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While the discerning layman understands that  
in the design of large constructions,  

a new town or an airport, the problems are overwhelming, 
 he probably does not realise so clearly  
that there are problems just as pressing  

and difficult for the designer  
in the design of almost any trivial product.  

A bad town will do more harm than a bad toothbrush  
but the designer of either will experience his job  

as the necessity to make a series of decisions  
between alternative courses of action,  

each affecting the decisions which come after it;  
and if no life hangs on the outcome  

of the series of decisions about the toothbrush,  
the livelihood of several people does. 

David Pye [Py78; p.75] 
 
 
 
 



Foreword 

What is the way design decisions are made in Software design and implementa-
tion? What is the relationship between a software artifact and customer require-
ments? What are the reasons, what is the rationale for a specific technical solu-
tion? How should design decisions be documented? These are only some of the 
questions which Bernhard Turban tackles in his dissertation on Tool-Based Re-
quirements Traceability.  

One of the major merits of this book is the successful bridging from design 
theories to practical tool design for embedded real-time software: Bernhard Tur-
ban actually puts design theory to work, in a way from which software designers 
and engineers may directly benefit. At the same time, this effort is firmly rooted 
in current software engineering standards like SPICE (Software Process Im-
provement and Capability Determination, ISO/IEC 15 504).  

Tackling the documentation needs for software design  decisions by imple-
menting a tool using a specific algorithm or forwarding these decisions shows the 
authors inventiveness: For a problem many software engineers are constantly 
confronted with, this solution provides an innovative solution. At the same time, 
this approach generates traceability-relevant information. 

In addition, the author does not only present a plausible and functional algo-
rithm for documenting design decisions across different levels of the develop-
ment process, he also realizes a complex interactive interface tool which seam-
lessly adds to the functionality of modeling tools. Based on this work, a commer-
cial software development tool was created. 

This work was developed not in an academic context, but in an industrial 
setting within a group of software engineers working in the domain of automo-
tive embedded real-time systems. Thus, the author can draw all examples for his 
work from immediate observations in the development projects he was working 
on. This adds to the credibility of the work presented here, and I am sure that 
both academia as well as industrial software design can learn a good deal lot from 
Bernhard Turban’s work. 

With the complexity of software projects still rising, the demand for better 
documentation and traceability will grow beyond typical fields like the engineer-
ing of embedded systems. Therefore, it is to be hoped for that many software 
projects will benefit from Bernhard Turban’s theoretical approach towards design 
decisions as well as from the tool solutions he has created. 

 
Prof. Dr. Christian Wolff 



 

Acknowledgements 

This work would not have been accomplished without the support of so many 
people. I would like to thank them all for their support. 

 
University of Regensburg 
To begin with, I would like to thank my supervisors at the University of Regens-
burg Professor Dr. Christian Wolff and Professor Dr. Rainer Hammwöhner for 
their constant support. I specially thank them for giving me the chance to write 
this thesis. 

 
University of Applied Sciences in Regensburg 
Particularly, I would like to thank Professor Dr. Athanassios Tsakpinis from the 
University of Applied Sciences Regensburg and director of the Competence Cen-
ter for Software Engineering. Without his very significant support the results 
described here might not have been accomplishable. 

I further want to thank Professor Dr. Markus Kucera and Professor Dr. 
Bernhard Kulla for their advice and support. 

 
Former Micron Electronic Devices AG 
Further, I would like to thank Peter Schiekofer and Jörg Aschenbrenner for giv-
ing me a chance to perform my doctor’s thesis with the Micron Electronic Devic-
es AG and specially thank them for their open-mindedness to the vague ideas I 
first sketched to them seeing the innovative potential within the ideas. 

 
Mercedes Benz technology (MBtech) 
At the MBtech Group, I would like to thank Dr. Nico Hartmann for giving the 
R2A-project a home, after the integration of Micron Electronic Devices AG. 

 
The PROVEtech:R2A development team 
I also would like to thank the R2A development team for their good work and 
enthusiasm. 
 
My Editors 
I also want to thank Florian Weiss and my brother Andreas Turban for cross-
reading my thesis. Futher, I especially want to thank Anita Wilke from Springer 
Fachmedien Wiesbaden GmbH for helping me bringing this thesis to a book. 

 



X Acknowledgements 
 

Family and Friends 
Last but not least, I would like to especially thank my parents, grandparents and 
all my friends for their patience and encouragements in difficult situations. 
 
 

Bernhard Turban  
 



Abstract 

Developing safety-critical systems imposes special demands for ensuring quality 
and reliability of the developed systems. Process standards such as SPICE 
(ISO15504) or CMMI have been developed to ensure high quality processes, 
leading to the development of high quality systems. Central principles of these 
standards are demands for requirements traceability. Traceability means compre-
hensible documentation of all origins and later influences of a requirement 
throughout the complete development endeavor. Among other uses ascribed, the 
traceability concept tries to ensure that every requirement is adequately consid-
ered in development and that if changes on the requirement are needed, impacts 
of these changes can be adequately estimated and consistently implemented later 
on. Even though the traceability concept seems promising in theory, it faces sub-
stantial problems in practice. One problem is that despite the needed efforts, the 
perceived benefits for developers are often low because the quality of captured 
traceability information is often coarse grained, does not prove helpful in the 
situational context, or has already degraded.  

This thesis tries to show that traceability between requirements and design is 
an especially difficult problem. To analyze the problem context, the thesis at first 
analyzes theories, in which the problem is cross-cutting. These are embedded 
systems development, systems engineering, software engineering, requirements 
engineering and management, design theory and process standards for safety-
critical systems.  

This analysis mainly identifies a twofold gap between the requirements and 
the design domain. Obviously a tooling gap exists because different tools are 
used for the requirements and design domain. However, more important, between 
requirement descriptions and designs a substantial inherent gap exists because 
design is a creative decision process of designers often guided by intuition and 
tacit knowledge thus difficult to trace by current traceability concepts. To prove 
this argumentation, the author analyzes four design theories (symbolic infor-
mation processing (Simon), wicked problems (Rittel), reflective practice (Schön) 
and patterns (Alexander)). As a solution to the gap problem, the thesis introduces 
a tool-based traceability method that supports designers in their thinking, avoids 
disturbing designers in their intuitive phases of creativity, allows establishing 
traceability nearly as a by-product, provides early benefit to designers, improves 
collaboration between designers and extends usual traceability concepts by two 
integrated decision models allowing further decision information (rationale) to 
be documented. The decision models also allow deriving new design internal 
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“requirements” (design constraints and budgeted resource constraints) as conse-
quences. In this way, it is possible to clearly distinguish real requirements origi-
nating from customers from ‘requirements’ arising from internal decision pro-
cesses during design leading to the definition of a ‘requiremental items taxono-
my’. As the thesis further shows, these concepts also prove to be helpful to avoid 
unnecessary redundancies in the artifact process models of SPICE (ISO15504) or 
CMMI, where different requirement (system requirements, hardware require-
ments and software requirements) and design artifacts (system design, hardware 
design and software design) are considered in their interplay. Last but not least, 
mechanisms for graphical impact analysis, consistency management and supplier 
management complete the approach. 

Through funding of the support program IUK-Bayern, the results presented 
here could be integrated into a commercial tool solution called PROVEtech:R2A, 
now offered by the MBtech Group as a decisive means to significantly improve 
requirement-based design processes with improved support to achieve real bene-
fit from the traceability concept. 
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BRC Budgeted Resource Constraint – a concept of R2A (cf. ch. 

III.21) 
CCB Change Control Board 
CMMI Capability Maturity Model integrated (cf. ch. I.7) 
COTS Commercial Off The Shelf 
CRS Customer Requirements Specification 
CTM Conceptual Traceability Model 
CusSysDes The Customer's System Design 
DC A Design Contraint as a concept of R2A (part III) 
DEC A conflict based Decision a concept of R2A (part III) 
DOD United States Department of Defense 
DRL Decision Representation Language an RatMan approach 

(cf. ch. II.9) 
DXL DOORS eXtension Language 
ECU Embedded Control Unit 
EEPROM Electrically Erasable Programmable Read Only Memory 
EIS Estimated Impact Set 
FR Functional Requirement 
GUI Graphical User Interface 
GUID General Unique IDentifier 
HMI Human Machine Interface 
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QOC Questions, Options, Criteria an RatMan approach (cf. ch. 

II.9) 
R2A PROVEtech:R2A – The tool environment resulting from 

this research (part III) 
RatMan Rationale Management (cf. ch. II.9) 
RDP Requirements Dribble Process a heuristic supported by 

R2A (part III) 
REM Requirements Engineering and Management 
REQ Requirement from the customer as a concept of R2A 

(part III) 
RI Requiremental Item a concept of R2A (part III) 
RIF Requirement Interchange Format 
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nection with the RDP (part III) 
ROM Read Only Memory 
RUP Rational Unified Process 
RE Requirements Engineering 
RM Requirements Management 
REM Requirement Engineering and Management 
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SE Software Engineering 
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SysEng Systems Engineering (ch. I.4) 
SYS_RS System Requirements Specification 
SuppRS Supplier Requirements Specifications 
SW Software 
SW_RS Software Requirements Specification 
SysML System Modeling Language 
TQM Total Quality Management (cf. ch. I.7) 
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Introduction 

Nothing is more powerful in the world than an idea whose time has come. 
Victor Hugo (*)  

Introduction to the Topic 

Usually, systems developed by humans are not developed for their own sake of 
existence. Instead, these systems shall help to achieve certain human goals or 
purposes. Goals or purposes, however, are often very abstract and vague in the 
same way as the usage situations of these systems are manifold and complex. 
Correspondingly, a more precise definition of what a system must exactly per-
form is needed. This leads to the need for defining the exact requirements of a 
system. Then, such a system must just be designed and constructed to fulfill the 
defined requirements.  

Concerning the development of software-based systems, development expe-
riences of the last decades have been rather disenchanting. Often, five out of six 
development projects are considered as rather unsuccessful [BMH+98; p.3], 
[St95], [St01], [Eb05; p.23ff]. One major issue identified through the years is that 
the developed systems often do not achieve the goals and purposes they were 
intended for, or if they fulfill them, the resulting system's development project 
significantly has exceeded planned budget and (resp. or) effort [St95], [St01].  

Research on the causes for these problems is ongoing. Among others, three 
issues can be identified as root causes (cf. ch. I.5): Unclear requirements, often 
changing requirements and inadequate processes for handling. 

One approach to solve the first problem is to spend extra effort on identify-
ing and defining clear and adequate requirements upfront. Today, a whole set of 
artifacts, heuristics, practices and processes around the topic requirements are 
available summarized under the theory of requirements engineering (RE). How-
ever, development experiences have shown that even though extra focus and 
effort is spent upfront on the definition of requirements, changing requirements 
are still more the norm than the exception. As ch. I.5.6 shows, reasons are mani-
fold.  

B. Turban, Tool-Based Requirement Traceability between Requirement and Design Artifacts,
DOI 10.1007/978-3-8348-2474-5_1, © Springer Fachmedien Wiesbaden 2013
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In the author's opinion, at least two essential causes for the requirements 
change problem exist: 

1. Software (SW) and SW-based systems are abstract and thus essentially diffi-
cult to define comprehensively.  

2. In addition, SW-based systems themselves with their intercorrelations with 
other systems and their embedding into processes infer a significant com-
plexity leading to the problem that not all cases and eventualities can be con-
sidered beforehand.  

These causes – among others described in ch. I.5.6 – significantly challenge 
the paradigm that the extensive specification and analysis of requirements upfront 
will tame the requirements change problem. They might rather be a good lever-
age to mitigate the problem, but changing requirements will still remain a deci-
sive factor for projects. RE-theory also seems to have acknowledged this fact in 
the way that it more and more emphasizes the aspect that requirements must also 
be adequately managed (see ch. I.5.3). Thus, the author rather prefers to speak of 
requirements engineering and management (REM). 

In REM theory, requirements traceability (in the following simply called 
traceability) is considered as central means to manage requirement changes. 
Traceability means “comprehensible documentation of requirements, decisions 
and their interdependencies to all produced information resp. artifacts from pro-
ject start to project end” ([RS02; p.407 (*)]). Through recorded traceability in-
formation, impact analysis of changes is possible allowing estimating the impact 
of suggested requirement changes. This information allows project stakeholders 
to decide, whether the benefits of a requirement change outweigh its costs, thus 
avoiding disadvantageous changes. Once it is decided to perform a change, 
traceability helps to consistently propagate the change to all impacted locations 
in a project. Thus, consistently inferring the change into the project prevents 
dangers of forgetting to change affected locations leading to defects or even fatal 
consequences. In this way, the traceability concept is a promising means to im-
prove REM and especially change management processes, thus avoiding incon-
sistencies – introduced during inevitably applied changes – leading to failures in 
the system, thus leading to significantly improved quality of developed systems.  

Even though the traceability concept is already known for over 20 years and 
it always has seemed very promising to be a significant value gain in a project, it 
is still not very widely spread in development practice except for development 
projects under certain circumstances. As ch. II.10.5 tries to outline, this seems to 
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be the case, because it suffers from a general problem of efficiency and of low 
direct benefit perceived by the project members intended to capture the traceabil-
ity information. 

The quality of developed systems generally is a decisive factor. On the other 
side, ensuring quality involves significant efforts and costs. Even though quality 
must not necessarily be seen as a cost factor, but should rather be seen as a factor 
of investment, only finite resources can be spent for quality in order to ensure 
economic success. For once, this appeals to ensuring a high degree of effective-
ness on quality assurance methods in general. For the other, demands for quality 
may differ concerning the purpose of the system. As an example, it may be an 
acceptable risk for PC-based SW systems that some minor bugs or other minor 
flaws remain undiscovered in a delivered system, because applying an update on 
a PC is acceptable as long as the number of updates is acceptable to the users and 
it is easy to apply the updates. Concerning embedded systems steering a technical 
equipment, it is much more difficult to perform SW-updates, as this in most cases 
implies a product recall to apply the new software update. Besides high costs, this 
is rather not acceptable for the users and often involves significant image losses 
for the involved companies. Beyond that, so called safety-critical systems exist, 
where a malfunction can lead to significant damages to values or even impose 
hazards for persons' health or lives. In these cases, even minimal probabilities of 
failures involving injury or death of persons must be best possibly eliminated.  

Another important means to ensure good product quality is to employ good 
development processes. In the context of embedded projects and especially for 
safety-critical embedded projects, significant efforts have been undertaken to 
standardize the processes with their decisive characteristics to be performed in 
order to achieve high quality outcomes. Ch. I.7 describes these efforts and the 
demands for these processes. In these process standards, a demand crosscutting 
through all engineering processes is the demand for traceability of every re-
quirement to the influences it imposes on every artifact developed in any engi-
neering process.  

The implementation of these demands in practice, however, often makes ap-
parent that these demands themselves are difficult to implement and if they are 
implemented it is highly questionable whether the effort and resources spent 
really bring significant benefit to development projects. Instead, traceability 
demands are often rather performed to correspond to the standards' demands.  

In this thesis, the author tries to identify several core reasons for these prob-
lems. Besides the benefit problem mentioned above, an essential problem is that 
different tools are used for different processes. This, however, implies that the 
traceability concept must somehow cross these tool gaps in order to connect the 
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information within the different tools. In the author's opinion, this actually is one 
essential cause for the benefit problem, as crossing these gaps generally requires 
higher efforts, decreases accuracy and significantly increases potentials for in-
consistencies.  

Unfortunately, the author considers one problem as even more essential: 
This problem origins from the fact that requirements describe a problem space 
that must be transformed into a solution. This transformation process is usually 
referred to as design. Usual traceability models rather assume that these connec-
tions between requirements and design artifacts are rather linear semantic allow-
ing to trace these connections.  

The author, however, believes that a semantic gap exists between the prob-
lem space described by requirements and the solution found. This gap exists, 
because design is a complex task of performing sequences of complex design 
decisions leading to the solution. There, the connections being rather nonlinear 
make it very difficult to record valuable traceability information.  

As a way to address these problems identified, this thesis also introduces a 
tool environment called PROVEtech:R2A (R2A) to support requirements tracea-
bility to design with specific focus on diminishing both mentioned gaps. In this 
way, the author also hopes to diminish the benefit gap to a degree that collecting 
traceability information provides direct benefit for the designers thus hoping to 
really achieve the promises of the traceability concept. 

 
 

Context of this Thesis Project 

In order to provide a better understanding to the reader how the research results 
described in this thesis have emerged, this chapter provides a short overview 
about the history of this research project.  

First ideas to some core problems and features addressed by R2A arose as a 
consequence of the direct development experiences of the author in an automo-
tive ECU development project for lights steering with SPICE level two processes. 
At that time, the Micron Electronic Devices AG (MEDAG) and the Competence 
Center for Software Engineering (CC-SE) at the University of Applied Sciences 
Regensburg have begun a collaboration with the goal to improve the connection 
of theoretic research with industrial practice. 

In the development project, from 2004 to 2005 the author worked as repre-
sentative of the CC-SE at MEDAG where the author was at first responsible for 
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introducing REM-processes with the REM-tool IBM Rational DOORS1 to be 
newly introduced into the company's project practice. During further develop-
ment, the author was responsible for module design and implementation. In this 
way, the author was also responsible for maintaining the requirements traceabil-
ity to the module design directly experiencing the shortcomings and problems 
involved. 

These experiences have lead to the idea about a tool environment, where de-
signers should directly benefit from gathered traceability information by making 
the influences of requirements on design directly visible to designers (basic ideas 
of ch. III.13, ch. III.15 and ch. III.18.2.2) and by improving the collaboration of 
all involved designers (basic ideas of ch. III.18.2.4).  

In 2005 the identified key concepts have then been formulated in a theoretic 
outline with an extended theoretical case study being reviewed by representatives 
from MEDAG and CC-SE. The concepts proved promising. As the concepts also 
base on extensive user interaction, where usability is a key factor for success, the 
project made contact to the Institute for Media, Information and Cultural Studies 
at the University of Regensburg, where usability is one major research topic. 

The three organizations have decided to form a partnership to realize the pro-
ject. For this goal, the partners decided to develop a prototype tool evaluating the 
theoretical results by practical feedback and to apply for financial aid at the 
IUK2-program of the Bavarian Ministry of Economic Development.  

During the application phase in 2006, the prototype tool implementation has 
been developed and has been continuously assessed by design practitioners of the 
partners to achieve immediate feedback of implemented features.  

With these granted financial aids, a two years project for six persons could be 
realized to transfer the achieved theoretical and prototypical research results into 
a solution relevant for practice. The project has been performed from Feb. 2007 
to Feb. 2009 leading to the commercial tool PROVEtech:R2A as it is discussed in 
this part. Because the tool's features have been considered as very innovative, 
where good usability at complex user interactions is essential, and because most 
core features have been extensively analyzed upfront by theoretical discussion 
and the prototype, the project members decided to develop the project using the 
evolutionary prototyping concept from agile development methods. Evolutionary 
prototyping means that the project started with a prototype where all identified 
features were successively integrated into the prototype so that the prototype 

                                                           
1 At that time called Telelogic DOORS 
2 The IUK program (In German: Information Und Kommunikation (Information and 

Communication)) is a research funding program to support transferring newest re-
search results into commercial solutions applicable in practice. 
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successively evolves to the final product. In this way, new features could at first 
be realized via a prototype implementation. These features then could be intro-
duced to design practitioners to acquire direct feedback on the prototypical im-
plementation. This feedback could then be used to improve and refactor the im-
plementation to fully integrate it into the project's program base. Concerning the 
tool's architectural design, therefore, only an architectural skeleton has been 
developed sketching the core concepts of the tool environment and leaving de-
tails of the architecture open for change.  

This proceeding may, at first, seem to contradict principles discussed in this 
thesis about REM, but, as discussed in ch. I.5.6 and ch. I.6.2.2, prototype-based 
requirement evaluation is a common practice to address the problem that highly 
innovative projects face a high volatility of requirements. 

During the project in the midst of 2008, the MEDAG has been taken over by 
the MBtech Group GmbH & Co. KGaA (in the further simply called MBtech) a 
subsidiary company of the Daimler AG specialized on engineering services. The 
concepts and ideas of the project convinced the MBtech of the innovative poten-
tials of the tool leading to a continued endeavor to develop the results to a com-
mercial solution. In this way, the developed tool has been named 
PROVEtech:R2A3 (called R2A in the following) and has been integrated into the 
PROVEtech tool family.  

Currently, R2A is offered as commercial solution of the MBtech to address the 
traceability problems described in this thesis. It is continuously maintained and 
improved through a half-year release cycle. In this way, the project described 
here also is an example of how theoretic research results can be successfully 
brought into commercial project practice. 

                                                           
3 R2A stands for Requirements 2 Architecture. Further information on PROVEtech:R2A 

can be found at the company homepage: http://www.mbtech-group.com/eu-
en/electronics_solutions/tools_equipment/provetechr2a_traceability_management/trac
eability_management.html (Access: 2010/09). 
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General Remarks on this Thesis 

Before stepping into the thesis, the reader should note some general remarks. 

Registered Trademarks 

The reader of this thesis should note that some mentioned techniques and tools 
referred to in this thesis are registered trademarks or under protection of copy-
right laws.  

Argumentation 

The thesis introduced here is not an empirical study, but rather a theoretical work. 
The work can be considered somewhere between systems engineering and soft-
ware engineering theory. As a matter of fact, many of the mentioned theories and 
'facts' presented in this thesis have no irrevocable evidence but are to a certain 
degree a 'fact' of experience, interpretation and believe. When the author collect-
ed these 'facts' from different sources, dangers of misinterpretation or selective 
interpretation by the author cannot be excluded. Facts found in a research paper 
cannot always be seen on their own. Often, these 'facts' are embedded in a certain 
context (e.g., a special research theory or project). Now, taking conclusions from 
these 'facts' should be done with a certain care. To address this problem, the au-
thor often considered not only to cite the pure 'fact' concluded somewhere, but 
also tried to outline the context where these 'facts' have arisen and he also tried to 
provide available possible alternative interpretations by other authors, or theories 
to allow the reader to derive his (her) own conclusions about the evidence and 
how cogent the author's argumentation is. As a matter of fact, however, most 
theories are not compatible or consistent to each other. Correspondingly, a tech-
nique to outline the context of some argumentation may also result in some in-
consistency or contradictory statements. The reader should consider these incon-
sistencies or contradictions as phenomenon of the manifold complexity that re-
search theories produce in their connection to each other and the limited capabili-
ties of humans to completely cope with these complexities. Besides, the author 
generally doubts the potential existence of one grand unified theory about sys-
tems and software development. Rather the author considers inconsistencies and 
contradictions as spring of new knowledge in research. 
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For some of the encountered inconsistencies and contradictions the author 
developed suggestions or assumptions born from the author's own experience and 
thinking. To highlight these suggestions or assumptions, where the author could 
not find adequate proof derived from 'facts' basing on evidence, the author uses 
terms like 'the author feels', 'the author thinks', 'in the author's eyes' and 'the au-
thor believes', where these terms have an increasing weight of evidence possibil-
ity ascribed by the author. 

Citations 

During the work on this thesis, the author has developed a slightly individual 
citation practice. First of all, it is to mention that the author experienced some 
citation practices of other authors as unsatisfactory to really follow some argu-
mentation. One problem, e.g., often is that some authors simply refer to an exten-
sive text (e.g., a complete book) as an evidence for a single argument. Really 
retrieving the original statement is then very difficult. The author tried to make 
the evidence of his thoughts more explicit by referring to the exact page or at 
least to a collection of pages, when the evidence was rather a synthesis of several 
paragraphs than just a statement. Only if some more general theoretic discussion 
has been performed, where the whole book, or article has to be considered the 
author cited the source without reference to pages.  

Furthermore, the author thinks that an evidence found in several sources has 
a higher potential to be true than originating from a single source. Correspond-
ingly, the author also tried to mention all sources he encountered within a certain 
argumentation to indicate the potential evidence of the argumentation to the read-
er. 

During writing the thesis, the author often stepped over some wordings of 
other authors providing a very concise or precise formulation of an argumenta-
tion, where any rewording or changes could only lower the quality of the state-
ment or infer a falsification of the original meaning. Correspondingly, in these 
cases the author decided to cite these wordings verbatim to preserve the concise-
ness or preciseness of the argumentation for the reader. 

Citing verbatim, however, invoked a further problem about quotation marks. 
The author used the following rules. For verbatim quoting of some other author's 
argumentation the author has used double quotation marks (“...”). If quotation 
marks were used in some verbatim quoted text, these quotation marks have been 
transformed to single quotations marks ('…'). In some cases, the author wanted to 
refer to a certain jargon-like term generally used by developers or the research 
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community associated with a discussed topic or to refer to a term having a doubt-
ful connotation4. In these cases, the author also used single quotation marks ('…'). 

It is also to mention that the author is a German native speaker. In many cas-
es, it happened that the author has read German publications with interesting 
passages to cite. Sometimes, even some books originally published in English 
have been only available in German translation. This leads to the fact that some 
citations were translated by the author. Any translation, however, imposes the risk 
of – hopefully only slightly – changing the meaning of the citation. Therefore, the 
author decided to mark any citation translated by himself with an asterisk sur-
rounded in brackets ('(*)') indicating the translation by the author to the reader. 

 

General Structure of this Thesis 

This thesis is dissected into four parts. Part I tries to outline the connections of 
this research to other general research topics that must be considered for a tool 
dealing with traceability concerns in the context of processes for safety-critical 
projects. Afterwards, part II discusses the main research topics of interest for this 
thesis. These are rationale management and requirements traceability. In part III, 
the problems surfaced in part I and II are picked up again to outline how these 
problems can be solved by the innovative concepts of PROVEtech:R2A. Last but 
not least, part IV provides a synthesis of the results achieved and an outlook, 
where new ideas about further possible research are outlined. 
 

                                                           
4 Above, e.g., the author used the connotation 'facts' to indicate that 'facts' in research 

are not necessarily absolute facts but are often bound to a certain paradigm. If such an 
paradigm is replaced by a new research paradigm, a considerable portion of 'facts' pre-
viously believed as true becomes invalid, obsolete or at least doubtful (e.g., cf. 
[Fe86]).  



I. General Context and Theories 

He who loves practice without theory is like the sailor who boards ship  
without a rudder and compass and never knows where he may cast. 

Leonardo da Vinci 
 

This part shall provide the fundamental understanding of most core concepts 
involved in the construct of ideas leading to this thesis and its results. Conse-
quently, the following chapters provide an overview over the major research 
fields having influence on the outcome of this thesis. If employed, requirements 
traceability can be seen as a crosscutting concern of all development activities. 
Correspondingly these chapters strive a considerable set of very different general 
research disciplines.  

Stepping into any research topic of considerable depth often implies a steep 
entry curve for any reader being non-expert of the research domain. One of the 
problems is that topics are often manifold interconnected making it difficult to 
find a good start. The author has tried to flatten the entry curve by starting with 
chapters with lower entry barriers. These are the chapters that are more independ-
ent of the other chapters. With the understanding and argumentation collected in 
the first more independent chapters, the further chapters build on the previous 
chapters and then have lower entry barriers. 

In this thesis, the model concept is an essential foundation, since different 
types of models are referred to in different theories. Correspondingly, this part 
starts with a general discussion on the model concept and related terms needed at 
later discussions (ch. I.1). This is followed in ch. I.2 by a general discussion 
about developing embedded systems in general. A certain category of embedded 
systems, called safety-critical embedded systems, demand special concerns about 
quality, because malfunctions in these systems can involve significant fatal con-
sequences. Correspondingly, special standards for development processes (ch. 
I.7) have evolved to ensure quality of the developed systems. One central demand 
are especially rigid demands for requirements traceability. As results of this the-
sis arose in the context of companies involved in the automotive domain, a spe-
cial ch. I.2.3, discusses specific peculiarities of the automotive domain. Even 
though the concepts of the developed R2A tool in principle can be applied to any 
development project, some of the features provide special help in embedded 
projects of the automotive domain. This is, e.g., the case for the special improve-
ments of supplier management (see ch. III.23.1), as the automotive domain is a 
domain with very extensive and deep chains of suppliers. 

B. Turban, Tool-Based Requirement Traceability between Requirement and Design Artifacts,
DOI 10.1007/978-3-8348-2474-5_2, © Springer Fachmedien Wiesbaden 2013
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Ch. I.3 and ch. I.4 then provide general introductions into the theories of 
software engineering and systems engineering. Both theories' concepts are an 
integral part of current development process standards such as the quality stand-
ards applied for safety-critical embedded systems (ch. I.7). 

In ch. I.5, current requirements engineering and management (REM) theory 
is discussed. The traceability concept is a nascent of this theory. Corresponding-
ly, the sub ch. I.5.7 also discusses the traceability concept in the context of REM-
theory and explains concepts needed in the following chapters of this part. An 
extensive discussion of the traceability concept is then performed in ch. II.10 of 
part II. 

Concerning the transition from requirements to design, the author considers 
this an especially difficult traceability problem, because this transition is a transi-
tion from the problem space description (requirements) to the solution space 
description (design) implying a considerable semantic gap between both. There-
fore, this thesis lies a special focus on this topic. Ch. I.6 outlines design with its 
concepts and theories that are important to understand the problems of traceabil-
ity concerning this transition. Instead of concentrating on a specific modeling 
paradigm or method related to software or systems engineering, this chapter ra-
ther tries to outline several general theories about design that describe the role of 
design and how design emerges from designers' thinking. 

After the previous chapters have outlined fundamental concepts of different 
general theories building the theoretical groundwork of this thesis, ch. I.7 de-
scribes process standards to be fulfilled by organizations developing safety-
critical embedded systems. Due to its extent and complexity, the outlined process 
standards cannot be described in full depth. Instead, after a general overview is 
provided, the engineering processes concerning requirements and design with 
their traceability demands are described in detail. In this way, the author derives 
important demands, which the tool-approach described in part III must fulfill in 
order to conform to the standards. 

Last but not least, ch. I.8 refers to findings from practice of embedded engi-
neering that should be kept in mind considering a practice-oriented solution for 
traceability in the context of design. 
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I.1  The Model Concept 

We can only make a model of a fact in the world we live in,  
i.e. the model must be essentially related to the world we live in  

and what's more, independently of whether it's true or false. 
Ludwig Wittgenstein (*) 

 
“Models are a fundamental concept of our world's handling. All scientists 

and engineers use and create models to prove universal evidences for and to find 
more detailed information on their speculations. Often models mark intermediate 
step on the road to new artifacts as bridges, cars and mobile telephones. In Soft-
ware Engineering the importance of models is even higher, because they not even 
represent the intermediate steps, but the endpoints of our work: a specification 
but also a program is a model” [LL07; p.3 (*)]. 

Stachowiak [St73] found several general properties that models have in 
common with each other (the following statements are taken from [LL07; p.5-6] 
and [BR07b; p.4]): 
• A purpose (or purposes), 
• A reference to the original, also called mapping characteristic5 [LL07; p.5], 
• Abstraction of certain qualities of the original, also called shortening charac-

teristic6: A diversity of relationships can exist between model and original 
emerging by the model's usage purposes [BR07b; p.4], 

• A pragmatic characteristic: “Under certain conditions or problems, models 
can supplement the original” [LL07; p.6 (*)]; 
Fig. 1-1 shows the connections between original and its model according to 

[LL07; p.6] and [St73]. Together three kinds of properties can be distinguished: 
• Essential properties (also called non-neglected) are the properties of the 

original considered in the model. 
• Preterated properties (also called neglected) are properties of the original not 

considered in the model. 
• Abundant properties are properties in the model, not present in the original. 

These properties emerge from the nature of the model7 (Simon [Si06; p.113] 
calls this the implicit logic of the sign system). 

                                                           
5 In German: Abbildungsmerkmal 
6 In German: Verkürzungsmerkmal 
7 Considering the photo of a person, preterated properties of the person would be its 

weight, name, type, whereas the quality of the photo paper or the photo's format would 
be abundant properties (cf. [LL07; p.6]). 
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Figure 1-1  Properties of original and model [LL07; p.6 (*)] 

These properties distinctions lead to two fundamental problems that should 
always be considered when working with models: 
1. Due to the preterated properties, “models are always a 'simplification, a kind 

of idealization' of the aspects to be modeled. … We choose for our model 
these characteristics of the reality that we consider essential for our purpose. 
In complex situations … this act of already distinguishing the essential from 
the non-essential must be at least partially an act of judgment, often of politi-
cal or cultural judgments. And this act must then necessarily base on the intu-
itive thinking model of the model constructor” [We76; p.202 (*)]. 

2. On the other hand, abundant model properties can lead to erroneous conclu-
sions about the original. “The implicit logic of the sign system resp. symbols, 
representations, languages, texts, formulas, etc., are in general different to 
the represented phenomena or items; If both are mixed up, the danger arises 
that peculiarities of the observation method (resp. the observers) and its re-
sults are considered instead of the observed fact” [Si06; 113 (*)]. 
Generally, two different model types exist according to [LL07; p.5] (also cf. 

[St73], [Mo04; p.64f]): 
• Descriptive models describe already existing connections or systems. 
• Prescriptive models are manuals for the construction of, e.g., systems. 

In the context described here, both types of models occur. Thus, e.g., a SW 
documentation is a descriptive model, whereas a model as basis for model based 
code generation represents a prescriptive one. Following these interpretations, a 
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SW design model can be first a prescriptive model determining the structure of 
the code to develop. After coding has been finished, however the model would 
become descriptive. Later in ch. I.7, it is shown that a similar connection may 
exist in the area of process models and that users of process models should be 
aware of possible misinterpretations sparked by an inadvertent transformation of 
descriptive process models into prescriptive process models. 

Due to these possible interpretation ambiguities where the real character of a 
model is not absolutely clear, Schefe [Sch99; p.132] asks for abandoning mean-
ing from the model concept in software engineering except its clear meaning 
emerges from the usage context [Sch99; p.134] (see also [Mo04; p.65]). In fact, 
as the discussion in ch. I.7.3.1 shows, these dangers of interpretation and uncon-
scious shift of meaning can happen.  

The main purpose of a model is the communication of ideas and concepts 
[Mo04; p.171]. Correspondingly, attention must be paid for conclusiveness of the 
modeled ideas. In this context, it seems legitimate to speak of a certain aesthetics 
models should have [Kr95; p.43]. Ch. I.6.1.2 again discusses model esthetics in 
connection with SW architectures. 

Concerning system and software development, models have some special 
characteristics. In more complex development processes, at least two kinds of 
models must be considered ([De04], [Br07a]): 
• A model8 for the targeted system. 
• A model for the development project's processes.  

This thesis deals with both kinds. In the context of design (but also a bit in 
requirement engineering) the first mentioned model kind is essential. When pro-
cess standards as SPICE (see ch. I.7) or process related concepts such as tracea-
bility are discussed, the second kind is equally essential. 

Often, strict formal semantics are also observed as an obstacle to designers 
([Sch83], [HA06a]). As further discussed in ch. I.6.2.3 and ch. II.9.4.2, this is 
especially the case in earlier phases of design, or when designers encounter sig-
nificantly complex situations where no solution covering all aspects can be found 
at once. In this context, some designers (cf. [AMR06], [Kr95; p.49], [Go99], 
[Go95]) emphasize that especially sketching is important because it produces 
ambiguity, a widening of the problem scope and general uncertainty about the 
final solution as nourishment for designers' creativity to bring up new solution 
ideas (see ch. I.6.2.3). 

                                                           
8 In most practice, not one model but several models exist. This is the case, because 

different models with different semantics are often employed at different levels of ab-
straction. Perhaps it is better to say that it should be the goal to have a model of the 
system. 
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I.2  Embedded Systems Development 

Grey, dear friend, is all theory and green is the golden tree of live.  
J. W. v. Goethe (*) 

 
Most of the topics and interrelations discussed in this thesis are not really limited 
to the embedded systems development market, but the special conditions of the 
embedded area force a much stronger need for employing some of the later de-
scribed concepts and techniques. Therefore, before beginning with other more 
specific topics a short introduction into this very complex field shall be given. 

I.2.1  Definition and Context 

Embedded systems – or better embedded control units (ECUs) – are computer 
based systems embedded into a bigger surrounding technical (total) system (au-
tomobiles, airplanes, power plants, consumer electronics etc.) often also referred 
as the context of an ECU. In most cases, ECUs perform complex control, regula-
tion, observation and data processing activities on physical-mechanical compo-
nents with decisive impact on functionality and performance of the complete 
system (cf. [Sch05], [Ge05; p.5]). 

ECUs itself mostly work very integrated into the complete system so that 
users are usually not really aware of the ECUs itself, but the bigger processes or 
technical components are somehow controlled by humans [Ge05; p.5]. Nonethe-
less due to its broad range of employment from very small systems as RFID9 
chips to normal day-life devices (CD-players or washing machines) to high tech-
nology devices (air planes or computer tomographs), over 90 percent of electron-
ic components are embedded systems. This means that of 8.3 billion produced 
processors in 2002, 8.15 billion were used for embedded systems whereas only 
150 millions of processors were part of ordinary computers [Sch05; p.2]. Due to 
the diversity of usages for embedded systems, the embedded market is still one of 
the fastest growing markets [Sch05; p.2]. 

I.2.2  Characteristics 

The fact of being embedded in a higher technical system leads to a set of charac-
teristics different to ordinary computers [Sch05; p.3ff], [Ge05; p.5f]. 
                                                           
9 Radio Frequency Identification 
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An ECU's primary source of interaction is not humans but the surrounding 
processes or technical components. Humans indirectly influence ECUs by con-
trolling the processes and devices they are integrated, but, primarily, ECUs re-
trieve input by sensors and perform output by actuators integrated into the sur-
rounding system. Accordingly to the special purposes ECUs often fulfill, the 
ECUs in most cases have specialized hardware (HW) specifically designed for 
efficiently fulfilling their purposes. 

Since the surrounding system mostly is an electronic, physical-mechanical, 
chemical or biological device or process, developing ECUs has a strong need for 
interdisciplinary development efforts such as systems engineering discussed in 
ch. I.4. 

Ordinary computer systems can be described as interactive systems. This 
means, the computer system actively determines the interaction process with the 
environment. Whenever an interactive system needs input for further processing 
the system prompts the user for input and proactively synchronizes with the envi-
ronment. 

ECUs on the contrary react more on the settings and changes of the envi-
ronment. They are therefore called reactive systems. This difference has signifi-
cant influence on their behavioral determinism. Interactive systems can be more 
seen as non-deterministic (e.g., interactive systems decide on their own how to 
schedule different tasks), whereas ECUs have well defined input and reaction 
relations with mostly strict temporal interdependencies derived from the needs of 
their surroundings. Three implications can be deduced from this fact:  
• At first, Scholz emphasizes that “the different characteristics of both system 

types must be considered when adequate techniques, methods or tools are 
developed” [Sch05; p.4 (*)].  

• Secondly, SW designs of reactive systems can heavily rely on the very well 
defined and researched concept of state machines. Since state machines are 
deterministic and have a complete formal semantics (other to, e.g., the se-
mantics of activity diagrams in UML), they can be properly used for formal 
requirements specification, their early simulation, verification and complete 
code generation providing very positive effects on complexity handling 
[Ma08a; p.19] (see also [MB05]). 

• Unfortunately, the temporal interdependencies force ECUs to obey timing 
limits. In this context, ECUs are often referred as real time systems. Real 
time systems can be distinct between systems that must obey their timing 
rules at any time (so called hard real time) and systems that should obey their 
timing rules as good as possible with exceptions allowed (so called soft real 
time) [Do04; p.3], [Sch05; p.4]. 
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Another not yet explicitly mentioned demand for ECUs is their functional 
correctness. Different to programs running on ordinary computer systems, errors 
in already delivered ECUs cannot be easily fixed by users installing updates. 
Instead, expensive product recalls are necessary to fix those problems.  

In many application contexts, such as medical equipment, space, aviation, 
nuclear power plants, production lines or automotive, system malfunctions and 
other defects can cause more severe consequences such as threats to life or physi-
cal condition. Such systems are called safety-critical. Constructing safety-critical 
systems demands enforced efforts on avoiding or at least diminishing the proba-
bility of malfunctions, other defects, or fatal consequences. Two factors are the 
central means to achieve this goal:  
1. Explicit consideration in the design of these systems (e.g., providing redun-

dant system parts). 
2. Employing development processes ensuring high quality of the resulting sys-

tem. 
Concerning the first point, it is to say that this thesis speaks about design, 

but more on a higher meta-level and therefore point one will not be directly10 in 
the focus of this thesis. The second point, however, is directly addressed in this 
thesis, as requirements traceability is seen as an important foundation to achieve 
those high quality development processes. 

A fundamental principle of these processes is that their potential to ensure 
high quality outcomes must be controlled in an objective way. This is achieved by 
a set of standards such as the ISO 1550411 (SPICE) defining necessary character-
istics that development processes for safety-critical systems must fulfill. Corre-
spondingly, the solution proposed here must obey the criteria demanded by those 
process standards. Ch. I.7 provides a description of these standards with the de-
manded criteria that are important to this thesis. 

Differently to normal PC applications, ECUs are designed for a specific 
purpose. To optimize costs, the principle of HW/SW Co-design12 is used, where 
HW and SW are designed in parallel with high interdependencies between each 
other to only fulfill its specific purpose. Especially for applications with high 
volumes, the so called mass market, the costs per part are decisive. Therefore 
                                                           
10 Indirectly it well touches this issue in the sense that design for safety-critical issues 

involves decisions to be taken that impose significant consequences on the design out-
come. As communication and documentation of decisions and their consequences is 
one of the special concerns of this thesis, this topic is indirectly connected and this 
connection is show in part III as real-world example of decision-making in embedded 
projects. 

11 Software Process Improvement Capability dEtermination (SPICE). 
12 For more information on this topic cf. [ME01]. 
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extreme optimization of HW costs has highest priority often leading to highly 
specialized SW. This kind of SW has to deal with very tight resource restrictions 
leading to a significantly higher complexity to be handled in the SW development 
activities.  

 

I.2.3  Embedded Development in the Automotive Domain13 

Technical complexity of electronics and software in the automotive  
industry is similar complex as avionics and aerospace.  

Today, cars are the mass production product with the strongest  
cross-linking of separate computers at the smallest space.  

Meanwhile, more than 90 % of all functions are realized with  
support of software. The quality of a car is substantially  

determined through the quality of electronics and software.  
For this reason, software quality has become a central competitive factor. 

[HDH+06; p.267-268 (*)] 
 

“Modern premium automobiles contain by now up to 100 ECUs, with increasing 
tendency accompanied by approx. 3 kilometres of cable and approx. 2000 plug 
connectors. In these ECUs, SW with more than 600 000 lines of code regulates 
numerous functions and their cooperation. ... In this way, the value creation 
changes significantly in Automotive construction. 90% of the innovation in cars 
are driven by electronic components, thereof 80% software“ [Sch05; p.12f (*)].  

At present as in the near future, the proportion of software (SW) and SW-
based ECUs in everyday products increases exponentially [Br06], (also cf. 
[CFG+05], [KCF+04], [HDH+06; p.267]) and this increase is accompanied by a 
growth of development complexity. Correspondingly, developing these SW-based 
ECUs meanwhile has a central strategic importance for the automotive industry.  

The automotive domain has some special conditions imposing special chal-
lenges for embedded systems engineering. Generally, the following special chal-
lenges can be identified playing significant key-roles in automotive embedded 
development (cf. [Br06], [Gr05], [KM06], [SZ06; p.20], [Sch05; p.5]): 
1. Safety-criticality: As mentioned in the chapter before, cars involve several 

safety-related issues. These issues must be significantly addresses as de-
scribed in the chapter above.  

2. Costs: As cars are mass-market products with high unit volumes, costs play a 
decisive role. Thus, proportional manufacturing costs dominate the price. In 
this way, ECUs' costs are also under strong pressure. The proportional manu-

                                                           
13 Parts of this chapter base on [TWT+08]. 
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facturing costs of ECUs are mainly dominated by HW costs. This leads to 
highly cost-optimized HW with minimal HW resources concerning memory 
calculation power, and other components. Correspondingly, software must of-
ten be fitted to handle these, often leading to higher complexity and unnatural 
solutions in the software design [SZ06; p.20], [Sch05; p.5]. 

3. Quality: Buying a car involves significant costs for the customer. In conse-
quence, cars are intended for long product life-cycles of about 25 years 
[SZ06; p.20]. Correspondingly, cars must provide a high overall quality, espe-
cially if they are premium products.  

4. Hard or at least weak timing restrictions14: Reasons can be physical require-
ments for exact timing (e.g., when controlling motor injection), extremely 
cost optimized HW where strong resource restrictions lead to strong demands 
for timing; or safety-related issues (e.g., exact timing of inflating airbags dur-
ing crash situations). 

5. Strong cross-linking of ECU systems: Increasing cross-linking of vehicle 
functional features leads to increasing cross-linking of ECUs15. Such features 
are typically realized by a collaboration of several ECUs, leading to higher in-
terdependencies between ECUs. ECUs in automotive development are usually 
an integrated system consisting of HW, SW and mechanical components 
[MHD+07; p.91]. In most cases not one ECU handles a certain function in a 
car, but several ECUs in interplay with each other realize a certain function. 
Thus, the different ECUs can communicate with each other using communica-
tion protocols such as Controller Area Network (CAN), Local Interconnect 
Network (LIN), Media Oriented System Transport (MOST) or Flexray. In 
summary, the interconnected ECUs can be seen as distributed systems with 
distributed control logic and changing control hierarchies [Ge05; p.5]. 

6. High demands on inter-organizational collaboration: The development of a 
strongly cross-linked car system can only take place in collaboration with the 
car manufacturers (Original Equipment Manufacturers (OEM)) and heteroge-
neous chains of suppliers. 

7. High numbers of variants: Today, the buyer of a car has the choice between 
hundreds of options being partly connected to each other (e.g., different mo-
tors can be combined with different gearboxes) [SZ06; p.9]. As a plus, cars 

                                                           
14  Mostly, not all timing restrictions of hard real time systems are strict. Some functions 

may also have weaker or even no timing restrictions. 
15  A typical scenario might look like this: A car crash triggers crash sensors which acti-

vate several airbag ECUs and a crash management ECU (CM-ECU). The CM-ECU 
sends an 'Unlock_Doors' signal to all door ECUs, requests the position from the Glob-
al Positioning System-ECU and sends an automatic emergency call via a Universal 
Mobile Telecommunications System-ECU to local rescue organizations. 



I.2  Embedded Systems Development 21 

are sold to very different countries with different legislation. Car systems are 
designed to work as very different variants. As HW costs are a significant 
constraint, ECUs' variants also involve different HW assemblies [PS05; 
p.112]. In the following of this thesis, this point – although it is important – is 
neglected. This topic could be a topic for further research basing on the re-
sults of this thesis. 

From the development viewpoint, two fundamentally different perspectives 
on ECUs with partly different requirements for them can be observed: 
• The car manufacturers (OEMs) are engaged in how the complete car system 

is assembled and how its parts work together to fulfill the intended require-
ments of the car. From the OEM perspective, the complete system 'car' is in 
the focus and this system is divided into several layers of sub systems, where 
the individual ECUs are only some parts of a complete system 'car'. The 
OEM, thus, mainly cares for partitioning and mapping of the functions and 
other technical issues on the different ECUs as subsystems, whereas the ac-
tual development of the ECUs is performed by its suppliers16. Thus, for the 
OEM the focus lies on best possible specification of the ECUs' requirements 
as basis for supplier management and the later integration of the developed 
ECUs into a complete system car, including extensive acceptance testing 
[SZ06; p.19]. Thus, OEMs are more concerned with what is also called sys-
tems engineering (see ch. I.4) and supplier management. 

• The suppliers must then use the OEM's specification of the ECU to design 
and develop a system with the software. This involves systems engineering, 
but also hardware17 and software engineering activities. In some cases, sev-
eral suppliers must cooperate to develop one ECU together. In these cases al-
so one supplier must manage the other suppliers.  
At first, this implies that frictionless information exchange between all pro-

ject members is a critical success factor and requirement documents are the cor-
nerstones of this collaboration, since they are the central interfaces between or-
ganizational units of a project. In addition, the strong cross-linkings of ECUs 
may even urge partners to employ compatible development processes. A good 
step toward this goal are process standards and maturity models like SPICE 
(Software Process Improvement and Capability dEtermination, [HDH+06]), its 

                                                           
16 In some cases, however, also the OEM develops ECUs. This is, e.g., the case for high-

ly innovative or research based systems.  
17 In this thesis, the HW engineering domain is someway neglected, but it is assumed 

that the principles developed here for traceability and design can be equally applied to 
HW engineering. Further, the tool approach shown in part III should be equally able to 
integrate with a HW engineering tool. 
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new domain specific adoption Automotive SPICE (cf. [HDH+06]], [MHD+07]), 
or CMMI (Capability Maturity Model Integration, cf. [Kn06]). These standards 
are also important for addressing safety-critical issues that must also be addressed 
by additional safety mechanisms in ECUs (e.g., fail safe modes, HW and SW 
redundancies) and increasing complexity put additional stress on the quality of 
development processes [BHM01]. Secondly, this implies that the worlds of the 
OEMs and the suppliers are in some way different and not completely compara-
ble. Thus, problems may be different in both branches18. 

However, also the OEMs experience a paradigm shift towards intensified 
model-based development efforts [CFG+05], [KCF+04]. Conrad et al. [CFG+05] 
– interpreted by the author – describe that this model based shift consists of three 
cornerstones: 
• Usage of enhanced requirements engineering and management techniques. 

An experience report of Heumesser and Houdek [HH04] – from formerly 
Daimler Chrysler – mentions requirements specifications for the electronics 
of the whole system 'car' to contain about 20 000 pages, in which the re-
quirements specifications for the single ECUs contain 200 to 600 pages. 
These high numbers of requirements must be adequately handled. Addition-
ally, these requirements form a contractual basis for all further development 
activities performed with suppliers (CFG+05; p.5], [RS07; p.481f]). 

• Design and implementation are more and more dominated by the continuous 
usage of models. “Hereby, the functionality appears in different subsequent 
model representations” [CFG+05; p.5 (*)]. 

• Both core activities will be accompanied by verification and validation pro-
cedures to assure correctness and reliability of the developed components.  
All these points show that automotive development is more and more coined 

by flipping interactions between requirements specifications and design models at 
different levels of abstraction interacting with each other. This, in combination 
with the heterogeneous scattered development of complex, intertwined customer 
and supplier relationships press for the need to ensure consistency between these 
manifold different artifacts developed in the course of a car development endeav-
or. In theory, requirements traceability is seen as a distinct means for ensuring 
consistency between artifacts. Sparked from these findings, two major research 
goals of this thesis are requirements traceability in context with heterogeneous 
design models and issues of supplier management in order to ensure consistency 

                                                           
18 Unfortunately, the author sometimes feels that literature about automotive embedded 

systems development often neglects this differentiation. In the past, one difference has 
been that OEMs mainly concentrated on the textual specification view, whereas sup-
pliers were also forced to translate these specifications into design models and code. 
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between the complex and heterogeneous interdependencies arising out of auto-
motive development projects. 

Last but not least to mention, automotive ECUs development can be divided 
into four different sub domains [SZ06; p.6, p.18f], [CFG+05; p.4]: 
• Powertrain deals about control of the motor(s) and gearing.  
• Chassis deals about wheels, steering, breaks, etc., but also concerns persons' 

safety systems such as ABS or ESP19. 
• Body deals about electrical control of doors, lights, mirrors, wipers, seats, 

heating and climate control. Here are also included passive safety systems 
such as airbags.  

• Telematics20 and Infotainment provide multi-media applications such as ra-
dio, CD, DVD, telephone, route navigation, video etc. to the passengers. An 
essential part here is the human machine interface and possible interconnec-
tivity with devices not being original equipment of the car (e.g., cell phones, 
MP3-players, car-to-car-communication, etc.). 
The domains Powertrain, Chassis and Body are comparable to each other 

[CFG+05], whereas the Telematics domain significantly differs from them. The 
first three deal with controlling and steering of mostly physical process involved 
with the usage of a car. Correspondingly, these domains rather deal with complex 
calculations and complex steering functions, where relatively low amounts of 
data are processed (often only a few bits indicating states of sensors and actors). 
These systems often have hard real-time constraints, often involve safety-critical 
issues and face the pressure for extremely cost-optimized HW. Concerning de-
velopment techniques, the programming language C and the real-time operating 
system standard OSEK-OS21 are employed.  

In the Telematics environment, complexity is imposed by human interaction, 
high amounts of data, high demands for data processing (comparable to PC-based 
systems), data bandwidth, and soft real-time constraints. Correspondingly, higher 
programming languages such as C++ or Java are used and more sophisticated 
operating systems – with, however, only soft real-time support – such as Mi-
crosoft Windows (Embedded) CE, Linux etc. are used. Altogether, this domain is 
more minted by issues of classical computer science. As these systems directly 

                                                           
19 Antilock Braking System and Electronic Stability Control 
20 The term Telematic is a made-up word deriving from a combination of Telecommuni-

cation and Informatik (German expression for Computer Science) [MEK03; p.1]. 
21 OSEK/VDX (“Offene Systeme und deren Schnittstellen für die Elektronik im 

Kraftfahrzeug / Vehicle Distributed eXecutive”) is an industrial standardization board. 
The board has defined the operating system standard OSEK-OS being a standard defi-
nition for the real-time operating system used in the automotive industry. 
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influence user experience in comparison to the other domains, where the ECUs 
are more integrated into a merely technical aspect, these systems also generally 
have weaker resource restrictions if this favors better user experiences (e.g., by a 
better human machine interface (HMI)) or additional values (e.g., by offering 
higher value components for bandwidth). 

Concerning this thesis, all four domains generally are of equal interest, since 
traceability most probably will be an issue in all four development domains. 
However, as the first three domains have significant harder restrictions for timing 
and other resources, these restrictions may be important for considerations in this 
thesis. Thus, these domains with the hard restrictions are considered in the exam-
ples and case studies of this thesis (see, e.g., ch. III.12). 

Altogether, it can be said that the automotive domain is very heterogeneous 
with very different used techniques and technologies. However, all of them must 
be concerned with high quality processes leading to high quality outcomes. In 
this context, requirements traceability will play a decisive key role as it improves 
consistency between work-products being essential for the high distribution of 
development tasks over heterogeneous chains of suppliers. 

 
 

I.3  Software Engineering (SE) 

The whole trouble comes from the fact that there is so much tinkering with software. 
 It is not made in a clean fabrication process, which it should be. 

What we need is software engineering. 
F.L. Bauer  

 
The term software engineering (SE) was first coined in 1968 by Friedrich L. 
Bauer during a conference of the NATO (North Atlantic Treaty Organization) 
science committee [Ja08; p.1] as reaction on experiences that, despite gigantic 
efforts, some SW projects could not be completed satisfactorily [LL07; p.46]. 

The central idea behind this concept is the application of engineering to 
software (SW). According to Sommerville, “software engineering is a technical 
discipline that deals with all aspects of software development, from the early 
phases of system specification to maintenance of the system, after it has been 
commissioned” [So01; p.22 (*)]. 

The IEEE Standard glossary of Software Engineering Terminology 
[IEEE610] defines SE as:  
1. “The application of a systematic, disciplined, quantifiable approach to the 

development, operation, and maintenance of software; that is, the application 
of engineering to software. “ 
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2. “The study of approaches as in (1)”. 
Ludewig and Lichter [LL07; p.47] indicate that this definition is in a way 

problematic and idealistic22, as engineers “more often rely on experience and 
intuition than often admitted” [LL07; p.47 (*)] and propose the following value-
free definition [LL07; p.47] (see also Jackson on what he calls radical design in 
software-intensive systems [Ja08; p.21]): 

“SE is any activity concerned with creating or changing SW, where goals are 
beyond the SW” [LL07; p.47 (*)]. This means for Ludewig and Lichter, SE is 
involved anywhere, where SW is developed. 
In this thesis, the following SE topics are addressed: 
1. SW development process models (ch. I.7), 
2. Requirements engineering and management (ch. I.5), 
3. SW design (ch. I.6). 

SW development process models provide a process road map for transform-
ing user needs into a SW product. A SW process can be described as “a set of 
activities and thus interrelated results leading to the development of a SW prod-
uct” [So01; p.55 (*)]. The process chain involves transforming user needs into 
SW requirements that are again transformed into a design. Then, the design is 
implemented in code. Several quality assurance methods – as testing or code 
inspections – accompany these processes [IEEE610]. Today, most process models 
are iterative incremental which means that the process chain mentioned above is 
iterated several times with new user feedback (changed or new requirements) 
gathered from the previous developed version [MBP+04; p.425]. 

The main goal of a structured model is to find and establish clearly defined 
processes and process interdependencies for the different development tasks 
ensuring structured and reproducible process results. This thesis also deals with 
how high quality SW and systems can be achieved using development process 
models and standards (see ch. I.7).  

Requirements specification and analysis phases are concerned with the ques-
tions of 'what the user needs' and 'what the SW has to do' (what exactly shall the 
SW do?). Thus, requirements specifications are often described as the 'what de-
scription'. In recent years, a more or less independent field of research has 
evolved called requirements engineering. This thesis has one of its groundings in 
this area. Therefore, this topic is deeper discussed in ch. I.5. Historical experi-
                                                           
22 In fact, other organizations as the software craftsmanship movement ([Mc01], 

http://www.softwarecraftsmanship.org/main/about (Access: 2009/08)) challenge the 
paradigm of systematic engineering in software development, but emphasize a view of 
software development as a craftsmanship, where “engineering skills and scientific un-
derstanding are required to write good code software ... in combination with a prag-
matic attitude and a sense of quality”. 
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ence, however, has shown that describing requirements proves to be very difficult 
and even the best requirements specification efforts could not avoid significant 
requirement changes during development progress. As a result, SE theory has 
acknowledged that requirements and their changes must be adequately managed. 
Requirements traceability as discussed in this thesis can be considered as an 
activity of requirements management. 

After the requirements have described the problem space, software design 
deals with finding an adequate solution out of the set of possible different solu-
tion alternatives (solution space). The design phase has the goal to sketch a pos-
sible solution and assess its consequences in order to find out, whether the solu-
tion is sustainable for the problem. Design mainly with about making general 
decisions about the structure of a solution that is then implemented into code. 

 
 

I.4  Systems Engineering (SysEng) 

Systems engineering is about creating effective solutions to problems, 
 and managing the technical complexity of the resulting developments. 

 At the outset, it is a creative activity, defining the requirements 
 and the product to be built. 

 Then the emphasis switches again, to the integration and verification, 
 before delivering the system to the customer.  

[SBJ+98; p.7-8] 
 

In most embedded projects, “it is crucial to consider not only the software as-
pects, but also the system aspects“ [Do04; p.29]. Since the first introduction of 
the term systems engineering (SysEng) by Goode and Machol [GM57], SysEng 
has evolved to a key success factor for developing large scale complex systems, 
because it “deals with all aspects of developing and enhancing complex systems” 
[So07; p.34 (*)] and its function “is to guide the engineering of complex sys-
tems” [KS03, p.3]. 

The IEEE describes SysEng as “an interdisciplinary collaborative approach 
to derive, evolve, and verify a life-cycle balanced system solution which satisfies 
customer expectations and meets public acceptability” [IEEE1220; p.12]. Corre-
spondingly, Douglass [Do04; p.29] defines SysEng as “the definition, specifica-
tion, and high-level architecture of a system that is to be realized with multiple 
disciplines, typically including electrical, mechanical, software and possibly 
chemical engineering”. 

As the name SysEng and all these definitions mention, the term system plays 
a decisive key role. Several slightly different definitions exist: 
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• According to the IEEE 610, a system can be described as “a collection of 
components organized to accomplish a specific function or set of functions” 
[IEEE610; p.73]. This indicates that a system is composed of components 
with common goals.  

• However, Müller defines a systems as “a set of elements being connected to 
each other by relationships and having to pursuit a certain goal together” 
[Mu00; p.48 (*)]. This indicates that a system is composed of components 
coupled by relationships with each other (IEEE 610 weakly indicates this by 
using the term 'organized'; cf. also [So01; p.36ff], [MHD+07; p.41]).  

• Weilkiens defines a system as “a collection of system components aiming to 
fulfill a shared goal. A component can be of software, hardware, mechanics” 
[We06; p.10 (*)], or of any other engineering domain. This indicates that a 
system can be composed of components from different engineering domains 
interacting together. 

• However, other definitions go beyond this view: “A system is an integrated 
composite of people, products, and processes that provide a capability to sat-
isfy a stated need or objective” [DAU01; p.7]. In this definition a system is 
not just consisting of components (static view), but can also involve hu-
mans23 and its processes (dynamic view).  

• Geisberger24 also emphasizes that “a system as a whole has system bounda-
ries and a context” [Ge05; p.196 (*)]. This implies also a difference between 
the system and its environment (elements not part of the system) and indeed 
defining the system's context is a central task in SysEng [So01; p.38] leading 
to the definition of Hatley et al. of system as “an organized set of compo-
nents that interact with each other and its surrounding in order to provide a 
significant benefit to humans” [HHP03; p.16].  

• Last, but not least, the IEC 61508 defines systems as “a set of elements 
which interact according to a design, where an element of a system can be 
another system, called a subsystem, which may be a controlling system or a 
controlled system and may include hardware, software and human interac-
tion“ [IEC61508; part 4; p.25], (also cf. [MHD+07; p.41]).  

                                                           
23 Or, as Hatley et al. put it [HHP03; p.17 (*)]: “Hardware and software without humans 

is not capable of anything ... When we specify systems, we must view the whole sys-
tem – its software, all hardware-technologies, the role of the humans and the question, 
how humans can benefit from it”. 

24 The interested reader may be invited to read Geisberger's extended comment on the 
term system describing its origins from biological and sociological systems theory and 
cybernetics [Ge05; p.196]. 
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In summary, several – more or less complete – definitions of what a system 
is exist. Generally a system may have the following characteristics: 
1. A system is composed of several components.  
2. These components can again be further decomposable systems (so called sub 

systems). This gives way to that SysEng can also deal with developing cas-
cades of systems built up by sub systems, called systems of systems engineer-
ing [Ja09]. 

3. A system has a surrounding context (i.e. environment) it interacts with. A 
part of this context and its interactions can be humans. 

4. The system's components have relationships with each other and with the 
context. Different kinds of relationships exist, such as 'interaction', 'composi-
tion' or 'other dependencies'. 

5. Different components can deal with different engineering disciplines. In the 
automotive domain, for example, systems often involve HW, software and 
mechanics [MHD+07; p.41], but components can also involve other disci-
plines such as chemistry, nuclear physics, biology, etc.. 

6. A system may not only be composed of static aspects as components, but 
also humans or processes may be aspects of a system. 
SysEng is concerned with regarding the system over his complete life-cycle 

from its early ideas to its disposal [We06; p.2], [DAU01; p.3]. In reference to the 
International Council on Systems Engineering25 (INCOSE) [TBI04], Weilkiens 
describes the focus of SysEng as the concentration “on the definition and docu-
mentation of system requirements in the early development phase, the preparation 
of a system design, and the verification of the system as to compliance with the 
requirements, taking the overall problem into account: operation, time, text, crea-
tion, cost and planning, training and support, and disposal” [We07; p.8].  

SysEng thus emphasizes a holistic view [We06; p.2] on a system to be de-
veloped: “Detached from specific detailed knowledge, the requirements and 
structure of a system, the whole life-cycle from the idea to its disposal are 
planned to develop a system that meets the demands of all involved stakeholders” 
[We06; p.2 (*)]. As mentioned above developing complex systems can include 
several different engineering disciplines. SysEng deals with coordinating those 
disciplines and their tradeoffs with each other26. Therefore, Weilkiens also speaks 

                                                           
25 INCOSE can be described as the most important international society concerned with 

SysEng. 
26 [We06; p.9] provides an example where all involved disciplines produce best possible 

solutions, but lacking interactions make integration impossible. This shows that mak-
ing compromises between the disciplines and their solutions is an essential part of 
SysEng.  
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of SysEng as a kind of meta-discipline [We06; p.11], [We07; p.8]. To achieve 
this, SysEng is split into two significant sub disciplines [DAU01; p.3]: 
1. The technical aspect system engineers work in also referred to as technical 

knowledge domain. 
2. The systems engineering management. 

This means SysEng defines a general engineering and management approach 
dealing with developing systems [DAU01] [Sa92], where three concepts form the 
cornerstones of interdisciplinary coordination: 
• Definition and management of the requirements concerned with the system 

as a whole [TBI04]. According to Geisberger, requirements engineering, 
therefore, is the key phase (i.e., task) of SysEng [Ge05; p.2].  

• Proper identification and definition of interfaces between the methods of 
different disciplines [We06; p.9].  

• Proper product and project management that coordinates and moderates all 
interdisciplinary efforts [We06; p.9]. 
In the view of Stevens et al., SysEng deals with “coping with risk and com-

plexity” [SBJ+98; p.9]. In this way, SysEng for once mainly deals with defining 
the requirements and thus the system to be built. The implementation of these 
definitions is then left over to the individual engineering disciplines of the sys-
tem's components. SysEng encompasses these implementation activities with 
reviews and testing at the components' boundaries to ensure proper matching 
interfaces. Finally, SysEng has to address significant issues of integrating the 
components into the system and verifying the assembled system [SBJ+98; p.7-8]. 

From a similar viewpoint, Weilkiens identifies project management, re-
quirements analysis, requirements management, requirements definition, system 
design, system verification, system integration, and risk management as tasks 
included into a SysEng effort [We06; p.12], [We07; p.9]. 

Thus, according to Sage and Rouse, SysEng “is the management technology 
that controls a total system life-cycle process, which involves and which results 
in the definition, development, and deployment of a system that is of high quality, 
trustworthy, and cost effective in meeting user needs” [SR09; p.3]. 

This thesis also is concerned to a certain degree with interactions of process-
es and corresponding process standards. Accordingly, SysEng must also be taken 
into account. In the course of the thesis, the reader may also notice that the topic 
of this thesis is even more related to SysEng than maybe originally expected, 
since requirements and requirements traceability are the core interface for a close 
integration of SysEng and SE activities. Sommerville points out that “system 
development is an older discipline than software engineering. Since over 100 
years, people have designed and built complex industrial systems like aircrafts 
and chemical factories. However, the share of software-based systems has in-
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creased and techniques of SE-like modeling of use cases and configuration man-
agement are used in system development processes” [So07; p.34 (*)].  

Vice versa, it is to state that SE also is increasingly influenced by the SysEng 
discipline, as SW often is developed for ECUs and thus it is very seldom an enti-
ty of its own, but is employed in an higher level system environment. Evidence 
for this claim can be found in SE books also mentioning SysEng (e.g., Sommer-
ville provides an extra chapter [So07; chapter 2]) or standards on SW develop-
ment processes as ISO 12207 [ISO12207] or SPICE [ISO15504] embedding the 
SW development processes into higher level SysEng processes (e.g., processes 
ENG.2, ENG.3 in SPICE).  

In his analysis of the future about SE and SysEng processes, Boehm [Bo05] 
points out his view that the separation between SE and SysEng has been an artifi-
cial one rather manifested by historic development than real needs of develop-
ment. Correspondingly, Boehm forecasts that in the future SE and SysEng will 
grow together to one integrated theory and one block of activities in practice. 

Currently, a second slightly different notion of SysEng seems to evolve orig-
inating more from engineering practice. Here, Hood et al. [HWF+08] could get a 
good catch of this opinion in their book's title “Requirements Management – The 
interface Between Requirements Development and All Other Systems Engineer-
ing Processes”. In this point of view, SysEng is either considered as a kind of 
synonym for requirements engineering in connection with a certain management 
level above a normal SE project. This notion can be seen in the following fig. 4-1 
taken from [HWF+08; p.29]. It shows all 'SysEng disciplines' from the perspec-
tive of Hood et al.. Hood et al. now propagate that requirements management 
(see fig. 5-3 in ch. I.5.3) interconnects these disciplines with each other. 

 

 

Figure 4-1  The view of systems engineering processes of Hood et al. [HWF+08; p.29] 
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The author can share this notion as he also sees a certain potential for re-
quirements management to be a decisive interface connecting the 'management' 
activities with the requirements engineering activities (information on this notion 
is also described in ch. I.5.3). From the SysEng perspective, however, the author 
thinks this view neglects the originally emphasized dimension of design taking 
place in SysEng processes and reduces SysEng to a 'little advanced version of 
requirements engineering and management'. The similar notion is found by 
Douglass [Do04; p.37-38] (and also seems to be present at Geisberger [Ge05]), 
when describing the ROPES27 process model subordinating the SysEng activities 
to the analysis activities as a kind of extension to requirement analysis. However, 
it is doubtful, whether a 'system design' is just some kind of 'analysis'.  

This only reflects the dimension of SysEng management but neglects the 
dimension of a technical knowledge domain that has to consider different engi-
neering disciplines and their correlations. Thus, a good system design will 
acknowledge the special needs, strength and weaknesses of each involved engi-
neering discipline so that the different parts from the different disciplines can 
frictionless cooperate to fulfill the systems tasks, whereas a weak system design 
might neglect some characteristics of an engineering discipline resulting in a 
system with collaboration problems between the different parts.  

 
 

I.5  Requirements Engineering and 
Management 

I believe the hard part of building software to be the specification, 
 design, and testing of this conceptual construct, not the labor of 

 representing it and testing the fidelity of the representation.  
We still make syntax errors, to be sure; but they are fuzz compared  

to conceptual errors in most systems. If this is true, building software 
 will always be hard. There is inherently no silver bullet. 

[Br87] 
 

“The key to every successful software project is its ability to meet the needs of its 
intended customer” [BCM+08; p.139]. Or as Endres and Rombach call it Glass' 
law [ER03; p.16 (*)]: “Requirement deficiencies are the prime source of project 
failures”. 

                                                           
27 Rapid Object-oriented Process for Embedded Systems – a kind of adaption of the RUP 

(Rational Unified Process) process model [Kr99] for embedded systems development. 
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Thus, “in the 1970's, customer needs were documented in a customer re-
quirements specification” [HWF+08; p.39 (*)], but the process “did not have a 
fancy name, it was just engineering” [HWF+08; p.39 (*)]. Starting with the 
“IEEE International Symposium on Requirements Engineering” in 1993, an in-
dependent discipline called requirements engineering (RE) started to evolve 
[PD04]. 

Pohl [Po08; p.43 (*)] gives a very concrete definition of RE: “RE is a coop-
erative, iterative, incremental process with the goal to assure that: 
1. All relevant requirements are known and understood in the necessary degree 

of detail. 
2. The involved stakeholders gather a sufficient agreement about the known 

requirements. 
3. All requirements are specified conforming to documentation, i.e. specifica-

tion, instructions”. 
The basic idea behind RE is that the requirements state the needs of the fu-

ture users of a system or SW28 therefore requirements form the basis (key driver) 
for all development efforts. Experience has shown that requirements are not easy 
to gather, because most systems are developed for people not involved in systems 
or SW development. This means RE deals with bridging the user worlds (do-
mains29) and their vocabulary to the world and vocabulary of the developers.  

On a second behalf, a system also has its own life cycle. All phases of the 
life cycle can also raise30 requirements on the system. 

Summing it all up, RE activities involve a lot of different people which must 
be brought together in an optimal communication process. As Ebert states in the 
preface of [Eb05], the RE theories therefore include at least “experiences in sys-
tem techniques, psychology31, business administration, marketing, product man-
agement, project management and computer science” and its application has “less 
technical aspects and much more 'political' and psychological aspects than usual-
ly admitted” [Eb05; p.10 (*)].  

Rupp lists seven central problems and risks addressed by RE and thus en-
countered by improper RE [RS02; p.19ff]: 
• Unclear visions on the goals of the system due to different types of stake-

holders with different usage characteristics, 

                                                           
28 In the further, only the term system is used, but SW is also implied by this term. 
29 Mostly, there is not one type of user but several user types connected to several usage 

domains. 
30 For example, the maintenance phase is unavoidable and requires that the developed 

system fulfills requirements for good maintainability. 
31 On the importance of psychology in RE see [Ru02] 
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• High complexity of the task to solve, 
• Communication problems due to different languages (vocabulary) of differ-

ent stakeholders, 
• Continuously changing goals and requirements (often referred to as 'scope 

creep' or 'requirements creep'), 
• Poor quality of requirements due to ambiguity, redundancies, contradictions 

or imprecise information, 
• Unnecessary or unspecified features32   
• Imprecise project planning and tracking due to imprecise requirements; 

The aspects mentioned above only mention one aspect of the problem. The 
core problem closely connected with the problem of bringing very different 
stakeholder perspectives together is the problem of inevitable requirement change 
during the whole project progress, where “changing requirements is one of the 
most significant motivations for software change” [JL05; p.120]. A diversity of 
reasons for requirement changes exists (see the following sub ch. I.5.6), but one 
of the key reasons surely is that bringing all different user perspectives together 
will always lead to compromises and inconsistencies not discoverable at early 
stages. This leads to the need that requirements and their changes must be appro-
priately managed. Consequently, this aspect is called requirements management 
(RM) (see ch. I.5.3, cf. also [Eb05; p.18ff]: “Contents of Requirement Manage-
ment”). 

The user should note that, in the English speaking community, the term re-
quirements engineering (RE) stands for both aspects described here (cf. [Eb05; 

                                                           
32 Also often referred as gold-plating [RR99; p.275]. The most usual source of gold-

plating are 'ideas' of developers they just implemented without feedback from the cus-
tomer. Unnecessary features increase development costs and complexity of the SW.  

 Evaluations show that 45% of system features are not used (cf. [[Yo03; p.45]). An also 
important role in avoiding gold-plating may play rationale management (see ch. II.9). 
Haynes [Ha06b; p.66] describes a survey on the usage of rationale in an U.S. military 
application project, where of 74 discrete features only 19 rendered to be “important or 
of high impact”.  

 However, two other factors must be considered. First of all, the SW product must also 
allow possibilities for the developers to bring in their creativity. Thus, the ideas of the 
developers must be considered. A good tactic is to manage developer ideas as change 
requests that can be discussed with the customer ([RS02; p.23]). Secondly, as Rupp et 
al. point out, in certain situations (e.g., when the product aims at a market leading po-
sition), [RS07; p.113f] excellent products must also grasp unknown customer wishes 
as enthusiasm factors (In German: Begeisterungsfaktoren). This indicates that gold-
plating can also be useful in certain situations as long as it is some conscious, con-
trolled process. 
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p.VII]), but the author agrees with other authors ([Eb05], [RS02], [HWF+08]) 
that the aspect of managing requirements should be emphasized in the term33.  

Thus, in the following, the author will speak generally of requirements engi-
neering and management (REM) and he will only use the term RE if he directly 
refers to aspects of requirements engineering, and requirements management 
(RM) when directly referring to aspects of RM. 

As some indications show, REM seems to emancipate as a separate disci-
pline apart from computer science theory. This is especially true in the embedded 
domain, where REM must be an interdisciplinary approach to integrated aspects 
of mechanical engineering, electronics engineering and computer science [Ge05] 
containing also significant overlaps with the SysEng discipline. Humans and the 
handling of requirement information are a central issue of REM. In this aspect, 
REM seems also to be a promising field for information science, because certain 
parts of REM theory like user interface design already have a strong focus in 
information science.  

Last but not least, it should be mentioned that not all developed systems are 
necessarily driven by requirements [HHP03; p.33]. As an example, the consumer 
market is rather driven by market changes resulting in extended requirement 
changes. Requirements analysis and other REM techniques, however, can also 
prove helpful in these areas (see also [BCM+08; p.139]). 

I.5.1  The Term 'Requirement' 

 
There are two things success in every respect rests upon.  

The one is that purpose and object of the task are correctly determined.  
The other, however, consists in finding the actions leading to this final object. 

Aristotle (*) 
 

Before different concepts of REM are introduced, the term requirement and its 
characteristics shall be defined. The IEEE Standard Glossary of Software Engi-
neering Terminology defines a requirement as [IEEE610; p.62]: 
1. “A condition or capability needed by a user to solve a problem or achieve an 

objective”. 
2. “A condition or capability that must be met or possessed by a system or sys-

tem component to satisfy a contract, standard, specification, or other formally 
imposed documents.” 

                                                           
33 A quite good summary about the historical development of the terms Requirements 

Engineering, Requirements Management and the historical causes for the confusing 
usage of the different terms is provided by [HWF+08; p.39-41]. 
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3. “A documented representation of a condition or capability as in (1) or (2)“. 
Geisberger [Ge05; p.2] defines the term very similar, but instead of the term 

user she uses instead of user the term stakeholder giving the definition a wider 
scope. This notion is more accurate, because also stakeholders exist being not the 
users of the system34, and these stakeholders also raise requirements. Hatley et al. 
[HHP03; p.29ff] provide a collection of other possible sources for requirements. 
Among these a lot of different stakeholders exist: 
• The customer: the person or organization ordering and paying the system 

development. 
• Users: any person really using the system. 
• Managers: managers in house of the developing party. These people are 

mostly concerned about cost optimization and, e.g., reuse.  
It is to emphasize that requirements do not alone arise from the customer, 

but among others the following sources of requirements exist: the users35, man-
agers of the developing company, industrial standards, the development process 
and many other.  

Current REM theory distinguishes two fundamental types of requirements: 
• Functional requirements (FR), 
• Nonfunctional requirements (NFR), also referred to as quality attributes 

[BCK03], [Bo00b]; 
A FR is concerned with a functional aspect of a system. The scope of a FR 

generally is very specific. Thus, FRs are mostly very concrete, its implementation 
can be directly localized in code, and testing the SW for its fulfillment is relative-
ly simple. 

NFRs are requirements “not specifically concerned with the functionality of 
the system” [KS98]. They specify a quality property and / or constraint of a prod-
uct [Eb05; p.298]. In his comment in [RS07; p.259f (*)], Hruschka points out that 
he would rather prefer the term “required constraint”, since he defines NFRs as 
“everything constraining the freedom of the designer in fulfilling the functional 
requirements”. Mostly, NFRs refer to a so called quality attribute as, e.g., perfor-
mance, usability, scalability or maintainability36 (see [RS07; p.272]).  

The scope of a NFR mostly is very general referring to the system to be built 
as a whole. Therefore, NFRs are significantly more difficult to specify, implement 

                                                           
34 For example, the stakeholders paying for a system are seldom the users of a system. 
35 The users (people using the system/SW) are mostly different to the customer (person 

or company ordering and paying for a system/SW). 
36 These are also called the “ilities” [Fi98]. However, also some more detailed differenti-

ations exist in literature. The interested reader may look at [CY04], [RS07; p.256], 
[Eb06; p.98f]. 
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and to test than FRs (for more specific information see [CNY+99], [CY04], 
[RS07; p.259]). In practice, FRs are often identified and specified in a relative 
fast fashion [Mo04; p.336], whereas NFRs are often neglected, even though they 
have a decisive influence on the overall success of a project [Mo04; p.337]. Of-
ten, projects miss important goals if one or even several important NFRs have 
been neglected37 ([RS07; p.259f], [RS02; p.264], [Mo04; p.337]).  

In [HR02; p.86 ff], Hruschka and Rupp provide a good overview of the dif-
ferent kinds of FRs and NFRs encountered in a project (see fig. 5-1). The inter-
esting part of this view is that NFRs are not just limited to the real requirements 
of a system, but it is also acknowledged that the environmental settings pose 
important constraints on a project. These constraints can be the future usage envi-
ronment of the system – often referred to as the context of the system –, but also 
organizational aspects, as demands on used development processes or manage-
ment related context of the project in the organization, are important key success 
                                                           
37 A colleague of the author working at a different company was once hired to perform 

system archeology on a system developed by a near shoring contractual project where 
the original system supplier refused any further maintenance support on the system. 
The reason was that the developed system turned out to be very slow and not main-
tainable. Even though the system was intended to run on one computer, the designers 
of the system chose to use CORBA (Common Object Request Broker Architecture) as 
a communication middle ware to connect all different components of the system. In 
this way, the designers probably thought to achieve an open architecture flexible to 
later changes. As, however, the system just was intended to run on one computer, the 
communication middle ware proved to be an overhead causing low performance. Ad-
ditionally, the flexibility of decoupled components lead to the effect at the developing 
company that the different project developers used their favorite programming lan-
guage for their components to develop leading to a mixture of different programming 
languages used for the different components. This finally resulted in a system not be-
ing maintainable. By addressing on the one side NFRs about flexibility and maintaina-
bility through the decision to use CORBA, the drawbacks on the performance NFRs 
were neglected. Finally, the flexibility achieved by the decision for CORBA inadvert-
ently lead to developers disregarding the maintainability NFRs by individually choos-
ing their programming language at will. As a result, the company lost the project and 
the customer. The customer in need for the system was forced to spend significant ex-
tra money to find out all aspects about the system in order to start a new endeavor for 
developing a running system. Ironically, due to the high losses of the failing project, 
management decided to save money in the new project by assigning a far-shoring 
company to develop the new system, even though the near-shoring approach disclosed 
significant communication problems and significant loss of control over the project. In 
retrospect, it might have been a far better and less expensive idea to directly hire a few 
well-paid, but also well-trained near-by developers with short communication paths 
and a significantly better control of the project by the customer. 
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factors for a project. These aspects should not be neglected as important sources 
for NFRs.  

As mentioned above, it is especially important to not oversee some im-
portant NFRs, since they often determine the success of a project. Rupp et al. 
provide here the valuable expression of quality scopes: “A quality scope defines a 
limited set of defined quality characteristics” [RS02; p.270 (*)]. Such quality 
scopes are – among others – standards such as [ISO9126] or [ISO25000], the 
'Volere Template' propagated by the Robertsons [RR99] or the FURPS38 model 
developed by Grady and Caswell at Hewlett Packard [GC87; p.159] or 'Plan-
guage' [Gi05], (see also [Em10]). These scopes have the advantage of providing 
structured listings of quality aspects that can be used as check lists for systemati-
cally perusing them, thus identifying and specifying (not forgetting) any im-
portant NFR.  

Besides finding, properly specifying, implementing and testing all relevant 
NFRs is crucial for project success [RS02; p.264]. Since NFRs do not represent 
concrete functionality, NFRs are often minted by malleable terms and weak crite-
ria [Mo04; p.352] especially difficult to handle, often leading to intangibly speci-
fied and thus untestable NFRs39. 
 

 

Figure 5-1  Functional and nonfunctional requirements [HR02; p.86 ff] 

                                                           
38 Functionality Usability Reliability, Performance Supportability. Later evolved to 

FURPS+ ([Gr92]), where '+' reminds that additional requirements as design, imple-
mentation, interface and physical constraints must be considered. FURPS+ is widely 
used in the IT industry (e.g., by the Rational Unified Process (RUP), (cf. [Kr03], 
[Kr99; p.142])). Eeles [Ee05] describes how FURPS+ is used by IBM in context of the 
RUP.  

39 Therefore, significant parts of literature to REM are concerned with handling NFRs. A 
good starting point for research information is found in [CY04]. 
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Generally, in order to achieve testable requirements, REM theory propagates 
that for each requirement also the verification criteria should be equally specified. 
If then no concrete verification criteria can be found for a requirement, strong 
indications exist that a requirement is not testable and thus realization of the re-
quirement is not sure [RS02; p.71ff, p.293-336]. Process standards as described 
in ch. I.7, thus, also explicitly demand that testability of any requirement must be 
ensured by specifying verification criteria. 

To tackle these problems, Rupp et al. propose using an approach they call 
IVENA40 [RS07; p.459], [RS02; p.271ff]. IVENA describes the idea that NFRs 
with their verification criteria being considered as very accurate in a project are 
collected in a structured data system, where developers of a new project can sys-
tematically search for and retrieve propositions for specified NFRs and their 
verification criteria for a project. A further possible cognate heuristic may provide 
the application of requirement patterns [RS02; p.337-385] (concerning patterns 
see ch. I.6.2.4). Requirement patterns intend to give support for identifying and 
documenting recurring requirement problems. The pattern structure includes 
requirements and its verification criteria. An interesting application of a require-
ment pattern, e.g., might be addressing the NFR 'access control' as pattern, as it 
has high degrees of recurring requirements such as demands for user authentica-
tion, password control or rights management. 

Both experience-based approaches may provide an interesting leverage to 
improve tackling the problem in the long run41, but they are no help for concrete 
situations, where such collected expert knowledge infrastructures are not yet 
present. Literature about software architectures theory proposes handling NFRs  
that are difficult to tackle by deriving concrete scenarios42 that are verifiable 

                                                           
40 In German: Integriertes Vorgehen zur Ermittlung nicht-funktionaler Anforderungen 

(Integrated Approach for non-functional requirements elicitation). The approach bases 
on collecting NFRs and other related information (e.g., testing criteria, test cases) 
specified in other (older) projects in a database repository ordered by quality topics. 
Now, the requirement engineer searching for a good specification of a NFR can re-
search the database for suggestions used in the other projects.  

41 It is interesting to note that both methods in some way can also be considered in the 
context of rationale management (see ch. II.9). In this context, both approaches could 
be seen as a way to collect information about a decision process, whose results are lat-
er reused in a new project. 

42 As an example, an ECU in an Automotive project contains the NFR: “The system must 
have good performance.”. Such an NFR is not testable, because it is too vague. How-
ever, the NFR can be used to derive the following concrete scenarios for the intended 
performance:  
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(verification criteria can be defined) [BCK03; p.78-95], [Bo00b; p.34ff], 
[PBG04; p.82ff], [Mo04; p.339, p.352]. 

Some REM theory proposes handling NFRs by transforming them into (ex-
pressing them through) several functional requirements [Pi04; p.99], [PKD+03]. 
As scenarios are closely related to the use case concept being a heuristic for re-
quirement documentation (see ch. I.5.4), it is very likely that both theories mean 
the same at this point. 

A further important point here to consider is how FRs and NFRs impose an 
influence on software design. In connection to SW architecture, Eeles [Ee05] 
claims the existence of 'architectural requirements': “An architectural require-
ment, in turn, is any requirement that is architecturally significant, whether this 
significance be implicit or explicit“. This implies at least that also requirements 
may exist with no relevance to the architecture. It turns out that the SW architec-
ture is hardly dominated by FRs. Instead, NFRs impose the main influence on the 
SW architecture [BCK03; p.72f], [PBG04; p.72], whereas FRs are then mainly 
con-sidered in the detailed design or the code. 

Concerning implementation, it is to note that the actual accomplishment of a 
requirement is better than the demand imposed by the requirement in order to 
guarantee it is actually fulfilled in any situation [HHP03; p.32]. This is especially 
the case, when it involves tackling NFRs, as it is more difficult to guarantee them 
for any situation (e.g., this is especially the case for performance requirements.).  

A further aspect to be considered in the context of requirements is that re-
quirements form the contractual basis for development [Eb05; p.18; p.268ff] (see 
also [BCM+08; p.139]). This issue is discussed in detail in ch. I.7.2.2. 

Last, but not least to mention, in order to have a high quality requirements 
specification, REM theory also has formulated a set of quality criteria each re-
quirement should fulfill. The following listing orients on Pohl [Po08; p.222 (*)], 
but the same (or, at least very similar demands) are listed in any book on REM: 

• Completeness: A requirement is complete if it is documented according to 
fixed criteria (e.g., templates) and if its content does not contain any gaps in 
relation to itself or in relation to other requirements.  

• Traceability: A requirement shall be traceable to its origin, its evolution (his-
tory), its realizations in the system (design, code) and its tests. 

• Correctness: The requirement is correct if the affected stakeholders 
acknowledge its correctness and need to be implemented in the system. 

• Unambiguity: A requirement must not allow any ambiguous interpretation. 
                                                                                                                                    
  (1.) “Function 1 must be performed within ... ms”. 
  (2.) “Function 2 must be performed within ... ms”. 
  (3.) ... 
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• Understandability: The requirement is understandable if its content is de-
scribed as simple as possible. 

• Consistency: A requirement is consistent if it does not contradict with any 
other requirement. 

• Testability: It must be possible to test a system whether it correctly fulfills a 
requirement or not. 

• Evaluated: The requirement's importance on the system to develop is as-
sessed and captured. 

• Actuality: The requirements must contain the current state of the project. 
• Atomicity: A requirement shall only describe one issue, fact, aspect or need. 

Equally as quality requirements exist for a requirement, the following quali-
ty demands can be derived for a requirements specification as a whole (see above 
for its description of meaning) [HDH+06; p.88]: 
• Correctness, 
• Unambiguity, 
• Completeness, 
• Verifiability, 
• Consistent, 
• Changeability 

 

I.5.2  Phases, Artifacts and Techniques in REM  

The field of REM is relatively new and no common understanding of REM has 
already condensed. Thus, a lot of publications and proposals for processes, arti-
facts and techniques exist [BHJ+10]. Since all three aspects are related to each 
other, this chapter tries to give a short introductory overview of these correla-
tions. However, since REM accompanies the whole development process and a 
high variety of establishments to different project situations exist, this chapter 
does not claim for completeness. It should further be mentioned that, due to the 
high variety of different project situations REM is employed, a full understanding 
of a common set of activities to be called a REM theory will most probably be 
never achieved. Vice versa, it is questionable if 'a common understanding' of 
REM is necessary or even useful, as SW projects vary in high degrees from each 
other (and concerning SysEng even a higher variety of disciplines and project are 
involved), where REM processes have significantly different appearances. 



I.5  Requirements Engineering and Management 41 

 
Figure 5-2  The Requirements Engineering framework defined by Pohl [Po08; p.39 (*)] 

 
However, some authors, such as Pohl [Po08], give a valuable structure for under-
standing the correlations in REM. Pohl [Po08], e.g., has developed his so called 
RE framework 43 (see fig. 5-2). 

                                                           
43 “The term RE-frameworks refers to generic models describing and structuring the 

requirement processes, artifacts, organizations, and roles, or combinations of these” 
[BHJ+10; p.6 (*)]. Birk et al. [BHJ+10] report that their working group could identify 
about 40 different RE frameworks. Their endeavors to compare these frameworks 
sparked the conclusion that “the landscape of RE-frameworks is currently still broadly 
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Pohl's framework [Po08] is divided into a core (middle block of fig. 5-2) 
and two crosscutting activities. 
The core44 consists of three major aspects: 
• No system is self-contained but has an environment it interacts with, there-

fore the systems context and its interactions are important for understanding 
the system itself. Pohl further differentiates four different kinds of contexts 
(for details refer to [Po08; p.39ff; ch.5]) emphasizing the importance of con-
sidering each. 

• The three core activities of RE consisting of requirement elicitation, re-
quirement documentation and gathering common agreement (resolving all 
conflicts – also called requirement negotiation45) between all stakeholders. 
This part also includes the often referred requirement analysis as character-
ized by Gerdom and Posch [GP04; p.64] as the activity of structuring, exam-
ining and prioritizing [PR09; p.129-134] the present requirements, where the 
requirement analyst closely works together with the customer and the archi-
tect (see also [BGK+07; p.130]).  

• The major requirement artifacts consisting of major goals, major usage sce-
narios46 (i.e. use cases) and solution oriented requirements the system shall 
accomplish. 
The crosscutting activities are: 

• Validation has the goal to find errors that occur in all three core aspects (for 
details refer to [Po08; part V]).  

                                                                                                                                    
scattered and fragmented. Correspondingly, demand for examination and structuring of 
this knowledge exist” [BHJ+10; p.7 (*)]. It should further be mentioned that Broy et 
al. in [BGK+07] try to define a so called reference model for REM processes most 
probably having a similar purpose as the RE framework idea. The author has decided 
to sketch Pohl’s framework, since it provides a relatively compact overview of the cor-
relations important to the author in this context. The reader more interested in a de-
tailed process setup, should also refer to [BGK+07] or [BHJ+10]. 

44 The author tends to name this core the actual RE activities. However, as mentioned, no 
common agreement on the terms has yet established on this field. 

45 The purpose of negotiation is to discover missing requirements, ambiguous require-
ments, overlapping requirements and unrealistic requirements. The result of the nego-
tiation process is a definition of the system requirements, which are agreed on by re-
quirements engineers and stakeholders [SS97]. 

46 Ambler [Am05] recommends that requirements should at first be analyzed in breadth 
(the set of feature shall be explored) and then later in depth (details of the features). 
Ambler there also refers to a speech of Jim Johnson, chairman of the Standish Group, 
at the XP2002 conference (see http://martinfowler.com/articles/xp2002.html (Access: 
2010/06)) claiming that up-front detailed RE and modeling can lead to 80% of rela-
tively unwanted functionality, whereas only 20% of the features are often used. 
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• Management involves for Pohl all planning, steering and control activities 
concerned with all three core aspects [Po08; p.46] (for details see [Po08; part 
VI]). Due to the importance of this part in this thesis this topic is dealt with 
in the following ch. I.5.3. 
One dimension not mentioned yet is the correlation between REM and the 

different development phases. As Pohl describes in [Po08; p.32], the former view 
on REM was phases-driven, i.e. REM was mainly part of early development 
phases involving several disadvantages leading to Jarke and Pohl’s [JP94] pro-
posal of continuous REM activities (as described in detail at [Po08; p.34-35]) 
during development activities.  

Today, continuous REM can be called the state of the art, meaning that REM 
are accompanying activities throughout the whole development life-cycle. 

I.5.3  Requirements Management 

Since the main subject of this thesis is a sub part of requirements management 
(RM), some extra words on RM shall better illuminate this context. RM is the 
activity of organizing, administrating and supervising requirements during the 
whole development process [TKT+07; p.274]. 

Rupp et al. [RS02; p.15] emphasize that RM establishes methods that enable 
the handling of unmanageable numbers of requirements in complex projects. 
Among others, it permits parallel and worldwide distributed work on require-
ments. 

Hood et al. define RM as “a set of activities which ensure that the require-
ments information is always up to date and can be accessed by all project staff 
that may benefit from it. In other words, requirements management integrates all 
relevant pieces of information from all the other systems engineering disciplines” 
[HWF+08; p.35 (*)].  

It should be mentioned that Hood et al. imply a different but interesting per-
spective on RM [HWF+08; p.29]. As Hood et al. define SysEng as a set of the 
processes project management, quality management, risk management, configu-
ration management, version management, test management, and change man-
agement (see fig. 4-1 in ch. I.4 [HWF+08; p.29]). 

Now, as Hood et al. call their book “Requirements Management – The inter-
face Between Requirements Development and All Other Systems Engineering 
Processes.”, they imply that RM is the interface connecting the processes togeth-
er. Thus, orienting on fig. 4-1 in ch. I.4 from [HWF+08; p.29], fig.5-3 shows 
Hood's view [HWF+08] as logical derived interpretation by the author. And RM, 
in fact, often uses techniques known from these mentioned management theories, 
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but uses them in the limited focus of managing belongings of requirements (indi-
cated by also referring RE in fig. 5-3). 

The fact that RM borrows much of its techniques from the other manage-
ment disciplines is not coincidental but directly derives from the fact that these 
are the fluent transition points to the other management disciplines in a way that 
these management disciplines then also make use of the results of REM. An ex-
ample for this fact is that requirements prioritization [Po08; p.527-544], [PR09; 
129-134] and conflict management [Po08; p.399-409] results performed as RM 
activities are results that directly influence project management and risk man-
agement. 

 

Figure 5-3  The view of Hood et al. [HWF+08] logically derived by the author. 

At first glance, this now seems to be a trivial insight, but, if it must be con-
sidered that consistency between the findings of these disciplines must be en-
sured in order to have trustworthy results of the different disciplines. This sheds 
light to one of the core activities of RM: Requirements traceability is intended for 
being the central means to achieve this consistency. 

I.5.4  Models in REM 

REM is usually accompanied by the usage of models helping to analyze the prob-
lem situation. These models are often referred as analysis models (AM) as they 
support analysis of found requirements in order to discover contradictions or 
inconsistencies thus indicating missing requirements and thus directly supporting 
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requirements elicitation. Design models are discussed separately in the chapter 
about design ch. I.6. 

According to Sommerville [So07; p.204], user requirements should be for-
mulated in natural language, since they need to be understood by humans being 
no technical experts. More detailed system requirements47, however, can be ex-
pressed in more technical ways.  

In this way, a widely used technique is to support documentation of the sys-
tem specification as a collection of system models or AMs. AMs can be catego-
rized as descriptive models, since their main goal is to describe the facts por-
trayed by the requirements. AMs can here be seen as a different view to the ordi-
nary specified requirements. In some projects the analysis model is part of the 
requirements specification in other projects it is a separate artifact. 

A special case is the so called use case driven approach (see [Co00]). Use 
cases describe usage scenarios of the product to develop. These use cases often 
consist of a relatively simple schematic drawing such as described by the UML48 
use case diagram in addition to a template based textual description of the use 
case (the UML only standardizes the use case diagram but formulates no concrete 
demands for the template). For further detailing of the use cases so called scenar-
ios are modeled, where in many cases one use case is described by several sce-
narios, e.g., being modeled by UML sequence diagrams. In this way, use cases 
can be seen as a kind of hybrid between a textual requirements specification with 
a seamless starting point for analysis with AMs. Use cases provide a good means 
for grouping the textual requirements through their use case template. However, 
Cockburn [Co00; p.28ff] remarks that use cases admittedly document and struc-
ture requirements, but this is only the case for a certain portion of the require-
ments (Cockburn [Co00; p.28ff] estimates one third). Thus, for example, details 
for external interfaces, data formats, business rules, complex formulas or NFRs 
are very difficult to cover. 

Originally, use cases have been intended to improve communication (i.e. 
understanding) between user domain experts of the customer not familiar with 
computer science and SW developers not familiar with the user domain. 

Before this, computer science oriented lingo was often used where under-
standability, however, was difficult for none-computer science specialists. 
Through use cases, SW developers are forced to be more geared to the language 

                                                           
47  In ch. I.7.2.2.1, the differences between user and system requirements are described 

and how they can be compared to the German concepts of 'Lastenheft' and 
'Pflichtenheft'. 

48  Refer to Booch's first hypothesis [ER03; p.25]: “Object model reduces communication 
problems between analysts and users”. 
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of the users. In this way, the language monopole as well as the critical faculties is 
left to the users. 

Due to these advantages, a better fitting of the developed system to the real 
needs of the users can be achieved. Correspondingly, the technique of eliciting, 
structuring and documenting requirements using the use case concept has suc-
ceeded in nearly all development areas except for purely technical systems 
[RS02; p.212f]. Such a case is the automotive domain, where technical textual 
requirements specifications in combination with formal specification models are 
preferred over use case approaches. A cause for this may be that at automotive 
system development, the language barriers described above do not exist in this 
form, because the customers are often equally accustomed to technical descrip-
tion languages as the developers are. 

Groß et al. [GDM+10] report an empirical evaluation result comparing use 
case specification technique with functional specification techniques usually used 
in the automotive industry. As basis for the comparison an “Automotive Door 
Steering Device” has been the target for specification. The authors came to the 
conclusion that the use cases approach lead to a more complete requirements 
specification as it discovered and covered more project goals. On the other side, 
the functional specification approach provided more specific and thus better un-
derstandable requirements for the developers. 

Concerning REM-techniques in the automotive domain, Weber and 
Weisbrod [WW02; p.23] emphasize: “Although most specification activities are 
still document-based, a growing number of specifications require complex mod-
els, such as executable analysis models, system and software design models, and 
HMI49 models”. Thus, in these cases often more formal domain specific lan-
guages such as state machines can be used. These languages have the advantage 
that through their better defined semantics more explicit content and content of 
higher information can be specified. For example, state charts have the following 
advantages compared to pure textual descriptions [Do04; p.317f]: 
• Precision: Due to the concrete formal semantics, misinterpretations are al-

most impossible. 
• Model generation: Due to its deterministic and complete semantics, an exe-

cutable requirements model or executable program code can be generated. 
• Verifiability: Through its mathematical semantics, early model analysis, sim-

ulation, or model execution is possible. 
In this way, such formal description techniques are used in combination with 

adequate tools (such as Matlab Simulink, Matlab Stateflow [Matlab] or ETAS 
ASCET [ASCET]) to analyze extensive parts of the functional requirements of an 

                                                           
49  Human Machine Interface 
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automotive system. These AMs can be used to simulate the behavior in early 
design phases as executable prototype. In later phases, these models can be used 
to directly generate the source code implementation. In this, way these AMs 
seamlessly also become DMs and the code but significantly avoid redundancies. 
As these techniques allow handling extended parts of the functional requirements 
often implying significant complexity in their interdependencies, these techniques 
can be a significant means to early reduce development complexity and quality 
risks. At the moment, however, these techniques are not capable of modeling a 
complete system. Thus, still significant parts of ECUs must be developed in con-
ventional system and software development techniques. If those techniques are 
then used, then design activities must additionally find ways to properly integrate 
these parts into the complete system (see ch. I.6.6.1 for a further discussion). 

Last but not least to mention, the analysis phase is generally difficult to han-
dle, because on the one hand, the problem and its accompanied requirements 
should be sufficiently understood and analyzed in order to avoid disapproving 
surprises or inadequate designs, but on the other hand, too extensive analyzes 
lead to unnecessary extra efforts and extensive redundancies necessary to main-
tain in later development iterations. Extensive analysis can lead to what Brown et 
al. call analysis paralysis50 [BMH+98; p.215-218], [Ec03] describing the fact that 
developers defer actions to be taken in order to perform more analysis coming to 
a point where they are stuck (see also remarks of Hatley et al. [HHP03; p.53] on 
criteria where and when to stop analysis and start with design). In summary, the 
maxim on analysis must be to model as much as it is necessary to achieve a better 
understanding of the system. As a result, any analysis method must take care of 
an adequate scalability of the method. This must also be taken into account when 
considering traceability to AMs.  

Concerning traceability in general, AMs must also be taken into account. 
The solution discussed here does not directly address this issue, but it well has 
two indirect links: 
1. The fact described above that parts of the FRs of automotive ECUs are de-

scribed by special tools allowing early AMs become seamless design models 
and then code sparks the need to consider this in the design process. This es-
pecially involves that design is often performed using different modeling 

                                                           
50 Brown et al. consider analysis paralysis as a management anti pattern [BMH+98; 

p.215-218] (the anti pattern concept is discussed in the course of pattern design theory 
ch. I.6.2.4). A slightly different explanation of analysis paralysis is provided by 
Conklin [Co06; p.8ff], who brings it in connection with wicked problems (see details 
in ch. I.6.2.2). According to him, “problem understanding can only come from creating 
possible solutions and considering how they might work” [Co06; p.11]. Thus, pure 
analysis might automatically lead to analysis paralysis.  
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tools in one project. This is described in more detail in ch. I.6. The solution 
discussed here to traceability also explicitly considers this in ch. III.16. 

2. Generally, the tool and methodology developed here (see part III) should be 
equally possible and valuable to apply for establishing traceability to AMs if 
these AMs are modeled in a modeling tool supported by the tool51 described 
here. In the following of this thesis, this is not explicitly discussed and may 
be part of later research. 

I.5.5  Separation between Requirements and Design 

SE and REM theory often propagate a clear separation between requirements 
specification and design (ch. I.6) meaning that the requirements must be formu-
lated design independently and must not anticipate the design. This shall ensure 
as much freedom in design as possible (e.g., see Hatley et al. [HHP03; p.252] and 
avoid “inextricably mixing up requirements and design” [HHP03; p.252(*)]). 

However, other research has shown that requirements cannot be defined 
completely design independent (see [Po08], [Nu01], [IBR+01], [PDK+02], 
[PKD+03; p.142], [Yo03; p.52]) demanding a “joint elicitation and specification 
of the problem and the structure” [PKD+03; p.142]. 

Young [Yo03; p.52] shows some examples why requirements seldom can be 
specified totally independently from the system (resp. SW) design: 
• Systems are often targeted for environments already containing other sys-

tems (the context). These surrounding systems have influence on the design, 
since the system must interact with them. Young speaks here of the surround-
ing systems constraining the design of the new system. 

• “For large systems, some architectural design is often necessary to identify 
subsystems and relationships. Identifying subsystems means that the re-
quirements engineering process for each subsystem can go on in parallel” 
[Yo03; p.52]. 

• Reasons as budget, schedule, or quality can raise needs to reuse existing 
components sparking influences on the system requirements and the design. 

• For systems designed in domains with strong external regulations (e.g., civil 
aircraft), approved standard (certified) designs may be necessary. 
Young [Yo03; p.52] calls these resulting restrictions design requirements or 

design constraints. In ch. III.19, the author uses the term design constraint in a 
similar notion, but the author also uses the concept to clearly separate require-

                                                           
51  For example, if a UML tool such as the supported UML-Tool Enterprise Architect is 

used. 
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ments from the customer and 'requirements' someway arising from previously 
made decisions about the solution (design decisions). This approach is supported 
by a taxonomy of both requirement types (ch. III.19). 

Pohl describes similar interactions between requirements and system archi-
tecture. He comes to the conclusion that stakeholders cannot specify detailed 
requirements without knowing the architecture [Po08; p.23]. As a consequence, 
he and Sikora sketch a process model [PS05; p.113-114] where different layers of 
requirements and design alternately interact. In [Po08; p.565-602], Pohl has fur-
ther evolved the COSMOD-RE (sCenario and gOal based System development 
methOD) process model being a dedicated REM process model for developing 
embedded systems according to a goal and scenario-based requirement elicitation 
techniques [Po08; p.565]. The method explicitly addresses a HW/SW-Co-design 
approach by defining requirements and design alternately at different levels of 
abstraction. The model seems to be independent but compatible with Pohl's RE 
framework (see discussions about fig. 5-2 (p.41) and fig. 5-5 (p.61)). The alter-
nating definition of requirement and design artifacts at different levels of abstrac-
tion rather resembles to the process models of SPICE or CMMI and is discussed 
in ch. I.7.3.2). The difference, however, lies in its dedication to REM and the 
explicit emphasis on goals and scenarios as requirement elicitation and specifica-
tion techniques. 

I.5.6  The Role and Nature of Requirement Change 

Who wants the world to stay as it is, does not want it to persist. 
Erich Fried (*) 

 
Lientz and Swanson [LS80] performed “a very widely cited survey” (“repeated 
by others in different domains“) [BR00; p.74] characterizing four different kinds 
of changes (see also [Kn01b; p.24]): 
• Adaptive: Concerned with changes of the environment (e. g. new HW), 
• Perfective: Concerned with changing functional and non-functional require-

ments, 
• Corrective: Fixing errors. Knethen distinguishes “application faults” result-

ing from incorrect requirement documents and “coding faults” resulting from 
incorrect implementation [Kn01b; p.24], 

• Preventive: Concerned with changing a system to prevent errors or to im-
prove the structure of the system for future problems; 
“Of these, the survey showed that around 75% of the maintenance effort was 

on the first two types, and error correction consumed about 21%. Many subse-
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quent studies suggest a similar magnitude of the problem. These studies show 
that the incorporation of new user requirements is the core problem for software 
evolution and maintenance” [BR00; p.74]. 

These findings are not surprising, since “requirement changes affect all ex-
isting system representations” [JL05; p.118]. Diverse factors causing require-
ments change exist (see [Po08; p.550f], [So07; p.195f], [JL05; p.120], [LW99; 
p.338]): 
• The problem(s) that the system is intended to solve changes due to changes 

in the project's environment (market, economic, political or technological 
reasons). 

• During project progress, evolving deeper understanding of the problem(s) to 
solve leads to new or changing requirements. 

• Interviewed stakeholders stating requirements often have implicit assump-
tions and knowledge (so called tacit knowledge [Po58], [Po66]; see ch. 
II.9.4.2). It is as essential as difficult to surface this knowledge. Due to the 
abstractness of SW and its behavior, this knowledge often cannot be surfaced 
until the stakeholders see first concrete versions of the SW not fulfilling the 
needs of their implicit assumptions and tacit knowledge [Po08; p.331].  

• The users change their minds due to better understanding of their needs or 
new users entering the scene. 

• The environment the system interacts with changes (e.g., new HW, new 
processes, new and other systems). 

• A new release of the system lets users discover new needs and new usage 
ideas. 

• Conceptual changes due to discovered none-sustainability of used architec-
tural concepts or technologies impact requirements [HWF+08; p.176]. 

• The project's situation concerning costs respectively budget levels, resource 
situation (staffing) or schedules changes [HWF+08]. 
Leffingwell and Widrig [LW99; p.339] also refer to development-internal 

problems causing requirement changes: 
• The developers “failed to ask the right people the right questions at the right 

time during the initial requirements-gathering effort” [LW99; p.339]. 
• The project failed to establish “a practical process to help manage changes” 

[LW99; p.339]. If processes try to force stable requirement 'freezes', a 
change backwater can lead to exploding situations between users and stake-
holders causing stress and rework. On the other side, uncontrolled changes 
lead to chaotic, unclear project states.  
Due to the high impact requirement changes have on all subsequent process-

es and artifacts, changes should be avoided, if possible. Therefore, acquiring as 
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stable set of requirements as early as possible in the project is one of the central 
goals and paradigms of REM. A diversity of heuristics and techniques exists to 
deal with this issue. Hood et al. [HWF+08] list the following factors, where a 
structured REM process can reduce the risk of later requirement change: 
• Forgotten requirements, 
• Incorrect respectively contradictory requirements, 
• Ambiguously formulated requirements leading to misunderstandings; 

However, some heuristics in REM as “ask the right question to the right 
people at the right time” [JL05; p.121] often are a matter of experience, intuition 
and luck not controllable beforehand. Generally, another not yet exactly men-
tioned aspect the author wants to point out is that, unless the users see a concrete 
implementation of the system, talking about requirements and the intended sys-
tem is always very abstract for the stakeholders and each stakeholder has a cer-
tain picture in his (her) mind (s)he can only insufficiently express52. As soon as a 
concrete solution is visible, stakeholders can often more easily express the dis-
crepancy between the concrete solution and the picture in their head leading to 
the discovery of new requirements or the need for changing requirements.  

Firstly, this is closely connected to the term “unknowable requirements” 
stated by Young [Yo03; p.49ff] expressing requirements not findable at project 
start (see ch. I.5.1). Secondly, it describes the importance of getting feedback 
from the stakeholders as early as possible in order to achieve a stable set of re-
quirements as early as possible. Prototyping53 is here the most frequently em-
ployed technique (see [RS02; p.121] for a detailed description of different availa-
ble prototyping techniques). However, techniques as prototypes have its limita-
tions and can only alleviate the requirement change problem.  

“Requirements change from the point in time, when they are elicited until 
the system has been rendered obsolete. Changes to requirements reflect how the 
system must change in order to stay useful for its users and remain competitive 
on the market” [JL05; p.120]. Or expressed in Lehman's 'first law' of software 
evolution ([Le96], [LRW+97]): “A system must be continually adapted, or it will 
be progressively less satisfactory in its environment” [LRW+97; p.21]. 

                                                           
52 Boehm [Bo00a] calls this the IKIWISI (I’ll Know It When I See It) users. 
53 This also refers to what Enders and Rombach call Boehm's first law ([ER03; p.17]): 

“Errors are most frequent during the requirements and design activities and are the 
most expensive the later they are removed.” and the close connection to Boehms sec-
ond law: “Prototyping (significantly) reduces requirement and design errors, especially 
for user interfaces”. 
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Lehman's 'second law'54, when a “system evolves, its complexity increases 
unless work is done to maintain or reduce it” [LRW+97; p.21] refers to the expe-
rience that “evolving software becomes more complex, and extra resources are 
needed to preserve and simplify its structure” [Ni04; p.276]. Refactoring theory 
[Fo99] can be seen as today's key answer to address this problem. Thus, changes 
are often initiated by requirement change [JL05; p.118], but also other sources for 
change exist. One of these sources, for example, may be rising complexity or 
design erosion sparking the need for refactoring to increase quality of an artifact 
as preparation for later change needs.  

Taking both laws into account, Nierstrasz deduces that “requirements are not 
the only input to our development process, but that legacy artifacts also constitute 
an important input. Furthermore, as the artifacts evolve, requirements will also 
evolve in a never ending cycle … and, as complexity increases, quality will de-
grade and productivity will decrease” [Ni04; p.276]. Nierstrasz here implicitly 
also refers to two further laws of Lehman: 'Law 6' outlines that software always 
underlies a continuing growth of functionality (see [Le96; p.111] for a detailed 
description and the differences to the 'first law'), whereas 'law 7' states that evolv-
ing software faces “declining quality unless rigorously maintained and adapted to 
a changing operational environment” [Le96; p.111]. 

Changes always imply high deterioration risks of the involved artifacts 
[JL05; p.120]. These risks can be diminished by a controlled change management 
process [JL05; p.120]. Diverse suggestions for change management processes 
exist (see ch. I.7.2.7 for a change management process definition in SPICE). 
Leffingwell and Widrig [LW99; p.341-347] present a “framework for change” 
presenting core factors that must be considered in order to ensure a proper work-
ing change management process (see also comments in [JL05; p.121]): 
• Plan for change: involves that the project's stakeholder must be acknowledge 

the fact that changes occur and are necessary and thus must be open for 
change. 

• Baseline requirements: at certain development states, the current state of the 
requirements should be baselined. Subsequent changes can thus be compared 
with this 'stable version'.  

• A single channel: ensures that no requested changes are forgotten and proper 
planning (including the decision whether to perform or not) has been per-

                                                           
54 From his research starting in 1968 till the late nineties, Lehman (cf. [Le96], 

[LRW+97]) identified all together eight laws that evolutionary software (he calls them 
E-type software) underlies. Only the important subsets for this discussion are referred 
here, as the other laws are difficult to discuss without the proper context leading to ex-
tended distraction away from the scope of this discussion. 
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formed before implementing the change. In larger projects, often a Change 
Control Board (CCB) [PR09; p.144f] [VSH01; p.184f, p.216] performs this 
action. A good description on details about a CCB such as how to be orga-
nized, statutes, involved stakeholders, etc. are provided by Wiegers [Wi05; 
p.315-327]. 

• Change control system: collects and administers change requests “allowing 
the stakeholders to track and assess the impact of changes” [JL05; p.122] 
(see ch. II.10.3). 

• Manage hierarchically: shall ensure changes are introduced top-down avoid-
ing that changes are introduced into code neglecting potential effects on re-
quirements, design artifacts and tests55. 
This framework for change is more a collection of principles (heuristics) 

leaving open the actual change process. Different proposals of change processes 
(see, e.g., [Po08; p.545-560] [RS07; p.426-434], [HWF+08; p.175-191], [Kn01b; 
p.27-29], [So01; p.534-542], [HDH+06; p.213-219], [MHD+07; p.160-168], 
[Wi05; p.305-327]) exist “with varying levels of detail and explicitness” [JL05; 
p.122]. In most cases, however, details on how to perform these processes in 
practice are mostly left out [JL05; p.118]. Here, the requirement change man-
agement process of Wiegers [Wi05; p.305-327] is an exception as it provides 
checklists [Wi05; p.322-323] for developers to apply directly in practice.  

The concrete implementation of a process should always underlie the specif-
ic individual project situations (see [HWF+08; p.190], because project individual 
factors in most cases influence the change management process)56. Later, ch. 
                                                           
55 Knethen [Kn01b; p.24] makes here a different distinction. She claims that perfective 

changes and corrective changes concerning “application faults” should be introduced 
top-down, since affecting the whole system. Whereas coding faults should be intro-
duced bottom-up starting with the artifact the fault was detected and ending with the 
artifact being the source of the fault. The author tends to the opinion that different 
kinds of changes may include different strategies. Knethen’s proposal leaves open the 
question what to perform with adaptive changes and preventive changes. The author 
thinks, adaptive changes are equally requirement related as perfective changes and 
should be introduced top-down, whereas preventive changes may be more a matter of 
design or coding and should be introduced at the abstraction level they have their first 
occurrence (e.g., a simple if in the code ensuring robustness to further changes is very 
low, whereas framework-like patterns (ch. I.6.2.4) for a component to ease later 
changes is more an issue of design).  

56 Of course, such a process should be accompanied by a certain set of constraints and 
orders from the strategic organization (e.g., company guidelines) the project is embed-
ded in. Moreover, also process standards as SPICE and Automotive SPICE (see ch. 
I.7) outline a change management process (SUP.10, see ch. I.7.2.7) with a set of con-
straints for the implementation of a SPICE conforming change management process.  
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I.7.2.7 highlights the essential demands of the development process standard 
ISO15504 for a change management process. 

An essential foundation of any change management process is the need to 
estimate the impact of a change. Impact analysis theory tries to provide the essen-
tial principles necessary for a structured approach on change impact estimation 
(ch. II.10.3). As ch. II.10.3 shows, requirements traceability is a central means 
for most impact analysis concepts.  

Practice, however, shows that changes seldom have the small impact they 
are initially believed to have [Wi05; p.305], [JL05; p.117]. A study by Lindvall 
and Sandahl [LS98] suggests that the impact of most changes is underestimated 
by a factor of three.  

Boehm and Turner indicate that change also is connected to a pareto distri-
bution [Pa1897] meaning that 20% of the changes drive 80% of the costs as they 
have “the most system-wide impact” [BT04; p.219].  

In the experience of Reißing, up to 80% of change effort is caused by cor-
recting wrong design decisions [Re02; p.1] (also cf. [Mo04; p.90]). Lehman 
[Le96; p.110] emphasizes that many of the unpredictabilities about changes are 
related to what he has called the “software uncertainty principle” [Le89] describ-
ing the fact that assumptions upon which design decisions depend on can be 
implicit or explicit to developers, but both kinds can get invalid due to changes.  

In the author's opinion, the connection between these statements lays in the 
fact that design decisions are usually taken with pending uncertainty of incom-
plete requirements. Later, new requirements and requirement changes cause sig-
nificant numbers of design decisions to get invalid57. Thus, changes often cause 
the adaption of significant aspects of design decisions taken before. When these 
decisions have a far reaching influence (e.g., system wide scope), change effort 
and risks are correspondingly higher leading to the pareto observation of Boehm 
and Turner [BT04; p.219]. As a consequence, the author is convinced that impact 
estimations must find a way to adequately include decision information in order 
to achieve better results. This, again, is especially important for tackling the deci-
sions involved in the 20% causing 80% of the effort.  

However, estimating the possible impact of a change is not the only crucial 
point. Once the decision has been made to perform a change, the change must 
also be introduced consistently into all affected artifacts. This can be called con-
sistency management (cf. [BCM+08; p.121f]). Here again, the identified impacts 

                                                           
57 In the author's experience, design decisions often do not get directly invalid by one 

change. It is rather a creeping erosion caused by several changes. Correspondingly, the 
author finds the term architectural erosion used in some design literature very to the 
point. 
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through impact analysis guides the way to ensuring that no affected part is for-
gotten. 

Another aspect to consider is that requirement change can be foreseen to a 
certain degree. Knethen [Kn01b; p.40], e.g., proposes that the change probability 
of a requirement can be estimated and documented beforehand (also cf. ch. 
II.10.4.2.1). With this information at hand, designers could design extra flexibil-
ity mechanisms for parts influenced by requirements with high change probabil-
ity. In the author's opinion, such strategies are usually done informally by design-
ers during design, because designers often try to keep parts flexible, where their 
intuition tells them to expect later changes. 

In summary, requirement change is a matter of fact and will not be avoidable 
(ch. I.5.6). Further, the rapidity of change has continuously increased [BT04; 
p.149] and, thus, probabilities of further growing requirement changes are very 
high. One factor in this consideration is that the role of software has changed 
over the years. In the early times, software was used to automate activities (e.g., 
type writing by word processing) or replace other solutions (e.g., mechanical 
steering of motors by electronic steering), because software provided certain 
advantages. In these cases, the scope of these software solutions was relatively 
well-defined by the solution to replace [Po08; p.32].  

Additionally, it is to mention that these replaced solutions often provided 
concrete real world user experience, whereas software often provides very ab-
stract experiences to users58. In opposition to this, most today's projects aim to 
create innovation basing on earlier created software [Po08; p.32]. In these cases, 
definitive knowledge about the needed outcome of a solution is exorbitantly more 
vague leading to significantly increasing rates of requirements changes. 

I.5.7  Traceability in the Context of Requirements   
 Management 

The IEEE Standard Glossary of Software Engineering Terminology (cf. [IEEE–
610; p.78]) defines traceability by the following two definitions: 
1. “The degree to which a relationship can be established between two or more 

products of the development process, especially products having a predeces-

                                                           
58 For example, a mechanical steering device can be opened and its mechanics can be 

analyzed in a very definitive way, but a SW based ECU replacing the mechanical 
steering is very difficult to analyze in an equally definitive way. Gerlich and Gerlich 
[GG05; p.91] describe that SW in comparison to HW, where problem are discovered 
relatively easily, rather has a characteristic of a gas or chemical. 
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sor-successor or master-subordinate relationship to one another; for example, 
the degree to which the requirements and design of a given software compo-
nent match. See also: consistency”. 

2. “The degree to which each element in a software development establishes its 
reason for existing; for example, the degree to which each element in a bubble 
chart references the requirement that it satisfies”.  

The earliest provided definition the author could find is made by the 
IEEE830-1984 ([IEEE830-84]59): “A software requirements specification is 
traceable, if (i) the origin of each of its requirements is clear and if (ii) it facili-
tates the referencing of each requirement in future development or enhancement 
documentation”. 

Currently, the definition of Gotel and Finkelstein “has become the common 
definition of requirements traceability” [Pi04; p.92]: “Requirements traceability 
refers to the ability to describe and follow the life of a requirement, in both a 
forwards and backwards direction (i.e., from its origins, through its development 
and specification, to its subsequent deployment and use, and through all periods 
of on-going refinement and iteration in any of these phases)” [GF94]. 

In other words, the basic idea behind requirements traceability is to describe 
and track a requirement from its first occurrence (its origin) to all further consid-
ered points (design, code, tests) [Pi04; p.92].  

Reading this outline of traceability concept, the ingenuous reader may grasp 
a feeling that traceability is very intangible and rightful concerns about the use-
fulness may arise. 

In fact, traceability mainly gathers its right for existence by two factors: 
1. Consistency gaps arise between different artifacts ([Lin94], [Kn01b], [Eb05; 

p.138f]). Traceability information can be seen as bridge between these gaps. 
2. The inevitable fact of requirement change. 

Point one refers to the problem that different artifacts are not completely 
consistent to each other. Chapter II.10.2 explains this in more detail. 

As already described in ch. I.5.6 above, the second point concerns with the 
problem that requirement change is inevitable, but possible to handle if properly 
managed. In the authors view, the key issue about proper requirement change 
management deals with identifying the actual impact of a change as accurate and 
as early as possible. Such attempts are called impact analysis (IA) and are de-
scribed in detail in ch. II.10.3. When a change management process such as de-
scribed in ch. I.5.6 is used, IAs provide the necessary information for estimating 

                                                           
59 Now replaced by [IEEE830-98] – a good description of the standard is provided by 

[Sch00; p.89-101]. 
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the effort of the change. If the decision was positive for implementing a change, 
the IA supports the developers in consistently implementing the change60. 

I.5.7.1  Traceability in Different Aspects of Development 
Activities 

Traceability can involve different aspects of development activities. For a better 
distinction of these aspects, different terms related to the considered aspects exist. 
The following description will outline these different aspects and explain the 
terms used in relation to these aspects. 

At first to mention, Gotel and Finkelstein [GF94] defined the terms pre- and 
post-requirements specification (Pre-RS and Post-RS) traceability: 
• “Pre-RS traceability refers to those aspects of a requirement's life prior to its 

inclusion in the requirements specification” [GF94; p.1] (see also [Pi04; 
p.93]).  

• “Post-RS traceability refers to those aspects of a requirement's life that result 
from inclusion in the requirements specification” [GF94; p.1] (see also 
[Pi04; p.93]).  
Pre-RS is useful, because it preserves the original origin of the requirement. 

In case a change of a requirement comes to discussion, the project members 
know which documents or stakeholders they should consult before deciding to 
change the requirement. 

Post-RS is useful to get the direct implementations (e.g., design, or code 
files) or tests of the requirement. This can be the starting point for an impact 
analysis. 

The terms forward and backward traceability are closely related to this. 
They describe the direction of the established traceability (cf. [GF94], [GF95], 
[Wi95], [Pi04]): 
• Forward traceability: means following the traces in direction to later arti-

facts (as, e.g., from the requirements to design or test artifacts). 
• Backward traceability: means following the traces in direction to earlier 

artifacts (e.g., from the requirements to its source (a person, customer re-
quirement, institution, law, standard, meeting protocol, etc.)). 

                                                           
60 In other words: Not overseeing (resp. forgetting) an impacted location. As Boehm has 

already pointed out in the early 80ies [Bo82; p.40], problems discovered in late devel-
opment phases (e.g., during testing phase) are significantly more expensive to fix and, 
thus, finding and fixing all impacted changes at the beginning is crucial to project suc-
cess. 
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Figure 5-4  Overview over different traceability terms oriented on Brcina [Br07a; p.4] 

Forward traceability is useful when an impact analysis (see ch. II.10.3) of a 
proposed change is made, since it helps to find all impacts of the change. 

Backward traceability again refers to the basic reason for the existence of 
the item in the development process. In case of an impact analysis for a proposed 
change, going back to all reasons for existence of an item helps to ensure the 
change conforms to all its needs, which ensures consistency. 

Both concepts sound similar, but they are not the same. Knethen [Kn01b; 
p.46] provides a good description of the differences: “Forward and backward 
traceability does not look at traceability from the perspective of a certain docu-
ment in the way that Pre-RS and Post-RS do. Forward traceability describes 
tracing documentation entities to realization documentation entities on succeed-
ing abstraction levels, whereas backward traceability describes tracing documen-
tation entities to source documentation entities on preceding abstraction levels”.  
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Forward traceability can also mean tracing a design element to its realiza-
tion in code and backward traceability vice versa; whereas Pre-RS and Post-RS 
traceability are limited to the perspective of the requirements specification (see 
fig. 5-4). 

In the literature, an early agreement (cf. [RE93], [GF94], [Kn01b; p.46]) has 
arisen that traceability should be bidirectional. In other words, traceability 
should combine both forward and backward traceability and they should be pos-
sible at the same time. 

When it comes to relationships of items within an artifact or between objects 
in different artifacts, the terms vertical and horizontal traceability are used. Un-
fortunately, the terms are used by different authors with different meanings. 

The following definition seems to origin from Ramesh and Edwards [RE93]. 
It seems to be preferred in literature (see [Li94], [Br07a], [Kn01b; p.43]): 
• Horizontal traceability is the possibility to trace dependencies of an item to 

other artifacts or models.  
• Vertical traceability is the possibility to trace dependencies of an item within 

one artifact or model.  
Contrary to this, Bohner [Bo91] – probably orienting himself by the water-

fall model – defined the meanings in the exact opposite direction to the former 
definitions. Horizontal traceability at Ramesh and Edwards is vertical traceabil-
ity at Bohner and vertical traceability at Ramesh and Edwards is horizontal 
traceability at Bohner (also cf. [Kn01b; p.41-43], [Li94; p.17]). With the adop-
tion of the process standard Automotive SPICE61 (A-SPICE), this problem of 
confusing the terms has additionally increased, since A-SPICE again provides 
definitions of horizontal and vertical traceability with a deviating semantics to 
the ones introduced above (see ch. I.7.4 for details).  

Due to these incompatible usages of the terms horizontal and vertical trace-
ability, the author prefers to avoid these terms in the following. Pinheiro has 
avoided these terms by using the terms inter-requirements traceability for tracea-
bility relationships between requirements and extra-requirements traceability for 
relationships between requirements and other artifacts [Pi04; p.95]. These terms 
seem more adequate. At the moment, however, traceability is seen beyond the 
scope of requirements (e.g., there also exists traceability between a design model 
and its representing source code). Correspondingly, the author prefers to use the 
terms intra-artifact traceability for relationships within one artifact and extra-
artifact traceability, instead of the misleading horizontal and vertical traceability. 

                                                           
61 Automotive SPICE is a domain specific adaptation of the general SPICE standard. 

Both standards are described in detail in ch. I.7. 
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Traceability also has a temporal dimension, meaning requirements change 
during projects and thus also traceability relations may change. Recording and 
retrieving this history is also a necessity in requirements traceability. This aspect 
is called evolutionary traceability ([Br07a; p.4], [Po08; p.509]). For more infor-
mation on traceability and configuration management the author recommends 
reading [HWF+08; p.114ff], [Kn01b; p.45], [Li94; p.20]. 

In connection with his RE framework (see also fig. 5-2 (p.41), Pohl [Po93], 
[Po96], [Po08; p.42ff] also provides a model describing the evolutionary trace of 
the RE process within three dimensions (see three axes in fig. 5-5): 
• “The specification dimension deals with the degree of requirements under-

standing at a given time. ... Focusing on this dimension, the aim of RE is to 
transform the operational need into a complete system specification through 
an iterative process of definition and validation (e.g., analysis, trade-off-
studies, prototyping)” [Po93; p.280]. 

• “The representation dimension copes with the different representations (in-
formal and formal languages, graphics, sounds etc.) used for expressing 
knowledge about the system” [Po93; p.281]. 

• The agreement dimension “deals with the degree of agreement reached on a 
specification. At the beginning of the RE process each person involved has 
its own personal view of the system. Of course, few requirements may be 
shared among the team, but many requirements exist only within personal 
views of the people, e.g., stemming from the various roles the people have 
(system analyst, manager, user, developer etc.)” [Po93; p.283]. In the further 
project progress, a specification emerges with rising agreement between the 
team members. 
A RE process in a development project starts at a certain initial stadium (ini-

tial input) and then meanders within these three dimensions, until it reaches the 
desired output (fig. 5-5). The RE framework is interesting in the context of trace-
ability as traceability relations can be involved in any of the three dimensions.  

Ch. II.10 discusses the different dimensions of the RE framework in connec-
tion with traceability. 
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Figure 5-5  The three dimensions of the RE framework [Po93; p.284], [Po08; p.42] 

I.5.7.2  Traceability as an Issue of Quality 

Currently, due to the above outlined significant support potential62 traceability 
can offer a project, as outlined above, requirements traceability is seen more and 
more as decisive quality issue of processes for developing safety-critical systems. 
This is also reflected by new process standards putting more and more emphasis 
on requirements traceability as seen in SPICE, Automotive SPICE, CMMI, and 
IEC61508 (cf. ch. I.7). 

In many projects employing one of these standards, the customer requests 
the obedience of the standard as a requirement. As already discussed in ch. I.5.1, 
these requirements for the development process can be seen as nonfunctional 
requirements. Since this nonfunctional requirement also includes certain demands 

                                                           
62 In the following chapter, the author will show that this is in fact at first only a potential 

not necessarily gathered by most implementations of traceability. 
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for requirements traceability, requirements traceability can also be seen as a 
process related nonfunctional requirement for a project63. 

In Automotive SPICE, discussions have been sparked, whether traceability 
should even have the status of a separate support process (cf. ch. I.7.4). As trace-
ability involves many artifacts of other engineering disciplines apart from re-
quirements and also traceability between none requirement items and artifacts is 
already the case (e.g., traceability between design and code), it may be even 
possible that traceability further dissects from the REM scope becoming a more 
exceptional position as an overall management process. 

I.5.7.3  The Potential Uses of Traceability 

The following listing summarizes the potential uses of the traceability concept 
(also cf. [Wi05; p.332f]): 
• Impact analyses (IA) of changes are one of the most important uses of Post-

RS and inter-requirements traceability (see ch. II.10.3) since it determines 
the effects (items to change, efforts and costs) of the change on other re-
quirements and all subsequent requirement artifacts. It has also some im-
portance in Pre-RS traceability since it must become clear whether these 
changes (especially changes of requirements effecting of former changes of 
requirements) are still conforming to the original needs of the requirements' 
originators. 

• Pre-RS traceability supports project planning. The relevance of a require-
ment and thus its prioritization is often determined by the importance of the 
source of the requirement. It is even possible that found requirements are 
considered irrelevant, because the originating stakeholder is not one of the 
primary target stakeholders. 

• Traceability helps that all found requirements are adequately considered in 
all subsequent activities of design, code and testing64. Missing traceability 
links of a requirement indicate that it may be forgotten or that certain arti-
facts have not yet developed. In this case, traceability also gives important 
indications about the status of a project [Wi05; p.333].  

                                                           
63 See also [RJ01; p.59]: “Requirements traceability has been identified in the literature 

as a quality factor – a characteristic a system should possess and include as a nonfunc-
tional requirement”. 

64 As shown in ch. I.7, this is even also concerning lower level requirements specifica-
tions, when REM-processes are performed at different levels of abstraction. 
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• Traceability helps to improve the consistency of all development artifacts by 
making more interdependencies explicit. 

• Explicit traceability relationships help in later phases of maintenance, espe-
cially when the original developers are staffed into a new project and thus 
different developers must perform the maintenance effort [Wi05; p.333]. 

• In the same way, risks or detrimental effects caused by important developers 
leaving a company are diminished because parts of their knowledge about 
the connections within the project are kept in the traceability information 
[Wi05; p.333].  

• The traceability concept also includes the evolutionary aspect of require-
ments helping to reproduce older development situations of the project, if 
needed. 

• Traceability can be used to fulfill certain certification criteria. This is espe-
cially important in the field of safety-critical systems, where a certain process 
maturity must be proved (see ch. I.7). 

• Traceability can be used as a proof in law suits. This fact is especially im-
portant for safety-critical systems to ensure that, if an accident with fatal 
consequences occurs the developers can prove they did not act carelessly.  

• Present traceability information can also be an important help for reverse 
engineering or integration of legacy systems. 

• In a similar direction, traceability information can also help in decisions 
about the reuse of components or systems in new projects [Wi05; p.333].  

• Last but not least, traceability can improve testing. Firstly, the knowledge of 
which tests cover which requirements helps to avoid unnecessary redundant 
tests. Secondly, traceability can help to identify causes for problems found in 
tests because through the traceability connections between tests, require-
ments and design (resp. code) the probable code candidates causing the prob-
lem can be easier identified. 
Since the further thesis mainly concerns itself about traceability to design, 

the specific uses of traceability in the context of design are now listed again (cf. 
[HDH+06; p.94]): 
• Ensure adequate consideration of all requirements in the design(s) (and thus 

on the resulting system resp. SW). 
• Support for assessing the impact of requirement changes on the design (IA). 
• Support for consistent implementation of a requirement change at all affected 

places (previously identified by an IA). 
• Support for verification procedures: It is easier to track which requirement is 

relevant for which SW module and thus must be considered by implementa-
tion and testing. 
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I.5.8  Deficiencies of Today's REM Practices 

At the end of this chapter, it is to say that REM such as all development method-
ologies do not provide a “silver bullet” [Br87]. The following problems may be 
most critical issues of today’s REM methodologies: 
• No clear definition of “best practice” exists [BGK+07; p.131]. Thus, accept-

ed reference models are missing [BGK+07; p.131]. Solution attempts for this 
shortcoming are provided by Broy and Geisberger ([BGK+07], [Ge05]), or 
Pohl [Po08].  

• Requirements are often experienced as poorly documented, too solution 
oriented, incomplete, inconsistent, not implementable and not scalable 
[BGK+07; p.131]. In the eyes of Sousa and Castro, most development ap-
proaches lead to requirements that are specified “in a scattered and tangled 
fashion” [SC04; p.350]. This opinion leads them to propose using use cases 
in combination with a NFRs framework to systematically identify and docu-
ment requirements [SC04]. 

• Available tools are ineffective, offer only very general concepts, are too 
implementation oriented, require high administrative effort and offer low so-
phisticated visualization [BGK+07; p.131]. 

• No homogeneous approaches and communication media exist between prod-
uct management, research and development, marketing and distribution 
[BGK+07; p.131]. 

• Frequent and late requirement changes are unavoidable and are often – espe-
cially in sequential processes – not sufficiently handled [BGK+07; p.131]. 

• According to Pohl [Po08; p.32f]65, requirement elicitation has become more 
difficult, because today's systems are built on formerly developed systems. 
Traditionally, it was easier to identify the real needs of a system to be devel-
oped up-front, because the goals mainly targeted to automation or partial au-
tomation of manual processes, where the workers had concrete experiences. 
Thus, the processes were deeply understood. After most of these processes 
have been already automated, today's development goals often aim for im-
proving already automated processes or combine them in complete innova-
tive ways. As computerized systems hide the actual complexity and business 
logic from the users and only provide abstract feedback (e.g., via human ma-
chine interface controls), today's workers only have partial, abstract experi-
ences of these processes. Pohl [Po08; p.32f] also explicitly references to 

                                                           
65 The reader further interested in this topic may consult Pohl [Po08; p.32f], who men-

tions a few further aspects on this topic. 
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problems in the automotive industry, where long-running research endeavors 
develop new complex systems in research environments (e.g., ABS or ESP66) 
that must then be integrated into a real-life car system environment already 
containing other complex computer-based ECUs. 

• In a similar direction, Boehm and Turner [BT04; p.149] argue that up-front 
specification techniques, as required by traditional RE, work quite well for 
batch, sequential, non-interactive applications of the 1960 and 1970 but have 
dwindling significance for applications with interactive user interfaces, be-
cause these applications involve complex, nonlinear combinations of differ-
ent user interactions. In the converse argumentation, as embedded systems 
often do not have significant user interfaces, up-front specification may be a 
good means for embedded systems development. On the other side, embed-
ded systems are often embedded into complex environments requiring signif-
icant complexity of the ECU's control mechanisms, which might also be dif-
ficult to specify up-front. 
 
 

I.6  Design in Systems and Software 
Development 

Although in many fields designers quite frequently make inventions, 
designing and inventing are different in kind. 

Invention is the process of discovering a principle. 
Design is the process of applying that principle. 

The inventor discovers a class of system – a generalisation – 
and the designer prescribes a particular result, 

object, and source of energy he is concerned with. 
[Py78; p.21] 

 
“Design is an activity that generates a proposed technical solution that demon-
strably meets the requirements. In that process, we simulate (mentally or other-
wise) what we want to make or do, before making or doing it. We iterate until we 
are confident that the design is adequate” [ER03; p.34]. 

                                                           
66 Antilock Braking System and Electronic Stability Control 



66 I. General Context and Theories 

Most67 current state-of-the-art SysEng and SE theories assume that after the 
requirements specification has reached a certain quality degree and before the 
system (resp. SW) is implemented, a certain phase of design takes place.  

This chapter gives a short introduction to this topic. However, design is a 
very complex topic and this thesis is not really concerned with a detailed design 
theory in the usual sense that it discusses a way how to design a specific type of 
system or a specific design language as the Unified Modeling Language (UML). 
In fact, the thesis rather aims at letting open a specific approach for design and is 
more interested in design at a higher meta-level. In this way, the author hopes to 
identify general principles and techniques that give way to identifying require-
ments a requirements-to-design-traceability-tool must obey in order to provide 
value for designers. Such an attempt seems legitimate in the view of the author, 
because traceability information and a tool aiming at traceability is per se a tool 
working at a higher meta-level. 

Nevertheless, only analyzing a higher meta-level can lead to soft, blurry and 
unspecific talks. In this way, a certain 'grounding' shall be achieved by references 
to more concrete techniques or facts, where and whenever it is appropriate. 

At first, this chapter will introduce different phases of design in course of 
applying SysEng and SE. This in mind, the next chapter shall widen the focus by 
introducing some very general theories (or even to be called philosophies) about 
design that describe important aspects of design and have led to certain trends in 
SysEng and SE design theory, which are observable today. At the end, the author 
will make a short reference to some design practices in the automotive sector in 
order to identify further issues that a design traceability solution should addition-
ally consider to provide uses for automotive projects. 

I.6.1  Different Design Phases in SysEng and SE 

During development of ECUs, different design phases occur. In this context, 
three different phases of design are of concern: 

                                                           
67 In fact, some agile methods such as eXtreme Programming [Be00a] seem more to 

propagate a kind of architecture evolving out of the development. The heuristics is to 
design the code [Be00a, p.57] as simple as it can fulfill all currently planned require-
ments (here often called stories, features or use cases). Since it is not sure that future 
requirements are really implemented, the design shall not care for these requirements. 
For new features really decided to implement, the old code is refactored [Fo99] until it 
also fits with the new requirements. This does not mean no design is present. It is more 
that the design implicitly evolves during programming – also called emergent design 
[St04; p.65f]. 



I.6  Design in Systems and Software Development 67 

• System design in the context of SysEng (ch. I.4), 
• Software architecture as kind of high level design of the SW during SE, 
• Detailed software design; 

I.6.1.1  System Design 

During SysEng phase (ch. I.4), the system design (i.e., system architecture) cares 
for the general outline of the system. Douglass brings this to the point [Do04; 
p.37-38]: “In multidisciplinary systems development – that is, those include 
software, electronic, mechanics, and possible chemical aspects – the system ar-
chitecture is constructed early and system-level requirements are mapped down 
onto the various aspects of the architecture”. So, a major concern is to adequately 
partition the complete system into the parts concerned by several engineering 
disciplines (SW, HW, mechanics …), to outline the interactions and interfaces 
between those parts and to map (partition) the overall system requirements to the 
specific parts. Douglass [Do04; p.29] names the following primary activities in 
SysEng:  
1. “Capturing, specifying and validating the requirements of the system as a 

whole”, 
2. “Specification of the high-level subsystem architecture”, 
3. “Definition of the subsystem interfaces and functionality”, 
4. “Mapping the system requirements onto the various subsystems”, 
5. “Decomposing the subsystems into the various disciplines – electronic, me-

chanical, software, and chemical – and defining the abstract interfaces be-
tween those aspects”; 
Apart from the first point, the latter points can be seen as the primary activi-

ties during system design. “In all these activities, systems engineers are not con-
cerned with the design of the discipline-specific aspects of the software or the 
electronics, but are concerned with the specification of what those design aspects 
must achieve and how they will collaborate” [Do04; p.29]. 

I.6.1.2  Software Architecture 

In SW development, design is separated into the SW architecture and detailed 
design. 

SW architecture is the high level design of a SW performed by the archi-
tect(s). It “defines the essential structures of the software system and is the basis 
for the development. Thus, it can be seen as the construction plan facilitating the 
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development of complex and extensive SW” [DH03; p.1 (*)]. In the view of 
Douglass [Do04; p.38], “architectural design identifies the strategic design deci-
sions that affect most or all of the application, including the mapping to the phys-
ical deployment model, the identification of runtime artifacts, and the concurren-
cy model. This is typically accomplished through the application of architectural 
design patterns”. 

As a first definition, Bass et al. define SW architecture as “the structure or 
structures of the system, which comprise software elements, the externally visible 
properties of those elements, and the relationships among them“ [BCK03; p.3]. 
Bass et al. provide three reasons for the importance of a SW architecture 
[BCK03; p.26]: 
1. “Communication between stakeholders”: “Software architecture represents a 

common abstraction of a system that most if not all of the system's stakehold-
ers can use as a basis for mutual understanding, negotiation, consensus and 
communication”. 

2. Catalog of “early design decisions”: “Software architecture manifests the 
earliest design decisions about a system, and these early bindings carry weight 
far out of proportion to their individual gravity with respect to the system's 
remaining development, its deployment, and its maintenance life. It is also the 
earliest point at which design decisions governing the system to be built can 
be analyzed”. 

3. “Transferable abstraction of a system”: “Software architecture constitutes a 
relatively small, intellectually graspable model for how a system is structured 
and how its elements work together, and this model is transferable across sys-
tems. In particular, it can be applied to other systems exhibiting similar quali-
ty attribute and functional requirements and can promote large-scale reuse”. 

The IEEE 1471 [IEEE1471] defines SW architecture as “the fundamental 
organization of a system, embodied in its components, their relationships to each 
other and the environment, and the principles governing its design and evolu-
tion”. 

Moro characterizes SW architecture as “the carrier of knowledge” [Mo04; 
p.29 (*)]. Thus, he [Mo04; p.171] considers the communication of ideas and 
concepts as the main task of a design model, where conclusiveness of the mod-
eled ideas is especially important to consider. In this way, he follows the argu-
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mentation of Kruchten [Kr95; p.43] and others that these models must also fulfill 
a certain aesthetics68. 

In the view of Moro [Mo04; p.171], one significant negative influence on 
aesthetics is the occurrence of clones in a model. Additionally, clones are often a 
symptom of copy-and-paste reuse69. Copy-and-paste reuse involves the dangers 
that flaws in copied code are dispersed over all locations it has been pasted 
[Mo04; p.171]. Correspondingly, current SW design literature recommends avoid-
ing code clones, except it is designed on purpose as redundant components for 
addressing NFRs such as reliability (e.g., triple modular redundancy) [TCS98]. 
From a more general perspective, it is to say that redundancies should be general-
ly avoided throughout all development situations. As knowledge and understand-
ing of a project often get unstable very quickly (see ch. I.5.6), an extensive 
amount of time is needed to reorganize and reformulate the documented 
knowledge and understanding [HT03; p.24].  

The problem is now is that it is easy to duplicate the knowledge represented 
somewhere in specifications, processes and programs, but this invites projects to 
become a “maintenance nightmare – one that starts well before the application 
ships” [HT03; p.24].  

As a consequence, the author agrees with the recommendation of Hunt and 
Thomas [HT03; p.24-30] to obey a principle, what they call the DRY-principle 
(Don't Repeat Yourself): “Every piece of knowledge must have a single, unam-
biguous, authoritative representation within a system” [HT03; p.24]. Thus, for the 
following ideas and concepts of this thesis, the author has always tried to follow 
this principle. 

Fowler [Fo03] expresses a different view about architecture. According to 
him, architecture emerges out of design (design can here also be implicit in code 
and not explicitly stated via a model etc.) as a kind of shared understanding of the 
developers' group consensus of what is important within the design. In this way, 
architecture is a “social construct” [Fo03; p.3]. He further points out that archi-
tecture often addresses decisions that are difficult to change later. A system can 

                                                           
68 Bloch [Blo95; p.16] emphasizes that the “physical form or design is an unquestioned 

determinant of its marketplace success”. Transferring this to engineering, the architect 
must also sell his design ideas to the implementers of her/his design. Therefore, aes-
thetics may have decisive influence, whether a design is abided by a project. Some 
specific advices for aesthetics in design documentation can be found in the chapter. 
Clements et al. argue in the same direction mentioning that also the presentation of 
ideas is important to achieve acceptance [CBB+03; p.321-323]. 

69 The term copy-and-paste reuse is taken over by the known anti pattern for design 
[BMH+98]. The anti-pattern concept is discussed in the course of pattern design theo-
ry ch. I.6.2.4. 
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usually be solved in different ways. Thus, multiple architectures lie in a system 
[Fo02; p.1] and the architect must decide which possible architecture is to be 
followed70. Over a system's lifetime its usage and purpose can change. In this 
way, what is important for the architecture may change during a system's lifetime 
[Fo02; p.1]. Thus, architecture is at last all of whatever is important concerning a 
system [Fo02; p.1]. 

I.6.1.3  Detailed Design 

Detailed design is a low level design of – for instance – a module in a SW sys-
tem. It “adds low-level information necessary to optimize the final system” 
[Do04; p.38]. The detailed design is performed by the developer engaged with 
the implementation of a module, or component. A detailed design for a compo-
nent (module, class...) must address the following aspects (see [Do04; chapter 10; 
p.589-616]): 
• The structuring of the contained and handled data,  
• Refactorings within the component, 
• Implementation of associations to other components, 
• The set of operations defined on the data, 
• Visibility of data and operations, 
• Algorithms used to implement those operations, 
• Strategies for error or exception handling. 

I.6.2  General Theories about Design 

As a study of Atwood et al. [AMW02] suggests, different notions about design 
exist within the design research community (cf. also [HA06a; p.74-77]). This 
chapter tries to outline a few fundamental design theoretic views on what design 
and its processes are about. The collection is oriented on Horner and Atwood 
[HA06a; p.74-77] that, in the author's view, reflect most characteristics of design, 
of which designers should be aware71. All these theories do not actually originate 
in SE or SysEng theory but originate from a broader scope on a general theory of 
design. It may be a matter of discussion whether these general theoretical find-

                                                           
70 Later in ch. I.6.2.1.2, it is shown that this decision making process is rather arbitrary. 
71 [AMW02] provides some additional views, more details and a detailed analysis of 

interconnections (co-citations) between the different notions, not discussed here. Thus, 
the author recommends the interested reader to read [AMW02] for further information.  
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ings can be directly transferred to SE and SysEng design, since these general 
theories embrace wide scopes (as e.g., design of buildings). However, as these 
chapters also show, each of the theories discussed here have already been trans-
ferred to SE or SysEng design theory by other researchers as this chapter will also 
outline (the most prominent example may be the pattern concept (ch. I.6.2.4)). 

An aspect of design purposely neglected by the author is design theories 
about 'aesthetics'. Even though Kruchten [Kr95; p.43] or Moro [Mo04; p.171] 
emphasize that also SE design has and needs its own aesthetics, the author thinks 
it may be problematic to find a common understanding of this very intangible 
concept within such a broad design theory. Some researchers may even object 
that SW or systems design should concentrate on pure functionality, or may just 
define aesthetics as a kind of attribute improving clarity in design. Indeed, the 
author thinks that aesthetics may have a deeper – however very intangible – im-
pact. An indication of this deeper meaning may be the interpretation of the bad 
smells concept introduced by Fowler [Fo99]. A code having bad smells actually 
works; however, the developers have bad feelings about the code. Here, in the 
author's experience, bad smelling code is very often connected to bad aesthetics. 
On the other hand, Coggins pointed out that [Co90; p.1] (cited after [Bo94; 
p.333]) “pragmatics must take precedence over elegance, for Nature cannot be 
impressed” meaning that aesthetic-oriented design itself can also be a source of 
complexity (or, complication) and designers should search for simple solutions to 
avoid complication (cf. footnote 80 (p.77)). 

I.6.2.1  Design as Symbolic Information Processing 

“Design, so construed, is the core of all professional training; it is the principal 
mark that distinguishes the professions from the sciences” [Si96; p.111]. Simon 
[Si96] is concerned with artificial worlds (somehow constructed by humans) in 
comparison to natural worlds. According to him, the manifestation of an artificial 
world is an artifact. Simon [Si96; p.3] sees that an artifact reflects an adaption to 
human goals or purposes that must obey natural law. Therefore in his eyes [Si96; 
p.111], “everyone72 designs who devises courses of action aiming at changing 
existing situations into preferred ones“. However, Simon appeals to a “profes-
sional responsibility” to “discover and teach a science of design, a body of intel-
lectually tough, analytic, partly formalizable, partly empirical, teachable doctrine 

                                                           
72 Taking this statement seriously, also developers just writing code without an explicit 

design do also design. Similar notions are know from the agile community, where de-
sign implicitly manifests through implementation and later refactorings. 
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about the design process” [Si96; p.113]. As he observed most of the up-to-then 
known design theories “as intellectually soft, intuitive, informal and cook-
booky73” [Si96; p.112], he tried to outline general principles for a general design 
theory74 ([Si96; ch.5 (p.111-138)]: “The science of design: Creating the artifi-
cial”): 
• A decision theory as a logical framework for rational choice among given 

alternatives. Tang et al. [TJH07; p.5] – also interpreting Simon – refer to de-
sign as “a process of synthesizing through alternative solutions in the design 
space. Reasoning to support or reject a design solution is one of the funda-
mental steps in this process”. 

• Techniques for actually deducing which of the available alternatives is the 
optimum. Simon explicitly remarks here that this is not about finding the best 
solution, but a “satisficing” one [Si96; p.119], because “so called 'figures of 
merit' permit comparison between designs in terms of 'better' or 'worse' but 
seldom provide a judgment of 'best' … in the real world we do not have a 
choice between satisfactory and optimal solutions, for we only rarely have a 
method of finding the optimum” [Si96; p.119]. 

• “Adaption of standard logic to search for alternatives. Design solutions are 
sequences of actions that lead to possible worlds satisfying specified con-
straints” [Si96; p.124]. Possible solution worlds are seldom unique. Research 
should search for sufficient, not necessary, actions to fulfill goals. 

• “The exploitation of parallel, or near-parallel, factorizations” [Si96; p.124] 
means to factorize the problem into smaller independent partial problems for 
easier analysis of alternatives75. 

• The allocation of resources is a twofold criterion. “First, conservation of 
scarce resources may be one of the criteria for a satisfactory design. Second, 
the design process itself involves management of the resources of the de-

                                                           
73 In the author’s opinion, this observation is still the case as most design literature still 

refers to heuristics, patterns (ch. I.6.2.4) and other rules of thumb. As the next chapters 
about wicked problems (ch. I.6.2.2) and Schön's Theory of Reflective Practice (ch. 
I.6.2.3), etc. will show, this may be what design often is about. As design deals with 
artifacts made by and for humans, it often involves social aspects inferring high com-
plexity not to be handled by plain analytical and transformational processes. 

74 The author has reworded and interpreted the original principles to better fit the context 
mentioned here. Simon's first version on the book dates from 1968. Even though the 
book has been updated twice, some of the mentioned techniques in the original formu-
lation are not up to date. However, as this chapter shows, the underlying principles are 
still valid up to now. The interested reader may read the original source. 

75 See also thesis 15 by [GG05; p.43 (*)]: “If problems are resolved into partial prob-
lems, the solution will be found faster”. 
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signer, so that his efforts will not be dissipated unnecessarily in following 
lines of inquiry that prove fruitless” [Si96; p.124f].  

• “The organization of complex structures and its implication for the organiza-
tion of design processes” [Si96; p.131].  

• “Alternative representations for design problems” [Si96; p.134] describes the 
fact that problems can often be described in different ways (e.g., by different 
models).  
These points, sketching aspects of a universal design process, lead to a set of 

characteristics of design. When looking at the points one to five, making deci-
sions appears to be the central concept of design. Rationale management (Rat-
Man) theory deals with managing decisions and how the underlying rationale of 
decisions made can be recorded (ch. II.9 describes details of this research field in 
connection with design). In the points one and two, Simon mainly addresses the 
fact that a decision can only be made if alternatives are present. Exploring the 
possible alternatives and their impact is a central concept in RatMan from start. 
In fact, from RatMan perspective, Bass et al. formulate “design as a sequence of 
decisions” [BCN+06; p.258]. One of the most heavily used concepts with close 
connections to design rationale in the RatMan sense is the usage of patterns 
[DMM+06a; p.19], but patterns also “constitute one of the most heavily used 
approaches for organizing reusable knowledge” [DMM+06a; p.19]. Today, pat-
terns are organized in pattern catalogs as a source for search for standard prob-
lems and may thus be seen as today's most heavily used solution for addressing 
point three. However, the pattern concept may also be seen as a kind of design 
theory and is accordingly discussed in the following ch. I.6.2.4. 

Problem factorization, as discussed in point four, is also an issue of RatMan. 
Nevertheless, these kinds of factorizations bear a close connection to point six 
which refers to a – in the author's believe – major concern in design. The high 
quantities of information involved in design lead to high complexity that must be 
adequately organized to enable designers keeping an overview. As the following 
sub chapter about complexity shows, Simon's view of design is deeply connected 
to this and his research helped laying ground for several connected paradigms 
and many concepts encountered today in systems and software design theory. 
Among others, hierarchic decomposition and the 'view' concept may be the most 
influential ones.  

Point seven refers to the problem of proper representation. Representation is 
usually performed by models. As models are only abstractions, different kinds of 
representations of the same facts are possible. The view concept addresses this 
fact, what closes the circle back to point six and the following sub chapter. 

Last but not least, point five describes a third major driver of design. As one 
of the human-adaptable world's properties is finiteness, any design is limited by 
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the available finite resources. The relationship between resource and design can 
be described as double-edged. Finite resources are involved in the production and 
implementation of a design and design itself cares about the finite resources in-
volved in the described solution. 

I.6.2.1.1  Complexity as a Central Force in Design 

“Complexity... is the biggest factor involved in anything having to do with the 
software field. It is explosive, far reaching, and massive in its scope” [Gl02; 
p.19]. Furthermore, complexity is a significant factor deciding about success or 
failure of a developed system or software76. Therefore, as Brooks [Br87; p.11] 
states, “complexity of software is an essential property, not an accidental one”. 
This means that complexity can only be mastered but cannot disappear. Corre-
spondingly, complexity must be addressed. 

Empirical experiments by Woodfield [Wo79] indicate that a massive in-
crease of complexity happens during the transition between requirements (prob-
lem description) and design (solution description), where a “25 percent increase 
in problem complexity results in a 100 percent increase in programming com-
plexity” [Wo79; p.76]. This can also be seen as a strong indication for a pareto 
principle-like [Pa1897] connection between the problem and solution domain 
showing “that the difficulty of solving a problem in software grows exponential-
ly” [Gl02; p.19]. As explanatory thesis of this fact, somebody could tend to state 
that finding a pure solution for the functionality may encounter about 25 percent, 
whereas preventing and handling all sorts of potentially occurring errors and 
other quality criteria as flexibility or maintainability is about the other 75 percent. 
From the requirement engineering perspective – where errors relate somehow to 
quality aspects –, it could also be termed that software complexity is dealing with 
25 percent functional and 75 percent NFRs, explaining the importance and focus 
that REM theory lays on dealing with NFRs.  

Another observation is provided by Glass: “Explicit requirements explode 
by a factor of 50 or more into implicit (design) requirements as a software solu-
tion proceeds” [Gl02; p.19]. This expresses the observation that any solution has 
a certain structure. In order to ensure proper collaboration of several parts of the 
solution, the parts must fit into this structure77. These needs are the implicit re-
quirements and they can be seen as a consequence of formerly taken decisions. 
The author is convinced that it will be important to also write down these re-
                                                           
76 “The more complex the system, the more open it is to total breakdown” [Pe86; p.153]. 
77 This characteristic intuitively described here is closely connected to what is called 

conceptual integrity [PBG04; p.102ff] and is discussed in the following of this chapter. 
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quirements, if they are – as those – rationally explicitly available. This problem is 
a central part of the concept, the author has developed for traceability improve-
ment and discussed in detail in ch. III.19. 

In his first chapter, Booch [Bo94; p.2-24] introduces complexity as the main 
driver of analysis and design of SW. His argumentation reveals very close con-
nections to Simon. He [Bo94; p.2] argues that any software but software with 
“very limited purpose and a very short life span”, for which it is more profitable 
to dispose of it and replace it rather than to reusing it, is complex78. The “distin-
guishing characteristic” inherent in this kind of software is “that it is intensely 
difficult, if not impossible, for the individual developer to comprehend all the 
subtleties of its design. Stated in blunt terms, the complexity of such systems 
exceeds the human intellectual capacity” [Bo94; p.3]. Booch identifies four 
sources for SW complexity79: 
• The complexity of the problem domain [Bo94; p.3-5] means that the problem 

to be solved involves elements of high complexity resulting in “myriads of 
competing, perhaps contradictory requirements”. In addition, imprecise 
stakeholder wishes and inter-stakeholder-communication problems lead to 
permanent change of requirements. This topic is discussed in detail in chap-
ter I.5.6. REM is today's answer to this problem. 

• The difficulty of managing the development process [Bo94; p.5] arises due to 
continuing rapid growth of software program size. One cause is the fact that 
a fundamental task of development teams is “to engineer the illusion of sim-
plicity” [Bo94; p.5] to shield users from the complexity of the developed 
systems. This, at first positive, effect has also the negative side-effect that the 
illusion of simplicity also drives developers to build systems based on for-
merly developed systems leading to exponential growth of program size and 
system complexity. Additionally, projects also involve growing project teams 
leading to higher complexity concerning communication and coordination. 

• The flexibility possible through software [Bo94; p.6] leads to manifold possi-
bilities how to find solutions, but it “turns out to be an incredibly seductive 
property” for inconsistencies forcing developers to develop most of the ba-
sics of their solutions again. “While the construction industry has uniform 
building codes and standards for the quality of raw materials, few such 
standards exist in software industry”. 

                                                           
78 According to Booch [Bo94; p.3], reactive systems (he means embedded systems) have 

a very rich set of behaviors. “Software systems as these tend to have a long life span, 
and over time, many users come to depend upon their proper functioning”. 

79 The interested reader may also read Broy and Rump providing an overview on source 
of complexity [BR07b; p.3]. 
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• The problems of characterizing the behavior of discrete systems [Bo94; p.6] 
refer to that software based systems are discrete systems containing large 
amounts of different variables. Along with the current value of each variable, 
the address and call stack of each process and the current state of the applica-
tion is determined. Other than continuous analog systems describable by a 
discrete function, such software-based systems can possibly enter uncon-
trollable different states as “in discrete systems all external events can affect 
any part of the system's internal state” [Bo94; p.7]. This sparks the need for 
vigorous testing, but exhaustive testing proves nearly impossible, because 
developers have “neither the mathematical tools nor the intellectual capacity 
to model the complete behavior of large discrete systems” [Bo94; p.7]. 

I.6.2.1.2  Design Means Managing Complexity 

 
As Simon can also be seen as “pioneer of complexity theory” [EFS98; p.23 (*)], 
he already emphasized the strong importance of mastering complexity in design 
issues. His thoughts about complexity orient themselves on findings of Miller 
[Mi56]. Miller's experiments (see also [Si96; p.66f]) on human cognition capabil-
ities indicate that average humans are capable to consider around seven plus, 
minus two aspects at the same time. This leads Simon to argue “that people do 
not, and cannot, consider all possible conditions, alternatives, and constraints, 
and therefore cannot design an optimal course of action .... Rather than exhaust-
ively considering design issues, people choose satisfactory solutions based on the 
information available” [HA06a; p.74]. 

Simon termed this bounded rationality [Si96; p.166]: “The meaning of ra-
tionality in situations where the complexity of the environment is immensely 
greater than the computational powers of the adaptive system.” As a conse-
quence, humans must factorize (resp. chunk) the complexity in order to cope with 
it (see point 4 above). In this context, Simon proposes to use hierarchic decom-
position to tame the complexity80 of systems as “comparatively little information 
                                                           
80 It is to mention that hierarchic decomposition (as, e.g., the analytic method) has been 

used long before Simon. However, it seems that Simon communicated its important 
function as means to tame complexity to a broader community. Today, the hierarchic 
structure scheme is central for the term complexity [EFS98, p.23] used as central 
property to characterize complexity as the following definition of Ebert shows [Eb05; 
p.198 (*)], [Eb08; p.282 (*)]: “A system is termed as complex, if it is linked and in-
terwoven in diverse combinations. The term 'complex' is here understood as a charac-
teristic of a technical system ... containing heterogeneous components, having hetero-
geneous relations between the components, and being able to switch into different 
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is lost by representing them as hierarchies” [Si96; p.207]. Leading to what Endres 
and Rombach call “Simon's law” [ER03; p.40]: “Hierarchical structures reduce 
complexity” [ER03; p.40]. Due to bounded rationality, Simon also discovered 
the principle that design usually not emerges in a kind of big-bang process but 
evolves from stable intermediate forms81. This means that design can rather be 
seen as an evolutionary process where design reaches stable states forming the 
basis of evolution to the next stable state. 

From this perspective, Horner and Atwood describe Simon's view on design 
as “symbolic information processing and humans as goal-oriented information 
processors” [HA06a; p.74] where “design involves devising courses of action 
aimed at changing current situations into preferred ones” [HA06a; p.74]. Or, in 
other terms, “design is viewed as a process of generating and navigating through 
a state-space” [HA06a; p.74]. 

Concerning software development, Booch tried to analyze complexity. In his 
view [Bo94; p.7], failures to master complexity have led to the effects that are 
called the software crisis, but, as this state now has continued for a long time, it 
may be considered as the normal state. Taking account to Simon and other re-
search results of software engineering theory, Booch [Bo94; p.10-11] derived five 
characteristics of complex systems being important for software design: 

                                                                                                                                    
states. The complexity, thus, describes the connection, i.e., collaboration of a system 
and its parts as objects”. In contrast to this, Ebert also provides a definition for com-
plication [Eb05; p.199 (*)], [Eb08; p.282 (*)]: “In literature, 'complicated' is used in 
the sense of difficult or embroiled (corresponding to the Latin origin complicare = to 
fold together or to confuse). The term 'complicated' is used as summarizing character-
istic of a technical system that is difficult to understand, to figure out or to handle. 
Thus, complication denotes the interaction of a system as object and an observer as 
subject. The complication is a perceived – psychological – complexity and depends 
from the observer. In this way, complication also includes difficulties in the under-
standing of graphical representations as they are often used, e.g., in the form of data 
flow diagrams or petri-nets, in software development for the representation of relations 
of different components (so-called visual complexity). Such graphical representations 
can well create a correlation of technical and psychological complexity. The complica-
tion of a software system depends on the previous knowledge of the observer ..., on 
the impression of the representation on him (her) and on the suitability of a chosen 
representation for a certain problem. A mastery of complexity, as already demanded by 
E. Dijkstra in 1972 in the course of the bestowal of the Turing Award, will only be 
possible if the complication is actively reduced.”  

81 Close connection to this seems to have Lehman's fifth law on software evolution 
“Conservation of Familiarity” [Le96], [LRW+97]. 
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1. Frequently, complex systems can be decomposed in hierarchic dependencies 
with interrelated subsystems. Simon argues [Si96; ch.8 (p.183-216)]82 that hi-
erarchies and hierarchic systems can be considered as the decisive means to 
provide a simplifying description of complexity, even though he admits not all 
complex systems appear in hierarchical structures [Si96; p.191]83. Unfortu-
nately, such hierarchic dependencies are nearly decomposable, where “inter-
actions between subsystems are weak but not negligible” [Si96; p.197]. Also 
to mention in this context, Simon [Si96; p.209] emphasizes that the discussed 
hierarchic structures contain a high degree of redundancy. 

2. In contrast to most science disciplines as physics, “software may also involve 
elements of great complexity; however, the complexity is of fundamentally 
different kind” [Bo94; p.2]. Booch refers here to Brooks [Br87; p.12] speak-
ing of arbitrary complexity84. This means that decisions concerning hierarchic 
decompositions or other aspects performed by designers in order to manage 
complexity are to a certain point arbitrary85, because often they could also be 
performed according to other criteria leading to different outcomes [Bo94; 

                                                           
82 According to [Si96; p.XIII], the chapter bases on an essay originally published in 

Proceedings of the American Philosophical Society, Dec 1962. 
83 As an example, he describes chemical polymers as large chains or single to each other 

similar or identical parts. But, he emphasizes in the same moment that this structure 
can be described as a hierarchy of only one present level. Interestingly, the software 
architectural style pattern 'pipes and filters' has a similar structure [BMR+00; p.54ff] 
and can be most probably be seen as a kind of analogy. He even goes beyond by as-
suming that complex systems not providing an apparent hierarchical order “may to a 
considerable extent escape our observation and understanding” [Si96; p.207]. 

84 See also Hull et al. [HJD02; p.1] providing the following comment on arbitrary com-
plexity: “The most complex systems tend to be those with software, often integrated 
deep inside the system's components. The complexity of such products is limited only 
by the imagination of those who conceive them”. 

85 An interesting point is what Alexander (also cf. ch. I.6.2.4) says in its introduction to 
his first publication on what later became the pattern concept [Al64; p.1]: “Today 
functional problems are becoming less simple all the time. But designers rarely con-
fess their inability to solve them. Instead, when a designer does not understand a prob-
lem clearly enough to find the order it really calls for, he falls back on some arbitrarily 
chosen formal order. The problem, because of its complexity, remains unsolved”. This 
statement strikingly resembles to what Conklin calls taming a wicked problem. It may 
be possible that the pattern concept is a kind of strategy to address the wickedness of 
problems by proposing abstract standardized solution possibilities for forces within 
wicked problems. On the other hand, what is called arbitrariness may only seem arbi-
trary but is in fact a result of a process of knowing in action as proposed by Schön (ch. 
I.6.2.3). 
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p.11]. As ch. I.6.2.3 shows, parts of these decisions may even not be made by 
rational reflection but by intuitive tacit knowledge. 

3. “Intra-component linkages are generally stronger than inter-component link-
ages” [Si96; p.204] indicates “a clear separation of concerns among the vari-
ous parts of a system, making it possible to study each part in relative isola-
tion” [Bo94; p.11]. 

4. “Hierarchic systems are usually composed of only a few different kinds of 
subsystems in various combinations and arrangements” [Si96; p.209]. Booch 
[Bo94; p.11] analyzes here that complex systems underlie common patterns. 
These patterns may involve the reuse of small components (such as cells in 
plants or animals), or of larger structures (such as vascular systems also found 
in both plants and animals) [Bo94; p.11]. This bears strong resemblance to the 
pattern concept introduced in ch. I.6.2.4. 

5. In [Bo94; p.20], Booch refers to stable intermediate forms as “proven abstrac-
tions and mechanisms” building “a foundation upon which to build new com-
plex systems” [Bo94; p.20]. “Complex systems generally evolve from stable 
intermediate forms” [Bo94; p.23]86, where he explicitly mentions that the us-
age of object-models to produce systems leads to systems basing on interme-
diate forms being more open for change [Bo94; p.75]. 

In [Bo94], Booch has proven to be a follower of Simon's design theory. As 
Booch also has been one of the founding fathers of the UML standard (cf. 
[BJL98]), the principles and conclusions derived from these findings about de-
sign as a means to handle project complexity may have imposed high influence 
on SW and systems design theory. Surely, other researchers may also have influ-
enced today's SW and systems design theory in equal ways. 

Altogether, today's SW and systems design theory knows – at minimum – the 
following fundamental principles to be obeyed by a sound SW and systems design 
(see [PBG04; p.102ff], [Kn01b; p.12ff], [BR07b; p.17]), each in some way con-
nected to managing complexity: 

Abstraction: “describes the generalization of facts” [Di04a; p.117 (*)]. The 
usage of models and different views is “the most important toolbox” for abstrac-
tion [PBG04; p.104]. Abstraction87 helps humans to distinct unimportant facts 
from the important ones, but the judgment of what is important and what unim-
                                                           
86 In this context, Booch [Bo94; p.11] explicitly refers to findings of Gall: “A complex 

system that works is invariably found to have evolved from a simple system that 
worked. ... A complex system designed from scratch never works and cannot be 
patched up to make it work. You have to start over, beginning with a working simple 
system” [Ga86; p.65]. 

87 See also [HHP03; p.51ff] and [HHP03; p.67] for good remarks about how to use hier-
archies and abstractions in practice. 



80 I. General Context and Theories 

portant varies from the persons involved. Correspondingly, in development dif-
ferent models (and views) applied [PBG04; p.104]. 

Structure: “represents a relationship network between the individual ele-
ments of an entity as a whole. It includes a reduced view of the reckoned system 
allowing the analysis of the whole. ... At the reckoning of the system, static and 
dynamic structures can be differentiated” [Di04a; p.117 (*)].  

Modularization: means a decomposition principle based on coupling and 
cohesion88 [Di04a; p.32]. In this context, the term 'module' can be seen as “a 
responsibility assignment rather than a subprogram” [Pa72, p.1054], indicating 
that modularization is about grouping and assigning functional requirements to 
the architecture. Ideally, modules have a strong internal cohesion but low cou-
pling, because designers should obey what Endres and Rombach [ER03; p.43] 
call Constantine's law: “A structure is stable if cohesion is strong and coupling 
low”. Parnas [Pa72] discusses the criteria to consider in making modularization 
decisions and shows five different alternative aspects to decide on. Alas, the cho-
sen modularization criterion influences what is seen as strong cohesion or cou-
pling. Correspondingly, modularization results may differ if different modulariza-
tion criteria are chosen. With a similar meaning, Simon [Si96; p.197-204] empha-
sizes that complex systems may be approximated by a theory of nearly decom-
posable systems. Booch [Bo94] – in reference to Brooks – speaks of arbitrary 
complexity: Design looks different when other decomposition criteria are consid-
ered as the most important. However, in practice, design may not be so arbitrary, 
when “Conway's law” is considered [St05; p.24] which indicates an isomorphism 
between organization structure and its architectures. According to Conway, de-
veloping organizations design systems in a way that represent copies of the or-
ganization's communication structures [Co68], [Ec04; p.113]. Today, strict modu-
larization oriented compositional structures are also again softened by design 
theory about architectural aspects (e.g., cross cutting concerns) leading to new 
compositional structures [CRF+06]. 

Encapsulation supports the principle of information hiding [Pa72] to obtain 
higher change flexibility. The underlying assumption is that necessary changes 
that only effect parts being behind an encapsulating interface are easier to imple-
ment since only these internal encapsulated parts must be changed, whereas the 
latter system parts stay untouched. Encapsulation is a “central principle of object 
oriented design” [PBG04; p.104] Modularization and encapsulation could be 
seen as entangled twins, where “its success in making future changes easy de-
pends on having identified a right decomposition” [Be04; p.56]. Otherwise new 

                                                           
88 Others as Dunkel and Holitschke [DH03; p.3] call this the coherence principle, but 

seem to mean the same. 
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requirements or requirement changes “causes changes that bridge several mod-
ules” [Be04; p.56]. Consequently, refactorings of the design considering new 
decomposition criteria may be necessary, otherwise the software tends to decay 
[Be04; p.56]. 

Hierarchy: In complex designs, often more abstractions exist than usually 
manageable by designers. Modularization can help designers but this is often not 
sufficient. A solution can be to arrange abstractions into a sequence called hierar-
chy [PBG04; p.106]. Booch refers to two fundamental kinds of hierarchies 
[Bo94; p.19], [PBG04; p.107]: 
• Structure: Describes the decomposition structure an item 'consists of'. 
• Generalization and inheritance: Describe inheritance hierarchies, where an 

item 'is a'. 
Besides these 'static' hierarchies, Marwedel refers to a behavioral hierarchy 

[Ma08a; p.13ff]. This refers to the point below about views. In a more general-
ized way, it may be the case that each possible view may be structured by a hier-
archy. 

View partitioning describes the fact that complex systems have manifold as-
pects difficult to describe from one perspective [PBG04; p.128]. Thus, systems 
can be described from different points of perspective called views, or viewtypes89. 
Often, different views involve different kinds of models. Or, described in the 
point above about abstraction: Different views consider different facts (aspects) 
as important and thus show different aspects. The probably most known view 
concept is “4+1 View Model” introduced by Kruchten [Kr95] building an essen-
tial part of the RUP process framework [CBB+03; p.344F]. The concept differen-
tiates four main views (logical, development, process and physical) in association 
with one overlapping, comprehensive view (scenarios). Concerning the charac-
teristics of views, Kruchten emphasizes that his concept is rather generic and 
independent from any tool or any modeling language [Kr95; p.43]. Further, the 
views by themselves are neither fully orthogonal nor independent from each other 
[Kr95; p.47]. Correspondingly, relations between views must also be considered, 
and in fact theories like architecture documentation explicitly demand for docu-
mentation of inter-view relationships (see ch. I.6.5). Inspired by Kruchten, litera-
ture has proposed several other views. A comprehensive overview can be found in 
[CBB+03; p.343-380], [PBG04; p.128-167] or [St05; p.86]. Explicitly to mention 
here is UML: As it is envisioned as 'unified' modeling language, it contains dif-

                                                           
89 A view is “a representation of a set of system elements and its relations to each other” 

[CBB+03; p.472] (see also [PBG04; p.128]), whereas a viewtype comprises “the ele-
ment types and relation types used to describe the architecture of a software system 
from a particular perspective” [CBB+03; p.472]. 
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ferent sets of diagrams addressing structural, collaboration, behavioral, func-
tional and timing views [Do04; p.43]. From the perspective of a theoretic, formal 
modeling theory, Broy and Rumpe could categorize [BR07b; p.6] several 'essen-
tial views' that may build a kind of taxonomy for all other views identified in 
practice. From the practitioner's viewpoint, Bass et al. [BCK03; p.39-40] describe 
how architectural structures can be identified as sources for views during a de-
sign. As indicated above to hierarchies, it is possible that different views may 
follow their own hierarchic order independently from other views. Last but not 
least, the question arises, whether certain views may be more important over 
others. According to Starke's practical experiences, 60 to 80 percent of effort is 
spent on the structural model [St05; p.88]. In the author's view, this may indicate 
that indeed the structural model including hierarchical structural decomposition 
may have a certain preceding importance. This assumption – supported by the 
fact that historically hierarchical, structural decomposition – has been discovered 
and used as one of the first principles to structure models (e.g., cf. structured 
analysis and design [De78]). As a consequence, the tool introduced in part III 
relies on the hierarchical, structural decomposition principles to build a skeletal 
structure upon which other views can be related and structured. This principle 
helps to reduce complexity as the hierarchical, structural decomposition builds 
the first contact point for a designer to get into a design. Starting from this, the 
designer can then enrich the structure by adding further additional views on this 
basic structure. As a further plus, part III also shows how the hierarchical, struc-
tural decomposition will also build the basis for developing a new process heuris-
tic allowing to establish traceability between requirements and design as collabo-
rative process, orienting itself on Simon's ideas about design as a transgression of 
stable intermediate forms. 

Conceptual integrity [PBG04; p.102ff] describes the idea of thorough usage 
of concepts and design decisions in the complete system in order to avoid extra 
solutions and dilution of the original concepts [PBG04; p.108]. Brooks empha-
sizes the importance of conceptual integrity as “the most important consideration 
in system design. It is better to have a system omit certain anomalous features and 
improvements, but to reflect one set of design ideas, than to have one that con-
tains many good but independent and uncoordinated ideas” [Br95; p.42]. Not 
only growth of size, but also growth of structure increases complexity [Di04a; 
p.22]. Following Balzert's observation, “the stronger the shape of a structure, the 
lower also is its complexity” [Ba98; p.474 (*)], conceptual integrity shall enforce 
one strong structure instead of several weak structures and thus “simplicity and 
straightforwardness proceed from conceptual integrity. Every part must reflect 
the same philosophies and the same balancing of desiderata. Every part must 
even use the same techniques in syntax and analogous notions in semantics. Ease 
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of use, then, dictates unity of design, conceptual integrity” [Br95; p.44]. Concep-
tual integrity can best be achieved if one chief architect is responsible for it 
[Br95; p.42ff], [PBG04; p.108], [Ec04; p.113]. At the end to mention, conceptual 
integrity refers to another general design heuristic about design [Ec04; p.116], 
[PBG04; p.116]: A design should have the goal to be as simple as possible, but 
not simpler. 

I.6.2.1.3  Shortcomings of this View about Design 

Simon's view has the advantage that it provides a sound scientific theoretical 
foundation about design as a means to manage complexity. Further, the principles 
described here cannot be called as 'cook-booky' but have a deep general meaning 
having deeply integrated into current systems and SW design theory. However, as, 
e.g., the next chapters show, Simon's design theory also has been heavily criti-
cized and challenged by findings of other researchers and practitioners.  

In the author's view, this may be applicable, because Simon admittedly de-
scribes the principles to apply to achieve a good design, but does not provide a 
satisfying answer on how to apply the principles. If he does, then Simon's answer 
on the 'how' is a linear step-by-step, top-down approach (cf. [Bu96; p.13]). How-
ever, other authors emphasize that top-down approaches are rather an exception 
[Sa05; p.276]. Empirical studies on SW design processes such as provided by 
Curtis [Cu90], [Cu92] indicate that designers rather oscillate between abstraction 
levels, jump through discrete system states, and develop the problem and solution 
space simultaneously (also cf. [ER03; p.60], [HHP03; p.52]). Accordingly, these 
findings drove Endres and Rombach to state that “the idea of a top-down design 
is an over-simplification; although it may be a good way to explain a design once 
it is completed” [ER03; p.60]. Hruschka and Rupp [HR02; ch.10] express the 
opinion that functional aspects are rather designed bottom-up, but nonfunctional 
aspects should be designed top-down. The author believes that this is also a sim-
plification of a rather situation-dependent decision process. 

These findings indicate – in accordance to the author's belief – that Simon's 
view rather comes from considering the end results that indeed may be structured 
by the principles described here. The following chapters will now introduce de-
sign theories that might rather provide better explanations for the genesis of a 
design. As it turns out, most of these theories have open space for intuition, un-
certainty or fuzzyness involved as means to explore and structure the complexity 
of the problem and design space by humans. From this perspective, the 'cook-
booky 'nature (i.e., heuristics or patterns) of design theories criticized by Simon 
may turn out to be an inherent property of any design's genesis. 
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I.6.2.2  Design as Wicked Problems 

Rittel and Webber dissented from the views of Simon (cf. [Co05; p.06], [HA06a; 
p.75]) by introducing the term wicked problems90 ([RW73], [RW84]) as “an al-
ternative to the linear, step-by-step model of the design process being explored by 
many designers and design theorists” [Bu96; p.13]. In Simon's understanding, 
design was merely seen as a linear process of analyzing a problem, defining a 
solution and implementing it (cf. [Bu96; p.13], [CBV07; p.9]). “However, some 
critics were quick to point out two obvious points of weakness: one, the actual 
sequence of design thinking and decision making is not a simple linear process; 
and two, the problems addressed by designers do not, in actual practice, yield to 
any linear analysis and synthesis yet proposed” [Bu96; p.14]. 

Here, Rittel and Webber argued that most of the design activities address 
solving wicked problems [Bu96; p.14]. Wicked problems mean a “class of social 
system problems which are ill-formulated, where the information is confusing, 
where there are many clients and decision makers with conflicting values, and 
where the ramifications in the whole system are thoroughly confusing” ([Ch67] 
quoted in [Bu96; p.14]). In contrast to “tame problems” usually occurring in 
natural sciences [RW73], wicked problems – as including social aspects – can be 
characterized by ten properties [RW73; p.161-167]: 
1. “There is not definitive formulation of a wicked problem” [RW73; p.161] 

indicates that an exhaustive formulation with all necessary information can 
only be done for a tame problem, whereas the understanding of wicked prob-
lems “depends upon one's idea for solving it. … The reason is that every 
question asking for additional information depends upon the understanding 
of the problem – and its resolution – at that time” [RW73; p.161]. 

2. “Wicked problems have no stopping rule …, because the process of solving 
the problem is identical with the process of understanding its nature, because 
there are no criteria for sufficient understanding and because there are no 
ends to the causal chains that link interacting open systems, the would-be 
planner can always try to do better. … The planner terminates work on a 
wicked problem, not for reasons inherent in the 'logic' of the system. He stops 
for considerations that are external to the problem: he runs out of time, or 
money, or patience” [RW73; p.162]. This is closely related to Simon's term 

                                                           
90 Buchanan [Bu96; p.14] points out that the term was taken from Karl Popper, but “Rit-

tel developed the idea in a different direction” [Bu96; p.14]. Buchanan further remarks 
that the first published information on Rittel's concept has been performed by 
Churchman [Ch67]. 
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on satisficing solutions, both showing the inherent nature of finding com-
promises in design activities. 

3. “Solutions to wicked problems are not true-or-false, but good-or-bad”, since 
“many parties are equally equipped, interested, and/or entitled to judge the 
solutions, although none has the power to set formal decision rules to deter-
mine correctness. … Their assessments of proposed solutions are expressed 
as 'good' or 'bad', or, more likely, as 'better' or 'worse' or 'satisfying' or 'good 
enough'” [RW73; p.163]. 

4. “There is no immediate and no ultimate test of a solution to a wicked prob-
lem” is a direct consequence of point one. Any work on a wicked problem 
“will generate waves of consequences over an extended – virtually an un-
bounded – period of time”, where following works “may yield utterly unde-
sirable repercussions which outweigh the intended advantages or the ad-
vantages accomplished hitherto” [RW73; p.163]. 

5. “Every solution to a wicked problem is a 'one-shot operation'; because there 
is no opportunity to learn by trial-and-error, every attempt counts signifi-
cantly”. As already indicated by point four, “every implemented solution is 
consequential. It leaves 'traces' that cannot be undone” [RW73; p.163]. 

6. “Wicked problems do not have an enumerable (or an exhaustively describa-
ble) set of potential solutions, nor is there a well-described set of permissible 
operations that may be incorporated into the plan” [RW73; p.164] directly 
results from the ill-defined nature of wicked problems (see point one). 

7. “Every wicked problem is essentially unique” describes that, “despite long 
lists of similarities between a current problem and a previous one, there al-
ways might be an additional distinguishing property that is of overriding im-
portance” [RW73; p.164]. Here, the close notion to software projects gener-
ally considered as an “unique undertaking” [MW03; p.24] must be men-
tioned in the first place and secondly the connection to Alexander's pattern 
concept (ch. I.6.2.4). 

8. “Every wicked problem can be considered to be a symptom of another prob-
lem” [RW73; p.165]. Problems have causes. These causes can be considered 
as other 'higher level' problem, where the originally considered problems are 
mere symptoms.  

9. “The existence of a discrepancy representing a wicked problem can be ex-
plained in numerous ways. The choice of explanation determines the nature 
of the problem's resolution” [RW73; p.166]. As Simon also stated that dif-
ferent representations (now design theory says view) exist, the chosen repre-
sentation determines the found solution. 
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10. “The planner has no right to be wrong” [RW73; p.166]. Unlike the scientific 
community, allowing hypotheses to be falsified later, designers are “liable for 
the consequences of the actions they generate” [RW73; p.167]. 
Summing it up, “Rittel saw design problems as wicked in the sense that they 

presented fundamental difficulties that could not be overcome using either strictly 
scientific methods or purely automated methods” [BCM+08; p.6]. In Conklin's 
opinion, “Rittel's contribution is that he distinguished a new domain of problem 
type, as opposed to, say, a new way of solving complex problems. Problem wick-
edness is not about a higher degree of complexity, it is about a fundamentally 
different kind of challenge to the design process, one that makes solution second-
ary and problem understanding central” [CBV07; p.3]. Or, in the words of 
Coyne: “The radical point of Rittel and Webber’s characterization of design as 
‘wicked problem solving’, is to instil a certain attitude and responsiveness to 
research questions. Questions of design do not exist as if issued from some 
source of eternal inquiry. Rittel and Webber suggest that certain questions can 
now simply go unanswered, or we may riposte with a volley of counter questions, 
or offer a challenge to the frame from which the problems are posed in the first 
place” [Co05; p.13]. 
Conklin [Co06; p.14-18] provides a probably more to the point reformulation of 
wicked problems characteristics:  
1. “You don’t understand the problem until you have developed a solution” 

[Co06; p.14]. 
2. “Wicked problems have no stopping rule” [Co06; p.14]. 
3. “Solutions to wicked problems are not right or wrong” [Co06; p.15]. 
4. “Every wicked problem is essentially unique and novel” [Co06; p.15]. 
5. “Every solution to a wicked problem is a 'one-shot operation'” [Co06; p.15]. 
6. “Wicked problems have no given alternative solutions” [Co06; p.15] – instead 

“an immense space of options” [Co06; p.18] exists that can be combined. 
Wicked problems are also closely related to technical and social complexity. 

These three build “the 'centrifugal' fragmenting forces pulling a project apart” 
[Co06; p.35]. Especially social complexity is “inseparable from problem wicked-
ness” as “no single stakeholder wicked problems exist” [CBV07; p.4]. Corre-
spondingly, “because of social complexity, solving a wicked problem is funda-
mentally a social process. Having a few brilliant people or the latest project man-
agement technology is no longer sufficient” [Co06; p.29]. This corresponds to 
findings of Starke about SW development claiming that “technology alone is 
insufficient” [St05; p.42 (*)], because no pure technical problems exist [St05; 
p.42 (*)]. Rather, “they quickly grow to organizational or political difficulties” 
[St05; p.42 (*)]. 
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In the author's view, Ehn [Eh88], [Eh89] has a similar notion when he de-
scribes design as a collaborative, democratic and participatory process of learning 
together. Ehn's view, however, origins from Wittgensteinian language games: “In 
a Wittgensteinian approach, focus is not on the 'correctness' of systems descrip-
tions in design, on how well they mirror the desires in the mind of the users, or 
on how 'correct' they describe existing and future artifacts and their use. Systems 
descriptions are design artifacts, typically linguistic artifacts. The crucial question 
is how we use them, which role they play in the design process. ... In the lan-
guage-game of design we use these artifacts as reminders and as paradigm cases 
for our reflections of future computer artifacts and their use. The use of design 
artifacts brings earlier experiences to our mind and it 'bends' our way of thinking 
of the past and the future. I think that this is how we should understand them as 
representations. And this is how they 'inform' our practice. If they are good de-
sign artifacts, they support good moves within a specific design language-game” 
[Eh89; p.147].  

Contrasting wicked problems, Rittel and Webber also mentioned tame prob-
lems. Conklin derives from the formulation of wicked problems characteristics 
above a set of tame problems characteristics [Co06; p.18f]: 
1. “Has a well-defined and stable problem statement” [Co06; p.18]. 
2. “Has a definite stopping point” [Co06; p.18]. 
3. “Has a solution that can be objectively evaluated as right or wrong” [Co06; 

p.19]. 
4. “Belongs to a class of similar problems that are all solved in the same similar 

way” [Co06; p.19]. 
5. “Has solutions that can be easily tried and abandoned” [Co06; p.19]. 
6. “Comes with a limited set of alternative solutions” [Co06; p.19]. 

Conklin [Co06; p.19] emphasizes that “tame does not mean simple – a tame 
problem can be technically very complex“. On the other side, a problem needs 
not to encompass all six wicked characteristics to be a wicked problem. “Most 
problems have degrees of wickedness. ... There seems to be a natural inclination 
to see problems as tame, and to avoid wicked ones. ... The first step in coping 
with a wicked problem is to recognize its nature. There is a tendency to treat all 
problems as tame, perhaps because tame problems are easier to solve, reinforced 
by the lack of understanding about wicked problem dynamics and the tools and 
approach they require. There is a psychological dimension here – a shift from 
denial to acceptance” [Co06; p.19-20]. 

In other words, wicked problems are often approached by analyzing and 
taming it. Pure analysis – without designing actions – of wicked problems is often 
very limited and leads to analysis paralysis [BMH+98; p.215-218], [Ec03] (see 
also ch. I.5.4), “a Catch 22 in which we can’t take action until we have more 
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information, but we can’t get more information until someone takes action” 
[Co06; p.20]. Taming a wicked problem means that the problem is simplified to 
make it more manageable rather than treating the full wickedness ([Co06; p.21] 
lists several taming strategies). “However, attempting to tame a wicked problem, 
while appealing in the short run, fails in the long run. The wicked problem simply 
reasserts itself, perhaps in a different guise, as if nothing had been done. Or, 
worse, sometimes the tame solution exacerbates the problem” [Co06; p.22-23]. 
Since peoples' “education and experience have prepared them to see and solve 
tame problems, wicked problems sneak up on them and create chaos” [Co06; 
p.36]. Coyne argues in a similar direction: “Wickedness is the norm. It is tame 
formulations of professional analysis that stand out as a deviation” [Co05; p.12]. 

In this context, Rittel’s wicked problems can be seen as a pleading for ex-
tended requirements engineering. However, Rittel emphasizes that the solution 
must be equally considered. As shown in ch. I.5.5 also REM theory acknowledg-
es that requirements cannot be defined unless parts of the solution are considered. 
In fact, experience shows that formulated requirements are often abstract to 
stakeholders as long as they don't see any concrete solution, where they then can 
tell the delta of their needed solution in contrast to the presented solution. Proto-
typing and iterative development directly address these issues. Agile methods 
(e.g., cf. [BT04]) with their notion to short iterative release cycles with continu-
ous stakeholder feedback, where evolutionary prototypes stepwise turn into the 
productive system, can be seen as a direct addressing strategy to handle the wick-
ed nature of design. In many other projects, however, such a tight integration 
with “informed and collaborative stakeholders” [BT04; p.95] as needed by agile 
projects is not feasible, or projects demand for more disciplined approaches, 
where the final outcome is not as vague as it might be by using the evolutionary 
prototype paradigm91. Thus, in these contexts, pressure on project progress and 
pressure to find solutions may press for taming a wicked problem. Besides, the 
question arises whether taming a wicked problem must per se be considered as 
wrong. In many cases, finding any feasible solution may be satisficing (see ch. 
I.6.2.1 above) for a start. This can be rather the case for technical equipment such 
as automobiles.  

However, when a problem returns back to the agenda, because the first solu-
tion did not prove as satisficing enough, the deciders should reflect on, whether: 
• First, the problem may be an unintentionally tamed wicked problem, and 

whether more sophisticated courses of action to elicit the problem may be 
more adequate. Otherwise, it may happen that considerable energy is spent 

                                                           
91 Examples for more disciplined approaches are the processes for safety-critical embed-

ded systems discussed in ch. I.7. 
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on curing continuously new arising symptoms of a basically poor solution ra-
ther than finding a better solution leading to a problem 'smoldering around' 
in a project. Often, some stakeholders anyway have themselves intuitions 
about such problems they feel uncomfortable about. In this context, it may be 
considerable whether the bad smells of Fowler [Fo99] provide a certain 
analogy for this. Good processes may play a certain decisive role to avoid 
such problems as Janis [Ja72] indicates. According to him, organizations 
with poor processes can tend to group-think [Ja72] meaning that the organi-
zation quickly decides on a poor solution, and the rest of the energy is spent 
on relatively insignificant issues about this solution. As Janis made his ob-
servations on analyzing foreign policy making and Rittel derived parts of his 
experiences in social planning, it is very probable that Janis discovered the 
group-think problem in the context of decision making for wicked problems. 

• Secondly, if a decision must be reconsidered, it will be important to know 
about the reasons leading to the former decisions (so called rationale), about 
the reasons now making a reconsideration of the decision necessary (also ra-
tionale), and the consequences arising from a reconsidered decision. 
Rittels wicked problems idea resulted in the development of the so called 

IBIS system, which can also be seen as the initiating momentum for a research 
field today called rationale management (RatMan). RatMan deals with finding 
concepts and techniques to support elicitation, documentation and further usage 
of rationale about a taken decision. Correspondingly, Rittel can be seen as a 
pioneer of RatMan (see very first page of [DMM+06]). Ch. II.9 describes the 
concepts and ideas of RatMan in detail. 

I.6.2.3  Design as Situated Action 

Schön [Sch83], [Sch87] analyzed the way competent practitioners think when 
they perform their actions. His theory bases on the assumption derived from the 
work of Polanyi [Po66] on tacit knowledge (see ch. II.9.4.2) describing that not 
all knowledge can be brought to consciousness and/or be rationally described by 
the knowing person92. Correspondingly, Schön formulates his assumption as 
“competent practitioners usually know more than they can say. They exhibit a 
kind of knowing in practice, most of which is tacit” [Sch83; p.8]. 
Thus, Schön differentiates two very distinct cognitive processes: 

                                                           
92 For example, it is difficult to describe and teach a person how to ride a bicycle, since it 

is an unconscious process skill. The person must learn this on its own. Similar con-
cepts are experience, intuition etc.. 
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• “An intuitive process of skillful action” [DMM+06a; p.21], called knowing-
in-action [Sch83; p.54] or professional artistry [Sch87; p.22]. 

• “A reasoned process of reflection” [DMM+06a; p.21-22], called reflection-
in-action [Sch83; p.55]. 
Design is then a continuous, intertwined alternation between both processes, 

where both “cannot be done simultaneously, because reflection disrupts knowing-
in-action” [DMM+06a; p.22]. In knowing-in-action, the practitioner applies 
knowledge he knows “how to carry out spontaneously”93 [Sch83; p.54], until he 
experiences “surprise, puzzlement, or confusion in a situation which he finds 
uncertain or unique” [Sch83; p.68]. This leads to reflection-in-action, where he 
“reflects on the phenomena before him and on the prior understandings which 
have been implicit in his behavior. He carries out an experiment which serves to 
generate both a new understanding of the phenomena and the change in the situa-
tion” [Sch83; p.68]. In other words, “reflection is only productive when intuition 
fails to cope with some new circumstance arising” [DMM+06a; p.22]. Reflection 
not only applies knowledge, but creates new. In this context, “practitioners are 
frequently embroiled in conflicts of values, goals, purposes and interests” [Sch83; 
p.17] leading to these new unique circumstances. 

A big part of these new and unique circumstances may be connected to the 
wicked problems concept (see ch. I.6.2.2 above) as the following statement about 
the relations between the clients (other stakeholders the future users) and the 
practitioners in a project show: Practitioners “bring to their encounter a body of 
understandings which they can only very partially communicate to one another 
and much of which they cannot describe to themselves” [Sch83; p.297]. 

However, as Atwood et al. analyze, “the Reflective Practitioner is not a de-
sign text in the sense that it describes a particular view of design. Rather, it pre-
sents a theory of how professionals learn” [AMW02; p.128] and – the author 
would say – apply knowledge. Horner and Atwood [HA06a; p.75] interpret 
Schön's theory about practitioners' handling of knowledge and action “as a reflec-
tive conversation with the environment”, where the practitioners “reflect on what 
they are doing in the action present” [HA06a; p.75] (see also [AMW02; p.126]).  

In the author's opinion, another interesting connection may exist between 
Schön's concept of knowing-in-action and what cognition psychology terms as 
flow [Cs90]. Flow describes a state of thinking “in which knowledge and experi-

                                                           
93 “Although we sometimes think before acting, it is also true that in much of the sponta-

neous behavior of skillful practice, we reveal a kind of knowing which does not stem 
from a prior intellectual operation.… It seems right to say that our knowing is in our 
action” [Sch85; p.157]. 
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ence come together easily and knowledge workers seem to 'flow' through their 
highly demanding work” [HA06a; p.93]. 

The author risks another interpretation in connection to Simon: In often en-
countering situations of bounded rationality (see ch. I.6.2.1 above), practitioners 
often use intuitive knowing-in-action strategies to cope with, until they encounter 
a direct problem situation (action present), where the intuitively found solution 
breaks down (i.e. conflicts with) and a rational process of reflection-in-action 
takes over to solve the problem94. 

I.6.2.3.1  Intuitiveness versus Formality of Design Models 

Theoretical computer science often demands for highly formal modeling ap-
proaches. Formal approaches are often complex in itself and require a deep un-
derstanding of the approach. In the author's view, this demand directly contradicts 
with the view of Schön. Further, as Shipman and Marshall [SM99a] strikingly 
have analyzed, users of systems supporting intellectual work often perceive for-
mality as significant obstacles to their work (see ch. II.9.4.2 for a detailed de-
scription). Thus, formal methods may impose high entry barriers when applied in 
practical engineering. In the authors opinion this fact may be one explanation for 
the great success of UML in practical engineering, since its first versions did not 
rely on a strict formalism but proclaimed a kind of notion 'it’s okay as long as it 
says what you wanted to say'. This freedom lowered the entry barriers for practi-
cal engineers significantly and thus supported knowing-in-action.  

The author has also encountered this experience in his own practical work as 
contact person for the introduction of UML 2.0 into automotive embedded mod-
eling of the Micron Electronic Devices AG. At first, most designers were insecure 
and concerned whether their design really was conforming to UML. The fear of 
producing non-conforming UML diagrams made designers reluctant to model 
diagrams, unless the designers were convinced that UML-conformance is not of 
primary importance, as long as the diagrams showed what the designers wanted 
to express and as long as they were not used as basis for code generation. This 
UML in a sandbox style encouraged the designers to experiment with diagrams 
and improved designers' experiences of UML by learning by doing. 

Shamonsky [Sh03] emphasizes that Schön's findings rather indicate a strong 
need for sketching: “In observations of designers sketching, Schön [Sch87] found 
a process of negotiation between designer and sketch. The designer draws, then 
interprets his or her own sketch, then continues or redraws the sketch in a process 
                                                           
94 In the pattern approach terminology (ch. I.6.2.4) this would be called 'resolving the 

forces'.  
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that yields a progressively more refined design” [Sh03; p.63] (see also [Sch87; 
p.63]). 

Also experiments by [Go99] show strong evidence that design without 
sketching phases does not work (see also [BD03], [BGP06]). Goel [Go99], 
[Go95] approaches the design process by psychological studies. He identifies 
four core activity phases in design: 
• Problem structuring (can be seen as something like the requirement phase),  
• Preliminary design (sketching),  
• Refinement, 
• Detailed specification; 

Referring to Witt et al. [WBM94], Kruchten [Kr95; p.49] states similar find-
ings to design phases in SE describing four phases of design (+12 sub phases): 
sketching, organizing, specifying, optimizing. Aliakseyeu et al. provide an over-
view about sketching support in design [AMR06]. 

Fig. 6-1 shows Goel's findings95 [Go99] about correlations between the 
phases design problem space, cognitive processes and representations. Between 
the problem statement (requirements) and the resulting design, a phase of prelim-
inary design leads to the exploration of several design ideas (alternatives) [Go99; 
p.1]: 

“Preliminary design is a classical case of creative, ill-structured problem solv-
ing. It is a phase where alternatives are generated and explored. This generation 
and exploration of alternatives is facilitated by the abstract nature of infor-
mation being considered, a low degree of commitment to generated ideas, the 
coarseness of detail, and a large number of lateral transformations. A lateral 
transformation is one where movement is from one idea to a slightly different 
idea rather than a more detailed version of the same idea. Lateral transfor-
mations are necessary for the widening of the problem space and the explora-
tion and development of kernel ideas. 

The refinement and detailing phases are more constrained and structured. 
They are phases where commitments are made to a particular solution and 
propagated through the problem space. They are characterized by the concrete 
nature of information being considered, a high degree of commitment to gener-

                                                           
95 In the author's view, these findings can be directly transferred to the topics discussed 

here, where the design phase “Problem Structuring” can be considered as REM activity 
and the other phases ate considered as design phases. The transition from REM arti-
facts to design then takes place during the sketching phase. This also indicates why 
traceability information between requirements and design may be more difficult to 
capture than most traceability approaches usually consider (see ch. II.10.6 for a more 
detailed discussion). 
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ated ideas, attention to detail, and a large number of vertical transformations. A 
vertical transformation is one where movement is from one idea to a more de-
tailed version of the same idea. It results in a deepening of the problem space.” 

 

 

Figure 6-1  The design problem space according to Goel [Go99; fig.1] 

Goel [Go99], [Go95] claims that the ill-structured nature of sketches facili-
tates lateral transformations (changes of alternatives, ideas) because of ambigui-
ties, syntactical and semantic overlaps. Shamonsky emphasizes that the ambiguity 
beared by sketches can be seen as “nourishment for creativity”, where “the de-
signer or other designers opportunistically discover new ideas based on misinter-
pretations or reinterpretations of the sketch” [Sh03; p.63]. 

Schön reveals a similar notion, when speaking about ambiguity in design: 
“When design terms are ambiguous in this way, they may create confusion, but 
they also call attention to multiple consequences” [Sch87; p.60f]. 

I.6.2.3.2  The Role of Expertise in Design 

Cognition research on design indicates that sketching is an essential activity for 
generating and refining ideas and solving problems [DGN+00]. Research results 
of Bilda et al. [BGP06] indicate however that sketching is not essential for expert 
architects to develop conceptual ideas, but “the ability to read or produce sketch-
es appears to be the only way to develop expertise in architecture” [BGP06; 
p.587].  

In the author's opinion, this corresponds to another finding of Reenskaug 
[Re97] possibly explaining why software developers often do not use models for 
analyzing and design. When training students, Reenskaug observed that the stu-
dents could not model a solution top-down without any concrete solution experi-
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ence at hand. After the first system of this type has been built, however, the stu-
dents improved in modeling such a system in a top-down fashion. Sensitized by 
these finding, Reenskaug then realized that he himself encounters the same prob-
lems when approaching new kinds of systems, because he lacks the knowledge of 
specificly needed solution details. Accordingly, Reenskaug assumes this as an 
essential property of the design problem. Reenskaug proposes a three point heu-
ristics to cope with this problem [Re97; p.6]: 
• “Choose the modeling idiom that best describes the hard parts of your prob-

lem. A program-centered approach will give overview of the code; a system-
centered approach will give overview of how the system works”. 

• “Use an iterative approach to help get both architecture and details right”. 
• “Do not over-document, but try to maximize self-documenting code”. 

In other words, Reenskaug claims that only domain experts can perform a 
model based design solution96, whereas non domain expert developers should 
address the core problems by sketching a design (point one), whereas the remain-
ing non-hard problems should addressed by self-documenting code instead of 
models (point three). Both together must be addressed in a continuous iterative 
fashion (point two)97. 

According to Paech et al., designing is a creative task that “can only be 
learned through experience and apprenticeship” [PKD+03; p.142]. Hazzan 
[Ha02] provides a general discussion of the reflective practitioner principle in 
connection with SE theory and teaching practice. He appeals for using sketching 
classes in a design studio98 atmosphere, where students learn from coaches being 
“first-class faculty members” [Sch87; p.171]. 

I.6.2.4  Design as a Language of Patterns 

During his research on properties of good design in buildings architecture, Chris-
topher Alexander ([Al64], [AIS77], [Al79]) discovered that problems are often 

                                                           
96 This is an indirect explanation why designers are usually referred to as experienced 

expert developers. 
97 Reenskaugs findings strongly resemble to important heuristics propagated by the agile 

development community. 
98 ‘‘Studios are typically organized around manageable projects of design, individually or 

collectively undertaken, more or less closely patterned on projects drawn from actual 
practice. They have evolved their own rituals, such as master demonstration, design 
review, desk crits, and design juries, all attached to a core process of learning by do-
ing’’ [Sch87; p.43].  
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recurring in the context of different design situations. This lead Alexander to 
propose a concept that addresses these problems referred to as patterns.  

Alexander realized that the average designers can only insufficiently cope 
with the involved growing complexity: “To match the growing complexity of 
problems, there is a growing body of information and specialist experience. This 
information is hard to handle; it is widespread, diffuse, unorganized. Moreover, 
not only the quantity of information itself is by now beyond the reach of single 
designers, but the various specialists who retail it are narrow and unfamiliar with 
the form-makers' peculiar problems, so that it is never clear quite how the design-
er should best consult them. As a result ... the average designer scans whatever 
information he happens on, consults a consultant now and then when faced by 
extra-special difficulties, and introduces this randomly selected information into 
forms otherwise dreamt up in the artists' studio of his mind” [Al64; p.3-4]99. 

His discovery, however, was that the complexity is not completely at random 
but contains similar problems recurring in different situations. Even though – as 
Rittel showed – the problems are not completely the same, they contain certain 
similarities. Accordingly, the solutions also show certain similarities. Or, as prob-
lems contain a kind of pattern, the solution may also follow a kind of pattern: 
“Each pattern describes a problem which occurs over and over again in our envi-
ronment, and then describes the core of the solution to that problem, in such a 
way that you can use this solution a million times over, without ever doing it the 
same way twice” [AIS77, p.X]. Or, as Booch puts it: “complex systems have 
common patterns. These patterns may involve the reuse of small components, 
such as the cells found in both plants and animals, or of larger structures, such as 
vascular systems, also found in both plants and animals” [Bo94; p.11]. 

In short, a pattern describes a commonly recurring problem and a general-
ized description of a core solution generally adaptable to in different shapes for 
the individual problems [AIS77; p.X]. Now, if a good solution for such a recur-
ring problem is found in a specific design solution, the designer can document the 
general essence100 of the problem and its solution. Such documented patterns can 
then be used as a solution alternative in similar design problem situations. When 
the designer then decides for applying the pattern, the general solution essence 
defines the general structure of the design, whereas the individual local condi-
tions of the current design problem context define the individual peculiarities of 

                                                           
99 In the author's eyes, the following statement of Alexander also reveals close connec-

tions to the Simon and Booch's views of arbitrary complexity (ch. I.6.2.1), Rittel's 
wicked problems and Schön's view. 

100 Essence emphasizes the need to describe generalized information on the problem and 
the solution apart from a specific problem-solution context. 
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the applied pattern in the current design context. The problem essence101 is often 
referred to as conflicts or forces102 being torn apart [Al64; p.20]. Or, as Hagge et 
al. put it: “The underlying notion is that patterns help in resolving conflicts or 
stress situation–  which are frequently perceived as 'being torn apart by … 
forces'” [HHL+06; p.412]. 

In general, at least four essential aspects must be treated by a pattern 
[GHJ+95; p.3f], [Do04; p.530]: 
• Name of the pattern [GHJ+95; p.3] works as a kind of keyword that can be 

used as placeholder (vocabulary) to refer to the complex knowledge of the 
problem and solution during design talks and documentation. 

• A common problem, including a common problem context describing the 
forces, or the conflicts to be solved [GHJ+95; p.3], [Do04; p.530]. 

• A general approach to a solution [Do04; p.530], or general solution essence. 
The structure of the pattern. The solution neither describes a specific design 
or specific implementation. It can be seen more as a generic template adapta-
ble to different situations [GHJ+95; p.4].  

• The consequences arising from the use of the pattern enlist either the ad-
vantages as also the disadvantages involved with the usage of the pattern. 
“Although consequences are often left unspoken, when design decisions are 
described, they are still of central importance for the assessment of design al-
ternatives and for the understanding of the advantages and disadvantages of a 
pattern's application” [GHJ+95; p.4].  

In the software development context, the first proposal for the adoption of 
Alexander's pattern concept to software development seems to have been made 
by Kent Beck and Ward Cunningham [BC87] within the Smalltalk programming 
community for developing user interfaces103 [BMH+98; p.7]. Even though other 
publications exist [CS95], the book of Gamma et al. [GHJ+95] – often referred to 
as Gang of Four (GoF) – sparked broad resonance in the design community lead-

                                                           
101 See [HHL+06; p.412] for a good discussion on this. 
102 A good example is the pattern “A window place” [Al79; p.112] that can be summa-

rized in the following way: “In living rooms where people want to be comfortable, a 
sitting area should be located close to the windows. In rooms where the sitting area is 
not placed near the windows, people would be caught in a conflict: they would be 
drawn to the chairs to sit down and relax, but at the same time they would also be 
drawn towards the windows where the light is. Using the window place pattern would 
resolve and prevent the stress situation” [HHL+06; p.412]. 

103 See, e.g., the model-view-controller pattern concept 
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ing to the wide influence of patterns in today's SE theory. Patterns can thus be 
found and used at different levels104 of abstraction in design and SE theory: 
• Requirement patterns can be used to support elicitation and specification of 

requirements in combination with their verification criteria and test cases 
[RS02; p.346f]. A good description about other RE patterns and their role in 
RE is provided by [HHL+06]. 

• Analysis patterns support analysis of requirements and especially can pro-
vide help that important nonfunctional requirements are already considered 
during the analysis phase [Mo04; p.142], [Ha01a], [Fo97]. 

• Architectural styles105 define “a family of systems in terms of a pattern of 
structural organization. More specifically, an architectural style defines a vo-
cabulary of components and connector types, and a set of constraints on how 
they can be combined” [SG96; p.20]. In other words, architectural styles de-
scribe global structuring or organization principles to be found over and over 
again [PBG04; p.202]. An example for an architectural style is the three lay-
er architecture separating data storage, functional logic and user interface in-
to three different horizontal layers [BMR+00; p.31ff].  

• Architectural patterns describe rules or methods to address recurring aspects 
of system functionality often also referred to as crosscutting concerns 
[PBG04; p.207] such as persistence, multi-threading, distribution or the user 
interface [PBG04; p.208]. In this way, architectural patterns do not so much 
emphasize the functional domain but address technical aspects [PBG04; 
p.208]. An example for this category is the model-view-controller pattern 
addressing the crosscutting concern of designing flexible and reusable GUI-
components [BMR+00; p.125ff]. 

• Design patterns describe solutions for recurring design problems. Whereas 
architectural styles and architectural patterns rather address the global per-
spective, design patterns address more local perspectives in the way that they 
either effect one component or the collaboration of a few components 
[PBG04; p.214] [BMR+00; p.222ff]. In this way, design patterns can be ap-

                                                           
104 Also cf. Buschmann et al. [BHS07, p.213ff], who admit that these categorizations also 

are in some way arbitrary, as patterns often involve more than one of the different pat-
tern categories described here and thus overlaps are fluent. 

105 It is to note that Buschmann et al. [BMR+00] do not distinct architectural styles from 
architectural patterns. This separation seems to be introduced by Posch et al. 
[PBG04]. However, even [BMR+00] provides a kind of segmentation, because the 
first are referred to as architectural patterns bringing structure into the overall archi-
tecture, whereas the latter then refer to more detailed implementations of aspects. In 
this way, the author finds this distinction between architectural styles and architectur-
al patterns plausible. 
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plied without having effect on the overall architecture of a system or soft-
ware [PBG04; p.214]. Furthermore, several design patterns can have effect 
on a component in parallel.  

• Idioms [BMR+00; p.345-358], or implementation patterns [Be08], in pro-
gramming languages or programming practice describe special – often pro-
gramming language specific – peculiarities to provide an elegant solution for 
a specific recurring programming problem106. Beck [Be08] (also cf. 
[BMR+00; p.348f]) further shows that idioms can be an elegant mean for 
writing self-documenting code helping to improve development communica-
tion, simplicity and thus code flexibility [Be08; p.24ff]. 

• Process patterns describe patterns within a process landscape. Most notably, 
the agile development methods community [Co95], [BDS+98], [MWS+07], 
[HHL+06] and the wiki community [Ma08b] have also internalized the pat-
tern language concept as they can be seen as an implementation of so-called 
process pattern languages ([Co95], [MWS+07]). A good starting point for 
the definition and usage of agile process patterns are found in [BG06].  

• Anti-patterns indicate design flaws by enumerating symptoms and their 
negative effects [Ak96], [BMH+98], [Mo04; p.149 ff], [Kr08]. Anti-patterns 
arise when an originally fitting solution increasingly becomes unfitting due 
to changes of the solution's context (e.g., changing requirements) [Mo04; 
p.150]. The anti-pattern concept allows to document symptoms in a struc-
tured way to detect recurring unfitting solutions. Therefore, anti-patterns are 
also called recognition patterns [Mo04; p.156]. A good description about ar-
chitectural anti-patterns and how they happen is provided by Kruchten 
[Kr08].  

                                                           
106 As an example, the '?:'operator in the programming language C allows to assign differ-

ent values to a variable basing upon a condition within one line of programming. As an 
example for idioms imposed by the automotive industry can be the MISRA standard 
for C programming [MISRA2004]. The standard defines idioms to be used in order to 
avoid known programming pitfalls encountered in C. In MISRA conforming code, 
e.g., the expression 'if (x==1)' is not allowed, because an incautious programmer could 
have written 'if (x=1)', where in this case a value assignment would take place and the 
‘if’ statement would never be reached (besides a construct such as 'if (x=1)' is general-
ly forbidden in MISRA). To avoid such unintended side effects, the MISRA standard 
demands to use 'if (1==x)', because if the developer wrote 'if (1=x)' the C compiler 
would issue a compiler error, as a value assignment to a constant ('1') is not allowed. 
In other domains such as Linux programming, however, the idiom 'if (x=1)' is consid-
ered as an elegant way of programming as it combines a value assignment with an ‘if’ 
in one line and thus avoids unnecessary code. 
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• Usability patterns: Borchers [Bo01] describes patterns usable for human 
interaction design. 

• Means: In connection with patterns, Paech et al. [PKD+03] define the term 
means: “Means are principles, techniques, or mechanisms that facilitate the 
achievement of certain qualities in a SW architecture. They are abstract pat-
terns that capture a way to achieve a certain quality requirement, but are not 
concrete enough to be used directly” [PKD+03; p.144]. However, means 
may be connected with concrete patterns [PKD+03; p.144], because means 
are selected according to NFRs and lead to the identification of the corre-
spondingly usable patterns [PKD+03; p.147]. Hagge et al. refer to a RE pat-
tern “Organize Specification Along Project Structure” (OSAPS) [HHL+06; 
p.419]. SysEng (ch. I.4) can be seen here as the means to fulfill the OSAPS 
pattern. 
To support convenience and clarity [AIS77; p.X], Alexander proposes to de-

scribe each pattern in the same format today referred to as a pattern template. 
The pattern template provides a formalized skeleton of all important points to 
consider and document about a pattern. In this way, a structured method for doc-
umenting patterns that are comparable to each other is enforced.  

As an exemplary pattern template, the properties of the GoF pattern tem-
plate [GHJ+95; p.8ff] are shortly introduced in the following (for other sources 
about pattern templates the author recommends [PBG04; p.217]): 
• The pattern's name and classification: as indicated above the name is intend-

ed to become part of the designer's design vocabulary. Thus, the name should 
transport concisely and precisely the essential information of the pattern. 

• Purpose: This section shall provide a brief sketch of the pattern's general 
achievement, general principles, general purpose and what general issues or 
problems can be addressed by the pattern.  

• Also known as: Refers to possibly known different names. This is, e.g., used 
to refer to other authors having described the pattern by using a different 
name.  

• Motivation: Here, a certain specific exemplary scenario describes a design 
problem and how the structure of the pattern can help to solve the problem. 

• Application: This section describes the problem situations the pattern can be 
applied to and how the situations can be recognized by the designer. 

• Structure: The structure part describes the general structure of the pattern. 
For this, usually a structure diagram is provided with a textual description.  

• Participants: Participating classes and objects are discussed in this part. 
• Interactions: The interactions between the participants are described in this 

section. 
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• Consequences: As described above, the application of a pattern can involve 
positive and negative consequences. This part describes all known conse-
quences.  

• Implementation: The implementation section describes tips, techniques and 
pitfalls of the pattern to be known in order to be able to apply it successfully. 
It further refers to programming language specific aspects and possible ways 
of implementation. 

• Example code: Example code fragments demonstrate a possible implementa-
tion within a programming language. 

• Known usages: This part shows where the pattern has already been applied 
in real systems giving indications where the effecting pattern can be studied 
in practice. 

• Related patterns: The last section describes how the pattern is related to 
other patterns, what the differences are to other patterns. Further, the part 
describes what patterns harmonize with the pattern and what patterns may 
involve dissonant effects if applied with the pattern.  
A single pattern can provide a valuable solution for a problem. Alas, design 

deals with a lot of problems and correspondingly several different patterns may 
be applied in a design to solve these problems. Hence, the different applied pat-
terns in a design may influence or stay linked to each other. This raised the idea 
in Alexander that design may be expressed as a language of patterns [AIS77], 
where the different applied patterns and their connections to each other structure 
the design. These connections between patterns can be influential (e.g., two de-
sign patterns can benefit or oppose each other) and also be of a kind of hierar-
chical nature, where higher abstraction level patterns are built up by lower ab-
straction level patterns (e.g., a design pattern can be implemented by several 
idioms working together, and the design pattern can work together with other 
design patterns to implement an architectural pattern) [AIS77; p.XII]. This idea 
is considered by Gamma et al. by defining a so called pattern catalog including a 
map, where possible connections between the patterns are introduced for design 
patterns [GHJ+95; p.16]. However, connections to patterns on other levels of 
abstraction are not considered. The concept of collecting patterns in a pattern 
catalog is usual [Mo04; p.143]. 

Also to mention is the Portland Pattern Repository107 (PPR) wiki providing 
a possibility to collect patterns of all possible different categories108, where inter-

                                                           
107 See http://www.c2.com/cgi/wiki?PortlandPatternRepository (Access: 2010/03). 
108 The PPR even describes socio-political patterns concerned with SW-development such 

as 'Melting Pot', describing how immigrants can be integrated into a SW development 
company in order to support company growth. 
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connections between patterns at even different categories are possible to de-
scribe. According to Greenfield et al. [GSC+04; p.210-211], the formalization of 
a pattern language may be a step toward defining a new modeling language. In 
fact, some design patterns (such as, e.g., 'Singleton') can be expressed in repeat-
edly the same implementation in code; however for others this may not be always 
achievable in the same way. However, Rupp et al. [RS02; p.348] utter the opinion 
that such a detailed pattern language may be an unrealistic goal for the software 
development community. Nevertheless, it is also to mention that Alexander him-
self does not insist on the opinion that only one pattern language exists, but that 
each individual may develop his (her) own unique language [AIS77; p.XVI]. In 
this way, a formalized pattern language was not in the focus of Alexander and 
may even to a certain extent contradict the original intentions of Alexander. 

Evidence exists that patterns may also be implicitly present in expert de-
signers thinking [VM02], [WV03]. In the Schönian context, one advantage of 
patterns may be that they represent a set of condensed reflective structures 
evolved from the design community. In other words, the pattern design commu-
nity often identifies probably knowingly (intuitively) found solutions as 'good' 
and then reflectively explores the exact circumstances of their 'goodness'109 and 
documents this knowledge as a pattern. Even though such an rationalization of 
intuitive knowledge may tend to provide falsifications [Sch87; p.23], Alexander’s 
“method of capturing expertise was innovative, as it made explicit many of the 
'soft' attributes that were previously attainable only through years of experience” 
[BMH+98; p.7]. 

Thus, patterns can be seen as written-down expert knowledge about a prob-
lem area and an offering of special opportunities to transfer and acquire this 
knowledge [Ha01a], [RS02; p.344], [Mo04; p.139]. Hereby, “patterns provide 
clarity. Patterns alone by their names represent a set of knowledge and meta-
knowledge building a standard language (own set of vocabulary), where issues 
are reduced to a handy manner by essence building and abstraction” [RS02; 
p.345 (*)]. Thus, the role of patterns can be seen similar to symbols in a lan-
guage, where sheerly mentioning the pattern name transports complex 
knowledge to all persons being familiar with the pattern.  

In this way, patterns are also a possible answer to the problem of complexity 
and rapid change in software development: “Formalizing knowledge is a costly 
process. Aiming at achieving a perfect formalization is perhaps not worth, be-
cause software development, as any other intensive human activity, is evolving. 
Therefore the focus should be on providing an easy to customize and simple to 
apply solutions like the framework of patterns” [BG06; p.389].  

                                                           
109 In the context of anti-patterns, the term 'good' can be replaced by 'bad'. 
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As indicated in ch. I.6.2.1.3, Simon's principles may be the end results of a 
design process, but Simon does not provide adequate indications on how to apply 
the principles in the design genesis. The problem seems to be that due to the 
complexity of factors, which make it impossible to rationally capture all factors 
adequately, intuitive knowing-in-action and tacit knowledge (see Schön, ch. 
I.6.2.3) are often the means to structure design. Here, patterns help designers in 
the decision process by documented expert knowledge. As an example, at the 
beginning of a project where nearly no structure is recognizable yet, a style as the 
three layer architecture builds a guide to overcome this by building a heuristics 
for early decomposing the design according to general aspects most SW-systems 
for PCs usually have. 
In summary, the following positive effects can be achieved by patterns: 
• Novice software designers can significantly improve their design quality 

from start [PU99], [Mo04; p.143]. 
• Experienced designers can also improve their design quality but more im-

portant, can better communicate their design ideas through patterns, being a 
design vocabulary transporting complex knowledge [PU99], [Mo04; p.143]. 

• Generally, only very few situations exist where patterns are weaker in com-
parison to another alternative solution [PU99], [Mo04; p.144]. 

• Most patterns have very positive effects on flexibility, whereas the impact on 
maintainability stays stable if they are not misused (see below for description 
of possible misuses) [PU99], [Mo04; p.144]. 

• Design patterns often influence nonfunctional requirements in one or the 
other direction. In most cases, however, choosing the right design patterns 
can significantly affect positive impacts on NFRs otherwise difficult to ad-
dress [PBG04; p.214]. 

• Patterns offer proven and tested solutions to problems [RS02; p.344]. How-
ever, its positive effects should be tested, before employing a pattern.  

• Douglass proposes using a pattern for each design view (see ch. I.6.2.1) 
employed in a design. In this way, conceptual integrity shall be enforced 
[Do04; p.478]. 
If patterns are used in a design, its usages should be documented in order to 

alleviate later maintenance [M004; p.321]. This will also be especially important 
when the documentation is the basis for an architectural assessment. In these 
cases, pattern can be significant indicators to detect tendencies and overall quali-
ty of a design [Mo04; p.140], [Mo04; p.293], [Mo04; p.381ff]. 

However, patterns can also provide problems. Dittert [Di04b; p.37] de-
scribes her own practical experiences how the pattern idea can be misused (i.e. 
pattern usage anti-patterns): 
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• “The pattern canon” [Di04b; p.37 (*)] has happened, if a simple imple-
mentation would have been sufficient, but some probably somewhere in the 
future occurring problem could have spoiled the solution. Correspondingly, 
the applied pattern may have prevented problems, if the change case may 
have happened some time. On the other side, the – most probably unneces-
sarily – applied pattern has heightened the complexity. 

• “Pattern euphoria” [Di04b; p.37 (*)] can occur, if the application of a pat-
tern at first brought significant advantage and then lead to extended use of 
the pattern to increase code flexibility, until the code became unreadable and 
small changes induced tremendous side effects. 

• “Pattern decoration” [Di04b; p.37 (*)] describes properly working code that 
is decorated with some additional patterns, because the implementation was 
easy enough, whereas no significant new value has been generated. 

• “Pattern record” [Di04b; p.37 (*)] indicates attitudes of designers thinking 
that a program’s quality will automatically be high, when all known patterns 
are someway employed in it. 
Last but not least to mention, Alexander saw pattern solutions as “timeless” 

[Al79]. However, this timelessness refers to the method but not the patterns 
themselves. Practice in software development, for example, shows at least in the 
software context that patterns also change, during increased usage and gained 
experiences [Wi06]. Consequently, their documentation i.e. specification need to 
be changed, too [Wi06]. From this perspective, close connections between the 
pattern concept and what Simon describes as stable intermediate forms reveal. 
Maybe patterns are a – maybe others exist as well – kind of notation for (resp. 
manifestation of) stable intermediate forms.  

I.6.3  Comparison of General Design Theories 

The author does not see that the different views on design expressed here are 
fully contradicting. In fact, the views supplement each other at certain states. 

As Rittel’s view tells something about social dynamics – as artificial worlds 
are created by and for humans they are deeply social – in design, it explains 
commonly observed core phenomena as the occurrence of permanent change in 
the requirements and the corresponding solution. A major implication may be that 
designs underlie stronger forces for change than often admitted. 

Heavy-weight design approaches often implicitly assume a certain stability 
of the solution design or demand extensively built-in flexibility mechanisms (as, 
e.g., extensive frameworks) in the design. However, flexibility has its price in 
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higher complexity and thus higher effort and higher costs110. Correspondingly, 
only finite flexibility is possible. Thus, these kinds of approaches must often rely 
on the designers’ abilities to foresee changes in order to provide corresponding 
flexibility mechanisms. The wicked problems theory strongly challenges the fea-
sibility of this. In other words, design approaches should impose as few obstacles 
to changes as possible in order to address the wicked nature of the addressed 
problems that necessarily result in extended changes. 

Even though Simon’s positivist linear view on design may somehow be 
called naive, Simon provides valuable insights into the toolkit available for de-
signers to handle the complexity imposed by the manifold of information to be 
considered at design. Principles as abstraction, hierarchical design and views that 
have evolved from his pioneering research are state of the art in any kind of de-
sign –may it be aware or ignorant of the wicked nature of design problems.  

Schön, on the other side, uncovered that designers do not perform design in 
a merely objective-rational cognitive setting but are equally intertwined driven by 
intuition, tacit knowledge, experience, taste, style and maybe even wisdom. Cor-
respondingly, the author agrees on Knuth that computer programming – as it 
inherently contains design even if not necessarily explicitly present – is a science 
and an art [Kn74]. 

Last but not least, the pattern concept addresses recurring problems in de-
sign and creates possibilities for collecting and communicating design 
knowledge.  

All views on design sketched here have one common concern. Requirements 
constitute a problem space, whereas design constitutes a solution space. Between 
both exists a considerable semantic gap that is constantly mentally bridged by 
designers. This gap is the result of an irreproducible, non-deterministic and onto-
genetic path of intellectual decisions created by a collaborative collective of hu-
man beings shaping an artificial – in relation with SW even abstract and virtual – 
environment. Requirements traceability aims at closing semantic gaps. However, 
the ordinary link concept as usually provided by requirements traceability refers 
to a linear relationship between requirements and design. As the characteristics of 
the design process sketched above suggest, design rather is a nonlinear complex 

                                                           
110 “The problem with building flexible solutions is that flexibility costs. Flexible solu-

tions are more complex than simple ones. The resulting software is more difficult to 
maintain in general, although it is easier to flex in the direction. ... Even there, howev-
er, you have to understand how to flex the design” [Fo99]. 
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process. Correspondingly, the author suggests considering relationships between 
requirements and design as equally nonlinear111.  

In other words, design processes are creative and complex mental transfers 
of unique problem constellations into a sustainable solution. Correspondingly, a 
substantial gap between requirements and design exists that is – in to the author’s 
belief – not really manageable by a linear linking concept as current traceability 
theory suggests112. A sustainable design traceability concept must orient itself on 
the designers’ way of designing, not interrupt the designers’ thinking, find an 
adequate support for decision making, be able to support design as a collabora-
tive process and last but not least provide the necessary flexibility for changing 
the design. 

I.6.4  Dependency between Design Models and Code 

Design models in relation to source code can be either descriptive or prescriptive. 
When a code documentation model is generated from developed source code, the 
model is descriptive. Otherwise, when a design model is designed before the 
code, these models are prescriptive, because they prescribe the further outcome 
of the code. Usually, design is performed before the code, thus most design mod-
els are prescriptive. 

Generally, design theory recommends that besides the design models also a 
programming model must be developed [GP04], [PBG04; p.69]. The program-
ming model deals with defining the transformation regulations for transforming 
design models into code. Design models and the programming models must not 
be confused with each other [PBG04; p.69]. 

Usually, three ways for a programming model to develop code from pre-
scriptive models exist: 
• Manual implementation, 
• Partial code generation, 

                                                           
111 Of course, in any project a high amount of fairly linear relationships between require-

ments and design may exist. However, as these are relatively trivial ones, the nonlinear 
relationships will often be more critical to identify, if a requirement change shall be 
implemented consistently. 

112 Similar findings are expressed by Medvidovic et al. [MGE+03; p.202]: “Unfortunate-
ly, the large semantic gap between high-level, sometimes ambiguous requirements arti-
facts and the more specific architectural artifacts (e.g., modeled in a formal 
...(architecture description language)...) often does not allow one to establish mean-
ingful links between them”. As a consequence they developed their so called CBSP 
approach, discussed in the ch. II.10.6 about requirements traceability to design. 
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• Complete code generation; 
From the technological perspective, manual implementation is the simplest 

way. However, development efforts are the highest. In the long run, risks that a 
significant drift between design model and its code arises are nearly not avoida-
ble, because design models represent a redundancy to the code. Thus, mainte-
nance must care to adapt both the model and the code. Maintenance effort will be 
lower, if the models are not very detailed. In fact, design theory emphasizes that 
models should just show the core ideas and concepts of a system, but no imple-
mentation details [GP04; p.64]. 

Partial code generation can be achieved by two possible ways. One way is to 
generate complete code for certain parts of an application. It is, e.g., possible to 
generate complete code representing a state machine from a state chart model. 
Another possible way is that certain aspects of a model can be used to automati-
cally generate certain code outlines that must then be accomplished by manual 
implementation. In this way, e.g., variable names and method names in a model 
can be used to generate source code files with automatic generation of the varia-
bles definition and method stubs. These method stubs must then be populated by 
manual source code development. Both techniques allow saving effort by directly 
reusing modeled information for the source code. Further, later changes of a 
model can be directly propagated to the source code thus diminishing risks of a 
drift between models and source code. On the other side, this method is accom-
panied by the need for more sophisticated tooling. Additionally, automatically 
generated code can lead to lesser code efficiency (lower performance or worse 
resource efficiency). 

Full code generation would completely solve the redundancy problem be-
tween models and its code, because the full code is generated from the model. 
Therefore, a drift between models and code is impossible. On the other side, very 
sophisticated tooling is necessary and the code efficiency may be significantly 
lower than the efficiency of manually or partially generated code. Additionally, 
models must be modeled in significantly more detail, as all instructions of the 
code must be somehow represented by the models or the code transformation 
algorithms. This means that models must also represent implementation details 
rather than just ideas or concepts (see, e.g., [Do04; p.589ff]), or the code trans-
formation algorithms contain much of the complexity of the implementation 
details. This, however, involves the problem that the developers must either com-
pletely rely on the code transformation algorithms, or the developers must in-
strument the code transformation algorithms by setting complex sets of parame-
ters and performing a certain restricted way of modeling. Both techniques involve 
significant intransparencies of the transformation processes that may also be an 
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issue for traceability considerations. Additionally, using these tools also requires 
having extra expert skills of the developers in using the tools. 

Last but not least, it is to mention that requirements traceability between de-
sign models and code is relatively easy to handle due to the redundancies be-
tween both. As both model and code usually use the same names for concepts 
being redundant to each other, the traceability technique of name mapping (cf. 
ch. II.10.4.2.2) solves the traceability problems as long as no significant drift be-
tween models and code occurs leading to a drift, where the names drift apart from 
each other. 

I.6.5  Architecture Documentation 

Besides just designing the diagrams of a model, further textual documentation 
must be delivered with them. Managing complexity and achieving a common 
understanding are core goals of any design. However, diagrams can be ambigu-
ously interpreted by different persons. Correspondingly, the diagrams must be 
accompanied by a textual description. The research field architecture documenta-
tion (AD) tries to define important criteria on what must be documented about a 
SW architecture in order to be useful. As the R2A tool introduced in part III also 
provides certain support for design documentation, some general principles for 
AD shall be sketched113 here. Of course, AD actually only cares for SW architec-
tures (one of the three different designs identified in ch. I.6.1), but in the author's 
opinion the points discussed here are equally valid for systems design and up to a 
certain point also valid for detailed SW design. 

At first to mention, Clements et al. [CBB+03; p.24-28] introduce seven rules 
any sound textual documentation should consider (also cf. [PBG04; p.124-125]): 
• Documentation should be written from the point of view of the reader, not the 

writer: This ensures that the documented information can be really under-
stood by the reader. 

• Avoid unnecessary repetition: As discussed before in ch. I.6.1.2, redundancy 
should be generally avoided (DRY-principle). 

• Avoid ambiguity: The information provided must be precise and should not 
leave open space for misleading interpretation. 

• Use a standard organization schema: An architectural template helps to 
document information in a certain standard scheme for all projects. In this 
way, project members can easier understand new documents.  

                                                           
113 The interested reader may read [IEEE1471], [CBB+03], [PBG04; p.121-169] or 

[HS06] for a deeper understanding. 
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• Record rationale: Important decisions must be documented. 
• Keep documentation current but not too current: Documentation should be 

continuously kept up to date, but updates should not be performed immedi-
ately to avoid unnecessary costs. 

• Review documentation for fitness of purpose: Documentation must be re-
viewed whether the documentation fulfills its goals. 
Concerning AD, the following basic requirements must be supported 

[PBG04; p.126-128]: 
• Efficiency of the project must be supported: The documentation must support 

the developers to efficiently and easily acquire the information needed for 
their current tasks. 

• Communication and common understanding of important stakeholders must 
be supported: The AD is responsible to enable communication and common 
understanding of the architecture throughout all important stakeholders. In 
the following, several stakeholder needs are described. 

• Minimize risks: The AD must help to reduce risks by making possible risks 
transparent. This means, for example, that documentation should be struc-
tured risk-oriented meaning that high-risk issues should be addressed with 
higher priority and extent than rather low-risk issues [PBG04; p.127]. An-
other important means to expose risks is structured documentation about de-
cisions taken in order to address certain risks and how taken decisions may 
spark new risks. 

• Preserve the core knowledge of the designed system: The core knowledge 
about a certain architecture should be preserved throughout the life time of a 
project. AD should therefore help to preserve this knowledge in the develop-
ing organization and assist in deriving knowledge and experiences reusable 
for new projects. 
As point two has mentioned, AD also is about promoting communication 

and common understanding between important stakeholder groups. AD must at 
minimum support the following stakeholders with their goals [PBG04; p.127]:  
• The project manager needs an overview of the design in order to take organ-

izational decisions. Further, the project manager must get to know the tech-
nical risks. 

• The architect creates the architectural documentation of the project. For this, 
he must capture and understand the important concepts, strategies and tech-
nologies used. 

• The software developer realizes parts of the architecture. In this way, he 
must understand the basic principles of the overall architecture, the basic 
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context of the parts he must realize and – probably most important – detailed 
information on the interfaces of the parts to be realized. 
An AD must contain the following essential points [PBG04; p.128-131], 

[St05; p.105], [CBB+03]: 
• All relevant views must be documented in the AD. All views should be doc-

umented in the same manner by a standard organization template [CBB+03; 
p.317]. In [CBB+03; p.317-320], Clements et al. introduce such a template 
which follows seven criteria. 

• As each view only describes a certain aspect of a system, the AD must also 
document the intercorrelations, interactions and tradeoffs between the differ-
ent documented views114. 

• To achieve the efficiency requirements of AD, the AD document should in-
clude a description of its structuring and assistance to the reader. 
Concerning the last point, Posch et al. [PBG04; p.130-131] provide the fol-

lowing remarks: 
• The AD should use a hierarchic structuring. This structuring could, e.g., be 

the hierarchic decomposition structure of a system, but also other views may 
be organizable in a hierarchic ordering scheme. 

• Descriptions of relationships between views should be explicitly highlighted. 
• Finding and retrieving essential information must be easy. Thus, important 

information should be in the center of description. 
• Documentation must be target-group-specific. This means that information 

for a specific target group should be rather located at one cohesive location 
than be scattered over the whole documentation. 

• The documentation must support target-group-specific navigation. At least, 
information about target-group-specific navigation information should be 
provided. 
Last but not least to mention, the IEEE 1471 standard [IEEE1471] defines a 

conceptual model for documenting architectures in combination with recommen-
dations how to apply these concepts. Among other concepts, the correlations 
between a system, its architecture, its AD and views are defined. Especially inter-
esting is the fact that the IEEE 1471 derives a view from stakeholders and their 
perspectives called viewpoints. From this viewpoint construct, characteristics and 

                                                           
114 “The basic principle of documenting an architecture as a set of separate views brings a 

divide-and-conquer advantage to the task of documentation, but if the views were ir-
revocably different, with no relationship to one another, nobody would be able to un-
derstand the system as a whole. Managing how views are related is an important part 
of the architect's job, and documenting it is an important part of the documentation 
that applies beyond views” [CBB+03; p.200]. 
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constraints for views shall be derived. As the IEEE 1471 only provides concepts 
and recommendations, no specific demands for modeling languages, techniques, 
used design models or views, or other AD related concepts are provided. In this 
way, the IEEE 1471 only defines a frame for deriving an individual AD approach 
[PBG04; p.132]. Besides the general principles for AD sketched here, the IEEE 
1471 with its conceptual framework is not further considered in this thesis. An-
other standard to consider is the IEEE 1016 [IEEE1016] (also cf. [Sch00; p.112-
121]) providing a “recommended practice for describing software designs” 
[Sch00; p.112]. The standard specifies the information content and recommended 
organization for a software design description as a representation of a software 
system that is used as a medium for communicating software design information 
[Sch00; p.112]. 

A comprehensive general treatment of the topic architectural documentation 
is provided by the book of Clements et al. [CBB+03] describing the basic princi-
ples of sound documentation and providing a fundamental terminology and 
method. According to Hruschka and Starke [HS06; p.56], the proposals for struc-
turing AD documents in general are „brilliant“ with its basic structure for docu-
menting views. Hruschka and Starke [HS06; p.57], however, consider Clements 
et al. [CBB+03] as hardly suitable for a practice-oriented AD. In [HS06], Hru-
schka and Starke give an overview on other AD approaches. Further, they intro-
duce a more pragmatic and practice-oriented approach on AD they call “arc42-
template”. 

I.6.6  Design in the Automotive Domain 

After the previous chapters have provided a rather general view on how design 
arises, this chapter describes the modeling methods and tools typically used in 
automotive development. This helps to derive some extra requirements for the 
R2A tool solution described in part III.  

Generally, it is to mention that the tool solution described in part III is a 
general solution not especially dedicated for the automotive domain. In this way, 
this chapter can rather be considered as a kind of exemplar description of model-
ing approaches used in a specific engineering domain. On the other side, the 
automotive domain has some peculiarities that should be considered in order to 
provide high value for the automotive domain. At the end of this chapter, the 
reader will see that the features derived from these peculiarities are also useful for 
other domains, but they are especially useful in the automotive domain. 

In the following, two peculiarities of the automotive domain are discussed: 
• The usage of different heterogeneous modeling languages and tools, 
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• The need to integrate other organizations (e.g., suppliers) into the considera-
tions of design; 

I.6.6.1  Modeling Methods and Tools Used in Automotive 
Design 

In the automotive domain, different modeling methods are used: 
• Tools basing on UML and (resp. or) SysML, 
• Automatic control engineering oriented tools, 
• Tools basing on state charts; 

I.6.6.1.1  UML and SysML 

The Unified Modeling Language (UML) has established itself as worldwide 
standard for modeling SW [We06; p.3]. UML has also established itself in the 
embedded community ([Gr03], [Al03]). In automotive, it is also gaining growing 
usage115, even though the other approaches mentioned here exist. UML's ad-
vantage is its high variety of different design elements and diagram types allow-
ing to flexibly model different aspects concerning SW. Thus, UML directly sup-
ports to model different views. Although UML supports hierarchic decomposition 
of systems, UML does not prescribe a hierarchic order. The standard rather con-
centrates on defining the different diagram types with the semantics of the used 
elements in these diagrams. Decisions about how to arrange elements and dia-
grams in a model are left open to the designers. It is rather possible to use differ-
ent hierarchies (e.g., it is possible to have different hierarchies for different 
views). This leads Broy and Rumpe to the conclusion that UML is rather prag-
matic and practice-oriented without a uniform model, but has rather worked out 
partial aspects as views however not being consistent to each other [BR07b; p.4].  

UML also provides extensibility through offering a meta-model and a profil-
ing mechanism. Whereas, first versions of UML have rather concentrated on 
usability in practice, UML 2116 defines an action-semantics with improved sup-
port for executable models allowing model simulation and code generation 
[Mo04; p.180ff]. Model simulation allows early verification of requirements, 
because the models can be used as a simulation prototype (see ch. I.5.6 for ad-
                                                           
115 A clear indication of its importance in Automotive is the fact that its notation is used in 

defining Automotive SW standards as, e.g., the AutoSAR standard [KF09]. 
116 A detailed overview of the major changes between the first UML versions and UML2 

is provided by [JRZ04]. 
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vantages of prototypes in REM) to simulate the behavior of the system, before it 
is finally constructed thus enabling to identify missing or wrong requirements 
earlier [Mo04; p.177ff]. Model simulation can also help to achieve early estima-
tions about NFRs related to the dynamic behavior of a system (e.g., performance, 
scalability) [Mo04; p.183]. Known UML-tools employed in practice for model 
simulation are IBM Rational Rhapsody and Artisan Realtime Studio (see also 
[Ge05; p.42-44], [Sa05]). However, as long as it concerns model simulation and 
code generation, often other tools described in the next chapters are mostly em-
ployed in the embedded domain. 

For system design as used in SysEng processes, the Systems Modeling Lan-
guage (SysML) has been developed. SysML [SYSML] is defined as standard by 
the Object Management Group [OMG] basing on UML 2.1.1 [We07; p.16]. 
SysML extends UML in certain aspects but also leaves out some aspects of UML 
not necessary for systems design. Besides extensions for modeling systems such 
as support for time-continuous modeling or block diagrams, a major extension is 
that SysML defines a notion for requirements together with several relationship 
types that describe traceability mapping between requirements and design. Ch. 
II.10.4.2.3 describes this aspect of SysML in more details. 

Concerning tool support, SysML can usually be used by UML-tools extend-
ed by a SysML profile. A detailed description of the SysML standard is provided 
by Weilkiens [We06], [We07]. 

I.6.6.1.2  Automatic Control Engineering Oriented Tools 

As Bauer et al. [BRS05; p.195] point out; automotive SW development has di-
verse connections to mechanical engineering and automatic control engineering. 
Accordingly, several design tools exist that have automatic control engineering-
oriented117 semantics. 

In ECU development, the most applied tool of this kind is probably Matlab 
Simulink [Matlab] (see [Te01]). In the automotive domain, besides Matlab Sim-
ulink, the tool ETAS ASCET [ASCET] is also used in equal project contexts 
(ASCET, however, in contrary to Matlab Simulink seems to be used only in the 
automotive domain). Marwedel [Ma08a; p.86] describes Matlab Simulink as 
simulation and modeling tool basing on mathematical principles (e.g., partial 
differential equations). Different elementary mathematical operations as integra-
tors, characteristic diagrams118 or filters are symbolized by so called block librar-
ies (cf. [BRS05; p.195]), which can be connected together via data flow model-
                                                           
117 German: Regelungstechnik 
118 German: Kennlinie 
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ing. Matlab Simulink (and equally ETAS ASCET) provides facilities to simulate 
the behavior of those models as prototypes for early requirement verification of 
complex physical or logical interdependencies between requirements (ch. I.5.4). 
Furthermore, these models can also be used for code generation of large parts of 
the application (see also [Sa05], [Ge05; p.42-44], [MB05]).  

As Bauer et al. [BRS05; p.195] point out; this modeling technique empha-
sizes synchronous function blocks, signals, periods connected by data flow tran-
sitions. However, these models depend on a synchronous uniform time basis. 
Thus, problems as concurrent tasks or shared resource management are difficult 
to handle in those tools (see [BRS05; p.195] for details). Therefore, – as the au-
thor experienced in practice – those tools are often used for modeling certain 
components having complex behavior. These components are then integrated 
with other components in a higher level architecture. 

I.6.6.1.3  State Charts 

Most ECUs are reactive systems (see ch. I.2.2). This means the system reacts on 
the settings and changes of the environment. Therefore, ECUs or at least parts of 
it are often state based. Due to the long existence of state machine theory, it is 
also a well-known theory describing deterministic behavior. 

The techniques usual today for modeling complex state based behavior are 
state charts119 originally introduced by Harel in 1987 [Ha87]. The semantics of 
the language bases on finite deterministic state machines. More on state charts as 
modeling technique in the context of ECUs can be seen in ch. I.5.4, [Ma08a; 
p.18ff] or [Do04; p.317f]. 

Requirements describing state based behavior can be very numerous and 
complex and so can also become the state machines. Therefore, advantages and 
limitations of this method concerning early model verification for early require-
ment evaluation are comparable to the approaches described in the previous 
chapter about automatic control engineering oriented tools (see also ch. I.5.4). 

                                                           
119 Pettit [Pe04] provides the following experiences about state charts in embedded design 

practice with UML: “In the author’s experience, state charts are one of the most un-
derused UML diagrams in designing embedded software system. The hierarchical state 
charts employed by the UML offer significant expressive power for capturing the reac-
tive, state-dependent behavior often found in embedded systems. State charts should 
be constructed for each class that encapsulates state dependent behavior” [Pe04; p.4]. 
Ch. I.8 provides a more detailed discussion on the practical experiences of Pettit in 
embedded development. 
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Due to the possible high complexity of the state machines, the state machine 
models can be managed hierarchically, where states can have sub state machines 
[Ma08a; p.19], [Do04; p.317f].  

The tool Matlab Stateflow is a professional state charts modeling tool offer-
ing the possibilities to simulate gathered state machine models, where the models 
can later be used for automatic code generation.  

Besides Matlab Stateflow, also the UML-tools IBM Rational Rhapsody and 
Artisan Realtime Studio allow similar functions to early simulate modeled state 
charts and generate code of it. The advantage of these tools is that the state charts 
are integrated into an UML modeling environment.  

However, Matlab Stateflow still seems the most used tool for modeling state 
charts in automotive development (see also [Sa05], [Ge05; p.42-44]). 

I.6.6.1.4  Conclusions 

In the automotive industry, different methods are used. Formal methods, as au-
tomatic control engineering and state chart tools, have their individual strength in 
early formal validation and verification of requirements or in modeling algo-
rithms, where the gathered resulting models can be directly used to automatically 
generate code. This often helps to cover large extents of the functional require-
ments. However, automotive ECUs are complex, where extensive parts of the 
code do not cover functional requirements but rather deal with directly handling 
the HW or managing special problems caused by the extremely cost-optimized 
HW. 

For these cases, UML and SysML are better suited with their rather pragmat-
ic, but rich tool set. Moreover, UML and SysML have their focal point on archi-
tectural modeling, whereas the other formal methods rather concentrate on partial 
aspects such as state charts or algorithmic modeling.  

In this way, UML and SysML can be a notational framework for the overall 
design of the architecture. For parts, however, often covering extensive parts of 
the FRs, the formal modeling approaches can develop partial models helping to 
early verify and stable these requirements with the ability to directly use the 
models as basis for code generation. Other parts of the system, however, are not 
needed for formal verification, because they cover FRs only to low extents, but 
rather deal about fulfilling supportive tasks (e.g., steering of HW or managing 
special problems). UML or SysML may then again be the better choice. 

In fact, the author thinks that another form of pareto-kind connection might 
even exist (see also ch. II.10.4.2.2): 80% of the FRs might be covered by 20% of 
the code. This kind of code can often be covered by modeling tools supporting 
early simulation and verification of requirements with subsequent code genera-
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tion. In this way, most functionality of the system can be elicited early in projects. 
However, for the other 80% of the code (being mostly the handler and driver 
layer in an automotive ECU project) dealing with behavior in error cases and 
steering of HW manual coding may still be the best alternative. Another way 
around the problem may be to have standardized COTS120 components such as 
the AutoSAR [KF09] standardization endeavor aims for.  

As a consequence of these facts collected in the chapters above, automotive 
projects often use several design tools in one project together. Correspondingly, a 
requirements traceability solution to include design must enable to include sever-
al design tools into one integrated model. Such a notion is also expressed by 
Grimm [Gr05]: “Current SW tools are generally dedicated to specific phases and 
tasks within software or systems development. Thus, there is an urgent need for 
continuous integrated tools in order to achieve that different developed artifacts 
and processes can be developed in an concerted way with optimal support of the 
defined modeling approach” [Gr05; p.421 (*)]. Such a solution is provided by 
R2A (see ch. III.16.2). 

Last but not least, other tools that exist in automotive design need to be men-
tioned. These are, e.g., tools such as IBM Rational DOORS or Aquintos PREEvi-
sion are used by OEMs in practice to design systems of systems, where the OEM 
derives the requirements specifications for the singular ECUs to commission 
suppliers to develop the ECUs (see the following chapter). In research, tool envi-
ronments such as AutoFOCUS [BRS05] exist especially dedicated for automotive 
development. In the following, these tools are not further considered as design121 
tools. 

I.6.6.2  Integrating other Organizations into a Design 

“In the development of complex embedded systems, often several companies 
work together on the development. At such an interconnected development, often 
partnerships are built, where mostly one supplier is engaged as the system suppli-
er having – besides other tasks – the responsibility to coordinate the other suppli-

                                                           
120 Components Off The Shelf 
121 DOORS is considered as REM-tool but not as a means for design. In fact, DOORS as 

design tool also is very limited in the way that it rather supports a text-based design 
comparable to Microsoft Word, where pictures can, e.g., be created via Microsoft Vi-
sio. However, also more sophisticated addons for DOORS exist allowing to combine 
the textual specifications in DOORS with modeling aspects (see, e.g., http://www-
01.ibm.com/software/awdtools/doors/analyst/ (Access: 2010/07)). 
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ers. Therefore, selection and coordination of suppliers is of special importance in 
embedded development. 

Often, even a hierarchy of client-supplier-relationships emerges, meaning 
that a supplier (second tier) acquires further sub components of the system from 
his own suppliers (so called third tier) and coordinates the collaboration. Addi-
tionally, the customer often prescribes the supplier certain third tier suppliers” 
[HDH+06; p.65 (*)]. 

As this statement of Hörmann et al. indicates, complex relationships be-
tween customer and supplier exist. This makes it necessary to coordinate collabo-
ration between organizations. This also means that often the work of different 
suppliers must be integrated into a working system where one of the suppliers is 
responsible to coordinate the others. This implies that the coordinating suppliers 
must define an architecture where the parts of the other suppliers must be inte-
grated in. As the different suppliers also have strong interest to protect their 
knowledge, it is especially important to define interfaces between the different 
parts. 

This together means that the coordinating suppliers must find ways to effec-
tively communicate parts of their architectural design essential to suppliers whose 
delivered parts must be integrated into the architecture, but also avoid communi-
cating essential knowledge to be protected. On the other side, the coordinating 
suppliers must also ensure that the supplied parts to be integrated really match the 
requirements and directives of the architectural design. The R2A tool solution 
introduced in part III addresses this topic through allowing the export of parts of 
a design model as direct requirements specification for a supplier (see ch. 
III.23.1). In this way, a direct and frictionless supplier management can be real-
ized. 

 
 

I.7  Quality Standards for Safety-Critical 
Development Processes 

If you can't describe what you are doing as a process, you don't know what you're doing. 
William Edwards Deming 

 
According to diverse authors (e.g., [Eb05; p.23], [GG03], [HDH+06; p.50], 
[St01]), SW quality has been significantly improved due to concentration on SW 
processes and their improvement.  

In the view of Hatley et al. [HHP03; p.41], attempts for SW quality im-
provement have their origins in a study on quality by Deming [Deming86] and 
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the Total Quality Management (TQM) movement in the 1980ies. There, TQM 
mostly defines quality as the correspondence of a product with its requirements, 
what implies the following core ideas of TQM [HHP03; p.41-42]: 
• Requirements must be defined with extreme precision. 
• The fulfillment of requirements must be measurable. 
• Not fulfilled requirements are an error. 
• Maximizing quality, thus, means minimizing the errors. 

In summary, TQM is completely dependent on precise definition of require-
ments and management of requirements [HHP03; p.42]. TQM, however, is more 
a holistic organization management theory (e.g., cf. [Ro01; p.64-67]) than a qual-
ity practice for the specific quality issues concerning software development.  

Around 1986, during the SDI-project (Strategic Defense Initiative), the 
United States Department of Defense (DOD) encountered major problems con-
cerning the developed software for high complexity systems [Kn06; p.1]. This 
sparked the DOD to perform a study in cooperation with the Software Engineer-
ing Institute (SEI) of the Carnegie Mellon University in Pittsburg. In 1989 the 
disclosed study came to the conclusion that only 24 % of software functionality 
delivered was actually usable [HDH+06; p.7]. As a consequence, the DOD man-
dated the SEI to develop a quality improvement model for software processes. As 
a result, the SEI developed the Capability Maturity Model [PCC+93], 
[PWG+93]. In the following years, the CMM model was about to become a major 
success story for process improvement for organizations far beyond the scope of 
the DOD [Kn06; p.1]. During the years of implementation, besides the SW 
CMM, also CMM models for SysEng and product engineering have been devel-
oped leading to the development of the CMMI (CMM integrated) standard model 
integrating the different models in 2001 [Kn06]. The original CMM standard has 
been set deprecated in 2003 [HDH+06; p.7].  

The major success of CMM also sparked ambitions by the European Union 
to develop a similar model by the BOOTSTRAP project [SE96] finally leading to 
the definition of an international ISO standard for the assessment of software 
process quality. These ambitions finally lead to the international ISO/IEC 15504 
[ISO15504] also referred to as SPICE (Software Process Improvement and Ca-
pability dEtermination122). 

                                                           
122 Originally, SPICE was called Software Process Improvement and Capability Evalua-

tion [HWF+08; p.28], [HDH+06; p.9]. As the translation into French language would 
have changed the semantics, Evaluation has been replaced by Determination without 
changing the acronym [HDH+06; p.9]. 
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In contrast to CMM and CMMI being a proprietary model123 of the SEI insti-
tute [BHV09; p.135], the SPICE model is designed as open international stand-
ard. Even though CMMI currently seems to have a wider pervasion in industry (it 
is even widely spread in Automotive industry) [MHD+07; p.4-5], the HIS124 
initiative has decided to use SPICE as their standard for auditing suppliers 
[MHD+07; p.3], [HDH+06; p.4]. In the last years also an industry specific adap-
tion of SPICE, called Automotive SPICE (A-SPICE), has been developed to bet-
ter fit to the peculiar needs of the automotive industry.  

Due to these facts, the author has decided to use the following chapters to 
introduce SPICE as exemplar quality model highlighting the traceability de-
mands of such standards. As the development team of CMMI aimed to be con-
sistent and compatible to SPICE [Kn06; p.9], and because both process models 
base on the ISO 12207 [ISO12207] process model for software development, the 
identified discussion points should so far also be valid for CMMI125. In addition, 
after discussing SPICE a small chapter will outline some minor changes concern-
ing traceability demands, when A-SPICE is used.  

Last but not least, it is to mention that also new quality standards (IEC 
61508, ISO 26262) concerning safety-related aspects of embedded systems are 
currently gaining importance in the automotive industry also imposing effects on 
traceability demands. Consequently, at the end of this chapter, the demands of 
these two standards are also discussed. 

                                                           
123 Although the CMMI model is proprietary, it also has become a kind of de-facto stand-

ard [BHV09; p.135]. 
124 “Hersteller Initiative Software” (Car Manufacturer Initiative) – A community of Ger-

man automotive OEMs (http://www.automotive-his.de/ (Access 2010/02)) defining 
specific stan–dards for the german automotive industry often becoming de-facto 
standards for the world-wide automotive industry.  

125 It is to mention that certain differences between CMMI and SPICE exist, but these 
differences should not have significant influence on the topics discussed here. For the 
more interested reader, [MHD+07; p.273-283] and [BHV09] provide a detailed de-
scription on the differences between CMMI, SPICE and Automotive SPICE and how 
organizations can best migrate from CMMI to SPICE or maintain both models in par-
allel. 
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I.7.1  SPICE (ISO 15504) 

Today, order mostly is where there is nothing. It is a phenomenon of shortage. 
Brecht (*) 

 
SPICE is a standard for assessing the maturity (quality) of development process-
es. It covers the aspects process assessments, requirements for processes and their 
assessment as well as guidance principles for how to employ the standard 
[HDH+06; p.13]. The standard itself is divided into five parts [HDH+06; p.13-
14]: 
1. Part I – “Concepts and Vocabulary”: Offers a general introduction into the 

important concepts and terms of the standard. 
2. Part II – “Performing an Assessment”: Minimal requirements for performing 

an assessment in order to acquire consistent and reproducible benchmarks. 
Part II “is the (normative) core of the standard; the other parts have a more 
imperative character” [HDH+06; p.13 (*)]. 

3. Part III – “Guidance on performing an assessment”: Guidance for interpreting 
the requirements imposed by Part II. 

4. Part IV – “Guidance on use for process improvement and process capability 
determination”: “Guidance for usage of process assessments within a process 
improvement effort or for determination of the maturity level“ [HDH+06; 
p.13 (*)]. 

5. Part V – “An exemplar Process Assessment Model”: Example of a process 
assessment model for the application of assessments according to the re-
quirements imposed by part II. According to Hörmann et al. [HDH+06; p.18], 
this part has the most importance for practice (cf. ch. I.7.1.3). 

Two further parts are still in standardization work: 
• Part VI – “An exemplar system life cycle process assessment model”: Exam-

ple about creating an assessment model for life-cycles of human created sys-
tems according to [ISO15288]. 

• Part VII – “Assessment of organizational maturity”: Defines a framework to 
determine organizational maturity. 

As normative part, Part II defines the following normative aspects [HDH+06; 
p.14]: 
• Requirements for the assessment process including planning, performing, 

data collection, data validation, definition and validation of process attributes 
and reporting, 

• “Requirements on roles and responsibilities” [HDH+06; p.14 (*)], 
• “Requirements on the assessment inputs and outputs” [HDH+06; p.14 (*)], 
• The framework for measuring the process maturity, 
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• The requirements for process reference and process assessment models; 
SPICE is structured in three different models [HDH+06; p.17]: 
1. The process reference model (PRM) describes a set of processes as a refer-

ence model. The processes are defined in high level terms of purpose and ex-
pected outcomes [BHV09; p.135]. 

2. The measurement framework (MF) defines the basic maturity levels, process 
attributes and the evaluation scale. As the name framework indicates, the MF 
just defines a measuring frame and is not alone sufficient for measuring pro-
cess maturity. 

3. The process assessment model (PAM) refers to the MF and is built up by one 
or more PRMs. It defines concrete criteria (so called indicators) for maturity 
evaluation. The PAM has two dimensions: 
• The process dimension defines the indicators for all processes of the 

used PRM.  
• The maturity dimension defines how to determine the maturity level 

from measured results of processes according to the indicators. 
 

I.7.1.1  The Process Reference Model of SPICE 

A PRM offers a basis for the development of an individual organization-specific 
process model describing the ideal processes to be employed in a company. In 
principle, it is possible to create an organization-specific process model without 
any PRM, but a PRM helps to improve the development of an organization-
specific process model [FL02; p.9].  

In the following, such an activity is called process implementation126 and the 
performer of this activity is called process architect. In SPICE, the PRM de-
scribes a set of processes to be adapted for implementation by an organization. 
The processes are described with regard to their goals, practices to perform and 
outcomes to reach the goals. An example of a widely referred standardized PRM 
is the ISO 12207 [ISO12207] process model for software development. 

Since SPICE itself is a very generic standard, organizations can also refer to 
other PRMs (or even other PAMs) [HDH+06; p.14]. As also discussed in ch. I.7.4, 
                                                           
126 Concerning adaption of a PRM to an organization, also the standard IEEE 1074 

[IEEE1074] provides valuable support for process architects, as it describes how activ-
ities of a PRM can be mapped to an organization to create an organization-specific 
process model [Sch00; p.58-79]. Especially concerning process implementation of ISO 
12207, the IEEE 12207 [IEEE12207] standard gives valuable guidance how ISO 
12207 may be implemented in industry practice [Sch00; p.50-58]. 
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the automotive industry specific SPICE adoption, called Automotive SPICE (A-
SPICE), uses a slightly different PRM127 specifically adapted to process concerns 
of automotive development [HDH+06; p.269]. 

Nevertheless, when a PRM is used deviating from ISO12207, a separate as-
sessment must clarify whether the process model fulfills the requirements im-
posed by SPICE, part II [HDH+06; p.14].  

I.7.1.2  The Measurement Framework 

The PAM has the goal to assess development processes according to their maturi-
ty. SPICE defines in part II different maturity levels (ML) where each assessed 
process can be categorized. Altogether, part II defines 6 MLs [HDH+06; p.15-
16]: 
• Level 0 – Incomplete: The process is not established or the goals of the pro-

cess are not reached. 
• Level 1 – Performed: The process is established and fulfills its goals, howev-

er in an uncontrolled manner. 
• Level 2 – Managed: The process is planned and its progress is tracked. Re-

sulting work products are adequately performed, are controlled by configura-
tion management, and quality is ensured through dedicated quality manage-
ment.  

• Level 3 – Established: An organization-wide standard process is established, 
where each project uses a tailored version of this process. 

• Level 4 – Predictable: The performance of processes is continuously meas-
ured and monitored leading to a quantitative understanding of the process 
with improved predictability. 

• Level 5 – Optimizing: Basing on the business goals of the organization, 
quantitative goals are derived for processes and its compliance is continuous-
ly tracked. 
For each of the levels so called process attributes (PA) define more detailed 

criteria for assessment. Altogether, 9 PAs exist shown in table 7.1 in correspond-
ence to their ML. 

                                                           
127 Besides these two PRMs, Bella et al. explicitly name the ISO/IEC 15288 (for Systems 

Engineering life cycle processes) as fully compliant to SPICE [BHV09; p.135]. 
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Table 7.1  Maturity Levels and their Process Attributes (cf.[HDH+06; p.16]) 

Maturity Level Process Attributes 

5 – Optimizing PA 5.1 – Process Innovation 
PA 5.2 – Continuous Optimization

4 – Predictable PA 4.1 – Process Measurement 
PA 4.2 – Process Control 

3 – Established PA 3.1 – Process Definition 
PA 3.2 – Process Deployment 

2 – Managed PA 2.1 – Performance Manage-
ment 

PA 2.2 – Work Product Manage-
ment 

1 – Performed PA 1.1 – Process Performance 

0 – Incomplete – 
 

During an assessment, for each process, each PA can get one of the follow-
ing four achievement values as evaluation scale (for details on meaning and 
measuring cf. [HDH+06; p.223ff]): 
• N – Not achieved, 
• P – Partially achieved, 
• L – Largely achieved, 
• F – Fully achieved; 

Then, each process gets its ML by analyzing the achievement values. A ML 
is reached when at minimum all PAs of all sub MLs are fully achieved and all PAs 
of the ML are largely achieved128 [HDH+06; p.225]. 

I.7.1.3  The Process Assessment Model (PAM) 

The PAM orients itself on the processes described in the PRM and defines con-
crete indicators for evaluation. SPICE, part V (ISO/IEC 15504-5) illustrates an 
example PAM and thus part V is of the highest importance for process implemen-
tation in an organization as well as for process assessments in practice [HDH+06; 
p.18].  

                                                           
128 For example, ML 3 is reached, if PA 1.1, PA 2.1 and PA 2.2 are fully achieved, and PA 

3.1 and PA 3.2 are largely achieved.  
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Concerning process implementation, the PAM defines processes in a standard-
ized way. This definition includes basic indicators (so called base practices) to be 
fulfilled at minimum in order to determine that the process is performed. Fig. 7-1 
shows the standard set of processes of the standard PAM described in part V bas-
ing on ISO 12207. The process set is divided into 9 process areas with 40 pro-
cesses. Each process is defined by a standardized structure [HDH+06; p.61]: 
• Process-ID: A unique identifier for each process. The identifier consists of a 

combination of three letters and a number between 1 and 12. 
• Process name: The name of the process. 
• Process purpose: The purpose of the process. 
• Process outcomes: The defined process results. 
• Base practices (BP): Base practices describe the directly relevant aspects to 

pay attention when performing a process.  
• Work products (WP): Define artifacts that can be either an input or output of 

a process. Each WP has an unique identifier and is detailed in part V., Annex 
B.  
 

 

Figure 7-1  Processes defined in ISO/IEC 15504-5 basing on ISO/IEC 12207 
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The points one to four have been taken over from ISO 12207, whereas the 
latter two points are defined in ISO 15504-5. In this way, the BPs and WPs can 
also be seen as the basic indicators for reaching ML 1 meaning that processes 
fulfill their goals, but they are not really planned. 

Concerning process evaluation for higher maturity levels, the individual PAs 
defined in the measurement framework are again further refined through the 
following indicators [HDH+06; p.222f]: 
• Generic practices (GP) are generically defined activities or practices sup-

porting the implementation of a specific PA. A lot of the GPs support BPs by 
demanding specific activities of process management. As an example, GP 
2.1.2 (“Plan and monitor the performance of the process to fulfill the identi-
fied objectives.”) demands to perform basic project management principles 
for each process. 

• Generic resources can be applied to fulfill GPs. 
• Generic work products can be used and created by GPs.  

Corresponding to the focus of this thesis, the following discusses the PAM's 
demands on processes about requirements and design (ENG.1-ENG.6) with spe-
cial focus on needs for requirements traceability. 

I.7.2  Requirements, Design and Traceability in the   
 Context of SPICE 

At first the different processes involved (ENG.1-ENG.6) are briefly sketched. 
Categories are purpose, base practices and work products. For a detailed descrip-
tion the user is invited to refer to [HDH+06] or the ISO 15504. 

After the introduction to the process demands of SPICE, the author tries to 
outline the demands for a SPICE-conforming traceability environment for re-
quirements and design processes. As processes that are important here (ENG.2-
ENG.5) are not an instance of their own but must be considered in context of 
other processes, the contextual processes ENG.1, ENG.6 are also considered. 
Additionally, support processes such as SUP.10 also impose demands on tracea-
bility or its further usage. Therefore, SUP.10 is also sketched. 

I.7.2.1  ENG.1: Requirements Elicitation 

Purpose: All customer requirements for a product or service over the complete 
life-cycle shall be identified and collected [HDH+06; p.81-89].  
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Base Practices: 
• BP1 “Obtain customer requirements and requests”: Additionally, not only 

pure customer requirements and wishes must be considered. Instead often 
standards, guidelines, legal constraints or constraints imposed by the envi-
ronment of a system to develop impose further requirements. According to 
Hörmann et al. [HDH+06; p.82], the number of documents to analyze and 
search for additional requirements can easily become several hundred lead-
ing to enormous complexity as the elicited requirements also often include 
inconsistencies or contradictions.  

• BP2 “Understand customer expectations”: Requirements must not only be 
elicited. Instead, customer and supplier must have a common understanding 
of the requirements. Practice has proofed joint reviews as helpful to gain a 
common understanding of the requirements. 

• BP3 “Agree on requirements”: All development teams involved in the pro-
ject must express agreement on the customer requirements. This means that 
at least one representative of each development team must validate the re-
quirements and determine whether a requirement is feasible129, or not.  

• BP4 “Establish customer requirements baseline”: The agreed status of col-
lected customer requirements must be integrated into a consistent customer 
requirements specification (CRS) and a baseline of the CRS must be estab-
lished as basis for the development and to be able to track later changes.  

• BP5 “Manage customer requirements changes”: Starting from this first base-
line all changes or extensions of the customer requirements must be tracked. 
Besides changes imposed by the customer changes can also be sparked by 
changes of used standards or technologies [HDH+06; p.87]. 

• BP6 “Establish customer query mechanism”: Demands to establish proce-
dures to notify customers and planning concerning a requirement change re-
quest. In practice, this is often achieved via a change control board (CCB) 
[PR09; p.144f], [VSH01; p.184f, p.216]. 

Work Products: 
1. Change control record: See the following ch. I.7.2.7 about SUP.10: Change 

Management. 
2. Customer requirements specification (CRS): Depending on the project, the 

customer requirements are either collected by the customer himself, or the 
supplier collects the requirements. In the German-speaking community the 

                                                           
129 It is to note that SPICE does not make any claims about how to proceed with not 

feasible requirements [HDH+06; p.85]. 
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CRS is usually documented by the customer130.. Besides the usual quality de-
mands for a requirements specification (see ch. I.5), SPICE explicitly de-
mands that each requirement is separated and individually traceable to all 
origin artifacts (backward traceability) and all subsequent artifacts (forward 
traceability) [HDH+06; p.88 (*)]. 
Starting from here, it shows that SPICE imposes high demands for traceabil-

ity as each individual requirement must be traceable to all subsequent artifacts. 
However, requirements elicitation lies not in the focus of this thesis. Thus, in the 
following it is assumed that a CRS is available. 

I.7.2.2  ENG.2: System Requirements Analysis 

Purpose: Transform the defined customer requirements in a set of technical sys-
tem requirements building the basis for system design. “The system requirements 
analysis is one of the most important processes as it prepares the foundation of 
the complete further development work” [HDH+06; p.89 (*)]. Hörmann et al. 
[HDH+06; p.89] also emphasize that besides the customer requirements other 
requirements basing on other stakeholders' input should be considered. This in-
cludes that the coordination of different development areas such as HW devel-
opment, software development and testing must be integrated. 
Base Practices: 
• BP1 “Establish system requirements”: The CRS as basis must be used to 

identify the demanded functions and abilities of the system to be afterward 
documented in a system requirements specification (SYS_RS) afterward. The 
SYS_RS must be baselined and the feasibility of the identified requirements 
must be analyzed. Further the project solution shall be analyzed for feasibil-
ity. 

• BP2 “Optimize project solution”: The specification of a SYS_RS already 
predetermines a certain solution at a very high-level131. During determination 
of the SYS_RS also other alternative solutions must be analyzed here. 

• BP3 “Analyze system requirements”: The identified requirements are priori-
tized and analyzed whether they fulfill quality demands (see ch. I.5.1) and 
whether they imply further requirements to be elicited. Analyzing require-
ments often leads to identification of cross-linkings between them and new 

                                                           
130 In the German speaking community, the CRS usually corresponds to what is called 

'Lastenheft' (see the following chapter I.7.2.2.1). 
131 However, it is to mention that the author recommends avoiding an unnecessarily early 

determination of a solution and leaving the solution space as wide as possible.  
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requirements can be derived. Both kinds of dependencies must be made ex-
plicit [HDH+06; p.92]. 

• BP4 “Evaluate and update system requirements”: Any proposed change on 
the system requirements must be assessed for changes on costs, deadlines, 
risks and technical impacts. It must be possible to approve or reject proposed 
changes and new requirements. 

• BP5 “Ensure consistency”: Consistency between the CRS and the SYS_RS 
must be ensured. Consistency is ensured by applying traceability between 
CRS and SYS_RS [HDH+06; p.93].  

• BP6 “Communicate system requirements”: System requirements must be 
communicated to all stakeholders somehow involved. Correspondingly, a 
communication mechanism must keep them up-to-date.  

Work Products: 
1. Traceability record: Artifact containing the information for backward and 

forward traceability. 
2. Interface requirements: Define the requirements for interfaces. Interfaces are 

differentiated into external and internal interfaces. 
3. SYS_RS: The SYS_RS contains all requirements from the customer and the 

newly elicited requirements from the system requirement analysis132. Alto-
gether, the following aspects must be considered in the SYS_RS [HDH+06; 
p.90]: 
• Functional requirements, 
• Functions and abilities of the system, interfaces, system performance 

and timing-constraints, 
• Nonfunctional requirements, 
• Technical constraints (e.g., the context of the system), 
• Reuse, maintenance and product servicing, 
• Norms and standards, 
• Economic constraints (business needs, market constraints, time-to-

market); 
According to Hörmann et al., “the SYS_RS also provides an overview of the 

overall system and the relationships of its sub parts, especially the relationships 
between the system elements and the software” [HDH+06; p.96 (*)]. It is true 
that the SYS_RS already may predetermine a certain high-level solution, however, 
as the following intersect chapter shall outline it is also to consider to outweigh 
the advantage of a clear description of the characteristics of the system to be 
supplied and the disadvantages of imposing unnecessary restrictions of the pro-
ject's solution space.  
                                                           
132 Usually, also the interface requirements (context) are part of the SYS_RS. 
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I.7.2.2.1  Remarks on the German Terms 'Lastenheft' and 'Pflichtenheft' 

At this point, remarks to some peculiarities of the German-speaking SE commu-
nity and their interpretation of the SPICE standard seem useful. German SE tradi-
tion has developed two terms not available in the English-speaking communi-
ty133: 
• 'Lastenheft': According to Balzert, a 'Lastenheft' “contains a collection of all 

functional basic requirements to be fulfilled by the software product under 
development from the customer's viewpoint. 'Basic requirements' means a 
conscious concentration on the essential characteristics of a product and its 
description in a sufficient level of abstraction” [Ba96; p.57-58 (*)]. 

• 'Pflichtenheft': Whereas the 'Pflichtenheft' “contains a collection of all func-
tional requirements that must be fulfilled by the software product under de-
velopment from the customer's viewpoint. … The 'Pflichtenheft' must be 
formulated in a way that it can serve as basis for a jurisdictional contract. 
The 'Pflichtenheft' thus represents the contractual description of the scope of 
delivery” [Ba96; p.104-105 (*)]. 
Usually, the 'Lastenheft' is written by the customer whereas the 

'Pflichtenheft' is usually written by the supplier. However, the direct connections 
between these terms and the terms in the English-speaking community often stay 
vague. According to Schienmann [Sch02; p.83], the 'Lastenheft' is comparable 
with what the Kruchten [Kr99] calls a “vision document” in the context of the 
Rational Unified Process. 

Concerning SPICE, the concepts of 'Lastenheft' and 'Pflichtenheft' do not ex-
ist [HDH+06; p.64], because the standard just talks about different requirements 
specifications, but in the German-speaking SPICE adoption practice, the custom-
er requirements specification (ENG.1) is often equalized to the 'Lastenheft' con-
cept, whereas the system requirements are equalized to the 'Pflichtenheft'. The 
author agrees that this takeover of the analogous terms is fruitful as it alleviates 
communication and because well-established terminology is used. On the other 
side, it is important to consider whether taking over may not also bring the dan-
gers that this terminology unconsciously infers new meaning. 

One example is that a 'Pflichtenheft' also has a jurisdictional dimension that 
is not treated by the ENG-processes but slightly touched by the acquisition pro-
cesses (ACQ.1-ACQ4) in SPICE. In the author's eyes, this also is fruitful espe-
cially when considering the automotive domain because, in fact, the processes 

                                                           
133 To make the German meaning transparent to the English speaking community, Weber 

and Weisbrod [WW02; p.19] provide the literal translations “demand booklet” for 
'Lastenheft' and “duty booklet” for 'Pflichtenheft'. 
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and work products of ENG.1 and ENG.2 often mark the transgression point, 
where the customer's development efforts melt with the supplier's development 
efforts and correspondingly the legal effects of the work products must be taken 
into consideration. 

This makes way for another point of consideration that will later lead to con-
siderations influencing the further outcome of this thesis. In ENG.2 BP1 and BP2, 
the standard also speaks of a 'project solution'. According to Hörmann et al., this 
means the “general approach to the solution” [HDH+06; p.96 (*)] and thus does 
not mean a detailed description of the solution. In ch. I.7.3.20, the author de-
scribes how an insufficient separation of problem description and solution de-
scription leads to unnecessary redundancy and problems of identifying the real 
requirements from 'requirements' merely originating from some formerly taken 
design decisions134. Both problems impose significant problems concerning re-
quirements traceability and adaption of requirement changes. This gives way to 
the author's plea to clearly separate real requirements from 'requirements' im-
posed by former design decisions (cf. ch. III.19 for a taxonomy of both require-
ment types). However, on the other side, both requirement types have their rights 
to exist and both are connected to each other. As a better solution of the problem, 
the author shows in ch. III.20 how both can be connected via a decision model, 
thus improving traceability and additionally improving decision documentation. 

In general, it is to say that it is very important to mind here what is really ne-
cessary to describe and what can be left open. Because of the fact that the system 
                                                           
134 In [WW02; p.19], Weber and Weisbrod seem to disagree with the notion that require-

ments specifications such as the 'Lastenheft' should only contain requirements. Thus, 
they rather demand for the notion that these documents also have to contain architec-
tural descriptions beyond the scope of the problem space. They enlist several argu-
ments for their demand. However, this may be a kind of misconception. In the author's 
opinion, the arguments rather describe the following situation: When the developers at 
an Automotive OEM create different 'Lastenheft's for the different ECUs, the develop-
ers perform a design activity for the complete system car. The decisions taken at that 
design level, however, include that the suppliers of the different ECUs must obey the 
consequences of these decisions. In this way these consequences become new re-
quirements for the different ECUs and must be included in the 'Lastenheft'. This does 
not mean that the 'Lastenheft' contains extensive design aspects, but it may rather be 
the relation described here. Later in ch. III.23.1, when it comes to the tool solution, it 
is described that a requirements specification can be created for parts of a design mod-
el in order to propagate all design settings of the part to a supplier. This is exactly a 
mechanism to solve this problem. In this way, even though part III discusses the tool 
with a case study from a supplier perspective, the R2A tool solution can be equally 
used by an Automotive OEM to design the complete system, where then requirements 
specifications can be generated as 'Lastenheft's for the different suppliers. 
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requirements specification also has a contractual relevance, the author recom-
mends to also consider contractual negotiability135, because if an item is integrat-
ed into the SYS_RS, it in principle gets contractual relevance. Correspondingly, a 
supplier should concentrate on describing the requirements of the customer in 
detail but avoid to unnecessarily restrict the project's solution space by, e.g., ex-
tensively describing the project solution. 

In some cases, of course, requirements cannot be described without also 
providing some solution stipulations (cf. ch. I.5.5), but the developer(s) of a 
SYS_RS should avoid unnecessary stipulations, because if changes on those stipu-
lations are needed, the occurring changes must then be harmonized with the cus-
tomer via a change control board (CCB) [PR09; p.144f], [VSH01; p.184f, p.216].  

This corresponds to the observation of Balzert emphasizing for 'Lastenheft' 
[Ba96; p.58] and 'Pflichtenheft' [Ba96; p.105] that both describe the 'what' but not 
the 'how' on different levels of details (the 'Pflichtenheft' is more detailed as the 
'Lastenheft'). However, it must also be noted that this does not necessarily repre-
sent a common agreement in German SE community. As for example, the DIN 
69905 speaks that a 'Pflichtenheft' contains “… the realization propositions de-
veloped by the supplier basing on the conversion of the 'Lastenheft' supplied by 
the customer” [DIN69905 (*)]. In this definition, the 'Pflichtenheft' also contains 
a certain 'How'; but – in the author's eyes – this view will be problematic, if it 
leads to premature stipulations for the solution. 

I.7.2.3  ENG.3: System Architectural Design 

Purpose: A system architecture must be developed showing how the system re-
quirements are realized in the system. In this way, one main purpose of this pro-
cess is to show how system requirements are mapped to the system elements.  
Base Practices: 
• BP1 “Describe system architecture”: The system architecture must be creat-

ed. The following aspects must be considered: 
• The realization of the system in different parts is in most cases referred 

to as system elements. Different system elements usually need different 
engineering disciplines such as, e.g., mechanical, HW, or SW engineer-
ing that must be coordinated. 

• The overall processes and operations of the system. 

                                                           
135 Rupp et al. [RS07; p.481-510] emphasize that requirements build the contractual basis 

for development. A detailed discussion about contracts, contract negotiations and REM 
is provided by Rupp et al. [RS07; p.481-510]. 
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• BP2 “Allocate requirements”: As a main goal, all system requirements must 
be allocated to the elements of the high-level system architecture to ensure 
they are properly considered in the overall system design. In this way, trace-
ability between SYS_RS and the system architecture shall be established. Of-
ten, however, these allocations are not possible at first because important de-
sign decisions are still lacking [HDH+06; p.99]. This again often leads to the 
project practice that the traceability information is established after the de-
sign has reached a very stable state. This again leads to the problem that 
traceability is only established after most of the connections to be recorded 
have already been forgotten by the designers and thus are not recorded. The 
R2A tool solution introduced in part III actively addresses the problem in the 
way that it promotes recording traceability information as a by-product of 
the normal design activities, thus avoiding the problem of deferred traceabil-
ity capturing. 

• BP3 “Define interfaces”: The external and internal interfaces of each system 
element must be designed and documented. 

• BP4 “Verify system architecture”: It must be ensured that the system archi-
tecture fulfills all stakeholder and system requirements. “In practice, it is not 
possible to specify all factors to consider in the SYS_RS. Thus, a broad rec-
onciliation is important. These reconciliations significantly contribute to re-
duce the risk of later needed conceptual changes” [HDH+06; p.100 (*)]. 

• BP5 “Evaluate alternative system architectures”: Evaluation criteria for the 
system architecture must be defined in order to analyze possible alternative 
system solutions according to the criteria. The rationale (see ch. II.9) for the 
choice of the current system architecture must be captured. Hörmann et al. 
explicitly emphasize here that in practice architectural and other basic issues 
(which seemingly have been cleared) are often recurring back to the agenda 
during project progress. In these cases, it is not seldomly decided to change 
or perform other compromises imposing considerable changes on the archi-
tecture [HDH+06; p.101]. As this can infer significant risks for project suc-
cess especially in late project phases, Hörmann et al. call for a thorough ex-
ploration of these basic issues accompanied by a documentation of the deci-
sions taken where the documentation is later update with the results of later 
discussion [HDH+06; p.101]. This again can be seen as an explicit plea for 
integrating RatMan (ch. II.9) into design. Ch. III.20 describes how this idea 
is realized by the R2A tool. 

• BP6 “Ensure consistency”: Consistency between SYS_RS and system archi-
tecture must be ensured. Consistency is supported by establishing and main-
taining traceability between SYS_RS and system architecture. 
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• BP7 “Communicate system architecture design”: A communication mecha-
nism for distributing the system architecture design and effected changes to 
all involved stakeholders must be employed. 

Work Products: 
• System architecture design: The system architecture provides a high-level 

description of all system-relevant system elements as well as their interde-
pendencies and interfaces to each other [HDH+06; p.97]. It is especially im-
portant to ensure traceability of requirements or functions over several levels 
of detail [HDH+06; p.102]. 

• Traceability record: See ENG.2; 
• Verification results: The results of the verification procedures described in 

BP4 must be documented. Documentation can include review protocols, 
filled checklists and test protocols [HDH+06; p.102]. 

I.7.2.4  ENG.4: Software Requirements Analysis 

Purpose: This process deals with eliciting all requirements for the software parts 
of the system. 
Base Practices: 
• BP1 “Specify software requirements”: Software requirements must be de-

fined and prioritized in a software requirements specification (SW_RS). 
• BP2 “Determine operating environment impact”: The interfaces between the 

software requirements and other elements of the operating environment as 
well as the impacts of the requirements on the environment must be deter-
mined. 

• BP3 “Develop criteria for software testing”: Verification criteria must be 
developed for the software requirements to ensure that the software can later 
be tested whether it fulfills the requirements. 

• BP4 “Ensure consistency”: Consistency between the SYS_RS (ENG.2) and 
the SW_RS must be ensured. This is achieved through establishing and main-
taining traceability between both artifacts. 

• BP5 “Evaluate and update software requirements”: The requirements must be 
continuously evaluated and change needs must be identified in accordance 
with the customer. Changes must be introduced in a controlled way using the 
change management process (SUP.10; see ch. I.7.2.7). 

• BP6 “Communicate software requirements”: A communication mechanism 
for distributing requirements and effected changes to all involved stakehold-
ers must be employed. 
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Work Products: 
• Traceability record: See ENG.2; 
• Interface requirements: See ENG.2; 
• SW_RS: Contains all elicited SW requirements. The following requirement 

sources must be considered [HDH+06; p.108]: 
• Requirements from the customer, 
• Valid norms and standards, 
• Relationships of the different SW components to each other136, 
• Performance characteristics, safety and security characteristics and other 

NFRs, 
• Required interfaces (the context of the SW), 
• Requirements resulting from the data base design, 
• Behavior in failure cases and failure fall back mechanisms; 
Further, Hörmann et al. emphasize that ENG.4 (software requirements anal-

ysis) can be seen as an intermediate step between ENG.3 (system architectural 
design) and ENG.5 (software design). In practice, however, the transition between 
the three processes are mostly fluent and are rather of iterative and recursive 
nature [HDH+06; p.103]. This statement gives way for the author's argumenta-
tion in ch. I.7.3.20 that a separately maintained SW_RS mainly infers significant 
redundancy being detrimental to the development process. In part III, ch. III.19, 
ch. III.20 and ch. III.23.2, the author shows how a better suited solution for the 
redundancy problem may be found through employing an integrated system(s) 
and software design in combination with R2A's decision model concept (ch. 
III.20). 

I.7.2.5  ENG.5: Software Design 

Purpose: A SW design must be created fulfilling and being testable against all SW 
requirements. 

                                                           
136 The author disagrees with the view of [HDH+06; p.108] in this point. In the view of 

the author, a requirements specification should best possibly only contain the require-
ments and avoid solution specifics, since otherwise a possibly negative solution may 
be kept in a project because the solution was specified in the requirements specifica-
tion and thus is later considered as required by the customer. Additionally, as such in-
formation must also be specified in the architectural description, this information ra-
ther represents a redundancy that should be avoided (see DRY-principle in ch. I.6.1.2). 
On the other side, as shown in ch. I.5.5, requirements cannot be completely defined 
unless parts of the solution are considered. Nevertheless, the author rather suggests 
minimizing and avoiding parts of the solution, if possible. 
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Base Practices: 
• BP1 “Describe software architecture”: The SW requirements must be trans-

formed in a SW architecture design describing the high-level structure and 
the main parts of the SW. At this phase the central design decisions for SW 
are taken. Hörmann et al. explicitly point out that it is essential to document 
these decisions [HDH+06; p.110-111] (cf. also ENG.3 BP5). 

• BP2 “Define interfaces”: The external and internal interfaces must be de-
fined and documented. 

• BP3 “Develop detailed design”: The software architectural design must be 
further refined into a detailed design for all specific software parts describing 
all parts to implement and test.  

• BP4 “Analyze the design for testability”: The design must be evaluated for 
correctness and testability to ensure the SW modules are testable. 

• BP5 “Ensure consistency”: Consistency between the SW_RS (ENG.4) and 
the SW design must be ensured. Consistency is supported by establishing and 
maintaining traceability. 

Work Products: 
• SW architecture design: The SW architecture describes the high-level struc-

ture of the software and the collaboration of the different sub-parts of the 
SW.  

• Low level SW design: Describes the detailed design of a software unit. It 
contains the interfaces to other software units, algorithms, memory alloca-
tion, data structure specifications, etc.. 

• Traceability record: See ENG.2; 

I.7.2.6  ENG.6: Software Construction 

Purpose: The SW modules must be implemented correctly reflecting the SW 
design. 
Base Practices: 
• BP1 “Develop unit verification procedures”: Procedures and criteria for unit 

verification must be developed and documented. 
• BP2 “Develop software units”: Source code for the software module must be 

implemented according to the SW requirements and design. Further, testing 
requirements and user documentation must be actualized. 

• BP3 “Ensure consistency”: Consistency between software design and its 
implementation must be ensured. Consistency is supported by establishing 
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and maintaining traceability between SW_RS, SW design and the software 
units. 

• BP4 “Verify software units”: The unit verification procedures developed 
according to BP1 must be applied to ensure that the software unit fulfills its 
design requirements. The results must be documented. 

Work Products: 
• Unit test plan: See ENG.8 (not further discussed here); 
• Software unit: The source code for a software module; 
• Test incident report: See ENG.8 (not further discussed here); 
• Test case specification: See ENG.8 (not further discussed here); 

I.7.2.7  SUP.10: Change Management 

Purpose: It is to ensure that requests for change are managed, tracked and con-
trolled. 
Base Practices [HDH+06; p.214-217]: 
• BP1 “Develop a change management strategy”: A strategy must be devel-

oped and established to ensure that changes are: described, recorded, ana-
lyzed and maintained.  

• BP2 “Record the request for change”: Each change request must be docu-
mented and a unique identifier must be provided. 

• BP3 “Record the status of change requests”: Status indicators shall help to 
trace status and status changes of change requests and performed changes. 
Hörmann et al. [HDH+06; p.215] explicitly emphasize with regard to this BP 
that also traceability to the reasons for a change must be established (e.g., 
reference to a problem or error report). 

• BP4 “Establish the dependencies and relationships to other change re-
quests”: Change requests can have dependencies. These dependencies must 
be made explicit. 

• BP5 “Assess the impact of the change”: Proposed changes must be assessed 
for effects, needed resources, risks and potential uses. Here, traceability 
builds the foundation for impact assessments (i.e., impact analysis; see ch. 
II.10.3). 

• BP6 “Identify the verification and validation activities to be performed for 
implemented changes”: Before a change is approved, it must also be clear 
how and to what extent verification and validation actions must encompass 
the change. Planning verification procedures for a change implies knowing 
the impact of a change (BP5) and thus also demands for traceability.  
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• BP7 “Approve changes”: All proposed changes are approved137, i.e. accept-
ed, before they are implemented. Additionally, it must be determined for 
what release cycle a change must be performed. 

• BP8 “Implement the change”: All approved changes must be implemented. 
Here, consistent implementation – not forgetting an impacted point – is a 
central issue. Also impact assessments (BP5) and thus traceability play a de-
cisive key role to fulfill this BP. 

• BP9 “Review the implemented change”: After implementation, all imple-
mented changes are reviewed whether they meet the expected goals and ef-
fects. 

Work Products: 
• Change management plan: A plan determining how change requests are 

captured, managed, decided, implemented and tested. 
• Change request: A change request usually involves the following infor-

mation: 
• Description of the requested change, 
• Status of the change request, 
• Change initiator (with information how to contact the initiator), 
• Impacted systems, 
• Impacts on documentation, 
• Criticality of the change, 
• Wanted and planned deadline for implementation; 

• Change control record: Documentation about a performed change to make 
the change traceable in the system in accordance with a specific version 
baseline [HDH+06; p.218]. The record includes the wanted change (e.g., as 
reference to the change request) and a record of all individually performed 
changes on system, or software components and documentation.  
The R2A solution introduced in part III covers the demands of this process 

by the impact analysis features138 (ch. II.10.3). Especially, the demands about a 
change control record are addressed by R2A's features to save results of an im-
pact analysis and use such discovered impact sets as a checklist for implementing 
a change. 

                                                           
137 Schienmann [Sch02; p.111-113] gives clear advice what criteria should be clarified 

positively in order to approve a change. Otherwise a change should be rejected. 
138 The process SUP.9 (“Problem Management”) [HDH+06; p.202-213] is not discussed 

in detail in this thesis, but demands of BP5 “Assess the impact of the problem to de-
termine solution” and BP10 “Track problem status” can also be fulfilled by R2A's 
traceability and impact analysis features (ch. II.10.3). 
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I.7.3  Traceability in SPICE 

If you don't know where you go, it can happen that you arrive somewhere else. 
Yogi Berra (*) 

 
The processes described above impose a set of demands for traceability. Now, 
the question arises which of the traceability demands must be fulfilled at what 
maturity level (ML). According to Hörmann et al. [HDH+06; p.227-229], ML1 
also only demands that a BP is performed in a way that it fulfills the purpose of 
the process. This means for ML1 the traceability records may not necessarily be 
documented. In a more detailed analysis, it would even be possible to achieve a 
“Largely” for ML1 and to reach ML1 in this way; traceability with deficiencies is 
sufficient. Not until for reaching to ML2 needs to be reached, extended planning 
documentation, review protocols etc. must be provided in a documented form139 
[HDH+06; p.229]. This leads to the conclusion that at least to reach a ML2 ex-
tended traceability demands as formulated above must be performed to reach at 
least ML2. 

Traceability must be maintained to be traceable over several levels of details 
(ENG.1-ENG.6), [HDH+06; p.102]. In such a way, traceability must also be con-
sidered at a larger scope than implementing relationships between two artifacts. 
For evaluating and ensuring these goals in assessments, the assessors should pick 
several random samples of some items to be traceable of some process and then 
request the project members to identify all backward and forward traceability 
implications [HDH+06; p.95]. 

A weak point of SPICE is that it merely concentrates on SysEng and SE pro-
cesses neglecting HW, mechanics or other engineering dimensions that can have 
significant influence ([MHD+07; p.4-7], [TJH07; p.3]). In the automotive do-
main, an important example in the following is that the pressure for developing 
extremely cost-optimized HW often imposes new constraints and problems for 
the software that must handle this HW. Here, it seems that the CMMI model has 
some additional support for HW [MHD+07; p.4-5]. 

Another major problem is imposed because of the high demands for docu-
mentation sparking the danger that development efforts become unnecessarily 
bureaucratic with potentially detrimental effects on development efforts [BT04; 
p.25-57]. This problem can especially be the case for the high traceability de-
mands imposed by the standards. As discussed again in ch. II.10.5, the good idea 
                                                           
139 In this context of ML2, also the Process Attribute 2.2 must be considered: "Dependen-

cies between work products are identified and understood. Requirements for the ap-
proval of work products to be controlled are defined." The PA 2.2 additionally defines 
a hallmark to be fulfilled only achievable by extended traceability.  
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of traceability in theory may face a similar benefit problem in practice as the 
demands to capture rationale face it (cf. ch. II.9.4.2). In the author's opinion 
sparked by practical experience, developers often establish traceability in order 
to fulfill demands of some standards, but they seldom experience significant 
usefulness in comparison to the effort and the 'stupidity' required by most tasks to 
establish traceability. A key to solving or at least improving this dilemma may be 
avoiding unnecessary documentation overhead or easing traceability establish-
ment efforts. Egyed et al. [EGH+07] argue that standards demand traceability but 
do not explicitly state about the appropriate level of quality of trace links. In this 
way, they argue that problems with traceability effort can be reduced by choosing 
a more coarse grained traceability model; however, in this context it is to mention 
that SPICE defines the demand for the work product customer requirements spec-
ification (see ENG.1) that each requirement is separated and individually tracea-
ble to all origin artifacts (backward traceability) and all subsequent artifacts 
(forward traceability) [HDH+06; p.88 (*)].  

Correspondingly, alternative solutions like using more coarse grained trace-
ability models may be difficult to employ in a SPICE conforming process envi-
ronment. It should be noted that the author does not say 'impossible'. In fact, a 
promising alternative is consequent tailoring. The following chapter describes a 
alternative significantly reducing bureaucratic overhead with minimal impact on 
quality of most process landscapes.  

Further it is to note that in the following of this complete thesis, only the 
processes ENG.2-ENG.5 are considered as they are in the focus of this thesis. 
Certainly, these processes are also embedded in the processes ENG.1 and ENG.6, 
but traceability connections between ENG.1 (customer requirements) and ENG.2 
(system requirements) are in general managed using REM-tools such as IBM 
Rational DOORS and connections between ENG.5 (software design) and ENG.6 
(software implementation) are relatively easily manageable using name mapping 
(cf. ch. II.10.4.2.2). Thus, as the following chapter tries to outline, the processes 
ENG.2-ENG.5 dealing with transitions between requirements and design impose 
the critical problem concerning traceability. 

I.7.3.1  Intersect: Dangers of Prescriptive Process Models 

It is a capital mistake to theorize before one has data. 
Insensibly one begins to twist facts to suit theories, instead of theories to suit facts. 

Sherlock Holmes, A Scandal in Bohemia 
 

In the author's opinion, the proper adoption of SPICE, CMMI or other quality 
standards can significantly support improving process quality of SW-based prod-
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ucts. However, as the word 'proper' in the preceding sentence indicates, the au-
thor also sees a set of risks that can even lead to results contra-productive to the 
originally issued goals of SPICE to support a process landscape leading to high 
quality processes and outcomes. In this sense, 'proper' does not refer to a process 
landscape fully conforming to SPICE but rather emphasizes the goal to have a 
process landscape leading to high quality products meeting their goals.  

At first view, SPICE is a heavy-weight plan-driven method and “plan-driven 
methods need stability” [BT04; p.31], because “plan-driven methods work best, 
when the requirements are largely determinable in advance (including via proto-
typing) and remain relatively stable” [BT04; p.31]. As ch. I.5.6 has shown, 
chances for increasing rates of changes are very high. Thus, in order to avoid 
unnecessary overhead, an organization adapting the SPICE standard should con-
centrate on the problems and try to design a process landscape being open for 
change. Being open for change in this case mainly means to provide flexibility 
and to avoid unnecessary obstacles to change implementation. A promising ap-
proach avoiding unnecessary changes is to avoid redundant information because 
changing redundant information implies that all redundancies must be changed in 
concert. Otherwise inconsistencies would arise endangering the common under-
standing in a project, thus leading to inconsistencies in the system to be devel-
oped, leading to higher error rates to be discovered at later times in the project 
and finally leading to significantly higher development costs. 

According to the author's opinion, a promising starting point is to look deep-
er into the process model of SPICE. In this context, a peculiarly problematic 
development exists, usually neglected by theory but in the author's opinion essen-
tial to keep in mind: When standards such as SPICE have been developed, for-
merly descriptive process models describing industry practice of software devel-
opment have now become prescriptive ones. The dangers involved with this are 
that preterated elements of the description now turn to prescriptive elements. 
SPICE bases on the ISO/IEC 12207 process model. Nevertheless, this process 
model – as all models (see ch. I.1) – should be seen as idealization. Seen in the 
historic context, however, the question arises whether probably an unrecognized 
transformation has taken place. At first in SE research history, process models 
have been descriptive models describing development activities. The researchers 
created models analyzing how developers approached the development of soft-
ware and the resulting models were idealized abstract descriptions of the real 
development steps happened. With high probability, these models contained some 
idealizations as the ethos of research publishing demand to consider issues such 
as conceptual integrity, clear classification and other idealizing effects. These 
idealizations can be compared with abundant properties of a model (see ch. I.1). 
In other words, the development model researchers described the – what they 
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thought – essential properties of the development effort, neglecting the abundant 
properties accompanied by a certain simplification, i.e., idealization. Nierstrasz 
[Ni04; p.274] hits this mark when he claims SE, software architecture, etc. as 
being rather 'metaphoric'.  

Later, these descriptive models now formed the basis for development mod-
els of prescriptive nature as CMMI or SPICE. Now, in the run of adopting these 
idealized descriptive process models to process models norming development 
activities, these process models have become prescriptive models (see ch. I.1). In 
this unconscious transgression, the dangerous effect could have happened that 
previously abundant properties (see ch. I.1) are now seen as prescriptive manda-
tory properties of the processes to be performed. Now, the question arises which 
of the prescriptive models' properties are really essential (correctly passed on) 
and which may be abundant properties. As described in ch. I.1, abundant proper-
ties lead to wrong conclusions. Just as well, abundant properties may exist in 
development standards deconvolving negative impact on the development effort. 
Correspondingly, the author does not necessarily appeal for abandoning these 
standards. A lot of these issues are related to the proper adoption of SPICE. 
SPICE is a very flexible and vague standard. It can be compared with the con-
stitution of a state. A law in a constitution will never have a concrete definite 
character, otherwise it risks to be unfitting to several concrete problems and thus 
loses its general purpose of building a frame of basic agreements on values, 
whereupon a set of people (e.g., a nation) build its society.  

In the exact same way, SPICE (or CMMI) can be seen as a frame of basic 
agreements on values all projects comply with. But each project develops its own 
rules interpreting the abstract and vague rules of the standard. An example of the 
flexibility of standards as SPICE or CMMI is the fact that several authors show 
[Pa01], [FK07], [Kn06; p.89] that the principles of agile methods as eXtreme 
Programming have the potential to reach maturity level 3 in CMMI140. Similarly, 
a project should also be able to have SPICE-conforming processes when the 
processes are not necessarily fulfilled by exact, word-for-word obedience141 of 

                                                           
140 As shown in the beginning of ch. I.7, CMMI and SPICE have comparable process 

models and needs for traceability. Thus, this claim should be – more or less – equally 
valid for the SPICE process landscape. 

141 See also the – in the author's view still valid – criticism of Curtis et al. about process 
models resulting from empirical studies: “A typical statement that we heard from par-
ticipants was that, you've got to understand, this isn't the way we develop software 
here. This type of comment suggested that these developers held a model of how soft-
ware development should occur, and they were frustrated that the conditions surround-
ing their project would not let them work from the model. The frequency of this com-
ment also suggested that the model most developers envisioned accounted poorly for 



I.7  Quality Standards for Safety-Critical Development Processes 141 

the standard. Instead, especially concerning traceability aspects in the ENG pro-
cesses, the author claims that a freer interpretation of the SPICE processes may 
help to ensure higher flexibility of the process landscape without contradicting 
the principal ideas of the SPICE process model on condition that it is accepted 
that process models may be – very valuable – metaphors for practice but provide 
no claim for strict obedience. This claim is further described in the following 
chapter, but its full implications on this research are then again highlighted in ch. 
III.19, ch. III.20 and ch. III.21. 

At the end, however, it must also be mentioned that the SPICE assessors de-
cide whether a process landscape conforms to the demands of SPICE. In this 
way, the power of the assessors and process designers may not be underestimat-
ed. If these people do not understand or share the view that different interpreta-
tions of a SPICE demand are possible, then the process landscape is determined 
as non-conforming. In this way, organizations open to deviating interpretations 
undergo a certain risk and should be aware that they must be prepared for water-
tight argumentation. 

At least, even SPICE literature for assessors acknowledges indications that 
process practice can significantly deviate from the original demand of SPICE and 
thus in the author's view also indirectly concede the metaphoric nature of process 
models. As an example, [HDH+06; p.104] directly gives further reinforcement 
for the argumentation of the next chapter and will be discussed in detail there. 

                                                                                                                                    
the environmental conditions and organizational context of software development. The 
participants we interviewed were uniformly motivated to do a good job, but they had 
to mold their development process to navigate through a maze of contingencies. These 
interviews provided a clearer understanding of such crucial processes as learning, 
technical communication, requirements negotiation, and customer interaction. These 
processes are poorly described in software process models that focus instead on how a 
software product evolves through a series of artifacts such as requirements, functional 
specifications, code, and so on. Existing software process models do not provide 
enough insight into actual development processes to guide research on software devel-
opment technologies. Models that only prescribe a series of development tasks provide 
no help in analyzing how much new information must be learned by a project staff, 
how discrepant requirements should be negotiated, how design teams resolve architec-
tural conflicts, and how these and similar factors contribute to a project's inherent un-
certainty and risk” [CKI88; p.1284]. 
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I.7.3.2  The Nature of the ENG-Processes, Traceability, and 
its Implications142 

The SPICE process model concerning the requirement and design related pro-
cesses (ENG.2-ENG.5) is a layer model where problem space descriptions (re-
quirement view: ENG.2, ENG.4) alternate with solution space descriptions (de-
signs: ENG.3, ENG.5), (cf. [Nu01], [PS05; p.113f], [Po08; p.565-602], ch. I.5.4): 
• ENG.2: Derives from the user requirements specification143 a general system 

requirements specification (SYS_RS). 
• ENG.3: Uses the SYS_RS to create a high-level system design with the prior 

emphasis on HW-SW-partitioning. 
• ENG.4: The software requirements specification (SW_RS) derives from 

ENG.2 and ENG.3. 
• ENG.5: Uses the SW_RS for the design of the SW architecture. 

SPICE-oriented traceability models require a continuous link chain between 
the artifacts of ENG.2, ENG.3, ENG.4 and ENG.5 to ensure the consistency of the 
entire model (cf. [DC04], [Kn01b]). 

In the author's practical experience, a strict obedience to the process model 
described above can cause several disadvantageous problems. To outline these 
problems, the following example SYS_RS is given with three requirements caus-
ing a problem encountered by the author at practical work at the former Micron 
Electronic Devices AG (since June 2008 part of the MBtech Group) by one of its 
projects: 
• Req.1: An external watchdog component must monitor the system.  
• Req.2: Parametric data must be changeable by the customer during opera-

tion.  
• Req.3: Parametric data must be stored on EEPROM. 

In current practice, the system design determines that the system will include 
a micro controller (controller), an external watchdog component and an external 
EEPROM (cf. fig. 7-2). 

The HW requirements specification (HW_RS) is derived from the SYS_RS 
and system design. It again contains Req.1 and Req.3 linking back (fig. 7-2: bold 
blue arrows) to the SYS_RS. The detailed HW design determines that watchdog 
and EEPROM will share the connection pins to the controller by an SPI144 com-
munication interface, because other connected components have already used up 

                                                           
142 The following chapter bases on [TKT+07]. 
143 I.e., customer requirements specification 
144  Serial Peripheral Interface Bus 
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all remaining pins of the controller. Req.1 gets linked to the watchdog symbol 
and Req.3 to the EEPROM symbol in the HW design. The SW_RS contains 
Req.1, Req.2 and Req.3 linking back to the SYS_RS. 

During SW design, the architect discovers the potential resource conflict in 
the shared usage of one SPI for EEPROM and watchdog. Since driving the 
EEPROM is very time intensive and triggering the watchdog is very time critical, 
the architect rates this combination as risk, but changes of the HW are rejected 
due to higher costs. The solution for this conflict, the EEPROM and watchdog 
drivers must be “artificially” coupled to implement a cooperative handshake145 

solution (fig. 7-2: association between EEPROM driver and Watchdog driver 
marked with „!!!”).  

 

 
Figure 7-2  The example in current practice of the SPICE process model 

                                                           
145 When triggering of the watchdog is needed soon, the SW module responsible for 

triggering the watchdog requests the SPI-bus resource from the EEPROM SW module, 
which handles preempting its task in a secure state and then notifies the watchdog SW 
module that the SPI-bus is now available to trigger the watchdog.  
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The solution implies that the planned original standard drivers of a supplier must 
be adapted internally. In the further progress of the project, these adaptions 
caused extra efforts not traceable to its background. 
 

In the long run of the project, the following disadvantageous effects have 
been discovered: 
• Redundancies needed significant extra effort to be maintained up-to-date. 
• Despite all efforts, sometimes redundancies have been forgotten to maintain. 

This effected in small drifts between the system, HW and SW views leading 
to communication problems between the different developer groups. 

• As sometimes requirements cannot be reasonably explained without referring 
to the solution, also design more and more details crept into requirement 
documents leading to redundancies in requirements and design documenta-
tion. 

• Problems such as the above described interactions between HW design and 
its implications on the SW as described above have still not been plainly elic-
ited yet, leading to further problems. 
In summary, this example illustrates the central problem that the require-

ments in HW_RS and SW_RS are copies of the requirements in the SYS_RS, lead-
ing to high redundancy. In many cases, SW or HW functionality is already clearly 
demanded for in the user requirements specification. Thus a clear separation of 
those requirements must be taken over into the SYS_RS and SW_RS respectively 
HW_RS, causing additional effort and redundancies. As the chapter above has 
shown, this clear separation between System, HW and SW can also be seen as a 
more or less metaphoric one (cf. [Ni04]) providing orientation aid for the devel-
opers as process models do. However, in practical terms, such a clear separation 
is mostly not viable ([HDH+06; p.104], [PS05; p.114]). Especially the pro-
claimed specification of SW requirements146 should be cautiously dealt with, since 
a really separate SW_RS147 faces the following problems: 
• Often, requirements on HW and SW are strongly interwoven (cf. [HDH+06; 

p.104]). Even literature on SPICE concedes that in practice the traversals be-
tween ENG.3, ENG.4 and ENG.5 are mostly floating and of iterative and re-
cursive nature [HDH+06; p.103]. Thus, in most projects no separate SW_RS 

                                                           
146 If the concept of a separate SW requirements specification is consequently followed, 

then also a HW requirements specification should be maintained. However, as men-
tioned before, SPICE has the weakness that it does not adequately address HW as-
pects. 

147 Boehm [Bo05] points out that the separation between Systems and SW engineering 
has been a historical and artificial one. 
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is maintained, but functional requirements are collected on the level of 
SYS_RS148 (ENG.2) [HDH+06; p.104]. 

• In many cases, SW functionality is already clearly demanded in the customer 
requirements specification (ENG.1). Thus, if applying such a clear separa-
tion, those requirements must be taken over into the SYS_RS (ENG.2) and 
SW_RS (ENG.4), causing additional efforts and redundancies.  

• Other requirement types exist not attributable to either HW or SW (e.g., 
project management, quality management, mechanical construction). Alter-
natively, in current requirements management tools like IBM Rational 
DOORS®, a HW-SW-partitioning of requirements is also viable using an at-
tribute (proposed values: 'System', 'HW', 'SW', 'construction', 'management'). 

• Generally, linking of different artifacts is a time consuming, unproductive 
and errorprone administrative work149 that should be minimized (see details 
in ch. II.10.5). 
As a way out, the author proposes orienting on more pragmatic views of the 

agility scene (e.g., cf. [BT04]) and to concentrate merely on one dependable, 
consistent requirement artifact150 to store all contractually relevant151 require-
ments as one common view i.e. interface to synchronize the views of all stake-
holders in the project. This artifact can be called the SYS_RS. The artifacts 
HW_RS and SW_RS can be indirectly derived from the SYS_RS by maintaining an 
attribute marking a requirement as important for HW and SW. Starting from this 
                                                           
148 See remarks of [HDH+06; p.104 (*)] to ENG.4, BP.1 (“Specify the SW_RS”): “In 

many projects, no separate software requirements specification is maintained, but func-
tional requirements are described in one single document at the level of system re-
quirements (e.g., a 'Pflichtenheft'). The underlying reasons are that system functionali-
ty is often mainly determined by software, but it cannot be reasonable separated from 
hardware functionality. The requirements of this base practice are completely fulfilled 
if it can be proved that the functional and nonfunctional requirements are unambigu-
ously specified and are adequate to the range of functions” [HDH+06; p.104 (*)]. 

149 “As systems evolve, it becomes increasingly ineffective to maintain traceability in-
formation. RT (requirements traceability) in practice often suffers from the enormous 
effort and complexity of creating and maintaining traces. It also suffers from incom-
plete trace information” [EG04; p.55]. 

150 This corresponds to the DRY-principle (don’t repeat yourself) in [HT03; p.24] also 
more elaborately described in ch. I.6.1.2. 

151 Contractually obligatory means here to clearly distinguish between requirements 
originating from the customer and 'requirements arising internally within the project' 
(see also ch. I.7.2.2.1). The real meaning of this statement can only be described later 
in ch. III.19. Roughly speaking, the idea is to distinguish between requirements from 
the customer (requirements) and requirements arising within design phases (design 
constraints). 
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common view on requirements, all further design artifacts (system design, HW 
design and SW design) are derived. 
 

 

Figure 7-3  The altered example above with less redundancies 

Fig. 7-3 shows how the example above (see fig. 7-2) looks like if these prin-
ciples are applied. The system design is done similarly to the example above (fig. 
7-2). Additionally, the SYS_RS contains an attribute that allows SW-HW parti-
tioning. Req.1 and Req.3 are marked as relevant for HW and SW, Req.2 only for 
SW. Correspondingly, the HW_RS is not directly applied, since the relevant HW 
requirements are marked in the SYS_RS. Apart from that, the HW design is done 
similarly to the previous chapter and linked to the Req.1 and Req.3 in the 
SYS_RS. In the same way as the HW_RS, the SW_RS is not applied, since the 
relevant SW requirements are marked in the SYS_RS. The SW design will be de-
veloped from the SYS_RS and the system design model. 

As a comparison between fig. 7-2 and fig. 7-3 shows, redundancies are sig-
nificantly reduced and thus unnecessary project complexity152 is avoided. In 

                                                           
152 As Diederichs [Di04a] shows, unnecessary complexity in processes is one of the major 

sources for partial or complete failures of project endeavors. Correspondingly, reduc-
ing unnecessary complexity is one of the best leverages to avoid project failures. 
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[HDH+06; p.104] it is indicated that such an approach as adaption to the SPICE 
process model is spread in industrial practice (also see footnote 148 (p.145)). 

In this way, this concept also gives tribute to Boehm's predictions about the 
future of SysEng and SE processes [Bo05]. According to Boehm the separation 
between SysEng and SE was an artificial one driven by historical development. 
For the future, he predicts a growing together of both disciplines. In fact, this 
trend becomes evident in the emphasis of SysEng processes in SW development 
standards as the ISO 12207 ([ISO12207]) or SPICE (ISO / IEC 15504) and also 
in the SysML [SYSML] standard being an extension of UML as support for Sys-
Eng. Further indications speaking for the latter approach are comments provided 
by Hood et al. [HWF+08; p.195] claiming that process thinking must get away 
from the document view and turn more toward an information view. 

However, the solution sketched here does not yet provide any help for cov-
ering the problem concerning watchdog and EEPROM. This points to a gap be-
tween the adaption following the latter example and an intention of the original 
intentions of the SPICE process model: Design activities concerning one design 
artifact (in this example HW design) can have serious implications for other re-
quirement or design artifacts (in this example SW design). This fact is partially 
considered in the process model of SPICE: System design has high impact on its 
SW design by raising new “requirements” in addition to the original requirements 
of the stakeholders. Thus, the idea behind a SW_RS is to collect the SW-related 
requirements from the SYS_RS and to derive new requirements from the system 
design. On the other side, especially concerning the automotive sector, SW design 
often must be subordinated under constraints of extremely cost-optimized HW 
components. At the moment, SPICE completely neglects these critical connec-
tions between HW and SW. 

A dedicated goal of this thesis is to find a way out of the dilemma that cur-
rent project practice either has to decide between the dangers of extensive redun-
dancies or lacking means to make intercorrelations between different design 
phases that spark new 'requirements' for other designs explicit. As ch. III.19 and 
ch. III.20 (especially ch. III.20.3) will describe, the dilemma could be solved in 
integrating a decision model directly within design processes and the evolving 
traceability information. This follows the basic idea that design decisions taken at 
a certain design situation can imply influence upon other parts of design by 
sparking new 'requirements' for these parts. Additionally, this decision model 
approach has further significant advantages as it provides explicit coverage for 
another important demand of SPICE: Several BPs (e.g., ENG.3 BP5 ([HDH+06; 
p.101]), ENG.5 BP1 ([HDH+06; p.110-111])) explicitly demand that important 
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design decisions must be evaluated and documented153. This can be easily ful-
filled using the decision model described in ch. III.19 and ch. III.20. Additionally, 
this also provides an important connection hook to Rittel's design theory (ch. 
I.6.2.2) and what is now called RatMan (ch. I.6.2.2 and ch. II.9). 

Following the saying “no rule without an exception”, at least two cases are 
dedicated exceptions which should be dealt with on their own and therefore will 
not be part of the discussion of ch. III.19 and ch. III.20. They will be discussed 
later in connection to ch. III.23: 
• Complex systems (System of systems): If complex systems can be divided 

into relatively independent subsystems (with exactly definable interfaces), 
then the subsystem specifications should be separated. 

• For development parts delegated to subcontractors the interface and context 
of these must be deeply analyzed and defined. 

I.7.4  Automotive SPICE 

Starting in 2001, the Automotive Special Interest Group (A-SIG) is working on 
an industry specific adaption of SPICE, called Automotive SPICE (A-SPICE) 
[ASPICE08a], [ASPICE08b], [AutomotiveSPICE], [MHD+07; p.3ff]. Since 
2007 all members of the HIS (see beginning of ch. I.70) have decided to prefer A-
SPICE for supplier assessments, making A-SPICE to a de-facto standard in the 
automotive industry [HDH+06; p.267ff]. 

A-SPICE has its own definition of a process reference model (PRM) and a 
process assessment model (PAM) [HDH+06; p.267] slightly deviating154 from the 
original PRM and PAM of SPICE [HDH+06; p.267ff]. Even though some base 
practices have been slightly adapted to the peculiarities of automotive embedded 
engineering, concerning the ENG and SUP processes discussed here, the changes 

                                                           
153 In CMMI the generic practice “Decision Analysis and Resolution” must be fulfilled to 

reach up to maturity level 4 [Kn06; p.54]. 
154 The following SPICE processes are left out by A-SPICE [HDH+06; p.269], 

[MHD+07; p.7]: MAN.1, MAN.2, MAN.4, ENG.11, ENG.12, SUP.3, SUP.5, SUP.6 
(product evaluation), ACQ.1, ACQ.5, RIN.1-4, OPE.1-2, SPL.3, PIM.1-2, REU.1 and 
REU.3. Instead five new acquisition processes have been defined: ACQ.11 (“Technical 
Requirements”), ACQ.12 (“Legal and administrative requirements”), ACQ.13 (“Pro-
ject requirements”), ACQ.14 (“Request for Proposals”), ACQ.15 (“Supplier qualifica-
tion”). Further, it is to note that the HIS (see beginning of ch. I.07) has defined a sub-
set of the A-SPICE process model called HIS-Scope. The HIS-Scope defines the min-
imum of processes to be assessed by each assessment of a HIS member. 
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made are not significant concerning this thesis except for the new demands on 
traceability discussed below.  

 

Figure 7-4  Summary of traceability BPs in A-SPICE [ASPICE08a; Annex E] 

A major improvement from the embedded engineering perspective is that the 
key concepts of the engineering processes now also explicitly include mechanical 
and HW aspects, and these aspects are handled analogously to the handling for 
software aspects described above. This means that mechanical and HW require-
ments are derived from the SYS_RS and that then these requirements must be 
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mapped onto the mechanical and HW design [ASPICE08a; Annex D], [MHD+07; 
p.15]. 

A central change in comparison to the SPICE standard is that the traceability 
concept has been “significantly extended and thereby defined in a more conse-
quent and consistent manner” [MHD+07; p.222 (*)]. Demands for traceability 
have thus been changed concerning the following aspects: 
• Instead of traceability, bidirectional traceability is demanded now. Even 

though, it was already demanded by SPICE that backward and forward 
traceability must be established for certain work products, in A-SPICE, now, 
any traceability information must be in any way traceable in both directions 
[MHD+07; p.222ff]. These demands make a manual documentation of 
traceability information using traceability matrices (e.g., by using Microsoft 
Excel) very difficult and press for the need to use dedicated traceability tools 
[MHD+07; p.225]. Müller et al. further indicate that the most critical points 
concerning tool based traceability are gaps in the tool chain [MHD+07; 
p.225]. Thus, assessors must explicitly search for and analyze dedicated 
breaks in the tool chain, verifying whether consistency between the impacted 
artifacts is present.  

• Subsuming the general traceability demands above, it must be mentioned 
that also new BPs have been added with additional traceability demands to 
the original of SPICE. Fig. 7-4 taken over from Annex E of the A-SPICE 
PAM [ASPICE08a; Annex E] shows all BPs describing a certain traceability 
relation having the characteristics of the points described above. 

• Additionally, traceability within the ENG processes shall be extended by 
verification criteria (see fig. 7-4; for a detailed description cf. [MHD+07; 
p.47, 53, 59, 66, 74, 225ff]). This means that requirements and their realizing 
design artifacts must already define verification criteria within their artifacts 
and that these criteria must be traceable to the information to be verified 
[MHD+07; p.225ff]. The definition of verification criteria is a well-known 
practice in REM theory (cf. ch. I.5.1) and is also already demanded by the 
SPICE standard (cf. ENG.4 BP3). In A-SPICE, verification criteria must be 
defined for any ENG process artifact and these verification criteria must be 
made traceable to the items they are defined for [MHD+07; p.47, 53, 59, 66, 
74, 225ff]. 

• At the moment, the A-SIG also seems to discuss whether traceability should 
become an individual SUP-process as problem management etc. have be-
come, but no definitive decision about this issue has yet been made 
[MHD+07; p.222ff]. The summary on traceability demands as referred to in 
fig. 7-4 may be the basis for such a process to be defined. 



I.7  Quality Standards for Safety-Critical Development Processes 151 

• Horizontal and vertical traceability: Even though the current standard ver-
sion does not officially employ this terminology, Müller et al. [MHD+07; 
p.222] point out that at the A-SIG debate seems going on about whether to 
include the terms horizontal and vertical traceability in the future traceabil-
ity process description. Obviously orienting on the V-cycle process model 
[DHM98], the A-SPICE standard's definition of horizontal and vertical 
traceability has its own notion completely different to the notions155 de-
scribed in ch. I.5.7.1: Horizontal traceability is illustrated as relationships in 
horizontal direction in fig. 7-4 (e.g., ENG.10 BP5), whereas vertical tracea-
bility refers to the vertical direction (e.g., ENG.2 BP6) [MHD+07; p.222]. In 
[MHD+07; p.225], Müller et al. emphasize that these definitions have the 
advantage that the aspects realization (vertical traceability) in other artifacts 
and test coverage (horizontal traceability) can be distinguished. As described 
in ch. I.5.7.1, the author, however, considers the ambiguous usage of the 
terms as alarming and rather prefers to avoid these terms. Besides, the author 
also considers the obvious preference on the V-cycle process model as prob-
lematic, because such standards usually should be as generic as possible and 
should not drive organizations toward a specific implementation of their pro-
cesses as this orientation on the V-cycle process model suggests. 
At the moment, traceability generally seems to be a trend topic in the auto-

motive industry and changes of industrial practice in the next years are very like-
ly. 

Even though it is mentioned above that the ENG processes do not contain 
changes significant for the outcome of this thesis, one other exception exists: 
With ENG.5 BP5 “Define goals for resource consumption” the A-SPICE standard 
requests that resource consumption for each software module is explicitly 
planned and tracked [MHD+07; p.64]. In ch. III.21, it is shown how this demand 
can be fulfilled in a way that these 'resource consumption goals' are even inte-
grated into a larger traceability structure showing new perspectives beyond the 
usual demands of the A-SPICE standard. 

I.7.5  Safety Engineering: IEC 61508, ISO 26262 

In the automotive industry, more and more ECUs have influence on safety-related 
functions, where malfunctions can lead to significant dangers of injury or death 

                                                           
155  Müller et al. [MHD+07; p.222] also emphasize that CMMI has a different notion 

equal to the notion of Bohner [Bo91] (see ch. I.5.7.1). 



152 I. General Context and Theories 

of humans. Correspondingly, questions about the so-called functional safety of 
ECUs are becoming increasingly important.  

The IEC 61508156 “Functional safety of electrical/electronic/programmable 
electronic safety-related systems (E/E/PES)” [IEC61508] describes a standard for 
conception, planning, development, realization, launching, maintenance, modifi-
cation, shutdown and deinstallation of systems containing safety-critical E/E/PES 
components, whose breakdowns impose significant risk for humans and the envi-
ronment [LPP10; p.8ff].  

The standard demands that a system possibly implying risks for humans or 
the environment must be assessed for the probability that these risks become 
reality. This includes that the individual components of the system are analyzed 
for potential malfunctions leading to safety hazards. If significant risks can be 
identified in those components or the system, then these parts or the complete 
system are classified as safety-related. Hereby a malfunction or a combination of 
malfunctions can lead to safety risks. The rating of the safety-relevance orients on 
fixed upper bounds of probabilities leading to a safety hazard. Corresponding to 
these probabilities each safety-related component can be classified into four dif-
ferent safety integrity levels (SIL) determining the actions to be taken in order to 
reduce hazard entry probabilities (see, e.g., [MHD+07; p.286] showing a risk 
probability graph for determining a corresponding SIL for a component). 

The IEC 61508 can be seen as a basic norm helping to define industry sector 
specific implementations [MHD+07; p.285]. Such an implementation157 for the 
automotive industry is provided by a new standard ISO 26262 (“Road vehicles – 
Functional safety”). The ISO 26262 [ISO26262] is a norm draft of the automo-
tive industry for safety of electronic road vehicles derived from IEC61508 
[LPP10; p.9]. The SIL levels are called automotive safety integrity levels (ASIL) 
but have the same meaning. The difference is that they are classified by grades 
from A (SIL 1=ASIL A) to D (SIL 4 = ASIL D). 

Benediktsson et al. [BHM01] empirically proved that to fulfill SIL1 or SIL2 
minimum SPICE maturity level 2 (ML) is essential. For higher SILs (SIL3 and 
SIL4), the study indicates the need for higher MLs. Concerning A-SPICE, 
Mueller et al. emphasize that “reaching ML2 in the processes of the HIS-scope is 
a necessary (but not sufficient) premise to develop safety-critical software (SIL1 
or higher)” [MHD+07; p.288 (*)]. Beyond this (for SIL2, SIL3 or SIL4), no spe-
cific practice of A-SPICE is mappable, because SPICE standards only demand 

                                                           
156 Also known as EN 61508, DIN EN 61508 and VDE 0803.  
157 Other industrial sector implementations are for example: IEC 61511 (process indus-

try), IEC 61513 (nuclear power plants), DO-178B (aviation), or EN 50129 (railway). 
See [LPP10; p.9] for an overview of standards derived from IEC 61508. 
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'what' has to be performed, whereas IEC 61508 (and ISO 26262) additionally 
imposes certain demands 'how' activities have to be performed [MHD+07; 
p.288]. This leads to the conclusion that traceability demands must be fulfilled 
whenever a safety-related function has been identified in a system to be devel-
oped. 

 
 

I.8  Feedback from Embedded Practice 

In theory there is no difference between theory and practice. In practice there is. 
Yogi Berra 

 
After the theoretical terrain, an adequate traceability between requirements and 
design solution should consider, has been outlined, the following chapter discuss-
es some feedback from practice that should help in the considerations. 

Pettit [Pe04] describes a series of lessons learned “derived from several dif-
ferent embedded software development efforts observed by the author during the 
period of 2000-2004” [Pe04; p.1]. The projects158 involve “large-scale embedded 
software often with real-time requirements and often with a high degree of con-
current processing” [Pe04; p.2]. As modeling standard, UML 1.4 without any 
further profile or real time extensions or special case tool has been applied. Thus, 
the presented lessons learned reflect Pettit's experiences with the basic features of 
a modeling language as UML not requiring the presence of specialized modeling 
features or other sophisticated tool sets [Pe04; p.1-2]. The described experience 
divides into lessons about processes and lessons about modeling (design).  
Lessons about the processes are:  
• A well-defined process is as important as any modeling itself. Pettit distinc-

tively emphasizes the difference between a well-defined development pro-
cess and a general process framework such as SPICE. Many projects go for 
the latter, ignoring the individual project implications. “While these frame-
works are a good starting point, it is crucial for each project to capture the 
specific process flows, activities, and milestones that will be employed for 

                                                           
158 Even though, the referred projects seem to involve the aerospace domain (This is not 

explicitly mentioned in the article, however Pettit's organization is called “The Aero-
space Corporation”) that may not necessarily match with other domains as Automotive 
and the reference to UML mentioned before, the author believes that the findings of 
Pettit are fundamental and abstract enough to also match with other engineering do-
mains and other modeling paradigms. The reader may decide on his (her) own whether 
the author's claim is correct. 



154 I. General Context and Theories 

their projects. This is nominally accomplished through the creation of a 
software development plan that documents not only the framework being ap-
plied, but the specific process steps applied for the project” [Pe04; p.2].  

• Simply adopting new process technologies does not reduce the development 
effort. At first, mostly higher efforts due to learning phases must be consid-
ered. Concerning the adoption of UML techniques, the most positive experi-
ence is that not necessarily the projects' overall development effort has 
changed, but the effort has rather shifted to up-front requirement definition 
and problem analysis. If these up-front activities have been performed 
soundly, efforts for detailed design and implementation have reduced at least 
marginally. However, it has been observed that projects with a solid analysis 
model and SW architecture have reduced maintenance efforts including ef-
forts for adding new features in future adaptions [Pe04; p.2]. 

• “One of the most immediate benefits observed from adopting a use case 
driven UML design is the improved visibility to stakeholders. Through ap-
plying this highly visual modeling, software engineers are able to more 
readily communicate with systems engineers and even to the end customer” 
[Pe04; p.2]. In this way, confidence in the developed features and under-
standing of requirements in early development phases could be increased. 
Additionally, the usage of a standard language like UML helped developers 
to get easier up to speed in new projects, because the standardized modeling 
constructs lowered the learning curve for understanding concepts within the 
new project [Pe04; p.2]. 

• “The lack of thorough requirements traceability is one of the most common 
and critical problem areas observed in current object oriented development 
efforts. Often, requirements are traced to the use cases for a particular system 
or subsystem, but are not propagated to the individual design elements. 
When requirements are not completely traced to the specific design elements 
(e.g., classes, messages, state charts, etc.), there is a tendency to lose focus as 
to the specific responsibility of the classes being designed. This can lead to 
costly changes late in the life cycle and can also lead to incorrect or missing 
functionality in the delivered system. Additionally, gaps in requirements 
traceability complicate the testing and verification process, especially at the 
unit or white-box level” [Pe04; p.2]. 

• Prototyping is a heavily used technique for exploring unknown parts of a 
system. This is especially important in embedded development in order to 
gain insights and confidence in the employed HW. However, “extreme care” 
[Pe04; p.3] should be taken about decisions how to integrate backlashes of 
the gathered results. “Specifically, care should be taken to appropriately up-
date the software design based on the results of the prototype” [Pe04; p.2-3]. 
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Pettit has observed that drifts between design and the implementation are one 
major driver for later maintenance and upgrade efforts and problems of the 
developed software [Pe04; p.2-3].  
Subsuming point one in the context of process standards such as SPICE, the 

crux about it is how to adequately adapt a process framework to a specific pro-
ject. The usual answer of such process frameworks is employing a process tailor-
ing concept [HDH+06; p.245], [BT04; p.36f]. The author believes that this is an 
issue not yet completely solved issue as the discussion between more disciplined 
or more agile processes is also in open discourse (see, e.g., [BT04]). Findings of 
projects practice are disillusioning in the sense that process tailoring is often not 
performed, because process framework definitions are so complicated that ac-
countable project members do not dare to perform significant tailoring in fear of 
being blamed for negative consequences discovered later [BT04; p.152] driving 
Boehm and Turner to the recommendation to build methods up rather than to 
tailor them down [BT04; p.152]. The point tangents this thesis by the question 
how far tools and processes are connected and influence each other. As shown in 
ch. I.7.3.2 and later in part III (ch. III.20.3), tools such as R2A introduced in part 
III may also have the potential to infer a different interpretation of artifact con-
nections that allow process standards to be tailored in a different way in order to 
avoid problems such as unnecessary redundancies between artifacts. The second 
and third point refer to experiences that are generally encountered, when extend-
ed REM practices are used. Besides the technique of use cases, other require-
ments specification techniques exist and it is probable that stakeholders' under-
standing may be improved if a structured method for elicitation and structuring 
requirements is used, which is understandable for the stakeholders (e.g., reflects 
their vocabulary and understanding) and is somehow standardized so that it must 
be learned just once. Use cases fulfill these criteria to a very high degree, what 
explains their high preference in projects. Point four directly describes the core 
problem this thesis works on. It claims for a fine-grained and detailed traceability 
solution. Last but not least, point five addresses the issues of how to explore the 
solution space (the possible design alternatives) and how to integrate knowledge 
achieved outside the standard development information flow. Further, the prob-
lem of view drift (here the drift of the model and the code) is mentioned. As de-
scribed in ch. I.6.6.1, these problems can be avoided by specialized design tools 
allowing early functional prototyping with automatic code generation. 
Concerning the modeling, the following lessons are described: 
1. ”Capturing interfaces to external devices is a critical element in the design of 

embedded software systems” [Pe04; p.3]. Two kinds of interfaces shall be 
considered. The context of the embedded device involves all devices and us-
ers that interact with the system. Therefore, a context analysis (a good de-
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scription of possible context analysis methods with UML is provided by 
[HR02]) is essential for identifying all involved interfaces. Secondly, an em-
bedded SW must interact with the HW. Often the HW interface knowledge is 
encapsulated in some kind of controller class. However, to improve flexibility 
each interface should be encapsulated by its own controller class. 

2. Often an imbalance between static and dynamic models exists, whereby static 
aspects are mostly preferred. “This practice results in an unbalanced design 
that, while providing a good data model, may not completely capture the be-
havioral aspects of events and messages that are prevalent in embedded soft-
ware systems. Without adequately capturing this dynamic behavior, it is diffi-
cult to assess whether the final design will completely satisfy the functional or 
performance requirements of an embedded system” [Pe04; p.3-4]. 

3. Often dynamic interactions are modeled using sequence charts. However, a 
sequence chart often only shows one scenario of interactions, whereas the 
overall interaction context is neglected. UML also provides communication 
diagrams. “By utilizing both forms of UML interaction diagrams, engineers 
can achieve a more complete description of both the sequence of events with-
in a scenario and of the behavior across a set of scenarios” [Pe04; p.4].  

4. Identification of concurrency situations is essential in embedded systems 
design, if more than one concurrent thread is employed. Often concurrency 
situations are described in a different diagram, whereas UML language fea-
tures are neglected. “This leads to a disconnect between the as-built software 
and the UML design artifacts” [Pe04; p.4]. 

5. In the experience of Pettit, state charts are the most underused means for 
capturing the reactive, state-dependent behavior often found in embedded sys-
tems. Especially, hierarchical state charts prove helpful to tame complex be-
havior [Pe04; p.4]. 

Point one discusses that defining the context of a system is an essential task 
(see ch. I.4 and ch. I.5.2). In the second notion, Pettit emphasizes that access to 
HW components from SW shall be encapsulated by controller classes. Even 
though not directly discussed in this thesis, in automotive ECU design so-called 
'driver' modules perform this encapsulation for HW components of the micro 
controller, and 'handler' modules encapsulate knowledge of the control paths of a 
specific functionality at the printed circuit board. The accompanying case study 
of part III (cf. ch. III.12) uses the encapsulation principles of drivers and han-
dlers.  

Point two discusses that there should also be a suitable possibility to get the 
connections between the static and the dynamic behavior. Usually, this is per-
formed through the view concept. The traceability solution discussed in part III 
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also provides a way to adequately model connections between different views. 
This can help to document connections between the static and dynamic aspects.  

Points three and four are rather problems to be addressed by modeling and 
are therefore not further discussed in this thesis. 

Point five gives further prove for the argumentation provided in ch. I.6.6.1. 
 



II.  Rationale Management and Traceability in 
Detailed Discussion 

The more you plan in details, the more you are struck by coincidence. 
Peter Rühmkorf (*) 

 
After the last part described the different major topics this thesis is related to, this 
part now discusses the two central research topics in detail. These topics are ra-
tionale management (RatMan) and requirements traceability. In ch. II.9, RatMan 
is discussed as major research field on how information about important design 
decisions can be successfully captured in order to ensure that information im-
portant for change management and long-term collaborative is conserved. 

Ch. II.10 then discusses the current state of research on requirements trace-
ability. At first, this discussion is made from a general perspective. At the end, ch. 
II.10.6 discusses traceability research in the special context of the transition from 
requirements to design being in the focus of this thesis. 

 
 

II.9  Rationale Management in Systems and  
Software Engineering 

The wise man never takes a step too long for his leg. 
African saying 

 
Making decisions is the basis of all development activities. Rationale describes 
“the justification behind decisions” [DMM+06a; p.1]. In other words, “the term 
rationale denotes the reasoning underlying the creation and use of artifacts. Ra-
tionale research seeks ways of aiding decision-makers by creating explicit rec-
ords of this reasoning. Most other types of research on decision-making, by con-
trast, seek to create formal, computational methods for deriving decisions. Ra-
tionale research primarily deals with informal and semi-formal, verbal reasoning; 
but it does not ignore formal reasoning and computation, both because humans 
sometimes use these in reasoning about decisions and because they can augment 
human reasoning” [BCM+08; p.3]. 

The general goal of rationale management (RatMan) and its research efforts 
can be described as “to use rationale to improve the processes of creating arti-
facts of various kinds, including physical artifacts such as buildings, cities ... as 

B. Turban, Tool-Based Requirement Traceability between Requirement and Design Artifacts,
DOI 10.1007/978-3-8348-2474-5_3, © Springer Fachmedien Wiesbaden 2013
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well as cognitive artifacts such as software and government policy” [BCM+08; 
p.5]. To achieve these goals, the following aspects are in general considered by 
methods and supporting tools developed by rationale research (cf. [BCM+08; 
p.5]): 
• Elicitation of important and useful rationale from different sources. Mostly 

these sources of rationale are stakeholders involved in the decision process 
(often called the rationale bearers). 

• Recording useful rationale, 
• Structuring and indexing the recorded rationale for retrieval, 
• Rationale retrieval, when it is needed or useful, 
• Imparting rationale to all stakeholders if it is needed or useful, 
• Handling of the rationale by stakeholders; 

Historically, rationale research was given birth by the Rittel's design 
[RW73] theory about wicked problems [RW84] (see ch. I.6.2.2) and thus focused 
on design processes [DMM+06a; p.1]. Correspondingly, most literature on ra-
tionale uses the term design rationale. However, as “rationale models are used 
during all activities of development, including requirements engineering, archi-
tectural design, implementation, testing and system deployment” [DMM+06a; 
p.1], Dutoit et al. [DMM+06a; p.1] propose using the term software engineering 
rationale to emphasize that rationale occurs during all phases of software devel-
opment and is not necessarily limited to design contexts. In principle, the author 
agrees with this extended context, but as this thesis also considers SysEng ap-
proaches, an even wider scope is needed. In particular, the term software engi-
neering rationale again provides strict limitations to software related contexts 
only, whereas the former term design rationale also includes non-software related 
design activities as, e.g., social planning. In the context of this thesis, rationale is 
only discussed in the context of design. Correspondingly, the term design ra-
tionale would seem adequate for this thesis, but to avoid both limitations, the 
author just uses the term rationale.  

Burge et al. [BCM+08; p.17-19] enlist the potential benefits of including ra-
tionale into software engineering processes (these results are of either value in 
SysEng). The author will enlist all main points. For the points important to this 
thesis, the sub points are also listed: 
• Support for requirements engineering can involve identification and explana-

tion of requirements. Here, rationale can help requirement engineers with 
decision making through improving underlying reasoning. Additionally, de-
cisions with their reasoning are recorded thus helping to assess impacts of 
changes. 

• Support for design and implementation: On one side, rationale can provide 
traceability of between requirements and design decisions and vice versa. On 
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the other side, rationale can help designers to make better decisions through 
improving communication and underlying reasoning (e.g., by providing ra-
tionale behind patterns (cf. ch. I.6.2.4)). Recorded decisions and their rea-
soning further help with change assessments. 

• Supporting software maintenance by helping maintainers to understand the 
rationale for requirements, design or implementation decisions. 

• Project management is supported because rationale helps to communicate 
decisions to management. As a plus, performed RatMan during project man-
agement can help to make better decisions. 

• Supporting use by providing rationale explaining the functioning of complex 
systems. 

• Collaborative working in groups can be supported by “using rationale as a 
vehicle for communication amongst different kinds of experts and stakehold-
ers” [BCM+08; p.18], because different points of view between stakeholders 
can be elicited and the decision making process is made transparent. Addi-
tionally, decisions can be better communicated. In this way, conflicts be-
tween decisions taken by different groups can be surfaced. Besides improved 
transparency and exposition of conflicts, also “areas of agreement” 
[BCM+08; p.18] can be revealed helping to achieve group consensus. 

• Change is supported. On one side, change need can be detected because 
rationale denotes information about assumptions and consequences. If cap-
tured assumptions become invalid or unforeseen consequences become ap-
parent, need for change will be indicated. On the other side, changes can be 
better handled because dependencies among decisions and other elements 
can become apparent helping to identify impacts of changes (impact analy-
sis). Further, rationale can contain evaluations on decision alternatives giv-
ing decisive supportive information for redesign decisions. 

• Software reuse is eased, because rationale can provide explanations why 
software components are designed and implemented the way they are. 

• Knowledge transfer is supported because rationale helps to learn from suc-
cesses, failures and ideas of former projects. Also, rationale helps to perform 
design validation assessments. Such collected knowledge can be transformed 
to reusable knowledge for training and education or help researchers for on 
research on real-world project practice. 
In the context of this thesis, rationale is important in the context of REM and 

design. In fact, literature for both research fields recommends the capturing and 
use of rationale159. This begins at early design decisions already at the require-
                                                           
159 As examples for REM theory with extensive focus on traceability, [RJ01] or [Ge05; 

p.6] can be mentioned.  
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ment elicitation phase, which is especially important to define system interfaces 
(context of the system) [Ge05; p.6]. 

Especially for safety-critical systems, “rationale may facilitate the safety 
analysis of the design” [DMM+06a; p.38] and thus provide significant support 
for safety-critical processes (cf. ch. I.7.5). But, surely, not every topic can be 
extensively discussed in a project: “If large, complex design and development 
projects are to be completed within their inherent resource constraints, not every 
decision and relevant factor can be deliberated, and the challenge becomes one of 
defining an acceptable level of ambiguity rather than eliminating it altogether. 
That said, this ambiguity poses a significant challenge to providing comprehen-
sive explanations.” [Ha06b; p.62].  

In other words, “the complete rationale for even a small system is impossi-
ble to represent; consequently, developers are faced with selecting which ra-
tionale to represent” [DMM+06a; p.2]. 

II.9.1  Characterization Criteria for Rationale Approaches 

Before sketching several rationale approaches, some general characterization 
criteria shall be discussed. Several categories characterizing rationale approaches 
exist (cf. [DMM+06a]): 
• Representation, 
• Process implementation, 
• Descriptive versus prescriptive approaches, 
• Intrusiveness; 

II.9.1.1  Representation 

Captured rationale must be somehow represented. “Although formality is typical-
ly a continuum, not a set of categories with thresholds” [Le97; p.81], Lee [Le97; 
p.81-82] distinguishes three kinds of representation: 
• Informal representation uses unstructured forms such as natural language, 

audio or video recordings or raw drawings to capture rationale. Informal 
capturing can be created easily; however, further computer-based processing 
is difficult due to lacking in formal structure. 

• Semi-formal representation only partially relies on a formal structure analyz-
able by computers. The formal structure builds a scaffold or skeleton of ele-
ment types and relationships, whereon the rationale can be mapped on and 
thus structured. The content of the elements and relationships, however, re-
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mains informal. During rationale capturing (e.g., during meetings), a certain 
formal structure can be helpful for structuring discussions (similar to check 
lists) or suggesting what information is expected. Thus, semi-formal repre-
sentations may even reduce overhead or complexity in discussions and pre-
vent topic digresses.  

• Formal representation only includes formally defined items and their rela-
tionships, which allow a computer-based system to perform formal opera-
tions on. “The creation of rationale thus becomes a matter of creating a 
knowledge base in some formal language”. The type of formal representation 
depends on the types of operations intended to be performed on the gathered 
information. 
In semi-formal and formal representations, the rationale is “divided into 

chunks that are assigned to certain properties and/or relationships” [DMM+06a; 
p.2], where “by far, the most common way” [DMM+06a; p.2] is the usage of a 
conceptual rationale schema representing the items, properties and relationships 
to be captured and represented. Other ways are either to link rationale chunks to 
elements of the discussed artifact, or to relate rationale chunks to process des-
criptions about the usage of the discussed artifact [DMM+06a; p.2], [BCM+08; 
p.29f].  

Lee [Le97; p.82] emphasizes that the more formalization rationale has, the 
more services can be provided by a computer-based system. However, formaliz-
ing knowledge is complex and costly. A way to reduce complexity and costs is to 
formalize incrementally. In this way it would be possible to first capture rationale 
informally, then transform it to a semi-formal representation and – if needed – 
transform it further to formal representations [Le97; p.82].  

II.9.1.2  Basic Rationale Processes 

Rationale approaches can be characterized by how they provide basic rationale 
processes. Three basic processes must be considered [DMM+06a; p.4] 
• Capturing rationale describes how rationale can be elicited and recorded. 

Different possibilities exist. Either the rationale bearer itself, or rationale 
specialists document it, or it is extracted from communication recordings of 
project participants, or it is captured as a side-effect by the use of another de-
sign-support software [DMM+06a; p.5].  

• Formalizing rationale describes processes of rationale transformation into 
the desired representation, as, e.g., a rationale schema. “Traditionally, cap-
turing and formalizing rationale were combined in a single operation. In re-
cent years, however, alternative approaches separate the formalizing of ra-
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tionale from its capture” [DMM+06a; p.5]. Either the rationale is formalized 
by the rationale bearers, or trained rationale formalizers, or some software 
provides support to partially or completely formalize the rationale. 

• Providing access to rationale deals with how recorded rationale can be 
communicated to or retrieved by users: “The most common approach to ac-
cessing ...(rationale)... is through use of a system that lets users browse a hy-
perdocument containing the rationale” [DMM+06a; p.5]. Other techniques 
are information retrieval, or knowledge based systems alerting users about 
possibly important rationale.  

II.9.1.3  Descriptive versus Prescriptive Approaches 

Another common way of categorizing rationale approaches is through distinction 
between descriptive and prescriptive approaches [DMM+06a; p.5]: 
• Descriptive approaches purely concentrate on describing the thinking of 

designers involved into the decision process. They do not try to influence or 
change the way of reasoning of designers, but the recorded rationale infor-
mation may influence other development processes as implementation, 
maintenance or later design decisions to be made. Further, they support re-
covering rationale about older decisions, which would have been forgotten 
otherwise and support in passing on information to other development team 
members or new team members. Lee [Le97; p.80] calls this the documenta-
tion perspective. 

• Prescriptive approaches, on the other side, aim at improving design process-
es via improving reasoning or altering thinking of designers during the deci-
sion process [DMM+06a; p.5], [BCM+08; p.160]. To achieve this, they pre-
scribe to follow a certain structure for discussing and/or capturing the ra-
tionale information. Lee [Le97; p.80] calls this the argumentation perspec-
tive. 

II.9.1.4  Intrusiveness 

A further differentiation criterion for rationale approaches is the characterization 
of their intrusiveness. “This includes not only how intrusive they are, but in what 
respects they intrude. Thus, an approach might be highly non-intrusive during 
capture of ...(rationale)... but relatively intrusive during retrieval and display of 
rationale. Measures of intrusiveness can include the degree to which a 
...rationale... approach dictates the way design is done as well as the amount of 
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extra effort required to use the approach” [DMM+06a; p.6]. The tolerable extent 
of intrusiveness may also be different concerning the capture, formalization and 
access processes. According to Dutoit et al. [DMM+06a; p.6], most rationale 
approaches are highly intrusive concerning rationale capture, because they inter-
vene into the design process through enforcing designers to rationale elicitation 
as by the usage of a rationale schema. 

During the past two decades, less intrusive approaches for rationale capture 
and formalization have been aspired by researchers [DMM+06a; p.6], because 
intrusiveness is seen by many researchers as central obstacle to success of ra-
tionale capture in practice [DMM+06a; p.6]. Prescriptive approaches are not 
necessarily the more intrusive approaches. However, descriptive approaches can 
ease the use of less intrusive techniques to capture rationale [DMM+06a; p.6].  

II.9.2  Rationale Management Systems (RMS) 

The concept of a rationale management system (RMS) denotes a system that 
makes capturing and accessing of rationale possible. RMS may offer the follow-
ing potential benefits [DMM+06a; p.2]: 
• Support for project management by providing valuable information about 

decisions; 
• Improvement of dependency management as, for example, traceability dealt 

with in this thesis; 
• Generally providing greater design support; 
• Support of development team collaboration; 
• Supporting later users of design; 
• Allowing better and more detailed documentation; 
• Requirement engineering support; 
• Support of design reuse; 
• Support for learning about and evaluating design; 
Typically, the following RatMan tasks involve an RMS [DMM+06a; p.36ff]:  
• Identifying the kind of rationale need involves rationale goal definition, 

measurement and identification. Typically this is not part of the RMS itself 
but defines the kind of needed RMS. 

• Rationale capture concerned with rationale acquisition and how rationale 
can be further developed (i.e., detailed). 

• Rationale usage deals with distribution (i.e., communication), retrieval, use, 
and long-term preservation of rationale.  
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“Recent research tends to combine these systems with other forms of design 
support systems” [DMM+06a; p.36]. The tool discussed in part III also combines 
mechanisms to capture rationale with mechanisms to capture traceability infor-
mation in an integrated design environment in order to improve information on 
the performed design. 

II.9.3  Overview of Different Rationale Approaches 

II.9.3.1  Schemas for Argumentation 

At the time Rittel and Webber have carved out the wicked nature of design prob-
lems (see ch. I.6.6.2), Kunz and Rittel developed the Issue-Based Information 
System (IBIS) approach [KR70] as “a way of modeling argumentation” 
[DMM+06a; p.7]. In Rittel's eyes [Ri72], wicked problems could only be ad-
dressed by an argumentative approach surfacing the pros and cons of different 
positions. IBIS relies on a fixed conceptual documentation schema helping to 
elicit different positions on an issue [BCM+08; p.6]. Four different elements 
build the schema: 
• Issues: The analyzed topic; “Issues have the form of questions” [KR70; p.4]. 
• Positions: “The origin of issues are controversial statements” [KR70; p.4]. 

Position elements represent these controversial statements. 
• Arguments: Either support or contradict a position, 
• Resolutions: The resolutions deduced from the discussion; 

Fig 9-1 shows an outline of a discussion structured in the IBIS schema160 el-
ements, represented by the author's thoughts about the usefulness of rationale 
approaches. Between the elements different relationships “forming networks 
between the items of the 'issue bank'” [KR70; p.4] are possible [DMM+06a; p.8]. 

                                                           
160 The IBIS schema has a resembling connection to Toulmin's model of argumentation 

[To58]. The model of argumentation consists of a layout of six interconnected ele-
ments helping to analyze an argument [To58]: A claim is an issue or argument that 
must be proved through the argumentation. Grounds describe data or hard facts rein-
forcing a claim. Warrant describes the connections between the claim and the grounds, 
thus legitimizing the claim. If a warrant alone is insufficient, a backing verifies a war-
rant. Qualifiers are expressions of certainty (e.g., definitively, surely) or affirmation 
(e.g., most, always or sometimes) for the claim. Last but not least, a rebuttal describes 
possible limitations or refutations on an element. Toulmin considers the first three 
items (claim, grounds and warrant) as essential to any argument, whereas the other 
(backing, qualifier and rebuttal) can be possibly omitted. 
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Rittel himself mainly targeted IBIS for promoting debate on issues of many 
very differing points of view (wicked problems), whereas he considered noncon-
troversial design questions as trivial issues not to be dealt with IBIS [DMM+06a; 
p.8]. In the following decades, Rittel applied IBIS to social and political planning 
in the United Nations, the European Community and West Germany (cf. 
[DMM+06a; p.7]), whereas other researchers discovered its use in general design 
questions (cf. [Mc78], [Mc79]).  

Originally, the approach based on pen and paper. In the 1980ies Conklin 
recognized the wicked problem theory as potentially fruitful for understanding the 
crucial difficulties discovered in the course of ongoing software design practice. 
Consequentially, Conklin developed the tool gIBIS [CB88], where the IBIS 
schema can be expressed as graphical hypertext argumentation maps. Streitz et al. 
[SHT89], [SHH+92] introduced a tool called SEPIA as a hypermedia system 
environment for collaborative editing of argumentation [Sch07; p.226]. SEPIA 
uses a modification of the IBIS method [SHH+92; p.15]. 

From the beginning on, IBIS has been “from the outset both prescriptive and 
intrusive, as were almost all of his IBIS projects. Other researchers, however, 
have sought much less intrusive ways of using IBIS” [DMM+06a; p.8], (see also 
[IR97]). 

The rationale research field developed from the pioneering work of Rittel 
and Kunz. During the research that followed, a diversity of approaches has been 
developed. Burge et al. give a good orientation aid by stating that roughly all 
approaches can be differentiated between either variations on IBIS or as “funda-
mental alternatives” [BCM+08; p.5]. In the following of this chapter the most 
important161 variations are shortly described. Later in part III of this thesis, the 
author describes an approach helping to combine traceability and rationale in-
formation. This approach can be combined with IBIS or any of the following 
approaches as a kind of documentation template for rationale. However, its main 
concern lies more in alleviating the fundamental difficulties that documentation 
and management of rationale faces in SE practice. These issues are part of the 
next following chapters. 

Procedural Hierarchy of Issues (PHI) [Mc78], [Mc79] is an extension of 
IBIS whose “main innovation is to show that frequently the decision on one issue 
depends on the decisions made on others” [BCM+08; p.8]. As a central concept, 
PHI provides a subissue relationship. An issue can only be resolved by the reso-
lution of its sub issues. In this way a hierarchy of issues evolves, where the root 
issue represents the whole project. JANUS [FMM89], [FLM+96] and PHIDIAS 
[MBO+92] are a tool implementations of PHI. 

                                                           
161 The listing itself orients on [DMM+06a] and [BCM+08]. 
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Issue: How can rationale be included into processes to ensure significant support in de-
velopment? 

Position 1: Rationale must be collected for any decision. 
Arguments on Position 1: 
 For: The process of collecting rationale for decisions ensure that decisions are made 

 on rational facts and not on unconscious implicit criteria. 
 Arguments on this argument: 
 For: The noted down facts must be formulated and thus acquire a certain de 

  gree of rationality. 
 Against: Generally not all criteria of a decision may be rationally expressible.   

        This may lead to negligence of these 'fuzzy' criteria. 
 Against: The extensive number of decisions makes it impossible to collect  

               rationale for any decision. 
Position 2: Rationale must only be collected for the most important decisions. 
 For: The important decisions matter most. This approach ensures that at least that 

          the most important decisions are appropriately discussed and considered. 
 For: Documentation effort is limited to a manageable amount. 
 Against: Separating the important decisions from the less important ones is a  

               decision process with a certain degree of arbitrary subjectivity. Corre- 
               spondingly, important de- cisions may be forgotten. 

Position 3: Documenting rationale is not useful at all. 
 For: A lot of documentation must be produced resulting in extended extra effort and 

       diminished project documentation overview. 
 For: The rationale bearers often do not receive adequate benefit. 
 For: Research on the process of making design decision surfaced that rationale cap-

      turing often interrupts the designers in their thinking. 
 Against: Unreflected decisions are more likely to be wrong decisions. 
 Against: A high number of wrong decisions can cause complete project failure. 
 Against: Even one wrong decision with far-reaching consequences can risk  

               complete project failure. 
Resolution: Position 2 represents a capable, promising compromise and should be  

           employed. 

Figure 9-1  IBIS schema example outlining a discussion. 

Inspired by IBIS, McLean et al. [MYB+91] proposed a method for design space 
analysis, called Question, Options and Criteria (QOC). The approach is inde-
pendent from IBIS but has resembling characteristics. McLean et al. saw QOC as 
support in the context of Schön's reflection-in-action design phase [MYB+91; 
p.216]. Fig. 9-2 shows the QOC schema as interpreted by Hagge et al. [HHL+06; 
p.413]. As IBIS does, QOC approaches rationale issues by design questions (cf. 
[BCM+08; p.305]). Questions can be addressed by several options providing 
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possible alternative solutions [NS06; p.212]. Vice versa, options can also be a 
consequence of several questions. “Criteria as the basis for evaluating options” 
[MYB+91; p.234] represent the desirable properties and requirements of the 
artifact to be designed. Additionally, arguments provide further means to assess 
and justify questions, options and criteria. 

QOC's notation has a semi-formal structure [MYB+91; p.219] meaning that 
the concept items (question, option, criterion and argument) and their relations 
build a formal structure, whereas the actual content within any of the concept 
items is informal and unrestricted. Thus, McLean at al. considered QOC repre-
sentations as “effective communication vehicles, because they are simple enough 
to be understood by a variety of people, they are flexible enough to represent a 
variety of issues from a variety of viewpoints, and they are explicit enough to 
expose assumptions that can be challenged by others” [MYB+91; p.219]. Thus, 
QOC is mainly a descriptive approach, but requiring designers to perform a thor-
ough description of the design space, makes QOC intrusive. 

 

 

Figure 9-2  QOC schema as interpreted by [HHL+06; p.413] 

According to McLean et al. [MYB+91], IBIS rather is restricted to capturing 
rationale “on the fly”, thus recording the historical development of rationale 
during the process. QOC, though, is more interested in the logical representation 
of the design space. Thus, it can also be retrospectively restructured [NS06; 
p.212]. In the context of REM, Nguyen and Swatman [NS06] show that IBIS and 
QOC can complement each other and propose an approach in which both meth-
ods are used in different situations: 
• IBIS provides possibilities to record an “ad-hoc” [NS06; p.222] rationale as 

it “describes the on-going evolutionary development of requirement” [NS06; 
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p.223] (the history of the decision process) and thus captures “how the re-
quirements develop over time” [NS06; p.223].  

• QOC, on the other side, provides the possibilities for a “post-hoc” [NS06; 
p.223] conversion of the IBIS rationale to perform “a holistic examination of 
the problem space” [NS06; p.224] finding insights “why a requirement mod-
el takes a certain form it does” [NS06; p.224]. 
Buckingham Shum et al. [BSS+06] analyze gIBIS and QOC after 15 years of 

employment. As a result of the experiences with both approaches with the “par-
ticular flavor of ... creating graphical argumentation maps for design deliber-
ations” [BSS+06; p.111], they developed a tool called Compendium [Compen-
dium]. Detailed information on design processes and the use of Compendium can 
be found in [Co06] and [BSS+06]. Compendium supports modeling graphical 
maps of argumentation in a hypermedia environment meaning that Compendium 
is a collaborative system, where the graphical maps can be enriched with other 
media such as textual documentation, audio and video recordings of design meet-
ings in combination with time line recording of the individual activities per-
formed by the participants of such a meeting. 

Hagge et al. show interconnections between QOC and patterns [HHL+06; 
p.413]. In their view, the QOC schema can be mapped to the core concepts of 
patterns (cf. ch. I.6.2.4). As matter of fact, patterns “constitute one of the most 
heavily used approaches for organizing reusable knowledge” [DMM+06a; p.19], 
where the “pattern concept has rationale explicitly built in, though this rationale 
is relatively unstructured” [DMM+06a; p.19]. This opens the way to another 
research area within RatMan dealing about rationale as a means for organizing 
organizational knowledge bases [DMM+06; part 4]. 

Inspired by Conklin, Potts and Bruns [PB88] applied IBIS to software de-
sign. They extended the IBIS schema by including “intermediate artifacts” (mod-
els, documents, prototypes and other design artifacts) representing the designed 
software. This idea was enhanced by Lee and Lai ([Le90a], [LL91], [LL96]) by 
developing the Decision Representation Language (DRL) accompanied by a tool 
called Sybil ([Le90b], [LL96]), a knowledge-based hypertext system. DRL in-
cludes the following main elements [DMM+06; p.12]: 
• Decision problems are the issues to be decided (cf. questions in QOC; issues 

in IBIS).  
• Alternatives have very similar meaning to options in QOC. 
• Goals corresponds to criterion in QOC. Alternatives can be related to goals 

by an achieves relationship similar to positive assessment in QOC. 
• Claims can be made about achieves relationships, thus analyzing alternatives 

(comparable to arguments in QOC). Claims can have support or deny rela-
tionships to other claims (see similar relationships in QOC and IBIS). 
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• Groups group objects (decision problems, alternatives, goals ...). The mem-
ber attribute of a group describes the grouping criterion. Any relation can 
link to groups in the same way as to single objects. 

As striking similarities to IBIS and QOC exist, DRL also provides some new 
aspects [DMM+06; p.12]: 
• Claims can have presupposes relations between each other. 
• Each Claim has the properties evaluation, plausibility and degree, where the 

evaluation property derives its value from the other two values describing 
the likelihood for a claim to be true (plausibility) and the degree to which it 
is true (degree).  

• Further, DRL allows hierarchies of goal-subgoal dependencies. As well as it 
allows hierarchies of decision-subdecision dependencies corresponding to 
the subissue relationship in PHI. 
In order to suit it better to SE processes, Burge and Brown [BB04], [BB06] 

have developed RATSpeak as an extension of DRL. Besides the DRL concepts, 
the RATSpeak schema uses new element types and provides an argument ontolo-
gy tailored for SE [BB06; p.280], [BCM+08; p.305]: 
• Requirements include FRs and NFRs. Requirements can be modeled within 

the RATSpeak schema, or they can be included as references to a require-
ments specification document. 

• Questions describe questions to be answered in order to find an answer to the 
decision problem. “Questions augment the argumentation by specifying the 
source of the information used to make the decision (the procedure, program 
or person)” [BB06; p.280]. 

• Assumptions are similar to claims, but for assumptions it is not definitively 
clear whether they are true and whether they will continue to persist in the 
future. 

• Argument ontology describes a hierarchy of common argument types tailored 
for the software development domain serving as claims that can be used in 
the system (e.g., development costs, portability). The entries build a basic 
vocabulary used for inferencing. Each entry has a default importance that 
can be changed by associated claims [BB06; p.281]. RATSpeak handles 
NFRs as parts of the argument ontology. 

• Background knowledge can be seen as a container for all modeled tradeoffs 
and co-occurrence relationships between different arguments in the argu-
ment ontology. The container is used to check the gathered rationale for any 
violations with these relationships. 
Burge and Brown also have developed a tool implementation of RATSpeak 

called SEURAT (Software Engineering Using RATionale). SEURAT integrates 
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directly into the Eclipse-IDE162 environment, because Burge and Brown assume 
that “the developers are more likely to be willing to record their rationale if they 
do not need to start an additional tool to do so” [BB06; p.284]. 

SEURAT, however, is a prototypical tool environment with the goal to eval-
uate the potential uses of rationale mainly from the maintenance perspective. 
Accordingly, rationale capture was not in the focus of the SEURAT environment 
BB06; p.284]. In this way, SEURAT does not address what the author considers 
as main obstacle for practical use (see ch. II.9.4.20; cf. also [DMM+06a; p.33], 
[DMM–+06a; p.39]). 

The Sysiphus tool developed by Dutoit and Paech [DP02] has “a similar 
short-term incentive strategy” [OM07; p.14] by allowing the combination of 
rationale and use case specifications in a collaborative modeling environment.  

According to Dutoit et al., “DRL appears to be more prescriptive than QOC, 
though less prescriptive than IBIS” [DMM+06; p.12]. Further, Dutoit et al. 
[DMM+06; p.13] express the supposition that DRL can be seen as a super-set of 
QOC, because all QOC features are somehow represented in DRL, though DRL 
also provides new features. In comparison with IBIS, QOC and DRL can be con-
sidered as more expressive as they provide more fine-grained models for argu-
mentation about artifact features [DMM+06; p.13]. On the other hand, QOC and 
DRL are more limited to artifact features as topic, whereas IBIS addresses any 
design topic [DMM+06; p.13]. However, Dutoit et al. further point out that 
schemes of IBIS, QOC and DRL only have such few significant differences that 
the differences more appear as possible extension features for the other ap-
proaches. “This suggests that it might be both possible and useful to combine the 
three schemes” [DMM+06; p.14], in similar ways as it is proposed by Nguyen 
and Swatman [NS06] for IBIS and QOC [NS06]. 

REM “is ill-structured, complex and rather domain specific” [NS06; p.213] 
and can thus be “described as 'wicked' in Rittel's terms” [NS06; p.213]. Corre-
spondingly, several approaches exist to support argumentation and rationale 
capture during REM processes. Here to mention are contribution structures 
[GF94] that support modeling of stakeholders and their relationships, WinWin 
([BEK+98], [BK06], [WinWin]) as a support for negotiating requirements with 
different stakeholders and REMAP providing an IBIS-like argumentation model 
integrated in an REM-tool environment. In [MR07], the authors develop a tool 
suite to connect different tools via a traceability framework with dedicated sup-
port for group decision and negotiation. The approaches mentioned here are also 
connected to requirements traceability. Correspondingly, they are also discussed 
in the following ch. II.10. For a deeper discussion on rationale as a means for 

                                                           
162 See www.eclipse.org (Access: 2010/06). 
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REM processes, the author recommends reading [BCM+08; ch. 11], or Nguyen 
and Swatman [NS06] providing insights how rationale approaches may promote 
and support creativity in REM processes. 

Pena-Mora and Vadhavkar [PV96] describe the Design Recommendation 
and Intent Model (DRIM) method with the tool DRIMER. DRIM is a rationale 
description language similar to DRL [DMM+06a; p.34] with the purpose to de-
scribe design rationale concerning the usage of patterns in a system. DRIMER 
allows documenting rationale concerning the design of software using DRIM. 
This rationale can then be used to extract patterns in a pattern catalog with in-
cluded DRIM descriptions. DRIMER then allows searching in the pattern catalog 
where the DRIM model can help to find matching patterns for a specific design 
problem (see also [OM07; p.14], [BB06; p.275], [DMM+06a; p.34]).  

Concerning tool support, “most tools supporting argumentation-based ap-
proaches are hypertext-based systems that connect all pieces of information 
through hyperlinks, e.g., gIBIS [CB88], SYBIL ([Le90b], [LL91], [LL96]), and 
the recently developed Compendium [Co06]” [OM07; p.14]. 

II.9.3.2  Approaches beyond Argumentation 

Some rationale researches suggest that rationale is not just about argumentation. 
The following chapter will outline some alternatives. 

A different possibility to structure rationale is using the structure of the arti-
fact that rationale is created for [BCM+08; p.12]. Approaches of Reeves and 
Shipman [RS92] or Domeshek and Kolodner [DK96] use this strategy to com-
bine design models of physical artifacts with textual descriptions of rationale. In 
software development, Schneider [Sch06] proposes a similar system to link tex-
tual rationale to source code. As it integrates into the Eclipse IDE, SEURAT 
[BB06] also can be seen in this category even though it is argumentation schema-
based. SEURAT can also directly link to artifacts, showing that argumentation 
schemas and artifact structure schemas can be combined. The rationale support 
of the tool described in part III also allows combining both methods in order to 
take effects of their strengths. In their synopsis on the current state of rationale 
research, Burge et al. claim that integrating a rational tool into an artifact-
centered decision-making is essential for being successful [BCM+08; p.245]. 

In Gruber and Russel's view [GR96a], argumentative schemas do not cover 
all rationale designers' needs, because the schemas prejudge which information is 
relevant and thus collected. They claim that no advanced collection can foresee 
all later information needs and thus a lot of later important rationale, which 
would have been important later on, is lost. Instead of forcing designers to elicit 
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and document rationale in highly detailed models, it might be better to collect 
engineering data and models that can help to later deduce rationale according to 
the real information need (cf. also [BCM+08; p.13], [DMM+06a; p.15]). Gruber's 
and Russel's arguments inspired a set of other approaches: 
• Myers et al. [MZG99] try to record rationale through automated collection 

of data in a none-intrusive manner (see also [Do05]). Their Rationale Con-
struction Framework (RCF) tried to enhance a Computer Aided Design 
(CAD) tool with a monitoring module for recording the designer's behavior, 
then a rationale generation module tries to infer the design history (the what) 
and design intent (the why) (also cf. [BCM+08; p.56-57]).  

• Haumer et al. [HPW+99] present an approach to extend traceability infor-
mation with information on decisions by integrating videos or other media 
(see [TJH07; p.4]). 

• Schneider [Sch06] outlines on the one side a prototypical tool for collabora-
tive project risks assessment called CoRiskPT. The tool includes an attached 
chat system, where discussions on the single risks are recorded to be used as 
later rationale. A second tool called FOCUS, allows recording audio, video 
and computer screen information together and thus records meeting discus-
sions. The tool integrates into the Eclipse-IDE in order to link the recorded 
rationale to source code. 
Several approaches [MZG99], [HPW+99], [Sch06] combine Gruber and 

Russel’s paradigm [GR96a] with the paradigm to orient on artifact structures. The 
rationale approach of the R2A tool (part III) can be seen in this tradition as it on 
the one side highly relies on artifact structure of systems and software design. 
Then again, the R2A tool – similar to Myers et al. [MZG99] – records the history 
of taken actions in combination with other information (e.g., author and time-
stamp of a change) about any item present in R2A via a configuration manage-
ment component. This can be used by the users to infer rationale information in 
the sense of Russel and Gruber. 

Lewis et al. [LRB96] describe the experience that design is not about solv-
ing one problem after another. Often design must solve a suite of problems at the 
same time. Correspondingly, Lewis et al. propose an approach allowing such 
suites to be defined and design alternatives to be assessed on how good they 
affect solving the problem suite (cf. also [DMM+06a; p.15], [BCM+08; p.12-
13]).  

Not all rationale is raised by designers; instead, other stakeholders are in-
volved [BCM+08; p.156]. In the context of user interface design, Carroll and 
Rosson [CR92], [CR98] developed the Scenario-Claims Analysis approach where 
software system features are evaluated by possible, hypothetical software usage 
scenarios with focus on user goals. The approach mainly bases on three concepts: 
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• System features, 
• User goals evaluating the system features, 
• Evaluation results of user that can either be positive or negative in respect to 

their goals; 
The approach includes no deeper argumentation on the evaluation results, 

thus it does not represent the decision making process or alternatives evaluation. 
A deeper discussion of Scenario-Claims Analysis can be found in [BCM+08; 
p.11-12, p.158-159, p.227] or [DMM+06a; p.15]. 

Other approaches use techniques of artificial intelligence such as Case-
Based Reasoning (CBR) to develop Case-Based Design Aids (CBDA) for support 
and documentation of rationale on human decision processes. Here to mention is 
the pioneering work of Kolodner sparking tools such as ARCHIE CBDA [Ko93] 
and DesignMuse [DK96] for architectural design of buildings. Burge et al. pro-
vide an overview of current approaches using artificial intelligence [BCM+08; 
p.61-66]. 

II.9.3.3  Alternative Categorization 

Ocampo and Münch [OM07; p.16] provide an alternative categorization with the 
following categories: 
• Support for debate, i.e. argumentation: Approaches and tools of this category 

focus on collaboratively debating wicked problems. Important functionalities 
are rationale capture, management and visualization. Rationale visualization 
is typically achieved via graphical browsers connecting the rationale pieces. 
Through linking mechanism also information outside of the tool environment 
can be referenced. 

• Support for editing work and rationale documentation: Within this category, 
approaches and tools provide rationale as important additional information, 
but their main features concentrate on the original tasks the users aim to per-
form. The front-end of the tools are specializing in the original tasks, where 
possibilities to capture, visualize and retrieve rationale to the current original 
task to perform are offered. 

• Support for integrated editing work and debate i.e. argumentation: These 
approaches and tools address encountered problems in the rationale field 
concerning costs, intrusiveness, and benefit by seamless integration of their 
rationale support into other collaborative tasks. These tools concentrate on 
easy switching between tasks, on capturing their rationale and on visual in-
tegration of rationale information into the other tasks' information, where the 
tasks and their rationale are seen as a whole. 
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Using these categorizations, they provide a table segmenting rationale ap-
proaches into different categories and contrasting approaches163 with their corre-
sponding tool support mechanisms (table 9.1).  

Table 9.1  Alternative categorization of rationale approaches [OM07; p.16] 

Approach Tool / Prototype Support 

Category 1 

IBIS [KR70] gIBIS [CB88], Compendium [Compendi-
um] 

Design Space Analysis (QOC) [MYB+91] Compendium [Compendium] 

Decision Representation Language (DRL) 
[Le90a] 

SYBIL [Le90b] 

Inquiry Cylce (Potts et al.) [PB88] Active Hypertext Prototype [PT93] 

Category 2 

Contribution Structures (Gotel and Finkel-
stein) [GF95] 

Contribution Manager Prototype [GF95] 

Como-Kit [DKM96] Como-Kit System [DKM96] 

Agile Process Mining [WRW+05] ADEPT [RD98], CBRFlow [WWB04] 

Category 3 

Hierarchy of Issues (PHI) [Mc78] JANUS [FLM+96], PHIDIAS [MBO+92] 

REMAP (Ramesh and Dhar) [RD92] REMAP System [RD92] 

SEURAT (Burge and Brown) [BB04], 
[BB06] 

SEURAT System [BB04], [BB06] 

Sysiphus (Dutoit and Paech) [DP02] Sysiphus [DP02] 

WinWin (Boehm et al.) [BEK+98] WinWin Negotiation Tool [WinWin] 

DRIMER [PV96] SHARED-DRIMS [PV96] 

C-ReCS (Klein) [Kl97] C-ReCS-System [Kl97] 
 
 

Ocampo and Münch [OM07] introduce an approach with a prototype tool 
called REMIS (Rationale-driven Evolution and Management Information Sys-

                                                           
163 Some of the referred approaches (Como-Kit, Agile Process Mining, C-ReCS) are not 

further mentioned, but taken over from the categorization in [OM07] as additional in-
formation for the reader interested in further research.  
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tem). The tool approach is an environment for supporting development of a pro-
cess model (e.g., to develop an organization specific process model from the de-
mands of the SPICE standard). The environment shall support rationale collec-
tion and usage for process designers during activities of designing or changing 
processes [OM07]. The gathered information can be stored together in a – what 
the authors call – “process model evolution repository” [OM07; p.12]. Ocampo 
and Münch do not provide a direct answer to what category their approach be-
longs to. The author tends to category 2, even though they seem to be concerned 
about costs and intrusiveness [OM07]. 

Concerning the tool approach introduced in part III, the author also tends to 
classify it as category 2 approach because the tool in the first instance concen-
trates on improving design processes and traceability between requirements and 
design. On the other side, the author acknowledges the importance of providing 
further information on taken decisions in design and tries to actively diminish 
potential barriers to that. Further the decision model is directly integrated into 
traceability information and design processes. From this perspective, the R2A 
tool approach also has tendencies to category 3. 

 

II.9.4  Why Rationale Management Could not yet Succeed  
 in Practice 

A lot of effort has been put into identifying the opportunities the usage of ra-
tionale can provide. However, in the end, these opportunities will only become 
reality if the approaches for capturing and further usage of rationale can be suc-
cessfully integrated into the conventional design processes in practice [BCM+08; 
p.155]. 

Currently, rationale approaches have not yet encountered a breakthrough in 
real-world design practice. Successful usage examples of rationale approaches in 
real-world settings exist, but these examples mostly resulted from special circum-
stances as, e.g., having a 'rationale usage champion' or professional documenters 
at hand [CB96], [BCM+08; p.235]. In most projects, such fortunate conjunctures 
cannot be expected [DMM+06a; p.20]. Typically in these 'normal' projects, the 
documentation effort is left to the persons participating in the decision-making 
process (mostly the designers) with the effect that documenting rationale has 
been largely neglected [BCM+08; p.235]. 
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Concerning the reasons, Horner and Atwood [HA06a] could identify four 
categories of barriers for successful rationale usage in practice: 
• Cognitive limitations, 
• Capture limitations, 
• Retrieval limitations, 
• Usage limitations; 

In the following these barriers are discussed. Currently, the capture limita-
tions are seen as the central obstacle to successful rationale approaches. Conse-
quently, this topic will have a more detailed focus. 

II.9.4.1  Cognitive Limitations 

Humans only have a limited capacity to process and handle information at the 
same time [Mi56]. From this point, Simon developed the idea that the designer's 
rationality is bounded and not all alternatives can be considered, implying that 
designers find rather satisfactory than optimal solutions ([Si96], ch. I.6.2.1). As 
first implication, it is to state that captured rationale will necessarily be incom-
plete [HA06a; p.78]. Thus, any decision can impose unintended consequences 
[Te96]. Rationale may help to ensure extensive explorations of the design space 
in order to minimize detrimental risks of unintended consequences. However, any 
rationale will be incomplete.  

A possible improvement might be to have systems where similar problems 
can be identified from other projects providing new insights into possibly over-
seen consequences or problems. Research on this topic is related to rationale as a 
body of knowledge (see [DMM+06; part IV]) and especially the pattern move-
ment can be seen as the most successful area slightly pointing in this direction, 
but systems really addressing this issue might need to provide mechanisms for 
comparing projects with each other as well as such systems must have a rationale 
base as body of knowledge large enough for comparing problems. 

A second problem encountered is that extensive explorations of the design 
space produce high amounts of additional documentation significantly leveraging 
project complexity. This problem is enforced by the fact that most systems are de-
signed in team collaboration. Thereby, problems arise in integrating diverse per-
spectives, maintaining conceptual integrity [HA06a; p.79] (also cf. ch. I.6.2.1) 
and communicating concepts to all team members involved. Horner and Atwood 
explicitly mention that these situations require rationale systems “to help de-
signers think about the right issues” [HA06a; p.79]. This has a close connection 
to what Moro [Mo04; p.310-330] discusses as neuralgic points of a project, 
where he proposes identifying, documenting and continuously tracking neuralgic 
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points. Moro proposes the following approached for identification of neuralgic 
points: 
• Risk assessments [Mo04; p.324] of the used technologies. 
• Risk assessments of requirements [Mo04; p.326] where especially NFRs are 

in the focus. 
• Deriving dominating discussion topics from the project diary or discussion 

protocols [Mo04; p.328]. 
Different designers often have different views on problems and their solu-

tions. Concerning diverging views of designers about design alternatives, “re-
flecting on the why aspect of design can help to identify better solutions” 
[HA06a; p.79], but as long as solution ideas are still formulated, it might often be 
better to consider what other alternatives are possible rather than why each alter-
native might be appropriate [HA06a; p.79]. 

Organizations can tend to group-think [Ja72], i.e., in organizations with poor 
processes, often a poor solution is decided quickly, whereas the rest of the energy 
is spent on relatively insignificant issues. Thus, rationale approaches must find 
ways to spark discussions about the important issues in decision-making. Ra-
tionale tools, on the other side, should spark reflection in a way to encourage and 
enhance good design practices, but they should not expect or press for changing 
poor practices [HA06a; p.79]. This matches with Schneider's advice: “Encourage, 
but do not insist on further rationale management” [Sch06; p.100] meaning that 
rationale capture and usage itself cannot be prescribed but only be encouraged. 

II.9.4.2   Rationale Capture Limitations as Central  
Challenge in Rationale Management 

As Burge et al. emphasize, “the biggest challenge facing the use of rationale in 
real-world projects is the rationale capture problem” [BCM+08; p.55], because 
“it is extremely difficult to capture rationale in a real-world setting” [BCM+08; 
p.55]. Or, as Dutoit et al. put it: “In fact, so little …(rationale).. has been cap-
tured to date that has been relatively little opportunity to investigate the problem 
of …(rationale).. access in real-world settings” [DMM+06a; p.20]. Consequent-
ly, the author will in the following concentrate on the capture problem as the 
central obstacle to successful RatMan in practice [DMM+06a; p.20], [BCM+08; 
p.305]. In other words, even though its importance is widely acknowledged, 
rationale currently does not face a breakthrough, because people in project prac-
tice neglect to capture it.  
Traditionally, the capture problem involved three aspects in one [BCM+08; 
p.262]: 
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• Elicitation of rationale from decision makers, 
• Structuring the elicited rationale according to a given schema, 
• Recording (documentation) of the elicited rationale in structured form; 

Some newer approaches try to cope with the capture problem by separating 
the aspects from each other. Especially structuring and documentation of ra-
tionale seem to impose high problems, as they are often highly labor intensive 
[BCM+08; p.262]. The following enumerates several reasons rationale research 
has collected as possible explanations for the capture problem and shows poten-
tial ideas how to ameliorate the problem in practice. In the author's opinion, two 
ideas seem to be very promising: 
• Automated capturing of casual information arising as by-product of design 

processes (e.g., the change history of items) that allows inferring (resp. de-
ducing) rationale later, when it is needed and, when the real information 
need is known (see, e.g., [GR96a]). 

• Concentrate on light-weight capturing of rationale during decision processes 
and deferring structuring and detailed documentation (i.e. recording) to later 
phases. 
First to mention is intrusiveness in the sense that it leads to extensive work 

for capturing rationale (see ch. II.9.1.4). Most rationale approaches require 
structuring elicited rationale through a schema demanding significant extra work. 
These rationale representation structures can also be inappropriate in a way that 
they only inadequately consider information needs of the targeted design domain 
or that they simply do not cover all varying kinds rationale expresses itself. More 
comprehensive representations allow capturing more rationale, however, they 
also can significantly divert cognitive effort from the design process and – as 
described in the following paragraphs of this chapter – can intrude as detrimental 
effects into the designer's thinking. Flexible notations such as free text impose 
high difficulties for retrieval (e.g., indexing) and its later usefulness. Techniques 
such as automated recording of meeting conversations are less intrusive, but this 
information is then difficult for retrieval as well as they are also very likely to 
capture lower amounts of rationale (also cf. [DMM+06a; p.6, p.20], [HA06a; 
p.80-81]). 

Political and legal factors can make developers reluctant to documenting, 
what could later be seen as a mistake. Especially they might fear potential liabil-
ity if a recorded decision may later become responsible for a catastrophic failure 
of the designed system [CB96], [BB06; p.274].  

Also, designers may want to make themselves irreplaceable by other design-
ers or to justify their expert status, thus using information hiding strategies. This 
point also involves concerns about privacy and security playing a decisive role. 
Recorded rationale might touch competitive advantages of a company, which 
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might not be opportune to be documented (e.g., if companies work together), 
[HA06a; p.82].  

Design itself is an intense, time-consuming activity. As a result, an explana-
tion can be that designers simply lack time and resources for additionally eliciting 
and capturing rationale as many of the rationale approaches demand 
[DMM+06a; p.20]. Often, many decisions are made in informal situations such as 
design meetings or during conversations at breaks, where rationale capturing is 
hardly possible [SA96]. 

Another explanation may be that the original designers are able to effective-
ly reconstruct rationale from other past designs data than rationale recordings 
[DMM+06a; p.18]. Therefore, these designers may consider capturing rationale 
as not necessarily important enough to spend resources on. 

This point has a close interaction with what is called Grudin's principle 
([Gr87], [Gr88], [Gr96b]). In his “seminal work” [Sch06; p.97] about collabora-
tive work and benefit, Grudin ([Gr87], [Gr88], [Gr96b]) discovered that collabo-
rative systems tend to fail, if the persons performing the work are not the benefi-
ciaries of this work. Or as Endres and Rombach put it [ER03; p.60]: “Group 
members usually prefer fairness and justice over altruistic appeals”. The persons 
providing rationale on a decision (also referred to as rationale bearers) often also 
remember later the background of a decision. In this context, they do not have 
much benefit from documenting rationale. This is especially the case for descrip-
tive approaches as they just document rationale, whereas prescriptive approach-
es may provide benefits to the rationale bearers due to their guidance on what to 
consider during decision making, but either prescriptive approaches did not suc-
ceed better in practice [DMM+06a; p.21]. Directly rewarding knowledge sharing 
is also difficult, because it would involve “creating tangible rewards for intangi-
ble ideas“ [HA06a; p.81]. Other alternative ways around the problem are the 
ideas of Gruber and Russel [GR96a] to automatically collect data thus disburden-
ing the designers or the idea of Schneider [Sch06] proposing to disburden the 
experienced rationale bearers of their communication/documentation work by 
deferring the documentation work to the inexperienced rationale seekers. 
Schneider's ideas are discussed in detail after the following paragraph. 

Rationale approaches may also create a deeper lying intrusiveness onto de-
sign. Referring to Schön's Theory of Reflective Practice (ch. I.6.2.3), Fischer et 
al. [FLM+96] argue that the rationale approaches are disrupting designers' think-
ing when designers in their intuitive knowing-in-action phase are forced to ra-
tionally argue about their doing. In this case, designers would be forced to trans-
form unconscious tacit knowledge [Po66] (“knowledge users employ without 
being conscious of its use” ([SM99a; p.341]) into conscious, rationally justifiable 
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knowledge164. Such transformation processes are intrusive during knowing-in-
action design phase and can lead to a degradation of design quality [FLM+96], 
[DMM+06a; p.21]. In summary, the following negative effects can be spotted 
[FLM+96], [DMM+06a; p.21]: 
• One effect can be that intuitive knowledge is omitted in preference to con-

scious knowledge falsifying the results [FLM+96], [DMM+06a; p.21]. 
• Another effect can be that designers are interrupted in their flow of thinking 

[Cs90] endangering motivation and slowing down design work [Sch06; 
p.94]. “During the flow state, knowledge workers are typically not willing to 
switch tasks and take care for rationale” [HA06a; p.93]. 

• As an effect, “designers may not be willing to spend the energy to articulate 
their thoughts”, when “designers focus should be on solving problems and 
not on capturing their decisions” [HA06a; p.80]. 

• Incompletely captured rationale can also impose negative consequences on 
the design process. Such a case can, e.g., occur during a design review, 
where the reviewers inference a wrong understanding of a design decision 
basing on incomplete rationale [HA06a; p.82]. 
As a more radical position, Shipman and Marshall argue that the formality 

itself imposed by much approaches imposes a big obstacle as people are seldom 
thinking in formal terms [SM99a]. According to them, formalisms impose the 
following fundamental problems: 
• Cognitive overhead, as the users must learn the formal language. Even 

though practitioners use formal languages in electrical engineering and com-
puter science, they “seldom use more generic formal languages, such as pro-
duction rules or frames, for non-computational tasks” [SM99a; p.340], be-
cause “users often must engage in activities that might not ordinarily be part 
of their tasks: breaking information into chunks, characterizing content with 
a name or keywords, categorizing information, or specifying how pieces of 
information are related” [SM99a; p.334]. 

• Tacit knowledge [Po66] as discussed above. 
• Formality enforces premature structure where people must commit them-

selves to structuring information often before they often know their later in-
formation need. This leads later to problems in again retrieving the now real-
ly needed information [SM99a; p.343].  

                                                           
164 Haynes provides strong indications that design significantly involves tacit knowledge: 

“Analysis of full-text meeting transcripts suggests that design options sometimes 
emerge almost mystically from design discussions. It was sometimes difficult to see 
the chain of reasoning that led to a particular design option being proposed and then 
being either accepted or rejected” [Ha06b; p.62]. 



II.9  Rationale Management in Systems and  Software Engineering 183 

• Further, people simply “aren't always able to chunk intertwined ideas” 
[SM99a; p.338] and “people seldom agree on how information can be classi-
fied and related in this general scheme” [SM99a; p.338]. 

• The premature and prescriptive natures of formal approaches also increase 
probabilities for group-think [Ja72] effects (see chapter before). 

• “There is always information that falls between the cracks, no matter how 
well thought out the formal representation is” [SM99a; p.338]. 

• Finally, different people often have different tasks. Formal structures must 
then represent all peoples' different views. In these cases, “the prospect of 
negotiating how information is encoded in a fixed representation is at best 
difficult” [SM99a; p.342]165. 
However, in order to have any computer support, information must some-

how be formalized; Shipman and Marshall also show ways how to ameliorate the 
problems imposed by formalisms [SM99a; p.344ff]: 
• Any design for a system supporting intellectual knowledge work must identi-

fy the central tasks and their essentials needs for formalization.  
• The cost and benefit trade-offs must be analyzed for any feature requiring 

further formalization. 
• Incremental formalization strategies can rely on gradual formalization and 

restructuring of information, thus alleviating capture of information by de-
laying the overhead imposed by formal structuring to later times or other us-
ers. Nevertheless, incremental formalization techniques are only effective if 
they do not overwhelm the users with too many requests to infer structure 
[SM99a; p.345], (cf. also [SM99b], [HA06a; p.76]). 

• Otherwise, more automated approaches should be considered. In these cases, 
structure must be automatically inferred through recognition heuristics for 

                                                           
165 “An analogy can be drawn between collaborative formalization and writing a legal 

document for multiple parties who have different goals. The best one can hope for in 
either case is a result sufficiently vague that it can be interpreted in an acceptable way 
to all the participants; ambiguity and imprecision are used in a productive way” 
[SM99; p.342]. 
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“textual, spatial166, temporal, or other patterns” [SM99a; p.345]. As it tends 
to more falsely inferred structures, automatically inferred information should 
not be treated alike user inferred structure or at least be marked differently. 

• Acceptance of formalisms can also be improved by training users to “learn 
and understand the expected use of the formalisms through training or 
through facilitation” [SM99a; p.346]. In some cases, also the developers of 
the formalisms may intervene temporarily to spark the learning process. 
Summing up the difficulties described above, leads Schneider to formulate 

what he calls the “rationale paradox” [Sch06; p.93]: “When most rationale is 
created, chances to capture it are lowest” [Sch06; p.93]. 

The paradox describes the problem that rationale occurs when key decisions 
are made. During such decision-making processes (e.g., meetings), the partici-
pants are very attentive. Thus, the rationale is considered important and 'evident' 
when it is created, and nobody can really imagine how it ever may be forgotten; 
but it will be forgotten, because decisions base on earlier decisions and new deci-
sions overlay the old rationale. Pressure for fast progresses in projects hinders 
documentation as well as extensive rationale capture intrudes detrimental effects 
in knowing-in-action design phases. 

Due to all these problems, Schneider proposes the “Rationale as a By-
Product” [Sch06; p.94] paradigm. The paradigm consists of two goals [Sch06; 
p.94]: 
• “Capture rationale during specific tasks within software projects”. 
• “Be as little intrusive as possible to the bearer of the rationale”. 

As Beck [Be00b] could describe an approach by a list of interconnected 
principles [Sch06; p.95], Schneider also defined a set of principles to reach both 
goals described above [Sch06; p.95]: 
1. “Focus on the project task in which rationale is surfacing”. 
2. “Capture rationale during that task (not as a separate activity)”. 
3. “Put as little extra burden as possible on the bearer of the rationale (but may-

be on other people)”. 
                                                           
166 An example of spatial inferred structure is provided by the VIKI system [MSC94] a 

hypertext environment allowing the user to spatially arrange symbol representing tex-
tual parts. The system infers interconnections between the text parts according to their 
spatial arrangement to each other. This means, the system derives an interconnection 
between texts when the user has spatially arranged the texts nearby, and vice versa in-
fers that texts are not connected, or opposing when they are spatially arranged far 
away from each other. In SW design activities a resembling grouping mechanism can 
be observed sometimes. Thus, e.g., the three layer architectural pattern also operates 
with spatial grouping in the form that items concerned with the topics persistence, data 
model, and user interface are spatially grouped together to three layers. 
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4. “Focus on recording during the original activity, defer indexing, structuring 
etc. to a follow-up activity carried out by others”. 

5. “Use a computer for recording and for capturing additional task-specific in-
formation for structuring”. 

6. “Analyze recordings, search for patterns”. 
7. “Encourage, but do not insist on further rationale management”. 

Principle 1 and 2 emphasize that rationale solutions should not be some-
thing stand-alone, but ask for rationale support being integrated into the really 
performed design task167 without imposing significant intrusion (principle 3). 
Effort for the required structuring and other tedious tasks must be deferred from 
the rationale bearers towards the profiting rationale seekers (principle 4). Princi-
ples 5 and 6 demand for computer support and higher-level automation (if possi-
ble). Finally, principle 7 emphasizes that people cannot be forced but well en-
couraged, to record and use rationale. 

In the author's view, Schneider's paradigm provides several good ideas on 
how the rationale capture problem can be ameliorated in a way that rationale 
approaches bring benefit for practice. Accordingly, R2A’s rationale extension to 
design traceability developed by the author (cf. ch. III.19 to ch. III.21) tries to 
incorporate Schneider's principles, as far as possible. 

Last but not least, an also possible explanation for the rationale capture 
problem could be that current rationale approaches just concentrate on collecting 
the wrong information. As introduced in ch. II.9.3.2, some approaches indicate 
that the design information to be captured may be more than the argumentation or 
designer's reasoning. Dutoit et al. point out “There are enough dissenters from the 
argumentative view of ...(rationale)... to leave room to doubt that we are captur-
ing the right information. Nevertheless, there is little evidence to date that differ-
ences in information recorded have made any difference to the success of 
...(rationale)...capture in practice” [DMM+06a; p.22]. 

In this category also the phenomenon can be accounted that rationale may 
also be communicated through omission [HA06a; p.81]. As an example, a project 
manager could ask the design team whether somebody has experience with a 
certain technology. In such a situation project members usually communicate 
their inexperience by not responding. Similar situations occur when people stay 
tacit disagreeing with a certain decision, but they do not want to appear confron-
tational. 

At the end, it must also be mentioned that Burge et al. express that software 
engineering approaches especially for safety-related applications are changing 

                                                           
167 Dutoit et al. emphasize that rationale approaches have been most successful if they 

have been adapted to a specific activity, or specific goals [DMM+06a; p.18]. 
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toward favoring rationale capture. Through process standards such as SPICE or 
CMMI, demands for rigorous definition, monitoring and adaption of the software 
development process are induced demanding structured and reproducible deci-
sion processes. However, Burge et al. are not sure whether these changes are 
enough to spark the final breakthrough for the rationale capture problem 
[BCM+08; p.262-263]. 

II.9.4.3  Retrieval Limitations 

Between initial rationale bearers and later rationale seekers different notions of 
relevance may exist. According to Wilson [Wi73], relevance is determined by the 
situational context and concerns of the information seeker independent from truth 
[Wi73; p.462]. Thus, besides the temporal gap between the rationale bearers and 
seekers, a situational gap of context and concerns may exist with detrimental 
effects on the usefulness of recorded rationale [HA06a; p.83]. The ideas of 
Gruber and Russel [GR96a] can also be seen as actively addressing the relevance 
problem. 

Besides relevance, retrieval imposes technological needs such as the need 
for indexing, playing a decisive role. Efficient rationale retrieval techniques 
might require a certain formalization of rationale information. As discussed in 
ch. II.9.1.4, rationale formalization imposes significant intrusiveness and burden 
onto the documenter. An alternative solution is the idea to shift the formalization 
burden to the rationale beneficiaries [Gr96b], [Sch06], but this works only if the 
beneficiaries experience the burden as not too strenuous. Otherwise, the whole 
endeavor may be jeopardized [HA06a; p.84]. Further, another alternative is to use 
the artifact structure as formal structure for rationale retrieval (see ch. II.9.3.2). 
This is also what the decision models in this thesis (see ch. III.20 and ch. III.21) 
use. 

II.9.4.4  Usage Limitations 

Following Rittel's assumption about wickedness of problems, most design prob-
lems have a certain uniqueness. Thus, rationale about a problem has only limited 
value for other problems. It can be helpful to evaluate how rationale is connected 
with a problem in order to support solving future problems, but design is often 
highly interrelated. Thus, rationale can weave connections between several prob-
lems that can even build an area of conflict. As a further type of connection, tak-
en decisions impose new consequences on other problems, where recorded ra-
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tionale about the decision may also include a description of these consequences, 
thus also being rationale for the other problems. Accordingly, Horner and At-
wood emphasize that designers must consider the “holistic affects” of problems, 
their rationale and solutions [HA06a; p.84]. Due to the complex nature of design, 
measuring effectiveness of rationale approaches proves to be extremely difficult. 
One problem faced here is that recording rationale and its further usage may 
involve a significant temporal gap. Thus, designers recording or documenting 
rationale may not immediately be able to know what information will later prove 
to be useful and what not [HA06a; p.85].  

II.9.4.5  Synopsis of Rationale Limitations Concerning 
Alternative Design Theories 

Table 9.2  Relation to design theories and rationale in design according to [HA06a; p.77] 

Design Theory Support  Barriers 

Simon – Sym-
bolic  
information 
processing  
(ch. I.6.2.1) 

Rationale can help to focus 
cognitive energy and pro-
vides opportunities to view 
the considerations during 
design to reviewers or other 
developers. 

Additional information increases the 
complexity of a design problem. Design-
ers may also be reluctant to capture ra-
tionale, because the decision may be 
criticized in later phases by other persons 
having more information at hand than the 
initial designers. These persons may 
analyze the taken decisions with the new 
information and would probably come to 
a different view on the problem. 

Rittel – Wicked 
problems 
(ch. I.6.2.2) 

Rationale supports struct-
ured discussions and inte-
grates different peoples' 
perspectives. 

The wicked nature of design problems 
limits the possibilities of using the ra-
tionale at a different time or a different 
project. 

Schön – Situ-
ated action  
(ch. I.6.2.3) 

Rationale can support 
designers in reflecting on 
decisions during the reflec-
tion-in-action phase and 
show the decision influ-
ences on later encountered 
problems. Furthermore, 
incremental formalization 

Using rationale as basis for identifying 
solutions could result in less reflection in 
the design process through distracting 
cognitive resources away from solution 
finding. Intrusive rationale capture me-
thods (cf. ch. II.9.1.4) can influence the 
designers' reflection capabilities in disad-
vantageous ways or even hinder the de-
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could support later reflec-
tion-in-action and commu-
nication  

signers in finding good solutions.  

Alexander – 
Patterns  
(ch. I.6.2.4) 

Rationale provides mecha-
nisms to understand the 
problem context. Especially 
the forces may be better 
analyzed that help to find 
the best fitting pattern. 

Because of the rapid advances in software 
design, few stable design patterns may 
exist (see Simon's concept of stable in-
termediate forms). 

 

In ch. I.6, the author has outlined a few fundamental design theoretic views on 
what design and its processes are about. In the context of design rationale, Horn-
er and Atwood [HA06a; p.77] have collected an overview of the potential support 
and barriers of rationale management enlisted in table 9.2. 

II.9.5   The Role of Rationale in System and Software 
Design 

 
The ultimate goal in documenting architectural decisions is to alleviate a major problem in the 

field: architectural knowledge vaporization. 
[HAZ07; p.39] 

 
Design can be seen “as a sequence of decisions” [BCN+06; p.258] and therefore 
the importance of decisions in design has been widely acknowledged. In the view 
of Booch [Bo94; p.63, p.167], design decisions get apparent through the model-
ing language used. However, newer research rather sees that decisions cannot be 
explicitly derived from the design models and merely exists as tacit knowledge 
[HAZ07; p.39]. 

Besides attempts to recover assumptions and rationale from design artifacts 
[RLV06], capturing decisions' rationale in the system and SW architecture has 
received high attention in recent research (cf. [CBB+03], [BCK03], [PBG04], 
[Ha06], [BCN+06], [HAZ07], [TA05], [TJH07], [AKL+07a], [AKL+07b], [LK-
08], [ALK09]), because a growing recognition exists that decisions may be “the 
fundamental construct in engineering design” [WC01; p.1], [Kr04; p.54]. Archi-
tectural decisions are made early and have a far reaching scope of influence 
[BCN+06; p.256]. Additionally, “much of design work is done through evolu-
tionary redesign, thus long-term collaboration is essential” [DMM+06a; p.86], 
because the implications of decisions usually cannot be overseen in their entirety 
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during taking the decision, which make later adaptions and reassessments of the 
decision necessary [BCN+06; p.258]. 

Due to these facts, also process standards such as SPICE (ch. I.7) 
acknowledge that important decisions about system and SW architecture must be 
carefully explored and documented [HDH+06; p.101]. In CMMI, even an explicit 
Decision Analysis and Resolution (DAR) process area has been defined 
[BCM+08; p.262] “to evaluate 'high risk' decisions” [BCM+08; p.263]. 

A main purpose of system and SW architectures is to find handling strategies 
for NFRs [BCK03; p.72f], [PBG04; p.72], (see also ch. I.5.1). Correspondingly, 
Chung et al. [CNY+00] developed a NFR framework with an approach where 
NFRs explicitly drive the software design process that creates the design and its 
rationale. Tradeoffs and synergies of NFRs can be modeled in a graph. The graph 
can then be used to qualitatively propagate the impact of these decisions into 
design models (see also [BB06; p.275]). 

In architectural practice, decision documentation is considered in the context 
of balancing concurring and conflicting factors through making compromises, 
where decisions about the foundation of technical solutions must be taken in 
insecure situations due to lacking fundamental information [HS06; p.53]. Ap-
proaches and standards (e.g., IEEE 1471 [IEEE1471]) demand to include these 
decisions in architecture documentation. As dedicated practice-oriented tooling is 
usually missing [BCN+06; p.265], several available approaches provide tem-
plates for structured decision documentation using text authoring or spreadsheet 
applications ([BCK03], [BCN+06], [Bo00b], [CBB+03], [HNS00], [HS06], 
[PBG04], [TA05]). 

Posch et al. [PBG04; p.79] have analyzed the views of Bass, Clements et al. 
[CBB+03], [BCK03], Bosch [Bo00b] and Hofmeister et al. [HNS00]. As a con-
sequence, they have derived an approach for systematically assessing influence 
factors168 for an architecture beforehand in order to identify and document the 
most important influence factors and the strategies how to address them in con-
cert with the other influence factors. Ch. III.20.4 shows how an adaption of this 
influence factors assessment can be integrated in the R2A tool approach proposed 
here (part III) in order to improve traceability, derivation of consequences, im-
pact analysis, and consistent change implementation.  

In [BCN+06], Bass and Clements propose to extend their decision documen-
tation template by a causal graph allowing decisions to be ordered in a temporal, 

                                                           
168 NFRs as addressed by Chung et al. [CNY+00] are here considered as one important 

type of influence factor, but also other influence factors exist, such as effects on stake-
holders, available resources, costs, strategic considerations beyond the individual pro-
ject etc.. 



190 II.  Rationale Management and Traceability in Detailed Discussion 

causal dimension. Decisions are displayed as nodes linked together according to 
their causal dependencies. Lee and Kruchten [LK08] show different forms of 
possible decision visualization. Besides the temporal, causal dimension they call 
Decision Chronology Visualization, they identified the following possible views: 
• Tabular listing enlists decisions in a table to provide a better overview of the 

decisions. 
• Decision structure visualization shows the structure of a decision to increase 

the decision's understanding. 
• Decision impact visualization makes the influences of decisions on design 

transparent.  
Ch. III.20.4 also shows that most of these views are fulfilled by the tool de-

scribed in part III. 
In [Eb08; p.332], Ebert argues that software development follows the pareto 

principle [Pa1897]. In his conclusion, 20% of the implemented functionality 
cause high usage value, high potentials for failures and resource consumption. As 
a consequence, he recommends marking parts of the application in order to indi-
cate high complexity or shape problematic constellations as early as possible (he 
recommends to start within the analysis phase) to ease further planning. Such a 
marking often has influence on very important decisions (in design such aspects 
are often important) and thus provide important rationale. A similar case is the 
proposal of Knethen to include an attribute characterizing the change probability 
[Kn01b; p.40].  

Tang et al. [TJH07] show how UML-based design can be extended via an 
UML-profile for capturing decisions. Decision elements (class elements having 
the stereotype <<decision>>) can be linked to any other element present in a 
UML model. This offers the opportunity that any UML environment offering 
support for UML-profiles can be easily extended with a decision documentation 
mechanism, where decision information can be integrated seamlessly into a UML 
design model. On the other side, decisions modeled in usual design diagrams rise 
complexity of the diagrams, causing clutter. If the decisions are modeled in extra 
diagrams (as different views), they raise the amount of present diagrams in the 
modeling repository, thus rising complexity and clutter in the repository. Another 
possibility is not to model the decisions, but to use the UML's meta-model as 
structure only. In this case, other mechanisms must be found how decision infor-
mation is linked to related elements and how they are visualized. Thus, the author 
prefers to avoid raising complexity of modeling languages by including decision 
models but rather prefers to provide augmented information that can be faded out 
on demand as it is provided by the tool in part III. 

Jansen and Bosch [JB05] see decisions mainly as a means to select a solu-
tion from several possible solutions and to deal with the tradeoffs of a solution. 



II.9  Rationale Management in Systems and  Software Engineering 191 

Once a decision is taken, its results are the major driver for architectural modifi-
cations. 

To capture architectural decision information, they propose a conceptual 
decision model containing the following elements: 
• Design rules describe general rules on how parts of a design (e.g., design 

elements) must be designed in order to realize a sustainable solution. Any 
potential solution can have one or several design rules.  

• Design constraints “define limitations or constraints on the further design of 
one or more architectural entities” [JB05; p.4]. These constraints must be 
obeyed in order to ensure that the potential solution can solve its addressed 
problem. 

• Pros describe the benefit(s) and impacts on requirements that can be ex-
pected if the solution is employed.  

• Cons describe the drawbacks on the solution, because the negative effects are 
equally important as positive. 

• Consequences elements describe the expected consequences of the decision's 
solution on the architecture and thus provide extra rationale behind the pros 
and cons of the selected solution. 
For translating the conceptual decision model into practice, Jansen and 

Bosch propose an architecture modeling environment called “Archium”, where 
the conceptual decision model is integrated into a meta-model for architecture 
modeling. The environment can contain a log (stack) of possible solutions, where 
the individual decisions can be mapped on to deal with the tradeoffs. The concep-
tual decision model of Jansen and Bosch should be fully compatible to the deci-
sion model introduced in ch. III.20. 

Pointing in a similar direction to [JB05], Kruchten [Kr04] describes a gen-
eral ontology of architectural design decisions. He identifies three kinds of deci-
sions, eight fundamental properties a decision can be characterized by, eleven 
different relationship types a decision can have to architecture and how decisions 
may have connections to other artifacts. The question whether the approach de-
scribed here matches with this general ontology is left open in this research as 
well as discussions about how rationale and decision approaches are generally 
connected to a general view on architectural knowledge as, e.g., discussed by 
Avgeriou et al. [AKL+07a], [AKL+07b], [ALK09]. 

Another research field also concerned about decision making in design pro-
cesses are decision trees169 known from operations research. Their focus lies not 
directly on documenting a decision process but on providing support for optimiz-
                                                           
169 At http://www.smartdxl.com/content/?page_id=144 (Access 2009/10), an implementa-

tion of decision tree modeling in IBM Rational DOORS DXL is provided. 
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ing the decision outcome. Different decision alternatives with their consequences 
can be modeled in a tree in combination with probabilities about the achievable 
results. A problem, however, is that decision trees require comprehensive 
knowledge about the concrete decision situation (e.g., all consequences and their 
probabilities), limiting their use to rather very tame problems. Noppen et al. 
[NBA08] acknowledge this problem and introduce a decision process for design-
er situations with imperfect decision situations by combining requirements and 
design issues with a decision tree model, allowing fuzzy probabilistic estimations 
of probabilities. Thus, Noppen et al. hope to support decision optimization. In 
this way, decision trees could also be chosen as a schema or an additional means 
for documenting rationale. 

As this chapter has shown, manifold approaches for supporting rationale 
documentation in systems and software design exist. The tool approach intro-
duced in part III uses an approach to integrate rationale and requirement tracea-
bility approaches together in order to improve design processes in system and 
software design (cf. ch. III.19, III.20 and III.21). 

 
 

II.10  Requirements Traceability 

Despite the importance of traceability, there is surprisingly little written about it. 
[KS98] 

 
After ch. I.5.7 has given a quick overview of traceability to support an initial 
understanding for describing the other chapters of part I, this chapter will now go 
into detail.  

II.10.1  Overview 

Rupp describes the meaning of traceability as the “comprehensible documenta-
tion of requirements, decisions and their interdependencies to all produced in-
formation (resp. artifacts) from project start to project end” [RS02; p.407 (*)].  
Pinheiro points out two further considerable points about traceability [Pi04; 
p.92]: 
• Traceability means “the ability to capture the traces we want to follow”. 
• “Traces should be viewed as naturally produced occurrences”. 
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Point one means that most likely not all traces of requirements may be cap-
tured and (resp. or) followed due to the high number of possible traces. There-
fore, at a certain point a decision must be taken which traces are followed. 

The idea about the second point indicates that the traces are not artificially 
made up by something or someone but “are naturally produced as a result of 
activities, actions, decisions and events happening during software development” 
[Pi00; p.2]. This idea is near to the view of Lindvall who sees traceability as the 
means to bridge consistency gaps (see ch. II.10.2). 

This leads to the definition provided by Pinheiro [Pi04; p.93]: “Require-
ments traceability refers to the ability to define, capture, and follow the traces left 
by requirements on other elements of the software development environment and 
the traces left by those elements on requirements”. 

 
Following this definition, any tracing model contains three major aspects [Pi00; 
p.3f]: 
• Trace definition: As not all possible traces can be maintained, the traces to 

maintain should be defined beforehand. 
• Trace production: Defined traces must be recorded somehow. As the follow-

ing ch. II.10.2 shows, traces are a means to cross consistency gaps between 
artifacts. Correspondingly, most traces cannot be recorded automatically and 
must therefore be produced manually. Trace production is especially essen-
tial to consider as it may be intrusive to the other development activities (cf. 
II.10.5). In the author's opinion, also maintenance of already captured traces 
is equally essential as otherwise artifacts and involved traces continuously 
degrade. 

• Trace extraction: In order to be useful, once recorded traces must be extract-
ed. Trace extraction depends on trace definition and trace production in the 
sense that only once produced traces can be extracted.  
Pinheiro also points out that “the software development environment in-

volves not only the technical, but also the social aspects of software develop-
ment” as “people, policies, decisions, and even less tangible things like goals and 
concepts” [Pi04; p.93]. 
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II.10.2  Traceability and Consistency Gaps between 
Artifacts 

Between artifacts (or respectively models) of different development processes 
emerging from structural interruptions170 – semantic gaps ([Li94], [Kn01b; p.45], 
[Eb05; p.138f]) – endanger a project’s consistency and thus the common under-
standing of its stakeholders. Traceability relations between and within artifacts 
help to diminish occurring semantic gaps171. In development projects without 
traceability, these gaps are mentally bridged by the minds of the developers lead-
ing to the known problems when developers leave projects or new team members 
are added. Recording and retrieving traceability information shall support the 
developers in mentally bridging those gaps172. As an example for this mental 
help, the traceability heuristic exists that each requirement must have at least one 
reference to the design (and resp. or code), otherwise the requirement is regarded 
as 'not considered' in the design. 

Correspondingly, Finkelstein [Fi91] argues here that the traceability prob-
lems arise from the informality of most system development processes. Accord-
ing to Lindvall [Li94; p.15], applying formal methods can also help to diminish 
the semantic gaps to an extent making traceability irrelevant. In the best case, the 
usage of formal specification languages with automated code generation – also 
called model driven development – would allow different models of different 
abstraction levels and different views to be seamlessly connected to each other 
[Li94; p.15] (also cf. [Kn01b; p.45]). On the other hand, Sommerville emphasizes 
that formal methods are seldom used in practice, because the entry barriers are 
high [So07]. As ch. II.9.4.2 shows in reference to Shipman and Marshall 
[SM99a], the usage of formal methods can also involve fundamental drawbacks. 
As an example, formal approaches are accompanied by the dangers that informal 

                                                           
170 Examples for these inconsistencies are different levels of abstraction or different view-

points within an abstraction. 
171 As discussed in ch. II.10.6, besides dedicated traceability relationships several other 

kinds of relationships (e.g., „depend on“, part of“, „refine“) exist in a design being 
usually modeled in a design model. Several traceability methods also include these re-
lationships for impact analysis (ch. II.10.3), but can also lead to unwanted overestima-
tion of the impact (so called requirements fan-out effect [Al03]; cf. ch.II.10.6.21 for a 
detailed description). 

172 Traceability “focuses on how to trace between models to understand the system struc-
ture and to understand the implications of a certain requirement” [Li94; p.20]. 
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information is reduced173 to fit a formal structure falsifying the information and 
spoiling the traceability needs [Pi04; p.101]. 

Pinheiro further points out that “informality is needed to deal with the fun-
damentally unstructured way in which information is gathered and used. … 
Therefore, what should be made traceable is in many cases inherently informal, 
e.g., natural language statements, interview's transcripts, and images” [Pi04; 
p.101] (also cf. [Go96], [Pi00]). On the other hand, a certain formality is needed, 
when tracing approaches shall be automated [Pi04; p.100]. 

Discussing traceability experiences in development practice, Ebert [Eb05; 
p.138 f] emphasizes that the transitions from requirements and analysis models 
(AM) to solutions involve a structural break, which is especially problematic. 
Requirements and AMs (ch. I.5.4) can have a completely different character than 
the structure of the design solutions due to different languages used. A possibility 
to avoid the gap is using languages that can integrate all processes from require-
ments specification to analysis, design and implementation in one language. Usu-
ally, these languages must support strong restrictions on its problem focus to 
further use the generated models as far reaching and consistent as possible. As a 
consequence, Ebert here refers to domain specific languages as a solution to this 
problem [Eb05; p.139]. Other similar but less ambitious attempts can be seen in 
UML, where analysis and design modeling are supported through a uniform 
language and in such a way minimize the semantic gaps between both worlds174 
[Kn01b; p.45]. With the new SysML standard [SYSML], UML is extended to 
promote a unified language for systems analysis, systems design, software analy-
sis and design. 

                                                           
173 A good example is provided by [Ja08; p.6]: “In a non-formal world there are several 

obstacles to reliability in formal reasoning. To make our reasoning useful we must 
begin by establishing a correspondence between the formal terms we intend to use and 
the physical phenomena they denote. Here there is an immediate difficulty. In a system 
to control road traffic, we may decide to reason about pedestrians and their use of the 
controlled crossings provided for them: for example, to base some design decisions on 
the maximum and minimum time taken to cross the road. But, what, exactly is a 'pe-
destrian'? A child in a pedal car? A cyclist pushing a bicycle with an attached trailer? A 
user of a motorized invalid carriage? Whatever alphabet of formal terms – for exam-
ple, of predicates, events, and entities – we choose, there will be some hard cases in 
the problem world for which we cannot easily decide whether or not they are properly 
denoted by a particular formal term”. 

174 An exactly opposite opinion is expressed by Hatley et al. [HHP03; p.252]. In their 
opinion, object-oriented methods (such as UML) have the weakness that they indissol-
ubly mix up requirements and design. 
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UML can also be used for model-driven development. “Model-driven design 
holds the promise of improving application development significantly by captur-
ing design steps in explicit model transformations” [AIE07]. Through this way, 
model transformations can lead to the generation of source code and thus con-
sistency can reach to source code. In the context of embedded systems, examples 
of formal specification languages can be seen in [PS05; p.120]. However, most 
up to date existing languages are very limited, need a very proper application and 
often concentrate on partial aspects [Sa05; p.276ff]. In the context of the automo-
tive domain, not UML-tools, but the tools Matlab Simulink resp. Stateflow and 
ETAS ASCET are the most heavily used tools concerning model driven devel-
opment with automated code generation (also cf. ch. I.6.6.1), but these techniques 
are fully comparable in the context of the topic addressed here. 

Additionally, the usage of model driven development imposes a new prob-
lem concerning consistency and traceability [AIE07]: In most cases, these trans-
formations do not only depend on the model to be transformed, but the transfor-
mation process is steered by parameter settings and transformation procedures. 
This means, requirements can also be implemented by setting parameters or 
choosing specific model transformation procedures over other procedures. Ergo, 
consistency not only depends on the models but also by these parameter choices. 
In these cases these elements should also underlie traceability needs [AIE07].  

Additionally, Wieringa [Wi98] shows that design principles such as hierar-
chical decomposition are used according to different criteria at different levels of 
design. Wieringa [Wi98; p.6] concludes that “a seamless transition between dif-
ferent levels, as is claimed by many object-oriented methodologists” should not 
be expected, and because isomorphic design structures cannot be expected at the 
different levels, explicit manual links to maintain traceability across levels are 
necessary. 

Consequently, formal methods without semantic gaps between processes are 
not very likely (yet) to replace today's often coarse, informal and incomplete 
processes and artifacts. Therefore, traceability is a means to cope with problems 
arising from the imperfect world of development and a traceability to design 
solution must support a solution for bridging these inhomogeneous processes and 
artifacts.  

In the view of Chang and Lu [CL09], the gap problem exists, because cur-
rent design approaches only consider the abstraction hierarchies dimension as 
criterion for decomposition. In this way, functional dependencies (e.g., between 
two requirements) are created by accident. Chang and Lu [CL09] suggest to use a 
new design paradigm developed by Suh [Su01] called „axiomatic design“. In this 
paradigm, a domain dimension is introduced as second dimension. The paradigm 
origins from physical engineering and Chang and Lu [CL09] try to transfer it to 
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SE design theory. In their case study, Chang and Lu come to the conclusion that 
through axiomatic design “the reasoning of each step of the design process and 
the mapping through the requirements, abstractions, realizations and technologi-
cal choices are clearly described” [CL09; p.17]. Currently, the described axiomat-
ic design paradigm seems to be at an early stage of research, at which its real 
value for practice has not yet come clear. Even though the examples provided in 
[CL09] indicate that axiomatic design may have some strength, the author pre-
serves certain doubts that axiomatic design can close the semantic gap.  

At the end, manual traceability and designers' minds may prove as the only 
really dependable means for bridging the gap. 

II.10.3  Impact Analysis and Traceability 

The ability to perform correct impact analysis of changes is often referred to as 
the most important motivation for establishing requirements traceability. Tradi-
tionally, as Jönsson and Lindvall point out [JL05], the idea about requirements 
traceability originates from the impact analysis research domain being one of 
several techniques to support impact analysis. “Impact analysis (IA) is the activi-
ty of identifying what to modify to accomplish a change, or of identifying the 
potential consequences of a change” [AB93; p.292]. 

Research on IA traditionally origins175 from research about software mainte-
nance. Thus, most research is only loosely connected with software development 
itself. Over time, requirements traceability has become an issue of REM during 
normal development. Consequently, Jönsson and Lindvall argue that, as require-
ments traceability more and more became an issue of requirement engineering 
and thus of the development processes itself, IA should be seen analogously. 

However, the topic IA often is only mentioned as one way to use traceability 
information. Interpreting Jönsson and Lindvall, the author believes that two his-
torically based misconceptions may exist: 
• IAs have already been performed by developers long time before the name 

existed, since “the need ... to determine what to change in order to implement 
requirement changes has always been present” [JL05; p.122]. However, for 
the original developers knowing their code, assessing the code change is less 
difficult than for others. Software maintenance is often performed by other 
often less skilled and experienced people than the original developers 
[Kn01b; p.2]. Accordingly, IAs were seen as a more urgent issue for software 
maintenance, neglecting its usefulness and informal (unconscious) usage in 

                                                           
175 [Ha72] is often referred to as the first paper on impact analysis [JL05; p.122-123]. 
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normal development processes. As the systems to develop grow, the needed 
documentation grows and the rates of changes grow, also the need for con-
scious IA support grows. 

• Requirements traceability may have originated as a sub part strategy of IA. 
However, the requirements traceability concept proved its usefulness in 
scopes beyond IA (see ch. I.5.7.3). Thus, the independence is reasonable. 
However, the topic 'gains versus costs' of traceability cannot be discussed 
without considering the needs of IAs. The author often has the feeling that 
traceability is established for the sake of conforming to the demands of some 
process standard, but the recorded traceability information is seldom really 
considered when practitioners think about changes. They rather prefer their 
informal methods. Correspondingly, the problem of how to get real gains out 
of traceability should be sharply considered. In this context, effective IA is a 
central issue. 
In the following the author will outline the IA concept. It shall furthermore 

be mentioned that the author does not see traceability based IA as a core problem. 
Valuable IAs depend on the correctness and usefulness of the analyzed infor-
mation. The value of traceability based IA depends on the accurateness and a 
sufficient level of detail of the traceability information. However, capturing this 
high quality traceability information and maintaining its high quality in an effi-
cient way, may be the more important problem (see ch. II.10.5). Otherwise, val-
ues gained by traceability may not outweigh the costs.  
Two types of IAs are distinguished ([BA96], [Kn01b; p.3], [JL05]): 
1. Dependency analysis: extracts detailed dependency relations between pro-

gram entities from source code (e.g., the usage of a variable). 
2. Traceability analysis: analyzes relationships that “have been identified dur-

ing development among all types of” artifacts [JL05; p.119]. 
This distinction seems to be a bit artificial. Since dependency analysis can 

also be seen as a special subset of traceability analysis. However, dependency 
analysis is probably the most employed type of traceability analysis since it is 
possibly used by any programmer who needs to employ a change. 

Jönsson and Lindvall argue that the difference consists in the level of detail, 
and in fact Knethen provides in [Kn01b; p.42-43] a more evident distinction 
oriented on the level of abstraction (a detailed description of this can be found in 
chapter II.10.4.2.2): 
• Dependency analysis of source code, 
• Design description techniques, 
• Requirements traceability tools; 

In the author’s opinion, these kinds of distinctions are some kind of histori-
cal due to formerly independent areas of research. Currently, these areas and their 
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understanding grow together to build a more complete view (see ch. I.7), where 
all these dependencies are seen as a subset of traceability. 

In the experience of Jönsson and Lindvall [JL05; p.118], IA “is an integral 
part of every phase in software development”. In some sense, IA might have been 
performed long time before the term was known and it may have been performed 
in a very uncontrolled and inefficient way [JL05; p.122], since the need for SW 
practitioners to determine the effects of a change may have been present as long 
as the need for change has existed.  

Bohner and Arnold [BA96] further describe (see also [JL05; p.119]) differ-
ent sets of impact (in the following called impact sets (IS)): 
• The system set is the set of all items in the project. This set is the super set of 

all other sets. 
• The starting impact set (SIS): represents the item initially considered as af-

fected. This is the input for an IA, whereat the SIS is the starting point to 
identify further connected items also impacted. 

• The estimated impact set (EIS) represents the items estimated to be affected 
when the IA is finished. 

• The actual impact set (AIS) consists of the items really affected once the 
change has been implemented. “In the best case scenario, EIS and AIS are 
exactly the same, meaning the estimation was perfect” ([JL05; p.119]). 
As described in ch. I.7.2.7, the IA concept is part of a change management 

process176 and required by process standards such as SPICE. Knethen [Kn01b; 
p.36] describes a generic IA process orienting on the process description of Boh-
ner and Arnold [BA96]. IA is important in two phases of the change management 
process: 
• When a change is requested, the IA helps to identify all effects as a support 

for making a decision whether to apply or not to apply a change. In this 
phase the changes are predicted as EIS. 

• Once the decision has been taken to apply the change, the IA results can be 
used to orient oneself on them for consistent implementation of the change. 
The actual change determines AIS. The AIS can then be used to compare the 
EIS in order to improve later impact estimation. Knethen [Kn01b; p.53-55] 
indicates how impact effectiveness, completeness, correctness, and efficien-
cy can be assessed. 
An IA should address the issues required effort, time, money and available 

resources [JL05; p.122]. Leffingwell and Widrig enlist the following aspects that 
must be especially considered in a change assessment [LW99; p.379]: 
                                                           
176 Schienmann [Sch02; p.111-113] also provides a good description for a change man-

agement process. 
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• “The impact of the change on the cost and functionality of the system”, 
• Impact on external stakeholders not well represented in the project (e.g., 

other project contractors, component suppliers etc.), 
• The potentials to destabilize the system; 

Besides the impact sets, two other kinds of information can help to predict a 
change's impact [JL05; p.119]: 
• The dependencies between affected items; 
• Knowledge about the propagation of the changes between the affected items; 

The first point clearly is an issue of traceability, the second is “often ex-
pressed in terms of rules or algorithms” [JL05; p.120]. If the second point is 
neglected, the – what Versteegen et al. [VSH01; p.83]call – dominoes effect can 
occur: At first, a requested change seemed to be rather harmless, but during im-
plementation new effects on other project parts are incessantly identified leading 
to design erosion and instabilities of the developed system. 

Changes are usually distinguished by primary and secondary change [JL05; 
p.120]. Primary change also called direct impact refers to the items (artifacts) 
directly identified by the change impact assessment. Secondary change also 
called indirect impact expresses in two effects [JL05; p.120]:  
1. “Side effects are unintended behavior resulting from the modifications need-

ed to implement the change. Side effects affect the stability and function of 
the system and must be avoided” [JL05; p.120]. 

2. Ripple effects are effects occurring when small changes are employed to a 
system, imposing affects to many other parts of the system [AB93; p.292]. 
“Ripple effects cannot be avoided, since they are the consequence of the sys-
tem's structure and implementation. They must, however, be identified and 
accounted for when the change is implemented”[JL05; p.120]. If ripple ef-
fects are not effectively addressed, the dominoes effect mentioned above 
[VSH01; p.83] can be the consequence. 

To identify possible impacts, several strategies for IAs exist [JL05; p.124-130]: 
• Automatable strategies or techniques “usually rely on algorithmic methods 

to identify change propagation and indirect impacts” [JL05; p.125]. Howev-
er, the prerequisite of any automated technique are highly structured (e.g., 
formal specifications [JL05; p.125]. The following possible strategies exist: 
• Traceability, as discussed in this chapter. 
• Other dependency analysis techniques such as extracting dependencies 

from source code (see [Kn01b; p.40] for an overview) or design models 
(e.g., [BLO+06]). 

• Program slicing (e.g., [We79], [We84], [GL91]) divides the source code 
in the decomposition slice containing the change's location, and a com-
plementary slice. At first, the decomposition slice's scope is as narrow as 
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possible. Then, when further dependencies are identified, the scope of 
the decomposition slice is widened. Programmers use slicing implicitly 
during debugging [We82]. Program slicing can orient itself on analyzing 
static code information (so called static program slicing) or also try to 
find out dynamic relationships within code (so called dynamic program 
slicing [KR98]). Between those two extremes also hybrid methods are 
possible as conditioned slicing [GB08]. Also methods for architectural 
slicing exist [Zh98]. 

• Manual strategies involve consulting available project documentation, or 
interviewing knowledgeable developers. Burge et al. [BCM+08; p.120f] 
show how information collected through RatMan approaches can be con-
nected to improve IAs. 
“The complexity of the change management process makes it necessary to 

use some sort of tool support” [JL05; p.137]. According to Jäälinoja's opinion, 
IAs in practice are typically performed manually due to weak tool support [Ja04; 
p.37]. Automating IA is typically difficult, “because it is mainly based on human 
experience” [JL05; p.120] and “human analysis is still required to interpret the 
nature of the impact and assess its significance” [Kn01b; p.53]. 

Wiegers [Wi05; p.322-323] emphasizes that IA quality can be significantly 
improved by using checklists and defined procedures to discover possible impli-
cations. The IA results must be typically reported from a developer to a CCB. A 
standard reporting template can ensure that the CCB receives and easily recog-
nizes all needed information to make a decision [Ja04; p.37]. 

II.10.4  Core Dimensions for Characterization 

Knethen characterizes [Kn01b; p.37] (also cf. [PKD+03]) traceability approaches 
by four core dimensions: 
• The purpose, 
• The conceptual trace model (or what Ramesh and Jarke call traceability refer-

ence model), 
• The process, 
• Used tools; 

The author also sees these dimensions as a valuable structure for ordering 
approaches. Therefore, the following chapter will discuss these dimensions ori-
enting itself on Knethen with additional information from other sources. Since 
the main interest of this thesis lies on traceability from requirements to design 
artifacts, this category will be emphasized. 
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II.10.4.1  Purpose 

Different traceability approaches may pursue different purposes. In projects, 
different stakeholders have to fulfill different needs and tasks. Accordingly, the 
different stakeholders may have their “own view on traceability” [Kn01b; p.37]. 
Correspondingly, the conceptual trace model will be highly influenced by the 
purpose. 

Knethen [Kn01b; p.38-39] extracted from literature a variety of different 
stakeholders and their main purposes: 
• Customers want to ensure that all stated requirements are adequately ful-

filled, the project duties are done and changes can be made transparent.  
• Project planners mainly need to perform IAs to adapt their plans to changes. 
• Project managers want to control project progress. Traceability information 

can be used to match requirements to use cases or design modules often 
forming the basis for staffing. Traceability to tests can provide information 
on which requirements are currently fulfilled (tests have passed) and which 
not. 

• Requirements engineers want to ensure correctness and consistency of the 
requirements. Traceability to the requirements origin helps to consider all 
aspects involved in a later requirement change. 

• Designers want to understand interdependencies between requirements, 
between requirements and design and between design elements. Additionally, 
they are interested in IAs for implementing changes in their designs 

• Verifiers want to ensure all requirements to be allocated both to design, resp. 
code, and to verification procedures. This shall also prevent over-
engineering, i.e., unneeded (unspecified) features.  

• Validators want to establish testing procedures proving that the system ful-
fills all stated requirements. Correspondingly, traceability between require-
ments and their developed test cases indicating full test coverage of the re-
quirements is their main concern. 

• Maintainers want to use traceability for assessing the impacts of new chang-
es to perform. 
In the author's eyes, Knethen has forgotten to mention the following other 

important stakeholders, as they are not necessarily the same persons as the de-
signers: 
• Implementers or coders are interested in the requirements that must be real-

ized by the components they are assigned to for implementation. 
Any purpose, however, is constrained by a fundamental rule [SWG+08; 

p.217 (*)]: “Traceability is only of use if its traces are up to date and correct. If 
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developers have no trust in the correctness of the traces, they will not use the 
gathered information. ... On the other hand wrong or patchy traces lead to wrong 
results in IAs or to gaps in the test coverage”. 

Table 10.1  Prioritization of stakeholders and usage purposes concerning traceability 
between requirement and design artifacts 

Priority Stakeholder Rationale 

High Designers, 
Implementers, 
Maintainers 

Will directly work with the requirement and design 
artifacts. 
As they will also be directly engaged in establishing 
and maintaining the traceability information, they 
will have concerns about effort and usability of the 
approach. 

Medium  Requirement 
Engineers 

Requirements should be stated independently from 
the solutions. However, as ch. I.5.5 indicates this is 
not always viable in practice. 

Medium, 
Low 

Project Plan-
ners 

Might – as the customer, project managers and verifi-
ers – be more interested in statistical data. On the 
other hand, (s)he might also adapt his (her) plans on 
the allocation of requirements to design177. 

Low Validators  Testing activities should usually orient themselves on 
the requirements not on the design (cf. [Ja04; p.32], 
[Tv99; p.373]). However, when module testing is 
concerned, the tester should know the exact require-
ments allocated to the module to perform well shaped 
module tests for early error discovery before SW 
integration. 

Low  Customers, 
Project Man-
agers and 
Verifiers 

As they are concerned with overall management, they 
are expected to be more interested in statistical meta 
information (e.g.: “how many requirements of all 
requirements are currently considered in the de-
sign?”). 

 

Correspondingly, when a purpose is considered to be supported by a tracea-
bility approach, the following two criteria are inevitably to be considered as well 
[SWG+08; p.217 (*)]:  
• “The effort for establishing and maintaining traces must be – sustainably 

feasible – by the project”. 

                                                           
177  According to Conway’s law from 1968: “The structure of an organization and its 

architecture are isomorphic.” This means that architectures, organizations and systems 
influence each other (see [St05; p.24], [Eb05; p.11]). 
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• The establishment of traceability provides a concrete gain in the project. 
As often encountered in REM, it seems that not all stakeholder needs can be 

equally fulfilled. Therefore, a prioritization of the stakeholders and their derived 
needs must be made. Table 10.1 shows a prioritization of the stakeholders and 
purposes reflecting the author's appraisal of the traceability between requirements 
and design problem. The R2A tool approach introduced in part III follows this 
prioritization. The first column shows the priority values (as one of “High”, “Me-
dium”, “Low”). Column two enlists stakeholders as taken from the above listing. 
The last column provides the rationale behind the prioritization decision. 

II.10.4.2  Conceptual Trace Model 

Pinheiro [Pi04; p.92] points out that too many possible traces exist. This under-
lines the importance to decide which traces should be documented and used. He 
recommends using what he calls a traceability model. For trace definition, such a 
traceability model should [Pi04; p.110]: 
• Define few basic types, 
• Allow specification of user-definable traces, 
• Allow the use of richer representations of traceable objects such as hyperme-

dia objects (videos, recordings, and images (see nonfunctional traces, ch. 
II.10.4.2.20); 
A similar notion is expressed by Knethen ([Kn01b]), who uses the term con-

ceptual trace model (CTM) to describe the entities (items) and relationships that 
shall be considered in a traceability approach to fulfill the corresponding stake-
holder needs.  
Following Knethen [Kn01b: p.38] a CTM consists of two major elements: 
• Entities, 
• Relationships; 

 

II.10.4.2.1  Entities 

Entities describe the elements, i.e., artifacts taken into account of a CTM. As 
Knethen [Kn01b; p.39] – similarly to Pinheiro [Pi04; p.92] – points out, the pur-
pose of the tracing approach mainly determines what entities are to be consid-
ered. 
Entities can be described by three characteristics [Kn01b; p.39]: 
• The kind of entities taken into account, 
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• The granularity, 
• The attributes; 

 

a) Kinds of Entities 
Concerning the kind of entities to be taken into account, only few hints are pro-
vided in literature. Lindvall [Li94; p.19] emphasizes that basically two kinds of 
artifacts (work products) exist (also cf. [Kn01b; p.39]): 
• Temporary work products,  
• Permanent work products;  

In contrast to permanent work products, temporary work products “are not 
intended to be saved and maintained in the future” [Li94; p.19]. Lindvall recom-
mends including only permanent work products into the set of artifacts for which 
traceability shall be maintained. Indeed, it is doubtful that temporary work prod-
ucts have a life-span long enough to make sense for traceability. However, the 
author thinks that an exception of this obvious thought may be what is called 
model transformations [KM05], [AIE07], where intermediate models can occur. 
As an example, the UML provides mechanisms to automatically transform plat-
form independent models to platform specific models, which are the further basis 
of code generation. Such intermediate models must also transform the traceabil-
ity information from its original model to the end model. Now, if the intermediate 
model is only a temporary work product, it must also be considered by the trace-
ability process. 

The author is not sure whether or not some of the strategies describing au-
tomatable traceability through model transformation indirectly rely on traceabil-
ity to temporary work products as a strategy (algorithms) to bridge the gap. In 
these cases, the strategy has an enormous influence on the resulting traceability 
information from the start product to the end product of model transformation(s). 
Thus, analyzing a traceability model by taking the temporary intermediate mod-
els into account can make sense to verify that the model transformations fulfill 
the requirements for the specific traceability need between transformation source 
and the transformation outcome.  

Pfleeger and Bohner [PB90] refer to a traceability model considering re-
quirements, analysis, design and code. Ramesh and Edwards [RE93] argue to 
include requirements, specifications and implementation into traceability consid-
erations. Other very concrete ideas about entities taken into account in traceabil-
ity considerations are provided by process standards as SPICE (or CMMI). Apart 
from that, the author agrees with Knethen that the entity kinds to be considered 
for tracing depend on the purpose [Kn01b; p.39]. 
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b) Granularity 
Granularity refers to the level of detail (granularity) the entities are considered in 
a traceability approach. Lindvall speaks here of “different levels of traceability” 
[Li94; p.18]. “The most coarse level is the ability to trace from one document to 
another .... The most fine-grain level would be to be able to trace every single 
statement” [Li94; p.18]. Undetailed traceability between documents may be suf-
ficient to coordinate development team members [De99], [RUP+90], but for 
specific IAs more detailed information is needed. An example of very detailed 
approaches for IA are dependency analyses of source code [KP02; p.6], [Kn01b; 
p.40]. These are described in the course of ch. II.10.3. As Knethen [Kn01b; p.40] 
points out, the level of detail is mostly guided by the needs of the purpose to be 
followed [Kn01b; p.40]. However, the question about the costs and values of a 
specific level of traceability [RE93]178 is most probably the main concern in mak-
ing a decision for or against a specific level. This is directly connected what 
Egyed et al. call the two fundamental problems of traceability [EGH+07; p.115]: 
• “Finding the right level of trace quality with finite budget”, 
• “Increasing the quality of trace links comes at an increasingly steep price”; 

Lindvall [Li94; p.19] further argues that granularity is connected to “the 
problem of comprehension – which models should be included in a traceability 
model for a certain system?” This is very similar to what is discussed above 
about kinds of entities. Consequently, both topics can be considered as closely 
connected. 

As ch. I.7 shows, traceability demands for safety-related development pro-
cesses rather require a very fine-grained granularity of traceability information 
(every requirement must be individually traced) and require to take any available 
artifact of the engineering processes into account. Correspondingly, significantly 
steep prices for traceability issues in safety-related development projects can be 
expected. 

 

c) Attributes of Entity 
This concept describes possibilities to add attribute information to entities. Cur-
rent state of the art REM-tools and a lot of design tools as, e.g., UML-tools allow 
possibilities to add further information (so called attributes) to entities. In the 
REM context, attributes are usually used to collect meta data (as, e.g., the author, 
time stamp of last change, responsible developer [Tv99; p.372], responsible test-

                                                           
178 “It may be unnecessary or even undesirable, considering the overhead involved in 

maintaining traceability, to maintain linkage between every requirement and every 
output created during the systems design process” [RE93]. 
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er, release …) or other development process related data (e.g., priority seen by 
customer [Tv99; p.372], status of the requirement in the development process). 

Attribute information can be used as traceability information. As an exam-
ple, fig. 10-1 shows an excerpt taken from the REM-tool IBM Rational DOORS 
with the attributes 'ID', 'Origin', 'Priority', 'State' and 'Scope'. Concerning tracea-
bility, these attributes have the following meaning: 
• 'ID': Assigns a unique identifier to each requirement. The unique identifier is 

an essential concept in any REM-tool to allow textual references to a re-
quirement (e.g., in a traceability matrix) as the identifier never changes, 
whereas the requirement text does. In fig. 10-1, another kind of possible tex-
tual reference is indicated in attribute 'Origin' of 'Requirement1', where a tex-
tual reference to an item with identifier 'CRS_1' is set referring to a require-
ment in the customer requirements specification.  

• 'Origin': Allows a textual reference to the origin(s) of a requirement for 
backward traceability. This allows referring to origins not represented in 
IBM Rational DOORS (If a requirement can refer to a origin also present in 
IBM Rational DOORS, a link relation can be set). 

• 'Priority': Marks the priority of a requirement being often an important ra-
tionale for decisions. For example, 'Requirement3' in fig. 10-1 is marked 
with priority 'NiceToHave' being most probably an important rationale to 
decide for rejecting (not implementing) it in the project. 

• 'State': Shows the current state of the requirement in the project. 
• 'Scope': Refers to the expected scope where the requirement must be imple-

mented. 'Requirement1', e.g., seems to have a general system wide scope 
meaning that it influences HW, SW and probably other engineering domains 
that must work together on system-level to fulfill the requirement. In this 
way, this can be seen as the first step towards forward traceability. 
 

 

Figure 10-1  A requirements specification with attributes in IBM Rational DOORS 
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Paech and Knethen [KP02; p.6] argue that such attribute information is per 
se traceability information as it usually relates information to other information. 
The author is not sure whether this is correct for all attributes, but for some it is 
correct. Knethen and Paech [KP02; p.6-7] list a set of attributes that can be seen 
as traceability information.  

Rupp et al. provide a detailed discussion about attributes and document 
structuring in REM practice [RS07; p.381-393]. In practice, it is necessary “to 
tailor the right set of attributes so that the effort to define and maintain them is 
balanced by the benefits of better process control and specification reuse” 
[WW02; p.18]. 

Some of the possible attributes can also have directing effects to subsequent 
design processes such as Knethen's proposal [Kn01b; p.40] to use an attribute 
describing change probability for each requirement. Such an attribute can have 
impact on design decisions taken, because such an attribute helps to identify the 
stability of a requirement and the stability of a requirement can impose direct 
influence on design. Gerdom and Posch [GP04], e.g., argue that significant costs 
can be avoided, when designers concentrate on modeling only parts considered 
stable rather than a complete architecture179. As another possible strategy, re-
quirements identified with high change probability can be addressed by handling 
strategies for flexibility such as encapsulation or patterns to minimize impacts if 
the case of change happens. 

II.10.4.2.2 Relationships 

Traceability mainly relies on relationships. The type and kinds of relationships to 
be established and maintained differ. Knethen could distinguish the following 
characteristics of relationships and their connected approaches: 
• Kind, 
• Direction, 
• Attributes, 
• Setting, and 
• Representation of relationships; 

These characteristics are described in the following sub chapters. Addition-
ally to these characteristics, Pinheiro ([Pi00], [Pi04]) could also find the differen-
                                                           
179 Gerdom and Posch [GP04] call this modeling an architectural skeleton. This principle 

seems rather to be a principle originating from the agile community, because the au-
thor heard similar claims proposed by Ivar Jacobson at his key note speech on re-
quirements and agile development at the Requirement Engineering Conference (RE-
conf) in Munich 2009.  
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tiation characteristic between functional and nonfunctional traces discussed in 
the last sub chapter. 

 

a) Kind 
This describes the kinds or types of relationships in a CTM. Knethen [Kn01b; 
p.39], [KP02; p.8] distinguishes “three general kinds”: 
• Relationships between documentation entities on the same abstraction180, 
• Relationships between documentation entities at different abstractions, 
• Relationships between documentation entities of different versions of a soft-

ware product; 
Before discussing different kinds of relationships, the author should note 

that relationships are not necessarily distributed in a uniform way. Instead, as an 
industrial survey [CSL+01] on requirements interdependencies in SW product 
release planning indicates, relations between requirements can be very inhomo-
geneously distributed. They rather follow a kind of pareto-like relation [Pa1897]: 
• “20% of the requirements are responsible for 75% of the interdependencies” 

[CSL+01; p.84]. 
• 20% of the requirements are singular (with no significant interdependencies) 

[CSL+01; p.88]. 
• The study also suggests that interdependencies differ according to the project 

setting. As an example, customer oriented projects consider more feature-
oriented interdependencies, whereas market driven development projects ra-
ther orient themselves on more abstract values [CSL+01; p.84]. 
These findings could have significant influence on considerations about new 

research approaches to traceability. In the author's opinion, even connections to 
the author's pareto presumption described in ch. I.6.6.1.4 may exist. These 20% 
are responsible for extensive portions of complexity (due to the 75% of interde-
pendencies). Now, e.g., if it would be possible to tackle these requirements 
through tool methods for early prototypical requirement evaluation with later 
automated code generation (see ch. I. 6.6.1.2 and ch. I. 6.6.1.3), extensive por-
tions of complexity could be tackled this way. At the moment, however, these two 
points are just suggestions of the author. Further research would be needed to 
find out whether these suggestions may have some substance and could be inter-
esting as a new leverage for the traceability problem. 

 

                                                           
180 In Knethen's terminology, abstraction means different artifacts in different engineering 

processes. For example, systems requirements, systems design, SW requirements and 
SW architecture are four different abstractions for her. Later in part III, when the au-
thor introduces his tool approach, abstraction can also mean a different abstraction 
level within one artifact. 
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Relationships on the Same Abstraction 
Knethen [Kn01b; p.41], [KP02; p.8] distinguishes two kinds of relationships: 
• Representation, 
• Dependency; 

 

Representation Relationships  
Representation relationships connect together documentation entities represent-
ing the same information but providing different views (or viewpoints) on it.  

In the requirements domain, different stakeholders have different perspec-
tives on a system [GF95]. Ergo, requirements specifications may contain different 
views on a system. This is represented by the representation axis of Pohl's RE 
framework (see ch. I.5.7.1). An aspect is then to avoid or handle inconsistencies. 
Here, different answers are given from the translation into formal logic 
[FGH+94] to heuristics in conflict recognition and handling [LDL98], or to meta-
model approaches [NJJ+96], [Kn01b]. 

In the design domain, the view concept is very essential [Kr95] (see ch. 
I.6.2.1.2). Here, a vast set of approaches exist in research to support view han-
dling in modeling environments. Endeavors exist [BR07b] to embed the view 
concept into a formal definition of modeling description language to avoid incon-
sistencies. In design practice, above all the UML language [UML] (starting with 
Kruchten [Kr95] the UML specifically included view support in its language) 
provides support for modeling representation relationships between diagrams 
(resp. views) via defined relations in the meta-model. These relationships can be 
further detailed (restricted) by constraints formulated as constraints via the object 
constraint language (OCL), which is part of the UML standard. Basing on these 
relations other tools and approaches offer support for managing consistency 
problems and IAs [BLO+06]. 

 

Dependency Relations 
Dependency relations describe relationships “between two documentation entities 
that depend on each other and represent different logical entities on an abstrac-
tion” [KP02; p.10]. Approaches exist on different abstraction levels, or – better to 
say – artifact types:  
• Requirement or other specification (e.g., this technique is also very valuable 

to administer testing specifications) artifacts are typically handled with 
REM-tools such as IBM Rational DOORS or in traceability research envi-
ronments as PRO-ART [PDJ94], [Po99] or TOOR [PG96], [Pi96], [Pi00]. 
“Dependent documentation entities are linked manually or automatically and 
maintained and represented by the tool.”[KP02; p.11]. Knethen and Paech 
emphasize here that commercial tools do not provide guidance on how such 
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traces shall be established and maintained. The author thinks this is good 
since such tools should allow the projects as much freedom as possible to 
adapt them to their needs. It is more an issue for the processes to define pro-
ject specific rules. Process standards as SPICE provide here concrete de-
mands and guidance. 

• Design description techniques make use of the modularization principle (see 
ch. I.6.2.1.2) decomposing a system into sub elements interacting together to 
fulfill the purposes of the system. Correspondingly, manifold dependencies 
between those elements exist and describing those dependencies is an essen-
tial part of design. Rigorous decoupling through definition of capable inter-
faces helps to decouple the elements ensuring independent development of 
the elements. 

• Model-based RE approaches try to establish traceability in a similar fashion 
as design description techniques. Research projects such as QUASAR 
[PSS04], (also see [Ge05; p.171]) or the approach introduced by Geisberger 
[Ge05] have developed model-based RE approaches for embedded systems 
engineering. An overview of other comparable approaches is provided in 
[Ge05; p.167-185]. 

• For code artifacts, source code dependency analysis tools provide support for 
automated identification of dependency information between data, control 
and components [BA96]. One of the usable methods is program slicing 
[KP02; p.10] as described in ch. II.10.3. These approaches are limited to 
source code level not taking dependencies on other abstractions into account 
[Kn01b; p.42], [KP02; p.10]. 
 

Relationships between Abstractions 
Two kinds of relationships between traceable elements on different abstractions 
can be identified [Kn01b; p.43], [KP02; p.12]: 
• Within-level refinement, 
• Between-level refinement; 

 

Within-Level Refinement 
Within-level refinement means relationships between entities at different abstrac-
tion levels within one artifact level (e.g., in system requirements). Several ap-
proaches exist [KP02; p.12]:  
• Hierarchically structuring the identified goals of a system [LDL98] allows 

defining sub goals to contribute to a higher goal. 
• Decomposition of requirements describes the practice of deriving sub re-

quirements from higher level requirements forming a requirement hierarchy 
[Ki98], [Pi04]. Kirkman [Ki98] identifies this as an essential heuristic in 
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REM. Usually, these relationships are captured by the usage of REM- or 
traceability tools such as IBM Rational DOORS. Fig. 10-1 above shows an 
excerpt from IBM Rational DOORS, where the four requirements are also 
part of a decomposition structure indicated by the tree view component at the 
left. According to Pinheiro [Pi04; p.91], it must be considered that several 
requirements are derivable from one origin, a requirement can have several 
origins, a requirement can be the deriving source for several requirements, 
and a derived requirement can also collapse several predecessor require-
ments. 

• Hierarchical refinement of models is offered by a lot of modeling languages. 
It allows designers to refine and decompose elements by sub elements. All 
modeling tools discussed in ch. I.6 support hierarchical refinement. The tool 
approach presented here (see part III) relies on this principle for establishing 
the requirement to design traceability. 

• The Queinsian In-Order-To Rule181 [RS07; p.417] is a heuristics from RE 
practice helping to identify the real nature of connections between a formerly 
known requirement (in the former called old requirement) and a new arising 
requirement if both requirements have nearly similar semantics. It helps to 
determine whether the new requirement must replace the old one (old and 
new requirement are in a historic versioning relationship), or whether the 
new requirement is a refinement of the old requirement (old and new re-
quirement are in a hierarchic decomposition dependency). 
 

Between-Level Refinement 
Between-level refinement describes relationships between entities on different 
artifact levels (e.g., between system requirements and system design). The fol-
lowing approaches exist: 
• The specification axis in Pohl's RE framework (see ch. I.5.7.1) represents this 

dimension [KP02; p.14]. 
• Development approaches themselves influence how traceability is estab-

lished. As development processes often focus on different artifact levels and 
their corresponding artifacts, they have special influence on between-level 
refinement traceability. Several approaches provide certain characteristics: 
• Pre-object-oriented development methods as structured analysis and de-

sign (SA/SD) [De78] propagate strict separation of the problem (re-
quirements) and the solution (design) space. Hatley et al. [HHP03; 
p.252] emphasize this as strength since it prevents uncontrolled inter-
mixing of both areas, which poses a threat to object-oriented methods. 

                                                           
181 In German: “Queins'sche UmZu-Regel” 
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However, the semantic gap between the problem and solution space is 
very large, thus the need for explicit traceability information is higher 
and especially difficult to establish [Kn01b; p.45], [KP02; p.14]. 

• Object-oriented development (OO) approaches as, e.g., the UML [UML] 
have a smaller semantic gap between analysis and design. Thus, the 
need for explicit traceability is not as needed and easier to establish. Of-
ten traceability is implicitly present. 

• Four variable model (FVM) as introduced by Parnas [Pa85] propagates 
a design process with strict separation between input processing, the in-
ternal core functions and the output processing and relations between 
them. The FVM allows separating the system from the environment by 
the distinction of four variables: monitored and controlled environment 
variables, data read from sensors and data written to actors. These four 
variables can be set into formal dependencies. As embedded systems of-
ten relate input signals from sensors to output signals for actors, the 
FVM is especially suitable for embedded systems design and is used in 
embedded design practice [Fa95], [HHP03; p.56ff], [HJL96]. Knethen 
shows in [Kn01b; p.44] that in embedded systems design the input and 
output processing variables are mainly in the focus of systems analysis 
and design, whereas the internal core functions are usually allocated to 
software analysis and design. Ergo, the FVM relations are of the type 
discussed here. The FVM can be used as an extension to SA/SD 
[HHP03; p.56ff] as well as to OO approaches [Kn01b]. In the course of 
the QUASAR project [PSS04] (see also [Ge05; p.171]), Knethen devel-
oped her requirement to design traceability approach, whose founda-
tions base on concepts of UML and the FVM (see ch. II.10.6 for details).  

• The SPICE process model defines artifact levels and how relations be-
tween the corresponding artifacts of the levels are connected. 

• Relationships defined in requirements traceability methods for product 
line engineering [RTM02], [BP06] can be seen as between-level refine-
ment traceability relationships. 

• REM- or traceability tool environments allow linking between different 
artifact levels. The environment introduced in part III explicitly addresses 
this issue concerning transitions between requirements and design. 

In practice, the following approaches are used (see also [KP02; p.14]): 
• Dependency links between two elements indicating that one element derives 

its justification from the other element. Knethen and Paech call this 'applica-
bility links' [KP02; p.14]. A similar dependency is given by the R2A ap-
proach described part III where consequences of decisions can be modeled 
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that spark new design constraints (ch. III.20). From the perspective dis-
cussed here, the decisions justify the design constraints. 

• Links between requirements and models: 
• Relations between textual requirements and its origins in other docu-

ments. 
• Links between textual requirements and analysis models, such as use 

cases and other analysis diagrams (ch. I.5.4). 
• Links between requirements and design models. Further relations can 

propagate the requirements to detailed design elements as software 
components and to source code. 

• Links between requirements, test specifications, test cases, test logs and 
(resp. or) error listings [Tv99; p.373]. According to Jäälinoja [Ja04; p.32], 
these connections are so essential that this kind of linking should always be 
established. The author recommends conferring [Ja04; p.31-33] and [WW03; 
p.20-21] for concrete hints about this issue in the embedded domain. 

• Links between issue tracking items (bug reports and change requests) and 
affected entities [Tv99; p.373]. Application life-cycle management tool suites 
like MKS [MKS] offer dedicated support for these actions in practice (see 
ch. II.10.4.4.4). 
 

Relationships between Different Versions 
Hamilton and Beeby [HB91] see an important task of traceability to “discover 
the history of every feature of a system” to ensure proper impact identifications 
when requirements change. This has a twofold meaning. One is to trace the histo-
ry of the documents and can be seen as “an extension to what usually is called 
version control, namely to trace all previous versions of a particular documenta-
tion entity to recover its development history” [KP02; p.15]. These relations are 
usually called historical links [RUP+90] or evolutionary traceability [Po96], 
[Pi04]. A second, more enhanced meaning is described by the RatMan approach-
es. As these approaches record the rationale behind decisions and changes, they 
provide important information about the historical evolution of project artifacts. 
Without this information only the “how” of the evolution is recorded, but the 
“why” is in the best case covered somewhere in the brains of the developers and 
in the worst case simply forgotten. RatMan and traceability is described in detail 
in the later ch. II.10.8. 

The following approaches consider evolutionary traceability with respect to 
recording artifact history: 
• The agreement axis in Pohl's RE framework (see ch. I.5.7.1) describes this 

[KP02; p.16]. 
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• Ramamoorthy et al. [RUP+90] introduce the Evolution Support Environment 
(ESE) system that can be described as a version control system enhanced by 
support for traceability relationships. Besides the history links (trace to an 
item's change history), ESE supports hierarchy links (trace to the hierarchical 
structure an item is embedded in) and development links (trace how an item 
is produced and used in the development project) [RUP+90; p.1230], (cf. al-
so [Li94; p.20]). 

• Leite and Oliveira describe a system where configuration management con-
cepts are used to control the evolution of the individual requirements 
[LO95]. 
The following approaches are found in practice: 

• Several REM and traceability tool environments as, e.g., IBM Rational 
DOORS provide configuration management mechanisms to record the histo-
ry of items and their traces. The approach discussed in part III provides a 
similar mechanism. Also tools as MKS [MKS] originating from the configu-
ration and change management domain have developed new approaches to 
address evolution and traceability. This is discussed in the following chapter 
about traceability tool support. 

• The already above described Queinsian In-Order-To Rule [RS07; p.417 (*)] 
can be seen as a practice-oriented heuristics to decide whether to version or 
refine a requirement. 
 

b) Direction 
Refers to the direction traceability is established or used in. Terms used here are 
PRE-RS, POST-RS, backward or forward traceability as discussed in ch. I.5.7.1. 
Early agreement exists that traceability should be bidirectional (see ch I.5.7.1). 
Standards as A-SPICE (see ch. I.7.4) oblige to use bidirectional traceability mod-
els. 

A lot of approaches can be characterized by their traceability direction or 
orientation within a process model. CTMs for PRE-RS are, for example, the con-
tribution structures model by Gotel and Finkelstein [GF95], [GF96] or the RE 
framework of Pohl [Po93], [Po99], (see ch. I.5.7.1). In the POST-RS direction, 
approaches exist for design (ch. II.10.6), code (ch. II.10.7), and testing [Tv99; 
p.373]. The COSMOD-RE model by Pohl [Po08; p.565ff] is a model combining a 
PRE-RS and a POST-RS approach in parallel. 

 

c) Relationship Attributes 
Just as documentation entities, relationships can also be enhanced by attributes. 
Examples for valuable attributes for relationships are status, creation date, creat-
ing author.  



216 II.  Rationale Management and Traceability in Detailed Discussion 

Relationship attributes can also support IAs and change implementation. 
Knethen and Paech describe here a “weighting attribute”, which enables to dis-
tinguish more important from less important relationships, thus helping to tell the 
more important impacts apart from the less important (side) impacts182 [KP02; 
p.18].  

Such an attribute can also be used to record rationale behind a link, howev-
er, with very limited support for extensive documentation of rationale. Rationale 
in context of traceability is discussed in ch. II.9. 

As an example, the REM-tool IBM Rational DOORS supports creation and 
management of relationship attributes. Thus, this technique is available for prac-
tice.  

The R2A tool approach introduced in part III uses relationship attributes to 
automatically capture information about the current status, author, and editing 
time of each relationship, where especially the status information is a central 
concept to implement a consistency management mechanism (see ch. III.22.2). 

 

d) Setting (i.e. Traceability Establishment) 
This part discusses how traceability is established. Pinheiro calls this trace pro-
duction and stresses out that this issue has high importance, when considering the 
applicability of a CTM in practice [Pi04; p.105] (this is discussed in ch. II.10.5). 
Generally, two fundamentally different ways are available [Li94; p.19]: 
• Implicit relationships, 
• Explicit relationships; 

 

Implicit Relationships 
Implicit relationships arise as a by-product of other processes. Knethen and Paech 
characterize implicit relationships as “links that do not require manual setting” 
[Kn01b; p.47], [KP02; p.18]. This means these relationships can be surfaced 
using automatable approaches.  

When analyzing different literature ([Li94; p.19], [LW99], [Sm99c]), 
Knethen and Paech ([Kn01b; p.47], [KP02; p.18]) were able to identify the fol-
lowing manifestations of implicit relationships: 

                                                           
182 A good example of this method in practice is known by the author in test management. 

Requirements are often tested by several test cases. Links between a requirement and 
its verifying test cases can be enhanced by an attribute that indicates how much each 
test case accounts for fulfilling a requirement. This degree of fulfillment attribute can 
have a per cent scale. In this way, e.g., a requirement can have a link with 80% to a 
TestCase1 and two links with 10% to a TestCase2 and a TestCase3. A positive test re-
sult for TestCase1, but negative for TestCase2 and TestCase3, would indicate that a re-
quirement is fulfilled by 80 per cent. 
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• Name mapping (also called name tracing or name referencing) denotes the 
possibility to retrieve traceability information from names and abbreviations. 
It assumes that names and abbreviations used in different traceable entities 
(i.e., artifacts) designate the same items or facts. Name mapping is especially 
promising when artifacts have a high degree of formality, because formality 
ensures proper naming at all relevant locations. Source code has a high de-
gree of formality since compilers must be able to process it. Corresponding-
ly, names in source code are always identical, otherwise compiler errors oc-
cur. This makes source code to an optimal candidate for name mapping. To-
day's code development tools such as Eclipse or Microsoft Visual Studio of-
fer support for analyzing references (so called dependency analysis) and it is 
highly probable the most heavily used technique applied for performing IAs 
in practice. Design models are models of portions of source code. Thus, they 
should contain the same names as in code. Ergo, name mapping can also be 
an effective strategy for tracing dependencies between code and design mod-
els. In the context of SPICE in practice, Hörmann et al. [HDH+06; p.94] es-
pecially recommend name mapping as a good strategy for fulfilling tracea-
bility demands between design and code artifacts. Exact name matching, 
however, will only be ensured if code is generated for design through formal 
automatic transformation processes (automatic code generation). In manual 
coding processes, processes must be established to avoid drifts between de-
sign models and code. Specially change processes must ensure that changes 
are properly performed in both artifacts, otherwise names can vary between 
design and code leading to lost name mappings and thus to lost traceability 
links. Name mapping can also be applied in rather document-oriented envi-
ronments such as in requirements specifications. However, in this case simi-
lar processes for ensuring consistent naming throughout the considered arti-
facts must be applied. Fortunately, another heuristic significantly reinforces 
name mapping in the requirements field in an implicit way: It is very im-
portant to achieve a common understanding of the project between all differ-
ent stakeholders. This can only be achieved if the project develops a com-
mon vocabulary for its used terms. Therefore, in the field of requirements 
specification, using precise terminology and establishing adequate terminol-
ogy management is a central principle and thus name mapping is a very 
promising heuristic for requirements specifications. 

• Relationships given by structure refer to retrieved traceability information by 
capitalizing structures emerging as effect of development methods. In object-
oriented methods, a class contains private data, attributes and operations, 
building structures of implicit relationships usable for tracing. In REM prac-
tice, the heuristic of deriving more specific low-level requirements from 
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higher-level requirements and documenting these dependencies in a hierar-
chical child parent relation is widely employed [LW99]. From its first de-
scription by Nelsen [Ne90] as so-called top-down structured analysis and 
first experiences with tool support [Li94; p.25], it is supported by many 
REM-tools such as IBM Rational DOORS, which organize requirements and 
their dependencies by a hierarchical specification tree. In the SysML 
[SYSML] a <<derive>>-relationship between requirements is defined with 
analogous semantics.  

• Relationships given by modeling paradigm refer to implicit relationships 
resulting from the usage of certain modeling languages, tools or techniques 
[LW99]. An example of this is the diverse possibilities to specify relation-
ships in UML.  

• Dynamic relationships between code components refer to techniques for 
identifying relationships occurring in code during execution. Here, depend-
ency analysis methods as dynamic program slicing [KR98] (see [GB08] for 
an overview on program slicing techniques) can provide valuable support.  
 

Explicit Relationships 
Explicit representation [Kn01b; p.48-49] refer to linkages manually documented 
by the developers. “Explicit relationships came from external considerations 
supplied by the developers. So, for example, the linkage, or relationship, between 
a textual requirement and a use case that describes the requirement is determined 
solely by the decision of the developers that such a relationship has meaning. 
There are no intrinsic relationships between the documentation entities; only 
external decisions can establish the relationships” [Kn01b; p.48]. Explicit rela-
tionships can be used for all kinds of relationships. However, if implicit relation-
ships are present, it should be carefully considered whether explicit relationships 
shall be established with the same meaning, because this creates redundant infor-
mation. Any redundant information is a source of inconsistency and needs further 
maintenance when changes occur. Thus, it is rather preferable to extract the infor-
mation from the implicit relationships. Similar findings are expressed by Pinheiro 
[Pi04; p.110] stating to use as much automation as possible.  
In practice, the following methods are relevant:  
• Simple documentation tools as Microsoft Word or Excel allow mechanisms 

as hyperlinks or creating mapping tables (so called traceability matrices as 
described below). 

• REM-tools as IBM Rational DOORS allow manual linking between entities. 
In some tools this is possible via drag-and-drop. 

• Modeling tools allow systems to be described by elements, diagrams and 
their relations. As an example, the UML tool Sparx Systems Enterprise Ar-
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chitect offers several ways of linking elements with diagrams, elements with 
elements and also hyperlinks to external documents are possible. However, 
the kinds of relationships also depend on the modeling techniques (e.g., func-
tional decomposition produces relations different from object-oriented de-
composition). 

• Some specification languages as RSL [Al77] or PSDL [SHB91] exist, allow-
ing references to be specified to requirements but are “not primarily intended 
for requirements tracing” [Pi04; p.108].  
 

Automatable Versus Manual Approaches183 
Research on traceability has proposed various approaches for establishing or 
retrieving traceability dependencies. Rochimah et al. present evaluation results of 
about 100 publications to current state-of-the-art traceability approaches con-
cerned with SW evolution [RWA07]. Research has shown that manual creation 
and maintenance of traceability relations requires enormous effort and includes 
substantial complexity [EG04], [GF94], [RJ01] (see ch. II.10.5). The study of 
Rochimah et al. further shows that current research on traceability focuses on 
automatic or at least semi-automatic traceability link generation [RWA07; table 
4]. Some automation approaches still depend on manually established links that 
are then enriched by supporting automation mechanisms while others are fully 
automated.  

The author has analyzed the scope of automation of these approaches and 
can identify two major areas of automation: 
1. Finding interdependencies between different requirements artifacts (e.g., 

textual documents, use case descriptions, feature-models or analysis models 
(ch. I.5.4)) concerned with requirements. 

2. Finding interdependencies between design and code artifacts. 
Only the approach suggested by Spanoudakis [Sp02], [SZP04] tries to estab-

lish automated trace links from requirements to models, focusing on analysis 
models, though. It is striking that current automated link generation approaches 
do not concentrate on establishing links between the requirements world and the 
design world. The author believes that this can be explained by the name map-
ping (cf. ch. II.10.4.2.2) phenomenon: Instead of creating explicit links between 
items, the same names are used [MHD+07; p.224]. If no automatic code genera-
tion is available for a design tool and code must be typed manually, traceability 
must also be established between design and code. As design is (and should be) a 
more abstract view on the problem modeled, traceability can also be established 
by naming corresponding elements in design and code identically. This is an 

                                                           
183 This chapter bases in parts on [TKT+09]. 



220 II.  Rationale Management and Traceability in Detailed Discussion 

explicit heuristic. In addition, another heuristic significantly reinforces this effect 
in an implicit way: It is very important to achieve a common understanding of the 
project for all different stakeholders. This can only be achieved if the project 
develops a common vocabulary for its used terms. Therefore, in the field of re-
quirements specification, using precise terminology and establishing adequate 
terminology management is a central principle. However, these approaches pro-
vide no guarantee to identify all interdependencies yet, as name mismatches or 
other effects still can happen. Attempts try to ameliorate this problem by using 
requirement ontologies as a common representation of mutual understanding of 
the semantics of words in the requirements sentences, to establish automatable 
traceability links [ASP09].  

Other approaches provide a semi-automation such as identification of trace-
ability information from manually documented relationships during modeling 
activities [TN97], [TM00], [Eg03], extending links with notification mechanisms 
to automatically propagate change notes to other affected items [CCC03],[Sa06], 
or identifying dependency info.  

[ANR+06] and [GG07] provide an overview of the most recent advances in 
technologies to automate traceability in the context of model-driven develop-
ment. In summary, the author could not identify any significant automation at-
tempts to bridge the gap between requirements and design. This matches with the 
author's observation that the transition between requirements and design involves 
a significant structural and semantic gap184, where automation inevitably is very 
difficult (cf. ch. II.10.2).  

Thus, automatable approaches may not be suitable to cross significant se-
mantic gaps and therefore automation may in practice only become a supportive 
alleviation for still manual traceability processes. Correspondingly, the author 
agrees with Egyed et al. that “while some automation exists, capturing traces 
remains a largely manual process” [EGH+07; p.115]. As a result, the approach 
described in part III mainly concentrates on improving manual traceability strat-
egies. 

In the R2A solution (part III), the concept of the so-called requirement influ-
ence scope (see ch. III.18.2.2) involves that requirements assigned to a high-level 
element in design are inherited to lower-level design elements. This can be seen 
as a kind of traceability automation. 

 

                                                           
184 Research of Gruenbacher, Egyed and Medvidovic [GEM01], [GEM03], [MGE+03] 

even suggest that this involves such a large semantic gap that it is even impossible to 
employ a meaningful link concept between both (see ch. II.10.6). 
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e) Representation of Relationships 
Relationships must be presented to the users according to their traceability needs. 
Wieringa [Wi95] could identify three different ways for representation: 
• Traceability matrices: “A matrix that records the relationship between two or 

more products of the development process; for example a matrix that records 
the relationship between the requirements and the design of a given software 
component” [IEEE610; p.78]. One artifact's documentation entities (e.g., the 
requirements) are enlisted horizontally as columns and the other artifact's en-
tities (e.g., the entities of a design) are enlisted vertically as rows. Relations 
are then expressed as symbols in the intersecting cells (cf. [So07; p.197].  

• Cross references: Relationships between entities are represented as refer-
ences similar to hyperlinks in hypertext languages as HTML. These 'trace 
links' allow navigation between the entities.  

• Graphical models: Entities and their relationships are represented in some 
graphical way. The method described here (part III) also provides graphical 
preparations of the gathered relationships. Marcus et al. [MXP05; p.57] pro-
vide an opinion about why and when graphical visualizations may provide 
superior support than the methods mentioned above. 
REM-tools often rely on one or more of the ways of representation men-

tioned above. As an example, IBM Rational DOORS uses a cross references 
approach as a main editing approach. These cross references can also be trans-
formed and viewed as a traceability matrix. As IBM Rational DOORS offers a 
scripting extension mechanism via the DOORS eXtension Language (DXL), 
some companies also have extended the standard IBM Rational DOORS envi-
ronment via more graphical preparations185 of the collected data.  

 

f) Functional and Nonfunctional Traces 
Pinheiro [Pi00], [Pi04] identifies two fundamentally different types of traces: 
• Functional traces, 
• Nonfunctional traces; 

Functional traces are related to functional aspects. As they describe map-
pings between entities, they have a precise – narrow – semantic. Pinheiro argues 
that these traces occur naturally when well-defined models and notations are 
used. In this case, the traces can be directly “derived from the syntactic and se-
mantic connections prescribed by the models or notations” [Pi04; p.96]. In other 
words, if precise models are used, functional traces can be directly derived from 
the relationships occurring in the models.  

                                                           
185 See http://www.smartdxl.com/content/?page_id=144 (Access: 2009/10). 
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Pinheiro lists some model types and their meaning in the context of func-
tional traces [Pi04; p.97]: 
• Analysis models (ch. I.5.4) relate entities from the REM phase (interviews 

and transcriptions, documents and the extracted requirements). 
• Design models (ch. I.6) relate entities used in the design phase (classes, dia-

grams, attributes, and methods). These mappings tend to be more structured. 
• Process models (ch. I.7) relate objects of the development process (tools, 

activities, artifacts and people). 
• Organizational models (organizational structures, people, goals, activities, 

and resources) include environment and social issues. 
Pinheiro emphasizes that models may also overlap meaning that representa-

tions of the same entities may be present in several models. Identifying those 
overlapping representation is a good starting point to identify mappings between 
models. 

On the other side, nonfunctional traces relate to goals, reasons, intentions, 
purpose, context of the intended system, decisions, and other intangible con-
cepts186. According to Pinheiro, also nonfunctional requirements can be seen 
among these intangible concepts and correspondingly most traces involving non-
functional requirements are nonfunctional [Pi04; p.98]. 

Functional traces enforce appropriate registration and extraction, promote 
uniform understanding, allow automation of the traceability processes, and allow 
procedures to verify consistency and correctness [Pi04; p.100]. 

A common way to handle nonfunctional traces is to reexpress them as func-
tional ones that can be verified [Pi04; p.99] (also cf. [WW03; p.21]) in an analo-
gous way as nonfunctional requirements can be often expressed by several more 
tangible functional requirements [JL05; p.130], [PKD+03; p.145].  

In part III, the author shows how this can be expressed in design by a re-
quirement influence scope concept (cf. ch. III.18.2.2) and a process heuristic 
ensuring that the influence scope is as local as possible (cf. ch. III.18.2.4). 

A reformulation of nonfunctional traces into functional ones can especially 
promote uniform understanding, because non-functional traces leave open space 
for differences in interpretation leading to potential errors or deviations between 
                                                           
186 “However, not all needs for tracing may be encompassed by using methods and tech-

niques. Certainly not, when what is sought refers to the very use of them. For example, 
the answer to what data-flow is input to process X in a certain data-flow diagram in-
volves only elements from the method itself, while asking why a particular process in 
the same diagram is described in the way it is can only be answered with recourse to a 
meta model, where the use of the model can be assessed. In this case the referential in-
volves a wider context that may include the social environment in which the develop-
ment is carried out” [Pi00; p.4]. 
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the intended traceability information to be captured and the really captured 
traceability information. 

However, such transformations involve dangers of significant losses of im-
portant information. To counter these dangers, “traceable objects should allow the 
use of hyper-media objects like videos, recordings, and images together with 
mechanisms for inspecting these kinds of objects” [Pi04; p.104] to record and 
regather real-world observations. The relationships between those hyper-media 
objects and parts of formal traces are called extended traceability [HPW+99], 
(see also [Pi04; p.104]). In the tool solution discussed in part III, a step towards 
nonfunctional tracing is done by the decision models described in ch. III.20 and 
ch. III.21. The decision model allows capturing non-functional traces into a semi-
formal skeleton of functional traces that can be accompanied by a further textual 
description, where non-functional aspects can be described. This mechanism 
could also be extended. Not only a textual description, but also other hyper-media 
objects can be added. 

Another strategy to deal with nonfunctional traces is, e.g., providing direct 
modeling support as shown by Graham [Gr03], who uses the profile extension for 
UML (UML Profile for Schedulability, Performance, and Time [Do04, ch. 4]) to 
model nonfunctional performance constraints directly in the design model. Ac-
cording to Pinheiro [Pi04; p.99], nonfunctional aspects can thus be functionally 
captured by using some model, but this leads again to a loss of much of the non-
functionality.  

Thus, Pinheiro [Pi04; p.110] concludes that the major obstacles to realizing 
traceability are organizational and not technical (see ch. II.10.5). “The informal 
aspects of tracing and the nonfunctional nature of some traces explain most diffi-
culties” [Pi04; p.110]. 

II.10.4.2.3  Examples of Conceptual Trace Models 

As an example for a defined CTM, Knethen refers to the proposals of Ramesh 
and Jarke [RJ01], who term their concept as traceability reference model. In the 
course of a three-year empirical study analyzing the handling of traceability 
information in a broad variety of usage contexts, Ramesh and Jarke [RJ01] were 
able to analyze the traceability behavior in practice of 30 target groups from 26 
organizations in 11 business units. The following results produced interesting 
insights into growing unstructured complexity when traceability has been em-
ployed [RJ01]: 
• Organizations as the U.S. Department of Defense spend 4% of its IT devel-

opment costs for traceability without achieving adequate value. The authors 
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ascribe these findings not at last to a planless realization of traceability link-
ages.  

• “A broad variety of traceability strategies is practiced in industry and the 
existing models are too simple and/or too rigid to deal with this variety” 
[RJ01; p.59]. 

• In the involved organizations and literature, the analysis of traceability mod-
els surfaced the usage of 18 different link types at 21 different object types 
(artifacts or parts of artifacts). 

• Concerning the employment of traceability, the user groups could be seg-
mented into low end and high end users. With growing experience the ten-
dency to use richer traceability models towards high end exists (cf. also 
[Ra98]). Typical needs of low end users are technical problems (e.g., what 
are interconnections between requirements) representable by functional trac-
es, whereas high end users are more interested in managerial issues (deci-
sions etc.) rather manageable by nonfunctional tracing [Pi04; p.100] (cf. also 
[Br07a], [RJ01]). Table 10.2 shows the differencing characteristics between 
both user types according to [RJ01; p.65] in detail. 

• Ramesh and Jarke [RJ01] further point out that different traceability link 
types exist (also cf. [Br07a]): product-related (e.g., dependency and satisfac-
tion) and process-related (e.g., evolution or rationale). However, for the de-
cision to realize a link type, very detailed cost-benefit analyses are employed. 
These findings directly match with Pinheiro's differentiation between func-
tional (corresponds to product-related) and nonfunctional tracing (corre-
sponds to process-related). 
According to Ramesh and Jarke, these findings show that establishing 

traceability is accompanied by an evolutionary learning curve tending to richer 
traceability models, in which each organization traverses rather planless phases 
of traceability (simply put, 'playing around with traceability') and in which a 
more structured and planned methodology develops tending to richer (high-level) 
traceability models.  

In this point, the author disagrees to a certain extent to the findings of 
Ramesh and Jarke. When analyzing the focus groups of the study [RJ01; p.64], a 
broad variety of branches are taken into account including automotive industry. 
However, the automotive industry may have different business settings in com-
parison to other named branches such as avionics, military or governmental ad-
ministration and telecommunications. In these branches, SW development costs 
are an integral part cost of development, in which often specialized pieces with 
low quantities but high demands for quality (especially safety) are demanded (see 
ch. I.2.3, ch. I.7.5). This allows companies to have higher software development 
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budgets. In the automotive industry, high piece numbers often lead to HW piece 
costs as the main driver of costs. In this business, SW development costs are 
often calculated as side costs leading to tight budgets and strong cost pressures187. 
This means, establishing new traceability features leading to richer traceability 
models even faces stronger concerns about development costs. In this setting, a 
development to much richer traceability models will only take place if pressure is 
imposed188, or if new traceability methods allow significant advantages with 
potential to cost reductions. In other words, the author believes that traceability is 
not employed in equal ways throughout all different industries. Instead, different 
constraints within the different industries lead to different forms of employed 
traceability models in practice. 

Table 10.2  Characteristics of low-end and high-end traceability users [RJ01; p.65] 

Characteristics  Low-end traceability 
users 

High-end traceability users 

Number of organi-
zations identified in 
the study. 

Nine Seventeen 

Typical number of 
participants 

Fifty-four Eighty-four 

Typical complexity 
of system  

About 1000 require-
ments 

About 10.000 requirements 

Traceability experi-
ence level 

Zero to two years Five to ten years 

User definition of 
traceability 

Documents transfor-
mation of requirements 
to design 

Increases the probability of producing a 
system that meets all customer require-
ments and will be easy to maintain. 

Main application of 
traceability 

Requirements decom-
position 
Requirements allocation
Compliance verification
Change control 

Full coverage of life cycle 
Including user and customer, captures 
discussion issues, decisions and ra-
tionale 
Capturing traces across product and 
process dimensions 

                                                           
187 This is especially true for the Automotive suppliers industry branch. In that way, the 

author is not even sure whether automotive OEMs and suppliers have comparable de-
velopment settings. 

188 In the last years, such a case has taken place in which several OEMs have decided to 
demand SPICE based development processes from suppliers thus significantly lever-
aging traceability concepts in the automotive supplier industry. 
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As a consequence of their findings described above, Ramesh and Jarke 
[RJ01] searched for ways to lower the steep and more or less planless learning 
curves of most companies for traceability establishment in practice. As a solu-
tion, they propose the usage of so-called traceability reference models (TRM) 
[RJ01], this means, the usage of prototypical adaptable linkage models of the 
particular problem domain – also possible to term traceability framework. “Ref-
erence models are therefore an abstraction of best practice, condensed from nu-
merous case studies over an extended period of time, followed by more case 
studies to refine and evaluate the proposed reference model” [RJ01; p.58]. Corre-
sponding to the identified user types and their interview results, Ramesh and 
Jarke could condense a low-end and a high-end traceability reference model, the 
corresponding user types use. 

The low-end traceability model is segmented in four artifact types. Require-
ments are hierarchically managed via derive relationships representing require-
ment decomposition (see ch. II.10.4.2.2). Verification procedures are developed 
to verify the implementation of requirements. Requirements are satisfied by a 
system on which the verification procedures are performed to ensure that the 
system fulfills the requirements. The system can be segmented into subsystems or 
components via depend-on relationships. The system interfaces with other exter-
nal systems. 
In contrast, the high-end traceability model is segmented into four sub models: 
• The Requirements Management Model describes the documentation and 

management of the found requirements. 
• The Rationale and Decision Model deals with comprehensible documenta-

tion of requirements or architectural related decisions. 
• The Requirements to Design Model manages comprehensible mapping of 

requirements to design. 
• The Test and Verification Model cares about mapping of requirements with 

test scenarios as verification of requirement fulfillment. 
The Requirements Management Model, deals about requirement elicitation, 

specification (documentation) and management of the found requirements. The 
Test and Verification Model shows how compliance verification procedures are 
related to process mandates, different testing techniques, deviations reporting, 
requirements, and the system. Both topics are not further discussed as they are not 
in the center of this thesis. The interested user may consult [RJ01].  

The Rationale and Decision Model orients itself on REMAP [RD92] (ch. 
II.10.8). It describes the connections between decisions, rationale, assumptions, 
arguments, alternatives, and issues or conflicts together taking effect on other 
objects (such as requirements, system, components, or design). As ch. II.10.8 
describes, the model can be seen as a combination of IBIS with REM activities. 
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The Requirements to Design Model describes the connections between re-
quirements and design. Design creates, or defines the system with its subsystems 
and components being structured by depend-on and part-of relationships, where 
part-of explicitly refers now to a kind of abstraction hierarchy concept. The sys-
tem also depends-on external systems and uses resources. Inside, the system per-
forms functions addressed (described) by requirements. As in the low-end trace-
ability model, requirements are allocated to the system, subsystems and compo-
nents, which satisfy the requirements. Additionally, the requirements drive the 
design, but also change requests modify the design and mandates describe gen-
eral policies to be applied on design. 

The TRM189 in [RJ01] can be seen as a prototypical generic relationships 
model (or traceability scheme) for traceability issues, in which relevant parts can 
be used individually according to the traceability need. The TRM can also be 
seen as a kind of meta-model of possible traceability relationships and gives 
support for clear interpretation of the relationships.  

One merit of the TRM is to emphasize aspects about design often neglected 
in traceability considerations, such as resource restrictions, external systems, 
change requests or mandates. Concerning implementation of the TRM, the article 
assumes a complete realization by using a REM-tool. Thus, the aspects of con-
necting the requirements artifacts with the design artifacts, when different tools 
are used (as it is usually the case), are only handled by an abstract, symbolic way, 
because design is only described as defining representation of the system, and 
requirements just drive the design. 

As Pinheiro [Pi04] and Brcina [Br07a; p.5] indicate, the high-end traceabil-
ity model of Ramesh and Jarke stronger supports nonfunctional traces. This is, 
for example, the case at the emphasis of RatMan support as important means to 
improve traceability information. However, the model is treated as a more or less 
separate and loosely coupled aspect. In the author's believe, RatMan support 
should be more closely integrated into the design process in order to support 
rationale capture as a by-product thus overcoming significant benefit problems 
(see ch. II.10.5). 
Apart from [RJ01], other authors also describe rudiments for a CTM: 
• Analyzing the problems connected with traceability, Gotel and Finkelstein 

draw the conclusion that Pre-RS traceability is one of the most crucial issues 
[GF94]. As a consequence, they developed a CTM called contribution struc-
tures for describing the origins of requirements [GF95]. 

• Hatley et al. [HHP03; p.33-41] provide a requirement meta-model for em-
bedded development practice. The model explicitly emphasizes non-

                                                           
189  See also the remark of [Pi04; p.109]. 
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functional aspects important in embedded systems (as for example timing 
constraints) and their relationships to other requirements. Further, the model 
is detailed by discussions about relations between requirements and architec-
tures [HHP03; p.169-175]. In this way, the requirement meta model can also 
be seen as a traceability model or at least give indications about possible 
traceability relationships in embedded practice (see especially the meta-
model diagram [HHP03; p.35]). 

• SysML defines several relationship types to relate requirements with other 
items: <<DeriveReqt>> (=annotates a derive relationship between require-
ments), <<Satisfy>> (=describes that a requirement is satisfied by an item), 
<<Verify>> (=describes that a test verifies a requirement), <<Refine>> 
(=describes how a model element or set of elements refine a requirement), 
<<Trace>> (=general purpose relationship between a requirement and any 
item), <<Copy>> (indicates that an item is a copy of another), [SV08]. 

• Knethen [Kn01a], [Kn01b] develops a formal meta-model for a modeling 
approach to document requirements traceability in design artifacts as a by-
product of the usual modeling activities. 

• Leffingwell and Widrig [LW99; p.338] provide a CTM for managing re-
quirements in a mainly software-driven development practice.  

• Pohl’s dependency model [Po99], [Po08; p.505-526], (see also ch. I.5.7.1, 
[MXP05]) tries to provide a systematic outline of different traceability types. 
It identifies five general traceability type categories with nineteen different 
dependency link types:  
• Conditions describe conditional connections such as constraints and 

preconditions.  
• Content describes whether contents are similar to each other, are the re-

sult of a compare-operation between contents, contradict each other, or 
conflict with each other.  

• Documentation describes connections between documents such as ex-
ample_for, test_case_for, purpose, responsible_for, background, com-
ment relationships.  

• Abstraction describes connections between items of the kinds classifica-
tion, aggregation or generalization. 

• Evolution describes evolutionary types such as replaces, satisfies, ba-
ses_on, formalizes and refines. 

• Wieringa [Wi98] could also identify 31 different link types possible to use to 
coherently connect requirement documents, design artifacts, and other doc-
umentation.  
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Pinheiro [Pi04; p.107] provides an overview on further proposals for CTMs 
in the context of design languages such as UML. He [Pi04; p.109] further ex-
presses the idea that other reference models concerning REM as provided by 
[GGJ+00] and [Ge05] may be a good starting point for discussing traceability 
issues, even though they are not specifically intended for traceability. 

Kelleher proposes making CTMs more flexible by using the pattern concept. 
Such a traceability pattern describes “best practices, good traceability designs 
and captures successful work experiences” [Ke05; p.52]. He could differentiate 
two different traceability pattern types: 
• Generative Traceability Patterns describe characteristics of a CTM to be 

used as a meta-model for traceability establishment. 
• Traceability Engineering Patterns “help exchange traceability experience or 

knowledge and provide rules for generating successful traceability practices” 
[Ke05; p.52]. 
As demonstration examples for the effectiveness of his idea, Kelleher de-

scribes three patterns (Traceability Plan Pattern, Traceability Strategy Pattern, 
and Product Compliance Pattern) and sketches a traceability pattern tool envi-
ronment. 

II.10.4.3  Process 

In order to ensure usefulness of traceability information, defined processes 
should accompany any activities concerned with establishment, usage and 
maintenance of traceability information. Pinheiro [Pi04; p.107] calls this “trace-
ability methods”.  

Defined processes are especially important when the number of require-
ments grows [Ja04; p.39], [RJ01]. Factors influencing the decisions about the 
right processes are “number of requirements, the system lifetime, organizational 
maturity, the development team size, type of the development system and specific 
customer requirements” [Ja04; p.39]. Smaller teams can manage requirements 
and their changes with rather unstructured traceability processes, whereas larger 
teams must more rely on formal traceability policies [Ja04; p.39].  

Process standards as SPICE and CMMI also define explicit demands for 
traceability processes that must be considered. Ch. I.7 enlists the aspects to con-
sider for this thesis. Another description of traceability methods is found in 
[Yu94]. Concerning goals, processes should consider ensuring the following 
aspects: 
• A uniform and appropriate level of granularity of traceability information 

should be achieved [DP98], [Kn01b; p.57]. 
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• Useful support for IAs [HDH+06; p.94], (see ch. II.10.3). 
• Avoid consistency gaps [HDH+06; p.94]. 
• Allow coverage analyses whether all requirements are sufficiently consid-

ered in all further processes [HDH+06; p.94]. 
• Support of verification procedures [HDH+06; p.94]. 

Typically, the following processes are important for valuable traceability in-
formation [Pi04; p.103ff], [Kn01b; p.49ff], [KP02; p.21f]: 
• Define the entities and relationships to be traced, 
• Capture traces, 
• Extract and represent traces, 
• Maintain traces; 

II.10.4.3.1  Define the Entities and Relationships to Be Traced 

At first, an organization must define what entities and what traces are needed. 
Pinheiro calls this the trace definition phase [Pi04; p.103]. In order to achieve 
efficient and valuable traceability, Weber and Weisbrod call this the real chal-
lenge about traceability [WW03; p.22]. The discussion about CTMs in the chap-
ters above provides an overview of the entities and traces that can be considered.  

As differences in interpretation are a source for errors, definitions of entities 
and traces should promote a uniform understanding [Pi04; p.104]. Concerning 
trace definition, a CTM should consider the following aspects [Pi04; p.110]: 
1. Define a few basic types as a manageable set of the most important infor-

mation. 
2. Allow the specification of user-definable traces to allow easy adaption to 

user or project specific needs. 
3. Allow the use of rich representations of traceable objects as, e.g., representa-

tion by multimedia content to support nonfunctional tracing. 
Knethen [Kn01b; p.40] emphasizes that a precise general definition of the 

types and kinds of traceability relationships to be maintained is currently missing 
(cf. also [RJ01], [RE93]). The semantics rather strongly depends on the usage 
purpose [Kn01b; p.40]. 

In the author's view, this may be normal because traceability approaches are 
not useful per se, but have a considerably strong pressure to provide benefit ch. 
II.10.5). Besides, a large variety of possible traces exist. Thus, rather use-driven 
approaches may be better to maintain and more specific than general approaches. 

Pinheiro further emphasizes that the description of the traces by a CTM 
“should resemble the ways traces occur in the real world” [Pi04; p.104]. Other-
wise, if a mismatch between the traces defined in a CTM and the traces really 
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captured exists, dangers will arise that on one side things are captured that have 
not been there and then again things may be retrieved that never happened [Pi04; 
p.104]. Concerning the tool introduced in part III, the author has considered this 
problem by developing a process heuristic helping designers to capture traces 
resembling designers' thinking and proceeding (see ch. III.18.2.4). 

Further, the authors thinks that CTMs must also consider what Ebert calls 
the “life-cycle of a requirement” meaning that requirements become valid, may 
change several times and may also become invalid [Eb08; p.260]. Correspond-
ingly, R2A (see part III) also supports a mechanism to consistently maintain 
traceability information according to the requirement's life-cycle (see ch. 
III.22.2).  

II.10.4.3.2  Capture the Traces 

This aspect deals with processes concerned with the establishment of traces; also 
called trace production [Pi04; p.104]. Such processes must address the questions 
when an identified information is captured, how, and by whom [KP02; p.21]. In 
some cases, traceability establishment may be automatable. A discussion of this 
is provided in ch. II.10.4.2.20 above. 

Referring to [Pi96], Knethen and Paech [KP02; p.21] describe two ways 
traces can be captured: 
• Off-line: describes approaches that demand trace capturing as separate activi-

ty of the actual development activity. This kind of approach can be per-
formed manually, or automatically. Dependency analysis approaches that au-
tomatically extract trace information from source code are an example of au-
tomated off-line trace capturing. 

• On-line: describes ways of capturing traceability information while perform-
ing a development activity. This is why most of these approaches are auto-
mated ones, but also manual approaches can support these ways. This is sup-
ported by the approach described in part III. 
Pinheiro explicitly emphasizes that a CTM must consider trace capture pro-

cesses [Pi04; p.104], because first of all, only these traces are captured being 
recognized before, but – even more important – trace capturing may be the crux 
deciding about success or failure of traceability. In ch. II.10.5, the author ex-
plains that trace capturing faces a significant benefit problem and it may directly 
interfere with the developers' actual development activities [KP02; p.21], 
[AR05]. Traceability approaches may only succeed if they solve these problems.  

Dömges and Pohl emphasize that off-line approaches (Dömges and Pohl call 
these approaches trace reconstruction [DP98; p.58]) tend to traces that “are typi-
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cally incomplete and idealized in order to meet certain expectations” [DP98; 
p.58]. As a solution for this problem, Knethen and Paech [KP02; p.26], [Kn01a], 
[Kn01b] propose recording traceability information on-line as a by-product 
[KP02; p.26] of normal development activities. Pinheiro emphasizes that many 
functional traces could be captured as a by-product [Pi04; p.108]. Accordingly, 
the approach introduced in part III supports a manual traceability establishment 
approach that tries as much as possible to support traceability generation as a by-
product of designers' normal design activities. 

As an additional problem of solutions such as the solution described in part 
III, capturing traceability faces special difficulties when tool boundaries must be 
bridged. Weber and Weisbrod experienced tool couplings as often immature 
[WW02; p.23]. As a solution to avoid negative effects of tool couplings, they 
recommend minimizing linking between two tools to be bridged and propose 
using methodological approaches as design guidelines to reduce interconnections 
and thus linking efforts [WW02; p.23]. A detailed discussion on tool couplings is 
provided in the following chapter about traceability tools.  

II.10.4.3.3  Extract and Represent Traces 

This process aspect deals about extracting and representing specific infor-
mation from the set of gathered information, so that the information need is ful-
filled in an optimal way. In other words, the processes must answer “how to ex-
tract and represent what information is needed by whom to fulfill what purpose” 
[KP02; p.22]. 

Different and flexible ways for trace extraction should be possible. In Pin-
heiro's eyes, three different modes should have appropriate support by trace ex-
traction mechanisms [Pi04; p.105]: 
• Selective tracing shall allow to “restrict the tracing to certain selected pat-

terns” of entities and relations. In this way, only certain specific classes of 
entities and relations could be considered. More sophisticated approaches 
could also include contextual information (as for example the development 
phase) as selection criterion. 

• Interactive tracing means to allow an interactive browsing mechanism to 
navigate backward and forward in the model. 

• Non-guided tracing shall allow the user to arbitrarily step from entity to 
entity analyzing contents as demanded. This shall ensure convenient tracing 
when little information on what or how to trace is available. 
In [PG96], Pinheiro and Goguen show how all three modes can be realized 

with the traceability tool TOOR (discussed in the following chapter about tools). 
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Extracted information must be represented in a fashion supporting the trac-
ing process. “It should effectively help to fulfill the need that triggered the trac-
ing” [Pi04; p.106]. 

Further, the extraction procedure and the information representation should 
be intuitive in order to be regarded as useful and efficient. Otherwise, “it may be 
simpler to go around and to informally ask people” [Pi04; p.106] about any rele-
vant information (see also [SS07]). 

Summoning up trace extraction, a traceability approach should support the 
following criteria [Pi04; p.110]: 
• Provide different and flexible ways for extracting information,  
• Extraction should be context sensitive, 
• Extraction procedures should get the information needed to satisfy tracing 

needs; 
In ch. III.22.1, the author shows how the considerations about trace extrac-

tion are realized in the tool solution described in part III. 

II.10.4.3.4  Maintain Traces 

“Traceability is a great feature, but the real challenge is deciding which traces to 
maintain” [WW02; p.22]. Once captured, traces must be continuously maintained 
in order to keep its validity. Process definitions must define when traces must be 
maintained, how, and by whom. The process activities are similar to the trace 
capturing processes. Especially for maintaining traceability information, suitable 
tool support is essential (see next ch. II.10.4.4) when high numbers of relations 
are involved. Instead, less sophisticated solutions basing on spreadsheets and 
traceability matrices tend to be hard to change [LW99; p.340].  

Ch. III.22.2 describes how the trace maintenance and general artifact con-
sistency can be improved by the tool solution introduced in part III. 

II.10.4.3.5  Processes and the Traceability Environment Circularity 
Problem 

Concerning traceability environments and their processes, Pinheiro [Pi04; 
p.101ff] could identify a circularity problem: On the one hand, only primarily 
registered traces are considered, on the other hand, only traces can be registered 
that have been perceived before.  

The problem discloses when considering the way traceability usually is in-
stalled and used: 



234 II.  Rationale Management and Traceability in Detailed Discussion 

1. At first, a CTM defining the potential traces is built up in the definition 
phase. 

2. During the capturing phase, the traces are perceived and captured in the 
environment. 

3. Later, a real need for information about the traces surfaces. 
4. During the extraction phase, retrieval mechanisms of the environment shall 

help to gather the needed information out of the traces. 
Now, the drawback on this is that information collection must be prepared 

and executed before the real information needs are exactly known. Correspond-
ingly, situations occur that the collected information misses the real needs or it is 
incomplete at last.  

Trying to avoid this gap by collecting as much traces as acquirable leads to 
high efforts spent on collection and maintenance of data with questionable value 
for the project. In the end, this leads to negative impacts endangering any value 
of traceability. 

Another opportunity to avoid the problem would be to defer traceability 
capturing to a later point in time, when the real information need has already 
surfaced. However, up-to-now, almost all tracing concepts demand for infor-
mation capture beforehand [Pi04; p.102]. Some automatic procedure may delay 
information capturing to a later point of time, but the types of information to be 
gathered must still be known beforehand in order to develop adequate algorithms 
or mechanisms. 

A way to avoid this may be to make the recreation of the original situations 
when the trace capturing took place possible. This can be achieved by including 
multimedia support that can, for example, record meeting discussions about deci-
sions [HPW+99]. Another possibility is to find ways to avoid the need for explic-
it links. For this, methods for knowledge discovery and pattern mining [ESS02], 
or information retrieval techniques [ACC+02] have been proposed. 

In many cases, however, the only opportunity may be to reiterate the steps 
mentioned above several times to evolve the traceability models and processes 
according to newly gathered experiences. 

II.10.4.4  Tools 

Based on numbers provided by a survey of the London School of Economics 
analyzing about 100 companies in Europe and USA, Ebert [Eb08; p.290] pro-
vides a good schema showing the connections between efficiency, processes and 
tools (see fig. 10-2). This shows that proper processes can have a significant 
influence on efficiency but in connection with the right tools the influence is even 
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higher. Also tool support alone without process support only provides minor 
advantages leading to the view of Ebert “before thinking about … tools, … (an 
organization) should cope with … (its) processes” [Eb08; p.292 (*)]. 

What Ebert wants to express is that a tool alone does not guarantee proper 
usage. Instead, good processes provide higher efficiency potential, but good pro-
cesses in combination with good tools reveal synergistic effects significantly 
leveraging the project quality and efficiency. 

But, Weber and Weisbrod observed, when engineers request improved tool 
support, great opportunities exist for also improving processes and practices as a 
by-product [WW02; p.22]. Besides, employing new tools generally leads to more 
work and learning processes at the beginning, when processes also must be 
adapted to a certain point to fit to the tools. 

 

 

Figure 10-2  Efficiency gains, process orientation and tool support [Eb08; p.290] 

Correspondingly, in the author's opinion, processes and tools should be 
adapted in the following way:  
1. At first, the important aspects of processes must be identified and defined 

first. 
2. Then, it should be tried to bring these 'process cornerstones' into practice. In 

this phase, tool support is not decisive. It rather deals with implementing pro-
totypical processes to acquire feedback from practice whether the intended 
processes are capable to fulfill the intentions.  

3. In the meantime, adequate tool support should be evaluated. If such support 
could be found, the corresponding tool should be integrated into the process 
environment. 
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4. Now, a phase of learning in practice can surface the interactions between 
processes and tools. Thus iterative190 improvement of the processes and its 
tool support must ensure proper integration of both. 
The R2A tool discussed in part III also tries to identify certain process cor-

nerstones that are implemented in the tool, but also tried to ensure freedom for 
adaption of the processes and the tool environment. Weber and Weisbrod empha-
size, however, that a poor tool solution can also discredit well defined processes 
and vice versa. Correspondingly, the application of REM-tools in concert with 
processes “provide an opportunity and a risk in RE process improvement” 
[WW02; p.23]. 

Table 10.3  Kinds of traceability tools according to [GF94] and [Kn01b; p.57] 

 General-purpose 
tools (e.g., 
spreadsheets) 

Special-purpose 
tools (e.g., tool 
couplings) 

Workbenches      
(e.g., REM-
tools) 

Environments        
(e.g., CASE-
tools) 

Strengths - Adaptive 
- Sufficient for 
small projects 

- Tight traceabil-
ity for particular 
requirements-
related activities 

- Fine-grained 
relationships 
within REM 
phases. 
- Additional 
REM checks 

- Provide ongoing 
traceability 
- Flexible 

Deficiencies - Initial configura-
tion costs inten-
sive 
- Most only elec-
tronic version of 
paper 
- Poor control and 
integration 

- Restricted 
- Poor integration, 
and information 
management 

- Poorly inte-
grated 
- Distracting 
- Tool dictation 

- Traceability 
typically coarse-
grained 
- Tightness of 
traceability var-
ies 
- Flexibility 
counter-balanced 
by poorer tracea-
bility 

 
Dömges and Pohl [DP98], (cf. also [KP02; p.23]) provide an evaluation 

about the adaption of traceability environments to project-specific needs. They 
were able to identify three key requirements traceability tool support must fulfill:  

                                                           
190 Dömges and Pohl state a similar view in emphasizing the constant need for iterative, 

i.e., continuous improvement of traceability practice: “It is essential to establish and 
continuously improve organizational knowledge about project-specific trace defini-
tions” [DP98; p.61]. 
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1. In order to reduce the capture effort, the environment must provide good 
integration into the process environment. 

2. Further, the traceability mechanisms must adapt to the usage situation, mean-
ing the tasks to perform for establishing, maintaining, and using traceability 
information must not interfere with the original tasks to perform.  

3. Last but not least, a tool must support organizational knowledge creation, 
what means that the created information must be propagated to any involved 
stakeholder and long-term collaboration must be taken into account. 
Concerning tool support for traceability, Knethen [Kn01b; p.57] provides an 

overview on tools summarizing a survey performed by Gotel and Finkelstein 
[GF94] shown in table 10.3. It compares four types of tools: 
• General-purpose tools are general tools used for common – non-requirement 

specific – usage purposes. In this category spreadsheet applications are often 
used for manually documenting traceability matrices (see ch. II.10.4.2.2).  

• Special-purpose tools are tools developed for special requirement related 
activities as, e.g., to document information gathered for requirement elicita-
tion. 

• Workbenches try to offer a complete integrated set of functionality to support 
REM. “They are typically centered around a database management system, 
and have tools to document, parse, organize, edit, interlink, change, and 
manage requirements” [GF94; p.95]. 

• Environments try to offer integrated tool chains to support all development 
phases of a project. These tools are also called application life-cycle man-
agement (ALM) solutions. 
In today's commercial tool market, these four categories still have actuality, 

as the following chapters show. 
Additionally, Rupp et al. [RS07; p.399] identify a fifth category: 

• Mutants are tools originally designed for other purposes but now also used 
for traceability purposes. 
The following chapters describe these categories in more detail and provide 

some typical tools for the different categories. As the number of tools market in 
research and commercial use is very vast, only a small but rather representative 
portion of the available tools is described. Any other tools not mentioned here 
should be mappable in some of the categories described here. 

II.10.4.4.1  General-Purpose Tools 

In many projects, general-purpose tools, such as spreadsheets or text documenta-
tion programs, are still used [PR09; p.155] in small projects for documenting 
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traceability matrices [Pi04; p.107]. However, problems as circuitous capturing, 
difficult maintenance of changing traces, difficult trace extraction (especially 
concerning bidirectional traceability) are major drawbacks. However, the gener-
ality of spreadsheet tools sparks new usage concepts as, for example, the tool 
Vector eASEE [Eb08; p.289-327] uses the spreadsheet application Microsoft 
Excel® as basis for an ALM-based traceability support (see the sub chapter about 
ALM solutions). 

II.10.4.4.2  Workbenches (REM-Tools) 

Workbenches are what the author in the chapters before called REM-tools such as 
IBM Rational DOORS. Evaluating reasons for the SW project success for several 
years the Standish Group's Chaos report of 2001 comes to the conclusion that 
REM-tools “seem to have the biggest impact on the success of a project” [St01; 
p.10], thus recommending the usage of an adequate REM-tool as top priority need 
of any SW development project [St01; p.10]. 

Rupp et al. provide an extended discussion about help and use of REM-tools 
and how to introduce a tool in project practice [RS07; p.395-408]. A vast number 
of different solutions exist. The International Council on Systems Engineering 
(INCOSE) provides a comparative survey191 of current state-of-the-art REM-
tools. Other information can be found in the iX study on current industry practice 
and available tools for REM [HMC+07], [Eb08; p.289-327], [RS07; p.395-408], 
or [DP98]. Lang and Duggan [LD01] list the basic functionality a REM-tool must 
support. Rupp et al. [RS02; p.420] provide a summary of minimum requirements 
and helpful optional requirements a valuable REM-tool solution should provide.  

According to Weber and Weisbrod, REM-tools “are the number one instru-
ment for leveraging RE practices – which means they still must be improved” 
[WW02; p.23]. To spark further improvements they enlist a set of deficiencies 
REM-tools should improve: 
• The tools should offer “basic workflow support, such a powerful filter and 

view capabilities and sophisticated view management” [WW02; p.23]. 
• Such tools must be easily adaptable via a standard programming language to 

support quick adaption to project or company specific needs. The authors 
express here special concern that the REM-tools must provide possibilities 
options for external access to enable easy adaption of integration with other 
tools. 
Traceability is usually established via links or traceability matrices, or a 

combination of both. Some also support features for automated traceability estab-
                                                           
191 http://www.incose.org/ProductsPubs/products/rmsurvey.aspx; (Access: 2009/10). 



II.10  Requirements Traceability 239 

lishment. As it is the market leading tool for requirements management in tech-
nical development (especially in the automotive industry) [Mu06b], IBM Ration-
al DOORS is discussed as a representative for all commercial REM-tools in this 
thesis. IBM Rational DOORS supports the following kinds of traceability: 
• Evolutionary traceability is supported by history and baselining mechanisms. 
• Through a linking mechanism, any items present in IBM Rational DOORS 

can be linked with each other. Thus, intra- as well as between-artifact trace-
ability is supported. The established links can be alternatively represented as 
a traceability matrix or as graphical visualization. However, in the author's 
practical experience, both alternative representations are of limited value as 
they get increasingly confusing with growing numbers of traceable items.  

• IBM Rational DOORS supports assigning attributes (resp. properties) to any 
traceable item. It further supports attributing of traceability links, thus allow-
ing different semantics of traceability links to be modeled and gathering me-
ta-information on traceability relationships. However, no dedicated meta-
model support is provided. The attribute information can be used to create 
powerful filter and view capabilities as requested by Weber and Weisbrod 
[WW02; p.23]. 

• IBM Rational DOORS has no specific support for any REM process, where-
as other tools exist with dedicated support specific processes. As an example, 
the tools IBM Rational RequisitePro or IrQA offer dedicated support for use 
case driven development.  

• Last but not least, IBM Rational DOORS provides with the DOORS Exten-
sion Language (DXL) a scripting mechanism to support quick adaption to 
project or company specific needs also allowing access from outside as re-
quested by Weber and Weisbrod [WW02; p.23]. 
However, traceability workbench tools such as IBM Rational DOORS have 

a significant disadvantage: 
• IBM Rational DOORS has its strength in text-based artifacts meaning that 

text-based artifacts can be split into single traceable items that can be related 
to each other. Even though some extensions such as DOORS Modeler exist, 
IBM Rational DOORS has only weak support for model-based engineering 
methods Other REM-tools may provide a slightly better modeling orienta-
tion192, but the discussion in ch. II.10.6 shows that coupling design with the 
requirements domain is generally difficult. 

                                                           
192 For example, IBM Rational Reqtify, Borland Caliber RM or IRQA rather support 

requirement management methods basing on a use case concept similar to UML. 
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II.10.4.4.3  Special-Purpose Tools 

Special-purpose tools describe tools that only support a certain aspect of tracea-
bility. The following lists some of the wide variety: 
• Tool couplings have gained rising interest in the recent years. Especially 

concerning safety-critical embedded development an urgent need for contin-
uous tool support has been identified [Gr05; p.421], [Br06; p.37]. Corre-
spondingly, special tool couplings as support for traceability may be the 
most encountered special-purpose tools.  

• RatMan support: As discussed in ch. II.10.8, combining traceability and 
RatMan approaches are promising, because both have supporting effects. 
Correspondingly, several tool support exists in research (see [HWA+07] and 
ch. II.10.8). 

• Support for requirements elicitation such as contribution structures [GF94] 
allowing modeling stakeholders and their relationships or the WinWin ap-
proach ([BEK+98], [BK06], [WinWin]) supporting requirement negotiation 
between stakeholders. 

• Support for variation and product line management [Si98], or also referred 
to as feature models ([BP06], [RPP04], [RTM02]) provides an extension of 
REMAP (see ch. II.10.8) for product line engineering. 

• Marcus et al. [MXP05] show a prototypical tool TraceViz that integrates into 
the Eclipse IDEs and supports traceability visualizations basing on traceabil-
ity information collected by other tools. 

• Event-Based Traceability: Cleland-Huang et al. [CCC03] extend the ordinary 
link concept by a publish-subscribe mechanism. When an item is changed an 
automated notification event mechanism propagates change messages to all 
linked items thus supporting consistency maintenance. Their tool approach 
bases on IBM Rational DOORS.  

• Han [Ha00], [Ha01b], [WH02] introduces the tool approach TRAM (Tool 
for Requirements and Architecture Management) for system requirements 
and system architecture management with dedicated focus on traceability 
and rationale documentation. The approach relies on a documentation tem-
plate that can be integrated into REM-tool environments such as IBM Ra-
tional DOORS, but also a standalone solution exists basing on HTML or 
XML. The approach also has implemented a model to document decisions on 
system requirements or system architecture.  

• As reliable exchange of requirements information between OEMs and sup-
pliers is an essential concern in automotive industry, the HIS (see ch. I.7) has 
defined the Requirement Interchange Format (RIF) standard file format to 
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ensure reliable exchange of requirements between different REM-tools. RIF 
also allows exchanging traceability link information. 

II.10.4.4.4  Application Lifecycle Management (ALM) Environments 

Above all, large projects need to dynamically reference information created and 
maintained in a variety of tools and platforms [Ra98; p.43]. Application life-cycle 
management (ALM) solutions offer integrated tool chains to support all develop-
ment phases of a project. In this way, produced development results in one inte-
grated tool shall be usable in any other tool where these results are needed. Cor-
respondingly, traceability is a basic feature of ALM solutions. Thus, in principle, 
traceability can be established between any items managed in an ALM solution 
via establishing links, but, in practice, due to the high amount of items possible to 
trace, establishing traceability is often difficult. Further, due to the very general 
character of ALM solutions, traceability is one of a diversity of aspects covered 
leading to no support by specific traceability functions and no specific traceabil-
ity processes. Thus, in ALM solutions establishment and usage of traceability 
often prove cumbersome. 

Known commercial ALM tools are IBM Jazz, Vector eASEE, Microsoft Vis-
ual Studio Team Server, MKS, or Siemens PLM Teamcenter. 

The Ophelia193 research project (“Open Platform and Methodologies for De-
velopment Tools Integration in a Distributed Environment”) is a European project 
for developing the theoretical basis to integrate development tools into an inte-
grated process chain. The attempt's goal is to define an architecture to couple 
tools as a bus system along the development life cycle. This allows linking ob-
jects of different development tools together to support traceability. Additionally, 
traceability information can be coupled with a notification messaging system 
allowing users to register for event notifications on events such as object chang-
es. Such notifications can then be used to automatically trigger further change 
management mechanisms. 

Mohan and Ramesh [MR07] introduce a tool-suite to integrate different 
tools in a traceability model with a collaborative environment. One major idea is 
to combine knowledge fragments (design elements, requirements and rationale) 
stored in different tools within an integrated knowledge map. Through the collab-
orative environment, group decision and negotiation shall be improved on basis 
of the knowledge map. 

                                                           
193 See, e.g., http://entwickler.de/zonen/portale/psecom,id,101,online,624,.html (Access: 

2010/09). 
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II.10.4.4.5  Mutants 

Rupp et al. also refer to another tool type called 'mutants' [RS07; p.399]. These 
are tools developed for a different purpose but now also used for fulfilling tracing 
demands. Such a solution is, for example, the UML-tool Enterprise Architect also 
providing internal mechanisms to specify requirements and relate them to UML 
elements and diagrams. However, Enterprise Architect is not an REM-tool and 
thus lacks many features usually provided by a valuable REM-tool solution. 

II.10.5  Traceability and its Benefit Problem 

The production of traces and capture are very important aspects for the traceabil-
ity models and a model may be just too complex to be efficiently used [Pi04; 
p.99]. A study [BSA07] assessing the reasoning behind decisions for using trace-
ability in development practice indicates that traceability is not very often used in 
project practice except in projects with safety-critical background or when certain 
development standards (see ch. I.7) are employed. 

In practical employment, traceability often faces difficulties to be imple-
mented in an economically justifiable fashion [HDH+06; p.93], [Cl06; p.2], 
[LLY+08; p.102] . 

Ambler194 [Am05] describes the handling of requirements from the agile 
perspective. Concerning traceability, he admits its value when regulatory objec-
tives as regulations in safety-critical environments are concerned. However, he 
advises against unreflected usage in situations where it purely seems to be a good 
idea. As main concern, he mentions the high efforts needed and refers to two 
critical points he has observed at companies with traceability culture: 
1. High efforts for traceability: Traceability organizations often tend to update 

artifacts on a regular basis in order to keep consistency. This leads to high 
documentation maintenance costs. Ambler rather recommends following the 
best practice “Only update if it hurts”. Nuseibeh et al. [NER00] point out that 
even resolving all inconsistencies can have significant negative effects be-
cause resolving inconsistencies often implies “resolving fundamental con-
flicts or making important design decisions. In such cases, immediate resolu-
tion is not the best option. ... Sometimes the effort to fix an inconsistency is 
significantly greater than the risk that the inconsistency will have any ad-

                                                           
194 Ambler has a strong notion for the agile development movement; however some of his 

criticisms have a certain legitimation. 
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verse consequences.” [NER00; p.26]. In these cases, even ignoring the in-
consistency may be a proper option. 

2. Tendency of high degrees of redundancy: Secondly, traceability cultures tend 
to store the same or nearly the same information on several places. This aris-
ing redundancy will lead to extra change effort and inconsistencies unless all 
redundant information spots are correctly updated. Traceability can help to 
find all redundant spots. However, traceability is here more a cure for the 
symptoms, whereas avoiding redundant information avoids the cause and the 
extra efforts needed for traceability and updating of information. Therefore 
avoiding redundant information should have higher priority than allowing 
redundancies that are traceable to each other. In describing practical experi-
ences concerning maintainability of requirement artifacts, Ebert also recom-
mends avoiding redundancies [Eb98; p.183]. 
“Requirements traceability is a work intensive task that can only be 

achieved when the organization supports it” [Wi05; p.332 (*)]. Gotel and Finkel-
stein [GF94] diagnose that traceability problems primarily arise as consequence 
of communication breakdowns between developers under strong strains of time 
additionally hampered by lacking tool support and experiences of lacking benefit 
(cf. also [Cl06; p.2]). As in current practice traceability is usually established 
manually [Cl06; p.2], [LLY+08; p.102], these processes are time consuming, 
arduous, error prone, and hard to maintain [Li94; p.21], [Cl06; p.2], [LLY+08; 
p.102]. The following influence factors can be identified: 
• Granularity or level of detail: At one side current traceability tools and pro-

cedure often lead to coarse-grained granularity of traced items and thus to 
coarse IAs [KP02; p.14], [BA96]. “Tracing at a low level of granularity sup-
ports a much more precise form of traceability but can create an excessive 
amount of work” [Cl06; p.2]. Dömges and Pohl show that too detailed traces 
can lead to clutter hampering understanding and maintenance. A way to re-
duce traceability costs is to perform lean traceability [EGH+07], [Cl06; p.2]. 
However, as shown in ch. II.10.6.2, safety-critical systems development de-
mands for fine-granular linking.  

• Automation: According to Egyed et al., “while some automation exists, cap-
turing traces remains a largely manual process” [EGH+07; p.115] and such 
links degrade over time and must be continuously maintained. Correspond-
ingly, if the degree of automation could be increased, efforts for capturing 
and maintaining traceability could be reduced.  

• Understanding and intention: Further, the type of usage of the link infor-
mation must be considered: Egyed et al. [EGH+07] distinguish between 
short-term utilization (are all requirements considered?) and long-term utili-
zation (assessing a particular change years later). Short-term utilization is 
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more or less covered by the simple link concept usually applied by today’s 
traceability understanding, whereas for mid- and long-term utilization of 
more complex relations additional information such as decisions and their 
rationale must be considered. According to Pinheiro [Pi04; p.101ff], the 
problem is more general: It is on the one side impossible to record all possi-
ble traces. On the other side, the traces must be established, before later the 
actual trace need is known. Thus, it is highly possible that the wrong traces 
are recorded. 

• Pre-defined structures: A way out of this problem is to use pre-defined struc-
tures such as proposed by Ramesh and Jarke [RJ01], but this can lead to un-
necessary bureaucracy [Pi04; p.99], whereas establishing traceability is a 
“very dynamic activity guided by necessity and not by pre-defined structure“ 
[Pi04; p.99]. 

• Formality: Formality is needed because it simplifies the tracing process, 
allows precise semantics, and eases automation [Pi04; p.100]. On the other 
side, informality is needed because most information is inherently informal 
(e.g., natural language) [Pi04; p.101]. A simplification of informal traces to a 
formal structure is problematic as shown in ch. II.9.4.2. 

• Intrusiveness (cf. ch. II.9.1.4): Trace establishment may interfere directly 
with the actual development activities [Pi00; p.3], [KP02; p.21], [AR05]. “It 
may impose an overload on people carrying out these activities. The less in-
trusive the trace production, the efficient and accurate the use of the tracing 
model is” [Pi00; p.3]. 

• Grudin's principle ([Gr87], [Gr88], [Gr96b], ch. II.9.4.2): According to 
[AR05] and [BSA07; p.307], traceability is poorly recorded because of lack-
ing direct perceived benefit. This matches with Ebert's observation that “de-
velopers often live in a 'shadow world', where processes and tools are only 
used pro forma because management wants them to” [Eb08; p.333 (*)]. In 
the context of safety-critical development standards, traceability may also 
often be performed in order to fulfill assessment needs instead of real project 
needs. 

• Links degrade over time and must be continuously maintained [EGH+07; 
p.115].  
“As traceability is legally required in many safety-critical software systems, 

the question is 'what is the right amount of traceability?' and 'what kind of trace-
ability can be used to achieve the desired results in a cost-effective way?' Organi-
zations trying to improve their ability to manage change effectively must ask very 
similar questions.” [Cl06; p.3]. 

According to Pinheiro's opinion, the following points must be considered for 
improving traceability benefit [Pi04; p.110]: 
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• As much automation as possible should be used. 
• The persons recording traceability information must understand how this 

information might be used in the future.  
• Traceability information must be recorded as close to its occurrence as pos-

sible [Pi04; p.104]. 
Dömges and Pohl [DP98] further emphasize that traceability should evolve 

as a side-effect of the daily development activities and not cause extra bureaucra-
cy. 

Links can already degrade during the process activity they have occurred. 
Especially during design performed decisions are often adapted again, when the 
design proceeds. In practice, to avoid extra effort for traceability maintenance 
resulting from later design decision corrections, traceability is often recorded 
after the design process has been performed (see also comments to ENG.3 BP.2 in 
ch. I.7.2.3). However, at that time many of the correlations are already forgotten. 
Thus, Wiegers emphasizes that traceability must be recorded as a by-product 
during the activities and not afterwards [Wi05; p.333].  

Accordingly, to address the benefit problem, the tool solution described in 
part III especially aims to provide a method allowing designers to capture the 
traceability information as a by-product with as less extra effort as possible not 
disturbing the designers at their actual tasks. 

II.10.6  Traceability between Requirements and Design 

Traceability helps to know how and why requirements are satisfied by system 
development products, because “traceability gives essential assistance in under-
standing the relationships that exist within and across software requirements, 
design, and implementation” [Pa97; p.364]. Ch. II.10 shows that the current 
traceability concept goes beyond this view as it includes other aspects as re-
quirement elicitation or testing. However, the main topic of this thesis, described 
in part III, exactly matches the goal Palmer ascribes to traceability. The follow-
ing chapter within this general chapter about traceability will summarize the 
fundamental issues and approaches research on requirements traceability to de-
sign has collected in the recent years.  

II.10.6.1  Theoretic Research Results 

Boerstler and Janning [BJ91], [BJ92] use traceability information for designers 
to automatically derive design from analysis artifacts (see also [Kn01b; p.39], 
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[KP02; p.04]). As design depends on analysis, parts of the design could be gener-
ated automatically via transformation processes basing on traceability (also cf. 
[Li94; p.14], [KP02; p.04]). Such approaches assume close connections between 
analysis and design artifacts as it is assumed by UML, but this may only be the 
case for certain aspects of design such as the data model. As described in ch. 
I.5.4, such approaches are used in practice as, e.g., in the automotive domain, 
Matlab or ETAS ASCET are used to analyze the requirements of certain func-
tional parts as an analysis model that can then be transformed into a design model 
and code with applied automatic code generation. At certain circumstances, how-
ever, design of the remaining parts must then take special care to integrate these 
transformed parts thus leading to design of needed mechanisms for integration. 
The tool solution described in part III tries to take this into account by offering a 
framework to integrate several tools in one integrated design (ch. III.16.2). 

Other approaches try to better integrate requirements-related concerns into 
the modeling languages195. Ambriola and Gervasi [AG98] present a visual design 
language, where NFRs can be directly represented in design diagrams. Graham 
[Gr03] tries to show how to better integrate NFRs in UML-based designs.  

Cleland-Huang et al. [CSB+05], [CS03], [Cl05] propose to use a goal graph 
for modeling NFRs with their interdependencies. Later, when a change on a func-
tional design model is performed a probabilistic information retrieval algorithm 
tries to automatically identify affected NFRs. The modeled goal graph then can 
help to identify tradeoffs with other NFRs. As discussed in the chapter before, 
automatic approaches have not yet succeeded in practice. Therefore, they are 
neglected in part III. In [HKL09], a goal driven approach to relate NFRs to pat-
terns is introduced resembling the goal graph approach of Cleland-Huang et al.. 

Orienting on Dömges and Pohl's [DP98] proposal that traceability shall be 
established as a by-product [Kn01b; p.50], Knethen [Kn01a], [Kn01b], [Kn02] 
describes an UML-based design approach for embedded real-time systems having 
the goal that traceability directly emerges from design activities by employing a 
formal modeling approach. The approach itself bases on a meta-model extension 
combining UML with the four variable model (FVM) (see ch. II.10.4.2.2) in 
connection with the QUASAR project [PSS04].  

Knethen aims at long-term collaboration as she tries to improve maintenance 
efforts by traceability, because former studies indicated that 40-75% of total 
software costs are maintenance effort [Kn01b; p.2], A special concern of Knethen 
is to improve impact estimations by support of fine-grained traceability linking 
models [Kn01b; p.4]. 

                                                           
195 The interested reader may consult Galvao and Goknil [GG07] for an overview on 

traceability solutions for model driven development. 
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From this point of view, the meta-model extension of Knethen in combina-
tion with the right modeling techniques allows designing systems in a way that 
traceability is recorded as a by-product of the modeling results, thus addressing 
the traceability problem. To ensure that the captured information is valuable for 
IAs, an empirical study on the effectiveness of IAs was performed on modeling 
results of Knethen's approach. The approach, however, has the following weak-
nesses: 
1. The approach must be combined with a certain theoretical development pro-

cess approach for embedded systems [KM00] that is derived from the FVM. 
2. The created meta-model is very formal, complex196 and difficult to under-

stand. 
3. As shown in ch. II.9.4.2, formal approaches are difficult to handle and may 

interrupt designers' thinking. 
4. The traceability benefit problem (ch. II.10.5) is neglected because the ap-

proach does not consider the extra efforts developers must spend on applying 
the formal approach in the right manner to establish valuable traceability.  

5. As discussed in ch. II.10.2, Wieringa [Wi98] shows that design at different 
design levels can follow different criteria for decomposition. Thus, semantic 
gaps arise only bridgeable by explicit manual linking. 
As a consequence, Wieringa [Wi98] could also identify 31 different possible 

link types to coherently link requirement documents, design artifacts and other 
documentation. The study of Ramesh and Jarke [RJ01] also indicates that experi-
enced traceability users tend to much richer traceability link models and could 
identify 17 different link types in connection with requirements and design. 
When analyzing both, some link types can be seen as emerging from the structure 
of a design model (such as 'part_of', 'depend_on' and 'perform'). These link types 
are usually expressed in the design diagrams and relatively easy to identify by 
designers. Approaches exist making these relations better suitable for IA (e.g., 
[BLO+06]). Nevertheless, these studies also indicate that significantly more dif-
ferent link relationship types may exist between requirements and design. How-
ever, the study of Ramesh and Jarke [RJ01] included several domains (such as 
military, space craft and aircraft), where development costs are not that much of a 
factor as in the automotive mass consumer market (see ch. I.2.3). As the study 
does not differentiate traceability practices according to different development 
domains, the author believes that these more complex197 link type models might 

                                                           
196 In the author's opinion, the approach rather infers further complication in the modeling 

process than helping to reduce complication (see footnote 80 (p. 77 )). 
197 Some relationships might also rather infer unnecessary complication (see footnote 80 

(p. 77 )). 
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also result from development processes with less pressure on process efficiency. 
Vice versa, the automotive domain may have stronger pressure to address the 
traceability benefit problems described above (ch. II.10.5). Correspondingly, this 
thesis at first concentrates on addressing the traceability benefit problems in 
providing direct benefit for developers. Thus, the thesis concentrates on ensuring 
that the most important traceability relationships can be established in a way 
promoting benefit to developers and accurateness. In this way, – hopefully – the 
promises of the traceability concept can be redeemed. Research questions, 
whether these links should be further differentiated into different more sophisti-
cated relationship types, are rather neglected. 

Research of Gruenbacher, Egyed and Medvidovic [GEM01], [GEM03], 
[MGE+03] came to the conclusion that “the large semantic gap between high-
level, sometimes ambiguous requirements artifacts and the more specific archi-
tectural artifacts often does not allow one to establish meaningful links between 
them” [MGE+03; p.202]. Consequentially, they developed an intermediate model 
approach they call Component, Bus, System, Property (CBSP) model connector. 
It is developed as a bridge between requirements and architecture with the goal 
“to facilitate the consistent transformation of a system's requirements into its 
implementation” [MGE+03; p.213]. CBSP contains a meta-model, where CBSP 
elements are related to requirements and derived from architecture model ele-
ments. The semantic allows specifying CBSP elements that resemble require-
ments but do not directly represent an architecture. They rather help to identify 
architectural components, properties, relations, and styles leading to an architec-
ture. In this way, the CBSP elements can also be seen as an extended link concept 
allowing evolutionary consistency [GEM03; p.251], because the CBSP model 
also can be seen as a means to capture rationale about the decision process. 
“CBSP is a tool-aided, but highly human-intensive technique” [MGE+03; p.202]. 

The author considers this solution as rather disadvantageous because the so-
lution introduces a new artifact (the intermediate model) significantly raising new 
redundancies and complication (see footnote 80 (p.77)). As an alternative solu-
tion to the gap problem, the R2A solution provides a decision model approach 
(ch. III.19 and ch. III.20) that promises to be more light-weight and easier to use 
for designers and thus might have better chances to succeed in practice. 

II.10.6.2   Tool Couplings between REM- and Design Tools 
in Practice 

Capturing traceability faces special difficulties, when tool boundaries must be 
bridged, but tool couplings are inevitable when different valuable development 
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tools shall be used in combination. As the solution discussed here is a kind of tool 
coupling, the following will provide a further discussion of tool couplings con-
cerning the transition of requirements to design models. Weber and Weisbrod 
[WW02; p.23] describe experiences made with tool couplings in the context of 
requirements specifications and models. They emphasize that “a growing number 
of specifications require complex models” what “requires engineers to develop a 
specification using two or more tools: a tool for textual specifications and one or 
more tools for model-oriented analysis and design” [WW02; p.23]. 

Correspondingly, tool-couplings shall bridge the tool gaps to ensure tracea-
bility and consistency between the artifacts. According to Weber and Weisbrod, 
“most tool couplings – which usually originate in a specific project and were 
designed and paid for by a specific customer – are insufficiently mature for seri-
ous development project use” [WW02; p.23]. Consequently, several of their pro-
jects started by using such tool couplings, “but later dropped them, even when 
doing so would clearly require considerable manual effort or significant process 
problems” [WW02; p.23]. They identified the following shortcomings: 
• Speed: “In an average project, the number of linked objects can easily grow 

to several thousand, which results in unacceptably slow coupling speed 
(when calculating changes, for example)” [WW02; p.23].  

• Integrated document generation: “Existing tool couplings don’t support this 
feature, whether the documents are short status reports or lengthy documen-
tation that satisfies a standardized structure. Although a few tools are dedi-
cated to integrated document generation, they exist only in specific vendors’ 
tools suites and are largely useless outside of them” [WW02; p.23].  

• User interface: “Tool couplings usually create redundant editors for manag-
ing cross-tool information (typically one for each tool involved)” [WW02; 
p.23].  

• Automation: “In most tools, the automation level is low, there is no active 
administrative support, and users must initiate synchronization. Also, there is 
no active support for indicating problems” [WW02; p.23]. 
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Figure 10-3  Traceability tool couplings via surrogate modules 

Concerning tool couplings with modeling tools, at first so-called surrogate 
module approaches were used. Fig. 10-3 following paragraph sketches these 
approaches. Models with all containing model elements are exported from the 
modeling tool and imported into the REM-tool (e.g., IBM Rational DOORS) as a 
so called surrogate module. There, the linking between the requirements and the 
model elements' representations in the surrogate module are performed in the 
REM-tool. To ensure consistency, a regular synchronization process (as a rule 
during the night) between the model surrogate representation in the REM-tool 
and the modeling tool must be performed [Ha99]. In this way, traceability is 
established indirectly and the relationships must be established after the design 
process. The model elements must first be designed to be afterward imported into 
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the surrogate module, where then the traceability links are generated. This indi-
rect mechanism also makes IAs difficult.  

Due to these problems, current commercial tool solutions such as IBM Ra-
tional Tau [TAU], Artisan RT Studio [ARTISAN], IBM Rational Rhapsody 
[RHAP–SODY] rely on a solution of Geensoft Reqtify [REQTIFY]. This solu-
tion offers a framework, where different tools can be integrated. Reqtify is more a 
kind of information broker, because Reqtify does not directly care for traceability 
establishment, but only cares for exchanging tool information and its visualiza-
tion.  
Through Reqtify, traceability is established in the following way: 
• Requirements can be obtained by a requirement source such as a REM-tool. 
• These requirements can then be propagated to a modeling tool as require-

ment target. The modeling tool coupling must care for taking over the re-
quirements. 

• The requirements must then be assigned in the modeling tool and thus the 
modeling tool must care for how the traceability information is produced. 
This information is then also saved in the modeling tool. The Reqtify frame-
work then uses this information to visualize the traceability information for 
IAs. 

Reqtify has the following advantages: 
• Reqtify offers a high number of coupled tools. 
• Reqtify also provides mechanisms to integrate tools such as MS Word or 

Excel allowing to integrating other information from light-weighted tools. 
• Reqtify allows making visual IAs of relationships between different tools. 
Reqtify has the following disadvantages: 
• The traceability information is not stored and managed by Reqtify, but the 

different connected tools must find a way to store the information. In this 
way the traceability information is scattered across the several tools, making 
management of the information difficult. 

• This also makes evolutionary traceability difficult as no integrated history 
and configuration management mechanisms are provided. 

• Reqtify only provides a technical solution as an information broker for mak-
ing linkings between objects of different tools possible. However, no dedi-
cated process support is offered. Instead, the tools receiving the requirements 
information and where the traceability information shall be gathered must 
care about how this is realized. In the author's view, this is the most critical 
weakness because efficient traceability establishment must orient on the way 
traces occur. Thus, the design processes must be taken into account. 

• One major shortcoming arising from neglecting design processes is that 
usual tracing approaches assume that requirements and the resulting design 
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are in a kind of linear relationship with each other. However, as shown in the 
ch. I.6.2.2, and ch. II.9, the author questions this assumption (for details see 
ch. III.20). Accordingly, an adequate traceability solution for design might 
need more than just linear linking but, e.g., possibilities to bridge semantic 
gaps through documented decisions. 
In the context of UML modeling tools, the Reqtify approach is accompanied 

by the new SysML standard [SYSML]. SysML is an extension of UML to inte-
grate SysEng activities (modeling of systems and allocation of requirements onto 
the system model), whereas UML formerly has merely concentrated on SE-
activities. A central improvement of SysML in comparison to UML is the defini-
tion of a 'Requirements Diagram' explicitly allowing modeling requirements and 
their interdependencies. For modeling requirements traceability198 different rela-
tionships are possible (<<DeriveReqt>>, <<Satisfy>>, etc.; cf. ch. II.10.4.2.3 
for details), [SV08], [HGK+09] that have a similar meaning as traceability links. 
Several UML-tools such as IBM Rational Tau [TAU], Artisan RT Studio 
[ARTISAN], IBM Rational Rhapsody [RHAPSODY] have dedicated SysML 
support and reveal endeavors to use the requirement relationships modeled via 
SysML as traceability information in combination with Reqtify. Other UML-
Tools such as Enterprise Architect provide an UML-profile for modeling SysML 
(cf. also [HGK+09]).  

A model based graphical support in establishing requirements traceability to 
model artifacts as it is intended by SysML may by all means be desirable. How-
ever as research results described later in ch. III.21.3 indicate, these approaches 
may be restricted by the fact that extensive requirement collections199 may not be 
suitable for a universal graphical representation. Instead, the real value of SysML 
may be to provide meta-model concepts for trace links200 (cf. also [HGK+09]). 

                                                           
198 See also [KS06] for an approach basing on UML's use case concept with similar no-

tions. 
199 In the automotive domain, e.g., [HH04] mentions about 200 to 600 pages of a re-

quirements specification for one ECU system. 
200 Other similar approaches such as the following exist: Letelier [Le02] introduces a 

traceability model basing on UML and its extension mechanisms. The approach is 
comparable to the traces of SysML described here but provides more fine-grained dif-
ferentiating relationship types with richer meta-information of these relationships. Due 
to the rather semi-formal character of UML's semantic, Chanda et al. [CKS+09] try to 
find a more formal semantic basing on UML allowing traceability and consistency 
verification. Kelleher and Simonsson show another extension of UML 2.0 to achieve a 
traceability concept where requirement elements can be mapped on design elements. 
Briand et al. [BLO+06] introduce an approach to enable impact analysis through a de-
pendency analysis in UML models. 



II.10  Requirements Traceability 253 

Hove et al. [HGK+09] describe a change management process with rules for 
impact analysis to analyze SysML models. 

Weber and Weisbrod generally experienced tool couplings as often immature 
[WW02; p.23]. As a solution to avoid necessary tool couplings, they recommend 
minimizing the linking between two tools to be bridged and propose to using 
methodological approaches as design guidelines to reduce interconnections and 
thus linking efforts [WW02; p.23]. 

Pointing toward a similar direction as Weber and Weisbrod, [Ha99] empha-
sizes that with traceability establishment between the REM-tool and the UML-
tool Artisan RT by means of a tool coupling, the problem of uncontrolled 'prolif-
eration' of relationships arises. Therefore, the linking via the tool coupling should 
at best be minimized by only linking to some basic elements of a model as start-
ing point (in [Ha99] these basic elements are part of an analysis model). Starting 
from these basic elements, further traceability information shall then be handled 
by model relationships between the basic model elements and other model ele-
ments. Now, when an IA is performed on a potential requirement change, the 
relationships handled over the tool coupling in combination with the other rela-
tionships identifiable in the modeling environment shall determine the impact 
[Ha99]. In terms of IA (see ch. II.10.3), this approach actually combines a coarse-
grained traceability approach with a dependency analysis approach. 

 

 

Figure 10-4  Requirements fan-out effect according to Alderidge [Al03] 
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Several experience reports from industrial practice (cf. [Al03], [Pe04], 
[Kn01a], [Kn01b]), however, emphasize the need of more fine-granular linking 
models: 
1. Alderidge [Al03] directly refers on the process proposed by [Ha99]. He 

observes the so called fan-out effect [Al03] leading to the negative side-
effect of overestimating the impact of requirement changes. The fan-out ef-
fect occurs because no direct traceability links to the design elements are 
used. Fig. 10-4 shows an example where the requirements are only directly 
mapped to use cases, whereas connections to the basic design elements are 
indirectly handled as dependency analysis via other model relationships be-
tween an analysis model and other design subsystems. A model typically has 
manifold relationships with different meaning. Correspondingly, a lot of de-
pendencies can be identified, thus leading to the fan-out effect. As a solution, 
Alderidge [Al03] proposes using a more fine-grained linking model, in 
which the use cases are not used as a basis for linking, but breaking down 
the linking into more fine-grained use case steps. This solution, however, 
seems more to be a cure of the symptoms. In the author's opinion, the fan-out 
effect can only be avoided if fine-grained traceability linking is performed 
throughout the entire solution.  

2. Also Knethen [Kn01a], [Kn01b] tries to improve the correctness of IAs, but 
via the option to model different traceability relationship types (similarly as 
SysML defines different relationship types), thus making the linking model 
more fine-granular. 

3. Similar to Alderidge [Al03], Pettit [Pe04] reports from direct practical pro-
ject experiences that traceability relationships are only maintained for the 
most high-level elements (in his case mostly use cases), but then not fol-
lowed down to the actual design elements and diagrams (classes, state 
charts). This leads to the tendency that the actual responsibilities of design 
elements are lost (cf. ch. I.8). 

II.10.7  Traceability between Requirements, Design and 
Code 

Already in the early nineties, Tilbury [Ti89] and Kelley [Ke90] described the 
complexity requirements traceability to code can bear, because “the mapping 
from requirements to code often is many-to-many. This means that a requirement 
could be implemented by several chunks of code and that a chunk of code could 
implement several requirements. This is a fundamental traceability problem – i.e. 
there is no natural one-to-one mapping from requirements to code“ [Li94; p.22]. 
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Design is commonly seen as the bridge between requirements and the code, in 
which case it is a kind of model (or collection of models) of the code. Corre-
spondingly, the findings of Tilbury and Kelley should be equally valid for trace-
ability to design. This is normally seen in process (ch. I.7) and traceability theory 
(Knethen [Kn01b; p.46] shows in [Kn01b; fig.3.7] a one to one mapping between 
design and code), but taking the model characteristic of design into account (see 
ch. I.1) two deviations may exist: 
• Preterated characteristics of the code are not part of the design. Correspond-

ingly, relations between preterated characteristics and requirements would 
not have any corresponding relationship in design. 

• Whereas abundant properties of the design might also have relations to 
requirements not really present in code. This seems not very plausible at first 
glance, but the author knows at least one certain situation, where this is of 
importance. A certain set of requirements may demand a special way of 
modeling specific aspects of systems (e.g., strict performance requirements 
may demand a performance analysis model). In this situation, the current 
requirements build the rationale for a specific view modeled in design. 
The only complete solution of the problem would be complete code genera-

tion out of the design model accompanied by a process documenting all ra-
tionale, why the design is how it is. At the moment, this is not possible in most 
practical projects.  

As an alternative, due to the close connection between code and design, 
traceability between design and code can also be handled via name mapping (cf. 
ch. II.10.4.2.2). Through name mapping, effort for linking can be avoided. This, 
however, involves that the two problems described above exist, so that not all 
possible traceability information may be recordable. As it is anyway very likely 
that all possible traceability information may never be recordable (cf. [Pi04; 
p.92]), the author considers these problems as an acceptable risk. 

But as through name mapping no direct relationships are established allow-
ing IA, a mechanism for information retrieval201 must be established to retrieve 
all locations, where the name is used. In the context of traceability between de-
sign and code, this implies that the information retrieval mechanism must at min-
imum include the information from the used design and coding tools.  

For this, Cleland-Huang et al. [CSD+05] have introduced the term dynamic 
requirements traceability and provide an overview of possibilities to improve 
accuracy of information retrieval techniques possible for traceability situations. 

                                                           
201 Information retrieval can be counted to the automatable approaches discussed in ch. 

II.10.4.2.2). 
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Antoniol et al. [ACC+02] describe a tool support to partly automate IAs be-
tween source code and other textual documentation entities (requirement docu-
ments, design documents or code documentation). The approach bases on infor-
mation retrieval techniques indexing code and documentation. Indirectly, the 
method bases on the name mapping assumption (cf. ch. II.10.4.2.2) as identifiers 
are parsed at both sides and matched together using different techniques. Maletic 
et al. [MMM+03] discuss a similar approach (same kinds of artifacts) but more 
from the perspective of artifact evolution. In their perspective, information quali-
ty of automatically acquired links continuously degrades. Thus, information qual-
ity must be continuously maintained through link conformance analysis (links 
must be regularly assessed whether they still conform to and validly express their 
original meaning) and inconsistencies management. In fact, Maletic et al. address 
the weakest point of the name mapping concept already discussed in ch. I.6.4 and 
ch. II.10.4.2.2. This is the danger that significant drifts between artifacts can 
occur over time if no adequate consistency management will be established. 

Some authors also consider the information retrieval approach promising to 
cover the complete artifact chain from requirements to source code. Li et al. 
[LLY+08] present an approach for traceability and dependency evaluation basing 
on an approach for automatically identifying candidate traces from requirements 
to other artifacts by using information retrieval techniques. In the opinion of Li et 
al. [LLY+08; p.101], these other artifacts, for which their approach could provide 
valuable support, seem to be source code, UML-models and test cases. However, 
currently the approach seems only to be tested for source code [LLY+08; p.106]. 
The approach mainly bases on tracing names and their synonyms between re-
quirement texts and source code. In [DLL09], the source code approach is im-
proved by a heuristic for adding comments in source code. Settimi et al. 
[SCB+04] introduce and compare two information retrieval techniques for auto-
matically generating links between requirements, code, and UML models. They 
come to the conclusion “that current retrieval methods may not provide an ade-
quate replacement strategy for explicit traceability links such as those defined in 
a traceability matrix” [SCB+04; p.54]. On the other side, they mention that au-
tomated information retrieval approaches involve significantly less effort than 
manual approaches. In this way, Settimi et al. see potential to use them in pro-
jects, in which rather costs in comparison to accuracy are an important factor. 

As expressed in ch. II.10.4.2.2 and other parts, the author has certain doubts 
that such approaches prove to be very accurate, when traceability between re-
quirement artifacts and solution artifacts (design or code) is concerned, because 
the significant gap between the problem and solution description must be bridged 
(also cf. ch. I.6.4). The low effort costs of once established automated approaches 
may, however, have potential as an additional technique to identify potential 
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relationships between artifacts otherwise overseen or neglected by developers 
during manual traceability establishment. Concerning artifacts having high corre-
lating structures such as design and code, however, information retrieval basing 
on name mapping has high potential. This potential is especially higher because 
code is a formal language enforcing correct naming (the compiler will not accept 
misspelled or synonymous names in the code), and design as a model of the code 
usually uses the same names. As already mentioned above, however, the danger 
of drifts between design and code can occur over time. Therefore, generally, a 
better solution would be to automatically generate the code from the design mod-
el as it automatically creates the name mapping and prevents later drifts between 
the artifacts. But, as ch. I.6.4 and ch. I.6.6.1 show, automatic code generation 
often is only partially or even not at all available. In these cases, name mapping 
may be the best means for ensuring traceability between design and code. 

As this chapter has shown and in the author's view, the problem of traceabil-
ity between design and source code is solved to a high degree, whereas the real 
difficulties still lie in the transition from requirements to design. Correspondingly, 
in the following of this thesis, traceability between design and code (or between 
requirements and code) is not further discussed. 

II.10.8  Rationale Management and Traceability  

The possible supporting influences of RatMan and traceability have been discov-
ered in the early nineties. Conklin [Co89] claimed that by providing design ra-
tionale, the systems maintainability is increased. As traceability has also been 
seen as mean to improve systems maintainability, Ramesh and Dhar [RD92] 
proposed a traceability model and tool approach called REMAP (REpresentation 
and MAintenance of Process knowledge) combining IBIS with REM activities. In 
REMAP, traceable objects (requirements, or design elements) can have four 
connections to the decision model: 
• Rationale is 'based_on' traceable objects. 
• Assumptions 'depend_on' traceable objects. 
• Decisions 'affect' traceable objects. 
• Traceable objects 'generate' issues or conflicts.  

According to Ramesh and Jarke [RJ01; p.59] the results of REMAP have 
sparked development of several commercial REM-tools. [RTM02] shows an 
extension of REMAP for product line engineering. In [RJ01], the REMAP ra-
tionale model is integrated into a general traceability model (see ch. II.10.4.2). 

Lindvall could surface the concrete connection between RatMan and trace-
ability. According to him, traceability records the traces “between models to 
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understand the system structure and to understand the implications of a certain 
requirement” [Li94; p.20], whereas rationale is the means to collect the 
knowledge about the process where the traces occur [Li94; p.20]. 

Hull et al. [HJD02; p.143-152] introduce a practice-oriented approach they 
call rich traceability. The rich traceability concept bases on the extension of the 
satisfy links via satisfaction arguments that provide rationale for why the satisfy 
links exist. The schema can be extended by logical 'AND' and 'OR' relationships, 
where n-ary satisfaction dependencies arise between different items reflecting the 
reasoning of the developers. Hull et al. show the effectiveness of their approach 
in modeling satisfaction dependencies between a user requirements specification 
(approx. corresponds to a 'Lastenheft'; see ch. I.7.2.2.1) and a system require-
ments specification (approx. corresponds to a 'Pflichtenheft'; see ch. I.7.2.2.1), 
but the authors emphasize that the rich traceability concept can be used for any 
traceability relationship in principle. The examples shown in [HJD02; p.143-
152] are modeled in IBM Rational DOORS. 

Dömges and Pohl [DP98; p.56] list the following possible improvements, 
when capturing rationale and traceability are combined: 
1. Understanding between stakeholders and thus acceptance of the system to 

develop is improved because requirements can be justified. 
2. Change management is improved because previously rejected solutions and 

the reasons for their rejection are accessible and thus risks of neglecting 
important aspects are reduced. 
For Dömges and Pohl [DP98; p.56], however, rationale means not only ra-

tionale in the sense of argumentation but generally also decisions, alternatives or 
underlying assumptions. 

Lindvall [Li94; p.20] could also evoke that RatMan and traceability also 
share similar problem areas about input, representation, and retrieval. In fact, as 
ch. II.10.5 shows, RatMan also shares general problems regarding the benefit of 
the information bearers.  

Nevertheless, the author is convinced, if both can be recorded in non-
intrusive ways merely as a supporting by-product of normal design activities, and 
both are supportive to each other, both concepts will have good chances to pro-
vide early direct benefit even for the information bearers. In this way, both may 
then unfold the positive effects, which are usually ascribed to them by SysEng 
and SE theory, then outweighing the costs encountered in practice. 

 



 

III.  PROVEtech:R2A – A Tool for Dedicated 
Requirements Traceability 

A fool with a tool is still a fool 
  - unknown 

 
This part describes the traceability tool solution PROVEtech:R2A (R2A) espe-
cially dedicated to cross the substantial gap between the requirements (i.e. prob-
lem space) and the design solutions (i.e. solution space). 

The author is convinced that a successful development of SW based systems 
is not alone guaranteed by strict compliance to SE processes someway developed 
in theory, but it is at least in the same way (or maybe even higher) influenced by 
both the real unique constellations of projects (so called practice) and by soft 
factors as humans and their communications (e.g., cf. [Mu06a]). 

Correspondingly, the solution proposed here tries to account for all three 
factors. The next chapter (ch. III.11) outlines this in more detail deriving the 
goals of the tool approach described here. To better illustrate the mechanisms and 
findings of research about R2A, the author has tried to use an accompanying case 
study whose basic characteristics are described in ch. III.12.  

As derived in ch. III.11, two fundamental gaps must be addressed by the 
R2A approach. Concerning the first merely tool related gap, ch. III.13 shows how 
R2A intends to address this gap. In the author's opinion, the transition between 
requirements and design generally is difficult, because designers perform a sig-
nificant mental transfer process from the requirements to the resulting solution 
design leading to a substantial gap between both. This second gap is the core 
problem. Correspondingly, ch. III.14 describes R2A's principal ideas to ame-
liorate the problem.  

From ch. III.15 to ch. III.21 different mechanisms of R2A are introduced 
helping to better overcome the second gap. To achieve this goal two major strate-
gies are employed.  

The first strategy is to better support designers on documenting design in-
formation and providing means for capturing traceability information as a mere 
by-product of normal design activities. Ch. III.15 to ch. III.17 describe mecha-
nisms to generally improve the design processes without yet considering the 
requiremental dimension. Basing on these mechanisms, ch. III.18 shows then 
how a more requirement-centered design process (see requirement dribble pro-
cess ch. III.18.2.4) can be employed where traceability information is rather es-
tablished and information on basic design decisions is rather captured as a by-
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product of the design activities. This first strategy part from ch. III.15 to ch. 
III.18 can be considered as a whole complete in itself topic where the design 
theory of Simon (cf. ch. I.6.2.1) dominating in the design theory about SysEng 
and SE is set into context with traceability needs usually expressed by process 
standards for safety-critical processes. These two aspects are then also combined 
with findings of Schön’s design theory about design as situated action (cf. 
I.6.2.3). So far, however, the design theories considered yet rather represent a 
view on design assuming that the development of a design is rather a linear pro-
cess of step to step actions transforming information into a design at the end. The 
design theories about wicked problems (see ch. I.6.2.2) and patterns (see. ch. 
I.6.2.4) rather suggest that the design process is not such a linear process but 
rather a complex nonlinear process driven by complex design decisions. In the 
author’s opinion, design is both – in some situation design is rather a linear pro-
cess of step by step transformation of information into a design, however in other 
situations complex decisions must be taken where the design rather emerges out 
in a nonlinear fashion. To cover these nonlinear aspects of design, decision mod-
els have been developed allowing the documentation of rationale behind com-
plex decisions. These decision models are tightly integrated into the traceability 
information and the design process building a tightly woven network supporting 
all four design theories described in ch. I.6.2 by a unique integrated way. This 
second major strategy to address the second gap is treated in ch. III.19, ch. III.20 
and ch. III.21. 

After the ch. III.15 to ch. III.21 describe the core innovational ideas how to 
address the two-fold gap between requirements and design domain, ch. III.22 
then shows how traceability information once gathered can be used in R2A for 
impact analyses and requirement change propagation in order to ensure con-
sistency. 

Ch. III.23 then discusses issues about embedding R2A and the R2A design 
processes into a higher level process environment. This starts with a description, 
how R2A can be used to improve supplier management. The sub chapters follow-
ing then describe how this mechanism can also be used to reduce redundancies 
when different artifact models are crossed in a development project and how this 
may help to have a decoupled development of different requirement and design 
artifacts. 

The core of R2A's innovations can be considered in the orientation on its 
mechanisms. Correspondingly, R2A has been designed in a way to provide an 
optimal support for the mechanisms. Last but not least, ch. III.24 provides an 
overview of the architecture and meta-model of R2A that realize the mechanisms. 
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III.11  Research Goals 

The biggest problem of system development has always been the confusion of requirements and de-
sign. 

Hatley et al. [HHP03; p.27 (*)] 
 

Concerning traceability, the transition from requirements to design has been 
identified as one of the most critical issues as it includes a twofold structural gap: 
• At first, requirement activities and design activities are usually performed in 

different tool environments. Correspondingly, the transition usually implies 
to cross a tool gap. 

• More important, requirement activities deal with exploring the problem 
space and design activities deal with exploring the solution space. Thus a 
substantial conceptual gap exists between requirements and design.  
A useful solution must try to bridge both gaps. The first gap seems more to 

be a technical issue of how to couple two tools into an integrated environment. 
However, as mentioned in ch. I.6 projects often use a combination of multiple 
design tools for design. Thus, an adequate solution for automotive purposes must 
also consider a way to couple several design tools in an integrated way. The next 
chapter will discuss the issue from the merely technical coupling perspective, but 
questions remain whether this gap also involves incompatible methods due to 
different task performed in REM or design.  

This leads to the second mentioned gap about requirements and design dis-
cussed in ch. II.10.2. Today's traceability models, as seen by theory or process 
standards as SPICE, assume that requirements and its realizing design are con-
nected by simple linear relationships mappable by a simple traceability linking 
schema. In reality, however, a considerable gap between requirements and design 
arises from the design process as it represents a creative and complex mental 
transfer process of a unique problem constellation into a sustainable solution that 
is per se difficult to reproduce. During design, designers make decisions. This 
gap is mentally bridged by designers by taking design decisions. Each decision 
involves consequences and constrains the solution space until the solution space 
(hopefully) converges to a solution fulfilling the requirements.  

From the author’s perspective, the second point is the rather neuralgic issue. 
The author even considers that point one actually is just a symptom for the deeper 
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underlying problem described in point two, because tools were at first developed 
around the two core topics requirements and design having a higher cohesion202. 

Now, the question arises what exactly may be the cause for the second point. 
Considering the problems that RatMan solutions have with succeeding in prac-
tice, Dutoit et al. [DMM+06a; p.7] emphasize that rationale documentation 
schemes usually differ from the way a rationale bearer would structure rationale 
intuitively, thus creating “a cognitive dissonance that adds to the cognitive over-
head that designers must cope with” [DMM+06a; p.7]. 

In the author's opinion, this also is exactly the issue for a traceability solu-
tion to address in order to help to bridge the gap. When a traceability solution 
helps designers to easily203 capture traceability information as a by-product with-
out imposing significant cognitive dissonance and bringing early benefit to de-
signers, it is more likely to achieve better traceability information actually useful 
for projects. In this way, the promises of the traceability concept may be achieva-
ble. 

Ch. I.6 has described four different theoretical views on design. All these 
views describe different – in the author's view essential – characteristics of design 
and its processes. However, current systems and SW design theories rather con-
centrate on design structural aspects as provided by the theories of Simon (ch. 
I.6.2.1) and the pattern theory of Alexander (ch. I.6.2.4), neglecting other – ad-
mittedly more ambiguous – theories about designers' thinking and decision mak-
ing (cf. ch. I.6.2.2 and ch. I.6.2.3). The author considers improving support on 
designers' thinking in order to avoid cognitive dissonance as the neuralgic point. 
In R2A, this shall be achieved by a requirement centered modeling: Supported by 
a suitable methodology and a newly developed tool, the necessary work for es-
tablishing traceability to design shall be intuitive for designers and support their 
normal design work in a way that traceability occurs as a by-product of the usual 
design process. To achieve this, also the design theories about designers' thinking 
and decision making are significantly considered in the concepts of R2A. 

One dedicated goal for the research was to find a tool solution whose usage 
in practice really brings early benefit (ch. II.10.5). As Moro [Mo04; p.26 (*)] 
points out in reference to modeling: “The primary decision criterion about what 
modeling technique or level of detail is used always is the benefit for the archi-
tect”. In the author's eyes, this is correspondingly true for design traceability. The 
                                                           
202 In terms of software theory, it may be said that the topics requirements and design 

have within each other a significantly higher cohesion within each other leading to the 
development of tools within their specific topics. Later, it was then discovered that 
coupling both may be a good idea. 

203 In this context, 'easily' means 'does not infer further complication' or even 'helps to 
reduce complication' (see footnote 80 (p. 77 )). 
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benefit for the development team members must be in the center of traceability 
approaches. Otherwise, traceability usage will fail due to Grudin's principle. A 
symptom connected to this problem is the problem that traceability establishment 
is often performed later after design has reached a relatively stable state (see ch. 
I.7.2.3, comment on BP.2 and ch. II.10.5). In this way, the development team 
especially avoids effort for traceability establishment when design must be 
changed; however, paying the price that a lot of relevant traceability information 
is lost. Correspondingly, a major goal is to lower the burdens for traceability 
establishment and raise benefit for designers to an extent that designers rather 
establish traceability as a by-product. 

As traceability is mainly established by hand [EGH+07], it is often very cost 
intensive and bureaucratic with little use for the development team [RJ01], 
[EGH+07]. The author disagrees with the idea to lower traceability effort by 
using coarser traceability to abstract high-level design elements (see, e.g., 
[EGH+07]), because feedback from practice [Pe04], [Al03] indicates the need for 
detailed traceability even at lower-level design elements, but the author agrees 
that traceability efforts must be lowered and benefits for the bearers of traceabil-
ity information must be significantly raised. Otherwise, traceability will always 
face the benefit problems as all collaborative systems do in danger of failing due 
to Grudin's principle [Gr96b] (cf. also ch. II.9.4.2).  

R2A offers several characteristics contributing to lowering the effort of es-
tablishing traceability and raising benefits for the traceability bearers: 
• Traceability can be easily and fast established via drag-and-drop and other 

simple operations, by which multiple requirements can be selected in parallel 
to perform the operations. 

• The operations adapt to how designers think and perform their design steps 
so that the designers can establish traceability information as a side-effect204. 
The same principles guide the operations that are possible to document deci-
sions. 

• All important information for a designer's situation is adequately presented 
in-time to support the designer's cognitive flow. Especially in-time infor-
mation that is easily comprehensible supports designers in their phases of in-
tuitive knowing-in-action (Schneider) by preventing that important aspects 
are missed. In the same way, the in-time information supports designers in 
their thinking-in-action phases of rational thinking, because the facts that are 
considered are directly presented. One of the most important information to 

                                                           
204 As already stated in ch. II.10.5, Dömges and Pohl [DP98] emphasize that traceability 

should evolve as a side-effect of the daily development activities and not cause extra 
bureaucracy. 
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mention here are requirement information and recorded traceability infor-
mation accompanied with information about important decisions. 

• Connected to the points above, the author is convinced that a tool solution 
for practice should be as easy to use as possible. Theoretic research often 
bears theoretically sound (often in connection with strict formality), but 
complex and formal solutions (e.g., cf. Knethen's solution via meta-models 
[Kn01b]). However, in practice, developers often do not have the time to 
work into such complex solutions but rather prefer solutions with low entry 
barriers and a possibility for 'learning by doing'. This point is closely con-
nected with the discussion about formality in development methods (see ch. 
II.9.4.2). The author tried to address these problems by providing an easy to 
understand, basic skeleton of formal concepts in R2A. R2A then allows en-
riching this formal skeleton with further informal information205 at nearly 
any location. 

• R2A provides a collaborative environment where all created information is 
automatically shared with other designers, who can immediately use and ex-
tend the information to evolve their further design. 

• Operations for recording traceability information provide possibilities for 
designers to delegate requirements to other designers, who can immediately 
analyze and further process the requirements. In case of problems, possibili-
ties to reissue the requirements back to the delegating designer accompanied 
by a note about the problem support the designers to communicate with each 
other. 

• Short communication paths between developers and designers responsible 
for the model are often the decisive factor to ensure flexibility in identifying 
and handling necessary and reasonable model changes [Mo04; p.25]. Since 
all the steps of design work above are recorded, the communication actions 
between the designers can also happen asynchronously. This improves situa-
tions in which important designers are absent, because the other designers 
can delegate information (e.g., requirements or notes) to the absent designers 
through R2A. The absent designers are then able to consider this information 
and take actions after they have returned back. 
 
 

                                                           
205 At minimum informal notes can be added on any item present in R2A (see ch. 

III.17.2), but also other mechanisms exist at specific locations to add informal descrip-
tions, etc.. 
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III.12  Accompanying Case Study 

Every module … is characterized by its knowledge of a design decision which it hides from all others. 
 Its interface is chosen to reveal as little as possible about its inner workings. 

Parnas [Pa72; p.1056] 
 

In the following chapters, R2A and its features are described. To explain these 
features, a practice-oriented case study shows how the features interact with each 
other to support a good design process. Here, the basic characteristics of the case 
study are introduced. Later, extra chapters show the case study outcome with the 
features described.  

 

Figure 12-1  Example use case of the case study 

The case study starts with an example use case (fig. 12-1) for a lights steer-
ing device in an automotive context: At first, the system retrieves different signals 
from the controller area network (CAN) bus. Then, the lights steering task de-
termines whether some lights must be activated or deactivated. Finally, the lights 
are steered via pulse-width modulation (PWM) and diagnostic information is 
retrieved via analog feedback, which must be analyzed. 

Fig. 12-2 shows an example requirements specification for the case study in 
IBM Rational DOORS. The requirements ReqSpec_2 to ReqSpec_6 are func-
tional requirements describing the use case of fig. 12-1. It is here important to 
mention that requirement ReqSpec_2 is a special case as it also describes the 
context of the system. In this way, according to the view of Hruschka and Rupp 
[HR02; p.86ff] (see fig. 5-1 in ch. I.5.1), it can also be seen as a system constraint 
and thus as nonfunctional requirement. In practice, often requirements exist not 
clearly identifiable as being of one specific type. 
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Figure 12-2  Requirements specification for the case study in IBM Rational DOORS 

The items ReqSpec_1, ReqSpec_7, ReqSpec_10 and ReqSpec_12 are no re-
quirements but just headings structuring the requirements specification text, 
whereas ReqSpec_13 and ReqSpec_14 are clearly nonfunctional quality require-
ments, and ReqSpec_15 is a nonfunctional management constraint. 

The corresponding ECU’s SW design outcome is shown in fig. 12-3. A high 
level SW architect206 has partitioned the SW into three subsystems (the three 
packages LightsManagement, Communications, and Drivers). For each subsys-
tem a subsystem designer determines their sub components207.  

                                                           
206 The term high-level does not impose any specific role such as system designer. High-

level and lower lever are rather seen in relativity to the current design task. Design ac-
tivities take place in different levels of abstraction. A high-level architect is involved in 
designing at a high level of abstraction, e.g., determining the overall structure of an ar-
chitecture, whereas for other parts of the design – e.g., for a component – a designer at 
a lower level of abstraction will work. 

207 This example illustrates aspects of collaboration. In a real project of this size, only one 
designer could most probably cope with it. But in larger projects with complex appli-
cation domains, a separation into several layers of design liability is common. In the 
automotive industry, a current trend exists to merge several previously independent 
devices into one powerful multifunctional device (cf. [Br06]). 
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Figure 12-3  Example SW design for the requirements specification in fig. 12-2 

The following project decisions have been made: 
• The lights management contains an active process Light_Task with a complex 

state machine. An underlying light handler Light_hdl knows how to manage 
the underlying drivers according to the light signals to set. Both components 
are being developed in-house. 

• The drivers (PWM_drv, ADC_drv and CAN_drv) are supplied by different 
subcontractors. Code size, performance and other parameters are highly de-
pendent on their individual configuration. Therefore, a subcontractor manager 
shall monitor each driver for these parameters. 

• The CIL_hdl (CIL=CAN Interaction Layer) depends on the types of signals 
relevant for the device. These settings are defined by the customer (OEM) be-
cause it affects communication. 

This example case study has been chosen being as easy and clear as possible 
to illustrate the concepts of R2A. However, its easiness turned out to be a disad-
vantage for illustrating complex decision situations in ch. III.20.4. Correspond-
ingly, in ch. III.20.4, the author deviates from the case study by referring to some 
further requirements and components not mentioned here in the case study. This 
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decision situation is then again referred to in ch. III.22.1.1 describing impact 
analysis. The author thinks this deviation from the case study is no problem, 
because the reader can imagine (as it is in reality) that the ECU-project involves 
more use cases and components than just one use case for internal lights steering. 

 
 

III.13  Closing the Tool Gap 

How does a project get to be a year late? ... One day at a time. 
[Br95; p.153] 

 
 

To close the gap about proper tool coupling mentioned first, R2A is designed to 
work as an enhancement for a design tool. Fig. 13-1 shows R2A in combination 
with the design tool Enterprise Architect. R2A docks its main GUI208 window 
(right side) onto the main GUI window of the corresponding design tool generat-
ing an user experience in which both tools seem to be one tool. 
 

 

Figure 13-1  R2A in combination with a design tool (Sparx Systems Enterprise Architect) 

                                                           
208 Graphical User Interface 
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From the logical architecture viewpoint (see fig. 13-2), R2A can be seen as 
an interlayer between an REM-tool providing the requirements and a supported 
design tool.  
First of all, the requirements are imported from the REM-tool as direct representa-
tions (so called ‘surrogate requirements’) into R2A. Later, these representations 
can be synchronized with the requirement changes in the REM-tool by a regular 
controlled synchronization process. This is described in detail in ch. III.18.1. 

All relationships relevant for traceability and IAs are consistently modeled 
and stored in R2A. Currently, the following relationships are considered: 

• Satisfy relationships between requirements and design model elements (‘req 
model dependency’). 

• Hierarchic relationships between design model elements (‘refinement de-
pendency’). 

• Other relationships between design model elements (‘between model depend-
ency’). 
All other not traceability-relevant relationships occurring in design activities 

are not considered in R2A but must be covered by the features of the used design 
tools. 
This structure provides the following advantages in comparison to other methods: 
• The traceability relationships between requirements and design are managed 

directly, whereas only some distinct model relationships (the refinement and 
between model dependency mentioned above) are taken into account for IAs. 
This prevents the requirements fan-out effect (cf. [Al03] and ch. II.10.6.2) 
during IAs. 

• The synchronization between the requirements in the REM-tool and the sur-
rogate representations can be performed at specific points in time and thus 
requirement changes between the old requirement version, present as surro-
gate representation and the new version in the REM-tool can be tracked in 
R2A to support a consistent change of the design to fit to the requirement 
changes (cf. ch. III.22). 

• Besides, the surrogate representations concept allows that change works on 
the requirements baseline for the next release is decoupled from the require-
ments baseline for the current release. In this way, requirements engineers 
can already work on the requirements specification for the next release, 
whereas designers can design the system according to the requirements spec-
ification baseline of the current release in parallel. Details on this are provid-
ed in ch. III.23.3. 
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Figure 13-2  Logical structure of the R2A tool approach 
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III.14  Closing the Gap between Requirements 
and Design 

 
Technology evolves from the primitive over the complicated to the simple. 

Antoine de Saint-Exupéry 
 
Besides the structural advantages mentioned above helping to close gap one, the 
R2A approach shall go beyond closing the first gap. It shall also change the way 
how designers treat requirements and design by establishing an intuitive process 
that allows to establishing traceability information between requirements and 
design as a by-product of the usual design activities.  

According to the experiences of Moro [Mo04; p.351], it makes no sense to 
consider a design model without also considering the corresponding requirements 
specification or software architecture documentation. Following this finding, the 
author considers these items as a threefold unity. Correspondingly, R2A tries to 
find a solution in which all three aspects can be considered in an integrated way 
during design activities. The following chapters deal with the different features 
that try to provide a solution to better address this structural gap. 

In a lot of cases, design is the result of a collaborative work between several 
designers working together to find a solution for fulfilling the requirements. Cor-
respondingly, several designers must work in parallel on the same model and they 
must be able to easily share information. Thus, ch. III.18.2.4 shows how estab-
lishing traceability as part of a design process can be used as an essential means 
to organize collaboration and sharing contemporary requirement information 
between designers, working together to find a solution for all requirements. Find-
ing good solutions essentially involves making design decisions in a collaborative 
manner and information about decisions must be propagated as soon as possible 
to all stakeholders affected by the decision. As a consequence, a design solution 
should also support a collaborative decision process as rationale management 
systems do. 
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III.15  Abstraction Layers and Abstraction 
Nodes 

There are a lot of advantages of hierarchically organized systems and sub systems. ... 
 If we work on a certain level of abstraction, we will be able to concentrate on this level without 

having to go into detail too fastly. 
[HHP03; p.52 (*)] 

 
Following the design theory of Simon (see ch. I.6.2.1), design deals with manag-
ing complexity. Central concepts for managing complexity are abstraction hier-
archies (also called hierarchic decomposition) and posing different views on 
design aspects. 

To simplify the understanding and the structure of the design, R2A empha-
sizes the hierarchical abstraction structure view (hierarchical decomposition) as 
nodes in an abstraction tree. Fig. 15-1 shows an example of such a hierarchical 
decomposition. In the further of this document, such a node is called abstraction 
node (AN), whereas the tree is called abstraction nodes hierarchy (ANH). An AN 
is formed out of two aspects. On the one side, it represents a design element usa-
ble as a symbol in diagrams. On the other side, an AN contains a diagram show-
ing its internal structure composed of new design elements and thus a new AN in 
a more detailed abstraction level. In this way, detailing relationships (refinement 
dependencies) arise between an AN and its sub AN, in which the diagram of an 
AN contains the design elements (symbols) of the AN it is built of (composed) of.  

Concerning this issue, it must be mentioned that all ANs at one level in the 
hierarchy represent one level of abstraction (or detail) in the design. This is called 
an abstraction layer (AL) in the further. In other words, an AL builds a compre-
hensive view on a system at a certain level of abstraction209. With increasing 
depth of an AL, the design gets more specific. 

An AN is more than a node in an abstraction tree. ANs build the central start-
ing point to connect to further design related information. Below, fig. 15-2 shows 
the conceptual characteristics of an AN in R2A on the basis of an example AN 
“SubSystem1” enriched with further information. 

                                                           
209 = levelalhierarchiconeatANAL ___

 – this is similar to refinements of data flows in structured 

analysis (SA) [De78]. 
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Figure 15-1  Hierarchical decomposition of a system shown as abstraction tree 
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Figure 15-2  Detailed content and structure of an abstraction node (SubSystem1) 

The goal is to present as much relevant information as possible for an AN and 
its realization. Consequently, one idea of R2A is using the AN concept to repre-
sent the following information to designers: 
• Each AN consists of a representation element (symbol) that represents the 

abstraction node in other diagrams.  
• Each AN has one central diagram (‘Main View’) as main entry point. The 

diagram represents a decomposition view showing how the AN is decomposed 
by sub ANs, in which the design elements of the sub ANs are shown in the di-
agram. 

• Other views or diagrams can be attached to an AN as further views (‘Sub 
view’) to allow detailed modeling of other important aspects (e.g., dynamic 
behavior, concurring processes, complex behavior).  

• Diagrams without further explanation can be misinterpreted. Consequently, a 
design must be accompanied by textual descriptions. R2A supports adding a 
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textual description as a rich text document for each AN (‘Textual Descrip-
tion’). This allows the designers to document each AN separately. 

• Requirements can be linked to ANs to indicated that the AN satisfies the re-
quirements. Requirements associated to an AN of a higher abstraction level 
get inherited by ANs of lower abstraction levels. All these connections of an 
AN with requirements can be shown to the designers (‘Allocated require-
ments’). The details about requirements and ANs are described in the follow-
ing ch. III.18. 

• As described in ch. II.9, important aspects about taken design decisions 
should be documented. The AN concept makes all decisions connected to 
structure building of the design leading to the ANs automatically visible to the 
designers. Additionally, through the history function described in ch. III.17.5, 
the decision history is collected. This is close to ideas of Gruber and Russel 
[GR96a] (see ch. II.9.4.2) to automatically capture side information on pro-
cesses providing rationale in a way that allows to inferring rationale later 
when it is needed. 

The first two points have a strong analogy to the concept of different abstrac-
tions in structured analysis and design (SA/SD) [De78]. Currently, the concepts of 
SA/SD have mostly been ousted by the concepts of UML. 

Concerning the design language UML, a central concept is the usage of dif-
ferent views on a system under development. UML as well as UML-tools usually 
do not impose any demands on the definition or usage of views and their relation-
ships. Instead all views are treated with the same priority. In UML-tools like 
Enterprise Architect, all elements present in a design are stored in one project 
repository browser. Fig. 15-3 shows an example of a project repository browser as 
it is provided by the UML-tool Enterprise Architect. A project repository contain-
ing all elements of a design is important for a project to have an overview of the 
available elements of a design. Besides the rich tool set, the relative freedom of 
not imposing demands for a structured approach has probably contributed to the 
vast success of UML in the development community. This egalitarian treatment of 
all design concepts, however, also makes it difficult to understand the design and 
the relationships between the different views210 (resp. diagrams). 

                                                           
210 Broy and Rumpe [BR07b] speak of incondite consistency between the different model 

views in UML (see also ch. I.6.6.1). 



276 III.  PROVEtech:R2A – A Tool for Dedicated Requirements Traceability 

 

Figure 15-3  Example of a UML project repository in Enterprise Architect 
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This is where R2A with its AN concept can help designers to master com-
plexity as it extracts and visualizes the most important structural information of a 
design repository. At first, R2A breaks down the information contained in a pro-
ject repository into the abstraction hierarchy described in the points one and two 
resulting in the main view connecting the strength of the SA/SD concept with the 
strength of UML. In the next step, described in point three, each of the ANs in the 
ANH can contain further diagrams as further views fulfilling the concepts of view 
partitioning as inspired by Simon’s design theory (ch. I.6.2.1). To master design 
complexity for designers, this structure provides an easy way to mentally struc-
ture a model with specific navigation support in two ways: 
1. As main view, the ANH allows the designers to order the design into a struc-

ture easy to overview for a designer. This can be seen as navigation into the 
vertical of the design model. 

2. To each node in the ANH, further associated views can be seen as a parallel 
view on other aspects of an AN. This can be seen as navigation into the hori-
zontal of the design model. 
Resembling accordance express the remarks from Hatley et al. [HHP03; 

p.47] that, if several models for a system shall be created, these models must be 
organized in a way orienting themselves on the relationships between the models 
and the system. They use the metaphor “scaffold” [HHP03; p.47]. From this 
perspective, R2A imposes a kind of scaffold to structure a design. Other model-
ing approaches as Matlab or ETAS ASCET do not provide different views but 
only have one view showing the abstraction hierarchy (corresponds to the ANH) 
of the design. As R2A’s only required assumption about design is that an abstrac-
tion hierarchy is present, these design methods are fully compatible to R2A ex-
cept for the only difference that these modeling approaches do not provide mod-
eling of further views.  

Nevertheless, the ANs concept has one major drawback: The ANH is a re-
dundancy to the design elements hierarchy modeled in the modeling tools. This 
means that this information must be modeled twice and later changes must also 
be maintained twice – once in the modeling tool and once in R2A. Mechanisms 
to manage this redundancy should offer relief for these situations and explicitly 
prevent information drift between the redundant information. R2A offers three 
mechanisms: 
1. As basic mechanism, a wizard helps the designers with combining design 

elements in a modeling tool to ANs in the ANH. 
2. For better convenience, it is also possible to perform drag-and-drop opera-

tions dragging design elements from a modeling tool to R2A. If R2A can re-
cover enough information about the design elements to fit them directly into 
the ANH, the elements will be directly added (as mentioned above, UML-
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tools do not provide as clear hierarchy dependencies as tools such as Matlab 
or ETAS ASCET do). Otherwise, the wizard mentioned in point one opens, 
containing all automatically retrievable information, to which the designer 
only has to add the missing information which could not be automatically re-
trieved. 

3. An automatic synchronization mechanism explicitly helps to resynchronize 
the design elements and their hierarchy in the modeling tool with the ANH in 
R2A. Before really synchronizing, the mechanism analyzes both structures 
and displays a synchronization wizard, where the differences and proposals 
for potential changes to overcome the differences are shown. Using the wiz-
ard, the designer can analyze the proposed changes for correctness or adapt 
the proposed changes in order to perform the changes according to the de-
signer's intention. After the designer has approved the changes highlighted 
by the wizard, the synchronization mechanism applies them. The mechanism 
is explicitly helpful, when changes in a modeling tool shall be adapted to an 
already existing ANH, but the mechanism can also be applied to create an 
ANH from scratch using the design elements' abstraction hierarchy in the 
modeling tool. However, experience has shown that this mechanism only 
works frictionless for tools with a definite hierarchy (such as Matlab or 
ETAS ASCET), whereas for modeling tools in which the hierarchy cannot be 
determined definitely (e.g., UML-tools), the synchronization wizard often 
identifies unintended changes due to false-positive or misleading interpreta-
tions of the automatic synchronization mechanism. It is possible in the wiz-
ard to correct all these unintended changes and turn them into intended 
changes, but this can become cumbersome for designers. In these cases, us-
ing the two mechanisms mentioned first to create the ANH and then using the 
synchronization mechanism to synchronize later adaptations on the hierarchy 
may be the better alternative. 
A design scaffold also is a central concern for design documentation purpos-

es (cf. [IEEE1471], [GP04], [CBB+03] and [Ha06]). Design documentation aims 
at documenting design to communicate it to persons not directly involved with 
the design or even non project members. Besides the documentation of design 
elements and their relations documented in diagrams arising out of design, also 
the relations between the diagrams must be documented. This is implicitly ful-
filled by R2A's scaffold (i.e. skeleton)  structuring the relations between dia-
grams. Beyond these points, design documentation also demands a textual de-
scription of the design. Textual documentation is supported in R2A by the possi-
bility to add a textual description to each AN, as described in point four of the 
listing about information possible to add to an AN (see p.274 in this ch. III.15). 
To ensure a certain quality of the textual design description, documentation tem-
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plates can be defined and used for the documents. Last but not least, design doc-
umentation literature also demands for documenting other important information 
as assigned requirements and important decisions. As these points are also part of 
R2A, R2A is a valuable support for design documentation. 

 

Figure 15-4  With the AN tree view and the tab “Views and Description” 
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A further point to mention here is the fact that for modeling an ECU, often 
several different models are used, where even several different modeling tools 
may be used in parallel. To reduce design complexity within such a heterogene-
ous model environment, R2A also provides mechanisms to manage different 
models and their relations in an integrated manner using the AN concept. Ch. 
III.16.2 describes this in detail. 

Now, after elucidating the theory, the concrete realization of the AN concept 
in R2A is described. Fig. 15-4 shows a design model in R2A. In the upper part, a 
tree view contains all ANs building the hierarchical composition structure as the 
main view. When the user selects an AN in the tree view, the AN’s main view 
diagram is selected in the design tool and all other information related to the AN 
is shown in the lower part. This part is segmented into three tab pages (see fig. 
15-4):  
• The tab “Views and Description” contains a control to add diagrams as fur-

ther related views to an AN and a control to add a description to an AN in 
rich text format (RTF). 

• The tab “Requirements” contains a control that helps to maintain require-
ments traceability information with ANs. This is further described in ch. 
III.18. 

• The tab “Decisions” deals with relating important design decisions to ANs. 
This is further described in ch. III.20. 
 
 

III.16  Models Crossing Tool-Barriers 

Couplings between textual specification and modeling tools are immature and seldom used. 
[WW02; p.22] 

 

III.16.1  Insertion: Coupling Different REM- and Modeling  
Tools 

In engineering practice, different REM- and modeling tools are used. The tool-
based methodology proposed by the R2A project is very general and could be 
used by all kinds of systems or SW design projects. Thus, R2A is designed to be 
open for different kinds of REM- and modeling tools to provide flexibility in the 
usage of REM- and modeling tools in order to allow the usage of the best-suited 
tool support for a project. 
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To ensure this flexibility with minimal effort at maximal benefit, R2A is de-
signed according to concepts of software product line design [PBG04; p.259-
298]. A software product line is “a set of software-based systems sharing a con-
joint, controlled set of product characteristics, orienting itself on the specific 
needs of a specific domain and being developed on the basis of a collective pool 
of software artifacts” [PBG04; p.262 (*)]. 

Here, the focus is to adapt R2A and its processes as a common development 
approach to fit with different REM- and modeling tool environments. In this way, 
R2A is not a classical product line, but is merely a tool framework allowing dif-
ferent REM- and modeling tools to be coupled. However, product line design 
differentiates a system into the invariable product line core and its variation 
points. The invariable core contains the constant characteristics of the systems, 
whereas the variation points define the differing characteristics of the systems 
[PBG04; p.276]. R2A could be differentiated in the invariant core of concepts 
described in this thesis and the variation points of different tool couplings to 
embed R2A into an integrated tool chain. Correspondingly, the REM- and model-
ing tool couplings have been identified as variation points. For each identified 
variation point, adequate strategies and design concepts to handle the variation 
must be found. A common problem at product line development is that the prod-
uct line core is in constant danger of creeping erosion. This means that the varia-
tions along the boundaries between the core and a variation point always demand 
variations at parts of the core leading to a growing extent of the variation point, 
whereas the invariable core's extent shrinks (erodes) with passing time in a prod-
uct line project.  

To address creeping erosion in R2A, the main strategy for both variation 
points was to ensure strong encapsulation between R2A's core and its variation 
points. This is accomplished by the usage of concepts and patterns such as the 
interface concept, proxy, observer and abstract factory pattern (cf. ch. I.6.2.4).  

III.16.2  Integrating Several Modeling Tools in a Single 
Model  

As described in ch. I.6.6.1, often several design tools are used simultaneously in 
an automotive embedded project, due to different strengths of the different tools. 
Correspondingly, R2A supports to handle several design tools in one integrated 
model211. 

                                                           
211 See also Medvidovic et al. [MGE+03; p.199]: “While individual models help to clarify 

certain system aspects, the large number and heterogeneity of models may ultimately 
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Fig. 16-1 shows an example of such a model basing on the accompanying 
case study about internal lights control. The model starts with the AN “SW De-
sign” that refers to the high-level design diagram of the software. This diagram is 
modeled in a UML-tool (in the example Sparx Systems Enterprise Architect). In 
the diagram, several design elements are shown, among them the elements 
“CIL_hdl”, “Light_hdl” and “Light_Task”. These elements become further ANs 
in R2A. 

Due to the different roles and characteristics of the ANs, different modeling 
tools are used to model the diagrams showing the internal design structure of the 
individual ANs: 
• The “Light_Task” contains a complex state machine. In order to tame the 

complexity, the state machine can be modeled, early simulated and then be 
converted to code via Matlab Stateflow. Thus, the diagram of the 
“Light_Task” AN refers to a Matlab model diagram. 

• The “Light_hdl” maps abstract signal definitions used in the “Light_Task” to 
concrete signals according to the used HW and manages HW diagnosis func-
tions. This involves complex algorithms that are sketched best via UML activ-
ity diagrams and then manually implemented in C. Therefore, the “Light_hdl” 
AN is also modeled best in a UML-Tool.  

• The “CIL_hdl” (CAN Interaction Layer Handler) cares about managing dif-
ferent signals sent or retrieved via CAN. The signals are usually described in 
a so-called CAN matrix. A CAN matrix is often described in Microsoft Excel 
or a dedicated CAN configuration tool. Correspondingly, R2A could212 refer 
to this application and the corresponding CAN matrix file.  

Once an R2A-model is setup, where the ANs with their diagrams are realized 
in the different modeling tools, the designers can use R2A to navigate in the inte-

                                                                                                                                    
hamper the ability of stakeholders to communicate about a system. A major reason for 
this is the discontinuity of information across different models”. As a solution, Medvi-
dovic et al. [MGE+03] propose using a model connector concept, where relationships 
between models can be modeled. This model connector concept rather seems to be an 
extended link concept (link with different assignable properties) and seems not to be in 
significant practical application. Nevertheless, the model connector concept may be 
significantly more flexible than the functionality of R2A. On the other side, the model 
connector concept leaves open how these connections may be adequately visualized to 
provide an overview for designers. In this aspect, R2A's concept provides a clear 
structure, well-known to designers. 

212 Currently, R2A does not support to include Excel or any other application for manag-
ing CAN matrices, but it will be possible similar to the support for a UML-tool or 
Matlab, if a coupling of the tool with R2A is implemented. In this way, this indicates a 
possibly promising extension of R2A's current state of development. 
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grated model built up from the parts modeled in the different modeling tools. For 
example, when a designer selects “SW Design” or the “Light_hdl” AN, R2A will 
dock to the UML-tool and show the corresponding diagram. In the case of the 
“Light_Task”, R2A will dock to Matlab and shows the corresponding Matlab 
diagram, and so on.  

If a modeling tool is not available (e.g., the designer does not have a license 
for the corresponding tool), R2A provides a model viewer mode, where R2A 
shows a snapshot of the model as bitmap taken by R2A the last time a designer 
worked with the corresponding modeling tool. In this way, R2A provides one 
integrated design model to the designers even though different tools are used. The 
AN concept once again proves its value as the integrative scaffold.  

In most cases, design is a collaborative task, where several designers must 
work together. Following the example above, it is very likely that the “SW De-
sign” AN and its connected information is designed by a SW architect, whereas 
the details of the individual sub ANs (“Light_Task”, “Light_hdl” and “CIL_hdl”) 
are designed by developers being specifically responsible for their component 
(so-called component designers or module designers). Thus, immediate infor-
mation sharing between the designers is essential. Such cases are especially im-
portant in the context of sharing information about requirements, requirements 
traceability and decisions. 

 

 

Figure 16-1  Different modeling tools integrated into one design model via R2A 
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As the following chapters describe, the AN concept plays the key role in 
connecting those information with the modeling information in a collaborative 
way. A possible scenario can be that the software architect makes the decision 
that a certain requirement must be handled by the “Light_Task”. The software 
architect can document this decision by assigning the requirement to the 
“Light_Task” AN. R2A then immediately notifies the component designer of the 
“Light_Task” about the newly assigned requirement, and the component designer 
can immediately use the information to adapt his component design. 

Details to these options are presented in the following chapter. In this con-
text, the reader should note that all statements about information propagation 
between ANs also imply that it is possible to cross the information beyond model-
ing tool boundaries by the integrated model concept described here. 

 
 

III.17  Basic Support Features of R2A 

Design is the most demanding activity within the development cycle. 
[ER03; p.34] 

 
R2A also contains some features that are well-known in other tool environments, 
but the combination of these features with the innovative concepts of R2A brings 
interesting bonus values. In the following these features are sketched. 

III.17.1  Support for Collaborative Design Tasks 

As already stated above, design is usually a collaborative task. Consequentially, 
R2A is also construed to support collaborative aspects of design. When a user 
performs and saves a change in a R2A model, the change is automatically distrib-
uted and updated in all other R2A instances connected to the model. 

For improving communication between users, a notes mechanism has been 
realized in R2A. Details to the notes mechanism are described in the next chapter. 
One big advantage is that it allows asynchronous communication between the 
users.  

Later in ch. III.18.2.4, the process heuristic requirement dribble process 
(RDP) is introduced that extends the collaborative mechanisms described here to 
a heuristic to collaboratively find the best design solution for requirements and 
simultaneously documenting the traceability information with a history of the 
decision-making process leading to the solution. 
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III.17.2  The Notes Mechanism 

Design is a collaborative task, where information sharing is essential for project 
success. Thus, a notes mechanism213 provides decisive means to improve com-
munication, i.e., reconciliation between the project members. Concerning com-
munication, three factors must be considered: 
• At first, good design lives from good (i.e. creative) ideas. Unfortunately, often 

creative ideas emerge from a designer's mind for particular aspects of the de-
sign, for which no specific structure around the idea has shaped yet. This 
means a good idea may not be immediately integrated into the current stable 
intermediate form of the design. This point appears to be closely connected to 
what is discussed in the course of Schön's theory (ch. I.6.2.3) about sketching 
as an essential activity in design. According to Goel ([Go99], [Go95]), sketch-
ing occurs at the beginning of design. Sketches often shape ideas in a kind of 
ill-structured nature. A notes mechanism provides a flexible, easy to use and 
fast way for sketching and documenting such ideas.  

• R2A allows attaching these notes to any item present in R2A. This enables 
designers to notify other designers about their ideas. As an example, it often 
occurs that a designer has a good idea about the solution for a specific re-
quirement, but it is not clear yet what part of the system will handle the re-
quirement. In this case, the designer can attach a note to the requirement and 
easily sketch the idea in the note text. At a later time, the requirement gets as-
signed to an AN that shall provide the solution for the requirement. Often, a 
different designer will be responsible for finding the solution to this specific 
AN. In this case, this designer now can open the note attached to the require-
ment and retrieve a hint about the idea of the other designer how to solve the 
problem imposed by the requirement at best. Obviously, the example shows 
that the notes mechanism214 is a means for communication between the de-
signers inferring the advantage of enabling indirect, asynchronous communi-
cation215 between the designers at their collaborative work.  

• Additionally to sketching ideas, designers sometimes also identify intercon-
nections between parts of their design and requirements that are difficult to 
express in normal design documentation. For these cases, R2A's notes-

                                                           
213 See fig. 17-1 (p.289) for a description of the user interface implementation in R2A 
214 Here, in combination with the requirements traceability mechanisms described in ch. 

III.18. 
215 For detailed information on implementation, advantages, and disadvantages of syn-

chronous and asynchronous team communication mechanisms in collaborative envi-
ronments refer to [GK07; p.103-114]. 
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mechanism also allows attaching several items to one note helping designers 
to document these interconnections (and perhaps also sketching an idea how 
these interconnections may influence the further design). 

• Another source of communication problems between designers are often 
interdependencies between the designers' work. For example, it is possible 
that a designer cannot design a solution for a requirement because another de-
signer has not yet designed a solution for another part of the design (e.g., an-
other AN), on which the solution of this requirement bases. In this case, the 
notes mechanism allows the designer of the requirement to apply a note on 
the requirement and the AN not yet fulfilling the necessary design. In this 
note, the designer can sketch what the other AN misses so that he cannot find 
a design solution for his design problem. Through this, the designer of the 
other AN retrieves then the information that he must find a design solution for 
the specific problem the other designer's work depends on. 

As a side-effect, such notes also provide valuable information when later 
changes on the design must be maintained at later phases. In this way, notes also 
provide weak support for traceability. However, it must be mentioned here that a 
few chapters later a significantly stronger support for traceability with slightly 
overlapping possibilities is introduced. This mechanism deals with describing 
design decisions for problems and their consequences in a traceable way. It is 
highly possible that some notes sketching ideas about a problem, later become a 
documented decision. 

III.17.3  Extensibility: XML-Reporting and User Tagging 

No ever so big tool development effort can anticipate all user needs. This is espe-
cially true for all usages of once gathered information. To provide additional 
flexibility all gathered model information of R2A can be exported to XML and 
developers can add individual user tags in free text form. This allows organiza-
tions to reuse the R2A information in other tools or to develop own special pur-
pose tools using the information for their specific needs.  

Experiences with pilot users of R2A revealed that this is especially im-
portant for extended information analysis and specific reporting to management. 
Through the user tags216 it is possible to add additional meta-information on R2A 
items which is often important to steer information analysis and reporting. 

                                                           
216 See fig. 17-1 (p. 289) for information on how user tagging is integrated in R2A's user 

interface 
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For the future, the currently discovered reporting needs can be further inte-
grated into R2A as a standard reporting concept, however the mechanisms de-
scribed here further allow users to quickly check out and adapt new promising 
uses217 of the gathered R2A information. 

III.17.4  Unique Identifier Support for any Item in R2A 

Any item created in R2A automatically receives a unique identifier. As described 
in ch. II.10.4.2.1, the unique identifier concept is essential to allow textual refer-
ences as linking is not always possible. In this way, items can also be textually 
referenced in other development tools, where no direct connection exists. Thus, 
e.g., in the case of R2A any item in R2A can be referenced in a textual change 
proposal issued in a change management tool by simply writing the unique iden-
tifier of the R2A-item in the change proposal's text. To ensure that R2A's identifi-
ers are unique R2A uses the GUID218-mechanism provided by the Microsoft 
Windows operating system. 

III.17.5  Evolutionary Traceability – Recording History and 
Baselines 

As ch. II.10 has exposed, traceability also involves recording the evolution histo-
ry in project development. This means that all operations performed in R2A must 
be comprehensible in retrospect. Correspondingly, R2A provides a history mech-
anism to record the history of every operation performed in R2A accompanied by 
information about the performing user and a time-stamp of the time when the 
operation has been performed. This history information can be regathered any 
time by the users if needed (see fig. 17-1 (p. 289)). 

                                                           
217 One issue regularly showing up at discussions with potential users is the idea to inte-

grate the information with project planning information to measure accuracy of project 
planning and getting a deeper insight about the real status of a project. 

218 GUID stands for General Unique IDentifier and is a well-tested mechanism in Win-
dows ensuring that each generated GUID is world-wide unique (e.g., Microsoft Win-
dows heavily relies on the mechanism to ensure that system internal interfaces or ser-
vices have a unique identifier). 
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R2A's history mechanism also provides a possibility for users to save a cer-
tain status of the model as a fixed version baseline219. Any baseline can be any 
time reopened in a baseline viewer to analyze the status of the design at a certain 
point in time. Additionally to all information gathered in R2A at that time, such a 
baseline also records snapshots of all diagrams modeled in the connected design 
tools. Thus, when a baseline is opened in the baseline viewer, also the state of all 
modeled diagrams at that time can be viewed and analyzed. This is especially 
helpful to provide an overview over a certain baseline state when more than one 
modeling tool is used in a model. 

III.17.6  The Properties Dialog 

For any item present in R2A, a properties dialog shows its properties, evolution 
history and attached notes. Fig. 17-1 shows the properties dialog of the AN “SW 
Design”. On the left, the properties of the item are shown. This dialog varies 
corresponding to the item type because each item type has different properties. 
E.g., a requirement mainly has the requirement text as properties, whereas an AN 
type has the properties shown in fig. 17-1. Only the last property “User Tags” is 
an exception because this property is shown for any R2A item as it enables the 
user tagging mechanism described in ch. III.17.3. 

Through the tab button “History”, the user can navigate to the history tab 
shown in the middle of fig. 17-1. The history tab is segmented in an upper part 
showing different version entries of the item (here two). In the part below, the 
differences of versions selected in the upper part are highlighted (cf. ch. III.17.5). 

Via the “Notes” tab shown at the right side, the user can add notes to the 
item according to the notes mechanism described in ch. III.17.2. This tab is di-
vided into three sections. The lower right section contains an overview of all 
notes attached to the item. In the upper section, the selected note's text can be 
viewed or edited. All items to which the note is attached are displayed in the 
lower right section. To attach the note to other items, the designer can drag-and-
drop the items in the lower right control. 

 

                                                           
219 “A baseline is a configuration assembled and verified that it is considered as stable and 

works as referring point for further development. A release is a baseline defined for de-
livery to the customer” [LL07; p.521]. 
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Figure 17-1  The properties dialog in R2A 
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III.18  Requirements and Requirements Traceability 

If the language is not right, the spoken is not the meant. 
Confucius (*) 

 
In the following, R2A's handling of requirements and how requirements tracea-
bility is established is described. Both points have a slightly different meaning. 
Correspondingly, the first sub chapter discusses managing requirement sources 
and how basic requirements traceability can be established with R2A. The later 
ch. III.19 and ch. III.20 then discuss how basic requirements traceability can be 
extended to improve quality of traceability information and to improve problems 
of SPICE in connection with traceability (see ch. I.7.3.2). 

Afterward, ch. III.22 discusses how all the collected information can be used 
to predict effects of requirement changes and how changes can be consistently 
inferred into a R2A model in order to avoid degradation of traceability infor-
mation. Finally, ch. III.23 discusses how R2A can be integrated in a more general 
process context to manage suppliers or to manage decoupled development for 
different versions. 

III.18.1  Managing Requirement Sources 

At first, it should be mentioned that R2A is not intended for the usage as a com-
plete REM-tool like IBM Rational DOORS. Thus, R2A does not concentrate on 
features for requirement elicitation, documentation or management. Instead R2A 
is assumed to be a broker, who can retrieve requirement documents from different 
sources. In this way, different requirement documents and their sources can be 
managed in the “Requirement Sources” part of R2A (see fig. 18-1). 

Here the different documents containing requirements from a source can be 
managed. These documents are called in the further requirements source docu-
ment (RSD). An open RSD can be seen in fig. 18-2. 

 
Currently two220 different types of RSD exist: 
• Documents originating from an REM-tool (requirements specification items), 
• Sources that can be manually managed to allow documenting information 

otherwise neglected; 
                                                           
220 Actually, the figure also contains the items “Decisions”, “Design Constraints” and 

“Resource Constraints”. These items are not RSDs in the sense discussed here. These 
documents are rather containers for all items discussed in ch. III.19, ch. III.20, and ch. 
III.21.  
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Figure 18-1  Managing different requirement sources in R2A 

 

Figure 18-2  Requirements source document synchronized with IBM Rational DOORS 
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Point one refers to requirement documents that are edited and managed in an 
REM-tool. In this case, the REM-tool functions as data source from where the 
available requirements can be continuously synchronized221. Fig. 18-2 shows a 
RSD being synchronized with the case study's requirement document managed in 
the REM-tool IBM Rational DOORS shown in fig. 12-2 (ch. III.12). A filtering 
mechanism allows importing only the requirements from the REM-tool that are 
important for the design model managed in the R2A project. For better orienta-
tion of the designers, REM-tool items not included by the filter criterion but con-
taining items as sub items that are included by the filter criterion are imported 
into R2A as headings. Fig. 18-2 shows items “ReqSpec_1”, “ReqSpec_7”, 
“ReqSpec_10”, and “Req–Spec_12” as headings in italic.  

Once an RSD has been synchronized with the REM-tool, the present re-
quirements can be related to design elements via the traceability operations de-
scribed in the following chapter. Headings are only there for structuring the doc-
ument and have no further meaning. This means, none of the traceability opera-
tions described in the following chapters can be performed for headings.  

If requirements are changed in the REM-tool then, continuous synchroniza-
tion procedures allow the requirement changes to be introduced into the design in 
a consistent way. This is described later in ch. III.22. 

Point two offers additional freedom for the users as easy and fast way to 
document information that would otherwise be omitted. As Hörmann et al. 
[HDH+06; p.93] emphasize, many requirements have other sources (e.g., compa-
ny-internal requirements deriving from product politics or the product architec-
ture). As outlined by ch. I.7.3.2 and ch. III.19, the author demands to consider 
negotiability as a criterion for requirements specifications. In the author's opin-
ion, the requirements specification should only contain the requirements that 
must be negotiated with the customer. Company-internal requirements222 (not 

                                                           
221 The coupling of REM-tools is much looser than the coupling of modeling tools be-

cause R2A docks its user interface directly to a modeling tool, whereas REM-tools on-
ly function as data source. Thus, the interface for REM-tools is not as complex as the 
interface for the modeling tools. 

222 The probably most often occurring company-internal requirements are what the author 
calls internal management requirements. In most cases, internal management require-
ments might probably deal with ensuring cost efficiency and ensuring monetary bene-
fit. Parts of these requirements have impact on design. For example, management can 
require using COTS (components off the shelf) components or components originally 
developed in other projects to avoid development effort. A significant problem for de-
sign often having significant influence on the design outcome is then how to integrate 
these components with the other parts of the design. Including such requirements in an 
extra requirement document helps to separate real requirements from the customer 
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originating from the customer) could thus be stored in a second requirements 
specification, or in more pragmatic processes, just be documented in a manually 
managed RSD, or derived from former design decisions (discussed later in ch. 
III.19 and ch. III.20). 

Another scenario to consider here is that requirements specifications often 
refer to industry standards to be fulfilled. In this case, often the requirements 
imposed by the standard are not directly referenced in the requirements specifica-
tion because these requirements are fixed. Now, the feature to manually write 
down requirements would allow defining a requirement source referring to the 
standard (e.g., IEC 61508 in fig. 18-1). In this document, the designers can now 
note down requirements for the design derived from the IEC 61508 standard.  

A manually managed RSD looks like and is treated in the same way as a 
synchronized RSD shown in fig. 18-2, except that its containing requirements can 
be edited in R2A. The handling of the requirements described in the following is 
also the same as for synchronized requirements. 

As described in ch. II.10.4.2.2, requirements can be managed via decompo-
sition hierarchies and decomposition hierarchies are the state-of-the-art manage-
ment technique offered by REM-tool. Correspondingly, RSDs originating from 
REM-tools take over the decomposition hierarchy in the REM-tool. Fig. 18-2, 
e.g., shows the requirements in a hierarchic tree directly taken over from the 
hierarchic decomposition in the IBM Rational DOORS document shown in the 
left column of fig. 12-2 (ch. III.12). In manually managed RSDs, the users can 
manually arrange the requirements' hierarchic decomposition in R2A. 

III.18.2  Establishing Requirements Traceability 

Before going into R2A's support for traceability establishment, some preliminary 
considerations shall lead to a better understanding of the ideas. 

First of all to mention, different traceability models have identified different 
relationship types between requirements and design. As discussed in ch. 
II.10.4.2.3, e.g., SysML differentiates between <<DeriveReqt>>, <<Satisfy>>, 
<<Verify>>, <<Refine>>, <<Trace>>, and <<Copy>> relationship types 
[SV08], Ramesh and Jarke [RJ01] identify four different relations 'allocated to', 
'satisfy', 'drive' and 'addressed by' in their high-end traceability model, other re-
                                                                                                                                    

from requirements originating somewhere in the developing organization. This already 
reflects an idea further discussed in ch. III.19 that requirements must be separated ac-
cording to their negotiability. Surely, requirements originating within the developing 
organization are easier negotiable within the developing organization than require-
ments originating from the customer building the contractual basis of the development. 



294 III.  PROVEtech:R2A – A Tool for Dedicated Requirements Traceability 

search as, e.g., [Wi98] even surfaced more relationship types. The probably most 
usual link type is the 'satisfy' type, indicating that a requirement related to a de-
sign element is satisfied by the design element. In fact, the author believes that, 
e.g., the three types of SysML are only a little more special variation of the 'satis-
fy' link type, as it is the same case for the 'allocated to' 223 and 'addressed by' 224 

link types in the high-end traceability model of Ramesh and Jarke225 [RJ01]. 
In the context of this research, the question of the relationship type has been 

left open as research concentrated on an efficient way to establish significant 
requirements traceability providing support for helpful IAs. In the author's practi-
cal experience, the question whether a relationship has been recorded and thus an 
IA identifies a possible impact has higher priority than the correct kind of a rela-
tionship, because relationships identified by an IA will still be interpreted by the 
developers leading to the exclusion of false-positive relationships, whereas rela-
tionships not found may just never come to the minds of the interpreting devel-
opers. In this way, R2A leaves the question about a particular kind of relationship 
open by using the term a requirement is assigned to a design element which 
equally corresponds to a satisfy-link type. Later, if usage of R2A in practice 
proves the necessity to further differentiate different kinds of recorded relation-
ships, the R2A approach can be easily enhanced by a feature to provide more 
specific relationship type information.  

Following Simon's design theory (ch. I.6.2.1), the design process is a con-
tinuous decision process, where a lot of the decisions are performed on the basis 
of the requirements. R2A directly supports this decision-making, because R2A 
directly shows these requirements to the designers that are important in the de-
sign situational context. 

Another issue to consider is that continuous refactoring of the design struc-
ture is necessary due to bounded rationality, arbitrary complexity and Berry's 
findings about the need to restructure modularization [Be04; p.56], (see ch. 

                                                           
223 Definition of 'allocated to': “REQUIREMENTS are ALLOCATED to COMPONENTS 

that are supposed to satisfy them” [RJ01; p.73]. 
224 Definition of addressed by': “Several focus groups mentioned that it was important to 

identify the FUNCTIONS PERFORMED BY COMPONENTS. These FUNCTIONS 
are typically traced to the functional REQUIREMENTS explicitly identified in re-
quirements documents.” [RJ01; p.74]. 

225 The 'drive' relationship only expresses that requirements drive the design (“REQUIRE-
MENTS DRIVE DESIGN, that are often BASED ON MANDATES such as STAND-
ARDS or POLICIES or METHODS that govern the system development activity” 
[RJ01; p.73]). Correspondingly, the author is not even sure whether this is really in-
tended as a link type by Ramesh and Jarke. Instead, the author considers the 'drive' re-
lationship as a conceptual metaphor for the design process. 



III.17  Basic Support Features of R2A 295 

I.6.2.1.2). Accordingly, it must also be possible to easily refactor traceability 
structures. Today's current state-of-the-art methods of relating requirements are 
not very flexible for changing requirements assignments. As an effect, designers 
often perform their design process first to such an extent that the design has 
shaped to a relatively fixed state and then establish traceability information.  

This has the effect that the requirements are the basis for a lot of performed 
decisions, but on the other side the connections between requirements and design 
are documented afterwards. In this way, a lot of information on certain decisions 
is lost226. As described in ch. II.10.4.3.1, capturing and description of traces 
should orient themselves on the way the traces occur in the real world. Other-
wise, a mismatch between reality and the actually captured information occurs 
significantly diminishing the quality of captured information [Pi04; p.104]. In 
R2A, all these issues are achieved by the requirement dribble process heuristic 
described in ch. III.18.2.4. 

Taking into account Schön's Theory of Reflective Practice (ch. I.6.2.3), most 
design decisions are taken in an intuitive, non-reflective state of knowing-in-
action. Former experiences and tacit knowledge (see ch. II.9.4.2) are important 
factors in this state. In this phase, tools must not interrupt the cognitive flow of 
the designers (see Schön; ch. I.6.2.3). Since R2A's traceability concept bases on 
the ANH concept, the R2A's traceability operations do not produce a cognitive 
dissonance for designers, thus establishing traceability as a by-product should 
not impose significant barriers for designers even in their knowing-in-action 
phases. 

In summary, the real value of gathered traceability information mainly de-
pends on the following criteria (see ch. II.10): 
• Most traceability information must be recorded manually. Thus, the efficien-

cy of how traceability can be established is crucial. This means that the ef-
fort for traceability must be outweighed by the reduced efforts and the high-
er quality, reached through improved IA and change processes. 

• Accurateness of the traceability information is decisive. Approaches that 
establish traceability after the design process involve the danger that certain 
traceability information is not recorded. Thus, traceability should be estab-
lished as a by-product. 

• Besides efficiency itself, it is a central issue that the process does not inter-
fere with the designers' way of thinking.  

                                                           
226 For details see for details ch. I.7.2.3 description to ENG.3 BP.2, where it is described 

that allocations of requirements to design are often not possible at first because im-
portant design decisions are missing. 
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• On the other side, designers must perceive enough benefit for themselves 
because otherwise they will only record insufficient traceability information. 
One benefit can be the improved communication and collaboration between 
designers as, e.g., R2A offers with the requirement dribble process heuristic 
(cf. ch. I.18.2.4). 

• As, e.g., ch. II.10.6.2 outlines, traceability information should be detailed 
(go deep into a design model) to achieve good results. It should rather be 
recorded directly than derived from other information such as relationships 
within a design model with other purpose because the manifold meanings of 
these non-traceability-specific relationships rather lead to a requirements fan 
out effect during IAs (ch. II.10.6.2). 
To ensure these criteria and thus to ensure that the recorded traceability in-

formation brings a real practical benefit to projects, R2A is designed to be em-
bedded into a process specifically addressing these issues. The following sub 
chapters illustrate the core concepts employed to achieve this. However, the real 
implementation of such a process in practice requires substantially flexible pro-
cesses due to the complex connections involved in design processes. Thus, a 
dedicated goal of this documented research also was to find the optimal, neces-
sary process set for these criteria, where additionally maximal flexibility to adopt 
processes to project specific needs is possible. In other words, the process 
sketched here is proposed as a possible way to use R2A, but the offered opera-
tions used in a process can also be used to perform different design processes. 

Last but not least to mention, this chapter only shows mechanisms for gen-
eral improvements for rudimentary traceability as demanded in today's traceabil-
ity theory and process standards (e.g., SPICE). Then, in the next ch. III.20 and ch. 
III.21, this rudimentary traceability information is extended by decision models 
allowing much richer traceability information taking more complex design deci-
sions into account to be recorded. 

III.18.2.1  Traceability Operations in R2A 

In order to prevent disturbing designers during their knowing-in-action cognitive 
phase, but nonetheless to help to document traceability information, R2A aims to 
lower the burden for documenting the traces as soon as they occur. In this way 
traceability more or less emerges as a by-product of the design process.  

To address this point, the R2A's traceability approach has five key charac-
teristics: 
1. The approach takes advantage of the AN concept basing on the abstraction 

hierarchies principle strongly resembling the designers' way of thinking (cf. 
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ch. III.15). An approach basing on this principle, thus easily fits into the 
cognitive processes of the designers. If an approach does not really match 
with the designers' way of thinking, the designers will have to bridge the 
cognitive gap between their thinking and the thinking required by the ap-
proach. This would significantly disturb the designers in their knowing-in-
action phase and therefore would increase the usage barriers for the ap-
proach. 

2. Design involves processing of an extended amount of information leading to 
the extended complexity to be managed during design. Following Simon's 
theory (ch. I.6.2.1), the abstraction hierarchies principle addresses taming 
the complexity of the information produced during design. Another complex-
ity source to be tamed in the design process is the multitude of requirements 
influencing the design. R2A here provides a simple answer: Only show what 
is relevant in the design situational context. Again referring to point one, the 
AN concept is used to set up the situational context. Fig. 18-3 shows a design 
situation in R2A, where the designer has selected the AN “SW Design”. Be-
neath the AN tree view, now the tab “Requirements” is opened showing the 
requirements assigned to the AN “SW Design”. In ch. III.18, the used mech-
anisms, and GUI controls with its representation features are discussed. 

3. Recording traceability information when the traces occur but not disturbing 
the designers, involves that traceability information must be maintained in an 
easy and fast manner. R2A achieves this by offering an establishment of 
traceability information via drag-and-drop operations. As illustrated by the 
arrows in fig. 18-3, principally three different traceability-relevant drag-and-
drop operations are possible. Via possible multi-selection of items in R2A, 
all drag-and-drop operations can be performed for several requirements at 
the same time, making the traceability establishment process more effective. 
Again, the AN concept appears as useful for providing central orientation to 
all three drag-and-drop operations. Operation “1.)” allows assigning re-
quirements from the requirement source document (described in the chapter 
above) to any AN in the AN tree view, whereas operation “2.)” allows assign-
ing the requirements to the currently selected AN. As also described above, 
design must also allow easy refactoring. In this course of action, other com-
ponents than previously intended may become responsible for a requirement. 
Thus, requirement assignment must be changed from the formerly responsi-
ble component to the now responsible component. To easily make this possi-
ble, operation “3.)” allows reassigning requirements from the currently se-
lected AN to any other AN. In the course of refactoring, it can also be evident 
that a requirement may just also have influence on another design element, 
but the element shall still be handled by the currently selected AN. In this 
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case, the operation “3.)” accompanied by pressing the 'CTRL'-key just al-
lows copying the assignment information to the other AN, but the assignment 
information of the currently selected AN stays untouched.  

4. Requirements can significantly differ in its influence on design. RE theory 
refers to this notion by distinguishing FRs from NFRs. R2A provides a con-
cept to characterize the influence scope of requirements in a more fine-
grained manner. Again, the AN concept builds the basis for this concept fur-
ther described in ch. III.18.2.2. 

5. Last but not least, Simon described the phenomenon that design usually 
evolves from one stable intermediate form to another (ch. I.6.2.1). This 
means design usually not emerges in a kind of big-bang process but more in 
an evolutionary process, where design reaches stable states forming the basis 
of evolution to the next stable state. The R2A approach takes this into ac-
count by proposing a process heuristic called the requirement dribble process 
described in ch. III.18.2.4. 

 

 

Figure 18-3  Ways of establishing requirements traceability via drag-and-drop in R2A. 
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In opposition to the knowing-in-action cognitive state, Schön has discovered 
that designers also switch to a cognitive state he termed reflection-in-action. 
Designers usually switch to this state when they step into a problem they cannot 
handle by their usual tool-set of internalized everyday problem solving experi-
ences and knowledge. In this state, concrete rationally gauged decisions on a 
usually very difficult problem. In the author's view, such problems can be seen as 
what Rittel's design theory terms as wicked problems and the decisions taken to 
solve these problems often have drastic impact on the further outcome of the 
design. Correspondingly, here is the point where decision documentation and 
RatMan concepts can provide significant support to record this information. As 
ch. III.20 will further outline, this collected information also has strong im-
portance for traceability. 

III.18.2.2  The Requirement Influence Scope (RIS) 

As shortly discussed in ch. I.6.2.1, strictly modularization-oriented compositional 
structures are again softened by design theories about architectural aspects, cross 
cutting concerns [CRF+06] or nonfunctional requirements. What this actually 
expresses is the phenomenon that not all requirements can be tamed by confining 
them in one module. Instead some requirements are fulfilled as a consequence of 
collaboration between several modules, by architectural aspects, architectural 
styles, patterns or other techniques acting on a wider scope than a single module. 
In order to provide meaningful traceability, these situations must be taken into 
consideration. For these situations the author will use the term requirement influ-
ence scope (RIS). 

Due to the knowing-in-action cognitive phase, an easy way to define and 
manage a requirement's influence scope to design should be possible.  

Again, the ANs concept provides a valuable aid: If a requirement is assigned 
to an AN, all sub ANs beneath inherit the responsibility for the requirement. The 
idea behind this can be described that all ANs at the lower level must work to-
gether or at least share some common concern together to fulfill the requirement. 
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Figure 18-4  Requirements and the requirement influence scope 

Fig. 18-4 shows an example227. Requirement “Req1” is assigned to the AN 
“SW Design”. Its concern is then inherited by all sub ANs of the model, whereas 
requirement “Req2” is assigned to the “Light_hdl” module as a whole. This 
means all methods and contained data in the “Light_hdl” module must work 
together to fulfill “Req2”. A very local requirement is then again seen by “Req3”, 
whose influence scope only reaches to the method “setLights” within the 
“Light_hdl” module. 

In this way, a requirement's RIS contains the ANs it is directly assigned to 
and the child ANs inheriting the responsibility. Inherited requirements of an AN 
are shown in the “Requirements” tab (cf. fig. 15-4 in ch. III.15) like all other 
requirements but with a gray colored requirement text. 

The RIS has strong connection to the differentiation of functional and non-
functional requirements in REM theory as NFRs per se have a higher influence 

                                                           
227 Another striking analogy to this concept can be found considering a hierarchy of a 

company organization. If a requirement (or here rather to say issue) concerns the Chief 
Executing Officer of the company (corresponds to the “SW Design” AN on top of the 
design hierarchy), the issue will most likely become a concern of all other employees, 
whereas an issue concerning an employee at the lowest hierarchy level will be just a 
concern of this employee. 
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scope than functional requirements. However, the concepts are not the same. 
NFRs defining quality characteristics will most likely have the same influence 
scope as “Req1” meaning the whole software is responsible for fulfilling the 
issue. For other NFRs as, e.g., the demand for a user access rights management, 
the designers may find a realization that does not have such a high influence 
scope. As an example, it could be possible to define a three layers architecture 
([BMR+00; p.31ff], ch. I.6.2.4), where the user access management – except for 
the graphical user interface dialog to assign rights – is handled in the data storage 
layer. 
This example also points to three other aspects that must be considered: 
• The lower the RIS of a requirement is in a design, the lower will be the im-

pact of a requirement change to the design. Thus, designers should try to 
minimize the RIS of requirements in order to minimize the impact of the re-
quirement. This topic will be a central goal in the next chapter discussing the 
requirement dribble process heuristic. 

• On the other side, the RIS highlights requirements with high influence on a 
design, as they will stay at a very high level of abstraction being inherited by 
a lot of requirements. This is what Obbink et al. [OKK+02] term architectur-
ally significant requirements228 (ASR) and what most probably imposes close 
connection to requirements imposing neuralgic points in the view of Moro 
[Mo04; p.326] (also cf. ch. II.9.4.1). In most cases, NFRs will be most of the 
ASRs (but also FRs could be ASRs) staying at the very high-level ANs. 

• The RIS of a requirement can be influenced by the designers' decisions. As 
ch. I.5.1 and ch. II.10.4.2.2 indicate, a promising strategy to tame NFRs is to 
refine them into several FRs (cf. [PKD+03; p.145], [Pi04; p.99], [Mo04; 
p.339]). Often, these FRs then might have a lower RIS than the NFR would 
have had. In this way, a NFR's higher RIS is reexpressed through several FRs 
with a lower RIS. Such a step is a decision process. Due to the importance of 
NFRs concerning the general outcome of design (cf. ch. II.9.5), a dedicated 
support for documenting such decisions can prove very helpful. Ch. III.20 
will discuss the decision problem and how R2A provides support to tame 
nonfunctional aspects with high RIS to a lower influence scope in a traceable 
way. 

                                                           
228 ‘‘A requirement upon a software system which influences its architecture’’ [OKK+02; 

p.53]. 
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III.18.2.3  Representing Requirement Contextual Data 

As mentioned in the chapters above, R2A helps designers to cope with the com-
plexity imposed by the high numbers of requirements by providing only require-
ment information relevant in the design situational context.  

When the user selects an AN, the control shown in fig. 18-5 will show all re-
quirements relevant for the selected AN. Directly assigned requirements are dis-
played in normal black text color. Inherited requirements are displayed in gray 
text color. 

Fig. 18-5 also highlights two buttons for the operations “dribble-up” and 
“dribble-down” essential for the requirement dribble process described in the 
following chapter. Both buttons allow changing the requirement assignment in 
orientation to the AN-hierarchy. A requirement assigned to an AN can be moved 
up to the AN's parent AN via the dribble-up operation. This means to change the 
realization of a requirement to a higher abstraction level implying that the RIS of 
the requirement is widened. Vice versa, a dribble-down operation allows delegat-
ing the realization of a requirement down from the currently assigned AN to one 
or more of its child ANs (the user can choose any combination of the child ANs). 
This corresponds to a narrowing of the influence scope of the requirement. In this 
way, a requirement becomes more local instead of global. Accordingly, this can 
also be termed as the localization of a requirement. Often, design is performed by 
several designers working together. In such constellations, it is often the case that 
one designer works on a higher AL and the other designer works on the lower AL. 
Dribble-down and dribble-up operations thus also traverse working boundaries. 
In this way also a collaborative information exchange between the designers 
takes place. 
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Figure 18-5  Showing requirements in the design situational context of an AN 
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III.18.2.4  The Requirement Dribble Process (RDP) 

In the following, the requirement dribble process (RDP) heuristic229 is intro-
duced. As primary goal, the RDP's intention is to provide a process for designers 
allowing them to establish traceability information as a by-product of their daily 
design activities and providing immediate benefits for the designers when taking 
the next actions of their daily design activities. In that way, the author hopes to 
solve the traceability benefit problem meaning that designers experience enough 
benefits for themselves to encourage them to record detailed, correct and thus 
valuable traceability information as a by-product of their daily design activities. 

One major leverage to reduce the traceability benefit problem is to avoid 
what Dutoit et al. [DMM+06a; p.7] call “cognitive dissonance”, meaning in 
Schön's view (ch. I.6.2.3) that establishing traceability might interrupt designers 
in their thinking, especially if they are in their knowing-in-action phase. There-
fore, the RDP principles closely orient themselves on the ANH concept (ch. 
III.15) and try to be performable as fast and easily as possible in order to ensure 
that they can be realized without significant extra strains on developers. 

Closely related to this issue is the problem that traceability information, 
once established, must be quickly and easily changeable in order to ensure that 
design is also adapted if assumptions, facts, or other factors spark the need for 
changing the design with its requirement allocation. Otherwise, either important 
design refactorings are just not performed due to more extensive effort, or re-
quirements traceability information fastly degrades. A symptom often observed is 
that if traceability information is not easily changeable, design will be performed 
beforehand and traceability is established afterward when design has reached a 
relative stable state (see ch. I.7.2.3; comment on ENG.3 BP.2, ch. II.10.5, and ch. 
III.11). In these cases, however, much of the important traceability information 
may already be forgotten and thus gets lost. A special concern in this context 
especially is that important information on important decisions is easily lost. 

Additionally, design usually is a collaborative task. Correspondingly, the 
heuristic provides dedicated support for collaborative information sharing be-
tween designers at different levels of abstraction.  
Several ideas form the central pillars of RDP:  

                                                           
229 The term heuristic emphasizes that it is more a guiding principle, where deviations are 

possible. However, the author is convinced that in principle most of the SW-based de-
sign processes – even in those design processes, where design is only present implicit-
ly in code – follow this principle to the one or other extent. The so called bottom-up 
processes can be seen as the only big exception, but later it is shown that bottom-up 
processes are also merely compatible.  
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• The abstraction nodes concept, 
• The concept of stable intermediate forms as developed by Simon (cf. ch. 

I.6.2.1 and ch. III.18.2), 
• The requirement influence scope (RIS) concept; 

III.18.2.4.1  Description of the RDP 

The name 'RDP' derives from a metaphorical analogy to rain water dribbling onto 
a mountain. In a similar way, the RDP heuristics allows design with its corre-
sponding ANs to emerge in a requirement-driven way by letting requirements 
'dribble' through the ANH tree. The basic idea is that requirements are not neces-
sarily directly assigned to the AN that will finally be responsible in the future. 
Instead, a process is possible, where the optimal solution for a requirement is 
found in the course of the process heuristic. At first, this means that a requirement 
can be added to an AN at a very abstract abstraction level (AL), e.g., the highest 
AN of a model. According to the requirement influence scope (RIS) concept, this 
first of all implies that a large extent of the design would be responsible for ful-
filling a requirement. In this constellation, later changes of the requirement would 
have far reaching consequences (impact). Thus, to avoid requirement changes 
having enormous consequences, all further design decisions shall act upon a 
maxim to reduce the RIS of any requirement to a level as local as possible. Keep-
ing this in mind during design, the designer of an AN analyzes the assigned re-
quirements and tries to find solutions which allow delegating the requirements to 
an AN at a lower level of abstraction via dribble-down operations. In this lower 
abstraction level with the lower RIS, the designer responsible for the correspond-
ing AN again tries to find a solution allowing him to delegate the requirement to 
an AN to lower ALs, thus again lowering the RIS. This happens as long as a re-
quirement cannot be realized by ANs of a lower AL in an expedient way. In this 
case, the requirement now either comes to rest at this AN and its sub ANs inherit 
the requirement as obligation to work together to fulfill the requirement's needs, 
or the requirement can be split230 up to be fulfilled by several sub ANs of the 
lower abstraction.  

                                                           
230 A split operation, however, should be omitted if possible. The general goal should be 

to perform “dribble-down”-operations of requirements into disjoint paths, so that most 
of the requirements will only take one way to dribble down into the design; but some-
times a split up may be not avoidable. If not avoidable, such a split up should occur at 
an AL as low as possible in order to avoid a requirement-fan-out as described in ch. 
II.10.6.2 leading to a high RIS. 
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In some cases, the designer of an AN could discover that an assigned re-
quirement cannot be adequately fulfilled by the AN. For example, this can happen 
because the designer having delegated the requirement from a higher level AN to 
the current AN has not been aware of some facts (resp. problems). In this case, 
the designer of the current AN can again redelegate the requirement to its parent 
AN at the higher abstraction level by a dribble-up operation. Such a situation 
occurs when the requirement cannot really be fulfilled by the selected AN. Thus, 
the dribble-up operation will correct the mistake. Often, however, it could also be 
a communication problem when several designers work together at different ALs. 
Such a case can happen when the designer of the higher AL assigns a requirement 
to the AN of the lower AL but forgets to regard some other aspect influencing the 
potency of the AN to fulfill the requirement. For example, it can be the case that 
the AN is missing access to an information of another component necessary to 
fulfill the requirement. Here, R2A allows the designer of the lower AN to redele-
gate the requirement to the designer of the higher AL via a dribble-up operation 
accompanied by a note describing why the requirement cannot be fulfilled by the 
lower AN in the current setting. 

This note information additionally helps the designer of the higher AL to re-
gard the forgotten aspect and – if possible – to solve the problem. For example, 
by designing a solution that allows the AL to access the needed information. Af-
terward, the designer of the higher-level AN can again assign the requirement to 
the lower-level AN via a new dribble-down operation. 

During the RDP, dribble-down and dribble-up operations can be performed 
by all designers involved in the design forming a collaborative form of infor-
mation sharing. At the end, the RDP design process heuristic should converge to 
a design where all requirements are considered in pursuing the goal that each 
requirement has a RIS as low as possible, which leads to a design where changes 
on a requirement – hopefully – has minimal impact. 

A significant advantage of the RDP is that the heuristic always preserves the 
exact current state of a design. Often, requirements important for an AN are scat-
tered over several locations in a requirement document. Therefore in current 
practice, the designer of an AN often must analyze the complete requirements 
specification to identify all requirements important to the AN. In this way, every 
designer must nearly analyze the complete requirements specification to identify 
the requirements important for him. With the RDP approach, a list of the re-
quirements concerning an AN is directly provided by R2A and thus, designers do 
not need to analyze the complete requirements specification but can directly ben-
efit from works other designers have performed. Additionally, the RDP heuristic 
also promotes that a current snapshot of the current design status is available 
supporting the designers to take their next design steps and decisions, thus also 
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promoting that requirements traceability is performed as a by-product of the 
design effort and not afterward. 

III.18.2.4.2  A RDP Case Study 

To explain the heuristic the reader must consider the accompanying case study 
introduced in ch. III.12. At first, it is assumed that only the requirements specifi-
cation as shown in fig. 12-2 (ch. III.12) is present and no design has taken place. 
Thus, a high level software architect (in the further called architect) starts the 
design from scratch.  

At the beginning of the project, the architect starts the process by creating an 
empty diagram intended as the high-level architecture overview and adds this 
diagram to R2A as the first AN (in the further called high-level AN) in the ab-
straction hierarchy tree. When analyzing the requirements, the architect decides 
to care for the “Internal Lights Management” use case. He assigns the require-
ments of the use case to the high-level AN. This means the high-level architecture 
is now responsible for the requirements of the use case. From this first stable 
intermediate form, the designer can now analyze the use case requirements and 
take further actions. Requirement ReqSpec_2 implies that the system has a CAN 
connection. Correspondingly, the design needs a CAN_drv driver to control the 
CAN-HW in the ECU and a CIL_hdl mapping signals from CAN to signals with-
in the software. Thus, the designer creates both design elements in the modeling 
tool, adds both elements to the high-level architecture diagram (see fig 12-2 (ch. 
III.12)), adds the design elements to R2A as new ANs located beneath the high-
level AN and then performs a dribble-down operation relating ReqSpec_2 to the 
CIL_hdl, thus localizing ReqSpec_2 to the CIL_hdl. 

In a similar way, the architect analyzes requirement ReqSpec_3 and 
ReqSpec_4 and determines that he needs a Light_Task component. Correspond-
ingly, the designer creates the Light_Task component in the design tool and adds 
it to R2A's ANH. Now, the designer can delegate ReqSpec_3 and ReqSpec_4 to 
the Light_Task component via dribble-down operation. In this way, the architect 
roughly analyzes the diversity of the requirements and decides the modulariza-
tions, attributes, etc. important from the architectural viewpoint.  

Following the current example, the architect identifies the following mod-
ules and their important roles: 
• Light_Task: is responsible for the evaluation and propagation of the light 

requests received from outside (e.g., via CAN). The Light_Task can involve 
a complex state machine. 
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• Light_hdl: is responsible for translating logical light function requests into 
the different control of light channels provided by the HW. Further, the 
Light_hdl is responsible for error diagnosis functionality on the controlled 
HW light channels and the further processing of measured diagnostic infor-
mation. To achieve this, the Light_hdl also is responsible for timing the di-
agnosis functionality as diagnostic measurements must be exactly timed to 
retrieve valid values. 

• PWM_drv: is responsible for realizing demanded pulse widening modulation 
(PWM) to control the light intensity of the controlled lights. 

• ADC: controls the analog-digital converter component within the microcon-
troller needed to convert analogous feedback currents of the steered lights in-
to digital measurement values for diagnosis on the controlled HW light 
channels. 
As the architect anyhow roughly analyzes the requirements and makes his 

design decisions on the bases of these, the architect can already assign the re-
quirements to the identified and modeled design elements. In this way, he also 
implicitly documents the basic information on the decision leading to the design 
element as well as to its responsibilities and thus creates traceability information 
as a mere by-product. 

In the next step, the module designers of the modules (usually, for each 
module an individual module designer exists) care for realizing the assigned 
requirements in the specific modules. Thus, at the abstraction level of the module, 
every module designer starts to analyze the present requirements in detail to iden-
tify and model the necessary sub-components, data, and operations. For each 
identified item the designer adds an AN in the abstraction nodes tree and assigns 
the requirements for the AN via a dribble-down operation. In this way, the de-
signer automatically documents the basis of his design decision for the corre-
sponding AN. 

At the level of these newly created ANs, the requirements are very likely an-
alyzed in more detail than it happened at the higher-level ANs. Correspondingly, 
the module designers will also encounter contradictions and incompletenesses in 
the entire design. As an example, the module designer of the Light_hdl module 
might recognize that, in order to be able to perform the analysis of diagnostic 
data according to the requirements (indicated by ReqSpec_6), he needs further – 
not yet considered – information currently only available to the Light_Task. As 
the solution of the problem is outside of his decision-making authority, he must 
submit the issue to the designer responsible for the design of the interaction be-
tween Light_Task and Light_hdl. In this case here, this is the SW-architect. For 
this, in a non-R2A project, the module designer of the Light_hdl would now need 
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to have a talk with the architect about the problem, in which both must use a 
synchronous communication mechanism.  

However, in several cases the architect may be busy, or distributed to anoth-
er location, or just absent. In all these cases, constant dangers exist that the issue 
gets somewhere stuck or forgotten. Using R2A, the module designer is able to 
redelegate the requirements back to the higher AL by performing a dribble-up 
operation. To provide further information on the issue, the module designer can 
add a note on the requirements describing the problem. The architect then is noti-
fied about these requirements again at his AL, can read the attached note to un-
derstand the problem, and then take decisive action whether the requirements 
should be fulfilled by a functionality to exchange the needed information be-
tween Light-Task and Light_hdl or an alternative strategy such as remodulariza-
tion (the needed information is relocated into the Light_hdl) is used. 

Through this way, asynchronous communication between the designers is 
possible, where no problems are forgotten, and decisions are implicitly docu-
mented in addition. 

In the further project progress, the module designer can then refine the de-
sign of the module. In case the code is generated automatically, the software 
developer can then directly implement the realization of the module according to 
the design and the assigned requirements. Also, in this case, the implementer 
directly has all necessary requirements for the module at hand and is able to use 
the dribble-up mechanism in any case he discovers problems he cannot solve at 
his level of authorization. 

III.18.2.4.3  Bottom-Up Design Processes within RDP 

The RDP seems to be a method particularly fitting to top-down design processes. 
However, as discussed in ch. I.6.2.1.3, pure top-down design processes are rather 
an exception. In many cases, design evolves in rather non-linear decision pro-
cesses. The other extreme to top-down design is pure bottom-up design. Most 
design processes will be a mixture somewhere between both (see, e.g., [HR02; 
ch.10]).  

As mentioned before, the RDP is just a process heuristic. R2A's features 
provide flexibility to implement different processes. To support bottom-up design 
processes, the following process setting is conceivable: 
• The designers created design elements in the used modeling tool, add the 

elements to R2A as ANs (via the wizard or drag-and-drop; see ch. III.15) and 
assign the requirements the design element is intended to fulfill. 
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• If the hierarchy later changes (e.g., a parent is added to the design elements), 
the ANH synchronization mechanism can easily reconstruct the new ANH. 
The requirements assignment stays untouched. 

• When the ANH grows, the dribble-down and dribble-up operations also pro-
vide valuable support for changing requirement assignment and thus implicit-
ly the RDP principles are again at work. 

III.18.2.4.4  RDP Summary 

The RDP approach offers significant advantages to other known traceability 
methods addressing traceability between requirements and design: 
• The linking between requirements and model elements emerges indirectly as a 

by-product since the assignment of the requirements always resembles the 
current state of decision about a requirement (stable intermediate form). Later 
in ch. III.20 and ch. III.21, the author describes other kinds of decisions also 
addressed by R2A through dedicated decision models. Also products related 
to these decision models (design constraints and budgeted resource con-
straints; see ch. III.19 and ch. III.21) can again be treated by the RDP. 

• In parallel, through the detailed recording of all steps taken to achieve a de-
sign, detailed documentation of the decision-making of a design is enabled al-
lowing easier reconstruction of the original ideas behind individual design de-
cisions in the case changes are needed. 

• Also, the designer has an immediate overview of the remaining, not yet treat-
ed requirements at an AN, because the already treated requirements have been 
delegated – and thus disappeared – to one or several sub ANs. Later, in ch. 
III.22, the principle mentioned here is even extended by a mechanism for en-
suring consistency. 

• Normally, several developers work on a design model. Via R2A, the delega-
tion of responsibilities between the developers can be achieved by interplay of 
the ANs with the RDP concept, building a scaffold (i.e. skeleton)  for collabo-
rative information interchange.  

• Through the support of a dedicated process for assignment and care of a re-
quirement, it is ensured that each requirement is adequately considered in the 
design process: If new requirements are assigned to an AN from a higher-level 
parent AN, these requirements get highlighted in the AN by a different color. 
Now, the designer of the AN must try, to find an adequate solution for the 
newly assigned requirements. If the designer of this AN is again able to dele-
gate these requirements to a sub AN of the design, then these requirements 
'dribble down' one level deeper to a sub AN and the problem is solved for the 
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corresponding AN. However, if the designer is not able to clearly delegate 
these requirements to any sub AN, then the requirements sticks to this AN and 
are inherited to all lower level sub ANs (marked 'gray') indicating that all ANs 
together must deal with fulfilling these requirements. But if the designer re-
sponsible for the AN realizes that these newly assigned requirements cannot 
be fulfilled in the current state of design, the designer is able to repel these re-
quirements back to the higher-level AN (its origin) accompanied with a corre-
sponding note. In this case, the designer of the higher-level AN must care for a 
solution under consideration of the created notes.  

• Effective communication between the designers is alleviated since the ap-
proach relies on mechanisms supporting asynchronous communication via the 
assigned requirements and notes. Thus, less synchronous consultation be-
tween the designers is needed.  

• The documentation of views in design with their textual descriptions and all 
important decision information is essential for architecture documentation 
(AD), (cf. [Ha06], [CBB+03]). Thus, R2A also supports generating reports 
from all recorded information to fulfill AD needs. In this way, also infor-
mation gathered through the RDP heuristic completes information needs for 
AD. 

• When the design process is thought beyond the scope of mind discussed now, 
a similar mechanism for other information to dribble through the designed 
system in a similar fashion could be helpful. Thus, e.g., a design decision (see 
fig. 20-2 (see ch. III.20)) in a high AL often restricts the solution space in the 
lower ALs. If these so-called design constraints are formulated once, they can 
dribble through the system in the same fashion. In order to allow high adapta-
bility to project specific needs, other item categories may be individually de-
finable by additional information for each project. 

III.18.2.5  Overview over Navigation and Handling of 
Requirements Aspects in R2A 

Fig. 18-6 shows an overview how features described in the chapter above are 
integrated into R2A concerning navigation and handling. At the left part, the 
model with the ANH tree as described in fig. 15-4 (see ch. III.15) is shown. Via 
selecting the “Requirement Sources” tab (1.), the control for managing all re-
quirement source documents (RSD) is displayed (see fig. 18-1 (see ch. III.18.1)). 
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Figure 18-6  Overview of how the requirements-related features are integrated into R2A 
concerning navigation and handling 

A double-click (2.) on a document opens the RSD's content window display-
ing the requirements of the RSD (see fig. 18-2 (see ch. III.18.1)). In fig. 18-6 the 
content of the RSD “Requirements Specification” is shown. 

A left-click on the properties-button (4.) opens the properties dialog for the 
RSD. When the new-button (4.*) is clicked, a new, empty properties dialog is 
opened leading to the creation of a new RSD if the 'ok'-button of the properties 
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dialog is clicked. Fig. 18-6 shows the properties dialog of the RSD “Require-
ments Specification”. As the properties show, this RSD is configured to refer to a 
requirements document managed in the REM-tool IBM Rational DOORS. 

Through the synchronization buttons (3.), a synchronization mechanism can 
be invoked to synchronize the requirements contained in the REM-tool (symbol-
ized by the upper right window in fig. 18-6) to the RSD. The synchronization 
mechanism can be continuously invoked to synchronize changes performed in the 
REM-tool to R2A's RSD, keeping it up to date. Ch. III.22.2 shows how this 
mechanism can be used to consistently infer requirement changes into a R2A 
design. Requirements being synchronized from an REM-tool cannot be edited in 
R2A. 

In the properties dialog, a RSD can also be set to status 'Free Edit'. In this 
case, freely editable new requirements can be created in the RSD's content win-
dow. 

In an RSD's content window, the requirements are displayed in the hierar-
chical decomposition structure. A double-click (5.) on a requirement opens the 
properties dialog of the requirement. 

Via drag-and-drop operations (6.), traceability can be established to the ANs 
(also cf. fig. 18-3 (in ch. III.18.2.1)). These in combination with the dribble-up 
and dribble-down operations (7.) form the basis for the requirement dribble pro-
cess heuristic (ch. III.18.2.4). 

 
 

III.19  Taxonomy of Requiremental Items231 

Each definition of a system layer yields some of the requirements for the subjacent layer. 
Hatley et al. [HHP03; p.52 (*)] 

 
The SPICE process model (described in ch. I.7.2) is a layered process model, in 
which problem space descriptions (requirement view: ENG.2, ENG.4) alternate 
with solution space descriptions (designs: ENG.3, ENG.5) at different levels of 
abstraction (cf. ch. I.7.3.2 for detailed exemplification). 

Ch. I.7.3.2 has outlined the problems of this layered process model concern-
ing traceability. Two major problems were discovered: 
• High redundancies between the requirement artifacts lead to higher efforts 

for traceability and consistency management (see fig. 7-2 (see ch. I.7.3.2)). 

                                                           
231 Significant parts of this chapter are taken from [TKT+07] and [TTW07]. 
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Additionally, despite all consistency management efforts, drifts between the 
different requirement artifacts' redundancies are often not avoidable. 

• Between the different artifacts (especially, when also the HW dimension is 
considered) other correlations are not adequately manageable (see fig. 7-2 
(see ch. I.7.3.2) and fig. 7-3 (see ch. I.7.3.2)).  
The first problem with redundancy could already be solved to a great extent 

by a process artifact model described in fig. 7-3 (see ch. I.7.3.2). One prerequi-
site, however, is to acknowledge that process models such as SPICE are to a 
certain degree rather a metaphor providing space for interpretation than a law to 
be obeyed word for word. In the author's opinion, this degree of freedom is pre-
sent in SPICE, because SPICE itself emphasizes that the process model is only an 
example process model and other process models are possible to be defined as 
long as they conform to the original metaphoric ideas of the SPICE standard232. 

Now, the solution shown in fig. 7-3 (see ch. I.7.3.2) still neglects one central 
metaphoric idea of the layered process model that is covered by R2A via the 
concepts described in this chapter, ch. III.20 and ch. III.23.2: System design has 
high impact on its SW design by raising new “requirements” in addition to the 
pristine requirements of the stakeholders. For example, in the automotive sector, 
SW design must be subordinated under constraints of extremely cost-optimized 
HW components. At the moment, SPICE neglects these critical connections be-
tween HW and SW but at least acknowledges this connection concerning system 
design (see ch. I.7.2.4). 

 

 

Figure 19-1  Requiremental items, requirements and design constraints taxonomy 

                                                           
232 It is, however, more difficult for an organization to prove conformance to these meta-

phoric ideas for a different process model than for a process model just taking over the 
ISO/IEC 12207 process model used in the SPICE standard. Thus, most SPICE imple-
mentations in practice just use this process model. 
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However, one issue in SW requirements which might benefit from more in-
tensive discussion is their negotiability. “Real requirements” are forming the 
contractual basis between the stakeholders – particularly with the customer. Oc-
curring changes must be harmonized with the customer via a change control 
board (CCB) [PR09; p.144f], [VSH01; p.184f, p.216]. Whereas, for “require-
ments” to be changed with the origin of the definitions of the design, it is possible 
to search for a project-internal solution first, before escalating the issue to a CCB 
is considered. 

Thus, both kinds of requirements should be strictly separated in their no-
tion233. The author uses the following taxonomy (fig.19-1): 
• Requirements are directly allocated to the SYS_RS since they concern the 

legal agreement between customer and contractor.  
• 'Requirements' derived from requirements or designs are called design con-

straints (DC). 
• Requirements and design constraints have similar qualities and structure. 

Thus, we use the term requiremental234 item (RI) for both items. 
Generally, requirements have to refer to their origin (cf. description to IEEE 830-
1984 in ch. I.5.7). This relation should apply to all RIs. The origin of DCs lies in 
previously made design decisions solving the conflicts/forces between RIs and/or 
architectural items, constraining the broader, more abstract solution space to a 
more concrete one. The decision model connected with the DCs is discussed in 
the following ch. III.20. 

Observations leading to the DC concept are not new. Leffingwell and Widrig 
define constraint as “a restriction on the degree of freedom” the developer has “in 
providing a solution” [LW99; p.55]. DCs also resemble to what the IEEE 610 
defines as design requirements (“A requirement that specifies or constrains the 
design of a system or system component” [IEEE610; p.26]) or implementation 
requirements (“A requirement that specifies or constrains the design of a system 
or system component” [IEEE610; p.39]).  

The DC concept directly corresponds to observations of Hatley et al. that de-
sign decisions235 generate new requirements for sub system components [HHP03; 
p.18]. These new requirements are a result of former design and should be con-

                                                           
233 This directly corresponds to the view of Pieper in [RS02; p.33-35] demanding a clear 

separation between requirements from the customer and internal requirements in the 
project.  

234 The artificial word 'requiremental' has been introduced by the author as a term for 
describing superordinate characteristics of 'real' requirements, design constraints and 
budgeted resource constraints (see ch. III.21). 

235 See also Ebert's remarks that decisions constrain the solution space [Eb05; p.14]. 
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sidered in a development process [HHP03; p.31]. In general, these 'requirements' 
are more numerous than the original requirements [HHP03; p.32]. This matches 
with Glass's note on complexity that “explicit requirements explode by a factor of 
50 or more into implicit (design) requirements as a software solution proceeds” 
[Gl02; p.19], (also cf. ch. I.6.2.1.1).  

Lehman's principle of SW uncertainty describes that assumptions on which 
design decisions depend can be implicit or explicit to developers, but both kinds 
can get invalid due to changes [Le89]. Requirements can be seen as a kind of 
assumptions (however, also other kinds of assumptions may exist). In this case 
and in the face of high volatility rates, changes on explicit assumptions are much 
easier to handle than implicit assumptions. Via the DC concept it is possible to 
make these implicit assumptions more explicit, thus potentially improving IA and 
consistent implementation of changes. 

 
 

III.20  Support for Capturing Decisions236 

A further complication is that the requirements of a software system  
often change during its development, largely because the very existence  

of a software development project alters the rules of the problem. 
 [Bo94; p.4] 

 
Most current state-of-the-art traceability models assume that traceability between 
requirements and design can be expressed by a simple bidirectional linking con-
cept, where each requirement is related to the design elements. The link concept 
can surely be helpful to cover relatively easy situations. However, traceability 
literature ([Kn01a], [Kn01b], [PDK+02], [Pe04], [RJ01], [Al03]) provides strong 
indications that the influence of requirements on design processes – and vice 
versa – is only insufficiently modeled by bidirectional linkages.  

Paech et al. [PDK+02] indicate that these relationships can be of a far more 
complex nature (cf. fig. 20-1). By restraining the solution space, non-functional 
requirements (NFR) restrain functional requirements (FR) and architectural deci-
sions (AD). On the other hand, NFRs are realized by FRs and ADs, whereas FRs 
are realized and restrained by ADs. 

 

                                                           
236  Significant parts of this chapter are taken from [TKT+07] and [TTW07]. 
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Figure 20-1  Interactions between nonfunctional, functional requirements and architectur-
al decisions [PDK+02] 

The simple linking concept indirectly assumes that requirements and design 
are mostly interconnected by linear relationships. As the author tried to elicit in 
part II and ch. I.6 of the thesis, the transitions from requirements to design is 
often nonlinear237 but more a creative mental transfer process of a problem de-
scription (requirements) to a solution, where the taken decisions build the foun-
dation of these transitions (also cf. [TKT+07]). The path from the requirements to 
its realizing design can be described as a sequence of decisions constraining the 
solution space. This circumstance induces that design does not only depend on its 
requirements to be fulfilled, but it depends to a higher extent from the decisions 
taken before. Now, this observation leads to the following two points to consider:  
• Decisions and their effects must be communicated to other designers, devel-

opers and testers within the project. As ch. II.9 shows, approaches for deci-
sion documentation exist. In practice however, if any decision documentation 
is done, the information will be documented in some design documents (as, 
e.g., propose by Clements, Bass et al. in connection with SW architecture 
documentation [BCN+06], [CBB+03]). By such an unstructured way, prob-
lems can then arise then, when this information must be propagated to other 
stakeholders or even is to be processed in the further by other stakeholders.  

• Later requirement changes not only influence the design but can also lead to 
the need to reassess formerly taken decisions and – if necessary – to revise 
them leading to new impacts on the design. 
These considerations suggest the inclusion of a decision model in the trace-

ability information helping to document the origin of new design constraints in a 

                                                           
237 Also interesting in this connection is what Kruchten says about the design process he 

proposes associated with his “4+1 View Model” architecture approach: “Finally, this 
is not a linear, deterministic process leading to an optimal process view; it requires a 
few iterations to reach an acceptable compromise. There are numerous other ways to 
proceed” [Kr95; p.48]. As a consequence the question arises, why the traces of such a 
process should be linear. 
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lightweight and need-oriented way. Fig. 20-2 shows this concept extending to-
day’s traceability models by an explicit decision model. The diagram sketches a 
concrete situation, where a conflict between three requirements (Req_1, Req_2 
and Req_3) and two design model elements (Class1, Class2) is resolved by a 
design decision (Decision1), resulting in two new design contraints (DesCon-
straint1, DesConstraint2). 

The conventional scheme of relating requirements to realizing model ele-
ments is extended by a dialog allowing the capture of documented decisions. In 
this dialog, elements of the requirement model and the design model which are 
conflicting, i.e., causing a problem, can be chosen. Equally, diagrams describing 
aspects of the conflicting situation shall be attached as additional information 
(<<documenting diagrams>>). 

 

Figure 20-2  Documented decisions build the connection between requirements, design 
elements and resulting design constraints 

Furthermore, the decision can be specified on demand via a text component. 
The text component accepts unstructured text, but – when needed – can give 
adequate templates to support the decision documentation. A possible way to 
structure – the user should choose these freely – is given in fig. 20-2 with the 
decision’s attributes assumptions, rationales and solution specification.  
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III.20.1  Relation to Approaches of Rationale Management 

The decision model presented here is strongly connected to RatMan (see ch. II.9), 
since both deal with decisions during SE processes. In classical RatMan, the 
focus lies on documenting, recovering, further usage and reuse of justifications (= 
rationale) behind design decisions. RatMan mainly targets on the information 
about the 'Why' of design decisions in order to alleviate the knowledge transfer of 
decision makers to other involved stakeholders.  

However, existing approaches could not succeed in practice [DMM+06a], 
even though documenting design decisions is regularly called for in literature (cf. 
[IEEE1471], [CBB+03], [BCN+06], [Ri06], [PBG04], [GP04], [Bo94]) and prac-
titioners acknowledge the importance of this type of documentation [TAG+05]. 
Diverse causes for this negligence have been identified, but the problem of cap-
turing the rationale seems to be the main obstacle (cf. [DMM+06a], [HA06a]): 
1. Most approaches are highly intrusive (bothersome and interfering) to the 

design process with extra effort for capturing (ch. II.9.1.4, ch. II.9.4.2, 
[Gr96b], [HA06a]). 

2. The approaches tend to have negative impact on the decision process, since 
not all (aspects of) decisions can be rationally justified but arise from intui-
tive considerations (Schön's “Theory of Reflective Practice” [Sch83] adopted 
by Fischer et al. [FLM+96], [DMM+06a]) basing on diffuse experiences 
(e.g., tacit knowledge [Po66]; also cf. [DMM+06a], [HA06a], [SM99a]). 

3. Decisions must be made despite of unclear circumstances and it is impossible 
to include all relevant information (bounded rationality [Si96], [HA06a]). 
Thus satisfactory solutions must be found although problem knowledge is 
clearly limited [LF06]. 

4. Grudin's principle [Gr96b] suggests that collaborative systems fail if the 
invested value is not returned to the information bearers (ch. II.9.4.2, 
[DMM+06a], [Sch06]). 
The problem mentioned in point one implies that not all decisions can be 

treated exhaustively in any case. For example, Clements, Bass et al. only refer to 
the documentation of the most important decisions ([CBB+03], [BCN+06]). 
Booch [Bo94] gives another lead by dividing decisions238 into strategic (i.e., with 
striking impact on architecture, mostly made on the early stage of a project) and 
tactical (i.e., locally limited impact on the architecture). 

                                                           
238 Also cf. Canfora et al. [CCL00] distinguishing maintenance rationale into two parts: 

Rationale in the large (rationale for higher-level decisions) and rationale in the small 
(rationale for implementing a change and testing). 
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In this context, strategic decisions must/should be thought through carefully 
and should –if possible– be made on explicit rationale grounding. For this rela-
tively small fraction, the investment in more intensive analyzes is highly valua-
ble, as discussed by most approaches on rational management ([RJ01], 
[CBB+03], [BCN+06], [TA05]). These issues may be analyzed in a prescriptive 
schema as IBIS [KR70], or the Rationale Model of Ramesh and Jarke [RJ01], or 
REMAP [RD92], or Clements and Bass [CBB+03], [BCN+06]. R2A's decision 
model (see fig. 20-2) supports this by additionally allowing defining a project 
individual template for the textual description component of the decision (in fig. 
20-2 shortly sketched by the bullets “Assumptions”, “Rationales” and “Solution 
Specification”). 

On the other hand, Booch [Bo94] also demands that tactical decisions 
should be documented. At that time, Booch thought both kinds would disclose 
themselves by applying adequate modeling. Today’s experiences show that such 
modeling just documents the how but not the why of decisions. In this context, 
Dutoit et al. [DMM+06a; p.39] provide the heuristic to concentrate on document-
ing decisions that are not obvious or impact other decisions. Referring back to 
Booch's view, it can be said that modeling captures a certain part of the decisions 
and the R2A decision mechanisms help to document the not obvious and espe-
cially influential decisions. 

In the author's opinion, the developers should at least get the possibility to 
document decisions on demand, but considering aspects mentioned in point 2 and 
3, the intrusion on the development process must be minimized ([Sch06], 
[HA06a], [DMM+06a], [SM99a]). 

Keeping this in mind, a key goal of this decision model approach is to lower 
the barriers to making design decisions explicit as much as possible: Therefore, 
this decision model mechanism offers to designers a simple, semi-formal model 
as a skeletal structure to easily add basic information239. For this, the proposed 
decision model provides a minimal notational framework to identify the conflict-
ing elements (requiremental and design) and to derive the resulting consequences 
as DCs. Thus, the conflicting elements define the area of conflict with the coun-
teracting forces, automatically documenting the basic rationale behind a decision 
as a by-product.  

In that case, however, the model is minimalistic and of a purely descriptive 
nature. Any further users of such minimalistically documented decisions must at 
first derive the actual knowledge about the decision on their own. But at least the 
fact that the context (the conflicting items and the results of the decision as DCs) 
is present for each decision provides evidence to later users: They can infer that a 

                                                           
239 In this way, the approach resembles to the QOC approach (see ch. II.9). 
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decision has been made consciously and first clues are given for recovering the 
rationale (cf. [RLV06]). Further, this modeling of consequences pays tribute240 to 
Horner and Atwood's claim that designers must consider the “holistic affects” of 
problems, their rationale and solutions [HA06a; p.84], (also cf. ch. II.9.1.4 and 
ch. II.9.4.2).  

In that way, not all decisions can be reconstructed. Since the tool discussed 
here shall also automatically record such meta-data like the author(s) of a deci-
sion, the later users of a decision (rationale seekers) can consult the author(s) 
about unclear aspects. Additionally to tool usage, a process rule shall prescribe 
that the rationale seekers must document the results of this decision recovery in 
the decision's textual description to further improve the decision's documentation.  

This procedure –inspired by Schneider ([Sch06; p.97]: “Put as little extra 
burden as possible on the bearer of rationale”) – helps to cope with the problem 
in point four (see above), because by deferring the documentation work to the 
inexperienced rationale seekers, the experienced know-how bearers are signifi-
cantly disburdened from communication resp. documentation work. As a positive 
side-effect, the transferred knowledge is consolidated in the rationale seeker 
during his documentation work.  

On the other side, only unclear decisions will go through this further ra-
tionale request and documentation process. Therefore, the approach indirectly 
minimizes the documentation overhead by orienting itself on the selective infor-
mation need of the further rationale seekers.  

Van der Ven et al. express the observation that design decisions spark these 
new requirements, which then also must be satisfied by an architecture [VJN+06; 
p.340]. Van der Ven et al. [VJN+06] therefore also propagate to capture infor-
mation about design decisions, because this helps to address central problems in 
design [VJN+06; p.332, p.341]: 
• “Design decisions are cross cutting and intertwined” [VJN+06; p.341]: 

Many design decisions affect multiple parts of a design. As usual design pro-
cesses do not explicitly represent design decisions, this knowledge is often 
fragmented across various parts. The designer himself knows these connec-
tions at first but always is in danger to forget it. Also Dutoit et al. [DMM+06; 
p.86] emphasize that much of design is done through evolutionary redesign 
and therefore long-term collaboration is essential. An adequate design deci-
sion representation can help to preserve the knowledge about the intercon-

                                                           
240 Even though, this tribute is far from being holistic, the decision model approach de-

scribed here is a first try to establish rationale in practice. If the decision model con-
cept proves to be sustainably successful in design practice, the model can be enhanced 
by modeling further more holistic connections. 
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nections. Later, designers can again be made aware of such cross-cutting and 
intertwined connections. If then some of the interconnections are no longer 
desirable (e.g., due to newly discovered facts), the structure can be refactored 
more easily.  

• “Design rules and constraints are violated” [VJN+06; p.341]: “During de-
sign evolution, designers can easily violate design rules and constraints aris-
ing from previous decisions” [VJN+06; p.332]. Such violations are usually 
the source of architectural drift. Through an adequate design decision repre-
sentation, designers can be made aware of design rules and constraints im-
posed by former decisions. In this way, architectural drift can be avoided bet-
ter. 

• “Obsolete design decisions are not removed” [VJN+06; p.341]: During evo-
lution of design, some previously taken decisions become obsolete. Record-
ed information about decisions helps to “predict the impact of the decision 
and the effort required for removal” [VJN+06; p.341]. 
The DC and decision model concept proposed here has potential to alleviate 

these issues. Thus, concerning RatMan, R2A tries to balance and connect de-
scriptive pragmatism and structured prescriptive methodologies. RatMan is not 
R2A's central issue, but this chapter shows that requirements traceability and 
RatMan are very closely related to each other and complement one another.  

A further general problem of RatMan not yet discussed here is the retrieval 
of documented decisions. Horner and Atwood [HA06a] argue that fixed schemes 
–in contrast to unstructured text– offer better possibilities for indexing according 
to retrieval. The following chapter shows how the retrieval problem can be 
avoided through usage of the gathered traceability information of this approach. 

III.20.2  Effects on the Traceability Model 

The idea of including decisions into the traceability models has already been 
proposed by Ramesh with his REMAP tool [RD92]. In a later empirical study on 
traceability (see ch. II.10.4.2.3), Ramesh and Jarke ([RJ01]) detected a real need 
by experienced users. Therefore they include a separate traceability sub-model 
(rationale sub-model) for decisions, which is oriented on the former works with 
REMAP. 

The decision model being proposed here has been inspired by the rationale 
sub model, but in the author's view Ramesh and Jarke’s [RJ01] solution lacks 
making concrete proposals for implementation and thus, the RM component ap-
pears loosely connected to the other traceability sub models. Besides, the ra-
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tionale sub model (orienting on REMAP) extends IBIS [KR70], which is a pre-
scriptive and intrusive method (cf. ch. II.9.1.4, [LL00; p.202ff]). 

In contrast, this decision model directly fits into the schema for traceability 
to design. In that way, a semi-formal model has evolved which provides easy 
handling and which has the following characteristics: 
• A constellation (combination) of requirements and design elements leads to 

conflicts. 
• Decisions do not directly influence dedicated design objects, but they bear 

design constraints that can be flexibly assigned to design elements during the 
project.  

• All other important information for documenting a decision can be added on 
demand as unstructured descriptive text. 

• For important strategic decisions, a template can provide prescriptive ele-
ments to assure these decisions have been made thoroughly. 
The usage of the decision model has effects on existing traceability models. 

The traceability model of simple linkage described in ch. III.18 is extended to a 
model briefly sketched in fig. 20-3. Since design elements influence the decision 
process as well, the requirement dimension migrates to a close coupling with the 
design. Simple <<satisfy>> relationships can occur next to (as Req.1 maps to 
DesignElement1) more complex traceability networks. Thus, e.g., Req.2 only 
impacts the design by the decisions Dec.1 and Dec.2. 

 

 

Figure 20-3  The newly emerged and more detailed traceability information scheme 
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Dec.2241 arises from the conflict situation of Req.3, DesignConstr.2 and De-
signElement2, whereas Dec.3 is only derived from requirement Req.1 (which 
then corresponds to a <<derive>>-relationship as described in [Li94; p.33]). 
Consequently, design elements (alone without RIs involved) should also be able 
to invoke a decision (Req1 Dec.3 DesignConstr3). This way, chains of deci-
sion sequences can be modeled corresponding to experiences of Lewis et al. 
[LRB96] describing design as a suite of problems (ch. II.9.3.2).  

With adequate tool support, these traceability relationships indicated in fig. 
20-3 could be visualized as a traceability tree. A kind of browser should support: 
• Detailed IA: Starting with a starting impact set, all subsequent paths would 

firstly be classified as impacted. During the following detailed check, the 
tool should allow to take out paths identified as none-relevant and adding 
paths detected as relevant (cf. ch. III.22.1). 

• An adequate context for the simple retrieval of documented decisions. The 
following chapters show how R2A supports this. 

III.20.3  Example How to Tame the Development Process 
Model of SPICE 

In ch. I.7.3.2, problems of the SPICE process model concerning artifact handling 
and traceability are sketched. The major problems are unnecessary redundancies 
and lacking abilities to make implications between different model artifacts 
transparent (in the example case discussed here between the HW and the SW). 
The process artifact strategy described by fig. 7-3 (see ch. I.7.3.2) could improve 
the redundancy problem, whereas the second problem is still open. 

Directly relating to fig. 7-3 (see ch. I.7.3.2), fig. 20-4 shows how this prob-
lem can be solved by using the decision model described here. The architect dis-
covers the same problem concerning watchdog and EEPROM. He (she) opens a 
decision wizard and marks Req.1 and Req.3 as conflicting and links the decision 
to the “HW design” AN with the diagram documenting the conflict. As further 
rationale, the architect textually documents “synchronization conflict at SPI 
between time intensive EEPROM application and time critical watchdog applica-
tion”. A further click helps the architect to put the conflict into the risk list. As 
resulting DC, the architect sketches the cooperative handshake and links the DC 
to the EEPROM and watchdog design elements in the SW design. 

                                                           
241 Dec.2 is directly mapped to DesignElement4. This may also be possible, when no 

further information for understanding the decision is needed. 
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Our implementation follows the ideas described in the previous chapter. In 
the further project progress necessary changes are early detected by IAs (see ch. 
III.22.1) and the additional costs can be compared to the cost savings of the re-
jected HW change. 

The artifacts HW_RS and SW_RS, which have not been realized, can be gen-
erated out of the model on demand by summing up all requirements related to the 
corresponding design (HW design model for the HW_RS, SW design model for 
the SW_RS). Ch. III.23.2 describes this in detail.  

As it is a known problem in embedded design [Gr05; p.415], this example 
further shows how the decision model improves the design processes by making 
the strong influence of HW design on SW more transparent. 

 
 

 

Figure 20-4  The example of SPICE conforming design processes in the new way 
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III.20.4  Implementation of the Decision Model in R2A 

After the decision model has been theoretically discussed, this chapter will now 
outline how the decision model is implemented in R2A. Fig. 20-5 shows a deci-
sion modeled in R2A's decision dialog (left side). Additionally, fig. 20-5 shows 
possible drag-and-drop operations to relate information between the decision 
dialog and R2A's main window (right side). The modeled decision deals with 
how the NFR “ReqSpec_14: The system must be flexible to change.” can be 
realized concerning HW and SW. 
 

 

Figure 20-5  Decision dialog in R2A 
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The dialog implements the decision model described in fig. 20-2 (p.318), 
and has the following sections (see fig. 20-5): 
• At the top, a summary or topic of the decision must be provided. The sum-

mary is displayed as the decision's item text in all other controls (e.g., see fig. 
20-6). 

• In the “Conflicting items:” section, all R2A items being in conflict with each 
other (and thus need to be decided about) can be added via drag-and-drop 
operation (1.). Once this decision is then saved, the items are related to the 
decision through <<conflicting entities>> relation described in fig. 20-2 
(p.318). In the example, these items are the design ANs representing HW and 
SW in combination with ReqSpec_14. 

• Further assumptions, arguments, and rationale, as well as any other infor-
mation can be added in textual form in the “Description of the Decision” part. 
The approach does not prescribe any information provided here. Through the 
button “Word”, the description can be performed using Microsoft Word, thus 
allowing using formatted text. The “Template” button allows loading specifi-
cation templates if some more structured (prescriptive) rationale approaches 
shall be used. The approach does not rely on a specific rationale structuring 
method. Correspondingly, the conflicts, and results parts form a kind of semi-
formal skeleton for structuring the rationale. But, for further documentation 
of the rationale, the approach does not rely on any specific style documenta-
tion as IBIS, QOC, DRL etc. Instead a word style documentation is possible, 
where a template can be prescribed that could be in any rationale structuring 
template242. This can be seen as an advantage, because the rationale docu-
menter can choose a best-suited structuring schema. As Dutoit et al. empha-
size [DMM+06a; p.7], schemes differing from the way the rationale docu-
menter would intuitively structure it create “a cognitive dissonance” imposing 
additional cognitive strains to the documenters. Freedom of choice can here 
provide a decisive difference alleviating the burdens encountered at rationale 
documentation. 

• To derive consequences from the decision, DCs can be created in section 
“Resulting Items”. Afterward, these newly created DCs can be assigned as 
RIs to any AN via drag-and-drop operations (2.). Correspondingly, DCs could 
also be termed as 'requirements emerging from the design and decision pro-
cesses'. 

                                                           
242 It would even be possible to combine the model described here with other rationale 

capturing tools as gIBIS or Compendium. 



328 III.  PROVEtech:R2A – A Tool for Dedicated Requirements Traceability 

• For further decision specification any diagrams showing important infor-
mation can be added via drag-and-drop operation (3.) into the 'Further dia-
grams' section. 

The decision modeled in fig. 20-5 is visualized in R2A as shown in fig. 20-
6. Ch. III.22.1 and ch. III.22.2 describe how this decision structure and visualiza-
tion are used to improve IA and consistency management. 

The DC “Handlers and Drivers shall provide callback mechanisms to their 
upper layers (Dependency Inversion Principle)” indicates another aspect to con-
sider. Callback mechanisms can be seen as patterns (or idioms) to decouple mod-
ules. In this way, the decision mechanism can be seen as a way to document pat-
tern usage, where a designer can even prescribe the application of patterns for a 
specific situation through decisions and DCs. This is further discussed in ch. 
III.20.5.1. 

Besides this aspect, the example also shows a situation, where a NFR 
(ReqSpec_14) is reexpressed through several more functional DCs. The strategy 
of taming NFRs by concrete scenarios or reexpress them by more concrete FRs 
has been already discussed in ch. I.5.1, ch. II.9.5, ch. II.10.4.2.2, and ch. 
III.18.2.2. 

 

 

Figure 20-6  R2A's visualization of the decision taken above 

Theory of SW architecture development has developed the so called influ-
ence factors assessment described in ch. II.9.5. This can be seen as a more gen-
eral view on this topic in the context of design.  

Table 20.1 shows an example of an influence factors assessment on the case 
study described here, orienting itself on findings of [PBG04; p.79], [CBB+03], 
[BCK03], [Bo00b], [HNS00], and [BCN+06]. The tabular presentation is taken 
over from Hofmeister et al. [HNS00]. In the first column, the factor is described, 
the second column discusses the priority and flexibility of the factor, the third 
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column identifies the influences and risks that may be involved when the factor 
takes effect, whereas the fourth column describes handling strategies to proac-
tively reduce negative influences and risks of the factor. 
The following factors have been identified and discussed: 
1. Some requests for the ECU must be responded within 5 milliseconds (ms) 

(nonfunctional timing requirements). As these requests must be fulfilled with-
in this timing to ensure that the controlled processes work properly, the priori-
ty is high and the influence of not fulfilling the timing restrictions can lead to 
complete failure of the ECU. Fortunately, the timing restrictions are not com-
pletely fixed but can exceed by 0.5 ms in 5 % of the cases, but 5 ms are still 
difficult to achieve. Correspondingly, continuous measuring and monitoring, 
or schedulability analyses as provided by rate monotonic analysis [KRP+93] 
can be an adequate strategy to ensure that all timing restrictions can be ful-
filled. 

2. A NFR requires minimizing power consumption in order to reduce problemat-
ic battery work load. This issue also has high priority, but only when ignition 
is off. As consequence, a sleep-wake-up manager in SW must manage that the 
ECU goes into a sleep mode when ignition is off. 

3. Current HW design requires reading input signals of shift registers. This issue 
results from internal HW design decisions for cost optimization and is not 
demanded by the customer. Correspondingly, priority is low and flexibility is 
high. As major drawback, the input provided by shift registers must be polled 
continuously. This imposes a direct risk for factor 1. This also induces a high 
risk for factor 2, because some of the input signals are dedicated to wake up 
the ECU, when it is in sleep mode (see factor 2). When shift registers are used 
for these pins, the ECU must wake up continuously and poll these shift regis-
ters during sleep mode, which leads to higher power consumption in sleep 
mode. To fulfill the wake up requirements in the current HW design, the SW 
design for the current SW version must provide an extra timer with a time 
slice of 2.5 ms for polling the shift registers (2.5 ms in order to handle re-
quests concerned with factor 1). Nevertheless, as this again imposes high risk 
for factor 1, the HW design must be changed for the next release to employ 
multiplexers instead of shift registers, because multiplexers allow wake-up-
able pin interrupts at the micro controller to be directly triggered, thus avoid-
ing polling for input signals and reducing risks of not fulfilling factor 1 and 2. 

4. Factor four addresses change flexibility in software as it has been discussed 
above in fig. 20-5. As change flexibility is rather abstract, the NFR is concret-
ed by defining three concrete scenarios for change flexibility: 
a. Scenario one discusses what will happen if input signals currently meas-

ured by the environment are sent from another ECU over CAN. In this 
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project, the scenario could be identified as low priority and is thus not fur-
ther considered. 

b. In scenario two a situation is addressed in which it is not quite clear 
whether some output signals currently sent via CAN may not also be pro-
vided via other out pins. Due to limited output pins of the micro controller, 
the usage of multiplexers (MUX) will then be necessary. The probability 
of this problem is medium and the change must be applicable within one 
month. Consequences would be that these output signals should be con-
figurable by EEPROM parameters, HW must be changed, and a new SW 
component (MUX_hdl) handling these MUXs must be included. Negative 
impacts of the factor can be addressed by a HW reserve243 that allows 
easily integrating the multiplexers on HW and an integration point to easi-
ly integrate a potential MUX_hdl to be easier integrated in SW. 

c. The third scenario discusses the potential that internal SW signals within 
the ECU may have to be propagated to other parts of the ECU's SW. This 
is very likely and must be realizable within a few days, because otherwise 
implementation of other features needing the signals will get retarded. An 
extension of signal propagation imposes new efforts on the different SW 
tasks (processes) and may impose a risk for factor 1. To avoid these risks, 
an RTE244 component as a decoupling layer between tasks and handlers 
may provide a standardized communication mechanism with configurable 
signal propagation through function pointers combined with asynchronous 
messaging mechanisms to decouple processes. 

5. Factor five addresses the effects when development processes with SPICE 
maturity level 2 (ML2) must be employed. The priority is high, because the 
customer demands for high quality and a scalable development process. On 
the other side, SPICE ML2 demands high administrative and bureaucratic ef-
fort for documentation inducing high risks for factor six. This requires a good 
tool support in order to diminish unnecessary effort; but in the same way it 
may be acceptable to use development processes capable for SPICE ML1, as 
SPICE ML1 also requires that all necessary processes are fulfilled; but it does 
not require extensive documentation. 

                                                           
243 German: HW-Vorhalt 
244 RTE is inspired by the run-time environment (RTE) component of the AUTOSAR 

architecture. AUTOSAR (Automotive Open System Architecture) is a standardization 
en–deavor with the goal to define an open standard for automotive SW architectures 
[We07; p.18]. The design case study introduced here is not an AUTOSAR conforming 
design, because it would unnecessarily complicate the case study. However, the RTE 
concept proved a good idea to be integrated into this example about SW architectural 
design decisions. 
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6. Concerning the project resources, budget for three developers for two years is 
available. At first sight, this issue seems not so important, because HW part 
costs are at the end the dominating cost factor in the end. On the other side, 
risks to achieve the goal of factor 6 are significantly imposed by factor 5. This 
issue may at first also just seem to be a matter of planning in the sense that the 
project manager just performed wrong effort estimations, because he did not 
consider the extra effort of SPICE ML 2. In this sense, project staff simply 
must be increased; but on the other side it may also be the case that budget re-
quirements imposed by the customer or management do not allow an increase 
in budget and other strategies must be taken. Generally, it is to say that factors 
5 and 6 seem not to be directly connected to the design; however, as indicated 
by Posch et al. [PBG04; p.74f], the scope of factors to be considered should 
include a wider perspective in which especially organizational factors245 
should be considered. The example shown here is only a snapshot of the fac-
tor analysis at a very early state of the project, where factor 6 is in conflict 
with factor 5, but the effects on the architecture are not yet obvious. Now, in 
the further project progress it may become apparent that the customer insists 
on SPICE ML 2 processes and that project budget is very tight preventing to 
call in further developers. It may turn out at this later point, however, that two 
former projects are existing handling partially similar issues as the example 
project and parts of their SW components can be adapted to the new problem. 
As this promises to significantly reduce development effort and staff needs, it 
is then decided to reuse parts of these projects. In this case, both factors 
would significantly raise their influence on the design, leading to the effect 
that the whole character of the design may change (e.g., the design may then 
rather become an integrative patchwork to integrate the old components with 
adapter components to fulfill the new needs). 
 

                                                           
245 Organizational factors such as staff size, staff skill levels, development organization, 

or available budget often impose significant restrictions on which solution is possible 
and thus significantly influence on the outcome of a design [PBG04; p.74]. Especially 
economic and development process contexts play an important role, because they soon 
become an important factor about the feasibility of an intended solution. 
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Table 20.1  Example of an architectural influence factors assessment 

Factor Priority/Flexibility Influence/Risk Handling Strategies 

1. Response time < 
5ms 

HIGH; in 95% +- 
0.5ms  soft deadline

K.O.-criterion Rate Monotonic Analysis + 
continuous measurements of 
prototypes and release candi-
dates. 

2. Minimize Power 
Consumption 

HIGH; at least when 
ignition is off. 

ECU must go into a 
sleep mode. 

Sleep-wake-up manager in 
SW. 

3. Input signals over 
Shift Register Handler

LOW; High flexibility 
as not prescribed by 
customer 

Through needed 
polling induced risk 
for 1 and 2. 

Timer with t+2.5ms; HW 
change from shift-register to 
multiplexer in next release.  

4. Flexibility to 
change 

MEDIUM   

4.1 Scenario: In-
put signals 
change to CAN. 

LOW; Rather low 
probability 

- - 

4.2 Scenario: 
Output signal via 
CAN or multi-
plexer 

MEDIUM; must be 
realizable within one 
month 

Configuration 
parameter in 
EEPROM; HW 
change; Multiplexer 
handler (MUX_hdl) 
in SW necessary. 

HW reserve; Integration point 
for MUX_hdl in SW. 

4.3 Scenario: In-
ternal signal pro-
cessing must noti-
fy other parts of 
the system. 

MEDIUM; very likely 
 must be realizable 

within a few days 

New communica-
tion effort with 
other tasks  Risk 
for point 1. 

RTE-layer with configurable 
function pointers and asyn-
chronous messaging 

5. SPICE ML2 HIGH, the customer 
demands for high 
quality, but also wants 
a scalable develop-
ment process. 

Increased adminis-
trative effort  
Risk for Point 6 

a) Usage of adequate tools. 
b) Negotiations whether 
SPICE ML1 may also be 
adequate. 
c) Adding 50 % additional 
developer resources  

6. Project resources: 
Three developers for 
two years 

LOW, costs are main-
ly driven by HW 
costs. 

- - 

 

Following the current design theory the influence factor assessment example 
above described would be part of a design description only loosely connected to 
the design model. With the decision model described here, the decision can be 
directly integrated into the design model (cf. fig. 20-7). 
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Figure 20-7  Architectural influence factors assessment with R2A's decision model 

All requiremental items (RIs) or design related elements (ANs) present in 
R2A and being considered as influence factors can be added to the “Conflicting 
Items:” section. The assessment description can be documented in the “Descrip-
tion Of The Decision” section in an equal way as shown in table 20.1 above. The 
arising consequences (column “Handling Strategies” in table 20.1), can again be 
derived as DCs thus allowing directly assigning the DCs to the ANs needing to 
realize the consequences. At first, this helps to ensure that the designers of the 
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corresponding ANs become aware of these demands and thus ensures that these 
demands are considered by the considered in the design. Secondly, this also en-
sures that this information is made directly traceable and thus ensures that this 
information is present later in IAs for change assessment during change manage-
ment processes (cf. ch. III.22.1 and ch. III.22.2). 

 

 

Figure 20-8  Consequences of the architectural influence factors assessment of fig. 20-7 

Fig. 20-8 shows in more detail how the influence factors assessment of fig. 
20-7 could impose consequences (see the different arrows) on the design and 
how they currently can be made explicit in R2A.  
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Arrow '1.' indicates a fact not yet directly discussed but possibly often oc-
curring in design: The process of discovering rationale about a decision can also 
impose backlashes on the original sources of the decision such as the require-
ments involved. During the decision process of the example, the designer discov-
ered that the requirement about minimized power consumption is only important 
if ignition is off, because otherwise the running motor drives the power generator 
generating enough energy to not strain the battery. This discovery could lead to 
the conclusion that the requirement itself should best be adapted to 'Power con-
sumption must be minimized if ignition (KL15246) is off'. Currently, R2A does not 
provide dedicated support for this situation, because the situation can be managed 
by current state-of-the-art tooling. If, e.g., a change management tool with a 
change proposal system is used, the designer can initiate a change request de-
scribing the situation and the designer can directly textually refer to the decision 
via its unique identifier in R2A (cf. ch. III.17.4). Otherwise, if only an REM-tool 
is used, the textual reference to the decision's identifier can be added to the in-
formation about the requirement (e.g., in a comment attribute or 'Origin' attribute 
as described in II.10.4.2.1). However, as ch. IV.26 outlines, further perspectives 
of research about R2A could be supporting a dedicated integration with change 
management tools.  

The first DC in the “Resulting Items” section demands to perform a Rate 
Monotonic Analysis. Arrow '2.' shows how this can be modeled as a nonfunction-
al consequence for the complete SW design. By assigning the DC to the AN “SW 
Design” via a drag-and-drop operation the DC becomes a new nonfunctional RI 
for the SW design. Arrow '4.' indicates a similar situation for a part of the SW 
design. 

On the other side, arrow '3.' imposes consequences on the HW. As indicated 
in fig. 20-8, if the HW design is also somehow represented in the R2A design 
model, this can be performed by a drag-and-drop operation to the corresponding 
AN representing the HW. Currently R2A does not support a modeling tool for 
dedicated HW design, but the product line concept with dedicated support for 
integrating different modeling tools as a variation point should, in principle, 
equally allow connecting any HW design tool.  

                                                           
246 In automotive terminology, ignition is coded by the term “KL15” (In German: Klem-

me15). 
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In the current state of R2A with lacking direct support of a HW modeling 
tool, two alternative strategies are possible to allow tighter integration of HW 
design: 
• A place-holder AN for the HW model can be created, where all issues aris-

ing247 from a design process performed in R2A possibly relevant for the HW 
can be assigned. As further described in ch. III.23.2, this place-holder AN can 
then be used in R2A to generate a requirements specification for HW result-
ing out of the design processes performed in R2A. 

• In the author's experience, any embedded system or SW design model must 
integrate certain HW aspects anyway in order to model certain cross influ-
ences. As these models might need some aspects of HW in their models any-
way, a certain low detailed HW model could be collaboratively maintained 
(resp. sketched) by system designers, HW designers and SW designers togeth-
er to improve a common understanding at this core interface, in which the 
three domains have their significant overlap. If this HW model could be main-
tained in UML, the system and SE activities could seamlessly integrate the 
model. As a side-effect this model could also be an interface communicating 
effects of design processes performed in R2A to the HW designers. In fig. 20-
8, the author indicates this idea by including an AN 'HW Analysis'248. 

Last but not least, arrow '5.' indicates that new DCs might also spark the 
need for modeling new ANs in the design. In fig. 20-8, for example, a DC249 
demands a SleepWakeupManager. This SleepWakeupManager must be modeled 
as a new AN in the design. These situations sparking new ANs are indicated in 
fig. 20-8 by a square containing a question mark. The question mark indicates 
that it is not yet quite exactly sure in the current design situation whether these 
possibly new arising ANs really come to existence and how they might then ex-
actly look like, because creating any new AN would then be some following deci-

                                                           
247 These are at first DCs as consequences of decisions as described here in this example, 

but perhaps also other items in R2A as, e.g., the budgeted resource constraint concept 
introduced in the next chapter, might be relevant. 

248 The author has chosen this name, because such a model concept – in the author's 
opinion – rather resembles to the SW analysis concept as such a model might not really 
anticipate the HW design but might help to analyze certain HW parts that are of cross-
cutting interest for all three design domains. A real HW design might only make sense 
with a dedicated HW design tool allowing modeling of the HW circuits. An alternative 
name for such a model might be 'HW intermediate model'. 

249 The reader should note that in the situation described here actually three DCs might 
spark new ANs. The author has grouped the three items together to one arrow '5.' to 
avoid unnecessary clutter in fig. 20-8. It is very highly possible that the three items 
might spark the existence of three different new ANs. 
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sions of the designer, where other factors may also influence the final decisions. 
As described in ch. II.10.4.2.2, such consequences as indicated by arrow '5.' are 
connected to what Knethen and Paech [KP02; p.14] call 'applicability links' 
meaning that an item can derive its justification from another item. From this 
perspective, the decision and DCs concept might probably also be seen as a spe-
cial form of 'applicability links'. 

In [PKD+03; p.145], Paech et al. indicate that some NFRs can be specified 
via FRs. This is possible with the decision model, in which a NFR can spark a 
decision about handling strategies for the NFRs leading to new DCs as conse-
quences250. Thus, it could be said that this approach is good way to cope with 
nonfunctional restrictions that can be split into some numerical expression as it is 
often the case in embedded systems. 

Chung et al. [CNY+00] developed a NFR framework, where NFRs drive de-
sign creating rationale. The approach allows graphically modeling trade-offs and 
synergies between NFRs (also cf. ch. II.9.5). This can also be achieved by R2A's 
decision model, where the NFRs are referred to as conflicting items. Via the “Fur-
ther Diagrams” section, a model graph can be modeled in the design tool and 
referred to in the decision. In a similar direction, Egyed et al. [EG04] discuss an 
approach, where they map FRs to nonfunctional aspects (or software attributes) 
to identify conflicting and supporting situations. This approach should be equally 
manageable by R2A's decision model. 

III.20.5  Additional Support of the Decision Model for 
Designers251 

In the following, additional connections and advantages of the proposed decision 
model in relation to design-related issues are discussed. 

                                                           
250 As an example, a NFRs demanding code flexibility could be handled by a decision to 

employ the visitor pattern [GHJ+95; p.301-318] to alleviate adding new operations to 
the data model. As consequences, DCs can be derived defining that data model classes 
must fulfill the characteristics (operations to accept a visitor) of concrete (visited) ele-
ments, whereas operations must fulfill characteristics (operations to visit the different 
elements) of a visitor. This example can also be seen as an example for the claims 
made in the following ch. III.20.5.1 that the decision model of R2A has close connec-
tions to the pattern concept.  

251 Extended parts of this chapter have been published in [TKT+09; ch.5]. 
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III.20.5.1  Patterns 

“Patterns, as used in software engineering, constitute one of the most heavily 
used approaches for organizing reusable knowledge” [DMM+06a; p.19]. Pat-
terns (ch. I.6.2.4) define the abstract core of a solution for a continuously recur-
ring problem, thus allowing the solution tailored to the concrete problem to be 
reapplied [GHJ+95]. Patterns are described using a structure template. Even 
though different authors use slightly different templates, the description of the 
problem (often referred to as forces), the solution and its consequences are part of 
all pattern templates. The decision model discussed here can be described in 
terms of such a pattern template (see also [HAZ07; table 1]): The conflict situa-
tion of the decision model corresponds to the problem description part in pat-
terns, whereas the description of consequences in a pattern description could be 
modeled by resulting new DCs in R2A's decision model. Due to this analogy, the 
author believes that this approach can provide valuable support in selecting pat-
terns (e.g., the conflict situation of a decision can indicate the usage of a specific 
pattern). At the same time it can help knowledge engineers to identify interesting 
solutions as new patterns (for the relationship between design decisions and 
patterns also refer to [HAZ07], [PBG04; p.209]). A pattern library for decisions 
in modeling embedded systems could be the ultimate goal of such an effort. 

Horner and Atwood [HA06a; p.76] characterize patterns (ch. I.6.2.4) as 
common solutions resolving conflicting tendencies. The decision model pro-
claimed here also supports analyzing conflicts and results. In the author's eyes, 
the decision model supports identifying matching patterns and identifying new 
patterns as described in [TKT+09]. In this way, the R2A has certain resemblances 
to the DRIMER tool [PV96] (see ch II.9.3.1).  

Cleland-Huang and Schmelzer [CS03] (see also [GG07; p.315]) introduce 
another connected approach. Their concern is to improve traceability of NFRs to 
design. Due to the often global and far reaching effects of NFRs on design, 
traceability of NFRs to design is difficult to handle adequately. As a solution, 
they propose to use design patterns as an intermediary model between NFRs and 
the design. This means that NFRs are not directly mapped to design. Instead, 
NFRs are mapped to a design pattern, which then again is mapped to design. In 
this way, the number of traceability links to be manually captured is reduced. The 
approach then uses this information to automatically derive the relations between 
NFRs and the design through the manually captured relations.  
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In the author's opinion, however, this approach has the following shortcomings: 
• Not all NFRs can be directly mapped to specific design patterns. Some NFRs 

may also be handled through other strategies252.  
• The approach does not consider crossinteractions between NFRs or other 

FRs. 
Correspondingly, ch. III.20.4 shows that R2A's mechanism may be more 

powerful as it also allows describing handling strategies apart from patterns and 
also allows describing crossinteractions (see, e.g., the described influence factors 
assessment in ch. III.20.4). 

III.20.5.2  Ensuring Adequate Realization of Design and 
Decisions 

As Posch et al. [PBG04; p.38] underline, architects also have to ensure that their 
design settings are adequately considered and realized by other designers or cod-
ers. Using this decision model, designers can model the consequences of a deci-
sion as DCs and assign the DCs as new “requirements” (in R2A terminology: RIs) 
to design elements that must then fulfill the DCs. Besides usage in further design 
or coding processes, the list of assigned RIs to a design item can also be used as 
basis for reviews on design and implementation of the item. 

III.20.5.3  Support for Architecture Evaluation 

The R2A approach can also provide valuable support in maintenance and evaluat-
ing architectures [CKK02]. Moro [Mo04; p.321] points out that the usage of 
patterns and other decisions must be documented for later maintenance and archi-
tecture evaluation issues. According to Reißing 80% of change effort is caused 
by wrong architectural decisions [Mo04; p.90]. With documented decisions and 
rationale at hand, potentially wrongly made architectural decisions may be easier 
and earlier identified in architecture evaluation. In this way, implementation of 
wrong decisions and thus later costly changes may be avoided. 

When evaluating design documentation during design evaluation meetings, 
Karsenty [Ka96] found out that questions about rationale have been the most 

                                                           
252 E.g., NFR about security may also be handled by a login and password component 

(prevents unauthorized access) in connection with cryptography mechanisms (prevents 
eavesdropping) and intensified quality assurance methods (prevents bugs susceptible 
for hacking). 
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frequent questions (approx. 50%), but only 41% of these questions could be an-
swered (also cf. [HA06a; p.83], [BB06; p.275]).  

The idea of the decision model is to allow DCs (and budgeted resource con-
straints see ch. III.21) as consequences and attaching them to sub elements also 
provides direct benefit for the designer himself, because he can clearly model his 
demands for components and in later reviews these demands can be assessed 
directly. Through the structure of the decision model, further rationale is already 
present, where designers might even have used the description text to document 
further rationale. 

As already addressed in ch. II.9.4.1, a further helpful concept in this relation 
is the identification and tracking of neuralgic points in design [Mo04; p.310-
330]. As Moro found out, developers are often aware of neuralgic points by 
themselves, because neuralgic points often recur back as issue of discussion. 
R2A's decision mechanism gives designers a means at hand to document new 
discovered rationale at those recurring discussions. Further, the author believes 
that it may also be possible to discover neuralgic points through the sheer amount 
of documentation attached to a decision. In most cases, the most extensive docu-
mentation may thus be provided to decisions touching neuralgic points, because 
the developers are often anyway aware of the neuralgic nature of an issue.  

Other possibilities to identify neuralgic points through documented deci-
sions may be to identify a metric for measuring the complexity of decisions. As a 
start, e.g., it may be possible to assess the number of items identified as part of 
the conflicting area of a decision. If this number exceeds a certain number (e.g., 
15 to 20) the decision can be considered as especially complex. However, this 
topic should be further researched and be filled with experiences from practical 
usage. A further idea might be to implement a mechanism to analyze the click 
behavior of the designers. If certain decisions are often clicked at and further 
analyzed (e.g., when the properties of the decision are opened), it may indicate 
that this decision is more critical than decisions seldom being clicked at. 
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III.21  Resource Allocation as a Special Decision 
Making Case253 

The requirements for design conflict and cannot be reconciled.  
All designs for devices are in some degree failures, either because they flout  

one or another of the requirements or because they are compromises,  
and compromise implies a degree of failure. ... 

It follows that all designs for use are arbitrary. The designer or his client  
has to choose in what degree and where there shall be failure. 

[Py78; p.70] 
 
In design activities for embedded systems an additional decision type can be 
identified dealing with non-functional aspects of limited resources such as 
memory resources (e.g., Read Only Memory (ROM), Random Access Memory 
(RAM), Electrically Erasable Programmable Read Only Memory (EEPROM)) or 
timing restrictions.  

A core goal of embedded design is the effective administration and distribu-
tion of such resources254 and different strategies for handling this problem exist: 
1. The allocation is a more or less unconscious or uncontrolled process (i. e., no 

explicit strategy is established). 
2. A resource estimation is performed as part of the design and estimations are 

checked and adapted at each development cycle. 
3. Resource allocation is explicitly modeled in the design model (e.g., by using 

UML profiles such as the UML Profile for Schedulability, Performance, and 
Timing [Do04, ch.4] or MARTE [EDG+06]. 
With respect to collaboration in complex development teams or organiza-

tions, approaches 2 and 3 have limitations in the following aspects: 
• Propagation and communication of changes to all team members involved in 

the change can be cumbersome. 
• Minimizing redundancies as a major source of inconsistencies can result in 

communication errors. 
• The seamless adoption and refinement of other designers’ design results can 

be extremely difficult. 
                                                           
253 This chapter bases mainly on [TWT+08]. 
254 In fact, also Simon acknowledges resource allocation to be an important aspect of 

design [Si96; p.124-125]. Correspondingly, resource allocation can be considered as 
an important aspect of every design, but in embedded design its importance is highly 
more significant. When the engineering standard Automotive SPICE is applied, ENG.5 
BP5 (“Define goals for resource consumption”) even requests that resource consump-
tion for each software module is explicitly planned and tracked [MHD+07; p.64]. 
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• Sharing project knowledge in general will become more difficult. 
The following example, basing on the accompanying case study (see ch. 

III.12), illustrates these shortcomings in more detail. The design shown in fig. 12-
3 (see ch. III.12) may lead to the following estimation of RAM consumption 
(table 21.1) documented as a separate chapter in the design document of the high 
level designer. 

Table 21.1  Example resource estimation of RAM consumption in design 

Module Light
_Task 

Light
_hdl 

CIL_
hdl 

CAN-
drv 

PWM_
drv 

ADC
_drv 

Buffer 

RAM  
(1500 Bytes available) 

600 
Bytes 

250 
Bytes 

100 
Bytes 

300 
Bytes 

100 
Bytes 

100 
Bytes 

50 Bytes 

 

Such tables are a common format for documenting resource assignments in 
design documents (cf. [Mu04]). The tabular format has the main advantage that it 
easily gives an overview, but it has important weaknesses when collaborative 
aspects are considered: 
• First of all, even though these assignments are typically called estimations, 

they should rather be treated as RIs. This implies that a mechanism must be 
in place to communicate these RIs on time to all interested stakeholders – es-
pecially if changes occur during project progress.  

• Further, the allocation settings are estimated at a certain design stage and 
thus are an integral part of the design documents at this stage. Therefore, fur-
ther processing of this information by other designers is difficult. In the case 
study, the estimations are made at the level of modules and included into the 
documentation of the high-level design. If the module designer of the com-
plex Light_Task wants to refine the resource estimation into a more detailed 
estimation, a problem arises. In this case he would have to copy the infor-
mation “Light_Task == 600 Bytes” into some document of his responsibility. 
This leads to unnecessary redundancy causing consistency problems when 
this setting changes later in the project. 

• These problems are even more critical if some parts of the project are deliv-
ered by a subcontractor – as it happens to be the case in the example. In this 
case, all relevant requirements for the item to supply must be provided (as 
required by SPICE process ACQ.4 Supplier Monitoring, see [MHD+07]). In 
this case, the RAM estimations, since they are RIs, must be communicated as 
requirements to the supplier. This also leads to a high degree of redundancy 
with even worse effects if changes are not communicated. 
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III.21.1  Budgeted Resource Constraints as further 
Requiremental Items 

In consideration of this problem a way to perform such resource allocation deci-
sions in a handy fashion is needed, which also allows communication of the re-
sults for each considered design element throughout the entire project in an effi-
cient way. An additional aspect here is the fact that the results of a decision act as 
new RIs on the design elements they are assigned to. As literature shows (cf. 
[BGT+04], [CBS+02], [FGS+01], [Do04; p.317], [Do03; p.169], [Mu04], 
[Gu03]), most resource allocation activities consist of numerically truncating a 
larger resource amount into smaller subsets –more or less in analogy with the 
abstraction hierarchy of a system's resp. software's design (see ch. III.15, fig. 21-
4 resp. fig. 21-5 in ch. III.21.2.4 below). Obviously, this can be compared to the 
process of preparing and distributing budgets in business administration or pro-
ject management area [HHS64]. Therefore, the taxonomy of requiremental items 
is enhanced by an additional type of RI called budgeted resource constraint 
(BRC) as shown in fig.21-1. 
 

 

Figure 21-1  Requiremental items taxonomy with budgeted resource constraints 

BRCs are similar to design constraints (DCs) as they represent the results of 
a decision making process and can be assigned as RIs to any design element.  

However, there are the following differences when compared with other RIs 
(such as DCs): 
• BRCs represent numerical values, whose associated design elements may not 

exceed the maximum value of the assigned BRC. 
• A BRC can be subdivided into sub BRCs. Thus, BRCs at the same time repre-

sent a decision-making process as well as its results. 
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• As BRCs represent numerical values, whose sub BRCs divide resource 
amounts into smaller budgets for more detailed parts of the design, automatic 
consistency checks (e.g., tests for budget overruns) can avoid wrong alloca-
tions. Budget overruns may be detected at an early project stage.  

• Individual BRCs can be added to one design item only, whereas requirements 
and design constraints may be added to several items. 
 

 

Figure 21-2  Resource allocation example with budgeted resource constraints 

Resuming the example described above, fig. 21-2 illustrates the resource al-
location problem presented using BRCs as implemented in R2A. The connections 
to the design elements illustrate so-called assigned to or satisfy-link types used in 
R2A to relate RIs to design elements (see description in ch. III.18.2). In R2A, all 
RIs assigned to an AN (thus, also BRCs) are displayed via the “Requirements” tab 
(fig. 15-4 in ch. III.15), but for better understanding they are here directly 
mapped on the design diagrams, where the shown elements on the diagram are 
ANs in R2A. 

In this situation, the SW architecture is assigned to fit in a total budget of 
1500 bytes of RAM. This BRC is subdivided into six sub BRCs assigned to the 
six modules in the SW architecture, thus showing a more detailed partitioning of 
the RAM budget. 

Comparing fig. 21-2 with table 21.1 above, it can be seen that both represen-
tations have an equivalent meaning. In fact, the idea of budgets in HW and SW 
engineering is not new (cf. [FGS+01], [Do04; p.317], [Do03; p.169], [Mu04], 
[Gu03]). What this wants to point out beyond the appealing (and well-known) 
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aspect of a more or less easy mathematical model enabling consistency checks 
are the advantages of the budget concept itself, when it comes to collaboration 
and sharing project knowledge between project members. In this sense, the budg-
et concept is used as a means of communication during software design. The 
following chapters will provide more details on this. 

III.21.2  Advantages for Collaboration and Sharing Project 
Knowledge 

The following situations of this example project show the value of the BRC con-
cept for the following communication situations: 
• Within project refinement,  
• Communicating information over organizational boundaries, 
• Change management, 
• Different views on the same problem; 

III.21.2.1  Within Project Refinement 

During the first design cycle of the Light_hdl, the Light_hdl is forecast to have a 
very tight RAM budget. Therefore the designer identifies several specific aspects 
for which he arranges budgets according to his current information and needs 
(see fig. 21-3): 
• In normal mode, the module uses the settings in EEPROM mirrored to RAM 

for steering the lights. RAM consumption depends on the number of steered 
channels and the number of bytes needed for each channel.  

• The diagnostic part supervises regular checks of the electrical current between 
the ECU and the connected lights to detect malfunctions as short circuit or 
open drain. Malfunctions lead to the deactivation of a light channel. 

• In the case of severe error conditions, e.g., loss of EEPROM data, the fail 
over mode assures that at least essential functions like brake lights and indica-
tors work. The code and configurations are fixed in ROM, thus no particular 
portion of RAM is needed. 

With the type of BRCs proposed here, designers of sub levels can directly 
continue to process results produced in previous design decision processes. 
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Figure 21-3  Sub budgeting of the Light_hdl module 

III.21.2.2  Communicating Information across 
Organizational Boundaries 

Information must often be provided across organizational boundaries. Such 
boundaries can be sub projects within the same company or between different 
companies. In the case study, drivers are provided by different subcontractors. 
This implies that all requirements for the drivers must be provided throughout all 
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parties involved. In the author's experience, functional aspects are communicated 
in a quite complete fashion, but such nonfunctional aspects (e.g., restrictions on 
memory, timing, etc.), resulting from former design decisions, are often forgotten. 

The solution described here supports exporting all types of RIs associated 
with a design element as a new requirements specification into requirements 
management tools like IBM Rational DOORS, which can be delivered to the 
subcontractor. Since BRCs are treated as normal RIs, they are directly propagated 
to the subcontractors via automatically generated requirements specifications. In 
later development phases, these requirements specifications can be continuously 
synchronized with the settings in the design element, thus ensuring proper propa-
gation of requirements to subcontractors. 

III.21.2.3  Change Management 

During project progress changes occur that force designers to change decisions 
and assumptions. Managing those changes efficiently is essential to avoid project 
deviations. Two heuristics should be considered: 
• Changes should be kept as local as possible to avoid unnecessary complexity. 
• Changes must be implemented in a consistent way. 

Our model supports handling changes of BRCs as local as possible. Continu-
ing with the example, it might happen that the “runDiagnostic” function needs 
more than 10 bytes of RAM (see fig. 21-3 above). In this case, the designer can 
first try to find an internal solution for the problem (e.g., find a way to cut down 
on some bytes in the “diagInfoTable”). If this is not possible, the designer can 
escalate the problem to a higher-level designer.  

In another situation, new requirements from the customer could make the 
creation of a new, additional module necessary. This case has effects on the de-
sign as a whole since most of the modules already present might suffer a budget 
cut in their BRCs as a consequence. R2A visualizes changed BRCs (in a red color 
coding; cf. ch. III.22.2) to alert designers of sub-layers to analyze the impacts on 
their assignments.  

If the sub designer has made his changes and consistency checks (e.g., de-
tecting budget overruns) pass, the designer can mark the change as implemented. 
After this, the BRC is shown in normal mode. 
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III.21.2.4  Different Views on the Same Problem 

In software design theory, the idea that different aspects of SW can be modeled 
by different views has been proposed (cf. [Kr95]). The same can be claimed for 
non-functional aspects modeled by BRCs. Besides the direct allocation view (see 
fig. 21-2 and fig. 21-3 above), R2A supports creating an enhanced table represen-
tation. Fig. 21-4 shows this tabular lineup between BRCs and their allocated 
design elements. Both columns additionally show their hierarchical break down. 

 

 

Figure 21-4  Tabular view with corresponding abstraction hierarchies. 

Since the structure of the BRCs break down has a strong analogy with the 
breakdown of their associated design elements, design flaws of the assignment be 
can easily detected. Fig. 21-5 shows this situation, where a wrongly associated 
item disturbs the analogy, helping the designers to detect those problems easily. 

 



III.21  Resource Allocation as a Special Decision Making Case 349 

 

Figure 21-5  Tabular view with assignment inconsistency (selected line) 

III.21.3  Representing Budgeted Resource Constraints in 
SysML 

Another frequently used possibility of modeling resource allocations in UML255-
design is to use UML profiles (e.g., timing constraints can be modeled in the 
UML Profile for Schedulability Performance and Time [Do04; ch. 4]).  
 

                                                           
255 This statement does not refer to any specific version of UML as profiling is a general 

feature of UML. 
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cd RAM

«requirement»
RAM: 1500 byte::

RAM: 600 byte

SW Architecture Lights Steering

«requirement»
RAM: 1500 byte::

RAM: 100 byte

«Driver»
ADC

«requirement»
RAM: 1500 byte::

RAM: 100 byte

«Driver»
PWM

«requirement»
RAM: 1500 byte::

RAM: 100 byte

«Handler»
CIL_hdl

«requirement»
RAM: 1500 byte::

RAM: 250 byte

«Handler»
Light_hdl

«requirement»
RAM: 1500 byte

«Driver»
CAN-Driver

Light_hdl::diagInfoTable

«OSEK_TASK»
Light_Task

«requirement»
RAM: 1500 byte::
RAM: 250 byte::

RAM: 10 byte

runDiagnostic
(Light_hdl::)

«requirement»
RAM: 1500 byte::
RAM: 250 byte::

RAM: 10 byte

setLights_FailOv er
(Light_hdl::)

«requirement»
RAM: 1500 byte::
RAM: 250 byte::

RAM: 10 byte

«requirement»
RAM: 1500 byte::
RAM: 250 byte::
RAM: 140 byte

«EEPROM_RAM_Mirror»
Light_hdl::configTable

«requirement»
RAM: 1500 byte::
RAM: 250 byte::

RAM: 80 byte

«requirement»
RAM: 1500 byte::

RAM: 300 byte

setLights
(Light_hdl::)

«DeriveRqt»

«satisfy»

«DeriveRqt»

«satisfy»

«DeriveRqt»

«satisfy»

«DeriveRqt»

«satisfy»

«DeriveRqt»

«satisfy»

«satisfy»

«satisfy»

«satisfy»

«DeriveRqt»

«satisfy»

«DeriveRqt»

«satisfy»

«DeriveRqt» «DeriveRqt»

«satisfy»

«DeriveRqt»

«satisfy»

«DeriveRqt»

 

Figure 21-6  Representation of the same information as fig. 21-4 but in SysML view 

In 2006, the Object Management Group (OMG) adopted an extension of 
UML called Systems Modeling Language (SysML; cf.[We06] and ch. I.6). 
SysML extends UML to improve support for Systems Engineering activities. A 
goal of SysML was to provide support for modeling dependencies between re-
quirements and design elements. 
R2A's model is compatible to SysML through the following definitions: 
• BRCs are represented by the <<Requirement>> stereotype, 
• Sub BRCs can be derived from the <<DeriveRqt>> relationship, 
• BRCs are assigned to design elements via <<Satisfy>> relationships; 

As a proof of this claim, R2A supports automatic generation of SysML dia-
grams from the BRC-model. Fig. 21-6 shows a SysML diagram generated from 
the model of the case study. However, it shows that such SysML-diagrams seem 
to have only limited value since they quickly can get very complex and cluttered. 
Thus, the real value of SysML might not be in the diagrams but the meta model 
behind it, being shown in different representations as R2A does in fig. 21-4. 
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Similar generation functions could be employed for timing budgets using the 
UML Profile for Schedulability, Performance and Time or the MARTE profile 
([EDG+06]).  

Except for prototypical implementation of the transformation between BRC-
model and SysML described here, these topics have not been further pursued 
because R2A aims to embrace design methodologies and tools beyond the UML 
paradigm (as, e.g., Matlab Simulink or Stateflow). 

III.21.4  Combining both Decision Models 

As already described in [TWT+08], implementing a small change on the first 
decision model described in ch. III.20 allows making both decision models com-
patible with each other. If BRCs are allowed as possible results in decision model 
one, both models support compatible types as their major in- and out-comes 
(since all are RIs (cf. fig. 21-1)). 

The following example described illustrates this in detail (see fig. 21-7). A 
documented decision “Dec1” determines the use of a specific micro-controller. 
This decision also determines a BRC “RAM:1500 byte”. Through several deci-
sion steps, a sub BRC “RAM: 10 byte” is derived that is satisfied by the 
“setLights_FailOver” function in design. Both conflict with a requirement 
“Req3”, resolved by a new documented decision “Dec2”. 

As the example shows, both decision models complement each other and al-
low modeling of more difficult decision problems.  
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cd Compatible Decison Models

«requi rem ent»
Req1

«requi rem ent»
Req2

«Docum entedDecision»
Dec1

Use contro l ler XY.

«BudgetedResourceConstra int»
RAM: 1500 byte

«BudgetedResourceConstraint»
RAM: 250 byte

«BudgetedResourceConstraint»
RAM: 10 byte

setLights_FailOver
(L ight_hdl::)

«requi rem ent»
Req3

«Docum entedDecision»
Dec2

«DesignConstra in t»
DesConstr1

«DesignConstra in t»
DesConstr2

«confl icting enti ties»

«resul ting»

«derive»

«derive»

«confl icting enti ties»

«resul ting»
«satisfy»

 

Figure 21-7  Example for combining both decision models together 

 

III.22  Managing Changes and Consistency 

Complexity is the path of growth. On the other hand, complication is the path of degradation, loss of 
control, evanescence of order. 

Lem O. Ejiogu 
 

Nuseibeh et al. [NER00] describe that it is not always viable resp. advisable to 
resolve all inconsistencies immediately. Even though resolving inconsistencies 
can only imply adding, changing or removing information, it more often involves 
balancing conflicts and taking design decisions. Correspondingly, “the choice of 
an inconsistency-handling strategy depends on the context and the impact it has 
on other aspects of the development process” [NER00; p.26]. 
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The R2A mechanism allows keeping inconsistencies for a certain time but 
keeps also track of the inconsistencies so that they can be resolved later. 

III.22.1  Usage of Traces – Managing Requiremental 
Changes 

Ch. II.10.4.3.3 discusses the usage of traces recorded in traceability approaches. 
Pinheiro terms the usage of traces as trace extraction. Concerning trace extrac-
tion processes, Pinheiro [Pi04; p.105] describes three different tracing modes that 
should be supported. The following listing describes features provided by R2A to 
support the modes described in ch. II.10.4.3.3: 
• Selective tracing is supported by the impact analysis dialog, where each 

element can be selectively applied to an analysis or deactivated. IA with the 
impact analysis dialog is described in the following sub ch. III.22.1.1. 

• Interactive tracing is directly supported by a model browser described in the 
following second sub chapter III.22.1.2. 

• Non-guided tracing is supported by the model browser as well as by other 
features described in the following third sub chapter III.22.1.3. 

 

III.22.1.1  Selective Tracing: Impact Analysis256  

As illustrated in ch. I.5.6, requirements changes occur in project practice. Thus, 
their consequences for the development process must be directly tracked in detail 
to avoid continuous drift between artifacts. For this, so-called impact analyses 
(IA) as described in ch. II.10.3 are the intended means for addressing these prob-
lems.  

R2A offers the possibility to perform IAs, where impacts of requirements 
change on design can be easily made understandable for project members as well 
as for project outsiders (e.g., the customers) via iconographic highlighting.  

Fig 22-1 shows two examples of how the impact results can look like during 
IAs, highlighting the ANH tree in R2A. The left tree shows a very local impact 
(red cross at 'Light_hdl' AN). Oppositional to this, the right situation shows direct 
impacts (red crosses) on the complete 'SW Design' as well as to the modules 
'Light_hdl' and 'RTE'. Here, also inherited impacts (arrows with grey shade point-
ing at the bottom at 'ADC_drv', 'HighPrio_Task', and 'PWM_drv') and indirect 
                                                           
256 Parts of this chapter have been published in [TKT+08]. 
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impacts via decisions (yellow crosses at 'CIL_hdl', 'Light_Task', and 'SHR_hdl') 
are visible. 

 

 

Figure 22-1  Two examples for visualizing impact on the abstraction nodes hierarchy 

These opposed examples show the indisputable advantages of clear icono-
graphic highlighting. Even though, engineering theory concentrates on reproduc-
ible results, the author is convinced that the developers' intuition (see also [LL07; 
ch.2]) is more often a factor of success than usually admitted. The graphical as-
pect of R2A's IA approach supports the intuition of the developers. This means 
even if no complex and detailed IAs are performed, the ease of just identifying a 
few items will also improve the working quality. A second major improvement of 
graphical IAs is that impacts of changes demanded by certain stakeholders can be 
better communicated to these stakeholders, as they can also more intuitively 
grasp the effects of the demanded change. Ebert emphasizes that “lots of changes 
are proposed because the corresponding interest groups think that the change is 
done by only changing a few lines of code or a parameter” [Eb05; p.188 (*)].  

Via R2A's graphical highlighting of impacts such misunderstanding can be 
easily cleared and thus unnecessary change efforts, where change costs do not 
outweigh the change gains, are avoided.  

However, development is not that easy that all effects of a change can be di-
rectly discovered. Often, changes can trigger a dominoes effect [VSH01; p.83] or 
ripple effects (cf. ch. II.10.3). To discover these effects earlier, project members 
must be able to perform more complex IAs because simply following the link 
chain only helps to find the primary change but neglects to identify the second-
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ary change often leading to the dominoes effect. Thus, besides the simple graph-
ical representation, the following characteristics allow significantly more precise 
IAs: 
• Often several requirements in combination are affected by a meaningful 

change. R2A allows to starting an initial starting impact set (SIS) with sever-
al RIs (Requirements, DCs or BRCs). 

• The affected RIs often involve formerly taken decisions and consequences 
(as DCs or BRCs) that must be reassessed. Starting from the initial SIS, R2A 
automatically calculates direct and inherited impacts on ANs derived from 
the RIS (ch. III.18.2.2). Additionally in a next step, indirect impacts through 
modeled decisions and their consequences (DCs and BRCs) are calculated 
with their impacts on ANs. 

• The inherited and indirect impacts are automatically calculated by R2A from 
the formerly gathered traceability information. In order to allow users to dif-
ferentiate between direct impacts and calculated impacts, the different impact 
types have different iconifications.  
After R2A has first calculated the impacts, R2A offers dedicated support to 

perform a more detailed assessment of the IA results:  
• Automatically calculated impact can lead to overestimated impacts. For 

these cases, the user can again determine for all calculated impacts, whether 
they are actually real impacts or rather overestimated impacts.  

• To each element in the IS notes can be attached, by which the user can tell 
the cause why an item is in the IS, or what has to be performed in order to 
implement the change impact on the item. 

• Performed IAs can be saved and shared with other users. This allows already 
performing rough IAs during meetings with the customer (ideally even at the 
site of the customer), early sparking concrete discussions with the customer 
if the customer expresses a change need. In combination with the possibility 
mentioned above to document notes on items in the IS, concretely identified 
steps to be performed on the change or other important information can al-
ready be documented and saved. This helps to capture early rationale on 
changes to perform. In the aftermath of such a meeting the developers then 
can refine the captured information. Estimations on costs and duration are 
one of the important information possible to be added are, thus extending the 
sheer IA to a detailed effort estimation. 

• Once impacts are identified, a decision must be taken whether a proposed 
change is really performed on the project (e.g., by a change control board 
(CCB), [PR09; p.144f], [VSH01; p.184f, p.216]). As basis of such a decision 
the saved detailed IA results can be loaded and viewed in R2A again.  
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• Once a change has been approved, the gathered IA information about the 
change can again be loaded in R2A, providing now a detailed road-map for 
the designer to perform the changes. 
These described actions and information can be steered via R2A's impact 

analysis dialog shown at the left side in fig. 22-2.  
Fig. 22-2 shows the complete set of information displayed in R2A during an 

IA. At the left side, the impact analysis dialog is shown, whereas the right side 
shows an excerpt of R2A's main window with the ANH at the top and the “Re-
quirements” tab at the bottom.  

Impact highlighting on the ANH has already been discussed in the context of 
fig. 22-1. The “Requirements” tab shows the RIs of the selected AN (here 'SW 
Design'), where RIs being in the impact set are correspondingly highlighted to 
provide the user with information about the concrete impact on the AN. 

 

 

Figure 22-2  Impact analysis dialog and R2A's main window with an impact set taking 
decisions into account 
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The impact analysis dialog is divided into the left part showing the impact 
situation for RIs in connection with impact derived through decisions. The figure 
shows a situation of a planned change, affecting in the first instance requirement 
ReqSpec_2 (“The system must read ...”), requirement “The signal must be an-
swered within 5ms” (taken from the documented decision concerning the archi-
tectural influence factors assessment shown in fig. 20-7 (see ch. III.20.4)) and 
BRC “RAM:1500 byte” (taken from the resource estimation described in ch. 
III.21 (see fig. 21-4 in ch. III.21.2.4)). All made decisions and all DCs or BRCs 
derived from the decisions are taken into account and shown beneath the ele-
ments identified in SIS. The right side shows the direct consequences on design 
(ANs) of an item selected in the left side (the complete impact on the ANs is 
shown in the ANH). Via the textual component at the bottom, notes can be edited 
and viewed describing additional information on the need for change of an item 
selected at the left side. Above, the author also mentioned that the dialog can be 
used as a detailed road-map to perform the changes. This is indicated in the figure 
by item ReqSpec_2, being checked and being highlighted via a green cross. Via 
this checking mechanism, changes already performed can be checked. In this 
way, the dialog turns into a checklist for the change to be performed showing the 
current status the designer is in during change implementation. 

IA support is helpful to assess potential influences of changes and the cap-
tured rationale; during assessment it can give important guidance to how these 
changes must be performed. However, most probably not all requiremental 
change will run through a cycle of detailed IA and CCB. Often 'minor' changes 
influx into a requirements specification from all kinds of sources, though. For 
these cases the change management mechanisms described in ch. III.22.2 help to 
keep changes transparent in order to maintain changes to consistently propagate 
to all relevant parts of the design models. 

III.22.1.2  Interactive Tracing: The Model Browser 

Interactive tracing means to allow an interactive browsing mechanism to navi-
gate backward and forward in the model.  

Fig. 22-3 shows the model browser integrated in R2A for fulfilling 
interactive tracing needs. The model browser can be opened for any item present 
in R2A. Fig. 22-3 shows the model browser opened for the NFR “ReqSpec_14: 
The system must be flexible to change.”. In the left part of the model browser, 
direct information on the item (e.g., the text) and several meta-data (e.g., author 
and date of the last change, version, baseline, and internal item id) are shown. At 
the right side, all traceable relationships to other items are shown. 
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Figure 22-3  The model browser in R2A 

There, the user can double-click on any item. Then, the model browser 
changes to this item, thus allowing navigating through the complete model pre-
sent in R2A. The user can also open several model browsers in parallel, allowing 
keeping information on some items currently important to the user open; mean-
while he still can navigate further through model. 

III.22.1.3  Non-Guided Tracing: Additional Features for 
Fast Look-Up 

Non-guided tracing shall allow the user to arbitrarily step from entity to entity 
analyzing contents as demanded. This shall ensure convenient tracing when little 
information on what or how to trace is available. 

Besides IA features and the model browser described in the chapters above, 
being also able to fulfill non-guided tracing needs, the following features provide 
possibilities for fast looking up some information: 
• When the 'quick view' option is activated, a slim version of the model brows-

er automatically appears when the user works with R2A showing the current-
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ly selected item in R2A. When the user changes to the design tool, the quick 
view automatically disappears. In this way, the user can on one side easily 
gather important information on an item. On the other side, the quick view 
can be arranged in a way overlaying the design tool but not overlaying any 
other information in R2A, when the user works with R2A. But when the user 
works with the design tool, again no disturbing window of R2A hinders the 
designer in working with the design tool. 

• On any RI, the 'locate origin' action can be performed opening the require-
ment source document of the RI and selecting the RI in the requirement 
source document. 

• In the same way as 'locate origin' opens the corresponding requirement 
source document in R2A, the 'locate in REM-tool' action can be performed 
on any RI originating (being synchronized) from an REM-tool such as IBM 
Rational DOORS, opening the corresponding document containing the RI in 
the REM-tool and selecting the RI.  

• Vice versa, R2A also integrates a button into the REM-tool environment 
allowing a 'locate in R2A' action, where a requirement selected in the REM-
tool is then again shown in R2A.  

• As described later in ch. III.23.1, parts of an R2A-model can be again ex-
ported into a REM-tool to support supplier management. Similarly to the two 
points above, R2A also allows navigating into such a generated document in 
the REM-tool and back. 

• 'The 'Show related decisions' action can be performed on any item in R2A. 
When performed, a window opens showing all decisions the item is involved 
with (either as conflicting or resulting item) in the style shown in fig. 20-6 
(see ch. III.20.4). 
Through the different locate actions, bidirectional traceability (see ch. 

I.5.7.1) is ensured, where RIs can be traced in the backward and forward direc-
tion. 

III.22.2  Consistency Maintenance of Requirements, 
Traceability and Design257 

In ch. II.10.4.3, establishing traceability has been identified as an important as-
pect to consider because it means significant effort to be spent. This is only one 
facet of the problem. A second equal problematic facet is that later changes must 
be efficiently and consequently inferred throughout the whole development effort 
                                                           
257 This chapter bases on parts of [TKT+08]. 
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in order to ensure consistency throughout the whole development project (see ch. 
II.10.4.3.4). Otherwise, the best traceability establishment processes will be in 
vain if the traces significantly degrade in short time. On the other side, a certain 
degradation of traces may be inevitable even under best support for trace mainte-
nance.  

To ensure traceability information is maintained best possible, obstacles for 
traceability maintenance must be as low as possible. In R2A, maintenance of 
traceability information is easy and intuitive because of the overall drag-and-
drop support as well as operations as dribble-up, dribble-down and copy, and the 
concept to present only the information relevant in the given design situational 
context. 

A main concern addressed in maintenance of traceability is ensuring con-
sistency. The following now shows how R2A supports that requirement related 
changes are consistently inferred to design. 

If a proposed requiremental change is decided to be performed258, it must be 
possible to propagate the changes in a controlled way, ensuring a consistent im-
plementation of the change in all artifacts. For each RI, R2A is able to visualize 
its status by using a colored status bar at the left side of each RI (see fig. 22-4), 
where each RI runs through the life-cycle sketched in fig. 22-4. 

 

                                                           
258 The CCB can also decide not to perform a change. (e.g., if the effort detected via an IA 

is higher than the change's value gain). 
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Figure 22-4  Life-cycle of a requiremental item and its color coding in R2A 

Each RI not yet considered in the R2A design (status 'red') must be assigned 
to the design (change to status 'yellow'). Yellow means that an RI is considered, 
but it did not yet reach its final state of realization in design (see RDP heuristic in 
ch. III.18.2.4). If a designer decides that an RI has reached its final state of reali-
zation, the designer can perform an accept operation on for the RI at the corre-
sponding AN, indicating that the designer considers the RI has reached the ade-
quate location in the design. When the RI is accepted at all ANs259, the RI auto-

                                                           
259 An RI can also be assigned to several ANs. Of course, it should be avoided that the 

realization of an RI is performed by several ANs; however in certain cases this will 
happen. 
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matically changes to status 'green' meaning that the RI has generally reached the 
adequate consideration at all parts of design it must be considered. Later changes 
on the RI (e.g., after a new synchronization of the requirements specification; see 
ch. III.18.1) may require a reassessment of the RI's current realization in design. 
Therefore, the status of the RI changes to 'orange' until the designers have per-
formed the necessary changes on the design to again adequately consider the RI. 
This can also involve that the RI may be relocated to another part of the design 
(assigned to another AN). Once the RI is again accepted by the designers, at all 
assigned locations, it is again promoted to status 'green'. This handling recurs 
every time the RI is changed. 

If an RI becomes obsolete during project progress, the RI can be marked for 
deletion by the designers (change to status 'gray'). As soon as the designers have 
considered the marked RI in design, it can be finally deleted (change to status 
'black'). In this way, it is can be ensured that design settings having become obso-
lete can be removed, thus avoiding clutter and architectural erosion. 

 
 

III.23  Aspects of Embedding R2A in a Process 
Environment 

Getting the formula right entails knowledge, patience, foresight, and communication. 
[BT04; p.99] 

 
A tool alone is not a solution for a problem. Instead, a tool must also be embed-
ded into a process landscape (see beginning of ch. II.10.4.4). After the chapters 
above described the tool R2A and how its integration supports the transition 
processes from requirements to design, this chapter widens the scope of consid-
ered processes in the sense that the requirement and design processes may be 
again embedded in a higher-level process environment, where tight integration is 
essential. These aspects can be that parts of a designed system are supplied by a 
supplier. In this case, design must be tightly integrated with supplier management 
to propagate important information to the supplier. Ch. III.23.1 describes how the 
information gathered during a design process with R2A can be directly used to 
generate a requirements specification for suppliers dedicated to deliver parts of 
the designed system (resp. SW). This helps to avoid redundancies and thus signif-
icantly improves supplier management.  

Another, issue may be that several requirement and design processes may 
occur on different levels of abstraction, where the results on one abstraction level 
induce requirements and design on another level of abstraction (see ch. I.7.3.2). 
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Ch. III.23.2 discusses how this can be achieved best with R2A. Again, the re-
quirements specification generation feature described in ch. III.23.1 also proves 
helpful in this case. 

III.23.1  Avoiding Redundancies in Supplier Management 

“In the development of complex embedded systems, often several companies 
work together on the development. At such an interconnected development, often 
partnerships are built, where mostly one supplier is engaged as the system suppli-
er, having – besides other tasks – the responsibility to coordinate the other sup-
pliers. Therefore, selection and coordination of suppliers is of special importance 
in embedded development. Often, even a hierarchy of client-supplier-
relationships emerges, meaning that a supplier (second tier) acquires further sub 
components of the system from his own suppliers (so called third tier) and coor-
dinates the collaboration. Additionally, the customer often prescribes the supplier 
certain third tier-suppliers” [HDH+06; p.65 (*)]. 

If a partial component of a system or software must be supplied by a suppli-
er, a reliable and efficient supplier management must be installed (see ACQ.1 and 
ACQ.4 process in SPICE [HDH+06]). 

 For this, at minimum a supplier requirements specification (SuppRS) must 
be continuously administered. Such a partial component, however, must be in-
cluded in the design of the higher-level (more abstract) component the partial 
component shall be integrated into260. In the further this design is called the cus-
tomer's system design (CusSysDes). 

As a main problem, high content redundancies arise between the information 
created during design and the writing of the SuppRS leading to high extra effort 
spent on creation, keeping the traceability and applying changes. Especially ap-
plying changes can be seen as a critical issue because redundancies are often 
accompanied by the danger that the changes are not propagated to all redundan-
cies, leading to growing inconsistencies between the redundancies. 

R2A tackles this problem by using the information about the component cre-
ated in the CusSysDes directly to automatically create the SuppRS. This means 
that the partial component is included as AN in the design of the higher-level 
component. The requirements for the component emerge from: 

                                                           
260 For example, a complete system, a sub system, a complete SW system, a partial SW 

sub system 
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• The previously found requirements for the higher-level component that are 
assigned to the partial component as requirements (requirements in R2A-
terminology). 

• The constraints for the partial component, resulting from the decision pro-
cesses during design of the higher-level component (in R2A-terminology 
DECs, DCs, BRCs). 

• Inherited RIs from parent ANs (see ch. III.18.2.2) as they also may be im-
portant for the component. 
R2A offers the possibility to export all this information concerning an AN to 

an REM-tool as a new requirements specification artifact for the supplier. Later 
changes in the R2A can be synchronized into the artifact. However, a SuppRS 
usually should not just include the requiremental information. Instead, the con-
text of the component to supply (embedded in the higher-level system) is im-
portant. Thus, besides this requiremental information mentioned above, R2A can 
also export the following information: 
• Modeled diagrams showing how the component collaborates with the other 

parts of the system. 
• The textual description of the component performed in R2A.  

Of course, not all information created during CusSysDes, concerning the 
component of a supplier need be propagated to the supplier. In fact, often the 
customer must decide which information is necessary to propagate and which 
information must not be propagated in order to protect the customer's know how. 
Thus, R2A's SuppRS generation mechanism contains a wizard, in which it is 
possible for each item to set whether to propagate to the SuppRS or not. After the 
SuppRS is once created, the synchronization mechanism also detects later edit 
changes (i.e., changes through later editing or formatting) in the SuppRS. When 
afterwards the next synchronization with the SuppRS occurs, the changes in R2A 
and the edit changes performed in the SuppRS are equally considered. Besides 
allowing edit changes of the SuppRS, R2A mainly allows covering two other 
points important for the SuppRS: 
1. The SuppRS as a requirement artifact read by humans also must obey the 

rules for a human readable document. Thus, the document must provide a 
continuous reading flow. In most cases, this means the raw version of the 
synchronized SuppRS must be reedited. For these reasons, also new items 
can be added to the SuppRS manually. These items are then handled outside 
of the R2A approach and the development team must use other mechanisms 
to keep these elements up to date. Besides adding new elements not managed 
by R2A, a SuppRS requirement artifact can also be restructured at will in or-
der to improve reading by humans. This works properly when the order or 
hierarchy of the requirements is changed; but it involves some problems if 
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also the text of a requirement must be changed. In principle, changing the 
text of a synchronized element (e.g., to improve readability) is possible but 
this makes the following synchronizations more difficult to manage because 
then both sides to be synchronized (the R2A side and the REM-tool side) 
may have changed. In these cases, it is indicated that the designer must man-
ually merge the texts. Thus, the author rather recommends to perform the 
textual change already within R2A and then again to synchronize the Sup-
pRS. 

2. Decisions not to propagate certain information elements to the customer may 
just occur during the editing phase of the SuppRS. In these situations, it 
would be very long-winded if the synchronization mechanism had to be per-
formed again in order to select information not to propagate in the wizard. 
Instead, it is easier to just delete the elements in the SuppRS. Then the syn-
chronization mechanism detects that these elements are deleted and will not 
again synchronize these elements. 
Such an emerging SuppRS can then be used as user requirements specifica-

tion261 for the supplier. As the information is directly generated out of the previ-
ous design processes by R2A, the single-source-principle ensures that redundan-
cies are avoided. 

III.23.2  Traceability over Several Artifact Models without 
Redundancies 

As discussed in ch. I.7.2.4, the topic traceability between requirements and de-
sign involves different artifacts at different levels of abstraction in process mod-
els such as SPICE. After having all pieces together now, this chapter discusses 
this topic from the process chain and artifacts viewpoint. 

Fig. 23-1 describes the process and artifact model, when system design, SW 
design and perhaps even HW design are performed in one design model. Only a 
common requirements specification with the real requirements from the customer 
(corresponds to the SYS_RS in SPICE) are imported from a REM-tool and are 
related to the corresponding ANs in the system design, SW design and HW design, 
being responsible for fulfilling the requirements. During the design processes 
new 'requirements' arise in the form of DCs and BRCs from design decisions 
made. These 'requirements' enrich the original requirements. In this way, the 
SW_RS, HW_RS and module requirements specifications are all RIs assigned to 

                                                           
261 In German: 'Lastenheft' (see ch. I.7.2.2.1) 
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the ANs, representing the SW design, HW design and module designs and are only 
metaphorically present in development.  
 
 

 

Figure 23-1  Process chain of an integrated design model for system, HW and SW design 

However, the SPICE standard also demands that testing procedures must be 
performed on the corresponding requirements specifications. This can be 
achieved through R2A's feature for creating a requirements specification from a 
partial design model (originally intended for supplier requirements specifications; 
see ch. III.23.1). Now, these created requirements specifications can be used to 
create and link test specifications to the corresponding requirements specifica-
tions. 

The author recommends using this process model because it provides opti-
mal communication for designers, reduces redundancies to a minimum, and pro-
vides best support of R2A's consistency management mechanisms. As described 
in ch. I.7.2.4, Hörmann et al. emphasize that in practice the transition between 
these processes mentioned are anyway mostly fluent and are rather of iterative 
and recursive nature [HDH+06; p.103]. Correspondingly, this model also is clos-
er to practice than the original SPICE process model is.  

However, as mentioned in ch. III.19, a process model deviating from the 
original SPICE model is allowed in principle but requires higher efforts for or-
ganizations to prove that the process model corresponds to the original ideas of 
the SPICE process model. It may even be possible that the process model has 
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lower acceptance by SPICE assessors (the power of assessors assigning negative 
assessment results should not be underestimated). These factors may push organ-
izations to the decision to rather exactly follow the SPICE process model to avoid 
such problems. 

Fig. 23-2 shows how such a process chain may look like when R2A is em-
ployed in an organization using the original SPICE process model. At start, the 
requirements of the customer are collected in the SYS_ RS in the same manner as 
above. Via R2A in connection with a design tool adequate for system design, the 
system design is created. During system design as well as in the other design 
phases described a few lines later, new DCs, BRCs and Decs emerge (emphasized 
in fig. 23-2 by a '+'). In the system design artifact, a placeholder “SW” is created, 
collecting all relevant requirements and other items resulting from the design 
(DCs, Decs and BRCs) having influence on the SW. This placeholder can then be 
used to generate the requirements specification for the SW forming the basis for 
the SW design, again performed in R2A in connection with a design tool adequate 
for SW design. If needed, the same procedure can be applied to modules in the 
SW design if a dedicated module specification is needed (in most cases this may 
be especially interesting, when the realization of modules is delegated to a sup-
plier). Through these controlled import and export actions via R2A, controlled 
copies emerge, whose redundancies are in most cases maintained under automa-
tion support. 

 

 

Figure 23-2  Process chain of multi-layered requirements and design artifacts 
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In this process model implementation, R2A also provides advantages of 
minimized redundancies because SW_RS, HW_RS and the module requirements 
specifications are generated from the design models made earlier with included 
DCs, Decs and BRCs. On the other side, IAs and consistency management be-
come significantly more difficult because the tool barriers between artifacts in 
REM-tools and R2A must be crossed permanently. This leads to friction losses. 

III.23.3  Decoupled Development of Requirement and  
  Design Artifacts 

The process chain introduced in the previous chapter still leaves one central point 
uncovered: Often, different artifacts are developed with a certain time-lag in 
parallel. Thus, after the SYS_RS, the system design is developed with a time-
delay, and after the system design again the requirements specification and design 
of the SW are developed with a certain time delay. During this process, require-
ment changes already occur in the SYS_RS.  

In simple link concepts, the link chain now can be paced off by an IA, but 
controlling a consistent maintenance through all artifacts proofs difficult262. 

R2A addresses this problem by an interplay of synchronization, consistency 
propagation (ch. III.22), and export (ch. III.23.1) mechanisms.  

Fig. 23-3 shows the effects of these mechanisms in cooperation, in which 
the R2A process artifact chain of fig. 23-2263 is extended by a temporal dimen-
sion, showing change deltas (horizontal dimension). From top to bottom, differ-
ent requirement and design artifacts are shown at different levels of abstraction 
(system design, HW design and SW design). R2A is able to perform the synchro-
nization mechanism on different version baselines of requirement artifacts. Thus, 
it is possible to synchronize the requirements according to an existing version 
baseline of the requirement artifact.  

                                                           
262 Current REM-tools such as IBM Rational DOORS provide mechanisms to mark such 

links. In IBM Rational DOORS, e.g., these links are marked as 'suspect links'. Howev-
er, after a baseline is made in a certain artifact all suspect links are cleared, making it 
unfeasible to perform baselines in a time-delayed development for a certain artifact. 
Moreover, the problem increases when tool gaps as the problem of an essential tool 
gap between REM- and design tools as exposed here are involved. 

263 The statements are analogously valid for fig. 23-1 in ch. III.23.2. 
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Figure 23-3  Consistent integration of changes ( ) beyond version barriers 

Through the consistency mechanism, this requirement artifact version can be 
propagated through the designs (with new Decs, DCs and BRCs) and the export 
mechanism then propagates this baseline version state to the requirement artifacts 
at lower levels of abstraction. In the meantime, the requirement changes ( ) for 
the next version can already be performed, being again propagated downward to 
the artifacts at lower levels of abstraction within the following version baseline. 

Subsuming, it is to say that R2A conducts requirement changes into con-
trolled, consistent version pathways (gray pathways in fig. 23-3), but at the same 
time it allows a decoupled, further development of requirement changes for sub-
sequent versions in parallel. 
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III.24  Overall Architecture of R2A 

Designers have occasionally been urged to seek for 'ideal solutions of design problems' or words to 
the same effect. There can be no ideal solutions.... Design is not like that. There are, however, 

occasions when it is possible to determine temporarily what is the best practicable balance be-
tween opposing requirements.... 

The fact that compromise is inevitable in so many kinds of design has led theorists to classify design 
as a 'Problem-solving activity', as though it were nothing more than that. In is a partial and in-

adequate view.  
Most design problems are essentially similar no matter what the subject of design is.... 

[Py78; p.74f] 
 

After the chapters before have described the features of R2A with their innova-
tive potential, this chapter describes the technical background of the R2A solu-
tion. At first, the general architecture of R2A is described. The core of the R2A 
tool is the conceptual meta-model described in the second sub chapter. Afterward, 
other additional interfaces are described. 

III.24.1  General Architecture 

Fig. 24-1 describes the high-level architecture with the most important packages 
and their interdependencies. The overall structure is divided into three parts: 
• The “General Reusable Libraries” part subsumes libraries with general sup-

portive tool (resp. utility) libraries that can also be used in other development 
projects, thus generating significant alleviations for new development pro-
jects. In the Infrastructure package, general solutions for cross-cutting con-
cerns as error logging, threading support, or integration of unit testing, etc. 
are developed. As it provides very basic support, the Infrastructure library is 
used by all other packages in R2A. Basing on Infrastructure, the GuiFrame-
work package is the equivalent of Infrastructure but for GUI264 support. The 
GuiFramework provides better support for user messaging (a framework, 
where user vocabulary and messages to the user can be defined in a general 
way), encapsulates important GUI-controls to make them exchangeable and 
more stable. Further, the framework provides a general implementation of the 
model-view-controller pattern allowing easily creating new user controls with 
support of the model-view-controller pattern. Several other smaller reusable 
libraries addressing more special cross-cutting aspects exist, not explicitly 
mentioned here. 

                                                           
264 Graphical User Interface 
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• The “Product Line Core” is the actual core of R2A. Its architecture follows 
the three layer architecture pattern [BMR+00; p.31ff]: 

• The Gui package contains all program elements directly related to the 
graphical user interface. 

• The ProgramCore package contains the data model and its operations of 
the R2A application. In ProgramCore, the MetaModel package contains 
the data model, whereas the ModelController package contains and con-
trols operations on the data model. R2A's data model classes have de-
tailed knowledge about their own structure. In this way this data model 
is more a meta-model about the entities represented in the R2A-model. 
This meta-model is described in the following ch. III.24.2. 

• The Opf package is an object persistence framework (OPF) responsible 
for mapping the R2A data from the meta-model to its representation in 
the database. The OPF also can automatically handle the cross-cutting 
concerns of versioning and baselining realizing the features described in 
ch. III.17.5. As the OPF realizes any data changes, it also contains a col-
laboration framework allowing other R2A instances of other developers 
connected to a project to be notified about data changes. These notifica-
tions then trigger the collaboration framework in the other R2A instanc-
es to update the changed model parts, thus allowing direct synchronous 
collaborative work between the designers. 

• The “Variation Points” part contains the packages RemInterface and MdlIn-
terface. RemInterface is the variation point to connect different REM-tools, 
whereas MdlInterface is the equivalent variation point to connect to different 
modeling tools. As both packages have equivalent responsibilities but for dif-
ferent tool types, the internal structure of both packages is equivalent. Both 
contain a general part and a tool specific implementation part. The general 
part shall encapsulate the tool specific part from access of the ProgramCore 
package. The general part contains an abstract interface definition each spe-
cific tool implementation must implement, a factory class that uses the ab-
stract factory pattern to create a specific tool object with the implementation 
of the abstract interface, and objects representing items present in a connected 
tool. These objects (TMdlObject in MdlInterface, TReDocumentItem and 
TReDocument in RemInterface) are used to connect information of a connect-
ed tool with the data model (see ch. III.24.2). 
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Figure 24-1  High-level architecture of R2A 

III.24.2  The Meta-Model 
The concepts mentioned above are embedded in R2A in a meta-model. The meta-
model can be seen as the traceability reference model or conceptual trace model 
(ch. II.10.4.3) of the approach. 
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Although a certain overlapping with concepts of the meta-model of UML 
(with SysML; in the further just referred to as UML) exists, R2A’s meta-model is 
not basing on an implementation of UML, because: 
• The UML meta-model did not yet exist as a standard, when research on the 

meta-model of R2A began. 
• The UML meta-model is substantially more complex since it is very generic 

and it is designed to cover all aspects and concepts of design, whereas R2A 
only uses some specific concepts important for design structuring, traceabil-
ity and design documentation.  

• R2A aims to be open to integrate other design modeling approaches. Thus 
R2A must avoid a too strong concentration on one modeling approach.  

• The usage of the UML meta-model would demand to be conforming to 
UML. R2A involves research on new concepts and ways to establish tracea-
bility in an easy to use fashion. Strong orientation on a standard could prede-
termine the researcher's thinking in an unfavorable way, preventing to find a 
good solution. Or, probably new concepts are necessary that cannot be ade-
quately mapped to the UML meta-model. Such cases of mismatch can be 
seen in the DC concept265 or the decision model concepts. 
Nevertheless, the UML and SysML concepts have been analyzed and in-

spired certain concepts of R2A and its meta-model. 
Fig. 24-2 shows the R2A meta-model with the most important266 classes, its 

properties and relationships. As a convention of the R2A-project, all type names 
start with a capital T as abbreviation for the word 'type'. Through this notation, 
inspired by the hungarian notation, types created within the R2A-project can be 

                                                           
265 The UML has a constraint concept but with very different semantic to what is called a 

design constraint in R2A. However a certain connection between both concepts exists 
in the form that the UML constraint semantic can be seen as a special case of the de-
sign constraint semantic. As the UML constraint semantic bases on a formal language 
concept (called Object Constraint Language (OCL)), it is designed to describe very 
specific design issues in design diagrams in an annotation format. In contrast, a design 
constraint aims to describe all kinds of constraining effects of a design in natural lan-
guage, thus providing significantly higher flexibility for description. 

266 The reader should note that the meta-model shown here is idealized to be understanda-
ble for the reader. In reality, the meta-model contains a few more classes, and the clas-
ses have significantly more properties and relationships. E.g., the access to TMdlOb-
ject objects (associations (5.) and (7.)) is in reality controlled through a proxy object 
TToolsObjectProxy to improve encapsulation of the MdlInterface variation point. This 
is important for the real tool implementation but is an implementation detail not neces-
sary for understanding the fundamental concepts of the meta-model to be introduced in 
connection to this thesis. 
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easily differentiated from original types provided by the Microsoft C# .Net envi-
ronment.  
 

Figure 24-2  The meta-model of R2A 

As mentioned in ch. III.16.1, R2A consists of a core and the two variation 
points for integrating REM- and modeling tools. In fig. 24-2, the REM-tool varia-
tion point is described by the RemInterface package and the modeling tool varia-
tion point by the MdlInterface package. The meta-model is located in the core, 
but information located in the connected REM- or modeling tools must be refer-
enced through proxy objects in the variation points, abstracting from a specific 
implementation in a specific tool. In the case of the RemInterface, the class TRe-
Document represents a document in an REM-tool and TReDocumentItem repre-
sents an item (e.g., a requirement) within an REM-tool's document. TMdlObject, 
on the other side, represents any item available in a modeling tool. 

Concerning the core's meta-model, any item inherits from TPersistentGuifi-
able. In TPersistentGuifiable, central characteristics necessary for any item to be 
part of the meta-model are realized. 
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Their characteristics are: 
• Persistence: The item can be stored in R2A's data base through being a per-

sistent item managed by a persistence framework (OPF).  
• History and baselining: To fulfill demands of evolutionary traceability, the 

change versions' history must be recorded and it must be possible to include 
a version state into a baseline. Both are also accomplished by being a persis-
tent item managed by the persistence framework. 

• Representablity in R2A's GUI: TPersistentGuifiable implements all necessary 
characteristics for representation to be integrated into R2A's GUI concept. 

• Unique identifier (cf. ch. III.17.4): Through the Id property, any item has one 
general unique identifier (GUID), through which the item can be referenced. 

• User tagging (cf. ch. III.17.3): Through the UserTags property, any item can 
be tagged by users. 

• Notes (cf. ch. III.17.2): Through association (1.), any item can be assigned to 
TNote objects representing notes. It is possible to assign several notes to an 
item as well as to assign several items to one note. As TNote is also part of 
the meta-model and inherits from TPersistentGuifiable, it is in principle pos-
sible to make notes of notes. 

• Being part of a conflict based decision (cf. ch. III.20): Association (2.) repre-
sents the conflicting relationship in fig. 20-2 (see ch. III.20). Through this as-
sociation, it is possible that any item of the meta-model can take part on a 
conflict, where a decision to solve the conflict can be modeled. This even in-
cludes notes or other decisions.  
Design aspects are expressed through the concepts TAbstractView, TAbstrac-

tionNode and TView. TAbstractView represents general principles any view con-
cepts in R2A have in common. The general principles are that a view has a name, 
can have a textual description and is expressed through a diagram in a modeling 
tool linked to through association (5.). TAbstractionNode represents the AN con-
cept as described in ch. III.15. An AN consists of a design element in a modeling 
tool expressed through association (7.), a diagram in a modeling tool expressed 
through association (5.) and a description inherited by TAbstractView. The ANH 
concept is built up through association (8.). TView represents further related views 
that can be added to an AN (see description to fig. 15-4 (in ch. III.15)). An AN 
knows its related views through association (6.). 

Requiremental aspects are expressed through the inheritance hierarchy start-
ing from TRequirementalItem. This inheritance hierarchy resembles the require-
mental items taxonomy introduced in fig. 21-1 (see ch. III.21.1), except for the 
fact that the inheritance hierarchy also contains TRequirementSourceDocument, 
representing requirement source documents described in. ch. III.18.1. This can be 
considered as a kind of artifice to create a thorough requiremental decomposition 
hierarchy in R2A. As described in ch. II.10.4.2.2 and ch. III.18.1, decomposition 
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of requirements is a common principle in REM. Association (10.) from TRe-
quirementalItem to TRequirementalItem is a parent-child-relationship used to 
build up requirement decomposition hierarchies. This decomposition hierarchy 
relationship can be used in principle for any RI. In fact, the hierarchy is used by 
requirements to reproduce the decomposition hierarchy present in requirements 
specifications from REM-tools, and it is used for the decomposition discussed in 
the course of BRCs sub budgeting (ch. III.21). Association (10.) is also used for 
requirement source documents (RSDs) to refer to the root RIs being at the start of 
the decomposition structure of a RSD (in fig. 18-2 (see ch. III.18.1), e.g., the 
TRequirementSourceDocument “PH” refers to the requirements “MSG 
Wakeup”,“Internal Lights Control”, “Nonfunctional Requirements” and “HW” 
through association (10.)). In this way, a RSD is a parent of the root RIs in the 
document. This view is not wrong because a RSD as a container of RIs is itself an 
RI in the sense that the RSD demands that all containing RIs must be fulfilled. 
Through the Type property, the TRequirementSourceDocument specifies whether 
it is a free-edit document or whether it origins from a REM-tool. In the latter case, 
association (12.) refers to the corresponding document in the REM-tool. In a 
similar way, association (11.) refers TRequirements originating from an REM-tool 
to the original item representation in the REM-tool.  

As requirements traceability to design elements is the core scope of R2A, RI 
must be linked to the design. This is expressed by association (9.) representing 
the 'assigned to' or resp. 'satisfy' relationship between ANs and RIs described in 
ch. III.18.2. 

The decision model described in fig. 20-2 (see III.20) is realized by the class 
TDecision and its associations. As mentioned above, association (2.) represents 
the conflicting entities relationship. Association (3.), however, refers to the result-
ing consequences derived as TDesignConstraints or TBudgetedResourceCon-
straints. Association (4.) realizes references to further documenting design dia-
grams in a modeling tool.  

 

III.24.3  Further Interfaces 

Additionally to the user interface, R2A has the following other interfaces: 
• REM-tool integration: As described in ch. III.13, R2A provides a variation 

point to integrate REM-tools as source for requirements (ch. III.18.1) and as 
target to export requirements for supplier management (ch. III.23.1). 

• Modeling-tool integration: R2A provides an integration interface for modeling 
tools as variation point described in ch. III.13. 
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• Word interface: For documentation of the design and design decisions, Mi-
crosoft Word is integrated into R2A. The Word documents are saved in the 
R2A database in rich text format (RTF) and are integrated in R2A's other in-
formation meta model through a persistence framework (e.g., the meta model 
items TAbstractionNode, or TDecision contain a persistent property “Descrip-
tion” referring to RTF documents editable with Word). 

• Standard report: A standard report interface allows to generating a HTML-
report of the generated model in R2A. The report includes diagrams modeled 
in the connected modeling-tools, thus enabling to generate extensive design 
documentation. 

• XML-export: Ch. III.17.3 describes the XML-export feature allowing the 
complete model gathered in R2A to be exported for organizations to reuse the 
gathered information in other tools or to develop own special purpose tools 
working on the information. 

• Rule engine: Consistency management is a decisive issue for ensuring quality 
of developed artifacts. Ch. III.22 has described the standard features for con-
sistency management in R2A. However, often projects have individual charac-
teristics influencing the consistency. To cover this, R2A provides a rule en-
gine, where projects can specify individual rules for consistency checking. In 
this way, projects can ensure that the R2A model fulfills consistency criteria 
defined in the project. At the moment, the current rule engine concept imple-
mented in R2A is only a prototypical implementation, showing a proof of 
concept. This point can be seen as a promising perspective for further research 
and improvement of the R2A concept. As an example of the possible uses of 
R2A's rule engine concept, it is possible for designers to define rules that any 
design element with a certain characteristic must obey. When the example of 
the decision modeled in fig. 20-6 (see ch. III.20.4) is considered, the DC 
“Handlers and Drivers shall provide callback mechanisms to their upper lay-
ers (Dependency Inversion Principle).” exists that must be obeyed by any 
handler or driver in the SW design. With the rule engine, a designer can define 
a rule that ensures that the DC is automatically assigned to any handler and 
driver design element currently present in R2A. The rule also ensures, that the 
DC is added to any design element with handler or driver characteristic, added 
later to the R2A model. 

• Special reports with the rule engine: The reporting mechanisms can be com-
bined with the rule engine. In this way, customized reports can be created in 
R2A for special reporting needs of a project. With the rule engine, scripts can 
be written to extract data from the data collected in an R2A-project specially 
prepared for the customized report. Through customized reports, e.g., it is 
possible to create reports about statistical data of a project to report it to man-
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agement (e.g., to report how many RIs are not yet considered in design, par-
tially considered in design and how many RIs have reached the final state in 
design). 

 



 

IV. Synopsis 

This is not the end. It is not even the beginning of the end.  
But it is, perhaps, the end of the beginning. 

Winston Churchill 
 

Now, this last part finishes this thesis. At first, a short summary of the achieved 
results of this research project is provided. This is then followed by a prospectus 
of possible further questions to continue research on, either improving the current 
features set of R2A or more general on the research topics of this thesis. At the 
end, the author tries to summarize the general conclusions to draw from this the-
sis.  
 

 

IV.25  Summary of the Achieved Research 
Results 

To achieve anything worthy to be called quality you will have  
to do a good deal more than follow a drawing or specification, 

 whoever made them and however carefully.  
There is a good and close parallel to music.  

The quality of a performance depends 
 on the performers as much as on the score.  

The performers are said to be interpreting the score, 
 but in fact they are adding intention of their own  

to those of the composer, recognising that no score 
 in practice can fully express the intentions of the composer, 

 that it can never be more than an indication, a sketch; 
 and no designer can in practice ever produce more than a sketch 

 even though his drawing is dimensioned in thousandths 
 of an inch and his specification is as long as your arm. 

[Py78; p.80] 
 

In the following the main technical innovations achieved through PROVEtech: 
R2A (in the further called R2A) are summarized: 
• Hierarchic decomposition of a system (or software) is an old idea in SE (see 

structured analysis and design [De78]). In UML based design, this view is 
seen as one besides many others with equal rights (see, e.g., the view concept 
“4+1 View Model” by Kruchten [Kr95]). UML does not prefer any view or 

B. Turban, Tool-Based Requirement Traceability between Requirement and Design Artifacts,
DOI 10.1007/978-3-8348-2474-5_5, © Springer Fachmedien Wiesbaden 2013
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make relations between views explicit. Instead, defining views and their 
relations are left open to architecture documentation. However, this leads to a 
more difficult understanding of a designed model since all views and elements 
are mixed up in one egalitarian repository (see fig. 15-3 in ch. III.15). 
Besides, the heterogeneous view concept of UML makes UML incompatible 
with other modeling techniques used in embedded development such as ETAS 
ASCET or Matlab, which only use one hierarchic decomposition view. As 
R2A makes only one necessary assumption: that a design must be made using 
a hierarchic decomposition (in fact a claim that can be called state-of-the-art), 
the approach should be compatible to any other computer tool-based design 
approach and even to HW or computer aided design (CAD). To include such a 
tool, only an interface implementation for R2A's modeling tool variation 
point connecting to the corresponding tool would be necessary. Development 
experiences within the R2A-project have shown that this is possible within a 
two to three person month's development effort. 

• As shown in ch. III.16.2, the mechanism of coupling modeling tools in R2A is 
even capable to integrate models of different modeling tools in one integrated 
model. In this way, all achievements described below can also be used as an 
embracing method to generate an integrated model, crossing tool gaps 
between different modeling tools. This allows using specific modeling tools 
together in an integrated model. In this way, it is possible to employ the 
specific strengths of the specific tools in one integrated model.  

• As not explicitly discussed yet, but the approach for traceability can be 
equally used to establish traceability between requirements and an AM, when, 
e.g., a UML-tool is used to create the AM. 

• In the approach shown here, the hierarchic decomposition builds the spine of 
the complete model because each element of the design model gets explicitly 
included into the abstraction hierarchy tree and is extended to a so called 
abstraction node (AN) having extended semantics (cf fig. 15-2 in ch. III.15). 
To each AN further diagrams can be added as additional views. Through this 
way, the orientation of the designers is alleviated as at first navigation into the 
abstraction hierarchy to the desired element can take place (vertical 
direction). Starting from this, also navigation along the further attached views 
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is possible267 (horizontal direction). However, the problem is still unsolved 
that some of the remaining views of a model may go crosscutting over 
different abstraction layers and ANs. At the moment, it is possible to add 
diagrams with such characteristics to all ANs touched by the view, but finding 
an even more consistent solution for this, is an open point for further research. 

• Additionally, the ANs tree arisen through hierarchic decomposition also 
builds the spine for the structured approach for requirements traceability to 
design establishment. Differently to approaches, where requirements are 
simply added to a design element via direct linking, the R2A provides a 
complete new approach to the problem called the requirement dribble process 
(RDP). In this approach, developers at first do not need to know by which 
design solution a requiremental item (RI) will exactly be fulfilled. Instead a 
designer can at first assign an RI to ANs, where she roughly grasps that the RI 
may be fulfilled by. Then, when the designer's vision gets clearer about an RI, 
the designer may use the dribble-down and dribble-up actions to reallocate 
the RI. In this way, on one side Simon's idea about stable intermediate forms 
(ch. I.6.2.1) is supported, and on the other side the uncertainty and flexibility 
of the approach directly supports designers in their knowing-in-action phase.  

• Through the support of a dedicated process for assigning RIs, it is ensured 
that each RI is adequately considered in the design process: If new RIs are 
assigned to an AN 'from above' (a higher-level AN), these RIs get highlighted 
in the AN by a bold font style Now, the designer of the AN must try to find an 
adequate solution for the newly assigned RIs. If the designer of this AN is 
again able to delegate these requirements to a sub AN of the design, then these 
RIs 'dribble down' one level deeper to a sub AN, and the problem is solved for 
the corresponding AN. However, if the designer is not able to clearly delegate 
these RIs to any sub AN, then the RIs stick to this AN and are inherited to all 
lower-level sub ANs (marked 'gray' at these lower levels) indicating that all 
ANs must work together to fulfill these RIs. But, if the designer responsible 
for the AN realizes that these newly assigned RIs cannot be fulfilled in the 
current state of design, the designer is able to repel these RIs back to the 
higher-level AN (its origin) accompanied with a corresponding note. In this  
 

                                                           
267 As described in the point before, the usual orientation within modeling tools is in most 

cases realized by a repository concept, where all items present in a model are shown 
(see fig. 15-3 in ch. III.15). This repository is not touched by R2A. On the contrary, 
R2A's AN concept with its representation in an ANH tree can be seen as a distillate of 
the most important information on the most important items and their relationships 
present in the modeling tool repository. Whereas, the modeling tool repository is more 
a dictionary containing all someway present items in a model. 
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case, the designer of the higher-level AN must take care for a solution under 
consideration of the created notes. 

• As a dedicated goal of the RDP, the process set aims on principles leading to 
a way to find an allocation for a requirement at an AN at the lowest level of 
abstraction to ensure that a requirement is implemented as local as possible. 
In this way, the impacts of a later requirement change are also limited as local 
as possible. 

• In the wake of this goal, the concept of the requirement influence scope (RIS) 
has been developed. The concept includes that a requirement being associated 
to an AN also is propagated to the child ANs as “inherited” requirement. In 
this way, on one side pressure is imposed on the project team members to 
bring requirements to the most possible local level in the ANH tree. Thus, a 
later possible change of the requirement has only minimal impact (cf. ch. 
III.18.2.2). The RIS thus promotes a heuristic enforcing a design with 
emphasis on localization of the requirements. This heuristic is an essential 
part of the ideas behind the RDP. 

• As a further plus, the history of the different requirement allocations and 
reallocations during the RDP are automatically tracked via configuration 
management features. In this way, the decision process of the designer taking 
the decision can be reconstructed later. This follows ideas of Gruber and 
Russell [GR96a] or Schneider [Sch06] to capture important information 
during performed action and extracting important rationale information later 
as a by-product. 

• Some traceability research rather neglects the aspects about the process of 
traceability establishment (see, e.g., [Kn01a], [Kn01b]). In the author's view, 
however, this issue might be the central key problem of traceability since 
traceability faces a significant benefit problem (see ch. II.10.5) in a similar 
way as RatMan approaches do (ch. II.9.4.2). As a consequence, R2A's 
traceability mechanisms try to allow capturing traceability as a mere by-
product of normal design activities, where designers can perceive direct 
benefit from recording traceability information. To achieve this goal, R2A at 
first allows capturing traceability by several possible drag-and-drop 
operations being performed easily and quickly as by-product of the decisions 
performed. Secondly, R2A directly shows the RIs assigned to each AN, thus 
directly giving designers benefit for their traceability work as this work is 
used to provide a sorted out view on the RIs important for the currently 
considered design aspect from the otherwise numerous manifold of RIs 
present in a requirements specification. Further, with the RIS and RDP 
concepts, design decisions about requirements allocation are automatically 
captured, following the principles of Simon's idea about stable intermediate 
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forms (ch. I.6.2.1). In the author's view, the principle of stable intermediate 
forms directly reflects how designers usually develop a design out of the 
requirements at hand. Thus, through RIS and RDP, traces can be directly 
captured according to their occurrence with special emphasis on flexibility 
and optimal adaption into a SPICE-conforming process landscape. These 
concepts can also be seen as an attempt to adapt traceability establishment 
activities to the way designers are thinking, thus preventing a cognitive 
dissonance for designers. In this way, R2A tries to be less intrusive to 
designers' thinking, thus supporting designers in both, their knowing-in-action 
and reflection-in-action phases (see Schön, ch. I.6.2.3). 

• Significant parts of the research about traceability concentrate on proposals to 
use richer traceability models as a kind of conceptual trace model (cf. ch. 
II.10.4.2). In the author's view, these approaches provide important points. 
However, it is questionable whether their formality is not too complex (i.e. 
complicated; see footnote 80 (p.77)) for activities that should best be 
performed as a by-product (see ch. II.10.5 and ch. II.9.4.2). The research 
attempt shown here tries to integrate good ideas from these research attempts 
into a complete concept. As a result, a requiremental items taxonomy has been 
developed, distinguishing real requirements from the customer from RIs (DCs 
and BRCs) arising as consequences from design decisions.  

• This – as a further result – also has sparked the idea to enhance R2A's 
traceability concepts by an integrated decision model for documenting 
requiremental and design-based decisions (cf. ch. III.20). Thus, the developed 
decision model is called integrated because it directly integrates information 
about design decisions into a traceability concept. Again following the idea 
that this additional information must be rather captured as a by-product, the 
decision model is construed as a semi-formal model, where the formalisms 
build a skeleton to easily sketch the basic information about a decision and to 
add more detailed information on demand. In this way, the decision model on 
one side addresses benefit problems encountered for capturing rationale (ch. 
II.9.4.2) but on the other side also allows capturing deeper rationale 
information for problems of rather wicked nature (cf. ch. I.6.2.2). As ch. 
III.20.4 has outlined, the decision model is also a good means for fulfilling 
demands on decision documentation, imposed by research about architecture 
documentation (e.g., cf. [Ha06], [CBB+03]), and much closer integrating the 
thus captured information with the design model. 

• The decision model's concept of modeling conflict situations and consequenc-
es resembles to the pattern concept expressed by Alexander (ch. I.6.2.4). In 
fact, as ch. III.20.5.1 shows, R2A's decision model can be a decisive means to 
document the rationale behind pattern usages to directly integrate the pattern 
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concept with the traceability concept, to help to better include consequences 
of pattern usages with other decisions and to help to discover new patterns. 

• As embedded design (but also other design) must often care for adequately 
managing resource restrictions, the R2A approach offers a second decision 
model to capture decisions about resource restrictions that can be managed as 
budget. The decision results are again expressed as new RIs assigned to ANs, 
expressing the need that an AN does not exceed the resource budget that was 
assigned to it. To cover this aspect, the requiremental items taxonomy has 
been extended by the RI called BRC expressing the budget character of the RI 
and the budgeting decision process. 

• The arrangement of the design models in an abstraction hierarchy tree and 
the way requirements consideration in design can be handled by the RDP, 
suggest the conclusion that adequate mechanisms can help to significantly 
improve the flow of communication between project stakeholders. In R2A, 
this can be achieved by temporal decoupling (asynchronous temporal com-
munication) of messages preventing, for example, that important information 
is not adequately propagated if the responsible developer is not present. Such 
a mechanism is intended to support goal-oriented creation of notes (cf. ch. 
III.17.2) for any entity present in the data model and actions performable on 
the entities. These notes allow sketching occurring problems with references 
to all affected model entities and propagating this information to concerned 
stakeholders. 

• At the same time, these notes are included into the history function (cf. ch. 
III.17.5) in order to better enable later reconstruction of the incident's occur-
rence268 (e.g., helpful during a SPICE assessment). In this context, further re-
search attempts could enhance the mechanism described here by state-based 
notes (e.g., with the states: 'New', 'In work', 'Processes', or 'New solution'), or 
escalation paths in a consistent process-driven model. 

• Additionally, all these concepts allow a high degree of flexibility to change 
traceability information again. This flexibility is also especially helpful to 
support design refactorings, where traceability information is also adapted 
correspondingly, thus preventing significant degradation of traceability in-
formation captured once. 

• This directly segues to the next topic: Traceability is intended as means to 
manage requirement changes. Through the graphical impact analysis concept 
(see ch. III.22.1.1), R2A allows proposed requirement changes to be better 
predicted and helps to implement once decided requirement changes. An es-
pecially important point is to consistently infer and propagate all requirement 

                                                           
268 Up to now, results are often only discussed and tracked orally. 
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changes throughout the complete model. R2A achieves this through the con-
sistency management mechanism described in ch. III.22.2. 

• In many development projects, parts of a project are delivered by a supplier. 
Correspondingly, supplier management is an important task in these projects. 
One of the most essential issues addressed is that the requirements for the 
supplied parts must be formulated in a way that the supplied parts fit together 
with the other designed parts of the system. R2A allows generating a require-
ments specification directly for a part of a design (an AN or a sub tree in the 
ANH), which can then be used as supplier requirements specification. In this 
way, all information about requirements, design and decisions performed in a 
R2A project relevant for a supplier of a part can be directly propagated to the 
supplier without unintended information loss due to tool gaps or other poten-
tial breaks in the information chain (see ch. III.23.1). 

• Last but not least to mention, the mechanisms of generating requirements 
specifications for parts of a design described in ch. III.23.1 can also be used 
to implement a direct and seamless information propagation for situations, 
where a project has several requirement and design processes at different lay-
ers of abstraction as it is demanded by SPICE. Even though the author him-
self rather prefers an integrated design process for the different layers as it is 
described by fig. 23-1 in ch. III.23.2, fig. 23-2 in ch. III.23.2 shows that R2A 
also has the potential to improve the information flow in cases the process 
demands of SPICE shall be fulfilled word for word. As the ch. III.23.3 shows, 
R2A can even be used to achieve a temporal decoupling of the development 
of the different requirement and design artifacts. 

 
 

IV.26  Perspectives for Further Research 

It’s like deja-vu, all over again. 
Yogi Berra 

 
The current research results of the R2A-project also provide perspectives for 
possible further research. In the following, problems or ideas are outlined that 
may raise interesting research questions: 
• The current solution of R2A has made a significant simplification concerning 

the view concept. In R2A, views are merely represented by one diagram. This 
does not consider more complex views. However, in design documentation 
theory, a view often consists of a set of diagrams that must be considered 
together. R2A currently only considers this fact by the ANH. This brought the 
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advantage that the user can more easily navigate in the model, but on the 
other side other view's being more complex than one diagram might be 
scattered over several ANs and the relationships between these diagrams may 
not be adequately surfaced by a model. Further research could concentrate on 
finding a solution, in which several diagrams could be integrated into a more 
complex view other than the ANH view, and where, however, the advantages 
of better model navigation as provided by the current R2A-solution are still 
present.  

• In the context of the RIS (ch. III.18.2.2) and the RDP (ch. III.18.2.4), the 
author has only spoken from RIs 'assigned' to an AN. This leaves open space 
for interpretation of the concrete semantics of any relationship. In fact, 
different traceability CTMs (see ch. II.10.4.2.3) know different relationship 
types between RIs and design. The R2A-approach could be extended to allow 
designers to define a concrete semantics of a relationship. However, further 
research should then also ensure that this extension is not just leading to 
further complication without significant gains of value. 

• In this context, a further interesting idea may be to have a relationship 
describing fuzziness concerning the kind of connection between an RI and an 
AN. Instead of 'assigned' relationships, currently describing the fact that an 
AN is directly influenced by an RI, there might exist relationships having 
notions like 'bordering' (the requirement is fulfilled nearby, thus the RI should 
be monitored whether it possibly has some influence), 'keep in mind' and 'I 
don't know, but might be important'. By such fuzzy relationships designers 
could identify connections, for which they 'feel' that there is a dependency 
they cannot describe rationally. This corresponds to Schön's observation that 
designers also work in a state of intuitive knowing-in-action, where they use 
tacit knowledge and thus cannot rationally explain their exact thoughts. 

• Ch. III.18.2.2 describes a mechanism where the scope of a requirement is 
determined by the so-called RIS. When RIs are added to an AN, these RIs are 
automatically inherited to all child ANs of the AN in the ANH. In this way, 
developers are spurred to find the most local solutions for an RI. On the other 
side, effects of nonfunctional RIs can be made more transparent as than it is 
possible by other approaches. Nonfunctional RIs can be added to a very high-
level AN, where they are inherited by large extents of ANs. Taming 
nonfunctional RIs is rather difficult. In the author's opinion, the decision 
model introduced in ch. III.20 proves very helpful as it allows documenting 
decisions about the taming strategies of nonfunctional RIs, allowing deriving 
more concrete DCs as decision consequences. Now, if this is thought through 
consequently, it may be possible that a nonfunctional RI is tamed by 
decisions, where more concrete RIs (DCs or BRCs) are derived. It should be 



IV.26  Perspectives for Further Research 387 

considered whether a feature may be helpful to specify that a decision or 
several decisions together completely tame an RI. It must be analyzed whether 
it would be a logical consequence that an RI tamed by one or more decisions 
may lose its inheritance status to lower-level ANs (lose its RIS) because its 
influence would rather take effect through the decisions and the effects of the 
RIs resulting as consequences. Such considerations, however, must also 
consider that such an effect may not be realized for any decisions, but it 
would rather be necessary to mark certain decisions as the taming decisions of 
an RI leading to the deactivation of the RI's RIS. In this way, it is questionable 
to a certain degree whether such a feature brings significant extra value to 
designers or whether it just implies a further complication to the design (see 
footnote 80 (p.77)). In the case of the latter, the author would recommend 
leaving out the question, even though it might be slightly more logical than 
the current solution. 

• At the moment, consistency checking is a rather neglected topic of this 
research even though rudimentary consistency checking can be provided by 
the rule engine. Analyses on what consistency reporting is necessary for users 
could be performed. A further problem may arise with the fact that R2A rather 
relies on heuristics such as the RDP (ch. III.18.2.4) and the decision models. 
These heuristics imply a certain non-linearity. As here traces cannot be 
followed so directly, this could make consistency checking more difficult. For 
example, usually consistency checking mechanisms rely on checking whether 
all requirements are someway associated to a design model. If this is the case, 
it is assumed that the requirement is adequately considered in the design 
process. The author, however, is rather skeptical towards the real 
expressiveness of such rather simple checks. With R2A, however, such simple 
checks are even not possible because the RDP heuristics allows assigning 
requirements to design elements not being the final destination of the 
requirement. Instead, the requirement assignment can change with dribble-
down or dribble-up operations in order to support design decision-making. In 
this case, a requirement can only be seen as adequately considered after the 
requirement has reached its final destination. The situation can get even more 
complicated when a requirement is part of documented decisions. Here, e.g., 
the question arises whether a requirement can only be seen as adequately 
considered when all consequential items of all decisions involved have 
reached their final destination. In the author's view such a developed 
consistency checking mechanism would provide significantly more fine-
grained information than current consistency checking approaches and thus 
provide even stronger expressiveness. But, because all effects of such a  
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consistency checking heuristics are not yet analyzed, this point is rather an 
open question for further research.  

• Pinheiro indicates that for capturing nonfunctional traces, hypermedia 
(multimedia) systems could provide significant support ([Pi04; p.104-105], 
see ch. II.10.4.2.2). The approach proposed here offers possibilities to tackle 
nonfunctional traces via the integrated decision model (cf. ch. III.20). It 
would be possible to couple the decision model approaches with rationale 
tools like Compendium, supporting rationale capturing on the fly as well as 
with other media objects such as tape or video recordings of meetings, in 
which the corresponding decisions are discussed. 

• A design process is also driven by other documents such as meeting protocols, 
review protocols or documentation of the used COTS269-components. In the 
author's opinion, it will never be possible to integrate all documents important 
for development into one tool solution. Correspondingly, it should be possible 
to have a hyperlink concept to give developers the freedom to link to further 
documentation, someway not manageable in R2A. As projects usually use 
configuration management tools to manage versions of all documents in a 
project, it may be interesting to integrate R2A with configuration management 
systems via the standardized CVS270-interface. 

• In issue tracking (i.e. change management) systems open issues (e.g., 
problems or bugs) can be managed. A direct connection of R2A to issue 
tracking systems could help to make influences of issues transparent, because 
often issues beyond requirements or requirement changes exist having 
influences on design decisions. The exact way of integration should be 
analyzed by further research. However, a starting point for integration could 
be to shape the integration in a similar way as the integration of REM-tools 
has been made: A continuous synchronization process cares to have all issues 
in an accurate state in R2A and these issues are then treated analogously to 
requiremental items. As the description to arrow '1.' of fig. 20-8 (see ch. 
III.20.4) describes, a better integration with change management tools might 
help to solve information backlashes to requirements occurring during design 
and especially during processes of discovering rationale in decision 
processes. However, it must be noticed that issues are slightly different to 
requirements because only certain issues may be interesting for design and  
 

                                                           
269 Commercial Off The Shelf 
270 Concurrent Versioning System: This interface is an international standard for integrat-

ing configuration management systems with other environments such as programming 
IDEs. 
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should therefore be synchronized in R2A. This means a filter must distinguish 
the architecturally significant issues from the insignificant issues. 

• Impact analysis (IA) approaches as [Ha99] propose combining a tracing 
approach with a kind of dependency analysis approach using the relationships 
in a model. In this way, effort to capture traceability information is reduced 
by using the model relationships present in a model. As ch. II.10.6.2 has 
shown, however, such approaches often lead to the so-called fan-out effect 
[Al03] because models contain manifold relationships having other purposes 
leading to many unnecessary traces. Correspondingly, the R2A approach 
rather concentrates on achieving more exact results by allowing establishing 
dedicated more fine-grained traceability information as a by-product of usual 
development effort, thus reducing efforts for traceability. However, on the 
other side, dependency information in the model can be valuable to indicate 
other possible impacts resulting from interconnections within the model. 
Thus, it may be possible to combine the current R2A approach with a 
dependency approach automatically analyzing all other relationships created 
in the design model. To avoid the fan-out effect, R2A's IA could show these 
impacts identified from dependency analysis with a different iconification (as 
it is already done for distinguishing direct impacts from indirect impacts 
derived from decisions or inherited impacts derived from the RIS) to 
distinguish them from impacts derived from captured traceability information 
within R2A. Further, it could be possible that this additional dependency 
analysis can be activated or deactivated for IA. In this way, designers could 
have additional support for identifying possible impacts from 
interconnections within the model but also ignore the information if they feel 
it is not helpful. 

• Ch. II.10.2 further indicates that with model-driven development methods and 
tools a new problem arises concerning traceability: As code then often is 
generated from models, some requirements are not necessarily implemented 
through the models but by setting parameters or choosing specific model 
transformation procedures over other procedures [AIE07]. This means that 
traceability tools should also need to map requirements to parameter choices 
or transformation procedures of the modeling tool. Currently in R2A, 
traceability to these items could be achieved by a documented decision, 
where the requirements are in the conflicts section and the resulting section 
contains DCs with the chosen parameter settings or transformation 
procedures. Further research, however, could also try to find more adequate 
support by R2A for this tracing problem. 

• Another research direction may be to integrate a metrics approach with R2A. 
Ch. III.20.5.3 indicates that architectural evaluation and identification of 
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neuralgic points can be supported by combining R2A with metrics. Further 
research could evaluate the potential of the ideas about metrics sketched in ch. 
III.20.5.3. 
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• A further metric possibly interesting to evaluate could help to determine the 
changeability of an RI. As indicated by ch. III.18.2.2 and ch. III.18.2.4, a RI 
should be as local as possible. A change effort factor (CEF) metric could 
measure the locality of a requirement by calculating the directly assigned ANs 
in relation to the hierarchical level in the ANH (is it high or low in the 
hierarchy?), the number of ANs where the RI has been inherited to and the 
number of decisions the RI is involved in. Formula (26.1) sketches a possible 
measurement formula for the CEF metric. The formula uses a level factor271 
calculating (formula (26.2)) a factor to determine the hierarchy level 
dependent complexity of each directly assigned AN. In this way, the metric 
could help to estimate the effort for changing a RI. From a higher perspective, 
this metric could also be used to create a metric to evaluate an architecture 
according to the average changeability of requirements. The average 
changeability could be calculated by the sum over the changeability of all 
requirements divided through the number of requirements (e.g., formula 
(26.3). Here, it is to mention that the metrics as proposed here are just rough 
sketches. Further research could deal with how to adapt parameters (different 
'coeff' variables) in the sketched formulas to achieve distinctive, meaningful 
results. Afterward, the metrics need to be evaluated in several practical 
projects to get measuring scales for the practical meaning of the measured 
metrics. 

• As described in ch. I.7.4, verification criteria for design artifacts must be 
defined and these must be made traceable [MHD+07; p.225ff]. At the 

                                                           
271 Through the level factor with its level coefficient, the complexity of the design model 

is taken into account because the coefficient grows exponentially with the number of 
abstraction levels present in a design. When, e.g., a design grows by new abstraction 
levels, requirements added to higher level (resp. more abstract) abstraction levels lead 
to a significantly higher CEF (assumed a corresponding adequate value for the coeffi-
cient is chosen). In this way, the author assumes that the 'Avrg(CEF)' function also 
grows stronger for designs having more abstraction levels. 
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moment, this can be achieved in R2A via using the notes mechanism (ch. 
III.17.2). Such notes are only added to the assigned R2A-items and nowhere 
stored centrally, which leads to an unstructured approach with no complete 
overview about present verification criteria. Further research could try to find 
a better solution, where easiness of usage and usability should play a central 
role. 

• The R2A approach introduced here leaves one major field of problems 
concerning development of automotive systems and software untouched: Ch. 
I.2.3 indicates that buyers of cars can select hundreds of different options of 
their car individually, where also different options are connected with each 
other. This, however, implies that the different ECUs employed in a car can 
significantly vary between different cars and that in different cars individual 
variants of the ECUs must communicate with each other. As HW costs are 
significant constraints, different ECU variants also have different HW 
assemblies. Nevertheless, all different ECU variants and the different ECUs 
with their variants in interplay must fulfill their requirements, especially all 
safety-related issues. This together implies significant higher complexity than 
if all ECUs had only one fixed version. In SysEng and SE theory, management 
strategies for this complexity are called variation management. Hull et al. 
[HJD02; p.180-183] show that managing variation implies significant higher 
complexity concerning variants, version management and change 
management of requirements in connection with their traceability (see also 
[Si98], [BP06], [PR09; p.141f]) because the different variants must fulfill 
partially different requirements and the valid requirements must be – despite 
the variation – consistent to each other. In other words, version baselines and 
change management must in principle be performed and managed 
individually for each variant [HJD02; p.180-183]. On the other side, 
variation management issues also impose high influence on SW architecture 
and design theory (e.g., cf. [PBG04; ch. 10]), because decisions about 
strategies for handling the variation at the variation points ([PBG04; p.276], 
[Si98]; also cf. ch. III.16.1) significantly influence design272. As R2A also has 
its two major involvements in REM and design issues, R2A has potential to 

                                                           
272 As an example, it must be determined whether a variation can be simply handled 

through a configuration parameter or whether the variation requires significantly more 
complex mechanisms to be integrated into design considerations (e.g., flexibility needs 
for a variation point can also lead to the decision that significant parts of the applica-
tion must be created through the abstract factory pattern in order to allow activation of 
different component implementations according to the variation need). 
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improve variation management. However, to find suitable features, further 
research is needed. 

 
 

IV.27  Conclusions 

After you find the gold, there's still the job  
of picking out your particular nuggets. 

[BT04; p.147] 
 

Now, finally, the reader has reached the end of this thesis. The author hopes that 
this thesis could provide valuable information to the reader so that he considered 
it worth, while reading it. 

The main topic of interest has been requirements traceability between re-
quirements and design artifacts in the development of safety-critical systems. As 
this thesis – hopefully – has shown, manifold factors must be considered, because 
the topic traceability is cross-cutting through research theories of embedded 
systems development, systems engineering, software engineering, requirements 
engineering and management, design theory and process standards for safety-
critical systems. Despite all promising effects ascribed to traceability over the last 
two decades, the traceability concept did not broadly succeed in practice except 
for development organizations using process standards such as SPICE or CMMI, 
where, in most cases, safety-critical systems may be in the focus of development. 

A reason may be the significantly higher effort and costs involved to make 
all requirements traceable throughout the complete development endeavor. Most 
probably, the effort and costs can only be justified, when issues of safety or secu-
rity are involved. On the other side, costs will only be such a decisive factor if 
they are not outweighed by the benefits. This seems to be a core issue of the 
traceability problem. 

Further, the thesis has shown that requirements traceability between re-
quirements and design is especially wicked because this involves crossing a two-
fold gap: First, different tools are used for requirements specification and design 
that make it necessary to bridge them. Secondly, a transition from requirements to 
design means a transition from a problem description to a solution description, 
involving a substantial, non-linear gap that is usually mentally bridged by de-
signers but is difficult to cope with an ordinary link concept usually employed by 
traceability methods. 

When analyzing different design theories, the author found out that design 
must rather be seen as a continuous decision process, where only parts of the 
decisions can be rationally describable by designers, but other extensive parts 
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arise by intuitive usage of tacit knowledge, cook-booky heuristics, and creativity. 
As the author has tried to show, exactly this “tacit dimension” [Po66] may be the 
major obstacle for valuable traceability information concerning design, because it 
infers the non-linearity in the relations between requirements and design and also 
hinders designers to make the transition process rationally explicable. 

As a consequence, the author has invented a new tool solution called 
PROVEtech:R2A, aiming to narrow the twofold gap between requirements and 
design to a degree that traceability endeavors bring a real benefit to development.  

To achieve this, PROVEtech:R2A has been developed to allow establishing 
traceability as a by-product of designers' usual development activities. Through 
this, additional benefit shall be provided to designers as an incentive to establish 
valuable traceability information. One of these benefits is that recorded tracea-
bility information can be directly used to improve communication and collabora-
tion between designers. The tool further orients itself on the view of design as a 
sequence of decisions. Correspondingly, R2A allows recording traces of the deci-
sions made. This starts with automatically recording traces of decisions about 
simple requirement allocation and design structure building (e.g., see ch. III.15) 
and continues by providing two different decision models allowing designers to 
document rationale information on more complex decisions.  

Besides all these considerations, one further, very important, consideration 
has been that such a tool must also be integrated into a process landscape compat-
ible with process models for safety-critical systems. This thesis has shown that 
this is in principle the case. As a further very important plus, the thesis identified 
major drawbacks of these process models, involving unnecessary redundancy 
concerning process transitions from requirements to design. The author could 
identify the underlying core idea that also design processes spark new “require-
ments” as consequences from decisions taken earlier. Once having identified this 
idea, the author could develop a taxonomy of requiremental items, where re-
quirements originating from demands of the customer could be distinguished 
from design constraints originating from taken design decisions. 

As it has further turned out, the first decision model could be used as a 
means to transform processes in a way that the original ideas of the process mod-
els were preserved, but unnecessary redundancy could be avoided. The decision 
model, allowing modeling conflict situations of requirements and then deriving 
consequences as new design constraints, can be seen as a new major extension of 
current traceability linking concepts by a more complex traceability concept that 
allows a better bridging of the gaps in a complex design decision process, leading 
to the non-linear gap between requirements and design. As a further major plus, 
the four major design theories introduced in this thesis could be adequately 
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weaved together with theories about traceability and rationale management, 
forming a tool set of supportive actions for designers. 

Through significant research and development funding by the support pro-
gram IUK-Bayern of the bavarian ministry of economics, it has been possible to 
develop PROVEtech:R2A to a solution now commercially available at the 
MBtech Group. First practical experiences at the MBtech Group are promising 
that the solution provides significant support for designers at their daily practical 
design work. In the meantime, through the coupling of the tool PROVEtech:TA 
(a solution of the MBtech Group for test automation) the usage context of 
PROVEtech:R2A has been even enlarged to a means for also bridging the gaps 
between a test specification and automatically executable testing code. 
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