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Abstract Dependence modelling and estimation is a key issue in the assessment
of financial risk. It is common knowledge meanwhile that the multivariate normal
model with linear correlation as its natural dependence measure is by no means an
ideal model. We suggest a large class of models and a dependence function, which
allows us to capture the complete extreme dependence structure of a portfolio. We
also present a simple nonparametric estimation procedure of this function. To show
our new method at work we apply it to a financial data set of high-frequency stock
data and estimate the extreme dependence in the data. Among the results in the
investigation we show that the extreme dependence is the same for different time
scales. This is consistent with the result on high-frequency FX data reported in
Hauksson et al. (2001). Hence, the different asset classes seem to share the same
time scaling for extreme dependence. This time scaling property of high-frequency
data is also explained from a theoretical point of view.
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1 Multivariate Risk Assessment for Extreme Risk

Estimation of dependence within a portfolio based on high-frequency data faces
various problems:

• data are not normal: they are skewed and heavy-tailed
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• one-dimensional data are uncorrelated but not iid
• multivariate high-frequency data are not synchronised
• data are discrete-valued for a very high frequency
• most likely there is microstructure noise in the data
• there is seasonality in the data
• higher moments may not exist
• the multivariate distribution may not be elliptical
• dependence may not be symmetric

We are interested here in the influence of the multivariate dependence within the
portfolio. We first recall that under the condition that the portfolio P/L follows a
multivariate normal distribution and, if there is no serial dependence, the portfolio
P/L standard deviation σ is calculated by the square root of its variance

σ2 =
n

∑
i=1

w2
i σ

2
i +∑

i�= j
wiwjσiσ jρi j , (1)

where the portfolio consists of n different instruments with nominal amount wi in-
vested into asset i. The standard deviation of asset i is given by σi and the pairwise
correlation coefficients are ρi j (i, j = 1, . . . ,n).

Definition 1. For two random variables X and Y their linear correlation is defined
as

ρL(X ,Y ) =
cov(X ,Y )√

var(X)var(Y )
,

where cov(X ,Y ) = E((X −EX)(Y −EY )) is the covariance of X and Y , and var(X)
and var(Y ) are the variances of X and Y , respectively.

Correlation measures linear dependence: we have |ρL(X ,Y )| = 1 if and only if
Y = aX +b with probability 1 for a ∈R\{0} and b ∈R. Furthermore, correlation is
invariant under strictly increasing linear transformations; i.e. for α,γ ∈ R\{0} and
β ,δ ∈R

ρL(αX +β ,γY + δ ) = sign(αγ)ρL(X ,Y ) .

Also for high-dimensional models correlation is easy to handle. For random (column)
vectors X ,Y ∈Rn we denote by cov(X ,Y ) = E((X−EX)(Y−EY)T ) the covariance
matrix of X and Y . Then for m×n matrices A,B and vectors a,b ∈Rm we calculate

cov(AX + a,BY + b) = Acov(X ,Y )BT ,

where BT denotes the transpose of the matrix B. From this it follows for w ∈Rn that

var(wT X) = wT cov(X ,X)w ,

which is exactly formula (1) above. The popularity of correlation is also based on the
fact that it is very easy to calculate and estimate. It is a natural dependence measure
for elliptical distributions such as the multivariate normal or t distributions, provided
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second moments exist. Within the context of linear models correlation has also proved
as a useful tool for dimension reduction (e.g. by factor analysis), an important issue in
risk management; see Klüppelberg & Kuhn (2009) for a new approach to dimension
reduction for financial data.

Multivariate portfolios, however, are often not elliptically distributed, and there
may be a more complex dependence structure than linear dependence. Indeed, data
may be uncorrelated, i.e. with correlation 0, but still may be highly dependent. In the
context of risk management, when measuring extreme risk, modelling dependence
by correlation may be grossly misleading; see e.g. Embrechts et al. (2002).

We turn to a measure for tail dependence, which relates large values of the com-
ponents of a portfolio; see e.g. Joe (1997). In the bivariate context, consider random
variables X and Y with marginal distribution functions GX and GY and (general-
ized) inverses G←

X and G←
Y . For any distribution function G its generalized inverse

or quantile function is defined as

G←(t) = inf{x ∈R |G(x)≥ t} , 0 < t < 1 .

If G is strictly increasing, then G← coincides with the usual inverse of G.

Definition 2. The upper tail dependence coefficient of (X ,Y ) is defined by

ρU = lim
u↑1

P(Y > G←
X (u) | X > G←

Y (u)) , (2)

provided the limit exists. If ρU ∈ (0,1], then X and Y are called asymptotically upper
tail dependent, if ρU = 0, they are called asymptotically upper tail independent.

For some situations, this measure may be an appropriate extreme dependence
measure; this is true, in particular, when the bivariate distribution is symmetric;
see Example 1. However, ρU is not a very informative measure, since the extreme
dependence around the line with angle π/4 does not reveal much about what happens
elsewhere; see e.g. the asymmetric model in Example 2. As a remedy we suggest
an extension of the upper tail dependence coefficient to a function of the angle,
which measures extreme dependence in any direction in the first quadrant of R2.
Its derivation is based on multivariate extreme value theory and we indicate this
relationship in Section 2. We shall, however, refrain from a precise derivation and
rather refer to Hsing et al. (2004) for details. We also want to emphasize that one-
dimensional extreme value theory has been applied successfully to risk management
problems; see Embrechts (2000). We remark further that one-dimensional extreme
value theory has meanwhile reached a consolidated state; we refer to Embrechts et
al. (1997) or Coles (2001) as standard references.

We will illustrate our results by a direct application to a real data set. The complete
data set we investigated consists of high-frequency data for three different stocks:
Intel, Cisco and General Motors (GM). We have full sample paths of the price data
of the stocks between February and October 2002 from the Trades and Quotes TAQ
database of the New York Stock Exchange (NYSE); i.e. our data consists of all
trading dates [in seconds] and corresponding prices [in cents]. They are depicted in
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Fig. 1 Example of stock prices: Intel, Cisco and GM: Feb-Oct 2002.

Figure 1. This dataset has to be filtered in different steps due to false data, seasonality
and serial dependence; see Section 4 for details.

After these filtering steps the residuals can be assumed iid and the dependence
structure between the three stocks can be investigated. The first row of Figure 2 shows
scatter plots of different combinations of the filtered stocks. We have estimated the
means, variances and the correlation of the data in each scatter plot. The second row
shows simulated normal data with the estimated parameters.

For extreme risk assessment one is particularly interested in the left lower corner
and we have zoomed into this corner to get a more precise account of the dependence
there; see Figure 3. None of the normal models seem to be able to capture the
dependence structure in this area.

Our paper is organized as follows. After introducing the tail dependence function
in Section 2 we shall present some examples including an asymmetric Pareto model
and the bivariate normal model.

In Section 3 we introduce a simple nonparametric estimation procedure of the tail
dependence function. We show its performance in various simulation examples and
plots.

In Section 4 we investigate our high-frequency data in more detail and estimate
their tail dependence function. We also show various plots to visualize our results.
Finally, in Section 5 we conclude the paper with a summary of our findings.

2 Measuring Extreme Dependence

Although the upper tail dependence coefficient and its functional extension we are
aiming at can be defined for random vectors of any dimension, we restrict ourselves
in our presentation to the bivariate case. For a general treatment in any dimension
we refer to Hsing et al. (2004).

Suppose (Xi,Yi)i=1,...,n is a sequence of iid vectors and (X ,Y ) is a generic random
vector with the same distribution function G(x,y) = P(X ≤ x,Y ≤ y) for (x,y) ∈R2
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Fig. 2 Bivariate stock data versus simulated normal with same (estimated) means and variances.

with continuous marginals. For n ∈ N define the vector of componentwise maxima
Mn = (maxi=1,...,n Xi , maxi=1,...,n Yi) . As a first goal we want to describe the behavior
of Mn for large n.

It is a standard approach in extreme value theory to first transform the marginals
to some appropriate common distribution and then model the dependence structure
separately. As copulas have become a fairly standard notion for modelling depen-
dence we follow this approach and transform the marginal distributions GX and GY
to uniform (0,1). Then we have a bivariate uniform distribution, which is called a
copula and is given for 0 < u,v < 1 by

CG(u,v) = P(GX(X)≤ u , GY (Y )≤ v) = P(X ≤ G←
X (u) , Y ≤ G←

Y (v)) .

For more details on copulas and dependence structures in general we refer to
Joe (1997); for applications of copulas in risk management see Embrechts et
al. (2001).The transformation of the marginals to uniforms is illustrated in Figure 4.

Under weak regularity conditions on the bivariate distribution function G we
obtain

lim
n→∞P

(
max

i=1,...,n
GX(Xi)≤ 1 +

1
n

lnu , max
i=1,...,n

GY (Yi)≤ 1 +
1
n

lnv
)
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Fig. 3 Bivariate stock data versus simulated normal with same (estimated) means and variances.

= exp(−Λ(− lnu,− lnv))) = C(u,v) , 0≤ u,v≤ 1 .

Such a copula is called extreme copula and satisfies for all t > 0

Ct(u,v) = C(ut ,vt) , 0 < u,v < 1 .

C(u,v) has various integral representations. The Pickands’ representation yields an
extreme event intensity measure (we write a∧b = min(a,b) and a∨b = max(a,b)):

Λ(x,y) = lim
n→∞nP

(
GX (X) > 1− x

n
or GY (Y ) > 1− y

n

)
(1)

=
∫ π/2

0

( x
1∨ cotθ

∨ y
1∨ tanθ

)
Φ(dθ ) , x,y≥ 0 .

Φ is a finite measure on (0,π/2) satisfying
∫ π/2

0 (1 ∧ tanθ )Φ(dθ ) =
∫ π/2

0 (1 ∧
cotθ )Φ(dθ ) = 1 . The definition of Λ as a limit of n× success probability is a
version of the classical limit theorem of Poisson. For large n the measure Λ can
be interpreted as the mean number of data in a strip near the upper and right
boundary of the uniform distribution; see Figure 4. We also recall some prop-
erties of tanθ = 1

cotθ = sinθ
cosθ : tan0 = 0, tanθ is increasing in θ ∈ (0,π/2) and

limθ→π/2 tanθ = ∞. Then cotθ is its reflection on the 45 degree line, correspond-
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Fig. 4 Left plot: Simulated data for X and Y Fréchet distributed with distribution functions GX(x) =
GY (x) = exp(−1/x) for x > 0 with region of large data points indicated. The range of the data is in
total [0,410] for X and [0,115] for Y; for reasons of presentation 14 extremely large points had to
be left out.
Right plot: Illustration of the intensity measure Λ as defined in equation (1): Λ measures the
probability in the strip near the upper and right boundary of the uniform distribution.

ing to θ = π/4. Moreover, tan(π/4) = cot(π/4) = 1 and cot(π2 −θ ) = 1/cotθ for
θ ∈ (0,π/2). Finally, arctan is the inverse function of tan.

The fact that Λ(x,y) = xΛ(1,y/x) motivates the following definition.

Definition 3. For any random vector (X ,Y ) such that (1) holds we define the depen-
dence function as

ψ(θ ) =Λ(1,cotθ ) , 0 < θ < π/2 .

Note that ψ(·) is a function of the angle θ only and measures dependence in any
direction of the positive quadrant of a bivariate distribution.

The following result shows that ψ(·) allows us to approximate for large x1 and
y1 the probability for X or Y to become large. We write a(x) ∼ b(x) as x → x0 for
limx→x0 a(x)/b(x) = 1. We also denote by G(·) = 1−G(·) the tail of G.

Proposition 1. Let (X ,Y ) be a random vector. If x1,y1 → ∞ such that P(X >
x1)/P(Y > y1)→ tanθ , then the following quotient converges for all θ ∈ (0,π/2),

P(X > x1 or Y > y1)
P(X > x1)

.

Furthermore, the limit is the dependence function ψ(θ ).
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Proof. From (4) we have for large x1,y1 and x = nGX(x1) and y = nGY (y1) as n→∞
(note that x,x1,y,y1 depend on n):

P(X > x1 or Y > y1) ∼ 1
n
Λ(nGX (x1),nGY (y1))

= GX(x1)Λ
(

1,
GY (y1)
GX(x1)

)
= GX(x1)ψ

(
arctan

(
GX(x1)
GY (y1)

))
. (2)

We set

θ = arctan
(

GX (x1)
GY (y1)

)
and obtain the result.

The following corollary summarizes some obvious results; the symmetry property
of part (d) is new and will prove useful for estimation purposes.

Corollary 1. (a) For X and Y independent we calculate

P(X > x1 or Y > y1)
P(X > x1)

∼ P(X > x1)+ P(Y > y1)
P(X > x1)

→ 1 + cotθ =: ψ0(θ )

for x1,y1 → ∞ such that P(Y > y1)/P(X > x1)→ cotθ .
(b) For X and Y completely dependent, i.e. X = g(Y ) with probability 1 for some
increasing function g, we obtain

P(X > x1 or Y > y1)
P(X > x1)

=
P(X > x1)∨P(X > y1)

P(X > x1)
→ 1∨ cotθ =: ψ1(θ )

for x1,y1 → ∞ such that P(Y > y1)/P(X > x1)→ cotθ .

(c) ψ1(θ ) ≤ ψ(θ ) ≤ ψ0(θ ) for 0 < θ < π/2.

(d) ψY,X (θ ) = cotθ ψX ,Y (π/2−θ ).

Proof. It only remains to proof part (d). By Example 4.3 in Hsing et al. (2004) we
have together with the change of variables x = t tanθ ,

1 + cotθ −ψX ,Y (θ ) = lim
t→∞P(X > G←

X (1−1/(t tanθ ))|Y > G←
Y (1−1/t))

= lim
t→∞P(Y > G←

Y (1−1/t)|X > G←
X (1−1/(t tanθ )))

P(X > G←
X (1−1/(t tanθ ))

P(Y > G←
Y (1−1/t))

= cotθ (1 + tanθ −ψY,X(π/2−θ )) = cotθ + 1− cotθ ψY,X(π/2−θ ) .

We normalize ψ(·) to the interval [0,1] as follows.

Definition 4. The normalized function
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ρ(θ ) =
ψ0(θ )−ψ(θ )
ψ0(θ )−ψ1(θ )

=
1 + cotθ −ψ(θ )

1∧ cotθ
, 0 < θ < π/2 ,

we call tail dependence function.

Note that ρ describes the tail dependence of (X ,Y ) in any direction of the bivariate
distribution on the positive quadrant of R2.

By this definition we have ρ(θ ) ∈ [0,1] for all 0 < θ < π/2, ρ(θ )≡ 0 in case of
independence and ρ(θ ) ≡ 1 in case of complete dependence. Consequently, ρ(θ )
being close to 0/1 corresponds to weak/strong extreme dependence.

Remark 1. (i) (Relation between tail dependence function and Pickands’ dependence
function.) We can write an extreme copula as

C(u,v) = exp
(

log(uv)A(
log(v)

log(uv)
)
)

, 0 < u,v < 1 .

The function A : [0,1] → [ 1
2 ,1] is called Pickands’ dependence function. A ≡ 1

corresponds to independence and A(t) = t ∨ (1− t) to total dependence. Using
−Λ(− log(u),− log(v)) = log(C(u,v)) we have the following relation between ρ
and A:

ρ(θ ) =
(1 + cotθ )(1−A

( cotθ
1 + cotθ

)
)

1∧ cotθ
, 0 < θ < π/2 .

(ii) For elliptical copula models a new semi-parametric approach for extreme de-
pendence modelling was suggested and investigated in Klüppelberg et al. (2007,
2008).

The function ρ(·) is invariant under monotone transformation of the marginal
distributions. We show this by calculating it as a function of the copula.

Proposition 2. Let (X ,Y ) be a random vector with continuous marginal distribution

functions GX and GY . Then GX(X) d=U and GY (Y ) d=V for uniform random variables
U and V with the same dependence structure as (X ,Y ). Denote by C(u,v) = P(U ≤
u , V ≤ v) the corresponding copula. We also relate the arguments by GX(x1) = u
and GY (y1) = v. Then, provided that the limits exist,

ρ(θ ) = lim
u,v→1

(1−u)/(1−v)→tanθ

1−u− v +C(u,v)
(1−u)∧ (1− v)

, 0 < θ < π/2 .

Proof.

ψ(θ ) = lim
x1,y1→∞

GX (x1)/GY (y1)→tanθ

1−P(X ≤ x1 , Y ≤ y1)
P(X > x1)

= lim
u,v→1

(1−u)/(1−v)→tanθ

1−C(u,v)
1−u

.

Remark 2. Note also that the quantity ρ(π/4) is nothing but the (upper) tail depen-
dence coefficient ρU as defined in (2). Thus, the function ρ extends this notion from
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a single direction, the 45 degree line corresponding to θ = π/4, to all directions in
(0,π/2).

This extension is illustrated by the following examples.

Example 1. [Gumbel copula]
Let (X ,Y ) be a bivariate random vector with dependence structure given by a Gumbel
copula for δ ∈ [1,∞):

C(u,v) = exp
{
−
[
(− lnu)δ +(− lnv)δ

]1/δ
}

, 0 < u,v < 1 . (3)

The dependence arises from δ . To calculate ψ(θ ) we use the relationship of ψ to its
copula. We use also the fact that for u,v→ 1 we have

− lnv
− lnu

∼ 1− v
1−u

→ cotθ .

Then by continuity of ux in x we obtain for u,v→ 1 such that (1−v)/(1−u)→ cotθ

1−C(u,v) = 1− exp

⎛⎝lnu

[
1 +

(− lnv
− lnu

)δ]1/δ
⎞⎠ ∼ 1−u(1+(cotθ)δ )1/δ

.

Using the l’Hospital rule and the fact that u→ 1, we obtain

1−C(u,v)
1−u

→
(

1 +(cotθ )δ
)1/δ

,

and hence

ρ(θ ) =
1 + cotθ − (

1 +(cotθ )δ
)1/δ

1∧ cotθ
, 0 < θ < π/2 .

We also obtain the well-known upper tail dependence coefficient ρU = ρ(π/4) =
2−21/δ .

Our next result concerns models, whose extreme dependence vanishes in the limit.

Proposition 3. Let (X ,Y ) be a random vector with continuous marginal distribution
functions GX and GY . If ρ(θ0) = 0 for some θ0 ∈ (0,π/2) then ρ(θ ) = 0 for all
θ ∈ (0,π/2).

Proof. From Corollary 1(d) we have

ρY,X(π/2−θ ) = ρ(θ ) , 0 < π/2 < 1 . (4)

Now note that P(X > G←
X (1− 1/(t tanθ ))|Y > G←

Y (1− 1/t)) is decreasing in θ ,
hence if ρ(θ0) = 0 then ρ(θ ) = 0 for θ > θ0. Now, assume that ρ(π/4) = 0 so that
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ρY,X(π/4) = 0 by (4). This results in ρ(θ ) = 0 and ρY,X (θ ) = 0 for θ > π/4, i.e
ρ ≡ 0 by (4) and monotonicity. Hence, we only have to show that ρ(θ0) = 0 for some
θ0 ∈ (0,π/2) implies ρ(π/4) = 0. This is trivial for θ0 < π/4 by monotonicity. For
θ0 > π/4, (4) gives ρY,X(π/2− θ0) = 0 for π/2− θ0 < π/4, so that ρY,X (π/4) =
ρ(π/4) = 0 and this finishes the proof.

We conclude with the multivariate normal distribution. It is well-known (see
e.g. Embrechts et al. 2001, 2002) that for correlation ρ < 1 the upper tail dependence
coefficient is ρU = 0. Consequently, Proposition 3 gives the following result.

Corollary 2. For a bivariate normal distribution with correlation ρ < 1 we have
ρ ≡ 0.

The following example is a typical model to capture risk in the extremes.

Example 2. [Asymmetric Pareto model]
For p1, p2 ∈ (0,1) set p1 = 1− p1 and p2 = 1− p2 and consider the model

X = p1Z1∨ p1Z2 and Y = p2Z1∨ p2Z3

with Z1,Z2,Z3 iid Pareto(1) distributed; i.e., P(Zi > x) = x−1 for x ≥ 1. Clearly, the
dependence between X and Y arises from the common component Z1. Hence the
dependence is stronger for larger values of p1, p2. We calculate the function ρ , and
observe first that by independence of the Zi for x→ ∞,

P(X > x) = 1−P(p1Z1∨ p1Z2 ≤ x) = 1−P(p1Z1 ≤ x)P(p1Z2 ≤ x)

= 1−
(

1− p1

x

)(
1− p1

x

)
∼ 1

x
(p1 + p1) =

1
x

.

Consequently, we choose y = x tanθ , which satisfies the conditions of Proposition 1
and calculate similarly,

P(X > x or Y > x tanθ ) = 1−P(X ≤ x , Y ≤ x tanθ )

= 1−P
(

Z1 ≤ x
p1
∧ x tanθ

p2

)
P
(

Z2 ≤ x
p1

)
P
(

Z3 ≤ x tanθ
p2

)
∼ 1

x
(p1∨ p2 cotθ + p1 + p2 cotθ ) ,

which implies ψ(θ ) = 1 + cotθ − p1∧ p2 cotθ for 0 < θ < π/2 and

ρ(θ ) =
p1∧ p2 cotθ

1∧ cotθ
, 0 < θ < π/2.

An important class of distributions are those with Pareto-like tails. Proposition 4
ensures that, within this class, multivariate returns on different timescales have the
same extremal (spatial) dependence, provided the observations are independent and
have no time series structure. Hence, one can take advantage of the fact that a higher
frequency results in a larger sample and is easier to estimate. We shall illustrate this in
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Section 4.5. This version of the proof of Proposition 4 was kindly communicated to
the first author by Patrik Albin. Also, one can find a similar proposition in Hauksson
et al. (2001) in the setting of multivariate regular variation.

Proposition 4. Let (X ,Y ) be a random vector with marginal tails GX and GY that
are regularly varying at infinity, with indices α < 0 and β < 0, respectively. Denote
by X∗n the sum of n iid copies of X and define Y ∗n analogously. If the limit

lim
t→∞P

(
X > G←

X (1−λ/t)
∣∣Y > G←

Y (1−1/t)
)
= L(λ ) exists for λ > 0, (5)

then the following hold:
(a) P

(
X∗n > x,Y ∗n > y

)∼ nP(X > x,Y > y) as x,y→ ∞;
(b) The marginal tails GX∗n and GY ∗n of X∗n and Y ∗n satisfy for all n≥ 2

lim
t→∞P

(
X∗n > G←

X∗n(1−λ/t)
∣∣Y ∗n > G←

Y∗n(1−1/t)
)
= L(λ ) forλ > 0 .

Proof. (a) The one-dimensional version of this result goes back to Feller and has
been extended to the larger class of subexponential random variables (see e.g. Em-
brechts et al. 1997, Appendix A3); i.e. we have

P
(
X∗n > t

)∼ nP(X > t) and P
(
Y ∗n > t

)∼ nP(Y > t) as t → ∞. (6)

We prove a bivariate version of this result. For ε > 0 sufficiently small, we have

P
(
X∗n > x,Y ∗n > y

) ≤ n

∑
i=1

n

∑
j=1

P
(
Xi > (1−(n−1)ε)x,Yj > (1−(n−1)ε)y

)
+ ∑

1≤i�=k≤n

n

∑
j=1

P
(
Xi > εx,Xk > εx,Yj > (1−(n−1)ε)y

)
+

n

∑
i=1
∑

1≤ j �=l≤n
P
(
Xi > (1−(n−1)ε)x,Yj > εy,Yl > εy

)
+ ∑

1≤i�=k≤n
∑

1≤ j �=l≤n
P
(
Xi > εx,Xk > εx,Yj > εy,Yl > εy

)
≤ nP(X > (1−(n−1)ε)x,Y > (1−(n−1)ε)y)

+n2 P(X > (1−(n−1)ε)x)P(Y > (1−(n−1)ε)y)
+2n2 P(X > εx,Y > εy)(P(X > εx)+ P(Y > εy))
+n3 P(X > εx)P(Y > εy)(P(X > εx)+ P(Y > εy))
+n2 P(X > (1−(n−1)ε)x)P(Y > (1−(n−1)ε)y)
+n2 P(X > εx,Y > εy)2 (7)
+n3 P(X > εx,Y > εy)P(X > εx)P(Y > εy)
+n4 P(X > εx)2 P(Y > εy)2

∼ nP(X > (1−(n−1)ε)x,Y > (1−(n−1)ε)y) as x,y→ ∞
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by (5) together with the regular variation properties. Now, using again an ε > 0 and
properties of disjoints sets together with the Boolean inequality, we estimate

P
(
X∗n > x,Y ∗n > y

)
≥

n

∑
i=1

P
(
Xi > (1+(n−1)ε)x,Yi > (1+(n−1)ε)y)⋂

j �=i

{−εx≤ Xj ≤ x,−εy≤ Yj ≤ y})
≥

n

∑
i=1

P
(
Xi > (1+(n−1)ε)x,Yi > (1+(n−1)ε)y

)
−

n

∑
i=1
∑
j �=i

P
(
Xi > (1+(n−1)ε)x,Yi > (1+(n−1)ε)y,Xj /∈ [−εx,x]

)
−

n

∑
i=1
∑
j �=i

P
(
Xi > (1+(n−1)ε)x,Yi > (1+(n−1)ε)y,Yj /∈ [−εy,y]

)
∼ nP(X > (1+(n−1)ε)x,Y > (1+(n−1)ε)y) as x,y → ∞.

(b) Proposition 1.5.15 of Bingham et al. (1987) ensures that the generalized inverses
satisfy as t → ∞,

G←
X (1−1/t)∼ G←

X∗n(1−n/t) and G←
Y (1−1/t)∼ G←

Y ∗n(1−n/t) . (8)

In particular, G←
X (1−1/·) and G←

X∗n(1−1/·) are regularly varying with index 1/α ,
while G←

Y (1−1/·) and G←
Y ∗n(1−1/·) are regularly varying with index 1/β .

By (5)-(7), we have (with ε not the same as before)

limsup
t→∞

P
(
X∗n > G←

X∗n(1−λ/t)
∣∣Y ∗n > G←

Y ∗n(1−1/t)
)

≤ limsup
t→∞

nP
(
X > (1−ε)β/αG←

X (1−λ/(nt)),Y > (1−ε)G←
Y (1−1/(nt))

)
nP

(
Y > (1+ε)G←

Y (1−1/(nt))
)

≤ limsup
t→∞

P
(
X > G←

X (1− (1−2ε)βλ/(nt)),Y > G←
Y (1− (1−2ε)β/(nt))

)
((1+ε)/(1−3ε))β P

(
Y > (1−3ε)G←

Y (1−1/(nt))
]

≤
(1−3ε

1+ε

)β
limsup

t→∞
P
(

X > G←
X

(
1− (1−2ε)βλ

nt

)∣∣Y > G←
Y

(
1− (1−2ε)β

(nt)

))
=

(1−3ε
1+ε

)β
L(λ )

→ L(λ ) as ε ↓ 0.

Analogously follows from the reverse inequality in (a)

liminf
t→∞ P

(
X∗n > G←

X∗n(1−λ/t)
∣∣Y ∗n > G←

Y ∗n(1−1/t)
)≥ L(λ ).



280 E. Brodin & C. Klüppelberg

Remark 3. In Example 4.3 in Hsing et al. (2004) we have, for X and Y random
variables with continuous distributions GX and GY ,

lim
t→∞P(X > G←

X (1−1/(t tanθ ))|Y > G←
Y (1−1/t))= (1∧cotθ )ρ(θ ) , 0 < θ < π/2 .

Hence, for X and Y random variables with Pareto-like tails, setting λ = 1/ tanθ and
L(cotθ ) = (1∧ cotθ )ρ(θ ) we conclude L(λ ) = (1∧λ )ρ(arctan(1/λ )) for λ > 0.

Corollary 3. Denote byψ(θ ) the dependence function of (X ,Y ). Let X∗n and Y ∗n be
the sum of n iid copies of X and Y , respectively, and denote byψ∗n(·) the dependence
function of (X∗n,Y ∗n) for n≥ 2. Thenψ∗n(θ ) =ψ(θ ) for all 0 < θ < π/2. The same
holds for the tail dependence function ρ(θ ).

3 Extreme Dependence Estimation

To assess extreme dependence in data we estimate the tail dependence function
ρ(·) on the positive quadrant. We use a nonparametric estimator as suggested in
Hsing et al. (2004) based on the empirical distribution function, which yields a
simple nonparametric estimator of ψ(·) and hence of ρ(·). Recall that the empirical
distribution function given by

ĜX (x) = P̂n(X ≤ x) =
1
n

n

∑
j=1

I(Xi ≤ x) , x ∈R ,

is the standard estimator for the distribution function GX of iid data (I(A) denotes the
indicator function of the set A). The empirical distribution function can be rewritten
in terms of the ranks of the sample variables Xi for i = 1, . . . ,n and we write

ĜX (Xi) = P̂n(X ≤ Xi) =
1
n

rank(Xi) .

We still have to explain one important issue of our estimation procedure. Recall
from (1), denoting by GX(·) = 1−GX(·) and GY (·) = 1−GY (·) for continuous GX
and GY , that

Λn(x,y) := nP
(

GX (X) > 1− x
n

or GY (Y ) > 1− y
n

)
= nP

(
nGX (X)≤ x or nGY (Y )≤ y

)
= nP(n(GX (X),GY (Y )) ∈A) (9)
→ Λ(x,y) n→ ∞ .

By a continuity argument we can replace n ∈N by t ∈ (0,∞) and also replace in a
first step the probability measure P by its empirical counterpart P̂n. Then we obtain
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Λ̂t,n(x,y) = tP̂n
(
t (GX (X),GY (Y )) ∈A

)
=

t
n

n

∑
i=1

I(t (GX(X),GY (Y )) ∈ A) .

Now estimate the two distribution tails by their empirical counterparts:

ĜX(Xi) :=
1
n

RX
i :=

1
n

rank(−Xi) and ĜY (Yi) :=
1
n

RY
i :=

1
n

rank(−Yi) .

Then setting ε = t/n we obtain

Λ̂ε,n(A) = ε
n

∑
i=1

I(ε (RX
i , RY

i ) ∈ A) .

This yields in combination with Definition 4 an estimator for the function ρ :

ρ̂ε,n(θ ) =
1 + cotθ − Λ̂ε,n(1,cotθ )

1∧ cotθ
, 0≤ θ ≤ π

2
, (10)

where Λ̂ε,n(1,cotθ ) can be rewritten as

ε
n

∑
i=1

I(RX
i ≤ ε−1 or RY

i ≤ ε−1 cotθ ) , 0≤ θ ≤ π
2

. (11)

Choosing ε is not an easy task and when θ approaches π/2 increasingly fewer
points are used in the estimation. In Hsing et al. (2004) this problem was solved by
letting ε decrease slightly as θ approaches π/2. A much better solution is provided
by the symmetry proved in Corollary 1(d) in combination with (4): the extreme
dependence of (X ,Y ) for θ ∈ [π/4,π/2] is the same as the extreme dependence of
(Y,X) for θ ∈ [0,π/4]. Consequently, we estimate ρε,n(θ ) by estimating ρX ,Y (θ ) by

ρ̂ε,n(θ ) :=

{
ρ̂XY
ε,n (θ ) , 0 < θ < π/4 ,

ρ̂YX
ε,n (π/2−θ ) , π/4≤ θ < π/2 .

(12)

In the following remark we summarize some important properties of ρ̂ε,n.

Remark 4. (i) Estimator (12) has good convergence properties: for appropriately
small ε and n → ∞ it converges in probability and almost surely; see Hsing et
al. (2004) and references therein.
(ii) To assess asymptotic dependence involves passing to a limit function, which for
a finite sample is simply impossible. Consequently, for X and Y independent, even
for very small ε it is highly possible that the estimated tail dependence function will
be positive. This can be made precise by calculating
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ε
n

∑
i=1

I(RX
i ≤ ε−1 or RY

i ≤ ε−1 cotθ )

= ε
n

∑
i=1

(I(RX
i ≤ ε−1)+ I(RY

i ≤ ε−1 cotθ ))− I(RX
i ≤ ε−1 and RY

i ≤ ε−1 cotθ ))

= 1 + cotθ − ε
n

∑
i=1

I(RX
i ≤ ε−1 and RY

i ≤ ε−1 cotθ ) .

Now, independent samples for X and Y yield for fixed n, ε and θ

n

∑
i=1

I(RX
i ≤ ε−1 and RY

i ≤ ε−1 cotθ ) ∼ Bin
(

cotθ
ε2n2 ,n

)
.

Hence,

E

(
ε

n

∑
i=1

I(RX
i ≤ ε−1 or RY

i ≤ ε−1 cotθ )

)
= 1 + cotθ − cotθ

εn
, 0 < θ <

π
2

,

giving

E
(
ρ̂ε,n(θ )

)
=

⎧⎪⎪⎨⎪⎪⎩
cotθ
ε n

, 0 < θ <
π
4

,

cot(π/2−θ )
ε n

,
π
4
≤ θ <

π
2

.

(13)

In much the same fashion we get

Var(ρ̂ε,n(θ )) =

⎧⎪⎪⎨⎪⎪⎩
cotθ

n
− cot2 θ
ε2n3 , 0 < θ <

π
4

,

cot(π/2−θ )
n

− cot2(π/2−θ )
ε2n3 ,

π
4
≤ θ <

π
2

.

(iii) Inspecting equation 11 one can see that choosing an ε is equivalent to the
estimation of ρ(θ ) based on the 1/ε largest values of X . Hence, it is natural to see
1/ε as a threshold of the data and we will therefore use this term.
(iv) The estimator ρ̂ε,n has the advantage that it is only based on the ranks of the
data. Consequently, it can be smoothed in the usual way. For instance, by averaging
it over a window of size 2m+1 for m ∈ N, we call this smoothed estimator ρ̂ (m)

ε,n (·).
In the second column of Figures 5 and 6 we estimated ρ(θ ) for the Gumbel copula

(cf. Example 1) and the asymmetric Pareto model (cf. Example 2). The estimated
tail dependence function is indeed (except for θ ∈ {0,π/2}, where E(ρ̂ε,n(·)) has
singularities) far away from E(ρ̂ε,n(·)). For our sample size and the chosen ε it is
smaller than 0.075 for the interval depicted. Given that the variance is of the order
n−1 the estimated extreme dependence in our data is significant.

Example 3. [Gumbel copula: continuation of Example 1]
In Figure 5 we simulated the model (with student-t marginals with 8 degrees of
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Fig. 5 Simulated Gumbel copula model for ρ(θ/4) = 0.3 (upper row), ρ(θ/4) = 0.7 (middle
row), ρ(θ/4) = 0.9 (lower row).
Left column: Plots of ranks (1/RX

i ,1/RY
i ), with points close to (1,1) truncated.

Middle column: Plots of ρ̂(θ ) (dashed) overlaid with true function ρ(θ ) (solid).
Right column: Estimation error in terms of

√
MSE(θ ).

freedom) for n = 10000 iid observations of (X ,Y ) 100 times. We estimate the tail
dependence function ρ(·) for this model with ε = 1/200. We stay away from the
boundaries θ = 0 and θ = π/2, since in the numerator of (10) we have the difference
of two quantities which both tend to ∞ as θ → 0. The three sets of plots on the
three rows correspond to the cases: ρ(π/4) = 0.3 (upper row), ρ(π/4) = 0.7 (mid-
dle row) and ρ(π/4) = 0.9 (lower row). On each row the left plots contain ranks(
1/RX

i ,1/RY
i
)
, 1 ≤ i ≤ n, of a simulated sample of size 10 000. Points on the axes

correspond to independent extreme points; all points in the open quadrant exhibit
some extreme dependence structure. Completely dependent points are to be found
on the 45-degree line. The level of dependence is manifested by the data scattered
around this diagonal. The true functions ρ(θ ) in (5) (solid) are overlaid with the
estimated mean of ρ̂ε,n(θ ) (dashed) based on the simulated sample. The right plot
depicts the squareroot of the estimated mean squared error. Note that ρ(π/4) is the
upper tail dependence coefficient, which is an appropriate and simple measure of
extreme dependence for this symmetric model.
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Fig. 6 Simulated asymmetric Pareto model with ρ(θ/4) = 0.3 (upper row), ρ(θ/4) = 0.7 (middle
row), ρ(θ/4) = 0.9 (lower row).
Left column: Plots of ranks (1/RX

i ,1/RY
i ), with points close to (1,1) truncated.

Middle column: Plots of ρ̂(θ ) (dashed) overlaid with true function ρ(θ ) (solid).
Right column: Estimation error in terms of

√
MSE(θ ).

Example 4. [Asymmetric Pareto model: continuation of Example 2]
In Figure 6 we simulated this model for n = 10000 iid observations of (X ,Y ) with
ε = 1/200 100 times. The three sets of plots on the three rows correspond to the
cases: (p1 , p2) = (0.7 , 0.3), (p1 , p2) = (0.5 , 0.5) and (p1 , p2) = (0.2 , 0.8). On
each row the left plots contain ranks

(
1/RX

i ,1/RY
i
)
, 1≤ i≤ n of a simulated sample

of size 10 000. The true functions ρ(θ ) in (5) (solid) are overlaid with the estimated
mean of ρ̂ε,n(θ ) (dashed) based on the simulated sample. The right plot depicts the
squareroot of the estimated mean squared error.

In the first row of plots, ρ is larger for small θ than for large θ ; this is reflected
by the left plot in which the violation of independence can be seen to be more severe
below the diagonal. In the second row of plots, ρ is constant; which is reflected by
having a portion of extreme points lined up on the diagonal in the left plot. The third
row of plots is the converse situation to the first row, which is reflected by the pattern
of extreme points above the diagonal. This is an example of a situation where the tail
dependence coefficient does not convey a good picture of extreme dependence, in
that ρ(π/4) is not sufficient to describe the full dependence structure of this model.
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4 High-frequency Financial Data

We have tick-by-tick data of the Trades and Quotes database, in terms of trading times
[in seconds] and prices [in 1 cent units] of three stocks traded between February and
October 2002 on NYSE and Nasdaq. The stocks are General Motors (GM) from
NYSE, and Intel and Cisco both from Nasdaq. One major difference between the
two stock markets is that on NYSE trading is made on the floor while Nasdaq has
electronic trading. We shall analyze the extreme dependence between the three stocks
using the tail dependence function ρ . A study with focus on bivariate dependence
structures on FX spot data has been performed by Breymann et al. (2003) and Dias &
Embrechts (2003). Also, FX spot data was studied within the concept of multivariate
regular variation in Hauksson et al. (2001). For cleaning and deseasonalizing our
data we mainly follow the methods applied in these papers; see also there for further
references. In these papers parametric bivariate copulas were fitted to FX spot data in
both non-extreme and extreme regions. Our study considers the extremal dependence
for stock data, which is estimated nonparametrically. One main difference between
stock data and FX spot data is that FX spot data is traded 24 hours per day. In contrast,
NYSE for instance, has regular opening hours between 9.30 and 16.00 on working
days. This introduces additional complexity into our data analysis, and we have to
deal with this problem.

When dealing with extremes it is of importance to use as much data as possible,
since extremes are consequences of rare events. However, we can not simply use
the full samples of all stocks as each single time series is not stationary and, even
worse, for high-frequency data the different time series are not synchronized. As a
remedy for the non-synchronous data we take subsamples of logreturns on specific
timescales. If one chooses a relatively high frequency, one is confronted with the
problem that tick prices are discrete, and also microstructure noise effects can enter.
We chose 5 minutes logreturns as the lowest frequency, thus avoiding microstructure
noise effects.

There are a number of issues which appear when dealing with high-frequency
data and we will describe them in turns.

4.1 Cleaning the Data

A full sample path of stock data contains a huge amount of information. At Nasdaq
there is almost a trade every second. However, some ticks are false, mostly due to
fake quotes and decimal errors.

To be able to continue the analysis one has to clean the data. This is done by
filtering the data and removing values that differ too much from their neighboring
values in the sense of logarithmic differences. Also, sometimes false values may
come in clusters, which one also has to deal with. The selection of thresholds for
removing a bad tick was done by visually inspecting the time series before and after
the cleaning. When a false tick was observed it was replaced by a value based on
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000
34.4

34.5

34.6

34.7

34.8

34.9

35

35.1
Intel 2002−02−01, uncleaned

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
34.4

34.5

34.6

34.7

34.8

34.9

35

35.1
Intel 2002−02−01, cleaned

Fig. 7 Intel ticks during 9:35 to 11:45 on February 1, 2002. Left: Raw data. Right: Data cleaned
from false ticks as described in Section 4.1.
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Fig. 8 Synchronized 5 minutes logreturns for Intel, Cisco and GM between 9:35 and 16:00 during
February 1 to October 31, 2002

linear interpolation with its neighbors. In this way less than one percent of the data
was removed.

The thresholds for logarithmic difference were set to 0.1% for Intel and Cisco and
to 0.2% for GM, respectively. The reason for different thresholds is that Intel and
Cisco are traded at a much higher frequency. A result of the cleaning procedure can
be seen in Figure 7. We repeated our analysis after altering the thresholds slightly.
However, this sensitivity analysis did basically not change the results.

When dealing with information from a stock exchange one is faced with the
problem that they do not trade for 24 hours resulting in a gap of information, when
the stock market is closed over night. However, Nasdaq and NYSE have off-hour
trading, but prices behave differently than prices during the regular opening times as
the trading rules differ. To obtain synchronised data we only considered the stocks
between 9:35 to 16:00 from Monday to Friday using the previous tick method, which
results in 77 five minutes logreturns per day. Also, there were a couple of holidays
where no data were available. Finally we had 14 476 synchronized observations (5
minutes logreturns) for each stock, which we plot in Figure 8



Multivariate Dependence for High-frequency Data 287

0 50 100 150 200 250 300
−0.2

−0.1

0

0.1

0.2

0.3

0.4

Lag

Sample Autocorrelation Function (ACF)

0 50 100 150 200 250 300
−0.2

−0.1

0

0.1

0.2

0.3

0.4

Lag

Sample Autocorrelation Function (ACF)

Fig. 9 Autocorrelation function of squared 5 minutes logreturns for Intel.
Left: Original data: Visible is the cycle of 77 lags indicating daily seasonality.
Right: Deseasonalized data as in (15) based on daily seasonality.

4.2 Deseasonalizing the Data

When investigating the 5 minutes logreturns closer one can detect seasonality in the
data. In Figure 9, we depict the autocorrelation of the squared logreturns for Intel.
Here one can see the daily seasonality. A comparison to the FX data in Breymann et
al. (2003) shows that FX data have a much clearer weekly seasonality.

To be able to remove the seasonality, there are two main approaches. The first one
is to time-change the logreturns to a business clock instead of the physical clock.
The second is to use volatility weighting. We chose the second one as it is not clear
how to choose a business clock for multivariate time series.

Volatility weighting divides a period (we first take a week) into several smaller
subperiods and then estimates the seasonality effect in each subperiod in terms of
volatility. Then each subperiod is deseasonalized separately by devolatization. We
chose 5 minutes intervals as subperiods. This means that our observed returns, x̃t , is
a realization of the process

x̃t = μ+ vtxt .

where xt are the deseasonalized returns, μ is a constant drift and vt is the seasonality
coefficient (volatility weights), estimated by

v̂τ =

√√√√ 1
Nτ

Nτ

∑
i=1

(x̃ti+τ)2. (14)

Here Nτ is the number of weeks, during which we have observed our stocks in
the given subperiod τ ∈ {0,5,10,15, . . .} (in minutes), and ti denotes the start of
week i which always is on Monday at 9:35. Also, τ has to be corrected for nights
and weekends. We estimate μ with the sample mean μ̂ of the logreturns. Hence, the
deseasonalized 5 minutes logreturns are
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Fig. 10 Volatility weights v̂τ and v̂M
γ for 5 minutes Intel logreturns: weekly estimated by (14), v̂τ ,

(solid) and daily robust estimated by (16), v̂M
γ , (dashed).

xt =
x̃t − μ̂

v̂t
. (15)

However, as we only have about 40 weeks the estimated volatility weights are quite
noisy, see Figure 10. This is due to the fact that single large values can dominate v̂2

τ :
the mean taken over 40 weeks is not sufficiently smooth.

To overcome this problem we first assume a daily seasonality instead of the weekly.
This can be motivated by the fact that the different days do not seem to differ to a
higher degree; see Figure 10. However, single large values still dominate the volatility
weights, which is unsatisfactory.

Consequently, we use a robust estimator based on the median and absolute values:

v̂M
γ = mediani=1,...,Nγ |x̃ti+γ |. (16)

Here Nγ is the number of days, during which we have observed our stocks in the given
subperiod γ ∈ {0,5, . . . ,385} (in minutes). We can now observe the stylistic pattern
of the autocorrelation of squared logreturns in Figure 9 for our deseasonalized time
series using the robustly estimated volatility weights.

The depicted volatility weights can be seen in Figure 10. One can clearly see that
trading is more intense at the beginning and at the end of a day. We also observe that
the robustly estimated volatility weights are much more stable. The deseasonalization
removes seasonality in the squared logreturns, which are right skewed, hence the
difference in magnitude for the two estimation methods.

When comparing the two different deseasonalization methods the robust one
leaves more larger absolute values in the data, which occur in low trading time.
The non-robust version decreases them as large values contribute much more to the
volatility weights. Hence, the non-robust version of the deseasonalization makes the
time series smoother than the robust method does.
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Table 1 AIC-based values for (r,m, p,q,ν) and t and normally distributed residuals with corre-
sponding likelihood; the last column presents our model.

Stock t normal our model
Intel 55531 (2,3,5,2,8.2) 55869 (2,3,4,1,-) 55534 (0,1,5,2,8.2)
Cisco 55805 (0,1,3,3,6.5) 56596 (0,1,4,0,-) 55807 (0,1,1,1,6.5)
GM 57343 (2,2,5,1,5.5) 58467 (1,2,3,1,-) 57355 (0,3,1,1,5.5)

4.3 Filtering the Data

Because of the dependence, which we have observed in the autocorrelation for the
squared logreturns, we will assume a stochastic volatility model for each stock. We
model the mean by an ARMA process and use the standard GARCH(p,q) model for
the martingale part. The model selection is based on the AIC criterion, the results
are summarized in Table 1.

We model the logreturns for different equidistant frequencies by

xt = μt +σt zt

with μt = c +∑r
i=1 φixt−i +∑m

i=1 θiεt−i and σ2
t = α0 +∑p

i=1αiσ2
t−i +∑

q
i=1βiε2

t−i,
where εt = σt zt . We model the zt by a standardnormal or a student-t distribution
with ν degrees of freedom. The overall fit of the model was assessed by a residual
analysis. We applied the Ljung-Box test for serial correlation, where we tested the
residuals and the squared residuals, and the Kolmogorov-Smirnov test for goodness-
of-fit of the normal and student-t distribution.

As we only have logreturns for 9:35-16:00 Monday to Friday we will make an
error if we fit the time series model to our data without taking the missing values
into account. We have used three different approaches to circumvent this problem:

(1) We (wrongly) fit the ARMA-GARCH model directly to the deseasonalized
data, ignoring the missing observations during the nights completely.

(2) We estimated the logreturns during the nights by 5 minutes logreturns using
the (wrong) square root scaling (the correct but complicated scaling constants
have been calculated by Drost & Nijman 1993). Then we deseasonalize and fit
the time series.

(3) We fit different MA(1)-GARCH(1,1) models for each day. In this case we used
the estimated volatility of the previous day as the initial value.

One comment to the second approach is that the deseasonalized nightly logreturns
should have the same distribution as the deseasonalized daily logreturns. We have
tested this assumption via QQ-plots with bootstrapped confidence interval. Using
ordinary bootstrap we can conclude that the deseaonalized nightly logreturns do not
have the same distribution as the deseasonalized daily logreturns. However, as we
have dependence in our time series one should use a bootstrap method which takes
this into consideration. Using block bootstrap we can not reject the hypothesis that
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Table 2 Estimated α by the Hill estimator for the loss region.

Stock Intel Cisco GM
α̂ 5.6 4.36 4.3

the deseaonalized nightly logreturns have the same distribution as the deseasonalized
daily logreturns.

If we compare the methods (1)-(3) we conclude that the first and second behave
very similar with respect to the parameter estimation. For the third method this
estimation was difficult. Even if we only use a three parameter model the estimation
is not stable. Based on the Ljung-Box test for serial correlation, both residuals and
squared residuals, the two first methods out-perform the third. Also, for the final
result in Section 4.4 the outcome is similar. We concluded that the error of using a
false approach (among these three) is minimal and concentrated on the first method
for simplicity.

In Table 1 we have selected the model by AIC criteria, also giving the likelihood of
the selected model. The selected optimal order of the ARMA model m,r ∈ (0, . . . ,5)
and the order of the GARCH model p,q ∈ (0, . . . ,6) for normal and also the degree
of freedom ν for t-distributed innovations are given in the first two columns.

As we want to keep the number of parameters as low as possible, we performed
a sensitivity analysis based on the likelihood of the model. In this way we found the
model given in column 3 of Table 1, which we will use in the sequel. Our analysis
also confirmed the common knowledge that residuals are heavy-tailed; i.e. the t-
distribution outperforms by far the normal distribution.

Concerning the Ljung-Box test, we could not reject independence of the residuals
or the squared residuals for all time series. In Table 3 we show the p-values for a
selection of lags for squared logreturns. We have also looked at the p-values up to
50 lags. However, all time series failed the Kolmogorov-Smirnov test, actually for
all models presented in Table 1.

Diagnostic tools from extreme value theory (see e.g. Embrechts et al. 1997, Sec-
tion 6.1) show, however, clearly that all three filtered time series are heavy-tailed.
Consequently, we model the far out distribution tail of all residuals as regularly
varying and estimate the tail index α by the Hill estimator (see e.g. Embrechts et
al. (1997), Section 6.4). We summarize the result in Table 2.

Due to the devolatizaton a 10 minutes logreturn is obtained as a linear combination
of two 5 minutes logreturns and so logreturns should have the same tail-parameter
for different frequencies. However, for higher timescales the tail-parameter increases
slightly, even if one compares the filtered 5 minutes logreturns with 45 minutes, but
still remains heavy-tailed. This is well known and reported, for instance, in Müller
et al. (1998).

We have also investigated the cross-correlation between the stocks. In Table 4 we
display the first four lags. The other lags were smaller in absolute magnitude.

From Table 4 one can see that GM tends to follow Intel and Cisco more than vice
versa. A formal test for uncorrelation of two time series tests this hypothesis for each
specific lag based on asymptotic normality of the cross-correlation function (see e.g.
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Table 3 p-values from the Ljung-Box test of filtered squared residuals. We have tested 1, 5, and
10 lags of the 5 minutes logreturns.

Stock 1 5 10
Intel 0.39 0.06 0.07
Cisco 0.74 0.86 0.77
GM 0.92 0.96 0.84

Table 4 Cross-correlation of the first four lags for the filtered 5 minutes logreturns.

Stocks -4 -3 -2 -1 0 1 2 3 4
Intel-Cisco -0.01 0.01 0.01 0.05 0.56 0.03 0.02 0.01 -0.00
Intel-GM 0.02 0.02 0.05 0.04 0.35 0.02 0.01 -0.00 -0.02
Cisco-GM 0.03 0.01 0.04 0.04 0.33 0.03 0.01 -0.00 -0.02

Brockwell & Davis 1987, Theorem 11.2.2) The uncorrelation hypothesis is rejected
if the corresponding estimate has absolute value larger than 0.017.

For the 15 minutes data, there is some cross-correlation between GM and Intel
and GM and Cisco for the first lag, but none significant between Intel and Cisco. For
the 30 minutes data, there is no significant cross-correlation at all.

Such tests have to be interpreted with caution for various reasons. First of all there
is the usual problem that a test should be performed not only on each lag separately.
Furthermore, the amount of high-frequency data is so large that a formal test rejects
already for very small cross-correlation: for 5 min the rejection level is 0.017, for 30
min it is 0.042.

4.4 Analyzing the Extreme Dependence

Recall the estimator ρ̂ε,n from (12), where ε = t/n represents the proportion of
upper order statistics used for the estimation, which itself has to be estimated; cf.
Remark 4(iii). The estimation of ε involves in extreme value statistics a variance-
bias tradeoff; i.e. it is tricky and time-consuming, but important. We have used two
approaches.

Firstly, by plotting the estimated tail dependence function for different choices
of ε visual inspection clearly showed the influence of the variance/bias, when using
different thresholds. For high threshold, i.e. small ε , the estimated tail dependence
function was rather rough showing the high variation of the estimator. When de-
creasing the threshold the estimated tail dependence function became very smooth,
which we interpreted in analogy to tail index estimation as a bias.

Secondly, we studied plots of ρ̂ε(θ ) as a function of ε for fixed θ . This was done
for θ = π/4±0,π/12,π/6. Here we looked for regions where ρ(θ ) was stable. The
case θ = π/4 can be seen in Figure 11. We want to mention that for other choices
of θ the stability plots were not equally convincing.

As a result of our diagnostics we fixed ε = 1/650, which represents about 4.5%
of the data. In Figure 12 we can see the resulting estimated tail dependence function.
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Fig. 11 For the 5 minutes logreturns: ρ̂ε(π/4) as a function of ε for ε = 1/100, . . . ,1/1000.

Fig. 12 Left plots: 1/Ri, j , where Ri, j = rank(−Xi, j). Right plots: Estimators ofρ(θ) (solid line). For
sake of reference we have also plotted the expected dependence E(ρ̂ε,n (·)) from (13) for independent
samples (dashed line).

We conclude that for all bivariate combinations of our data tail dependence can
be modelled symmetric and is significantly stronger than for the independent case.
Not surprisingly, dependence is highest between Intel and Cisco, presumably due to
branch dependence, besides being both traded at Nasdaq. The dependence of GM
and Cisco is slightly higher than of GM and Intel. The symmetry in the dependence
reflects that we have three major stocks and can also be viewed as underlying market
dependence. We also notice that the estimated tail dependence function looks sim-
ilar as the tail dependence function of a bivariate extreme value distribution with a
Gumbel copula.
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Fig. 13 Estimated tail dependence function ρ̂ε(θ ) for different ε (1/200 to 1/1200). Left: Simulated
data from the t-Gumbel model with parameters estimated from the Intel-Cisco filtered 5 minutes
logreturns. Right: Filtered 5 minutes logreturns, Intel-Cisco.

It is now tempting to fit a distribution with t marginals (a common model in
econometrics, called the t-GARCH) with degree of freedom from Table 1 and a
Gumbel copula (cf. Example 1,3) pairwise to our data or even to the three-dimensional
sample. We know already from Section 4.3 that the t distribution is not a good model
for the marginals. However, our concern is now for the extreme dependence structure,
and it turns out that the Gumbel copula, although an extreme value copula, is not a
valid model. The dependence structure in our data is far more complex. This can be
illustrated by viewing the tail dependence function for different ε (1/200 to 1/1200)
compared to data simulated from the above t-Gumbel model with the same sample
size, presented in Figure 13. Recall from Example 1 that the Gumbel coupla gives
tail dependence function

ρ(θ ) =
1 + cotθ − (1 +(cotθ )δ )(1/δ )

1∧ cotθ
, 0 < θ < π/2 .

We estimated δ from the upper tail dependence coefficient ρ̂ε(π/4) = 2−2(1/δ̂), the
value of the estimated tail dependence function at π/4. We obtained δ̂ = 1.25. Now
we generate a sample of the same size as the 5 minutes logreturns with a Gumble(δ̂)
copula and t-distributed marginals. We compare the estimated tail dependence func-
tions for different ε and present the results in Figure 13.

Notice that the simulated data behave much more stably with respect to changes
of ε , while the real data reacts heavily on such changes. Using a parametric model
such as the Gumble copula would only be an approximation based on one given
threshold.
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Table 5 Correlation change for different timescales.

Stock Intel-Cisco Intel-GM Cisco-GM
5 0.56 0.35 0.33

15 0.62 0.41 0.38
30 0.65 0.43 0.39
45 0.66 0.46 0.41

4.5 Different Timescales

As a result of our statistical analysis of the marginal data, the one-dimensional lo-
greturns exhibit Pareto-like tails. If the stocks came from a three-dimensional ex-
ponential Lévy process with appropriate dependence structure, then the extreme
dependence would be the same for all time scales, i.e. 5 minutes logreturns of the
three stocks would have the same dependence structure as daily logreturns. This
applies in particular to extreme dependence and is in accordance with Proposition 4.
Note that our data do not satisfy the independence condition of Proposition 4. Ex-
treme value estimates, however, often extend properties from independent data to
dependent data.

We shall at least perform a statistical test to our data, whether there is a change
in the extreme dependence on different timescales by analyzing logreturns of 5, 15,
30 and 45 minutes frequencies.

To this end we performed the same filtering steps as for the 5 minutes logreturns
again for the 15, 30 and 45 minutes logreturns obtained from the raw data. Then
we fitted a MA(1)-GARCH(1,1) model with student-t distributed residuals to the
deseasonalized data of the 15, 30 and 45 minutes logreturns. For the 5 minutes
logreturns we keep the model from Section 4.4.

For the 15, 30 and 45 minutes logreturns we applied the Ljung-Box test for
serial correlation, where we tested the residuals and the squared residuals, and the
Kolmogorov-Smirnov test for goodness-of-fit of the student-t density. Observe that
the degrees of freedom is not the same as in Table 1 for the different timescales. All
the filtered time series passed the Ljung-Box test and the filtered 30 and 45 minutes
logreturns passed the Kolmogorov-Smirnov test.

For the residuals we again estimate the dependence between the different stocks.
A comparisons of the linear dependence for different timescales is presented in

Table 5. Here we can see that the correlation increases for higher frequencies; this
effect is well-known and also called the Epps effect; see Zhang (2006).

Next we estimate the tail dependence function for the different frequencies. To
compensate for the increasing lack of data for low frequencies, the ε is always chosen
so that ε times the number of observations is the same for all frequencies. Hence we
always consider the same quantile.

As the sample of the 45 minutes logreturns is only about 10 percent in size of the
5 minutes logreturns, they set the standard for the other frequencies. We increased
the threshold 1/ε until the estimated tail dependence function behaved stably for
the 45 minutes logreturns. We also studied a plot of ρ̂ε(θ ) for various values of θ ,
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Fig. 14 For the 45 minutes filtered logreturns we depict ρ̂ε(π/4) as a function of ε for ε =
1/10, . . . ,1/250.

when altering ε . For θ = π/4 the result can be seen in Figure 14. Finally, we chose
ε = 1/120, which represents about eight percent of the data. We want to remark that,
in view of Figure 11, we presumably introduced a bias into our estimation.

Also, by using straight forward bootstrap techniques one can present bootstrap
confidence intervals. In Figure 16 we depict the tail dependence function for Intel-
Cisco on the timescales 5 minutes and 45 minutes.

From Figures 15 and 16 we can conclude that the tail dependence is approximately
the same for different timescales. This also holds for different ε but there are some
variations if we increase the threshold. If we lower the threshold, then the similarities
between the different timescales become more pronounced. We recall that in Table 2
on p. 9 in Breymann et al. (2003) the tail dependence coefficient ρ(π/4) is estimated
via a parametric model for different timescales for DEM (Deutsche Mark) and JPY
(Japanese Yen). Even for the unfiltered data in that paper the estimator for ρ(π/4)
looks stable. If we increase the timescale to, for instant, two hours the extreme
dependence starts to deviate unless we lower the threshold and use as much as 15%
of the data. This is consistent with the result on high-frequency FX data reported in
Hauksson et al. (2001). Hence, the two different asset classes seem to share the same
time scaling for extreme dependence. As pointed out earlier in this section, the time
scaling is also explained from a theoretical point of view via Proposition 4.

From the above analysis we conclude that we can estimate extreme dependence
for lower frequencies by estimating it for high frequencies, where enough data are
available.

Another possibility to achieve a more stable estimation procedure is to use sub-
sampling, based on different samples of the same frequency, obtained by time shifts.
We performed the estimation separately for each subsample and, at the end, aver-
aged over all estimated tail dependence functions. The subsamples proved to be very
stable in the basic statistics, the estimates for the ARMA and GARCH parameters,
and also the properties of the residuals. However, for the estimated tail dependence
functions we cannot report significant improvement, in particular, when compared
to the tail dependence function estimated from higher frequencies.
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Fig. 15 Estimated tail dependence function ρ̂ε(θ ) of filtered logreturns for different frequencies.
Five minutes (straight-dotted), 15 minutes (straight), 30 minutes (dashed) and 45 minutes (dotted).
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Fig. 16 Estimated tail dependence function ρ̂ε(θ ) with bootstrap confidence intervals (100 re-
samples) of filtered logreturns for timescale 5 and 45 minutes. Five minutes with corresponding
confidence intervals (straight) and 45 minutes with corresponding confidence intervals (dotted).

4.6 Dependence Under Filtering

Recall that we have in principle prices which are multiples of one cent, but there are
values our logreturn will never take. Moreover, we have an unnaturally large amount
of zeroes and small values. However, concerning extreme dependence we can rest
assured that this does not affect the tails.
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Fig. 17 Upper three plots: Deseasonalized 5 minutes logreturns modelled by daily seasonality and
coefficients estimated by the robust method (16). Lower three plots: GARCH filtered logreturns
based on our model in Table 1. Compare to the raw data in Figure 8.

Table 6 Estimated correlation for the 5 minutes logreturns for different steps in the data analysis.

Stocks Original Deseasonalized Filtered
Intel-Cisco 0.57 0.56 0.56
Intel-GM 0.36 0.36 0.35
Cisco-GM 0.33 0.33 0.33

Now we shall investigate, how the dependence structure has changed during the
filtering steps. In Table 6 we can see the correlation between the 5 minutes logreturns
for the different steps of the filtering.

It is satisfactory to see that the different filtering steps have obviously not changed
the correlation and hence not changed the linear dependence between the different
stocks. This also holds for other timescales.

Now we turn to an account of extreme dependencebefore and after filtering. When
examining the logreturns in Figure 8 one can clearly see the dominating volatile
periods. The same holds for Figure 17. Taking the same ε for the raw data and the
filtered returns yields for the raw data an over representation of the volatile periods.
This implies that one would consider in fact only a much smaller time period for the
extreme value analysis. So theoretically, there is no reason, why extreme dependence
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Fig. 18 Estimated tail dependence function ρ̂ε(θ) for 5 minutes Intel logreturns. Dashed: Unfiltered
data. Dotted: Deseasonalized data. Solid: GARCH filtered data.

before and after filtering should be similar. In Figure 18 we have plotted the estimated
tail dependence function for Intel and Cisco after each filtering step for 5 minutes
logreturns. We have used the same ε as in Section 4.4 and the same ε for the different
filtering steps. One can see that there seems to be only a small difference in magnitude,
not in shape. This also holds for different choices of ε and different timescales.
Consequently, for our data the rather complicated filtering procedure seems to be
obsolete for a realistic account of the extreme dependence.

5 Conclusion

We have introduced a new estimator for the tail dependence function, which is tailor
made to assess the extreme dependence structure in data. As it measures dependence
in every direction it is in principle also able to measure extreme dependence for data
with asymmetric dependence structure. We show the performance of this function
for high-frequency data for varying frequencies.

After giving some theoretical results, which are important in the high-frequency
context, we clean the data carefully and perform some basic statistics. We then show
the tail dependence function at work for our data and estimate extreme dependence
for high-frequency stock data.

We have investigated the extremal dependence between Intel, Cisco and GM for
different time scales. We can conclude for the filtered data:

• All three stocks have heavy tails. Within the 5,10,15,45 minutes frequencies we
observed that a lower frequency gives lighter tails.

• We can work with the hypothesis that the square root scaled deseasonalized nightly
logreturns have the same distribution as the deseasonalized daily logreturns.

• There is (weak) cross-correlation between the stocks for frequencies of up to 30
minutes, it disappears for lower frequencies.
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• The extreme dependence is symmetric which means that the stocks influence each
other to the same degree. This can be interpreted as market dependence.

• The IT stocks (Cisco and Intel) have stronger dependence indicating branch de-
pendence.

• Extreme dependence is there, but moderate. We have the same extreme depen-
dence for different timescales. This is consistent with the result on high-frequency
FX data reported in Hauksson et al. (2001). Hence, the two different asset classes
seems to share the same time scaling for extreme dependence. The time scaling
is also explained from a theoretical point of view via Proposition 4.

• The filtering steps do not alter the extreme dependence to a high degree.
• Higher correlation does not necessarily lead to stronger extreme dependence.

Our analysis shows again that extreme value theory has to be applied with care.
To obtain a realistic picture about the extreme dependence structure in real data it
is not enough to describe it by one single number. Another obvious lesson to draw
from our analysis is that it is important to use reference results such as simulations
from exact models. Moreover, a message, which we can not repeat too often, one
should be careful when selecting the threshold.
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