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Abstract The paper is concerned with Bayesian analysis under prior-data conflict, i.e.
the situation when observed data are rather unexpected under the prior (and the sample
size is not large enough to eliminate the influence of the prior). Two approaches for
Bayesian linear regression modeling based on conjugate priors are considered in
detail, namely the standard approach also described in Fahrmeir et al. (2007) and
an alternative adoption of the general construction procedure for exponential family
sampling models. We recognize that – in contrast to some standard i.i.d. models
like the scaled normal model and the Beta-Binomial / Dirichlet-Multinomial model,
where prior-data conflict is completely ignored – the models may show some reaction
to prior-data conflict, however in a rather unspecific way. Finally we briefly sketch
the extension to a corresponding imprecise probability model, where, by considering
sets of prior distributions instead of a single prior, prior-data conflict can be handled
in a very appealing and intuitive way.

Key words: Linear regression; conjugate analysis; prior-data conflict; imprecise
probability

1 Introduction

Regression analysis is a central tool in applied statistics that aims to answer the
omnipresent question how certain variables (called covariates / confounders, re-
gressors, stimulus or independent variables, here denoted by x) influence a certain
outcome (called response or dependent variable, here denoted by z). Due to the
complexity of real-life data situations, basic linear regression models, where the
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expectation of the outcome zi simply equals the linear predictor xTiβ , have been
generalized in numerous ways, ranging from generalized linear models (Fahrmeir
& Tutz (2001), see also Fahrmeir & Kaufmann (1985) for classical work on as-
ymptotics) for non-normal distributions of zi | xi, or linear mixed models allow-
ing the inclusion of clustered observations, over semi- and nonparametric models
(Kauermann et al. 2009, Fahrmeir & Raach 2007, Scheipl & Kneib 2009), up to
generalized additive (mixed) models and structured additive regression (Fahrmeir &
Kneib 2009, Fahrmeir & Kneib 2006, Kneib & Fahrmeir 2007).

Estimation in such highly complex models may be based on different estima-
tion techniques such as (quasi-) likelihood, general estimation equations (GEE) or
Bayesian methods. Especially the latter offer in some cases the only way to attain a
reasonable estimate of the model parameters, due to the possibility to include some
sort of prior knowledge about these parameters, for instance by “borrowing strength”
(e.g., Higgins & Whitehead 1996).

The tractability of large scale models with their ever increasing complexity of the
underlying models and data sets should not obscure that still many methodological
issues are a matter of debate. Since the early days of modern Bayesian inference one
central issue has, of course, been the potentially strong dependence of the inferences
on the prior. In particular in situations where data is scarce or unreliable, the actual
estimate obtained by Bayesian techniques may rely heavily on the shape of prior
knowledge, expressed as prior probability distributions on the model parameters.
Recently, new arguments came into this debate by new methods for detecting and
investigating prior-data conflict (Evans & Moshonov 2006, Bousquet 2008), i.e.
situations where “. . . the observed data is surprising in the light of the sampling
model and the prior, [so that] . . . we must be at least suspicious about the validity of
inferences drawn.” (Evans & Moshonov 2006, p. 893)

The present contribution investigates the sensitivity of inferences on potential
prior-data conflict: What happens in detail to the posterior distribution and the es-
timates derived from it if prior knowledge and what the data indicates are severely
conflicting? If the sample size n is not sufficiently large to discard the possibly erro-
neous prior knowledge and thus to rely on data only, prior-data conflict should affect
the inference and should – intuitively and informally – result in an increased degree
of uncertainty in posterior inference. Probably most statisticians would thus expect
a higher variance of the posterior distribution in situations of prior-data conflict.

However, this is by no means automatically the case, in particular when adopting
conjugate prior models, which are often used when data are scarce, where only
strong prior beliefs allow for a reasonably precise answer in inference. Two simple
and prominent examples of complete insensitivity to prior-data conflict are recalled
in Section 2: i.i.d. inferences on the mean of a scaled normal distribution and on the
probability distribution of a categorical variable by the Dirichlet-Multinomial model.

Sections 3 and 4 extend the question of (in)sensitivity to prior-data to regression
models. We confine attention to linear regression analysis with conjugate priors, be-
cause – contrary to the more advanced regression model classes – the linear model
still allows a fully analytical access, making it possible to understand potential re-
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strictions imposed by the model in detail. We discuss and compare two different
conjugate models:

(i) the standard conjugate prior (SCP, Section 3) as described in Fahrmeir et al.
(2007) or, in more detail, in O’Hagan (1994); and

(ii) a conjugate prior, called “canonically constructed conjugate prior” (CCCP,
Section 4) in the following, which is derived by a general method used to construct
conjugate priors to sample distributions that belong to a certain class of exponential
families, described, e.g., in Bernardo & Smith (1994).

Whereas the former is the more general prior model, allowing for a very flexible
modeling of prior information (which might be welcome or not), the latter allows only
a strongly restricted covariance structure for β , however offering a clearer insight in
some aspects of the update process.

In a nutshell, the result is that both conjugate models do react to prior-data conflict
by an enlarged factor to the variance-covariance matrix of the distribution on the
regression coefficientsβ ; however, this reaction is unspecific, as it affects the variance
and covariances of all components of β in a uniform way – even if the conflict occurs
only in one single component.

Probably such an unspecific reaction of the variance is the most a (classical)
Bayesian statistician can hope for, and traditional probability theory based on precise
probabilities can offer. Indeed, Kyburg (1987) notes, that

[. . . ] there appears to be no way, within the theory, of distinguishing between the cases in
which there are good statistical grounds for accepting a prior distribution, and cases in which
the prior distribution reflects merely ungrounded personal opinion.

and the same applies, in essence, to the posterior distribution.
A more sophisticated modeling would need a more elaborated concept of impreci-

sion than is actually provided by looking at the variance (or other characteristics) of a
(precise) probability distribution. Indeed, recently the theory of imprecise probabili-
ties (Walley 1991, Weichselberger 2001) is gaining strong momentum. It emerged as
a general methodology to cope with the multidimensional character of uncertainty,
also reacting to recent insights and developments in decision theory (see Hsu et al.
(2005) for a neuro science corroboration of the constitutive difference of stochastic
and non-stochastic aspects of uncertainty in human decision making, in the tradition
of Ellsberg’s (1961) seminal experiments) and artificial intelligence, where the ex-
clusive role of probability as a methodology for handling uncertainty has eloquently
been rejected (Klir & Wierman 1999):

For three hundred years [. . . ] uncertainty was conceived solely in terms of probability theory.
This seemingly unique connection between uncertainty and probability is now challenged
[. . . by several other] theories, which are demonstrably capable of characterizing situations
under uncertainty. [. . . ]

[. . . ] it has become clear that there are several distinct types of uncertainty. That is, it was
realized that uncertainty is a multidimensional concept. [. . . That] multidimensional nature
of uncertainty was obscured when uncertainty was conceived solely in terms of probability
theory, in which it is manifested by only one of its dimensions.

Current applications include, among many other, risk analysis, reliability mod-
eling and decision theory, see de Cooman et al. (2007), Augustin et al. (2009) and
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Coolen-Schrijner et al. (2009) for recent collections on the subject. As a welcome
byproduct imprecise probability models also provide a formal superstructure on
models considered in robust Bayesian analysis (Rı́os Insua & Ruggeri 2000) and fre-
quentist robust statistic in the tradition of Huber & Strassen (1973), see also Augustin
& Hable (2009) for a review.

By considering sets of distributions, and corresponding interval-valued proba-
bilities for events, imprecise probability models allow to express the quality of the
underlying knowledge in an elegant way. The higher the ambiguity, the larger c.p. the
sets. The traditional concept of probability is contained as a special case, appropriate
if and only if there is perfect stochastic information. This methodology allows also
for a natural handling of prior-data conflict. If prior and data are in conflict, the set
of posterior distributions are enlarged, and inferences become more cautious.

In Section 5 we briefly report that the CCCP model has a structure that allows a
direct extension to an imprecise probability model along the lines of Quaeghebeur &
de Cooman’s (2005) imprecise probability models for i.i.d. exponential family mod-
els. Extending the models further by applying arguments from Walter & Augustin
(2009) yields a powerful generalization of the linear regression model that is also
capable of a component-specific reaction to prior-data conflict.

2 Prior-data Conflict in the i.i.d. Case

As a simple demonstration that conjugate models might not react to prior-data conflict
reasonably, inference on the mean of data from a scaled normal distribution and
inference on the category probabilities in multinomial sampling will be described in
the following examples 1 and 2.

Example 1 (Samples from a scaled Normal distribution N(μ ,1)). The conjugate dis-
tribution to an i.i.d.-sample x of size n from a scaled normal distribution with mean μ ,
denoted by N(μ ,1) is a normal distribution with mean μ(0) and variance σ (0)21. The
posterior is then again a normal distribution with the following updated parameters:

μ (1) =
1
n

1
n +σ (0)2 μ

(0) +
σ (0)2

1
n +σ (0)2 x̄ =

1
σ (0)2

1
σ (0)2 + n

μ (0) +
n

1
σ (0)2 + n

x̄ (1)

σ (1)2
=
σ (0)2 · 1

n

σ (0)2 + 1
n

=
1

1
σ (0)2 + n

. (2)

1 Here, and in the following, parameters of a prior distribution will be denoted by an upper index
(0), whereas parameters of the respective posterior distribution by an upper index (1).
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The posterior expectation (and mode) is thus a simple weighted average of the prior
mean μ (0) and the estimation from data x̄, with weights 1

σ (0)2 and n, respectively.2

The variance of the posterior distribution is getting smaller automatically.
Now, in a situation where data is scarce but with prior information one is very

confident about, one would choose a low value for σ (0)2
, thus resulting in a high

weight for the prior mean μ(0) in the calculation of μ (1). The posterior distribution
will be centered around a mean between μ(0) and x̄, and it will be even more pointed
as the prior, because σ (1)2

is considerably smaller than σ (0)2
as the factor to σ (0)2

in (2) is quite smaller than one.
The posterior basically would thus say that one can be quite sure that the mean

μ is around μ (1), regardless if μ (0) and x̄ were near to each other or not, where the
latter would be a strong hint on prior-data conflict. The posterior variance does not
depend on this; the posterior distribution is thus insensitive to prior-data conflict.

Even if one is not so confident about one’s prior knowledge and thus assigning a
relatively large variance to the prior, the posterior mean is less strongly influenced
by the prior mean, but the posterior variance still is getting smaller no matter if the
data support the prior information or not.

The same insensitivity appears also in the widely used Dirichlet-Multinomial model:

Example 2 (Samples from a Multinomial distribution M(θ )). Given a sample of size
n from a multinomial distribution with probabilities θ j for categories / classes j =
1, . . . ,k, subsumed in the vectorial parameterθ (with∑k

j=1 θ j = 1), the conjugate prior
on θ is a Dirichlet distribution Dir(α(0)). Written in terms of a reparameterization
used e.g. in Walley (1996),α(0)

j = s(0) ·t(0)
j such that∑k

j=1 t(0)
j = 1, (t(0)

1 , . . . ,t(0)
k )T =:

t(0), it holds that the components of t(0) have a direct interpretation as prior class
probabilities, whereas s(0) is a parameter indicating the confidence in the values of
t(0), similar to the inverse variance as in Example 1, and the quantity n(0) in Section
4.3

The posterior distribution, obtained after updating via Bayes’ rule with a sample
vector (n1, . . . ,nk), ∑k

j=1 n j = n collecting the observed counts in each category, is a
Dirichlet distribution with parameters

t(1)
j =

s(0)

s(0) + n
t(0)

j +
n

s(0) + n
· n j

n
, s(1) = s(0) + n .

The posterior class probabilities t(1) are calculated as a weighted mean of the prior
class probabilities and n j

n , the proportion in the sample, with weights s(0) and n,
respectively; the confidence parameter is incremented by the sample size n.

Also here, there is no systematic reaction to prior-data conflict. The posterior
variance for each class probability θ j calculates as

2 The reason for using these seemingly strange weights will become clear later.
3 If θ ∼ Dir(s, t), then V(θ j) = t j(1−t j)

s+1 . If s is high, then the variances of θ will become low, thus
indication high confidence in the chosen values of t .
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V(θ j | n) =
t(1)

j (1− t(1)
j )

s(1) + 1
=

t(1)
j (1− t(1)

j )

s(0) + n + 1
.

The posterior variance depends heavily on t(1)
j (1− t(1)

j ), having values between 0
and 1

4 , which do not change specifically to prior data conflict. The denominator in-
creases from s(0) +1 to s(0) +n+1. Imagine a situation with strong prior information
suggesting a value of t(0)

j = 0.25, so one could choose s(0) = 5, resulting in a prior
class variance of 1

32 . When observing a sample of size n = 10 all belonging to class
j (thus n j = 10), being in clear contrast to the prior information, the posterior class
probability is t(1)

j = 0.75, resulting the enumerator value of the class variance to re-
main constant. Therefore, due to the increasing denominator, the variance decreases
to 3

256 , in spite of the clear conflict between prior and sample information. Of course,
one can construct situations where the variance increases, but this happens only in
case of an update of t(0)

j towards 1
2 . If t(0)

j = 1
2 , the variance will decrease for any

degree of prior-data conflict.

3 The Standard Approach for Bayesian Linear Regression (SCP)

The regression model is noted as follows:

zi = xTiβ + εi , xi ∈ IRp , β ∈ IRp , εi ∼ N(0,σ2) ,

where zi is the response, xi the vector of the p covariates for observation i, and β is
the p-dimensional vector of adjacent regression coefficients.

The vector of regressors xi for each observation i is generally considered to be non-
stochastic, thus it holds that zi ∼N(xTiβ ,σ2), or, for n i.i.d. samples, z∼N(Xβ ,σ2I),
where z ∈ IRn is the column vector of the responses zi, and X ∈ IRn×p is the design
matrix. Without loss of generality, one can either assume xi1 = 1 ∀i such that the first
component of β is the intercept parameter4, or consider only centered responses z
and standardized covariates to make the estimation of an intercept unnecessary.

In Bayesian linear regression analysis, the distribution of the response z is inter-
preted as a distribution of z given the parameters β and σ2, and prior distributions
on β and σ2 must be considered. For this, it is convenient to split the joint prior on
β and σ2 as p(β , σ2) = p(β | σ2)p(σ2) and to consider conjugate distributions for
both parts, respectively.

In the literature, the proposed conjugate prior for β | σ2 is a normal distribution
with expectation vector m(0) ∈ IRp and variance-covariance matrix σ2MMM(0), where
MMM(0) is a symmetric positive definite matrix of size p× p. The prior on σ2 is an
inverse gamma distribution (i.e., 1/σ2 is gamma distributed) with parameters a(0)

and b(0), in the sense that p(σ−2) ∝ (σ−2)a(0)+1 exp{−b(0)σ−2}. The joint prior on

4 usually denoted by β0; however, we stay with the numbering 1, . . . , p for the components of β .
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θ = (β , σ2)T is then denoted as a normal – inverse gamma (NIG) distribution. The
derivation of this prior and the proof of its conjugacy can be found, e.g., in Fahrmeir
et al. (2007) or in O’Hagan (1994), the latter using a different parameterization of
the inverse gamma part, where a(0) = d

2 and b(0) = a
2 .

For the prior model, it holds thus that (if a(0) > 1 resp. a(0) > 2)

E[β | σ2] = m(0) , V(β | σ2) = σ2MMM(0) ,

E[σ2] =
b(0)

a(0)−1
, V(σ2) =

(b(0))2

(a(0)−1)2(a(0)−2)
.

(3)

As σ2 is considered as nuisance parameter, the unconditional distribution on β is of
central interest because it subsumes the shape of prior knowledge on β as expressed
by the choice of parameters m(0), MMM(0), a(0) and b(0). It can be shown that p(β )
is a multivariate noncentral t distribution with 2a(0) degrees of freedom, location
parameter m(0) and dispersion parameter b(0)

a(0) MMM(0), such that

E[β ] = m(0) , V(β ) =
b(0)

a(0)−1
MMM(0) = E[σ2]MMM(0) . (4)

The joint posterior distribution p(θ | z), due to conjugacy, is then again a normal –
inverse gamma distribution with the updated parameters

m(1) =
(

MMM(0)−1
+ XTX

)−1(
MMM(0)−1

m(0) + XTz
)

,

MMM(1) =
(

MMM(0)−1
+ XTX

)−1
,

a(1) = a(0) +
n
2

, b(1) = b(0) +
1
2

(
zTz+ m(0)TMMM(0)−1

m(0)−m(1)TMMM(1)−1
m(1)

)
.

The properties of the posterior distributions can thus be analyzed by inserting the
updated parameters into (3) and (4).

3.1 Update of β | σ2

The normal distribution part of the joint prior is updated as follows:

E[β | σ2,z] = m(1) =
(
MMM(0)−1

+ XTX
)−1(MMM(0)−1

m(0) + XTz
)

= (I−AAA)m(0) + AAA β̂LS ,

where AAA =
(
MMM(0)−1

+XTX
)−1XTX. The posterior estimate of β |σ2 thus calculates as

a matrix-weighted mean of the prior guess and the least-squares estimate. The larger
the diagonal elements of MMM(0) (i.e., the weaker the prior information), the smaller
the elements of MMM(0)−1

and thus the ‘nearer’ is A to the identity matrix, so that the
posterior estimate is nearer to the least-squares estimate.

The posterior variance of β | σ2 calculates as
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V(β | σ2,z) = σ2MMM(1) = σ2
(

MMM(0)−1
+ XTX

)−1
.

As the elements of MMM(1)−1
get larger with respect to MMM(0)−1

, the elements of MMM(1)

will, roughly speaking, become smaller than those of MMM(0), so that the variance of
β | σ2 decreases.

Therefore, the updating of β | σ2 is obviously insensitive to prior-data conflict,
because the posterior distribution will not become flatter in case of a large distance
between E[β ] and β̂LS. Actually, as O’Hagan (1994) derives, for any φ = aTβ , i.e.,
any linear combination of elements of β , it holds that V(φ | σ2,z) ≤ V(φ | σ2),
becoming a strict inequality if X has full rank. In particular, the variance of each βi
decreases automatically with the update step.

3.2 Update of σ2

It can be shown (O’Hagan 1994) that

E[σ2 | z] =
2a(0)−2

2a(0) + n−2
E[σ2]+

n− p
2a(0) + n−2

σ̂2
LS +

p
2a(0) + n−2

σ̂2
PDC , (5)

where σ̂2
LS = 1

n−p(z−Xβ̂LS)T(z−Xβ̂LS) is the least-squares based estimate for σ2,

and σ̂2
PDC = 1

p(m(0)− β̂LS)T
(
MMM(0) + (XTX)−1)−1(m(0)− β̂LS). For the latter it holds

that E[σ̂2
PDC | σ2] = σ2; the posterior expectation of σ2 calculates thus as a weighted

mean of three estimates:
(i) the prior expectation for σ2,
(ii) the least-squares estimate, and
(iii) an estimate based on a weighted squared difference of the prior mean and the

least-squares estimate for β .
The weights depend on a(0) (one prior parameter for the inverse gamma part),

the sample size n, and the dimension of β , respectively. The role of the first weight
gets more plausible when remembering the formula for the prior variance of σ2 in
(3), where a(0) appears in the denominator. A larger value of a(0) means thus smaller
prior variance, in turn giving a higher weight forE[σ2] in the calculation ofE[σ2 | z].
The weight to σ̂2

LS corresponds to the classical degrees of freedom, n− p. With the
the sample size approaching infinity, this weight will dominate the others, such that
E[σ2 | z] approaches σ̂2

LS.
Similar results hold for the posterior mode instead of the posterior expectation.
Here, the estimate σ̂2

PDC allows some reaction to prior-data conflict: it measures
the distance between m(0) (prior) and β̂LS (data) estimates for β , with a large distance
resulting basically in a large value of σ̂2

PDC and thus an enlarged posterior estimate
for σ2. The weighting matrix for the distances is playing an important role as well.
The influence of MMM(0) is as follows: for components of β one is quite certain about the
assignment of m(0), the respective diagonal elements of MMM(0) will be low, so that these
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diagonal elements of the weighting matrix will be high. Therefore, large distances
in these dimensions will increase t strongly. An erroneously high confidence in the
prior assumptions on β is thus penalized by an increasing posterior estimate for σ2.
The influence of XTX interprets as follows: covariates with a low spread in x-values,
giving an unstable base for the estimate β̂LS, will result in low diagonal elements
of XTX. Via the double inverting, those diagonal elements of the weighting matrix
will remain low and thus give the difference a low weight. Therefore, σ̂2

PDC will not
excessively increase due to a large difference in dimensions where the location of
β̂LS is to be taken cum grano salis. As to be seen in the following subsection, the
behavior of E[σ | z] is of high importance for posterior inferences on β .

3.3 Update of β

The posterior distribution of β is again a multivariate t, with expectation E[β | z] =
E
[
E[β | σ2,z] | z

]
= m(1) (as described in Section 3.1) and variance

V[β | z] =
b(1)

a(1)−1
MMM(1) = E[σ2 | z]MMM(1) (6)

=
(

2a(0)−2
2a(0) + n−2

E[σ2]+
n− p

2a(0) + n−2
σ̂2

LS +
p

2a(0) + n−2
σ̂2

PDC

)(
MMM(0)−1

+ XTX
)−1

=
(

2a(0)−2
2a(0) + n−2

E[σ2]+
n− p

2a(0) + n−2
σ̂2

LS +
p

2a(0) + n−2
σ̂2

PDC

)
·
(

MMM(0)−MMM(0)XT(I+ XMMM(0)XT)−1XMMM(0)
)

,

not being directly expressible as a function of E[σ2]MMM(0), the prior variance of β .
Due to the effect of E[σ2 | z], the posterior variance-covariance matrix of β can

increase in case of prior data conflict, if the rise of E[β | z] (due to an even stronger
rise of t) can overcompensate the decrease in the elements of MMM(1). However, we see
that the effect of prior-data conflict on the posterior variance of β is globally and
not component-specific; it influences the variances for all components of β to the
same amount even if the conflict was confined only to some or even just one single
component. Taking it to the extremes, if the prior assignment m(0) was (more or less)
correct in all but one component, with that one being far out, the posterior variances
will increase for all components, also for the ones with prior assignments that have
turned out to be basically correct.



68 G. Walter & T. Augustin

4 An Alternative Approach for Conjugate Priors in Bayesian
Linear Regression (CCCP)

In this section, a prior model for θ = (β , σ2) will be constructed along the general
construction method for sample distributions that form a linear, canonical exponential
family (see, e.g., Bernardo & Smith 1994). The method is typically used for the i.i.d.
case, but the likelihood arising from z ∼ N(Xβ , σ2I) will be shown to follow the
specific exponential family form as well. The canonically constructed conjugate prior
(CCCP) model will also result in a normal - inverse gamma distribution, but with
a fixed variance - covariance structure. The CCCP model is thus a special case of
the SCP model, which – as will be detailed in this section – offers some interesting
further insights into the structure of the update step.

The likelihood arising from the distribution of z,

f (z | β ,σ2) =
1

(2π)
n
2 (σ2)

n
2

exp
{
− 1

2σ2 (z−Xβ )T(z−Xβ )
}

=
1

(2π)
n
2︸ ︷︷ ︸

a(z)

exp
{( β
σ2

)T

︸ ︷︷ ︸
ψ1

XTz︸︷︷︸
τ1(zzz)

− 1
σ2︸ ︷︷ ︸
ψ2

1
2

zTz︸︷︷︸
τ2(zzz)

−
( 1

2σ2 β
TXTXβ +

n
2

log(σ2)
)

︸ ︷︷ ︸
nb(ψ)

}
,

indeed corresponds to the linear, canonical exponential family form

f (z | ψ) = a(z) · exp{〈ψ ,τ(z)〉−n ·b(ψ)} ,

where ψ = ψ(β ,σ2) is a certain function of β and σ2, the parameters on which one
wishes to learn. τ(z) is a sufficient statistic of z used in the update step. Here, we
have

ψ =

(
β
σ2

− 1
σ2

)
, τ(z) =

(
XTz
1
2 zTz

)
, b(ψ) =

1
2nσ2β

TXTXβ +
1
2

log(σ2) . (7)

According to the general construction method, a conjugate prior forψ can be obtained
from these ingredients by the following equation:

p(ψ) = c(n(0),y(0)) · exp
{

n(0) · [〈ψ ,y(0)〉−b(ψ)]
}

,

where n(0) and y(0) are the parameters that define the concrete prior distribution of
its distribution family; whereasψ and b(ψ) were identified in (7). c corresponds to a
normalization factor for the prior. When applying the general construction method to
the two examples from Section 2, the very same priors as presented there will result,
where y(0) = μ (0) and n(0) = 1/σ (0)2

for the prior to the scaled normal model, and
y(0) = t(0) and n(0) = s(0) for the prior to the multinomial model.

Here, the conjugate prior writes as
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p(ψ)dψ = c(n(0),y(0))exp
{

n(0)[y(0)T
(

β
σ2

− 1
σ2

)
− 1

2nσ2β
TXTXβ − 1

2
log(σ2)

]}
dψ .

As this is a prior on ψ , but we want to arrive at a prior on θ = (β , σ2)T, we must
transform the density p(ψ). For the transformation, we need the determinant of the
Jacobian matrix dψ

dθ :∣∣∣∣det
(

dψ
dθ

)∣∣∣∣ =

∣∣∣∣∣∣det

⎛⎝ 1
σ2 Ip − β

(σ2)2

0 1
(σ2)2

⎞⎠∣∣∣∣∣∣ =
1

(σ2)p+2 .

Therefore, the prior on θ = (β , σ2)T is

p(θ )dθ = p(ψ)dψ ·
∣∣∣∣det

(
dψ
dθ

)∣∣∣∣ = c(n(0),y(0))· (8)

exp
{

n(0)y(0)
1

T β
σ2 −n(0)y(0)

2
1
σ2 −

n(0)

2nσ2β
TXTXβ − n(0)

2
log(σ2)− (p + 2) log(σ2)

}
.

θ can now be shown to follow a normal – inverse gamma distribution by comparing
coefficients. In doing that, some attention must be paid to the terms proportional
to −1/σ2 (appearing as − log(σ2) in the exponent) because the normal p(β | σ2)
and the inverse gamma p(σ2) will have to ‘share’ it. Furthermore, it is necessary
to complete the square for the normal part, resulting in an additional term for the
inverse gamma part.

The density of a normal distribution on β | σ2 with a mean vector m(0) =
m(n(0),y(0)) and a variance-covariance matrix σ2MMM(0) = σ2MMM(n(0),y(0)), both to
be seen as functions of the canonical parameters n(0) and y(0), has the following
form:

p(β | σ2) =
1

(2π)
p
2 (σ2)

p
2

exp
{
− 1

2σ2

(
β −m(0))TMMM

(0)−1(
β −m(0))}

=
1

(2π)
p
2

exp
{

m(0)TMMM(0)−1 β
σ2 −

1
2σ2 β

TMMM(0)−1
β

− 1
2σ2 m(0)TMMM(0)−1

m(0)− p
2

log(σ2)
}

.

Comparing coefficients with the terms from (8) depending on β , we get

MMM
(0)−1

= MMM(n(0))−1 =
n(0)

n
XTX , m(0) = m(y(0)) = n(XTX)−1 y(0) .

With the square completed, the joint density of β and σ2 reads as
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p(β ,σ2) = c(n(0),y(0))·

exp
{

n(0)y(0)
1

T β
σ2 −

n(0)

2nσ2β
TXTXβ − 1

2σ2

(
n ·n(0)y(0)

1
T
(XTX)−1y(0)

1

)
− p

2
log(σ2)︸ ︷︷ ︸

to p(β |σ2) (normal distribution)

− 1
σ2

(
− n(0)n

2
y(0)

1
T
(XTX)−1y(0)

1

)
−n(0)y(0)

2
1
σ2 −

(n(0) + p
2

+ 2
)

log(σ2)︸ ︷︷ ︸
to p(σ2) (inverse gamma distribution)

}
. (9)

Therefore, one part of the conjugate prior (9) reveals as a multivariate normal dis-
tribution with mean vector m(0) = m(y(0)

1 ) = n(XTX)−1 y(0)
1 and covariance matrix

σ2MMM
(0) = σ2MMM(n(0)) = nσ2

n(0) (XTX)−1, i.e.

β | σ2 ∼ Np

(
n(XTX)−1 y(0)

1 ,
nσ2

n(0) (XTX)−1
)

. (10)

The other terms of (9) can be directly identified with the core of an inverse gamma
distribution with parameters

a(0) =
n(0) + p

2
+ 1 and

b
(0) = n(0)y(0)

2 − n(0)

2
y(0)

1
T
n(XTX)−1y(0)

1 = n(0)y(0)
2 − 1

2
m(0)TMMM(0)−1

m(0) ,

i.e., σ2 ∼ IG
(

n(0) + p + 2
2

, n(0)y(0)
2 − n(0)

2
y(0)

1
T
n(XTX)−1y(0)

1

)
. (11)

We have thus derived the CCCP distribution on (β ,σ2), which can be expressed
either in terms of the canonical prior parameters n(0) and y(0) or in terms of the
prior parameters from Section 3, m(0), MMM

(0), a(0) and b
(0). As already noted, MMM

(0) =
n

n(0) (XTX)−1 can be seen as a restricted version of MMM(0). (XTX)−1 is known as a
variance-covariance structure from the least squares estimate V(β ) = σ̂2

LS(XTX)−1,
and is here the fixed prior variance-covariance structure for β | σ2. Confidence in the
prior assignment is expressed by the choice of n(0): With n(0) chosen large relative
to n, strong confidence in the prior assignment of m(0) can be expressed, whereas a
low value of n(0) will result in a less pointed prior distribution on β | σ2.

The update step for a canonically constructed prior, expressed in terms of n(0)

and y(0), possesses a convenient form: In the prior, the parameters n(0) and y(0) must
simply be replaced by their updated versions n(1) and y(1), which calculate as

y(1) =
n(0)y(0) + τ(z)

n(0) + n
, n(1) = n(0) + n .
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4.1 Update of β | σ2

As y(0) and y(1) are not directly interpretable, it is certainly easier to express prior
beliefs on β via the mean vector m(0) of the prior distribution of β | σ2 just as in the
SCP model. As the transformation m(0) �→ y(0) is linear, this poses no problem:

E[β | σ2, z] = m(1) = n(XTX)−1 y(1)
1 = n(XTX)−1

(
n(0)

n(0) + n
y(0)

1 +
n

n(0) + n
· 1

n
(XTz)

)
= n(XTX)−1 n(0)

n(0) + n
· 1

n
(XTX)m(0) + n(XTX)−1 n

n(0) + n
· 1

n
(XTz)

=
n(0)

n(0) + n
E[β | σ2]+

n
n(0) + n

β̂LS . (12)

The posterior expectation for β | σ2 is here a scalar-weighted mean of the prior
expectation and the least squares estimate, with weights n(0) and n, respectively. The
role of n(0) in the prior variance of β | σ2 is directly mirrored here. As described for
the generalized setting in Walter & Augustin (2009, p. 258) in more detail, n(0) can
be seen as a parameter describing the “prior strength” or expressing “pseudocounts”.
In line with this interpretation, high values of n(0) as compared to n result here in a
strong influence of m(0) for the calculation of m(1), whereas for small values of n(0),
E[β | σ2, z] will be dominated by the value of β̂LS.

The variance of β | σ2 is updated as follows:

V(β | σ2, z) =
nσ2

n(1) (XTX)−1 =
nσ2

n(0) + n
(XTX)−1 .

Here, n(0) is updated to n(1), and thus the posterior variances are automatically smaller
than the prior variances, just as in the SCP model.

4.2 Update of σ2

For the assignment of the parameters a(0) and b
(0) to define the inverse gamma part

of the joint prior, only y(0)
2 is left to choose, as n(0) and y(0)

1 are already assigned via

the choice of m(0) and MMM
(0). To choose y(0)

2 , it is convenient to consider the prior
expectation of σ2 (alternatively, the prior mode of σ2 could be considered as well):

E[σ2] =
b

(0)

a(0)−1
=

2n(0)

n(0) + p
y(0)

2 − 1
n(0) + p

m(0)TMMM(0)−1
m(0) .

A value of y(0)
2 dependent on the value of E[σ2] can thus be chosen by the linear

mapping

y(0)
2 =

n(0) + p
2n(0) E[σ2]+

1
2n(0) m(0)TMMM

(0)−1
m(0) .
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For the posterior expected value of σ2, there is a similar decomposition as for the
SCP model, and furthermore two other possible decompositions offering interesting
interpretations of the update step of σ2. The three decompositions are presented in
the following.

4.2.1 Decomposition Including an Estimate of σ2 Through the Null Model

The posterior variance of σ2 calculates firstly as:

E[σ2 | z] =
b

(1)

a(1)−1
=

2n(1)

n(1) + p
y(1)

2 − 1
n(1) + p

m(1)TMMM(1)−1
m(1)

=
2n(0)

n(0) + n + p
y(0)

2 +
1

n(0) + n + p
zTz− 1

n(0) + n + p
m(1)TMMM

(1)−1
m(1)

=
n(0) + p

n(0) + n + p
E[σ2]+

n−1
n(0) + n + p

1
n−1

zTz

+
1

n(0) + n + p

(
m(0)TMMM

(0)−1
m(0)−m(1)TMMM

(1)−1
m(1)

)
, (13)

and so displays as a weighted average of the prior expected value, 1
n−1 zTz, and a term

depending on prior and posterior estimates for β , with weights n(0) + p, n−1 and 1,
respectively. When adopting the centered z, standardized X approach, 1

n−1 zTz is the
estimate for σ2 under the null model, that is, if β = 0. Contrary to what a cursory
inspection might suggest, the third term’s influence, having the constant weight of
1, will not vanish for n→ ∞, as the third term does not approach a constant.5

The third term reflects the change in information about β :
If we are very uncertain about the prior beliefs on β expressed in m(0) and thus

assign a small value for n(0) with respect to n, we will get relatively large variances
and covariances in MMM

(0) by a factor n
n(0) > 1 to (XTX)−1, resulting in a small term

m(0)TMMM
(0)−1

m(0). After updating, the elements in MMM
(1) become smaller automatically

due to the updated factor n
n(0)+n

to (XTX)−1. If the values of m(1) do not differ

much from the values in m(0), the term m(1)TMMM(1)−1
m(1) would be larger than its

prior counterpart, ultimately reducing the posterior expectation for σ2 through the
third term being negative. If m(1) does significantly differ from m(0), then the term

m(1)TMMM
(1)−1

m(1) can actually result smaller than its prior counterpart and thus give
a larger value of E[σ2 | z] as compared with the situation m(1) ≈ m(0).

On the contrary, large values for n(0) with respect to n indicating high trust in prior
beliefs on β lead to small variances and covariances in MMM(0) by the factor n

n(0) < 1

5 Although m(1) approaches β̂LS, and m(0) is a constant, MMM(0)−1
and MMM(1)−1

are increasing for

growing n, with MMM(1)−1
increasing faster than MMM(0)−1

. The third term will thus eventually turn
negative, reducing the null model variance that has weight n−1.
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to (XTX)−1, resulting in a larger term m(0)TMMM(0)−1
m(0) as compared to the case

with low n(0). After updating, variances and covariances in MMM
(1) will become even

smaller, amplifying the term m(1)TMMM(1)−1
m(1) even more if m(1) ≈ m(0), ultimately

reducing the posterior expectation for σ2 more than in the situation with low n(0).
If, however, the values of m(1) do differ significantly from the values in m(0), the

term m(1)TMMM
(1)−1

m(1) can result smaller than its prior counterpart also here and even
more so as compared to the situation with low n(0), giving eventually an even larger
posterior expectation for σ2.

4.2.2 Decomposition Similar to the SCP Model

A decomposition similar to the one in Section 3.2 can be derived by considering the
third term from (13) in more detail:

m(0)TMMM(0)−1
m(0)−m(1)TMMM(1)−1

m(1)

= n(0) ·n · y(0)
1

T
(XTX)−1y(0)

1 − (n(0) + n) ·n n(0)y(0)T + zTX
n(0) + n

(XTX)−1 n(0)y(0) + XTz
n(0) + n

=
n

n(0) + n

[
m(0)TMMM(0)−1

m(0)−2m(0)TMMM(0)−1
β̂LS− n

n(0) β̂
T
LSMMM(0)−1

β̂LS

]
=

n
n(0) + n

(
m(0)− β̂LS

)TMMM
(0)−1(

m(0)− β̂LS
)− zTX(XTX)−1XTz .

Thus, we get

E[σ2 | zzz] =
n(0) + p

n(0) + n + p
E[σ2]+

1
n(0) + n + p

(
zTz− zTX(XTX)−1XTz

)
+

1
n(0) + n + p

· n
n(0) + n

(m(0)− β̂LS)TMMM(0)−1
(m(0)− β̂LS)

=
n(0) + p

n(0) + n + p
E[σ2]+

n− p
n(0) + n + p

· 1
n− p

(z−Xβ̂LS)T(z−Xβ̂LS)︸ ︷︷ ︸
σ̂2

LS

+
p

n(0) + n + p
· n

n(0) + n
1
p
(m(0)− β̂LS)TMMM(0)−1

(m(0)− β̂LS)︸ ︷︷ ︸
=:σ2

PDC

. (14)

The posterior expectation forσ2 can therefore be seen also here as a weighted average
of the prior expected value, the estimation σ̂2

LS resulting from least squares methods,
and σ2

PDC,6 with weights n(0) + p, n− p and p, respectively. As in the update step

6 E[σ2
PDC | σ 2] = σ 2 computes very similar to the calculations given in O’Hagan (1994, p. 249).
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for β | σ2, n(0) is guarding the influence of the prior expectation on the posterior
expectation. Just as in the decomposition for the SCP model, the weight for σ̂2

LS will
dominate the others when the sample size approaches infinity. Also for the CCCP
model, σ2

PDC is getting large if prior beliefs on β are skewed with respect to “what
the data says”, eventually inflating the posterior expectation of σ2. The weighting of
the differences is similar as well: High prior confidence in the chosen value of m(0)

as expressed by a high value of n(0) will give a large MMM
(0)−1

and thus penalizing
erroneous assignments stronger as compared to a lower value of n(0). Again, XTX
weighs the differences for components with covariates having a low spread weaker
due to the instability of the respective component of β̂LS under such conditions.

4.2.3 Decomposition with Estimates of σ2 Through Prior and Posterior
Residuals

A third interpretation of E[σ2 | z] can be derived by another reformulation of the
third term in (13):

m(0)TMMM
(0)−1

m(0)−m(1)TMMM
(1)−1

m(1) =
n(0)

n
m(0)TXTXm(0)− n(1)

n
m(1)TXTXm(1)

=
n(0)

n
(z−Xm(0))T(z−Xm(0))− n(1)

n
(z−Xm(1))T(z−Xm(1))

+
n(1)

n
zTz− n(0)

n
zTz+

n(0)

n
2zTXm(0)− n(1)

n
2zTXm(1)

=
n(0)

n
(z−Xm(0))T(z−Xm(0))− n(1)

n
(z−Xm(1))T(z−Xm(1))+ zTz−2zTXβ̂LS .

With this, we get

E[σ2 | z] =
n(0) + p

n(0) + n + p
E[σ2]+

n(0) + p
n(0) + n + p

n(0)

n
· 1

n(0) + p
(z−Xm(0))T(z−Xm(0))︸ ︷︷ ︸

=:σ (0)2
, as E[σ (0)2|σ2]=σ2

+
2(n− p)

n(0) + n + p
σ̂2

LS−
n(1) + p

n(0) + n + p
n(1)

n
· 1

n(1) + p
(z−Xm(1))T(z−Xm(1))︸ ︷︷ ︸

=:σ (1)2
, as E[σ (1)2|σ2,z]=E[σ (1)2|σ2]=σ2

.

(15)

Here, the calculation of E[σ2 | z] is based again on E[σ2] and σ̂2
LS, but nowe com-

plemented with two special estimates: σ (0)2
, an estimate based on the prior resid-

uals (z−Xm(0))T(z−Xm(0)), and a respective posterior version σ (1)2
, based on

(z−Xm(1))T(z−Xm(1)). However, E[σ2 | z] is only “almost” a weighted average
of these ingredients, as the weights sum up to n(0)− p + n instead of n(0) + p + n.
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Especially strange is the negative weight for σ (1)2
, actually making the factor to

σ (1)2
result to −1. A possible interpretation would be to group E[σ2] and σ (0)2

as
prior-based estimations with joint weight 2(n(0) + p), and σ̂2

LS as data-based estima-
tion with weight 2(n− p). Together, these estimations have a weight of 2(n(0) + n),
being almost (neglecting the missing 2p) a “double estimate” that is corrected back
to a “single” estimate with the posterior-based estimate σ (1)2

.

4.3 Update of β

As for the SCP model, the posterior on β , being the most important distribution for
inference, is a multivariate t with expectation m(1) as described in Section 4.1. For
V(β | z), one gets different formulations depending on the formula for E[σ2 | z]:

V(β | z) =
b

(1)

a(1)−1
MMM

(1) = E[σ2 | z]
n

n(1) (X
TX)−1 (16)

(13)
=

n(0) + p
n(0) + n + p

n(0)

n(1) E[σ2]
n

n(0) (X
TX)−1︸ ︷︷ ︸

V(β )

+
n−1

n(0) + n + p
n

n(1)
1

n−1
zTz(XTX)−1

+
1

n(0) + n + p
n

n(1)

(
m(0)TMMM

(0)−1
m(0)−m(1)TMMM

(1)−1
m(1)

)
(XTX)−1

(14)
=

n(0) + p
n(0) + n + p

n(0)

n(1) E[σ2]
n

n(0) (X
TX)−1︸ ︷︷ ︸

V(β )

+
n− p

n(0) + n + p
n

n(1) σ̂
2
LS(X

TX)−1︸ ︷︷ ︸
V(β̂LS)

+
p

n(0) + n + p
n

n(1)σ
2
PDC(XTX)−1

(15)
=

n(0) + p
n(0) + n + p

n(0)

n(1) E[σ2]
n

n(0) (X
TX)−1︸ ︷︷ ︸

V(β )

+
n(0) + p

n(0) + n + p
n(0)

n(1) σ
(0)2 n

n(0) (X
TX)−1︸ ︷︷ ︸

=:V(0)(β )

+
2(n− p)

n(0) + n + p
n

n(1) σ̂
2
LS(X

TX)−1︸ ︷︷ ︸
V(β̂LS)

− n(1) + p
n(0) + n + p

σ (1)2 n
n(1) (X

TX)−1︸ ︷︷ ︸
=:V(1)(β )

.

In these equations, it is possible to isolate V(β ), V(β̂LS) and, in the formulation
with (15), the newly defined V(0)(β ) and V(1)(β ). However, all three versions do
not constitute a weighted average, even when the formula for E[σ2 | z] did have this
property. Just as in the SCP model, V(β | z) can increase if the automatic abatement
of the elements in MMM(1) is overcompensated by a strong increase of E[σ2]. Again,
this reaction to prior-data conflict is unspecific because it depends onE[σ2 | z] alone.
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5 Discussion and Outlook

For both the SCP and CCCP model, E[β | z] results as a weighted average of E[β ]
and β̂LS, such that the posterior distribution on β will be centered around a mean
somewhere between E[β ] and β̂LS, with the location depending on the respective
weights. The weights for the CCCP model appear especially intuitive: β̂LS is weighted
with the sample size n, whereasE[β ]has the weight n(0) reflecting the “prior strength”
or “pseudocounts”. Due to this, prior-data conflict may at most affect the variances
only. Indeed, for both prior models, E[σ2 | z] can increase in the presence of prior-
data conflict, as shown by the decompositions in Sections 3.2 and 4.2. Through the
formulations (6) and (16) for V(β | z), respectively, it can be seen that the posterior
distribution on β can in fact become less pointed than the prior when prior-data
conflict is at hand. Nevertheless, the effect might be not be as strong as desired: In
the formulations (5) and (14), respectively, the effect is based only on one term of
the decomposition, and furthermore may be foiled through the automatic decrease
of MMM(1) and MMM(1).

Probably the most problematic finding is that this (possibly weak) reaction affects
the whole variance-covariance matrix uniformally, and thus, in both models, the
reaction to prior-data conflict is by no means component-specific.

Therefore, the prior models lack the capability to mirror the appropriateness of
the prior assignments for each covariate separately. As the SCP model is already the
most general approach in the class of conjugate priors, this non-specificity feature
seems inevitable in Bayesian linear regression based on precise conjugate priors.

In fact, as argued in Section 1, a more sophisticated and specific reaction to prior-
data conflict is only possible by extending considerations beyond the traditional
concept of probability. Imprecise probabilities, as a general methodology to cope with
the multidimensional nature of uncertainty, appears promising here. For generalized
Bayesian approaches, the possibility to mirror the quality of prior knowledge is one
of the main reasons for the paradigmatic skip from classical probability to interval /
imprecise probability. In this framework ambiguity in the prior specification can be
modeled by considering sets Mϑ of prior distributions. In the most common approach
based on Walley’s Generalized Bayes Rule (Walley 1991), posterior inference is
then based on a set of posterior distributions Mϑ |z, resulting from updating the
distributions in the prior set element by element.

Of particular computational convenience are again models based on conjugate
priors, as developed for the Dirichlet-Multinomial model by Walley (1996), see also
Bernard (2009), and for i.i.d. exponential family sampling models by Quaeghebeur
& de Cooman (2005), which were extended by Walter & Augustin (2009) to allow an
elegant handling of prior-data conflict: With the magnitude of the set Mϑ |z mapping
the posterior ambiguity, high prior-data conflict leads, ceteris paribus, to a large Mϑ |z,
resulting in high imprecision in the posterior probabilities, and cautious inferences
based on it, while in the case of no prior-data conflict Mϑ |x, and thus the imprecision,
is much smaller.
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The essential technical ingredient to derive this class of models is the general
construction principle also underlying the CCCP model from Section 4, and thus that
model can be extended directly to a powerful corresponding imprecise probability
model.7 A detailed development is beyond the scope of this contribution.
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References

Augustin, T., Coolen, F. P., Moral, S. & Troffaes, M. C. (eds) (2009). ISIPTA’09: Proceedings of the
Sixth International Symposium on Imprecise Probability: Theories and Applications, Durham
University, Durham, UK, July 2009, SIPTA.

Augustin, T. & Hable, R. (2009). On the impact of robust statistics on imprecise probability models:
a review, ICOSSAR’09: The 10th International Conference on Structural Safety and Reliability,
Osaka. To appear.

Bernard, J.-M. (2009). Special issue on the Imprecise Dirichlet Model. International Journal of
Approximate Reasoning.

Bernardo, J. M. & Smith, A. F. M. (1994). Bayesian Theory, Wiley, Chichester.
Bousquet, N. (2008). Diagnostic of prior-data agreement in applied bayesian analysis, 35: 1011–

1029.
Coolen-Schrijner, P., Coolen, F., Troffaes, M. & Augustin, T. (2009). Special Issue on Statistical

Theory and Practice with Imprecision, Journal of Statistical Theory and Practice 3.
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priors, in G. de Cooman, J. Vejnarová & M. Zaffalon (eds), ISIPTA ’07: Proc. 5th Int. Symp.
on Imprecise Probabilities and Their Applications, pp. 445–455.

Weichselberger, K. (2001). Elementare Grundbegriffe einer allgemeineren Wahrscheinlichkeits-
rechnung I. Intervallwahrscheinlichkeit als umfassendes Konzept, Physika, Heidelberg.


