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Abstract The integer autoregressive model of order p can be employed for the analy-
sis of discrete–valued time series data. It can be shown, under some conditions, that
its correlation structure is identical to that of the usual autoregressive process. The
model is usually fitted by the method of least squares. However, consider an alter-
native estimation scheme, which is based on minimizing the least squares criterion
subject to some constraints on the parameters of interest. The ridge type of constraints
are used in this article and it is shown that under some reasonable conditions on the
penalty parameter, the resulting estimates have less mean square error than that of the
ordinary least squares. A real data set and some limited simulations support further
the results.

1 Introduction

Ludwig Fahrmeir, whom this volume honors, has made seminal contributions to the
statistical analysis of integer valued time series by promoting the idea of generalized
linear models for inference. In particular, I would like to mention the articles Fahrmeir
& Kaufmann (1985) and Fahrmeir & Kaufmann (1987) and the text Fahrmeir & Tutz
(2001) which deal respectively with the following;

• the development of maximum likelihood estimation for the regression parameters
of a generalized linear model with independent data for both canonical and non-
canonical link functions,

• the extension of these results to categorical time series,
• the presentation of the above in a coherent piece of work.
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The results of these references have influenced considerably my research on time
series, see e.g. Kedem & Fokianos (2002). On a more personal level, I wish to express
my gratitude to Ludwig Fahrmeir for inviting me to Munich on a number of occasions
and for giving me the opportunity to discuss with him several issues of mutual interest
and to gain important insight.

Integer valued time series occur in diverse applications and therefore statistical
methodology should be developed to take into account the discrete nature of the
data. In this work, attention is focused on the so called integer autoregressive models
of order p–denoted by INAR(p). These processes provide a class of models whose
second order structure is identical to that of the standard AR(p) models and estimation
can be carried out by standard least squares techniques.

The question of interest in this manuscript is whether the least squares estimators
can become more efficient and under what conditions. It is shown that increase
in efficiency can be achieved by introducing the so–called penalized least squares
criterion (7) for estimation. In particular, it is shown that there are two cases that
need to be considered. The first is when the true parameter vector that generates
the process assumes "large" values componentwise; then minimization of (7) does
not offer any improvement over the standard least squares estimators. On the other
hand, when the true parameter vector values are assumed to be "small" , then it is
possible to gain in efficiency. Here, the term efficiency, refers to mean square error
improvement, since it is well known that penalized estimators are usually biased.
The same phenomenon occurs in linear models theory, namely the method of ridge
regression. It is well known that the mean square error of ridge estimators is less
than the mean square error of the ordinary least squares estimators for some values
of the ridge parameter. It is conjectured that the results carry over to the dependent
data case under some reasonable assumptions. Some research advocating the use of
shrinkage estimators in time series can be found in the recent article by Taniguchi &
Hirukawa (2005).

When using penalized criteria for inference, there is an extra complexity intro-
duced, that is the choice of the penalty parameter–see (7). It is a common practice to
use cross–validation methods but their performance is questionable, especially in the
time series context. Therefore, it is proposed to estimate the regularization parameter
by using the AIC. Real data show-see Section 4–that a unique minimizer exists but
the method requires more research.

The paper starts with Section 2 where INAR(p) processes are briefly reviewed and
the least squares approach to the problem of estimation is discussed. The asymptotic
distribution of least squares estimators is also stated. Section 3 introduces the penal-
ized least squares estimator and discuss their asymptotic properties, see Theorems 2
and 3, which constitute the main results. Section 4 complements the presentation by
some simulated and real data examples. The article concludes with some comments
and an appendix.
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2 Integer Autoregressive Processes and Inference

This section reviews briefly some probabilistic properties of the integer autoregres-
sive processes and discuss estimation of unknown parameter by conditional least
squares inference.

2.1 Integer Autoregressive Processes

Integer autoregressive processes have been introduced by Al-Osh & Alzaid (1987)
and Alzaid & Al-Osh (1990) as a convenient way to transfer the usual autoregressive
structure to discrete valued time series. The main concept towards this unification is
given by the notion of thinning which is defined by the following:

Definition 1. Suppose that X is a non–negative integer random variable and let α ∈
[0,1]. Then, the thinning operator, denoted by ◦, is defined as

α ◦X =
{
∑X

i=1 Yi, if X > 0,
0, otherwise,

where {Yi} is a sequence of independent and identically distributed Bernoulli random
variables–independentof X–with success probabilityα . The sequence {Yi} is termed
as a counting series.

Definition 1 allows for specification of the integer autoregressive process of or-
der p. More specifically, suppose that for i = 1,2, . . . , p, αi ∈ [0,1) and let {εt} be
a sequence of independent and identically distributed nonnegative integer valued
random variables with E[εt ] = μ and Var[εt ] = σ2. The following process

Xt =
p

∑
i=1
αi ◦Xt−i + εt , (1)

is called integer autoregressive process of order p and is denoted by INAR(p). It
should be noted that the Bernoulli variables used for defining the random variable
α1 ◦Xt−1 are independent of those involved in the definition of α2 ◦Xt−2, and so
on. This assumption guarantees that the INAR(p) process has the classical AR(p)
correlation structure, see Du & Li (1991). A unique stationary and ergodic solution
of (1) exists if

p

∑
j=1
α j < 1. (2)

Various other authors have studied the above model, including Al-Osh & Alzaid
(1987), Alzaid & Al-Osh (1990), McKenzie (1985), McKenzie (1986) and McKenzie
(1988). Some very recent work extending the model in different directions can be
found in the papers by Ferland et al. (2006), Neal & Subba Rao (2007), Zheng et al.
(2006) and Zhu & Joe (2006).
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2.2 Conditional Least Squares Inference

In what follows consider the INAR(p) model defined by (1). The (p+1)–parameter
vector β = (μ ,α1, . . . ,αp)′ belongs to the [0,∞]× [0,1)p and it is usually estimated
by conditional least squares method. Suppose that Ft is the σ–field generated by the
past information, say X1,X2, . . . ,Xt . The conditional least squares estimator of β is
calculated ny minimizing the following sum of squares:

S(β ) =
N

∑
t=p+1

(Xt −E(Xt|Ft−1))
2 =

N

∑
t=p+1

(Xt − μ−
p

∑
i=1
αiXt−i)2. (3)

Denote by β̂ the value that minimizes the above expression and notice that standard
arguments show that (see Brockwell & Davis (1991), for example)

β̂ = Q−1r (4)

where the (p + 1)× (p + 1) matrix Q is equal to

Q =

⎡⎢⎢⎣
N− p ∑N

t=p+1 Xt−1 . . . ∑N
t=p+1 Xt−p

∑N
t=p+1 Xt−1 ∑N

t=p+1 X2
t−1 . . . ∑N

t=p+1 Xt−pXt−1
. . . . . . . . . . . .

∑N
t=p+1 Xt−p ∑N

t=p+1 Xt−1Xt−p . . . ∑N
t=p+1 X2

t−p

⎤⎥⎥⎦ ,

and the (p + 1)–dimensional vector r is defined by

r =

(
N

∑
t=p+1

Xt ,
N

∑
t=p+1

XtXt−1, . . . ,
N

∑
t=p+1

XtXt−p

)′
.

Then the following theorem holds true for the estimator β̂ :

Theorem 1. (Du & Li 1991) Suppose that β̂ is the conditional least squares estimator
defined by means of minimizing (3) for the INAR(p) model (1). In addition, assume
that the error process has E[εt ] = μ , Var[εt ] = σ2 and E[ε3

t ] < ∞. Suppose that
condition (2) is satisfied and let μx to denote the mean of the stationary distribution
of the INAR(p) model (1). Then

√
N
(
β̂ −β

)
→ Np+1(0,V−1WV−1),

where the (p + 1)× (p + 1) matrix V = [vi j] is defined by

vi j =

⎧⎨⎩
1, i = 1, j = 1,
μx, i = 1, j > 1 or i > 1, j = 1,
E[Xp+1−iXp+1− j]+ μ2

x , i, j ≥ 2.

Furthermore, the (p + 1)× (p + 1) matrix W = [wi j] is given by
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wi j =

⎧⎪⎪⎨⎪⎪⎩
E[(Xp+1−∑p

k=1αkXk−p− μ)2], i = 1, j = 1,
E[Xp+1−i(Xp+1−∑p

k=1αkXk−p− μ)2] j = 1, i > 1,
E[Xp+1− j(Xp+1−∑p

k=1αkXk−p− μ)2] i = 1, j > 1,
E[Xp+1−iXp+1− j(Xp+1−∑p

k=1αkXk−p− μ)2], i, j ≥ 2,

where expectation is taken with respect to the stationary distribution.

In addition, it can be shown that the estimator β̂ is strongly consistent. Theorem 1 is
proved by standard arguments from martingale theory, see Klimko & Nelson (1978)
and Hall & Heyde (1980), for more. A consistent estimator of the matrix V is given
by

V̂ =
1
N

Q. (5)

Indeed, limN→∞ V̂ = V , in probability, because of the ergodicity of the process.
Similarly, the matrix W is estimated by means of

Ŵ =
1
N

N

∑
t=p+1

⎛⎜⎜⎝(Xt −
p

∑
i=1
αiXt−i− μ)2

⎡⎢⎢⎣
1 Xt−1 . . . Xt−p

Xt−1 X2
t−1 . . . Xt−pXt−1

. . . . . . . . . . . .
Xt−p Xt−1Xt−p . . . X2

t−p

⎤⎥⎥⎦
⎞⎟⎟⎠ . (6)

Therefore, a consistent estimator of the asymptotic covariance matrix of β̂ is given
by V̂−1ŴV̂−1–see theorem 1.

3 Penalized Conditional Least Squares Inference

We suggest estimation of the unknown parameter vector β of the INAR(p) by penal-
izing the conditional least square criterion with a quadratic penalty. As it is the case
with the ridge regression, see Hoerl & Kennard (1970a), Hoerl & Kennard (1970b),
it is anticipated that the mean square error of the estimates is minimized by some
value of the ridge parameter. Therefore, the choice of the ridge (or regularization)
parameter is important and its selection is taken up in Section 4.2 where a proposal is
made by using the so–called AIC criterion; Akaike (1974). In the following, the first
issue is to show how ridge inference proceeds and then apply the resulting estimators
to the problem of prediction.

Ridge coefficients are defined by minimization of the following penalized sum of
squares

Sp(β ) = S(β )+λN

p

∑
j=1
α2

j

=
N

∑
t=p+1

(Xt −
p

∑
j=1
α jXt− j − μ)2 +λN

p

∑
j=1
α2

j (7)
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where λN ≥ 0, is the so called regularization parameter. When λN = 0, the ordinary
CLS estimator is obtained while if λN → ∞ then all the coefficients shrink towards
zero. An alternative way of obtaining the above penalized sum of squares is to
postulate the constraint ∑p

j=1α
2
j ≤ t. Obviously the parameter t is inversely related

with λN but both constraints are equivalent.
The penalized CLS estimator of β̂ will be denoted by β̂ λ and it is easily obtained

by
β̂ λ = (Q+λNDp+1)−1r. (8)

The matrix Q and the vector r have been defined immediately after (4) and the
(p + 1)× (p + 1) matrix Dp+1 is given by

Dp+1 =
[

0 0
0 Ip

]
,

where Ip is the diagonal matrix of order p. It is recognized that the penalized CLS
estimator is of the same form as the ordinary ridge regression estimator. It is expected
therefore that for a suitably chosen value of the regularization parameter, the mean
square error of β̂ λ will be less or equal than that of β̂ . In what follows, it is shown
that when the true parameter values are small, then a more efficient estimator–in the
sense of mean square error–is obtained by means of minimizing (7) provided that
the regularization parameter λN is of order N.

We study the asymptotic properties of β̂ λ in the following theorem whose proof
is postponed in the appendix.

Theorem 2. Assume the same conditions as in Theorem 1. Assume further that λN
is such that λN/

√
N → λ0 ≥ 0. Then
√

N(β̂ λ −β )→ Np+1(−λ0V−1b,V−1WV−1)

in distribution, as N → ∞. The matrices V and W have been defined in Theorem 1
and the (p + 1)–dimensional vector b is given by b = (0,α1, . . . ,αp)′.

The above theorem shows that when N → ∞, then the penalized CLS (8) are
asymptotically normal but biased while their asymptotic covariance matrix is given
by the same formula that corresponds to the ordinary CLS estimators–see Theorem
1. Hence, there seems to be no particular improvement when using the penalized
CLS estimator unless λN = o(

√
N), and this is in agreement with the asymptotic

results for least squares regression with independent data obtained by Knight & Fu
(2000, Th. 2). Theorem 2 implies that when the true parameter values are large and
λ0 > 0, then the bias of the restricted estimators might be of considerable magnitude.

Suppose now that the data are generated by the INAR(p) process (1) where the
vector of unknown parameters satisfies

βN = β +
c√
N

,
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for some vector of the form c = (0,c1, . . . ,cp)′, such that condition (2) is satisfied.
Then the second part of the following theorem shows that for small α j’s there is a
gain when using the ridge regression. The proof of the theorem is along the lines of
Theorem 2 and therefore it is omitted.

Theorem 3. Assume the same conditions as in Theorem 1. Assume further that
βN = β + c/

√
N where c is of the form c = (0,c1, . . . ,cp)′ such that condition (2)

holds true. Let β̂ λ be the penalized CLS (8). Then

1. If λN/
√

N → λ0 ≥ 0, then
√

N(β̂ λ −β )→ Np+1(−λ0V−1b,V−1WV−1),

in distribution, as N → ∞.
2. If αi = 0 for i = 1,2, . . . , p so that β = (μ ,0, . . . ,0)

′
and λN/N → λ0 ≥ 0, then

√
N(β̂ λ − c/

√
N)→ Np+1(−λ0Ṽ−1c,Ṽ−1WṼ−1),

in distribution, as N → ∞, where Ṽ = V +λ0Dp+1.

The above notation is the same as that of Theorem 2.

The second part of the above theorem shows that for large sample sizes, the asymp-
totic distribution of β̂ λ is a multivariate normal provided that the choice of λN is of
order N and the true parameter value is relatively small. In particular, certain choices
of λN yield to consistent estimators which are asymptotically normally distributed.
However, other choices of λN yield to biased estimators. We anticipate though that
the bias will be small and regularization will provide estimates with smaller mean
square error.

An estimator of the asymptotic covariance matrix is given by(
V̂ +

λN

N
D
)−1

Ŵ
(

V̂ +
λN

N
D
)−1

(9)

where all the matrices are evaluated at β̂ λ . The matrices V̂ , Ŵ have been defined by
(5) and (6), respectively. For large N, and if λN = o(

√
N), formula (9) reduces to

that used for the asymptotic variance estimator of the conditional LS estimator β̂ -see
Theorem 1.

4 Examples

A limited simulation study and a real data example are presented to complement the
theoretical findings.
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Fig. 1 Boxplots of the distribution of α̂λ1 for various values of the penalty parameter.

4.1 Simulations

To study the empirical performance of the penalized LS estimators for the INAR(p)
model, a limited simulation study is presented. First, data are generated by the
INAR(1) process

Xt = α1 ◦Xt−1 + εt ,

for t = 1,2, . . . ,N, where the error sequence is assumed to be i.i.d. Poisson with mean
μ . The computation were carried out by the statistical language R and all simulation
output is based on 1000 runs.

The asymptotic normality of the restricted estimators is demonstrated for various
values of the penalty parameter–see Figure 1–where the boxplots of the distribution of
α̂λ1 are shown for λ = 0,1,2, . . . ,7. The sample size is N = 100,α1 = 0.4 and μ = 1.
The asserted asymptotic normality is in agreement with the simulation findings.
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Table 1 Penalized estimators for 100 observations from the INAR(2) model with true parameters
α1 = 0.1 and α2 = 0.2 and for different values of the Poisson mean μ . The regularization parameter
varies from 0 to 10 by 0.5 and the number of simulations is 1000.

λ μ = 0.50 μ = 1.00

μ̂λ α̂λ1 α̂λ2 e1(λ ) μ̂λ α̂λ1 α̂λ2 e1(λ )

0.0 0.531 0.0852 0.171 1.000 1.07 0.0821 0.170 1.000
0.5 0.531 0.0831 0.172 0.947 1.06 0.0816 0.171 0.906
1.0 0.535 0.0835 0.159 0.958 1.05 0.0927 0.167 0.893
1.5 0.537 0.0802 0.166 0.947 1.05 0.0865 0.169 0.886
2.0 0.535 0.0808 0.163 0.944 1.08 0.0805 0.165 0.962
2.5 0.545 0.0779 0.159 0.998 1.08 0.0766 0.164 0.955
3.0 0.539 0.0789 0.158 0.918 1.07 0.0792 0.166 0.904
3.5 0.549 0.0788 0.151 0.946 1.08 0.0756 0.163 0.893
4.0 0.553 0.0785 0.152 0.915 1.08 0.0798 0.164 0.977
4.5 0.549 0.0738 0.150 0.926 1.07 0.0820 0.161 0.916
5.0 0.555 0.0731 0.147 0.948 1.07 0.0835 0.158 0.825
5.5 0.549 0.0715 0.145 0.905 1.08 0.0793 0.158 0.884
6.0 0.548 0.0723 0.147 0.893 1.08 0.0773 0.163 0.848
6.5 0.548 0.0757 0.144 0.891 1.09 0.0813 0.158 0.906
7.0 0.556 0.0721 0.143 0.900 1.10 0.0730 0.159 0.932
7.5 0.554 0.0757 0.144 0.896 1.08 0.0826 0.154 0.837
8.0 0.563 0.0740 0.135 0.960 1.09 0.0798 0.155 0.830
8.5 0.560 0.0699 0.140 0.897 1.10 0.0751 0.151 0.902
9.0 0.561 0.0738 0.130 0.915 1.10 0.0758 0.148 0.922
9.5 0.566 0.0688 0.138 0.926 1.10 0.0763 0.150 0.936

10.0 0.562 0.0697 0.133 0.901 1.10 0.0768 0.150 0.894

Notice that λ = 0 corresponds to the ordinary CLS estimators while for large values
of λ , the resulting estimator is more biased compared to the CLS estimator.

Furthermore, consider the INAR(2) model

Xt = α1 ◦Xt−1 +α2 ◦Xt−2 + εt

where εt are assumed to be Poisson random variables with mean μ , as before. Table
1 shows the results of 1000 simulations when there are 100 observations available
from the process at hand. Note that the resulting penalized estimators are biased
as it was claimed before. However, their relative efficiency to the ordinary least
squares estimators is superior in both cases considered. The quantity e1(λ )–that is
the efficiency–has been defined by

e1(λ ) =
MSE(β̂ λ )
MSE(β̂ )

,

and it is the ratio of the mean square error of the constrained estimator to the mean
square error of the unconstrained estimator. Table 2 shows the same results but for
N = 500. Here, most of the values of e1(λ ) fluctuate around unity showing that there
is no any improvement by penalization.
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Table 2 Penalized estimators for 500 observations from the INAR(2) model with true parameters
α1 = 0.1 and α2 = 0.2 and for different values of the Poisson mean μ . The regularization parameter
varies from 0 to 10 by 0.5 and the number of simulations is 1000.

λ μ = 0.50 μ = 1.00

μ̂λ α̂λ1 α̂λ2 e1(λ ) μ̂λ α̂λ1 α̂λ2 e1(λ )

0.0 0.508 0.0945 0.193 1.000 1.01 0.0982 0.193 1.000
0.5 0.507 0.0970 0.194 0.995 1.01 0.0969 0.195 1.018
1.0 0.507 0.0963 0.192 1.111 1.01 0.0981 0.192 0.971
1.5 0.508 0.0968 0.193 1.034 1.01 0.0979 0.193 1.032
2.0 0.508 0.0971 0.191 1.022 1.01 0.0957 0.193 1.055
2.5 0.509 0.0949 0.191 1.044 1.01 0.0964 0.193 0.993
3.0 0.508 0.0962 0.192 1.084 1.01 0.0946 0.194 0.973
3.5 0.509 0.0978 0.188 1.067 1.02 0.0954 0.192 1.008
4.0 0.509 0.0941 0.189 1.018 1.02 0.0977 0.190 1.013
4.5 0.513 0.0921 0.189 1.019 1.02 0.0943 0.191 1.074
5.0 0.511 0.0955 0.191 1.072 1.02 0.0964 0.192 1.044
5.5 0.510 0.0972 0.187 1.036 1.02 0.0977 0.192 1.068
6.0 0.511 0.0955 0.186 1.003 1.02 0.0962 0.191 0.950
6.5 0.517 0.0921 0.185 1.084 1.02 0.0965 0.191 0.984
7.0 0.514 0.0948 0.187 1.009 1.03 0.0934 0.188 1.008
7.5 0.513 0.0936 0.187 1.004 1.02 0.0962 0.191 1.061
8.0 0.514 0.0924 0.186 0.978 1.02 0.0945 0.188 0.964
8.5 0.517 0.0917 0.183 1.002 1.02 0.0967 0.187 0.990
9.0 0.512 0.0936 0.187 0.955 1.02 0.0975 0.190 0.970
9.5 0.516 0.0944 0.182 1.044 1.02 0.0975 0.189 1.007

10.0 0.519 0.0910 0.183 1.054 1.02 0.0919 0.188 1.041

4.2 Data Example

The Westgren gold particle data is used to demonstrate the penalized least squares
estimation method. The data consists of consecutive count measurements of gold
particles in a well defined colloidal solution of equally spaced points in time. These
data have been analyzed by various authors, including Guttorp (1991), Grunwald
et al. (2000) and more recently by Jung & Tremayne (2006). In particular, the first
370 observations are used throughout the subsequent analysis, along the lines of Jung
& Tremayne (2006).

To analyze the data, consider the INAR(p) model (1) for p = 1,2,3,4. For com-
parison purposes, which are described below, the first four observations are removed
and all models were fitted based on the 366 observations. Figure 2 shows the values
of AIC for each INAR model fitted to the data, defined as

AIC(p,λ ) = 366log

(
∑370

t=5(Xt − μ̂λ −∑p
i=1 α̂

λ
i Xt−i)2

366

)
+ 2dfλ (10)

where the quantity dfλ is called the effective degrees of freedom as in the ordinary
ridge regression. In other words, recall the definition of Q from (4) and set
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Fig. 2 Selection of λ by AIC for the gold particle data. (a) INAR(1), (b) INAR(2), (c) INAR(3),
(d) INAR(4).

X =

⎡⎢⎢⎢⎣
1 Xp Xp−1 . . . X1
1 Xp+1 Xp . . . X2
...

...
...

...
...

1 Xn−1 Xn−2 . . . Xn−p

⎤⎥⎥⎥⎦ .

it is clear that Q = X ′X and therefore the effective degrees of freedom are defined by

dfλ = tr
(
X(Q+λDp+1)−1X ′) ,

where tr(.) denotes the trace of a matrix. Although estimation proceeds from the least
squares, it can be argued that the AIC is the expected Kullback–Leibler distance of the
maximum Gaussian likelihood model relative to the true distribution of the process,
see Brockwell & Davis (1991, p. 306).
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Fig. 3 Diagnostics for the INAR(2) model fitted to the gold particle data by minimizing (7) using
λ = 7.65.

Using the above definition, and turning back to Figure 2, we note that the plot
suggests the existence of a value of λ such that (10) attains a minimum. Notice that
the values of the penalty parameter λ varies between 0 and 20 for a fine grid of
values. When comparing the AIC from all different models, the INAR(2) yields its
minimum value–in fact for all λ . Therefore the point that was made by previous
authors that the INAR(2) model fits these data well is iterated further–see Jung &
Tremayne (2006).

Hence this model is used for data fitting at the value of λ that minimizes
(10). It turns out that λopt = 7.65 and the corresponding estimators are given by
α̂7.65

1 = 0.43082, α̂7.65
2 = 0.22685 and μ̂7.65 = 0.52510. Figure 3 shows some fur-

ther diagnostics for the model at hand. The upper panel shows a plot of the observed
versus the predicted data while the lower plot shows the autocorrelation function of
residuals. Both graphs indicate the adequacy of the INAR(2) model.
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5 Discussion

This article introduces the ridge regression idea to the INAR processes. It was shown
by theory and some supporting simulations that improvement over ordinary CLS
is possible given a good choice of the regularization parameter. The choice of the
regularization parameter is based on the minimization of the AIC and it was shown
that for the Westgren gold particle data the method appears to work nicely. How-
ever, further investigation is needed to understand the results obtained from such
procedure.

Integer autoregressive models have been generalized in different directions by
several authors. For instance, Latour (1998) studies generalized integer valued au-
toregressive models of order p. This class of models is based on generalization of the
thinning operator but their second order properties are similar to those of INAR(p)
models. Hence the results reported here should be applicable in this class of models
as well.

Another interesting class of models is that of conditional linear AR(1) models
(see Grunwald et al. (2000)) specified by the following

m(Xt) = α1Xt−1 + μ ,

where m(Xt) = E[Xt |Xt−1], with Xt a time–homogeneous first-order Markov process.
This class of model includes several AR(1) models proposed in the literature for
non–Gaussian data. Inference is carried out either by maximum likelihood or by
least squares. Therefore, the proposed ridge methods should apply to those models
as well.

In a different direction, the recent contribution of Zhu & Joe (2006) extends the
INAR(p) to include covariates. Estimation of regression coefficients is based on
maximum likelihood and therefore the ridge constraints can be easily incorporated
so that (7) is of the form of maximizing a penalized log likelihood function.

As a final remark, alternative penalties can be used so that model selection can be
combined with estimation. For instance, consider penalty function of the following
form

J(β ) =
p

∑
j=1
|β j|q,

where q > 0. The choices of q = 1,2 yield to the Lasso (Tibshirani 1996) and ridge
estimators respectively. In general these estimators were introduced by Frank &
Friedman (1993) and were termed as Bridge estimators. When q ≤ 1, the penalty
function has the neat property to set some of the regression coefficient equal to 0,
that is it can be used for model selection and estimation.
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Appendix

Suppose that M0
N =−2−1(∂Sp(β )/∂μ) =∑N

t=1(Xt −∑p
i=1αiXt−i−μ) and put M0

0 =
0. Then

E(M0
N |FN−1) = E

(
M0

N−1 + XN −
p

∑
i=1
αiXN−i− μ |FN−1

)

= M0
N−1 + E

(
XN −

p

∑
i=1
αiXN−i− μ |FN−1

)
= M0

N−1,

from the properties of the INAR(p) processes. Thus, the sequence {M0
N ,FN ,N ≥

0} forms a martingale which is square integrable. Furthermore, if condition (2) is
fulfilled, then the sequence Xt is stationary and ergodic. Hence, from the ergodic
theorem,

1
N

N

∑
t=p+1

(
Xt −

p

∑
i=1
αiXt−i− μ

)2

→ E

(
Xp+1−

p

∑
i=1
αiXp−i− μ

)2

≡ σ2
1 ,

almost surely, as N → ∞. Therefore, by (Hall & Heyde 1980, Cor. 3.2) we obtain
that

1√
N

M0
N → N(0,σ2

1 ),

in distribution, as N → ∞. Along the same lines, it can be shown that if M j
N =

−2−1(∂Sp(β )/∂α j) = ∑N
t=p+1 Xt− j(Xt −∑p

i=1αiXt−i−μ)−λNα j, for j = 1,2, . . . ,

p, then M̃ j
N = M j

N +λNα j is a martingale that satisfies

1
N

N

∑
t=p+1

X2
t− j

(
Xt −

p

∑
i=1
αiXt−i− μ

)2

→ E

(
X2

p+1− j(Xp+1−
p

∑
i=1
αiXp−i− μ)2

)
≡ σ2

j ,

almost surely, and

1√
N

M̃ j
N −→ N(0,σ2

j )

for all j = 1, . . . , p. Using the assumption that λN/
√

N → λ0 ≥ 0 then
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1√
N

M j
N −→ N(−λ0α j,σ2

j ).

By the Cramer-Wold device and the properties of the INAR(p) process, it can be
shown that

1√
N

⎛⎜⎜⎜⎝
M0

N
M1

N
...

Mp
N

⎞⎟⎟⎟⎠→ Np+1 (−λ0b,W ) ,

in distribution, as N → ∞.
Recall the penalized conditional least squares estimators, given by (8). It can be

shown that

√
N(β̂ λ −β ) =

(
1
N

Q+
λN

N
Dp+1

)−1 1√
N

⎛⎜⎜⎜⎝
M0

N
M1

N
...

Mp
N

⎞⎟⎟⎟⎠→ Np+1(−λ0V−1b,V−1WV−1),

in distribution, as N → ∞. The theorem is proved.


