
6. Fluid-structure interaction: the immersed
boundary method

The immersed boundary method (IBM) is presented in this chapter. Its important task is to
provide the bidirectional coupling between the fluid motion and the membrane dynamics. The
basic idea of this coupling is that the membranes move along with the ambient fluid (no-slip
condition at the interface) and that any force acting on the membranes also acts on the fluid
and vice versa (Newton’s third law). After an overview in section 6.1, the governing equations
are motivated in section 6.2. The discretization of the IBM equations is discussed in section 6.3,
followed by an alternative motivation of these equations based on statistical physics in section
6.4.

6.1. Overview of the immersed boundary method

The IBM has been introduced by Peskin in the 1970s to simulate the blood flow around heart
valves [78, 167, 168]. The purpose of the IBM is the computational modeling of fluid-structure
interactions. The mathematical basis consists of two coordinate systems, an Eulerian and a
Lagrangian system. The Eulerian variables are defined on a fixed Cartesian mesh while the
Lagrangian quantities live on a curvilinear or unstructured mesh which may move on top of the
Eulerian mesh. The Eulerian mesh is used to solve the Navier-Stokes equations (NSE) while
the Lagrangian system captures the immersed structures (e.g., membranes) in the fluid. In
general, the two meshes are not conform (fig. 6.1), which raises the need of interpolations when
information is transferred from one mesh to the other. The IBM is a front-tracking coupling
method, i.e., the interface location is explicitly known. Unlike the bounce-back scheme (section
5.4), the IBM acts via body forces on the fluid in order to enforce the boundary conditions (BCs)
resulting from the presence of the structures immersed in the fluid.

One of the basic assumptions of the IBM is the validity of the no-slip condition, i.e., each
immersed structure element moves with the same velocity as the ambient fluid. Conversely, the
structure exerts a force on the nearby fluid which enters the NSE as an external forcing term.
This force mimics the momentum exchange of the fluid at the structure surface and can also be
interpreted as the force obtained from the constitutive model of the elastic immersed material
(chap. 7). The forces acting on the fluid are originally computed in the Lagrangian frame of the
structure. Thus, the forces have to be spread to the Eulerian mesh in order to solve the NSE.
The resulting fluid velocity has to be interpolated back to the Lagrangian mesh for the update of
the structure element positions. The underlying interpolation functions (also called interpolation
stencils) for the force spreading and the velocity interpolation have to be defined in a consistent
way. The algorithm and discretizations are given in sections 6.2 and 6.3.

The IBM offers a number of advantages. First, it can be combined with any Navier-Stokes
solver which supports external forcing (e.g., the LBM). Second, the constitutive behavior of the
immersed elastic structures is not restricted by the IBM. In that sense, the IBM is a pure coupling
method obeying the no-slip condition at the fluid-structure interface. A further advantage is
that there are no additional, unphysical parameters in the IBM which have to be tuned or
optimized. The implementation of the IBM is comparably simple, and its numerical overhead is
small. Particularly with regard to the simulation of suspensions of deformable particles at high
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Fig. 6.1.: Eulerian and Lagrangian meshes. A circular object (large dotted circle) of radius 1.4Δx is
described by an ensemble of Lagrangian points (red circles) on the background of the regular Eulerian
grid (dashed lines and white circles). Generally, the Lagrangian mesh is not conform with the Eulerian
grid.

volume fractions, an important advantage of the IBM is that arbitrarily complex fluid-structure
interfaces can be modeled. Numerical problems related to the simulation of dense suspensions of
deformable particles are discussed separately in section 8.6.

The IBM has been used before in connection with the LBM or other Navier-Stokes solvers in order
to simulate suspensions of soft particles [77, 80, 89, 169, 170]. Apart from the application being
in the focus of this work (simulation of deformable particles), the IBM is regularly employed to
model rigid objects immersed in a fluid. Peskin [78] provides a rich collection of applications and
extensions of the IBM such as improving the time-stepping scheme [171], the volume conservation
[172], sharpening its interface [173], implementing local grid refinement [174], and parallelizing
the IBM [175]. Some applications include Peskin’s original work about fluid dynamics of heart
valves [167], simulation of particle suspensions [176], platelet aggregation during blood clotting
[177], flow in elastic blood vessels [178], simulation of biofilms [179], and flow past a cylinder
[180], to name only a few. Additional applications of the IBM are reviewed in a more recent
article by Mittal and Iaccarino [181].

6.2. Governing equations of the immersed boundary method

A thorough mathematical derivation of the IBM formalism has been provided by Peskin [78]. It
shall not be repeated here. In the following, solely the governing equations and some remarks
are collected for a special case of the IBM. It is assumed that

• the immersed structure is a 2D membrane immersed in 3D space and that

• the density of the membrane equals the density of the ambient fluid.

Both assumptions are reasonable when red blood cells (RBCs) are simulated (chap. 4). However,
in general, the IBM may also be applied to situations where the above assumptions cannot be
made. The corresponding generalized equations can be found in [78].

Let X be the coordinate of a fixed point in the Eulerian frame and x(r, s, t) the position of
a marker point comoving with the Lagrangian mesh. (r, s) are two-dimensional curvilinear
coordinates for the membrane. The exact form of the curvilinear coordinate system is not
important since it will not appear in the discretized equations at the end. Still, it is instructive
to use (r, s) in order to better understand the IBM formalism. The governing equations for the
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fluid-membrane coupling read [78]

f(X, t) =

∫
dr ds f̃(r, s, t)δ(X − x(r, s, t)), (6.1)

ẋ(r, s, t) =

∫
d3X u(X, t)δ(X − x(r, s, t)). (6.2)

Here, δ(X − x(r, s, t)) is the three-dimensional Dirac delta distribution. u(X, t) is the velocity
of the fluid at coordinate X at time t, and ẋ(r, s, t) is the velocity of the Lagrangian marker
point x(r, s, t). f(X, t) is the force density (force per volume) acting on the fluid at coordinate
X and time t. The force density (force per area) in the Lagrangian system at position x(r, s, t)
is denoted by f̃(r, s, t). Eq. (6.2) resembles the no-slip condition at the membrane surface.

It has to be noted that eq. (6.1) and eq. (6.2) behave differently, even though they have the same
interaction function δ(X − x(r, s, t)). For a 2D membrane, force densities are area densities.
Thus, on the one hand, the force density f(X, t) on the left-hand-side of eq. (6.1) is singular
like a one-dimensional delta function since the integral is only 2D. On the other hand, the
velocities ẋ(r, s, t) and u(X, t) in eq. (6.2) are both finite. The transformation in eq. (6.1) is
called spreading, and the transformation in eq. (6.2) is called interpolation [78].

For the simulations in the present work, eq. (6.1) and eq. (6.2) form the interaction equations
between the membranes and the ambient fluid. In the next step, it has to be discussed how the
mathematical relations can be discretized in order to use them in numerical simulations.

6.3. Discretization of the immersed boundary method

The discretization of the IBM equations, eq. (6.1) and eq. (6.2), is necessary to implement the
model into a numerical scheme. Especially, a reasonable discretized delta function has to be found.
In the following, the spatial discretization scheme will be discussed. The time discretization is
shortly presented at the end of this section. Omitted intermediate steps and further comments
can be found in [78].

In their discretized forms, the spreading and interpolation equations, eq. (6.1) and eq. (6.2), read

f(X, t) =
∑
r,s

f̃(r, s, t)δΔ(X − x(r, s, t))ΔrΔs, (6.3)

ẋ(r, s, t+Δt) =
∑
X

u(X, t+Δt)δΔ(X − x(r, s, t))Δx3 (6.4)

where the integration is replaced by a discrete sum and δΔ(X −x(r, s, t)) is the discretized delta
function. The time increment is denoted Δt. Δx, Δr, and Δs are the Eulerian lattice constant
and the sizes of the Lagrangian membrane elements, respectively. The velocity interpolation and
force spreading are illustrated in fig. 6.2.

It has to be stressed again that f̃(r, s, t) is the force density of the membrane (force per area),
whereas F (r, s, t) = f̃(r, s, t)ΔrΔs is the force acting on the membrane area defined by (Δr,Δs).
In the discretized formulation, there is a given number of points (nodes) defining the membrane
surface. Each of these points can be addressed either by its coordinates (r, s) or by a node index
i. A curvilinear coordinate system is not necessarily required, and the mesh can be unstructured
(which will be the case throughout this thesis, cf. section 8.3). Replacing (r, s) by the node index
i and setting Δx = Δt = 1 in the following, the discretized IBM equations read

f(X, t) =
∑
i

Fi(t)δΔ(X − xi(t)), (6.5)

ẋi(t+ 1) =
∑
X

u(X, t+ 1)δΔ(X − xi(t)). (6.6)
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Fig. 6.2.: Velocity interpolation and force spreading in the immersed boundary method. A membrane
patch is denoted by the curved dotted line. During (a) velocity interpolation, each membrane node
(red circles) at position xi(t) collects velocity information of all lattice nodes within a finite range
(square box). During (b) force spreading, each lattice node (white circles) at fixed position X collects
force information of all membrane nodes within a finite range (square box). The weights of the
interpolation/spreading contributions are given by the value of the discrete delta function, e.g., eq.
(6.11).

In this simplified picture, Fi(t) denotes the total force acting on node i which is located at
position xi(t) and has velocity ẋi(t).

The coupled fluid-membrane system is solved iteratively. For that reason, the positions at the old
time step, xi(t), are used in eq. (6.6) to update the membrane velocity and obtain its value at
the next time step, ẋi(t+Δt). These algorithmic details are further elaborated on in section 8.1.

Obviously, a discussion of the discretized delta function δΔ(X − xi(t)) is still missing in order
to complete the discretization. According to Peskin [78], the discretized delta function has to
obey a series of restrictions and properties, e.g., the force and the torque should be the same
when evaluated in the Eulerian and the Lagrangian systems. Additionally, the discretized delta
function should be continuous, which assures that there are neither jumps in the velocity nor in
the force when the membrane points move between Eulerian lattice nodes. A complete list of
those restrictions and their mathematical significance can be found in [78]. In order to increase
computational efficiency, the discretized delta function should have a compact support, i.e.,
for each Lagrangian mesh point, only the Eulerian fluid points within a finite range should be
considered and vice versa. The smallest possible support for realizing all of Peskin’s postulates is
four Eulerian grid points along each spatial dimension. It can be shown that the same discretized
delta function has to be used for spreading and interpolation [78].

One of the major assumptions is that the discretized delta function can be factorized,

δΔ(x) = φ(x)φ(y)φ(z). (6.7)

This ansatz is not essential, but the computations become simpler, and the cubic lattice structure
is taken into account.

It is possible to find various discretized delta functions which have different interpolation ranges.
The so-called 4-point stencil reads

φ4(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
8

(
3− 2|x|+√

1 + 4|x| − 4x2
)

for 0 ≤ |x| ≤ 1,

1
8

(
5− 2|x| −√−7 + 12|x| − 4x2

)
for 1 ≤ |x| ≤ 2,

0 for 2 ≤ |x|.
(6.8)

This discretization fulfills all restrictions which are stated by Peskin [78]. The interpolation
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function

φc
4(x) =

{
1
4(1 + cos(πx2 )) for 0 ≤ |x| ≤ 2,

0 for 2 ≤ |x| (6.9)

which is an excellent approximation of eq. (6.8) is regularly used in the literature instead.

One can construct an interaction function with a support of three lattice nodes,

φ3(x) =

⎧⎪⎨
⎪⎩

1
3(1 +

√
1− 3x2) for 0 ≤ |x| ≤ 1

2 ,
1
6(5− 3|x| −√−2 + 6|x| − 3x2) for 1

2 ≤ |x| ≤ 3
2 ,

0 for 3
2 ≤ |x|.

(6.10)

Similar to φ4(x) and φc
4(x), φ3(x) is symmetric, φ(−x) = φ(x), and it has a continuous first

derivative. These two properties have not been claimed, but come in handy. Peskin [78] and
Dünweg and Ladd [182] state that Navier-Stokes solvers depending on a central difference
scheme cannot use φ3(x) since the number of support points is odd. The LBM, however, is not
concerned with this restriction. Obviously, there are some advantages of φ3(x) over φ4(x). First,
the envelope volume is decreased from 64 to 27 grid points in 3D reducing the computational
overhead. Second, the membrane interface width is decreased. It is reported by Dünweg and
Ladd [182] that φ3(x) results in hydrodynamics which is nearly as accurate as that for φ4(x).

If maximum efficiency is required, it is also possible to use a two-point linear interaction function
with a support of two lattice nodes along each axis,

φ2(x) =

{
1− |x| for 0 ≤ |x| ≤ 1,

0 for 1 ≤ |x|. (6.11)

This way, the cubic lattice structure becomes more visible, i.e., the translational symmetry is
violated more strongly than for φ3 or φ4 [78, 182]. Obviously, φ2 does not have a continuous
derivative, but only eight lattice nodes have to be considered for spreading and interpolation.
The shapes of the three discretized delta functions φ2, φ3, and φ4 are shown in fig. 6.3.

In the present work, for reasons of numerical efficiency and for reducing the numerical membrane
interface width, usually φ2 is employed (as also in, e.g., [183]). It should be noted that even
different discretized delta functions may be used [78, 184, 185].

When the IBM is combined with the LBM, the explicit Euler method is usually employed for the
time discretization (e.g., [77]),

xi(t+Δt) = xi(t) + ẋi(t+Δt)Δt. (6.12)

However, there exist different time integration schemes, [186, 187].

6.4. Connection between the immersed boundary method and
viscous coupling

Eq. (6.1) and eq. (6.2) can also be derived from a more general method. Dünweg and Ladd [182]
use a fluctuating LBM in connection with particles dissipatively coupled to the fluid. These
particles experience a drag force if their velocity differs from the ambient fluid velocity. Dropping
the time from the following equations for simplicity, the drag force acting on particle i is

F d
i = −Γi

(
pi

mi
− u(xi)

)
(6.13)



42 6. Fluid-structure interaction: the immersed boundary method

φ2(x)

φ3(x)

φ4(x)

-2 -1 0 1 2

1

φ(x)

x

Fig. 6.3.: Discrete delta functions for the immersed boundary method (IBM). The 2-point (solid), 3-point
(dashed), and 4-point (dotted) discrete delta functions for the IBM are shown.

where Γi is the drag coefficient for the particle, pi is its momentum, mi is its mass, and u(xi) is
the fluid velocity at the position of the particle. The equations of motion for the particles are

d

dt
xi =

1

mi
pi, (6.14)

d

dt
pi = F c

i + F d
i + F f

i . (6.15)

Here, F c
i is the conservative force acting on the particle (e.g., due to an external potential or

particle interactions), and F f
i is a Langevin noise for the particle. According to [182], the force

density applied to the fluid at Eulerian coordinate X is computed numerically from

f(X) = −
∑
i

(
F d
i (xi) + F f

i (xi)
)
δΔ(X − xi) (6.16)

with the same discretized delta functions as in section 6.3. It has been shown by Dünweg
and Ladd [182] that the fluctuation-dissipation theorem holds for this coupled system. In the
following, it will be inferred that the IBM is formally a special case of the viscous coupling.
Consequently, the fluctuation-dissipation theorem should also hold for the IBM [188].

Eq. (6.14) and eq. (6.15) can be combined to give

mi
d2

dt2
xi = F c

i + F d
i + F f

i (6.17)

which becomes

F d
i + F f

i = −F c
i (6.18)

in the over-damped, i.e., massless limit (mi → 0). Combining eq. (6.18) with eq. (6.16) directly
results in the IBM force spreading equation, eq. (6.5), if the conservative force is identified as the
membrane force. This finding also justifies that, in the present model, the elastic (conservative)
membrane force is used in eq. (6.5) to drive the fluid (chap. 7).

In the last step, keeping mi → 0, eq. (6.13), eq. (6.14), and eq. (6.18) are combined, which yields

ẋi = u(xi) +
1

Γi
(F c

i + F f
i ). (6.19)

In the high friction limit (Γi → ∞), the no-slip condition is recovered and with it the IBM
velocity interpolation, eq. (6.6).

The parameters mi and Γi are purely numerical without any physical significance. In this sense,
the IBM is more natural since it does not introduce additional parameters. However, the time
steps for the IBM and the fluid solver are required to be identical. This is not the case in the
approach followed by Dünweg and Ladd [182] where the molecular dynamics time step for the
particles can be chosen much smaller then the hydrodynamic time step.
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