
4. Physical considerations and ingredients for
the numerical model

The physical requirements and ingredients for the computational model employed in the present
thesis are characterized in this chapter. An overview of existing approaches for the simulation of
individual and multiple deformable particles immersed in a fluid is provided in section 4.1. It is
discussed in section 4.2 which physical ideas and concepts should be contained in the model and
which can be disregarded.

4.1. Overview of existing numerical approaches

Suspensions of rigid spheres have been simulated by Ladd [73, 74] and Aidun and Lu [75] within
the framework of the lattice Boltzmann method (LBM, chap. 5). In 1996, Kraus et al. [76]
have simulated, for the first time, a single deformable vesicle in an external shear flow using the
boundary integral method. Two years later, Eggleton and Popel [77] combined the immersed
boundary method (IBM, cf. chap. 6) [78] and a finite element method in order to simulate
deformable capsules. In 2004, Feng and Michaelides [79] were the first to combine the LBM
with the IBM and simulated suspensions of rigid 2D disks. Zhang et al. [68, 80] also used a
combination of the IBM and the LBM for red blood cell (RBC) simulations, but still in 2D. Even
in 2005, Sun and Munn [81, 82] approximated RBCs and leukocytes as rigid particles in a 2D
lattice Boltzmann simulation.

A number of articles about single RBC or vesicle dynamics in external flow fields has been
published in the past ten years. Noguchi and Gompper [83] studied the effect of membrane
viscosity on vesicle dynamics in shear flow, taking thermal fluctuations into account. The authors
combined a dynamically triangulated membrane model with the multiparticle collision dynamics
in 3D. Pozrikidis published a series of articles about the simulation of RBCs in shear flow via
the boundary integral method (e.g., [84, 85]). Due to its computational overhead [84, 86], the
boundary integral method seems to be not suitable for the simulation of a large number of RBCs.

The simulation of deformable RBC suspensions was promoted in 2007 when Dupin et al. [87]
combined the LBM and the IBM with a spring model for the RBC membranes in 3D. 200 cells
with a volume fraction of 30% could be simulated. However, a larger number of particles and a
higher volume fraction was not obtainable at that time. In the same year, Bagchi [88] simulated
2500 RBCs in 2D. This model was extended to 3D by Doddi and Bagchi [89] two years later.
MacMeccan et al. [90] simulated deformable RBCs via a lattice Boltzmann finite element method.

Concluding, a large variety of simulation methods for particle suspensions has been proposed in
recent years. Some of the methods have been implemented for 2D only, others approximate the
deformable particles as rigid objects. While some of the methods are of high accuracy and mostly
suitable for a small number of particles (e.g., the boundary integral method), other approaches
are less accurate but more efficient and simpler (e.g., the IBM). Still, neither of these methods
seems to be able to combine all of the properties required for the study in the present work: (i)
3D simulations, (ii) deformable and resolved particles, (iii) volume fractions larger than 45%,
and (iv) high runtime efficiency with O(103) particles.
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4.2. Identification of the relevant physics for the present task

One of the main motivations of the present thesis is the development and application of a
numerical tool for the simulation of dense suspensions of deformable particles, e.g., RBCs. Since
the focus of the work lies on the investigation of collective phenomena, the ability to simulate a
large number of particles is favored over high accuracy for only a few suspended objects. As a
consequence, the single particle dynamics should be simplified as much as possible without losing
the advantage of tracking the deformation of individual particles in the suspension. Although
large progress has been made in the field of computational physics and computing power in recent
years, large scale simulations of deformable particles have always required certain idealizations of
the physics on the smallest resolved scales (≈ 0.5μm in the present case).

In dense suspensions, the immersed particles are no passive tracers comoving with the suspending
fluid. Instead, the bidirectional influence of the fluid and the particles is one of the key factors
for successful simulations of particle suspensions. In fact, Einstein’s famous expression for the
viscosity of dilute suspensions, 2.6, reflects that suspended particles, deformable or not, affect
the fluid rheology, even in the dilute limit. The shear thinning behavior of blood at intermediate
shear rates (a few 10 s−1), caused by the deformability of the RBCs [54], is another striking
argument for the paramount importance of the bidirectional coupling of hydro- and particle
dynamics. For that reason, the model has to be based on a two-way coupling: The fluid exerts
stresses on the particle surfaces, and the presence of the surfaces poses a boundary condition for
the fluid. Kraus et al. [76] formulated this in the following way:

Any theory of vesicle dynamics is complicated by the fact that the boundary conditions
for the three-dimensional Navier-Stokes equations have to be evaluated at the vesicle
surface, which is moving with the fluid and whose shape is not known a priori.

This statement can directly be extended to any other kind of deformable particles immersed in a
fluid. The IBM will be employed as efficient two-way fluid-structure coupling (chap. 6).

Since the rheology of deformable particles is of primary interest here, only the mechanical
properties of the particles shall be considered. When RBCs are simulated, their biophysical and
biochemical properties (e.g., aggregation at small shear rates or non-hydrodynamic interactions
with other cells or the endothelium) are not taken into account. The deformable particles are
considered as effective 2D membranes immersed in an ambient 3D fluid. A scale separation
between the membrane thickness and the membrane diameter is assumed. For RBCs, this is an
excellent approximation since the membrane thickness is 4 nm compared to 8μm cell diameter [31].
Another simplification is to neglect the viscosity of the membranes. In the model, dissipation only
takes place in the fluid (inside and outside of the particles), and the membranes are purely elastic.
The main reason for this step is to reduce the complexity of the parameter space. Membrane
viscosity may be added to the model in the future.

The deformability of RBCs is a key factor for the shear thinning behavior of blood at shear
rates above a few s−1 [47, 54, 91]. For this reason, it shall be investigated how the deformability
of suspended particles affects the viscosity of the suspension and the statistical motion of the
particles. The model, therefore, should provide a controllable particle deformability. Physics
happening on scales smaller than the spatial resolution of the simulations (≈ 0.5μm) cannot be
resolved explicitly and must be put in by hand as effective ingredients. This including the elastic
model for the membranes which is a consequence of its nanometer scale structure. The model for
the membrane physics will be presented in chap. 7.

Membrane rearrangements are ignored in the present work, i.e., neighboring points on the
membrane will always remain neighbors. This way, the numerical model for the membranes is
drastically simplified since the numerical mesh topology is preserved (section 8.3). Applied to
the simulation of RBCs, this simplification is still reasonable because experimental investigations
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indicate that RBCs have a shape memory, i.e., the rim and the dimples of a RBC are always
formed by the same patches of the membrane surface, even after deformations which are long
compared to the typical advection times in the human body [92]. Thus, it can be assumed that
membrane rearrangements are not important for RBCs, at least on time scales accessible by
simulations.

The fluids both in the interior and the exterior of the particles are assumed to be Newtonian
(which is also the case for RBCs [51, 93]). For the sake of computational efficiency, a single
density and viscosity will be used for both the interior and the exterior fluids. The Newtonian
fluid is modeled via the LBM as described in chap. 5. Due to the length scale separation between
the fluid molecules and the RBCs, the suspending fluid does not need to be described on the
kinetic level.

Thermal effects of any kind are neglected. On the one hand, a possible temperature dependent be-
havior of material parameters is ignored by assuming that the temperature is constant throughout
the system and at all times (infinite heat conductivity). On the other hand, thermal fluctuations
are not considered. The particle diameters considered in this thesis are a few micrometers or
larger, thus, the particles can be considered non-Brownian [13, 94]. This is especially true for
RBCs with diameters of about 8μm. Additionally, for particles consisting of thin membranes
(e.g., vesicles or RBCs), the thermal membrane fluctuations can be neglected when the energy
scale for bending resistance is sufficiently large [31, 95].

The LBM (chap. 5) and the IBM (chap. 6) are efficient numerical tools. The membrane model
as introduced in chap. 7 contains the physics relevant for the chosen length and energy scales,
but it is not burdened with irrelevant and computationally expensive details. The resulting
numerical model is highly efficient, which benefits the achievable system size and duration of the
simulations.
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