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Abstract A strategy for testing differential conditional independence structures (CIS)
between two graphs is introduced. The graphs have the same set of nodes and are
estimated from data sampled under two different conditions. The test uses the entire
pathplot in a Lasso regression as the information on how a node connects with the
remaining nodes in the graph.
The interpretation of the paths as random processes allows defining stopping times
which make the statistical properties of the test statistic accessible to analytic rea-
soning. A resampling approach is proposed to calculated p-values simultaneously
for a hierarchical testing procedure. The hierarchical testing steps through a given
hierarchy of clusters. First, collective effects are measured at the coarsest level pos-
sible (the global null hypothesis that no node in the graph shows a differential CIS).
If the global null hypothesis can be rejected, finer resolution levels are tested for an
effect until the level of individual nodes is reached.
The strategy is applied to association patterns of categories from the ICF in patients
under post-acute rehabilitation. The patients are characterized by two different condi-
tions. A comprehensive understanding of differences in the conditional independence
structures between the patient groups is pivotal for evidence-based intervention de-
sign on the policy, the service and the clinical level related to their treatment.
Due to extensive computation, parallel computing offers an effective approach to im-
plement our explorative tool and to locate nodes in a graph which show differential
CIS between two conditions.
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1 Introduction

We present a statistical strategy to detect changes in the conditional independence
structure (CIS) between elements under different conditions. For example, the ele-
ments could be the genes which are annotated to a certain pathway. The conditions
may be defined by two different diseases and two datasets containing the correspond-
ing gene expression information measured in tissues from the respective patients. Fi-
nally, the CIS between the genes of the pathway may be estimated by an appropriate
method (Schäfer & Strimmer 2005, Meinshausen & Bühlmann 2006, Wainwright
et al. 2006, Friedman et al. 2007, Banerjee et al. 2008).
The detection of nodes which show differences in the way they connect to other
nodes is straightforward by visual inspection of both graphs. But, it is difficult to
decide which of the detected nodes show a differential CIS between both conditions
caused by systematic differences (true positives) and which are statistical artefacts
caused by the algorithm or random fluctuation in the data (false positives). A similar
problem exists for the nodes with equal CIS’s between both conditions. It is difficult
to discriminate between true or false negatives. The goal of this paper is to present a
strategy to detect a set of nodes with differential CIS under a controlled error rate.
The proposed strategy to detect the set of nodes is called indirect because an ex-
plicit estimation of the CIS between nodes is avoided. A direct test calculates the
test statsitic from the estimated graphs. For example it can be based on a resampling
(permutation) approach which works as follows:

• Choose a metric to measure differential connectivity between two graphs. This
can be done by the Structural Hamming Distance (SHD).

• Estimate the two graphs by a specific algorithm from the given data and determine
the SHDobs between both graphs.

• Permute the data units between both data sets, estimate both graphs for permuta-
tion i and calculate the specific SHDi (i = 1, . . . ,R).

• Determine a permutation p-value by #{SHDobs < SHDi}/R.

Related ideas can be found in Balasubramanian et al. (2004) or Ruschhaupt (2008).
The strategy proposed will use a global test for a set of nodes. Furthermore, a given
hierarchy of clusters within the set of nodes is considered. The hierarchy has to be
derived from specific domain knowledge. For each cluster C we will test the null
hypothesis H0,C: The cluster C does not contain any node with a differential CIS to
other nodes of the graph.
The hierarchical testing steps through a given hierarchy of clusters. First, collective
effects are measured at the coarsest level possible (the global null hypothesis that
no node in the graph shows a differential CIS). If the global null hypothesis can be
rejected, finer resolution levels are tested for an effect until the level of individual
nodes is reached.
Meinshausen (2008) developed an attractive approach for hierarchical testing which
will be used to solve our problem.
In computational biology, it might for example be interesting to use the Gene On-
tology (Ashburner et al. 2000) when testing for the differential connectivity derived
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for genes of a specific pathway or functional group. But, the Gene Ontology does
not posses the hierarchical nature of the hierarchies used by Meinshausen, although
the approach can be made feasible (with some more cumbersome notation) for Gene
Ontology and related hierarchies derived from genomic domain knowledge (Goeman
& Mansmann 2008).
Since simple hierarchies do not exist for problems in computational biology, we
study for illustrative reasons an example from human functioning where the nodes
are respective categories defined by the International Classification of Functioning,
Disability and Health (ICF, WHO (2001)).
The paper is organized as follows: Section 2 introduces the methodological aspects
of the test statistic with which we compare graphs. It states theorems to describe
properties of the test statistics, and defines the sampling approach to perform the hi-
erarchical test procedure. Section 3 presents the example and Section 4 will discuss
our approach. The Appendix offers some results to the properties of the test statistics.

2 Methods

Consider the p-dimensional multivariate distributed random variable X = (X1, . . .
,Xp) which is the outcome of a Markov random field (MRF). A Markov random
field is specified by an undirected graph G = (N,E), with node set N = 1,2, . . . , p
and edge set E ⊂ N ×N. The structure of this graph encodes certain conditional
independence assumptions among subsets of the p-dimensional random variable X ,
where variable Xi is associated with node i ∈ N.
For multivariate Gaussian data, the article Meinshausen & Bühlmann (2006) solved
the fundamental problem of estimating the structure of the underlying graph given a
set of n samples from the MRF and showed that L1-regularization can lead to practical
algorithms with strong theoretical guarantees. For multivariate binary data, Wain-
wright et al. (2006) provides comparable results. Both methods use L1-regularized
regression (linear and logistic), in which the neighbourhood of any given node is
estimated by performing regression subject to an L1-constraint. Neighbourhood se-
lection estimates the CIS separately for each node in the graph and is hence equivalent
to variable selection for regression models. The proposed neighbourhood selection
schemes are consistent for sparse high-dimensional graphs. Consistency depends
on the choice of the penalty parameter which can be derived from controlling the
probability of falsely joining some distinct connectivity components of the graph.

2.1 Defining the Test Statistic

For the specific node i the corresponding path plot of the regression coefficients
for the L1-regularized regression can be interpreted as a p−1 dimensional random
process indexed by the penalty parameter λ : B(i)(ω ,λ ) = (β i, j

λ ) j∈N\{i} where λ ≥ 0.



252 U. Mansmann, M. Schmidberger, R. Strobl & V. Jurinovic

The randomness is introduced by the random data sample. For each of the p−1 paths
of B(i) it is possible to determine the stopping time τ(i, j) = min{λ > 0 : β (i, j)

λ
= 0}, j ∈ N \ {i}. For a fixed set of nodes N = 1, . . . , p we observe two i.i.d.
samples of sizes n and m: DX = {x(1), . . . ,x(n)} and DY = {y(1), . . . ,y(m)} with
x(i) = (x(i)

1 , . . . ,x(i)
p ) and y(k) = (y(k)

1 , . . . ,y(k)
p ). For node i in node set N the path

plots derived from both data sets are compared by counting the number of com-
mon non-zero regression coefficients given penalty parameter λx for the path plot
derived from data DX and penalty parameter λy for the path plot derived from data
DY :Ψi(λx,λy). This function is integrated over the range of the penalty:

Ψi =
∫∫

[0,∞[×[0,∞[

Ψi(λx,λy)dλxdλy (1)

The random variableΨi can also be calculated from the stopping times introduced
above:

Ψi = ∑
j∈N\{i}

τ(i, j)
X · τ(i, j)

Y (2)

where stopping times τX (τY ) are derived from the path plot inferred from data
DX(DY ).
It is also possible to calculate aΨN for the entire graph or aΨC related to the subset
C ⊂ N of nodes:

ΨN = ∑
i∈N
Ψi andΨC = ∑

i∈C⊂N
Ψi (3)

We define

Ψmax
i := ∑

j∈N\{i}
max{τ(i, j)

X ,τ(i, j)
Y }2

(4)

The following theorem supports the intuition that the value ofΨi is larger when
the same MRF defines the distribution of the data in both conditions than when the
distributions are defined by two different MRFs.

Theorem 1. Let P1 and P2 be two equal MRFs over the same set of nodes N, DX and
DY two i.i.d. samples from both MRFs of size n resp. m(n) = n · 1−π

π . The quantity
π = n

n+m is the fixed percentage of the sample size of DX on the total number of
observations. Then for an arbitrary small ε > 0 and each node i∈ N there is an n(ε)
such that for all n > n(ε) it holds

P[Ψmax
i ≤Ψi + ε] > 1− ε. (5)

A sketch of the proof is given in the Appendix.
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2.2 A Permutation Test

Theorem 2. Let P1 and P2 be two identical Markov random fields (MRFs) which
generate the data under the two conditions of interest. Let Q be the mixture distrib-
ution created from P1 and P2 with mixture proportion π (for component P1). For an
arbitrary small ε > 0, a value w > 0, and each node i ∈ N there is an n(ε) such that
for all n > n(ε) it holds

|P[Ψ∗
i > w]−P[Ψ#

i > w]|< ε. (6)

The value ofΨ∗
i is calculated from the data sets D∗

X [n i.i.d. samples from P1] and
D∗

Y [m = n·(1−π)/π i.i.d. samples from P2] andΨ#
i is calculated from the data sets

D′
X [n i.i.d. samples from Q] and D′

Y [m = n·(1−π)/π i.i.d. samples from Q].

A sketch of the proof and a possible extension to a wider class of null-hypotheses
is given in the Appendix.
The theorem above states for each node in N: Under the null-hypothesis (equal MRFs)
the distribution of the test statistics can be generated from a permutation sampling
of the observed data.
The permutation procedure calculates S samples simultaneously for each node i:
Ψ#(S)

i . The permutation p-value for node i is derived as pi = |{r :Ψ #(S)
i >Ψ#

i }|/S.
It is straight forward to extend the theorem to test statistics for the set of nodes
(ΨN = ∑i∈NΨi) or specific subsets of nodes (ΨC = ∑i∈C⊂NΨi). Correspondingly, it
is possible to calculate permutation p-values for arbitrary sets of nodes.

2.3 Hierarchical Testing

Now it is straightforward to combine our approach with the hierarchical testing prin-
ciple of Meinshausen (2008). The principle allows using the same resampling sample
to calculate p-values for each element of the hierarchy.
For the following, we assume that a hierarchy ℵ is given, which is a set of clus-
ters C ⊂ {1, . . . , p}. The cardinality of a cluster C is denoted by |C|. The root node
{1, . . . , p} contains all nodes of the graph and has cardinality p. The hierarchical
structure implies that any two clusters C,C′ ∈ℵ either have an empty intersection,
or that one cluster is a subset of the other.
To take the multiplicity of the testing problem into account, p-values have to be
adjusted. Define for cluster C the adjusted p-value as pC

ad j := pC · p
|C| where p is the

total number of nodes in the graph and |C| is the number of nodes in the cluster of
interest. The adjustment amounts to multiplying the p-value of each cluster C with
the inverse of the fraction |C|/p of variables it contains. The adjustment is thus res-
olution dependent. At coarse resolutions, the penalty for multiplicity is weak, and it
increases for finer resolution levels. The p-value of the root node is thus unadjusted,
whereas individual variables receive a Bonferroni-type adjustment.
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The hierarchical testing procedure rejects now all hypotheses H0,C with C ∈ℵ for
which (a) the adjusted p-value pC

ad j is below or equal to the specified level and (b) the
parent node is rejected (this is always considered to be fulfilled for the root node).
Note that condition (b) is not a severe restriction. The null hypothesis H0,C of a cluster
C is by definition always true if the null hypothesis H0,pa(C) is true for the parent
cluster pa(C). Hence it makes sense to stop testing in subtrees of clusters whose null
hypothesis could not be rejected.
Using the definition of a hierarchically adjusted p-value pC

h,ad j = max
D∈ℵ,C⊆D

pD
ad j, the

set of clusters which are rejected in the hierarchyℵ on the level α is then given by
Cre jected = {C ∈ℵ, pC

h,ad j < α}.
Control of the family-wise error rate can now be achieved. The set of clusters that
fulfill the null hypothesis H0,C is denoted by C0 = {C ∈ℵ,H0,C is fulfilled}. Family-
wise error rate control entails that the probability of rejecting any cluster in C0 is
smaller than the pre-specified level α .

Theorem 3. For Cre jected and C0 as defined above, the family-wise error rate is
controlled at level α:

P(Cre jected ∩C0 = /0) = 1−α (7)

Proof is given by Meinshausen (2008).

2.4 Computational Issues

Calculations are done in the statistical computing software R (V 2.9.0) (R De-
velopment Core Team 2009). The working horse of the Lasso Regression is the com-
putationally efficient gradient-ascent algorithm as proposed by Goeman (2009b) and
implemented in Goeman (2009a). The permutation test was parallelized.
A total of 1000 samples were created to perform the comparison of the CIS between
both conditions. The calculation is very computer intensive and sample calculations
are independent from each other. Therefore, the functions and data are distributed
to different processors. In the R language different technologies and approaches
for parallel computing exist (Schmidberger et al. 2009). We use the snow package
(snow) with the Rmpi package (Rmpi) for the communication between the proces-
sors. The code is executed at 1000 processors using the super computer HLRB2 at
the Leibniz-Rechenzentrum in Munich (Germany). To guarantee a different random
number stream in every R session, an additional R package rlecuyer (rlecuyer) is
applied.
An R-package which offers the needed algorithms is under preparation.
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BF BS AP

Fig. 1 Relative frequences of impairments and limitations. Patients with condition B are above the
horizontal black line, patients with condition A below. BF = Body Functions, BS = Body Structures,
AP = Activities & Participation

3 Example

The example studies a multivariate binary situation. It is taken from the field of
rehabilitation science.
Functioning and disability are universal human experiences. Over the life span people
may experience limitations in functioning in relation to health conditions including
an acute disease or injury, a chronic condition, or aging. A standard language for the
analysis of functioning is provided by the International Classification of Functioning,
Disability and Health (ICF, WHO (2001)).
A secondary analysis of observational cross sectional data of patients from five early
post-acute rehabilitation units is performed. The ICF is used to measure functioning
and contextual factors. We look at the components Body Functions, Body Structures,
and Activities & Participation. The presence of an impairment or limitation was
binary coded for each of the 122 categories considered.
616 patients (mean age 63 years, 46% male) were included. 56% had health condition
A. Figure 1 shows the profiles of the 122 ICF-categories measured during post-acute
rehabilitation between the 343 patients with health condition A and the 273 patients
with health condition B.

Besides the comparison of functional profiles it is important to understand stability
and distinctiveness of functioning across health conditions. This can be achieved by
revealing patterns of associations between distinct aspects of functioning, the ICF
categories.
Based on the proposal of Wainwright et al. (2006), CIS graphs can be estimated for
each condition and visually compared as done in Figure 2.
Besides a simple visual inspection for differential CIS we apply the combination
between our test and the hierarchical testing procedure. The hierarchy is defined by
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Fig. 2 Estimated CIS graphs and visual presentation of common edges as well as different edges
within both graphs. The arrows point to the nodes with significant differential CIS on a 5% signifi-
cance level (α = 0.05). The three ICF components are presented in different colours: orange: Body
Functions, green: Body Structures, blue: Activities & Participation

the ICF itself (WHO 2001). The root node contains all 122 ICF categories analyzed.
The first level of the hierarchy is defined by the ICF-components. The second level
is determined by the ICF-chapters; the first branching level in the classification gives
the third level. The fourth level is given by the single categories of interest.
Table 1 gives the nodes with a significant differential CIS according to the hierarchical
test procedure. The complete results are presented in the Appendix.

Our strategy was able to detect a set of nodes with differential CIS in the multi-
variate ICF profiles between patients under two different disease conditions as well
as clusters in the hierarchy (result not shown). The identified set holds a family wise
error rate of 5%, i.e. the probability of containing at least one false positive node
under the null-hypothesis is 5%. The result on differential CIS is combined with two
graph estimates and their naive comparison with respect to present or missing edges
between both graphs by adding black arrows to the naive graph comparison. Some of
the arrows point to nodes (b260, b280, 285, b755, d175, d930) which under condition
A show a different connectivity than under condition B. Some of the arrows point
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Table 1 nodes with significant differential CIS

Code title p.value p.value.adj

b260 Proprioceptive function 0.00018 0.02056
b265 Touch function 1e-05 0.00124
b270 Sensory functions related to temperature and

other stimuli
1e-05 0.00124

b280 Sensation of pain 0.00015 0.01722
b710 Mobility of joint functions 4e-05 0.00497
b755 Involuntary movement reaction functions 1e-05 0.0014
d175 Solving problems 1e-05 0.01244
d177 Making decisions 0.00025 0.02855
d930 Religion and spirituality 1e-05 0.0056

to nodes (b170, b270, d177) that show the same connectivity in both graphs. This
can be understood by looking more closely to the null-hypothesis which is rejected:
differential CIS can also be produced by different regression coefficients given the
same connectivity. For example the odds ratio between b710 and b715 (b270 and
d120, b270 and b265) is 3.91 (19.27, 29.12) in patients with condition A and 13.12
(10.89, 19.29) in patients with condition B.

4 Discussion

The estimation of complex graphs from observed data is a challenging task and dif-
ferent strategies were developed for the case of sparse graphical structures (Schäfer
& Strimmer 2005, Meinshausen & Bühlmann 2006, Wainwright et al. 2006, Fried-
man et al. 2007, Kalisch & Bühlmann 2007, Banerjee et al. 2008). Especially, the
estimation of the conditional independence structure (CIS) in a multivariate obser-
vation is of high interest. Different data sets of the same multidimensional random
variable from different conditions may be available. They may produce different
CIS-graph estimates. A natural question is if the observed data give convincing ev-
idence for a systematic difference between the CIS-graphs behind the distributions
of the observed data. The meaning of convincing evidence has to be operationalized
in statistical terms. This is achieved by using the family wise error rate.
It is our intention to compare the conditional independence structure (CIS) be-
tween two multivariate Gaussian or binary distributions (Ising model). Multivariate
Gaussian or binary distributions define Markov random fields (MRF) and imply a
graph with the nodes defined by the single components of the multivariate random
variable and the edges between the nodes by the CIS. Besides different set of edges,
further differences in the CISs between two distributions are created by the strength
of the conditional dependencies between specific nodes. We present a test statistic
which addresses both CIS-aspects.
The measure to compare two graphs uses the idea that the connectivity of a node with
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the remaining nodes in a graph relates to a variable selection problem in a regression
setting. In this context, the usefulness of L1-regularized regression was demonstrated
by several authors (Wainwright et al. 2006, Meinshausen & Bühlmann 2006, Fried-
man et al. 2007). The differential connectivity of node i in both graphs is defined as
follows: (1) for each node j �= i we determine the minimal penalty parameter which
shrinks the corresponding regression coefficient to zero (τ(i, j)

X ,τ(i, j)
Y ) in both condi-

tions; (2) for each j �= i we calculate τ(i, j)
X · τ(i, j)

Y ; (3) we determine the test statistic
Ψi as the sum of the products over all j �= i. The test statistics for the entire graph or a
subset C of nodes isΨN =∑i∈NΨi andΨC =∑i∈C⊂NΨi respectively. The test statistic
is motivated by the intuition that equal MRFs in both conditions will produce a large
value ofΨi,ΨN orΨC.
It is shown in the Appendix that the τ(i, j)s can be calculated in principle and that
formal statements about their properties can be derived.
The null-hypothesis of equal MRFs for both conditions is tested by a permutation
approach. It allows formulating global tests on sets of nodes as well as tests for single
nodes. This enables searching for a set of nodes with differential CIS in a hierarchi-
cal testing procedure. The motivation for hierarchical testing can be summarized as
follows:

• Any differential connectivity at all? The CIS of a group of nodes can be tested
between both graphs whether all nodes have the same CIS under each condition.

• Differential CIS in sub-clusters? If it is established that a cluster of nodes does
indeed contain nodes with differential CIS, it is desirable to attribute it to one or
several sub-clusters

If possible, the differential CIS in a cluster of variables is attributed to its sub-
clusters. In each sub-cluster, it is again examined whether the collective effect can be
attributed to even smaller sub-clusters of nodes. The procedure retains the smallest
possible clusters which exhibit a significant differential CIS or helps to detect single
nodes with differential CIS.
Our approach avoids estimating graphs explicitly. We did not put the direct and the
indirect approach side by side. Therefore, no detailed analysis of their pros and cons
is available. The indirect approach does not fix the value of a regularization para-
meter which has to be done when the estimate of an explicit graph is needed. The
direct approach needs explicit graphs since differential CIS may be measured by the
Structural Hamming Distance (SHD) (Kalisch & Bühlmann 2007) or other suitable
methods. The hierarchical test procedure can be applied for the direct as well as the
indirect approach.
One potential advantage of the proposed test statistics is its generalizability to
more than two graphs. The comparison of several graphs based on the bivari-
ate SHD measure is cumbersome and not illuminative. For node i and data from
conditions U,V,W,X ,Y, and Z (for example) it is possible to modify Ψi by Ψi =
∑ j∈N\{i} τ

(i, j)
U · · ·τ(i, j)

Z . This is the subject of further research.
In this paper we study the null-hypothesis of two equal Markov random fields. More
general forms of the null-hypothesis (H0,general) may be of interest: The MRFs are
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different but the graphs related to both distributions have a Structural Hamming
Distance of 0. A CIS graph G defines a family of probability measures (multivariate
Gaussian or multivariate binary Ising Model) pG by the corresponding CIS. The
null-hypothesis H0,general states that the distributions which generate the data under
both conditions belong to pG. Since the mixture of two distributions from pG is in
general not in pG it follows that the permutation approach used so far will not work
anymore. We assume that H0,general can be tested by replacing the permutation by
a more complicated resampling procedure. It may be based on a sampling scheme
which creates new versions of data DX and DY under the restriction that the graphs
behind the distribution of X and Y have the same set of edges, SHD(GX ,GY ) = 0.
The proof of this assumption and the development of an efficient algorithm are topics
of ongoing research.
The strategy presented in our paper depends on the implicit assumption that the
data is created by MRFs (multivariate Gaussian or multivariate binary Ising Model).
We used this assumption implicitly in our example. Tools for model validation and
model assessment in a setting comparable to the data presented are under devel-
opment (Gneiting 2008). It is a second line of our research to implement efficient
validation strategies to assess model assumptions. A mixture of binary Ising models
is in general not a binary Ising model. A mixture of binary Ising models with the
same conditional independence graph does not need to have the same graph anymore
because of confounding. We tried to reduce confounding by using fixed covariates in
the Lasso regression. The algorithm provided by Goeman (2008) allows controlling
for confounding by the incorporation of fixed covariates.
The strategy presented offers an explorative tool to detect nodes in a graph with the
potential of a relevant impact on the regulatory process between interacting units
in a complex process. The findings introduce a practical algorithm with theoretical
guarantees. We see our result as the first step on the way to a meta-analysis of graphs.
A meta-analysis of graphs is only useful if the graphs available for aggregation are
homogeneous. The definition of the homogeneity of graphs G1, . . . ,GK by a pairwise
Structural Hamming Distance of 0 is not sufficient to describe homogeneity in a
correct way. The assessment of homogeneity of graphs needs procedures like the
one presented.
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Appendix

Properties of the Stopping Times

We look at the following penalized quadratic form

QF(β ,λ ) = (β −β ∗)t ·Σ · (β −β ∗)−λ ·
d

∑
i=1
|βi| (8)
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where β is a d-dimensional parameter vector, β ∗ a d-dimensional fixed vector, Σ
a d×d matrix, and λ ≥ 0. For given λ , QF is maximized by β #(λ )

β #
j (λ ) = 2 ·β ∗j +λ ·∑

k
(−1) j+kDet(Σ jk)/Det(Σ) (9)

for j = 1, . . . ,d. Σ jk is a quadratic matrix derived from matrix Σ by removing line
j and column k.
The penalized log-likelihood for a linear regression problem yi ∼ β · xi is given by
QF where Σ = Xt ·X and β ∗ = y ·Xt · (Xt ·X)−1. The penalized log-likelihood for
a logistic regression problem logit(pi) = β · xi is approximated by QF where β ∗ is
the ML estimate and Σ is the corresponding Fisher Information Matrix.
From (1.8) it is possible to calculate the minimal penalty parameter λ which shrinks
the coefficient to 0. In terms of the notation introduced in the methods section if
follows

τ(i, j) = min{λ > 0 : β (i, j)
λ = 0}= 2 ·β ∗j ·

Det(Σ)
∑
k
(−1) j+k+1Det(Σ jk)

(10)

The matrix Σ is derived from observed data and varies around the true value Σ0.
The variability of τ(i, j) can be controlled by the following property of determinants:

Det(Σ0 + δ ·Λ) = Det
((
Σ0)−1

(
I + δ ·Λ · (Σ0)−1

))
= Det

((
Σ0)−1

)
·
(

I + δ · trace
(
Λ · (Σ0)−1

))
It holds that

τ(i, j) = min{λ > 0 : β (i, j)
λ = 0}

= 2 ·β 0
j ·

Det(Σ0)
∑
k
(−1) j+k+1Det(Σ0

jk)
+

Det(Σ0)
∑
k
(−1) j+k+1Det(Σ0

jk)
· εi j

where β 0
j is the true regression coefficient. The random variables εi j concentrate

on a small neighbourhood of 0 (depending of the sample size).

Statistical Properties ofΨi

Sketch of proof of Theorem 1.1: Without loss of generality we choose r = 1. We
denote a variable or parameter which belongs to MRF r and the regression of node j
on node i by ..

(i, j)
r . We also introduce for the MRF Pr(r = 1,2) the notationΩ (i, j)

r =
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Det(Σ0
jk,r)

∑k (−1) j+k+1Det(Σ0
jk,r)

where Σ0
jk,r is Σ0 which belongs to MRF r(r = 1,2) without row

j and column k.
The inequality claimed in the theorem follows from

Ψmax
i = ∑

j∈n\{i}
max{τ(i, j)

X ,τ(i, j)
Y }2

(11)

using the approximative representation of τ(i, j) by the true parameter values and
a controlled error term ε̃ . It follows

Ψmax
i ≤ ∑

j∈n\{i}
max{β (i, j)

1 ·Ω (i, j)
1 ,β (i, j)

2 ·Ω (i, j)
2 }2 + ε̃ (12)

under the null-hypothesisβ (i, j)
1 = β (i, j)

2 = β (i, j) andΩ (i, j)
1 = c ·Ω (i, j)

2 =Ω (i, j) where
c = c(n,π). As a consequence,

Ψmax
i ≤ ∑

j∈n\{i}
{β (i, j) ·Ω (i, j)}2 · c−1 + ε̃ (13)

using again the approximative representation of τ(i, j) it follows

Ψmax
i = ∑

j∈n\{i}
τ(i, j)

X · τ(i, j)
Y + 2 · ε̃ (14)

where P[|ε̃|< ε] > 1− ε for n > n(ε). This proves the theorem.

Sketch of proof of Theorem 1.2: The proof follows from Theorem 1 by the argu-
ment that P1 = P2 and therefore P[Ψ∗

i ≤Ψ #
i ] > 1− ε as well as P[Ψ#

i ≤Ψ∗
i ] > 1− ε

for an arbitrary small ε > 0 and n > n(ε). This implies P[|Ψ#
i −Ψ∗

i | < ε] > 1− ε
and

P[Ψ∗
i > w] = P[Ψ∗

i −Ψ#
i +Ψ#

i > w] = P[Ψ#
i > w+Ψ#

i −Ψ∗
i ]

= P[{Ψ#
i > w+Ψ#

i −Ψ∗
i }∩{|Ψ#

i −Ψ∗
i |< δ}]+

P[{Ψ#
i > w+Ψ#

i −Ψ∗
i }∩{|Ψ#

i −Ψ∗
i |> δ}].

For appropriately small δ and sufficiently large n it holds

P[Ψ∗
i > w]≥ P[Ψ#

i > w+ δ ] · (1− δ ) (15)

P[Ψ∗
i > w]≤ P[Ψ#

i > w− δ ]+ δ (16)

which proves the theorem.
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Results of the Hierarchical Test Procedure on Differential
Conditional Independence Structure for each Node (ICF Category)

Code title p.value p.value.adj

b110 Consciousness functions 0.26916 1
b114 Orientation functions 0.19031 1
b126 Temperament and personality functions 0.07132 1
b130 Energy and drive functions 0.40246 1
b134 Sleep functions 0.1266 1
b140 Attention functions 0.81069 1
b144 Memory functions 0.13688 1
b147 Psychomotor functions 0.03534 1
b152 Emotional functions 0.57016 1
b156 Perceptual functions 0.67479 1
b160 Thought functions 0.0098 1
b164 Higher-level cognitive functions 0.00572 0.64073
b167 Mental functions of language 0.0526 1
b176 Mental function of sequencing complex move-

ments
0.0067 0.75053

b180 Experience of self and time functions 0.80941 1
b210 Seeing functions 0.21501 1
b215 Functions of structures adjoining the eye 0.85915 1
b230 Hearing functions 0.46113 1
b235 Vestibular functions 0.95262 1
b240 Sensations associated with hearing and vestibular

function
0.19814 1

b260 Proprioceptive function 0.00018 0.02056
b265 Touch function 1e-05 0.00124
b270 Sensory functions related to temperature and

other stimuli
1e-05 0.00124

b280 Sensation of pain 0.00015 0.01722
b310 Voice functions <0.00001 0.18667
b340 Alternative vocalization functions 0.09032 1
b410 Heart functions 0.79414 1
b415 Blood vessel functions 0.01307 1
b420 Blood pressure functions 0.00783 0.87703
b430 Haematological system functions 0.15039 1
b435 Immunological system functions 0.0033 0.36913
b440 Respiration functions 0.1212 1
b445 Respiratory muscle functions 0.10322 1
b450 Additional respiratory functions 0.70879 1
b455 Exercise tolerance functions 0.81957 1
b460 Sensations associated with cardiovascular and

respiratory functions
0.47558 1

b510 Ingestion functions 0.01285 1
b515 Digestive functions 0.79141 1
b525 Defecation functions 0.34564 1
b530 Weight maintenance functions 0.12755 1
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Code title p.value p.value.adj

b535 Sensations associated with the digestive system 0.21833 1
b540 General metabolic functions 0.17652 1
b545 Water, mineral and electrolyte balance functions 0.50622 1
b550 Thermoregulatory functions 0.98723 1
b610 Urinary excretory functionsn 0.20772 1
b620 Urination functions 0.85082 1
b630 Sensations associated with urinary functions 0.13142 1
b710 Mobility of joint functions 4e-05 0.00497
b715 Stability of joint functions 0.00113 0.12604
b730 Muscle power functions 0.16681 1
b735 Muscle tone functions 0.0137 1
b755 Involuntary movement reaction functions 1e-05 0.0014
b760 Control of voluntary movement functions 0.02091 1
b770 Gait pattern functions 0.22097 1
b780 Sensations related to muscles and movement

functions
0.92971 1

b810 Protective functions of the skin 0.56761 1
b820 Repair functions of the skin 0.93102 1
s110 Structure of brain 0.0736 1
s120 Spinal cord and related structures 0.05937 1
s130 Structure of meninges 0.13523 1
s410 Structure of cardiovascular system 0.72956 1
s430 Structure of respiratory system 0.12588 1
s530 Structure of stomach 0.01038 1
s710 Structure of head and neck region 0.22969 1
s720 Structure of shoulder region 0.46041 1
s730 Structure of upper extremity 0.38268 1
s740 Structure of pelvic region 0.1352 1
s750 Structure of lower extremity 0.5652 1
s760 Structure of trunk 0.47323 1
s810 Structure of areas of skin 0.4446 1
s840 Structure of hair 0.15527 1
d110 Watching 0.03047 1
d115 Listening 0.0462 1
d120 Other purposeful sensing 0.27109 1
d130 Copying 0.02501 1
d135 Rehearsing 0.08179 1
d155 Acquiring skills 0.40423 1
d160 Focusing attention 0.52833 1
d166 Reading 0.06237 1
d170 Writing 0.82457 1
d175 Solving problems <0.00001 0.01244
d177 Making decisions 0.00025 0.02855
d230 Carrying out daily routine 0.96039 1
d240 Handling stress and other psychological demands 0.49906 1
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Code title p.value p.value.adj

d310 Communicating with - receiving - spoken mes-
sages

0.42238 1

d315 Communicating with - receiving - nonverbal mes-
sages

0.83199 1

d330 Speaking 0.73189 1
d335 Producing nonverbal messages 0.01302 1
d350 Conversation 0.42381 1
d360 Using communication devices and techniques <0.00001 1
d410 Changing basic body position 3e-05 1
d415 Maintaining a body position 0.26954 1
d420 Transferring oneself 0.94277 1
d430 Lifting and carrying objects 0.31586 1
d440 Fine hand use 0.85019 1
d445 Hand and arm use 0.22326 1
d450 Walking 0.32237 1
d460 Moving around in different locations 0.00711 0.79633
d465 Moving around using equipment 0.04467 1
d510 Washing oneself 0.44569 1
d520 Caring for body parts 0.17469 1
d530 Toileting 0.29863 1
d540 Dressing 0.98399 1
d550 Eating 0.48303 1
d560 Drinking 0.0371 1
d570 Looking after ones health 0.00608 0.68055
d760 Family relationships 0.03614 1
d870 Economic self-sufficiency 0.04971 1
d910 Community life 0.07671 1
d930 Religion and spirituality <0.00001 0.0056
d940 Human rights 0.12703 1


