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Abstract

Understanding the rheology of blood has been a scientific task for nearly one century—for good
reasons. On the one hand, blood is vital for the human body, and some diseases like malaria or
sickle-cell anemia interfere with its proper functioning. On the other hand, blood is an example for
a dense suspension. Up to now, the rheological and dynamical properties of such complex fluids
is not completely understood. For this reason, investigating the properties of dense suspensions
in general and those of deformable particle suspensions in particular is of paramount importance.
Due to the highly complex boundary conditions which can be found in suspensions on the particle
scale, analytic investigations alone cannot clarify the unanswered questions. Especially in the
first decade of this century, the computational resources and available algorithms have become
mature enough to allow numerical studies of suspensions of deformable particles. This is the
primary aim of the current work.

In the present thesis, a numerical tool is developed which allows to simulate particulate blood
suspensions and to investigate their mechanical properties. Due to the separation of cellular
and molecular time and length scales, the basic idea is to follow a mesoscopic approach. The
red blood cells are resolved, and their deformation state is tracked explicitly. However, the
suspending fluid is described as a continuum medium with Newtonian properties. The lattice
Boltzmann method (chapter 5) is employed as Navier-Stokes solver for the suspending fluid,
whereas a finite element method (chapter 7) is used for the description of the elastic red blood cell
membranes. A fluid-structure interaction algorithm is required to couple the particle motion and
the fluid dynamics. The immersed boundary method (chapter 6) serves this purpose well. The
model is extended in such a way that dense suspensions (up to 65% volume fraction) of O(1000)
deformable particles in arbitrary geometries can be simulated with reasonable computational
effort (chapter 8).

During the course of this thesis, a new boundary condition for the lattice Boltzmann method
is introduced (section 5.4). This extension of the bounce-back boundary condition can be used
to impose a well-defined shear stress to drive the fluid, even when its viscosity is not known.
This is particularly important when the static yield stress of a suspension is to be investigated.
The static yield stress is defined as the stress below which no flow occurs. Contrarily, shearing
a suspension with a finite shear rate does not allow to find the static yield stress. Instead, the
dynamic yield stress (as the stress for vanishing small shear rates) may be obtained which is
usually smaller than the static yield stress.

In appendix B, it is argued and shown via simulations that the shear stress in the lattice Boltzmann
method is a second-order accurate observable. On the one hand, the focus of such investigations
is usually on the velocity as it is the most relevant observable for many hydrodynamic problems.
For suspension rheology, on the other hand, the stress plays a more important role. A consistent
picture of stress evaluation in immersed boundary lattice Boltzmann simulations is provided in
chapter 9. It is shown how the particle contribution to the suspension stress can be computed
locally (in space and time) and independently from the fluid stress or macroscopic assumptions.
This approach is especially important when spatio-temporal fluctuations of the shear stress are
sought after. These fluctuations carry significant information about the statistical properties of
the suspension.

The computational model is utilized to study the rheology of blood and its microdynamics
systematically (chapter 10). The influence of the most important control parameters (the shear
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rate γ̇, the volume fraction Ht, and the red blood cell rigidity κS) is investigated. It is found
that the model recovers the experimentally obtained flow curve for blood at intermediate volume
fractions. The particle deformability significantly affects the microdynamics in the suspension:
When the suspension stress exceeds a certain threshold, the red blood cells start to tank-tread,
and an increased orientational ordering develops. The combined effect of tank-treading and
collective alignment is one of the mechanisms contributing to the shear thinning behavior of blood.
The simulations provide clear evidence for the importance of a correct microscopic description
of the red blood cells in simulations. Although suspensions of rigid particles also exhibit shear
thinning under some circumstances, the microscopic behavior of the suspensions is found to be
significantly different. A remarkable result related to the simulation parameter space is found.
All relevant results can be described by two, rather than three parameters, the volume fraction
Ht and the capillary number Ca ∝ γ̇/κS. Thus, the effect of varying particle rigidities can be
compensated by the shear rate. An interesting result is that some of the data (e.g., the particle
tumbling frequency, the deformation, or the collective order parameter) collapse on a single
master curve when plotted as function of the ‘corrected’ capillary number Ca∗ ∝ σ/κS (σ is the
total suspension stress). These observations can be explained by the idea that, independent of
the suspension volume fraction, tank-treading red blood cells are aware of their neighborhood
only via the suspension stress σ.

For the first time, the shear-induced diffusion of red blood cells in simple shear flow is investigated
as function of the above-mentioned control parameters (γ̇, Ht, κS). It is shown that the
deformability increases the shear-induced Péclet number as compared to a system of rigid
particles with comparable volume fraction (section 10.7). Consequently, diffusive motion sets in
later and is less efficient in mixing the suspension. It is also found that the fluctuations of the
shear rate and the particle shear stress are correlated (section 10.8). The higher the shear rate,
the smaller the stress and vice versa. This observation may point at one possible mechanism for
stress relaxation which is not relevant for frictionless hard sphere systems: When particles are
locked during shearing, they cannot rotate and decelerate the ambient fluid. The stress increases.
At some point, the stress is sufficiently large for the particles to be freed again. They increase
their angular velocity, the shear rate grows as well, and the stress may relax.
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1. Motivation, aims, and outline of the thesis

1.1. Motivation

Both for medical sciences and fundamental research, blood is an interesting and important
suspension. The function of blood is to supply the cells in the human body with oxygen and
nutrients and transport waste products away from the cells. The deformability of red blood
cells and the fact that human blood is a dense suspension (45% volume fraction) are primary
motivations for a better understanding of the rheology of suspensions of deformable particles in
general. Even without considering the biochemical and biophysical properties of red blood cells,
their mechanical features alone (e.g., deformability and non-trivial shape) give rise to complex
rheological features.

Even the dynamics of an isolated red blood cell is still a matter of debate. For example, due to
their deformability, red blood cells show varying behavior when the ambient shear rate is changed.
Increasing the shear rate, red blood cells are progressively deformed until they ‘tank-tread’, i.e.,
the membrane rotates about its own perimeter. This peculiar feature, in connection with the
collective cell alignment, is known to be one of the key ingredients of the shear thinning of blood.
On this account, it is not a surprise that the collective dynamics of red blood cells in a dense
system is not well understood.

Certainly, blood is one of the paramount examples of complex fluids. Yet, it is only one among
myriads of others. Suspensions and emulsions are important substances for the industry and
everyday life (e.g., food production, pharmaceutics, oil industry, slurry handling, to name only a
few). Until today, it is still not entirely clear which microscopic properties of a complex fluid
determine its macroscopic rheology. One of the ultimate goals is to identify mechanisms common
for wide classes of complex fluids, independent of the details of the system. Which macroscopic
features of a complex fluid are general, and which are specific to a given subclass? How can
the fluid rheology be predicted based on its microscopic features? It is reasonable to better
understand the rheology of blood as a specific example before it is compared to other complex
fluids. In fact, it is expected that the insights gained from these investigations can be applied to
the study of other complex systems too.

The analytical solution of the microscopic equations of motion for a complex fluid remains a
technical challenge, in particular due to the complex boundary conditions at the particle surfaces
and the required description of fluid-structure interactions. In order to investigate, via numerical
methods, the macroscopic rheological behavior based on the microscale physics, it is important
to simulate a large number of particles providing a meaningful statistical description. At the
same time, the mechanical and dynamical behavior of individual particles should be captured
with sufficient accuracy. This way, events on the micro- and the macroscales can be correlated,
resulting in a better understanding of the scale-bridging mechanisms.

The above considerations call for efficient and accurate numerical methods capable of handling
complex boundary conditions and hundreds or thousands of resolved deformable particles. One of
the available simulation tools in this context is the relatively new and successful lattice Boltzmann
method as computational fluid dynamics solver in combination with the immersed boundary
method for the fluid-structure interaction.
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2 1. Motivation, aims, and outline of the thesis

1.2. Aims of the present work

Due to the complexity of boundary conditions in dense suspensions, computer simulations are
indispensable for the study of these systems. Therefore, a large part of the current work has to
be dedicated to the development and implementation of a simulation tool for the modeling of
dense suspensions of deformable particles in externally applied flows. This tool shall allow to
track both the individual behavior of the suspended particles and the macroscopic properties of
the suspension at the same time. On the one hand, the particles have to be designed as resolved
objects whose shape and deformability can be directly controlled by the user. On the other hand,
the numerical model must be sufficiently efficient to allow the simulation of hundreds of particles
in order to gain inside into collective effects and macroscopic rheology. This technical challenge
requires a thorough debate about the available state of the art in computational fluid dynamics
and fluid-structure interaction.

The next step is to provide a closed picture how to control the simulation parameters and to access
and evaluate the relevant observables of the simulations. These, in particular, include the global
and local fluid and particle stresses and the individual and collective particle dynamics, such
as their deformation, rotation, and orientational alignment. Computer simulations are useless
if their outcome cannot be analyzed and compared to theoretical expectations, experimental
measurements, or results of other computer simulations.

The final goal of this thesis is to extend the knowledge and understanding of the microscopic
mechanisms responsible for the shear thinning behavior of blood. Especially the deformation
and the tank-treading of the blood cells are inspected. To this end, the results obtained from the
developed simulation tool are evaluated and analyzed. Yet, the simulation algorithms and the
evaluation methods for the microscopic and rheological observables shall not be limited to the
simulation of blood alone. Rather, the methods developed and described in the present work
shall be, at least partially, applicable to similar systems as well, such as dense suspensions of
arbitrary deformable capsules or vesicles. The focus of the work is on the connection between
the collective properties of the system and the dynamics of individual particles. Biological or
chemical effects are not part of the investigations, i.e., the analysis relies on the dynamical and
mechanical properties of the suspensions and their constituents alone.

1.3. Thesis outline

The thesis is divided into four major parts.

The first part is dedicated to the introductory chapters. A brief overview of complex fluids
and their rheology (chap. 2) is followed by an outline of the physics of red blood cells and
hemorheology (chap. 3).

In the second part, the selection, setup, and implementation of the numerical model is discussed.
After the major physical ingredients of the model have been identified (chap. 4), the lattice
Boltzmann method as Navier-Stokes solver (chap. 5), the immersed boundary method as fluid-
structure interaction handler (chap. 6), and the membrane model (chap. 7) are presented.
Additionally, advanced model considerations, such as mesh generation, benchmark tests, and
unit conversions are discussed (chap. 8).

The microscopic and macroscopic stress evaluation is thoroughly investigated and tested in chap.
9. The red blood cell suspension simulations and their detailed interpretations are given in chap.
10, followed by the conclusions and the outlook in chap. 11.

The appendix as fourth major part is intended for providing a reference for the conventions used
in the thesis (chap. A), some tedious and technical calculations concerning the lattice Boltzmann
method (chap. B), and the red blood cell membrane energetics (chap. C).



Part I.

Introduction



2. Introduction to complex fluids and their
rheology

This chapter is intended to provide a brief overview of rheology in general (section 2.1), the
definition of complex fluids and the challenge of their investigation (section 2.2), and the rheology
of suspensions made of rigid particles (section 2.3) and deformable objects (section 2.4). A review
of the physics of red blood cells and hemorheology is given in chap. 3.

2.1. Introduction to rheology

Rheology (from Greek ρει ‘to flow’ and Greek λoγoζ ‘reason’) is the study of the flow and
deformation of matter in general and fluids in particular.

The macroscopic equations of motion for an arbitrary, incompressible fluid read

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∇ · σ + f (2.1)

and

∇ · u = 0. (2.2)

Here, ρ, p, and u are the density, isotropic pressure, and the velocity of the fluid. The deviatoric
stress tensor is denoted by σ, and external force densities (e.g., gravity) by f . Eq. (2.1) reflects
Newton’s second law, and eq. (2.2) is the continuity equation for the incompressible fluid. These
equations are only valid for continuum fluids, i.e., the individual motion of atoms and molecules
are not resolved. At length scales of about 100 molecular radii, one can consider fluids a continuum
[1].

The momentum flux tensor is defined as

M := ρuu+ pI − σ (2.3)

where I is the identity matrix. This way, the components of eq. (2.1) can be written in the
compact form ρ∂tuα = −∂βMαβ + fα. Often, the pressure p and the deviatoric stress tensor σ
are combined to the total stress tensor Σ = −pI + σ. This stress tensor describes the part of
momentum flux not being related to the mass transfer. The total stress tensor Σ corresponds to
the force dF exerted by the fluid on an oriented area element dA such that dF = Σ · dA.
The deviatoric stress tensor σ in eq. (2.1) contains all stress contributions which are anisotropic.
The deviatoric stress is an important quantity as it is a measure for the dissipation of energy in
the fluid [2]. In order to solve eq. (2.1), σ has to be known as function of the fluid velocity u
and its derivatives. The relation σ(uα, ∂αuβ , . . .) is called the constitutive law of the fluid. One
can show that, for not too large velocity gradients, the stress tensor is only a function of the first
derivatives of the velocity, σ = σ(∂αuβ) [2]. For a Newtonian fluid, the constitutive law is

σ = 2η0S (2.4)
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6 2. Introduction to complex fluids and their rheology

where η0 is a constant and

Sαβ :=
1

2
(∂αuβ + ∂βuα) (2.5)

is the symmetrized velocity gradient tensor. In simple shear flow, the tensor S has only one
non-trivial off-diagonal component, the shear rate γ̇. The corresponding component of the
deviatoric stress tensor σ is the so-called shear stress. The proportionality constant η0 is also
denoted the dynamic shear viscosity of the fluid. It is a macroscopic material property and a
measure for the resistance to flow under applied stresses. The viscosity can be experimentally
obtained with viscometers and rheometers. These devices rely on the possibility to measure shear
rate and shear stress independently [3].

It has to be emphasized again that eq. (2.1), the concept of the deviatoric stress σ, and the
viscosity η0 are only reasonable on the macroscale where the fluid can be considered a continuum.
If the fluid is described on the molecular level by solving Newton’s equations of motion for each
molecule, it is not directly clear how the stress and viscosity shall be defined. In particular,
the macroscopic stress tensor derives from the microscopic interactions and forces between the
molecules, and it is difficult to obtain local expressions for the stress tensor on the microscopic
scale where interactions are usually non-local [4, 5]. Within the framework of statistical physics,
it is possible to give expressions for the macroscopic stress and viscosity for simple systems (e.g.,
an ideal gas) as function of the microscopic properties of the system [6]. Additionally, it has to
be noted that only the divergence of the stress tensor enters the equations of motion, eq. (2.1),
which leaves a gauge freedom in the stress definition.

Many ubiquitous ‘complex fluids’ (section 2.2) like blood, honey, or mayonnaise are non-Newtonian,
i.e., their flow curves (viscosity versus shear rate) are not constant. If the viscosity decreases with
increasing shear rate, the fluid is called shear thinning. In the opposite case, it is denoted shear
thickening [1, 7]. One of the problems when studying these fluids is that the constitutive laws
σ(S) are only valid for certain classes of fluids. The detailed constitutive law found empirically
for one material usually fails to describe another. For each fluid, the constitutive law has to
be measured experimentally. These results can be compared with theoretical predictions based
on statistical physics and microscopic models for the fluids. In fact, it is one ultimate goal to
identify the common and distinct features of wide classes of complex fluids [1, 7, 8]. Some of the
mechanisms for the non-Newtonian behavior are presented in sections 2.3 and 2.4.

2.2. The complexity of complex fluids

The term ‘complex fluid’ denotes substances which flow at modest stresses on time scales
perceivable by humans. On the microscale, complex fluids usually have relevant length scales
which are much larger than atomic ones. This can lead to large structural relaxation times and
non-Newtonian effects, especially for dense systems. Complex fluids are neither simple liquids
nor simple crystalline solids, they are ‘in between’, and the constitutive law is usually non-linear
[3]. Examples for complex fluids are mustard, chocolate, toothpaste, asphalt, paints, blood,
polymer gels, foams, or liquid crystals, to name only a few. It is obvious that the understanding
of complex fluids is of paramount importance for medical and industrial applications, but also
for fundamental research.

Suspensions and emulsions are two prominent subclasses of complex fluids. Suspensions are
systems of rigid or deformable particles distributed in a simple liquid. Blood as a suspension of
deformable red blood cells is one of the most important examples (chap. 3). An emulsion is a
system of two immiscible liquid phases. The viscosity ratio of the emulsified and the emulsifying
phase is denoted λ. Emulsions are important for the petroleum, food, medical, or cosmetics
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industries [9]. When dealing with dense systems, ‘dense’ means that the average distance of the
particles is smaller than the particle size or that the system shows non-Newtonian rheology [1].

For an observer, suspensions and emulsions are only determinate in a statistical sense because it
is usually impossible to describe the microstate of each suspended particle in detail [10]. Still,
the microstructure has to be studied in order to understand the rheology and the origins of the
constitutive behavior of these complex fluids [1]. It is not a surprise that theories for complex
fluids become more and more complicated when the particles have non-trivial features such as
non-spherical shapes or intrinsic deformability [11]. The basic difficulty of understanding the
macroscopic behavior of homogeneous suspensions has been summarized by Batchelor [10]:

The problem is to determine the rheological properties of this equivalent homogeneous
fluid from a knowledge of the properties of the particles and the ambient fluid in
which they are suspended; in other words, to determine the relation between the
macroscopic or bulk properties of the suspension and its microscopic structure on the
particle scale.

This statement can be extended to complex fluids in general, including blood rheology on the
macroscale and the properties of red blood cells on the microscale. Batchelor [10] also emphasized
that

a major difficulty in the study of rheology is that one’s intuition about the form of the
constitutive stress relation appropriate to given circumstances is so poorly developed.

As already mentioned in section 2.1, it is of practical importance to find reliable constitutive
laws for complex fluids derived from microscopic properties (e.g., particle shape, interaction, and
deformability) and individual particle motion (e.g., particle rearrangements and stress relaxation).
General constitutive stress-strain relations are not known for dense complex fluids today, and
further research is necessary [1].

For suspensions, there is a clear separation of length and time scales between the suspending
medium and the suspended particles. Thus, it is reasonable to use mesoscopic approaches
where the medium is considered a continuum and the suspended particles are resolved [11].
Still, one practical reason for the intricacy of these systems is the pronounced complexity of
the microscopic boundary conditions at the particle-liquid interfaces. Therefore, the equations
of motion for realistic systems can only be solved numerically and computer simulations are
necessary. They complement the elaborate experiments performed to gain a better understanding
of the connections between the micro- and the macroscale in complex fluids.

In sections 2.3 and 2.4, a brief summary of the rheology of complex fluids made of rigid and
deformable objects is given. The rheology of blood is described separately in chap. 3. A more
detailed overview of complex fluids and simulations and experiments to investigate their behavior
can be found in the literature (e.g., [1, 3, 11, 12]).

2.3. Rheology of complex fluids made of rigid particles

The behavior of even the simplest suspensions (non-interacting, monodisperse, spherical, rigid
particles in a Newtonian liquid) is so rich that it cannot be summarized exhaustively at this
point. Rather, a brief overview will be given. Recent review articles by Stickel and Powell [1]
and Brader [11] and monographs by Dhont [13] and Larson [3] provide additional information.

The dimensionless parameters commonly used to characterize suspensions of rigid particles
(particle radius r, suspending fluid viscosity η0, external shear rate γ̇) are the volume fraction,
φ, the particle Reynolds number, Re := ργ̇r2/η0, the thermal Péclet number Pe := γ̇r2/Dth

(where Dth is the thermal diffusivity), and the Weissenberg number Wi := γ̇τ (where τ is a
structural relaxation time) [11]. For dilute systems, the relaxation time obeys τ ∝ 1/Dth, and the
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Péclet and Weissenberg numbers are equivalent. For dense suspensions, however, the structural
relaxation time may be much longer than predicted by the bare particle diffusion.

The presence of particles immersed in the suspending liquid increases its viscosity. Einstein [14]
was the first to determine the apparent viscosity of a dilute suspension of rigid, spherical particles
in simple shear flow,

η = η0

(
1 +

5

2
φ+O(φ2)

)
. (2.6)

‘Dilute’ means that effects of order φ2 are small compared to the linear corrections. This is the
case for volume fractions below a few percent. Eq. (2.6) reveals that these kind of suspensions
are still Newtonian because the leading correction term does not depend on the shear rate.

The viscosity for suspensions of hard spheres can be expanded in terms of φ where each power of
φ corresponds to hydrodynamic interactions of this order. For example, φ2-terms correspond to
two-particle interactions. Thus, for high volume fractions, analytic expressions are difficult to
obtain [3]. The rheology of suspensions becomes more and more complicated when the volume
fraction reaches some maximum value φm where the viscosity diverges (see below) [1, 3]. Things
become even more difficult when polydispersity is considered because smaller particles can be
packed in the holes between the larger ones [3].

In the following, it is assumed that the volume fraction is not too large (φ < 0.50). The interesting
case of even denser systems is briefly discussed at the end of this section.

Batchelor [10] has argued that, for an athermal suspension of rigid particles, the suspension will
always be Newtonian except the suspending fluid itself becomes non-Newtonian or the particle
inertia becomes important. In reality, for Brownian systems, it is observed that suspensions of
rigid particles generally show shear thinning behavior at some intermediate shear rate range if the
volume fraction exceeds 30 or 40% [3]. Below this regime, at smaller shear rates, the suspensions
are Newtonian. The reason for this shear thinning is caused by a change of the suspension
microstructure [13]. Shear thinning is related to a relative decrease of the Brownian contribution
to the stress [15]. As a result, interparticle distance distributions are modified, particles can
arrange in layers, and collisions become less probable, thus reducing the flow resistance [3].
Therefore, non-Newtonian fluids become anisotropic when they are sheared [8].

If the inverse shear rate is small compared to the structural relaxation time τ of the fluid, i.e., if
Wi = γ̇τ > 1, the fluid behavior is generally transient and shear thinning. For small Weissenberg
numbers, the system is within the linear response regime, and the viscosity is constant [11].
On the one hand, for Newtonian fluids such as water, the relaxation time is of the order of
10−12 s, which explains why non-Newtonian properties of water in practical applications are
unimportant [8]. On the other hand, for complex fluids where the suspended particles are orders
of magnitude larger, the time scale related to the change of microstructure can be comparable
to the simulation or experimental time [1]. Therefore, non-Newtonian behavior is often related
to time-dependent rheology, and the history of shearing plays a role. Fluids with decreasing
viscosity as function of time are called thixotropic. Non-Newtonian effects in atomic systems are
in principle also observable at very high shear rates (γ̇ > 1010 s−1). This, however, is orders of
magnitudes higher than what can be realized in today’s experiments [11]. If the particles are
non-spherical, additional effects such as flow-alignment can support the shear thinning behavior
[1].

When the shear rate is increased beyond the shear thinning regime, another Newtonian regime
is present. After this, at even larger shear rates, shear thickening in dense suspensions can be
observed. This effect is generally related to a decay of layers and particle clustering due to
lubrication [3, 11]. Shear thickening is found for a wide range of suspension classes at high shear
rates [16].
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Interesting additional effects can be observed when the suspension volume fraction φ exceeds
0.50. For increasing volume fractions, the first Newtonian regime is progressively shifted towards
smaller shear rates until it completely vanishes from the experimental window [11, 17, 18]. When
the volume fraction reaches values of about 0.58, the particles are trapped in a cage of neighbors,
diffusivity decreases drastically, and the viscosity significantly increases until it diverges at
φm ≈ 0.63 which is the random close packing [1, 11]. Above the density of 0.58, the suspension
is said to be in the ‘glassy state’ if the particles are not forming a crystal lattice structure. The
transition from the liquid to the glassy state is called glass transition. The mode-coupling theory
[19] predicts that the viscosity in the glassy state diverges like η ∝ γ̇−1 for γ̇ → 0. In this
case, there would exist a finite dynamic yield stress σy = limγ̇→0 η(γ̇)γ̇. The so-called ‘creep
test’ (applied stress to shear the suspension) can be used to find the static yield stress [3] below
which the initially resting system is deformed elastically and above which plasticity and viscous
dissipation set it. The dynamic and static yield stress are generally not identical [20, 21]. A
recent overview of the rheology and dynamics of glasses is provided by Barrat and Lemâıtre [22].

2.4. Rheology of complex fluids made of deformable objects

The rheology of suspensions of deformable particles (such as vesicles or capsules) and emulsions
is less understood and has received less attention, especially for high volume fractions. The
rheology of these systems is more complicated to understand because the particle deformability
requires to solve also the constitutive equations for the particle shapes. Unlike hard spheres,
one can produce emulsions with volume fractions larger than the maximum volume fraction φm.
These emulsions are called highly-concentrated. Here, the droplets have to deform even in the
unsheared state, and there exists a yield stress above about 80% volume fraction [9]. It has also
been shown that blood flow under shear is still possible when the volume fraction is as high as
95% [23, 24]. In this case, the viscosity is governed by lubrication effects.

The deformability of the suspended or emulsified phase introduces another degree of freedom
which may be described by an elastic modulus κ or the surface tension γ. For capsules of radius
r, the surface elastic shear modulus has unit [κ] = Nm−1 which is identical to that of the surface
tension. Therefore, the capillary number Ca := η0γ̇r/κ (γ instead of κ for emulsions) can be
defined. It is a measure for the relative importance of hydrodynamic stresses due to shearing
and elastic stresses due to particle deformation.

Suspensions of deformable capsules and emulsions are generally shear thinning at any volume
fraction [25], which is in marked contrast to dilute suspensions of rigid particles (section 2.3). For
the special case of initially spherical capsules in the dilute limit, the apparent viscosity is [26]

ηa = η0

(
1 + φ

(
5

2
−O(Ca2)

)
+O(φ2,Ca3)

)
(2.7)

and decreases with increasing Ca ∝ γ̇. In the limit of rigid particles (Ca→ 0), Einstein’s viscosity
for spheres, eq. (2.6), is recovered. A similar result is obtained for emulsions [27],

ηa = η0

(
1 + φ

(
5λ+ 2

2(λ+ 1)
−O(Ca2)

)
+O(φ2,Ca3)

)
. (2.8)

For λ → ∞, the emulsified phase becomes quasi-rigid, Ca → 0, and Einstein’s viscosity is
found again. The mechanism for shear thinning of dilute systems of deformable objects is their
shear-induced elongation and alignment with the flow [9].

Although both the capsule suspensions and the droplet emulsions are shear thinning, cf. eq. (2.7)
and eq. (2.8), the zero-shear viscosities are not identical because the interface physics is different.
Due to the absence of elastic stresses in the droplet interface, the interface can contribute to
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dissipation even when it is not deformed [28]. It has been found that the volume fraction and
the deformability alone are not sufficient to describe the macroscopic viscosity because details of
the surface play an important role (e.g., surfactants in emulsions or capsule roughness) [9]. This
is particularly the case for dense systems where particles are in direct contact.



3. Introduction to the physics of red blood cells
and hemorheology

This chapter provides a concise overview of the physics of red blood cells (RBCs) in section 3.1
and the rheology of blood in section 3.2.

3.1. Introduction to the physics of red blood cells

In 1674, after the light microscope had been invented, RBCs have been observed by Anton
van Leeuwenhoek for the first time. The average human RBC—also called erythrocyte—is a
biconcave cell of about 8μm diameter and 2.5μm thickness. Under physiological conditions, its
volume and surface are about 100μm3 and 130μm2, respectively [29]. The shape of a RBC is
shown in fig. 3.1. RBCs are anucleate, highly flexible cells consisting of a membrane and the
enclosed cytoplasm, a viscous liquid [30] which can only support an isotropic pressure [31]. The
cytoplasm is basically a saturated aqueous hemoglobin solution. Hemoglobin is an oxygen carrier
protein and responsible for the red color of blood. The main task of a RBC is to transport
oxygen to the tissue in the body. In this process, RBCs have to pass capillaries with diameters
smaller than half of the large RBC diameter. During this passage, the cells are strongly deformed
and have a large contact area with the capillary surface, which enables efficient oxygen discharge
by diffusion. Therefore, the deformability is a vital property of a RBC, and it is of paramount
importance that the RBC membrane consists of a highly flexible material [31].

Skalak and Branemark [32] observed that the minimum size of a capillary through which a RBC
can move is about 3.7μm. Smaller capillaries would require stronger deformations leading to
a surface increase of more than a few percent and consequent hemolysis (membrane damage
or rupture) [33]. During its lifetime of about 120 days, a RBC passes the human circulatory
system for nearly half a million times [34]. After this period, the flexibility of the membrane has
decreased, and the cell cannot move through capillaries efficiently. Hence, it is separated by the
spleen and dismantled for recycling. Skalak and Branemark [32] assumed that the spleen may
recognize old RBCs by their inability to enter small capillaries.

The RBC membrane is made up of a lipid bilayer (essentially an incompressible 2D fluid with a
thickness of 4 nm) and, at its inside, the cytoskeleton. Both leaflets of the bilayer can relax lateral
stresses independently, and the required energy to expand or compress the area of such a leaflet is
orders of magnitude larger than bending or shearing it [33, 35]. Thus, the total surface of a RBC
is practically constant. The cytoskeleton is an elastic network of polymerized proteins supporting
the structural stability of the membrane and giving rise to a finite elastic shear resistance [31].
Evans [36] stated that the finite bending resistance of the membrane is caused by the resultant
of parallel surface compression resistances in the lipid bilayer. Although the cytoskeleton has an
area dilation modulus, it is much smaller than that of the bilayer. The skeleton does not seem
to be relevant for the bending resistance either [33, 35]. Additionally, the volume of a RBC is
constant as long as the ion concentration in the ambient fluid is not changed. The reason is the
impermeability of the membrane with respect to ions and the osmotic pressure caused by ion
concentration gradients across the membrane [31]. Due to its partially fluid nature, the RBC
membrane also has viscous properties [34, 37, 38]. The nanomechanics of the skeletal network of
RBCs is still poorly understood, i.e., it is unclear how the mechanical macroscale properties of
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Fig. 3.1.: Schematic shape of a red blood cell (RBC). Half of the cell is made transparent so that the
biconcave cross-section (black line) is visible. The in-plane diameter is about 8μm, the maximum
thickness 2.5μm. The dimples of the RBC are clearly visible.

the cytoskeleton emerge from its microstructure [39].

On a length scale comparable to the RBC diameter, both the lipid bilayer and the cytoskeleton
can be regarded as homogeneous and isotropic [31]. Since the membrane surface tension is
usually negligible, the dynamics is dominated by curvature and strain elasticity [40]. The
bending modulus of the lipid bilayer (κB ≈ 1.8–2.1× 10−19Nm) has been extracted from different
experiments, e.g., micropipette aspiration [41] or local pulling of the membrane with the tip of
an atomic force microscope [42]. Finding the modulus for the shear resistance of the cytoskeleton
in experiments is rather difficult, and a large scatter of possible parameters have been reported.
It is usually assumed that the elastic shear modulus is ‘somewhere’ in the region between 2 and
10μNm−1 [31, 43]. Generally, the elastic moduli depend on the environment, e.g., pH [44] or
osmolarity [45].

The biconcave shape of an undeformed RBC represents the minimization of the membrane
energy subject to constant surface and volume constraints. The liquid cytoplasm does not favor
any shape, and it can be shown that the cytoskeleton does not play a significant role for the
equilibrium energetics either. Thus, the membrane bending energetics determine the shape of a
RBC [31].

The small ratio of thickness and lateral extension and the absence of a nucleus make RBCs very
flexible [40, 46]. Another ingredient for their large deformability is the surface excess. Compared
to a sphere of the same volume, the surface of a RBC is about 25% larger. This additional
surface allows the cell to deform significantly, even under the constraint of constant volume and
surface. A RBC, therefore, shows similarities with fluid droplets, and blood behaves more like an
emulsion than a suspension [30, 47, 48], cf. section 3.2.

Many diseases induce pathological properties of the RBCs, e.g., malaria (an acquired disease)
[49], sickle cell anemia (a genetic disorder) [50], or diabetes mellitus [51]. With respect to the
mechanical properties of the cells, the above-mentioned diseases are critical because the RBC
stiffness is generally increased. As a consequence, it is more difficult for the cells to move
through capillaries and to deliver oxygen to the tissue. Moreover, RBCs may die or be damaged
prematurely.

3.2. Introduction to hemorheology

Human blood is, by volume, composed of about 55% plasma and 45% suspended blood cells.
The volume fraction of the cells is also called hematocrit, Ht. The function of blood is to supply
the cells in the human body with oxygen and nutrients and transport waste products away from
the cells. Blood plasma is made up mostly of water (> 90%), proteins, glucose, mineral ions, and
hormones. It can be considered a Newtonian fluid [7]. The majority of the blood cells are RBCs,
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cf. section 3.1. Other, less common cells are white blood cells (leukocytes, one for 1000 RBCs
[46]) which form a significant part of the immune system and platelets (thrombocytes, one for
15 RBCs [52]) which are relevant for blood clotting. Consequently, blood is basically a dense
suspension of deformable RBCs.

Hemorheology denotes the science of the rheology of blood and its particulate components. The
largest blood vessels have diameters (a few millimeters up to centimeters) which are more than
three orders of magnitude larger than the smallest vessels and the RBCs (a few micrometers).
For this reason, hemorheology is a multiscale discipline. Also the range of Reynolds numbers
in the human vascular system is huge. On the one hand, in the smallest blood vessels, the
flow is basically viscous (Re ≈ 0.001 or less). On the other hand, in large arteries, it can reach
values of a few 1000 [46, 51]. Understanding hemorheology is relevant mostly for medical reasons.
Many diseases are related to modified rheological properties of blood. This can cause further
complications, e.g., undersupply of oxygen, stroke, or infarction. Yet, there is growing interest in
comprehending the rheology of soft suspensions in general, cf. chap. 2. Review articles about
hemorheology can be found in the literature (e.g., [46, 51, 53]).

Blood is a shear thinning fluid for shear rates below 100 s−1. Above, it can be considered
Newtonian [7] with a viscosity of 5–6 cP which is about five times larger than that of the suspending
plasma [50]. There are different mechanisms for shear thinning in blood: (i) aggregation of RBCs
at small shear rates, (ii) deformation, elongation, and tank-treading of RBCs at intermediate
and high shear rates [7, 54, 55], and (iii) alignment of RBCs at high shear rates [46]. In general,
blood viscosity depends on hematocrit, temperature, plasma viscosity, disease state, age of RBCs,
etc. [46].

Schmid-Schönbein and Wells [47] have investigated the shear thinning properties of blood at
various hematocrit values. They found that the apparent viscosity of blood at shear rates beyond
230 s−1 is virtually independent of hematocrit (up to more than 90%). This is a hint that RBCs
behave similarly to an emulsion under some circumstances, which has also been noted by other
researchers (e.g., [30, 48]).

RBCs have been observed to form aggregates at small shear rates (below a few s−1). They can
be 1D (rouleaux) or 3D clusters [51, 56, 57]. The protein fibrinogen seems to be responsible
for aggregation as it can bind to RBCs and connect them [7, 58]. When the ambient shear
rate is increased, the fibrinogen bonds are broken and the aggregates decay. Aggregation and
aggregate decay are reversible processes. In the absence of fibrinogen, RBC suspensions behave
as a Newtonian fluid at small shear rates [46, 54]. It is believed that the conditions for the
buildup of in vivo aggregates are only given in some few veins and venules [59]. The above
considerations suggest that RBC aggregation, for physiological hematocrit values, is a pure
biochemical mechanism which plays a role only at small shear rates. Blood shows also viscoelastic
properties. It is believed that the aggregates rather than individual cells play the dominating
role in storing elastic energy at small shear rates [60].

The deformation of RBCs is a key ingredient for its shear thinning behavior for shear rates
between a few s−1 and about 100 s−1. At small shear rates (≈ 1 s−1), RBCs tumble without
significant deformation. Above a few 10 s−1, they ‘tank-tread’ and behave more like a liquid
droplet [47]. Tank-treading denotes the rolling motion of the membrane about its interior without
changing the external shape. At even higher shear rates, RBCs are strongly elongated and aligned
with the flow, which reduces the viscosity further. Beyond 100 s−1, the viscosity does not change
significantly [46].

In the past 50 years, it has been tried to measure the yield stress of blood as function of
hematocrit. It has been suggested that it scales as σy ∝ (Ht−Hty)3 with Hty between 0.01 and
0.07 [61], i.e., a yield stress seems to be present at very small volume fractions. Since it also
depends on the squared fibrinogen concentration [7], it is likely related to biochemical effects.



14 3. Introduction to the physics of red blood cells and hemorheology

Although Schmid-Schönbein and Wells [47] assumed that the shear thinning behavior of blood
may be related to the presence of a yield stress, it is not clear whether the yield stress—if it
exists—has a physiological significance [7]. In general, experiments investigating the low-shear
rate viscosity of blood are difficult to perform [46]. Charm and Kurland [62] reported residual
artifacts caused by interactions of the RBCs with the rheometer surface. The yield stress values
obtained experimentally by Picart et al. [63] strongly depend on the structure of the wall: For
smooth walls, the stress at small shear rates was found to be an order of magnitude smaller than
for rough walls. The results are not conclusive for basically two reasons: (i) Different definitions
of yield stress in blood are used by different scientists. (ii) The yield stress seems to be a function
of time and depends on the shearing history of the blood sample. The above observations indicate
that the yield stress of blood at volume fractions ≤ 45% is related to the aggregation of RBCs
due to fibrinogen.

A large number of effects related to hemorheology are caused by confinement, i.e., the finite size
of blood vessels. These effects have to be distinguished from the general shear thinning behavior
of blood which can be observed in bulk systems as well. For blood vessels with diameters smaller
than 30μm, the particulate nature of the blood has to be taken into account explicitly [64].
Above, the flow resistance can be predicted using a two-phase continuum model with a central
core and a cell-free layer of about 1.8μm thickness [65]. This cell-free layer is caused by lift
forces related to the presence of the walls and the deformability of the RBCs [66, 67]. Still, it
is not clear how to predict the cell-free layer in general cases, e.g., for complex geometries and
varying RBC properties [51]. One ultimate goal of hemorheology is to find reliable constitutive
models for blood flow on the macroscale (both under physiological and pathological conditions),
derived from its properties on the microscale. This becomes complicated due to the presence of
different time and length scales (aggregate decay, cell deformation, etc.) [46]. For blood vessels
with diameters larger than 200μm, confinement becomes more and more negligible [68] and
effective homogeneous models are commonly used. A large variety of constitutive models have
been proposed by Truskey et al. [7] and Robertson et al. [46].

The cell-free layer plays an important role for biological transport, especially in blood vessels
with diameters of about 10μm [51]. The famous F̊ahraeus effect [69] is tightly related to the
existence of the cell-free layer: More than 80 years ago, F̊ahraeus [70] investigated blood flow
from a large feeding tube into a smaller tube with diameters between 0.05 and 1.5mm. Due to
the lateral migration of the RBCs towards the centerline, the cells move faster than the average
flow. The mass balance then requires that the hematocrit in the small tube (tube hematocrit)
is smaller than the hematocrit in the reservoir (discharge hematocrit). Another effect, closely
connected to the cell-free layer, is the F̊ahraeus-Lindqvist effect [71]. It states that the flow rate
in small tubes for a given pressure gradient strongly depends on the tube diameter and that the
apparent blood viscosity is minimum for a pipe diameter of about 10μm. Velocity profiles of
blood in tubes are usually characterized by flattening near the central region (plug flow) [72].
The reason is that the shear stress near the centerline vanishes whereas it is maximum close
to the walls. Due to shear thinning, the viscosity of blood is highest near the centerline, and
the curvature of the velocity profile is reduced. An additional effect is the inhomogeneous RBC
concentration. Due to the existence of the cell-free layer, the viscosity of blood near the vessel
walls is basically the viscosity of plasma, and the hematocrit is highest near the centerline of the
flow.
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blood cell suspensions



4. Physical considerations and ingredients for
the numerical model

The physical requirements and ingredients for the computational model employed in the present
thesis are characterized in this chapter. An overview of existing approaches for the simulation of
individual and multiple deformable particles immersed in a fluid is provided in section 4.1. It is
discussed in section 4.2 which physical ideas and concepts should be contained in the model and
which can be disregarded.

4.1. Overview of existing numerical approaches

Suspensions of rigid spheres have been simulated by Ladd [73, 74] and Aidun and Lu [75] within
the framework of the lattice Boltzmann method (LBM, chap. 5). In 1996, Kraus et al. [76]
have simulated, for the first time, a single deformable vesicle in an external shear flow using the
boundary integral method. Two years later, Eggleton and Popel [77] combined the immersed
boundary method (IBM, cf. chap. 6) [78] and a finite element method in order to simulate
deformable capsules. In 2004, Feng and Michaelides [79] were the first to combine the LBM
with the IBM and simulated suspensions of rigid 2D disks. Zhang et al. [68, 80] also used a
combination of the IBM and the LBM for red blood cell (RBC) simulations, but still in 2D. Even
in 2005, Sun and Munn [81, 82] approximated RBCs and leukocytes as rigid particles in a 2D
lattice Boltzmann simulation.

A number of articles about single RBC or vesicle dynamics in external flow fields has been
published in the past ten years. Noguchi and Gompper [83] studied the effect of membrane
viscosity on vesicle dynamics in shear flow, taking thermal fluctuations into account. The authors
combined a dynamically triangulated membrane model with the multiparticle collision dynamics
in 3D. Pozrikidis published a series of articles about the simulation of RBCs in shear flow via
the boundary integral method (e.g., [84, 85]). Due to its computational overhead [84, 86], the
boundary integral method seems to be not suitable for the simulation of a large number of RBCs.

The simulation of deformable RBC suspensions was promoted in 2007 when Dupin et al. [87]
combined the LBM and the IBM with a spring model for the RBC membranes in 3D. 200 cells
with a volume fraction of 30% could be simulated. However, a larger number of particles and a
higher volume fraction was not obtainable at that time. In the same year, Bagchi [88] simulated
2500 RBCs in 2D. This model was extended to 3D by Doddi and Bagchi [89] two years later.
MacMeccan et al. [90] simulated deformable RBCs via a lattice Boltzmann finite element method.

Concluding, a large variety of simulation methods for particle suspensions has been proposed in
recent years. Some of the methods have been implemented for 2D only, others approximate the
deformable particles as rigid objects. While some of the methods are of high accuracy and mostly
suitable for a small number of particles (e.g., the boundary integral method), other approaches
are less accurate but more efficient and simpler (e.g., the IBM). Still, neither of these methods
seems to be able to combine all of the properties required for the study in the present work: (i)
3D simulations, (ii) deformable and resolved particles, (iii) volume fractions larger than 45%,
and (iv) high runtime efficiency with O(103) particles.

T. Krüger, Computer Simulation Study of Collective Phenomena in Dense Suspensions of 
Red Blood Cells under Shear, DOI 10.1007/978-3-8348-2376-2_4,
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4.2. Identification of the relevant physics for the present task

One of the main motivations of the present thesis is the development and application of a
numerical tool for the simulation of dense suspensions of deformable particles, e.g., RBCs. Since
the focus of the work lies on the investigation of collective phenomena, the ability to simulate a
large number of particles is favored over high accuracy for only a few suspended objects. As a
consequence, the single particle dynamics should be simplified as much as possible without losing
the advantage of tracking the deformation of individual particles in the suspension. Although
large progress has been made in the field of computational physics and computing power in recent
years, large scale simulations of deformable particles have always required certain idealizations of
the physics on the smallest resolved scales (≈ 0.5μm in the present case).

In dense suspensions, the immersed particles are no passive tracers comoving with the suspending
fluid. Instead, the bidirectional influence of the fluid and the particles is one of the key factors
for successful simulations of particle suspensions. In fact, Einstein’s famous expression for the
viscosity of dilute suspensions, 2.6, reflects that suspended particles, deformable or not, affect
the fluid rheology, even in the dilute limit. The shear thinning behavior of blood at intermediate
shear rates (a few 10 s−1), caused by the deformability of the RBCs [54], is another striking
argument for the paramount importance of the bidirectional coupling of hydro- and particle
dynamics. For that reason, the model has to be based on a two-way coupling: The fluid exerts
stresses on the particle surfaces, and the presence of the surfaces poses a boundary condition for
the fluid. Kraus et al. [76] formulated this in the following way:

Any theory of vesicle dynamics is complicated by the fact that the boundary conditions
for the three-dimensional Navier-Stokes equations have to be evaluated at the vesicle
surface, which is moving with the fluid and whose shape is not known a priori.

This statement can directly be extended to any other kind of deformable particles immersed in a
fluid. The IBM will be employed as efficient two-way fluid-structure coupling (chap. 6).

Since the rheology of deformable particles is of primary interest here, only the mechanical
properties of the particles shall be considered. When RBCs are simulated, their biophysical and
biochemical properties (e.g., aggregation at small shear rates or non-hydrodynamic interactions
with other cells or the endothelium) are not taken into account. The deformable particles are
considered as effective 2D membranes immersed in an ambient 3D fluid. A scale separation
between the membrane thickness and the membrane diameter is assumed. For RBCs, this is an
excellent approximation since the membrane thickness is 4 nm compared to 8μm cell diameter [31].
Another simplification is to neglect the viscosity of the membranes. In the model, dissipation only
takes place in the fluid (inside and outside of the particles), and the membranes are purely elastic.
The main reason for this step is to reduce the complexity of the parameter space. Membrane
viscosity may be added to the model in the future.

The deformability of RBCs is a key factor for the shear thinning behavior of blood at shear
rates above a few s−1 [47, 54, 91]. For this reason, it shall be investigated how the deformability
of suspended particles affects the viscosity of the suspension and the statistical motion of the
particles. The model, therefore, should provide a controllable particle deformability. Physics
happening on scales smaller than the spatial resolution of the simulations (≈ 0.5μm) cannot be
resolved explicitly and must be put in by hand as effective ingredients. This including the elastic
model for the membranes which is a consequence of its nanometer scale structure. The model for
the membrane physics will be presented in chap. 7.

Membrane rearrangements are ignored in the present work, i.e., neighboring points on the
membrane will always remain neighbors. This way, the numerical model for the membranes is
drastically simplified since the numerical mesh topology is preserved (section 8.3). Applied to
the simulation of RBCs, this simplification is still reasonable because experimental investigations
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indicate that RBCs have a shape memory, i.e., the rim and the dimples of a RBC are always
formed by the same patches of the membrane surface, even after deformations which are long
compared to the typical advection times in the human body [92]. Thus, it can be assumed that
membrane rearrangements are not important for RBCs, at least on time scales accessible by
simulations.

The fluids both in the interior and the exterior of the particles are assumed to be Newtonian
(which is also the case for RBCs [51, 93]). For the sake of computational efficiency, a single
density and viscosity will be used for both the interior and the exterior fluids. The Newtonian
fluid is modeled via the LBM as described in chap. 5. Due to the length scale separation between
the fluid molecules and the RBCs, the suspending fluid does not need to be described on the
kinetic level.

Thermal effects of any kind are neglected. On the one hand, a possible temperature dependent be-
havior of material parameters is ignored by assuming that the temperature is constant throughout
the system and at all times (infinite heat conductivity). On the other hand, thermal fluctuations
are not considered. The particle diameters considered in this thesis are a few micrometers or
larger, thus, the particles can be considered non-Brownian [13, 94]. This is especially true for
RBCs with diameters of about 8μm. Additionally, for particles consisting of thin membranes
(e.g., vesicles or RBCs), the thermal membrane fluctuations can be neglected when the energy
scale for bending resistance is sufficiently large [31, 95].

The LBM (chap. 5) and the IBM (chap. 6) are efficient numerical tools. The membrane model
as introduced in chap. 7 contains the physics relevant for the chosen length and energy scales,
but it is not burdened with irrelevant and computationally expensive details. The resulting
numerical model is highly efficient, which benefits the achievable system size and duration of the
simulations.



5. Fluid solver: the lattice Boltzmann method

This chapter is dedicated to the lattice Boltzmann method (LBM) which is used as Navier-Stokes
solver in the present work. In section 5.1, an introduction to the LBM is given. The employed
LBGK algorithm, a special case of the LBM, is discussed in section 5.2. Initial and boundary
conditions in general (section 5.3) and the bounce-back boundary condition in particular (section
5.4) are discussed. Section 5.5 deals with the choice of simulation parameters. Due to its technical
character, the Chapman-Enskog analysis linking the mesoscopic LBGK and the macroscopic
hydrodynamics is presented in appx. B.1, rather than in this chapter. A benchmark test for the
LBM and its velocity and stress convergence is presented in appx. B.1.4.

5.1. Introduction to the lattice Boltzmann method

In 1986, the lattice gas cellular automata (LGCA) have been introduced by Frisch et al. [96] and
Wolfram [97]. The basic idea was—in spirit of the Boltzmann equation—to model individual
kinetic particles subject to propagation and collision on a hexagonal lattice in order to recover
hydrodynamics on larger scales. Particles moving in a given direction can either be present
or absent (Boolean arithmetics). However, there are some disadvantages which detract the
applicability of the LGCA for hydrodynamic problems [98, 99]: The pressure of the fluid is
velocity-dependent, and the momentum equation has an additional unphysical factor. Both
artifacts are related to the violation of Galilei invariance by the LGCA algorithm. The viscosity
of the LGCA fluid is intrinsically high, i.e., large Reynolds numbers and turbulence simulations
are not feasible. Moreover, due to its statistical nature, the results show strong fluctuations.
Spatial and temporal averaging is required to obtain smooth solutions. Another point is that the
original lattice gas algorithm becomes extremely inefficient in 3D.

In order to remove the shortcomings of the LGCA, the LBM has been introduced in 1988. The
intention was to keep the advantages of the LGCA (intrinsic stability, simple boundary handling,
coding, and parallelization) at the same time. The difficulties in solving the Boltzmann equation
originate from the complexity of the collision operator. Therefore, a lot of work has been spent on
finding ways to reduce its complexity without losing the asymptotically hydrodynamic properties
of the method. Important steps in the development of the LBM were (i) the transition from the
Boolean to real number arithmetics eliminating the LGCA fluctuations [100], (ii) the linearization
and enhancement of the LGCA collision operator making 3D simulations feasible [101, 102], and
(iii) the combination of the Bhatnagar-Gross-Krook (BGK) collision operator [103] with the
LBM [104, 105, 106]. The resulting algorithm is called lattice Bhatnagar-Gross-Krook (LBGK)
method. It will be presented in section 5.2. In principle, the idea of the LBGK is to forget about
all details of the kinetic theory which are not absolutely necessary to solve the Navier-Stokes
equations (NSE).

Consequently, the LBGK is a numerical solver for the BGK approximation of the Boltzmann
equation,

∂f

∂t
+ c · ∇f = − 1

τ ′
(f − f eq), (5.1)

where f is the local velocity distribution, c is the particle velocity, and τ ′ is a relaxation time.
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The equilibrium Maxwell-Boltzmann distribution is given by

f eq =
ρ

(2πRT )3/2
exp

(
−m(c− u)2

2kT

)
(5.2)

with particle mass m and density ρ :=
∫
d3c f , temperature T , the Boltzmann constant k, and

the gas constant R. Here, one has to distinguish between the microscopic velocity c and the
macroscopic velocity u :=

∫
d3c fc/ρ. It has to be noted that the standard LBM describes an

athermal system, i.e., a system with finite but constant temperature T in the absence of thermal
fluctuations. The energy equation for heat flux is not considered. Instead, it is assumed that
heat production by viscous dissipation is small and that the thermal conductivity of the fluid is
sufficiently large to maintain a constant temperature.

It is important to emphasize that—although they asymptotically solve the NSE—neither the
LBM in general, nor the LBGK in particular are direct discretizations of the NSE. Instead, they
are based on mesoscopic models and kinetic equations. In fact, it is possible to recover the LBM
through different approaches, e.g., directly from the Boltzmann equation or from discrete velocity
models [107, 108, 109]. The Boltzmann equation describes gases both on the kinetic and the
continuum scale. In order to recover the macroscopic Navier-Stokes behavior, small Knudsen
numbers are necessary. This means that the fluid is assumed to be close to its local equilibrium
everywhere, and that the non-equilibrium contributions can be treated perturbatively. This idea
and the consequent derivation of the NSE from the LBGK formalism will be discussed in appx.
B.1.

The LBM has a series of advantages compared to other Navier-Stokes solvers. First of all, due to
its local kinetic scheme which the LBM has inherited from the LGCA, the LBM is intrinsically
parallelizable. It reveals advantages especially when it comes to the simulation of multiphase
and multicomponent flows [64, 79, 80]. When the incompressible NSE are directly solved, the
pressure equation—which does not exist in the LBM—can lead to numerical difficulties [109].
Although finite element methods are very flexible in their application, they are difficult to code
and require massive computational resources [110]. LBM coding is simple, at least for basic
hydrodynamic problems. The LBM is also advantageous when particle suspensions are simulated.
Due to the complete separation of time scales for the fluid and the particles in conventional
Navier-Stokes solvers, the computational cost usually scales with the square or even the cube of
the particle number N [73]. The LBM scales linearly with N since time scales are not exactly
separated and fluid-particle interactions remain local. This is one of the major reasons to employ
the LBM for the present work.

The LBM has been applied to various hydrodynamical problems such as flows in porous media
[111, 112], dendritic growth [113], or turbulent flows [114, 115]. It has also been used to solve
Maxwell’s equations in materials [116] and for mildly relativistic hydrodynamics [117]. Further
details about the LBM can be found in the literature: Beside monographs about the LBM by
Wolf-Gladrow [118], Succi [98], and Sukop and Thorne [119], there exist various topical review
articles, e.g., a general overview [109], a review of the LGCA and LBM with focus on the
mathematical background [120], a review of the LBM for particle-fluid suspensions [110], a review
focused on high Reynolds number flows in the LBM [121], an overview of LBM for materials
science and engineering [122], and a review of the LBM for complex flows [12].

5.2. LBGK algorithm

The algorithm of the LBGK method is presented in this section. A Chapman-Enskog analysis
linking the LBGK formalism with the macroscopic NSE is provided in appx. B.1.

While conventional methods directly solve the NSE in terms of the pressure p and the velocity u,
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the LBM introduces a number of q populations fi(x, t) (i = 0, . . . , q−1) streaming along a regular,
d-dimensional lattice (lattice constant Δx) in discrete time steps (step size Δt). The population
fi(x, t) can be regarded as the discretized probability distribution of finding a particle at position
x and time t, moving with velocity ci. In the LBM, the velocity space is also discretized, allowing
only for q possible velocity states ci.

The evolution of the populations in the BGK approximation is given by the LBGK equation,

fi(x+ ciΔt, t+Δt)− fi(x, t) = Ωi(x, t), (5.3)

where

Ωi(x, t) = −1
τ
(fi(x, t)− f eq

i (x, t)) + fF
i (x, t)Δt (5.4)

is the linearized collision operator. The idea is to let all populations relax towards a local
equilibrium, f eq

i , with a constant and unique relaxation time τΔt where τ is the dimensionless
relaxation parameter. The fF

i are used to add external forces (see below). This algorithm is also
called the single relaxation time approximation of the more general quasi-linear LB equation
which reads

fi(x+ ciΔt, t+Δt)− fi(x, t) = Aij

(
fj(x, t)− f eq

j (x, t)
)

(5.5)

in the absence of external forcing. (Aij) is called the scattering matrix, and obviously Aij = −δij/τ
holds for the LBGK approximation. ‘Quasi-linear’ means that the collision term is formally
linear in the populations fi whereas the non-linearity is hidden in the equilibrium populations
f eq
i which will be defined soon. Interestingly, this implicit non-linearity allows to recover the
non-linear NSE from the strongly simplified LBGK scheme (appx. B.1).

At each time step t, the populations collide and relax at the fixed lattice nodes x according to the
right-hand-side of eq. (5.3). Afterwards, the populations propagate along the q discretized velocity
vectors ci to the next neighbors according to the left-hand-side of eq. (5.3). The equilibrium
populations are given by

f eq
i = wi ρ

(
1 +

ci · u
c2s

+
Qi : uu

2c4s

)
(5.6)

where ρ and u are the fluid density and velocity, respectively, and Qi := cici − c2sI is the velocity
projector with unit matrix I. Eq. (5.6) forms the truncated expansion of the Maxwell-Boltzmann
distribution for the velocities in an ideal gas, eq. (5.2), with c2s = kT/m. The quantity cs in eq.
(5.6) is called the lattice speed of sound. Due to the truncation, eq. (5.6) is only valid for small
Mach numbers1, i.e., |u| must be sufficiently small compared to cs.
The dimensionless relaxation parameter τ is connected to the lattice speed of sound cs and the
kinematic viscosity ν of the fluid by

ν = c2s

(
τ − 1

2

)
Δt. (5.7)

Compared to the viscosity of the BGK gas, the LBGK viscosity has an additional term −1/2
which is a discretization artifact as will be shown in appx. B.1.1.

The lattices employed for the LBM are usually multispeed lattices, i.e., not all lattice velocities ci
have the same magnitude, cf. fig. 5.1. In order to account for this, it is necessary to introduce q
weighting factors wi which are uniquely defined for each underlying lattice. Their choice ensures

1The lattice Mach number is defined as Ma = |u|/cs.
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the isotropy of the lattice, a necessity to solve the NSE asymptotically. It can be shown that the
lattice weights have to obey the following equations [123]:

∑
i

wi = 1,
∑
i

wiciα = 0,

∑
i

wiciαciβ = c2sδαβ ,
∑
i

wiciαciβciγ = 0,

∑
i

wiciαciβciγciκ = c4s (δαβδγκ + δαγδβκ + δακδβγ),
∑
i

wiciαciβciγciκciλ = 0.

(5.8)

Here and in the following, the sum over lattice velocity indices i always runs from 0 to q − 1 if
not otherwise stated.

For low Reynolds number flows, it is possible to use the linearized equilibrium populations [73]

f eq
i = wi ρ

(
1 +

ci · u
c2s

)
(5.9)

instead of eq. (5.6). As will be shown in appx. B.1.1, this leads to the NSE without the advective
term ρ(u · ∇)u.
It is shown in appx. B.1.1 that the fluid described by the LBGK equation is not exactly
incompressible. Instead, the equation of state is

p = c2sρ, (5.10)

i.e., that of an ideal gas (p ∝ ρ for constant temperature), where p and ρ are the pressure and
the density of the fluid, respectively. The slight compressibility of the LBM is the prize for its
locality since the kinetic and hydrodynamic time scales are not exactly separated [73]. However,
in practical simulations and for sufficiently small pressure gradients and Mach numbers, the fluid
can be considered incompressible.

As already mentioned above, a body force density f (force per volume) may be incorporated via
fF
i in eq. (5.3) [110, 124],

fF
i =

(
1− 1

2τ

)
wi

(
ci − u

c2s
+

ci · u
c4s

ci

)
· f . (5.11)

This force density is particularly important for the introduction of gravity or the coupling of the
fluid and immersed particles (chap. 6).

For most of the simulations in this thesis, if not otherwise stated, the 3D model with 19 velocities,
D3Q19 (d = 3, q = 19), is used. A sketch of the D3Q19 lattice is shown in fig. 5.1. In the
benchmark presented in appx. B.1.4, the D2Q9 lattice is employed. For both lattices2, the speed
of sound is cs =

√
1/3Δx/Δt. It should be noted that the discussions about the LBGK algorithm

in this section and in appx. B.1 are equally valid for D3Q19 and D2Q9.

For D3Q19, the lattice weights are defined as w0 = 1/3 (zero velocity), w1...6 = 1/18 (next
neighbors), and w7...18 = 1/36 (next but one neighbors). The 19 lattice velocities read

(ci) =

⎛
⎝ 0 1 -1 0 0 0 0 1 -1 -1 1 -1 1 1 -1 0 0 0 0

0 0 0 1 -1 0 0 0 0 -1 1 0 0 -1 1 -1 1 -1 1
0 0 0 0 0 1 -1 1 -1 0 0 1 -1 0 0 1 -1 -1 1

⎞
⎠ Δx

Δt
.

(5.12)

2The value of the lattice speed of sound depends on the chosen lattice. At least for D1Q3, D2Q9, D3Q15, D3Q19,
and D4Q25, it is

√
1/3Δx/Δt [106].
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Fig. 5.1.: D3Q19 lattice for the lattice Boltzmann method. For D3Q19, all velocity vectors ci are located
in at least one of the three coordinate planes (light blue). The velocity vectors either point to the next
neighbors along the coordinate axes (c1−6, black arrows) or to the next but one neighbors (c7−18, gray
arrows). There are no body diagonals with length

√
3Δx, cf. eq. (5.12). The zero velocity c0 is not

shown.

For the D2Q9 lattice, the weights are w0 = 4/9, w1...4 = 1/9, w5...8 = 1/36, and the velocities
read

(ci) =

(
0 1 -1 0 0 1 -1 1 -1
0 0 0 1 -1 1 -1 -1 1

)
Δx

Δt
. (5.13)

An overview of these and other lattices is also given in [106].

The fluid density and velocity can be obtained from the first two moments of the populations,

ρ =
∑
i

fi, (5.14)

ρu =
∑
i

fici +
Δt

2
f (5.15)

where the second term on the right-hand-side of eq. (5.15) is a lattice correction term [110, 124],
cf. appx. B.1.1. The deviatoric stress tensor σ can be extracted locally from the non-equilibrium
populations

fneq
i := fi − f eq

i (5.16)

by computing the second moment

σ = −
(
1− 1

2τ

)∑
i

fneq
i cici +Xc. (5.17)

Here, Xc is a lattice correction term [124, 125]. It is shown in appx. B.1.1 that, for the quadratic
equilibrium in eq. (5.6), it reads

Xc = −Δt

2

(
1− 1

2τ

)
(uf + fu). (5.18)

Contrarily, for the linearized equilibrium in eq. (5.9), Xc vanishes. The deviatoric stress tensor
is of paramount importance for the study of suspension rheology as will be argued in chap. 9.
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5.3. Initial and boundary conditions in the lattice Boltzmann method

The NSE, being a system of partial differential equations, cannot be solved without specifying
initial and boundary conditions. The same applies for the LBGK equation. Since the LBGK
equation is used to solve the NSE asymptotically, the corresponding macroscopic initial and
boundary conditions (on the Navier-Stokes level) have to be translated to the mesoscale (on the
lattice Boltzmann level). In the following, brief discussions of the initial and boundary conditions
in the LBM are given.

5.3.1. Initial conditions in the lattice Boltzmann method

In many practical applications of hydrodynamics at small Reynolds numbers, the initial conditions
do not play an important role. For steady flows, the flow field usually converges to the steady
solution after some transient time, even if the initial conditions are not appropriately chosen.
The reason is the viscous dissipation which erases the memory of the fluid. For unsteady flows at
higher Reynolds numbers and, especially, for the study of transient effects, the initial conditions
are relevant.

If the initial pressure p, velocity u, and viscous stress σ are known, the populations fi can be
initialized according to

fi = f eq
i + fneq

i (5.19)

where the equilibrium populations f eq
i (ρ,u) are given in eq. (5.6) or eq. (5.9) and the non-

equilibrium populations, fneq
i , eq. (5.16), may be reconstructed from the stress tensor σ via [126]

fneq
i (σ) = − wi

2c4s

1

1− 1
2τ

Qi : σ (5.20)

if there is no forcing involved. It has to be noted that the pressure and the density are coupled via
p = c2sρ, cf. section 5.2 and appx. B.1. Similar to the computation of the equilibrium populations,
the idea behind eq. (5.20) is to find a local expression for the non-equilibrium populations which
is a pure function of the macroscopic observables and which is self-consistent, i.e., the correct
density, velocity, and stress must be recovered from these populations. It should be mentioned
that eq. (5.20) is not the only possible expression for a self-consistent set of non-equilibrium
populations [126].

Corrections due to forcing as indicated in eq. (5.15) and eq. (5.17) are not considered in eq.
(5.20). It is shown in appx. B.2 that eq. (5.20) has to be modified in order to account for forcing:
for the quadratic equilibrium in eq. (5.6),

fneq
i (u,σ,f) = − wi

2c4s

1

1− 1
2τ

Qi : σ − wiΔt

2c2s
ci · f − wiΔt

4c4s
Qi : (uf + fu) (5.21)

and for the linearized equilibrium in eq. (5.9),

fneq
i (u,σ,f) = − wi

2c4s

1

1− 1
2τ

Qi : σ − wiΔt

2c2s
ci · f . (5.22)

Neglecting the non-equilibrium populations in eq. (5.19) may lead to an inaccurate initial
configuration detrimentally affecting the entire time evolution of the simulation. For unsteady
flows evolving from a non-trivial3 initial configuration, the non-equilibrium populations should

3Trivial means initially constant pressure, zero velocity, zero stress, and zero deviatoric stress.
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always be considered as well. If the initial conditions are not known in a closed form, it is usually
necessary to solve a Poisson equation first.

Additional details about initial conditions in the LBM can only be found in a few references, e.g.,
[126, 127, 128]. In the present thesis, trivial initial conditions (constant density, zero velocity
and force) are used if not otherwise stated, and eq. (5.19) is employed for initialization.

5.3.2. Boundary conditions in the lattice Boltzmann method

In hydrodynamics, boundary conditions (BCs) are usually posed in terms of the velocity or
pressure (Dirichlet BCs), velocity or pressure gradient (Neumann BCs), or a combination of both
(Robin BCs). The LBM does not directly solve the NSE in terms of the velocity u and pressure
p. Instead, the evolution of the populations fi is described, and the velocity and pressure fields
are recovered from the populations (section 5.2). As a consequence, in the LBM, the BCs have
to be formulated for the populations, either from hydrodynamic considerations or from a kinetic
approach. However, while it is straightforward to compute the hydrodynamic variables from the
populations, it is not directly obvious how to reconstruct the populations from the macroscopic
variables. This is, actually, the reason for the large number of works which have been published
about the implementation of LBM BCs in the recent years.

In computational fluid dynamics, periodic BCs significantly simplify the boundary treatment
since the fluid domain is not bounded by walls and no populations have to be reconstructed in
the LBM. It is obvious that general flow configurations cannot be mimicked by periodic BCs, and
the inclusion of plain walls or more complex bounding geometries remains inevitable in many
cases.

One of the most common BCs in hydrodynamic applications is the no-slip BC. It is a special case
of a Dirichlet BC for the velocity. The basic idea is that the fluid velocity at a solid wall equals
the velocity of the wall at the contact point, i.e., that there is no wall slip. The microscopic origin
of the no-slip behavior has not been established with certainty [129]. However, it is commonly
argued that fluid molecules are adsorbed by the wall for a short time and desorbed afterwards.
This interaction slows down the particle dynamics close to the wall leading to an effective no-slip
behavior. The assumption of no-slip in hydrodynamic flows seems to be valid for flow geometries
larger than a few 10 nm [130].

A particularly simple and efficient way to enforce no-slip BCs at solid walls is the bounce-back
(BB) BC. Due to its importance for the present thesis, it is detailedly explained in section 5.4.

Throughout this thesis, mostly periodic and BB BCs are used. However, since the problem
of BCs in the LBM has an enormous significance, a short overview of alternative methods is
provided in the following.

The basic idea of BCs in the LBM is to obtain expressions for the equilibrium and non-equilibrium
populations near or at the boundaries. While populations leaving the computational domain are
not a problem, the unknown populations entering the domain from the outside have to be chosen
in an appropriate way, cf. fig. 5.2. The implementation of a given BC should fulfill a series of
requirements:

• The desired values for the hydrodynamic observables must be recovered, the velocity and
pressure as well as the viscous stress.

• The BC must not violate the overall second order convergence of the LBM.

• The BC should be local.

• Local mass conservation should be maintained.

While the first two claims have to be enforced rigorously, the last two are less stringent and often
violated in practical applications.
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inside

boundary

outside

Fig. 5.2.: Unknown populations at boundaries in the lattice Boltzmann method. The black line separates
fluid nodes (circles) inside and ghost nodes (dotted circles) outside of the computational domain.
Populations leaving the domain (solid arrows) are known, populations entering the domain (dashed
arrows) are not known a priori. The boundary conditions are required to find values for these
populations in a self-consistent way.

A significant error source in LBM simulations stems from the BCs [131]. Thus—similar to the
initialization in section 5.3.1—the correct reconstruction of the non-equilibrium populations by
the BC schemes is of utmost importance. If the non-equilibrium populations are neglected, the
velocity gradient is imposed in a wrong way, and the resulting errors may propagate throughout
the entire volume and spoil the outcome of the simulation [132]. It turns out that the system of
equations for the values of the equilibrium and non-equilibrium populations at boundary nodes
is usually under-determined, which gives rise to the introduction of closure relations. These
relations have a certain freedom, which is the reason for the vast variety of different BC schemes
for the LBM in the literature. One possible way to reconstruct the non-equilibrium populations
is to employ eq. (5.21) or eq. (5.22) where the stress tensor may be found by extrapolation from
the bulk region [127]. Another approach is to guess a stress tensor from the known, outgoing
non-equilibrium populations as thoroughly discussed by Latt et al. [132]. It is also possible to
employ the ‘bounce-back of non-equilibrium populations’ to reconstruct the missing populations
[133].

While the BB BC (section 5.4) is used for walls located half-way between lattice nodes, the
majority of BCs in the LBM is tailored for walls being located directly on the nodes. Since these
wall nodes—similar to the fluid nodes in the bulk—also participate in collision and propagation,
those BCs are called ‘wet’ BCs (fig. 5.3). They often suffer from a violation of the local mass
conservation [134].

The velocity and pressure BCs by Inamuro et al. [135] (based on the kinetic theory of gases) and
Zou and He [133] (based on the lattice symmetry) are cornerstones in the research field. Latt
[126, 132] introduced the regularized BC for straight walls which shares similarities with the
approach by Skordos [127] involving non-local finite difference approximations for the recovery of
the unknown non-equilibrium populations. Latt’s BCs have been extended to curved walls by
Verschaeve and Müller [136]. Other, more complex BCs are available, e.g., average outlet pressure
in curved geometries [137], a velocity BC for arbitrarily shaped inlets [138], open boundaries
[139, 140], slip-flow boundaries [141], macroscopic-gradient boundary conditions [142], periodic
pressure boundaries [143], and Lees-Edwards BCs [144, 145]. Various existing BCs have been
extensively reviewed by Latt et al. [132]. A recent overview of BCs is also provided by Izquierdo
and Fueyo [142].

It is important to state that BCs can also be imposed in a different way: Instead of reconstructing
the populations such that the BC is satisfied, a forcing term f(x, t) may be added to mimic
the local effect of the wall on the fluid. The immersed boundary method (IBM) sets exactly at
this point (chap. 6). Due to its importance for the present thesis, it is thoroughly discussed in a
separate chapter. Since the IBM affects the fluid only through a forcing term (and not by direct
manipulation of the populations), it can also be employed for conventional Navier-Stokes solvers.
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(a) half-way (b) wet

Fig. 5.3.: Comparison of half-way and wet boundary conditions in the lattice Boltzmann method. The
physical wall (black line) separates the fluid region (white) from the obstacle region (striped). (a)
Half-way boundary condition: The physical wall is located half-way between the fluid nodes (white
circles) and obstacle nodes (black circles) as in the case of the bounce-back boundary condition. (b)
Wet boundary condition: The physical wall is located directly on the wall nodes (gray circles). While
the obstacle nodes (black circles) do neither participate in collision nor propagation, wall nodes have
the same dynamics as fluid nodes, which gives rise to the name ‘wet’ boundary condition.

5.4. Bounce-back boundary condition

The idea of the BB BC goes back to the LGCA [146]. Populations hitting a solid wall during
propagation are bounced back in the direction they came from [147]. This microscopic boundary
rule leads to an asymptotic no-slip behavior of the macroscopic fluid at the wall [146]. The
exact location of the physical wall, however, was a matter of debate for some time. Initially, the
wall location was taken at the position of the node where populations are bounced back. It has
been realized that this interpretation leads only to first-order accuracy, thus violating the overall
second-order convergence. Later, it was found that the BB BC is second-order accurate for plane
walls aligned with the lattice [110, 148, 149] if the physical wall is located half-way between the
fluid and the wall node [150] (fig. 5.5).

The original BB BC is straightforward to implement, and the numerical overhead is negligible.
Due to its simplicity, highly complex geometries (e.g., porous media) can be realized efficiently
with the BB approach, an advantage over most of the other Navier-Stokes solvers where delicate
meshing is required [73]. The disadvantage of the original BB BC is that curved boundaries
are approximated by staircases leading to a reduction of the accuracy (fig. 5.4). It can even be
reduced to first order in these cases [131, 147]. In applications where computational efficiency
and simplicity of coding shall outweigh the accuracy, the BB is an outstanding candidate for
solid wall BCs.

There are extensions of the BB scheme for inclined and curved walls (e.g., [148, 151, 152] and a
review in [12]). However, these improvements are not discussed here since they are not used in
the present thesis. Instead, the BB approach is mostly employed to mimic straight and rigid
walls aligned with the lattice. In sections 5.4.1 and 5.4.2, it is discussed how the BB can be used
to realize velocity and—apparently for the first time in the present form—shear stress BCs in
the LBM.

5.4.1. Velocity bounce-back boundary condition

In section 5.3, it has already been discussed that BCs for the LBM eventually have to be
formulated for the populations fi in a self-consistent way. In particular, populations entering the
fluid from the inside of a wall or from the outside of the numerical grid should be constructed
in such a way that the macroscopic BC is satisfied and that the basic principles of the LBM
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Fig. 5.4.: Staircase shape of an inclined wall in the lattice Boltzmann method. The staircase wall (solid
black line) as approximation of the physical wall (dashed black line) separates the fluid region (white)
with the fluid nodes (white circles) from the obstacle region (striped) with the obstacle nodes (black
circles).

(locality, mass conservation, and second-order accuracy in space) are not violated. As will be
shown in the following, these considerations are straightforward when BB BCs are used.

In order to better understand the idea behind BB, it is useful to distinguish between the pre-
collision, post-collision, and post-propagation populations. The populations collide at the fluid
nodes and then propagate to their next neighbors along the lattice velocity vectors ci. The BB
scheme defines rules for the case that a population hits a wall while it propagates. In lattice
units, the LBE from eq. (5.3) can be written in the form

f∗
i (x, t) = fi(x, t) + Ωi(x, t), (collision) (5.23)

fi(x+ ci, t+ 1) = f∗
i (x, t) (propagation) (5.24)

where Ωi is the collision operator. A possible forcing term is absorbed in Ωi and has no further
significance for the following discussion. The pre-collision and post-propagation populations
are denoted fi(x, t) and fi(x+ ci, t+ 1), respectively. The populations f∗

i (x, t) are called the
post-collision populations which have not been propagated yet. In case of BB, the collision at
fluid nodes in eq. (5.23) is not changed, but the propagation in eq. (5.24) has to be modified: If
the propagating populations f∗

i (x, t) hit a resting wall (velocity uw = 0) at position x+ 1
2ci and

time t+ 1
2 , they are bounced back in the direction they came from, i.e., they propagate to the

same fluid node where they were released before, and eq. (5.24) becomes

fi′(x, t+ 1) = f∗
i (x, t). (bounce-back) (5.25)

During this process (fig. 5.5), the index of the bounced back populations changes from i to i′

where i′ denotes the index opposite to i, i.e., ci′ = −ci. This automatically solves the problem
of how to find the a priori unknown population f∗

i′(x+ ci, t) apparently coming out of the wall.
It can be shown that this algorithm recovers the behavior of the macroscopic fluid at a wall
with zero velocity at position x+ 1

2ci, i.e., the wall is located half-way between the lattice nodes.
In this case, the BB BC is second-order accurate in space and thus fits into the overall lattice
Boltzmann scheme [153]. Obviously, eq. (5.25) ensures mass conservation, and it is a local rule
which makes the BB efficient in terms of implementation effort and computing time.

An important extension of the BB algorithm is the treatment of walls moving with non-zero
velocity uw. Ladd [73] and Ladd and Verberg [110] thoroughly discussed this concern, and the
modification of eq. (5.25) reads

fi′(x, t+ 1) = f∗
i (x, t)− 2wiρ(x, t)

uw · ci
c2s

. (5.26)

The new term on the right-hand side of eq. (5.26) captures the additional momentum transfer
due to the motion of the wall. It can be derived via a Galilean transform to the coordinate
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x

x+ ci

f∗
i (x)

fi′(x)

Fig. 5.5.: Bounce-back boundary condition in the lattice Boltzmann method. The physical wall (black
line) separates the fluid region (white) with the fluid nodes (white circles) from the obstacle region
(striped) with the obstacle nodes (black circles). For simplicity, the bounce-back of only one population
is shown. The post-collision population f∗i (x, t) propagates towards the obstacle node at x+ ci but
hits the wall at x + 1

2ci at time t + 1
2 before. It is bounced back and reaches its starting point as

post-propagation population fi′(x, t+ 1).

system where the wall is resting [144, 148]. Obviously, eq. (5.25) is recovered for uw = 0. It
should be noted that eq. (5.26) may lead to violation of mass conservation for general geometries
if uw �= 0 [75]. However, for a straight wall moving in its own plane as in the present thesis, it
can be inferred that the mass is always exactly conserved.

It has been stated that the BB BC is exact for a simple shear flow with a linear velocity profile
[150]. However, for non-linear velocity profiles, the exact wall location is shifted with respect to
the midplane between the lattice nodes, which introduces a finite slip velocity. Still being second-
order accurate, the associated error becomes severe when the relaxation time is significantly
larger than unity, and it grows without limits for τ → ∞.

Eq. (5.25) and eq. (5.26) can also be used for walls which are not straight but still obey the
condition that they are located half-way between lattice nodes. As mentioned before, this leads
to a staircase shape of the obstacle (fig. 5.4). It is the simplest way to approximate inclined walls
or other complex geometries (e.g., spheres or porous media) and is often used in the literature
(e.g., [145, 154, 155, 156, 157]). The numerical accuracy may be reduced in these cases, though
[158].

5.4.2. Shear stress bounce-back boundary condition

The most common BCs in lattice Boltzmann simulations are periodic, pressure, or velocity BCs
(section 5.3). In most applications, especially for simple fluids of well-known viscosity, this is
satisfactory. Yet, there are also cases in which another type of BC is of advantage. In order to
measure the static yield stress of complex fluids, it is necessary to apply a given shear stress
to the system, not a shear rate. The reason for this is that soft materials in the glassy state
do not generally show the same rheological response when driven by an imposed shear rate or
shear stress [21]. For example, in general, the static yield stress is higher than the dynamic
yield stress [20] where the former can be inferred from shear stress and the latter from shear
rate driven experiments or simulations. To this end, it is desirable to implement, within the
lattice Boltzmann formalism, a shear stress BC. Actually, there are ways to enforce macroscopic
gradient BCs [142]. This can be used to implement a shear stress BC if the viscosity of the fluid
is known (since σ = 2ηS where σ and S are the stress and strain rate tensors, respectively).
However, if the viscosity of the fluid is not known a priori (as it is the case for complex fluids), a
velocity gradient BC may not recover the desired wall stress. However, it turns out that there
exists a straightforward approach for a shear stress BC for straight walls which is based on the
velocity BB BC in eq. (5.26) and eq. (5.27). This method apparently has not been considered
in the literature so far. It will be described in the following for a system consisting of a fluid
between two straight and parallel walls.
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The wall shear stress (WSS) is of major importance in many hydrodynamic situations, especially
for the circulatory system where it plays a dominating role for the vascular response to hemody-
namics [46, 51, 53] or blood clotting and platelet adhesion [159, 160, 161, 162]. The WSS is the
measure of the momentum transfered from the fluid to the wall4. Within the BB approach, it is
straightforward to evaluate the wall stress via the momentum exchange of the populations hitting
the wall. Each population fi propagating from position x to the wall location xw = x + 1

2ci,
where it is bounced back, contributes to the momentum transfer with [73]

Δpi(xw, t+
1
2) = (fi′(x, t+ 1) + f∗

i (x, t)) ci

= 2

(
f∗
i (x, t)− wiρ(x, t)

uw(xw, t+
1
2) · ci

c2s

)
ci

(5.27)

where uw(xw, t+
1
2) is the velocity of the wall at position xw and time t+ 1

2 . Since the population
can be considered to be located at xw at time t+ 1

2 , the momentum exchange Δpi is formally
taken at xw and t+ 1

2 . The last equality in eq. (5.27) follows from eq. (5.26). The total momentum
exchange Δp at a given wall point is the sum over all contributions of populations which are
bounced back at that point.

The wall stress tensor σw and the momentum exchange Δp for an area element ΔA per time
step Δt are connected via

Δp

Δt
= σw ·ΔA. (5.28)

The vector ΔA is normal to the area element and points into the fluid. If ΔA corresponds to one
lattice area element, its magnitude is |ΔA| = Δx2. For example—in lattice units—for a bottom
wall in the xy-plane, ΔA = ez, the xz-component of the wall stress tensor obeys σw

xz = Δpx. For
the corresponding top wall, ΔA = −ez, the WSS is σw

xz = −Δpx.

The walls shall be located at positions z = ±D/2 (D is the distance between the walls), and
the imposed shear stress component shall be σxz so that the resulting flow will have a velocity
vector in x-direction. This is not a restriction, and it can be shown that the yz-component of the
shear stress may be imposed independently, at least for the D3Q19 lattice which is considered
throughout this thesis for 3D simulations. For a complex fluid, the apparent viscosity is not
generally known a priori since it may depend on the internal structure of the fluid and its velocity
field. This means that the bottom and top wall velocities, ubx and utx, are not directly known if a
shear stress is imposed. For the D3Q19 lattice, the only populations which are directly affected
by an imposed value of σxz at the walls are f7, f8, f11, and f12 since these are the only ones with
non-vanishing x- and z-velocity components (fig. 5.1),

c7 = (+1, 0,+1), c8 = (−1, 0,−1),

c11 = (−1, 0,+1), c12 = (+1, 0,−1).
(5.29)

For the yz-component of the stress tensor, only f15, f16, f17, and f18 are required,

c15 = (0,−1,+1), c16 = (0,+1,−1),

c17 = (0,−1,−1), c18 = (0,+1,+1).
(5.30)

In the following, the discussion is restricted to the top wall and the xz-component of the stress
tensor. The analyses for the bottom wall and the yz-component are equivalent.

Taking two adjacent fluid nodes at xl and xr and the point xw = xl +
1
2c7 = xr +

1
2c11 on the

wall as shown in fig. 5.6, it follows from eq. (5.27) that the momentum exchange along the x-axis
at the top wall is

Δptx(xw, t+
1
2) =

(
f∗
7 (xl, t) + f8(xl, t+ 1)

)− (
f∗
11(xr, t) + f12(xr, t+ 1)

)
(5.31)

4The momentum transfered from the wall to the fluid is the same with an additional minus sign. However, in
this thesis, momentum transfer always means the momentum transfered from the fluid to the wall.
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Fig. 5.6.: Momentum exchange at a solid wall in the lattice Boltzmann method. The physical wall (black
line) separates the fluid region (white) and the fluid nodes (white circles) from the obstacle region
(striped) and the obstacle nodes (black circles). The post-collision populations f∗7 and f∗11 propagate
from xl and xr to the wall location xw, respectively. At this point, both populations are bounced
back and reach their starting points as post-propagation populations f8 and f12, respectively. During
bounce-back, the momentum Δptx, cf. eq. (5.31), is transferred from the populations to the wall.

and consequently

f8(xl, t+ 1)− f12(xr, t+ 1) = Δptx(xw, t+
1
2) +

(
f∗
7 (xl, t)− f∗

11(xr, t)
)
. (5.32)

From eq. (5.26) it follows that

f8(xl, t+ 1) = f∗
7 (xl, t)− 2wρ(xl, t)

utx(xw, t+
1
2)

c2s
,

f12(xr, t+ 1) = f∗
11(xr, t) + 2wρ(xr, t)

utx(xw, t+
1
2)

c2s
.

(5.33)

Combining eq. (5.32) and eq. (5.33) yields

utx(xw, t+
1
2) =

2
(
f∗
7 (xl, t)− f∗

11(xr, t)
)−Δptx(xw, t+

1
2)

2w
(
ρ(xl, t) + ρ(xr, t)

) c2s . (5.34)

This equation is an important intermediate result since it shows that the wall velocity at a given
point is uniquely connected to the momentum exchange and the known post-collision values of
the populations hitting the wall at that point. Assuming that f∗

7 and f∗
11 are known (which is

usually the case), eq. (5.34) allows to compute either the momentum exchange, Δptx, from the
imposed wall velocity, utx, or vice versa. While the former option is used in velocity BB BCs, the
latter will be exploited in the remaining part of this section.

A non-rotating, stiff, and macroscopic wall must have the same velocity at each point. This
means that utx cannot be a function of position. Since, in general, f∗

7 and f∗
11 are functions of

position along the wall, it cannot be expected that the momentum transfer Δptx is homogeneously
distributed over the wall. In other words, it is not possible to impose constant velocity and
constant momentum transfer at the same time in a general flow situation. This is not a
shortcoming of the numerical method. It is rather a physical effect, reflecting that the local wall
stress depends on the local velocity profile of the nearby fluid. To this end, the problem of shear
stress BCs has to be formulated in the following way: Given an imposed average momentum
transfer, 〈Δptx〉, which homogeneous velocity utx will result? Eq. (5.34) can be rewritten and
brought in the form

utx(t+
1
2) =

2 〈f∗
7 (t)− f∗

11(t)〉 −
〈
Δptx(t+

1
2)
〉

4w 〈ρ(t)〉 c2s . (5.35)

〈·〉 indicates an average along the entire top wall: The density and the populations are averaged
in the fluid layer closest to the wall and the momentum transfer directly on the wall. For an
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imposed average momentum transfer, the velocity of the stiff wall follows from eq. (5.35). This
velocity is then, as usual, used in eq. (5.26) to obtain the unknown populations f8 and f12 at
fluid nodes adjacent to the wall. The difference of this algorithm compared to the standard BB
is that the wall velocity is not known a priori and that the resulting wall stress matches the
imposed value. It has to be emphasized that this algorithm has to be used at each time step
since the density, but more importantly the populations f∗

7 and f∗
11, are functions of time in

general. Just like for the standard velocity BB BC, the mass is conserved. However, the required
rigidity of the wall leads to a non-locality for the shear stress BC: The surface averages of the
involved populations and the density have to be computed.

The analogous equations for the bottom wall and the yz-cases read

ubx(t+
1
2) = −2 〈f∗

8 (t)− f∗
12(t)〉+

〈
Δpbx(t+

1
2)
〉

4w 〈ρ(t)〉 c2s , (5.36)

uty(t+
1
2) =

(2 〈f∗
18(t)− f∗

15(t)〉 −
〈
Δpty(t+

1
2)
〉

4w 〈ρ(t)〉 c2s , (5.37)

uby(t+
1
2) = −2 〈f∗

17(t)− f∗
16(t)〉+

〈
Δpby(t+

1
2)
〉

4w 〈ρ(t)〉 c2s . (5.38)

Different signs in the equations for the bottom wall have to be noted. They can be easily
understood when the case of simple shear flow is considered: In simple shear flow, the bottom
and top wall shear stresses are identical, σt

xz = σb
xz, but the moment transfers have different

signs, Δptx = −Δpbx, cf. eq. (5.28). Furthermore, f7 at the top wall plays the same role as f8 at
the bottom wall (the same also for f11 and f12). The bottom wall moves in opposite direction as
the top wall, ubx(t+

1
2) = −utx(t+

1
2). This way, the signs in the equations can be verified.

It is an advantage that there are no body diagonals (±1,±1,±1) in the D3Q19 lattice. It is easy
to see that a population either participates in the σxz or the σyz BC algorithm, but not in both.
This means that the xz- and the yz-BCs can be enforces independently. Furthermore, the xz-BC
can be a stress BC, and the yz-BC can be a velocity BC at the same time. A benchmark test of
this newly proposed and well-working BC is presented in section 9.5.

Concluding, the algorithm for the shear stress BC is outlined here again for the xz-component
and the top wall on the D3Q19 lattice. The yz-component and the bottom wall work analogously
and independently.

1. At each time step t, specify a desired average momentum exchange
〈
Δptx(t+

1
2)
〉
which is

equivalent to the average xz-component of the top wall stress.

2. Compute the resulting top wall velocity utx(t+
1
2) from eq. (5.35).

3. Perform the standard velocity BB BC algorithm in eq. (5.26) with this velocity in order to
obtain the unknown populations f8(x, t+ 1) and f12(x, t+ 1) at the wall.

5.5. Efficiency and choice of simulation parameters in the lattice
Boltzmann method

In the following, the significance of the simulation parameters in the LBM will be discussed. The
relations between physical and lattice units are given in section 8.2.

The LBGK equation, eq. (5.3), has a free parameter, the dimensionless relaxation time τ . It can
be selected in a given range to control the kinematic viscosity ν of the fluid (with unit m2 s−1)
via eq. (5.7). The lattice Mach number is defined as

Ma =
û

cs
(5.39)



5.5. Efficiency and choice of simulation parameters in the lattice Boltzmann method 35

where û is a characteristic (typically the maximum) velocity in the system, and cs is the lattice
speed of sound. For the plain NSE, the Reynolds number is the only relevant dimensionless
parameter. It may be defined as

Re =
lû

ν
(5.40)

with a characteristic length l. This physical length is discretized by N lattice constants such
that

l = NΔx. (5.41)

Generally speaking: The larger N , the higher the spatial resolution. The smaller N , the faster
the simulation.

It follows from eq. (5.7), eq. (5.39), eq. (5.40), and eq. (5.41) that

Ma

Re
=

(
τ − 1

2

)
cs

N

Δt

Δx
. (5.42)

It should be noted again that for most of the available lattices, cs =
√
1/3Δx/Δt holds. Eq.

(5.42) shows that only three of the four simulation parameters (τ , Ma, Re, N) can be chosen
independently. Usually, the physical parameters for the simulation are known, in this case the
Reynolds number. Thus, the researcher is left with the problem which two of the remaining three
parameters (τ , Ma, N) to set first and how. This, generally, is a problem-specific task.

Instead of Ma and N , the time step Δt and the lattice constant Δx may be chosen as parameters.
They are connected via

ν =
τ − 1

2

3

Δx2

Δt
, (5.43)

which can be obtained from eq. (5.7) and c2s = Δx/(3Δt).

The lattice Mach number must be sufficiently small in order to avoid truncation errors due to
the Taylor expanded equilibrium, eq. (5.6), and compressibility errors caused by the equation
of state of an ideal gas, eq. (5.10). For that reason, the lattice Mach number is usually kept
below 0.1 or 0.2. The lattice resolution N can in principle be chosen freely. However, N must be
sufficiently large in order to resolve regions of interesting physics, but it should be preferably
small at the same time since the number of lattice nodes in the simulation grows like N3 in
3D and with it the memory footprint and computing time. Additionally, on the one hand, the
relaxation time cannot approach 0.5 arbitrarily closely. LB simulations are only stable for values
of τ larger than 0.5 + ε where ε is a small but finite and positive number which depends on the
flow configuration and the lattice [163]. On the other hand, it is known that for τ larger than
unity, the LBM becomes more and more inaccurate, especially in the presence of boundaries, as
discussed in [150, 164, 165].

A common approach is to set τ and Δx or N first. From the known Reynolds number of the
physical problem, the time step Δt (and thus the number of required time steps) and the lattice
Mach number can then be inferred from eq. (5.43) and eq. (5.42), respectively. It must be
emphasized that the lattice Mach number usually does not match the physical Mach number.
This is not a problem in general as long as it is not too large (section 8.2). If, however, the lattice
Mach number turns out to be too large (Ma > 0.2, say), either the lattice constant Δx or the
relaxation time τ has to be decreased. This iteration has to be continued until all parameters have
values which ensure (i) numerical stability, (ii) small compressibility artifacts, (iii) manageable
lattice and (iv) time step sizes. It is easy to believe that the above considerations limit the
applicability of the LBM as will be illustrated briefly by means of two examples.
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For a high Mach number, Ma = 0.1, a small viscosity, τ = 0.51, and an intermediate resolution,
N = 100, the Reynolds number as defined in eq. (5.40) is about 1700. This example illustrates
that the LBM in its presented form is intrinsically not well suited for the simulation of flows
with Reynolds numbers significantly larger than O(103) or O(104). Generally, high Reynolds
number flows require large resolutions and a long computing time. Contrarily, extremely small
Reynolds numbers (< 10−3, say) are also difficult to reach. Assuming that a minimum resolution
for an accurate flow description is required, N = 15, and that the relaxation parameter is taken
as τ = 1 to reduce numerical artifacts caused by higher values of the relaxation parameter, then
the Reynolds number is about Re ≈ 50Ma. In order to recover a small Reynolds number (e.g.,
< 0.1), the flow velocity u must be sufficiently small, which increases the number of time steps
and the computational time proportionally to 1/u. Therefore, the LBM reveals its strength in
the intermediate Reynolds number regimes, usually between 0.1 and 100 [98].

The above discussion is made even more complex when the scaling of the error terms in the
LBM is considered (appx. B.1.2). It can be shown that the error in the LBM is proportional to
O(Δx2) +O(Ma2) (e.g., [126, 165]). An error analysis in the LBM with respect to the choice of
the simulation parameters can be found in [164, 165]. One important result is that a relaxation
parameter τ somewhere between 0.8 and 1.0 minimizes the associated numerical errors. A
discussion of the choice of simulation parameters is also provided in [166].



6. Fluid-structure interaction: the immersed
boundary method

The immersed boundary method (IBM) is presented in this chapter. Its important task is to
provide the bidirectional coupling between the fluid motion and the membrane dynamics. The
basic idea of this coupling is that the membranes move along with the ambient fluid (no-slip
condition at the interface) and that any force acting on the membranes also acts on the fluid
and vice versa (Newton’s third law). After an overview in section 6.1, the governing equations
are motivated in section 6.2. The discretization of the IBM equations is discussed in section 6.3,
followed by an alternative motivation of these equations based on statistical physics in section
6.4.

6.1. Overview of the immersed boundary method

The IBM has been introduced by Peskin in the 1970s to simulate the blood flow around heart
valves [78, 167, 168]. The purpose of the IBM is the computational modeling of fluid-structure
interactions. The mathematical basis consists of two coordinate systems, an Eulerian and a
Lagrangian system. The Eulerian variables are defined on a fixed Cartesian mesh while the
Lagrangian quantities live on a curvilinear or unstructured mesh which may move on top of the
Eulerian mesh. The Eulerian mesh is used to solve the Navier-Stokes equations (NSE) while
the Lagrangian system captures the immersed structures (e.g., membranes) in the fluid. In
general, the two meshes are not conform (fig. 6.1), which raises the need of interpolations when
information is transferred from one mesh to the other. The IBM is a front-tracking coupling
method, i.e., the interface location is explicitly known. Unlike the bounce-back scheme (section
5.4), the IBM acts via body forces on the fluid in order to enforce the boundary conditions (BCs)
resulting from the presence of the structures immersed in the fluid.

One of the basic assumptions of the IBM is the validity of the no-slip condition, i.e., each
immersed structure element moves with the same velocity as the ambient fluid. Conversely, the
structure exerts a force on the nearby fluid which enters the NSE as an external forcing term.
This force mimics the momentum exchange of the fluid at the structure surface and can also be
interpreted as the force obtained from the constitutive model of the elastic immersed material
(chap. 7). The forces acting on the fluid are originally computed in the Lagrangian frame of the
structure. Thus, the forces have to be spread to the Eulerian mesh in order to solve the NSE.
The resulting fluid velocity has to be interpolated back to the Lagrangian mesh for the update of
the structure element positions. The underlying interpolation functions (also called interpolation
stencils) for the force spreading and the velocity interpolation have to be defined in a consistent
way. The algorithm and discretizations are given in sections 6.2 and 6.3.

The IBM offers a number of advantages. First, it can be combined with any Navier-Stokes
solver which supports external forcing (e.g., the LBM). Second, the constitutive behavior of the
immersed elastic structures is not restricted by the IBM. In that sense, the IBM is a pure coupling
method obeying the no-slip condition at the fluid-structure interface. A further advantage is
that there are no additional, unphysical parameters in the IBM which have to be tuned or
optimized. The implementation of the IBM is comparably simple, and its numerical overhead is
small. Particularly with regard to the simulation of suspensions of deformable particles at high
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Fig. 6.1.: Eulerian and Lagrangian meshes. A circular object (large dotted circle) of radius 1.4Δx is
described by an ensemble of Lagrangian points (red circles) on the background of the regular Eulerian
grid (dashed lines and white circles). Generally, the Lagrangian mesh is not conform with the Eulerian
grid.

volume fractions, an important advantage of the IBM is that arbitrarily complex fluid-structure
interfaces can be modeled. Numerical problems related to the simulation of dense suspensions of
deformable particles are discussed separately in section 8.6.

The IBM has been used before in connection with the LBM or other Navier-Stokes solvers in order
to simulate suspensions of soft particles [77, 80, 89, 169, 170]. Apart from the application being
in the focus of this work (simulation of deformable particles), the IBM is regularly employed to
model rigid objects immersed in a fluid. Peskin [78] provides a rich collection of applications and
extensions of the IBM such as improving the time-stepping scheme [171], the volume conservation
[172], sharpening its interface [173], implementing local grid refinement [174], and parallelizing
the IBM [175]. Some applications include Peskin’s original work about fluid dynamics of heart
valves [167], simulation of particle suspensions [176], platelet aggregation during blood clotting
[177], flow in elastic blood vessels [178], simulation of biofilms [179], and flow past a cylinder
[180], to name only a few. Additional applications of the IBM are reviewed in a more recent
article by Mittal and Iaccarino [181].

6.2. Governing equations of the immersed boundary method

A thorough mathematical derivation of the IBM formalism has been provided by Peskin [78]. It
shall not be repeated here. In the following, solely the governing equations and some remarks
are collected for a special case of the IBM. It is assumed that

• the immersed structure is a 2D membrane immersed in 3D space and that

• the density of the membrane equals the density of the ambient fluid.

Both assumptions are reasonable when red blood cells (RBCs) are simulated (chap. 4). However,
in general, the IBM may also be applied to situations where the above assumptions cannot be
made. The corresponding generalized equations can be found in [78].

Let X be the coordinate of a fixed point in the Eulerian frame and x(r, s, t) the position of
a marker point comoving with the Lagrangian mesh. (r, s) are two-dimensional curvilinear
coordinates for the membrane. The exact form of the curvilinear coordinate system is not
important since it will not appear in the discretized equations at the end. Still, it is instructive
to use (r, s) in order to better understand the IBM formalism. The governing equations for the
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fluid-membrane coupling read [78]

f(X, t) =

∫
dr ds f̃(r, s, t)δ(X − x(r, s, t)), (6.1)

ẋ(r, s, t) =

∫
d3X u(X, t)δ(X − x(r, s, t)). (6.2)

Here, δ(X − x(r, s, t)) is the three-dimensional Dirac delta distribution. u(X, t) is the velocity
of the fluid at coordinate X at time t, and ẋ(r, s, t) is the velocity of the Lagrangian marker
point x(r, s, t). f(X, t) is the force density (force per volume) acting on the fluid at coordinate
X and time t. The force density (force per area) in the Lagrangian system at position x(r, s, t)
is denoted by f̃(r, s, t). Eq. (6.2) resembles the no-slip condition at the membrane surface.

It has to be noted that eq. (6.1) and eq. (6.2) behave differently, even though they have the same
interaction function δ(X − x(r, s, t)). For a 2D membrane, force densities are area densities.
Thus, on the one hand, the force density f(X, t) on the left-hand-side of eq. (6.1) is singular
like a one-dimensional delta function since the integral is only 2D. On the other hand, the
velocities ẋ(r, s, t) and u(X, t) in eq. (6.2) are both finite. The transformation in eq. (6.1) is
called spreading, and the transformation in eq. (6.2) is called interpolation [78].

For the simulations in the present work, eq. (6.1) and eq. (6.2) form the interaction equations
between the membranes and the ambient fluid. In the next step, it has to be discussed how the
mathematical relations can be discretized in order to use them in numerical simulations.

6.3. Discretization of the immersed boundary method

The discretization of the IBM equations, eq. (6.1) and eq. (6.2), is necessary to implement the
model into a numerical scheme. Especially, a reasonable discretized delta function has to be found.
In the following, the spatial discretization scheme will be discussed. The time discretization is
shortly presented at the end of this section. Omitted intermediate steps and further comments
can be found in [78].

In their discretized forms, the spreading and interpolation equations, eq. (6.1) and eq. (6.2), read

f(X, t) =
∑
r,s

f̃(r, s, t)δΔ(X − x(r, s, t))ΔrΔs, (6.3)

ẋ(r, s, t+Δt) =
∑
X

u(X, t+Δt)δΔ(X − x(r, s, t))Δx3 (6.4)

where the integration is replaced by a discrete sum and δΔ(X −x(r, s, t)) is the discretized delta
function. The time increment is denoted Δt. Δx, Δr, and Δs are the Eulerian lattice constant
and the sizes of the Lagrangian membrane elements, respectively. The velocity interpolation and
force spreading are illustrated in fig. 6.2.

It has to be stressed again that f̃(r, s, t) is the force density of the membrane (force per area),
whereas F (r, s, t) = f̃(r, s, t)ΔrΔs is the force acting on the membrane area defined by (Δr,Δs).
In the discretized formulation, there is a given number of points (nodes) defining the membrane
surface. Each of these points can be addressed either by its coordinates (r, s) or by a node index
i. A curvilinear coordinate system is not necessarily required, and the mesh can be unstructured
(which will be the case throughout this thesis, cf. section 8.3). Replacing (r, s) by the node index
i and setting Δx = Δt = 1 in the following, the discretized IBM equations read

f(X, t) =
∑
i

Fi(t)δΔ(X − xi(t)), (6.5)

ẋi(t+ 1) =
∑
X

u(X, t+ 1)δΔ(X − xi(t)). (6.6)
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xi(t)

(a) velocity interpolation

X

(b) force spreading

Fig. 6.2.: Velocity interpolation and force spreading in the immersed boundary method. A membrane
patch is denoted by the curved dotted line. During (a) velocity interpolation, each membrane node
(red circles) at position xi(t) collects velocity information of all lattice nodes within a finite range
(square box). During (b) force spreading, each lattice node (white circles) at fixed position X collects
force information of all membrane nodes within a finite range (square box). The weights of the
interpolation/spreading contributions are given by the value of the discrete delta function, e.g., eq.
(6.11).

In this simplified picture, Fi(t) denotes the total force acting on node i which is located at
position xi(t) and has velocity ẋi(t).

The coupled fluid-membrane system is solved iteratively. For that reason, the positions at the old
time step, xi(t), are used in eq. (6.6) to update the membrane velocity and obtain its value at
the next time step, ẋi(t+Δt). These algorithmic details are further elaborated on in section 8.1.

Obviously, a discussion of the discretized delta function δΔ(X − xi(t)) is still missing in order
to complete the discretization. According to Peskin [78], the discretized delta function has to
obey a series of restrictions and properties, e.g., the force and the torque should be the same
when evaluated in the Eulerian and the Lagrangian systems. Additionally, the discretized delta
function should be continuous, which assures that there are neither jumps in the velocity nor in
the force when the membrane points move between Eulerian lattice nodes. A complete list of
those restrictions and their mathematical significance can be found in [78]. In order to increase
computational efficiency, the discretized delta function should have a compact support, i.e.,
for each Lagrangian mesh point, only the Eulerian fluid points within a finite range should be
considered and vice versa. The smallest possible support for realizing all of Peskin’s postulates is
four Eulerian grid points along each spatial dimension. It can be shown that the same discretized
delta function has to be used for spreading and interpolation [78].

One of the major assumptions is that the discretized delta function can be factorized,

δΔ(x) = φ(x)φ(y)φ(z). (6.7)

This ansatz is not essential, but the computations become simpler, and the cubic lattice structure
is taken into account.

It is possible to find various discretized delta functions which have different interpolation ranges.
The so-called 4-point stencil reads

φ4(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
8

(
3− 2|x|+√

1 + 4|x| − 4x2
)

for 0 ≤ |x| ≤ 1,

1
8

(
5− 2|x| −√−7 + 12|x| − 4x2

)
for 1 ≤ |x| ≤ 2,

0 for 2 ≤ |x|.
(6.8)

This discretization fulfills all restrictions which are stated by Peskin [78]. The interpolation
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function

φc
4(x) =

{
1
4(1 + cos(πx2 )) for 0 ≤ |x| ≤ 2,

0 for 2 ≤ |x| (6.9)

which is an excellent approximation of eq. (6.8) is regularly used in the literature instead.

One can construct an interaction function with a support of three lattice nodes,

φ3(x) =

⎧⎪⎨
⎪⎩

1
3(1 +

√
1− 3x2) for 0 ≤ |x| ≤ 1

2 ,
1
6(5− 3|x| −√−2 + 6|x| − 3x2) for 1

2 ≤ |x| ≤ 3
2 ,

0 for 3
2 ≤ |x|.

(6.10)

Similar to φ4(x) and φc
4(x), φ3(x) is symmetric, φ(−x) = φ(x), and it has a continuous first

derivative. These two properties have not been claimed, but come in handy. Peskin [78] and
Dünweg and Ladd [182] state that Navier-Stokes solvers depending on a central difference
scheme cannot use φ3(x) since the number of support points is odd. The LBM, however, is not
concerned with this restriction. Obviously, there are some advantages of φ3(x) over φ4(x). First,
the envelope volume is decreased from 64 to 27 grid points in 3D reducing the computational
overhead. Second, the membrane interface width is decreased. It is reported by Dünweg and
Ladd [182] that φ3(x) results in hydrodynamics which is nearly as accurate as that for φ4(x).

If maximum efficiency is required, it is also possible to use a two-point linear interaction function
with a support of two lattice nodes along each axis,

φ2(x) =

{
1− |x| for 0 ≤ |x| ≤ 1,

0 for 1 ≤ |x|. (6.11)

This way, the cubic lattice structure becomes more visible, i.e., the translational symmetry is
violated more strongly than for φ3 or φ4 [78, 182]. Obviously, φ2 does not have a continuous
derivative, but only eight lattice nodes have to be considered for spreading and interpolation.
The shapes of the three discretized delta functions φ2, φ3, and φ4 are shown in fig. 6.3.

In the present work, for reasons of numerical efficiency and for reducing the numerical membrane
interface width, usually φ2 is employed (as also in, e.g., [183]). It should be noted that even
different discretized delta functions may be used [78, 184, 185].

When the IBM is combined with the LBM, the explicit Euler method is usually employed for the
time discretization (e.g., [77]),

xi(t+Δt) = xi(t) + ẋi(t+Δt)Δt. (6.12)

However, there exist different time integration schemes, [186, 187].

6.4. Connection between the immersed boundary method and
viscous coupling

Eq. (6.1) and eq. (6.2) can also be derived from a more general method. Dünweg and Ladd [182]
use a fluctuating LBM in connection with particles dissipatively coupled to the fluid. These
particles experience a drag force if their velocity differs from the ambient fluid velocity. Dropping
the time from the following equations for simplicity, the drag force acting on particle i is

F d
i = −Γi

(
pi

mi
− u(xi)

)
(6.13)
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Fig. 6.3.: Discrete delta functions for the immersed boundary method (IBM). The 2-point (solid), 3-point
(dashed), and 4-point (dotted) discrete delta functions for the IBM are shown.

where Γi is the drag coefficient for the particle, pi is its momentum, mi is its mass, and u(xi) is
the fluid velocity at the position of the particle. The equations of motion for the particles are

d

dt
xi =

1

mi
pi, (6.14)

d

dt
pi = F c

i + F d
i + F f

i . (6.15)

Here, F c
i is the conservative force acting on the particle (e.g., due to an external potential or

particle interactions), and F f
i is a Langevin noise for the particle. According to [182], the force

density applied to the fluid at Eulerian coordinate X is computed numerically from

f(X) = −
∑
i

(
F d
i (xi) + F f

i (xi)
)
δΔ(X − xi) (6.16)

with the same discretized delta functions as in section 6.3. It has been shown by Dünweg
and Ladd [182] that the fluctuation-dissipation theorem holds for this coupled system. In the
following, it will be inferred that the IBM is formally a special case of the viscous coupling.
Consequently, the fluctuation-dissipation theorem should also hold for the IBM [188].

Eq. (6.14) and eq. (6.15) can be combined to give

mi
d2

dt2
xi = F c

i + F d
i + F f

i (6.17)

which becomes

F d
i + F f

i = −F c
i (6.18)

in the over-damped, i.e., massless limit (mi → 0). Combining eq. (6.18) with eq. (6.16) directly
results in the IBM force spreading equation, eq. (6.5), if the conservative force is identified as the
membrane force. This finding also justifies that, in the present model, the elastic (conservative)
membrane force is used in eq. (6.5) to drive the fluid (chap. 7).

In the last step, keeping mi → 0, eq. (6.13), eq. (6.14), and eq. (6.18) are combined, which yields

ẋi = u(xi) +
1

Γi
(F c

i + F f
i ). (6.19)

In the high friction limit (Γi → ∞), the no-slip condition is recovered and with it the IBM
velocity interpolation, eq. (6.6).

The parameters mi and Γi are purely numerical without any physical significance. In this sense,
the IBM is more natural since it does not introduce additional parameters. However, the time
steps for the IBM and the fluid solver are required to be identical. This is not the case in the
approach followed by Dünweg and Ladd [182] where the molecular dynamics time step for the
particles can be chosen much smaller then the hydrodynamic time step.



7. Membrane model and energetics

The computational model for the red blood cell (RBC) membrane is presented in this chapter.
Based on the discussions in section 4.2, it is assumed that an undeformed RBC is stress-free
and that this equilibrium shape does not change in time. The membrane model is formulated
in such a way that any deviation from the equilibrium shape increases the membrane energy
and response forces are induced which drive the membrane shape towards its equilibrium. The
equilibrium shape itself can be chosen arbitrarily if other deformable particles shall be studied.
In particular, the RBC membrane may be replaced by spherical, ellipsoidal, or more complex
shapes.

Four relevant energy contributions for a RBC can be identified: Local in-plane forces are caused
by the resistance to shear and dilation (section 7.1). The bilayer character of the membrane
is taken into account by defining a local bending energy giving rise to forces normal to the
membrane (section 7.2). Additionally, the total surface and volume of a RBC are virtually
constant. This can be handled by introducing appropriate surface and volume energies as in
sections 7.3 and 7.4, respectively. Forces acting between pairs of membranes or membranes and
walls are introduced in section 8.7 and are not part of the membrane model itself.

It is assumed that the above-mentioned energy contributions are independent of each other,
which is a common idealization in simulations [31]. For that reason, the energy contributions
may also be neglected individually or amended by additional contributions if another type of
membrane is considered. This renders the model far more general than it may seem on the
first glance. The considerations in this chapter can thus be applied to other types of elastic
membranes, not only to RBCs. It has to be noted as well that a volume deviation does not
generally imply a surface deviation and vice versa. Both can occur independently. The same
holds for the strain and bending contributions: A membrane can be bent without being sheared
and sheared without being bent.

Deriving the membrane forces from appropriate energies guarantees momentum and angular
momentum conservation. This is of high relevance because deformed particles are not expected
to translate or rotate spontaneously. For that reason, no ad-hoc membrane forces are considered
which may violate either the momentum or the angular momentum conservation.

7.1. Membrane strain and area dilation energetics

Gradient displacement tensor

The RBC membrane is considered to be a hyperelastic material, i.e., the stress-strain relationship
derives from a strain energy area density εS. The strain energy of the membrane is the surface
integral ES =

∮
dAεS.

Assuming an isotropic and homogeneous material [31], the energy density εS cannot depend on
the orientation or location of the membrane. Instead, the energy is locally stored in a shear
deformation and dilation of the membrane via the displacement gradient tensor D. This tensor
describes the local deformation state (strain and dilation) of the membrane.

In order to understand the concept of the deformation gradient, it is instructive to consider a
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Fig. 7.1.: Deformation of a membrane face element. Each face is made up of three nodes (1, 2, 3) which
define the edges l (between nodes 1 and 3) and l′ (between nodes 1 and 2) and the angle ϕ between
these two edges. (a) The equilibrium face (defined by l(0), l′(0), and ϕ(0)), (b) its deformed shape
(accordingly defined by l, l′, and ϕ), and (c) both transformed to the same xy-plane are shown. The
displacement vector V1 is identically zero, and the other two are shown in (c). The deformation state
(λ1, λ2) of the face is then uniquely defined.

finite and flat triangular patch of the membrane as shown in fig. 7.1. Indeed, the membrane is
numerically described by a number Nf of flat triangular face elements (finite elements, see below).
The corresponding mesh generation procedure is described in section 8.3. In fig. 7.1, an initially
undeformed triangular patch of the membrane with zero strain energy (a) is deformed (b). Due to
the claim that rotations and translations do not change the energy, it is possible—without loss of
generality—to align the undeformed and the deformed patches as shown in (c). By definition, the
first node of the triangular patch is not shifted (no displacement), whereas the other two nodes
generally have non-zero displacements V2 and V3. The displacement gradient tensor describes
how the continuous displacement V varies over the face element since V is obviously not constant.
Else, it could be chosen to be zero everywhere, and the face element would not be deformed
at all. For membranes of negligible thickness, it is sufficient to tread the 2D case. Here, the
displacement gradient tensor is defined as

D =

(
Dxx Dxy

Dyx Dyy

)
:=

(
1 0
0 1

)
+

(
∂xVx ∂yVx
∂xVy ∂yVy

)
. (7.1)

In the present model (see below), it is assumed that the displacement gradient is constant over a
given face element, i.e., the displacement varies linearly over the face. This is the spirit of the
linear finite element method (FEM).

Obviously, the energy of a face can only depend on the invariants of the tensor D. These (in
2D two) invariants are the eigenvalues λ1 and λ2 of the tensor D, and they are also called the
principal in-plane stretch ratios. They do not depend on the origin or rotation of the coordinate
system and can thus be considered as the desired physical deformation parameters. Equivalently,
the so-called strain invariants I1 = λ21 + λ22 − 2 and I2 = λ21λ

2
2 − 1 which describe the strain and

dilation state of the membrane, respectively, can be used. For a general 3D elastic material, the
tensor D is a 3× 3-tensor and a third eigenvalue, λ3, must be taken into account. More detailed
explanations and the underlying theory can be found in textbooks about elasticity, e.g., [189].

Constitutive model

The energy of the homogeneous and isotropic membrane can only depend on the invariants λ1
and λ2 or I1 and I2. Therefore, an appropriate function εS(I1, I2) for the energy density has to
be found which describes the membrane material. This function is called the constitutive model,
and its form is not fixed by the theory of elasticity. Instead, it must be chosen in such a way
that it describes the stress-strain behavior of the material as closely as possible.
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Deformations of biological cells can be large, thus, a linear stress-strain approximation is not
justified in general. Skalak et al. [190] have suggested an energy model which is able to reproduce
experimental data of RBCs at both small and large strains,

εS =
κS
12

(
I21 + 2I1 − 2I2

)
+

κα
12

I22 . (7.2)

The surface elastic shear modulus κS and area dilation modulus κα control the strength of the
membrane response to deformation (shear and dilation). Another, commonly used model is
the neo-Hookean law which is equivalent to the zero-thickness shell membrane proposed by
Ramanujan and Pozrikidis [191] for small deformations. Another constitutive model has been
proposed by Navot [192]. More information about these constitutive laws can be found in the
literature (e.g., [169, 193]). The investigation of quantitative and qualitative differences of these
models is not in the scope of this thesis. For this reason, if not otherwise stated, the Skalak
membrane model, eq. (7.2), will be employed.

Numerical procedure

In the following, the numerical evaluation of the deformation gradient and the corresponding
membrane forces is described. On the one hand, within the present model, the membrane forces
are treated as being concentrated at the corners of the faces (nodes or vertices). On the other
hand, the deformation state (λ1 and λ2 or equivalently I1 and I2) is a property of the faces.

The first step in the computation of the strains λ1,2 of a given face element is the identification of
the displacements Vk (k = 1, 2, 3) of the nodes as shown in fig. 7.1. The deformed and undeformed
faces are transformed to a common plane (here: xy-plane) in such a way that the edges l′(0)

and l′ are aligned (cf. fig. 7.1 for the node and edge conventions). It should be noted that both
the undeformed and deformed faces are treated as flat triangles. The basic assumption is that
the two-dimensional displacement gradient tensor D, eq. (7.1), is spatially constant over the
entire face. This can be realized by introducing a linear shape function Nk(x, y) = akx+ bky+ ck
(k = 1, 2, 3) for each node in the face. The coefficients are found by letting Nk(xj , yj) = δkj
(k, j = 1, 2, 3), i.e., each shape function Nk is unity at the location of the corresponding node k,
but zero at the two nodes other than k. The linear displacement field of the face can then be
written as

V (x, y) = N1V1 +N2V2 +N3V3, (7.3)

and the displacement gradient tensor D is computed from eq. (7.1). Due to the linearity of
the shape functions, the components Dαβ do not depend on x or y but on the shape function
coefficients ak and bk which are uniquely fixed by the shape of the undeformed element, i.e., ak
and bk are constant in time for each node in the face. It should be noted that also non-linear
shape functions may be used [191, 194]. However, due to numerical efficiency, the model is
restricted to a linear approach. It is shown in appx. C.1.1 that the displacement gradient tensor
then has the form D =

(
a b
0 c

)
with [31]

a =
l′

l′(0)
, b =

1

sinϕ(0)

(
l

l(0)
cosϕ− l′

l′(0)
cosϕ(0)

)
, c =

l

l(0)
sinϕ

sinϕ(0)
. (7.4)

All symbols are defined in fig. 7.1.

The current deformation of a face is evaluated from the equations

λ21λ
2
2 = a2c2, (7.5)

λ21 + λ22 = a2 + b2 + c2 (7.6)
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since λ1,2 are the eigenvalues of the tensor D and λ21 + λ22 = tr(DTD) and λ21λ
2
2 = det(DTD)

where the superscript T denotes the matrix transpose. The product DTD is rotationally invariant.
More details are also provided in [31, 195, 196].

Numerically, the strain energy ES is computed from the area energy density εS, eq. (7.2), and the

reference (undeformed) area A(0) of the membrane faces, ES =
∑

iA
(0)
i εSi , where the sum runs

over all faces of the membrane [31, 195, 196]. The strain force of node i at position xi caused by
the deformation can be computed from the principle of virtual work [195, 196],

F S
i = −∂ES({xi})

∂xi
. (7.7)

The functional form of the forces is derived and presented in appx. C.1.2. In the undeformed
state of the membrane (I1 = I2 = 0 for each face element), the total energy ES and all forces F S

i

are zero.

7.2. Membrane bending energetics

The bending energy of a RBC may be written in the form [31, 40]

EB =
κB
2

∮
dA

(
H −H(0)

)2
. (7.8)

Here, H is the trace of the surface curvature tensor, and H(0) is the spontaneous curvature. The
energy scale is given by the bending modulus κB. The energy term in eq. (7.8) is also denoted
the Helfrich term, named after Helfrich who has first stipulated an energy term containing the
spontaneous curvature of the membrane [197]. The investigation of the bending properties of
RBCs goes back to Rand and Burton [198], Canham [199], and Evans [36] to name only a few
investigators.

In principle, there are two additional terms contributing to the bending energy in eq. (7.8) [31].
The first is the Gaussian term κG

∮
dAK where K is the determinant of the curvature tensor

and κG is the Gaussian bending modulus. One can show that this integral is constant as long
as the topology of the membrane does not change, i.e., as long as a closed membrane remains
closed [31, 40, 200, 201]. This is a consequence of the Gauss-Bennet theorem which states that∮
dAK = 4π for a simply connected surface with the topology of a sphere. Since the present

membrane model does not allow rupture or topology change, the Gaussian energy term is always
constant and, thus, does not contribute to the energy balance. Hence, it can be neglected without
any restriction. Another bending energy term related to the area difference of the inner and outer
lipid monolayers of the RBC membrane may be included [31, 35, 40]. This non-local contribution
is neglected in the present thesis for the sake of simplicity. Indeed, it is commonly disregarded
by other scientists as well (e.g., [44, 76, 84, 86, 89]).

In order to find an efficient discretized bending energy on a triangular mesh (section 8.3), it is
beneficial to start with a membrane without spontaneous curvature, H(0) = 0, first. In this case,
the energy EB in eq. (7.8) is commonly discretized in the form [201, 202]

EB =
κ̃B
2

∑
〈i,j〉

(ni − nj)
2 = κ̃B

∑
〈i,j〉

(1− ni · nj) = κ̃B
∑
〈i,j〉

(1− cos θij) (7.9)

where the sum runs over all pairs 〈i, j〉 of neighboring faces1 of the tessellated membrane. The
unit normal vector of face i is ni, and the angle between neighboring normal vectors ni and nj

1Two faces are neighbors if they share an edge, i.e., two nodes.
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is θij . The constant κ̃B has to be chosen in such a way that eq. (7.8) and eq. (7.9) are consistent
for small angles. According to Gompper and Kroll [201], this is the case for κ̃B =

√
3κB for a

membrane with the topology of a sphere. Assuming small angles, it is convenient to expand the
cosine and approximate the bending energy by

EB =
κ̃B
2

∑
〈i,j〉

θ2ij . (7.10)

At this point, a model assumption is made. In reality, the biconcave shape of the RBC results
from the minimization of the bending energy subject to surface and volume constraints [31]. In
the present model, however, this biconcave shape is used as input, i.e., it is assumed to be the
correct equilibrium shape. Any deviation from this shape will then lead to an increase of the
bending energy. This idea may be written in the form

EB =
κ̃B
2

∑
〈i,j〉

(
θij − θ

(0)
ij

)2
= κ̃B

∑
〈i,j>i〉

(
θij − θ

(0)
ij

)2
. (7.11)

For the undeformed membrane, each angle between neighboring faces ‘remembers’ its equilibrium
value, and any deviation is penalized by an energy contribution to EB. This approach also
reflects the shape memory of RBCs [92]. The model used by Dupin et al. [87] bases on a similar
idea although no sound bending energy is defined. The form of the energy in eq. (7.11) may

also be motivated by assuming that the the energy is arbitrary but has a minimum at θij = θ
(0)
ij .

For small angle deviations δθij = θij − θ
(0)
ij , the energy may be expanded about the minimum,

taking only the leading term into account. Being heuristic, this approach is efficient in terms
of computing time and circumvents the direct discretization of the curvature on the triangular
mesh which is generally a delicate task.

The derivation of the bending forces,

FB
i = −∂EB({xi})

∂xi
, (7.12)

based on the energy in eq. (7.11) is presented in appx. C.2.

It should be noted that, in principle, simulations may be performed without bending resistance
in order to simplify the model. Yet, a bending resistance has to be included whenever strong
local curvatures appear. Else, the membranes can buckle or collapse [77, 84, 191, 203].

7.3. Membrane surface dilation energetics

In reality, the total surface area of a RBC is strongly conserved (section 3.1). Practically, one
may introduce a surface energy [38, 204]

EA =
κA
2

(
A−A(0)

)2
A(0)

(7.13)

as penalty for surface deviations. The equilibrium surface area is A(0), and the current surface
area is A. The magnitude of the surface energy is controlled by the surface modulus κA which is
about 0.5Nm−1 for a RBC [31] and thus five orders of magnitude larger than the area dilation
modulus of the cytoskeleton, κα = 5× 10−6Nm−1 (section 7.1). The large surface modulus is
caused by the incompressibility of the lipid bilayer which is basically a 2D fluid [31].

For simulations of RBCs, the surface area fluctuations should be as small as possible. Due to the
explicit nature of the simulation algorithm, the numerical value for κA cannot be as large as the
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physical value, and a rigorous surface conservation cannot be realized. Yet, the observed surface
deviations are usually smaller than 1%, even for strongly deformed RBCs and numerical values
for κA which are about 1000 times smaller than in reality. A similar reduction of the numerical
value for the surface modulus is also reported in [31].

The discretized form of the surface force acting on node i,

FA
i = −∂EA({xi})

∂xi
, (7.14)

is derived in appx. C.3.

7.4. Membrane volume energetics

In its undeformed shape, having the volume V (0), a RBC is in osmotic equilibrium with concen-
tration c0 of osmotically active molecules in its interior. The membrane is permeable for water
but not for ions. Thus, a change in volume leads to a modified concentration and consequently
to a modified osmotic pressure. This causes an increase of the osmotic free energy of the cell
which can be approximated by [204]

EV =
κV
2

(
V − V (0)

)2
V (0)

(7.15)

and has the same form as the surface energy in eq. (7.13). Here, κV = RTc0 is the volume (or
osmotic) modulus where R is the universal gas constant and T is the temperature. The osmotic
modulus for a RBC is κV = 7.23 · 105 Jm−3 [31].

The energy scale related to the osmotic pressure is so large that any volume change of a RBC is
always negligible, as long as the osmotic concentration of the ambient fluid is constant. Since,
in the present thesis, temperature or ionic concentration fields are not considered, one may ask
why a volume energy is introduced in the first place. This can be understood in the following
way: Assuming simulations of impermeable membranes with no-slip condition at the surface
and incompressibility of the interior and exterior fluids, the volume of the RBCs should be
conserved at all times, even without enforcing this explicitly. However, for immersed boundary
lattice Boltzmann simulations, both assumptions are only valid in the hydrodynamic limit. In
a numerical simulation with finite spatial resolution, the no-slip condition cannot be exactly
reproduced by the IBM—at least not for the originally proposed scheme which is used in this
thesis [172, 205, 206, 207]. The reason is that, even if the fluid is incompressible and its velocity
field divergence-free, the interpolated velocity field due to the IBM interpolations is not generally
divergence-free. Furthermore, it is well-known that the LBM is a slightly compressible Navier-
Stokes solver [208]. While the latter effect will only cause fluctuations of the cell volume about
its initial magnitude, the former may lead to an accumulated volume drift, especially in long
simulations with coarse lattice and mesh resolutions. In order to control the volume of the RBCs
numerically, a volume energy of the form as in eq. (7.15) is used. It should be stressed that
the volume energy here is employed to counteract a purely numerical shortcoming of the model,
although its functional form can be motivated from physical considerations.

The discussion from section 7.3 can be applied to the volume energy as well: In simulations,
unrealisticly small numerical values for κV have to be used for the sake of stability. Still, the
volume deviations are sufficiently small, typically below 1%.

The derivation of the discretized volume force acting on node i,

FV
i = −∂EV({xi})

∂xi
, (7.16)

can be found in appx. C.4.
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In this chapter, advanced aspects of the computational model are presented which have not been
addressed in one of the former chapters. A short overview of the sub-steps of the combined
algorithm is given in section 8.1. The unit conversion between physical and lattice units is
explained in section 8.2, followed by the description of the membrane mesh generation in section
8.3. The behavior of a single spherical, elastic capsule in shear flow is studied in detail in section
8.4 as a benchmark test. An efficient approach for initializing a dense suspension of deformable
particles is discussed in section 8.5. Shortcomings and restrictions of the presented model are
identified in section 8.6. The need for additional membrane-membrane interaction forces is
motivated in section 8.7. Finally, wall slip at smooth walls and its circumvention is discussed in
section 8.8.

8.1. Overview of the combined simulation algorithm

After the simulation has been initialized (sections 5.3.1 and 8.5), each time step of the combined
algorithm as described in chapters 5, 6, and 7 consists of the sub-steps mentioned below. xi

denotes the position of the membrane node with index i, and X is the position of a fluid lattice
node. The time step Δt is set to unity.

1. At the beginning of time step t, the membrane node positions xi(t) and the fluid state
u(X, t), ρ(X, t) are known. From the configuration of the membranes, the forces Fi(t)
acting on the membrane nodes in the Lagrangian frame are computed using the membrane
model (chap. 7).

2. The membrane forces Fi(t) are spread to the Eulerian grid via immersed boundary method
(IBM), cf. eq. (6.5), and the body force density f(X, t) is obtained.

3. The body force f(X, t) is used as input for the lattice Boltzmann method (LBM) which
provides the new state of the fluid, u(X, t+ 1), ρ(X, t+ 1) (chap. 5).

4. The new velocities of the membrane nodes, u̇i(t+ 1), are computed via IBM, cf. eq. (6.6).

5. The new positions of the membrane nodes, xi(t+ 1), are found by evaluating eq. (6.12).

6. Information about the membrane and fluid states may be written to the disk for post-
processing.

7. Go to sub-step 1 and proceed with time step t+ 1.

The sub-steps are also illustrated in fig. 8.1.

8.2. Conversion between physical and lattice units

A computer does not have the ability to compute dimensional quantities. Unit conversions are
necessary in order to input physical data into a simulation and extract physical results again.

The first step is to realize that all mechanical quantities have a unit which can be decomposed
into powers of length, time, and density. In the following, it is assumed that only mechanical
quantities are required. Temperature and electric charges do not play a role in the present thesis.

T. Krüger, Computer Simulation Study of Collective Phenomena in Dense Suspensions of 
Red Blood Cells under Shear, DOI 10.1007/978-3-8348-2376-2_8,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden 2012
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Fig. 8.1.: Scheme of the combined simulation algorithm. It proceeds along the black arrows. Data of
each sub-step may be written to the disk (gray arrows) for post-processing. More details are given in
section 8.1.

Each physical quantity Q may then be written in the form

Q = Q̃Cqx
x Cqt

t C
qρ
ρ (8.1)

where Q̃ is a number (the value of Q in lattice units), and Cx, Ct, and Cρ are the conversion
factors for length, time, and density (with units m, s, and kgm−3), respectively. The three
numbers qx, qy, and qρ are the according and uniquely defined powers required to construct the
correct unit for Q. Once the three conversion factors Cx, Ct, and Cρ are known, units can be
bidirectionally converted between the lattice and the physical system. It is straightforward to
define derived conversion factors, e.g., for the pressure p. The unit of pressure is Pa = kgm−1 s−2

and thus Cp = CρC
2
xC

−2
s . The lattice and physical values of the pressure are then connected

via p = p̃Cp. This example can be generalized to any other dimensional mechanical quantity.
Numbers have the same values in lattice and physical units, i.e., the conversion factor is unity.

In lattice Boltzmann simulations, Cx is usually the physical length associated with the distance
between two neighboring lattice nodes (the lattice constant Δx), Cx = Δx and Δx̃ = 1. This
will always be the case in the present thesis. Since the lattice value for the density is commonly
set to unity, ρ̃ = 1, Cρ automatically equals the density of the fluid, Cρ = ρ. It remains the
identification of the time conversion factor Ct.

If the Reynolds number is the only relevant dimensionless parameter in a lattice Boltzmann
simulation, the time conversion factor is computed in the following way: Since the Reynolds
number is dimensionless, its value must be the same in the lattice and physical systems. Else,
the systems would not be equivalent. The kinematic viscosity of the fluid can then be written as

ν = ν̃
Δx2

Δt
= ν̃

C2
x

Ct
(8.2)

where Δx = Cx has been used and Δt
!
= Ct (i.e., Δt̃ = 1) is the unknown time step. A comparison

with eq. (5.7) reveals that

ν̃ =
τ − 1

2

3
(8.3)
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is the viscosity in lattice units for a lattice with cs =
√
1/3Δx/Δt. If the viscosity of the fluid,

ν, the lattice constant, Δx, and the relaxation parameter, τ are known, the time step can be
computed,

Ct = Δt =
τ − 1

2

3

Δx2

ν
. (8.4)

Eq. (8.4) can also be exploited to set up a simulation if another quantity than Δt is initially
unknown.

As already mentioned in section 5.5, the LBM is not well suited to simulate low Reynolds number
flows since the time step usually becomes small and a large number of time steps is required. This
becomes also clear from eq. (8.4): A large viscosity ν leads to a small time step Δt. However,
this raises the question whether the exact value of the Reynolds number (as long as it is small) is
important after all. The time scale in highly viscous flows is arbitrary and does not depend on
the Reynolds number [194, 209]. If the numerical Reynolds number was increased by a factor
n, the time step would be increased by the same factor (if Δx and τ are not changed) and
the number of required time steps and the related computing time would both be reduced by
n. Of course, such an approach is only admissible if the physical results are not significantly
compromised. Yet, a similar approach is constantly used in lattice Boltzmann simulations: The
lattice Mach number is usually much larger than in reality. As long as the lattice Mach number
is small, no significant effects are expected. It is generally not affordable to simulate fluids with
the correct Mach number. Cates et al. [209] state that ‘ “fully” realistic simulations (in which
lattice parameter values map directly onto those of the real world) are not the goal of mesoscale
lattice Boltzmann.’ In the present work, suspensions in the viscous regime are simulated, thus,
the Reynolds number is small, and inertia effects are not relevant. For that reason, the time step
may be increased as much as it is still compatible with the small Reynolds number assumption
and as long as numerical stability is not endangered.

It is important to recognize that another dimensionless number is more important than the
(small) Reynolds number when deformable particles in an external flow field are considered. The
capillary number

Ca :=
ρνγ̇r

κS
(8.5)

quantifies the ratio of the viscous shear force of the fluid (density ρ, kinematic viscosity ν, and
shear rate γ̇) and the elastic shear force of the immersed particle (radius r, elastic shear modulus
κS as introduced in section 7.1). The time scale of the physical problem is, therefore, defined by
the capillary number, and the time conversion factor can be computed from

Ct =
1

Cγ̇
=

˜̇γ

γ̇
=

Ca

γ̇

κ̃S
ρ̃ν̃r̃

(8.6)

when the remaining parameters have already been chosen.

It is easy to see that the capillary number and the Reynolds number can be controlled indepen-
dently. For example, a proportional increase of the lattice shear rate ˜̇γ and the lattice shear
elasticity κ̃S leaves the capillary number invariant, but the Reynolds number is increased since
Re ∝ γ̇ but Re �= Re(κS). This freedom will be used to increase the time step Δt for a fixed and
well-defined capillary number in chap. 10.

For the sake of simplicity, the tilde for indicating the dimensionless value of a quantity will be
dropped in the remainder of this thesis, except explicitly noted otherwise. Unit conversions in
LB simulations are also discussed by Ding and Aidun [154] and Feng et al. [166].
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nk ni

nj

nn

nlnm

Fig. 8.2.: Membrane mesh generation by subdivision. Each face of the original icosahedron which is
defined by three nodes ni, nj , and nk (dark-gray) is subdivided into N2 elements of equal size (N = 2
in this example). New nodes (here: nl, nm, nn) are created and connected in such a way that N2 faces
of equal area are produced (dashed lines). Finally, the new nodes are radially shifted (out of the plane,
black arrows) until they are located on the circumsphere of the icosahedron. The N2 final faces are
shown in light gray.

(a) icosahedron, Nf = 20 (b) sphere, Nf = 180 (c) sphere, Nf = 1620 (d) sphere, Nf = 4500

(e) RBC, Nf = 180 (f) RBC, Nf = 720 (g) RBC, Nf = 1620 (h) RBC, Nf = 4500

Fig. 8.3.: Examples of sphere and red blood cell meshes. The original icosahedron mesh with 20 faces
(Nf = 20) is shown in (a). (b)–(d) Spherical meshes for various values of Nf . (e)–(h) Red blood cell
meshes for various values of Nf .

8.3. Membrane mesh generation

There are basically two different ways to treat the Lagrangian mesh. First, one may introduce a
structured, curvilinear grid with an intrinsic coordinate system (e.g., polar coordinates). Second,
an unstructured grid (irregular decomposition of the surface into small patches whose connectivity
must be specified explicitly) may be employed [210]. While the first approach usually leads to
coordinate singularities at the poles, gradients have to be approximated in the second method.
Both approaches are commonly used to describe deformable particles immersed in fluids. For
example, Diaz et al. [211] and Lac et al. [212] have used structured meshes whereas Kraus et al.
[76], Navot [192], and Ramanujan and Pozrikidis [191] have employed unstructured grids. In the
present model, an unstructured mesh with triangular face elements is used as shown in fig. 8.3.
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Tab. 8.1.: Properties of the sphere and red blood cell (RBC) meshes. The meshes for a sphere and a RBC
for Nf = 1620 as shown in fig. 8.3(c) and fig. 8.3(g) are compared. A is the face area, l is the edge
length (distance between neighboring nodes), ϕ is the interior angle in a face. The bar indicates the
average of a quantity taken over the entire mesh, and σ denotes its standard deviation. The listed
values are obtained for a spherical mesh with radius 7.5 and a RBC mesh with large radius 9 (both
leading to l̄ ≈ 1). All lengths and areas are given in lattice units.

quantity sphere (r = 7.5) RBC (r = 9)

range of face areas [0.40 . . . 0.46] [0.37 . . . 0.50]
average face area Ā 0.43 0.44
average area deviation σA/Ā 3.0% 7.5%
range of edge lengths [0.93 . . . 1.08] [0.80 . . . 1.27]
average edge length l̄ 1.01 1.01
average length deviation σl/l̄ 4.8% 9.2%
range of edge angles [53◦ . . . 72◦] [41◦ . . . 84◦]
average angle deviation σϕ/ϕ̄ 8.0% 13.7%

Creating an unstructured mesh for a given surface (e.g., for a RBC or a sphere) is a non-trivial
task. It is desirable to design meshes which are as homogeneous and isotropic as possible in
order to minimize potential discretization artifacts. Feng and Michaelides [213] use a minimum
potential approach, i.e., membrane nodes can move freely on the surface and interact via a
repulsive pair potential. After some time, a node configuration is reached which corresponds to
a local energy minimum. This configuration is then saved and used for later simulations. It is
also possible to create triangular meshes directly with software tools like CGAL [214] or Gmsh
[215]. Although simply obtained, these meshes seem to lack the desired homogeneity and isotropy
(Krüger et al. [187]).

There is an approach to create high quality meshes for spherical surfaces, similar to that presented
in [191]. One starts from a highly symmetric Platonic solid with Nf triangular faces. Here, an
icosahedron with Nf = 20 is taken, cf. fig. 8.3(a). Each flat triangular surface element is then
subdivided into N2 equisized triangular sub-elements as indicated in fig. 8.2. The new nodes are
radially shifted to the circumsphere of the icosahedron. This approach guarantees a surpassing
homogeneity and isotropy of the mesh which is of large importance for the model, as discussed in
section 8.6. Any closed triangular mesh with Nf faces has Nn nodes where Nf = 2Nn − 4. For a
mesh created from an icosahedron as stated above, each node is member of five or six faces: The
original 20 icosahedron nodes are member of five faces, all remaining nodes of six faces.

For an existing spherical mesh, it is straightforward to obtain the corresponding mesh for a RBC.
The average shape of a RBC under physiological conditions can be parameterized by [216]

z(�) = ±
√

1−
(�
r

)2
(
C0 + C2

(�
r

)2
+ C4

(�
r

)4
)
. (8.7)

The rotational symmetry axis of the RBC is along the z-axis (� =
√
x2 + y2), and the parameters

read r = 3.91μm (large radius of a RBC), C0 = 0.81μm, C2 = 7.83μm, and C4 = −4.39μm.
Each point x′ of the spherical mesh is then shifted to the point x of the RBC mesh according to
x′ = (x′, y′, z′) → x = (x = x′, y = y′, z = z(�′)). Some exemplary meshes are shown in fig. 8.3.

Meshes are created in advance and saved as input data files for the simulations. Since the
topology of the Lagrangian meshes and the connectivity of the membrane nodes never change,
there is no need for any remeshing during a simulation. The high quality of the produced meshes
can be inferred from fig. 8.3 and tab. 8.1: All face areas are of comparable size, and the edge
length distribution has only a small width. Neither extremely small nor large face interior angles
appear. This is important for the stability and a reduction of numerical artifacts as explained in
section 8.6.
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8.4. Benchmark test: single capsule in shear flow

This section bases on the investigations published in Krüger et al. [187]. In order to benchmark
the combined algorithm for the fluid, the membrane, and their mutual coupling, a series of
test simulations has been performed. The main intention of this benchmark is to understand
(i) the numerical effect of the IBM interpolation stencil and (ii) the significance of the ratio
l̄/Δx of capsule mesh and fluid lattice resolutions. Here, l̄ is the average distance between
neighboring membrane nodes (section 8.3), and Δx is the lattice constant (section 5.2). It is of
primary interest to reveal how large the uncertainties for small or intermediate spatial resolutions
are. Since a large number of particles shall be simulated eventually, the affordable resolution is
restricted.

A single capsule with spherical rest shape and radius r is placed in the middle of a simple shear
flow with external shear rate γ̇ induced by moving walls at z = ±Lz/2 with velocities ±uw along
the x-axis (thus, γ̇ = 2uw/Lz). The system is cubic with size L3

z. Due to the shear flow, the
particle deforms and rotates about its stationary origin. After an initial transient, a steady
configuration develops which is illustrated in fig. 8.4. The particle shape is a stationary, inclined
ellipsoid whereas the membrane itself is ‘tank-treading’ with constant angular velocity ω about
this shape. From this, two relevant observables can be extracted: the inclination angle θ and the
deformation parameter D of the capsule. The inclination angle θ is defined as the angle between
the flow axis and the largest semiaxis of the ellipsoid. The deformation parameter is

D :=
a− c

a+ c
(8.8)

where a and c are the largest and smallest semiaxes of the deformed capsule, respectively. For a
sphere, D = 0 holds. The angular velocity ω may also be computed (Krüger et al. [187]), but it
is not in the focus of this benchmark.

Finding analytic solutions for problems involving deformable particles in external flows is not
trivial. This makes it difficult to benchmark the IBM applied to deformable particles. However,
for the above-mentioned problem, there exists an analytical solution [217] if (i) the constitutive
elastic law of the membrane is known, (ii) the Reynolds number Re = γ̇r2/ν of the flow can
be neglected, (iii) the deformation of the capsule is small, D � 1, and (iv) the external flow is
unbounded shear flow, i.e., the walls are far away, Lz � r. In the present case, the internal and
external Newtonian fluids have the same density and viscosity. The capsule is only subject to
the in-plane shear forces as described in section 7.1 because the theory does not include bending
forces or non-local surface and volume forces.

When Skalak’s constitutive law with κS = κα is used (section 7.1), theory predicts θopp/π :=
(π/4− θ)/π = 15Ca/8 for the inclination angle and D = 25Ca/4 for the deformation parameter
in steady state [187, 217] where

Ca =
ρνγ̇r

κS
(8.9)

is the capillary number of the membrane, cf. eq. (8.5). For convenience, the angle θopp ∝ Ca has
been defined. It is the angle between the largest semiaxis of the capsule and the main diagonal
in the shear plane. Obviously, in the limit of vanishing deformation, the inclination angle θ is
π/4, i.e., 45◦.

Preparations

Before the actual benchmark simulations can be performed, reasonable simulation parameter
values have to be found. In particular, it has to be investigated (i) up to which Reynolds number
the Stokes approximation is satisfied, (ii) which ratio of box size and particle radius H/r is
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ω

Fig. 8.4.: Tank-treading capsule. The capsule cross-section is shown in the xz-plane. It is deformed with
major and minor semiaxes a and c. The inclination angle θ is taken between the major semiaxis and
the x-axis (velocity direction of the external flow, dark gray arrows). The membrane rotates about its
spatially fixed shape with angular velocity ω (‘tank-treading’).

required for unbounded shear flow, (iii) which deformation parameter D still is ‘small’, and
(iv) which value of the LBM relaxation parameter τ is reasonable. The quadratic equilibrium
distribution, eq. (5.6), is taken for all simulations in this section albeit the linearized equilibrium
may have been used since the Reynolds number is small. The numerical fluid density ρ is set to
unity throughout this section.

All of the preliminary tests have been thoroughly performed and discussed in Krüger et al.
[187]. Only the results shall be given in the following. For these simulations, the 4-point
interpolation stencil φ4, eq. (6.8), has been used. The capsule radius is r = 5Δx, and the
spherical, icosahedron-based mesh, cf. section 8.3, with Nf = 1280 faces (l̄/Δx = 0.76) has been
employed.

Although the transient behaves differently, the steady state value of the deformation parameter
does not depend on the Reynolds number up to values of about 0.1 (larger values have not been
tested). A relative box size of Lz/r = 10 was found to be sufficient to simulate unbounded
shear flow. For Ca = 0.01 (corresponding to D ≈ 0.06), the deformation is still ‘small’, and
the linearized solution is sufficiently accurate for the problem description. Finally, it was found
that the LBM relaxation parameter τ should not be larger than unity because higher values
detrimentally affect the accuracy. Concluding, for the upcoming benchmark tests, the parameters
have been fixed in the following way: Re = 0.02, Lz/r = 10, Ca = 0.01, τ = 1. Having set
these values, the only free parameters are the particle radius r in lattice units, the ratio l̄/Δx of
membrane and lattice resolutions (and thus the capsule mesh size Nf ), and the choice of the
IBM interpolation stencil (φ2, φ3, or φ4).

Convergence for fixed mesh resolution Nf

In this simulation series, the influence of the hydrodynamic resolution is tested alone, i.e., the
capsule mesh resolution Nf is kept constant. This way, it is possible to study the effect of a
non-constant ratio l̄/Δx by varying the capsule radius r. The employed mesh resolutions are
Nf = 320 and 1280.

For the mesh with 320 faces, the capsule radius has been set to r/Δx = 3, 4, 5, and 6,
corresponding to l̄/Δx = 0.90, 1.20, 1.50, and 1.80, respectively. The results are shown in fig. 8.5.
Although the mesh resolution Nf is small, it can be seen that the physics of the system is roughly
captured. The accuracy of the solutions increases when the radius r becomes larger. Furthermore,
it can be inferred that the values obtained with the interpolation stencil φ2 are closest to the
expected values. The larger the range of the IBM interpolation, the larger the deformation
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Fig. 8.5.: Deformation parameter D and inclination angle θ for a tank-treading capsule. D/Ca and θ/π
are shown for varying ratios l̄/Δx for a mesh with Nf = 320 faces and interpolation stencils φ2 in (a)
and (b), φ3 in (c) and (d), and φ4 in (e) and (f). r/Δx = 3, 4, 5, and 6 correspond to l̄/Δx = 0.90,
1.20, 1.50, and 1.80, respectively. The expected values are shown as short black lines (6.25 for D/Ca
and 0.231 for θ/π). The legend in (a) is valid for all subfigures.
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parameter D and the larger (smaller) the angle θopp (θ). As detailedly discussed in Krüger et al.
[187], this can be interpreted in the following way: The finite-range interpolations due to the
IBM lead to an apparent growth of the capsule radius r, which increases the apparent capillary
number Ca, cf. eq. (8.5). Thus, the deformation is slightly larger than expected. Consequently,
the deformation excess is smallest for the narrow interpolation stencil φ2. When the radius r is
increased, the relative width of the interpolation decreases and the numerical results approach
the analytical solution. The mesh with 1280 faces has been tested for radii r/Δx = 3, 5, 7, and
9, corresponding to l̄/Δx = 0.45, 0.75, 1.06, and 1.36, respectively. The plots are not shown here
separately1 because the results are qualitatively similar to those obtained for Nf = 320: The
results become more accurate when (i) the IBM interpolation stencil has a smaller support and
(ii) when the radius r increases.

It has been observed that the 2-point interpolation stencil φ2 produces significantly wrong
solutions when l̄/Δx > 2 (data not shown). At this point, the spacing between neighboring
mesh nodes is so large that fluid can penetrate the capsule membrane without experiencing the
no-slip condition. For φ3 and φ4, a similar behavior at l̄/Δx = 2 has not been observed. The
probable explanation is the larger range of the interpolations, still keeping the fluid from passing
through the membrane. The exact value of the mesh ratio l̄/Δx seems to play only a minor role
as long as it is not too small (< 0.5) or too large (> 1.5). This indicates that the resolution of
the membrane—at least for small deformations—does not require an extremely fine mesh, and
the mesh ratio l̄/Δx can be safely chosen somewhere between 0.5 and 1.5 without significantly
influencing the physical results. This is an important result since it allows a certain flexibility in
setting up the simulations, especially in view of efficiency. However, it has been seen that the
ratio of interpolation width (caused by the IBM interpolation stencil) and the radius r of the
capsule should be as small as possible. This point will also be discussed in the following.

Convergence for fixed mesh ratio l̄/Δx

In this second series, both the mesh and the hydrodynamic resolutions are increased by the same
rate, i.e., the mesh ratio l̄/Δx is fixed. The mesh and hydrodynamic resolutions are Nf = 1280
and Lz = 35, Nf = 5120 and Lz = 70, and Nf = 20480 and Lz = 140, respectively. The
mesh ratio is l̄/Δx = 0.53 in all cases. It has to be noted that for Nf = 320, a mesh ratio of
l̄/Δx = 0.53 leads to quite unacceptable results since the capsule radius r becomes too small
compared to the numerical width of the interpolation stencils. The results are shown in fig. 8.6.
It is obvious that the steady state values of D/Ca and θ/π converge to their analytic values (6.25
and 0.231, respectively) when the resolution is refined. In order to quantify the results, the errors
at γ̇t = 1.2 (which is already in steady state) are listed in tab. 8.2 and shown in fig. 8.7. The
convergence is close to second order. The only exception is the convergence of the inclination
angle θ with the interpolation stencil φ2. This deviation is caused by mesh degradation: Since
the applied forces are merely in-plane forces, the capsule mesh starts to form ripples after some
time. These ripples are caused by numerical artifacts which are most significant for φ2 since this
interpolation stencil is not as smooth as φ3 or φ4 (fig. 6.3). In-plane forces cannot counteract
the ripples, and a bending force would be required to avoid them (section 7.2). However, as
mentioned before, a bending force cannot be included since the analytical solution does not
account for it. Fortunately, in other simulations within this work, the bending force is always
included, and ripple formation has never been observed in these cases.

Conclusions

It has been found that the finite range of the IBM interpolations apparently increases the
membrane radius, which causes numerical inaccuracies. Compared to these, fluid lattice and

1They can be found in Krüger et al. [187] instead.
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Fig. 8.6.: Deformation parameter D and inclination angle θ for a tank-treading capsule. D/Ca and θ/π
are shown for varying resolutions Lz and Nf for l̄/Δx = 0.53 and interpolation stencils φ2 in (a) and
(b), φ3 in (c) and (d), and φ4 in (e) and (f). The mesh and fluid resolutions are Nf = 1280 and Lz = 35
(dotted lines), Nf = 5120 and Lz = 70 (dashed lines), and Nf = 20480 and Lz = 140 (solid lines),
respectively. The expected values are shown as short black lines (6.25 for D/Ca and 0.231 for θ/π).
The legend in (a) is valid for all subfigures.
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Tab. 8.2.: Convergence of the capsule’s deformation parameter D and the angle θopp for the interpolation
stencils φ2, φ3, and φ4. The relative deviations δD/Da := (Ds −Da)/Da and δθopp/θ

a
opp := (θsopp −

θaopp)/θ
a
opp are shown at time γ̇t = 1.2 (subscripts ‘s’ and ‘a’ denote simulation and analytical,

respectively). The convergence order α is taken from a fit to the functions δD/Da, δθopp/θ
a
opp ∝ L−α

z .
For δθopp and φ2, a meaningful convergence order could not be obtained due to mesh degradation. A
graphic representation of this table is shown in fig. 8.7.

resolution φ2 φ3 φ4

Lz Nf
δD
Da

δθopp
θaopp

δD
Da

δθopp
θaopp

δD
Da

δθopp
θaopp

35 1280 13.2% 12.0% 13.5% 20.9% 17.0% 30.8%
70 5120 4.1% 4.5% 4.5% 4.9% 7.3% 8.5%
140 20480 1.2% 3.0% 1.0% 0.9% 2.0% 1.7%

convergence order α 1.7 N/A 1.9 2.2 1.5 2.1
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Fig. 8.7.: Convergence of the deformation parameter D and the angle θopp for the interpolation stencils
φ2, φ3, and φ4. In (a), the relative error of the deformation parameter D is shown for increasing mesh
and fluid resolutions with fixed l̄/Δx = 0.53. The analog results for the relative error of the angle θopp
are shown in (b). The data is taken from tab. 8.2. The legend in (a) is valid for (b) as well.

membrane meshing artifacts can be neglected, at least for small deformations. A large hydrody-
namic resolution, i.e., a large value of r/Δx is the only way to significantly reduce the numerical
error. The computing time sets an upper bound for reasonable values of r/Δx. It is convenient
to introduce a hydrodynamic radius r∗ based on the true deformation D which is larger than
the expected deformation. For the two-point interpolation stencil, the hydrodynamic radius is
about r∗ ≈ r + 0.3Δx, which can be obtained from tab. 8.2. This observation will be important
in chap. 10 where the simulation results for blood viscosity are compared to experimental data.

For a fixed mesh ratio l̄/Δx, convergence to the analytical solution can be observed when r
and Nf are simultaneously increased. The convergence order is close to two. This is convincing
evidence that the presented numerical tool produces reliable results in the small deformation
limit for which analytical solutions exist.

It has been seen that the resolution ratio l̄/Δx can be selected somewhere between 0.5 and 1.5
without compromising the physical results. This offers a flexible parameter choice with respect
to the lattice and mesh resolutions. If l̄/Δx becomes smaller than 0.5, the IBM interpolations do
not produce reliable results as will be explained in section 8.7. The present benchmarks are only
valid for small deformations. For simulations with large deformations, however, the membrane
mesh resolution must be sufficiently high to handle regions with large local curvature.
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Fig. 8.8.: Column initialization of a red blood cell (RBC) suspension simulation. (a) Each RBC is bounded
by a box with height h and length/width 2r (solid rectangle). The bounding box is surrounded by
a safety layer of thickness d (dashed line). (b) The mutual distance between any two neighboring
bounding boxes is 2d.

8.5. Initialization of dense suspensions: distribution of the particles
in the simulation box

It is a formidable task to initialize a simulation of a dense suspension of particles. Here, ‘dense’
means volume fractions above 30–40%. Due to the generally non-spherical shape of the particles,
in particular for RBCs, it is hard to fill the volume efficiently. It is also of significant importance
to initialize the particles randomly to promote mixing and to reduce the transient time at
the beginning of the simulations. In the following, two approaches for the RBC positioning
are presented: column initialization and random initialization. The discussions can be easily
generalized to other particle shapes as well.

Initializing particle positions in columns

The simplest way to arrange the RBCs is to put them in simple rectangular columns with a
given gap between them. One can show that the obtainable hematocrit is

Ht =
4r2h

(2r + 2d)2(h+ 2d)
× 58% (8.10)

where r is the large radius of the RBC, h ≈ 2
3r is its height, and d is a safety layer around each

cell (fig. 8.8). The numerical value of 58% in eq. (8.10) is the ratio of the volumes of a RBC and
the tight bounding box surrounding it (for a sphere, this value is 52%). The shortest distance
between two adjacent cells is 2d. This safety layer is important as will be discussed in section 8.6.
The maximum hematocrit which can be reached this way is 58% when d → 0. However, d should
not fall much below 0.5 lattice units. For a typical radius of r = 8 and d = 0.5, the hematocrit
would be 43% and close to the physiological value of about 45%. In principle, the hematocrit
could be increased by going to higher resolutions (increasing r) while keeping d constant. This
approach, however, is computationally expensive.

The above method is not a good choice for dense suspensions since it requires a long transient
simulation time to get rid of the unphysical column information. In order to break the periodicity
of the columns, each cell may be shifted and rotated by a random value. Due to the necessary
presence of the safety distance, these random shifts and rotations must be small (a few 0.1
lattice nodes and a few degrees, respectively). Otherwise the cells would come too close or
may even overlap. Additionally, the simulation box must have dimensions which are multiples
of (2r + 2d) and (h + 2d), respectively, if the volume should be efficiently filled. This is not
possible in general. Any deviation from the rectangular geometry would lead to a reduction of
the available hematocrit. Another possible way to break the periodicity is to remove single cells
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Fig. 8.9.: Self-intersection of a red blood cell (RBC) during initialization. If no internal fluid is used
during the growth process, the top and bottom dimples (small circles) are not aware of each other, and
the RBC may self-intersect (solid line, black circles). The undeformed shape is shown as comparison
(dashed line, white circles). Introducing a repulsion force between the dimples solves this numerical
problem.

from the lattice, i.e., to create gaps which accelerate randomization [87]. However, this reduces
the hematocrit at the same time and is not recommendable for dense suspensions.

Due to the above-mentioned disadvantages, another approach must be considered for dense
systems with Ht > 30%.

Initializing particle positions randomly

A promising way to position the RBCs randomly is pointed out by MacMeccan [194] and Clausen
et al. [218]. The approach followed here is slightly different. It consists of two steps:

1. Position the cells with random locations and orientations. Use particles with 50% of their
actual radius (initial hematocrit is one eighth of the desired value).

2. Grow the cells to their full size taking into account interaction forces to avoid jamming
and overlap.

Randomly positioning particles with high volume fraction without overlap can be extremely
time consuming since at some point most configurations do not allow of the addition of further
particles. For this reason, the particles are first decreased in size and then randomly positioned
throughout the simulation box. During positioning, it is checked whether any particle overlaps
with a solid wall or any other particle which has already been created. Here, the cells are treated
as spheres, and only the center-to-center distance is used for checking. If the new particle overlaps
with a wall or any other particle already positioned, a new position vector is generated, and it is
tested again. The positioning step is completed almost instantaneously since the effective volume
fraction at this stage is typically only 5–8% and overlaps are rare.

The growing step is more challenging, and there are different approaches available. For the
present thesis, the volume of the cells is increased from its reduced value V0 (which is typically
V/8) by a constant value V+ at each time step. At each growth step, the membrane interaction
forces as described in section 8.7 are evaluated. This way, overlap of the particles during growth
is circumvented. The basic idea is to reach a high volume fraction by letting the particles deform
during growth, i.e., they are allowed to change their shape in order to fill the available volume
more efficiently. This approach differs from that presented in [194, 218] where the cells are rigid
during growth. In order to maintain smooth membrane shapes, also the shear and bending forces
(cf. sections 7.1 and 7.2) are computed at each growth step. It has turned out that 5000–10000
growth steps are sufficient for suspensions with volume fractions up to 70% and average particle
radii of about 8 lattice units.

Hydrodynamic interactions are not required in this (unphysical) stage, and LBM and IBM are
not used. Instead, a simple molecular dynamics model is employed for the integration of the
equations of motion. The velocity and position of each node i at growth step n+ 1 is computed
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(a) after random positioning (b) after half of the process (c) after completed process

Fig. 8.10.: Random initialization of a dense red blood cell (RBC) suspension simulation. 520 RBCs with
Ht = 46% are grown from their initial to their final size (initial radius is 50% of final radius). The
cells are shown (a) directly after random positioning (Ht = 6%), (b) after half of the growth process
(Ht = 23%), and (c) directly after the completed growth process.

from its velocity and position at step n and the total force it experiences at step n+ 1,

ẋi(n+ 1) = ẋi(n) +
1

m
Fi(n+ 1),

xi(n+ 1) = xi(n) + ẋi(n+ 1).
(8.11)

This simplified dynamics has proven to be sufficient for the growth process. A typical value for
the mass is m = 100 (lattice units). This value can be chosen arbitrarily as long as the growth
process is stable. It is shown in fig. 8.10 for a RBC suspension with 46% volume fraction.

In order to improve the quality of the growth process, an additional force is required. Areas
of the same membrane which are not directly connected are not aware of each other, i.e., the
two dimples of a single RBC are mutually invisible. The reason is the locality of the shear and
bending forces. In the full simulations, the dimples of a cell cannot touch each other since the
interior fluid prevents them from doing so. In the growth process, due to the absence of the fluid
coupling, the dimples may self-intersect (fig. 8.9). For that reason, an additional force is used
during growth which introduces a repulsion of the nodes in the top and bottom nodes near the
dimples. The exact form of this force is not relevant as long as it maintains the desired safety
distance between the dimples.

8.6. Limitations and restrictions of the numerical model

In this section, the restrictions and limitations of the numerical model are presented. The focus
lies on the issues related to the present work rather than on an exhaustive overview. The section
is divided into three parts: The problems related to the LBM are briefly presented, followed by a
more elaborate discussion about the IBM and some statements about the membrane model. The
intention is to identify the simulation parameters and physical applications for which the model
produces reliable results.

Restrictions of the lattice Boltzmann method

For the simulation parameters chosen in the present thesis, there are basically no numerical
problems related to the LBM. Due to the small Reynolds numbers, the relaxation parameter τ is
always chosen sufficiently large (τ ≈ 1), and stability problems do not occur. The lattice Mach
number is usually kept below 0.1. A noticeable disadvantage of the LBM is the coupling of the
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discretizations of position and velocity space. As discussed in sections 5.5 and 8.2, the time step
is already set when the Reynolds number and the spatial resolution have been chosen for a given
value of τ . For small Reynolds number flows, this usually leads to extremely small time steps
and long integration times. Hence, a redefinition of the time step as discussed in section 8.2 may
be necessary.

Restrictions of the immersed boundary method

The simplicity of the IBM (both the concept and implementation) does not come without a price,
and the devil is in the details. There are a few issues which have to be considered when the IBM
is used for the simulation of dense suspensions.

It is commonly observed that the IBM does not properly work when membrane nodes (either
belonging to the same membrane or to distinct membranes) come too close (e.g., [89]). The
reason is the indirect position update: Membrane nodes are advected by the ambient fluid velocity
only, and interpolations of the velocities are required. If the distance between two membrane
nodes is significantly smaller than the lattice constant Δx, velocity gradients do not survive
the interpolation, and the nodes move with similar velocities. Consequently, it is not possible
to provide a large velocity gradient for nearby membrane nodes, and these nodes cannot be
separated in a realistic time, even if there is a large repulsion force between them. Membranes,
thus, can stick together, in the worst case for all times. This reasoning is explained in more
detail in section 8.7. It is obvious that the above limitation is more visible in dense suspensions
than in dilute systems since the membrane node density is larger then. A high mesh quality
significantly helps to minimize this problem: If the mesh is designed in such a way that the
node-node distance distribution is narrow and centered at about Δx (cf. section 8.3), nodes
within a given membrane usually never come too close. It remains to deal with the problem of
membrane-membrane collisions, as discussed in more detail in section 8.7.

The above problem gives a somewhat natural answer to the question how to choose the ratio of
Eulerian grid and Lagrangian mesh resolutions. In principle, the average node-node distance in a
membrane, l̄, can be set independently of the lattice constant Δx. It is expected that there is a
given ratio l̄/Δx for which the numerical model works most reliably. On the one hand, if l̄/Δx is
too small, the nodes stick together since the Eulerian grid cannot provide a sufficient resolution
for the velocity field (see above and section 8.7). On the other hand, too large a value for l̄/Δx
will lead to ‘holes’ in the membrane, cf. fig. 8.11(a). Fluid may then penetrate the membrane
without being forced by nearby membrane nodes. The no-slip condition will then be violated and
the numerical results become less accurate. Thus, the distance between neighboring membrane
nodes should not be larger than the range of the force spreading defined by the width of the
interpolation stencils in section 6.3. Based on these considerations and the results in Krüger
et al. [187], the average node-node distance is set to l̄ ≈ Δx in all upcoming simulations if not
otherwise stated.

A problem similar to the node-node behavior at small distances appears when nodes come too
close to a solid wall. If a wall node is within interpolation range of a membrane node, on the
one hand, force is spread to the wall and therefore ‘lost’ with respect to the fluid. On the other
hand, it is not generally clear which velocity the wall should be assigned to in order to obtain
the correct interpolated node velocity, cf. fig. 8.11(b). Bagchi [88] has circumvented the problem
by assuring that the cells always have a minimum distance from the walls. Feng and Michaelides
[79] introduce a repulsion force so that nodes never come too close to the wall. A similar path
is also followed in the present thesis (section 8.7). It is noteworthy that analog problems also
arise in other numerical methods where Eulerian and Lagrangian systems are combined (e.g.,
[85, 219]).

The time steps for the LBM and the membrane update are the same since they are directly
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f1 f2

f3

(a) ratio of mesh resolutions (b) nodes close to a wall

Fig. 8.11.: Problems related to the immersed boundary method. (a) Ratio of mesh resolutions: Three faces
(red triangles) with different node-node distances l̄ are shown (face f1: l̄ = 2.4Δx, face f2: l̄ = 0.5Δx,
face f3: l̄ = 0.9Δx). While the node-node distances for face f1 are so large that lattice nodes (white
circles) may not feel a membrane force at all, the nodes in face f3 are so close that the interpolation
becomes inaccurate. For face f3, both detrimental effects are minimized. (b) Nodes close to a wall:
If nodes (red circles) of a membrane (curved dotted line) are in direct wall proximity, force has to
be spread to wall nodes (black circles within square region). Conversely, the velocity interpolation
requires velocity information from the wall.

coupled via IBM, cf. section 8.1. Polymers immersed in a fluid and subject to thermal fluctuations
may be simulated via LBM, molecular dynamics (MD), and viscous coupling [182]. In this case, a
separation of time steps for the polymer (MD) and the fluid (LBM) is required. It is not unusual
to have more than 50 MD time steps within one LBM time step. In the present case, this is not
necessary since thermal fluctuations are not considered and the membrane motion is overdamped.
Additionally, it is often stated that the explicit time integration of the IBM leads to numerical
instabilities, and improvements have been proposed [220, 221]. This problem, however, is usually
observed in systems of rigid particles. These particles may be modeled as deformable objects
with high rigidity. Any deformation is penalized by a strong response force trying to maintain
the rigid shape, which can lead to unphysical oscillations. On the contrary, in the present case,
the particles are designed to be deformable, i.e., the membrane moduli are small (except for the
surface and the volume conservation, see below), and large deformations lead to manageable
force magnitudes.

Similar to nearly all Eulerian-Lagrangian coupling methods, the IBM formally is only first order
accurate in space when sharp interfaces (e.g., membranes) are simulated [78]. Peng and Luo
[222] observed that that the IBM has a second-order convergence behavior for LBM fluid flow
around a rigid cylinder in 2D. Contrarily, Zhu et al. [223] and Caiazzo and Maddu [224] find
only first order convergence in space for the velocity field. In section 8.4, it has been observed
that the IBM can be of second-order accuracy when the deformation of a capsule in shear flow
is considered (additional information also provided in Krüger et al. [187]). One of the most
important findings is that the hydrodynamic radius of the particle is larger than expected from
the input mesh. The finite-range interpolations of the IBM are believed to be the reason for
this behavior. Generally speaking, the accuracy of the IBM seems to depend strongly on the
application and observables. Due to the complexity of the mathematical basis of the coupled
IBM-LBM system, a thorough analysis of the spatial accuracy is not provided here, and the
reader is referred to the literature, e.g., [224].

Even if the Navier-Stokes solver provides a divergence-free velocity field, the velocity field
interpolated by IBM will not be divergence-free in general (cf. section 7.4). For this reason, one
may track the membrane volumes explicitly and correct for volume drifts, e.g., by introducing a
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volume restoration force as in eq. (7.15). In the present case, the resulting volume deviations are
below 1% and can be neglected.

Le and Zhang [225] reported an unphysical boundary slip velocity in a coupled IBM-LBM system
when the relaxation parameter τ is significantly larger than unity. Practically, it should be < 2.
Indeed, a similar observation has been pointed out in section 8.4 (and, in more detail, in Krüger
et al. [187]). For that reason, the LBM relaxation parameter in the present thesis never exceeds
unity except for benchmarking. This is also in line with the restrictions given by the bounce-back
boundary conditions in section 5.4.

Restrictions of the membrane model

The membrane consists of flat triangular face elements which remain flat even after deformation.
If the local curvature radius becomes comparable to the extension of a face, the mesh resolution
is not sufficient any more, and the deformation state is not described in a reliable way. This
sets an upper bound for the achievable shear rates which can be simulated. The smaller the
membrane resolution (the less faces used), the smaller the shear rate which can be simulated.
Moreover, higher particle volume fractions detrimentally decrease the maximum shear rate since
membrane-membrane interactions lead to additional deformations. Numerically, too strong
a deformation can lead to the collapse of faces or the folding of pairs of faces. Due to the
shortcomings of the IBM, such an unphysical deformation usually cannot be reversed, and the
simulation becomes either inaccurate or it even crashes2. Also Pozrikidis [84] and MacMeccan
[194]—using different membrane models—observed that a coarse membrane resolution leads to
numerical problems when large deformations are simulated. Local fluid velocities above ≈ 0.1
may lead to instabilities since this translates to a position shift of ≈ 0.1 (about 10% of the
extension of a face) in one time step. Unphysical oscillations may therefore emerge and destroy
the simulation in the worst case. The maximum velocity restriction (u < 0.1) is in line with the
small Mach number premise of the LBM.

As explained before, the penalty moduli for the surface and volume conservations, κA and κV, (cf.
sections 7.3 and 7.4) are not allowed to become too large. However, as commonly stated in the
literature [31, 77, 79], the exact values of κA and κV are not relevant as long as the surface and
volume are sufficiently well conserved (within 1%, say). It should be noted that the surface and
volume deviations become smaller when the spatial resolution is increased. Reasonable values for
κA and κV are not obvious a priori, but they can be inferred from a few test runs.

Due to the discretization of the mesh, the membrane forces may suffer from meshing artifacts
which can be caused by extremely small face areas since these enter the bending force in the
denominator, cf. appx. C.2. Membrane faces, therefore, should be of comparable size. Additionally,
faces with large interior angles are of disadvantage because they cannot accurately capture the
shear state of the faces. For this reason, it is desirable to have equisized faces with shapes close to
equilateral triangles. This is ensured by the mesh generation algorithm presented in section 8.3.
As the connectivity of the mesh is never changed in the present model, nodes cannot ‘diffuse’ in
the mesh, i.e., the mesh has no fluidity properties. Physically, this means that the particles always
require a finite elastic shear resistance. Vesicles—which are basically 2D fluids—cannot support
elastic in-plane shear stresses, and membrane nodes would eventually diffuse. Consequently, the
current model supports the simulation of capsules rather than vesicles.

2The reason for such a crash is the explicit time integration in combination with large forces which may drive
individual membrane nodes out of the numerical grid.
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Conclusions

Simulations at arbitrarily small shear rates are only restricted by the available computing time.
For high shear rates, the mesh resolution and the lattice Mach number limitation define upper
bounds. The present model is particularly suited for small Reynolds number simulations where
τ ≈ 1 can be selected. The resolutions of the Lagrangian and Eulerian meshes should be
similar, l̄ ≈ Δx, in order to produce optimum results. High volume fraction simulations may be
problematic due to the IBM weakness for small node-node separations. A repulsion force may be
incorporated to remove the numerical problem. Yet, the consequences of the repulsion force on
the physical results should be monitored. Due to the IBM interpolations, one has to consider
potential accuracy issues which have to be checked. The current membrane model should only
be applied to capsules (membranes with finite elastic shear resistance) and not to vesicles since
the mesh connectivity is fixed.

8.7. Interactions between nearby membranes

It is a well-known problem in lattice computations that the hydrodynamic description breaks
down if the distance d between two particles becomes smaller than a length comparable to the
lattice constant Δx (e.g., [73, 79, 154, 226]). Even worse, due to the discrete time stepping,
particles may eventually overlap if no countermeasures are taken.

For spherical particles, lubrication correction forces can be computed analytically and may be
added to re-introduce the correct hydrodynamics at a sub-grid length scale [73, 110]. This
approach, however, is difficult to employ in the present model since the particles generally have
non-spherical shapes. Additionally, the IBM concept reveals a numerical weakness when particle
nodes have a distance much smaller than the lattice resolution Δx (see below). For that reason,
a pragmatic method is used in order to maintain a safety distance between the particles: a
repulsion force for nodes being too close to each other.

Before details of the appropriated repulsion force are given, a qualitative analysis of the IBM
at short distances should be performed. In the framework of the IBM, particle nodes can only
translate by moving along with the ambient fluid, and velocity interpolations play an important
role, cf. section 6.3. If two particle nodes are close to each other (d significantly smaller than
Δx), the nodes basically see the same ambient velocity field, and it becomes more and more
difficult to separate the nodes once they have approached each other. In order to understand
this, it is instructive to imagine a 1D case with two particle nodes i and j at positions xi and
xj close to each other, with a mutual distance xj − xi = d < Δx, cf. fig. 8.12. Both nodes are
located between two adjacent fluid lattice nodes at positions Xl and Xr with Xr −Xl = Δx. For
this particular case, the velocities of the two nodes can be written as, cf. eq. (6.6),

ẋi =

(
1− xi −Xl

Δx

)
u(Xl) +

(
1− Xr − xi

Δx

)
u(Xr),

ẋj =

(
1− xj −Xl

Δx

)
u(Xl) +

(
1− Xr − xj

Δx

)
u(Xr)

(8.12)

when φ2, eq. (6.11), is used as interpolation stencil. It is straightforward to show that the relative
velocity of the two nodes is

ẋj − ẋi =
d

Δx
(u(Xr)− u(Xl)) . (8.13)

In other words, due to the linear interpolation, the velocity difference which can bring the nodes
apart from each other is reduced by a factor d/Δx if the particles are close. Although not exactly
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Xl Xr
Δx

xi xj
d

Fig. 8.12.: Immersed boundary method and small node distances. A simplified problem in 1D is shown:
Two nodes (red circles) at positions xi and xj and mutual distance d are located between two adjacent
fluid lattice nodes (white circles) at Xl and Xr with distance Δx.

the same, the results for the other interpolation stencils, φ3 and φ4 in eq. (6.8) and eq. (6.10),
are comparable. A qualitatively similar result is also expected in 2D and 3D.

In order to hinder nodes to approach each other too closely, a repulsion force may be employed.
It should act along the connection line of the nodes and fulfill Fj = −Fi (in the 1D case) in order
to obey momentum and angular momentum conservation. Applied to the above example, it is
easy to see that the resulting force acting on lattice node Xl is

f(Xl)Δx =

(
1− xi −Xl

Δx

)
Fi +

(
1− xj −Xl

Δx

)
Fj =

d

Δx
Fi, (8.14)

cf. eq. (6.5). The force acting on lattice node Xr is the same with different sign3. At this point,
the important observation is that the effective repulsion force f(Xl)Δx which survives the IBM
spreading is reduced by a factor d/Δx compared to the input force Fi. For that reason, the
repulsion force should increase stronger than linearly when the node distance d goes to zero.

A simple repulsion force is a power-law of the distance d with a cut-off at a finite length R,

Fij(dij) =

⎧⎨
⎩
−κint

[(
Δx
dij

)k − (
Δx
R

)k] dij
dij

for dij < R,

0 for dij ≥ R
(8.15)

where Fij = −Fji is the force acting on node i given the distance dij = xj − xi between node
i and a nearby node j. The power k has to be larger than unity in order to overcome the
interpolation artifact in eq. (8.14). The magnitude of the repulsion is controlled via the parameter
κint. The unphysical parameters k, R, and κint have to be chosen in such a way that (i) the force
is only active at distances as small as possible, that (ii) the separation of nodes does not become
too small (0.5Δx, say), and that (iii) the repulsion force does not lead to numerical instabilities.
In the present thesis, k = 2 and R = Δx are used. Feng and Michaelides [79], following a similar
idea, state that details of the repulsive force do not influence the macroscopic behavior.

It has to be stated that a repulsive force increases the apparent radius of the particles if the
particles are in close contact. On the one hand, as long as the particles have a distance larger
than the interaction range, the interaction force is deactivated. On the other hand, for dense
suspensions, particles are often in close proximity, and the repulsive force is acting. Still, the range
of this force is comparable to the additional effective radius caused by the IBM interpolations
(cf. section 8.4). The interaction force as defined in eq. (8.15), therefore, can be considered a
‘natural’ force avoiding overlap of the hydrodynamic particle volumes. It is an open question up
to which volume fraction this interpretation is still valid. For large volume fractions, particles
have to deform even in the absence of flow. However, in a quiescent situation, hydrodynamic
effects are absent whereas the repulsion forces are still active.

It is important to stress that—in the present model—only nodes in different membranes interact
via this kind of repulsion force. By design, the average distance of neighboring membrane nodes

3This must be the case since the IBM interpolation stencils obey momentum conservation.
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uw(t)

ri(t0)rexi (t)

ri(t)

F gl
i (t)δri(t)

(a) Computation of the penalty force (b) Stick condition

Fig. 8.13.: Implementation of wall roughness. (a) A membrane node i initially located at position ri(t0)
(dotted circle) close to a wall (dashed region) is expected to move along with the wall to position
rexi (t) (dashed circle) after time t− t0, but it is generally found at position ri(t) (solid circle) instead.

The stick force F gl
i (t) is proportional to the distance δri(t) = ri(t)− rexi (t), cf. eq. (8.17). (b) After

growing the particles to their full size, all particles which have at least one mesh node in the ‘glue’
region (light blue) near the walls (dashed regions) are stuck to the wall. Stuck particles are shown as
black, free particles as white circles.

in the undeformed state is close to Δx, cf. section 8.3. Even for strong deformations, nodes in a
membrane usually do not come closer than half a lattice spacing. This behavior is caused by
the in-plane tensions related to the incompressibility constraints of the membrane, cf. section
7.1. The repulsion force, therefore, is only switched on when the distance between two distinct
membranes falls below the range R, which is virtually never the case if the suspension is dilute. In
these cases, hydrodynamic interactions usually maintain a given distance between the membranes.
If the suspensions become denser and denser, the mutual distances between membranes decrease,
and, eventually, numerical problems would arise without a repulsion force.

Nodes which come too close to a wall are subject to an additional force introducing a repulsion
away from the wall. The functional form is the same as in eq. (8.15) with the difference that the
distance dij is replaced by the shortest (i.e., normal) distance to the wall. Since the wall is not
allowed to move in normal direction, it is not necessary to add the repulsion force to the wall.
Such a force would merely increase the wall pressure which is not of significance in the present
thesis.

8.8. Wall slip and roughness

In experiments, the rheological properties of a suspension strongly depend on the structure of the
shearing surfaces. It is known that smooth surfaces promote a slip behavior which reduces the
viscosity of the suspension at small shear stresses [227, 228]. The reason is a thin fluid lubrication
film developing between the surface and the first layer of suspended particles. If the shear stress
is close to or smaller than the yield stress of the suspension, the entire velocity gradient can drop
off in the fluid film, resulting in locally high shear rates. Even though the suspension in the bulk
is jammed, the overall suspension can flow, and a yield stress may be hidden from the observer.
If slip effects are not desired, one may either subtract the slip velocity (e.g., by measuring the
velocity profile locally) or prevent slippage in the first place.

The development of the lubrication layer can be avoided if rough (on the particle length scale)
surfaces are used. For the present model, the wall roughness may be realized in the following
way: The particles are randomly initialized in the available volume as described in section 8.5.
After this, all particles in a given vicinity of the wall are ‘stuck to the wall’. In order to do so, the
nodes of these membranes experience an additional force trying to keep the nodes in a position
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where they would be located if they moved along with the wall. This concept is visualized in fig.
8.13(a). At the beginning of the simulation, after the membranes have grown to their full size
and membranes close to the walls have been identified, each node of these membranes remembers
its initial position ri(t0). At a later time, t > t0, the wall has moved by a certain distance and
with it the expected node position rexi (t) in such a way that

rexi (t) = ri(t0) +

∫ t

t0

dt′ uw(t′) (8.16)

where uw is the wall velocity. Generally, the node will be at a position ri(t) instead, with relative
distance δri(t) = ri(t)− rexi (t) to its expected position. A Hookean penalty force for this node is
defined according to

F gl
i (t) = −κglδri(t). (8.17)

The strength of the force is given by the ‘glue modulus’ κgl. This force is added to the other forces
acting on the nodes. An opposite force with the same magnitude is exerted on the corresponding
wall in order to find the correct wall shear stress afterwards. This way, momentum conservation
is not violated.

In practice, a membrane is stuck to a wall if at least one of its nodes has a wall distance not
greater than the large radius r of the membranes. However, other conventions may be used as
well. This can be interpreted as a glue film of thickness r covering both walls, cf. fig. 8.13(b).
The above method bases on the approach presented by Feng and Michaelides [79] who use a
Hookean penalty force to maintain the shape of the pseudo-rigid particles.
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Simulation results and interpretation



9. Stress evaluation in combined immersed
boundary lattice Boltzmann simulations

The recovery of the stress tensor in computer simulations is not as straight-forward as it may
appear at first view. The reason is that usually not the stress tensor σ itself enters the macroscopic
equations. Rather, its divergence, ∇ · σ appears. Even if this divergence is known, it is generally
not possible to uniquely reconstruct the stress tensor from it since the equation system is under-
determined1. It has already been mentioned in section 5.2 that the full fluid stress tensor is
known at each point within the lattice Boltzmann method (LBM). The situation is different for
the particle stress. If, however, averages of some kind are sufficient (e.g., over time, volume, or a
coordinate plane), different approaches are available to recover the particle stress tensor or some
of its components.

In this chapter, it is argued how suspension stresses can be evaluated within the model presented
in the previous chapters. The discussion is limited to viscous flows where inertia effects are
negligible. The fluid stress considerations are briefly summarized in section 9.1, followed by the
wall stress in section 9.2. The direct recovery of particle stresses is more demanding as discussed
in sections 9.3 and 9.4. Verification simulations are presented in section 9.5, linking the above
approaches.

9.1. Fluid stress evaluation in the lattice Boltzmann method

Simple fluids cannot support elastic stresses, and the fluid stress equals the viscous stress [2],

σf = 2η0S, (9.1)

where Sαβ = 1
2(∂αuβ + ∂βuα), cf. eq. (2.5), are the components of the symmetric fluid shear rate

tensor and η0 is the dynamic shear viscosity. Bulk stresses due to compressibility effects are
neglected here and in the following.

For a Newtonian fluid, the dynamic shear viscosity does not depend on the shear rate, and the
stress is proportional to the shear rate. Water and blood plasma are examples of Newtonian
fluids over a wide range of shear rates, including physiological shear rates up to about 104 s−1.
The fluid described in the standard LBM is Newtonian as long as the relaxation parameter τ is a
constant. Although LBM extensions for non-Newtonian fluids exist (e.g., [229, 230, 231]), the
suspending fluid is always Newtonian in the present work. Non-Newtonian suspension rheology
emerges from the presence of particles immersed in the fluid.

For conventional Navier-Stokes solvers where the Navier-Stokes equations (NSE) are directly
discretized, the fluid stress is usually computed from the velocity field via differentiation. In
lattice Boltzmann simulations, however, the full fluid stress tensor is accessible at each point
and without evaluating velocity gradients, cf. eq. (5.17). This makes the LBM an attractive
Navier-Stokes solver when the rheology of fluids is to be investigated.

1The divergence ∇ · σ yields three equations, but six independent components of the symmetric stress tensor σ
are required.

T. Krüger, Computer Simulation Study of Collective Phenomena in Dense Suspensions of 
Red Blood Cells under Shear, DOI 10.1007/978-3-8348-2376-2_9,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden 2012
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9.2. Wall stress evaluation in the lattice Boltzmann method

The wall stress tensor σw is related to the total force Δp/Δt acting on a small patch of the
oriented wall surface ΔA in a given time Δt as defined in eq. (5.28),

Δp

Δt
= σw ·ΔA, (9.2)

where Δp is the corresponding momentum exchange in time Δt. In the present work, only the
shear components are considered. They are caused by the force components parallel to the wall,
Δp‖ ·ΔA = 0.

For a suspension, the wall stress is the sum of the fluid stress and the particle stress at the wall.
Due to lubrication effects and hydrodynamic lift forces, particles are usually in no direct contact
with a wall [227], and Δp/Δt is the force due to the momentum exchange of the fluid caused
by the no-slip boundary condition. Within the LBM, the wall stress can be evaluated at each
surface patch ΔA from eq. (5.27).

If the walls are made rough as discussed in section 8.8, the stick forces have to be considered in
the computation of the wall stress, and the total force acting on the entire wall is the sum of the
fluid forces and the negative of the stick forces (‘actio = reactio’) as defined in eq. (8.17).

For steady and simple shear flow, the condition of mechanical stability demands that the wall
shear stresses at the bottom and top walls are identical and equal to the shear stress everywhere
else in the system. For this reason, an evaluation of the wall stress is in principle sufficient if
the total suspension stress and the average viscosity are to be computed. This is the approach
commonly followed in rheology experiments. However, it does not allow the local separation of
fluid and particle stresses, and, therefore, the local viscosity between the walls cannot be accessed.
In some cases, the local stresses are of high relevance, especially if wall effects are important
and the system is not homogeneous [5]. It is desirable to measure the contributions of the fluid
and the particles to the total stress locally and independently. In experiments, a local stress
measurement is extremely difficult if not impossible. Even in simulations, it is not a priori clear
how to evaluate local particle stresses. Two possible approaches are presented in the following
sections.

9.3. Evaluating particle stresses with Batchelor’s approach

In a simple fluid, the stress σ is of viscous nature only, and one can write σ = 2η0S at each point
in the fluid. If particles—deformable or not—are suspended in this fluid, there are additional
stress contributions caused by the distorted velocity field due to the presence of the particles.
In the following, only the shear component (xz-component) of the stress in simple shear flows
(velocity along x-axis, velocity gradient along z-axis) is considered. All other stress components
are either not relevant for the present discussion, or they vanish on average. The apparent
viscosity is defined via the volume average

〈σxz〉V = 2ηapp〈Sxz〉V . (9.3)

Suspension stress

It is possible to compute the apparent viscosity for a dilute suspension of rigid, spherical particles
in simple shear flow [2, 14]. The Einstein relation states that, for a volume fraction φ not larger
than a few percent, the apparent viscosity is ηapp = η0

(
1 + 5

2φ
)
, cf. section 2.3. For arbitrary

volume fractions and general particle shapes and deformabilities, it is either extremely difficult
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or even impossible to find the apparent viscosity analytically. Instead, numerical approaches may
be required.

In his seminal work, Batchelor [10] derived a general, formal expression for the stress in suspensions
subject to shear flow. Starting from the NSE, Batchelor first introduced the bulk stress including
pressure,

Σ := 〈−pI + σ〉V =
1

V

∫
dV (−pI + σ), (9.4)

as the volume average of the local stress. At this point, locality is already lost. It has been
further shown that the bulk stress can be written in the form

Σ = − 1

V

∫
fluid

dV pI + 2η0〈S〉V + 〈σp〉V (9.5)

where the pressure is only integrated over the fluid volume (volume not occupied by particles).
This isotropic pressure contribution is not of interest here, and it is neglected in the following. As
can be inferred from eq. (9.5), the total stress can be written as the sum of the known fluid stress
2η0〈S〉V as it would be in the absence of the particles and the particle stress 〈σp〉V . Exploiting
Gauss’ theorem, the particle stress can be shown to have the components

〈σp
αβ〉V =

1

V

∑
k

∮
Ak

dA (Sαγxβnγ − η0(uαnβ + uβnα)) . (9.6)

The sum runs over all suspended particles, and the integration is taken over particle surfaces
with the unit normal vector n pointing into the fluid2. x is the position vector with an arbitrary
origin. Eq. (9.5) and eq. (9.6) are generally valid for negligible inertia effects and for a Newtonian
suspending fluid at any instance of time. The particle shape and the volume fraction φ are not
restricted in any form.

Application to immersed elastic membranes

In the following, the above formalism will be applied to thin membranes immersed in a fluid.
These membranes are filled with another Newtonian fluid of viscosity λη0 where λ is the viscosity
ratio. In this case, both the exterior and the interior surfaces have to be considered, and one can
write

〈σp
αβ〉V =

1

V

∑
k

∮
A+
k

dA
(
Sαγxβn

+
γ − η0(uαn

+
β + uβn

+
α )

)

+
1

V

∑
k

∮
A−
k

dA
(
Sαγxβn

−
γ − λη0(uαn

−
β + uβn

−
α )

)
.

(9.7)

Each membrane has an exterior and an interior surface which are denoted by + and −, respectively.
Thus, A+ lies in the exterior fluid with viscosity η0 and A− in the interior fluid with viscosity λη0.
Due to the small thickness of the membrane, both surfaces have an infinitesimal distance ε from
each other, and the normal vectors n+ and n− pointing into the exterior and the interior fluid
obey n+ = −n−. Since the velocity u is smooth at the membrane surface (no-slip condition),
the particle stress can be written in the form

〈σp
αβ〉V =

1

V

∑
k

(∮
A+
k

−
∮
A−
k

)
dASαγxβnγ +

1

V

∑
k

∮
Ak

dA (λ− 1)η0(uαnβ + uβnα) (9.8)

2The integration is performed in the exterior fluid, directly outside of the suspended particles where fluid velocity
and shear rate are defined.
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where n = n+ = −n− has been substituted. Tensions in the membrane are balanced by a jump
of the fluid stress across the interface [129], and

f̃ = (S− − S+) · n (9.9)

holds where S+ and S− are the values of the fluid stress tensor directly outside and inside of
the membrane, respectively. The force density f̃ (force per area) is exerted on the fluid by the
membrane3, and for a given membrane deformation it is known from the constitutive model, cf.
chap. 7. Consequently, the particle stress is [25]

〈σp
αβ〉V =

1

V

∑
k

∮
Ak

dA
(
−f̃αxβ + (λ− 1)η0(uαnβ + uβnα)

)
. (9.10)

In the present work, the interior fluid has the same viscosity as the exterior fluid, λ = 1, and the
bulk particle stress reduces to the compact form

〈σp
αβ〉V = − 1

V

∑
k

∮
Ak

dA f̃αxβ . (9.11)

Remarks

It is straightforward to evaluate eq. (9.11) within the present model. The discretization of eq.
(9.11) reads

〈σp
αβ〉V = − 1

V

∑
i

Fiαxiβ (9.12)

where the sum runs over all Lagrangian membrane nodes i (force Fi, position xi) in the entire
simulation box. The origin of the coordinate system is arbitrary if the sum of all forces in the
system is exactly zero,

∑
i Fi = 0. Indeed, the definition of the particle stress in eq. (9.11) is

only useful if there is no net force on the particles. Else, the particle stress could take any value
by choosing a convenient coordinate origin.

The particle stress as given in eq. (9.11) is the average particle stress in the entire system. There
is a priori no access to a local particle stress within Batchelor’s approach. However, it is possible
to compute the contributions of individual particles k,

〈σp
kαβ〉V := − 1

V

∮
Ak

dA f̃αxβ . (9.13)

This stress may then be considered as being located at the centroid of the particle. It will be
shown in section 9.5 that this approach does not give satisfactory results. Moreover, interacting
particles lead to problems since for such a system, the net force on an individual particle is not
zero in general. Interaction forces should be excluded from eq. (9.13).

9.4. Evaluating local particle stresses with the method of planes

The approach presented in section 9.3 allows to obtain the volume average of the particle stress,
〈σp

αβ〉V . While the fluid stress σf can be obtained locally ( section 9.1), this is not possible for
the particle stress up to this point. In principle, the particle stress may be obtained indirectly.
For example, it is known that, for a simple shear flow, the shear stress averaged over time

3An opposite force is exerted on the membrane by the fluid, which is the reason for contradicting sign conventions
often found in the literature.
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and the xy-plane is constant throughout the system, 〈σxz〉x,y,t �= 〈σxz〉x,y,t(z). The fluid stress
〈σf

xz〉x,y,t(z) is known, so the particle stress is

〈σp
xz〉x,y,t(z) = 〈σxz〉x,y,t − 〈σf

xz〉x,y,t(z). (9.14)

For a rheological study, this relation may in principle be sufficient. Still, within this approach,
there is no access to spatio-temporal fluctuations of the particle stress. These fluctuations
carry important additional information about the system, e.g., an independent measure of shear
viscosity in the small shear rate regime [232],

η ∝
∫ ∞

0
dt′ 〈σxz(0)σxz(t′)〉V . (9.15)

In this section, another approach for the particle stress evaluation is presented (Krüger et al.
[233]). It offers the possibility to find the instantaneous and local particle stress on a plane
parallel to the confining walls. For a special case, this technique is shown to be identical to the
‘method of planes’ (MOP) which has been introduced by Todd et al. [4] for the case of a simple
liquid and further examined by Varnik et al. [5] in the case of a polymer melt.

Without external forces, the NSE can be written as

g(r, t) = ∇ · σ(r, t) (9.16)

where g contains the convective derivative of the velocity and the pressure gradient. In the
present model, however, the lattice Boltzmann stress tensor only captures the fluid component,
whereas the particle contribution is contained in the force density f ,

g(r, t) = ∇ · σf(r, t) + f(r, t). (9.17)

Therefore, the first step is to assume that the particle stress and the membrane force density are
connected via

f(r, t) = ∇ · σp(r, t). (9.18)

This fundamental relation is local both in space and time and known to be valid for elastic systems
in equilibrium, i.e., in the absence of accelerations [189]. Eq. (9.18) states that the effect of
interactions on flow behavior can be incorporated in the NSE either by (i) direct implementation
of particle forces as a (spatially and temporally varying) external force field or (ii) by introducing
the particle stress tensor. For any differentiable stress field σp(r, t), a corresponding force density
f(r, t) can be obtained.

Stress evaluation

The α-component of eq. (9.18) can be written as

fα(r, t) = ∂xσ
p
αx(r, t) + ∂yσ

p
αy(r, t) + ∂zσ

p
αz(r, t). (9.19)

For periodic boundary conditions along the x- and y-axes, as in the present work, and averaging
over the xy-plane, this equation simplifies to

〈fα〉x,y(z, t) = ∂z〈σp
αz〉x,y(z, t). (9.20)

Integration yields

〈σp
αz〉x,y(z, t) = 〈σp

αz〉x,y(z0, t) +
∫ z

z0

dz′ 〈fα〉x,y(z′, t) (9.21)
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which is a very important intermediate result. It states that, if the force density f(r, t) and the
xy-average of the particle stress at position z0 are known, then the xy-average of the particle
stress at each z-position is known.

In its discretized form, the force density in the Lagrangian system can be written as

f(r, t) =
∑
i

Fi(t)δ(r − xi(t)) (9.22)

where Fi is the force acting on Lagrangian node i which is located at point xi(t) at time t.
Interestingly, the particle membership of node i and the physical origin of Fi do not play a role.
In particular, it is not necessary to claim that Fi is a two-body force. This is important for
multi-body forces which enter Fi, e.g., through bending or volume contributions. The discretized
form of the particle stress reads

〈σp
αz〉x,y(z, t) = 〈σp

αz〉x,y(z0, t) +
1

A

∑
i

Fiα(t)θ(zi(t)− z0)θ(z − zi(t)) (9.23)

where A = LxLy (Lx and Ly being the system extensions along the x- and y-directions) and θ(z)
is the Heaviside step function, i.e., all Lagrangian nodes between z0 and z contribute.

Method of planes

It will be shown in the following that eq. (9.23) reduces to the equation proposed by Todd et al.
[4],

〈σp
αz〉x,y(z, t) = − 1

2A

∑
i

Fiα(t)sgn(zi(t)− z), (9.24)

for some additional assumptions. Here, sgn(z) is the sign function. The first assumption is that
the particle stress vanishes at z0, 〈σp

αz〉x,y(z0, t) = 0, and that no nodes exist with zi(t) < z0.
Thus, z0 may be taken as the position of the impenetrable bottom wall. The second claim is that
the total force vanishes,

∑
i Fiα(t) = 0, i.e., the total momentum is conserved. This translates to∑

i Fiα(t)θ(z − zi(t)) = −∑
i Fiα(t)θ(zi(t)− z) and

∑
i

Fiα(t)θ(z − zi(t)) =
1

2

(∑
i

Fiα(t)θ(z − zi(t))−
∑
i

Fiα(t)θ(zi(t)− z)

)

=
1

2

∑
i

Fiα(t)sgn(z − zi(t)).

(9.25)

Hence, the formal connection between eq. (9.23) and eq. (9.24) has been shown.

Remarks

The MOP [4] has originally been introduced to find the local stress in an atomistic non-equilibrium
fluid in planar geometries. Interestingly, it can be applied directly to the present problem by
assuming that the deformable membranes consist of interacting point particles. Formally, this is
actually the case because the forces acting on the membranes are considered as being concentrated
at the Lagrangian nodes. The physical origin of these forces do not play a role at all.

It must be emphasized again that stresses due to inertia effects are not considered here. On the
one hand, the fluid inertia is neglected in the NSE in the first place. On the other hand, the
equilibrium condition, eq. (9.18), in the absence of accelerations is considered. As will be shown
in section 9.5, the MOP produces excellent results for the local particle stress.
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The MOP as presented in eq. (9.23) bases on the forces defined in the Lagrangian system. It is
also possible to compute the particle stresses in the Eulerian frame by using the lattice force
density as obtained from the immersed boundary spreading via eq. (6.5), i.e., the delta function
in eq. (9.22) is replaced by the smooth interpolation stencil, e.g., eq. (6.11). For the present
model, this second approach will be employed if not otherwise stated. The reason is that the fluid
is driven by the forces in the Eulerian system. It is not aware of the presence of the membranes
otherwise. This way, both the fluid and the particle stresses are computed in the Eulerian system.
Eq. (9.23) then becomes

〈σp
αz〉x,y(z, t) = 〈σp

αz〉x,y(z0, t) +
1

A

∑
X′

fα(X
′, t)Δx3θ(z′ − z0)θ(z − z′) (9.26)

where the sum runs over all lattice nodes at position X ′ = (x′, y′, z′) with force density f(X ′, t),
i.e., the force acting on one lattice unit volume Δx3 is f(X ′, t)Δx3 (Krüger et al. [233]).

9.5. Benchmark test: verification of the stress evaluation methods

Two classes of benchmark tests have been performed to show (i) the reliability and capability
of the stress evaluation methods described in this chapter, (ii) the wall roughening procedure
(section 8.8), and (iii) the shear stress boundary condition (section 5.4.2). A single spherical
capsule in simple shear flow is considered in section 9.5.1, whereas a dense suspension of spherical
capsules (50% volume fraction) is simulated in section 9.5.2. All quantities are given in lattice
units.

9.5.1. Single capsule in shear flow

A single spherical capsule (r = 8, Nf = 2000, κS = 0.1, κα = 1, κB = 0.01, κA = 1, κV = 1)
is placed in the middle of an initially quiescent fluid (volume 30 × 30 × 30) bounded by two
rigid walls at z = 0 and z = 30. The LBM relaxation parameter is τ = 1, and the average fluid
density is unity. Two simulations for a single particle in shear flow have been performed, one with
velocity boundary conditions (VBC), the other with shear stress boundary conditions (SBC).

In the first simulation, both walls are moved along the x-axis in opposite directions with a constant
velocity of ±0.02, resulting in an average fluid shear rate 〈γ̇〉V = 1.33× 10−3. The average fluid
stress, therefore, is 〈σf

xz〉V = 2.22× 10−4, independent of the velocity profile between the walls.
The results for the particle stress obtained from the wall stress and Batchelor’s approach are
shown as function of time in fig. 9.1(a). After an initial transient in which the system is not in
steady state, both stresses become equal. The time-averaged particle stress between t = 4000 and
t = 10000 is 〈σp

xz〉V,t = 5.67×10−5 in both cases. For the average stresses obtained from the MOP,
there are slightly different results depending on whether the stress is evaluated in the Eulerian or
the Lagrangian frame. In the former, it equals the value obtained before, 〈σp

xz〉V,t = 5.67× 10−5.
In the latter, it is slightly larger, 〈σp

xz〉V,t = 5.73× 10−5. The reason for this deviation is caused
by the immersed boundary force spreading from the Lagrangian to the Eulerian system. Still,
the deviation is only 1%. The curve of the time evolution of the volume-averaged particle stress
obtained by the MOP in the Eulerian frame collapses with the curve for Batchelor’s stress. For
this reason, the MOP stress is not shown separately. This observation is a strong indication for
the reliability and consistency of the stress evaluation approaches. The fluid stress, evaluated
independently and averaged over time (between t = 4000 and 10000) and the total volume, is
〈σf

xz〉V,t = 2.22× 10−4 as expected.

For the second simulation, the walls are subject to the SBC. The prescribed shear stress is
2.79 × 10−4 which is the sum of the fluid and particle stresses obtained from the previous
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Fig. 9.1.: Time evolution of particle stress and wall velocity for a single capsule. The results for the
velocity boundary condition (VBC) and the shear stress boundary condition (SBC) are compared. The
average particle stress 〈σp

xz〉V has been evaluated using (i) Batchelor’s approach and (ii) the wall stress
(minus the average fluid stress). In steady state, all results are identical. For the VBC, the wall is
impulsively accelerated from zero velocity to 0.02, and the resulting wall stress is initially large. For
the SBC, the wall is continuously accelerated, and the transient is longer. The slight fluctuations in
steady state are caused by the discrete particle mesh.

simulation run in steady state. All other simulation parameters are then same. The most
important observation is that, after a transient, both wall velocities become constant with
uw = 0.02 as in the first simulation, cf. fig. 9.1(b). All other steady-state stresses are found to
be equal, cf. fig. 9.1(a) and fig. 9.2(a). Again, the time evolutions of Batchelor’s stress and the
volume-averaged MOP stress are identical (MOP stress not shown separately).

Conclusions and remarks

The above discussion clearly shows the consistency of the SBC for a single particle in simple
shear flow. After the initial transients, both simulations are equivalent (fig. 9.1 and fig. 9.2).
There are some minor fluctuating deviations between the VBC and the SBC which are caused by
the discrete particle mesh.

Due to the observed deviations of the stress results obtained from the MOP in the Eulerian and
the Lagrangian frames, only results computed in the Eulerian frame will be presented in the
remainder of this thesis. This is more consistent since the presence of the membranes is felt by
the fluid only through the forces in the Eulerian frame.

Fig. 9.2(a) nicely shows that the local total stress (sum of fluid and particle stresses) is indeed
not a function of the transverse coordinate z. Additionally, its value equals these obtained from
the wall stress and Batchelor’s approach. This is convincing evidence that the MOP actually
provides access to the local particle stress independently from assumptions based on macroscopic
considerations. Without the MOP, there would be no access to the local particle stress4. Instead,
one may use Batchelor’s approach to find the integrated particle stress for the capsule and localize
it at the capsule’s centroid position (z = 15). This, however, would lead to a single data point in
the middle of the flow, and the total stress would not be constant (Krüger et al. [233]).

The local viscosity of the suspension is shown in fig. 9.2(b). For regions filled with fluid only, the

4Local means stress averaged over the xy-plane as function of z.
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Fig. 9.2.: Stresses and viscosity for a single capsule. (a) The local, time-averaged stress contributions
in steady state are shown for the velocity boundary condition (VBC) and the shear stress boundary
condition (SBC). The particle stresses are computed with the MOP in the Eulerian frame. The total
stress (sum of particle and fluid stresses) is a constant line, reflecting the condition of mechanical
stability. (b) The local, time-averaged relative apparent viscosity is shown. In the fluid region, it
is unity as expected. The presence of the particle in the center region (between z = 7 and z = 23)
gives rise to a finite particle stress and increases the viscosity. Curves for VBC and SBC cannot be
distinguished in (a) and (b). All time averages are taken between t = 4000 and t = 10000.

viscosity equals the suspending fluid viscosity. The presence of the particle, however, increases
the local viscosity.

9.5.2. Dense suspension in shear flow

In this section, the capability of the wall roughening (section 8.8) in combination with the stress
evaluation is demonstrated. Four simulations have been performed: two with rough and two
with smooth walls (VBC and SBC each). The average volume fraction in the simulations is 0.5
(189 spherical particles with an average radius of 5 and a polydispersity of 20%). Depending
on the radius of the particles, different meshes have been used. This way, it is guaranteed that
the average edge length l̄ is as close as possible to the lattice constant Δx. In total, six different
meshes have been employed, the smallest with 320, the largest with 1620 faces. The system size
is 60 × 60 × 60, and the LBM relaxation parameter is τ = 1. Two walls at z = 0 and z = 60
confine the suspension. The remaining simulation parameters are κS = 0.1, κα = 1, κB = 0.01,
κA = 1, κV = 1, κint = 0.05, and κgl = 0.1. First, the system has been initialized as explained
in section 8.5. The resulting system was then taken as the initial state for all four simulations
mentioned above.

Velocity boundary condition

For the shear rate driven systems (rough and smooth walls), the two walls were instantaneously
accelerated to a velocity of ±0.02. The resulting wall stresses are shown in fig. 9.3(a). It can be
seen that the stresses in the system with smooth walls are smaller. The reason is the low-viscosity
slip layer at each wall which can maintain most of the imposed strain. As a result, the shear rate
in the bulk region is smaller than the average shear rate, cf. fig. 9.4(b). This is a disadvantage
because the bulk shear rate cannot be controlled a priori when smooth walls are used. The total
stresses obtained from the MOP have been averaged between t = 2000 and t = 10000 and over
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Fig. 9.3.: Suspension stresses for rough and smooth walls. (a) For the shear rate driven systems, the
resulting wall stresses (bottom and top walls) are presented as function of time. The presence of the
slip layers for the smooth walls reduces the stress: The system can be sheared more easily. (b) The
particle contribution to the wall stress (averaged over bottom and top walls) is compared with the
volume-averaged stress obtained from the method of planes (MOP). After the initial transient in which
the fluid is accelerated, both methods yield the same results, even as function of time.

the entire volume: 〈σxz〉V,t = 2.14× 10−3 for the rough and 〈σxz〉V,t = 1.02× 10−3 for the smooth
walls. The results obtained from the wall stresses (the bottom and top walls individually) are
identical, even if the bottom and top wall stresses are generally not identical at a given time
instance, cf. fig. 9.3(a). Batchelor’s approach cannot be applied to the system with rough walls
because it is not clear how to evaluate the stress related to the roughness force. Still, for the
systems with smooth walls, also Batchelor’s approach gives the same result for the averaged
stress.

In fig. 9.3(b), it is illustrated that the volume-averaged MOP stress matches the average of bottom
and top wall stresses even when plotted as function of time. The fluid stress has been subtracted
from the wall stresses in order to recover the contribution of the particles. Additionally, the time
evolution of the particle stress for the smooth walls obtained from Batchelor’s approach matches
the corresponding data obtained from the MOP. The curves are identical. Therefore, Batchelor’s
stress is not shown separately. The transient during the first 1000 time steps in which both
stresses are not identical is caused by the required acceleration of the fluid because the fluid
is initially at rest. The findings illustrated in fig. 9.3(b) impressively underline that all three
methods (wall, MOP, Batchelor) recover the same (volume-averaged) stress as function of time.

Additional results obtained for the simulation with smooth walls are shown in fig. 9.5. In fig.
9.5(a), it is illustrated how important the MOP is for the correct evaluation of the local particle
stress. If Batchelor’s approach is used to compute the stress for each particle individually and
then adding this contribution to the z-bin in which the particle center is located, an extremely
fluctuating stress profile 〈σp

xz〉x,y,t(z) is recovered. The MOP, however, yields the correct stress
curve, and the total stress (sum of fluid and particle contributions) are found to be independent
of the transverse coordinate z (solid line). For the same simulation, the profiles of the relative
apparent viscosity and the local volume fraction are shown in fig. 9.5(b). It can be easily inferred
that both Batchelor’s stress profile from fig. 9.5(a) and the viscosity are correlated with the
volume fraction. Due to the small system size and the short integration time, the averaged
density profile shows large fluctuations. In order to extract physically meaningful results, larger
systems, longer integration times, and a larger number of independent runs have to be performed,
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Fig. 9.4.: Suspension velocities for rough and smooth walls. (a) For the shear stress driven systems, the
resulting wall velocities (ignoring the minus sign for the bottom wall) are presented as function of
time. The time averaged wall velocity (0.02 in all cases) is shown as solid line as reference. (b) The
x-components of the velocity (averaged over the xy-plane and times between t = 2000 and t = 10000)
for each simulation run (velocity boundary condition [VBC] and stress boundary condition [SBC])
are shown as function of lateral position z. The low-viscosity slip layers at the smooth walls become
noticeable by the localized large velocity gradients. In contrast, for rough walls, there are extended
regions (about one average particle diameter) where the velocity is basically constant. The linear
velocity profile for the suspending fluid without particles is shown as solid line as reference.

cf. chap. 10. The mere intention of this section is to point out the validity and capability of the
stress evaluation methods.

Shear stress boundary condition

For the shear stress driven systems, the imposed stress was chosen to be equal to the resulting
stress obtained from the shear rate driven simulations in the interval between t = 2000 and 10000.
All other simulation parameters have been the same. The resulting wall velocities are shown in
fig. 9.4(a). Their averages, also taken between t = 2000 and t = 10000 give the same velocities as
those which have been used for the shear rate driven simulations (±0.02). This, again, shows the
consistency of the SBC, even for rough walls.

Two observations in fig. 9.4(a) have to be explained in more detail: First, the bottom and top
walls do not move with the same velocities, not even when averaged over time. The combined
average velocity of bottom and top wall, however, yields the expected value of about 0.02. The
reason is that, due to the small system size, spatial inhomogeneities are significant, and the
viscosity is not the same close to the bottom and top walls. This is also illustrated in fig. 9.5(b).
Since the shear rate and not the wall velocity is the relevant quantity, different wall velocities
are not problematic as long as the shear rate is correct. Second, one can observe an overshoot
of the velocity at t ≈ 500. This can be understood from the fact that the particles have to be
deformed first before they produce significant elastic stresses which decelerate the walls again.
The presence of the slip layers, both for the shear rate and the shear stress driven simulations,
can be easily inferred from fig. 9.4(b).
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Fig. 9.5.: Suspension stress, viscosity, and volume fraction profiles. (a) The stresses (averaged between
t = 2000 and t = 10000) for the shear rate driven simulation with smooth walls are shown as function
of lateral coordinate z. Batchelor’s approach may be used to compute the stress for individual particles
and add this contribution to the bin where the particle center is located. This way, a strongly fluctuating
particle stress profile is recovered which is clearly correlated to the local density of the particles as
shown in (b). Instead, the method of planes (MOP) produces accurate local results for the stress, and
the total stress (sum of fluid and particle contributions, solid line) is constant as expected. The results
for the remaining three simulations are qualitatively similar and are not shown separately. (b) The
local relative apparent viscosity and the local volume fraction for the shear rate driven simulation with
smooth walls are shown as function of z. The viscosity and density peaks are obviously correlated.

Conclusions and remarks

The present simulation tool provides the possibility to drive suspensions either by shear rate (via
wall velocity) or by shear stress (via wall stress). Independently of this, the walls can be made
rough in order to avoid slip. This slip is caused by the presence of the liquid lubrication layers.
Although the slip itself is not problematic (walls are present in either case), it is not possible to
control the bulk shear rate a priori since the ratio of the viscosity of the lubrication layer and
the bulk is not known in advance. The inclusion of the rough walls circumvents this problem.

The stress evaluation approaches (wall, Batchelor, MOP) yield consistent results and complement
each other. It has been shown that the fluid and particle contributions to the stress can be
computed locally (both in space and time). This opens the door for the analysis of spatio-temporal
stress fluctuations which carry important information about the statistical properties of the
system. The time-averaged stresses recover the behavior expected for a steady flow.

For all the above simulations, a zero shear stress boundary condition has been used for the
y-direction (vorticity axis) at the bottom and the top wall. In particular, this means that the
total momentum of the suspension in y-direction is always conserved because the momentum of
the fluid can only change due to the influence of external forces like gravity (which is not the case
here) or to shear stresses at the walls. Indeed, the y-component of the total fluid momentum was
found to be constant up to machine precision, which is another strong indication for the proper
functioning of the SBC. As a consequence the ‘center of mass’ of the fluid does not move along
the y-axis when the initial momentum along this axis is zero. This is of paramount importance
for the study of particle diffusivities (section 10.7) because undesired superimposed drift velocities
may hamper the analysis otherwise.



10. Rheology and microscopic behavior of red
blood cell suspensions

In this chapter, the rheology of red blood cell (RBC) suspensions is investigated numerically. In
particular, the focus of the study is on the relation between the microscopic characteristics of
the suspension (e.g., particle deformation, alignment, rotation, and diffusivity) and the rheology
(e.g., viscosity and suspension stress). For the first time, a detailed and systematic analysis of the
microscopic origins of the shear thinning behavior of blood for varying volume fractions, shear
rates, and RBC deformabilities is reported.

The setup of the simulations and remarks regarding data analysis are given in section 10.1. The
characterization of the dynamics of individual RBCs is introduced in section 10.2. In section 10.3,
the viscosity and shear thinning behavior of the suspensions are characterized. The microscopic
properties of the sheared suspensions are scrutinized in the subsequent sections: the particle
rotation in section 10.4, the particle deformation in section 10.5, the collective particle alignment
in section 10.6, the displacements of the RBCs in section 10.7, and the shear stress fluctuations
in section 10.8.

10.1. Simulation setup and data evaluation remarks

Simulation parameters

The simulations have been performed for four hematocrit values (volume fractions), five imposed
shear rates, and two particle deformabilities. In the following, all quantities are given in
lattice units except indicated otherwise explicitly. The number of RBCs in the simulation box
(Nx × Ny × Nz = 100 × 100 × 160 lattice nodes) is 494, 635, 776, and 917 for the considered
volume fractions 35, 45, 55, and 65%, respectively. The applied shear rates cover two orders of
magnitude between approximately 1.2 × 10−5 and 1.2 × 10−3, resulting in inverse shear rates
between about 800 and 80000. For the softer RBCs (also denoted ‘s’ in the legends of the figures
in this chapter), the parameters κS = 0.02 and κB = 0.004 have been used. For the more rigid
RBCs (also denoted ‘r’), the values κS = 0.06 and κB = 0.012 are taken instead. All other
simulation parameters are given in tab. 10.1 and tab. 10.2. Since the ratio κS/κB = 5 is constant,
only κS will be used for characterization in the following. The 2-point interpolation stencil for
the immersed boundary method, eq. (6.11), and the linearized lattice Boltzmann equilibrium
distributions, eq. (5.9), have been used. The employed mesh for the RBCs has 1620 faces and
812 nodes with an average distance of one lattice constant between neighboring nodes (section
8.3 and fig. 8.3(g)).

The simulation parameters for the softer RBCs have been chosen in such a way that they
correspond to the physiological values of the plasma viscosity (η0 = 1.2mPa s), large RBC
radius (r = 4μm), RBC shear modulus (κS = 5μNm−1), and RBC bending modulus (κB =
2× 10−19Nm) [31, 234]. For this set of parameters, the capillary number

Ca =
η0γ̇r

κS
, (10.1)

the numerical shear rate ˜̇γ (in lattice units), and the physical shear rate γ̇ (in units of s−1) are
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Tab. 10.1.: Parameters for simulations of red blood cell (RBC) suspensions. All parameters are given in
lattice units. Values in parentheses denote deviating parameters for the more rigid RBCs.

parameter symbol value

system size Nx ×Ny ×Nz 100× 100× 160
LBM relaxation parameter τ 1
fluid density ρ 1
large RBC radius r 9
RBC volume modulus κV 1
RBC surface modulus κA 1
RBC area modulus κα 1
RBC strain modulus κS 0.02 (0.06)
RBC bending modulus κB 0.004 (0.012)
interaction modulus κint 0.05
roughness modulus κgl 0.1

Tab. 10.2.: Applied wall velocities and shear rates for simulations of red blood cell suspensions. All
parameters are given in lattice units. The observed shear rates in the bulk are slightly larger, cf. fig.
10.1(a).

applied wall velocity applied shear rate number of time steps appr. number of
uw γ̇ ×103 inverse shear rates

0.00096 1.2× 10−5 500 6
0.00288 3.6× 10−5 300 11
0.0096 1.2× 10−4 150 18
0.0288 3.6× 10−4 100 36
0.096 1.2× 10−3 50 60

related according to

Ca = 75 ˜̇γ, γ̇ = 78125 s−1 ˜̇γ. (10.2)

The shear flow is wall-driven with two walls at z = 0 and z = Lz (wall distance Lz = 160). The
imposed boundary conditions (BCs) at the walls are velocity BCs in the x-direction and zero
shear stress BCs in the y-direction (section 5.4). The wall velocities are chosen in such a way
that the desired average shear rates are obtained. The remaining BCs in the x- and y-directions
are periodic. In order to avoid wall slip, one layer of RBCs is glued to the walls (section 8.8).
Thus, the effective bulk shear rate γ̇eff is larger than the average shear rate between the walls
since the effective wall distance is decreased by about two large RBC diameters, cf. fig. 10.1. In
the following, γ̇eff is abbreviated by γ̇ for convenience.

Some of the simulations have become unstable and could not be evaluated. The simulations with
65% volume fraction and the wall velocity 0.096 (for the softer particles) and the wall velocities
0.096 and 0.0288 (for the more rigid particles) have been rejected.

For comparison, also a series of simulations with a single RBC have been performed. The
simulation parameters are identical to those for the soft RBCs (tab. 10.1), except for the system
size (40× 40× 40 instead of 100× 100× 160). The wall velocities have been chosen in such a
way that the capillary numbers 0.005, 0.010, 0.025, 0.050, 0.10, 0.15, 0.20, 0.25, and 0.50 are
obtained. The major plane of the single cell has been initially aligned with the xy-plane of the
simulation box (parallel to the walls).
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Fig. 10.1.: Velocity and density profiles for a red blood cell suspension. The solid curves are the time-
averaged (a) velocity profile ux(z) and (b) density profile Ht(z) for the soft particles with Ht = 45% and
imposed shear rate of γ̇ = 3.6× 10−4. The velocity gradient (shear rate) in the bulk region (between
z = 40 and 120, denoted by gray regions in (a) and (b)) is slightly larger than the average, imposed
gradient (dashed line in (a)), and the average density in the bulk region is larger than the imposed
density (dashed line in (b)). The corresponding plots for the remaining simulations are qualitatively
similar and are, therefore, not shown.

Ensemble averaging

For each parameter tuple (Ht, γ̇, κS), five or ten independent simulation runs have been performed
(ten for the softer, five for the more rigid particles). For a given tuple, the simulation parameters
for each run are exactly identical, except for the initial particle position and orientation. By
averaging over all runs of a tuple, the ensemble averages are improved, and statistical errors can
be estimated. These errors are used to assess the statistical reliability of the results.

In practice, the observable of interest is first evaluated for each independent run alone and then
averaged over all runs for the parameter tuple, if not stated otherwise. The uncertainty is defined
as the root-mean-square deviation between the individual results and their arithmetic average.
For a quantity Q, the individual results Qi (which are usually already averaged over the steady
state interval and bulk volume, see below) are first used to define the ensemble average based on
the N independent runs,

〈Q〉 := 1

N

∑
i

Qi. (10.3)

The statistical uncertainty is then defined as

δQ :=

√∑
i(Qi −Q)2

N
. (10.4)

If derived quantities such as the viscosity (as ratio of shear stress and shear rate) are reported,
the uncertainty is obtained from the standard error propagation of the underlying observables.

Definition of bulk and steady state

The primary scope of the present work is the investigation of the bulk properties in the steady
state. In the following, the bulk region and the steady state interval are defined.
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Since the simulated volume is bounded by walls, wall effects are expected to play a role. For this
reason, a bulk region is identified a posteriori before the rheological and microscopic characteristics
of the suspensions are further analyzed. The bulk region is defined by the volume in which
observables such as shear rate and particle density do not show significant gradients. For all
simulations considered here, the region between z = 40 and z = 120 (which is the interior 50% of
the total volume) is taken as the bulk, cf. fig. 10.1.

After initializing and starting a simulation, it takes a certain number of time steps until the
suspension is in the steady state (in the sense that statistical properties of the system become
independent of the origin of time). The duration of the transient depends on the control
parameters (Ht, γ̇, κS). It is not known a priori and has to be identified before further data
analysis is performed. The transient may be tagged by the time behavior of observables such as
the wall stress or the average particle deformation. It is noteworthy that the transient for different
observables may have differing durations. For example, the transient for orientational ordering
(section 10.6) is found to be longer than that for viscosity (section 10.3) or particle deformation
(section 10.5). It is expected that transients are longer for observables related to collective effects
as compared to individual particle properties because the time scale for structural relaxation is
typically longer than for deformation of an individual particle.

Lees-Edwards boundary conditions would solve the problem of wall effects (definition of a bulk
region, increased volume fraction in the bulk, etc.). However, the method of planes (section 9.4)
cannot be applied when Lees-Edwards boundary conditions are used. Stress evaluation would be
significantly more difficult then [235].

10.2. Characterization of particle deformation, orientation, and
rotation

Fig. 10.2 shows some snapshots of the suspension configurations for various shear rates at 55%
volume fraction. It can be seen that the suspension microstructure and the individual properties
of the particles are different when the shear rate is changed. Motivated by this observation, it is
necessary to characterize the deformation, orientation, and rotation states of the RBCs in more
detail. In the following, it is explained how these quantities are defined and evaluated.

Inertia tensor

The basis for the microscopic analysis is the inertia tensor. For any extended particle, its inertia
tensor T can be computed. If this particle has a constant density ρ, the volume integration in
the definition of T can be easily transformed to a surface integration whose discretized version
reads [187, 191]

Tαβ =
ρ

5

faces∑
j

Aj

(
r2j δαβ − rjαrjβ

)
rjγnjγ , (10.5)

where rj is the vector from the particle centroid to the centroid of face j with area Aj and
unit normal nj . As the tensor T is symmetric, three real eigenvalues Ti (i = 1, 2, 3) can always
be computed, and the diagonalized tensor reads T = diag(T1, T2, T3) with T1 ≤ T2 ≤ T3. The
inertia tensor of a particle contains valuable information: (i) Its eigenvalues allow to describe the
current deformation state. (ii) The orientation of its eigenvectors characterizes the orientation of
the particle in space. (iii) The change of the eigenvectors in time defines the tumbling velocity of
the particle. In the following, these ideas will be elaborated on.
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(a) γ̇ = 1.56× 10−5 (b) γ̇ = 1.55× 10−4 (c) γ̇ = 1.51× 10−3

Fig. 10.2.: Snapshots of sheared red blood cell (RBC) suspensions at various shear rates. The soft RBCs
at 55% volume fraction are shown in steady state for three different bulk shear rates. (a) The RBCs
are more or less undeformed and behave similarly to rigid bodies. (b) Deformation becomes important.
(c) The RBCs are strongly deformed.

Inertia ellipsoid

For convenience, the inertia ellipsoid is defined. It is the (unique) ellipsoid with the same density
and inertia tensor T as the particle. Based on the inertia tensor of an ellipsoid with constant
density,

T1 =
M(b2 + c2)

5
, T2 =

M(a2 + c2)

5
, T3 =

M(a2 + b2)

5
, (10.6)

one can show that the three semiaxes of this ellipsoid are

a =

√
5(T2 + T3 − T1)

2M
, b =

√
5(T3 + T1 − T2)

2M
, c =

√
5(T1 + T2 − T3)

2M
(10.7)

where M = ρV is the mass and V is the volume of the particle. The semiaxes are sorted according
to a ≥ b ≥ c. The inertia ellipsoid for an undeformed RBC obeys a = b > c. It is shown in fig.
10.3. In this particular case, a = b = 1.1r and c = 0.36r with r being the large radius of the
RBC.

Particle orientation

Assuming a disk-like shape, i.e., a clear separation between the length of c on the one hand
and the lengths of a and b on the other hand, the orientation vector ô of a particle is defined
as the inertia tensor eigenvector corresponding to the shortest semiaxis c (or, equivalently, to
the largest moment of inertia, T3). Thus, the vector ô is perpendicular to the ab-plane of the
particle (fig. 10.3). It has to be noted that the sign of the orientation vector is not fixed by its
definition. Physical observables have to be specified in such a way that they are invariant under
the transformation ô → −ô.

Deformation parameter

A deformation parameter is introduced to monitor the deviation of the current from the equilibrium
shape of a particle. A similar approach has been followed in section 8.4. In the following, the
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ô

r a, b

c

Fig. 10.3.: Red blood cell (RBC) and its inertia ellipsoid. An undeformed RBC (red) and the corresponding
ellipsoid (black) with the same inertia tensor are shown to scale. The large radius of the RBC is r
(dotted red line), and the principal semiaxes of the ellipsoid are a = b = 1.1r and c = 0.36r (dashed
black lines). The orientation vector ô (gray) is perpendicular to the ab-plane.

discussion will be restricted to RBCs, or—more generally—to objects whose inertia ellipsoid has
principal semiaxes a0 = b0 > c0 in the undeformed state. The subscript 0 denotes the undeformed
shape. For deformable particles, the semiaxes a, b, and c are generally time-dependent, i.e.,
a = a(t), b = b(t), and c = c(t). Additionally, a(t) and b(t) are generally not equal, even if
a0 = b0. It has to be noted that always a(t) ≥ b(t) ≥ c(t) holds by definition.

The deviations of the current semiaxes compared to their undeformed counterparts give a first
approximation of the deformation of the particle without tracking the entire surface information,
which becomes unpractical if a large number of resolved particles is simulated for a long time1.
Let â(t) := a(t)/a0, b̂(t) := b(t)/b0, and ĉ(t) := c(t)/c0 be the reduced semiaxes of the deformable
particle which are computed on the fly. One may then define a deformation index characterizing
the asymmetry in the ab-plane (similarly to section 8.4),

Da(t) :=
â(t)− b̂(t)

â(t) + b̂(t)
, Da(t) ∈ [0, 1]. (10.8)

This quantity becomes zero if the particle is undeformed.

Tank-treading and tumbling

For a rigid particle, rotational motion is always tightly connected to a rotation of its inertia
tensor. Any of its mass elements rotates with the same angular velocity ω about its center. The
velocity of a mass element is found from v = ω × r + vcm where r is the distance vector from
the center of the particle to the particular mass element and vcm is the velocity of the center of
mass. The angular velocity ω at a given time is always identical for all mass elements, and it is
also equal to the rotational velocity of the particle’s inertia tensor, characterized by its three
eigenvectors. Here, the tumbling velocity ω is defined as the angular velocity of the inertia tensor
in space.

Deformable particles behave differently in general. The mass elements of the particle may (i)
rotate with different angular velocities, and (ii) this rotation may be independent of the rotation
of the inertia tensor. A prominent example is the steady tank-treading behavior of a deformable
capsule in shear flow as discussed in section 8.4. Here, the shape of the particle is stationary in
space, i.e., the inertia tensor does not rotate, but the membrane (and with it the mass elements)
rotates about this shape. A sketch of tumbling and tank-treading rotation is shown in fig. 10.4.
There does not seem to be a clear definition of the instantaneous angular velocity of a deformable
particle in the literature. Instead, the rotation period is commonly reported [76, 87, 236]. It is

1For a mesh with 1620 faces (812 nodes) and a simulation with 600 particles, the total surface information would
be 3× 600× 812× 8B > 11MB for a single time step where a double-precision floating-point data type requires
8 bytes of computer memory. For ten independent runs and 10000 snapshots, the required data would be more
than one terabyte.
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(a) tumbling (b) tank-treading

Fig. 10.4.: Tank-treading and tumbling ellipsoid. An ellipsoid is shown in (a) pure tumbling and (b) pure
tank-treading state. During tank-treading, the shape of the ellipsoid does not change in space, but
surface points (small circles) move along the surface. In the tumbling state, marker points do not move
relatively to the ellipsoid, rather the ellipsoid itself rotates in space. The current states are shown
in black, the previous states in gray, respectively. The large semiaxes (dashed) and the orientation
vectors (arrows) are also shown.

found by tracking the positions of surface patches and measuring the time for one revolution.
This quantity, however, is the time average over one rotation and does not provide access to the
instantaneous angular velocity. Additionally, it is only reasonably well defined when the rotation
is periodic, e.g., for a single particle in shear flow. For an individual particle in a dense suspension,
the rotational motion may be quite erratic, and the tank-treading period is not well-defined.

It is possible to estimate the instantaneous tumbling velocity (i.e., the rotation of the shape) of
particle i from the inertia tensor by tracking its eigenvector rotations in space. In the present
case, it is assumed that the particle has a shape close to a disk and that the preferred rotation
axis is along the y-axis (vorticity axis). The orientation vector ôi of particle i is first projected
onto the xz-plane (shearing plane) where an inclination angle θi ∈ [0, 2π[ with respect to the
x-axis can be defined. The tumbling velocity ωi then is the time derivative of the inclination
angle θi. This angular velocity is defined to be positive if the particle tumbles with the same
vorticity as the ambient flow.

In principle, one may track the rotation of the right-handed trihedron defined by the three
eigenvectors of the inertia tensor with a general rotation matrix. However, the results have
been found to be imprecise in the present case. Due to the quasi degeneracy of two eigenvalues
of the inertia tensor of a RBC, fast in-disk rotations of the inertia tensor can be observed
even when the membrane is rotating only slowly. This is a mathematical problem which is
introduced by describing the complex RBC shape only by an equivalent inertia ellipsoid. For
future investigations, a more accurate approach to obtain the rotation state of the deformable
particles are necessary.

Nematic ordering of disk-like particles

Whenever suspended particles are not spherical, their orientation may play a role in the rheology
of the suspension. A prominent example are liquid crystals. Liquid crystals in the nematic phase
are orientationally ordered with one preferred axis while the center positions of the particles are
generally unordered [237]. The orientational order state is characterized by the nematic order
tensor Q [237, 238, 239],

Qαβ :=
1

2
〈3ôiαôiβ − δαβ〉i,t, (10.9)

where ôi is the orientation vector of particle i. The average is taken over an appropriate volume
and time span (in the current case: bulk volume and steady state). Obviously, the signs of the
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n

(a) Q> ≈ 1 (b) Q> ≈ 0

Fig. 10.5.: Schematics of the director n and the nematic order parameter Q>. Two special cases of
ordering are illustrated: (a) nearly perfect alignment and (b) nearly isotropic orientation of disk-like
particles (e.g., prolate ellipsoids or red blood cells). The orientation vectors ôi of the individual
particles are shown as small arrows, the corresponding director n as thick arrow.

vectors ôi do not play a role in eq. (10.9): The definition of the order tensor Q is invariant under
transformations ôi → −ôi.

The scalar order parameter Q> is defined as the largest eigenvalue of the order tensor Q [238].
The corresponding eigenvector is called the director n. The director indicates the average
orientation of the particles, whereas the order parameter is a measure for the amount of order: It
takes the values

Q> =

{
1 if all orientation vectors ôi are parallel (perfect alignment),

0 if all orientation vectors ôi are randomly oriented (perfect isotropy),
(10.10)

which is illustrated in fig. 10.5.

The director n and the order parameter Q> are macroscopic quantities defined in volumes
containing a sufficient amount of microscopic particles. Generally, both observables are functions
of position and time. In the present case, n and Q> are averaged over the bulk volume and the
steady state interval since no significant dependence on position or time has been observed. This
is in marked contrast to results obtained numerically for Brownian liquid crystals made of rigid
oblate particles in simple shear flow where the director can be observed to rotate in space [240].

10.3. Suspension viscosity and shear thinning

The reduced apparent shear viscosity of the RBC suspensions, η/η0, is computed from the shear
stress and the bulk shear rate found during steady state via η = σxz/γ̇. The shear stress σxz is
obtained by fitting a constant to the profile of the suspension stress (sum of fluid and particle
contributions) as obtained from the method of planes in the Eulerian frame (section 9.4). The
shear rate γ̇ is found by fitting a linear function to the velocity profile in the bulk region. In
fig. 10.6, the viscosity η/η0 and shear stress σxz are shown for different volume fractions and
deformabilities as function of the bulk shear rate γ̇. There are five main observations:

1. All curves for a given volume fraction and deformability exhibit shear thinning behavior.

2. For a given shear rate and deformability, higher volume fractions result in higher viscosities.

3. When the particle deformability is decreased (i.e., rigidity is increased), the viscosity
becomes larger.

4. The Newtonian plateau at large shear rates has not yet been reached. It is expected that
the viscosities will decrease further when the shear rate is increased.
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Fig. 10.6.: Viscosity of red blood cell suspensions. (a) The reduced apparent bulk viscosity η/η0 and (b)
the shear stress σxz are shown for all volume fractions and both deformabilities (softer and more rigid
particles) as function of bulk shear rate γ̇. Statistical errors are comparable to the symbol size. Lines
are guides for the eyes.

5. The slopes of the flow curves indicate that there may be a yield stress for volume fractions
≥ 45%.

These points will be analyzed in the following.

Dimensional analysis and parameter reduction

The plots in fig. 10.6 reveal that the viscosity is a function of volume fraction Ht, bulk shear rate
γ̇, and particle deformability κS. It is tempting to use these three input control parameters also
for the characterization of the shear thinning behavior. However, it arises the question whether
these control parameters are the most appropriate ones for this purpose. Indeed, as will be shown
below, two instead of three independent parameters are sufficient to describe the data.

Moreover, due to the non-linearity of the physical problem, the known input parameters may
be not suitable to describe the outcome of the simulations. This well-known phenomenon is,
for example, important for hard spheres: For these systems, one can define the Péclet number
(ratio of the time scales for advection and bare diffusivity, e.g., diffusivity in the dilute limit)
and the Weissenberg number (ratio of structural relaxation time and inverse shear rate). The
former can always be defined a priori since it contains quantities which are known before the
simulations or experiments are performed. The latter is only known a posteriori because the
structural relaxation time strongly depends on non-linear effects. In the linear regime, the Péclet
number and the Weissenberg number are proportional. However, when non-linearity is important,
shear thinning is described by the Weissenberg number rather than the Péclet number [11, 19].

The first step is to identify the relevant dimensionless parameters for the present system which
are based on the input parameters. Beside the volume fraction which is already dimensionless,
one may define the capillary number (ratio of viscous fluid stress and a characteristic elastic
membrane stress) as in eq. (10.1),

Ca :=
η0γ̇r

κS
, (10.11)

and the Reynolds number (ratio of inertial and viscous forces),

Re :=
ργ̇r2

η0
. (10.12)
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Fig. 10.7.: Rescaled viscosity of red blood cell suspensions. (a) The reduced apparent bulk viscosity η/η0
and (b) the rescaled shear stress (in terms of capillary number Ca∗ ∝ σxz) are shown for all volume
fractions and both deformabilities (softer and more rigid particles as defined in section 10.1) as function
of capillary number Ca. Statistical errors are comparable to the symbol size. The dashed lines are
fits of a Herschel-Bulkley law, eq. (10.14), to the data. The fit parameters are given in tab. 10.3. A
Newtonian slope (Ca∗ ∝ Ca, i.e., σxz ∝ γ̇) is shown as reference in (b).

In the present work, the linearized lattice Boltzmann equilibrium distributions, eq. (5.9), are
employed. It is shown in appx. B.1.1 that this leads to the Navier-Stokes equations without the
advective term ρ(u · ∇)u. In this sense, the Reynolds number is identically zero. However, it is
also discussed in appx. B.1.1 that the explicit term ρ∂tu (which does not appear in the Stokes
equation either) is still present. It is argued below that the formal scaling of ρ∂tu on the one
hand and ∇ · σ on the other hand is given by the number defined in eq. (10.12), although it
cannot be interpreted as ratio of inertial and viscous forces anymore. Still, the term Reynolds
number is kept for convenience. It is assumed that the effect of ρ∂tu is not important. On the
one hand, for the simulations with the highest shear rate, Re ≈ 0.7, which is not necessarily
negligible but clearly not larger than unity. The capillary number, on the other hand, varies
between 0.0004 and 0.1. The smallness of the largest capillary number should not be misleading:
Already for Ca = 0.1, particle deformations can be significant as will be seen in sections 10.4,
10.5, and 10.6 (see also fig. 10.2(c) which corresponds to Ca = 0.1). In other words, the shear
rates chosen for the present simulations cover regions in which the particles are nearly rigid and
where they are significantly deformed.

The second step is to realize that the capillary number, as defined in eq. (10.11), may not be an
appropriate parameter either. Since the observed viscosities range between about 3η0 and nearly
200η0, the effective viscous stress in the fluid cannot be estimated from the reference viscosity
η0, but from the a posteriori evaluated viscosity η. Therefore, a ‘corrected’ capillary number is
defined,

Ca∗ :=
ηγ̇r

κS
=

σxzr

κS
, (10.13)

which is the ratio of true suspension stress and a characteristic elastic membrane stress. The idea
behind this definition is that the suspension stress and not the fluid stress should be responsible
for the particle deformation. The particle cannot detect where the stress originates from and can
only see the total stress.

In fig. 10.7, the viscosity and shear stress data is shown again, but the shear rate and the
shear stress are rescaled by the deformability, γ̇ → Ca and σxz → Ca∗, cf. eq. (10.11) and eq.
(10.13). It can be observed that curves for different deformabilities but the same volume fraction
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Tab. 10.3.: Comparison of the flow curves with a Herschel–Bulkley fluid. The viscosity data η(Ca)/η0
and Ca∗(Ca) (fig. 10.7) can be described by the Herschel–Bulkley law, eq. (10.14). The fit parameters
are given in the table below. For a Newtonian fluid, Ca∗y = 0, b = η/η0, and p = 1.

Ht Ca∗y b p

35% 0 1.9 0.76
45% 0.004 2.4 0.73
55% 0.015 3.4 0.72
65% 0.043 5.0 0.71

nearly collapse. This is clear evidence for the hypothesis that the viscosity depends only on
two independent parameters, the volume fraction and the capillary number Ca. However, when
studying properties of individual cells (e.g., rotation, fig. 10.10), Ca∗ turns out to be an even
more relevant parameter than Ca.

It is not clear how to predict the shape of the flow curves in fig. 10.7 as function of Ht and
Ca. At least, it is possible to approximate these flow curves for a given volume fraction with a
Herschel-Bulkley law,

Ca∗(Ca) = Ca∗y + b× Cap, (10.14)

where Ca∗y = σyr/κS is proportional to the yield stress σy. A power p < 1 indicates a shear
thinning fluid. The fit parameters Ca∗y, b, and p are collected in tab. 10.3. As seen from the
values of p in this table, denser suspensions are more shear thinning. It has to be noted that
the Herschel-Bulkley behavior is not assumed to be valid at much larger values of Ca where a
Newtonian plateau is expected. It is also risky to extract a value for the yield stress σy based on
a limited range of shear rates. Rather, eq. (10.14) may be used as a guideline to interpret the
data and to develop a theory for the investigated shear rate range. Therefore, if a yield stress
really exists, its value may be different from the fit parameter σy.

The question arises whether a proper rescaling of the viscosity according to the volume fraction
may lead to an additional collapse of the data on a single master curve as function of Ca or Ca∗

only. Although similar approaches for hard sphere systems exist (e.g., [1, 241]), a proper ansatz
or theory for the rescaling procedure in the case of deformable particles is missing. This issue is
left for future investigations.

Further remarks about the results and possible non-Stokesian effects

The curves in fig. 10.7 do not exactly collapse. Especially for large volume fractions, there is a
discrepancy. There are two possible reasons:

1. For the rescaling of the particle deformability, only κS and κB have been changed by a
factor of 3. The other membrane moduli (κα, κA, κV) and the interaction moduli (κint,
κgl) have been kept constant for convenience and numerical stability reasons. Although
shear and bending resistance dominate the particle shear stress, this procedure does not
correspond to a perfect unit rescaling. The simulated system is slightly different from that
which would have been obtained when all membrane moduli had been rescaled by a factor
of 3. This is particularly the case for Ht = 65% as can be seen in fig. 10.7. Probably, the
particle interaction force (section 8.7) becomes important at this volume fraction.

2. The physical length of a lattice Boltzmann time step is different for data points with
the same capillary numbers but with different particle deformabilities. Artifacts due to
numerical inaccuracies can therefore not be completely excluded.
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Fig. 10.8.: Effective bulk volume fractions and density profiles of red blood cell suspensions. (a) The
particle volume fractions (averaged over bulk volume, steady state, and independent runs) are larger
than the input densities and increase with shear rate γ̇. Error bars related to ensemble averaging are
smaller than the symbols. Lines are guides for the eyes. (b) Exemplary density profiles (averaged over
steady state and independent runs) are shown for the smallest and highest shear rates for the soft red
blood cells with 35% input volume fraction.

In fig. 10.8(a), the time-averaged bulk densities are shown. They are larger than the target
volume fractions since the density near the wall is decreased and particles are shifted towards the
centerline (fig. 10.8(b)). This was to be expected. For the interpretation of the data, especially for
comparisons with other simulations or experiments, the increased value of the bulk density has to
be taken into account. Lees-Edwards boundary conditions would sort out this problem. However,
stress evaluation as discussed in section 9.4 is strongly aggravated if not made impossible when
Lees-Edwards boundary conditions are used [235].

A combination of eq. (10.12) and eq. (10.13) reveals that data points with the same value of
Ca∗ but different deformabilities have different values of ργ̇r2/η0 which is formally the Reynolds
number. As mentioned before, there may be some non-Stokesian effects caused by the term ρ∂tu.
From fig. 10.8(a), it can be seen that the bulk densities increase with shear rate. This effect is
stronger for smaller volume fractions. It may be related to the term ρ∂tu because the increase of
the bulk hematocrit with shear rate always sets in at the same value of γ̇, rather than at the
same value of Ca or Ca∗. One can show that a rescaling u → αu and κS → ακS leads to the
same capillary numbers Ca and Ca∗. However, the term ρ∂tu scales like α2 because the time
is also rescaled. This way, ρ∂tu increases faster than the remaining terms in the momentum
balance equation, and it becomes more important eventually. This is a direct consequence of the
fact that the LBM in its present form cannot solve the Stokes equations where the term ρ∂tu is
absent, even when the advective term ρ(u · ∇)u is removed by applying the linear equilibrium
populations, eq. (5.9). Although the flow field is stationary on the macroscale, it is non-stationary
on the microscale, and the term ρ∂tu cannot be neglected in the microscopic dynamics of the
suspension in general. When the relative importance of ρ∂tu increases (especially by increasing
γ̇), hydrodynamic lift effects may arise, pushing the particles away from the wall. The significance
of these lift forces is expected to be larger when the volume fraction and crowding effects are
smaller, as it is observed in fig. 10.8(a). However, the study of lift forces in dense systems is
not within the scope of the present thesis. As will be seen in the subsequent sections, most of
the data can be accurately described by the two parameters Ht and Ca∗, independently of the
formal value of Re. A similar conclusion has also been drawn by MacMeccan [194] who claims
that the capillary number is the only relevant parameter beside the volume fraction, even when
the velocity and time time are rescaled.



10.3. Suspension viscosity and shear thinning 97

10−5 10−4 10−3
0

5

10

suspending fluid

γ̇ [LU]

η
/η

0

35% (sim.)

45% (exp.)

Fig. 10.9.: Comparison of blood viscosities obtained from simulations and experiments. The experimental
data points are taken from [54]. They correspond to suspensions of non-aggregating red blood cells
(RBCs) at Ht = 45%. The data from [54] is shown together with the simulation results for the soft
RBCs at 35% volume fraction. The physical shear rates γ̇ from the experiments have been converted
to lattice units via eq. (10.2).

Comparison of simulation results with experiments

A comparison of the viscosity of blood obtained from the present simulations and Chien’s
experiments [54] is shown in fig. 10.9. It is observed that the viscosities match well over two
orders of magnitude in γ̇ when the simulation results for the soft RBCs at 35% volume fraction
are compared with the experimentally obtained viscosities for Ht = 45%. This hematocrit
discrepancy can be understood in the following way: First, the bulk volume fraction is larger
than the average volume fraction, cf. fig. 10.8. Additionally, as discussed in section 8.4, the
hydrodynamic radius of the particles is about 0.4Δx larger than the input radius. Therefore, the
effective volume of each RBC is corrected according to V ∗ = V × C where

C ≈ (r + 0.4Δx)× (r + 0.4Δx)× (h/2 + 0.4Δx)

r × r × h/2
= 1.24 (10.15)

is a volume correction factor (RBC radius r = 9Δx and thickness h = 6Δx for the present
simulations). Therefore, the effective bulk volume fraction can be estimated by Ht∗ ≈ 37%×1.24 =
46% which is practically the value used in the experiments. The key idea is to interpret the data
in terms of an effective volume fraction which takes account of the hydrodynamic radius of the
cell rather than the bare input dimension.

It can be seen from fig. 10.9 that the viscosity at larger shear rates is slightly underestimated by
the simulations. The reason may be that, at these shear rates, the RBCs are tank-treading and
the interior fluid contributes to the viscous dissipation. It will be shown in section 10.4 that there
is indeed a transition from tumbling to tank-treading at high capillary numbers. In reality, the
viscosity ratio of hemoglobin solution and blood plasma is about 5. In the simulations, it is unity.
Therefore, on the one hand, the dissipation in the simulations is expected to be reduced when
shear flow starts in the RBC interior. At smaller shear rates, on the other hand, the interior
fluid is in a pure rotation state where no energy is dissipated, and the interior viscosity is not
relevant. The viscosity of the RBC membranes (which is neglected in the present model) is also
more important at higher shear stresses [203]. The inclusion of different viscosities inside and
outside of the cells would be interesting for more accurate RBC simulations in the future.

According to Robertson et al. [46], the volume fraction dependence of blood viscosity decreases
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with increasing shear rate. Since the denser suspensions in the present simulations show a
stronger shear thinning, the relative differences of the viscosities also decrease. This is nicely
born out in fig. 10.7(a) where the flow curves tend to approach each other in the logarithmic
representation.

10.4. Particle rotation: tumbling and tank-treading

As mentioned in section 10.2, deformable particles may exhibit tank-treading motion, i.e., rotation
without rotating their shapes. It depends on the value of the capillary number whether the
particle tumbles or tank-treads. In the limit of small Ca, the particle is virtually rigid, and it
behaves similarly to a stiff object. Contrarily, when Ca is large, the particle is deformed and
prefers tank-treading motion as will be argued soon.

Jeffery [242] has shown that the tumbling period for a rigid ellipsoid in simple viscous shear flow
is

T =

(
p+

1

p

)
2π

γ̇
(10.16)

where p = a/c (a and c are the semiaxes of the ellipsoid in the shearing plane). The value of the
semiaxis b perpendicular to the shearing plane does not play a role. For a rigid sphere, p = 1 and
the average tumbling frequency2 is ω̄/γ̇ = 1

2 where ω̄ := 2π/T . The period is longer for any other
aspect ratio. For the inertia ellipsoid of an undeformed RBC (a = 1.1r, c = 0.36r), Jeffery’s
solution predicts ω̄/γ̇ = 0.30. A deformable particle in pure tank-treading state has ω̄ = 0.

It is instructive to investigate the average tumbling frequency of the RBCs in the suspension as
function of the capillary number. In the following, ω̄ is the tumbling frequency averaged over all
RBCs in the bulk during the steady state. It is expected that ω̄/γ̇ should decrease when the
capillary number is increased. The reason is that the particles become more and more deformable
and that tumbling is replaced by tank-treading. Eventually, all particles should be in a nearly
pure tank-treading state.

Numerical results and interpretation

The results for ω̄/γ̇ are shown in fig. 10.10 both as function of Ca and Ca∗. There are various
noticeable observations:

1. All data curves collapse onto a single curve for Ca∗ > Ca∗cr = 0.2 when the data is plotted
as function of Ca∗. When the data is plotted as function of Ca, at least the curves for
different deformabilities collapse.

2. Around Ca∗cr, the tumbling frequency strongly decreases.

3. For Ca∗ < Ca∗cr, the tumbling frequency is larger for smaller volume fractions.

4. Below Ca∗ = 0.1, the tumbling frequency increases with the capillary number.

The first two observations can be understood based on the discussions in section 10.3. The
deformability κS and the bulk shear rate γ̇ can be replaced by Ca, and the data can be described
by two instead of three variables (Ht and Ca). This supports the hypothesis that the term
ρ∂tu does not play a noticeable role in the present simulations. Certainly, the more interesting
observation is that only one parameter, the corrected capillary number Ca∗, is sufficient to
describe all data for Ca∗ > Ca∗cr. For large capillary numbers and not too large a volume fraction,
the particles are deformable enough to be in a more or less isolated tank-treading state without

2For a sphere, the instantaneous tumbling frequency is constant. For general ellipsoids, it is a function of time.
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Fig. 10.10.: Average tumbling frequencies of suspended red blood cells (RBCs). The average reduced
tumbling frequency ω̄/γ̇ is shown as function of capillary number (a) Ca and (b) Ca∗. When plotted
as function of Ca∗, all data collapse on a single curve for Ca∗ > Ca∗cr = 0.2. The analytic values for
a rigid sphere and a rigid ellipsoid with aspect ratio (p = 1.1/0.36) and the values obtained for an
isolated deformable RBC are also shown. For Ca∗ ≥ 0.15, the tumbling velocity of a single RBC is
zero on average. The gray area denotes the region (Ca∗ ∈ [0.1, 0.3]) where tumbling is replaced by
tank-treading.

the requirement to rotate their shapes additionally (thus the decay of ω̄/γ̇ around Ca∗cr). The
particles tank-tread in their own private volume, and direct (i.e., non-hydrodynamic) collisions
with neighbors are suppressed. In contrast, rigid non-spherical particles in a dense suspension
necessarily have to collide during tumbling. At large Ca∗, particles are aware of their neighbors
only via the stresses in the fluid surrounding them. The suspension stress which is contained in
the definition of Ca∗ seems to be the correct quantity to describe the deformation state of the
particles. This hypothesis will also be supported by the results provided in sections 10.5 and
10.6. The transition from large tumbling frequencies to small values at Ca∗cr marks the point at
which tank-treading sets in.

The data set for the isolated RBC in fig. 10.10(b) supports this idea. For Ca∗ ≥ 0.15, a tumbling
rotation of the particle cannot be detected. Instead, the particle is tank-treading and its inertia
tensor does not rotate in space anymore. This explains the rather abrupt decay of the average
tumbling frequency around Ca∗cr. For a suspension of particles, collisions between particles lead
to tumbling events for even larger values of Ca∗. It is also observed that ω̄/γ̇ for a nearly rigid
RBC is about 20% larger than for its inertia ellipsoid (a = 1.1r, c = 0.36r). The reason may be
that the cross-sections of the undeformed RBC and its inertia ellipsoid are different (fig. 10.3),
which leads to a deviating rotational motion.

To this end, it is reasonable to assume that the particle rotations in the suspensions for Ca∗ > Ca∗cr
are dominated by tank-treading, only interrupted by isolated tumbling events triggered by
irregularities in the ambient velocity field. Unfortunately, the simulation data is not sufficient to
provide distributions of instantaneous tumbling and tank-treading velocity probabilities. It is
expected that the independence of Ht may be violated when the volume fraction becomes so
large that particles have to deform in order to fill the volume, even in the absence of shear.

Most probably, crowding effects are responsible for the third observation. When the volume
fraction is small and the particles are still relatively rigid, Ca∗ < Ca∗cr, each particle tumbles
without colliding with its neighbors. For denser systems, however, rigid body rotations are
hindered by the mere presence of nearby neighbors, and crowding effects become important.
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(a) γ̇t = 0 (b) γ̇t = 1.25 (c) γ̇t = 2.5

(d) γ̇t = 3.75 (e) γ̇t = 5 (f) γ̇t = 6.25

(g) γ̇t = 7.5 (h) γ̇t = 8.75 (i) γ̇t = 10

Fig. 10.11.: Tumbling and tank-treading of a single red blood cell (RBC) in shear flow. The picture
sequence shows the time evolution of the rotational behavior of a single RBC in an external shear
flow with shear rate γ̇. The initial cell orientation at t = 0 is parallel to the xy-plane (perpendicular
to the velocity gradient direction). The cross-section is parallel to the xz-plane (shearing plane).
The vorticity of the shear flow is clockwise. The time evolution is shown for three different capillary
numbers, Ca = 0.1 (loosely dashed line), 0.2 (densely dashed line), and 0.5 (solid line). For Ca = 0.2,
the RBC can rotate without tumbling, whereas the RBC is not sufficiently deformed for tank-treading
for Ca = 0.1. This becomes particularly visible at γ̇t = 6.25 in (f).

Understanding the fourth observation is more difficult. One possible interpretation is that the
particles are still tumbling, but with increasing Ca∗, they become more deformed. When a
collision between two particles during tumbling at higher Ca∗ occurs, the particles are, although
not tank-treading, slightly softer as for smaller values of Ca∗ and thus squeeze past each other
more efficiently. It has to be stressed again that the third and fourth observations are connected
with the non-spherical shape of the RBCs.

Tumbling and tank-treading behavior of an isolated red blood cell

In order to better understand the angular velocity data in fig. 10.10, the rotational behavior
of an isolated RBC has been investigated as mentioned in section 10.1. The rotation behavior
of a RBC with three different capillary numbers (Ca = 0.1, 0.2, and 0.5) is visualized in fig.
10.11. The main observation is that the RBC for Ca = 0.2 is sufficiently deformable to perform
tank-treading, whereas the RBC for Ca = 0.1 has to tumble in order to rotate. This strongly
supports the interpretation that for Ca∗ ≈ 0.2, the microscopic suspension properties change
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Fig. 10.12.: Rescaled viscosity of red blood cell suspensions. The reduced apparent bulk viscosity η/η0 is
shown for all volume fractions and both deformabilities (softer and more rigid particles) as function of
capillary number Ca∗. The gray area denotes the region (Ca∗ ∈ [0.1, 0.3]) where tumbling is replaced
by tank-treading.

drastically since most of the suspended RBCs are able to perform tank-treading. It should be
noted that the volume fraction for an isolated RBC is small (here: < 2%) and, thus, Ca∗ ≈ Ca.

Pozrikidis [84, 86] has found, via simulations, a qualitatively similar behavior of an isolated RBC
compared to the RBC in fig. 10.11 for Ca = 0.1. The data cannot be directly compared, though.
Pozrikidis has used different constitutive membrane models, and the capillary number is defined
in a slightly different way. A numerical analysis of the tank-treading behavior of isolated RBCs
in simple shear flow in the limit of large capillary numbers (Ca > 0.5) is provided by Sui et al.
[243].

Effect of tank-treading on suspension viscosity

The quasi absence of tumbling-induced direct collisions of the RBCs at Ca∗ > Ca∗cr should be
one contributing factor for the shear thinning behavior of the suspensions. Fig. 10.12 reveals
that the shear thinning between Ca∗ = 0.1 and 0.3 is significant for all volume fractions. In this
interval, the relative apparent viscosities decrease by a factor of about 1.7, 1.8, 2.5, and 4.0, for
Ht = 35%, 45%, 55%, and 65%, respectively. Contrarily, the shear thinning at smaller capillary
numbers should be related to other effects since tank-treading is not important below Ca∗ = 0.1.
One possible mechanism for shear thinning before tank-treading becomes important may be
the slight deformation of the particles as indicated before. Particles, although still tumbling,
may squeeze past each other more easily when they are more deformable. In this case, another
Newtonian regime at even smaller Ca∗ should be observed where the particles are virtually rigid.
However, as already mentioned in section 10.3, there may be a finite yield stress which could also
be augmented by the presence of the repulsion force between the RBCs (section 8.7). Additional
(and expensive) simulations at even smaller shear rates are required to distinguish between these
two effects.

10.5. Particle deformation

In fig. 10.13, some exemplary deformation probability distributions p(Da) are shown. p(Da)δDa

is the probability of finding a particle with a deformation as defined in eq. (10.8) in the interval
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Fig. 10.13.: Deformation probability distributions for suspended red blood cells (RBCs). The deformation
probability distribution for soft RBCs at Ht = 55% is shown for five different shear rates γ̇. The
ellipsoids denote the corresponding deformations Dmax

a with the largest probability, respectively.

[Da, Da+δDa] in the steady state and the bulk volume. The shape of this probability distribution
function generally depends on the three control parameters (Ht, γ̇, κS). The major property of
each distribution p(Da) is its maximum at Dmax

a . This maximum denotes the most probable
deformation of a RBC in the suspension. It is found by fitting a Gaussian to the curve in the
vicinity of the maximum.

Fig. 10.14 collects all values of Dmax
a as function of both Ca and Ca∗. It is found that curves for

the same volume fraction collapse when plotted as function of Ca. This, once again, supports
the idea that the term ρ∂tu is not relevant. More striking is the observation that also curves for
different volume fractions nearly collapse when plotted as function of Ca∗. Obviously, Ca∗ is the
more suitable parameter, also for the rotational behavior in section 10.4. The interpretation is
that the deformation of a particle is dominated by the ambient suspension stress. The effect of
the volume fraction is already contained in the capillary number Ca∗ through the viscosity η.

The data points also collapse for Ca∗ < Ca∗cr, i.e., the transition from tumbling to tank-treading
described in section 10.4 is not visible in fig. 10.14. Obviously, the transition does not involve
a significant change of the deformation parameter. From fig. 10.14, it can be inferred that the
most probable deformation parameter at Ca∗cr is Dmax

a ≈ 0.1 corresponding to an aspect ratio
a/b ≈ 1.2.

Interestingly, a simple scaling law quantitatively describes all deformation states Dmax
a (Ca∗).

Here, it is worth to take the ratio a/b of the in-plane semiaxes instead of the deformation
parameter Da. The reason is that a/b is not bounded above and can be described by a simple
power law,

a

b

∣∣∣
max

− 1 = 0.89Ca∗ 0.90, (10.17)

where a/b|max corresponds to Dmax
a . The fit is also shown in fig. 10.14. It should be noted that

a/b can be converted to Da and vice versa according to

Da =
a/b− 1

a/b+ 1
,

a

b
=

1 +Da

1−Da
, (10.18)

cf. eq. (10.8). The interpretation of eq. (10.17) is that, for Ca∗ = 0, there is no deformation
(a/b = 1 and Da = 0). This relation can only be valid below a critical volume fraction above
which particles have to deform to fill the volume even in the absence of shear flow. When Ca∗ is
increased, particles are deformed in such a way that a/b grows. It is not known why the most
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Fig. 10.14.: Deformation maximum of suspended red blood cells. The most probable deformations, Dmax
a ,

are shown as function of capillary number (a) Ca and (b) Ca∗. The curves for different volume fractions
nearly collapse on a single master curve when plotted against Ca∗. The power-law fit from eq. (10.17)
is shown in (b) as dashed line. The gray area denotes the region (Ca∗ ∈ [0.1, 0.3]) where tumbling is
replaced by tank-treading.

probable deformation obeys the power-law. For future work, it may be rewarding to analyze
the entire probability distributions (fig. 10.13) as function of Ht and Ca∗. It also seems that
the single parameter Da is too simplistic for the description of a RBC and its various deformed
shapes. Thus, a more elaborate approach for the RBC deformation should be considered in the
future.

10.6. Particle alignment and orientational ordering

The director inclination angle θ and the order parameter Q> averaged over the bulk volume
and the steady state are shown in fig. 10.15 as function of both Ca and Ca∗. The inclination
angle θ is defined as the angle between the director n (which is chosen to point into positive
z-direction, i.e., nz > 0) and the x-axis. The y-component of the director is basically zero at
all times, ny ≈ 0 (data not shown). Therefore, tan θ ≈ nz/nx. Also the x- and z-components of
the director do not significantly fluctuate in time. The curves obtained for the isolated RBC in
shear flow are also shown as comparison. As already seen in sections 10.4 and 10.5, the major
finding is that Ca is not the appropriate parameter to interpret the data. Rather, the corrected
capillary number Ca∗ is the relevant quantity. When plotted against Ca∗, curves for different
deformabilities and, depending on the value of Ca∗, also curves for different Ht collapse. The
results for the order parameter Q> and the inclination angle θ are described and analyzed below.

The distributions of particle inclination angles for the soft RBCs at 55% volume fraction is shown
in fig. 10.16. As comparison, the probability of finding a rigid ellipsoid (aspect ratio p = a/c)
with inclination angle θ in the shear flow,

p(θ) ∝ dt

dθ
(θ) ∝

p+ 1
p

p cos2 θ + 1
p sin

2 θ
, (10.19)

is also shown for the special case a = 1.1r and c = 0.36r. Only for a spherical shape (p = 1), the
probability is independent of the inclination angle. Eq. (10.19) can be inferred from Jeffery’s
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Fig. 10.15.: Order parameter and director inclination angle for suspended red blood cells (RBCs). The
inclination angle θ of the director and the corresponding order parameter Q> are shown as function of
both Ca and Ca∗. The curves obtained for one single RBC are also shown (lines are guides for the
eyes). The gray area denotes the region (Ca∗ ∈ [0.1, 0.3]) where tumbling is replaced by tank-treading.

solution for the time evolution of the inclination angle [242],

tan θ = p tan

(
γ̇t

p+ 1
p

)
. (10.20)

Discussion of the order parameter

The behavior of the order parameter Q> in fig. 10.15(a) and fig. 10.15(b) can be summarized by
four main observations:

1. For Ca∗ > 0.1, Q> steadily increases until it reaches a plateau.

2. For Ca∗ < 0.05 and Ht = 35%, Q> slightly decreases.

3. Denser suspensions show a stronger ordering for small Ca∗.

4. For Ca∗ > Ca∗cr = 0.2, Q> becomes independent of volume fraction.

The first observation may be interpreted in the following way: For small Ca∗, the particles are
basically rigid. Due to the externally imposed shear flow, particles have to rotate eventually.
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Fig. 10.16.: Inclination angle probability distributions for suspended red blood cells (RBCs). The curves
denote the probability density of finding a soft RBC at 55% volume fraction with a given inclination
angle in the shearing plane (xz-plane) with respect to the x-axis for five different shear rates. The
director inclination angle corresponds to the position of the maximum of the curves. The analytic
curve, cf. eq. (10.19), for a single rigid ellipsoid (aspect ratio p = 1.1/0.36) is also shown.

During this tumbling rotation, the orientational order is decreased since the orientation ô of
a given number of particles is not conform to the director n. For increasing Ca∗, particles
become softer and start to perform tank-treading. During tank-treading, particle membranes
rotate without the need for tumbling, i.e., ô for a given particle does not significantly change
in time. Therefore, the particles violate the orientational order less, and the order parameter
increases with Ca∗. At some point (at Ca∗ ≈ 0.3), a plateau with Q> ≈ 0.88 is reached, and
the order parameter does not increase further. One reason is that even a single RBC cannot
tank-tread with a spatially fixed direction ô because its dimples break the spherical symmetry of
the membrane. This can be seen in fig. 10.11 and fig. 10.15(b). Additionally, fluctuating stresses
in the complex flow field act on the membranes and slightly shake the orientation vectors. The
second distortion mechanism seems to be more important because the curve for a single RBC
approaches Q> ≈ 1.

The second observation may be understood in a similar way: For small but increasing Ca∗, the
particles are still essentially rigid, yet small deformations are more and more possible. However,
tank-treading is still not relevant. The small but increasing tendency to deform may promote
tumbling because colliding particles may squeeze past each other instead of becoming stuck. As
a result, the ordering decreases slightly.

When the particles are still rigid (i.e., for small Ca∗), they have to tumble, which is prevented by
the close proximity of neighbors. On the one hand, when the suspension is more dilute, particles
may rotate freely without colliding with their neighbors. This leads to a reduction of the order
parameter since less particles are aligned with the director at a given time. On the other hand,
for denser systems, the presence of neighbors disturbs the particles’ ability to rotate freely, and
the order parameter is increased. This qualitatively explains the third observation.

The fourth observation is that there seems to be a transition at Ca∗cr ≈ 0.2 beyond which all
data points collapse on a single curve, although they belong to different volume fractions. One
may interpret this finding by assuming that particles do not see each other anymore, except for
effects which are taken into account via Ca∗. Each tank-treading particle has its own volume
for rotation, and there is no need for direct (non-hydrodynamic) collisions with the neighbors.
For larger volume fractions, the mere effect of the dense packing is an increase of the suspension
stress σ the particles feel locally. Additional evidence for this assumption has already been
discussed in sections 10.4 and 10.5. Indeed, the data for the single RBC indicates that the particle



106 10. Rheology and microscopic behavior of red blood cell suspensions

can be considered rigid for Ca∗ < 0.025 and tank-treading for Ca∗ > 0.2. In the transitional
interval, 0.025 < Ca∗ < 0.2, the particle dynamics is more complicated since neither tumbling
nor tank-treading are dominating.

Discussion of the inclination angle

The behavior of the director inclination angle θ as function of capillary number and volume
fraction as shown in fig. 10.15(c) and fig. 10.15(d) can be summarized as follows:

1. For small Ca∗, θ is decreasing.

2. The inclination angle is larger for denser systems as long as Ca∗ is small.

3. For larger Ca∗, the inclination angle increases again.

4. For Ca∗ > Ca∗cr = 0.2, θ becomes independent of volume fraction.

The physical meaning of the director inclination angle θ is less obvious than that of the order
parameter Q>. There does not seem to be a theory for the behavior of the inclination angle for
deformable RBCs at varying capillary numbers. At this point, no explanation for any of the first
two observations can be given.

Comparing the data for the suspensions with the single particle curve reveals that all data
collapses for Ca∗ > 0.1. Therefore, the particles in the suspension seem to behave as isolated
particles, although the order parameter is smaller (fig. 10.15(b)). It should be noted that the
limiting value for the inclination at vanishing capillary number is θ = 90◦.

The last observation can be interpreted in the same way as the similar observation for the order
parameter. When the capillary numbers are large, the particles perform tank-treading and do
not see their neighbors except for effects completely contained in the suspension stress and thus
Ca∗. Additional direct effects due to crowding seem to be absent. This raises the question up to
which volume fraction this behavior can still be observed. At some larger value for Ht, particles
have to touch even when they are tank-treading.

Liquid crystals and red blood cell suspensions

Due to its significant orientational ordering, the RBC suspensions investigated in this work can
formally be considered a liquid crystal. However, there are pronounced differences between a
‘classical’ liquid crystal and the present system. In the former case, the particles are macro-
molecules and orientational ordering can be observed in the absence of shear. It is a function of
molecule shape, volume fraction, and temperature. In the present case, the particles are strongly
deformable and orders of magnitude larger than molecules, and the thermal Péclet number is
infinite. All effects, including orientational ordering, are shear induced. Therefore, the present
RBC suspensions cannot be directly compared to classical liquid crystals.

The rheology of liquid crystals is generally not well-understood [8]. Although Newtonian properties
are assumed in some theories [244], shear thinning behavior of liquid crystals has been observed
experimentally [245, 246, 247] and in simulations [240].

Comments on the alignment and ordering of deformable and rigid particles

The reason for the minimum of the inclination angle θ at intermediate values for Ca∗ (fig.
10.15(d)) may be related to the deformability of the cells and the definition of the director: At
small Ca∗, particles are undeformed, and the orientation vector ô is uniquely defined. At high
Ca∗, particles are basically elongated ellipsoids, and the orientation vector again is well defined.
In between, the particle deformation can be more erratic, making a simple orientation vector
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definition more complicated. This becomes also clear from fig. 10.11 where instantaneous shapes
of RBCs in shear flow are shown. It has to be remembered that, for deformed RBCs, there
may be different definitions of the orientation vector. Therefore, a quantitative discussion of the
alignment and ordering of RBCs in shear flow may depend on these definitions. As mentioned in
section 10.4, a more accurate description of the RBC deformation (and, thus, orientation) may
provide additional information in the future.

It may also be possible that the inclination angles for small Ca∗ and volume fractions ≥ 45%
(fig. 10.15) do not reflect the steady state. As will be discussed in section 10.8, there is evidence
that the transient time for the particle alignment is larger than the simulation time for these
simulations. Therefore, it may be possible that longer simulation runs reveal a different inclination
angle behavior for small capillary numbers.

Janoschek et al. [248] have used a simplified model for blood flow. Although individual particles
are resolved, these are rigid discoid ellipsoids with the ability to overlap to some extend. This
overlap is intended to mimic the deformability of the particles. However, tank-treading is not
considered. The particles can only perform tumbling rotations. Although shear thinning behavior
is recovered, the individual and collective particle dynamics differ from the present results.
Janoschek et al. [248] observe that both the director inclination angle and the order parameter
decrease with increasing shear rate. This is in marked contrast to the findings in this section.
It is not surprising that models without intrinsic tank-treading ability show a different shear
rate-dependence for the order parameter. Shear thinning, on the one hand, is a relatively general
property of dense suspensions, irrespective of their microscopic constitution [3]. If, on the other
hand, also the microscopic behavior of the constituents shall be reproduced, tank-treading seems
to be unavoidable for blood simulations at higher shear rates.

10.7. Particle displacements: ‘ballistic’ and diffusive motion

The statistical RBC motion may be described by the mean square displacement (MSD),

MSDα(Δt) :=
〈
(Ciα(t+Δt)− Ciα(t))

2
〉
run,i,t

. (10.21)

The average is taken over all independent runs, all particles i (which are in the bulk at time t) and
time (in such a way that t and t+Δt are in the steady state interval). Ciα is the α-component
of the centroid of particle i. The MSD indicates which average squared distance a particle has
moved along direction α in the time interval Δt. For an unsheared Brownian hard sphere system
in the absence of a suspending fluid, the MSD is quadratic in Δt for small Δt and linear for large
Δt. The former regime is called ballistic where the particles move with constant velocities between
collisions. The latter is called diffusive and characterized by a thermal diffusion parameter Dth.
As long as the particles are spherical and the system is homogeneous and not sheared, diffusion
far away from any wall is isotropic.

For sheared systems, the diffusion mechanism depends on the shear rate. As long as the
Weissenberg number is small, the system is in the linear response regime. For increasing
Weissenberg numbers, the Brownian contributions decrease, and diffusion becomes mainly shear-
induced. If the system is non-Brownian, as in the present case, shearing is the only mechanism
for diffusion [1]. The concept of shear-induced diffusion and its experimental measurements
are thoroughly described by Breedveld [94]. Diffusion in colloidal systems is reviewed in [13].
Shear-induced diffusion was first investigated by Eckstein et al. [249] and later by Leighton
and Acrivos [250]: Particles move from regions with large to those with small stresses, trying
to restore equilibrium which is distorted by the shear flow [13]. Similarly to thermal diffusion,
the MSD is known to grow linearly for the long-time shear-induced motion [251]. Due to the



108 10. Rheology and microscopic behavior of red blood cell suspensions

presence of neighbors, particles cannot move on straight lines when the suspension is sheared,
and non-affine displacements are observed which eventually give rise to the diffusive motion.

The present suspensions are different from, e.g., molecular dynamics simulations of hard sphere
systems in many aspects, and it arises the question if the MSD can provide useful information for
the RBC suspensions as well. On the one hand, the particles are deformable and not spherical.
This renders the definition of Ci not unique (see below). On the other hand, particles in the
present system interact constantly via hydrodynamic stresses whereas hard spheres in the absence
of a suspending fluid do not interact between collisions and move with constant velocity. This is
the reason for the term ‘ballistic motion’. Due to the existence of the smooth particle interaction
force (section 8.7), the presence of the dissipating suspending fluid, and the possible deformation
of particles during contact, it cannot be expected that the MSD provides information which can
be directly compared to results obtained from hard sphere simulations. Anyway, Bishop et al.
[252] claim that shear-induced diffusion in blood vessels may increase the radial dispersion of
particles and solutes by orders of magnitude as compared to Brownian diffusion.

According to Breedveld et al. [253], the shear-induced diffusion is anisotropic, i.e., a symmetric
diffusivity tensor D is introduced. All of its components obey Dαβ ∝ γ̇r2. In the remainder of this
section, only the diffusivities along the y-axis (vorticity direction), Dyy, and the z-axis (velocity
gradient direction), Dzz, are considered. They are abbreviated by Dy and Dz, respectively.

Computation of the mean square displacements

The first step to obtain the MSD is the definition of the centroid of particle i. Two definitions
have been tested in the present work. The first is the center of the surface,

CA
i :=

∫
Ai

dAx∫
Ai

dA
, (10.22)

the second is the center of the volume (center of mass for constant density),

CV
i :=

∫
Vi
dV x∫

Vi
dV

, (10.23)

where x is a point either on the surface or in the volume of particle i, respectively. For spheres
and other symmetric objects (such as an undeformed RBC), both definitions are equivalent.
However, for an asymmetric particle (e.g., a deformed RBC), both centroids may be located at
different points in space. It is not directly obvious which definition is more reasonable because
the mass of the RBCs does not play a role. Therefore, both definitions have been used separately.

It turns out that the definition of the MSD as given in eq. (10.21) has to be corrected for finite
size effects in order to produce more reliable results. Due to the finite system size, a non-negligible
linear particle displacement along the vorticity direction can generally be observed. Therefore,
the MSD is computed from

MSDα(Δt) =
〈
(Ciα(t+Δt)− Ciα(t)− LDα(Δt))2

〉
run,i,t

(10.24)

where

LDα(Δt) := 〈Ciα(t+Δt)− Ciα(t)〉run,i,t (10.25)

is the average linear displacement of the particles within the time interval Δt. The reason for
the linear displacement can be understood in the following way: The total momentum and with
it the average velocity of the fluid in the vorticity direction is conserved because (i) the NSE
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Fig. 10.17.: Mean square displacements (MSDs) of suspended red blood cells (RBCs). The MSDs for the
soft RBCs at 65% volume fraction based on the volume centroid are shown for different applied shear
rates γ̇ and for the motion along the (a) vorticity and (b) velocity gradient direction. The MSDs have
been normalized by the large RBC radius r = 9, the time axis by the inverse shear rate 1/γ̇. Curves
for the other volume fractions and the more rigid RBCs are qualitatively similar and are not presented.
The solid lines denote the asymptotic Δt2- and Δt-slopes, respectively.

and the LBM are momentum conserving and (ii) a no stress boundary condition at the wall in
vorticity direction (section 5.4.2) has been chosen. However, a net momentum exchange between
the bulk and the wall regions generally takes place, leading to a generally non-zero velocity of
the bulk region. This average motion may mask the fluctuating motion of the particles if not
filtered accordingly. For the motion in velocity gradient direction (along the z-axis), the linear
displacements are less relevant because motion is strongly hindered by the presence of the walls
at z = 0 and z = Lz.

Investigations of the present data have shown that the results for the MSD are only acceptable
when the averaging volume is as large as possible, even when the corrected version in eq. (10.24)
is used. Therefore, the data is not sufficient to allow the study of the z-dependence of the MSD
by dividing the volume between the walls into smaller bins. In particular, the near-wall behavior
of the MSD cannot be analyzed as compared to the bulk behavior. The number of RBCs in each
bin would be too small, and the relative importance of the linear displacements increases for
decreasing bin size, causing noisy results. Consequently, the MSD is always computed in the
entire bulk region (between z = 40 and 120). Since the MSD is already averaged over all runs, a
statistical uncertainty as indicated in section 10.1 cannot be given.

The initial transient ttr for the MSD computation at the beginning of the simulations was found to
be about three inverse shear rates, but at least 2×104 time steps which is roughly the momentum
diffusion time tmd = L2

z/(8ν0) = 19200 for a system of size Lz = 160 and viscosity ν0 = η0/ρ = 1
6 .

Therefore, the data within the initial time interval until ttr = max(3/γ̇, tmd) is excluded from the
analysis for the MSD. Neglecting a longer initial interval does not lead to significantly different
results. These transients are shorter than for the collective ordering (section 10.6). This indicates
that the MSD is dominated by local properties of the system.

Overall properties of the mean square displacements

Some exemplary MSD curves (soft RBCs at 65% volume fraction) for the particle motion along
the y- and z-axes are shown in fig. 10.17. For the other simulation parameters, the MSDs are
qualitatively equivalent and, therefore, are not shown. It can be seen that, similarly to molecular
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Fig. 10.18.: Reduced diffusivities of suspended red blood cells. The reduced diffusivities, (a) Dy/(γ̇r
2)

and (b) Dz/(γ̇r
2), are shown as function of capillary number Ca∗. They equal the inverse of the

shear-induced Péclet numbers, Peα (α = y, z), cf. eq. (10.26). The gray area denotes the region
(Ca∗ ∈ [0.1, 0.3]) where tumbling is replaced by tank-treading.

hard sphere systems, a regime with a quadratic Δt-dependence is followed by a linear dependence
at larger time shifts Δt. The transition sets in after about one inverse shear rate. At the
beginning of the transition, the particles have moved by 0.1–0.2r which is of the order of the
distance between particles. A plateau is absent for all investigated volume fractions and shear
rates. This indicates that cage effects are unimportant for the studied range of parameters.

It must be emphasized that, for the small shear rates, the simulation time in terms of γ̇t is so
short that the diffusive regime has only just developed. Longer simulations are necessary to
improve the quality of the results in these cases. Still, they are satisfactory to perform some
qualitative and quantitative investigations. The behavior of the MSD in the quadratic and the
linear regimes is thoroughly analyzed in the following.

Linear regime and particle diffusion

In terms of displacements, diffusion along the y- and z-directions starts at MSD ≈ (0.3r)2 for
all investigated cases. Since the MSD curves are mutually shifted along the Δt-axis (fig. 10.17),
the onset of diffusion in terms of time shift γ̇Δt is varying. The reason for the shift is that the
prefactor in the quadratic regime is a function of the applied shear rate as will be discussed below.
The linear regime starts later if the particles are more deformed (after 1–5 inverse shear rates).
Breedveld [94] has observed that the shear-induced diffusion regime for hard sphere systems
starts at about γ̇Δt = 1. This indicates that the deformability of the particles delays the onset
of diffusion.

The diffusion coefficients Dy and Dz for the motion along the y- and z-axes are obtained by
fitting mΔt+ n to the MSD curves in the Δt-interval where the curve is linear. Since the MSDs
reflect the displacements in 1D, the gradient m is assumed to be twice the diffusivity. In the
region where γ̇Δt is large, deviations from the linear behavior are observed. It is believed that
these deviations are caused by the smaller number of available initial times over which the data
can be averaged. Therefore, these regions are excluded from the fit. Longer simulation runs
would reveal if this interpretation is correct. As mentioned above, the MSD data is directly
averaged over all independent runs. Instead of the uncertainty based on statistical averaging, a
relative ad-hoc error of 10% for the diffusivities is assumed. The intention is to keep track of the
uncertainties and to distinguish physical effects from possible artifacts. The diffusivities have
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Fig. 10.19.: Relative importance of red blood cell diffusion along the y- and the z-axes. The data is shown
as function of capillary number Ca∗.

been found to be identical for both definitions of the centroid, eq. (10.22) and eq. (10.23). The
reason is that the relative difference between both centroids is small compared to the particle
displacements at larger Δt where the MSDs are linear.

For hard sphere systems, all components of the shear-induced diffusivity tensor scale like
Dαβ ∝ γ̇r2, and D is an increasing function of volume fraction up to 50% where it levels off
[94]. In this region, typical values are Dy/(γ̇r

2) ≈ 0.07 (vorticity direction) and Dz/(γ̇r
2) ≈ 0.11

(velocity gradient direction). Fig. 10.18 contains the data for Dy/(γ̇r
2) and Dz/(γ̇r

2) as function
of capillary number Ca∗. The relative importance of Dz and Dy is shown in fig. 10.19. The
diffusivity data turns out to be a rich source of information. The following list contains the most
interesting and relevant observations.

1. The values for the diffusivities are substantially smaller than for hard sphere systems of
comparable volume fractions.

2. Both reduced diffusivities, D̂y := Dy/(γ̇r
2) and D̂z := Dz/(γ̇r

2), are decreasing functions
of the capillary number, and at least D̂y seems to approach a plateau above Ca∗cr = 0.2.

3. The diffusivity along the velocity gradient axis is nearly always smaller (down to a factor
of Dz/Dy = 0.3) than that along the vorticity axis.

4. Dz/Dy is a slightly decreasing function of Ca∗.

5. The reduced diffusivities D̂y and D̂z increase with the volume fraction for each value of
Ca∗.

The first two points indicate that the particle deformability slows down diffusive motion as
compared to rigid spheres. When the RBCs are tank-treading (Ca∗ > Ca∗cr), they seem to have a
smaller tendency to collide, or their collisions are less effective in mixing the suspension. This fits
into the picture that strongly deformed RBCs in shear flow tend to behave like isolated particles
avoiding collisions with their neighbors.

The third observation is interesting because, in contrast to the obtained value Dz/Dy ≈ 0.3–1,
theory for rigid spheres [254] suggests Dz/Dy ≈ 1.5. A similar result (Dz/Dy ≈ 1.7) for volume
fractions between 20 and 50% has been obtained experimentally [94]. There are essentially two
possible reasons for this strong deviation from hard sphere systems. First, the particles are
deformable and not spherical and have different extensions along different directions. Probably,
not only the large radius r, but also the small radius h/2 plays a role for diffusion. Second, the
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Fig. 10.20.: Reduced short time velocities of suspended red blood cells. The reduced velocities (a) vy/(γ̇r)
and (b) vz/(γ̇r) are shown as function of the capillary number Ca∗. The gray area denotes the region
(Ca∗ ∈ [0.1, 0.3]) where tumbling is replaced by tank-treading.

present system is bound by walls which may reduce the mobility of the particles along the z-axis.
Additionally, shear-induced diffusion has been found to be sensitive to small periodic system
sizes [255, 256]. It is possible that the system investigated in this work is still too small to find
reasonable values for the diffusivities. This point should be taken into account in the future.

The fourth observation that Dz/Dy decreases slightly with Ca∗ may be caused by an increasing
tendency of the tank-treading particles to form layers parallel to the xy-plane. Within these
layers, particles may diffuse more easily than moving to other layers. This hypothesis should be
tested in the future as well.

More frequent hydrodynamic collisions of the particles lead to stronger position fluctuations.
However, experiments with hard spheres suggest that the reduced shear-induced diffusivities,
D̂ = D/(γ̇r2), increase only up to a volume fraction of about 50% [94]. This is related to the
onset of crowding effects. In the present simulations, there is no indication for such a behavior
(fifth observation).

It is not clear if there is a plateau for D̂y and D̂z at smaller values of Ca∗. For rigid particles, the
capillary number is not relevant, and D̂y and D̂z should not depend on it. Therefore, it would
be interesting to investigate the diffusion at even smaller shear rates.

The Péclet number

Peα :=
γ̇r2

Dα
, (α = y, z) (10.26)

is a measure for the relative importance of particle advection and diffusion. It is the inverse of
the reduced diffusivity. Typical Péclet numbers in the present simulations are of the order of
50–200. Therefore, advection within the shearing plane is significantly more important than
diffusion in y- or z-direction. Typical thermal Péclet numbers for a RBC in shear flow (r = 4μm,
γ̇ = 100 s−1, Dth = kT

6πη0r
≈ 5× 10−14m2 s−1) are of the order of 3× 104. Shear induced diffusion

is more important, at least for shear rates above 1 s−1. This provides an a posteriori justification
why thermal fluctuations in the present simulations have not been taken into account. Contrarily,
when RBCs are simulated at small shear rates (< 1 s−1), thermal fluctuations cannot be simply
ignored.
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data is shown as function of the capillary number Ca∗.

Quadratic regime and ‘ballistic’ particle motion

The ‘ballistic velocity’ of the RBCs at small displacements is found by fitting v2αΔt2 (α = y, z) to
the MSD data for γ̇Δt ≤ 0.15. Within this interval, the MSDs have been found to be quadratic
in Δt (fig. 10.17). Similarly to the diffusivities, the velocities vy and vz should be basically
proportional to the applied shear rate γ̇ because all motion in the system is shear-induced.
Therefore, the reduced velocities v̂y := vy/(γ̇r) and v̂z := vz/(γ̇r) are shown in fig. 10.20. The
data is obtained from taking the center of volume, eq. (10.23). For the less deformed particles
(smaller Ca∗), the results obtained from the center of surface, eq. (10.22), are practically identical.
If, however, the particles are more strongly deformed (larger Ca∗), deviations up to 8% in the
linear velocities have been found (data not shown). Without exception, the velocities for the
center of volume are larger than those for the center of surface. It is clear that the less deformed
particles are generally more symmetric, leading to a smaller deviation of both center definitions.
The deviations of 8% at larger Ca∗ do not significantly affect the qualitative discussion, and only
the data obtained from the center of volume is considered in the following.

Important information can be extracted from fig. 10.20. Both v̂y and v̂z significantly decrease at
Ca∗ ≈ 0.1, i.e., when the particles start to tank-tread. Eventually, a plateau is reached. Above
Ca∗cr = 0.2, the velocities become independent of Ht. Below, higher volume fractions lead to
larger velocities. This is in line with previous observations. Tank-treading particles basically
behave like isolated objects which feel the other particles only via the suspension stress already
contained in Ca∗. For tumbling particles, higher volume fractions lead to stronger fluctuations in
the ambient fluid which manifest themselves in the particle displacements.

The relative importance of the velocities vz and vy is shown in fig. 10.21. Both velocity components
are equally important over the entire Ca∗-range. Thus, the short time displacements in the
yz-plane are nearly isotropic.

Caution is advised when the term ‘ballistic’ is used in the present work. The particles are
immersed in a viscous fluid, and inertia effects are absent. Therefore, it is wrong to assume that
particles just move with constant velocity until they touch a neighbor because hydrodynamic
interactions are also present when the particles are isolated. However, this does not imply that
the MSD cannot be quadratic in Δt at short time shifts. For rigid spheres immersed in a viscous
fluid, Breedveld [94] even reports another linear regime (instead of a quadratic behavior) at
small displacements (γ̇Δt < 0.1), possibly due to the Brownian motion of the molecules of the
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Fig. 10.22.: Non-Gaussian parameter (NGP) for diffusion of suspended red blood cells (RBCs). The data
for the motion of the soft RBCs with Ht = 65% along the y-axis is shown. The NGP curves for the
motion along the z-direction and the other simulations are qualitatively similar and are not shown.

suspending fluid. The mechanism responsible for the quadratic behavior seen in this section at
time shifts < 0.2γ̇Δt (fig. 10.17) is not known, but it may be related to the deformation of the
RBCs.

Non-Gaussianity

The displacement distributions for dense hard sphere systems are typically Gaussian in the
ballistic and in the diffusive regimes, indicating uncorrelated particle motion. In the transitional
region, when particles are caught in a cage of neighbors, motion may be correlated and the
distributions may be non-Gaussian. One measure to investigate this property is the non-Gaussian
parameter (NGP)

NGP :=
M4 − 3M2

2

M2
2

(10.27)

where

Mn :=

∫
xnG(x) dx (10.28)

is the n-th moment of the distribution G(x) of variable x. If G(x) is a Gaussian distribution, it
obeys

G(x) =
1√
2πσ2

exp

(
(x− x̄)2

2σ2

)
(10.29)

where x̄ is the mean and σ2 is the variance of the distribution of the variable x. The NGP is
defined in such a way that it vanishes for a centered Gaussian (x̄ = 0).

In the present simulations, the transition between the quadratic and the linear regimes is found
between 1/γ̇ and 5/γ̇. Even for the densest system, there is no sign of a plateau in the MSD
curves (fig. 10.17). The NGPs for the displacements of the softer RBCs with 65% volume fraction
are shown in fig. 10.22. Over the entire Δt-range, there is no significant deviation from zero.
Rather, the NGP seems to be dominated by fluctuations caused by the finite size of the system
and the reduced number of sample points at large values of Δt. These curves base on the center
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Fig. 10.23.: Displacement probability distributions of suspended red blood cells (RBCs). The probability
distributions of the soft RBCs with Ht = 65% and the smallest shear rate (γ̇ = 1.54× 10−5) for the
linear displacements (LD) along the y- and z-axes are shown for three strains (γ̇Δt = 0.015, 1, and 3).
These strains belong to the quadratic, transitional, and linear regimes, respectively (fig. 10.17). The
solid line denotes a Gaussian with unit standard deviation (SD) and zero mean. The other simulations
lead to qualitatively similar results which are not shown.

of volume, eq. (10.23), but they are similar if eq. (10.22) is used instead. Fig. 10.23 shows three
examples of the displacement distributions for the same suspension at the smallest shear rate (at
γ̇Δt = 0.015, 1, and 3). It can be inferred that there is no significant non-Gaussian property of
the displacement distributions, neither in the quadratic, the linear, or in the transitional regime.
The results for the other simulations are qualitatively similar and are not shown.

Concluding, the absence of a plateau in the MSD curves (fig. 10.17), the still increasing diffusivity
with volume fraction in fig. 10.18, and the nearly vanishing NGPs in fig. 10.22 and fig. 10.23
strongly indicate that the present suspensions are far from the glassy state.

10.8. Shear stress fluctuations

The method of planes (section 9.4) allows of the computation of the particle stress averaged over
planes parallel to the confining walls. Due to the microscopically inhomogeneous suspension
structure, the local stresses are subject to permanent fluctuations about their macroscopic
ensemble averages, σ(z, t) = 〈σ〉+ δσ(z, t). In the following, 〈σ〉 denotes the macroscopic stress
(averaged over the entire bulk volume, the steady state, and all independent runs), and δσ(z, t)
denotes the instantaneous stress fluctuation (averaged over the xy-plane). It has to be noted
that the stress fluctuations are tightly connected to the finite system extension in the xy-plane.
Therefore, it is expected that all fluctuations decrease like N−1/2 where N is the number of
particles in the plane.

Characterization of the fluctuations

Representative examples of the time evolution of the particle stress fluctuations for γ̇ ≈ 1.5×10−4

and midway between the confining walls are shown in fig. 10.24. These curves are of relevance
for future investigations when the dissipation mechanisms in the suspension are studied in more
detail. Stress buildup and relaxation may be correlated with local events, such as instantaneous
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Fig. 10.24.: Time evolution of the particle stress fluctuations. The particle stress fluctuations (a) δσp
xz and

(b) δσp
yz are shown as function of strain γ̇t for one representative simulation run for all investigated

volume fractions. The data sets correspond to the stresses averaged over the xy-plane at z = Lz/2
(midway between the confining walls) for the soft red blood cell suspensions at shear rates γ̇ ≈ 1.5×10−4

in steady state. The fluctuations are normalized by the average suspension stress 〈σxz〉. Typical
relative fluctuations are of the order of 2% for the xz- and 1% for the yz-component.

particle rotation fluctuations, particle deformation, or non-affine displacements. Without the
discussion in section 9.4, such an analysis would not be possible.

The standard deviations of the particle stress fluctuations (averaged over the bulk region,
z ∈ [40, 120]) are shown in fig. 10.25. The error bars correspond to the statistical uncertainties
related to the averaging over z. The first observation (fig. 10.25(a)) is that the standard deviations
of δσp

xz are between 2 and 4% of the suspension stress 〈σxz〉 and do not significantly change
over the entire Ca∗ range. Since all fluctuations in the present system are shear-induced, it is
reasonable to normalize the fluctuations by the shear rate (and the constant viscosity η0 to make
the quantity dimensionless). The results are shown in fig. 10.25(b). In this picture, on the one
hand, higher volume fractions lead to larger fluctuations. This is intuitively clear since a larger
particle density should result in more significant distortions of the suspension. On the other hand,
the fluctuations become less important for higher capillary numbers. This is particularly true
in the region where tank-treading dominates, which is in line with the idea that tank-treading
particles are more isolated and disturb the suspension less. A similar observation follows from fig.
10.25(d) where the fluctuations of σp

yz, normalized by η0γ̇, are shown. However, the dependence
on Ca∗ is less pronounced than for the fluctuations of σp

xz. The fluctuations in the yz-plane,
therefore, depend only slightly on the deformation state of the particles. Fig. 10.25(c), where
the fluctuations of σp

yz are normalized by the stress 〈σxz〉, is hard to interpret. It seems to be
counterintuitive that the relative fluctuations should increase with Ca∗ and decrease with Ht.
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Fig. 10.25.: Relative magnitude of particle stress fluctuations. The standard deviations (SDs) of the xz-
and the yz-components of the particle stress are shown. In (a) and (c), the SDs are normalized by
the suspension stress 〈σxz〉, in (b) and (d) by the fluid stress η0γ̇. The gray area denotes the region
(Ca∗ ∈ [0.1, 0.3]) where tumbling is replaced by tank-treading.

Therefore, the shear rate γ̇, rather than the shear stress 〈σxz〉, appears to be responsible for the
fluctuations in the yz-plane.

It has to be emphasized that the particle stress fluctuations, especially for the yz-component,
depend on the z-position in the bulk region (data not shown). Therefore, wall effects are believed
to be not negligible in the present discussion. The error bars in fig. 10.25 only describe the
statistical uncertainty due to averaging over z, but a systematic deviation, caused by the presence
of the walls, may be hidden. This may also explain why the data points for a given volume
fraction in fig. 10.25(c) and fig. 10.25(d), unlike those in in fig. 10.25(a) and fig. 10.25(b), do
not collapse. A larger system extension along the z-direction is required in order to give more
reliable results.

Fig. 10.26 collects some examples of the particle stress distributions (both for δσp
xz and δσp

yz). It
is obvious that the distributions of δσp

xz are not Gaussian for small capillary numbers. This may
be understood in the following way: Fig. 10.10 reveals that, for the densest suspension in the
tumbling regime, ω̄/γ̇ ≈ 0.1, i.e., the average RBC tumbling period is T ≈ 60/γ̇. This means
that not the inverse shear rate is the largest time scale in the suspension. It is rather the rotation
period of the particles. In order to obtain reasonable ensemble averages, at least half a rotation
period should be simulated. This is roughly a factor five more than the simulation duration for
the 65% suspension at the smallest shear rate. As a consequence, the steady state for the particle
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Fig. 10.26.: Distributions of particle stress fluctuations. The probability distributions of the xz- and
yz-components of the particle stress are shown for the soft red blood cell suspensions for (a) 35%,
(b) 45%, (c) 55%, and (d) 65% volume fraction and two different capillary numbers each (one in the
tumbling, the other in the tank-treading regime). The fluctuations are normalized by their standard
deviation (SD). All distributions, except for the xz-component at small capillary numbers, are Gaussian.
A reference Gaussian distribution is shown as solid line. The data for the more rigid red blood cells is
similar and is, therefore, not shown.

rotation has not been reached, independent runs are not equivalent, and ensemble averages are
not yet well-defined. Contrarily, in the tank-treading state for larger values of Ca∗, tumbling
rotation does not play a significant role, and the time scale is essentially set by the inverse shear
rate. Thus, the ensemble average is sufficiently well-defined, and the particle stress fluctuations
obey a Gaussian distribution. Interestingly, the distributions of the yz-component of the particle
stress are always Gaussian, even for small Ca∗. The reason is that the RBC rotation about the
x-axis is a pure fluctuation, 〈ωx〉 = 0, and the corresponding transient is not set by the long
rotation period T about the y-axis, but by the inverse shear rate 1/γ̇ which is shorter. Therefore,
it may be assumed that the non-Gaussian shapes in fig. 10.26 are due to the comparably short
simulation runtimes in terms of the strain γ̇t. However, this question can only be answered by
performing longer simulations in the future.
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Fig. 10.27.: Correlation diagrams for the fluid and the particle stresses. Representative examples of the
correlation diagrams for the soft red blood cell suspensions at Ht = 65% are shown. (a) Ca∗ = 0.09
(lowest shear rate) and (b) Ca∗ = 0.5 (highest shear rate). As the ensemble average 〈σp

xz〉 is not
well-defined for small shear rates, the correlation 〈δσf

xz, δσ
p
xz〉 in (a) is masked by noise. This leads to

a decrease of the correlation in fig. 10.28 at small capillary numbers.

Correlations of shear rate and particle shear stress

The Pearson product-moment correlation coefficient of two functions A(t) and B(t) can be used
to estimate the linear correlation between these functions. It is defined by

〈A,B〉 := 〈δA(t)δB(t)〉t√〈δA2(t)〉t〈δB2(t)〉t
∈ [−1, 1] (10.30)

where δA(t) := A(t) − 〈A(t)〉t and δB(t) := B(t) − 〈B(t)〉t are the fluctuations of A and B.
The time average is taken over the steady state. If the functions are linearly uncorrelated,
〈A,B〉 vanishes. A positive coefficient indicates correlation, a negative coefficient indicates
anti-correlation.

The data obtained from the simulations is used to study the correlations between the shear
rate and the particle shear stress, both averaged over the xy-plane, i.e., A(t) = 〈γ̇〉x,y(z, t)
and B(t) = 〈σp

xz〉x,y(z, t). The resulting Pearson coefficient 〈γ̇, σ〉(z) is a function of z. It is
then averaged over the bulk volume, z ∈ [40, 120], and all independent runs. Fig. 10.27 shows
representative examples of the correlation diagrams for 〈δσf

xz, δσ
p
xz〉 and 〈δσf

yz, δσ
p
yz〉. It can

be seen that, in general, shear rate (i.e., fluid stress) and particle stress are anti-correlated.
No cross-correlation such as 〈δσp

xz, δσf
yz〉 could be detected (data not shown). The (negative)

Pearson coefficients for all simulations are shown in fig. 10.28. The shear rate and the shear
stress are always anti-correlated. A local increase of the shear rate is related to a decrease of
the particle stress. The degree of correlation strongly depends on the volume fraction and the
capillary number. Denser systems are less correlated. For all systems except the densest one
(Ht = 65%), the correlation is maximum for Ca∗ ≈ 0.1–0.2. This corresponds to the region
where tank-treading sets in. For the system with 65% volume fraction, the correlation is not
pronounced, but it steadily increases with Ca∗.

The minor correlations for small values of Ca∗ in fig. 10.28 may be an artifact of an unsuitable
ensemble average. As already discussed before, the simulation times for the smallest shear rates
may be too short for a proper definition of the ensemble average of the particle stress. Inevitably,
this would directly affect the definition of the stress fluctuation, and with it the definition of the
Pearson coefficient. This becomes particularly visible in the left part of fig. 10.27(b): It seems
that the data points in the scatter plot are arranged along parallel lines with negative gradient.
Each single line would give rise to a large degree of anti-correlation. However, the entirety of the
data points rather appears being more or less randomly scattered, which decreases the apparent
correlation coefficient 〈δσf

xz, δσ
p
xz〉. Again, longer simulation runs seem to be the only reasonable

option to improve the data statistics.

Still, fig. 10.28 supports the idea that stress release is tightly connected to the ability of the
system to flow. It is expected that the stress increases when particles are locked. In this case,
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Fig. 10.28.: Pearson product-moment correlation coefficient for the shear rate γ̇ and the particle shear
stress σp

xz, cf. eq. (10.30). The correlation (multiplied by −1) is shown as function of capillary number
Ca∗.

the local shear rate decreases because the particles cannot rotate and decelerate the ambient
fluid. When the stress builds up, particles eventually pass each other, the shear rate increases
again, and the stress relaxes, i.e., decreases. Although it is not directly clear how the correlation
should depend on the capillary number Ca∗, it can be inferred that the particle deformation
state and the transition from tumbling to tank-treading may play a role.

It has to be noted that the shear rate and the particle stress are first averaged over planes parallel
to the walls. On average, depending on the volume fraction, about 20 particles are located on
such a plane. It is therefore expected that correlations may be averaged out because some of
the particles are in the act of being locked whereas others are just being freed. Ideally, the
shear rate and shear stress in the neighborhood of each individual particle should be correlated
before averaging. Unfortunately, the available data extracted from the simulations does not
allow such an analysis. It is therefore proposed to correlate the instantaneous rotation state and
the particle stress of individual particles in future investigations. Batchelor’s approach (section
9.3) allows of the computation of the stress acting on each particle, whereas the instantaneous
rotation state is more difficult to grasp (section 10.4). The particle deformability should also
be taken into account during this analysis since energy can be stored elastically. It may also be
rewarding to study the non-affine motion of particles relative to their neighborhood [257] and to
correlate it with stress relaxation events. However, this is believed to be far from trivial. It is
hardly imaginable that the particle center positions alone provide sufficient information about
the connection of particle dynamics and stress relaxation.



11. Conclusions and outlook

This chapter is intended to give a concluding overview of the achievements of the present thesis.
The contributions of this work to the scientific community and the physical results for the red
blood cell simulations are reviewed in section 11.1. Open questions and suggestions for future
research—both related to the physics and the code development—are pointed out in section 11.2.

11.1. Summary of own contributions and conclusions

During the course of preparing and writing this thesis, a series of new contributions to the skills
of the research group in particular and to the knowledge of the community in general has been
provided.

Own contributions

A computational model, based on the lattice Boltzmann method and the immersed boundary
method, for the simulation of dense suspensions of deformable particles has been implemented
and thoroughly analyzed (chapters 5, 6, 7, and 8). The algorithm is efficient in the sense that
dense suspensions (65% volume fraction) with O(1000) particles can be simulated in a reasonable
time (about 5 days for 105 time steps) on a modern single CPU with 3GHz. The fluid viscosity,
the applied shear rate or shear stress (see below), and the elastic particle properties can be
directly controlled by the user. The numerical tool is not restricted to the simulation of red blood
cells. Rather, a wide class of membrane-like particles for which the elastic constitutive law is
provided can be simulated. It is hoped that the simulation tool will be further used in the future
in order to study the rheology of dense suspensions of deformable particles (e.g., polydisperse
capsules) or to investigate biomechanical processes relevant for medical research (such as platelet
margination, cf. section 11.2).

In this context, some results regarding the numerical model (section 8.4) have already been
published (Krüger et al. [187]). In this article, a single spherical, elastic capsule in simple shear
has been simulated. The motivation for this investigation was to understand the reliability of
the numerical method in the case of intermediate resolutions (particle radius about 8Δx, Δx
being the lattice constant). Higher resolutions are too expensive for the study of suspensions,
and smaller resolutions do not permit high volume fractions. One of the major findings is that
the hydrodynamic radius of the particles is slightly larger than the input radius (r∗ ≈ r + 0.4Δx,
depending on the resolution and the interpolation stencil for the immersed boundary method). It
is believed that the necessary interpolations between the Eulerian and the Lagrangian coordinate
systems lead to the increase of apparent particle size. This has to be considered when results are
compared with experiments or other simulations.

A shear stress boundary condition for the lattice Boltzmann method has been developed (section
5.4.2) and successfully tested (section 9.5). The primary importance of this boundary condition
is that a shear flow can now be controlled by an applied shear stress rather than a shear rate.
This is particularly important when the apparent viscosity of the fluid is not known as it is
usually the case for complex fluids. Especially for future investigations of the yield stress in
such systems, a shear stress boundary condition provides an interesting opportunity. As briefly

T. Krüger, Computer Simulation Study of Collective Phenomena in Dense Suspensions of 
Red Blood Cells under Shear, DOI 10.1007/978-3-8348-2376-2_11,
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described in section 2.3, one has to distinguish between the dynamic and the static yield stress
of a system. The former is the shear stress which is found in the limit of vanishing but still
finite shear rates. The latter is the stress below which the system deforms elastically and above
which plastic deformations set in. The static is usually larger than the dynamic yield stress. It
is now possible—within the lattice Boltzmann method—to identify both values independently.
On the one hand, a fluid can be sheared with a small shear rate via standard velocity boundary
conditions. This provides information about the dynamic yield stress. The new shear stress
boundary condition, on the other hand, allows to access the static yield stress by increasing the
load until the systems starts to deform plastically.

It is argued in appx. B.1.3 and shown via simulations in appx. B.1.4 that the deviatoric stress
tensor in the lattice Boltzmann method is of second-order accuracy. These results have already
been published (Krüger et al. [165, 258]). It is commonly claimed that boundary conditions
for the lattice Boltzmann method should be designed in such a way that they maintain the
second-order accuracy of the velocity field. The role of the stress tensor is usually neglected along
the way, and its accuracy is affected. Therefore, it is hoped that those contributions help to
improve the boundary conditions in such a way that they also retain the second-order convergence
of the stress tensor.

Chap. 9 provides a coherent picture how stresses in the immersed boundary lattice Boltzmann
method can be computed and evaluated. Especially the modified method of planes (section 9.4)
turns out to be a useful tool for suspension rheology since it allows to compute the instantaneous
and local1 particle stress independently of the fluid stress (Krüger et al. [233]). Up to now, most
researchers obtain the time-averaged particle stress from the total stress (which is known from
macroscopic considerations for simple flow configurations, such as Poiseuille or simple shear flow)
and the fluid stress computed within the lattice Boltzmann method. This approach, however,
does not permit to access the spatio-temporal particle stress fluctuations.

The most important physical results and conclusions regarding the simulations of the red blood
cell suspensions are collected in the following.

Conclusions from the simulations of the red blood cell suspensions

A major contribution to the understanding of the physical properties of red blood cell suspensions
is provided in chap. 10 of the present work. For the first time, a systematic simulation study of
the rheology of blood at intermediate shear rates is performed (γ̇ ∈ [1, 100] s−1 in physical units).
The influence of the three major control parameters, the volume fraction Ht, the external shear
rate γ̇, and the particle rigidity κS, has been investigated.

It turns out that the three input control parameters (Ht, γ̇, κS) are not best suitable for the
description of the outcome of the simulations. Rather, the shear rate and the particle rigidity can
be combined to a single parameter, the capillary number Ca := η0γ̇r/κS. Here, η0 is the viscosity
of the suspending fluid, and r is the large red blood cell radius. Data points for the viscosity
and particle properties (such as deformation, rotation, alignment, and shear-induced diffusivity,
see below) with the same values for Ht and Ca collapse, irrespective of the values for γ̇ and κS.
Thus, only two, rather than three parameters are required to characterize the simulation data.
This behavior was to be expected from dimensional considerations.

Shear thinning behavior was observed for all combinations of control parameters (fig. 10.7). As
expected, denser suspensions are more viscous, and the flow curves can be described by Ht and
Ca alone. The flow curve for the suspension with 35% volume fraction was found to match
experimental results at 45% [54] over two orders of magnitude in the shear rate (fig. 10.9). The
reason for the apparent mismatch of the volume fractions is the effective hydrodynamic radius

1averaged over planes parallel to the walls
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of the red blood cells as mentioned above. Taking the hydrodynamic radius into account, the
results agree well.

In the case of dense suspensions, the ‘corrected’ capillary number Ca∗ := ηγ̇r/κS turns out to
be more useful than Ca. It contains the total suspension stress ηγ̇, rather than the fluid stress
η0γ̇. It is shown in chap. 10 that—under certain conditions—some of the data sets (red blood
cell rotation, deformation, and alignment) can be described by Ca∗ alone: Instead of the three
input parameters (Ht, γ̇, κS), Ca

∗ is sufficient to describe the observations! The reason for this
astonishing behavior is the so-called ‘tank-treading’ of red blood cells. Thorough investigations
revealed that tank-treading sets in at Ca∗cr ≈ 0.2 (fig. 10.10 and fig. 10.11). This is the case
when the suspension shear stress becomes so large that the elastic stress of the membrane cannot
maintain its characteristic biconcave shape, and the particle starts to rotate about its perimeter
(like the track of a tank). When red blood cells are tank-treading, they behave nearly like
isolated particles which are aware of the presence of their neighbors only via the suspension stress
ηγ̇. This explains why even curves for different volume fractions collapse to a master curve for
Ca∗ ≥ Ca∗cr when plotted as function of Ca∗.

This data collapse is especially important for four observables: the tumbling velocity (fig. 10.10),
the deformation state (fig. 10.14), the inclination angle, and the orientational ordering (both in
fig. 10.15) of the red blood cells. When the cells are tank-treading, their mutual interaction is
reduced, and particle collisions become less important. There are several independent observations
supporting this idea: (i) The average inclination angle of the red blood cells becomes a function
of Ca∗ alone and, on top, cannot be distinguished from that of an isolated cell under the same
rheological conditions (fig. 10.15). (ii) The nematic order parameter dramatically increases at
Ca∗cr and reaches a plateau with the value ≈ 0.9. This indicates that the cells are strongly
aligned (fig. 10.15). (iii) The average tumbling frequencies of the red blood cells decrease by
more than one order of magnitude when the capillary number crosses the critical value 0.2. The
interpretation is that the cells are in a nearly perfect tank-treading state without the need to
tumble additionally. (iv) The average deformation state of the particles is a function of Ca∗,
independent of the volume fraction. This is a hint that the suspension stress is the only relevant
deformation mechanism for the red blood cells.

The reasons for shear thinning of blood commonly reported in the literature are the deformation
(elongation), the tank-treading rotation, and the alignment of red blood cells [46]. In fact, the
present simulations reveal that these three effects are tightly connected and not just independent
mechanisms. The particle deformability eventually permits tank-treading when Ca∗ ≥ Ca∗cr ≈ 0.2,
irrespective of volume fraction, shear rate, or particle rigidity. Due to tank-treading, the particles
do not have to tumble any more and have the ability to align with their neighbors, increasing
the orientational order. This way, layers of particles can slide over each other more easily.
These combined effects lead to a significant reduction of the suspension viscosity in the region
Ca∗ ∈ [0.1, 0.3] (fig. 10.12). However, also below the tank-treading regime, Ca∗ < Ca∗cr, the
deformability leads to shear thinning behavior because particles can slightly give way and free
themselves more efficiently when they are locked. The microscopic particle behavior (rotation
and orientational alignment) differs strongly from that observed for a system of rigid ellipsoids
[248]. This is a clear argument for the need of resolved and deformable red blood cells when
hemorheology is studied via a bottom-up approach.

The present work shows, for the first time, a thorough investigation of red blood cell displacements
for varying volume fraction, shear rate, and deformability in simple shear flow. MacMeccan [194]
reported that the diffusive behavior was not obvious in his simulations, not even after 30 inverse
shear rates. However, only 200 red blood cells have been used, and no additional independent
runs have been performed. In contrast to this, it was possible, within the present simulations, to
compute the shear-induced diffusivities of red blood cells along the vorticity and the velocity
gradient directions (fig. 10.18). In dimensionless units, the diffusivities were found to be about
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one order of magnitude smaller as compared to sheared, non-Brownian hard sphere systems with
comparable volume fractions [94]. The simulations reveal that the diffusion coefficients decrease
with increasing Ca∗, especially in the regime where tank-treading sets in. This is additional
evidence for the idea that tank-treading allows the particles to decouple their motion from their
neighborhood to some extend. Collisions become less frequent, the particle motions are less
distorted, and the diffusivity decreases. Still, the diffusivities increase with the volume fraction,
supporting the expectation that a denser system leads to a larger number of particle collisions.

No clear sign of a yield stress could be found. The observations indicate that, in the present
parameter space, even for volume fractions of 65%, glassy rheology plays no role. No plateau in
the mean square displacements has been seen (fig. 10.17), the non-Gaussianity of the particle
displacements does not significantly deviate from zero (fig. 10.22 and fig. 10.23), and the shear-
induced diffusivity still seems to grow with the volume fraction (fig. 10.18). The flow curves (fig.
10.7) may lead to the assumption that a yield stress could be found for volume fractions larger
than 45%. However, it is not clear how the viscosity behaves for γ̇ → 0. Simulations with smaller
shear rates are required.

It has also been found that the local shear rate and particle shear stress are correlated. The
Pearson product-moment correlation coefficient is always negative with values between −0.1 and
−0.8, depending on Ht and Ca∗ (fig. 10.30). This means that a local increase of the shear rate
leads to a local decrease of the stress. This may be interpreted in the following way: When red
blood cells are locked during their rotation, they decelerate the ambient flow, and the shear rate
decreases. At the same time, the stress builds up because the particle cannot move. After some
time, the stress is large enough to push the particle out of its unfortunate situation. It rotates
again, the shear rate increases, and the stress relaxes.

11.2. Outlook and suggestions for future research

In this section, the most relevant open questions arising from the present work are pointed out,
and suggestions for future research are given. The list is divided into two parts: aspects of
physical nature and issues related to possible extensions and improvements of the numerical
model.

Physical aspects

The suspension behavior at small shear rates should be studied in more detail. It has been
discussed in sections 10.3 and 11.1 that the present rheology data cannot provide clear evidence
for the existence of a yield stress. Although the viscosity for volume fractions above 45% increases
strongly when the shear rate is decreased, its fate in the limit of small shear rates is unclear.
Additional simulations are required to distinguish between one of three possibilities: (i) existence
of a Newtonian plateau, (ii) existence of a finite yield stress, (iii) continuing non-Newtonian
properties in the absence of a yield stress. The second step would be the identification and
understanding of the circumstances (e.g., volume fraction, particle shape, and deformability)
under which each of these three possible behaviors can be found. Based on those insights, it
may be possible to establish a proper rescaling for collapsing the flow curves. It can be inferred
from fig. 10.7 that this rescaling must at least contain the volume fraction and the capillary
number because the viscosity ratios depend on the capillary number. Later on, the similarities
and differences to hard sphere suspensions may be worked out systematically. It has to be noted
that simulations at small shear rates are expensive, which sets a lower bound to the accessible
shear rates.

The suspension behavior in the large shear rate limit may be further investigated. In particular,
it could be worked out for which capillary numbers a Newtonian plateau is fully developed and
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how its value depends on the microscopic details and the volume fraction. It is expected that
higher spatial resolutions are required because the particle deformation becomes severe and large
membrane curvatures are common. If the resolution is not sufficient, the simulations tend to
become unstable.

Finite size effects cannot be completely ruled out in the present work. In principle, it should be
tested which minimum system size (both along the directions with periodic boundary conditions
and along the gradient direction between the walls) is required to obtain invariant statistical
properties. Along this route, it would be important to check for the presence of a correlation
length between, for example, the dynamics of particles and to test how this length depends on the
shear rate and volume fraction. If this length becomes comparable to the size of the simulation
box, the system size should be increased. It is expected that this type of correlation length, if
ever, becomes important at high volume fractions only. Another source of finite size effects are
hydrodynamic interactions which are well-known to be of long range. This type of finite size
effect is, however, negligible at high volume fractions but should be considered when studying
intermediate to low volume fractions. In all these cases, a careful study of system size-dependence
is compulsory.

Another important question is how individual particle dynamics (e.g., instantaneous rotation,
deformation, or non-affine motion) correlate with stress relaxation events in the suspension. One
possible mechanism for stress relaxation may be the rotation of two particles about each other
after they have been locked. This should be visible as an anti-correlation of the fluctuation of
the angular velocity of the particles and the time derivative of their stress: Whenever particle
rotations are hindered, the stress may increase. When particles can rotate again after being
locked, the stress may relax. It is reasonable to assume that the deformation state of the
particles also changes during these events. To this end, a more detailed description of the particle
deformation may be required. The approach based on the inertia tensor (section 10.2) seems
to be too simplistic for this purpose. Including the individual energy contributions (strain and
bending) stored in the membrane deformation may also provide additional information. A robust
and unique definition of the instantaneous rotation velocity of the particles (both for tumbling
and tank-treading) would be of advantage. This way, not only an average, but also rotation
velocity distributions could be reported. Yet, as discussed in sections 10.1 and 10.4, it is not
clear if a unique rotation velocity can be defined for a strongly deformable object at all. A point
not addressed in this work is the spatial distribution of the particles and their displacements:
Can, at least for a finite time interval, layers or shear bands be identified? Can the concept of
radial distribution functions be extended to non-spherical and deformable particles, and does
it carry relevant information? Is it possible to assess non-affine displacements of the particles
which may be another mechanism for stress relaxation? Such an analysis is aggravated by the
deformability of the particles: A collision of two particles may not be directly visible when only
their centers are tracked.

It may also be rewarding to study the local energy dissipation and the bidirectional transfer from
fluid kinetic to membrane elastic energy. It is not clear which significance the fluctuations of the
elastic energy stored in the membranes has and how it is related to particle diffusion and stress
relaxation.

The developed code can and should be used to simulate biological systems, such as flows with
resolved red blood cells and platelets and their hydrodynamic interactions. The code has already
been extended for the inclusion of multiple kinds of particles with different properties (e.g.,
shape, size, and elastic moduli), including platelets and polydisperse suspensions. Albeit of its
critical importance for the human body, platelet margination2 in the circulatory system is still
not understood [52, 259, 260].

2Margination is the tendency of the platelets to move towards the blood vessel walls where they can seal tissue
ruptures.
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Technical aspects

Each of the simulations performed in chap. 10 required between one day and three weeks
computing time, depending on the shear rate and the volume fraction of the particles. The total
CPU time for all simulations was about 2500 days, i.e., seven years. It is unlikely to significantly
increase the single machine efficiency in the future. Instead, in order to simulate larger systems for
a longer number of time steps, parallel simulations are eventually required. The implementation
of a parallel version of the simulation code is well advanced [261] and should be ready for use
within a few months after the completion of this thesis.

Wall effects can be avoided completely by the use of Lees-Edwards boundary conditions [144, 145].
This would circumvent the problems related to the definition of a bulk region. The major
drawback, however, is that these boundary conditions and the method of planes (section 9.4) are
not compatible. Within the Lees-Edwards approach, there seems to be no direct local access
to particle stress fluctuations. It may still be worth to study additional possibilities for stress
evaluation in Lees-Edwards simulations because their advantages over wall-driven simulations
are considerable.

Viscosity ratios other than unity and viscoelastic membrane properties may be implemented in
the code as well (e.g., [43, 93, 203] and [88, 89, 183], respectively). These features could be used to
model specific biophysical or industrial suspensions. With some additional effort, the membrane
code could also be extended in such a way that mesh reconfigurations are possible (e.g., [83, 183]).
This way, vesicles and even droplets could be simulated with the immersed boundary method.
However, it has to be noted that for fundamental questions, such as the possible existence of
a yield stress in dense systems of deformable particles, the simulation parameter space should
initially be kept as small as possible to allow simpler interpretations of the observations.
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A. Conventions, abbreviations, and symbols

A.1. Conventions

Throughout this thesis, the following conventions are used:

• Tensors and vectors are denoted by bold symbols (e.g., σ or u), unspecified tensor and
vector components by Greek letters (e.g., σαβ or uγ), and specified components by x, y, or
z (e.g., σxz or uy).

• The Einstein sum convention is used for repeated coordinate indices.

• Partial derivatives are often denoted by ∂ (e.g., ∂t := ∂/∂t, ∇x := ∂/∂x, or ∇α := ∂/∂xα).

• Averages are denoted by angular brackets. The quantity over which is averaged is shown as
index. For example, 〈σ〉t is the time average of the stress tensor and 〈γ̇〉x,y is the average
of the shear rate over the xy-plane.

• When quantities are given in lattice units, the density ρ, the lattice constant Δx, and the
time step Δt are usually set to unity if not otherwise stated.

• In the simulation parts of this work, quantities are usually given in lattice units if not
otherwise stated.

A.2. Abbreviations

The following abbreviations are used throughout this thesis:

1D one-dimensional, one dimension
2D two-dimensional, two dimensions
3D three-dimensional, three dimensions
BB bounce-back
BC boundary condition
BGK Bhatnagar-Gross-Krook
FEM finite element method
IBM immersed boundary method
LBE lattice Boltzmann equation
LBGK lattice BGK
LBM lattice Boltzmann method
LD linear displacement
LGCA lattice gas cellular automata
MOP method of planes
MSD mean square displacement
NGP non-Gaussian parameter
NSE Navier-Stokes equation
RBC red blood cell
SD standard deviation
WSS wall shear stress
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A.3. Symbols

Repeating and important symbols are collected in the following table:

General symbols

x, X, r position
t time
N area normal vector
n area unit normal vector
I identity matrix

Hydrodynamic and rheological symbols

u fluid velocity
uw wall velocity
p scalar pressure
ρ density
σ deviatoric stress tensor
σf viscous fluid stress tensor
σp particle stress tensor
Δp momentum exchange
η dynamic shear viscosity of the suspension
η0 dynamic shear viscosity of the suspending fluid
ν kinematic shear viscosity
S shear rate tensor
γ̇ scalar shear rate
f force density (force per volume)
σy yield stress
Dth thermal diffusivity
D shear-induced diffusivity tensor
Dy, Dz shear-induced diffusivities for motion along the y- and z-axes

Lattice Boltzmann symbols

Lx, Ly, Lz system size (arbitrary)
Nx, Ny, Nz system size (integer)
fi populations
f∗
i post-collision populations
f eq
i equilibrium populations
fneq
i non-equilibrium populations
fF
i lattice force
τ relaxation time (dimensionless)
q number of lattice velocities
ci lattice velocity
cs lattice speed of sound
Δx lattice constant
Δt time step size
wi lattice weight
Qi velocity tensor
Ωi collision operator
ε expansion parameter
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Membrane symbols

r radius
A area, surface
V volume
ẋ membrane node velocity
ε energy density
E energy

f̃ force density (force per area)
F force
V displacement vector
D displacement gradient tensor
λ1, λ2 displacement gradient tensor eigenvalues
I1, I2 displacement gradient tensor invariants
H curvature (trace of curvature tensor)

H(0) spontaneous curvature
κS strain modulus
κα area dilation modulus
κB bending modulus
κA surface extension modulus
κV volume extension modulus (osmotic modulus)
κint interaction modulus
κgl wall roughness modulus (glue modulus)
T inertia tensor
T1, T2, T3 principal moments of inertia
a, b, c semiaxes of inertia ellipsoid
ô orientation unit vector
Da, D

max
a asymmetry deformation parameter (with maximum probability)

ω̄ average tumbling velocity
T rotation period

Collective ordering symbols

Q nematic order tensor
Q> nematic order parameter
n director
θ director inclination angle

Dimensionless numbers

Re Reynolds number
Ma Mach number
Kn Knudsen number
Pe Péclet number
Wi Weissenberg number
Ca capillary number
Ca∗, Ca∗cr (critical) corrected capillary number
Ht, φ hematocrit, volume fraction

Functions

δ(x), δ(x) 1D, 3D Dirac delta distribution
δΔ(x) 3D IBM interpolation stencil
φ(x) 1D IBM interpolation stencil



B. Chapman-Enskog analysis and advanced
lattice Boltzmann calculations

B.1. Chapman-Enskog analysis

The Chapman-Enskog analysis [262, 263, 264] has originally been used to derive the Navier-Stokes
equations (NSE) and its transport coefficients from the Boltzmann equation [6, 118], but it can
also be applied to the analysis of the lattice Bhatnagar-Gross-Krook (LBGK) equation [99].
The basic idea is that the fluid is assumed to be close to its local equilibrium everywhere. The
magnitude of the deviation from equilibrium is controlled by the Knudsen number. For small
deviations, a multi-scale expansion is possible, and it can be shown that the LBGK equation
asymptotically solves the NSE where the density and pressure obey the equation of state of an
ideal gas. In the following, the Chapman-Enskog analysis for the force-driven LBGK is presented.
This analysis is restricted to a pure bulk system in the absence of any boundaries.

B.1.1. Chapman-Enskog analysis in the presence of forces

Multi-scale expansion

The Chapman-Enskog analysis bases on the assumption that the fluid is close to local equilibrium.
For this reason, the lattice Boltzmann populations are expanded as

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i +O(ε3) (B.1)

where f
(0)
i = f eq

i , and f
(n)
i (n ≥ 1) is the n-th correction term. The expansion parameter, ε � 1,

can be identified as the Knudsen number [99]. Within the expansion in eq. (B.1), all coefficients

are of the same order, i.e., f
(n)
i = O(1) for n ≥ 0. The successively decreasing magnitude of the

terms εnf
(n)
i is completely contained in εn.

The idea behind the multi-scale analysis is that there are two time scales in the LBM. The faster
time scale is related to wave propagation, whereas the slower scale corresponds to momentum
and mass diffusion [182]. For this reason, the time derivative ∂t := ∂/∂t is also expanded,

∂t = ε∂
(1)
t + ε2∂

(2)
t . (B.2)

Since the spatial variations of diffusion and advection are of the same order, the gradient is not
decomposed and ∇ = ε∇(1).

The Taylor expanded LBGK equation, eq. (5.3), takes the form

∞∑
n=1

1

n!
(DiΔt)nfi(x, t) = −1

τ

(
fi(x, t)− f

(0)
i (x, t)

)
+ fF

i (x, t)Δt (B.3)

where Di := ∂t + ci · ∇. The ansatz for the lattice force is [110, 124]

fF
i = wi

(
A+

B · ci
c2s

+
C : Qi

2c4s

)
. (B.4)
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The parameters A, B, and C are functions of the force density f and obey

∑
i

fF
i = A,

∑
i

fF
i ci = B,

∑
i

fF
i cici = c2sAI +

1

2
(C +CT). (B.5)

Their values have to be obtained in the following. The force density is added on the ε level in

the form fF
i = εf

F (1)
i , A = εA(1), B = εB(1), and C = εC(1).

Inserting the above expansions into eq. (B.3), the resulting equation is sorted according to powers
of ε. The coefficient equations for each power of ε have to be satisfied independently. The ε
equation reads

D
(1)
i f

(0)
i = − 1

τΔt
f
(1)
i + f

F (1)
i , (B.6)

and the ε2 equation can be shown to be

∂
(2)
t f

(0)
i +

(
1− 1

2τ

)
D

(1)
i f

(1)
i = − 1

τΔt
f
(2)
i − Δt

2
D

(1)
i f

F (1)
i (B.7)

where D
(1)
i := ∂

(1)
t + ci · ∇(1).

In the absence of forces [110],∑
i

f
(0)
i = ρ,

∑
i

f
(0)
i ci = ρu (B.8)

and ∑
i

f
(n)
i = 0,

∑
i

f
(n)
i ci = 0 (B.9)

for all n > 0, i.e., the correction terms do not contribute to mass density or momentum. However,
due to discrete lattice effects [124], the velocity has to be redefined (u → u′) if a force density f
is included:∑

i

fici +mfΔt = ρu′ (B.10)

where m is an a priori unknown constant. The correction term is added on the ε level,∑
i

f
(1)
i ci = −mf (1)Δt. (B.11)

i.e., ∑
i

f
(0)
i ci = ρu′ (B.12)

holds where f
(0)
i = f eq

i (ρ,u′). From here on, in order to avoid confusion, the dash will be dropped
and u will be used again.

The following analysis will be performed in parallel for two different equilibrium populations, the
standard quadratic form,

f
(0)
i = wi ρ

(
1 +

ci · u
c2s

+
Qi : uu

2c4s

)
, (B.13)

denoted (Q), and the linearized form,

f
(0)
i = wi ρ

(
1 +

ci · u
c2s

)
, (B.14)

denoted (L).
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Euler equation

Based on the above considerations, the first two moments of eq. (B.6) read

∂
(1)
t ρ+∇(1) · (ρu) = A(1), (B.15)

∂
(1)
t (ρu) +∇(1) ·Π(0) =

(
m̃+

m

τ

)
f (1) (B.16)

where the ansatz B(1) = m̃f (1) is used (m̃ has to be determined) and

Π(0) =
∑
i

f
(0)
i cici =

{
c2sρI + ρuu (Q)

c2sρI (L)
. (B.17)

Eq. (B.17) is inferred from the isotropy relations, eq. (5.8). It can be seen that the Euler equation
is recovered from eq. (B.15) and eq. (B.16) if A(1) = 0 (continuity) and m̃+m/τ = 1 (momentum
balance). Obviously, the macroscopic pressure and the fluid density are connected via

p = c2sρ (B.18)

which is the equation of state for an ideal gas. Therefore, eq. (B.15) and eq. (B.16) do not exactly
describe an incompressible fluid.

Concluding, the ε equations asymptotically lead to the continuity and Euler equations on the t(1)

time scale where the quadratic equilibrium gives rise to the non-linear advection term ∇(1) ·(ρuu).

Navier-Stokes equation

In the following, ε is dropped from the equations by absorbing it back into the corresponding

quantities, e.g., εf
(1)
i → f

(1)
i or ε∂

(1)
t → ∂

(1)
t . This is not problematic since the separation of

the scales has already been completed and the resulting equations, (B.6) and (B.7), have been
obtained. In this sense, ε has merely been used as a tag for the different scales.

The first two moments of eq. (B.7) read

∂
(2)
t ρ =

(
m− 1

2

)
∇(1) · f (1)Δt, (B.19)

∂
(2)
t (ρu) =

(
m− 1

2

)
∂
(1)
t f (1)Δt+∇(1) · σ(1) (B.20)

where the tensor σ(1) is defined as

σ(1) = −
(
1− 1

2τ

)
Π(1) − Δt

4

(
C(1) +C(1)T

)
(B.21)

and

Π(1) :=
∑
i

f
(1)
i cici = −τΔt

(
∂
(1)
t Π

(0) +∇(1) ·
∑
i

f
(0)
i cicici − 1

2

(
C(1) +C(1)T

))
. (B.22)

The last equality in eq. (B.22) follows from the second moment of eq. (B.6). As can be inferred
from eq. (B.19) and eq. (B.20), the spatial and temporal derivatives of the force density f (1)

affect the density and the momentum on the t(2) time scale. This unphysical behavior can be
eliminated by setting m = 1

2 and m̃ = 1− 1/(2τ). The second term on the right-hand-side of eq.
(B.22) can be written as

∇(1)
γ

∑
i

f
(0)
i ciαciβciγ = c2s

(
∇(1)

α (ρuβ) +∇(1)
β (ρuα) + δαβ∇(1)

γ (ρuγ)
)

(B.23)
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in component notation. Eq. (B.23) is valid both for the linear and the quadratic equilibria. Using
eq. (B.15),

∂
(1)
t

(
c2sρδαβ

)
= −c2sδαβ∇(1)

γ (ρuγ), (B.24)

the tensor Π(1) can be simplified,

Π
(1)
αβ =

⎧⎨
⎩
−τΔt

(
∂
(1)
t (ρuαuβ) + c2s∇(1)

α (ρuβ) + c2s∇(1)
β (ρuα)− 1

2

(
C

(1)
αβ + C

(1)
βα

))
(Q)

−τΔt
(
c2s∇(1)

α (ρuβ) + c2s∇(1)
β (ρuα)− 1

2

(
C

(1)
αβ + C

(1)
βα

))
(L)

. (B.25)

The remaining time derivative in eq. (B.25) for the quadratic equilibrium can be replaced by
spatial derivatives by applying eq. (B.15) and eq. (B.16),

∂
(1)
t (ρuαuβ) = uαuβ∇(1)

γ (ρuγ) + uβf
(1)
α + uαf

(1)
β

− c2suβ∇(1)
α ρ− c2suα∇(1)

β ρ− uβ∇(1)
γ (ρuαuγ)− uα∇(1)

γ (ρuβuγ).
(B.26)

Combining the previous results, one obtains

Π
(1)
αβ = δΠ

(1)
αβ−

⎧⎨
⎩
τΔt

(
c2sρ

(
∇(1)

α uβ +∇(1)
β uα

)
+

(
uαf

(1)
β + uβf

(1)
α

)
− 1

2

(
C

(1)
αβ + C

(1)
βα

))
(Q)

τΔt
(
c2sρ

(
∇(1)

α uβ +∇(1)
β uα

)
− 1

2

(
C

(1)
αβ + C

(1)
βα

))
(L)

.

(B.27)

Expressions which involve derivatives of the density or which are of higher order in the velocity
are contained in the error term

δΠ
(1)
αβ =

{
−τΔt∇(1)

γ (ρuαuβuγ) (Q)

−τΔtc2s

(
uβ∇(1)

α ρ+ uα∇(1)
β ρ

)
(L)

. (B.28)

These error terms shall be ignored for now. They will be discussed again in appx. B.1.3.

With the help of eq. (B.27), eq. (B.21) can be written as

σ
(1)
αβ =

⎧⎨
⎩
(
τ − 1

2

)
c2sΔtρ

(
∇(1)

α uβ +∇(1)
β uα

)
+Δt

((
τ − 1

2

) (
uαf

(1)
β + uβf

(1)
α

)
− τ

2

(
C

(1)
αβ + C

(1)
βα

))
(Q)(

τ − 1
2

)
c2sΔtρ

(
∇(1)

α uβ +∇(1)
β uα

)
+ τΔt

2

(
C

(1)
αβ + C

(1)
βα

)
(L)

(B.29)

Interpreting

ν =

(
τ − 1

2

)
c2sΔt (B.30)

as the kinematic viscosity of the fluid and setting

C
(1)
αβ =

{(
1− 1

2τ

) (
uαf

(1)
β + uβf

(1)
α

)
(Q)

0 (L)
, (B.31)

σ(1) can be identified as the deviatoric stress tensor for a viscous and incompressible Newtonian
fluid,

σαβ = ρν (∂αuβ + ∂βuα) . (B.32)
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It can be obtained locally (i.e., without evaluating derivatives) from

σ(1) =

{
− (

1− 1
2τ

)
Π(1) − Δt

2

(
1− 1

2τ

) (
uf (1) + f (1)u

)
(Q)

− (
1− 1

2τ

)
Π(1) (L)

. (B.33)

In practice, Π(1) is replaced by Πneq :=
∑

i f
neq
i cici since the first-order correction f

(1)
i is not

known explicitly. This leads to an additional error which will be discussed in appx. B.1.3.

Concluding, the deviatoric stress tensor is recovered on the t(2) time scale. It is a non-equilibrium

property of the fluid as it is encoded in the first-order non-equilibrium populations, f
(1)
i . It is

also interesting to note the functional form of the viscosity in eq. (B.30): The additional term 1
2

is caused by the spatial discretization of the LBM. It is called ‘lattice viscosity’ or ‘propagation
viscosity’. Fortunately, its contribution can be completely absorbed by redefining the physical
viscosity, τc2sΔt → (

τ − 1
2

)
c2sΔt.

Combination of multi-scale results

The ε equations, eq. (B.15) and eq. (B.16), become

∂
(1)
t ρ+∇(1) · (ρu) = 0, ∂

(1)
t (ρu) +∇(1) ·Π(0) = f (1), (B.34)

and the ε2 equations, eq. (B.19) and eq. (B.20), are

∂
(2)
t ρ = 0, ∂

(2)
t (ρu) = ∇(1) · σ(1). (B.35)

Combination of the ε and the ε2 equations yields the continuity equation,

∂tρ+∇ · (ρu) = 0, (B.36)

and the momentum equation,

∂t(ρu) =

{
−∇ · (ρuu)−∇pI +∇ · σ + f (Q)

−∇pI +∇ · σ + f (L)
(B.37)

where p = c2sρ holds. Obviously, the incompressible NSE are not exactly solved since the LBM
describes a compressible fluid and ρ is generally not constant in space and time. A discussion of
the error terms appearing when the LBGK algorithm is used to solve the incompressible NSE is
given in appx. B.1.3.

B.1.2. Diffusive scaling and its relevance for the convergence of the LBGK
algorithm

When the convergence behavior of the LBM is discussed, the so-called ‘diffusive scaling’ plays a
major role. It states that, if the spatial resolution is refined, Δx → Δx′ = qΔx with q < 1, the
time step has to be changed according to Δt → Δt′ = q2Δt, i.e., Δt ∝ Δx2 during refinement. It
can directly be inferred from eq. (5.43) that τ is constant under these circumstances. The term
diffusive scaling has no physical meaning. Rather, its functional form resembles the diffusion
equation. It should be noted that, in principle, any other scaling Δt ∝ Δxr may be realized
as long as eq. (5.43) remains valid. In the general case, the relaxation parameter scales like(
τ − 1

2

) ∝ Δxr−2.

There are generally three error sources in LBM simulations [126, 164]: (i) a spatial discretization
error ∝ Δx2, (ii) a temporal discretization error ∝ Δt2, and (iii) a compressibility error ∝
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Tab. B.1.: Behavior of observables in the diffusive scaling, Δt ∝ Δx2. This scaling is only valid for the
lattice values of these quantities. The physical values remain the same, i.e., the diffusive scaling is a
pure refinement scheme keeping all dimensional quantities untouched.

quantity symbol scales like

velocity u Δx
length l 1/Δx
time interval t 1/Δx2

force density (per volume) f Δx3

stress σ Δx2

pressure p Δx2

density gradient ∂αρ Δx3

spatial derivative ∂α Δx
time derivative ∂t Δx2

lattice Mach number Ma Δx
Reynolds number Re 1
relaxation parameter τ 1

Δt2/Δx2. The distinctiveness of the diffusive scaling is that all of these contributions are at least
of second order in Δx, i.e., the total error scales like Δx2 in the diffusive scaling. Therefore, the
second-order accuracy of the LBM can be spoiled if a wrong scaling is used, e.g., if Δx is refined
but Δt ∝ Δx. In this case, the compressibility error would not decrease, and the solution would
not converge to the incompressible Navier-Stokes solution. In other words: When the lattice is
refined, one has to make sure that the compressibility error is also reduced so that asymptotic
recovery of the NSE and the incompressible limit (Ma → 0) are guaranteed at the same time. As
a result, within this scaling, all error terms are at least of second order in Ma and first order in
Δt [164, 165]. The disadvantage of the diffusive scaling is that the number of simulation time
steps is quadrupled when the resolution is doubled. In 3D, the total runtime of a simulation
thus increases by a factor of 32 = 25 when the resolution is doubled! This is one of the major
drawbacks of the LBM.

Since the density is not changed during rescaling, it is straightforward to identify the scaling for
each quantity (in lattice units) based on its physical unit. The most important quantities and
their behavior under the diffusive scaling are shown in tab. B.1. Additional information is also
given in Krüger et al. [165].

B.1.3. Error terms of the LBGK equation and its convergence to the
Navier-Stokes equations

LBGK convergence

It has been shown in appx. B.1.1 that the LBGK solves the macroscopic equations

∂tρ+∇ · (ρu) = 0 (B.38)

and

∂t(ρu) +∇ · (ρuu) = −∇pI +∇ · (ρν (∇u+ (∇u)T
))

+ f + δM , (Q)

∂t(ρu) = −∇pI +∇ · (ρν (∇u+ (∇u)T
))

+ f + δM , (L)
(B.39)

where p = c2sρ and ν =
(
τ − 1

2

)
c2sΔt and contributions of order ε3 and higher have been neglected.

This is reasonable since the Knudsen number ε is proportional to the Mach number [265] and
Ma ∝ Δx in the diffusive scaling. The additional error introduced by the deviatoric stress tensor
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reads δM = − (1− 1/(2τ))∇ · δΠ(1) where δΠ(1) is given in eq. (B.28). There are obviously
two error sources in eq. (B.38) and eq. (B.39): (i) the error contained in δM and (ii) the error
connected to the numerical compressibility of the fluid which appears via ∂tρ and ∇ρ. The
compressibility errors are known to be of second order in the diffusive scaling [164, 265, 266],
i.e., they scale with an additional factor Δx2 compared to the dominating, physical terms.
Additionally, the same holds for the error related to δM : The terms given in eq. (B.28) scale like
Δx4, which can be inferred from tab. B.1. The gradient in δM introduces an additional order
in Δx, and δM ∝ Δx5. Since the dominating terms in eq. (B.39) scale like Δx3, δM poses a
second-order error.

Concluding, in the diffusive scaling, the macroscopic solution for the velocity of the LBGK
equation converges to the NSE with a second-order rate, and relative errors decrease like
Δt ∝ Δx2 ∝ Ma2.

Stress tensor convergence

Although the NSE is asymptotically solved by the LBGK algorithm, the deviatoric stress tensor
σ is a priori not known. The reason is that only its divergence enters the NSE and that σ does
not have to be found explicitly in order to solve the LBGK equation. Fortunately, the stress
tensor σ can be computed additionally as presented in eq. (B.33). The interesting property of the
LBM is that this stress tensor is obtainable locally, i.e., without evaluating spatial derivatives.

From the discussion in appx. B.1.1, it could be inferred that the deviatoric stress tensor σ
obtained from the non-equilibrium populations is not exactly the stress tensor expected for
the incompressible NSE. In the previous paragraph it has already been discussed that the
corresponding error term is of second order. However, an additional error δσ∗ is introduced

because the first order populations f
(1)
i required for the evaluation of Π(1) are not known directly.

Instead, the known non-equilibrium populations, fneq
i =

∑
n≥1 f

(n)
i , are taken to estimate the

tensor Π(1). Therefore, the contribution of the tensor Π(2) :=
∑

i f
(2)
i cici to σ should be

assessed. Since each higher correction of the populations is smaller than the previous correction,

f
(n+1)
i ≈ εf

(n)
i � f

(n)
i , higher order tensors like Π(3) are neglected and the additional error term

can be approximated by

δσ∗ ≈ −
(
1− 1

2τ

)
Π(2). (B.40)

At this point, only the scaling and not the exact expression for the tensor Π(2) is of interest: If
Π(2) ∝ Δx4 is satisfied in the diffusive scaling, the LBGK can also be considered second-order
accurate with respect to the deviatoric stress tensor σ since σ ∝ Δx2.

In fact, it has already been shown analytically and numerically that the bulk stress tensor is
indeed recovered with a second-order accuracy if (i) the quadratic equilibrium is employed, (ii)
no external forces are included, and (iii) boundaries are absent (Krüger et al. [165, 258]). In the
following, a sketch for the more general case will be provided: quadratic and linearized equilibria
in the presence of forces.

The second moment of the ε2 equation, eq. (B.7), reads (setting Δt = 1)

−1

τ
Π(2) = ∂

(2)
t Π

(0)︸ ︷︷ ︸
term 1

+

(
1− 1

2τ

)
∂
(1)
t Π

(1)︸ ︷︷ ︸
term 2

+

(
1− 1

2τ

)
∇(1) ·R(1)︸ ︷︷ ︸

term 3

+
1

2
∂
(1)
t

∑
i
f
F (1)
i cici︸ ︷︷ ︸

term 4

+
1

2
∇(1) ·

∑
i
f
F (1)
i cicici︸ ︷︷ ︸

term 5

(B.41)
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where R(1) :=
∑

i f
(1)
i cicici. In the following, the scaling of all five terms is briefly discussed. If

all of them scale at least ∝ Δx4 in the diffusive scaling, also the convergence of the stress tensor
can be considered second-order.

1. From eq. (B.35) it follows that this term is ∝ u∇(1) · σ(1) ∝ Δx4. For the linearized
equilibrium, it exactly vanishes.

2. Based on eq. (B.15), eq. (B.16), and eq. (B.27), one can infer that this term has contributions
∝ (∇(1)u

)∇(1) · (ρu), ∝ ρ∇(1)∇(1) ·Π(0), ∝ ρ∇(1)f (1), and ∝ ρ∇(1)
(
u∇(1) · (ρu)) which

are all of order Δx4.

3. The third moment of the populations f
(1)
i can be computed from eq. (B.6),

R(1) = −τ∂
(1)
t

∑
i

f
(0)
i cicici − τ∇(1) ·

∑
i

f
(0)
i cicicici + τ

∑
i

f
F (1)
i cicici. (B.42)

The first term in eq. (B.42) scales ∝ ∂
(1)
t ρu = −∇(1) ·Π(0) + f (1) ∝ Δx3 and the second

term ∝ ∇(1)(ρuu) ∝ Δx3. The last term has the same form as term 5 in eq. (B.41).
Consequently, the divergence of R(1) scales like Δx4.

4. For the linearized equilibrium, this term vanishes. For the quadratic equilibrium, according

to eq. (B.5) and eq. (B.31), it scales ∝ ∂
(1)
t C(1) ∝ ∂

(1)
t uf (1) which is at least of order Δx4.

5. From the definition of fF
i in eq. (B.4) it follows that this term is ∝ ∇(1)f (1) and therefore

of order Δx4.

Concluding, all error terms which are involved in the computation of the deviatoric stress tensor
according to eq. (B.33) scale at least like Δx4 whereas σ(1) itself scales like Δx2. For this reason,
the deviatoric stress tensor in the bulk LBGK algorithm can be considered formally second-order
accurate. In appx. B.1.4, based on results published in Krüger et al. [258], it is shown numerically
that the stress tensor indeed is recovered with second-order convergence when the force-free and
periodic Taylor-Green vortex is considered. A corresponding numerical investigation for a flow
configuration subject to non-constant and inhomogeneous forcing has not been performed and is
left for future research.

Finally, it must be emphasized again that this analysis is only valid for the bulk fluid without
boundaries. Boundary conditions may introduce additional error terms for the stress tensor
which scale more weakly than Δx4 in the diffusive scaling. This is a priori not surprising since
boundary conditions for the LBM are designed in such a way that they are of second-order
convergence for the velocity, but the direct effect on the stress convergence is usually ignored. In
Krüger et al. [165], it has been shown that the deviatoric stress tensor σ shows a better than
first-order convergence rate for a flow in a square duct subject to bounce-back and velocity
boundary conditions. Still, unambiguous second-order convergence could only be observed for
the velocity, not for the deviatoric stress. Since second-order convergence of the velocity and
the stress could be clearly recovered in a pure bulk system (appx. B.1.4 and Krüger et al. [258]),
there is reason to assume that the presence of boundaries indeed may reduce the convergence
order of the stress. This knowledge may be used in the future to design boundary conditions for
the LBM which comprise a higher accuracy for the deviatoric stress tensor.

B.1.4. Benchmark test: Convergence for the Taylor-Green vortex flow

This section bases on the investigations published in Krüger et al. [258].

As stated in section 5.2 and in appx. B.1, the LBGK algorithm yields second-order accurate
results both for the fluid velocity and the deviatoric stress in the diffusive scaling (section B.1.2):
If the spatial resolution is increased (Δx reduced) and the time step is refined according to
Δt ∝ Δx2, the relative errors of the velocity and the stress are expected to behave ∝ Δx2. The
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velocity field of the fluid usually is the central observable of interest in LBM simulations, and its
second-order convergence has been verified before (e.g., [164]). Apparently, a systematic analysis
of the convergence behavior of the deviatoric stress in the LBM has not been conducted until
the investigations published in Krüger et al. [165] and Krüger et al. [258]. Since the fluid stress
obtained from the LBM plays a central role in this work, it is necessary to better understand its
behavior.

In this section, the accuracy of the fluid stress in LBGK simulations is assessed using the example
of the decaying Taylor-Green vortex flow (Krüger et al. [258]). The velocity and the stress tensor
are known analytically, and the numerical and analytical solutions can be compared locally, i.e.,
point by point, which allows to define an L2 norm for the relative error.

The decaying Taylor-Green vortex flow is an inhomogeneous, spatially periodic, unsteady solution
of the incompressible NSE in the absence of external forces and boundaries,

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∇ · σ (B.43)

with the fluid stress tensor components σαβ = ρν(∂αuβ + ∂βuα). The Taylor-Green vortex flow
is a popular case study and has been employed various times in the past to benchmark the LBM
(e.g., [128, 149, 267, 268]).

The vortex

For a resting and decaying vortex in 2D, the velocity field reads

u(x, t) = u0

(−√
ky/kx cos(kxx) sin(kyy)√
kx/ky sin(kxx) cos(kyy)

)
e−t/tD (B.44)

where kx and ky are the components of the wave vector k. They are computed from the numbers
of lattice nodes along the x- and y-axes, kx = 2π/Nx and ky = 2π/Ny. The vortex decay time
is tD = 1/

(
ν
(
k2x + k2y

))
. The initial velocity scale is u0. Using eq. (B.43) and eq. (B.44), it is

straightforward to show that the pressure obeys

p(x, t) = p0 − ρ
u20
4

(
ky
kx

cos(2kxx) +
kx
ky

cos(2kyy)

)
e−2t/tD . (B.45)

The integration constant p0 can be interpreted as a homogeneous and constant pressure without
hydrodynamic significance. It may be set to zero without loss of generality.

Due to its symmetry and tracelessness in incompressible fluids, the deviatoric stress tensor in 2D
has only two independent components which are

σxx(x, t) = 2ρνu0
√
kxky sin(kxx) sin(kyy)e

−t/tD ,

σxy(x, t) = ρνu0

(√
k3x/ky −

√
k3y/kx

)
cos(kxx) cos(kyy)e

−t/tD
(B.46)

for the Taylor-Green vortex flow. The remaining components are σyy = −σxx and σyx = σxy. It
has to be noted that σxy vanishes if kx = ky. Additionally, in the current flow configuration, the
pressure term balances the advection term, ρ(u · ∇)u = −∇p, and the deviatoric stress term
balances the partial time derivative, ρ∂u

∂t = ∇ · σ.
In order to intensify the benchmark, a constant velocity uc = uc0(cos θ, sin θ)

T is added to the
flow field in eq. (B.44). As a consequence, the vortex is steadily advected in direction uc without
changing its shape or decay rate. The inclination angle θ with respect to the x-axis is arbitrary.
The translational shift of the vortex at time t is xs = uct. This way, the influence of a Galilean
transformation can be investigated.



142 B. Chapman-Enskog analysis and advanced lattice Boltzmann calculations

Tab. B.2.: Convergence rates of velocity and stress in the Taylor-Green vortex flow. The rates are
extracted from a linear fit to the log-log data of the errors εu, εσxx

, and εσxy
. Overall second-order

convergence is evident.

benchmark series
convergence for

u σxx σxy
reference (uc0 = 0, τ = 0.8) 1.99 1.95 2.00
θ = 0◦ 1.99 1.98 2.01
θ = 17.8◦ 1.99 1.97 2.01
θ = 45◦ 2.00 1.97 2.01
τ = 0.51 2.01 2.01 2.01
τ = 0.6 2.00 2.00 1.98
τ = 0.8 1.99 1.97 2.01
τ = 1 2.00 2.02 1.98

Since all hydrodynamic observables are exactly known at each point in space and time and the
flow is fully periodic, the Taylor-Green vortex flow can be used to benchmark the LBM in the
absence of any wall effects.

Initialization

Owing to its non-trivial time dependence, the correct initialization of the flow is of critical
importance (section 5.3.1). The LBM populations fi are initialized at time t = 0 by specifying

the equilibrium part f
(0)
i = f eq

i (ρ,u), eq. (5.6), and the non-equilibrium part, f
(1)
i ≈ fneq

i (σ),
eq. (5.20). Higher order populations are neglected. The required velocity u and stress σ are
taken from eq. (B.44) and eq. (B.46) at t = 0. It has to be emphasized that (i) no external forces
are included and (ii) the advection term of the NSE plays an important role here. Thus, the
quadratic equilibrium, eq. (5.6), has to be taken.

Since the LBGK is a compressible model with the equation of state p = c2sρ, a pressure gradient
is equivalent to a density gradient. This has to be taken into account accordingly. Following eq.
(B.45), the density is initialized to

ρ(x) = ρ0

[
1− u20

4c2s

(
ky
kx

cos(2kxx) +
kx
ky

cos(2kyy)

)]
(B.47)

where ρ0 is the average fluid density.

In order to quantify the deviations between the numerical and the analytic solutions, the global
L2 errors of velocity and stress

εu(t) :=

√∑
x (u∗

s (x, t)− u∗
a(x, t))

2

∑
x (u∗

a(x, t))
2 , εσxx(t) :=

√∑
x (σxx,s(x, t)− σxx,a(x, t))

2

∑
x (σxx,a(x, t))

2 (B.48)

are defined where u∗
s,a(x, t) := us,a(x, t) − uc is the advection-free part of the velocity field

(indices ‘a’ and ‘s’ denote analytic and simulation results, respectively). The subtraction of
uc has no effect on the enumerator, but it helps to avoid an advection-biased increase of the
reference velocity in the denominator which would lead to an artificial decrease of the relative
error. The sum goes over the entire lattice (one unit cell of the periodic flow). The error for σxy
is independently computed in the same way. The stress tensor is not changed by the presence of
the advection velocity uc, except for the time-dependent translational shift xs.
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Fig. B.1.: Convergence of the stress in the Taylor-Green vortex flow. (a) The convergence behavior is
shown for four different relaxation parameters (τ = 0.51, 0.6, 0.8, and 1) for the xy-component of the
stress tensor. In (b), the convergence behavior for σxy is presented for three different advection angles
(θ = 0◦, 17.8◦, and 45◦) and the reference simulation. The data for σxx is not shown because it is
qualitatively identical.

Simulations and results

For this benchmark test, the D2Q9 lattice (section 5.2) has been employed. All simulations have
been performed in series of five simulations each, ranging from a lattice size of Nx×Ny = 31× 17
up to 496× 272. Between successive simulations, the number of lattice nodes along each axis
is multiplied by 2. Within each series, τ is fixed, the time step scales like Δt ∝ Δx2 and the
velocity like u ∝ Δx (‘diffusive scaling’). For the coarsest resolution (Nx ×Ny = 31× 17), the
initial velocity scale is u0 =

√
0.001 in all cases. The impact of the choice of the relaxation

parameter τ and the influence of the inclination angle θ on the errors and the convergence rate
have been tested.

In one benchmark, four different values of τ (0.51, 0.6, 0.8, and 1) have been used. The remaining
parameters are uc0 = 0.05 for the coarsest resolution and θ = 17.8◦. In the other benchmark, θ is
varied (0◦, 17.8◦, and 45◦) where the remaining parameters are uc0 = 0.05 (coarsest resolution)
and τ = 0.8. As a reference, the case without advection has also been tested: uc0 = 0 and τ = 0.8.
The average density is ρ0 = 1 in all simulations.

The errors εu, εσxx , and εσxy are evaluated at t = tD. The errors for σxy are shown in fig. B.1, and
the extracted convergence rates for the velocity and the stress components are collected in tab.
B.2. Without exception, the velocity and the stresses converge with a second-order rate. Neither
the presence of the advection velocity uc along an arbitrary direction nor the non-divisibility of
the channel dimensions (Nx, Ny) have a significant effect on the stress errors. The choice of the
relaxation time however, alters the magnitude of stress errors even though the convergence rate
still remains of second order. The largest errors are found for τ = 0.51, which seems to indicate
the vicinity to the numerical instability at τ close to 0.5.

Concluding, apart from the recovered second-order convergence of the velocity, the above findings
provide direct evidence for the predicted second-order convergence of the stress tensor in LBGK
simulations, as discussed in appx. B.1.3.
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B.2. Recovery and initialization of non-equilibrium populations

In the absence of forces, the non-equilibrium populations can be approximated by, cf. eq. (5.20),
[126]

fneq
i (σ) = − wi

2c4s

1

1− 1
2τ

Qi : σ. (B.49)

With the isotropy relations in eq. (5.8), it is straightforward to verify that the populations in eq.
(B.49) yield

∑
i

fneq
i = 0,

∑
i

fneq
i ci = 0,

∑
i

fneq
i cici = − 1

1− 1
2τ

σ (B.50)

which are the correct results from eq. (5.14), eq. (5.15), and eq. (5.17) in the absence of forces.

Body force densities give rise to correction terms for the velocity, eq. (5.15), and the stress, eq.
(5.17). These correction terms are contained in the non-equilibrium populations, cf. appx. B.1.1,
which indicates that the non-equilibrium populations in eq. (B.49) have to be modified in order
to obtain the correct macroscopic observables.

For the quadratic equilibrium in eq. (5.6), the corrected populations read, cf. eq. (5.21),

fneq
i (u,σ,f) = − wi

2c4s

1

1− 1
2τ

Qi : σ − wiΔt

2c2s
ci · f − wiΔt

4c4s
Qi : (uf + fu), (B.51)

and for the linearized equilibrium in eq. (5.9), cf. eq. (5.22),

fneq
i (u,σ,f) = − wi

2c4s

1

1− 1
2τ

Qi : σ − wiΔt

2c2s
ci · f . (B.52)

Instead of deriving the correction terms from underlying assumptions [269], it is shown that these
terms indeed provide the correct relations between moments of the non-equilibrium populations
and the macroscopic observables. Again exploiting the isotropy relations in eq. (5.8), the first
three moments of the second term on the right-hand-sides of eq. (B.51) and eq. (B.52) read

Δt

2c2s

∑
i

wiciαfα = 0,
Δt

2c2s

∑
i

wiciαciβfα =
Δt

2
δαβfα,

Δt

2c2s

∑
i

wiciαciβciμfα = 0. (B.53)

Thus, it can be seen that this term introduces the expected correction term for the forcing in the
velocity, eq. (5.15). A similar analysis reveals that the first three moments of the third term on
the right-hand-side of eq. (B.51) read

Δt

4c4s

∑
i

wiQiαβ(uαfβ + fαuβ) = 0,
Δt

4c4s

∑
i

wiQiαβciμ(uαfβ + fαuβ) = 0,

Δt

4c4s

∑
i

wiQiαβciμciν(uαfβ + fαuβ) =
Δt

4
(δαμδβν + δανδβμ)(uαfβ + fαuβ).

(B.54)

Here, the correction term for the stress in eq. (5.17) is recovered. Obviously, there is no additional
correction term for the linearized equilibrium.

Concluding, eq. (B.51) and eq. (B.52) describe a self-consistent reconstruction for the non-
equilibrium populations which can be used for initialization of LBM simulations in the presence
of a body force if the velocity and the stress are explicitly known.



C. Derivation of the membrane forces

The membrane forces due to strain, bending, surface, and volume constraints are computed from
the corresponding energy terms with the principle of virtual work. This procedure has been
employed by various researchers (e.g., [186, 192, 195, 196, 243, 270, 271]).

Given a discretized membrane energy term in the form E({xi}), the discretized force acting on
node i against the deformation is computed from

Fi = −∂E({xi})
∂xi

(C.1)

with all other positions {xj}, j �= i, fixed. The above approach bases on the assumption that
accelerations are negligible, i.e., the membrane is in mechanical equilibrium at all times. In the
present thesis, inertia effects are commonly disregarded.

If the energy E({xi}) is differentiable with respect to the positions {xi}, the derivatives may be
precomputed and an expensive numerical differentiation can be avoided. For the implementation
of the presented membrane model, all necessary derivatives have been precomputed analytically.
It has turned out that this approach—although more demanding on the developer’s side—is
numerically much more efficient than finding the forces numerically via ‘shaking’ of the energy
about its current value.

The derivations of the forces are presented in the following sections: strain and dilation in appx.
C.1, bending in appx. C.2, surface in appx. C.3, and volume in appx. C.4.

C.1. Derivation of the strain force

C.1.1. Displacement gradient tensor

As explained in section 7.1, the faces of an undeformed and a deformed face element may be
rotated in such a way that the problem is 2D, and any z-coordinates can be dropped, cf. fig. C.1.
Both faces shall be aligned along one side and share one node. This is no restriction since the
strain energy of the face is invariant under rotations and translations. Any properties of the
undeformed face are denoted by a superscript (0).

From fig. C.1, one can find the coordinates of the nodes in the undeformed face,

x
(0)
1 =

(
0
0

)
, x

(0)
2 =

(
l′(0)

0

)
, x

(0)
3 =

(
l(0) cosϕ(0)

l(0) sinϕ(0)

)
, (C.2)

and in the deformed face,

x1 =

(
0
0

)
, x2 =

(
l′

0

)
, x3 =

(
l cosϕ
l sinϕ

)
. (C.3)

The three displacement vectors V1,2,3 = x1,2,3 − x
(0)
1,2,3, also shown in fig. C.1, read

V1 =

(
0
0

)
, V2 =

(
l′ − l′(0)

0

)
, V3 =

(
l cosϕ− l(0) cosϕ(0)

l sinϕ− l(0) sinϕ(0)

)
. (C.4)

T. Krüger, Computer Simulation Study of Collective Phenomena in Dense Suspensions of 
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(a)
1

2

3

l′(0)

l(0)

ϕ(0)

(b)

1

2

3

l′

l

ϕ

(c)
x

y

V3

V2

Fig. C.1.: Deformation of a membrane face element. Each face is made up of three nodes (1, 2, 3) which
define the edges l (between nodes 1 and 3) and l′ (between nodes 1 and 2) and the angle ϕ between
these two edges. (a) The equilibrium face (defined by l(0), l′(0), and ϕ(0)), (b) its deformed shape
(accordingly defined by l, l′, and ϕ), and (c) both transformed to the same xy-plane are shown. The
displacement vector V1 is identically zero, and the other two are shown in (c). The deformation state
(λ1, λ2) of the face is then uniquely defined.

In order to transform the deformation state of the nodes to a deformation state of the face, some
tools of the finite element method (FEM) are employed. Three linear shape functions N1,2,3(x, y)
are used to interpolate the displacement at any position (x, y) in the face, e.g., [272],

V (x, y) = N1(x, y)V1 +N2(x, y)V2 +N3(x, y)V3, (C.5)

where

N1,2,3(x, y) = a1,2,3x+ b1,2,3y + c1,2,3. (C.6)

The constants a1,2,3, b1,2,3, and c1,2,3 only depend on the undeformed face geometry and do not
change in time. They can be found by letting Nj(xk) = δjk. The solution is

a1 =
y
(0)
2 − y

(0)
3

2A(0)
= − l(0) sinϕ(0)

2A(0)
, b1 =

x
(0)
3 − x

(0)
2

2A(0)
=

l(0) cosϕ(0) − l′(0)

2A(0)
,

a2 =
y
(0)
3 − y

(0)
1

2A(0)
=

l(0) sinϕ(0)

2A(0)
, b2 =

x
(0)
1 − x

(0)
3

2A(0)
= − l(0) cosϕ(0)

2A(0)
,

a3 =
y
(0)
1 − y

(0)
2

2A(0)
= 0, b3 =

x
(0)
2 − x

(0)
1

2A(0)
=

l′(0)

2A(0)
.

(C.7)

Here, A(0) = 1
2 l

(0)l′(0) cosϕ(0) is the area of the undeformed face which is required for the
normalization of the shape functions. Since only the derivatives of the shape functions will be
required for the further calculations, the three constants c1,2,3 are not shown here. The idea
behind the introduction of the shape functions is that the deformation is assumed to be linear
across the entire face, which means that the deformation gradient is constant. It is also possible
to consider higher orders in the deformation gradient [191, 194] increasing both the accuracy
and the computational costs.

The surface deformation gradient tensor is defined as [189]

D =

(
Dxx Dxy

Dyx Dyy

)
:=

(
1 0
0 1

)
+

(
∂xVx ∂yVx
∂xVy ∂yVy

)
, (C.8)
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and the derivatives evaluate to

Dxx = 1 + a1V1x + a2V2x + a3V3x =
l′

l′(0)
,

Dxy = b1V1x + b2V2x + b3V3x =
1

sinϕ(0)

(
l

l(0)
cosϕ− l′

l′(0)
cosϕ(0)

)
,

Dyx = a1V1y + a2V2y + a3V3y = 0,

Dyy = 1 + b1V1y + b2V2y + b3V3y =
l

l(0)
sinϕ

sinϕ(0)
.

(C.9)

Once the undeformed and the deformed positions of the nodes in a face are known, the linearly
approximated deformation gradient tensor D can be computed from eq. (C.9) and the strain
invariants I1 and I2 and thus the face energy εS are uniquely determined as described in section
7.1.

C.1.2. Strain force

The strain force acting on a node i at position xi can be computed from the strain energy

ES =
∑

j A
(0)
j εSj via the principle of virtual work,

F S
i = −∂ES({xi})

∂xi
. (C.10)

The strain energy ES is uniquely determined when all node positions {xi} of the mesh are

known. In the following, i is a node index and j is a face index. Obviously, the energy A
(0)
j εSj of

face j depends only on the positions of the three nodes which belong to this particular face, cf.
appx. C.1.1. This makes the problem local and simplifies the numerical implementation. Due
to symmetry arguments, cf. section 7.1, the strain energy density is a function of the strain
invariants I1 and I2 only. The actual form εS = εS(I1, I2) of this function bases on an underlying
physical model and is not predicted by the theory of elasticity or the employed FEM. One possible
model—which is taken for most simulations in this thesis—is Skalak’s law, eq. (7.2).

The strain invariants derive from the squared displacement gradient tensor [189],

I1 = trG− 2,

I2 = detG− 1,
(C.11)

where the symmetric tensor G obeys

G = DTD =

(
D2

xx +D2
yx DxxDxy +DyxDyy

DxxDxy +DyyDyx D2
xy +D2

yy

)
. (C.12)

Within the FEM, the linearized displacement gradient tensor D is given in eq. (C.9). According
to this equation, D is a function of the three node displacements V1,2,3.

The strain force can only act in the plane which is defined by the face. For this reason, the entire
problem may be formulated in 2D, and the strain force in the rotated coordinate system, cf. fig.
C.1, is

F S,rot
i = −∂ES({I1j , I2j})

∂Vi
(C.13)

with I1j = I1j(Dj), I2j = I2j(Dj), and Dj = Dj({Vi}). It is important to mention again that,
by definition, the displacement vectors V1,2,3 in the rotated face do not have a z-component. The

z-component of F S,rot
i , therefore, is identically zero.
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It is straightforward but tedious to compute the strain force F S,rot
i with nested chain rules from

the energy density εSj . This procedure will be shown in detail in the following. The first step is

the computation of ∂εS/∂I1 and ∂εS/∂I2. These derivatives depend on the constitutive model.
For Skalak’s law, they read

∂εS

∂I1
=

κS
6
(I1 + 1),

∂εS

∂I2
= −κS

6
+

κα
6
I2. (C.14)

From eq. (C.11) follow the derivatives

∂I1
∂Gxx

= 1,
∂I1
∂Gxy

= 0,
∂I1
∂Gyy

= 1,

∂I2
∂Gxx

= Gyy,
∂I2
∂Gxy

= −2Gxy,
∂I2
∂Gyy

= Gxx.

(C.15)

Exploiting the relations in eq. (C.12) and eq. (C.9), the derivatives of Gxx with respect to the
displacements V are

∂Gxx

∂V1x
= 2Dxx

∂Dxx

∂V1x
+ 2Dyx

∂Dyx

∂V1x
= 2a1Dxx,

∂Gxx

∂V1y
= 2Dxx

∂Dxx

∂V1y
+ 2Dyx

∂Dyx

∂V1y
= 0,

∂Gxx

∂V2x
= 2Dxx

∂Dxx

∂V2x
+ 2Dyx

∂Dyx

∂V2x
= 2a2Dxx,

∂Gxx

∂V2y
= 2Dxx

∂Dxx

∂V2y
+ 2Dyx

∂Dyx

∂V2y
= 0,

∂Gxx

∂V3x
= 2Dxx

∂Dxx

∂V3x
+ 2Dyx

∂Dyx

∂V3x
= 2a3Dxx,

∂Gxx

∂V3y
= 2Dxx

∂Dxx

∂V3y
+ 2Dyx

∂Dyx

∂V3y
= 0.

(C.16)

For the derivatives of Gxy one finds

∂Gxy

∂V1x
= Dxy

∂Dxx

∂V1x
+Dxx

∂Dxy

∂V1x
+Dyx

∂Dyy

∂V1x
+Dyy

∂Dyx

∂V1x
= a1Dxy + b1Dxx,

∂Gxy

∂V1y
= Dxy

∂Dxx

∂V1y
+Dxx

∂Dxy

∂V1y
+Dyx

∂Dyy

∂V1y
+Dyy

∂Dyx

∂V1y
= a1Dyy,

∂Gxy

∂V2x
= Dxy

∂Dxx

∂V2x
+Dxx

∂Dxy

∂V2x
+Dyx

∂Dyy

∂V2x
+Dyy

∂Dyx

∂V2x
= a2Dxy + b2Dxx,

∂Gxy

∂V2y
= Dxy

∂Dxx

∂V2y
+Dxx

∂Dxy

∂V2y
+Dyx

∂Dyy

∂V2y
+Dyy

∂Dyx

∂V2y
= a2Dyy,

∂Gxy

∂V3x
= Dxy

∂Dxx

∂V3x
+Dxx

∂Dxy

∂V3x
+Dyx

∂Dyy

∂V3x
+Dyy

∂Dyx

∂V3x
= a3Dxy + b3Dxx,

∂Gxy

∂V3y
= Dxy

∂Dxx

∂V3y
+Dxx

∂Dxy

∂V3y
+Dyx

∂Dyy

∂V3y
+Dyy

∂Dyx

∂V3y
= a3Dyy.

(C.17)

Finally, the derivatives of Gyy are

∂Gyy

∂V1x
= 2Dxy

∂Dxy

∂V1x
+ 2Dyy

∂Dyy

∂V1x
= 2b1Dxy,

∂Gyy

∂V1y
= 2Dxy

∂Dxy

∂V1y
+ 2Dyy

∂Dyy

∂V1y
= 2b1Dyy,

∂Gyy

∂V2x
= 2Dxy

∂Dxy

∂V2x
+ 2Dyy

∂Dyy

∂V2x
= 2b2Dxy,

∂Gyy

∂V2y
= 2Dxy

∂Dxy

∂V2y
+ 2Dyy

∂Dyy

∂V2y
= 2b2Dyy,

∂Gyy

∂V3x
= 2Dxy

∂Dxy

∂V3x
+ 2Dyy

∂Dyy

∂V3x
= 2b3Dxy,

∂Gyy

∂V3y
= 2Dxy

∂Dxy

∂V3y
+ 2Dyy

∂Dyy

∂V3y
= 2b3Dyy.

(C.18)

It is straightforward to put the results together in order to obtain the explicit equations for the
forces acting on the three nodes in a given face. For code efficiency, it is advantageous to drop
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any terms which are identically zero, e.g., ∂Gxx/∂V1y. Finally, the forces in the common xy-plane
are recovered. The efficiency can further be boosted by taking into account that the sum of
the forces in a face is zero. The reason is the symmetry of the strain energy due to momentum
conservation. It turns out that the computation of the force F S,rot

2 is most expensive, hence it

is rewarding to first compute F S,rot
1 and F S,rot

3 and then F S,rot
2 = −F S,rot

1 − F S,rot
3 . In order to

complete the strain force evaluation, the forces acting on the nodes in a face have to be rotated
back to the correct orientation in 3D.

C.2. Derivation of the bending force

The bending energy model employed in this thesis as given in eq. (7.8) is

EB =
κ̃B
2

∑
〈i,j〉

(
θij − θ

(0)
ij

)2
. (C.19)

Since the energy is additive, only one pair of faces with energy EB
ij is taken into account here.

The total bending force acting on a membrane node is recovered by summing over all pairs of
neighboring faces containing this node. For a node k being a member of the pair 〈i, j〉, the force
due to the deformation is

FB
k = − EB

ij

∂xk
= −κ̃B

(
θij − θ

(0)
ij

) ∂θij
∂xk

. (C.20)

The derivative can be evaluated with the chain rule,

∂θij
∂xk

=
∂ arccos(ni · nj)

∂xk
= − 1√

1− (ni · nj)2
∂(ni · nj)

∂xk
. (C.21)

It is sufficient to compute only the force for one node in the pair of faces (node 1 is considered,
cf. fig. C.2). The corresponding forces acting on the other three nodes in the pair of faces can
simply be found by changing the indices.

In order to evaluate the derivative of the unit normal vector ni, the normal vector

Ni = (xi1 − xi3)× (xi2 − xi3) = 2Aini, (C.22)

is considered first, cf. fig. C.2. Here, xi1, xi2, and xi3 are the position vectors of the nodes
belonging to face i. They are sorted in such a way that the normal vectors ni and Ni point
outwards. From this, in component notation it follows that

∂niβ

∂xi1α
=

∂

∂xi1α

Niβ

2Ai
=

1

2Ai

∂Niβ

∂xi1α
− Niβ

2A2
i

∂Ai

∂xi1α
(C.23)

and similarly for the vectors xi2 and xi3. Since Ai =
√
NiβNiβ/2, one can write

∂Ai

∂xi1α
=

Niβ

2
√
NiγNiγ

∂Niβ

∂xi1α
=

niβ

2

∂Niβ

∂xi1α
. (C.24)

It remains the evaluation of the derivative of N ,

∂Niβ

∂xi1α
=

∂

∂xi1α
[εβρσ(xi1ρ − xi3ρ)(xi2σ − xi3σ)] = εβρσδαρ(xi2σ−xi3σ) = εβασ(xi2σ−xi3σ). (C.25)

One can rewrite eq. (C.23) with the help of eq. (C.24),

∂niβ

∂xi1α
=

1

2Ai

(
∂Niβ

∂xi1α
− niβniγ

∂Niγ

∂xi1α

)
. (C.26)
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x1

x2

x3

x4

ni

nj

Ai

Aj

Fig. C.2.: Membrane face and node convention for the derivation of the bending force. The pair 〈i, j〉 of
faces is defined by four nodes with coordinates x1, . . . , x4. Nodes 1 and 3 belong to both faces, nodes
2 and 4 only to one. The normal vectors ni and nj are defined in such a way that they point outwards.

It directly follows from eq. (C.25) that

njβ
∂niβ

∂xi1α
=

1

2Ai
(εβασ(xi2σ − xi3σ)njβ − εγασ(xi2σ − xi3σ)njβniβniγ)

=
1

2Ai
εβασ(xi2σ − xi3σ) (njβ − niγnjγniβ)

(C.27)

and finally

∂(ni · nj)

∂x1
=

1

2Ai
(x2−x3)× (nj − (ni · nj)ni)+

1

2Aj
(x3−x4)× (ni − (ni · nj)nj) . (C.28)

with the conventions from fig. C.2. The remaining derivatives are

∂(ni · nj)

∂x2
=

1

2Ai
(x3 − x1)× (nj − (ni · nj)ni) , (C.29)

∂(ni · nj)

∂x3
=

1

2Ai
(x1 − x2)× (nj − (ni · nj)ni) +

1

2Aj
(x4 − x1)× (ni − (ni · nj)nj) ,

(C.30)

∂(ni · nj)

∂x4
=

1

2Aj
(x1 − x3)× (ni − (ni · nj)nj) . (C.31)

Nodes 1 and 3 are located in both faces whereas nodes 2 and 4 are member of one face only. As
a consequence, FB

1 and FB
3 have two contributions, and FB

2 and FB
4 have only one.

The final expressions for the forces can be simplified owing to the identity

|ni − (ni · nj)nj | = |nj − (ni · nj)ni| =
√

1− (ni · nj)2. (C.32)

Thus, the denominator in eq. (C.21) can be canceled.

C.3. Derivation of the surface force

The surface force

FA
i = −∂EA({xi})

∂xi
(C.33)

acting on node i with surface energy (cf. section 7.3)

EA =
κA
2

(
A−A(0)

)2
A(0)

(C.34)
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rj
xj1

xj2

xj3

nj

Aj

Vj

Fig. C.3.: Volume and surface contributions of a single membrane face. The volume Vi of face i can be
computed from its area Aj , its unit normal nj , and the center vector rj or directly from the three
node vectors xj1, xj2, and xj3, cf. eq. (C.44).

shall be computed. Thus, the functional dependence A({xi}) must be known and differentiated.
The total surface of an arbitrary, closed surface mesh consisting of flat triangular face elements is

A =
∑
j

Aj . (C.35)

The sum runs over all faces j with area

Aj =
1

2

√
Nj ·Nj . (C.36)

Here, Nj is the face normal vector of face j,

Nj = [(xj1 − xj2)× (xj3 − xj2)] , (C.37)

and the vectors xj1, xj2, and xj3 are defined in fig. C.3. The unit normal vector is

nj =
Nj√

Nj ·Nj

. (C.38)

The surface force acting on node i is

FA
i = −∂EA({xi})

∂xi
= −κA

A−A(0)

A(0)

∂A({xi})
∂xi

. (C.39)

A lengthy but straightforward computation reveals that

∂Aj

∂xj1
=

1

2
nj × (xj3 − xj2). (C.40)

Since eq. (C.37) remains valid under cyclic permutation of the three vectors xj1, xj2, and xj3,
analog relations are obtained for the derivatives ∂Aj/∂xj2 and ∂Aj/∂xj3. The total surface force
acting on node i then is the sum of contributions of all faces j which node i is a member of.

C.4. Derivation of the volume force

The volume force

FV
i = −∂EV({xi})

∂xi
(C.41)
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acting on node i with volume energy (cf. section 7.4)

EV =
κV
2

(
V − V (0)

)2
V (0)

(C.42)

shall be computed. In order to do so, the functional dependence V ({xi}) must be known and
differentiated. The volume of an arbitrary, closed surface mesh consisting of flat triangular face
elements is

V =
∑
j

Vj . (C.43)

The sum runs over all faces (area Aj , unit normal vector nj), and

Vj =
1

3
Ajnj · rj = 1

6
(xj3 × xj2) · xj1 (C.44)

is the volume contribution assigned to face j1. The vector rj points from the centroid of the
mesh to the centroid of face j, and the three vectors xj1, xj2, and xj3 are defined in fig. C.3.
The volume force acting on node i is

FV
i = −∂EV({xi})

∂xi
= −κV

V − V (0)

V (0)

∂V ({xi})
∂xi

. (C.45)

A simple computation reveals that

∂Vj
∂xj1

=
1

6
(xj3 × xj2). (C.46)

The triple product, (xj3×xj2) ·xj1, is invariant under cyclic permutations of the three contained
vectors. Consequently, similar results are obtained for the derivatives ∂Vj/∂xj2 and ∂Vj/∂xj3.
The total volume force acting on node i then is the sum of contributions of all faces j which node
i is a member of.

1The volume contribution for individual faces can be negative for concave meshes when rj · nj < 0. This does
not limit the general validity of the volume force algorithm.
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[101] F.J. Higuera and J. Jiménez. Boltzmann Approach to Lattice Gas Simulations. Europhys. Lett., 9

(7):663–668, 1989. Cited on page 21.
[102] F.J. Higuera, S. Succi, and R. Benzi. Lattice gas dynamics with enhanced collisions. Europhys.

Lett., 9:345, 1989. Cited on page 21.
[103] P.L. Bhatnagar, E.P. Gross, and M. Krook. A model for collision processes in gases. I. Small



Bibliography 157

amplitude processes in charged and neutral one-component systems. Phys. Rev., 94(3):511–525,
1954. Cited on page 21.

[104] Y.H. Qian. Lattice Gas and lattice kinetic theory applied to Navier-Stokes equation. PhD thesis,
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