
9. Stress evaluation in combined immersed
boundary lattice Boltzmann simulations

The recovery of the stress tensor in computer simulations is not as straight-forward as it may
appear at first view. The reason is that usually not the stress tensor σ itself enters the macroscopic
equations. Rather, its divergence, ∇ · σ appears. Even if this divergence is known, it is generally
not possible to uniquely reconstruct the stress tensor from it since the equation system is under-
determined1. It has already been mentioned in section 5.2 that the full fluid stress tensor is
known at each point within the lattice Boltzmann method (LBM). The situation is different for
the particle stress. If, however, averages of some kind are sufficient (e.g., over time, volume, or a
coordinate plane), different approaches are available to recover the particle stress tensor or some
of its components.

In this chapter, it is argued how suspension stresses can be evaluated within the model presented
in the previous chapters. The discussion is limited to viscous flows where inertia effects are
negligible. The fluid stress considerations are briefly summarized in section 9.1, followed by the
wall stress in section 9.2. The direct recovery of particle stresses is more demanding as discussed
in sections 9.3 and 9.4. Verification simulations are presented in section 9.5, linking the above
approaches.

9.1. Fluid stress evaluation in the lattice Boltzmann method

Simple fluids cannot support elastic stresses, and the fluid stress equals the viscous stress [2],

σf = 2η0S, (9.1)

where Sαβ = 1
2(∂αuβ + ∂βuα), cf. eq. (2.5), are the components of the symmetric fluid shear rate

tensor and η0 is the dynamic shear viscosity. Bulk stresses due to compressibility effects are
neglected here and in the following.

For a Newtonian fluid, the dynamic shear viscosity does not depend on the shear rate, and the
stress is proportional to the shear rate. Water and blood plasma are examples of Newtonian
fluids over a wide range of shear rates, including physiological shear rates up to about 104 s−1.
The fluid described in the standard LBM is Newtonian as long as the relaxation parameter τ is a
constant. Although LBM extensions for non-Newtonian fluids exist (e.g., [229, 230, 231]), the
suspending fluid is always Newtonian in the present work. Non-Newtonian suspension rheology
emerges from the presence of particles immersed in the fluid.

For conventional Navier-Stokes solvers where the Navier-Stokes equations (NSE) are directly
discretized, the fluid stress is usually computed from the velocity field via differentiation. In
lattice Boltzmann simulations, however, the full fluid stress tensor is accessible at each point
and without evaluating velocity gradients, cf. eq. (5.17). This makes the LBM an attractive
Navier-Stokes solver when the rheology of fluids is to be investigated.

1The divergence ∇ · σ yields three equations, but six independent components of the symmetric stress tensor σ
are required.
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9.2. Wall stress evaluation in the lattice Boltzmann method

The wall stress tensor σw is related to the total force Δp/Δt acting on a small patch of the
oriented wall surface ΔA in a given time Δt as defined in eq. (5.28),

Δp

Δt
= σw ·ΔA, (9.2)

where Δp is the corresponding momentum exchange in time Δt. In the present work, only the
shear components are considered. They are caused by the force components parallel to the wall,
Δp‖ ·ΔA = 0.

For a suspension, the wall stress is the sum of the fluid stress and the particle stress at the wall.
Due to lubrication effects and hydrodynamic lift forces, particles are usually in no direct contact
with a wall [227], and Δp/Δt is the force due to the momentum exchange of the fluid caused
by the no-slip boundary condition. Within the LBM, the wall stress can be evaluated at each
surface patch ΔA from eq. (5.27).

If the walls are made rough as discussed in section 8.8, the stick forces have to be considered in
the computation of the wall stress, and the total force acting on the entire wall is the sum of the
fluid forces and the negative of the stick forces (‘actio = reactio’) as defined in eq. (8.17).

For steady and simple shear flow, the condition of mechanical stability demands that the wall
shear stresses at the bottom and top walls are identical and equal to the shear stress everywhere
else in the system. For this reason, an evaluation of the wall stress is in principle sufficient if
the total suspension stress and the average viscosity are to be computed. This is the approach
commonly followed in rheology experiments. However, it does not allow the local separation of
fluid and particle stresses, and, therefore, the local viscosity between the walls cannot be accessed.
In some cases, the local stresses are of high relevance, especially if wall effects are important
and the system is not homogeneous [5]. It is desirable to measure the contributions of the fluid
and the particles to the total stress locally and independently. In experiments, a local stress
measurement is extremely difficult if not impossible. Even in simulations, it is not a priori clear
how to evaluate local particle stresses. Two possible approaches are presented in the following
sections.

9.3. Evaluating particle stresses with Batchelor’s approach

In a simple fluid, the stress σ is of viscous nature only, and one can write σ = 2η0S at each point
in the fluid. If particles—deformable or not—are suspended in this fluid, there are additional
stress contributions caused by the distorted velocity field due to the presence of the particles.
In the following, only the shear component (xz-component) of the stress in simple shear flows
(velocity along x-axis, velocity gradient along z-axis) is considered. All other stress components
are either not relevant for the present discussion, or they vanish on average. The apparent
viscosity is defined via the volume average

〈σxz〉V = 2ηapp〈Sxz〉V . (9.3)

Suspension stress

It is possible to compute the apparent viscosity for a dilute suspension of rigid, spherical particles
in simple shear flow [2, 14]. The Einstein relation states that, for a volume fraction φ not larger
than a few percent, the apparent viscosity is ηapp = η0

(
1 + 5

2φ
)
, cf. section 2.3. For arbitrary

volume fractions and general particle shapes and deformabilities, it is either extremely difficult
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or even impossible to find the apparent viscosity analytically. Instead, numerical approaches may
be required.

In his seminal work, Batchelor [10] derived a general, formal expression for the stress in suspensions
subject to shear flow. Starting from the NSE, Batchelor first introduced the bulk stress including
pressure,

Σ := 〈−pI + σ〉V =
1

V

∫
dV (−pI + σ), (9.4)

as the volume average of the local stress. At this point, locality is already lost. It has been
further shown that the bulk stress can be written in the form

Σ = − 1

V

∫
fluid

dV pI + 2η0〈S〉V + 〈σp〉V (9.5)

where the pressure is only integrated over the fluid volume (volume not occupied by particles).
This isotropic pressure contribution is not of interest here, and it is neglected in the following. As
can be inferred from eq. (9.5), the total stress can be written as the sum of the known fluid stress
2η0〈S〉V as it would be in the absence of the particles and the particle stress 〈σp〉V . Exploiting
Gauss’ theorem, the particle stress can be shown to have the components

〈σp
αβ〉V =

1

V

∑
k

∮
Ak

dA (Sαγxβnγ − η0(uαnβ + uβnα)) . (9.6)

The sum runs over all suspended particles, and the integration is taken over particle surfaces
with the unit normal vector n pointing into the fluid2. x is the position vector with an arbitrary
origin. Eq. (9.5) and eq. (9.6) are generally valid for negligible inertia effects and for a Newtonian
suspending fluid at any instance of time. The particle shape and the volume fraction φ are not
restricted in any form.

Application to immersed elastic membranes

In the following, the above formalism will be applied to thin membranes immersed in a fluid.
These membranes are filled with another Newtonian fluid of viscosity λη0 where λ is the viscosity
ratio. In this case, both the exterior and the interior surfaces have to be considered, and one can
write

〈σp
αβ〉V =

1

V

∑
k

∮
A+
k

dA
(
Sαγxβn

+
γ − η0(uαn

+
β + uβn

+
α )

)

+
1

V

∑
k

∮
A−
k

dA
(
Sαγxβn

−
γ − λη0(uαn

−
β + uβn

−
α )

)
.

(9.7)

Each membrane has an exterior and an interior surface which are denoted by + and −, respectively.
Thus, A+ lies in the exterior fluid with viscosity η0 and A− in the interior fluid with viscosity λη0.
Due to the small thickness of the membrane, both surfaces have an infinitesimal distance ε from
each other, and the normal vectors n+ and n− pointing into the exterior and the interior fluid
obey n+ = −n−. Since the velocity u is smooth at the membrane surface (no-slip condition),
the particle stress can be written in the form

〈σp
αβ〉V =

1

V

∑
k

(∮
A+
k

−
∮
A−
k

)
dASαγxβnγ +

1

V

∑
k

∮
Ak

dA (λ− 1)η0(uαnβ + uβnα) (9.8)

2The integration is performed in the exterior fluid, directly outside of the suspended particles where fluid velocity
and shear rate are defined.
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where n = n+ = −n− has been substituted. Tensions in the membrane are balanced by a jump
of the fluid stress across the interface [129], and

f̃ = (S− − S+) · n (9.9)

holds where S+ and S− are the values of the fluid stress tensor directly outside and inside of
the membrane, respectively. The force density f̃ (force per area) is exerted on the fluid by the
membrane3, and for a given membrane deformation it is known from the constitutive model, cf.
chap. 7. Consequently, the particle stress is [25]

〈σp
αβ〉V =

1

V

∑
k

∮
Ak

dA
(
−f̃αxβ + (λ− 1)η0(uαnβ + uβnα)

)
. (9.10)

In the present work, the interior fluid has the same viscosity as the exterior fluid, λ = 1, and the
bulk particle stress reduces to the compact form

〈σp
αβ〉V = − 1

V

∑
k

∮
Ak

dA f̃αxβ . (9.11)

Remarks

It is straightforward to evaluate eq. (9.11) within the present model. The discretization of eq.
(9.11) reads

〈σp
αβ〉V = − 1

V

∑
i

Fiαxiβ (9.12)

where the sum runs over all Lagrangian membrane nodes i (force Fi, position xi) in the entire
simulation box. The origin of the coordinate system is arbitrary if the sum of all forces in the
system is exactly zero,

∑
i Fi = 0. Indeed, the definition of the particle stress in eq. (9.11) is

only useful if there is no net force on the particles. Else, the particle stress could take any value
by choosing a convenient coordinate origin.

The particle stress as given in eq. (9.11) is the average particle stress in the entire system. There
is a priori no access to a local particle stress within Batchelor’s approach. However, it is possible
to compute the contributions of individual particles k,

〈σp
kαβ〉V := − 1

V

∮
Ak

dA f̃αxβ . (9.13)

This stress may then be considered as being located at the centroid of the particle. It will be
shown in section 9.5 that this approach does not give satisfactory results. Moreover, interacting
particles lead to problems since for such a system, the net force on an individual particle is not
zero in general. Interaction forces should be excluded from eq. (9.13).

9.4. Evaluating local particle stresses with the method of planes

The approach presented in section 9.3 allows to obtain the volume average of the particle stress,
〈σp

αβ〉V . While the fluid stress σf can be obtained locally ( section 9.1), this is not possible for
the particle stress up to this point. In principle, the particle stress may be obtained indirectly.
For example, it is known that, for a simple shear flow, the shear stress averaged over time

3An opposite force is exerted on the membrane by the fluid, which is the reason for contradicting sign conventions
often found in the literature.
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and the xy-plane is constant throughout the system, 〈σxz〉x,y,t �= 〈σxz〉x,y,t(z). The fluid stress
〈σf

xz〉x,y,t(z) is known, so the particle stress is

〈σp
xz〉x,y,t(z) = 〈σxz〉x,y,t − 〈σf

xz〉x,y,t(z). (9.14)

For a rheological study, this relation may in principle be sufficient. Still, within this approach,
there is no access to spatio-temporal fluctuations of the particle stress. These fluctuations
carry important additional information about the system, e.g., an independent measure of shear
viscosity in the small shear rate regime [232],

η ∝
∫ ∞

0
dt′ 〈σxz(0)σxz(t′)〉V . (9.15)

In this section, another approach for the particle stress evaluation is presented (Krüger et al.
[233]). It offers the possibility to find the instantaneous and local particle stress on a plane
parallel to the confining walls. For a special case, this technique is shown to be identical to the
‘method of planes’ (MOP) which has been introduced by Todd et al. [4] for the case of a simple
liquid and further examined by Varnik et al. [5] in the case of a polymer melt.

Without external forces, the NSE can be written as

g(r, t) = ∇ · σ(r, t) (9.16)

where g contains the convective derivative of the velocity and the pressure gradient. In the
present model, however, the lattice Boltzmann stress tensor only captures the fluid component,
whereas the particle contribution is contained in the force density f ,

g(r, t) = ∇ · σf(r, t) + f(r, t). (9.17)

Therefore, the first step is to assume that the particle stress and the membrane force density are
connected via

f(r, t) = ∇ · σp(r, t). (9.18)

This fundamental relation is local both in space and time and known to be valid for elastic systems
in equilibrium, i.e., in the absence of accelerations [189]. Eq. (9.18) states that the effect of
interactions on flow behavior can be incorporated in the NSE either by (i) direct implementation
of particle forces as a (spatially and temporally varying) external force field or (ii) by introducing
the particle stress tensor. For any differentiable stress field σp(r, t), a corresponding force density
f(r, t) can be obtained.

Stress evaluation

The α-component of eq. (9.18) can be written as

fα(r, t) = ∂xσ
p
αx(r, t) + ∂yσ

p
αy(r, t) + ∂zσ

p
αz(r, t). (9.19)

For periodic boundary conditions along the x- and y-axes, as in the present work, and averaging
over the xy-plane, this equation simplifies to

〈fα〉x,y(z, t) = ∂z〈σp
αz〉x,y(z, t). (9.20)

Integration yields

〈σp
αz〉x,y(z, t) = 〈σp

αz〉x,y(z0, t) +
∫ z

z0

dz′ 〈fα〉x,y(z′, t) (9.21)
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which is a very important intermediate result. It states that, if the force density f(r, t) and the
xy-average of the particle stress at position z0 are known, then the xy-average of the particle
stress at each z-position is known.

In its discretized form, the force density in the Lagrangian system can be written as

f(r, t) =
∑
i

Fi(t)δ(r − xi(t)) (9.22)

where Fi is the force acting on Lagrangian node i which is located at point xi(t) at time t.
Interestingly, the particle membership of node i and the physical origin of Fi do not play a role.
In particular, it is not necessary to claim that Fi is a two-body force. This is important for
multi-body forces which enter Fi, e.g., through bending or volume contributions. The discretized
form of the particle stress reads

〈σp
αz〉x,y(z, t) = 〈σp

αz〉x,y(z0, t) +
1

A

∑
i

Fiα(t)θ(zi(t)− z0)θ(z − zi(t)) (9.23)

where A = LxLy (Lx and Ly being the system extensions along the x- and y-directions) and θ(z)
is the Heaviside step function, i.e., all Lagrangian nodes between z0 and z contribute.

Method of planes

It will be shown in the following that eq. (9.23) reduces to the equation proposed by Todd et al.
[4],

〈σp
αz〉x,y(z, t) = − 1

2A

∑
i

Fiα(t)sgn(zi(t)− z), (9.24)

for some additional assumptions. Here, sgn(z) is the sign function. The first assumption is that
the particle stress vanishes at z0, 〈σp

αz〉x,y(z0, t) = 0, and that no nodes exist with zi(t) < z0.
Thus, z0 may be taken as the position of the impenetrable bottom wall. The second claim is that
the total force vanishes,

∑
i Fiα(t) = 0, i.e., the total momentum is conserved. This translates to∑

i Fiα(t)θ(z − zi(t)) = −∑
i Fiα(t)θ(zi(t)− z) and

∑
i

Fiα(t)θ(z − zi(t)) =
1

2

(∑
i

Fiα(t)θ(z − zi(t))−
∑
i

Fiα(t)θ(zi(t)− z)

)

=
1

2

∑
i

Fiα(t)sgn(z − zi(t)).

(9.25)

Hence, the formal connection between eq. (9.23) and eq. (9.24) has been shown.

Remarks

The MOP [4] has originally been introduced to find the local stress in an atomistic non-equilibrium
fluid in planar geometries. Interestingly, it can be applied directly to the present problem by
assuming that the deformable membranes consist of interacting point particles. Formally, this is
actually the case because the forces acting on the membranes are considered as being concentrated
at the Lagrangian nodes. The physical origin of these forces do not play a role at all.

It must be emphasized again that stresses due to inertia effects are not considered here. On the
one hand, the fluid inertia is neglected in the NSE in the first place. On the other hand, the
equilibrium condition, eq. (9.18), in the absence of accelerations is considered. As will be shown
in section 9.5, the MOP produces excellent results for the local particle stress.
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The MOP as presented in eq. (9.23) bases on the forces defined in the Lagrangian system. It is
also possible to compute the particle stresses in the Eulerian frame by using the lattice force
density as obtained from the immersed boundary spreading via eq. (6.5), i.e., the delta function
in eq. (9.22) is replaced by the smooth interpolation stencil, e.g., eq. (6.11). For the present
model, this second approach will be employed if not otherwise stated. The reason is that the fluid
is driven by the forces in the Eulerian system. It is not aware of the presence of the membranes
otherwise. This way, both the fluid and the particle stresses are computed in the Eulerian system.
Eq. (9.23) then becomes

〈σp
αz〉x,y(z, t) = 〈σp

αz〉x,y(z0, t) +
1

A

∑
X′

fα(X
′, t)Δx3θ(z′ − z0)θ(z − z′) (9.26)

where the sum runs over all lattice nodes at position X ′ = (x′, y′, z′) with force density f(X ′, t),
i.e., the force acting on one lattice unit volume Δx3 is f(X ′, t)Δx3 (Krüger et al. [233]).

9.5. Benchmark test: verification of the stress evaluation methods

Two classes of benchmark tests have been performed to show (i) the reliability and capability
of the stress evaluation methods described in this chapter, (ii) the wall roughening procedure
(section 8.8), and (iii) the shear stress boundary condition (section 5.4.2). A single spherical
capsule in simple shear flow is considered in section 9.5.1, whereas a dense suspension of spherical
capsules (50% volume fraction) is simulated in section 9.5.2. All quantities are given in lattice
units.

9.5.1. Single capsule in shear flow

A single spherical capsule (r = 8, Nf = 2000, κS = 0.1, κα = 1, κB = 0.01, κA = 1, κV = 1)
is placed in the middle of an initially quiescent fluid (volume 30 × 30 × 30) bounded by two
rigid walls at z = 0 and z = 30. The LBM relaxation parameter is τ = 1, and the average fluid
density is unity. Two simulations for a single particle in shear flow have been performed, one with
velocity boundary conditions (VBC), the other with shear stress boundary conditions (SBC).

In the first simulation, both walls are moved along the x-axis in opposite directions with a constant
velocity of ±0.02, resulting in an average fluid shear rate 〈γ̇〉V = 1.33× 10−3. The average fluid
stress, therefore, is 〈σf

xz〉V = 2.22× 10−4, independent of the velocity profile between the walls.
The results for the particle stress obtained from the wall stress and Batchelor’s approach are
shown as function of time in fig. 9.1(a). After an initial transient in which the system is not in
steady state, both stresses become equal. The time-averaged particle stress between t = 4000 and
t = 10000 is 〈σp

xz〉V,t = 5.67×10−5 in both cases. For the average stresses obtained from the MOP,
there are slightly different results depending on whether the stress is evaluated in the Eulerian or
the Lagrangian frame. In the former, it equals the value obtained before, 〈σp

xz〉V,t = 5.67× 10−5.
In the latter, it is slightly larger, 〈σp

xz〉V,t = 5.73× 10−5. The reason for this deviation is caused
by the immersed boundary force spreading from the Lagrangian to the Eulerian system. Still,
the deviation is only 1%. The curve of the time evolution of the volume-averaged particle stress
obtained by the MOP in the Eulerian frame collapses with the curve for Batchelor’s stress. For
this reason, the MOP stress is not shown separately. This observation is a strong indication for
the reliability and consistency of the stress evaluation approaches. The fluid stress, evaluated
independently and averaged over time (between t = 4000 and 10000) and the total volume, is
〈σf

xz〉V,t = 2.22× 10−4 as expected.

For the second simulation, the walls are subject to the SBC. The prescribed shear stress is
2.79 × 10−4 which is the sum of the fluid and particle stresses obtained from the previous
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Fig. 9.1.: Time evolution of particle stress and wall velocity for a single capsule. The results for the
velocity boundary condition (VBC) and the shear stress boundary condition (SBC) are compared. The
average particle stress 〈σp

xz〉V has been evaluated using (i) Batchelor’s approach and (ii) the wall stress
(minus the average fluid stress). In steady state, all results are identical. For the VBC, the wall is
impulsively accelerated from zero velocity to 0.02, and the resulting wall stress is initially large. For
the SBC, the wall is continuously accelerated, and the transient is longer. The slight fluctuations in
steady state are caused by the discrete particle mesh.

simulation run in steady state. All other simulation parameters are then same. The most
important observation is that, after a transient, both wall velocities become constant with
uw = 0.02 as in the first simulation, cf. fig. 9.1(b). All other steady-state stresses are found to
be equal, cf. fig. 9.1(a) and fig. 9.2(a). Again, the time evolutions of Batchelor’s stress and the
volume-averaged MOP stress are identical (MOP stress not shown separately).

Conclusions and remarks

The above discussion clearly shows the consistency of the SBC for a single particle in simple
shear flow. After the initial transients, both simulations are equivalent (fig. 9.1 and fig. 9.2).
There are some minor fluctuating deviations between the VBC and the SBC which are caused by
the discrete particle mesh.

Due to the observed deviations of the stress results obtained from the MOP in the Eulerian and
the Lagrangian frames, only results computed in the Eulerian frame will be presented in the
remainder of this thesis. This is more consistent since the presence of the membranes is felt by
the fluid only through the forces in the Eulerian frame.

Fig. 9.2(a) nicely shows that the local total stress (sum of fluid and particle stresses) is indeed
not a function of the transverse coordinate z. Additionally, its value equals these obtained from
the wall stress and Batchelor’s approach. This is convincing evidence that the MOP actually
provides access to the local particle stress independently from assumptions based on macroscopic
considerations. Without the MOP, there would be no access to the local particle stress4. Instead,
one may use Batchelor’s approach to find the integrated particle stress for the capsule and localize
it at the capsule’s centroid position (z = 15). This, however, would lead to a single data point in
the middle of the flow, and the total stress would not be constant (Krüger et al. [233]).

The local viscosity of the suspension is shown in fig. 9.2(b). For regions filled with fluid only, the

4Local means stress averaged over the xy-plane as function of z.
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Fig. 9.2.: Stresses and viscosity for a single capsule. (a) The local, time-averaged stress contributions
in steady state are shown for the velocity boundary condition (VBC) and the shear stress boundary
condition (SBC). The particle stresses are computed with the MOP in the Eulerian frame. The total
stress (sum of particle and fluid stresses) is a constant line, reflecting the condition of mechanical
stability. (b) The local, time-averaged relative apparent viscosity is shown. In the fluid region, it
is unity as expected. The presence of the particle in the center region (between z = 7 and z = 23)
gives rise to a finite particle stress and increases the viscosity. Curves for VBC and SBC cannot be
distinguished in (a) and (b). All time averages are taken between t = 4000 and t = 10000.

viscosity equals the suspending fluid viscosity. The presence of the particle, however, increases
the local viscosity.

9.5.2. Dense suspension in shear flow

In this section, the capability of the wall roughening (section 8.8) in combination with the stress
evaluation is demonstrated. Four simulations have been performed: two with rough and two
with smooth walls (VBC and SBC each). The average volume fraction in the simulations is 0.5
(189 spherical particles with an average radius of 5 and a polydispersity of 20%). Depending
on the radius of the particles, different meshes have been used. This way, it is guaranteed that
the average edge length l̄ is as close as possible to the lattice constant Δx. In total, six different
meshes have been employed, the smallest with 320, the largest with 1620 faces. The system size
is 60 × 60 × 60, and the LBM relaxation parameter is τ = 1. Two walls at z = 0 and z = 60
confine the suspension. The remaining simulation parameters are κS = 0.1, κα = 1, κB = 0.01,
κA = 1, κV = 1, κint = 0.05, and κgl = 0.1. First, the system has been initialized as explained
in section 8.5. The resulting system was then taken as the initial state for all four simulations
mentioned above.

Velocity boundary condition

For the shear rate driven systems (rough and smooth walls), the two walls were instantaneously
accelerated to a velocity of ±0.02. The resulting wall stresses are shown in fig. 9.3(a). It can be
seen that the stresses in the system with smooth walls are smaller. The reason is the low-viscosity
slip layer at each wall which can maintain most of the imposed strain. As a result, the shear rate
in the bulk region is smaller than the average shear rate, cf. fig. 9.4(b). This is a disadvantage
because the bulk shear rate cannot be controlled a priori when smooth walls are used. The total
stresses obtained from the MOP have been averaged between t = 2000 and t = 10000 and over
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Fig. 9.3.: Suspension stresses for rough and smooth walls. (a) For the shear rate driven systems, the
resulting wall stresses (bottom and top walls) are presented as function of time. The presence of the
slip layers for the smooth walls reduces the stress: The system can be sheared more easily. (b) The
particle contribution to the wall stress (averaged over bottom and top walls) is compared with the
volume-averaged stress obtained from the method of planes (MOP). After the initial transient in which
the fluid is accelerated, both methods yield the same results, even as function of time.

the entire volume: 〈σxz〉V,t = 2.14× 10−3 for the rough and 〈σxz〉V,t = 1.02× 10−3 for the smooth
walls. The results obtained from the wall stresses (the bottom and top walls individually) are
identical, even if the bottom and top wall stresses are generally not identical at a given time
instance, cf. fig. 9.3(a). Batchelor’s approach cannot be applied to the system with rough walls
because it is not clear how to evaluate the stress related to the roughness force. Still, for the
systems with smooth walls, also Batchelor’s approach gives the same result for the averaged
stress.

In fig. 9.3(b), it is illustrated that the volume-averaged MOP stress matches the average of bottom
and top wall stresses even when plotted as function of time. The fluid stress has been subtracted
from the wall stresses in order to recover the contribution of the particles. Additionally, the time
evolution of the particle stress for the smooth walls obtained from Batchelor’s approach matches
the corresponding data obtained from the MOP. The curves are identical. Therefore, Batchelor’s
stress is not shown separately. The transient during the first 1000 time steps in which both
stresses are not identical is caused by the required acceleration of the fluid because the fluid
is initially at rest. The findings illustrated in fig. 9.3(b) impressively underline that all three
methods (wall, MOP, Batchelor) recover the same (volume-averaged) stress as function of time.

Additional results obtained for the simulation with smooth walls are shown in fig. 9.5. In fig.
9.5(a), it is illustrated how important the MOP is for the correct evaluation of the local particle
stress. If Batchelor’s approach is used to compute the stress for each particle individually and
then adding this contribution to the z-bin in which the particle center is located, an extremely
fluctuating stress profile 〈σp

xz〉x,y,t(z) is recovered. The MOP, however, yields the correct stress
curve, and the total stress (sum of fluid and particle contributions) are found to be independent
of the transverse coordinate z (solid line). For the same simulation, the profiles of the relative
apparent viscosity and the local volume fraction are shown in fig. 9.5(b). It can be easily inferred
that both Batchelor’s stress profile from fig. 9.5(a) and the viscosity are correlated with the
volume fraction. Due to the small system size and the short integration time, the averaged
density profile shows large fluctuations. In order to extract physically meaningful results, larger
systems, longer integration times, and a larger number of independent runs have to be performed,
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Fig. 9.4.: Suspension velocities for rough and smooth walls. (a) For the shear stress driven systems, the
resulting wall velocities (ignoring the minus sign for the bottom wall) are presented as function of
time. The time averaged wall velocity (0.02 in all cases) is shown as solid line as reference. (b) The
x-components of the velocity (averaged over the xy-plane and times between t = 2000 and t = 10000)
for each simulation run (velocity boundary condition [VBC] and stress boundary condition [SBC])
are shown as function of lateral position z. The low-viscosity slip layers at the smooth walls become
noticeable by the localized large velocity gradients. In contrast, for rough walls, there are extended
regions (about one average particle diameter) where the velocity is basically constant. The linear
velocity profile for the suspending fluid without particles is shown as solid line as reference.

cf. chap. 10. The mere intention of this section is to point out the validity and capability of the
stress evaluation methods.

Shear stress boundary condition

For the shear stress driven systems, the imposed stress was chosen to be equal to the resulting
stress obtained from the shear rate driven simulations in the interval between t = 2000 and 10000.
All other simulation parameters have been the same. The resulting wall velocities are shown in
fig. 9.4(a). Their averages, also taken between t = 2000 and t = 10000 give the same velocities as
those which have been used for the shear rate driven simulations (±0.02). This, again, shows the
consistency of the SBC, even for rough walls.

Two observations in fig. 9.4(a) have to be explained in more detail: First, the bottom and top
walls do not move with the same velocities, not even when averaged over time. The combined
average velocity of bottom and top wall, however, yields the expected value of about 0.02. The
reason is that, due to the small system size, spatial inhomogeneities are significant, and the
viscosity is not the same close to the bottom and top walls. This is also illustrated in fig. 9.5(b).
Since the shear rate and not the wall velocity is the relevant quantity, different wall velocities
are not problematic as long as the shear rate is correct. Second, one can observe an overshoot
of the velocity at t ≈ 500. This can be understood from the fact that the particles have to be
deformed first before they produce significant elastic stresses which decelerate the walls again.
The presence of the slip layers, both for the shear rate and the shear stress driven simulations,
can be easily inferred from fig. 9.4(b).
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Fig. 9.5.: Suspension stress, viscosity, and volume fraction profiles. (a) The stresses (averaged between
t = 2000 and t = 10000) for the shear rate driven simulation with smooth walls are shown as function
of lateral coordinate z. Batchelor’s approach may be used to compute the stress for individual particles
and add this contribution to the bin where the particle center is located. This way, a strongly fluctuating
particle stress profile is recovered which is clearly correlated to the local density of the particles as
shown in (b). Instead, the method of planes (MOP) produces accurate local results for the stress, and
the total stress (sum of fluid and particle contributions, solid line) is constant as expected. The results
for the remaining three simulations are qualitatively similar and are not shown separately. (b) The
local relative apparent viscosity and the local volume fraction for the shear rate driven simulation with
smooth walls are shown as function of z. The viscosity and density peaks are obviously correlated.

Conclusions and remarks

The present simulation tool provides the possibility to drive suspensions either by shear rate (via
wall velocity) or by shear stress (via wall stress). Independently of this, the walls can be made
rough in order to avoid slip. This slip is caused by the presence of the liquid lubrication layers.
Although the slip itself is not problematic (walls are present in either case), it is not possible to
control the bulk shear rate a priori since the ratio of the viscosity of the lubrication layer and
the bulk is not known in advance. The inclusion of the rough walls circumvents this problem.

The stress evaluation approaches (wall, Batchelor, MOP) yield consistent results and complement
each other. It has been shown that the fluid and particle contributions to the stress can be
computed locally (both in space and time). This opens the door for the analysis of spatio-temporal
stress fluctuations which carry important information about the statistical properties of the
system. The time-averaged stresses recover the behavior expected for a steady flow.

For all the above simulations, a zero shear stress boundary condition has been used for the
y-direction (vorticity axis) at the bottom and the top wall. In particular, this means that the
total momentum of the suspension in y-direction is always conserved because the momentum of
the fluid can only change due to the influence of external forces like gravity (which is not the case
here) or to shear stresses at the walls. Indeed, the y-component of the total fluid momentum was
found to be constant up to machine precision, which is another strong indication for the proper
functioning of the SBC. As a consequence the ‘center of mass’ of the fluid does not move along
the y-axis when the initial momentum along this axis is zero. This is of paramount importance
for the study of particle diffusivities (section 10.7) because undesired superimposed drift velocities
may hamper the analysis otherwise.
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