421 (*)]. Such a solution is provided by
R2A (see ch. III.16.2).

Last but not least, other tools that exist in automotive design need to be men-
tioned. These are, e.g., tools such as IBM Rational DOORS or Aquintos PREEvi-
sion are used by OEMs in practice to design systems of systems, where the OEM
derives the requirements specifications for the singular ECUs to commission
suppliers to develop the ECUs (see the following chapter). In research, tool envi-
ronments such as AutoFOCUS [BRS05] exist especially dedicated for automotive
development. In the following, these tools are not further considered as design121
tools.

I.6.6.2 Integrating other Organizations into a Design

“In the development of complex embedded systems, often several companies
work together on the development. At such an interconnected development, often
partnerships are built, where mostly one supplier is engaged as the system suppli-
er having – besides other tasks – the responsibility to coordinate the other suppli-

120 Components Off The Shelf
121 DOORS is considered as REM-tool but not as a means for design. In fact, DOORS as

design tool also is very limited in the way that it rather supports a text-based design
comparable to Microsoft Word, where pictures can, e.g., be created via Microsoft Vi-
sio. However, also more sophisticated addons for DOORS exist allowing to combine
the textual specifications in DOORS with modeling aspects (see, e.g., http://www-
01.ibm.com/software/awdtools/doors/analyst/ (Access: 2010/07)).

116 I. General Context and Theories

ers. Therefore, selection and coordination of suppliers is of special importance in
embedded development.

Often, even a hierarchy of client-supplier-relationships emerges, meaning
that a supplier (second tier) acquires further sub components of the system from
his own suppliers (so called third tier) and coordinates the collaboration. Addi-
tionally, the customer often prescribes the supplier certain third tier suppliers”
[HDH+06; p.65 (*)].

As this statement of Hörmann et al. indicates, complex relationships be-
tween customer and supplier exist. This makes it necessary to coordinate collabo-
ration between organizations. This also means that often the work of different
suppliers must be integrated into a working system where one of the suppliers is
responsible to coordinate the others. This implies that the coordinating suppliers
must define an architecture where the parts of the other suppliers must be inte-
grated in. As the different suppliers also have strong interest to protect their
knowledge, it is especially important to define interfaces between the different
parts.

This together means that the coordinating suppliers must find ways to effec-
tively communicate parts of their architectural design essential to suppliers whose
delivered parts must be integrated into the architecture, but also avoid communi-
cating essential knowledge to be protected. On the other side, the coordinating
suppliers must also ensure that the supplied parts to be integrated really match the
requirements and directives of the architectural design. The R2A tool solution
introduced in part III addresses this topic through allowing the export of parts of
a design model as direct requirements specification for a supplier (see ch.
III.23.1). In this way, a direct and frictionless supplier management can be real-
ized.

I.7 Quality Standards for Safety-Critical
Development Processes

If you can't describe what you are doing as a process, you don't know what you're doing.
William Edwards Deming

According to diverse authors (e.g., [Eb05; p.23], [GG03], [HDH+06; p.50],
[St01]), SW quality has been significantly improved due to concentration on SW
processes and their improvement.

In the view of Hatley et al. [HHP03; p.41], attempts for SW quality im-
provement have their origins in a study on quality by Deming [Deming86] and

I.7 Quality Standards for Safety-Critical Development Processes 117

the Total Quality Management (TQM) movement in the 1980ies. There, TQM
mostly defines quality as the correspondence of a product with its requirements,
what implies the following core ideas of TQM [HHP03; p.41-42]:
• Requirements must be defined with extreme precision.
• The fulfillment of requirements must be measurable.
• Not fulfilled requirements are an error.
• Maximizing quality, thus, means minimizing the errors.

In summary, TQM is completely dependent on precise definition of require-
ments and management of requirements [HHP03; p.42]. TQM, however, is more
a holistic organization management theory (e.g., cf. [Ro01; p.64-67]) than a qual-
ity practice for the specific quality issues concerning software development.

Around 1986, during the SDI-project (Strategic Defense Initiative), the
United States Department of Defense (DOD) encountered major problems con-
cerning the developed software for high complexity systems [Kn06; p.1]. This
sparked the DOD to perform a study in cooperation with the Software Engineer-
ing Institute (SEI) of the Carnegie Mellon University in Pittsburg. In 1989 the
disclosed study came to the conclusion that only 24 % of software functionality
delivered was actually usable [HDH+06; p.7]. As a consequence, the DOD man-
dated the SEI to develop a quality improvement model for software processes. As
a result, the SEI developed the Capability Maturity Model [PCC+93],
[PWG+93]. In the following years, the CMM model was about to become a major
success story for process improvement for organizations far beyond the scope of
the DOD [Kn06; p.1]. During the years of implementation, besides the SW
CMM, also CMM models for SysEng and product engineering have been devel-
oped leading to the development of the CMMI (CMM integrated) standard model
integrating the different models in 2001 [Kn06]. The original CMM standard has
been set deprecated in 2003 [HDH+06; p.7].

The major success of CMM also sparked ambitions by the European Union
to develop a similar model by the BOOTSTRAP project [SE96] finally leading to
the definition of an international ISO standard for the assessment of software
process quality. These ambitions finally lead to the international ISO/IEC 15504
[ISO15504] also referred to as SPICE (Software Process Improvement and Ca-
pability dEtermination122).

122 Originally, SPICE was called Software Process Improvement and Capability Evalua-

tion [HWF+08; p.28], [HDH+06; p.9]. As the translation into French language would
have changed the semantics, Evaluation has been replaced by Determination without
changing the acronym [HDH+06; p.9].

118 I. General Context and Theories

In contrast to CMM and CMMI being a proprietary model123 of the SEI insti-
tute [BHV09; p.135], the SPICE model is designed as open international stand-
ard. Even though CMMI currently seems to have a wider pervasion in industry (it
is even widely spread in Automotive industry) [MHD+07; p.4-5], the HIS124
initiative has decided to use SPICE as their standard for auditing suppliers
[MHD+07; p.3], [HDH+06; p.4]. In the last years also an industry specific adap-
tion of SPICE, called Automotive SPICE (A-SPICE), has been developed to bet-
ter fit to the peculiar needs of the automotive industry.

Due to these facts, the author has decided to use the following chapters to
introduce SPICE as exemplar quality model highlighting the traceability de-
mands of such standards. As the development team of CMMI aimed to be con-
sistent and compatible to SPICE [Kn06; p.9], and because both process models
base on the ISO 12207 [ISO12207] process model for software development, the
identified discussion points should so far also be valid for CMMI125. In addition,
after discussing SPICE a small chapter will outline some minor changes concern-
ing traceability demands, when A-SPICE is used.

Last but not least, it is to mention that also new quality standards (IEC
61508, ISO 26262) concerning safety-related aspects of embedded systems are
currently gaining importance in the automotive industry also imposing effects on
traceability demands. Consequently, at the end of this chapter, the demands of
these two standards are also discussed.

123 Although the CMMI model is proprietary, it also has become a kind of de-facto stand-

ard [BHV09; p.135].
124 “Hersteller Initiative Software” (Car Manufacturer Initiative) – A community of Ger-

man automotive OEMs (http://www.automotive-his.de/ (Access 2010/02)) defining
specific stan–dards for the german automotive industry often becoming de-facto
standards for the world-wide automotive industry.

125 It is to mention that certain differences between CMMI and SPICE exist, but these
differences should not have significant influence on the topics discussed here. For the
more interested reader, [MHD+07; p.273-283] and [BHV09] provide a detailed de-
scription on the differences between CMMI, SPICE and Automotive SPICE and how
organizations can best migrate from CMMI to SPICE or maintain both models in par-
allel.

I.7 Quality Standards for Safety-Critical Development Processes 119

I.7.1 SPICE (ISO 15504)

Today, order mostly is where there is nothing. It is a phenomenon of shortage.
Brecht (*)

SPICE is a standard for assessing the maturity (quality) of development process-
es. It covers the aspects process assessments, requirements for processes and their
assessment as well as guidance principles for how to employ the standard
[HDH+06; p.13]. The standard itself is divided into five parts [HDH+06; p.13-
14]:
1. Part I – “Concepts and Vocabulary”: Offers a general introduction into the

important concepts and terms of the standard.
2. Part II – “Performing an Assessment”: Minimal requirements for performing

an assessment in order to acquire consistent and reproducible benchmarks.
Part II “is the (normative) core of the standard; the other parts have a more
imperative character” [HDH+06; p.13 (*)].

3. Part III – “Guidance on performing an assessment”: Guidance for interpreting
the requirements imposed by Part II.

4. Part IV – “Guidance on use for process improvement and process capability
determination”: “Guidance for usage of process assessments within a process
improvement effort or for determination of the maturity level“ [HDH+06;
p.13 (*)].

5. Part V – “An exemplar Process Assessment Model”: Example of a process
assessment model for the application of assessments according to the re-
quirements imposed by part II. According to Hörmann et al. [HDH+06; p.18],
this part has the most importance for practice (cf. ch. I.7.1.3).

Two further parts are still in standardization work:
• Part VI – “An exemplar system life cycle process assessment model”: Exam-

ple about creating an assessment model for life-cycles of human created sys-
tems according to [ISO15288].

• Part VII – “Assessment of organizational maturity”: Defines a framework to
determine organizational maturity.

As normative part, Part II defines the following normative aspects [HDH+06;
p.14]:
• Requirements for the assessment process including planning, performing,

data collection, data validation, definition and validation of process attributes
and reporting,

• “Requirements on roles and responsibilities” [HDH+06; p.14 (*)],
• “Requirements on the assessment inputs and outputs” [HDH+06; p.14 (*)],
• The framework for measuring the process maturity,

120 I. General Context and Theories

• The requirements for process reference and process assessment models;
SPICE is structured in three different models [HDH+06; p.17]:
1. The process reference model (PRM) describes a set of processes as a refer-

ence model. The processes are defined in high level terms of purpose and ex-
pected outcomes [BHV09; p.135].

2. The measurement framework (MF) defines the basic maturity levels, process
attributes and the evaluation scale. As the name framework indicates, the MF
just defines a measuring frame and is not alone sufficient for measuring pro-
cess maturity.

3. The process assessment model (PAM) refers to the MF and is built up by one
or more PRMs. It defines concrete criteria (so called indicators) for maturity
evaluation. The PAM has two dimensions:
• The process dimension defines the indicators for all processes of the

used PRM.
• The maturity dimension defines how to determine the maturity level

from measured results of processes according to the indicators.

I.7.1.1 The Process Reference Model of SPICE

A PRM offers a basis for the development of an individual organization-specific
process model describing the ideal processes to be employed in a company. In
principle, it is possible to create an organization-specific process model without
any PRM, but a PRM helps to improve the development of an organization-
specific process model [FL02; p.9].

In the following, such an activity is called process implementation126 and the
performer of this activity is called process architect. In SPICE, the PRM de-
scribes a set of processes to be adapted for implementation by an organization.
The processes are described with regard to their goals, practices to perform and
outcomes to reach the goals. An example of a widely referred standardized PRM
is the ISO 12207 [ISO12207] process model for software development.

Since SPICE itself is a very generic standard, organizations can also refer to
other PRMs (or even other PAMs) [HDH+06; p.14]. As also discussed in ch. I.7.4,

126 Concerning adaption of a PRM to an organization, also the standard IEEE 1074

[IEEE1074] provides valuable support for process architects, as it describes how activ-
ities of a PRM can be mapped to an organization to create an organization-specific
process model [Sch00; p.58-79]. Especially concerning process implementation of ISO
12207, the IEEE 12207 [IEEE12207] standard gives valuable guidance how ISO
12207 may be implemented in industry practice [Sch00; p.50-58].

I.7 Quality Standards for Safety-Critical Development Processes 121

the automotive industry specific SPICE adoption, called Automotive SPICE (A-
SPICE), uses a slightly different PRM127 specifically adapted to process concerns
of automotive development [HDH+06; p.269].

Nevertheless, when a PRM is used deviating from ISO12207, a separate as-
sessment must clarify whether the process model fulfills the requirements im-
posed by SPICE, part II [HDH+06; p.14].

I.7.1.2 The Measurement Framework

The PAM has the goal to assess development processes according to their maturi-
ty. SPICE defines in part II different maturity levels (ML) where each assessed
process can be categorized. Altogether, part II defines 6 MLs [HDH+06; p.15-
16]:
• Level 0 – Incomplete: The process is not established or the goals of the pro-

cess are not reached.
• Level 1 – Performed: The process is established and fulfills its goals, howev-

er in an uncontrolled manner.
• Level 2 – Managed: The process is planned and its progress is tracked. Re-

sulting work products are adequately performed, are controlled by configura-
tion management, and quality is ensured through dedicated quality manage-
ment.

• Level 3 – Established: An organization-wide standard process is established,
where each project uses a tailored version of this process.

• Level 4 – Predictable: The performance of processes is continuously meas-
ured and monitored leading to a quantitative understanding of the process
with improved predictability.

• Level 5 – Optimizing: Basing on the business goals of the organization,
quantitative goals are derived for processes and its compliance is continuous-
ly tracked.
For each of the levels so called process attributes (PA) define more detailed

criteria for assessment. Altogether, 9 PAs exist shown in table 7.1 in correspond-
ence to their ML.

127 Besides these two PRMs, Bella et al. explicitly name the ISO/IEC 15288 (for Systems

Engineering life cycle processes) as fully compliant to SPICE [BHV09; p.135].

122 I. General Context and Theories

Table 7.1 Maturity Levels and their Process Attributes (cf.[HDH+06; p.16])

Maturity Level Process Attributes

5 – Optimizing PA 5.1 – Process Innovation
PA 5.2 – Continuous Optimization

4 – Predictable PA 4.1 – Process Measurement
PA 4.2 – Process Control

3 – Established PA 3.1 – Process Definition
PA 3.2 – Process Deployment

2 – Managed PA 2.1 – Performance Manage-
ment

PA 2.2 – Work Product Manage-
ment

1 – Performed PA 1.1 – Process Performance

0 – Incomplete –

During an assessment, for each process, each PA can get one of the follow-
ing four achievement values as evaluation scale (for details on meaning and
measuring cf. [HDH+06; p.223ff]):
• N – Not achieved,
• P – Partially achieved,
• L – Largely achieved,
• F – Fully achieved;

Then, each process gets its ML by analyzing the achievement values. A ML
is reached when at minimum all PAs of all sub MLs are fully achieved and all PAs
of the ML are largely achieved128 [HDH+06; p.225].

I.7.1.3 The Process Assessment Model (PAM)

The PAM orients itself on the processes described in the PRM and defines con-
crete indicators for evaluation. SPICE, part V (ISO/IEC 15504-5) illustrates an
example PAM and thus part V is of the highest importance for process implemen-
tation in an organization as well as for process assessments in practice [HDH+06;
p.18].

128 For example, ML 3 is reached, if PA 1.1, PA 2.1 and PA 2.2 are fully achieved, and PA

3.1 and PA 3.2 are largely achieved.

I.7 Quality Standards for Safety-Critical Development Processes 123

Concerning process implementation, the PAM defines processes in a standard-
ized way. This definition includes basic indicators (so called base practices) to be
fulfilled at minimum in order to determine that the process is performed. Fig. 7-1
shows the standard set of processes of the standard PAM described in part V bas-
ing on ISO 12207. The process set is divided into 9 process areas with 40 pro-
cesses. Each process is defined by a standardized structure [HDH+06; p.61]:
• Process-ID: A unique identifier for each process. The identifier consists of a

combination of three letters and a number between 1 and 12.
• Process name: The name of the process.
• Process purpose: The purpose of the process.
• Process outcomes: The defined process results.
• Base practices (BP): Base practices describe the directly relevant aspects to

pay attention when performing a process.
• Work products (WP): Define artifacts that can be either an input or output of

a process. Each WP has an unique identifier and is detailed in part V., Annex
B.

Figure 7-1 Processes defined in ISO/IEC 15504-5 basing on ISO/IEC 12207

124 I. General Context and Theories

The points one to four have been taken over from ISO 12207, whereas the
latter two points are defined in ISO 15504-5. In this way, the BPs and WPs can
also be seen as the basic indicators for reaching ML 1 meaning that processes
fulfill their goals, but they are not really planned.

Concerning process evaluation for higher maturity levels, the individual PAs
defined in the measurement framework are again further refined through the
following indicators [HDH+06; p.222f]:
• Generic practices (GP) are generically defined activities or practices sup-

porting the implementation of a specific PA. A lot of the GPs support BPs by
demanding specific activities of process management. As an example, GP
2.1.2 (“Plan and monitor the performance of the process to fulfill the identi-
fied objectives.”) demands to perform basic project management principles
for each process.

• Generic resources can be applied to fulfill GPs.
• Generic work products can be used and created by GPs.

Corresponding to the focus of this thesis, the following discusses the PAM's
demands on processes about requirements and design (ENG.1-ENG.6) with spe-
cial focus on needs for requirements traceability.

I.7.2 Requirements, Design and Traceability in the
 Context of SPICE

At first the different processes involved (ENG.1-ENG.6) are briefly sketched.
Categories are purpose, base practices and work products. For a detailed descrip-
tion the user is invited to refer to [HDH+06] or the ISO 15504.

After the introduction to the process demands of SPICE, the author tries to
outline the demands for a SPICE-conforming traceability environment for re-
quirements and design processes. As processes that are important here (ENG.2-
ENG.5) are not an instance of their own but must be considered in context of
other processes, the contextual processes ENG.1, ENG.6 are also considered.
Additionally, support processes such as SUP.10 also impose demands on tracea-
bility or its further usage. Therefore, SUP.10 is also sketched.

I.7.2.1 ENG.1: Requirements Elicitation

Purpose: All customer requirements for a product or service over the complete
life-cycle shall be identified and collected [HDH+06; p.81-89].

I.7 Quality Standards for Safety-Critical Development Processes 125

Base Practices:
• BP1 “Obtain customer requirements and requests”: Additionally, not only

pure customer requirements and wishes must be considered. Instead often
standards, guidelines, legal constraints or constraints imposed by the envi-
ronment of a system to develop impose further requirements. According to
Hörmann et al. [HDH+06; p.82], the number of documents to analyze and
search for additional requirements can easily become several hundred lead-
ing to enormous complexity as the elicited requirements also often include
inconsistencies or contradictions.

• BP2 “Understand customer expectations”: Requirements must not only be
elicited. Instead, customer and supplier must have a common understanding
of the requirements. Practice has proofed joint reviews as helpful to gain a
common understanding of the requirements.

• BP3 “Agree on requirements”: All development teams involved in the pro-
ject must express agreement on the customer requirements. This means that
at least one representative of each development team must validate the re-
quirements and determine whether a requirement is feasible129, or not.

• BP4 “Establish customer requirements baseline”: The agreed status of col-
lected customer requirements must be integrated into a consistent customer
requirements specification (CRS) and a baseline of the CRS must be estab-
lished as basis for the development and to be able to track later changes.

• BP5 “Manage customer requirements changes”: Starting from this first base-
line all changes or extensions of the customer requirements must be tracked.
Besides changes imposed by the customer changes can also be sparked by
changes of used standards or technologies [HDH+06; p.87].

• BP6 “Establish customer query mechanism”: Demands to establish proce-
dures to notify customers and planning concerning a requirement change re-
quest. In practice, this is often achieved via a change control board (CCB)
[PR09; p.144f], [VSH01; p.184f, p.216].

Work Products:
1. Change control record: See the following ch. I.7.2.7 about SUP.10: Change

Management.
2. Customer requirements specification (CRS): Depending on the project, the

customer requirements are either collected by the customer himself, or the
supplier collects the requirements. In the German-speaking community the

129 It is to note that SPICE does not make any claims about how to proceed with not

feasible requirements [HDH+06; p.85].

126 I. General Context and Theories

CRS is usually documented by the customer130.. Besides the usual quality de-
mands for a requirements specification (see ch. I.5), SPICE explicitly de-
mands that each requirement is separated and individually traceable to all
origin artifacts (backward traceability) and all subsequent artifacts (forward
traceability) [HDH+06; p.88 (*)].
Starting from here, it shows that SPICE imposes high demands for traceabil-

ity as each individual requirement must be traceable to all subsequent artifacts.
However, requirements elicitation lies not in the focus of this thesis. Thus, in the
following it is assumed that a CRS is available.

I.7.2.2 ENG.2: System Requirements Analysis

Purpose: Transform the defined customer requirements in a set of technical sys-
tem requirements building the basis for system design. “The system requirements
analysis is one of the most important processes as it prepares the foundation of
the complete further development work” [HDH+06; p.89 (*)]. Hörmann et al.
[HDH+06; p.89] also emphasize that besides the customer requirements other
requirements basing on other stakeholders' input should be considered. This in-
cludes that the coordination of different development areas such as HW devel-
opment, software development and testing must be integrated.
Base Practices:
• BP1 “Establish system requirements”: The CRS as basis must be used to

identify the demanded functions and abilities of the system to be afterward
documented in a system requirements specification (SYS_RS) afterward. The
SYS_RS must be baselined and the feasibility of the identified requirements
must be analyzed. Further the project solution shall be analyzed for feasibil-
ity.

• BP2 “Optimize project solution”: The specification of a SYS_RS already
predetermines a certain solution at a very high-level131. During determination
of the SYS_RS also other alternative solutions must be analyzed here.

• BP3 “Analyze system requirements”: The identified requirements are priori-
tized and analyzed whether they fulfill quality demands (see ch. I.5.1) and
whether they imply further requirements to be elicited. Analyzing require-
ments often leads to identification of cross-linkings between them and new

130 In the German speaking community, the CRS usually corresponds to what is called

'Lastenheft' (see the following chapter I.7.2.2.1).
131 However, it is to mention that the author recommends avoiding an unnecessarily early

determination of a solution and leaving the solution space as wide as possible.

I.7 Quality Standards for Safety-Critical Development Processes 127

requirements can be derived. Both kinds of dependencies must be made ex-
plicit [HDH+06; p.92].

• BP4 “Evaluate and update system requirements”: Any proposed change on
the system requirements must be assessed for changes on costs, deadlines,
risks and technical impacts. It must be possible to approve or reject proposed
changes and new requirements.

• BP5 “Ensure consistency”: Consistency between the CRS and the SYS_RS
must be ensured. Consistency is ensured by applying traceability between
CRS and SYS_RS [HDH+06; p.93].

• BP6 “Communicate system requirements”: System requirements must be
communicated to all stakeholders somehow involved. Correspondingly, a
communication mechanism must keep them up-to-date.

Work Products:
1. Traceability record: Artifact containing the information for backward and

forward traceability.
2. Interface requirements: Define the requirements for interfaces. Interfaces are

differentiated into external and internal interfaces.
3. SYS_RS: The SYS_RS contains all requirements from the customer and the

newly elicited requirements from the system requirement analysis132. Alto-
gether, the following aspects must be considered in the SYS_RS [HDH+06;
p.90]:
• Functional requirements,
• Functions and abilities of the system, interfaces, system performance

and timing-constraints,
• Nonfunctional requirements,
• Technical constraints (e.g., the context of the system),
• Reuse, maintenance and product servicing,
• Norms and standards,
• Economic constraints (business needs, market constraints, time-to-

market);
According to Hörmann et al., “the SYS_RS also provides an overview of the

overall system and the relationships of its sub parts, especially the relationships
between the system elements and the software” [HDH+06; p.96 (*)]. It is true
that the SYS_RS already may predetermine a certain high-level solution, however,
as the following intersect chapter shall outline it is also to consider to outweigh
the advantage of a clear description of the characteristics of the system to be
supplied and the disadvantages of imposing unnecessary restrictions of the pro-
ject's solution space.

132 Usually, also the interface requirements (context) are part of the SYS_RS.

128 I. General Context and Theories

I.7.2.2.1 Remarks on the German Terms 'Lastenheft' and 'Pflichtenheft'

At this point, remarks to some peculiarities of the German-speaking SE commu-
nity and their interpretation of the SPICE standard seem useful. German SE tradi-
tion has developed two terms not available in the English-speaking communi-
ty133:
• 'Lastenheft': According to Balzert, a 'Lastenheft' “contains a collection of all

functional basic requirements to be fulfilled by the software product under
development from the customer's viewpoint. 'Basic requirements' means a
conscious concentration on the essential characteristics of a product and its
description in a sufficient level of abstraction” [Ba96; p.57-58 (*)].

• 'Pflichtenheft': Whereas the 'Pflichtenheft' “contains a collection of all func-
tional requirements that must be fulfilled by the software product under de-
velopment from the customer's viewpoint. … The 'Pflichtenheft' must be
formulated in a way that it can serve as basis for a jurisdictional contract.
The 'Pflichtenheft' thus represents the contractual description of the scope of
delivery” [Ba96; p.104-105 (*)].
Usually, the 'Lastenheft' is written by the customer whereas the

'Pflichtenheft' is usually written by the supplier. However, the direct connections
between these terms and the terms in the English-speaking community often stay
vague. According to Schienmann [Sch02; p.83], the 'Lastenheft' is comparable
with what the Kruchten [Kr99] calls a “vision document” in the context of the
Rational Unified Process.

Concerning SPICE, the concepts of 'Lastenheft' and 'Pflichtenheft' do not ex-
ist [HDH+06; p.64], because the standard just talks about different requirements
specifications, but in the German-speaking SPICE adoption practice, the custom-
er requirements specification (ENG.1) is often equalized to the 'Lastenheft' con-
cept, whereas the system requirements are equalized to the 'Pflichtenheft'. The
author agrees that this takeover of the analogous terms is fruitful as it alleviates
communication and because well-established terminology is used. On the other
side, it is important to consider whether taking over may not also bring the dan-
gers that this terminology unconsciously infers new meaning.

One example is that a 'Pflichtenheft' also has a jurisdictional dimension that
is not treated by the ENG-processes but slightly touched by the acquisition pro-
cesses (ACQ.1-ACQ4) in SPICE. In the author's eyes, this also is fruitful espe-
cially when considering the automotive domain because, in fact, the processes

133 To make the German meaning transparent to the English speaking community, Weber

and Weisbrod [WW02; p.19] provide the literal translations “demand booklet” for
'Lastenheft' and “duty booklet” for 'Pflichtenheft'.

I.7 Quality Standards for Safety-Critical Development Processes 129

and work products of ENG.1 and ENG.2 often mark the transgression point,
where the customer's development efforts melt with the supplier's development
efforts and correspondingly the legal effects of the work products must be taken
into consideration.

This makes way for another point of consideration that will later lead to con-
siderations influencing the further outcome of this thesis. In ENG.2 BP1 and BP2,
the standard also speaks of a 'project solution'. According to Hörmann et al., this
means the “general approach to the solution” [HDH+06; p.96 (*)] and thus does
not mean a detailed description of the solution. In ch. I.7.3.20, the author de-
scribes how an insufficient separation of problem description and solution de-
scription leads to unnecessary redundancy and problems of identifying the real
requirements from 'requirements' merely originating from some formerly taken
design decisions134. Both problems impose significant problems concerning re-
quirements traceability and adaption of requirement changes. This gives way to
the author's plea to clearly separate real requirements from 'requirements' im-
posed by former design decisions (cf. ch. III.19 for a taxonomy of both require-
ment types). However, on the other side, both requirement types have their rights
to exist and both are connected to each other. As a better solution of the problem,
the author shows in ch. III.20 how both can be connected via a decision model,
thus improving traceability and additionally improving decision documentation.

In general, it is to say that it is very important to mind here what is really ne-
cessary to describe and what can be left open. Because of the fact that the system

134 In [WW02; p.19], Weber and Weisbrod seem to disagree with the notion that require-

ments specifications such as the 'Lastenheft' should only contain requirements. Thus,
they rather demand for the notion that these documents also have to contain architec-
tural descriptions beyond the scope of the problem space. They enlist several argu-
ments for their demand. However, this may be a kind of misconception. In the author's
opinion, the arguments rather describe the following situation: When the developers at
an Automotive OEM create different 'Lastenheft's for the different ECUs, the develop-
ers perform a design activity for the complete system car. The decisions taken at that
design level, however, include that the suppliers of the different ECUs must obey the
consequences of these decisions. In this way these consequences become new re-
quirements for the different ECUs and must be included in the 'Lastenheft'. This does
not mean that the 'Lastenheft' contains extensive design aspects, but it may rather be
the relation described here. Later in ch. III.23.1, when it comes to the tool solution, it
is described that a requirements specification can be created for parts of a design mod-
el in order to propagate all design settings of the part to a supplier. This is exactly a
mechanism to solve this problem. In this way, even though part III discusses the tool
with a case study from a supplier perspective, the R2A tool solution can be equally
used by an Automotive OEM to design the complete system, where then requirements
specifications can be generated as 'Lastenheft's for the different suppliers.

130 I. General Context and Theories

requirements specification also has a contractual relevance, the author recom-
mends to also consider contractual negotiability135, because if an item is integrat-
ed into the SYS_RS, it in principle gets contractual relevance. Correspondingly, a
supplier should concentrate on describing the requirements of the customer in
detail but avoid to unnecessarily restrict the project's solution space by, e.g., ex-
tensively describing the project solution.

In some cases, of course, requirements cannot be described without also
providing some solution stipulations (cf. ch. I.5.5), but the developer(s) of a
SYS_RS should avoid unnecessary stipulations, because if changes on those stipu-
lations are needed, the occurring changes must then be harmonized with the cus-
tomer via a change control board (CCB) [PR09; p.144f], [VSH01; p.184f, p.216].

This corresponds to the observation of Balzert emphasizing for 'Lastenheft'
[Ba96; p.58] and 'Pflichtenheft' [Ba96; p.105] that both describe the 'what' but not
the 'how' on different levels of details (the 'Pflichtenheft' is more detailed as the
'Lastenheft'). However, it must also be noted that this does not necessarily repre-
sent a common agreement in German SE community. As for example, the DIN
69905 speaks that a 'Pflichtenheft' contains “… the realization propositions de-
veloped by the supplier basing on the conversion of the 'Lastenheft' supplied by
the customer” [DIN69905 (*)]. In this definition, the 'Pflichtenheft' also contains
a certain 'How'; but – in the author's eyes – this view will be problematic, if it
leads to premature stipulations for the solution.

I.7.2.3 ENG.3: System Architectural Design

Purpose: A system architecture must be developed showing how the system re-
quirements are realized in the system. In this way, one main purpose of this pro-
cess is to show how system requirements are mapped to the system elements.
Base Practices:
• BP1 “Describe system architecture”: The system architecture must be creat-

ed. The following aspects must be considered:
• The realization of the system in different parts is in most cases referred

to as system elements. Different system elements usually need different
engineering disciplines such as, e.g., mechanical, HW, or SW engineer-
ing that must be coordinated.

• The overall processes and operations of the system.

135 Rupp et al. [RS07; p.481-510] emphasize that requirements build the contractual basis

for development. A detailed discussion about contracts, contract negotiations and REM
is provided by Rupp et al. [RS07; p.481-510].

I.7 Quality Standards for Safety-Critical Development Processes 131

• BP2 “Allocate requirements”: As a main goal, all system requirements must
be allocated to the elements of the high-level system architecture to ensure
they are properly considered in the overall system design. In this way, trace-
ability between SYS_RS and the system architecture shall be established. Of-
ten, however, these allocations are not possible at first because important de-
sign decisions are still lacking [HDH+06; p.99]. This again often leads to the
project practice that the traceability information is established after the de-
sign has reached a very stable state. This again leads to the problem that
traceability is only established after most of the connections to be recorded
have already been forgotten by the designers and thus are not recorded. The
R2A tool solution introduced in part III actively addresses the problem in the
way that it promotes recording traceability information as a by-product of
the normal design activities, thus avoiding the problem of deferred traceabil-
ity capturing.

• BP3 “Define interfaces”: The external and internal interfaces of each system
element must be designed and documented.

• BP4 “Verify system architecture”: It must be ensured that the system archi-
tecture fulfills all stakeholder and system requirements. “In practice, it is not
possible to specify all factors to consider in the SYS_RS. Thus, a broad rec-
onciliation is important. These reconciliations significantly contribute to re-
duce the risk of later needed conceptual changes” [HDH+06; p.100 (*)].

• BP5 “Evaluate alternative system architectures”: Evaluation criteria for the
system architecture must be defined in order to analyze possible alternative
system solutions according to the criteria. The rationale (see ch. II.9) for the
choice of the current system architecture must be captured. Hörmann et al.
explicitly emphasize here that in practice architectural and other basic issues
(which seemingly have been cleared) are often recurring back to the agenda
during project progress. In these cases, it is not seldomly decided to change
or perform other compromises imposing considerable changes on the archi-
tecture [HDH+06; p.101]. As this can infer significant risks for project suc-
cess especially in late project phases, Hörmann et al. call for a thorough ex-
ploration of these basic issues accompanied by a documentation of the deci-
sions taken where the documentation is later update with the results of later
discussion [HDH+06; p.101]. This again can be seen as an explicit plea for
integrating RatMan (ch. II.9) into design. Ch. III.20 describes how this idea
is realized by the R2A tool.

• BP6 “Ensure consistency”: Consistency between SYS_RS and system archi-
tecture must be ensured. Consistency is supported by establishing and main-
taining traceability between SYS_RS and system architecture.

132 I. General Context and Theories

• BP7 “Communicate system architecture design”: A communication mecha-
nism for distributing the system architecture design and effected changes to
all involved stakeholders must be employed.

Work Products:
• System architecture design: The system architecture provides a high-level

description of all system-relevant system elements as well as their interde-
pendencies and interfaces to each other [HDH+06; p.97]. It is especially im-
portant to ensure traceability of requirements or functions over several levels
of detail [HDH+06; p.102].

• Traceability record: See ENG.2;
• Verification results: The results of the verification procedures described in

BP4 must be documented. Documentation can include review protocols,
filled checklists and test protocols [HDH+06; p.102].

I.7.2.4 ENG.4: Software Requirements Analysis

Purpose: This process deals with eliciting all requirements for the software parts
of the system.
Base Practices:
• BP1 “Specify software requirements”: Software requirements must be de-

fined and prioritized in a software requirements specification (SW_RS).
• BP2 “Determine operating environment impact”: The interfaces between the

software requirements and other elements of the operating environment as
well as the impacts of the requirements on the environment must be deter-
mined.

• BP3 “Develop criteria for software testing”: Verification criteria must be
developed for the software requirements to ensure that the software can later
be tested whether it fulfills the requirements.

• BP4 “Ensure consistency”: Consistency between the SYS_RS (ENG.2) and
the SW_RS must be ensured. This is achieved through establishing and main-
taining traceability between both artifacts.

• BP5 “Evaluate and update software requirements”: The requirements must be
continuously evaluated and change needs must be identified in accordance
with the customer. Changes must be introduced in a controlled way using the
change management process (SUP.10; see ch. I.7.2.7).

• BP6 “Communicate software requirements”: A communication mechanism
for distributing requirements and effected changes to all involved stakehold-
ers must be employed.

I.7 Quality Standards for Safety-Critical Development Processes 133

Work Products:
• Traceability record: See ENG.2;
• Interface requirements: See ENG.2;
• SW_RS: Contains all elicited SW requirements. The following requirement

sources must be considered [HDH+06; p.108]:
• Requirements from the customer,
• Valid norms and standards,
• Relationships of the different SW components to each other136,
• Performance characteristics, safety and security characteristics and other

NFRs,
• Required interfaces (the context of the SW),
• Requirements resulting from the data base design,
• Behavior in failure cases and failure fall back mechanisms;
Further, Hörmann et al. emphasize that ENG.4 (software requirements anal-

ysis) can be seen as an intermediate step between ENG.3 (system architectural
design) and ENG.5 (software design). In practice, however, the transition between
the three processes are mostly fluent and are rather of iterative and recursive
nature [HDH+06; p.103]. This statement gives way for the author's argumenta-
tion in ch. I.7.3.20 that a separately maintained SW_RS mainly infers significant
redundancy being detrimental to the development process. In part III, ch. III.19,
ch. III.20 and ch. III.23.2, the author shows how a better suited solution for the
redundancy problem may be found through employing an integrated system(s)
and software design in combination with R2A's decision model concept (ch.
III.20).

I.7.2.5 ENG.5: Software Design

Purpose: A SW design must be created fulfilling and being testable against all SW
requirements.

136 The author disagrees with the view of [HDH+06; p.108] in this point. In the view of

the author, a requirements specification should best possibly only contain the require-
ments and avoid solution specifics, since otherwise a possibly negative solution may
be kept in a project because the solution was specified in the requirements specifica-
tion and thus is later considered as required by the customer. Additionally, as such in-
formation must also be specified in the architectural description, this information ra-
ther represents a redundancy that should be avoided (see DRY-principle in ch. I.6.1.2).
On the other side, as shown in ch. I.5.5, requirements cannot be completely defined
unless parts of the solution are considered. Nevertheless, the author rather suggests
minimizing and avoiding parts of the solution, if possible.

134 I. General Context and Theories

Base Practices:
• BP1 “Describe software architecture”: The SW requirements must be trans-

formed in a SW architecture design describing the high-level structure and
the main parts of the SW. At this phase the central design decisions for SW
are taken. Hörmann et al. explicitly point out that it is essential to document
these decisions [HDH+06; p.110-111] (cf. also ENG.3 BP5).

• BP2 “Define interfaces”: The external and internal interfaces must be de-
fined and documented.

• BP3 “Develop detailed design”: The software architectural design must be
further refined into a detailed design for all specific software parts describing
all parts to implement and test.

• BP4 “Analyze the design for testability”: The design must be evaluated for
correctness and testability to ensure the SW modules are testable.

• BP5 “Ensure consistency”: Consistency between the SW_RS (ENG.4) and
the SW design must be ensured. Consistency is supported by establishing and
maintaining traceability.

Work Products:
• SW architecture design: The SW architecture describes the high-level struc-

ture of the software and the collaboration of the different sub-parts of the
SW.

• Low level SW design: Describes the detailed design of a software unit. It
contains the interfaces to other software units, algorithms, memory alloca-
tion, data structure specifications, etc..

• Traceability record: See ENG.2;

I.7.2.6 ENG.6: Software Construction

Purpose: The SW modules must be implemented correctly reflecting the SW
design.
Base Practices:
• BP1 “Develop unit verification procedures”: Procedures and criteria for unit

verification must be developed and documented.
• BP2 “Develop software units”: Source code for the software module must be

implemented according to the SW requirements and design. Further, testing
requirements and user documentation must be actualized.

• BP3 “Ensure consistency”: Consistency between software design and its
implementation must be ensured. Consistency is supported by establishing

I.7 Quality Standards for Safety-Critical Development Processes 135

and maintaining traceability between SW_RS, SW design and the software
units.

• BP4 “Verify software units”: The unit verification procedures developed
according to BP1 must be applied to ensure that the software unit fulfills its
design requirements. The results must be documented.

Work Products:
• Unit test plan: See ENG.8 (not further discussed here);
• Software unit: The source code for a software module;
• Test incident report: See ENG.8 (not further discussed here);
• Test case specification: See ENG.8 (not further discussed here);

I.7.2.7 SUP.10: Change Management

Purpose: It is to ensure that requests for change are managed, tracked and con-
trolled.
Base Practices [HDH+06; p.214-217]:
• BP1 “Develop a change management strategy”: A strategy must be devel-

oped and established to ensure that changes are: described, recorded, ana-
lyzed and maintained.

• BP2 “Record the request for change”: Each change request must be docu-
mented and a unique identifier must be provided.

• BP3 “Record the status of change requests”: Status indicators shall help to
trace status and status changes of change requests and performed changes.
Hörmann et al. [HDH+06; p.215] explicitly emphasize with regard to this BP
that also traceability to the reasons for a change must be established (e.g.,
reference to a problem or error report).

• BP4 “Establish the dependencies and relationships to other change re-
quests”: Change requests can have dependencies. These dependencies must
be made explicit.

• BP5 “Assess the impact of the change”: Proposed changes must be assessed
for effects, needed resources, risks and potential uses. Here, traceability
builds the foundation for impact assessments (i.e., impact analysis; see ch.
II.10.3).

• BP6 “Identify the verification and validation activities to be performed for
implemented changes”: Before a change is approved, it must also be clear
how and to what extent verification and validation actions must encompass
the change. Planning verification procedures for a change implies knowing
the impact of a change (BP5) and thus also demands for traceability.

136 I. General Context and Theories

• BP7 “Approve changes”: All proposed changes are approved137, i.e. accept-
ed, before they are implemented. Additionally, it must be determined for
what release cycle a change must be performed.

• BP8 “Implement the change”: All approved changes must be implemented.
Here, consistent implementation – not forgetting an impacted point – is a
central issue. Also impact assessments (BP5) and thus traceability play a de-
cisive key role to fulfill this BP.

• BP9 “Review the implemented change”: After implementation, all imple-
mented changes are reviewed whether they meet the expected goals and ef-
fects.

Work Products:
• Change management plan: A plan determining how change requests are

captured, managed, decided, implemented and tested.
• Change request: A change request usually involves the following infor-

mation:
• Description of the requested change,
• Status of the change request,
• Change initiator (with information how to contact the initiator),
• Impacted systems,
• Impacts on documentation,
• Criticality of the change,
• Wanted and planned deadline for implementation;

• Change control record: Documentation about a performed change to make
the change traceable in the system in accordance with a specific version
baseline [HDH+06; p.218]. The record includes the wanted change (e.g., as
reference to the change request) and a record of all individually performed
changes on system, or software components and documentation.
The R2A solution introduced in part III covers the demands of this process

by the impact analysis features138 (ch. II.10.3). Especially, the demands about a
change control record are addressed by R2A's features to save results of an im-
pact analysis and use such discovered impact sets as a checklist for implementing
a change.

137 Schienmann [Sch02; p.111-113] gives clear advice what criteria should be clarified

positively in order to approve a change. Otherwise a change should be rejected.
138 The process SUP.9 (“Problem Management”) [HDH+06; p.202-213] is not discussed

in detail in this thesis, but demands of BP5 “Assess the impact of the problem to de-
termine solution” and BP10 “Track problem status” can also be fulfilled by R2A's
traceability and impact analysis features (ch. II.10.3).

I.7 Quality Standards for Safety-Critical Development Processes 137

I.7.3 Traceability in SPICE

If you don't know where you go, it can happen that you arrive somewhere else.
Yogi Berra (*)

The processes described above impose a set of demands for traceability. Now,
the question arises which of the traceability demands must be fulfilled at what
maturity level (ML). According to Hörmann et al. [HDH+06; p.227-229], ML1
also only demands that a BP is performed in a way that it fulfills the purpose of
the process. This means for ML1 the traceability records may not necessarily be
documented. In a more detailed analysis, it would even be possible to achieve a
“Largely” for ML1 and to reach ML1 in this way; traceability with deficiencies is
sufficient. Not until for reaching to ML2 needs to be reached, extended planning
documentation, review protocols etc. must be provided in a documented form139
[HDH+06; p.229]. This leads to the conclusion that at least to reach a ML2 ex-
tended traceability demands as formulated above must be performed to reach at
least ML2.

Traceability must be maintained to be traceable over several levels of details
(ENG.1-ENG.6), [HDH+06; p.102]. In such a way, traceability must also be con-
sidered at a larger scope than implementing relationships between two artifacts.
For evaluating and ensuring these goals in assessments, the assessors should pick
several random samples of some items to be traceable of some process and then
request the project members to identify all backward and forward traceability
implications [HDH+06; p.95].

A weak point of SPICE is that it merely concentrates on SysEng and SE pro-
cesses neglecting HW, mechanics or other engineering dimensions that can have
significant influence ([MHD+07; p.4-7], [TJH07; p.3]). In the automotive do-
main, an important example in the following is that the pressure for developing
extremely cost-optimized HW often imposes new constraints and problems for
the software that must handle this HW. Here, it seems that the CMMI model has
some additional support for HW [MHD+07; p.4-5].

Another major problem is imposed because of the high demands for docu-
mentation sparking the danger that development efforts become unnecessarily
bureaucratic with potentially detrimental effects on development efforts [BT04;
p.25-57]. This problem can especially be the case for the high traceability de-
mands imposed by the standards. As discussed again in ch. II.10.5, the good idea

139 In this context of ML2, also the Process Attribute 2.2 must be considered: "Dependen-

cies between work products are identified and understood. Requirements for the ap-
proval of work products to be controlled are defined." The PA 2.2 additionally defines
a hallmark to be fulfilled only achievable by extended traceability.

138 I. General Context and Theories

of traceability in theory may face a similar benefit problem in practice as the
demands to capture rationale face it (cf. ch. II.9.4.2). In the author's opinion
sparked by practical experience, developers often establish traceability in order
to fulfill demands of some standards, but they seldom experience significant
usefulness in comparison to the effort and the 'stupidity' required by most tasks to
establish traceability. A key to solving or at least improving this dilemma may be
avoiding unnecessary documentation overhead or easing traceability establish-
ment efforts. Egyed et al. [EGH+07] argue that standards demand traceability but
do not explicitly state about the appropriate level of quality of trace links. In this
way, they argue that problems with traceability effort can be reduced by choosing
a more coarse grained traceability model; however, in this context it is to mention
that SPICE defines the demand for the work product customer requirements spec-
ification (see ENG.1) that each requirement is separated and individually tracea-
ble to all origin artifacts (backward traceability) and all subsequent artifacts
(forward traceability) [HDH+06; p.88 (*)].

Correspondingly, alternative solutions like using more coarse grained trace-
ability models may be difficult to employ in a SPICE conforming process envi-
ronment. It should be noted that the author does not say 'impossible'. In fact, a
promising alternative is consequent tailoring. The following chapter describes a
alternative significantly reducing bureaucratic overhead with minimal impact on
quality of most process landscapes.

Further it is to note that in the following of this complete thesis, only the
processes ENG.2-ENG.5 are considered as they are in the focus of this thesis.
Certainly, these processes are also embedded in the processes ENG.1 and ENG.6,
but traceability connections between ENG.1 (customer requirements) and ENG.2
(system requirements) are in general managed using REM-tools such as IBM
Rational DOORS and connections between ENG.5 (software design) and ENG.6
(software implementation) are relatively easily manageable using name mapping
(cf. ch. II.10.4.2.2). Thus, as the following chapter tries to outline, the processes
ENG.2-ENG.5 dealing with transitions between requirements and design impose
the critical problem concerning traceability.

I.7.3.1 Intersect: Dangers of Prescriptive Process Models

It is a capital mistake to theorize before one has data.
Insensibly one begins to twist facts to suit theories, instead of theories to suit facts.

Sherlock Holmes, A Scandal in Bohemia

In the author's opinion, the proper adoption of SPICE, CMMI or other quality
standards can significantly support improving process quality of SW-based prod-

I.7 Quality Standards for Safety-Critical Development Processes 139

ucts. However, as the word 'proper' in the preceding sentence indicates, the au-
thor also sees a set of risks that can even lead to results contra-productive to the
originally issued goals of SPICE to support a process landscape leading to high
quality processes and outcomes. In this sense, 'proper' does not refer to a process
landscape fully conforming to SPICE but rather emphasizes the goal to have a
process landscape leading to high quality products meeting their goals.

At first view, SPICE is a heavy-weight plan-driven method and “plan-driven
methods need stability” [BT04; p.31], because “plan-driven methods work best,
when the requirements are largely determinable in advance (including via proto-
typing) and remain relatively stable” [BT04; p.31]. As ch. I.5.6 has shown,
chances for increasing rates of changes are very high. Thus, in order to avoid
unnecessary overhead, an organization adapting the SPICE standard should con-
centrate on the problems and try to design a process landscape being open for
change. Being open for change in this case mainly means to provide flexibility
and to avoid unnecessary obstacles to change implementation. A promising ap-
proach avoiding unnecessary changes is to avoid redundant information because
changing redundant information implies that all redundancies must be changed in
concert. Otherwise inconsistencies would arise endangering the common under-
standing in a project, thus leading to inconsistencies in the system to be devel-
oped, leading to higher error rates to be discovered at later times in the project
and finally leading to significantly higher development costs.

According to the author's opinion, a promising starting point is to look deep-
er into the process model of SPICE. In this context, a peculiarly problematic
development exists, usually neglected by theory but in the author's opinion essen-
tial to keep in mind: When standards such as SPICE have been developed, for-
merly descriptive process models describing industry practice of software devel-
opment have now become prescriptive ones. The dangers involved with this are
that preterated elements of the description now turn to prescriptive elements.
SPICE bases on the ISO/IEC 12207 process model. Nevertheless, this process
model – as all models (see ch. I.1) – should be seen as idealization. Seen in the
historic context, however, the question arises whether probably an unrecognized
transformation has taken place. At first in SE research history, process models
have been descriptive models describing development activities. The researchers
created models analyzing how developers approached the development of soft-
ware and the resulting models were idealized abstract descriptions of the real
development steps happened. With high probability, these models contained some
idealizations as the ethos of research publishing demand to consider issues such
as conceptual integrity, clear classification and other idealizing effects. These
idealizations can be compared with abundant properties of a model (see ch. I.1).
In other words, the development model researchers described the – what they

140 I. General Context and Theories

thought – essential properties of the development effort, neglecting the abundant
properties accompanied by a certain simplification, i.e., idealization. Nierstrasz
[Ni04; p.274] hits this mark when he claims SE, software architecture, etc. as
being rather 'metaphoric'.

Later, these descriptive models now formed the basis for development mod-
els of prescriptive nature as CMMI or SPICE. Now, in the run of adopting these
idealized descriptive process models to process models norming development
activities, these process models have become prescriptive models (see ch. I.1). In
this unconscious transgression, the dangerous effect could have happened that
previously abundant properties (see ch. I.1) are now seen as prescriptive manda-
tory properties of the processes to be performed. Now, the question arises which
of the prescriptive models' properties are really essential (correctly passed on)
and which may be abundant properties. As described in ch. I.1, abundant proper-
ties lead to wrong conclusions. Just as well, abundant properties may exist in
development standards deconvolving negative impact on the development effort.
Correspondingly, the author does not necessarily appeal for abandoning these
standards. A lot of these issues are related to the proper adoption of SPICE.
SPICE is a very flexible and vague standard. It can be compared with the con-
stitution of a state. A law in a constitution will never have a concrete definite
character, otherwise it risks to be unfitting to several concrete problems and thus
loses its general purpose of building a frame of basic agreements on values,
whereupon a set of people (e.g., a nation) build its society.

In the exact same way, SPICE (or CMMI) can be seen as a frame of basic
agreements on values all projects comply with. But each project develops its own
rules interpreting the abstract and vague rules of the standard. An example of the
flexibility of standards as SPICE or CMMI is the fact that several authors show
[Pa01], [FK07], [Kn06; p.89] that the principles of agile methods as eXtreme
Programming have the potential to reach maturity level 3 in CMMI140. Similarly,
a project should also be able to have SPICE-conforming processes when the
processes are not necessarily fulfilled by exact, word-for-word obedience141 of

140 As shown in the beginning of ch. I.7, CMMI and SPICE have comparable process

models and needs for traceability. Thus, this claim should be – more or less – equally
valid for the SPICE process landscape.

141 See also the – in the author's view still valid – criticism of Curtis et al. about process
models resulting from empirical studies: “A typical statement that we heard from par-
ticipants was that, you've got to understand, this isn't the way we develop software
here. This type of comment suggested that these developers held a model of how soft-
ware development should occur, and they were frustrated that the conditions surround-
ing their project would not let them work from the model. The frequency of this com-
ment also suggested that the model most developers envisioned accounted poorly for

I.7 Quality Standards for Safety-Critical Development Processes 141

the standard. Instead, especially concerning traceability aspects in the ENG pro-
cesses, the author claims that a freer interpretation of the SPICE processes may
help to ensure higher flexibility of the process landscape without contradicting
the principal ideas of the SPICE process model on condition that it is accepted
that process models may be – very valuable – metaphors for practice but provide
no claim for strict obedience. This claim is further described in the following
chapter, but its full implications on this research are then again highlighted in ch.
III.19, ch. III.20 and ch. III.21.

At the end, however, it must also be mentioned that the SPICE assessors de-
cide whether a process landscape conforms to the demands of SPICE. In this
way, the power of the assessors and process designers may not be underestimat-
ed. If these people do not understand or share the view that different interpreta-
tions of a SPICE demand are possible, then the process landscape is determined
as non-conforming. In this way, organizations open to deviating interpretations
undergo a certain risk and should be aware that they must be prepared for water-
tight argumentation.

At least, even SPICE literature for assessors acknowledges indications that
process practice can significantly deviate from the original demand of SPICE and
thus in the author's view also indirectly concede the metaphoric nature of process
models. As an example, [HDH+06; p.104] directly gives further reinforcement
for the argumentation of the next chapter and will be discussed in detail there.

the environmental conditions and organizational context of software development. The
participants we interviewed were uniformly motivated to do a good job, but they had
to mold their development process to navigate through a maze of contingencies. These
interviews provided a clearer understanding of such crucial processes as learning,
technical communication, requirements negotiation, and customer interaction. These
processes are poorly described in software process models that focus instead on how a
software product evolves through a series of artifacts such as requirements, functional
specifications, code, and so on. Existing software process models do not provide
enough insight into actual development processes to guide research on software devel-
opment technologies. Models that only prescribe a series of development tasks provide
no help in analyzing how much new information must be learned by a project staff,
how discrepant requirements should be negotiated, how design teams resolve architec-
tural conflicts, and how these and similar factors contribute to a project's inherent un-
certainty and risk” [CKI88; p.1284].

142 I. General Context and Theories

I.7.3.2 The Nature of the ENG-Processes, Traceability, and
its Implications142

The SPICE process model concerning the requirement and design related pro-
cesses (ENG.2-ENG.5) is a layer model where problem space descriptions (re-
quirement view: ENG.2, ENG.4) alternate with solution space descriptions (de-
signs: ENG.3, ENG.5), (cf. [Nu01], [PS05; p.113f], [Po08; p.565-602], ch. I.5.4):
• ENG.2: Derives from the user requirements specification143 a general system

requirements specification (SYS_RS).
• ENG.3: Uses the SYS_RS to create a high-level system design with the prior

emphasis on HW-SW-partitioning.
• ENG.4: The software requirements specification (SW_RS) derives from

ENG.2 and ENG.3.
• ENG.5: Uses the SW_RS for the design of the SW architecture.

SPICE-oriented traceability models require a continuous link chain between
the artifacts of ENG.2, ENG.3, ENG.4 and ENG.5 to ensure the consistency of the
entire model (cf. [DC04], [Kn01b]).

In the author's practical experience, a strict obedience to the process model
described above can cause several disadvantageous problems. To outline these
problems, the following example SYS_RS is given with three requirements caus-
ing a problem encountered by the author at practical work at the former Micron
Electronic Devices AG (since June 2008 part of the MBtech Group) by one of its
projects:
• Req.1: An external watchdog component must monitor the system.
• Req.2: Parametric data must be changeable by the customer during opera-

tion.
• Req.3: Parametric data must be stored on EEPROM.

In current practice, the system design determines that the system will include
a micro controller (controller), an external watchdog component and an external
EEPROM (cf. fig. 7-2).

The HW requirements specification (HW_RS) is derived from the SYS_RS
and system design. It again contains Req.1 and Req.3 linking back (fig. 7-2: bold
blue arrows) to the SYS_RS. The detailed HW design determines that watchdog
and EEPROM will share the connection pins to the controller by an SPI144 com-
munication interface, because other connected components have already used up

142 The following chapter bases on [TKT+07].
143 I.e., customer requirements specification
144 Serial Peripheral Interface Bus

I.7 Quality Standards for Safety-Critical Development Processes 143

all remaining pins of the controller. Req.1 gets linked to the watchdog symbol
and Req.3 to the EEPROM symbol in the HW design. The SW_RS contains
Req.1, Req.2 and Req.3 linking back to the SYS_RS.

During SW design, the architect discovers the potential resource conflict in
the shared usage of one SPI for EEPROM and watchdog. Since driving the
EEPROM is very time intensive and triggering the watchdog is very time critical,
the architect rates this combination as risk, but changes of the HW are rejected
due to higher costs. The solution for this conflict, the EEPROM and watchdog
drivers must be “artificially” coupled to implement a cooperative handshake145

solution (fig. 7-2: association between EEPROM driver and Watchdog driver
marked with „!!!”).

Figure 7-2 The example in current practice of the SPICE process model

145 When triggering of the watchdog is needed soon, the SW module responsible for

triggering the watchdog requests the SPI-bus resource from the EEPROM SW module,
which handles preempting its task in a secure state and then notifies the watchdog SW
module that the SPI-bus is now available to trigger the watchdog.

144 I. General Context and Theories

The solution implies that the planned original standard drivers of a supplier must
be adapted internally. In the further progress of the project, these adaptions
caused extra efforts not traceable to its background.

In the long run of the project, the following disadvantageous effects have
been discovered:
• Redundancies needed significant extra effort to be maintained up-to-date.
• Despite all efforts, sometimes redundancies have been forgotten to maintain.

This effected in small drifts between the system, HW and SW views leading
to communication problems between the different developer groups.

• As sometimes requirements cannot be reasonably explained without referring
to the solution, also design more and more details crept into requirement
documents leading to redundancies in requirements and design documenta-
tion.

• Problems such as the above described interactions between HW design and
its implications on the SW as described above have still not been plainly elic-
ited yet, leading to further problems.
In summary, this example illustrates the central problem that the require-

ments in HW_RS and SW_RS are copies of the requirements in the SYS_RS, lead-
ing to high redundancy. In many cases, SW or HW functionality is already clearly
demanded for in the user requirements specification. Thus a clear separation of
those requirements must be taken over into the SYS_RS and SW_RS respectively
HW_RS, causing additional effort and redundancies. As the chapter above has
shown, this clear separation between System, HW and SW can also be seen as a
more or less metaphoric one (cf. [Ni04]) providing orientation aid for the devel-
opers as process models do. However, in practical terms, such a clear separation
is mostly not viable ([HDH+06; p.104], [PS05; p.114]). Especially the pro-
claimed specification of SW requirements146 should be cautiously dealt with, since
a really separate SW_RS147 faces the following problems:
• Often, requirements on HW and SW are strongly interwoven (cf. [HDH+06;

p.104]). Even literature on SPICE concedes that in practice the traversals be-
tween ENG.3, ENG.4 and ENG.5 are mostly floating and of iterative and re-
cursive nature [HDH+06; p.103]. Thus, in most projects no separate SW_RS

146 If the concept of a separate SW requirements specification is consequently followed,

then also a HW requirements specification should be maintained. However, as men-
tioned before, SPICE has the weakness that it does not adequately address HW as-
pects.

147 Boehm [Bo05] points out that the separation between Systems and SW engineering
has been a historical and artificial one.

I.7 Quality Standards for Safety-Critical Development Processes 145

is maintained, but functional requirements are collected on the level of
SYS_RS148 (ENG.2) [HDH+06; p.104].

• In many cases, SW functionality is already clearly demanded in the customer
requirements specification (ENG.1). Thus, if applying such a clear separa-
tion, those requirements must be taken over into the SYS_RS (ENG.2) and
SW_RS (ENG.4), causing additional efforts and redundancies.

• Other requirement types exist not attributable to either HW or SW (e.g.,
project management, quality management, mechanical construction). Alter-
natively, in current requirements management tools like IBM Rational
DOORS®, a HW-SW-partitioning of requirements is also viable using an at-
tribute (proposed values: 'System', 'HW', 'SW', 'construction', 'management').

• Generally, linking of different artifacts is a time consuming, unproductive
and errorprone administrative work149 that should be minimized (see details
in ch. II.10.5).
As a way out, the author proposes orienting on more pragmatic views of the

agility scene (e.g., cf. [BT04]) and to concentrate merely on one dependable,
consistent requirement artifact150 to store all contractually relevant151 require-
ments as one common view i.e. interface to synchronize the views of all stake-
holders in the project. This artifact can be called the SYS_RS. The artifacts
HW_RS and SW_RS can be indirectly derived from the SYS_RS by maintaining an
attribute marking a requirement as important for HW and SW. Starting from this

148 See remarks of [HDH+06; p.104 (*)] to ENG.4, BP.1 (“Specify the SW_RS”): “In

many projects, no separate software requirements specification is maintained, but func-
tional requirements are described in one single document at the level of system re-
quirements (e.g., a 'Pflichtenheft'). The underlying reasons are that system functionali-
ty is often mainly determined by software, but it cannot be reasonable separated from
hardware functionality. The requirements of this base practice are completely fulfilled
if it can be proved that the functional and nonfunctional requirements are unambigu-
ously specified and are adequate to the range of functions” [HDH+06; p.104 (*)].

149 “As systems evolve, it becomes increasingly ineffective to maintain traceability in-
formation. RT (requirements traceability) in practice often suffers from the enormous
effort and complexity of creating and maintaining traces. It also suffers from incom-
plete trace information” [EG04; p.55].

150 This corresponds to the DRY-principle (don’t repeat yourself) in [HT03; p.24] also
more elaborately described in ch. I.6.1.2.

151 Contractually obligatory means here to clearly distinguish between requirements
originating from the customer and 'requirements arising internally within the project'
(see also ch. I.7.2.2.1). The real meaning of this statement can only be described later
in ch. III.19. Roughly speaking, the idea is to distinguish between requirements from
the customer (requirements) and requirements arising within design phases (design
constraints).

146 I. General Context and Theories

common view on requirements, all further design artifacts (system design, HW
design and SW design) are derived.

Figure 7-3 The altered example above with less redundancies

Fig. 7-3 shows how the example above (see fig. 7-2) looks like if these prin-
ciples are applied. The system design is done similarly to the example above (fig.
7-2). Additionally, the SYS_RS contains an attribute that allows SW-HW parti-
tioning. Req.1 and Req.3 are marked as relevant for HW and SW, Req.2 only for
SW. Correspondingly, the HW_RS is not directly applied, since the relevant HW
requirements are marked in the SYS_RS. Apart from that, the HW design is done
similarly to the previous chapter and linked to the Req.1 and Req.3 in the
SYS_RS. In the same way as the HW_RS, the SW_RS is not applied, since the
relevant SW requirements are marked in the SYS_RS. The SW design will be de-
veloped from the SYS_RS and the system design model.

As a comparison between fig. 7-2 and fig. 7-3 shows, redundancies are sig-
nificantly reduced and thus unnecessary project complexity152 is avoided. In

152 As Diederichs [Di04a] shows, unnecessary complexity in processes is one of the major

sources for partial or complete failures of project endeavors. Correspondingly, reduc-
ing unnecessary complexity is one of the best leverages to avoid project failures.

I.7 Quality Standards for Safety-Critical Development Processes 147

[HDH+06; p.104] it is indicated that such an approach as adaption to the SPICE
process model is spread in industrial practice (also see footnote 148 (p.145)).

In this way, this concept also gives tribute to Boehm's predictions about the
future of SysEng and SE processes [Bo05]. According to Boehm the separation
between SysEng and SE was an artificial one driven by historical development.
For the future, he predicts a growing together of both disciplines. In fact, this
trend becomes evident in the emphasis of SysEng processes in SW development
standards as the ISO 12207 ([ISO12207]) or SPICE (ISO / IEC 15504) and also
in the SysML [SYSML] standard being an extension of UML as support for Sys-
Eng. Further indications speaking for the latter approach are comments provided
by Hood et al. [HWF+08; p.195] claiming that process thinking must get away
from the document view and turn more toward an information view.

However, the solution sketched here does not yet provide any help for cov-
ering the problem concerning watchdog and EEPROM. This points to a gap be-
tween the adaption following the latter example and an intention of the original
intentions of the SPICE process model: Design activities concerning one design
artifact (in this example HW design) can have serious implications for other re-
quirement or design artifacts (in this example SW design). This fact is partially
considered in the process model of SPICE: System design has high impact on its
SW design by raising new “requirements” in addition to the original requirements
of the stakeholders. Thus, the idea behind a SW_RS is to collect the SW-related
requirements from the SYS_RS and to derive new requirements from the system
design. On the other side, especially concerning the automotive sector, SW design
often must be subordinated under constraints of extremely cost-optimized HW
components. At the moment, SPICE completely neglects these critical connec-
tions between HW and SW.

A dedicated goal of this thesis is to find a way out of the dilemma that cur-
rent project practice either has to decide between the dangers of extensive redun-
dancies or lacking means to make intercorrelations between different design
phases that spark new 'requirements' for other designs explicit. As ch. III.19 and
ch. III.20 (especially ch. III.20.3) will describe, the dilemma could be solved in
integrating a decision model directly within design processes and the evolving
traceability information. This follows the basic idea that design decisions taken at
a certain design situation can imply influence upon other parts of design by
sparking new 'requirements' for these parts. Additionally, this decision model
approach has further significant advantages as it provides explicit coverage for
another important demand of SPICE: Several BPs (e.g., ENG.3 BP5 ([HDH+06;
p.101]), ENG.5 BP1 ([HDH+06; p.110-111])) explicitly demand that important

148 I. General Context and Theories

design decisions must be evaluated and documented153. This can be easily ful-
filled using the decision model described in ch. III.19 and ch. III.20. Additionally,
this also provides an important connection hook to Rittel's design theory (ch.
I.6.2.2) and what is now called RatMan (ch. I.6.2.2 and ch. II.9).

Following the saying “no rule without an exception”, at least two cases are
dedicated exceptions which should be dealt with on their own and therefore will
not be part of the discussion of ch. III.19 and ch. III.20. They will be discussed
later in connection to ch. III.23:
• Complex systems (System of systems): If complex systems can be divided

into relatively independent subsystems (with exactly definable interfaces),
then the subsystem specifications should be separated.

• For development parts delegated to subcontractors the interface and context
of these must be deeply analyzed and defined.

I.7.4 Automotive SPICE

Starting in 2001, the Automotive Special Interest Group (A-SIG) is working on
an industry specific adaption of SPICE, called Automotive SPICE (A-SPICE)
[ASPICE08a], [ASPICE08b], [AutomotiveSPICE], [MHD+07; p.3ff]. Since
2007 all members of the HIS (see beginning of ch. I.70) have decided to prefer A-
SPICE for supplier assessments, making A-SPICE to a de-facto standard in the
automotive industry [HDH+06; p.267ff].

A-SPICE has its own definition of a process reference model (PRM) and a
process assessment model (PAM) [HDH+06; p.267] slightly deviating154 from the
original PRM and PAM of SPICE [HDH+06; p.267ff]. Even though some base
practices have been slightly adapted to the peculiarities of automotive embedded
engineering, concerning the ENG and SUP processes discussed here, the changes

153 In CMMI the generic practice “Decision Analysis and Resolution” must be fulfilled to

reach up to maturity level 4 [Kn06; p.54].
154 The following SPICE processes are left out by A-SPICE [HDH+06; p.269],

[MHD+07; p.7]: MAN.1, MAN.2, MAN.4, ENG.11, ENG.12, SUP.3, SUP.5, SUP.6
(product evaluation), ACQ.1, ACQ.5, RIN.1-4, OPE.1-2, SPL.3, PIM.1-2, REU.1 and
REU.3. Instead five new acquisition processes have been defined: ACQ.11 (“Technical
Requirements”), ACQ.12 (“Legal and administrative requirements”), ACQ.13 (“Pro-
ject requirements”), ACQ.14 (“Request for Proposals”), ACQ.15 (“Supplier qualifica-
tion”). Further, it is to note that the HIS (see beginning of ch. I.07) has defined a sub-
set of the A-SPICE process model called HIS-Scope. The HIS-Scope defines the min-
imum of processes to be assessed by each assessment of a HIS member.

I.7 Quality Standards for Safety-Critical Development Processes 149

made are not significant concerning this thesis except for the new demands on
traceability discussed below.

Figure 7-4 Summary of traceability BPs in A-SPICE [ASPICE08a; Annex E]

A major improvement from the embedded engineering perspective is that the
key concepts of the engineering processes now also explicitly include mechanical
and HW aspects, and these aspects are handled analogously to the handling for
software aspects described above. This means that mechanical and HW require-
ments are derived from the SYS_RS and that then these requirements must be

150 I. General Context and Theories

mapped onto the mechanical and HW design [ASPICE08a; Annex D], [MHD+07;
p.15].

A central change in comparison to the SPICE standard is that the traceability
concept has been “significantly extended and thereby defined in a more conse-
quent and consistent manner” [MHD+07; p.222 (*)]. Demands for traceability
have thus been changed concerning the following aspects:
• Instead of traceability, bidirectional traceability is demanded now. Even

though, it was already demanded by SPICE that backward and forward
traceability must be established for certain work products, in A-SPICE, now,
any traceability information must be in any way traceable in both directions
[MHD+07; p.222ff]. These demands make a manual documentation of
traceability information using traceability matrices (e.g., by using Microsoft
Excel) very difficult and press for the need to use dedicated traceability tools
[MHD+07; p.225]. Müller et al. further indicate that the most critical points
concerning tool based traceability are gaps in the tool chain [MHD+07;
p.225]. Thus, assessors must explicitly search for and analyze dedicated
breaks in the tool chain, verifying whether consistency between the impacted
artifacts is present.

• Subsuming the general traceability demands above, it must be mentioned
that also new BPs have been added with additional traceability demands to
the original of SPICE. Fig. 7-4 taken over from Annex E of the A-SPICE
PAM [ASPICE08a; Annex E] shows all BPs describing a certain traceability
relation having the characteristics of the points described above.

• Additionally, traceability within the ENG processes shall be extended by
verification criteria (see fig. 7-4; for a detailed description cf. [MHD+07;
p.47, 53, 59, 66, 74, 225ff]). This means that requirements and their realizing
design artifacts must already define verification criteria within their artifacts
and that these criteria must be traceable to the information to be verified
[MHD+07; p.225ff]. The definition of verification criteria is a well-known
practice in REM theory (cf. ch. I.5.1) and is also already demanded by the
SPICE standard (cf. ENG.4 BP3). In A-SPICE, verification criteria must be
defined for any ENG process artifact and these verification criteria must be
made traceable to the items they are defined for [MHD+07; p.47, 53, 59, 66,
74, 225ff].

• At the moment, the A-SIG also seems to discuss whether traceability should
become an individual SUP-process as problem management etc. have be-
come, but no definitive decision about this issue has yet been made
[MHD+07; p.222ff]. The summary on traceability demands as referred to in
fig. 7-4 may be the basis for such a process to be defined.

I.7 Quality Standards for Safety-Critical Development Processes 151

• Horizontal and vertical traceability: Even though the current standard ver-
sion does not officially employ this terminology, Müller et al. [MHD+07;
p.222] point out that at the A-SIG debate seems going on about whether to
include the terms horizontal and vertical traceability in the future traceabil-
ity process description. Obviously orienting on the V-cycle process model
[DHM98], the A-SPICE standard's definition of horizontal and vertical
traceability has its own notion completely different to the notions155 de-
scribed in ch. I.5.7.1: Horizontal traceability is illustrated as relationships in
horizontal direction in fig. 7-4 (e.g., ENG.10 BP5), whereas vertical tracea-
bility refers to the vertical direction (e.g., ENG.2 BP6) [MHD+07; p.222]. In
[MHD+07; p.225], Müller et al. emphasize that these definitions have the
advantage that the aspects realization (vertical traceability) in other artifacts
and test coverage (horizontal traceability) can be distinguished. As described
in ch. I.5.7.1, the author, however, considers the ambiguous usage of the
terms as alarming and rather prefers to avoid these terms. Besides, the author
also considers the obvious preference on the V-cycle process model as prob-
lematic, because such standards usually should be as generic as possible and
should not drive organizations toward a specific implementation of their pro-
cesses as this orientation on the V-cycle process model suggests.
At the moment, traceability generally seems to be a trend topic in the auto-

motive industry and changes of industrial practice in the next years are very like-
ly.

Even though it is mentioned above that the ENG processes do not contain
changes significant for the outcome of this thesis, one other exception exists:
With ENG.5 BP5 “Define goals for resource consumption” the A-SPICE standard
requests that resource consumption for each software module is explicitly
planned and tracked [MHD+07; p.64]. In ch. III.21, it is shown how this demand
can be fulfilled in a way that these 'resource consumption goals' are even inte-
grated into a larger traceability structure showing new perspectives beyond the
usual demands of the A-SPICE standard.

I.7.5 Safety Engineering: IEC 61508, ISO 26262

In the automotive industry, more and more ECUs have influence on safety-related
functions, where malfunctions can lead to significant dangers of injury or death

155 Müller et al. [MHD+07; p.222] also emphasize that CMMI has a different notion

equal to the notion of Bohner [Bo91] (see ch. I.5.7.1).

152 I. General Context and Theories

of humans. Correspondingly, questions about the so-called functional safety of
ECUs are becoming increasingly important.

The IEC 61508156 “Functional safety of electrical/electronic/programmable
electronic safety-related systems (E/E/PES)” [IEC61508] describes a standard for
conception, planning, development, realization, launching, maintenance, modifi-
cation, shutdown and deinstallation of systems containing safety-critical E/E/PES
components, whose breakdowns impose significant risk for humans and the envi-
ronment [LPP10; p.8ff].

The standard demands that a system possibly implying risks for humans or
the environment must be assessed for the probability that these risks become
reality. This includes that the individual components of the system are analyzed
for potential malfunctions leading to safety hazards. If significant risks can be
identified in those components or the system, then these parts or the complete
system are classified as safety-related. Hereby a malfunction or a combination of
malfunctions can lead to safety risks. The rating of the safety-relevance orients on
fixed upper bounds of probabilities leading to a safety hazard. Corresponding to
these probabilities each safety-related component can be classified into four dif-
ferent safety integrity levels (SIL) determining the actions to be taken in order to
reduce hazard entry probabilities (see, e.g., [MHD+07; p.286] showing a risk
probability graph for determining a corresponding SIL for a component).

The IEC 61508 can be seen as a basic norm helping to define industry sector
specific implementations [MHD+07; p.285]. Such an implementation157 for the
automotive industry is provided by a new standard ISO 26262 (“Road vehicles –
Functional safety”). The ISO 26262 [ISO26262] is a norm draft of the automo-
tive industry for safety of electronic road vehicles derived from IEC61508
[LPP10; p.9]. The SIL levels are called automotive safety integrity levels (ASIL)
but have the same meaning. The difference is that they are classified by grades
from A (SIL 1=ASIL A) to D (SIL 4 = ASIL D).

Benediktsson et al. [BHM01] empirically proved that to fulfill SIL1 or SIL2
minimum SPICE maturity level 2 (ML) is essential. For higher SILs (SIL3 and
SIL4), the study indicates the need for higher MLs. Concerning A-SPICE,
Mueller et al. emphasize that “reaching ML2 in the processes of the HIS-scope is
a necessary (but not sufficient) premise to develop safety-critical software (SIL1
or higher)” [MHD+07; p.288 (*)]. Beyond this (for SIL2, SIL3 or SIL4), no spe-
cific practice of A-SPICE is mappable, because SPICE standards only demand

156 Also known as EN 61508, DIN EN 61508 and VDE 0803.
157 Other industrial sector implementations are for example: IEC 61511 (process indus-

try), IEC 61513 (nuclear power plants), DO-178B (aviation), or EN 50129 (railway).
See [LPP10; p.9] for an overview of standards derived from IEC 61508.

I.8 Feedback from Embedded Practice 153

'what' has to be performed, whereas IEC 61508 (and ISO 26262) additionally
imposes certain demands 'how' activities have to be performed [MHD+07;
p.288]. This leads to the conclusion that traceability demands must be fulfilled
whenever a safety-related function has been identified in a system to be devel-
oped.

I.8 Feedback from Embedded Practice

In theory there is no difference between theory and practice. In practice there is.
Yogi Berra

After the theoretical terrain, an adequate traceability between requirements and
design solution should consider, has been outlined, the following chapter discuss-
es some feedback from practice that should help in the considerations.

Pettit [Pe04] describes a series of lessons learned “derived from several dif-
ferent embedded software development efforts observed by the author during the
period of 2000-2004” [Pe04; p.1]. The projects158 involve “large-scale embedded
software often with real-time requirements and often with a high degree of con-
current processing” [Pe04; p.2]. As modeling standard, UML 1.4 without any
further profile or real time extensions or special case tool has been applied. Thus,
the presented lessons learned reflect Pettit's experiences with the basic features of
a modeling language as UML not requiring the presence of specialized modeling
features or other sophisticated tool sets [Pe04; p.1-2]. The described experience
divides into lessons about processes and lessons about modeling (design).
Lessons about the processes are:
• A well-defined process is as important as any modeling itself. Pettit distinc-

tively emphasizes the difference between a well-defined development pro-
cess and a general process framework such as SPICE. Many projects go for
the latter, ignoring the individual project implications. “While these frame-
works are a good starting point, it is crucial for each project to capture the
specific process flows, activities, and milestones that will be employed for

158 Even though, the referred projects seem to involve the aerospace domain (This is not

explicitly mentioned in the article, however Pettit's organization is called “The Aero-
space Corporation”) that may not necessarily match with other domains as Automotive
and the reference to UML mentioned before, the author believes that the findings of
Pettit are fundamental and abstract enough to also match with other engineering do-
mains and other modeling paradigms. The reader may decide on his (her) own whether
the author's claim is correct.

154 I. General Context and Theories

their projects. This is nominally accomplished through the creation of a
software development plan that documents not only the framework being ap-
plied, but the specific process steps applied for the project” [Pe04; p.2].

• Simply adopting new process technologies does not reduce the development
effort. At first, mostly higher efforts due to learning phases must be consid-
ered. Concerning the adoption of UML techniques, the most positive experi-
ence is that not necessarily the projects' overall development effort has
changed, but the effort has rather shifted to up-front requirement definition
and problem analysis. If these up-front activities have been performed
soundly, efforts for detailed design and implementation have reduced at least
marginally. However, it has been observed that projects with a solid analysis
model and SW architecture have reduced maintenance efforts including ef-
forts for adding new features in future adaptions [Pe04; p.2].

• “One of the most immediate benefits observed from adopting a use case
driven UML design is the improved visibility to stakeholders. Through ap-
plying this highly visual modeling, software engineers are able to more
readily communicate with systems engineers and even to the end customer”
[Pe04; p.2]. In this way, confidence in the developed features and under-
standing of requirements in early development phases could be increased.
Additionally, the usage of a standard language like UML helped developers
to get easier up to speed in new projects, because the standardized modeling
constructs lowered the learning curve for understanding concepts within the
new project [Pe04; p.2].

• “The lack of thorough requirements traceability is one of the most common
and critical problem areas observed in current object oriented development
efforts. Often, requirements are traced to the use cases for a particular system
or subsystem, but are not propagated to the individual design elements.
When requirements are not completely traced to the specific design elements
(e.g., classes, messages, state charts, etc.), there is a tendency to lose focus as
to the specific responsibility of the classes being designed. This can lead to
costly changes late in the life cycle and can also lead to incorrect or missing
functionality in the delivered system. Additionally, gaps in requirements
traceability complicate the testing and verification process, especially at the
unit or white-box level” [Pe04; p.2].

• Prototyping is a heavily used technique for exploring unknown parts of a
system. This is especially important in embedded development in order to
gain insights and confidence in the employed HW. However, “extreme care”
[Pe04; p.3] should be taken about decisions how to integrate backlashes of
the gathered results. “Specifically, care should be taken to appropriately up-
date the software design based on the results of the prototype” [Pe04; p.2-3].

I.8 Feedback from Embedded Practice 155

Pettit has observed that drifts between design and the implementation are one
major driver for later maintenance and upgrade efforts and problems of the
developed software [Pe04; p.2-3].
Subsuming point one in the context of process standards such as SPICE, the

crux about it is how to adequately adapt a process framework to a specific pro-
ject. The usual answer of such process frameworks is employing a process tailor-
ing concept [HDH+06; p.245], [BT04; p.36f]. The author believes that this is an
issue not yet completely solved issue as the discussion between more disciplined
or more agile processes is also in open discourse (see, e.g., [BT04]). Findings of
projects practice are disillusioning in the sense that process tailoring is often not
performed, because process framework definitions are so complicated that ac-
countable project members do not dare to perform significant tailoring in fear of
being blamed for negative consequences discovered later [BT04; p.152] driving
Boehm and Turner to the recommendation to build methods up rather than to
tailor them down [BT04; p.152]. The point tangents this thesis by the question
how far tools and processes are connected and influence each other. As shown in
ch. I.7.3.2 and later in part III (ch. III.20.3), tools such as R2A introduced in part
III may also have the potential to infer a different interpretation of artifact con-
nections that allow process standards to be tailored in a different way in order to
avoid problems such as unnecessary redundancies between artifacts. The second
and third point refer to experiences that are generally encountered, when extend-
ed REM practices are used. Besides the technique of use cases, other require-
ments specification techniques exist and it is probable that stakeholders' under-
standing may be improved if a structured method for elicitation and structuring
requirements is used, which is understandable for the stakeholders (e.g., reflects
their vocabulary and understanding) and is somehow standardized so that it must
be learned just once. Use cases fulfill these criteria to a very high degree, what
explains their high preference in projects. Point four directly describes the core
problem this thesis works on. It claims for a fine-grained and detailed traceability
solution. Last but not least, point five addresses the issues of how to explore the
solution space (the possible design alternatives) and how to integrate knowledge
achieved outside the standard development information flow. Further, the prob-
lem of view drift (here the drift of the model and the code) is mentioned. As de-
scribed in ch. I.6.6.1, these problems can be avoided by specialized design tools
allowing early functional prototyping with automatic code generation.
Concerning the modeling, the following lessons are described:
1. ”Capturing interfaces to external devices is a critical element in the design of

embedded software systems” [Pe04; p.3]. Two kinds of interfaces shall be
considered. The context of the embedded device involves all devices and us-
ers that interact with the system. Therefore, a context analysis (a good de-

156 I. General Context and Theories

scription of possible context analysis methods with UML is provided by
[HR02]) is essential for identifying all involved interfaces. Secondly, an em-
bedded SW must interact with the HW. Often the HW interface knowledge is
encapsulated in some kind of controller class. However, to improve flexibility
each interface should be encapsulated by its own controller class.

2. Often an imbalance between static and dynamic models exists, whereby static
aspects are mostly preferred. “This practice results in an unbalanced design
that, while providing a good data model, may not completely capture the be-
havioral aspects of events and messages that are prevalent in embedded soft-
ware systems. Without adequately capturing this dynamic behavior, it is diffi-
cult to assess whether the final design will completely satisfy the functional or
performance requirements of an embedded system” [Pe04; p.3-4].

3. Often dynamic interactions are modeled using sequence charts. However, a
sequence chart often only shows one scenario of interactions, whereas the
overall interaction context is neglected. UML also provides communication
diagrams. “By utilizing both forms of UML interaction diagrams, engineers
can achieve a more complete description of both the sequence of events with-
in a scenario and of the behavior across a set of scenarios” [Pe04; p.4].

4. Identification of concurrency situations is essential in embedded systems
design, if more than one concurrent thread is employed. Often concurrency
situations are described in a different diagram, whereas UML language fea-
tures are neglected. “This leads to a disconnect between the as-built software
and the UML design artifacts” [Pe04; p.4].

5. In the experience of Pettit, state charts are the most underused means for
capturing the reactive, state-dependent behavior often found in embedded sys-
tems. Especially, hierarchical state charts prove helpful to tame complex be-
havior [Pe04; p.4].

Point one discusses that defining the context of a system is an essential task
(see ch. I.4 and ch. I.5.2). In the second notion, Pettit emphasizes that access to
HW components from SW shall be encapsulated by controller classes. Even
though not directly discussed in this thesis, in automotive ECU design so-called
'driver' modules perform this encapsulation for HW components of the micro
controller, and 'handler' modules encapsulate knowledge of the control paths of a
specific functionality at the printed circuit board. The accompanying case study
of part III (cf. ch. III.12) uses the encapsulation principles of drivers and han-
dlers.

Point two discusses that there should also be a suitable possibility to get the
connections between the static and the dynamic behavior. Usually, this is per-
formed through the view concept. The traceability solution discussed in part III

I.8 Feedback from Embedded Practice 157

also provides a way to adequately model connections between different views.
This can help to document connections between the static and dynamic aspects.

Points three and four are rather problems to be addressed by modeling and
are therefore not further discussed in this thesis.

Point five gives further prove for the argumentation provided in ch. I.6.6.1.

II. Rationale Management and Traceability in
Detailed Discussion

The more you plan in details, the more you are struck by coincidence.
Peter Rühmkorf (*)

After the last part described the different major topics this thesis is related to, this
part now discusses the two central research topics in detail. These topics are ra-
tionale management (RatMan) and requirements traceability. In ch. II.9, RatMan
is discussed as major research field on how information about important design
decisions can be successfully captured in order to ensure that information im-
portant for change management and long-term collaborative is conserved.

Ch. II.10 then discusses the current state of research on requirements trace-
ability. At first, this discussion is made from a general perspective. At the end, ch.
II.10.6 discusses traceability research in the special context of the transition from
requirements to design being in the focus of this thesis.

II.9 Rationale Management in Systems and
Software Engineering

The wise man never takes a step too long for his leg.
African saying

Making decisions is the basis of all development activities. Rationale describes
“the justification behind decisions” [DMM+06a; p.1]. In other words, “the term
rationale denotes the reasoning underlying the creation and use of artifacts. Ra-
tionale research seeks ways of aiding decision-makers by creating explicit rec-
ords of this reasoning. Most other types of research on decision-making, by con-
trast, seek to create formal, computational methods for deriving decisions. Ra-
tionale research primarily deals with informal and semi-formal, verbal reasoning;
but it does not ignore formal reasoning and computation, both because humans
sometimes use these in reasoning about decisions and because they can augment
human reasoning” [BCM+08; p.3].

The general goal of rationale management (RatMan) and its research efforts
can be described as “to use rationale to improve the processes of creating arti-
facts of various kinds, including physical artifacts such as buildings, cities ... as

B. Turban, Tool-Based Requirement Traceability between Requirement and Design Artifacts,
DOI 10.1007/978-3-8348-2474-5_3, © Springer Fachmedien Wiesbaden 2013

160 II. Rationale Management and Traceability in Detailed Discussion

well as cognitive artifacts such as software and government policy” [BCM+08;
p.5]. To achieve these goals, the following aspects are in general considered by
methods and supporting tools developed by rationale research (cf. [BCM+08;
p.5]):
• Elicitation of important and useful rationale from different sources. Mostly

these sources of rationale are stakeholders involved in the decision process
(often called the rationale bearers).

• Recording useful rationale,
• Structuring and indexing the recorded rationale for retrieval,
• Rationale retrieval, when it is needed or useful,
• Imparting rationale to all stakeholders if it is needed or useful,
• Handling of the rationale by stakeholders;

Historically, rationale research was given birth by the Rittel's design
[RW73] theory about wicked problems [RW84] (see ch. I.6.2.2) and thus focused
on design processes [DMM+06a; p.1]. Correspondingly, most literature on ra-
tionale uses the term design rationale. However, as “rationale models are used
during all activities of development, including requirements engineering, archi-
tectural design, implementation, testing and system deployment” [DMM+06a;
p.1], Dutoit et al. [DMM+06a; p.1] propose using the term software engineering
rationale to emphasize that rationale occurs during all phases of software devel-
opment and is not necessarily limited to design contexts. In principle, the author
agrees with this extended context, but as this thesis also considers SysEng ap-
proaches, an even wider scope is needed. In particular, the term software engi-
neering rationale again provides strict limitations to software related contexts
only, whereas the former term design rationale also includes non-software related
design activities as, e.g., social planning. In the context of this thesis, rationale is
only discussed in the context of design. Correspondingly, the term design ra-
tionale would seem adequate for this thesis, but to avoid both limitations, the
author just uses the term rationale.

Burge et al. [BCM+08; p.17-19] enlist the potential benefits of including ra-
tionale into software engineering processes (these results are of either value in
SysEng). The author will enlist all main points. For the points important to this
thesis, the sub points are also listed:
• Support for requirements engineering can involve identification and explana-

tion of requirements. Here, rationale can help requirement engineers with
decision making through improving underlying reasoning. Additionally, de-
cisions with their reasoning are recorded thus helping to assess impacts of
changes.

• Support for design and implementation: On one side, rationale can provide
traceability of between requirements and design decisions and vice versa. On

II.9 Rationale Management in Systems and Software Engineering 161

the other side, rationale can help designers to make better decisions through
improving communication and underlying reasoning (e.g., by providing ra-
tionale behind patterns (cf. ch. I.6.2.4)). Recorded decisions and their rea-
soning further help with change assessments.

• Supporting software maintenance by helping maintainers to understand the
rationale for requirements, design or implementation decisions.

• Project management is supported because rationale helps to communicate
decisions to management. As a plus, performed RatMan during project man-
agement can help to make better decisions.

• Supporting use by providing rationale explaining the functioning of complex
systems.

• Collaborative working in groups can be supported by “using rationale as a
vehicle for communication amongst different kinds of experts and stakehold-
ers” [BCM+08; p.18], because different points of view between stakeholders
can be elicited and the decision making process is made transparent. Addi-
tionally, decisions can be better communicated. In this way, conflicts be-
tween decisions taken by different groups can be surfaced. Besides improved
transparency and exposition of conflicts, also “areas of agreement”
[BCM+08; p.18] can be revealed helping to achieve group consensus.

• Change is supported. On one side, change need can be detected because
rationale denotes information about assumptions and consequences. If cap-
tured assumptions become invalid or unforeseen consequences become ap-
parent, need for change will be indicated. On the other side, changes can be
better handled because dependencies among decisions and other elements
can become apparent helping to identify impacts of changes (impact analy-
sis). Further, rationale can contain evaluations on decision alternatives giv-
ing decisive supportive information for redesign decisions.

• Software reuse is eased, because rationale can provide explanations why
software components are designed and implemented the way they are.

• Knowledge transfer is supported because rationale helps to learn from suc-
cesses, failures and ideas of former projects. Also, rationale helps to perform
design validation assessments. Such collected knowledge can be transformed
to reusable knowledge for training and education or help researchers for on
research on real-world project practice.
In the context of this thesis, rationale is important in the context of REM and

design. In fact, literature for both research fields recommends the capturing and
use of rationale159. This begins at early design decisions already at the require-

159 As examples for REM theory with extensive focus on traceability, [RJ01] or [Ge05;

p.6] can be mentioned.

162 II. Rationale Management and Traceability in Detailed Discussion

ment elicitation phase, which is especially important to define system interfaces
(context of the system) [Ge05; p.6].

Especially for safety-critical systems, “rationale may facilitate the safety
analysis of the design” [DMM+06a; p.38] and thus provide significant support
for safety-critical processes (cf. ch. I.7.5). But, surely, not every topic can be
extensively discussed in a project: “If large, complex design and development
projects are to be completed within their inherent resource constraints, not every
decision and relevant factor can be deliberated, and the challenge becomes one of
defining an acceptable level of ambiguity rather than eliminating it altogether.
That said, this ambiguity poses a significant challenge to providing comprehen-
sive explanations.” [Ha06b; p.62].

In other words, “the complete rationale for even a small system is impossi-
ble to represent; consequently, developers are faced with selecting which ra-
tionale to represent” [DMM+06a; p.2].

II.9.1 Characterization Criteria for Rationale Approaches

Before sketching several rationale approaches, some general characterization
criteria shall be discussed. Several categories characterizing rationale approaches
exist (cf. [DMM+06a]):
• Representation,
• Process implementation,
• Descriptive versus prescriptive approaches,
• Intrusiveness;

II.9.1.1 Representation

Captured rationale must be somehow represented. “Although formality is typical-
ly a continuum, not a set of categories with thresholds” [Le97; p.81], Lee [Le97;
p.81-82] distinguishes three kinds of representation:
• Informal representation uses unstructured forms such as natural language,

audio or video recordings or raw drawings to capture rationale. Informal
capturing can be created easily; however, further computer-based processing
is difficult due to lacking in formal structure.

• Semi-formal representation only partially relies on a formal structure analyz-
able by computers. The formal structure builds a scaffold or skeleton of ele-
ment types and relationships, whereon the rationale can be mapped on and
thus structured. The content of the elements and relationships, however, re-

II.9 Rationale Management in Systems and Software Engineering 163

mains informal. During rationale capturing (e.g., during meetings), a certain
formal structure can be helpful for structuring discussions (similar to check
lists) or suggesting what information is expected. Thus, semi-formal repre-
sentations may even reduce overhead or complexity in discussions and pre-
vent topic digresses.

• Formal representation only includes formally defined items and their rela-
tionships, which allow a computer-based system to perform formal opera-
tions on. “The creation of rationale thus becomes a matter of creating a
knowledge base in some formal language”. The type of formal representation
depends on the types of operations intended to be performed on the gathered
information.
In semi-formal and formal representations, the rationale is “divided into

chunks that are assigned to certain properties and/or relationships” [DMM+06a;
p.2], where “by far, the most common way” [DMM+06a; p.2] is the usage of a
conceptual rationale schema representing the items, properties and relationships
to be captured and represented. Other ways are either to link rationale chunks to
elements of the discussed artifact, or to relate rationale chunks to process des-
criptions about the usage of the discussed artifact [DMM+06a; p.2], [BCM+08;
p.29f].

Lee [Le97; p.82] emphasizes that the more formalization rationale has, the
more services can be provided by a computer-based system. However, formaliz-
ing knowledge is complex and costly. A way to reduce complexity and costs is to
formalize incrementally. In this way it would be possible to first capture rationale
informally, then transform it to a semi-formal representation and – if needed –
transform it further to formal representations [Le97; p.82].

II.9.1.2 Basic Rationale Processes

Rationale approaches can be characterized by how they provide basic rationale
processes. Three basic processes must be considered [DMM+06a; p.4]
• Capturing rationale describes how rationale can be elicited and recorded.

Different possibilities exist. Either the rationale bearer itself, or rationale
specialists document it, or it is extracted from communication recordings of
project participants, or it is captured as a side-effect by the use of another de-
sign-support software [DMM+06a; p.5].

• Formalizing rationale describes processes of rationale transformation into
the desired representation, as, e.g., a rationale schema. “Traditionally, cap-
turing and formalizing rationale were combined in a single operation. In re-
cent years, however, alternative approaches separate the formalizing of ra-

164 II. Rationale Management and Traceability in Detailed Discussion

tionale from its capture” [DMM+06a; p.5]. Either the rationale is formalized
by the rationale bearers, or trained rationale formalizers, or some software
provides support to partially or completely formalize the rationale.

• Providing access to rationale deals with how recorded rationale can be
communicated to or retrieved by users: “The most common approach to ac-
cessing ...(rationale)... is through use of a system that lets users browse a hy-
perdocument containing the rationale” [DMM+06a; p.5]. Other techniques
are information retrieval, or knowledge based systems alerting users about
possibly important rationale.

II.9.1.3 Descriptive versus Prescriptive Approaches

Another common way of categorizing rationale approaches is through distinction
between descriptive and prescriptive approaches [DMM+06a; p.5]:
• Descriptive approaches purely concentrate on describing the thinking of

designers involved into the decision process. They do not try to influence or
change the way of reasoning of designers, but the recorded rationale infor-
mation may influence other development processes as implementation,
maintenance or later design decisions to be made. Further, they support re-
covering rationale about older decisions, which would have been forgotten
otherwise and support in passing on information to other development team
members or new team members. Lee [Le97; p.80] calls this the documenta-
tion perspective.

• Prescriptive approaches, on the other side, aim at improving design process-
es via improving reasoning or altering thinking of designers during the deci-
sion process [DMM+06a; p.5], [BCM+08; p.160]. To achieve this, they pre-
scribe to follow a certain structure for discussing and/or capturing the ra-
tionale information. Lee [Le97; p.80] calls this the argumentation perspec-
tive.

II.9.1.4 Intrusiveness

A further differentiation criterion for rationale approaches is the characterization
of their intrusiveness. “This includes not only how intrusive they are, but in what
respects they intrude. Thus, an approach might be highly non-intrusive during
capture of ...(rationale)... but relatively intrusive during retrieval and display of
rationale. Measures of intrusiveness can include the degree to which a
...rationale... approach dictates the way design is done as well as the amount of

II.9 Rationale Management in Systems and Software Engineering 165

extra effort required to use the approach” [DMM+06a; p.6]. The tolerable extent
of intrusiveness may also be different concerning the capture, formalization and
access processes. According to Dutoit et al. [DMM+06a; p.6], most rationale
approaches are highly intrusive concerning rationale capture, because they inter-
vene into the design process through enforcing designers to rationale elicitation
as by the usage of a rationale schema.

During the past two decades, less intrusive approaches for rationale capture
and formalization have been aspired by researchers [DMM+06a; p.6], because
intrusiveness is seen by many researchers as central obstacle to success of ra-
tionale capture in practice [DMM+06a; p.6]. Prescriptive approaches are not
necessarily the more intrusive approaches. However, descriptive approaches can
ease the use of less intrusive techniques to capture rationale [DMM+06a; p.6].

II.9.2 Rationale Management Systems (RMS)

The concept of a rationale management system (RMS) denotes a system that
makes capturing and accessing of rationale possible. RMS may offer the follow-
ing potential benefits [DMM+06a; p.2]:
• Support for project management by providing valuable information about

decisions;
• Improvement of dependency management as, for example, traceability dealt

with in this thesis;
• Generally providing greater design support;
• Support of development team collaboration;
• Supporting later users of design;
• Allowing better and more detailed documentation;
• Requirement engineering support;
• Support of design reuse;
• Support for learning about and evaluating design;
Typically, the following RatMan tasks involve an RMS [DMM+06a; p.36ff]:
• Identifying the kind of rationale need involves rationale goal definition,

measurement and identification. Typically this is not part of the RMS itself
but defines the kind of needed RMS.

• Rationale capture concerned with rationale acquisition and how rationale
can be further developed (i.e., detailed).

• Rationale usage deals with distribution (i.e., communication), retrieval, use,
and long-term preservation of rationale.

166 II. Rationale Management and Traceability in Detailed Discussion

“Recent research tends to combine these systems with other forms of design
support systems” [DMM+06a; p.36]. The tool discussed in part III also combines
mechanisms to capture rationale with mechanisms to capture traceability infor-
mation in an integrated design environment in order to improve information on
the performed design.

II.9.3 Overview of Different Rationale Approaches

II.9.3.1 Schemas for Argumentation

At the time Rittel and Webber have carved out the wicked nature of design prob-
lems (see ch. I.6.6.2), Kunz and Rittel developed the Issue-Based Information
System (IBIS) approach [KR70] as “a way of modeling argumentation”
[DMM+06a; p.7]. In Rittel's eyes [Ri72], wicked problems could only be ad-
dressed by an argumentative approach surfacing the pros and cons of different
positions. IBIS relies on a fixed conceptual documentation schema helping to
elicit different positions on an issue [BCM+08; p.6]. Four different elements
build the schema:
• Issues: The analyzed topic; “Issues have the form of questions” [KR70; p.4].
• Positions: “The origin of issues are controversial statements” [KR70; p.4].

Position elements represent these controversial statements.
• Arguments: Either support or contradict a position,
• Resolutions: The resolutions deduced from the discussion;

Fig 9-1 shows an outline of a discussion structured in the IBIS schema160 el-
ements, represented by the author's thoughts about the usefulness of rationale
approaches. Between the elements different relationships “forming networks
between the items of the 'issue bank'” [KR70; p.4] are possible [DMM+06a; p.8].

160 The IBIS schema has a resembling connection to Toulmin's model of argumentation

[To58]. The model of argumentation consists of a layout of six interconnected ele-
ments helping to analyze an argument [To58]: A claim is an issue or argument that
must be proved through the argumentation. Grounds describe data or hard facts rein-
forcing a claim. Warrant describes the connections between the claim and the grounds,
thus legitimizing the claim. If a warrant alone is insufficient, a backing verifies a war-
rant. Qualifiers are expressions of certainty (e.g., definitively, surely) or affirmation
(e.g., most, always or sometimes) for the claim. Last but not least, a rebuttal describes
possible limitations or refutations on an element. Toulmin considers the first three
items (claim, grounds and warrant) as essential to any argument, whereas the other
(backing, qualifier and rebuttal) can be possibly omitted.

II.9 Rationale Management in Systems and Software Engineering 167

Rittel himself mainly targeted IBIS for promoting debate on issues of many
very differing points of view (wicked problems), whereas he considered noncon-
troversial design questions as trivial issues not to be dealt with IBIS [DMM+06a;
p.8]. In the following decades, Rittel applied IBIS to social and political planning
in the United Nations, the European Community and West Germany (cf.
[DMM+06a; p.7]), whereas other researchers discovered its use in general design
questions (cf. [Mc78], [Mc79]).

Originally, the approach based on pen and paper. In the 1980ies Conklin
recognized the wicked problem theory as potentially fruitful for understanding the
crucial difficulties discovered in the course of ongoing software design practice.
Consequentially, Conklin developed the tool gIBIS [CB88], where the IBIS
schema can be expressed as graphical hypertext argumentation maps. Streitz et al.
[SHT89], [SHH+92] introduced a tool called SEPIA as a hypermedia system
environment for collaborative editing of argumentation [Sch07; p.226]. SEPIA
uses a modification of the IBIS method [SHH+92; p.15].

From the beginning on, IBIS has been “from the outset both prescriptive and
intrusive, as were almost all of his IBIS projects. Other researchers, however,
have sought much less intrusive ways of using IBIS” [DMM+06a; p.8], (see also
[IR97]).

The rationale research field developed from the pioneering work of Rittel
and Kunz. During the research that followed, a diversity of approaches has been
developed. Burge et al. give a good orientation aid by stating that roughly all
approaches can be differentiated between either variations on IBIS or as “funda-
mental alternatives” [BCM+08; p.5]. In the following of this chapter the most
important161 variations are shortly described. Later in part III of this thesis, the
author describes an approach helping to combine traceability and rationale in-
formation. This approach can be combined with IBIS or any of the following
approaches as a kind of documentation template for rationale. However, its main
concern lies more in alleviating the fundamental difficulties that documentation
and management of rationale faces in SE practice. These issues are part of the
next following chapters.

Procedural Hierarchy of Issues (PHI) [Mc78], [Mc79] is an extension of
IBIS whose “main innovation is to show that frequently the decision on one issue
depends on the decisions made on others” [BCM+08; p.8]. As a central concept,
PHI provides a subissue relationship. An issue can only be resolved by the reso-
lution of its sub issues. In this way a hierarchy of issues evolves, where the root
issue represents the whole project. JANUS [FMM89], [FLM+96] and PHIDIAS
[MBO+92] are a tool implementations of PHI.

161 The listing itself orients on [DMM+06a] and [BCM+08].

168 II. Rationale Management and Traceability in Detailed Discussion

Issue: How can rationale be included into processes to ensure significant support in de-
velopment?

Position 1: Rationale must be collected for any decision.
Arguments on Position 1:
 For: The process of collecting rationale for decisions ensure that decisions are made

 on rational facts and not on unconscious implicit criteria.
 Arguments on this argument:
 For: The noted down facts must be formulated and thus acquire a certain de

 gree of rationality.
 Against: Generally not all criteria of a decision may be rationally expressible.

 This may lead to negligence of these 'fuzzy' criteria.
 Against: The extensive number of decisions makes it impossible to collect

 rationale for any decision.
Position 2: Rationale must only be collected for the most important decisions.
 For: The important decisions matter most. This approach ensures that at least that

 the most important decisions are appropriately discussed and considered.
 For: Documentation effort is limited to a manageable amount.
 Against: Separating the important decisions from the less important ones is a

 decision process with a certain degree of arbitrary subjectivity. Corre-
 spondingly, important de- cisions may be forgotten.

Position 3: Documenting rationale is not useful at all.
 For: A lot of documentation must be produced resulting in extended extra effort and

 diminished project documentation overview.
 For: The rationale bearers often do not receive adequate benefit.
 For: Research on the process of making design decision surfaced that rationale cap-

 turing often interrupts the designers in their thinking.
 Against: Unreflected decisions are more likely to be wrong decisions.
 Against: A high number of wrong decisions can cause complete project failure.
 Against: Even one wrong decision with far-reaching consequences can risk

 complete project failure.
Resolution: Position 2 represents a capable, promising compromise and should be

 employed.

Figure 9-1 IBIS schema example outlining a discussion.

Inspired by IBIS, McLean et al. [MYB+91] proposed a method for design space
analysis, called Question, Options and Criteria (QOC). The approach is inde-
pendent from IBIS but has resembling characteristics. McLean et al. saw QOC as
support in the context of Schön's reflection-in-action design phase [MYB+91;
p.216]. Fig. 9-2 shows the QOC schema as interpreted by Hagge et al. [HHL+06;
p.413]. As IBIS does, QOC approaches rationale issues by design questions (cf.
[BCM+08; p.305]). Questions can be addressed by several options providing

II.9 Rationale Management in Systems and Software Engineering 169

possible alternative solutions [NS06; p.212]. Vice versa, options can also be a
consequence of several questions. “Criteria as the basis for evaluating options”
[MYB+91; p.234] represent the desirable properties and requirements of the
artifact to be designed. Additionally, arguments provide further means to assess
and justify questions, options and criteria.

QOC's notation has a semi-formal structure [MYB+91; p.219] meaning that
the concept items (question, option, criterion and argument) and their relations
build a formal structure, whereas the actual content within any of the concept
items is informal and unrestricted. Thus, McLean at al. considered QOC repre-
sentations as “effective communication vehicles, because they are simple enough
to be understood by a variety of people, they are flexible enough to represent a
variety of issues from a variety of viewpoints, and they are explicit enough to
expose assumptions that can be challenged by others” [MYB+91; p.219]. Thus,
QOC is mainly a descriptive approach, but requiring designers to perform a thor-
ough description of the design space, makes QOC intrusive.

Figure 9-2 QOC schema as interpreted by [HHL+06; p.413]

According to McLean et al. [MYB+91], IBIS rather is restricted to capturing
rationale “on the fly”, thus recording the historical development of rationale
during the process. QOC, though, is more interested in the logical representation
of the design space. Thus, it can also be retrospectively restructured [NS06;
p.212]. In the context of REM, Nguyen and Swatman [NS06] show that IBIS and
QOC can complement each other and propose an approach in which both meth-
ods are used in different situations:
• IBIS provides possibilities to record an “ad-hoc” [NS06; p.222] rationale as

it “describes the on-going evolutionary development of requirement” [NS06;

170 II. Rationale Management and Traceability in Detailed Discussion

p.223] (the history of the decision process) and thus captures “how the re-
quirements develop over time” [NS06; p.223].

• QOC, on the other side, provides the possibilities for a “post-hoc” [NS06;
p.223] conversion of the IBIS rationale to perform “a holistic examination of
the problem space” [NS06; p.224] finding insights “why a requirement mod-
el takes a certain form it does” [NS06; p.224].
Buckingham Shum et al. [BSS+06] analyze gIBIS and QOC after 15 years of

employment. As a result of the experiences with both approaches with the “par-
ticular flavor of ... creating graphical argumentation maps for design deliber-
ations” [BSS+06; p.111], they developed a tool called Compendium [Compen-
dium]. Detailed information on design processes and the use of Compendium can
be found in [Co06] and [BSS+06]. Compendium supports modeling graphical
maps of argumentation in a hypermedia environment meaning that Compendium
is a collaborative system, where the graphical maps can be enriched with other
media such as textual documentation, audio and video recordings of design meet-
ings in combination with time line recording of the individual activities per-
formed by the participants of such a meeting.

Hagge et al. show interconnections between QOC and patterns [HHL+06;
p.413]. In their view, the QOC schema can be mapped to the core concepts of
patterns (cf. ch. I.6.2.4). As matter of fact, patterns “constitute one of the most
heavily used approaches for organizing reusable knowledge” [DMM+06a; p.19],
where the “pattern concept has rationale explicitly built in, though this rationale
is relatively unstructured” [DMM+06a; p.19]. This opens the way to another
research area within RatMan dealing about rationale as a means for organizing
organizational knowledge bases [DMM+06; part 4].

Inspired by Conklin, Potts and Bruns [PB88] applied IBIS to software de-
sign. They extended the IBIS schema by including “intermediate artifacts” (mod-
els, documents, prototypes and other design artifacts) representing the designed
software. This idea was enhanced by Lee and Lai ([Le90a], [LL91], [LL96]) by
developing the Decision Representation Language (DRL) accompanied by a tool
called Sybil ([Le90b], [LL96]), a knowledge-based hypertext system. DRL in-
cludes the following main elements [DMM+06; p.12]:
• Decision problems are the issues to be decided (cf. questions in QOC; issues

in IBIS).
• Alternatives have very similar meaning to options in QOC.
• Goals corresponds to criterion in QOC. Alternatives can be related to goals

by an achieves relationship similar to positive assessment in QOC.
• Claims can be made about achieves relationships, thus analyzing alternatives

(comparable to arguments in QOC). Claims can have support or deny rela-
tionships to other claims (see similar relationships in QOC and IBIS).

II.9 Rationale Management in Systems and Software Engineering 171

• Groups group objects (decision problems, alternatives, goals ...). The mem-
ber attribute of a group describes the grouping criterion. Any relation can
link to groups in the same way as to single objects.

As striking similarities to IBIS and QOC exist, DRL also provides some new
aspects [DMM+06; p.12]:
• Claims can have presupposes relations between each other.
• Each Claim has the properties evaluation, plausibility and degree, where the

evaluation property derives its value from the other two values describing
the likelihood for a claim to be true (plausibility) and the degree to which it
is true (degree).

• Further, DRL allows hierarchies of goal-subgoal dependencies. As well as it
allows hierarchies of decision-subdecision dependencies corresponding to
the subissue relationship in PHI.
In order to suit it better to SE processes, Burge and Brown [BB04], [BB06]

have developed RATSpeak as an extension of DRL. Besides the DRL concepts,
the RATSpeak schema uses new element types and provides an argument ontolo-
gy tailored for SE [BB06; p.280], [BCM+08; p.305]:
• Requirements include FRs and NFRs. Requirements can be modeled within

the RATSpeak schema, or they can be included as references to a require-
ments specification document.

• Questions describe questions to be answered in order to find an answer to the
decision problem. “Questions augment the argumentation by specifying the
source of the information used to make the decision (the procedure, program
or person)” [BB06; p.280].

• Assumptions are similar to claims, but for assumptions it is not definitively
clear whether they are true and whether they will continue to persist in the
future.

• Argument ontology describes a hierarchy of common argument types tailored
for the software development domain serving as claims that can be used in
the system (e.g., development costs, portability). The entries build a basic
vocabulary used for inferencing. Each entry has a default importance that
can be changed by associated claims [BB06; p.281]. RATSpeak handles
NFRs as parts of the argument ontology.

• Background knowledge can be seen as a container for all modeled tradeoffs
and co-occurrence relationships between different arguments in the argu-
ment ontology. The container is used to check the gathered rationale for any
violations with these relationships.
Burge and Brown also have developed a tool implementation of RATSpeak

called SEURAT (Software Engineering Using RATionale). SEURAT integrates

172 II. Rationale Management and Traceability in Detailed Discussion

directly into the Eclipse-IDE162 environment, because Burge and Brown assume
that “the developers are more likely to be willing to record their rationale if they
do not need to start an additional tool to do so” [BB06; p.284].

SEURAT, however, is a prototypical tool environment with the goal to eval-
uate the potential uses of rationale mainly from the maintenance perspective.
Accordingly, rationale capture was not in the focus of the SEURAT environment
BB06; p.284]. In this way, SEURAT does not address what the author considers
as main obstacle for practical use (see ch. II.9.4.20; cf. also [DMM+06a; p.33],
[DMM–+06a; p.39]).

The Sysiphus tool developed by Dutoit and Paech [DP02] has “a similar
short-term incentive strategy” [OM07; p.14] by allowing the combination of
rationale and use case specifications in a collaborative modeling environment.

According to Dutoit et al., “DRL appears to be more prescriptive than QOC,
though less prescriptive than IBIS” [DMM+06; p.12]. Further, Dutoit et al.
[DMM+06; p.13] express the supposition that DRL can be seen as a super-set of
QOC, because all QOC features are somehow represented in DRL, though DRL
also provides new features. In comparison with IBIS, QOC and DRL can be con-
sidered as more expressive as they provide more fine-grained models for argu-
mentation about artifact features [DMM+06; p.13]. On the other hand, QOC and
DRL are more limited to artifact features as topic, whereas IBIS addresses any
design topic [DMM+06; p.13]. However, Dutoit et al. further point out that
schemes of IBIS, QOC and DRL only have such few significant differences that
the differences more appear as possible extension features for the other ap-
proaches. “This suggests that it might be both possible and useful to combine the
three schemes” [DMM+06; p.14], in similar ways as it is proposed by Nguyen
and Swatman [NS06] for IBIS and QOC [NS06].

REM “is ill-structured, complex and rather domain specific” [NS06; p.213]
and can thus be “described as 'wicked' in Rittel's terms” [NS06; p.213]. Corre-
spondingly, several approaches exist to support argumentation and rationale
capture during REM processes. Here to mention are contribution structures
[GF94] that support modeling of stakeholders and their relationships, WinWin
([BEK+98], [BK06], [WinWin]) as a support for negotiating requirements with
different stakeholders and REMAP providing an IBIS-like argumentation model
integrated in an REM-tool environment. In [MR07], the authors develop a tool
suite to connect different tools via a traceability framework with dedicated sup-
port for group decision and negotiation. The approaches mentioned here are also
connected to requirements traceability. Correspondingly, they are also discussed
in the following ch. II.10. For a deeper discussion on rationale as a means for

162 See www.eclipse.org (Access: 2010/06).

II.9 Rationale Management in Systems and Software Engineering 173

REM processes, the author recommends reading [BCM+08; ch. 11], or Nguyen
and Swatman [NS06] providing insights how rationale approaches may promote
and support creativity in REM processes.

Pena-Mora and Vadhavkar [PV96] describe the Design Recommendation
and Intent Model (DRIM) method with the tool DRIMER. DRIM is a rationale
description language similar to DRL [DMM+06a; p.34] with the purpose to de-
scribe design rationale concerning the usage of patterns in a system. DRIMER
allows documenting rationale concerning the design of software using DRIM.
This rationale can then be used to extract patterns in a pattern catalog with in-
cluded DRIM descriptions. DRIMER then allows searching in the pattern catalog
where the DRIM model can help to find matching patterns for a specific design
problem (see also [OM07; p.14], [BB06; p.275], [DMM+06a; p.34]).

Concerning tool support, “most tools supporting argumentation-based ap-
proaches are hypertext-based systems that connect all pieces of information
through hyperlinks, e.g., gIBIS [CB88], SYBIL ([Le90b], [LL91], [LL96]), and
the recently developed Compendium [Co06]” [OM07; p.14].

II.9.3.2 Approaches beyond Argumentation

Some rationale researches suggest that rationale is not just about argumentation.
The following chapter will outline some alternatives.

A different possibility to structure rationale is using the structure of the arti-
fact that rationale is created for [BCM+08; p.12]. Approaches of Reeves and
Shipman [RS92] or Domeshek and Kolodner [DK96] use this strategy to com-
bine design models of physical artifacts with textual descriptions of rationale. In
software development, Schneider [Sch06] proposes a similar system to link tex-
tual rationale to source code. As it integrates into the Eclipse IDE, SEURAT
[BB06] also can be seen in this category even though it is argumentation schema-
based. SEURAT can also directly link to artifacts, showing that argumentation
schemas and artifact structure schemas can be combined. The rationale support
of the tool described in part III also allows combining both methods in order to
take effects of their strengths. In their synopsis on the current state of rationale
research, Burge et al. claim that integrating a rational tool into an artifact-
centered decision-making is essential for being successful [BCM+08; p.245].

In Gruber and Russel's view [GR96a], argumentative schemas do not cover
all rationale designers' needs, because the schemas prejudge which information is
relevant and thus collected. They claim that no advanced collection can foresee
all later information needs and thus a lot of later important rationale, which
would have been important later on, is lost. Instead of forcing designers to elicit

174 II. Rationale Management and Traceability in Detailed Discussion

and document rationale in highly detailed models, it might be better to collect
engineering data and models that can help to later deduce rationale according to
the real information need (cf. also [BCM+08; p.13], [DMM+06a; p.15]). Gruber's
and Russel's arguments inspired a set of other approaches:
• Myers et al. [MZG99] try to record rationale through automated collection

of data in a none-intrusive manner (see also [Do05]). Their Rationale Con-
struction Framework (RCF) tried to enhance a Computer Aided Design
(CAD) tool with a monitoring module for recording the designer's behavior,
then a rationale generation module tries to infer the design history (the what)
and design intent (the why) (also cf. [BCM+08; p.56-57]).

• Haumer et al. [HPW+99] present an approach to extend traceability infor-
mation with information on decisions by integrating videos or other media
(see [TJH07; p.4]).

• Schneider [Sch06] outlines on the one side a prototypical tool for collabora-
tive project risks assessment called CoRiskPT. The tool includes an attached
chat system, where discussions on the single risks are recorded to be used as
later rationale. A second tool called FOCUS, allows recording audio, video
and computer screen information together and thus records meeting discus-
sions. The tool integrates into the Eclipse-IDE in order to link the recorded
rationale to source code.
Several approaches [MZG99], [HPW+99], [Sch06] combine Gruber and

Russel’s paradigm [GR96a] with the paradigm to orient on artifact structures. The
rationale approach of the R2A tool (part III) can be seen in this tradition as it on
the one side highly relies on artifact structure of systems and software design.
Then again, the R2A tool – similar to Myers et al. [MZG99] – records the history
of taken actions in combination with other information (e.g., author and time-
stamp of a change) about any item present in R2A via a configuration manage-
ment component. This can be used by the users to infer rationale information in
the sense of Russel and Gruber.

Lewis et al. [LRB96] describe the experience that design is not about solv-
ing one problem after another. Often design must solve a suite of problems at the
same time. Correspondingly, Lewis et al. propose an approach allowing such
suites to be defined and design alternatives to be assessed on how good they
affect solving the problem suite (cf. also [DMM+06a; p.15], [BCM+08; p.12-
13]).

Not all rationale is raised by designers; instead, other stakeholders are in-
volved [BCM+08; p.156]. In the context of user interface design, Carroll and
Rosson [CR92], [CR98] developed the Scenario-Claims Analysis approach where
software system features are evaluated by possible, hypothetical software usage
scenarios with focus on user goals. The approach mainly bases on three concepts:

II.9 Rationale Management in Systems and Software Engineering 175

• System features,
• User goals evaluating the system features,
• Evaluation results of user that can either be positive or negative in respect to

their goals;
The approach includes no deeper argumentation on the evaluation results,

thus it does not represent the decision making process or alternatives evaluation.
A deeper discussion of Scenario-Claims Analysis can be found in [BCM+08;
p.11-12, p.158-159, p.227] or [DMM+06a; p.15].

Other approaches use techniques of artificial intelligence such as Case-
Based Reasoning (CBR) to develop Case-Based Design Aids (CBDA) for support
and documentation of rationale on human decision processes. Here to mention is
the pioneering work of Kolodner sparking tools such as ARCHIE CBDA [Ko93]
and DesignMuse [DK96] for architectural design of buildings. Burge et al. pro-
vide an overview of current approaches using artificial intelligence [BCM+08;
p.61-66].

II.9.3.3 Alternative Categorization

Ocampo and Münch [OM07; p.16] provide an alternative categorization with the
following categories:
• Support for debate, i.e. argumentation: Approaches and tools of this category

focus on collaboratively debating wicked problems. Important functionalities
are rationale capture, management and visualization. Rationale visualization
is typically achieved via graphical browsers connecting the rationale pieces.
Through linking mechanism also information outside of the tool environment
can be referenced.

• Support for editing work and rationale documentation: Within this category,
approaches and tools provide rationale as important additional information,
but their main features concentrate on the original tasks the users aim to per-
form. The front-end of the tools are specializing in the original tasks, where
possibilities to capture, visualize and retrieve rationale to the current original
task to perform are offered.

• Support for integrated editing work and debate i.e. argumentation: These
approaches and tools address encountered problems in the rationale field
concerning costs, intrusiveness, and benefit by seamless integration of their
rationale support into other collaborative tasks. These tools concentrate on
easy switching between tasks, on capturing their rationale and on visual in-
tegration of rationale information into the other tasks' information, where the
tasks and their rationale are seen as a whole.

176 II. Rationale Management and Traceability in Detailed Discussion

Using these categorizations, they provide a table segmenting rationale ap-
proaches into different categories and contrasting approaches163 with their corre-
sponding tool support mechanisms (table 9.1).

Table 9.1 Alternative categorization of rationale approaches [OM07; p.16]

Approach Tool / Prototype Support

Category 1

IBIS [KR70] gIBIS [CB88], Compendium [Compendi-
um]

Design Space Analysis (QOC) [MYB+91] Compendium [Compendium]

Decision Representation Language (DRL)
[Le90a]

SYBIL [Le90b]

Inquiry Cylce (Potts et al.) [PB88] Active Hypertext Prototype [PT93]

Category 2

Contribution Structures (Gotel and Finkel-
stein) [GF95]

Contribution Manager Prototype [GF95]

Como-Kit [DKM96] Como-Kit System [DKM96]

Agile Process Mining [WRW+05] ADEPT [RD98], CBRFlow [WWB04]

Category 3

Hierarchy of Issues (PHI) [Mc78] JANUS [FLM+96], PHIDIAS [MBO+92]

REMAP (Ramesh and Dhar) [RD92] REMAP System [RD92]

SEURAT (Burge and Brown) [BB04],
[BB06]

SEURAT System [BB04], [BB06]

Sysiphus (Dutoit and Paech) [DP02] Sysiphus [DP02]

WinWin (Boehm et al.) [BEK+98] WinWin Negotiation Tool [WinWin]

DRIMER [PV96] SHARED-DRIMS [PV96]

C-ReCS (Klein) [Kl97] C-ReCS-System [Kl97]

Ocampo and Münch [OM07] introduce an approach with a prototype tool
called REMIS (Rationale-driven Evolution and Management Information Sys-

163 Some of the referred approaches (Como-Kit, Agile Process Mining, C-ReCS) are not

further mentioned, but taken over from the categorization in [OM07] as additional in-
formation for the reader interested in further research.

II.9 Rationale Management in Systems and Software Engineering 177

tem). The tool approach is an environment for supporting development of a pro-
cess model (e.g., to develop an organization specific process model from the de-
mands of the SPICE standard). The environment shall support rationale collec-
tion and usage for process designers during activities of designing or changing
processes [OM07]. The gathered information can be stored together in a – what
the authors call – “process model evolution repository” [OM07; p.12]. Ocampo
and Münch do not provide a direct answer to what category their approach be-
longs to. The author tends to category 2, even though they seem to be concerned
about costs and intrusiveness [OM07].

Concerning the tool approach introduced in part III, the author also tends to
classify it as category 2 approach because the tool in the first instance concen-
trates on improving design processes and traceability between requirements and
design. On the other side, the author acknowledges the importance of providing
further information on taken decisions in design and tries to actively diminish
potential barriers to that. Further the decision model is directly integrated into
traceability information and design processes. From this perspective, the R2A
tool approach also has tendencies to category 3.

II.9.4 Why Rationale Management Could not yet Succeed
 in Practice

A lot of effort has been put into identifying the opportunities the usage of ra-
tionale can provide. However, in the end, these opportunities will only become
reality if the approaches for capturing and further usage of rationale can be suc-
cessfully integrated into the conventional design processes in practice [BCM+08;
p.155].

Currently, rationale approaches have not yet encountered a breakthrough in
real-world design practice. Successful usage examples of rationale approaches in
real-world settings exist, but these examples mostly resulted from special circum-
stances as, e.g., having a 'rationale usage champion' or professional documenters
at hand [CB96], [BCM+08; p.235]. In most projects, such fortunate conjunctures
cannot be expected [DMM+06a; p.20]. Typically in these 'normal' projects, the
documentation effort is left to the persons participating in the decision-making
process (mostly the designers) with the effect that documenting rationale has
been largely neglected [BCM+08; p.235].

178 II. Rationale Management and Traceability in Detailed Discussion

Concerning the reasons, Horner and Atwood [HA06a] could identify four
categories of barriers for successful rationale usage in practice:
• Cognitive limitations,
• Capture limitations,
• Retrieval limitations,
• Usage limitations;

In the following these barriers are discussed. Currently, the capture limita-
tions are seen as the central obstacle to successful rationale approaches. Conse-
quently, this topic will have a more detailed focus.

II.9.4.1 Cognitive Limitations

Humans only have a limited capacity to process and handle information at the
same time [Mi56]. From this point, Simon developed the idea that the designer's
rationality is bounded and not all alternatives can be considered, implying that
designers find rather satisfactory than optimal solutions ([Si96], ch. I.6.2.1). As
first implication, it is to state that captured rationale will necessarily be incom-
plete [HA06a; p.78]. Thus, any decision can impose unintended consequences
[Te96]. Rationale may help to ensure extensive explorations of the design space
in order to minimize detrimental risks of unintended consequences. However, any
rationale will be incomplete.

A possible improvement might be to have systems where similar problems
can be identified from other projects providing new insights into possibly over-
seen consequences or problems. Research on this topic is related to rationale as a
body of knowledge (see [DMM+06; part IV]) and especially the pattern move-
ment can be seen as the most successful area slightly pointing in this direction,
but systems really addressing this issue might need to provide mechanisms for
comparing projects with each other as well as such systems must have a rationale
base as body of knowledge large enough for comparing problems.

A second problem encountered is that extensive explorations of the design
space produce high amounts of additional documentation significantly leveraging
project complexity. This problem is enforced by the fact that most systems are de-
signed in team collaboration. Thereby, problems arise in integrating diverse per-
spectives, maintaining conceptual integrity [HA06a; p.79] (also cf. ch. I.6.2.1)
and communicating concepts to all team members involved. Horner and Atwood
explicitly mention that these situations require rationale systems “to help de-
signers think about the right issues” [HA06a; p.79]. This has a close connection
to what Moro [Mo04; p.310-330] discusses as neuralgic points of a project,
where he proposes identifying, documenting and continuously tracking neuralgic

II.9 Rationale Management in Systems and Software Engineering 179

points. Moro proposes the following approached for identification of neuralgic
points:
• Risk assessments [Mo04; p.324] of the used technologies.
• Risk assessments of requirements [Mo04; p.326] where especially NFRs are

in the focus.
• Deriving dominating discussion topics from the project diary or discussion

protocols [Mo04; p.328].
Different designers often have different views on problems and their solu-

tions. Concerning diverging views of designers about design alternatives, “re-
flecting on the why aspect of design can help to identify better solutions”
[HA06a; p.79], but as long as solution ideas are still formulated, it might often be
better to consider what other alternatives are possible rather than why each alter-
native might be appropriate [HA06a; p.79].

Organizations can tend to group-think [Ja72], i.e., in organizations with poor
processes, often a poor solution is decided quickly, whereas the rest of the energy
is spent on relatively insignificant issues. Thus, rationale approaches must find
ways to spark discussions about the important issues in decision-making. Ra-
tionale tools, on the other side, should spark reflection in a way to encourage and
enhance good design practices, but they should not expect or press for changing
poor practices [HA06a; p.79]. This matches with Schneider's advice: “Encourage,
but do not insist on further rationale management” [Sch06; p.100] meaning that
rationale capture and usage itself cannot be prescribed but only be encouraged.

II.9.4.2 Rationale Capture Limitations as Central
Challenge in Rationale Management

As Burge et al. emphasize, “the biggest challenge facing the use of rationale in
real-world projects is the rationale capture problem” [BCM+08; p.55], because
“it is extremely difficult to capture rationale in a real-world setting” [BCM+08;
p.55]. Or, as Dutoit et al. put it: “In fact, so little …(rationale).. has been cap-
tured to date that has been relatively little opportunity to investigate the problem
of …(rationale).. access in real-world settings” [DMM+06a; p.20]. Consequent-
ly, the author will in the following concentrate on the capture problem as the
central obstacle to successful RatMan in practice [DMM+06a; p.20], [BCM+08;
p.305]. In other words, even though its importance is widely acknowledged,
rationale currently does not face a breakthrough, because people in project prac-
tice neglect to capture it.
Traditionally, the capture problem involved three aspects in one [BCM+08;
p.262]:

180 II. Rationale Management and Traceability in Detailed Discussion

• Elicitation of rationale from decision makers,
• Structuring the elicited rationale according to a given schema,
• Recording (documentation) of the elicited rationale in structured form;

Some newer approaches try to cope with the capture problem by separating
the aspects from each other. Especially structuring and documentation of ra-
tionale seem to impose high problems, as they are often highly labor intensive
[BCM+08; p.262]. The following enumerates several reasons rationale research
has collected as possible explanations for the capture problem and shows poten-
tial ideas how to ameliorate the problem in practice. In the author's opinion, two
ideas seem to be very promising:
• Automated capturing of casual information arising as by-product of design

processes (e.g., the change history of items) that allows inferring (resp. de-
ducing) rationale later, when it is needed and, when the real information
need is known (see, e.g., [GR96a]).

• Concentrate on light-weight capturing of rationale during decision processes
and deferring structuring and detailed documentation (i.e. recording) to later
phases.
First to mention is intrusiveness in the sense that it leads to extensive work

for capturing rationale (see ch. II.9.1.4). Most rationale approaches require
structuring elicited rationale through a schema demanding significant extra work.
These rationale representation structures can also be inappropriate in a way that
they only inadequately consider information needs of the targeted design domain
or that they simply do not cover all varying kinds rationale expresses itself. More
comprehensive representations allow capturing more rationale, however, they
also can significantly divert cognitive effort from the design process and – as
described in the following paragraphs of this chapter – can intrude as detrimental
effects into the designer's thinking. Flexible notations such as free text impose
high difficulties for retrieval (e.g., indexing) and its later usefulness. Techniques
such as automated recording of meeting conversations are less intrusive, but this
information is then difficult for retrieval as well as they are also very likely to
capture lower amounts of rationale (also cf. [DMM+06a; p.6, p.20], [HA06a;
p.80-81]).

Political and legal factors can make developers reluctant to documenting,
what could later be seen as a mistake. Especially they might fear potential liabil-
ity if a recorded decision may later become responsible for a catastrophic failure
of the designed system [CB96], [BB06; p.274].

Also, designers may want to make themselves irreplaceable by other design-
ers or to justify their expert status, thus using information hiding strategies. This
point also involves concerns about privacy and security playing a decisive role.
Recorded rationale might touch competitive advantages of a company, which

II.9 Rationale Management in Systems and Software Engineering 181

might not be opportune to be documented (e.g., if companies work together),
[HA06a; p.82].

Design itself is an intense, time-consuming activity. As a result, an explana-
tion can be that designers simply lack time and resources for additionally eliciting
and capturing rationale as many of the rationale approaches demand
[DMM+06a; p.20]. Often, many decisions are made in informal situations such as
design meetings or during conversations at breaks, where rationale capturing is
hardly possible [SA96].

Another explanation may be that the original designers are able to effective-
ly reconstruct rationale from other past designs data than rationale recordings
[DMM+06a; p.18]. Therefore, these designers may consider capturing rationale
as not necessarily important enough to spend resources on.

This point has a close interaction with what is called Grudin's principle
([Gr87], [Gr88], [Gr96b]). In his “seminal work” [Sch06; p.97] about collabora-
tive work and benefit, Grudin ([Gr87], [Gr88], [Gr96b]) discovered that collabo-
rative systems tend to fail, if the persons performing the work are not the benefi-
ciaries of this work. Or as Endres and Rombach put it [ER03; p.60]: “Group
members usually prefer fairness and justice over altruistic appeals”. The persons
providing rationale on a decision (also referred to as rationale bearers) often also
remember later the background of a decision. In this context, they do not have
much benefit from documenting rationale. This is especially the case for descrip-
tive approaches as they just document rationale, whereas prescriptive approach-
es may provide benefits to the rationale bearers due to their guidance on what to
consider during decision making, but either prescriptive approaches did not suc-
ceed better in practice [DMM+06a; p.21]. Directly rewarding knowledge sharing
is also difficult, because it would involve “creating tangible rewards for intangi-
ble ideas“ [HA06a; p.81]. Other alternative ways around the problem are the
ideas of Gruber and Russel [GR96a] to automatically collect data thus disburden-
ing the designers or the idea of Schneider [Sch06] proposing to disburden the
experienced rationale bearers of their communication/documentation work by
deferring the documentation work to the inexperienced rationale seekers.
Schneider's ideas are discussed in detail after the following paragraph.

Rationale approaches may also create a deeper lying intrusiveness onto de-
sign. Referring to Schön's Theory of Reflective Practice (ch. I.6.2.3), Fischer et
al. [FLM+96] argue that the rationale approaches are disrupting designers' think-
ing when designers in their intuitive knowing-in-action phase are forced to ra-
tionally argue about their doing. In this case, designers would be forced to trans-
form unconscious tacit knowledge [Po66] (“knowledge users employ without
being conscious of its use” ([SM99a; p.341]) into conscious, rationally justifiable

182 II. Rationale Management and Traceability in Detailed Discussion

knowledge164. Such transformation processes are intrusive during knowing-in-
action design phase and can lead to a degradation of design quality [FLM+96],
[DMM+06a; p.21]. In summary, the following negative effects can be spotted
[FLM+96], [DMM+06a; p.21]:
• One effect can be that intuitive knowledge is omitted in preference to con-

scious knowledge falsifying the results [FLM+96], [DMM+06a; p.21].
• Another effect can be that designers are interrupted in their flow of thinking

[Cs90] endangering motivation and slowing down design work [Sch06;
p.94]. “During the flow state, knowledge workers are typically not willing to
switch tasks and take care for rationale” [HA06a; p.93].

• As an effect, “designers may not be willing to spend the energy to articulate
their thoughts”, when “designers focus should be on solving problems and
not on capturing their decisions” [HA06a; p.80].

• Incompletely captured rationale can also impose negative consequences on
the design process. Such a case can, e.g., occur during a design review,
where the reviewers inference a wrong understanding of a design decision
basing on incomplete rationale [HA06a; p.82].
As a more radical position, Shipman and Marshall argue that the formality

itself imposed by much approaches imposes a big obstacle as people are seldom
thinking in formal terms [SM99a]. According to them, formalisms impose the
following fundamental problems:
• Cognitive overhead, as the users must learn the formal language. Even

though practitioners use formal languages in electrical engineering and com-
puter science, they “seldom use more generic formal languages, such as pro-
duction rules or frames, for non-computational tasks” [SM99a; p.340], be-
cause “users often must engage in activities that might not ordinarily be part
of their tasks: breaking information into chunks, characterizing content with
a name or keywords, categorizing information, or specifying how pieces of
information are related” [SM99a; p.334].

• Tacit knowledge [Po66] as discussed above.
• Formality enforces premature structure where people must commit them-

selves to structuring information often before they often know their later in-
formation need. This leads later to problems in again retrieving the now real-
ly needed information [SM99a; p.343].

164 Haynes provides strong indications that design significantly involves tacit knowledge:

“Analysis of full-text meeting transcripts suggests that design options sometimes
emerge almost mystically from design discussions. It was sometimes difficult to see
the chain of reasoning that led to a particular design option being proposed and then
being either accepted or rejected” [Ha06b; p.62].

II.9 Rationale Management in Systems and Software Engineering 183

• Further, people simply “aren't always able to chunk intertwined ideas”
[SM99a; p.338] and “people seldom agree on how information can be classi-
fied and related in this general scheme” [SM99a; p.338].

• The premature and prescriptive natures of formal approaches also increase
probabilities for group-think [Ja72] effects (see chapter before).

• “There is always information that falls between the cracks, no matter how
well thought out the formal representation is” [SM99a; p.338].

• Finally, different people often have different tasks. Formal structures must
then represent all peoples' different views. In these cases, “the prospect of
negotiating how information is encoded in a fixed representation is at best
difficult” [SM99a; p.342]165.
However, in order to have any computer support, information must some-

how be formalized; Shipman and Marshall also show ways how to ameliorate the
problems imposed by formalisms [SM99a; p.344ff]:
• Any design for a system supporting intellectual knowledge work must identi-

fy the central tasks and their essentials needs for formalization.
• The cost and benefit trade-offs must be analyzed for any feature requiring

further formalization.
• Incremental formalization strategies can rely on gradual formalization and

restructuring of information, thus alleviating capture of information by de-
laying the overhead imposed by formal structuring to later times or other us-
ers. Nevertheless, incremental formalization techniques are only effective if
they do not overwhelm the users with too many requests to infer structure
[SM99a; p.345], (cf. also [SM99b], [HA06a; p.76]).

• Otherwise, more automated approaches should be considered. In these cases,
structure must be automatically inferred through recognition heuristics for

165 “An analogy can be drawn between collaborative formalization and writing a legal

document for multiple parties who have different goals. The best one can hope for in
either case is a result sufficiently vague that it can be interpreted in an acceptable way
to all the participants; ambiguity and imprecision are used in a productive way”
[SM99; p.342].

184 II. Rationale Management and Traceability in Detailed Discussion

“textual, spatial166, temporal, or other patterns” [SM99a; p.345]. As it tends
to more falsely inferred structures, automatically inferred information should
not be treated alike user inferred structure or at least be marked differently.

• Acceptance of formalisms can also be improved by training users to “learn
and understand the expected use of the formalisms through training or
through facilitation” [SM99a; p.346]. In some cases, also the developers of
the formalisms may intervene temporarily to spark the learning process.
Summing up the difficulties described above, leads Schneider to formulate

what he calls the “rationale paradox” [Sch06; p.93]: “When most rationale is
created, chances to capture it are lowest” [Sch06; p.93].

The paradox describes the problem that rationale occurs when key decisions
are made. During such decision-making processes (e.g., meetings), the partici-
pants are very attentive. Thus, the rationale is considered important and 'evident'
when it is created, and nobody can really imagine how it ever may be forgotten;
but it will be forgotten, because decisions base on earlier decisions and new deci-
sions overlay the old rationale. Pressure for fast progresses in projects hinders
documentation as well as extensive rationale capture intrudes detrimental effects
in knowing-in-action design phases.

Due to all these problems, Schneider proposes the “Rationale as a By-
Product” [Sch06; p.94] paradigm. The paradigm consists of two goals [Sch06;
p.94]:
• “Capture rationale during specific tasks within software projects”.
• “Be as little intrusive as possible to the bearer of the rationale”.

As Beck [Be00b] could describe an approach by a list of interconnected
principles [Sch06; p.95], Schneider also defined a set of principles to reach both
goals described above [Sch06; p.95]:
1. “Focus on the project task in which rationale is surfacing”.
2. “Capture rationale during that task (not as a separate activity)”.
3. “Put as little extra burden as possible on the bearer of the rationale (but may-

be on other people)”.

166 An example of spatial inferred structure is provided by the VIKI system [MSC94] a

hypertext environment allowing the user to spatially arrange symbol representing tex-
tual parts. The system infers interconnections between the text parts according to their
spatial arrangement to each other. This means, the system derives an interconnection
between texts when the user has spatially arranged the texts nearby, and vice versa in-
fers that texts are not connected, or opposing when they are spatially arranged far
away from each other. In SW design activities a resembling grouping mechanism can
be observed sometimes. Thus, e.g., the three layer architectural pattern also operates
with spatial grouping in the form that items concerned with the topics persistence, data
model, and user interface are spatially grouped together to three layers.

II.9 Rationale Management in Systems and Software Engineering 185

4. “Focus on recording during the original activity, defer indexing, structuring
etc. to a follow-up activity carried out by others”.

5. “Use a computer for recording and for capturing additional task-specific in-
formation for structuring”.

6. “Analyze recordings, search for patterns”.
7. “Encourage, but do not insist on further rationale management”.

Principle 1 and 2 emphasize that rationale solutions should not be some-
thing stand-alone, but ask for rationale support being integrated into the really
performed design task167 without imposing significant intrusion (principle 3).
Effort for the required structuring and other tedious tasks must be deferred from
the rationale bearers towards the profiting rationale seekers (principle 4). Princi-
ples 5 and 6 demand for computer support and higher-level automation (if possi-
ble). Finally, principle 7 emphasizes that people cannot be forced but well en-
couraged, to record and use rationale.

In the author's view, Schneider's paradigm provides several good ideas on
how the rationale capture problem can be ameliorated in a way that rationale
approaches bring benefit for practice. Accordingly, R2A’s rationale extension to
design traceability developed by the author (cf. ch. III.19 to ch. III.21) tries to
incorporate Schneider's principles, as far as possible.

Last but not least, an also possible explanation for the rationale capture
problem could be that current rationale approaches just concentrate on collecting
the wrong information. As introduced in ch. II.9.3.2, some approaches indicate
that the design information to be captured may be more than the argumentation or
designer's reasoning. Dutoit et al. point out “There are enough dissenters from the
argumentative view of ...(rationale)... to leave room to doubt that we are captur-
ing the right information. Nevertheless, there is little evidence to date that differ-
ences in information recorded have made any difference to the success of
...(rationale)...capture in practice” [DMM+06a; p.22].

In this category also the phenomenon can be accounted that rationale may
also be communicated through omission [HA06a; p.81]. As an example, a project
manager could ask the design team whether somebody has experience with a
certain technology. In such a situation project members usually communicate
their inexperience by not responding. Similar situations occur when people stay
tacit disagreeing with a certain decision, but they do not want to appear confron-
tational.

At the end, it must also be mentioned that Burge et al. express that software
engineering approaches especially for safety-related applications are changing

167 Dutoit et al. emphasize that rationale approaches have been most successful if they

have been adapted to a specific activity, or specific goals [DMM+06a; p.18].

186 II. Rationale Management and Traceability in Detailed Discussion

toward favoring rationale capture. Through process standards such as SPICE or
CMMI, demands for rigorous definition, monitoring and adaption of the software
development process are induced demanding structured and reproducible deci-
sion processes. However, Burge et al. are not sure whether these changes are
enough to spark the final breakthrough for the rationale capture problem
[BCM+08; p.262-263].

II.9.4.3 Retrieval Limitations

Between initial rationale bearers and later rationale seekers different notions of
relevance may exist. According to Wilson [Wi73], relevance is determined by the
situational context and concerns of the information seeker independent from truth
[Wi73; p.462]. Thus, besides the temporal gap between the rationale bearers and
seekers, a situational gap of context and concerns may exist with detrimental
effects on the usefulness of recorded rationale [HA06a; p.83]. The ideas of
Gruber and Russel [GR96a] can also be seen as actively addressing the relevance
problem.

Besides relevance, retrieval imposes technological needs such as the need
for indexing, playing a decisive role. Efficient rationale retrieval techniques
might require a certain formalization of rationale information. As discussed in
ch. II.9.1.4, rationale formalization imposes significant intrusiveness and burden
onto the documenter. An alternative solution is the idea to shift the formalization
burden to the rationale beneficiaries [Gr96b], [Sch06], but this works only if the
beneficiaries experience the burden as not too strenuous. Otherwise, the whole
endeavor may be jeopardized [HA06a; p.84]. Further, another alternative is to use
the artifact structure as formal structure for rationale retrieval (see ch. II.9.3.2).
This is also what the decision models in this thesis (see ch. III.20 and ch. III.21)
use.

II.9.4.4 Usage Limitations

Following Rittel's assumption about wickedness of problems, most design prob-
lems have a certain uniqueness. Thus, rationale about a problem has only limited
value for other problems. It can be helpful to evaluate how rationale is connected
with a problem in order to support solving future problems, but design is often
highly interrelated. Thus, rationale can weave connections between several prob-
lems that can even build an area of conflict. As a further type of connection, tak-
en decisions impose new consequences on other problems, where recorded ra-

II.9 Rationale Management in Systems and Software Engineering 187

tionale about the decision may also include a description of these consequences,
thus also being rationale for the other problems. Accordingly, Horner and At-
wood emphasize that designers must consider the “holistic affects” of problems,
their rationale and solutions [HA06a; p.84]. Due to the complex nature of design,
measuring effectiveness of rationale approaches proves to be extremely difficult.
One problem faced here is that recording rationale and its further usage may
involve a significant temporal gap. Thus, designers recording or documenting
rationale may not immediately be able to know what information will later prove
to be useful and what not [HA06a; p.85].

II.9.4.5 Synopsis of Rationale Limitations Concerning
Alternative Design Theories

Table 9.2 Relation to design theories and rationale in design according to [HA06a; p.77]

Design Theory Support Barriers

Simon – Sym-
bolic
information
processing
(ch. I.6.2.1)

Rationale can help to focus
cognitive energy and pro-
vides opportunities to view
the considerations during
design to reviewers or other
developers.

Additional information increases the
complexity of a design problem. Design-
ers may also be reluctant to capture ra-
tionale, because the decision may be
criticized in later phases by other persons
having more information at hand than the
initial designers. These persons may
analyze the taken decisions with the new
information and would probably come to
a different view on the problem.

Rittel – Wicked
problems
(ch. I.6.2.2)

Rationale supports struct-
ured discussions and inte-
grates different peoples'
perspectives.

The wicked nature of design problems
limits the possibilities of using the ra-
tionale at a different time or a different
project.

Schön – Situ-
ated action
(ch. I.6.2.3)

Rationale can support
designers in reflecting on
decisions during the reflec-
tion-in-action phase and
show the decision influ-
ences on later encountered
problems. Furthermore,
incremental formalization

Using rationale as basis for identifying
solutions could result in less reflection in
the design process through distracting
cognitive resources away from solution
finding. Intrusive rationale capture me-
thods (cf. ch. II.9.1.4) can influence the
designers' reflection capabilities in disad-
vantageous ways or even hinder the de-

188 II. Rationale Management and Traceability in Detailed Discussion

could support later reflec-
tion-in-action and commu-
nication

signers in finding good solutions.

Alexander –
Patterns
(ch. I.6.2.4)

Rationale provides mecha-
nisms to understand the
problem context. Especially
the forces may be better
analyzed that help to find
the best fitting pattern.

Because of the rapid advances in software
design, few stable design patterns may
exist (see Simon's concept of stable in-
termediate forms).

In ch. I.6, the author has outlined a few fundamental design theoretic views on
what design and its processes are about. In the context of design rationale, Horn-
er and Atwood [HA06a; p.77] have collected an overview of the potential support
and barriers of rationale management enlisted in table 9.2.

II.9.5 The Role of Rationale in System and Software
Design

The ultimate goal in documenting architectural decisions is to alleviate a major problem in the

field: architectural knowledge vaporization.
[HAZ07; p.39]

Design can be seen “as a sequence of decisions” [BCN+06; p.258] and therefore
the importance of decisions in design has been widely acknowledged. In the view
of Booch [Bo94; p.63, p.167], design decisions get apparent through the model-
ing language used. However, newer research rather sees that decisions cannot be
explicitly derived from the design models and merely exists as tacit knowledge
[HAZ07; p.39].

Besides attempts to recover assumptions and rationale from design artifacts
[RLV06], capturing decisions' rationale in the system and SW architecture has
received high attention in recent research (cf. [CBB+03], [BCK03], [PBG04],
[Ha06], [BCN+06], [HAZ07], [TA05], [TJH07], [AKL+07a], [AKL+07b], [LK-
08], [ALK09]), because a growing recognition exists that decisions may be “the
fundamental construct in engineering design” [WC01; p.1], [Kr04; p.54]. Archi-
tectural decisions are made early and have a far reaching scope of influence
[BCN+06; p.256]. Additionally, “much of design work is done through evolu-
tionary redesign, thus long-term collaboration is essential” [DMM+06a; p.86],
because the implications of decisions usually cannot be overseen in their entirety

II.9 Rationale Management in Systems and Software Engineering 189

during taking the decision, which make later adaptions and reassessments of the
decision necessary [BCN+06; p.258].

Due to these facts, also process standards such as SPICE (ch. I.7)
acknowledge that important decisions about system and SW architecture must be
carefully explored and documented [HDH+06; p.101]. In CMMI, even an explicit
Decision Analysis and Resolution (DAR) process area has been defined
[BCM+08; p.262] “to evaluate 'high risk' decisions” [BCM+08; p.263].

A main purpose of system and SW architectures is to find handling strategies
for NFRs [BCK03; p.72f], [PBG04; p.72], (see also ch. I.5.1). Correspondingly,
Chung et al. [CNY+00] developed a NFR framework with an approach where
NFRs explicitly drive the software design process that creates the design and its
rationale. Tradeoffs and synergies of NFRs can be modeled in a graph. The graph
can then be used to qualitatively propagate the impact of these decisions into
design models (see also [BB06; p.275]).

In architectural practice, decision documentation is considered in the context
of balancing concurring and conflicting factors through making compromises,
where decisions about the foundation of technical solutions must be taken in
insecure situations due to lacking fundamental information [HS06; p.53]. Ap-
proaches and standards (e.g., IEEE 1471 [IEEE1471]) demand to include these
decisions in architecture documentation. As dedicated practice-oriented tooling is
usually missing [BCN+06; p.265], several available approaches provide tem-
plates for structured decision documentation using text authoring or spreadsheet
applications ([BCK03], [BCN+06], [Bo00b], [CBB+03], [HNS00], [HS06],
[PBG04], [TA05]).

Posch et al. [PBG04; p.79] have analyzed the views of Bass, Clements et al.
[CBB+03], [BCK03], Bosch [Bo00b] and Hofmeister et al. [HNS00]. As a con-
sequence, they have derived an approach for systematically assessing influence
factors168 for an architecture beforehand in order to identify and document the
most important influence factors and the strategies how to address them in con-
cert with the other influence factors. Ch. III.20.4 shows how an adaption of this
influence factors assessment can be integrated in the R2A tool approach proposed
here (part III) in order to improve traceability, derivation of consequences, im-
pact analysis, and consistent change implementation.

In [BCN+06], Bass and Clements propose to extend their decision documen-
tation template by a causal graph allowing decisions to be ordered in a temporal,

168 NFRs as addressed by Chung et al. [CNY+00] are here considered as one important

type of influence factor, but also other influence factors exist, such as effects on stake-
holders, available resources, costs, strategic considerations beyond the individual pro-
ject etc..

190 II. Rationale Management and Traceability in Detailed Discussion

causal dimension. Decisions are displayed as nodes linked together according to
their causal dependencies. Lee and Kruchten [LK08] show different forms of
possible decision visualization. Besides the temporal, causal dimension they call
Decision Chronology Visualization, they identified the following possible views:
• Tabular listing enlists decisions in a table to provide a better overview of the

decisions.
• Decision structure visualization shows the structure of a decision to increase

the decision's understanding.
• Decision impact visualization makes the influences of decisions on design

transparent.
Ch. III.20.4 also shows that most of these views are fulfilled by the tool de-

scribed in part III.
In [Eb08; p.332], Ebert argues that software development follows the pareto

principle [Pa1897]. In his conclusion, 20% of the implemented functionality
cause high usage value, high potentials for failures and resource consumption. As
a consequence, he recommends marking parts of the application in order to indi-
cate high complexity or shape problematic constellations as early as possible (he
recommends to start within the analysis phase) to ease further planning. Such a
marking often has influence on very important decisions (in design such aspects
are often important) and thus provide important rationale. A similar case is the
proposal of Knethen to include an attribute characterizing the change probability
[Kn01b; p.40].

Tang et al. [TJH07] show how UML-based design can be extended via an
UML-profile for capturing decisions. Decision elements (class elements having
the stereotype <<decision>>) can be linked to any other element present in a
UML model. This offers the opportunity that any UML environment offering
support for UML-profiles can be easily extended with a decision documentation
mechanism, where decision information can be integrated seamlessly into a UML
design model. On the other side, decisions modeled in usual design diagrams rise
complexity of the diagrams, causing clutter. If the decisions are modeled in extra
diagrams (as different views), they raise the amount of present diagrams in the
modeling repository, thus rising complexity and clutter in the repository. Another
possibility is not to model the decisions, but to use the UML's meta-model as
structure only. In this case, other mechanisms must be found how decision infor-
mation is linked to related elements and how they are visualized. Thus, the author
prefers to avoid raising complexity of modeling languages by including decision
models but rather prefers to provide augmented information that can be faded out
on demand as it is provided by the tool in part III.

Jansen and Bosch [JB05] see decisions mainly as a means to select a solu-
tion from several possible solutions and to deal with the tradeoffs of a solution.

II.9 Rationale Management in Systems and Software Engineering 191

Once a decision is taken, its results are the major driver for architectural modifi-
cations.

To capture architectural decision information, they propose a conceptual
decision model containing the following elements:
• Design rules describe general rules on how parts of a design (e.g., design

elements) must be designed in order to realize a sustainable solution. Any
potential solution can have one or several design rules.

• Design constraints “define limitations or constraints on the further design of
one or more architectural entities” [JB05; p.4]. These constraints must be
obeyed in order to ensure that the potential solution can solve its addressed
problem.

• Pros describe the benefit(s) and impacts on requirements that can be ex-
pected if the solution is employed.

• Cons describe the drawbacks on the solution, because the negative effects are
equally important as positive.

• Consequences elements describe the expected consequences of the decision's
solution on the architecture and thus provide extra rationale behind the pros
and cons of the selected solution.
For translating the conceptual decision model into practice, Jansen and

Bosch propose an architecture modeling environment called “Archium”, where
the conceptual decision model is integrated into a meta-model for architecture
modeling. The environment can contain a log (stack) of possible solutions, where
the individual decisions can be mapped on to deal with the tradeoffs. The concep-
tual decision model of Jansen and Bosch should be fully compatible to the deci-
sion model introduced in ch. III.20.

Pointing in a similar direction to [JB05], Kruchten [Kr04] describes a gen-
eral ontology of architectural design decisions. He identifies three kinds of deci-
sions, eight fundamental properties a decision can be characterized by, eleven
different relationship types a decision can have to architecture and how decisions
may have connections to other artifacts. The question whether the approach de-
scribed here matches with this general ontology is left open in this research as
well as discussions about how rationale and decision approaches are generally
connected to a general view on architectural knowledge as, e.g., discussed by
Avgeriou et al. [AKL+07a], [AKL+07b], [ALK09].

Another research field also concerned about decision making in design pro-
cesses are decision trees169 known from operations research. Their focus lies not
directly on documenting a decision process but on providing support for optimiz-

169 At http://www.smartdxl.com/content/?page_id=144 (Access 2009/10), an implementa-

tion of decision tree modeling in IBM Rational DOORS DXL is provided.

192 II. Rationale Management and Traceability in Detailed Discussion

ing the decision outcome. Different decision alternatives with their consequences
can be modeled in a tree in combination with probabilities about the achievable
results. A problem, however, is that decision trees require comprehensive
knowledge about the concrete decision situation (e.g., all consequences and their
probabilities), limiting their use to rather very tame problems. Noppen et al.
[NBA08] acknowledge this problem and introduce a decision process for design-
er situations with imperfect decision situations by combining requirements and
design issues with a decision tree model, allowing fuzzy probabilistic estimations
of probabilities. Thus, Noppen et al. hope to support decision optimization. In
this way, decision trees could also be chosen as a schema or an additional means
for documenting rationale.

As this chapter has shown, manifold approaches for supporting rationale
documentation in systems and software design exist. The tool approach intro-
duced in part III uses an approach to integrate rationale and requirement tracea-
bility approaches together in order to improve design processes in system and
software design (cf. ch. III.19, III.20 and III.21).

II.10 Requirements Traceability

Despite the importance of traceability, there is surprisingly little written about it.
[KS98]

After ch. I.5.7 has given a quick overview of traceability to support an initial
understanding for describing the other chapters of part I, this chapter will now go
into detail.

II.10.1 Overview

Rupp describes the meaning of traceability as the “comprehensible documenta-
tion of requirements, decisions and their interdependencies to all produced in-
formation (resp. artifacts) from project start to project end” [RS02; p.407 (*)].
Pinheiro points out two further considerable points about traceability [Pi04;
p.92]:
• Traceability means “the ability to capture the traces we want to follow”.
• “Traces should be viewed as naturally produced occurrences”.

II.10 Requirements Traceability 193

Point one means that most likely not all traces of requirements may be cap-
tured and (resp. or) followed due to the high number of possible traces. There-
fore, at a certain point a decision must be taken which traces are followed.

The idea about the second point indicates that the traces are not artificially
made up by something or someone but “are naturally produced as a result of
activities, actions, decisions and events happening during software development”
[Pi00; p.2]. This idea is near to the view of Lindvall who sees traceability as the
means to bridge consistency gaps (see ch. II.10.2).

This leads to the definition provided by Pinheiro [Pi04; p.93]: “Require-
ments traceability refers to the ability to define, capture, and follow the traces left
by requirements on other elements of the software development environment and
the traces left by those elements on requirements”.

Following this definition, any tracing model contains three major aspects [Pi00;
p.3f]:
• Trace definition: As not all possible traces can be maintained, the traces to

maintain should be defined beforehand.
• Trace production: Defined traces must be recorded somehow. As the follow-

ing ch. II.10.2 shows, traces are a means to cross consistency gaps between
artifacts. Correspondingly, most traces cannot be recorded automatically and
must therefore be produced manually. Trace production is especially essen-
tial to consider as it may be intrusive to the other development activities (cf.
II.10.5). In the author's opinion, also maintenance of already captured traces
is equally essential as otherwise artifacts and involved traces continuously
degrade.

• Trace extraction: In order to be useful, once recorded traces must be extract-
ed. Trace extraction depends on trace definition and trace production in the
sense that only once produced traces can be extracted.
Pinheiro also points out that “the software development environment in-

volves not only the technical, but also the social aspects of software develop-
ment” as “people, policies, decisions, and even less tangible things like goals and
concepts” [Pi04; p.93].

194 II. Rationale Management and Traceability in Detailed Discussion

II.10.2 Traceability and Consistency Gaps between
Artifacts

Between artifacts (or respectively models) of different development processes
emerging from structural interruptions170 – semantic gaps ([Li94], [Kn01b; p.45],
[Eb05; p.138f]) – endanger a project’s consistency and thus the common under-
standing of its stakeholders. Traceability relations between and within artifacts
help to diminish occurring semantic gaps171. In development projects without
traceability, these gaps are mentally bridged by the minds of the developers lead-
ing to the known problems when developers leave projects or new team members
are added. Recording and retrieving traceability information shall support the
developers in mentally bridging those gaps172. As an example for this mental
help, the traceability heuristic exists that each requirement must have at least one
reference to the design (and resp. or code), otherwise the requirement is regarded
as 'not considered' in the design.

Correspondingly, Finkelstein [Fi91] argues here that the traceability prob-
lems arise from the informality of most system development processes. Accord-
ing to Lindvall [Li94; p.15], applying formal methods can also help to diminish
the semantic gaps to an extent making traceability irrelevant. In the best case, the
usage of formal specification languages with automated code generation – also
called model driven development – would allow different models of different
abstraction levels and different views to be seamlessly connected to each other
[Li94; p.15] (also cf. [Kn01b; p.45]). On the other hand, Sommerville emphasizes
that formal methods are seldom used in practice, because the entry barriers are
high [So07]. As ch. II.9.4.2 shows in reference to Shipman and Marshall
[SM99a], the usage of formal methods can also involve fundamental drawbacks.
As an example, formal approaches are accompanied by the dangers that informal

170 Examples for these inconsistencies are different levels of abstraction or different view-

points within an abstraction.
171 As discussed in ch. II.10.6, besides dedicated traceability relationships several other

kinds of relationships (e.g., „depend on“, part of“, „refine“) exist in a design being
usually modeled in a design model. Several traceability methods also include these re-
lationships for impact analysis (ch. II.10.3), but can also lead to unwanted overestima-
tion of the impact (so called requirements fan-out effect [Al03]; cf. ch.II.10.6.21 for a
detailed description).

172 Traceability “focuses on how to trace between models to understand the system struc-
ture and to understand the implications of a certain requirement” [Li94; p.20].

II.10 Requirements Traceability 195

information is reduced173 to fit a formal structure falsifying the information and
spoiling the traceability needs [Pi04; p.101].

Pinheiro further points out that “informality is needed to deal with the fun-
damentally unstructured way in which information is gathered and used. …
Therefore, what should be made traceable is in many cases inherently informal,
e.g., natural language statements, interview's transcripts, and images” [Pi04;
p.101] (also cf. [Go96], [Pi00]). On the other hand, a certain formality is needed,
when tracing approaches shall be automated [Pi04; p.100].

Discussing traceability experiences in development practice, Ebert [Eb05;
p.138 f] emphasizes that the transitions from requirements and analysis models
(AM) to solutions involve a structural break, which is especially problematic.
Requirements and AMs (ch. I.5.4) can have a completely different character than
the structure of the design solutions due to different languages used. A possibility
to avoid the gap is using languages that can integrate all processes from require-
ments specification to analysis, design and implementation in one language. Usu-
ally, these languages must support strong restrictions on its problem focus to
further use the generated models as far reaching and consistent as possible. As a
consequence, Ebert here refers to domain specific languages as a solution to this
problem [Eb05; p.139]. Other similar but less ambitious attempts can be seen in
UML, where analysis and design modeling are supported through a uniform
language and in such a way minimize the semantic gaps between both worlds174
[Kn01b; p.45]. With the new SysML standard [SYSML], UML is extended to
promote a unified language for systems analysis, systems design, software analy-
sis and design.

173 A good example is provided by [Ja08; p.6]: “In a non-formal world there are several

obstacles to reliability in formal reasoning. To make our reasoning useful we must
begin by establishing a correspondence between the formal terms we intend to use and
the physical phenomena they denote. Here there is an immediate difficulty. In a system
to control road traffic, we may decide to reason about pedestrians and their use of the
controlled crossings provided for them: for example, to base some design decisions on
the maximum and minimum time taken to cross the road. But, what, exactly is a 'pe-
destrian'? A child in a pedal car? A cyclist pushing a bicycle with an attached trailer? A
user of a motorized invalid carriage? Whatever alphabet of formal terms – for exam-
ple, of predicates, events, and entities – we choose, there will be some hard cases in
the problem world for which we cannot easily decide whether or not they are properly
denoted by a particular formal term”.

174 An exactly opposite opinion is expressed by Hatley et al. [HHP03; p.252]. In their
opinion, object-oriented methods (such as UML) have the weakness that they indissol-
ubly mix up requirements and design.

196 II. Rationale Management and Traceability in Detailed Discussion

UML can also be used for model-driven development. “Model-driven design
holds the promise of improving application development significantly by captur-
ing design steps in explicit model transformations” [AIE07]. Through this way,
model transformations can lead to the generation of source code and thus con-
sistency can reach to source code. In the context of embedded systems, examples
of formal specification languages can be seen in [PS05; p.120]. However, most
up to date existing languages are very limited, need a very proper application and
often concentrate on partial aspects [Sa05; p.276ff]. In the context of the automo-
tive domain, not UML-tools, but the tools Matlab Simulink resp. Stateflow and
ETAS ASCET are the most heavily used tools concerning model driven devel-
opment with automated code generation (also cf. ch. I.6.6.1), but these techniques
are fully comparable in the context of the topic addressed here.

Additionally, the usage of model driven development imposes a new prob-
lem concerning consistency and traceability [AIE07]: In most cases, these trans-
formations do not only depend on the model to be transformed, but the transfor-
mation process is steered by parameter settings and transformation procedures.
This means, requirements can also be implemented by setting parameters or
choosing specific model transformation procedures over other procedures. Ergo,
consistency not only depends on the models but also by these parameter choices.
In these cases these elements should also underlie traceability needs [AIE07].

Additionally, Wieringa [Wi98] shows that design principles such as hierar-
chical decomposition are used according to different criteria at different levels of
design. Wieringa [Wi98; p.6] concludes that “a seamless transition between dif-
ferent levels, as is claimed by many object-oriented methodologists” should not
be expected, and because isomorphic design structures cannot be expected at the
different levels, explicit manual links to maintain traceability across levels are
necessary.

Consequently, formal methods without semantic gaps between processes are
not very likely (yet) to replace today's often coarse, informal and incomplete
processes and artifacts. Therefore, traceability is a means to cope with problems
arising from the imperfect world of development and a traceability to design
solution must support a solution for bridging these inhomogeneous processes and
artifacts.

In the view of Chang and Lu [CL09], the gap problem exists, because cur-
rent design approaches only consider the abstraction hierarchies dimension as
criterion for decomposition. In this way, functional dependencies (e.g., between
two requirements) are created by accident. Chang and Lu [CL09] suggest to use a
new design paradigm developed by Suh [Su01] called „axiomatic design“. In this
paradigm, a domain dimension is introduced as second dimension. The paradigm
origins from physical engineering and Chang and Lu [CL09] try to transfer it to

II.10 Requirements Traceability 197

SE design theory. In their case study, Chang and Lu come to the conclusion that
through axiomatic design “the reasoning of each step of the design process and
the mapping through the requirements, abstractions, realizations and technologi-
cal choices are clearly described” [CL09; p.17]. Currently, the described axiomat-
ic design paradigm seems to be at an early stage of research, at which its real
value for practice has not yet come clear. Even though the examples provided in
[CL09] indicate that axiomatic design may have some strength, the author pre-
serves certain doubts that axiomatic design can close the semantic gap.

At the end, manual traceability and designers' minds may prove as the only
really dependable means for bridging the gap.

II.10.3 Impact Analysis and Traceability

The ability to perform correct impact analysis of changes is often referred to as
the most important motivation for establishing requirements traceability. Tradi-
tionally, as Jönsson and Lindvall point out [JL05], the idea about requirements
traceability originates from the impact analysis research domain being one of
several techniques to support impact analysis. “Impact analysis (IA) is the activi-
ty of identifying what to modify to accomplish a change, or of identifying the
potential consequences of a change” [AB93; p.292].

Research on IA traditionally origins175 from research about software mainte-
nance. Thus, most research is only loosely connected with software development
itself. Over time, requirements traceability has become an issue of REM during
normal development. Consequently, Jönsson and Lindvall argue that, as require-
ments traceability more and more became an issue of requirement engineering
and thus of the development processes itself, IA should be seen analogously.

However, the topic IA often is only mentioned as one way to use traceability
information. Interpreting Jönsson and Lindvall, the author believes that two his-
torically based misconceptions may exist:
• IAs have already been performed by developers long time before the name

existed, since “the need ... to determine what to change in order to implement
requirement changes has always been present” [JL05; p.122]. However, for
the original developers knowing their code, assessing the code change is less
difficult than for others. Software maintenance is often performed by other
often less skilled and experienced people than the original developers
[Kn01b; p.2]. Accordingly, IAs were seen as a more urgent issue for software
maintenance, neglecting its usefulness and informal (unconscious) usage in

175 [Ha72] is often referred to as the first paper on impact analysis [JL05; p.122-123].

198 II. Rationale Management and Traceability in Detailed Discussion

normal development processes. As the systems to develop grow, the needed
documentation grows and the rates of changes grow, also the need for con-
scious IA support grows.

• Requirements traceability may have originated as a sub part strategy of IA.
However, the requirements traceability concept proved its usefulness in
scopes beyond IA (see ch. I.5.7.3). Thus, the independence is reasonable.
However, the topic 'gains versus costs' of traceability cannot be discussed
without considering the needs of IAs. The author often has the feeling that
traceability is established for the sake of conforming to the demands of some
process standard, but the recorded traceability information is seldom really
considered when practitioners think about changes. They rather prefer their
informal methods. Correspondingly, the problem of how to get real gains out
of traceability should be sharply considered. In this context, effective IA is a
central issue.
In the following the author will outline the IA concept. It shall furthermore

be mentioned that the author does not see traceability based IA as a core problem.
Valuable IAs depend on the correctness and usefulness of the analyzed infor-
mation. The value of traceability based IA depends on the accurateness and a
sufficient level of detail of the traceability information. However, capturing this
high quality traceability information and maintaining its high quality in an effi-
cient way, may be the more important problem (see ch. II.10.5). Otherwise, val-
ues gained by traceability may not outweigh the costs.
Two types of IAs are distinguished ([BA96], [Kn01b; p.3], [JL05]):
1. Dependency analysis: extracts detailed dependency relations between pro-

gram entities from source code (e.g., the usage of a variable).
2. Traceability analysis: analyzes relationships that “have been identified dur-

ing development among all types of” artifacts [JL05; p.119].
This distinction seems to be a bit artificial. Since dependency analysis can

also be seen as a special subset of traceability analysis. However, dependency
analysis is probably the most employed type of traceability analysis since it is
possibly used by any programmer who needs to employ a change.

Jönsson and Lindvall argue that the difference consists in the level of detail,
and in fact Knethen provides in [Kn01b; p.42-43] a more evident distinction
oriented on the level of abstraction (a detailed description of this can be found in
chapter II.10.4.2.2):
• Dependency analysis of source code,
• Design description techniques,
• Requirements traceability tools;

In the author’s opinion, these kinds of distinctions are some kind of histori-
cal due to formerly independent areas of research. Currently, these areas and their

II.10 Requirements Traceability 199

understanding grow together to build a more complete view (see ch. I.7), where
all these dependencies are seen as a subset of traceability.

In the experience of Jönsson and Lindvall [JL05; p.118], IA “is an integral
part of every phase in software development”. In some sense, IA might have been
performed long time before the term was known and it may have been performed
in a very uncontrolled and inefficient way [JL05; p.122], since the need for SW
practitioners to determine the effects of a change may have been present as long
as the need for change has existed.

Bohner and Arnold [BA96] further describe (see also [JL05; p.119]) differ-
ent sets of impact (in the following called impact sets (IS)):
• The system set is the set of all items in the project. This set is the super set of

all other sets.
• The starting impact set (SIS): represents the item initially considered as af-

fected. This is the input for an IA, whereat the SIS is the starting point to
identify further connected items also impacted.

• The estimated impact set (EIS) represents the items estimated to be affected
when the IA is finished.

• The actual impact set (AIS) consists of the items really affected once the
change has been implemented. “In the best case scenario, EIS and AIS are
exactly the same, meaning the estimation was perfect” ([JL05; p.119]).
As described in ch. I.7.2.7, the IA concept is part of a change management

process176 and required by process standards such as SPICE. Knethen [Kn01b;
p.36] describes a generic IA process orienting on the process description of Boh-
ner and Arnold [BA96]. IA is important in two phases of the change management
process:
• When a change is requested, the IA helps to identify all effects as a support

for making a decision whether to apply or not to apply a change. In this
phase the changes are predicted as EIS.

• Once the decision has been taken to apply the change, the IA results can be
used to orient oneself on them for consistent implementation of the change.
The actual change determines AIS. The AIS can then be used to compare the
EIS in order to improve later impact estimation. Knethen [Kn01b; p.53-55]
indicates how impact effectiveness, completeness, correctness, and efficien-
cy can be assessed.
An IA should address the issues required effort, time, money and available

resources [JL05; p.122]. Leffingwell and Widrig enlist the following aspects that
must be especially considered in a change assessment [LW99; p.379]:

176 Schienmann [Sch02; p.111-113] also provides a good description for a change man-

agement process.

200 II. Rationale Management and Traceability in Detailed Discussion

• “The impact of the change on the cost and functionality of the system”,
• Impact on external stakeholders not well represented in the project (e.g.,

other project contractors, component suppliers etc.),
• The potentials to destabilize the system;

Besides the impact sets, two other kinds of information can help to predict a
change's impact [JL05; p.119]:
• The dependencies between affected items;
• Knowledge about the propagation of the changes between the affected items;

The first point clearly is an issue of traceability, the second is “often ex-
pressed in terms of rules or algorithms” [JL05; p.120]. If the second point is
neglected, the – what Versteegen et al. [VSH01; p.83]call – dominoes effect can
occur: At first, a requested change seemed to be rather harmless, but during im-
plementation new effects on other project parts are incessantly identified leading
to design erosion and instabilities of the developed system.

Changes are usually distinguished by primary and secondary change [JL05;
p.120]. Primary change also called direct impact refers to the items (artifacts)
directly identified by the change impact assessment. Secondary change also
called indirect impact expresses in two effects [JL05; p.120]:
1. “Side effects are unintended behavior resulting from the modifications need-

ed to implement the change. Side effects affect the stability and function of
the system and must be avoided” [JL05; p.120].

2. Ripple effects are effects occurring when small changes are employed to a
system, imposing affects to many other parts of the system [AB93; p.292].
“Ripple effects cannot be avoided, since they are the consequence of the sys-
tem's structure and implementation. They must, however, be identified and
accounted for when the change is implemented”[JL05; p.120]. If ripple ef-
fects are not effectively addressed, the dominoes effect mentioned above
[VSH01; p.83] can be the consequence.

To identify possible impacts, several strategies for IAs exist [JL05; p.124-130]:
• Automatable strategies or techniques “usually rely on algorithmic methods

to identify change propagation and indirect impacts” [JL05; p.125]. Howev-
er, the prerequisite of any automated technique are highly structured (e.g.,
formal specifications [JL05; p.125]. The following possible strategies exist:
• Traceability, as discussed in this chapter.
• Other dependency analysis techniques such as extracting dependencies

from source code (see [Kn01b; p.40] for an overview) or design models
(e.g., [BLO+06]).

• Program slicing (e.g., [We79], [We84], [GL91]) divides the source code
in the decomposition slice containing the change's location, and a com-
plementary slice. At first, the decomposition slice's scope is as narrow as

II.10 Requirements Traceability 201

possible. Then, when further dependencies are identified, the scope of
the decomposition slice is widened. Programmers use slicing implicitly
during debugging [We82]. Program slicing can orient itself on analyzing
static code information (so called static program slicing) or also try to
find out dynamic relationships within code (so called dynamic program
slicing [KR98]). Between those two extremes also hybrid methods are
possible as conditioned slicing [GB08]. Also methods for architectural
slicing exist [Zh98].

• Manual strategies involve consulting available project documentation, or
interviewing knowledgeable developers. Burge et al. [BCM+08; p.120f]
show how information collected through RatMan approaches can be con-
nected to improve IAs.
“The complexity of the change management process makes it necessary to

use some sort of tool support” [JL05; p.137]. According to Jäälinoja's opinion,
IAs in practice are typically performed manually due to weak tool support [Ja04;
p.37]. Automating IA is typically difficult, “because it is mainly based on human
experience” [JL05; p.120] and “human analysis is still required to interpret the
nature of the impact and assess its significance” [Kn01b; p.53].

Wiegers [Wi05; p.322-323] emphasizes that IA quality can be significantly
improved by using checklists and defined procedures to discover possible impli-
cations. The IA results must be typically reported from a developer to a CCB. A
standard reporting template can ensure that the CCB receives and easily recog-
nizes all needed information to make a decision [Ja04; p.37].

II.10.4 Core Dimensions for Characterization

Knethen characterizes [Kn01b; p.37] (also cf. [PKD+03]) traceability approaches
by four core dimensions:
• The purpose,
• The conceptual trace model (or what Ramesh and Jarke call traceability refer-

ence model),
• The process,
• Used tools;

The author also sees these dimensions as a valuable structure for ordering
approaches. Therefore, the following chapter will discuss these dimensions ori-
enting itself on Knethen with additional information from other sources. Since
the main interest of this thesis lies on traceability from requirements to design
artifacts, this category will be emphasized.

202 II. Rationale Management and Traceability in Detailed Discussion

II.10.4.1 Purpose

Different traceability approaches may pursue different purposes. In projects,
different stakeholders have to fulfill different needs and tasks. Accordingly, the
different stakeholders may have their “own view on traceability” [Kn01b; p.37].
Correspondingly, the conceptual trace model will be highly influenced by the
purpose.

Knethen [Kn01b; p.38-39] extracted from literature a variety of different
stakeholders and their main purposes:
• Customers want to ensure that all stated requirements are adequately ful-

filled, the project duties are done and changes can be made transparent.
• Project planners mainly need to perform IAs to adapt their plans to changes.
• Project managers want to control project progress. Traceability information

can be used to match requirements to use cases or design modules often
forming the basis for staffing. Traceability to tests can provide information
on which requirements are currently fulfilled (tests have passed) and which
not.

• Requirements engineers want to ensure correctness and consistency of the
requirements. Traceability to the requirements origin helps to consider all
aspects involved in a later requirement change.

• Designers want to understand interdependencies between requirements,
between requirements and design and between design elements. Additionally,
they are interested in IAs for implementing changes in their designs

• Verifiers want to ensure all requirements to be allocated both to design, resp.
code, and to verification procedures. This shall also prevent over-
engineering, i.e., unneeded (unspecified) features.

• Validators want to establish testing procedures proving that the system ful-
fills all stated requirements. Correspondingly, traceability between require-
ments and their developed test cases indicating full test coverage of the re-
quirements is their main concern.

• Maintainers want to use traceability for assessing the impacts of new chang-
es to perform.
In the author's eyes, Knethen has forgotten to mention the following other

important stakeholders, as they are not necessarily the same persons as the de-
signers:
• Implementers or coders are interested in the requirements that must be real-

ized by the components they are assigned to for implementation.
Any purpose, however, is constrained by a fundamental rule [SWG+08;

p.217 (*)]: “Traceability is only of use if its traces are up to date and correct. If

II.10 Requirements Traceability 203

developers have no trust in the correctness of the traces, they will not use the
gathered information. ... On the other hand wrong or patchy traces lead to wrong
results in IAs or to gaps in the test coverage”.

Table 10.1 Prioritization of stakeholders and usage purposes concerning traceability
between requirement and design artifacts

Priority Stakeholder Rationale

High Designers,
Implementers,
Maintainers

Will directly work with the requirement and design
artifacts.
As they will also be directly engaged in establishing
and maintaining the traceability information, they
will have concerns about effort and usability of the
approach.

Medium Requirement
Engineers

Requirements should be stated independently from
the solutions. However, as ch. I.5.5 indicates this is
not always viable in practice.

Medium,
Low

Project Plan-
ners

Might – as the customer, project managers and verifi-
ers – be more interested in statistical data. On the
other hand, (s)he might also adapt his (her) plans on
the allocation of requirements to design177.

Low Validators Testing activities should usually orient themselves on
the requirements not on the design (cf. [Ja04; p.32],
[Tv99; p.373]). However, when module testing is
concerned, the tester should know the exact require-
ments allocated to the module to perform well shaped
module tests for early error discovery before SW
integration.

Low Customers,
Project Man-
agers and
Verifiers

As they are concerned with overall management, they
are expected to be more interested in statistical meta
information (e.g.: “how many requirements of all
requirements are currently considered in the de-
sign?”).

Correspondingly, when a purpose is considered to be supported by a tracea-
bility approach, the following two criteria are inevitably to be considered as well
[SWG+08; p.217 (*)]:
• “The effort for establishing and maintaining traces must be – sustainably

feasible – by the project”.

177 According to Conway’s law from 1968: “The structure of an organization and its

architecture are isomorphic.” This means that architectures, organizations and systems
influence each other (see [St05; p.24], [Eb05; p.11]).

204 II. Rationale Management and Traceability in Detailed Discussion

• The establishment of traceability provides a concrete gain in the project.
As often encountered in REM, it seems that not all stakeholder needs can be

equally fulfilled. Therefore, a prioritization of the stakeholders and their derived
needs must be made. Table 10.1 shows a prioritization of the stakeholders and
purposes reflecting the author's appraisal of the traceability between requirements
and design problem. The R2A tool approach introduced in part III follows this
prioritization. The first column shows the priority values (as one of “High”, “Me-
dium”, “Low”). Column two enlists stakeholders as taken from the above listing.
The last column provides the rationale behind the prioritization decision.

II.10.4.2 Conceptual Trace Model

Pinheiro [Pi04; p.92] points out that too many possible traces exist. This under-
lines the importance to decide which traces should be documented and used. He
recommends using what he calls a traceability model. For trace definition, such a
traceability model should [Pi04; p.110]:
• Define few basic types,
• Allow specification of user-definable traces,
• Allow the use of richer representations of traceable objects such as hyperme-

dia objects (videos, recordings, and images (see nonfunctional traces, ch.
II.10.4.2.20);
A similar notion is expressed by Knethen ([Kn01b]), who uses the term con-

ceptual trace model (CTM) to describe the entities (items) and relationships that
shall be considered in a traceability approach to fulfill the corresponding stake-
holder needs.
Following Knethen [Kn01b: p.38] a CTM consists of two major elements:
• Entities,
• Relationships;

II.10.4.2.1 Entities

Entities describe the elements, i.e., artifacts taken into account of a CTM. As
Knethen [Kn01b; p.39] – similarly to Pinheiro [Pi04; p.92] – points out, the pur-
pose of the tracing approach mainly determines what entities are to be consid-
ered.
Entities can be described by three characteristics [Kn01b; p.39]:
• The kind of entities taken into account,

II.10 Requirements Traceability 205

• The granularity,
• The attributes;

a) Kinds of Entities
Concerning the kind of entities to be taken into account, only few hints are pro-
vided in literature. Lindvall [Li94; p.19] emphasizes that basically two kinds of
artifacts (work products) exist (also cf. [Kn01b; p.39]):
• Temporary work products,
• Permanent work products;

In contrast to permanent work products, temporary work products “are not
intended to be saved and maintained in the future” [Li94; p.19]. Lindvall recom-
mends including only permanent work products into the set of artifacts for which
traceability shall be maintained. Indeed, it is doubtful that temporary work prod-
ucts have a life-span long enough to make sense for traceability. However, the
author thinks that an exception of this obvious thought may be what is called
model transformations [KM05], [AIE07], where intermediate models can occur.
As an example, the UML provides mechanisms to automatically transform plat-
form independent models to platform specific models, which are the further basis
of code generation. Such intermediate models must also transform the traceabil-
ity information from its original model to the end model. Now, if the intermediate
model is only a temporary work product, it must also be considered by the trace-
ability process.

The author is not sure whether or not some of the strategies describing au-
tomatable traceability through model transformation indirectly rely on traceabil-
ity to temporary work products as a strategy (algorithms) to bridge the gap. In
these cases, the strategy has an enormous influence on the resulting traceability
information from the start product to the end product of model transformation(s).
Thus, analyzing a traceability model by taking the temporary intermediate mod-
els into account can make sense to verify that the model transformations fulfill
the requirements for the specific traceability need between transformation source
and the transformation outcome.

Pfleeger and Bohner [PB90] refer to a traceability model considering re-
quirements, analysis, design and code. Ramesh and Edwards [RE93] argue to
include requirements, specifications and implementation into traceability consid-
erations. Other very concrete ideas about entities taken into account in traceabil-
ity considerations are provided by process standards as SPICE (or CMMI). Apart
from that, the author agrees with Knethen that the entity kinds to be considered
for tracing depend on the purpose [Kn01b; p.39].

206 II. Rationale Management and Traceability in Detailed Discussion

b) Granularity
Granularity refers to the level of detail (granularity) the entities are considered in
a traceability approach. Lindvall speaks here of “different levels of traceability”
[Li94; p.18]. “The most coarse level is the ability to trace from one document to
another The most fine-grain level would be to be able to trace every single
statement” [Li94; p.18]. Undetailed traceability between documents may be suf-
ficient to coordinate development team members [De99], [RUP+90], but for
specific IAs more detailed information is needed. An example of very detailed
approaches for IA are dependency analyses of source code [KP02; p.6], [Kn01b;
p.40]. These are described in the course of ch. II.10.3. As Knethen [Kn01b; p.40]
points out, the level of detail is mostly guided by the needs of the purpose to be
followed [Kn01b; p.40]. However, the question about the costs and values of a
specific level of traceability [RE93]178 is most probably the main concern in mak-
ing a decision for or against a specific level. This is directly connected what
Egyed et al. call the two fundamental problems of traceability [EGH+07; p.115]:
• “Finding the right level of trace quality with finite budget”,
• “Increasing the quality of trace links comes at an increasingly steep price”;

Lindvall [Li94; p.19] further argues that granularity is connected to “the
problem of comprehension – which models should be included in a traceability
model for a certain system?” This is very similar to what is discussed above
about kinds of entities. Consequently, both topics can be considered as closely
connected.

As ch. I.7 shows, traceability demands for safety-related development pro-
cesses rather require a very fine-grained granularity of traceability information
(every requirement must be individually traced) and require to take any available
artifact of the engineering processes into account. Correspondingly, significantly
steep prices for traceability issues in safety-related development projects can be
expected.

c) Attributes of Entity
This concept describes possibilities to add attribute information to entities. Cur-
rent state of the art REM-tools and a lot of design tools as, e.g., UML-tools allow
possibilities to add further information (so called attributes) to entities. In the
REM context, attributes are usually used to collect meta data (as, e.g., the author,
time stamp of last change, responsible developer [Tv99; p.372], responsible test-

178 “It may be unnecessary or even undesirable, considering the overhead involved in

maintaining traceability, to maintain linkage between every requirement and every
output created during the systems design process” [RE93].

II.10 Requirements Traceability 207

er, release …) or other development process related data (e.g., priority seen by
customer [Tv99; p.372], status of the requirement in the development process).

Attribute information can be used as traceability information. As an exam-
ple, fig. 10-1 shows an excerpt taken from the REM-tool IBM Rational DOORS
with the attributes 'ID', 'Origin', 'Priority', 'State' and 'Scope'. Concerning tracea-
bility, these attributes have the following meaning:
• 'ID': Assigns a unique identifier to each requirement. The unique identifier is

an essential concept in any REM-tool to allow textual references to a re-
quirement (e.g., in a traceability matrix) as the identifier never changes,
whereas the requirement text does. In fig. 10-1, another kind of possible tex-
tual reference is indicated in attribute 'Origin' of 'Requirement1', where a tex-
tual reference to an item with identifier 'CRS_1' is set referring to a require-
ment in the customer requirements specification.

• 'Origin': Allows a textual reference to the origin(s) of a requirement for
backward traceability. This allows referring to origins not represented in
IBM Rational DOORS (If a requirement can refer to a origin also present in
IBM Rational DOORS, a link relation can be set).

• 'Priority': Marks the priority of a requirement being often an important ra-
tionale for decisions. For example, 'Requirement3' in fig. 10-1 is marked
with priority 'NiceToHave' being most probably an important rationale to
decide for rejecting (not implementing) it in the project.

• 'State': Shows the current state of the requirement in the project.
• 'Scope': Refers to the expected scope where the requirement must be imple-

mented. 'Requirement1', e.g., seems to have a general system wide scope
meaning that it influences HW, SW and probably other engineering domains
that must work together on system-level to fulfill the requirement. In this
way, this can be seen as the first step towards forward traceability.

Figure 10-1 A requirements specification with attributes in IBM Rational DOORS

208 II. Rationale Management and Traceability in Detailed Discussion

Paech and Knethen [KP02; p.6] argue that such attribute information is per
se traceability information as it usually relates information to other information.
The author is not sure whether this is correct for all attributes, but for some it is
correct. Knethen and Paech [KP02; p.6-7] list a set of attributes that can be seen
as traceability information.

Rupp et al. provide a detailed discussion about attributes and document
structuring in REM practice [RS07; p.381-393]. In practice, it is necessary “to
tailor the right set of attributes so that the effort to define and maintain them is
balanced by the benefits of better process control and specification reuse”
[WW02; p.18].

Some of the possible attributes can also have directing effects to subsequent
design processes such as Knethen's proposal [Kn01b; p.40] to use an attribute
describing change probability for each requirement. Such an attribute can have
impact on design decisions taken, because such an attribute helps to identify the
stability of a requirement and the stability of a requirement can impose direct
influence on design. Gerdom and Posch [GP04], e.g., argue that significant costs
can be avoided, when designers concentrate on modeling only parts considered
stable rather than a complete architecture179. As another possible strategy, re-
quirements identified with high change probability can be addressed by handling
strategies for flexibility such as encapsulation or patterns to minimize impacts if
the case of change happens.

II.10.4.2.2 Relationships

Traceability mainly relies on relationships. The type and kinds of relationships to
be established and maintained differ. Knethen could distinguish the following
characteristics of relationships and their connected approaches:
• Kind,
• Direction,
• Attributes,
• Setting, and
• Representation of relationships;

These characteristics are described in the following sub chapters. Addition-
ally to these characteristics, Pinheiro ([Pi00], [Pi04]) could also find the differen-

179 Gerdom and Posch [GP04] call this modeling an architectural skeleton. This principle

seems rather to be a principle originating from the agile community, because the au-
thor heard similar claims proposed by Ivar Jacobson at his key note speech on re-
quirements and agile development at the Requirement Engineering Conference (RE-
conf) in Munich 2009.

II.10 Requirements Traceability 209

tiation characteristic between functional and nonfunctional traces discussed in
the last sub chapter.

a) Kind
This describes the kinds or types of relationships in a CTM. Knethen [Kn01b;
p.39], [KP02; p.8] distinguishes “three general kinds”:
• Relationships between documentation entities on the same abstraction180,
• Relationships between documentation entities at different abstractions,
• Relationships between documentation entities of different versions of a soft-

ware product;
Before discussing different kinds of relationships, the author should note

that relationships are not necessarily distributed in a uniform way. Instead, as an
industrial survey [CSL+01] on requirements interdependencies in SW product
release planning indicates, relations between requirements can be very inhomo-
geneously distributed. They rather follow a kind of pareto-like relation [Pa1897]:
• “20% of the requirements are responsible for 75% of the interdependencies”

[CSL+01; p.84].
• 20% of the requirements are singular (with no significant interdependencies)

[CSL+01; p.88].
• The study also suggests that interdependencies differ according to the project

setting. As an example, customer oriented projects consider more feature-
oriented interdependencies, whereas market driven development projects ra-
ther orient themselves on more abstract values [CSL+01; p.84].
These findings could have significant influence on considerations about new

research approaches to traceability. In the author's opinion, even connections to
the author's pareto presumption described in ch. I.6.6.1.4 may exist. These 20%
are responsible for extensive portions of complexity (due to the 75% of interde-
pendencies). Now, e.g., if it would be possible to tackle these requirements
through tool methods for early prototypical requirement evaluation with later
automated code generation (see ch. I. 6.6.1.2 and ch. I. 6.6.1.3), extensive por-
tions of complexity could be tackled this way. At the moment, however, these two
points are just suggestions of the author. Further research would be needed to
find out whether these suggestions may have some substance and could be inter-
esting as a new leverage for the traceability problem.

180 In Knethen's terminology, abstraction means different artifacts in different engineering

processes. For example, systems requirements, systems design, SW requirements and
SW architecture are four different abstractions for her. Later in part III, when the au-
thor introduces his tool approach, abstraction can also mean a different abstraction
level within one artifact.

210 II. Rationale Management and Traceability in Detailed Discussion

Relationships on the Same Abstraction
Knethen [Kn01b; p.41], [KP02; p.8] distinguishes two kinds of relationships:
• Representation,
• Dependency;

Representation Relationships
Representation relationships connect together documentation entities represent-
ing the same information but providing different views (or viewpoints) on it.

In the requirements domain, different stakeholders have different perspec-
tives on a system [GF95]. Ergo, requirements specifications may contain different
views on a system. This is represented by the representation axis of Pohl's RE
framework (see ch. I.5.7.1). An aspect is then to avoid or handle inconsistencies.
Here, different answers are given from the translation into formal logic
[FGH+94] to heuristics in conflict recognition and handling [LDL98], or to meta-
model approaches [NJJ+96], [Kn01b].

In the design domain, the view concept is very essential [Kr95] (see ch.
I.6.2.1.2). Here, a vast set of approaches exist in research to support view han-
dling in modeling environments. Endeavors exist [BR07b] to embed the view
concept into a formal definition of modeling description language to avoid incon-
sistencies. In design practice, above all the UML language [UML] (starting with
Kruchten [Kr95] the UML specifically included view support in its language)
provides support for modeling representation relationships between diagrams
(resp. views) via defined relations in the meta-model. These relationships can be
further detailed (restricted) by constraints formulated as constraints via the object
constraint language (OCL), which is part of the UML standard. Basing on these
relations other tools and approaches offer support for managing consistency
problems and IAs [BLO+06].

Dependency Relations
Dependency relations describe relationships “between two documentation entities
that depend on each other and represent different logical entities on an abstrac-
tion” [KP02; p.10]. Approaches exist on different abstraction levels, or – better to
say – artifact types:
• Requirement or other specification (e.g., this technique is also very valuable

to administer testing specifications) artifacts are typically handled with
REM-tools such as IBM Rational DOORS or in traceability research envi-
ronments as PRO-ART [PDJ94], [Po99] or TOOR [PG96], [Pi96], [Pi00].
“Dependent documentation entities are linked manually or automatically and
maintained and represented by the tool.”[KP02; p.11]. Knethen and Paech
emphasize here that commercial tools do not provide guidance on how such

II.10 Requirements Traceability 211

traces shall be established and maintained. The author thinks this is good
since such tools should allow the projects as much freedom as possible to
adapt them to their needs. It is more an issue for the processes to define pro-
ject specific rules. Process standards as SPICE provide here concrete de-
mands and guidance.

• Design description techniques make use of the modularization principle (see
ch. I.6.2.1.2) decomposing a system into sub elements interacting together to
fulfill the purposes of the system. Correspondingly, manifold dependencies
between those elements exist and describing those dependencies is an essen-
tial part of design. Rigorous decoupling through definition of capable inter-
faces helps to decouple the elements ensuring independent development of
the elements.

• Model-based RE approaches try to establish traceability in a similar fashion
as design description techniques. Research projects such as QUASAR
[PSS04], (also see [Ge05; p.171]) or the approach introduced by Geisberger
[Ge05] have developed model-based RE approaches for embedded systems
engineering. An overview of other comparable approaches is provided in
[Ge05; p.167-185].

• For code artifacts, source code dependency analysis tools provide support for
automated identification of dependency information between data, control
and components [BA96]. One of the usable methods is program slicing
[KP02; p.10] as described in ch. II.10.3. These approaches are limited to
source code level not taking dependencies on other abstractions into account
[Kn01b; p.42], [KP02; p.10].

Relationships between Abstractions
Two kinds of relationships between traceable elements on different abstractions
can be identified [Kn01b; p.43], [KP02; p.12]:
• Within-level refinement,
• Between-level refinement;

Within-Level Refinement
Within-level refinement means relationships between entities at different abstrac-
tion levels within one artifact level (e.g., in system requirements). Several ap-
proaches exist [KP02; p.12]:
• Hierarchically structuring the identified goals of a system [LDL98] allows

defining sub goals to contribute to a higher goal.
• Decomposition of requirements describes the practice of deriving sub re-

quirements from higher level requirements forming a requirement hierarchy
[Ki98], [Pi04]. Kirkman [Ki98] identifies this as an essential heuristic in

212 II. Rationale Management and Traceability in Detailed Discussion

REM. Usually, these relationships are captured by the usage of REM- or
traceability tools such as IBM Rational DOORS. Fig. 10-1 above shows an
excerpt from IBM Rational DOORS, where the four requirements are also
part of a decomposition structure indicated by the tree view component at the
left. According to Pinheiro [Pi04; p.91], it must be considered that several
requirements are derivable from one origin, a requirement can have several
origins, a requirement can be the deriving source for several requirements,
and a derived requirement can also collapse several predecessor require-
ments.

• Hierarchical refinement of models is offered by a lot of modeling languages.
It allows designers to refine and decompose elements by sub elements. All
modeling tools discussed in ch. I.6 support hierarchical refinement. The tool
approach presented here (see part III) relies on this principle for establishing
the requirement to design traceability.

• The Queinsian In-Order-To Rule181 [RS07; p.417] is a heuristics from RE
practice helping to identify the real nature of connections between a formerly
known requirement (in the former called old requirement) and a new arising
requirement if both requirements have nearly similar semantics. It helps to
determine whether the new requirement must replace the old one (old and
new requirement are in a historic versioning relationship), or whether the
new requirement is a refinement of the old requirement (old and new re-
quirement are in a hierarchic decomposition dependency).

Between-Level Refinement
Between-level refinement describes relationships between entities on different
artifact levels (e.g., between system requirements and system design). The fol-
lowing approaches exist:
• The specification axis in Pohl's RE framework (see ch. I.5.7.1) represents this

dimension [KP02; p.14].
• Development approaches themselves influence how traceability is estab-

lished. As development processes often focus on different artifact levels and
their corresponding artifacts, they have special influence on between-level
refinement traceability. Several approaches provide certain characteristics:
• Pre-object-oriented development methods as structured analysis and de-

sign (SA/SD) [De78] propagate strict separation of the problem (re-
quirements) and the solution (design) space. Hatley et al. [HHP03;
p.252] emphasize this as strength since it prevents uncontrolled inter-
mixing of both areas, which poses a threat to object-oriented methods.

181 In German: “Queins'sche UmZu-Regel”

II.10 Requirements Traceability 213

However, the semantic gap between the problem and solution space is
very large, thus the need for explicit traceability information is higher
and especially difficult to establish [Kn01b; p.45], [KP02; p.14].

• Object-oriented development (OO) approaches as, e.g., the UML [UML]
have a smaller semantic gap between analysis and design. Thus, the
need for explicit traceability is not as needed and easier to establish. Of-
ten traceability is implicitly present.

• Four variable model (FVM) as introduced by Parnas [Pa85] propagates
a design process with strict separation between input processing, the in-
ternal core functions and the output processing and relations between
them. The FVM allows separating the system from the environment by
the distinction of four variables: monitored and controlled environment
variables, data read from sensors and data written to actors. These four
variables can be set into formal dependencies. As embedded systems of-
ten relate input signals from sensors to output signals for actors, the
FVM is especially suitable for embedded systems design and is used in
embedded design practice [Fa95], [HHP03; p.56ff], [HJL96]. Knethen
shows in [Kn01b; p.44] that in embedded systems design the input and
output processing variables are mainly in the focus of systems analysis
and design, whereas the internal core functions are usually allocated to
software analysis and design. Ergo, the FVM relations are of the type
discussed here. The FVM can be used as an extension to SA/SD
[HHP03; p.56ff] as well as to OO approaches [Kn01b]. In the course of
the QUASAR project [PSS04] (see also [Ge05; p.171]), Knethen devel-
oped her requirement to design traceability approach, whose founda-
tions base on concepts of UML and the FVM (see ch. II.10.6 for details).

• The SPICE process model defines artifact levels and how relations be-
tween the corresponding artifacts of the levels are connected.

• Relationships defined in requirements traceability methods for product
line engineering [RTM02], [BP06] can be seen as between-level refine-
ment traceability relationships.

• REM- or traceability tool environments allow linking between different
artifact levels. The environment introduced in part III explicitly addresses
this issue concerning transitions between requirements and design.

In practice, the following approaches are used (see also [KP02; p.14]):
• Dependency links between two elements indicating that one element derives

its justification from the other element. Knethen and Paech call this 'applica-
bility links' [KP02; p.14]. A similar dependency is given by the R2A ap-
proach described part III where consequences of decisions can be modeled

214 II. Rationale Management and Traceability in Detailed Discussion

that spark new design constraints (ch. III.20). From the perspective dis-
cussed here, the decisions justify the design constraints.

• Links between requirements and models:
• Relations between textual requirements and its origins in other docu-

ments.
• Links between textual requirements and analysis models, such as use

cases and other analysis diagrams (ch. I.5.4).
• Links between requirements and design models. Further relations can

propagate the requirements to detailed design elements as software
components and to source code.

• Links between requirements, test specifications, test cases, test logs and
(resp. or) error listings [Tv99; p.373]. According to Jäälinoja [Ja04; p.32],
these connections are so essential that this kind of linking should always be
established. The author recommends conferring [Ja04; p.31-33] and [WW03;
p.20-21] for concrete hints about this issue in the embedded domain.

• Links between issue tracking items (bug reports and change requests) and
affected entities [Tv99; p.373]. Application life-cycle management tool suites
like MKS [MKS] offer dedicated support for these actions in practice (see
ch. II.10.4.4.4).

Relationships between Different Versions
Hamilton and Beeby [HB91] see an important task of traceability to “discover
the history of every feature of a system” to ensure proper impact identifications
when requirements change. This has a twofold meaning. One is to trace the histo-
ry of the documents and can be seen as “an extension to what usually is called
version control, namely to trace all previous versions of a particular documenta-
tion entity to recover its development history” [KP02; p.15]. These relations are
usually called historical links [RUP+90] or evolutionary traceability [Po96],
[Pi04]. A second, more enhanced meaning is described by the RatMan approach-
es. As these approaches record the rationale behind decisions and changes, they
provide important information about the historical evolution of project artifacts.
Without this information only the “how” of the evolution is recorded, but the
“why” is in the best case covered somewhere in the brains of the developers and
in the worst case simply forgotten. RatMan and traceability is described in detail
in the later ch. II.10.8.

The following approaches consider evolutionary traceability with respect to
recording artifact history:
• The agreement axis in Pohl's RE framework (see ch. I.5.7.1) describes this

[KP02; p.16].

II.10 Requirements Traceability 215

• Ramamoorthy et al. [RUP+90] introduce the Evolution Support Environment
(ESE) system that can be described as a version control system enhanced by
support for traceability relationships. Besides the history links (trace to an
item's change history), ESE supports hierarchy links (trace to the hierarchical
structure an item is embedded in) and development links (trace how an item
is produced and used in the development project) [RUP+90; p.1230], (cf. al-
so [Li94; p.20]).

• Leite and Oliveira describe a system where configuration management con-
cepts are used to control the evolution of the individual requirements
[LO95].
The following approaches are found in practice:

• Several REM and traceability tool environments as, e.g., IBM Rational
DOORS provide configuration management mechanisms to record the histo-
ry of items and their traces. The approach discussed in part III provides a
similar mechanism. Also tools as MKS [MKS] originating from the configu-
ration and change management domain have developed new approaches to
address evolution and traceability. This is discussed in the following chapter
about traceability tool support.

• The already above described Queinsian In-Order-To Rule [RS07; p.417 (*)]
can be seen as a practice-oriented heuristics to decide whether to version or
refine a requirement.

b) Direction
Refers to the direction traceability is established or used in. Terms used here are
PRE-RS, POST-RS, backward or forward traceability as discussed in ch. I.5.7.1.
Early agreement exists that traceability should be bidirectional (see ch I.5.7.1).
Standards as A-SPICE (see ch. I.7.4) oblige to use bidirectional traceability mod-
els.

A lot of approaches can be characterized by their traceability direction or
orientation within a process model. CTMs for PRE-RS are, for example, the con-
tribution structures model by Gotel and Finkelstein [GF95], [GF96] or the RE
framework of Pohl [Po93], [Po99], (see ch. I.5.7.1). In the POST-RS direction,
approaches exist for design (ch. II.10.6), code (ch. II.10.7), and testing [Tv99;
p.373]. The COSMOD-RE model by Pohl [Po08; p.565ff] is a model combining a
PRE-RS and a POST-RS approach in parallel.

c) Relationship Attributes
Just as documentation entities, relationships can also be enhanced by attributes.
Examples for valuable attributes for relationships are status, creation date, creat-
ing author.

216 II. Rationale Management and Traceability in Detailed Discussion

Relationship attributes can also support IAs and change implementation.
Knethen and Paech describe here a “weighting attribute”, which enables to dis-
tinguish more important from less important relationships, thus helping to tell the
more important impacts apart from the less important (side) impacts182 [KP02;
p.18].

Such an attribute can also be used to record rationale behind a link, howev-
er, with very limited support for extensive documentation of rationale. Rationale
in context of traceability is discussed in ch. II.9.

As an example, the REM-tool IBM Rational DOORS supports creation and
management of relationship attributes. Thus, this technique is available for prac-
tice.

The R2A tool approach introduced in part III uses relationship attributes to
automatically capture information about the current status, author, and editing
time of each relationship, where especially the status information is a central
concept to implement a consistency management mechanism (see ch. III.22.2).

d) Setting (i.e. Traceability Establishment)
This part discusses how traceability is established. Pinheiro calls this trace pro-
duction and stresses out that this issue has high importance, when considering the
applicability of a CTM in practice [Pi04; p.105] (this is discussed in ch. II.10.5).
Generally, two fundamentally different ways are available [Li94; p.19]:
• Implicit relationships,
• Explicit relationships;

Implicit Relationships
Implicit relationships arise as a by-product of other processes. Knethen and Paech
characterize implicit relationships as “links that do not require manual setting”
[Kn01b; p.47], [KP02; p.18]. This means these relationships can be surfaced
using automatable approaches.

When analyzing different literature ([Li94; p.19], [LW99], [Sm99c]),
Knethen and Paech ([Kn01b; p.47], [KP02; p.18]) were able to identify the fol-
lowing manifestations of implicit relationships:

182 A good example of this method in practice is known by the author in test management.

Requirements are often tested by several test cases. Links between a requirement and
its verifying test cases can be enhanced by an attribute that indicates how much each
test case accounts for fulfilling a requirement. This degree of fulfillment attribute can
have a per cent scale. In this way, e.g., a requirement can have a link with 80% to a
TestCase1 and two links with 10% to a TestCase2 and a TestCase3. A positive test re-
sult for TestCase1, but negative for TestCase2 and TestCase3, would indicate that a re-
quirement is fulfilled by 80 per cent.

II.10 Requirements Traceability 217

• Name mapping (also called name tracing or name referencing) denotes the
possibility to retrieve traceability information from names and abbreviations.
It assumes that names and abbreviations used in different traceable entities
(i.e., artifacts) designate the same items or facts. Name mapping is especially
promising when artifacts have a high degree of formality, because formality
ensures proper naming at all relevant locations. Source code has a high de-
gree of formality since compilers must be able to process it. Corresponding-
ly, names in source code are always identical, otherwise compiler errors oc-
cur. This makes source code to an optimal candidate for name mapping. To-
day's code development tools such as Eclipse or Microsoft Visual Studio of-
fer support for analyzing references (so called dependency analysis) and it is
highly probable the most heavily used technique applied for performing IAs
in practice. Design models are models of portions of source code. Thus, they
should contain the same names as in code. Ergo, name mapping can also be
an effective strategy for tracing dependencies between code and design mod-
els. In the context of SPICE in practice, Hörmann et al. [HDH+06; p.94] es-
pecially recommend name mapping as a good strategy for fulfilling tracea-
bility demands between design and code artifacts. Exact name matching,
however, will only be ensured if code is generated for design through formal
automatic transformation processes (automatic code generation). In manual
coding processes, processes must be established to avoid drifts between de-
sign models and code. Specially change processes must ensure that changes
are properly performed in both artifacts, otherwise names can vary between
design and code leading to lost name mappings and thus to lost traceability
links. Name mapping can also be applied in rather document-oriented envi-
ronments such as in requirements specifications. However, in this case simi-
lar processes for ensuring consistent naming throughout the considered arti-
facts must be applied. Fortunately, another heuristic significantly reinforces
name mapping in the requirements field in an implicit way: It is very im-
portant to achieve a common understanding of the project between all differ-
ent stakeholders. This can only be achieved if the project develops a com-
mon vocabulary for its used terms. Therefore, in the field of requirements
specification, using precise terminology and establishing adequate terminol-
ogy management is a central principle and thus name mapping is a very
promising heuristic for requirements specifications.

• Relationships given by structure refer to retrieved traceability information by
capitalizing structures emerging as effect of development methods. In object-
oriented methods, a class contains private data, attributes and operations,
building structures of implicit relationships usable for tracing. In REM prac-
tice, the heuristic of deriving more specific low-level requirements from

218 II. Rationale Management and Traceability in Detailed Discussion

higher-level requirements and documenting these dependencies in a hierar-
chical child parent relation is widely employed [LW99]. From its first de-
scription by Nelsen [Ne90] as so-called top-down structured analysis and
first experiences with tool support [Li94; p.25], it is supported by many
REM-tools such as IBM Rational DOORS, which organize requirements and
their dependencies by a hierarchical specification tree. In the SysML
[SYSML] a <<derive>>-relationship between requirements is defined with
analogous semantics.

• Relationships given by modeling paradigm refer to implicit relationships
resulting from the usage of certain modeling languages, tools or techniques
[LW99]. An example of this is the diverse possibilities to specify relation-
ships in UML.

• Dynamic relationships between code components refer to techniques for
identifying relationships occurring in code during execution. Here, depend-
ency analysis methods as dynamic program slicing [KR98] (see [GB08] for
an overview on program slicing techniques) can provide valuable support.

Explicit Relationships
Explicit representation [Kn01b; p.48-49] refer to linkages manually documented
by the developers. “Explicit relationships came from external considerations
supplied by the developers. So, for example, the linkage, or relationship, between
a textual requirement and a use case that describes the requirement is determined
solely by the decision of the developers that such a relationship has meaning.
There are no intrinsic relationships between the documentation entities; only
external decisions can establish the relationships” [Kn01b; p.48]. Explicit rela-
tionships can be used for all kinds of relationships. However, if implicit relation-
ships are present, it should be carefully considered whether explicit relationships
shall be established with the same meaning, because this creates redundant infor-
mation. Any redundant information is a source of inconsistency and needs further
maintenance when changes occur. Thus, it is rather preferable to extract the infor-
mation from the implicit relationships. Similar findings are expressed by Pinheiro
[Pi04; p.110] stating to use as much automation as possible.
In practice, the following methods are relevant:
• Simple documentation tools as Microsoft Word or Excel allow mechanisms

as hyperlinks or creating mapping tables (so called traceability matrices as
described below).

• REM-tools as IBM Rational DOORS allow manual linking between entities.
In some tools this is possible via drag-and-drop.

• Modeling tools allow systems to be described by elements, diagrams and
their relations. As an example, the UML tool Sparx Systems Enterprise Ar-

II.10 Requirements Traceability 219

chitect offers several ways of linking elements with diagrams, elements with
elements and also hyperlinks to external documents are possible. However,
the kinds of relationships also depend on the modeling techniques (e.g., func-
tional decomposition produces relations different from object-oriented de-
composition).

• Some specification languages as RSL [Al77] or PSDL [SHB91] exist, allow-
ing references to be specified to requirements but are “not primarily intended
for requirements tracing” [Pi04; p.108].

Automatable Versus Manual Approaches183
Research on traceability has proposed various approaches for establishing or
retrieving traceability dependencies. Rochimah et al. present evaluation results of
about 100 publications to current state-of-the-art traceability approaches con-
cerned with SW evolution [RWA07]. Research has shown that manual creation
and maintenance of traceability relations requires enormous effort and includes
substantial complexity [EG04], [GF94], [RJ01] (see ch. II.10.5). The study of
Rochimah et al. further shows that current research on traceability focuses on
automatic or at least semi-automatic traceability link generation [RWA07; table
4]. Some automation approaches still depend on manually established links that
are then enriched by supporting automation mechanisms while others are fully
automated.

The author has analyzed the scope of automation of these approaches and
can identify two major areas of automation:
1. Finding interdependencies between different requirements artifacts (e.g.,

textual documents, use case descriptions, feature-models or analysis models
(ch. I.5.4)) concerned with requirements.

2. Finding interdependencies between design and code artifacts.
Only the approach suggested by Spanoudakis [Sp02], [SZP04] tries to estab-

lish automated trace links from requirements to models, focusing on analysis
models, though. It is striking that current automated link generation approaches
do not concentrate on establishing links between the requirements world and the
design world. The author believes that this can be explained by the name map-
ping (cf. ch. II.10.4.2.2) phenomenon: Instead of creating explicit links between
items, the same names are used [MHD+07; p.224]. If no automatic code genera-
tion is available for a design tool and code must be typed manually, traceability
must also be established between design and code. As design is (and should be) a
more abstract view on the problem modeled, traceability can also be established
by naming corresponding elements in design and code identically. This is an

183 This chapter bases in parts on [TKT+09].

220 II. Rationale Management and Traceability in Detailed Discussion

explicit heuristic. In addition, another heuristic significantly reinforces this effect
in an implicit way: It is very important to achieve a common understanding of the
project for all different stakeholders. This can only be achieved if the project
develops a common vocabulary for its used terms. Therefore, in the field of re-
quirements specification, using precise terminology and establishing adequate
terminology management is a central principle. However, these approaches pro-
vide no guarantee to identify all interdependencies yet, as name mismatches or
other effects still can happen. Attempts try to ameliorate this problem by using
requirement ontologies as a common representation of mutual understanding of
the semantics of words in the requirements sentences, to establish automatable
traceability links [ASP09].

Other approaches provide a semi-automation such as identification of trace-
ability information from manually documented relationships during modeling
activities [TN97], [TM00], [Eg03], extending links with notification mechanisms
to automatically propagate change notes to other affected items [CCC03],[Sa06],
or identifying dependency info.

[ANR+06] and [GG07] provide an overview of the most recent advances in
technologies to automate traceability in the context of model-driven develop-
ment. In summary, the author could not identify any significant automation at-
tempts to bridge the gap between requirements and design. This matches with the
author's observation that the transition between requirements and design involves
a significant structural and semantic gap184, where automation inevitably is very
difficult (cf. ch. II.10.2).

Thus, automatable approaches may not be suitable to cross significant se-
mantic gaps and therefore automation may in practice only become a supportive
alleviation for still manual traceability processes. Correspondingly, the author
agrees with Egyed et al. that “while some automation exists, capturing traces
remains a largely manual process” [EGH+07; p.115]. As a result, the approach
described in part III mainly concentrates on improving manual traceability strat-
egies.

In the R2A solution (part III), the concept of the so-called requirement influ-
ence scope (see ch. III.18.2.2) involves that requirements assigned to a high-level
element in design are inherited to lower-level design elements. This can be seen
as a kind of traceability automation.

184 Research of Gruenbacher, Egyed and Medvidovic [GEM01], [GEM03], [MGE+03]

even suggest that this involves such a large semantic gap that it is even impossible to
employ a meaningful link concept between both (see ch. II.10.6).

II.10 Requirements Traceability 221

e) Representation of Relationships
Relationships must be presented to the users according to their traceability needs.
Wieringa [Wi95] could identify three different ways for representation:
• Traceability matrices: “A matrix that records the relationship between two or

more products of the development process; for example a matrix that records
the relationship between the requirements and the design of a given software
component” [IEEE610; p.78]. One artifact's documentation entities (e.g., the
requirements) are enlisted horizontally as columns and the other artifact's en-
tities (e.g., the entities of a design) are enlisted vertically as rows. Relations
are then expressed as symbols in the intersecting cells (cf. [So07; p.197].

• Cross references: Relationships between entities are represented as refer-
ences similar to hyperlinks in hypertext languages as HTML. These 'trace
links' allow navigation between the entities.

• Graphical models: Entities and their relationships are represented in some
graphical way. The method described here (part III) also provides graphical
preparations of the gathered relationships. Marcus et al. [MXP05; p.57] pro-
vide an opinion about why and when graphical visualizations may provide
superior support than the methods mentioned above.
REM-tools often rely on one or more of the ways of representation men-

tioned above. As an example, IBM Rational DOORS uses a cross references
approach as a main editing approach. These cross references can also be trans-
formed and viewed as a traceability matrix. As IBM Rational DOORS offers a
scripting extension mechanism via the DOORS eXtension Language (DXL),
some companies also have extended the standard IBM Rational DOORS envi-
ronment via more graphical preparations185 of the collected data.

f) Functional and Nonfunctional Traces
Pinheiro [Pi00], [Pi04] identifies two fundamentally different types of traces:
• Functional traces,
• Nonfunctional traces;

Functional traces are related to functional aspects. As they describe map-
pings between entities, they have a precise – narrow – semantic. Pinheiro argues
that these traces occur naturally when well-defined models and notations are
used. In this case, the traces can be directly “derived from the syntactic and se-
mantic connections prescribed by the models or notations” [Pi04; p.96]. In other
words, if precise models are used, functional traces can be directly derived from
the relationships occurring in the models.

185 See http://www.smartdxl.com/content/?page_id=144 (Access: 2009/10).

222 II. Rationale Management and Traceability in Detailed Discussion

Pinheiro lists some model types and their meaning in the context of func-
tional traces [Pi04; p.97]:
• Analysis models (ch. I.5.4) relate entities from the REM phase (interviews

and transcriptions, documents and the extracted requirements).
• Design models (ch. I.6) relate entities used in the design phase (classes, dia-

grams, attributes, and methods). These mappings tend to be more structured.
• Process models (ch. I.7) relate objects of the development process (tools,

activities, artifacts and people).
• Organizational models (organizational structures, people, goals, activities,

and resources) include environment and social issues.
Pinheiro emphasizes that models may also overlap meaning that representa-

tions of the same entities may be present in several models. Identifying those
overlapping representation is a good starting point to identify mappings between
models.

On the other side, nonfunctional traces relate to goals, reasons, intentions,
purpose, context of the intended system, decisions, and other intangible con-
cepts186. According to Pinheiro, also nonfunctional requirements can be seen
among these intangible concepts and correspondingly most traces involving non-
functional requirements are nonfunctional [Pi04; p.98].

Functional traces enforce appropriate registration and extraction, promote
uniform understanding, allow automation of the traceability processes, and allow
procedures to verify consistency and correctness [Pi04; p.100].

A common way to handle nonfunctional traces is to reexpress them as func-
tional ones that can be verified [Pi04; p.99] (also cf. [WW03; p.21]) in an analo-
gous way as nonfunctional requirements can be often expressed by several more
tangible functional requirements [JL05; p.130], [PKD+03; p.145].

In part III, the author shows how this can be expressed in design by a re-
quirement influence scope concept (cf. ch. III.18.2.2) and a process heuristic
ensuring that the influence scope is as local as possible (cf. ch. III.18.2.4).

A reformulation of nonfunctional traces into functional ones can especially
promote uniform understanding, because non-functional traces leave open space
for differences in interpretation leading to potential errors or deviations between

186 “However, not all needs for tracing may be encompassed by using methods and tech-

niques. Certainly not, when what is sought refers to the very use of them. For example,
the answer to what data-flow is input to process X in a certain data-flow diagram in-
volves only elements from the method itself, while asking why a particular process in
the same diagram is described in the way it is can only be answered with recourse to a
meta model, where the use of the model can be assessed. In this case the referential in-
volves a wider context that may include the social environment in which the develop-
ment is carried out” [Pi00; p.4].

II.10 Requirements Traceability 223

the intended traceability information to be captured and the really captured
traceability information.

However, such transformations involve dangers of significant losses of im-
portant information. To counter these dangers, “traceable objects should allow the
use of hyper-media objects like videos, recordings, and images together with
mechanisms for inspecting these kinds of objects” [Pi04; p.104] to record and
regather real-world observations. The relationships between those hyper-media
objects and parts of formal traces are called extended traceability [HPW+99],
(see also [Pi04; p.104]). In the tool solution discussed in part III, a step towards
nonfunctional tracing is done by the decision models described in ch. III.20 and
ch. III.21. The decision model allows capturing non-functional traces into a semi-
formal skeleton of functional traces that can be accompanied by a further textual
description, where non-functional aspects can be described. This mechanism
could also be extended. Not only a textual description, but also other hyper-media
objects can be added.

Another strategy to deal with nonfunctional traces is, e.g., providing direct
modeling support as shown by Graham [Gr03], who uses the profile extension for
UML (UML Profile for Schedulability, Performance, and Time [Do04, ch. 4]) to
model nonfunctional performance constraints directly in the design model. Ac-
cording to Pinheiro [Pi04; p.99], nonfunctional aspects can thus be functionally
captured by using some model, but this leads again to a loss of much of the non-
functionality.

Thus, Pinheiro [Pi04; p.110] concludes that the major obstacles to realizing
traceability are organizational and not technical (see ch. II.10.5). “The informal
aspects of tracing and the nonfunctional nature of some traces explain most diffi-
culties” [Pi04; p.110].

II.10.4.2.3 Examples of Conceptual Trace Models

As an example for a defined CTM, Knethen refers to the proposals of Ramesh
and Jarke [RJ01], who term their concept as traceability reference model. In the
course of a three-year empirical study analyzing the handling of traceability
information in a broad variety of usage contexts, Ramesh and Jarke [RJ01] were
able to analyze the traceability behavior in practice of 30 target groups from 26
organizations in 11 business units. The following results produced interesting
insights into growing unstructured complexity when traceability has been em-
ployed [RJ01]:
• Organizations as the U.S. Department of Defense spend 4% of its IT devel-

opment costs for traceability without achieving adequate value. The authors

224 II. Rationale Management and Traceability in Detailed Discussion

ascribe these findings not at last to a planless realization of traceability link-
ages.

• “A broad variety of traceability strategies is practiced in industry and the
existing models are too simple and/or too rigid to deal with this variety”
[RJ01; p.59].

• In the involved organizations and literature, the analysis of traceability mod-
els surfaced the usage of 18 different link types at 21 different object types
(artifacts or parts of artifacts).

• Concerning the employment of traceability, the user groups could be seg-
mented into low end and high end users. With growing experience the ten-
dency to use richer traceability models towards high end exists (cf. also
[Ra98]). Typical needs of low end users are technical problems (e.g., what
are interconnections between requirements) representable by functional trac-
es, whereas high end users are more interested in managerial issues (deci-
sions etc.) rather manageable by nonfunctional tracing [Pi04; p.100] (cf. also
[Br07a], [RJ01]). Table 10.2 shows the differencing characteristics between
both user types according to [RJ01; p.65] in detail.

• Ramesh and Jarke [RJ01] further point out that different traceability link
types exist (also cf. [Br07a]): product-related (e.g., dependency and satisfac-
tion) and process-related (e.g., evolution or rationale). However, for the de-
cision to realize a link type, very detailed cost-benefit analyses are employed.
These findings directly match with Pinheiro's differentiation between func-
tional (corresponds to product-related) and nonfunctional tracing (corre-
sponds to process-related).
According to Ramesh and Jarke, these findings show that establishing

traceability is accompanied by an evolutionary learning curve tending to richer
traceability models, in which each organization traverses rather planless phases
of traceability (simply put, 'playing around with traceability') and in which a
more structured and planned methodology develops tending to richer (high-level)
traceability models.

In this point, the author disagrees to a certain extent to the findings of
Ramesh and Jarke. When analyzing the focus groups of the study [RJ01; p.64], a
broad variety of branches are taken into account including automotive industry.
However, the automotive industry may have different business settings in com-
parison to other named branches such as avionics, military or governmental ad-
ministration and telecommunications. In these branches, SW development costs
are an integral part cost of development, in which often specialized pieces with
low quantities but high demands for quality (especially safety) are demanded (see
ch. I.2.3, ch. I.7.5). This allows companies to have higher software development

II.10 Requirements Traceability 225

budgets. In the automotive industry, high piece numbers often lead to HW piece
costs as the main driver of costs. In this business, SW development costs are
often calculated as side costs leading to tight budgets and strong cost pressures187.
This means, establishing new traceability features leading to richer traceability
models even faces stronger concerns about development costs. In this setting, a
development to much richer traceability models will only take place if pressure is
imposed188, or if new traceability methods allow significant advantages with
potential to cost reductions. In other words, the author believes that traceability is
not employed in equal ways throughout all different industries. Instead, different
constraints within the different industries lead to different forms of employed
traceability models in practice.

Table 10.2 Characteristics of low-end and high-end traceability users [RJ01; p.65]

Characteristics Low-end traceability
users

High-end traceability users

Number of organi-
zations identified in
the study.

Nine Seventeen

Typical number of
participants

Fifty-four Eighty-four

Typical complexity
of system

About 1000 require-
ments

About 10.000 requirements

Traceability experi-
ence level

Zero to two years Five to ten years

User definition of
traceability

Documents transfor-
mation of requirements
to design

Increases the probability of producing a
system that meets all customer require-
ments and will be easy to maintain.

Main application of
traceability

Requirements decom-
position
Requirements allocation
Compliance verification
Change control

Full coverage of life cycle
Including user and customer, captures
discussion issues, decisions and ra-
tionale
Capturing traces across product and
process dimensions

187 This is especially true for the Automotive suppliers industry branch. In that way, the

author is not even sure whether automotive OEMs and suppliers have comparable de-
velopment settings.

188 In the last years, such a case has taken place in which several OEMs have decided to
demand SPICE based development processes from suppliers thus significantly lever-
aging traceability concepts in the automotive supplier industry.

226 II. Rationale Management and Traceability in Detailed Discussion

As a consequence of their findings described above, Ramesh and Jarke
[RJ01] searched for ways to lower the steep and more or less planless learning
curves of most companies for traceability establishment in practice. As a solu-
tion, they propose the usage of so-called traceability reference models (TRM)
[RJ01], this means, the usage of prototypical adaptable linkage models of the
particular problem domain – also possible to term traceability framework. “Ref-
erence models are therefore an abstraction of best practice, condensed from nu-
merous case studies over an extended period of time, followed by more case
studies to refine and evaluate the proposed reference model” [RJ01; p.58]. Corre-
sponding to the identified user types and their interview results, Ramesh and
Jarke could condense a low-end and a high-end traceability reference model, the
corresponding user types use.

The low-end traceability model is segmented in four artifact types. Require-
ments are hierarchically managed via derive relationships representing require-
ment decomposition (see ch. II.10.4.2.2). Verification procedures are developed
to verify the implementation of requirements. Requirements are satisfied by a
system on which the verification procedures are performed to ensure that the
system fulfills the requirements. The system can be segmented into subsystems or
components via depend-on relationships. The system interfaces with other exter-
nal systems.
In contrast, the high-end traceability model is segmented into four sub models:
• The Requirements Management Model describes the documentation and

management of the found requirements.
• The Rationale and Decision Model deals with comprehensible documenta-

tion of requirements or architectural related decisions.
• The Requirements to Design Model manages comprehensible mapping of

requirements to design.
• The Test and Verification Model cares about mapping of requirements with

test scenarios as verification of requirement fulfillment.
The Requirements Management Model, deals about requirement elicitation,

specification (documentation) and management of the found requirements. The
Test and Verification Model shows how compliance verification procedures are
related to process mandates, different testing techniques, deviations reporting,
requirements, and the system. Both topics are not further discussed as they are not
in the center of this thesis. The interested user may consult [RJ01].

The Rationale and Decision Model orients itself on REMAP [RD92] (ch.
II.10.8). It describes the connections between decisions, rationale, assumptions,
arguments, alternatives, and issues or conflicts together taking effect on other
objects (such as requirements, system, components, or design). As ch. II.10.8
describes, the model can be seen as a combination of IBIS with REM activities.

II.10 Requirements Traceability 227

The Requirements to Design Model describes the connections between re-
quirements and design. Design creates, or defines the system with its subsystems
and components being structured by depend-on and part-of relationships, where
part-of explicitly refers now to a kind of abstraction hierarchy concept. The sys-
tem also depends-on external systems and uses resources. Inside, the system per-
forms functions addressed (described) by requirements. As in the low-end trace-
ability model, requirements are allocated to the system, subsystems and compo-
nents, which satisfy the requirements. Additionally, the requirements drive the
design, but also change requests modify the design and mandates describe gen-
eral policies to be applied on design.

The TRM189 in [RJ01] can be seen as a prototypical generic relationships
model (or traceability scheme) for traceability issues, in which relevant parts can
be used individually according to the traceability need. The TRM can also be
seen as a kind of meta-model of possible traceability relationships and gives
support for clear interpretation of the relationships.

One merit of the TRM is to emphasize aspects about design often neglected
in traceability considerations, such as resource restrictions, external systems,
change requests or mandates. Concerning implementation of the TRM, the article
assumes a complete realization by using a REM-tool. Thus, the aspects of con-
necting the requirements artifacts with the design artifacts, when different tools
are used (as it is usually the case), are only handled by an abstract, symbolic way,
because design is only described as defining representation of the system, and
requirements just drive the design.

As Pinheiro [Pi04] and Brcina [Br07a; p.5] indicate, the high-end traceabil-
ity model of Ramesh and Jarke stronger supports nonfunctional traces. This is,
for example, the case at the emphasis of RatMan support as important means to
improve traceability information. However, the model is treated as a more or less
separate and loosely coupled aspect. In the author's believe, RatMan support
should be more closely integrated into the design process in order to support
rationale capture as a by-product thus overcoming significant benefit problems
(see ch. II.10.5).
Apart from [RJ01], other authors also describe rudiments for a CTM:
• Analyzing the problems connected with traceability, Gotel and Finkelstein

draw the conclusion that Pre-RS traceability is one of the most crucial issues
[GF94]. As a consequence, they developed a CTM called contribution struc-
tures for describing the origins of requirements [GF95].

• Hatley et al. [HHP03; p.33-41] provide a requirement meta-model for em-
bedded development practice. The model explicitly emphasizes non-

189 See also the remark of [Pi04; p.109].

228 II. Rationale Management and Traceability in Detailed Discussion

functional aspects important in embedded systems (as for example timing
constraints) and their relationships to other requirements. Further, the model
is detailed by discussions about relations between requirements and architec-
tures [HHP03; p.169-175]. In this way, the requirement meta model can also
be seen as a traceability model or at least give indications about possible
traceability relationships in embedded practice (see especially the meta-
model diagram [HHP03; p.35]).

• SysML defines several relationship types to relate requirements with other
items: <<DeriveReqt>> (=annotates a derive relationship between require-
ments), <<Satisfy>> (=describes that a requirement is satisfied by an item),
<<Verify>> (=describes that a test verifies a requirement), <<Refine>>
(=describes how a model element or set of elements refine a requirement),
<<Trace>> (=general purpose relationship between a requirement and any
item), <<Copy>> (indicates that an item is a copy of another), [SV08].

• Knethen [Kn01a], [Kn01b] develops a formal meta-model for a modeling
approach to document requirements traceability in design artifacts as a by-
product of the usual modeling activities.

• Leffingwell and Widrig [LW99; p.338] provide a CTM for managing re-
quirements in a mainly software-driven development practice.

• Pohl’s dependency model [Po99], [Po08; p.505-526], (see also ch. I.5.7.1,
[MXP05]) tries to provide a systematic outline of different traceability types.
It identifies five general traceability type categories with nineteen different
dependency link types:
• Conditions describe conditional connections such as constraints and

preconditions.
• Content describes whether contents are similar to each other, are the re-

sult of a compare-operation between contents, contradict each other, or
conflict with each other.

• Documentation describes connections between documents such as ex-
ample_for, test_case_for, purpose, responsible_for, background, com-
ment relationships.

• Abstraction describes connections between items of the kinds classifica-
tion, aggregation or generalization.

• Evolution describes evolutionary types such as replaces, satisfies, ba-
ses_on, formalizes and refines.

• Wieringa [Wi98] could also identify 31 different link types possible to use to
coherently connect requirement documents, design artifacts, and other doc-
umentation.

II.10 Requirements Traceability 229

Pinheiro [Pi04; p.107] provides an overview on further proposals for CTMs
in the context of design languages such as UML. He [Pi04; p.109] further ex-
presses the idea that other reference models concerning REM as provided by
[GGJ+00] and [Ge05] may be a good starting point for discussing traceability
issues, even though they are not specifically intended for traceability.

Kelleher proposes making CTMs more flexible by using the pattern concept.
Such a traceability pattern describes “best practices, good traceability designs
and captures successful work experiences” [Ke05; p.52]. He could differentiate
two different traceability pattern types:
• Generative Traceability Patterns describe characteristics of a CTM to be

used as a meta-model for traceability establishment.
• Traceability Engineering Patterns “help exchange traceability experience or

knowledge and provide rules for generating successful traceability practices”
[Ke05; p.52].
As demonstration examples for the effectiveness of his idea, Kelleher de-

scribes three patterns (Traceability Plan Pattern, Traceability Strategy Pattern,
and Product Compliance Pattern) and sketches a traceability pattern tool envi-
ronment.

II.10.4.3 Process

In order to ensure usefulness of traceability information, defined processes
should accompany any activities concerned with establishment, usage and
maintenance of traceability information. Pinheiro [Pi04; p.107] calls this “trace-
ability methods”.

Defined processes are especially important when the number of require-
ments grows [Ja04; p.39], [RJ01]. Factors influencing the decisions about the
right processes are “number of requirements, the system lifetime, organizational
maturity, the development team size, type of the development system and specific
customer requirements” [Ja04; p.39]. Smaller teams can manage requirements
and their changes with rather unstructured traceability processes, whereas larger
teams must more rely on formal traceability policies [Ja04; p.39].

Process standards as SPICE and CMMI also define explicit demands for
traceability processes that must be considered. Ch. I.7 enlists the aspects to con-
sider for this thesis. Another description of traceability methods is found in
[Yu94]. Concerning goals, processes should consider ensuring the following
aspects:
• A uniform and appropriate level of granularity of traceability information

should be achieved [DP98], [Kn01b; p.57].

230 II. Rationale Management and Traceability in Detailed Discussion

• Useful support for IAs [HDH+06; p.94], (see ch. II.10.3).
• Avoid consistency gaps [HDH+06; p.94].
• Allow coverage analyses whether all requirements are sufficiently consid-

ered in all further processes [HDH+06; p.94].
• Support of verification procedures [HDH+06; p.94].

Typically, the following processes are important for valuable traceability in-
formation [Pi04; p.103ff], [Kn01b; p.49ff], [KP02; p.21f]:
• Define the entities and relationships to be traced,
• Capture traces,
• Extract and represent traces,
• Maintain traces;

II.10.4.3.1 Define the Entities and Relationships to Be Traced

At first, an organization must define what entities and what traces are needed.
Pinheiro calls this the trace definition phase [Pi04; p.103]. In order to achieve
efficient and valuable traceability, Weber and Weisbrod call this the real chal-
lenge about traceability [WW03; p.22]. The discussion about CTMs in the chap-
ters above provides an overview of the entities and traces that can be considered.

As differences in interpretation are a source for errors, definitions of entities
and traces should promote a uniform understanding [Pi04; p.104]. Concerning
trace definition, a CTM should consider the following aspects [Pi04; p.110]:
1. Define a few basic types as a manageable set of the most important infor-

mation.
2. Allow the specification of user-definable traces to allow easy adaption to

user or project specific needs.
3. Allow the use of rich representations of traceable objects as, e.g., representa-

tion by multimedia content to support nonfunctional tracing.
Knethen [Kn01b; p.40] emphasizes that a precise general definition of the

types and kinds of traceability relationships to be maintained is currently missing
(cf. also [RJ01], [RE93]). The semantics rather strongly depends on the usage
purpose [Kn01b; p.40].

In the author's view, this may be normal because traceability approaches are
not useful per se, but have a considerably strong pressure to provide benefit ch.
II.10.5). Besides, a large variety of possible traces exist. Thus, rather use-driven
approaches may be better to maintain and more specific than general approaches.

Pinheiro further emphasizes that the description of the traces by a CTM
“should resemble the ways traces occur in the real world” [Pi04; p.104]. Other-
wise, if a mismatch between the traces defined in a CTM and the traces really

II.10 Requirements Traceability 231

captured exists, dangers will arise that on one side things are captured that have
not been there and then again things may be retrieved that never happened [Pi04;
p.104]. Concerning the tool introduced in part III, the author has considered this
problem by developing a process heuristic helping designers to capture traces
resembling designers' thinking and proceeding (see ch. III.18.2.4).

Further, the authors thinks that CTMs must also consider what Ebert calls
the “life-cycle of a requirement” meaning that requirements become valid, may
change several times and may also become invalid [Eb08; p.260]. Correspond-
ingly, R2A (see part III) also supports a mechanism to consistently maintain
traceability information according to the requirement's life-cycle (see ch.
III.22.2).

II.10.4.3.2 Capture the Traces

This aspect deals with processes concerned with the establishment of traces; also
called trace production [Pi04; p.104]. Such processes must address the questions
when an identified information is captured, how, and by whom [KP02; p.21]. In
some cases, traceability establishment may be automatable. A discussion of this
is provided in ch. II.10.4.2.20 above.

Referring to [Pi96], Knethen and Paech [KP02; p.21] describe two ways
traces can be captured:
• Off-line: describes approaches that demand trace capturing as separate activi-

ty of the actual development activity. This kind of approach can be per-
formed manually, or automatically. Dependency analysis approaches that au-
tomatically extract trace information from source code are an example of au-
tomated off-line trace capturing.

• On-line: describes ways of capturing traceability information while perform-
ing a development activity. This is why most of these approaches are auto-
mated ones, but also manual approaches can support these ways. This is sup-
ported by the approach described in part III.
Pinheiro explicitly emphasizes that a CTM must consider trace capture pro-

cesses [Pi04; p.104], because first of all, only these traces are captured being
recognized before, but – even more important – trace capturing may be the crux
deciding about success or failure of traceability. In ch. II.10.5, the author ex-
plains that trace capturing faces a significant benefit problem and it may directly
interfere with the developers' actual development activities [KP02; p.21],
[AR05]. Traceability approaches may only succeed if they solve these problems.

Dömges and Pohl emphasize that off-line approaches (Dömges and Pohl call
these approaches trace reconstruction [DP98; p.58]) tend to traces that “are typi-

232 II. Rationale Management and Traceability in Detailed Discussion

cally incomplete and idealized in order to meet certain expectations” [DP98;
p.58]. As a solution for this problem, Knethen and Paech [KP02; p.26], [Kn01a],
[Kn01b] propose recording traceability information on-line as a by-product
[KP02; p.26] of normal development activities. Pinheiro emphasizes that many
functional traces could be captured as a by-product [Pi04; p.108]. Accordingly,
the approach introduced in part III supports a manual traceability establishment
approach that tries as much as possible to support traceability generation as a by-
product of designers' normal design activities.

As an additional problem of solutions such as the solution described in part
III, capturing traceability faces special difficulties when tool boundaries must be
bridged. Weber and Weisbrod experienced tool couplings as often immature
[WW02; p.23]. As a solution to avoid negative effects of tool couplings, they
recommend minimizing linking between two tools to be bridged and propose
using methodological approaches as design guidelines to reduce interconnections
and thus linking efforts [WW02; p.23]. A detailed discussion on tool couplings is
provided in the following chapter about traceability tools.

II.10.4.3.3 Extract and Represent Traces

This process aspect deals about extracting and representing specific infor-
mation from the set of gathered information, so that the information need is ful-
filled in an optimal way. In other words, the processes must answer “how to ex-
tract and represent what information is needed by whom to fulfill what purpose”
[KP02; p.22].

Different and flexible ways for trace extraction should be possible. In Pin-
heiro's eyes, three different modes should have appropriate support by trace ex-
traction mechanisms [Pi04; p.105]:
• Selective tracing shall allow to “restrict the tracing to certain selected pat-

terns” of entities and relations. In this way, only certain specific classes of
entities and relations could be considered. More sophisticated approaches
could also include contextual information (as for example the development
phase) as selection criterion.

• Interactive tracing means to allow an interactive browsing mechanism to
navigate backward and forward in the model.

• Non-guided tracing shall allow the user to arbitrarily step from entity to
entity analyzing contents as demanded. This shall ensure convenient tracing
when little information on what or how to trace is available.
In [PG96], Pinheiro and Goguen show how all three modes can be realized

with the traceability tool TOOR (discussed in the following chapter about tools).

II.10 Requirements Traceability 233

Extracted information must be represented in a fashion supporting the trac-
ing process. “It should effectively help to fulfill the need that triggered the trac-
ing” [Pi04; p.106].

Further, the extraction procedure and the information representation should
be intuitive in order to be regarded as useful and efficient. Otherwise, “it may be
simpler to go around and to informally ask people” [Pi04; p.106] about any rele-
vant information (see also [SS07]).

Summoning up trace extraction, a traceability approach should support the
following criteria [Pi04; p.110]:
• Provide different and flexible ways for extracting information,
• Extraction should be context sensitive,
• Extraction procedures should get the information needed to satisfy tracing

needs;
In ch. III.22.1, the author shows how the considerations about trace extrac-

tion are realized in the tool solution described in part III.

II.10.4.3.4 Maintain Traces

“Traceability is a great feature, but the real challenge is deciding which traces to
maintain” [WW02; p.22]. Once captured, traces must be continuously maintained
in order to keep its validity. Process definitions must define when traces must be
maintained, how, and by whom. The process activities are similar to the trace
capturing processes. Especially for maintaining traceability information, suitable
tool support is essential (see next ch. II.10.4.4) when high numbers of relations
are involved. Instead, less sophisticated solutions basing on spreadsheets and
traceability matrices tend to be hard to change [LW99; p.340].

Ch. III.22.2 describes how the trace maintenance and general artifact con-
sistency can be improved by the tool solution introduced in part III.

II.10.4.3.5 Processes and the Traceability Environment Circularity
Problem

Concerning traceability environments and their processes, Pinheiro [Pi04;
p.101ff] could identify a circularity problem: On the one hand, only primarily
registered traces are considered, on the other hand, only traces can be registered
that have been perceived before.

The problem discloses when considering the way traceability usually is in-
stalled and used:

234 II. Rationale Management and Traceability in Detailed Discussion

1. At first, a CTM defining the potential traces is built up in the definition
phase.

2. During the capturing phase, the traces are perceived and captured in the
environment.

3. Later, a real need for information about the traces surfaces.
4. During the extraction phase, retrieval mechanisms of the environment shall

help to gather the needed information out of the traces.
Now, the drawback on this is that information collection must be prepared

and executed before the real information needs are exactly known. Correspond-
ingly, situations occur that the collected information misses the real needs or it is
incomplete at last.

Trying to avoid this gap by collecting as much traces as acquirable leads to
high efforts spent on collection and maintenance of data with questionable value
for the project. In the end, this leads to negative impacts endangering any value
of traceability.

Another opportunity to avoid the problem would be to defer traceability
capturing to a later point in time, when the real information need has already
surfaced. However, up-to-now, almost all tracing concepts demand for infor-
mation capture beforehand [Pi04; p.102]. Some automatic procedure may delay
information capturing to a later point of time, but the types of information to be
gathered must still be known beforehand in order to develop adequate algorithms
or mechanisms.

A way to avoid this may be to make the recreation of the original situations
when the trace capturing took place possible. This can be achieved by including
multimedia support that can, for example, record meeting discussions about deci-
sions [HPW+99]. Another possibility is to find ways to avoid the need for explic-
it links. For this, methods for knowledge discovery and pattern mining [ESS02],
or information retrieval techniques [ACC+02] have been proposed.

In many cases, however, the only opportunity may be to reiterate the steps
mentioned above several times to evolve the traceability models and processes
according to newly gathered experiences.

II.10.4.4 Tools

Based on numbers provided by a survey of the London School of Economics
analyzing about 100 companies in Europe and USA, Ebert [Eb08; p.290] pro-
vides a good schema showing the connections between efficiency, processes and
tools (see fig. 10-2). This shows that proper processes can have a significant
influence on efficiency but in connection with the right tools the influence is even

II.10 Requirements Traceability 235

higher. Also tool support alone without process support only provides minor
advantages leading to the view of Ebert “before thinking about … tools, … (an
organization) should cope with … (its) processes” [Eb08; p.292 (*)].

What Ebert wants to express is that a tool alone does not guarantee proper
usage. Instead, good processes provide higher efficiency potential, but good pro-
cesses in combination with good tools reveal synergistic effects significantly
leveraging the project quality and efficiency.

But, Weber and Weisbrod observed, when engineers request improved tool
support, great opportunities exist for also improving processes and practices as a
by-product [WW02; p.22]. Besides, employing new tools generally leads to more
work and learning processes at the beginning, when processes also must be
adapted to a certain point to fit to the tools.

Figure 10-2 Efficiency gains, process orientation and tool support [Eb08; p.290]

Correspondingly, in the author's opinion, processes and tools should be
adapted in the following way:
1. At first, the important aspects of processes must be identified and defined

first.
2. Then, it should be tried to bring these 'process cornerstones' into practice. In

this phase, tool support is not decisive. It rather deals with implementing pro-
totypical processes to acquire feedback from practice whether the intended
processes are capable to fulfill the intentions.

3. In the meantime, adequate tool support should be evaluated. If such support
could be found, the corresponding tool should be integrated into the process
environment.

236 II. Rationale Management and Traceability in Detailed Discussion

4. Now, a phase of learning in practice can surface the interactions between
processes and tools. Thus iterative190 improvement of the processes and its
tool support must ensure proper integration of both.
The R2A tool discussed in part III also tries to identify certain process cor-

nerstones that are implemented in the tool, but also tried to ensure freedom for
adaption of the processes and the tool environment. Weber and Weisbrod empha-
size, however, that a poor tool solution can also discredit well defined processes
and vice versa. Correspondingly, the application of REM-tools in concert with
processes “provide an opportunity and a risk in RE process improvement”
[WW02; p.23].

Table 10.3 Kinds of traceability tools according to [GF94] and [Kn01b; p.57]

 General-purpose
tools (e.g.,
spreadsheets)

Special-purpose
tools (e.g., tool
couplings)

Workbenches
(e.g., REM-
tools)

Environments
(e.g., CASE-
tools)

Strengths - Adaptive
- Sufficient for
small projects

- Tight traceabil-
ity for particular
requirements-
related activities

- Fine-grained
relationships
within REM
phases.
- Additional
REM checks

- Provide ongoing
traceability
- Flexible

Deficiencies - Initial configura-
tion costs inten-
sive
- Most only elec-
tronic version of
paper
- Poor control and
integration

- Restricted
- Poor integration,
and information
management

- Poorly inte-
grated
- Distracting
- Tool dictation

- Traceability
typically coarse-
grained
- Tightness of
traceability var-
ies
- Flexibility
counter-balanced
by poorer tracea-
bility

Dömges and Pohl [DP98], (cf. also [KP02; p.23]) provide an evaluation

about the adaption of traceability environments to project-specific needs. They
were able to identify three key requirements traceability tool support must fulfill:

190 Dömges and Pohl state a similar view in emphasizing the constant need for iterative,

i.e., continuous improvement of traceability practice: “It is essential to establish and
continuously improve organizational knowledge about project-specific trace defini-
tions” [DP98; p.61].

II.10 Requirements Traceability 237

1. In order to reduce the capture effort, the environment must provide good
integration into the process environment.

2. Further, the traceability mechanisms must adapt to the usage situation, mean-
ing the tasks to perform for establishing, maintaining, and using traceability
information must not interfere with the original tasks to perform.

3. Last but not least, a tool must support organizational knowledge creation,
what means that the created information must be propagated to any involved
stakeholder and long-term collaboration must be taken into account.
Concerning tool support for traceability, Knethen [Kn01b; p.57] provides an

overview on tools summarizing a survey performed by Gotel and Finkelstein
[GF94] shown in table 10.3. It compares four types of tools:
• General-purpose tools are general tools used for common – non-requirement

specific – usage purposes. In this category spreadsheet applications are often
used for manually documenting traceability matrices (see ch. II.10.4.2.2).

• Special-purpose tools are tools developed for special requirement related
activities as, e.g., to document information gathered for requirement elicita-
tion.

• Workbenches try to offer a complete integrated set of functionality to support
REM. “They are typically centered around a database management system,
and have tools to document, parse, organize, edit, interlink, change, and
manage requirements” [GF94; p.95].

• Environments try to offer integrated tool chains to support all development
phases of a project. These tools are also called application life-cycle man-
agement (ALM) solutions.
In today's commercial tool market, these four categories still have actuality,

as the following chapters show.
Additionally, Rupp et al. [RS07; p.399] identify a fifth category:

• Mutants are tools originally designed for other purposes but now also used
for traceability purposes.
The following chapters describe these categories in more detail and provide

some typical tools for the different categories. As the number of tools market in
research and commercial use is very vast, only a small but rather representative
portion of the available tools is described. Any other tools not mentioned here
should be mappable in some of the categories described here.

II.10.4.4.1 General-Purpose Tools

In many projects, general-purpose tools, such as spreadsheets or text documenta-
tion programs, are still used [PR09; p.155] in small projects for documenting

238 II. Rationale Management and Traceability in Detailed Discussion

traceability matrices [Pi04; p.107]. However, problems as circuitous capturing,
difficult maintenance of changing traces, difficult trace extraction (especially
concerning bidirectional traceability) are major drawbacks. However, the gener-
ality of spreadsheet tools sparks new usage concepts as, for example, the tool
Vector eASEE [Eb08; p.289-327] uses the spreadsheet application Microsoft
Excel® as basis for an ALM-based traceability support (see the sub chapter about
ALM solutions).

II.10.4.4.2 Workbenches (REM-Tools)

Workbenches are what the author in the chapters before called REM-tools such as
IBM Rational DOORS. Evaluating reasons for the SW project success for several
years the Standish Group's Chaos report of 2001 comes to the conclusion that
REM-tools “seem to have the biggest impact on the success of a project” [St01;
p.10], thus recommending the usage of an adequate REM-tool as top priority need
of any SW development project [St01; p.10].

Rupp et al. provide an extended discussion about help and use of REM-tools
and how to introduce a tool in project practice [RS07; p.395-408]. A vast number
of different solutions exist. The International Council on Systems Engineering
(INCOSE) provides a comparative survey191 of current state-of-the-art REM-
tools. Other information can be found in the iX study on current industry practice
and available tools for REM [HMC+07], [Eb08; p.289-327], [RS07; p.395-408],
or [DP98]. Lang and Duggan [LD01] list the basic functionality a REM-tool must
support. Rupp et al. [RS02; p.420] provide a summary of minimum requirements
and helpful optional requirements a valuable REM-tool solution should provide.

According to Weber and Weisbrod, REM-tools “are the number one instru-
ment for leveraging RE practices – which means they still must be improved”
[WW02; p.23]. To spark further improvements they enlist a set of deficiencies
REM-tools should improve:
• The tools should offer “basic workflow support, such a powerful filter and

view capabilities and sophisticated view management” [WW02; p.23].
• Such tools must be easily adaptable via a standard programming language to

support quick adaption to project or company specific needs. The authors
express here special concern that the REM-tools must provide possibilities
options for external access to enable easy adaption of integration with other
tools.
Traceability is usually established via links or traceability matrices, or a

combination of both. Some also support features for automated traceability estab-

191 http://www.incose.org/ProductsPubs/products/rmsurvey.aspx; (Access: 2009/10).

II.10 Requirements Traceability 239

lishment. As it is the market leading tool for requirements management in tech-
nical development (especially in the automotive industry) [Mu06b], IBM Ration-
al DOORS is discussed as a representative for all commercial REM-tools in this
thesis. IBM Rational DOORS supports the following kinds of traceability:
• Evolutionary traceability is supported by history and baselining mechanisms.
• Through a linking mechanism, any items present in IBM Rational DOORS

can be linked with each other. Thus, intra- as well as between-artifact trace-
ability is supported. The established links can be alternatively represented as
a traceability matrix or as graphical visualization. However, in the author's
practical experience, both alternative representations are of limited value as
they get increasingly confusing with growing numbers of traceable items.

• IBM Rational DOORS supports assigning attributes (resp. properties) to any
traceable item. It further supports attributing of traceability links, thus allow-
ing different semantics of traceability links to be modeled and gathering me-
ta-information on traceability relationships. However, no dedicated meta-
model support is provided. The attribute information can be used to create
powerful filter and view capabilities as requested by Weber and Weisbrod
[WW02; p.23].

• IBM Rational DOORS has no specific support for any REM process, where-
as other tools exist with dedicated support specific processes. As an example,
the tools IBM Rational RequisitePro or IrQA offer dedicated support for use
case driven development.

• Last but not least, IBM Rational DOORS provides with the DOORS Exten-
sion Language (DXL) a scripting mechanism to support quick adaption to
project or company specific needs also allowing access from outside as re-
quested by Weber and Weisbrod [WW02; p.23].
However, traceability workbench tools such as IBM Rational DOORS have

a significant disadvantage:
• IBM Rational DOORS has its strength in text-based artifacts meaning that

text-based artifacts can be split into single traceable items that can be related
to each other. Even though some extensions such as DOORS Modeler exist,
IBM Rational DOORS has only weak support for model-based engineering
methods Other REM-tools may provide a slightly better modeling orienta-
tion192, but the discussion in ch. II.10.6 shows that coupling design with the
requirements domain is generally difficult.

192 For example, IBM Rational Reqtify, Borland Caliber RM or IRQA rather support

requirement management methods basing on a use case concept similar to UML.

240 II. Rationale Management and Traceability in Detailed Discussion

II.10.4.4.3 Special-Purpose Tools

Special-purpose tools describe tools that only support a certain aspect of tracea-
bility. The following lists some of the wide variety:
• Tool couplings have gained rising interest in the recent years. Especially

concerning safety-critical embedded development an urgent need for contin-
uous tool support has been identified [Gr05; p.421], [Br06; p.37]. Corre-
spondingly, special tool couplings as support for traceability may be the
most encountered special-purpose tools.

• RatMan support: As discussed in ch. II.10.8, combining traceability and
RatMan approaches are promising, because both have supporting effects.
Correspondingly, several tool support exists in research (see [HWA+07] and
ch. II.10.8).

• Support for requirements elicitation such as contribution structures [GF94]
allowing modeling stakeholders and their relationships or the WinWin ap-
proach ([BEK+98], [BK06], [WinWin]) supporting requirement negotiation
between stakeholders.

• Support for variation and product line management [Si98], or also referred
to as feature models ([BP06], [RPP04], [RTM02]) provides an extension of
REMAP (see ch. II.10.8) for product line engineering.

• Marcus et al. [MXP05] show a prototypical tool TraceViz that integrates into
the Eclipse IDEs and supports traceability visualizations basing on traceabil-
ity information collected by other tools.

• Event-Based Traceability: Cleland-Huang et al. [CCC03] extend the ordinary
link concept by a publish-subscribe mechanism. When an item is changed an
automated notification event mechanism propagates change messages to all
linked items thus supporting consistency maintenance. Their tool approach
bases on IBM Rational DOORS.

• Han [Ha00], [Ha01b], [WH02] introduces the tool approach TRAM (Tool
for Requirements and Architecture Management) for system requirements
and system architecture management with dedicated focus on traceability
and rationale documentation. The approach relies on a documentation tem-
plate that can be integrated into REM-tool environments such as IBM Ra-
tional DOORS, but also a standalone solution exists basing on HTML or
XML. The approach also has implemented a model to document decisions on
system requirements or system architecture.

• As reliable exchange of requirements information between OEMs and sup-
pliers is an essential concern in automotive industry, the HIS (see ch. I.7) has
defined the Requirement Interchange Format (RIF) standard file format to

II.10 Requirements Traceability 241

ensure reliable exchange of requirements between different REM-tools. RIF
also allows exchanging traceability link information.

II.10.4.4.4 Application Lifecycle Management (ALM) Environments

Above all, large projects need to dynamically reference information created and
maintained in a variety of tools and platforms [Ra98; p.43]. Application life-cycle
management (ALM) solutions offer integrated tool chains to support all develop-
ment phases of a project. In this way, produced development results in one inte-
grated tool shall be usable in any other tool where these results are needed. Cor-
respondingly, traceability is a basic feature of ALM solutions. Thus, in principle,
traceability can be established between any items managed in an ALM solution
via establishing links, but, in practice, due to the high amount of items possible to
trace, establishing traceability is often difficult. Further, due to the very general
character of ALM solutions, traceability is one of a diversity of aspects covered
leading to no support by specific traceability functions and no specific traceabil-
ity processes. Thus, in ALM solutions establishment and usage of traceability
often prove cumbersome.

Known commercial ALM tools are IBM Jazz, Vector eASEE, Microsoft Vis-
ual Studio Team Server, MKS, or Siemens PLM Teamcenter.

The Ophelia193 research project (“Open Platform and Methodologies for De-
velopment Tools Integration in a Distributed Environment”) is a European project
for developing the theoretical basis to integrate development tools into an inte-
grated process chain. The attempt's goal is to define an architecture to couple
tools as a bus system along the development life cycle. This allows linking ob-
jects of different development tools together to support traceability. Additionally,
traceability information can be coupled with a notification messaging system
allowing users to register for event notifications on events such as object chang-
es. Such notifications can then be used to automatically trigger further change
management mechanisms.

Mohan and Ramesh [MR07] introduce a tool-suite to integrate different
tools in a traceability model with a collaborative environment. One major idea is
to combine knowledge fragments (design elements, requirements and rationale)
stored in different tools within an integrated knowledge map. Through the collab-
orative environment, group decision and negotiation shall be improved on basis
of the knowledge map.

193 See, e.g., http://entwickler.de/zonen/portale/psecom,id,101,online,624,.html (Access:

2010/09).

242 II. Rationale Management and Traceability in Detailed Discussion

II.10.4.4.5 Mutants

Rupp et al. also refer to another tool type called 'mutants' [RS07; p.399]. These
are tools developed for a different purpose but now also used for fulfilling tracing
demands. Such a solution is, for example, the UML-tool Enterprise Architect also
providing internal mechanisms to specify requirements and relate them to UML
elements and diagrams. However, Enterprise Architect is not an REM-tool and
thus lacks many features usually provided by a valuable REM-tool solution.

II.10.5 Traceability and its Benefit Problem

The production of traces and capture are very important aspects for the traceabil-
ity models and a model may be just too complex to be efficiently used [Pi04;
p.99]. A study [BSA07] assessing the reasoning behind decisions for using trace-
ability in development practice indicates that traceability is not very often used in
project practice except in projects with safety-critical background or when certain
development standards (see ch. I.7) are employed.

In practical employment, traceability often faces difficulties to be imple-
mented in an economically justifiable fashion [HDH+06; p.93], [Cl06; p.2],
[LLY+08; p.102] .

Ambler194 [Am05] describes the handling of requirements from the agile
perspective. Concerning traceability, he admits its value when regulatory objec-
tives as regulations in safety-critical environments are concerned. However, he
advises against unreflected usage in situations where it purely seems to be a good
idea. As main concern, he mentions the high efforts needed and refers to two
critical points he has observed at companies with traceability culture:
1. High efforts for traceability: Traceability organizations often tend to update

artifacts on a regular basis in order to keep consistency. This leads to high
documentation maintenance costs. Ambler rather recommends following the
best practice “Only update if it hurts”. Nuseibeh et al. [NER00] point out that
even resolving all inconsistencies can have significant negative effects be-
cause resolving inconsistencies often implies “resolving fundamental con-
flicts or making important design decisions. In such cases, immediate resolu-
tion is not the best option. ... Sometimes the effort to fix an inconsistency is
significantly greater than the risk that the inconsistency will have any ad-

194 Ambler has a strong notion for the agile development movement; however some of his

criticisms have a certain legitimation.

II.10 Requirements Traceability 243

verse consequences.” [NER00; p.26]. In these cases, even ignoring the in-
consistency may be a proper option.

2. Tendency of high degrees of redundancy: Secondly, traceability cultures tend
to store the same or nearly the same information on several places. This aris-
ing redundancy will lead to extra change effort and inconsistencies unless all
redundant information spots are correctly updated. Traceability can help to
find all redundant spots. However, traceability is here more a cure for the
symptoms, whereas avoiding redundant information avoids the cause and the
extra efforts needed for traceability and updating of information. Therefore
avoiding redundant information should have higher priority than allowing
redundancies that are traceable to each other. In describing practical experi-
ences concerning maintainability of requirement artifacts, Ebert also recom-
mends avoiding redundancies [Eb98; p.183].
“Requirements traceability is a work intensive task that can only be

achieved when the organization supports it” [Wi05; p.332 (*)]. Gotel and Finkel-
stein [GF94] diagnose that traceability problems primarily arise as consequence
of communication breakdowns between developers under strong strains of time
additionally hampered by lacking tool support and experiences of lacking benefit
(cf. also [Cl06; p.2]). As in current practice traceability is usually established
manually [Cl06; p.2], [LLY+08; p.102], these processes are time consuming,
arduous, error prone, and hard to maintain [Li94; p.21], [Cl06; p.2], [LLY+08;
p.102]. The following influence factors can be identified:
• Granularity or level of detail: At one side current traceability tools and pro-

cedure often lead to coarse-grained granularity of traced items and thus to
coarse IAs [KP02; p.14], [BA96]. “Tracing at a low level of granularity sup-
ports a much more precise form of traceability but can create an excessive
amount of work” [Cl06; p.2]. Dömges and Pohl show that too detailed traces
can lead to clutter hampering understanding and maintenance. A way to re-
duce traceability costs is to perform lean traceability [EGH+07], [Cl06; p.2].
However, as shown in ch. II.10.6.2, safety-critical systems development de-
mands for fine-granular linking.

• Automation: According to Egyed et al., “while some automation exists, cap-
turing traces remains a largely manual process” [EGH+07; p.115] and such
links degrade over time and must be continuously maintained. Correspond-
ingly, if the degree of automation could be increased, efforts for capturing
and maintaining traceability could be reduced.

• Understanding and intention: Further, the type of usage of the link infor-
mation must be considered: Egyed et al. [EGH+07] distinguish between
short-term utilization (are all requirements considered?) and long-term utili-
zation (assessing a particular change years later). Short-term utilization is

244 II. Rationale Management and Traceability in Detailed Discussion

more or less covered by the simple link concept usually applied by today’s
traceability understanding, whereas for mid- and long-term utilization of
more complex relations additional information such as decisions and their
rationale must be considered. According to Pinheiro [Pi04; p.101ff], the
problem is more general: It is on the one side impossible to record all possi-
ble traces. On the other side, the traces must be established, before later the
actual trace need is known. Thus, it is highly possible that the wrong traces
are recorded.

• Pre-defined structures: A way out of this problem is to use pre-defined struc-
tures such as proposed by Ramesh and Jarke [RJ01], but this can lead to un-
necessary bureaucracy [Pi04; p.99], whereas establishing traceability is a
“very dynamic activity guided by necessity and not by pre-defined structure“
[Pi04; p.99].

• Formality: Formality is needed because it simplifies the tracing process,
allows precise semantics, and eases automation [Pi04; p.100]. On the other
side, informality is needed because most information is inherently informal
(e.g., natural language) [Pi04; p.101]. A simplification of informal traces to a
formal structure is problematic as shown in ch. II.9.4.2.

• Intrusiveness (cf. ch. II.9.1.4): Trace establishment may interfere directly
with the actual development activities [Pi00; p.3], [KP02; p.21], [AR05]. “It
may impose an overload on people carrying out these activities. The less in-
trusive the trace production, the efficient and accurate the use of the tracing
model is” [Pi00; p.3].

• Grudin's principle ([Gr87], [Gr88], [Gr96b], ch. II.9.4.2): According to
[AR05] and [BSA07; p.307], traceability is poorly recorded because of lack-
ing direct perceived benefit. This matches with Ebert's observation that “de-
velopers often live in a 'shadow world', where processes and tools are only
used pro forma because management wants them to” [Eb08; p.333 (*)]. In
the context of safety-critical development standards, traceability may also
often be performed in order to fulfill assessment needs instead of real project
needs.

• Links degrade over time and must be continuously maintained [EGH+07;
p.115].
“As traceability is legally required in many safety-critical software systems,

the question is 'what is the right amount of traceability?' and 'what kind of trace-
ability can be used to achieve the desired results in a cost-effective way?' Organi-
zations trying to improve their ability to manage change effectively must ask very
similar questions.” [Cl06; p.3].

According to Pinheiro's opinion, the following points must be considered for
improving traceability benefit [Pi04; p.110]:

II.10 Requirements Traceability 245

• As much automation as possible should be used.
• The persons recording traceability information must understand how this

information might be used in the future.
• Traceability information must be recorded as close to its occurrence as pos-

sible [Pi04; p.104].
Dömges and Pohl [DP98] further emphasize that traceability should evolve

as a side-effect of the daily development activities and not cause extra bureaucra-
cy.

Links can already degrade during the process activity they have occurred.
Especially during design performed decisions are often adapted again, when the
design proceeds. In practice, to avoid extra effort for traceability maintenance
resulting from later design decision corrections, traceability is often recorded
after the design process has been performed (see also comments to ENG.3 BP.2 in
ch. I.7.2.3). However, at that time many of the correlations are already forgotten.
Thus, Wiegers emphasizes that traceability must be recorded as a by-product
during the activities and not afterwards [Wi05; p.333].

Accordingly, to address the benefit problem, the tool solution described in
part III especially aims to provide a method allowing designers to capture the
traceability information as a by-product with as less extra effort as possible not
disturbing the designers at their actual tasks.

II.10.6 Traceability between Requirements and Design

Traceability helps to know how and why requirements are satisfied by system
development products, because “traceability gives essential assistance in under-
standing the relationships that exist within and across software requirements,
design, and implementation” [Pa97; p.364]. Ch. II.10 shows that the current
traceability concept goes beyond this view as it includes other aspects as re-
quirement elicitation or testing. However, the main topic of this thesis, described
in part III, exactly matches the goal Palmer ascribes to traceability. The follow-
ing chapter within this general chapter about traceability will summarize the
fundamental issues and approaches research on requirements traceability to de-
sign has collected in the recent years.

II.10.6.1 Theoretic Research Results

Boerstler and Janning [BJ91], [BJ92] use traceability information for designers
to automatically derive design from analysis artifacts (see also [Kn01b; p.39],

246 II. Rationale Management and Traceability in Detailed Discussion

[KP02; p.04]). As design depends on analysis, parts of the design could be gener-
ated automatically via transformation processes basing on traceability (also cf.
[Li94; p.14], [KP02; p.04]). Such approaches assume close connections between
analysis and design artifacts as it is assumed by UML, but this may only be the
case for certain aspects of design such as the data model. As described in ch.
I.5.4, such approaches are used in practice as, e.g., in the automotive domain,
Matlab or ETAS ASCET are used to analyze the requirements of certain func-
tional parts as an analysis model that can then be transformed into a design model
and code with applied automatic code generation. At certain circumstances, how-
ever, design of the remaining parts must then take special care to integrate these
transformed parts thus leading to design of needed mechanisms for integration.
The tool solution described in part III tries to take this into account by offering a
framework to integrate several tools in one integrated design (ch. III.16.2).

Other approaches try to better integrate requirements-related concerns into
the modeling languages195. Ambriola and Gervasi [AG98] present a visual design
language, where NFRs can be directly represented in design diagrams. Graham
[Gr03] tries to show how to better integrate NFRs in UML-based designs.

Cleland-Huang et al. [CSB+05], [CS03], [Cl05] propose to use a goal graph
for modeling NFRs with their interdependencies. Later, when a change on a func-
tional design model is performed a probabilistic information retrieval algorithm
tries to automatically identify affected NFRs. The modeled goal graph then can
help to identify tradeoffs with other NFRs. As discussed in the chapter before,
automatic approaches have not yet succeeded in practice. Therefore, they are
neglected in part III. In [HKL09], a goal driven approach to relate NFRs to pat-
terns is introduced resembling the goal graph approach of Cleland-Huang et al..

Orienting on Dömges and Pohl's [DP98] proposal that traceability shall be
established as a by-product [Kn01b; p.50], Knethen [Kn01a], [Kn01b], [Kn02]
describes an UML-based design approach for embedded real-time systems having
the goal that traceability directly emerges from design activities by employing a
formal modeling approach. The approach itself bases on a meta-model extension
combining UML with the four variable model (FVM) (see ch. II.10.4.2.2) in
connection with the QUASAR project [PSS04].

Knethen aims at long-term collaboration as she tries to improve maintenance
efforts by traceability, because former studies indicated that 40-75% of total
software costs are maintenance effort [Kn01b; p.2], A special concern of Knethen
is to improve impact estimations by support of fine-grained traceability linking
models [Kn01b; p.4].

195 The interested reader may consult Galvao and Goknil [GG07] for an overview on

traceability solutions for model driven development.

II.10 Requirements Traceability 247

From this point of view, the meta-model extension of Knethen in combina-
tion with the right modeling techniques allows designing systems in a way that
traceability is recorded as a by-product of the modeling results, thus addressing
the traceability problem. To ensure that the captured information is valuable for
IAs, an empirical study on the effectiveness of IAs was performed on modeling
results of Knethen's approach. The approach, however, has the following weak-
nesses:
1. The approach must be combined with a certain theoretical development pro-

cess approach for embedded systems [KM00] that is derived from the FVM.
2. The created meta-model is very formal, complex196 and difficult to under-

stand.
3. As shown in ch. II.9.4.2, formal approaches are difficult to handle and may

interrupt designers' thinking.
4. The traceability benefit problem (ch. II.10.5) is neglected because the ap-

proach does not consider the extra efforts developers must spend on applying
the formal approach in the right manner to establish valuable traceability.

5. As discussed in ch. II.10.2, Wieringa [Wi98] shows that design at different
design levels can follow different criteria for decomposition. Thus, semantic
gaps arise only bridgeable by explicit manual linking.
As a consequence, Wieringa [Wi98] could also identify 31 different possible

link types to coherently link requirement documents, design artifacts and other
documentation. The study of Ramesh and Jarke [RJ01] also indicates that experi-
enced traceability users tend to much richer traceability link models and could
identify 17 different link types in connection with requirements and design.
When analyzing both, some link types can be seen as emerging from the structure
of a design model (such as 'part_of', 'depend_on' and 'perform'). These link types
are usually expressed in the design diagrams and relatively easy to identify by
designers. Approaches exist making these relations better suitable for IA (e.g.,
[BLO+06]). Nevertheless, these studies also indicate that significantly more dif-
ferent link relationship types may exist between requirements and design. How-
ever, the study of Ramesh and Jarke [RJ01] included several domains (such as
military, space craft and aircraft), where development costs are not that much of a
factor as in the automotive mass consumer market (see ch. I.2.3). As the study
does not differentiate traceability practices according to different development
domains, the author believes that these more complex197 link type models might

196 In the author's opinion, the approach rather infers further complication in the modeling

process than helping to reduce complication (see footnote 80 (p. 77)).
197 Some relationships might also rather infer unnecessary complication (see footnote 80

(p. 77)).

248 II. Rationale Management and Traceability in Detailed Discussion

also result from development processes with less pressure on process efficiency.
Vice versa, the automotive domain may have stronger pressure to address the
traceability benefit problems described above (ch. II.10.5). Correspondingly, this
thesis at first concentrates on addressing the traceability benefit problems in
providing direct benefit for developers. Thus, the thesis concentrates on ensuring
that the most important traceability relationships can be established in a way
promoting benefit to developers and accurateness. In this way, – hopefully – the
promises of the traceability concept can be redeemed. Research questions,
whether these links should be further differentiated into different more sophisti-
cated relationship types, are rather neglected.

Research of Gruenbacher, Egyed and Medvidovic [GEM01], [GEM03],
[MGE+03] came to the conclusion that “the large semantic gap between high-
level, sometimes ambiguous requirements artifacts and the more specific archi-
tectural artifacts often does not allow one to establish meaningful links between
them” [MGE+03; p.202]. Consequentially, they developed an intermediate model
approach they call Component, Bus, System, Property (CBSP) model connector.
It is developed as a bridge between requirements and architecture with the goal
“to facilitate the consistent transformation of a system's requirements into its
implementation” [MGE+03; p.213]. CBSP contains a meta-model, where CBSP
elements are related to requirements and derived from architecture model ele-
ments. The semantic allows specifying CBSP elements that resemble require-
ments but do not directly represent an architecture. They rather help to identify
architectural components, properties, relations, and styles leading to an architec-
ture. In this way, the CBSP elements can also be seen as an extended link concept
allowing evolutionary consistency [GEM03; p.251], because the CBSP model
also can be seen as a means to capture rationale about the decision process.
“CBSP is a tool-aided, but highly human-intensive technique” [MGE+03; p.202].

The author considers this solution as rather disadvantageous because the so-
lution introduces a new artifact (the intermediate model) significantly raising new
redundancies and complication (see footnote 80 (p.77)). As an alternative solu-
tion to the gap problem, the R2A solution provides a decision model approach
(ch. III.19 and ch. III.20) that promises to be more light-weight and easier to use
for designers and thus might have better chances to succeed in practice.

II.10.6.2 Tool Couplings between REM- and Design Tools
in Practice

Capturing traceability faces special difficulties, when tool boundaries must be
bridged, but tool couplings are inevitable when different valuable development

II.10 Requirements Traceability 249

tools shall be used in combination. As the solution discussed here is a kind of tool
coupling, the following will provide a further discussion of tool couplings con-
cerning the transition of requirements to design models. Weber and Weisbrod
[WW02; p.23] describe experiences made with tool couplings in the context of
requirements specifications and models. They emphasize that “a growing number
of specifications require complex models” what “requires engineers to develop a
specification using two or more tools: a tool for textual specifications and one or
more tools for model-oriented analysis and design” [WW02; p.23].

Correspondingly, tool-couplings shall bridge the tool gaps to ensure tracea-
bility and consistency between the artifacts. According to Weber and Weisbrod,
“most tool couplings – which usually originate in a specific project and were
designed and paid for by a specific customer – are insufficiently mature for seri-
ous development project use” [WW02; p.23]. Consequently, several of their pro-
jects started by using such tool couplings, “but later dropped them, even when
doing so would clearly require considerable manual effort or significant process
problems” [WW02; p.23]. They identified the following shortcomings:
• Speed: “In an average project, the number of linked objects can easily grow

to several thousand, which results in unacceptably slow coupling speed
(when calculating changes, for example)” [WW02; p.23].

• Integrated document generation: “Existing tool couplings don’t support this
feature, whether the documents are short status reports or lengthy documen-
tation that satisfies a standardized structure. Although a few tools are dedi-
cated to integrated document generation, they exist only in specific vendors’
tools suites and are largely useless outside of them” [WW02; p.23].

• User interface: “Tool couplings usually create redundant editors for manag-
ing cross-tool information (typically one for each tool involved)” [WW02;
p.23].

• Automation: “In most tools, the automation level is low, there is no active
administrative support, and users must initiate synchronization. Also, there is
no active support for indicating problems” [WW02; p.23].

250 II. Rationale Management and Traceability in Detailed Discussion

Figure 10-3 Traceability tool couplings via surrogate modules

Concerning tool couplings with modeling tools, at first so-called surrogate
module approaches were used. Fig. 10-3 following paragraph sketches these
approaches. Models with all containing model elements are exported from the
modeling tool and imported into the REM-tool (e.g., IBM Rational DOORS) as a
so called surrogate module. There, the linking between the requirements and the
model elements' representations in the surrogate module are performed in the
REM-tool. To ensure consistency, a regular synchronization process (as a rule
during the night) between the model surrogate representation in the REM-tool
and the modeling tool must be performed [Ha99]. In this way, traceability is
established indirectly and the relationships must be established after the design
process. The model elements must first be designed to be afterward imported into

II.10 Requirements Traceability 251

the surrogate module, where then the traceability links are generated. This indi-
rect mechanism also makes IAs difficult.

Due to these problems, current commercial tool solutions such as IBM Ra-
tional Tau [TAU], Artisan RT Studio [ARTISAN], IBM Rational Rhapsody
[RHAP–SODY] rely on a solution of Geensoft Reqtify [REQTIFY]. This solu-
tion offers a framework, where different tools can be integrated. Reqtify is more a
kind of information broker, because Reqtify does not directly care for traceability
establishment, but only cares for exchanging tool information and its visualiza-
tion.
Through Reqtify, traceability is established in the following way:
• Requirements can be obtained by a requirement source such as a REM-tool.
• These requirements can then be propagated to a modeling tool as require-

ment target. The modeling tool coupling must care for taking over the re-
quirements.

• The requirements must then be assigned in the modeling tool and thus the
modeling tool must care for how the traceability information is produced.
This information is then also saved in the modeling tool. The Reqtify frame-
work then uses this information to visualize the traceability information for
IAs.

Reqtify has the following advantages:
• Reqtify offers a high number of coupled tools.
• Reqtify also provides mechanisms to integrate tools such as MS Word or

Excel allowing to integrating other information from light-weighted tools.
• Reqtify allows making visual IAs of relationships between different tools.
Reqtify has the following disadvantages:
• The traceability information is not stored and managed by Reqtify, but the

different connected tools must find a way to store the information. In this
way the traceability information is scattered across the several tools, making
management of the information difficult.

• This also makes evolutionary traceability difficult as no integrated history
and configuration management mechanisms are provided.

• Reqtify only provides a technical solution as an information broker for mak-
ing linkings between objects of different tools possible. However, no dedi-
cated process support is offered. Instead, the tools receiving the requirements
information and where the traceability information shall be gathered must
care about how this is realized. In the author's view, this is the most critical
weakness because efficient traceability establishment must orient on the way
traces occur. Thus, the design processes must be taken into account.

• One major shortcoming arising from neglecting design processes is that
usual tracing approaches assume that requirements and the resulting design

252 II. Rationale Management and Traceability in Detailed Discussion

are in a kind of linear relationship with each other. However, as shown in the
ch. I.6.2.2, and ch. II.9, the author questions this assumption (for details see
ch. III.20). Accordingly, an adequate traceability solution for design might
need more than just linear linking but, e.g., possibilities to bridge semantic
gaps through documented decisions.
In the context of UML modeling tools, the Reqtify approach is accompanied

by the new SysML standard [SYSML]. SysML is an extension of UML to inte-
grate SysEng activities (modeling of systems and allocation of requirements onto
the system model), whereas UML formerly has merely concentrated on SE-
activities. A central improvement of SysML in comparison to UML is the defini-
tion of a 'Requirements Diagram' explicitly allowing modeling requirements and
their interdependencies. For modeling requirements traceability198 different rela-
tionships are possible (<<DeriveReqt>>, <<Satisfy>>, etc.; cf. ch. II.10.4.2.3
for details), [SV08], [HGK+09] that have a similar meaning as traceability links.
Several UML-tools such as IBM Rational Tau [TAU], Artisan RT Studio
[ARTISAN], IBM Rational Rhapsody [RHAPSODY] have dedicated SysML
support and reveal endeavors to use the requirement relationships modeled via
SysML as traceability information in combination with Reqtify. Other UML-
Tools such as Enterprise Architect provide an UML-profile for modeling SysML
(cf. also [HGK+09]).

A model based graphical support in establishing requirements traceability to
model artifacts as it is intended by SysML may by all means be desirable. How-
ever as research results described later in ch. III.21.3 indicate, these approaches
may be restricted by the fact that extensive requirement collections199 may not be
suitable for a universal graphical representation. Instead, the real value of SysML
may be to provide meta-model concepts for trace links200 (cf. also [HGK+09]).

198 See also [KS06] for an approach basing on UML's use case concept with similar no-

tions.
199 In the automotive domain, e.g., [HH04] mentions about 200 to 600 pages of a re-

quirements specification for one ECU system.
200 Other similar approaches such as the following exist: Letelier [Le02] introduces a

traceability model basing on UML and its extension mechanisms. The approach is
comparable to the traces of SysML described here but provides more fine-grained dif-
ferentiating relationship types with richer meta-information of these relationships. Due
to the rather semi-formal character of UML's semantic, Chanda et al. [CKS+09] try to
find a more formal semantic basing on UML allowing traceability and consistency
verification. Kelleher and Simonsson show another extension of UML 2.0 to achieve a
traceability concept where requirement elements can be mapped on design elements.
Briand et al. [BLO+06] introduce an approach to enable impact analysis through a de-
pendency analysis in UML models.

II.10 Requirements Traceability 253

Hove et al. [HGK+09] describe a change management process with rules for
impact analysis to analyze SysML models.

Weber and Weisbrod generally experienced tool couplings as often immature
[WW02; p.23]. As a solution to avoid necessary tool couplings, they recommend
minimizing the linking between two tools to be bridged and propose to using
methodological approaches as design guidelines to reduce interconnections and
thus linking efforts [WW02; p.23].

Pointing toward a similar direction as Weber and Weisbrod, [Ha99] empha-
sizes that with traceability establishment between the REM-tool and the UML-
tool Artisan RT by means of a tool coupling, the problem of uncontrolled 'prolif-
eration' of relationships arises. Therefore, the linking via the tool coupling should
at best be minimized by only linking to some basic elements of a model as start-
ing point (in [Ha99] these basic elements are part of an analysis model). Starting
from these basic elements, further traceability information shall then be handled
by model relationships between the basic model elements and other model ele-
ments. Now, when an IA is performed on a potential requirement change, the
relationships handled over the tool coupling in combination with the other rela-
tionships identifiable in the modeling environment shall determine the impact
[Ha99]. In terms of IA (see ch. II.10.3), this approach actually combines a coarse-
grained traceability approach with a dependency analysis approach.

Figure 10-4 Requirements fan-out effect according to Alderidge [Al03]

254 II. Rationale Management and Traceability in Detailed Discussion

Several experience reports from industrial practice (cf. [Al03], [Pe04],
[Kn01a], [Kn01b]), however, emphasize the need of more fine-granular linking
models:
1. Alderidge [Al03] directly refers on the process proposed by [Ha99]. He

observes the so called fan-out effect [Al03] leading to the negative side-
effect of overestimating the impact of requirement changes. The fan-out ef-
fect occurs because no direct traceability links to the design elements are
used. Fig. 10-4 shows an example where the requirements are only directly
mapped to use cases, whereas connections to the basic design elements are
indirectly handled as dependency analysis via other model relationships be-
tween an analysis model and other design subsystems. A model typically has
manifold relationships with different meaning. Correspondingly, a lot of de-
pendencies can be identified, thus leading to the fan-out effect. As a solution,
Alderidge [Al03] proposes using a more fine-grained linking model, in
which the use cases are not used as a basis for linking, but breaking down
the linking into more fine-grained use case steps. This solution, however,
seems more to be a cure of the symptoms. In the author's opinion, the fan-out
effect can only be avoided if fine-grained traceability linking is performed
throughout the entire solution.

2. Also Knethen [Kn01a], [Kn01b] tries to improve the correctness of IAs, but
via the option to model different traceability relationship types (similarly as
SysML defines different relationship types), thus making the linking model
more fine-granular.

3. Similar to Alderidge [Al03], Pettit [Pe04] reports from direct practical pro-
ject experiences that traceability relationships are only maintained for the
most high-level elements (in his case mostly use cases), but then not fol-
lowed down to the actual design elements and diagrams (classes, state
charts). This leads to the tendency that the actual responsibilities of design
elements are lost (cf. ch. I.8).

II.10.7 Traceability between Requirements, Design and
Code

Already in the early nineties, Tilbury [Ti89] and Kelley [Ke90] described the
complexity requirements traceability to code can bear, because “the mapping
from requirements to code often is many-to-many. This means that a requirement
could be implemented by several chunks of code and that a chunk of code could
implement several requirements. This is a fundamental traceability problem – i.e.
there is no natural one-to-one mapping from requirements to code“ [Li94; p.22].

II.10 Requirements Traceability 255

Design is commonly seen as the bridge between requirements and the code, in
which case it is a kind of model (or collection of models) of the code. Corre-
spondingly, the findings of Tilbury and Kelley should be equally valid for trace-
ability to design. This is normally seen in process (ch. I.7) and traceability theory
(Knethen [Kn01b; p.46] shows in [Kn01b; fig.3.7] a one to one mapping between
design and code), but taking the model characteristic of design into account (see
ch. I.1) two deviations may exist:
• Preterated characteristics of the code are not part of the design. Correspond-

ingly, relations between preterated characteristics and requirements would
not have any corresponding relationship in design.

• Whereas abundant properties of the design might also have relations to
requirements not really present in code. This seems not very plausible at first
glance, but the author knows at least one certain situation, where this is of
importance. A certain set of requirements may demand a special way of
modeling specific aspects of systems (e.g., strict performance requirements
may demand a performance analysis model). In this situation, the current
requirements build the rationale for a specific view modeled in design.
The only complete solution of the problem would be complete code genera-

tion out of the design model accompanied by a process documenting all ra-
tionale, why the design is how it is. At the moment, this is not possible in most
practical projects.

As an alternative, due to the close connection between code and design,
traceability between design and code can also be handled via name mapping (cf.
ch. II.10.4.2.2). Through name mapping, effort for linking can be avoided. This,
however, involves that the two problems described above exist, so that not all
possible traceability information may be recordable. As it is anyway very likely
that all possible traceability information may never be recordable (cf. [Pi04;
p.92]), the author considers these problems as an acceptable risk.

But as through name mapping no direct relationships are established allow-
ing IA, a mechanism for information retrieval201 must be established to retrieve
all locations, where the name is used. In the context of traceability between de-
sign and code, this implies that the information retrieval mechanism must at min-
imum include the information from the used design and coding tools.

For this, Cleland-Huang et al. [CSD+05] have introduced the term dynamic
requirements traceability and provide an overview of possibilities to improve
accuracy of information retrieval techniques possible for traceability situations.

201 Information retrieval can be counted to the automatable approaches discussed in ch.

II.10.4.2.2).

256 II. Rationale Management and Traceability in Detailed Discussion

Antoniol et al. [ACC+02] describe a tool support to partly automate IAs be-
tween source code and other textual documentation entities (requirement docu-
ments, design documents or code documentation). The approach bases on infor-
mation retrieval techniques indexing code and documentation. Indirectly, the
method bases on the name mapping assumption (cf. ch. II.10.4.2.2) as identifiers
are parsed at both sides and matched together using different techniques. Maletic
et al. [MMM+03] discuss a similar approach (same kinds of artifacts) but more
from the perspective of artifact evolution. In their perspective, information quali-
ty of automatically acquired links continuously degrades. Thus, information qual-
ity must be continuously maintained through link conformance analysis (links
must be regularly assessed whether they still conform to and validly express their
original meaning) and inconsistencies management. In fact, Maletic et al. address
the weakest point of the name mapping concept already discussed in ch. I.6.4 and
ch. II.10.4.2.2. This is the danger that significant drifts between artifacts can
occur over time if no adequate consistency management will be established.

Some authors also consider the information retrieval approach promising to
cover the complete artifact chain from requirements to source code. Li et al.
[LLY+08] present an approach for traceability and dependency evaluation basing
on an approach for automatically identifying candidate traces from requirements
to other artifacts by using information retrieval techniques. In the opinion of Li et
al. [LLY+08; p.101], these other artifacts, for which their approach could provide
valuable support, seem to be source code, UML-models and test cases. However,
currently the approach seems only to be tested for source code [LLY+08; p.106].
The approach mainly bases on tracing names and their synonyms between re-
quirement texts and source code. In [DLL09], the source code approach is im-
proved by a heuristic for adding comments in source code. Settimi et al.
[SCB+04] introduce and compare two information retrieval techniques for auto-
matically generating links between requirements, code, and UML models. They
come to the conclusion “that current retrieval methods may not provide an ade-
quate replacement strategy for explicit traceability links such as those defined in
a traceability matrix” [SCB+04; p.54]. On the other side, they mention that au-
tomated information retrieval approaches involve significantly less effort than
manual approaches. In this way, Settimi et al. see potential to use them in pro-
jects, in which rather costs in comparison to accuracy are an important factor.

As expressed in ch. II.10.4.2.2 and other parts, the author has certain doubts
that such approaches prove to be very accurate, when traceability between re-
quirement artifacts and solution artifacts (design or code) is concerned, because
the significant gap between the problem and solution description must be bridged
(also cf. ch. I.6.4). The low effort costs of once established automated approaches
may, however, have potential as an additional technique to identify potential

II.10 Requirements Traceability 257

relationships between artifacts otherwise overseen or neglected by developers
during manual traceability establishment. Concerning artifacts having high corre-
lating structures such as design and code, however, information retrieval basing
on name mapping has high potential. This potential is especially higher because
code is a formal language enforcing correct naming (the compiler will not accept
misspelled or synonymous names in the code), and design as a model of the code
usually uses the same names. As already mentioned above, however, the danger
of drifts between design and code can occur over time. Therefore, generally, a
better solution would be to automatically generate the code from the design mod-
el as it automatically creates the name mapping and prevents later drifts between
the artifacts. But, as ch. I.6.4 and ch. I.6.6.1 show, automatic code generation
often is only partially or even not at all available. In these cases, name mapping
may be the best means for ensuring traceability between design and code.

As this chapter has shown and in the author's view, the problem of traceabil-
ity between design and source code is solved to a high degree, whereas the real
difficulties still lie in the transition from requirements to design. Correspondingly,
in the following of this thesis, traceability between design and code (or between
requirements and code) is not further discussed.

II.10.8 Rationale Management and Traceability

The possible supporting influences of RatMan and traceability have been discov-
ered in the early nineties. Conklin [Co89] claimed that by providing design ra-
tionale, the systems maintainability is increased. As traceability has also been
seen as mean to improve systems maintainability, Ramesh and Dhar [RD92]
proposed a traceability model and tool approach called REMAP (REpresentation
and MAintenance of Process knowledge) combining IBIS with REM activities. In
REMAP, traceable objects (requirements, or design elements) can have four
connections to the decision model:
• Rationale is 'based_on' traceable objects.
• Assumptions 'depend_on' traceable objects.
• Decisions 'affect' traceable objects.
• Traceable objects 'generate' issues or conflicts.

According to Ramesh and Jarke [RJ01; p.59] the results of REMAP have
sparked development of several commercial REM-tools. [RTM02] shows an
extension of REMAP for product line engineering. In [RJ01], the REMAP ra-
tionale model is integrated into a general traceability model (see ch. II.10.4.2).

Lindvall could surface the concrete connection between RatMan and trace-
ability. According to him, traceability records the traces “between models to

258 II. Rationale Management and Traceability in Detailed Discussion

understand the system structure and to understand the implications of a certain
requirement” [Li94; p.20], whereas rationale is the means to collect the
knowledge about the process where the traces occur [Li94; p.20].

Hull et al. [HJD02; p.143-152] introduce a practice-oriented approach they
call rich traceability. The rich traceability concept bases on the extension of the
satisfy links via satisfaction arguments that provide rationale for why the satisfy
links exist. The schema can be extended by logical 'AND' and 'OR' relationships,
where n-ary satisfaction dependencies arise between different items reflecting the
reasoning of the developers. Hull et al. show the effectiveness of their approach
in modeling satisfaction dependencies between a user requirements specification
(approx. corresponds to a 'Lastenheft'; see ch. I.7.2.2.1) and a system require-
ments specification (approx. corresponds to a 'Pflichtenheft'; see ch. I.7.2.2.1),
but the authors emphasize that the rich traceability concept can be used for any
traceability relationship in principle. The examples shown in [HJD02; p.143-
152] are modeled in IBM Rational DOORS.

Dömges and Pohl [DP98; p.56] list the following possible improvements,
when capturing rationale and traceability are combined:
1. Understanding between stakeholders and thus acceptance of the system to

develop is improved because requirements can be justified.
2. Change management is improved because previously rejected solutions and

the reasons for their rejection are accessible and thus risks of neglecting
important aspects are reduced.
For Dömges and Pohl [DP98; p.56], however, rationale means not only ra-

tionale in the sense of argumentation but generally also decisions, alternatives or
underlying assumptions.

Lindvall [Li94; p.20] could also evoke that RatMan and traceability also
share similar problem areas about input, representation, and retrieval. In fact, as
ch. II.10.5 shows, RatMan also shares general problems regarding the benefit of
the information bearers.

Nevertheless, the author is convinced, if both can be recorded in non-
intrusive ways merely as a supporting by-product of normal design activities, and
both are supportive to each other, both concepts will have good chances to pro-
vide early direct benefit even for the information bearers. In this way, both may
then unfold the positive effects, which are usually ascribed to them by SysEng
and SE theory, then outweighing the costs encountered in practice.

III. PROVEtech:R2A – A Tool for Dedicated
Requirements Traceability

A fool with a tool is still a fool
 - unknown

This part describes the traceability tool solution PROVEtech:R2A (R2A) espe-
cially dedicated to cross the substantial gap between the requirements (i.e. prob-
lem space) and the design solutions (i.e. solution space).

The author is convinced that a successful development of SW based systems
is not alone guaranteed by strict compliance to SE processes someway developed
in theory, but it is at least in the same way (or maybe even higher) influenced by
both the real unique constellations of projects (so called practice) and by soft
factors as humans and their communications (e.g., cf. [Mu06a]).

Correspondingly, the solution proposed here tries to account for all three
factors. The next chapter (ch. III.11) outlines this in more detail deriving the
goals of the tool approach described here. To better illustrate the mechanisms and
findings of research about R2A, the author has tried to use an accompanying case
study whose basic characteristics are described in ch. III.12.

As derived in ch. III.11, two fundamental gaps must be addressed by the
R2A approach. Concerning the first merely tool related gap, ch. III.13 shows how
R2A intends to address this gap. In the author's opinion, the transition between
requirements and design generally is difficult, because designers perform a sig-
nificant mental transfer process from the requirements to the resulting solution
design leading to a substantial gap between both. This second gap is the core
problem. Correspondingly, ch. III.14 describes R2A's principal ideas to ame-
liorate the problem.

From ch. III.15 to ch. III.21 different mechanisms of R2A are introduced
helping to better overcome the second gap. To achieve this goal two major strate-
gies are employed.

The first strategy is to better support designers on documenting design in-
formation and providing means for capturing traceability information as a mere
by-product of normal design activities. Ch. III.15 to ch. III.17 describe mecha-
nisms to generally improve the design processes without yet considering the
requiremental dimension. Basing on these mechanisms, ch. III.18 shows then
how a more requirement-centered design process (see requirement dribble pro-
cess ch. III.18.2.4) can be employed where traceability information is rather es-
tablished and information on basic design decisions is rather captured as a by-

B. Turban, Tool-Based Requirement Traceability between Requirement and Design Artifacts,
DOI 10.1007/978-3-8348-2474-5_4, © Springer Fachmedien Wiesbaden 2013

260 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

product of the design activities. This first strategy part from ch. III.15 to ch.
III.18 can be considered as a whole complete in itself topic where the design
theory of Simon (cf. ch. I.6.2.1) dominating in the design theory about SysEng
and SE is set into context with traceability needs usually expressed by process
standards for safety-critical processes. These two aspects are then also combined
with findings of Schön’s design theory about design as situated action (cf.
I.6.2.3). So far, however, the design theories considered yet rather represent a
view on design assuming that the development of a design is rather a linear pro-
cess of step to step actions transforming information into a design at the end. The
design theories about wicked problems (see ch. I.6.2.2) and patterns (see. ch.
I.6.2.4) rather suggest that the design process is not such a linear process but
rather a complex nonlinear process driven by complex design decisions. In the
author’s opinion, design is both – in some situation design is rather a linear pro-
cess of step by step transformation of information into a design, however in other
situations complex decisions must be taken where the design rather emerges out
in a nonlinear fashion. To cover these nonlinear aspects of design, decision mod-
els have been developed allowing the documentation of rationale behind com-
plex decisions. These decision models are tightly integrated into the traceability
information and the design process building a tightly woven network supporting
all four design theories described in ch. I.6.2 by a unique integrated way. This
second major strategy to address the second gap is treated in ch. III.19, ch. III.20
and ch. III.21.

After the ch. III.15 to ch. III.21 describe the core innovational ideas how to
address the two-fold gap between requirements and design domain, ch. III.22
then shows how traceability information once gathered can be used in R2A for
impact analyses and requirement change propagation in order to ensure con-
sistency.

Ch. III.23 then discusses issues about embedding R2A and the R2A design
processes into a higher level process environment. This starts with a description,
how R2A can be used to improve supplier management. The sub chapters follow-
ing then describe how this mechanism can also be used to reduce redundancies
when different artifact models are crossed in a development project and how this
may help to have a decoupled development of different requirement and design
artifacts.

The core of R2A's innovations can be considered in the orientation on its
mechanisms. Correspondingly, R2A has been designed in a way to provide an
optimal support for the mechanisms. Last but not least, ch. III.24 provides an
overview of the architecture and meta-model of R2A that realize the mechanisms.

III.11 Research Goals 261

III.11 Research Goals

The biggest problem of system development has always been the confusion of requirements and de-
sign.

Hatley et al. [HHP03; p.27 (*)]

Concerning traceability, the transition from requirements to design has been
identified as one of the most critical issues as it includes a twofold structural gap:
• At first, requirement activities and design activities are usually performed in

different tool environments. Correspondingly, the transition usually implies
to cross a tool gap.

• More important, requirement activities deal with exploring the problem
space and design activities deal with exploring the solution space. Thus a
substantial conceptual gap exists between requirements and design.
A useful solution must try to bridge both gaps. The first gap seems more to

be a technical issue of how to couple two tools into an integrated environment.
However, as mentioned in ch. I.6 projects often use a combination of multiple
design tools for design. Thus, an adequate solution for automotive purposes must
also consider a way to couple several design tools in an integrated way. The next
chapter will discuss the issue from the merely technical coupling perspective, but
questions remain whether this gap also involves incompatible methods due to
different task performed in REM or design.

This leads to the second mentioned gap about requirements and design dis-
cussed in ch. II.10.2. Today's traceability models, as seen by theory or process
standards as SPICE, assume that requirements and its realizing design are con-
nected by simple linear relationships mappable by a simple traceability linking
schema. In reality, however, a considerable gap between requirements and design
arises from the design process as it represents a creative and complex mental
transfer process of a unique problem constellation into a sustainable solution that
is per se difficult to reproduce. During design, designers make decisions. This
gap is mentally bridged by designers by taking design decisions. Each decision
involves consequences and constrains the solution space until the solution space
(hopefully) converges to a solution fulfilling the requirements.

From the author’s perspective, the second point is the rather neuralgic issue.
The author even considers that point one actually is just a symptom for the deeper

262 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

underlying problem described in point two, because tools were at first developed
around the two core topics requirements and design having a higher cohesion202.

Now, the question arises what exactly may be the cause for the second point.
Considering the problems that RatMan solutions have with succeeding in prac-
tice, Dutoit et al. [DMM+06a; p.7] emphasize that rationale documentation
schemes usually differ from the way a rationale bearer would structure rationale
intuitively, thus creating “a cognitive dissonance that adds to the cognitive over-
head that designers must cope with” [DMM+06a; p.7].

In the author's opinion, this also is exactly the issue for a traceability solu-
tion to address in order to help to bridge the gap. When a traceability solution
helps designers to easily203 capture traceability information as a by-product with-
out imposing significant cognitive dissonance and bringing early benefit to de-
signers, it is more likely to achieve better traceability information actually useful
for projects. In this way, the promises of the traceability concept may be achieva-
ble.

Ch. I.6 has described four different theoretical views on design. All these
views describe different – in the author's view essential – characteristics of design
and its processes. However, current systems and SW design theories rather con-
centrate on design structural aspects as provided by the theories of Simon (ch.
I.6.2.1) and the pattern theory of Alexander (ch. I.6.2.4), neglecting other – ad-
mittedly more ambiguous – theories about designers' thinking and decision mak-
ing (cf. ch. I.6.2.2 and ch. I.6.2.3). The author considers improving support on
designers' thinking in order to avoid cognitive dissonance as the neuralgic point.
In R2A, this shall be achieved by a requirement centered modeling: Supported by
a suitable methodology and a newly developed tool, the necessary work for es-
tablishing traceability to design shall be intuitive for designers and support their
normal design work in a way that traceability occurs as a by-product of the usual
design process. To achieve this, also the design theories about designers' thinking
and decision making are significantly considered in the concepts of R2A.

One dedicated goal for the research was to find a tool solution whose usage
in practice really brings early benefit (ch. II.10.5). As Moro [Mo04; p.26 (*)]
points out in reference to modeling: “The primary decision criterion about what
modeling technique or level of detail is used always is the benefit for the archi-
tect”. In the author's eyes, this is correspondingly true for design traceability. The

202 In terms of software theory, it may be said that the topics requirements and design

have within each other a significantly higher cohesion within each other leading to the
development of tools within their specific topics. Later, it was then discovered that
coupling both may be a good idea.

203 In this context, 'easily' means 'does not infer further complication' or even 'helps to
reduce complication' (see footnote 80 (p. 77)).

III.11 Research Goals 263

benefit for the development team members must be in the center of traceability
approaches. Otherwise, traceability usage will fail due to Grudin's principle. A
symptom connected to this problem is the problem that traceability establishment
is often performed later after design has reached a relatively stable state (see ch.
I.7.2.3, comment on BP.2 and ch. II.10.5). In this way, the development team
especially avoids effort for traceability establishment when design must be
changed; however, paying the price that a lot of relevant traceability information
is lost. Correspondingly, a major goal is to lower the burdens for traceability
establishment and raise benefit for designers to an extent that designers rather
establish traceability as a by-product.

As traceability is mainly established by hand [EGH+07], it is often very cost
intensive and bureaucratic with little use for the development team [RJ01],
[EGH+07]. The author disagrees with the idea to lower traceability effort by
using coarser traceability to abstract high-level design elements (see, e.g.,
[EGH+07]), because feedback from practice [Pe04], [Al03] indicates the need for
detailed traceability even at lower-level design elements, but the author agrees
that traceability efforts must be lowered and benefits for the bearers of traceabil-
ity information must be significantly raised. Otherwise, traceability will always
face the benefit problems as all collaborative systems do in danger of failing due
to Grudin's principle [Gr96b] (cf. also ch. II.9.4.2).

R2A offers several characteristics contributing to lowering the effort of es-
tablishing traceability and raising benefits for the traceability bearers:
• Traceability can be easily and fast established via drag-and-drop and other

simple operations, by which multiple requirements can be selected in parallel
to perform the operations.

• The operations adapt to how designers think and perform their design steps
so that the designers can establish traceability information as a side-effect204.
The same principles guide the operations that are possible to document deci-
sions.

• All important information for a designer's situation is adequately presented
in-time to support the designer's cognitive flow. Especially in-time infor-
mation that is easily comprehensible supports designers in their phases of in-
tuitive knowing-in-action (Schneider) by preventing that important aspects
are missed. In the same way, the in-time information supports designers in
their thinking-in-action phases of rational thinking, because the facts that are
considered are directly presented. One of the most important information to

204 As already stated in ch. II.10.5, Dömges and Pohl [DP98] emphasize that traceability

should evolve as a side-effect of the daily development activities and not cause extra
bureaucracy.

264 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

mention here are requirement information and recorded traceability infor-
mation accompanied with information about important decisions.

• Connected to the points above, the author is convinced that a tool solution
for practice should be as easy to use as possible. Theoretic research often
bears theoretically sound (often in connection with strict formality), but
complex and formal solutions (e.g., cf. Knethen's solution via meta-models
[Kn01b]). However, in practice, developers often do not have the time to
work into such complex solutions but rather prefer solutions with low entry
barriers and a possibility for 'learning by doing'. This point is closely con-
nected with the discussion about formality in development methods (see ch.
II.9.4.2). The author tried to address these problems by providing an easy to
understand, basic skeleton of formal concepts in R2A. R2A then allows en-
riching this formal skeleton with further informal information205 at nearly
any location.

• R2A provides a collaborative environment where all created information is
automatically shared with other designers, who can immediately use and ex-
tend the information to evolve their further design.

• Operations for recording traceability information provide possibilities for
designers to delegate requirements to other designers, who can immediately
analyze and further process the requirements. In case of problems, possibili-
ties to reissue the requirements back to the delegating designer accompanied
by a note about the problem support the designers to communicate with each
other.

• Short communication paths between developers and designers responsible
for the model are often the decisive factor to ensure flexibility in identifying
and handling necessary and reasonable model changes [Mo04; p.25]. Since
all the steps of design work above are recorded, the communication actions
between the designers can also happen asynchronously. This improves situa-
tions in which important designers are absent, because the other designers
can delegate information (e.g., requirements or notes) to the absent designers
through R2A. The absent designers are then able to consider this information
and take actions after they have returned back.

205 At minimum informal notes can be added on any item present in R2A (see ch.

III.17.2), but also other mechanisms exist at specific locations to add informal descrip-
tions, etc..

III.12 Accompanying Case Study 265

III.12 Accompanying Case Study

Every module … is characterized by its knowledge of a design decision which it hides from all others.
 Its interface is chosen to reveal as little as possible about its inner workings.

Parnas [Pa72; p.1056]

In the following chapters, R2A and its features are described. To explain these
features, a practice-oriented case study shows how the features interact with each
other to support a good design process. Here, the basic characteristics of the case
study are introduced. Later, extra chapters show the case study outcome with the
features described.

Figure 12-1 Example use case of the case study

The case study starts with an example use case (fig. 12-1) for a lights steer-
ing device in an automotive context: At first, the system retrieves different signals
from the controller area network (CAN) bus. Then, the lights steering task de-
termines whether some lights must be activated or deactivated. Finally, the lights
are steered via pulse-width modulation (PWM) and diagnostic information is
retrieved via analog feedback, which must be analyzed.

Fig. 12-2 shows an example requirements specification for the case study in
IBM Rational DOORS. The requirements ReqSpec_2 to ReqSpec_6 are func-
tional requirements describing the use case of fig. 12-1. It is here important to
mention that requirement ReqSpec_2 is a special case as it also describes the
context of the system. In this way, according to the view of Hruschka and Rupp
[HR02; p.86ff] (see fig. 5-1 in ch. I.5.1), it can also be seen as a system constraint
and thus as nonfunctional requirement. In practice, often requirements exist not
clearly identifiable as being of one specific type.

266 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

Figure 12-2 Requirements specification for the case study in IBM Rational DOORS

The items ReqSpec_1, ReqSpec_7, ReqSpec_10 and ReqSpec_12 are no re-
quirements but just headings structuring the requirements specification text,
whereas ReqSpec_13 and ReqSpec_14 are clearly nonfunctional quality require-
ments, and ReqSpec_15 is a nonfunctional management constraint.

The corresponding ECU’s SW design outcome is shown in fig. 12-3. A high
level SW architect206 has partitioned the SW into three subsystems (the three
packages LightsManagement, Communications, and Drivers). For each subsys-
tem a subsystem designer determines their sub components207.

206 The term high-level does not impose any specific role such as system designer. High-

level and lower lever are rather seen in relativity to the current design task. Design ac-
tivities take place in different levels of abstraction. A high-level architect is involved in
designing at a high level of abstraction, e.g., determining the overall structure of an ar-
chitecture, whereas for other parts of the design – e.g., for a component – a designer at
a lower level of abstraction will work.

207 This example illustrates aspects of collaboration. In a real project of this size, only one
designer could most probably cope with it. But in larger projects with complex appli-
cation domains, a separation into several layers of design liability is common. In the
automotive industry, a current trend exists to merge several previously independent
devices into one powerful multifunctional device (cf. [Br06]).

III.12 Accompanying Case Study 267

Figure 12-3 Example SW design for the requirements specification in fig. 12-2

The following project decisions have been made:
• The lights management contains an active process Light_Task with a complex

state machine. An underlying light handler Light_hdl knows how to manage
the underlying drivers according to the light signals to set. Both components
are being developed in-house.

• The drivers (PWM_drv, ADC_drv and CAN_drv) are supplied by different
subcontractors. Code size, performance and other parameters are highly de-
pendent on their individual configuration. Therefore, a subcontractor manager
shall monitor each driver for these parameters.

• The CIL_hdl (CIL=CAN Interaction Layer) depends on the types of signals
relevant for the device. These settings are defined by the customer (OEM) be-
cause it affects communication.

This example case study has been chosen being as easy and clear as possible
to illustrate the concepts of R2A. However, its easiness turned out to be a disad-
vantage for illustrating complex decision situations in ch. III.20.4. Correspond-
ingly, in ch. III.20.4, the author deviates from the case study by referring to some
further requirements and components not mentioned here in the case study. This

268 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

decision situation is then again referred to in ch. III.22.1.1 describing impact
analysis. The author thinks this deviation from the case study is no problem,
because the reader can imagine (as it is in reality) that the ECU-project involves
more use cases and components than just one use case for internal lights steering.

III.13 Closing the Tool Gap

How does a project get to be a year late? ... One day at a time.
[Br95; p.153]

To close the gap about proper tool coupling mentioned first, R2A is designed to
work as an enhancement for a design tool. Fig. 13-1 shows R2A in combination
with the design tool Enterprise Architect. R2A docks its main GUI208 window
(right side) onto the main GUI window of the corresponding design tool generat-
ing an user experience in which both tools seem to be one tool.

Figure 13-1 R2A in combination with a design tool (Sparx Systems Enterprise Architect)

208 Graphical User Interface

III.13 Closing the Tool Gap 269

From the logical architecture viewpoint (see fig. 13-2), R2A can be seen as
an interlayer between an REM-tool providing the requirements and a supported
design tool.
First of all, the requirements are imported from the REM-tool as direct representa-
tions (so called ‘surrogate requirements’) into R2A. Later, these representations
can be synchronized with the requirement changes in the REM-tool by a regular
controlled synchronization process. This is described in detail in ch. III.18.1.

All relationships relevant for traceability and IAs are consistently modeled
and stored in R2A. Currently, the following relationships are considered:

• Satisfy relationships between requirements and design model elements (‘req
model dependency’).

• Hierarchic relationships between design model elements (‘refinement de-
pendency’).

• Other relationships between design model elements (‘between model depend-
ency’).
All other not traceability-relevant relationships occurring in design activities

are not considered in R2A but must be covered by the features of the used design
tools.
This structure provides the following advantages in comparison to other methods:
• The traceability relationships between requirements and design are managed

directly, whereas only some distinct model relationships (the refinement and
between model dependency mentioned above) are taken into account for IAs.
This prevents the requirements fan-out effect (cf. [Al03] and ch. II.10.6.2)
during IAs.

• The synchronization between the requirements in the REM-tool and the sur-
rogate representations can be performed at specific points in time and thus
requirement changes between the old requirement version, present as surro-
gate representation and the new version in the REM-tool can be tracked in
R2A to support a consistent change of the design to fit to the requirement
changes (cf. ch. III.22).

• Besides, the surrogate representations concept allows that change works on
the requirements baseline for the next release is decoupled from the require-
ments baseline for the current release. In this way, requirements engineers
can already work on the requirements specification for the next release,
whereas designers can design the system according to the requirements spec-
ification baseline of the current release in parallel. Details on this are provid-
ed in ch. III.23.3.

270 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

Figure 13-2 Logical structure of the R2A tool approach

III.14 Closing the Gap between Requirements and Design 271

III.14 Closing the Gap between Requirements
and Design

Technology evolves from the primitive over the complicated to the simple.

Antoine de Saint-Exupéry

Besides the structural advantages mentioned above helping to close gap one, the
R2A approach shall go beyond closing the first gap. It shall also change the way
how designers treat requirements and design by establishing an intuitive process
that allows to establishing traceability information between requirements and
design as a by-product of the usual design activities.

According to the experiences of Moro [Mo04; p.351], it makes no sense to
consider a design model without also considering the corresponding requirements
specification or software architecture documentation. Following this finding, the
author considers these items as a threefold unity. Correspondingly, R2A tries to
find a solution in which all three aspects can be considered in an integrated way
during design activities. The following chapters deal with the different features
that try to provide a solution to better address this structural gap.

In a lot of cases, design is the result of a collaborative work between several
designers working together to find a solution for fulfilling the requirements. Cor-
respondingly, several designers must work in parallel on the same model and they
must be able to easily share information. Thus, ch. III.18.2.4 shows how estab-
lishing traceability as part of a design process can be used as an essential means
to organize collaboration and sharing contemporary requirement information
between designers, working together to find a solution for all requirements. Find-
ing good solutions essentially involves making design decisions in a collaborative
manner and information about decisions must be propagated as soon as possible
to all stakeholders affected by the decision. As a consequence, a design solution
should also support a collaborative decision process as rationale management
systems do.

272 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

III.15 Abstraction Layers and Abstraction
Nodes

There are a lot of advantages of hierarchically organized systems and sub systems. ...
 If we work on a certain level of abstraction, we will be able to concentrate on this level without

having to go into detail too fastly.
[HHP03; p.52 (*)]

Following the design theory of Simon (see ch. I.6.2.1), design deals with manag-
ing complexity. Central concepts for managing complexity are abstraction hier-
archies (also called hierarchic decomposition) and posing different views on
design aspects.

To simplify the understanding and the structure of the design, R2A empha-
sizes the hierarchical abstraction structure view (hierarchical decomposition) as
nodes in an abstraction tree. Fig. 15-1 shows an example of such a hierarchical
decomposition. In the further of this document, such a node is called abstraction
node (AN), whereas the tree is called abstraction nodes hierarchy (ANH). An AN
is formed out of two aspects. On the one side, it represents a design element usa-
ble as a symbol in diagrams. On the other side, an AN contains a diagram show-
ing its internal structure composed of new design elements and thus a new AN in
a more detailed abstraction level. In this way, detailing relationships (refinement
dependencies) arise between an AN and its sub AN, in which the diagram of an
AN contains the design elements (symbols) of the AN it is built of (composed) of.

Concerning this issue, it must be mentioned that all ANs at one level in the
hierarchy represent one level of abstraction (or detail) in the design. This is called
an abstraction layer (AL) in the further. In other words, an AL builds a compre-
hensive view on a system at a certain level of abstraction209. With increasing
depth of an AL, the design gets more specific.

An AN is more than a node in an abstraction tree. ANs build the central start-
ing point to connect to further design related information. Below, fig. 15-2 shows
the conceptual characteristics of an AN in R2A on the basis of an example AN
“SubSystem1” enriched with further information.

209 = levelalhierarchiconeatANAL ___

 – this is similar to refinements of data flows in structured

analysis (SA) [De78].

III.15 Abstraction Layers and Abstraction Nodes 273

Figure 15-1 Hierarchical decomposition of a system shown as abstraction tree

274 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

Figure 15-2 Detailed content and structure of an abstraction node (SubSystem1)

The goal is to present as much relevant information as possible for an AN and
its realization. Consequently, one idea of R2A is using the AN concept to repre-
sent the following information to designers:
• Each AN consists of a representation element (symbol) that represents the

abstraction node in other diagrams.
• Each AN has one central diagram (‘Main View’) as main entry point. The

diagram represents a decomposition view showing how the AN is decomposed
by sub ANs, in which the design elements of the sub ANs are shown in the di-
agram.

• Other views or diagrams can be attached to an AN as further views (‘Sub
view’) to allow detailed modeling of other important aspects (e.g., dynamic
behavior, concurring processes, complex behavior).

• Diagrams without further explanation can be misinterpreted. Consequently, a
design must be accompanied by textual descriptions. R2A supports adding a

III.15 Abstraction Layers and Abstraction Nodes 275

textual description as a rich text document for each AN (‘Textual Descrip-
tion’). This allows the designers to document each AN separately.

• Requirements can be linked to ANs to indicated that the AN satisfies the re-
quirements. Requirements associated to an AN of a higher abstraction level
get inherited by ANs of lower abstraction levels. All these connections of an
AN with requirements can be shown to the designers (‘Allocated require-
ments’). The details about requirements and ANs are described in the follow-
ing ch. III.18.

• As described in ch. II.9, important aspects about taken design decisions
should be documented. The AN concept makes all decisions connected to
structure building of the design leading to the ANs automatically visible to the
designers. Additionally, through the history function described in ch. III.17.5,
the decision history is collected. This is close to ideas of Gruber and Russel
[GR96a] (see ch. II.9.4.2) to automatically capture side information on pro-
cesses providing rationale in a way that allows to inferring rationale later
when it is needed.

The first two points have a strong analogy to the concept of different abstrac-
tions in structured analysis and design (SA/SD) [De78]. Currently, the concepts of
SA/SD have mostly been ousted by the concepts of UML.

Concerning the design language UML, a central concept is the usage of dif-
ferent views on a system under development. UML as well as UML-tools usually
do not impose any demands on the definition or usage of views and their relation-
ships. Instead all views are treated with the same priority. In UML-tools like
Enterprise Architect, all elements present in a design are stored in one project
repository browser. Fig. 15-3 shows an example of a project repository browser as
it is provided by the UML-tool Enterprise Architect. A project repository contain-
ing all elements of a design is important for a project to have an overview of the
available elements of a design. Besides the rich tool set, the relative freedom of
not imposing demands for a structured approach has probably contributed to the
vast success of UML in the development community. This egalitarian treatment of
all design concepts, however, also makes it difficult to understand the design and
the relationships between the different views210 (resp. diagrams).

210 Broy and Rumpe [BR07b] speak of incondite consistency between the different model

views in UML (see also ch. I.6.6.1).

276 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

Figure 15-3 Example of a UML project repository in Enterprise Architect

III.15 Abstraction Layers and Abstraction Nodes 277

This is where R2A with its AN concept can help designers to master com-
plexity as it extracts and visualizes the most important structural information of a
design repository. At first, R2A breaks down the information contained in a pro-
ject repository into the abstraction hierarchy described in the points one and two
resulting in the main view connecting the strength of the SA/SD concept with the
strength of UML. In the next step, described in point three, each of the ANs in the
ANH can contain further diagrams as further views fulfilling the concepts of view
partitioning as inspired by Simon’s design theory (ch. I.6.2.1). To master design
complexity for designers, this structure provides an easy way to mentally struc-
ture a model with specific navigation support in two ways:
1. As main view, the ANH allows the designers to order the design into a struc-

ture easy to overview for a designer. This can be seen as navigation into the
vertical of the design model.

2. To each node in the ANH, further associated views can be seen as a parallel
view on other aspects of an AN. This can be seen as navigation into the hori-
zontal of the design model.
Resembling accordance express the remarks from Hatley et al. [HHP03;

p.47] that, if several models for a system shall be created, these models must be
organized in a way orienting themselves on the relationships between the models
and the system. They use the metaphor “scaffold” [HHP03; p.47]. From this
perspective, R2A imposes a kind of scaffold to structure a design. Other model-
ing approaches as Matlab or ETAS ASCET do not provide different views but
only have one view showing the abstraction hierarchy (corresponds to the ANH)
of the design. As R2A’s only required assumption about design is that an abstrac-
tion hierarchy is present, these design methods are fully compatible to R2A ex-
cept for the only difference that these modeling approaches do not provide mod-
eling of further views.

Nevertheless, the ANs concept has one major drawback: The ANH is a re-
dundancy to the design elements hierarchy modeled in the modeling tools. This
means that this information must be modeled twice and later changes must also
be maintained twice – once in the modeling tool and once in R2A. Mechanisms
to manage this redundancy should offer relief for these situations and explicitly
prevent information drift between the redundant information. R2A offers three
mechanisms:
1. As basic mechanism, a wizard helps the designers with combining design

elements in a modeling tool to ANs in the ANH.
2. For better convenience, it is also possible to perform drag-and-drop opera-

tions dragging design elements from a modeling tool to R2A. If R2A can re-
cover enough information about the design elements to fit them directly into
the ANH, the elements will be directly added (as mentioned above, UML-

278 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

tools do not provide as clear hierarchy dependencies as tools such as Matlab
or ETAS ASCET do). Otherwise, the wizard mentioned in point one opens,
containing all automatically retrievable information, to which the designer
only has to add the missing information which could not be automatically re-
trieved.

3. An automatic synchronization mechanism explicitly helps to resynchronize
the design elements and their hierarchy in the modeling tool with the ANH in
R2A. Before really synchronizing, the mechanism analyzes both structures
and displays a synchronization wizard, where the differences and proposals
for potential changes to overcome the differences are shown. Using the wiz-
ard, the designer can analyze the proposed changes for correctness or adapt
the proposed changes in order to perform the changes according to the de-
signer's intention. After the designer has approved the changes highlighted
by the wizard, the synchronization mechanism applies them. The mechanism
is explicitly helpful, when changes in a modeling tool shall be adapted to an
already existing ANH, but the mechanism can also be applied to create an
ANH from scratch using the design elements' abstraction hierarchy in the
modeling tool. However, experience has shown that this mechanism only
works frictionless for tools with a definite hierarchy (such as Matlab or
ETAS ASCET), whereas for modeling tools in which the hierarchy cannot be
determined definitely (e.g., UML-tools), the synchronization wizard often
identifies unintended changes due to false-positive or misleading interpreta-
tions of the automatic synchronization mechanism. It is possible in the wiz-
ard to correct all these unintended changes and turn them into intended
changes, but this can become cumbersome for designers. In these cases, us-
ing the two mechanisms mentioned first to create the ANH and then using the
synchronization mechanism to synchronize later adaptations on the hierarchy
may be the better alternative.
A design scaffold also is a central concern for design documentation purpos-

es (cf. [IEEE1471], [GP04], [CBB+03] and [Ha06]). Design documentation aims
at documenting design to communicate it to persons not directly involved with
the design or even non project members. Besides the documentation of design
elements and their relations documented in diagrams arising out of design, also
the relations between the diagrams must be documented. This is implicitly ful-
filled by R2A's scaffold (i.e. skeleton) structuring the relations between dia-
grams. Beyond these points, design documentation also demands a textual de-
scription of the design. Textual documentation is supported in R2A by the possi-
bility to add a textual description to each AN, as described in point four of the
listing about information possible to add to an AN (see p.274 in this ch. III.15).
To ensure a certain quality of the textual design description, documentation tem-

III.15 Abstraction Layers and Abstraction Nodes 279

plates can be defined and used for the documents. Last but not least, design doc-
umentation literature also demands for documenting other important information
as assigned requirements and important decisions. As these points are also part of
R2A, R2A is a valuable support for design documentation.

Figure 15-4 With the AN tree view and the tab “Views and Description”

280 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

A further point to mention here is the fact that for modeling an ECU, often
several different models are used, where even several different modeling tools
may be used in parallel. To reduce design complexity within such a heterogene-
ous model environment, R2A also provides mechanisms to manage different
models and their relations in an integrated manner using the AN concept. Ch.
III.16.2 describes this in detail.

Now, after elucidating the theory, the concrete realization of the AN concept
in R2A is described. Fig. 15-4 shows a design model in R2A. In the upper part, a
tree view contains all ANs building the hierarchical composition structure as the
main view. When the user selects an AN in the tree view, the AN’s main view
diagram is selected in the design tool and all other information related to the AN
is shown in the lower part. This part is segmented into three tab pages (see fig.
15-4):
• The tab “Views and Description” contains a control to add diagrams as fur-

ther related views to an AN and a control to add a description to an AN in
rich text format (RTF).

• The tab “Requirements” contains a control that helps to maintain require-
ments traceability information with ANs. This is further described in ch.
III.18.

• The tab “Decisions” deals with relating important design decisions to ANs.
This is further described in ch. III.20.

III.16 Models Crossing Tool-Barriers

Couplings between textual specification and modeling tools are immature and seldom used.
[WW02; p.22]

III.16.1 Insertion: Coupling Different REM- and Modeling
Tools

In engineering practice, different REM- and modeling tools are used. The tool-
based methodology proposed by the R2A project is very general and could be
used by all kinds of systems or SW design projects. Thus, R2A is designed to be
open for different kinds of REM- and modeling tools to provide flexibility in the
usage of REM- and modeling tools in order to allow the usage of the best-suited
tool support for a project.

III.16 Models Crossing Tool-Barriers 281

To ensure this flexibility with minimal effort at maximal benefit, R2A is de-
signed according to concepts of software product line design [PBG04; p.259-
298]. A software product line is “a set of software-based systems sharing a con-
joint, controlled set of product characteristics, orienting itself on the specific
needs of a specific domain and being developed on the basis of a collective pool
of software artifacts” [PBG04; p.262 (*)].

Here, the focus is to adapt R2A and its processes as a common development
approach to fit with different REM- and modeling tool environments. In this way,
R2A is not a classical product line, but is merely a tool framework allowing dif-
ferent REM- and modeling tools to be coupled. However, product line design
differentiates a system into the invariable product line core and its variation
points. The invariable core contains the constant characteristics of the systems,
whereas the variation points define the differing characteristics of the systems
[PBG04; p.276]. R2A could be differentiated in the invariant core of concepts
described in this thesis and the variation points of different tool couplings to
embed R2A into an integrated tool chain. Correspondingly, the REM- and model-
ing tool couplings have been identified as variation points. For each identified
variation point, adequate strategies and design concepts to handle the variation
must be found. A common problem at product line development is that the prod-
uct line core is in constant danger of creeping erosion. This means that the varia-
tions along the boundaries between the core and a variation point always demand
variations at parts of the core leading to a growing extent of the variation point,
whereas the invariable core's extent shrinks (erodes) with passing time in a prod-
uct line project.

To address creeping erosion in R2A, the main strategy for both variation
points was to ensure strong encapsulation between R2A's core and its variation
points. This is accomplished by the usage of concepts and patterns such as the
interface concept, proxy, observer and abstract factory pattern (cf. ch. I.6.2.4).

III.16.2 Integrating Several Modeling Tools in a Single
Model

As described in ch. I.6.6.1, often several design tools are used simultaneously in
an automotive embedded project, due to different strengths of the different tools.
Correspondingly, R2A supports to handle several design tools in one integrated
model211.

211 See also Medvidovic et al. [MGE+03; p.199]: “While individual models help to clarify

certain system aspects, the large number and heterogeneity of models may ultimately

282 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

Fig. 16-1 shows an example of such a model basing on the accompanying
case study about internal lights control. The model starts with the AN “SW De-
sign” that refers to the high-level design diagram of the software. This diagram is
modeled in a UML-tool (in the example Sparx Systems Enterprise Architect). In
the diagram, several design elements are shown, among them the elements
“CIL_hdl”, “Light_hdl” and “Light_Task”. These elements become further ANs
in R2A.

Due to the different roles and characteristics of the ANs, different modeling
tools are used to model the diagrams showing the internal design structure of the
individual ANs:
• The “Light_Task” contains a complex state machine. In order to tame the

complexity, the state machine can be modeled, early simulated and then be
converted to code via Matlab Stateflow. Thus, the diagram of the
“Light_Task” AN refers to a Matlab model diagram.

• The “Light_hdl” maps abstract signal definitions used in the “Light_Task” to
concrete signals according to the used HW and manages HW diagnosis func-
tions. This involves complex algorithms that are sketched best via UML activ-
ity diagrams and then manually implemented in C. Therefore, the “Light_hdl”
AN is also modeled best in a UML-Tool.

• The “CIL_hdl” (CAN Interaction Layer Handler) cares about managing dif-
ferent signals sent or retrieved via CAN. The signals are usually described in
a so-called CAN matrix. A CAN matrix is often described in Microsoft Excel
or a dedicated CAN configuration tool. Correspondingly, R2A could212 refer
to this application and the corresponding CAN matrix file.

Once an R2A-model is setup, where the ANs with their diagrams are realized
in the different modeling tools, the designers can use R2A to navigate in the inte-

hamper the ability of stakeholders to communicate about a system. A major reason for
this is the discontinuity of information across different models”. As a solution, Medvi-
dovic et al. [MGE+03] propose using a model connector concept, where relationships
between models can be modeled. This model connector concept rather seems to be an
extended link concept (link with different assignable properties) and seems not to be in
significant practical application. Nevertheless, the model connector concept may be
significantly more flexible than the functionality of R2A. On the other side, the model
connector concept leaves open how these connections may be adequately visualized to
provide an overview for designers. In this aspect, R2A's concept provides a clear
structure, well-known to designers.

212 Currently, R2A does not support to include Excel or any other application for manag-
ing CAN matrices, but it will be possible similar to the support for a UML-tool or
Matlab, if a coupling of the tool with R2A is implemented. In this way, this indicates a
possibly promising extension of R2A's current state of development.

III.16 Models Crossing Tool-Barriers 283

grated model built up from the parts modeled in the different modeling tools. For
example, when a designer selects “SW Design” or the “Light_hdl” AN, R2A will
dock to the UML-tool and show the corresponding diagram. In the case of the
“Light_Task”, R2A will dock to Matlab and shows the corresponding Matlab
diagram, and so on.

If a modeling tool is not available (e.g., the designer does not have a license
for the corresponding tool), R2A provides a model viewer mode, where R2A
shows a snapshot of the model as bitmap taken by R2A the last time a designer
worked with the corresponding modeling tool. In this way, R2A provides one
integrated design model to the designers even though different tools are used. The
AN concept once again proves its value as the integrative scaffold.

In most cases, design is a collaborative task, where several designers must
work together. Following the example above, it is very likely that the “SW De-
sign” AN and its connected information is designed by a SW architect, whereas
the details of the individual sub ANs (“Light_Task”, “Light_hdl” and “CIL_hdl”)
are designed by developers being specifically responsible for their component
(so-called component designers or module designers). Thus, immediate infor-
mation sharing between the designers is essential. Such cases are especially im-
portant in the context of sharing information about requirements, requirements
traceability and decisions.

Figure 16-1 Different modeling tools integrated into one design model via R2A

284 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

As the following chapters describe, the AN concept plays the key role in
connecting those information with the modeling information in a collaborative
way. A possible scenario can be that the software architect makes the decision
that a certain requirement must be handled by the “Light_Task”. The software
architect can document this decision by assigning the requirement to the
“Light_Task” AN. R2A then immediately notifies the component designer of the
“Light_Task” about the newly assigned requirement, and the component designer
can immediately use the information to adapt his component design.

Details to these options are presented in the following chapter. In this con-
text, the reader should note that all statements about information propagation
between ANs also imply that it is possible to cross the information beyond model-
ing tool boundaries by the integrated model concept described here.

III.17 Basic Support Features of R2A

Design is the most demanding activity within the development cycle.
[ER03; p.34]

R2A also contains some features that are well-known in other tool environments,
but the combination of these features with the innovative concepts of R2A brings
interesting bonus values. In the following these features are sketched.

III.17.1 Support for Collaborative Design Tasks

As already stated above, design is usually a collaborative task. Consequentially,
R2A is also construed to support collaborative aspects of design. When a user
performs and saves a change in a R2A model, the change is automatically distrib-
uted and updated in all other R2A instances connected to the model.

For improving communication between users, a notes mechanism has been
realized in R2A. Details to the notes mechanism are described in the next chapter.
One big advantage is that it allows asynchronous communication between the
users.

Later in ch. III.18.2.4, the process heuristic requirement dribble process
(RDP) is introduced that extends the collaborative mechanisms described here to
a heuristic to collaboratively find the best design solution for requirements and
simultaneously documenting the traceability information with a history of the
decision-making process leading to the solution.

III.17 Basic Support Features of R2A 285

III.17.2 The Notes Mechanism

Design is a collaborative task, where information sharing is essential for project
success. Thus, a notes mechanism213 provides decisive means to improve com-
munication, i.e., reconciliation between the project members. Concerning com-
munication, three factors must be considered:
• At first, good design lives from good (i.e. creative) ideas. Unfortunately, often

creative ideas emerge from a designer's mind for particular aspects of the de-
sign, for which no specific structure around the idea has shaped yet. This
means a good idea may not be immediately integrated into the current stable
intermediate form of the design. This point appears to be closely connected to
what is discussed in the course of Schön's theory (ch. I.6.2.3) about sketching
as an essential activity in design. According to Goel ([Go99], [Go95]), sketch-
ing occurs at the beginning of design. Sketches often shape ideas in a kind of
ill-structured nature. A notes mechanism provides a flexible, easy to use and
fast way for sketching and documenting such ideas.

• R2A allows attaching these notes to any item present in R2A. This enables
designers to notify other designers about their ideas. As an example, it often
occurs that a designer has a good idea about the solution for a specific re-
quirement, but it is not clear yet what part of the system will handle the re-
quirement. In this case, the designer can attach a note to the requirement and
easily sketch the idea in the note text. At a later time, the requirement gets as-
signed to an AN that shall provide the solution for the requirement. Often, a
different designer will be responsible for finding the solution to this specific
AN. In this case, this designer now can open the note attached to the require-
ment and retrieve a hint about the idea of the other designer how to solve the
problem imposed by the requirement at best. Obviously, the example shows
that the notes mechanism214 is a means for communication between the de-
signers inferring the advantage of enabling indirect, asynchronous communi-
cation215 between the designers at their collaborative work.

• Additionally to sketching ideas, designers sometimes also identify intercon-
nections between parts of their design and requirements that are difficult to
express in normal design documentation. For these cases, R2A's notes-

213 See fig. 17-1 (p.289) for a description of the user interface implementation in R2A
214 Here, in combination with the requirements traceability mechanisms described in ch.

III.18.
215 For detailed information on implementation, advantages, and disadvantages of syn-

chronous and asynchronous team communication mechanisms in collaborative envi-
ronments refer to [GK07; p.103-114].

286 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

mechanism also allows attaching several items to one note helping designers
to document these interconnections (and perhaps also sketching an idea how
these interconnections may influence the further design).

• Another source of communication problems between designers are often
interdependencies between the designers' work. For example, it is possible
that a designer cannot design a solution for a requirement because another de-
signer has not yet designed a solution for another part of the design (e.g., an-
other AN), on which the solution of this requirement bases. In this case, the
notes mechanism allows the designer of the requirement to apply a note on
the requirement and the AN not yet fulfilling the necessary design. In this
note, the designer can sketch what the other AN misses so that he cannot find
a design solution for his design problem. Through this, the designer of the
other AN retrieves then the information that he must find a design solution for
the specific problem the other designer's work depends on.

As a side-effect, such notes also provide valuable information when later
changes on the design must be maintained at later phases. In this way, notes also
provide weak support for traceability. However, it must be mentioned here that a
few chapters later a significantly stronger support for traceability with slightly
overlapping possibilities is introduced. This mechanism deals with describing
design decisions for problems and their consequences in a traceable way. It is
highly possible that some notes sketching ideas about a problem, later become a
documented decision.

III.17.3 Extensibility: XML-Reporting and User Tagging

No ever so big tool development effort can anticipate all user needs. This is espe-
cially true for all usages of once gathered information. To provide additional
flexibility all gathered model information of R2A can be exported to XML and
developers can add individual user tags in free text form. This allows organiza-
tions to reuse the R2A information in other tools or to develop own special pur-
pose tools using the information for their specific needs.

Experiences with pilot users of R2A revealed that this is especially im-
portant for extended information analysis and specific reporting to management.
Through the user tags216 it is possible to add additional meta-information on R2A
items which is often important to steer information analysis and reporting.

216 See fig. 17-1 (p. 289) for information on how user tagging is integrated in R2A's user

interface

III.17 Basic Support Features of R2A 287

For the future, the currently discovered reporting needs can be further inte-
grated into R2A as a standard reporting concept, however the mechanisms de-
scribed here further allow users to quickly check out and adapt new promising
uses217 of the gathered R2A information.

III.17.4 Unique Identifier Support for any Item in R2A

Any item created in R2A automatically receives a unique identifier. As described
in ch. II.10.4.2.1, the unique identifier concept is essential to allow textual refer-
ences as linking is not always possible. In this way, items can also be textually
referenced in other development tools, where no direct connection exists. Thus,
e.g., in the case of R2A any item in R2A can be referenced in a textual change
proposal issued in a change management tool by simply writing the unique iden-
tifier of the R2A-item in the change proposal's text. To ensure that R2A's identifi-
ers are unique R2A uses the GUID218-mechanism provided by the Microsoft
Windows operating system.

III.17.5 Evolutionary Traceability – Recording History and
Baselines

As ch. II.10 has exposed, traceability also involves recording the evolution histo-
ry in project development. This means that all operations performed in R2A must
be comprehensible in retrospect. Correspondingly, R2A provides a history mech-
anism to record the history of every operation performed in R2A accompanied by
information about the performing user and a time-stamp of the time when the
operation has been performed. This history information can be regathered any
time by the users if needed (see fig. 17-1 (p. 289)).

217 One issue regularly showing up at discussions with potential users is the idea to inte-

grate the information with project planning information to measure accuracy of project
planning and getting a deeper insight about the real status of a project.

218 GUID stands for General Unique IDentifier and is a well-tested mechanism in Win-
dows ensuring that each generated GUID is world-wide unique (e.g., Microsoft Win-
dows heavily relies on the mechanism to ensure that system internal interfaces or ser-
vices have a unique identifier).

288 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

R2A's history mechanism also provides a possibility for users to save a cer-
tain status of the model as a fixed version baseline219. Any baseline can be any
time reopened in a baseline viewer to analyze the status of the design at a certain
point in time. Additionally to all information gathered in R2A at that time, such a
baseline also records snapshots of all diagrams modeled in the connected design
tools. Thus, when a baseline is opened in the baseline viewer, also the state of all
modeled diagrams at that time can be viewed and analyzed. This is especially
helpful to provide an overview over a certain baseline state when more than one
modeling tool is used in a model.

III.17.6 The Properties Dialog

For any item present in R2A, a properties dialog shows its properties, evolution
history and attached notes. Fig. 17-1 shows the properties dialog of the AN “SW
Design”. On the left, the properties of the item are shown. This dialog varies
corresponding to the item type because each item type has different properties.
E.g., a requirement mainly has the requirement text as properties, whereas an AN
type has the properties shown in fig. 17-1. Only the last property “User Tags” is
an exception because this property is shown for any R2A item as it enables the
user tagging mechanism described in ch. III.17.3.

Through the tab button “History”, the user can navigate to the history tab
shown in the middle of fig. 17-1. The history tab is segmented in an upper part
showing different version entries of the item (here two). In the part below, the
differences of versions selected in the upper part are highlighted (cf. ch. III.17.5).

Via the “Notes” tab shown at the right side, the user can add notes to the
item according to the notes mechanism described in ch. III.17.2. This tab is di-
vided into three sections. The lower right section contains an overview of all
notes attached to the item. In the upper section, the selected note's text can be
viewed or edited. All items to which the note is attached are displayed in the
lower right section. To attach the note to other items, the designer can drag-and-
drop the items in the lower right control.

219 “A baseline is a configuration assembled and verified that it is considered as stable and

works as referring point for further development. A release is a baseline defined for de-
livery to the customer” [LL07; p.521].

III.17 Basic Support Features of R2A 289

Figure 17-1 The properties dialog in R2A

290 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

III.18 Requirements and Requirements Traceability

If the language is not right, the spoken is not the meant.
Confucius (*)

In the following, R2A's handling of requirements and how requirements tracea-
bility is established is described. Both points have a slightly different meaning.
Correspondingly, the first sub chapter discusses managing requirement sources
and how basic requirements traceability can be established with R2A. The later
ch. III.19 and ch. III.20 then discuss how basic requirements traceability can be
extended to improve quality of traceability information and to improve problems
of SPICE in connection with traceability (see ch. I.7.3.2).

Afterward, ch. III.22 discusses how all the collected information can be used
to predict effects of requirement changes and how changes can be consistently
inferred into a R2A model in order to avoid degradation of traceability infor-
mation. Finally, ch. III.23 discusses how R2A can be integrated in a more general
process context to manage suppliers or to manage decoupled development for
different versions.

III.18.1 Managing Requirement Sources

At first, it should be mentioned that R2A is not intended for the usage as a com-
plete REM-tool like IBM Rational DOORS. Thus, R2A does not concentrate on
features for requirement elicitation, documentation or management. Instead R2A
is assumed to be a broker, who can retrieve requirement documents from different
sources. In this way, different requirement documents and their sources can be
managed in the “Requirement Sources” part of R2A (see fig. 18-1).

Here the different documents containing requirements from a source can be
managed. These documents are called in the further requirements source docu-
ment (RSD). An open RSD can be seen in fig. 18-2.

Currently two220 different types of RSD exist:
• Documents originating from an REM-tool (requirements specification items),
• Sources that can be manually managed to allow documenting information

otherwise neglected;

220 Actually, the figure also contains the items “Decisions”, “Design Constraints” and

“Resource Constraints”. These items are not RSDs in the sense discussed here. These
documents are rather containers for all items discussed in ch. III.19, ch. III.20, and ch.
III.21.

III.17 Basic Support Features of R2A 291

Figure 18-1 Managing different requirement sources in R2A

Figure 18-2 Requirements source document synchronized with IBM Rational DOORS

292 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

Point one refers to requirement documents that are edited and managed in an
REM-tool. In this case, the REM-tool functions as data source from where the
available requirements can be continuously synchronized221. Fig. 18-2 shows a
RSD being synchronized with the case study's requirement document managed in
the REM-tool IBM Rational DOORS shown in fig. 12-2 (ch. III.12). A filtering
mechanism allows importing only the requirements from the REM-tool that are
important for the design model managed in the R2A project. For better orienta-
tion of the designers, REM-tool items not included by the filter criterion but con-
taining items as sub items that are included by the filter criterion are imported
into R2A as headings. Fig. 18-2 shows items “ReqSpec_1”, “ReqSpec_7”,
“ReqSpec_10”, and “Req–Spec_12” as headings in italic.

Once an RSD has been synchronized with the REM-tool, the present re-
quirements can be related to design elements via the traceability operations de-
scribed in the following chapter. Headings are only there for structuring the doc-
ument and have no further meaning. This means, none of the traceability opera-
tions described in the following chapters can be performed for headings.

If requirements are changed in the REM-tool then, continuous synchroniza-
tion procedures allow the requirement changes to be introduced into the design in
a consistent way. This is described later in ch. III.22.

Point two offers additional freedom for the users as easy and fast way to
document information that would otherwise be omitted. As Hörmann et al.
[HDH+06; p.93] emphasize, many requirements have other sources (e.g., compa-
ny-internal requirements deriving from product politics or the product architec-
ture). As outlined by ch. I.7.3.2 and ch. III.19, the author demands to consider
negotiability as a criterion for requirements specifications. In the author's opin-
ion, the requirements specification should only contain the requirements that
must be negotiated with the customer. Company-internal requirements222 (not

221 The coupling of REM-tools is much looser than the coupling of modeling tools be-

cause R2A docks its user interface directly to a modeling tool, whereas REM-tools on-
ly function as data source. Thus, the interface for REM-tools is not as complex as the
interface for the modeling tools.

222 The probably most often occurring company-internal requirements are what the author
calls internal management requirements. In most cases, internal management require-
ments might probably deal with ensuring cost efficiency and ensuring monetary bene-
fit. Parts of these requirements have impact on design. For example, management can
require using COTS (components off the shelf) components or components originally
developed in other projects to avoid development effort. A significant problem for de-
sign often having significant influence on the design outcome is then how to integrate
these components with the other parts of the design. Including such requirements in an
extra requirement document helps to separate real requirements from the customer

III.17 Basic Support Features of R2A 293

originating from the customer) could thus be stored in a second requirements
specification, or in more pragmatic processes, just be documented in a manually
managed RSD, or derived from former design decisions (discussed later in ch.
III.19 and ch. III.20).

Another scenario to consider here is that requirements specifications often
refer to industry standards to be fulfilled. In this case, often the requirements
imposed by the standard are not directly referenced in the requirements specifica-
tion because these requirements are fixed. Now, the feature to manually write
down requirements would allow defining a requirement source referring to the
standard (e.g., IEC 61508 in fig. 18-1). In this document, the designers can now
note down requirements for the design derived from the IEC 61508 standard.

A manually managed RSD looks like and is treated in the same way as a
synchronized RSD shown in fig. 18-2, except that its containing requirements can
be edited in R2A. The handling of the requirements described in the following is
also the same as for synchronized requirements.

As described in ch. II.10.4.2.2, requirements can be managed via decompo-
sition hierarchies and decomposition hierarchies are the state-of-the-art manage-
ment technique offered by REM-tool. Correspondingly, RSDs originating from
REM-tools take over the decomposition hierarchy in the REM-tool. Fig. 18-2,
e.g., shows the requirements in a hierarchic tree directly taken over from the
hierarchic decomposition in the IBM Rational DOORS document shown in the
left column of fig. 12-2 (ch. III.12). In manually managed RSDs, the users can
manually arrange the requirements' hierarchic decomposition in R2A.

III.18.2 Establishing Requirements Traceability

Before going into R2A's support for traceability establishment, some preliminary
considerations shall lead to a better understanding of the ideas.

First of all to mention, different traceability models have identified different
relationship types between requirements and design. As discussed in ch.
II.10.4.2.3, e.g., SysML differentiates between <<DeriveReqt>>, <<Satisfy>>,
<<Verify>>, <<Refine>>, <<Trace>>, and <<Copy>> relationship types
[SV08], Ramesh and Jarke [RJ01] identify four different relations 'allocated to',
'satisfy', 'drive' and 'addressed by' in their high-end traceability model, other re-

from requirements originating somewhere in the developing organization. This already
reflects an idea further discussed in ch. III.19 that requirements must be separated ac-
cording to their negotiability. Surely, requirements originating within the developing
organization are easier negotiable within the developing organization than require-
ments originating from the customer building the contractual basis of the development.

294 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

search as, e.g., [Wi98] even surfaced more relationship types. The probably most
usual link type is the 'satisfy' type, indicating that a requirement related to a de-
sign element is satisfied by the design element. In fact, the author believes that,
e.g., the three types of SysML are only a little more special variation of the 'satis-
fy' link type, as it is the same case for the 'allocated to' 223 and 'addressed by' 224

link types in the high-end traceability model of Ramesh and Jarke225 [RJ01].
In the context of this research, the question of the relationship type has been

left open as research concentrated on an efficient way to establish significant
requirements traceability providing support for helpful IAs. In the author's practi-
cal experience, the question whether a relationship has been recorded and thus an
IA identifies a possible impact has higher priority than the correct kind of a rela-
tionship, because relationships identified by an IA will still be interpreted by the
developers leading to the exclusion of false-positive relationships, whereas rela-
tionships not found may just never come to the minds of the interpreting devel-
opers. In this way, R2A leaves the question about a particular kind of relationship
open by using the term a requirement is assigned to a design element which
equally corresponds to a satisfy-link type. Later, if usage of R2A in practice
proves the necessity to further differentiate different kinds of recorded relation-
ships, the R2A approach can be easily enhanced by a feature to provide more
specific relationship type information.

Following Simon's design theory (ch. I.6.2.1), the design process is a con-
tinuous decision process, where a lot of the decisions are performed on the basis
of the requirements. R2A directly supports this decision-making, because R2A
directly shows these requirements to the designers that are important in the de-
sign situational context.

Another issue to consider is that continuous refactoring of the design struc-
ture is necessary due to bounded rationality, arbitrary complexity and Berry's
findings about the need to restructure modularization [Be04; p.56], (see ch.

223 Definition of 'allocated to': “REQUIREMENTS are ALLOCATED to COMPONENTS

that are supposed to satisfy them” [RJ01; p.73].
224 Definition of addressed by': “Several focus groups mentioned that it was important to

identify the FUNCTIONS PERFORMED BY COMPONENTS. These FUNCTIONS
are typically traced to the functional REQUIREMENTS explicitly identified in re-
quirements documents.” [RJ01; p.74].

225 The 'drive' relationship only expresses that requirements drive the design (“REQUIRE-
MENTS DRIVE DESIGN, that are often BASED ON MANDATES such as STAND-
ARDS or POLICIES or METHODS that govern the system development activity”
[RJ01; p.73]). Correspondingly, the author is not even sure whether this is really in-
tended as a link type by Ramesh and Jarke. Instead, the author considers the 'drive' re-
lationship as a conceptual metaphor for the design process.

III.17 Basic Support Features of R2A 295

I.6.2.1.2). Accordingly, it must also be possible to easily refactor traceability
structures. Today's current state-of-the-art methods of relating requirements are
not very flexible for changing requirements assignments. As an effect, designers
often perform their design process first to such an extent that the design has
shaped to a relatively fixed state and then establish traceability information.

This has the effect that the requirements are the basis for a lot of performed
decisions, but on the other side the connections between requirements and design
are documented afterwards. In this way, a lot of information on certain decisions
is lost226. As described in ch. II.10.4.3.1, capturing and description of traces
should orient themselves on the way the traces occur in the real world. Other-
wise, a mismatch between reality and the actually captured information occurs
significantly diminishing the quality of captured information [Pi04; p.104]. In
R2A, all these issues are achieved by the requirement dribble process heuristic
described in ch. III.18.2.4.

Taking into account Schön's Theory of Reflective Practice (ch. I.6.2.3), most
design decisions are taken in an intuitive, non-reflective state of knowing-in-
action. Former experiences and tacit knowledge (see ch. II.9.4.2) are important
factors in this state. In this phase, tools must not interrupt the cognitive flow of
the designers (see Schön; ch. I.6.2.3). Since R2A's traceability concept bases on
the ANH concept, the R2A's traceability operations do not produce a cognitive
dissonance for designers, thus establishing traceability as a by-product should
not impose significant barriers for designers even in their knowing-in-action
phases.

In summary, the real value of gathered traceability information mainly de-
pends on the following criteria (see ch. II.10):
• Most traceability information must be recorded manually. Thus, the efficien-

cy of how traceability can be established is crucial. This means that the ef-
fort for traceability must be outweighed by the reduced efforts and the high-
er quality, reached through improved IA and change processes.

• Accurateness of the traceability information is decisive. Approaches that
establish traceability after the design process involve the danger that certain
traceability information is not recorded. Thus, traceability should be estab-
lished as a by-product.

• Besides efficiency itself, it is a central issue that the process does not inter-
fere with the designers' way of thinking.

226 For details see for details ch. I.7.2.3 description to ENG.3 BP.2, where it is described

that allocations of requirements to design are often not possible at first because im-
portant design decisions are missing.

296 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

• On the other side, designers must perceive enough benefit for themselves
because otherwise they will only record insufficient traceability information.
One benefit can be the improved communication and collaboration between
designers as, e.g., R2A offers with the requirement dribble process heuristic
(cf. ch. I.18.2.4).

• As, e.g., ch. II.10.6.2 outlines, traceability information should be detailed
(go deep into a design model) to achieve good results. It should rather be
recorded directly than derived from other information such as relationships
within a design model with other purpose because the manifold meanings of
these non-traceability-specific relationships rather lead to a requirements fan
out effect during IAs (ch. II.10.6.2).
To ensure these criteria and thus to ensure that the recorded traceability in-

formation brings a real practical benefit to projects, R2A is designed to be em-
bedded into a process specifically addressing these issues. The following sub
chapters illustrate the core concepts employed to achieve this. However, the real
implementation of such a process in practice requires substantially flexible pro-
cesses due to the complex connections involved in design processes. Thus, a
dedicated goal of this documented research also was to find the optimal, neces-
sary process set for these criteria, where additionally maximal flexibility to adopt
processes to project specific needs is possible. In other words, the process
sketched here is proposed as a possible way to use R2A, but the offered opera-
tions used in a process can also be used to perform different design processes.

Last but not least to mention, this chapter only shows mechanisms for gen-
eral improvements for rudimentary traceability as demanded in today's traceabil-
ity theory and process standards (e.g., SPICE). Then, in the next ch. III.20 and ch.
III.21, this rudimentary traceability information is extended by decision models
allowing much richer traceability information taking more complex design deci-
sions into account to be recorded.

III.18.2.1 Traceability Operations in R2A

In order to prevent disturbing designers during their knowing-in-action cognitive
phase, but nonetheless to help to document traceability information, R2A aims to
lower the burden for documenting the traces as soon as they occur. In this way
traceability more or less emerges as a by-product of the design process.

To address this point, the R2A's traceability approach has five key charac-
teristics:
1. The approach takes advantage of the AN concept basing on the abstraction

hierarchies principle strongly resembling the designers' way of thinking (cf.

III.17 Basic Support Features of R2A 297

ch. III.15). An approach basing on this principle, thus easily fits into the
cognitive processes of the designers. If an approach does not really match
with the designers' way of thinking, the designers will have to bridge the
cognitive gap between their thinking and the thinking required by the ap-
proach. This would significantly disturb the designers in their knowing-in-
action phase and therefore would increase the usage barriers for the ap-
proach.

2. Design involves processing of an extended amount of information leading to
the extended complexity to be managed during design. Following Simon's
theory (ch. I.6.2.1), the abstraction hierarchies principle addresses taming
the complexity of the information produced during design. Another complex-
ity source to be tamed in the design process is the multitude of requirements
influencing the design. R2A here provides a simple answer: Only show what
is relevant in the design situational context. Again referring to point one, the
AN concept is used to set up the situational context. Fig. 18-3 shows a design
situation in R2A, where the designer has selected the AN “SW Design”. Be-
neath the AN tree view, now the tab “Requirements” is opened showing the
requirements assigned to the AN “SW Design”. In ch. III.18, the used mech-
anisms, and GUI controls with its representation features are discussed.

3. Recording traceability information when the traces occur but not disturbing
the designers, involves that traceability information must be maintained in an
easy and fast manner. R2A achieves this by offering an establishment of
traceability information via drag-and-drop operations. As illustrated by the
arrows in fig. 18-3, principally three different traceability-relevant drag-and-
drop operations are possible. Via possible multi-selection of items in R2A,
all drag-and-drop operations can be performed for several requirements at
the same time, making the traceability establishment process more effective.
Again, the AN concept appears as useful for providing central orientation to
all three drag-and-drop operations. Operation “1.)” allows assigning re-
quirements from the requirement source document (described in the chapter
above) to any AN in the AN tree view, whereas operation “2.)” allows assign-
ing the requirements to the currently selected AN. As also described above,
design must also allow easy refactoring. In this course of action, other com-
ponents than previously intended may become responsible for a requirement.
Thus, requirement assignment must be changed from the formerly responsi-
ble component to the now responsible component. To easily make this possi-
ble, operation “3.)” allows reassigning requirements from the currently se-
lected AN to any other AN. In the course of refactoring, it can also be evident
that a requirement may just also have influence on another design element,
but the element shall still be handled by the currently selected AN. In this

298 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

case, the operation “3.)” accompanied by pressing the 'CTRL'-key just al-
lows copying the assignment information to the other AN, but the assignment
information of the currently selected AN stays untouched.

4. Requirements can significantly differ in its influence on design. RE theory
refers to this notion by distinguishing FRs from NFRs. R2A provides a con-
cept to characterize the influence scope of requirements in a more fine-
grained manner. Again, the AN concept builds the basis for this concept fur-
ther described in ch. III.18.2.2.

5. Last but not least, Simon described the phenomenon that design usually
evolves from one stable intermediate form to another (ch. I.6.2.1). This
means design usually not emerges in a kind of big-bang process but more in
an evolutionary process, where design reaches stable states forming the basis
of evolution to the next stable state. The R2A approach takes this into ac-
count by proposing a process heuristic called the requirement dribble process
described in ch. III.18.2.4.

Figure 18-3 Ways of establishing requirements traceability via drag-and-drop in R2A.

III.17 Basic Support Features of R2A 299

In opposition to the knowing-in-action cognitive state, Schön has discovered
that designers also switch to a cognitive state he termed reflection-in-action.
Designers usually switch to this state when they step into a problem they cannot
handle by their usual tool-set of internalized everyday problem solving experi-
ences and knowledge. In this state, concrete rationally gauged decisions on a
usually very difficult problem. In the author's view, such problems can be seen as
what Rittel's design theory terms as wicked problems and the decisions taken to
solve these problems often have drastic impact on the further outcome of the
design. Correspondingly, here is the point where decision documentation and
RatMan concepts can provide significant support to record this information. As
ch. III.20 will further outline, this collected information also has strong im-
portance for traceability.

III.18.2.2 The Requirement Influence Scope (RIS)

As shortly discussed in ch. I.6.2.1, strictly modularization-oriented compositional
structures are again softened by design theories about architectural aspects, cross
cutting concerns [CRF+06] or nonfunctional requirements. What this actually
expresses is the phenomenon that not all requirements can be tamed by confining
them in one module. Instead some requirements are fulfilled as a consequence of
collaboration between several modules, by architectural aspects, architectural
styles, patterns or other techniques acting on a wider scope than a single module.
In order to provide meaningful traceability, these situations must be taken into
consideration. For these situations the author will use the term requirement influ-
ence scope (RIS).

Due to the knowing-in-action cognitive phase, an easy way to define and
manage a requirement's influence scope to design should be possible.

Again, the ANs concept provides a valuable aid: If a requirement is assigned
to an AN, all sub ANs beneath inherit the responsibility for the requirement. The
idea behind this can be described that all ANs at the lower level must work to-
gether or at least share some common concern together to fulfill the requirement.

300 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

Figure 18-4 Requirements and the requirement influence scope

Fig. 18-4 shows an example227. Requirement “Req1” is assigned to the AN
“SW Design”. Its concern is then inherited by all sub ANs of the model, whereas
requirement “Req2” is assigned to the “Light_hdl” module as a whole. This
means all methods and contained data in the “Light_hdl” module must work
together to fulfill “Req2”. A very local requirement is then again seen by “Req3”,
whose influence scope only reaches to the method “setLights” within the
“Light_hdl” module.

In this way, a requirement's RIS contains the ANs it is directly assigned to
and the child ANs inheriting the responsibility. Inherited requirements of an AN
are shown in the “Requirements” tab (cf. fig. 15-4 in ch. III.15) like all other
requirements but with a gray colored requirement text.

The RIS has strong connection to the differentiation of functional and non-
functional requirements in REM theory as NFRs per se have a higher influence

227 Another striking analogy to this concept can be found considering a hierarchy of a

company organization. If a requirement (or here rather to say issue) concerns the Chief
Executing Officer of the company (corresponds to the “SW Design” AN on top of the
design hierarchy), the issue will most likely become a concern of all other employees,
whereas an issue concerning an employee at the lowest hierarchy level will be just a
concern of this employee.

III.17 Basic Support Features of R2A 301

scope than functional requirements. However, the concepts are not the same.
NFRs defining quality characteristics will most likely have the same influence
scope as “Req1” meaning the whole software is responsible for fulfilling the
issue. For other NFRs as, e.g., the demand for a user access rights management,
the designers may find a realization that does not have such a high influence
scope. As an example, it could be possible to define a three layers architecture
([BMR+00; p.31ff], ch. I.6.2.4), where the user access management – except for
the graphical user interface dialog to assign rights – is handled in the data storage
layer.
This example also points to three other aspects that must be considered:
• The lower the RIS of a requirement is in a design, the lower will be the im-

pact of a requirement change to the design. Thus, designers should try to
minimize the RIS of requirements in order to minimize the impact of the re-
quirement. This topic will be a central goal in the next chapter discussing the
requirement dribble process heuristic.

• On the other side, the RIS highlights requirements with high influence on a
design, as they will stay at a very high level of abstraction being inherited by
a lot of requirements. This is what Obbink et al. [OKK+02] term architectur-
ally significant requirements228 (ASR) and what most probably imposes close
connection to requirements imposing neuralgic points in the view of Moro
[Mo04; p.326] (also cf. ch. II.9.4.1). In most cases, NFRs will be most of the
ASRs (but also FRs could be ASRs) staying at the very high-level ANs.

• The RIS of a requirement can be influenced by the designers' decisions. As
ch. I.5.1 and ch. II.10.4.2.2 indicate, a promising strategy to tame NFRs is to
refine them into several FRs (cf. [PKD+03; p.145], [Pi04; p.99], [Mo04;
p.339]). Often, these FRs then might have a lower RIS than the NFR would
have had. In this way, a NFR's higher RIS is reexpressed through several FRs
with a lower RIS. Such a step is a decision process. Due to the importance of
NFRs concerning the general outcome of design (cf. ch. II.9.5), a dedicated
support for documenting such decisions can prove very helpful. Ch. III.20
will discuss the decision problem and how R2A provides support to tame
nonfunctional aspects with high RIS to a lower influence scope in a traceable
way.

228 ‘‘A requirement upon a software system which influences its architecture’’ [OKK+02;

p.53].

302 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

III.18.2.3 Representing Requirement Contextual Data

As mentioned in the chapters above, R2A helps designers to cope with the com-
plexity imposed by the high numbers of requirements by providing only require-
ment information relevant in the design situational context.

When the user selects an AN, the control shown in fig. 18-5 will show all re-
quirements relevant for the selected AN. Directly assigned requirements are dis-
played in normal black text color. Inherited requirements are displayed in gray
text color.

Fig. 18-5 also highlights two buttons for the operations “dribble-up” and
“dribble-down” essential for the requirement dribble process described in the
following chapter. Both buttons allow changing the requirement assignment in
orientation to the AN-hierarchy. A requirement assigned to an AN can be moved
up to the AN's parent AN via the dribble-up operation. This means to change the
realization of a requirement to a higher abstraction level implying that the RIS of
the requirement is widened. Vice versa, a dribble-down operation allows delegat-
ing the realization of a requirement down from the currently assigned AN to one
or more of its child ANs (the user can choose any combination of the child ANs).
This corresponds to a narrowing of the influence scope of the requirement. In this
way, a requirement becomes more local instead of global. Accordingly, this can
also be termed as the localization of a requirement. Often, design is performed by
several designers working together. In such constellations, it is often the case that
one designer works on a higher AL and the other designer works on the lower AL.
Dribble-down and dribble-up operations thus also traverse working boundaries.
In this way also a collaborative information exchange between the designers
takes place.

III.17 Basic Support Features of R2A 303

Figure 18-5 Showing requirements in the design situational context of an AN

304 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

III.18.2.4 The Requirement Dribble Process (RDP)

In the following, the requirement dribble process (RDP) heuristic229 is intro-
duced. As primary goal, the RDP's intention is to provide a process for designers
allowing them to establish traceability information as a by-product of their daily
design activities and providing immediate benefits for the designers when taking
the next actions of their daily design activities. In that way, the author hopes to
solve the traceability benefit problem meaning that designers experience enough
benefits for themselves to encourage them to record detailed, correct and thus
valuable traceability information as a by-product of their daily design activities.

One major leverage to reduce the traceability benefit problem is to avoid
what Dutoit et al. [DMM+06a; p.7] call “cognitive dissonance”, meaning in
Schön's view (ch. I.6.2.3) that establishing traceability might interrupt designers
in their thinking, especially if they are in their knowing-in-action phase. There-
fore, the RDP principles closely orient themselves on the ANH concept (ch.
III.15) and try to be performable as fast and easily as possible in order to ensure
that they can be realized without significant extra strains on developers.

Closely related to this issue is the problem that traceability information,
once established, must be quickly and easily changeable in order to ensure that
design is also adapted if assumptions, facts, or other factors spark the need for
changing the design with its requirement allocation. Otherwise, either important
design refactorings are just not performed due to more extensive effort, or re-
quirements traceability information fastly degrades. A symptom often observed is
that if traceability information is not easily changeable, design will be performed
beforehand and traceability is established afterward when design has reached a
relative stable state (see ch. I.7.2.3; comment on ENG.3 BP.2, ch. II.10.5, and ch.
III.11). In these cases, however, much of the important traceability information
may already be forgotten and thus gets lost. A special concern in this context
especially is that important information on important decisions is easily lost.

Additionally, design usually is a collaborative task. Correspondingly, the
heuristic provides dedicated support for collaborative information sharing be-
tween designers at different levels of abstraction.
Several ideas form the central pillars of RDP:

229 The term heuristic emphasizes that it is more a guiding principle, where deviations are

possible. However, the author is convinced that in principle most of the SW-based de-
sign processes – even in those design processes, where design is only present implicit-
ly in code – follow this principle to the one or other extent. The so called bottom-up
processes can be seen as the only big exception, but later it is shown that bottom-up
processes are also merely compatible.

III.17 Basic Support Features of R2A 305

• The abstraction nodes concept,
• The concept of stable intermediate forms as developed by Simon (cf. ch.

I.6.2.1 and ch. III.18.2),
• The requirement influence scope (RIS) concept;

III.18.2.4.1 Description of the RDP

The name 'RDP' derives from a metaphorical analogy to rain water dribbling onto
a mountain. In a similar way, the RDP heuristics allows design with its corre-
sponding ANs to emerge in a requirement-driven way by letting requirements
'dribble' through the ANH tree. The basic idea is that requirements are not neces-
sarily directly assigned to the AN that will finally be responsible in the future.
Instead, a process is possible, where the optimal solution for a requirement is
found in the course of the process heuristic. At first, this means that a requirement
can be added to an AN at a very abstract abstraction level (AL), e.g., the highest
AN of a model. According to the requirement influence scope (RIS) concept, this
first of all implies that a large extent of the design would be responsible for ful-
filling a requirement. In this constellation, later changes of the requirement would
have far reaching consequences (impact). Thus, to avoid requirement changes
having enormous consequences, all further design decisions shall act upon a
maxim to reduce the RIS of any requirement to a level as local as possible. Keep-
ing this in mind during design, the designer of an AN analyzes the assigned re-
quirements and tries to find solutions which allow delegating the requirements to
an AN at a lower level of abstraction via dribble-down operations. In this lower
abstraction level with the lower RIS, the designer responsible for the correspond-
ing AN again tries to find a solution allowing him to delegate the requirement to
an AN to lower ALs, thus again lowering the RIS. This happens as long as a re-
quirement cannot be realized by ANs of a lower AL in an expedient way. In this
case, the requirement now either comes to rest at this AN and its sub ANs inherit
the requirement as obligation to work together to fulfill the requirement's needs,
or the requirement can be split230 up to be fulfilled by several sub ANs of the
lower abstraction.

230 A split operation, however, should be omitted if possible. The general goal should be

to perform “dribble-down”-operations of requirements into disjoint paths, so that most
of the requirements will only take one way to dribble down into the design; but some-
times a split up may be not avoidable. If not avoidable, such a split up should occur at
an AL as low as possible in order to avoid a requirement-fan-out as described in ch.
II.10.6.2 leading to a high RIS.

306 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

In some cases, the designer of an AN could discover that an assigned re-
quirement cannot be adequately fulfilled by the AN. For example, this can happen
because the designer having delegated the requirement from a higher level AN to
the current AN has not been aware of some facts (resp. problems). In this case,
the designer of the current AN can again redelegate the requirement to its parent
AN at the higher abstraction level by a dribble-up operation. Such a situation
occurs when the requirement cannot really be fulfilled by the selected AN. Thus,
the dribble-up operation will correct the mistake. Often, however, it could also be
a communication problem when several designers work together at different ALs.
Such a case can happen when the designer of the higher AL assigns a requirement
to the AN of the lower AL but forgets to regard some other aspect influencing the
potency of the AN to fulfill the requirement. For example, it can be the case that
the AN is missing access to an information of another component necessary to
fulfill the requirement. Here, R2A allows the designer of the lower AN to redele-
gate the requirement to the designer of the higher AL via a dribble-up operation
accompanied by a note describing why the requirement cannot be fulfilled by the
lower AN in the current setting.

This note information additionally helps the designer of the higher AL to re-
gard the forgotten aspect and – if possible – to solve the problem. For example,
by designing a solution that allows the AL to access the needed information. Af-
terward, the designer of the higher-level AN can again assign the requirement to
the lower-level AN via a new dribble-down operation.

During the RDP, dribble-down and dribble-up operations can be performed
by all designers involved in the design forming a collaborative form of infor-
mation sharing. At the end, the RDP design process heuristic should converge to
a design where all requirements are considered in pursuing the goal that each
requirement has a RIS as low as possible, which leads to a design where changes
on a requirement – hopefully – has minimal impact.

A significant advantage of the RDP is that the heuristic always preserves the
exact current state of a design. Often, requirements important for an AN are scat-
tered over several locations in a requirement document. Therefore in current
practice, the designer of an AN often must analyze the complete requirements
specification to identify all requirements important to the AN. In this way, every
designer must nearly analyze the complete requirements specification to identify
the requirements important for him. With the RDP approach, a list of the re-
quirements concerning an AN is directly provided by R2A and thus, designers do
not need to analyze the complete requirements specification but can directly ben-
efit from works other designers have performed. Additionally, the RDP heuristic
also promotes that a current snapshot of the current design status is available
supporting the designers to take their next design steps and decisions, thus also

III.17 Basic Support Features of R2A 307

promoting that requirements traceability is performed as a by-product of the
design effort and not afterward.

III.18.2.4.2 A RDP Case Study

To explain the heuristic the reader must consider the accompanying case study
introduced in ch. III.12. At first, it is assumed that only the requirements specifi-
cation as shown in fig. 12-2 (ch. III.12) is present and no design has taken place.
Thus, a high level software architect (in the further called architect) starts the
design from scratch.

At the beginning of the project, the architect starts the process by creating an
empty diagram intended as the high-level architecture overview and adds this
diagram to R2A as the first AN (in the further called high-level AN) in the ab-
straction hierarchy tree. When analyzing the requirements, the architect decides
to care for the “Internal Lights Management” use case. He assigns the require-
ments of the use case to the high-level AN. This means the high-level architecture
is now responsible for the requirements of the use case. From this first stable
intermediate form, the designer can now analyze the use case requirements and
take further actions. Requirement ReqSpec_2 implies that the system has a CAN
connection. Correspondingly, the design needs a CAN_drv driver to control the
CAN-HW in the ECU and a CIL_hdl mapping signals from CAN to signals with-
in the software. Thus, the designer creates both design elements in the modeling
tool, adds both elements to the high-level architecture diagram (see fig 12-2 (ch.
III.12)), adds the design elements to R2A as new ANs located beneath the high-
level AN and then performs a dribble-down operation relating ReqSpec_2 to the
CIL_hdl, thus localizing ReqSpec_2 to the CIL_hdl.

In a similar way, the architect analyzes requirement ReqSpec_3 and
ReqSpec_4 and determines that he needs a Light_Task component. Correspond-
ingly, the designer creates the Light_Task component in the design tool and adds
it to R2A's ANH. Now, the designer can delegate ReqSpec_3 and ReqSpec_4 to
the Light_Task component via dribble-down operation. In this way, the architect
roughly analyzes the diversity of the requirements and decides the modulariza-
tions, attributes, etc. important from the architectural viewpoint.

Following the current example, the architect identifies the following mod-
ules and their important roles:
• Light_Task: is responsible for the evaluation and propagation of the light

requests received from outside (e.g., via CAN). The Light_Task can involve
a complex state machine.

308 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

• Light_hdl: is responsible for translating logical light function requests into
the different control of light channels provided by the HW. Further, the
Light_hdl is responsible for error diagnosis functionality on the controlled
HW light channels and the further processing of measured diagnostic infor-
mation. To achieve this, the Light_hdl also is responsible for timing the di-
agnosis functionality as diagnostic measurements must be exactly timed to
retrieve valid values.

• PWM_drv: is responsible for realizing demanded pulse widening modulation
(PWM) to control the light intensity of the controlled lights.

• ADC: controls the analog-digital converter component within the microcon-
troller needed to convert analogous feedback currents of the steered lights in-
to digital measurement values for diagnosis on the controlled HW light
channels.
As the architect anyhow roughly analyzes the requirements and makes his

design decisions on the bases of these, the architect can already assign the re-
quirements to the identified and modeled design elements. In this way, he also
implicitly documents the basic information on the decision leading to the design
element as well as to its responsibilities and thus creates traceability information
as a mere by-product.

In the next step, the module designers of the modules (usually, for each
module an individual module designer exists) care for realizing the assigned
requirements in the specific modules. Thus, at the abstraction level of the module,
every module designer starts to analyze the present requirements in detail to iden-
tify and model the necessary sub-components, data, and operations. For each
identified item the designer adds an AN in the abstraction nodes tree and assigns
the requirements for the AN via a dribble-down operation. In this way, the de-
signer automatically documents the basis of his design decision for the corre-
sponding AN.

At the level of these newly created ANs, the requirements are very likely an-
alyzed in more detail than it happened at the higher-level ANs. Correspondingly,
the module designers will also encounter contradictions and incompletenesses in
the entire design. As an example, the module designer of the Light_hdl module
might recognize that, in order to be able to perform the analysis of diagnostic
data according to the requirements (indicated by ReqSpec_6), he needs further –
not yet considered – information currently only available to the Light_Task. As
the solution of the problem is outside of his decision-making authority, he must
submit the issue to the designer responsible for the design of the interaction be-
tween Light_Task and Light_hdl. In this case here, this is the SW-architect. For
this, in a non-R2A project, the module designer of the Light_hdl would now need

III.17 Basic Support Features of R2A 309

to have a talk with the architect about the problem, in which both must use a
synchronous communication mechanism.

However, in several cases the architect may be busy, or distributed to anoth-
er location, or just absent. In all these cases, constant dangers exist that the issue
gets somewhere stuck or forgotten. Using R2A, the module designer is able to
redelegate the requirements back to the higher AL by performing a dribble-up
operation. To provide further information on the issue, the module designer can
add a note on the requirements describing the problem. The architect then is noti-
fied about these requirements again at his AL, can read the attached note to un-
derstand the problem, and then take decisive action whether the requirements
should be fulfilled by a functionality to exchange the needed information be-
tween Light-Task and Light_hdl or an alternative strategy such as remodulariza-
tion (the needed information is relocated into the Light_hdl) is used.

Through this way, asynchronous communication between the designers is
possible, where no problems are forgotten, and decisions are implicitly docu-
mented in addition.

In the further project progress, the module designer can then refine the de-
sign of the module. In case the code is generated automatically, the software
developer can then directly implement the realization of the module according to
the design and the assigned requirements. Also, in this case, the implementer
directly has all necessary requirements for the module at hand and is able to use
the dribble-up mechanism in any case he discovers problems he cannot solve at
his level of authorization.

III.18.2.4.3 Bottom-Up Design Processes within RDP

The RDP seems to be a method particularly fitting to top-down design processes.
However, as discussed in ch. I.6.2.1.3, pure top-down design processes are rather
an exception. In many cases, design evolves in rather non-linear decision pro-
cesses. The other extreme to top-down design is pure bottom-up design. Most
design processes will be a mixture somewhere between both (see, e.g., [HR02;
ch.10]).

As mentioned before, the RDP is just a process heuristic. R2A's features
provide flexibility to implement different processes. To support bottom-up design
processes, the following process setting is conceivable:
• The designers created design elements in the used modeling tool, add the

elements to R2A as ANs (via the wizard or drag-and-drop; see ch. III.15) and
assign the requirements the design element is intended to fulfill.

310 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

• If the hierarchy later changes (e.g., a parent is added to the design elements),
the ANH synchronization mechanism can easily reconstruct the new ANH.
The requirements assignment stays untouched.

• When the ANH grows, the dribble-down and dribble-up operations also pro-
vide valuable support for changing requirement assignment and thus implicit-
ly the RDP principles are again at work.

III.18.2.4.4 RDP Summary

The RDP approach offers significant advantages to other known traceability
methods addressing traceability between requirements and design:
• The linking between requirements and model elements emerges indirectly as a

by-product since the assignment of the requirements always resembles the
current state of decision about a requirement (stable intermediate form). Later
in ch. III.20 and ch. III.21, the author describes other kinds of decisions also
addressed by R2A through dedicated decision models. Also products related
to these decision models (design constraints and budgeted resource con-
straints; see ch. III.19 and ch. III.21) can again be treated by the RDP.

• In parallel, through the detailed recording of all steps taken to achieve a de-
sign, detailed documentation of the decision-making of a design is enabled al-
lowing easier reconstruction of the original ideas behind individual design de-
cisions in the case changes are needed.

• Also, the designer has an immediate overview of the remaining, not yet treat-
ed requirements at an AN, because the already treated requirements have been
delegated – and thus disappeared – to one or several sub ANs. Later, in ch.
III.22, the principle mentioned here is even extended by a mechanism for en-
suring consistency.

• Normally, several developers work on a design model. Via R2A, the delega-
tion of responsibilities between the developers can be achieved by interplay of
the ANs with the RDP concept, building a scaffold (i.e. skeleton) for collabo-
rative information interchange.

• Through the support of a dedicated process for assignment and care of a re-
quirement, it is ensured that each requirement is adequately considered in the
design process: If new requirements are assigned to an AN from a higher-level
parent AN, these requirements get highlighted in the AN by a different color.
Now, the designer of the AN must try, to find an adequate solution for the
newly assigned requirements. If the designer of this AN is again able to dele-
gate these requirements to a sub AN of the design, then these requirements
'dribble down' one level deeper to a sub AN and the problem is solved for the

III.17 Basic Support Features of R2A 311

corresponding AN. However, if the designer is not able to clearly delegate
these requirements to any sub AN, then the requirements sticks to this AN and
are inherited to all lower level sub ANs (marked 'gray') indicating that all ANs
together must deal with fulfilling these requirements. But if the designer re-
sponsible for the AN realizes that these newly assigned requirements cannot
be fulfilled in the current state of design, the designer is able to repel these re-
quirements back to the higher-level AN (its origin) accompanied with a corre-
sponding note. In this case, the designer of the higher-level AN must care for a
solution under consideration of the created notes.

• Effective communication between the designers is alleviated since the ap-
proach relies on mechanisms supporting asynchronous communication via the
assigned requirements and notes. Thus, less synchronous consultation be-
tween the designers is needed.

• The documentation of views in design with their textual descriptions and all
important decision information is essential for architecture documentation
(AD), (cf. [Ha06], [CBB+03]). Thus, R2A also supports generating reports
from all recorded information to fulfill AD needs. In this way, also infor-
mation gathered through the RDP heuristic completes information needs for
AD.

• When the design process is thought beyond the scope of mind discussed now,
a similar mechanism for other information to dribble through the designed
system in a similar fashion could be helpful. Thus, e.g., a design decision (see
fig. 20-2 (see ch. III.20)) in a high AL often restricts the solution space in the
lower ALs. If these so-called design constraints are formulated once, they can
dribble through the system in the same fashion. In order to allow high adapta-
bility to project specific needs, other item categories may be individually de-
finable by additional information for each project.

III.18.2.5 Overview over Navigation and Handling of
Requirements Aspects in R2A

Fig. 18-6 shows an overview how features described in the chapter above are
integrated into R2A concerning navigation and handling. At the left part, the
model with the ANH tree as described in fig. 15-4 (see ch. III.15) is shown. Via
selecting the “Requirement Sources” tab (1.), the control for managing all re-
quirement source documents (RSD) is displayed (see fig. 18-1 (see ch. III.18.1)).

312 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

Figure 18-6 Overview of how the requirements-related features are integrated into R2A
concerning navigation and handling

A double-click (2.) on a document opens the RSD's content window display-
ing the requirements of the RSD (see fig. 18-2 (see ch. III.18.1)). In fig. 18-6 the
content of the RSD “Requirements Specification” is shown.

A left-click on the properties-button (4.) opens the properties dialog for the
RSD. When the new-button (4.*) is clicked, a new, empty properties dialog is
opened leading to the creation of a new RSD if the 'ok'-button of the properties

III.19 Taxonomy of Requiremental Items 313

dialog is clicked. Fig. 18-6 shows the properties dialog of the RSD “Require-
ments Specification”. As the properties show, this RSD is configured to refer to a
requirements document managed in the REM-tool IBM Rational DOORS.

Through the synchronization buttons (3.), a synchronization mechanism can
be invoked to synchronize the requirements contained in the REM-tool (symbol-
ized by the upper right window in fig. 18-6) to the RSD. The synchronization
mechanism can be continuously invoked to synchronize changes performed in the
REM-tool to R2A's RSD, keeping it up to date. Ch. III.22.2 shows how this
mechanism can be used to consistently infer requirement changes into a R2A
design. Requirements being synchronized from an REM-tool cannot be edited in
R2A.

In the properties dialog, a RSD can also be set to status 'Free Edit'. In this
case, freely editable new requirements can be created in the RSD's content win-
dow.

In an RSD's content window, the requirements are displayed in the hierar-
chical decomposition structure. A double-click (5.) on a requirement opens the
properties dialog of the requirement.

Via drag-and-drop operations (6.), traceability can be established to the ANs
(also cf. fig. 18-3 (in ch. III.18.2.1)). These in combination with the dribble-up
and dribble-down operations (7.) form the basis for the requirement dribble pro-
cess heuristic (ch. III.18.2.4).

III.19 Taxonomy of Requiremental Items231

Each definition of a system layer yields some of the requirements for the subjacent layer.
Hatley et al. [HHP03; p.52 (*)]

The SPICE process model (described in ch. I.7.2) is a layered process model, in
which problem space descriptions (requirement view: ENG.2, ENG.4) alternate
with solution space descriptions (designs: ENG.3, ENG.5) at different levels of
abstraction (cf. ch. I.7.3.2 for detailed exemplification).

Ch. I.7.3.2 has outlined the problems of this layered process model concern-
ing traceability. Two major problems were discovered:
• High redundancies between the requirement artifacts lead to higher efforts

for traceability and consistency management (see fig. 7-2 (see ch. I.7.3.2)).

231 Significant parts of this chapter are taken from [TKT+07] and [TTW07].

314 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

Additionally, despite all consistency management efforts, drifts between the
different requirement artifacts' redundancies are often not avoidable.

• Between the different artifacts (especially, when also the HW dimension is
considered) other correlations are not adequately manageable (see fig. 7-2
(see ch. I.7.3.2) and fig. 7-3 (see ch. I.7.3.2)).
The first problem with redundancy could already be solved to a great extent

by a process artifact model described in fig. 7-3 (see ch. I.7.3.2). One prerequi-
site, however, is to acknowledge that process models such as SPICE are to a
certain degree rather a metaphor providing space for interpretation than a law to
be obeyed word for word. In the author's opinion, this degree of freedom is pre-
sent in SPICE, because SPICE itself emphasizes that the process model is only an
example process model and other process models are possible to be defined as
long as they conform to the original metaphoric ideas of the SPICE standard232.

Now, the solution shown in fig. 7-3 (see ch. I.7.3.2) still neglects one central
metaphoric idea of the layered process model that is covered by R2A via the
concepts described in this chapter, ch. III.20 and ch. III.23.2: System design has
high impact on its SW design by raising new “requirements” in addition to the
pristine requirements of the stakeholders. For example, in the automotive sector,
SW design must be subordinated under constraints of extremely cost-optimized
HW components. At the moment, SPICE neglects these critical connections be-
tween HW and SW but at least acknowledges this connection concerning system
design (see ch. I.7.2.4).

Figure 19-1 Requiremental items, requirements and design constraints taxonomy

232 It is, however, more difficult for an organization to prove conformance to these meta-

phoric ideas for a different process model than for a process model just taking over the
ISO/IEC 12207 process model used in the SPICE standard. Thus, most SPICE imple-
mentations in practice just use this process model.

III.19 Taxonomy of Requiremental Items 315

However, one issue in SW requirements which might benefit from more in-
tensive discussion is their negotiability. “Real requirements” are forming the
contractual basis between the stakeholders – particularly with the customer. Oc-
curring changes must be harmonized with the customer via a change control
board (CCB) [PR09; p.144f], [VSH01; p.184f, p.216]. Whereas, for “require-
ments” to be changed with the origin of the definitions of the design, it is possible
to search for a project-internal solution first, before escalating the issue to a CCB
is considered.

Thus, both kinds of requirements should be strictly separated in their no-
tion233. The author uses the following taxonomy (fig.19-1):
• Requirements are directly allocated to the SYS_RS since they concern the

legal agreement between customer and contractor.
• 'Requirements' derived from requirements or designs are called design con-

straints (DC).
• Requirements and design constraints have similar qualities and structure.

Thus, we use the term requiremental234 item (RI) for both items.
Generally, requirements have to refer to their origin (cf. description to IEEE 830-
1984 in ch. I.5.7). This relation should apply to all RIs. The origin of DCs lies in
previously made design decisions solving the conflicts/forces between RIs and/or
architectural items, constraining the broader, more abstract solution space to a
more concrete one. The decision model connected with the DCs is discussed in
the following ch. III.20.

Observations leading to the DC concept are not new. Leffingwell and Widrig
define constraint as “a restriction on the degree of freedom” the developer has “in
providing a solution” [LW99; p.55]. DCs also resemble to what the IEEE 610
defines as design requirements (“A requirement that specifies or constrains the
design of a system or system component” [IEEE610; p.26]) or implementation
requirements (“A requirement that specifies or constrains the design of a system
or system component” [IEEE610; p.39]).

The DC concept directly corresponds to observations of Hatley et al. that de-
sign decisions235 generate new requirements for sub system components [HHP03;
p.18]. These new requirements are a result of former design and should be con-

233 This directly corresponds to the view of Pieper in [RS02; p.33-35] demanding a clear

separation between requirements from the customer and internal requirements in the
project.

234 The artificial word 'requiremental' has been introduced by the author as a term for
describing superordinate characteristics of 'real' requirements, design constraints and
budgeted resource constraints (see ch. III.21).

235 See also Ebert's remarks that decisions constrain the solution space [Eb05; p.14].

316 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

sidered in a development process [HHP03; p.31]. In general, these 'requirements'
are more numerous than the original requirements [HHP03; p.32]. This matches
with Glass's note on complexity that “explicit requirements explode by a factor of
50 or more into implicit (design) requirements as a software solution proceeds”
[Gl02; p.19], (also cf. ch. I.6.2.1.1).

Lehman's principle of SW uncertainty describes that assumptions on which
design decisions depend can be implicit or explicit to developers, but both kinds
can get invalid due to changes [Le89]. Requirements can be seen as a kind of
assumptions (however, also other kinds of assumptions may exist). In this case
and in the face of high volatility rates, changes on explicit assumptions are much
easier to handle than implicit assumptions. Via the DC concept it is possible to
make these implicit assumptions more explicit, thus potentially improving IA and
consistent implementation of changes.

III.20 Support for Capturing Decisions236

A further complication is that the requirements of a software system
often change during its development, largely because the very existence

of a software development project alters the rules of the problem.
 [Bo94; p.4]

Most current state-of-the-art traceability models assume that traceability between
requirements and design can be expressed by a simple bidirectional linking con-
cept, where each requirement is related to the design elements. The link concept
can surely be helpful to cover relatively easy situations. However, traceability
literature ([Kn01a], [Kn01b], [PDK+02], [Pe04], [RJ01], [Al03]) provides strong
indications that the influence of requirements on design processes – and vice
versa – is only insufficiently modeled by bidirectional linkages.

Paech et al. [PDK+02] indicate that these relationships can be of a far more
complex nature (cf. fig. 20-1). By restraining the solution space, non-functional
requirements (NFR) restrain functional requirements (FR) and architectural deci-
sions (AD). On the other hand, NFRs are realized by FRs and ADs, whereas FRs
are realized and restrained by ADs.

236 Significant parts of this chapter are taken from [TKT+07] and [TTW07].

III.20 Support for Capturing Decisions 317

Figure 20-1 Interactions between nonfunctional, functional requirements and architectur-
al decisions [PDK+02]

The simple linking concept indirectly assumes that requirements and design
are mostly interconnected by linear relationships. As the author tried to elicit in
part II and ch. I.6 of the thesis, the transitions from requirements to design is
often nonlinear237 but more a creative mental transfer process of a problem de-
scription (requirements) to a solution, where the taken decisions build the foun-
dation of these transitions (also cf. [TKT+07]). The path from the requirements to
its realizing design can be described as a sequence of decisions constraining the
solution space. This circumstance induces that design does not only depend on its
requirements to be fulfilled, but it depends to a higher extent from the decisions
taken before. Now, this observation leads to the following two points to consider:
• Decisions and their effects must be communicated to other designers, devel-

opers and testers within the project. As ch. II.9 shows, approaches for deci-
sion documentation exist. In practice however, if any decision documentation
is done, the information will be documented in some design documents (as,
e.g., propose by Clements, Bass et al. in connection with SW architecture
documentation [BCN+06], [CBB+03]). By such an unstructured way, prob-
lems can then arise then, when this information must be propagated to other
stakeholders or even is to be processed in the further by other stakeholders.

• Later requirement changes not only influence the design but can also lead to
the need to reassess formerly taken decisions and – if necessary – to revise
them leading to new impacts on the design.
These considerations suggest the inclusion of a decision model in the trace-

ability information helping to document the origin of new design constraints in a

237 Also interesting in this connection is what Kruchten says about the design process he

proposes associated with his “4+1 View Model” architecture approach: “Finally, this
is not a linear, deterministic process leading to an optimal process view; it requires a
few iterations to reach an acceptable compromise. There are numerous other ways to
proceed” [Kr95; p.48]. As a consequence the question arises, why the traces of such a
process should be linear.

318 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

lightweight and need-oriented way. Fig. 20-2 shows this concept extending to-
day’s traceability models by an explicit decision model. The diagram sketches a
concrete situation, where a conflict between three requirements (Req_1, Req_2
and Req_3) and two design model elements (Class1, Class2) is resolved by a
design decision (Decision1), resulting in two new design contraints (DesCon-
straint1, DesConstraint2).

The conventional scheme of relating requirements to realizing model ele-
ments is extended by a dialog allowing the capture of documented decisions. In
this dialog, elements of the requirement model and the design model which are
conflicting, i.e., causing a problem, can be chosen. Equally, diagrams describing
aspects of the conflicting situation shall be attached as additional information
(<<documenting diagrams>>).

Figure 20-2 Documented decisions build the connection between requirements, design
elements and resulting design constraints

Furthermore, the decision can be specified on demand via a text component.
The text component accepts unstructured text, but – when needed – can give
adequate templates to support the decision documentation. A possible way to
structure – the user should choose these freely – is given in fig. 20-2 with the
decision’s attributes assumptions, rationales and solution specification.

III.20 Support for Capturing Decisions 319

III.20.1 Relation to Approaches of Rationale Management

The decision model presented here is strongly connected to RatMan (see ch. II.9),
since both deal with decisions during SE processes. In classical RatMan, the
focus lies on documenting, recovering, further usage and reuse of justifications (=
rationale) behind design decisions. RatMan mainly targets on the information
about the 'Why' of design decisions in order to alleviate the knowledge transfer of
decision makers to other involved stakeholders.

However, existing approaches could not succeed in practice [DMM+06a],
even though documenting design decisions is regularly called for in literature (cf.
[IEEE1471], [CBB+03], [BCN+06], [Ri06], [PBG04], [GP04], [Bo94]) and prac-
titioners acknowledge the importance of this type of documentation [TAG+05].
Diverse causes for this negligence have been identified, but the problem of cap-
turing the rationale seems to be the main obstacle (cf. [DMM+06a], [HA06a]):
1. Most approaches are highly intrusive (bothersome and interfering) to the

design process with extra effort for capturing (ch. II.9.1.4, ch. II.9.4.2,
[Gr96b], [HA06a]).

2. The approaches tend to have negative impact on the decision process, since
not all (aspects of) decisions can be rationally justified but arise from intui-
tive considerations (Schön's “Theory of Reflective Practice” [Sch83] adopted
by Fischer et al. [FLM+96], [DMM+06a]) basing on diffuse experiences
(e.g., tacit knowledge [Po66]; also cf. [DMM+06a], [HA06a], [SM99a]).

3. Decisions must be made despite of unclear circumstances and it is impossible
to include all relevant information (bounded rationality [Si96], [HA06a]).
Thus satisfactory solutions must be found although problem knowledge is
clearly limited [LF06].

4. Grudin's principle [Gr96b] suggests that collaborative systems fail if the
invested value is not returned to the information bearers (ch. II.9.4.2,
[DMM+06a], [Sch06]).
The problem mentioned in point one implies that not all decisions can be

treated exhaustively in any case. For example, Clements, Bass et al. only refer to
the documentation of the most important decisions ([CBB+03], [BCN+06]).
Booch [Bo94] gives another lead by dividing decisions238 into strategic (i.e., with
striking impact on architecture, mostly made on the early stage of a project) and
tactical (i.e., locally limited impact on the architecture).

238 Also cf. Canfora et al. [CCL00] distinguishing maintenance rationale into two parts:

Rationale in the large (rationale for higher-level decisions) and rationale in the small
(rationale for implementing a change and testing).

320 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

In this context, strategic decisions must/should be thought through carefully
and should –if possible– be made on explicit rationale grounding. For this rela-
tively small fraction, the investment in more intensive analyzes is highly valua-
ble, as discussed by most approaches on rational management ([RJ01],
[CBB+03], [BCN+06], [TA05]). These issues may be analyzed in a prescriptive
schema as IBIS [KR70], or the Rationale Model of Ramesh and Jarke [RJ01], or
REMAP [RD92], or Clements and Bass [CBB+03], [BCN+06]. R2A's decision
model (see fig. 20-2) supports this by additionally allowing defining a project
individual template for the textual description component of the decision (in fig.
20-2 shortly sketched by the bullets “Assumptions”, “Rationales” and “Solution
Specification”).

On the other hand, Booch [Bo94] also demands that tactical decisions
should be documented. At that time, Booch thought both kinds would disclose
themselves by applying adequate modeling. Today’s experiences show that such
modeling just documents the how but not the why of decisions. In this context,
Dutoit et al. [DMM+06a; p.39] provide the heuristic to concentrate on document-
ing decisions that are not obvious or impact other decisions. Referring back to
Booch's view, it can be said that modeling captures a certain part of the decisions
and the R2A decision mechanisms help to document the not obvious and espe-
cially influential decisions.

In the author's opinion, the developers should at least get the possibility to
document decisions on demand, but considering aspects mentioned in point 2 and
3, the intrusion on the development process must be minimized ([Sch06],
[HA06a], [DMM+06a], [SM99a]).

Keeping this in mind, a key goal of this decision model approach is to lower
the barriers to making design decisions explicit as much as possible: Therefore,
this decision model mechanism offers to designers a simple, semi-formal model
as a skeletal structure to easily add basic information239. For this, the proposed
decision model provides a minimal notational framework to identify the conflict-
ing elements (requiremental and design) and to derive the resulting consequences
as DCs. Thus, the conflicting elements define the area of conflict with the coun-
teracting forces, automatically documenting the basic rationale behind a decision
as a by-product.

In that case, however, the model is minimalistic and of a purely descriptive
nature. Any further users of such minimalistically documented decisions must at
first derive the actual knowledge about the decision on their own. But at least the
fact that the context (the conflicting items and the results of the decision as DCs)
is present for each decision provides evidence to later users: They can infer that a

239 In this way, the approach resembles to the QOC approach (see ch. II.9).

III.20 Support for Capturing Decisions 321

decision has been made consciously and first clues are given for recovering the
rationale (cf. [RLV06]). Further, this modeling of consequences pays tribute240 to
Horner and Atwood's claim that designers must consider the “holistic affects” of
problems, their rationale and solutions [HA06a; p.84], (also cf. ch. II.9.1.4 and
ch. II.9.4.2).

In that way, not all decisions can be reconstructed. Since the tool discussed
here shall also automatically record such meta-data like the author(s) of a deci-
sion, the later users of a decision (rationale seekers) can consult the author(s)
about unclear aspects. Additionally to tool usage, a process rule shall prescribe
that the rationale seekers must document the results of this decision recovery in
the decision's textual description to further improve the decision's documentation.

This procedure –inspired by Schneider ([Sch06; p.97]: “Put as little extra
burden as possible on the bearer of rationale”) – helps to cope with the problem
in point four (see above), because by deferring the documentation work to the
inexperienced rationale seekers, the experienced know-how bearers are signifi-
cantly disburdened from communication resp. documentation work. As a positive
side-effect, the transferred knowledge is consolidated in the rationale seeker
during his documentation work.

On the other side, only unclear decisions will go through this further ra-
tionale request and documentation process. Therefore, the approach indirectly
minimizes the documentation overhead by orienting itself on the selective infor-
mation need of the further rationale seekers.

Van der Ven et al. express the observation that design decisions spark these
new requirements, which then also must be satisfied by an architecture [VJN+06;
p.340]. Van der Ven et al. [VJN+06] therefore also propagate to capture infor-
mation about design decisions, because this helps to address central problems in
design [VJN+06; p.332, p.341]:
• “Design decisions are cross cutting and intertwined” [VJN+06; p.341]:

Many design decisions affect multiple parts of a design. As usual design pro-
cesses do not explicitly represent design decisions, this knowledge is often
fragmented across various parts. The designer himself knows these connec-
tions at first but always is in danger to forget it. Also Dutoit et al. [DMM+06;
p.86] emphasize that much of design is done through evolutionary redesign
and therefore long-term collaboration is essential. An adequate design deci-
sion representation can help to preserve the knowledge about the intercon-

240 Even though, this tribute is far from being holistic, the decision model approach de-

scribed here is a first try to establish rationale in practice. If the decision model con-
cept proves to be sustainably successful in design practice, the model can be enhanced
by modeling further more holistic connections.

322 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

nections. Later, designers can again be made aware of such cross-cutting and
intertwined connections. If then some of the interconnections are no longer
desirable (e.g., due to newly discovered facts), the structure can be refactored
more easily.

• “Design rules and constraints are violated” [VJN+06; p.341]: “During de-
sign evolution, designers can easily violate design rules and constraints aris-
ing from previous decisions” [VJN+06; p.332]. Such violations are usually
the source of architectural drift. Through an adequate design decision repre-
sentation, designers can be made aware of design rules and constraints im-
posed by former decisions. In this way, architectural drift can be avoided bet-
ter.

• “Obsolete design decisions are not removed” [VJN+06; p.341]: During evo-
lution of design, some previously taken decisions become obsolete. Record-
ed information about decisions helps to “predict the impact of the decision
and the effort required for removal” [VJN+06; p.341].
The DC and decision model concept proposed here has potential to alleviate

these issues. Thus, concerning RatMan, R2A tries to balance and connect de-
scriptive pragmatism and structured prescriptive methodologies. RatMan is not
R2A's central issue, but this chapter shows that requirements traceability and
RatMan are very closely related to each other and complement one another.

A further general problem of RatMan not yet discussed here is the retrieval
of documented decisions. Horner and Atwood [HA06a] argue that fixed schemes
–in contrast to unstructured text– offer better possibilities for indexing according
to retrieval. The following chapter shows how the retrieval problem can be
avoided through usage of the gathered traceability information of this approach.

III.20.2 Effects on the Traceability Model

The idea of including decisions into the traceability models has already been
proposed by Ramesh with his REMAP tool [RD92]. In a later empirical study on
traceability (see ch. II.10.4.2.3), Ramesh and Jarke ([RJ01]) detected a real need
by experienced users. Therefore they include a separate traceability sub-model
(rationale sub-model) for decisions, which is oriented on the former works with
REMAP.

The decision model being proposed here has been inspired by the rationale
sub model, but in the author's view Ramesh and Jarke’s [RJ01] solution lacks
making concrete proposals for implementation and thus, the RM component ap-
pears loosely connected to the other traceability sub models. Besides, the ra-

III.20 Support for Capturing Decisions 323

tionale sub model (orienting on REMAP) extends IBIS [KR70], which is a pre-
scriptive and intrusive method (cf. ch. II.9.1.4, [LL00; p.202ff]).

In contrast, this decision model directly fits into the schema for traceability
to design. In that way, a semi-formal model has evolved which provides easy
handling and which has the following characteristics:
• A constellation (combination) of requirements and design elements leads to

conflicts.
• Decisions do not directly influence dedicated design objects, but they bear

design constraints that can be flexibly assigned to design elements during the
project.

• All other important information for documenting a decision can be added on
demand as unstructured descriptive text.

• For important strategic decisions, a template can provide prescriptive ele-
ments to assure these decisions have been made thoroughly.
The usage of the decision model has effects on existing traceability models.

The traceability model of simple linkage described in ch. III.18 is extended to a
model briefly sketched in fig. 20-3. Since design elements influence the decision
process as well, the requirement dimension migrates to a close coupling with the
design. Simple <<satisfy>> relationships can occur next to (as Req.1 maps to
DesignElement1) more complex traceability networks. Thus, e.g., Req.2 only
impacts the design by the decisions Dec.1 and Dec.2.

Figure 20-3 The newly emerged and more detailed traceability information scheme

324 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

Dec.2241 arises from the conflict situation of Req.3, DesignConstr.2 and De-
signElement2, whereas Dec.3 is only derived from requirement Req.1 (which
then corresponds to a <<derive>>-relationship as described in [Li94; p.33]).
Consequently, design elements (alone without RIs involved) should also be able
to invoke a decision (Req1 Dec.3 DesignConstr3). This way, chains of deci-
sion sequences can be modeled corresponding to experiences of Lewis et al.
[LRB96] describing design as a suite of problems (ch. II.9.3.2).

With adequate tool support, these traceability relationships indicated in fig.
20-3 could be visualized as a traceability tree. A kind of browser should support:
• Detailed IA: Starting with a starting impact set, all subsequent paths would

firstly be classified as impacted. During the following detailed check, the
tool should allow to take out paths identified as none-relevant and adding
paths detected as relevant (cf. ch. III.22.1).

• An adequate context for the simple retrieval of documented decisions. The
following chapters show how R2A supports this.

III.20.3 Example How to Tame the Development Process
Model of SPICE

In ch. I.7.3.2, problems of the SPICE process model concerning artifact handling
and traceability are sketched. The major problems are unnecessary redundancies
and lacking abilities to make implications between different model artifacts
transparent (in the example case discussed here between the HW and the SW).
The process artifact strategy described by fig. 7-3 (see ch. I.7.3.2) could improve
the redundancy problem, whereas the second problem is still open.

Directly relating to fig. 7-3 (see ch. I.7.3.2), fig. 20-4 shows how this prob-
lem can be solved by using the decision model described here. The architect dis-
covers the same problem concerning watchdog and EEPROM. He (she) opens a
decision wizard and marks Req.1 and Req.3 as conflicting and links the decision
to the “HW design” AN with the diagram documenting the conflict. As further
rationale, the architect textually documents “synchronization conflict at SPI
between time intensive EEPROM application and time critical watchdog applica-
tion”. A further click helps the architect to put the conflict into the risk list. As
resulting DC, the architect sketches the cooperative handshake and links the DC
to the EEPROM and watchdog design elements in the SW design.

241 Dec.2 is directly mapped to DesignElement4. This may also be possible, when no

further information for understanding the decision is needed.

III.20 Support for Capturing Decisions 325

Our implementation follows the ideas described in the previous chapter. In
the further project progress necessary changes are early detected by IAs (see ch.
III.22.1) and the additional costs can be compared to the cost savings of the re-
jected HW change.

The artifacts HW_RS and SW_RS, which have not been realized, can be gen-
erated out of the model on demand by summing up all requirements related to the
corresponding design (HW design model for the HW_RS, SW design model for
the SW_RS). Ch. III.23.2 describes this in detail.

As it is a known problem in embedded design [Gr05; p.415], this example
further shows how the decision model improves the design processes by making
the strong influence of HW design on SW more transparent.

Figure 20-4 The example of SPICE conforming design processes in the new way

326 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

III.20.4 Implementation of the Decision Model in R2A

After the decision model has been theoretically discussed, this chapter will now
outline how the decision model is implemented in R2A. Fig. 20-5 shows a deci-
sion modeled in R2A's decision dialog (left side). Additionally, fig. 20-5 shows
possible drag-and-drop operations to relate information between the decision
dialog and R2A's main window (right side). The modeled decision deals with
how the NFR “ReqSpec_14: The system must be flexible to change.” can be
realized concerning HW and SW.

Figure 20-5 Decision dialog in R2A

III.20 Support for Capturing Decisions 327

The dialog implements the decision model described in fig. 20-2 (p.318),
and has the following sections (see fig. 20-5):
• At the top, a summary or topic of the decision must be provided. The sum-

mary is displayed as the decision's item text in all other controls (e.g., see fig.
20-6).

• In the “Conflicting items:” section, all R2A items being in conflict with each
other (and thus need to be decided about) can be added via drag-and-drop
operation (1.). Once this decision is then saved, the items are related to the
decision through <<conflicting entities>> relation described in fig. 20-2
(p.318). In the example, these items are the design ANs representing HW and
SW in combination with ReqSpec_14.

• Further assumptions, arguments, and rationale, as well as any other infor-
mation can be added in textual form in the “Description of the Decision” part.
The approach does not prescribe any information provided here. Through the
button “Word”, the description can be performed using Microsoft Word, thus
allowing using formatted text. The “Template” button allows loading specifi-
cation templates if some more structured (prescriptive) rationale approaches
shall be used. The approach does not rely on a specific rationale structuring
method. Correspondingly, the conflicts, and results parts form a kind of semi-
formal skeleton for structuring the rationale. But, for further documentation
of the rationale, the approach does not rely on any specific style documenta-
tion as IBIS, QOC, DRL etc. Instead a word style documentation is possible,
where a template can be prescribed that could be in any rationale structuring
template242. This can be seen as an advantage, because the rationale docu-
menter can choose a best-suited structuring schema. As Dutoit et al. empha-
size [DMM+06a; p.7], schemes differing from the way the rationale docu-
menter would intuitively structure it create “a cognitive dissonance” imposing
additional cognitive strains to the documenters. Freedom of choice can here
provide a decisive difference alleviating the burdens encountered at rationale
documentation.

• To derive consequences from the decision, DCs can be created in section
“Resulting Items”. Afterward, these newly created DCs can be assigned as
RIs to any AN via drag-and-drop operations (2.). Correspondingly, DCs could
also be termed as 'requirements emerging from the design and decision pro-
cesses'.

242 It would even be possible to combine the model described here with other rationale

capturing tools as gIBIS or Compendium.

328 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

• For further decision specification any diagrams showing important infor-
mation can be added via drag-and-drop operation (3.) into the 'Further dia-
grams' section.

The decision modeled in fig. 20-5 is visualized in R2A as shown in fig. 20-
6. Ch. III.22.1 and ch. III.22.2 describe how this decision structure and visualiza-
tion are used to improve IA and consistency management.

The DC “Handlers and Drivers shall provide callback mechanisms to their
upper layers (Dependency Inversion Principle)” indicates another aspect to con-
sider. Callback mechanisms can be seen as patterns (or idioms) to decouple mod-
ules. In this way, the decision mechanism can be seen as a way to document pat-
tern usage, where a designer can even prescribe the application of patterns for a
specific situation through decisions and DCs. This is further discussed in ch.
III.20.5.1.

Besides this aspect, the example also shows a situation, where a NFR
(ReqSpec_14) is reexpressed through several more functional DCs. The strategy
of taming NFRs by concrete scenarios or reexpress them by more concrete FRs
has been already discussed in ch. I.5.1, ch. II.9.5, ch. II.10.4.2.2, and ch.
III.18.2.2.

Figure 20-6 R2A's visualization of the decision taken above

Theory of SW architecture development has developed the so called influ-
ence factors assessment described in ch. II.9.5. This can be seen as a more gen-
eral view on this topic in the context of design.

Table 20.1 shows an example of an influence factors assessment on the case
study described here, orienting itself on findings of [PBG04; p.79], [CBB+03],
[BCK03], [Bo00b], [HNS00], and [BCN+06]. The tabular presentation is taken
over from Hofmeister et al. [HNS00]. In the first column, the factor is described,
the second column discusses the priority and flexibility of the factor, the third

III.20 Support for Capturing Decisions 329

column identifies the influences and risks that may be involved when the factor
takes effect, whereas the fourth column describes handling strategies to proac-
tively reduce negative influences and risks of the factor.
The following factors have been identified and discussed:
1. Some requests for the ECU must be responded within 5 milliseconds (ms)

(nonfunctional timing requirements). As these requests must be fulfilled with-
in this timing to ensure that the controlled processes work properly, the priori-
ty is high and the influence of not fulfilling the timing restrictions can lead to
complete failure of the ECU. Fortunately, the timing restrictions are not com-
pletely fixed but can exceed by 0.5 ms in 5 % of the cases, but 5 ms are still
difficult to achieve. Correspondingly, continuous measuring and monitoring,
or schedulability analyses as provided by rate monotonic analysis [KRP+93]
can be an adequate strategy to ensure that all timing restrictions can be ful-
filled.

2. A NFR requires minimizing power consumption in order to reduce problemat-
ic battery work load. This issue also has high priority, but only when ignition
is off. As consequence, a sleep-wake-up manager in SW must manage that the
ECU goes into a sleep mode when ignition is off.

3. Current HW design requires reading input signals of shift registers. This issue
results from internal HW design decisions for cost optimization and is not
demanded by the customer. Correspondingly, priority is low and flexibility is
high. As major drawback, the input provided by shift registers must be polled
continuously. This imposes a direct risk for factor 1. This also induces a high
risk for factor 2, because some of the input signals are dedicated to wake up
the ECU, when it is in sleep mode (see factor 2). When shift registers are used
for these pins, the ECU must wake up continuously and poll these shift regis-
ters during sleep mode, which leads to higher power consumption in sleep
mode. To fulfill the wake up requirements in the current HW design, the SW
design for the current SW version must provide an extra timer with a time
slice of 2.5 ms for polling the shift registers (2.5 ms in order to handle re-
quests concerned with factor 1). Nevertheless, as this again imposes high risk
for factor 1, the HW design must be changed for the next release to employ
multiplexers instead of shift registers, because multiplexers allow wake-up-
able pin interrupts at the micro controller to be directly triggered, thus avoid-
ing polling for input signals and reducing risks of not fulfilling factor 1 and 2.

4. Factor four addresses change flexibility in software as it has been discussed
above in fig. 20-5. As change flexibility is rather abstract, the NFR is concret-
ed by defining three concrete scenarios for change flexibility:
a. Scenario one discusses what will happen if input signals currently meas-

ured by the environment are sent from another ECU over CAN. In this

330 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

project, the scenario could be identified as low priority and is thus not fur-
ther considered.

b. In scenario two a situation is addressed in which it is not quite clear
whether some output signals currently sent via CAN may not also be pro-
vided via other out pins. Due to limited output pins of the micro controller,
the usage of multiplexers (MUX) will then be necessary. The probability
of this problem is medium and the change must be applicable within one
month. Consequences would be that these output signals should be con-
figurable by EEPROM parameters, HW must be changed, and a new SW
component (MUX_hdl) handling these MUXs must be included. Negative
impacts of the factor can be addressed by a HW reserve243 that allows
easily integrating the multiplexers on HW and an integration point to easi-
ly integrate a potential MUX_hdl to be easier integrated in SW.

c. The third scenario discusses the potential that internal SW signals within
the ECU may have to be propagated to other parts of the ECU's SW. This
is very likely and must be realizable within a few days, because otherwise
implementation of other features needing the signals will get retarded. An
extension of signal propagation imposes new efforts on the different SW
tasks (processes) and may impose a risk for factor 1. To avoid these risks,
an RTE244 component as a decoupling layer between tasks and handlers
may provide a standardized communication mechanism with configurable
signal propagation through function pointers combined with asynchronous
messaging mechanisms to decouple processes.

5. Factor five addresses the effects when development processes with SPICE
maturity level 2 (ML2) must be employed. The priority is high, because the
customer demands for high quality and a scalable development process. On
the other side, SPICE ML2 demands high administrative and bureaucratic ef-
fort for documentation inducing high risks for factor six. This requires a good
tool support in order to diminish unnecessary effort; but in the same way it
may be acceptable to use development processes capable for SPICE ML1, as
SPICE ML1 also requires that all necessary processes are fulfilled; but it does
not require extensive documentation.

243 German: HW-Vorhalt
244 RTE is inspired by the run-time environment (RTE) component of the AUTOSAR

architecture. AUTOSAR (Automotive Open System Architecture) is a standardization
en–deavor with the goal to define an open standard for automotive SW architectures
[We07; p.18]. The design case study introduced here is not an AUTOSAR conforming
design, because it would unnecessarily complicate the case study. However, the RTE
concept proved a good idea to be integrated into this example about SW architectural
design decisions.

III.20 Support for Capturing Decisions 331

6. Concerning the project resources, budget for three developers for two years is
available. At first sight, this issue seems not so important, because HW part
costs are at the end the dominating cost factor in the end. On the other side,
risks to achieve the goal of factor 6 are significantly imposed by factor 5. This
issue may at first also just seem to be a matter of planning in the sense that the
project manager just performed wrong effort estimations, because he did not
consider the extra effort of SPICE ML 2. In this sense, project staff simply
must be increased; but on the other side it may also be the case that budget re-
quirements imposed by the customer or management do not allow an increase
in budget and other strategies must be taken. Generally, it is to say that factors
5 and 6 seem not to be directly connected to the design; however, as indicated
by Posch et al. [PBG04; p.74f], the scope of factors to be considered should
include a wider perspective in which especially organizational factors245
should be considered. The example shown here is only a snapshot of the fac-
tor analysis at a very early state of the project, where factor 6 is in conflict
with factor 5, but the effects on the architecture are not yet obvious. Now, in
the further project progress it may become apparent that the customer insists
on SPICE ML 2 processes and that project budget is very tight preventing to
call in further developers. It may turn out at this later point, however, that two
former projects are existing handling partially similar issues as the example
project and parts of their SW components can be adapted to the new problem.
As this promises to significantly reduce development effort and staff needs, it
is then decided to reuse parts of these projects. In this case, both factors
would significantly raise their influence on the design, leading to the effect
that the whole character of the design may change (e.g., the design may then
rather become an integrative patchwork to integrate the old components with
adapter components to fulfill the new needs).

245 Organizational factors such as staff size, staff skill levels, development organization,

or available budget often impose significant restrictions on which solution is possible
and thus significantly influence on the outcome of a design [PBG04; p.74]. Especially
economic and development process contexts play an important role, because they soon
become an important factor about the feasibility of an intended solution.

332 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

Table 20.1 Example of an architectural influence factors assessment

Factor Priority/Flexibility Influence/Risk Handling Strategies

1. Response time <
5ms

HIGH; in 95% +-
0.5ms soft deadline

K.O.-criterion Rate Monotonic Analysis +
continuous measurements of
prototypes and release candi-
dates.

2. Minimize Power
Consumption

HIGH; at least when
ignition is off.

ECU must go into a
sleep mode.

Sleep-wake-up manager in
SW.

3. Input signals over
Shift Register Handler

LOW; High flexibility
as not prescribed by
customer

Through needed
polling induced risk
for 1 and 2.

Timer with t+2.5ms; HW
change from shift-register to
multiplexer in next release.

4. Flexibility to
change

MEDIUM

4.1 Scenario: In-
put signals
change to CAN.

LOW; Rather low
probability

- -

4.2 Scenario:
Output signal via
CAN or multi-
plexer

MEDIUM; must be
realizable within one
month

Configuration
parameter in
EEPROM; HW
change; Multiplexer
handler (MUX_hdl)
in SW necessary.

HW reserve; Integration point
for MUX_hdl in SW.

4.3 Scenario: In-
ternal signal pro-
cessing must noti-
fy other parts of
the system.

MEDIUM; very likely
 must be realizable

within a few days

New communica-
tion effort with
other tasks Risk
for point 1.

RTE-layer with configurable
function pointers and asyn-
chronous messaging

5. SPICE ML2 HIGH, the customer
demands for high
quality, but also wants
a scalable develop-
ment process.

Increased adminis-
trative effort
Risk for Point 6

a) Usage of adequate tools.
b) Negotiations whether
SPICE ML1 may also be
adequate.
c) Adding 50 % additional
developer resources

6. Project resources:
Three developers for
two years

LOW, costs are main-
ly driven by HW
costs.

- -

Following the current design theory the influence factor assessment example
above described would be part of a design description only loosely connected to
the design model. With the decision model described here, the decision can be
directly integrated into the design model (cf. fig. 20-7).

III.20 Support for Capturing Decisions 333

Figure 20-7 Architectural influence factors assessment with R2A's decision model

All requiremental items (RIs) or design related elements (ANs) present in
R2A and being considered as influence factors can be added to the “Conflicting
Items:” section. The assessment description can be documented in the “Descrip-
tion Of The Decision” section in an equal way as shown in table 20.1 above. The
arising consequences (column “Handling Strategies” in table 20.1), can again be
derived as DCs thus allowing directly assigning the DCs to the ANs needing to
realize the consequences. At first, this helps to ensure that the designers of the

334 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

corresponding ANs become aware of these demands and thus ensures that these
demands are considered by the considered in the design. Secondly, this also en-
sures that this information is made directly traceable and thus ensures that this
information is present later in IAs for change assessment during change manage-
ment processes (cf. ch. III.22.1 and ch. III.22.2).

Figure 20-8 Consequences of the architectural influence factors assessment of fig. 20-7

Fig. 20-8 shows in more detail how the influence factors assessment of fig.
20-7 could impose consequences (see the different arrows) on the design and
how they currently can be made explicit in R2A.

III.20 Support for Capturing Decisions 335

Arrow '1.' indicates a fact not yet directly discussed but possibly often oc-
curring in design: The process of discovering rationale about a decision can also
impose backlashes on the original sources of the decision such as the require-
ments involved. During the decision process of the example, the designer discov-
ered that the requirement about minimized power consumption is only important
if ignition is off, because otherwise the running motor drives the power generator
generating enough energy to not strain the battery. This discovery could lead to
the conclusion that the requirement itself should best be adapted to 'Power con-
sumption must be minimized if ignition (KL15246) is off'. Currently, R2A does not
provide dedicated support for this situation, because the situation can be managed
by current state-of-the-art tooling. If, e.g., a change management tool with a
change proposal system is used, the designer can initiate a change request de-
scribing the situation and the designer can directly textually refer to the decision
via its unique identifier in R2A (cf. ch. III.17.4). Otherwise, if only an REM-tool
is used, the textual reference to the decision's identifier can be added to the in-
formation about the requirement (e.g., in a comment attribute or 'Origin' attribute
as described in II.10.4.2.1). However, as ch. IV.26 outlines, further perspectives
of research about R2A could be supporting a dedicated integration with change
management tools.

The first DC in the “Resulting Items” section demands to perform a Rate
Monotonic Analysis. Arrow '2.' shows how this can be modeled as a nonfunction-
al consequence for the complete SW design. By assigning the DC to the AN “SW
Design” via a drag-and-drop operation the DC becomes a new nonfunctional RI
for the SW design. Arrow '4.' indicates a similar situation for a part of the SW
design.

On the other side, arrow '3.' imposes consequences on the HW. As indicated
in fig. 20-8, if the HW design is also somehow represented in the R2A design
model, this can be performed by a drag-and-drop operation to the corresponding
AN representing the HW. Currently R2A does not support a modeling tool for
dedicated HW design, but the product line concept with dedicated support for
integrating different modeling tools as a variation point should, in principle,
equally allow connecting any HW design tool.

246 In automotive terminology, ignition is coded by the term “KL15” (In German: Klem-

me15).

336 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

In the current state of R2A with lacking direct support of a HW modeling
tool, two alternative strategies are possible to allow tighter integration of HW
design:
• A place-holder AN for the HW model can be created, where all issues aris-

ing247 from a design process performed in R2A possibly relevant for the HW
can be assigned. As further described in ch. III.23.2, this place-holder AN can
then be used in R2A to generate a requirements specification for HW result-
ing out of the design processes performed in R2A.

• In the author's experience, any embedded system or SW design model must
integrate certain HW aspects anyway in order to model certain cross influ-
ences. As these models might need some aspects of HW in their models any-
way, a certain low detailed HW model could be collaboratively maintained
(resp. sketched) by system designers, HW designers and SW designers togeth-
er to improve a common understanding at this core interface, in which the
three domains have their significant overlap. If this HW model could be main-
tained in UML, the system and SE activities could seamlessly integrate the
model. As a side-effect this model could also be an interface communicating
effects of design processes performed in R2A to the HW designers. In fig. 20-
8, the author indicates this idea by including an AN 'HW Analysis'248.

Last but not least, arrow '5.' indicates that new DCs might also spark the
need for modeling new ANs in the design. In fig. 20-8, for example, a DC249
demands a SleepWakeupManager. This SleepWakeupManager must be modeled
as a new AN in the design. These situations sparking new ANs are indicated in
fig. 20-8 by a square containing a question mark. The question mark indicates
that it is not yet quite exactly sure in the current design situation whether these
possibly new arising ANs really come to existence and how they might then ex-
actly look like, because creating any new AN would then be some following deci-

247 These are at first DCs as consequences of decisions as described here in this example,

but perhaps also other items in R2A as, e.g., the budgeted resource constraint concept
introduced in the next chapter, might be relevant.

248 The author has chosen this name, because such a model concept – in the author's
opinion – rather resembles to the SW analysis concept as such a model might not really
anticipate the HW design but might help to analyze certain HW parts that are of cross-
cutting interest for all three design domains. A real HW design might only make sense
with a dedicated HW design tool allowing modeling of the HW circuits. An alternative
name for such a model might be 'HW intermediate model'.

249 The reader should note that in the situation described here actually three DCs might
spark new ANs. The author has grouped the three items together to one arrow '5.' to
avoid unnecessary clutter in fig. 20-8. It is very highly possible that the three items
might spark the existence of three different new ANs.

III.20 Support for Capturing Decisions 337

sions of the designer, where other factors may also influence the final decisions.
As described in ch. II.10.4.2.2, such consequences as indicated by arrow '5.' are
connected to what Knethen and Paech [KP02; p.14] call 'applicability links'
meaning that an item can derive its justification from another item. From this
perspective, the decision and DCs concept might probably also be seen as a spe-
cial form of 'applicability links'.

In [PKD+03; p.145], Paech et al. indicate that some NFRs can be specified
via FRs. This is possible with the decision model, in which a NFR can spark a
decision about handling strategies for the NFRs leading to new DCs as conse-
quences250. Thus, it could be said that this approach is good way to cope with
nonfunctional restrictions that can be split into some numerical expression as it is
often the case in embedded systems.

Chung et al. [CNY+00] developed a NFR framework, where NFRs drive de-
sign creating rationale. The approach allows graphically modeling trade-offs and
synergies between NFRs (also cf. ch. II.9.5). This can also be achieved by R2A's
decision model, where the NFRs are referred to as conflicting items. Via the “Fur-
ther Diagrams” section, a model graph can be modeled in the design tool and
referred to in the decision. In a similar direction, Egyed et al. [EG04] discuss an
approach, where they map FRs to nonfunctional aspects (or software attributes)
to identify conflicting and supporting situations. This approach should be equally
manageable by R2A's decision model.

III.20.5 Additional Support of the Decision Model for
Designers251

In the following, additional connections and advantages of the proposed decision
model in relation to design-related issues are discussed.

250 As an example, a NFRs demanding code flexibility could be handled by a decision to

employ the visitor pattern [GHJ+95; p.301-318] to alleviate adding new operations to
the data model. As consequences, DCs can be derived defining that data model classes
must fulfill the characteristics (operations to accept a visitor) of concrete (visited) ele-
ments, whereas operations must fulfill characteristics (operations to visit the different
elements) of a visitor. This example can also be seen as an example for the claims
made in the following ch. III.20.5.1 that the decision model of R2A has close connec-
tions to the pattern concept.

251 Extended parts of this chapter have been published in [TKT+09; ch.5].

338 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

III.20.5.1 Patterns

“Patterns, as used in software engineering, constitute one of the most heavily
used approaches for organizing reusable knowledge” [DMM+06a; p.19]. Pat-
terns (ch. I.6.2.4) define the abstract core of a solution for a continuously recur-
ring problem, thus allowing the solution tailored to the concrete problem to be
reapplied [GHJ+95]. Patterns are described using a structure template. Even
though different authors use slightly different templates, the description of the
problem (often referred to as forces), the solution and its consequences are part of
all pattern templates. The decision model discussed here can be described in
terms of such a pattern template (see also [HAZ07; table 1]): The conflict situa-
tion of the decision model corresponds to the problem description part in pat-
terns, whereas the description of consequences in a pattern description could be
modeled by resulting new DCs in R2A's decision model. Due to this analogy, the
author believes that this approach can provide valuable support in selecting pat-
terns (e.g., the conflict situation of a decision can indicate the usage of a specific
pattern). At the same time it can help knowledge engineers to identify interesting
solutions as new patterns (for the relationship between design decisions and
patterns also refer to [HAZ07], [PBG04; p.209]). A pattern library for decisions
in modeling embedded systems could be the ultimate goal of such an effort.

Horner and Atwood [HA06a; p.76] characterize patterns (ch. I.6.2.4) as
common solutions resolving conflicting tendencies. The decision model pro-
claimed here also supports analyzing conflicts and results. In the author's eyes,
the decision model supports identifying matching patterns and identifying new
patterns as described in [TKT+09]. In this way, the R2A has certain resemblances
to the DRIMER tool [PV96] (see ch II.9.3.1).

Cleland-Huang and Schmelzer [CS03] (see also [GG07; p.315]) introduce
another connected approach. Their concern is to improve traceability of NFRs to
design. Due to the often global and far reaching effects of NFRs on design,
traceability of NFRs to design is difficult to handle adequately. As a solution,
they propose to use design patterns as an intermediary model between NFRs and
the design. This means that NFRs are not directly mapped to design. Instead,
NFRs are mapped to a design pattern, which then again is mapped to design. In
this way, the number of traceability links to be manually captured is reduced. The
approach then uses this information to automatically derive the relations between
NFRs and the design through the manually captured relations.

III.20 Support for Capturing Decisions 339

In the author's opinion, however, this approach has the following shortcomings:
• Not all NFRs can be directly mapped to specific design patterns. Some NFRs

may also be handled through other strategies252.
• The approach does not consider crossinteractions between NFRs or other

FRs.
Correspondingly, ch. III.20.4 shows that R2A's mechanism may be more

powerful as it also allows describing handling strategies apart from patterns and
also allows describing crossinteractions (see, e.g., the described influence factors
assessment in ch. III.20.4).

III.20.5.2 Ensuring Adequate Realization of Design and
Decisions

As Posch et al. [PBG04; p.38] underline, architects also have to ensure that their
design settings are adequately considered and realized by other designers or cod-
ers. Using this decision model, designers can model the consequences of a deci-
sion as DCs and assign the DCs as new “requirements” (in R2A terminology: RIs)
to design elements that must then fulfill the DCs. Besides usage in further design
or coding processes, the list of assigned RIs to a design item can also be used as
basis for reviews on design and implementation of the item.

III.20.5.3 Support for Architecture Evaluation

The R2A approach can also provide valuable support in maintenance and evaluat-
ing architectures [CKK02]. Moro [Mo04; p.321] points out that the usage of
patterns and other decisions must be documented for later maintenance and archi-
tecture evaluation issues. According to Reißing 80% of change effort is caused
by wrong architectural decisions [Mo04; p.90]. With documented decisions and
rationale at hand, potentially wrongly made architectural decisions may be easier
and earlier identified in architecture evaluation. In this way, implementation of
wrong decisions and thus later costly changes may be avoided.

When evaluating design documentation during design evaluation meetings,
Karsenty [Ka96] found out that questions about rationale have been the most

252 E.g., NFR about security may also be handled by a login and password component

(prevents unauthorized access) in connection with cryptography mechanisms (prevents
eavesdropping) and intensified quality assurance methods (prevents bugs susceptible
for hacking).

340 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

frequent questions (approx. 50%), but only 41% of these questions could be an-
swered (also cf. [HA06a; p.83], [BB06; p.275]).

The idea of the decision model is to allow DCs (and budgeted resource con-
straints see ch. III.21) as consequences and attaching them to sub elements also
provides direct benefit for the designer himself, because he can clearly model his
demands for components and in later reviews these demands can be assessed
directly. Through the structure of the decision model, further rationale is already
present, where designers might even have used the description text to document
further rationale.

As already addressed in ch. II.9.4.1, a further helpful concept in this relation
is the identification and tracking of neuralgic points in design [Mo04; p.310-
330]. As Moro found out, developers are often aware of neuralgic points by
themselves, because neuralgic points often recur back as issue of discussion.
R2A's decision mechanism gives designers a means at hand to document new
discovered rationale at those recurring discussions. Further, the author believes
that it may also be possible to discover neuralgic points through the sheer amount
of documentation attached to a decision. In most cases, the most extensive docu-
mentation may thus be provided to decisions touching neuralgic points, because
the developers are often anyway aware of the neuralgic nature of an issue.

Other possibilities to identify neuralgic points through documented deci-
sions may be to identify a metric for measuring the complexity of decisions. As a
start, e.g., it may be possible to assess the number of items identified as part of
the conflicting area of a decision. If this number exceeds a certain number (e.g.,
15 to 20) the decision can be considered as especially complex. However, this
topic should be further researched and be filled with experiences from practical
usage. A further idea might be to implement a mechanism to analyze the click
behavior of the designers. If certain decisions are often clicked at and further
analyzed (e.g., when the properties of the decision are opened), it may indicate
that this decision is more critical than decisions seldom being clicked at.

III.21 Resource Allocation as a Special Decision Making Case 341

III.21 Resource Allocation as a Special Decision
Making Case253

The requirements for design conflict and cannot be reconciled.
All designs for devices are in some degree failures, either because they flout

one or another of the requirements or because they are compromises,
and compromise implies a degree of failure. ...

It follows that all designs for use are arbitrary. The designer or his client
has to choose in what degree and where there shall be failure.

[Py78; p.70]

In design activities for embedded systems an additional decision type can be
identified dealing with non-functional aspects of limited resources such as
memory resources (e.g., Read Only Memory (ROM), Random Access Memory
(RAM), Electrically Erasable Programmable Read Only Memory (EEPROM)) or
timing restrictions.

A core goal of embedded design is the effective administration and distribu-
tion of such resources254 and different strategies for handling this problem exist:
1. The allocation is a more or less unconscious or uncontrolled process (i. e., no

explicit strategy is established).
2. A resource estimation is performed as part of the design and estimations are

checked and adapted at each development cycle.
3. Resource allocation is explicitly modeled in the design model (e.g., by using

UML profiles such as the UML Profile for Schedulability, Performance, and
Timing [Do04, ch.4] or MARTE [EDG+06].
With respect to collaboration in complex development teams or organiza-

tions, approaches 2 and 3 have limitations in the following aspects:
• Propagation and communication of changes to all team members involved in

the change can be cumbersome.
• Minimizing redundancies as a major source of inconsistencies can result in

communication errors.
• The seamless adoption and refinement of other designers’ design results can

be extremely difficult.

253 This chapter bases mainly on [TWT+08].
254 In fact, also Simon acknowledges resource allocation to be an important aspect of

design [Si96; p.124-125]. Correspondingly, resource allocation can be considered as
an important aspect of every design, but in embedded design its importance is highly
more significant. When the engineering standard Automotive SPICE is applied, ENG.5
BP5 (“Define goals for resource consumption”) even requests that resource consump-
tion for each software module is explicitly planned and tracked [MHD+07; p.64].

342 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

• Sharing project knowledge in general will become more difficult.
The following example, basing on the accompanying case study (see ch.

III.12), illustrates these shortcomings in more detail. The design shown in fig. 12-
3 (see ch. III.12) may lead to the following estimation of RAM consumption
(table 21.1) documented as a separate chapter in the design document of the high
level designer.

Table 21.1 Example resource estimation of RAM consumption in design

Module Light
_Task

Light
_hdl

CIL_
hdl

CAN-
drv

PWM_
drv

ADC
_drv

Buffer

RAM
(1500 Bytes available)

600
Bytes

250
Bytes

100
Bytes

300
Bytes

100
Bytes

100
Bytes

50 Bytes

Such tables are a common format for documenting resource assignments in
design documents (cf. [Mu04]). The tabular format has the main advantage that it
easily gives an overview, but it has important weaknesses when collaborative
aspects are considered:
• First of all, even though these assignments are typically called estimations,

they should rather be treated as RIs. This implies that a mechanism must be
in place to communicate these RIs on time to all interested stakeholders – es-
pecially if changes occur during project progress.

• Further, the allocation settings are estimated at a certain design stage and
thus are an integral part of the design documents at this stage. Therefore, fur-
ther processing of this information by other designers is difficult. In the case
study, the estimations are made at the level of modules and included into the
documentation of the high-level design. If the module designer of the com-
plex Light_Task wants to refine the resource estimation into a more detailed
estimation, a problem arises. In this case he would have to copy the infor-
mation “Light_Task == 600 Bytes” into some document of his responsibility.
This leads to unnecessary redundancy causing consistency problems when
this setting changes later in the project.

• These problems are even more critical if some parts of the project are deliv-
ered by a subcontractor – as it happens to be the case in the example. In this
case, all relevant requirements for the item to supply must be provided (as
required by SPICE process ACQ.4 Supplier Monitoring, see [MHD+07]). In
this case, the RAM estimations, since they are RIs, must be communicated as
requirements to the supplier. This also leads to a high degree of redundancy
with even worse effects if changes are not communicated.

III.21 Resource Allocation as a Special Decision Making Case 343

III.21.1 Budgeted Resource Constraints as further
Requiremental Items

In consideration of this problem a way to perform such resource allocation deci-
sions in a handy fashion is needed, which also allows communication of the re-
sults for each considered design element throughout the entire project in an effi-
cient way. An additional aspect here is the fact that the results of a decision act as
new RIs on the design elements they are assigned to. As literature shows (cf.
[BGT+04], [CBS+02], [FGS+01], [Do04; p.317], [Do03; p.169], [Mu04],
[Gu03]), most resource allocation activities consist of numerically truncating a
larger resource amount into smaller subsets –more or less in analogy with the
abstraction hierarchy of a system's resp. software's design (see ch. III.15, fig. 21-
4 resp. fig. 21-5 in ch. III.21.2.4 below). Obviously, this can be compared to the
process of preparing and distributing budgets in business administration or pro-
ject management area [HHS64]. Therefore, the taxonomy of requiremental items
is enhanced by an additional type of RI called budgeted resource constraint
(BRC) as shown in fig.21-1.

Figure 21-1 Requiremental items taxonomy with budgeted resource constraints

BRCs are similar to design constraints (DCs) as they represent the results of
a decision making process and can be assigned as RIs to any design element.

However, there are the following differences when compared with other RIs
(such as DCs):
• BRCs represent numerical values, whose associated design elements may not

exceed the maximum value of the assigned BRC.
• A BRC can be subdivided into sub BRCs. Thus, BRCs at the same time repre-

sent a decision-making process as well as its results.

344 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

• As BRCs represent numerical values, whose sub BRCs divide resource
amounts into smaller budgets for more detailed parts of the design, automatic
consistency checks (e.g., tests for budget overruns) can avoid wrong alloca-
tions. Budget overruns may be detected at an early project stage.

• Individual BRCs can be added to one design item only, whereas requirements
and design constraints may be added to several items.

Figure 21-2 Resource allocation example with budgeted resource constraints

Resuming the example described above, fig. 21-2 illustrates the resource al-
location problem presented using BRCs as implemented in R2A. The connections
to the design elements illustrate so-called assigned to or satisfy-link types used in
R2A to relate RIs to design elements (see description in ch. III.18.2). In R2A, all
RIs assigned to an AN (thus, also BRCs) are displayed via the “Requirements” tab
(fig. 15-4 in ch. III.15), but for better understanding they are here directly
mapped on the design diagrams, where the shown elements on the diagram are
ANs in R2A.

In this situation, the SW architecture is assigned to fit in a total budget of
1500 bytes of RAM. This BRC is subdivided into six sub BRCs assigned to the
six modules in the SW architecture, thus showing a more detailed partitioning of
the RAM budget.

Comparing fig. 21-2 with table 21.1 above, it can be seen that both represen-
tations have an equivalent meaning. In fact, the idea of budgets in HW and SW
engineering is not new (cf. [FGS+01], [Do04; p.317], [Do03; p.169], [Mu04],
[Gu03]). What this wants to point out beyond the appealing (and well-known)

III.21 Resource Allocation as a Special Decision Making Case 345

aspect of a more or less easy mathematical model enabling consistency checks
are the advantages of the budget concept itself, when it comes to collaboration
and sharing project knowledge between project members. In this sense, the budg-
et concept is used as a means of communication during software design. The
following chapters will provide more details on this.

III.21.2 Advantages for Collaboration and Sharing Project
Knowledge

The following situations of this example project show the value of the BRC con-
cept for the following communication situations:
• Within project refinement,
• Communicating information over organizational boundaries,
• Change management,
• Different views on the same problem;

III.21.2.1 Within Project Refinement

During the first design cycle of the Light_hdl, the Light_hdl is forecast to have a
very tight RAM budget. Therefore the designer identifies several specific aspects
for which he arranges budgets according to his current information and needs
(see fig. 21-3):
• In normal mode, the module uses the settings in EEPROM mirrored to RAM

for steering the lights. RAM consumption depends on the number of steered
channels and the number of bytes needed for each channel.

• The diagnostic part supervises regular checks of the electrical current between
the ECU and the connected lights to detect malfunctions as short circuit or
open drain. Malfunctions lead to the deactivation of a light channel.

• In the case of severe error conditions, e.g., loss of EEPROM data, the fail
over mode assures that at least essential functions like brake lights and indica-
tors work. The code and configurations are fixed in ROM, thus no particular
portion of RAM is needed.

With the type of BRCs proposed here, designers of sub levels can directly
continue to process results produced in previous design decision processes.

346 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

Figure 21-3 Sub budgeting of the Light_hdl module

III.21.2.2 Communicating Information across
Organizational Boundaries

Information must often be provided across organizational boundaries. Such
boundaries can be sub projects within the same company or between different
companies. In the case study, drivers are provided by different subcontractors.
This implies that all requirements for the drivers must be provided throughout all

III.21 Resource Allocation as a Special Decision Making Case 347

parties involved. In the author's experience, functional aspects are communicated
in a quite complete fashion, but such nonfunctional aspects (e.g., restrictions on
memory, timing, etc.), resulting from former design decisions, are often forgotten.

The solution described here supports exporting all types of RIs associated
with a design element as a new requirements specification into requirements
management tools like IBM Rational DOORS, which can be delivered to the
subcontractor. Since BRCs are treated as normal RIs, they are directly propagated
to the subcontractors via automatically generated requirements specifications. In
later development phases, these requirements specifications can be continuously
synchronized with the settings in the design element, thus ensuring proper propa-
gation of requirements to subcontractors.

III.21.2.3 Change Management

During project progress changes occur that force designers to change decisions
and assumptions. Managing those changes efficiently is essential to avoid project
deviations. Two heuristics should be considered:
• Changes should be kept as local as possible to avoid unnecessary complexity.
• Changes must be implemented in a consistent way.

Our model supports handling changes of BRCs as local as possible. Continu-
ing with the example, it might happen that the “runDiagnostic” function needs
more than 10 bytes of RAM (see fig. 21-3 above). In this case, the designer can
first try to find an internal solution for the problem (e.g., find a way to cut down
on some bytes in the “diagInfoTable”). If this is not possible, the designer can
escalate the problem to a higher-level designer.

In another situation, new requirements from the customer could make the
creation of a new, additional module necessary. This case has effects on the de-
sign as a whole since most of the modules already present might suffer a budget
cut in their BRCs as a consequence. R2A visualizes changed BRCs (in a red color
coding; cf. ch. III.22.2) to alert designers of sub-layers to analyze the impacts on
their assignments.

If the sub designer has made his changes and consistency checks (e.g., de-
tecting budget overruns) pass, the designer can mark the change as implemented.
After this, the BRC is shown in normal mode.

348 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

III.21.2.4 Different Views on the Same Problem

In software design theory, the idea that different aspects of SW can be modeled
by different views has been proposed (cf. [Kr95]). The same can be claimed for
non-functional aspects modeled by BRCs. Besides the direct allocation view (see
fig. 21-2 and fig. 21-3 above), R2A supports creating an enhanced table represen-
tation. Fig. 21-4 shows this tabular lineup between BRCs and their allocated
design elements. Both columns additionally show their hierarchical break down.

Figure 21-4 Tabular view with corresponding abstraction hierarchies.

Since the structure of the BRCs break down has a strong analogy with the
breakdown of their associated design elements, design flaws of the assignment be
can easily detected. Fig. 21-5 shows this situation, where a wrongly associated
item disturbs the analogy, helping the designers to detect those problems easily.

III.21 Resource Allocation as a Special Decision Making Case 349

Figure 21-5 Tabular view with assignment inconsistency (selected line)

III.21.3 Representing Budgeted Resource Constraints in
SysML

Another frequently used possibility of modeling resource allocations in UML255-
design is to use UML profiles (e.g., timing constraints can be modeled in the
UML Profile for Schedulability Performance and Time [Do04; ch. 4]).

255 This statement does not refer to any specific version of UML as profiling is a general

feature of UML.

350 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

cd RAM

«requirement»
RAM: 1500 byte::

RAM: 600 byte

SW Architecture Lights Steering

«requirement»
RAM: 1500 byte::

RAM: 100 byte

«Driver»
ADC

«requirement»
RAM: 1500 byte::

RAM: 100 byte

«Driver»
PWM

«requirement»
RAM: 1500 byte::

RAM: 100 byte

«Handler»
CIL_hdl

«requirement»
RAM: 1500 byte::

RAM: 250 byte

«Handler»
Light_hdl

«requirement»
RAM: 1500 byte

«Driver»
CAN-Driver

Light_hdl::diagInfoTable

«OSEK_TASK»
Light_Task

«requirement»
RAM: 1500 byte::
RAM: 250 byte::

RAM: 10 byte

runDiagnostic
(Light_hdl::)

«requirement»
RAM: 1500 byte::
RAM: 250 byte::

RAM: 10 byte

setLights_FailOv er
(Light_hdl::)

«requirement»
RAM: 1500 byte::
RAM: 250 byte::

RAM: 10 byte

«requirement»
RAM: 1500 byte::
RAM: 250 byte::
RAM: 140 byte

«EEPROM_RAM_Mirror»
Light_hdl::configTable

«requirement»
RAM: 1500 byte::
RAM: 250 byte::

RAM: 80 byte

«requirement»
RAM: 1500 byte::

RAM: 300 byte

setLights
(Light_hdl::)

«DeriveRqt»

«satisfy»

«DeriveRqt»

«satisfy»

«DeriveRqt»

«satisfy»

«DeriveRqt»

«satisfy»

«DeriveRqt»

«satisfy»

«satisfy»

«satisfy»

«satisfy»

«DeriveRqt»

«satisfy»

«DeriveRqt»

«satisfy»

«DeriveRqt» «DeriveRqt»

«satisfy»

«DeriveRqt»

«satisfy»

«DeriveRqt»

Figure 21-6 Representation of the same information as fig. 21-4 but in SysML view

In 2006, the Object Management Group (OMG) adopted an extension of
UML called Systems Modeling Language (SysML; cf.[We06] and ch. I.6).
SysML extends UML to improve support for Systems Engineering activities. A
goal of SysML was to provide support for modeling dependencies between re-
quirements and design elements.
R2A's model is compatible to SysML through the following definitions:
• BRCs are represented by the <<Requirement>> stereotype,
• Sub BRCs can be derived from the <<DeriveRqt>> relationship,
• BRCs are assigned to design elements via <<Satisfy>> relationships;

As a proof of this claim, R2A supports automatic generation of SysML dia-
grams from the BRC-model. Fig. 21-6 shows a SysML diagram generated from
the model of the case study. However, it shows that such SysML-diagrams seem
to have only limited value since they quickly can get very complex and cluttered.
Thus, the real value of SysML might not be in the diagrams but the meta model
behind it, being shown in different representations as R2A does in fig. 21-4.

III.21 Resource Allocation as a Special Decision Making Case 351

Similar generation functions could be employed for timing budgets using the
UML Profile for Schedulability, Performance and Time or the MARTE profile
([EDG+06]).

Except for prototypical implementation of the transformation between BRC-
model and SysML described here, these topics have not been further pursued
because R2A aims to embrace design methodologies and tools beyond the UML
paradigm (as, e.g., Matlab Simulink or Stateflow).

III.21.4 Combining both Decision Models

As already described in [TWT+08], implementing a small change on the first
decision model described in ch. III.20 allows making both decision models com-
patible with each other. If BRCs are allowed as possible results in decision model
one, both models support compatible types as their major in- and out-comes
(since all are RIs (cf. fig. 21-1)).

The following example described illustrates this in detail (see fig. 21-7). A
documented decision “Dec1” determines the use of a specific micro-controller.
This decision also determines a BRC “RAM:1500 byte”. Through several deci-
sion steps, a sub BRC “RAM: 10 byte” is derived that is satisfied by the
“setLights_FailOver” function in design. Both conflict with a requirement
“Req3”, resolved by a new documented decision “Dec2”.

As the example shows, both decision models complement each other and al-
low modeling of more difficult decision problems.

352 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

cd Compatible Decison Models

«requi rem ent»
Req1

«requi rem ent»
Req2

«Docum entedDecision»
Dec1

Use contro l ler XY.

«BudgetedResourceConstra int»
RAM: 1500 byte

«BudgetedResourceConstraint»
RAM: 250 byte

«BudgetedResourceConstraint»
RAM: 10 byte

setLights_FailOver
(L ight_hdl::)

«requi rem ent»
Req3

«Docum entedDecision»
Dec2

«DesignConstra in t»
DesConstr1

«DesignConstra in t»
DesConstr2

«confl icting enti ties»

«resul ting»

«derive»

«derive»

«confl icting enti ties»

«resul ting»
«satisfy»

Figure 21-7 Example for combining both decision models together

III.22 Managing Changes and Consistency

Complexity is the path of growth. On the other hand, complication is the path of degradation, loss of
control, evanescence of order.

Lem O. Ejiogu

Nuseibeh et al. [NER00] describe that it is not always viable resp. advisable to
resolve all inconsistencies immediately. Even though resolving inconsistencies
can only imply adding, changing or removing information, it more often involves
balancing conflicts and taking design decisions. Correspondingly, “the choice of
an inconsistency-handling strategy depends on the context and the impact it has
on other aspects of the development process” [NER00; p.26].

III.22 Managing Changes and Consistency 353

The R2A mechanism allows keeping inconsistencies for a certain time but
keeps also track of the inconsistencies so that they can be resolved later.

III.22.1 Usage of Traces – Managing Requiremental
Changes

Ch. II.10.4.3.3 discusses the usage of traces recorded in traceability approaches.
Pinheiro terms the usage of traces as trace extraction. Concerning trace extrac-
tion processes, Pinheiro [Pi04; p.105] describes three different tracing modes that
should be supported. The following listing describes features provided by R2A to
support the modes described in ch. II.10.4.3.3:
• Selective tracing is supported by the impact analysis dialog, where each

element can be selectively applied to an analysis or deactivated. IA with the
impact analysis dialog is described in the following sub ch. III.22.1.1.

• Interactive tracing is directly supported by a model browser described in the
following second sub chapter III.22.1.2.

• Non-guided tracing is supported by the model browser as well as by other
features described in the following third sub chapter III.22.1.3.

III.22.1.1 Selective Tracing: Impact Analysis256

As illustrated in ch. I.5.6, requirements changes occur in project practice. Thus,
their consequences for the development process must be directly tracked in detail
to avoid continuous drift between artifacts. For this, so-called impact analyses
(IA) as described in ch. II.10.3 are the intended means for addressing these prob-
lems.

R2A offers the possibility to perform IAs, where impacts of requirements
change on design can be easily made understandable for project members as well
as for project outsiders (e.g., the customers) via iconographic highlighting.

Fig 22-1 shows two examples of how the impact results can look like during
IAs, highlighting the ANH tree in R2A. The left tree shows a very local impact
(red cross at 'Light_hdl' AN). Oppositional to this, the right situation shows direct
impacts (red crosses) on the complete 'SW Design' as well as to the modules
'Light_hdl' and 'RTE'. Here, also inherited impacts (arrows with grey shade point-
ing at the bottom at 'ADC_drv', 'HighPrio_Task', and 'PWM_drv') and indirect

256 Parts of this chapter have been published in [TKT+08].

354 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

impacts via decisions (yellow crosses at 'CIL_hdl', 'Light_Task', and 'SHR_hdl')
are visible.

Figure 22-1 Two examples for visualizing impact on the abstraction nodes hierarchy

These opposed examples show the indisputable advantages of clear icono-
graphic highlighting. Even though, engineering theory concentrates on reproduc-
ible results, the author is convinced that the developers' intuition (see also [LL07;
ch.2]) is more often a factor of success than usually admitted. The graphical as-
pect of R2A's IA approach supports the intuition of the developers. This means
even if no complex and detailed IAs are performed, the ease of just identifying a
few items will also improve the working quality. A second major improvement of
graphical IAs is that impacts of changes demanded by certain stakeholders can be
better communicated to these stakeholders, as they can also more intuitively
grasp the effects of the demanded change. Ebert emphasizes that “lots of changes
are proposed because the corresponding interest groups think that the change is
done by only changing a few lines of code or a parameter” [Eb05; p.188 (*)].

Via R2A's graphical highlighting of impacts such misunderstanding can be
easily cleared and thus unnecessary change efforts, where change costs do not
outweigh the change gains, are avoided.

However, development is not that easy that all effects of a change can be di-
rectly discovered. Often, changes can trigger a dominoes effect [VSH01; p.83] or
ripple effects (cf. ch. II.10.3). To discover these effects earlier, project members
must be able to perform more complex IAs because simply following the link
chain only helps to find the primary change but neglects to identify the second-

III.22 Managing Changes and Consistency 355

ary change often leading to the dominoes effect. Thus, besides the simple graph-
ical representation, the following characteristics allow significantly more precise
IAs:
• Often several requirements in combination are affected by a meaningful

change. R2A allows to starting an initial starting impact set (SIS) with sever-
al RIs (Requirements, DCs or BRCs).

• The affected RIs often involve formerly taken decisions and consequences
(as DCs or BRCs) that must be reassessed. Starting from the initial SIS, R2A
automatically calculates direct and inherited impacts on ANs derived from
the RIS (ch. III.18.2.2). Additionally in a next step, indirect impacts through
modeled decisions and their consequences (DCs and BRCs) are calculated
with their impacts on ANs.

• The inherited and indirect impacts are automatically calculated by R2A from
the formerly gathered traceability information. In order to allow users to dif-
ferentiate between direct impacts and calculated impacts, the different impact
types have different iconifications.
After R2A has first calculated the impacts, R2A offers dedicated support to

perform a more detailed assessment of the IA results:
• Automatically calculated impact can lead to overestimated impacts. For

these cases, the user can again determine for all calculated impacts, whether
they are actually real impacts or rather overestimated impacts.

• To each element in the IS notes can be attached, by which the user can tell
the cause why an item is in the IS, or what has to be performed in order to
implement the change impact on the item.

• Performed IAs can be saved and shared with other users. This allows already
performing rough IAs during meetings with the customer (ideally even at the
site of the customer), early sparking concrete discussions with the customer
if the customer expresses a change need. In combination with the possibility
mentioned above to document notes on items in the IS, concretely identified
steps to be performed on the change or other important information can al-
ready be documented and saved. This helps to capture early rationale on
changes to perform. In the aftermath of such a meeting the developers then
can refine the captured information. Estimations on costs and duration are
one of the important information possible to be added are, thus extending the
sheer IA to a detailed effort estimation.

• Once impacts are identified, a decision must be taken whether a proposed
change is really performed on the project (e.g., by a change control board
(CCB), [PR09; p.144f], [VSH01; p.184f, p.216]). As basis of such a decision
the saved detailed IA results can be loaded and viewed in R2A again.

356 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

• Once a change has been approved, the gathered IA information about the
change can again be loaded in R2A, providing now a detailed road-map for
the designer to perform the changes.
These described actions and information can be steered via R2A's impact

analysis dialog shown at the left side in fig. 22-2.
Fig. 22-2 shows the complete set of information displayed in R2A during an

IA. At the left side, the impact analysis dialog is shown, whereas the right side
shows an excerpt of R2A's main window with the ANH at the top and the “Re-
quirements” tab at the bottom.

Impact highlighting on the ANH has already been discussed in the context of
fig. 22-1. The “Requirements” tab shows the RIs of the selected AN (here 'SW
Design'), where RIs being in the impact set are correspondingly highlighted to
provide the user with information about the concrete impact on the AN.

Figure 22-2 Impact analysis dialog and R2A's main window with an impact set taking
decisions into account

III.22 Managing Changes and Consistency 357

The impact analysis dialog is divided into the left part showing the impact
situation for RIs in connection with impact derived through decisions. The figure
shows a situation of a planned change, affecting in the first instance requirement
ReqSpec_2 (“The system must read ...”), requirement “The signal must be an-
swered within 5ms” (taken from the documented decision concerning the archi-
tectural influence factors assessment shown in fig. 20-7 (see ch. III.20.4)) and
BRC “RAM:1500 byte” (taken from the resource estimation described in ch.
III.21 (see fig. 21-4 in ch. III.21.2.4)). All made decisions and all DCs or BRCs
derived from the decisions are taken into account and shown beneath the ele-
ments identified in SIS. The right side shows the direct consequences on design
(ANs) of an item selected in the left side (the complete impact on the ANs is
shown in the ANH). Via the textual component at the bottom, notes can be edited
and viewed describing additional information on the need for change of an item
selected at the left side. Above, the author also mentioned that the dialog can be
used as a detailed road-map to perform the changes. This is indicated in the figure
by item ReqSpec_2, being checked and being highlighted via a green cross. Via
this checking mechanism, changes already performed can be checked. In this
way, the dialog turns into a checklist for the change to be performed showing the
current status the designer is in during change implementation.

IA support is helpful to assess potential influences of changes and the cap-
tured rationale; during assessment it can give important guidance to how these
changes must be performed. However, most probably not all requiremental
change will run through a cycle of detailed IA and CCB. Often 'minor' changes
influx into a requirements specification from all kinds of sources, though. For
these cases the change management mechanisms described in ch. III.22.2 help to
keep changes transparent in order to maintain changes to consistently propagate
to all relevant parts of the design models.

III.22.1.2 Interactive Tracing: The Model Browser

Interactive tracing means to allow an interactive browsing mechanism to navi-
gate backward and forward in the model.

Fig. 22-3 shows the model browser integrated in R2A for fulfilling
interactive tracing needs. The model browser can be opened for any item present
in R2A. Fig. 22-3 shows the model browser opened for the NFR “ReqSpec_14:
The system must be flexible to change.”. In the left part of the model browser,
direct information on the item (e.g., the text) and several meta-data (e.g., author
and date of the last change, version, baseline, and internal item id) are shown. At
the right side, all traceable relationships to other items are shown.

358 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

Figure 22-3 The model browser in R2A

There, the user can double-click on any item. Then, the model browser
changes to this item, thus allowing navigating through the complete model pre-
sent in R2A. The user can also open several model browsers in parallel, allowing
keeping information on some items currently important to the user open; mean-
while he still can navigate further through model.

III.22.1.3 Non-Guided Tracing: Additional Features for
Fast Look-Up

Non-guided tracing shall allow the user to arbitrarily step from entity to entity
analyzing contents as demanded. This shall ensure convenient tracing when little
information on what or how to trace is available.

Besides IA features and the model browser described in the chapters above,
being also able to fulfill non-guided tracing needs, the following features provide
possibilities for fast looking up some information:
• When the 'quick view' option is activated, a slim version of the model brows-

er automatically appears when the user works with R2A showing the current-

III.22 Managing Changes and Consistency 359

ly selected item in R2A. When the user changes to the design tool, the quick
view automatically disappears. In this way, the user can on one side easily
gather important information on an item. On the other side, the quick view
can be arranged in a way overlaying the design tool but not overlaying any
other information in R2A, when the user works with R2A. But when the user
works with the design tool, again no disturbing window of R2A hinders the
designer in working with the design tool.

• On any RI, the 'locate origin' action can be performed opening the require-
ment source document of the RI and selecting the RI in the requirement
source document.

• In the same way as 'locate origin' opens the corresponding requirement
source document in R2A, the 'locate in REM-tool' action can be performed
on any RI originating (being synchronized) from an REM-tool such as IBM
Rational DOORS, opening the corresponding document containing the RI in
the REM-tool and selecting the RI.

• Vice versa, R2A also integrates a button into the REM-tool environment
allowing a 'locate in R2A' action, where a requirement selected in the REM-
tool is then again shown in R2A.

• As described later in ch. III.23.1, parts of an R2A-model can be again ex-
ported into a REM-tool to support supplier management. Similarly to the two
points above, R2A also allows navigating into such a generated document in
the REM-tool and back.

• 'The 'Show related decisions' action can be performed on any item in R2A.
When performed, a window opens showing all decisions the item is involved
with (either as conflicting or resulting item) in the style shown in fig. 20-6
(see ch. III.20.4).
Through the different locate actions, bidirectional traceability (see ch.

I.5.7.1) is ensured, where RIs can be traced in the backward and forward direc-
tion.

III.22.2 Consistency Maintenance of Requirements,
Traceability and Design257

In ch. II.10.4.3, establishing traceability has been identified as an important as-
pect to consider because it means significant effort to be spent. This is only one
facet of the problem. A second equal problematic facet is that later changes must
be efficiently and consequently inferred throughout the whole development effort

257 This chapter bases on parts of [TKT+08].

360 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

in order to ensure consistency throughout the whole development project (see ch.
II.10.4.3.4). Otherwise, the best traceability establishment processes will be in
vain if the traces significantly degrade in short time. On the other side, a certain
degradation of traces may be inevitable even under best support for trace mainte-
nance.

To ensure traceability information is maintained best possible, obstacles for
traceability maintenance must be as low as possible. In R2A, maintenance of
traceability information is easy and intuitive because of the overall drag-and-
drop support as well as operations as dribble-up, dribble-down and copy, and the
concept to present only the information relevant in the given design situational
context.

A main concern addressed in maintenance of traceability is ensuring con-
sistency. The following now shows how R2A supports that requirement related
changes are consistently inferred to design.

If a proposed requiremental change is decided to be performed258, it must be
possible to propagate the changes in a controlled way, ensuring a consistent im-
plementation of the change in all artifacts. For each RI, R2A is able to visualize
its status by using a colored status bar at the left side of each RI (see fig. 22-4),
where each RI runs through the life-cycle sketched in fig. 22-4.

258 The CCB can also decide not to perform a change. (e.g., if the effort detected via an IA

is higher than the change's value gain).

III.22 Managing Changes and Consistency 361

Figure 22-4 Life-cycle of a requiremental item and its color coding in R2A

Each RI not yet considered in the R2A design (status 'red') must be assigned
to the design (change to status 'yellow'). Yellow means that an RI is considered,
but it did not yet reach its final state of realization in design (see RDP heuristic in
ch. III.18.2.4). If a designer decides that an RI has reached its final state of reali-
zation, the designer can perform an accept operation on for the RI at the corre-
sponding AN, indicating that the designer considers the RI has reached the ade-
quate location in the design. When the RI is accepted at all ANs259, the RI auto-

259 An RI can also be assigned to several ANs. Of course, it should be avoided that the

realization of an RI is performed by several ANs; however in certain cases this will
happen.

362 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

matically changes to status 'green' meaning that the RI has generally reached the
adequate consideration at all parts of design it must be considered. Later changes
on the RI (e.g., after a new synchronization of the requirements specification; see
ch. III.18.1) may require a reassessment of the RI's current realization in design.
Therefore, the status of the RI changes to 'orange' until the designers have per-
formed the necessary changes on the design to again adequately consider the RI.
This can also involve that the RI may be relocated to another part of the design
(assigned to another AN). Once the RI is again accepted by the designers, at all
assigned locations, it is again promoted to status 'green'. This handling recurs
every time the RI is changed.

If an RI becomes obsolete during project progress, the RI can be marked for
deletion by the designers (change to status 'gray'). As soon as the designers have
considered the marked RI in design, it can be finally deleted (change to status
'black'). In this way, it is can be ensured that design settings having become obso-
lete can be removed, thus avoiding clutter and architectural erosion.

III.23 Aspects of Embedding R2A in a Process
Environment

Getting the formula right entails knowledge, patience, foresight, and communication.
[BT04; p.99]

A tool alone is not a solution for a problem. Instead, a tool must also be embed-
ded into a process landscape (see beginning of ch. II.10.4.4). After the chapters
above described the tool R2A and how its integration supports the transition
processes from requirements to design, this chapter widens the scope of consid-
ered processes in the sense that the requirement and design processes may be
again embedded in a higher-level process environment, where tight integration is
essential. These aspects can be that parts of a designed system are supplied by a
supplier. In this case, design must be tightly integrated with supplier management
to propagate important information to the supplier. Ch. III.23.1 describes how the
information gathered during a design process with R2A can be directly used to
generate a requirements specification for suppliers dedicated to deliver parts of
the designed system (resp. SW). This helps to avoid redundancies and thus signif-
icantly improves supplier management.

Another, issue may be that several requirement and design processes may
occur on different levels of abstraction, where the results on one abstraction level
induce requirements and design on another level of abstraction (see ch. I.7.3.2).

III.23 Aspects of Embedding R2A in a Process Environment 363

Ch. III.23.2 discusses how this can be achieved best with R2A. Again, the re-
quirements specification generation feature described in ch. III.23.1 also proves
helpful in this case.

III.23.1 Avoiding Redundancies in Supplier Management

“In the development of complex embedded systems, often several companies
work together on the development. At such an interconnected development, often
partnerships are built, where mostly one supplier is engaged as the system suppli-
er, having – besides other tasks – the responsibility to coordinate the other sup-
pliers. Therefore, selection and coordination of suppliers is of special importance
in embedded development. Often, even a hierarchy of client-supplier-
relationships emerges, meaning that a supplier (second tier) acquires further sub
components of the system from his own suppliers (so called third tier) and coor-
dinates the collaboration. Additionally, the customer often prescribes the supplier
certain third tier-suppliers” [HDH+06; p.65 (*)].

If a partial component of a system or software must be supplied by a suppli-
er, a reliable and efficient supplier management must be installed (see ACQ.1 and
ACQ.4 process in SPICE [HDH+06]).

 For this, at minimum a supplier requirements specification (SuppRS) must
be continuously administered. Such a partial component, however, must be in-
cluded in the design of the higher-level (more abstract) component the partial
component shall be integrated into260. In the further this design is called the cus-
tomer's system design (CusSysDes).

As a main problem, high content redundancies arise between the information
created during design and the writing of the SuppRS leading to high extra effort
spent on creation, keeping the traceability and applying changes. Especially ap-
plying changes can be seen as a critical issue because redundancies are often
accompanied by the danger that the changes are not propagated to all redundan-
cies, leading to growing inconsistencies between the redundancies.

R2A tackles this problem by using the information about the component cre-
ated in the CusSysDes directly to automatically create the SuppRS. This means
that the partial component is included as AN in the design of the higher-level
component. The requirements for the component emerge from:

260 For example, a complete system, a sub system, a complete SW system, a partial SW

sub system

364 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

• The previously found requirements for the higher-level component that are
assigned to the partial component as requirements (requirements in R2A-
terminology).

• The constraints for the partial component, resulting from the decision pro-
cesses during design of the higher-level component (in R2A-terminology
DECs, DCs, BRCs).

• Inherited RIs from parent ANs (see ch. III.18.2.2) as they also may be im-
portant for the component.
R2A offers the possibility to export all this information concerning an AN to

an REM-tool as a new requirements specification artifact for the supplier. Later
changes in the R2A can be synchronized into the artifact. However, a SuppRS
usually should not just include the requiremental information. Instead, the con-
text of the component to supply (embedded in the higher-level system) is im-
portant. Thus, besides this requiremental information mentioned above, R2A can
also export the following information:
• Modeled diagrams showing how the component collaborates with the other

parts of the system.
• The textual description of the component performed in R2A.

Of course, not all information created during CusSysDes, concerning the
component of a supplier need be propagated to the supplier. In fact, often the
customer must decide which information is necessary to propagate and which
information must not be propagated in order to protect the customer's know how.
Thus, R2A's SuppRS generation mechanism contains a wizard, in which it is
possible for each item to set whether to propagate to the SuppRS or not. After the
SuppRS is once created, the synchronization mechanism also detects later edit
changes (i.e., changes through later editing or formatting) in the SuppRS. When
afterwards the next synchronization with the SuppRS occurs, the changes in R2A
and the edit changes performed in the SuppRS are equally considered. Besides
allowing edit changes of the SuppRS, R2A mainly allows covering two other
points important for the SuppRS:
1. The SuppRS as a requirement artifact read by humans also must obey the

rules for a human readable document. Thus, the document must provide a
continuous reading flow. In most cases, this means the raw version of the
synchronized SuppRS must be reedited. For these reasons, also new items
can be added to the SuppRS manually. These items are then handled outside
of the R2A approach and the development team must use other mechanisms
to keep these elements up to date. Besides adding new elements not managed
by R2A, a SuppRS requirement artifact can also be restructured at will in or-
der to improve reading by humans. This works properly when the order or
hierarchy of the requirements is changed; but it involves some problems if

III.23 Aspects of Embedding R2A in a Process Environment 365

also the text of a requirement must be changed. In principle, changing the
text of a synchronized element (e.g., to improve readability) is possible but
this makes the following synchronizations more difficult to manage because
then both sides to be synchronized (the R2A side and the REM-tool side)
may have changed. In these cases, it is indicated that the designer must man-
ually merge the texts. Thus, the author rather recommends to perform the
textual change already within R2A and then again to synchronize the Sup-
pRS.

2. Decisions not to propagate certain information elements to the customer may
just occur during the editing phase of the SuppRS. In these situations, it
would be very long-winded if the synchronization mechanism had to be per-
formed again in order to select information not to propagate in the wizard.
Instead, it is easier to just delete the elements in the SuppRS. Then the syn-
chronization mechanism detects that these elements are deleted and will not
again synchronize these elements.
Such an emerging SuppRS can then be used as user requirements specifica-

tion261 for the supplier. As the information is directly generated out of the previ-
ous design processes by R2A, the single-source-principle ensures that redundan-
cies are avoided.

III.23.2 Traceability over Several Artifact Models without
Redundancies

As discussed in ch. I.7.2.4, the topic traceability between requirements and de-
sign involves different artifacts at different levels of abstraction in process mod-
els such as SPICE. After having all pieces together now, this chapter discusses
this topic from the process chain and artifacts viewpoint.

Fig. 23-1 describes the process and artifact model, when system design, SW
design and perhaps even HW design are performed in one design model. Only a
common requirements specification with the real requirements from the customer
(corresponds to the SYS_RS in SPICE) are imported from a REM-tool and are
related to the corresponding ANs in the system design, SW design and HW design,
being responsible for fulfilling the requirements. During the design processes
new 'requirements' arise in the form of DCs and BRCs from design decisions
made. These 'requirements' enrich the original requirements. In this way, the
SW_RS, HW_RS and module requirements specifications are all RIs assigned to

261 In German: 'Lastenheft' (see ch. I.7.2.2.1)

366 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

the ANs, representing the SW design, HW design and module designs and are only
metaphorically present in development.

Figure 23-1 Process chain of an integrated design model for system, HW and SW design

However, the SPICE standard also demands that testing procedures must be
performed on the corresponding requirements specifications. This can be
achieved through R2A's feature for creating a requirements specification from a
partial design model (originally intended for supplier requirements specifications;
see ch. III.23.1). Now, these created requirements specifications can be used to
create and link test specifications to the corresponding requirements specifica-
tions.

The author recommends using this process model because it provides opti-
mal communication for designers, reduces redundancies to a minimum, and pro-
vides best support of R2A's consistency management mechanisms. As described
in ch. I.7.2.4, Hörmann et al. emphasize that in practice the transition between
these processes mentioned are anyway mostly fluent and are rather of iterative
and recursive nature [HDH+06; p.103]. Correspondingly, this model also is clos-
er to practice than the original SPICE process model is.

However, as mentioned in ch. III.19, a process model deviating from the
original SPICE model is allowed in principle but requires higher efforts for or-
ganizations to prove that the process model corresponds to the original ideas of
the SPICE process model. It may even be possible that the process model has

III.23 Aspects of Embedding R2A in a Process Environment 367

lower acceptance by SPICE assessors (the power of assessors assigning negative
assessment results should not be underestimated). These factors may push organ-
izations to the decision to rather exactly follow the SPICE process model to avoid
such problems.

Fig. 23-2 shows how such a process chain may look like when R2A is em-
ployed in an organization using the original SPICE process model. At start, the
requirements of the customer are collected in the SYS_ RS in the same manner as
above. Via R2A in connection with a design tool adequate for system design, the
system design is created. During system design as well as in the other design
phases described a few lines later, new DCs, BRCs and Decs emerge (emphasized
in fig. 23-2 by a '+'). In the system design artifact, a placeholder “SW” is created,
collecting all relevant requirements and other items resulting from the design
(DCs, Decs and BRCs) having influence on the SW. This placeholder can then be
used to generate the requirements specification for the SW forming the basis for
the SW design, again performed in R2A in connection with a design tool adequate
for SW design. If needed, the same procedure can be applied to modules in the
SW design if a dedicated module specification is needed (in most cases this may
be especially interesting, when the realization of modules is delegated to a sup-
plier). Through these controlled import and export actions via R2A, controlled
copies emerge, whose redundancies are in most cases maintained under automa-
tion support.

Figure 23-2 Process chain of multi-layered requirements and design artifacts

368 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

In this process model implementation, R2A also provides advantages of
minimized redundancies because SW_RS, HW_RS and the module requirements
specifications are generated from the design models made earlier with included
DCs, Decs and BRCs. On the other side, IAs and consistency management be-
come significantly more difficult because the tool barriers between artifacts in
REM-tools and R2A must be crossed permanently. This leads to friction losses.

III.23.3 Decoupled Development of Requirement and
 Design Artifacts

The process chain introduced in the previous chapter still leaves one central point
uncovered: Often, different artifacts are developed with a certain time-lag in
parallel. Thus, after the SYS_RS, the system design is developed with a time-
delay, and after the system design again the requirements specification and design
of the SW are developed with a certain time delay. During this process, require-
ment changes already occur in the SYS_RS.

In simple link concepts, the link chain now can be paced off by an IA, but
controlling a consistent maintenance through all artifacts proofs difficult262.

R2A addresses this problem by an interplay of synchronization, consistency
propagation (ch. III.22), and export (ch. III.23.1) mechanisms.

Fig. 23-3 shows the effects of these mechanisms in cooperation, in which
the R2A process artifact chain of fig. 23-2263 is extended by a temporal dimen-
sion, showing change deltas (horizontal dimension). From top to bottom, differ-
ent requirement and design artifacts are shown at different levels of abstraction
(system design, HW design and SW design). R2A is able to perform the synchro-
nization mechanism on different version baselines of requirement artifacts. Thus,
it is possible to synchronize the requirements according to an existing version
baseline of the requirement artifact.

262 Current REM-tools such as IBM Rational DOORS provide mechanisms to mark such

links. In IBM Rational DOORS, e.g., these links are marked as 'suspect links'. Howev-
er, after a baseline is made in a certain artifact all suspect links are cleared, making it
unfeasible to perform baselines in a time-delayed development for a certain artifact.
Moreover, the problem increases when tool gaps as the problem of an essential tool
gap between REM- and design tools as exposed here are involved.

263 The statements are analogously valid for fig. 23-1 in ch. III.23.2.

III.23 Aspects of Embedding R2A in a Process Environment 369

Figure 23-3 Consistent integration of changes () beyond version barriers

Through the consistency mechanism, this requirement artifact version can be
propagated through the designs (with new Decs, DCs and BRCs) and the export
mechanism then propagates this baseline version state to the requirement artifacts
at lower levels of abstraction. In the meantime, the requirement changes () for
the next version can already be performed, being again propagated downward to
the artifacts at lower levels of abstraction within the following version baseline.

Subsuming, it is to say that R2A conducts requirement changes into con-
trolled, consistent version pathways (gray pathways in fig. 23-3), but at the same
time it allows a decoupled, further development of requirement changes for sub-
sequent versions in parallel.

370 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

III.24 Overall Architecture of R2A

Designers have occasionally been urged to seek for 'ideal solutions of design problems' or words to
the same effect. There can be no ideal solutions.... Design is not like that. There are, however,

occasions when it is possible to determine temporarily what is the best practicable balance be-
tween opposing requirements....

The fact that compromise is inevitable in so many kinds of design has led theorists to classify design
as a 'Problem-solving activity', as though it were nothing more than that. In is a partial and in-

adequate view.
Most design problems are essentially similar no matter what the subject of design is....

[Py78; p.74f]

After the chapters before have described the features of R2A with their innova-
tive potential, this chapter describes the technical background of the R2A solu-
tion. At first, the general architecture of R2A is described. The core of the R2A
tool is the conceptual meta-model described in the second sub chapter. Afterward,
other additional interfaces are described.

III.24.1 General Architecture

Fig. 24-1 describes the high-level architecture with the most important packages
and their interdependencies. The overall structure is divided into three parts:
• The “General Reusable Libraries” part subsumes libraries with general sup-

portive tool (resp. utility) libraries that can also be used in other development
projects, thus generating significant alleviations for new development pro-
jects. In the Infrastructure package, general solutions for cross-cutting con-
cerns as error logging, threading support, or integration of unit testing, etc.
are developed. As it provides very basic support, the Infrastructure library is
used by all other packages in R2A. Basing on Infrastructure, the GuiFrame-
work package is the equivalent of Infrastructure but for GUI264 support. The
GuiFramework provides better support for user messaging (a framework,
where user vocabulary and messages to the user can be defined in a general
way), encapsulates important GUI-controls to make them exchangeable and
more stable. Further, the framework provides a general implementation of the
model-view-controller pattern allowing easily creating new user controls with
support of the model-view-controller pattern. Several other smaller reusable
libraries addressing more special cross-cutting aspects exist, not explicitly
mentioned here.

264 Graphical User Interface

III.24 Overall Architecture of R2A 371

• The “Product Line Core” is the actual core of R2A. Its architecture follows
the three layer architecture pattern [BMR+00; p.31ff]:

• The Gui package contains all program elements directly related to the
graphical user interface.

• The ProgramCore package contains the data model and its operations of
the R2A application. In ProgramCore, the MetaModel package contains
the data model, whereas the ModelController package contains and con-
trols operations on the data model. R2A's data model classes have de-
tailed knowledge about their own structure. In this way this data model
is more a meta-model about the entities represented in the R2A-model.
This meta-model is described in the following ch. III.24.2.

• The Opf package is an object persistence framework (OPF) responsible
for mapping the R2A data from the meta-model to its representation in
the database. The OPF also can automatically handle the cross-cutting
concerns of versioning and baselining realizing the features described in
ch. III.17.5. As the OPF realizes any data changes, it also contains a col-
laboration framework allowing other R2A instances of other developers
connected to a project to be notified about data changes. These notifica-
tions then trigger the collaboration framework in the other R2A instanc-
es to update the changed model parts, thus allowing direct synchronous
collaborative work between the designers.

• The “Variation Points” part contains the packages RemInterface and MdlIn-
terface. RemInterface is the variation point to connect different REM-tools,
whereas MdlInterface is the equivalent variation point to connect to different
modeling tools. As both packages have equivalent responsibilities but for dif-
ferent tool types, the internal structure of both packages is equivalent. Both
contain a general part and a tool specific implementation part. The general
part shall encapsulate the tool specific part from access of the ProgramCore
package. The general part contains an abstract interface definition each spe-
cific tool implementation must implement, a factory class that uses the ab-
stract factory pattern to create a specific tool object with the implementation
of the abstract interface, and objects representing items present in a connected
tool. These objects (TMdlObject in MdlInterface, TReDocumentItem and
TReDocument in RemInterface) are used to connect information of a connect-
ed tool with the data model (see ch. III.24.2).

372 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

pd R2A_HighLevel_Architecture

Variation PointsGeneral Architecture of the Product Line Core

General Reusable Libraries

Infrastructure

General Tool Objects and Tool Functions.
Accessible for all other Packages.

Handles Cross-Cutting Concerns as:
Error Logging, Thread Synchronization,
UnitTesting ...

GuiFramework

General Framework for GUI-Aspects as:
User Messaging, GUI-Controls,
Model-View-Controller Pattern ...

Gui

RemInterface

MdlInterface

Variation Point:
Handles Encapsulation of
REM-Tools.

Variation Point:
Handles Encapsulation of
Modeling-Tools

ProgramCore

Opf

Functional Core
Layer of
PROVEtech:R2A.

Presentation Layer with Integration of GuiFramework.

Object Persistence Framework addressing cross-cutting concerns:
- Persistence of Meta Model Objects.
- Versioning and Baselining
- Collaboration Framework

ModelController

Controller of the Model.

MetaModel

The Meta Model.

Figure 24-1 High-level architecture of R2A

III.24.2 The Meta-Model
The concepts mentioned above are embedded in R2A in a meta-model. The meta-
model can be seen as the traceability reference model or conceptual trace model
(ch. II.10.4.3) of the approach.

III.24 Overall Architecture of R2A 373

Although a certain overlapping with concepts of the meta-model of UML
(with SysML; in the further just referred to as UML) exists, R2A’s meta-model is
not basing on an implementation of UML, because:
• The UML meta-model did not yet exist as a standard, when research on the

meta-model of R2A began.
• The UML meta-model is substantially more complex since it is very generic

and it is designed to cover all aspects and concepts of design, whereas R2A
only uses some specific concepts important for design structuring, traceabil-
ity and design documentation.

• R2A aims to be open to integrate other design modeling approaches. Thus
R2A must avoid a too strong concentration on one modeling approach.

• The usage of the UML meta-model would demand to be conforming to
UML. R2A involves research on new concepts and ways to establish tracea-
bility in an easy to use fashion. Strong orientation on a standard could prede-
termine the researcher's thinking in an unfavorable way, preventing to find a
good solution. Or, probably new concepts are necessary that cannot be ade-
quately mapped to the UML meta-model. Such cases of mismatch can be
seen in the DC concept265 or the decision model concepts.
Nevertheless, the UML and SysML concepts have been analyzed and in-

spired certain concepts of R2A and its meta-model.
Fig. 24-2 shows the R2A meta-model with the most important266 classes, its

properties and relationships. As a convention of the R2A-project, all type names
start with a capital T as abbreviation for the word 'type'. Through this notation,
inspired by the hungarian notation, types created within the R2A-project can be

265 The UML has a constraint concept but with very different semantic to what is called a

design constraint in R2A. However a certain connection between both concepts exists
in the form that the UML constraint semantic can be seen as a special case of the de-
sign constraint semantic. As the UML constraint semantic bases on a formal language
concept (called Object Constraint Language (OCL)), it is designed to describe very
specific design issues in design diagrams in an annotation format. In contrast, a design
constraint aims to describe all kinds of constraining effects of a design in natural lan-
guage, thus providing significantly higher flexibility for description.

266 The reader should note that the meta-model shown here is idealized to be understanda-
ble for the reader. In reality, the meta-model contains a few more classes, and the clas-
ses have significantly more properties and relationships. E.g., the access to TMdlOb-
ject objects (associations (5.) and (7.)) is in reality controlled through a proxy object
TToolsObjectProxy to improve encapsulation of the MdlInterface variation point. This
is important for the real tool implementation but is an implementation detail not neces-
sary for understanding the fundamental concepts of the meta-model to be introduced in
connection to this thesis.

374 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

easily differentiated from original types provided by the Microsoft C# .Net envi-
ronment.

Figure 24-2 The meta-model of R2A

As mentioned in ch. III.16.1, R2A consists of a core and the two variation
points for integrating REM- and modeling tools. In fig. 24-2, the REM-tool varia-
tion point is described by the RemInterface package and the modeling tool varia-
tion point by the MdlInterface package. The meta-model is located in the core,
but information located in the connected REM- or modeling tools must be refer-
enced through proxy objects in the variation points, abstracting from a specific
implementation in a specific tool. In the case of the RemInterface, the class TRe-
Document represents a document in an REM-tool and TReDocumentItem repre-
sents an item (e.g., a requirement) within an REM-tool's document. TMdlObject,
on the other side, represents any item available in a modeling tool.

Concerning the core's meta-model, any item inherits from TPersistentGuifi-
able. In TPersistentGuifiable, central characteristics necessary for any item to be
part of the meta-model are realized.

III.24 Overall Architecture of R2A 375

Their characteristics are:
• Persistence: The item can be stored in R2A's data base through being a per-

sistent item managed by a persistence framework (OPF).
• History and baselining: To fulfill demands of evolutionary traceability, the

change versions' history must be recorded and it must be possible to include
a version state into a baseline. Both are also accomplished by being a persis-
tent item managed by the persistence framework.

• Representablity in R2A's GUI: TPersistentGuifiable implements all necessary
characteristics for representation to be integrated into R2A's GUI concept.

• Unique identifier (cf. ch. III.17.4): Through the Id property, any item has one
general unique identifier (GUID), through which the item can be referenced.

• User tagging (cf. ch. III.17.3): Through the UserTags property, any item can
be tagged by users.

• Notes (cf. ch. III.17.2): Through association (1.), any item can be assigned to
TNote objects representing notes. It is possible to assign several notes to an
item as well as to assign several items to one note. As TNote is also part of
the meta-model and inherits from TPersistentGuifiable, it is in principle pos-
sible to make notes of notes.

• Being part of a conflict based decision (cf. ch. III.20): Association (2.) repre-
sents the conflicting relationship in fig. 20-2 (see ch. III.20). Through this as-
sociation, it is possible that any item of the meta-model can take part on a
conflict, where a decision to solve the conflict can be modeled. This even in-
cludes notes or other decisions.
Design aspects are expressed through the concepts TAbstractView, TAbstrac-

tionNode and TView. TAbstractView represents general principles any view con-
cepts in R2A have in common. The general principles are that a view has a name,
can have a textual description and is expressed through a diagram in a modeling
tool linked to through association (5.). TAbstractionNode represents the AN con-
cept as described in ch. III.15. An AN consists of a design element in a modeling
tool expressed through association (7.), a diagram in a modeling tool expressed
through association (5.) and a description inherited by TAbstractView. The ANH
concept is built up through association (8.). TView represents further related views
that can be added to an AN (see description to fig. 15-4 (in ch. III.15)). An AN
knows its related views through association (6.).

Requiremental aspects are expressed through the inheritance hierarchy start-
ing from TRequirementalItem. This inheritance hierarchy resembles the require-
mental items taxonomy introduced in fig. 21-1 (see ch. III.21.1), except for the
fact that the inheritance hierarchy also contains TRequirementSourceDocument,
representing requirement source documents described in. ch. III.18.1. This can be
considered as a kind of artifice to create a thorough requiremental decomposition
hierarchy in R2A. As described in ch. II.10.4.2.2 and ch. III.18.1, decomposition

376 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

of requirements is a common principle in REM. Association (10.) from TRe-
quirementalItem to TRequirementalItem is a parent-child-relationship used to
build up requirement decomposition hierarchies. This decomposition hierarchy
relationship can be used in principle for any RI. In fact, the hierarchy is used by
requirements to reproduce the decomposition hierarchy present in requirements
specifications from REM-tools, and it is used for the decomposition discussed in
the course of BRCs sub budgeting (ch. III.21). Association (10.) is also used for
requirement source documents (RSDs) to refer to the root RIs being at the start of
the decomposition structure of a RSD (in fig. 18-2 (see ch. III.18.1), e.g., the
TRequirementSourceDocument “PH” refers to the requirements “MSG
Wakeup”,“Internal Lights Control”, “Nonfunctional Requirements” and “HW”
through association (10.)). In this way, a RSD is a parent of the root RIs in the
document. This view is not wrong because a RSD as a container of RIs is itself an
RI in the sense that the RSD demands that all containing RIs must be fulfilled.
Through the Type property, the TRequirementSourceDocument specifies whether
it is a free-edit document or whether it origins from a REM-tool. In the latter case,
association (12.) refers to the corresponding document in the REM-tool. In a
similar way, association (11.) refers TRequirements originating from an REM-tool
to the original item representation in the REM-tool.

As requirements traceability to design elements is the core scope of R2A, RI
must be linked to the design. This is expressed by association (9.) representing
the 'assigned to' or resp. 'satisfy' relationship between ANs and RIs described in
ch. III.18.2.

The decision model described in fig. 20-2 (see III.20) is realized by the class
TDecision and its associations. As mentioned above, association (2.) represents
the conflicting entities relationship. Association (3.), however, refers to the result-
ing consequences derived as TDesignConstraints or TBudgetedResourceCon-
straints. Association (4.) realizes references to further documenting design dia-
grams in a modeling tool.

III.24.3 Further Interfaces

Additionally to the user interface, R2A has the following other interfaces:
• REM-tool integration: As described in ch. III.13, R2A provides a variation

point to integrate REM-tools as source for requirements (ch. III.18.1) and as
target to export requirements for supplier management (ch. III.23.1).

• Modeling-tool integration: R2A provides an integration interface for modeling
tools as variation point described in ch. III.13.

III.24 Overall Architecture of R2A 377

• Word interface: For documentation of the design and design decisions, Mi-
crosoft Word is integrated into R2A. The Word documents are saved in the
R2A database in rich text format (RTF) and are integrated in R2A's other in-
formation meta model through a persistence framework (e.g., the meta model
items TAbstractionNode, or TDecision contain a persistent property “Descrip-
tion” referring to RTF documents editable with Word).

• Standard report: A standard report interface allows to generating a HTML-
report of the generated model in R2A. The report includes diagrams modeled
in the connected modeling-tools, thus enabling to generate extensive design
documentation.

• XML-export: Ch. III.17.3 describes the XML-export feature allowing the
complete model gathered in R2A to be exported for organizations to reuse the
gathered information in other tools or to develop own special purpose tools
working on the information.

• Rule engine: Consistency management is a decisive issue for ensuring quality
of developed artifacts. Ch. III.22 has described the standard features for con-
sistency management in R2A. However, often projects have individual charac-
teristics influencing the consistency. To cover this, R2A provides a rule en-
gine, where projects can specify individual rules for consistency checking. In
this way, projects can ensure that the R2A model fulfills consistency criteria
defined in the project. At the moment, the current rule engine concept imple-
mented in R2A is only a prototypical implementation, showing a proof of
concept. This point can be seen as a promising perspective for further research
and improvement of the R2A concept. As an example of the possible uses of
R2A's rule engine concept, it is possible for designers to define rules that any
design element with a certain characteristic must obey. When the example of
the decision modeled in fig. 20-6 (see ch. III.20.4) is considered, the DC
“Handlers and Drivers shall provide callback mechanisms to their upper lay-
ers (Dependency Inversion Principle).” exists that must be obeyed by any
handler or driver in the SW design. With the rule engine, a designer can define
a rule that ensures that the DC is automatically assigned to any handler and
driver design element currently present in R2A. The rule also ensures, that the
DC is added to any design element with handler or driver characteristic, added
later to the R2A model.

• Special reports with the rule engine: The reporting mechanisms can be com-
bined with the rule engine. In this way, customized reports can be created in
R2A for special reporting needs of a project. With the rule engine, scripts can
be written to extract data from the data collected in an R2A-project specially
prepared for the customized report. Through customized reports, e.g., it is
possible to create reports about statistical data of a project to report it to man-

378 III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability

agement (e.g., to report how many RIs are not yet considered in design, par-
tially considered in design and how many RIs have reached the final state in
design).

IV. Synopsis

This is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.

Winston Churchill

Now, this last part finishes this thesis. At first, a short summary of the achieved
results of this research project is provided. This is then followed by a prospectus
of possible further questions to continue research on, either improving the current
features set of R2A or more general on the research topics of this thesis. At the
end, the author tries to summarize the general conclusions to draw from this the-
sis.

IV.25 Summary of the Achieved Research
Results

To achieve anything worthy to be called quality you will have
to do a good deal more than follow a drawing or specification,

 whoever made them and however carefully.
There is a good and close parallel to music.

The quality of a performance depends
 on the performers as much as on the score.

The performers are said to be interpreting the score,
 but in fact they are adding intention of their own

to those of the composer, recognising that no score
 in practice can fully express the intentions of the composer,

 that it can never be more than an indication, a sketch;
 and no designer can in practice ever produce more than a sketch

 even though his drawing is dimensioned in thousandths
 of an inch and his specification is as long as your arm.

[Py78; p.80]

In the following the main technical innovations achieved through PROVEtech:
R2A (in the further called R2A) are summarized:
• Hierarchic decomposition of a system (or software) is an old idea in SE (see

structured analysis and design [De78]). In UML based design, this view is
seen as one besides many others with equal rights (see, e.g., the view concept
“4+1 View Model” by Kruchten [Kr95]). UML does not prefer any view or

B. Turban, Tool-Based Requirement Traceability between Requirement and Design Artifacts,
DOI 10.1007/978-3-8348-2474-5_5, © Springer Fachmedien Wiesbaden 2013

380 IV. Synopsis

make relations between views explicit. Instead, defining views and their
relations are left open to architecture documentation. However, this leads to a
more difficult understanding of a designed model since all views and elements
are mixed up in one egalitarian repository (see fig. 15-3 in ch. III.15).
Besides, the heterogeneous view concept of UML makes UML incompatible
with other modeling techniques used in embedded development such as ETAS
ASCET or Matlab, which only use one hierarchic decomposition view. As
R2A makes only one necessary assumption: that a design must be made using
a hierarchic decomposition (in fact a claim that can be called state-of-the-art),
the approach should be compatible to any other computer tool-based design
approach and even to HW or computer aided design (CAD). To include such a
tool, only an interface implementation for R2A's modeling tool variation
point connecting to the corresponding tool would be necessary. Development
experiences within the R2A-project have shown that this is possible within a
two to three person month's development effort.

• As shown in ch. III.16.2, the mechanism of coupling modeling tools in R2A is
even capable to integrate models of different modeling tools in one integrated
model. In this way, all achievements described below can also be used as an
embracing method to generate an integrated model, crossing tool gaps
between different modeling tools. This allows using specific modeling tools
together in an integrated model. In this way, it is possible to employ the
specific strengths of the specific tools in one integrated model.

• As not explicitly discussed yet, but the approach for traceability can be
equally used to establish traceability between requirements and an AM, when,
e.g., a UML-tool is used to create the AM.

• In the approach shown here, the hierarchic decomposition builds the spine of
the complete model because each element of the design model gets explicitly
included into the abstraction hierarchy tree and is extended to a so called
abstraction node (AN) having extended semantics (cf fig. 15-2 in ch. III.15).
To each AN further diagrams can be added as additional views. Through this
way, the orientation of the designers is alleviated as at first navigation into the
abstraction hierarchy to the desired element can take place (vertical
direction). Starting from this, also navigation along the further attached views

IV.25 Summary of the Achieved Research Results 381

is possible267 (horizontal direction). However, the problem is still unsolved
that some of the remaining views of a model may go crosscutting over
different abstraction layers and ANs. At the moment, it is possible to add
diagrams with such characteristics to all ANs touched by the view, but finding
an even more consistent solution for this, is an open point for further research.

• Additionally, the ANs tree arisen through hierarchic decomposition also
builds the spine for the structured approach for requirements traceability to
design establishment. Differently to approaches, where requirements are
simply added to a design element via direct linking, the R2A provides a
complete new approach to the problem called the requirement dribble process
(RDP). In this approach, developers at first do not need to know by which
design solution a requiremental item (RI) will exactly be fulfilled. Instead a
designer can at first assign an RI to ANs, where she roughly grasps that the RI
may be fulfilled by. Then, when the designer's vision gets clearer about an RI,
the designer may use the dribble-down and dribble-up actions to reallocate
the RI. In this way, on one side Simon's idea about stable intermediate forms
(ch. I.6.2.1) is supported, and on the other side the uncertainty and flexibility
of the approach directly supports designers in their knowing-in-action phase.

• Through the support of a dedicated process for assigning RIs, it is ensured
that each RI is adequately considered in the design process: If new RIs are
assigned to an AN 'from above' (a higher-level AN), these RIs get highlighted
in the AN by a bold font style Now, the designer of the AN must try to find an
adequate solution for the newly assigned RIs. If the designer of this AN is
again able to delegate these requirements to a sub AN of the design, then these
RIs 'dribble down' one level deeper to a sub AN, and the problem is solved for
the corresponding AN. However, if the designer is not able to clearly delegate
these RIs to any sub AN, then the RIs stick to this AN and are inherited to all
lower-level sub ANs (marked 'gray' at these lower levels) indicating that all
ANs must work together to fulfill these RIs. But, if the designer responsible
for the AN realizes that these newly assigned RIs cannot be fulfilled in the
current state of design, the designer is able to repel these RIs back to the
higher-level AN (its origin) accompanied with a corresponding note. In this

267 As described in the point before, the usual orientation within modeling tools is in most

cases realized by a repository concept, where all items present in a model are shown
(see fig. 15-3 in ch. III.15). This repository is not touched by R2A. On the contrary,
R2A's AN concept with its representation in an ANH tree can be seen as a distillate of
the most important information on the most important items and their relationships
present in the modeling tool repository. Whereas, the modeling tool repository is more
a dictionary containing all someway present items in a model.

382 IV. Synopsis

case, the designer of the higher-level AN must take care for a solution under
consideration of the created notes.

• As a dedicated goal of the RDP, the process set aims on principles leading to
a way to find an allocation for a requirement at an AN at the lowest level of
abstraction to ensure that a requirement is implemented as local as possible.
In this way, the impacts of a later requirement change are also limited as local
as possible.

• In the wake of this goal, the concept of the requirement influence scope (RIS)
has been developed. The concept includes that a requirement being associated
to an AN also is propagated to the child ANs as “inherited” requirement. In
this way, on one side pressure is imposed on the project team members to
bring requirements to the most possible local level in the ANH tree. Thus, a
later possible change of the requirement has only minimal impact (cf. ch.
III.18.2.2). The RIS thus promotes a heuristic enforcing a design with
emphasis on localization of the requirements. This heuristic is an essential
part of the ideas behind the RDP.

• As a further plus, the history of the different requirement allocations and
reallocations during the RDP are automatically tracked via configuration
management features. In this way, the decision process of the designer taking
the decision can be reconstructed later. This follows ideas of Gruber and
Russell [GR96a] or Schneider [Sch06] to capture important information
during performed action and extracting important rationale information later
as a by-product.

• Some traceability research rather neglects the aspects about the process of
traceability establishment (see, e.g., [Kn01a], [Kn01b]). In the author's view,
however, this issue might be the central key problem of traceability since
traceability faces a significant benefit problem (see ch. II.10.5) in a similar
way as RatMan approaches do (ch. II.9.4.2). As a consequence, R2A's
traceability mechanisms try to allow capturing traceability as a mere by-
product of normal design activities, where designers can perceive direct
benefit from recording traceability information. To achieve this goal, R2A at
first allows capturing traceability by several possible drag-and-drop
operations being performed easily and quickly as by-product of the decisions
performed. Secondly, R2A directly shows the RIs assigned to each AN, thus
directly giving designers benefit for their traceability work as this work is
used to provide a sorted out view on the RIs important for the currently
considered design aspect from the otherwise numerous manifold of RIs
present in a requirements specification. Further, with the RIS and RDP
concepts, design decisions about requirements allocation are automatically
captured, following the principles of Simon's idea about stable intermediate

IV.25 Summary of the Achieved Research Results 383

forms (ch. I.6.2.1). In the author's view, the principle of stable intermediate
forms directly reflects how designers usually develop a design out of the
requirements at hand. Thus, through RIS and RDP, traces can be directly
captured according to their occurrence with special emphasis on flexibility
and optimal adaption into a SPICE-conforming process landscape. These
concepts can also be seen as an attempt to adapt traceability establishment
activities to the way designers are thinking, thus preventing a cognitive
dissonance for designers. In this way, R2A tries to be less intrusive to
designers' thinking, thus supporting designers in both, their knowing-in-action
and reflection-in-action phases (see Schön, ch. I.6.2.3).

• Significant parts of the research about traceability concentrate on proposals to
use richer traceability models as a kind of conceptual trace model (cf. ch.
II.10.4.2). In the author's view, these approaches provide important points.
However, it is questionable whether their formality is not too complex (i.e.
complicated; see footnote 80 (p.77)) for activities that should best be
performed as a by-product (see ch. II.10.5 and ch. II.9.4.2). The research
attempt shown here tries to integrate good ideas from these research attempts
into a complete concept. As a result, a requiremental items taxonomy has been
developed, distinguishing real requirements from the customer from RIs (DCs
and BRCs) arising as consequences from design decisions.

• This – as a further result – also has sparked the idea to enhance R2A's
traceability concepts by an integrated decision model for documenting
requiremental and design-based decisions (cf. ch. III.20). Thus, the developed
decision model is called integrated because it directly integrates information
about design decisions into a traceability concept. Again following the idea
that this additional information must be rather captured as a by-product, the
decision model is construed as a semi-formal model, where the formalisms
build a skeleton to easily sketch the basic information about a decision and to
add more detailed information on demand. In this way, the decision model on
one side addresses benefit problems encountered for capturing rationale (ch.
II.9.4.2) but on the other side also allows capturing deeper rationale
information for problems of rather wicked nature (cf. ch. I.6.2.2). As ch.
III.20.4 has outlined, the decision model is also a good means for fulfilling
demands on decision documentation, imposed by research about architecture
documentation (e.g., cf. [Ha06], [CBB+03]), and much closer integrating the
thus captured information with the design model.

• The decision model's concept of modeling conflict situations and consequenc-
es resembles to the pattern concept expressed by Alexander (ch. I.6.2.4). In
fact, as ch. III.20.5.1 shows, R2A's decision model can be a decisive means to
document the rationale behind pattern usages to directly integrate the pattern

384 IV. Synopsis

concept with the traceability concept, to help to better include consequences
of pattern usages with other decisions and to help to discover new patterns.

• As embedded design (but also other design) must often care for adequately
managing resource restrictions, the R2A approach offers a second decision
model to capture decisions about resource restrictions that can be managed as
budget. The decision results are again expressed as new RIs assigned to ANs,
expressing the need that an AN does not exceed the resource budget that was
assigned to it. To cover this aspect, the requiremental items taxonomy has
been extended by the RI called BRC expressing the budget character of the RI
and the budgeting decision process.

• The arrangement of the design models in an abstraction hierarchy tree and
the way requirements consideration in design can be handled by the RDP,
suggest the conclusion that adequate mechanisms can help to significantly
improve the flow of communication between project stakeholders. In R2A,
this can be achieved by temporal decoupling (asynchronous temporal com-
munication) of messages preventing, for example, that important information
is not adequately propagated if the responsible developer is not present. Such
a mechanism is intended to support goal-oriented creation of notes (cf. ch.
III.17.2) for any entity present in the data model and actions performable on
the entities. These notes allow sketching occurring problems with references
to all affected model entities and propagating this information to concerned
stakeholders.

• At the same time, these notes are included into the history function (cf. ch.
III.17.5) in order to better enable later reconstruction of the incident's occur-
rence268 (e.g., helpful during a SPICE assessment). In this context, further re-
search attempts could enhance the mechanism described here by state-based
notes (e.g., with the states: 'New', 'In work', 'Processes', or 'New solution'), or
escalation paths in a consistent process-driven model.

• Additionally, all these concepts allow a high degree of flexibility to change
traceability information again. This flexibility is also especially helpful to
support design refactorings, where traceability information is also adapted
correspondingly, thus preventing significant degradation of traceability in-
formation captured once.

• This directly segues to the next topic: Traceability is intended as means to
manage requirement changes. Through the graphical impact analysis concept
(see ch. III.22.1.1), R2A allows proposed requirement changes to be better
predicted and helps to implement once decided requirement changes. An es-
pecially important point is to consistently infer and propagate all requirement

268 Up to now, results are often only discussed and tracked orally.

IV.26 Perspectives for Further Research 385

changes throughout the complete model. R2A achieves this through the con-
sistency management mechanism described in ch. III.22.2.

• In many development projects, parts of a project are delivered by a supplier.
Correspondingly, supplier management is an important task in these projects.
One of the most essential issues addressed is that the requirements for the
supplied parts must be formulated in a way that the supplied parts fit together
with the other designed parts of the system. R2A allows generating a require-
ments specification directly for a part of a design (an AN or a sub tree in the
ANH), which can then be used as supplier requirements specification. In this
way, all information about requirements, design and decisions performed in a
R2A project relevant for a supplier of a part can be directly propagated to the
supplier without unintended information loss due to tool gaps or other poten-
tial breaks in the information chain (see ch. III.23.1).

• Last but not least to mention, the mechanisms of generating requirements
specifications for parts of a design described in ch. III.23.1 can also be used
to implement a direct and seamless information propagation for situations,
where a project has several requirement and design processes at different lay-
ers of abstraction as it is demanded by SPICE. Even though the author him-
self rather prefers an integrated design process for the different layers as it is
described by fig. 23-1 in ch. III.23.2, fig. 23-2 in ch. III.23.2 shows that R2A
also has the potential to improve the information flow in cases the process
demands of SPICE shall be fulfilled word for word. As the ch. III.23.3 shows,
R2A can even be used to achieve a temporal decoupling of the development
of the different requirement and design artifacts.

IV.26 Perspectives for Further Research

It’s like deja-vu, all over again.
Yogi Berra

The current research results of the R2A-project also provide perspectives for
possible further research. In the following, problems or ideas are outlined that
may raise interesting research questions:
• The current solution of R2A has made a significant simplification concerning

the view concept. In R2A, views are merely represented by one diagram. This
does not consider more complex views. However, in design documentation
theory, a view often consists of a set of diagrams that must be considered
together. R2A currently only considers this fact by the ANH. This brought the

386 IV. Synopsis

advantage that the user can more easily navigate in the model, but on the
other side other view's being more complex than one diagram might be
scattered over several ANs and the relationships between these diagrams may
not be adequately surfaced by a model. Further research could concentrate on
finding a solution, in which several diagrams could be integrated into a more
complex view other than the ANH view, and where, however, the advantages
of better model navigation as provided by the current R2A-solution are still
present.

• In the context of the RIS (ch. III.18.2.2) and the RDP (ch. III.18.2.4), the
author has only spoken from RIs 'assigned' to an AN. This leaves open space
for interpretation of the concrete semantics of any relationship. In fact,
different traceability CTMs (see ch. II.10.4.2.3) know different relationship
types between RIs and design. The R2A-approach could be extended to allow
designers to define a concrete semantics of a relationship. However, further
research should then also ensure that this extension is not just leading to
further complication without significant gains of value.

• In this context, a further interesting idea may be to have a relationship
describing fuzziness concerning the kind of connection between an RI and an
AN. Instead of 'assigned' relationships, currently describing the fact that an
AN is directly influenced by an RI, there might exist relationships having
notions like 'bordering' (the requirement is fulfilled nearby, thus the RI should
be monitored whether it possibly has some influence), 'keep in mind' and 'I
don't know, but might be important'. By such fuzzy relationships designers
could identify connections, for which they 'feel' that there is a dependency
they cannot describe rationally. This corresponds to Schön's observation that
designers also work in a state of intuitive knowing-in-action, where they use
tacit knowledge and thus cannot rationally explain their exact thoughts.

• Ch. III.18.2.2 describes a mechanism where the scope of a requirement is
determined by the so-called RIS. When RIs are added to an AN, these RIs are
automatically inherited to all child ANs of the AN in the ANH. In this way,
developers are spurred to find the most local solutions for an RI. On the other
side, effects of nonfunctional RIs can be made more transparent as than it is
possible by other approaches. Nonfunctional RIs can be added to a very high-
level AN, where they are inherited by large extents of ANs. Taming
nonfunctional RIs is rather difficult. In the author's opinion, the decision
model introduced in ch. III.20 proves very helpful as it allows documenting
decisions about the taming strategies of nonfunctional RIs, allowing deriving
more concrete DCs as decision consequences. Now, if this is thought through
consequently, it may be possible that a nonfunctional RI is tamed by
decisions, where more concrete RIs (DCs or BRCs) are derived. It should be

IV.26 Perspectives for Further Research 387

considered whether a feature may be helpful to specify that a decision or
several decisions together completely tame an RI. It must be analyzed whether
it would be a logical consequence that an RI tamed by one or more decisions
may lose its inheritance status to lower-level ANs (lose its RIS) because its
influence would rather take effect through the decisions and the effects of the
RIs resulting as consequences. Such considerations, however, must also
consider that such an effect may not be realized for any decisions, but it
would rather be necessary to mark certain decisions as the taming decisions of
an RI leading to the deactivation of the RI's RIS. In this way, it is questionable
to a certain degree whether such a feature brings significant extra value to
designers or whether it just implies a further complication to the design (see
footnote 80 (p.77)). In the case of the latter, the author would recommend
leaving out the question, even though it might be slightly more logical than
the current solution.

• At the moment, consistency checking is a rather neglected topic of this
research even though rudimentary consistency checking can be provided by
the rule engine. Analyses on what consistency reporting is necessary for users
could be performed. A further problem may arise with the fact that R2A rather
relies on heuristics such as the RDP (ch. III.18.2.4) and the decision models.
These heuristics imply a certain non-linearity. As here traces cannot be
followed so directly, this could make consistency checking more difficult. For
example, usually consistency checking mechanisms rely on checking whether
all requirements are someway associated to a design model. If this is the case,
it is assumed that the requirement is adequately considered in the design
process. The author, however, is rather skeptical towards the real
expressiveness of such rather simple checks. With R2A, however, such simple
checks are even not possible because the RDP heuristics allows assigning
requirements to design elements not being the final destination of the
requirement. Instead, the requirement assignment can change with dribble-
down or dribble-up operations in order to support design decision-making. In
this case, a requirement can only be seen as adequately considered after the
requirement has reached its final destination. The situation can get even more
complicated when a requirement is part of documented decisions. Here, e.g.,
the question arises whether a requirement can only be seen as adequately
considered when all consequential items of all decisions involved have
reached their final destination. In the author's view such a developed
consistency checking mechanism would provide significantly more fine-
grained information than current consistency checking approaches and thus
provide even stronger expressiveness. But, because all effects of such a

388 IV. Synopsis

consistency checking heuristics are not yet analyzed, this point is rather an
open question for further research.

• Pinheiro indicates that for capturing nonfunctional traces, hypermedia
(multimedia) systems could provide significant support ([Pi04; p.104-105],
see ch. II.10.4.2.2). The approach proposed here offers possibilities to tackle
nonfunctional traces via the integrated decision model (cf. ch. III.20). It
would be possible to couple the decision model approaches with rationale
tools like Compendium, supporting rationale capturing on the fly as well as
with other media objects such as tape or video recordings of meetings, in
which the corresponding decisions are discussed.

• A design process is also driven by other documents such as meeting protocols,
review protocols or documentation of the used COTS269-components. In the
author's opinion, it will never be possible to integrate all documents important
for development into one tool solution. Correspondingly, it should be possible
to have a hyperlink concept to give developers the freedom to link to further
documentation, someway not manageable in R2A. As projects usually use
configuration management tools to manage versions of all documents in a
project, it may be interesting to integrate R2A with configuration management
systems via the standardized CVS270-interface.

• In issue tracking (i.e. change management) systems open issues (e.g.,
problems or bugs) can be managed. A direct connection of R2A to issue
tracking systems could help to make influences of issues transparent, because
often issues beyond requirements or requirement changes exist having
influences on design decisions. The exact way of integration should be
analyzed by further research. However, a starting point for integration could
be to shape the integration in a similar way as the integration of REM-tools
has been made: A continuous synchronization process cares to have all issues
in an accurate state in R2A and these issues are then treated analogously to
requiremental items. As the description to arrow '1.' of fig. 20-8 (see ch.
III.20.4) describes, a better integration with change management tools might
help to solve information backlashes to requirements occurring during design
and especially during processes of discovering rationale in decision
processes. However, it must be noticed that issues are slightly different to
requirements because only certain issues may be interesting for design and

269 Commercial Off The Shelf
270 Concurrent Versioning System: This interface is an international standard for integrat-

ing configuration management systems with other environments such as programming
IDEs.

IV.26 Perspectives for Further Research 389

should therefore be synchronized in R2A. This means a filter must distinguish
the architecturally significant issues from the insignificant issues.

• Impact analysis (IA) approaches as [Ha99] propose combining a tracing
approach with a kind of dependency analysis approach using the relationships
in a model. In this way, effort to capture traceability information is reduced
by using the model relationships present in a model. As ch. II.10.6.2 has
shown, however, such approaches often lead to the so-called fan-out effect
[Al03] because models contain manifold relationships having other purposes
leading to many unnecessary traces. Correspondingly, the R2A approach
rather concentrates on achieving more exact results by allowing establishing
dedicated more fine-grained traceability information as a by-product of usual
development effort, thus reducing efforts for traceability. However, on the
other side, dependency information in the model can be valuable to indicate
other possible impacts resulting from interconnections within the model.
Thus, it may be possible to combine the current R2A approach with a
dependency approach automatically analyzing all other relationships created
in the design model. To avoid the fan-out effect, R2A's IA could show these
impacts identified from dependency analysis with a different iconification (as
it is already done for distinguishing direct impacts from indirect impacts
derived from decisions or inherited impacts derived from the RIS) to
distinguish them from impacts derived from captured traceability information
within R2A. Further, it could be possible that this additional dependency
analysis can be activated or deactivated for IA. In this way, designers could
have additional support for identifying possible impacts from
interconnections within the model but also ignore the information if they feel
it is not helpful.

• Ch. II.10.2 further indicates that with model-driven development methods and
tools a new problem arises concerning traceability: As code then often is
generated from models, some requirements are not necessarily implemented
through the models but by setting parameters or choosing specific model
transformation procedures over other procedures [AIE07]. This means that
traceability tools should also need to map requirements to parameter choices
or transformation procedures of the modeling tool. Currently in R2A,
traceability to these items could be achieved by a documented decision,
where the requirements are in the conflicts section and the resulting section
contains DCs with the chosen parameter settings or transformation
procedures. Further research, however, could also try to find more adequate
support by R2A for this tracing problem.

• Another research direction may be to integrate a metrics approach with R2A.
Ch. III.20.5.3 indicates that architectural evaluation and identification of

390 IV. Synopsis

neuralgic points can be supported by combining R2A with metrics. Further
research could evaluate the potential of the ideas about metrics sketched in ch.
III.20.5.3.

)***()(Re ReAN ++= qDecinherinherdirect DecscoeffANscoeffLevelANqCEF (26.1)
)(Re qLevellLowestLeve

lvlANH coeffLevel −= where 1>lvlcoeff (26.2)

qsCount
qCEF

CEFAvrg
Re

))(Re(
)(= (26.3)

• A further metric possibly interesting to evaluate could help to determine the
changeability of an RI. As indicated by ch. III.18.2.2 and ch. III.18.2.4, a RI
should be as local as possible. A change effort factor (CEF) metric could
measure the locality of a requirement by calculating the directly assigned ANs
in relation to the hierarchical level in the ANH (is it high or low in the
hierarchy?), the number of ANs where the RI has been inherited to and the
number of decisions the RI is involved in. Formula (26.1) sketches a possible
measurement formula for the CEF metric. The formula uses a level factor271
calculating (formula (26.2)) a factor to determine the hierarchy level
dependent complexity of each directly assigned AN. In this way, the metric
could help to estimate the effort for changing a RI. From a higher perspective,
this metric could also be used to create a metric to evaluate an architecture
according to the average changeability of requirements. The average
changeability could be calculated by the sum over the changeability of all
requirements divided through the number of requirements (e.g., formula
(26.3). Here, it is to mention that the metrics as proposed here are just rough
sketches. Further research could deal with how to adapt parameters (different
'coeff' variables) in the sketched formulas to achieve distinctive, meaningful
results. Afterward, the metrics need to be evaluated in several practical
projects to get measuring scales for the practical meaning of the measured
metrics.

• As described in ch. I.7.4, verification criteria for design artifacts must be
defined and these must be made traceable [MHD+07; p.225ff]. At the

271 Through the level factor with its level coefficient, the complexity of the design model

is taken into account because the coefficient grows exponentially with the number of
abstraction levels present in a design. When, e.g., a design grows by new abstraction
levels, requirements added to higher level (resp. more abstract) abstraction levels lead
to a significantly higher CEF (assumed a corresponding adequate value for the coeffi-
cient is chosen). In this way, the author assumes that the 'Avrg(CEF)' function also
grows stronger for designs having more abstraction levels.

IV.26 Perspectives for Further Research 391

moment, this can be achieved in R2A via using the notes mechanism (ch.
III.17.2). Such notes are only added to the assigned R2A-items and nowhere
stored centrally, which leads to an unstructured approach with no complete
overview about present verification criteria. Further research could try to find
a better solution, where easiness of usage and usability should play a central
role.

• The R2A approach introduced here leaves one major field of problems
concerning development of automotive systems and software untouched: Ch.
I.2.3 indicates that buyers of cars can select hundreds of different options of
their car individually, where also different options are connected with each
other. This, however, implies that the different ECUs employed in a car can
significantly vary between different cars and that in different cars individual
variants of the ECUs must communicate with each other. As HW costs are
significant constraints, different ECU variants also have different HW
assemblies. Nevertheless, all different ECU variants and the different ECUs
with their variants in interplay must fulfill their requirements, especially all
safety-related issues. This together implies significant higher complexity than
if all ECUs had only one fixed version. In SysEng and SE theory, management
strategies for this complexity are called variation management. Hull et al.
[HJD02; p.180-183] show that managing variation implies significant higher
complexity concerning variants, version management and change
management of requirements in connection with their traceability (see also
[Si98], [BP06], [PR09; p.141f]) because the different variants must fulfill
partially different requirements and the valid requirements must be – despite
the variation – consistent to each other. In other words, version baselines and
change management must in principle be performed and managed
individually for each variant [HJD02; p.180-183]. On the other side,
variation management issues also impose high influence on SW architecture
and design theory (e.g., cf. [PBG04; ch. 10]), because decisions about
strategies for handling the variation at the variation points ([PBG04; p.276],
[Si98]; also cf. ch. III.16.1) significantly influence design272. As R2A also has
its two major involvements in REM and design issues, R2A has potential to

272 As an example, it must be determined whether a variation can be simply handled

through a configuration parameter or whether the variation requires significantly more
complex mechanisms to be integrated into design considerations (e.g., flexibility needs
for a variation point can also lead to the decision that significant parts of the applica-
tion must be created through the abstract factory pattern in order to allow activation of
different component implementations according to the variation need).

392 IV. Synopsis

improve variation management. However, to find suitable features, further
research is needed.

IV.27 Conclusions

After you find the gold, there's still the job
of picking out your particular nuggets.

[BT04; p.147]

Now, finally, the reader has reached the end of this thesis. The author hopes that
this thesis could provide valuable information to the reader so that he considered
it worth, while reading it.

The main topic of interest has been requirements traceability between re-
quirements and design artifacts in the development of safety-critical systems. As
this thesis – hopefully – has shown, manifold factors must be considered, because
the topic traceability is cross-cutting through research theories of embedded
systems development, systems engineering, software engineering, requirements
engineering and management, design theory and process standards for safety-
critical systems. Despite all promising effects ascribed to traceability over the last
two decades, the traceability concept did not broadly succeed in practice except
for development organizations using process standards such as SPICE or CMMI,
where, in most cases, safety-critical systems may be in the focus of development.

A reason may be the significantly higher effort and costs involved to make
all requirements traceable throughout the complete development endeavor. Most
probably, the effort and costs can only be justified, when issues of safety or secu-
rity are involved. On the other side, costs will only be such a decisive factor if
they are not outweighed by the benefits. This seems to be a core issue of the
traceability problem.

Further, the thesis has shown that requirements traceability between re-
quirements and design is especially wicked because this involves crossing a two-
fold gap: First, different tools are used for requirements specification and design
that make it necessary to bridge them. Secondly, a transition from requirements to
design means a transition from a problem description to a solution description,
involving a substantial, non-linear gap that is usually mentally bridged by de-
signers but is difficult to cope with an ordinary link concept usually employed by
traceability methods.

When analyzing different design theories, the author found out that design
must rather be seen as a continuous decision process, where only parts of the
decisions can be rationally describable by designers, but other extensive parts

IV.27 Conclusions 393

arise by intuitive usage of tacit knowledge, cook-booky heuristics, and creativity.
As the author has tried to show, exactly this “tacit dimension” [Po66] may be the
major obstacle for valuable traceability information concerning design, because it
infers the non-linearity in the relations between requirements and design and also
hinders designers to make the transition process rationally explicable.

As a consequence, the author has invented a new tool solution called
PROVEtech:R2A, aiming to narrow the twofold gap between requirements and
design to a degree that traceability endeavors bring a real benefit to development.

To achieve this, PROVEtech:R2A has been developed to allow establishing
traceability as a by-product of designers' usual development activities. Through
this, additional benefit shall be provided to designers as an incentive to establish
valuable traceability information. One of these benefits is that recorded tracea-
bility information can be directly used to improve communication and collabora-
tion between designers. The tool further orients itself on the view of design as a
sequence of decisions. Correspondingly, R2A allows recording traces of the deci-
sions made. This starts with automatically recording traces of decisions about
simple requirement allocation and design structure building (e.g., see ch. III.15)
and continues by providing two different decision models allowing designers to
document rationale information on more complex decisions.

Besides all these considerations, one further, very important, consideration
has been that such a tool must also be integrated into a process landscape compat-
ible with process models for safety-critical systems. This thesis has shown that
this is in principle the case. As a further very important plus, the thesis identified
major drawbacks of these process models, involving unnecessary redundancy
concerning process transitions from requirements to design. The author could
identify the underlying core idea that also design processes spark new “require-
ments” as consequences from decisions taken earlier. Once having identified this
idea, the author could develop a taxonomy of requiremental items, where re-
quirements originating from demands of the customer could be distinguished
from design constraints originating from taken design decisions.

As it has further turned out, the first decision model could be used as a
means to transform processes in a way that the original ideas of the process mod-
els were preserved, but unnecessary redundancy could be avoided. The decision
model, allowing modeling conflict situations of requirements and then deriving
consequences as new design constraints, can be seen as a new major extension of
current traceability linking concepts by a more complex traceability concept that
allows a better bridging of the gaps in a complex design decision process, leading
to the non-linear gap between requirements and design. As a further major plus,
the four major design theories introduced in this thesis could be adequately

394 IV. Synopsis

weaved together with theories about traceability and rationale management,
forming a tool set of supportive actions for designers.

Through significant research and development funding by the support pro-
gram IUK-Bayern of the bavarian ministry of economics, it has been possible to
develop PROVEtech:R2A to a solution now commercially available at the
MBtech Group. First practical experiences at the MBtech Group are promising
that the solution provides significant support for designers at their daily practical
design work. In the meantime, through the coupling of the tool PROVEtech:TA
(a solution of the MBtech Group for test automation) the usage context of
PROVEtech:R2A has been even enlarged to a means for also bridging the gaps
between a test specification and automatically executable testing code.

Bibliography

[AB93] Arnold, R.S.; Bohner, S.A: Impact analysis – Towards a framework for compari-

son. Proceedings of Conference on Software Maintenance, 1993. CSM-93, Montre-
al, pp.292-301, Sept. 1993.

[ACC+02] Antoniol, G.; Canfora, G.; Casazza, G.; De Lucia, A.; Merlo, E.: Recovering

traceability links between code and documentation. IEEE Transactions on Software
Engineering, Vol. 28 (10), pp.970-983, Oct 2002.

[AIE07] Almeida, J. P.; Iacob, M-E.; Eck, P.: Requirements traceability in model-driven

development: Applying model and transformation conformance. Information Sys-
tems Frontiers, Vol. 9, Issue 4, Kluwer Academic Publishers, Hingham, MA, USA,
pp.327-342, 2007.

[AG98] Ambriola, V.; Gervasi, V.: Representing structural requirements in software archi-

tecture. Proceedings of the IFIP TC2 WG2.4 Working Conference on Systems Im-
plementation 2000: Languages, Methods and Tools, Berlin, pp.114-127, 1998.

[Ak96] Akroyd, M.: AntiPatterns Session Notes. In: Object World West. San Fransisco,

1996.

[AKL+07a] Avgeriou, P.; Kruchten, P.; Lago, P.; Grisham, P.; Perry, D.E.: Architectural

Knowledge and Rationale: Issues, Trends, Challenges. ACM SIGSOFT Software
Engineering Notes 32(4), pp.41-46, 2007.

[AKL+07b] Avgeriou, P.; Kruchten, P.; Lago, P.; Grisham, P.; Perry, D.E.: Sharing and

Reusing Architectural Knowledge – Architecture, Rationale, and Design Intent.
ICSE Companion, pp.109-110, 2007.

[ALK09] Avgeriou, P.; Lago, P.; Kruchten, P.: Towards Using Architectural Knowledge.

ACM SIGSOFT Software Engineering Notes 34(2), pp.27-30, 2009.

[Al64] Alexander, C., Notes on the Synthesis of Form. Harvard University Press, Cam-

bridge, Massachusetts. 1964.

[AIS77] Alexander, C.; Sara Ishikawa, S.; Silverstein, M.: A Pattern Language: Towns,

Buildings, Construction. New York: Oxford University Press, 1977.

[Al77] Alford, M.W.: A Requirements Engineering Methodology for Realtime Processing
Requirements. IEEE Transactions on Software Engineering SE-3(1), pp.60–69,
1977.

B. Turban, Tool-Based Requirement Traceability between Requirement and Design Artifacts,
DOI 10.1007/978-3-8348-2474-5, © Springer Fachmedien Wiesbaden 2013

396 Bibliography

[Al79] Alexander, C.: The Timeless Way of Building. Oxford University Press, New York
1979.

[Al03] Allderidge, S.: A Use Case Driven Safety Critical Programme. INCOSE UK Spring

Symposium, 2003. (Online version http://www.artisansw.com/pdflibrary–
/DS&S_INCOSE_2003.pdf (Access: 2005/11)), 2003.

[Am05] Ambler, S.: Agile Requirements Best Practises. The Official Agile Modeling (AM)

Site. (Online verion: http://www.agilemodeling.com/essays/agileRequirements–
BestPractices.htm (Access: 2005/11)), 2005.

[AMR06] Aliakseyeu, D.; Martens, J.-B.; Rauterberg M.: A computer support tool for the

early stages of architectural design. Interacting with Computers 18, pp.528–555,
2006.

[AMW02] Atwood, M.E.; McCain, K.W; Williams, J.C.: How Does the Design Communi-

ty Think About Design. IN: Designing Interactive Systems – Proceedings of the 4th
conference on Designing interactive systems: processes, practices, methods, and
techniques, pp.125–132, London 2002.

[ANR+06] Aizenbud-Reshef, N.; Nolan, B. T.; Rubin, J.; Shaham-Gafni, Y.: Model Trace-

ability. IBM Systems Journal; vol. 45(3), pp.515–526, 2006.

[AR05] Arkley, P.; Riddle, S: Overcoming the Traceability Benefit Problem. In: Proceed-

ings of the 13th IEEE International Conference on Requirements Engineering
(RE’05), 2005.

[ARTISAN] Homepage of the UML Design Tool Artisan Studio:

http://www.artisansoftwaretools.com/ (Access: 2010/09).

[ASCET] Homepage of the Design Tool ETAS ASCET:

http://www.etas.com/de/products/–ascet_software_products.php (Access: 2010/09).

[ASP09] Assawamekin N. Sunetnanta T. Pluempitiwiriyawej C.: Deriving traceability

relationships of multiperspective software artifacts from ontology matching. 10th
ACIS International Conference on Software Engineering, Artificial Intelligences,
Networking and Parallel/Distributed Computing (SNPD), Daegu, South Korea, May
2009.

[AutomotiveSPICE] Homepage of the Automotive-SPICE Gremium:

http://www.automotivespice.com (Access: 2010/05).

[ASPICE08a] Automotive Special Interest Group: Automotive SPICE Process Assessment

Model, v. 2.4, Sept. 2008.

Bibliography 397

[ASPICE08b] Automotive Special Interest Group: Automotive SPICE Process Reference
Model, v. 4.4, Sept. 2008.

[Ba96] Balzert, H.: Lehrbuch der Software-Technik: Software-Entwicklung, Spektrum

Akademischer Verlag Heidelberg, Berlin, Oxford, 1996.

[BA96] Bohner, S. A.; Arnold, R.S.: Software change impact analysis. IEEE Computer

Society Press, 1996.

[Ba98] Balzert, H.: Lehrbuch der Software-Technik: Software Management, Software

Qualitätssicherung, Unternehmensmodellierung. Spektrum Akademischer Verlag,
Heidelberg, Berlin, 1998.

[BB04] Burge, J.E.; Brown, D.C.: An integrated approach for software design checking

using rationale. In: Gero, J (ed.): Design Computing and Cognition '04. Kluwer Ac-
ademic, pp.557-576, 2004.

[BB06] Burge, J.E.; Brown, D.C.: Rationale-Based Support for Software Maintenance. In:

[DMM+06], pp.273-296, 2006.

[BC87] Beck, K.; Cunningham, W.: Using Pattern Languages for Object-Oriented Pro-

grams. OOPSLA-87 Workshop on the Specification and Design for Object-Oriented
Programming, 1987 (Online version: http://c2.com/doc/oopsla87.html (Access:
2009/06)), 1987.

[BCK03] Bass, L.; Clements, P.; Kazman R.: Software Architecture in Practice. Second

Edition. Addison-Wesley, Pearson Education Inc., Boston MA, 2003.

[BCN+06] Bass, L.; Clements, P.; Nord, R.L.; Stafford, J.: Capturing and Using Rationale

for a Software Architecture. In: [DMMP06], 2006.

[BCM+08] Burge, J.E.; Carroll, J.M.; McCall, R.; Mistrik, I.: Rationale-Based Software

Engineering. Springer Verlag Berlin Heidelberg 2008.

[BD03] Bilda, Z.; Demirkan, H.: An insight on designers’ sketching activities in traditional

versus digital media. Design Studies Volume 24, Issue 1, pp.27-50, Jan. 2003.

[BDS+98] Beedle, M.; Devos, M.; Sharon, Y.; Schwaber, K.; Sutherland, J.: SCRUM: An

extension pattern language for hyperproductive software development (Online ver-
sion: http://hillside.net/plop/plop98/final_submissions/P49.pdf; (Access: 2009/06)),
1998.

[Be00a] Beck, K.: Extreme Programming: Das Manifest. Muenchen. Addison Wesley

Longman Inc., 2000.

398 Bibliography

[Be00b] Beck, K.: Extreme Programming Explained. Addison-Wesley, Reading, MA 2000.

[Be04] Berry, D.M.: The Inevitable Pain of Software Development: Why There Is No Silver

Bullet. In: Radical Innovations of Software and Systems Engineering in the Future,
Springer Berlin / Heidelberg, pp.50-74, 2004.

[Be08] Beck, K.: Implementation Patterns – Der Weg zu einfacherer und kostengünstige-

rer Programmierung. Addison Wesley, München, Germany 2008.

[BEK+98] Boehm, B.; Egyed, A.; Kwan, J.; Port, D.; Shah, A.; Madachy, R.: Using the

WinWin spiral model: A case study. IEEE Computer 7, pp.33–44, 1998.

[BG06] Bozheva, T.; Gallo, M.E.: Defining Agile Patterns IN: [DMM+06], pp.373-390,

2006.

[BGK+07] Broy, M.; Geisberger, E.; Kazmeier, J.; Rudorfer, A.; Beetz, K.: Ein Require-

ment-Engineering Referenzmodell. Informatik Spektrum Band 30 Heft 3; Juni 2007.

[BGP06] Bilda, Z.; Gero, J.S.; Purcell, T.: To sketch or not to sketch? That is the question.

Design Studies Volume 27, Issue 5, pp.587-613, Sept. 2006.

[BGT+04] Bozorgzadeh, E.; Ghiasi, S.; Takahashi A.; Sarrafzadeh, M.: Incremental Tim-

ing Budget Management in Programmable Systems. International Conference on
Embedded and Reconfigurable Systems and Architecture, pp.240-246, July 2004.

[BHJ+10] Birk, A.; Heller, G.; Janzen, D.; Reiser, M.-O.: Wo steht das Requirements-

Engineering? – Bewertung und Gegenüberstellung von RE-Frameworks. Software-
technik-Trends 30:1, pp.6-7, Feb. 2010.

[BHM01] Benediktsson, O.; Hunter, R.; McGettrick, A.D.: Processes for Software in

Safety Critical Systems. Software Process: Improvement and Practice, vol. 6 issue 1,
pp.47-62, 2001.

[BHS07] Buschmann, F.; Henney, K.; Schmidt, D.C.: Pattern-oriented software architec-

ture: On patterns and pattern languages. Vol. 5; John Wiley & Sons Ltd, England,
2007.

[BHV09] Bella, F.; Hörmann, K.; Vanamali, B.: From CMMI to SPICE – Experiences on
How to Survive a SPICE Assessment Having Already Implemented CMMI. Lecture
Notes in Computer Science Volume 5089, Springer Berlin / Heidelberg, pp.133-142,
2009.

Bibliography 399

[BJ91] Boerstler, J.; Janning, T.: Bridging the gap between Requirements Engineering and
Design. In: Proc. 15th International Computer Software & Application Conference,
1991.

[BJ92] Boerstler, J.; Janning, T.: Traceability between Requirements and Design: A Trans-

formational Approach. In: Proc. 16th International Computer Software & Application
Conference, 1992.

[BJL98] Booch, G.; Jacobson, I.; Rumbaugh, J.: The Unified Modeling Language User

Guide. Addison-Wesley, 1998.

[BK06] Boehm, B.; Kitapci, H.: The WinWin Approach: Using a Requirements Negotiation

Tool for Rationale Capture and Use. In: [DMM+06]; pp.173-190, 2006.

[Blo95] Bloch, P.: Seeking the ideal form: Product design and Consumer Response. Jour-

nal of Marketing 59, pp.16-29, 1995.

[BLO+06] Briand, L.C.; Labiche, Y.; O’Sullivan, L.; Sówka, M.M.: Automated impact

analysis of UML models. Journal of Systems and Software 79, pp.339-352, 2006.

[BMH+98] Brown, W.H.; Malveau, R. C.; McCormick, H.W.; Mowbray, T.J.: AntiPatterns

– Refactoring Software, Architectures, and Projects in Crisis. New York, John Wiley
& Sons, Inc., 1998.

[BMR+00] Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.; Stal, M.: Patternori-

entierte Softwarearchitektur. Ein Pattern-System. Addison-Wesley, München, 2000.

[Bo82] Boehm, B.: Software Engineering Economics. Prentice-Hall 1982.

[Bo91] Bohner, S. A.: Software Change Impact Analysis for Design Evolution. In: Proc. 8th

International Conference on Software Maintenance and Reengineering, 1991.

[Bo94] Booch, G.: Objektorientierte Analyse und Design: Mit praktischen Anwendungs-

beispielen. Addison-Wesley, 1994.

[Bo00a] Boehm, B.: Requirements that Handle IKIWISI, COTS, and Rapid Change. IEEE

Computer, Vol. 33, No. 7, pp.99-102, July 2000.

[Bo00b] Bosch, J.: Design and Use of Software Architectures – Adopting and evolving a

product-line approach. Pearson Education Limited, Harlow, 2000.

[Bo05] Boehm B.: The Future of Software and Systems Engineering Processes. (Online

version: http://sunset.usc.edu/publications/TECHRPTS/2005/usccse2005-507/usccse
2005-507.pdf (Access: 2006/10)), 2005.

400 Bibliography

[Bo01] Borchers, J.O.: A Pattern Approach to Interaction Design. John Wiley & Sons
LTD. Chichester, England, 2001.

[BP06] Brcina, R.; Prechtel, M.: Feature-orientierte Plattformentwicklung und Verfolg-

barkeit. Softwaretechnik-Trends, Band 26 Heft 4, pp.3-8, 2006.

[Br87] Brooks, F. P.: No Silver Bullet: Essence and Accidents of Software Engineering.

IEEE Computer Vol. 20(4), pp.10-19, 1987.

[Br95] Brooks F. P.: The Mythical Man-Month – 20th Anniversary Edition. Addison Wes-

ley, Reading MA, 1995.

[BR00] Bennett, K.H.; Rajlich, V.T.: Software maintenance and evolution: A roadmap. IN:

ICSE '00: Proceedings of the International Conference on The Future of Software
Engineering, Limerick, Ireland, ACM,New York, USA, pp.73-87, 2000.

[Br06] Broy, M.: Challenges in Automotive Software Engineering. Proceeding of the 28th

international conference on Software engineering, Shanghai, pp.33-42, 2006.

[Br07a] Brcina, R.: Arbeiten zur Verfolgbarkeit und Aspekte des Verfolgbarkeitsprozesses.

Softwaretechnik-Trends 27:1, pp.3-8, Feb. 2007.

[BR07b] Broy, M.; Rumpe B.: Modulare hierarchische Modellierung als Grundlage der

Software- und Systementwicklung. InformatikSpektrum Band 30 Heft 1, pp.3-18,
Feb. 2007.

[BRS05] Bauer, A.; Romberg, J.; Schätz, B.: Integrierte Entwicklung von Automotive-

Software mit AutoFOCUS. Informatik Forschung und Entwicklung Band 19; Heft 4,
pp.194-205, July 2005.

[BSA07] Blaauboer, F.; Sikkel, K.; Aydin, M.N.: Deciding to adopt requirements tracea-

bility in practice. Lecture Notes in Computer Science Volume 4495, pp.294-308,
2007.

[BSS+06] Buckingham Shum, S.J.; Selvin, A.M.; Sierhuis, M.; Conklin, J.; Haley, C.B.;

Nuseibeh, B.: Hypermedia Support for Argumentation-Based Rationale: 15 Years on
from gIBIS and QOC. In: [DMM+06], pp.111-132, 2006.

[BT04] Boehm, B.; Turner, R.: Balancing Agility and Discipline – A guide for the per-
plexed. Addison Wesley, Pearson Education, Boston MA, 2004.

[Bu96] Buchanan, R.: Wicked Problems in Design Thinking. In: Margolin, V.; Buchanan,

R. (Eds): The Idea of Design, The MIT Press, pp.3-20, Feb. 1996.

Bibliography 401

[CBB+03] Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J. Little, R.; Nord, R.;
Stafford, J.: Documenting Software Architectures: Views and Beyond. Addison-
Wesley, Pearson Education, Boston MA, 2003.

[CCL00] Canfora, G.; Casazza, G.; Lucia, A.d.: A Design Rationale Based Environment for

Cooperative Maintenance. International Journal of Software Engineering and
Knowledge Engineering (IJSEKE), Vol 10, Issue 5, pp.627-645, 2000.

[Co90] Coggins, J: Design and Management of C+ Libraries. Chapel Hill, North Carolina:

University of North Carolina, 1990.

[CB88] Conklin, J; Begeman, M: gIBIS: A hypertext tool for exploratory policy discus-

sion. ACM Transactions On Information Systems. Vol. 6, Issue 4, pp.303-331, 1988.

[CB96] Conklin, E.J.; Burgess-Yakemovic, K.C.: A process-oriented approach to design

rationale. In: [MC96], pp.393-427, 1996.

[CBS+02] Chen, C.; Bozorgzadeh, E.; Srivastava, A.; Sarrafzadeh, M.: Budget Manage-

ment with Applications. Algorithmica 34, pp.261-275, 2002.

[CBV07] Conklin, J.; Basadur, M.; Van Patter, G.K.: Rethinking Wicked Problems. NextD

Journal Issue TEN, Conversation 10.1, (Online version: http://www.nextd.org/pdf_–
download/NextD_10_1.pdf, (Access: 2009/05)), 2007.

[CCC03] Cleland-Huang, J.; Chang, C.K.; Christensen, M.: Event-Based Traceability for

Managing Evolutionary Change. IEEE Transactions on Software Engineering vol.
29(9), pp.796–810, 2003

[CFG+05] Conrad, M.; Fey, I.; Grochtmann, M.; Klein, T.: Modellbasierte Entwicklung

eingebetteter Fahrzeugsoftware bei DaimlerChrysler. Informatik Forschung und
Entwicklung Band 20 Heft 1-2, pp.3-10, Oct. 2005.

[Ch67] Churchman., C.W.: Wicked Problems. Guest Editorial, Management Science, vol.

4 no. 14, pp.141-142, 1967.

[CKK02] Clements, P.; Kazman, R.; Klein, M.: Evaluating Software Architectures – Meth-

ods and case studies. Addison-Wesley, 2002.

[CKS+09] Chanda, J.; Kanjilal, A.; Sengupta, S.; Bhattacharya, S.: Traceability of re-

quirements and consistency verification of UML use case, activity and Class dia-
gram: a formal approach. International Conference on Methods and Models in
Computer Science (ICM2CS), pp.1-4, Piscataway, NJ, USA, 2009.

402 Bibliography

[Cl05] Cleland-Huang, J.: Toward improved traceability of non-functional requirements.
In: Proceedings of the 3rd international Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE '05), Long Beach, California, Nov. 2005.

[Cl06] Cleland-Huang J: Just enough requirements traceability. 30th Annual International
Computer Software and Applications Conference COMPSAC 2006 (IEEE Cat. No.
06P2655), pp.2-3, Piscataway, NJ, USA, 2006.

[CL09] Chang, H.-F.; Lu, S. C-Y.: Decomposition and Traceability in Software Design.

33rd Annual IEEE International Computer Software and Applications Conference,
pp.13-18, 2009.

[CNY+00] Chung, L.; Nixon, B.A.; Yu, E.; Mylopoulos, J.: Non-Functional Requirements

in Software Engineering. Kluwer Academic, Dordrecht, 2000.

[Co68] Conway, M.E.: How do committees invent? Datamation, 14,4, pp.28-31, April

1968.

[Co89] Conklin, J.: Design Rationale and maintainability. In: Proceedings 22nd annual

Hawaii international conference on system science, Vol. 2, Los Alamitos, CA, USA.
IEEE Computer Society, pp.533-539, 1989.

[Co95] Coplien, J. O.: A generative development-process pattern language. In: [CS95],

pp.183-237, 1995.

[Co00] Cockburn, A.: Writing Effective Use Cases. Addison-Wesley Professional 2000.

[Compendium] Compendium Institute: Homepage of the Rationale Management Tool

Compendium: http://compendium.open.ac.uk/institute/index.htm (Access: 2009/05).

[Co05] R. Coyne: Wicked problems revisited. Design Studies Volume 26, Issue 1, pp.5-17,

January 2005.

[Co06] Conklin, J.: Dialogue Mapping: Building Shared Understanding of Wicked Prob-

lems. John Wiley and Sons, Ltd., Jan. 2006.

[CR92] Carroll, J.M.; Rosson, M.B.: Getting aroung the task-artifact cycle: how to make

claims and design by scenario. ACM Transactions for Information Systems Vol.
10(2); pp.181-212, 1992.

[CR98] Carroll, J.M.; Rosson,M.B.; Chin, G. Jr.; Koenemann, J.: Requirements develop-

ment in scenario-based design. IEEE Transactions of Software Engineering 24(12),
pp.1156-1170, 1998.

Bibliography 403

[CRF+06] Cuesta, C. E.; Romay, M.P.; Fuente, P.d.l.; Barrio-Solórzano, M.: Coordination
as an Architectural Aspect. In: Electronic Notes in Theoretical Computer Science
154, pp.25–41, 2006.

[Cs90] Csikszentmihalyi, M.: Flow: The Psychology of Optimal Experience. Harper Per-

ennial, New York, 1990.

[CS95] Coplien, J. O.; Schmidt, D. C. (Eds.): Pattern languages of program design. ACM

Press/Addison-Wesley Professional, New York, 1995.

[CSL+01] Carlshamre, P.; Sandahl, K.; Lindvall, M.; Regnell, B.; Natt och Dag, J.: An

Industrial Survey of Requirements Interdependencies in Software Product Release
Planning. Fifth IEEE International Symposium on Requirements Engineering
(RE'01), 2001.

[CS03] Cleland-Huang, J.; Schmelzer, D.: Dynamically Tracing Non-Functional Require-

ments through Design Pattern Invariants. In: Proceedings of the Second Internation-
al Workshop on Traceability in Emerging Forms of Software Engineering
(TEFSE’03), 2003.

[CSB+05] Cleland-Huang, J.; Settimi, R.; BenKhadra, O.; Berezhanskaya, E.; Christina,

S.: Goal-centric Traceability for Managing Non-functional Requirements. In: Pro-
ceedings of the 27th International Conference on Software Engineering (ICSE’05),
pp.: 362–371, 2005.

[CSD+05] Cleland-Huang, J., Settimi, R., Duan, C., Zou, X.: Utilizing Supporting Evi-

dence to Improve Dynamic Requirements Traceability. In: Proceedings of the 13th
IEEE International Requirements Engineering Conference (RE 2005), pp.135–144,
2005.

[CKI88] Curtis, B.; Krasner, H.; Iscoe, N.: A field study of the software design process for

large systems. Communications of the ACM 31, 11, 1988.

[CNY+99] Chung, L.; Nixon, B. A.; Yu, E.; Mylopoulos, J.: Non-functional requirements

in software engineering . Kluwer Academic Publishers International Series in Soft-
ware Engineering, Vol. 5, Springer October, 1999.

[Cu90] Curtis, B.: Empirical studies of the Software Design Process. In: Proc. Human

Computer Interaction Interact '90. Amsterdam, 1990.

[Cu92] Curtis, B.: Insights from empirical studies of the software design process. Future

Generation Computing Systems, 7 (2-3), pp.139-149, 1992.

404 Bibliography

[CY04] Cysneiros, L.M.; Yu, E.: Non-Functional Requirements Elicitation. In: [PD04],
pp.115-138, 2004.

[DAU01] Defense Acquisition University (Eds.): Systems Engineering Fundamentals.

Defense Acquisition University Press, Jan. 2001.

[DC04] Dick; J.; Chard, J.: The Systems Engineering Sandwich: Combining Requirements,

Models and Design. (Online version:
http://www.telelogic.com/corp/download/index.cfm?–id=3640; (Access: 2006/06)),
2004.

[De78] DeMarco, T.: Structured Analysis and Systems Specifications, Yourdon Press Com-

puting Series, 1978.

[De99] Dellen, B.: Change Impact Analysis Support for Software Development Processes.

Phd thesis. Department of Computer Science, University of Kaiserslautern, Germa-
ny, 1999.

[De04] DeMarco, T.: Was man nicht messen kann, kann man nicht kontrollieren. Mitp-

Verlag, Bonn, 2004.

[DH03] Dunkel, J.; Holitschke, A.: Softwarearchitektur für die Praxis. Springer-Verlag

Berlin Heidelberg, 2003.

[DHM98] Dröschel, W.; Heuser, W.; Midderhoff, R. (Eds.): Inkrementelle und objektorien-

tierte Vorgehensweisen mit dem V-Modell 97. Oldenbourg, München, 1998.

[DGN+00] Do, E.Yi-L., Gross, M.D., Neiman, B.; Zimring, C: Intentions in and relations

among design drawings. Design Studies Vol 21 No 5 pp 483-503, 2000.

[DIN69905] DIN 69905: Projektabwicklung, Begriffe. May 1997.

[Di04a] Diederichs, H.: Komplexitätsreduktion in der Softwareentwicklung – Ein system-

theoretischer Ansatz. Books on Demand Gmbh, Norderstedt, 2004.

[Di04b] Dittert, K.: Softwarearchitektur: Mythen und Legenden. OBJEKTspektrum

3/2004, pp.34-39, 2004.

Bibliography 405

[DK96] Domeshek, E.; Kolodner, J.L.: The Desiners' Muse: Providing Experience to Aid
Conceptual Design of Complex Artifacts. In: Maher, M.L.; Pu, p.(eds.): Issues and
Applications of Case-Based Reasoning to Design, Lawrence Erlbaum Associates,
Mahway, NJ, pp.11-38, 1996.

[DKM96] Dellen, B.; Kohler, K.; Maurer, F.: Integrating Software Process Models and

Design Rationales. In. Proceedings of 11th Knowledge-Based Software Engineering
Conference (KBSE ’96), Syracuse, NY, pp.84-93, 1996.

[DLL09] Dong, L.; Li, Y.; Li, J.: Improved method of dynamic requirement traceability

based on code comments. Computer Engineering and Design, Vol. 30, No.1, 16 Jan.
2009, pp.113-115, 221, 2009.

[DMM+06] Dutoit, A.; McCall, R.; Mistrik, I.; Paech, B (Eds.): Rationale Management in

Software Engineering. Springer, Berlin 2006.

[DMM+06a] Dutoit, A.; McCall, R.; Mistrik, I.; Paech, B.: Rationale Management in

Software Engineering: Concepts and Techniques. In: [DMM+06], Springer, Berlin
2006.

[Do03] Douglass, B.P.: Real-Time Design Patterns: Robust Scalable Architecture for Real-

Time Systems. Addison Wesley, Pearson Education, Boston, 2003.

[Do04] Douglass, B.P.: Real Time UML Third Edition – Advances in the UML for Real-

Time Systems. Addison Wesley, Pearson Education, Boston, 2004.

[Do05] Douglas, I.: Capturing and managing decision making rationale. IEEE Interna-

tional Conference on Information Reuse and Integration, pp.172 – 176, Aug. 2005.

[DP98] Dömges, R.; Pohl, K.: Adapting Traceability Environments to Project-Specific

Needs. Communications of the ACM, Vol. 41, No. 12, pp.54-62, 1998.

[DP02] Dutoit A, Paech B.: Rationale-Based Use Case Specification. Requirements Engi-

neering Journal. vol. 7, no 1, pp.3-19, 2002.

[Eb98] Ebert, C.: Putting requirements management into praxis: dealing with nonfunc-

tional requirements. Information and Software Technology 40, pp.175-185, 1998.

[Eb05] Ebert, C.: Systematisches Requirements Management Anforderungen ermitteln,

spezifizieren, analysieren und verfolgen. dpunkt Verlag GmbH, Heidelberg, 2005.

[Eb08] Ebert, C.: Systematisches Requirements Engineering und Management – Anforde-

rungen ermitteln, spezifizieren, analysieren und verwalten. 2. aktualisierte und er-
weiterte Auflage. dpunkt Verlag GmbH, Heidelberg, 2008.

406 Bibliography

[Ec03] Eckel, B.; Allison, C.: Thinking in Java. 3rd Edition, Prentice Hall, New Jersey,
2003.

[Ec04] Eckstein, J.: Agile Softwareentwicklung im Grossen – Ein Eintauchen in die Untie-

fen erfolgreicher Projekte. dpunkt Verlag GmbH, Heidelberg 2004.

[EDG+06] Espinoza, H.; Dubois, H.; Gérard, S.; Medina, J.; Petriu, D.; Woodside, M.:

Annotating UML Models with Non-Functional Properties for quantitative analysis.
In: Lecture Notes in Computer Science; Volume 3844, Heidelberg, pp.79-90, 2006.

[Ee05] Eeles, P.: Capturing Architectural Requirements. DeveloperWorks, July 2005,

(Online version: http://www-128.ibm.com/developerworks/rational/library/
4706.html; Access 2008/11), 2005.

[EFS98] Ebeling, W.; Freund, J.; Schweitzer, F.: Komplexe Strukturen: Entropie und In-

formation. Teuber, Leipzig, 1998.

[Eg03] Egyed, A: A Scenario-driven approach to trace dependency analysis. IEEE Trans-

actions on Software Engineering, 29(2), pp.116-132, February 2003.

[EG04] Egyed, A.; Grünbacher, P.: Indentifying Requirements Conflicts and Cooperation:

How Quality Attributes and Automated Traceability Can Help. IEEE SW, Nov./Dec.
2004.

[EGH+07] Egyed, A.; Grünbacher, P.; Heindl, M.; Biffl, S.: Value-Based Requirements

Traceability: Lessons Learned. 15th IEEE International Requirements Engineering
Conference 2007.

[Eh88] Ehn, P.: Playing the language-games of design and use-on skill and participation.

IN: Proceedings of the ACM SIGOIS and IEEECS TC-OA 1988 conference on Of-
fice information systems, Palo Alto, California, pp.142—157, 1988.

[Eh89] Ehn, P.: Work-oriented design of computer artifacts. Hillsdale, NJ: Lawrence Erl-

baum Associates, 1989.

[Em10] Emmanuel, T.: Planguage – Spezi kation nichtfunktionaler Anforderungen. In-

formatik Spektrum 33 (3), pp.292-295, 2010.

[ER03] Endres, A.; Rombach, D.: A Handbook of Software and Systems Engineering –

Empirical Observations, Laws and Theory. Addison Wesley 2003.

Bibliography 407

[ESS02] El-Ramly, M.; Stroulia, E.; Sorenson, P.: Mining System-User Interaction Traces
for Use Case Models. In: Proceedings of the 10th international Workshop on Pro-
gram Comprehension (IWPC'02), IEEE Computer Society, Washington, DC, pp.21-
29, 2002.

[Fa95] Faulk, S.R.: Software requirements: A tutorial. NRL report 7775, Naval Research

Laboratory, Washington DC, 1995.

[Fe86] Feyerabend, P.: Wider den Methodenzwang. Taschenbuch Wissenschaft 597, Erste

Auflage, Suhrkamp Verlag Frankfurt am Main, 1986.

[FGH+94] Finkelstein, A.C.W.; Gabbay, D.; Hunter, A.; Kramer, J., Nuseibeh, B.: Incon-

sistency handling in multiperspective specifications. IEEE Transactions on Software
Engineering, Vol.20, No.8, pp.569-578, 1994.

[FGS+01] Fornarciary, W.; Gubian, P.; Sciuto, D.; Silvano, Ch.: Power estimation of em-

bedded systems: A Hardware/Software codesign approach. In: Micheli, G; Ernst, R.:
Readings in Hardware/Software Co-Design. Morgan Kaufmann 2001, pp.249-258,
2001.

[Fi91] Finkelstein, A. C. W.: Tracing back from requirements. In: Tools and Techniques for

Maintaining Traceability During Design IEE Colloquium, Computing and Control
Division, Professional Group C1 (Software Engineering), Digest Number: 1991/180,
December 2, pp.7/1-7/2, 1991.

[Fi98] Filman, R.E.: Achieving ilities. In: Proceedings of the Workshop on Compositional

Software Architectures, Monterey, CA, 1998.

[FK07] Fritzsche, M.; Keil, P.: Agilität und Prozessreife: Erfüllbarkeit der CMMI – Pro-

zessgebiete durch agile Methoden am Beispiel von XP. IN: Software Engineering
2007 (SE 2007). Bonn: Köllen Verlag [= Lecture Notes in Informatics, Vol. 105].
pp.95-106, 2007.

[FL02] Fettke, P.; Loos, P.: Methoden zur Wiederverwendung von Referenzmodellen –

Übersicht und Taxonomie. In: Becker, J.;Knackstedt, R. (Eds.): Referenzmodellie-
rung 2002. Methoden – Modelle – Erfahrungen, Münster, pp.9-33, 2002.

[FLM+96] Fischer, G.; Lemke, A.C.; McCall, R.; Morch, A.I.: Making argumentation

serve design. In: [MC96], pp.267–293, 1996.

[FMM89] Fischer, G.; McCall, R.; Morch, A.I.: JANUS: Integrating hypertext with a

knowledge-based design. Proceedings of the second annual ACM conference on Hy-
pertext, pp.105-117, 1989.

408 Bibliography

[Fo97] Fowler, M.: Analysis Patterns – Reusable Object Models. Addison Wesley Pearson
Education, Indianapolis, 1997.

[Fo99] Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison Wesley

Longman Inc., New York, 1999.

[Fo02] Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[Fo03] Fowler, M.: Design – Who needs an Architect? IEEE SW Volume 20, Issue 5,

pp.11-13, Sept.-Oct. 2003.

[Ga86] Gall, J.: Systemantics: How systems really work and how they fail. Second Edition.

Ann Arbor, MI: The General Systemantics Press, 1986.

[GB08] Gallagher, K.; Binkley, D.: Program Slicing. Frontiers of Software Maintenance,

Beijing, China, October 1-4, 2008.

[GC87] Grady, R.; Caswell, D.: Software Metrics: Establishing a Company-wide Pro-

gram. Prentice Hall, 1987.

[GDM+10] Groß, A.; Dörr, J.; Menzel, I.; Müller, M.: Experimenteller Vergleich zweier

Techniken zur Anforderungsspezifikation: Use Cases vs. Funktionale Spezifikation.
Softwaretechnik-Trends 30:1, pp.14-15, Feb 2010.

[GEM01] Gruenbacher, P.; Egyed, A.; Medvidovic, N.: Reconciling software requirements

and architectures: The CBSP Approach. Proceedings Fifth IEEE International Sym-
posium on Requirements Engineering, pp.202-221, 2001.

[GEM03] Gruenbacher, P.; Egyed, A.; Medvidovic, N.: Reconciling software requirements

and architectures with intermediate models. Software and Systems Modeling 3, Au-
gust 01, pp.235-253, 2004.

[Ge05] Geisberger, E.: Requirement Engineering eingebetteter Systeme. Dissertation

Shaker 2005.

[GF94] Gotel, O.C.Z.; Finkelstein, A.C.W.: An analysis of the requirements traceability

problem. Proceedings of ICRE94, 1st International Conference on Requirements En-
gineering 1994, Colorado Springs, Co; IEEE CS Press, pp.94-101, 1994.

[GF95] Gotel, O.C.Z.; Finkelstein, A.C.W.: Contribution Structures. Proceedings of the

Second IEEE International Symposium on Requirements Engineering (RE ’95),
1995.

Bibliography 409

[GF96] Gotel, O.C.Z.; Finkelstein, A.C.W.: Extended Requirements Traceability: Results
of an Industrial Case Study. In: Proc. 3Th International Symposium on Require-
ments Engineering, pp.169-178. 1996.

[GGJ+00] Gunter, C. A.; Gunter, E. L.; Jackson, M.; Zave, P.: A Reference Model for

Requirements and Specifications. IEEE Software Vol. 17, Issue 3, pp.37-43, May
2000.

[GG03] Goldenson, D.; Gibson, D.: Demonstrating the Impact and Benefits of CMMI: An

Update and Preliminary Results. Special Report CMU/SEI-2003-SR-003, Software
Engineering Institute, Carnegie Mellon University, 2003.

[GG05] Gerlich, R.; Gerlich, R.: 111 Thesen zur erfolgreichen Softwareentwicklung –

Argumente und Entscheidungshilfen für Manager, Konzepte und Anleitungen für
Praktiker. Springer, Berlin, Heidelberg, New York, 2005.

[GG07] Galvao, I.; Goknil, A.: Survey of Traceability Approaches in Model-Driven Engi-

neering. IN: EDOC '07: Proceedings of the 11th IEEE International Enterprise Dis-
tributed Object Computing Conference, pp.313-324, 2007.

[GHJ+95] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[Gi05] Gilb, T.: Competitive Engineering, 1. Edition, Elsevier Butterworth Heinemann,

Amsterdam, 2005.

[GM57] Goode, H.; Machol R.: Systems Engineering: An Introduction to the Design of

Large-Scale Systems. McGraw-Hill, New York 1957.

[GK07] Gross, T.; Koch, M.: Computer-Supported Cooperative Work. Oldenbourg, Mün-

chen, 2007.

[GL91] Gallagher, K.B.; Lyle, J.R.: Using Program Slicing in Software Maintenance.

IEEE Transactions on Software Engineering, Vol. 17, No. 8, pp.751-761, 1991.

[Gl02] Glass, R.L.: Sorting Out Software Complexity. Communications of the ACM Vol.

45, No. 11, Nov. 2002.

[Go95] Goel, V.: Sketches of Thought. MIT Press, Cambridge, MA, 1995.

[Go96] Goguen, J.A.: Formality and informality in requirements engineering. Proceedings

of ICRE 96, 2nd International Conference on Requirements Engineering, 1996, April
15-18, Colorado Springs, Colorado, IEEE Computer Society Press, 1996.

410 Bibliography

[Go99] Goel, V.: Cognitive roles of ill-structured representations in preliminary design. In:
J.S. Gero and B. Tversky (eds.) Visual and spacial reasoning in design, MIT, Cam-
bridge, KCDCC, University of Sydney, Australia, (Online version:
http://wwwfaculty.arch.usyd.edu.au/kcdc/books/VR99/goel.html; Access: 2009/05),
pp.131-144, 1999.

[GP04] Gerdom, M.; Posch, T.: Pragmatische Software-Architektur für Automotive Syste-

me. OBJEKTspektrum 05/2004; (Online version:
http://www.sigs.de/publications/os/2004/05/gerdom_posch_OS_05_04.pdf (Access
2005/11)), pp.64-66, 2004.

[Gr87] Grudin, J.: Social evaluation of the user interface: Who does the work and who gets

the benefit. In: INTERACT'87. IFIP Conference on Human and Computer Interac-
tion. Stuttgart, Germany, pp.805-811, 1987.

[Gr88] Grudin, J.: Why CSCW applications fail: problems in the design and evaluation of

organization of organizational interfaces. In: Proceedings of the ACM Conference
on Computer-supported Cooperative Work 1988, ACM, New York, pp.85-93, 1988.

[Gr92] Grady, R.B.: Practical Software Metrics for Project Management and Process

Improvement. Prentice Hall, 1992.

[GR96a] Gruber, T.R.; Russell, D.M.: Generative design rationale: Beyond the record and

replay paradigm. In: [MC96], pp.323–349, 1996.

[Gr96b] Grudin, J.: Evaluating opportunities for design capture. In: [MC96], 1996.

[Gr03] Graham, B.: Requirements Traceability for Embedded Systems. Embedded Systems

Conference Class 323, April 22-26, 2003.

[Gr05] Grimm, K.: Software-Technologie im Automobil. In: [LR05], pp.407 –430, 2005.

[GSC+04] Greenfield, J.; Short, K.; Cook, S.; Kent, S.: Software Factories – Assembling

Applications with Patterns, Models, Frameworks and Tools. Wiley & Sons Publish-
ing Inc, Indianapolis, 2004.

[Gu03] Gullapalli, V.: Best practices improve hierarchical design constraints. Tech

Online, Nov. 2003, (Online version:
http://www.eetimes.com/news/design/showArticle.jhtml;jsessionid=O4YQ3DC1YP
CQKQSNDLRSKHSCJUNN2JVN?articleID=16502497&printable=true (Access
2007/12)), 2003.

[Ha72] Haney, F.M.: Module connection analysis – A tool for scheduling software debug-

ging analysis. Proceedings of AFIPS Joint Computer Conference, pp.173-179, 1972.

Bibliography 411

[Ha87] Harel, D.: State Charts: A visual formalism for complex systems. Science of com-
puter programming, pp.231-274. 1987.

[Ha99] Hause, M.: Successfully Managing An Incremental Real-Time Project; Part Three:

Requirements Management. Whitepaper at Artisan Software (Online version:
http://www.artisansw.com (Access 2005/10)), 1999.

[Ha00] Han, J.: Experience with Designing a Requirements and Architecture Management

Tool. Proceedings of the International Conference on software Methods and Tools
(SMT'00), pp.179-188, 2000.

[Ha01a] Hahsler, M.: Analyse Patterns im Softwareentwicklungsprozess. Dissertation,

Abteilung für Informationswissenschaft, Wirtschaftsuniversität Wien, 2001.

[Ha01b] Han, J.: TRAM: A Tool for Requirements and Architecture Management. Australa-

sian Computer Science Conference (ACSC '01), pp.60-68, 2001.

[Ha02] Hazzan, O.: The reflective practitioner perspective in software engineering educa-

tion. Journal of Systems and Software Volume 63, Issue 3, pp.161–171, Sept. 2002.

[HA06a] Horner, J.; Atwood, M.E.: Effective Design Rationale: Understanding the Barri-

ers. In [DMM+06], pp.72-90, 2006.

[Ha06b] Haynes, S.R.: Three Studies of Design Rationale as Explanation. In: [DMM+06],

p.53-71, 2006.

[HAZ07] Harrison, N.B.; Avgerion, P.; Zdun, U.: Using Patterns to Capture Architectural

Decisions. IEEE Software, pp.38-45, July/August 2007.

[HB91] Hamilton, V.L.; Beeby, M.L.: Issues of Traceability in Integrating Tools. Proceed-

ings of IEE Colloquium on Tools and Techniques for Maintaining Traceability dur-
ing Design, Dec.1991.

[HDH+06] Hörmann, K.; Dittmann, L.; Hindel, B.; Müller, M.: SPICE in der Praxis,

Interpretationshilfe für Anwender und Assessoren. dpunkt Verlag GmbH, Heidelberg,
2006.

[HGK+09] Hove, D.; Goknil, A.; Kurtev, I.; Berg, K.v.d.; Goede, K.d.: Change Impact

Analysis for SysML Requirements Models based on Semantics of Trace Relations.
ECMDA Traceability Workshop, ECMDA-TW, Enschede NL, pp.17-28, 2009.

[HH04] Heumesser, N.; Houdek, F.: Experiences in Managing an Automotive Require-

ments Engineering Process. 12th IEEE International Requirements Engineering
Conference, pp.322-327, 2004.

412 Bibliography

[HHL+06] Hagge, L.; Houdek, F.; Lappe, K.; Paech, B: Using Patterns for Sharing Re-
quirements Engineering Process Rationales. In: [DMM+06], pp.409-427, 2006.

[HHP03] Hatley, D.; Hruschka, P.; Pirbhai, I.: Komplexe Software-Systeme beherrschen.

MITP Verlag, 1. Auflage, Bonn, 2003.

[HHS64] Heiser, H.; Holzer, H.; Sommer, W.: Budgetierung. Grundsätze und Praxis der

betriebswirtschaftlichen Planung, De Gruyter & Co., Berlin, 1964.

[HJD02] Hull, M. E. C.; Jackson, K.; Dick, A. J. J.: Requirements Engineering. Springer,

London Berlin Heidelberg, 2002.

[HJL96] Heitmeyer, C.L.; Jeffords, R.D.; Labaw, B.G.: Automated Consistency Checking

of Requirements Specifications. ACM Transactions on Software Engineering and
Methodology Vol. 5 (3), pp.231–261, 1996.

[HKL09] Hsueh, N.-L.; Kuo, J-Y.; Lin, Ch.-Ch.: Object-oriented design: A goal-driven

and pattern-based approach. Software and Systems Modeling, Volume 8, Issue 1,
pp.67-84, Feb. 2009.

[HMC+07] Hood, C.; Mühlbauer, S.; Rupp Ch.; Versteegen, G.: iX Studie 01/2007 Anfor-

derungsmanagement. 2. erweiterte Auflage, Heise Zeitschriften Verlag, Hannover,
April 2007.

[HNS00] Hofmeister, C.; Nord, R.; Soni, D.: Applied Software Architecture. Addison-

Wesley, 2000.

[HR02] Hruschka, P.; Rupp, Ch.: Agile Softwareentwicklung für Embedded Real-Time

Systems mit der UML. Carl Hanser Verlag, München, 2002.

[HPW+99] Haumer, P.; Pohl, K.; Weidenhaupt, K.; Jarke, M.: Improving reviews by ex-

tended traceability. In: Proceedings 32nd Hawaii International Conference on Sys-
tem Sciences, 1999.

[HS06] Hruschka, P.; Starke, G.: Praktische Architekturdokumentation: Wie wenig ist

genau richtig? OBJEKTspektrum, 01.2006, pp.53-57, 2006.

[HT03] Hunt, A.; Thomas, D.: Der Pragmatische Programmierer. Carl Hanser Verlag,

München, 2003.

[HWA+07] Habli, I,; Weihang, W.; Attwood, K.; Kelly, T.: Extending argumentation to

goal-oriented requirements engineering. Advances in Conceptual Modeling – Foun-
dations and Applications. ER 2007 Workshops CMLSA, FP-UML, ONISW, QoIS,
RIGiM, SeCoGIS. Springer-Verlag, Berlin, Germany, pp.306-316, 2007.

Bibliography 413

[HWF+08] Hood, C.; Wiedemann, S.; Fichtinger, S.; Pautz, U.: Requirements Manage-
ment – The interface Between Requirements Development and All Other Systems
Engineering Processes. Springer Verlag, Berlin Heidelberg, 2008.

[IBR+01] In, H.; Boehm, B.W.; Rodgers, T.; Deutsch, W.: Applying WinWin to Quality

Requirements: A Case Study. ICSE, pp.555-564, 2001.

[IEC61508] IEC 61508: Functional safety of electrical / electronic / programmable elec-

tronic safety-related systems (E/E/PES). International Electrotechnical Commission,
1999-2005273.

[IEEE1016] IEEE 1016-2009: IEEE Recommended Practice for Software Design Descrip-

tions. Institute of Electrical and Electronics Engineers, 2009.

[IEEE1074] IEEE 1074-2006: IEEE Standard for Developing Software Life Cycle Pro-

cesses. Institute of Electrical and Electronics Engineers, 2006.

[IEEE1220] IEEE 1220-1994274: IEEE Standard for Application and Management of the

Systems Engineering Process. Institute of Electrical and Electronics Engineers,
1994.

[IEEE1220-2005] IEEE 1220-2005: IEEE Standard for Application and Management of

the Systems Engineering Process. Institute of Electrical and Electronics Engineers,
2005.

[IEEE12207] IEEE/EIA 12207-2008: Systems and Software Engineering – Software Life

Cycle Processes (ISO/IEC 12207:2008(E)). IEEE/EIA Standard for Industry Imple-
mentation of International Standard ISO/IEC 12207 [ISO12207], Standard for In-
formation Technology-Software life cycle processes, International Electrotechnical
Commission, 2008.

[IEEE1471] IEEE 1471-2000: Recommended Practice for Architectural Description of

Software-Intensive Systems. Institute of Electrical and Electronics Engineers, 2000.

[IEEE610] IEEE 610: IEEE Standard Glossary of Software Engineering Terminology.

Institute of Electrical and Electronics Engineers, 1990 (reaffirmed 2002), 2002.

[IEEE830-84] IEEE 830-1984: IEEE Recommended Practice for Software Requirements

Specifications. Institute of Electrical and Electronics Engineers, 1984.

273 Different parts have different release dates.
274 Now replaced by [IEEE1220-2005].

414 Bibliography

[IEEE830-98] IEEE 830-1998: Recommended Practice for Software Requirements Speci-
fications. Institute of Electrical and Electronics Engineers, 1998.

[IR97] Isenmann, S.; Reuter, W.D.: IBIS – a Convincing Concept ... But a Lousy Instru-

ment? Symposium on Designing Interactive Systems, pp.163-172, 1997.

[ISO12207] ISO/IEC 12207: Information Technology-Software Life-Cycle Processes.

International Standards Organization, International Electrotechnical Commission,
1995.

[ISO15504] ISO/IEC 15504: Information Technology — Process Assessment. International

Standards Organization, International Electrotechnical Commission, 2003-2006.

[ISO15288] ISO/IEC 15288: Systems and software engineering – System life cycle pro-

cesses. International Standards Organization, International Electrotechnical Com-
mission, 2008.

[ISO26262] ISO/IEC 26262: Road vehicles – Functional safety. International Standards

Organization, International Electrotechnical Commission, Draft 2009.

[ISO9126] ISO/IEC 9126: Software engineering – Product quality. International Standards

Organization. International Standards Organization, International Electrotechnical
Commission, 2001-2004.

[ISO25000] ISO/IEC 25000: Software Engineering – Software product Quality Require-

ments and Evaluation (SQuaRE) – Guide to SQuaRE. International Standards Organ-
ization, International Electrotechnical Commission, 2005.

[Ja72] Janis, I.L.: Victims of Group Think: A Psychological Study of Foreign Policy Deci-

sions and Fiascos. Houghton-Mifflin, Boston, MA, 1972.

[Ja04] Jäälinoja, J.: Requirements implementation in embedded software development.

VTT publications 526 (Online version:
http://www.vtt.fi/inf/pdf/publications/2004/P526.pdf (Access: 2009/09)), VTT Tech-
nical Research Centre, Finland, 2004.

[Ja08] Jackson, M.: The Name and Nature of Software Engineering. In: Börger, E.;

Cisternino, A. (Eds.): Advances in Software Engineering, Lipari Summer School,
LNCS 5316, Springer Berlin Heidelberg, pp.1-38, 2008.

[Ja09] Jamshidi, M. (Eds.): Systems of Systems Engineering: Principles and Applications.

CRC Press Tayöpr & Framcox Group, LLC, Boca Raton, 2009

Bibliography 415

[JB05] Jansen, A.; Bosch, J.: Software Architecture as a Set of Architectural Design Deci-
sions. Proceedings of the 5th Working IEEE/IFIP Conference on Software Architec-
ture (WICSA), pp.109-120, 2005.

[JL05] Jönsson, P.; Lindvall, M.: Impact Analysis. In: Aurum, A.; Wohlin, C. (Eds.): Engi-

neering and Managing Software Requirements. Springer Verlag Berlin Heidelberg,
pp.117-142, 2005.

[Jo02] Jones, C.: Estimating Software Requirements. CROSSTALK – The Journal of De-

fense Software Engineering, June 2002, (Online version:
http://www.stsc.hill.af.mil/crosstalk/2002/06/jones.pdf (Access: 2010/09)), 2002.

[JPD+94] Jarke, M.; Pohl, K.; Dömges, R.; Jacobs, S.; Nissen, H.W.: Requirements Infor-

mation Management: The NATURE Approach. Engineering of Information Systems
2, 6, (Online version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45
.4846; Access: 2009/09)), 1994.

[JP94] Jarke, M.; Pohl, K.: Requirements Engineering in the Year 2001 – (Virtually) Man-

aging a Changing Reality. Software Engineering, Vol. 9, Nr. 6, p.257-266, 1994.

[JRZ04] Jeckle, M.; Rupp, Ch.; Zengler, B.: UML 2.0 Neue Möglichkeiten und alte Prob-

leme. Informatik Spektrum Band 27, Heft 4, pp.323-331, Aug. 2004.

[Ka96] Karsenty, L.: An empirical evaluation of design rationale documents. In: Proceed-

ings of the SIGCHI Conference on Human Factors in Computing Systems, ACM,
New York, pp.150-155, 1996.

[KCF+04] Klein, T.; Conrad, M.; Fey, I.; Grochtmann, M.: Modellbasierte Entwicklung

eingebetteter Fahrzeugsoftware bei DaimlerChrysler. Proc. Modellierung, Marburg
2004 (Online version:
www.immos-projekt.de/site_immos/download/p3_KCF+04.pdf (Access 2005/11)),
pp.31-41, 2004.

[Ke90] Kelley, C.: Does it fit the bill? International Journal of General Systems, 18(6),

pp.32–34, 1990.

[Ke05] Kelleher, J.: A Reusable Traceability Framework using Patterns. In: Proceedings

of the 3rd international Workshop on Traceability in Emerging Forms of Software
Engineering. TEFSE '05. ACM, New York, NY, pp.50-55, 2005.

[KF09] Kindel, O.; Friedrich, M.: Softwareentwicklung mit AUTOSAR: Grundlagen, En-

gineering, Management in der Praxis. dpunkt.verlag GmbH, Heidelberg, 1. Edition,
2009.

416 Bibliography

[Ki98] Kirkman, D.P.: Requirement Decomposition and Traceability. Journal Requirement
Engineering. Vol. 3, No.2, pp.107-114, 1998.

[Kl97] Klein, M.: An Exception Handling Approach to Enhancing Consistency, Complete-

ness, and Correctness in Collaborative Requirements Capture. Concurrent Engineer-
ing Research and Applications, vol. 5, no. 1, pp.37-46, 1997.

[KM00] Knethen, A.v.; Münch, J.: Entwicklung eingebetteter Software mit UML: Der Do-

It-Prozess V1.0. SFB-Report No. 05/2000, Sonderforschungsbereich 501, Dept. Of
Computer Science, University of Kaiserslautern, 2000.

[KM05] Kempa, M.; Mann, Z.A.: Model Driven Architecture. Informatik Spektrum Band

28 Heft 4, pp.298-302, Aug. 2005.

[KM06] Kucera, M.; Mauser, H.: Semi-Automatic Reliability Assessment of Safety Related

Embedded Systems. Proceedings of the 18th IASTED International Conference on
Parallel and Distributed Computing and Systems, Dallas, USA, Nov. 2006.

[Kn74] Knuth, D. E.: Computer Programming as an Art. Communications of the ACM

Volume 17 Number 12, Dec. 1974.

[Kn01a] Knethen, A.v.: A Trace Model for System Requirements Changes on Embedded

Systems. Proc. of 4th International Workshop on Principles of SW Evolution; Sept.
2001.

[Kn01b] Knethen, A.v.: Change-Oriented Requirements Traceability. Support for Evolu-

tion of Embedded Systems; Fraunhofer IRB Verlag, Stuttgart, 2001.

[Kn02] Knethen, A.v.: Change-Oriented Requirements Traceability. Support for Evolution

of Embedded Systems. Proc. of International Conference on Software Maintenance,
Oct 2002, pages 482-485.

[Kn06] Kneuper, R.: CMMI. Verbesserung von Softwareprozessen mit Capability Maturity

Model Integration. Volume 2, dpunkt Verlag GmbH, Heidelberg, 2006.

[Ko93] Kolodner, J.: Case-based reasoning. Morgan Kaufmann, San Mateo, CA, 1993.

[KP02] Knethen, A.v.; Paech, B.: A Survey on Tracing Approaches in Practice and Re-

search. IESE Report No. 095.01/E (Online version: http://publica.fraunhofer.de/–
eprints/urn:nbn:de:0011-n-91973.pdf; (Access 2008/10)), 2002.

[KR70] Kunz, W.; Rittel, H.W.J.: Issues as Elements of Information Systems. Working

Paper, No.131, July 1970.

Bibliography 417

[Kr95] Kruchten, P.: Architectural Blueprints – The “4+1” View Model of Software Archi-
tecture. IEEE SW 12 (6), pp.42-50, Nov. 1995.

[KR98] Korel, B.; Rilling, J.: Dynamic Program Slicing Methods. Information and Soft-

ware Technology Special Issue on Program Slicing, 40 (11-12), pp.647-659, Dec.
1998.

[Kr99] Kruchten, P.: Der Rational Unified Process: Eine Einführung. Addison Wesley,

1999.

[Kr03] Kruchten, P.: The Rational Unified Process: An Introduction, Third Edition. Addi-

son-Wesley Professional 2003.

[Kr04] Kruchten, P.: An Ontology of Architectural Design Decisions in Software-Intensive

Systems. In: 2nd Groningen Workshop Software Variability, pp.54-61, Oct. 2004.

[Kr08] Kruchten, P.: What do software architects really do? Journal of Systems and Soft-

ware. Vol. 81, No. 12, pp.2413-2416, Dec. 2008.

[KRP+93] Klein, M. H.; Ralya, T.; Pollak, B.; Obenza, R.; Harbour, M. G.: A practition-

er's handbook for real-time analysis: Guide to Rate Monotonic Analysis for Real-
Time Systems. Kluwer Academic Publishers, Norwell, MA, USA, 1993.

[KS98] Kotony, G; Sommerville, I.: Requirements Engineering – Processes and Tech-

niques. Wiley and Sons, UK 1998.

[KS03] Kossiakoff, A.; Sweet, W.: Systems Engineering-Principle and Practice. Jon Wiley

and Sons, Inc., 2003.

[KS06] Kelleher, J.; Simonsson, M.: Utilizing use case classes for requirement and trace-

ability modeling. Proceedings of the 17th IASTED International Conference on
Modeling and Simulation. ACTA Press, pp.617-625, Anaheim, CA, USA, 2006.

[LD01] Lang, M.; Duggan, J.: A Tool to Support Collaborative Software Requirements

Management. Requirements Engineering. Vol. 6. No. 3, pp.161-172; 2001.

[LDL98] Lamsweerde, A.v.; Darmont, R.; Letier, E.: Managing Conflicts in Goal-Driven

Requirements Engineering. IEEE Transactions on Software Engineering, Vol. 24,
No. 11, pp.908-926, Nov. 1998.

[Le89] Lehman, M.M.: Uncertainty in computer application and its control through the

engineering of software. Journal of Software Maintenance: Research and Practice,
1(1); Pages 3-27.

418 Bibliography

[Le90a] Lee, J.: A Qualitative Decision Management System. In: Winston, P.H.; Shellard,
S. (eds.): Artificial Intelligence at MIT: Expanding Frontiers, Vol.1, MIT Press,
Cambridge, MA, pp.104-133, 1990.

[Le90b] Lee, J.: SIBYL: a Tool for Managing Group Design Rationale. In Proceedings of

the 1990 ACM Conference on Computer-Supported Cooperative Work (CSCW '90).
ACM Press, New York, NY, pp.79-92, Oct. 1990.

[Le96] Lehman, M.M.: Laws of Software Evolution revisited. In: Montangero, C. (Eds.):

Lecture Notes in Computer Science, Vol. 1149. Springer Verlag, London, pp.108-
124, 1996.

[Le97] Lee, J.: Design Rationale Systems: Understanding the Issues. IEEE Expert 12(3),

pp.78-85, 1997.

[Le02] Letelier, P.A.: A framework for requirements traceability in UML-based projects.

Proceedings of 1st International Workshop on Traceability in Emerging Forms of
Software Engineering, Edinburgh, UK. September, 2002.

[LF06] Lehman, M.M.; Fernández-Ramil, J.: The Role and Impact of Assumptions in

Software Engineering and its Products. In: [DMM+06], pp.313-328, 2006.

[Li94] Lindvall; M.: A study of traceability in object-oriented systems development. Li-

cenciate thesis, Linköping University, Institute of Technology, Sweden, 1994.

[LK08] Lee, L.; Kruchten, P.: Visualizing Software Architectural Design Decisions. ECSA,

pp.359-362, 2008.

[LL91] Lee, J.; Lai, K.Y.: What's in Design Rationale? Human-Computer Interaction,

Vol.6, pp.251-208, 1991.

[LL96] Lee, J.; Lai, K.Y.: What's in Design Rationale? In: [MC96], pp.21-51, 1996.

[LL00] Louridas, P.; Loucopoulos, P.: A Generic Model for Reflective Design. ACM

Transactions on Software Engineering and Methodology, Vol. 9, No. 2, pp.199–237,
April 2000.

[LL07] Ludewig, J.; Lichter, H.: Software Engineering – Grundlage, Menschen, Prozesse,

Techniken. 1. Auflage, dpunkt Verlag GmbH, Heidelberg, 2007.

[LLY+08] Li, Y.; Li, J.; Yang, Y.; Li, M.: Requirement-Centric Traceability for Change

Impact Analysis: A Case Study, Lecture Notes in Computer Science, Vol. 5007,
Springer, pp.100-111, 2008.

Bibliography 419

[LO95] Leite, J.C.S.P.; Oliveira, A.P.: A client oriented requirements baseline. Require-
ments Engineering. IEEE International Conference on Second IEEE International
Symposium on Requirements Engineering (RE'95), pp.108-115, 1995.

[LPP10] Löw, P.; Pabst, R.; Petry, E.: Funktionale Sicherheit in der Praxis: Anwendung

von DIN EN 61508 und ISO/DIS 26262 bei der Entwicklung von Serienprodukten. 1.
Edition, dpunkt Verlag GmbH, Heidelberg, 2010.

[LRB96] Lewis, C.; Rieman, J.; Bells, B.: Problem-centered design for expressiveness. In:

[MC96], pp.147-184, 1996.

[LR05] Liggesmeyer, P.; Rombach D. (Eds.): Software Engineering eingebetteter Systeme

Grundlagen – Methodik – Anwendungen. 1. Auflage, Elsevier, 2005.

[LRW+97] Lehman, M.M.; Ramil, J.F.; Wernick, P.D.; Perry, D.E.; Turski, W.M.: Metrics

and laws of software evolution – The nineties view. In: Proceedings of the 4th Inter-
national Software Metrics Symposium. November 5-7, Albuquerque, USA, pp.20-
32, 1997.

[LS80] Lientz, B.P.; Swanson, E.B.: Software Maintenance Management. Addison-Wesley

Longman Publishing Co. Inc., Boston, MA, 1980

[LS98] Lindvall, M.; Sandahl, K.: How well do experienced software developers predict

software change? Journal of Systems and Software 43 (1), pp.19-27, 1998.

[LW99] Leffingwell, D.; Widrig, D.: Managing software requirements – A unified ap-

proach. Addison Wesley, Longman, Amsterdam, Nov. 1999.

[Ma08a] Marwedel, P.: Eingebettete Systeme. Springer, Berlin Heidelberg, 2008.

[Ma08b] Mader, S.: Wikipatterns. Wiley Publishing Inc., Indianapolis 2008.

[Matlab] Mathworks Inc.: Homepage of the Design Tools Matlab Simulink and Matlab

Stateflow: http://www.mathworks.de/ (Access: 2010/09).

[MB05] Madachy, R.; Boehm, B.: Software Dependability Applications In Process Model-

ing. In: Acuna, S.T.; Juristo, N. (Eds.): Software Process Modeling, Springer Sci-
ence+Business Media, Inc., New York, pp.65-86, 2005.

[MBO+92] Mc Call, R.; Benett, P.; d'Oronzio, P; Oswald, J.; Shipman, F.M. III; Wallace,

N.: PHIDIAS: Integrating CAD graphics into dynamic hypertext. In: Streitz, N.;
Rizk, A.; André, J. (eds.): Hypertext: Concepts, Systems and Applications. Cam-
bridge University Press, New York, NY, pp.152-165, 1992.

420 Bibliography

[MBP+04] Moll, K.; Broy, M.; Pizka, M.; Seifer, T.; Berger, K.; Rausch, A.: Erfolgreiches
Management von Software-Projekten. Informatik Spektrum Band 27 Heft 5; pp.419-
432, Oct. 2004.

[Mc78] McCall, R.: On the structure and use of issue systems in design. Doctoral Dissera-

tion, University of California, Berkeley 1978.

[Mc79] McCall, R.: Final Report for Project STIEC (Scientific and Technical Information

in the European Community). Studiengruppe für Systemforschung, Heidelberg 1979.

[MC96] Moran, T.; Carroll, J. (eds.): Design Rationale Concepts, Techniques, and Use.

Lawrence Erlbaum Associates, Mahwah NJ, 1996.

[Mc01] McBreen, P.: Software Craftsmanship: The New Imperative. First Edition, Addi-

son-Wesley Professional, 2001.

[ME01] Micheli, G.; Ernst, R. (Eds.): Readings in Hardware/Software Co-Design. Morgan

Kaufmann, 2001.

[MEK03] Müller, G.; Eymann,T.; Kreutzer, M.: Telematik- und Kommunikationssysteme in

der vernetzten Wirtschaft. Oldenbourg, München, 2003.

[MGE+03] Medvidovic, N.; Gruenbacher, P.; Egyed, A.; Boehm B.W.: Bridging models

across the software lifecycle. The Journal of Systems and Software 68, pp.199–215,
2003.

[MHD+07] Müller, M.; Hörmann, K.; Dittmann, L.; Zimmer, J.: Automotive SPICE in der

Praxis – Interpretationshilfe für Anwender und Assessoren. dpunkt Heidelberg,
2007.

[Mi56] Miller, G.: The Magical Number Seven, Plus or Minus Two. Psychological Review

63, pp.81-97, 1956.

[MISRA2004] Motor Industry Software Reliability Association: MISRA-C: Guidelines for

the use of the C language in critical systems, 2004.

[MKS] Homepage of the Application Lifecycle Management Tool Suite MKS:

http://www.mks.com/products/requirements (Access: 2010/09).

[MMM+03] Maletic, J.I.; Munson, E.V.; Marcus, A.; Nguyen,T.N.: Using a Hypertext

Model for Traceability Link Conformance Analysis. Proceedings on Traceability in
emerging forms of software engineering (TEFSE'03), pp.47-54, 2003.

Bibliography 421

[Mo04] Moro, M.: Modellbasierte Qualitätsbewertung von Softwaresystemen. Doktorarbe-
it 2004. Books on Demand GmbH; 1. Ed., Dec. 2004.

[MR07] Mohan, K.; Ramesh, B.: Traceability-Based Knowledge Integration in Group

Decision and Negotiation Activities. Decision Support Systems Vol. 43, Issue 3,
pp.968-989, April 2007.

[MSC94] Marshall, C.C.; Shipman, F.M. III; Coombs, J.H.: VIKI: Spatial Hypertext Sup-

porting Emergent Structure. Proceedings of the 1994 ACM European conference on
Hypermedia technology (ECHT'94) Edinburgh, Scotland, ACM, 1994.

[Mu00] Müller, J.-A.: Systems Engineering. Manz-Verlag Schulbuch (Fortis), Wien , 2000.

[Mu04] Muller, G.: CAFCR: A Multi-View Method for Embedded Systems Architecting;

Balancing Genericity and Specificity Doctors Thesis Technische Universiteit Delft,
2004, (Online version: http://citeseer.ist.psu.edu/muller04cafcr.html
(Access: 2007/12).

[Mu06a] Müller, F.: Das weiche Moment – Der Faktor Mensch in der Softwareentwick-

lung. iX 02/06, pp.46-50, 2006.

[Mu06b] Mühlbauer, S.: Werkzeuge im Anforderungsmanagement. OBJEKTspektrum

RE/2006, (Online version: http://www.sigs-datacom.de/fileadmin/user_upload/
zeitschriften/os/2006/RE/muehlbauer_OS_RE_06.pdf (Access 2010/08)), 2006.

[MW03] McManus, J.J.; Wood-Harper, T.: Information systems project management:

methods, tools and techniques. Pearson Education, 2003.

[MWS+07] Meng, X.; Wang, Y.; Shi, L.; Wang, F.: A Process Pattern Language for Agile

Methods. Software Engineering Conference, 2007. APSEC 2007. 14th Asia-Pacific
Volume , Issue , 4-7, pp.374-381, Dec. 2007.

[MXP05] Marcus, A.; Xie, X.; Poshyvanyk, D.: When and how to visualize traceability

links? In: Proceedings of the 3rd International Workshop on Traceability in Emerg-
ing Forms of Software Engineering (TEFSE '05). ACM, New York, NY, pp.56-61,
2005.

[MYB+91] Mac Lean, A.; Young, R.M.; Bellotti, V.; Moran, T.: Question, Option, and

Criteria: Elements of Design Space Analysis. Human-Computer Interaction. Vol. 6,
pp.201-250, 1991.

422 Bibliography

[MZG99] Myers, K.L.; Zumer, N.B.; Garcia, P.E.: Automated Capture of Rationale for the
Detailed Design Process. In Proceedings of the Eleventh National Conference on
Innovative Applications of Artificial Intelligence (IAAI-99), AAAI, Menlo Park,
CA, pp.876-883, 1999.

[NBA08] Noppen, J.; Broek, p.v. d.; Aksit, M.: Software Development with Imperfect

Information. Soft Computing 12; pp.3–28, 2008.

[Ne90] Nelsen, E.D.: System Engineering and Requirement Allocation. In: Thayer, R. H.;

Dorfman, M., (eds): System and Software Requirements Engineering, Los Alamitos,
CA, USA. IEEE Computer Society Press, pp.60–76, 1990.

[NER00] Nuseibeh, B.; Easterbrook, S.; Russo, A.: Leveraging Inconsistency in Software

Development. IEEE Computer April 2000.

[Ni04] Nierstrasz, O.: Software Evolution as the Key to Productivity. In A. Knapp, M.

Wirsing and S. Balsamo (Eds.) Radical Innovations of Software and Systems Engi-
neering in the Future, LNCS, vol. 2941, Springer Verlag, pp.274-282, 2004.

[NJJ+96] Nissen, H.W.; Jeusfeld, M.A.; Jarke, M.: Managing Multiple Requirements

Perspectives with Metamodels. IEEE Software, Vol. 13, No. 2, pp.37-48, 1996.

[NS06] Nguyen, L.; Swatman, P.A.: Promoting and Supporting Requirements Engineering

Creativity. In: [DMM+06], pp.207-230, 2006.

[Nu01] Nuseibeh, B.: Weaving together requirements and architectures. IEEE Computer

34 (3), pp.115-117, 2001.

[OKK+02] Obbink, H., Kruchten, P., Kozaczynski, W., Hilliard, R., Ran, A., Postema, H.,

Lutz, D., Kazman, R., Tracz, W., Kahane, E.: Report on Software Architecture Re-
view and Assessment (SARA), Version 1.0. (Online version: http://philippe.kruchten.
com/architecture/SARAv1.pdf (Access: 2010/05)), 2002.

[OM07] Ocampo, A.; Münch, J.: The REMIS Approach for Rationale-Driven Process

Model Evolution. Lecture Notes in Computer Science, Volume 4470, Springer Berlin
/ Heidelberg, pp.12-24, 2007.

[OMG] Official Web-Site of the Object Management Group: http://www.omg.org; (Access

2010/09).

[Pa1897] Pareto, V.: Cours d'économie politique. Lausanne: Rouge 1897.

[Pa72] Parnas, D.L.: On the criteria to be used in decomposing systems into models.

Communications of the ACM 15(12), pp.1053-1058, 1972.

Bibliography 423

[Pa85] Parnas, D.L.: Software Aspects of Strategic Defense Systems. Communications of
the ACM 28(12), 1326–1335, 1985.

[Pa97] Palmer, J.D.: Traceability. In: Thayer, R.H.; Dorfman, M. (Eds.): Software Re-

quirements Engineering, pp.364-374, 1997.

[Pa01] Paulk, M.C.: Extreme Programming from a CMM Perspective. IEEE Software,

pp.1-8, Nov. Dec. 2001.

[PB88] Potts, C.; Bruns, G.: Recording the Reasons for Design Decisions. In: Proceedings

of the 10th International Conference on Software Engineering , Singapore, pp.418-
427, 1988.

[PBG04] Posch, T.; Birken, K.; Gerdom, M.: Basiswissen Softwarearchitektur – Verstehen,

entwerfen, bewerten und dokumentieren. dpunkt-Verlag, 2004.

[PCC+93] Paulk, M.; Curtis, B.; Chrissis, M.; Weber, C.: Capability Maturity Model for

Software, Version 1.1, Technical Report CMU/SEI-93-TR-024, Software Engineer-
ing Institute, Carnegie Mellon University, 1993.

[PDJ94] Pohl, K.; Dömges, R.; Jarke, M.: PRO-ART: PROcess based Approach for Re-

quirements Traceability. Nature Report Nature-94-07, RWTH Aachen, Informatik V,
Germany, 1994.

[PD04] Prado Leite, J.C.S.d.; Doorn, J.H. (Eds.): Perspectives on Software Requirements.

Kluwer Academic Publishers 2004.

[Pe86] Peter, L.J.: The Peter Pyramid. William Morrow,. New York, 1986.

[Pe04] Pettit, R.C. IV: Lessons Learned Applying UML in Embedded Software Systems

Design. Second IEEE Workshop on Software Technologies for Future Embedded
and Ubiquitous Systems 2004

[PG96] Pinheiro, F.A.C.; Goguen, J.A.: An Object-Oriented Tool for Tracing Require-

ments. IEEE Software, Vol. 13, No. 2, pp.52-64, 1996.

[Pi96] Pinheiro, F.A.C.: Design of a Hyper-Environment for Tracing Object-Oriented

Requirements. Wolfson Collage, Dissertation, University of Oxford, 1996.

[Pi00] Pinheiro, F.A.C.: Formal and Informal Aspects of Requirements Tracing. Workshop

em Engenharia de Requisitos (WER2000), Rio de Janeiro 2000, (Online version:
www.inf.puc-rio.br/~wer00/zip/pinheiro.ps (Access: 2010/09)), 2000.

[Pi04] Pinheiro F.A.C.: Requirements traceability. IN: [PD04], pp.91-113, 2004.

424 Bibliography

[PDK+02]. Paech, B. Dutoit, A.H.; Kerkow, D.; Knethen, A.v.: Functional requirements,
non-functional requirements, and architecture should not be separated – A position
paper. International Workshop on Requirements Engineering: Foundation for Soft-
ware Quality (REFSQ’2002), Essen, Germany, 2002.

[PKD+03] Paech, B.; Knethen, A.v.; Doerr, J.; Bayer, J.; Kerkow, D.; Kolb, R.;

Trendowicz, A.; Punter, T.; Dutoit, A.H.: An Experience-Based Approach for Inte-
grating Architecture and Requirement Engineering. International Conference on
Software Engineering (ICSE 03), Portland, Oregon, pp.142-149, 2003.

[Po58] Polanyi, M.: Personal Knowledge. University of Chicago Press, Chicago 1958.

[Po66] Polanyi, M.: The Tacit Dimension. Doubleday, New York 1966.

[Po93] Pohl, K.: The Three Dimensions of Requirements Engineering. CAiSE '93: Pro-

ceedings of Advanced Information Systems Engineering, Springer-Verlag, London,
UK, pp.275-292, 1993.

[Po96] Pohl, K.: Process-Centered Requirements Engineering. 2nd Edition, John Wiley &

Sons, NY, 1996.

[Po99] Pohl, K.: PRO-ART: A Process Centered Requirements Engineering Environment.

IN: Jarke, M.; Roland, C.; Sutcliffe, A.; Dömges, R. (Eds.)): The NATURE of Re-
quirements Engineering, Shaker Verlag, pp.255-278, 1999.

[Po08] Pohl, K.: Requirements Engineering – Grundlagen, Prinzipien, Techniken. 2. korri-

gierte Auflage, dpunkt Verlag GmbH, Heidelberg, 2008.

[PR09] Pohl, K.; Rupp, Ch.: Basiswissen Requirements Engineering – Aus- und Weiterbil-

dung zum 'Certified Professional for Requirements Engineering'. dPunkt Verlag,
Heidelberg, 2009.

[PS05] Pohl, K.; Sikora, E.: Requirements Engineering für eingebettete Systeme. In

[LR05], pp.101-140, 2005.

[PSS04] Paech, B.; Santen, T.; Schlingloff, H.: Abschlussbericht QUASAR: Integrierte

Qualitätssicherung und Anforderungsanalyse zur Softwareentwicklung im Umfeld
Fahrzeug, IESE-Report, 063.04/D, Kaiserslautern, (Online version: http://publica.
fraunhofer.de/eprints/urn:nbn:de:0011-n-215843.pdf (Access: 2010/04)), 2004.

[PT93] Potts, C.; Takahashi, K.: An Active Hypertext Model for System Requirements. In:

Proceedings of the 7th International Workshop on Software Specification and Design
(Redondo Beach, California, December 06-07, 1993). IEEE Computer Society Press,
Los Alamitos, CA, pp.62-68, 1993.

Bibliography 425

[PU99] Prechelt, L.; Unger, B.: Methodik und Ergebnisse einer Experimentreihe ueber
Entwurfsmuster. In: Informatik Spektrum 14 Nr. 3, March 1999.

[PV96] Pena-Mora, F.; Vadhavkar, S.: Augmenting Design Patterns with Design Ra-

tionale. Artificial Intelligence for Engineering Design, Analysis, and Manufacturing,
Vol. 11, pp.93-108, 1996.

[PWG+93] Paulk, M.; Weber, C.; Garcia, S.; Chrissis, M.; Bush, M.: Key practices of the

Capability Maturity Model, Version 1.1. Technical Report CMU/SEI-93-TR-025,
Software Engineering Institute, Carnegie Mellon University, 1993.

[Py78] Pye, D.: The Nature and Aesthetics of Design. The Herbert Press, London 1978.

[Ra98] Ramesh, B.: Factors influencing requirements traceability practice. Communica-

tions of the ACM, 41(12), pp.37-44, 1998.

[RD92] Ramesh. B.; Dhar, V.: Supporting Systems Development by Capturing Delibera-

tions During Requirements Engineering. IEEE Transactions on Software Engineer-
ing. Vol. 18, No. 6, June 1992.

[RD98] Reichert, M.; Dadam, P.: ADEPTflex – Supporting Dynamic Changes of Work-

flows Without Losing Control. Journal of Intelligent Information Systems Vol. 10,
pp.93-129, 1998.

[RE93] Ramesh, B.; Edwards, M.: Issues in the Development of a Requirements Model. In:

Proceedings of IEEE International Symposium on Requirements Engineering, IEEE
Computer Society Press, Los Alamitos, CA, USA, pp.256-259, 1993.

[Re97] Reenskaug, T.: Why Programmers don’t use Methods and what we can do about it.

ObjectEXPERT Jan. 1997, (Online version:
http://heim.ifi.uio.no/~trygver/1997/Why/970329why.pdf (Access: 2006/11)), 1997.

[Re02] Reißing, R.: Bewertung der Qualität objektorientierter Entwürfe. Göttingen: Cu-

villierVerlag, 2002.

[REQTIFY] Homepage of the Traceability Tool Reqtify:

http://www.geensoft.com/en/article/reqtify/ (Access: 2010/09).

[RHAPSODY] Homepage of the UML Desgin Tool IBM Rational Rhapsody Architect for

Software: http://www-142.ibm.com/software/products/de/de/ratirhaparchforsoft/
(Access: 2010/09).

[Ri72] Rittel, H.W.J.: On the planning crisis: Systems analysis of the first and second
generations. Bedriftsokonomen, Norway, 8, pp.390-396, 1972.

426 Bibliography

[Ri06] Riebisch, M.: Prozess der Architektur- und Komponentenentwicklung. In: Reusser,
R.; Hasselbring, W. (Eds.): Handbuch der Software-Architektur. dpunkt, Heidelberg,
pp.65-88, 2006.

[RJ01] Ramesh, B.; Jarke, M.: Towards Reference Models for Requirements Traceability.

IEEE Transactions on Software Engineering, Vol.27, No.1, January, pp.58-93, 2001.

[RLV06] Roeller, R.; Lago, P.; Vliet, H.v.: Recovering architectural assumptions. Journal

of Systems and Software 79, pp.552-573, 2006.

[Ro01] Rothlauf, J.: Total Quality Management in Theorie und Praxis. R. Oldenbourg

Verlag München Wien, 2001.

[RPP04] Riebisch, M.; Philippow, I.; Pashov, I.: Integration von Feature Modellen in die

evolutionäre Weiterentwicklung von Software Produktlinien Architekturen. Tech-
nische Universität Ilmenau, 2004.

[RR99] Robertson, S.; Robertson, J.: Mastering the Requirements Process. Addison Wes-

ley Professional, Reading MA, 1999.

[RS92] Reeves, B.; Shipman, F.M. III: Supporting Communication between Designers

with Artifact-Centered Evolving Information Spaces. In: Proceedings of the 1992
ACM Conference on Computer-Supported Cooperative Work, Nov. 1-4, Toronto,
Ontario, Canada, pp.394-401, 1992.

[RS02] Rupp, C.; Sophist Group: Requirements-Engineering und Management. Carl

Hanser Verlag München, 2002.

[RS07] Rupp, C.; die Sophisten: Requirements-Engineering und Management – Professio-

nelle, Iterative Anforderungsanalyse für die Praxis. Carl Hanser Verlag München
2007.

[RTM02] Ramesh, B.; Tiwana, A.; Mohan, K.: Supporting Information Product and Ser-

vice Families with Traceability. In: Proceedings of 4th Workshop on Product Family
Engineering (PFE-4), pp.353-363, 2002.

[Ru02] Rupp, C.: Requirements and Psychology. IEEE Software May/June, pp.16-18,

2002.

[RW73] Rittel, H.J.; Webber, M.M.: Dilemmas in a General Theory of Planning. Policy

Sciences Vol. 4, Elsevier Scientific Publishing Company Inc., Amsterdam, pp.155-
169, 1973.

Bibliography 427

[RW84] Rittel, H.J.; Webber, M.M.: Planning Problems are Wicked Problems. In: Cross,
N. (ed.): Developments in Design Methodology, Chichester,. Wiley, New York,
pp.135-144, 1984.

[RWA07] Rochimah, S.; Wan Kadir, W.; Abdullah, A.: An Evaluation of Traceability Ap-

proaches to Support Software Evolution. International Conference on Software En-
gineering Advances (ICSEA), 2007.

[RUP+90] Ramamoorthy, C.V.; Usuda, Y.; Prakash, A.; Tsai, W.T.: The Evolution Support

Environment System. IEEE Transactions on Software Engineering, 16(11), pp.1225–
1234, 1990.

[Sa92] Sage, A.: Systems Engineering. John Wiley & Sons, Oct. 1992.

[SA96] Sharrock, W.; Anderson, R.: Organizational Innovation and the Articulation of the

Design Space. In: [MC96], pp.429-452, 1996.

[Sa05] Santen, T.: Formale Entwicklungsmethoden und Analysetechniken. In: [LR05],

pp.249-280, 2005.

[Sa06] Salem, A.M.: Improving Software Quality through Requirements Traceability Mod-

els. In: IEEE International Conference on Computer Systems and Applications,
2006, pp.1159-1162, 2006.

[SBJ+98] Stevens, R.; Brook, P.; Jackson, K.; Arnold, St.: Systems Engineering: Coping

with Complexity. Prentice Hall, May 1998.

[SC04] Sousa, G.; Castro, J.: Improving the Separation of Non-Functional Concerns in

Requirement Artifacts. 12th IEEE International Requirements Engineering Confer-
ence (RE'04), pp.350-351, 2004.

[SCB+04] Settimi, R.; Cleland-Huang, J.; Ben Khadra, O.; Mody, J.; Lukasik, W.; DePal-

ma, C.: Supporting Software Evolution through Dynamically Retrieving Traces to
UML Artifacts. Proceedings of the 7th International Workshop on Principles of
Software Evolution (IWPSE’04), pp.49-54, 2004.

[Sch83] Schön, D.A.: The Reflective Practitioner: How Professionals Think in Action.

Temple Smith, London, 1983.

[Sch85] Schön, D.A.: The Design Studio: An Exploration of its Traditions and Potentials.

London: RIBA Publications Limited, 1985.

[Sch87] Schön, D.A.: Educating the Reflective Practitioner: Toward a New Design for

Teaching and Learning in the Professions. Jossey-Bass, San Francisco, 1987.

428 Bibliography

[Sch99] Schefe, P.: Softwaretechnik und Erkenntnistheorie. In: Informatik Spektrum 22,
pp.122–135, 1999.

[Sch00] Schmidt, M.: Implementing the IEEE Software Engineering Standards. Sams

Publishing, 2000.

[Sch02] Schienmann, B.: Kontinuierliches Anforderungsmanagement: Prozesse – Techni-

ken – Werkzeuge. Addison-Wesley, München, 2002.

[Sch05] Scholz, P.: Softwareentwicklung eingebetteter Systeme. Springer 1st Edition, April

2005.

[Sch06] Schneider, K.: Rationale as a By-Product. In: [DMM+06], pp.91-109, 2006.

[Sch07] Schulmeister, R.: Grundlagen hypermedialer Lernsysteme. 4. Auflage, Olden-

bourg, München, 2007.

[SE96] Stienen, H.; Engelmann, F.: Die BOOTSTRAP-Methode zur Bewertung und Ver-

besserung der Software-Entwicklung. Wirtschaftsinformatik, Heft 6, pp.609-624,
1996.

[SG96] Shaw, M.; Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-

pline. Prentice Hall, 1996.

[Sh03] Shamonsky, D. J.: Tactile, Spatial Interfaces for Computer-Aided Design – Super-

imposing physical media and computation. Massachusetts Institute of Technology
(Online version: http://dorthee.com/thesis.html (Access: 2009/05)), 2003.

[SHB91] Steigerwald, R.; Hughes, G.; Berzins, V.: CAPS as a Requirements Engineering

Tool. In Proceedings of the Conference on Tri-Ada '91: Today's Accomplishments;
Tomorrow's Expectations (TRI-Ada '91). ACM, NY, pp.75-83, 1991.

[SHT89] Streitz, N.A.; Hannemann, J.; Thüring, M.: From Ideas and Arguments to Hyper-

documents: Travelling through Activity Spaces. In: Proceedings of the 2nd ACM
Conference on Hypertext (Hypertext‘89), pp.343-364, 1989.

[SHH+92] Streitz, N.; Haake, J.; Hannemann, J. Lemke, A.; Schuler, W.; Schütt, H.; Thür-

ing, M.: SEPIA: A Cooperative Hypermedia Authoring Environment. Proceedings of
ACM Conference on Hypertext (ECHT’92), Milano, pp.11–22, 1992.

[Si96] Simon, H.: The Sciences of the Artificial. MIT Press, Third Edition, 1996.

Bibliography 429

[Si98] Silva, A.: Across Version/Variant Requirement Traceability in Avionics Software
Development and Testing. Proceedings DASIA 98. – Data Systems In Aerospace –
(SP-422). ESA. 1998, pp.215-221. Paris, France, 1998

[Si06] Simon, F.: Einführung in Systemtheorie und Konstruktivismus. Carl-Auer-Systeme,

Heidelberg, 2006.

[SM99a] Shipman, F.M. III; Marshall, C.: Formality Considered Harmful: Experiences,

Emerging Themes, and Directions on the Use of Formal Representations in Interac-
tive Systems. Computer Supported Cooperation Work (CSCW) Vol. 8, No.4, pp.333-
352, 1999.

[SM99b] Shipman, F.M. III; McCall, R.: Incremental Formalization with the Hyper-Object

Substrate. ACM Transactions on Information Systems 17, pp.199-227, 1999.

[Sm99c] Smith, D. D.: Designing Maintainable Software. Springer-Verlag, 1999.

[So01] Sommerville, I.: Software Engineering. 6. Auflage; Addison Wesley, München,

2001.

[So07] Sommerville, I.: Software Engineering. 8. aktualisierte Auflage; Addison Wesley,

München, 2007.

[Sp02] Spanoudakis, G.: Plausible and Adaptive Requirement Traceability Structures. In:

Proc. 14th International Conference on Software Engineering and Knowledge Engi-
neering, 2002.

[SR09] Sage, A. P.; Rouse, W. B.: Handbook of Systems Engineering and Management.

Jon Wiley & Sons, Inc. New Jersey, 2009.

[SS97] Sommerville, I.; Sawyer, P.: Requirements Engineering: A Good Practice Guide.

John Wiley & Sons, 1997.

[SS07] Schneider, K.; Stapel, K.: Informationsflussanalyse für angemessene dokumentati-

on und verbesserte Kommunikation. In Software Engineering 2007 (SE 2007), Lec-
ture Notes in Informatics, Vol. 105, pp.263-264, 2007.

[St73] Stachowiak, H.: Allgemeine Modelltheorie. Springer-Verlag, Wien, 1973.

[St95] Standish Group: Chaos Report 1995. (Online version:
http://www.projectsmart.co.uk/docs/chaos_report.pdf (Access: 2009/08)), 1995.

[St01] Standish International Group: Extreme Chaos. (Online version: http://www.standish

group.com/sample_research/PDFpages/q3-spotlight.pdf (Access: 2008/06)), 2001.

430 Bibliography

[St04] Stein, S.: Emergenz in der Softwareentwicklung – bereits verwirklicht oder Chance?
Diplomarbeit 2004 (Online version: http://emergenz.hpfsc.de/da_sstein.pdf (Access:
2008/10)), 2004.

[St05] Starke, G.: Effektive Software-Architekturen – Ein praktischer Leitfaden. 2. aktu-

alisierte und erweiterte Auflage, Carl Hanser Verlag, München, 2005.

[Su01] Suh, N.P.: Axiomatic Design: Advances and Applications. Oxford University Press,

2001.

[SV08] Santos Soares, M.d.; Vrancken, J.: Model-driven user requirements specification

using SysML. Journal of Software, Vol.3, No.6, June 2008, pp.57-68, 2008.

[SWG+08] Schmied, J.; Wenzel, P.-R.; Gerdom, M.; Hehn, U.: Mit CMMI Prozesse ver-

bessern! – Umsetzungsstrategien am Beispiel Requirements Engineering. 1. Auflage,
dpunkt Verlag GmbH, Heidelberg, 2008.

[SYSML] Systems Modeling Language v.1.2, 2010. OMG adopted specification, June

2010, (Online version: http://www.sysml.org/docs/specs/OMGSysML-v1.2-10-06-
02.pdf, (Access 2010/09)), 2010.

[SZP04] Spanoudakis, G.; Zisman, A.; Perez-Minana, E.; Krause, P.: Rule-Based Genera-

tion of Requirements Traceability Relations. Journal of Systems and Software, Vol.
72(2), pp.105-127, 2004.

[SZ06] Schäuffele, J.; Zurawka, T.: Automotive Software Engineering: Grundlagen, Pro-

zesse, Methoden und Werkzeuge effizient einsetzen. 3. Auflage; Vieweg Friedrich &
Sohn Verlag, 2006.

[TAU] Homepage of the Design Tool IBM Rational Tau: http://www-01.ibm.com/

software/awdtools/tau/ (Access: 2010/09).

[TA05] Tyree, J.; Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE

SW, Vol. 22(2), pp.19-27, 2005.

[TAG+05] Tang, A.; Ali Babar, M.; Gorton, I.; Han, J.: A Survey of the Use and Documen-

tation of Architecture Design Rationale. In: Proc. of 5th Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA'05), 2005.

[TBI04] Technical Board International Council on Systems Engineering (INCOSE): Sys-

tems Engineering Handbook. Version 2a, June 2004.

[TCS98] Thurner, E.; Cin, M.D; Schneeweiß, W.: Verlaeßlichkeitsbewertung komplexer

Systeme. In: Informatik Spektrum 21, Nr. 6, June, 1998.

Bibliography 431

[Te96] Tenner, E.: Why things bite back: technology and the revenge of unintended conse-
quences. Vintage, New York, 1996.

[Te01] Tewari, A.: Modern Control Design with MATLAB and SIMULINK. John Wiley and

Sons Ltd. 2001.

[Ti89] Tilbury, A.J.M.: Enabling software traceability. In IEE Colloquium on ’The Appli-

cation of Computer Aided Software Engineering Tools’, pages 7/1–7/4, London, UK.
IEE, 1989.

[TJH07] Tang, A.; Jin, Y.; Han, J.: A rationale-based architecture model for design tracea-

bility and reasoning. Journals of Systems and Software Vol. 80 (6), pp.918-934, June
2007.

[TKT+07] Turban, B.; Kucera, M.; Tsakpinis, A.; Wolff, C.: An Integrated Decision Model

for Efficient Requirement Traceability In SPICE Compliant Development. Paper pre-
sented at the WISES 2007. Fifth Workshop on Intelligent Solutions in Embedded
Systems, pp.273-286, 2007.

[TKT+08] Turban, B.; Kucera, M; Tsakpinis, A.; Wolff, Ch.: Erweiterte Traceability zwi-

schen Anforderungen und Design. Embedded Software Engineering Kongress, Sin-
delfingen, Dec. 2008.

[TKT+09] Turban, B., Kucera, M., Tsakpinis, A., Wolff, C.: Bridging The Requirements To

Design Traceability Gap. In: M., Natividad; R. Seepold (Eds.): Intelligent Technical
Systems. Series: Lecture Notes in Electrical Engineering, Vol. 38, 2009.

[TM00] Tsumaki, T.; Morisawa, Y.: A framework of requirements tracing using UML.

Proceedings of 7th Asia-Pacific Software Engineering Conference, Singapore
(APSEC'00), Dec. 2000.

[TN97] Tryggeseth, E.; Nytrø, Ø.: Dynamic Traceability Links Supported by a System

Architecture Description. Proceedings of the International Conference on Software
Maintenance (ICSM 97), pp.180-187, 1997.

[To58] Toulmin, S.: The Uses of Argument. Cambridge: University Press, 1958.

[TTW07] Turban, B.; Tsakpinis, A.; Wolff, C.: Ein Entscheidungsmodell für das Tracing

von Anforderungen. In: Software Engineering 2007 (SE 2007), Bonn: Köllen Verlag
[Lecture Notes in Informatics, Vol. 105], 2007.

[Tv99] Tvete, B.: Introducing Efficient Requirements Management. Database and Expert

Systems Applications. International Workshop on 10th International Workshop on
Database & Expert Systems Applications, 1999.

432 Bibliography

[TWT+08] Turban, B.; Wolff, C.; Tsakpinis, A.; Kucera, M.: A Decision Model for Man-
aging and Communicating Resource Restrictions in Embedded Systems Design. In:
Proc. Sixth IEEE Workshop on Intelligent Solutions in Embedded Systems (WISES
2008), Regensburg, pp.163-174, July 2008.

[UML] Official Web-Site of the UML-Project: http://www.uml.org (Access 2010/05).

[VM02] Veer, G.C.v.d.; Melguizo, M.C.: Mental Models. In: Jacok, J.A.; Sears, A. (Eds.):

The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies
and Emerging Applications. Lawrence Erlbaum & Associates, pp.52-80, 2002.

[VJN+06] Ven, J.S.v.d.; Jansen, A.G.J.; Nijhus, J.A.G.; Bosch, J.: Design Decisions: The

Bridge between Rationale and Architecture. In: [DMM+06], pp.329-348, 2006.

[VSH01] Versteegen, G.; Salomon, K.; Heinold, R.: Change Management bei Software-

Projekten. Springer-Verlag Berlin Heidelberg, 2001.

[WBM94] Witt, B.I.; Baker, F.T.; Merritt, E.W.: Software Architecture and Design – Prin-

ciples, Models, and Methods. Van Nostrand Reinhold, New-York, 1994.

[WC01] Wassenaar, H.J.; Chen, W.: An Approach to Decision-Based Design. Proceedings

of DETC’01 ASME 2001 Design Engineering Technological Conference, Pittsburgh,
PA, Paper No. DETC2001/DTM-21683, 2001.

[We76] Weizenbaum, J.: Die Macht der Computer und die Ohnmacht der Vernunft. Suhr-

kamp, 1976.

[We79] Weiser, M.: Program Slicing: Formal, Psychological and Practical Investigations

of an Automatic Program Abstraction Method. PhD thesis, The University of Michi-
gan, Ann Arbor, Michigan, 1979.

[We82] Weiser, M.: Programmers use slices when debugging. CACM, 25(7), pp.446-452,

July 1982.

[We84] Weiser, M..: Program slicing. IEEE Transactions on Software Engineering, 10,

pp.352-357, July 1984.

[We06] Weilkiens, T.: Systems Engineering mit SysML/UML. dpunkt GmbH, Heidelberg,

2006.

[We07] Weilkiens, T.: Systems Engineering with SysML/UML: Modeling, Analysis, De-

sign. Morgan Kaufmann Publishers, Burlington, MA, 2007.

Bibliography 433

[WH02] Wu, J.; Han, J.: xmlTRAM+: using XML technology to manage software require-
ments and architectures. Proceedings of the 8th Australian World Wide Web Confer-
ence (AUSWEB 02), Sunshine Coast, Queensland, Australia, July 2002, pp.237-245,
2002.

[WinWin] Homepage of the Win Win Spiral Model and Tool. Center for Software Engi-

neering University of Southern California:
http://sunset.usc.edu/research/WINWIN/winwinspiral.html (Access 2010/08).

[Wi73] Wilson, P.: Situational relevance. Information Storage Retrieval. Vol. 9, Issue 8,

pp.457-471, 1973.

[Wi95] Wieringa, R.J.: An introduction to requirements traceability. Technical Report IR-

389, Faculty of Mathematics and Computer Science, University of Vrije, Amster-
dam, Sept. 1995.

[Wi98] Wieringa, R.J.: Traceability and Modularity in Software Design. Proceedings of 9th

International Workshop of Software Specification and Design; Ise-Shina (Isobe), Ja-
pan 1998.

[Wi03] Wiegers, K.E.: Software Requirements. Microsoft Press, 2003.

[Wi05] Wiegers, K.E.: Software Requirements. Microsoft Press, German Translation of

[Wi03], 2005.

[Wi06] Wirfs-Brock, R.J.: Refreshing Patterns. IEEE SOFTWARE Vol. 23, No. 3

May/June 2006, pp.45-47, 2006.

[WN94] Watkins, R.; Neal, M.: Why and how of requirements tracing. IEEE Software July

1994, pp.104-106, 1994.

[Wo79] Woodfield, S.N.: An experiment on unit increase in problem complexity. IEEE

Transactions on Software Engineering, Mar. 1979.

[WRW+05] Weber, B.; Rinderle, S.; Wild, W.; Reichert, M.: CCBR–Driven Business

Process Evolution. International Conference on Case-Based Reasoning (ICCBR’05),
pp.610-624, Chicago, Aug. 2005.

[WS09] Welsh, K.; Sawyer, P.: Requirements Tracing to Support Change in Dynamically

Adaptive Systems. Lecture Notes In Computer Science (LNCS), Vol. 5512, Springer,
pp.59-73, 2009.

434 Bibliography

[WV03] Welie, M.v.; Veer, G.C.v.d.: Pattern Languages in Interaction Design: Structure
and Organization: Structure and Organization. In: Rauterberg, M.; Menozzi, M.;
Wesson, J. (Eds.): Proceedings of Interact '03, September, Zürich. IOS Press, pp.527-
534, 2003.

[WW02] Weber, M.; Weisbrod, J.: Requirements Engineering in Automotive Development

– Experiences and Challenges. Proceedings of IEEE Joint International Conference
on Requirements Engineering, pp.331-340, 2002.

[WW03] Weber, M.; Weisbrod, J.: Requirements Engineering in Automotive Development

– Experiences and Challenges. IEEE Software Jan./Feb. 2003, pp.16-24, 2003.

[WWB04] Weber, B.; Wild, W.; Breu, R.: CBRFlow: Enabling Adaptive Workflow Man-

agement Through Conversational Case-Based Reasoning. Lecture Notes in Comput-
er Science (LNCS), Vol. 3155/2004, pp.89-101, 2004.

[Yo03] Young, R. R.: Requirements Engineering Handbook. Artech House Publishers,

Boston 2003.

[Yu94] Yu, W.D.: Verifying software requirements – a requirement tracing methodology

and its software tool – RADIX. IEEE Journal of Selected Areas in Communications,
Vol. 12(2), pp.234-240, 1994.

[Zh98] Zhao, J.: Applying Slicing Technique to Software Architectures. Fourth IEEE Inter-

national Conference on Engineering Complex Computer Systems (ICECCS'98),
Monterey California, 1998.

Index

abstraction hierarchies 272
aesthetics 15, 69, 71
analysis

analysis models 44, 195, 214,
219

software analysis 195, 213
systems analysis 195, 213

application life-cycle management
214, 237, 241

arbitrary complexity 80, 95, 294
architecture

4+1 View Model 82, 317, 379
architectural decision 191, 316
architectural skeleton 208
architecture description language

105
architecture documentation 82,

107, 189, 271, 380, 383
architecture evaluation 339
decision model 191
SW architecture 39, 67, 107, 134
system architecture 49, 67, 130,

131
three layer architecture 97, 102,

371
artificial intelligence 175
Automotive SPICE 59, 61, 118,

148
AutoSAR 111, 330
bad smells 71, 89
base practice 145
baseline 125, 136, 269, 288, 368
baselining 239
benefit problem 138, 227
bounded rationality 76, 91, 294,

319
CAN matrix 282

change control board 125, 130, 315
change management 52, 53, 199,

241, 334
CMMI 61, 117, 151, 186
code generation 17, 92, 106, 114,

155, 194, 209, 246, 255
cognitive dissonance 262, 295, 304
complexity 2, 19, 52, 76, 83, 95,

102
complication 77, 247, 262
conceptual integrity 74, 83, 102,

139, 178
configuration management 121,

251
consistency checking 387
consistency maintenance 240
Conway’s law 203
crosscutting concerns 97, 299, 381

design decisions 321
decision trees 192
design

abstraction 80
bottom-up design 84
design theory 79
detailed design 39, 67, 70, 134,

214
encapsulation 81
four variable model 213, 246
hierarchy 81
modularization 80
preliminary design (sketching)

92, 285, 384
structure 80
system design 67
top-down design 83, 94
view partitioning 81

B. Turban, Tool-Based Requirement Traceability between Requirement and Design Artifacts,
DOI 10.1007/978-3-8348-2474-5, © Springer Fachmedien Wiesbaden 2013

436 Index

views 73, 80, 104, 109, 111, 145,
157, 210, 272, 380

design constraint 48, 214
dominoes effect 200, 354
DRY-principle 69, 107, 133, 145
eXtreme Programming 140
flow 91
formal 15, 114, 162, 194
formal methods 194
formality 182
formalization 165, 183
group-think 89, 179, 183
Grudin's principle 181, 244, 258,

263, 319
hierarchic decomposition 73, 77,

111, 212, 272, 380
ilities 35
impact analysis 56, 135, 161, 194,

197
actual impact set 199
estimated impact set 199
starting impact set 199, 324, 355

influence factors assessment 189,
328

informal 72, 163
information retrieval 164, 234, 246,

255
intermediate model 205, 248, 336
intrusiveness 164, 181, 193
knowing-in-action 90, 102, 181,

263, 295, 304, 381
Lastenheft 128
linear 83, 84, 105, 252, 317
model

abundant properties 13, 139, 255
descriptive model 14, 45, 105
essential properties 13, 140
prescriptive model 14, 105
preterated properties 13
pretreated properties 139, 255

model driven development 194,
196, 246

model simulation 112
neuralgic point 262
nonlinear 105, 260, 317
pareto principle 54, 74, 115, 190,

209
patterns 173

analysis patterns 97
anti-patterns 69, 99, 103
architectural patterns 97
architectural styles 97
design patterns 98, 102
formalization 101
idioms 98
means 99
model-view-controller pattern 98
pattern catalog 101, 173
pattern language 98, 101
pattern mining 234
pattern template 99
process patterns 98
requirement patterns 38, 97
usability patterns 99

permanent work product 205
Pflichtenheft 128, 145
primary change 200, 354
principle of SW uncertainty 316
problem space 26, 92, 104, 142,

313
process model 31, 49, 118, 120,

121
descriptive process models 139
prescriptive process models 139

process standard 54
product line 213
product line management 240, 257
R2A

abstraction hierarchy tree 380
abstraction layer 272, 381

Index 437

abstraction node 272, 305, 380
abstraction nodes hierarchy 272,

354
architecture documentation 311
architecture evaluation 339
bottom-up design 309
budgeted resource constraint

310, 336, 340, 343
change effort factor 390
complexity 277
configuration management 382
consistency checking 377
decision model 147, 223, 310,

317, 337, 351, 383
design constraint 310, 315, 340,

343
dribble-down 302, 305, 381, 387
dribble-up 302, 306, 381, 387
impact analysis 136, 189, 353,

384
impact set 356
interactive tracing 353, 357
life-cycle of requiremental item

361
linking 310
meta-data 357
meta-model 371, 374
metric for measuring complexity

340
non-guided tracing 353, 358
patterns 338
prescriptive elements in decision

model 323
product line 281, 335
rationale as a by-product 320,

382
requirement 315
requirement dribble process 284,

295, 301, 304, 381

requirement influence scope 220,
299, 305, 382

requiremental item 315, 343, 381
requiremental items taxonomy

383
requirements source document

290
rule engine 377
scaffold (i.e. skeleton) 278, 310
selective tracing 353
semi-formal decision model 320,

323
semi-formal skeleton 223, 327,

383
supplier management 359, 363,

385
top-down design 309
traceability as a by-product 295,

304, 307, 382
variation point 281, 335, 371,

374, 380
views 274, 311, 348, 380, 385

rationale
argumentation schema 173
capture limitations 178
cognitive limitations 178
Compendium 170
descriptive approaches 162
DRL 171
formal representation 163
formalization 163
IBIS 166, 176
informal representation 162
intrusiveness 162
PHI 167
prescriptive approaches 162, 172
QOC 168, 320
rationale as a by-product 180,

184

438 Index

rationale bearer 163, 181, 185,
262

rationale capture 165
rationale capture problem 179,

185
rationale management system

165
rationale paradox 184
rationale schema 165
rationale seeker 181, 185, 321
RATSpeak 171
retrieval limitations 178
semi-formal representation 162
tame problems 192
usage limitations 178
views 190

RE framework 41, 49, 60, 210,
212, 214

refactoring 52, 66, 294, 297
reflection-in-action 90, 168
requirement influence scope 222
requirement interchange format

240
requirements

functional requirements 35, 39,
46, 49, 80, 114, 145, 222, 301,
316

nonfunctional requirements 35,
61, 97, 102, 145, 222, 299

non-functional requirements 49
requirements specification 217,

271, 290, 336
views 210

ripple effects 200, 354
safety engineering 151, 185
safety-critical 18, 22, 61, 63, 162,

242
scaffold 162, 277, 278
secondary change 200, 355

semantic gap 104, 213, 220, 248,
252

skeleton 99, 162, 264
software uncertainty principle 54
solution space 26, 83, 104, 127,

130, 142, 213, 313
SPICE 21, 61, 118, 124, 176, 186,

324, 366
maturity level 119, 137

stable intermediate forms 77, 79,
82, 103, 188, 298, 305

state chart 106, 113, 114, 156
state machine 106, 113, 114
structured analysis 82, 212, 218,

272, 275, 379
structured design 212
supplier management 21, 116
SysML 218, 228, 252, 293, 350
tacit knowledge 50, 79, 90, 102,

104, 181, 182, 188, 295
tame problems 84, 87
temporary work product 205
thinking-in-action 263
total quality management 117
traceability

automated approaches 219
backward traceability 207, 215
benefit problem 242, 304, 382
bidirectional traceability 150,

215, 238
conceptual trace model 201, 204,

372, 383
dependency analysis 198, 211,

217, 253, 389
evolutionary traceability 60, 214,

239, 251
explicit relationships 216
forward traceability 207, 215
functional traces 221
horizontal traceability 59, 151

Index 439

implicit relationships 216
interactive tracing 232
intrusiveness 244
linking 105, 142, 145, 213, 218,

221, 239, 252
name mapping 107, 138, 217,

219, 255, 287
nonfunctional traces 204, 221,

227
non-guided tracing 232
refinement 211
requirements fan-out 254, 269,

305, 389
satisfy-link 228, 252, 294, 323,

344
selective tracing 232
surrogate module 250
tool couplings 232, 249
trace definition 193, 204, 230
trace extraction 193, 232, 353
trace production 193, 216, 231
traceability analysis 198
traceability as a by-product 216,

232, 245, 263
traceability environment

circularity problem 233

traceability matrix 207, 218,
221, 239, 256

traceability patterns 229
traceability process 229
traceability reference model 201,

223, 372
vertical traceability 59, 151

UML 66, 111, 349
adoption in practice 154
MARTE profile 351
meta-model 112, 210
object constraint language 210,

373
semi-formal semantics 252
UML Profile for Schedulability

Performance and Time 349
UML Profile for Schedulability,

Performance, and Time 223
use case 45, 252
views 82, 210, 275

use case 214, 239
validation 114
V-cycle process model 151
verification 115
wicked problems 84, 86, 90, 95,

167, 299

	Foreword
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Introduction to the Topic
	Context of this Thesis Project
	General Remarks on this Thesis
	Registered Trademarks
	Argumentation
	Citations

	General Structure of this Thesis

	I. General Context and Theories
	I.1 The Model Concept
	I.2 Embedded Systems Development
	I.2.1 Definition and Context
	I.2.2 Characteristics
	I.2.3 Embedded Development in the Automotive Domain13

	I.3 Software Engineering (SE)
	I.4 Systems Engineering (SysEng)
	I.5 Requirements Engineering and Management
	I.5.1 The Term 'Requirement'
	I.5.2 Phases, Artifacts and Techniques in REM
	I.5.3 Requirements Management
	I.5.4 Models in REM
	I.5.5 Separation between Requirements and Design
	I.5.6 The Role and Nature of Requirement Change
	I.5.7 Traceability in the Context of Requirements Management
	I.5.8 Deficiencies of Today's REM Practices

	I.6 Design in Systems and Software Development
	I.6.1 Different Design Phases in SysEng and SE
	I.6.2 General Theories about Design
	I.6.3 Comparison of General Design Theories
	I.6.4 Dependency between Design Models and Code
	I.6.5 Architecture Documentation
	I.6.6 Design in the Automotive Domain

	I.7 Quality Standards for Safety-Critical Development Processes
	I.7.1 SPICE (ISO 15504)
	I.7.2 Requirements, Design and Traceability in the Context of SPICE
	I.7.3 Traceability in SPICE
	I.7.4 Automotive SPICE
	I.7.5 Safety Engineering: IEC 61508, ISO 26262

	I.8 Feedback from Embedded Practice

	II. Rationale Management and Traceability in Detailed Discussion
	II.9 Rationale Management in Systems and Software Engineering
	II.9.1 Characterization Criteria for Rationale Approaches
	II.9.2 Rationale Management Systems (RMS)
	II.9.3 Overview of Different Rationale Approaches
	II.9.4 Why Rationale Management Could not yet Succeed in Practice
	II.9.5 The Role of Rationale in System and Software Design

	II.10 Requirements Traceability
	II.10.1 Overview
	II.10.2 Traceability and Consistency Gaps between Artifacts
	II.10.3 Impact Analysis and Traceability
	II.10.4 Core Dimensions for Characterization
	II.10.5 Traceability and its Benefit Problem
	II.10.6 Traceability between Requirements and Design
	II.10.7 Traceability between Requirements, Design and Code
	II.10.8 Rationale Management and Traceability

	III. PROVEtech:R2A – A Tool for Dedicated Requirements Traceability
	III.11 Research Goals
	III.12 Accompanying Case Study
	III.13 Closing the Tool Gap
	III.14 Closing the Gap between Requirements and Design
	III.15 Abstraction Layers and Abstraction Nodes
	III.16 Models Crossing Tool-Barriers
	III.16.1 Insertion: Coupling Different REM- and Modeling Tools
	III.16.2 Integrating Several Modeling Tools in a Single Model

	III.17 Basic Support Features of R2A
	III.17.1 Support for Collaborative Design Tasks
	III.17.2 The Notes Mechanism
	III.17.3 Extensibility: XML-Reporting and User Tagging
	III.17.4 Unique Identifier Support for any Item in R2A
	III.17.5 Evolutionary Traceability – Recording History and Baselines
	III.17.6 The Properties Dialog

	III.18 Requirements and Requirements Traceability
	III.18.1 Managing Requirement Sources
	III.18.2 Establishing Requirements Traceability

	III.19 Taxonomy of Requiremental Items231
	III.20 Support for Capturing Decisions236
	III.20.1 Relation to Approaches of Rationale Management
	III.20.2 Effects on the Traceability Model
	III.20.3 Example How to Tame the Development Process Model of SPICE
	III.20.4 Implementation of the Decision Model in R2A
	III.20.5 Additional Support of the Decision Model for Designers251

	III.21 Resource Allocation as a Special Decision Making Case253
	III.21.1 Budgeted Resource Constraints as further Requiremental Items
	III.21.2 Advantages for Collaboration and Sharing Project Knowledge
	III.21.3 Representing Budgeted Resource Constraints in SysML
	III.21.4 Combining both Decision Models

	III.22 Managing Changes and Consistency
	III.22.1 Usage of Traces – Managing Requiremental Changes
	III.22.2 Consistency Maintenance of Requirements, Traceability and Design257

	III.23 Aspects of Embedding R2A in a Process Environment
	III.23.1 Avoiding Redundancies in Supplier Management
	III.23.2 Traceability over Several Artifact Models without Redundancies
	III.23.3 Decoupled Development of Requirement and Design Artifacts

	III.24 Overall Architecture of R2A
	III.24.1 General Architecture
	III.24.2 The Meta-Model
	III.24.3 Further Interfaces

	IV. Synopsis
	IV.25 Summary of the Achieved Research Results
	IV.26 Perspectives for Further Research
	IV.27 Conclusions

	Bibliography
	Index

