
10. Rheology and microscopic behavior of red
blood cell suspensions

In this chapter, the rheology of red blood cell (RBC) suspensions is investigated numerically. In
particular, the focus of the study is on the relation between the microscopic characteristics of
the suspension (e.g., particle deformation, alignment, rotation, and diffusivity) and the rheology
(e.g., viscosity and suspension stress). For the first time, a detailed and systematic analysis of the
microscopic origins of the shear thinning behavior of blood for varying volume fractions, shear
rates, and RBC deformabilities is reported.

The setup of the simulations and remarks regarding data analysis are given in section 10.1. The
characterization of the dynamics of individual RBCs is introduced in section 10.2. In section 10.3,
the viscosity and shear thinning behavior of the suspensions are characterized. The microscopic
properties of the sheared suspensions are scrutinized in the subsequent sections: the particle
rotation in section 10.4, the particle deformation in section 10.5, the collective particle alignment
in section 10.6, the displacements of the RBCs in section 10.7, and the shear stress fluctuations
in section 10.8.

10.1. Simulation setup and data evaluation remarks

Simulation parameters

The simulations have been performed for four hematocrit values (volume fractions), five imposed
shear rates, and two particle deformabilities. In the following, all quantities are given in
lattice units except indicated otherwise explicitly. The number of RBCs in the simulation box
(Nx × Ny × Nz = 100 × 100 × 160 lattice nodes) is 494, 635, 776, and 917 for the considered
volume fractions 35, 45, 55, and 65%, respectively. The applied shear rates cover two orders of
magnitude between approximately 1.2 × 10−5 and 1.2 × 10−3, resulting in inverse shear rates
between about 800 and 80000. For the softer RBCs (also denoted ‘s’ in the legends of the figures
in this chapter), the parameters κS = 0.02 and κB = 0.004 have been used. For the more rigid
RBCs (also denoted ‘r’), the values κS = 0.06 and κB = 0.012 are taken instead. All other
simulation parameters are given in tab. 10.1 and tab. 10.2. Since the ratio κS/κB = 5 is constant,
only κS will be used for characterization in the following. The 2-point interpolation stencil for
the immersed boundary method, eq. (6.11), and the linearized lattice Boltzmann equilibrium
distributions, eq. (5.9), have been used. The employed mesh for the RBCs has 1620 faces and
812 nodes with an average distance of one lattice constant between neighboring nodes (section
8.3 and fig. 8.3(g)).

The simulation parameters for the softer RBCs have been chosen in such a way that they
correspond to the physiological values of the plasma viscosity (η0 = 1.2mPa s), large RBC
radius (r = 4μm), RBC shear modulus (κS = 5μNm−1), and RBC bending modulus (κB =
2× 10−19Nm) [31, 234]. For this set of parameters, the capillary number

Ca =
η0γ̇r

κS
, (10.1)

the numerical shear rate ˜̇γ (in lattice units), and the physical shear rate γ̇ (in units of s−1) are
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Tab. 10.1.: Parameters for simulations of red blood cell (RBC) suspensions. All parameters are given in
lattice units. Values in parentheses denote deviating parameters for the more rigid RBCs.

parameter symbol value

system size Nx ×Ny ×Nz 100× 100× 160
LBM relaxation parameter τ 1
fluid density ρ 1
large RBC radius r 9
RBC volume modulus κV 1
RBC surface modulus κA 1
RBC area modulus κα 1
RBC strain modulus κS 0.02 (0.06)
RBC bending modulus κB 0.004 (0.012)
interaction modulus κint 0.05
roughness modulus κgl 0.1

Tab. 10.2.: Applied wall velocities and shear rates for simulations of red blood cell suspensions. All
parameters are given in lattice units. The observed shear rates in the bulk are slightly larger, cf. fig.
10.1(a).

applied wall velocity applied shear rate number of time steps appr. number of
uw γ̇ ×103 inverse shear rates

0.00096 1.2× 10−5 500 6
0.00288 3.6× 10−5 300 11
0.0096 1.2× 10−4 150 18
0.0288 3.6× 10−4 100 36
0.096 1.2× 10−3 50 60

related according to

Ca = 75 ˜̇γ, γ̇ = 78125 s−1 ˜̇γ. (10.2)

The shear flow is wall-driven with two walls at z = 0 and z = Lz (wall distance Lz = 160). The
imposed boundary conditions (BCs) at the walls are velocity BCs in the x-direction and zero
shear stress BCs in the y-direction (section 5.4). The wall velocities are chosen in such a way
that the desired average shear rates are obtained. The remaining BCs in the x- and y-directions
are periodic. In order to avoid wall slip, one layer of RBCs is glued to the walls (section 8.8).
Thus, the effective bulk shear rate γ̇eff is larger than the average shear rate between the walls
since the effective wall distance is decreased by about two large RBC diameters, cf. fig. 10.1. In
the following, γ̇eff is abbreviated by γ̇ for convenience.

Some of the simulations have become unstable and could not be evaluated. The simulations with
65% volume fraction and the wall velocity 0.096 (for the softer particles) and the wall velocities
0.096 and 0.0288 (for the more rigid particles) have been rejected.

For comparison, also a series of simulations with a single RBC have been performed. The
simulation parameters are identical to those for the soft RBCs (tab. 10.1), except for the system
size (40× 40× 40 instead of 100× 100× 160). The wall velocities have been chosen in such a
way that the capillary numbers 0.005, 0.010, 0.025, 0.050, 0.10, 0.15, 0.20, 0.25, and 0.50 are
obtained. The major plane of the single cell has been initially aligned with the xy-plane of the
simulation box (parallel to the walls).
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Fig. 10.1.: Velocity and density profiles for a red blood cell suspension. The solid curves are the time-
averaged (a) velocity profile ux(z) and (b) density profile Ht(z) for the soft particles with Ht = 45% and
imposed shear rate of γ̇ = 3.6× 10−4. The velocity gradient (shear rate) in the bulk region (between
z = 40 and 120, denoted by gray regions in (a) and (b)) is slightly larger than the average, imposed
gradient (dashed line in (a)), and the average density in the bulk region is larger than the imposed
density (dashed line in (b)). The corresponding plots for the remaining simulations are qualitatively
similar and are, therefore, not shown.

Ensemble averaging

For each parameter tuple (Ht, γ̇, κS), five or ten independent simulation runs have been performed
(ten for the softer, five for the more rigid particles). For a given tuple, the simulation parameters
for each run are exactly identical, except for the initial particle position and orientation. By
averaging over all runs of a tuple, the ensemble averages are improved, and statistical errors can
be estimated. These errors are used to assess the statistical reliability of the results.

In practice, the observable of interest is first evaluated for each independent run alone and then
averaged over all runs for the parameter tuple, if not stated otherwise. The uncertainty is defined
as the root-mean-square deviation between the individual results and their arithmetic average.
For a quantity Q, the individual results Qi (which are usually already averaged over the steady
state interval and bulk volume, see below) are first used to define the ensemble average based on
the N independent runs,

〈Q〉 := 1

N

∑
i

Qi. (10.3)

The statistical uncertainty is then defined as

δQ :=

√∑
i(Qi −Q)2

N
. (10.4)

If derived quantities such as the viscosity (as ratio of shear stress and shear rate) are reported,
the uncertainty is obtained from the standard error propagation of the underlying observables.

Definition of bulk and steady state

The primary scope of the present work is the investigation of the bulk properties in the steady
state. In the following, the bulk region and the steady state interval are defined.
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Since the simulated volume is bounded by walls, wall effects are expected to play a role. For this
reason, a bulk region is identified a posteriori before the rheological and microscopic characteristics
of the suspensions are further analyzed. The bulk region is defined by the volume in which
observables such as shear rate and particle density do not show significant gradients. For all
simulations considered here, the region between z = 40 and z = 120 (which is the interior 50% of
the total volume) is taken as the bulk, cf. fig. 10.1.

After initializing and starting a simulation, it takes a certain number of time steps until the
suspension is in the steady state (in the sense that statistical properties of the system become
independent of the origin of time). The duration of the transient depends on the control
parameters (Ht, γ̇, κS). It is not known a priori and has to be identified before further data
analysis is performed. The transient may be tagged by the time behavior of observables such as
the wall stress or the average particle deformation. It is noteworthy that the transient for different
observables may have differing durations. For example, the transient for orientational ordering
(section 10.6) is found to be longer than that for viscosity (section 10.3) or particle deformation
(section 10.5). It is expected that transients are longer for observables related to collective effects
as compared to individual particle properties because the time scale for structural relaxation is
typically longer than for deformation of an individual particle.

Lees-Edwards boundary conditions would solve the problem of wall effects (definition of a bulk
region, increased volume fraction in the bulk, etc.). However, the method of planes (section 9.4)
cannot be applied when Lees-Edwards boundary conditions are used. Stress evaluation would be
significantly more difficult then [235].

10.2. Characterization of particle deformation, orientation, and
rotation

Fig. 10.2 shows some snapshots of the suspension configurations for various shear rates at 55%
volume fraction. It can be seen that the suspension microstructure and the individual properties
of the particles are different when the shear rate is changed. Motivated by this observation, it is
necessary to characterize the deformation, orientation, and rotation states of the RBCs in more
detail. In the following, it is explained how these quantities are defined and evaluated.

Inertia tensor

The basis for the microscopic analysis is the inertia tensor. For any extended particle, its inertia
tensor T can be computed. If this particle has a constant density ρ, the volume integration in
the definition of T can be easily transformed to a surface integration whose discretized version
reads [187, 191]

Tαβ =
ρ

5

faces∑
j

Aj

(
r2j δαβ − rjαrjβ

)
rjγnjγ , (10.5)

where rj is the vector from the particle centroid to the centroid of face j with area Aj and
unit normal nj . As the tensor T is symmetric, three real eigenvalues Ti (i = 1, 2, 3) can always
be computed, and the diagonalized tensor reads T = diag(T1, T2, T3) with T1 ≤ T2 ≤ T3. The
inertia tensor of a particle contains valuable information: (i) Its eigenvalues allow to describe the
current deformation state. (ii) The orientation of its eigenvectors characterizes the orientation of
the particle in space. (iii) The change of the eigenvectors in time defines the tumbling velocity of
the particle. In the following, these ideas will be elaborated on.
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(a) γ̇ = 1.56× 10−5 (b) γ̇ = 1.55× 10−4 (c) γ̇ = 1.51× 10−3

Fig. 10.2.: Snapshots of sheared red blood cell (RBC) suspensions at various shear rates. The soft RBCs
at 55% volume fraction are shown in steady state for three different bulk shear rates. (a) The RBCs
are more or less undeformed and behave similarly to rigid bodies. (b) Deformation becomes important.
(c) The RBCs are strongly deformed.

Inertia ellipsoid

For convenience, the inertia ellipsoid is defined. It is the (unique) ellipsoid with the same density
and inertia tensor T as the particle. Based on the inertia tensor of an ellipsoid with constant
density,

T1 =
M(b2 + c2)

5
, T2 =

M(a2 + c2)

5
, T3 =

M(a2 + b2)

5
, (10.6)

one can show that the three semiaxes of this ellipsoid are

a =

√
5(T2 + T3 − T1)

2M
, b =

√
5(T3 + T1 − T2)

2M
, c =

√
5(T1 + T2 − T3)

2M
(10.7)

where M = ρV is the mass and V is the volume of the particle. The semiaxes are sorted according
to a ≥ b ≥ c. The inertia ellipsoid for an undeformed RBC obeys a = b > c. It is shown in fig.
10.3. In this particular case, a = b = 1.1r and c = 0.36r with r being the large radius of the
RBC.

Particle orientation

Assuming a disk-like shape, i.e., a clear separation between the length of c on the one hand
and the lengths of a and b on the other hand, the orientation vector ô of a particle is defined
as the inertia tensor eigenvector corresponding to the shortest semiaxis c (or, equivalently, to
the largest moment of inertia, T3). Thus, the vector ô is perpendicular to the ab-plane of the
particle (fig. 10.3). It has to be noted that the sign of the orientation vector is not fixed by its
definition. Physical observables have to be specified in such a way that they are invariant under
the transformation ô → −ô.

Deformation parameter

A deformation parameter is introduced to monitor the deviation of the current from the equilibrium
shape of a particle. A similar approach has been followed in section 8.4. In the following, the
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Fig. 10.3.: Red blood cell (RBC) and its inertia ellipsoid. An undeformed RBC (red) and the corresponding
ellipsoid (black) with the same inertia tensor are shown to scale. The large radius of the RBC is r
(dotted red line), and the principal semiaxes of the ellipsoid are a = b = 1.1r and c = 0.36r (dashed
black lines). The orientation vector ô (gray) is perpendicular to the ab-plane.

discussion will be restricted to RBCs, or—more generally—to objects whose inertia ellipsoid has
principal semiaxes a0 = b0 > c0 in the undeformed state. The subscript 0 denotes the undeformed
shape. For deformable particles, the semiaxes a, b, and c are generally time-dependent, i.e.,
a = a(t), b = b(t), and c = c(t). Additionally, a(t) and b(t) are generally not equal, even if
a0 = b0. It has to be noted that always a(t) ≥ b(t) ≥ c(t) holds by definition.

The deviations of the current semiaxes compared to their undeformed counterparts give a first
approximation of the deformation of the particle without tracking the entire surface information,
which becomes unpractical if a large number of resolved particles is simulated for a long time1.
Let â(t) := a(t)/a0, b̂(t) := b(t)/b0, and ĉ(t) := c(t)/c0 be the reduced semiaxes of the deformable
particle which are computed on the fly. One may then define a deformation index characterizing
the asymmetry in the ab-plane (similarly to section 8.4),

Da(t) :=
â(t)− b̂(t)

â(t) + b̂(t)
, Da(t) ∈ [0, 1]. (10.8)

This quantity becomes zero if the particle is undeformed.

Tank-treading and tumbling

For a rigid particle, rotational motion is always tightly connected to a rotation of its inertia
tensor. Any of its mass elements rotates with the same angular velocity ω about its center. The
velocity of a mass element is found from v = ω × r + vcm where r is the distance vector from
the center of the particle to the particular mass element and vcm is the velocity of the center of
mass. The angular velocity ω at a given time is always identical for all mass elements, and it is
also equal to the rotational velocity of the particle’s inertia tensor, characterized by its three
eigenvectors. Here, the tumbling velocity ω is defined as the angular velocity of the inertia tensor
in space.

Deformable particles behave differently in general. The mass elements of the particle may (i)
rotate with different angular velocities, and (ii) this rotation may be independent of the rotation
of the inertia tensor. A prominent example is the steady tank-treading behavior of a deformable
capsule in shear flow as discussed in section 8.4. Here, the shape of the particle is stationary in
space, i.e., the inertia tensor does not rotate, but the membrane (and with it the mass elements)
rotates about this shape. A sketch of tumbling and tank-treading rotation is shown in fig. 10.4.
There does not seem to be a clear definition of the instantaneous angular velocity of a deformable
particle in the literature. Instead, the rotation period is commonly reported [76, 87, 236]. It is

1For a mesh with 1620 faces (812 nodes) and a simulation with 600 particles, the total surface information would
be 3× 600× 812× 8B > 11MB for a single time step where a double-precision floating-point data type requires
8 bytes of computer memory. For ten independent runs and 10000 snapshots, the required data would be more
than one terabyte.
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(a) tumbling (b) tank-treading

Fig. 10.4.: Tank-treading and tumbling ellipsoid. An ellipsoid is shown in (a) pure tumbling and (b) pure
tank-treading state. During tank-treading, the shape of the ellipsoid does not change in space, but
surface points (small circles) move along the surface. In the tumbling state, marker points do not move
relatively to the ellipsoid, rather the ellipsoid itself rotates in space. The current states are shown
in black, the previous states in gray, respectively. The large semiaxes (dashed) and the orientation
vectors (arrows) are also shown.

found by tracking the positions of surface patches and measuring the time for one revolution.
This quantity, however, is the time average over one rotation and does not provide access to the
instantaneous angular velocity. Additionally, it is only reasonably well defined when the rotation
is periodic, e.g., for a single particle in shear flow. For an individual particle in a dense suspension,
the rotational motion may be quite erratic, and the tank-treading period is not well-defined.

It is possible to estimate the instantaneous tumbling velocity (i.e., the rotation of the shape) of
particle i from the inertia tensor by tracking its eigenvector rotations in space. In the present
case, it is assumed that the particle has a shape close to a disk and that the preferred rotation
axis is along the y-axis (vorticity axis). The orientation vector ôi of particle i is first projected
onto the xz-plane (shearing plane) where an inclination angle θi ∈ [0, 2π[ with respect to the
x-axis can be defined. The tumbling velocity ωi then is the time derivative of the inclination
angle θi. This angular velocity is defined to be positive if the particle tumbles with the same
vorticity as the ambient flow.

In principle, one may track the rotation of the right-handed trihedron defined by the three
eigenvectors of the inertia tensor with a general rotation matrix. However, the results have
been found to be imprecise in the present case. Due to the quasi degeneracy of two eigenvalues
of the inertia tensor of a RBC, fast in-disk rotations of the inertia tensor can be observed
even when the membrane is rotating only slowly. This is a mathematical problem which is
introduced by describing the complex RBC shape only by an equivalent inertia ellipsoid. For
future investigations, a more accurate approach to obtain the rotation state of the deformable
particles are necessary.

Nematic ordering of disk-like particles

Whenever suspended particles are not spherical, their orientation may play a role in the rheology
of the suspension. A prominent example are liquid crystals. Liquid crystals in the nematic phase
are orientationally ordered with one preferred axis while the center positions of the particles are
generally unordered [237]. The orientational order state is characterized by the nematic order
tensor Q [237, 238, 239],

Qαβ :=
1

2
〈3ôiαôiβ − δαβ〉i,t, (10.9)

where ôi is the orientation vector of particle i. The average is taken over an appropriate volume
and time span (in the current case: bulk volume and steady state). Obviously, the signs of the



92 10. Rheology and microscopic behavior of red blood cell suspensions

n

(a) Q> ≈ 1 (b) Q> ≈ 0

Fig. 10.5.: Schematics of the director n and the nematic order parameter Q>. Two special cases of
ordering are illustrated: (a) nearly perfect alignment and (b) nearly isotropic orientation of disk-like
particles (e.g., prolate ellipsoids or red blood cells). The orientation vectors ôi of the individual
particles are shown as small arrows, the corresponding director n as thick arrow.

vectors ôi do not play a role in eq. (10.9): The definition of the order tensor Q is invariant under
transformations ôi → −ôi.

The scalar order parameter Q> is defined as the largest eigenvalue of the order tensor Q [238].
The corresponding eigenvector is called the director n. The director indicates the average
orientation of the particles, whereas the order parameter is a measure for the amount of order: It
takes the values

Q> =

{
1 if all orientation vectors ôi are parallel (perfect alignment),

0 if all orientation vectors ôi are randomly oriented (perfect isotropy),
(10.10)

which is illustrated in fig. 10.5.

The director n and the order parameter Q> are macroscopic quantities defined in volumes
containing a sufficient amount of microscopic particles. Generally, both observables are functions
of position and time. In the present case, n and Q> are averaged over the bulk volume and the
steady state interval since no significant dependence on position or time has been observed. This
is in marked contrast to results obtained numerically for Brownian liquid crystals made of rigid
oblate particles in simple shear flow where the director can be observed to rotate in space [240].

10.3. Suspension viscosity and shear thinning

The reduced apparent shear viscosity of the RBC suspensions, η/η0, is computed from the shear
stress and the bulk shear rate found during steady state via η = σxz/γ̇. The shear stress σxz is
obtained by fitting a constant to the profile of the suspension stress (sum of fluid and particle
contributions) as obtained from the method of planes in the Eulerian frame (section 9.4). The
shear rate γ̇ is found by fitting a linear function to the velocity profile in the bulk region. In
fig. 10.6, the viscosity η/η0 and shear stress σxz are shown for different volume fractions and
deformabilities as function of the bulk shear rate γ̇. There are five main observations:

1. All curves for a given volume fraction and deformability exhibit shear thinning behavior.

2. For a given shear rate and deformability, higher volume fractions result in higher viscosities.

3. When the particle deformability is decreased (i.e., rigidity is increased), the viscosity
becomes larger.

4. The Newtonian plateau at large shear rates has not yet been reached. It is expected that
the viscosities will decrease further when the shear rate is increased.
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Fig. 10.6.: Viscosity of red blood cell suspensions. (a) The reduced apparent bulk viscosity η/η0 and (b)
the shear stress σxz are shown for all volume fractions and both deformabilities (softer and more rigid
particles) as function of bulk shear rate γ̇. Statistical errors are comparable to the symbol size. Lines
are guides for the eyes.

5. The slopes of the flow curves indicate that there may be a yield stress for volume fractions
≥ 45%.

These points will be analyzed in the following.

Dimensional analysis and parameter reduction

The plots in fig. 10.6 reveal that the viscosity is a function of volume fraction Ht, bulk shear rate
γ̇, and particle deformability κS. It is tempting to use these three input control parameters also
for the characterization of the shear thinning behavior. However, it arises the question whether
these control parameters are the most appropriate ones for this purpose. Indeed, as will be shown
below, two instead of three independent parameters are sufficient to describe the data.

Moreover, due to the non-linearity of the physical problem, the known input parameters may
be not suitable to describe the outcome of the simulations. This well-known phenomenon is,
for example, important for hard spheres: For these systems, one can define the Péclet number
(ratio of the time scales for advection and bare diffusivity, e.g., diffusivity in the dilute limit)
and the Weissenberg number (ratio of structural relaxation time and inverse shear rate). The
former can always be defined a priori since it contains quantities which are known before the
simulations or experiments are performed. The latter is only known a posteriori because the
structural relaxation time strongly depends on non-linear effects. In the linear regime, the Péclet
number and the Weissenberg number are proportional. However, when non-linearity is important,
shear thinning is described by the Weissenberg number rather than the Péclet number [11, 19].

The first step is to identify the relevant dimensionless parameters for the present system which
are based on the input parameters. Beside the volume fraction which is already dimensionless,
one may define the capillary number (ratio of viscous fluid stress and a characteristic elastic
membrane stress) as in eq. (10.1),

Ca :=
η0γ̇r

κS
, (10.11)

and the Reynolds number (ratio of inertial and viscous forces),

Re :=
ργ̇r2

η0
. (10.12)
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Fig. 10.7.: Rescaled viscosity of red blood cell suspensions. (a) The reduced apparent bulk viscosity η/η0
and (b) the rescaled shear stress (in terms of capillary number Ca∗ ∝ σxz) are shown for all volume
fractions and both deformabilities (softer and more rigid particles as defined in section 10.1) as function
of capillary number Ca. Statistical errors are comparable to the symbol size. The dashed lines are
fits of a Herschel-Bulkley law, eq. (10.14), to the data. The fit parameters are given in tab. 10.3. A
Newtonian slope (Ca∗ ∝ Ca, i.e., σxz ∝ γ̇) is shown as reference in (b).

In the present work, the linearized lattice Boltzmann equilibrium distributions, eq. (5.9), are
employed. It is shown in appx. B.1.1 that this leads to the Navier-Stokes equations without the
advective term ρ(u · ∇)u. In this sense, the Reynolds number is identically zero. However, it is
also discussed in appx. B.1.1 that the explicit term ρ∂tu (which does not appear in the Stokes
equation either) is still present. It is argued below that the formal scaling of ρ∂tu on the one
hand and ∇ · σ on the other hand is given by the number defined in eq. (10.12), although it
cannot be interpreted as ratio of inertial and viscous forces anymore. Still, the term Reynolds
number is kept for convenience. It is assumed that the effect of ρ∂tu is not important. On the
one hand, for the simulations with the highest shear rate, Re ≈ 0.7, which is not necessarily
negligible but clearly not larger than unity. The capillary number, on the other hand, varies
between 0.0004 and 0.1. The smallness of the largest capillary number should not be misleading:
Already for Ca = 0.1, particle deformations can be significant as will be seen in sections 10.4,
10.5, and 10.6 (see also fig. 10.2(c) which corresponds to Ca = 0.1). In other words, the shear
rates chosen for the present simulations cover regions in which the particles are nearly rigid and
where they are significantly deformed.

The second step is to realize that the capillary number, as defined in eq. (10.11), may not be an
appropriate parameter either. Since the observed viscosities range between about 3η0 and nearly
200η0, the effective viscous stress in the fluid cannot be estimated from the reference viscosity
η0, but from the a posteriori evaluated viscosity η. Therefore, a ‘corrected’ capillary number is
defined,

Ca∗ :=
ηγ̇r

κS
=

σxzr

κS
, (10.13)

which is the ratio of true suspension stress and a characteristic elastic membrane stress. The idea
behind this definition is that the suspension stress and not the fluid stress should be responsible
for the particle deformation. The particle cannot detect where the stress originates from and can
only see the total stress.

In fig. 10.7, the viscosity and shear stress data is shown again, but the shear rate and the
shear stress are rescaled by the deformability, γ̇ → Ca and σxz → Ca∗, cf. eq. (10.11) and eq.
(10.13). It can be observed that curves for different deformabilities but the same volume fraction
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Tab. 10.3.: Comparison of the flow curves with a Herschel–Bulkley fluid. The viscosity data η(Ca)/η0
and Ca∗(Ca) (fig. 10.7) can be described by the Herschel–Bulkley law, eq. (10.14). The fit parameters
are given in the table below. For a Newtonian fluid, Ca∗y = 0, b = η/η0, and p = 1.

Ht Ca∗y b p

35% 0 1.9 0.76
45% 0.004 2.4 0.73
55% 0.015 3.4 0.72
65% 0.043 5.0 0.71

nearly collapse. This is clear evidence for the hypothesis that the viscosity depends only on
two independent parameters, the volume fraction and the capillary number Ca. However, when
studying properties of individual cells (e.g., rotation, fig. 10.10), Ca∗ turns out to be an even
more relevant parameter than Ca.

It is not clear how to predict the shape of the flow curves in fig. 10.7 as function of Ht and
Ca. At least, it is possible to approximate these flow curves for a given volume fraction with a
Herschel-Bulkley law,

Ca∗(Ca) = Ca∗y + b× Cap, (10.14)

where Ca∗y = σyr/κS is proportional to the yield stress σy. A power p < 1 indicates a shear
thinning fluid. The fit parameters Ca∗y, b, and p are collected in tab. 10.3. As seen from the
values of p in this table, denser suspensions are more shear thinning. It has to be noted that
the Herschel-Bulkley behavior is not assumed to be valid at much larger values of Ca where a
Newtonian plateau is expected. It is also risky to extract a value for the yield stress σy based on
a limited range of shear rates. Rather, eq. (10.14) may be used as a guideline to interpret the
data and to develop a theory for the investigated shear rate range. Therefore, if a yield stress
really exists, its value may be different from the fit parameter σy.

The question arises whether a proper rescaling of the viscosity according to the volume fraction
may lead to an additional collapse of the data on a single master curve as function of Ca or Ca∗

only. Although similar approaches for hard sphere systems exist (e.g., [1, 241]), a proper ansatz
or theory for the rescaling procedure in the case of deformable particles is missing. This issue is
left for future investigations.

Further remarks about the results and possible non-Stokesian effects

The curves in fig. 10.7 do not exactly collapse. Especially for large volume fractions, there is a
discrepancy. There are two possible reasons:

1. For the rescaling of the particle deformability, only κS and κB have been changed by a
factor of 3. The other membrane moduli (κα, κA, κV) and the interaction moduli (κint,
κgl) have been kept constant for convenience and numerical stability reasons. Although
shear and bending resistance dominate the particle shear stress, this procedure does not
correspond to a perfect unit rescaling. The simulated system is slightly different from that
which would have been obtained when all membrane moduli had been rescaled by a factor
of 3. This is particularly the case for Ht = 65% as can be seen in fig. 10.7. Probably, the
particle interaction force (section 8.7) becomes important at this volume fraction.

2. The physical length of a lattice Boltzmann time step is different for data points with
the same capillary numbers but with different particle deformabilities. Artifacts due to
numerical inaccuracies can therefore not be completely excluded.
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Fig. 10.8.: Effective bulk volume fractions and density profiles of red blood cell suspensions. (a) The
particle volume fractions (averaged over bulk volume, steady state, and independent runs) are larger
than the input densities and increase with shear rate γ̇. Error bars related to ensemble averaging are
smaller than the symbols. Lines are guides for the eyes. (b) Exemplary density profiles (averaged over
steady state and independent runs) are shown for the smallest and highest shear rates for the soft red
blood cells with 35% input volume fraction.

In fig. 10.8(a), the time-averaged bulk densities are shown. They are larger than the target
volume fractions since the density near the wall is decreased and particles are shifted towards the
centerline (fig. 10.8(b)). This was to be expected. For the interpretation of the data, especially for
comparisons with other simulations or experiments, the increased value of the bulk density has to
be taken into account. Lees-Edwards boundary conditions would sort out this problem. However,
stress evaluation as discussed in section 9.4 is strongly aggravated if not made impossible when
Lees-Edwards boundary conditions are used [235].

A combination of eq. (10.12) and eq. (10.13) reveals that data points with the same value of
Ca∗ but different deformabilities have different values of ργ̇r2/η0 which is formally the Reynolds
number. As mentioned before, there may be some non-Stokesian effects caused by the term ρ∂tu.
From fig. 10.8(a), it can be seen that the bulk densities increase with shear rate. This effect is
stronger for smaller volume fractions. It may be related to the term ρ∂tu because the increase of
the bulk hematocrit with shear rate always sets in at the same value of γ̇, rather than at the
same value of Ca or Ca∗. One can show that a rescaling u → αu and κS → ακS leads to the
same capillary numbers Ca and Ca∗. However, the term ρ∂tu scales like α2 because the time
is also rescaled. This way, ρ∂tu increases faster than the remaining terms in the momentum
balance equation, and it becomes more important eventually. This is a direct consequence of the
fact that the LBM in its present form cannot solve the Stokes equations where the term ρ∂tu is
absent, even when the advective term ρ(u · ∇)u is removed by applying the linear equilibrium
populations, eq. (5.9). Although the flow field is stationary on the macroscale, it is non-stationary
on the microscale, and the term ρ∂tu cannot be neglected in the microscopic dynamics of the
suspension in general. When the relative importance of ρ∂tu increases (especially by increasing
γ̇), hydrodynamic lift effects may arise, pushing the particles away from the wall. The significance
of these lift forces is expected to be larger when the volume fraction and crowding effects are
smaller, as it is observed in fig. 10.8(a). However, the study of lift forces in dense systems is
not within the scope of the present thesis. As will be seen in the subsequent sections, most of
the data can be accurately described by the two parameters Ht and Ca∗, independently of the
formal value of Re. A similar conclusion has also been drawn by MacMeccan [194] who claims
that the capillary number is the only relevant parameter beside the volume fraction, even when
the velocity and time time are rescaled.
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Fig. 10.9.: Comparison of blood viscosities obtained from simulations and experiments. The experimental
data points are taken from [54]. They correspond to suspensions of non-aggregating red blood cells
(RBCs) at Ht = 45%. The data from [54] is shown together with the simulation results for the soft
RBCs at 35% volume fraction. The physical shear rates γ̇ from the experiments have been converted
to lattice units via eq. (10.2).

Comparison of simulation results with experiments

A comparison of the viscosity of blood obtained from the present simulations and Chien’s
experiments [54] is shown in fig. 10.9. It is observed that the viscosities match well over two
orders of magnitude in γ̇ when the simulation results for the soft RBCs at 35% volume fraction
are compared with the experimentally obtained viscosities for Ht = 45%. This hematocrit
discrepancy can be understood in the following way: First, the bulk volume fraction is larger
than the average volume fraction, cf. fig. 10.8. Additionally, as discussed in section 8.4, the
hydrodynamic radius of the particles is about 0.4Δx larger than the input radius. Therefore, the
effective volume of each RBC is corrected according to V ∗ = V × C where

C ≈ (r + 0.4Δx)× (r + 0.4Δx)× (h/2 + 0.4Δx)

r × r × h/2
= 1.24 (10.15)

is a volume correction factor (RBC radius r = 9Δx and thickness h = 6Δx for the present
simulations). Therefore, the effective bulk volume fraction can be estimated by Ht∗ ≈ 37%×1.24 =
46% which is practically the value used in the experiments. The key idea is to interpret the data
in terms of an effective volume fraction which takes account of the hydrodynamic radius of the
cell rather than the bare input dimension.

It can be seen from fig. 10.9 that the viscosity at larger shear rates is slightly underestimated by
the simulations. The reason may be that, at these shear rates, the RBCs are tank-treading and
the interior fluid contributes to the viscous dissipation. It will be shown in section 10.4 that there
is indeed a transition from tumbling to tank-treading at high capillary numbers. In reality, the
viscosity ratio of hemoglobin solution and blood plasma is about 5. In the simulations, it is unity.
Therefore, on the one hand, the dissipation in the simulations is expected to be reduced when
shear flow starts in the RBC interior. At smaller shear rates, on the other hand, the interior
fluid is in a pure rotation state where no energy is dissipated, and the interior viscosity is not
relevant. The viscosity of the RBC membranes (which is neglected in the present model) is also
more important at higher shear stresses [203]. The inclusion of different viscosities inside and
outside of the cells would be interesting for more accurate RBC simulations in the future.

According to Robertson et al. [46], the volume fraction dependence of blood viscosity decreases
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with increasing shear rate. Since the denser suspensions in the present simulations show a
stronger shear thinning, the relative differences of the viscosities also decrease. This is nicely
born out in fig. 10.7(a) where the flow curves tend to approach each other in the logarithmic
representation.

10.4. Particle rotation: tumbling and tank-treading

As mentioned in section 10.2, deformable particles may exhibit tank-treading motion, i.e., rotation
without rotating their shapes. It depends on the value of the capillary number whether the
particle tumbles or tank-treads. In the limit of small Ca, the particle is virtually rigid, and it
behaves similarly to a stiff object. Contrarily, when Ca is large, the particle is deformed and
prefers tank-treading motion as will be argued soon.

Jeffery [242] has shown that the tumbling period for a rigid ellipsoid in simple viscous shear flow
is

T =

(
p+

1

p

)
2π

γ̇
(10.16)

where p = a/c (a and c are the semiaxes of the ellipsoid in the shearing plane). The value of the
semiaxis b perpendicular to the shearing plane does not play a role. For a rigid sphere, p = 1 and
the average tumbling frequency2 is ω̄/γ̇ = 1

2 where ω̄ := 2π/T . The period is longer for any other
aspect ratio. For the inertia ellipsoid of an undeformed RBC (a = 1.1r, c = 0.36r), Jeffery’s
solution predicts ω̄/γ̇ = 0.30. A deformable particle in pure tank-treading state has ω̄ = 0.

It is instructive to investigate the average tumbling frequency of the RBCs in the suspension as
function of the capillary number. In the following, ω̄ is the tumbling frequency averaged over all
RBCs in the bulk during the steady state. It is expected that ω̄/γ̇ should decrease when the
capillary number is increased. The reason is that the particles become more and more deformable
and that tumbling is replaced by tank-treading. Eventually, all particles should be in a nearly
pure tank-treading state.

Numerical results and interpretation

The results for ω̄/γ̇ are shown in fig. 10.10 both as function of Ca and Ca∗. There are various
noticeable observations:

1. All data curves collapse onto a single curve for Ca∗ > Ca∗cr = 0.2 when the data is plotted
as function of Ca∗. When the data is plotted as function of Ca, at least the curves for
different deformabilities collapse.

2. Around Ca∗cr, the tumbling frequency strongly decreases.

3. For Ca∗ < Ca∗cr, the tumbling frequency is larger for smaller volume fractions.

4. Below Ca∗ = 0.1, the tumbling frequency increases with the capillary number.

The first two observations can be understood based on the discussions in section 10.3. The
deformability κS and the bulk shear rate γ̇ can be replaced by Ca, and the data can be described
by two instead of three variables (Ht and Ca). This supports the hypothesis that the term
ρ∂tu does not play a noticeable role in the present simulations. Certainly, the more interesting
observation is that only one parameter, the corrected capillary number Ca∗, is sufficient to
describe all data for Ca∗ > Ca∗cr. For large capillary numbers and not too large a volume fraction,
the particles are deformable enough to be in a more or less isolated tank-treading state without

2For a sphere, the instantaneous tumbling frequency is constant. For general ellipsoids, it is a function of time.
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Fig. 10.10.: Average tumbling frequencies of suspended red blood cells (RBCs). The average reduced
tumbling frequency ω̄/γ̇ is shown as function of capillary number (a) Ca and (b) Ca∗. When plotted
as function of Ca∗, all data collapse on a single curve for Ca∗ > Ca∗cr = 0.2. The analytic values for
a rigid sphere and a rigid ellipsoid with aspect ratio (p = 1.1/0.36) and the values obtained for an
isolated deformable RBC are also shown. For Ca∗ ≥ 0.15, the tumbling velocity of a single RBC is
zero on average. The gray area denotes the region (Ca∗ ∈ [0.1, 0.3]) where tumbling is replaced by
tank-treading.

the requirement to rotate their shapes additionally (thus the decay of ω̄/γ̇ around Ca∗cr). The
particles tank-tread in their own private volume, and direct (i.e., non-hydrodynamic) collisions
with neighbors are suppressed. In contrast, rigid non-spherical particles in a dense suspension
necessarily have to collide during tumbling. At large Ca∗, particles are aware of their neighbors
only via the stresses in the fluid surrounding them. The suspension stress which is contained in
the definition of Ca∗ seems to be the correct quantity to describe the deformation state of the
particles. This hypothesis will also be supported by the results provided in sections 10.5 and
10.6. The transition from large tumbling frequencies to small values at Ca∗cr marks the point at
which tank-treading sets in.

The data set for the isolated RBC in fig. 10.10(b) supports this idea. For Ca∗ ≥ 0.15, a tumbling
rotation of the particle cannot be detected. Instead, the particle is tank-treading and its inertia
tensor does not rotate in space anymore. This explains the rather abrupt decay of the average
tumbling frequency around Ca∗cr. For a suspension of particles, collisions between particles lead
to tumbling events for even larger values of Ca∗. It is also observed that ω̄/γ̇ for a nearly rigid
RBC is about 20% larger than for its inertia ellipsoid (a = 1.1r, c = 0.36r). The reason may be
that the cross-sections of the undeformed RBC and its inertia ellipsoid are different (fig. 10.3),
which leads to a deviating rotational motion.

To this end, it is reasonable to assume that the particle rotations in the suspensions for Ca∗ > Ca∗cr
are dominated by tank-treading, only interrupted by isolated tumbling events triggered by
irregularities in the ambient velocity field. Unfortunately, the simulation data is not sufficient to
provide distributions of instantaneous tumbling and tank-treading velocity probabilities. It is
expected that the independence of Ht may be violated when the volume fraction becomes so
large that particles have to deform in order to fill the volume, even in the absence of shear.

Most probably, crowding effects are responsible for the third observation. When the volume
fraction is small and the particles are still relatively rigid, Ca∗ < Ca∗cr, each particle tumbles
without colliding with its neighbors. For denser systems, however, rigid body rotations are
hindered by the mere presence of nearby neighbors, and crowding effects become important.
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(a) γ̇t = 0 (b) γ̇t = 1.25 (c) γ̇t = 2.5

(d) γ̇t = 3.75 (e) γ̇t = 5 (f) γ̇t = 6.25

(g) γ̇t = 7.5 (h) γ̇t = 8.75 (i) γ̇t = 10

Fig. 10.11.: Tumbling and tank-treading of a single red blood cell (RBC) in shear flow. The picture
sequence shows the time evolution of the rotational behavior of a single RBC in an external shear
flow with shear rate γ̇. The initial cell orientation at t = 0 is parallel to the xy-plane (perpendicular
to the velocity gradient direction). The cross-section is parallel to the xz-plane (shearing plane).
The vorticity of the shear flow is clockwise. The time evolution is shown for three different capillary
numbers, Ca = 0.1 (loosely dashed line), 0.2 (densely dashed line), and 0.5 (solid line). For Ca = 0.2,
the RBC can rotate without tumbling, whereas the RBC is not sufficiently deformed for tank-treading
for Ca = 0.1. This becomes particularly visible at γ̇t = 6.25 in (f).

Understanding the fourth observation is more difficult. One possible interpretation is that the
particles are still tumbling, but with increasing Ca∗, they become more deformed. When a
collision between two particles during tumbling at higher Ca∗ occurs, the particles are, although
not tank-treading, slightly softer as for smaller values of Ca∗ and thus squeeze past each other
more efficiently. It has to be stressed again that the third and fourth observations are connected
with the non-spherical shape of the RBCs.

Tumbling and tank-treading behavior of an isolated red blood cell

In order to better understand the angular velocity data in fig. 10.10, the rotational behavior
of an isolated RBC has been investigated as mentioned in section 10.1. The rotation behavior
of a RBC with three different capillary numbers (Ca = 0.1, 0.2, and 0.5) is visualized in fig.
10.11. The main observation is that the RBC for Ca = 0.2 is sufficiently deformable to perform
tank-treading, whereas the RBC for Ca = 0.1 has to tumble in order to rotate. This strongly
supports the interpretation that for Ca∗ ≈ 0.2, the microscopic suspension properties change
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Fig. 10.12.: Rescaled viscosity of red blood cell suspensions. The reduced apparent bulk viscosity η/η0 is
shown for all volume fractions and both deformabilities (softer and more rigid particles) as function of
capillary number Ca∗. The gray area denotes the region (Ca∗ ∈ [0.1, 0.3]) where tumbling is replaced
by tank-treading.

drastically since most of the suspended RBCs are able to perform tank-treading. It should be
noted that the volume fraction for an isolated RBC is small (here: < 2%) and, thus, Ca∗ ≈ Ca.

Pozrikidis [84, 86] has found, via simulations, a qualitatively similar behavior of an isolated RBC
compared to the RBC in fig. 10.11 for Ca = 0.1. The data cannot be directly compared, though.
Pozrikidis has used different constitutive membrane models, and the capillary number is defined
in a slightly different way. A numerical analysis of the tank-treading behavior of isolated RBCs
in simple shear flow in the limit of large capillary numbers (Ca > 0.5) is provided by Sui et al.
[243].

Effect of tank-treading on suspension viscosity

The quasi absence of tumbling-induced direct collisions of the RBCs at Ca∗ > Ca∗cr should be
one contributing factor for the shear thinning behavior of the suspensions. Fig. 10.12 reveals
that the shear thinning between Ca∗ = 0.1 and 0.3 is significant for all volume fractions. In this
interval, the relative apparent viscosities decrease by a factor of about 1.7, 1.8, 2.5, and 4.0, for
Ht = 35%, 45%, 55%, and 65%, respectively. Contrarily, the shear thinning at smaller capillary
numbers should be related to other effects since tank-treading is not important below Ca∗ = 0.1.
One possible mechanism for shear thinning before tank-treading becomes important may be
the slight deformation of the particles as indicated before. Particles, although still tumbling,
may squeeze past each other more easily when they are more deformable. In this case, another
Newtonian regime at even smaller Ca∗ should be observed where the particles are virtually rigid.
However, as already mentioned in section 10.3, there may be a finite yield stress which could also
be augmented by the presence of the repulsion force between the RBCs (section 8.7). Additional
(and expensive) simulations at even smaller shear rates are required to distinguish between these
two effects.

10.5. Particle deformation

In fig. 10.13, some exemplary deformation probability distributions p(Da) are shown. p(Da)δDa

is the probability of finding a particle with a deformation as defined in eq. (10.8) in the interval
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Fig. 10.13.: Deformation probability distributions for suspended red blood cells (RBCs). The deformation
probability distribution for soft RBCs at Ht = 55% is shown for five different shear rates γ̇. The
ellipsoids denote the corresponding deformations Dmax

a with the largest probability, respectively.

[Da, Da+δDa] in the steady state and the bulk volume. The shape of this probability distribution
function generally depends on the three control parameters (Ht, γ̇, κS). The major property of
each distribution p(Da) is its maximum at Dmax

a . This maximum denotes the most probable
deformation of a RBC in the suspension. It is found by fitting a Gaussian to the curve in the
vicinity of the maximum.

Fig. 10.14 collects all values of Dmax
a as function of both Ca and Ca∗. It is found that curves for

the same volume fraction collapse when plotted as function of Ca. This, once again, supports
the idea that the term ρ∂tu is not relevant. More striking is the observation that also curves for
different volume fractions nearly collapse when plotted as function of Ca∗. Obviously, Ca∗ is the
more suitable parameter, also for the rotational behavior in section 10.4. The interpretation is
that the deformation of a particle is dominated by the ambient suspension stress. The effect of
the volume fraction is already contained in the capillary number Ca∗ through the viscosity η.

The data points also collapse for Ca∗ < Ca∗cr, i.e., the transition from tumbling to tank-treading
described in section 10.4 is not visible in fig. 10.14. Obviously, the transition does not involve
a significant change of the deformation parameter. From fig. 10.14, it can be inferred that the
most probable deformation parameter at Ca∗cr is Dmax

a ≈ 0.1 corresponding to an aspect ratio
a/b ≈ 1.2.

Interestingly, a simple scaling law quantitatively describes all deformation states Dmax
a (Ca∗).

Here, it is worth to take the ratio a/b of the in-plane semiaxes instead of the deformation
parameter Da. The reason is that a/b is not bounded above and can be described by a simple
power law,

a

b

∣∣∣
max

− 1 = 0.89Ca∗ 0.90, (10.17)

where a/b|max corresponds to Dmax
a . The fit is also shown in fig. 10.14. It should be noted that

a/b can be converted to Da and vice versa according to

Da =
a/b− 1

a/b+ 1
,

a

b
=

1 +Da

1−Da
, (10.18)

cf. eq. (10.8). The interpretation of eq. (10.17) is that, for Ca∗ = 0, there is no deformation
(a/b = 1 and Da = 0). This relation can only be valid below a critical volume fraction above
which particles have to deform to fill the volume even in the absence of shear flow. When Ca∗ is
increased, particles are deformed in such a way that a/b grows. It is not known why the most
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Fig. 10.14.: Deformation maximum of suspended red blood cells. The most probable deformations, Dmax
a ,

are shown as function of capillary number (a) Ca and (b) Ca∗. The curves for different volume fractions
nearly collapse on a single master curve when plotted against Ca∗. The power-law fit from eq. (10.17)
is shown in (b) as dashed line. The gray area denotes the region (Ca∗ ∈ [0.1, 0.3]) where tumbling is
replaced by tank-treading.

probable deformation obeys the power-law. For future work, it may be rewarding to analyze
the entire probability distributions (fig. 10.13) as function of Ht and Ca∗. It also seems that
the single parameter Da is too simplistic for the description of a RBC and its various deformed
shapes. Thus, a more elaborate approach for the RBC deformation should be considered in the
future.

10.6. Particle alignment and orientational ordering

The director inclination angle θ and the order parameter Q> averaged over the bulk volume
and the steady state are shown in fig. 10.15 as function of both Ca and Ca∗. The inclination
angle θ is defined as the angle between the director n (which is chosen to point into positive
z-direction, i.e., nz > 0) and the x-axis. The y-component of the director is basically zero at
all times, ny ≈ 0 (data not shown). Therefore, tan θ ≈ nz/nx. Also the x- and z-components of
the director do not significantly fluctuate in time. The curves obtained for the isolated RBC in
shear flow are also shown as comparison. As already seen in sections 10.4 and 10.5, the major
finding is that Ca is not the appropriate parameter to interpret the data. Rather, the corrected
capillary number Ca∗ is the relevant quantity. When plotted against Ca∗, curves for different
deformabilities and, depending on the value of Ca∗, also curves for different Ht collapse. The
results for the order parameter Q> and the inclination angle θ are described and analyzed below.

The distributions of particle inclination angles for the soft RBCs at 55% volume fraction is shown
in fig. 10.16. As comparison, the probability of finding a rigid ellipsoid (aspect ratio p = a/c)
with inclination angle θ in the shear flow,

p(θ) ∝ dt

dθ
(θ) ∝

p+ 1
p

p cos2 θ + 1
p sin

2 θ
, (10.19)

is also shown for the special case a = 1.1r and c = 0.36r. Only for a spherical shape (p = 1), the
probability is independent of the inclination angle. Eq. (10.19) can be inferred from Jeffery’s
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Fig. 10.15.: Order parameter and director inclination angle for suspended red blood cells (RBCs). The
inclination angle θ of the director and the corresponding order parameter Q> are shown as function of
both Ca and Ca∗. The curves obtained for one single RBC are also shown (lines are guides for the
eyes). The gray area denotes the region (Ca∗ ∈ [0.1, 0.3]) where tumbling is replaced by tank-treading.

solution for the time evolution of the inclination angle [242],

tan θ = p tan

(
γ̇t

p+ 1
p

)
. (10.20)

Discussion of the order parameter

The behavior of the order parameter Q> in fig. 10.15(a) and fig. 10.15(b) can be summarized by
four main observations:

1. For Ca∗ > 0.1, Q> steadily increases until it reaches a plateau.

2. For Ca∗ < 0.05 and Ht = 35%, Q> slightly decreases.

3. Denser suspensions show a stronger ordering for small Ca∗.

4. For Ca∗ > Ca∗cr = 0.2, Q> becomes independent of volume fraction.

The first observation may be interpreted in the following way: For small Ca∗, the particles are
basically rigid. Due to the externally imposed shear flow, particles have to rotate eventually.
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Fig. 10.16.: Inclination angle probability distributions for suspended red blood cells (RBCs). The curves
denote the probability density of finding a soft RBC at 55% volume fraction with a given inclination
angle in the shearing plane (xz-plane) with respect to the x-axis for five different shear rates. The
director inclination angle corresponds to the position of the maximum of the curves. The analytic
curve, cf. eq. (10.19), for a single rigid ellipsoid (aspect ratio p = 1.1/0.36) is also shown.

During this tumbling rotation, the orientational order is decreased since the orientation ô of
a given number of particles is not conform to the director n. For increasing Ca∗, particles
become softer and start to perform tank-treading. During tank-treading, particle membranes
rotate without the need for tumbling, i.e., ô for a given particle does not significantly change
in time. Therefore, the particles violate the orientational order less, and the order parameter
increases with Ca∗. At some point (at Ca∗ ≈ 0.3), a plateau with Q> ≈ 0.88 is reached, and
the order parameter does not increase further. One reason is that even a single RBC cannot
tank-tread with a spatially fixed direction ô because its dimples break the spherical symmetry of
the membrane. This can be seen in fig. 10.11 and fig. 10.15(b). Additionally, fluctuating stresses
in the complex flow field act on the membranes and slightly shake the orientation vectors. The
second distortion mechanism seems to be more important because the curve for a single RBC
approaches Q> ≈ 1.

The second observation may be understood in a similar way: For small but increasing Ca∗, the
particles are still essentially rigid, yet small deformations are more and more possible. However,
tank-treading is still not relevant. The small but increasing tendency to deform may promote
tumbling because colliding particles may squeeze past each other instead of becoming stuck. As
a result, the ordering decreases slightly.

When the particles are still rigid (i.e., for small Ca∗), they have to tumble, which is prevented by
the close proximity of neighbors. On the one hand, when the suspension is more dilute, particles
may rotate freely without colliding with their neighbors. This leads to a reduction of the order
parameter since less particles are aligned with the director at a given time. On the other hand,
for denser systems, the presence of neighbors disturbs the particles’ ability to rotate freely, and
the order parameter is increased. This qualitatively explains the third observation.

The fourth observation is that there seems to be a transition at Ca∗cr ≈ 0.2 beyond which all
data points collapse on a single curve, although they belong to different volume fractions. One
may interpret this finding by assuming that particles do not see each other anymore, except for
effects which are taken into account via Ca∗. Each tank-treading particle has its own volume
for rotation, and there is no need for direct (non-hydrodynamic) collisions with the neighbors.
For larger volume fractions, the mere effect of the dense packing is an increase of the suspension
stress σ the particles feel locally. Additional evidence for this assumption has already been
discussed in sections 10.4 and 10.5. Indeed, the data for the single RBC indicates that the particle
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can be considered rigid for Ca∗ < 0.025 and tank-treading for Ca∗ > 0.2. In the transitional
interval, 0.025 < Ca∗ < 0.2, the particle dynamics is more complicated since neither tumbling
nor tank-treading are dominating.

Discussion of the inclination angle

The behavior of the director inclination angle θ as function of capillary number and volume
fraction as shown in fig. 10.15(c) and fig. 10.15(d) can be summarized as follows:

1. For small Ca∗, θ is decreasing.

2. The inclination angle is larger for denser systems as long as Ca∗ is small.

3. For larger Ca∗, the inclination angle increases again.

4. For Ca∗ > Ca∗cr = 0.2, θ becomes independent of volume fraction.

The physical meaning of the director inclination angle θ is less obvious than that of the order
parameter Q>. There does not seem to be a theory for the behavior of the inclination angle for
deformable RBCs at varying capillary numbers. At this point, no explanation for any of the first
two observations can be given.

Comparing the data for the suspensions with the single particle curve reveals that all data
collapses for Ca∗ > 0.1. Therefore, the particles in the suspension seem to behave as isolated
particles, although the order parameter is smaller (fig. 10.15(b)). It should be noted that the
limiting value for the inclination at vanishing capillary number is θ = 90◦.

The last observation can be interpreted in the same way as the similar observation for the order
parameter. When the capillary numbers are large, the particles perform tank-treading and do
not see their neighbors except for effects completely contained in the suspension stress and thus
Ca∗. Additional direct effects due to crowding seem to be absent. This raises the question up to
which volume fraction this behavior can still be observed. At some larger value for Ht, particles
have to touch even when they are tank-treading.

Liquid crystals and red blood cell suspensions

Due to its significant orientational ordering, the RBC suspensions investigated in this work can
formally be considered a liquid crystal. However, there are pronounced differences between a
‘classical’ liquid crystal and the present system. In the former case, the particles are macro-
molecules and orientational ordering can be observed in the absence of shear. It is a function of
molecule shape, volume fraction, and temperature. In the present case, the particles are strongly
deformable and orders of magnitude larger than molecules, and the thermal Péclet number is
infinite. All effects, including orientational ordering, are shear induced. Therefore, the present
RBC suspensions cannot be directly compared to classical liquid crystals.

The rheology of liquid crystals is generally not well-understood [8]. Although Newtonian properties
are assumed in some theories [244], shear thinning behavior of liquid crystals has been observed
experimentally [245, 246, 247] and in simulations [240].

Comments on the alignment and ordering of deformable and rigid particles

The reason for the minimum of the inclination angle θ at intermediate values for Ca∗ (fig.
10.15(d)) may be related to the deformability of the cells and the definition of the director: At
small Ca∗, particles are undeformed, and the orientation vector ô is uniquely defined. At high
Ca∗, particles are basically elongated ellipsoids, and the orientation vector again is well defined.
In between, the particle deformation can be more erratic, making a simple orientation vector
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definition more complicated. This becomes also clear from fig. 10.11 where instantaneous shapes
of RBCs in shear flow are shown. It has to be remembered that, for deformed RBCs, there
may be different definitions of the orientation vector. Therefore, a quantitative discussion of the
alignment and ordering of RBCs in shear flow may depend on these definitions. As mentioned in
section 10.4, a more accurate description of the RBC deformation (and, thus, orientation) may
provide additional information in the future.

It may also be possible that the inclination angles for small Ca∗ and volume fractions ≥ 45%
(fig. 10.15) do not reflect the steady state. As will be discussed in section 10.8, there is evidence
that the transient time for the particle alignment is larger than the simulation time for these
simulations. Therefore, it may be possible that longer simulation runs reveal a different inclination
angle behavior for small capillary numbers.

Janoschek et al. [248] have used a simplified model for blood flow. Although individual particles
are resolved, these are rigid discoid ellipsoids with the ability to overlap to some extend. This
overlap is intended to mimic the deformability of the particles. However, tank-treading is not
considered. The particles can only perform tumbling rotations. Although shear thinning behavior
is recovered, the individual and collective particle dynamics differ from the present results.
Janoschek et al. [248] observe that both the director inclination angle and the order parameter
decrease with increasing shear rate. This is in marked contrast to the findings in this section.
It is not surprising that models without intrinsic tank-treading ability show a different shear
rate-dependence for the order parameter. Shear thinning, on the one hand, is a relatively general
property of dense suspensions, irrespective of their microscopic constitution [3]. If, on the other
hand, also the microscopic behavior of the constituents shall be reproduced, tank-treading seems
to be unavoidable for blood simulations at higher shear rates.

10.7. Particle displacements: ‘ballistic’ and diffusive motion

The statistical RBC motion may be described by the mean square displacement (MSD),

MSDα(Δt) :=
〈
(Ciα(t+Δt)− Ciα(t))

2
〉
run,i,t

. (10.21)

The average is taken over all independent runs, all particles i (which are in the bulk at time t) and
time (in such a way that t and t+Δt are in the steady state interval). Ciα is the α-component
of the centroid of particle i. The MSD indicates which average squared distance a particle has
moved along direction α in the time interval Δt. For an unsheared Brownian hard sphere system
in the absence of a suspending fluid, the MSD is quadratic in Δt for small Δt and linear for large
Δt. The former regime is called ballistic where the particles move with constant velocities between
collisions. The latter is called diffusive and characterized by a thermal diffusion parameter Dth.
As long as the particles are spherical and the system is homogeneous and not sheared, diffusion
far away from any wall is isotropic.

For sheared systems, the diffusion mechanism depends on the shear rate. As long as the
Weissenberg number is small, the system is in the linear response regime. For increasing
Weissenberg numbers, the Brownian contributions decrease, and diffusion becomes mainly shear-
induced. If the system is non-Brownian, as in the present case, shearing is the only mechanism
for diffusion [1]. The concept of shear-induced diffusion and its experimental measurements
are thoroughly described by Breedveld [94]. Diffusion in colloidal systems is reviewed in [13].
Shear-induced diffusion was first investigated by Eckstein et al. [249] and later by Leighton
and Acrivos [250]: Particles move from regions with large to those with small stresses, trying
to restore equilibrium which is distorted by the shear flow [13]. Similarly to thermal diffusion,
the MSD is known to grow linearly for the long-time shear-induced motion [251]. Due to the
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presence of neighbors, particles cannot move on straight lines when the suspension is sheared,
and non-affine displacements are observed which eventually give rise to the diffusive motion.

The present suspensions are different from, e.g., molecular dynamics simulations of hard sphere
systems in many aspects, and it arises the question if the MSD can provide useful information for
the RBC suspensions as well. On the one hand, the particles are deformable and not spherical.
This renders the definition of Ci not unique (see below). On the other hand, particles in the
present system interact constantly via hydrodynamic stresses whereas hard spheres in the absence
of a suspending fluid do not interact between collisions and move with constant velocity. This is
the reason for the term ‘ballistic motion’. Due to the existence of the smooth particle interaction
force (section 8.7), the presence of the dissipating suspending fluid, and the possible deformation
of particles during contact, it cannot be expected that the MSD provides information which can
be directly compared to results obtained from hard sphere simulations. Anyway, Bishop et al.
[252] claim that shear-induced diffusion in blood vessels may increase the radial dispersion of
particles and solutes by orders of magnitude as compared to Brownian diffusion.

According to Breedveld et al. [253], the shear-induced diffusion is anisotropic, i.e., a symmetric
diffusivity tensor D is introduced. All of its components obey Dαβ ∝ γ̇r2. In the remainder of this
section, only the diffusivities along the y-axis (vorticity direction), Dyy, and the z-axis (velocity
gradient direction), Dzz, are considered. They are abbreviated by Dy and Dz, respectively.

Computation of the mean square displacements

The first step to obtain the MSD is the definition of the centroid of particle i. Two definitions
have been tested in the present work. The first is the center of the surface,

CA
i :=

∫
Ai

dAx∫
Ai

dA
, (10.22)

the second is the center of the volume (center of mass for constant density),

CV
i :=

∫
Vi
dV x∫

Vi
dV

, (10.23)

where x is a point either on the surface or in the volume of particle i, respectively. For spheres
and other symmetric objects (such as an undeformed RBC), both definitions are equivalent.
However, for an asymmetric particle (e.g., a deformed RBC), both centroids may be located at
different points in space. It is not directly obvious which definition is more reasonable because
the mass of the RBCs does not play a role. Therefore, both definitions have been used separately.

It turns out that the definition of the MSD as given in eq. (10.21) has to be corrected for finite
size effects in order to produce more reliable results. Due to the finite system size, a non-negligible
linear particle displacement along the vorticity direction can generally be observed. Therefore,
the MSD is computed from

MSDα(Δt) =
〈
(Ciα(t+Δt)− Ciα(t)− LDα(Δt))2

〉
run,i,t

(10.24)

where

LDα(Δt) := 〈Ciα(t+Δt)− Ciα(t)〉run,i,t (10.25)

is the average linear displacement of the particles within the time interval Δt. The reason for
the linear displacement can be understood in the following way: The total momentum and with
it the average velocity of the fluid in the vorticity direction is conserved because (i) the NSE
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Fig. 10.17.: Mean square displacements (MSDs) of suspended red blood cells (RBCs). The MSDs for the
soft RBCs at 65% volume fraction based on the volume centroid are shown for different applied shear
rates γ̇ and for the motion along the (a) vorticity and (b) velocity gradient direction. The MSDs have
been normalized by the large RBC radius r = 9, the time axis by the inverse shear rate 1/γ̇. Curves
for the other volume fractions and the more rigid RBCs are qualitatively similar and are not presented.
The solid lines denote the asymptotic Δt2- and Δt-slopes, respectively.

and the LBM are momentum conserving and (ii) a no stress boundary condition at the wall in
vorticity direction (section 5.4.2) has been chosen. However, a net momentum exchange between
the bulk and the wall regions generally takes place, leading to a generally non-zero velocity of
the bulk region. This average motion may mask the fluctuating motion of the particles if not
filtered accordingly. For the motion in velocity gradient direction (along the z-axis), the linear
displacements are less relevant because motion is strongly hindered by the presence of the walls
at z = 0 and z = Lz.

Investigations of the present data have shown that the results for the MSD are only acceptable
when the averaging volume is as large as possible, even when the corrected version in eq. (10.24)
is used. Therefore, the data is not sufficient to allow the study of the z-dependence of the MSD
by dividing the volume between the walls into smaller bins. In particular, the near-wall behavior
of the MSD cannot be analyzed as compared to the bulk behavior. The number of RBCs in each
bin would be too small, and the relative importance of the linear displacements increases for
decreasing bin size, causing noisy results. Consequently, the MSD is always computed in the
entire bulk region (between z = 40 and 120). Since the MSD is already averaged over all runs, a
statistical uncertainty as indicated in section 10.1 cannot be given.

The initial transient ttr for the MSD computation at the beginning of the simulations was found to
be about three inverse shear rates, but at least 2×104 time steps which is roughly the momentum
diffusion time tmd = L2

z/(8ν0) = 19200 for a system of size Lz = 160 and viscosity ν0 = η0/ρ = 1
6 .

Therefore, the data within the initial time interval until ttr = max(3/γ̇, tmd) is excluded from the
analysis for the MSD. Neglecting a longer initial interval does not lead to significantly different
results. These transients are shorter than for the collective ordering (section 10.6). This indicates
that the MSD is dominated by local properties of the system.

Overall properties of the mean square displacements

Some exemplary MSD curves (soft RBCs at 65% volume fraction) for the particle motion along
the y- and z-axes are shown in fig. 10.17. For the other simulation parameters, the MSDs are
qualitatively equivalent and, therefore, are not shown. It can be seen that, similarly to molecular
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Fig. 10.18.: Reduced diffusivities of suspended red blood cells. The reduced diffusivities, (a) Dy/(γ̇r
2)

and (b) Dz/(γ̇r
2), are shown as function of capillary number Ca∗. They equal the inverse of the

shear-induced Péclet numbers, Peα (α = y, z), cf. eq. (10.26). The gray area denotes the region
(Ca∗ ∈ [0.1, 0.3]) where tumbling is replaced by tank-treading.

hard sphere systems, a regime with a quadratic Δt-dependence is followed by a linear dependence
at larger time shifts Δt. The transition sets in after about one inverse shear rate. At the
beginning of the transition, the particles have moved by 0.1–0.2r which is of the order of the
distance between particles. A plateau is absent for all investigated volume fractions and shear
rates. This indicates that cage effects are unimportant for the studied range of parameters.

It must be emphasized that, for the small shear rates, the simulation time in terms of γ̇t is so
short that the diffusive regime has only just developed. Longer simulations are necessary to
improve the quality of the results in these cases. Still, they are satisfactory to perform some
qualitative and quantitative investigations. The behavior of the MSD in the quadratic and the
linear regimes is thoroughly analyzed in the following.

Linear regime and particle diffusion

In terms of displacements, diffusion along the y- and z-directions starts at MSD ≈ (0.3r)2 for
all investigated cases. Since the MSD curves are mutually shifted along the Δt-axis (fig. 10.17),
the onset of diffusion in terms of time shift γ̇Δt is varying. The reason for the shift is that the
prefactor in the quadratic regime is a function of the applied shear rate as will be discussed below.
The linear regime starts later if the particles are more deformed (after 1–5 inverse shear rates).
Breedveld [94] has observed that the shear-induced diffusion regime for hard sphere systems
starts at about γ̇Δt = 1. This indicates that the deformability of the particles delays the onset
of diffusion.

The diffusion coefficients Dy and Dz for the motion along the y- and z-axes are obtained by
fitting mΔt+ n to the MSD curves in the Δt-interval where the curve is linear. Since the MSDs
reflect the displacements in 1D, the gradient m is assumed to be twice the diffusivity. In the
region where γ̇Δt is large, deviations from the linear behavior are observed. It is believed that
these deviations are caused by the smaller number of available initial times over which the data
can be averaged. Therefore, these regions are excluded from the fit. Longer simulation runs
would reveal if this interpretation is correct. As mentioned above, the MSD data is directly
averaged over all independent runs. Instead of the uncertainty based on statistical averaging, a
relative ad-hoc error of 10% for the diffusivities is assumed. The intention is to keep track of the
uncertainties and to distinguish physical effects from possible artifacts. The diffusivities have
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Fig. 10.19.: Relative importance of red blood cell diffusion along the y- and the z-axes. The data is shown
as function of capillary number Ca∗.

been found to be identical for both definitions of the centroid, eq. (10.22) and eq. (10.23). The
reason is that the relative difference between both centroids is small compared to the particle
displacements at larger Δt where the MSDs are linear.

For hard sphere systems, all components of the shear-induced diffusivity tensor scale like
Dαβ ∝ γ̇r2, and D is an increasing function of volume fraction up to 50% where it levels off
[94]. In this region, typical values are Dy/(γ̇r

2) ≈ 0.07 (vorticity direction) and Dz/(γ̇r
2) ≈ 0.11

(velocity gradient direction). Fig. 10.18 contains the data for Dy/(γ̇r
2) and Dz/(γ̇r

2) as function
of capillary number Ca∗. The relative importance of Dz and Dy is shown in fig. 10.19. The
diffusivity data turns out to be a rich source of information. The following list contains the most
interesting and relevant observations.

1. The values for the diffusivities are substantially smaller than for hard sphere systems of
comparable volume fractions.

2. Both reduced diffusivities, D̂y := Dy/(γ̇r
2) and D̂z := Dz/(γ̇r

2), are decreasing functions
of the capillary number, and at least D̂y seems to approach a plateau above Ca∗cr = 0.2.

3. The diffusivity along the velocity gradient axis is nearly always smaller (down to a factor
of Dz/Dy = 0.3) than that along the vorticity axis.

4. Dz/Dy is a slightly decreasing function of Ca∗.

5. The reduced diffusivities D̂y and D̂z increase with the volume fraction for each value of
Ca∗.

The first two points indicate that the particle deformability slows down diffusive motion as
compared to rigid spheres. When the RBCs are tank-treading (Ca∗ > Ca∗cr), they seem to have a
smaller tendency to collide, or their collisions are less effective in mixing the suspension. This fits
into the picture that strongly deformed RBCs in shear flow tend to behave like isolated particles
avoiding collisions with their neighbors.

The third observation is interesting because, in contrast to the obtained value Dz/Dy ≈ 0.3–1,
theory for rigid spheres [254] suggests Dz/Dy ≈ 1.5. A similar result (Dz/Dy ≈ 1.7) for volume
fractions between 20 and 50% has been obtained experimentally [94]. There are essentially two
possible reasons for this strong deviation from hard sphere systems. First, the particles are
deformable and not spherical and have different extensions along different directions. Probably,
not only the large radius r, but also the small radius h/2 plays a role for diffusion. Second, the
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Fig. 10.20.: Reduced short time velocities of suspended red blood cells. The reduced velocities (a) vy/(γ̇r)
and (b) vz/(γ̇r) are shown as function of the capillary number Ca∗. The gray area denotes the region
(Ca∗ ∈ [0.1, 0.3]) where tumbling is replaced by tank-treading.

present system is bound by walls which may reduce the mobility of the particles along the z-axis.
Additionally, shear-induced diffusion has been found to be sensitive to small periodic system
sizes [255, 256]. It is possible that the system investigated in this work is still too small to find
reasonable values for the diffusivities. This point should be taken into account in the future.

The fourth observation that Dz/Dy decreases slightly with Ca∗ may be caused by an increasing
tendency of the tank-treading particles to form layers parallel to the xy-plane. Within these
layers, particles may diffuse more easily than moving to other layers. This hypothesis should be
tested in the future as well.

More frequent hydrodynamic collisions of the particles lead to stronger position fluctuations.
However, experiments with hard spheres suggest that the reduced shear-induced diffusivities,
D̂ = D/(γ̇r2), increase only up to a volume fraction of about 50% [94]. This is related to the
onset of crowding effects. In the present simulations, there is no indication for such a behavior
(fifth observation).

It is not clear if there is a plateau for D̂y and D̂z at smaller values of Ca∗. For rigid particles, the
capillary number is not relevant, and D̂y and D̂z should not depend on it. Therefore, it would
be interesting to investigate the diffusion at even smaller shear rates.

The Péclet number

Peα :=
γ̇r2

Dα
, (α = y, z) (10.26)

is a measure for the relative importance of particle advection and diffusion. It is the inverse of
the reduced diffusivity. Typical Péclet numbers in the present simulations are of the order of
50–200. Therefore, advection within the shearing plane is significantly more important than
diffusion in y- or z-direction. Typical thermal Péclet numbers for a RBC in shear flow (r = 4μm,
γ̇ = 100 s−1, Dth = kT

6πη0r
≈ 5× 10−14m2 s−1) are of the order of 3× 104. Shear induced diffusion

is more important, at least for shear rates above 1 s−1. This provides an a posteriori justification
why thermal fluctuations in the present simulations have not been taken into account. Contrarily,
when RBCs are simulated at small shear rates (< 1 s−1), thermal fluctuations cannot be simply
ignored.
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Fig. 10.21.: Relative importance of red blood cell short time velocities along the y- and the z-axes. The
data is shown as function of the capillary number Ca∗.

Quadratic regime and ‘ballistic’ particle motion

The ‘ballistic velocity’ of the RBCs at small displacements is found by fitting v2αΔt2 (α = y, z) to
the MSD data for γ̇Δt ≤ 0.15. Within this interval, the MSDs have been found to be quadratic
in Δt (fig. 10.17). Similarly to the diffusivities, the velocities vy and vz should be basically
proportional to the applied shear rate γ̇ because all motion in the system is shear-induced.
Therefore, the reduced velocities v̂y := vy/(γ̇r) and v̂z := vz/(γ̇r) are shown in fig. 10.20. The
data is obtained from taking the center of volume, eq. (10.23). For the less deformed particles
(smaller Ca∗), the results obtained from the center of surface, eq. (10.22), are practically identical.
If, however, the particles are more strongly deformed (larger Ca∗), deviations up to 8% in the
linear velocities have been found (data not shown). Without exception, the velocities for the
center of volume are larger than those for the center of surface. It is clear that the less deformed
particles are generally more symmetric, leading to a smaller deviation of both center definitions.
The deviations of 8% at larger Ca∗ do not significantly affect the qualitative discussion, and only
the data obtained from the center of volume is considered in the following.

Important information can be extracted from fig. 10.20. Both v̂y and v̂z significantly decrease at
Ca∗ ≈ 0.1, i.e., when the particles start to tank-tread. Eventually, a plateau is reached. Above
Ca∗cr = 0.2, the velocities become independent of Ht. Below, higher volume fractions lead to
larger velocities. This is in line with previous observations. Tank-treading particles basically
behave like isolated objects which feel the other particles only via the suspension stress already
contained in Ca∗. For tumbling particles, higher volume fractions lead to stronger fluctuations in
the ambient fluid which manifest themselves in the particle displacements.

The relative importance of the velocities vz and vy is shown in fig. 10.21. Both velocity components
are equally important over the entire Ca∗-range. Thus, the short time displacements in the
yz-plane are nearly isotropic.

Caution is advised when the term ‘ballistic’ is used in the present work. The particles are
immersed in a viscous fluid, and inertia effects are absent. Therefore, it is wrong to assume that
particles just move with constant velocity until they touch a neighbor because hydrodynamic
interactions are also present when the particles are isolated. However, this does not imply that
the MSD cannot be quadratic in Δt at short time shifts. For rigid spheres immersed in a viscous
fluid, Breedveld [94] even reports another linear regime (instead of a quadratic behavior) at
small displacements (γ̇Δt < 0.1), possibly due to the Brownian motion of the molecules of the
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Fig. 10.22.: Non-Gaussian parameter (NGP) for diffusion of suspended red blood cells (RBCs). The data
for the motion of the soft RBCs with Ht = 65% along the y-axis is shown. The NGP curves for the
motion along the z-direction and the other simulations are qualitatively similar and are not shown.

suspending fluid. The mechanism responsible for the quadratic behavior seen in this section at
time shifts < 0.2γ̇Δt (fig. 10.17) is not known, but it may be related to the deformation of the
RBCs.

Non-Gaussianity

The displacement distributions for dense hard sphere systems are typically Gaussian in the
ballistic and in the diffusive regimes, indicating uncorrelated particle motion. In the transitional
region, when particles are caught in a cage of neighbors, motion may be correlated and the
distributions may be non-Gaussian. One measure to investigate this property is the non-Gaussian
parameter (NGP)

NGP :=
M4 − 3M2

2

M2
2

(10.27)

where

Mn :=

∫
xnG(x) dx (10.28)

is the n-th moment of the distribution G(x) of variable x. If G(x) is a Gaussian distribution, it
obeys

G(x) =
1√
2πσ2

exp

(
(x− x̄)2

2σ2

)
(10.29)

where x̄ is the mean and σ2 is the variance of the distribution of the variable x. The NGP is
defined in such a way that it vanishes for a centered Gaussian (x̄ = 0).

In the present simulations, the transition between the quadratic and the linear regimes is found
between 1/γ̇ and 5/γ̇. Even for the densest system, there is no sign of a plateau in the MSD
curves (fig. 10.17). The NGPs for the displacements of the softer RBCs with 65% volume fraction
are shown in fig. 10.22. Over the entire Δt-range, there is no significant deviation from zero.
Rather, the NGP seems to be dominated by fluctuations caused by the finite size of the system
and the reduced number of sample points at large values of Δt. These curves base on the center
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Fig. 10.23.: Displacement probability distributions of suspended red blood cells (RBCs). The probability
distributions of the soft RBCs with Ht = 65% and the smallest shear rate (γ̇ = 1.54× 10−5) for the
linear displacements (LD) along the y- and z-axes are shown for three strains (γ̇Δt = 0.015, 1, and 3).
These strains belong to the quadratic, transitional, and linear regimes, respectively (fig. 10.17). The
solid line denotes a Gaussian with unit standard deviation (SD) and zero mean. The other simulations
lead to qualitatively similar results which are not shown.

of volume, eq. (10.23), but they are similar if eq. (10.22) is used instead. Fig. 10.23 shows three
examples of the displacement distributions for the same suspension at the smallest shear rate (at
γ̇Δt = 0.015, 1, and 3). It can be inferred that there is no significant non-Gaussian property of
the displacement distributions, neither in the quadratic, the linear, or in the transitional regime.
The results for the other simulations are qualitatively similar and are not shown.

Concluding, the absence of a plateau in the MSD curves (fig. 10.17), the still increasing diffusivity
with volume fraction in fig. 10.18, and the nearly vanishing NGPs in fig. 10.22 and fig. 10.23
strongly indicate that the present suspensions are far from the glassy state.

10.8. Shear stress fluctuations

The method of planes (section 9.4) allows of the computation of the particle stress averaged over
planes parallel to the confining walls. Due to the microscopically inhomogeneous suspension
structure, the local stresses are subject to permanent fluctuations about their macroscopic
ensemble averages, σ(z, t) = 〈σ〉+ δσ(z, t). In the following, 〈σ〉 denotes the macroscopic stress
(averaged over the entire bulk volume, the steady state, and all independent runs), and δσ(z, t)
denotes the instantaneous stress fluctuation (averaged over the xy-plane). It has to be noted
that the stress fluctuations are tightly connected to the finite system extension in the xy-plane.
Therefore, it is expected that all fluctuations decrease like N−1/2 where N is the number of
particles in the plane.

Characterization of the fluctuations

Representative examples of the time evolution of the particle stress fluctuations for γ̇ ≈ 1.5×10−4

and midway between the confining walls are shown in fig. 10.24. These curves are of relevance
for future investigations when the dissipation mechanisms in the suspension are studied in more
detail. Stress buildup and relaxation may be correlated with local events, such as instantaneous
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Fig. 10.24.: Time evolution of the particle stress fluctuations. The particle stress fluctuations (a) δσp
xz and

(b) δσp
yz are shown as function of strain γ̇t for one representative simulation run for all investigated

volume fractions. The data sets correspond to the stresses averaged over the xy-plane at z = Lz/2
(midway between the confining walls) for the soft red blood cell suspensions at shear rates γ̇ ≈ 1.5×10−4

in steady state. The fluctuations are normalized by the average suspension stress 〈σxz〉. Typical
relative fluctuations are of the order of 2% for the xz- and 1% for the yz-component.

particle rotation fluctuations, particle deformation, or non-affine displacements. Without the
discussion in section 9.4, such an analysis would not be possible.

The standard deviations of the particle stress fluctuations (averaged over the bulk region,
z ∈ [40, 120]) are shown in fig. 10.25. The error bars correspond to the statistical uncertainties
related to the averaging over z. The first observation (fig. 10.25(a)) is that the standard deviations
of δσp

xz are between 2 and 4% of the suspension stress 〈σxz〉 and do not significantly change
over the entire Ca∗ range. Since all fluctuations in the present system are shear-induced, it is
reasonable to normalize the fluctuations by the shear rate (and the constant viscosity η0 to make
the quantity dimensionless). The results are shown in fig. 10.25(b). In this picture, on the one
hand, higher volume fractions lead to larger fluctuations. This is intuitively clear since a larger
particle density should result in more significant distortions of the suspension. On the other hand,
the fluctuations become less important for higher capillary numbers. This is particularly true
in the region where tank-treading dominates, which is in line with the idea that tank-treading
particles are more isolated and disturb the suspension less. A similar observation follows from fig.
10.25(d) where the fluctuations of σp

yz, normalized by η0γ̇, are shown. However, the dependence
on Ca∗ is less pronounced than for the fluctuations of σp

xz. The fluctuations in the yz-plane,
therefore, depend only slightly on the deformation state of the particles. Fig. 10.25(c), where
the fluctuations of σp

yz are normalized by the stress 〈σxz〉, is hard to interpret. It seems to be
counterintuitive that the relative fluctuations should increase with Ca∗ and decrease with Ht.
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Fig. 10.25.: Relative magnitude of particle stress fluctuations. The standard deviations (SDs) of the xz-
and the yz-components of the particle stress are shown. In (a) and (c), the SDs are normalized by
the suspension stress 〈σxz〉, in (b) and (d) by the fluid stress η0γ̇. The gray area denotes the region
(Ca∗ ∈ [0.1, 0.3]) where tumbling is replaced by tank-treading.

Therefore, the shear rate γ̇, rather than the shear stress 〈σxz〉, appears to be responsible for the
fluctuations in the yz-plane.

It has to be emphasized that the particle stress fluctuations, especially for the yz-component,
depend on the z-position in the bulk region (data not shown). Therefore, wall effects are believed
to be not negligible in the present discussion. The error bars in fig. 10.25 only describe the
statistical uncertainty due to averaging over z, but a systematic deviation, caused by the presence
of the walls, may be hidden. This may also explain why the data points for a given volume
fraction in fig. 10.25(c) and fig. 10.25(d), unlike those in in fig. 10.25(a) and fig. 10.25(b), do
not collapse. A larger system extension along the z-direction is required in order to give more
reliable results.

Fig. 10.26 collects some examples of the particle stress distributions (both for δσp
xz and δσp

yz). It
is obvious that the distributions of δσp

xz are not Gaussian for small capillary numbers. This may
be understood in the following way: Fig. 10.10 reveals that, for the densest suspension in the
tumbling regime, ω̄/γ̇ ≈ 0.1, i.e., the average RBC tumbling period is T ≈ 60/γ̇. This means
that not the inverse shear rate is the largest time scale in the suspension. It is rather the rotation
period of the particles. In order to obtain reasonable ensemble averages, at least half a rotation
period should be simulated. This is roughly a factor five more than the simulation duration for
the 65% suspension at the smallest shear rate. As a consequence, the steady state for the particle
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Fig. 10.26.: Distributions of particle stress fluctuations. The probability distributions of the xz- and
yz-components of the particle stress are shown for the soft red blood cell suspensions for (a) 35%,
(b) 45%, (c) 55%, and (d) 65% volume fraction and two different capillary numbers each (one in the
tumbling, the other in the tank-treading regime). The fluctuations are normalized by their standard
deviation (SD). All distributions, except for the xz-component at small capillary numbers, are Gaussian.
A reference Gaussian distribution is shown as solid line. The data for the more rigid red blood cells is
similar and is, therefore, not shown.

rotation has not been reached, independent runs are not equivalent, and ensemble averages are
not yet well-defined. Contrarily, in the tank-treading state for larger values of Ca∗, tumbling
rotation does not play a significant role, and the time scale is essentially set by the inverse shear
rate. Thus, the ensemble average is sufficiently well-defined, and the particle stress fluctuations
obey a Gaussian distribution. Interestingly, the distributions of the yz-component of the particle
stress are always Gaussian, even for small Ca∗. The reason is that the RBC rotation about the
x-axis is a pure fluctuation, 〈ωx〉 = 0, and the corresponding transient is not set by the long
rotation period T about the y-axis, but by the inverse shear rate 1/γ̇ which is shorter. Therefore,
it may be assumed that the non-Gaussian shapes in fig. 10.26 are due to the comparably short
simulation runtimes in terms of the strain γ̇t. However, this question can only be answered by
performing longer simulations in the future.
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Fig. 10.27.: Correlation diagrams for the fluid and the particle stresses. Representative examples of the
correlation diagrams for the soft red blood cell suspensions at Ht = 65% are shown. (a) Ca∗ = 0.09
(lowest shear rate) and (b) Ca∗ = 0.5 (highest shear rate). As the ensemble average 〈σp

xz〉 is not
well-defined for small shear rates, the correlation 〈δσf

xz, δσ
p
xz〉 in (a) is masked by noise. This leads to

a decrease of the correlation in fig. 10.28 at small capillary numbers.

Correlations of shear rate and particle shear stress

The Pearson product-moment correlation coefficient of two functions A(t) and B(t) can be used
to estimate the linear correlation between these functions. It is defined by

〈A,B〉 := 〈δA(t)δB(t)〉t√〈δA2(t)〉t〈δB2(t)〉t
∈ [−1, 1] (10.30)

where δA(t) := A(t) − 〈A(t)〉t and δB(t) := B(t) − 〈B(t)〉t are the fluctuations of A and B.
The time average is taken over the steady state. If the functions are linearly uncorrelated,
〈A,B〉 vanishes. A positive coefficient indicates correlation, a negative coefficient indicates
anti-correlation.

The data obtained from the simulations is used to study the correlations between the shear
rate and the particle shear stress, both averaged over the xy-plane, i.e., A(t) = 〈γ̇〉x,y(z, t)
and B(t) = 〈σp

xz〉x,y(z, t). The resulting Pearson coefficient 〈γ̇, σ〉(z) is a function of z. It is
then averaged over the bulk volume, z ∈ [40, 120], and all independent runs. Fig. 10.27 shows
representative examples of the correlation diagrams for 〈δσf

xz, δσ
p
xz〉 and 〈δσf

yz, δσ
p
yz〉. It can

be seen that, in general, shear rate (i.e., fluid stress) and particle stress are anti-correlated.
No cross-correlation such as 〈δσp

xz, δσf
yz〉 could be detected (data not shown). The (negative)

Pearson coefficients for all simulations are shown in fig. 10.28. The shear rate and the shear
stress are always anti-correlated. A local increase of the shear rate is related to a decrease of
the particle stress. The degree of correlation strongly depends on the volume fraction and the
capillary number. Denser systems are less correlated. For all systems except the densest one
(Ht = 65%), the correlation is maximum for Ca∗ ≈ 0.1–0.2. This corresponds to the region
where tank-treading sets in. For the system with 65% volume fraction, the correlation is not
pronounced, but it steadily increases with Ca∗.

The minor correlations for small values of Ca∗ in fig. 10.28 may be an artifact of an unsuitable
ensemble average. As already discussed before, the simulation times for the smallest shear rates
may be too short for a proper definition of the ensemble average of the particle stress. Inevitably,
this would directly affect the definition of the stress fluctuation, and with it the definition of the
Pearson coefficient. This becomes particularly visible in the left part of fig. 10.27(b): It seems
that the data points in the scatter plot are arranged along parallel lines with negative gradient.
Each single line would give rise to a large degree of anti-correlation. However, the entirety of the
data points rather appears being more or less randomly scattered, which decreases the apparent
correlation coefficient 〈δσf

xz, δσ
p
xz〉. Again, longer simulation runs seem to be the only reasonable

option to improve the data statistics.

Still, fig. 10.28 supports the idea that stress release is tightly connected to the ability of the
system to flow. It is expected that the stress increases when particles are locked. In this case,
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Fig. 10.28.: Pearson product-moment correlation coefficient for the shear rate γ̇ and the particle shear
stress σp

xz, cf. eq. (10.30). The correlation (multiplied by −1) is shown as function of capillary number
Ca∗.

the local shear rate decreases because the particles cannot rotate and decelerate the ambient
fluid. When the stress builds up, particles eventually pass each other, the shear rate increases
again, and the stress relaxes, i.e., decreases. Although it is not directly clear how the correlation
should depend on the capillary number Ca∗, it can be inferred that the particle deformation
state and the transition from tumbling to tank-treading may play a role.

It has to be noted that the shear rate and the particle stress are first averaged over planes parallel
to the walls. On average, depending on the volume fraction, about 20 particles are located on
such a plane. It is therefore expected that correlations may be averaged out because some of
the particles are in the act of being locked whereas others are just being freed. Ideally, the
shear rate and shear stress in the neighborhood of each individual particle should be correlated
before averaging. Unfortunately, the available data extracted from the simulations does not
allow such an analysis. It is therefore proposed to correlate the instantaneous rotation state and
the particle stress of individual particles in future investigations. Batchelor’s approach (section
9.3) allows of the computation of the stress acting on each particle, whereas the instantaneous
rotation state is more difficult to grasp (section 10.4). The particle deformability should also
be taken into account during this analysis since energy can be stored elastically. It may also be
rewarding to study the non-affine motion of particles relative to their neighborhood [257] and to
correlate it with stress relaxation events. However, this is believed to be far from trivial. It is
hardly imaginable that the particle center positions alone provide sufficient information about
the connection of particle dynamics and stress relaxation.
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