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Abstract We develop generalized semiparametric regression models for exponential
family and hazard regression where multiple covariates are measured with error and
the functional form of their effects remains unspecified. The main building blocks in
our approach are Bayesian penalized splines and Markov chain Monte Carlo simu-
lation techniques. These enable a modular and numerically efficient implementation
of Bayesian measurement error correction based on the imputation of true, unob-
served covariate values. We investigate the performance of the proposed correction
in simulations and an epidemiological study where the duration time to detection of
heart failure is related to kidney function and systolic blood pressure.

Key words: additive hazard regression; generalized additive models; MCMC; mea-
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1 Introduction

The presence of covariates measured with error in regression models can have severe
impact on inferential conclusions drawn from naive estimates. This is particularly
true for semiparametric regression models where the relation between responses and
covariates is specified flexibly and therefore also more prone to disturbances induced
by measurement error. A common phenomenon in naive analyses are estimates that
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are biased towards zero and therefore underestimate effects. In particular, in semi-
parametric regression models it will be more difficult to detect local extrema of a
functional relationship and curvature will be underestimated. In general, the effect
of measurement error is insidious and leads to biased estimates, misspecified vari-
ability and feature masking (Carroll et al. 2006). Hence, it is likely to erroneously
conclude that covariates are not associated with the response variable or to obtain
false conclusions about the precise functional form of relationships.

Based on work by Berry et al. (2002) for Gaussian scatterplot smoothing, we
develop a flexible Bayesian correction procedure based on Markov chain Monte
Carlo (MCMC) simulations for general semiparametric exponential family and haz-
ard regression models. The key ingredient is the imputation of the unobserved, true
covariate values in an additional sampling step, an idea dating back to Stephens &
Dellaportas (1992) and Richardson & Gilks (1993), see also Gustafson (2004). The
Bayesian approach considered in this paper combines a number of distinct advan-
tages:

Flexibility in terms of the response type: A wide range of response types is sup-
ported, including exponential family regression (e.g. Binomial or Poisson responses)
as well as right-censored continuous-time survival times. This is made possibly by
the consideration of a iteratively weighted least squares proposals for the regression
coefficients (Gamerman 1997, Brezger & Lang 2006), a proposal scheme that relies
on Gaussian approximations of the full conditionals.

Flexibility in terms of the model equation: All nonparametric model compo-
nents are specified flexibly in terms of Bayesian penalized splines (Brezger &
Lang 2006, Jullion & Lambert 2007). The modular structure of Bayesian computa-
tions based on MCMC enables the consideration of models where several covariates
are measured with error in combination with further nonparametric effects of covari-
ates observed exactly. Spatial effects, varying coefficient terms, or random effects
are readily available as additional model components and are also included in our
software.

Flexibility in terms of the measurement error equation: Based on the classical
model of uncorrelated additive Gaussian measurement error, longitudinally corre-
lated repeated observations on the measurement error equation or other extended
measurement error models could easily be included.

Numerically efficient implementation: Sparse matrix computations and efficient
storage schemes in combination with data compression based on rounding provide
a rather fast estimation procedure. This, in particular, allows us to consider more
complex applications with large sample size and extensive simulation setups.

In the application that motivated our research, the duration until detection of heart
failure is analyzed in a hazard regression model that includes nonlinear effects of kid-
ney function measured by the glomerular filtration rate (GFR) and systolic pressure
(SP). Both covariates are inherently subject to measurement error due to different
reasons: while SP is measured with error due to the relatively imprecise instruments
involved in standard hemodynamometry,GFR can only be obtained accurately based
on a time-consuming, awkward procedure; thus, in practice, this procedure is replaced
with an estimate (eGFR) predicted from creatinine, gender and age (Hsu et al. 2005).
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The prediction equation has been derived from a regression model and an estimate
of the measurement error variance is also available from a replication study. In case
of SP, the measurement error variance is available from previous studies. The sample
size of 15,000 observations and two covariates measured with error make this appli-
cation challenging, since we are faced with the imputation of 30,000 true covariate
values and the re-evaluation of the corresponding parts of the design matrix in each
iteration.

2 Semiparametric Regression Models with Measurement Error

2.1 Observation Model

In a generalized semiparametric regression models (see for example Ruppert et al.
(2003), Fahrmeir et al. (2004) or Wood (2006)), the expectation of (conditionally)
independent responses yi, i, . . . ,n, from univariate exponential families is related to
an additive predictor

ηi = f1(xi1)+ . . .+ fr(xir)+ v′iγ (1)

based on a response function h, i.e. μi = E(yi|ηi) = h(ηi). The predictor is addi-
tively composed of smooth functions f1, . . . , fr of continuous covariates x1, . . . ,xr in
combination with parametric effects γ of further, typically categorical covariates v.
For hazard regression models employed in survival analysis, data are given in the
form of (conditionally) independent survival data (ti,δi), i = 1, . . . ,n where ti is the
(right-censored) observed survival time and δi is the censoring indicator. Extending
the classical Cox model, semiparametric hazard regression models (Hennerfeind et
al. 2006, Kneib & Fahrmeir 2007) can then be specified as λi(t) = exp(ηi(t)) where

ηi(t) = g0(t)+ f1(xi1)+ . . .+ fr(xir)+ v′iγ

is a semiparametric predictor consisting of the log-baseline hazard rate g0(t), r
smooth functions of continuous covariates, and linear effects summarized in v′γ .
The time-dependent function g0(t) relates to the baseline hazard rate λ0(t) in the
Cox model via λ0(t) = exp(g0(t)). In contrast to usual partial likelihood estimation,
determination of the baseline hazard rate will be an integral part of model estimation
in our framework. In particular, estimation will be based on the full instead of the
partial likelihood.

Estimation of the nonlinear functions f j(x j) is frequently complicated by the fact
that in applications the corresponding covariates x j are not observed exactly so that
only contaminated surrogate variables are available. Naive estimates based on these
surrogate variables will then be oversmoothed leading to estimates that are biased
towards “no effect” models. In the following, we assume that the first r1 covariates
x1, . . . ,xr1 are subject to measurement error while the remaining r2 = r−r1 covariates
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xr1+1, . . . ,xr are observed exactly. In particular, we allow for several covariates x j
measured with error.

2.2 Measurement Error Model

In the classical measurement error model (Carroll et al. 2006), the true measure-
ments of the covariates are contaminated by i.i.d. Gaussian noise, leading to the
measurement of proxy variables

w(m)
i j = xi j + u(m)

i j , m = 1, . . . ,M

where u(m)
i j ∼N(0,τ2

u, j). In our modeling framework, we allow for the possibility of
repeated measurements (indexed by m = 1, . . . ,M) on a covariate. For simplicity, we
assume that the measurement error contaminations are mean zero and independent,
i.e. ui j = (u(1)

i j , . . . ,u(M)
i j )′ ∼N(0,τ2

u, jIM). However, the MCMC sampling mechanism
presented in Section 3 can straightforwardly be extended to more general situations
where ui j ∼ N(μ ,Σ ). Inclusion of covariances in Σ could for example be useful
in combination with a longitudinal collection of the repeated measurements where
Σ contains an equicorrelation or autoregressive correlation structure (see Wang &
Pepe (2000) for such an example). Non-zero expectations μ can, for example, be
employed to adjust for measurement bias in the repeated observations.

2.3 Prior Distributions

To complete the Bayesian specification, suitable priors have to be assigned to all
model parameters. In the Bayesian perspective on the model, the unknown true
covariate values xi j are treated as additional unknowns and imputation becomes a part
of the MCMC algorithm. For the fixed effects γ , we assume standard noninformative
priors, i.e. p(γ) ∝ const. In contrast, we assign informative priors to the smooth
function to enforce smoothness of the corresponding estimates.

2.3.1 P-spline Priors

A parsimonious yet flexible modelling possibility for nonparametric function esti-
mation are penalized splines as popularized by Eilers & Marx (1996) and exten-
sively discussed in Ruppert et al. (2003). In our Bayesian framework, we employ the
Bayesian analogue developed by Brezger & Lang (2006). For the sake of simplicity,
we drop the function index j in the following description. To represent f (x) (or g0(t)
in case of hazard regression models) in terms of a flexible but finite dimensional class
of functions, we assume that it can be expanded in B-splines of leading to the basis
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function representation

f (x) =
K

∑
k=1
βkBl

k(x)

where Bl
k(x) are B-spline basis functions of degree l defined upon a set of knots

κ1 < .. . < κK , and βk are the corresponding regression coefficients. In the classical
frequentist formulation of P-splines, smoothness of the functions f (x) is enforced
by adding a squared difference penalty of order d to the likelihood that essentially
penalizes large variation in terms of the d-th derivative. In a Bayesian formulation,
d-th order differences are replaced by d-th order random walks, e.g.

βk−βk−1 ∼ N(0,τ2
βωk)

for first order random walks in the most simple case. This prior specification cor-
responds to local increments in the coefficient sequence with expectation zero and
deviations controlled by the variance τ2

β and the distance between the corresponding
knots ωk = κk − κk−1. The underlying rationale of the latter choice is that larger
steps between two knots should also be reflected in the prior in allowing for larger
variation. In contrast, the variance parameter τ2

β controls the overall variability of
the function estimate with small values corresponding to very flat estimates whereas
large values yield very flexible estimates. The weighted first order random walk can
also be interpreted as a discrete approximation to continuous Brownian motion that
yields a similar structure of the variance. Weighted second order random walks are
also available (see Fahrmeir & Lang (2001)) but are less suitable in the context of
measurement error correction since they enforce too smooth function estimates.

In combination with flat priors on the initial parameters, the joint distribution
of the vector of regression coefficients β = (β1, . . . ,βK)′ can be deduced from the
random walk specifications as the multivariate Gaussian distribution

p(β |τ2
β ) ∝ exp

(
− 1

2τ2
β
β ′Kβ

)
.

The precision matrix K is also derived from the univariate random walk priors. For a
first order random walk it can be represented as K = D′ΩD, where D is a first order
difference matrix and Ω = diag(ω2, . . . ,ωK) contains the knot distances as weights.

In case of smoothing without measurement error, cubic P-splines (i.e. splines of
degree l = 3) with approximately 20 equidistant knots and second order random walk
prior have proven to be a useful standard choice (Brezger & Lang 2006). However,
exploratory simulations showed that this claim no longer holds when measurement
error is present. In particular, the high degree of the spline basis and the second order
random walk enforce smoothness of the function estimates. Since measurement error
in general leads to an attenuation of functional relationships, i.e. functions appear
smoother than under the true relationship, a suitable prior in measurement error
correction has to allow for more flexibility. In addition, choosing equidistant knots
has the disadvantage that the prior variance of the random walk remains constant over
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the whole domain of the covariate. When correcting for measurement error, adaptive
priors with more variability in areas where a lot of observations have been collected
mostly showed a better performance. In summary, we found linear splines with 20
quantile-based knots and (weighted) first order random walk prior to be a suitable
default choice for nonparametric smoothing of covariates with measurement error.
Cheng & Crainiceanu (2009) also support the choice of linear splines in showing
that the full conditionals both for the regression coefficients and the true covariate
values are then log-concave.

On a further stage of the hierarchy, a hyperprior is assigned to the variance para-
meter τ2

β to allow for a data-driven amount of smoothness. Since the random walk
prior is multivariate Gaussian, a computationally attractive choice is the conjugate in-
verse gamma prior τ2

β ∼ IG(a,b) that leads to a simple Gibbs update for the variance
parameter.

A further generalisation of the model can be achieved by allowing for prior uncer-
tainty in the knot positions as in the adaptive spline smoothing approaches by Denison
et al. (1998) or Biller (2000). However, in most situations it will be sufficient to either
assign a smoothness prior to the regression coefficients (provided that the basis is
sufficiently rich) or to allow for data-driven determination of the knot placements
(see also the supporting simulation results in Brezger & Lang (2006)). In combi-
nation with measurement error correction we found it advantageous to fix the knot
positions since this avoids additional re-evaluations when imputing the unobserved
covariate values.

2.3.2 Measurement Error Priors

For the covariates with measurement error, a prior for the true covariate values has
to be specified, since they will be treated as additional unknowns in the Bayesian
inferential procedure. A flexible default choice is given by the Gaussian distribution

xi j ∼ N(μx, j ,τ2
x, j).

Assigning hyperpriors to the parameters such as μx, j ∼ N(0,τ2
μ) with τ2

μ fixed at
a large value and τ2

x, j ∼ IG(a,b) allows the prior to accommodate to a variety of
data-generating processes. In particular, the prior for the expectation is essentially
noninformative when assuming a large value for the hypervariance τ2

μ .
Note that treating the true covariate values as unknown parameters is not only a

computational trick to obtain a fully specified model within the MCMC sampler, but
allows inferences to be drawn about the true covariate values. In particular, we obtain
a sample from the posterior of the true covariate values allowing to investigate for
example the precision of the correction or whether the true covariate value exceeds
a certain threshold.

Finally, a prior may be assigned to the measurement error variances, if uncertainty
about the τ2

u, j has to be incorporated. In combination with the Gaussian contamina-
tion error, again an inverse gamma prior τ2

u, j ∼ IG(a,b) is a suitable default choice.
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Note, however, that reliable estimation of τ2
u, j will typically require a larger number

of repeated measurements on the covariates, in particular in non-Gaussian observa-
tion models where the likelihood carries less information on the variability in mea-
surement error than in Gaussian models. In our application, the measurement error
variances are available from replication experiments. Therefore we will also restrict
our attention to the case of known measurement error variances in our simulations.

3 Bayesian Inference

3.1 Posterior & Full Conditionals

Summarizing all unknown quantities in the vector θ and assuming conditional inde-
pendence of the prior distributions, the joint posterior in our class of semiparametric
models can be summarized as

p(θ |data) ∝ p(data|β 1, . . . ,β r,γ ,x1, . . . ,xr) observation model likelihood
r1

∏
j=1

p(wj|x j,τ2
u, j) measurement error likelihood

r1

∏
j=1

p(τ2
u, j) measurement error variance priors

r1

∏
j=1

p(x j|μx, j,τ2
x, j)p(μx, j)p(τ2

x, j) true covariate value priors

r

∏
j=1

p(β j|τ2
β , j)p(τ2

β , j) nonparametric effect priors.

The likelihood is derived under the assumption of conditional independence such
that the complete data likelihood factorises to individual likelihood contributions.
In case of exponential family regression, the likelihood contributions equal the cor-
responding exponential family densities evaluated at the predictor ηi. Assuming
non-informative, random right censored survival times, the complete data likelihood
contributions in hazard regression models with individual hazard rates λi(t) are given
by

Li(ηi) = λi(ti)δi exp
(
−

∫ ti

0
λi(u)du

)
,

see Hennerfeind et al. (2006).
From the posterior, we can now derive the full conditional distributions for all

unknowns to construct a Markov Chain Monte Carlo simulation algorithm. While
Gibbs updates can be derived for several parameters, Metropolis-Hastings steps are
necessary for the regression coefficients and the true covariate values. Since some of
the priors involved in the model specification are (partially) improper, it is not obvious
that the joint posterior will be proper (see for example Hobert & Casella (1996)).
Fahrmeir & Kneib (2009) provide conditions for the propriety of the posterior in
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semiparametric Bayesian regression models without measurement error that will be
fulfilled in most practically situations and we expect these results to carry over to the
case with measurement error.

The full conditional for a true covariate value xi j depends only on the i-th like-
lihood contribution Li(ηi) to the observation model and the i-th contribution to the
measurement error model. Combining this likelihood information with the relevant
priors yields (up to an additive constant) the log-full conditional

log(p(xi j|·)) = li(ηi)− 1
2τ2

u, j

M

∑
m=1

(w(m)
i j − xi j)2− 1

2τ2
x, j

(xi j − μx, j)2

where li(ηi) = log(Li(ηi)) is the i-th log-likelihood contribution. Obviously this full
conditional does not correspond to a known distribution since both the log-likelihood
contributions and the B-spline basis functions are non-linear in the covariate values.
Following Berry et al. (2002) we consider a random walk proposal for imputing the
covariate values where, based on the current value xcurr

i j , a new value is proposed as

xprop
i j = xcurr

i j + ε, ε ∼ N

(
0,

4τ2
u, j

M

)
.

The choice of the random walk variance as being proportional to the measurement
error variance but inverse proportional to the number of replicated measurements
balances between the more precise knowledge about the true value that can be gath-
ered from repeated measurements on the one hand and uncertainty introduced by
large measurement error variance. The constant factor 4 has proven to work well in
practice, according to our experience, but can be adjusted by the user to adapt the
acceptance probabilities if needed.

The Gaussian measurement error model in combination with the conjugate inverse
gamma priors for the measurement error variances, yields full conditionals that are
also inverse gamma, i.e.

τ2
u, j|· ∼ IG

(
a +

nM
2

,b +
1
2

n

∑
i=1

M

∑
m=1

(x(m)
i j − xi j)2

)
.

Similarly, we obtain closed form full conditionals for the true covariate value hyper-
parameters:

μx, j|· ∼ N

(
nx̄ jτ2

μ

nτ2
μ + τ2

x, j
,
τ2

x, jτ2
μ

nτ2
μ + τ2

x, j

)

τ2
x, j|· ∼ IG

(
a +

n
2
,b +

1
2

n

∑
i=1

(xi j − μx, j)2

)

where x̄ j is the empirical mean of the currently imputed true covariate values.
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Finally, the full conditionals for the regression coefficients have to be derived.
Again, these are not available in closed form since the likelihood is non-linear in
the parameters (for non-Gaussian responses). Based on work by Gamerman (1997)
in the context of random effects, Brezger & Lang (2006) propose to construct a
Gaussian approximation to the full conditional by performing one-step of a Fisher
scoring algorithm based on the current sample for β j. More precisely, this leads to
an iteratively weighted least squares (IWLS) proposal for β j based on a Gaussian
distribution with precision matrix and mean

P j = X ′
jWX j +

1
τ2
β , j

K j and m j = P−1
j X ′

jW (ỹ−η− j),

where the diagonal matrixW and the vector of working observations ỹare constructed
in complete analogy to the usual GLM case (compare Fahrmeir & Tutz (2001)) and
η− j = η−X jβ j is the j-th partial residual. Similar expressions are obtained for the
vector of fixed effects, compare Brezger & Lang (2006) for details. The rationale
for the IWLS proposal mechanism is that it automatically adapts to the location and
the curvature of the corresponding full conditional thereby avoiding the necessity
of manually tuning the MCMC sampler. Hennerfeind et al. (2006) describe similar
proposal schemes for hazard regression models. The full conditional of the smoothing
parameters τ2

β , j is again inverse Gamma with updated parameters, i.e.

τ2
β , j|· ∼ IG

(
a +

1
2

rank(K j),b +
1
2
β ′jK jβ j

)
.

3.2 Implementational Details & Software

Though a Metropolis-Hastings sampler can immediately be set up based on the full
conditional distributions and proposals described in the previous section, an efficient
implementation requires careful fine-tuning at several places. This is particularly the
case for nonparametric function estimation involving a large number of regression
coefficients and the measurement error correction problem, where the data, and there-
fore also the design matrices, change in each iteration. A naive implementation in a
general specification language for Bayesian modeling such as WinBUGS or in a high-
level interpreted programming language such as R would therefore be inefficient. As
a consequence, we implemented our methodology as a part of the software package
BayesX (http://www.stat.uni-muenchen.de/˜bayesx, Brezger et al.
(2005)), which has been specifically designed for the estimation of semiparametric
regression models. The computational kernel is implemented in C++, allowing for
an efficient treatment of loop-intensive MCMC simulations. A graphical user inter-
face provides convenient access to the methodology and allows for a flexible model
specification.
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Table 1 Impact of rounding on computing times (in minutes) in the different simulation scenarios.

Digits 1 2 3 4 5
scenario (a) 3:11 7:11 9:56 10:03 10:28
scenario (b) 3:25 7:47 10:22 10:41 10:53
scenario (c) 6:12 14:24 19:41 20:14 20:21
scenario (c’) 5:24 13:50 19:12 20:17 20:25

The computational bottleneck is simulating the regression coefficients of the pe-
nalized splines, in particular for the covariates measured with error. The first difficulty
arises from the fact that for simulating from a K-dimensional multivariate Gaussian
distribution, a K-dimensional system of equations has to be solved in each iteration.
Replacing the simultaneous update with a single move algorithm would speed up
computation but comes at the price of deteriorated mixing and convergence due to
the ignored correlation of the elements in β j. We therefore make use of sparse matrix
computations, since the precision matrix P j is a band matrix, see Rue (2001) and
Brezger & Lang (2006) for details. This approach has the advantage to provide fast
computations while keeping the correlation information included in the proposals.

The second difficulty is specific to the imputation of true covariate values: In each
iteration new values are sampled, requiring the re-evaluation of the design matrix
X j. To shorten computation times, we consider two tricks: Firstly, instead of storing
the complete design matrix, we only store the relevant part of it. Note that B-splines
form a local basis such that in each row of X j there are only l + 2 non-zero entries
(where l denotes the degree of the spline). Since we chose l = 1 as the standard
in measurement error correction, there are actually only three values to be stored
instead of K which is typically in the range of 20 to 40. Furthermore, only rows of
the design matrix corresponding to distinct observed values of x j have to be stored
in combination with an index vector associating the observations with the different
values for x j. This storage scheme allows for a further reduction of computing times
in a second step: Instead of storing the exact covariate values in double precision, we
round them to a user-specified number of decimal places. As a consequence, several
formerly distinct covariate values now coincide so that only a smaller number of
rows of X j has to be stored and re-computed in each iteration. In our simulations and
applications we used two decimal places, a choice that lead to only negligible changes
in the results while making a significant change in computing times in exploratory
analyses. Table 1 provides some exemplary results for different decimal places and
the simulation scenarios considered in the following section. There obviously is a
tremendous gain in computing times for small decimal places, while computing times
level off when using a large precision corresponding to almost no rounding.

Note also that due to the modular structure of MCMC algorithms, computing time
only grows linearly when, for example, increasing the number of covariates subject
to measurement error. Hence, computations with two covariates measured with error
take approximately twice as long as computations with one covariate, which is in
contrast to approaches where a decomposition of the correction problem in separate
sub-problems is not feasible.
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4 Simulations

4.1 Simulation Setup

To assess the properties of the proposed measurement error correction scheme and
the validity of our implementation, we performed an extensive simulation study
investigating model scenarios of increasing complexity:

(a) One covariate with measurement error:

Observation model: ηi = sin(xi)+ viγ,
Measurement error model: wi|xi ∼ N(xi,1),
Further settings: xi ∼ N(0,1), vi ∼ N(0,1), γ = 1.

(b) One covariate measured with error in combination with a further nonparametric
effect:

Observation model: ηi = sin(xi1)+ x2
i2 + viγ,

Measurement error model: wi|xi ∼ N(xi,1),
Further settings: xi1 ∼ N(0,1), xi2 ∼ U(−1,1), vi ∼ N(0,1), γ = 1.

(c) Two covariates measured with error

Observation model: ηi = sin(xi1)+ 0.2x2
i2 + viγ

Measurement error model: wi1|xi1 ∼ N(xi1,1), wi2|xi2 ∼ N(xi2,0.64),
Further settings: xi1 ∼ N(0,1), xi2 ∼ N(0,1), vi ∼ N(0,1), γ = 1.

Model (a) is the most simple one, where only one covariate is measured with error
and the predictor contains only one single additional parametric covariate. In model
(b), a second nonparametric effect is added to the predictor, but the corresponding
covariate is observed exactly. Finally, in scenario (c), the covariate associated with
the second nonparametric effect is also measured with error. Since scenario (c) is
the most demanding one, we re-ran it with two replicated measurements on each of
the covariates x1 and x2 to get an idea of the performance improvement by repeated
observations on the measurement equation:

(c’) Two covariates measured with error in two replications

Observation model: ηi = sin(xi1)+ 0.2x2
i2 + viγ

Measurement error model: w(m)
i1 ∼ N(xi1,1), w(m)

i2 ∼ N(xi2,0.64), m = 1,2,
Further settings: xi1 ∼ N(0,1), xi2 ∼ N(0,1), vi ∼ N(0,1), γ = 1.

For each of the scenarios, we simulated data sets with responses from the following
four types of responses:

(a) Binomial distribution with three replicated binary observations, i.e. yi∼B(3,πi),
πi = exp(ηi)/(1 + exp(ηi)).
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(b) Binomial distribution with ten replicated binary observations, i.e. yi ∼B(10,πi),
πi = exp(ηi)/(1 + exp(ηi)).

(c) Poisson distribution, i.e. yi ∼ Po(λi), λi = exp(ηi).
(d) Exponentially distributed duration times Ti ∼ Exp(λi), λi = exp(ηi) subject to

independent uniform censoring Ci ∼ U(0,50) resulting in an average censoring
rate of 10%. The observed data is given by ti = min(Ti,Ci), δi = 1(Ti ≤Ci).

For each response and each scenario, the sample size was fixed at n = 500 and the
number of simulation replications was given by 100.

To benchmark the performance of the correction method, we did not only consider
estimates from the imputation scheme, but also estimates based on the true covariate
values and naive estimation based on the average of the measurements with error:

(a) Exact estimation: Use the true covariate values xi j in the estimation procedure.
(b) Naive estimation: Use the average of repeated measurements w̄i j = ∑w(m)

i j /M
as covariate.

(c) Corrected estimation: Impute the estimated true covariate values with MCMC.

The results from the exact and the naive estimation approach can serve as an upper
and a lower bound for the performance of the corrected results.

4.2 Simulation Results

Figures 1 visualizes average estimates for the sine curve in scenario (a). As expected,
the estimated curve in the naive approach is far too flat and almost equals a linear fit.
In contrast, using the true covariate values leads to a satisfactory reproduction of the
curve over a large part of the covariate domain. Note that only a very small number
of observations is located outside the interval [−2,2] and therefore the deterioration
of the average estimates in this area is simply due to a lack of data. MCMC-based
measurement error correction falls in between the naive and the exact estimation
results but indeed shows considerable correction. This becomes even more obvious
from considering the MSEs (Figure 2), where the corrected results clearly outperform
results from naive estimation. The improvement is smallest in the case of a binomial
response with only three replications, where not too much information from the
likelihood is available. For all other types of responses with increased likelihood
information, the correction improves and the MSEs are closer to exact information
than when using naive estimation.

When including an additional nonparametric effect to the model, results for the
sine curve actually remain practically the same and are therefore not presented. To
assess the impact on the effects without measurement error, Figure 3 shows boxplots
of the MSE for binomial responses with ten replications and for survival times.
Obviously there is some impact of measurement error also on the effects of covariates
observed exactly but the change is much smaller compared to the effect on the sine
curve. The most significant change is observed for survival times, and in this case
MCMC-based imputation also yields more correction than for Binomial responses.
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Fig. 1 Average function estimates for sin(x) for all four response types in scenario (a).

When considering two covariates with measurement error (Figure 4), results re-
main qualitatively the same as with one covariate: Quality of the estimates consider-
ably increases when applying the proposed correction scheme with larger impact in
case of response types with more information. Note, that the signal to noise ratio is
smaller for the quadratic functions than for the sine curve and therefore correction is
generally smaller for x2 in terms of the bias although comparable improvements are
achieved in terms of MSE. When including a second replication on the covariates
measured with error, results improve even further (although of course also the results
from the naive approach improve). In this case (Figure 5), the corrected estimates
even start to indicate the local minimum and maximum of the sine curve, although
the data in this area already get quite sparse. Similarly, the reproduction of the square
function is now very close to the true function. In addition, the boxplots indicate that
the corrected estimates perform almost as well as the estimates obtained with the
true covariate values.
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Fig. 6 Average coverage probabilities of 80% credible intervals for different effects in scenario (a)
(upper left), scenario (b) (upper right), scenario (c) (lower left) and scenario (c’) (lower right).

Finally, Figure 6 visualizes average coverage probabilities for different effects
in the four scenarios. Again we find the impact of flattened estimation when using
the naive approach: The empirical coverages are far too low not only for the effects
of covariates measured with error but also for the square function in scenario (b).
In contrast, the coverages of the corrected estimates are on average close to the
nominal value all over the relevant covariate domain. Only at the boundaries, where
data become sparse, the empirical coverage decreases. Note also, that using the true
covariate values actually leads to somewhat too conservative credible intervals – an
artefact that is found frequently in the context of Bayesian credible intervals.

In summary, our simulations allow the following conclusions to be drawn:

• MCMC-based imputation of the true covariate values allows to correct for the
adverse effects of covariates measured with error. The correction effect is particu-
larly expressed for the nonparametric effects of the covariates with measurement
error while the amount of correction varies for effects of covariates observed
exactly.

• In our simulation, measurement error had the expected impact on naive nonpara-
metric regression results, i.e. nonparametric effects are underestimated and far
too smooth.

• Ignoring measurement error also has dramatic impact on the coverage properties
of the credible intervals.
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We confirmed our findings in a second simulation study with smaller measurement
error variances with practically the same results (not shown).

5 Incident Heart Failure in the ARIC Study

Our proposed methodology was motivated by the analysis of time to event data from
the Atherosclerosis Risk in Communities (ARIC) study. ARIC is a large multipurpose
epidemiological study conducted in four US communities (Forsyth County, NC;
suburban Minneapolis, MN; Washington County, MD; and Jackson, MS). From
1987 through 1989, 15,792 male and female volunteers aged 45 through 64 were
recruited from these communities for a baseline and three subsequent visits. The
baseline visit (visit 1) included at-home interviews, laboratory measurements, and
clinic examinations. The study participants returned for additional visits in 1990-92
(visit 2), 1993-95 (visit 3), and 1996-98 (visit 4). Details of the enrollment process and
the study procedures are fully described by The ARIC INVESTIGATORS (1989).

Time to event data is observed continuously for multiple end points, but we focus
here on the event detection of heart failure (HF), the inability of the heart to pump
blood with normal efficiency. After exclusion of 752 participants with prevalent
heart failure, 14,857 ARIC study participants were followed for incident heart failure
hospitalization or death from 1987 to 2002. During a mean follow-up of 13.2 years,
1,193 participants developed HF (Kottgen et al. 2007).

The relationship between various risk factors, such as race, age or sex, and pro-
gression time to heart failure may be confounded by a series of baseline covariates.
Two such important confounders are the baseline systolic blood pressure (SBP) and
the baseline kidney function as measured by the glomerular filtration rate (GFR).
Both SBP and GFR are measured with moderate error and their corresponding
dose/response functions are expected to be non-linear. Taking into account these
features of the data is necessary for satisfactory inference and can be handled using
the methodology and software introduced in this paper. A reasonable approach to
statistical modeling of the present data is to consider a survival model for time to
heart failure with the following log-hazard function

log{λ0(t)}+ f1{log(SBP−50)}+ f2{log(GFR)}+ γ1sex+ γ2AA+ γ3age, (2)

where λ0(t) is the baseline hazard, f1(·) and f2(·) are unspecified smooth functions
modeled as penalized splines, sex is a 0/1 variable with 1 corresponding to males,
AA is a 0/1 variable with 1 corresponding to African Americans, and age being
the baseline age. For f1(·) and f2(·) we used degree 1 penalized B-splines with 30
equidistant knots. We also employed quantile based knots but found that they produce
very wiggly estimates both with and without measurement error correction in this
example. This is probably due to the concentration of observations in a smaller part
of the domain, that is more prevalent in the large data set of the application than in
the comparable small simulation data sets.
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Table 2 Corrected and naive posterior mean estimates, and 80% credible intervals for the parametric
effects

corrected naive
γ̂ 80% ci γ̂ 80% ci

intercept -8.577 -9.264 -7.938 -8.861 -9.402 -8.314
male 0.419 0.341 0.495 0.421 0.340 0.506

african american 0.355 0.254 0.451 0.350 0.262 0.440
age at first visit 0.083 0.075 0.091 0.081 0.074 0.089

In model (2), SBP represents the true long term average SBP and GFR represents
the true filtration rate of the kidney at the time it was measured. Both variables are
measured with error and replication studies are used to estimate the variance of the
error process. To obtain the measurement error variance of log(SBP− 50) we use
a replication study from the Framingham Heart Study described in Carroll et al.
(2006), pages 112-114. In short, the Framingham study consists of a series of exams
taken two years apart. The estimated measurement error using exams 2 and 3 is
τ̂2

SBP = 0.01259, which in the ARIC study corresponds to a reliability of 81%. Thus,
in our model log(SBP− 50) is the true long term average log(SBP− 50) over a 2
year period.

There are important technical differences between measuring blood pressure with
a sphygmomanometer and measuring the filtration rate of the kidney. Indeed, GFR
can only be obtained through a long and awkward procedure that is impractical for
routine analyses, as required by medical practice and large epidemiological studies.
Instead, the estimated GFR (eGFR) is used in practice and is obtained from a predic-
tion equation based on creatinine, gender and age (Hsu et al. (2005), Kottgen et al.
(2007), Cheng & Crainiceanu (2009)). More precisely, the eGFR is predicted from
the following equation:

eGFR = 186.3∗(Serum Creatinine)−1.154∗(Age)−0.203∗(0.742)(1−sex)∗(1.21)(AA).

Thus, the eGFR measurement contains at least two non-ignorable sources of error:
1) the biological variability unaccounted for by the prediction equation; and 2) the
laboratory variability associated with urine serum creatinine. To assess the variability
of eGFR, a replication study was conducted in the Third National Health and Nutrition
Examination Survey (NHANES III). Duplicate eGFR measurements were obtained
for each of 513 participants aged 45 to 64 with eGFR ≥ 60 from two visits at a
median of 17 days apart (Coresh et al. 2002). We assumed a classical measurement
error model for log(eGFR) and calculated the measurement error variance as τ̂2

u =
1
2 ∑

513
i=1(wi1 −wi2)2, where wim is the observed log(eGFR) for subject i at visit m.

The estimated measurement error variance was τ̂2
u = 0.009743 corresponding to a

reliability of 0.80 in the ARIC data set and will be treated as a constant in our
subsequent analyses.

Figure 7 and Table 2 summarize the results of both a naive and a measurement
error corrected analysis. While the estimated baseline hazard rate remains practically
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Fig. 7 Corrected and naive posterior mean estimates for the nonparametric effects of eGFR and
log(SBP-50), and the log-baseline hazard rate with 80% pointwise credible intervals.

unchanged when correcting for measurement error, there are obvious changes in the
results for SBP and eGRF. In particular, the local minima at 4.5 (eGFR) and 4.0
(SBP) are underestimated due to oversmoothing in the naive analysis. This effect is
expressed more clearly for eGFR where the reliability is smaller and therefore the
(relative) measurement error is larger.

Since the data set of the application is much larger than the data sets employed in
the simulation, it is also worthwhile to consider the impact of rounding on the com-
puting times again. With two valid decimal places, the corrected analysis (28,000
MCMC iterations on a dual core processor PC with 3Ghz CPU) including the im-
putation for two covariates took about 99 minutes, which is very competitive taking
the complexity of the model and size of the data set into account. When increasing
the number of valid decimal places, computing times increase to 215 minutes for 4
decimal places with visually indistinguishable results.
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6 Summary

We have introduced a flexible Bayesian imputation scheme for correcting for mea-
surement error in a large class of semiparametric regression models including models
for the expectation in exponential family regression and models for the hazard rate
in the case of survival data. The model specification permits quite flexible structures
involving several nonparametric effects and several covariates measured with error.
A variety of situations has been studied in a simulation study, indicating that the pro-
posed algorithm works well even in complicated settings. The approach has been im-
plemented in a user-friendly and efficient software package, allowing for easy access
to the new methods. Moreover, the software supports a number of extended model-
ing possibilities not considered in this paper. To be more specific, varying-coefficient
terms, interaction surfaces, spatial effects, or time-varying effects in survival can be
augmented to the model specification if needed. This large flexibility of the model
class is available due to the modular structure of MCMC simulations that makes all
modeling components introduced previously to Bayesian semiparametric regression
readily available as components in the measurement error correction approach.

A frequent drawback of approaches based on MCMC simulations are long com-
putation times and difficulties in mixing and convergence. We circumvent both by
considering a specialized implementation that relies on numerically fast sparse ma-
trix computations in combination with efficient storage and rounding schemes. In
addition, MCMC makes model combinations accessible that would require quite
involved methodological treatment and computations in a frequentist approach.
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