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Abstract Ordinal stochastic volatility (OSV) models were recently developed and
fitted by Müller & Czado (2009) to account for the discreteness of financial price
changes, while allowing for stochastic volatility (SV). The model allows for ex-
ogenous factors both on the mean and volatility level. A Bayesian approach using
Markov Chain Monte Carlo (MCMC) is followed to facilitate estimation in these
parameter driven models. In this paper the applicability of the OSV model to finan-
cial stocks with different levels of trading activity is investigated and the influence of
time between trades, volume, day time and the number of quotes between trades is
determined. In a second focus we compare the performance of OSV models and SV
models. The analysis shows that the OSV models which account for the discreteness
of the price changes perform quite well when applied to such data sets.

1 Introduction

Modeling price changes in financial markets is a challenging task especially when
models have to account for salient features such as fat tail distributions and volatility
clustering. An additional difficulty is to allow for the discreteness of price changes.
These are still present after the US market graduation to decimalization of possible
tick sizes. Recently, Müller & Czado (2009) introduced the class of ordinal stochas-
tic volatility (OSV) models, which utilizes the advantages of continuous-response
stochastic volatility (SV) models (see Ghysels et al. (1996) and more lately Shephard
(2006)) such as fat tails and persistence through autoregressive terms in the volatility
process, while adjusting for the discreteness of the price changes.

OSV models are based on a threshold approach, where the hidden continuous
process follows a SV model, thus providing a more realistic extension of the ordered
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probit model suggested by Hausman et al. (1992). In addition we allow for exogenous
variables both on the mean and variance level of the hidden process. Parameter
estimation in OSV models using maximum likelihood is not feasible, since first the
hidden SV process has no closed form of the likelihood and second the threshold
approach induces the need to evaluate multidimensional integrals with dimension
equal to the length of the financial time series. Therefore Müller & Czado (2009)
follow a Bayesian approach. Here Markov Chain Monte Carlo (MCMC) methods
allow for sampling from the posterior distributions of model parameters and the
hidden process variables.

While Müller & Czado (2009) provided the model specification, developed and
implemented the necessary estimation techniques, this paper explores the applica-
bility of the OSV model to financial stocks with different levels of trading activity.
In particular, we investigate which exogenous factors such as volume, daytime, time
elapsed between trades and the number of quotes between trades have influence on
the mean and variance level of the hidden process and thus on the discrete price
changes. A second focus of this paper is to compare the performance of the OSV
and SV models when these are fitted to such discrete price changes.

Alternative discrete price change models are based on rounding and decompo-
sition ideas. Following the rounding approach Harris (1990) models discrete prices
by assuming constant variances of the underlying efficient price, while Hasbrouck
(1999a) models efficient prices for bid and ask prices separately using GARCH dy-
namics for the volatility of the efficient price processes. Hasbrouck (1999a) proposes
to use non-Gaussian, non-linear state space estimation of Kitagawa (1987). Other
works of Manrique & Shephard (1997), Hasbrouck (1999), Hasbrouck (2003) and
Hasbrouck (2004) also use MCMC techniques for estimation.

Decomposition models for discrete price changes assume that the price change is
a product of usually three random variables: a price change indicator, the direction
of the price change, and the size of the price change. Rydberg & Shephard (2003)
and Liesenfeld et al. (2006) follow this approach. Russell & Engle (2005) introduce
a joint model of price changes and time elapsed between trades (duration) where
price changes follow an autoregressive conditional multinomial (ACM) model and
durations the autoregressive conditional duration (ACD) model of Engle & Russell
(1998). A common feature of these models is that the time dependence is solely
induced by lagged endogenous variables, while our OSV specification allows for
parameter driven time dynamics.

The paper is organized as follows: Section 2 introduces the OSV and SV model
specifications and summarizes their estimation using MCMC methods. It also con-
siders the problem of model selection among OSV, among SV and between OSV and
SV models. The data application to three NYSE stocks with different trading levels
from the TAQ data base are given in Section 3. Special emphasis is given to model
interpretation and model selection. The paper closes with a summary and outlines
further research.
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2 Ordinal- and Continuous-Response Stochastic Volatility
Models

In this section we recall the OSV and SV model specifications and briefly summarize
MCMC techniques which have been developed to estimate these models. Further-
more, we discuss methods of model selection within and between the two model
classes.

2.1 OSV and SV Model Specification and Interpretation

As introduced by Müller & Czado (2009) we consider the following stochastic volatil-
ity model for an ordinal valued time series {Yti , i = 1, . . . , I}, where ti, i = 1, . . . , I
denote the possibly unequally spaced observation times. In this model the responseYti
with K possible values is viewed as a censored observation from a hidden continuous
variable Y ∗

ti which follows a stochastic volatility model, i.e.

Yti = k ⇔ Y ∗ti ∈ [ck−1,ck) , (1)

Y ∗ti = x′tiβ + exp(h∗ti/2)ε∗ti ,
h∗ti = z′tiα+φ(h∗ti−1

− z′ti−1
α)+ση∗ti ,

where c0 = −∞ < c1 < · · · < cK−1 < cK = +∞ are unknown threshold parameters
(also called cutpoints). Moreover, xti and zti are p and q dimensional covariate vec-
tors on the hidden mean and log volatility level, respectively. Associated with these
covariate vectors are unknown regression parameters β and α , respectively. The pa-
rameter φ is an unknown autocorrelation parameter and σ2 an unknown variance
parameter on the hidden log volatility scale. The error variables ε∗ti and η∗ti are as-
sumed to be i.i.d. standard normal, with independence also between {ε∗ti , i = 1, . . . , I}
and {η∗ti , i = 1, . . . , I}. For t0 we assume z0 := (0, . . . ,0)′ and that h∗0 follows a
known distribution. Finally, for identifiability reasons we have to fix a threshold
parameter, and hence we set c1 = 0. The model specified by (1) is abbreviated by
OSV(X1, . . . ,Xp;Z1, . . . ,Zq), where (X1, . . . ,Xp) and (Z1, . . . ,Zq) represent the names
of the covariates with corresponding observation vectors xti and zti at time ti, respec-
tively.

To interpret such a model, denote the mean and variance of the hidden process at
ti by μti and σ2

ti , respectively. As μti is increased holding σ2
ti fixed, we see that the

probability of a large (small) category is increased (decreased). For fixed μti , we see
that if σ2

ti is increased the probability of extreme categories is increased. These two
situations are illustrated in Figure 1.

Furthermore, the OSV model allows to quantify the probability pk
ti := P(Yti = k)

for observing a specific category k at time ti. This probability is given by
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Fig. 1 Category probabilities
(visualized as area under
the curve between adjacent
threshold bounds) as mean and
variance of a hidden normally
distributed random variable
vary

pk
ti =

⎧⎪⎪⎨⎪⎪⎩
Φ

(
(c1−x′tiβ )/exp(h∗ti/2)

)
for k = 1,

Φ
(
(ck−x′tiβ )/exp(h∗ti/2)

)−Φ (
(ck−1−x′tiβ )/exp(h∗ti/2)

)
for k = 2, . . . ,K−1,

1−Φ (
(cK−1−x′tiβ)/exp(h∗ti/2)

)
for k = K,

where Φ() denotes the cumulative distribution function of a standard normal ran-
dom variable. Therefore the model is able to identify time points where there is a
large probability of extreme small or large category labels. Note that no symmetry
assumptions about the occurrence of large/small categories are present in the model
specification.

We conclude this subsection by presenting the ordinary stochastic volatility model.
For a real valued time series {Y c

ti , i = 1, . . . , I} the ordinary SV model is specified by

Y c
ti = x′tiβ + exp(hti/2)εti (2)

hti = z′tiα+φ(hti−1 − z′ti−1
α)+σηti ,

where xti ,β ,zti ,α,φ and σ2 are specified as in the OSV model. The error variables
εti and ηti are assumed to be i.i.d. standard normal, with independence also between
{εti , i = 1, . . . , I} and {ηti , i = 1, . . . , I}. Analogously to the OSV case, the model
specified by (2) is denoted by SV(X1, . . . ,Xp;Z1, . . . ,Zq).

In our application we use OSV(X1, . . . ,Xp;Z1, . . . ,Zq) models for the category la-
bels of the associated price change classes, whereas SV(X1, . . . ,Xp;Z1, . . . ,Zq) mod-
els are applied to the observed price changes directly.
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2.2 Bayesian Inference for OSV and SV Models

Bayesian inference for the SV models was thoroughly investigated in Chib et al.
(2002). They used an estimation procedure based on a state space approximation
which we just briefly recall. Obviously, in model (2) one can equivalently write

log
(
Y c

ti −x′tiβ
)2 = hti + logε2

ti .

Kim et al. (1998) have shown that the distribution of logε2
ti can be approximated

very well by a seven-component mixture of normals. In particular, one can assume
logε2

ti ≈ ∑7
k=1 qku(k)

ti where u(k)
ti is normally distributed with mean mk and variance

v2
k independent of ti. Moreover, the random variables {u(k)

ti | i = 1, . . . , I, k = 1, . . . ,7}
are independent. The quantity qk denotes the probability that the mixture component
k occurs. These probabilities are also independent of t and are given in Table 1 of Chib
et al. (2002) together with the corresponding means and variances. Let sti ∈ {1, . . . ,7}
denote the component of the mixture that occurs at time ti and let π(sti) denote the
prior for sti, whereπ(sti =k) = qk. Then, by setting Ỹc

ti := log
(
Y c

ti −x′tiβ
)2, one arrives

at

Ỹ c
ti = hti + u

(sti)
ti

which, together with the second equation of (2), gives the desired state space repre-
sentation.

The inference for the OSV models is even more complicated, since a straight-
forward extension of the algorithm by Chib et al. (2002) shows an unacceptable bad
mixing of the chains. Therefore, Müller & Czado (2009) developed a grouped-move
multigrid Monte Carlo (GM-MGMC) algorithm which exhibits fast convergence of
the produced Markov chains. Since the SV model given by (2) is a submodel of the
OSV model, we use the same sampling scheme also for the SV model, of course
reduced by the sampling of the cutpoints which do not appear in the SV model, and
the variables Y ∗ti , i = 1, . . . , I, which are observed in the SV case.

Each iteration of the GM-MGMC sampler consists of three parts. In the first part,
the parameter vector β is drawn in a block update from a (p + 1)-variate normal
distribution, the latent variables Y ∗ti , i = 1, . . . , I, from truncated univariate normals,
and the cutpoints ck, k = 2, . . . ,K − 1, from uniform distributions. In the second
part, the grouped move step is performed. Here one draws a transformation element
γ2 from a Gamma distribution and updates β , (Y ∗t1 , . . . ,Y

∗
tI ), and c by multiplication

by the element γ =
√
γ2. The third part starts with computation of the state space

approximation, i.e. by computing Ỹ ∗ti = log(Y ∗ti − x′tiβ )2 for i = 1, . . . , I. Then sti ,
i = 1, . . . , I, are updated in single updates, and (α,φ ,σ) by a Metropolis-Hastings
step. Finally, the log volatilities h∗t1, . . . ,h

∗
tI are drawn in one block using the simulation

smoother of De Jong & Shephard (1995). For more details on the updates we refer
to Müller & Czado (2009).
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For the Bayesian approach one also has to specify the prior distributions for c, β ,
h∗0, α , φ , and σ . Assuming prior independence the joint prior density can be written
as

π(c,β ,h∗0,α,φ ,σ) = π(c)π(β)π(h∗0)π(α1) · · ·π(αq)π(φ)π(σ).

For β a multivariate normal prior distribution is chosen, for h∗0 the Dirac measure at
0, and for the remaining parameters uniform priors. In particular,

π(c) = I{0<c2<···<cK−1<C}, π(β) = Np+1(β |b0,B0),
π(h∗0) = I{h∗0=0}, π(α j) = I(−Cα ,Cα )(α j), j = 1, . . . ,q,

π(φ) = I(−1,1)(φ), π(σ) = I(0,Cσ )(σ),

where C > 0, Cα > 0, and Cσ > 0 are (known) hyperparameters, as well as the mean
vector b0 and the covariance matrix B0.

2.3 Model Selection

We now look at some criteria for model selection among OSV models, among SV
models, and between OSV and SV models.

Model Selection Between OSV Models

We consider a model specification to be reasonable when credible intervals do not
contain zero for all parameters. However model selection among such reasonable
models is difficult since the likelihood cannot be evaluated simply for OSV models,
thus the often used deviance information criteria (DIC) of Spiegelhalter et al. (2002)
or score measures discussed in Gneiting & Raftery (2007) cannot be computed di-
rectly. Therefore we consider the following simple model selection criteria.

To choose among OSV models we first derive estimates of the ordinal categories
for each ti based on the MCMC iteration values. Note that the hidden volatility for
each ti is updated in each MCMC iteration, but we use only the average value of the
log volatility estimates at ti over all MCMC iterations. These averages are denoted by
ĥ∗ti and are used to derive fitted values for the hidden process. Let βr,α r,σ r,φ r and cr

k,
k = 2, . . . ,K−1 denote the rth MCMC iterate of β ,α ,σ ,φ and ck, k = 2, . . . ,K−1,
respectively for r = 1, . . . ,R. The estimated log volatilities ĥ∗ti allow to derive fitted
hidden process variables y∗r

ti defined by

y∗r
ti := x′tiβ

r + exp(ĥ∗ti/2)ε∗r
ti ,

where ε∗r
ti are i.i.d. standard normal observations. Finally find category k such that

y∗r
ti ∈ [cr

k−1,c
r
k) and set

yr
ti := k.
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The ordinal category at time ti is now fitted by the empirical median of {yr
ti ,r =

1, . . . ,R}, which we denote as ŷti .
To construct interval estimates for the ordinal categories we define

y∗r
ti ,1−α := x′tiβ

r + exp(ĥ∗ti/2)z1−α ,

y∗r
ti,α := x′tiβ

r− exp(ĥ∗ti/2)zα ,

where zδ denotes the δ quantile of a standard normally distributed random variable.
Then we find categories k1−α such that y∗r

ti,1−α ∈ [cr
k−1,c

r
k) and kα such that y∗r

ti,α ∈
[cr

k−1,c
r
k), respectively, and set

yr
ti ,1−α := k1−α and yr

ti,α := kα .

The interval estimate for a category at a time ti is now defined as the interval
[ŷti,α , ŷti ,1−α ] where ŷti,α and ŷti,1−α denote the empirical medians of {yr

ti,α ,r =
1, . . . ,R} and {yr

ti,1−α ,r = 1, . . . ,R}, respectively.
Alternatively we could consider a 100(1−α)% credible interval, which is given

by [ŷB
ti,α , ŷB

ti ,1−α ], where ŷB
ti,α (ŷB

ti,1−α) denotes the empirical α (1−α) quantile of
{yr

ti ,r = 1, . . . ,R}. Since the fitted category yr
ti of the rth MCMC iterate takes on only

a few values, the empirical α and (1−α) quantiles are not well defined. Therefore
we will not follow this approach.

To choose among several OSV specifications we now count the times the observed
category coincides with the fitted category as well as how many times the interval
estimate covers the observed category. We choose the model with the highest correctly
fitted and covered categories as the best model. Note that the observed coverage
percentage is not identical with 100(1−α) for the α value used in the construction
of the interval estimates, since category values for different time points are dependent.

Model Selection Between SV Models

For the SV models we follow a similar approach as for the OSV models. First let
ĥc

ti denote the average value of the log volatility estimates at time ti over all MCMC
iterations. Again let β r, αr, σ r, and φ r denote the rth MCMC iterate of β , α , σ , and
φ for r = 1, . . . ,R for the SV model, respectively. Define

yc,r
ti := x′tiβ

r + exp(ĥc
ti/2)εr

ti

yc,r
ti ,1−α := x′tiβ

r + exp(ĥc
ti/2)z1−α

yc,r
ti,α := x′tiβ

r− exp(ĥc
ti/2)zα ,

where εr
ti are i.i.d. standard normal. Now determine the median of {yc,r

ti ,r = 1, . . . ,R},
{yc,r

ti,1−α ,r = 1, . . . ,R} and {yc,r
ti,α ,r = 1, . . . ,R}, and denote them by ŷc

ti , ŷ
c
ti ,1−α and

ŷc
ti,α , respectively. Since ŷc

ti is real-valued, it is not informative to count the times the
observed value is equal the fitted value ŷc

ti for all ti. Hence, we only count the number
of times the observed value is covered by the interval [ŷc

ti,α , ŷc
ti ,1−α ] for all ti.
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Model Selection Between OSV and SV Models

The coverage percentage by the interval estimate for the OSV and SV, respectively,
is used as a measure how good the model explains the observed values. A larger
percentage gives a better fit.

3 Application

In this section we investigate the applicability of the OSV model to financial stocks
with different levels of trading activity, and determine the influence of time between
trades, volume, day time and the number of quotes between trades. Moreover, we
compare the performance of OSV models and SV models using suitable model
selection criteria.

3.1 Data

To investigate the gain of the OSV model over a corresponding SV model for the
price changes we selected three stocks traded at the NYSE, reflecting stocks which
are traded at a low, medium and high level. We chose the Fremont General Cor-
poration (FMT), the Agilent Technologies (Agilent) and the International Business
Machine Cooperation (IBM) from the TAQ data base for a low, medium and high
level of trading, respectively. The data was collected between November 1-30, 2000
excluding November 23, 24 (thanksgiving).

Table 1 contains trading characteristics for the three stocks during the investigated
time period. The absolute values of extremal price changes increase as trading activity
increases (cf. rows ‘price diff. between ti−1 and ti’), indicating a higher volatility for
more frequently traded stocks. As expected, the median and maximum time between
trades decreases as the level of trading increases. For the number of quotes between
trades we see a different behavior; while the medium number of quotes remains
constant, the maximal number of quotes is the same for FMT and IBM, while it is
lower for Agilent. Finally, Agilent has the highest maximum volume per trade among
these three stocks.

To illustrate the discreteness of the observed price changes we recorded the num-
ber of occurrences of tick changes of size ≤ −3/16,−2/16,−1/16,0,1/16,2/16,≥ 3/16

together with their percentages in Table 2. For each of the tick change size we as-
sociate a category label (necessary for the OSV formulation) also given in Table
2. We see that the observed price changes are quite symmetric around 0 during the
investigated time period and that a zero price change is observed most often.

The considered OSV and SV models allow for covariates on the mean and volatil-
ity level. To get an idea of possible day time effects we report the corresponding ob-
served median values of price, price change, time between trades, number of quotes
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Table 1 Observed characteristics of the FMT, Agilent and IBM stocks between Nov. 1 - 30, 2000

minimum median maximum
price (dollar) 2 7/16 4 5/16 5 5/16

price diff. between ti−1 and ti (dollar) −4/16 0 2/16

FMT time diff. between ti−1 and ti (seconds) 0 192 4001
number of quotes between ti−1 and ti 0 1 24
volume per trade 100 1000 122400
price (dollar) 38 1/16 46 3/16 53 15/16

price diff. between ti−1 and ti (dollar) −11/16 0 8/16

Agilent time diff. between ti−1 and ti (seconds) 0 11 276
number of quotes between ti−1 und ti 0 1 14
volume per trade 100 500 247000
price (dollar) 91 10/16 99 7/16 104 5/16

price diff. between ti−1 and ti (dollar) −13/16 0 14/16

IBM time diff. between ti−1 and ti (seconds) 0 7 150
number of quotes between ti−1 and ti 0 1 24
volume per trade 100 1000 225000

Table 2 Observed price changes together with category label, frequency and relative frequency in
percent for the FMT, Agilent and IBM stocks from Nov. 1-30, 2000

price difference ≤−3/16 −2/16 −1/16 0 1/16 2/16 ≥ 3/16

category 1 2 3 4 5 6 7
FMT frequency 3 25 229 755 227 28 0

rel. freq. (%) 0.2 2.0 18.1 59.6 17.9 2.2 0.0
category 1 2 3 4 5 6 7

Agilent frequency 196 939 4662 16599 4747 863 216
rel. freq. (%) 0.7 3.3 16.5 58.8 16.8 3.1 0.8
category 1 2 3 4 5 6 7

IBM frequency 585 3090 10251 22286 11161 2546 613
rel. freq. (%) 1.2 6.1 20.3 44.1 22.1 5.0 1.2

and volume in Table 3. All stocks show larger (smaller) time intervals between
trades during midday (opening and closing times), however the median price change
is constant over the day time indicating no effect on the mean level of the hidden
process. With regard to the volatility we also recorded the minimal and maximal
price changes during trading hours in Table 4. Here we see less changes for different
trading hours for the FMT and Agilent stocks compared to the IBM stock. This may
indicate a day time effect on the volatility level for IBM stocks, which is detected by
a corresponding OSV model specification.

Comparing Table 3 with Table 4 we might identify covariates on the volatility
level. For example the median volume value exhibits a similar pattern as the pattern
of volatility changes for the FMT and IBM stocks, indicating that volume has some
explanatory power for the volatility of the price changes. For Agilent stocks the
patterns of volume and volatility of the price changes do not match as well. For the
other covariates the identification is less pronounced, so we consider them all as
potentially useful covariates and let the statistical models identify them.
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Table 3 Observed median number of price, price change, time between trades, number of quotes
between trades and volume for different trading hours of the FMT, Agilent and IBM stock between
Nov. 1 -30, 2000

day time 9:30-10 10-11 11-12 12-1 1-2 2-3 3-4
price (dollar) 4 8/16 4 3/16 4 4/16 4 4/16 4 8/16 4 10/16 4 3/16

price diff. (dollar) 0 0 0 0 0 0 0
FMT time diff. (sec.) 89 176 210 256 182.5 208 165

no. of quotes 1 1 1 2 1 1 1
volume 1000 1000 1000 1000 1000 1000 1000
price (dollar) 46 8/16 46 9/16 46 2/16 46 4/16 45 14/16 46 2/16 46 4/16

price diff. (dollar) 0 0 0 0 0 0 0
Agilent time diff. (sec.) 7 10 11 12 12 11 10

no. of quotes 1 1 1 1 1 1 1
volume 600 600 500 500 500 500 500
price (dollar) 99 3/16 99 9/16 99 8/16 99 11/16 99 11/16 99 7/16 99 4/16

price diff. (dollar) 0 0 0 0 0 0 0
IBM time diff. (sec.) 6 6 7 9 9 7 6

no. of quotes 1 1 1 1 1 1 1
volume 1300 1000 800 600 700 800 1000

Table 4 Minimal and maximal price changes for different trading hours of the FMT, Agilent and
IBM stock between Nov. 1-30, 2000

day time 9:30-10 10-11 11-12 12-1 1-2 2-3 3-4
FMT min. price change −2/16 −2/16 −2/16 −4/16 −3/16 −2/16 −2/16

max. price change 2/16 2/16 2/16 2/16 2/16 2/16 2/16

Agilent min. price change −6/16 −5/16 −4/16 −11/16 −5/16 −4/16 −8/16

max. price change 8/16 6/16 5/16 5/16 4/16 7/16 7/16

IBM min. price change −13/16 −8/16 −4/16 −9/16 −4/16 −5/16 −8/16

max. price change 14/16 10/16 5/16 10/16 4/16 6/16 9/16

3.2 OSV Models

As response we choose the category corresponding to the price change at trading
time ti, denoted by yti . To model a possibly present dependence between the current
price change category and the previous one, we use the lagged price change as a
covariate on the mean level and denote it by LAG1 (no other covariates turned out
to be significant for the mean level in our analysis). In addition, we allow for an
intercept parameter on the mean level. For possible covariates on the volatility level
we use volume (V), daytime (D), time elapsed between trades (T) and the number of
quotes between trades (Q). For numerical stability we use centered and standardized
versions of these variables. For reasons of identifiability, no intercept is included in
the term z′tiα .

For all three stocks we ran a variety of models involving V, D, T and Q as well
as quadratic functions of these. In the following we only present models where all
covariates are significant, i.e. their individual 80% credible intervals do not contain
zero. For all models we ran 20000 MCMC iterations of the GM-MGMC algorithm.
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Appropriate burnin values were determined using trace plots. Furthermore, the esti-
mated autocorrelations among the MCMC iterations suggested to take a subsample
of every 20th iteration.

Fremont General Cooperation

The left panel of Table 5 presents, for three different OSV model specifications,
the estimated posterior medians and means of each parameter together with a 80%
credible interval for the subsampled MCMC iterations after burnin. Figure 2 shows
estimated posterior densities for all parameters of the OSV(1,LAG1;V,T ) model. We
see a symmetric behavior of the posteriors for the cutpoint parameters and regression
parameters and slightly skewed distributions for σ and φ . The posterior density
estimates for the remaining two OSV specifications show a similar behavior and are
therefore omitted.

Interpreting the results for the OSV specifications, we see from the negative sign
of LAG1, that an higher (lower) previous price change category decreases the proba-
bility of an higher (lower) current price change category, a fact which can be observed
directly from the data, where often a positive price change is followed by a negative
one and vice versa. A higher volume, a larger time interval between trades and a
larger number of quotes increase the log volatility, thus the probability of observing
an extreme positive or negative price change is increased.

It remains to choose among the three OSV specifications. Since the models OSV(1,
LAG1;V,T ), OSV(1,LAG1;T,Q) are nested within OSV(1,LAG1;V,T,Q), the sig-
nificance of the parameter estimates established by the credible intervals may lead
to a slight preference for the OSV (1,LAG1;V,T,Q) model specification. This is also
confirmed, when we calculate the fitted price change categories (see Section 2.3)
and compare them to the observed price categories. Moreover, we determine fit-
ted interval bounds for the price change category and check how many times they
are covering the observed price change category. The percentage of correctly fit-
ted categories is 59.67%, 59.43% and 59.75% for the models OSV (1,LAG1;V,T ),
OSV(1,LAG1;T,Q) and OSV (1,LAG1;V,T,Q), respectively. The corresponding
values for the percentage of correctly covered categories are 96.45%, 96.37% and
96.53%, respectively. This may lead again to a slight preference for the large model.

Agilent Technologies

For the Agilent stock we found only a single OSV specification with significant
parameter estimates, whose summary statistics are given in the left panel of Table
6. It is a different specification as for FMT stocks. The effect of the previous price
change category for the Agilent stocks is similar to that one for the FMT stocks,
and the autocorrelation of the hidden log volatilities is quite the same. A notable
difference is the effect of the number of quotes between trades on the price change
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Fig. 2 Estimated posterior density for OSV (1,LAG1;V,T ) parameters for FMT stocks
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Table 5 Estimated posterior means, medians and quantiles of three OSV (left panel) and three SV
(right panel) model specifications with significant parameters fitted for FMT stocks based on the
subsampled MCMC iterations after burnin

parameter 10% 90% median mean 10% 90% median mean

OSV (1,LAG1;V,T ) SV (1;V,T )
φ 0.64 0.89 0.80 0.78 0.75 0.79 0.77 0.77
σ 0.32 0.70 0.47 0.49 9.17 11.86 9.90 10.21
c2 1.25 1.72 1.47 1.48
c3 2.50 2.98 2.72 2.73
c4 3.73 4.29 3.99 4.00
c5 4.88 5.68 5.24 5.26
1 4.11 4.86 4.46 4.47 1.1 ·10−6 7.1 ·10−6 4.1 ·10−6 4.1 ·10−6

LAG1 −0.33 −0.23 −0.28 −0.28
V 1.86 7.83 4.66 4.79 14.14 24.96 19.48 19.51
T 3.45 9.46 6.32 6.39 25.09 36.75 31.09 31.04

OSV (1,LAG1;V,Q) SV (1;V,Q)
φ 0.44 0.85 0.74 0.69 0.75 0.79 0.77 0.77
σ 0.39 0.93 0.58 0.63 9.18 11.82 9.94 10.19
c2 1.47 2.00 1.72 1.73
c3 2.78 3.42 3.07 3.08
c4 4.01 4.73 4.34 4.36
c5 5.21 6.20 5.65 5.68
1 4.45 5.38 4.87 4.89 1.1 ·10−6 7.1 ·10−6 4.1 ·10−6 4.1 ·10−6

LAG1 −0.34 −0.24 −0.30 −0.29
V 1.49 7.57 4.76 4.64 13.67 25.19 19.28 19.44
Q 1.72 6.84 4.24 4.27 15.44 26.29 21.36 21.10

OSV (1,LAG1;V,T,Q) SV (1;V,T,Q)
φ 0.72 0.91 0.83 0.82 0.76 0.79 0.77 0.77
σ 0.26 0.58 0.40 0.42 9.12 11.71 9.88 10.11
c2 1.01 1.58 1.24 1.27
c3 2.14 2.84 2.42 2.46
c4 3.38 4.13 3.71 3.74
c5 4.52 5.45 4.94 4.96
1 3.77 4.65 4.18 4.19 1.1 ·10−6 7.1 ·10−6 4.1 ·10−6 4.1 ·10−6

LAG1 −0.33 −0.22 −0.27 −0.27
V 1.87 7.54 4.58 4.59 13.82 24.53 19.71 19.35
T 1.55 6.42 4.02 4.00 15.06 26.38 20.73 20.74
Q 3.63 8.93 6.26 6.30 25.13 36.67 31.00 30.98

categories. Here the parameter estimate has a negative sign, thus the probability of
extreme price change categories is decreased when the number of quotes is increased.
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Table 6 Estimated posterior means, medians and quantiles of the OSV (1,LAG1;T,Q) (left panel)
and SV (1;T ) fitted for Agilent stocks based on subsampled MCMC iterations after burnin

parameter 10% 90% median mean 10% 90% median mean

OSV (1,LAG1;T,Q) SV (1;T )
φ 0.80 0.84 0.82 0.82 0.74 0.80 0.77 0.77
σ 0.46 0.52 0.49 0.49 9.12 10.37 9.67 9.72
c2 1.28 1.33 1.30 1.30
c3 2.24 2.31 2.28 2.28
c4 3.42 3.52 3.47 3.47
c5 4.39 4.52 4.46 4.46
c6 5.36 5.56 5.47 5.47
1 3.68 3.81 3.74 3.74 1.1 ·10−6 7.1 ·10−6 4.1 ·10−6 4.1 ·10−6

LAG1 −0.23 −0.21 −0.22 −0.22
T 22.12 27.43 24.78 24.80 62.57 181.79 121.86 121.89
Q −10.11 −5.25 −7.64 −7.64

International Business Machines Cooperation

For the IBM stocks we have two OSV model specifications where all parameter
estimates are significant (see the left panel of Table 7). The effect of the number
of quotes is similar to that one of the Agilent stock. The full specification also
includes a significantly negative daytime parameter, indicating a lower probability
of extreme price change categories for later in the day than in the morning. This
corresponds to the fact, that often the highest volatility during a day can be observed
directly after opening of the exchange. The percentage of correctly fitted response
categories is 41.54% for the OSV (1,LAG1;V,Q) model compared to 41.48% for
the OSV (1,LAG1;V,T,Q,D) model. The percentage of correctly covered response
categories is 92.94% for the for the OSV(1,LAG1;V,Q) model compared to 92.93%
for the OSV(1,LAG1;V,T,Q,D) model. Hence, we prefer the simpler one of the two
OSV model specifications.

In summary, we see that different OSV models are specified for the different
stocks. Whereas there is a negative parameter estimate for the number of quotes
between two subsequent trades of the Agilent and the IBM stock, the opposite is
true for the less frequently traded FMT stock. Therefore the probability of extreme
price changes seems to decrease for more frequently traded stocks when the number
of quotes between trades increases, whereas this probability increases for less fre-
quently traded stocks. In addition, the trading frequency influences the magnitude
of autocorrelation present in the log volatilities. The highest autocorrelation was ob-
served for the IBM stock. Daytime effects on the hidden volatility are not significant
in our three preferred models. The effect of the time elapsed between trades on the
log volatility is always positive. This indicates that larger time differences between
two subsequent trades usually lead to a higher volatility. The positive regression co-
efficient for volume induces a larger volatility for larger volumes, which results in
higher probabilities for the occurrence of extreme price change categories.
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Table 7 Estimated posterior means, medians and quantiles of two OSV (left panel) and one SV (right
panel) model specifications with significant parameters fitted for IBM stocks based on recorded
MCMC iterations

parameter 10% 90% median mean 10% 90% median mean

OSV (1,LAG1;V,Q)
φ 0.93 0.94 0.94 0.94
σ 0.20 0.23 0.21 0.21
c2 0.93 0.95 0.94 0.94
c3 1.65 1.69 1.67 1.67
c4 2.52 2.57 2.54 2.54
c5 3.33 3.40 3.37 3.37
c6 4.10 4.21 4.16 4.16
1 3.04 3.12 3.08 3.08
LAG1 −0.25 −0.24 −0.24 −0.24
V 5.54 10.25 7.98 7.98
Q −9.17 −5.07 −7.12 −7.12

OSV (1,LAG1;V,T,Q,D) SV (1;V,T )
φ 0.92 0.94 0.93 0.93 0.67 0.69 0.68 0.68
σ 0.21 0.24 0.22 0.23 0.07 0.14 0.09 0.10
c2 0.90 0.93 0.92 0.91
c3 1.66 1.70 1.68 1.68
c4 2.51 2.55 2.53 2.53
c5 3.34 3.41 3.38 3.38
c6 4.14 4.26 4.20 4.20
1 3.04 3.12 3.08 3.08 1.9 ·10−5 7.5 ·10−4 3.7 ·10−4 3.7 ·10−4

LAG1 −0.25 −0.24 −0.24 −0.24
V 5.22 9.76 7.43 7.46 0.54 9.60 4.91 4.99
T 33.36 38.85 36.08 36.02 23.15 37.59 29.28 29.99
Q −8.37 −3.90 −6.06 −6.07
D −35.08 −22.16 −28.12 −28.26

3.3 SV Models

For the SV setup we use the observed price changes as response and ignore their dis-
crete nature. For each of the three stocks we investigated different SV specifications.
A first difference to the OSV specifications are that none of the covariates LAG1,
V, T, Q, and D for the mean level are significant. Therefore all SV models include
only an intercept parameter in the mean level, which is significant but very close to
zero. For the log volatilities we find significant covariates, which we present in the
following. Again we ran 20000 MCMC iterations and determined appropriate burnin
values and subsampling rates.
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Fremont General Corporation

Three significant SV specifications were found for the FMT stocks and the results
are summarized in the right panel of Table 5. The highest coverage percentage is
achieved using the SV(1;V,T,Q), which we select as best model among the SV
models for the FMT stocks.

Agilent Technologies

For the Agilent stocks only a single SV specification produces significant parameter
estimates and the results are presented in the right panel of Table 6. From this we see
that only the time elapsed between trades has a significant effect on the price changes.
A larger time interval between trades produces a larger volatility, i.e. extreme price
changes become more likely.

International Business Machines Cooperation

For the frequently traded IBM stocks only the SV(1;V,T ) model produces significant
posterior parameter estimates. The results presented in right panel of Table 7 show
that both volume and time elapsed between trades increase the volatility, thus making
more extreme price changes more likely.

3.4 Comparison Between OSV and SV Models

We now compare all selected OSV and SV models by using the coverage percentages.
These are reported in Table 8. We see that there is a clear preference for the OSV
specifications for Agilent and IBM stocks, while for the FMT stock a slight preference
for the SV specification is visible. A graphical illustration of this is given in Figure
3 where the interval estimates are plotted for the last 100 observations together with
the observed values.

As a final comparison we estimate posterior densities of the volatilities for each
price change category using the competing OSV and SV specifications for all three
stocks. The corresponding plots are shown in Figure 4. The OSV specifications
nicely identify different volatility patterns. In particular, extreme price categories
correspond to larger volatilities. The competing SV specification for the IBM stocks
shows a similar pattern. However, the SV specifications for the FMT and the Agilent
stocks lead to quite different density estimates.
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Fig. 3 Fitted categories and fitted price differences of OSV and SV model of the last 100 observa-
tions together with interval estimates for FMT (top row), Agilent (middle row) and IBM (bottom
row) stocks, respectively
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Fig. 4 Estimated posterior densities of the (hidden) volatilities for each category of OSV and SV
model for FMT (top row), Agilent (middle row) and IBM (bottom row) stocks, respectively
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Table 8 Percentage of correctly covered observations of different OSV and SV specifications for
FMT, Agilent and IBM stocks

OSV specifications SV specifications

FMT OSV (1,LAG1;V,T,Q) 1223/1267 SV (1,LAG1;V,T,Q) 1267/1267
= 96.53% = 100.00%

Agilent OSV (1,LAG1;T,Q) 26738/28222 SV (1;T ) 20980/28222
= 94.74% = 74.34%

IBM OSV (1,LAG1;V,Q) 46965/50532 SV (1;V,T ) 42811/50532
= 92.94% = 84.72%

4 Summary and Discussion

In this paper we presented the results of a Bayesian analysis of two model class speci-
fications for financial price changes. Estimation is facilitated using MCMC methods.
The OSV specification explicitly accounts for the discrete values of the price changes,
while the SV specification ignores it. The OSV model captures the influence of the
previous price change, whereas for the SV models this influence is not significant. In
addition we see that volume, time between trades and the number of quotes between
trades are important factors determining the volatility. Useful model specifications
depend on the trading activity of the stock. In particular, a higher number of quotes
between trades increases the volatility for less frequently traded stocks, whereas the
opposite pattern is observed for stocks which are more frequently traded. As expected
a larger duration between trades increases the volatility. A quadratic day time effect
was not significant indicating that there was no strong volatility smile present in the
data.

When comparing the OSV and SV models we see that the OSV models perform
better (at least for the more frequently traded Agilent and IBM stocks) than the SV
models with regard to the coverage proportion of interval estimates. However, more
precise model comparison criteria for comparing non nested models with numerical
intractable likelihoods in a Bayesian setup are needed and subject to current research.
Finally, the OSV and SV model specifications lead to different density estimates for
the volatility within the price change classes. However, the density estimates coming
from the OSV specifications are quite convincing, since here extreme categories
always come along with higher values of the volatility estimates.

Overall we conclude that the OSV models which account for the discreteness of
the price changes perform quite well, when applied to data sets as considered in this
analysis. Although it is computationally more involved to fit the OSV model to the
data, the OSV model is tailored to the structure of ordinal-response data and hence
most suitable for price changes.
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