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Foreword

The collected contributions contained within this book have been written by friends
and colleagues to acknowledge Ludwig Fahrmeir’s widespread and important impact
on Statistics as a science, while celebrating his 65th Birthday.

As a young student, Ludwig started his career as a Mathematician, but he quickly
turned into a rising and shining star within the German and international Statistics
community. He soon obtained both his PhD and his Habilitation at the Technical
University of Munich. After a short period as a visiting professor at the University
of Dortmund, he returned to his homeland Bavaria and was appointed Full Professor
of Statistics at the University of Regensburg, at the age of 32.

Some years later, he moved to the capital of Bavaria and became Professor at the
Department of Statistics at the University of Munich. His appointment had significant
impact on the Department since, soon after his arrival, Ludwig started an initiative
to establish a collaborative research center on the “Statistical Analysis of Discrete
Structures.” After a successful application for initial funding, further funding was
extended several times, until the research center reached the maximum period for
funding in 2006. During the complete duration, Ludwig served as a speaker of the
research center and – to cite one of the final referees – “managed it in an easy and
efficient way and contributed several important results.”

During the last forty years, Ludwig’s work has had tremendous impact on the Sta-
tistics community. He was among the first researchers to recognize the importance
of generalized linear models and contributed in a series of papers to the theoretical
background of that model class. His interest in statistical modelling led to the or-
ganization of a workshop on “Statistical Modelling and Generalized Linear Models
(GLIM)” in Munich in 1992 and culminated in the highly cited monograph on “Mul-
tivariate Statistical Modelling Based on Generalized Linear Models” that saw two
printings and remains to be a key reference on applied statistical modelling utilizing
generalized linear models. Ludwig also had great influence on the creation of the
Statistical Modelling Society, and is currently on the advisory board of the corre-
sponding journal on “Statistical Modelling.” Both the society and journal emerged
out of the early GLIM workshops and proceedings.
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vi Foreword

Of course, Ludwig’s work is definitely not restricted to generalized linear models
but – on the contrary – spans a wide range of modern Statistics. He co-authored or
co-edited several monographs, e.g. on Multivariate Statistics, Stochastic Processes,
Measurement of Credit Risks, as well as popular textbooks on Regression and an
Introduction to Statistics. His recent research contributions are mostly concentrated
in semiparametric regression and spatial statistics within a Bayesian framework.

When first circulating the idea of a Festschrift for the celebration of Ludwig’s
65th birthday, all potential contributors were extremely positive, many immediately
agreeing to contribute. These reactions atest to Ludwig’s high personal and pro-
fessional appreciation in the statistical community. The far reaching and variety of
subjects covered within these contributions also represents Ludwig’s broad interest
and impact in many branches of modern Statistics.

Both editors of this Festschrift were lucky enough to work with Ludwig at several
occasions and in particular early in their careers as PhD students and PostDocs. His
personal and professional mentorship and his strong commitment made him a perfect
supervisor and his patient, confident and encouraging working style will always be
remembered by all of his students and colleagues. Ludwig always provided a friendly
working environment that made it a pleasure and an honor to be a part of his working
group. We are proud to be able to say that Ludwig is much more than a colleague
but turned into a friend for both of us.

Oldenburg and Munich, January 2010 Thomas Kneib, Gerhard Tutz
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The Smooth Complex Logarithm and
Quasi-Periodic Models

Paul H. C. Eilers

Abstract Quasi-periodic signals, which look like sine waves with variable frequency
and amplitude, are common in nature and society. Examples that will be analyzed in
this paper are sounds of crickets, counts of sunspots, movements of ocean currents,
and brightness of variable stars. Euler’s formula for the complex logarithm, combined
with smoothly changing real and imaginary components, provides a powerful model.
It is highly non-linear and special care is needed to get starting values for an iterative
estimating algorithm. The model is extended with a trend and harmonics. A cascaded
link function allows modeling of quasi-periodic series of counts. The model and real-
world applications are described in an expository style.

1 Foreword

Ludwig Fahrmeir has studied generalized linear models extensively and he has had
a strong influence on their development and practical application. But I’m quite
sure that he never worked on models with a complex (in the sense of imaginary
numbers) link function, although he came near, in the study of seasonal generalized
linear models (Fahrmeir & Tutz 2001). In this chapter we will see that a complex
logarithmic link is natural start for models with variable periodicity.

2 Introduction

Many signals in nature and society are quasi-periodical: they show approximately a
sinusoidal shape, but frequency and signal strength vary over time. Examples that will

Paul H. C. Eilers
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be analyzed in this paper are sounds of crickets, counts of sunspots, movements of
ocean currents, and brightness of variable stars. Many other examples can be found:
sounds of musical instruments, business cycles and radio waves. In all cases it is
of interest to get a parsimonious semi-parametric description of the instantaneous
frequency and amplitude. I propose a model that achieves this goal, inspired by a
fundamental formula from complex analysis: exp(α + iφ) = eα(cosφ + isinφ). It
follows that α can be interpreted as the logarithm of the amplitude and φ as the
phase. Modeling both as smooth functions of time, α(t) and φ(t), we get the desired
model.

Given a (complex or real) signal, we can fit the model, using variants of P-splines
(Eilers & Marx 1996) for the semi-parametric description. The model is highly non-
linear. With proper starting values iteratively reweighed least squares estimation
quickly leads to the solution. However, finding good starting values is far from trivial,
so it will be discussed at some length. When the data are rich enough, zero-crossings
can be used. For sparse data, initial smooth interpolation is needed. Interpolation
with standard P-splines will not always work. Harmonic smoothing, using a modified
penalty, presents a solution.

Not always is a sinusoidal shape enough to fit observed data well. In such cases
additional harmonics, having phase functions kφ(t), for small integer k, like 2 and
3, either in fixed proportions, or modulated by their own amplitude functions, will
be added to the model.

When the data are patently non-normal, a cascade of two link functions, with a
Poisson or binomial conditional data distribution, works well. This will be illustrated
with an extensive data of daily sunspot counts.

This is an expository chapter and its structure is somewhat unusual in that there
are no separate sections on Theory and Applications. In the next section, observed
signals of increasing complexity are introduced sequentially, along with the tools
for modeling them. I believe this improves readability. In Section 3 I sketch many
opportunities for more complex models, to seduce other statisticians to enter this
field. The chapter ends with a discussion.

3 Data and Models

Figure 1 shows a prototypical quasi-periodic signal. It is a segment of about 0.4 s of the
song of the Confused Ground Cricket Eunemobius confusus (Elliott & Hershberger
2006). It is clear that the amplitude changes over time, but it is harder to judge
whether the frequency changes and by how much.
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Fig. 1 Song of a cricket. Top: 19000 samples (approximately 0.4 s). Bottom: enlargement of the
last burst.

3.1 The Basic Model

We are going to develop a smooth model for the complex logarithm of the signal,
which gives us two very useful time series, one for the logarithm of the amplitude,
the other for the phase, which is the integral of the local frequency.

Euler’s formula from complex analysis states that

exp(α+ iφ) = eα(cosφ + isinφ). (1)

This is what we need for a quasi-periodic model, because when we let α and φ
change smoothly over time, the real part of the exponential of α(t)+ iφ(t) has a
cosine shape. Its local frequency is given by dφ/dt and the local amplitude by expα .

3.2 Splines and Penalties

To obtain smooth curves for α(t) and φ(t) we model them as a sum of a generous
number of scaled B-splines, allowing more flexibility than needed. A roughness



4 P. H. C. Eilers

0 100 200 300 400 500 600

−0.2

−0.1

0

0.1

0.2

Cricket signal (data and fit)

0 100 200 300 400 500 600

−0.2

−0.1

0

0.1

0.2

Cricket signal (fit, amplitude and residuals)

0 100 200 300 400 500 600
6

7

8

9

10
Cricket signal (estimated period)

Sample number

Fig. 2 Fit to the cricket song. Top: model fit (broken line) and signal (full line). Middle: model
fit, plus and minus the amplitude, shown as an envelope, and residuals (very small). Bottom: the
estimated local period.

penalty on the B-spline coefficients gives further continuous control over smoothness.
This the P-spline idea, advocated by Eilers & Marx (1996), simplifying an earlier
proposal by O’Sullivan (1986); recently Wand & Ormerod (2008) revisited the latter
approach in more detail. So we have

α(t) =
K

∑
k=1

Bk(t)ak; φ(t) =
K

∑
k=1

Bk(t)ck, (2)

where Bk(t) indicate the kth B-spline, evaluated at t.
The two-part penalty is

Pen = λα∑
k

(Δ2ak)2 +λφ ∑
k

(Δ2ck)2. (3)

If we observe a complex time series x j + iy j, j = 1, . . . ,J, at time points t j, the
following objective function is proposed:

S =
J

∑
j=1

v j(x j− μ j)2 +
J

∑
j=1

wj(y j−ν j)2 + Pen, (4)
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Fig. 3 Interpolating scattered data to find zero-crossing reliably. Top: magnitude of a variable star,
with estimated trend. Bottom: light P-spline smoothing of the de-trended series.

with
μ j = expα(t j)cosφ(t j); ν j = expα(t j)sinφ(t j). (5)

We have two weighted sums of squares, one for the real, the other for the imaginary
part. The weights are introduced for easy handling of time series without a complex
component. In that case we fill in y j ≡ wj ≡ 0. Most observed time series only have
a real part, but in physics and chemistry complex data are common. An example
is NMR (nuclear magnetic resonance). Later in this paper we will encounter a time
series of spatial positions and study it as a complex signal. In addition, selective use of
zero weights allows us to exclude undesired data points. A very useful property of P-
splines is that they smoothly and automatically interpolate (or extrapolate) wherever
weights are zero.

The objective function in (4) is highly non-linear in the coefficients a and c. Es-
sentially the cosine and sine are link functions in the sense of a generalized linear
model (with Ba and Bc as linear predictors. Because quasi-periodicity is our game,
these links functions are not monotone. Fitting the model is far from trivial; finding
good starting values is a serious bottleneck. It will be discussed later. For the mo-
ment we assume that we do have good starting values. Then the real parts can be
approximated by
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Fig. 4 Interpolating scattered data with different standard and harmonic penalties. De-trended data
as in previous figure. Top: P-spline smoothing with a standard (second order difference) penalty.
Bottom: P-spline smoothing with an harmonic penalty, based on a period of 110.

μ(t)≈ μ̃(t)+
K

∑
k=1
δak∂ μ̃(t)/∂ak +

K

∑
k=1
δck∂ μ̃(t)/∂ck, (6)

where δa and δc indicate small corrections. A similar formula applies to the imag-
inary part ν(t). Formulas for the partial derivatives are easy to derive. Given an
approximate solution we apply the Gauss-Newton algorithm: weighted regression of
the residuals on the partial derivatives, to compute corrections δa and δc.

It is assumed that the number of B-splines in the basis B is large enough to over-fit
the data. Then only the parameters λα and λφ tune smoothness.

When the observations are equally spaced on the time axis, one can drop the B-
spline basis and replace it by the identity matrix. Tenα = a and φ = c. Large systems
of equations results, but they are extremely sparse, consisting of combinations of
quindiagonal sub-matrices. All computations were done in Matlab, which can handle
sparse matrices very efficiently and almost transparently. We are back then at the
Whittaker smoother (Eilers 2004). In what follows this approach will be used, unless
otherwise indicated. To simplify the presentation, we will speak of penalties on α
and φ , implicating that this means a and c whenever a B-splines basis is included.
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If we apply the model to the cricket data, we get an extremely good fit, as Figure 2
shows. The pattern of the amplitude expα̂ closely follows peaks and values of the
signal. It is hard to judge length of period changes by eye, but the small size of the
residuals shows that the model does track the variable frequency well. I have chosen
to present the period instead of the frequency, because the former is more easily
recognized in the data, from the spacing of zero-crossings.

3.3 Starting Values

Good starting values are crucial, especially for φ . The link function is extremely
non-linear. If φ is too far off, the resulting quasi-periodic signal will have too few or
too many periods, and we will get stuck in one of many local minima of the objective
function.

The following procedure appears to be quite reliable for well-behaved data like
the cricket sound. First, light smoothing is applied to the signal, to eliminate noise.
The zero-crossings are located, giving the series uk, for k = 1, ..., p, where p is the
the number of periods of the signal. Because the cosine has zero-crossings there, at
position uk, φ has the value vk = (u0 +k+1/2)π , with u0 = 0 when the first crossing
is downward, and u0 = 1 otherwise. A smooth P-spline curve fit through the series
(u, v) gives the desired starting estimate for φ .

In some unfavorable cases, when the signal locally is weak and noise is strong,
zero-crossings may be missed. If the signal is strong enough on both sides, one
can use zero-crossings separately there. The curves at both sides have to connect
smoothly after shifting the right one up by an integer multiple of π . Because phase
is changing smoothly, only a few possible integers are indicated. One adds kπ to
v for the right segment and estimates a smooth curve to all (u, v) pairs and keeps
the results for the integer k that gives the best fit (and is consistent with alternating
downward and upward crossings).

If all else fails, one can fill in values for u and v by hand, based on visual inspection
of the data.

A silent assumption was that data are complete. This is not always the case and
then we have to interpolate first. Luckily, P-splines are very good at this. Figure 3
shows data on the magnitude (the brightness on a logarithmic scale) of a variable
star, obtained from http://www.astrouw.edu.pl/asas, the All Sky Automated
Survey (ASAS) database. A basis with 50 cubic B-splines was used for interpolation,
with λ = 0.01. We are in luck, because there are some observations around day 3200
that steer the P-spline fit in the right direction. Figure 4 shows what would happen
if these data were missing. We certainly cannot use the result directly for computing
zero-crossings. We could introduce a gap and connect phase curve estimates for the
left and right segments as described above.

An alternative approach is to use a harmonic penalty instead of second order
differences (Eilers & Marx 1996). In the latter case we would useΔ2a j = a j−2a j−1+
a j−2, but the harmonic penalty uses a j−2qa j−1+a j−2, with q = cos(2πd/P), where
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d is the distance between knots, and P a desired period. Figure 4 shows the effect.
As long as the weight of the penalty is not too large, the period does not have to
be very precisely chosen. A little experimenting, guided by visual inspection of the
interpolated signal is recommended. Here 50 B-splines were used, with P = 110 and
λ = 0.1.

Once starting values for φ have been found, it is relatively simple to find them
for α . In many cases it is enough to use a constant α , the logarithm of the average
absolute value of the signal, divided by the average of the absolute value of cosφ . A
more refined approach is to fit a P-spline-based varying-coefficient model (Eilers &
Marx 2002).

3.4 Simple Trend Correction and Prior Transformation

The cricket song has the pleasant property that it has as symmetric, sine-like shape,
without a trend. This is not always the case. Figure 5 shows monthly sunspot numbers
as given by data(sunspots) in R. To remove the asymmetry to a large degree, a
square root transformation works well, as the same figure shows. But now we see
a prominent slowly fluctuating trend. A simple solution is to apply the discrete
smoother with a large penalty (λ = 1000). The trend in the lower panel of Figure 5
has been computed this way. As Figure 6 shows, a quite good result is obtained for the
sunspot data. Notice the peak in in the interval around 1795. Period length increased
quite sharply there. There has been a long debate in astronomical circles about this
decade (Usoskin et al. 2009). It seems that the original compilation of historic data
filled in gaps in such a way that two relatively short periods have merged into a very
long one. See also Section 3.6.

The quasi-periodic signal that results from the sunspots after transformation and
trend detection shows an asymmetric shape: a fast rise and a slow fall. In Section 3.7
harmonics will be added to improve the model.

The proposed simple trend removal can be improved by adding an explicit trend
to the model:

μ = exp(α)cos(φ)+ γ, (7)

with roughness penalties on α , φ and γ . Fitting this model is only slightly more
complicated than before. The simple trend estimate provides good starting values
for γ .

3.5 A Complex Signal

Figure 7 shows an interesting data set. The location of a free-drifting sub-surface
buoy in the Atlantic Ocean has been monitored for six months in 2001 (Lilly &
Gascard 2006). The data can be found in the JLAB toolbox for Matlab, written by
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Fig. 5 Yearly averages of sunspot counts. Top: original time series. Bottom: after taking square
roots (thin line), with estimated trend (thick line).

John Lilly (www.jmlilly.net). Almost circular movements on top of a large-scale
trend are clearly visible. Figure 8 shows the time series of longitude and latitude,
which each closely resemble a quasi-periodic signal on top of slow trends. Figure 9
shows results for the quasi-periodic model with trend, as applied to latitude.

If we interpret the trend-corrected longitude x as the real part of a complex signal
exp(α+ iφ), and y, the trend-corrected latitude, as the imaginary part, then necessar-
ily we have that y = expα sinφ . This means that ŷ = expα̂ sin φ̂ should be close to
the observed latitude. This is indeed the case, although the amplitude of the longitude
is larger, as Figure10 shows. An interpretation is that the buoy moves in orthogonal
ellipses of variable size, with variable speed.

Several variants of the model can be envisioned. It might be that the amplitude x has
a constant ratio to that of y. Or there might be a constant phase shift of y, relative to x.
With the joint model E(x) = expα cosφ+ γ and E(y) = exp(α+θ )sin(φ +ψ)+ γ∗
we can cater for that. In principle there might also be shared patterns in the trends γ
and γ∗.
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Fig. 6 Model fit to square roots of sunspot counts. Top: model fit (broken line) and signal (full
line). Middle: model fit, plus and minus the amplitude, shown as an envelope, and residuals (very
small). Bottom: the estimated local period.

3.6 Non-normal Data and Cascaded Links

Up till now least squares were a very reasonable objective function for model fitting,
possibly after prior transformation of the data, like for the sunspots. This will not
work if we are dealing with counts or binomial data. Generalized linear model tech-
nology (Fahrmeir & Tutz 2001) gives us the solution: 1) choose an appropriate data
distribution; 2) introduce a link function between model components (the linear pre-
dictor) and expected values. In the case of observed counts the Poisson distribution
and the logarithmic link function are the obvious choice.

Hoyt & Schatten (1998) proposed the group sunspot number (GSN). They com-
piled an extensive data set (http://www.ngdc.noaa.gov/stp/SOLAR/). It spans
the period from 1610 tot 1995 and essentially it contains every observation that was
available at the time of compilation. Although the data are organized differently,
they can be considered as a series of triples: date, observer ID, sunspot group count.
For many days there are multiple observation, especially in modern times, while for
others there might be none. Figure 11 shows a short interval. The counts have been
jittered vertically to give a better impression of the density of the data points.

The proposed model is
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Fig. 7 Trajectory of a free-floating sub-surface buoy during six months. The symbol B marks the
beginning and the symbol E the end of the trajectory.

μ = exp(expα j cosφ)+ γ), (8)

or μ = exp(exp(α)cosφ + γ) if we ignore the imaginary parts. Here we have an
unusual cascade of link functions, one of them being complex. It turns out that, with
proper starting values, iterative re-weighted regression works well. Convergence
seems to be linear. Starting values were obtained by first applying light smoothing
with P-splines and interpolating the linear predictor on a dense grid. To this series
α , φ and γ were fitted with least-squares.

The time interval has been chosen to shed more light on the short cycles around
1793. Only the zero-crossings below 1790 were used to get a starting estimate for φ .
Beyond 1790 it was linearly extrapolated. This was done because light smoothing
(to get starting values) did miss the dip near 1793, and so there was no zero-crossing
there. With this special approach a dip was found, as Figure 11 shows. Judging the
fit visually, it does not look too impressive around 1790. This is not the right place
for an extensive discussion: the example serves as a proof of concept.

3.7 Adding Harmonics

In Section 3.4 we saw an asymmetry in the periods of the de-trended square root
of the sunspot numbers. Figure 12 shows this more clearly for a smaller part of the
data. The rises quickly and falls slowly. To improve the model, we add harmonics,
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Fig. 8 Buoy data. Latitude and longitude time series.

in the spirit of Fourier analysis. We assume that the amplitude function is shared by
all harmonics, so the model becomes

μ = expα[cosφ +∑
h
δh cos(hφ)+∑

h
εh sin(hφ)]+ γ. (9)

The range of h generally will be small, say from 2 to 4. Unfortunately the beauty of
the complex logarithm is now gone, but the model is effective, as will be seen.

For givenα andφ , linear regression gives us the parametersδ and ε . The additional
trigonometric terms complicate the partial derivatives with respect to α and φ , but
in a well-structured way. To get started we estimate α and φ for the model without
harmonics. Then we estimate δ and ε and start a number of iterations to improve
amplitude/phase and harmonics parameters in turn. Figure 12 shows results, using
second and third harmonics.

4 More to Explore

The complex logarithm is a natural candidate for modeling quasi-periodic data series.
A number of model variants and useful application illustrates this claim. Yet I believe
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Fig. 9 Fit to the buoy data. Top: model fit (dotted line) and signal (full line). Middle: model fit, plus
and minus the amplitude, shown as an envelope, and residuals (very small). Bottom: the estimated
local period.

that I only scratched the surface. In this section I suggest a number of more or less
obvious extensions and applications.

The examples that were presented before have in common that essentially only
one quasi-periodic signal is present. When we study songs of animals like birds
and whales, or echo-location signals of bats, we often encounter multiple signals. In
special cases these are harmonic of the basic signal, with a different pattern in the
amplitude. In other cases the individual signals might be unrelated. We can envision
an additive model with several complex logarithm components. A serious problem
then is to find starting estimates, because the zero-crossing method will not work
anymore. A possible approach is to use time-frequency spectra, derived from wavelet,
or other transforms. See also the Discussion.

We have seen examples of interpolation, but extrapolation will work essentially
the same: just add “missing data" with zero weights at one or to boundaries and
estimate the model. One might expect that much better extrapolated values will be
obtained, compared to a standard smoother/extrapolator that does not take the quasi-
periodic character of the data into account. It will be very interesting to compare
results from the present model with official sunspot number predictions (see http:
//solarscience.msfc.nasa.gov/predict.shtml).
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Fig. 10 Illustration of the complex character of the buoy data. Top: latitude data (full line) and
model fit eα cosφ (broken line). Bottom: longitude data (full line) and analytic estimate eα sinφ
(broken line).

The Group Sunspot Numbers (GSN) data set poses several fascinating challenges.
First there is possible (local) over-dispersion. Visual inspection of the data suggests
the existence of “bursts" in which very high counts are observed over several years.
The Poisson model might not be adequate for parts or all of the data. Over-dispersion
may be explained partially by inter-observer variability. In the GSN data set of almost
half a million observations, by 463 different observers identifications occur. Hoyt &
Schatten (1998) correct the counts each observer by comparing his/her total with the
total of a highly trusted observer on the corresponding days. A more sophisticated
approach would be to fit a large scale generalized linear mixed model to the counts,
adding observers as a factor to the quasi-periodic component. This way one expects
to get more stable correction parameters, because of shrinkage, and a more reliable
estimate of GSN time series.

To model a more general shape than the cosine, harmonics were added in the model
for the Wolf sunspot counts. Another approach would be to estimate a completely
general periodic waveform. Instead of expα cosφ comes expα f (�φ�) where f (.)
is an arbitrary smooth periodic curve, defined over the domain from 0 to 2π , and
�φ� is the reduced phase. The latter is a number between 0 and 2π , computed as
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Fig. 11 The cascaded-link quasi-harmonic model applied to daily sunspot counts. Top: 9418 indi-
vidual counts from 94 observers (dots) and expected values (line). Middle: trend (broken line) plus
quasi-harmonic component (full line) and amplitude (dotted line). Bottom: estimated local period.

�φ� = φ − 2π(�φ/2π�, where �x� indicates largest (possibly negative) integer less
than x.

P-splines can be used to model f (.), with special modifications to define both
the basis functions and the penalty on the circle, so that they warp around from 2π
to zero. Like with the harmonics, the model has a bilinear flavor and alternating
between updating of f and α and φ is the logical choice. A model with this flavor,
in which f is called the “carrier" wave, was described by Marx et al. (2009), in the
simpler setting of seasonal models for monthly counts.

5 Discussion

When I presented parts of this material at a meeting, one reaction from the audience
was: “but we already have wavelets!". Indeed it is the case that in a time-frequency
presentation based on wavelets one immediately sees changes in frequency as tracks
of ridges in a spectrum. But that is only a visual impression: to get the time course of
the frequency, ridge-seeking algorithms are needed. Once a ridge is found, its height
gives the time course of the amplitude (Carmona et al. 1998). This is far from trivial.
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Fig. 12 The quasi-periodic model with harmonics, applied to square roots of sunspot counts (de-
trended). Top: data (full line), model fit without harmonics (broken line) and residuals (thin line).
Bottom: dito, with second and third harmonics.

Wavelet transforms have also problems handling missing or unequally spaced data,
and they don’t deal well with non-normal data, like counts or binomial observations.

Having said that, it should be noted that wavelet transforms are very good at
separately showing multiple quasi-periodic components in a signal. They might be
a good tool to find starting estimates for a model with multiple smooth complex
logarithm components.

I have not tried (yet) to automatically optimize the values of the penalty parameters
(λα , λφ and λγ ). Instead I played with their values and visually judged results. In an
exploratory setting this is not much of a problem. In the applied sciences I expect
that researchers will find it useful to play with smoothness to see results in different
lights. Of course, all the tools of optimal smoothing (cross-validation, AIC, BIC,
mixed model approaches) can be used, in principle. Because we are dealing with
time series, correlated noise might be present, in which case automatic methods
often lead to under-smoothing. A possible way out then is to model the noise too,
e.g. by an autoregressive process (Currie & Durbán 2002).

There is a massive literature on time-frequency representations in physics and
engineering; Carmona et al. (1998) is an example. The complex logarithm is a familiar
tool in this literature, but I believe that the idea of smooth phase estimation has not
received the attention it deserves.



The Smooth Complex Logarithm Model 17

References

Carmona, R., Hwang, W.-L. & Torrésani B. (1998) Practical Time-Frequency Analysis. Academic
Press.

Currie, I.D. & Durbán, M. (2002) Flexible smoothing with P-splines: a unified approach. Statistical
Modelling 2: 333–349.

Eilers, P.H.C. (2003) A Perfect Smoother. Analytical Chemistry 75: 3631–3636.
Eilers, P.H.C. & Marx, B.D. (1996) Flexible Smoothing with Splines and Penalties (with Discus-

sion). Statistical Science 11: 89–121.
Eilers, P.H.C & Marx, B.D. (2002) Generalized Linear Additive Smooth Structures. Journal of

Computational and Graphical Statistics 11: 735–751.
Elliott, L. & Hershberger, W. (2006) The Songs of Insects. Houghton Mifflin.
Fahrmeir, L. & Tutz, G. (2001) Multivariate Statistical Modelling Based on Generalized Linear

Models, 2nd ed. Springer.
Hoyt, D.V. & Schatten, K.H. (1998) Group Sunspot Numbers: A New Solar Activity Reconstruction.

Solar Physics 181: 491–512.
Lilly, J.M. & Gascard, J.-C. (2006) Wavelet ridge diagnosis of time-varying elliptical signals with

application to an oceanic eddy. Nonlinear Processes in Geophysics 13: 467–483.
Marx, B.D., Eilers, P.H.C., Gampe J. & Rau R. (2002) Bilinear Varying-Coefficient Models for

Seasonal Time Series and Tables. Computational Staistics Published online July 24, 2009.
O’Sullivan, F. (1986) A statistical perspective on ill-posed inverse problems (with discussion).

Statistical Science 1: 605–527.
Usoskin, I.G., Mursula, K, Arlt, R & Kovaltsov, G.A. (2009) A solar cycle lost in 1793-1800: Early

sunspot observations resolve the old mystery. Astrophysical Journal Letters 700: L154–L157.
Wand, M.P. & Ormerod, J.T. (2008) On Semiparametric Regression with O’Sullivan Penalised

Splines. Australian and New Zealand Journal of Statistics 50: 179–198.



P-spline Varying Coefficient Models
for Complex Data

Brian D. Marx

Abstract Although the literature on varying coefficient models (VCMs) is vast, we
believe that there remains room to make these models more widely accessible and
provide a unified and practical implementation for a variety of complex data settings.
The adaptive nature and strength of P-spline VCMs allow a full range of models: from
simple to additive structures, from standard to generalized linear models, from one-
dimensional coefficient curves to two-dimensional (or higher) coefficient surfaces,
among others, including bilinear models and signal regression. As P-spline VCMs
are grounded in classical or generalized (penalized) regression, fitting is swift and
desirable diagnostics are available. We will see that in higher dimensions, tractability
is only ensured if efficient array regression approaches are implemented. We also
motivate our approaches through several examples, most notably the German deep
drill data, to highlight the breadth and utility of our approach.

1 Introduction

The varying coefficient model (VCM) was first introduced by Hastie & Tibshirani
(1993). The main idea of the VCM is to allow regression coefficients to vary smoothly
(interact) with another variable, thus generating coefficient curves. Such coefficient
curves can, for example, reflect slow changes in time, depth, or any other indexing
regressor. Hence regression coefficients are no longer necessarily constant. Typically
estimation for the varying coefficients usually requires the backfitting algorithm, i.e.
cycling through and updating each smooth term successively, until convergence. But
backfitting also has drawbacks: no information matrix is being computed, so the
computation of standard errors and effective model dimension, or efficient leave-
one-out (LOOCV) cross-validation is not available. Also convergence can be slow.
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We have published an efficient fitting algorithm for VCM, based on P-splines
(Eilers & Marx, 2002), abbreviated as GLASS (Generalized Linear Additive Smooth
Structures). GLASS directly fits all smooths simultaneously of the VCM, without
backfitting. In the linear case it converges in one step, and in the generalized linear
case it needs only a handful of iterations, similar to the iterative weighted regression
for generalized linear models. Standard errors, LOOCV and effective dimension, and
diagnostics are readily available at little extra cost. Further optimization is relatively
easy and is based on data-driven techniques.

Our GLASS algorithm only considers coefficients that are smooth curves along
one dimension (although it allows several of those components). However VCMs
can be applied to problems with even richer structure, e.g. coefficients that vary in
two or more dimensions and with other additive components in the model. Such data
can be generated from modern image or spectral instrument, but can arise naturally
from simple tabulations. In principle, using tensor-product P-splines, VCMs can
be extended to higher-dimensions, allowing the estimation of (higher dimensional)
coefficient surfaces. In theory this is allowed, but in practice one often encounters
severe limitations in memory use and computation time. The reason is that large-
scale multi-dimensional VCMs need a large basis of tensor products of B-splines.
In combination with many observations this can lead to inefficiencies. Consider, as
an example, an image of 500×500 pixels, to which one likes to fit a VCM, using a
10 by 10 grid of tensor products of B-splines. The regression basis has 250 thousand
rows and 100 columns, or 25 million elements, each taking 200 Mb of memory.
With several VCM components storing just the basis can already take on Gigabyte
of memory. Computation times to compute inner products will be long. Note that
the final system of penalized normal equations is not large with a few hundreds of
coefficients. Recently very efficient algorithms have been published for smoothing of
multidimensional data arrays with P-splines (Currie, Durbán, & Eilers 2006). They
offer improvements of several orders of magnitude in memory use and computation
time. With small adaptations, these algorithms can be used for multi-dimensional
VCM fitting.

We do not attempt to survey all of the VCM developments. Rather, the major
goal of this paper is to provide a unified, accessible, and practical implementation
of VCMs using P-splines; one that is conducive to generalizations and tractable in
a variety of relatively complex settings, such as two and three-dimensional space-
varying GLM extensions, all while avoiding backfitting.

Warm-up: An Intuitive Example

We first illustrate the basic structure and mechanics of a VCM through a simple
example. Consider the disk data with the triplets (yi,xi, ti), i = 1, . . . ,m, where the
response yi is the price (Euro) of an IBM hard drive, the regressor xi is its size
(GB), and ti is the indexing variable month (ranging from February 1999 through
January 2000). Figure 1 displays the (x,y) scatterplot separately for four selected
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Fig. 1 IBM hard drives: price (Euro) vs. size (GB), at four different months.

months yielding some evidence of a varying (estimated) slope. The VCM combines
the monthly data into one model, allowing the slope coefficient to vary smoothly in
t. Consider modeling the mean response

μ = x(t) f (t),

where f (t) is a smooth slope function. Figure 2 displays the estimated f̂ (t) (with
twice standard error bands) which strongly suggests that the estimated Euro/GB is
decreasing with time. The data points in Figure 2 represent the estimated slopes
using the individual monthly data. Note that we are not simply smoothing the points
on this graph, but rather borrowing strength from all the monthly data to produce a
smooth coefficient curve. Such a VCM approach allows for interpolation of Euro/
GB for months with missing data (e.g. March and August) or for months with only
one observation where slope cannot be estimated. Further we can extrapolate Euro/
GB into future months. The details for estimation follow in the coming sections.
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Fig. 2 IBM: Estimated varying slope, combining monthly data. The individual data points represent
the estimated slopes using the data month by month. Note that March and August do not have
estimate slopes since they have missing data or one observation.

2 “Large Scale" VCM, without Backfitting

The German Continental Deep Drill Program (KTB) was an ambitious project with its
aim to study the properties and processes of the upper 10 km of the continental crust
(www.icdp-online.de/sites/ktb/). The actual drill cuttings comprise of
68 variables measured at each of 5922 depth points (having a 1 m median spacing)
down to a final depth of 9.1 km.

We primarily motivate varying coefficient models through the characterization of
cataclastic fault zones, and relating the amount of cataclastic rocks (CATR), along
varying depth, to other variables. Our response is mean amount of CATR (which in
previous research has been transformed in either units of natural logarithm (log) or
log-odds (logit) transformed volume percent), and our central explanatory variables
include: Structural water (H2O), graphite (C), Al2O3, Na2O (all in units weight
percent), and Thermal Conductivity (in units Wm−1K−1).

The KTB statistical models to date only used a subset of depth range. However
we find the P-spline VCM is adaptive enough to incorporate the entire range of
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Fig. 3 Using log(CATR) as response, varying intercept and varying slopes for H2O, C, Thermal
Conductivity, Na2O, Al2O3 using cubic (q = 3) P-splines with 40 equally-spaced knots, d = 3.
Optimal tuning parameters chosen by EM. Twice standard bands are provided.

9.1km depth, thereby modelling all data zones simultaneously. The choice of these
regressors comes, in part, from existing successful statistical analyses of the KTB
data, by e.g. Kauermann & Küchenhoff (2003). These authors modelled the mean and
dispersion structure of the amount of cataclastic rocks by focusing on a subset of drill
samples ranging from 1000 to 5000 meters, which led to the identification of possible
depth breakpoints and potential outliers. Further, Winter et al. (2002) investigated the
relationship between the amount of cataclastic rocks to several geological variables
using standard regression methods for two specific cataclastic zones within two
lithologies: gneiss (1738-2380m) and metabasite (4524-4908m).

It is unrealistic to assume constant regression coefficients, along 0−9101m (e.g.
associated with H2O, C, Al2O3, Na2O, and Thermal Conductivity), and a VCM
approach can be a reasonable model choice, thus allowing variables to have depth
dependent flexible influence on the response.

Section 5 will provide the details, but to give an idea of how slope coefficients
can vary positively and negatively along depth, consider Figure 3 that uses a P-
spline VCM. The panels also present twice-standard error bands associated with
the varying coefficients. Relative to the zero line we see evidence of reversals or
moderating impacts of regressors on CATR as depth varies, e.g. C appears to have
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Fig. 4 B-spline bases with knots at specific depths: degrees q = 0,1,2,3.

positive, negative, and a near zero impact on CATR, e.g., at depths of 2300m, 4000m
and greater than 7000m, respectively.

The goodness-of-fit measures associated with P-spline VCM shows promise for
applications to the KTB data. For example, the models of Winter et al. (2002) that
target specific zones, only using a depth range of several hundred meters, reported
R2 values between 0.57– 0.60. Our VCM approach initially show a 12% – 21% im-
provement, while using the entire 9.1 km range over all data zones. A more thorough
presentation of results is given in Section 7.

3 Notation and Snapshot of a Smoothing Tool: B-splines

We will see in the sections that follow that we initially approach smoothness of the
coefficient vector (not the explanatory variables), in two ways: (a) by modelling
coefficients with a B-splines at predetermined depths (knots), and (b) when the
number and position of knots is assumed not to be known, by using penalized B-
splines or P-splines (Eilers & Marx 1996).
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3.1 General Knot Placement

We start with the building block of a complete B-spline basis. The shape of any one
B-spline function depends on its degree q. For example, a B-spline takes a constant
value (degree q = 0), has the form of a triangular density (degree q = 1), or can even
resemble bell-shaped curves similar to the Gaussian density (e.g. higher degrees
q = 2, 3). A B-spline function has only local support (e.g. in contrast to a Gaussian
density). In fact it is constructed from smoothly joining polynomial segments. The
positions on the indexing axis, t, where the segments come together, are called the
knots. Some general properties of a degree q B-spline include: it consists of q + 1
polynomial pieces of degree q; the derivatives at the joining points are continuous
up to degree q− 1; the B-spline is positive on the domain spanned by q + 2 knots,
and it is zero elsewhere.

A full B-spline basis is a sequence of B-splines functions along t, each shifted
over one knot. Each B-spline is usually indexed by a unique knot, say the leftmost
where the B-spline has support. Additional knots must be placed at the boundaries
so that each B-spline spans the same number of knots. The knot placement may be
general, allowing for unequal spacing. We denote the number of B-splines used in
the regression as K, and at any given value of t there are exactly q + 1 non-zero
B-splines, and these values are used to construct the basis matrix B. Given m depths,
a m×K regressor matrix can be constructed. B-spline smoothing is essentially mul-
tiple regression. Let bi j = B j(ti), j = 1, . . . ,K indicates the value of the jth B-spline
function at index ti, and B = [bi j]. The B-spline regressors (and their corresponding
parameters) are anonymous in that they do not really have any scientific interpreta-
tion: rather predicted values are produced through linear combinations of the basis.
We recommend the text by Dierckx (1993) for a nice overview.

Such a basis is well-suited for smoothing of a scatterplot of points (ti,yi), i =
1, . . . ,m. A smooth mean function can be expressed as μ = f (t) = Bα , where B
is a m× (K + q) regressor matrix and α is the unknown B-spline parameters. We
minimize

S = ||y−Bα||2, (1)

with the explicit solution
α̂ = (B′B)−1B′y. (2)

Given α̂ , the estimated point on the curve at any (new) depth t� is ∑K
j=1 B j(t�)α̂ j .

3.2 Smoothing the KTB Data

For the KTB data, K = 17 specific knots locations (at depths in meters) are chosen
based on prior knowledge of lithologies (Winter et al. 2002), with values: 0, 290,
552, 1183, 1573, 2384, 2718, 3200, 3427, 3537, 5224, 5306, 5554, 5606, 7260,
7800, and 9101 m. The complete B-spline basis (for q = 0, 1, 2, 3) using the
above knots locations is provided in Figure 4. Using the B-spline bases displayed in
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Fig. 5 Scatterplot of log(CATR) vs. depth and smooth estimated mean functions using B-splines
of degree 0, 1, and 2. The “X" symbol indicates knot locations.

Figure 4, Figure 5 displays the estimated smooth mean function for the scatterplot of
log(CATR) as a function of depth, for various bases degree and the specified K = 17
knots.

4 Using B-splines for Varying Coefficient Models

In addition to using smoothing techniques to estimate the mean response, consider
broadening the model to control for another regressor, e.g. x = H2O, which itself
may also have a varying influence as a function of depth,

μ(t) = β0(t)+ x(t)β1(t). (3)

This model is a generalization of the simple linear regression model (μ = β0 +
β1x), where the static intercept and slope coefficients (β0, β1) are now replaced
with coefficients that vary, and thus the regressor has a modified effect, for example
depending on depth.

With B-spline smoothing and predetermined knots (along t), backfitting can be
avoided and a varying coefficient model can be fit directly. This is clearly illustrated
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in matrix notation by modelling the mean response in (3),

μ = Bα0 + diag{x(t)}Bα1

= (B|U)(α ′0,α
′
1)
′ = Qα,

where the matrix diag{x(t)} aligns the regressors with the appropriate slope value
that is also smooth in t, i.e. β1(t) = Bα1. Note that the same B basis, built on the t
axis, is used for both smooth components. This can be done with data having one
natural indexing variable, e.g. as with depth in the KTB data. In general, there can
be a different indexing variable for each varying coefficient, thus requiring differing
B-spline bases for each additive term. We see that the effective regressors are Q =
(B|U), whereU = diag{x(t)}B, which results in essentially a modest sized “multiple
regression" problem. Notice that U boils down to nothing more than a simple row
scaling of B. Straightforward least squares techniques similar to (2) are used to
estimate the unknown B-spline parametersα = (α0, α1)′ associated with the smooth
intercept and slope. We minimize

S = ||y−Qα||2, (4)

with the explicit solution
α̂ = (Q′Q)−1Q′y. (5)

Thus estimated smooth coefficients can be constructed using Bα̂ j ( j = 0, 1), and
μ̂ = Hy = Qα̂ , where the “hat" matrix is H = Q(Q′Q)−1Q′.

Additive B-spline VCMs

The generalization to (3) follows for p regressors, each having varying slopes,

μ(t) = β0(t0)+
p

∑
j=1
β j(t j)x j(t j) (6)

In matrix notation,

μ = Bα0 +
p

∑
j=1

diag{x j(t j)}B jα j

= (B|U1| . . . |Up)(α ′0,α
′
1, . . .α

′
p)
′ = Rθ , (7)

where generalizations of (4) and (5) follow naturally using R and θ . Notice that
B j is used in (6) to allow the differing indexing variables (t j) for each regressor,
j = 1, . . . , p.

For illustration, Figures 6 and 7 display the fixed knot KTB varying coefficients
using B-splines of degree 0 and 3, respectively.
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Fig. 6 Using log(CATR) as response, varying intercept and varying slopes for H2O, C, Thermal
Conductivity, Na2O, Al2O3 using B-spline bases of degree 0. Twice standard bands are provided.
Knots locations are indicated by both ticks and circles.

5 P-spline Snapshot: Equally-Spaced Knots & Penalization

The B-spline approach in the previous section required knowledge of the location
and number of knots. In general, this information may not be known, and the place-
ment of the proper number of knots is a complex nonlinear optimization problem.
Circumventing these decisions, Eilers & Marx (1996) proposed an alternative P-
spline smoothing approach, which has two steps to achieve smoothness: (i) Use a
rich regression basis to purposely overfit the smooth coefficient vector with a modest
number of (equally-spaced) B-splines. (ii) Ensuring further and the proper amount
of smoothness through a difference penalty on adjacent B-spline coefficients. The
main idea is that smoothness is driven by the amplitudes of α , and discouraging
estimates of α that have erratic adjacent (neighboring) behavior can be sensible. A
non-negative tuning parameter regularizes the influence of the penalty, with large
(small) values leading to heavy (light) smoothing. For one smooth term, we now
minimize

S� = ||y−Bα||2 +λ ||Ddα||2. (8)

The matrix D constructs dth order differences of α:
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Fig. 7 Using log(CATR) as response, varying intercept and varying slopes for H2O, C, Thermal
Conductivity, Na2O, Al2O3 using B-spline bases of degree 3. Twice standard bands are provided.
Knots locations are indicated by both ticks and circles.

Ddα = Δdα. (9)

The first difference of α , Δ1α is the vector with elements α j+1 − α j, for j =
1, . . . , K−1. By repeating this computation on Δα , we arrive at higher differences
like Δ2α = {(α j+2−α j+1)− (α j+1−α j)} and Δ3α . The (n−1)×n matrix D1 is
sparse, with d j, j = −1 and d j, j+1 = 1 and all other elements zero. Examples of D1
and D2 of small dimension look like

D1 =

⎡⎣−1 1 0 0
0 −1 1 0
0 0 −1 1

⎤⎦ ; D2 =
[

1 −2 1 0
0 1 −2 1

]
.

Actually, the number of equally-spaced knots does not matter much provided that
enough are chosen to ensure more flexibility than needed: the penalty further
smoothes with continuous control. The solution of (8) is

α̂λ = (B′B +λD′
dDd)−1B′y, (10)

and the “effective" hat matrix is now given by
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Hλ = B(B′B +λD′
dDd)−1B′. (11)

5.1 P-splines for Additive VCMs

When considering more regressor terms and in a VCM context, the model is as
outlined in (6) with μ(t) = Rθ , but now B is a rich basis using equally-spaced knots.
The P-spline objective function in (8) must be further modified to allow differing
flexibility across the p regressors, i.e. a separate λ is allowed for each term. We now
have

S� = ||y−Rθ ||2 +
p

∑
j=0
λ j||Ddα j||2, (12)

with a solution
θ̂ = (R′R + P)−1R′y,

where the penalty takes on the form P = block diag(λ0D′
dDd , . . . ,λpD′

dDd). The
block diagonal structure breaks linkage of penalization from one smooth term to
the next one. Note that (12) uses a common penalty order d, but there is nothing
prohibitive from allowing some terms to have different d. Thus

μ̂ = Rθ̂ = Hy,

where H = R(R′R + P)−1R′. Borrowing from Hastie & Tibshirani (1990), the ef-
fective dimension of the fitted smooth P-spline model is approximately trace(H).
By noting the lower dimension and invariance of the trace of cyclical permutated
matrices, effective dimension (ED) can be found efficiently using

ED(λ ) = trace{(R′R + P)−1R′R}. (13)

The effective dimension of each smooth term is the trace of the portion of diagonal
terms of H corresponding to each term.

5.2 Standard Error Bands

For fixed λ , twice standard error bands can be constructed relatively easily, and
can be used as an approximate inferential tool, for example to identify potentially
important depth windows that may relate each regressor to the response. We have

var(θ̂ ) = (R′R + P)−1R′σ2IR(R′R + P)−1 = σ2(R′R + P)−1R′R(R′R + P)−1.

Thus the covariance matrix associated with the jth smooth component is

Cj = σ2B j{(R′R + P)−1R′R(R′R + P)−1} jB′j,
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where {·} j denotes the diagonal block associated with the jth component. The square
root of the diagonal elements of Cj are used for error bands, as used in Figure 3.
Setting λ = 0 yields the standard error bands for unpenalized B-splines, as presented
in Figures 6 and 7.

6 Optimally Tuning P-splines

For B-spline models, apriori information is essential: The amount of smoothing is
determined by the size of the B-spline basis and thus implicitly by the number and
position of knots. The smaller the number of knots, the smoother the curve. For P-
spline models where R only contains a few smooth terms, cross-validation measures
or information criteria can be monitored by varyingλ in a systematic way over a grid,
and the “optimal" values for the λ vector can be chosen as the one that minimizes,
e.g., LOOCV. Although this prediction oriented approach for choosing λ is tractable
for low dimensions, it can become computationally taxing and unwieldy, e.g. in our
KTB application with six smooth terms. We investigate an alternative estimation-
maximization (E-M) approach based on viewing P-splines as mixed models, based
on the work of Schall (1991), which appears very promising.

First we consider only one smooth term and then propose a generalized algorithm.
Using a mixed model with random α , the log-likelihood, l, can be expressed as

−2l = m logσ + n logτ+
‖y−Bα‖2

σ2 +
‖Dα‖2

τ2 , (14)

where the var(α) = τ2 is the variance of the random effects and var(ε) = σ2 is the
variance of the random error. Maximizing (14) results in the system of equations(

B′B +
σ2

τ2 D′D
)
α = B′y,

and hence we can view λ = σ2/τ2 as a ratio of variances. We also have, under
expectation, that

E(‖y−Bα̂‖2) ≈ (m−ED)×σ2

E(‖Dα̂‖2) ≈ ED× τ2, (15)

where ED is the approximate effective dimension of the fit. Using (15), we can
get a current estimate σ̂2 and τ̂2 from fit. An updated fit can be made using updated
σ̂2/τ̂2, until convergence.We propose a generalized estimation-maximization (E-M)
algorithm for the p-dimensional varying coefficient model μ = Rθ :
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Algorithm E-M P-spline to optimize λ

1. Initializations:

• Generously choose knots K (use 40 as default).
• Initialize λ , j = 1, . . . , p (use 10−5 as default)
• Choose B-spline basis degree q (cubic as default)
• Choose penalty order d (use 3 as default)
• Construct Penalty P = blockdiag(λ0D′D, . . .,λpD′D)
• θ̂ = (R′R+P)−1R′y

2. Cycle until Δλ small
3. For j = 0 to p

a. Compute the ED j = trace{H} j ( jth smooth diagonals in H)
b. Estimation (E-step):

i. σ̂ 2 = ‖y−Rθ̂‖2

m−∑p
j=0 ED j

ii. τ̂2
j = ‖Dθ̂‖2

ED j

iii. λ̂ j = σ̂2

τ̂2
j

c. Maximization (M-step):
i. P = blockdiag(λ̂0D′D, . . .λ̂pD′D)

ii. θ̂ = (R′R+P)−1R′y

4. Fit with converged vector λ̂

end algorithm

Cross-validation Prediction Performance

A leave-one-out cross-validation measure can be computed swiftly, only requiring
the diagonal elements of the “hat" matrix, hii, and the residuals y− μ̂ = y−Rθ̂ . Note

yi− μ̂−i = (yi− μ̂i)/(1−hii), (16)

μ̂ = B(B′B)−1B′y = Hy, and μ̂−i is the fitted value for yi that would be obtained if the
model were estimated with yi left out. It follows that hii = r′i(R′R+P)−1ri, where r′i
indicates the ith row of R. Hence the diagonal elements of H and the cross-validation
residuals can be computed with little additional work. We can define

LOOCV =

√
1
m

m

∑
i=1

(yi− μ̂−i)2 =

√
1
m

m

∑
i=1

(
yi− μ̂i

1−hii

)2

,

and this result holds in the unpenalized setting by simply setting all λ = 0 in H.
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Table 1 Preliminary goodness-of-fit and cross-validation, by VCM degree.

Method Basis q Penalty d Knots K Eff. Dim LOOCV R2

E-M P-spline 3 3 equally 40 155.8 0.737 0.704
E-M P-spline 0 1 equally 40 206.1 0.755 0.691
B-spline 3 - fixed 17 120 0.773 0.683
B-spline 2 - fixed 17 120 0.765 0.685
B-spline 1 - fixed 17 120 0.779 0.670
B-spline 0 - fixed 17 120 0.800 0.647

7 More KTB Results

The P-spline approach was fit using K = 40 knots for each of the six smooth com-
ponents and corresponding difference penalties of order d = 3. Summary results are
presented in Table 1, for various approaches. For the case d = 3, the optimal tun-
ing parameters were chosen using the E-M algorithm above, which converged in 69
cycles, and yielded optimal λ = (570,0.038,0.0023,908,1252,6.63), respectively.
Figure 3 presents the corresponding E-M based estimated smooth coefficients. The
convergence criterion was max j{Δλ j/λ j} < 10−8. The overall effective dimension
of the P-spline fit was ED = 155.8. Notice that as λ increases, then ED decreases.
When comparing P-splines (Figure 3) to the B-spline approach with unequally-
spaced K = 17 knots (Figures 6 and 7), we find some general differences. First, the
optimal overall ED is higher with P-splines (155.8), when compared to that of each
B-spline ED (120), since each B-spline term has an ED=20. Further, some of the P-
spline smooth terms need much less ED, e.g. intercept (11.8), Thermal Conductivity
(15.0), and Na2O (14.5), whereas other P-spline terms require considerably more
ED, e.g. H2O (40.6), C (34.4), and Al2O3 (39.6). We find that the general patterns of
negative, positive, and moderate smooth coefficients is preserved from Figures 6 and
7, as a function of depth. However, the P-spline coefficients are smoothed in some
cases, and sharpened in others. This P-spline approach required no prior knowledge
of depth knots, and yields a very competitive model with an R2 = 0.704– a consid-
erable improvement over previously reported models. The CV value is 0.737, which
is the lowest among models presented. Thus the P-VCM model for the KTB data
experiences both increase in R2 and reduction in CV error.

8 Extending P-VCM into the Generalized Linear Model

When responses are non-Normal, e.g. binary outcomes or Poisson counts, the P-
spline varying coefficient model extends naturally into the generalized linear model
(GLM) framework,

g(μ(t)) = β0(t0)+
p

∑
j=1
β j(t j)x j(t j)
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In matrix notation,

g(μ) = Bα0 +
p

∑
j=1

diag{x j(t j)}B jα j

= (B|U1| . . . |Up)(α ′0,α ′1, . . .α ′p)′ = Rθ , (17)

where the subscript j (on both t and B) highlights that differing indexing variables
are allowed for each regressor. The GLM allows a (monotone) link function g(·)
and requires independent observations from any member of the exponential family
of distribution with μ = E(Y ). The specifics of the GLM are well documented and
tabulated, e.g. in Fahrmeir & Tutz (2001, Chapter 2).

The penalized objective function for the GLM is now

l� = l(θ )−
p

∑
j=0
λ j||Ddα j||2, (18)

where l(θ ) is the log-likelihood function, which is a function of θ since μ = h(Rθ ).
The inverse link function is denoted as h(·) (with derivative h′(·)). We now maximize
l� and find above that the penalty terms are now subtracted from l(θ ), thus discour-
aging roughness of any varying coefficient vector. Fisher’s scoring algorithm results
in the iterative solution

θ̃c+1 = (R′ṼcR + P)−1R′Ṽcz̃c,

where again the penalty takes on the form P = block diag(λ0D′
dDd , . . . ,λpD′

dDd),
and V = diag{h′(Rθ )/var(y)}, z = (y− μ)/h′(Rθ )+ Rθ are the usual GLM diag-
onal weight matrix and “working" dependent variable, respectively, at the current
iteration c. Upon convergence, μ̂ = h(Rθ̂) = h(Ĥy), with Ĥ = R(R′V̂R + P)−1R′V̂ ,
and approximate effective dimension ED≈ trace{R′V̂R(R′V̂ R + P)−1}.

Polio Example with Poisson Counts

We apply P-VCM models to the discrete count time series data of monthly polio
incidences in the United States (reported to the U.S. Center of Disease Control)
during the years 1970 through 1987. The data are taken from Zeger (1988) and
further analyzed by Eilers & Marx (2002). The monthly mean count is modeled with
a penalized GLM with a Poisson response and log link function. We choose a model
that allows a varying intercept, as well as varying slopes for the cosine and sine
regressors (each with both annual and semi-annual harmonics),

log(μ(t)) = f0(t)+
2

∑
k=1
{ f1k(t)cos(kωt)+ f2k(t)sin(kωt)}, (19)
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Fig. 8 Polio example: the annual and semi-annual varying cosine and sine effects.

where ω = 2π/12 for the index t = 1, . . . , 216. In matrix notation, we have

log(μ) = Bα0 +
2

∑
k=1
{CkBαck + SkBαsk}= Rθ , (20)

where R = (B |C1B |C2B | S1B | S2B) and θ is the corresponding vector of augmented
α’s. TheC and S are diagonal cosine and sine matrices that repeated cycle through the
months (1 through 12) using the appropriate harmonic. Since the index is common
for all regressors, we conveniently choose to use a common (cubic) basis B. Figure
8 displays the varying harmonic effects. We used 13 equally-spaced knots and a
second order penalty for each term. Related to the work of Schall (1991), the optimal
values of λ are also found using the E-M algorithm found in Section 6 (with small
modification): 1. The estimation of the scale parameter is fixed to be one (step
3.b.i), and 2. Although no backfitting is performed, the maximization step is now
the iterative method of scoring (step 3.c.ii). The estimate effective dimension is
approximately 6.5 for the intercept, and 1.5 for each of the sine and cosine terms.
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Fig. 9 A sparse portion of a tensor product B-spline basis.

9 Two-dimensional Varying Coefficient Models

An advantage of the P-spline approach to varying coefficient modeling is its ability to
adapt to a variety of extensions with relatively little complication. We will see that it
is rather straightforward to extend to an additive two-dimensional varying coefficient
model in a generalized linear model setting. Such an approach requires P-VCM to
use a tensor product B-spline basis and to use some care in constructing a sensible
penalty scheme for the coefficients of this basis. In this way P-VCM remains nothing
more than a moderately (generalized) penalized regression problem. Consider the
tensor product basis provided in Figure 9. The basis is sparsely presented to give an
impression of its structure; a full basis would have severe overlapping “mountains".
Corresponding to each basis, there is an array of coefficientsΘ = [θkl ], k = 1, . . . , K
and l = 1, . . . , L (one for each mountain), and these are the drivers of the two-
dimensional varying coefficient surfaces. To avoid the difficult issue of optimal knot
placement, P-VCM again takes two steps: (i) Use a rich K × L(< 1000) gridded
tensor product basis that provides more flexibility than needed. (ii) Attach difference
penalties on each row and on each column of θ with only one tuning parameter for
rows and another one for columns. Figure 10 gives an idea of strong penalization of
the coefficients.
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Fig. 10 A sparse portion of a strongly penalized tensor product B-spline basis.

9.1 Mechanics of 2D-VCM through Example

Figure 11 (top panel) displays log death counts resulting from respiratory disease
for U.S. females. The image plot is actually 25,440 cells resulting from the cross-
classification of age by monthly time intervals. Details of the data, as well as a
thorough modeling presentation can be found in Eilers et al. (2008). The lower panel
of Figure 11 display the marginal death count over time, which exhibits a strong and
varying seasonal cyclical behavior. Consider the Poisson regression with a log link
function

log(μat) = vat + fat cos(ωt)+ gat sin(ωt) = ηat , (21)

with counts Yat and μat = E(Yat). For simplicity, we suppress any offset term. The
index a = 1, . . . ,A refers to regressor age (44− 96), whereas year and month are
combined to create a variable time, indexed by t = 1, . . . ,T (1−480). Annual cyclical
behavior in the counts is modeled using the periodic sine and cosine regressors, with
period 2π (ω = 2π/12). More harmonics can be added as needed. The two regressors
are only indexed with t since the cyclical behavior is only assumed to be associated
with time. The parameters v, f , g are indexed by both (a, t) and are the smooth
(two-dimensional) varying coefficient surfaces for the intercept and slopes for the
sine and cosine regressors, respectively.

To express each of the intercept, sine, and cosine varying coefficients smoothly,
it is perhaps natural to work with a vectorized form of Θ denoted as θu = vec(Θu),
u = 0,1,2. A “flattened" tensor product B-spline basis B can be formed of dimension
AT ×KL, such that vec(s) = Bθ0, vec( f ) = Bθ1, and vec(g) = Bθ2. Each row of
B designates one of the AT cell counts, and the columns contain the evaluations of
each of the KL basis at that cell location. In matrix terms, (21) can be reexpressed as
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Fig. 11 Raw counts of female respiratory deaths in U.S. for ages 44–96 during 1959-1999 (top)
and the marginal plot of time trend (bottom)

vec{log(μ)} = Bθ0 + diag [cos(ωt)]Bθ1 + diag [sin(ωt)]Bθ2

= Bθ0 + U1θ1 + U2θ2

= Mθ , (22)

where M = [B|U1|U2] and θ ′ = (θ ′0,θ ′1,θ ′2) are the augmented bases and tensor prod-
uct coefficients, respectively. The diagonalization of the regressors in (22) ensures
that the each level of the regressor is weighted by its proper level of the varying co-
efficient. We now find (22) to be a standard Poisson regression model with effective
regressors M of dimension AT ×KL and unknown coefficients θ . The dimension of
estimation is now reduced from initially 3×AT to 3×KL.
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Fig. 12 Fit for female respiratory deaths: varying intercept (trend) (top, left); varying amplitude of
(co)sine (top, right); varying phase in months of (co)sine (bottom, left); Pearson residuals (bottom,
right)

9.2 VCMs and Penalties as Arrays

Consider the univariate basis: Let B = [btk] (B̆ = [b̆al]) be the T ×K (A×L) B-spline
basis on the time (age) domain. Denote A , B, and C as the K×L matrices of the
tensor product coefficients for V = [vta], F = [ fta], and G = [gta] respectively. We
can rewrite (22) as

log(M) = V +CF + SG

= BA B̆′+CBBB̆′+ SBC B̆′, (23)

where M = [μta] and C and S represent the (co)sine diagonal matrices defined in (22),
and again any offset term is suppressed.

Penalties are now applied to both rows and columns of A and B. Denote the
(second order) difference penalty matrices D and D̆ with dimensions (K− 2)×K
and (L−2)×L, respectively. Recall Figure 10 that provides a visualization of strong
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row and column penalization.The penalty is defined as P = PA +PB +PC , with the
first term having the form PA = {λ1||DA ||F + λ̆1||A D̆′||F}with the other naturally
following for B and C . We denote || · ||F as the Frobenius norm, or the sum of the
squares of all elements. The first portion of the penalty is equivalently

PA = vec(A )′[λ1(IL⊗D′D)+ λ̆1(D̆′D̆⊗ IK)]vec(A ),

where I is the identity matrix. The tensor product coefficients, A , B and C are found
by maximizing the penalized Poisson log-likelihood function

l�(A ,B) = l(A ,B)− 1
2

P. (24)

Optimization of the tuning parameters (six in this case) can be found using efficient
clever searches, in a greedy way, over the λ space to minimize, e.g. AIC or QIC.
Also an extension to the E-M algorithm is possible. Figure 12 presents optimal results
based on QIC for the respiratory data using 13×13 equally-spaced tensor products
and a second order penalty on rows and columns for each component.

9.3 Efficient Computation Using Array Regression

The array algorithm can be found in Currie et al. (2006). Without loss of generality,
using only the first term in (23), the normal equations can be expresses as

(B̆⊗B)′W (B̆⊗B)α̂ = Qα̂ = (B̆⊗B)′Wy, (25)

where W is a diagonal weight matrix and y = vec(Y ). With the dimension of B̆⊗B is
AT×KL, and can require much of memory space. Also, but perhaps less obvious, the
multiplications and sums that lead to the elements of Q are rather fine-grained and
waste an enormous amount of processing time. The problem is compounded when
considering all terms in (23). Both problems are eliminated with by rearranging the
computations.

Let R = B�B indicate the row-wise tensor product of B with itself. Hence R has
T rows and K2 columns and each row of R is the tensor product of the corresponding
row of B with itself. One can show that the elements of

G = (B�B)′W (B̆�B̆)

have a one-to-one correspondence to the elements of Q. Of course they are arranged
differently, because Q has dimensions KL×KL and Gdimensions K2×L2. However,
it is easy to rearrange the elements of G to get Q. Three steps are needed: 1) re-
dimension G to a four-dimensional K×K×L×L array; 2) permute the second and
third dimension; 3) re-dimension to a KL×KL matrix.

A similar, but simpler computation finds the right side of (25) by computing and
rearranging B′(W ·Y )B̆, where W ·Y indicates the element-wise product of W and
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Y . In a generalized additive model or varying-coefficient model with multiple tensor
product bases, weighted inner products of the different bases have to be computed
using the same scheme as outlined above. Array regression offers very efficient
computation with increases in fitting speed (of far more than 10-fold in most cases)
when compared to the following unfolded representation. Typically array regression
is used when the data are on a regular grid, however it is possible to include a mix
of array and other standard regressors.

10 Discussion Toward More Complex VCMs

The adaptive nature and strength of P-splines allows extensions to even more complex
models. We have already seen such evidence in this paper by moving from simple to
additive P-VCMs, from standard to generalized settings, and from one-dimensional
coefficient curves to two-dimensional coefficient surfaces. P-VCMs can also be ex-
tended into bilinear models, as presented in Marx et al. (2010). In all cases, P-VCMs
further remain grounded in classical or generalized (penalized) regression, allowing
swift fitting and desirable diagnostics, e.g. LOOCV.

P-VCMs can be broadened into higher dimensions, e.g. to have three-dimensional
varying coefficient surfaces, and with several additive components. Heim et al. (2007)
have successfully applied these models to brain imaging applications. Such a model
is primarily achieved by broadening the tensor product basis from two to three di-
mensions and projecting the smooth three-dimensional coefficients onto this lower
dimensional space. An additional penalty is needed for the third dimension or layer.
In this setting, array regression is of utmost importance due to the formidable di-
mension of the unfolded design matrix and the number of computations to obtain,
e.g., the information matrix. There is nothing prohibitive in P-VCM to consider even
higher, e.g. four, dimensional VCM surfaces.

The P-VCM approach also lends itself nicely to high dimensional regression
commonly present in chemometric applications, often referred to the multivariate
calibration problem. In this setting, the scalar response has digitized “signal" regres-
sors, ones that are ordered and actually ensemble a curve. Marx & Eilers (1999)
used P-splines to estimate smooth coefficient curves, but tensor product P-VCMs
can allow these smooth coefficient curves to vary over another dimensions. Figure
13 provides an example of how smooth high dimensional coefficient curves can vary
over a third variable, temperature. Eilers & Marx (2003) show how to construct such
special varying coefficient surfaces, while drawing connections to lower dimensional
ribbon models and additive models.

There are various details that will need further investigation. Although it is not
always easy to make complete and thorough comparisons across a wide range of
other methods under exhaustive settings, it would be interesting to compare the
P-VCM approach to Bayesian counterparts (Lang & Brezger 2004), mixed model
counterparts (Ruppert, Wand & Carroll 2003) and structural regression approaches
(Fahrmeir et al. 2004). Further, we only dampen any effects of serial correlation
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Fig. 13 Various slices of smooth signal regressors that vary over a third variable, temperature

in data through the use of a varying intercept in the model. In fairness, a more
formal investigation of any possible auto-regressive (AR) error structure should be
made, e.g. addressing deep drill depth varying covariance similarly to Kauermann
& Küchenhoff (2003), corr(yi,yi+1) = ρ(t̃)|ti−ti+1|, where ρ is a smooth function in
depth and t̃ = (ti + ti+1)/2. Additionally, although we extended E-M algorithm of
Schall (1991) to optimize tuning parameters in the standard and generalized settings,
the theory of this approach could be more formally grounded, and the stability of the
algorithm should be investigated.

Acknowledgements I would like to thank Paul H.C. Eilers for his generous time and his numerous
thought provoking conversations with me that led to a significantly improved presentation.

References

Currie, I. D., Durbán, M. & Eilers, P. H. C. (2006). Generalized linear array models with applications
to multidimensional smoothing. Journal of the Royal Statistical Society: Series B, 68(2): 259–
280.

Dierckx, P. (1995). Curve and Surface Fitting with Splines. Clarendon Press, Oxford.
Eilers, P. H. C., Gampe, J., Marx, B. D. & Rau, R. (2008). Modulation models for seasonal life

tables. Statistics in Medicine, 27(17): 3430–3441.
Eilers, P. H. C. & Marx, B. D. (2003). Multivariate calibration with temperature interaction us-

ing two-dimensional penalized signal regression. Chemometrics and Intelligent Laboratory
Systems, 66: 159–174.



P-spline Varying Coefficient Models for Complex Data 43

Eilers, P. H. C. & Marx, B. D. (2002). Generalized linear additive smooth structures. Journal of
Computational and Graphical Statistics, 11(4): 758–783.

Eilers, P. H. C. & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties (with
comments and rejoinder). Statistical Science, 11: 89–121.

Fahrmeir, L., Kneib, T. & Lang, S. (2004). Penalized structured additive regression for space-time
data: a Bayesian perspective. Statistica Sinica, 14: 731–761.

Farhmeir, L. & Tutz, G. (2001). Multivariate Statistical Modelling Based on Generalized Linear
Models (2nd Edition). Springer, New York.

Hastie, T. & Tibshirani, R. (1990). Generalized Additive Models. Chapman and Hall, London.
Hastie, T. & Tibshirani, R. (1993). Varying-coefficient models. Journal of the Royal Statistical

Society, B, 55: 757–796.
Heim, S., Fahrmeir, L., Eilers, P. H. C., & Marx, B. D.(2007). Space-varying coefficient models for

brain imaging. Computational Statistics and Data Analysis, 51: 6212–6228.
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Penalized Splines, Mixed Models and Bayesian
Ideas

Göran Kauermann

Abstract The paper describes the link between penalized spline smoothing and Lin-
ear Mixed Models and how these two models form a practical and theoretically
interesting partnership. As offspring of this partnership one can not only estimate the
smoothing parameter in a Maximum Likelihood framework but also utilize the Mixed
Model technology to derive numerically handy solutions to more general questions
and problems. Two particular examples are discussed in this paper. The first contri-
bution demonstrates penalized splines and Linear Mixed Models in a classification
context. Secondly, an even broader framework is pursued, mirroring the Bayesian
paradigm combined with simple approximate numerical solutions for model selec-
tion.

1 Introduction

Since the seminal paper by Eilers & Marx (1996) the use of penalized spline smooth-
ing, or P-spline smoothing as Eilers & Marx coined it, has become more and more
popular in applied and recently also in theoretical statistics. The original idea traces
back to O’Sullivan (1986) but the real breakthrough occurred with the book by
Ruppert, Wand & Carroll (2003) who linked the idea of penalized spline smooth-
ing to Linear Mixed Models (see also Wand 2003). The underlying principle and
simple idea is as follows. An unknown smooth function is estimated by replacing
the function by a high dimensional basis representation. For estimation a penalty is
imposed on the spline coefficients, or to be more precisely on the variation of the
spline coefficients, which induces a smooth fit. Making use of quadratic penalties
and comprehending the penalty as a priori distribution yields a Linear Mixed Model
in the classical sense (see Searle, Casella & McCulloch 1992). With this consoli-
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dation an interesting statistical link occurs. One important practical and compelling
benefit of this link is that the smoothing (or penalty) parameter plays the role of the a
priori (inverse) variance of the spline coefficients, which can now be estimated from
the data using Maximum Likelihood. This is implemented for regression smoothing
models in R (www.r-project.org) in the Semipar package accompanying the book
of Ruppert, Wand & Carroll (2003) as well as in the newest mgcv package by Wood
(2006), see also Ngo & Wand (2004).

The practicability and feasibility of penalized spline smoothing is probably one of
the reasons why it has been investigated and applied in numerous papers in the recent
years. A comprehensive and commendable survey of the last years’ research activi-
ties in the field of penalized spline smoothing has been composed by Ruppert, Wand
& Carroll (2009). We contribute to this work by pursuing a view focusing on the
advantages and further possibilities of linking penalized spline smoothing to Linear
Mixed Models. The benefit of making use of a Linear Mixed Model for smoothing
goes well beyond of just getting an estimate for the smoothing parameter. A wide field
of possibilities occurs when testing parametric regression functions against smooth
alternatives. In a number of papers it has been shown how the likelihood ratio can be
used as test statistics, see for instance Crainiceanu & Ruppert (2004) or Crainiceanu
et al. (2005). Moreover the link to Linear Mixed Models shows advantages for in-
stance in model selection (Vaida & Blanchard 2005) or when smoothing is applied
to correlated errors (Krivobokova & Kauermann 2007) to just list two examples.
The list of advantages is much longer and we refer to the survey article by Ruppert,
Wand & Carroll (2009). We here give two further ideas supporting the approach of
linking smoothing with Linear Mixed Models. First, we show how penalized splines
can be used for classification and secondly we extend the idea by imposing a prior
distribution also on the regression parameters. The latter idea is currently more on an
experimental level, the first is based on a recent publication (Kauermann, Ormerod
& Wand 2009).

2 Notation and Penalized Splines as Linear Mixed Models

As remarked above, the principal idea of penalized spline estimation is simple. Let
y be the response variable, which is for the purpose of presentation assumed to be
normally distributed with mean m(x) and homoscedastic residual error ε , where
m(.) is an unknown smooth function and x a metrically scaled covariate. We replace
m(x) by B(x)b with B(x) as K dimensional spline basis located at knots τ1, . . . ,τK ,
say. Treating b as parameter vector we impose the penalty λbT D̃b, where D̃ is an
appropriately chosen penalty matrix and λ is the penalty parameter. A convenient
choice for B(.) is to use B-splines (see de Boor 1972) and to penalize the variation of
coefficients b by taking differences of neighbouring spline coefficients (see Eilers &
Marx 1996). Wand & Ormerod (2008) show that this (and other spline settings) can
be rewritten to B(x)b = X(x)β + Z(x)u with bases matrices X(.) and Z(.) resulting
by simple matrix algebra. The penalty term bT D̃b is then equivalently formulated
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on coefficients u only in the form uT Du, where D is now of full rank and in fact
X(.) and Z(.) can be chosen such that D is the identity matrix. Comprehending the
quadratic penalty as (proper) a priori distribution allows to derive the likelihood for
independent observations (xi,yi), i = 1, . . . ,n from the Linear Mixed Model

Y |u∼ N(Xβ + Zu,σ2
ε In), u∼ N(0,σ2

u D−1), (1)

where Y = (y1, . . . ,yn)T and X and Z are matrices with rows X(xi) and Z(xi), respec-
tively, and σ2

u = σ2
ε /λ . We denote the likelihood resulting from (1) by l(β ,σ2

ε ,σ2
u ).

This likelihood is also called the marginal likelihood since it results by integrating
out the random spline effects in (1) yielding the marginal model

Y ∼ N(Xβ ,σ2
εVλ ),

with Vλ = I +λ−1ZD−1ZT . It should be clear that the likelihood does also depend on
the spline basis and, in particular, on the spline dimension K. It is thereby practical
convention that the spline basis is set up before estimation and its dimension K is
considered to be chosen generously but fixed and small compared to the sample
size and also (to a practical amount) independent of the sample size. This is or has
been the main criticism towards penalized spline smoothing, originating particularly
from the classical spline smoothing community. In the recent years, the asymptotic
properties and how the dimension of the spline basis should grow with the sample
size has been under fruitful investigation, see Hall & Opsomer (2005), Li & Ruppert
(2008), Kauermann, Krivobokova & Fahrmeir (2009) and Claeskens, Krivobokova
& Opsomer (2009). Though these papers shed some light on the n → ∞ scenario,
they yield little practical impact on how to select the number of splines for n < ∞.
The central paper in this respect is Ruppert (2002) who gives a rule of thumb on
how to select K, the dimension or number of knots of a spline basis, respectively.
Kauermann & Opsomer (2009) argue in this line but utilize the link to Linear Mixed
Models.

Most results carry over to generalized response models by assuming that the
response y now comes from an exponential family distribution with mean structure

E(y|x) = h
{

m(x)
}
,

where h(.) is the known link function. In fact replacing the smooth structure by
splines and imposing the penalty on the spline coefficients as prior normality leads
to the Generalized Linear Mixed Model (GLMM)

E(y|x,u) = h
{

X(x)β + Z(x)u
}
,

u∼ N
(
0,σ2

u D−1).
The marginal likelihood obtained by integrating out coefficients u is now not any
longer analytical, unless y is normal. It can however be shown (see Kauermann,
Krivobokova & Fahrmeir 2009) that simple Laplace approximation is justified so
that the GLMM approach combined with Laplace integration (see Breslow & Clay-
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ton 1993) yields the penalized likelihood fit of the smoother, see also Kauermann
& Opsomer (2009). The approach is easily extended to more complex and more
structured smoothing models, some of which are considered in the next sections.

3 Classification with Mixed Models

While the intention of penalized spline smoothing is to fit smooth functions we look
subsequently at the question of selecting complete smooth functions in the style of
model selection. The question is thereby first tackled in the context of classification. In
classification the task is to predict a discrete valued variable y given a set of potential
classifier variables x. In the simplest scenario, variable y is binary, indicating two
groups of observations and x may be metrical or categorical. As example we later
make use of the spam email data set provided by Hastie, Tibshirani & Friedman
(2001). Here y indicates whether an email is spam (y = 1) or not (y = 0) and x is
a high dimensional vector with each component giving the percentage of particular
word or character combinations in the email. The intention is to predict ŷ, that is to
classify an incoming email as spam or not spam based on quantities x. The field of
classification is thoroughly well developed with numerous successful and competing
methods, such as linear or quadratic discriminant analysis, neural networks, support
vector machines, classification trees, to just mention a few. A detailed overview
is provided in Hastie, Tibshirani & Friedman (2001). We contribute to this field
by rewriting the classification problem as Generalized Additive (regression) Model
considering y as response and x as covariates. The problem tackled now is to select
a parsimonious model with smooth and parametric components. The field of model
selection in Generalized Additive Models is thereby well developed, see for instance
Wood (2006). We here focus on numerical feasibility and variable selection in the
presence of a large number of potential covariates, see also Tutz & Binder (2006).

Assume that vector x = (x1, . . . ,xp) contains p metrical covariates and assume
that we also have q factorial (here binary) explanatory variables v = (v1, . . . ,vq), say.
A full generalized additive model for the probability of y = 1 would write as

logit
{

P(y = 1|x,v)} = β0 +
p

∑
j=1

m j(x j)+
q

∑
j=1

v jβv j, (2)

where m j(.) are smooth but unknown functions. Note that we need additional con-
straints on m j(.) to achieve identifiability (see Hastie & Tibshirani 1990) which
are omitted here and subsequently for ease of presentation. Replacing the unknown
functions by a high dimensional basis allows to replace (2) by

logit
{

P(y = 1|x,v)} = β0 +
p

∑
j=1

X(x j)βx j +
p

∑
j=1

Z(x j)u j +
q

∑
j=1

v jβv j. (3)

We can fit the model after imposing a penalty on coefficients u j in the form
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u j ∼ N
(
0,σ2

j D j
)
, j = 1, . . . , p. (4)

Note that with (3) and (4) we have constructed a Generalized Linear Mixed Model
(GLMM).

There are now two regularizations necessary to make use of (3) in practice. First,
spurious coefficients βx j and βv j need to be taken out of the model by setting βx j ≡ 0
or βv j ≡ 0. In the same way we need to set u j = 0 if there is no evidence for a
functional effect m j(x j) in the data. While the first task can be handled in a classical
parametric style, e.g. looking at p-values or information criteria, the second task is
handled by setting σ2

j ≡ 0 to impose u j ≡ 0. This suggests to select the model in a
coherent way by running a forward selection in the following style. The parameters
of the full model are θ = (βx1, . . . ,βxp,σ2

1 , . . . ,σ2
p ,βv1, . . . ,βvq). One starts with the

null model by setting all parameters to zero and we denote this parameter as θ (0).
Letting θ (t) denote the parameter after the t-th step in the iteration we calculate for
the j-th component of θ with θ (t)

j = 0 the score

Uj
(
θ (t)) =

∂ l(θ )
∂θ j

∣∣∣∣
θ=θ (t)

, (5)

where l(θ ) is the approximated marginal likelihood, that is after integrating out
coefficients u j using a Laplace approximation. Our proposal is to use Uj

(
θ (t)) as

selection criterion for the potential parameters in the model. If j refers to an index
relating to βx or βv then high absolute values of Uj

(
θ (t)

)
(assuming standardized

covariates) indicate that component θ j should be in the model. Similarly, if j refers to
a component out of σ2

x = (σ2
1 , . . . ,σ2

p) then Uj
(
θ (t)) < 0 suggest that σ2

j = 0 while
large positive values of Uj

(
θ (t)) proposes to allow for a smooth effect of variable x j

in the model. It can be shown (see Kauermann, Ormerod & Wand 2009) that (5) is
easily calculated since it is either a standard Wald statistics for index j referring to
βx or βv or for index j referring to θ j = σ2

j̃ one gets

Uj
(
θ (t)) =−1

2
tr
(
ZT

j̃ Ŵ (t)Z j̃D
−1
j̃

)
+ ε̂(t)T

ZT
j̃ D−1

j̃ Z j̃ ε̂
(t), (6)

where ε̂(t) is the fitted residual vector based on the current parameter estimate θ̂ (t)

and Ŵ (t) is the diagonal weight matrix containing binomial variances. We can now
successively include the covariates or smooth functions dependent on the absolute
(forβx and βv) or positive (forσ2

x ) values ofUj
(
θ (t)). After inclusion of a component

we check with an information criterion whether the component should in fact be in or
not. To maintain coherence, we propose to make use of the marginal Akaike criterion
suggested in Wager, Vaida & Kauermann (2007), see also Vaida & Blanchard (2005).
This is defined as

mAIC
(
θ̂ (t)) =−2 l

(
θ̂ (t))+ 2

∣∣θ̂ (t)∣∣, (7)
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with
∣∣θ̂ (t)

∣∣ referring to the number of elements notset equal to zero. Hence smooth and
parametric components are penalized by its numbers of parameters in the marginal
likelihood.

The procedure attracts by its coherent style, available due to linking penalized
spline smoothing and Generalized Linear Mixed Models. Moreover, and possibly
more importantly, the procedure performs promisingly well in practice when being
compared to available routines like standard generalized additive models or BRUTO
(see Hastie & Tibshirani 1990). It beats these methods, both, in computing time and
prediction error, details are provided in Kauermann, Ormerod & Wand (2009).

Data Example

We demonstrate the use of the algorithm with a classical data example in the field
of classification. We make use of the ‘spam’ dataset (see Hastie, Tibshirani & Fried-
man 2001) which contains data on 4601 emails with 57 metrically scaled potential
predictor variables. We could, in principle, fit an generalized additive model for all
57 variables using the gam(.) procedure in R (see Wood 2006). Alternatively, we
can use the suggested forward selection routine combined with the marginal Akaike
criterion. Even though the latter is a stepwise routine, it reduces the computing time
compared to fitting a generalized additive model with all 57 covariates to about 1/20.
We select 36 covariates out of the 57 and by doing so we can also reduce the classifi-
cation error from 5.89% for the full additive model to 5.38% for our selected model.
The fitted curves m j(x j) are shown in Figure 1. More details and studies about the
performance of the routine are provided in Kauermann, Ormerod & Wand (2009).

4 Variable Selection with Simple Priors

We now extend the idea of the previous section to pursue a more general model
selection by putting prior distributions not only on spline coefficients but also on
parametric components.

4.1 Marginal Akaike Information Criterion

Following the notation of the previous chapters we notate the continuous covariates
as xi = (xi1, . . . ,xip) and the (binary) factors as vi = (vi1, . . . ,viq), i = 1, . . . ,n. We
assume for simplicity a normal response variable yi with

yi ∼ N
(
m(xi,vi),σ2),

where m( . , .) is the unknown mean structure which needs to be determined. The
intention is to find a parsimonious model for m(xi,vi) such that
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Fig. 1 Effect of percentage of occurrence of words on classification of emails in spam or non-spam.

a) it includes only relevant (significant) variables and
b) continuous covariates x may have functional, non-linear influence if required by

the data.

We pursue the model selection exercise by imposing a Bayesian structure on the
parameters in the functional estimate of m(x,v). To demonstrate the model and its
fitting strategy let us exemplary simplify m(xi,vi) to the following structure

m(xi,vi) = β0 + m1(xi1)+ xi2βx2 + vi1βv1 , (8)

that is covariate xi1 has smooth influence while covariate xi2 enters the model linearly
and so does the factor vi1. As nonparametric estimate of m1(xi1) we make use of
penalized spline smoothing with unpenalized slope that is m1(xi1) = X1(xi1)βx1 +
Z1(xi1)ux1 with X1(xi1) = xi1 and Z(·) as high dimensional basis. For fitting we now
impose prior distributions on all regression coefficients, that is on spline coefficient
ux1 as well as on β = (βx1 ,βx2 ,βv1). Using normal priors we get the entire Linear
Mixed Model
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βxl ∼ N(0,σ2
xl
), l = 1,2,

βv1 ∼ N(0,σ2
v1

),

u1 ∼ N(0,σ2
u1

I),

Yi | βx1 ,βx2 ,βv1 ,u1 ∼ N
(
m(xi,vi),σ2

ε
)
, (9)

with m(xi,zi) = β0 +xi1βx1 +xi2βx2 +vi1βv1 +Z(xi1)u1. Note that the prior structure
mirrors the Linear Mixed Model but the idea is different to traditional Bayesian
priors, like for instance Zellner’s (1986) g-prior. We will see, however, that with
the random prior structure above we can now run a model selection in a coherent
style by checking whether particular components of the a priori variances are equal
to zero. Apparently, if σ2

u1
≡ 0, for instance, then the function m1(xi1) simplifies to

the linear component and setting σ2
x2

= 0 corresponds to βx2 ≡ 0, that is covariate
x2 does not have an effect and should be excluded from the model. We should also
impose adequate model hierarchy, for instance by imposing σu1 ≡ 0 if σ2

x1
≡ 0, that

is if the smooth component is included in the model it requires the linear trend to
be in the model as well. Let I = (Ix,Iv) be the index set of available metrically
scaled covariates and binary factors, respectively and define with L = (Lx,Lv)⊂
I the index set of covariates included in the model. Finally let S ⊂ Lx be the
index set of smooth components in the model. For instance, for model (8) we have
L =

{{x1,x2},{v1}
}

and S = {x1}. We may also include interaction effects as well
as smooth interaction effects, but to maintain the presentation notationally simple
we restrict the presentation here to additive models only. Let M = (L ,S ) denote
the resulting model and for an index j ∈M let B j denote the corresponding basis
function and b j the corresponding coefficient, respectively. For index j ∈ L this
refers to a single column of observed covariates B j = (x1 j, . . . ,xn j)T for j ∈ Ix
or B j = (v1 j, . . . ,vn j)T for j ∈ Iv, respectively. Accordingly b j = βx j or b j = βv j,
respectively. For j ∈S we have B j = Z(x j) and b j = u j. The idea is now to choose
model M based on a forward selection routine. We therefore start with a simple
model, like in the previous section, for instance the null model M = /0. In the r-th
step of the algorithm we denote the current model with M (r). Note that the parameters
of the model are β0,σ2

ε and the a priori variancesσ2
j , j ∈M (r), subsequently denoted

by σ2
M (r) . We denote with β̂0, σ̂2

ε , σ̂M (r) the Maximum Likelihood estimates in the
current model M (r). Let now j /∈M (r) be a potential candidate variable for inclusion
in the model. Extending the model by including component j refers to extending
σ2

M (r) to
(
σ2

M (r) ,σ2
j
)

and corresponding likelihood denoted by l(β0,σ2
ε ,σM (r) ,σ2

j ).
With simple matrix algebra it can be shown that

l
′
( j)

(
σ̂2

M (r)

)
=
∂ l
(
β̂0, σ̂2

ε , σ̂2
M (r) ,σ2

j
)

∂σ2
j

∣∣∣∣
σ2

j =0

=
(
−tr

(
Σ̂−1

M (r) B j BT
j

)
+

1
σ̂2
ε

ÊT
M (r)B j BT

j ÊM (r)

)
, (10)
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with ÊM (r) = Y − β̂0−∑i∈M Bib̂i as fitted residual vector in model M (r) and Σ̂M (r)

as marginal variance defined through
(
I +∑i∈M (r) σ̂2

i BiBT
i /σ̂2

ε
)
. Note that if the

derivative in (10) is negative it indicates that the Maximum Likelihood estimator
for σ2

j is at the boundary of the parameter space and we get σ̂2
j = 0. Hence, we do

not want to include component j in the model. If l
′
( j)

(
σ̂2

M (r)

)
on the other hand is

positive we can include component jand calculate the (marginal) Akaike Information
Criterion

mAIC
(
M (r)∪{ j}) =−2l

(
β̂0, σ̂2

ε , σ̂M (r) , σ̂2
j
)−2|M (r)∪{ j}|, (11)

where |M | denotes the number of variance components in σ (r)
M . The procedure

attracts in so far as model selection is carried out in a completely coherent framework
which in fact is numerically quite easy and fast.

4.2 Comparison in Linear Models

To shed more light on the proposed model selection criterion we look at it in a
classical scenario. Consider the simple linear model yi = β0 +∑p

j=1 xi jβ j + εi and
assume for simplicity that β0 = 0. Using the scenario and notation from above we set
b = β with b = (b1, . . . ,bp) and design matrix X = (X1, . . . ,Xp). The Linear Mixed
Model formulation is then

b j ∼ N(0,σ2
j ), j = 1, . . . , p and Y |b∼ N(Xb,σ2In). (12)

After simple calculations we get the maximal marginal log likelihood

l
(
σ̂2
ε , σ̂

2
b
)

=−n
2

log
(
σ̂2
ε
)− 1

2
log

∣∣Σ̂ ∣∣, (13)

with Σ̂ = I +∑p
j=1 σ̂

2
j XjXT

j /σ̂2
ε and

σ̂2
ε =

(Y −Xb̂)T (Y −Xb̂)
n−df

, σ̂2
j =

b̂2
j

df j
,

where df denotes the degree of the model defined through df = ∑p
j=1 df j and df j =

tr
(

XT
j X(XT X + Λ̂)−1e j

)
with e j as j-th dimensional unit vector and Λ̂ as diagonal

matrix having σ̂2
ε /σ̂2

j on its diagonal. Note that as n → ∞ and if σ2
j > 0 for all j

then df j → 1 and hence df→ p. In fact df = p+Op(n−1). This asymptotic scenario
will now be focused in more depth: Let ε̂ = Y −Xb̂ denote the residual in the Linear
Mixed Model and let Ê = Y −X β̂ be the residual based on the ordinary least squares
β̂ = (XT X)−1XTY . Note that b̂ = β̂ − (XT X)−1Λ̂ β̂ so that
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ε̂ = Ê + X(XT X)−1Λ̂ β̂ + Op(n−2).

Hence, the residual variance estimate σ̂2
ε can be rewritten as

σ̂2
ε =

RSS
n− p

(1 + Op(n−1)) =
RSS

n− p
+ Op(n−1), (14)

where RSS = ÊT Ê . This means σ̂2
ε is asymptotically equal to the bias corrected

residual variance estimate in the classical linear model. We denote with ρ j the j-th
eigenvalue of XT XΛ , j = 1, . . . , p. If the covariates X are linear independent then
ρ j = O(n) so that log |Σ | ≈ ∑p

j=1 log(ρ j + 1) ≈ p log(n). Looking at (14) and (13)
this implies that (13) is asymptotically equal to the traditional Bayesian Information
Criterion (BIC). However, the degree of the model itself depends on the design of
covariates. To see this, let F be the limiting design matrix in that

XT X/n−−−→
n→ ∞

F,

and let ρ̃ j be the eigenvalue of FΛ with Λ = diag(β 2
j , j = 1, . . . , p). Apparently,

ρ j = nρ̃ j{1 + Op(n−1)}. Employing the derived results we get that the likelihood
(13) is asymptotically proportional to

l
(
σ̂2
ε , σ̂

2
j , j = 1, . . . , p

)
=−n log(RSS)− p−

p

∑
j=1

log(nρ̃ j + 1).

The marginal Akaike Information Criterion (11) results now as

mAIC(M ) = n log(RSS)+ 3p +
p

∑
j=1

log(nρ̃ j + 1)

≈ n log(RSS)+ 3p + log(n)
p

∑
j=1

log
(
ρ̃ j +

1
n

)
. (15)

We can see, that the criterion stands somewhat between the classical AIC and
the Bayesian Information Criterion. This becomes clear by assuming the following
simplifications. First, assume that covariates are independent with mean zero and
variance 1 which yields ρ̃ j = β 2

j . Apparently, if β 2
j = 0, that is component j is not

in the model, we have log(nρ̃ j + 1) = 0. In contrast, if all β 2
j �= 0 for j = 1, . . . , p

we have the last component in (15) to depend on the sample size, which mirrors the
Bayesian Information Criterion. We exemplify this property in more depth with the
following simulation.
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Fig. 2 Degree of the model dependent on the sample size.

4.3 Simulation

To demonstrate the performance of the routine we run two simulation studies. First,
we simulate from the following simple linear model yi = ∑p

j=1 xi jβ j + εi with εi ∼
N(0,σ2 = 0.52) and p = 6 indendent uniform covariates. We set β = (β1, . . . ,βp) =
(1,0.5,0.25,0,0,0) that is the first three components of xi = (xi1, . . . ,xi6) are in the
model and the remaining three covariates are spurious. We run our model selection
and compare this with available routines. Note that the classical marginal as well as
the usual Akaike Information Criterion (AIC) as well as the Bayesian Information
Criterion (BIC) can be written as

n log(RSS)+ df,

where df stands for degree of the model which is calculated as

• df = 3p +∑p
j=1 log(nρ̃ j + 1) following (15) using the marginal AIC

• df = 2p for the classical AIC and
• df = log(n)p for the standard BIC.

The three terms are shown in Figure 2 for the full model (p=6) and different
sample sizes. The marginal Akaike lies between the AIC and the BIC once the
sample size is large enough. This can also be seen in the inclusion probabilities of a
variable. We therefore run 100 simulations with sample sizes n = 50,100,200 and
400, respectively and record the empirical inclusion probabilities shown in Table
1. For n = 50 the marginal AIC behaves similar to the BIC, but for larger sample
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Table 1 Proportion of selecting the components with the different criteria.

x1 x2 x3 x4 x5 x6
n=50

marginal AIC 0.97 0.53 0.26 0.07 0.07 0.06
AIC 1.00 0.78 0.38 0.16 0.19 0.21
BIC 0.99 0.57 0.22 0.09 0.06 0.05

n=100
marginal AIC 1 0.85 0.32 0.06 0.09 0.06

AIC 1 0.96 0.55 0.16 0.24 0.20
BIC 1 0.84 0.25 0.04 0.06 0.02

n=200
marginal AIC 1 0.97 0.54 0.06 0.11 0.07

AIC 1 1.00 0.73 0.18 0.18 0.17
BIC 1 0.94 0.32 0.01 0.04 0.02

n=400
marginal AIC 1 1 0.85 0.03 0.12 0.08

AIC 1 1 0.92 0.12 0.22 0.11
BIC 1 1 0.69 0.01 0.03 0.02

sizes it gives a compromise between the AIC and the BIC in that it selects the true
functions more often than BIC and in the same way falsely selects spurious functions
less frequently than AIC.

For the next simulation we investigate the selection of smooth functions by sim-
ulating from the model

yi = m1(xi1)+ m2(xi2)+
6

∑
j=3

xi jβ j + εi,

with εi ∼ N(0,σ2 = 0.25), β3 = 2,β4 = 1,β5 = 0,β6 = 0 and functions m1(xi1) and
m2(xi2) as shown in Figure 3. Utilizing the notation from above the true model writes
as L = {x1,x2,x3,x4} and S = {x1,x2}. We simulate 100 simulations with sample
size n = 100 and n = 400 and report the relative frequencies that a component is
selected. The results are shown in Table 2 where we also included the true model
indicated as 1 for components which are in the model and 0 otherwise. Apparently
the procedure works promissing.

5 Discussion and Extensions

The two ideas described above may be just seen as a tip of an iceberg. In fact, the
machinery which becomes available by linking penalized spline smoothing to Lin-
ear Mixed Models is not fully exploited yet. The partnership also opens the door to
Bayesian modelling and merges the two principles to a coherent data analysis frame-
work. In this respect we suggested to go one step ahead by making use of penalization
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Fig. 3 Simulation function m1(x1) and m2(x2).

Table 2 Proportion of selecting a covariate linearly or as smooth function.

x1 x2 x3 x4 x5 x6
linear

components L
true 1 1 1 1 0 0

n=100 1.00 1.00 1.00 0.54 0.06 0.05
n=400 1.00 1.00 1.00 1.00 0.03 0.04
smooth

components S
true 1 1 0 0 0 0

n=100 1.00 0.17 0.04 0.08 0.03 0.04
n=400 1.00 0.73 0.01 0.08 0.05 0.04

concepts for “normal” parameters as well, mirroring just a prior distribution on the
parameter itself. It is also interesting to note that the Laplace approximation used
quite centrally in the ideas discussed above deserves a better reputation than it used
to have. Instead of a “poor man’s” computation for those who want to avoid compu-
tationally more complex routines like MCMC, it appears to be numerically simple
but still accurate. This view has also been recently proposed by Rue, Martino &
Chopin (2009) coming from the Bayesian world. All in all, the partnership between
penalized spline smoothing and Linear Mixed Models looks in fact flourishing.
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Bayesian Linear Regression — Different
Conjugate Models and Their (In)Sensitivity to
Prior-Data Conflict

Gero Walter and Thomas Augustin

Abstract The paper is concerned with Bayesian analysis under prior-data conflict, i.e.
the situation when observed data are rather unexpected under the prior (and the sample
size is not large enough to eliminate the influence of the prior). Two approaches for
Bayesian linear regression modeling based on conjugate priors are considered in
detail, namely the standard approach also described in Fahrmeir et al. (2007) and
an alternative adoption of the general construction procedure for exponential family
sampling models. We recognize that – in contrast to some standard i.i.d. models
like the scaled normal model and the Beta-Binomial / Dirichlet-Multinomial model,
where prior-data conflict is completely ignored – the models may show some reaction
to prior-data conflict, however in a rather unspecific way. Finally we briefly sketch
the extension to a corresponding imprecise probability model, where, by considering
sets of prior distributions instead of a single prior, prior-data conflict can be handled
in a very appealing and intuitive way.

Key words: Linear regression; conjugate analysis; prior-data conflict; imprecise
probability

1 Introduction

Regression analysis is a central tool in applied statistics that aims to answer the
omnipresent question how certain variables (called covariates / confounders, re-
gressors, stimulus or independent variables, here denoted by x) influence a certain
outcome (called response or dependent variable, here denoted by z). Due to the
complexity of real-life data situations, basic linear regression models, where the
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expectation of the outcome zi simply equals the linear predictor xTiβ , have been
generalized in numerous ways, ranging from generalized linear models (Fahrmeir
& Tutz (2001), see also Fahrmeir & Kaufmann (1985) for classical work on as-
ymptotics) for non-normal distributions of zi | xi, or linear mixed models allow-
ing the inclusion of clustered observations, over semi- and nonparametric models
(Kauermann et al. 2009, Fahrmeir & Raach 2007, Scheipl & Kneib 2009), up to
generalized additive (mixed) models and structured additive regression (Fahrmeir &
Kneib 2009, Fahrmeir & Kneib 2006, Kneib & Fahrmeir 2007).

Estimation in such highly complex models may be based on different estima-
tion techniques such as (quasi-) likelihood, general estimation equations (GEE) or
Bayesian methods. Especially the latter offer in some cases the only way to attain a
reasonable estimate of the model parameters, due to the possibility to include some
sort of prior knowledge about these parameters, for instance by “borrowing strength”
(e.g., Higgins & Whitehead 1996).

The tractability of large scale models with their ever increasing complexity of the
underlying models and data sets should not obscure that still many methodological
issues are a matter of debate. Since the early days of modern Bayesian inference one
central issue has, of course, been the potentially strong dependence of the inferences
on the prior. In particular in situations where data is scarce or unreliable, the actual
estimate obtained by Bayesian techniques may rely heavily on the shape of prior
knowledge, expressed as prior probability distributions on the model parameters.
Recently, new arguments came into this debate by new methods for detecting and
investigating prior-data conflict (Evans & Moshonov 2006, Bousquet 2008), i.e.
situations where “. . . the observed data is surprising in the light of the sampling
model and the prior, [so that] . . . we must be at least suspicious about the validity of
inferences drawn.” (Evans & Moshonov 2006, p. 893)

The present contribution investigates the sensitivity of inferences on potential
prior-data conflict: What happens in detail to the posterior distribution and the es-
timates derived from it if prior knowledge and what the data indicates are severely
conflicting? If the sample size n is not sufficiently large to discard the possibly erro-
neous prior knowledge and thus to rely on data only, prior-data conflict should affect
the inference and should – intuitively and informally – result in an increased degree
of uncertainty in posterior inference. Probably most statisticians would thus expect
a higher variance of the posterior distribution in situations of prior-data conflict.

However, this is by no means automatically the case, in particular when adopting
conjugate prior models, which are often used when data are scarce, where only
strong prior beliefs allow for a reasonably precise answer in inference. Two simple
and prominent examples of complete insensitivity to prior-data conflict are recalled
in Section 2: i.i.d. inferences on the mean of a scaled normal distribution and on the
probability distribution of a categorical variable by the Dirichlet-Multinomial model.

Sections 3 and 4 extend the question of (in)sensitivity to prior-data to regression
models. We confine attention to linear regression analysis with conjugate priors, be-
cause – contrary to the more advanced regression model classes – the linear model
still allows a fully analytical access, making it possible to understand potential re-
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strictions imposed by the model in detail. We discuss and compare two different
conjugate models:

(i) the standard conjugate prior (SCP, Section 3) as described in Fahrmeir et al.
(2007) or, in more detail, in O’Hagan (1994); and

(ii) a conjugate prior, called “canonically constructed conjugate prior” (CCCP,
Section 4) in the following, which is derived by a general method used to construct
conjugate priors to sample distributions that belong to a certain class of exponential
families, described, e.g., in Bernardo & Smith (1994).

Whereas the former is the more general prior model, allowing for a very flexible
modeling of prior information (which might be welcome or not), the latter allows only
a strongly restricted covariance structure for β , however offering a clearer insight in
some aspects of the update process.

In a nutshell, the result is that both conjugate models do react to prior-data conflict
by an enlarged factor to the variance-covariance matrix of the distribution on the
regression coefficientsβ ; however, this reaction is unspecific, as it affects the variance
and covariances of all components of β in a uniform way – even if the conflict occurs
only in one single component.

Probably such an unspecific reaction of the variance is the most a (classical)
Bayesian statistician can hope for, and traditional probability theory based on precise
probabilities can offer. Indeed, Kyburg (1987) notes, that

[. . . ] there appears to be no way, within the theory, of distinguishing between the cases in
which there are good statistical grounds for accepting a prior distribution, and cases in which
the prior distribution reflects merely ungrounded personal opinion.

and the same applies, in essence, to the posterior distribution.
A more sophisticated modeling would need a more elaborated concept of impreci-

sion than is actually provided by looking at the variance (or other characteristics) of a
(precise) probability distribution. Indeed, recently the theory of imprecise probabili-
ties (Walley 1991, Weichselberger 2001) is gaining strong momentum. It emerged as
a general methodology to cope with the multidimensional character of uncertainty,
also reacting to recent insights and developments in decision theory (see Hsu et al.
(2005) for a neuro science corroboration of the constitutive difference of stochastic
and non-stochastic aspects of uncertainty in human decision making, in the tradition
of Ellsberg’s (1961) seminal experiments) and artificial intelligence, where the ex-
clusive role of probability as a methodology for handling uncertainty has eloquently
been rejected (Klir & Wierman 1999):

For three hundred years [. . . ] uncertainty was conceived solely in terms of probability theory.
This seemingly unique connection between uncertainty and probability is now challenged
[. . . by several other] theories, which are demonstrably capable of characterizing situations
under uncertainty. [. . . ]

[. . . ] it has become clear that there are several distinct types of uncertainty. That is, it was
realized that uncertainty is a multidimensional concept. [. . . That] multidimensional nature
of uncertainty was obscured when uncertainty was conceived solely in terms of probability
theory, in which it is manifested by only one of its dimensions.

Current applications include, among many other, risk analysis, reliability mod-
eling and decision theory, see de Cooman et al. (2007), Augustin et al. (2009) and
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Coolen-Schrijner et al. (2009) for recent collections on the subject. As a welcome
byproduct imprecise probability models also provide a formal superstructure on
models considered in robust Bayesian analysis (Rı́os Insua & Ruggeri 2000) and fre-
quentist robust statistic in the tradition of Huber & Strassen (1973), see also Augustin
& Hable (2009) for a review.

By considering sets of distributions, and corresponding interval-valued proba-
bilities for events, imprecise probability models allow to express the quality of the
underlying knowledge in an elegant way. The higher the ambiguity, the larger c.p. the
sets. The traditional concept of probability is contained as a special case, appropriate
if and only if there is perfect stochastic information. This methodology allows also
for a natural handling of prior-data conflict. If prior and data are in conflict, the set
of posterior distributions are enlarged, and inferences become more cautious.

In Section 5 we briefly report that the CCCP model has a structure that allows a
direct extension to an imprecise probability model along the lines of Quaeghebeur &
de Cooman’s (2005) imprecise probability models for i.i.d. exponential family mod-
els. Extending the models further by applying arguments from Walter & Augustin
(2009) yields a powerful generalization of the linear regression model that is also
capable of a component-specific reaction to prior-data conflict.

2 Prior-data Conflict in the i.i.d. Case

As a simple demonstration that conjugate models might not react to prior-data conflict
reasonably, inference on the mean of data from a scaled normal distribution and
inference on the category probabilities in multinomial sampling will be described in
the following examples 1 and 2.

Example 1 (Samples from a scaled Normal distribution N(μ ,1)). The conjugate dis-
tribution to an i.i.d.-sample x of size n from a scaled normal distribution with mean μ ,
denoted by N(μ ,1) is a normal distribution with mean μ(0) and variance σ (0)21. The
posterior is then again a normal distribution with the following updated parameters:

μ (1) =
1
n

1
n +σ (0)2 μ

(0) +
σ (0)2

1
n +σ (0)2 x̄ =

1
σ (0)2

1
σ (0)2 + n

μ (0) +
n

1
σ (0)2 + n

x̄ (1)

σ (1)2
=
σ (0)2 · 1

n

σ (0)2 + 1
n

=
1

1
σ (0)2 + n

. (2)

1 Here, and in the following, parameters of a prior distribution will be denoted by an upper index
(0), whereas parameters of the respective posterior distribution by an upper index (1).
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The posterior expectation (and mode) is thus a simple weighted average of the prior
mean μ (0) and the estimation from data x̄, with weights 1

σ (0)2 and n, respectively.2

The variance of the posterior distribution is getting smaller automatically.
Now, in a situation where data is scarce but with prior information one is very

confident about, one would choose a low value for σ (0)2
, thus resulting in a high

weight for the prior mean μ(0) in the calculation of μ (1). The posterior distribution
will be centered around a mean between μ(0) and x̄, and it will be even more pointed
as the prior, because σ (1)2

is considerably smaller than σ (0)2
as the factor to σ (0)2

in (2) is quite smaller than one.
The posterior basically would thus say that one can be quite sure that the mean

μ is around μ (1), regardless if μ (0) and x̄ were near to each other or not, where the
latter would be a strong hint on prior-data conflict. The posterior variance does not
depend on this; the posterior distribution is thus insensitive to prior-data conflict.

Even if one is not so confident about one’s prior knowledge and thus assigning a
relatively large variance to the prior, the posterior mean is less strongly influenced
by the prior mean, but the posterior variance still is getting smaller no matter if the
data support the prior information or not.

The same insensitivity appears also in the widely used Dirichlet-Multinomial model:

Example 2 (Samples from a Multinomial distribution M(θ )). Given a sample of size
n from a multinomial distribution with probabilities θ j for categories / classes j =
1, . . . ,k, subsumed in the vectorial parameterθ (with∑k

j=1 θ j = 1), the conjugate prior
on θ is a Dirichlet distribution Dir(α(0)). Written in terms of a reparameterization
used e.g. in Walley (1996),α(0)

j = s(0) ·t(0)
j such that∑k

j=1 t(0)
j = 1, (t(0)

1 , . . . ,t(0)
k )T =:

t(0), it holds that the components of t(0) have a direct interpretation as prior class
probabilities, whereas s(0) is a parameter indicating the confidence in the values of
t(0), similar to the inverse variance as in Example 1, and the quantity n(0) in Section
4.3

The posterior distribution, obtained after updating via Bayes’ rule with a sample
vector (n1, . . . ,nk), ∑k

j=1 n j = n collecting the observed counts in each category, is a
Dirichlet distribution with parameters

t(1)
j =

s(0)

s(0) + n
t(0)

j +
n

s(0) + n
· n j

n
, s(1) = s(0) + n .

The posterior class probabilities t(1) are calculated as a weighted mean of the prior
class probabilities and n j

n , the proportion in the sample, with weights s(0) and n,
respectively; the confidence parameter is incremented by the sample size n.

Also here, there is no systematic reaction to prior-data conflict. The posterior
variance for each class probability θ j calculates as

2 The reason for using these seemingly strange weights will become clear later.
3 If θ ∼ Dir(s, t), then V(θ j) = t j(1−t j)

s+1 . If s is high, then the variances of θ will become low, thus
indication high confidence in the chosen values of t .
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V(θ j | n) =
t(1)

j (1− t(1)
j )

s(1) + 1
=

t(1)
j (1− t(1)

j )

s(0) + n + 1
.

The posterior variance depends heavily on t(1)
j (1− t(1)

j ), having values between 0
and 1

4 , which do not change specifically to prior data conflict. The denominator in-
creases from s(0) +1 to s(0) +n+1. Imagine a situation with strong prior information
suggesting a value of t(0)

j = 0.25, so one could choose s(0) = 5, resulting in a prior
class variance of 1

32 . When observing a sample of size n = 10 all belonging to class
j (thus n j = 10), being in clear contrast to the prior information, the posterior class
probability is t(1)

j = 0.75, resulting the enumerator value of the class variance to re-
main constant. Therefore, due to the increasing denominator, the variance decreases
to 3

256 , in spite of the clear conflict between prior and sample information. Of course,
one can construct situations where the variance increases, but this happens only in
case of an update of t(0)

j towards 1
2 . If t(0)

j = 1
2 , the variance will decrease for any

degree of prior-data conflict.

3 The Standard Approach for Bayesian Linear Regression (SCP)

The regression model is noted as follows:

zi = xTiβ + εi , xi ∈ IRp , β ∈ IRp , εi ∼ N(0,σ2) ,

where zi is the response, xi the vector of the p covariates for observation i, and β is
the p-dimensional vector of adjacent regression coefficients.

The vector of regressors xi for each observation i is generally considered to be non-
stochastic, thus it holds that zi ∼N(xTiβ ,σ2), or, for n i.i.d. samples, z∼N(Xβ ,σ2I),
where z ∈ IRn is the column vector of the responses zi, and X ∈ IRn×p is the design
matrix. Without loss of generality, one can either assume xi1 = 1 ∀i such that the first
component of β is the intercept parameter4, or consider only centered responses z
and standardized covariates to make the estimation of an intercept unnecessary.

In Bayesian linear regression analysis, the distribution of the response z is inter-
preted as a distribution of z given the parameters β and σ2, and prior distributions
on β and σ2 must be considered. For this, it is convenient to split the joint prior on
β and σ2 as p(β , σ2) = p(β | σ2)p(σ2) and to consider conjugate distributions for
both parts, respectively.

In the literature, the proposed conjugate prior for β | σ2 is a normal distribution
with expectation vector m(0) ∈ IRp and variance-covariance matrix σ2MMM(0), where
MMM(0) is a symmetric positive definite matrix of size p× p. The prior on σ2 is an
inverse gamma distribution (i.e., 1/σ2 is gamma distributed) with parameters a(0)

and b(0), in the sense that p(σ−2) ∝ (σ−2)a(0)+1 exp{−b(0)σ−2}. The joint prior on

4 usually denoted by β0; however, we stay with the numbering 1, . . . , p for the components of β .
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θ = (β , σ2)T is then denoted as a normal – inverse gamma (NIG) distribution. The
derivation of this prior and the proof of its conjugacy can be found, e.g., in Fahrmeir
et al. (2007) or in O’Hagan (1994), the latter using a different parameterization of
the inverse gamma part, where a(0) = d

2 and b(0) = a
2 .

For the prior model, it holds thus that (if a(0) > 1 resp. a(0) > 2)

E[β | σ2] = m(0) , V(β | σ2) = σ2MMM(0) ,

E[σ2] =
b(0)

a(0)−1
, V(σ2) =

(b(0))2

(a(0)−1)2(a(0)−2)
.

(3)

As σ2 is considered as nuisance parameter, the unconditional distribution on β is of
central interest because it subsumes the shape of prior knowledge on β as expressed
by the choice of parameters m(0), MMM(0), a(0) and b(0). It can be shown that p(β )
is a multivariate noncentral t distribution with 2a(0) degrees of freedom, location
parameter m(0) and dispersion parameter b(0)

a(0) MMM(0), such that

E[β ] = m(0) , V(β ) =
b(0)

a(0)−1
MMM(0) = E[σ2]MMM(0) . (4)

The joint posterior distribution p(θ | z), due to conjugacy, is then again a normal –
inverse gamma distribution with the updated parameters

m(1) =
(

MMM(0)−1
+ XTX

)−1(
MMM(0)−1

m(0) + XTz
)

,

MMM(1) =
(

MMM(0)−1
+ XTX

)−1
,

a(1) = a(0) +
n
2

, b(1) = b(0) +
1
2

(
zTz+ m(0)TMMM(0)−1

m(0)−m(1)TMMM(1)−1
m(1)

)
.

The properties of the posterior distributions can thus be analyzed by inserting the
updated parameters into (3) and (4).

3.1 Update of β | σ2

The normal distribution part of the joint prior is updated as follows:

E[β | σ2,z] = m(1) =
(
MMM(0)−1

+ XTX
)−1(MMM(0)−1

m(0) + XTz
)

= (I−AAA)m(0) + AAA β̂LS ,

where AAA =
(
MMM(0)−1

+XTX
)−1XTX. The posterior estimate of β |σ2 thus calculates as

a matrix-weighted mean of the prior guess and the least-squares estimate. The larger
the diagonal elements of MMM(0) (i.e., the weaker the prior information), the smaller
the elements of MMM(0)−1

and thus the ‘nearer’ is A to the identity matrix, so that the
posterior estimate is nearer to the least-squares estimate.

The posterior variance of β | σ2 calculates as
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V(β | σ2,z) = σ2MMM(1) = σ2
(

MMM(0)−1
+ XTX

)−1
.

As the elements of MMM(1)−1
get larger with respect to MMM(0)−1

, the elements of MMM(1)

will, roughly speaking, become smaller than those of MMM(0), so that the variance of
β | σ2 decreases.

Therefore, the updating of β | σ2 is obviously insensitive to prior-data conflict,
because the posterior distribution will not become flatter in case of a large distance
between E[β ] and β̂LS. Actually, as O’Hagan (1994) derives, for any φ = aTβ , i.e.,
any linear combination of elements of β , it holds that V(φ | σ2,z) ≤ V(φ | σ2),
becoming a strict inequality if X has full rank. In particular, the variance of each βi
decreases automatically with the update step.

3.2 Update of σ2

It can be shown (O’Hagan 1994) that

E[σ2 | z] =
2a(0)−2

2a(0) + n−2
E[σ2]+

n− p
2a(0) + n−2

σ̂2
LS +

p
2a(0) + n−2

σ̂2
PDC , (5)

where σ̂2
LS = 1

n−p(z−Xβ̂LS)T(z−Xβ̂LS) is the least-squares based estimate for σ2,

and σ̂2
PDC = 1

p(m(0)− β̂LS)T
(
MMM(0) + (XTX)−1)−1(m(0)− β̂LS). For the latter it holds

that E[σ̂2
PDC | σ2] = σ2; the posterior expectation of σ2 calculates thus as a weighted

mean of three estimates:
(i) the prior expectation for σ2,
(ii) the least-squares estimate, and
(iii) an estimate based on a weighted squared difference of the prior mean and the

least-squares estimate for β .
The weights depend on a(0) (one prior parameter for the inverse gamma part),

the sample size n, and the dimension of β , respectively. The role of the first weight
gets more plausible when remembering the formula for the prior variance of σ2 in
(3), where a(0) appears in the denominator. A larger value of a(0) means thus smaller
prior variance, in turn giving a higher weight forE[σ2] in the calculation ofE[σ2 | z].
The weight to σ̂2

LS corresponds to the classical degrees of freedom, n− p. With the
the sample size approaching infinity, this weight will dominate the others, such that
E[σ2 | z] approaches σ̂2

LS.
Similar results hold for the posterior mode instead of the posterior expectation.
Here, the estimate σ̂2

PDC allows some reaction to prior-data conflict: it measures
the distance between m(0) (prior) and β̂LS (data) estimates for β , with a large distance
resulting basically in a large value of σ̂2

PDC and thus an enlarged posterior estimate
for σ2. The weighting matrix for the distances is playing an important role as well.
The influence of MMM(0) is as follows: for components of β one is quite certain about the
assignment of m(0), the respective diagonal elements of MMM(0) will be low, so that these
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diagonal elements of the weighting matrix will be high. Therefore, large distances
in these dimensions will increase t strongly. An erroneously high confidence in the
prior assumptions on β is thus penalized by an increasing posterior estimate for σ2.
The influence of XTX interprets as follows: covariates with a low spread in x-values,
giving an unstable base for the estimate β̂LS, will result in low diagonal elements
of XTX. Via the double inverting, those diagonal elements of the weighting matrix
will remain low and thus give the difference a low weight. Therefore, σ̂2

PDC will not
excessively increase due to a large difference in dimensions where the location of
β̂LS is to be taken cum grano salis. As to be seen in the following subsection, the
behavior of E[σ | z] is of high importance for posterior inferences on β .

3.3 Update of β

The posterior distribution of β is again a multivariate t, with expectation E[β | z] =
E
[
E[β | σ2,z] | z

]
= m(1) (as described in Section 3.1) and variance

V[β | z] =
b(1)

a(1)−1
MMM(1) = E[σ2 | z]MMM(1) (6)

=
(

2a(0)−2
2a(0) + n−2

E[σ2]+
n− p

2a(0) + n−2
σ̂2

LS +
p

2a(0) + n−2
σ̂2

PDC

)(
MMM(0)−1

+ XTX
)−1

=
(

2a(0)−2
2a(0) + n−2

E[σ2]+
n− p

2a(0) + n−2
σ̂2

LS +
p

2a(0) + n−2
σ̂2

PDC

)
·
(

MMM(0)−MMM(0)XT(I+ XMMM(0)XT)−1XMMM(0)
)

,

not being directly expressible as a function of E[σ2]MMM(0), the prior variance of β .
Due to the effect of E[σ2 | z], the posterior variance-covariance matrix of β can

increase in case of prior data conflict, if the rise of E[β | z] (due to an even stronger
rise of t) can overcompensate the decrease in the elements of MMM(1). However, we see
that the effect of prior-data conflict on the posterior variance of β is globally and
not component-specific; it influences the variances for all components of β to the
same amount even if the conflict was confined only to some or even just one single
component. Taking it to the extremes, if the prior assignment m(0) was (more or less)
correct in all but one component, with that one being far out, the posterior variances
will increase for all components, also for the ones with prior assignments that have
turned out to be basically correct.
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4 An Alternative Approach for Conjugate Priors in Bayesian
Linear Regression (CCCP)

In this section, a prior model for θ = (β , σ2) will be constructed along the general
construction method for sample distributions that form a linear, canonical exponential
family (see, e.g., Bernardo & Smith 1994). The method is typically used for the i.i.d.
case, but the likelihood arising from z ∼ N(Xβ , σ2I) will be shown to follow the
specific exponential family form as well. The canonically constructed conjugate prior
(CCCP) model will also result in a normal - inverse gamma distribution, but with
a fixed variance - covariance structure. The CCCP model is thus a special case of
the SCP model, which – as will be detailed in this section – offers some interesting
further insights into the structure of the update step.

The likelihood arising from the distribution of z,

f (z | β ,σ2) =
1

(2π)
n
2 (σ2)

n
2

exp
{
− 1

2σ2 (z−Xβ )T(z−Xβ )
}

=
1

(2π)
n
2︸ ︷︷ ︸

a(z)

exp
{( β
σ2

)T

︸ ︷︷ ︸
ψ1

XTz︸︷︷︸
τ1(zzz)

− 1
σ2︸ ︷︷ ︸
ψ2

1
2

zTz︸︷︷︸
τ2(zzz)

−
( 1

2σ2 β
TXTXβ +

n
2

log(σ2)
)

︸ ︷︷ ︸
nb(ψ)

}
,

indeed corresponds to the linear, canonical exponential family form

f (z | ψ) = a(z) · exp{〈ψ ,τ(z)〉−n ·b(ψ)} ,

where ψ = ψ(β ,σ2) is a certain function of β and σ2, the parameters on which one
wishes to learn. τ(z) is a sufficient statistic of z used in the update step. Here, we
have

ψ =

(
β
σ2

− 1
σ2

)
, τ(z) =

(
XTz
1
2 zTz

)
, b(ψ) =

1
2nσ2β

TXTXβ +
1
2

log(σ2) . (7)

According to the general construction method, a conjugate prior forψ can be obtained
from these ingredients by the following equation:

p(ψ) = c(n(0),y(0)) · exp
{

n(0) · [〈ψ ,y(0)〉−b(ψ)]
}

,

where n(0) and y(0) are the parameters that define the concrete prior distribution of
its distribution family; whereasψ and b(ψ) were identified in (7). c corresponds to a
normalization factor for the prior. When applying the general construction method to
the two examples from Section 2, the very same priors as presented there will result,
where y(0) = μ (0) and n(0) = 1/σ (0)2

for the prior to the scaled normal model, and
y(0) = t(0) and n(0) = s(0) for the prior to the multinomial model.

Here, the conjugate prior writes as
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p(ψ)dψ = c(n(0),y(0))exp
{

n(0)[y(0)T
(

β
σ2

− 1
σ2

)
− 1

2nσ2β
TXTXβ − 1

2
log(σ2)

]}
dψ .

As this is a prior on ψ , but we want to arrive at a prior on θ = (β , σ2)T, we must
transform the density p(ψ). For the transformation, we need the determinant of the
Jacobian matrix dψ

dθ :∣∣∣∣det
(

dψ
dθ

)∣∣∣∣ =

∣∣∣∣∣∣det

⎛⎝ 1
σ2 Ip − β

(σ2)2

0 1
(σ2)2

⎞⎠∣∣∣∣∣∣ =
1

(σ2)p+2 .

Therefore, the prior on θ = (β , σ2)T is

p(θ )dθ = p(ψ)dψ ·
∣∣∣∣det

(
dψ
dθ

)∣∣∣∣ = c(n(0),y(0))· (8)

exp
{

n(0)y(0)
1

T β
σ2 −n(0)y(0)

2
1
σ2 −

n(0)

2nσ2β
TXTXβ − n(0)

2
log(σ2)− (p + 2) log(σ2)

}
.

θ can now be shown to follow a normal – inverse gamma distribution by comparing
coefficients. In doing that, some attention must be paid to the terms proportional
to −1/σ2 (appearing as − log(σ2) in the exponent) because the normal p(β | σ2)
and the inverse gamma p(σ2) will have to ‘share’ it. Furthermore, it is necessary
to complete the square for the normal part, resulting in an additional term for the
inverse gamma part.

The density of a normal distribution on β | σ2 with a mean vector m(0) =
m(n(0),y(0)) and a variance-covariance matrix σ2MMM(0) = σ2MMM(n(0),y(0)), both to
be seen as functions of the canonical parameters n(0) and y(0), has the following
form:

p(β | σ2) =
1

(2π)
p
2 (σ2)

p
2

exp
{
− 1

2σ2

(
β −m(0))TMMM

(0)−1(
β −m(0))}

=
1

(2π)
p
2

exp
{

m(0)TMMM(0)−1 β
σ2 −

1
2σ2 β

TMMM(0)−1
β

− 1
2σ2 m(0)TMMM(0)−1

m(0)− p
2

log(σ2)
}

.

Comparing coefficients with the terms from (8) depending on β , we get

MMM
(0)−1

= MMM(n(0))−1 =
n(0)

n
XTX , m(0) = m(y(0)) = n(XTX)−1 y(0) .

With the square completed, the joint density of β and σ2 reads as



70 G. Walter & T. Augustin

p(β ,σ2) = c(n(0),y(0))·

exp
{

n(0)y(0)
1

T β
σ2 −

n(0)

2nσ2β
TXTXβ − 1

2σ2

(
n ·n(0)y(0)

1
T
(XTX)−1y(0)

1

)
− p

2
log(σ2)︸ ︷︷ ︸

to p(β |σ2) (normal distribution)

− 1
σ2

(
− n(0)n

2
y(0)

1
T
(XTX)−1y(0)

1

)
−n(0)y(0)

2
1
σ2 −

(n(0) + p
2

+ 2
)

log(σ2)︸ ︷︷ ︸
to p(σ2) (inverse gamma distribution)

}
. (9)

Therefore, one part of the conjugate prior (9) reveals as a multivariate normal dis-
tribution with mean vector m(0) = m(y(0)

1 ) = n(XTX)−1 y(0)
1 and covariance matrix

σ2MMM
(0) = σ2MMM(n(0)) = nσ2

n(0) (XTX)−1, i.e.

β | σ2 ∼ Np

(
n(XTX)−1 y(0)

1 ,
nσ2

n(0) (XTX)−1
)

. (10)

The other terms of (9) can be directly identified with the core of an inverse gamma
distribution with parameters

a(0) =
n(0) + p

2
+ 1 and

b
(0) = n(0)y(0)

2 − n(0)

2
y(0)

1
T
n(XTX)−1y(0)

1 = n(0)y(0)
2 − 1

2
m(0)TMMM(0)−1

m(0) ,

i.e., σ2 ∼ IG
(

n(0) + p + 2
2

, n(0)y(0)
2 − n(0)

2
y(0)

1
T
n(XTX)−1y(0)

1

)
. (11)

We have thus derived the CCCP distribution on (β ,σ2), which can be expressed
either in terms of the canonical prior parameters n(0) and y(0) or in terms of the
prior parameters from Section 3, m(0), MMM

(0), a(0) and b
(0). As already noted, MMM

(0) =
n

n(0) (XTX)−1 can be seen as a restricted version of MMM(0). (XTX)−1 is known as a
variance-covariance structure from the least squares estimate V(β ) = σ̂2

LS(XTX)−1,
and is here the fixed prior variance-covariance structure for β | σ2. Confidence in the
prior assignment is expressed by the choice of n(0): With n(0) chosen large relative
to n, strong confidence in the prior assignment of m(0) can be expressed, whereas a
low value of n(0) will result in a less pointed prior distribution on β | σ2.

The update step for a canonically constructed prior, expressed in terms of n(0)

and y(0), possesses a convenient form: In the prior, the parameters n(0) and y(0) must
simply be replaced by their updated versions n(1) and y(1), which calculate as

y(1) =
n(0)y(0) + τ(z)

n(0) + n
, n(1) = n(0) + n .
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4.1 Update of β | σ2

As y(0) and y(1) are not directly interpretable, it is certainly easier to express prior
beliefs on β via the mean vector m(0) of the prior distribution of β | σ2 just as in the
SCP model. As the transformation m(0) �→ y(0) is linear, this poses no problem:

E[β | σ2, z] = m(1) = n(XTX)−1 y(1)
1 = n(XTX)−1

(
n(0)

n(0) + n
y(0)

1 +
n

n(0) + n
· 1

n
(XTz)

)
= n(XTX)−1 n(0)

n(0) + n
· 1

n
(XTX)m(0) + n(XTX)−1 n

n(0) + n
· 1

n
(XTz)

=
n(0)

n(0) + n
E[β | σ2]+

n
n(0) + n

β̂LS . (12)

The posterior expectation for β | σ2 is here a scalar-weighted mean of the prior
expectation and the least squares estimate, with weights n(0) and n, respectively. The
role of n(0) in the prior variance of β | σ2 is directly mirrored here. As described for
the generalized setting in Walter & Augustin (2009, p. 258) in more detail, n(0) can
be seen as a parameter describing the “prior strength” or expressing “pseudocounts”.
In line with this interpretation, high values of n(0) as compared to n result here in a
strong influence of m(0) for the calculation of m(1), whereas for small values of n(0),
E[β | σ2, z] will be dominated by the value of β̂LS.

The variance of β | σ2 is updated as follows:

V(β | σ2, z) =
nσ2

n(1) (XTX)−1 =
nσ2

n(0) + n
(XTX)−1 .

Here, n(0) is updated to n(1), and thus the posterior variances are automatically smaller
than the prior variances, just as in the SCP model.

4.2 Update of σ2

For the assignment of the parameters a(0) and b
(0) to define the inverse gamma part

of the joint prior, only y(0)
2 is left to choose, as n(0) and y(0)

1 are already assigned via

the choice of m(0) and MMM
(0). To choose y(0)

2 , it is convenient to consider the prior
expectation of σ2 (alternatively, the prior mode of σ2 could be considered as well):

E[σ2] =
b

(0)

a(0)−1
=

2n(0)

n(0) + p
y(0)

2 − 1
n(0) + p

m(0)TMMM(0)−1
m(0) .

A value of y(0)
2 dependent on the value of E[σ2] can thus be chosen by the linear

mapping

y(0)
2 =

n(0) + p
2n(0) E[σ2]+

1
2n(0) m(0)TMMM

(0)−1
m(0) .
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For the posterior expected value of σ2, there is a similar decomposition as for the
SCP model, and furthermore two other possible decompositions offering interesting
interpretations of the update step of σ2. The three decompositions are presented in
the following.

4.2.1 Decomposition Including an Estimate of σ2 Through the Null Model

The posterior variance of σ2 calculates firstly as:

E[σ2 | z] =
b

(1)

a(1)−1
=

2n(1)

n(1) + p
y(1)

2 − 1
n(1) + p

m(1)TMMM(1)−1
m(1)

=
2n(0)

n(0) + n + p
y(0)

2 +
1

n(0) + n + p
zTz− 1

n(0) + n + p
m(1)TMMM

(1)−1
m(1)

=
n(0) + p

n(0) + n + p
E[σ2]+

n−1
n(0) + n + p

1
n−1

zTz

+
1

n(0) + n + p

(
m(0)TMMM

(0)−1
m(0)−m(1)TMMM

(1)−1
m(1)

)
, (13)

and so displays as a weighted average of the prior expected value, 1
n−1 zTz, and a term

depending on prior and posterior estimates for β , with weights n(0) + p, n−1 and 1,
respectively. When adopting the centered z, standardized X approach, 1

n−1 zTz is the
estimate for σ2 under the null model, that is, if β = 0. Contrary to what a cursory
inspection might suggest, the third term’s influence, having the constant weight of
1, will not vanish for n→ ∞, as the third term does not approach a constant.5

The third term reflects the change in information about β :
If we are very uncertain about the prior beliefs on β expressed in m(0) and thus

assign a small value for n(0) with respect to n, we will get relatively large variances
and covariances in MMM

(0) by a factor n
n(0) > 1 to (XTX)−1, resulting in a small term

m(0)TMMM
(0)−1

m(0). After updating, the elements in MMM
(1) become smaller automatically

due to the updated factor n
n(0)+n

to (XTX)−1. If the values of m(1) do not differ

much from the values in m(0), the term m(1)TMMM(1)−1
m(1) would be larger than its

prior counterpart, ultimately reducing the posterior expectation for σ2 through the
third term being negative. If m(1) does significantly differ from m(0), then the term

m(1)TMMM
(1)−1

m(1) can actually result smaller than its prior counterpart and thus give
a larger value of E[σ2 | z] as compared with the situation m(1) ≈ m(0).

On the contrary, large values for n(0) with respect to n indicating high trust in prior
beliefs on β lead to small variances and covariances in MMM(0) by the factor n

n(0) < 1

5 Although m(1) approaches β̂LS, and m(0) is a constant, MMM(0)−1
and MMM(1)−1

are increasing for

growing n, with MMM(1)−1
increasing faster than MMM(0)−1

. The third term will thus eventually turn
negative, reducing the null model variance that has weight n−1.
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to (XTX)−1, resulting in a larger term m(0)TMMM(0)−1
m(0) as compared to the case

with low n(0). After updating, variances and covariances in MMM
(1) will become even

smaller, amplifying the term m(1)TMMM(1)−1
m(1) even more if m(1) ≈ m(0), ultimately

reducing the posterior expectation for σ2 more than in the situation with low n(0).
If, however, the values of m(1) do differ significantly from the values in m(0), the

term m(1)TMMM
(1)−1

m(1) can result smaller than its prior counterpart also here and even
more so as compared to the situation with low n(0), giving eventually an even larger
posterior expectation for σ2.

4.2.2 Decomposition Similar to the SCP Model

A decomposition similar to the one in Section 3.2 can be derived by considering the
third term from (13) in more detail:

m(0)TMMM(0)−1
m(0)−m(1)TMMM(1)−1

m(1)

= n(0) ·n · y(0)
1

T
(XTX)−1y(0)

1 − (n(0) + n) ·n n(0)y(0)T + zTX
n(0) + n

(XTX)−1 n(0)y(0) + XTz
n(0) + n

=
n

n(0) + n

[
m(0)TMMM(0)−1

m(0)−2m(0)TMMM(0)−1
β̂LS− n

n(0) β̂
T
LSMMM(0)−1

β̂LS

]
=

n
n(0) + n

(
m(0)− β̂LS

)TMMM
(0)−1(

m(0)− β̂LS
)− zTX(XTX)−1XTz .

Thus, we get

E[σ2 | zzz] =
n(0) + p

n(0) + n + p
E[σ2]+

1
n(0) + n + p

(
zTz− zTX(XTX)−1XTz

)
+

1
n(0) + n + p

· n
n(0) + n

(m(0)− β̂LS)TMMM(0)−1
(m(0)− β̂LS)

=
n(0) + p

n(0) + n + p
E[σ2]+

n− p
n(0) + n + p

· 1
n− p

(z−Xβ̂LS)T(z−Xβ̂LS)︸ ︷︷ ︸
σ̂2

LS

+
p

n(0) + n + p
· n

n(0) + n
1
p
(m(0)− β̂LS)TMMM(0)−1

(m(0)− β̂LS)︸ ︷︷ ︸
=:σ2

PDC

. (14)

The posterior expectation forσ2 can therefore be seen also here as a weighted average
of the prior expected value, the estimation σ̂2

LS resulting from least squares methods,
and σ2

PDC,6 with weights n(0) + p, n− p and p, respectively. As in the update step

6 E[σ2
PDC | σ 2] = σ 2 computes very similar to the calculations given in O’Hagan (1994, p. 249).
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for β | σ2, n(0) is guarding the influence of the prior expectation on the posterior
expectation. Just as in the decomposition for the SCP model, the weight for σ̂2

LS will
dominate the others when the sample size approaches infinity. Also for the CCCP
model, σ2

PDC is getting large if prior beliefs on β are skewed with respect to “what
the data says”, eventually inflating the posterior expectation of σ2. The weighting of
the differences is similar as well: High prior confidence in the chosen value of m(0)

as expressed by a high value of n(0) will give a large MMM
(0)−1

and thus penalizing
erroneous assignments stronger as compared to a lower value of n(0). Again, XTX
weighs the differences for components with covariates having a low spread weaker
due to the instability of the respective component of β̂LS under such conditions.

4.2.3 Decomposition with Estimates of σ2 Through Prior and Posterior
Residuals

A third interpretation of E[σ2 | z] can be derived by another reformulation of the
third term in (13):

m(0)TMMM
(0)−1

m(0)−m(1)TMMM
(1)−1

m(1) =
n(0)

n
m(0)TXTXm(0)− n(1)

n
m(1)TXTXm(1)

=
n(0)

n
(z−Xm(0))T(z−Xm(0))− n(1)

n
(z−Xm(1))T(z−Xm(1))

+
n(1)

n
zTz− n(0)

n
zTz+

n(0)

n
2zTXm(0)− n(1)

n
2zTXm(1)

=
n(0)

n
(z−Xm(0))T(z−Xm(0))− n(1)

n
(z−Xm(1))T(z−Xm(1))+ zTz−2zTXβ̂LS .

With this, we get

E[σ2 | z] =
n(0) + p

n(0) + n + p
E[σ2]+

n(0) + p
n(0) + n + p

n(0)

n
· 1

n(0) + p
(z−Xm(0))T(z−Xm(0))︸ ︷︷ ︸

=:σ (0)2
, as E[σ (0)2|σ2]=σ2

+
2(n− p)

n(0) + n + p
σ̂2

LS−
n(1) + p

n(0) + n + p
n(1)

n
· 1

n(1) + p
(z−Xm(1))T(z−Xm(1))︸ ︷︷ ︸

=:σ (1)2
, as E[σ (1)2|σ2,z]=E[σ (1)2|σ2]=σ2

.

(15)

Here, the calculation of E[σ2 | z] is based again on E[σ2] and σ̂2
LS, but nowe com-

plemented with two special estimates: σ (0)2
, an estimate based on the prior resid-

uals (z−Xm(0))T(z−Xm(0)), and a respective posterior version σ (1)2
, based on

(z−Xm(1))T(z−Xm(1)). However, E[σ2 | z] is only “almost” a weighted average
of these ingredients, as the weights sum up to n(0)− p + n instead of n(0) + p + n.
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Especially strange is the negative weight for σ (1)2
, actually making the factor to

σ (1)2
result to −1. A possible interpretation would be to group E[σ2] and σ (0)2

as
prior-based estimations with joint weight 2(n(0) + p), and σ̂2

LS as data-based estima-
tion with weight 2(n− p). Together, these estimations have a weight of 2(n(0) + n),
being almost (neglecting the missing 2p) a “double estimate” that is corrected back
to a “single” estimate with the posterior-based estimate σ (1)2

.

4.3 Update of β

As for the SCP model, the posterior on β , being the most important distribution for
inference, is a multivariate t with expectation m(1) as described in Section 4.1. For
V(β | z), one gets different formulations depending on the formula for E[σ2 | z]:

V(β | z) =
b

(1)

a(1)−1
MMM

(1) = E[σ2 | z]
n

n(1) (X
TX)−1 (16)

(13)
=

n(0) + p
n(0) + n + p

n(0)

n(1) E[σ2]
n

n(0) (X
TX)−1︸ ︷︷ ︸

V(β )

+
n−1

n(0) + n + p
n

n(1)
1

n−1
zTz(XTX)−1

+
1

n(0) + n + p
n

n(1)

(
m(0)TMMM

(0)−1
m(0)−m(1)TMMM

(1)−1
m(1)

)
(XTX)−1

(14)
=

n(0) + p
n(0) + n + p

n(0)

n(1) E[σ2]
n

n(0) (X
TX)−1︸ ︷︷ ︸

V(β )

+
n− p

n(0) + n + p
n

n(1) σ̂
2
LS(X

TX)−1︸ ︷︷ ︸
V(β̂LS)

+
p

n(0) + n + p
n

n(1)σ
2
PDC(XTX)−1

(15)
=

n(0) + p
n(0) + n + p

n(0)

n(1) E[σ2]
n

n(0) (X
TX)−1︸ ︷︷ ︸

V(β )

+
n(0) + p

n(0) + n + p
n(0)

n(1) σ
(0)2 n

n(0) (X
TX)−1︸ ︷︷ ︸

=:V(0)(β )

+
2(n− p)

n(0) + n + p
n

n(1) σ̂
2
LS(X

TX)−1︸ ︷︷ ︸
V(β̂LS)

− n(1) + p
n(0) + n + p

σ (1)2 n
n(1) (X

TX)−1︸ ︷︷ ︸
=:V(1)(β )

.

In these equations, it is possible to isolate V(β ), V(β̂LS) and, in the formulation
with (15), the newly defined V(0)(β ) and V(1)(β ). However, all three versions do
not constitute a weighted average, even when the formula for E[σ2 | z] did have this
property. Just as in the SCP model, V(β | z) can increase if the automatic abatement
of the elements in MMM(1) is overcompensated by a strong increase of E[σ2]. Again,
this reaction to prior-data conflict is unspecific because it depends onE[σ2 | z] alone.
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5 Discussion and Outlook

For both the SCP and CCCP model, E[β | z] results as a weighted average of E[β ]
and β̂LS, such that the posterior distribution on β will be centered around a mean
somewhere between E[β ] and β̂LS, with the location depending on the respective
weights. The weights for the CCCP model appear especially intuitive: β̂LS is weighted
with the sample size n, whereasE[β ]has the weight n(0) reflecting the “prior strength”
or “pseudocounts”. Due to this, prior-data conflict may at most affect the variances
only. Indeed, for both prior models, E[σ2 | z] can increase in the presence of prior-
data conflict, as shown by the decompositions in Sections 3.2 and 4.2. Through the
formulations (6) and (16) for V(β | z), respectively, it can be seen that the posterior
distribution on β can in fact become less pointed than the prior when prior-data
conflict is at hand. Nevertheless, the effect might be not be as strong as desired: In
the formulations (5) and (14), respectively, the effect is based only on one term of
the decomposition, and furthermore may be foiled through the automatic decrease
of MMM(1) and MMM(1).

Probably the most problematic finding is that this (possibly weak) reaction affects
the whole variance-covariance matrix uniformally, and thus, in both models, the
reaction to prior-data conflict is by no means component-specific.

Therefore, the prior models lack the capability to mirror the appropriateness of
the prior assignments for each covariate separately. As the SCP model is already the
most general approach in the class of conjugate priors, this non-specificity feature
seems inevitable in Bayesian linear regression based on precise conjugate priors.

In fact, as argued in Section 1, a more sophisticated and specific reaction to prior-
data conflict is only possible by extending considerations beyond the traditional
concept of probability. Imprecise probabilities, as a general methodology to cope with
the multidimensional nature of uncertainty, appears promising here. For generalized
Bayesian approaches, the possibility to mirror the quality of prior knowledge is one
of the main reasons for the paradigmatic skip from classical probability to interval /
imprecise probability. In this framework ambiguity in the prior specification can be
modeled by considering sets Mϑ of prior distributions. In the most common approach
based on Walley’s Generalized Bayes Rule (Walley 1991), posterior inference is
then based on a set of posterior distributions Mϑ |z, resulting from updating the
distributions in the prior set element by element.

Of particular computational convenience are again models based on conjugate
priors, as developed for the Dirichlet-Multinomial model by Walley (1996), see also
Bernard (2009), and for i.i.d. exponential family sampling models by Quaeghebeur
& de Cooman (2005), which were extended by Walter & Augustin (2009) to allow an
elegant handling of prior-data conflict: With the magnitude of the set Mϑ |z mapping
the posterior ambiguity, high prior-data conflict leads, ceteris paribus, to a large Mϑ |z,
resulting in high imprecision in the posterior probabilities, and cautious inferences
based on it, while in the case of no prior-data conflict Mϑ |x, and thus the imprecision,
is much smaller.
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The essential technical ingredient to derive this class of models is the general
construction principle also underlying the CCCP model from Section 4, and thus that
model can be extended directly to a powerful corresponding imprecise probability
model.7 A detailed development is beyond the scope of this contribution.

Acknowledgements We are very grateful to Erik Quaeghebeur and Frank Coolen for intensive
discussions on foundations of generalized Bayesian inference, and to Thomas Kneib for help at
several stages of writing this paper.
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An Efficient Model Averaging Procedure for
Logistic Regression Models Using a Bayesian
Estimator with Laplace Prior

Christian Heumann and Moritz Grenke

Abstract Modern statistics has developed numerous methods for linear and nonlinear
regression models, but the correct treatment of model uncertainty is still a difficult
task. One approach is model selection, where, usually in a stepwise procedure, an
optimal model is searched with respect to some (asymptotic) criterion such as AIC or
BIC. A draw back of this approach is, that the reported post model selection estimates,
especially for the standard errors of the parameter estimates, are too optimistic. A
second approach is model averaging, either frequentist (FMA) or Bayesian (BMA).
Here, not an optimal model is searched for, but all possible models are combined
by some weighting procedure. Although conceptually easy, the approach has mainly
one drawback: the number of potential models can be so large that it is infeasible to
calculate the estimates for every possible model. In our paper we extend an idea of
Magnus et al. (2009), called WALS, to the case of logistic regression. In principal, the
method is not restricted to logistic regression but can be applied to any generalized
linear model. In the final stage it uses a Bayesian esimator using a Laplace prior with
a special hyperparameter.

1 Introduction

Model selection using criterions such as AIC or BIC is nowadays routinely used for
any type of regression models. However, the reported standard errors after model se-
lection are usually too optimistic because the uncertainty introduced by the selection
process is not taken into account. Leeb & Pötscher (2003, 2005b, 2005a, 2006, 2008)
showed in a series of papers that the problems can be very serious. As an alternative
to model selection, one can use model averaging strategies. Here, mainly two proce-
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dures have been proposed. Bayesian model averaging (BMA) was used by Raftery
et al. (1997) and Hoeting et al. (1999). Also conceptually easy, the approach suffers
from the fact that a (too) large number of models has to be fitted and there are also
a number of problems associated with the computation of the marginal likelihood.
Frequentist model averaging (FMA) as proposed by Hjort & Claeskens (2003) suf-
fers from the same principal infeasibility as BMA. Usually, it is therefore proposed
to concentrate on and average a relatively small number of plausible models. As an
alternative to BMA, Magnus et al. (2009) proposed a method called WALS (weighted
average least squares) for the linear regression model, when a number of predictors
is required to be in the model, e.g. by substantial considerations or theory, and it is
not clear whether additional predictors should be added to the model or not. This is a
very practical view, e.g. in epidemiological studies. The epidemiologists often force
the statistician to include confounder variables such as age, sex, smoking behaviour
and social background into the model while it is only a hypothesis that expositions
such as dust, air pollution, etc. have an (additional) influence on the disease state. In
our short communication we try to generalize the approach of Magnus et al. (2009)
to a logistic regression model as an example of a generalized linear model. Since
this is still work in progress, the method is not fully developed. But we can show
by a small simulation study that the method works better than the usual maximum
likelihood method with respect to the mean squared error of the parameter estimates
in the finite sample situation.

2 Model Averaging

Let us assume a logistic regression model in matrix form

log
(

π
1−π

)
= X1β1 + X2β2 , (1)

where π is n×1, X1 is n× p1, β1 is p1×1, X2 is n× p2 and β2 is p2×1. We assume
that X1 contains an intercept term, therefore p1 ≥ 1, and that p = p1 + p2 < n, i.e.
we do not allow p > n.

We distinguish between X1, the regressors we want in the model, i.e. the variables
we force to be included in the model, and X2, the additional regressors which may
be important to be included in the model or not. In general there are then 2p2 models
to consider in a model averaging procedure, generated by setting different subsets of
β2 equal to zero. If, e.g., p2 = 3, we have the following possible models: the model
containing none of the predictors of X2, three models containing one of the predictors
of X2, three models containing two of the predictors of X2 and the model containing
all three predictors of X2. A specific model Mj, j = 1, . . . ,2p2 can then be written as

log
(

π
1−π

)
= X1β1 + X2 jβ2 j , (2)
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where X2 j and β2 j are the corresponding subsets of predictors and parameters which
are not a priori set to zero. Then model averaging uses two steps: in the first step,
the parameter estimates are computed conditionally on the selected model and in the
second step these estimates are combined (averaged) by some weighting procedure
and we have already mentioned two approaches, BMA and FMA.

2.1 Orthogonalization

Now let us consider the matrix

M = W −WX1(X1W X1)−1X ′
1W , (3)

where W = diag[π(1−π)] is n×n. Note, that in the following, we constantly work
with this true variance–covariance matrix of the response vector. Furthermore, the
spectral decomposition of

X ′
2MX2 = PΛP′ (4)

leads to
P′X ′

2MX2P =Λ , (5)

where Λ is diagonal and P is orthogonal, such that P′P = PP′ = I. This can be used
to define a new matrix of covariates, X∗

2 ,

X∗
2 = X2PΛ−

1
2 , (6)

and a new parameter vector β ∗2 ,

β ∗2 =Λ
1
2 P′β2 . (7)

The original parameter vector β2 can be computed by the reverse transformation

β2 = PΛ−
1
2 β ∗2 . (8)

We note that
X∗

2 β
∗
2 = X2PΛ−

1
2Λ

1
2 P′β2 = X2β2 , (9)

and with (5)

X∗′
2 MX∗

2 = Λ−
1
2 P′X ′

2MX2PΛ−
1
2

= Λ−
1
2ΛΛ−

1
2

= I . (10)
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2.2 Unrestricted Maximum Likelihood Estimation

Now assume, that we find the maximum likelihood estimator with the modified
design matrix X = X1 : X∗

2 where : means the column by column concatenation of
X1 and X∗

2 . Then the asymptotic covariance matrix of (β̂ ′1, β̂ ∗
′

2 )′ is(
X ′

1WX1 X ′
1WX∗

2
X∗′

2 WX1 X∗′
2 WX∗

2

)−1

. (11)

Further let
Q = (X ′

1WX1)−1X ′
1WX∗

2 . (12)

The inverse can be computed explicitly using the formula for a partitioned inverse.
Especially, the covariance of β̂ ∗2 can then be written as

cov(β̂ ∗2 ) =

=
{

X∗′
2 WX∗

2 −X∗′
2 W X1(X ′

1WX1)−1X ′
1WX∗

2

}−1

=
{

X∗′
2
[
W −WX1(X ′

1WX1)−1X ′
1W

]
X∗

2

}−1

=
{

X∗′
2 MX∗

2

}−1

= I , (13)

see (10). Furthermore, because of (13), the covariance of β̂1 is

cov(β̂1) =

= (X ′
1WX1)−1

(
I + X ′

1W X∗
2 IX∗′

2 WX1(X ′
1WX1)−1

)
= (X ′

1WX1)−1 + QQ′ . (14)

Thus, asymptotically, β̂ ∗2 is normally distributed with covariance matrix I. There-
fore, the components of β̂ ∗2 are also asymptotically independent. We note that the
covariance of β̂1 and β̂ ∗2 is

cov(β̂1, β̂ ∗2 ) = −(X ′
1WX1)−1X ′

1WX∗
2 I

= −(X ′
1WX1)−1X ′

1WX∗
2

= −Q . (15)

In summary, we can conclude that, asymptotically,(
β̂1

β̂ ∗2

)
∼ N

((
β1
β ∗2

)
,

(
(X ′

1WX1)−1 + QQ′ −Q
−Q′ I

))
. (16)
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2.3 Restricted Approximate Maximum Likelihood Estimation

Fahrmeir & Tutz (2001, p. 141) give a first-order approximation for the restricted
MLE β̂1r under the hypothesis β ∗2 = 0. Using former results, we get

β̂1r = β̂1 + Qβ̂ ∗2 . (17)

Rearranging this equation leads to

β̂1 = β̂1r−Qβ̂ ∗2 . (18)

Therefore we can even approximate β̂1 by first fitting the restricted model and then
the unrestricted model. Why we do this will become clear in the following. Taking
expectations at both sides leads to

E(β̂1r) = β1 + Qβ ∗2 . (19)

Now consider the case that we only use a subset of the variables in X∗
2 , say X∗

2 j for
model Mj. Then it still holds that X∗′

2 jMX∗
2 j = I. In a similar manner we define Q j as

in (12). Using only a subset means that a number of parameters of β̂ ∗2 is set equal to
zero. Assume the parameters not set equal to zero as β ∗2 j. Then proceeding as in the
previous subsection 2.2, we get

cov(β̂ ∗2 j) = I , (20)

cov(β̂1 j) = (X ′
1WX1)−1 + Q jQ′

j , (21)

and
cov(β̂1 j, β̂ ∗2 j) =−Q j . (22)

Using again the first-order approximation, we get

β̂1r = β̂1 j + Q jβ̂ ∗2 j , (23)

or
β̂1 j = β̂1r−Q jβ̂ ∗2 j . (24)

Taking now expectation at both sides, using (19) leads to

E(β̂1 j) = β1 + Qβ ∗2 −Q jβ ∗2 j . (25)

Now, recall, that the components of β̂ ∗2 are (asymptotically) independent. Defining
a matrix Lj as a diagonal matrix with a one on the diagonal if the component of β̂ ∗2
is included in the model and zero elsewhere, we can write

X∗
2 j = X∗

2 Lj (26)
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Q j = QLj , (27)

where obviously null components are added. Similarly,

β̂ ∗2 j = Lj β̂ ∗2 . (28)

Then equations (24) and (25) become

β̂1 j = β̂1r−QLjL jβ̂ ∗2 = β̂1r−QLjβ̂ ∗2 (29)

and

E(β̂1 j) = β1 + Qβ ∗2 −QLjβ ∗2
= β1 + Q(I−Lj)β ∗2 , (30)

since L2
j = Lj. In summary, we can conclude that, asymptotically, for model Mj , we

have(
β̂1 j

β̂ ∗2 j

)
∼ N

((
β1 + Q(I−Lj)β ∗2

Ljβ ∗2

)
,

(
(X ′

1WX1)−1 + QLjQ′ −QLj
−LjQ′ Lj

))
. (31)

2.4 Model Averaging

Since the components of β̂ ∗2 are (asymptotically) independent, model averaging has
only to take place for estimating β1. The estimator is

b1 =
2p2

∑
j=1
λ jβ̂1 j , (32)

where the sum is taken over all 2p2 different models by setting a subset of β ∗2 equal
to zero, and the λ j are weights, satisfying minimal conditions, such as ∑ j λ j = 1,
λ j ≥ 0. They usually depend on the data in some way. Now, from results of the
previous section, we get

b1 = β̂1r−Q(
2p2

∑
j=1
λ jL j)β̂ ∗2

= β̂1r−QLβ̂ ∗2 , (33)

with L =∑ j λ jL j. As Magnus et al. (2009) remark, while the Lj are deterministic, L
is random, since the weights may be data dependent. But, as shown by Magnus et al.
(2009), L is a (full rank) diagonal matrix. What we can derive is that, using (19),

E(b1) = β1 + Qβ ∗2 −QE(Lβ̂ ∗2 ) = β1−QE(Lβ̂ ∗2 −β ∗2 ) . (34)
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The next step in Magnus et al. (2009) uses the fact that, in a linear regression model,
β̂1r and β̂ ∗2 are independent. We conjecture that this is not the case here, especially
if we, now for the first time, state, that W has to be estimated to make the estimators
operational. Nevertheless, if the correlation is weak, we can assume, at least as an
approximation, that

var(b1)≈ (X ′
1WX1)−1 + Qvar(Lβ̂ ∗2 )Q′ (35)

and
mse(b1)≈ (X ′

1WX1)−1 + Qmse(Lβ̂ ∗2 )Q′ . (36)

Now, we conjecture, that b1 is a good estimator in the mean squared error sense, if
Lβ̂ ∗2 is a good estimator of β ∗2 . Since L is diagonal, and if one chooses each diagonal
entry of L, say l j, to be dependent only on the corresponding element β̂ ∗2( j), then,

since the components of β̂ ∗2 are (asymptotically) independent, one can reduce the
problem of finding the best estimator (in the mse sense) to finding a best estimator for
each component of β ∗2 separately. Thus, we can reduce the problem from dimension
2p2 to p2. Magnus et al. (2009) propose to use the Laplace estimator, element by
element, using the fact that the elements of β̂ ∗2 are (asymptotically, independently)
normal distributed with variance one. The Laplace estimator has been derived by
these authors using a single normal observation (here a single component of β̂ ∗2 )
with variance one to estimate the mean (here a single component of β ∗2 ). Especially,
they search a solution for estimating the mean η of a normal distribution from one
single observation x∼ N(η ,1). They found that, compared to four other estimators,
the Laplace estimator using a Laplace prior distribution

p(η) =
c
2

exp(−c|η |) (37)

with hyperparameter c = log(2), implying that the prior median of η is zero and the
prior median of η2 is one, leads to an estimator with bounded risk, good properties
around |η |= 1, and which is near-optimal in terms of minimax regret. Magnus et al.
(2009) additionally state that it also comes closest to the prior idea of ignorance.

In Theorem 1 in Magnus et al. (2009), the posterior moments are derived and are
given by

E(η |x) =
1 + h(x)

2
(x− c)+

1−h(x)
2

(x + c) (38)

Var(η |x) = 1 + c2(1−h2(x))− c(1 + h(x))φ(x− c)
Φ(x− c)

, (39)

where

h(x) =
exp(−cx)Φ(x− c)− exp(cx)Φ(−x− c)
exp(−cx)Φ(x− c)+ exp(cx)Φ(−x− c)

, (40)

and φ andΦ denote the density and cumulative distribution function of the standard
normal distribution.
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2.5 Algorithm

Now, we give a short description of the model averaging algorithm. Note that, at this
stage, we use an estimator for the matrix W , derived from the unrestricted maximum
likelihood estimator.

• Determine the regressors X1 and X2
• Compute the unrestricted maximum likelihood estimator (β̂1, β̂2), using the orig-

inal design matrices X1 and X2. From this model, get the predicted values π̂ and
the estimator for W as W = diag[π̂(1− π̂)].

• Using W of the previous step, compute the matrix M and the spectral decompo-
sition of X ′

2MX2 = PΛP′ and X∗
2 = X2PΛ− 1

2 .
• Compute the unrestricted maximum likelihood estimator (β̂1, β̂ ∗2 ), using the orig-

inal design matrix X1 and the modified design matrix X∗
2 .

• Using the Laplace prior with c= log(2), compute element by element the posterior
moments η̃ j = E(η j|β̂ ∗2( j)) and ω j = var(η j|β̂ ∗2( j)), for j = 1, . . . , p2. Set η̃ =
(η̃1, . . . , η̃p2) and Ω = diag(ω1, . . . ,ωp2).

• Compute the model averaging estimators. First, compute the retransformed esti-
mator forβ2, b2 = PΛ−

1
2 η̃ . Then compute b1. Option 1 is to use the restricted esti-

mator β̂1r from the restricted model using X1 only and to compute b1 = β̂1r−Qb2.
Option 2 (which we used in the simulation studies) is to compute b1 using only X1
in the model, but with an offset X∗

2 η̃ or, equivalently, X2b2 in the fitting procedure.
• The variance of b2 can be computed as var(b2) = PΛ−

1
2ΩΛ−

1
2 P′. We have several

options for computing the variance of b1, but this is left to future research. One
possible option is to use var(b1) ≈ F−1 + Qvar(b2)Q′, where F−1 is computed
from the offset model and Q = F−1X ′

1diag[π̃(1− π̃)]X2, where π̃ are the predicted
values of the offset model.

Note that we have not used any subsequent iterations which would also be an option.

3 Simulation Study

We have set up a small simulation study showing the performance of our proposed
procedure. In fact, we plan to extend the study to include Bayesian Model Averaging
using programs discussed in Hoeting et al. (1999) which were only recently made
available in the programming environment R. But for now, we simply compare the
proposed method to the usual maximum likelihood estimate. The parameters of the
simulation study were as follows:

• Sample size n = 200
• Number of covariates: p = 10 (including the intercept). The covariates were gen-

erated as multivariate normal using 5 different equi-correlations: 0, 0.2, 0.4, 0.6,
0.8.
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Fig. 1 All 135 parameter settings in one view. The vertical lines denote where p2 changes to 9, 8,
7, 6, 5, 4, 3, 2 and 1, p1 = 10− p2

• The number of columns p1 of X1 was ranging from 1, . . . ,9. p2 was set to 10− p1.
• Three different types of parameter settings for the true parameters β1 and β2 were

used: β1 = (1,−1,1,−1, . . . ,)′, where the cut was set after p1 components. For
β2 we used 3 different types:

{ Type 1: β2 = (−1,1,−1,1, . . .)′
{ Type 2: β2 = (− 1

2 ,− 1
3 ,− 1

4 , . . .)′
{ Type 3: β2 = (1,0,0, . . . ,0)′

For each type, the cut was set after p2 components.
• The number of simulations of each setting was S = 500.

That leads in summary to 135 different (9 p1’s × 5 correlations× 3 types for β )
parameter combinations. For each of these combinations, the design matrix X was
generated only once and the S = 500 simulations differ because of generating each
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Fig. 2 Parameter settings 1:75 in one view. The vertical lines denote where p2 changes to 9, 8, 7,
6 and 5, p1 = 10− p2

time a new response vector. We then computed the empirical mean squared error for
the maximum likelihood estimate and our model averaging estimate. The results are
shown in figure 1 and give the trend involved in the results. Higher correlations in
the covariates e.g. lead to higher MSEs. For improving the viewing of the results, we
give two additional figures, one for the settings 1 to 75 (Figure 2), and one figure for
the settings 76:135 (Figure 2). Remarkably, there is not even one situation, where the
usual maximum likelihood estimator is better than the proposed estimator, although
the sample size is reasonable compared to the number of covariates.

4 Conclusion and Outlook

We have developed a new method for model averaging following ideas of Magnus
et al. (2009). Substantial modifications were necessary since Magnus et al. (2009)
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only treat the linear regression case with homoscedastic variance. It seems that the
method has some potential as shown in the simulation study. We plan further to work
on the formulas for the standard errors (we have tried different versions and it seems
that some will work but further investigation is necessary) and to include BMA into
the simulation study for comparison.
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Posterior and Cross-validatory Predictive
Checks: A Comparison of MCMC and INLA

Leonhard Held, Birgit Schrödle and Håvard Rue

Abstract Model criticism and comparison of Bayesian hierarchical models is of-
ten based on posterior or leave-one-out cross-validatory predictive checks. Cross-
validatory checks are usually preferred because posterior predictive checks are dif-
ficult to assess and tend to be too conservative. However, techniques for statisti-
cal inference in such models often try to avoid full (manual) leave-one-out cross-
validation, since it is very time-consuming. In this paper we will compare two ap-
proaches for estimating Bayesian hierarchical models: Markov chain Monte Carlo
(MCMC) and integrated nested Laplace approximations (INLA). We review how
both approaches allow for the computation of leave-one-out cross-validatory checks
without re-running the model for each observation in turn. We then empirically com-
pare the two approaches in an extensive case study analysing the spatial distribution
of bovine viral diarrhoe (BVD) among cows in Switzerland.

Key words: Bayesian hierarchical models; INLA; Leave-one-out cross-validation;
MCMC; Posterior predictive model checks

1 Introduction

Bayesian hierarchical models are widely used in applied statistics. Inference is
typically based on Markov chain Monte Carlo (MCMC), a computer-intensive
simulation-based approach. However, integrated nested Laplace approximations
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(INLA) are a promising alternative to inference via MCMC in latent Gaussian mod-
els (Rue et al. 2009). The methodology is particularly attractive if the latent Gaussian
model is a Gaussian Markov random field (GMRF) (Rue & Held 2005). In contrast
to empirical Bayes approaches (Fahrmeir et al. 2004), the INLA approach incorpo-
rates posterior uncertainty with respect to hyperparameters. Examples where INLA
is applicable include generalized linear mixed models (Breslow & Clayton 1993),
disease mapping (Besag et al. 1991) including ecological regression (Clayton &
Bernardinelli 1992, Natário & Knorr-Held 2003), spatial and spatio-temporal GMRF
models (Gössl et al. 2001), dynamic (generalized) linear models (Fahrmeir 1992) and
structured additive regression (Fahrmeir & Lang 2001).

A particularly interesting feature of INLA is that it provides leave-one-out cross-
validatory model checks without re-running the model for each observation in turn.
In this paper we review the computation of the conditional predictive ordinate (CPO)
and the probability integral transform (PIT) in INLA and compare it with computation
of the corresponding quantities using MCMC. We also consider posterior predictive
model checks based on the whole data as an alternative to cross-validation. Section
2 reviews INLA and gives a detailed description how cross-validatory model checks
are computed with INLA. Section 3 describes how these quantities are computed
with MCMC. An extensive case study using an example from spatial epidemiology is
described in Section 4 to compare the two approaches. We close with some discussion
in Section 5.

2 The INLA Approach

The following section reviews INLA as an approach for approximate Bayesian in-
ference in latent Gaussian models and shows how posterior and cross-validatory
predictive checks can be computed using INLA.

2.1 Parameter Estimation with INLA

Consider a three-stage Bayesian hierarchical model based on an observation model
π(y|x) = ∏iπ(yi|xi), a parameter model π(x|θ ), and a hyperprior π(θ ). Here y =
(y1, . . . ,yn) denotes the observed data, x are unknown parameters which typically
follow a GMRF, and θ are unknown hyperparameters. Note that reparametrization
and parameter augmentation can be used to achieveπ(yi|x) =π(yi|xi). The dimension
of x will often be larger than n and we assume in the following that only the first n
components of x are directly linked to the observations y.

Consider now the marginal posterior density

π(xi|y) =
∫
θ
π(xi|θ ,y) π(θ |y) dθ
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of the i-th component xi of x. INLA approximates this by

π̃(xi|y) =∑
k
π̃(xi|θk,y) π̃(θk|y) Δk

using an approximation π̃(xi|θ ,y) of π(xi|θ ,y) and an additional approximation
π̃(θ |y) of the marginal posterior density π(θ |y) of the hyperparameters θ . The
weights Δk are chosen appropriately.

We first describe how π(θ |y) is approximated. Clearly,

π(x,θ ,y) = π(x|θ ,y)×π(θ |y)×π(y), (1)

so it follows that

π(θ |y)∝ π(x,θ ,y)
π(x|θ ,y)

for all x.

INLA approximates π(θ |y) using a Laplace approximation (Tierney & Kadane
1986):

π̃(θ |y) ∝ π(x,θ ,y)
π̃G(x|θ ,y)

|x=x∗(θ).

The numerator can be easily evaluated based on (1). The denominator π̃G(x|θ ,y) is
the Gaussian approximation (Rue et al. 2009, Section 2.2) of π(x|θ ,y) and x∗(θ )
is the mode of the full conditional π(x|θ ,y), obtained through a suitable iterative
algorithm. The approximate posterior density π̃(θ |y) is “numerically explored” to
obtain suitable support points θk and the respective weights Δk.

For approximating the first componentπ(xi|θ ,y), a Gaussian approximation (Rue
& Martino 2007), easily extractable from π̃G(x|θ ,y),

π̃G(xi|θ ,y) = N(xi;μi(θ ),σ2
i (θ ))

can be used. The approximation can be improved using a Laplace approximation

π̃LA(xi|θ ,y)∝ N(xi;μi(θ ),σ2
i (θ ))× exp(cubic spline(xi)),

or a simplified Laplace approximation based on the skew-normal distribution (Azza-
lini & Capitano 1999), for details see Rue et al. (2009).

As suggested in Fahrmeir & Kneib (2009), it is instructive to compare the INLA
approach with a REML/Empirical Bayes estimation in mixed models. In the empirical
Bayes approach no hyperpriorπ(θ ) is necessary, so the (RE)ML marginal likelihood
corresponds to the marginal posterior π(θ |y). The (RE)ML marginal likelihood is
maximized and only the (RE)ML estimate of θ is used, so no uncertainty with
respect to θ is taken into account. The empirical Bayes estimate of xi corresponds
to the Gaussian approximation of π(xi|θ ,y) with θ fixed at the (RE)ML estimate.
Hierarchical likelihood (Lee et al. 2006) is a variation of this.
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2.2 Posterior Predictive Model Checks with INLA

In order to check the fit of a Bayesian model posterior predictive checks were pro-
posed by Gelman et al. (1996). The underlying concept of such checks is the posterior
predictive distribution of a replicate observation Yi which has density

π(yi|y) =
∫
π(yi|xi,y) ·π(xi|y)dxi. (2)

In Stern & Cressie (2000) it is suggested to use the posterior predictive p-value

Prob(Yi ≤ yobs
i |y)

as a measure of model fit, here yobs
i denotes the actually observed count. If data are

discrete, the posterior predictive mid-p-value (Berry & Armitage 1995, Marshall &
Spiegelhalter 2003)

Prob(Yi < yobs
i |y)+

1
2

Prob(Yi = yobs
i |y)

can be used instead. An alternative quantity that may be of interest is the posterior
predictive ordinate π(yobs

i |y). Small values of π(yobs
i |y) will indicate an outlying

observation.
Extreme posterior predictive (mid-)p-values can be used to identify observations

that diverge from the assumed model. However, one drawback concerning the inter-
pretation of posterior predictive p-values is that they do not have a uniform distribu-
tion even if the data come from the assumed model. See Hjort et al. (2006), Marshall
& Spiegelhalter (2007) and references therein for further details.

We will now explain how posterior p-values can be computed with INLA (Rue
et al. 2009). INLA returns an estimate of the posterior marginal of xi in a discretised
way: For j = 1, ...,J support points x( j)

i an estimate π̃(x( j)
i |y) of the posterior density

π(x( j)
i |y) is given. The support points are chosen such that they cover all areas with

non-negligible posterior density. The value of the posterior predictive density (2) can
then be approximated using the trapezoidal rule:

π̂(yi|y)≈
J

∑
j=2
π(yi|12 (x( j−1)

i + x( j)
i )) · 1

2
(x( j)

i − x( j−1)
i )(π̃(x( j)

i |y)+ π̃(x( j−1)
i |y)). (3)

Of course, alternative techniques such as Simpson’s rule can also be used. For discrete
data, the posterior predictive (mid-)p-value can easily be derived as the sum of such
probabilities. For yi = yobs

i we obtain an estimate of the posterior predictive ordinate.



Predictive Model Checks with MCMC and INLA 95

2.3 Leave-one-out Cross-validation with INLA

INLA routinely computes the DIC (Spiegelhalter et al. 2002), a commonly used
Bayesian model choice criterion. However, DIC may underpenalize complex models
with many random effects (Plummer 2008, Riebler & Held 2009). Alternatively, the
conditional predictive ordinate (CPO) (Pettit 1990, Geisser 1993) and the cross-
validated probability integral transform (PIT) (Dawid 1984) are available in INLA:

CPOi = π(yobs
i |y−i),

PITi = Prob(Yi ≤ yobs
i |y−i).

Here y−i denotes the observations y with the i-th component omitted. This facilitates
the computation of the cross-validated log-score (Gneiting & Raftery 2007) for model
choice. Similarly, PIT histograms (Czado et al. 2009) can be computed to assess
calibration of out-of-sample predictions.

We will now describe how these quantities are computed in INLA without re-
running the model. Throughout we assume that y−i = yobs

−i . However, we keep the
explicit notation yobs

i for the i-th observation to avoid confusion with other possible
realisations of the corresponding random variable Yi. As before, the vector y will
always contain the observed data including yobs

i .
First note that

CPOi =
∫
π(yobs

i |y−i,θ )π(θ |y−i)dθ , (4)

PITi =
∫

Prob(Yi ≤ yobs
i |y−i,θ )π(θ |y−i)dθ . (5)

The first term in the integral in (4) now equals

π(yobs
i |y−i,θ ) = 1

/∫ π(xi|y,θ )
π(yobs

i |xi,θ )
dxi. (6)

To see this, first note that

π(xi|y−i,θ ) =
π(xi|y,θ )π(yobs

i |y−i,θ )
π(yobs

i |xi,θ )
. (7)

Integration with respect to xi gives (6).
In practice, (6) is computed using numerical integration. The denominator of the

ratio in the integral in (6) is the likelihood contribution of the i-th observation and
known. However, only an approximation π̃(xi|y,θ ) of the numerator π(xi|y,θ ) is
known using INLA, as described in Section 2.1. It depends on the accuracy of this
approximation how accurate the numerical integration is. In particular, it may happen
that the ratio π̃(xi|y,θ )/π(yobs

i |xi,θ ) is multimodal or tends to infinity for extreme
values of xi. It may also be difficult to locate the region of interest, i.e. the region with
non-negligible contributions of π(xi|y,θ )/π(yobs

i |xi,θ ). Such features are an artefact
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and a consequence of an imprecise approximation of the numerator π(xi|y,θ ) in the
tails. Fortunately, INLA flags such problematic cases, for details see Section 4.

The first term in the integral in (5) can be written as

Prob(Yi ≤ yobs
i |y−i,θ ) =

∫
Prob(Yi ≤ yobs

i |xi,θ )π(xi|y−i,θ )dxi.

The first term in this integral can be computed easily from the likelihood. The sec-
ond term is available from (7) using π(yobs

i |y−i,θ ) as computed in (6). As before,
π(xi|y,θ ) is available approximately through INLA.

Finally, we need to compute

π(θ |y−i) =
π(θ |y)π(yobs

i |y−i)
π(yobs

i |y−i,θ )
. (8)

The denominator π(yobs
i |y−i,θ ) is known from (6). An approximation to π(θ |y) is

available from Section 2.1. Therefore, the normalizing constant

π(yobs
i |y−i) = 1

/∫ π(θ |y)
π(yobs

i |y−i,θ )
dθ (9)

of (8) can be approximately calculated as

π̃(yobs
i |y−i) = 1

/
∑
k

π̃(θk|y)
π̃(yobs

i |y−i,θk)
Δk. (10)

Here the θk’s are support points of the approximate marginal posterior density π̃(θ |y),
which has been obtained in the first step of the INLA fitting procedure as described
in Section 2.1. So the estimate π̃(yobs

i |y−i) is the weighted harmonic mean of the
π̃(yobs

i |y−i,θk)’s, k = 1, . . . ,K, with weights wk = π̃(θk|y)Δk.
All terms appearing in (4) and (5) are now computed. Final approximation of PITi

using (5) is based on support points θk as in (10) by replacement of the integral with
a finite sum. Concerning CPOi, note that (4) has been approximated already in (10),
so the additional integration is not necessary.

3 Predictive Model Checks with MCMC

MCMC delivers samples x(1), . . . ,x(S) from the posterior distribution π(x|y). Simi-
larly, samples θ (1), . . . ,θ (S) from the posterior distribution π(θ |y) of the hyperpara-
meters can be obtained on a routine basis. These samples are typically dependent, but
suitable “thinning” can be be applied to obtain approximately independent samples.
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3.1 Posterior Predictive Model Checks with MCMC

Within MCMC the posterior predictive p-values can be derived by drawing a replicate
observation Y (s)

i for each of the s = 1, ...,S samples x(s)
i of the MCMC run and

counting, how many replicated observations are less than or equal to the actually
observed count yobs

i . For discrete data, the posterior predictive mid-p-value and the
posterior predictive ordinate can be computed analogously.

If the likelihood π(yi|xi) is available in closed form, an alternative approach is to
average the likelihood across all samples x(s)

i from π(xi|y):

π̂(yi|y) =
1
S

S

∑
s=1
π(yi|x(s)

i ).

This technique is known as Rao-Blackwellization (Gelfand & Smith 1990, Robert
& Casella 2004, Casella & Robert 1996) and is typically more accurate than the
approach based on replicates Y (s)

i from the predictive density. However, the Monte-
Carlo error of the sample-based version is easier to assess so we have used this
estimate in Section 4.

3.2 Leave-one-out Cross-validation with MCMC

Omitting the dependence on θ in (6) we obtain

π(yobs
i |y−i) = 1

/∫ π(xi|y)
π(yobs

i |xi)
dxi. (11)

The immediate Monte-Carlo estimate of (11) is simply the harmonic mean of the
likelihood values π(yobs

i |xi),

π̂(yobs
i |y−i) = 1

/1
S

S

∑
s=1

1

π(yobs
i |x(s)

i )
, (12)

evaluated at samples x(1)
i , . . . ,x(S)

i from π(xi|y). This estimate goes back at least to
Gelfand (1996) and is very easy to use in MCMC applications. However, the harmonic
mean can be numerically unstable and may not even follow a central-limit theorem
(Newton & Raftery 1994). This manifests itself by the occasional occurrence of a
value x(s)

i with small likelihood π(yobs
i |x(s)

i ) and hence large effect on the estimate
(12). Indeed, Raftery (1996) has noted that the reciprocal of (12) may not even have
finite variance.

However, for the computation of (mid-)p-values the value of π(yi|y−i) needs to be
known for all yi ≤ yobs

i . An importance sampling approach (Robert & Casella 2004)
can be adopted to compute π(yi|y−i) for any yi, not necessarily equal to yobs

i . First
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rewrite π(yi|y−i) as

π(yi|y−i) =
∫
π(yi|xi)π(xi|y−i)dxi

=
∫
π(yi|xi)

π(xi|y−i)
π(xi|y) π(xi|y)dxi.

The importance sampling estimate of π(yi|y−i) based on samples x(1)
i , . . . ,x(S)

i from
π(xi|y) is hence

π̂(yi|y−i) =
∑S

s=1π(yi|x(s)
i )w(s)

i

∑S
s=1 w(s)

i

(13)

with importance weights

w(s)
i =

π(x(s)
i |y−i)

π(x(s)
i |y)

∝
1

π(yobs
i |x(s)

i )
,

compare Robert & Casella (2004, Equation (3.10)). For count data, the computa-
tion of cross-validatory (mid-)p-values reduces then to summing up the estimates
π̂(yi|y−i) for yi = 0, . . . ,yobs

i (Marshall & Spiegelhalter 2003). Note that the impor-
tance sampling estimate (13) reduces to the harmonic mean (12), if yi = yobs

i .
The variance of importance sampling estimators is difficult to assess; in fact the

estimate may not even have finite variance. In particular, if the weights w(s)
i vary

widely, they will give too much importance to only a few values of π(yi|x(s)
i ) and the

estimator (13) will be quite unstable, even for large S. However, we have investigated
the weights w(s)

i in Section 4 and have found no weight particularly large relative to
the others.

3.3 Approximate Cross-validation with MCMC

We now describe an alternative approach, based on an idea originally presented by
Marshall & Spiegelhalter (2003) for approximate cross-validation in disease mapping
models via MCMC. The method is based on the assumption that

π(θ |y−i)≈ π(θ |y).

This assumption is plausible for moderate to large dimension of y, since θ is a
global hyperparameter. Its posterior distribution based on all observations y should
not change much if a single observation yi is omitted.

The Marshall & Spiegelhalter (2003) mixed predictive approach is to generate
additional samples
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x̃(s)
i ∼ π(xi|θ (s),y−i)

s = 1, . . . ,S, where θ (s) is a sample from π(θ |y). The samples x̃(s)
i do not directly

depend on yi, only indirectly because θ (s) ∼ π(θ |y) does depend on yi. The x̃(s)
i ’s are

therefore approximately cross-validated and can be used in various ways to compute
the predictive model checks discussed earlier.

A straightforward approach to compute PIT values is to draw additional sam-
ples ỹ(s)

i from the pseudo-cross-validated predictive distribution and to compute the
proportion of samples which are not larger than the observed value yobs

i . Similarly,
CPO values can be estimated based on the proportion of samples equal to yobs

i . Al-
ternatively a Rao-Blackwell approach as described in Section 3.1 can be used. In
our application the PIT and CPO values resulting from the sampling strategy and the
Rao-Blackwellization were almost identical. Mixed predictive PIT and CPO values
shown in the following section are computed using Rao-Blackwellization.

4 Application

In our application we consider a typical example from spatial epidemiology. The data
considered are cases of bovine viral diarrhoe (BVD) among cows in Switzerland
collected during the year 2008. On behalf of an eradication program each cow in
Switzerland was tested and the herd was marked as infected, if one or more diseased
cows within this herd were detected. As Switzerland is divided in 184 administrative
regions, the number of cases is available aggregated on regional level. Additionally,
the Principality of Liechtenstein was included in the analysis. A number of 7164
cases was detected in total. For one region the number of cases is missing.

Under the rare disease assumption the usual starting point is to assume that the
number of disease cases yi in region i = 1, . . . ,185 is Poisson distributed with para-
meter λi, which can be interpreted as the relative risk of the disease in the respective
region. Additionally, the number of herds mi is included in the model as an offset
to adjust for the different number of herds living in each region. Using a standard
formulation with Poisson observation model and a logarithmic link the relative risk
parameter λi is modelled using the specification

ηi = log(λi) = log(mi)+ψi +νi. (14)

The spatially unstructured component νi is assumed to be i.i.d. normally distributed
with zero mean and unknown precision τν whereas ψi is assumed to be structured
in space. To account for the assumption that geographically close areas have similar
incidence rates the spatially structured component ψi is modelled as an intrinsic
Gaussian Markov random field with unknown precision τψ (Rue & Held 2005). This
model was proposed by Besag et al. (1991), an extension to include covariates has
been considered in Clayton & Bernardinelli (1992). The hyperpriors are chosen as
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Fig. 1 Scatterplots of posterior predictive mid-p-values (above diagonal) and log posterior predic-
tive ordinates (below diagonal) computed by MCMC and INLA using the Gaussian (Gaussian),
simplified Laplace (SLP) and full Laplace (FL) approximation

τψ ∼ Ga(1,0.018) and τν ∼ Ga(1,0.01), compare Bernardinelli et al. (1995) and
Schrödle & Held (2009) for some motivation.

For the following analyses an MCMC run of length 930 000 was performed.Using
every 30th iteration and a burn-in of 30 000 iterations, 30 000 MCMC samples have
been stored. We also tested all three approximation methods available within INLA,
as they are known to be differently accurate (Rue & Martino 2007, Rue et al. 2009).
All calculations were done using the inla program version number 1.526.
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Fig. 2 Bland-Altman plot to investigate the agreement between posterior predictive mid-p-values
computed by MCMC vs. INLA using the Gaussian, simplified Laplace and full Laplace approx-
imation. The dotted lines indicate pointwise 95%-confidence intervals based on the Monte-Carlo
error attached to the MCMC estimates

4.1 A Comparison of Posterior Predictive Model Checks

In the following the difference between the posterior predictive ordinates and pos-
terior predictive mid-p-values computed by MCMC and INLA using three different
approximation methods for the latent Gaussian field will be assessed.

Pairwise scatterplots are shown in Figure 1. The distribution of the posterior
predictive ordinates is quite skewed and therefore shown on the log-scale. As can
be seen from the plot, the estimates obtained with the four different methods look
virtually identical.
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Fig. 3 Adjusted histograms of posterior predictive p-values computed by MCMC and INLA using
the full Laplace approximation

The extent of agreement between any two methods can be visually examined in
more detail using a plot suggested in Bland & Altman (1986), see also Kirkwood &
Sterne (2003). The difference between two estimates is plotted on the vertical axis
against the mean of each pair on the horizontal axis, see Figure 2. Also shown are
95%-confidence intervals indicating the Monte Carlo error attached to the MCMC
estimates. The Monte Carlo standard error has been computed based on the assump-
tion that the MCMC samples are independent. This assumption has been checked by
visually inspecting the corresponding empirical autocorrelation functions.

Using this plot systematic bias can be detected and it can be examined if the differ-
ences between pairs of estimates depend on the actual value of the estimate. Posterior
predictive mid-p-values obtained using the Gaussian and simplified Laplace approx-
imation are slightly biased and typically smaller than the corresponding MCMC
estimates. The bias is largest for mid-p-values around 0.5. For the full Laplace ap-
proximation the differences are close to zero and do not show any specific pattern. In
fact, nearly all differences are now within the Monte Carlo confidence limits, i.e. the
differences can be explained solely by the Monte Carlo error attached to the MCMC
estimates. The MCMC estimates based on Rao-Blackwell were even closer to the
INLA estimates.

Histograms of posterior predictive mid-p-values can be computed in analogy to
the PIT histogram (Czado et al. 2009), which was recently proposed for count data.
The results are shown in Figure 3 based on MCMC and INLA using the full Laplace
approximation. There is virtually no difference to see.

The histograms can be compared with histograms of the cross-validated PIT values
in Figure 6. As mentioned in Stern & Cressie (2000) and Marshall & Spiegelhalter
(2007) posterior predictive p-values are not uniformly distributed and tend to be too
conservative as the data are used twice. Indeed, the histograms in Figure 3 are far
from uniformity with too many observations having mid-p-values around 0.5.
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Table 1 Number of unreliable CPO/PIT values for the Gaussian, simplified Laplace and full Laplace
approximation

Gaussian 56 unreliable CPO/PIT values
Simplified Laplace 18 unreliable CPO/PIT values
Full Laplace 13 unreliable CPO/PIT values
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Fig. 4 Scatterplots of leave-one-out cross-validatory predictive mid-p-values (above diagonal) and
log conditional predictive ordinates (below diagonal) computed by MCMC vs. INLA using the
Gaussian (Gaussian), simplified Laplace (SLP) and full Laplace (FL) approximation

4.2 A Comparison of Leave-one-out Cross-validated Predictive
Checks

Leave-one-out cross-validated predictive checks overcome the difficulties of pos-
terior predictive checks mentioned in Section 4.1 and can be used to assess the
predictive quality of a model (Marshall & Spiegelhalter 2003, Czado et al. 2009).
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Fig. 5 Bland-Altman plot to investigate the agreement between leave-one-out cross-validated mid-
p-values computed by MCMC (importance sampling) vs. INLA using the Gaussian, simplified
Laplace and full Laplace approximation

Histograms of the PIT values have been proposed to assess the calibration of a model
(Czado et al. 2009), the logarithmic score (Gneiting & Raftery 2007), the sum of the
log CPO values, can be used for model choice.

INLA returns the CPO and PIT values, as described in Section 2.3. Since the
approximation methods for the latent Gaussian field are known to be differently
accurate (Rue & Martino 2007, Rue et al. 2009), an empirical comparison is con-
ducted. However, numerical problems may occur when CPO and PIT values are
computed in INLA. Some of the CPO and PIT values might not be reliable due to
numerical problems in evaluating the integral in (6). INLA automatically stores a file
failure.dat which contains failure flags for each observation. We considered
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Fig. 6 Adjusted histogram of PIT values computed by MCMC and INLA using the full Laplace
approximation

CPO/PIT values with flag equal to 1 as unreliable. Further details on this issue can
be found in Martino & Rue (2009).

In Table 1 it is listed for how many observations the computation failed. Most
failures occur based on the Gaussian approximation, the full Laplace approximation
performs best.

In order to assess the performance of INLA the output will be compared with
results from a MCMC analysis based on the estimates (12) and (13). Mid-p- and
log CPO values calculated with INLA and MCMC are shown in Figure 4. Each
sub-figure is based on all those observations where CPO and PIT values could be
computed without failure with the corresponding INLA approximation technique(s)
considered.

Figure 4 reveals that the full Laplace approximation is closest to MCMC con-
cerning bias and the differences between the full Laplace and the MCMC output
do not show any specific pattern. More details can be seen on the corresponding
Bland-Altman plots of the leave-one-out cross-validated mid-p-values, see Figure
5. First of all, a comparison with the corresponding plot showing the posterior pre-
dictive mid-p-values (Figure 2) reveals that the differences between MCMC and
INLA have increased. However, a similar pattern as in Figure 2 can be seen, with
mainly positive differences for the Gaussian and simplified Laplace approximation.
In contrast, the mid-p-values computed with the full Laplace approach are closest to
the MCMC estimates and do not exhibit a systematic bias. The corresponding PIT
histograms are shown in Figure 6 and are quite similar. Note that the PIT histograms
are much closer to a uniform distribution than the corresponding posterior predictive
histograms shown in Figure 3.
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Fig. 7 Scatterplots of mid-p- (above diagonal) and log CPO-values (below diagonal) computed by
MCMC using three different approaches: The posterior predictive approach, the mixed predictive
approach proposed by Marshall and Spiegelhalter in combination with a Rao-Blackwellization, and
importance sampling

4.3 A Comparison of Approximate Cross-validation with Posterior
and Leave-one-out Predictive Checks using MCMC

CPO and mid-p-values resulting from a MCMC analysis have also been computed
using the mixed predictive approach by Marshall & Spiegelhalter (2003) as described
in Section 3.3. The approach is based on posterior samples of the precisions τ(s)

ν and
τ(s)
ψ based on the full data.

Approximately cross-validated samples of ηi and ψi are generated in a two-stage
procedure based on a reparametrization of model (14) described in Knorr-Held &
Rue (2002): First, ψ̃(s)

i is drawn from the conditional density



Predictive Model Checks with MCMC and INLA 107

ψ̃(s)
i |ψ(s)

−i ,τ
(s)
ψ ∼ N(

1
ni
∑

j: j∼i
ψ(s)

j ,
1

ni · τ(s)
ψ

).

Here ni denotes the number of neighbours of region i. In a second step, a sample η̃(s)
i

of the linear predictor is drawn using

η̃(s)
i |ψ̃(s)

i ,τ(s)
ν ∼ N(ψ̃(s)

i ,
1

τ(s)
ν

).

This gives pseudo-cross-validated samples η̃(s)
i of the linear predictor, as proposed

in Marshall & Spiegelhalter (2003).
Figure 7 compares the mixed predictive approach with the posterior predictive

and the cross-validatory approach based on importance sampling. Compared with
the importance sampling and the mixed predictive estimates, the posterior predic-
tive estimates are systematically biased. As suspected, the mid-p-values are shrunk
towards 0.5. Interestingly, the mixed predictive approach is closer to the (“exact”)
cross-validatory approach based on importance sampling. There is no systematic
bias, although there is some variation in the estimates. This is in contrast to Marshall
& Spiegelhalter (2003), who report that the mixed predictive approach performs bet-
ter than the importance sampling approach in a similar disease mapping model using
the well-known Scotland lip cancer data.

5 Discussion

The case study revealed that the cross-validatory checks provided by INLA are close
to “exact” importance sampling estimates based on MCMC. The agreement is best
if the full Laplace approximation is used. However, the relatively large number of
failures is a drawback. Fortunately, these failures are flagged by INLA and it is
straightforward to “manually” remove such an observation and to compute the de-
sired leave-one-out quantities directly. The predictive distribution for the observation
removed can be calculated in exactly the same way as the posterior predictive dis-
tribution, see Section 2.2. For illustration, Figure 8 compares manually computed
mid-p-values with the mid-p-values calculated based on the techniques described
in Section 2.3 using the full Laplace approximation. The amount of agreement is
remarkable.

We finally illustrate how the cross-validated log-score can be used for model
comparison. To do so, we have considered two alternative models with either the
unstructured or the structured component removed. The logarithmic score in the
full model is −3.459, while in the reduced model with no unstructured component
the score is even slightly larger (−3.454). However, the score of the model with
only an unstructured component is considerably smaller (−3.779). This indicates
that the structured component in the model is important, whereas the unstructured



108 L. Held, B. Schrödle & H. Rue

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*
*

*
*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

App. CV (FL)

M
an

ua
l C

V
 (

F
L)

Fig. 8 Scatterplot of manually computed mid-p-values using INLA vs. approximate mid-p-values
obtained from the standard INLA output; the comparison was conducted for the full Laplace ap-
proximation

0.4

0.6

1

1.5

2.2

Fig. 9 Fitted relative incidence of BVD in Switzerland, 2008

component can be omitted. The estimated relative incidence obtained from the best
model without unstructured component is finally shown in Figure 9.
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Data Augmentation and MCMC for Binary and
Multinomial Logit Models

Sylvia Frühwirth-Schnatter and Rudolf Frühwirth

Abstract The paper introduces two new data augmentation algorithms for sampling
the parameters of a binary or multinomial logit model from their posterior distrib-
ution within a Bayesian framework. The new samplers are based on rewriting the
underlying random utility model in such a way that only differences of utilities are in-
volved. As a consequence, the error term in the logit model has a logistic distribution.
If the logistic distribution is approximated by a finite scale mixture of normal distrib-
utions, auxiliary mixture sampling can be implemented to sample from the posterior
of the regression parameters. Alternatively, a data augmented Metropolis–Hastings
algorithm can be formulated by approximating the logistic distribution by a single
normal distribution. A comparative study on five binomial and multinomial data sets
shows that the new samplers are superior to other data augmentation samplers and
to Metropolis–Hastings sampling without data augmentation.

Key words: Binomial data; multinomial data; data augmentation; Markov chain
Monte Carlo; logit model; random utility model

1 Introduction

Applied statisticians and econometricians commonly have to deal with modelling
a binary or multinomial response variable in terms of covariates. Examples include
modelling the probability of unemployment in terms of risk factors, and modelling
choice probabilities in marketing in terms of product attributes. A widely used tool
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Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften, Nikolsdorfer
Gasse 18, 1050 Wien, Austria, e-mail: fru@hephy.oeaw.ac.at

111T. Kneib, G. Tutz (eds.), Statistical Modelling and Regression Structures
DOI 10.1007/978-3-7908-2413-1_7, © Springer-Verlag Berlin Heidelberg 2010 

,
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for analyzing such data are binary or multinomial regression techniques using gen-
eralized linear models.

Estimation of these models is quite challenging, in particular if latent components
are present, such as in random-effects modelling or in state space modelling of
discrete data. Fahrmeir & Tutz (2001) provide a review of likelihood-based estimation
methods; see also Fahrmeir & Kaufmann (1986a) and Fahrmeir & Kaufmann (1986b)
for a rigorous mathematical treatment.

Zellner & Rossi (1984) were the first to perform Bayesian inference for a logit
model using importance sampling based on a multivariate Student-t distribution,
with mean and scale matrix being equal to the posterior mode and the asymptotic
covariance matrix. Starting with Zeger & Karim (1991), many Markov chain Monte
Carlo (MCMC) methods have been developed for the Bayesian estimation of the
binary and the multinomial logit model. MCMC estimation has been based on single-
move adaptive rejection Gibbs sampling (Dellaportas & Smith 1993), Metropolis–
Hastings (MH) sampling (Gamerman 1997, Lenk & DeSarbo 2000, Rossi et al. 2005),
data augmentation and Gibbs sampling (Holmes & Held 2006, Frühwirth-Schnatter
& Frühwirth 2007), and data augmented Metropolis–Hastings sampling (Scott 2009).

In the present article we focus on practical Bayesian inference for binary and
multinomial logit models using data augmentation methods. For these models, data
augmentation relies on the interpretation of the logit model as a random utility model
(McFadden 1974). Frühwirth-Schnatter & Frühwirth (2007) and Scott (2009) base
data augmentation directly on this random utility model (RUM) by introducing the
utilities as latent variables. Holmes & Held (2006) choose the differences of utili-
ties as latent variables, which is the standard data augmentation method underlying
MCMC estimation of probit models, see e.g. Albert & Chib (1993) and McCulloch
et al. (2000). We call this interpretation the difference random utility model (dRUM).

In the following we show how to implement data augmentation based on the
dRUM representation for the binary and the multinomial logit model. We introduce
yet two other data augmentation MCMC samplers by extending the ideas underly-
ing Frühwirth-Schnatter & Frühwirth (2007) and Scott (2009) to the dRUM repre-
sentation. The extension of the data augmented MH algorithm of Scott (2009) is
straightforward, while the extension of the auxiliary mixture sampling approach of
Frühwirth-Schnatter & Frühwirth (2007) involves approximating the logistic distri-
bution by a finite scale mixture of normal distributions (Monahan & Stefanski 1992).

We compare the two new data augmentation samplers with the three existing ones
for several well-known case studies. This exercise reveals that data augmentation
samplers based on the dRUM representation are considerably more efficient in terms
of reducing autocorrelation in the resulting MCMC draws than data augmentation
based on the RUM. Under the dRUM representation, both auxiliary mixture sampling
and data augmented MH sampling are considerably faster than the sampler suggested
by Holmes & Held (2006), making the two new samplers an attractive alternative to
other data augmentation methods.

Since it is often believed that MCMC sampling without data augmentation can
be even more efficient than MCMC sampling with data augmentation, we include
several MH algorithms into our comparison, namely the independence MH sampler
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suggested in Rossi et al. (2005), a multivariate random walk MH with asymptotically
optimal scaling chosen as in Roberts & Rosenthal (2001), and the DAFE-R MH algo-
rithm suggested by Scott (2009). While the independence MH sampler of Rossi et al.
(2005) turns out to be superior to any other MH sampler without data augmentation,
we find for all but one (very well-behaved) case study that our two new dRUM data
augmentation samplers are superior to the independence MH sampler both in terms
of efficiency and in terms of the effective sampling rate.

2 MCMC Estimation Based on Data Augmentation for Binary
Logit Regression Models

Given a sequence y1, . . . ,yN of binary data, the binary logit regression model reads:

Pr(yi = 1|βββ) = πi(βββ) =
exp(xiβββ)

1 + exp(xiβββ )
, (1)

where xi is a row vector of regressors, including 1 for the intercept, and βββ is an
unknown regression parameter of dimension d. Furthermore we assume that, condi-
tional on knowing βββ , the observations are mutually independent.

To pursue a Bayesian approach, we assume that the prior distribution p(βββ ) of βββ
is a normal distribution, Nod(b0,B0) with known hyperparameters b0 and B0. The
posterior density p(βββ |y) of βββ given all observations y = (y1, . . . ,yN) does not have
a closed form:

p(βββ |y)∝ p(βββ)
N

∏
i=1

[exp(xiβββ )]yi

1 + exp(xiβββ )
.

Hence Bayesian estimation relies either on data augmentation, to be discussed in this
section, or on MH sampling, as in Section 4.

2.1 Writing the Logit Model as a Random Utility Model

The interpretation of a logit model as a random utility (RUM) model was introduced
by (McFadden 1974). Two representations of the logit model as a RUM are common.

Let yu
ki be the utility of choosing category k, which is assumed to depend on

covariates xi. The RUM representation corresponding to the logit model reads:

yu
0i = xiβββ 0 + δ0i, δ0i ∼ EV, (2)

yu
1i = xiβββ 1 + δ1i, δ1i ∼ EV, (3)

yi = I{yu
1i > yu

0i},
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where I{·} is the indicator function and δ0i and δ1i are i.i.d. random variables fol-
lowing a type I extreme value (EV) distribution with density:

fEV(δ ) = exp
(
−δ − e−δ

)
, (4)

with expectation E(δ ) = γ and variance V(δ ) = π2/6, where γ = 0.5772 is Euler’s
constant.

Thus category 1 is observed, i.e. yi = 1, iff yu
1i > yu

0i; otherwise yi = 0. To achieve
identifiability, it is assumed that βββ 0 = 0, i.e. βββ = βββ 1, because only the difference
βββ = βββ 1−βββ 0 can be identified.

An alternative way to write the logit model as an augmented model involving
random utilities is the difference random utility model (dRUM), which is obtained
by choosing a baseline category, typically 0, and to consider the model involving the
differences of the utilities:

zi = xiβββ + εi, εi ∼ Lo, (5)
yi = I{zi > 0},

where zi = yu
1i− yu

0i. The error term εi = δ1i− δ0i, being the difference of two i.i.d.
EV random variables, follows a logistic (Lo) distribution, with density:

fLo(ε) =
eε

(1 + eε)2 ,

with E(ε) = 0 and V(ε) = π2/3.
For both representations the binary logit regression model (1) results as the mar-

ginal distribution of yi.

2.2 Data Augmentation Based on the Random Utility Model

Several data augmentation algorithms have been suggested for the logit model, all
of which are based on the interpretation of a logit model as a random utility model.
However, depending on whether the RUM or the dRUM is considered, different data
augmentation algorithms result.

Frühwirth-Schnatter & Frühwirth (2007) and Scott (2009) consider the RUM rep-
resentation (2) for data augmentation and introduce for each i, i = 1, . . . ,N, the latent
utility of choosing category 1, i.e. z = (yu

11, . . . ,y
u
1N), as missing data. Holmes & Held

(2006) use the dRUM representation (5) and introduce the differences in utilities, i.e.
z = (z1, . . . ,zN), as missing data. For both representations, data augmentation leads
to a two-step MCMC sampler which draws from the conditional densities p(z|βββ ,y)
and p(βββ |z,y), respectively.

For both representations it is possible to sample all components of z|βββ ,y simul-
taneously in a simple manner. For the RUM this step reads:
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yu
1i =− log(Ex(1 +λi)+ Ex(λi)(1− yi)) , (6)

where Ex(λ )denotes a random variable from an exponential distribution with density
equal to λ exp(−λy). For the dRUM this step reads:

zi = log(λiUi + yi)− log(1−Ui +λi(1− yi)), (7)

where Ui ∼ Un [0,1]. In both cases λi = exp(xiβββ ).
In contrast to sampling from p(z|βββ ,y), sampling from p(βββ |z,y) is not possible

in closed form, regardless of the underlying representation. Conditional on z, the
posterior of βββ is independent of y and can be derived from regression models (3) or
(5), respectively, which are linear in βββ , but have a non-normal error term. Various
methods have been suggested to cope with this non-normality when sampling the
regression parameter βββ .

Scott (2009) uses an independence MH algorithm where a normal proposal dis-
tribution Nod(bN ,BN) for βββ is constructed by approximating the non-normal error
δ1i appearing in (3) by a normal error with same mean and variance:

bN = BN

(
B0

−1b0 +
6
π2 X′(z− γ)

)
, BN =

(
B0

−1 +
6
π2 X′X

)−1

, (8)

where row i of the (N× d) matrix X is equal to the regressor xi of the logit model
(1). This leads to a very fast sampler, because BN is fixed while running MCMC;
however, the acceptance rate might be low in higher dimensional problems.

Frühwirth-Schnatter & Frühwirth (2007) approximate the density of the EVdistri-
bution in (3) by the density of a finite normal mixture distribution with 10 components
with optimized, but fixed parameters (mr,s2

r ,wr) in component r :

yu
1i = xiβββ + εi, εi|ri ∼ No

(
mri ,s

2
ri

)
, ri ∼MulNom(w1, . . . ,w10). (9)

To perform MCMC estimation they add the latent indicators r = (r1, . . . ,rN) as
missing data. The advantage of this additional data augmentation is that conditional
on z and r, the regression parameter βββ may be sampled from regression model (9),
leading to a normal conditional posterior. To complete MCMC, each indicator ri has
to be sampled from the discrete posterior ri|zi,βββ which is a standard step in finite
mixture modelling.

Holmes & Held (2006) represent the logistic distribution appearing in (5) as an
infinite scale mixture of normals (Andrews & Mallows 1974):

zi = xiβββ + εi, εi|ωi ∼ No(0,ωi) ,
√
ωi/2∼ KS, (10)

where KS is the Kolmogorov–Smirnov distribution. To perform MCMC estimation
they add the latent scaling factorsωωω = (ω1, . . . ,ωN) as missing data. Conditional on
z and ωωω , the regression parameter βββ is sampled from regression model (10), leading
to a normal conditional posterior. To complete MCMC, each scaling factor ωi has
to be sampled from the posterior ωi|βββ ,zi which has no closed form, the density of
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the KS distribution having no closed form either, but only a representation involving
an infinite series. To sample ωi, Holmes & Held (2006) implement a single move
rejection sampling method based on deriving upper and lower squeezing functions
from a truncated series representation of the density of the KS distribution. However,
as will be illustrated by the case studies in Section 5, this rejection sampling step
makes the algorithm computationally intensive and therefore quite slow.

2.3 Two New Samplers Based on the dRUM Representation

The case studies to be discussed in Section 5 demonstrate a remarkable advantage
of Holmes & Held (2006) compared to Frühwirth-Schnatter & Frühwirth (2007),
namely that the autocorrelations of the MCMC draws are in general much smaller,
making the sampler more efficient. This increase in efficiency turns out to be closely
related to using the dRUM rather than the RUM representation of the logit model.

In this paper, we propose two new samplers based on the dRUM representation of
the logit model. They are constructed by applying the ideas underlying Frühwirth-
Schnatter & Frühwirth (2007) and Scott (2009). As will be illustrated by the case
studies, these samplers are much faster than the approach of Holmes & Held (2006),
while the efficiency is about the same. Both are much more efficient than the corre-
sponding ones in the RUM representation.

To apply the ideas underlying Scott (2009) to the dRUM representation, we con-
struct a proposal density for βββ by approximating the error term in (5) by a normal
error with zero mean and variance equal to π2/3. Because a logistic error is closer
to the normal distribution than an error following the EV distribution, it is to be ex-
pected that the acceptance rate for the resulting independence MH algorithm is much
higher than in the RUM model. This expectation is confirmed by our case studies.
Details of this sampler are given in Algorithm 1.

Algorithm 1 Independence Metropolis–Hastings algorithm in the dRUM represen-
tation of a logit model.

Choose starting values for βββ and z = (z1, . . . ,zN) and repeat the following steps:

(a) Propose βββ new from the proposal q(βββ new|z) = Nod (bN ,BN) with moments:

bN = BN

(
B0

−1b0 +
3
π2 X′z

)
, BN =

(
B0

−1 +
3
π2 X′X

)−1

.

Accept βββ new with probability min(α,1), where:

α =
p(z|βββ new)p(βββ new)q(βββ |z)

p(z|βββ )p(βββ )q(βββ new|z) ,

and p(z|βββ ) is the likelihood of model (5):
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p(z|βββ) =
N

∏
i=1

fLo(zi−xiβββ ).

(b) Sample from zi|βββ ,y for i = 1, . . . ,N as in (7). �

To apply the ideas underlying Frühwirth-Schnatter & Frühwirth (2007) to the
dRUM representation, we approximate in (5) the density of the logistic distribution
fLo(εi) by the density of a normal mixture distribution. As fLo(εi) is symmetric
around 0, it is sensible to use a finite scale mixture of normal distributions with all
component means being equal to 0. For a fixed number H of components this mixture
is characterized by component specific variances s2

r and weights wr :

fLo(εi)≈
H

∑
r=1

wr fNo(εi;0,s2
r ). (11)

The contribution of Monahan & Stefanski (1992) to the handbook of the logistic
distribution (Balakrishnan 1992) contains such an approximation. As they use a
different parameterization, the correct weights and variances in (11) are given by
wr = pr and s2

r = 1/(s�
r )

2, where pr and s�
r are the values published in Monahan

& Stefanski (1992, Table 18.4.1). The corresponding parameters are reproduced in
Table 1. We investigate the accuracy of this approximation as well as an alternative
approximation in Subsection 2.4.

In general, we expect the number of components necessary to approximate the
logistic distribution to be smaller than in Frühwirth-Schnatter & Frühwirth (2007),
because the logistic distribution is much closer to the normal distribution than the
EV distribution. In fact, the results in Subsection 2.4 show that the 3-component
approximation of Monahan & Stefanski (1992) gives about the same acceptance
rates as the 10-component approximation in the RUM representation, see Frühwirth-
Schnatter & Frühwirth (2007, Table 2), while choosing H = 6 leads to an extremely
accurate approximation. Thus we recommend choosing H = 3 in larger applications,
where computing time matters, and to work with H = 6 whenever possible.

Having approximated the density of the logistic distribution by a scale mixture of
H normal densities, we obtain a representation of the dRUM similar to (10), but ωi
is drawn with fixed probabilities w1, . . . ,wH from the set {s2

1, . . . ,s
2
H}:

zi = xiβββ + εi, εi|ωi ∼No(0,ωi) , (12)
ωi = s2

ri
, ri ∼MulNom(w1, . . . ,wH).

Note that in this way we approximate the logit model by a very accurate finite scale
mixture of probit models.

Like in Holmes & Held (2006), we add the scaling factors ωωω = (ω1, . . . ,ωN) as
missing data. However, an advantage compared to Holmes & Held (2006) is that
instead of sampling ωi directly, we sample an indicator ri from the discrete posterior
ri|zi,βββ , which can be done in a very efficient manner, and define ωi = s2

ri
. Details of

this sampler are given in Algorithm 2.
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Algorithm 2 Auxiliary mixture sampling in the dRUM representation of a logit
model.

Choose starting values for z = (z1, . . . ,zN) and ωωω = (ω1, . . . ,ωN) and repeat the
following steps:

(a) Sample the regression coefficient βββ conditional on z and ωωω based on the normal
regression model (12) from Nod (bN ,BN) with moments:

bN = BN

(
B0

−1b0 +
n

∑
i=1

xi
′zi/ωi

)
, BN =

(
B0

−1 +
n

∑
i=1

xi
′xi/ωi

)−1

.

(b) For i = 1, . . . ,N, sample from zi|βββ ,y as in (7). Sample the indicator ri conditional
on zi from the discrete density:

Pr(ri = j|zi,βββ) ∝
wj

s j
exp

[
−1

2

(
zi− logλi

s j

)2
]

,

and set ωi = s2
ri

. The quantities (wj,s2
j ), j = 1, . . . ,H are the parameters of the

H component finite mixture approximation tabulated in Table 1. �

2.4 Finite Mixture Approximations to the Logistic Distribution

Monahan & Stefanski (1992) obtained their finite scale mixture approximation by
minimizing the KS-distance between the true and the approximate distribution func-
tion. The results are given in Table 1.

Because the approximation in Frühwirth-Schnatter & Frühwirth (2007) is based on
minimizing the Kullback–Leibler distance between the densities, we redid a related
analysis for the logistic distribution. The fitted components are reported in Table 2.

Similarly as in Frühwirth-Schnatter & Frühwirth (2007), we evaluate the effect
of using different distance measures and different numbers of mixture components
for a simple example, namely Bayesian inference for N i.i.d. binary observations
y1, . . . ,yN , drawn with Pr(yi = 1|β ) = π = eβ/(1 + eβ).

First we run the data augmented MH algorithm as in Algorithm 2, which corre-
sponds to approximating the logistic distribution by the single normal distribution
No

(
0,π2/3

)
, i.e. H = 1. Then the data augmented MH algorithm is refined by

proposing β from an approximate model, where the logistic distribution is approx-
imated by a scale mixture of H normal distributions with H ranging from 2 to 6.
Similarly as in Frühwirth-Schnatter & Frühwirth (2007), we use numerical integra-
tion methods to compute the corresponding expected acceptance rate for various
values of π and N. Table 3 and Table 4 report, respectively, the expected acceptance
rate for the mixture approximation based on Monahan & Stefanski (1992) and the
mixture approximation based on the Kullback–Leibler distance.
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Table 1 Approximation of the density of the logistic distribution by finite scale mixtures of normal
distributions with H components, based on Monahan & Stefanski (1992).

H = 2 H = 3 H = 4 H = 5 H = 6
r s2

r 100wr s2
r 100wr s2

r 100wr s2
r 100wr s2

r 100wr
1 1.6927 56.442 1.2131 25.22 0.95529 10.65 0.79334 4.4333 0.68159 1.8446
2 5.2785 43.558 2.9955 58.523 2.048 45.836 1.5474 29.497 1.2419 17.268
3 7.5458 16.257 4.4298 37.419 3.012 42.981 2.2388 37.393
4 9.701 6.0951 5.9224 20.759 4.0724 31.697
5 11.77 2.3291 7.4371 10.89
6 13.772 0.90745

Table 2 Approximation of the density of the logistic distribution by finite scale mixtures of normal
distributions with H components, based on minimizing the K-L distance.

H = 2 H = 3 H = 4 H = 5 H = 6
r s2

r 100wr s2
r 100wr s2

r 100wr s2
r 100wr s2

r 100wr
1 1.9658 68.966 1.4418 38.834 1.1509 20.638 0.95132 10.159 0.84678 5.8726
2 6.2324 31.034 3.7181 52.719 2.6072 52.008 1.9567 40.842 1.61 28.74
3 9.1139 8.4469 5.6748 25.032 3.8969 36.99 2.8904 36.756
4 11.884 2.3212 7.5025 11.233 5.0772 22.427
5 14.163 0.7753 8.9109 5.8701
6 15.923 0.33466

Table 3 Expected acceptance rate in percent for a Metropolis–Hastings algorithm, based for H = 1
on the normal distribution No

(
0,π2/3

)
and for H > 1 on the scale mixture approximations of

Monahan & Stefanski (1992). N is the number of i.i.d. binary observations, and π is the probability
of observing 1.

π N H
1 2 3 4 5 6

0.05 1 90.990 99.165 99.889 99.984 99.998 100.00
10 89.508 98.628 99.778 99.961 99.994 99.999

100 88.562 97.956 99.630 99.932 99.986 99.997
1000 88.267 97.850 99.549 99.906 99.980 99.996

0.20 1 90.787 99.188 99.889 99.980 99.997 100.00
10 88.491 98.408 99.740 99.957 99.992 99.999

100 88.273 97.831 99.611 99.927 99.986 99.997
1000 88.139 97.697 99.518 99.900 99.979 99.995

0.50 1 90.966 99.207 99.897 99.984 99.998 100.00
10 88.748 98.321 99.724 99.950 99.991 99.998

100 88.289 97.883 99.630 99.929 99.986 99.997
1000 88.236 97.678 99.520 99.899 99.978 99.995

As expected, by increasing the number of components the expected acceptance
rate approaches 100% for both distances. The expected acceptance rates are rather
similar for both distance measure; however, the approximations obtained by Monahan
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Table 4 Expected acceptance rate in percent for a Metropolis–Hastings algorithm, based on a
mixture approximation with H components minimizing the Kullback–Leibler distance. N is the
number of i.i.d. binary observations, and π is the probability of observing 1.

π N H
2 3 4 5 6

0.05 1 98.788 99.786 99.958 99.992 99.992
10 97.996 99.580 99.908 99.981 99.988

100 97.745 99.499 99.879 99.973 99.987
1000 97.732 99.470 99.875 99.972 99.986

0.20 1 98.750 99.791 99.958 99.992 99.992
10 97.909 99.548 99.903 99.979 99.988

100 97.696 99.475 99.875 99.973 99.986
1000 97.618 99.457 99.873 99.972 99.986

0.50 1 98.818 99.798 99.960 99.992 99.992
10 97.846 99.534 99.896 99.979 99.988

100 97.654 99.477 99.873 99.971 99.986
1000 97.625 99.463 99.873 99.971 99.986

& Stefanski (1992) are slightly better than the approximations based on the Kullback–
Leibler distance. Both approximations are already very good for H as small as 3 and
are extremely accurate for H = 6.

Note that the mixture approximation is applied not only once, but N times. Both
tables show how the approximation error accumulates with increasing N. Again, we
find that the mixture approximations derived by Monahan & Stefanski (1992) are
slightly more reliable in this respect than the mixture approximations based on the
Kullback–Leibler distance.

3 MCMC Estimation Based on Data Augmentation for the
Multinomial Logit Regression Model

Let {yi} be a sequence of categorical data, i = 1, . . . ,N, where yi is equal to one of
m + 1 unordered categories. The categories are labeled by L = {0, . . . ,m}, and for
any k the set of all categories but k is denoted by L−k = L\ {k}.

We assume that the observations are mutually independent and that for each k ∈ L
the probability of yi taking the value k depends on covariates xi in the following way:

Pr(yi = k|βββ 0, . . . ,βββm) = πki(βββ 0, . . . ,βββm) =
exp(xiβββ k)

m

∑
l=0

exp(xiβββ l)
, (13)

where βββ 0, . . . ,βββm are category specific unknown parameters of dimension d. To
make the model identifiable, the parameter βββ k0

of a baseline category k0 is set equal
to 0: βββ k0

= 0. Thus the parameter βββ k is in terms of the change in log-odds relative to
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the baseline category k0. In the following, we assume without loss of generality that
k0 = 0. To pursue a Bayesian approach, we assume that the prior distribution p(βββ k)
of each βββ k is a normal distribution Nod(b0,B0) with known hyperparameters b0 and
B0.

3.1 Data Augmentation in the RUM

As for the binary model, data augmentation is based on writing the multinomial logit
model as a random utility model (McFadden 1974):

yu
ki = xiβββ k + δki, k = 0, . . . ,m, (14)

yi = k ⇔ yu
ki = max

l∈L
yu

li. (15)

Thus the observed category is equal to the category with maximal utility. If the random
variables δ0i, . . . ,δmi appearing in (14) are i.i.d. following an EV distribution, then
the multinomial logit model (13) results as the marginal distribution of yi.

Frühwirth-Schnatter & Frühwirth (2007) and Scott (2009) use this RUM for-
mulation of the multinomial logit model to carry out data augmentation based on
introducing the latent utilities as missing data, i.e. z = ((yu

k1, . . . ,y
u
kN),k = 1, . . . ,m).

As for the binary RUM it is possible to sample the latent utilities z|βββ 1, . . . ,βββm,y
simultaneously:

yu
ki =− log

(
− log(Ui)

1 +∑m
l=1λli

− log(Vki)
λki

I{yi �= k}
)

, (16)

where Ui and V1i, . . . ,Vmi are m+ 1 independent uniform random numbers in [0,1],
and λli = exp(xiβββ l) for l = 1, . . . ,m.

3.2 Data Augmentation in the dRUM

An alternative way to write a multinomial model is as a difference random utility
model (dRUM) which is obtained by choosing a baseline category k0 and considering
the model involving the differences of the utilities. This representation is the standard
choice in the MCMC literature on the multinomial probit model, see e.g. McCulloch
et al. (2000) and Imai & van Dyk (2005).

If we write the multinomial logit model as a dRUM, we obtain the following
representation:

zki = xiβββ k + εki, εki ∼ Lo, k = 1, . . . ,m, (17)

yi =
{

0, if maxl∈L−0 zli < 0,

k > 0, if zki = maxl∈L−0 zli > 0,
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where zki = yu
ki−yu

0i and εki = δki−δ0i. The regression parameters appearing in (17)
are identical to the ones appearing in (13), because βββ k0

= βββ 0 = 0.
In contrast to the multinomial probit model, where εεε i = (ε1i, . . . ,εmi)′ follows a

multivariate normal distribution, the vector εεε i appearing in the dRUM representation
of the multinomial logit model has a multivariate logistic distribution with logistic
marginals (Balakrishnan 1992, Section 11.2). While the errors in the RUM repre-
sentation (14) are i.i.d., the errors εki in the dRUM representation (17) are no longer
independent across categories.

This complicates MCMC sampling to a certain degree. Following the MCMC
literature on the multinomial probit model, we could introduce z= ((zk1, . . . ,zkN),k =
1, . . . ,m) as missing data and sample βββ 1, . . . ,βββm|z and z|βββ 1, . . . ,βββm,y. However,
while sampling βββ 1, . . . ,βββm|z is trivial in the multinomial probit model because εεε i is
multivariate normal, this step is non-standard in the multinomial logit model because
εεε i is multivariate logistic.

In the present paper we consider a different way of representing a multinomial
model by differences in utilities. Note that equation (15) may be written as

yi = k ⇔ yu
ki > yu

−k,i, yu
−k,i = max

l∈L−k
yu

li. (18)

Thus category k is observed iff yu
ki is bigger than the maximum of all other utilities.

Now we define for each (fixed) value of k ∈ L−0 the latent variables wki as the
difference between yu

ki and yu
−k,i and construct binary observations dki = I{yi = k}.

Then it is possible to rewrite (18) as a binary model in the dRUM representation:

wki = yu
ki− yu

−k,i, dki = I{wki > 0}. (19)

We term (19) the partial dRUM representation, because dki uses only partial infor-
mation from the original data, namely whether yi is equal to k or not.

It should be mentioned that the partial dRUM representation is not restricted to
the multinomial logit model, but holds for arbitrary error distributions in the RUM
representation (14). However, while the distribution of wki is in general unfeasible,
it has an explicit form for the multinomial logit model. First of all,

exp
(−yu

−k,i
)∼ Ex

(
λ−k,i

)
, λ−k,i = ∑

l∈L−k

λli, (20)

because exp(−yu
−k,i) = minl∈L−k exp(−yu

li), and exp(−yu
li)∼ Ex(λli). We recall that

λli = exp(xiβββ l). (20) may be rewritten as yu
−k,i = log(λ−k,i) + δ−k,i, where δ−k,i

follows an EV distribution. Therefore

wki = yu
ki− yu

−k,i = xiβββ k− log
(
λ−k,i

)
+ δki− δ−k,i,

where δ−k,i and δk,i are i.i.d. following an EV distribution. Thus the multinomial
logit model has the following partial dRUM representation:

wki = xiβββ k− log
(
λ−k,i

)
+ εki, dki = I{wki > 0}, (21)
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where εki ∼ Lo. Evidently, for m = 1, (21) reduces to the dRUM given by (5).
The constant log(λ−k,i) appearing in (21) is independent of βββ k and depends only

on the regression parameters βββ−k of the remaining categories. Thus given zk =
(wk1, . . . ,wkN) and βββ−k, the regression parameter βββ k corresponding to category k
appears only in a linear regression model with logistic errors, given by (21).

Thus the partial dRUM is very useful when implementing MCMC for a multino-
mial model. At each MCMC draw we iterate over the categories for k = 1, . . . ,m.
For each k, the partial dRUM actually is a binary dRUM and we may proceed as in
Subsection 2.3 to sample zk|βββ k,y and βββ k|βββ−k,zk.

Evidently, wki|βββ k,yi is distributed according to a logistic distribution, truncated
to [0,∞) if yi = k, and truncated to (−∞,0] otherwise. Thus wki is sampled as:

wki = log(λ �
kiUki + I{yi = k})− log(1−Uki +λ �

ki I{yi �= k}) ,

where Uki ∼ Un [0,1] and λ �
ki = λki/λ−k,i.

Then βββ k is sampled from the non-normal regression model (21), where the con-
stant log(λ−k,i) is added to both sides of equation (21) to obtain a zero mean error.
To deal with the non-normality of εki, one can apply any of the sampling strategies
discussed in Subsection 2.3 for the dRUM representation of the logit model.

Actually, Holmes & Held (2006) sample βββ k for a multinomial logit model using
the partial dRUM representation, but do not provide a rigorous derivation from a
random utility model as we did above. They represent the logistic distribution of
εki in (21) as an infinite scale mixture of normals and introduce and sample scaling
factors ωki, i = 1, . . . ,N, for all k = 1, . . . ,m. As for the logit model, this sampler is
rather demanding from a computational point of view.

Alternatively, we can apply the ideas underlying Scott (2009) to the partial dRUM
representation (21). This involves sampling βββ k by an independence MH algorithm,
where the proposal is constructed from regression model (21) by replacing the logistic
error term εki by a normal error with the same variance, i.e. π2/3.

Finally, the finite scale mixture approximation of the logistic distribution intro-
duced in Subsection 2.3 may be applied to (21). This involves introducing and sam-
pling indicators rki, i = 1, . . . ,N, for all k = 1, . . . ,m. Because this sampling step can
be implemented in a very efficient way, auxiliary mixture sampling in the partial
dRUM representation turns out to be much more efficient than the related sampler
of Holmes & Held (2006).

4 MCMC Sampling without Data Augmentation

It is generally believed that MCMC samplers based on data augmentation are less
efficient than MCMC samplers without data augmentation. However, we will demon-
strate in Section 5 that the new data augmentation samplers introduced in this paper
are more efficient than commonly used MH algorithms.
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For our comparison we consider the two MH algorithms suggested in Rossi et al.
(2005) and the DAFE-R MH algorithm suggested by Scott (2009). We assume with-
out loss of generality that the baseline is chosen equal to 0 and provide details for the
multinomial model. We use βββ = (βββ 1, . . . ,βββm) to denote the vector of all unknown
regression parameters. The binary model results with m = 1.

Rossi et al. (2005, Section 3.11) discuss various MH algorithms based on the
expected Hessian of the negative log-posterior − log p(βββ |y). The elements of this
matrix read:

−E

(
∂ 2 log p(βββ |y)

∂βββ 2
k

)
= B0

−1 +
N

∑
i=1

xi
′xiπki(βββ )(1−πki(βββ )), (22)

−E
(
∂ 2 log p(βββ |y)
∂βββ k∂βββ l

)
=−

N

∑
i=1

xi
′xiπki(βββ )πli(βββ ).

An alternative approach uses the expected Hessian of the negative log-likelihood
− log p(y|βββ); however, this matrix is rank deficient if for a certain category k, πki = 0
for all i = 1, . . . ,N. Thus, adding the prior information matrix B0

−1 in (22) helps
to stabilize the inverse of the expected Hessian in cases where for a certain k the
probabilities πki are equal or close to 0 for most of the observations.

To obtain a proposal variance-covariance matrix that is independent of βββ , the
probabilities πki(βββ ) are substituted by some estimator, for instance π̂ki = πki(β̂ββ ),
with β̂ββ being the posterior mode. It is useful to write the expected Hessian matrix as:

H = Im⊗B0
−1 +

N

∑
i=1

(Diag(π̂ππ i)− π̂ππ iπ̂ππ i
′)⊗xi

′xi,

where π̂ππ i = (π̂1i · · · π̂mi)′.
Rossi et al. (2005) construct two kinds of MH algorithms based on the matrix

H, namely an independence MH algorithm with a multivariate Student-t proposal
tν(β̂ββ ,H−1) with a small number of degrees of freedom ν , and a random walk
MH algorithm with proposal βββ new|βββ old ∼ Nomd(βββ old,s2H−1) with scaling factor
s2. Roberts & Rosenthal (2001) prove that for a (md)-variate normal posterior dis-
tribution with variance-covariance equal to the identity matrix an asymptotically
optimal scaling is given by s2 = 2.382/(md), with the corresponding optimal accep-
tance rate being equal to 0.234. Since the posterior p(βββ |y) is asymptotically normal
with variance-covariance matrix equal to H−1, we use the following random walk
proposal for βββ :

βββ new|βββ old ∼ Nomd

(
βββ old,

2.382

md
H−1

)
. (23)

Rossi et al. (2005, p.95) suggest to use the scaling factor s2 = 2.932/(md); however,
it turns out that this scaling is inferior to the asymptotically optimal scaling.
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Scott (2009) introduces the so-called DAFE-R MH algorithm which is based on
computing the asymptotic variance-covariance matrix of the augmented posterior
p(βββ |y,z) from the augmented random utility model (3). This variance-covariance
matrix is used as a proposal in a multivariate random walk MH algorithm for the
marginal model. For the binary model this proposal reads:

βββ new|βββ old ∼ Nod

(
βββ old,

(
B0

−1 +
6
π2 X′X

)−1
)

. (24)

The DAFE-R MH algorithm is applied to a multinomial logit model by using the
proposal βββ new

k |βββ old
k ∼Nod(βββ

old
k ,(B0

−1 +6/π2X′X)−1) for single-move sampling of
βββ k from p(βββ k|βββ−k,y).

The proposal used in the DAFE-R MH algorithm has the advantage that the
variance-covariance matrix depends only on X and consequently is very easily com-
puted prior to MCMC sampling, while determining the Hessian H requires estimators
of all unknown probabilities πki. However, since the DAFE-R is a random walk MH
algorithm, it is likely to be inferior to the asymptotically optimal random walk (23),
which is confirmed by the case studies in Section 5.

For a binary model, for instance, the proposal of the asymptotically optimal ran-
dom walk simplifies to:

βββ new|βββ old ∼ Nod

(
βββ old,

(
d

2.382 B0
−1 + X′Diag(a1, . . . ,aN)X

)−1
)

,

where ai = π̂i(1− π̂i)d/2.382. This proposal looks rather similar to the DAFE-R
proposal (24), the main difference being the weight attached to xi

′xi, which is equal
to 6/π2 = 0.6079 rather than ai for the DAFE-R algorithm. Thus if, on average,
6/π2 > ai, the scaling of the DAFE-R algorithm is too small, causing the acceptance
rate to be too high. For instance, if π̂i = 0.5 this happens if d < 14, while for π̂i = 0.1
this happens if d < 38. Thus we expect that the acceptance rate of the DAFE-R
algorithm is too high in small regression models.

5 Comparison of the Various MCMC Algorithms

We apply nine different MCMC samplers to five well-known data sets. The (binary)
nodal involvement data (Chib 1995) is a small data set (N = 53) with a small set of
regressors (d = 5). The (binary) heart data (Holmes & Held 2006) is a medium sized
data set (N = 270) with a larger set of regressors (d = 14). The (binary) German
credit card data (Holmes & Held 2006) is a large data set (N = 1000) with a large
number of regressors (d = 25). The (multinomial) car data (Scott 2009) is a medium
sized data set (N = 263) with 3 categories and a small set of regressors (d = 4).

Finally, we consider the (multinomial) Caesarean birth data of Fahrmeir & Tutz
(2001, Table 1.1), where the outcome variable has 3 categories (no infection and two
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type of infections) and N = 251. The data are organized as a three-way contingency
table with eight factor combinations. The table is very unbalanced with a few cells
containing a large fraction of the data, while other cells are empty. This makes
statistical inference quite a challenge, and for illustration we fit a saturated logit
model, i.e. d = 8.

For all examples, we take an independent standard normal prior for each regres-
sion coefficient and use each MCMC method to produce M = 10000 draws from
the posterior distribution after running burn-in for 2000 iterations. All implementa-
tions are carried out using Matlab (Version 7.3.0) on a notebook with a 2.0 GHz
processor.

Naturally, we prefer fast samplers being nearly as efficient as i.i.d. sampling
from the posterior p(βββ |y). Thus in Tables 5– 9 we summarize for each data set the
performance of the various samplers in CPU time TCPU (in seconds) needed to obtain
the M draws (excluding burn-in) and the efficiency compared to i.i.d. sampling.

To evaluate the loss of efficiency, we compute for each regression coefficient βk j,
k = 1, . . . ,m, j = 1, . . . ,d the inefficiency factor

τ = 1 + 2 ·
K

∑
h=1
ρ(h),

where ρ(h) is the empirical autocorrelation of the MCMC draws of that particular
regression parameter at lag h. The initial monotone sequence estimator of Geyer
(1992) is used to determine K, based on the sum of adjacent pairs of empirical
autocorrelationsΦ(s) = ρ(2s)+ρ(2s+1). If n is the largest integer so thatΦ(s) >
0 and Φ(s) is monotone for s = 1, . . . ,n, then K is defined by K = 2n + 1. We
determine for each regression coefficient the effective sample size ESS (Kass et al.
1998) according to ESS = M/τ . The closer ESS is to M, the smaller is the loss of
efficiency. In Tables 5– 9 we report the median ESS for all regression coefficients,
as well as the minimum and the maximum.

To compare a slow, but efficient sampler with a fast, but inefficient sampler,
we consider for each regression coefficient the effective sampling rate ESR (per
second), defined as ESR = ESS/TCPU, and report the median ESR for all regression
coefficients, as well as the minimum and the maximum. The median ESR is the
most significant number in comparing the different MCMC samplers: the higher the
median, the better the sampler.

We analyze three samplers using data augmentation in the dRUM, namely the
sampler of Holmes & Held (2006) (dRUM-HH), our new auxiliary mixture sampler
which substitutes the logistic distribution by the finite scale mixture approximation
of Monahan & Stefanski (1992) with H = 3 and H = 6 (dRUM-FSF), and the new
data augmented MH sampler which uses the posterior of the approximate standard
linear regression model as proposal in the spirit of Scott (2009) (dRUM-Scott). We
consider two samplers using data augmentation in the RUM, namely the auxiliary
mixture sampler of Frühwirth-Schnatter & Frühwirth (2007) (RUM-FSF) and the
original data augmented MH sampler of Scott (2009) (RUM-Scott). Finally, we
consider the various random walk MH algorithms discussed in Section 4, namely
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Table 5 Comparing MCMC samplers for the nodal involvement data (N = 53, d = 5, m = 1); based
on M = 10000 draws after burn-in of 2 000 draws.

a TCPU ESS (total draws) ESR (draws/s)
Sampler (%) (s) min med max min med max
dRUM-HH 25.4 3459.0 3883.5 4948.7 136.2 152.9 194.8
dRUM-FSF (H = 3) 5.1 3616.2 4025.1 4162.7 707.8 787.8 814.8
dRUM-FSF (H = 6) 5.5 3862.3 3986.1 4298.3 708.3 731.0 788.2
dRUM-Scott 71.5 2.9 3035.6 3156.4 3229.4 1061.8 1104.0 1129.6
RUM-FSF 8.7 213.6 233.4 305.7 24.6 26.9 35.3
RUM-Scott 32.9 3.6 459.6 533.8 593.5 126.2 146.6 163.0
MH-Rossi 14.5 3.7 837.8 884.8 1042.5 225.3 237.9 280.3
MH-RR 29.8 3.1 552.5 652.9 754.6 181.3 214.3 247.7
MH-Scott 54.4 3.0 339.5 450.6 477.4 111.5 147.9 156.7

Table 6 Comparing MCMC samplers for the heart data (N = 270, d = 14, m = 1); based on
M = 10000 draws after burn-in of 2 000 draws.

a TCPU ESS (total draws) ESR (draws/s)
Sampler (%) (s) min med max min med max
dRUM-HH 94.3 863.2 1379.6 6225.6 9.2 14.6 66.0
dRUM-FSF (H = 3) 12.1 808.8 1432.4 5569.0 66.7 118.1 459.3
dRUM-FSF (H = 6) 14.7 931.6 1432.0 6196.7 63.4 97.4 421.5
dRUM-Scott 43.7 6.2 446.0 778.6 2037.7 72.3 126.2 330.2
RUM-FSF 31.0 57.2 94.0 868.5 1.84 3.03 28.0
RUM-Scott 5.6 7.5 17.0 30.7 156.1 2.3 4.1 20.8
MH-Rossi 18.0 5.5 320.6 421.2 588.1 58.6 77.0 107.5
MH-RR 27.0 4.8 212.1 255.2 300.7 44.5 53.6 63.1
MH-Scott 43.1 4.6 129.8 194.9 500.5 28.1 42.2 108.2

the independence MH sampler of Rossi et al. (2005) (MH-Rossi), the asymptotically
optimal random walk MH sampler of Roberts & Rosenthal (2001) (MH-RR), and
the DAFE-R algorithm of Scott (2009) (MH-Scott).

We start the various MCMC samplers in the following way. All MH algo-
rithms (with and without data augmentation) as well as all partial dRUM sam-
plers for the multinomial logit model need a starting value for βββ k, k = 1, . . . ,m,
which is set to 0. All data augmentation samplers need starting values for z. For
binary models starting values for z are sampled under the RUM representation from
(6) and under the dRUM representation from (7) using λi = log π̂ − log(1− π̂),
where π̂ = min(max(∑N

i=1 yi/N,0.05),0.95). For multinomial models starting val-
ues for z are sampled from (16) with λ0i = 1 and λli = log π̂l − log(1− π̂l), where
π̂l = min(max(∑N

i=1 I{yi = l}/N,0.05),0.95) for l = 1, . . . ,m. These values are trans-
formed according to (19) to obtain starting values for wki in the partial dRUM rep-
resentation. Finally, all elements of the latent scaling factorsωωω are initialized with 1
for dRUM-HH, with π2/3 for dRUM-FSF, and with π2/6 for RUM-FSF.

Not surprisingly, we find for all data sets that MH sampling without data aug-
mentation is faster than any data augmentation sampler in terms of CPU time TCPU.
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Table 7 Comparing MCMC samplers for the German credit card data (N = 1000, d = 25, m = 1);
based on M = 10000 draws after burn-in of 2 000 draws.

a TCPU ESS (total draws) ESR (draws/s)
Sampler (%) (s) min med max min med max
dRUM-HH 333.4 1556.0 2325.7 3494.4 4.7 7.0 10.5
dRUM-FSF (H = 3) 41.8 1573.5 2313.5 3780.1 37.7 55.4 90.4
dRUM-FSF (H = 6) 61.5 1666.9 2268.3 3872.2 27.1 36.9 63.0
dRUM-Scott 30.4 21.6 592.6 824.4 1090.8 27.4 38.2 50.5
RUM-FSF 134.2 91.5 133.7 261.5 0.68 1.00 1.95
RUM-Scott 0.8 25.0 9.7 11.8 26.1 0.39 0.47 1.0
MH-Rossi 7.1 11.2 117.3 178.5 290.9 10.4 15.9 25.9
MH-RR 25.0 11.1 92.5 138.2 188.0 8.3 12.5 17.0
MH-Scott 22.0 10.4 103.9 149.8 189.2 10.0 14.4 18.1

Table 8 Comparing MCMC samplers for the car data (m = 2, N = 263, d = 3); based on M = 10000
draws after burn-in of 2 000 draws.

a TCPU ESS (total draws) ESR (draws/s)
Sampler (%) (s) min med max min med max
dRUM-HH 182.5 1716.8 2558.2 3020.5 9.4 14.0 16.6
dRUM-FSF (H = 3) 20.9 1831.7 2535.8 3200.5 87.6 121.2 153.0
dRUM-FSF (H = 6) 27.20 1570.9 2307.6 2942.4 57.8 84.8 108.2
dRUM-Scott 70.2 13.0 1468.3 2101.1 2662.8 113.4 162.2 205.6
RUM-FSF 46.6 111.3 171.8 253.2 2.4 3.7 5.4
RUM-Scott 33.8 9.5 289.8 388.7 472.8 30.6 41.1 49.9
MH-Rossi 57.4 6.0 3158.0 3323.7 3899.0 526.3 554.0 649.8
MH-RR 27.2 5.3 366.2 397.2 499.1 69.3 75.2 94.5
MH-Scott 61.7 10.2 269.4 365.1 527.0 26.5 35.8 51.7

To evaluate any MH sampler (with or without data augmentation) we report addi-
tionally the acceptance rate a, which is averaged over the categories for MH-Scott
for multinomial models. For both random walk MH samplers a should be close to
the asymptotically optimal rate of 0.234, which is actually the case for MH-RR with
the exception of the Caesarean birth data in Table 9. The acceptance rate of MH-
Scott deviates from the asymptotically optimal rate for all examples but the German
credit card data in Table 7, which causes the effective sample size and the effective
sampling rate to be smaller than for MH-RR.

With the exception of the Caesarean birth data, MH-Rossi outperforms the other
MH samplers without data augmentation in terms of effective sample size and effec-
tive sampling rate. This is true even for the German credit data where the acceptance
rate is as low as 7.1%. In general, the acceptance rate of MH-Rossi varies consider-
ably across the various case studies, being pretty high for the car data in Table 8 and
being extremely small for the Caesarean birth data in Table 9.

For the Caesarean birth data the Hessian matrix is very ill-conditioned due to the
unbalanced data structure mentioned earlier, leading to a very low acceptance rate
both for MH-Rossi and MH-RR. For this particular data set MH-Scott outperforms
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Table 9 Comparing MCMC samplers for the Caesarean birth data (m = 2, N = 251, d = 8); based
on M = 10000 draws after burn-in of 2 000 draws.

a TCPU ESS (total draws) ESR (draws/s)
Sampler (%) (s) min med max min med max
dRUM-HH 177.8 1153.4 2643.1 4553.1 6.5 14.9 25.6
dRUM-FSF (H = 3) 21.0 1195.2 2587.8 4621.8 56.8 123.0 219.8
dRUM-FSF (H = 6) 26.4 1125.5 2777.4 4765.0 42.6 105.1 180.2
dRUM-Scott 63.9 12.3 714.9 1790.8 3084.8 58.4 146.2 251.8
RUM-FSF 42.1 148.6 344.1 899.6 3.5 8.2 21.4
RUM-Scott 23.4 10.2 213.5 389.9 729.2 21.0 38.3 71.6
MH-Rossi 2.0 5.7 37.0 89.1 120.0 6.5 15.5 20.9
MH-RR 3.9 4.9 22.8 50.0 83.5 4.7 10.3 17.1
MH-Scott 39.8 9.7 254.7 354.1 486.7 26.3 36.6 50.3

the other MH samplers, because it avoids the Hessian when constructing the variance-
covariance matrix of the proposal density.

When comparing the various data augmentation samplers in the RUM and in the
dRUM representation, we find for all case studies that both the effective sample size
and the effective sampling rate are considerably higher for the dRUM representation
than for the RUM representation, leading to the conclusion that data augmentation
in the RUM should be avoided.

Among the data augmentation samplers in the dRUM representation, data aug-
mented MH based on the approximate normal proposal (dRUM-Scott) is the fastest.
As expected, the acceptance rate a, which should be as high as possible, is con-
siderably larger for dRUM-Scott than under the RUM representation (RUM-Scott),
because the logistic distribution underlying the dRUM is much closer to a normal
distribution than the extreme value distribution underling the RUM. For the Ger-
man credit data in Table 7, for instance, the acceptance rate increases from 0.8% for
RUM-Scott to 30.4% for dRUM-Scott.

Compared to dRUM-Scott, the other two dRUM data augmentation samplers are
slower, because both dRUM-HH and dRUM-FSF introduce the latent scaling factors
ωωω as a second set of auxiliary variables. We find that dRUM-HH requires much more
computation time than dRUM-FSF, even if the latter uses the very accurate mixture
approximation with six components, while the efficiency in terms of effective sample
size is more or less the same. This makes our new dRUM auxiliary mixture sampler
much more efficient in terms of effective sampling rate than the sampler of Holmes
& Held (2006).

Interestingly the effective sample size of dRUM-HH and dRUM-FSF is larger
than dRUM-Scott. Introducing the latent scaling factors ωωω allows dRUM-HH and
dRUM-FSF to accept βββ at each sweep of the MCMC sampler, because a conditional
Gibbs step is implemented. In contrast to that dRUM-Scott uses an MH update for βββ ,
meaning that the sampler is stuck at the current value with probability 1−a, which
increases the autocorrelation in the MCMC sample.
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When we compare our new dRUM data augmentation samplers, we find that they
outperform any other data augmentation sampler in terms of the effective sampling
rate. With the exception of the car data in Table 8, the samplers even outperform the
independence MH sampler of Rossi et al. (2005). The relatively high acceptance rate
of MH-Rossi for the car data explains its superiority for this particular example.

Finally, we discuss the performance of our new samplers in relation to each other.
While dRUM-Scott is faster, dRUM-FSF has a higher effective sample size. The
effective sampling rate is higher for dRUM-Scott with the exception of the German
credit card data in Table 7, where the acceptance rate of dRUM-Scott is smaller than
in the other examples. It appears from the various tables that an acceptance rate of
dRUM-Scott above 40% makes the sampler more efficient in terms of the effective
sampling rate than dRUM-FSF.

Because the coding of dRUM-Scott is extremely simple, we recommend to make
this new data augmented MH sampler the first choice. However, while there is no
tuning in the proposal of dRUM-Scott — which makes it easy to implement —
there is, on the other hand, no control over the acceptance rate. Thus the acceptance
rate may be arbitrarily small, depending on the particular application. Thus, if the
acceptance rate turns out to be considerably smaller than say 40%, it is to be expected
that dRUM-FSF is more efficient and should be the method of choice.

6 Concluding Remarks

In this paper we have introduced yet two other data augmentation algorithms for
sampling the parameters of a binary or a multinomial logit model from their posterior
distribution within a Bayesian framework. They are based on rewriting the underlying
random utility model in such a way that only differences of utilities appear in the
model. Applications to five case studies reveal that these samplers are superior to
other data augmentation samplers and to Metropolis–Hastings sampling without data
augmentation.

We have confined our investigations to the standard binary and multinomial logit
regression model; however, we are confident that our new samplers will be of use
for the MCMC estimation of more general latent variable models such as analyzing
discrete-valued panel data using random-effects models, or analyzing discrete-valued
time series using state space models. For latent variable models, auxiliary mixture
sampling in the dRUM representation is of particular relevance, because introducing
the auxiliary latent variables z andωωω leads to a conditionally Gaussian model, which
allows efficient sampling of the random effects or the state vector.

Furthermore, dRUM auxiliary mixture sampling could be useful for Bayesian
variable selection in binary data analysis simply by replacing less efficient samplers
such as the Holmes & Held (2006) sampler, which was used in the same paper for
variable selection in logistic regression models, and the RUM auxiliary mixture sam-
pling, which was used in Tüchler (2008) for covariance selection in panel data models
with random effects. Furthermore, it could be applied to the stochastic variable se-
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lection approach of Frühwirth-Schnatter & Wagner (2009) for state space modelling
of binary time series.

It remains an open issue whether representations comparable to the dRUM exist for
more general discrete-valued distributions. Frühwirth-Schnatter et al. (2009) improve
auxiliary mixture sampling for data from a binomial or multinomial distribution
by using an aggregated RUM representation instead of the RUM representation of
the underlying individual binary experiments. It seems worth investigating whether
auxiliary mixture sampling for such data can be improved further using an aggregated
version of the dRUM representation; however, we leave this issue for further research.

Acknowledgements The first author’s research is supported by the Austrian Science Foundation
(FWF) under the grant S 10309-G14 (NRN “The Austrian Center for Labor Economics and the
Analysis of the Welfare State”, Subproject “Bayesian Econometrics”).

References

Albert, J. H. & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data,
Journal of the American Statistical Association 88: 669–679.

Andrews, D. F. & Mallows, C. L. (1974). Scale mixtures of normal distributions, Journal of the
Royal Statistical Society, Ser. B 36: 99–102.

Balakrishnan, N. (ed.) (1992). Handbook of the Logistic Distribution, Marcel Dekker, New York.
Chib, S. (1995). Marginal likelihood from the Gibbs output, Journal of the American Statistical

Association 90: 1313–1321.
Dellaportas, P. & Smith, A. F. M. (1993). Bayesian inference for generalized linear and proportional

hazards models via Gibbs sampling, Applied Statistics 42: 443–459.
Fahrmeir, L. & Kaufmann, H. (1986a). Asymptotic inference in discrete response models, Statistical

Papers 27: 179–205.
Fahrmeir, L. & Kaufmann, H. (1986b). Consistency and asymptotic normality of the maximum

likelihood estimator in generalized linear models, The Annals of Statistics 13: 342–368.
Fahrmeir, L. & Tutz, G. (2001). Multivariate Statistical Modelling based on Generalized Linear

Models, Springer Series in Statistics, 2nd ed., Springer, New York/Berlin/Heidelberg.
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Generalized Semiparametric Regression with
Covariates Measured with Error

Thomas Kneib, Andreas Brezger and Ciprian M. Crainiceanu

Abstract We develop generalized semiparametric regression models for exponential
family and hazard regression where multiple covariates are measured with error and
the functional form of their effects remains unspecified. The main building blocks in
our approach are Bayesian penalized splines and Markov chain Monte Carlo simu-
lation techniques. These enable a modular and numerically efficient implementation
of Bayesian measurement error correction based on the imputation of true, unob-
served covariate values. We investigate the performance of the proposed correction
in simulations and an epidemiological study where the duration time to detection of
heart failure is related to kidney function and systolic blood pressure.

Key words: additive hazard regression; generalized additive models; MCMC; mea-
surement error correction; penalized splines

1 Introduction

The presence of covariates measured with error in regression models can have severe
impact on inferential conclusions drawn from naive estimates. This is particularly
true for semiparametric regression models where the relation between responses and
covariates is specified flexibly and therefore also more prone to disturbances induced
by measurement error. A common phenomenon in naive analyses are estimates that
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are biased towards zero and therefore underestimate effects. In particular, in semi-
parametric regression models it will be more difficult to detect local extrema of a
functional relationship and curvature will be underestimated. In general, the effect
of measurement error is insidious and leads to biased estimates, misspecified vari-
ability and feature masking (Carroll et al. 2006). Hence, it is likely to erroneously
conclude that covariates are not associated with the response variable or to obtain
false conclusions about the precise functional form of relationships.

Based on work by Berry et al. (2002) for Gaussian scatterplot smoothing, we
develop a flexible Bayesian correction procedure based on Markov chain Monte
Carlo (MCMC) simulations for general semiparametric exponential family and haz-
ard regression models. The key ingredient is the imputation of the unobserved, true
covariate values in an additional sampling step, an idea dating back to Stephens &
Dellaportas (1992) and Richardson & Gilks (1993), see also Gustafson (2004). The
Bayesian approach considered in this paper combines a number of distinct advan-
tages:

Flexibility in terms of the response type: A wide range of response types is sup-
ported, including exponential family regression (e.g. Binomial or Poisson responses)
as well as right-censored continuous-time survival times. This is made possibly by
the consideration of a iteratively weighted least squares proposals for the regression
coefficients (Gamerman 1997, Brezger & Lang 2006), a proposal scheme that relies
on Gaussian approximations of the full conditionals.

Flexibility in terms of the model equation: All nonparametric model compo-
nents are specified flexibly in terms of Bayesian penalized splines (Brezger &
Lang 2006, Jullion & Lambert 2007). The modular structure of Bayesian computa-
tions based on MCMC enables the consideration of models where several covariates
are measured with error in combination with further nonparametric effects of covari-
ates observed exactly. Spatial effects, varying coefficient terms, or random effects
are readily available as additional model components and are also included in our
software.

Flexibility in terms of the measurement error equation: Based on the classical
model of uncorrelated additive Gaussian measurement error, longitudinally corre-
lated repeated observations on the measurement error equation or other extended
measurement error models could easily be included.

Numerically efficient implementation: Sparse matrix computations and efficient
storage schemes in combination with data compression based on rounding provide
a rather fast estimation procedure. This, in particular, allows us to consider more
complex applications with large sample size and extensive simulation setups.

In the application that motivated our research, the duration until detection of heart
failure is analyzed in a hazard regression model that includes nonlinear effects of kid-
ney function measured by the glomerular filtration rate (GFR) and systolic pressure
(SP). Both covariates are inherently subject to measurement error due to different
reasons: while SP is measured with error due to the relatively imprecise instruments
involved in standard hemodynamometry,GFR can only be obtained accurately based
on a time-consuming, awkward procedure; thus, in practice, this procedure is replaced
with an estimate (eGFR) predicted from creatinine, gender and age (Hsu et al. 2005).
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The prediction equation has been derived from a regression model and an estimate
of the measurement error variance is also available from a replication study. In case
of SP, the measurement error variance is available from previous studies. The sample
size of 15,000 observations and two covariates measured with error make this appli-
cation challenging, since we are faced with the imputation of 30,000 true covariate
values and the re-evaluation of the corresponding parts of the design matrix in each
iteration.

2 Semiparametric Regression Models with Measurement Error

2.1 Observation Model

In a generalized semiparametric regression models (see for example Ruppert et al.
(2003), Fahrmeir et al. (2004) or Wood (2006)), the expectation of (conditionally)
independent responses yi, i, . . . ,n, from univariate exponential families is related to
an additive predictor

ηi = f1(xi1)+ . . .+ fr(xir)+ v′iγ (1)

based on a response function h, i.e. μi = E(yi|ηi) = h(ηi). The predictor is addi-
tively composed of smooth functions f1, . . . , fr of continuous covariates x1, . . . ,xr in
combination with parametric effects γ of further, typically categorical covariates v.
For hazard regression models employed in survival analysis, data are given in the
form of (conditionally) independent survival data (ti,δi), i = 1, . . . ,n where ti is the
(right-censored) observed survival time and δi is the censoring indicator. Extending
the classical Cox model, semiparametric hazard regression models (Hennerfeind et
al. 2006, Kneib & Fahrmeir 2007) can then be specified as λi(t) = exp(ηi(t)) where

ηi(t) = g0(t)+ f1(xi1)+ . . .+ fr(xir)+ v′iγ

is a semiparametric predictor consisting of the log-baseline hazard rate g0(t), r
smooth functions of continuous covariates, and linear effects summarized in v′γ .
The time-dependent function g0(t) relates to the baseline hazard rate λ0(t) in the
Cox model via λ0(t) = exp(g0(t)). In contrast to usual partial likelihood estimation,
determination of the baseline hazard rate will be an integral part of model estimation
in our framework. In particular, estimation will be based on the full instead of the
partial likelihood.

Estimation of the nonlinear functions f j(x j) is frequently complicated by the fact
that in applications the corresponding covariates x j are not observed exactly so that
only contaminated surrogate variables are available. Naive estimates based on these
surrogate variables will then be oversmoothed leading to estimates that are biased
towards “no effect” models. In the following, we assume that the first r1 covariates
x1, . . . ,xr1 are subject to measurement error while the remaining r2 = r−r1 covariates
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xr1+1, . . . ,xr are observed exactly. In particular, we allow for several covariates x j
measured with error.

2.2 Measurement Error Model

In the classical measurement error model (Carroll et al. 2006), the true measure-
ments of the covariates are contaminated by i.i.d. Gaussian noise, leading to the
measurement of proxy variables

w(m)
i j = xi j + u(m)

i j , m = 1, . . . ,M

where u(m)
i j ∼N(0,τ2

u, j). In our modeling framework, we allow for the possibility of
repeated measurements (indexed by m = 1, . . . ,M) on a covariate. For simplicity, we
assume that the measurement error contaminations are mean zero and independent,
i.e. ui j = (u(1)

i j , . . . ,u(M)
i j )′ ∼N(0,τ2

u, jIM). However, the MCMC sampling mechanism
presented in Section 3 can straightforwardly be extended to more general situations
where ui j ∼ N(μ ,Σ ). Inclusion of covariances in Σ could for example be useful
in combination with a longitudinal collection of the repeated measurements where
Σ contains an equicorrelation or autoregressive correlation structure (see Wang &
Pepe (2000) for such an example). Non-zero expectations μ can, for example, be
employed to adjust for measurement bias in the repeated observations.

2.3 Prior Distributions

To complete the Bayesian specification, suitable priors have to be assigned to all
model parameters. In the Bayesian perspective on the model, the unknown true
covariate values xi j are treated as additional unknowns and imputation becomes a part
of the MCMC algorithm. For the fixed effects γ , we assume standard noninformative
priors, i.e. p(γ) ∝ const. In contrast, we assign informative priors to the smooth
function to enforce smoothness of the corresponding estimates.

2.3.1 P-spline Priors

A parsimonious yet flexible modelling possibility for nonparametric function esti-
mation are penalized splines as popularized by Eilers & Marx (1996) and exten-
sively discussed in Ruppert et al. (2003). In our Bayesian framework, we employ the
Bayesian analogue developed by Brezger & Lang (2006). For the sake of simplicity,
we drop the function index j in the following description. To represent f (x) (or g0(t)
in case of hazard regression models) in terms of a flexible but finite dimensional class
of functions, we assume that it can be expanded in B-splines of leading to the basis
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function representation

f (x) =
K

∑
k=1
βkBl

k(x)

where Bl
k(x) are B-spline basis functions of degree l defined upon a set of knots

κ1 < .. . < κK , and βk are the corresponding regression coefficients. In the classical
frequentist formulation of P-splines, smoothness of the functions f (x) is enforced
by adding a squared difference penalty of order d to the likelihood that essentially
penalizes large variation in terms of the d-th derivative. In a Bayesian formulation,
d-th order differences are replaced by d-th order random walks, e.g.

βk−βk−1 ∼ N(0,τ2
βωk)

for first order random walks in the most simple case. This prior specification cor-
responds to local increments in the coefficient sequence with expectation zero and
deviations controlled by the variance τ2

β and the distance between the corresponding
knots ωk = κk − κk−1. The underlying rationale of the latter choice is that larger
steps between two knots should also be reflected in the prior in allowing for larger
variation. In contrast, the variance parameter τ2

β controls the overall variability of
the function estimate with small values corresponding to very flat estimates whereas
large values yield very flexible estimates. The weighted first order random walk can
also be interpreted as a discrete approximation to continuous Brownian motion that
yields a similar structure of the variance. Weighted second order random walks are
also available (see Fahrmeir & Lang (2001)) but are less suitable in the context of
measurement error correction since they enforce too smooth function estimates.

In combination with flat priors on the initial parameters, the joint distribution
of the vector of regression coefficients β = (β1, . . . ,βK)′ can be deduced from the
random walk specifications as the multivariate Gaussian distribution

p(β |τ2
β ) ∝ exp

(
− 1

2τ2
β
β ′Kβ

)
.

The precision matrix K is also derived from the univariate random walk priors. For a
first order random walk it can be represented as K = D′ΩD, where D is a first order
difference matrix and Ω = diag(ω2, . . . ,ωK) contains the knot distances as weights.

In case of smoothing without measurement error, cubic P-splines (i.e. splines of
degree l = 3) with approximately 20 equidistant knots and second order random walk
prior have proven to be a useful standard choice (Brezger & Lang 2006). However,
exploratory simulations showed that this claim no longer holds when measurement
error is present. In particular, the high degree of the spline basis and the second order
random walk enforce smoothness of the function estimates. Since measurement error
in general leads to an attenuation of functional relationships, i.e. functions appear
smoother than under the true relationship, a suitable prior in measurement error
correction has to allow for more flexibility. In addition, choosing equidistant knots
has the disadvantage that the prior variance of the random walk remains constant over
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the whole domain of the covariate. When correcting for measurement error, adaptive
priors with more variability in areas where a lot of observations have been collected
mostly showed a better performance. In summary, we found linear splines with 20
quantile-based knots and (weighted) first order random walk prior to be a suitable
default choice for nonparametric smoothing of covariates with measurement error.
Cheng & Crainiceanu (2009) also support the choice of linear splines in showing
that the full conditionals both for the regression coefficients and the true covariate
values are then log-concave.

On a further stage of the hierarchy, a hyperprior is assigned to the variance para-
meter τ2

β to allow for a data-driven amount of smoothness. Since the random walk
prior is multivariate Gaussian, a computationally attractive choice is the conjugate in-
verse gamma prior τ2

β ∼ IG(a,b) that leads to a simple Gibbs update for the variance
parameter.

A further generalisation of the model can be achieved by allowing for prior uncer-
tainty in the knot positions as in the adaptive spline smoothing approaches by Denison
et al. (1998) or Biller (2000). However, in most situations it will be sufficient to either
assign a smoothness prior to the regression coefficients (provided that the basis is
sufficiently rich) or to allow for data-driven determination of the knot placements
(see also the supporting simulation results in Brezger & Lang (2006)). In combi-
nation with measurement error correction we found it advantageous to fix the knot
positions since this avoids additional re-evaluations when imputing the unobserved
covariate values.

2.3.2 Measurement Error Priors

For the covariates with measurement error, a prior for the true covariate values has
to be specified, since they will be treated as additional unknowns in the Bayesian
inferential procedure. A flexible default choice is given by the Gaussian distribution

xi j ∼ N(μx, j ,τ2
x, j).

Assigning hyperpriors to the parameters such as μx, j ∼ N(0,τ2
μ) with τ2

μ fixed at
a large value and τ2

x, j ∼ IG(a,b) allows the prior to accommodate to a variety of
data-generating processes. In particular, the prior for the expectation is essentially
noninformative when assuming a large value for the hypervariance τ2

μ .
Note that treating the true covariate values as unknown parameters is not only a

computational trick to obtain a fully specified model within the MCMC sampler, but
allows inferences to be drawn about the true covariate values. In particular, we obtain
a sample from the posterior of the true covariate values allowing to investigate for
example the precision of the correction or whether the true covariate value exceeds
a certain threshold.

Finally, a prior may be assigned to the measurement error variances, if uncertainty
about the τ2

u, j has to be incorporated. In combination with the Gaussian contamina-
tion error, again an inverse gamma prior τ2

u, j ∼ IG(a,b) is a suitable default choice.
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Note, however, that reliable estimation of τ2
u, j will typically require a larger number

of repeated measurements on the covariates, in particular in non-Gaussian observa-
tion models where the likelihood carries less information on the variability in mea-
surement error than in Gaussian models. In our application, the measurement error
variances are available from replication experiments. Therefore we will also restrict
our attention to the case of known measurement error variances in our simulations.

3 Bayesian Inference

3.1 Posterior & Full Conditionals

Summarizing all unknown quantities in the vector θ and assuming conditional inde-
pendence of the prior distributions, the joint posterior in our class of semiparametric
models can be summarized as

p(θ |data) ∝ p(data|β 1, . . . ,β r,γ ,x1, . . . ,xr) observation model likelihood
r1

∏
j=1

p(wj|x j,τ2
u, j) measurement error likelihood

r1

∏
j=1

p(τ2
u, j) measurement error variance priors

r1

∏
j=1

p(x j|μx, j,τ2
x, j)p(μx, j)p(τ2

x, j) true covariate value priors

r

∏
j=1

p(β j|τ2
β , j)p(τ2

β , j) nonparametric effect priors.

The likelihood is derived under the assumption of conditional independence such
that the complete data likelihood factorises to individual likelihood contributions.
In case of exponential family regression, the likelihood contributions equal the cor-
responding exponential family densities evaluated at the predictor ηi. Assuming
non-informative, random right censored survival times, the complete data likelihood
contributions in hazard regression models with individual hazard rates λi(t) are given
by

Li(ηi) = λi(ti)δi exp
(
−

∫ ti

0
λi(u)du

)
,

see Hennerfeind et al. (2006).
From the posterior, we can now derive the full conditional distributions for all

unknowns to construct a Markov Chain Monte Carlo simulation algorithm. While
Gibbs updates can be derived for several parameters, Metropolis-Hastings steps are
necessary for the regression coefficients and the true covariate values. Since some of
the priors involved in the model specification are (partially) improper, it is not obvious
that the joint posterior will be proper (see for example Hobert & Casella (1996)).
Fahrmeir & Kneib (2009) provide conditions for the propriety of the posterior in
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semiparametric Bayesian regression models without measurement error that will be
fulfilled in most practically situations and we expect these results to carry over to the
case with measurement error.

The full conditional for a true covariate value xi j depends only on the i-th like-
lihood contribution Li(ηi) to the observation model and the i-th contribution to the
measurement error model. Combining this likelihood information with the relevant
priors yields (up to an additive constant) the log-full conditional

log(p(xi j|·)) = li(ηi)− 1
2τ2

u, j

M

∑
m=1

(w(m)
i j − xi j)2− 1

2τ2
x, j

(xi j − μx, j)2

where li(ηi) = log(Li(ηi)) is the i-th log-likelihood contribution. Obviously this full
conditional does not correspond to a known distribution since both the log-likelihood
contributions and the B-spline basis functions are non-linear in the covariate values.
Following Berry et al. (2002) we consider a random walk proposal for imputing the
covariate values where, based on the current value xcurr

i j , a new value is proposed as

xprop
i j = xcurr

i j + ε, ε ∼ N

(
0,

4τ2
u, j

M

)
.

The choice of the random walk variance as being proportional to the measurement
error variance but inverse proportional to the number of replicated measurements
balances between the more precise knowledge about the true value that can be gath-
ered from repeated measurements on the one hand and uncertainty introduced by
large measurement error variance. The constant factor 4 has proven to work well in
practice, according to our experience, but can be adjusted by the user to adapt the
acceptance probabilities if needed.

The Gaussian measurement error model in combination with the conjugate inverse
gamma priors for the measurement error variances, yields full conditionals that are
also inverse gamma, i.e.

τ2
u, j|· ∼ IG

(
a +

nM
2

,b +
1
2

n

∑
i=1

M

∑
m=1

(x(m)
i j − xi j)2

)
.

Similarly, we obtain closed form full conditionals for the true covariate value hyper-
parameters:

μx, j|· ∼ N

(
nx̄ jτ2

μ

nτ2
μ + τ2

x, j
,
τ2

x, jτ2
μ

nτ2
μ + τ2

x, j

)

τ2
x, j|· ∼ IG

(
a +

n
2
,b +

1
2

n

∑
i=1

(xi j − μx, j)2

)

where x̄ j is the empirical mean of the currently imputed true covariate values.
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Finally, the full conditionals for the regression coefficients have to be derived.
Again, these are not available in closed form since the likelihood is non-linear in
the parameters (for non-Gaussian responses). Based on work by Gamerman (1997)
in the context of random effects, Brezger & Lang (2006) propose to construct a
Gaussian approximation to the full conditional by performing one-step of a Fisher
scoring algorithm based on the current sample for β j. More precisely, this leads to
an iteratively weighted least squares (IWLS) proposal for β j based on a Gaussian
distribution with precision matrix and mean

P j = X ′
jWX j +

1
τ2
β , j

K j and m j = P−1
j X ′

jW (ỹ−η− j),

where the diagonal matrixW and the vector of working observations ỹare constructed
in complete analogy to the usual GLM case (compare Fahrmeir & Tutz (2001)) and
η− j = η−X jβ j is the j-th partial residual. Similar expressions are obtained for the
vector of fixed effects, compare Brezger & Lang (2006) for details. The rationale
for the IWLS proposal mechanism is that it automatically adapts to the location and
the curvature of the corresponding full conditional thereby avoiding the necessity
of manually tuning the MCMC sampler. Hennerfeind et al. (2006) describe similar
proposal schemes for hazard regression models. The full conditional of the smoothing
parameters τ2

β , j is again inverse Gamma with updated parameters, i.e.

τ2
β , j|· ∼ IG

(
a +

1
2

rank(K j),b +
1
2
β ′jK jβ j

)
.

3.2 Implementational Details & Software

Though a Metropolis-Hastings sampler can immediately be set up based on the full
conditional distributions and proposals described in the previous section, an efficient
implementation requires careful fine-tuning at several places. This is particularly the
case for nonparametric function estimation involving a large number of regression
coefficients and the measurement error correction problem, where the data, and there-
fore also the design matrices, change in each iteration. A naive implementation in a
general specification language for Bayesian modeling such as WinBUGS or in a high-
level interpreted programming language such as R would therefore be inefficient. As
a consequence, we implemented our methodology as a part of the software package
BayesX (http://www.stat.uni-muenchen.de/˜bayesx, Brezger et al.
(2005)), which has been specifically designed for the estimation of semiparametric
regression models. The computational kernel is implemented in C++, allowing for
an efficient treatment of loop-intensive MCMC simulations. A graphical user inter-
face provides convenient access to the methodology and allows for a flexible model
specification.
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Table 1 Impact of rounding on computing times (in minutes) in the different simulation scenarios.

Digits 1 2 3 4 5
scenario (a) 3:11 7:11 9:56 10:03 10:28
scenario (b) 3:25 7:47 10:22 10:41 10:53
scenario (c) 6:12 14:24 19:41 20:14 20:21
scenario (c’) 5:24 13:50 19:12 20:17 20:25

The computational bottleneck is simulating the regression coefficients of the pe-
nalized splines, in particular for the covariates measured with error. The first difficulty
arises from the fact that for simulating from a K-dimensional multivariate Gaussian
distribution, a K-dimensional system of equations has to be solved in each iteration.
Replacing the simultaneous update with a single move algorithm would speed up
computation but comes at the price of deteriorated mixing and convergence due to
the ignored correlation of the elements in β j. We therefore make use of sparse matrix
computations, since the precision matrix P j is a band matrix, see Rue (2001) and
Brezger & Lang (2006) for details. This approach has the advantage to provide fast
computations while keeping the correlation information included in the proposals.

The second difficulty is specific to the imputation of true covariate values: In each
iteration new values are sampled, requiring the re-evaluation of the design matrix
X j. To shorten computation times, we consider two tricks: Firstly, instead of storing
the complete design matrix, we only store the relevant part of it. Note that B-splines
form a local basis such that in each row of X j there are only l + 2 non-zero entries
(where l denotes the degree of the spline). Since we chose l = 1 as the standard
in measurement error correction, there are actually only three values to be stored
instead of K which is typically in the range of 20 to 40. Furthermore, only rows of
the design matrix corresponding to distinct observed values of x j have to be stored
in combination with an index vector associating the observations with the different
values for x j. This storage scheme allows for a further reduction of computing times
in a second step: Instead of storing the exact covariate values in double precision, we
round them to a user-specified number of decimal places. As a consequence, several
formerly distinct covariate values now coincide so that only a smaller number of
rows of X j has to be stored and re-computed in each iteration. In our simulations and
applications we used two decimal places, a choice that lead to only negligible changes
in the results while making a significant change in computing times in exploratory
analyses. Table 1 provides some exemplary results for different decimal places and
the simulation scenarios considered in the following section. There obviously is a
tremendous gain in computing times for small decimal places, while computing times
level off when using a large precision corresponding to almost no rounding.

Note also that due to the modular structure of MCMC algorithms, computing time
only grows linearly when, for example, increasing the number of covariates subject
to measurement error. Hence, computations with two covariates measured with error
take approximately twice as long as computations with one covariate, which is in
contrast to approaches where a decomposition of the correction problem in separate
sub-problems is not feasible.
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4 Simulations

4.1 Simulation Setup

To assess the properties of the proposed measurement error correction scheme and
the validity of our implementation, we performed an extensive simulation study
investigating model scenarios of increasing complexity:

(a) One covariate with measurement error:

Observation model: ηi = sin(xi)+ viγ,
Measurement error model: wi|xi ∼ N(xi,1),
Further settings: xi ∼ N(0,1), vi ∼ N(0,1), γ = 1.

(b) One covariate measured with error in combination with a further nonparametric
effect:

Observation model: ηi = sin(xi1)+ x2
i2 + viγ,

Measurement error model: wi|xi ∼ N(xi,1),
Further settings: xi1 ∼ N(0,1), xi2 ∼ U(−1,1), vi ∼ N(0,1), γ = 1.

(c) Two covariates measured with error

Observation model: ηi = sin(xi1)+ 0.2x2
i2 + viγ

Measurement error model: wi1|xi1 ∼ N(xi1,1), wi2|xi2 ∼ N(xi2,0.64),
Further settings: xi1 ∼ N(0,1), xi2 ∼ N(0,1), vi ∼ N(0,1), γ = 1.

Model (a) is the most simple one, where only one covariate is measured with error
and the predictor contains only one single additional parametric covariate. In model
(b), a second nonparametric effect is added to the predictor, but the corresponding
covariate is observed exactly. Finally, in scenario (c), the covariate associated with
the second nonparametric effect is also measured with error. Since scenario (c) is
the most demanding one, we re-ran it with two replicated measurements on each of
the covariates x1 and x2 to get an idea of the performance improvement by repeated
observations on the measurement equation:

(c’) Two covariates measured with error in two replications

Observation model: ηi = sin(xi1)+ 0.2x2
i2 + viγ

Measurement error model: w(m)
i1 ∼ N(xi1,1), w(m)

i2 ∼ N(xi2,0.64), m = 1,2,
Further settings: xi1 ∼ N(0,1), xi2 ∼ N(0,1), vi ∼ N(0,1), γ = 1.

For each of the scenarios, we simulated data sets with responses from the following
four types of responses:

(a) Binomial distribution with three replicated binary observations, i.e. yi∼B(3,πi),
πi = exp(ηi)/(1 + exp(ηi)).
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(b) Binomial distribution with ten replicated binary observations, i.e. yi ∼B(10,πi),
πi = exp(ηi)/(1 + exp(ηi)).

(c) Poisson distribution, i.e. yi ∼ Po(λi), λi = exp(ηi).
(d) Exponentially distributed duration times Ti ∼ Exp(λi), λi = exp(ηi) subject to

independent uniform censoring Ci ∼ U(0,50) resulting in an average censoring
rate of 10%. The observed data is given by ti = min(Ti,Ci), δi = 1(Ti ≤Ci).

For each response and each scenario, the sample size was fixed at n = 500 and the
number of simulation replications was given by 100.

To benchmark the performance of the correction method, we did not only consider
estimates from the imputation scheme, but also estimates based on the true covariate
values and naive estimation based on the average of the measurements with error:

(a) Exact estimation: Use the true covariate values xi j in the estimation procedure.
(b) Naive estimation: Use the average of repeated measurements w̄i j = ∑w(m)

i j /M
as covariate.

(c) Corrected estimation: Impute the estimated true covariate values with MCMC.

The results from the exact and the naive estimation approach can serve as an upper
and a lower bound for the performance of the corrected results.

4.2 Simulation Results

Figures 1 visualizes average estimates for the sine curve in scenario (a). As expected,
the estimated curve in the naive approach is far too flat and almost equals a linear fit.
In contrast, using the true covariate values leads to a satisfactory reproduction of the
curve over a large part of the covariate domain. Note that only a very small number
of observations is located outside the interval [−2,2] and therefore the deterioration
of the average estimates in this area is simply due to a lack of data. MCMC-based
measurement error correction falls in between the naive and the exact estimation
results but indeed shows considerable correction. This becomes even more obvious
from considering the MSEs (Figure 2), where the corrected results clearly outperform
results from naive estimation. The improvement is smallest in the case of a binomial
response with only three replications, where not too much information from the
likelihood is available. For all other types of responses with increased likelihood
information, the correction improves and the MSEs are closer to exact information
than when using naive estimation.

When including an additional nonparametric effect to the model, results for the
sine curve actually remain practically the same and are therefore not presented. To
assess the impact on the effects without measurement error, Figure 3 shows boxplots
of the MSE for binomial responses with ten replications and for survival times.
Obviously there is some impact of measurement error also on the effects of covariates
observed exactly but the change is much smaller compared to the effect on the sine
curve. The most significant change is observed for survival times, and in this case
MCMC-based imputation also yields more correction than for Binomial responses.
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Fig. 1 Average function estimates for sin(x) for all four response types in scenario (a).

When considering two covariates with measurement error (Figure 4), results re-
main qualitatively the same as with one covariate: Quality of the estimates consider-
ably increases when applying the proposed correction scheme with larger impact in
case of response types with more information. Note, that the signal to noise ratio is
smaller for the quadratic functions than for the sine curve and therefore correction is
generally smaller for x2 in terms of the bias although comparable improvements are
achieved in terms of MSE. When including a second replication on the covariates
measured with error, results improve even further (although of course also the results
from the naive approach improve). In this case (Figure 5), the corrected estimates
even start to indicate the local minimum and maximum of the sine curve, although
the data in this area already get quite sparse. Similarly, the reproduction of the square
function is now very close to the true function. In addition, the boxplots indicate that
the corrected estimates perform almost as well as the estimates obtained with the
true covariate values.
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Fig. 2 Boxplots of log(MSE) for sin(x) for all four response types in scenario (a)
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Fig. 5 Average estimates and boxplots for two response types in scenario (c’) (binomial with ten
replications in the upper two rows, poisson in the lower two rows).
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Fig. 6 Average coverage probabilities of 80% credible intervals for different effects in scenario (a)
(upper left), scenario (b) (upper right), scenario (c) (lower left) and scenario (c’) (lower right).

Finally, Figure 6 visualizes average coverage probabilities for different effects
in the four scenarios. Again we find the impact of flattened estimation when using
the naive approach: The empirical coverages are far too low not only for the effects
of covariates measured with error but also for the square function in scenario (b).
In contrast, the coverages of the corrected estimates are on average close to the
nominal value all over the relevant covariate domain. Only at the boundaries, where
data become sparse, the empirical coverage decreases. Note also, that using the true
covariate values actually leads to somewhat too conservative credible intervals – an
artefact that is found frequently in the context of Bayesian credible intervals.

In summary, our simulations allow the following conclusions to be drawn:

• MCMC-based imputation of the true covariate values allows to correct for the
adverse effects of covariates measured with error. The correction effect is particu-
larly expressed for the nonparametric effects of the covariates with measurement
error while the amount of correction varies for effects of covariates observed
exactly.

• In our simulation, measurement error had the expected impact on naive nonpara-
metric regression results, i.e. nonparametric effects are underestimated and far
too smooth.

• Ignoring measurement error also has dramatic impact on the coverage properties
of the credible intervals.
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We confirmed our findings in a second simulation study with smaller measurement
error variances with practically the same results (not shown).

5 Incident Heart Failure in the ARIC Study

Our proposed methodology was motivated by the analysis of time to event data from
the Atherosclerosis Risk in Communities (ARIC) study. ARIC is a large multipurpose
epidemiological study conducted in four US communities (Forsyth County, NC;
suburban Minneapolis, MN; Washington County, MD; and Jackson, MS). From
1987 through 1989, 15,792 male and female volunteers aged 45 through 64 were
recruited from these communities for a baseline and three subsequent visits. The
baseline visit (visit 1) included at-home interviews, laboratory measurements, and
clinic examinations. The study participants returned for additional visits in 1990-92
(visit 2), 1993-95 (visit 3), and 1996-98 (visit 4). Details of the enrollment process and
the study procedures are fully described by The ARIC INVESTIGATORS (1989).

Time to event data is observed continuously for multiple end points, but we focus
here on the event detection of heart failure (HF), the inability of the heart to pump
blood with normal efficiency. After exclusion of 752 participants with prevalent
heart failure, 14,857 ARIC study participants were followed for incident heart failure
hospitalization or death from 1987 to 2002. During a mean follow-up of 13.2 years,
1,193 participants developed HF (Kottgen et al. 2007).

The relationship between various risk factors, such as race, age or sex, and pro-
gression time to heart failure may be confounded by a series of baseline covariates.
Two such important confounders are the baseline systolic blood pressure (SBP) and
the baseline kidney function as measured by the glomerular filtration rate (GFR).
Both SBP and GFR are measured with moderate error and their corresponding
dose/response functions are expected to be non-linear. Taking into account these
features of the data is necessary for satisfactory inference and can be handled using
the methodology and software introduced in this paper. A reasonable approach to
statistical modeling of the present data is to consider a survival model for time to
heart failure with the following log-hazard function

log{λ0(t)}+ f1{log(SBP−50)}+ f2{log(GFR)}+ γ1sex+ γ2AA+ γ3age, (2)

where λ0(t) is the baseline hazard, f1(·) and f2(·) are unspecified smooth functions
modeled as penalized splines, sex is a 0/1 variable with 1 corresponding to males,
AA is a 0/1 variable with 1 corresponding to African Americans, and age being
the baseline age. For f1(·) and f2(·) we used degree 1 penalized B-splines with 30
equidistant knots. We also employed quantile based knots but found that they produce
very wiggly estimates both with and without measurement error correction in this
example. This is probably due to the concentration of observations in a smaller part
of the domain, that is more prevalent in the large data set of the application than in
the comparable small simulation data sets.
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Table 2 Corrected and naive posterior mean estimates, and 80% credible intervals for the parametric
effects

corrected naive
γ̂ 80% ci γ̂ 80% ci

intercept -8.577 -9.264 -7.938 -8.861 -9.402 -8.314
male 0.419 0.341 0.495 0.421 0.340 0.506

african american 0.355 0.254 0.451 0.350 0.262 0.440
age at first visit 0.083 0.075 0.091 0.081 0.074 0.089

In model (2), SBP represents the true long term average SBP and GFR represents
the true filtration rate of the kidney at the time it was measured. Both variables are
measured with error and replication studies are used to estimate the variance of the
error process. To obtain the measurement error variance of log(SBP− 50) we use
a replication study from the Framingham Heart Study described in Carroll et al.
(2006), pages 112-114. In short, the Framingham study consists of a series of exams
taken two years apart. The estimated measurement error using exams 2 and 3 is
τ̂2

SBP = 0.01259, which in the ARIC study corresponds to a reliability of 81%. Thus,
in our model log(SBP− 50) is the true long term average log(SBP− 50) over a 2
year period.

There are important technical differences between measuring blood pressure with
a sphygmomanometer and measuring the filtration rate of the kidney. Indeed, GFR
can only be obtained through a long and awkward procedure that is impractical for
routine analyses, as required by medical practice and large epidemiological studies.
Instead, the estimated GFR (eGFR) is used in practice and is obtained from a predic-
tion equation based on creatinine, gender and age (Hsu et al. (2005), Kottgen et al.
(2007), Cheng & Crainiceanu (2009)). More precisely, the eGFR is predicted from
the following equation:

eGFR = 186.3∗(Serum Creatinine)−1.154∗(Age)−0.203∗(0.742)(1−sex)∗(1.21)(AA).

Thus, the eGFR measurement contains at least two non-ignorable sources of error:
1) the biological variability unaccounted for by the prediction equation; and 2) the
laboratory variability associated with urine serum creatinine. To assess the variability
of eGFR, a replication study was conducted in the Third National Health and Nutrition
Examination Survey (NHANES III). Duplicate eGFR measurements were obtained
for each of 513 participants aged 45 to 64 with eGFR ≥ 60 from two visits at a
median of 17 days apart (Coresh et al. 2002). We assumed a classical measurement
error model for log(eGFR) and calculated the measurement error variance as τ̂2

u =
1
2 ∑

513
i=1(wi1 −wi2)2, where wim is the observed log(eGFR) for subject i at visit m.

The estimated measurement error variance was τ̂2
u = 0.009743 corresponding to a

reliability of 0.80 in the ARIC data set and will be treated as a constant in our
subsequent analyses.

Figure 7 and Table 2 summarize the results of both a naive and a measurement
error corrected analysis. While the estimated baseline hazard rate remains practically



152 T. Kneib, A. Brezger & C. M. Crainiceanu

3.0 3.5 4.0 4.5 5.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

eGFR

f(
eG

F
R

)

corrected
naive
80% ci

2.5 3.0 3.5 4.0 4.5 5.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

log(SBP−50)

f(
lo

g(
S

B
P

−
50

))

corrected
naive
80% ci

0 5 10 15

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

duration time in years

lo
g−

ba
se

lin
e

corrected
naive
80% ci

Fig. 7 Corrected and naive posterior mean estimates for the nonparametric effects of eGFR and
log(SBP-50), and the log-baseline hazard rate with 80% pointwise credible intervals.

unchanged when correcting for measurement error, there are obvious changes in the
results for SBP and eGRF. In particular, the local minima at 4.5 (eGFR) and 4.0
(SBP) are underestimated due to oversmoothing in the naive analysis. This effect is
expressed more clearly for eGFR where the reliability is smaller and therefore the
(relative) measurement error is larger.

Since the data set of the application is much larger than the data sets employed in
the simulation, it is also worthwhile to consider the impact of rounding on the com-
puting times again. With two valid decimal places, the corrected analysis (28,000
MCMC iterations on a dual core processor PC with 3Ghz CPU) including the im-
putation for two covariates took about 99 minutes, which is very competitive taking
the complexity of the model and size of the data set into account. When increasing
the number of valid decimal places, computing times increase to 215 minutes for 4
decimal places with visually indistinguishable results.
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6 Summary

We have introduced a flexible Bayesian imputation scheme for correcting for mea-
surement error in a large class of semiparametric regression models including models
for the expectation in exponential family regression and models for the hazard rate
in the case of survival data. The model specification permits quite flexible structures
involving several nonparametric effects and several covariates measured with error.
A variety of situations has been studied in a simulation study, indicating that the pro-
posed algorithm works well even in complicated settings. The approach has been im-
plemented in a user-friendly and efficient software package, allowing for easy access
to the new methods. Moreover, the software supports a number of extended model-
ing possibilities not considered in this paper. To be more specific, varying-coefficient
terms, interaction surfaces, spatial effects, or time-varying effects in survival can be
augmented to the model specification if needed. This large flexibility of the model
class is available due to the modular structure of MCMC simulations that makes all
modeling components introduced previously to Bayesian semiparametric regression
readily available as components in the measurement error correction approach.

A frequent drawback of approaches based on MCMC simulations are long com-
putation times and difficulties in mixing and convergence. We circumvent both by
considering a specialized implementation that relies on numerically fast sparse ma-
trix computations in combination with efficient storage and rounding schemes. In
addition, MCMC makes model combinations accessible that would require quite
involved methodological treatment and computations in a frequentist approach.
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Determinants of the Socioeconomic and Spatial
Pattern of Undernutrition by Sex in India:
A Geoadditive Semi-parametric Regression
Approach

Christiane Belitz, Judith Hübner, Stephan Klasen and Stefan Lang

Abstract In this paper, we use geoadditive semiparametric regression models to
study the determinants of chronic undernutrition of boys and girls in India in 1998/99.
A particular focus of our paper is to explain the strong regional pattern in undernutri-
tion and sex differences in determinants of undernutrition. We find that determinants
associated with competition for household resources and cultural factors are more
important for the nutrition of girls than boys, while boys’ nutrition reacts more sensi-
tively to nutrition and medical care access. With our models we are able to explain a
large portion of the spatial pattern of undernutrition of boys and girls, but significant
spatial patterns remain. We are also able to fully explain the spatial pattern of sex
differences in undernutrition with our empirical model.

1 Introduction

Extremely high prevalence of childhood undernutrition as well as very large gen-
der bias in various indicators (including infant and child mortality, education, and
employment) are two of the most severe development problems in India. Using the
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URL: http://www.uibk.ac.at/statistics/personal/lang/, e-mail: stefan.
lang@uibk.ac.at

155T. Kneib, G. Tutz (eds.), Statistical Modelling and Regression Structures
DOI 10.1007/978-3-7908-2413-1_9, © Springer-Verlag Berlin Heidelberg 2010 

,
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most commonly used indicator of childhood undernutrition, insufficient weight for
age (measured as the share of children being more than 2 standard deviations below
an international reference standard for weight for age), some 47 percent of children
below 5 were underweight in 1998/99, among the five worst performers in the world
(IIPS 2000).1 In addition, as shown by Klasen & Wink (2002), Klasen & Wink (2003)
and Sen (2003), India also belongs to a small group of countries with extremely large
gender bias in mortality. In fact, Klasen & Wink (2002) and Klasen & Wink (2003)
estimate that some 39 million or 7.9 percent of the female population was “missing”
in the 2001 census and have been victims of gender inequality in survival.

Undernutrition, overall infant and child mortality, and sex differentials in mortality
have a strong regional pattern which has been noted repeatedly in the literature, see
Murthi, Guio & Dreze (1995), Agarwal (1994), Dreze & Sen (1995), Dreze & Sen
(2001), Klasen & Wink (2002), Klasen & Wink (2003). All three indicators show
a much worse performance in Northern States, while Southern India and East and
Northeastern India performs much better on all three, with the Southern state of
Kerala being the well-known star performer in these (as well as other dimensions of
development). This is documented in Table 1 which shows overall infant and under
five mortality rates and by sex, sex ratios (males per females), undernutrition rates
overall and by sex for India’s largest states where this information is available from
the 2001 census or the 1998/99 Family Health Survey. While there are significant
variations within each region (in the case of mortality rates also due to sample size
issues) the regional patterns are remarkably similar, with Northern India standing
out as the worst performer in all dimensions and Southern India doing best in most
of them. Within Southern India, it is Kerala that clearly stands out as the area with
the lowest overall infant and child mortality rates and undernutrition as well as the
lowest gender gaps in these indicators.

At the same time, the regional patterns differ greatly by indicator. While Kerala
is doing best in all of them, there are some states that do better in overall mortality
rates than in gender gaps, and for others, the reverse is the case. It is also notable
that the sex differentials in undernutrition tend to be smaller than the differentials in
mortality, while the regional differences in overall undernutrition are sizable.2

These large geographic differentials at the district level can also be seen in the
four maps of Figure 1. They show the spatial pattern of undernutrition for girls and
boys separately, without controlling for covariates. The first two show the spatially
smoothed effects (see below for a discussion of how these effects are calculated),
while the latter two show significant positive (white) and negative (black) spatial
effects, with the left graph showing significant overall effects (i.e. for both sexes
combined) while the right map shows significant sex differences by district. A very

1 For a discussion of potential problems and biases when comparing undernutrition rates across
the developing world, see Klasen (2008). While it is argued there that measurement problems
contribute to the fact that South Asian children are reported to be the worst nourished of the world
and that undernutrition might be as severe in other regions including in Africa, there is no doubt
that undernutrition is an extremely serious problem in India.
2 For further discussion on these relatively small differentials in undernutrition, see Svedberg (2002)
and IIPS (2000).
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Table 1 The table shows overall infant and under five mortality rates and its respective female-
male ratio, sex ratios (males per females), undernutrition rates overall and its female-male ratio for
India’s largest states.

State Sex ratio Infant IMR U5M U5M Stunt. Stunt. Under- Under-
(M/F) Mort. F/M all F/M F/M weight weight
2001 all Rates F/M

All-India 1.072 66.2 0.98 96.0 1.19 44.9 1.064 46.7 1.078
North 1.113 77.61 1.05 113.07 1.32 51.3 1.067 48.1 1.074
Delhi 1.218 48.1 1.01 58.1 0.78 36.7 1.085 34.6 0.877
Haryana 1.161 56.0 0.89 73.6 1.35 50.0 1.116 34.6 1.195
Himachal Pradesh 1.033 34.8 0.80 49.4 0.67 41.5 0.775 43.7 0.919
Jammu & Kashmir 1.121 64.9 0.95 79.2 1.27 38.9 0.942 34.6 0.903
Punjab 1.142 53.9 1.28 75.5 1.80 39.1 1.034 28.7 1.122
Rajasthan 1.086 78.5 1.11 114.7 1.31 52.0 1.069 50.7 1.057
Madhya Pradesh 1.088 85.7 1.03 139.1 1.25 51.1 1.073 55.2 1.091
Uttar Pradesh 1.114 85.4 1.05 122.6 1.35 55.4 1.079 51.4 1.085
East 1.070 63.97 0.84 93.23 1.01 47.1 1.125 52.3 1.082
Bihar 1.088 71.5 0.89 108.1 1.10 53.6 1.028 54.3 1.059
Orissa 1.029 79.4 0.91 113.8 0.86 44.0 0.993 54.5 0.993
West Bengal 1.071 49.1 0.75 68.4 1.00 41.7 1.286 49.1 1.146
Northeast 1.068 61.86 0.90 89.13 0.88 46.0 0.930 34.9 1.021
Arunachal Pradesh 1.120 64.0 0.93 99.5 0.88 26.6 0.938 24.2 0.840
Assam 1.070 66.6 0.85 95.8 0.77 50.4 0.986 36.1 1.066
Manipur 1.022 33.7 0.70 61.0 1.43 31.2 0.902 27.6 1.160
Meghalaya 1.029 89.1 0.79 115.6 1.00 45.1 0.844 37.9 1.082
Mizoram 1.070 36.4 1.36 55.6 2.04 34.5 0.791 27.7 0.861
Nagaland 1.111 44.1 1.19 88.4 0.84 32.4 0.667 23.6 0.660
Sikkim 1.143 42.5 0.97 57.7 0.98 32.2 1.035 20.7 1.161
Tripura 1.055 42.7 1.17 45.0 1.05 40.5 0.731 42.6 0.827
West 1.085 48.46 0.85 65.72 1.09 41.0 1.059 47.9 1.092
Goa 1.041 34.7 0.69 41.8 0.76 18.1 0.451 28.6 0.609
Gujarat 1.087 60.0 0.78 78.8 0.96 43.6 1.079 45.1 1.249
Maharashtra 1.085 42.6 0.88 59.2 1.15 40.0 1.057 49.6 1.016
South 1.012 49.00 1.01 68.25 1.14 33.1 1.032 37.3 1.092
Andhra Pradesh 1.022 64.0 1.09 93.7 1.38 38.6 1.064 37.7 1.145
Karnataka 1.036 49.9 0.93 66.6 0.97 36.5 1.089 43.8 1.083
Kerala 0.945 14.9 0.52 16.2 0.46 22.0 0.978 26.9 1.053
Tamil Nadu 1.013 47.3 1.23 65.1 1.34 29.3 0.973 36.6 1.053

clear pattern of undernutrition is visible for both girls and boys. In North-Central India
(particularly Uttar Pradesh (UP), Madhya Pradesh (MP), Rajasthan, and Orissa), both
sexes suffer from significant undernutrition, while in the very North, the East, and
the South West, they are doing significantly better. This spatial pattern seems to be
more pronounced for girls than boys. As a result, the significance map of the sex
differences in undernutrition by district shows girls doing significantly worse than
boys in UP, MP, and West Bengal, while they are doing significantly better in the
relatively small Northeastern states (e.g. Assam, Nagaland, Tripura).
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Understanding the spatial pattern of undernutrition is important in its own right
to design appropriate policies to combat undernutrition. In addition, given the close
presumed relationship between undernutrition and child mortality 3, understanding
the determinants of undernutrition for each sex should help in an understanding of
the sex-specific differences in mortality. Given the strong regional pattern in overall
mortality, undernutrition, and sex differences in mortality, it would be critical to
analyze the regional pattern of undernutrition by sex to understand the contribution
of sex differences in undernutrition to these regional patterns.

The purpose of this paper is therefore to analyze the determinants of undernutri-
tion by sex at the district level in India using the 1998/99 India Family Health Survey.
In our analysis, we use a comprehensive set of covariates that have been suggested
in the literature based on either theoretical considerations or empirical evidence.
The particular methodological innovations to the analysis of this problem are that
we use particularly flexible semi-parametric regression models to model non-linear
effects and that we explicitly include (smooth) spatial effects in our models. Model
selection and choice of covariates is enhanced by recent methodology for simultane-
ous selection of relevant determinants of undernutrition and estimation of regression
coefficients.

We find that factors that are related to competition for resources at the household
level have a larger impact on undernutrition for girls than for boys. In contrast, boys
undernutrition levels appear more influenced by care and health-seeking behavior,
including pre-natal care and breast-feeding practises. Our models are able to explain
a significant share of the spatial pattern of undernutrition for both sexes. But a signif-
icant spatial pattern in overall undernutrition remains which we are unable to explain
with the variables we have at our disposal.

At the same time, our models are able to fully explain the spatial patterns of sex
differences in undernutrition, suggesting that our socioeconomic determinants are
able to fully capture the observed spatial pattern of sex differences in undernutrition
in India (shown in Figure 1).

2 The Data

This analysis is based on micro data from the second National Family Health Survey
(NFHS-2) from India which was conducted in the years 1998 and 1999. The sample
is representative of the population and covers more than 90 000 ever-married women
in the age group 15 – 49 from 26 Indian states (IIPS (2000), p. xiii). In addition, the
survey collected detailed health and anthropometric information on 32 393 children
born in the 3 years preceding the survey (IIPS (2000), p. xix). The NFHS-2 provides
retrospective information on fertility, mortality, family planing, domestic violence,
education, standard of living and important aspects of nutrition, health and health
care. Complete data of 24 989 weighed and measured children under 4 years are

3 See, for example, Pelletier (1994) and Osmani (1990) for a discussion.
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Fig. 1 Top panel: Spatially smoothed Z-score for boys and girls without controlling for covariates.
Bottom left panel: Significance map for the smoothed spatial effect for both sexes. Regions with
average Z-score significantly above (below) the overall average Z-score are colored in white (black).
Bottom right panel: Significance map of the difference Z-score between boys and girls. White (black)
denotes regions with significant higher (lower) average Z-score for girls compared to boys.

available. There are 13 090 observations of male and 11 899 observations of female
children. Although the exact spatial location of the households is not available in the
publicly available data, the International Institute for Population Sciences made the
district locations of the households available to us which we can use in our analysis
below.
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3 Measurement and Determinants of Undernutrition

Nutritional status is the result of the complex interaction between the food a child
gets to eat, its overall state of health, and the environment in which the child lives.
Undernutrition refers to any imbalance in satisfying nutrition requirements and is
therefore the result of a combination of inadequate intake of protein, energy and
micronutrients and frequent infections or diseases. In line with the literature on the
subject, undernutrition among children is taken here to manifest itself in growth
failure: undernourished children are shorter and lighter than they should be for their
age, see de Onis, M., de Frongillo & Blossner, M. (2000), p. 8 – 12, UNICEF
(1998), p. 10 – 14 and www.who.int/nut/nutrition2.htm.

3.1 Measurement

Undernutrition among children is usually measured by determining the anthropomet-
ric status of the child. Researchers distinguish between three types of undernutrition
(WHO (2002), p. 3 - 4):

• Wasting: insufficient weight for height indicating acute undernutrition.
• Stunting: insufficient height for age indicating chronic undernutrition.
• Underweight: insufficient weight for age which can be a result of both stunting

and wasting.

In this paper we focus on the influences on stunting, because the NFHS-2 does not
contain a lot of information about the recent past. Therefore it is not possible to
analyze acute undernutrition with any precision.

To get a measure of undernutrition in a population, young children are weighed
and measured and the results are compared to those of a “reference population”
known to have grown well. The reference standard typically used for the calculation
is the NCHS/CDC Growth Standard (National Center for Health Statistics/ Center
for Disease Control) that has been recommended for international use by the World
Health Organisation (WHO), see WHO (2002), p. 4 - 6.

The international reference growth curves were formulated in the 1970s by com-
bining growth data from two distinct data sets. For children under 24 months data
from a study of white, largely bottle-fed middle-class children from the longitudinal
Fels study (Ohio Fels Research Institute) from 1929 – 1974 were used, while for
older children the standard is based on data of three cross-sectional USA representa-
tive surveys conducted between 1960 and 1975, see WHO (2002), p. 4 - 6. There are
some questions regarding the appropriateness of this standard for international com-
parisons of undernutrition (Klasen 2008), but for comparisons within a country at
one point in time these problems are likely to be small and the Nutrition Foundation
of India has concluded that this standard recommended by the WHO is applicable to
Indian children, see Mishra, Lahiri & Luther (1999), p. 7. There are also some other
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more technical problems with the standard which led WHO to recently produce a
new growth standard for children.4

Undernutrition (Stunting, Wasting and Underweight) for a child i is typically
determined using a Z-score which is defined as

Zi =
AIi−MAI

σ
, (1)

where AI refers to the individual’s anthropometric indicator (e.g. height at a cer-
tain age), MAI refers to the median of the individuals’ anthropometric indicator of
the reference population, and σ refers to the standard deviation of the individuals’
anthropometric indicator of the reference population (WHO (2002), p. 6 - 7).

The percentage of children whose Z-scores are below−2 standard deviations from
the median of the reference category are considered as undernourished (stunted,
wasted and underweight), while those with Z-scores below −3 are considered
severely undernourished (WHO (2002), p. 6 - 7 and Kandala, Fahrmeir, Klasen
& Priebe (2008), p. 4). In this analysis the Z-score is used as a continuous variable
to use the maximum amount of information available in the data set.

In accordance with the conceptual framework developed by the United Nations
Children’s Fund one can distinguish between immediate, underlying and basic de-
terminants. This framework incorporates both biological and socioeconomic causes,
and encompasses causes at both micro and macro levels (UNICEF (1998), p. 23 - 34
and Smith & Haddad (1999), p. 3 - 5).

3.2 Determinants of Undernutrition

The immediate determinants of child’s nutritional status manifest themselves at the
level of the individual human being. The two most significant immediate causes of
malnutrition are inadequate dietary intake and illness. The immediate determinants,
in turn, are influenced by three underlying determinants manifesting themselves at
the household level. These are inadequate access to food, unhealthy environment
(including insufficient health services) and inadequate care for children and women.
The basic determinants include the potential resources available to a country or
community, which are limited by the natural environment, access to technology, and

4 The NCHS/CDC Growth Standard is beset with other problems: the splicing of two different data
sets causes considerable discontinuity at the age of 24 months (see below). A further problem is that
the bottle-fed children appear to have grown and put on weight more rapidly in the first six months
than exclusively breast-fed children which erroneously suggests that exclusive breast-feeding for six
months might contribute to undernutrition (Klasen & Moradi (2000), p. 3). The recently published
new international growth standard for children is based on the growth experience of six well-to-do
samples from across the world. Using this growth standard has a slight influence on overall rates of
stunting, wasting, and underweight rates, but is unlikely to affect determinants of undernutrition.
For a discussion of this new growth standard, which included a sample from India, see WHO (2006)
and Klasen (2008).
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Fig. 2 Kernel density estimates for the distribution of the Z-score.

the quality of human resources (UNICEF (1998), p. 23 - 34 and Smith & Haddad
(1999), p. 3 - 5).

In order to capture this complex chain of causation, researchers have either fo-
cused on a particular level of causality, have estimated structural equations that
address the interactions, have used graphical chain models to assess the causal path-
ways, or have used multi-level modeling techniques ( Kandala, Fahrmeir, Klasen
& Priebe 2008, Harttgen & Misselhorn 2006, Caputo, Foraita, Klasen & Pigeot,
I. 2003). With the data available, it is not always possible to clearly separate immedi-
ate from underlying or underlying from basic determinants. In this paper we estimate
a reduced form equation that mainly models factors that are underlying determinants
of undernutrition.

4 Variables Included in the Regression Model

In line with the discussion above, we study the determinants of the height for age Z-
score as a continuous response to use the maximum amount of information available
in the data set. The kernel density estimates of the distribution of the Z-scores (for
boys and girls), together with a normal density, give clear evidence that a Gaussian
model is a reasonable choice for inference, see Figure 2.

We include covariates in three ways into the model. First as categorical covariates
where we expect linear effects and where a categorical treatment is suggested by the
form of the data available, second as continuous covariates where we allow for a
flexible functional form, and third as spatial covariates as we discussed above.
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Categorical Covariates

Empirical distributions of categorical covariates, together with codings used in the
analysis, are given in Table 2. In line with the conceptual framework of the underlying
determinants, several of the variables are indicators of the health environment and
health access (in particular, pre-natal care indicators, vaccination indicators, toilet
access), the care environment (e.g. preceding birth interval, first milk), and some
are indicators of competition for nutritional resources (e.g. twins, household size,
preceding birth interval, first born, planned child). We also control for rural/urban
as well as religion of the households which might also affect the resource, health
environment, and care situation and practises of the households.5

Spatial Covariates

We use the district as the geographic unit of analysis. In the data set there are obser-
vations of 438 different districts from 26 states. The districts are given numerically
and can be matched to an Indian map showing district boundaries.

Continuous Covariates

After checking for possible non-linear influences, all continuous covariates are mod-
eled nonparametrically in this approach to capture non-linearities and their differ-
ences by sex. Table 4 gives an overview of continuous covariates included into the
model.

Linear Index: Household’s Economic Status

Most of the covariates are given directly in the DHS data sets. Since in the DHS data
sets neither household income nor consumption expenditures are reported, we had
to create a new variable that captures the economic resource base of the household.
Hence, to get a proxy for long-run household wealth we constructed, following
common practise in the literature, a linear index from a set of asset indicators using
principal components analysis (PCA) to derive the weights ai. The factor loadings
of the PCA determine the weights ai. The linear index Wj capturing a household’s
economic status is calculated as

Wj =
n=24

∑
i=1

ai(wji−wi)
si

=
a1(wj1−w1)

s1
+ . . .+

a24(wj24−w24)
s24

,

5 Including other categorical covariates into the model, such as “access to good water quality”, “child
had fever recently”, “child had cough recently”, “child had diarrhea recently”, “child’s sibling has
died” and “mother has access to massmedia regularly”, turned out to be insignificant or to have too
high correlations with other covariates. Thus, they were omitted in our analysis.
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Table 2 Overview of categorical covariates included in the model. (∗) It is recommended by the
World Health Organisation (WHO) that mothers breastfeed their children within one hour after
birth, because the hormone oxytocin is released resulting in uterine contractions what facilitates
the expulsion of the placenta. This is important for the regeneration of the mother. Children also
benefit from the first milk because it provides natural immunity. (∗∗) The covariate vacC is age-
dependent, because older children are more likely to have received more vaccinations than younger
children. According to international recommendations of the Indian government children should be
completely vaccinated within their first year of life. A child is regarded as completely vaccinated if it
had received the vaccinations against tuberculosis (BCG), diphtheria, pertussis and tetanus (DPT),
polio and measles, see Table 3.

Cate- Frequency
gorical in % Effect-coding Content
covariates
birthinC 18.91 -1 ≤ 24 months Preceding birth

81.09 1 > 24 months interval?
born1stC 70.60 -1 no First born

29.40 1 yes child?
firstmC∗ 88.03 1 no Child got

11.97 -1 yes first milk?
hhsizeH 33.32 hhsmallH: 1 ≤ 5 HH-members Size of household

50.38 Ref.-kat.:-1 6 - 10 HH-members in which the
16.30 hhlargeH: 1 ≥ 10HH-members child lives?

ironfolM 7.05 -1 no Mother received iron folic
62.95 1 yes tablets during pregnancy?

plannedC 22.71 1 no Child was
77.29 -1 yes planned?

precareM 28.67 -1 no Mother received medical
71.33 1 yes care during pregnancy?

religM 74.68 Ref.-kat.:-1 Hinduism
13.75 relislaM: 1 Islam Religion
6.90 relchriM: 1 Christianity mother
2.18 relsikhM: 1 Sikh belongs to?
2.49 relotheM: 1 Other religion

ruralH 27.10 -1 no Rural place
72.90 1 yes of residence?

tetanusM 20.90 -1 no Mother received tetanus
79.10 1 yes injection during pregnancy?

toiletH 60.73 -1 no Household has toilet
39.27 1 yes facility of any kind (pit, latrine, flush)

twinC 99.05 -1 single birth Child was born
0.95 1 multiple birth under multiple birth?

vacC∗∗ 43.08 -1 no Child is vaccinated
56.92 1 yes according to its age?

Table 3 Coding for the covariate vacC.
received vaccinations

Age of child no vaccinations some of the vaccinations all vaccinations
0 to 1 month category 1 category 1 category 1

2 to 11 months category 0 category 1 category 1
12 to 35 months category 0 category 0 category 1

with ai weight (scoring factor) for the i-th asset, determined by the PCA, wji is the
household’s value, in which the j-th child lives, for the i-th asset, wi is the mean
of the i-th asset calculated over all households and si is the standard deviation of
the i-th asset calculated over all households. This method for constructing an index
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Table 4 Overview of continuous covariates included in the model.
Continuous Mean Unit of Content
covariates measurement
agebirM 24.11 years Mother’s age at child’s birth?
ageC 17.27 months Child’s age?
bfmC 13.86 months Months child was breastfed?
bmiM 19.80 kg/m2 Mother’s body mass index?
ecstatH –0.01 index Household’s economic status
educM 4.07 years of education Mother’s educational attainment?
heightM 151.55 cm Mother’s height?
womstatM –0.005 index Mother’s women’s status?

indicating a households economic status was suggested by Filmer & Pritchett (1998),
recommended by UNICEF (www.childinfo.org/MICS2/finques/gj00106a.htm), and
is now routinely used when analyzing DHS surveys. The asset indicators included
in our index are given in Table 5.6

According to the findings of Filmer and Pritchett the constructed index for India
can be assessed as reliable in three dimensions. It is internally coherent and produces
clean separations across the poor, middle and rich households for each asset indi-
vidually. It is robust to the assets included. That means that the asset index produces
very similar classifications when different subsets of variables are used in its con-
struction. Furthermore it produces reasonable comparisons with poverty and output
across states (Filmer & Pritchett (1998), p. 8 – 11).

However, one criticism of this index is a problem with urban/rural comparisons.
It might be that rural households seem to be less wealthy because of non-availability
of infrastructure (electricity, piped water, . . . ). We tried to mitigate this effect by
including the ownership of agricultural goods (land, machines, live stock) into the
index.

Table 5 shows the weights for the different factors included in the asset index.
The direction of influence of each factor on the index is as expected and the different
factors have remarkably similar weights, i.e. a similar influence on the resulting asset
index.

Linear Index: Mother’s Women’s Status

There is a sizable literature that demonstrates that women’s status has a significant
impact on health outcomes for children.7 Also, Smith et al. (2003) found that women’s
status has a particularly important impact on undernutrition in a multi-country micro
data analysis using the Demographic and Health Surveys. Since no measure about the
women’s status is directly given in the DHS data set we constructed in analogy to the

6 The asset indicators included in our index are not exactly the same as suggested by Filmer &
Pritchett (1998)
7 See, for example, World Bank (2001) for a survey.
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Table 5 Asset variables for household’s economic status index.
Weight Mean Std. dev.

ai wi si
Household ownership of certain durables
Clock 0.34700 0.70221 0.45730
Fan 0.40979 0.46699 0.49892
Sewing machine 0.35091 0.23345 0.42304
Refrigerator 0.35212 0.10802 0.31041
Radio 0.30388 0.40013 0.48993
Television 0.42673 0.36033 0.48011
Bicycle 0.19174 0.45350 0.49784
Motor bicycle 0.34675 0.12071 0.32580
Car 0.18189 0.01802 0.13301
Characteristics of household’s dwelling
Piped drinking water 0.36868 0.39062 0.48790
Drinking water from spring or well –0.34723 0.54401 0.49807
Drinking water from open source (surface) –0.03251 0.05754 0.23288
Drinking water from other source 0.00724 0.00783 0.08814
Flush toilet 0.39012 0.23723 0.42539
Pit toilet 0.07606 0.15560 0.36248
No toilet –0.39625 0.60717 0.48839
Electricity 0.33101 0.64215 0.47938
Number of rooms > 4 0.12388 0.16467 0.37089
Kitchen as a separate room 0.20913 0.52879 0.49918
Quality of dwelling materials: low, middle, high –0.33276 1.02598 0.79082
Main cooking fuel is wood/dung/coal –0.38474 0.75293 0.43132
Ownership of land or agricultural goods
Ownership of land < 0.4; 0.4≤ Owns. ≤ 2; > 2 0.62205 0.68298 0.77290
Ownership of live stock 0.57735 0.53690 0.49865
Ownership of agricultural tools/ machines 0.52889 0.10266 0.30353

index about a household’s economic status a linear index about the women’s status.
Women’s status is defined to be women’s power relative to men’s. Women with a
low status tend to have weaker control over resources in their households, tighter
constraints on their time, more restricted access to information and health services,
and poorer mental health, self-esteem and self-confidence. The variables listed in
Table 6 are thought to be closely related with women’s own nutritional status, the
quality of care they receive, their own children’s birth weights, and the quality of
care provided to their children (Smith et al. 2003).

To build an index about women’s status was suggested by Smith et al. (2003).
The index we constructed is slightly different to the one proposed to fit the needs of
our analysis here.8

8 Our index contains three parts: relative power of women within the household, decision making
and domestic violence. Smith et al. built two indices, one about relative power of women within the
household and another about relative power of women outside of the household (societal gender
equality). As we investigate the influence of underlying determinants (and not basic determinants),
we didn’t include an index about societal gender equality. We used the PCA to derive the weights,
whereas Smith et al. used factor analysis.
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Table 6 Asset variables for women’s status index.
Weight Mean Std. dev.

Indicators of women’s status ai bi si
Woman’s position
Woman works for cash income –0.01479 0.17449 0.37954
Woman’s age at first marriage 0.72535 17.64164 3.35581
Woman’s and her partner’s age difference (in %) 0.63161 –17.40122 11.14080
Difference in the woman’s and her partner’s years of education 0.27336 –2.48114 4.16671
Decision making and necessity of partner’s permission
Decision making regarding . . .

. . . medical care –0.39697 0.50014 0.50001

. . . purchasing jewelry –0.38190 0.48529 0.49979
Partner’s permission needed for . . .

. . . visit of market –0.59405 0.74324 0.43685

. . . visit of friends and relatives –0.58624 0.79681 0.40238
Domestic violence
Woman’s opinion about domestic violence –0.30728 0.57742 0.49398
Woman has been beaten by her partner –0.69067 0.16762 0.37354
Frequency of beating in last 12 months –0.65465 0.02708 0.16233

The index about the women’s status B j is calculated as

B j =
n=11

∑
i=1

ai(b ji−bi)
si

=
a1(b j1−b1)

s1
+ . . .+

a11(b j11−b11)
s11

,

where ai is the weight (scoring factor) for the i-th variable, b ji is the value of the i-the
variable of the mother of the j-th child, bi is the mean of the variable i calculated
over all mothers and si is the standard deviation of the variable i calculated over all
mothers.

Table 6 shows the components for the women’s status index. Also here, the ef-
fects are all as expected. Only the influence of women working for cash income is
surprisingly small and negative suggesting that this factor is not highly correlated
with the overall women’s status index.

5 Statistical Methodology - Semiparametric Regression Analysis

The data are given in the form (Zi,xi,vi,si), i = 1, . . . ,n, where Z is the continuous
variable of primary interest, x is a vector of continuous covariates with possibly
nonlinear effects on Z, v is a vector of mostly categorical covariates with linear effects
on Z, and s is a spatial index that indicates the geographical region the observation
pertains to. In our application Z corresponds to the Z-score as a measure of chronic
undernutrition, x includes the continuous variables listed in Table 4, v includes the
categorical variables listed in Table 2, and s is the district in India where the mother
and her family lives.
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Traditional linear models assume that the effects of the covariates in x are lin-
ear. Nonlinear effects of covariates can be handled via variable transformation or
polynomial regression, but the approach is rather cumbersome and time consuming.
Moreover, complicated nonlinear functional forms cannot be detected within the
traditional linear modeling framework.

In this paper we apply modern semiparametric regression techniques that can
handle the following nonstandard requirements:

• Nonlinear covariate effects can be estimated in a nonparametric and therefore
automated way. Even complex nonlinear functions can be detected with the ap-
proach.

• Complex interactions between covariates are easily incorporated into the models.
In our application we will estimate a two dimensional nonparametric effect of
the age of the child and the duration of breastfeeding. This type of modeling is
necessary because the effect of breastfeeding depends on the age of the child. For
instance, a duration of breastfeeding of 2 months should have a different effect
for a child that is two months old compared to a child that is 2 years old.

• The approach is also able to deal with spatial heterogeneity either by incorporating
an additional (smooth) spatial effect or by spatially smoothing the residuals after
estimation.

• Model choice and selection of relevant effects is enhanced by simultaneous se-
lection of covariates and estimation of regression parameters. The methodology
used is able to

– decide whether a particular covariate enters the model,
– decide whether a continuous covariate enters the model linearly or nonlinearly,
– decide whether a spatial effect enters the model,
– select complex interaction effects between the sex of the child and other co-

variates
– select the degree of smoothness of nonlinear covariate, spatial or interaction

effects.

Selection of relevant terms is particularly important because there is a lack of
economic theory suggesting which of the determinants of undernutrition interact
with sex.

Usually, many of the estimated covariate effects have a particular simple functional
form. Even linear effects are frequently estimated. Sometimes it is argued that the
classical parametric approach might do the job equally well. Note, however, that it is
not sufficient to be able to reproduce the final model. The statistical model must be
rich enough to be able to detect everything that might happen in theory. As an example
take the effect of the age of the child. The literature suggests a particularly complex
nonlinear relationship. For the first 4-6 months it is assumed that on average the
nutritional status is comparable to the reference population. Thereafter the nutritional
status worsens considerably and stabilizes at a lower level after 24 months. Within a
classical linear model the assumed effect cannot be modeled.
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In this paper we proceed largely in three steps:

1. In a first step we estimate (for both sexes) the model

Zi = f (si)+ εi,

where f (si) is a smooth spatial effect of the district in India where the mother
and her child lives. The estimated function f̂ (s) is then an estimate of the mean
Z-score in district s. The effect will be smooth because the estimation technique
guarantees that estimates of neighboring districts are more alike than estimates
of districts that are far away.

2. In a second step we specify the semiparametric model

Z = f1(ageC,bfmC)+ g1(ageC,bfmC) · sex+

f2(agebirM)+ g2(agebirM) · sex + f3(bmiM)+ g3(bmiM) · sex+

f4(heightM)+ g4(heightM) · sex + f5(womstatM)+ g5(womstatM) · sex+

f6(ecstatM)+ g6(ecstatM) · sex + f7(eduC)+ f7(eduC) · sex+

γ0 + γ1 sex + . . .+ ε,

where f1− f7 are smooth (possibly) nonlinear functions of the covariates ageC−
eduC, g1−g7 are nonlinear interaction effects with sex, and γ0 + γ1 sex+ . . . are
effects of sex and other categorical covariates including the respective interac-
tions with sex. Functions f1 and g1 are two-dimensional smooth functions of
ageC and bfmC. The effect of ageC and bfmC is specified in an non-additive
manner because an interaction effect between the two determinants is likely a
priori. All functions are smooth in the sense that they are continuous and dif-
ferentiable. A specific functional form (e.g. linear or quadratic) is not assumed.
The interpretation of f j and g j depends on the coding of the binary variable
sex. Since sex is in effect-coding, the functions f j can be interpreted as average
effects of the respective covariates, and g j respectively−g j is the deviation from
f j for sex = 1 (females) and sex =−1 (males), respectively. This is an example
of models with structured additive predictor (Fahrmeir, Kneib & Lang 2004)
because the effects of covariates are additive (as in the traditional linear model)
but nonlinear.
The estimation approach simultaneously selects relevant terms as well as the
degree of nonlinearity and estimates the parameters. Model selection is done by
minimizing a version of the Akaike Information Criterion (AIC). We use the
modified AIC criterion of Hurvich, Simonoff & Tsai (1998) which corrects for
bias in regression models. The selected model is

Z = f1(ageC,bfmC)+ g1(ageC,bfmC) · sex + f2(agebirM)+

f3(bmiM)+ f5(womstatM)+ g5(womstatM) · sex+

f6(ecstatM)+ γ0 + γ1 sex + γ2 heightM + γ3 eduC + . . .+ ε,
(2)
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Table 7 Linear effects of educM and heightM.

Covariate coeff. std. dev. 95% CI
educM 0.0261 0.0027 0.0207–0.0312
heightM 0.0475 0.0017 0.0444–0.0507

which is much more parsimonious than the specified start model. Relevant inter-
actions with sex are found for the continuous variables ageC, bfmC, womstatM
and the categorical variables twinC, tetanusM, toiletH and religM. The effects
of heightM and eduC are linear rather than nonlinear as specified a priori, and
they show expected effects (see Table 7). As will be seen in the next section, the
results, particulary the interaction effects, show two general findings: the com-
petition for resources worsens the nutritional status of girls compared to boys
and boys are particularly affected by health behavior. In order to see whether the
interactions of some of the covariates with sex aid our interpretation we present
in section 6 the results of a slightly modified version of model (2). The presented
model additionally includes interactions of sex with the categorical covariates
birthinC, firstmC, plannedC and hhsizeH.

3. In a last step we spatially smooth the residuals ε̂i of the preceding semiparametric
model, i.e. we estimate the model

ε̂i = f (si)+ ui.

By comparing the spatial effect of the residuals with the spatial effect of the first
step we are able to assess how much of the spatial variation of undernutrition
can be explained by the covariates in the regression of the second step.

Details about the semiparametric regression models used in this paper are given
in Fahrmeir, Kneib & Lang (2004), Lang & Brezger (2004), Brezger & Lang (2006)
and particularly Belitz & Lang (2008). Good introductions to semiparametric re-
gression models are the monographs by Fahrmeir & Tutz (2001), Ruppert, Wand &
Carroll (2003), Wood (2006) and in German by Fahrmeir, Kneib & Lang (2009).
We used the software package BayesX for estimation, see Belitz, Brezger, Kneib &
Lang (2009). The homepage of BayesX contains also a number of tutorials, see

http://www.stat.uni-muenchen.de/˜bayesx/

6 Results

Since we have three types of variables, the results are presented in three different
forms below. We first discuss the linear effects which are shown in Figure 3. The
visual presentation of linear effects proved to be superior to the usual regression
output because the interpretation of the interaction effects is greatly facilitated. As
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Fig. 3 Effects of categorical covariates. Symbols included in brackets indicate the significance
of effects. The two brackets correspond to the respective main effects and the interaction effects.
Empty brackets indicate that the respective effect is not included in the model. One, respectively
two stars indicate significance at a level of 20%, respectively 5%.

the dependent variable is the Z-score, a negative coefficient means that the covariate
effect lowers the nutritional status of the child, while a positive one increases it.

Many of the effects are as expected and in the same direction for boys and girls.
In particular, being a twin, having a short preceding birth interval, living in a large
household, not being breastfed immediately after birth, and having poor access to pre-
natal care is all associated with poorer nutrition, as is being born to a shorter mother
(indicating a genetic transmission as well as possibly pointing to inter-generational
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Fig. 4 Nonlinear effects of the age of the child for different durations of breastfeeding.

transmission of economic status). There is a rather strong effect of parental religion
with children of Christian, Hindu, and other religions being better nourished, while
Muslims and Sikh are worse nourished, suggesting significant cultural differences
in care practises.

While the linear effects are rather similar for boys and girls, there are some notable
and systematic differences. In particular, it appears that the nutritional status of girls
reacts more sensitively to competition for resources within the household. The effect
of being a twin, living in a large household, not being planned, and having a short
preceding birth interval are more negative for girls than boys. Also, the cultural
environment seems to matter more for girls than boys with stronger positive effects
for Christian and other religions and stronger negative effects for Islam and Sikh. In
contrast, the coefficients for boys indicate a greater vulnerability to inadequate care
and nutrition practises. The timing of first milk is more important, as is the tetanus
injection of the mother. This is further confirmed when examining breast-feeding
patterns (see below).

The non-linear effects are shown in Figures 4 to 6. Figure 4 shows the combined
effect of age and breast-feeding on nutritional status. The age effect shows that the
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Fig. 5 Nonlinear effects of bmiM, agebirthM and ecstatH

nutritional status of children in India rapidly deteriorates between age 0 and about 20
months after which it oscillates. This is in line with findings from other studies (e.g.
Kandala, Lang, Klasen & Fahrmeir 2001, Klasen & Moradi 2000) and indicates that
children are not born chronically malnourished but develop this as a result of disease
and inadequate nutritional intake. The sudden improvement of the nutritional status
around 24 months is an artifact of the reference standard as at this age, children
switch from being compared to the better nourished reference children from the
white, bottle-fed Fels study, to the worse nourished reference children derived from
a cross-section of the US population. It thus represents no real improvement and was
one of the reasons for the development of a new reference standard.

The different curves for children with different breast-feeding durations are also
instructive and support the greater sensitivity of boys to breast-feeding. Boys that are
breastfed for 6 or twelve months have a better nutritional status throughout, while
the effect for girls is weaker. Long breast-feeding durations (18 or 24 months) carry
no benefits, however, and are probably an indicator of poor availability of alternative
nutrition.
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Fig. 6 Nonlinear effects of women’s status.

As shown in Figure 5, there are strong effects of mother’s age at birth, her BMI,
as well as the household’s economic status on the nutrition of her child. These effects
did not differ significantly for the two sexes.

The effects of the women’s status (Figure 6) variable is surprising. For girls,
it shows a U-shape, for boys a more or less linear decline. These results should,
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Fig. 7 Top panel: Spatially smoothed residuals. Bottom left panel: Significance map for spatial
effect. Regions with average residuals significantly above (below) zero are colored in white (black).
Bottom right panel: Significance map of the difference residuals between boys and girls. White
(black) denotes regions with significant higher (lower) average residuals for girls compared to
boys.

however, be treated with caution. Women’s status is highly correlated with other
covariates used in the regression and in fact, if one just considers the univariate
impact of women’s status on the stunting Z-score, the effect is strongly positive
for both girls and boys (with a stronger effect for girls, see the right-hand panel of
Figure 6). Thus women’s relative status has a positive impact, but this is mediated
via the other effects. The conditional direct effect (i.e. after controlling for the other
covariates) is only positive for high relative women’s status for girls, and negative
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Fig. 8 Density estimates of the spatially smooth effects. The solid lines correspond to the spatial
model for the residuals of the regression, i.e. covariate effects are controlled. The dashed lines
correspond to the spatial model for the Z-score without controlling for covariates.

for boys which seems plausible if one can assume that high status mother’s exhibit,
ceteris paribus, a preference for favoring their daughters.

We then examine the structure of spatial residuals after controlling for covariates
to see whether we have been able to explain the spatial pattern of undernutrition.
So one can compare the maps of undernutrition before controlling for covariates
(Figure 1) with the one after controlling for covariates (Figure 7). Before discussing
the details of this comparison, it appears that the before and after maps look quite
similar and thus might suggest that our empirical model has not been able to capture
the spatial differential very well. While this is partially the case and will be discussed
presently, Figure 8 shows that we have been able to significantly reduce the spatial
residuals through our empirical model. Compared to the distribution of spatial effects
before using covariates (dotted line), the solid line shows a much tighter distribution
of the district-level spatial residuals, suggesting that we have been able to signifi-
cantly explain the spatial distribution of undernutrition and thus reduce the spatial
residuals. When examining the spatial pattern of the residuals, it becomes appar-
ent that the spatial pattern of mother’s education, women’s status, mother’s BMI,
and household economic status significantly contributed to explaining the spatial
disparity in undernutrition.

Nevertheless, we have to admit that a significant spatial pattern of undernutrition
remains and the resulting spatial pattern looks, at first glance, similar to the spatial
pattern observed before the use of covariates. But apart from the overall reduction of
these spatial effects, there are also some notable shifts in the residual spatial pattern.
In particular, the areas of unexplained poor nutritional status have now shifted from
the Central-North to the North-West, i.e. from Uttar Pradesh, Bihar, Jarkhand, and
Madhia Pradesh, to Rajasthan, Haryana, and Uttaranchal. Conversely, new areas of
’better than expected’ female nutrition appear in the East, in West Bengal and parts
of Orissa, while undernutrition in Assam, Manipur, Mizoram, and Triupura are no
longer better than expected.
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What are we to make of these significant residual spatial effects? They are unlikely
to be due to the usual arguments advanced by scholars of regional differences in India,
such as different female roles and differential female autonomy, or different public
action in the fields of education, health and nutrition, or different religions (e.g.
Agarwal 1994, Dreze & Sen 2001, Dyson & Moore 1983 , Klasen & Wink 2003) as
we have tried to control for these effects, to the extent possible, explicitly through our
covariates. One possible explanation could be that our covariates are insufficiently
capturing these differential, for example by neglecting the quality of education and
health services, or the success of other public interventions in improving nutrition
and health of children.9

A second possible explanation is that certain aspects of public commitment and
public activism are not sufficiently captured by our variables. In particular, it is no-
table that public activism for health, education, land reform, and inequality, have
been particularly strong in the Indian state of Kerala but also in West Bengal, the two
states with the strongest remaining positive effects. Conversely, the areas of signif-
icantly poorer than expected performance are concentrated in areas which recently
witnessed the rise of Hindu nationalism, the ascendancy of the Hindu nationalist BJP
to political prominence, and related incidences of communal violence between Mus-
lims and Hindus.10. A third possible explanation is that some cultural institutions that
affect the treatment of children are not closely correlated with religious affiliation
or our measures of female autonomy and might therefore account for the remaining
regional pattern.11 Lastly, there could be climatic factors that help to explain these
different patterns of undernutrition. With all four explanations, it might be the case
that they have a larger impact on the treatment of female than on male children and
can thus explain the stronger residual spatial pattern for girls. We do not have the
data available to investigate these hypotheses which we hope will stimulate further
analysis of these remaining spatial patterns of undernutrition.

Regarding the spatial pattern of the sex differences in undernutrition, our model
seems to perform very well. As shown in the lower right map on Figure 3, there
are hardly any significant sex differences remaining, except for a few districts in
Tripura, Mizoram, and Manipur. Thus it appears that we are fully able to account for
the spatial pattern of sex difference in undernutrition which are largely driven by the
gender-specific effects regarding competition and care that we discussed above.

7 Conclusion

In this paper, we used geoadditive semiparametric regression models to study the
determinants of chronic undernutrition of boys and girls in India in 1998/99. A par-
ticular focus of our paper was to explain the strong regional pattern in undernutrition

9 See Dreze & Sen (2001) for a discussion of these issues.
10 For more details, see Dreze & Sen (2001), Sen (1998) and Sen (2005)
11 See, for example, Basu (1992) and Basu & Jeffery (1996) for a discussion.
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and sex differences in determinants and regional pattern of undernutrition. We find
that determinants associated with competition for household resources and cultural
factors are more important for the nutrition of girls than boys, while boys’ nutrition
reacts more sensitively to nutrition and medical care access. With our models we are
able to explain a large portion of the spatial pattern of undernutrition, but signifi-
cant spatial effects remain, with the South-West and East having significantly lower,
and the North-West significantly higher undernutrition rates. The remaining spatial
patterns, that are slightly different for boys than for girls, are intriguing and call for
more detailed analysis which were not possible with our data set.
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Boosting for Estimating Spatially Structured
Additive Models

Nikolay Robinzonov and Torsten Hothorn

Abstract Spatially structured additive models offer the flexibility to estimate regres-
sion relationships for spatially and temporally correlated data. Here, we focus on
the estimation of conditional deer browsing probabilities in the National Park “Bay-
erischer Wald”. The models are fitted using a componentwise boosting algorithm.
Smooth and non-smooth base learners for the spatial component of the models are
compared. A benchmark comparison indicates that browsing intensities may be best
described by non-smooth base learners allowing for abrupt changes in the regression
relationship.

1 Introduction

Biological diversity and forest health are major contributors to the ecological and
economical prosperity of a country. This is what makes the conversion of mono-
species into mixed-species forests an important concern of forest management and
policy in Central Europe (Knoke et al. 2008). Recent research shows not only pos-
itive ecological effects of mixed-species forests (e.g. Fritz 2006) but also positive
economic consequences (Knoke & Seifert 2008). Like any other living environment,
the development of forests is strongly conditioned on a balanced and consistent re-
generation. Whether natural or artificial, the regeneration is challenged at a very
early stage by browsing damage caused by various game species. In middle Europe,
especially, roe and red deer are the most common species accountable for brows-
ing on young trees. This activity is certainly natural by definition. However, the
eradication of large predators, the conversion of the landscape and the fostering of
trophy animals have given rise to increased number of deer and subsequently to
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Fig. 1 The National Park “Bayerischer Wald”. The southern grey colored region is the district of
“Rachel-Lusen” where our studies take part.

intensified browsing pressure in the past centuries. The consequences of excessive
browsing activity often lead to forest growth retardation and homogenization (Eiberle
& Nigg 1987, Eiberle 1989, Ammer 1996, Motta 2003, Weisberg et al. 2005).

Forest regeneration is monitored on a regular basis by the Bavarian Forest Ad-
ministration (Forstliches Gutachten 2006). This Bavarian-wide survey is conducted
every three years and takes place in all 745 game management districts (Hegege-
meinschaften) in Bavaria. Preventive measures are proposed following the survey’s
results. In case of an estimated browsing quota above the specified thresholds, the
local authorities consider a protection of the most vulnerable areas. An often used
practice is to recommend for intensified deer harvesting in the corresponding areas.
Whether the impact of game on the forest regeneration is correctly measured remains
a matter of debate (e.g. Prien 1997, Rüegg 1999, Moog 2008). Developing precise
measures which reflect the true condition of the forest’s regeneration is thus crucial
and non-trivial.

Our focus is on surveys conducted to estimate the local conditional probability
of a young tree to be affected by deer browsing, as recommended for monitor-
ing of the influence of game on forest regeneration (Rüegg 1999). For the beech
species (Fagus sylvatica) to be found in a certain area, this quantity reflects the expo-
sure to deer browsing and is the basis for subsequent management decisions. Here,
we are concerned with the estimation of such conditional browsing probabilities.
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We evaluate and compare boosting algorithms for fitting structured additive models
(Fahrmeir et al. 2004) to deer browsing intensities. This article aims to make in brief
space a comparison of smooth and non-smooth model components for capturing the
spatio-temporal variation in such data. Our investigations are based on two surveys
conducted in 1991 and in 2002 in the district of “Rachel-Lusen”, the southern part
of the National Park “Bayerischer Wald” depicted in Figure 1.

2 Methods

The main purpose of a deer browsing survey is to estimate the probability of deer
browsing on young trees. More specifically, the conditional probability of a young
tree of a certain species at a given location to suffer from deer browsing is the quantity
of interest. The tree height is an important exploratory variable for deer browsing
and thus needs to be included in the model. In addition, unobserved heterogeneity in
the browsing damage will be considered by allowing for spatial and spatio-temporal
components to enter the model. Commonly, other covariates describing the forest
ecosystem are not measured and are thus not included in our investigations. For the
sake of simplicity, we restrict our attention to beeches.

The general idea of our modelling strategy is as follows. The logit-transformed
conditional probability of browsing damage is linked to the tree height and spatial
and spatio-temporal effects by the regression function f such that

logit(P(Y = 1|height, space, time)) = f (height, space, time) (1)
= fheight(height)+ fspatial(space)
+ fspatemp(space, time)

where the predictor space stays for a two-dimensional covariate of northing and
easting, height is a one-dimensional continuous variable representing trees’ height
and time is an ordered factor with levels 1991 and 2002.

Therefore, we differentiate between three types of variability: such caused by the
trees’ height and captured by fheight , solely spatial variability explained by the two-
dimensional smooth function fspatial and time-dependent heterogeneity modelled by
the multi-dimensional smooth function fspatemp. Thus far we have sketched model(1)
for a general view of our estimation strategy. In the subsequent chapters we consider
the component pieces of three possible approaches meant to accomplish this strategy.

2.1 Spatio-Temporal Structured Additive Models

The next two methods originate from the family of ensemble construction algorithms.
The original idea of ensemble methods is to use reweighted original data to obtain
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a linear combination of some model fittings methods (Bühlmann 2004). We inter-
changeably refer to these fitting methods as base procedures or weak learners. The
literature on ensemble methods is diverse and wide-ranging, but the two prominent
classes that draw our attention are bagging (Breiman 1996) (or its successor ran-
dom forests, Breiman 2001) and boosting (e.g. Bühlmann & Hothorn 2007, Hastie
et al. 2009). Although bagging does not directly strengthen our case, it is worth
understanding the difference between them. Bagging is a parallel ensemble method
which averages the coefficients of the whole ensemble, while boosting methods (also
called incremental learning) are sequential ensemble algorithms which update the
coefficients iteratively. All these ideas have merits and demerits but in contrast to
bagging, boosting retains the especially useful initial structure of the base procedures,
hence allowing for better interpretation.

Both of our ensemble methods are boosting techniques which solely differ in
the choice of their spatial and spatio-temporal base procedures. The first boosting
method is a structured additive regression (GAMBoost) model for describing the
probability of browsing damage:

logit(P(Y = 1|height, space, time)) = fstr(height, space, time) (2)
= fbheight(height)+ fbspatial(space)
+ fbspatemp(space, time)

where fbheight is a an additively structured, P-Spline function of height, fbspatial is
an additively structured, bivariate P-Spline tensor function (Kneib et al. 2009) of
easting and northing or shortly space and fbspatemp is essentially the same as fbspatial
but applied only for the year 2002 (see (7) below). The objective is to obtain an
estimate f̂str of the function fstr . In theory, this approximation is commonly based on
the expectation of some prespecified loss function L(y,π( fstr)), in practice we aim
at minimizing its empirical version

f̂str = arg min
fstr

1
n

n

∑
i=1

L(yi,πi( fstr)) (3)

where πi( fstr) = logit−1( fstr(heighti,spacei, timei)) denotes the inverse of the logit
function. A discussion of the specification of several loss functions can be found in
Hastie et al. (2009, chap. 10), Bühlmann & Hothorn (2007), Friedman (2001) and in
Lutz et al. (2008). We aim at minimizing the negative log-likelihood

L(yi,πi( fstr)) =−(yi log(πi( fstr))+ (1− yi) log(1−πi( fstr))). (4)

As mentioned above, each function in (2) has an additive structure which means
in particular that the model can be decomposed in
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f̂bheight(height) = ν
M

∑
m=0

ĥ[m]
height(height) (5)

f̂bspatial(space) = ν
M

∑
m=0

ĥ[m]
spatial(space) (6)

f̂bspatemp(space, time) = ν
M

∑
m=0

ĥ[m]
spatemp(space, time)

=

⎧⎨⎩ν
M
∑

m=0
ĥ[m]

spatial(space), time = 2002,

0, time = 1991,
(7)

where the weak learner ĥ[m]
height is a smooth penalized B-Spline function (P-Spline,

Eilers & Marx 1996), ĥ[m]
spatial is a smooth bivariate P-Spline based surface and ν ∈

(0,1) is a shrinkage parameter (Friedman 2001) or step size. Thus, our choice of
weak learners are basis expansions themselves which means that

ĥ[m]
height(height) =

K

∑
k=1
γ̂ [m]

height,k bk(height) (8)

ĥ[m]
spatial(space) =

K1

∑
k1=1

K2

∑
k2=1

γ̂ [m]
spacek1,k2

bk1,k2(space) (9)

where the bk’s represent K completely known univariate basis functions, bk1,k2 tensor
product functions with

bk1,k2(space) = bk1,k2(easting,northing) = bk1(easting)bk2(northing)

and γ̂ [m]
height and γ̂ [m]

space are regression coefficients which scale these basis functions

(see Kneib et al. 2009, Wood 2006). γ̂ [0]
height and γ̂ [0]

space are arbitrarily chosen start
vectors of parameters. Note that the time-dependent effect in (7) is interpreted as the
spatial difference between the years 1991 and 2002. It should be further noted that
K,K1 and K2 are known in advance (specified by the user) and M is the major tuning
parameter for boosting which we discuss below.

All parameters, i.e. all γ̂ [m]s, of this additive expansion will be determined itera-
tively by successively improving (updating) them and accumulating the whole esti-
mation in f̂str. Hence, the step size ν can be thought of as an improvement penalty
which prevents the model from taking the full contribution of the updates.

The minimization problem (3) is solved iteratively by componentwise boosting
which chooses at each step the “best” base procedure amongst (5)-(7), i.e. the one
that contributes to the fit most. One option to attain this is via the so called steepest-
descent optimization which relies of the negative gradient
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Componentwise boosting

1. Initialize f̂str = offset, set m = 0.
2. m = m+1.

3. Compute the negative gradient: gi =−
[
∂
∂ fstr

L(yi,πi( fstr))
]

fstr= f̂str
, i = 1, . . . ,n.

4. Fit all base procedures to the negative gradient and select the best one according to

ŝm = arg min
s∈{intercept ,height ,spatial,spatemp}

=
n
∑

i=1
(gi− ĥ[m]

s )2.

5. Update f̂ str := f̂ str +ν ĥ[m]
ŝm

.
6. Iterate 2-5 until m = M.

gi =−
[
∂
∂ fstr

L(yi,πi( fstr))
]

fstr= f̂str
, i = 1, . . . ,n (10)

being computed at each step and subsequently fitted against each base procedure
separately, i.e. the negative gradient is used as a pseudo-response in each step m.
The negative gradient (10) indicates the direction of the locally greatest decrease in
the loss. The most “valuable” covariate has the highest correlation with the negative
gradient and is therefore chosen for fitting. In this way we incorporate a simultaneous
variable selection procedure.

Schmid & Hothorn (2008) carried out an extensive analysis of the main hyper-
parameters’ effects on boosting, such as the maximum step number M, the step
size ν , the smoothing parameters for the P-Splines and the number of knots. Their
results confirmed the common knowledge that there is a minimum number of nec-
essary knots needed to capture the curvature of the function and that the algorithm
is not sensitive to this choice (20-50 knots should be sufficient). They also found
that ν = 0.1 is a reasonable choice for the step size, whose altering interplays with
the computational time only, i.e. smaller ν increases the computational burden but
does not deteriorate the fitting quality. The same holds for the P-Spline smoothing
parameters which essentially penalize the flexibility of the base procedure through
its degrees of freedom. Choosing larger values leads to fewer degrees of freedom,
which translates into larger bias but smaller variance. This follows the prescrip-
tions of the recommended strategy for boosting (Bühlmann & Yu 2003, Schmid &
Hothorn 2008). Again, reasonable altering of this parameter reflects solely in the
computational time.

Aside from obtaining the stopping condition M (which will be discussed later),
we are ready to summarize componentwise boosting in the following algorithm:

Researchers in many fields have found the cross-validatory assessment of tuning
parameters attractive in the era of plentiful computing power. By splitting the original
(training) set into k roughly equally sized parts, one can use k−1 parts to train the
model and the last kth part to test it. This is known as a k-fold cross-validation. A
known issue of cross-validation is the systematic partition of the training set rising
up the risk of error patterns. That is, the training set is not a random sample from
the available data, but chosen to disproportionally represent the classes, especially to
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over-represent rare classes. Therefore, we alleviate this to some degree by using the
bootstrap algorithm (Efron 1979). We perform a random sampling with replacement
of the original data set, i.e. the n sample points are assumed to be multinomially
distributed with equal probabilities 1/n. After the sampling we have a new training
set of size n with some sample points chosen once, some more than once and some
of them being completely omitted (usually ∼ 37%). Those omitted sample points
are regarded as our test set in order to quantify performance. We choose some large
value for M, say 2000, and perform 25 bootstrapped samples with each m = 1, . . . ,M.
The optimal m is reported according to the average out-of-sample risk, also referred
to as out-of-bag, minimization of the loss function.

2.2 Tree Based Learners

There are regions in the National Park “Bayerischer Wald” which are not affected
by deer browsing and others with disproportionally higher risk of browsing. This
is due to the irregular distribution of regeneration areas in the National Park and
to other environmental factors. Therefore, we might wish to reconsider the smooth
relationship between the response and the predictors made so far. By putting the
smooth assumption of the underlying function fstr under careful scrutiny we aim
to improve the performance of regression setting (2). Having covariates at different
scales we find regression trees (Breiman et al. 1983) to be an attractive way to express
knowledge and aid forest decision-making. A “natural” candidate for a decision
tree based learner is the spatio-temporal component due to the different scales of
space and time. The spatial component space is another good option for a tree based
modelling due to the probable coarse relationship between the space and the browsing
probability which we suspect. We let the smooth P-Spline based learner hheight remain
unchanged. Therefore, we have a very similar general structure to (2)

logit(P(Y = 1|height, space, time)) = fbb(height, space, time) (11)
= fbheight(height)+ fbbspatial(space)
+ fbbspatempt(space, time)

with fbheight being exactly the same as in (5) and modified learners

f̂bbspatial(space) = ν
M

∑
i=1

ĥ[m]
spatialtree(space) (12)

f̂bbspatemp(space, time) = ν
M

∑
i=1

ĥ[m]
spatemptree(space, time). (13)

The model (11)is referred to as a Black-Box model. We should avoid overinterpreting
the result of tree based learners too much. However, the height component remains
perfectly interpretable. We choose the unbiased recursive partitioning framework of
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Hothorn et al. (2006) to grow binary trees. The spatial component has the additive
form

ĥ[m]
spatialtree(space) =

J

∑
j=1
γ̂ [m]

spatialtree, j I(space ∈ R[m]
j ) (14)

and the spatio-temporal component is represented by

ĥ[m]
spatemptree(space, time) =

J∗

∑
j=1
γ̂ [m]

spatemptree, j I((space,space) ∈ R∗[m]
j ). (15)

Here I denotes the indicator function, R[m]
j , j = 1, . . . ,J are disjoint regions which

collectively cover the space of all joint values of the predictor variables in space

(recall that space = {easting,northing}). The superscript [m] in R[m]
j means that this

region is defined by the terminal nodes of the tree at the mth boosting iteration.
R∗[m]

j are the respective regions for space and time. Thus, we compute a sequence of
simple binary trees with a maximal depth of, say, five. The task at each step is to find
a new tree to describe the prediction residuals (pseudo-response) of the preceding
tree succinctly. The next tree will then be fitted to the new residuals and will further
partition the residual variance for the data, given the preceding sequence of trees.

2.3 Generalized Additive Model

The last method under test is a Generalized Additive Model (GAM) (Hastie &
Tibshirani 1990). Once we are familiar with the underlying structure of the GAM-
Boost model the GAM model can be seen as a simplified special case of (2) with
ν = 1, M = 1 and with no componentwise selection carried out. This means that we
have the following structure

logit(P(Y = 1|height, space, time)) = f (height, space, time) (16)
= fheight(height)+ fspatial(space)
+ fspatemp(space, time)

where

f̂height(height) =
K

∑
k=1
γ̂height,k bk(height) (17)

f̂spatial(space) =
K1

∑
k1=1

K2

∑
k2=1

γ̂spacek1,k2
bk1,k2(space) (18)
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f̂spatemp(space,time) =

⎧⎪⎨⎪⎩
K1
∑

k1=1

K2
∑

k2=1
γ̂spacek1,k2

bk1,k2(space), time = 2002,

0, time = 1991.

(19)

The interpretation of the basis function bk,bk1,k2 and their scaling parameters remains
the same as in (8) and (9). A similar model to (16)has been proposed by Augustin et al.
(2009, p. 11). A major difference between their model and the specification above
is the time component being a continuous predictor smoothly modelled through a
cubic regression spline basis functions. This is what they call a 3-d tensor product
smoother for space and time. It is also worth mentioning that their model restrain
from the pure spatial component fspatial and relies solely on the multi-dimensional
function fspatemp to capture the spatial variability.

3 Results

In this section we exemplify the different models on the map of the National Park.
Initially we depict the fitted surfaces and denote the cases of browsing damage
throughout these surfaces. In addition we perform a model comparison in order to
quantify the prediction performance of the models.

3.1 Model Illustrations

In a first step we visualize the browsing probability estimates obtained by the GAM-
Boost model (2), the Black-Box model (11)and the common GAM as in (16). Figure 2
illustrates the estimation produced by the GAMBoost model for an average beech
tree 60 cm in height. The white areas indicate regions with higher risk of browsing
damage. The darker the regions, the smaller the estimated probability of browsing.
Further we depict black circles proportional to the absolute number of damaged trees
in the corresponding sample points of the National Park.

The GAMBoost model proposes the smoothest fit amongst all models. The model
detects the risky regions in 2002 rather well, encompassing the black circles with
smooth light regions and fitting the northern high-level areas to low risk probabilities.
However, the relatively even empirical distribution of damaged cases in 1991 leaves
the impression of too smooth surface, i.e. possible underfitting. The GAMBoost
model is also an example of why fine tuning of the hyper parameters should be
undertaken with greater care in the presence of tensor P-Spline base learners. The
claims we made about the “informal” impact of the step size, the number of knots
and the smoothing parameters do hold in this case. However, the maximum number
of boosting steps markedly increases if bivariate base learners are considered. One
could falsely define too small M for an upper bound of the boosting steps. Therefore,
boosting would continuously improve its prediction power within the proposed values
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Fig. 2 Spatial component space fitted by the GAMBoost model for an average beech tree at the
height of 60 cm in the years 1991 (bottom) and 2002 (top). The diameter of the black circles is
proportional to the absolute number of browsed trees.

of M and will always find the optimal M at the border, i.e. at the last step. This is due
to the insufficient degrees of freedom leading to a very modest amount of progress
towards optimality, i.e. the optimal step number is basically never reached. Therefore,
the “standard” amount for degrees of freedom df ∈ (4,6) for the univariate P-Spline
learners, seems to be a very challenging choice for tensor P-Spline learners in terms of
a reasonable computation time. We use df= 12 in order to speed up computations and
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Fig. 3 Spatial Component space fitted by the Black-Box model for an average beech tree 60 cm in
height in the years 1991 (bottom) and 2002 (top). The diameter of the black circles is proportional
to the absolute number of browsed trees.

to ensure that M = 2000 is sufficient to find an optimal number of boosting iterations.
Alternatively one could dampen the learning rate less severely by increasing the step
size ν or altering the number of the spline knots.

Figure 3 represents the estimation produced by the Black-Box model for an av-
erage beech tree 60 cm in height. The color codes are the same as in the example
above. The inherent coarse structure in the fit might look less attractive than Figure 2
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Fig. 4 Spatial Component space fitted by the Generalized Additive Model for an average 60 cm
tree in the years 1991 (bottom) and 2002 (top). The diameter of the black circles is proportional to
the absolute number of browsed trees.

but in the next section we will perform a formal bootstrap based model inference and
will compare the prediction power of all models in fair conditions. Although not as
straightforward as in Figure 2, the general pattern for the risky regions in the central
and south-western parts of the National Park in 2002 remains visible.

The final example is depicted in Figure 4 representing the GAM model. It proposes
a similar structure to Figure 2 with nicely shaped smooth peaks in the risky areas.
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In the next section we carry out a model comparison of the prediction quality of the
different models.

3.2 Model Comparison

Eight models were fitted to the beech browsing data. Our three candidate models
GAMBoost (2) , Black-Box (11) and GAM (16) and their simplified versions in-
cluding several restrictions are summarized in Table 1. The single column which
requires additional clarification is the second column termed “Label”. The Label
concisely represents the restrictions which we apply to the models. For instance, the
label “A” refers to the simplest and fully constrained model with a single intercept
as a covariate. “B” denotes a model which considers the height variable only hence
ignoring the spatial and the spatio-temporal effects. “C” means a model with the
height predictor being constrained to zero and “D” denotes the most complex model
which considers all predictors.

We quantify the prediction power of each model using the out-of-bootstrap em-
pirical distribution of the negative log-likelihood. For the boosting algorithms this is
done for the optimal number of boosting steps. It may appear tedious to bootstrap
the step number of boosting within a bootstrapping assessment but the distributional
properties of boosting are usually hard to be tracked analytically. Therefore, we per-
form bootstrapping twice: in the first place seeking for an optimal step number M
and secondly for a formal performance assessment.

The results of the performance assessment are shown in Figure 5. Each boxplot
represents 25 out-of-bootstrap values of the negative log-likelihood function based on
the different models from Table 1. The first four light gray colored boxes represent the
common GAM models. The highly constrained models “A” and “B” are not boosted
and are primarily used to strengthen the credibility of the other models. The distinct
risk collapse in all “C” models compared to “A” and “B” suggest the significant
importance of the spatio-temporal effects on the browsing probability. It is further
apparent that the height does contribute to the fit at least in the smooth specifications,
i.e. “C” has a clearly higher risk than the largest model specification “D” for GAM
and GAMBoost, whereas this is not the case in the Black-Box specification.

Further we evidenced that boosting the smooth relationship between the response
and the covariates is superior to the common GAM. This can be seen from the
juxtaposition of the third and fourth light gray boxplots from left and the two right
most boxplots in Figure 5. A drawback of GAMBoost, however, could arise out of
the preliminary stage of fine tuning which ensures reasonable computation costs.

It is instantly apparent that the Black-Box model performs the best compared to
the other strategies. Thereupon,we empirically showed that expecting the underlying
structure to be smooth, does indeed, degrade performance in this case.
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Table 1 An overview over all models under test.

Class Label Model Specification Details

GAM A f = 1 An intercept model averaging the log-
its in the whole area of investigation.

B f = fheight A model with restrictions fspatial =
fspatemp ≡ 0 which allows only for the
height effect.

C f = fspatial + fspatemp A model with a restriction fheight ≡
0 thiw only allowing for spatial and
spatio-temporal effects.

D f = fspatial + fspatemp + fheight The full model defined in (16)

Black-Box C fbb = fbbspatial + fbbspatemp A model with restrictions fbheight ≡
0 thus only allowing for spatial and
spatio-temporal effects.

D fbb = fbbspatial + fbbspatemp + fbheight The full model defined in (11).

GAMBoost C fstr = fbspatial + fbspatemp A model with restrictions fbheight ≡
0 thus only allowing for spatial and
spatio-temporal effects.

D fstr = fbspatial + fbspatemp + fbheight The full model defined in (2).

4 Discussion

The focus of our study was on the comparison of three modelling techniques for
estimating the real forest situation with respect to the beeches in the district of
“Rachel-Lusen” in the National Park “Bayerischer Wald”. We specified a structured
additive model which accounts for the trees’ variation in height, as well as for spatial
and spatio-temporal effects. The aim was to estimate a smooth surface representing
the browsing probabilities on young beech tree within the borders of “Rachel-Lusen”
district. We provided a boosted version of the GAM model, i.e. the GAMBoost
model, which succeeded to outperform the classical GAM model in terms of stronger
minimization of the out-of-sample risk.

We found that the spatial component does contribute to the fit considerably. The
same holds for the trees’ height which should be considered when estimating the
browsing probability in regeneration areas.

The assumption of smooth relationship between the response and the covariates
did not proof to be the most credible one amongst our model choices. A simple
recursive partitioning of the space predictor via tree based learners, i.e. the Black-
Box model, proved to obtain by far the smallest out-of-sample risk than its smooth
competitors. In addition, the Black-Box model showed more efficient computational
time and required more indulgent parameter tuning effort compared to the GAMBoost
model. Apparently the spatial effect of the Black-Box model was very strong and
the time predictor seemed to have no effect on the response in this specification.



Boosting for Estimating Spatially Structured Additive Models 195

Fig. 5 Out-Of-Bootstrap assessment of the different models defined in Table 1. Each boxplot
contains 25 values of negative log-likelihood function.
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Rüegg, D. (1999). Zur Erhebung des Einflusses von Wildtieren auf die Waldverüngung, Schweizer
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Generalized Linear Mixed Models Based on
Boosting

Gerhard Tutz and Andreas Groll

Abstract A likelihood-based boosting approach for fitting generalized linear mixed
models is presented. In contrast to common procedures it can be used in high-
dimensional settings where a large number of potentially influential explanatory
variables is available. Constructed as a componentwise boosting method it is able
to perform variable selection with the complexity of the resulting estimator being
determined by information criteria. The method is investigated in simulation studies
and illustrated by using a real data set.

Key words: Generalized linear mixed model; Boosting; Linear models; Variable
selection

1 Introduction

Generalized linear mixed models (GLMMs) as an extension of generalized linear
models that incorporate random effects have been an area of intensive research.
Various methods have been proposed ranging from numerical integration techniques
(for example Booth & Hobert 1999) over “joint maximization methods” (Breslow &
Clayton 1993, Schall 1991), in which parameters and random effects are estimated
simultaneously, to fully Bayesian approaches (Fahrmeir & Lang 2001). Overviews
on current methods are found in McCulloch & Searle (2001) and Fahrmeir & Tutz
(2001). Due to the already heavy computational problems in GLMMs modelling
usually is restricted to few predictor variables. When many predictors are given, the
selection of predictors is often based on test statistics with the usual problems of
forward-backward algorithms with stability of estimates.
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In the present article boosting techniques for the selection of predictors are pro-
posed. Boosting was developed within the machine learning community as a method
to improve classification. A first breakthrough was the AdaBoost algorithm proposed
by Freund & Schapire (1996). Breiman (1998) considered the AdaBoost algorithm
as a gradient descent optimization technique and Friedman (2001) extended boost-
ing methods to include regression problems. Bühlmann & Yu (2003) succeeded in
proving an exponential dependence between the bias and the variance of the boosted
model, which explains the resistance against overfitting. They showed how to fit
smoothing splines by boosting base learners and introduced the idea of component-
wise boosting, which may be exploited to select predictors. For a detailed overview
of componentwise boosting, see Bühlmann & Yu (2003) and Bühlmann & Hothorn
(2008).

The paper is structured as follows. In Section 2 we introduce the generalized
linear mixed model. In Section 3 we present the boosting algorithm with its compu-
tational details and give further information about starting values, stopping criteria
and selection. Then the performance of the boosting algorithm is investigated in
two simulation studies, one for the random intercept Poisson model and one for the
random intercept Bernoulli model. An application to the Multicenter AIDS Cohort
Study (MACS, see Kaslow et al. 1987, Zeger & Diggle 1994) is considered in Section
4, which is based on the CD4 data and deals with gay or bisexual men infected with
HIV.

2 Generalized Linear Mixed Models - GLMM

Let yit denote observation t in cluster i, i = 1, . . . ,n, t = 1, . . . ,Ti, collected in yT
i =

(yi1, . . . ,yiTi). Let xT
it = (xit1, . . . ,xit p) be the covariate vector associated with fixed

effects and zT
it = (zit1, . . . ,zits) the covariate vector associated with random effects.

It is assumed that the observations yit are conditionally independent with means
μit = E(yit |bi,xit ,zit) and variances var(yit |bi) = φυ(μit), where υ(.) is a known
variance function and φ is a scale parameter. The generalized linear mixed model
that we consider in the following has the form

g(μit) = β0 + xT
itβββ + zT

it bi = β0 +η par

it +η rand
it , (1)

where g is a monotonic and continuously differentiable link function, β0 is the inter-
cept, η par

it = xT
itβββ is a linear parametric term with parameter vectorβββ T = (β1, . . . ,βp)

and η rand
it = zT

it bi contains the cluster-specific random effects bi ∼ N(0,Q), with co-
variance matrix Q.

An alternative form that we also use in the following is

μit = h(ηit), ηit = β0 +η par
it +η rand

it ,

where h = g−1 is the inverse link function.
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A closed representation of model (1) is obtained by using matrix notation. Let
XT

i = (xi1, . . . ,xiTi) denote the design matrix of the i-th covariate and β̃ββ
T

= (β0,βββ T )
the linear parameter vector including intercept. Let X̃i = [1,Xi] be the corresponding
design matrix, where 1T = (1, . . . ,1) is a vector of ones having suitable length. By
collecting observations within one cluster the model has the form

g(μμμ i) = X̃iβ̃ββ + Zibi,

where ZT
i = (zi1, . . . ,ziTi). For all observations one obtains

g(μμμ) = X̃β̃ββ + Zb,

with X̃T = [X̃T
1 , . . . ,X̃T

n ] and block-diagonal matrix Z = Blockdiag(Z1, . . . ,Zn). For
the random effect b one has a normal distribution with covariance matrix Qb =
Blockdiag(Q, . . . ,Q).

Focusing on generalized linear mixed models we assume that the conditional
density of yit , given explanatory variables and the random effect bi, is of exponential
family type

f (yit |Xi,bi) = exp
{

(yitθit −κ(θit))
φ

+ c(yit ,φ)
}

, (2)

where θit = θ (μit) denotes the natural parameter, κ(θit) is a specific function corre-
sponding to the type of exponential family, c(.) the log normalization constant and
φ the dispersion parameter (compare Fahrmeir & Tutz 2001).

One popular method to maximize generalized linear mixed models is penalized
quasi-likelihood (PQL), which has been suggested by Breslow & Clayton (1993),
Lin & Breslow (1996) and Breslow & Lin (1995). Typically the covariance matrix
Q(ρρρ) of the random effects bi dependents on an unknown parameter vector ρρρ . In
penalization-based concepts the joint likelihood-function is specified by the para-
meter vector of the covariance structure ρρρ together with the dispersion parameter
φ , which are collected in γγγT = (φ ,ρρρT ) and parameter vector δδδT = (β0,βββ T ,bT ),
bT = (bT

1 , . . . ,bT
n ). The corresponding log-likelihood is

l(δδδ ,γγγ) =
n

∑
i=1

log
(∫

f (yi|δδδ ,γγγ)p(bi,γγγ)dbi

)
, (3)

where p(bi,γγγ) denotes the density of the random effects. Approximation of (3) along
the lines of Breslow & Clayton (1993) yields the penalized likelihood

lP(δδδ ,γγγ) =
n

∑
i=1

log( f (yi|δδδ ,γγγ))−
1
2

bT Q(ρρρ)−1b, (4)

where the penalty term bT Q(ρρρ)−1b is due to the approximation based on the Laplace
method.

PQL usually works within the profile likelihood concept. It is distinguished be-
tween the estimation of δδδ given the plugged-in estimate γ̂γγ resulting in the profile-
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likelihood lP(δδδ , γ̂γγ) and the estimation of γγγ . The PQL method is implemented in the
macro GLIMMIX and proc GLMMIX in SAS (Wolfinger 1994), in the glmmPQL
and gamm functions of the R-packages MASS (Venables & Ripley 2002) and mgcv
(Wood 2006). Further notes were given by Wolfinger & O’Connell (1993), Littell
et al. (1996) and Vonesh (1996).

3 Boosted Generalized Linear Mixed Models - bGLMM

Boosting originates in the machine learning community where it has been proposed
as a technique to improve classification procedures by combining estimates with
reweighted observations. Since it has been shown in Breiman (1999) and Fried-
man (2001) that reweighting corresponds to minimizing iteratively a loss function,
boosting has been extended to regression problems in a L2-estimation framework
by Bühlmann & Yu (2003). The boosting algorithm presented in this paper is based
on the likelihood function and works by iterative fitting of residuals using “weak
learners” and implies selection of components.

3.1 The Boosting Algorithm

The following algorithm uses componentwise boosting. Componentwise boosting
means that only one component of the predictor, in our case one linear term, is fitted
at a time. More precisely, a model containing the intercept and only one linear term
xrβr is fitted in one iteration step. We will use the notation xT

i.r = (xi1r, . . . ,xiTir) for the
covariate vector of the r-th linear effect in cluster i and define xT

.r = (xT
1.r, . . . ,xT

n.r),r =
1, . . . , p. Hence the corresponding r-th design matrix containing intercept and only
r-th covariate vector is given by

Xi.r = [1,xi.r] and X.r = [1,x.r],

for cluster i and the whole sample, respectively. For cluster i the predictor that contains
only the r-th covariate has the formηηη ir = Xi.rβ̃ββ r +Zibi, with β̃ββ

T
r = (β0,βr), and for

the whole sample one obtains

ηηηr = X.rβ̃ββ r + Zb.

In the following boosting algorithm the vectors β̃ββ
T
r = (β0,βr) and δδδT

r = (β0,βr,
bT ) contain only the r-th fixed effect.
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Algorithm bGLMM

1. Initialization
Compute starting values μ̂μμ (0),Q(0),b(0) (see Section 3.2.3) and set ηηη(0) =
X ˆ̃βββ (0) + Zb(0).

2. Iteration
For l = 1,2, . . . , lmax

a. Refitting of residuals
i. Computation of parameters

For r ∈ {1, . . . , p} derive the penalized score function sP
r (δδδ ) = ∂ lP/∂δδδ r

and the penalized pseudo Fisher matrix FP
r (δδδ ) (see Section 3.2.1). Based

on the general form of one step in Fisher scoring given by

δ̂δδ
(l)

= δ̂δδ
(l−1)

+ (FP(δ̂δδ
(l−1)

))−1sP(δ̂δδ
(l−1)

).

an update of the r-th component is computed. Because the fit is within
an iterative procedure it is sufficient to use just one single step. In order
to obtain an additive correction of the already fitted terms (the offset),
we use one step in Fisher scoring with starting value δδδ = 0. Therefore
Fisher scoring for the r-th component takes the simpler form

δ̂δδ
(l)
r = (FP

r (δ̂δδ
(l−1)

))−1sr(δ̂δδ
(l−1)

) (5)

with variance-covariance components being replaced by their current
estimates Q̂(l−1)

.
ii. Selection step

Select from r ∈ {1, . . . , p} the component j that leads to the smallest
AIC(l)

r or BIC(l)
r as given in Section 3.2.3 and select the corresponding

(δ̂δδ
(l)
j )T =

(
β̂ ∗0 , β̂ ∗j ,(b̂

∗
)T

)
.

iii. Update
Set

β̂ (l)
0 = β̂ (l−1)

0 + β̂ ∗0 , b̂(l) = b̂(l−1) + b̂∗

and for r = 1, . . . , p set

β̂ (l)
r =

{
β̂ (l−1)

r if r �= j
β̂ (l−1)

r + β̂ ∗r if r = j,

(δ̂δδ
(l)

)T =
(
β̂ (l)

0 , β̂ (l)
1 , . . . , β̂ (l)

p ,(b̂(l)
)T
)

.

With A := [X,Z] update

η̂ηη(l) = Aδ̂δδ
(l)
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b. Computation of variance-covariance components

Estimates of Q̂(l)
are obtained as approximate REML-type estimates or

alternative methods (see Section 3.2.2)

3.2 Computational Details of bGLMM

In the following we give a more detailed description of the single steps of the bGLMM
algorithm. First we describe the derivation of the score function and the Fisher ma-
trix. Then two estimation techniques for the variance-covariance components are
given. Finally, we give details of the computation of starting values and the selection
procedure.

3.2.1 Score Function and Fisher Matrix

In this section we specify more precisely the single components which are derived
in step 2 (a) of the bGLMM algorithm. For r ∈ {1, . . . , p} the penalized score function
sP

r (δδδ ) = ∂ lP/∂δδδ r, obtained by differentiating the log-likelihood from equation (4),
has vector components

sP
β̃ββ r

=
n

∑
i=1

XT
irDi(δδδ )ΣΣΣ i(δδδ )−1(yi−μμμ i(δδδ )),

sP
ir = ZT

i Di(δδδ )ΣΣΣ i(δδδ )−1(yi−μμμ i(δδδ ))−Q−1bi, i = 1, . . . ,n,

with Di(δδδ ) = ∂h(ηηη i)/∂ηηη ,ΣΣΣ i(δδδ ) = cov(yi|β̃ββ ,bi), and μμμ i(δδδ ) = h(ηηη i). The vector sP
β̃ββ r

has dimension p+1, while the vectors sP
ir are of dimension s. Note that sP

r (δδδ ) could
be seen as a penalized score function because of the term Q−1bi.
The penalized pseudo-Fisher matrix FP

r (δδδ ), r ∈ {1, . . . , p}, which is partitioned into

FP
r (δδδ ) =

⎡⎢⎢⎢⎢⎢⎢⎣
Fβ̃βββ̃ββ r Fβ̃ββ1r Fβ̃ββ2r . . . Fβ̃ββnr
F1β̃ββ r F11r 0
F2β̃ββ r F22r

...
. . .

Fnβ̃ββ r 0 Fnnr

⎤⎥⎥⎥⎥⎥⎥⎦ ,

has single components
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Fβ̃βββ̃ββ r = −E

(
∂ 2lP(δδδ )

∂β̃ββ r∂β̃ββ
T
r

)
=

n

∑
i=1

XT
irDi(δδδ )ΣΣΣ i(δδδ )−1Di(δδδ )Xir,

Fβ̃ββ ir = FT
iβ̃ββ r

=−E

(
∂ 2lP(δδδ )
∂β̃ββ r∂bT

i

)
= XT

irDi(δδδ )ΣΣΣ i(δδδ )−1Di(δδδ )Zi,

Fiir = −E
(
∂ 2lP(δδδ )
∂bi∂bT

i

)
= ZT

i Di(δδδ )ΣΣΣ i(δδδ )−1Di(δδδ )Zi + Q−1.

3.2.2 Variance-covariance Components

For the estimation of variances (Breslow & Clayton 1993) maximize the profile
likelihood that is associated with the normal theory model. By replacing βββ with β̂ββ
one maximizes

l(Qb) = −1
2

log(|V(δ̂δδ )|)− 1
2

log(|XT V−1(δ̂δδ )X|)

−1
2
(η̃ηη(δ̂δδ )−Xβ̂ββ )T V−1(δ̂δδ )(η̃ηη(δ̂δδ )−Xβ̂ββ) (6)

with respect to Qb, with the pseudo-observations η̃ηη(δδδ ) = Aδδδ + D−1(δδδ )(y−μμμ(δδδ ))
and with matrices V(δδδ ) = W−1(δδδ ) + ZQbZT , Qb = Blockdiag(Q, . . . ,Q) and

W(δδδ ) = D(δδδ )ΣΣΣ−1(δδδ )D(δδδ )T . Having calculated δ̂δδ
(l)

in the l-th boosting iteration,

we obtain the estimator Q̂(l)
b , which is an approximate REML-type estimate for Qb.

An alternative estimate, which can be derived as an approximate EM algorithm,

uses the posterior mode estimates and posterior curvatures. One derives (FP(δ̂δδ
(l)

))−1,
the inverse of the penalized pseudo Fisher matrix of the full model using the posterior

mode estimates δ̂δδ
(l)

to obtain the posterior curvatures V̂(l)
ii . Now compute Q̂(l)

by

Q̂(l)
=

1
n

n

∑
i=1

(V̂(l)
ii + b̂(l)

i (b̂(l)
i )T ). (7)

In general, the Vii are derived via the formula

Vii = F−1
ii + F−1

ii Fiβ̃ββ (Fβ̃βββ̃ββ −
n

∑
i=1

Fβ̃ββ iF
−1
ii Fiβ̃ββ )

−1Fβ̃ββ iF
−1
ii ,

where Fβ̃βββ̃ββ ,Fiβ̃ββ ,Fii are the elements of the penalized pseudo Fisher matrix FP(δδδ ) of
the full model, for details see for example Fahrmeir & Tutz (2001).
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3.2.3 Starting Values, Stopping Criteria and Selection in bGLMM

We compute the starting values μ̂μμ (0),Q(0) from step 1. of the bGLMM algorithm by
fitting the simple global intercept model with random effects given by

g(μit) = β0 + zT
it bi. (8)

This can be done very easily, e.g. by using the R-function glmmPQL (Wood 2006)
from the MASS library (Venables & Ripley 2002).

To find the appropriate complexity of our model we use the effective degrees of
freedom, which corresponds to the trace of the hat matrix (Hastie & Tibshirani 1990).
In the following we derive the hat matrix corresponding to the l-th boosting step for
the r-th component (compare Tutz & Binder 2006, Leitenstorfer 2008). Let Ar :=
[Xr,Z] and K = Blockdiag(0,0,Q−1, . . . ,Q−1) be a block diagonal penalty matrix
with a diagonal of two zeros corresponding to intercept and r-th fixed effect and

n times the matrix Q−1. Then the Fisher matrix FP
r (δ̂δδ

(l−1)
) and the score vector

sP
r (δ̂δδ

(l−1)
) are given in closed form as

FP
r (δ̂δδ

(l−1)
) = ArWlAr + K

and

sP
r (δ̂δδ

(l−1)
) = AT

r WlD−1
l (y− μ̂μμ(l−1))−Kδ̂δδ

(l−1)
r

where Wl = W(δ̂δδ
(l−1)

),Dl = D(δ̂δδ
(l−1)

),ΣΣΣ l = ΣΣΣ (δ̂δδ
(l−1)

) and μ̂μμ (l−1) = h(η̂ηη(l−1)) =

h(Aδ̂δδ
(l−1)

). For r = 1, . . . ,m the refit in the l-th iteration step by Fisher scoring (5)
is given by

δ̂δδ
(l)
r = (FP

r (δ̂δδ
(l−1)

))−1sr(δ̂δδ
(l−1)

)

= (ArWlAr + K)−1 AT
r WlD−1

l (y− μ̂μμ(l−1)).

We define the predictor corresponding to the r-th refit in the l-th iteration step as

η̂ηη(l)
r := η̂ηη(l−1) + Arδ̂δδ

(l)
r ,

η̂ηη(l)
r − η̂ηη(l−1) = Arδ̂δδ

(l)
r

= Ar (ArWlAr + K)−1 AT
r WlD−1

l (y− μ̂μμ(l−1)).

Taylor approximation of first order h(η̂ηη) = h(ηηη)+ ∂h(ηηη)
∂ηηηT (η̂ηη−ηηη) yields

μ̂μμ (l)
r ≈ μ̂μμ (l−1) + Dl(η̂ηη (l)

r − η̂ηη(l−1)),

η̂ηη(l)
r − η̂ηη(l−1) ≈ D−1

l (μ̂μμ (l)
r − μ̂μμ(l−1)),
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and therefore

D−1
l (μ̂μμ (l)

r − μ̂μμ(l−1))≈ Ar (ArWlAr + K)−1 AT
r WlD−1

l (y− μ̂μμ(l−1)).

Multiplication with W1/2
l and using W1/2D−1 =ΣΣΣ−1/2 yields

ΣΣΣ−1/2(μ̂μμ (l)
r − μ̂μμ(l−1))≈ H̃(l)

r ΣΣΣ
−1/2(y− μ̂μμ(l−1)),

where H̃(l)
r := W1/2

l Ar (ArWlAr + K)−1 AT
r W1/2

l denotes the usual generalized

ridge regression hat-matrix. Defining M(l)
r := ΣΣΣ1/2

l H̃(l)
r ΣΣΣ

−1/2
l yields the approxi-

mation

μ̂μμ (l)
r ≈ μ̂μμ (l−1) + M(l)

r (y− μ̂μμ(l−1))

= μ̂μμ (l−1) + M(l)
r [(y− μ̂μμ(l−2))− (μ̂μμ(l−1)− μ̂μμ(l−2))]

≈ μ̂μμ (l−1) + M(l)
r [(y− μ̂μμ(l−2))−M(l−1)

r (y− μ̂μμ(l−2))].

The hat matrix corresponding to the global intercept model from equation (8) is

M(0) = A1(AT
1 W1A1 + K1)AT

1 W1,

with matrices A1 := [1,Z] and K1 := Blockdiag(0,Q−1, . . . ,Q−1). As the approxi-
mation μ̂μμ (0) ≈M(0)y holds, one obtains

μ̂μμ (1)
r ≈ μ̂μμ (0) + M(1)

r (y− μ̂μμ(0))

≈ M(0)y+ M(1)
r (I−M(0))y.

In the following, to indicate that the hat matrices of the former steps have been fixed,
let jk ∈ {1, . . . , p} denote the index of the component selected in boosting step k.
Then we can abbreviate M jk := M(k)

jk
for the matrix corresponding to the component

that has been selected in the k-th iteration. Further, in a recursive manner, we get

μ̂μμ (l)
r ≈H(l)

r y,

where

H(l)
r = I− (I−M(l)

r )(I−M jl−1)(I−M jl−2) · . . . · (I−M(0))

= M(l)
r

l−1

∏
i=0

(I−M ji)+
l−1

∑
k=0

M jk

k−1

∏
i=0

(I−M ji)

=
l

∑
k=0

M jk

k−1

∏
i=0

(I−M ji),
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is the hat matrix corresponding to the l-th boosting step considering the r-th compo-
nent, whereas M jl := M(l)

r is not fixed yet.
In general, given hat matrix H, the complexity of the model may be determined

by the information criteria. We will use

AIC = −2 l(μμμ)+ 2 trace(H), (9)
BIC = −2 l(μμμ)+ 2 trace(H) log(n), (10)

where

l(μμμ) =
n

∑
i=1

li(μμμ i) =
n

∑
i=1

log f (yi|μμμ i) (11)

denotes the general log-likelihood and li(μμμ i) the log-likelihood contribution of
(yi,Xi,Zi). In general, the log-likelihood (4) can also be written with μμμ instead
of δδδ in the argument, considering the definition of the natural parameter θ = θ (μμμ) in
(2) and using μμμ = h(ηηη) = h(ηηη(δδδ )). In (9) and (10) the nonpenalized log-likelihood
is used.

For exponential family distributions log f (yi|μμμ i) has a well-known form. For
example in the case of binary responses, one obtains

log f (yi|μμμ i) =
Ti

∑
t=1

yit logμit +(1− yit) log (1− μit),

whereas in the case of Poisson responses, one has

log f (yi|μμμ i) =
Ti

∑
t=1

yit logμit − μit .

Based on (11), the information criteria (9) and (10) used in the l-th boosting step,
considering the r-th component, have the form

AIC(l)
r = −2 l(μ̂μμ(l)

r )+ 2 trace(H(l)
r ),

BIC(l)
r = −2 l(μ̂μμ(l)

r )+ 2 trace(H(l)
r ) log(n),

with

l(μ̂μμ (l)
r ) =

n

∑
i=1

log f (yi|μ̂μμ (l)
ir ). (12)

In the l-th step one selects from r∈ {1, . . . , p} the component jl that minimizes AIC(l)
r

or BIC(l)
r and obtains AIC(l) := AIC(l)

jl
. We choose a number lmax of maximal boosting

steps, e.g. lmax = 1000, and stop the algorithm at iteration lmax. Then we select from
L := {1,2, . . . , lmax} the component lopt , where AIC(l) or BIC(l) is smallest, that is
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lopt = arg min
l∈L

AIC(l),

lopt = arg min
l∈L

BIC(l).

Finally, we obtain the parameter estimates δ̂δδ
(lopt)

,Q̂(lopt) and the corresponding fit
μ̂μμ (lopt).

It should be noted that similar to Tutz & Reithinger (2006) our selection step
reflects the complexity of the refitted model, which is in contrast to established
componentwise boosting procedures. For example Bühlmann & Yu (2003), select
the component that maximally improves the fit and then evaluate if the fit including
model complexity deteriorates. The procedure proposed here selects the component
such that the new lack-of-fit, including the augmented complexity, is minimized.

3.3 Simulation Study

In the following simulation studies the performance of the bGLMM algorithm is com-
pared to alternative approaches.

Poisson Link The underlying model is the random intercept Poisson model

ηit =
p

∑
j=1

xit jβ j + bi, i = 1, . . . ,40, t = 1, . . . ,10,

E[yit ] = exp(ηit) := λit , yit ∼ Pois(λit),

with linear effects given by β1 = −4,β2 = −6,β3 = 10 and β j = 0, j = 4, . . . ,50.
We choose the different settings p = 3,5,10,20,50. For j = 1, . . . ,50 the vectors
xT

it = (xit1, . . . ,xit50) follow a uniform distribution within the interval [−0.3,0.3].
The number of observations is determined by n = 40,Ti := T = 10, i = 1, . . . ,n. The
random effect and the noise variable have been specified by bi ∼ N(0,σ2

b ) with
σ2

b = 0.6.
The performance of estimators is evaluated separately for the structural compo-

nents and the variance. We compare the results of our bGLMM algorithm with the
results obtained by the R-function glmmPQL recommended in Wood (2006). The
glmmPQL routine is supplied with the MASS library (Venables & Ripley 2002). It
operates by iteratively calling the R-function lme from the nlme library and returns
the fitted lme model object for the working model at convergence. For more details
about the lme function, see Pinheiro & Bates (2000).

By averaging across 50 training data sets we consider mean squared errors for βββ
and σb given by

mseβββ := ||βββ − β̂ββ ||2, mseσb := ||σb− σ̂b||2.
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Table 1 Generalized linear mixed model (glmmPQL) and boosting (bGLMM) on Poisson data

glmmPQL bGLMM (EM) bGLMM (REML)
p mseβββ mseσb mseβββ mseσb falsepos falseneg mseβββ mseσb falsepos falseneg
3 0.088 0.004 0.104 0.006 0 0 0.100 0.004 0 0
5 0.124 0.004 0.108 0.006 0.10 0 0.101 0.004 0.02 0
10 0.218 0.004 0.110 0.006 0.34 0 0.101 0.004 0.04 0
20 0.537 0.004 0.118 0.006 0.66 0 0.108 0.004 0.10 0
50 2.013 0.005 0.143 0.008 1.68 0 0.124 0.007 0.30 0

To avoid that single outliers distort the analysis, we present the medians of both
quantities in Table 1. The corresponding boxplots are shown in Figure 1. Additionally,
we present boxplots of the σb-difference

�σb := σb− σ̂b

in Figure 2, to investigate the bias of estimates the true value σb =
√

0.6.
Additional information on the performance of the algorithm was collected in false-

neg, the mean over all 50 simulations of the number of variables β j, j = 1,2,3, that
were not selected and in falsepos, the mean over all 50 simulations of the number of
variables β j, j = 4, . . . ,50, that were selected. Notice at this point, that the glmmPQL
function is not able to perform variable selection and therefore always estimates all
p parameters β j.

The results for varying number p of covariates xit1, . . . ,xit p are summarized in
Table 1. For the computation of the random effects variance-covariance components
Q we used the two estimation techniques given in Section 3.2.2. The results using
the EM-type estimates Q̂ from (7) are found in the bGLMM (EM) column of Table 1,
results for the REML-type estimates Q̂, obtained by maximization of the profile like-
lihood in (6), are given in the third column. The corresponding results can be found
in the bGLMM (REML) column of Table 1. It is seen that boosting estimates distinctly
outperform the simple PQL algorithm when redundant variables are present. REML
type estimates turned out to be more stable than the EM-type estimates.
To illustrate how the bGLMM algorithm works we show in Figure 3 the paths of
the three coefficients β1,β2 and β3 for all simulations. It is seen that the algorithm
always starts with updating coefficient β3, which has the most influence on ηηη , as it
has the biggest absolute value. Next, the coefficient β2 is updated, while β1 is the
last coefficient which is refitted.

Bernoulli Link

The underlying model is the random intercept Bernoulli model
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Fig. 1 Boxplots of (msebGLMM
βββ −mseglmmPQL

βββ ) for the EM model (left, without few extreme outliers)
and the REML model (right)

p=3 p=5 p=10 p=20 p=50

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

p=3 p=5 p=10 p=20 p=50

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

p=3 p=5 p=10 p=20 p=50

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Fig. 2 Boxplots of �σb for the glmmPQL model (left), for the bGLMM EM model (middle) and for
the bGLMM REML model (right)

ηit =
p

∑
j=1

xit jβ j + bi, i = 1, . . . ,40, t = 1, . . . ,10

E[yit ] =
exp(ηit)

1 + exp(ηit )
:= πit yit ∼ B(1,πit)

with linear effects given by β1 = −5,β2 = −10,β3 = 15 and β j = 0, j = 4, . . . ,50.
Again we choose the different settings p = 3,5,10,20,50. For j = 1, . . . ,50 the vec-
tors xT

it = (xit1, . . . ,xit50) have been drawn independently with components following
a uniform distribution within the interval [−0.1,0.1]. The number of observations
remains n = 40,Ti := T = 10,∀i = 1, . . . ,n. The random effect and the noise variable
have been specified by bi ∼ N(0,σ2

b ) with σ2
b = 0.6.

Again, we evaluate the performance of estimators separately for structural com-
ponents and variance and compare the results of our bGLMM algorithm with the
results achieved via the glmmPQL function (Wood 2006). Therefore we use the
same goodness-of-fit criteria as in the Poisson case.
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Fig. 3 Coefficient paths of β1,β2 and β3 calculated by bGLMM algorithm for the generalized linear
mixed Poisson EM (left) and REML (right) model in the p = 20 case
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Fig. 4 Boxplots of (msebGLMM
βββ −mseglmmPQL

βββ ) for the EM model (left) and the REML model (right)
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Fig. 5 Boxplots of �σb for the glmmPQL model (left), for the bGLMM EM model (middle) and for
the bGLMM REML model (right)

Table 2 Generalized linear mixed model (glmmPQL) and boosting (bGLMM) on Bernoulli data

glmmPQL bGLMM (EM) bGLMM (REML)
p mseβββ mseσb mseβββ mseσb falsepos falseneg mseβββ mseσb falsepos falseneg
3 9.70 0.016 36.66 0.552 0 0.84 36.92 0.043 0 0.86
5 19.80 0.014 36.66 0.553 0.02 0.82 36.93 0.044 0.02 0.86
10 44.92 0.012 39.93 0.554 0.10 0.82 37.92 0.036 0.10 0.86
20 90.82 0.015 34.29 0.553 0.12 0.66 35.08 0.029 0.14 0.72
50 294.01 0.030 48.39 0.525 0.46 0.66 45.08 0.016 0.46 0.60

The results for varying number p of covariates xit1, . . . ,xit p and for the two different
estimation methods for the random effects variance-covariance components Q are
summarized in Table 2. Table 2 as well as Figures 4 to 5 show that in the Bernoulli
case boosting is less convincing than in the Poisson case, in particular in terms of
mseσb . But the general trend, that, in case of many covariates, the βββ -fit that is
achieved using the bGLMM algorithm outperforms the fit obtained by the glmmPQL
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Table 3 Estimates for the AIDS Cohort Study MACS withglmmPQL function (standard deviations
in brackets) and bGLMM algorithm

glmmPQL bGLMM (EM) bGLMM (REML)

Intercept 6.5547 (0.018) 6.5362 6.5362
Time -0.2210 (0.011) -0.2191 -0.2191
Time2 -0.0156 (0.010) -0.0197 -0.0197
Drugs 0.0126 (0.010) 0 0

Partners 0.0385 (0.010) 0.0568 0.0568
Packs of Cigarettes 0.057 (0.013) 0 0

Mental illness score (cesd) -0.0304 (0.010) -0.0388 -0.0388
Age 0.0020 (0.018) 0 0
σ 2

b 0.3025 0.3549 0.3539
Φ 66.8224 76.0228 76.0228

function, can still be observed. When variable selection is needed boosting estimates
of βββ are distinctly better than estimates obtained by the glmmPQL function.

4 Application to CD4 Data

The data were collected within the Multicenter AIDS Cohort Study (MACS). In the
study about 5000 infected gay or bisexual men from Baltimore, Pittsburgh, Chicago
and Los Angeles have been observed since 1984 (see Kaslow et al. 1987, Zeger &
Diggle 1994). The human immune deficiency virus (HIV) causes AIDS by attacking
an immune cell called the CD4+ cell which coordinates the body’s immunoresponse
to infectious viruses and hence reduces a person’s resistance against infection. Ac-
cording to Diggle et al. (2002) an uninfected individual has around 110 cells per
milliliter of blood and since the number of CD4+ cells decreases with time from
infection, one can use an infected person’s CD4+ cell number to check disease pro-
gression. Within the MACS, n = 369 seroconverters with a total of ∑n

i=1 Ti = 2376
measurements were included with the number of CD4+ cells being the interesting re-
sponse variable. Covariates include years since seroconversion ranging from 3 years
before to 6 years after seroconversion, packs of cigarettes a day, recreational drug
use (yes/no), number of sexual partners, age and a mental illness score (cesd). For
observation t of individual i, the model that is considered in the following has the
form

g(μit) = β0 +η par

it +η rand
it

= β0 + timeitβ1 + time2
itβ2 + drugsitβ3 + partnersitβ4

+ cigarettesitβ5 + cesditβ6 + ageitβ7 + bi,
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with bi ∼N(0,σ2
b ). Our main objective is the typical time course of CD4+ decay and

the variability across subjects. As the time effect may be nonlinear, we additionally
consider the covariate “squared time”. We fit an overdispersed Poisson model with
natural link. The overdispersion parameterΦ is estimated by use of Pearson residuals

r̂it =
yit − μ̂it

(v(μ̂it ))
1
2

by

Φ̂ =
1

N− trace(H)

n

∑
i=1

Ti

∑
1

r̂2
it , N =

n

∑
i=1

Ti.

For the estimation procedure we have standardized all covariates. The results for the
bGLMM algorithm and for the glmmPQL function are given in Table 3. It is seen
that the two boosting algorithms yield nearly the same estimates. The incorporated
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selection procedure suggests that drug use, pack of cigarettes a day and age are not
needed in the predictor.

The maximal number of boosting steps has been chosen as lmax = 100 and the
algorithm selected lopt = 19 as optimal number of boosting steps. Coefficients build
ups-for coefficients are found in Figure 6, with the vertical line indicating the optimal
stopping point lopt . It is seen that coefficient estimates are very stable after about 10
boosting steps.

5 Concluding Remarks

Algorithms are derived that allow to estimate generalized mixed models with high-
dimensional predictor structure. The incorporated selection procedure reduces the
predictor space when redundant variables are present. Although penalized quasi-
likelihood estimators work also in cases up to 50 predictors, performance deteriorates
when many spurious variables are present. In these cases boosting approaches show
better performance even in the binary response case. For low-dimensional settings
boosting for binary responses still needs to be improved.

The approach proposed here can be extended to incorporate nonparametric effects.
Let uT

it = (uit1, . . . ,uitm)T be the covariate vector consisting of m different covariates
associated with these nonparametric effects. The generalized semiparametric mixed
model has the form

g(μit) = xT
itβββ +

m

∑
j=1
α( j)(uit j)+ wT

it bi

= η par
it +η add

it +η rand
it ,

where g is a monotonic differentiable link function,η par
it = xT

itβββ is a linear parametric
term with parameter vector βββ T = (β1, . . . ,βp), now including the intercept, η add

it =
∑m

j=1α( j)(uit j) is an additive term with unspecified influence functionsα(1), . . . ,α(m)

and finally η rand
it = wT

i bi contains the cluster-specific random effects bi ∼ N(0,Q),
where Q is a known or unknown covariance matrix. By expanding nonparametric
effects in basis functions and using a weak learner that refers to the updating of all
coefficients corresponding to one nonparametric effect the model may be estimated
with an incorporated selection procedure.
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Measurement and Predictors of a Negative
Attitude towards Statistics among LMU
Students

Carolin Strobl, Christian Dittrich, Christian Seiler, Sandra Hackensperger and
Friedrich Leisch

Abstract The measurement of the attitude towards statistics and the relationship
between the attitude towards statistics and several socio-demographic and educa-
tional factors was investigated in a survey on over 600 students of the Ludgwig-
Maximilians-Universität (LMU). The attitude towards statistics was measured by
means of the Affect and Cognitive Competence scales of the Survey of Attitudes
Towards Statistics (SATS, Schau et al. 1995), that proved to be well suited for iden-
tifying students with high levels of negative attitude against statistics, even though
potential effects of the translation into German were noticeable for the positively
worded items. Predictors found relevant for a negative attitude towards statistics
were gender, mathematics taken as an intensive course in high school, prior (per-
ceived) mathematics achievement, prior mathematics experience as well as two of
the newly included items on students’ strategy applied in mathematics courses in
high school: Students who named practicing as their strategy were less likely, while
students who named memorizing as their strategy were more likely to show a negative
attitude towards statistics.

1 Introduction

The issue of mathematics and statistics anxiety among college students has been
a subject of psychological and educational research for decades, headed by early
publications such as Dreger & Aitken (1957) on “number anxiety” in general. Cruise
et al. (1985) define statistics anxiety as “the feeling of anxiety encountered when
taking a statistics course or doing statistical analysis”. This kind of anxiety can pose
a major problem to both students and instructors in many applied sciences, where
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statistics and methodology classes are both mandatory and necessary to provide
essential academic skills.

The results of the experimental study of Ashcraft & Kirk (2001) could even show
that students with a high level of mathematics anxiety, who usually perform worse
not only in mathematics exams but also in working memory tests involving numbers,
could do as well as subjects from a control group when permitted to use pencil and
paper for computations. This finding indicates that mathematics anxiety directly
affects cognitive processes such as the working memory, which in return results in
poor test performance. A similar effect is likely to hold for statistics anxiety and may
affect the students performance in statistics and methodology classes in university.

While Mills (2004) reports that in her sample of over 200 business students positive
attitudes about statistics were more frequent than negative attitudes, many authors
have estimated that between 70% (Zeidner 1991) and up to 80% (Onwuegbuzie
et al. 2000) of college students enrolled in various major subjects experience more
or less severe forms of statistics anxiety.

Different potential predictors of statistics anxiety have been investigated in em-
pirical studies on statistics anxiety among college students (see, e.g., Zeidner 1991,
Wilson 1997, Galagedera et al. 2000, Fullerton & Umphrey 2001, Onwuegbuzie
2001, Baloglu 2003, Carmona 2004, Mills 2004). Some potential predictors, like
prior math achievement, show a persistent association with statistics anxiety, while
the influence of age and gender, for instance, is still subject to discussion.

Instruments available for assessing statistics anxiety include, amongst many oth-
ers (cf., e.g., the overviews in Schau et al. 1995, Fullerton & Umphrey 2002), the
Statistical Anxiety Rating Scale (STARS, Cruise et al. 1985), the Attitude Towards
Statistics scale (ATS, Wise 1985) and the Survey of Attitudes Towards Statistics
(SATS, Schau et al. 1995). Fullerton & Umphrey (2002) state that “all [considered]
instruments showed a high correlation between positive attitudes towards statistics
and high course grades.”

The SATS, that was used in the study presented here, was designed to meet sev-
eral key characteristics that were not covered by the then existing scales (Schau
et al. 1995). In order to reflect the most important dimensions of attitudes toward
statistics a panel of instructors and students identified the dimensions by consensus.
In the evaluation of the concurrent validity of the SATS with respect to the ATS scale
of Wise (1985) Pearson correlation coefficients indicated a high positive correlation
for the Affect and Cognitive Competence scales and medium positive correlations
for the Value and Difficulty scales with the ATS Course scale (Schau et al. 1995).
The correlations with the ATS Field scale were medium positive for the SATS Affect
and Cognitive Competence scale and high for the Value scale, while the correlation
for Difficulty was not significant. Schau et al. (1995) conclude that “[t]hese results
suggest substantial correspondence between the ATS Course scale and two dimen-
sions of the SATS, Affect and Cognitive Competence”. Therefore, these two scales
of the SATS, together with some additional items, were used in the questionnaire for
this study.

Note that some of the additional items of the original SATS do not apply to
the German school and university system: For example, the number of years of
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high school mathematics taken is the same for all regular high school attendees in
Germany. On the other hand in the German high school system the students have
a choice for or against mathematics as an intensive course for the last two years of
high school. Therefore we included mathematics as an intensive course, rather than
the original SATS item on the number of years of high school mathematics taken, in
our study.

A new type of item that was also included in the questionnaire is concerned with
the strategy applied in previous math courses, because informal conversations with
students in introductory statistics courses gave us the impression that i) there are
structural differences in the students’ strategies when preparing for a test, that have
been adopted in school and ii) students with high levels of statistics anxiety might
use suboptimal strategies.

Throughout this paper we will first investigate the behavior of the SATS scales
Affect and Cognitive Competence in our sample (with a focus on potential effects
of their translation into German) and then use a simple indicator, that is computed
from these two scales, to identify relevant predictor variables of a negative attitude
towards statistics or even statistics anxiety in LMU students.

Students with different major subjects (psychology, sociology, business studies,
economics and few others) were included in the study. However, the sample contained
no students of Ludwig Fahrmeir, because their attitude towards statistics would have
been positively biased by attending his lecture.

In addition to aspects of previous math performance, experience and training,
that have been found to be relevant in previous studies (e.g., Zeidner 1991, Carmona
2004), we included in this study not only the current age of the students but also
their time and activity since high school graduation. These variables are in the same
spirit as the time since last exhibited to a mathematics course, which has been shown
to be related to statistics anxiety by Wilson (1997). The information on time and
activity since high school graduation is particularly important because some of our
students, especially in psychology and sociology, do not directly go from high school
to university and might be differentially affected by statistics anxiety.

2 Method

The study was conducted at the LMU in Munich, Germany, with participants of three
introductory statistics courses as subjects. The student sample as well as the design
and distribution of the questionnaire are described in detail in the following.

2.1 Participants

689 first year students from empirical social and business sciences were recruited as
volunteers from three mandatory introductory statistics courses. Of these students
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294 were majors in business studies, 103 in economics, 113 in psychology, 84 in
sociology, 60 in business and economics education and 35 in others or did not report.
The average age was 21.56 years with a minimum of 17 (the average German student
enters university at age 18 or 19) and a maximum of 51 years. The time since high
school graduation ranged from 36 years ago to within the last year. Of the sample
of 689 students 402 were female, 273 male, the rest did not report. 84.5% of the
participants named German as their first language, 87.1% had achieved their high
school diploma in Germany. 10.1% had achieved their high school diploma by means
of second-chance education. 54% of the participants went directly from high school
to university. Another 17% served in military or civil service (which is mandatory
for most male students in Germany) before entering university, 14% were working,
19% attended industrial training, 16% spent the time otherwise (multiple answers
were possible). 36% of the students had chosen mathematics as an intensive course
in high school.

Of the 689 initial observations 24 were deleted for the item analysis of the SATS
Affect and Cognitive Competence scales because they had missing values in these
scales. This leaves 665 observations for the item analysis in Section 3.1 and the
computation of the indicator for a negative attitude towards statistics in Section 3.2.
Of these observations 63 had missing values in one or more of the socio-demographic
and educational items and 3 stated implausible values for their time of high school
graduation. These observations were deleted for the rest of the analysis, leaving 599
observations for the analysis of potential predictors of a negative attitude towards
statistics in Section 3.3.

2.2 Procedure and Instrument

All three introductory statistics courses were visited in the first week of the students’
first term to ensure that their attitude towards statistics was not affected by previous
course experience. The participants were free to volunteer or hand in blank ques-
tionnaires anonymously. By completing the form they were informed that they gave
permission to use their responses for research purposes. Results of this and further
analyses will be reported to the students.

The questionnaire consisted of the two SATS scales Affect and Cognitive Compe-
tence presented as 7-point Likert-type scales. In addition the questionnaire contained
3 items on prior experience covering mathematics experience and attitude in school
(“I liked mathematics in school.”, “In school I was scared of mathematics.” and “In
school I was good in mathematics.”) and 3 items on strategy applied in previous
math courses (“My strategy in mathematics was to try to understand the underly-
ing concepts.”, “... was to practice on as many problems as possible.” and “... was
to memorize as much as possible.”). These items were also presented as 7-point
Likert-type scales.

Socio-demographic and educational items covered major subject, age, gender,
first language, high school attended in Germany, time since high school graduation,
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high school diploma by means of second-chance education, activity since high school
graduation, favorite subject in school, mathematics taken as an intensive course in
high school and mathematics grade in final exams.

2.3 Software

All following analyses were conducted by means of the R system for statistical com-
puting version 2.5.1 (R Development Core Team 2008) and the functionsprincomp
for principle components analysis, hclust for cluster analysis, heatmap for illus-
trating cluster analysis results in a heat map,glm for logistic regression (all available
in the standardstats package) as well as the functioncforest for random forests
(available in the add-on package party, Hothorn et al. 2006).

3 Results

Because of the fact that the two SATS scales Affect and Cognitive Competence were
translated into a different language and were used separately from the rest of the
instrument, that had been evaluated as a whole by Schau et al. (1995), an exploratory
item analysis was conducted. (Positively worded item responses were reversed so
that a high value indicates a negative attitude towards statistics or even statistics
anxiety in the following.)

This section describes the results of the item analysis as well as the construction
of the negative attitude indicator, that was then used to identify relevant predictor
variables for a negative attitude towards statistics.

3.1 Item Analysis for SATS Scales

Because of the fact that the two SATS scales Affect and Cognitive Competence were
translated into a different language and were used separately from the rest of the
instrument, that had been evaluated as a whole by Schau et al. (1995), an exploratory
item analysis was conducted. (Positively worded item responses were reversed so
that a high value indicates a negative attitude towards statistics or even statistics
anxiety in the following.)

The items showed satisfactory correlations, but revealed an interesting pattern
in an exploratory principal components analysis: When we look, e.g., at the factor
loadings of the two principal components for all items in Figure 1, we find that
some items deviate from the pattern. Those items that do not group with the items
from the same scale (Affect vs. Cognitive Competence as indicated by circular and
triangular symbols) are all positively worded items (indicated by filled symbols).
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The positively worded items that are separated from the rest are the items 1.1 (“I will
like statistics.”, translated as “Ich werde Statistik mögen.”) and 1.4 (“I will enjoy
taking statistics courses.”, translated as “Ich werde Spaß am Statistik Unterricht
haben.”) of the Affect scale and the item 2.5 (“I can learn statistics.”, translated as
“Ich kann Statistik lernen.”) of the Cognitive Competence scale, while the positively
worded item 2.3 (“I will understand statistics equations.”, translated as “Ich werde
die statistischen Formeln verstehen.”) of the Cognitive Competence scale is situated
closer to the negatively worded items of this scale in the principal component loadings
plot.

Further investigation of the reversely worded items, not displayed here, revealed
that their empirical distributions tended to be less skewed than those of the other items,
indicating that less subjects reported extreme values in these items. Correspondingly
the discriminatory power, measured by the t-statistic of the comparison between the
upper and lower quartile, was found to be lower for the reversely worded items. Note
also that the positively worded items tend to group late with the other items in the
cluster analysis presented later.
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Fig. 2 Heatmap of the dendrogram of the 12 STAS items against the dendrogram of the subjects.
Light segments indicate a highly negative attitude towards statistics.

3.2 Negative Attitude Indicator

Because the assumption of a Likert-scale for the entire instrument might not be
justified for the two sub-scales of the SATS used here, our aim was to identify
groups of students with a similar answering pattern, that could be used as categories
of a working response for identifying predictors associated with certain attitudes
towards statistics.

As depicted in the heatmap in Figure 2, when the subjects are hierarchically
clustered with respect to the distances in their item response patterns we can visually
identify two groups of students: The left cluster with a tendency towards highly
positive attitudes towards statistics (as indicated by the majority of dark segments)
and the right cluster with a tendency towards highly negative attitudes or anxiety
towards statistics (as indicated by the majority of light segments).

This binary division will be used in the following as an easy and intuitive di-
chotomization of the working response. For ease of description, the right cluster
containing 45,86% of the sample will be labeled “anxious” in the following, while
the left cluster will be labeled “not anxious”. Note that this division is not based on
an arbitrarily chosen threshold or an expected a priori percentage of anxious stu-
dents, but is data driven and reflects actual differences in the response patterns of
the subjects in the underlying sample. In return, this means that the partition is not
meant to be transferred to other samples as a diagnostic for statistics anxiety.
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3.3 Predictors of a Negative Attitude towards Statistics

Our aim is to identify predictor variables associated with a negative attitude towards
statistics. Usually, logistic regression would be employed for this task when a binary
indicator, as the one created from the SATS items in the previous section, is used
as a response variable. However, here we are particularly interested in, and have to
assume, complex interactions between the predictors – and even after dichotomiz-
ing the items, a logistic regression model is not feasible (or instable when forward
selection is used) when we want to include interactions of order higher than two.
Therefore we use random forests to preselect a set of variables that are associated
with a negative attitude towards statistics. An advantage of random forests in this
context is that their variable importance measures reflect not only the main effect
of a variable but also any effects it has in interactions of potentially high order with
other variables (Lunetta et al. 2004).

Another advantage of using random forest variable importance measures for vari-
able selection is that the results are not affected by the kind of instability caused
by order effects that affects stepwise variable selection approaches for, e.g., logis-
tic regression. Therefore Rossi et al. (2005) use random forest variable importance
measures to support the stepwise variable selection approaches of logistic regres-
sion to identify relevant predictors that determine once-only contact in community
mental health service. On the other hand, the random forest variable importance of a
predictor is not interpretable with respect to the form or direction of the association
like a coefficient estimate in a parametric model. Therefore, we will later return to a
logistic regression model to regain some interpretability, even though this model has
to be limited to two-fold interactions for feasibility and may not sufficiently represent
higher-order interactions.

Note that, from a theoretical point of view, the results of Leeb & Pötscher (2006)
indicate that statistical inference on model parameters after variable selection on
the same data set is not reliable. This problem is not limited to variable selection
with random forests, but we recommend that the coefficients of the logistic regression
model presented below be interpreted as merely descriptive indicators of the direction
of effect of the predictor variables on the negative attitude indicator.

A random forest was created with the model parameters set such as to guarantee
unbiased variable selection (cf. Strobl et al. 2007) and

√
p, where p is the number

of potential predictor variables, randomly preselected variables (parameter mtry).
The number of trees in the random forest was set to 1000 to guarantee highly stable
results. The resulting variable importance values are depicted in Figure 3.

By visual inspection we decided to include all predictors that exceeded a nom-
inal variable importance value of 0.001 in the further analysis. This conservative
threshold seems well suited to separate between predictors whose importance varies
only randomly around zero from those that systematically exceed zero: The fact that
below this threshold positive and negative values occur with comparable amplitude
indicates that this degree of variation is only du to random sampling. Alternative
approaches for variable selection with random forests (such as Diaz-Uriarte & Al-
varez de Andrés 2006, Breiman & Cutler 2008, Rodenburg et al. 2008) may appear
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Fig. 3 Variable importance measures computet by means of a random forest for potential predictors
of a negative attitude towards statistics. Small variations around zero can be due to random sampling.

more statistically advanced, but have been shown to be affected by undesired artifacts
(Strobl & Zeileis 2008, Strobl et al. 2008)

The importance of one strategy item only marginally exceeds the conservative
threshold. However, we decided to employ a conservative variable selection strategy
and include all strategy items in the further analysis.

Variables whose importance exceed the threshold are: Gender, university major,
math intensive course in high school, mathematics grade in final exams in high
school, the prior experience items “I liked mathematics in school.”, “I was scared
of mathematics in school.” and “I was good at mathematics in school.” as well as
the strategy items “My strategy in math was to try to understand the underlying
concepts.”, “... was to practice on as many problems as possible.” and “... was to
memorize as much as possible.”. The strategy item “My strategy in math was to try
to understand the underlying concepts.” only marginally exceeds the threshold and
will later turn out to be excluded from the logistic regression model, while the other
variables by far exceed it.

This list of variables is now further explored in a logistic regression model that is
determined by means of combined forward and backward stepwise selection based
on the AIC criterion. Due to the limited amount of data it is not possible to allow
for interactions of high order, as automatically reflected by a recursive partitioning
method like random forests. However, in order to grasp as many interactions as
possible, all two-fold interactions were included in the stepwise selection process. A
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Table 1 Summary of the logistic regression model determined by means of combined forward and
backward stepwise selection. (Note that the variable gender is an indicator of female gender, that
a nominally “high” grade in the German high school system indicates poor performance, and that
the item “I liked mathematics in school.” was reversed so that approval now indicates a negative
attitude.)

Estimate Std. Error
(intercept) −1.18 0.39

gender (female) 0.86 0.20
math intensive course −0.89 0.22

final math grade (poor) 0.15 0.15
liked math in school (reversed) 0.06 0.28

scared of math in school 3.26 1.13
strategy: practice −0.88 0.50

strategy: memorize 0.68 0.31
gender (female) × scared of math in school −1.11 0.71

math intensive course × liked math in school (reversed) 1.30 0.54
final math grade (poor) × scared of math in school −0.47 0.33

final math grade (poor) × strategy: practice 0.54 0.20

summary of the resulting logistic regression model is given in Table 1. As compared
to the model derived by means of combined forward and backward stepwise selection
presented here, the model derived from mere forward stepwise selection included
the same main effects but excluded one interaction. The model derived from mere
backward stepwise selection was much less sparse and included additional main
effects of major subject in university and the strategy item “My strategy in math was
to try to understand the underlying concepts.” as well as additional interactions with
the prior experience in school items. Of the two sparse models the one resulting from
combined forward and backward stepwise selection had a slightly higher prediction
accuracy, cf. Table 2. Therefore this model is presented in detail here.

Note that variables that had high random forest variable importance values, but
show no or only little relevance in the logistic regression model, may work in higher
order interactions that cannot be reflected in the logistic regression model because
many combinations of predictor variable levels are too sparse to estimate effects
with reasonable estimation error. One such example may be the final mathematics
grade, that shows a particularly high variable importance in the random forest but
only a moderate effect in the logistic regression model with main effects and two-
fold interactions. Also the major subject in university, that showed a decent variable
importance in the random forest, was not included in the logistic regression model that
resulted from the combined forward and backward selection. However, the variable
was included in the more extensive backward selection model. The same holds for the
strategy item “My strategy in math was to try to understand the underlying concepts.”,
that showed only a small variable importance in the random forest but was also
included in the extensive backward selection model. These differences in the logistic
regression models determined by stepwise model selection with different starting
models can be considered as an indicator of instability in the stepwise selection
process due to order effects as pointed out by Rossi et al. (2005).
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Table 2 Prediction accuracies on learning data for all considered models. The out-of-bag prediction
accuracy of the random forest model gives a realistic estimation of the prediction accuracy on a test
data set.

Model Accuracy
random forest 71.1%

random forest (out-of-bag) 63.3%
logistic regression (forward) 68.6%

logistic regression (backward) 70.4%
logistic regression (combined) 69.3%

The prediction accuracies for the different models considered here are compared
in Table 2. The random forest model shows the highest prediction accuracy on the
learning data set. Of the logistic regression models the least sparse model resulting
from backward selection has the highest prediction accuracy on the learning data as
expected. However, in order to give an idea of the prediction accuracy that could be
achieved on a new test data set from the same data generating process, random forests
offer the possibility to compute the so called “out-of-bag” prediction accuracy: For
each tree in the random forest the prediction accuracy is assessed only for those
observations that were not included in the bootstrap sample on which the tree was
built. Together these observations form a “built-in” test sample for the random forest.

4 Discussion and Conclusion

Overall the results of the item analysis show that the items of the SATS Affect and
Cognitive Competence scales, even when translated into German, have satisfactory
correlations and are well suited for partitioning the sample with respect to attitude
towards statistics. Interestingly the pattern found here, that (at least when translated
into German) the positively worded items of the SATS produce different response
patterns than the negatively worded items, had not been reported before. The nega-
tively worded items seem to have the tendency to be slightly more selective in the
English version of the instrument as well (Schau 2007). However, the effect seems
to be more pronounced in the German translation.

To diminish the possibility of translation errors a fluent German and native English
speaker was asked to review the translations. Only for the item 1.4 (“I will enjoy taking
statistics courses.”, translated as “Ich werde Spaß am Statistik Unterricht haben.”)
the German translation may have a more positive meaning than the English version.
However, the item 2.5 (“I can learn statistics.”, translated as “Ich kann Statistik
lernen.”), the translation of which is literal, showed a much stronger deviation from
the negatively worded items in the exploratory item analysis. Therefore we believe
that the difference between positively and negatively worded items is not due to
translation errors but rather due to a different perception or interpretation by the
subjects: Our hypothesis is that the positively worded items are perceived much
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more positive by German students in the German version than by American students
in the English version, so that the German students find the phrases overstated and
cannot identify with them – and therefore respond only moderately. Besides affirming
popular stereotypes and scientifically documented patterns (Schroll-Machl 2002)
concerning a general lack of enthusiasm in the German style of communication, this
finding indicates that a direct translation of attitude scales into a different language
does not necessarily reproduce the characteristics of the original instrument.

The results of the logistic regression model indicate in the main effects that female
students, students who had bad grades in their final mathematics exams, students who
were scared of mathematics in school and students whose strategy was to memorize
as much as possible are more likely to be anxious, while those that took mathematics
as an intensive course in high school and whose strategy was to practice as much
as possible are less likely to be anxious of statistics. In the interactions we find that
the protective effect of mathematics as an intensive course was outweighed in the
interaction with a negative attitude in response to the item “I liked mathematics in
school.” so that overall students who took mathematics as an intensive course in high
school but did not like it are more likely to be anxious of statistics in university.
Also the effect of the final mathematics grade was aggravated in interaction with the
strategy to practice as much as possible, so that students who (at least claim to have)
practiced a lot but still received poor mathematics grades in high school are more
likely to be anxious of statistics in university.

On the other hand the interactions between gender and approval to the item “I
was scared of mathematics in school.” as well as between the final mathematics
grade and approval to the item “I was scared of mathematics in school.” merely
soften the effect so that students that share both characteristics are not as likely to be
anxious of statistics in university as would be indicated by the additive effects of the
corresponding items.

Even though we included respective items in our survey and the sample size
(with 28% of our sample reporting that they did not go directly from high school
or civil/military service to university) would have been sufficient to detect an effect
present in the sample, we could not replicate the effect of the time since the last math
course reported in Wilson (1997) and our expectation that the time and activity since
high school graduation affected the attitude towards statistics in university was not
supported. On the other hand the effects of gender and poor prior achievement found
here replicate the results of Wilson (1997), Fullerton & Umphrey (2001), Mills (2004)
as well as Zeidner (1991) and Carmona (2004), and indicate that female students and
students with negative prior mathematics experience are more likely to develop a
negative attitude towards statistics or even statistics anxiety in university.

The effects of the newly included items on strategy applied in previous math
courses for predicting a negative attitude towards statistics support our previous
impression that the students’ strategy is correlated with their negative attitude towards
statistics. Practicing has a protective effect – as long as this strategy is successful and
does not go along with poor grades, as indicated by the respective interaction effect.
This protective effect of practicing could either be that practicing helps students feel
more secure about their abilities and the subject matter, or that anxious students rather
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choose other suboptimal strategies, such as memorizing, instead of practicing for a
test. The effect of memorizing, on the other hand, could either be that it increases
anxiety because memorized knowledge is not as reliable as knowledge achieved by
understanding or practicing, or that memorizing is used as a strategy only by those
students who are so anxious that they see no other chance to pass an exam.

For statistics instructors in university it may be scary but insightful that a non-
negligible percentage of their students come from high-school with suboptimal prepa-
ration strategies: about 12.35% of the students in our sample (16.88% in social and
9.51% in business sciences) agreed or strongly agreed to using memorizing as their
strategy in math courses.

Teaching students such successful strategies for mastering mathematics courses –
as early as possible in their school career, before they accustom to suboptimal learning
strategies – could thus serve both as an intervention against a negative attitude towards
statistics or even statistics anxiety as well as for improving the students’ long time
statistics achievement.

In a follow-up study the exam grade achieved and the attitude towards statistics
at the end of the first introductory course will be investigated for those students who
agreed to participate by providing their matriculation number. The aim of this follow-
up is i) to assess the influence of a negative attitude towards statistics or statistics
anxiety on test performance and compare the results from this sample to previous
findings in the literature (Zeidner 1991, Zimmer & Fuller 1996), and ii) to further
investigate if the conservative answering tendency in the positively worded SATS
items in persistent or moderated in the second presentation.
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Graphical Chain Models and their Application

Iris Pigeot, Stephan Klasen and Ronja Foraita

Abstract Graphical models are a powerful tool to analyze multivariate data sets
that allow to reveal direct and indirect relationships and to visualize the association
structure in a graph. As with any statistical analysis, however, the obtained results
partly reflect the uncertainty being inherent in any type of data and depend on the
selected variables to be included in the analysis, the coding of these variables and
the selection strategy used to fit the graphical models to the data. This paper suggests
that these issues may be even more crucial for graphical models than for simple
regression analyses due to the large number of variables considered which means
that a fitted graphical model has to be interpreted with caution. Sensitivity analyses
might be recommended to assess the stability of the obtained results. This will be
illustrated using a data set on undernutrition in Benin.

1 Introduction

The selection of an adequate model is a crucial task when modeling complex associ-
ation structures. The results of a particular analysis about direct and indirect effects
of covariates on response variables and the corresponding substantive conclusions
can be strongly affected by the choice of the underlying model. Each of the candidate
models has advantages but also limitations that impact the most relevant questions
to be answered by the analysis, namely how do the variables involved affect our
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outcomes of interest and are there possibly interactions between them which also
influence our response variable. In addition to the choice of the statistical model
itself, the selection and the coding of the variables to be included in the analysis is
another critical aspect in an empirical investigation.

In this paper we focus on the application of graphical models that are still a rather
novel, though powerful statistical tool to analyze multivariate data sets. Graphical
models are specifically suited for the analysis of complex association structures and
provide a graphical representation of certain independence properties among the
variables of interest. We restrict ourselves here to so-called graphical chain models
that allow to reveal indirect associations and to identify hidden relationships. We
demonstrate the challenges that are related to the interpretation of graphical chain
models by especially investigating their robustness with respect to a change of the
variables included in the analysis or a different coding.

The challenges that are illustrated by using a highly complex data example are of
course not limited to these statistical techniques. The complexity of the model, how-
ever, adds to the difficulties which are inherent to any statistical modeling approach
in an empirical investigation.

We will illustrate the above mentioned challenges in obtaining valid and mean-
ingful results by considering the example of childhood undernutrition which is one
of the most important health problems in developing countries. That is we are in-
terested in modeling the determinants of undernutrition among children which is
a complex undertaking. Although it seems as if the determinants of undernutri-
tion are quite clear, namely inadequate dietary intake and incidence, severity, and
duration of disease, these factors themselves are related to a large number of inter-
mediate, underlying, and basic causes operating at the household, community, or
national level (UNICEF 1998). Among the most important factors are probably the
education, wealth, and income situation of the parents, household size, birth order,
religion, and sex of the child, the availability of clean water, adequate sanitation,
immunization, and primary health care services, and the level of disease prevalence
in the surrounding community. Noteworthy, the association structure between these
factors is assumed to be fairly complex. In fact, UNICEF has made a useful dis-
tinction between immediate, intermediate, and underlying causes of undernutrition.
Any empirical strategy that attempts to identify the determinants of undernutrition
must recognize the existence of such a dependence chain. This suggests that a simple
multivariate regression model is not appropriate to capture the indirect associations
and the overall complex association structure.

To determine whether an individual child suffers from undernutrition of the three
forms, i.e. insufficient height for age (stunting) indicating chronic undernutrition,
insufficient weight for height (wasting) indicating acute undernutrition, and insuffi-
cient weight for age (underweight) indicating acute and/or chronic undernutrition,
the anthropometric indicator of the child is compared with a reference population by
means of a Z-score:

Zi =
AIi−MAI

σ
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where AIi refers to the individuals anthropometric indicator (weight at a certain
height, height at a certain age, or weight at a certain age), MAI refers to the median
of the reference population, and σ refers to the standard deviation of the reference
population (Gorstein et al. 1994, WHO 1995). The Z-score thus measures the dis-
tance, expressed in standard deviations of the reference population, between the
individuals anthropometry and the median of the reference population, where both
populations are presumed to be normally distributed. While the average Z-score
is likely to give an accurate picture of undernutrition at the population level, for
an individual child it might be misleading as genetic influences of the parents are
likely to affect it and thus bias the findings. There is also some on-going debate
whether this might bias findings on undernutrition between different continents as
there might be genetic differences particularly in the height potential of children
(WHO 1995, Klasen 2003, Klasen 2008). In particular, there is a question whether
the very high reported rates of undernutrition in South Asia, compared to Sub-Saharan
Africa, are partly related to this question.

For the purpose of this paper we use data from the 1996 Demographic and Health
Survey to fit a graphical chain model for undernutrition in Benin, West Africa. Our
discussion of the challenges related to the modeling of the association structure will
be based on two analyses conducted by the authors (Caputo et al. 2003, Foraita
et al. 2008). The research work on the analysis of undernutrition with the help of
graphical chain models was started within a subproject of the DFG-funded Collab-
orative Research Center 386 “Statistical Analysis of Discrete Structures: Modelling
and Application in Biometrics and Econometrics" which was successfully coordi-
nated by Ludwig Fahrmeir. In the first analysis we made full use of the data being
available for Benin. In contrast, the second analysis had to be restricted to variables
that were available for both Benin and Bangladesh for comparative reasons. The
comparison of these two analyses sheds some light on the differences in the results
explaining undernutrition in Benin. In addition to discussing the major differences
between the two resulting models we will also describe the most important overlaps.

The paper is organized as follows. Section 2 gives an introduction to the theory
of graphical chain models. In Section 3 we briefly describe the selection strategy we
used for fitting such a model to our multivariate data set. We then present the data
set in Section 4 where we also provide some descriptive statistics. Section 5 gives a
detailed discussion of the results, while Section 6 concludes.

2 Graphical Chain Models

Graphical models are probability models for multivariate observations to analyze
and visualize conditional relationships between random variables encoded by a con-
ditional independence graph. In contrast to regression models, graphical modeling
is concerned with identifying association structures for all study variables, including
those which usually are regarded as explanatory. They are therefore appropriate in
situations where complex associations have to be dealt with. Due to the visualization
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in graphs, these models make it easier to display complex dependence structures.
Furthermore, they can handle simultaneously categorical and continuous variables.

We denote an arbitrary graph by G = (V,E) where V = {1, . . . ,K} is a set of ver-
tices representing the components of a multivariate random vector XV = (X1, . . . ,XK)
and E ⊆ V ×V is a set of edges. For i, j ∈ V , there is a symmetric association be-
tween two vertices i and j and a line in the graph (also called undirected edge) if
(i, j)∧ ( j, i) ∈ E whereas (i, j) ∈ E ∧ ( j, i) /∈ E corresponds to an asymmetric as-
sociation and an arrow in the graph (also known as directed edge), pointing from
i to j. Semi-directed cycles are not allowed, i.e. sequences a = i0, . . . , ir = a with
(ik−1, ik) ∈ E ∧ (ik, ik−1) �∈ E for at least one value of k.

The structure of the conditional relationships among random variables can be
explored with the help of Markov properties (Lauritzen & Wermuth 1989, Frydenberg
1990). For instance, the pairwise Markov property claims

Xi⊥⊥Xj|XV∗\{i, j} whenever (i, j),( j, i) /∈ E

where V ∗ consists of all variables prior to or at the same level as i and j and the
symbol ⊥⊥ stands for conditional independence between Xi and Xj given XV∗\{i, j}.
This implies that a missing edge can be interpreted as conditional independence.
However this is only justified if the underlying multivariate statistical distribution
fulfills the Markov properties since they lead to a factorization of the multivariate
density and thus to a decomposition into smaller models and equivalently cliques,
which are maximal complete subgraphs.

Graphical chain models are suitable to account for prior substantial knowledge
of an underlying dependence structure by forming a dependence chain where all
variables are partitioned into an ordered sequence of disjoint subsets V1∪ . . .∪VR.
The subsets are called blocks and all edges within Vr are undirected and all edges
between Vr and Vs are directed from Vr to Vs for r < s. The blocks V1, . . . ,VR are
ordered due to subject-matter knowledge, so that the rightmost block contains the
pure explanatory variables, the leftmost block the pure responses and the blocks
between contain variables that are simultaneously responses to variables in previous
blocks and potentially explanatory to variables in future blocks. Variables in these
in-between blocks are intermediates and, in contrast to usual regression models,
allow for modeling possibly indirect influences. Variables in the same block are
assumed to be on equal footing, i.e. no sensible response-explanatory relationship
can be assumed within this subset. The random vector XV is divided into subvectors
XV1 , . . . ,XVR such that the joint density f (xV ) factorizes into a product of conditional
densities as

f (xV ) = f (xV1)
R

∏
r=2

f (xVr)|xV1 , . . . ,xVr−1). (1)

Each of the factors in (1) corresponds to the distribution of variables at one level
conditional on variables at all lower levels. Thus, one may regard a graphical chain
model as a sequence of regression models that describe these conditional distributions
and the choice of the recursive structure reflects that one is specifically interested in
the latter.
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If mixed models are investigated, i.e. models including continuous as well as
discrete variables, the distribution considered is the Conditional Gaussian distribution
(CG-distribution), where the continuous variables are multivariate normal given the
discrete. For further reading we refer to Lauritzen (1996), Cox & Wermuth (1996),
Edwards (2000) and Green et al. (2003) and the references therein.

3 Model Selection

In our study we have to deal with mixed variables and also with a large number of
variables. Thus, we are confronted with the problem to select those variables that
are most influential for the response and to find the most appropriate association
structure among them. A possible solution to this problem is the data-driven Cox-
Wermuth selection strategy (Cox & Wermuth 1993, Cox & Wermuth 1994). This
strategy exploits that each conditional density of the factorization is described by a
system of multiple univariate regressions. The kind of regression used depends on the
measurement scale of the involved univariate response. A problem of this strategy is
that fitting multiple univariate regressions neglects the multivariate structure of the
data and the validity of the equivalence of the Markovian properties is not ensured for
the whole graph. Nevertheless, for large and complex graphs with mixed variables
it is still the only feasible computer algorithm which is implemented in the software
GraphFitI (Blauth et al. 2000).

The Cox-Wermuth selection strategy consists of roughly two steps: First, a
screening for second-order interactions and non-linearities is performed (Cox &
Wermuth 1994); second, a system of forward and backward regressions depending
on the scale of the response variable is carried out.

In the screening procedure, the search for second-order interactions is based
on the calculation of t-statistics derived from trivariate regressions, such as Xa on
Xb,Xc,XbXc with Xa ∈Vs and Xb,Xc ∈Vr,s≥ r, where each Xa has to be regressed on
all possible pairs of variables in the same block and in previous blocks as well as on
their pairwise interaction. In case of large sample sizes and if there is no interaction,
the t-statistics approximately follow a standard normal distribution. The ordered t-
statistics are plotted against their expected values obtained from the standard normal
distribution. If the assumption of no interactions is fulfilled, the points spread along
the diagonal. Checking for non-linearities is performed similarly. All interactions
and non-linearities with a |t|-value > 4 are considered in further steps.

To derive the graph a multivariate response model is needed for each Vr givenV1∪
. . .∪Vr−1. The Cox-Wermuth strategy splits the problem of multivariate regressions
into a system of univariate regressions for each variable Xa on the remaining variables
in the same block and on all explanatories in the previous blocks. First, a forward
selection investigates whether the detected interactions or non-linearities from the
screening step have to be added into the set of covariates regarding Xa. This selection
is based on statistical tests with α = 0.1. The corresponding p-values have, however,
to be interpreted in an exploratory sense since no adjustment for multiplicity takes
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place. Then, a backward selection strategy for Xa is used on the preliminary set of
covariates. In each step, the covariate with the smallest corresponding |t|-value is
excluded until the remaining covariates all come up with a p-value smaller than
0.05. After that the remaining variables are checked again for interactions and non-
linearities. All qualitative interaction terms and mixed interactions terms are included
in the model equation. Again, a backward selection as described above is carried out.
Finally, all quantitative interaction terms and non-linearities are introduced into the
model. The final backward selection leads to the reduced model that should capture
the underlying association structure.

4 Data Set

The data is part of the 1996 Demographic and Health Surveys (DHS, Macro 1996).
These surveys are conducted regularly by the National Statistical Institutes in collab-
oration with Macro International, a US-based company that operates on behalf of the
US Agency for International Development, in several countries of Africa, Asia, Latin
America and the Near East. The DHS is based on a representative sample of women
of reproductive age. These women are administered an extensive questionnaire cov-
ering a broad range of items regarding household structure, socioeconomic status,
health access and behavior, fertility behavior, reproductive health, and HIV/AIDS.
The questionnaire also contains items about the children including prenatal and
postnatal care, nutrition, health, immunization, and care practices. Some parts or
questions of the survey have been disregarded in some countries. In this study we
focus on the DHS data set from Benin and involve only children between twelve
and 35 months. We focus on these age group since by that age the children surely
have been introduced to additional foods and water and therefore have already been
through the weaning crisis associated with this transition. For older children the DHS
survey does not collect data about their nutrition and health status. If the respondent
has more than one child belonging to this age group we only select the younger one.

We compare the data sets from Caputo et al. (2003) and Foraita et al. (2008)
which in this paper are abbreviated with A and B respectively. While Caputo et al.
(2003) only focus on Benin, Foraita et al. (2008) compare the different patterns of
malnutrition in Benin and Bangladesh. Although both papers are based on the DHS
1996 Benin data set, they vary in the variables that causes different total sample
sizes (NA = 1076, NB = 1122) since both data sets are constrained to complete cases.
Additionally, some variables have a different coding scheme or the reference category
has changed (see Section 4.1 for more details).
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4.1 Summary Measures

In order to capture the determinants of undernutrition and not to miss a relevant
influence, a large number of variables are included in the model. In this section, we
briefly introduce the variables, their scales and coding. Table 1 gives absolute and
relative frequencies of binary and polytomous variables and Table 2 summarizes
mean, median and the 25th and 75th percentile of continuous variables. This distinc-
tion between the various scales is not only convenient for their presentation, but also
needed for choosing the adequate regression models in later analysis.

The response variables stunting (St) and wasting (Wa) are both continuous anthro-
pometric indicators that measure malnutrition using the Z–score. Stunting reflects
chronic malnutrition, whereas wasting stands for acute malnutrition (see Section 1).
The different composition of the two analysis data sets has already an impact on
the stunting and wasting. To be more specific, in data set B the children are slightly
more stunted and less wasted than in data set A. The investigation of the impact of
the child’s nourishment focuses on the quality of food, measured by the number of
meals containing protein (P) during one day. In data set A, P shows the absolute
frequency of meals containing milk, meat, egg, fish or poultry whereas in data set
B only the meals containing milk or meat are counted. The difference in this opera-
tionalization heavily affects the distribution of P: for data set A, 20% of all children
had no protein in their meal compared to 65% in data set B. Data set A contains the
further aspect of food quantity (F) which counts the number of meals a child has
had during the day. Since this variable was not available for the Bangladesh data set,
the number of meals was not included in data set B. Comparing both data sets to
further nutritional variables, no essential difference can be seen with respect to the
time when the children are put to breast or the duration of exclusively breast–feeding
that is on average unusually long with about 19 months which has to be interpreted
as an indicator of high poverty and lack of alternative food. The security of nutrition
for the child is represented by the mother’s body mass index BMI. A large BMI can
be interpreted as sufficient nourishment of the whole family, whereas a low BMI
indicates an uncertain nourishment.

Another important influence on the child’s physical status is its current health
situation. Therefore, the variable ill counts children who suffered from diarrhea or
cough during the last two weeks before the interview. Due to the short observation
time, one may presume an effect on wasting.

In both data sets half of the children have to be regarded as ill. In both data sets
nearly 78% of the mothers have access to modern health care, measured by prenatal
and birth attendance score (BPA). The variable vaccination (V ) counts the number
of vaccinations a child has already had. It may be considered as a substitute of
health knowledge, but also of access to health care. Furthermore, the access to clean
water and clean sanitation is important. These variables have been operationalized
differently for both data sets. In data set A only piped water and flush toilet or all
kinds of pit latrines has been categorized as high quality (around 24%) compared to
data set B where piped as well as well water (50%) and only flush toilets but no open
latrines (13%) has been regarded as high quality.
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Table 1 Absolute and relative frequencies of binary and polytomous variables.

A B
(N = 1076) (N = 1122)

Variable Category Freq % Freq %

P protein intakes 0 216 20.1 734 65.4
yesterday 1 607 56.4 307 27.4

2 207 19.2 81 7.2
3 46 4.3 - -

ILL child was ill during the last
14 days

no (A) 539 50.1 560 49.9
yes (B) 537 49.9 562 50.1

PB when child put to breast immediately 241 22.4 249 22.2
within 6 hours 326 30.3 340 30.3
first day 271 25.2 282 25.1
2 days or more 238 22.1 251 22.4

BPA prenatal and nothing 28 2.6 29 2.6
birth attendance other 133 12.4 136 12.1

traditional 78 7.3 84 7.5
modern 837 77.8 873 77.8

W source of drinking water low quality 822 76.4 566 50.5
high quality 254 23.6 556 49.6

T type of toilet facility low quality 876 81.4 972 86.6
high quality 200 18.6 150 13.4

Rel religion Islam (B) 235 21.8 245 21.8
Traditional 278 25.84 290 25.8
Christianity 246 39.6 444 39.6
no religion (A) 137 12.7 143 12.8

Sex sex of child male 551 51.2 575 51.3
female 525 48.8 547 48.8

HH relationship to relative 174 16.2 183 16.3
household head wife 842 78.3 871 77.6

head (B) 40 3.7 43 3.8
not related (A) 20 1.9 25 2.2

H house quality low quality 555 51.6 580 51.7
high quality 521 48.4 542 48.3

Wo current type of paid employee 83 7.1 85 7.6
employment self-employed 891 82.8 933 83.2

unpaid worker (A) 44 4.1 45 4.0
did not work (B) 58 5.4 59 5.3

A and B mark different reference categories in the respective data sets and bold written variables
mark a different coding scheme in both data sets.

Additionally, various socioeconomic factors have been included into both data sets
like the current type of employment of the mother (Wo), having a different reference
category in the data sets, three proxies for the economic situation of the household
(house quality (H), durable goods (G) and mother’s height (Ht)) or the educational
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Table 2 Summary measures of the continuous variables.

A B

Variable Mean Median Q1 Q3 Mean Median Q1 Q3

St stunting (Z-score·100) -147.3 -153.0 -232.5 -62.0 -148.2 -154.5 -233.0 -62.0
Wa wasting (Z-score·100) -93.6 -95.0 -165.5 -20.5 -92.7 -94.0 -164.0 -20.0
F food 4.2 4.0 -3.0 5.0 - - - -
BF duration of breast-feeding in

months
18.6 18.0 15.0 22.0 18.6 18.0 15.0 22.0

BMI body mass index 21.3 20.8 19.2 22.5 21.4 20.8 19.2 22.6
Ht mother’s height 158.2 158.2 154.0 162.2 158.2 158.3 154.0 162.2
V vaccination score 6.2 8.0 5.0 8.0 6.2 8.0 5.0 8.0
Bo birth order number 4.1 4.0 2.0 6.0 4.1 4.0 2.0 6.0
Age age in months 22.5 22.0 16.0 28.0 22.5 22.0 16.0 28.0
HM no. of household members 8.9 8.0 5.0 11.0 8.9 8.0 5.0 11.0
TC total children ever born 4.2 4.0 2.0 6.0 - - - -
CD deceased children in % 12.5 0.0 0.0 25.0 12.5 0.0 0.0 25.0
1st age of mother at first birth 19.0 19.0 17.0 21.0 19.0 19.0 17.0 21.0
G durable goods in % 23.8 28.6 14.2 28.6 23.9 28.6 14.3 28.6
EM mother’s education in years 0.9 0.0 0.0 0.0 0.9 0.0 0.0 0.0
EP partner’s eduction in years 2.3 0.0 0.0 4.0 2.3 0.0 0.0 4.0

Q1: 25th percentile; Q3: 75th percentile. Bold figures mark differences in data sets.

background in the family. The duration of education in years is very short for mothers
with a 75th percentile of 0 years and it is slightly better for their partners with around
4 years.

4.2 Dependence Chain

In line with UNICEF (1998), Caputo et al. (2003) and Foraita et al. (2008) postulated
a dependence chain as follows (see Figure 1), from left to right: in the first block we
put our pure response variables wasting and stunting.

The second block includes all variables that have an immediate influence on
these Z-scores, where we include variables relating to nutritional intake and illness
episodes (ill, protein and food for data set A).

The next block includes intermediate variables that reflect care practices, health
knowledge, and access to water and sanitary services. It includes child care (breast-
feeding, time put to breast, vaccination, prenatal and birth attendance, mother’s
BMI) and sanitary facilities (quality of drinking water, quality of toilet facilities).

The last block on the right includes basic variables affecting the ability of house-
holds to take care for their children, including demographic factors (age, sex, birth
order number and additionally in data set A the variable total children ever born,
religion, number of household members, number of deceased children, age of mother
at first birth, relation between mother and household head), socioeconomic factors
(house quality, fraction of durable goods, mother’s education, partner’s education,



240 I. Pigeot, S. Klasen & R. Foraita

Fig. 1 The postulated chain. Pure responses are the undernutrition variables wasting and stunting.
Immediate factors reflect food quality and the state of health, intermediate factors are variables of
health care, health knowledge, food security, and sanitary facilities. Demographic and socioeco-
nomic factors are put in the block of the underlying factors. Bold written variables indicate different
coding schemes in both data sets and ∗ indicates variables that are only included in data set A.

current type of employment) and mother’s height as combination of socioeconomic
and nutritional aspects that we call underlying factors. In the appendix a more detailed
description of the variables is given.

5 Results

Figures 2–4 show the fitted graphical chain models for data set A and B and their
common edges. The common edges in both analyses are shown in black in Figures 2
and 3 and are separately presented in Figure 4. The edges that are specific to analysis
A and B are shown in grey in Figures 2 and 3, respectively.

While the figures may at first glance appear rather complicated, closer inspection
reveals a number of interesting points.

Although both data sets differ only slightly, the graphs show several notable
differences. This is surely on the one hand due to the omission of the variables
total children ever born and in particular food that attracts many influences from the
intermediate and underlying factors and on the other hand due to the change of some
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Fig. 2 Undernutrition in Benin – Fitted graphical chain model using data set A. Black dots represent
discrete and white circles continuous variables. The double-lined box indicates that the associations
among the variables within this box are not shown. Edges in black are common to both analyses;
edges marked in grey are only specific to the analysis using data set A. For abbreviations of variables
see Tables 1 and 2 or Figure 4.

categorical variables as well as the inclusion of further children which affects the
variability between the data sets. Especially the variable food acts as some kind of
hub in data set A that forwards the influences of many intermediate and underlying
factor though its connections to protein and ill. In data set B it seems that ill has
partly inherited the role since it works as endpoint for many underlying factors, with
the difference that these influences are not carried forward to the response variables.

Although we have not substantially changed the data sets, we can see in Figures 2
and 3 that there is a certain amount of uncertainty in the data we have to be aware
of. Edges that we detected in both analyses, seem to be more stable. Hence, our
interpretation will only be based on those pathways.

First, in both data sets protein consumption has a direct influence on stunting,
even though the variable has been recoded for data set B. Second, there are many
direct and indirect influences from those variables reflecting the economic condition
of the household, e.g. proxied by partner’s eduction, house quality and goods. Third,
mother’s BMI and duration of breast–feeding are important players as intervening
variable between underlying factors and the response variables stunting and wasting.
However, the role of mother’s BMI in the network is twofold. It can be regarded as
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Fig. 3 Undernutrition in Benin – Fitted graphical chain model using data set B. The variables
food (F) and total children ever born (TC) are not included in fitting the graph. Edges in black are
common to both analyses; edges marked in grey are only specific to the analysis using data set B.

a variable that in some extent reflects the economic situation of the household in
the sense that children of well-nourished mothers are also well-nourished. But BMI
may also partly capture the genetic influences of the mother’s anthropometry on
her children. Breast–feeding is directly associated with stunting and has an indirect
influence on wasting through BMI. The WHO (WHO 1995) recommends that after six
months of exclusively breast–feeding, children need additional food. Hence extended
periods of breast–feeding may be an indicator of the inability of the household to
provide for such supplemental foods. Table 2 shows that on average the children are
breast-fed for more than 18 months. The 25%-percentile equals 15 months. Forth,
the eduction of the mother shows a rather indirect influence on the response via
BMI, duration of breast-feeding, source of drinking water and prenatal and birth
attendance which means that especially stunting is influenced in numerous ways by
mother’s education. The results suggest that more years of education is associated
with a shorter duration of breast-feeding and better nourished mothers. It is more
likely that these mothers make use of a modern health service and have access to
clean water. Fifth, the toilet variable is noticeable since many influences point on
it, but toilet itself is connected with stunting only via the breast-feeding link. Sixth,
religion is an important factor in Benin. It is associated with many aspects in the
dependence chain of undernutrition. It is directly linked with wasting, the current
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Fig. 4 Common edges in data sets A and B.

health situation of the child (ill), quality of food (P), access to health care (V ) and to
the access of clean water (W ) and sanitation (T ). Generally, belonging to any kind
of religion seems to be favorable for children in Benin.

6 Discussion

As it became evident in the last section, the results that we obtain from a statistical
analysis with graphical chain models should be interpreted with caution and crit-
ically reflected regarding their substantive message. Although the most important
conclusions from the above exploratory data analysis remained stable regardless of
the variables included and their coding, some results were rather different in both
graphs. This problem is of course more severe in analyses with a huge number of
variables involved that all may explain the response directly or indirectly. This is also
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not so surprising as the omission of some variables will naturally lead to the effect
being captured by closely correlated ones. A related problem is due to the fact that
there is always more than one model which is consistent with the data, and typically
different model selection strategies will lead to different results.

To get a better understanding of the mechanisms that led to these differences
we again fitted a graphical chain model to the original data set A where we used
the same coding but left out the variables food and total children ever born. The
resulting Figure 5 (see Appendix) differs from Figure 2 mostly in those edges that
are due to the above variables; only very few other edges are affected. Figure 3 that is
based on data set B shows much more differences compared to Figure 5 which means
that relatively small differences in coding and number of observations can have a
substantial difference on the detected associations. Examples are that ill has a direct
influence on wasting, or that vaccination directly influences stunting which is each
shown in Figure 5, but does not appear in Figure 3. Thus, it is strongly recommended
to not only think about the variables to be included but to also carefully think about
the coding of variables and to carry out some sensitivity analysis based on various
coding schemes.

Whereas a simple linear regression model can be assessed by the coefficient of
determination R2, no comparable measure exists to assess a graphical model. Thus, it
is recommended to at least perform some kind of sensitivity analysis. For this purpose,
often we suggest to estimate different reasonable models and compare their most
important results. As an alternative, the bootstrap offers a valuable opportunity in
two ways (Friedman et al. 1999b, Friedman et al. 1999a, Steck & Jaakkola 2004). On
the one hand, it allows to generate repeated samples out of the original one which can
be used to fit the model of interest repeatedly and to compare the variety of selected
models. This gives an idea about the stability of the originally selected one. (For
graphical models with only discrete data, the R-package gmvalid (Foraita & Sobotka
2008) provides functions that apply the bootstrap to investigate the uncertainty of
graphical models.) The resulting models can, on the other hand, be exploited to derive
measures of uncertainty which are especially appropriate to assess the validity of a
selected graphical model. The development of such measures and their evaluation
by means of real data examples and simulated data sets is currently under research
by the authors.
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Appendix

Table 3 Further explanations of some variables. Abbreviations A or B indicate the respective data
set.

Variable Category Comments

ill child was ill no child suffered from diarrhoea or cough during the last 14
daysyes

P Protein intakes
yesterday (A)

0-3 remembered number of meals containing milk, meat,
egg, fish or poultry

P Protein intakes
yesterday (B)

0-2 remembered number of meals containing milk or meat

W source of low quality unprotected well or surface water
drinking water (A) high quality piped or well water

W source of low quality unprotected well or surface water
drinking water (B) high quality piped water

T type of low quality well water, open latrine, no facility or “other" toilets
toilet facility (A) high quality flush toilet, pit toilet latrine, open latrine

T type of low quality no facility or “other" toilets
toilet facility (B) high quality flush toilet or pit toilet latrine

G durable goods [0,1] averaged sum score out of if the house has electricity,
radio, television, refrigerator, bicycle, motorcycle, car
and telephone

in %

H house quality low quality main floor material is natural
high quality all other materials (i.e. wood, cement . . .)
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Fig. 5 Fitted graphical model using data set A without variables food and total children ever born.
The associations Age → ill and CD → P are new (in grey), whereas the edges Bo→ BF and Bo→
W disappeared (marked as dotted lines).



Indirect Comparison of Interaction Graphs

Ulrich Mansmann, Markus Schmidberger, Ralf Strobl and Vindi Jurinovic

Abstract A strategy for testing differential conditional independence structures (CIS)
between two graphs is introduced. The graphs have the same set of nodes and are
estimated from data sampled under two different conditions. The test uses the entire
pathplot in a Lasso regression as the information on how a node connects with the
remaining nodes in the graph.
The interpretation of the paths as random processes allows defining stopping times
which make the statistical properties of the test statistic accessible to analytic rea-
soning. A resampling approach is proposed to calculated p-values simultaneously
for a hierarchical testing procedure. The hierarchical testing steps through a given
hierarchy of clusters. First, collective effects are measured at the coarsest level pos-
sible (the global null hypothesis that no node in the graph shows a differential CIS).
If the global null hypothesis can be rejected, finer resolution levels are tested for an
effect until the level of individual nodes is reached.
The strategy is applied to association patterns of categories from the ICF in patients
under post-acute rehabilitation. The patients are characterized by two different condi-
tions. A comprehensive understanding of differences in the conditional independence
structures between the patient groups is pivotal for evidence-based intervention de-
sign on the policy, the service and the clinical level related to their treatment.
Due to extensive computation, parallel computing offers an effective approach to im-
plement our explorative tool and to locate nodes in a graph which show differential
CIS between two conditions.
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1 Introduction

We present a statistical strategy to detect changes in the conditional independence
structure (CIS) between elements under different conditions. For example, the ele-
ments could be the genes which are annotated to a certain pathway. The conditions
may be defined by two different diseases and two datasets containing the correspond-
ing gene expression information measured in tissues from the respective patients. Fi-
nally, the CIS between the genes of the pathway may be estimated by an appropriate
method (Schäfer & Strimmer 2005, Meinshausen & Bühlmann 2006, Wainwright
et al. 2006, Friedman et al. 2007, Banerjee et al. 2008).
The detection of nodes which show differences in the way they connect to other
nodes is straightforward by visual inspection of both graphs. But, it is difficult to
decide which of the detected nodes show a differential CIS between both conditions
caused by systematic differences (true positives) and which are statistical artefacts
caused by the algorithm or random fluctuation in the data (false positives). A similar
problem exists for the nodes with equal CIS’s between both conditions. It is difficult
to discriminate between true or false negatives. The goal of this paper is to present a
strategy to detect a set of nodes with differential CIS under a controlled error rate.
The proposed strategy to detect the set of nodes is called indirect because an ex-
plicit estimation of the CIS between nodes is avoided. A direct test calculates the
test statsitic from the estimated graphs. For example it can be based on a resampling
(permutation) approach which works as follows:

• Choose a metric to measure differential connectivity between two graphs. This
can be done by the Structural Hamming Distance (SHD).

• Estimate the two graphs by a specific algorithm from the given data and determine
the SHDobs between both graphs.

• Permute the data units between both data sets, estimate both graphs for permuta-
tion i and calculate the specific SHDi (i = 1, . . . ,R).

• Determine a permutation p-value by #{SHDobs < SHDi}/R.

Related ideas can be found in Balasubramanian et al. (2004) or Ruschhaupt (2008).
The strategy proposed will use a global test for a set of nodes. Furthermore, a given
hierarchy of clusters within the set of nodes is considered. The hierarchy has to be
derived from specific domain knowledge. For each cluster C we will test the null
hypothesis H0,C: The cluster C does not contain any node with a differential CIS to
other nodes of the graph.
The hierarchical testing steps through a given hierarchy of clusters. First, collective
effects are measured at the coarsest level possible (the global null hypothesis that
no node in the graph shows a differential CIS). If the global null hypothesis can be
rejected, finer resolution levels are tested for an effect until the level of individual
nodes is reached.
Meinshausen (2008) developed an attractive approach for hierarchical testing which
will be used to solve our problem.
In computational biology, it might for example be interesting to use the Gene On-
tology (Ashburner et al. 2000) when testing for the differential connectivity derived
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for genes of a specific pathway or functional group. But, the Gene Ontology does
not posses the hierarchical nature of the hierarchies used by Meinshausen, although
the approach can be made feasible (with some more cumbersome notation) for Gene
Ontology and related hierarchies derived from genomic domain knowledge (Goeman
& Mansmann 2008).
Since simple hierarchies do not exist for problems in computational biology, we
study for illustrative reasons an example from human functioning where the nodes
are respective categories defined by the International Classification of Functioning,
Disability and Health (ICF, WHO (2001)).
The paper is organized as follows: Section 2 introduces the methodological aspects
of the test statistic with which we compare graphs. It states theorems to describe
properties of the test statistics, and defines the sampling approach to perform the hi-
erarchical test procedure. Section 3 presents the example and Section 4 will discuss
our approach. The Appendix offers some results to the properties of the test statistics.

2 Methods

Consider the p-dimensional multivariate distributed random variable X = (X1, . . .
,Xp) which is the outcome of a Markov random field (MRF). A Markov random
field is specified by an undirected graph G = (N,E), with node set N = 1,2, . . . , p
and edge set E ⊂ N ×N. The structure of this graph encodes certain conditional
independence assumptions among subsets of the p-dimensional random variable X ,
where variable Xi is associated with node i ∈ N.
For multivariate Gaussian data, the article Meinshausen & Bühlmann (2006) solved
the fundamental problem of estimating the structure of the underlying graph given a
set of n samples from the MRF and showed that L1-regularization can lead to practical
algorithms with strong theoretical guarantees. For multivariate binary data, Wain-
wright et al. (2006) provides comparable results. Both methods use L1-regularized
regression (linear and logistic), in which the neighbourhood of any given node is
estimated by performing regression subject to an L1-constraint. Neighbourhood se-
lection estimates the CIS separately for each node in the graph and is hence equivalent
to variable selection for regression models. The proposed neighbourhood selection
schemes are consistent for sparse high-dimensional graphs. Consistency depends
on the choice of the penalty parameter which can be derived from controlling the
probability of falsely joining some distinct connectivity components of the graph.

2.1 Defining the Test Statistic

For the specific node i the corresponding path plot of the regression coefficients
for the L1-regularized regression can be interpreted as a p−1 dimensional random
process indexed by the penalty parameter λ : B(i)(ω ,λ ) = (β i, j

λ ) j∈N\{i} where λ ≥ 0.
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The randomness is introduced by the random data sample. For each of the p−1 paths
of B(i) it is possible to determine the stopping time τ(i, j) = min{λ > 0 : β (i, j)

λ
= 0}, j ∈ N \ {i}. For a fixed set of nodes N = 1, . . . , p we observe two i.i.d.
samples of sizes n and m: DX = {x(1), . . . ,x(n)} and DY = {y(1), . . . ,y(m)} with
x(i) = (x(i)

1 , . . . ,x(i)
p ) and y(k) = (y(k)

1 , . . . ,y(k)
p ). For node i in node set N the path

plots derived from both data sets are compared by counting the number of com-
mon non-zero regression coefficients given penalty parameter λx for the path plot
derived from data DX and penalty parameter λy for the path plot derived from data
DY :Ψi(λx,λy). This function is integrated over the range of the penalty:

Ψi =
∫∫

[0,∞[×[0,∞[

Ψi(λx,λy)dλxdλy (1)

The random variableΨi can also be calculated from the stopping times introduced
above:

Ψi = ∑
j∈N\{i}

τ(i, j)
X · τ(i, j)

Y (2)

where stopping times τX (τY ) are derived from the path plot inferred from data
DX(DY ).
It is also possible to calculate aΨN for the entire graph or aΨC related to the subset
C ⊂ N of nodes:

ΨN = ∑
i∈N
Ψi andΨC = ∑

i∈C⊂N
Ψi (3)

We define

Ψmax
i := ∑

j∈N\{i}
max{τ(i, j)

X ,τ(i, j)
Y }2

(4)

The following theorem supports the intuition that the value ofΨi is larger when
the same MRF defines the distribution of the data in both conditions than when the
distributions are defined by two different MRFs.

Theorem 1. Let P1 and P2 be two equal MRFs over the same set of nodes N, DX and
DY two i.i.d. samples from both MRFs of size n resp. m(n) = n · 1−π

π . The quantity
π = n

n+m is the fixed percentage of the sample size of DX on the total number of
observations. Then for an arbitrary small ε > 0 and each node i∈ N there is an n(ε)
such that for all n > n(ε) it holds

P[Ψmax
i ≤Ψi + ε] > 1− ε. (5)

A sketch of the proof is given in the Appendix.
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2.2 A Permutation Test

Theorem 2. Let P1 and P2 be two identical Markov random fields (MRFs) which
generate the data under the two conditions of interest. Let Q be the mixture distrib-
ution created from P1 and P2 with mixture proportion π (for component P1). For an
arbitrary small ε > 0, a value w > 0, and each node i ∈ N there is an n(ε) such that
for all n > n(ε) it holds

|P[Ψ∗
i > w]−P[Ψ#

i > w]|< ε. (6)

The value ofΨ∗
i is calculated from the data sets D∗

X [n i.i.d. samples from P1] and
D∗

Y [m = n·(1−π)/π i.i.d. samples from P2] andΨ#
i is calculated from the data sets

D′
X [n i.i.d. samples from Q] and D′

Y [m = n·(1−π)/π i.i.d. samples from Q].

A sketch of the proof and a possible extension to a wider class of null-hypotheses
is given in the Appendix.
The theorem above states for each node in N: Under the null-hypothesis (equal MRFs)
the distribution of the test statistics can be generated from a permutation sampling
of the observed data.
The permutation procedure calculates S samples simultaneously for each node i:
Ψ#(S)

i . The permutation p-value for node i is derived as pi = |{r :Ψ #(S)
i >Ψ#

i }|/S.
It is straight forward to extend the theorem to test statistics for the set of nodes
(ΨN = ∑i∈NΨi) or specific subsets of nodes (ΨC = ∑i∈C⊂NΨi). Correspondingly, it
is possible to calculate permutation p-values for arbitrary sets of nodes.

2.3 Hierarchical Testing

Now it is straightforward to combine our approach with the hierarchical testing prin-
ciple of Meinshausen (2008). The principle allows using the same resampling sample
to calculate p-values for each element of the hierarchy.
For the following, we assume that a hierarchy ℵ is given, which is a set of clus-
ters C ⊂ {1, . . . , p}. The cardinality of a cluster C is denoted by |C|. The root node
{1, . . . , p} contains all nodes of the graph and has cardinality p. The hierarchical
structure implies that any two clusters C,C′ ∈ℵ either have an empty intersection,
or that one cluster is a subset of the other.
To take the multiplicity of the testing problem into account, p-values have to be
adjusted. Define for cluster C the adjusted p-value as pC

ad j := pC · p
|C| where p is the

total number of nodes in the graph and |C| is the number of nodes in the cluster of
interest. The adjustment amounts to multiplying the p-value of each cluster C with
the inverse of the fraction |C|/p of variables it contains. The adjustment is thus res-
olution dependent. At coarse resolutions, the penalty for multiplicity is weak, and it
increases for finer resolution levels. The p-value of the root node is thus unadjusted,
whereas individual variables receive a Bonferroni-type adjustment.
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The hierarchical testing procedure rejects now all hypotheses H0,C with C ∈ℵ for
which (a) the adjusted p-value pC

ad j is below or equal to the specified level and (b) the
parent node is rejected (this is always considered to be fulfilled for the root node).
Note that condition (b) is not a severe restriction. The null hypothesis H0,C of a cluster
C is by definition always true if the null hypothesis H0,pa(C) is true for the parent
cluster pa(C). Hence it makes sense to stop testing in subtrees of clusters whose null
hypothesis could not be rejected.
Using the definition of a hierarchically adjusted p-value pC

h,ad j = max
D∈ℵ,C⊆D

pD
ad j, the

set of clusters which are rejected in the hierarchyℵ on the level α is then given by
Cre jected = {C ∈ℵ, pC

h,ad j < α}.
Control of the family-wise error rate can now be achieved. The set of clusters that
fulfill the null hypothesis H0,C is denoted by C0 = {C ∈ℵ,H0,C is fulfilled}. Family-
wise error rate control entails that the probability of rejecting any cluster in C0 is
smaller than the pre-specified level α .

Theorem 3. For Cre jected and C0 as defined above, the family-wise error rate is
controlled at level α:

P(Cre jected ∩C0 = /0) = 1−α (7)

Proof is given by Meinshausen (2008).

2.4 Computational Issues

Calculations are done in the statistical computing software R (V 2.9.0) (R De-
velopment Core Team 2009). The working horse of the Lasso Regression is the com-
putationally efficient gradient-ascent algorithm as proposed by Goeman (2009b) and
implemented in Goeman (2009a). The permutation test was parallelized.
A total of 1000 samples were created to perform the comparison of the CIS between
both conditions. The calculation is very computer intensive and sample calculations
are independent from each other. Therefore, the functions and data are distributed
to different processors. In the R language different technologies and approaches
for parallel computing exist (Schmidberger et al. 2009). We use the snow package
(snow) with the Rmpi package (Rmpi) for the communication between the proces-
sors. The code is executed at 1000 processors using the super computer HLRB2 at
the Leibniz-Rechenzentrum in Munich (Germany). To guarantee a different random
number stream in every R session, an additional R package rlecuyer (rlecuyer) is
applied.
An R-package which offers the needed algorithms is under preparation.
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BF BS AP

Fig. 1 Relative frequences of impairments and limitations. Patients with condition B are above the
horizontal black line, patients with condition A below. BF = Body Functions, BS = Body Structures,
AP = Activities & Participation

3 Example

The example studies a multivariate binary situation. It is taken from the field of
rehabilitation science.
Functioning and disability are universal human experiences. Over the life span people
may experience limitations in functioning in relation to health conditions including
an acute disease or injury, a chronic condition, or aging. A standard language for the
analysis of functioning is provided by the International Classification of Functioning,
Disability and Health (ICF, WHO (2001)).
A secondary analysis of observational cross sectional data of patients from five early
post-acute rehabilitation units is performed. The ICF is used to measure functioning
and contextual factors. We look at the components Body Functions, Body Structures,
and Activities & Participation. The presence of an impairment or limitation was
binary coded for each of the 122 categories considered.
616 patients (mean age 63 years, 46% male) were included. 56% had health condition
A. Figure 1 shows the profiles of the 122 ICF-categories measured during post-acute
rehabilitation between the 343 patients with health condition A and the 273 patients
with health condition B.

Besides the comparison of functional profiles it is important to understand stability
and distinctiveness of functioning across health conditions. This can be achieved by
revealing patterns of associations between distinct aspects of functioning, the ICF
categories.
Based on the proposal of Wainwright et al. (2006), CIS graphs can be estimated for
each condition and visually compared as done in Figure 2.
Besides a simple visual inspection for differential CIS we apply the combination
between our test and the hierarchical testing procedure. The hierarchy is defined by
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Fig. 2 Estimated CIS graphs and visual presentation of common edges as well as different edges
within both graphs. The arrows point to the nodes with significant differential CIS on a 5% signifi-
cance level (α = 0.05). The three ICF components are presented in different colours: orange: Body
Functions, green: Body Structures, blue: Activities & Participation

the ICF itself (WHO 2001). The root node contains all 122 ICF categories analyzed.
The first level of the hierarchy is defined by the ICF-components. The second level
is determined by the ICF-chapters; the first branching level in the classification gives
the third level. The fourth level is given by the single categories of interest.
Table 1 gives the nodes with a significant differential CIS according to the hierarchical
test procedure. The complete results are presented in the Appendix.

Our strategy was able to detect a set of nodes with differential CIS in the multi-
variate ICF profiles between patients under two different disease conditions as well
as clusters in the hierarchy (result not shown). The identified set holds a family wise
error rate of 5%, i.e. the probability of containing at least one false positive node
under the null-hypothesis is 5%. The result on differential CIS is combined with two
graph estimates and their naive comparison with respect to present or missing edges
between both graphs by adding black arrows to the naive graph comparison. Some of
the arrows point to nodes (b260, b280, 285, b755, d175, d930) which under condition
A show a different connectivity than under condition B. Some of the arrows point



Indirect Comparison of Interaction Graphs 257

Table 1 nodes with significant differential CIS

Code title p.value p.value.adj

b260 Proprioceptive function 0.00018 0.02056
b265 Touch function 1e-05 0.00124
b270 Sensory functions related to temperature and

other stimuli
1e-05 0.00124

b280 Sensation of pain 0.00015 0.01722
b710 Mobility of joint functions 4e-05 0.00497
b755 Involuntary movement reaction functions 1e-05 0.0014
d175 Solving problems 1e-05 0.01244
d177 Making decisions 0.00025 0.02855
d930 Religion and spirituality 1e-05 0.0056

to nodes (b170, b270, d177) that show the same connectivity in both graphs. This
can be understood by looking more closely to the null-hypothesis which is rejected:
differential CIS can also be produced by different regression coefficients given the
same connectivity. For example the odds ratio between b710 and b715 (b270 and
d120, b270 and b265) is 3.91 (19.27, 29.12) in patients with condition A and 13.12
(10.89, 19.29) in patients with condition B.

4 Discussion

The estimation of complex graphs from observed data is a challenging task and dif-
ferent strategies were developed for the case of sparse graphical structures (Schäfer
& Strimmer 2005, Meinshausen & Bühlmann 2006, Wainwright et al. 2006, Fried-
man et al. 2007, Kalisch & Bühlmann 2007, Banerjee et al. 2008). Especially, the
estimation of the conditional independence structure (CIS) in a multivariate obser-
vation is of high interest. Different data sets of the same multidimensional random
variable from different conditions may be available. They may produce different
CIS-graph estimates. A natural question is if the observed data give convincing ev-
idence for a systematic difference between the CIS-graphs behind the distributions
of the observed data. The meaning of convincing evidence has to be operationalized
in statistical terms. This is achieved by using the family wise error rate.
It is our intention to compare the conditional independence structure (CIS) be-
tween two multivariate Gaussian or binary distributions (Ising model). Multivariate
Gaussian or binary distributions define Markov random fields (MRF) and imply a
graph with the nodes defined by the single components of the multivariate random
variable and the edges between the nodes by the CIS. Besides different set of edges,
further differences in the CISs between two distributions are created by the strength
of the conditional dependencies between specific nodes. We present a test statistic
which addresses both CIS-aspects.
The measure to compare two graphs uses the idea that the connectivity of a node with
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the remaining nodes in a graph relates to a variable selection problem in a regression
setting. In this context, the usefulness of L1-regularized regression was demonstrated
by several authors (Wainwright et al. 2006, Meinshausen & Bühlmann 2006, Fried-
man et al. 2007). The differential connectivity of node i in both graphs is defined as
follows: (1) for each node j �= i we determine the minimal penalty parameter which
shrinks the corresponding regression coefficient to zero (τ(i, j)

X ,τ(i, j)
Y ) in both condi-

tions; (2) for each j �= i we calculate τ(i, j)
X · τ(i, j)

Y ; (3) we determine the test statistic
Ψi as the sum of the products over all j �= i. The test statistics for the entire graph or a
subset C of nodes isΨN =∑i∈NΨi andΨC =∑i∈C⊂NΨi respectively. The test statistic
is motivated by the intuition that equal MRFs in both conditions will produce a large
value ofΨi,ΨN orΨC.
It is shown in the Appendix that the τ(i, j)s can be calculated in principle and that
formal statements about their properties can be derived.
The null-hypothesis of equal MRFs for both conditions is tested by a permutation
approach. It allows formulating global tests on sets of nodes as well as tests for single
nodes. This enables searching for a set of nodes with differential CIS in a hierarchi-
cal testing procedure. The motivation for hierarchical testing can be summarized as
follows:

• Any differential connectivity at all? The CIS of a group of nodes can be tested
between both graphs whether all nodes have the same CIS under each condition.

• Differential CIS in sub-clusters? If it is established that a cluster of nodes does
indeed contain nodes with differential CIS, it is desirable to attribute it to one or
several sub-clusters

If possible, the differential CIS in a cluster of variables is attributed to its sub-
clusters. In each sub-cluster, it is again examined whether the collective effect can be
attributed to even smaller sub-clusters of nodes. The procedure retains the smallest
possible clusters which exhibit a significant differential CIS or helps to detect single
nodes with differential CIS.
Our approach avoids estimating graphs explicitly. We did not put the direct and the
indirect approach side by side. Therefore, no detailed analysis of their pros and cons
is available. The indirect approach does not fix the value of a regularization para-
meter which has to be done when the estimate of an explicit graph is needed. The
direct approach needs explicit graphs since differential CIS may be measured by the
Structural Hamming Distance (SHD) (Kalisch & Bühlmann 2007) or other suitable
methods. The hierarchical test procedure can be applied for the direct as well as the
indirect approach.
One potential advantage of the proposed test statistics is its generalizability to
more than two graphs. The comparison of several graphs based on the bivari-
ate SHD measure is cumbersome and not illuminative. For node i and data from
conditions U,V,W,X ,Y, and Z (for example) it is possible to modify Ψi by Ψi =
∑ j∈N\{i} τ

(i, j)
U · · ·τ(i, j)

Z . This is the subject of further research.
In this paper we study the null-hypothesis of two equal Markov random fields. More
general forms of the null-hypothesis (H0,general) may be of interest: The MRFs are
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different but the graphs related to both distributions have a Structural Hamming
Distance of 0. A CIS graph G defines a family of probability measures (multivariate
Gaussian or multivariate binary Ising Model) pG by the corresponding CIS. The
null-hypothesis H0,general states that the distributions which generate the data under
both conditions belong to pG. Since the mixture of two distributions from pG is in
general not in pG it follows that the permutation approach used so far will not work
anymore. We assume that H0,general can be tested by replacing the permutation by
a more complicated resampling procedure. It may be based on a sampling scheme
which creates new versions of data DX and DY under the restriction that the graphs
behind the distribution of X and Y have the same set of edges, SHD(GX ,GY ) = 0.
The proof of this assumption and the development of an efficient algorithm are topics
of ongoing research.
The strategy presented in our paper depends on the implicit assumption that the
data is created by MRFs (multivariate Gaussian or multivariate binary Ising Model).
We used this assumption implicitly in our example. Tools for model validation and
model assessment in a setting comparable to the data presented are under devel-
opment (Gneiting 2008). It is a second line of our research to implement efficient
validation strategies to assess model assumptions. A mixture of binary Ising models
is in general not a binary Ising model. A mixture of binary Ising models with the
same conditional independence graph does not need to have the same graph anymore
because of confounding. We tried to reduce confounding by using fixed covariates in
the Lasso regression. The algorithm provided by Goeman (2008) allows controlling
for confounding by the incorporation of fixed covariates.
The strategy presented offers an explorative tool to detect nodes in a graph with the
potential of a relevant impact on the regulatory process between interacting units
in a complex process. The findings introduce a practical algorithm with theoretical
guarantees. We see our result as the first step on the way to a meta-analysis of graphs.
A meta-analysis of graphs is only useful if the graphs available for aggregation are
homogeneous. The definition of the homogeneity of graphs G1, . . . ,GK by a pairwise
Structural Hamming Distance of 0 is not sufficient to describe homogeneity in a
correct way. The assessment of homogeneity of graphs needs procedures like the
one presented.

Acknowledgements This work is supported by the LMUinnovativ project Analysis and Modelling
of Complex Systems in Biology and Medicine (Cluster B, Expression Analyses).

References

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski,
K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis,
S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M. & Sherlock, G. (2000). Gene
ontology:a tool for the unification of biology., Nature Genetics 25: 25–29.

Balasubramanian, R., LaFramboise, T., Scholtens, D. & Gentleman, R. (2004). A graph-theoretic
approach to testing associations between disparate sources of functional genomics data., Bioin-



260 U. Mansmann, M. Schmidberger, R. Strobl & V. Jurinovic

formatics 20(18): 3353–3362.
Banerjee, O., Ghaoui, L. E. & d’Aspremont, A. (2008). Model selection through sparse maximum

likelihood estimation for multivariate gaussian or binary data, Journal of Machine Learning
Research pp. 485–516.

Friedman, J., Hastie, T. & Tibshirani, R. (2007). Sparse inverse covariance estimation with the
graphical lasso, Biostatistics .

Gneiting, T. (2008). Editorial: Probabilistic forecasting, Journal of the Royal Statistical Society:
Series A 17: 319–321.

Goeman, J. (2008). penalized: L1 (lasso) and L2 (ridge) penalized estimation in GLMs and in the
Cox model. http://www.msbi.nl/goeman. R package version 0.9-22.

Goeman, J. (2009a). L1 and l2 penalized regression models. http://www.msbi.nl/goeman.
R package version 0.9-24.

Goeman, J. (2009b). L1 penalized estimation in the cox proportional hazards model., Biometrical
Journal .

Goeman, J. J. & Mansmann, U. (2008). Multiple testing on the directed acyclic graph of gene
ontology., Bioinformatics 24(4): 537–544.
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Appendix

Properties of the Stopping Times

We look at the following penalized quadratic form

QF(β ,λ ) = (β −β ∗)t ·Σ · (β −β ∗)−λ ·
d

∑
i=1
|βi| (8)
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where β is a d-dimensional parameter vector, β ∗ a d-dimensional fixed vector, Σ
a d×d matrix, and λ ≥ 0. For given λ , QF is maximized by β #(λ )

β #
j (λ ) = 2 ·β ∗j +λ ·∑

k
(−1) j+kDet(Σ jk)/Det(Σ) (9)

for j = 1, . . . ,d. Σ jk is a quadratic matrix derived from matrix Σ by removing line
j and column k.
The penalized log-likelihood for a linear regression problem yi ∼ β · xi is given by
QF where Σ = Xt ·X and β ∗ = y ·Xt · (Xt ·X)−1. The penalized log-likelihood for
a logistic regression problem logit(pi) = β · xi is approximated by QF where β ∗ is
the ML estimate and Σ is the corresponding Fisher Information Matrix.
From (1.8) it is possible to calculate the minimal penalty parameter λ which shrinks
the coefficient to 0. In terms of the notation introduced in the methods section if
follows

τ(i, j) = min{λ > 0 : β (i, j)
λ = 0}= 2 ·β ∗j ·

Det(Σ)
∑
k
(−1) j+k+1Det(Σ jk)

(10)

The matrix Σ is derived from observed data and varies around the true value Σ0.
The variability of τ(i, j) can be controlled by the following property of determinants:

Det(Σ0 + δ ·Λ) = Det
((
Σ0)−1

(
I + δ ·Λ · (Σ0)−1

))
= Det

((
Σ0)−1

)
·
(

I + δ · trace
(
Λ · (Σ0)−1

))
It holds that

τ(i, j) = min{λ > 0 : β (i, j)
λ = 0}

= 2 ·β 0
j ·

Det(Σ0)
∑
k
(−1) j+k+1Det(Σ0

jk)
+

Det(Σ0)
∑
k
(−1) j+k+1Det(Σ0

jk)
· εi j

where β 0
j is the true regression coefficient. The random variables εi j concentrate

on a small neighbourhood of 0 (depending of the sample size).

Statistical Properties ofΨi

Sketch of proof of Theorem 1.1: Without loss of generality we choose r = 1. We
denote a variable or parameter which belongs to MRF r and the regression of node j
on node i by ..

(i, j)
r . We also introduce for the MRF Pr(r = 1,2) the notationΩ (i, j)

r =
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Det(Σ0
jk,r)

∑k (−1) j+k+1Det(Σ0
jk,r)

where Σ0
jk,r is Σ0 which belongs to MRF r(r = 1,2) without row

j and column k.
The inequality claimed in the theorem follows from

Ψmax
i = ∑

j∈n\{i}
max{τ(i, j)

X ,τ(i, j)
Y }2

(11)

using the approximative representation of τ(i, j) by the true parameter values and
a controlled error term ε̃ . It follows

Ψmax
i ≤ ∑

j∈n\{i}
max{β (i, j)

1 ·Ω (i, j)
1 ,β (i, j)

2 ·Ω (i, j)
2 }2 + ε̃ (12)

under the null-hypothesisβ (i, j)
1 = β (i, j)

2 = β (i, j) andΩ (i, j)
1 = c ·Ω (i, j)

2 =Ω (i, j) where
c = c(n,π). As a consequence,

Ψmax
i ≤ ∑

j∈n\{i}
{β (i, j) ·Ω (i, j)}2 · c−1 + ε̃ (13)

using again the approximative representation of τ(i, j) it follows

Ψmax
i = ∑

j∈n\{i}
τ(i, j)

X · τ(i, j)
Y + 2 · ε̃ (14)

where P[|ε̃|< ε] > 1− ε for n > n(ε). This proves the theorem.

Sketch of proof of Theorem 1.2: The proof follows from Theorem 1 by the argu-
ment that P1 = P2 and therefore P[Ψ∗

i ≤Ψ #
i ] > 1− ε as well as P[Ψ#

i ≤Ψ∗
i ] > 1− ε

for an arbitrary small ε > 0 and n > n(ε). This implies P[|Ψ#
i −Ψ∗

i | < ε] > 1− ε
and

P[Ψ∗
i > w] = P[Ψ∗

i −Ψ#
i +Ψ#

i > w] = P[Ψ#
i > w+Ψ#

i −Ψ∗
i ]

= P[{Ψ#
i > w+Ψ#

i −Ψ∗
i }∩{|Ψ#

i −Ψ∗
i |< δ}]+

P[{Ψ#
i > w+Ψ#

i −Ψ∗
i }∩{|Ψ#

i −Ψ∗
i |> δ}].

For appropriately small δ and sufficiently large n it holds

P[Ψ∗
i > w]≥ P[Ψ#

i > w+ δ ] · (1− δ ) (15)

P[Ψ∗
i > w]≤ P[Ψ#

i > w− δ ]+ δ (16)

which proves the theorem.
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Results of the Hierarchical Test Procedure on Differential
Conditional Independence Structure for each Node (ICF Category)

Code title p.value p.value.adj

b110 Consciousness functions 0.26916 1
b114 Orientation functions 0.19031 1
b126 Temperament and personality functions 0.07132 1
b130 Energy and drive functions 0.40246 1
b134 Sleep functions 0.1266 1
b140 Attention functions 0.81069 1
b144 Memory functions 0.13688 1
b147 Psychomotor functions 0.03534 1
b152 Emotional functions 0.57016 1
b156 Perceptual functions 0.67479 1
b160 Thought functions 0.0098 1
b164 Higher-level cognitive functions 0.00572 0.64073
b167 Mental functions of language 0.0526 1
b176 Mental function of sequencing complex move-

ments
0.0067 0.75053

b180 Experience of self and time functions 0.80941 1
b210 Seeing functions 0.21501 1
b215 Functions of structures adjoining the eye 0.85915 1
b230 Hearing functions 0.46113 1
b235 Vestibular functions 0.95262 1
b240 Sensations associated with hearing and vestibular

function
0.19814 1

b260 Proprioceptive function 0.00018 0.02056
b265 Touch function 1e-05 0.00124
b270 Sensory functions related to temperature and

other stimuli
1e-05 0.00124

b280 Sensation of pain 0.00015 0.01722
b310 Voice functions <0.00001 0.18667
b340 Alternative vocalization functions 0.09032 1
b410 Heart functions 0.79414 1
b415 Blood vessel functions 0.01307 1
b420 Blood pressure functions 0.00783 0.87703
b430 Haematological system functions 0.15039 1
b435 Immunological system functions 0.0033 0.36913
b440 Respiration functions 0.1212 1
b445 Respiratory muscle functions 0.10322 1
b450 Additional respiratory functions 0.70879 1
b455 Exercise tolerance functions 0.81957 1
b460 Sensations associated with cardiovascular and

respiratory functions
0.47558 1

b510 Ingestion functions 0.01285 1
b515 Digestive functions 0.79141 1
b525 Defecation functions 0.34564 1
b530 Weight maintenance functions 0.12755 1
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Code title p.value p.value.adj

b535 Sensations associated with the digestive system 0.21833 1
b540 General metabolic functions 0.17652 1
b545 Water, mineral and electrolyte balance functions 0.50622 1
b550 Thermoregulatory functions 0.98723 1
b610 Urinary excretory functionsn 0.20772 1
b620 Urination functions 0.85082 1
b630 Sensations associated with urinary functions 0.13142 1
b710 Mobility of joint functions 4e-05 0.00497
b715 Stability of joint functions 0.00113 0.12604
b730 Muscle power functions 0.16681 1
b735 Muscle tone functions 0.0137 1
b755 Involuntary movement reaction functions 1e-05 0.0014
b760 Control of voluntary movement functions 0.02091 1
b770 Gait pattern functions 0.22097 1
b780 Sensations related to muscles and movement

functions
0.92971 1

b810 Protective functions of the skin 0.56761 1
b820 Repair functions of the skin 0.93102 1
s110 Structure of brain 0.0736 1
s120 Spinal cord and related structures 0.05937 1
s130 Structure of meninges 0.13523 1
s410 Structure of cardiovascular system 0.72956 1
s430 Structure of respiratory system 0.12588 1
s530 Structure of stomach 0.01038 1
s710 Structure of head and neck region 0.22969 1
s720 Structure of shoulder region 0.46041 1
s730 Structure of upper extremity 0.38268 1
s740 Structure of pelvic region 0.1352 1
s750 Structure of lower extremity 0.5652 1
s760 Structure of trunk 0.47323 1
s810 Structure of areas of skin 0.4446 1
s840 Structure of hair 0.15527 1
d110 Watching 0.03047 1
d115 Listening 0.0462 1
d120 Other purposeful sensing 0.27109 1
d130 Copying 0.02501 1
d135 Rehearsing 0.08179 1
d155 Acquiring skills 0.40423 1
d160 Focusing attention 0.52833 1
d166 Reading 0.06237 1
d170 Writing 0.82457 1
d175 Solving problems <0.00001 0.01244
d177 Making decisions 0.00025 0.02855
d230 Carrying out daily routine 0.96039 1
d240 Handling stress and other psychological demands 0.49906 1
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Code title p.value p.value.adj

d310 Communicating with - receiving - spoken mes-
sages

0.42238 1

d315 Communicating with - receiving - nonverbal mes-
sages

0.83199 1

d330 Speaking 0.73189 1
d335 Producing nonverbal messages 0.01302 1
d350 Conversation 0.42381 1
d360 Using communication devices and techniques <0.00001 1
d410 Changing basic body position 3e-05 1
d415 Maintaining a body position 0.26954 1
d420 Transferring oneself 0.94277 1
d430 Lifting and carrying objects 0.31586 1
d440 Fine hand use 0.85019 1
d445 Hand and arm use 0.22326 1
d450 Walking 0.32237 1
d460 Moving around in different locations 0.00711 0.79633
d465 Moving around using equipment 0.04467 1
d510 Washing oneself 0.44569 1
d520 Caring for body parts 0.17469 1
d530 Toileting 0.29863 1
d540 Dressing 0.98399 1
d550 Eating 0.48303 1
d560 Drinking 0.0371 1
d570 Looking after ones health 0.00608 0.68055
d760 Family relationships 0.03614 1
d870 Economic self-sufficiency 0.04971 1
d910 Community life 0.07671 1
d930 Religion and spirituality <0.00001 0.0056
d940 Human rights 0.12703 1
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Abstract Dependence modelling and estimation is a key issue in the assessment
of financial risk. It is common knowledge meanwhile that the multivariate normal
model with linear correlation as its natural dependence measure is by no means an
ideal model. We suggest a large class of models and a dependence function, which
allows us to capture the complete extreme dependence structure of a portfolio. We
also present a simple nonparametric estimation procedure of this function. To show
our new method at work we apply it to a financial data set of high-frequency stock
data and estimate the extreme dependence in the data. Among the results in the
investigation we show that the extreme dependence is the same for different time
scales. This is consistent with the result on high-frequency FX data reported in
Hauksson et al. (2001). Hence, the different asset classes seem to share the same
time scaling for extreme dependence. This time scaling property of high-frequency
data is also explained from a theoretical point of view.
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1 Multivariate Risk Assessment for Extreme Risk

Estimation of dependence within a portfolio based on high-frequency data faces
various problems:

• data are not normal: they are skewed and heavy-tailed
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• one-dimensional data are uncorrelated but not iid
• multivariate high-frequency data are not synchronised
• data are discrete-valued for a very high frequency
• most likely there is microstructure noise in the data
• there is seasonality in the data
• higher moments may not exist
• the multivariate distribution may not be elliptical
• dependence may not be symmetric

We are interested here in the influence of the multivariate dependence within the
portfolio. We first recall that under the condition that the portfolio P/L follows a
multivariate normal distribution and, if there is no serial dependence, the portfolio
P/L standard deviation σ is calculated by the square root of its variance

σ2 =
n

∑
i=1

w2
i σ

2
i +∑

i�= j
wiwjσiσ jρi j , (1)

where the portfolio consists of n different instruments with nominal amount wi in-
vested into asset i. The standard deviation of asset i is given by σi and the pairwise
correlation coefficients are ρi j (i, j = 1, . . . ,n).

Definition 1. For two random variables X and Y their linear correlation is defined
as

ρL(X ,Y ) =
cov(X ,Y )√

var(X)var(Y )
,

where cov(X ,Y ) = E((X −EX)(Y −EY )) is the covariance of X and Y , and var(X)
and var(Y ) are the variances of X and Y , respectively.

Correlation measures linear dependence: we have |ρL(X ,Y )| = 1 if and only if
Y = aX +b with probability 1 for a ∈R\{0} and b ∈R. Furthermore, correlation is
invariant under strictly increasing linear transformations; i.e. for α,γ ∈ R\{0} and
β ,δ ∈R

ρL(αX +β ,γY + δ ) = sign(αγ)ρL(X ,Y ) .

Also for high-dimensional models correlation is easy to handle. For random (column)
vectors X ,Y ∈Rn we denote by cov(X ,Y ) = E((X−EX)(Y−EY)T ) the covariance
matrix of X and Y . Then for m×n matrices A,B and vectors a,b ∈Rm we calculate

cov(AX + a,BY + b) = Acov(X ,Y )BT ,

where BT denotes the transpose of the matrix B. From this it follows for w ∈Rn that

var(wT X) = wT cov(X ,X)w ,

which is exactly formula (1) above. The popularity of correlation is also based on the
fact that it is very easy to calculate and estimate. It is a natural dependence measure
for elliptical distributions such as the multivariate normal or t distributions, provided
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second moments exist. Within the context of linear models correlation has also proved
as a useful tool for dimension reduction (e.g. by factor analysis), an important issue in
risk management; see Klüppelberg & Kuhn (2009) for a new approach to dimension
reduction for financial data.

Multivariate portfolios, however, are often not elliptically distributed, and there
may be a more complex dependence structure than linear dependence. Indeed, data
may be uncorrelated, i.e. with correlation 0, but still may be highly dependent. In the
context of risk management, when measuring extreme risk, modelling dependence
by correlation may be grossly misleading; see e.g. Embrechts et al. (2002).

We turn to a measure for tail dependence, which relates large values of the com-
ponents of a portfolio; see e.g. Joe (1997). In the bivariate context, consider random
variables X and Y with marginal distribution functions GX and GY and (general-
ized) inverses G←

X and G←
Y . For any distribution function G its generalized inverse

or quantile function is defined as

G←(t) = inf{x ∈R |G(x)≥ t} , 0 < t < 1 .

If G is strictly increasing, then G← coincides with the usual inverse of G.

Definition 2. The upper tail dependence coefficient of (X ,Y ) is defined by

ρU = lim
u↑1

P(Y > G←
X (u) | X > G←

Y (u)) , (2)

provided the limit exists. If ρU ∈ (0,1], then X and Y are called asymptotically upper
tail dependent, if ρU = 0, they are called asymptotically upper tail independent.

For some situations, this measure may be an appropriate extreme dependence
measure; this is true, in particular, when the bivariate distribution is symmetric;
see Example 1. However, ρU is not a very informative measure, since the extreme
dependence around the line with angle π/4 does not reveal much about what happens
elsewhere; see e.g. the asymmetric model in Example 2. As a remedy we suggest
an extension of the upper tail dependence coefficient to a function of the angle,
which measures extreme dependence in any direction in the first quadrant of R2.
Its derivation is based on multivariate extreme value theory and we indicate this
relationship in Section 2. We shall, however, refrain from a precise derivation and
rather refer to Hsing et al. (2004) for details. We also want to emphasize that one-
dimensional extreme value theory has been applied successfully to risk management
problems; see Embrechts (2000). We remark further that one-dimensional extreme
value theory has meanwhile reached a consolidated state; we refer to Embrechts et
al. (1997) or Coles (2001) as standard references.

We will illustrate our results by a direct application to a real data set. The complete
data set we investigated consists of high-frequency data for three different stocks:
Intel, Cisco and General Motors (GM). We have full sample paths of the price data
of the stocks between February and October 2002 from the Trades and Quotes TAQ
database of the New York Stock Exchange (NYSE); i.e. our data consists of all
trading dates [in seconds] and corresponding prices [in cents]. They are depicted in
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Fig. 1 Example of stock prices: Intel, Cisco and GM: Feb-Oct 2002.

Figure 1. This dataset has to be filtered in different steps due to false data, seasonality
and serial dependence; see Section 4 for details.

After these filtering steps the residuals can be assumed iid and the dependence
structure between the three stocks can be investigated. The first row of Figure 2 shows
scatter plots of different combinations of the filtered stocks. We have estimated the
means, variances and the correlation of the data in each scatter plot. The second row
shows simulated normal data with the estimated parameters.

For extreme risk assessment one is particularly interested in the left lower corner
and we have zoomed into this corner to get a more precise account of the dependence
there; see Figure 3. None of the normal models seem to be able to capture the
dependence structure in this area.

Our paper is organized as follows. After introducing the tail dependence function
in Section 2 we shall present some examples including an asymmetric Pareto model
and the bivariate normal model.

In Section 3 we introduce a simple nonparametric estimation procedure of the tail
dependence function. We show its performance in various simulation examples and
plots.

In Section 4 we investigate our high-frequency data in more detail and estimate
their tail dependence function. We also show various plots to visualize our results.
Finally, in Section 5 we conclude the paper with a summary of our findings.

2 Measuring Extreme Dependence

Although the upper tail dependence coefficient and its functional extension we are
aiming at can be defined for random vectors of any dimension, we restrict ourselves
in our presentation to the bivariate case. For a general treatment in any dimension
we refer to Hsing et al. (2004).

Suppose (Xi,Yi)i=1,...,n is a sequence of iid vectors and (X ,Y ) is a generic random
vector with the same distribution function G(x,y) = P(X ≤ x,Y ≤ y) for (x,y) ∈R2
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Fig. 2 Bivariate stock data versus simulated normal with same (estimated) means and variances.

with continuous marginals. For n ∈ N define the vector of componentwise maxima
Mn = (maxi=1,...,n Xi , maxi=1,...,n Yi) . As a first goal we want to describe the behavior
of Mn for large n.

It is a standard approach in extreme value theory to first transform the marginals
to some appropriate common distribution and then model the dependence structure
separately. As copulas have become a fairly standard notion for modelling depen-
dence we follow this approach and transform the marginal distributions GX and GY
to uniform (0,1). Then we have a bivariate uniform distribution, which is called a
copula and is given for 0 < u,v < 1 by

CG(u,v) = P(GX(X)≤ u , GY (Y )≤ v) = P(X ≤ G←
X (u) , Y ≤ G←

Y (v)) .

For more details on copulas and dependence structures in general we refer to
Joe (1997); for applications of copulas in risk management see Embrechts et
al. (2001).The transformation of the marginals to uniforms is illustrated in Figure 4.

Under weak regularity conditions on the bivariate distribution function G we
obtain

lim
n→∞P

(
max

i=1,...,n
GX(Xi)≤ 1 +

1
n

lnu , max
i=1,...,n

GY (Yi)≤ 1 +
1
n

lnv
)
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Fig. 3 Bivariate stock data versus simulated normal with same (estimated) means and variances.

= exp(−Λ(− lnu,− lnv))) = C(u,v) , 0≤ u,v≤ 1 .

Such a copula is called extreme copula and satisfies for all t > 0

Ct(u,v) = C(ut ,vt) , 0 < u,v < 1 .

C(u,v) has various integral representations. The Pickands’ representation yields an
extreme event intensity measure (we write a∧b = min(a,b) and a∨b = max(a,b)):

Λ(x,y) = lim
n→∞nP

(
GX (X) > 1− x

n
or GY (Y ) > 1− y

n

)
(1)

=
∫ π/2

0

( x
1∨ cotθ

∨ y
1∨ tanθ

)
Φ(dθ ) , x,y≥ 0 .

Φ is a finite measure on (0,π/2) satisfying
∫ π/2

0 (1 ∧ tanθ )Φ(dθ ) =
∫ π/2

0 (1 ∧
cotθ )Φ(dθ ) = 1 . The definition of Λ as a limit of n× success probability is a
version of the classical limit theorem of Poisson. For large n the measure Λ can
be interpreted as the mean number of data in a strip near the upper and right
boundary of the uniform distribution; see Figure 4. We also recall some prop-
erties of tanθ = 1

cotθ = sinθ
cosθ : tan0 = 0, tanθ is increasing in θ ∈ (0,π/2) and

limθ→π/2 tanθ = ∞. Then cotθ is its reflection on the 45 degree line, correspond-
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Fig. 4 Left plot: Simulated data for X and Y Fréchet distributed with distribution functions GX(x) =
GY (x) = exp(−1/x) for x > 0 with region of large data points indicated. The range of the data is in
total [0,410] for X and [0,115] for Y; for reasons of presentation 14 extremely large points had to
be left out.
Right plot: Illustration of the intensity measure Λ as defined in equation (1): Λ measures the
probability in the strip near the upper and right boundary of the uniform distribution.

ing to θ = π/4. Moreover, tan(π/4) = cot(π/4) = 1 and cot(π2 −θ ) = 1/cotθ for
θ ∈ (0,π/2). Finally, arctan is the inverse function of tan.

The fact that Λ(x,y) = xΛ(1,y/x) motivates the following definition.

Definition 3. For any random vector (X ,Y ) such that (1) holds we define the depen-
dence function as

ψ(θ ) =Λ(1,cotθ ) , 0 < θ < π/2 .

Note that ψ(·) is a function of the angle θ only and measures dependence in any
direction of the positive quadrant of a bivariate distribution.

The following result shows that ψ(·) allows us to approximate for large x1 and
y1 the probability for X or Y to become large. We write a(x) ∼ b(x) as x → x0 for
limx→x0 a(x)/b(x) = 1. We also denote by G(·) = 1−G(·) the tail of G.

Proposition 1. Let (X ,Y ) be a random vector. If x1,y1 → ∞ such that P(X >
x1)/P(Y > y1)→ tanθ , then the following quotient converges for all θ ∈ (0,π/2),

P(X > x1 or Y > y1)
P(X > x1)

.

Furthermore, the limit is the dependence function ψ(θ ).
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Proof. From (4) we have for large x1,y1 and x = nGX(x1) and y = nGY (y1) as n→∞
(note that x,x1,y,y1 depend on n):

P(X > x1 or Y > y1) ∼ 1
n
Λ(nGX (x1),nGY (y1))

= GX(x1)Λ
(

1,
GY (y1)
GX(x1)

)
= GX(x1)ψ

(
arctan

(
GX(x1)
GY (y1)

))
. (2)

We set

θ = arctan
(

GX (x1)
GY (y1)

)
and obtain the result.

The following corollary summarizes some obvious results; the symmetry property
of part (d) is new and will prove useful for estimation purposes.

Corollary 1. (a) For X and Y independent we calculate

P(X > x1 or Y > y1)
P(X > x1)

∼ P(X > x1)+ P(Y > y1)
P(X > x1)

→ 1 + cotθ =: ψ0(θ )

for x1,y1 → ∞ such that P(Y > y1)/P(X > x1)→ cotθ .
(b) For X and Y completely dependent, i.e. X = g(Y ) with probability 1 for some
increasing function g, we obtain

P(X > x1 or Y > y1)
P(X > x1)

=
P(X > x1)∨P(X > y1)

P(X > x1)
→ 1∨ cotθ =: ψ1(θ )

for x1,y1 → ∞ such that P(Y > y1)/P(X > x1)→ cotθ .

(c) ψ1(θ ) ≤ ψ(θ ) ≤ ψ0(θ ) for 0 < θ < π/2.

(d) ψY,X (θ ) = cotθ ψX ,Y (π/2−θ ).

Proof. It only remains to proof part (d). By Example 4.3 in Hsing et al. (2004) we
have together with the change of variables x = t tanθ ,

1 + cotθ −ψX ,Y (θ ) = lim
t→∞P(X > G←

X (1−1/(t tanθ ))|Y > G←
Y (1−1/t))

= lim
t→∞P(Y > G←

Y (1−1/t)|X > G←
X (1−1/(t tanθ )))

P(X > G←
X (1−1/(t tanθ ))

P(Y > G←
Y (1−1/t))

= cotθ (1 + tanθ −ψY,X(π/2−θ )) = cotθ + 1− cotθ ψY,X(π/2−θ ) .

We normalize ψ(·) to the interval [0,1] as follows.

Definition 4. The normalized function
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ρ(θ ) =
ψ0(θ )−ψ(θ )
ψ0(θ )−ψ1(θ )

=
1 + cotθ −ψ(θ )

1∧ cotθ
, 0 < θ < π/2 ,

we call tail dependence function.

Note that ρ describes the tail dependence of (X ,Y ) in any direction of the bivariate
distribution on the positive quadrant of R2.

By this definition we have ρ(θ ) ∈ [0,1] for all 0 < θ < π/2, ρ(θ )≡ 0 in case of
independence and ρ(θ ) ≡ 1 in case of complete dependence. Consequently, ρ(θ )
being close to 0/1 corresponds to weak/strong extreme dependence.

Remark 1. (i) (Relation between tail dependence function and Pickands’ dependence
function.) We can write an extreme copula as

C(u,v) = exp
(

log(uv)A(
log(v)

log(uv)
)
)

, 0 < u,v < 1 .

The function A : [0,1] → [ 1
2 ,1] is called Pickands’ dependence function. A ≡ 1

corresponds to independence and A(t) = t ∨ (1− t) to total dependence. Using
−Λ(− log(u),− log(v)) = log(C(u,v)) we have the following relation between ρ
and A:

ρ(θ ) =
(1 + cotθ )(1−A

( cotθ
1 + cotθ

)
)

1∧ cotθ
, 0 < θ < π/2 .

(ii) For elliptical copula models a new semi-parametric approach for extreme de-
pendence modelling was suggested and investigated in Klüppelberg et al. (2007,
2008).

The function ρ(·) is invariant under monotone transformation of the marginal
distributions. We show this by calculating it as a function of the copula.

Proposition 2. Let (X ,Y ) be a random vector with continuous marginal distribution

functions GX and GY . Then GX(X) d=U and GY (Y ) d=V for uniform random variables
U and V with the same dependence structure as (X ,Y ). Denote by C(u,v) = P(U ≤
u , V ≤ v) the corresponding copula. We also relate the arguments by GX(x1) = u
and GY (y1) = v. Then, provided that the limits exist,

ρ(θ ) = lim
u,v→1

(1−u)/(1−v)→tanθ

1−u− v +C(u,v)
(1−u)∧ (1− v)

, 0 < θ < π/2 .

Proof.

ψ(θ ) = lim
x1,y1→∞

GX (x1)/GY (y1)→tanθ

1−P(X ≤ x1 , Y ≤ y1)
P(X > x1)

= lim
u,v→1

(1−u)/(1−v)→tanθ

1−C(u,v)
1−u

.

Remark 2. Note also that the quantity ρ(π/4) is nothing but the (upper) tail depen-
dence coefficient ρU as defined in (2). Thus, the function ρ extends this notion from
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a single direction, the 45 degree line corresponding to θ = π/4, to all directions in
(0,π/2).

This extension is illustrated by the following examples.

Example 1. [Gumbel copula]
Let (X ,Y ) be a bivariate random vector with dependence structure given by a Gumbel
copula for δ ∈ [1,∞):

C(u,v) = exp
{
−
[
(− lnu)δ +(− lnv)δ

]1/δ
}

, 0 < u,v < 1 . (3)

The dependence arises from δ . To calculate ψ(θ ) we use the relationship of ψ to its
copula. We use also the fact that for u,v→ 1 we have

− lnv
− lnu

∼ 1− v
1−u

→ cotθ .

Then by continuity of ux in x we obtain for u,v→ 1 such that (1−v)/(1−u)→ cotθ

1−C(u,v) = 1− exp

⎛⎝lnu

[
1 +

(− lnv
− lnu

)δ]1/δ
⎞⎠ ∼ 1−u(1+(cotθ)δ )1/δ

.

Using the l’Hospital rule and the fact that u→ 1, we obtain

1−C(u,v)
1−u

→
(

1 +(cotθ )δ
)1/δ

,

and hence

ρ(θ ) =
1 + cotθ − (

1 +(cotθ )δ
)1/δ

1∧ cotθ
, 0 < θ < π/2 .

We also obtain the well-known upper tail dependence coefficient ρU = ρ(π/4) =
2−21/δ .

Our next result concerns models, whose extreme dependence vanishes in the limit.

Proposition 3. Let (X ,Y ) be a random vector with continuous marginal distribution
functions GX and GY . If ρ(θ0) = 0 for some θ0 ∈ (0,π/2) then ρ(θ ) = 0 for all
θ ∈ (0,π/2).

Proof. From Corollary 1(d) we have

ρY,X(π/2−θ ) = ρ(θ ) , 0 < π/2 < 1 . (4)

Now note that P(X > G←
X (1− 1/(t tanθ ))|Y > G←

Y (1− 1/t)) is decreasing in θ ,
hence if ρ(θ0) = 0 then ρ(θ ) = 0 for θ > θ0. Now, assume that ρ(π/4) = 0 so that
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ρY,X(π/4) = 0 by (4). This results in ρ(θ ) = 0 and ρY,X (θ ) = 0 for θ > π/4, i.e
ρ ≡ 0 by (4) and monotonicity. Hence, we only have to show that ρ(θ0) = 0 for some
θ0 ∈ (0,π/2) implies ρ(π/4) = 0. This is trivial for θ0 < π/4 by monotonicity. For
θ0 > π/4, (4) gives ρY,X(π/2− θ0) = 0 for π/2− θ0 < π/4, so that ρY,X (π/4) =
ρ(π/4) = 0 and this finishes the proof.

We conclude with the multivariate normal distribution. It is well-known (see
e.g. Embrechts et al. 2001, 2002) that for correlation ρ < 1 the upper tail dependence
coefficient is ρU = 0. Consequently, Proposition 3 gives the following result.

Corollary 2. For a bivariate normal distribution with correlation ρ < 1 we have
ρ ≡ 0.

The following example is a typical model to capture risk in the extremes.

Example 2. [Asymmetric Pareto model]
For p1, p2 ∈ (0,1) set p1 = 1− p1 and p2 = 1− p2 and consider the model

X = p1Z1∨ p1Z2 and Y = p2Z1∨ p2Z3

with Z1,Z2,Z3 iid Pareto(1) distributed; i.e., P(Zi > x) = x−1 for x ≥ 1. Clearly, the
dependence between X and Y arises from the common component Z1. Hence the
dependence is stronger for larger values of p1, p2. We calculate the function ρ , and
observe first that by independence of the Zi for x→ ∞,

P(X > x) = 1−P(p1Z1∨ p1Z2 ≤ x) = 1−P(p1Z1 ≤ x)P(p1Z2 ≤ x)

= 1−
(

1− p1

x

)(
1− p1

x

)
∼ 1

x
(p1 + p1) =

1
x

.

Consequently, we choose y = x tanθ , which satisfies the conditions of Proposition 1
and calculate similarly,

P(X > x or Y > x tanθ ) = 1−P(X ≤ x , Y ≤ x tanθ )

= 1−P
(

Z1 ≤ x
p1
∧ x tanθ

p2

)
P
(

Z2 ≤ x
p1

)
P
(

Z3 ≤ x tanθ
p2

)
∼ 1

x
(p1∨ p2 cotθ + p1 + p2 cotθ ) ,

which implies ψ(θ ) = 1 + cotθ − p1∧ p2 cotθ for 0 < θ < π/2 and

ρ(θ ) =
p1∧ p2 cotθ

1∧ cotθ
, 0 < θ < π/2.

An important class of distributions are those with Pareto-like tails. Proposition 4
ensures that, within this class, multivariate returns on different timescales have the
same extremal (spatial) dependence, provided the observations are independent and
have no time series structure. Hence, one can take advantage of the fact that a higher
frequency results in a larger sample and is easier to estimate. We shall illustrate this in
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Section 4.5. This version of the proof of Proposition 4 was kindly communicated to
the first author by Patrik Albin. Also, one can find a similar proposition in Hauksson
et al. (2001) in the setting of multivariate regular variation.

Proposition 4. Let (X ,Y ) be a random vector with marginal tails GX and GY that
are regularly varying at infinity, with indices α < 0 and β < 0, respectively. Denote
by X∗n the sum of n iid copies of X and define Y ∗n analogously. If the limit

lim
t→∞P

(
X > G←

X (1−λ/t)
∣∣Y > G←

Y (1−1/t)
)
= L(λ ) exists for λ > 0, (5)

then the following hold:
(a) P

(
X∗n > x,Y ∗n > y

)∼ nP(X > x,Y > y) as x,y→ ∞;
(b) The marginal tails GX∗n and GY ∗n of X∗n and Y ∗n satisfy for all n≥ 2

lim
t→∞P

(
X∗n > G←

X∗n(1−λ/t)
∣∣Y ∗n > G←

Y∗n(1−1/t)
)
= L(λ ) forλ > 0 .

Proof. (a) The one-dimensional version of this result goes back to Feller and has
been extended to the larger class of subexponential random variables (see e.g. Em-
brechts et al. 1997, Appendix A3); i.e. we have

P
(
X∗n > t

)∼ nP(X > t) and P
(
Y ∗n > t

)∼ nP(Y > t) as t → ∞. (6)

We prove a bivariate version of this result. For ε > 0 sufficiently small, we have

P
(
X∗n > x,Y ∗n > y

) ≤ n

∑
i=1

n

∑
j=1

P
(
Xi > (1−(n−1)ε)x,Yj > (1−(n−1)ε)y

)
+ ∑

1≤i�=k≤n

n

∑
j=1

P
(
Xi > εx,Xk > εx,Yj > (1−(n−1)ε)y

)
+

n

∑
i=1
∑

1≤ j �=l≤n
P
(
Xi > (1−(n−1)ε)x,Yj > εy,Yl > εy

)
+ ∑

1≤i�=k≤n
∑

1≤ j �=l≤n
P
(
Xi > εx,Xk > εx,Yj > εy,Yl > εy

)
≤ nP(X > (1−(n−1)ε)x,Y > (1−(n−1)ε)y)

+n2 P(X > (1−(n−1)ε)x)P(Y > (1−(n−1)ε)y)
+2n2 P(X > εx,Y > εy)(P(X > εx)+ P(Y > εy))
+n3 P(X > εx)P(Y > εy)(P(X > εx)+ P(Y > εy))
+n2 P(X > (1−(n−1)ε)x)P(Y > (1−(n−1)ε)y)
+n2 P(X > εx,Y > εy)2 (7)
+n3 P(X > εx,Y > εy)P(X > εx)P(Y > εy)
+n4 P(X > εx)2 P(Y > εy)2

∼ nP(X > (1−(n−1)ε)x,Y > (1−(n−1)ε)y) as x,y→ ∞
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by (5) together with the regular variation properties. Now, using again an ε > 0 and
properties of disjoints sets together with the Boolean inequality, we estimate

P
(
X∗n > x,Y ∗n > y

)
≥

n

∑
i=1

P
(
Xi > (1+(n−1)ε)x,Yi > (1+(n−1)ε)y)⋂

j �=i

{−εx≤ Xj ≤ x,−εy≤ Yj ≤ y})
≥

n

∑
i=1

P
(
Xi > (1+(n−1)ε)x,Yi > (1+(n−1)ε)y

)
−

n

∑
i=1
∑
j �=i

P
(
Xi > (1+(n−1)ε)x,Yi > (1+(n−1)ε)y,Xj /∈ [−εx,x]

)
−

n

∑
i=1
∑
j �=i

P
(
Xi > (1+(n−1)ε)x,Yi > (1+(n−1)ε)y,Yj /∈ [−εy,y]

)
∼ nP(X > (1+(n−1)ε)x,Y > (1+(n−1)ε)y) as x,y → ∞.

(b) Proposition 1.5.15 of Bingham et al. (1987) ensures that the generalized inverses
satisfy as t → ∞,

G←
X (1−1/t)∼ G←

X∗n(1−n/t) and G←
Y (1−1/t)∼ G←

Y ∗n(1−n/t) . (8)

In particular, G←
X (1−1/·) and G←

X∗n(1−1/·) are regularly varying with index 1/α ,
while G←

Y (1−1/·) and G←
Y ∗n(1−1/·) are regularly varying with index 1/β .

By (5)-(7), we have (with ε not the same as before)

limsup
t→∞

P
(
X∗n > G←

X∗n(1−λ/t)
∣∣Y ∗n > G←

Y ∗n(1−1/t)
)

≤ limsup
t→∞

nP
(
X > (1−ε)β/αG←

X (1−λ/(nt)),Y > (1−ε)G←
Y (1−1/(nt))

)
nP

(
Y > (1+ε)G←

Y (1−1/(nt))
)

≤ limsup
t→∞

P
(
X > G←

X (1− (1−2ε)βλ/(nt)),Y > G←
Y (1− (1−2ε)β/(nt))

)
((1+ε)/(1−3ε))β P

(
Y > (1−3ε)G←

Y (1−1/(nt))
]

≤
(1−3ε

1+ε

)β
limsup

t→∞
P
(

X > G←
X

(
1− (1−2ε)βλ

nt

)∣∣Y > G←
Y

(
1− (1−2ε)β

(nt)

))
=

(1−3ε
1+ε

)β
L(λ )

→ L(λ ) as ε ↓ 0.

Analogously follows from the reverse inequality in (a)

liminf
t→∞ P

(
X∗n > G←

X∗n(1−λ/t)
∣∣Y ∗n > G←

Y ∗n(1−1/t)
)≥ L(λ ).
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Remark 3. In Example 4.3 in Hsing et al. (2004) we have, for X and Y random
variables with continuous distributions GX and GY ,

lim
t→∞P(X > G←

X (1−1/(t tanθ ))|Y > G←
Y (1−1/t))= (1∧cotθ )ρ(θ ) , 0 < θ < π/2 .

Hence, for X and Y random variables with Pareto-like tails, setting λ = 1/ tanθ and
L(cotθ ) = (1∧ cotθ )ρ(θ ) we conclude L(λ ) = (1∧λ )ρ(arctan(1/λ )) for λ > 0.

Corollary 3. Denote byψ(θ ) the dependence function of (X ,Y ). Let X∗n and Y ∗n be
the sum of n iid copies of X and Y , respectively, and denote byψ∗n(·) the dependence
function of (X∗n,Y ∗n) for n≥ 2. Thenψ∗n(θ ) =ψ(θ ) for all 0 < θ < π/2. The same
holds for the tail dependence function ρ(θ ).

3 Extreme Dependence Estimation

To assess extreme dependence in data we estimate the tail dependence function
ρ(·) on the positive quadrant. We use a nonparametric estimator as suggested in
Hsing et al. (2004) based on the empirical distribution function, which yields a
simple nonparametric estimator of ψ(·) and hence of ρ(·). Recall that the empirical
distribution function given by

ĜX (x) = P̂n(X ≤ x) =
1
n

n

∑
j=1

I(Xi ≤ x) , x ∈R ,

is the standard estimator for the distribution function GX of iid data (I(A) denotes the
indicator function of the set A). The empirical distribution function can be rewritten
in terms of the ranks of the sample variables Xi for i = 1, . . . ,n and we write

ĜX (Xi) = P̂n(X ≤ Xi) =
1
n

rank(Xi) .

We still have to explain one important issue of our estimation procedure. Recall
from (1), denoting by GX(·) = 1−GX(·) and GY (·) = 1−GY (·) for continuous GX
and GY , that

Λn(x,y) := nP
(

GX (X) > 1− x
n

or GY (Y ) > 1− y
n

)
= nP

(
nGX (X)≤ x or nGY (Y )≤ y

)
= nP(n(GX (X),GY (Y )) ∈A) (9)
→ Λ(x,y) n→ ∞ .

By a continuity argument we can replace n ∈N by t ∈ (0,∞) and also replace in a
first step the probability measure P by its empirical counterpart P̂n. Then we obtain
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Λ̂t,n(x,y) = tP̂n
(
t (GX (X),GY (Y )) ∈A

)
=

t
n

n

∑
i=1

I(t (GX(X),GY (Y )) ∈ A) .

Now estimate the two distribution tails by their empirical counterparts:

ĜX(Xi) :=
1
n

RX
i :=

1
n

rank(−Xi) and ĜY (Yi) :=
1
n

RY
i :=

1
n

rank(−Yi) .

Then setting ε = t/n we obtain

Λ̂ε,n(A) = ε
n

∑
i=1

I(ε (RX
i , RY

i ) ∈ A) .

This yields in combination with Definition 4 an estimator for the function ρ :

ρ̂ε,n(θ ) =
1 + cotθ − Λ̂ε,n(1,cotθ )

1∧ cotθ
, 0≤ θ ≤ π

2
, (10)

where Λ̂ε,n(1,cotθ ) can be rewritten as

ε
n

∑
i=1

I(RX
i ≤ ε−1 or RY

i ≤ ε−1 cotθ ) , 0≤ θ ≤ π
2

. (11)

Choosing ε is not an easy task and when θ approaches π/2 increasingly fewer
points are used in the estimation. In Hsing et al. (2004) this problem was solved by
letting ε decrease slightly as θ approaches π/2. A much better solution is provided
by the symmetry proved in Corollary 1(d) in combination with (4): the extreme
dependence of (X ,Y ) for θ ∈ [π/4,π/2] is the same as the extreme dependence of
(Y,X) for θ ∈ [0,π/4]. Consequently, we estimate ρε,n(θ ) by estimating ρX ,Y (θ ) by

ρ̂ε,n(θ ) :=

{
ρ̂XY
ε,n (θ ) , 0 < θ < π/4 ,

ρ̂YX
ε,n (π/2−θ ) , π/4≤ θ < π/2 .

(12)

In the following remark we summarize some important properties of ρ̂ε,n.

Remark 4. (i) Estimator (12) has good convergence properties: for appropriately
small ε and n → ∞ it converges in probability and almost surely; see Hsing et
al. (2004) and references therein.
(ii) To assess asymptotic dependence involves passing to a limit function, which for
a finite sample is simply impossible. Consequently, for X and Y independent, even
for very small ε it is highly possible that the estimated tail dependence function will
be positive. This can be made precise by calculating
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ε
n

∑
i=1

I(RX
i ≤ ε−1 or RY

i ≤ ε−1 cotθ )

= ε
n

∑
i=1

(I(RX
i ≤ ε−1)+ I(RY

i ≤ ε−1 cotθ ))− I(RX
i ≤ ε−1 and RY

i ≤ ε−1 cotθ ))

= 1 + cotθ − ε
n

∑
i=1

I(RX
i ≤ ε−1 and RY

i ≤ ε−1 cotθ ) .

Now, independent samples for X and Y yield for fixed n, ε and θ

n

∑
i=1

I(RX
i ≤ ε−1 and RY

i ≤ ε−1 cotθ ) ∼ Bin
(

cotθ
ε2n2 ,n

)
.

Hence,

E

(
ε

n

∑
i=1

I(RX
i ≤ ε−1 or RY

i ≤ ε−1 cotθ )

)
= 1 + cotθ − cotθ

εn
, 0 < θ <

π
2

,

giving

E
(
ρ̂ε,n(θ )

)
=

⎧⎪⎪⎨⎪⎪⎩
cotθ
ε n

, 0 < θ <
π
4

,

cot(π/2−θ )
ε n

,
π
4
≤ θ <

π
2

.

(13)

In much the same fashion we get

Var(ρ̂ε,n(θ )) =

⎧⎪⎪⎨⎪⎪⎩
cotθ

n
− cot2 θ
ε2n3 , 0 < θ <

π
4

,

cot(π/2−θ )
n

− cot2(π/2−θ )
ε2n3 ,

π
4
≤ θ <

π
2

.

(iii) Inspecting equation 11 one can see that choosing an ε is equivalent to the
estimation of ρ(θ ) based on the 1/ε largest values of X . Hence, it is natural to see
1/ε as a threshold of the data and we will therefore use this term.
(iv) The estimator ρ̂ε,n has the advantage that it is only based on the ranks of the
data. Consequently, it can be smoothed in the usual way. For instance, by averaging
it over a window of size 2m+1 for m ∈ N, we call this smoothed estimator ρ̂ (m)

ε,n (·).
In the second column of Figures 5 and 6 we estimated ρ(θ ) for the Gumbel copula

(cf. Example 1) and the asymmetric Pareto model (cf. Example 2). The estimated
tail dependence function is indeed (except for θ ∈ {0,π/2}, where E(ρ̂ε,n(·)) has
singularities) far away from E(ρ̂ε,n(·)). For our sample size and the chosen ε it is
smaller than 0.075 for the interval depicted. Given that the variance is of the order
n−1 the estimated extreme dependence in our data is significant.

Example 3. [Gumbel copula: continuation of Example 1]
In Figure 5 we simulated the model (with student-t marginals with 8 degrees of
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Fig. 5 Simulated Gumbel copula model for ρ(θ/4) = 0.3 (upper row), ρ(θ/4) = 0.7 (middle
row), ρ(θ/4) = 0.9 (lower row).
Left column: Plots of ranks (1/RX

i ,1/RY
i ), with points close to (1,1) truncated.

Middle column: Plots of ρ̂(θ ) (dashed) overlaid with true function ρ(θ ) (solid).
Right column: Estimation error in terms of

√
MSE(θ ).

freedom) for n = 10000 iid observations of (X ,Y ) 100 times. We estimate the tail
dependence function ρ(·) for this model with ε = 1/200. We stay away from the
boundaries θ = 0 and θ = π/2, since in the numerator of (10) we have the difference
of two quantities which both tend to ∞ as θ → 0. The three sets of plots on the
three rows correspond to the cases: ρ(π/4) = 0.3 (upper row), ρ(π/4) = 0.7 (mid-
dle row) and ρ(π/4) = 0.9 (lower row). On each row the left plots contain ranks(
1/RX

i ,1/RY
i
)
, 1 ≤ i ≤ n, of a simulated sample of size 10 000. Points on the axes

correspond to independent extreme points; all points in the open quadrant exhibit
some extreme dependence structure. Completely dependent points are to be found
on the 45-degree line. The level of dependence is manifested by the data scattered
around this diagonal. The true functions ρ(θ ) in (5) (solid) are overlaid with the
estimated mean of ρ̂ε,n(θ ) (dashed) based on the simulated sample. The right plot
depicts the squareroot of the estimated mean squared error. Note that ρ(π/4) is the
upper tail dependence coefficient, which is an appropriate and simple measure of
extreme dependence for this symmetric model.
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Fig. 6 Simulated asymmetric Pareto model with ρ(θ/4) = 0.3 (upper row), ρ(θ/4) = 0.7 (middle
row), ρ(θ/4) = 0.9 (lower row).
Left column: Plots of ranks (1/RX

i ,1/RY
i ), with points close to (1,1) truncated.

Middle column: Plots of ρ̂(θ ) (dashed) overlaid with true function ρ(θ ) (solid).
Right column: Estimation error in terms of

√
MSE(θ ).

Example 4. [Asymmetric Pareto model: continuation of Example 2]
In Figure 6 we simulated this model for n = 10000 iid observations of (X ,Y ) with
ε = 1/200 100 times. The three sets of plots on the three rows correspond to the
cases: (p1 , p2) = (0.7 , 0.3), (p1 , p2) = (0.5 , 0.5) and (p1 , p2) = (0.2 , 0.8). On
each row the left plots contain ranks

(
1/RX

i ,1/RY
i
)
, 1≤ i≤ n of a simulated sample

of size 10 000. The true functions ρ(θ ) in (5) (solid) are overlaid with the estimated
mean of ρ̂ε,n(θ ) (dashed) based on the simulated sample. The right plot depicts the
squareroot of the estimated mean squared error.

In the first row of plots, ρ is larger for small θ than for large θ ; this is reflected
by the left plot in which the violation of independence can be seen to be more severe
below the diagonal. In the second row of plots, ρ is constant; which is reflected by
having a portion of extreme points lined up on the diagonal in the left plot. The third
row of plots is the converse situation to the first row, which is reflected by the pattern
of extreme points above the diagonal. This is an example of a situation where the tail
dependence coefficient does not convey a good picture of extreme dependence, in
that ρ(π/4) is not sufficient to describe the full dependence structure of this model.
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4 High-frequency Financial Data

We have tick-by-tick data of the Trades and Quotes database, in terms of trading times
[in seconds] and prices [in 1 cent units] of three stocks traded between February and
October 2002 on NYSE and Nasdaq. The stocks are General Motors (GM) from
NYSE, and Intel and Cisco both from Nasdaq. One major difference between the
two stock markets is that on NYSE trading is made on the floor while Nasdaq has
electronic trading. We shall analyze the extreme dependence between the three stocks
using the tail dependence function ρ . A study with focus on bivariate dependence
structures on FX spot data has been performed by Breymann et al. (2003) and Dias &
Embrechts (2003). Also, FX spot data was studied within the concept of multivariate
regular variation in Hauksson et al. (2001). For cleaning and deseasonalizing our
data we mainly follow the methods applied in these papers; see also there for further
references. In these papers parametric bivariate copulas were fitted to FX spot data in
both non-extreme and extreme regions. Our study considers the extremal dependence
for stock data, which is estimated nonparametrically. One main difference between
stock data and FX spot data is that FX spot data is traded 24 hours per day. In contrast,
NYSE for instance, has regular opening hours between 9.30 and 16.00 on working
days. This introduces additional complexity into our data analysis, and we have to
deal with this problem.

When dealing with extremes it is of importance to use as much data as possible,
since extremes are consequences of rare events. However, we can not simply use
the full samples of all stocks as each single time series is not stationary and, even
worse, for high-frequency data the different time series are not synchronized. As a
remedy for the non-synchronous data we take subsamples of logreturns on specific
timescales. If one chooses a relatively high frequency, one is confronted with the
problem that tick prices are discrete, and also microstructure noise effects can enter.
We chose 5 minutes logreturns as the lowest frequency, thus avoiding microstructure
noise effects.

There are a number of issues which appear when dealing with high-frequency
data and we will describe them in turns.

4.1 Cleaning the Data

A full sample path of stock data contains a huge amount of information. At Nasdaq
there is almost a trade every second. However, some ticks are false, mostly due to
fake quotes and decimal errors.

To be able to continue the analysis one has to clean the data. This is done by
filtering the data and removing values that differ too much from their neighboring
values in the sense of logarithmic differences. Also, sometimes false values may
come in clusters, which one also has to deal with. The selection of thresholds for
removing a bad tick was done by visually inspecting the time series before and after
the cleaning. When a false tick was observed it was replaced by a value based on
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Fig. 7 Intel ticks during 9:35 to 11:45 on February 1, 2002. Left: Raw data. Right: Data cleaned
from false ticks as described in Section 4.1.
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Fig. 8 Synchronized 5 minutes logreturns for Intel, Cisco and GM between 9:35 and 16:00 during
February 1 to October 31, 2002

linear interpolation with its neighbors. In this way less than one percent of the data
was removed.

The thresholds for logarithmic difference were set to 0.1% for Intel and Cisco and
to 0.2% for GM, respectively. The reason for different thresholds is that Intel and
Cisco are traded at a much higher frequency. A result of the cleaning procedure can
be seen in Figure 7. We repeated our analysis after altering the thresholds slightly.
However, this sensitivity analysis did basically not change the results.

When dealing with information from a stock exchange one is faced with the
problem that they do not trade for 24 hours resulting in a gap of information, when
the stock market is closed over night. However, Nasdaq and NYSE have off-hour
trading, but prices behave differently than prices during the regular opening times as
the trading rules differ. To obtain synchronised data we only considered the stocks
between 9:35 to 16:00 from Monday to Friday using the previous tick method, which
results in 77 five minutes logreturns per day. Also, there were a couple of holidays
where no data were available. Finally we had 14 476 synchronized observations (5
minutes logreturns) for each stock, which we plot in Figure 8
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Fig. 9 Autocorrelation function of squared 5 minutes logreturns for Intel.
Left: Original data: Visible is the cycle of 77 lags indicating daily seasonality.
Right: Deseasonalized data as in (15) based on daily seasonality.

4.2 Deseasonalizing the Data

When investigating the 5 minutes logreturns closer one can detect seasonality in the
data. In Figure 9, we depict the autocorrelation of the squared logreturns for Intel.
Here one can see the daily seasonality. A comparison to the FX data in Breymann et
al. (2003) shows that FX data have a much clearer weekly seasonality.

To be able to remove the seasonality, there are two main approaches. The first one
is to time-change the logreturns to a business clock instead of the physical clock.
The second is to use volatility weighting. We chose the second one as it is not clear
how to choose a business clock for multivariate time series.

Volatility weighting divides a period (we first take a week) into several smaller
subperiods and then estimates the seasonality effect in each subperiod in terms of
volatility. Then each subperiod is deseasonalized separately by devolatization. We
chose 5 minutes intervals as subperiods. This means that our observed returns, x̃t , is
a realization of the process

x̃t = μ+ vtxt .

where xt are the deseasonalized returns, μ is a constant drift and vt is the seasonality
coefficient (volatility weights), estimated by

v̂τ =

√√√√ 1
Nτ

Nτ

∑
i=1

(x̃ti+τ)2. (14)

Here Nτ is the number of weeks, during which we have observed our stocks in
the given subperiod τ ∈ {0,5,10,15, . . .} (in minutes), and ti denotes the start of
week i which always is on Monday at 9:35. Also, τ has to be corrected for nights
and weekends. We estimate μ with the sample mean μ̂ of the logreturns. Hence, the
deseasonalized 5 minutes logreturns are
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xt =
x̃t − μ̂

v̂t
. (15)

However, as we only have about 40 weeks the estimated volatility weights are quite
noisy, see Figure 10. This is due to the fact that single large values can dominate v̂2

τ :
the mean taken over 40 weeks is not sufficiently smooth.

To overcome this problem we first assume a daily seasonality instead of the weekly.
This can be motivated by the fact that the different days do not seem to differ to a
higher degree; see Figure 10. However, single large values still dominate the volatility
weights, which is unsatisfactory.

Consequently, we use a robust estimator based on the median and absolute values:

v̂M
γ = mediani=1,...,Nγ |x̃ti+γ |. (16)

Here Nγ is the number of days, during which we have observed our stocks in the given
subperiod γ ∈ {0,5, . . . ,385} (in minutes). We can now observe the stylistic pattern
of the autocorrelation of squared logreturns in Figure 9 for our deseasonalized time
series using the robustly estimated volatility weights.

The depicted volatility weights can be seen in Figure 10. One can clearly see that
trading is more intense at the beginning and at the end of a day. We also observe that
the robustly estimated volatility weights are much more stable. The deseasonalization
removes seasonality in the squared logreturns, which are right skewed, hence the
difference in magnitude for the two estimation methods.

When comparing the two different deseasonalization methods the robust one
leaves more larger absolute values in the data, which occur in low trading time.
The non-robust version decreases them as large values contribute much more to the
volatility weights. Hence, the non-robust version of the deseasonalization makes the
time series smoother than the robust method does.
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Table 1 AIC-based values for (r,m, p,q,ν) and t and normally distributed residuals with corre-
sponding likelihood; the last column presents our model.

Stock t normal our model
Intel 55531 (2,3,5,2,8.2) 55869 (2,3,4,1,-) 55534 (0,1,5,2,8.2)
Cisco 55805 (0,1,3,3,6.5) 56596 (0,1,4,0,-) 55807 (0,1,1,1,6.5)
GM 57343 (2,2,5,1,5.5) 58467 (1,2,3,1,-) 57355 (0,3,1,1,5.5)

4.3 Filtering the Data

Because of the dependence, which we have observed in the autocorrelation for the
squared logreturns, we will assume a stochastic volatility model for each stock. We
model the mean by an ARMA process and use the standard GARCH(p,q) model for
the martingale part. The model selection is based on the AIC criterion, the results
are summarized in Table 1.

We model the logreturns for different equidistant frequencies by

xt = μt +σt zt

with μt = c +∑r
i=1 φixt−i +∑m

i=1 θiεt−i and σ2
t = α0 +∑p

i=1αiσ2
t−i +∑

q
i=1βiε2

t−i,
where εt = σt zt . We model the zt by a standardnormal or a student-t distribution
with ν degrees of freedom. The overall fit of the model was assessed by a residual
analysis. We applied the Ljung-Box test for serial correlation, where we tested the
residuals and the squared residuals, and the Kolmogorov-Smirnov test for goodness-
of-fit of the normal and student-t distribution.

As we only have logreturns for 9:35-16:00 Monday to Friday we will make an
error if we fit the time series model to our data without taking the missing values
into account. We have used three different approaches to circumvent this problem:

(1) We (wrongly) fit the ARMA-GARCH model directly to the deseasonalized
data, ignoring the missing observations during the nights completely.

(2) We estimated the logreturns during the nights by 5 minutes logreturns using
the (wrong) square root scaling (the correct but complicated scaling constants
have been calculated by Drost & Nijman 1993). Then we deseasonalize and fit
the time series.

(3) We fit different MA(1)-GARCH(1,1) models for each day. In this case we used
the estimated volatility of the previous day as the initial value.

One comment to the second approach is that the deseasonalized nightly logreturns
should have the same distribution as the deseasonalized daily logreturns. We have
tested this assumption via QQ-plots with bootstrapped confidence interval. Using
ordinary bootstrap we can conclude that the deseaonalized nightly logreturns do not
have the same distribution as the deseasonalized daily logreturns. However, as we
have dependence in our time series one should use a bootstrap method which takes
this into consideration. Using block bootstrap we can not reject the hypothesis that
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Table 2 Estimated α by the Hill estimator for the loss region.

Stock Intel Cisco GM
α̂ 5.6 4.36 4.3

the deseaonalized nightly logreturns have the same distribution as the deseasonalized
daily logreturns.

If we compare the methods (1)-(3) we conclude that the first and second behave
very similar with respect to the parameter estimation. For the third method this
estimation was difficult. Even if we only use a three parameter model the estimation
is not stable. Based on the Ljung-Box test for serial correlation, both residuals and
squared residuals, the two first methods out-perform the third. Also, for the final
result in Section 4.4 the outcome is similar. We concluded that the error of using a
false approach (among these three) is minimal and concentrated on the first method
for simplicity.

In Table 1 we have selected the model by AIC criteria, also giving the likelihood of
the selected model. The selected optimal order of the ARMA model m,r ∈ (0, . . . ,5)
and the order of the GARCH model p,q ∈ (0, . . . ,6) for normal and also the degree
of freedom ν for t-distributed innovations are given in the first two columns.

As we want to keep the number of parameters as low as possible, we performed
a sensitivity analysis based on the likelihood of the model. In this way we found the
model given in column 3 of Table 1, which we will use in the sequel. Our analysis
also confirmed the common knowledge that residuals are heavy-tailed; i.e. the t-
distribution outperforms by far the normal distribution.

Concerning the Ljung-Box test, we could not reject independence of the residuals
or the squared residuals for all time series. In Table 3 we show the p-values for a
selection of lags for squared logreturns. We have also looked at the p-values up to
50 lags. However, all time series failed the Kolmogorov-Smirnov test, actually for
all models presented in Table 1.

Diagnostic tools from extreme value theory (see e.g. Embrechts et al. 1997, Sec-
tion 6.1) show, however, clearly that all three filtered time series are heavy-tailed.
Consequently, we model the far out distribution tail of all residuals as regularly
varying and estimate the tail index α by the Hill estimator (see e.g. Embrechts et
al. (1997), Section 6.4). We summarize the result in Table 2.

Due to the devolatizaton a 10 minutes logreturn is obtained as a linear combination
of two 5 minutes logreturns and so logreturns should have the same tail-parameter
for different frequencies. However, for higher timescales the tail-parameter increases
slightly, even if one compares the filtered 5 minutes logreturns with 45 minutes, but
still remains heavy-tailed. This is well known and reported, for instance, in Müller
et al. (1998).

We have also investigated the cross-correlation between the stocks. In Table 4 we
display the first four lags. The other lags were smaller in absolute magnitude.

From Table 4 one can see that GM tends to follow Intel and Cisco more than vice
versa. A formal test for uncorrelation of two time series tests this hypothesis for each
specific lag based on asymptotic normality of the cross-correlation function (see e.g.
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Table 3 p-values from the Ljung-Box test of filtered squared residuals. We have tested 1, 5, and
10 lags of the 5 minutes logreturns.

Stock 1 5 10
Intel 0.39 0.06 0.07
Cisco 0.74 0.86 0.77
GM 0.92 0.96 0.84

Table 4 Cross-correlation of the first four lags for the filtered 5 minutes logreturns.

Stocks -4 -3 -2 -1 0 1 2 3 4
Intel-Cisco -0.01 0.01 0.01 0.05 0.56 0.03 0.02 0.01 -0.00
Intel-GM 0.02 0.02 0.05 0.04 0.35 0.02 0.01 -0.00 -0.02
Cisco-GM 0.03 0.01 0.04 0.04 0.33 0.03 0.01 -0.00 -0.02

Brockwell & Davis 1987, Theorem 11.2.2) The uncorrelation hypothesis is rejected
if the corresponding estimate has absolute value larger than 0.017.

For the 15 minutes data, there is some cross-correlation between GM and Intel
and GM and Cisco for the first lag, but none significant between Intel and Cisco. For
the 30 minutes data, there is no significant cross-correlation at all.

Such tests have to be interpreted with caution for various reasons. First of all there
is the usual problem that a test should be performed not only on each lag separately.
Furthermore, the amount of high-frequency data is so large that a formal test rejects
already for very small cross-correlation: for 5 min the rejection level is 0.017, for 30
min it is 0.042.

4.4 Analyzing the Extreme Dependence

Recall the estimator ρ̂ε,n from (12), where ε = t/n represents the proportion of
upper order statistics used for the estimation, which itself has to be estimated; cf.
Remark 4(iii). The estimation of ε involves in extreme value statistics a variance-
bias tradeoff; i.e. it is tricky and time-consuming, but important. We have used two
approaches.

Firstly, by plotting the estimated tail dependence function for different choices
of ε visual inspection clearly showed the influence of the variance/bias, when using
different thresholds. For high threshold, i.e. small ε , the estimated tail dependence
function was rather rough showing the high variation of the estimator. When de-
creasing the threshold the estimated tail dependence function became very smooth,
which we interpreted in analogy to tail index estimation as a bias.

Secondly, we studied plots of ρ̂ε(θ ) as a function of ε for fixed θ . This was done
for θ = π/4±0,π/12,π/6. Here we looked for regions where ρ(θ ) was stable. The
case θ = π/4 can be seen in Figure 11. We want to mention that for other choices
of θ the stability plots were not equally convincing.

As a result of our diagnostics we fixed ε = 1/650, which represents about 4.5%
of the data. In Figure 12 we can see the resulting estimated tail dependence function.
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Fig. 11 For the 5 minutes logreturns: ρ̂ε(π/4) as a function of ε for ε = 1/100, . . . ,1/1000.

Fig. 12 Left plots: 1/Ri, j , where Ri, j = rank(−Xi, j). Right plots: Estimators ofρ(θ) (solid line). For
sake of reference we have also plotted the expected dependence E(ρ̂ε,n (·)) from (13) for independent
samples (dashed line).

We conclude that for all bivariate combinations of our data tail dependence can
be modelled symmetric and is significantly stronger than for the independent case.
Not surprisingly, dependence is highest between Intel and Cisco, presumably due to
branch dependence, besides being both traded at Nasdaq. The dependence of GM
and Cisco is slightly higher than of GM and Intel. The symmetry in the dependence
reflects that we have three major stocks and can also be viewed as underlying market
dependence. We also notice that the estimated tail dependence function looks sim-
ilar as the tail dependence function of a bivariate extreme value distribution with a
Gumbel copula.
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Fig. 13 Estimated tail dependence function ρ̂ε(θ ) for different ε (1/200 to 1/1200). Left: Simulated
data from the t-Gumbel model with parameters estimated from the Intel-Cisco filtered 5 minutes
logreturns. Right: Filtered 5 minutes logreturns, Intel-Cisco.

It is now tempting to fit a distribution with t marginals (a common model in
econometrics, called the t-GARCH) with degree of freedom from Table 1 and a
Gumbel copula (cf. Example 1,3) pairwise to our data or even to the three-dimensional
sample. We know already from Section 4.3 that the t distribution is not a good model
for the marginals. However, our concern is now for the extreme dependence structure,
and it turns out that the Gumbel copula, although an extreme value copula, is not a
valid model. The dependence structure in our data is far more complex. This can be
illustrated by viewing the tail dependence function for different ε (1/200 to 1/1200)
compared to data simulated from the above t-Gumbel model with the same sample
size, presented in Figure 13. Recall from Example 1 that the Gumbel coupla gives
tail dependence function

ρ(θ ) =
1 + cotθ − (1 +(cotθ )δ )(1/δ )

1∧ cotθ
, 0 < θ < π/2 .

We estimated δ from the upper tail dependence coefficient ρ̂ε(π/4) = 2−2(1/δ̂), the
value of the estimated tail dependence function at π/4. We obtained δ̂ = 1.25. Now
we generate a sample of the same size as the 5 minutes logreturns with a Gumble(δ̂)
copula and t-distributed marginals. We compare the estimated tail dependence func-
tions for different ε and present the results in Figure 13.

Notice that the simulated data behave much more stably with respect to changes
of ε , while the real data reacts heavily on such changes. Using a parametric model
such as the Gumble copula would only be an approximation based on one given
threshold.
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Table 5 Correlation change for different timescales.

Stock Intel-Cisco Intel-GM Cisco-GM
5 0.56 0.35 0.33

15 0.62 0.41 0.38
30 0.65 0.43 0.39
45 0.66 0.46 0.41

4.5 Different Timescales

As a result of our statistical analysis of the marginal data, the one-dimensional lo-
greturns exhibit Pareto-like tails. If the stocks came from a three-dimensional ex-
ponential Lévy process with appropriate dependence structure, then the extreme
dependence would be the same for all time scales, i.e. 5 minutes logreturns of the
three stocks would have the same dependence structure as daily logreturns. This
applies in particular to extreme dependence and is in accordance with Proposition 4.
Note that our data do not satisfy the independence condition of Proposition 4. Ex-
treme value estimates, however, often extend properties from independent data to
dependent data.

We shall at least perform a statistical test to our data, whether there is a change
in the extreme dependence on different timescales by analyzing logreturns of 5, 15,
30 and 45 minutes frequencies.

To this end we performed the same filtering steps as for the 5 minutes logreturns
again for the 15, 30 and 45 minutes logreturns obtained from the raw data. Then
we fitted a MA(1)-GARCH(1,1) model with student-t distributed residuals to the
deseasonalized data of the 15, 30 and 45 minutes logreturns. For the 5 minutes
logreturns we keep the model from Section 4.4.

For the 15, 30 and 45 minutes logreturns we applied the Ljung-Box test for
serial correlation, where we tested the residuals and the squared residuals, and the
Kolmogorov-Smirnov test for goodness-of-fit of the student-t density. Observe that
the degrees of freedom is not the same as in Table 1 for the different timescales. All
the filtered time series passed the Ljung-Box test and the filtered 30 and 45 minutes
logreturns passed the Kolmogorov-Smirnov test.

For the residuals we again estimate the dependence between the different stocks.
A comparisons of the linear dependence for different timescales is presented in

Table 5. Here we can see that the correlation increases for higher frequencies; this
effect is well-known and also called the Epps effect; see Zhang (2006).

Next we estimate the tail dependence function for the different frequencies. To
compensate for the increasing lack of data for low frequencies, the ε is always chosen
so that ε times the number of observations is the same for all frequencies. Hence we
always consider the same quantile.

As the sample of the 45 minutes logreturns is only about 10 percent in size of the
5 minutes logreturns, they set the standard for the other frequencies. We increased
the threshold 1/ε until the estimated tail dependence function behaved stably for
the 45 minutes logreturns. We also studied a plot of ρ̂ε(θ ) for various values of θ ,
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Fig. 14 For the 45 minutes filtered logreturns we depict ρ̂ε(π/4) as a function of ε for ε =
1/10, . . . ,1/250.

when altering ε . For θ = π/4 the result can be seen in Figure 14. Finally, we chose
ε = 1/120, which represents about eight percent of the data. We want to remark that,
in view of Figure 11, we presumably introduced a bias into our estimation.

Also, by using straight forward bootstrap techniques one can present bootstrap
confidence intervals. In Figure 16 we depict the tail dependence function for Intel-
Cisco on the timescales 5 minutes and 45 minutes.

From Figures 15 and 16 we can conclude that the tail dependence is approximately
the same for different timescales. This also holds for different ε but there are some
variations if we increase the threshold. If we lower the threshold, then the similarities
between the different timescales become more pronounced. We recall that in Table 2
on p. 9 in Breymann et al. (2003) the tail dependence coefficient ρ(π/4) is estimated
via a parametric model for different timescales for DEM (Deutsche Mark) and JPY
(Japanese Yen). Even for the unfiltered data in that paper the estimator for ρ(π/4)
looks stable. If we increase the timescale to, for instant, two hours the extreme
dependence starts to deviate unless we lower the threshold and use as much as 15%
of the data. This is consistent with the result on high-frequency FX data reported in
Hauksson et al. (2001). Hence, the two different asset classes seem to share the same
time scaling for extreme dependence. As pointed out earlier in this section, the time
scaling is also explained from a theoretical point of view via Proposition 4.

From the above analysis we conclude that we can estimate extreme dependence
for lower frequencies by estimating it for high frequencies, where enough data are
available.

Another possibility to achieve a more stable estimation procedure is to use sub-
sampling, based on different samples of the same frequency, obtained by time shifts.
We performed the estimation separately for each subsample and, at the end, aver-
aged over all estimated tail dependence functions. The subsamples proved to be very
stable in the basic statistics, the estimates for the ARMA and GARCH parameters,
and also the properties of the residuals. However, for the estimated tail dependence
functions we cannot report significant improvement, in particular, when compared
to the tail dependence function estimated from higher frequencies.
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Fig. 15 Estimated tail dependence function ρ̂ε(θ ) of filtered logreturns for different frequencies.
Five minutes (straight-dotted), 15 minutes (straight), 30 minutes (dashed) and 45 minutes (dotted).
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Fig. 16 Estimated tail dependence function ρ̂ε(θ ) with bootstrap confidence intervals (100 re-
samples) of filtered logreturns for timescale 5 and 45 minutes. Five minutes with corresponding
confidence intervals (straight) and 45 minutes with corresponding confidence intervals (dotted).

4.6 Dependence Under Filtering

Recall that we have in principle prices which are multiples of one cent, but there are
values our logreturn will never take. Moreover, we have an unnaturally large amount
of zeroes and small values. However, concerning extreme dependence we can rest
assured that this does not affect the tails.
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Fig. 17 Upper three plots: Deseasonalized 5 minutes logreturns modelled by daily seasonality and
coefficients estimated by the robust method (16). Lower three plots: GARCH filtered logreturns
based on our model in Table 1. Compare to the raw data in Figure 8.

Table 6 Estimated correlation for the 5 minutes logreturns for different steps in the data analysis.

Stocks Original Deseasonalized Filtered
Intel-Cisco 0.57 0.56 0.56
Intel-GM 0.36 0.36 0.35
Cisco-GM 0.33 0.33 0.33

Now we shall investigate, how the dependence structure has changed during the
filtering steps. In Table 6 we can see the correlation between the 5 minutes logreturns
for the different steps of the filtering.

It is satisfactory to see that the different filtering steps have obviously not changed
the correlation and hence not changed the linear dependence between the different
stocks. This also holds for other timescales.

Now we turn to an account of extreme dependencebefore and after filtering. When
examining the logreturns in Figure 8 one can clearly see the dominating volatile
periods. The same holds for Figure 17. Taking the same ε for the raw data and the
filtered returns yields for the raw data an over representation of the volatile periods.
This implies that one would consider in fact only a much smaller time period for the
extreme value analysis. So theoretically, there is no reason, why extreme dependence
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Fig. 18 Estimated tail dependence function ρ̂ε(θ) for 5 minutes Intel logreturns. Dashed: Unfiltered
data. Dotted: Deseasonalized data. Solid: GARCH filtered data.

before and after filtering should be similar. In Figure 18 we have plotted the estimated
tail dependence function for Intel and Cisco after each filtering step for 5 minutes
logreturns. We have used the same ε as in Section 4.4 and the same ε for the different
filtering steps. One can see that there seems to be only a small difference in magnitude,
not in shape. This also holds for different choices of ε and different timescales.
Consequently, for our data the rather complicated filtering procedure seems to be
obsolete for a realistic account of the extreme dependence.

5 Conclusion

We have introduced a new estimator for the tail dependence function, which is tailor
made to assess the extreme dependence structure in data. As it measures dependence
in every direction it is in principle also able to measure extreme dependence for data
with asymmetric dependence structure. We show the performance of this function
for high-frequency data for varying frequencies.

After giving some theoretical results, which are important in the high-frequency
context, we clean the data carefully and perform some basic statistics. We then show
the tail dependence function at work for our data and estimate extreme dependence
for high-frequency stock data.

We have investigated the extremal dependence between Intel, Cisco and GM for
different time scales. We can conclude for the filtered data:

• All three stocks have heavy tails. Within the 5,10,15,45 minutes frequencies we
observed that a lower frequency gives lighter tails.

• We can work with the hypothesis that the square root scaled deseasonalized nightly
logreturns have the same distribution as the deseasonalized daily logreturns.

• There is (weak) cross-correlation between the stocks for frequencies of up to 30
minutes, it disappears for lower frequencies.
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• The extreme dependence is symmetric which means that the stocks influence each
other to the same degree. This can be interpreted as market dependence.

• The IT stocks (Cisco and Intel) have stronger dependence indicating branch de-
pendence.

• Extreme dependence is there, but moderate. We have the same extreme depen-
dence for different timescales. This is consistent with the result on high-frequency
FX data reported in Hauksson et al. (2001). Hence, the two different asset classes
seems to share the same time scaling for extreme dependence. The time scaling
is also explained from a theoretical point of view via Proposition 4.

• The filtering steps do not alter the extreme dependence to a high degree.
• Higher correlation does not necessarily lead to stronger extreme dependence.

Our analysis shows again that extreme value theory has to be applied with care.
To obtain a realistic picture about the extreme dependence structure in real data it
is not enough to describe it by one single number. Another obvious lesson to draw
from our analysis is that it is important to use reference results such as simulations
from exact models. Moreover, a message, which we can not repeat too often, one
should be careful when selecting the threshold.
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Ordinal- and Continuous-Response Stochastic
Volatility Models for Price Changes: An
Empirical Comparison

Claudia Czado, Gernot Müller and Thi-Ngoc-Giau Nguyen

Abstract Ordinal stochastic volatility (OSV) models were recently developed and
fitted by Müller & Czado (2009) to account for the discreteness of financial price
changes, while allowing for stochastic volatility (SV). The model allows for ex-
ogenous factors both on the mean and volatility level. A Bayesian approach using
Markov Chain Monte Carlo (MCMC) is followed to facilitate estimation in these
parameter driven models. In this paper the applicability of the OSV model to finan-
cial stocks with different levels of trading activity is investigated and the influence of
time between trades, volume, day time and the number of quotes between trades is
determined. In a second focus we compare the performance of OSV models and SV
models. The analysis shows that the OSV models which account for the discreteness
of the price changes perform quite well when applied to such data sets.

1 Introduction

Modeling price changes in financial markets is a challenging task especially when
models have to account for salient features such as fat tail distributions and volatility
clustering. An additional difficulty is to allow for the discreteness of price changes.
These are still present after the US market graduation to decimalization of possible
tick sizes. Recently, Müller & Czado (2009) introduced the class of ordinal stochas-
tic volatility (OSV) models, which utilizes the advantages of continuous-response
stochastic volatility (SV) models (see Ghysels et al. (1996) and more lately Shephard
(2006)) such as fat tails and persistence through autoregressive terms in the volatility
process, while adjusting for the discreteness of the price changes.

OSV models are based on a threshold approach, where the hidden continuous
process follows a SV model, thus providing a more realistic extension of the ordered
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probit model suggested by Hausman et al. (1992). In addition we allow for exogenous
variables both on the mean and variance level of the hidden process. Parameter
estimation in OSV models using maximum likelihood is not feasible, since first the
hidden SV process has no closed form of the likelihood and second the threshold
approach induces the need to evaluate multidimensional integrals with dimension
equal to the length of the financial time series. Therefore Müller & Czado (2009)
follow a Bayesian approach. Here Markov Chain Monte Carlo (MCMC) methods
allow for sampling from the posterior distributions of model parameters and the
hidden process variables.

While Müller & Czado (2009) provided the model specification, developed and
implemented the necessary estimation techniques, this paper explores the applica-
bility of the OSV model to financial stocks with different levels of trading activity.
In particular, we investigate which exogenous factors such as volume, daytime, time
elapsed between trades and the number of quotes between trades have influence on
the mean and variance level of the hidden process and thus on the discrete price
changes. A second focus of this paper is to compare the performance of the OSV
and SV models when these are fitted to such discrete price changes.

Alternative discrete price change models are based on rounding and decompo-
sition ideas. Following the rounding approach Harris (1990) models discrete prices
by assuming constant variances of the underlying efficient price, while Hasbrouck
(1999a) models efficient prices for bid and ask prices separately using GARCH dy-
namics for the volatility of the efficient price processes. Hasbrouck (1999a) proposes
to use non-Gaussian, non-linear state space estimation of Kitagawa (1987). Other
works of Manrique & Shephard (1997), Hasbrouck (1999), Hasbrouck (2003) and
Hasbrouck (2004) also use MCMC techniques for estimation.

Decomposition models for discrete price changes assume that the price change is
a product of usually three random variables: a price change indicator, the direction
of the price change, and the size of the price change. Rydberg & Shephard (2003)
and Liesenfeld et al. (2006) follow this approach. Russell & Engle (2005) introduce
a joint model of price changes and time elapsed between trades (duration) where
price changes follow an autoregressive conditional multinomial (ACM) model and
durations the autoregressive conditional duration (ACD) model of Engle & Russell
(1998). A common feature of these models is that the time dependence is solely
induced by lagged endogenous variables, while our OSV specification allows for
parameter driven time dynamics.

The paper is organized as follows: Section 2 introduces the OSV and SV model
specifications and summarizes their estimation using MCMC methods. It also con-
siders the problem of model selection among OSV, among SV and between OSV and
SV models. The data application to three NYSE stocks with different trading levels
from the TAQ data base are given in Section 3. Special emphasis is given to model
interpretation and model selection. The paper closes with a summary and outlines
further research.
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2 Ordinal- and Continuous-Response Stochastic Volatility
Models

In this section we recall the OSV and SV model specifications and briefly summarize
MCMC techniques which have been developed to estimate these models. Further-
more, we discuss methods of model selection within and between the two model
classes.

2.1 OSV and SV Model Specification and Interpretation

As introduced by Müller & Czado (2009) we consider the following stochastic volatil-
ity model for an ordinal valued time series {Yti , i = 1, . . . , I}, where ti, i = 1, . . . , I
denote the possibly unequally spaced observation times. In this model the responseYti
with K possible values is viewed as a censored observation from a hidden continuous
variable Y ∗

ti which follows a stochastic volatility model, i.e.

Yti = k ⇔ Y ∗ti ∈ [ck−1,ck) , (1)

Y ∗ti = x′tiβ + exp(h∗ti/2)ε∗ti ,
h∗ti = z′tiα+φ(h∗ti−1

− z′ti−1
α)+ση∗ti ,

where c0 = −∞ < c1 < · · · < cK−1 < cK = +∞ are unknown threshold parameters
(also called cutpoints). Moreover, xti and zti are p and q dimensional covariate vec-
tors on the hidden mean and log volatility level, respectively. Associated with these
covariate vectors are unknown regression parameters β and α , respectively. The pa-
rameter φ is an unknown autocorrelation parameter and σ2 an unknown variance
parameter on the hidden log volatility scale. The error variables ε∗ti and η∗ti are as-
sumed to be i.i.d. standard normal, with independence also between {ε∗ti , i = 1, . . . , I}
and {η∗ti , i = 1, . . . , I}. For t0 we assume z0 := (0, . . . ,0)′ and that h∗0 follows a
known distribution. Finally, for identifiability reasons we have to fix a threshold
parameter, and hence we set c1 = 0. The model specified by (1) is abbreviated by
OSV(X1, . . . ,Xp;Z1, . . . ,Zq), where (X1, . . . ,Xp) and (Z1, . . . ,Zq) represent the names
of the covariates with corresponding observation vectors xti and zti at time ti, respec-
tively.

To interpret such a model, denote the mean and variance of the hidden process at
ti by μti and σ2

ti , respectively. As μti is increased holding σ2
ti fixed, we see that the

probability of a large (small) category is increased (decreased). For fixed μti , we see
that if σ2

ti is increased the probability of extreme categories is increased. These two
situations are illustrated in Figure 1.

Furthermore, the OSV model allows to quantify the probability pk
ti := P(Yti = k)

for observing a specific category k at time ti. This probability is given by
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Fig. 1 Category probabilities
(visualized as area under
the curve between adjacent
threshold bounds) as mean and
variance of a hidden normally
distributed random variable
vary

pk
ti =

⎧⎪⎪⎨⎪⎪⎩
Φ

(
(c1−x′tiβ )/exp(h∗ti/2)

)
for k = 1,

Φ
(
(ck−x′tiβ )/exp(h∗ti/2)

)−Φ (
(ck−1−x′tiβ )/exp(h∗ti/2)

)
for k = 2, . . . ,K−1,

1−Φ (
(cK−1−x′tiβ)/exp(h∗ti/2)

)
for k = K,

where Φ() denotes the cumulative distribution function of a standard normal ran-
dom variable. Therefore the model is able to identify time points where there is a
large probability of extreme small or large category labels. Note that no symmetry
assumptions about the occurrence of large/small categories are present in the model
specification.

We conclude this subsection by presenting the ordinary stochastic volatility model.
For a real valued time series {Y c

ti , i = 1, . . . , I} the ordinary SV model is specified by

Y c
ti = x′tiβ + exp(hti/2)εti (2)

hti = z′tiα+φ(hti−1 − z′ti−1
α)+σηti ,

where xti ,β ,zti ,α,φ and σ2 are specified as in the OSV model. The error variables
εti and ηti are assumed to be i.i.d. standard normal, with independence also between
{εti , i = 1, . . . , I} and {ηti , i = 1, . . . , I}. Analogously to the OSV case, the model
specified by (2) is denoted by SV(X1, . . . ,Xp;Z1, . . . ,Zq).

In our application we use OSV(X1, . . . ,Xp;Z1, . . . ,Zq) models for the category la-
bels of the associated price change classes, whereas SV(X1, . . . ,Xp;Z1, . . . ,Zq) mod-
els are applied to the observed price changes directly.
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2.2 Bayesian Inference for OSV and SV Models

Bayesian inference for the SV models was thoroughly investigated in Chib et al.
(2002). They used an estimation procedure based on a state space approximation
which we just briefly recall. Obviously, in model (2) one can equivalently write

log
(
Y c

ti −x′tiβ
)2 = hti + logε2

ti .

Kim et al. (1998) have shown that the distribution of logε2
ti can be approximated

very well by a seven-component mixture of normals. In particular, one can assume
logε2

ti ≈ ∑7
k=1 qku(k)

ti where u(k)
ti is normally distributed with mean mk and variance

v2
k independent of ti. Moreover, the random variables {u(k)

ti | i = 1, . . . , I, k = 1, . . . ,7}
are independent. The quantity qk denotes the probability that the mixture component
k occurs. These probabilities are also independent of t and are given in Table 1 of Chib
et al. (2002) together with the corresponding means and variances. Let sti ∈ {1, . . . ,7}
denote the component of the mixture that occurs at time ti and let π(sti) denote the
prior for sti, whereπ(sti =k) = qk. Then, by setting Ỹc

ti := log
(
Y c

ti −x′tiβ
)2, one arrives

at

Ỹ c
ti = hti + u

(sti)
ti

which, together with the second equation of (2), gives the desired state space repre-
sentation.

The inference for the OSV models is even more complicated, since a straight-
forward extension of the algorithm by Chib et al. (2002) shows an unacceptable bad
mixing of the chains. Therefore, Müller & Czado (2009) developed a grouped-move
multigrid Monte Carlo (GM-MGMC) algorithm which exhibits fast convergence of
the produced Markov chains. Since the SV model given by (2) is a submodel of the
OSV model, we use the same sampling scheme also for the SV model, of course
reduced by the sampling of the cutpoints which do not appear in the SV model, and
the variables Y ∗ti , i = 1, . . . , I, which are observed in the SV case.

Each iteration of the GM-MGMC sampler consists of three parts. In the first part,
the parameter vector β is drawn in a block update from a (p + 1)-variate normal
distribution, the latent variables Y ∗ti , i = 1, . . . , I, from truncated univariate normals,
and the cutpoints ck, k = 2, . . . ,K − 1, from uniform distributions. In the second
part, the grouped move step is performed. Here one draws a transformation element
γ2 from a Gamma distribution and updates β , (Y ∗t1 , . . . ,Y

∗
tI ), and c by multiplication

by the element γ =
√
γ2. The third part starts with computation of the state space

approximation, i.e. by computing Ỹ ∗ti = log(Y ∗ti − x′tiβ )2 for i = 1, . . . , I. Then sti ,
i = 1, . . . , I, are updated in single updates, and (α,φ ,σ) by a Metropolis-Hastings
step. Finally, the log volatilities h∗t1, . . . ,h

∗
tI are drawn in one block using the simulation

smoother of De Jong & Shephard (1995). For more details on the updates we refer
to Müller & Czado (2009).



306 C. Czado, G. Müller & T.-N.-G. Nguyen

For the Bayesian approach one also has to specify the prior distributions for c, β ,
h∗0, α , φ , and σ . Assuming prior independence the joint prior density can be written
as

π(c,β ,h∗0,α,φ ,σ) = π(c)π(β)π(h∗0)π(α1) · · ·π(αq)π(φ)π(σ).

For β a multivariate normal prior distribution is chosen, for h∗0 the Dirac measure at
0, and for the remaining parameters uniform priors. In particular,

π(c) = I{0<c2<···<cK−1<C}, π(β) = Np+1(β |b0,B0),
π(h∗0) = I{h∗0=0}, π(α j) = I(−Cα ,Cα )(α j), j = 1, . . . ,q,

π(φ) = I(−1,1)(φ), π(σ) = I(0,Cσ )(σ),

where C > 0, Cα > 0, and Cσ > 0 are (known) hyperparameters, as well as the mean
vector b0 and the covariance matrix B0.

2.3 Model Selection

We now look at some criteria for model selection among OSV models, among SV
models, and between OSV and SV models.

Model Selection Between OSV Models

We consider a model specification to be reasonable when credible intervals do not
contain zero for all parameters. However model selection among such reasonable
models is difficult since the likelihood cannot be evaluated simply for OSV models,
thus the often used deviance information criteria (DIC) of Spiegelhalter et al. (2002)
or score measures discussed in Gneiting & Raftery (2007) cannot be computed di-
rectly. Therefore we consider the following simple model selection criteria.

To choose among OSV models we first derive estimates of the ordinal categories
for each ti based on the MCMC iteration values. Note that the hidden volatility for
each ti is updated in each MCMC iteration, but we use only the average value of the
log volatility estimates at ti over all MCMC iterations. These averages are denoted by
ĥ∗ti and are used to derive fitted values for the hidden process. Let βr,α r,σ r,φ r and cr

k,
k = 2, . . . ,K−1 denote the rth MCMC iterate of β ,α ,σ ,φ and ck, k = 2, . . . ,K−1,
respectively for r = 1, . . . ,R. The estimated log volatilities ĥ∗ti allow to derive fitted
hidden process variables y∗r

ti defined by

y∗r
ti := x′tiβ

r + exp(ĥ∗ti/2)ε∗r
ti ,

where ε∗r
ti are i.i.d. standard normal observations. Finally find category k such that

y∗r
ti ∈ [cr

k−1,c
r
k) and set

yr
ti := k.
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The ordinal category at time ti is now fitted by the empirical median of {yr
ti ,r =

1, . . . ,R}, which we denote as ŷti .
To construct interval estimates for the ordinal categories we define

y∗r
ti ,1−α := x′tiβ

r + exp(ĥ∗ti/2)z1−α ,

y∗r
ti,α := x′tiβ

r− exp(ĥ∗ti/2)zα ,

where zδ denotes the δ quantile of a standard normally distributed random variable.
Then we find categories k1−α such that y∗r

ti,1−α ∈ [cr
k−1,c

r
k) and kα such that y∗r

ti,α ∈
[cr

k−1,c
r
k), respectively, and set

yr
ti ,1−α := k1−α and yr

ti,α := kα .

The interval estimate for a category at a time ti is now defined as the interval
[ŷti,α , ŷti ,1−α ] where ŷti,α and ŷti,1−α denote the empirical medians of {yr

ti,α ,r =
1, . . . ,R} and {yr

ti,1−α ,r = 1, . . . ,R}, respectively.
Alternatively we could consider a 100(1−α)% credible interval, which is given

by [ŷB
ti,α , ŷB

ti ,1−α ], where ŷB
ti,α (ŷB

ti,1−α) denotes the empirical α (1−α) quantile of
{yr

ti ,r = 1, . . . ,R}. Since the fitted category yr
ti of the rth MCMC iterate takes on only

a few values, the empirical α and (1−α) quantiles are not well defined. Therefore
we will not follow this approach.

To choose among several OSV specifications we now count the times the observed
category coincides with the fitted category as well as how many times the interval
estimate covers the observed category. We choose the model with the highest correctly
fitted and covered categories as the best model. Note that the observed coverage
percentage is not identical with 100(1−α) for the α value used in the construction
of the interval estimates, since category values for different time points are dependent.

Model Selection Between SV Models

For the SV models we follow a similar approach as for the OSV models. First let
ĥc

ti denote the average value of the log volatility estimates at time ti over all MCMC
iterations. Again let β r, αr, σ r, and φ r denote the rth MCMC iterate of β , α , σ , and
φ for r = 1, . . . ,R for the SV model, respectively. Define

yc,r
ti := x′tiβ

r + exp(ĥc
ti/2)εr

ti

yc,r
ti ,1−α := x′tiβ

r + exp(ĥc
ti/2)z1−α

yc,r
ti,α := x′tiβ

r− exp(ĥc
ti/2)zα ,

where εr
ti are i.i.d. standard normal. Now determine the median of {yc,r

ti ,r = 1, . . . ,R},
{yc,r

ti,1−α ,r = 1, . . . ,R} and {yc,r
ti,α ,r = 1, . . . ,R}, and denote them by ŷc

ti , ŷ
c
ti ,1−α and

ŷc
ti,α , respectively. Since ŷc

ti is real-valued, it is not informative to count the times the
observed value is equal the fitted value ŷc

ti for all ti. Hence, we only count the number
of times the observed value is covered by the interval [ŷc

ti,α , ŷc
ti ,1−α ] for all ti.
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Model Selection Between OSV and SV Models

The coverage percentage by the interval estimate for the OSV and SV, respectively,
is used as a measure how good the model explains the observed values. A larger
percentage gives a better fit.

3 Application

In this section we investigate the applicability of the OSV model to financial stocks
with different levels of trading activity, and determine the influence of time between
trades, volume, day time and the number of quotes between trades. Moreover, we
compare the performance of OSV models and SV models using suitable model
selection criteria.

3.1 Data

To investigate the gain of the OSV model over a corresponding SV model for the
price changes we selected three stocks traded at the NYSE, reflecting stocks which
are traded at a low, medium and high level. We chose the Fremont General Cor-
poration (FMT), the Agilent Technologies (Agilent) and the International Business
Machine Cooperation (IBM) from the TAQ data base for a low, medium and high
level of trading, respectively. The data was collected between November 1-30, 2000
excluding November 23, 24 (thanksgiving).

Table 1 contains trading characteristics for the three stocks during the investigated
time period. The absolute values of extremal price changes increase as trading activity
increases (cf. rows ‘price diff. between ti−1 and ti’), indicating a higher volatility for
more frequently traded stocks. As expected, the median and maximum time between
trades decreases as the level of trading increases. For the number of quotes between
trades we see a different behavior; while the medium number of quotes remains
constant, the maximal number of quotes is the same for FMT and IBM, while it is
lower for Agilent. Finally, Agilent has the highest maximum volume per trade among
these three stocks.

To illustrate the discreteness of the observed price changes we recorded the num-
ber of occurrences of tick changes of size ≤ −3/16,−2/16,−1/16,0,1/16,2/16,≥ 3/16

together with their percentages in Table 2. For each of the tick change size we as-
sociate a category label (necessary for the OSV formulation) also given in Table
2. We see that the observed price changes are quite symmetric around 0 during the
investigated time period and that a zero price change is observed most often.

The considered OSV and SV models allow for covariates on the mean and volatil-
ity level. To get an idea of possible day time effects we report the corresponding ob-
served median values of price, price change, time between trades, number of quotes
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Table 1 Observed characteristics of the FMT, Agilent and IBM stocks between Nov. 1 - 30, 2000

minimum median maximum
price (dollar) 2 7/16 4 5/16 5 5/16

price diff. between ti−1 and ti (dollar) −4/16 0 2/16

FMT time diff. between ti−1 and ti (seconds) 0 192 4001
number of quotes between ti−1 and ti 0 1 24
volume per trade 100 1000 122400
price (dollar) 38 1/16 46 3/16 53 15/16

price diff. between ti−1 and ti (dollar) −11/16 0 8/16

Agilent time diff. between ti−1 and ti (seconds) 0 11 276
number of quotes between ti−1 und ti 0 1 14
volume per trade 100 500 247000
price (dollar) 91 10/16 99 7/16 104 5/16

price diff. between ti−1 and ti (dollar) −13/16 0 14/16

IBM time diff. between ti−1 and ti (seconds) 0 7 150
number of quotes between ti−1 and ti 0 1 24
volume per trade 100 1000 225000

Table 2 Observed price changes together with category label, frequency and relative frequency in
percent for the FMT, Agilent and IBM stocks from Nov. 1-30, 2000

price difference ≤−3/16 −2/16 −1/16 0 1/16 2/16 ≥ 3/16

category 1 2 3 4 5 6 7
FMT frequency 3 25 229 755 227 28 0

rel. freq. (%) 0.2 2.0 18.1 59.6 17.9 2.2 0.0
category 1 2 3 4 5 6 7

Agilent frequency 196 939 4662 16599 4747 863 216
rel. freq. (%) 0.7 3.3 16.5 58.8 16.8 3.1 0.8
category 1 2 3 4 5 6 7

IBM frequency 585 3090 10251 22286 11161 2546 613
rel. freq. (%) 1.2 6.1 20.3 44.1 22.1 5.0 1.2

and volume in Table 3. All stocks show larger (smaller) time intervals between
trades during midday (opening and closing times), however the median price change
is constant over the day time indicating no effect on the mean level of the hidden
process. With regard to the volatility we also recorded the minimal and maximal
price changes during trading hours in Table 4. Here we see less changes for different
trading hours for the FMT and Agilent stocks compared to the IBM stock. This may
indicate a day time effect on the volatility level for IBM stocks, which is detected by
a corresponding OSV model specification.

Comparing Table 3 with Table 4 we might identify covariates on the volatility
level. For example the median volume value exhibits a similar pattern as the pattern
of volatility changes for the FMT and IBM stocks, indicating that volume has some
explanatory power for the volatility of the price changes. For Agilent stocks the
patterns of volume and volatility of the price changes do not match as well. For the
other covariates the identification is less pronounced, so we consider them all as
potentially useful covariates and let the statistical models identify them.
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Table 3 Observed median number of price, price change, time between trades, number of quotes
between trades and volume for different trading hours of the FMT, Agilent and IBM stock between
Nov. 1 -30, 2000

day time 9:30-10 10-11 11-12 12-1 1-2 2-3 3-4
price (dollar) 4 8/16 4 3/16 4 4/16 4 4/16 4 8/16 4 10/16 4 3/16

price diff. (dollar) 0 0 0 0 0 0 0
FMT time diff. (sec.) 89 176 210 256 182.5 208 165

no. of quotes 1 1 1 2 1 1 1
volume 1000 1000 1000 1000 1000 1000 1000
price (dollar) 46 8/16 46 9/16 46 2/16 46 4/16 45 14/16 46 2/16 46 4/16

price diff. (dollar) 0 0 0 0 0 0 0
Agilent time diff. (sec.) 7 10 11 12 12 11 10

no. of quotes 1 1 1 1 1 1 1
volume 600 600 500 500 500 500 500
price (dollar) 99 3/16 99 9/16 99 8/16 99 11/16 99 11/16 99 7/16 99 4/16

price diff. (dollar) 0 0 0 0 0 0 0
IBM time diff. (sec.) 6 6 7 9 9 7 6

no. of quotes 1 1 1 1 1 1 1
volume 1300 1000 800 600 700 800 1000

Table 4 Minimal and maximal price changes for different trading hours of the FMT, Agilent and
IBM stock between Nov. 1-30, 2000

day time 9:30-10 10-11 11-12 12-1 1-2 2-3 3-4
FMT min. price change −2/16 −2/16 −2/16 −4/16 −3/16 −2/16 −2/16

max. price change 2/16 2/16 2/16 2/16 2/16 2/16 2/16

Agilent min. price change −6/16 −5/16 −4/16 −11/16 −5/16 −4/16 −8/16

max. price change 8/16 6/16 5/16 5/16 4/16 7/16 7/16

IBM min. price change −13/16 −8/16 −4/16 −9/16 −4/16 −5/16 −8/16

max. price change 14/16 10/16 5/16 10/16 4/16 6/16 9/16

3.2 OSV Models

As response we choose the category corresponding to the price change at trading
time ti, denoted by yti . To model a possibly present dependence between the current
price change category and the previous one, we use the lagged price change as a
covariate on the mean level and denote it by LAG1 (no other covariates turned out
to be significant for the mean level in our analysis). In addition, we allow for an
intercept parameter on the mean level. For possible covariates on the volatility level
we use volume (V), daytime (D), time elapsed between trades (T) and the number of
quotes between trades (Q). For numerical stability we use centered and standardized
versions of these variables. For reasons of identifiability, no intercept is included in
the term z′tiα .

For all three stocks we ran a variety of models involving V, D, T and Q as well
as quadratic functions of these. In the following we only present models where all
covariates are significant, i.e. their individual 80% credible intervals do not contain
zero. For all models we ran 20000 MCMC iterations of the GM-MGMC algorithm.
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Appropriate burnin values were determined using trace plots. Furthermore, the esti-
mated autocorrelations among the MCMC iterations suggested to take a subsample
of every 20th iteration.

Fremont General Cooperation

The left panel of Table 5 presents, for three different OSV model specifications,
the estimated posterior medians and means of each parameter together with a 80%
credible interval for the subsampled MCMC iterations after burnin. Figure 2 shows
estimated posterior densities for all parameters of the OSV(1,LAG1;V,T ) model. We
see a symmetric behavior of the posteriors for the cutpoint parameters and regression
parameters and slightly skewed distributions for σ and φ . The posterior density
estimates for the remaining two OSV specifications show a similar behavior and are
therefore omitted.

Interpreting the results for the OSV specifications, we see from the negative sign
of LAG1, that an higher (lower) previous price change category decreases the proba-
bility of an higher (lower) current price change category, a fact which can be observed
directly from the data, where often a positive price change is followed by a negative
one and vice versa. A higher volume, a larger time interval between trades and a
larger number of quotes increase the log volatility, thus the probability of observing
an extreme positive or negative price change is increased.

It remains to choose among the three OSV specifications. Since the models OSV(1,
LAG1;V,T ), OSV(1,LAG1;T,Q) are nested within OSV(1,LAG1;V,T,Q), the sig-
nificance of the parameter estimates established by the credible intervals may lead
to a slight preference for the OSV (1,LAG1;V,T,Q) model specification. This is also
confirmed, when we calculate the fitted price change categories (see Section 2.3)
and compare them to the observed price categories. Moreover, we determine fit-
ted interval bounds for the price change category and check how many times they
are covering the observed price change category. The percentage of correctly fit-
ted categories is 59.67%, 59.43% and 59.75% for the models OSV (1,LAG1;V,T ),
OSV(1,LAG1;T,Q) and OSV (1,LAG1;V,T,Q), respectively. The corresponding
values for the percentage of correctly covered categories are 96.45%, 96.37% and
96.53%, respectively. This may lead again to a slight preference for the large model.

Agilent Technologies

For the Agilent stock we found only a single OSV specification with significant
parameter estimates, whose summary statistics are given in the left panel of Table
6. It is a different specification as for FMT stocks. The effect of the previous price
change category for the Agilent stocks is similar to that one for the FMT stocks,
and the autocorrelation of the hidden log volatilities is quite the same. A notable
difference is the effect of the number of quotes between trades on the price change
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Fig. 2 Estimated posterior density for OSV (1,LAG1;V,T ) parameters for FMT stocks
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Table 5 Estimated posterior means, medians and quantiles of three OSV (left panel) and three SV
(right panel) model specifications with significant parameters fitted for FMT stocks based on the
subsampled MCMC iterations after burnin

parameter 10% 90% median mean 10% 90% median mean

OSV (1,LAG1;V,T ) SV (1;V,T )
φ 0.64 0.89 0.80 0.78 0.75 0.79 0.77 0.77
σ 0.32 0.70 0.47 0.49 9.17 11.86 9.90 10.21
c2 1.25 1.72 1.47 1.48
c3 2.50 2.98 2.72 2.73
c4 3.73 4.29 3.99 4.00
c5 4.88 5.68 5.24 5.26
1 4.11 4.86 4.46 4.47 1.1 ·10−6 7.1 ·10−6 4.1 ·10−6 4.1 ·10−6

LAG1 −0.33 −0.23 −0.28 −0.28
V 1.86 7.83 4.66 4.79 14.14 24.96 19.48 19.51
T 3.45 9.46 6.32 6.39 25.09 36.75 31.09 31.04

OSV (1,LAG1;V,Q) SV (1;V,Q)
φ 0.44 0.85 0.74 0.69 0.75 0.79 0.77 0.77
σ 0.39 0.93 0.58 0.63 9.18 11.82 9.94 10.19
c2 1.47 2.00 1.72 1.73
c3 2.78 3.42 3.07 3.08
c4 4.01 4.73 4.34 4.36
c5 5.21 6.20 5.65 5.68
1 4.45 5.38 4.87 4.89 1.1 ·10−6 7.1 ·10−6 4.1 ·10−6 4.1 ·10−6

LAG1 −0.34 −0.24 −0.30 −0.29
V 1.49 7.57 4.76 4.64 13.67 25.19 19.28 19.44
Q 1.72 6.84 4.24 4.27 15.44 26.29 21.36 21.10

OSV (1,LAG1;V,T,Q) SV (1;V,T,Q)
φ 0.72 0.91 0.83 0.82 0.76 0.79 0.77 0.77
σ 0.26 0.58 0.40 0.42 9.12 11.71 9.88 10.11
c2 1.01 1.58 1.24 1.27
c3 2.14 2.84 2.42 2.46
c4 3.38 4.13 3.71 3.74
c5 4.52 5.45 4.94 4.96
1 3.77 4.65 4.18 4.19 1.1 ·10−6 7.1 ·10−6 4.1 ·10−6 4.1 ·10−6

LAG1 −0.33 −0.22 −0.27 −0.27
V 1.87 7.54 4.58 4.59 13.82 24.53 19.71 19.35
T 1.55 6.42 4.02 4.00 15.06 26.38 20.73 20.74
Q 3.63 8.93 6.26 6.30 25.13 36.67 31.00 30.98

categories. Here the parameter estimate has a negative sign, thus the probability of
extreme price change categories is decreased when the number of quotes is increased.
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Table 6 Estimated posterior means, medians and quantiles of the OSV (1,LAG1;T,Q) (left panel)
and SV (1;T ) fitted for Agilent stocks based on subsampled MCMC iterations after burnin

parameter 10% 90% median mean 10% 90% median mean

OSV (1,LAG1;T,Q) SV (1;T )
φ 0.80 0.84 0.82 0.82 0.74 0.80 0.77 0.77
σ 0.46 0.52 0.49 0.49 9.12 10.37 9.67 9.72
c2 1.28 1.33 1.30 1.30
c3 2.24 2.31 2.28 2.28
c4 3.42 3.52 3.47 3.47
c5 4.39 4.52 4.46 4.46
c6 5.36 5.56 5.47 5.47
1 3.68 3.81 3.74 3.74 1.1 ·10−6 7.1 ·10−6 4.1 ·10−6 4.1 ·10−6

LAG1 −0.23 −0.21 −0.22 −0.22
T 22.12 27.43 24.78 24.80 62.57 181.79 121.86 121.89
Q −10.11 −5.25 −7.64 −7.64

International Business Machines Cooperation

For the IBM stocks we have two OSV model specifications where all parameter
estimates are significant (see the left panel of Table 7). The effect of the number
of quotes is similar to that one of the Agilent stock. The full specification also
includes a significantly negative daytime parameter, indicating a lower probability
of extreme price change categories for later in the day than in the morning. This
corresponds to the fact, that often the highest volatility during a day can be observed
directly after opening of the exchange. The percentage of correctly fitted response
categories is 41.54% for the OSV (1,LAG1;V,Q) model compared to 41.48% for
the OSV (1,LAG1;V,T,Q,D) model. The percentage of correctly covered response
categories is 92.94% for the for the OSV(1,LAG1;V,Q) model compared to 92.93%
for the OSV(1,LAG1;V,T,Q,D) model. Hence, we prefer the simpler one of the two
OSV model specifications.

In summary, we see that different OSV models are specified for the different
stocks. Whereas there is a negative parameter estimate for the number of quotes
between two subsequent trades of the Agilent and the IBM stock, the opposite is
true for the less frequently traded FMT stock. Therefore the probability of extreme
price changes seems to decrease for more frequently traded stocks when the number
of quotes between trades increases, whereas this probability increases for less fre-
quently traded stocks. In addition, the trading frequency influences the magnitude
of autocorrelation present in the log volatilities. The highest autocorrelation was ob-
served for the IBM stock. Daytime effects on the hidden volatility are not significant
in our three preferred models. The effect of the time elapsed between trades on the
log volatility is always positive. This indicates that larger time differences between
two subsequent trades usually lead to a higher volatility. The positive regression co-
efficient for volume induces a larger volatility for larger volumes, which results in
higher probabilities for the occurrence of extreme price change categories.
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Table 7 Estimated posterior means, medians and quantiles of two OSV (left panel) and one SV (right
panel) model specifications with significant parameters fitted for IBM stocks based on recorded
MCMC iterations

parameter 10% 90% median mean 10% 90% median mean

OSV (1,LAG1;V,Q)
φ 0.93 0.94 0.94 0.94
σ 0.20 0.23 0.21 0.21
c2 0.93 0.95 0.94 0.94
c3 1.65 1.69 1.67 1.67
c4 2.52 2.57 2.54 2.54
c5 3.33 3.40 3.37 3.37
c6 4.10 4.21 4.16 4.16
1 3.04 3.12 3.08 3.08
LAG1 −0.25 −0.24 −0.24 −0.24
V 5.54 10.25 7.98 7.98
Q −9.17 −5.07 −7.12 −7.12

OSV (1,LAG1;V,T,Q,D) SV (1;V,T )
φ 0.92 0.94 0.93 0.93 0.67 0.69 0.68 0.68
σ 0.21 0.24 0.22 0.23 0.07 0.14 0.09 0.10
c2 0.90 0.93 0.92 0.91
c3 1.66 1.70 1.68 1.68
c4 2.51 2.55 2.53 2.53
c5 3.34 3.41 3.38 3.38
c6 4.14 4.26 4.20 4.20
1 3.04 3.12 3.08 3.08 1.9 ·10−5 7.5 ·10−4 3.7 ·10−4 3.7 ·10−4

LAG1 −0.25 −0.24 −0.24 −0.24
V 5.22 9.76 7.43 7.46 0.54 9.60 4.91 4.99
T 33.36 38.85 36.08 36.02 23.15 37.59 29.28 29.99
Q −8.37 −3.90 −6.06 −6.07
D −35.08 −22.16 −28.12 −28.26

3.3 SV Models

For the SV setup we use the observed price changes as response and ignore their dis-
crete nature. For each of the three stocks we investigated different SV specifications.
A first difference to the OSV specifications are that none of the covariates LAG1,
V, T, Q, and D for the mean level are significant. Therefore all SV models include
only an intercept parameter in the mean level, which is significant but very close to
zero. For the log volatilities we find significant covariates, which we present in the
following. Again we ran 20000 MCMC iterations and determined appropriate burnin
values and subsampling rates.
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Fremont General Corporation

Three significant SV specifications were found for the FMT stocks and the results
are summarized in the right panel of Table 5. The highest coverage percentage is
achieved using the SV(1;V,T,Q), which we select as best model among the SV
models for the FMT stocks.

Agilent Technologies

For the Agilent stocks only a single SV specification produces significant parameter
estimates and the results are presented in the right panel of Table 6. From this we see
that only the time elapsed between trades has a significant effect on the price changes.
A larger time interval between trades produces a larger volatility, i.e. extreme price
changes become more likely.

International Business Machines Cooperation

For the frequently traded IBM stocks only the SV(1;V,T ) model produces significant
posterior parameter estimates. The results presented in right panel of Table 7 show
that both volume and time elapsed between trades increase the volatility, thus making
more extreme price changes more likely.

3.4 Comparison Between OSV and SV Models

We now compare all selected OSV and SV models by using the coverage percentages.
These are reported in Table 8. We see that there is a clear preference for the OSV
specifications for Agilent and IBM stocks, while for the FMT stock a slight preference
for the SV specification is visible. A graphical illustration of this is given in Figure
3 where the interval estimates are plotted for the last 100 observations together with
the observed values.

As a final comparison we estimate posterior densities of the volatilities for each
price change category using the competing OSV and SV specifications for all three
stocks. The corresponding plots are shown in Figure 4. The OSV specifications
nicely identify different volatility patterns. In particular, extreme price categories
correspond to larger volatilities. The competing SV specification for the IBM stocks
shows a similar pattern. However, the SV specifications for the FMT and the Agilent
stocks lead to quite different density estimates.



Ordinal- and Continuous-Response SV Models for Price Changes 317

Fig. 3 Fitted categories and fitted price differences of OSV and SV model of the last 100 observa-
tions together with interval estimates for FMT (top row), Agilent (middle row) and IBM (bottom
row) stocks, respectively
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Fig. 4 Estimated posterior densities of the (hidden) volatilities for each category of OSV and SV
model for FMT (top row), Agilent (middle row) and IBM (bottom row) stocks, respectively
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Table 8 Percentage of correctly covered observations of different OSV and SV specifications for
FMT, Agilent and IBM stocks

OSV specifications SV specifications

FMT OSV (1,LAG1;V,T,Q) 1223/1267 SV (1,LAG1;V,T,Q) 1267/1267
= 96.53% = 100.00%

Agilent OSV (1,LAG1;T,Q) 26738/28222 SV (1;T ) 20980/28222
= 94.74% = 74.34%

IBM OSV (1,LAG1;V,Q) 46965/50532 SV (1;V,T ) 42811/50532
= 92.94% = 84.72%

4 Summary and Discussion

In this paper we presented the results of a Bayesian analysis of two model class speci-
fications for financial price changes. Estimation is facilitated using MCMC methods.
The OSV specification explicitly accounts for the discrete values of the price changes,
while the SV specification ignores it. The OSV model captures the influence of the
previous price change, whereas for the SV models this influence is not significant. In
addition we see that volume, time between trades and the number of quotes between
trades are important factors determining the volatility. Useful model specifications
depend on the trading activity of the stock. In particular, a higher number of quotes
between trades increases the volatility for less frequently traded stocks, whereas the
opposite pattern is observed for stocks which are more frequently traded. As expected
a larger duration between trades increases the volatility. A quadratic day time effect
was not significant indicating that there was no strong volatility smile present in the
data.

When comparing the OSV and SV models we see that the OSV models perform
better (at least for the more frequently traded Agilent and IBM stocks) than the SV
models with regard to the coverage proportion of interval estimates. However, more
precise model comparison criteria for comparing non nested models with numerical
intractable likelihoods in a Bayesian setup are needed and subject to current research.
Finally, the OSV and SV model specifications lead to different density estimates for
the volatility within the price change classes. However, the density estimates coming
from the OSV specifications are quite convincing, since here extreme categories
always come along with higher values of the volatility estimates.

Overall we conclude that the OSV models which account for the discreteness of
the price changes perform quite well, when applied to data sets as considered in this
analysis. Although it is computationally more involved to fit the OSV model to the
data, the OSV model is tailored to the structure of ordinal-response data and hence
most suitable for price changes.
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Copula Choice with Factor Credit Portfolio
Models

Alfred Hamerle and Kilian Plank

Abstract Over the last couple of years we could observe a strong growth of copula
based credit portfolio models. So far the major interest has revolved the ability of
certain copula families to map specific phenomena such as default clustering or the
evolution of prices (e.g., credit derivatives prices). Still few questions have been
posed regarding copula selection. This is surprising as the problem of estimating
the dependence structure is even unresolved with simple traditional models. For
statistical tests of credit portfolio models in general the literature found density-
based tests like that of Berkowitz (2001) the most reasonable option. In this text, we
examine its power characteristics concerning factor portfolio models in more detail.
Our results suggest that both the copula family as well as the level of dependence is
generally very difficult to identify.

1 Introduction

In recent years a large number of credit portfolio models have been developed using
copulas implicitly or explicitly to model dependence. The major share of publications
revolves the question which copula family represents a better explanation of specific
empirical phenomena (e.g. Frey & McNeil 2003, Aas 2004). For example, as for
credit derivatives pricing a dominant issue was and still is to find a copula which
better reproduces market risk premia for default clustering (e.g. Moosbrucker 2006).
However, in most of these empirical applications a copula family is not selected by
statistical methods but rather “ad hoc”, i.e., based on qualitative criteria. Indeed, it
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appears that selection of a copula is not an easy task, especially due to the fact that
the dependence structure is commonly latent. Often many copula families appear to
be equally suitable. In a credit portfolio context the problem is even worse if only
default rates are available instead of individual default data. Furthermore, credit data
sets intrinsically suffer from the rare event issue or simply of variance. Default events
as well as losses are more seldom and recorded at lower frequency as, for example,
asset values. Thus, the problem of credit portfolio model selection and validation is
pending and appears to become even more relevant given the enormous modeling
freedom enabled by the copula concept as well as the large set of already available
models.

Hamerle & Roesch (2005) and Moosbrucker (2006) inquire the consequences
of misspecification of the dependence structure on the estimation and forecasting
results but they do not treat the selection of the dependence structure itself. This is
no surprise as the whole topic is still in its infancy. Many of the theoretical articles
on copula selection and goodness of fit (GoF) tests appeared only recently (e.g. Chen
et al. 2004, Fermanian 2005, Genest et al. 2006, Dobric & Schmidt 2007). These are
tests on the copula directly. However, our interest in copula selection is indirect as
the copula forms merely one part of the overall portfolio model.

For this specific problem only two tests have been suggested so far. First, there is
the class of quantile tests inheriting from the market risk literature (Kupiec 1995).
These tests compare observed and theoretical proportions of quantile exceedances.
Although more information may be extracted via subsampling, as suggested by Lopez
& Saidenberg (2000), such binary tests usually require a large number of observa-
tions.

The second test is a density test due to Berkowitz (2001). Originally suggested for
market risk models, it was soon applied to credit portfolio model validation (Frerichs
& Loeffler 2003). This test is clearly superior to quantile tests since it relies on the
whole distribution instead of specific distribution quantiles. In any case, none of the
extant articles investigates the role of the dependence structure for model selection.

In this article, we compare the power of the Berkowitz test to identify different
copulas1, i.e., we analyze rejection frequencies for a set of copulas using one of them
for the data generating process. Within this context the similarity of factor models
based on different copulas is examined. In order to apply the test to count data we
make use of a specific probability transformation suggested by Hamerle & Plank
(2009).

The article is organized as follows. In the next section we shortly summarize
five portfolio models admitting a random factor representation of the copula. Sub-
sequently, the Berkowitz test is described. Within this context we shortly outline the
modified probability transformation suggested by Hamerle & Plank (2009). Finally,
in Section 4, the results of our power tests are presented and discussed.

1 Note that by “copula” we denote copula family plus parameterization.
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2 Factor Models

In this article, we focus on credit portfolio models establishing the dependence struc-
ture via factor conditional default indicators. Factor conditional models are very pop-
ular in credit risk management since the additional structure admits straightforward
interpretation and tractability. In the following subsections we discuss three model
types. We start with the most popular one, the Gaussian single risk factor model.

2.1 Gaussian Single Risk Factor Model

Credit portfolio models typically comprise two components: (1) a set of obligors
having certain probability of default2 and (2) a dependence structure establishing
default dependencies among obligors. In the Gaussian single risk factor model (also
called “Gaussian copula model”) a portfolio of n obligors is considered. Default of
obligor i ∈ I, I = {1,2, . . . ,n}, depends on its “normalized asset return” Vi. Vi is a
latent variable comprising two terms

Vi =
√
ρY +

√
1−ρεi (1)

a common (systematic) factor Y and an idiosyncratic factor εi. Both factors are
standard normal distributed, i.e., Y,εi ∼N (0,1) and independent. As a result, the
correlation between the asset returns of obligors i and j (i �= j) is given by ρ .

Now default of obligor i is modeled as the event that asset return Vi falls short of
a threshold ci. Let Di denote a default indicator, then

Di = 1⇔Vi ≤ ci (2)

Based on this, the unconditional probability of default (PD) of borrower i is λi =
P(Di = 1) =Φ (ci) where Φ denotes the standard Gaussian cumulative distribution
function. Conversely, given the unconditional PD λi (which is usually implied from
a public rating) the threshold is given by ci =Φ−1(λi).

2.2 t-Copula Factor Model

The Gaussian copula from the last subsection has no tail dependence. From a mod-
eling point of view this implies that joint tail events have relatively little probability.
An alternative is the t-copula which has tail dependence. The above factor model
can be easily altered in order to have a t-copula. This is simply accomplished by
multiplication of Vi by ν/W , i.e.,

2 A related component is loss given default but we neglect this aspect here.
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Vi =
√
ρ
ν
W

Y +
√

1−ρ ν
W
εi (3)

where W is an independent Chi-Squared distributed random variable with ν degrees
of freedom.

2.3 Archimedean Copula Factor Models

A general method for the construction of Archimedean copulas (called “frailty con-
struction”) is due to Marshall & Olkin (1988). The procedure may be described as
follows. Let P(Di = 1)= λi, i = 1, . . . ,n, be the unconditionalPD of i andY a positive
latent random factor. Then, let the conditional PD be defined as follows

λi(y) = P(Di = 1 | Y = y) = λ y
i (4)

As defaults are assumed to be independent conditional on Y , the joint conditional
default probability is simply the product of the marginal conditional PDs

P(D1 = 1, · · · ,Dn = 1 | Y = y) =
n

∏
i=1
λ y

i (5)

The unconditional joint probability arises by integration over the factor

P(D1 = 1, · · · ,Dn = 1) =
∫ +∞

−∞

(
n

∏
i=1
λ y

i

)
dFY (6)

This in turn may be expressed as Laplace transform (LT) ϕ−1
Y of the factor3

P(D1 = 1, · · · ,Dn = 1) =
∫ +∞

−∞

(
n

∏
i=1
λ y

i

)
dFY

=
∫ +∞

−∞
exp

(
ln

(
n

∏
i=1
λ y

i

))
dFY

=
∫ +∞

−∞
exp

(
y

n

∑
i=1

ln(λi)

)
dFY

= ϕ−1
Y

(
−

n

∑
i=1

ln(λi)

)
(7)

Now, we can apply the same LT representation to each margin. To that end, we
write the unconditional PD of obligor i as expectation of the conditional PD

3 We denote the LT with superscript −1 just in order to be in line with the usual notation in the
literature.
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Table 1 Some Factor Distributions with Proper Generators and Inverses.

Copula LT Inverse Factor Dist.

Clayton ϕ(u) =
(
u−δ −1

)
ϕ−1(s) = (1+ s)−1/δ Y ∼ Γ ( 1

δ )
Gumbel ϕ(u) = (−ln(u))δ ϕ−1(s) = exp

(−s1/δ ) Y ∼ α stable with α = 1/δ
Frank ϕ(u) =−ln

(
exp(−δu)−1
exp(−δ )−1

)
ϕ−1(s) =− 1

δ ln
(
1− e−s

(
1− e−δ

))
Y ∼ log series on N

with α = 1− e−δ

P(Di = 1) =
∫ +∞

−∞
λ y

i dFY (8)

Again, this may be expressed as Laplace transform

P(Di = 1) =
∫ +∞

−∞
exp

(
ln
(
λ y

i

))
dFY

= ϕ−1
Y (−ln(λi))

(9)

The latter expression lends itself for substitution in (7) as a proper inverse of a LT
always exists

λi = ϕ−1
Y (−ln(λi))⇔

ϕY (λi) =−ln(λi)
(10)

After substitution in (7) we obtain

P(D1 = 1, · · · ,Dn = 1) = ϕ−1
Y

(
n

∑
i=1
ϕY (λi)

)
(11)

and the copula is

C(u1, . . . ,un) = ϕ−1
Y

(
n

∑
i=1
ϕY (ui)

)
(12)

Note that λi(y)→ 0 for larger values of y as in the previous factor models.
For the Clayton, Gumbel, and Frank copula family the factor distribution and

Laplace transform (LT) are given in Table 1. For example, for the Clayton copula

Y ∼Γ (1/δ ) and the resulting conditional default probability is λi(y) = e−y
(
λ−δi −1

)
.

3 The Berkowitz Test

In this section we shortly explain the density test of Berkowitz (2001). Later on we
have a closer look at probability transforms of discrete distributions.
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3.1 The Test Explained

Berkowitz (2001) originally suggested a test to evaluate density forecasts. The basic
principle is to generate pseudo observations by first transforming observed losses
(lt)T

t=1 via their probability integral (PIT) FL(lt)4. These pseudo observations are
transformed in a second step to standard Gaussian random variables (r.v.), so that
under H0

zt =Φ−1 (FL(lt))∼ N(0,1) (13)

Let z = (z1, . . . ,zT ) denote the vector of twice transformed default counts. The
two moments of the Gaussian distribution can be tested by means of a likelihood
ratio (LR) test the statistic of which is given by

LR = 2
[
�
(
μ = μ̂ ,σ2 = σ̂2)− �

(
μ = 0,σ2 = 1

)]∼ χ2(2) (14)

i.e., chi-squared distributed with two degrees of freedom. The log-likelihood function
is given by

�(μ ,σ2) = ln

(
T

∏
t=1
φ
(

zt − μ
σ

))

= ln

(
T

∏
t=1

1√
2πσ2

e−
1
2

(zt−μ)2

σ2

) (15)

The ML estimates of μ and σ2 are given by

μ̂ML =
1
T

T

∑
t=1

zt and σ̂2
ML =

1
T

T

∑
t=1

(zt − μ̂ML)
2 (16)

Additional tests for normality are possible which allow for the third and fourth
moments (see Berkowitz (2001)). Frerichs & Loeffler (2003) tested the approach of
Doornik & Hansen (1994) but found no clear improvement as compared with LR.

3.2 Discrete PIT

In this section we shortly dwell on a specific problem which may arise when using the
Berkowitz test with discrete data. In that case probability transforms lead to discrete
mass concentrations which are obviously not uniform or Gaussian, respectively. The
reason for this phenomenon are ties. For instance, let Ũ denote the r.v. describing
the pseudo observations ũt = FL(lt ). Then, there is usually a pronounced mass peak

4 FL(lt) denotes the cdf of L.
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Fig. 1 Simulated LR with continuous PIT modification, with discrete PIT and asymptotic χ2(2).
Gaussian 1-factor model with N = 1000, T = 5, τ = 0.3, and λ = 0.02.

at FL(0), i.e., P
(
Ũ = FL(0)

)
> 0 but P

(
Ũ < FL(0)

)
= 0. Ties are particularly likely

when the simulated portfolio is small or when default correlation is high. Without
appropriate modifications a PIT does not result in standard uniform samples and
χ2(2) is a poor approximation for the distribution of the LR statistic. Although
this issue has not been mentioned or inquired in the previous literature, it may be
substantial, especially when there are singularities of high mass, e.g., large shares of
zero defaults.

Formally, let ũt = FL(lt) and ũt = ũ(k), i.e., ũt is identical to the kth element in the
ordered sequence of possible realisations ũ(1), . . . , ũ(K) of Ũ = FL(L). Then, Hamerle
& Plank (2009) suggest to replace the pseudo observations FL(lt) by random variables
drawn from

U
(

ũ(k−1), ũ(k)
)

(17)

where ũ(k−1) = 0 for k = 1.
As an example, consider Figure 1 which compares theoretical χ2(2), the simulated

LR distribution based on discrete PIT and the simulated LR distribution based on the
modified PIT (17). It is obvious that while the continuous version of the PIT is close
to the limiting distribution a simple discrete PIT is usually not. Commonly, as T or n
decreases, the discrete PIT deviates more significantly from the limiting distribution.
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Table 2 Copula families and their index.

k Copula Family

1 Gaussian
2 t
3 Clayton
4 Frank
5 Gumbel

4 Simulation Study and Analyses

The major question of this article is whether the Berkowitz test is able to identify the
true model with reasonable power for realistic credit default data constellations. If
the Berkowitz procedure fails, i.e., if the power is unsatisfactory, the ensuing question
is necessarily whether this implies a forecasting problem.

We expect that identification becomes easier when default dependence increases
as well as when sample size increases. This is a common result in the literature
(e.g. Nikoloulopoulos & Karlis 2008). Furthermore, previous research suggests that
copula constellations leading to similar loss distributions do exist. For example,
Hamerle & Roesch (2005) found that a Gaussian copula with correlation ρ1 implies
a similar loss distribution as a t copula with appropriate ρ2 < ρ1. We want to extend
these results to different copula factor models in this section.

4.1 Default Count Distributions

To get an impression of the distributions we are working with, Figure 2 depicts
the evolution of default count distributions of different copula families for varying
levels of Kendall’s Tau τ . The latter is our measure of dependence throughout this
article. Generally,−1≤ τ ≤+1 and τ = +1 implies perfect dependence in terms of
ranks. The default count distributions in Figure 2 are based on N = 1000 obligors, a
sample (i.e., time-series) length of T = 5, and a homogeneous unconditional default
probability of λ = 0.02.

As expected, we observe that all but one distributions “converge” as τ→ 0 since
the underlying copula converges to the product copula. The limiting default dis-
tribution is binomial. An exception is the t-copula which does not converge since
uncorrelated t-distributed r.v. are not independent (Lemma 3.5 McNeil et al. 2005).
Furthermore, as τ increases, we obtain typical extreme shapes with large mass about
zero and thick tail. An extraordinary shape can be observed with Frank’s family with
a second peak shifting to the right and flattening as τ increases.
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Fig. 2 Default count distributions of a set of copula-based factor models for different levels of
Kendall’s Tau.
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4.2 Power Tests

In this section, we investigate the rejection frequencies of each copula for joint
hypotheses on family and level of dependence. Our procedure is as follows.

Let the copula families be indexed by k ∈ {1,2,3,4,5} (Table 2).
First, we calculate for each copula C(k)

τ the unconditional default distribution
as well as the 1−α quantile of the corresponding LR statistic. We choose three
levels of association, τ ∈ {0.02,0.1,0.22}. As there are five copula families these
are 3× 5 = 15 simulation points altogether. Note that a copula is identified as a
pair (τ,k). Within the context of hypothesis tests we denote by τ̃ and k̃ true levels
and by τ0 and k0 hypothesized levels. Now, given initial pairs (τ0,k0) and (τ̃, k̃) the
simulation proceeds as follows

1. Draw a default count sample of length T from the true model (τ̃, k̃).
2. Perform a Berkowitz test for H0 : (τ,k) = (τ0,k0) on the sample generated in

step (1).
3. Go to step (1) m times and calculate the relative frequency of rejection.
4. Choose another hypothesis (τ0,k0) and go to step (1) until all hypotheses have

been tested.
5. Choose another true pair (τ̃, k̃) and go to step (1) until all true pairs have been

checked.

We expect the true copula family k̃ to lead to the lowest curve about the true level
τ̃ and to reach the test size there. Formally, this is the point where the hypothesized
level of Kendall’s Tau, τ0, is equal to the true level, i.e., τ0 = τ̃ and k0 = k̃.

Figures 3 and 4 show rejection frequencies for T = 5 and T = 25, respectively.
Each diagram relates to one true level of τ̃ . Furthermore, each row relates to a
different true copula family. Note that we do not show rejection frequencies for a
given null hypothesis and different true values but for a given true value and different
hypotheses.

Let us start with some general observations. First, as specified, the curve of the
true family attains its minimum at the true level of Tau. Second, all curves become
less peaked as τ increases. This is to be expected because (see Figure 2) our focal
unconditional distributions resemble each other more and more as τ increases5.
Third, all curves become more peaked as T increases. This is also an expected result
as longer samples convey more distributional information. As a result, the power of
the Berkowitz test grows. Fourth, the t-copula model shows consistently flat power
while others, like the Clayton model, is commonly much more peaked. Finally, in
many cases, i.e., for many copulas, there are alternative copulas the power of which
is very low or even equal to the size of the test. This means that there are often
alternative models which cannot be distinguished by the Berkowitz test. Note that
this finding holds for both T = 5 and T = 25.

5 Note that above we stated that the power generally increases as τ increases. This statement,
however, only relates to multivariate tests of the copula directly. In our case, however, we test a sum
of dependent random variables.
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(b) τ̃ = 0.22
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(c) τ̃ = 0.02
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Fig. 3 LR rejection frequencies for T = 5. Abscissa: τ0, ordinate: rejection frequency.
True family: (a)-(b): Gaussian, (c)-(d): T, (e)-(f): Clayton, (g)-(h): Frank, (i)-(j): Gumbel.
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Fig. 3 LR rejection frequencies for T = 5. Abscissa: τ0, ordinate: rejection frequency.
True family: (a)-(b): Gaussian, (c)-(d): T, (e)-(f): Clayton, (g)-(h): Frank, (i)-(j): Gumbel.

We study some of these aspects in detail now for the case that a Gaussian model is
true. Consider Figure 3(a)-(c). As τ → 0 the rejection curves become more peaked.
Conversely, as τ rises it becomes increasingly difficult to reject hypotheses in the
neighbourhood of τ̃ . For very low levels of τ (e.g. τ̃ = 0.02) Gaussian, Gumbel, as
well as Clayton copula are hardly distinguishable.

The t-copula models does not match this pattern as it does not tend to the product
copula as τ → 0. We take a very low level of degrees of freedom (ν = 3) implying
a consistently high share of extreme events. The t-copula model rejection frequency
decreases as association increases. For low levels of association the t-model may be
rejected with very high probability while for higher levels of association (i.e., high
τ̃) it is difficult to reject a t-model with low τ0.

By contrast the Clayton copula based model attains low levels of power in all
cases of τ̃ . Curiously enough, the power to reject the Clayton drops down to α for
certain τ0 < τ̃ , an observation holding for any level of τ̃. For example, consider Figure
3c. In this case, a model with Clayton copula and τ ≈ 0.08 can only be rejected in
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(f) τ̃ = 0.22

Fig. 4 LR rejection frequencies for T = 25. Abscissa: τ0, ordinate: rejection frequency.
True family: (a)-(b): Gaussian, (c)-(d): T, (e)-(f): Clayton, (g)-(h): Frank, (i)-(j): Gumbel.
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Fig. 4 LR rejection frequencies for T = 25. Abscissa: τ0, ordinate: rejection frequency.
True family: (a)-(b): Gaussian, (c)-(d): T, (e)-(f): Clayton, (g)-(h): Frank, (i)-(j): Gumbel.

α × 100 % cases. In other words, the Berkowitz test does not allow to distinguish
between H0 : Gaussian copula,τ0 = 0.22 and H0 : Clayton copula,τ0 = 0.08. This
observation carries over to T = 25.

An explanation for that is easily found inspecting the default count distributions.
Compare for example in Figure 2 the graphs for τ = 0.22 and τ = 0.08 of the
Gaussian and Clayton model, respectively. The graphs of the Clayton copula based
loss distribution for τ = 0.08 is very similar to that of the Gaussian copula based loss
distribution for τ = 0.22. The same holds true for other constellations. As a result,
we may state that misspecification in these cases appears to be a minor problem, at
least in terms of unconditional prediction.

Most of the above results for the Gaussian copula as the true dependence model
carry over to other families. The major observations from the graphs are as follows.
First, there is consistently little power to identify the correct t copula. Irrespective of
what level of τ is true, various alternative hypotheses have power as high as α . At
low levels of τ̃ Gaussian and Gumbel copulas with high τ0 cannot be distinguished
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statistically. The Clayton family provides indistinguishable alternatives for all τ̃ .
Second, Clayton DGPs may be explained by Gaussian models for low τ̃ and by t
models for higher τ̃ . Third, Frank’s family is particularly difficult to identify in terms
of family membership. Several families attain the test size for higher levels of τ̃ . On
the other hand, Frank’s family has comparatively good power to find the right copula
within the family. Similar results hold for the Gumbel family.

5 Conclusion

In this article we extended preliminary research on copula selection based on the
Berkowitz test. We found that unequivocal identification power only exists in special
cases. Default data commonly admit different fitting copulas. Clearly, when similari-
ties of default count distributions are strong the Berkowitz test is unable to detect any
difference, too. To that end, we showed the evolution of default count distributions
and explained our test results with the degree of mutual agreement. Gaussian, Clay-
ton, and Gumbel proved very flexible. These families have low rejection frequencies
at some biased level of τ almost irrespective of what copula is true. This confirms
and extends results of Hamerle & Roesch (2005) for the relation of Gaussian and t
copula.
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Penalized Estimation for Integer Autoregressive
Models

Konstantinos Fokianos

Abstract The integer autoregressive model of order p can be employed for the analy-
sis of discrete–valued time series data. It can be shown, under some conditions, that
its correlation structure is identical to that of the usual autoregressive process. The
model is usually fitted by the method of least squares. However, consider an alter-
native estimation scheme, which is based on minimizing the least squares criterion
subject to some constraints on the parameters of interest. The ridge type of constraints
are used in this article and it is shown that under some reasonable conditions on the
penalty parameter, the resulting estimates have less mean square error than that of the
ordinary least squares. A real data set and some limited simulations support further
the results.

1 Introduction

Ludwig Fahrmeir, whom this volume honors, has made seminal contributions to the
statistical analysis of integer valued time series by promoting the idea of generalized
linear models for inference. In particular, I would like to mention the articles Fahrmeir
& Kaufmann (1985) and Fahrmeir & Kaufmann (1987) and the text Fahrmeir & Tutz
(2001) which deal respectively with the following;

• the development of maximum likelihood estimation for the regression parameters
of a generalized linear model with independent data for both canonical and non-
canonical link functions,

• the extension of these results to categorical time series,
• the presentation of the above in a coherent piece of work.
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The results of these references have influenced considerably my research on time
series, see e.g. Kedem & Fokianos (2002). On a more personal level, I wish to express
my gratitude to Ludwig Fahrmeir for inviting me to Munich on a number of occasions
and for giving me the opportunity to discuss with him several issues of mutual interest
and to gain important insight.

Integer valued time series occur in diverse applications and therefore statistical
methodology should be developed to take into account the discrete nature of the
data. In this work, attention is focused on the so called integer autoregressive models
of order p–denoted by INAR(p). These processes provide a class of models whose
second order structure is identical to that of the standard AR(p) models and estimation
can be carried out by standard least squares techniques.

The question of interest in this manuscript is whether the least squares estimators
can become more efficient and under what conditions. It is shown that increase
in efficiency can be achieved by introducing the so–called penalized least squares
criterion (7) for estimation. In particular, it is shown that there are two cases that
need to be considered. The first is when the true parameter vector that generates
the process assumes "large" values componentwise; then minimization of (7) does
not offer any improvement over the standard least squares estimators. On the other
hand, when the true parameter vector values are assumed to be "small" , then it is
possible to gain in efficiency. Here, the term efficiency, refers to mean square error
improvement, since it is well known that penalized estimators are usually biased.
The same phenomenon occurs in linear models theory, namely the method of ridge
regression. It is well known that the mean square error of ridge estimators is less
than the mean square error of the ordinary least squares estimators for some values
of the ridge parameter. It is conjectured that the results carry over to the dependent
data case under some reasonable assumptions. Some research advocating the use of
shrinkage estimators in time series can be found in the recent article by Taniguchi &
Hirukawa (2005).

When using penalized criteria for inference, there is an extra complexity intro-
duced, that is the choice of the penalty parameter–see (7). It is a common practice to
use cross–validation methods but their performance is questionable, especially in the
time series context. Therefore, it is proposed to estimate the regularization parameter
by using the AIC. Real data show-see Section 4–that a unique minimizer exists but
the method requires more research.

The paper starts with Section 2 where INAR(p) processes are briefly reviewed and
the least squares approach to the problem of estimation is discussed. The asymptotic
distribution of least squares estimators is also stated. Section 3 introduces the penal-
ized least squares estimator and discuss their asymptotic properties, see Theorems 2
and 3, which constitute the main results. Section 4 complements the presentation by
some simulated and real data examples. The article concludes with some comments
and an appendix.
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2 Integer Autoregressive Processes and Inference

This section reviews briefly some probabilistic properties of the integer autoregres-
sive processes and discuss estimation of unknown parameter by conditional least
squares inference.

2.1 Integer Autoregressive Processes

Integer autoregressive processes have been introduced by Al-Osh & Alzaid (1987)
and Alzaid & Al-Osh (1990) as a convenient way to transfer the usual autoregressive
structure to discrete valued time series. The main concept towards this unification is
given by the notion of thinning which is defined by the following:

Definition 1. Suppose that X is a non–negative integer random variable and let α ∈
[0,1]. Then, the thinning operator, denoted by ◦, is defined as

α ◦X =
{
∑X

i=1 Yi, if X > 0,
0, otherwise,

where {Yi} is a sequence of independent and identically distributed Bernoulli random
variables–independentof X–with success probabilityα . The sequence {Yi} is termed
as a counting series.

Definition 1 allows for specification of the integer autoregressive process of or-
der p. More specifically, suppose that for i = 1,2, . . . , p, αi ∈ [0,1) and let {εt} be
a sequence of independent and identically distributed nonnegative integer valued
random variables with E[εt ] = μ and Var[εt ] = σ2. The following process

Xt =
p

∑
i=1
αi ◦Xt−i + εt , (1)

is called integer autoregressive process of order p and is denoted by INAR(p). It
should be noted that the Bernoulli variables used for defining the random variable
α1 ◦Xt−1 are independent of those involved in the definition of α2 ◦Xt−2, and so
on. This assumption guarantees that the INAR(p) process has the classical AR(p)
correlation structure, see Du & Li (1991). A unique stationary and ergodic solution
of (1) exists if

p

∑
j=1
α j < 1. (2)

Various other authors have studied the above model, including Al-Osh & Alzaid
(1987), Alzaid & Al-Osh (1990), McKenzie (1985), McKenzie (1986) and McKenzie
(1988). Some very recent work extending the model in different directions can be
found in the papers by Ferland et al. (2006), Neal & Subba Rao (2007), Zheng et al.
(2006) and Zhu & Joe (2006).
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2.2 Conditional Least Squares Inference

In what follows consider the INAR(p) model defined by (1). The (p+1)–parameter
vector β = (μ ,α1, . . . ,αp)′ belongs to the [0,∞]× [0,1)p and it is usually estimated
by conditional least squares method. Suppose that Ft is the σ–field generated by the
past information, say X1,X2, . . . ,Xt . The conditional least squares estimator of β is
calculated ny minimizing the following sum of squares:

S(β ) =
N

∑
t=p+1

(Xt −E(Xt|Ft−1))
2 =

N

∑
t=p+1

(Xt − μ−
p

∑
i=1
αiXt−i)2. (3)

Denote by β̂ the value that minimizes the above expression and notice that standard
arguments show that (see Brockwell & Davis (1991), for example)

β̂ = Q−1r (4)

where the (p + 1)× (p + 1) matrix Q is equal to

Q =

⎡⎢⎢⎣
N− p ∑N

t=p+1 Xt−1 . . . ∑N
t=p+1 Xt−p

∑N
t=p+1 Xt−1 ∑N

t=p+1 X2
t−1 . . . ∑N

t=p+1 Xt−pXt−1
. . . . . . . . . . . .

∑N
t=p+1 Xt−p ∑N

t=p+1 Xt−1Xt−p . . . ∑N
t=p+1 X2

t−p

⎤⎥⎥⎦ ,

and the (p + 1)–dimensional vector r is defined by

r =

(
N

∑
t=p+1

Xt ,
N

∑
t=p+1

XtXt−1, . . . ,
N

∑
t=p+1

XtXt−p

)′
.

Then the following theorem holds true for the estimator β̂ :

Theorem 1. (Du & Li 1991) Suppose that β̂ is the conditional least squares estimator
defined by means of minimizing (3) for the INAR(p) model (1). In addition, assume
that the error process has E[εt ] = μ , Var[εt ] = σ2 and E[ε3

t ] < ∞. Suppose that
condition (2) is satisfied and let μx to denote the mean of the stationary distribution
of the INAR(p) model (1). Then

√
N
(
β̂ −β

)
→ Np+1(0,V−1WV−1),

where the (p + 1)× (p + 1) matrix V = [vi j] is defined by

vi j =

⎧⎨⎩
1, i = 1, j = 1,
μx, i = 1, j > 1 or i > 1, j = 1,
E[Xp+1−iXp+1− j]+ μ2

x , i, j ≥ 2.

Furthermore, the (p + 1)× (p + 1) matrix W = [wi j] is given by
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wi j =

⎧⎪⎪⎨⎪⎪⎩
E[(Xp+1−∑p

k=1αkXk−p− μ)2], i = 1, j = 1,
E[Xp+1−i(Xp+1−∑p

k=1αkXk−p− μ)2] j = 1, i > 1,
E[Xp+1− j(Xp+1−∑p

k=1αkXk−p− μ)2] i = 1, j > 1,
E[Xp+1−iXp+1− j(Xp+1−∑p

k=1αkXk−p− μ)2], i, j ≥ 2,

where expectation is taken with respect to the stationary distribution.

In addition, it can be shown that the estimator β̂ is strongly consistent. Theorem 1 is
proved by standard arguments from martingale theory, see Klimko & Nelson (1978)
and Hall & Heyde (1980), for more. A consistent estimator of the matrix V is given
by

V̂ =
1
N

Q. (5)

Indeed, limN→∞ V̂ = V , in probability, because of the ergodicity of the process.
Similarly, the matrix W is estimated by means of

Ŵ =
1
N

N

∑
t=p+1

⎛⎜⎜⎝(Xt −
p

∑
i=1
αiXt−i− μ)2

⎡⎢⎢⎣
1 Xt−1 . . . Xt−p

Xt−1 X2
t−1 . . . Xt−pXt−1

. . . . . . . . . . . .
Xt−p Xt−1Xt−p . . . X2

t−p

⎤⎥⎥⎦
⎞⎟⎟⎠ . (6)

Therefore, a consistent estimator of the asymptotic covariance matrix of β̂ is given
by V̂−1ŴV̂−1–see theorem 1.

3 Penalized Conditional Least Squares Inference

We suggest estimation of the unknown parameter vector β of the INAR(p) by penal-
izing the conditional least square criterion with a quadratic penalty. As it is the case
with the ridge regression, see Hoerl & Kennard (1970a), Hoerl & Kennard (1970b),
it is anticipated that the mean square error of the estimates is minimized by some
value of the ridge parameter. Therefore, the choice of the ridge (or regularization)
parameter is important and its selection is taken up in Section 4.2 where a proposal is
made by using the so–called AIC criterion; Akaike (1974). In the following, the first
issue is to show how ridge inference proceeds and then apply the resulting estimators
to the problem of prediction.

Ridge coefficients are defined by minimization of the following penalized sum of
squares

Sp(β ) = S(β )+λN

p

∑
j=1
α2

j

=
N

∑
t=p+1

(Xt −
p

∑
j=1
α jXt− j − μ)2 +λN

p

∑
j=1
α2

j (7)
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where λN ≥ 0, is the so called regularization parameter. When λN = 0, the ordinary
CLS estimator is obtained while if λN → ∞ then all the coefficients shrink towards
zero. An alternative way of obtaining the above penalized sum of squares is to
postulate the constraint ∑p

j=1α
2
j ≤ t. Obviously the parameter t is inversely related

with λN but both constraints are equivalent.
The penalized CLS estimator of β̂ will be denoted by β̂ λ and it is easily obtained

by
β̂ λ = (Q+λNDp+1)−1r. (8)

The matrix Q and the vector r have been defined immediately after (4) and the
(p + 1)× (p + 1) matrix Dp+1 is given by

Dp+1 =
[

0 0
0 Ip

]
,

where Ip is the diagonal matrix of order p. It is recognized that the penalized CLS
estimator is of the same form as the ordinary ridge regression estimator. It is expected
therefore that for a suitably chosen value of the regularization parameter, the mean
square error of β̂ λ will be less or equal than that of β̂ . In what follows, it is shown
that when the true parameter values are small, then a more efficient estimator–in the
sense of mean square error–is obtained by means of minimizing (7) provided that
the regularization parameter λN is of order N.

We study the asymptotic properties of β̂ λ in the following theorem whose proof
is postponed in the appendix.

Theorem 2. Assume the same conditions as in Theorem 1. Assume further that λN
is such that λN/

√
N → λ0 ≥ 0. Then
√

N(β̂ λ −β )→ Np+1(−λ0V−1b,V−1WV−1)

in distribution, as N → ∞. The matrices V and W have been defined in Theorem 1
and the (p + 1)–dimensional vector b is given by b = (0,α1, . . . ,αp)′.

The above theorem shows that when N → ∞, then the penalized CLS (8) are
asymptotically normal but biased while their asymptotic covariance matrix is given
by the same formula that corresponds to the ordinary CLS estimators–see Theorem
1. Hence, there seems to be no particular improvement when using the penalized
CLS estimator unless λN = o(

√
N), and this is in agreement with the asymptotic

results for least squares regression with independent data obtained by Knight & Fu
(2000, Th. 2). Theorem 2 implies that when the true parameter values are large and
λ0 > 0, then the bias of the restricted estimators might be of considerable magnitude.

Suppose now that the data are generated by the INAR(p) process (1) where the
vector of unknown parameters satisfies

βN = β +
c√
N

,



Penalized Estimation for Integer Autoregressive Models 343

for some vector of the form c = (0,c1, . . . ,cp)′, such that condition (2) is satisfied.
Then the second part of the following theorem shows that for small α j’s there is a
gain when using the ridge regression. The proof of the theorem is along the lines of
Theorem 2 and therefore it is omitted.

Theorem 3. Assume the same conditions as in Theorem 1. Assume further that
βN = β + c/

√
N where c is of the form c = (0,c1, . . . ,cp)′ such that condition (2)

holds true. Let β̂ λ be the penalized CLS (8). Then

1. If λN/
√

N → λ0 ≥ 0, then
√

N(β̂ λ −β )→ Np+1(−λ0V−1b,V−1WV−1),

in distribution, as N → ∞.
2. If αi = 0 for i = 1,2, . . . , p so that β = (μ ,0, . . . ,0)

′
and λN/N → λ0 ≥ 0, then

√
N(β̂ λ − c/

√
N)→ Np+1(−λ0Ṽ−1c,Ṽ−1WṼ−1),

in distribution, as N → ∞, where Ṽ = V +λ0Dp+1.

The above notation is the same as that of Theorem 2.

The second part of the above theorem shows that for large sample sizes, the asymp-
totic distribution of β̂ λ is a multivariate normal provided that the choice of λN is of
order N and the true parameter value is relatively small. In particular, certain choices
of λN yield to consistent estimators which are asymptotically normally distributed.
However, other choices of λN yield to biased estimators. We anticipate though that
the bias will be small and regularization will provide estimates with smaller mean
square error.

An estimator of the asymptotic covariance matrix is given by(
V̂ +

λN

N
D
)−1

Ŵ
(

V̂ +
λN

N
D
)−1

(9)

where all the matrices are evaluated at β̂ λ . The matrices V̂ , Ŵ have been defined by
(5) and (6), respectively. For large N, and if λN = o(

√
N), formula (9) reduces to

that used for the asymptotic variance estimator of the conditional LS estimator β̂ -see
Theorem 1.

4 Examples

A limited simulation study and a real data example are presented to complement the
theoretical findings.
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Fig. 1 Boxplots of the distribution of α̂λ1 for various values of the penalty parameter.

4.1 Simulations

To study the empirical performance of the penalized LS estimators for the INAR(p)
model, a limited simulation study is presented. First, data are generated by the
INAR(1) process

Xt = α1 ◦Xt−1 + εt ,

for t = 1,2, . . . ,N, where the error sequence is assumed to be i.i.d. Poisson with mean
μ . The computation were carried out by the statistical language R and all simulation
output is based on 1000 runs.

The asymptotic normality of the restricted estimators is demonstrated for various
values of the penalty parameter–see Figure 1–where the boxplots of the distribution of
α̂λ1 are shown for λ = 0,1,2, . . . ,7. The sample size is N = 100,α1 = 0.4 and μ = 1.
The asserted asymptotic normality is in agreement with the simulation findings.
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Table 1 Penalized estimators for 100 observations from the INAR(2) model with true parameters
α1 = 0.1 and α2 = 0.2 and for different values of the Poisson mean μ . The regularization parameter
varies from 0 to 10 by 0.5 and the number of simulations is 1000.

λ μ = 0.50 μ = 1.00

μ̂λ α̂λ1 α̂λ2 e1(λ ) μ̂λ α̂λ1 α̂λ2 e1(λ )

0.0 0.531 0.0852 0.171 1.000 1.07 0.0821 0.170 1.000
0.5 0.531 0.0831 0.172 0.947 1.06 0.0816 0.171 0.906
1.0 0.535 0.0835 0.159 0.958 1.05 0.0927 0.167 0.893
1.5 0.537 0.0802 0.166 0.947 1.05 0.0865 0.169 0.886
2.0 0.535 0.0808 0.163 0.944 1.08 0.0805 0.165 0.962
2.5 0.545 0.0779 0.159 0.998 1.08 0.0766 0.164 0.955
3.0 0.539 0.0789 0.158 0.918 1.07 0.0792 0.166 0.904
3.5 0.549 0.0788 0.151 0.946 1.08 0.0756 0.163 0.893
4.0 0.553 0.0785 0.152 0.915 1.08 0.0798 0.164 0.977
4.5 0.549 0.0738 0.150 0.926 1.07 0.0820 0.161 0.916
5.0 0.555 0.0731 0.147 0.948 1.07 0.0835 0.158 0.825
5.5 0.549 0.0715 0.145 0.905 1.08 0.0793 0.158 0.884
6.0 0.548 0.0723 0.147 0.893 1.08 0.0773 0.163 0.848
6.5 0.548 0.0757 0.144 0.891 1.09 0.0813 0.158 0.906
7.0 0.556 0.0721 0.143 0.900 1.10 0.0730 0.159 0.932
7.5 0.554 0.0757 0.144 0.896 1.08 0.0826 0.154 0.837
8.0 0.563 0.0740 0.135 0.960 1.09 0.0798 0.155 0.830
8.5 0.560 0.0699 0.140 0.897 1.10 0.0751 0.151 0.902
9.0 0.561 0.0738 0.130 0.915 1.10 0.0758 0.148 0.922
9.5 0.566 0.0688 0.138 0.926 1.10 0.0763 0.150 0.936

10.0 0.562 0.0697 0.133 0.901 1.10 0.0768 0.150 0.894

Notice that λ = 0 corresponds to the ordinary CLS estimators while for large values
of λ , the resulting estimator is more biased compared to the CLS estimator.

Furthermore, consider the INAR(2) model

Xt = α1 ◦Xt−1 +α2 ◦Xt−2 + εt

where εt are assumed to be Poisson random variables with mean μ , as before. Table
1 shows the results of 1000 simulations when there are 100 observations available
from the process at hand. Note that the resulting penalized estimators are biased
as it was claimed before. However, their relative efficiency to the ordinary least
squares estimators is superior in both cases considered. The quantity e1(λ )–that is
the efficiency–has been defined by

e1(λ ) =
MSE(β̂ λ )
MSE(β̂ )

,

and it is the ratio of the mean square error of the constrained estimator to the mean
square error of the unconstrained estimator. Table 2 shows the same results but for
N = 500. Here, most of the values of e1(λ ) fluctuate around unity showing that there
is no any improvement by penalization.
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Table 2 Penalized estimators for 500 observations from the INAR(2) model with true parameters
α1 = 0.1 and α2 = 0.2 and for different values of the Poisson mean μ . The regularization parameter
varies from 0 to 10 by 0.5 and the number of simulations is 1000.

λ μ = 0.50 μ = 1.00

μ̂λ α̂λ1 α̂λ2 e1(λ ) μ̂λ α̂λ1 α̂λ2 e1(λ )

0.0 0.508 0.0945 0.193 1.000 1.01 0.0982 0.193 1.000
0.5 0.507 0.0970 0.194 0.995 1.01 0.0969 0.195 1.018
1.0 0.507 0.0963 0.192 1.111 1.01 0.0981 0.192 0.971
1.5 0.508 0.0968 0.193 1.034 1.01 0.0979 0.193 1.032
2.0 0.508 0.0971 0.191 1.022 1.01 0.0957 0.193 1.055
2.5 0.509 0.0949 0.191 1.044 1.01 0.0964 0.193 0.993
3.0 0.508 0.0962 0.192 1.084 1.01 0.0946 0.194 0.973
3.5 0.509 0.0978 0.188 1.067 1.02 0.0954 0.192 1.008
4.0 0.509 0.0941 0.189 1.018 1.02 0.0977 0.190 1.013
4.5 0.513 0.0921 0.189 1.019 1.02 0.0943 0.191 1.074
5.0 0.511 0.0955 0.191 1.072 1.02 0.0964 0.192 1.044
5.5 0.510 0.0972 0.187 1.036 1.02 0.0977 0.192 1.068
6.0 0.511 0.0955 0.186 1.003 1.02 0.0962 0.191 0.950
6.5 0.517 0.0921 0.185 1.084 1.02 0.0965 0.191 0.984
7.0 0.514 0.0948 0.187 1.009 1.03 0.0934 0.188 1.008
7.5 0.513 0.0936 0.187 1.004 1.02 0.0962 0.191 1.061
8.0 0.514 0.0924 0.186 0.978 1.02 0.0945 0.188 0.964
8.5 0.517 0.0917 0.183 1.002 1.02 0.0967 0.187 0.990
9.0 0.512 0.0936 0.187 0.955 1.02 0.0975 0.190 0.970
9.5 0.516 0.0944 0.182 1.044 1.02 0.0975 0.189 1.007

10.0 0.519 0.0910 0.183 1.054 1.02 0.0919 0.188 1.041

4.2 Data Example

The Westgren gold particle data is used to demonstrate the penalized least squares
estimation method. The data consists of consecutive count measurements of gold
particles in a well defined colloidal solution of equally spaced points in time. These
data have been analyzed by various authors, including Guttorp (1991), Grunwald
et al. (2000) and more recently by Jung & Tremayne (2006). In particular, the first
370 observations are used throughout the subsequent analysis, along the lines of Jung
& Tremayne (2006).

To analyze the data, consider the INAR(p) model (1) for p = 1,2,3,4. For com-
parison purposes, which are described below, the first four observations are removed
and all models were fitted based on the 366 observations. Figure 2 shows the values
of AIC for each INAR model fitted to the data, defined as

AIC(p,λ ) = 366log

(
∑370

t=5(Xt − μ̂λ −∑p
i=1 α̂

λ
i Xt−i)2

366

)
+ 2dfλ (10)

where the quantity dfλ is called the effective degrees of freedom as in the ordinary
ridge regression. In other words, recall the definition of Q from (4) and set
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Fig. 2 Selection of λ by AIC for the gold particle data. (a) INAR(1), (b) INAR(2), (c) INAR(3),
(d) INAR(4).

X =

⎡⎢⎢⎢⎣
1 Xp Xp−1 . . . X1
1 Xp+1 Xp . . . X2
...

...
...

...
...

1 Xn−1 Xn−2 . . . Xn−p

⎤⎥⎥⎥⎦ .

it is clear that Q = X ′X and therefore the effective degrees of freedom are defined by

dfλ = tr
(
X(Q+λDp+1)−1X ′) ,

where tr(.) denotes the trace of a matrix. Although estimation proceeds from the least
squares, it can be argued that the AIC is the expected Kullback–Leibler distance of the
maximum Gaussian likelihood model relative to the true distribution of the process,
see Brockwell & Davis (1991, p. 306).
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Fig. 3 Diagnostics for the INAR(2) model fitted to the gold particle data by minimizing (7) using
λ = 7.65.

Using the above definition, and turning back to Figure 2, we note that the plot
suggests the existence of a value of λ such that (10) attains a minimum. Notice that
the values of the penalty parameter λ varies between 0 and 20 for a fine grid of
values. When comparing the AIC from all different models, the INAR(2) yields its
minimum value–in fact for all λ . Therefore the point that was made by previous
authors that the INAR(2) model fits these data well is iterated further–see Jung &
Tremayne (2006).

Hence this model is used for data fitting at the value of λ that minimizes
(10). It turns out that λopt = 7.65 and the corresponding estimators are given by
α̂7.65

1 = 0.43082, α̂7.65
2 = 0.22685 and μ̂7.65 = 0.52510. Figure 3 shows some fur-

ther diagnostics for the model at hand. The upper panel shows a plot of the observed
versus the predicted data while the lower plot shows the autocorrelation function of
residuals. Both graphs indicate the adequacy of the INAR(2) model.
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5 Discussion

This article introduces the ridge regression idea to the INAR processes. It was shown
by theory and some supporting simulations that improvement over ordinary CLS
is possible given a good choice of the regularization parameter. The choice of the
regularization parameter is based on the minimization of the AIC and it was shown
that for the Westgren gold particle data the method appears to work nicely. How-
ever, further investigation is needed to understand the results obtained from such
procedure.

Integer autoregressive models have been generalized in different directions by
several authors. For instance, Latour (1998) studies generalized integer valued au-
toregressive models of order p. This class of models is based on generalization of the
thinning operator but their second order properties are similar to those of INAR(p)
models. Hence the results reported here should be applicable in this class of models
as well.

Another interesting class of models is that of conditional linear AR(1) models
(see Grunwald et al. (2000)) specified by the following

m(Xt) = α1Xt−1 + μ ,

where m(Xt) = E[Xt |Xt−1], with Xt a time–homogeneous first-order Markov process.
This class of model includes several AR(1) models proposed in the literature for
non–Gaussian data. Inference is carried out either by maximum likelihood or by
least squares. Therefore, the proposed ridge methods should apply to those models
as well.

In a different direction, the recent contribution of Zhu & Joe (2006) extends the
INAR(p) to include covariates. Estimation of regression coefficients is based on
maximum likelihood and therefore the ridge constraints can be easily incorporated
so that (7) is of the form of maximizing a penalized log likelihood function.

As a final remark, alternative penalties can be used so that model selection can be
combined with estimation. For instance, consider penalty function of the following
form

J(β ) =
p

∑
j=1
|β j|q,

where q > 0. The choices of q = 1,2 yield to the Lasso (Tibshirani 1996) and ridge
estimators respectively. In general these estimators were introduced by Frank &
Friedman (1993) and were termed as Bridge estimators. When q ≤ 1, the penalty
function has the neat property to set some of the regression coefficient equal to 0,
that is it can be used for model selection and estimation.
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Appendix

Suppose that M0
N =−2−1(∂Sp(β )/∂μ) =∑N

t=1(Xt −∑p
i=1αiXt−i−μ) and put M0

0 =
0. Then

E(M0
N |FN−1) = E

(
M0

N−1 + XN −
p

∑
i=1
αiXN−i− μ |FN−1

)

= M0
N−1 + E

(
XN −

p

∑
i=1
αiXN−i− μ |FN−1

)
= M0

N−1,

from the properties of the INAR(p) processes. Thus, the sequence {M0
N ,FN ,N ≥

0} forms a martingale which is square integrable. Furthermore, if condition (2) is
fulfilled, then the sequence Xt is stationary and ergodic. Hence, from the ergodic
theorem,

1
N

N

∑
t=p+1

(
Xt −

p

∑
i=1
αiXt−i− μ

)2

→ E

(
Xp+1−

p

∑
i=1
αiXp−i− μ

)2

≡ σ2
1 ,

almost surely, as N → ∞. Therefore, by (Hall & Heyde 1980, Cor. 3.2) we obtain
that

1√
N

M0
N → N(0,σ2

1 ),

in distribution, as N → ∞. Along the same lines, it can be shown that if M j
N =

−2−1(∂Sp(β )/∂α j) = ∑N
t=p+1 Xt− j(Xt −∑p

i=1αiXt−i−μ)−λNα j, for j = 1,2, . . . ,

p, then M̃ j
N = M j

N +λNα j is a martingale that satisfies

1
N

N

∑
t=p+1

X2
t− j

(
Xt −

p

∑
i=1
αiXt−i− μ

)2

→ E

(
X2

p+1− j(Xp+1−
p

∑
i=1
αiXp−i− μ)2

)
≡ σ2

j ,

almost surely, and

1√
N

M̃ j
N −→ N(0,σ2

j )

for all j = 1, . . . , p. Using the assumption that λN/
√

N → λ0 ≥ 0 then
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1√
N

M j
N −→ N(−λ0α j,σ2

j ).

By the Cramer-Wold device and the properties of the INAR(p) process, it can be
shown that

1√
N

⎛⎜⎜⎜⎝
M0

N
M1

N
...

Mp
N

⎞⎟⎟⎟⎠→ Np+1 (−λ0b,W ) ,

in distribution, as N → ∞.
Recall the penalized conditional least squares estimators, given by (8). It can be

shown that

√
N(β̂ λ −β ) =

(
1
N

Q+
λN

N
Dp+1

)−1 1√
N

⎛⎜⎜⎜⎝
M0

N
M1

N
...

Mp
N

⎞⎟⎟⎟⎠→ Np+1(−λ0V−1b,V−1WV−1),

in distribution, as N → ∞. The theorem is proved.



Bayesian Inference for a Periodic Stochastic
Volatility Model of Intraday Electricity Prices

Michael Stanley Smith

Abstract The Gaussian stochastic volatility model is extended to allow for periodic
autoregressions (PAR) in both the level and log-volatility process. Each PAR is
represented as a first order vector autoregression for a longitudinal vector of length
equal to the period. The periodic stochastic volatility model is therefore expressed as
a multivariate stochastic volatility model. Bayesian posterior inference is computed
using a Markov chain Monte Carlo scheme for the multivariate representation. A
circular prior that exploits the periodicity is suggested for the log-variance of the
log-volatilities. The approach is applied to estimate a periodic stochastic volatility
model for half-hourly electricity prices with period m = 48. Demand and day types
are included in both the mean and log-volatility equations as exogenous effects.
A nonlinear relationship between demand and mean prices is uncovered which is
consistent with economic theory, and the predictive density of prices evaluated over
a horizon of one week. Overall, the approach is shown to have strong potential for
the modelling of periodic heteroscedastic data.

Key words: Periodic Autoregression; Bayesian MCMC; Electricity Price Forecast-
ing; Multivariate Stochastic Volatility; Vector Autoregression; Longitudinal Model;
Heteroscedasticity

1 Introduction

The univariate stochastic volatility model has attracted a great deal of attention by
researchers over the past fifteen years. Shephard (2005) gives an overview of the
development of the model, along with a collection of selected readings. Bayesian
inference, computed via Markov chain Monte Carlo (MCMC) methods, has proven
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popular for this class of models; for example, see Jacquier et al. (1994), Chib et
al. (2002; 2006) among others. There have also been a number of extensions to
the multivariate case, with recent surveys given by Asai et al. (2006) and Chib
et al. (2009). At the same time, periodic autoregressions (PAR), popularised by
Pagano (1978), have increasingly been used to model data that exhibit periodicity in
their dependence structures; see Franses & Paap (2004) for a recent overview. In this
paper, the univariate stochastic volatility model is extended to the case where both the
level and log-volatility process follow Gaussian PARs. The resulting model is labelled
here the Gaussian periodic stochastic volatility (PSV) model. This is different than
the model of the same name suggested by Tsiakas (2006), which instead accounts
for periodicity by introducing exogenous effects only.

Pagano (1978) observed that a PAR can be expressed as a vector autoregression
(VAR) for a longitudinal vector of contiguous observations of length equal to the
period, and vice versa. The VAR is assumed to be first order, which is not as re-
strictive as one might expect because PAR models with lag length no more than the
period can always be represented in this fashion (Franses & Paap 2004; pp. 31–35).
When the period is long, the number of parameters can be large, so that sparse lag
structures are often considered. If the PAR only has non-zero lags for the k immedi-
ately preceding time points, plus one at the period, then the disturbance to the VAR
representation has a band k precision (inverse covariance) matrix. In the longitudinal
literature this corresponds to assuming the disturbance vector is Markov of order
k (Smith & Kohn 2002). Using the VAR representation, the PSV can be expressed
as a multivariate stochastic volatility model, for which Bayesian inference can be
computed using a MCMC algorithm. It is important to note here that the PSV cannot
be expressed as a factor model, as is currently popular for the multivariate modelling
of stock returns; see, for example, Pitt & Shephard (1999) and Chib et al. (2006).

Exogenous variables are considered for both the mean of the series, and also for
the mean of the log-volatility process. To enforce the band structure of the preci-
sion matrices a transformation to an unconstrained parameterisation as originally
suggested by Panagiotelis & Smith (2008) is used. A circular prior is suggested for
the log-variance of the log-volatility process that shrinks together values adjacent in
time. Such a prior exploits the unique structure of the periodic model.

The PSV is used to model half-hourly electricity prices from a contemporary
wholesale electricity market. In such markets electricity is traded at an intraday fre-
quency in reference to a spot price. The dynamics of this spot price are totally unlike
that of other financial assets. There is signal in at least the first and second moments,
and a strong diurnal pattern exists in all features; see Karakatsani & Bunn (2008).
There is a growing literature on the time series modeling of electricity prices at an
intraday level; see, for example, Barlow (2002), Conejo et al. (2005), Haldrup &
Nielsen (2006), Weron & Misiorek (2008) and Panagiotelis & Smith (2008), among
others. Recently, Guthrie & Videbeck (2007) show that a PAR is effective in captur-
ing signal in the first moment of intraday prices in the New Zealand market; see also
Broszkiewicz-Suwaj et al. (2004) for a PAR fit to NordPool data. Our analysis ex-
tends this approach to the second moment. Day type and electricity demand are also
included as exogenous effects in both level and volatility equations. By using flexible
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functional forms, the relationship between demand and mean prices is estimated and
matches that anticipated by economic theory.

2 Periodic Autoregressions

A zero mean series {x(1), . . . ,x(n)} follows a periodic autoregressive (PAR) process
of period m if

x(s) = ∑
j∈L(i)

ρ (i)
j x(s− j)+σ (i)z(s) , for s = 1, . . . ,n , (1)

where z(s) is a white noise process and L(i) is a set of positive integers. The autore-
gressive coefficients ρ (i), variances (σ (i))2 and even lag structure L(i) may vary over
the period, which is denoted by index i = s mod m. PAR models have been used to ac-
count for seasonally varying dependence in quarterly (m = 4) and monthly (m = 12)
data; for example, see Osborn & Smith (1989). However, they can also be used to
capture diurnally varying dependence in data collected at an intraday resolution. In
this study the data are observed at a half-hourly resolution and m = 48 throughout,
so that i corresponds to the half hour, and t the day, of time point s.

Let xit = x(s), where i = s mod m, t = [s/m]+ 1 and [a] is the integer part of a.
Then, Pagano (1978) observed that a PAR can be expressed as a vector autoregression
(VAR) for the longitudinal vector xt = (x1t ,x2t , . . . ,xmt)′ and vice versa. Following
Franses & Paap (2004; Chapter 3) if L = maxi(L(i))≤m then the PAR in equation (1)
can be represented by the first order VAR

ΦAxt =ΦBxt−1 + zt , for t = 1, . . . ,T .

Here, n = Tm, zt is a vector of independent white noise processes, and ΦA = {φA
i, j}

and ΦB
i, j = {φB

i, j} are sparse matrices with elements

φA
i, j =

⎧⎨⎩
1 if i = j
0 if j > i
−ρ (i)

i− j if j < i
, φB

i, j =

{
ρ (i)

i+m− j if i+ m− j≤ L
0 otherwise

, (2)

where ρ (i)
j = 0 if j �∈ L(i). Multiplying on the left by (ΦA)−1 gives:

xt =Φxt−1 + et , for t = 1, . . . ,T , (3)

where Φ = (ΦA)−1ΦB and Var(et)−1 = Σ−1 = (ΦA)′diag(σ (1), . . . ,σ (m))−2ΦA.
Only stationary series are considered in this paper, which occurs for both the longi-
tudinal VAR process and underlying PAR when all the eigenvalues of Φ lie inside
the unit circle (Franses & Paap 2004, pp. 34–39).
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PAR models are highly parameterised when m is large, so that sparse lag structures
are often assumed to make the model more parsimonious. If L(i) = {1,2, . . . ,k,m}
for k < m, then the precision matrix Σ−1 is band k and Φ is a sparse matrix. For
example, if the data are intraday, then this lag structure relates an observation to that k
intraday periods immediately prior, plus the observation at the same time the previous
day. Assuming that Σ−1 is band k also corresponds to assuming the elements of the
longitudinal vector et are Markov of order k; for example, see Pourahmadi (1999)
and Smith & Kohn (2002).

In this paper Gaussian PAR models are employed, so that z(s)∼ N(0,1) in equa-
tion (1) and et are an independent N(0,Σ) series in equation (3). The precision matrix
Σ−1 is assumed band k. In the empirical work in Section 5.2 a low bandwidth of k = 2
is assumed, and to make the representation more parsimonious,Φ is also assumed to
be a diagonal matrix. This is an approximation to the full structure of Φ that proves
useful when estimating high dimensional models, such as that examined here where
m = 48. However, the approach outlined in this paper applies to Φ with any pattern,
including when patterned as (ΦA)−1ΦB.

Last, it is noted that Panagiotelis & Smith (2008) employ such a PAR with k = 2
for the mean-corrected logarithm of electricity prices, but where the disturbances et
are distributed multivariate skew t. They also approximate Φ , but with a diagonal
matrix with three additional non-zero elements in the upper right hand corner. The
idea of this approximation is to relate each observation xit to those in the preceding
k = 2 half hours, and also that at the same time the previous day, but in a more
parsimonious manner than the patterned matrix (ΦA)−1ΦB.

3 Periodic Stochastic Volatility Model

3.1 The Model

Using the first order VAR representation of a PAR in Section 2, the Gaussian sto-
chastic volatility model can be extended to incorporate periodicity as follows. Let
yt = (y1t , . . . ,ymt )′ be a longitudinal vector of m = 48 half-hourly electricity spot
prices observed on day t. Exogenous linear effects are introduced into the mean with
a (mp× 1) vector of coefficients β = (β ′1, . . . ,β

′
m)′, where βi is a (p× 1) vector of

coefficients for half hour i. The model for the observations is:

yt = Xtβ + et , where et =Φet−1 + H1/2
t ut , (4)

for t = 1, . . . ,T . Here, Xt is the (m×mp) block matrix of regressors observed at time
t corresponding to β and et = (e1t ,e2t , ...,emt )′. The mean-corrected longitudinal
vector et follows a first order Gaussian VAR with autoregressive coefficient matrix
Φ = {φi, j}. The disturbance has variance Ht = diag(exp(h1t), ...,exp(hmt)) and cor-
relation matrix C, so that the ut are distributed independently N(0,C). The inverse
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correlation matrix C−1 is assumed band k1, so that the elements of the longitudinal
vector ut are Markov of order k1.

The log-volatilities also follow a PAR expressed as a first order VAR with linear
exogenous mean effects, so that if ht = (h1t , . . . ,hmt)′, then

ht = Ztα+ ξt , where ξt =Ψξt−1 +ηt , (5)

for t = 1, . . . ,T . The errors ηt are independently distributed N(0,Σ), α is a (mq×1)
vector of coefficients for q exogenous effects and Zt is the corresponding (m×mq)
matrix of independent variables. The mean-corrected latent log-volatilities ξt =
(ξ1t ,ξ2t , ...,ξmt)′ follow the VAR with autoregressive coefficient matrixΨ = {ψi, j}.
The precision matrix Σ−1 is assumed to be band k2, so that the elements of the lon-
gitudinal vector ξt are Markov of order k2. In the state space literature, equations (4)
and (5) are referred to as the observation and transition equations, respectively.

3.2 Matrix Parameterisations

To ensure that C is constrained to the space of correlation matrices with a band k1
inverse, a re-parameterisation suggested by Panagiotelis & Smith (2008) and Smith
& Cottet (2006) is employed. Define a band k positive definite matrix ΩC such that

C−1 = [diag(Ω−1
C )]1/2ΩC[diag(Ω−1

C )]1/2 .

The parameterisation employed is the upper triangular Cholesky factor RC = {rC,i j},
such that ΩC = R′CRC. Note that C is a correlation matrix with m(m− 1)/2 free
elements, so that to identify the parameterisation the elements rC,ii = 1 for all i. This
parameterisation is particularly useful for two reasons. First, the upper bandwidth of
RC is the same as the bandwidth of C−1, so that simply setting rC,i j = 0 for all i, j
such that j− i > k1, ensures C−1 is band k1. Second, the non-fixed elements of RC
are unconstrained and easier to generate in the sampling scheme in Section 4 than
the elements of ΩC when m is large.

For Σ = {σi j} the variances D = diag(σ11, . . . ,σmm) are isolated, so that Σ =
D1/2BD1/2. This enables informative priors to be placed on the variances of the
elements of ηt as discussed in Section 3.4. The correlation matrix B is parameterised
in the same manner as C. That is, using the Cholesky factor RB = {rB,i j} of a positive
definite matrix ΩB = R′BRB, such that

B−1 = [diag(Ω−1
B )]1/2ΩB[diag(Ω−1

B )]1/2 .

Again, for identification rB,ii = 1 for all i, and setting rB,i j = 0 for all i, j such that
j− i > k2, ensures that Σ−1 is band k2. Again, the non-fixed elements of RB are
unconstrained and relatively easy to generate in the sampling scheme. While there
is no reason why the bandwidth of C−1 and B−1 cannot differ, k1 = k2 = 2 in our
empirical work.
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3.3 The Augmented Likelihood

As noted by previous authors the likelihood is unavailable in closed form for such
stochastic volatility models. Instead, focus is usually on the likelihood augmented
with the latent volatilities, which is employed here. To simplify the analysis estima-
tion is undertaken conditional on the pre-period observation vector y0. In addition,
a stationary distribution for the process {ξt} is assumed, so that the marginal dis-
tribution h1|α,Ψ ,Σ ∼ N(Z1α,Γ ), where Γ is a closed form function of Σ and Ψ
(Hamilton 1994; p.265). Let y = {y1, ...,yT},h = {h1, ...,hT } and Π be the set of
model parameters, then the likelihood augmented with the latent volatilities h is

p(y,h|Π ,y0) = p(y1,h1|Π ,y0)
T

∏
t=2

p(yt ,ht |Π ,yt−1,ht−1)

= p(h1|Π)
T

∏
t=1

p(yt |Π ,yt−1,ht)
T

∏
t=2

p(ht |Π ,ht−1) . (6)

The Jacobian of the transformation between ut and yt is |H−1/2
t |, so that

p(y,h|Π ,y0) ∝ |Γ |−1/2 exp
{
−1

2
(h1−Z1α)′Γ−1(h1−Z1α)

}
|C|−T/2

T

∏
t=1
|H−1/2

t |exp
{
−1

2
u′tC

−1ut

}
(|D||B|)−(T−1)/2

T

∏
t=2

exp
{
−1

2
η ′tΣ

−1ηt

}
. (7)

3.4 Priors

In previous Bayesian estimation of the univariate stochastic volatility model infor-
mative priors for the conditional variance of the log-volatilities have often been em-
ployed (Kim et al. 1998; Chib et al. 2002). In the periodic case here informative priors
which shrink together adjacent elements of diag(Σ) (and the first and last elements)
may improve inference. This motivates a Gaussian circular prior similar to the pair-
wise shrinkage priors employed in Bayesian regression smoothing (Lang & Brezger
2004). Specifically, if δi = log(σii) then the circular prior has δi|δi−1 ∼ N(δi−1,τ2

δ )
for i = 2, . . . ,m, and δ1 ∼ N(δm,τ2

δ ). This results in the informative prior for the
vector δ = (δ1, . . . ,δm)′

p(δ |τ2
δ ) ∝ (τ2

δ )
−m/2 exp

{
− 1

2τ2
δ
δ ′Wδ

}
,
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with highly sparse precision matrixW = {wi, j}which has non-zero elements wi,i = 2
for i = 1, . . . ,m; wi,i+1 = wi+1,i =−1 for i = 1, . . . ,m−1; and w1,m = wm,1 =−1. The
parameter τ2

δ is interpretable as a shrinkage parameter and a conjugate IG(1.01,0.01)
hyperprior is assumed, which is shown not to dominate it’s marginal posterior in the
empirical work.

Let φ and ψ be the non-zero elements of Φ and Ψ , respectively. The priors
p(φ) and p(ψ) are uniform on the region where {et} and {ξt} are stationary. That
is, p(φ) ∝ I(Φ ∈ S ) and p(ψ) ∝ I(Ψ ∈ S ), where S is the space of (m×m)
matrices with eigenvalues inside the unit circle, and the indicator function I(A) = 1
if A is true, and I(A) = 0 otherwise. When Φ andΨ are diagonal, this simplifies to
the priors p(φ) ∝ ∏m

j=1 I(−1 < φ j, j < 1) and p(ψ) ∝ ∏m
j=1 I(−1 < ψ j, j < 1). The

coefficients α and β of the exogenous effects, and the non-fixed elements of the
Cholesky factors RB and RC, all have flat priors, although it is straightforward to
incorporate informative priors if required.

4 Bayesian Posterior Inference

Because it is difficult to compute the marginal posterior distribution of the parameters
analytically, MCMC is used to evaluate the posterior distribution. Such an approach
has proven effective in obtaining inference in univariate stochastic volatility models
(Jacquier et al. 1994; Kim et al. 1998; Chib et al. 2002) as well as in multivariate
extensions (Pitt & Shephard 1999; Chib et al. 2006; Chan et al. 2006; Smith &
Pitts 2006).

4.1 Sampling Scheme

The following sampling scheme is employed to obtain Monte Carlo iterates from the
augmented posterior density p(Π ,h,τ2

δ |y,y0), where Π = {β ,φ ,RC,α,ψ ,RB,δ},
which are used to construct posterior inference. Below, the notation {Π\A} denotes
the parameter set Π without element A, hb,t denotes a contiguous sub-vector of ht
and h\b,t denotes h without hb,t .

Sampling Scheme
Generate sequentially from each of the following conditional posterior distributions:

(1) p(φi, j|{Π\φi, j},h,y,y0) for all non-zero elements of Φ
(2) p(rC,i j|{Π\rC,i j},h,y,y0) for i, j such that 0 < j− i < k1
(3) p(hb,t |h\b,t ,Π ,y,y0), for all blocks b and t = 1, ...,T
(4) p(ψi, j|{Π\ψi, j},h,y,y0) for all non-zero elements ofΨ
(5) p(rB,i j|{Π\rB,i j},h,y,y0) for i, j such that 0 < j− i < k2
(6a) p(δi|{Π\δi},τ2

δ ,h,y,y0) , for i = 1, ...,m
(6b) p(τ2

δ |δ )
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(7) p(β |{Π\β},h,y,y0)
(8) p(α|{Π\α},h,y,y0)

The main features of the sampling scheme are briefly outlined below, while a more
detailed description is given in the Appendix.

In Step (2)C is generated through its parameterisation RC, where the non-fixed up-
per triangular elements rC,i j are generated one at a time using a Metropolis-Hastings
step. The proposal is a normal approximation to the conditional distribution centred
around its mode, obtained using quasi-Newton-Raphson with numerical derivatives.
This approach to generating a correlation matrix is simpler than generating directly
from the elements ofΩC. This is because the upper and lower bounds for each of the
elements of ΩC need recomputing at each sweep to ensure ΩC is positive definite
(Barnard et. al. 2000; Chan et al. 2006) which slows the sampling scheme when m
is large. In Step (5) the non-fixed upper triangular elements of RB are generated one
element at a time using a normal approximation as a Metropolis-Hasting proposal in
a similar manner as for the non-fixed elements of RC.

Following Shephard & Pitt (1997) a Metropolis-Hastings step is used to generate
the log-volatility vector hb,t in Step (3). The proposal is a Gaussian approximation to
the conditional posterior centred around its mode obtained by Newton-Raphson. The
gradient and Hessian of the log-density are calculated analytically and are provided
in the Appendix. In the empirical work in Section 5.2 ht is partitioned into 8 blocks
of 6 elements each.

In Step (1) the distribution of each non-zeroφi, j is constrained Gaussian. In Step (4)
a Metropolis-Hastings step is employed with constrained Gaussian proposal equal
to the conditional density omitting the term p(h1|Π). A Metropolis-Hastings step is
used in Step (6a) based on a Gaussian approximation to the conditional posterior.
The smoothing parameter of the circular prior in Step (6b) is generated directly from
its inverse gamma posterior distribution.

In Step (7) the conditional density of β is recognizable as a normal conditional
distribution. In applications where m and/or p are large (such as the application in
this paper where mp = 432) it would not normally be computationally feasible to
generate β as a single vector. However, because C−1 is band k1, the precision matrix
of the conditional distribution of β is block diagonal and vectors with large values of
m can be generated. In Step (8) the vectorα is generated using a Metropolis-Hastings
step. The proposal is based on the conditional posterior omitting the term p(h1|Π),
which is recognizable as a normal density.

4.2 Posterior Inference and Forecasts

After the Markov chain has converged, Monte Carlo iterates are obtained from the
augmented posterior density p(h,Π ,τ2

δ |y). These can be used to construct the full
spectrum of posterior inference, including estimates for the marginal posterior means
of the parameters, log-volatilities and shrinkage parameters, which are used as point
estimates. In addition, 100(1−α)% posterior probability intervals for each parameter
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or volatility can be computed by ranking the Monte Carlo iterates and counting off
100α/2% of the upper and lower values.

Let y f = {yT+1, . . . ,yT+T2} and h f = {hT+1, . . . ,hT+T2} be T2 future values of the
longitudinal process and associated log-volatilities. Then appending the following
steps to the sampling scheme in Section 4.1 produces iterates from the predictive
distribution p(h f ,y f |y,y0).

Forecasting Scheme
For t = 1, ...,T2 generate from the conditional distributions:

(F1) p(hT+t |hT+t−1,Π)
(F2) p(yT+t |hT+t ,yT+t−1,Π)

Here, ht |ht−1,Π is normal with mean Ztα+Ψξt−1 and variance Σ and yt |ht ,yt−1,Π
is also normal with mean Xtβ +Φet−1 and variance H1/2

t CH1/2
t . The Monte Carlo

estimates of the predictive means E(h f |y,y0) and E(y f |y,y0) can be used as point
forecasts. Monte Carlo estimates of the predictive probability intervals can be com-
puted in the same manner as the parameter posterior probability intervals and used
as forecast intervals.

5 Intraday Electricity Prices

5.1 The Australian Electricity Market and Spot Price

During the past twenty years governments in many developed countries have intro-
duced wholesale electricity markets. One of the earliest of these is the Australian
National Electricity Market (NEM), which has been in operation since 1998, al-
though some earlier state-based markets have been in operation since 1994. Due to
inter-connection constraints and transmission loss, electricity is poorly transportable
over long distances and the price for electricity varies by location. In particular, prices
paid by customers in the state of New South Wales (NSW) are obtained by referring
transmission to a bulk supply point on the western edge of the state capital Sydney,
which is the spot price examined here.

Wholesale markets around the world operate by varying rules, and the NEM
works as follows. Generating utilities submit supply curves (or stacks) to the NEM
management company (NEMMCO) prior to generation. A generator will offer to
supply more electricity the higher the price. Based on short-term demand forecasts1

NEMMCO matches forecast demand for each future five minute period against the
average of the supply curves submitted by all generators for that 5 minute period
(this is the industry supply curve). The generators are then scheduled to dispatch
in bid-price order until forecast demand is fully matched. The spot price for the
five minute period is set equal to the most expensive generation capacity that is

1 See Cottet & Smith (2003) and Soares & Medeiros (2008) for a discussion of methods used to
obtain short-term demand forecasts.
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ultimately dispatched to meet demand. Half-hourly prices are then created as the
average of the six five minute periods, and this is the data examined here. The rules
of the NEM, along with the fact that electricity is a flow commodity that cannot be
stored economically, induces a strong systematic component to intraday electricity
prices. As documented by Escribano et al. (2002), Knittel & Roberts (2005) and
Koopman et al. (2007), these features are common to all but a few markets.

The spot price occurs at the equilibrium of supply and demand. Demand can be
observed exactly because, in the absence of blackouts or load-shedding, it is equal to
system load which is read off the grid. Spot prices tend to vary positively with demand
patterns, although the relationship is nonlinear because as demand increases beyond
a certain point generation capacity with rapidly increasing marginal cost requires
dispatching. This issue is discussed in greater detail in the empirical analysis in
Section 5.2.

Obtaining supply-side data for analysis is more difficult, although the impact
of supply on the spot price is likely to be two-fold. The first is potential intra and
inter-day autocorrelation in both price and it’s second moment due to the serial de-
pendence in factors that affect the industry supply curve. The second is the existence
of price spikes. These can be due to either under-forecasting of short-term demand
by NEMMCO, or to a sudden supply disruption. In both cases a spike will occur
because expensive generating capacity with a very short ramping time needs to be
brought online at short notice to maintain system stability. In this case, the prices
will often mean-revert quickly because within one hour cheaper generating capacity
can usually be ramped to a level to meet the shortfall in supply. In effect, these spikes
are caused by the shape of the aggregate industry supply curve. The time-to-ramp
constraints result in a kink in this curve at a certain capacity level after which the
curve has a steep upward slope. Sudden unanticipated changes in demand or supply
can shift the point of intersection to the right of this kink, resulting in a price spike.
In Section 5.2 it is demonstrated how estimation of average supply curves, including
the location of the kink, at different times of the day is possible using the price data.

Figure 1 plots the year 2000 spot price (in dollars per kilowatt hour; $/KWh) and
corresponding half-hourly total NSW system demand (in gigawatt hours; GWh) in
four panels that correspond to the southern hemisphere seasons. The data exhibit
strong daily periodicity and there is likely to be persistence in the first and second
moments, both between and within days. Large spikes in prices also occur and rapidly
revert to the mean price level. Strong seasonal patterns appear to exist with the average
winter price being higher than the average summer price, although summer proves
to be the most volatile season. Such features have been observed in the NEM since
its inception.

These empirical features in the data are the result of the market design discussed
above, along with the strong systematic component to demand. They motivate the
adoption of a periodic time series model to account for the strong diurnal variation
of all aspects of the data. Demand for electricity can be included as an exogenous
effect. Features of prices that are likely to be present are a nonlinear relationship
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(c) WINTER (6/12/00 to 9/3/00) 
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(d) SPRING (9/11/00 to 12/3/00)

Fig. 1 The upper series is the NSW electricity spot price (in dollars per KiloWatt hour on the
left-hand logarithmic axis), while the lower series is demand (in GigaWatt hours on the right-hand
axis). Each panel corresponds to one of the four southern hemisphere seasons in 2000.
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Fig. 2 Estimates of the exogenous effect of demand on average price at twelve equally-spaced half
hours. The estimated functions are plotted in bold over their observed domain, normalised so that
they start at zero. The dashed lines represent 90% posterior probability intervals for these effects.
Demand is measured in GigaWatt hours (GWh) and price in dollars per MegaWatt hour ($/MWh).
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with demand and periodic autocorrelation in the first and second moments. The
autocorrelation may be between observations on an intraday or inter-day basis, or
both. For a recent discussion of the implication of market structure on the dynamics
of electricity prices see Karakatsani & Bunn (2008).

5.2 Empirical Analysis of NSW Spot Price

The PSV model is used to analyse the first T = 84 days of half-hourly summer
electricity spot prices depicted in Figure 1(a). This is a particularly challenging set
of data to fit because in the first 28 days low demand often resulted in fixed price
baseline generation capacity setting the marginal price, which is not the case for
the latter period. The first element in the longitudinal vector corresponds to 03:30
(approximately the overnight demand and price low) and the last to 03:00, so that the
period is m = 48. The bands of Σ−1 and C−1 are k1 = k2 = 2 and the autoregressive
coefficient matrices Φ andΨ are assumed to be diagonal.

The following exogenous variables are employed in the observation and transition
equations. A constant was employed in both equations, along with four dummy vari-
ables to capture any day type effects on Monday, Friday, Saturday and Sunday/Public
Holidays. The exogenous effect of demand is included in the observation equation
using a flexible functional form to capture any nonlinearity. In particular, if demand
DEM is normalized between 0 and 1 for each half hour, then the radial basis terms
|DEM−Kj|2 log(|DEM−Kj|), for Kj = 0.3,0.6 and 0.9, are included, along with
a linear term in DEM. For the transition equation only a linear demand effect is
included.

The circular prior outlined in Section 3.4 is used for the log-variancesδ , smoothing
the elements of δ across the day and stabilizing the posterior distribution of the latent
volatilities ht and the other parameters in the transition equation. Note that similar
circular priors may also be placed on other parameters, although flat priors are adopted
for this analysis. The sampling scheme was run for a burnin of 15,000 iterates, after
which the Markov chain is assumed to converge to the augmented likelihood. The
subsequent 25,000 iterates form the Monte Carlo sample from which inference is
computed.

The estimated impact of demand for electricity on the first moment of the spot
price using the flexible functional form is plotted for 12 equally-spaced half hours
in Figure 2. The relationships are largely monotonic and kinked. The location where
the curvature changes can be understood as the maximum level of demand which
will be matched by the supply of efficient baseline generation at each given half hour.
Estimation of the location of the change of curvature is important for risk management
because increases in demand beyond this level correspond to steep increases in the
expected spot price.

This nonlinear relationship is consistent with economic theory. The instantaneous
demand curve is largely insensitive to price changes because the increased cost of
electricity is born by the retailing utility in the short-run, not the end-user. However,
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Fig. 3 Estimates of the linear
coefficients of the effect of
demand on price volatility
against time of day. The 90%
posterior probability intervals
for the linear coefficients are
also plotted as light dotted
lines.
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demand varies day-to-day at any given half hour period based on season, day type,
weather and other factors. Therefore, as demand varies over the three months of data
the equilibrium price effectively traces out the kinked supply curve for each half
hour, resulting in the relationship between demand and price depicted in Figure 2.

Figure 3 plots the estimated linear coefficients of demand in the transition equation
against the time-of-day, along with 90% posterior probability intervals. This shows
that the log-volatility of price is also highly affected by changes in demand, but in a
manner that differs over the day. Price volatility is much more sensitive to changes
in demand during the high-load period 09:00 to 23:00.

The estimates of the posterior means E[C|y] and E[B|y] are presented in Figure 4.
The absolute values of the elements are plotted for ease of exposition, although almost
every element was positive. (Note that because C−1 and B−1 are banded, this does
not mean that C and B are sparse). There is strong residual intraday autocorrelation
in both the level and log-volatility of prices. However, in the second moment the
correlation is close to block diagonal, with three distinctly correlated periods of the
day: 09:00 to 12:00 (morning work-hours), 13:00 to 18:00 (afternoon work-hours)
and 18:00 to 23:30 (evening). A similar block structure for intraday dependence
was found by Panagiotelis & Smith (2008) using a related model and more recent
NSW data. Guthrie & Videbeck (2007) also found a similar block pattern using New
Zealand data. Disappointingly, the estimates of φ show little evidence of residual
inter-day autocorrelation in the level of prices, but there is significant, albeit minor,
inter-day autocorrelationψ in the mean-corrected log-volatilities. However, when the
model is refit fixing C = B = I (thereby removing the intraday serial dependence) the
inter-day autocorrelation becomes substantial in both the observation and transition
equations. Similarly, when the model is refit with no exogenous demand effect, both
intraday and inter-day autocorrelation become substantial in both equations. The day
type dummy variables only have a minor affect on the level of prices, which is not
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Fig. 4 Image plots of the
Monte Carlo estimates of
E[C|y] in panel (a) and E[B|y]
in panel (b). For expositional
purposes the absolute values
of the elements are plotted,
although there were almost no
negative elements.
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surprising given that demand is accounted for directly. However, while not presented
here, there is a substantial day type effect in the second moment. For a full exposition
of the empirical results, see Smith & Cottet (2006).

Figure 5(a) plots the Monte Carlo estimate of E[σii|y] = E[exp(δi)|y] against the
time-of-day. To demonstrate the impact of the circular pairwise shrinkage prior the
posterior means are also plotted when estimated assuming a flat prior on δ , so that
p(D)∝∏m

i=1 1/σii. Figure 5(b) shows the point estimates of the log-volatility process
{hit} for i = 25 (that is, at 15:30) for the two different priors on δ . The circular prior
stabilises the variance of the mean-corrected latent volatility process. Figure 5(c)
plots the posterior distribution of τ2

δ . It demonstrates that the IG(1.01,0.01) hyper-
prior for τ2

δ does not dominate the likelihood in determining the optimal level of
shrinkage.

Figure 6(a) plots on the logarithmic scale the fitted values, which are defined as
ŷit = E[yit |Π = Π̂ ], where Π̂ is the Monte Carlo estimate of E[Π |y]. The model
proves flexible enough to enable prices to be recovered well during the earlier low
demand period (days 1-28), where fixed price baseline generation often sets the
marginal price, and also at the latter period (days 29-84) where during much of
the day more expensive generation capacity is being dispatched to meet demand,
so that the marginal price is significantly higher. A comparison with the observed
price data in Figure 1(a) show the strong intraday pattern to the signal is captured
effectively by the periodic model. Figure 6(b) plots the estimated posterior mean
of the log-volatilities in prices E[hit |y]. The model appears to capture the complex
variance process well, including the change in the variance between the earlier and
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Fig. 5 Panel (a) plots Monte Carlo estimates of E[σii|y] = E[exp(δi)|y] against intraday period
i = 1, . . . ,48 for the flat and circular priors on δ . Panel (b) plots Monte Carlo estimates of E[hit |y]
for i = 25 (that is, at 15:30) against day t = 1, . . . ,T for the two priors. Panel (c) plots the estimated
posterior distribution p(τ2

δ |y) when the IG(1.01,0.01) hyperprior is employed for τ2
δ .

latter periods. The data contain substantial price spikes during days 43, 52, 53, 54,
60, 74 and 81. These are captured by the model as substantial simultaneous increases
in both the first and second moments of prices.

Figure 7(a) plots the estimated predictive mean of prices E[y f |y,y0] over the
subsequent seven days, along with the actual price. Panel (b) contains an estimate
of the standard deviation of prices given by σ̂ f = exp(ĥ f /2), where ĥ f is the Monte
Carlo estimate of E[h f |y,y0]. The forecasts confirm that there is a significant signal
in both moments, which when captured allows for a degree of forecastability of the
spot price.

6 Discussion

The PSV model can be used to model data that exhibit both serial correlation in
the second moment and periodicity. Potential fields of application include the envi-
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Fig. 6 PSV fit to the summer 99/00 NSW price data. Panel (a) plots the Monte Carlo fitted values
ŷit = E[yit |Π = Π̂ ] for prices on the log scale. Panel (b) plots the Monte Carlo estimated posterior
means of the log-volatilities E[hit |y].

ronmental sciences and economics, where in the latter much macroeconomic data
exhibits seasonal heteroscedasticity. The modelling and forecasting of electricity is
an important application where time series models that combine a strong periodic
structure with serial dependence in the first and second moments are required; see,
for example, the discussion in Koopman et al. (2007). When m is large, such as
for the half-hourly data examined here, approximating Φ as a diagonal, or sparse
triangular matrix as in Panagiotelis & Smith (2008), substantially reduces the com-
putations required in Steps (1) and (4) of the scheme. The band structures for the
precision matrices arise from sparse lag structures in the underlying PARs. The re-
parameterisation of the correlation matrices in Section 3.2 allows for these band
structures to be imposed simply. Estimation using MCMC allows for the computa-
tion of the full predictive distribution of prices over a horizon, which in the electricity
application proves important.
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Fig. 7 Panel (a) plots the Monte Carlo estimated predictive mean E[y f |y,y0] (dashed line) along with
observed price (solid line) over a forecast horizon of seven days. Panel (b) plots the corresponding
standard deviations σ̂ f = exp(ĥ f /2), where ĥ f = E[h f |y,y0] is the Monte Carlo estimated predictive
mean of the future log-volatility vector.
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Appendix

This appendix outlines the evaluation of the posteriors in the sampling scheme in
Section 4.1. A detailed exposition can also be found in Smith & Cottet (2006) when
Φ andΨ are strictly diagonal.

(1) Generating from p(φi, j|{Π\φi, j},y,h,y0)
The conditional posterior distribution

p(φi, j|{Π\φi, j},y,h,y0)∝ p(y,h|Π ,y0)p(φ)

∝ exp

(
−1

2

[
T

∑
t=1

(e∗t −H
− 1

2
t Φet−1)′C−1(e∗t −H

− 1
2

t Φet−1)

])
I(ai j < φi, j < bi j),

where e∗t = H−1/2
t et , for t = 1, ...,T , and p(φi, j|{Φ\φi, j}) ∝ I(ai j < φi, j < bi j),

with ai j and bi j functions of {Φ\φi, j}. Expanding the term in the exponent gives
a quadratic function for φi, j, so that the distribution is recognisable as constrained
Gaussian, which can be sampled via rejection sampling. When Φ is diagonal, φi,i
are simply constrained to the interval (−1,1). Because C−1 = {ci j} is a band k1
matrix, ci j = 0 if |i− j| > k1 which substantially speeds computation of the mean
and variances.
(2) Generating from p(rC,i j|{Π\rC,i j},y,h,y0)
First note that rC,ii = 1, for i = 1, . . . ,m, and that the lower triangular elements of RC
are zero. Then, the conditional distribution of the non-fixed elements of RC is

p(rC,i j |{Π\rC,i j},h,y,y0) ∝ |C−1|T/2 exp
{−1

2
trC−1M

}
, (8)

where M =∑T
t=1 H−1/2

t (et−Φet−1)(et −Φet−1)′H
−1/2
t and C−1 is a function of rC,i j

because
C−1 = diag(R−1

C R−1′
C )1/2R′CRCdiag(R−1

C R−1′
C )1/2 .

To generate rC,i j a Metropolis-Hastings step is used. The proposal density q(rC,i j) is
Gaussian centred at the mode of the density in equation (8) with variance equal to
the inverse of the negative Hessian, which is obtained through numerical methods.
(To implement this step the routine ‘e04lyf’ from the NAG fortran library was used.)
The candidate rnew

C,i j is accepted over the old value rold
C,i j with probability

min

{
1,

p(rnew
C,i j|{Π\ri j},h,y,y0)q(rold

C,i j)

p(rold
C,i j|{Π\ri j},h,y,y0)q(rnew

C,i j)

}
.

The value of C−1 is then computed directly from the resulting iterate of RC.
(3) Generating from p(hb,t |h\t ,Π ,y,y0)
For ease of exposition it is outlined how to generate the full vector ht , but note that
generation of a subvector hb,t is straightforward as it only involves a subset of the



Bayesian Inference for a Periodic Stochastic Volatility Model 373

computations outlined. The conditional density of the log-volatility ht is calculated
separately for three different values of t.

(i) For 1 < t < T ,

p(ht |h\t ,Π ,y,y0) = p(yt |ht ,yt−1,Π)p(ht |ht−1,Π)p(ht+1|ht ,Π)

∝ exp
{
−1

2
[
1′ht +η ′tΣ−1ηt + u′tC

−1ut +η ′t+1Σ−1ηt+1
]}

,

where 1 is a vector of ones.
(ii) For t = 1,

p(h1|h\1,Π ,y,y0) = p(y1|h1,y0,Π)p(h1|Π)p(h2|h1,Π)

∝ exp
{
−1

2
[
1′h1 +(h1−Z1α)′Γ−1(h1−Z1α)+ u′1C

−1u1 +η ′2Σ
−1η2

]}
.

(iii) For t = T ,

p(hT |h\T ,Π ,y,y0) = p(yT |hT ,yT−1,Π)p(hT |hT−1,Π)

∝ exp
{
−1

2
[
1′hT +η ′TΣ

−1ηT + u′TC−1uT
]}

.

Let l(ht) = log
{

p(ht |h\t ,Π ,h,y,y0)
}

, then a normal approximation is taken to

the density with mean equal to the mode of l(ht) and covariance matrix
[
− ∂ 2l(ht)
∂ht∂h′t

]−1
.

The candidate hnew
t is accepted over the old value hold

t with probability

min
{

1,
p(hnew

t |h\t ,Π ,y,y0)q(hold
t )

p(hold
t |h\t ,Π ,y,y0)q(hnew

t )

}
.

The mode of l is found using Newton-Raphson with the analytical derivatives, which
are evaluated below. These are substantially faster to compute and more accurate than
numerical derivatives. Their use significantly improves the efficiency of the sampler.
Similar derivations can be found in Chan et al. (2006) and Smith & Pitts (2006,
Appendix B) for different multivariate stochastic volatility models. First note that:

∂ut

∂h′t
=−1

2
diag(ut) ,

∂ηt

∂h′t
= I and

∂ηt+1

∂h′t
=−Ψ .

For 1 < t < T ,

∂ l(ht)
∂ht

=−1
2

[
1+2

∂η ′t
∂ht

Σ−1ηt +2
∂u′t
∂ht

C−1ut +2
∂η ′t+1

∂ht
Σ−1ηt+1 +2

∂u′t+1

∂ht
C−1ut+1

]
=−1

2
[1−ut #C−1ut +2Σ−1(ht −Ztα −Ψξt−1)−2ΨΣ−1(ξt+1−Ψ(ht −Ztα))] .

For t = 1,
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∂ l(h1)
∂h1

=−1
2
[
1−u1#C−1u1 + 2Γ−1(h1−Z1α)−2ΨΣ−1(ξ2−Ψ(h1−Z1α))

]
.

For t = T,

∂ l(hT )
∂hT

=−1
2
[
1−uT #C−1uT + 2Σ−1(hT −ZTα−ΨξT−1)

]
.

Here, # is the element-by-element matrix product. The following result from
Dhrymes (2000, p.153) is used to compute the second derivatives. If y = x′Ax, then

∂ 2y
∂ z∂ z′

= 2
∂x
∂ z′

A
∂x
∂ z

+(2x′A⊗ I)
∂ 2x
∂ z∂ z′

and that

∂ 2ηt

∂ht∂h′t
= 0 ,

∂ 2ηt+1

∂ht∂h′t
= 0 and (u′tC

−1⊗ I)
∂ 2ut

∂ht∂h′t
=

1
4

diag
(
ut #C−1ut

)
.

For 1 < t < T ,

∂ 2l(ht)
∂ht∂h′t

= −
[
∂η ′t
∂ht

Σ−1 ∂ηt

∂h′t
+
∂u′t
∂ht

C−1 ∂ut

∂h′t
+

1
2

diag
(
u′tC

−1#ut
)]

= −
[

1
4

diag(ut)C−1diag(ut)+
1
4

diag
(
u′tC

−1#ut
)
+Σ−1 +ΨΣ−1Ψ ′

]
.

For t = 1,

∂ 2l(h1)
∂h1∂h′1

=−
[

1
4

diag(u1)C−1diag(u1)+
1
4

diag
(
u′1C−1#u1

)
+Γ−1 +ΨΣ−1Ψ ′

]
.

For t = T,

∂ 2l(hT )
∂hT∂h′T

=−
[

1
4

diag(uT )C−1diag(uT )+
1
4

diag
(
u′TC−1#uT

)
+Σ−1

]
.

(4) Generating from p(ψi, j|{Π\ψi, j},h,y,y0)
The conditional posterior distribution of each non-zero autoregressive parameter in
the transition equation is

p(ψi, j|{Π\ψi, j},h,y,y0)∝ p(h1|Π)
T

∏
t=2

p(ht |ht−1,Π)p(ψ)

which is not a recognizable due to the term p(h1|Π). Therefore a Metropolis-Hastings
step is employed with candidate generated from the approximation:
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q(ψi, j) ∝
T

∏
t=2

p(ht |ht−1,Π)p(ψ)

∝ exp

(
−1

2

[
T

∑
t=2

(ξt −Ψξt−1)′Σ−1(ξt −Ψξt−1)

])
I(ai j < ψi, j < bi j) .

Expanding the term in the exponent gives a quadratic function for ψi, j, so that the
distribution is Gaussian, constrained to (ai j,bi j), where ai j and bi j are functions of
{Ψ\ψi, j}. WhenΨ is diagonal aii = −1 and bii = 1, so that generation is straight-
forward. Otherwise, the unconstrained Gaussian can be used for q, but results in a
higher rejection rate. Exploiting the band structure of Σ−1 substantially speeds the
computation of the mean and variance. A new iterate ψ new

i, j is then accepted over the
old ψ old

i, j with probability

min

{
1,

p(h1|{Π\ψi, j},ψ new
i, j )

p(h1|{Π\ψi, j},ψ old
i, j)

}
.

(5) Generating from p(rB,i j|{Π\rB,i j},h,y,y0)
Note that rB,ii = 1 for i = 1, . . . ,m, and that for 0 < j− i < k2

p(rB,i j|{Π\rB,i j},h,y,y0) ∝ p(h1|Π)
T

∏
t=2

p(ht |ht−1,Π)

∝ |Γ |−1/2|B−1|(T−1)/2 exp

{
−1

2

(
ξ ′1Γ

−1ξ1 +
T

∑
t=2

(D−1/2ηt)′B−1(D−1/2ηt)

)}
,

where B−1 = diag(R−1
B R−1′

B )1/2R′BRBdiag(R−1
B R−1′

B )1/2 and Γ are both highly non-
linear functions of rB,i j. Metropolis-Hastings is used to generate from this univariate
density with a normal approximation around its mode as a proposal, evaluated using
numerical derivatives.
(6a) Generating from p(δi|{Π\δi},τ2

δ ,h,y,y0)
The density

p(δi|{Π\δi},τ2
δ ,h,y,y0) ∝ p(h1 |Π)

T

∏
t=2

p(ht |ht−1,Π)
m

∏
k=2

p(δk|δk−1,τ2
δ )p(δ1 |δm,τ2

δ )

∝ |Γ |−1/2 exp

{
−1

2

[
η ′1Γ−1η1 +

T

∑
t=2

(
e−δiη2

it b
ii +2e−δi/2 ∑

j∈C

ηitη jtbi je−δ j/2

)]}

×exp

{
−δi(T −1)

2
− Si

2τ2
δ

}
,

where ηt = (η1t , . . . ,ηmt )′, C = { j|i− k2 ≤ j ≤ i+ k2 and j �= i}, the matrix B−1 =
{bi j} and
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Si =

⎧⎨⎩
(δi− δi−1)2 +(δi+1− δi)2 if 1 < i < m−1
(δ1− δm)2 +(δ2− δ1)2 if i = 1

(δm− δm−1)2 +(δ1− δm)2 if i = m .

This is approximated with a normal density, centred around the mode of the posterior.
The mode is obtained using quasi-Newton Raphson with numerical first and second
derivatives. An iterate is then generated from the proposal, and then accepted or
rejected in a Metropolis-Hastings step.
(6b): Generating from p(τ2

δ |δ )
Assuming an informative IG(a,b) prior, the posterior is τ2

δ ∼ IG(m
2 + a, δ

′Wδ
2 + b).

(7) Generating from p(β |{Π\β},h,y,y0)
By transforming the data y∗t = H−1/2

t (yt −Φyt−1) and X∗
t = H−1/2

t (Xt −ΦXt−1) for
t = 1, ...,T, the model is then a seemingly unrelated regression model with error
covariance matrix C. The conditional density is then a multivariate normal denisty,
from which it is easy to generate. Note that because C−1 is band k1, then the posterior
precision matrix for β is block diagonal.
(8) Generating from p(α|{Π\α},h,y,y0)
To generate α a Metropolis-Hastings step is employed. The proposal is based on the
augmented likelihood without omitting the term p(h1|Π), which is recognisable as
a multivariate normal density in α . Note that because Σ−1 is banded, the posterior
precision matrix is block diagonal.



Online Change-Point Detection in Categorical
Time Series

Michael Höhle

Abstract This contribution considers the monitoring of change-points in categorical
time series. In its simplest form these can be binomial or beta-binomial time series
modeled by logistic regression or generalized additive models for location, scale and
shape. The aim of the monitoring is to online detect a structural change in the intercept
of the expectation model based on a cumulative sum approach known from statistical
process control. This is then extended to change-point detection in multicategorical
regression models such as multinomial or cumulative logit models. Furthermore, a
Markov chain based method is given for the approximate computation of the run-
length distribution of the proposed CUSUM detectors. The proposed methods are
illustrated using three categorical time series representing meat inspection at a Danish
abattoir, monitoring the age of varicella cases at a pediatrist and an analysis of German
Bundesliga teams by a Bradley-Terry model.

1 Introduction

In the year 2000 and as part of my Ph.D. project, I had the pleasurable experience
of getting hold of a copy of Fahrmeir & Tutz (1994b) in my attempt of modeling
a multivariate binomial time series of disease treatments in a pig farm. After some
enquiries, I ended up implementing the extended Kalman filter approach described
in Fahrmeir & Wagenpfeil (1997) and in Section 8.3 of Fahrmeir & Tutz (1994b).
With the present contribution I take the opportunity to return to this problem from
another point of view while at the same time honoring the work of Ludwig Fahrmeir.
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Specifically, the focus in this chapter is on monitoring time series with categorical
regression models by statistical process control (SPC) methods.

A general introduction to SPC can be found in Montgomery (2005). Hawkins &
Olwell (1998) give an in-depth analysis of the CUSUM chart, which is one com-
monly used SPC method. Detection based on regression charts with normal response
can be found in the statistics and engineering literature (Brown et al. 1975, Kim
& Siegmund 1989, Basseville & Nikiforov 1998, Lai 1995, Lai & Shan 1999).
Generalized linear models based detectors are described in the literature for es-
pecially count data time series (Rossi et al. 1999, Skinner et al. 2003, Rogerson
& Yamada 2004, Höhle & Paul 2008). For categorical time series, however, less
development has been seen – with monitoring of a binomial proportion being the
exception (Chen 1978, Reynolds & Stoumbos 2000, Steiner et al. 2000). Retrospec-
tive monitoring of multinomial sequences is discussed in Wolfe & Chen (1990).
Prospective monitoring of multivariate discrete response variable imposes a great
challenge.

The present work contains a novel adaptation of the likelihood ratio based cu-
mulative sum (CUSUM) for the categorical regression context. Accompanying this
CUSUM is a newly formulated approximate Markov chain approach for calculating
its run-length distribution. Three examples are presented as illustration of the pro-
posed categorical CUSUM: Meat inspection data from a Danish abattoir monitored
by a beta-binomial regression model, disease surveillance by a multinomial logit
model for the age distribution of varicella cases at a sentinel pediatrist, and finally
– in honour of Fahrmeir & Tutz (1994a) – an analysis of paired comparison data
for six teams playing in the best German national soccer league (1. Bundesliga).
Fahrmeir & Tutz (1994a) analyzed the 1966/67–1986/87 seasons of this example
using state-space methodology for categorical time series. My contribution contin-
ues their analysis up to the 2008/09 season with a special focus on change-point
detection.

The structure of this chapter is as follows. Section 2 provides an introduction
to modeling categorical time series while Section 3 contains the novel proposals
for performing online change-point detection in such models. Application of the
proposed methodology is given in Section 4. Section 5 closes the chapter with a
discussion.

2 Modeling Categorical Time Series

Modeling categorical data using appropriate regression models is covered in Agresti
(2002) or Fahrmeir & Tutz (1994b). The interest of this chapter lies in using such
regression approaches for the modeling of time series with categorical response.
Kedem & Fokianos (2002) and also Fahrmeir & Tutz (1994b) provide an introduction
to this topic. A categorical time series is a time series where the response variable at
each time point t takes on one of k ≥ 2 possible categories. Let XXXt = (Xt1, . . . ,Xtk)′
be a length k vector with Xt j, j = 1, . . . ,k, being one if the j’th category is observed
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at time t and zero otherwise. Consequently, ∑k
j=1 Xt j = 1. Assuming that a total nt

of such variables are observed at time t, define YYYt = ∑nt
l=1 XXXt,l as the response of

interest. Furthermore, assume that the distribution of YYYt can adequately be described
by a multinomial distribution with time series structure, i.e.

YYYt ∼Mk(nt ,πππt), (1)

for t = 1,2, . . ., πππt = (πt1, . . . ,πtk)′ and ∑k
j=1πt j = 1 for all t. Here πt j = P(Yt =

j|Ft−1) is the probability for class j at time t and Ft−1 denotes the history of
the time series up to time t − 1, i.e. just before but not including time t. When
considering a single component j ∈ {1, . . . ,k} of a multinomial distributed YYYt , the
resulting distribution ofYt j is Bin(nt ,πt j). As a consequence, one strategy to describe
a multinomial time series is to consider it as a set of independent binomial time series
for each component. However, this ignores any correlations between the variables
and does not provide a model with total probability 1.

2.1 Binomial and Beta-Binomial Data

The simplest form of categorical data is the case k = 2, which describes individuals
experiencing an event or items as being faulty. In this case, the resulting distribution of
Yt1 in (1) is Bin(nt ,πt1) while Yt2 = nt −Yt1. When modeling binomial data, interest
is often in having an additional overdispersion not provided by the multinomial
distribution. A parametric tool for such time series is the use of the beta-binomial
distribution, i.e. Yt ∼ BetaBin(nt ,πt ,σt), where t = 1,2, . . ., 0 < πt < 1 and σt > 0,
and having probability mass function (PMF)

f (yt |nt ,πt ,σt) =
(
Γ (nt + 1)Γ (yt + 1)
Γ (nt − yt + 1)

)
·
(
Γ (yt + πt

σt
) ·Γ ( 1

σt
) ·Γ (nt + 1−πt

σt
− yt)

Γ (nt + 1
σt

) ·Γ ( πt
σt

) ·Γ ( 1−πt
σt

)

)

mean E(Yt) = nt ·πt and variance

Var(Yt) = ntπt(1−πt)
(

1 +(nt −1)
σt

σt + 1

)
.

In other words, σt is the dispersion parameter and for σt → 0 the beta-binomial
converges to the binomial distribution. Beta-binomial models can be formulated and
fitted in the context of generalized additive models for location, scale and shape
(GAMLSS, Rigby & Stasinopoulos (2005)). Here, the time varying proportion πt is
modeled by a linear predictorηt on the logit-scale similar to binomial logit-modeling,
i.e.

logit(πt) = log
(

πt

1−πt

)
= ηt = zzz′tβββ , (2)
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where zzzt is a p×1 vector of covariates and βββ is a p×1 vector of covariate effects.
Additionally, in a GAMLSS the dispersion can be modeled by a separate linear pre-
dictor log(σt) = www′tγγγ , but for notational and computational simplicity the dispersion
is assumed to be time constant and not depending on covariates, i.e. σt = σ for all t.

2.2 Nominal Data

In case the k groups of the response variable lack a natural ordering, i.e. in case of a
nominal time series, one uses a multinomial logistic model with one of the categories,
say category k, as reference:

log
(
πt j

πtk

)
= zzz′tβββ j, j = 1, . . . ,k−1.

As a result, the category specific probabilities can be computed as

πt j =
exp(zzz′tβββ j)

1 + exp(zzz′tβββ j)
, j = 1, . . . ,k−1, and

πtk =
1

1 +∑k−1
j=1 exp(zzz′tβββ j)

.

Let yyy1:N = (yyy1, . . . ,yyyN) denote the observed time series up to time N given as a
(m×N) matrix, where each yyyt = (yt1, . . . ,ytk)′,t = 1, . . . ,N contains information on
how the nt observations fell into the k categories, i.e. ∑k

j=1 yt j = nt . The likelihood
of the above model is given by

L(βββ ;yyy1:N) =
N

∏
t=1

k

∏
j=1
πyt j

t j (βββ ),

where βββ = (βββ ′1, . . . ,βββ
′
k−1)

′. Statistical inference for the model parameters βββ based
on this likelihood is described in detail in Fahrmeir & Tutz (1994b, Section 3.4) or
Fokianos & Kedem (2003). Asymptotics for such categorical time series is studied
in Kaufman (1987) and Fahrmeir & Kaufmann (1987).

2.3 Ordinal Data

If the k categories of the response variable can be considered as ordered, it is beneficial
to exploit this additional information in order to obtain more parsimonious models.
Denoting the categories of the ordered response variable by the ordered set {1, . . .,k},
a cumulative model described in, e.g., Fahrmeir & Tutz (1994b, p. 76) for the response
at time t looks as follows
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P(Yt ≤ j) = F(θ j + zzz′tβββ), j = 1, . . . ,k,

with −∞ = θ0 < θ1 < .. . < θk = ∞ being the set of threshold parameters. When
using the logistic distribution function F(x) = exp(x)/(1 + exp(x)), the resulting
model is called the proportional odds model, but in use are also other link functions
such as the extreme-minimal-value distribution function. Consequently, the specific
category probabilities can be derived as

πt j = F(θ j + zzz′tβββ )−F(θ j−1 + zzz′tβββ ), j = 1, . . . ,k.

2.4 Paired Comparisons

One application of the proportional odds model is the analysis of paired-comparison
data used to determine preference or strength of items. Such data are typical in
sports like chess or tennis, where world rankings of m players are based on pair-
wise comparisons having categorical outcomes (e.g. win, loose). Other areas of
application are consumer preference, sensory studies and studies of animal behav-
ior (Courcoux & Semenou 1997, Bi 2006, Whiting et al. 2006). The basic Bradley-
Terry model (Bradley & Terry 1952) is a logistic regression model quantifying the
probability of a positive outcome (i.e. winning) for the first mentioned player in a
match of two players. Each player i ∈ {1, . . . ,m} has ability or strength αi ∈ R, and
the probability that a match between the i’th and j’th player results in a win for player
i is given by

logit{P(Yi j = 1)}= αi−α j.

In the above, Yi j is a binary random variable with states 1 (i wins) and 2 (i looses).
As a consequence, P(Yi j = 1) = 1/2 if αi = α j and P(Yi j = 1) > 1/2 if αi > α j. To
ensure identifiably, one has to impose a constraint such as αm = 0 or ∑m

i=1αi = 0 on
theα ′s. Extensions of the Bradley-Terry model consist of letting strength be given by
additional covariates such as home court advantages, age or injuries (Agresti 2002).
Another common extension is to handle additional tied outcomes or even more
complicated ordinal response structure (Tutz 1986).

If the time interval over which the paired-comparisons are performed is long,
one might expect the abilities of players to change over time (Fahrmeir & Tutz
1994b, Glickman 1999, Knorr-Held 2000). Following Fahrmeir & Tutz (1994a), a
general time-dependent ordinal paired-comparison model including covariates can
be formulated as

P(Yti j = r) = F(θtr +αti−αt j + zzz′ti jβββ t)−F(θt,r−1 +αti−αt j + zzz′ti jβββ t), (3)

with r = 1, . . . ,k being the category, t = 1,2, . . .denoting time and i, j= 1, . . . ,m being
the players compared. For example in the application of Section 4.3, Yti j will denote
paired comparisons of six teams within each season of the best German national
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soccer league (1. Bundesliga). In what follows, I will assume time constant covariate
effects βββ t = βββ for all t and similar time constant thresholds θθθ t = (θt0, . . . ,θtk)′ =
θθθ = (θ0, . . . ,θk)′ for all t.

After having presented the basic modeling techniques, the focus is now on the
online detection of changepoints in such models.

3 Prospective CUSUM Changepoint Detection

The cumulative sum (CUSUM) detector is a method known from statistical process
control for online detecting structural changes in time series. An overview of the
method can be found in Hawkins & Olwell (1998). Use of the method for count,
binomial or multicategorical time series using regression models is still a developing
field. Höhle & Paul (2008) treats one such approach for count data and Grigg &
Farewell (2004) provide an overview. For multicategorical time series Topalidou &
Psarakis (2009) contains a survey of existing monitoring approaches. My interest is
in monitoring a time varying vector of proportions πππt in a binomial, beta-binomial
or multinomial setting having time-varying nt . Regression models for categorical
time series provide a versatile modeling framework for such data allowing for time
trends with seasonality and possible covariate effects. Sections 3.1–3.3 contain my
proposal for combining CUSUM detection with categorical time series analysis.

Let f (yyyt ;θθθ ) denote the PMF of the response variable at time t. While new obser-
vations arrive, the aim is to detect as quickly as possible if the parameters of f have
changed from the in-control value of θθθ 0 to the out-of-control value θθθ 1. Following
Frisén (2003), define the likelihood ratio based CUSUM statistic as

Cs = max
1≤t≤s

[
s

∑
i=t

log
{

f (yyyi;θθθ 1)
f (yyyi;θθθ 0)

}]
, s = 1,2, . . . . (4)

Given a fixed threshold h > 0, a change-point is detected at the first time s where
Cs > h, and hence the resulting stopping time S is defined as

S = min{s≥ 1 : Cs > h}. (5)

At this time point, enough evidence is found to reject H0 : θθθ = θθθ0 in favor of H1 : θθθ =
θθθ 1. Let now LLRt = log f (yt ;θθθ 1)− log f (yt ;θθθ 0) be shorthand for the loglikelihood
ratio at time t in (4). If θθθ 0 and θθθ 1 are known, (4) can be written in recursive form

C0 = 0 and Cs = max(0,Cs−1 + LLRt) , for s≥ 1. (6)

One sees that for time points with LLRt > 0, i.e. evidence against in-control, the
LLRt contributions are added up. On the other hand, no credit in the direction of the
in-control is given because Cs cannot get below zero.

In practical applications, the in-control and out-of-control parameters are, how-
ever, hardly ever known beforehand. A typical procedure in this case is to use his-
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Fig. 1 (a) Loglikelihood ratio (LLR) as a function of y for a binomial distribution with n = 20
and π0 = 0.15 and π1 = 0.35. Also shown are the same LLRs for the corresponding beta-binomial
distribution with σ = 0.05. (b) Binomial LLR as a function of n when y = 0.25 ·n, π0 = 0.15 and
when comparing against four different π1.

torical phase 1 data for the estimation of θθθ 0 with the assumption that these data
originate from the in-control state. This estimate is then used as plug-in value in
the above CUSUM. Furthermore, the out-of-control parameter θθθ 1 is specified as a
known function of θθθ0, e.g. as a known multiplicative increase in the odds. Using
categorical regression to model the PMF f as a function of time provides a novel
use of statistical process control for monitoring categorical time series. Sections 3.1–
3.3 discuss monitoring in case of beta-binomial, multinomial and ordered response.
Section 3.4 contains a corresponding method to compute the important run-length
distribution of the different CUSUM proposals.

3.1 Binomial and Beta-Binomial CUSUM

Extending the work of Steiner et al. (2000) to a time varying proportion, the aim is
to detect a change from odds π0

t /(1−π0
t ) to odds R ·π0

t /(1−π0
t ) for R > 0, i.e. let

logit(π1
t ) = logit(π0

t )+ logR. (7)

In other words, let logit(π1
t ) = logit(π0

t )+ logR correspond to such a change in the
intercept of the linear predictor in (2). The change-point detection is thus equivalent
to a detection from the in-control proportion π0

t to the out-of-control proportion π1
t

in (6) using the beta-binomial PMF as f .
Figure 1(a) illustrates the LLR as a function of the number of positive responses

in a binomial distribution for one specific time point (note that t is dropped from the
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notation in this example). Starting from y = 5 one has LLR > 0, i.e. observations
with y ≥ 5 contribute evidence against the null-hypothesis and in favor of the al-
ternative hypothesis. Note also, that the beta-binomial distribution has smaller LLR
contributions because the variance of the distribution is larger than for the binomial
distribution. Similarly, Figure 1(b) shows that the larger n the larger is the LLR con-
tribution of the observation y = 0.25 · n. In other words, the greater n is the more
evidence against H0 : π = 0.15 there is from an empirical proportion of 0.25. This is
of interest in a binomial CUSUM with time varying nt : the relevance (as measured
by its contribution to Ct ) of a large proportion of faulty items thus depends on the
number of items sampled. However, for π1 = 0.4 the value y = 0.25 · n does not
provide evidence against H0 in Figure 1(b). This means that for large out-of-control
proportions the observation y = 0.25 ·n results in negative LLRs and hence speaks
in favor of H0.

At time t and given the past value of the CUSUM statistic Ct−1, the minimum
number of cases necessary to reach the threshold h at time t is

at = min
y∈{0,...,nt}

{
LLR(y ; nt ,π0

t ,π1
t ,σ) > h−Ct−1

}
. (8)

Note that the set of y fulfilling the above inequality can be empty, in this case at does
not exists. If at exists, the solution of (8) can be derived explicitly for the binomial
case as

at = max
{

0,

⌈
h−Ct−1−nt · (log(1−π1

t )− log(1−π0
t ))

log(π1
t )− log(π0

t )− log(1−π1
t )+ log(1−π0

t )

⌉}
.

In the beta-binomial case the solution has to be found numerically, e.g. by trying
possible y ∈ {0, . . . ,nt} until the first value fulfills the inequality.

3.2 Multinomial CUSUM

This section looks at generalization of the previous binomial CUSUM to the multino-
mial distribution Mk(nt ,πππt) for k > 2, and where πππt is modeled by multinomial
logistic regression. Let πππ0

t be the in-control probability vector and πππ1
t the out-of-

control probability vector resulting from the models with parameters θθθ 0 and θθθ 1. A
simple approach would be to monitor each of the k components separately using
the methodology from Section 3.1. However, this would ignore correlations between
the measurements with reduced detection power as consequence. Instead, I consider
detection as the task of investigating change-points in the linear predictors of the
multicategorical logit model. The proposed approach extends the work of Steiner
et al. (1999), who monitored surgical performance of a k = 4 outcome using two
paired binomial CUSUMs with time-constant means.

Based on a multicategorical logit model, let the in-control probabilities for the
non-reference categories be
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Fig. 2 Illustration of the LLR for a M3(20,πππ) multinomial CUSUM with πππ0 = (0.22,0.17,0.61)′
and πππ1 = (0.43,0.26,0.32)′. Shown are the first two components y1 and y2 of each possible state
yyy. Circle sizes indicate magnitude and ± the sign of the LLR. Also shown are the in-control and
out-of-control probabilities. Shading indicates the probability of yyy in a model with πππ = πππ0 – the
whiter the cell the higher is the probability of the corresponding state.

log

(
π0

t j

π0
tk

)
= zzz′tβββ j, j = 1, . . . ,k−1.

As for the binomial CUSUM, the out-of-control probabilities are given by specific
changes in the intercept of this model, i.e.

log

(
π1

t j

π1
tk

)
= log

(
π0

t j

π0
tk

)
+ log(R j), j = 1, . . . ,k−1.

Figure 2 illustrates the approach for a YYY ∼ M3(20,πππ0) distribution with πππ0 =
(0.22,0.17,0.61)′ and log(RRR) = (1.30,1.10)′. One observes that many states with
high LLR are concurrently very unlikely and that for larger n or k, the approximating
multivariate Gaussian distribution can be used to determine states with high enough
probability to investigate its LLR.

If the number of possible categories k of the multinomial is very high, log-linear
models provide an alternative as done by Qiu (2008). However, in his work time-
constant problems are dealt with and the prime goal is to detect a shift in the median of
any component without a specific formulation of the alternative. However, a suitable
extension of the proposed monitoring in this chapter might be to monitor against an
entire set of possible out-of-control models with the different RRR’s specifying different
directions.
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3.3 Ordinal and Bradley-Terry CUSUM

The multinomial CUSUM proposal from the previous section can be used as a
change-point detection approach for ordinal time series: Based on the proportional
odds model to generate the in-control and out-of-control proportions. In particular,
this approach is considered for the time varying Bradley-Terry model (3) from Sec-
tion 2.4. LetYYYt = (Yti j ; i = 1, . . . ,m, j = 1, . . . ,m, i �= j) consist of all K = m×(m−1)
paired comparisons occurring at time t, i.e. YYYt ∈ {1, . . . ,k}K . Given the parameters
of a time varying Bradley-Terry model, the probability of a state YYYt = yyyt can thus be
computed as

f (yyyt ; αααt ,βββ ,θθθ ) =
m

∏
i=1

m

∏
j=1,i�= j

f (yti j ; ααα t ,βββ ,θθθ ),

where f (·) denotes the PMF given in (3). The interest is now on detecting a structural
change in the ability of one or several teams, i.e. ααα1

t = ααα0
t + RRR, where RRR is a vector

of length m with for example one component being different from zero. The LLR in
a corresponding CUSUM detector can then be computed as

LLRt =
m

∑
i=1

m

∑
j=1,i�= j

log
f (yyyti j;ααα1

t ,βββ ,θθθ)

f (yyyti j;ααα0
t ,βββ ,θθθ)

. (9)

3.4 Run-length of Time Varying Categorical CUSUM

The distribution of the stopping time S in (5) for the CUSUMs proposed in sec-
tions 3.1–3.3 when data are sampled from either πππ0

t or πππ1
t is an important quantity

to know when choosing the appropriate threshold h. Specifically, the expected run
length E(S) (aka. the average run length (ARL)), the median run length or the prob-
ability P(S≤ s) for a specific s≥ 1 are often used summaries of the distribution and
can be computed once the PMF of S is known. Let θθθ be the set of parameters in
the multicategorical regression model and let πππ be the resulting proportions under
which the distribution of S is to be computed. For example, the above θθθ is equal to
θθθ 0 if the in-control ARL is of interest.

Brook & Evans (1972) formulated an approximate approach based on Markov
chains to determine the PMF of the stopping time S of a time-constant CUSUM
detector. They describe the dynamics of the CUSUM statistic Ct by a Markov chain
with a discretized state space of size M + 2:

State 0: Ct = 0

State i: Ct ∈
(
(i−1) · h

M , i · h
M

]
, i = 1,2, . . . ,M

State M + 1: Ct > h
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Note that state M +1 is absorbing, i.e. reaching this state results in H0 being rejected,
and therefore no further actions are taken. The discretization of the continuum of val-
ues of the CUSUM statistic into a discrete set of states represents an approximation.
The size of M controls the quality of the approximation. Adopting this approach to
the present time-varying context, let PPPt be the (M + 2)× (M + 2) transition matrix
of Ct |Ct−1, i.e.

pti j = P(Ct ∈ State j|Ct−1 ∈ State i), i, j = 0,1, . . . ,M + 1

Let a < b and c < d represent the lower and upper limits of class j and i, respectively.
To operationalize the Markov chain approach one needs to compute

pt,i, j = P(a < Ct < b|c < Cn−1 < d) =
∫ d

c
{Ft(b− s)−Ft(a− s)}dμ(s), (10)

where μ(x) is the unknown distribution function of Ct−1 conditional on c < Ct−1 < d
and Ft(·) is the distribution function of the likelihood ratio LLRt at time t when
yyyt is distributed according to a multinomial distribution with parameters derived
from a categorical regression model with parameters θθθ . Investigations in Hawkins
(1992) for the homogeneous case suggest using the uniform distribution for measure
μ(x). Furthermore, he suggests using Simpson’s quadrature rule with midpoint m =
(c + d)/2 to approximate the integral in (10) instead of the Riemann integral used
in Brook & Evans (1972). Altogether, Hawkins (1992) adapted to the present time
varying case yields

P(a < Ct < b|c < Cn−1 < d)≈ 1
6
{Ft(b− c)+ 4Ft(b−m)+ Ft(b−d)}

− 1
6
{Ft(a− c)+ 4Ft(a− f )+ Ft(a−d)} .

Specifically, Ft(·) can be computed for the categorical CUSUM by computing the
likelihood ratio of all valid configurations yyyt ∈ {0,1, . . . ,nt}k,∑k

j=1 yt j = nt , together
with the probability P(YYYt = yyyt) of its occurrence under θθθ . However, if nt or k is
large, this enumeration strategy can quickly become infeasible and one would try
to identify relevant states with P(yyy) > ε and approximate Ft(·) by only considering
these states in the computations. One strategy to perform this identification could be
to compare with the approximating normal distribution.

Borrowing ideas from Bissell (1984), the cumulative probability of an alarm at
any step up to time s, s≥ 1, is

P(S ≤ s) =

[
s

∏
t=1

PPPt

]
0,M+1

,

i.e. the required probability is equivalent to the probability of going from state zero
at time one to the absorbing state at time s as determined by the s-step transition
matrix of the Markov chain. The PMF of S can thus be determined by P(S = s) =
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P(S ≤ s)−P(S ≤ s− 1), where for s = 1 one defines P(S = 0) = 0. Hence, E(S)
can be computed by the usual expression ∑∞s=1 s ·P(S = s). In practice, one would
usually compute P(S ≤ s) only up to some sufficiently large s = smax such that
P(S ≤ s) ≥ 1− ε for a small ε . This results in a slightly downward bias in the
derived ARL. If the Markov chain is homogeneous, then the ARL can alternatively
be computed as the first element of (III−RRR)−1 · 111, where RRR is obtained from PPP by
deleting the last row and column, III is the identity matrix and 111 a vector of ones.

In practice, covariates or nt are usually not available for future time points. As the
predicted in-control and out-of-control probabilities are conditional on these values,
it is more practicable to compute P(S ≤ s) for phase 2 data where the covariates
already have been observed instead of trying to impute them for future time points.

4 Applications

The following three examples illustrate the use of the proposed CUSUM monitoring
for categorical time series by applications from veterinary quality control, human
epidemiology and – as continuation of Fahrmeir & Tutz (1994b) – sports statistics.

4.1 Meat Inspection

At Danish abattoirs, auditing is performed for each processed pig in order to provide
guarantees of meat quality and hygiene and as part of the official control on products
of animal origin intended for human consumption (regulated by the European Council
Regulation No 854/2004). Figure 3 shows the time series of the weekly proportion
of positive audit reports for a specific pig abattoir in Denmark. Reports for a total of
171 weeks are available with monitoring starting in week 1 of 2006.

Using the data of the first two years as phase 1 data, a beta-binomial model
with intercept and two sinusoidal components for logit(πt) is estimated using the R
function gamlss (Rigby & Stasinopoulos 2005). These estimated values are then
used as plug-in values in the model to predict π0

t for phase 2. The out-of-control π1
t

is then defined by specifying R = 2 in (7), i.e. a doubling in the odds of a positive
audit report is to be detected as quickly as possible. Figure 4 shows the results from
this monitoring. After the first change-point is detected the CUSUM statistic is set
to zero and monitoring is restarted.

Figure 5 displays the run length distribution when using h = 4 by comparing the
Markov chain approximation using M = 5 with the results of a simulation based on
10000 runs. Note that the Markov chain method provides results much faster than
the simulation approach.
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Fig. 3 Weekly proportion yt/nt of pigs with positive audit reports indicated by bars (scale on the
left axis). The dotted line shows the weekly total number of pigs nt (scale as on right axis). Roman
letters denote quarters of the year.
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Fig. 4 Results of beta-binomial CUSUM monitoring for phase 2. Shaded bars indicate weeks where
nt < 200. The triangle indicates the alarm in week 41 of 2008.

4.2 Agegroups of Varicella Cases

A varicella sentinel was established in April 2005 by the Arbeitsgemeinschaft Masern
und Varizellen (Robert Koch Institute 2006) to monitor a possible decline in the num-
ber of monthly varicella after the introduction of a vaccination recommendation. One
particular point of interest is the monitoring of possible shifts in the age distribution
of the cases. This is done by dividing the age of cases into one of five groups: <1,
1-2, 3-4, 5-9, and >9 years. A shift in the age distribution is now defined to be a
structural change in the proportions πππ controlling which of the five age groups a
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Fig. 6 Multinomial time series of monthly cases at a pediatrist participating in the varicella sentinel
surveillance. The values of nt range from 0 to 19.

case falls into. As proof of concept of the proposed methodology, the time series of
a single pediatrist participating in the sentinel is considered. Figure 6 shows the time
series of monthly proportions across the five age groups – note that summer vacations
result in a seasonal pattern. Using the first 24 months as phase 1 data, a multinomial
logistic model using intercept, linear time trend and two seasonal components is
fitted by the R function multinom (Venables & Ripley 2002). Figure 7 shows the
fitted model and the resulting in-control proportions for the five age groups for the
subsequent 18 months.

Applying the proposed categorical CUSUM based on the multinomial PMF with
the age group 1-2 acting as reference category, one obtains Figure 8. From an epidemi-
ological point of view it is in the 1-2 age group where a decline of cases is expected
because primarily this group is vaccinated. Detecting an increase in the remaining
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Fig. 8 CUSUM statistic Ct for the pediatrist data together with the threshold h = 2.911. Triangles
indicate detected change-points.

four groups is one way to identify such a shift. As a consequence, log(RRR) = (1,1,1,1)′
is used. Figure 8 shows the resulting Ct together with the two detected change-points.

The threshold h = 2.911 is selected such that P0(S≤ 18) = 0.058 as computed by
the Markov chain approach with M = 25. By simulation of the run-length using 10000
runs, one obtains P0(S≤ 18)= 0.060. To get an understanding of the consequences of
currently ignored estimation error for the phase 1 parameters, a parametric bootstrap
investigation is performed. Let θ̂θθ 0 represent the estimated phase 1 parameters. In the
b’th bootstrap sample, simulate new data phase 1 data yyyt,b, t = 1, . . . ,24 by sampling
from a multinomial model with probabilities derived from θ̂θθ 0. Then use this yyyt,b to
estimate the phase 1 parameters θ̂θθ 0,b and derive πππ0

b and πππ1
b from θ̂θθ 0,b for phase 2. Now

use the Markov chain procedure to compute P0,b(S≤ 18). A 95% percentile bootstrap



392 M. Höhle
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Fig. 9 Abilitiesαt i of each team as fitted by a proportional odds model described in the text. Seasons
without comparisons are indicated by not plotting the ability for this season. The thin shaded lines
indicate the know locations.

interval for P0(S ≤ 18) based on 100 bootstrap replications is (0.013,0.070), which
emphasizes the effect of estimation error on the run length properties.

4.3 Strength of Bundesliga Teams

The time series analysed in this section contains the paired comparison data for a
subset of six teams playing in the best German national soccer league (1. Bundesliga)
as described in Fahrmeir & Tutz (1994a). For each of the 44 seasons from 1966/67–
2008/09, all teams play against each other twice – once with the first team having
home-court advantage and once with the second team having this advantage. Con-
ceptually, it would have been feasible to perform the comparison based on all teams
having played in the primary division since 1965/66, but I conduct the analysis in
spirit of Fahrmeir & Tutz (1994a) by using only six teams. Each match has one of
three possible outcomes: home team wins, tie and away team wins. In what follows,
the ability of each team is assumed constant within the season but varies from season
to season, i.e. αit denotes the ability of team i in season t = 1, . . . ,44.

Figure 9 shows the resulting abilities of each team as determined by a Bradley-
Terry model fitted using the vglm function from package VGAM (Yee & Wild 1996,
Yee 2008). The team VfB Stuttgart is selected as reference category with α3t = 0 for
all t. For each team a time trend is modeled by a cubic B-spline with five equidistant
interior knots and an intercept, i.e. αit = fi(t) = βi0 +∑8

k=1βikBk(t). This model
was found to be the model with equidistant knots minimizing Akaike’s information
criterion. Seasons where a team did not play in the first division are indicated in
Figure 9 by missing abilities for that particular season.
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Fig. 10 (a) In-control abilities fitted from phase 1 data (before the vertical bar). Also shown are
the out-of-control abilities for phase 2 (starting at the vertical bar) obtained by prediction from the
phase 1 fitted model. (b) CUSUM statistics when monitoring using the in-control and out-of-control
abilities from (a) for phase 2. The upper line shows the threshold h.

The estimated abilities only reflect strengths based on the six selected teams.
Hence, they do not necessarily reflect the overall strength of the team that season,
which explains for example the somewhat weak ability of 1. FC Kaiserslautern in
the 1990/91 season where they won the cup. Fahrmeir & Tutz (1994a), with their
state space approach also noted the drop for FC Bayern München around 1976-1980,
which was due to Franz Beckenbauer leaving the club.

From a sports manager perspective, it could be of interest to online monitor the
ability of a team for the purpose of performing strategic interventions. Applying the
methodology from Section 2.4, consider the case of monitoring the ability of FC
Bayern München starting from year 1990. A Bradley-Terry model with an intercept
only is fitted to the data before 1990 and a change of RRR = (−0.5,0,0,0,0)′ is to be
detected for the abilities of all teams except the reference team. Figure 10 illustrates
both the abilities obtained from fitting the phase 1 data and the resulting predicted out-
of-control abilities for phase 2. The aim is to detect when the strength of FC Bayern
München drops by 0.5 units compared to the average strength of 0.741 during the
1965/1966 to 1988/1989 seasons. This means that the probability of winning against
VfB Stuttgart at home court drops from 0.742 to 0.636 (θ̂1 = 0.315).

Using h = 2.681, Figure 10(b) shows the resulting Ct statistic of such CUSUM
monitoring. No change-points are detected, but one notices the seasons with weaker
performance as compared with Figure 9. Run-length computations are not imme-
diately possible in this case as the determination of the distribution function of the
LLR requires enumeration over km(m−1) = 330 = 2.06 ·1014 states. As seen from (9),
the LLR is a sum over the 30 possible paired-comparisons, i.e. it is the convolu-
tion of 30 independent but not identically distributed three-state variables. However,
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with the specific value of RRR, where the ability of only one team changes between
in-control and out-of-control, only the 2(m−1) = 10 matches involving FC Bayern
München will have a non-zero contribution to the LLR. Hence, it is only necessary
to investigate 310 = 59049 states.

Since the proposed in-control and out-of-control models are time-constant, the
in-control ARL can be computed by inversion of the approximate CUSUM transition
matrix based on M = 25. Using the specified h = 2.681 yields an ARL of 100.05.
In other words, using h = 2.681 means that a structural change from ααα0 to ααα1 is
detected by pure chance on average every 100.05’th season when the data generating
mechanism is ααα0.

5 Discussion

A likelihood ratio CUSUM method for the online changepoint detection in categor-
ical time series was presented based on categorical regression models, such as the
multinomial logit model and the proportional odds model. Altogether, the presented
categorical CUSUM together with the proposed run-length computation provides
a comprehensive and flexible tool for monitoring categorical data streams of very
different nature.

The utilized time series modeling assumed that observations were independent
given the time trend and other covariates of the model. This assumption could be
relaxed using for example pair-likelihood approaches (Varin & Vidoni 2006) or
autoregressive models (Fahrmeir & Kaufmann 1987). It would also be of interest to
embed the change-point detection within the non-Gaussian state-space modeling for
ordinal time series of Fahrmeir & Tutz (1994a).

The Markov chain approximation for deriving the run length distribution of the
proposed CUSUM constitutes a versatile tool for the design of categorical CUSUMs.
It also constitutes a much faster alternative to this problem than simulation ap-
proaches. Embedding the approach in a numerical search procedure could be useful
when performing the reverse ARL computation: Given πππ0, ARL0, ARL1 and a di-
rection RRR∗, ||RRR∗||= 1, find the corresponding magnitude c > 0 such that the desired
run-length results are obtained for RRR = c ·RRR∗. Currently, the distribution function of
the likelihood ratio is calculated by investigating all possible states – an approach
which for large k or nt can become intractable. Section 4.3 showed that reductions for
the number of states to investigate are possible in specific applications. Still, clever
approximate strategies are subject to further research – for example by identifying
a subset of most probable configurations. Finally, use of the Markov chain approxi-
mation is not limited to categorical time series – also the run length of time varying
count data CUSUMs can be analyzed. For example, Höhle & Mazick (2009) consider
CUSUM detectors for negative binomial time series models with fixed overdispersion
parameter which could be analyzed by the proposed Markov chain approach.

Other approaches exist to perform retrospective and prospective monitoring based
on regression models. For example the work in Zeileis & Hornik (2007) provides
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a general framework for retrospective change-point detection based on fluctuation
tests, which also finds prospective use. The method is, for example used in Strobl
et al. (2009) to retrospectively assess parameter instability in Bradley-Terry models
in a psychometric context. Instead of monitoring against a specific change, another
alternative is to try to detect a general change based on model residuals. For this
approach, the deviance statistic is an immediate likelihood ratio based alternative
suitable for monitoring within the proposed categorical CUSUM framework.

An implementation of the methods is available as functions categorical-
CUSUM and LRCUSUM.runlength in the R package surveillance (Höhle
2007) available from CRAN.
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Multiple Linear Panel Regression with
Multiplicative Random Noise

Hans Schneeweiß and Gerd Ronning

Abstract The paper explores the effect of multiplicative measurement errors on
the estimation of a multiple linear panel data model. The conventional fixed effects
estimator of the slope parameter vector, which ignores measurement errors, is biased.
By correcting for the bias one can construct a consistent and asymptotically normal
estimator. In addition, we find a consistent estimate of the asymptotic covariance
matrix of this estimator. Measurement errors are sometimes deliberately added to
the data in order to minimize their disclosure risk, and then it is often multiplicative
errors that are used instead of the more conventional additive errors. Multiplicative
errors can be analyzed in a similar way as additive errors, but with some important
and consequential differences.

Key words: Panel regression; multiplicative measurement errors; bias correction;
asymptotic variance; disclosure control

1 Introduction

The paper explores the effect of measurement errors on the estimation of a multiple
linear panel data regression model. The conventional fixed effects least squares es-
timator, which ignores measurement errors, is biased. By correcting for the bias we
can construct consistent and asymptotically normal estimators, where asymptotically
here means that the number of sample units tends to infinity.
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Measurement errors can be additive or multiplicative. Additive measurement er-
rors in panel data models have been extensively studied in the literature, Griliches
& Hausman (1986), Hsiao & Taylor (1991), Wansbeek & Kooning (1991), Biørn
(1996), Wansbeek (2001), Biørn & Krishnakumar (2008). But multiplicative mea-
surement errors, though not uncommon in other models (see, e.g., Hwang 1986, Lin
1989, Carroll et al. 2006), have not found much attention in the context of panel data
models.

The present paper was motivated by the various worldwide endeavors to find
methods for masking data so that their disclosure risk becomes negligible, see, e.g.,
Domingo-Ferrer & Saygin (2008). Data and in particular panel data that are released
to the public should be not only nominally but also factually anonymous. Making
them anonymous in this sense can be done by (slightly) distorting them. The distor-
tion, of course, should be such that the disturbing effects on any subsequent scientific
analysis of the data should be minimal or should be amenable to correction. One way
of perturbing data is to mix them with random noise, see Kim (1986) as an early
reference. This can be done by adding random measurement errors to the data (see,
e.g., Brand 2002) or by multiplying them with measurement errors. The latter pro-
cedure is often preferred, as it takes automatically into account that large values of a
sensitive variable are more prone to disclosure and hence need to be better protected,
see also Ronning (2009). In contrast to an additive error, a multiplicative error will
distort large values more than small values.

Another aspect of statistical disclosure control techniques is that the procedure
used is typically made known to the scientific public. In our case, this means that the
measurement error variances and covariances are known to the statistician working
with the data.

Although linear panel regressions can also be estimated without this knowledge,
we here assume that the error variances and covariances are known. This assumption
not only leads to simpler estimators but also to more efficient ones. Indeed, we use
this knowledge as prior information to construct consistent estimators of the slope
parameters of the model. In addition, we find estimates for the asymptotic variances
and covariances of these estimators.

We only deal with one type of estimator, the familiar “within” LS estimator. It uses
the “within” variances and covariances for each sample unit over time instead of the
overall (total) variances and covariances. In doing so, the unobserved heterogeneity
which is present in the panel data is eliminated. There are other estimators that can do
the same, especially instrumental variable estimators which use lagged values of the
variables as instruments. But in order for them to function properly the variables must
be autocorrelated. No such assumptions are needed for the “within” LS estimator.

Although this paper is mainly concerned with multiplicative measurement errors,
we also deal briefly with the additive case.

In addition to an i.i.d. component, the measurement errors that we study contain a
component which is random over the sample units but constant in time, a case which
has been suggested especially for masking panel data. They thus have a common
factor structure, see Biørn (1996) and Höhne (2008).
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The principles involved for constructing consistent estimators have been devel-
oped in the context of a simple linear model with only one slope parameter in Ronning
& Schneeweiss (2009). Here we extend the model to the case of a multiple regression.

In Section 2 the linear panel model with measurement errors is presented. Section
3 introduces the within LS (naive) estimator of the slope parameter and derives its
bias. In Section 4 a corrected estimator is constructed. Other parameters of interest
are briefly dealt with in Section 5. In Section 6 the asymptotic covariance matrix for
the corrected slope estimator is presented. Section 7 has a simulation study, where the
asymptotic properties of the naive and corrected estimators are studied for a simple
linear panel model under small to medium size samples. Section 8 concludes.

2 The Model

For each sampling unit i = 1, . . . ,N, assume we have a time series yi := (yi1, ...,yiT )$
of a response variable y and a matrix

Xi =

⎛⎜⎝ x1i1 , . . . , xpi1
...

...
x1iT , . . . , xpiT

⎞⎟⎠
consisting of time series of p covariates x(k), k = 1, . . . , p. Assume further that there
is a linear relationship relating y to X :

yi = (β0 +αi)ιT + Xiβ + εi, i = 1, . . . ,N, (1)

where ιT = (1, ...,1)$ is a vector of T ones, εi = (εi1, . . . ,εiT )$ is a time series of
disturbances, β = (β1, . . . ,βp)$ is the unknown vector of regression parameters, that
we wish to estimate, the scalar β0 is the intercept, and the individual effects αi are
scalars representing the unobserved heterogeneity.

Now assume that the variables yi and Xi have been perturbed by adding or multi-
plying random "‘measurement"’ errors to these data. The randomly perturbed data
are denoted by ya

i and Xa
i and are related to the unperturbed data according to

Xa
i = Xi +Ui,

ya
i = yi + vi (2)

in the additive case and

Xa
i = Xi# (ιT ι$p +Ui),

ya
i = yi# (ιT + vi) (3)
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in the multiplicative case, where Ui is a (T×p) matrix and vi a (T×1) vector of mea-
surement errors and# is the Hadamard product. (We shall only treat the multiplicative
case in any detail and shall refer to the additive case only in passing.)

The errors are assumed to have an error component structure such that

Ui = ιT d$i +U∗
i ,

vi = ιT ei + v∗i ,

where d$i = (d1i, . . . ,dpi), and ei is a scalar.
All variables are taken to be random with the usual independence properties. In

particular, the N lists of variables

(Xi,αi,εi,di,ei,U∗
i ,v∗i ), i = 1, . . . ,N,

are i.i.d. In addition, the T rows of the matrix (U∗
i ,v∗i ,εi) are i.i.d. for each i. Further-

more for each i, the set of variable (Ui,vi) is independent of (Xi,yi), εi is independent
of Xi, and (di,ei) is independent of (or at least pairwise uncorrelated with) (U∗

i ,v∗i ).
All the error terms have expectation zero: Eεi = 0, Edi = 0, Eei = 0, EU∗

i = 0,
Ev∗i = 0, and have variances and covariances denoted by σ2

ε := Eε2
i , Σdd := Edid$i ,

σee := Ee2
i , σde := Ediei,Σ∗uu := Eu∗it u∗it

$, σ∗uv := Eu∗it v∗it , σ∗vv := Ev∗it
2, where u∗it

$ is
the t-th row of U∗

i . The terms Σuu, σuv, and σvv are similarly defined as Σ∗uu, σ∗uv, and
σ∗vv. Moments up to the fourth order are assumed to exist. We also assume Eαi = 0.
Two more assumptions will be introduced in Section 3.

3 The Naive Estimator and its Bias

In order to get rid of the individual effects αi, which are treated as fixed effects, the
data matrix (X ,y) is premultiplied by the projection matrix

P = IT − 1
T
ιT ι$T ,

which has the property PιT = 0 and which transforms the data to deviations from
their time series means. With these transformed data the within LS estimator of β
can be constructed.

If the original unperturbed data yi and Xi were known, the estimator of β would
be given by the solution to the estimating equation

Sxxβ̂ = sxy,

where

Sxx :=
1
N

N

∑
i=1

1
T −1

X$
i PXi,
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sxy :=
1
N

N

∑
i=1

1
T −1

X$
i Pyi

comprise the within covariances of the x(k) and y. Note the division by the degrees
of freedom T −1 instead of T .

Since the original data are not known to the statistician, this estimator is not feasi-
ble. Instead a corresponding estimator β̂ a using the perturbed data can be constructed
given by the solution to

Sa
xxβ̂

a = sa
xy,

where

Sa
xx :=

1
N

N

∑
i=1

1
T −1

Xa
i
$PXa

i ,

sa
xy :=

1
N

N

∑
i=1

1
T −1

Xa
i
$Pya

i .

We assume that Sa
xx is almost surely non-singular, so that β̂ a is uniquely defined.

As this estimator does not take into account the fact that the data are perturbed, it
is called the naive estimator. It is (asymptotically) biased.

To find the bias we need to compute the probability limits of the second moments
used in the construction of β̂ a. First note that

plimSxx = E[
1

T −1
X$PX ] =: Σxx,

plimsxy = E[
1

T −1
X$Py] =: σxy.

Note that whenever we compute an expectation we omit the index i since the ex-
pectation is independent of i. Note also that Σxx is not the covariance matrix of the
vector (x1it , . . . ,xpit), which would depend on t in general, but it is the expectation of
the empirical within covariance matrix of the data (x1it , . . . ,xpit) for any i. A similar
remark applies to σxy.

We assume that Σxx is non-singular.
Now

plimSa
xx = E[

1
T −1

Xa$PXa],

= E[
1

T −1
X$PX ]+E[

1
T −1

(X #U)$P(X #U)];

plimsa
xy = E[

1
T −1

Xa$Pya],

= E[
1

T −1
X$Py]+E[

1
T −1

(X #U)$P(y# v)].
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Suppressing the index i, partition X into columns: X = (x1, . . . ,xp) and similarly
U = (u1, . . . ,up), U∗ = (u∗1, . . . ,u

∗
p), and d$ = (d1, . . . ,dp), and denote the (l,k)-

elements of Σdd and Σ∗uu by σlk and σ∗lk, respectively. Then the (k, l)-element of
E[ 1

T−1 (X #U)$P(X #U)] is given by

ekl = E[
1

T −1
(xk#uk)$P(xl #ul)]

= E
1

T −1
tr[P(xl #ul)(xk#uk)$]

= E
1

T −1
tr[P{(xlx$k )# (ulu$k )}]

= tr[P{E(
1

T −1
xlx$k )#E(dlιT + u∗l )(dkιT + u∗k)

$}]

= tr[P{E(
1

T −1
xlx$k )# (σlkιT ι$T +σ∗lkIT )}]

= σlktr[PE(
1

T −1
xlx$k )]+σ∗lkE[tr{Pdiag(

1
T −1

xlx$k )}]

= σlkE[
1

T −1
x$k Pxl]+σ∗lk

T −1
T

E(
1

T −1
x$k xl),

where diagA is the matrix A with all its non-diagonal elements set to zero and where
in the last equation we used the easy to prove facts that trPD = T−1

T trD for any T ×T
diagonal matrix D and tr(diag(ab$)) = b$a for any two vectors a and b of equal
dimension. It follows that

E[
1

T −1
(X #U)$P(X #U)] = Σdd #Σxx +Σ∗uu#Mxx,

and similarly,

E[
1

T −1
(X #U)$P(y# v)] = σde#σxy +σ∗uv#mxy,

where

Mxx := E(
1
T

X$X),

mxy := E(
1
T

X$y).

Thus

E[
1

T −1
Xa$PXa] = (ιpι$p +Σdd)#Σxx +Σ∗uu#Mxx, (4)

E[
1

T −1
Xa$Pya] = (ιp +σde)#σxy +σ∗uv#mxy. (5)

Therefore the probability limit of the naive estimator of β is
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plim β̂ a = [(ιpι$p +Σdd)#Σxx +Σ∗uu#Mxx]−1[(ιp +σde)#σxy +σ∗uv#mxy]. (6)

To further evaluate this probability limit and thereby implicitly the bias of β̂ a we
expand σxy and mxy using (1):

σxy = Σxxβ , (7)
mxy = β0 E x̄ +Cov(x̄,α)+ Mxxβ , (8)

where x̄ := 1
T X$ι is the vector of the means of the p time series x1, . . . ,xp for any

sample unit. We see that the bias depends on the one hand on Σxx and Mxx (and
thereby on the joint law governing the p time series x1, . . . ,xp) and on the other hand
on Cov(x̄,α) (i.e., on the dependency of the individual effects and the regressors). It
also depends on β0.

If the errors have no error component structure (i.e., if Σdd = 0 and σde = 0, so
that Σ∗uu = Σuu and σ∗uv = σuv), then (6) simplifies to

plim β̂ a = (Σxx +Σuu#Mxx)−1[Σxxβ +σuv#mxy].

If in addition σuv = 0, then the bias of β̂ a becomes

plim β̂ a−β =−(Σxx +Σuu#Mxx)−1(Σuu#Mxx)β ,

and the term mxy has no effect on the bias. The minus sign reflects the well-known
attenuation effect of measurement errors.

Remark 1: In the case of additive measurement errors (2), we have the much
simpler relation

plim β̂ a = (Σxx +Σ∗uu)
−1(Σxxβ +σ∗uv).

We see that in the additive case the error components d and e have no effect on the
bias, and it is only the variances and covariances of the i.i.d. components u∗ and v∗
that affect the bias.

4 Corrected Estimator

We intend to find a corrected estimating equation for estimating β consistently.
However, it turns out that in order to estimate β consistently one has to esti-
mate two nuisance parameters in addition to β , namely, Mxx and mxy. Let θ =
(β$,vech$(Mxx),m$

xy)
$ be the 1

2 p(p + 5)-dimensional vector of the parameters to
be estimated, then an unbiased vector valued estimating function ψ := ψ(θ ) :=
ψ(θ ;Xa,ya) with Eθψ(θ ) = 0 is given by the following three subvectors:
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ψ1 =
[{

1
T −1

Xa$PXa−Σ∗uu#Mxx

}
% (ιpι$p +Σdd)

]
β

−
{

1
T −1

Xa$Pya−σ∗uv#mxy

}
% (ιp +σde),

ψ2 = vech
{

1
T

Xa$Xa− (ιpι$p +Σdd +Σ∗uu)#Mxx

}
,

ψ3 =
1
T

Xa$ya− (ιp +σde +σ∗uv)#mxy,

such that ψ = (ψ$1 ,ψ$2 ,ψ$3 )$, where % denotes Hadamard division and “vech” is
the operator that transforms a symmetric matrix into a vector by stacking those parts
of the columns of the matrix that lie on and beneath the diagonal one beneath the
other, see Lütkepohl (1996). One can easily see that Eψ = 0. Indeed, by (4), (5), and
(7),

Eψ1 = {(ιpι$p +Σdd)#Σxx% (ιpι$p +Σdd)}β
−(ιp +σde)#σxy% (ιp +σde)

= Σxxβ −Σxxβ = 0.

Similarly, Eψ2 = 0 and Eψ3 = 0 because by arguments similar to those that led to
(4) and (5) one can show that

E
1
T

Xa$Xa = (ιpι$p +Σuu)#Mxx,

E
1
T

Xa$ya = (ιp +σuv)#mxy

and Σuu = Σdd +Σ∗uu, σuv = σde +σ∗uv.
Now a consistent estimator of θ is given by the solution to ∑N

i=1ψ(θ̂ ;Xi,yi) = 0.
Thus the corrected estimator for β is given by the solution to

Sc
xxβ̂

c = sc
xy (9)

with

Sc
xx := (Sa

xx−Σ∗uu# M̂xx)% (ιpι$p +Σdd),
sc

xy := (sa
xy−σ∗uv# m̂xy)% (ιp +σde),

and

M̂xx :=
1

NT

N

∑
i=1

Xa
i
$Xa

i % (ιpι$p +Σdd +Σ∗uu),

m̂xy :=
1

NT

N

∑
i=1

Xa
i
$ya

i % (ιp +σde +σ∗uv).
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The corrected estimator β̂ c simplifies if the error components d and e are not present.
In this case,

Sc
xx = Sa

xx−Σuu# M̂xx,

sc
xy = sa

xy−σuv# m̂xy,

M̂xx =
1

NT

N

∑
i=1

Xa
i
$Xa

i % (ιpι$p +Σuu),

m̂xy =
1

NT

N

∑
i=1

Xa
i
$ya

i % (ιp +σuv).

Remark 2: In the case of additive measurement errors, the corrected estimator is
given by the solution to

(Sa
xx−Σ∗uu)β̂

c = sa
xy−σ∗uv,

and no nuisance parameters need to be estimated.

5 Residual Variance and Intercept

Apart from the regression parameter β , one may also want to estimate the residual
variance σ2

ε . The usual estimator with the original data is

σ̂2
ε = syy− s$xyβ̂

with syy := 1
N ∑

N
i=1

1
T−1 y$i Pyi. A corrected estimator with the perturbed data is given

by
σ̂ c2
ε = sc

yy− sc$
xy β̂ c,

where

sc
yy := (sa

yy−σ∗vvm̂yy)/(1 +σee),

m̂yy :=
1

NT

N

∑
i=1

ya$
i ya

i /(1 +σee +σ∗vv).

Another parameter of interest is the intercept term β0. It can be estimated with
the original data by

β̂0 = ¯̄y− ¯̄x$β̂ ,

where ¯̄y := 1
NT ∑

N
i=1∑

T
t=1 yit and ¯̄x := 1

NT ∑
N
i=1∑

T
t=1 xit with xit being the rows of Xi.

Let ya and xa be defined in a similar way. As Eya = E ¯̄y and Exa = E ¯̄x, the corrected
estimator is simply given by
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β̂ c
0 = ya− xa$β̂ c.

6 Asymptotic Covariance Matrix

In general, if an estimator of a parameter vector θ is given by an unbiased estimating
function, then the estimator θ̂ is, under some regularity assumptions, consistent and
asymptotically normally distributed with a covariance matrix that is given by the
sandwich formula (see, e.g., Heyde 1997)

Σθ̂ =
1
N

(
E
∂ψ
∂θ$

)−1

Eψψ$
(

E
∂ψ$

∂θ

)−1

,

which is consistently estimated by

Σ̂θ̂ =

(
N

∑
i=1

∂ψi

∂θ$

)−1 N

∑
i=1
ψiψ$i

(
N

∑
i=1

∂ψ$i
∂θ

)−1

,

where ψi is short for ψ(θ̂ ;Xi,yi). As in our case ψ consists of three subvectors,
the three parts of the sandwich formula as well as the covariance matrix itself each
partition into 3×3 submatrices. The submatrix in the upper left corner of Σ̂θ̂ is an
estimate of the asymptotic covariance matrix Σβ̂ c of β̂ c. The nine submatrices ψh j

for ∂ψ
∂θ$ (again suppressing the index i) are given by

ψ11 :=
∂ψ1

∂β$
= (

1
T −1

Xa$PXa−Σ∗uu#Mxx)% (ιpι$p +Σdd),

ψ12 :=
∂ψ1

∂ vech$Mxx
=−(β$⊗ Ip)H diagvech{Σ∗uu% (ιpι$p +Σdd)},

ψ13 :=
∂ψ1

∂m$
xy

= diag(σ∗uv% (ιp +σde)),

ψ21 :=
∂ψ2

∂β$
= 0,

ψ22 :=
∂ψ2

∂ vech$Mxx
=−diagvech(ιpι$p +Σdd +Σ∗uu),



Multiple Linear Panel Regression with Multiplicative Random Noise 409

ψ23 :=
∂ψ2

∂m$
xy

= 0,

ψ31 :=
∂ψ3

∂β$
= 0,

ψ32 :=
∂ψ3

∂ vech$Mxx
= 0,

ψ33 :=
∂ψ3

∂m$
xy

=−diag(ιp +σde +σ∗uv),

where H is a ”duplication matrix” that transforms vechA into vecA, i.e., vecA =
H vechA for any symmetric matrix A, see Lütkepohl (1996, p. 98).

Clearly, if σ∗uv = 0, we need not estimate mxy and the third subvectorψ3 of ψ may
be dropped.

7 Simulation

In our simulation study we focus on the simple linear model (p = 1) with only one
slope parameter β to be estimated. We analyze the performance of both the naive
estimator β̂ a and the corrected estimator β̂ c when both x and y are observed with
multiplicative measurement errors. We distinguish between the i.i.d. case, where
ei = di = 0 and the common factor case with non-vanishing di and ei.

For the regressor variable x we assume the stationary AR(1) process

xit = φ + ρ xi,t−1 + ωit

with |ρ |< 1 and ωit normal white noise, independent of the xit , with expectation 0
and variance σ2

ω . As the xit are stationary, Exit := μx and Vxit := σ2
x are constant.

Given ρ , μx, and σ2
x , the parameters φ and σ2

ω used to generate the xit are given by

φ = (1−ρ)μx,

σ2
ω = σ2

x (1−ρ2).

In order to study the effect of correlation of the individual effect α with the regressor
x, we assume that the αi are generated by

αi = (xi − Exi)λ + wi,

where x̄i := 1
T ∑t xit and wi is normal white noise with expectation 0 and variance σ2

w
distributed independently of x. This specification of correlated individual effects has
been proposed by Biørn (1996, p. 260). Due to the stationarity of xit , Exi = μx.

In our simulations we fix the correlation between αi and x̄i, ραx, and the variance
of αi, σ2

α , and derive the two remaining parameters as follows:
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λ =
ραxσα
σx̄

,

σ2
w = σ2

α(1−ρ2
αx),

where σx̄ is given by (see Hamilton 1994)

σ2
x̄ =

σ2
x

T 2

{
T + 2(T −1)ρ+ 2(T −2)ρ2 + · · ·+ 2ρT−1} . (10)

When studying the common factor structure, we use the specification of Höhne
(2008): We set di = ei and use the special structure

ei = δD with D =
{

1 with probability 0.5
−1 with probability 0.5 .

This specification implies σdd = σde.
The corrected estimator (9) then simplifies to

β̂ c =
sa

xy−σ∗uvm̂xy

sa
xx−σ∗uum̂xx

with m̂xy = 1
NT ∑i∑t xa

it y
a
it/(1 +σdd +σ∗uv) and m̂xx = 1

NT ∑i∑t xa2
it /(1 +σdd +σ∗uu).

In the i.i.d. case, σdd = 0, σ∗uv = σuv, and σ∗uu = σuu.
The probability limit of the naive estimator according to (6), (7), and (8) becomes

plim β̂ a =
(1 +σdd)σxxβ +σ∗uv(ραxσασx̄ +β0μx + mxxβ )

(1 +σdd)σxx +σ∗uumxx
, (11)

where (the bar denoting averages over t for fixed i)

mxx = Ex2 = Ex2 = σ2
x + μ2

x ,

σxx = T
T−1E(x2− x2) = T

T−1(σ2
x −σ2

x̄ ),

and σ2
x̄ is given by (10).

The following parameters were fixed throughout the whole simulation study:

β = 1, μx = 2, σ2
x = 1.52, σ2

ε = 0.52, σ2
α = 1,

and for the measurement errors we used

σuu = 0.22, σvv = 0.22

for the i.i.d. case and

δ = 0.14, σ∗uu = 0.142, σ∗vv = 0.142
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Table 1 Parameter values in the simulation study

parameter values used
N 100 ; 1000
T 3 ; 10
ρ -0.5 ; 0 ; +0.5

ρuv(ρ∗uv) -0.9 ; 0 ; +0.9
ραx 0 ; 0.975
β0 0 ; 5

for the common factor case. Note that the total variance of measurement error in the
latter case is given by σuu = δ 2 +σ∗uu = 0.142 + 0.142 = 0.0392, which is (almost)
equal to the variance in the i.i.d. case.

For both the i.i.d. case and the common factor case, we studied the effects of
varying the sample size N, the number of waves T , the autoregressive parameter ρ ,
the correlation between u and v, which we denote by ρuv (ρ∗uv for the common factor
model), the correlation between α and x, and the intercept term β0. Table 1 has the
details. To save space, not all parameter combinations are shown. In all scenarios we
use 2000 replications.

The four tables shown in the appendix contain the simulation results for the i.i.d.
case (tables 2 and 3) and for the common factor case (tables 4 and 5). In each case,
the second table reports results concerning correlation of individual effects with the
regressor. In all four tables, we use the following notation:
β̂ a and sβ̂ a give mean and standard deviation of the 2000 replications concerning

the naive estimator, β̂ c and sβ̂ c the corresponding results for the corrected estima-
tor. σ̂β̂ c denotes the mean of the estimate of the theoretical (asymptotic) standard
deviation discussed in Section 6, and sσ̂β̂c reports the standard error of this estimate.

Finally, qγ
β̂ c is the γ-quantile of the corrected estimator for three different levels of γ .

For large samples (N = 1000), our simulations support our theoretical findings:
The corrected slope estimator β̂ c shows practically no bias, and the average estimate
of the theoretical (asymptotic) standard deviation σ̂β̂ c of the estimator β̂ c corresponds

very accurately to the empirical standard deviation sβ̂ c of the estimates β̂ c in the
simulation runs. The asymptotic results seem to apply almost as well to samples of
small to medium size (N = 100): the corrected slope estimator shows hardly any
bias, and the theoretical standard deviation still corresponds rather closely to the
empirical standard deviation. Of course, for smaller N, these standard deviations are
(about three times) larger.

The simulations also highlight the considerable amount of bias in the uncorrected
(naive) estimator of the slope parameter. The empirical findings on the bias are in
accordance with the theoretical result (11). For uncorrelated individual effects and
β0 = 0, the bias tends to increase for increasing ρ and for decreasing ρuv. The bias
is considerably smaller for errors with a common factor structure, which is plausible
considering the fact that, by using inner variances and covariances for constructing
the estimator, the common factor is largely eliminated – it is completely eliminated



412 H. Schneeweiß & G. Ronning

in the additive case – so that the, much smaller, remaining error components u∗ and
v∗ are now relevant for the bias. The presence of a correlation between individual
effect and regressor has only a small effect on the bias. For ραx = 0.975, the bias
is somewhat smaller than in the case of no correlation if σuv �= 0. The effect of the
intercept β0 on the bias varies with the values of the other parameters.

The standard deviation of the corrected estimator can also be seen to depend
on the various model parameters. It decreases for increasing T , decreasing ρ , and
increasing ρuv. It is a good deal smaller in the common factor case. The dependence
on ραx is negligible. The standard deviation of the corrected estimator is, of course,
larger than for the naive estimator, but not very much. The increase in variance is
outweighed by the elimination of bias. Finally, it may be noted that the estimate of
the standard deviation is very precise in view of its own standard deviation sσ̂β̂c , in
particular for large N.

8 Conclusion

Measurement errors in a linear regression result in biased estimates of the slope
parameters when Least Squares (LS) is applied without regard to the measurement
errors. This is true both for cross sectional models using ordinary LS as well as for
panel data models using within LS (the latter in order to get rid of the unobservable
individual effects).

We focus our investigation on multiplicative errors with a common factor struc-
ture. They can be treated in a similar way as the more conventional additive errors, but
with some characteristic differences. In the bias formula as well as in the expression
for the bias corrected estimator, nuisance parameters appear, which have to be esti-
mated, too. Their presence results in a substantially more complicated computation
of the asymptotic covariance matrix of the slope estimators than in the additive case.
The covariance matrix is computed with the help of the sandwich formula, which,
however, has to take the nuisance parameters into account.

An extensive simulation study was carried out. It fully corroborates our theoretical
findings on the asymptotics of our estimators and shows that the asymptotic results
seem to apply almost as well to samples of small to medium size (N = 100). The
simulations also make evident the dependence of the asymptotic variance on the
various model parameters, e.g., on the autocorrelation of the regressor variable or on
the correlation between regressor and individual effect.

Finally, they show how close the asymptotic variance of the corrected estimator
may come to that of the uncorrected estimator, at least for large N. Thus the correction
is fully justified both on the ground that it eliminates the bias and that it implies only
a small increase in variance.

Acknowledgements Financial support by Bundesministerium für Bildung und Forschung (project
”Wirtschaftsstatistische Paneldaten und faktische Anonymisierung”) is gratefully acknowledged.



Multiple Linear Panel Regression with Multiplicative Random Noise 413

References

Biørn, E. (1996), Panel data with measurement errors, in: Mátyás, L. and P. Sevestre (eds.), The
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Table 2 Simulation results for the iid case – uncorrelated individual effects

ρ ρuv β0 N β̂ a sβ̂a β̂ c sβ̂c σ̂β̂c sσ̂β̂c q0.05
β̂c q0.50

β̂c q0.95
β̂c

T = 3
-0.5 -0.9 0 100 0.84283 0.05066 0.99924 0.05891 0.05782 0.00872 0.90154 0.99830 1.09681

0 1000 0.84489 0.01648 0.99997 0.01889 0.01871 0.00100 0.96914 0.99956 1.03066
5 1000 0.72757 0.02526 1.00045 0.02959 0.02964 0.00136 0.95210 0.99982 1.05111

-0.5 0.0 0 100 0.91859 0.04105 1.00083 0.04540 0.04439 0.00637 0.92737 1.00093 1.07725
0 1000 0.91875 0.01339 1.00050 0.01475 0.01439 0.00070 0.97608 1.00041 1.02393
5 1000 0.91855 0.02147 1.00025 0.02355 0.02364 0.00103 0.96253 1.00021 1.04003

-0.5 0.9 0 100 0.99148 0.02554 0.99966 0.02693 0.02673 0.00354 0.95457 0.99940 1.04433
0 1000 0.99182 0.00800 0.99999 0.00843 0.00858 0.00036 0.98640 0.99997 1.01394
5 1000 1.10937 0.01599 0.99980 0.01705 0.01662 0.00070 0.97102 1.00001 1.02697

0.0 -0.9 0 100 0.81154 0.05494 1.00371 0.06589 0.06434 0.00956 0.89923 1.00156 1.11200
0 1000 0.80980 0.01765 1.00030 0.02094 0.02083 0.00112 0.96597 0.99979 1.03525
5 1000 0.66629 0.02828 1.00111 0.03405 0.03364 0.00160 0.94400 1.00104 1.05641

0.0 0.0 0 100 0.89991 0.04435 1.00107 0.05037 0.04927 0.00701 0.92314 0.99979 1.08438
0 1000 0.90033 0.01392 1.00044 0.01589 0.01592 0.00076 0.97440 1.00034 1.02637
5 1000 0.90026 0.02460 1.00040 0.02737 0.02655 0.00116 0.95424 1.00135 1.04465

0.0 0.9 0 100 0.98919 0.02832 0.99923 0.03047 0.03000 0.00371 0.95045 0.99839 1.04919
0 1000 0.99029 0.00883 1.00030 0.00946 0.00962 0.00039 0.98470 1.00054 1.01586
5 1000 1.13406 0.01700 0.99973 0.01871 0.01889 0.00077 0.96930 0.99905 1.03116

0.5 -0.9 0 100 0.69584 0.06767 1.00409 0.09125 0.08734 0.01473 0.86124 1.00040 1.16018
0 1000 0.69625 0.02224 1.00038 0.02893 0.02830 0.00166 0.95370 0.99998 1.04780
5 1000 0.46477 0.03513 1.00020 0.04680 0.04697 0.00245 0.92510 0.99915 1.07473

0.5 0.0 0 100 0.84122 0.05552 1.00288 0.06816 0.06568 0.00985 0.89316 1.00238 1.11608
0 1000 0.84001 0.01798 1.00043 0.02185 0.02133 0.00115 0.96501 1.00066 1.03558
5 1000 0.83971 0.02959 1.00002 0.03566 0.03607 0.00168 0.94274 1.00004 1.05946

0.5 0.9 0 100 0.98248 0.03604 0.99825 0.04094 0.04056 0.00539 0.93236 0.99821 1.06745
0 1000 0.98331 0.01117 0.99930 0.01280 0.01293 0.00056 0.97738 0.99917 1.02029
5 1000 1.21447 0.02231 0.99971 0.02622 0.02597 0.00114 0.95614 0.99991 1.04272

T = 10
-0.5 -0.9 0 100 0.82120 0.02626 1.00055 0.03112 0.03101 0.00334 0.94925 1.00073 1.05115

0 1000 0.82125 0.00822 1.00010 0.00979 0.00991 0.00037 0.98374 1.00042 1.01594
5 1000 0.68563 0.01299 1.00034 0.01567 0.01559 0.00053 0.97401 1.00063 1.02590

-0.5 0.0 0 100 0.90569 0.02138 1.00000 0.02363 0.02341 0.00240 0.96126 0.99982 1.03805
0 1000 0.90610 0.00665 1.00034 0.00745 0.00753 0.00025 0.98817 1.00035 1.01254
5 1000 0.90569 0.01107 0.99987 0.01223 0.01228 0.00038 0.98007 0.99950 1.02069

-0.5 0.9 0 100 0.99015 0.01343 0.99960 0.01398 0.01391 0.00131 0.97677 0.99939 1.02260
0 1000 0.99062 0.00421 1.00001 0.00440 0.00443 0.00013 0.99263 1.00004 1.00721
5 1000 1.12602 0.00809 0.99985 0.00857 0.00853 0.00026 0.98584 1.00003 1.01350

0.0 -0.9 0 100 0.81098 0.02709 1.00155 0.03199 0.03193 0.00344 0.94922 1.00060 1.05344
0 1000 0.80996 0.00852 0.99984 0.01021 0.01022 0.00035 0.98369 0.99964 1.01726
5 1000 0.66583 0.01331 0.99978 0.01616 0.01618 0.00053 0.97342 1.00000 1.02614

0.0 0.0 0 100 0.90057 0.02235 1.00076 0.02511 0.02423 0.00235 0.95949 1.00064 1.04204
0 1000 0.89992 0.00694 0.99994 0.00781 0.00776 0.00025 0.98693 0.99970 1.01265
5 1000 0.90017 0.01144 1.00017 0.01275 0.01272 0.00039 0.97952 1.00016 1.02169

0.0 0.9 0 100 0.98946 0.01424 0.99945 0.01490 0.01441 0.00127 0.97498 0.99964 1.02414
0 1000 0.99005 0.00425 1.00010 0.00443 0.00459 0.00013 0.99278 1.00028 1.00704
5 1000 1.13415 0.00829 1.00005 0.00892 0.00886 0.00026 0.98581 1.00012 1.01533

0.5 -0.9 0 100 0.77289 0.03006 1.00004 0.03464 0.03513 0.00406 0.94285 0.99969 1.05504
0 1000 0.77404 0.00960 1.00014 0.01135 0.01127 0.00042 0.98176 1.00005 1.01912
5 1000 0.60232 0.01555 0.99984 0.01833 0.01812 0.00061 0.96883 0.99987 1.02910

0.5 0.0 0 100 0.88009 0.02384 0.99906 0.02697 0.02662 0.00286 0.95383 0.99827 1.04515
0 1000 0.88097 0.00761 1.00004 0.00866 0.00852 0.00029 0.98526 1.00003 1.01384
5 1000 0.88071 0.01264 0.99972 0.01434 0.01412 0.00045 0.97547 0.99953 1.02381

0.5 0.9 0 100 0.98794 0.01498 0.99993 0.01579 0.01593 0.00152 0.97297 0.99996 1.02554
0 1000 0.98815 0.00473 1.00006 0.00499 0.00508 0.00015 0.99181 1.00017 1.00841
5 1000 1.15940 0.00912 0.99991 0.00985 0.00991 0.00030 0.98419 0.99993 1.01571
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Table 3 Simulation results for the iid case – correlated individual effects (ρxα = 0.975)

ρ ρuv β0 N β̂ a sβ̂a β̂ c sβ̂c σ̂β̂c sσ̂β̂c q0.05
β̂c q0.50

β̂c q0.95
β̂c

T = 3
-0.5 -0.9 0 100 0.84053 0.05337 1.00471 0.06200 0.05958 0.00911 0.90212 1.00423 1.10365

0 1000 0.83811 0.01714 1.00015 0.01986 0.01922 0.00104 0.96743 1.00030 1.03357
5 1000 0.72052 0.02613 1.00045 0.03036 0.03008 0.00143 0.95091 1.00010 1.05134

-0.5 0.0 0 100 0.91995 0.04237 1.00232 0.04676 0.04524 0.00656 0.92776 1.00098 1.08232
0 1000 0.91829 0.01344 1.00008 0.01479 0.01468 0.00073 0.97606 1.00003 1.02419
5 1000 0.91802 0.02195 0.99972 0.02404 0.02387 0.00106 0.95999 0.99958 1.03934

-0.5 0.9 0 100 0.99780 0.02599 0.99892 0.02736 0.02709 0.00348 0.95484 0.99884 1.04426
0 1000 0.99918 0.00829 1.00034 0.00870 0.00870 0.00039 0.98580 1.00019 1.01496
5 1000 1.11660 0.01549 1.00000 0.01652 0.01684 0.00074 0.97245 0.99991 1.02721

0.0 -0.9 0 100 0.79779 0.05781 1.00260 0.06932 0.06759 0.01064 0.89045 1.00292 1.11316
0 1000 0.79799 0.01856 1.00037 0.02190 0.02182 0.00123 0.96435 1.00053 1.03682
5 1000 0.65390 0.02861 1.00026 0.03435 0.03437 0.00167 0.94415 1.00013 1.05946

0.0 0.0 0 100 0.89952 0.04636 1.00019 0.05172 0.05129 0.00788 0.91810 0.99872 1.08645
0 1000 0.89971 0.01465 0.99969 0.01651 0.01649 0.00084 0.97274 0.99946 1.02676
5 1000 0.89958 0.02406 0.99957 0.02686 0.02703 0.00124 0.95436 1.00025 1.04308

0.0 0.9 0 100 1.00240 0.02829 1.00026 0.03037 0.03036 0.00390 0.95087 0.99971 1.05111
0 1000 1.00225 0.00914 1.00011 0.00976 0.00973 0.00041 0.98358 1.00012 1.01679
5 1000 1.14696 0.01769 1.00071 0.01942 0.01917 0.00080 0.96737 1.00097 1.03275

0.5 -0.9 0 100 0.67100 0.07454 1.00618 0.09625 0.09506 0.01792 0.84582 1.00710 1.16736
0 1000 0.66977 0.02416 1.00076 0.03056 0.03058 0.00195 0.95008 1.00010 1.05047
5 1000 0.44067 0.03790 1.00225 0.04982 0.04878 0.00277 0.92001 1.00133 1.08674

0.5 0.0 0 100 0.84164 0.05639 1.00528 0.06957 0.07030 0.01140 0.89500 1.00395 1.12159
0 1000 0.84049 0.01872 1.00075 0.02284 0.02255 0.00124 0.96320 1.00078 1.03795
5 1000 0.83951 0.03170 0.99949 0.03795 0.03714 0.00179 0.93862 0.99917 1.06553

0.5 0.9 0 100 1.01084 0.03683 1.00040 0.04250 0.04091 0.00562 0.93068 1.00103 1.07040
0 1000 1.01019 0.01145 0.99976 0.01313 0.01318 0.00060 0.97824 0.99992 1.02079
5 1000 1.24025 0.02276 0.99896 0.02715 0.02677 0.00124 0.95333 1.00009 1.04154

T = 10
-0.5 -0.9 0 100 0.81771 0.02711 1.00100 0.03188 0.03136 0.00343 0.94769 1.00063 1.05634

0 1000 0.81742 0.00876 1.00005 0.01018 0.01006 0.00036 0.98373 0.99978 1.01790
5 1000 0.68154 0.01334 0.99985 0.01567 0.01572 0.00053 0.97358 0.99972 1.02513

-0.5 0.0 0 100 0.90702 0.02155 1.00169 0.02396 0.02386 0.00242 0.96318 1.00161 1.04065
0 1000 0.90557 0.00685 0.99965 0.00763 0.00762 0.00027 0.98749 0.99941 1.01255
5 1000 0.90597 0.01148 1.00016 0.01265 0.01234 0.00038 0.97973 1.00036 1.02091

-0.5 0.9 0 100 0.99438 0.01333 1.00001 0.01381 0.01398 0.00133 0.97809 0.99992 1.02319
0 1000 0.99441 0.00425 0.99998 0.00445 0.00445 0.00013 0.99287 0.99989 1.00734
5 1000 1.12997 0.00795 0.99996 0.00848 0.00857 0.00026 0.98580 1.00004 1.01395

0.0 -0.9 0 100 0.80262 0.02880 0.99975 0.03337 0.03278 0.00381 0.94516 0.99990 1.05352
0 1000 0.80328 0.00894 0.99991 0.01040 0.01049 0.00038 0.98309 0.99964 1.01725
5 1000 0.65928 0.01374 1.00014 0.01631 0.01639 0.00055 0.97357 1.00013 1.02631

0.0 0.0 0 100 0.90022 0.02277 1.00034 0.02588 0.02470 0.00257 0.95914 1.00007 1.04374
0 1000 0.89992 0.00692 0.99994 0.00784 0.00793 0.00027 0.98698 1.00008 1.01310
5 1000 0.90027 0.01175 1.00032 0.01308 0.01283 0.00040 0.97830 1.00014 1.02199

0.0 0.9 0 100 0.99655 0.01400 0.99979 0.01466 0.01448 0.00130 0.97635 0.99939 1.02568
0 1000 0.99642 0.00430 0.99978 0.00450 0.00462 0.00013 0.99239 0.99973 1.00728
5 1000 1.14052 0.00849 0.99981 0.00904 0.00893 0.00026 0.98499 0.99984 1.01505

0.5 -0.9 0 100 0.76155 0.03299 1.00154 0.03735 0.03662 0.00431 0.93898 1.00155 1.06335
0 1000 0.76113 0.01053 1.00028 0.01206 0.01178 0.00048 0.98089 1.00048 1.02083
5 1000 0.58974 0.01635 1.00073 0.01891 0.01853 0.00067 0.96963 1.00048 1.03202

0.5 0.0 0 100 0.88084 0.02420 1.00014 0.02738 0.02759 0.00305 0.95500 0.99943 1.04608
0 1000 0.88069 0.00780 0.99983 0.00884 0.00882 0.00033 0.98505 0.99990 1.01420
5 1000 0.88086 0.01268 0.99990 0.01440 0.01435 0.00049 0.97669 0.99978 1.02371

0.5 0.9 0 100 1.00036 0.01479 0.99948 0.01576 0.01609 0.00155 0.97314 0.99947 1.02521
0 1000 1.00078 0.00493 0.99988 0.00526 0.00514 0.00016 0.99116 0.99989 1.00859
5 1000 1.17242 0.00943 1.00003 0.01001 0.01007 0.00031 0.98347 0.99992 1.01669
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Table 4 Simulation results for the common factor case - uncorrelated individual effects

ρ ρ∗uv β0 N β̂ a sβ̂a β̂ c sβ̂c σ̂β̂c sσ̂β̂c q0.05
β̂c q0.50

β̂c q0.95
β̂c

T = 3
-0.5 -0.9 0 100 0.92168 0.04152 1.00010 0.04460 0.04313 0.00642 0.92761 0.99981 1.07544

0 1000 0.92227 0.01282 1.00024 0.01377 0.01400 0.00069 0.97732 1.00019 1.02295
5 1000 0.86280 0.01953 0.99959 0.02092 0.02079 0.00095 0.96635 0.99974 1.03359

-0.5 0.0 0 100 0.95940 0.03429 1.00066 0.03576 0.03480 0.00478 0.94435 1.00066 1.06085
0 1000 0.95913 0.01051 1.00011 0.01099 0.01128 0.00053 0.98239 1.00004 1.01839
5 1000 0.95953 0.01560 1.00060 0.01636 0.01698 0.00072 0.97373 1.00085 1.02721

-0.5 0.9 0 100 0.99696 0.02475 1.00112 0.02543 0.02474 0.00317 0.96071 1.00055 1.04261
0 1000 0.99606 0.00766 1.00013 0.00787 0.00796 0.00033 0.98694 1.00001 1.01269
5 1000 1.05508 0.01205 1.00017 0.01241 0.01273 0.00054 0.97998 1.00013 1.02074

0.0 -0.9 0 100 0.90301 0.04485 1.00063 0.04874 0.04809 0.00727 0.92040 1.00134 1.08118
0 1000 0.90374 0.01370 1.00017 0.01498 0.01543 0.00075 0.97615 1.00032 1.02483
5 1000 0.83062 0.02130 1.00035 0.02323 0.02338 0.00101 0.96135 1.00011 1.03899

0.0 0.0 0 100 0.95125 0.03752 1.00247 0.03966 0.03868 0.00525 0.93777 1.00201 1.06933
0 1000 0.94936 0.01151 1.00017 0.01221 0.01247 0.00054 0.97991 1.00024 1.02007
5 1000 0.94927 0.01831 0.99999 0.01928 0.01896 0.00083 0.96895 0.99937 1.03203

0.0 0.9 0 100 0.99619 0.02630 1.00137 0.02722 0.02786 0.00357 0.95706 1.00117 1.04480
0 1000 0.99530 0.00845 1.00038 0.00876 0.00891 0.00037 0.98620 1.00042 1.01513
5 1000 1.06809 0.01302 0.99992 0.01356 0.01434 0.00058 0.97742 0.99971 1.02176

0.5 -0.9 0 100 0.84030 0.05733 1.00153 0.06412 0.06369 0.00944 0.89518 1.00084 1.10874
0 1000 0.84089 0.01796 1.00054 0.02013 0.02046 0.00108 0.96704 1.00111 1.03269
5 1000 0.71981 0.02709 1.00018 0.03092 0.03180 0.00155 0.94952 0.99992 1.05185

0.5 0.0 0 100 0.91643 0.04770 1.00120 0.05248 0.05084 0.00704 0.91432 1.00064 1.08891
0 1000 0.91629 0.01411 1.00023 0.01556 0.01635 0.00079 0.97557 1.00018 1.02679
5 1000 0.91598 0.02248 1.00001 0.02459 0.02520 0.00113 0.95859 1.00079 1.04055

0.5 0.9 0 100 0.99077 0.03442 0.99919 0.03700 0.03694 0.00493 0.93823 0.99973 1.06088
0 1000 0.99157 0.01081 0.99994 0.01158 0.01187 0.00049 0.98069 1.00002 1.01906
5 1000 1.11278 0.01757 1.00029 0.01924 0.01927 0.00081 0.96939 1.00010 1.03267

T = 10
-0.5 -0.9 0 100 0.91033 0.02136 1.00091 0.02312 0.02292 0.00243 0.96371 1.00044 1.03878

0 1000 0.90978 0.00689 1.00021 0.00748 0.00736 0.00025 0.98809 1.00011 1.01232
5 1000 0.84082 0.01013 0.99973 0.01094 0.01084 0.00035 0.98225 0.99953 1.01774

-0.5 0.0 0 100 0.95266 0.01726 1.00041 0.01821 0.01842 0.00187 0.97034 1.00104 1.03013
0 1000 0.95234 0.00559 0.99992 0.00586 0.00589 0.00019 0.99030 0.99973 1.00974
5 1000 0.95245 0.00829 1.00003 0.00871 0.00879 0.00028 0.98627 0.99991 1.01472

-0.5 0.9 0 100 0.99553 0.01250 1.00030 0.01279 0.01291 0.00126 0.97957 1.00032 1.02092
0 1000 0.99529 0.00390 1.00003 0.00398 0.00413 0.00012 0.99345 1.00000 1.00653
5 1000 1.06383 0.00631 1.00007 0.00649 0.00657 0.00020 0.98923 1.00008 1.01081

0.0 -0.9 0 100 0.90314 0.02193 0.99979 0.02380 0.02368 0.00246 0.96016 0.99989 1.03824
0 1000 0.90339 0.00709 0.99977 0.00764 0.00760 0.00025 0.98729 0.99955 1.01254
5 1000 0.83103 0.01028 1.00039 0.01132 0.01128 0.00036 0.98180 1.00044 1.01876

0.0 0.0 0 100 0.94956 0.01804 1.00038 0.01908 0.01909 0.00188 0.96886 1.00051 1.03246
0 1000 0.94935 0.00577 1.00005 0.00611 0.00607 0.00019 0.98984 0.99996 1.01049
5 1000 0.94918 0.00831 0.99989 0.00875 0.00908 0.00027 0.98582 0.99994 1.01412

0.0 0.9 0 100 0.99476 0.01279 0.99987 0.01320 0.01341 0.00126 0.97766 0.99969 1.02234
0 1000 0.99496 0.00404 1.00002 0.00414 0.00427 0.00012 0.99310 1.00014 1.00687
5 1000 1.06785 0.00654 0.99992 0.00680 0.00681 0.00020 0.98851 1.00009 1.01087

0.5 -0.9 0 100 0.88376 0.02337 1.00022 0.02520 0.02647 0.00287 0.95938 1.00069 1.04097
0 1000 0.88413 0.00761 1.00005 0.00819 0.00846 0.00030 0.98662 0.99975 1.01396
5 1000 0.79615 0.01146 0.99992 0.01233 0.01273 0.00043 0.97937 0.99999 1.01964

0.5 0.0 0 100 0.93864 0.01981 0.99972 0.02080 0.02096 0.00218 0.96598 0.99918 1.03464
0 1000 0.93892 0.00625 0.99990 0.00666 0.00669 0.00022 0.98905 0.99997 1.01089
5 1000 0.93888 0.00930 0.99986 0.00994 0.01005 0.00031 0.98393 0.99990 1.01625

0.5 0.9 0 100 0.99406 0.01409 1.00017 0.01468 0.01486 0.00147 0.97606 0.99993 1.02431
0 1000 0.99393 0.00438 0.99999 0.00452 0.00474 0.00014 0.99271 1.00014 1.00745
5 1000 1.08206 0.00709 1.00030 0.00732 0.00761 0.00024 0.98800 1.00019 1.01252
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Table 5 Simulation results for the common factor case – correlated individual effects (ρxα = 0.975)

ρ ρ∗uv β0 N β̂ a sβ̂a β̂ c sβ̂c σ̂β̂c sσ̂β̂c q0.05
β̂c q0.50

β̂c q0.95
β̂c

T = 3
-0.5 -0.9 0 100 0.91782 0.04274 1.00002 0.04607 0.04415 0.00662 0.92459 0.99971 1.07690

0 1000 0.91896 0.01327 1.00041 0.01421 0.01426 0.00074 0.97694 1.00022 1.02420
5 1000 0.86000 0.01952 1.00057 0.02102 0.02103 0.00096 0.96700 1.00026 1.03720

-0.5 0.0 0 100 0.95886 0.03408 1.00023 0.03581 0.03543 0.00493 0.93990 0.99959 1.05895
0 1000 0.95916 0.01047 1.00016 0.01100 0.01145 0.00055 0.98205 0.99998 1.01846
5 1000 0.95927 0.01607 1.00027 0.01682 0.01710 0.00075 0.97343 1.00034 1.02748

-0.5 0.9 0 100 0.99855 0.02441 0.99909 0.02508 0.02494 0.00324 0.95802 0.99823 1.04062
0 1000 0.99947 0.00763 1.00003 0.00785 0.00802 0.00034 0.98723 0.99994 1.01283
5 1000 1.05841 0.01208 0.99987 0.01244 0.01282 0.00055 0.97906 1.00014 1.01984

0.0 -0.9 0 100 0.89798 0.04530 1.00163 0.04921 0.04965 0.00730 0.92211 1.00204 1.08206
0 1000 0.89771 0.01391 1.00048 0.01514 0.01605 0.00079 0.97592 1.00017 1.02563
5 1000 0.82463 0.02116 1.00054 0.02324 0.02384 0.00111 0.96289 1.00009 1.03834

0.0 0.0 0 100 0.95034 0.03779 1.00142 0.04013 0.03985 0.00559 0.93552 1.00022 1.06809
0 1000 0.94972 0.01195 1.00049 0.01266 0.01280 0.00061 0.97952 1.00040 1.02096
5 1000 0.94974 0.01800 1.00056 0.01903 0.01922 0.00084 0.96878 1.00066 1.03216

0.0 0.9 0 100 1.00093 0.02660 0.99975 0.02761 0.02786 0.00352 0.95343 0.99948 1.04466
0 1000 1.00121 0.00842 1.00010 0.00874 0.00896 0.00037 0.98566 1.00017 1.01404
5 1000 1.07449 0.01362 1.00035 0.01413 0.01445 0.00059 0.97739 1.00037 1.02362

0.5 -0.9 0 100 0.82617 0.06098 1.00224 0.06854 0.06787 0.01118 0.88785 1.00266 1.11473
0 1000 0.82648 0.01934 0.99981 0.02147 0.02184 0.00131 0.96506 0.99961 1.03423
5 1000 0.70613 0.02812 1.00042 0.03185 0.03284 0.00180 0.94729 1.00008 1.05256

0.5 0.0 0 100 0.91766 0.04810 1.00294 0.05279 0.05272 0.00754 0.91648 1.00248 1.09066
0 1000 0.91644 0.01493 1.00057 0.01640 0.01700 0.00087 0.97272 1.00060 1.02776
5 1000 0.91625 0.02358 1.00029 0.02578 0.02570 0.00120 0.95758 0.99948 1.04234

0.5 0.9 0 100 1.00738 0.03376 1.00192 0.03639 0.03718 0.00478 0.94246 1.00035 1.06331
0 1000 1.00589 0.01109 1.00046 0.01193 0.01193 0.00050 0.98080 1.00049 1.02032
5 1000 1.12662 0.01777 1.00008 0.01936 0.01967 0.00085 0.96838 1.00046 1.03190

T = 10
-0.5 -0.9 0 100 0.90746 0.02165 1.00006 0.02321 0.02333 0.00253 0.96166 1.00008 1.03801

0 1000 0.90774 0.00694 1.00009 0.00749 0.00747 0.00027 0.98814 1.00009 1.01199
5 1000 0.83936 0.01051 1.00020 0.01138 0.01094 0.00037 0.98136 1.00024 1.01794

-0.5 0.0 0 100 0.95225 0.01717 0.99991 0.01808 0.01857 0.00197 0.96915 1.00003 1.02980
0 1000 0.95226 0.00564 0.99983 0.00595 0.00595 0.00020 0.99002 0.99981 1.00944
5 1000 0.95224 0.00849 0.99982 0.00889 0.00882 0.00029 0.98532 0.99976 1.01414

-0.5 0.9 0 100 0.99679 0.01262 0.99955 0.01297 0.01294 0.00125 0.97842 0.99915 1.02165
0 1000 0.99728 0.00393 1.00009 0.00404 0.00414 0.00013 0.99342 1.00001 1.00678
5 1000 1.06572 0.00634 1.00002 0.00650 0.00660 0.00020 0.98923 1.00003 1.01074

0.0 -0.9 0 100 0.89985 0.02270 0.99969 0.02437 0.02439 0.00260 0.96076 0.99965 1.03900
0 1000 0.90014 0.00741 0.99985 0.00792 0.00781 0.00027 0.98686 0.99987 1.01319
5 1000 0.82689 0.01054 0.99964 0.01144 0.01146 0.00038 0.98127 0.99943 1.01889

0.0 0.0 0 100 0.94907 0.01826 0.99986 0.01933 0.01923 0.00189 0.96943 0.99925 1.03314
0 1000 0.94930 0.00580 1.00001 0.00617 0.00616 0.00020 0.98972 1.00004 1.01010
5 1000 0.94928 0.00868 0.99997 0.00919 0.00914 0.00028 0.98492 0.99990 1.01492

0.0 0.9 0 100 0.99849 0.01258 1.00025 0.01298 0.01343 0.00127 0.97862 1.00021 1.02179
0 1000 0.99829 0.00398 0.99997 0.00411 0.00429 0.00013 0.99295 0.99999 1.00680
5 1000 1.07129 0.00644 0.99995 0.00663 0.00688 0.00020 0.98888 1.00001 1.01068

0.5 -0.9 0 100 0.87789 0.02487 1.00071 0.02645 0.02772 0.00312 0.95739 1.00000 1.04397
0 1000 0.87742 0.00795 0.99991 0.00849 0.00886 0.00034 0.98612 0.99977 1.01456
5 1000 0.78963 0.01178 1.00000 0.01259 0.01307 0.00047 0.97969 0.99996 1.02107

0.5 0.0 0 100 0.93853 0.01983 0.99962 0.02099 0.02138 0.00228 0.96545 0.99949 1.03381
0 1000 0.93903 0.00637 1.00004 0.00676 0.00684 0.00024 0.98908 0.99985 1.01119
5 1000 0.93888 0.00945 0.99989 0.01007 0.01016 0.00034 0.98330 0.99957 1.01666

0.5 0.9 0 100 1.00034 0.01417 0.99980 0.01476 0.01491 0.00144 0.97494 0.99980 1.02364
0 1000 1.00054 0.00445 1.00008 0.00461 0.00475 0.00014 0.99230 1.00008 1.00766
5 1000 1.08837 0.00752 1.00007 0.00762 0.00775 0.00024 0.98745 1.00003 1.01226



A Note on Using Multiple Singular Value
Decompositions to Cluster Complex
Intracellular Calcium Ion Signals
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Abstract Recently (Martinez et al. 2010), we compared calcium ion signaling (Ca2+)
between two exposures, where the data present as movies, or, more prosaically, time
series of images. They described novel uses of singular value decompositions (SVD)
and weighted versions of them (WSVD) to extract the signals from such movies,
in a way that is semi-automatic and tuned closely to the actual data and their many
complexities. These complexities include the following. First, the images themselves
are of no interest: all interest focuses on the behavior of individual cells across time,
and thus the cells need to be segmented in an automated manner. Second, the cells
themselves have 100+ pixels, so that they form 100+ curves measured over time, so
that data compression is required to extract the features of these curves. Third, some
of the pixels in some of the cells are subject to image saturation due to bit depth limits,
and this saturation needs to be accounted for if one is to normalize the images in a
reasonably unbiased manner. Finally, the Ca2+ signals have oscillations or waves that
vary with time and these signals need to be extracted. Thus, they showed how to use
multiple weighted and standard singular value decompositions to detect, extract and
clarify the Ca2+ signals. In this paper, we show how this signal extraction lends itself
to a cluster analysis of the cell behavior, which shows distinctly different patterns of
behavior.

1 Introduction

This paper is about understanding different patterns of behavior of calcium ion sig-
naling (Ca2+) in myometrial cells after exposure to 2,3,7,8-Tetrachlorodibenzo-p-
dioxin (TCDD). The importance of Ca2+ signaling in cell function, e.g, metabolism,
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contraction, cell death, communication, cell proliferation, has been studied in nu-
merous types of cells; see Putney (1998). TCDD itself is a toxicant by-product of
incomplete combustion of fossil fuels, woods and wastes and is known to adversely
effect reproduction, development and the immune system.

The data present themselves as movies of 512 images, or time series of images
after oxytocin exposure. To best appreciate the complexity of the data, readers should
first look at two of the movies, available at

http://statbio.stat.tamu.edu/dataimages.php,

one without and one with TCDD exposure. The first movie is the case with
TCDD exposure, “dir2 T.zip”, while the second movie is without TCDD exposure,
“dir2 C.zip”. When unzipped, the movies are in .avi format, and are 30-40MB in
size. One can view these, for example, using windows media player. The data con-
sist of 512 images. Myometrial cells can be seen in these images, which start out in
their native state and are then exposed to an oxytocin stimulus, at which point Ca2+

expression becomes pronounced. The cells themselves are fixed to a substrate and
do not move over time. Figure 1 gives a sequence of images in the first 2 minutes
of the experiment. The experiment leading to these images is described in detail in
Section 2. However, the movies and Figure 1 show that the data are complex, and
analysis of them is not simple.

Recently, we (Martinez et al. 2010) described methodology for extracting usable
data from these movies over time. We used the singular value decomposition (SVD)
in three different ways.

1. First, we used it to detect the Ca2+ signal by using the initial first EigenPixel
vector. This approach summarizes cell location information across all 512 images
instead of using only one image as is typically done for these data.

2. Second, another SVD was used to extract the Ca2+ signal from the pixel-wise
matrix derived after segmenting the cell region in raw images. These First
EigenSignal and First EigenPixel vectors serve as the templates used to “clean
up” the signal.

3. Third, we used those candidate EigenSignal and EigenPixel vectors to clarify
the Ca2+ signal by applying a new weighted SVD, the WSVD, to impute values
where saturation occurs in the signal.

In this paper, we aim to show that the EigenSignal vectors can be used effectively to
cluster cells within a given treatment, and thus gain insight into the different patterns
of variability of cells given an oxytocin stimulus. In particular, we find that cells are
characterized by the size of their initial Ca2+ response to the oxytocin exposure, and
by how quickly the Ca2+ response decreases following that exposure. To do this, in
Section 2, we describe the experiment. Section 3 briefly describes how one forms the
EigenSignal vectors. Section 4 describes the clustering of the cells. Section 5 gives
concluding remarks.
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Fig. 1 Oxytocin-induced calcium response in myometrial cells during the first 2 minutes of the
experiment. Cells were cultured in a low level of estrogen/progesterone and were treated with 10
nM TCDD for 24 hr.

2 Experiment

The essential statistical details of this experiment are that there are myometrial cells
fixed to different substrates, one group of which is exposed to TCDD and the other
group is not. Shortly after image capturing commences, the cells are exposed to
oxytocin, thus stimulating the Ca2+ signal. Our main goal is to understand how cells
within a given treatment respond to the stimulus: Martinez et al. (2010) focused on
comparing the TCDD exposure to the control. What follows are some of the details
of the experiment.

2.1 Treatments

Myometrial cells, which comprise the contractile middle layer of the uterine wall,
were cultured in three levels of an estrogen/progesterone hormone combination:
basal, low and high. The “basal" level is the one in which the cells where cultured, the
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“low" level of hormone is slightly higher than that found in women before pregnancy
and the “high" level is the level of a pregnant woman at full term. Our clustering work
focuses on the high level of hormone and uses data from two different treatments,
control or TCDD.

The treated cells received a 100 nM solution of TCDD 24 hours before the ex-
periment. Cells were cultured on coverglass chambered slides. All cells were then
washed and loaded with 3 μM Fluo-4 for 1 hour at 37oC: fluorescent probe Fluo-4 is
one of many dyes used to detect changes in Ca2+ within cells. Fluo-4 is typically ex-
cited by visible light of about 488 nm, and emits about 100 fold greater fluorescence
at about 520 nm upon binding free Ca2+. Following loading, cells were washed and
placed on the stage of the confocal microscope. Cells were then scanned five times
to establish the basal level of Ca2+ prior to addition of 20 nM oxytocin, the hormone
used in this study to stimulate Ca2+ signal in these cells. Scanning continues at 10
second intervals for approximately 85 minutes, leading to 512 images (100 × 100
pixels) containing 20–50 cells per treatment.

2.2 Imaging

The data captured in these experiments are digital images of Ca2+ fluorescence
of individual cells. The bit depth of images used in this study is of 8 bits, which
translates to 28 or 256 possible grayscale values in the image. Unfortunately, it often
happens that the maximum concentrations detected in these images are limited by
the bit depth. This may sometimes result in saturation and lead to underestimation
of changes in Ca2+ signals, especially when multiple treatments are performed and
accurate evaluation of these differences is required.

Figure 1 shows a response to the oxytocin stimulus, in cells treated with TCDD
and cultured in a low estrogen/progesterone hormone level. The reaction due to the
oxytocin challenge appears maximal at 60 seconds and then the cells return to their
steady state. Notice that not all cells go back to their steady state at the same rate. In
fact, there is residual fluorescence in some cells at the top of each of the images in
Figure 1, long after the initial peak of fluorescence at 60 seconds.

3 Methods

This section describes the methodology of Martinez et al. (2010) used to obtain the
EigenSignal and EigenPixel vectors. Effectively, the algorithm works as follows.

• Do a rough segmentation of each cell.
• Apply the SVD to extract initial EigenSignal and EigenPixel vectors.
• Use these initial vectors to perform more refined segmentation.
• Use a weighted SVD to account for image saturation.
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3.1 EigenPixels and EigenSignals

We first describe how to obtain “eigen pixel" and “eigen Ca2+ signal" vectors, using
the SVD. To accomplish this, we will present the singular value decomposition
in the context of our data, assuming that a rough segmentation of the cells has
been performed. We represent each cell as a matrix of Ca2+ intensity, in grayscale
values, that has a number of pixels which comprise the cell, for all 85 minutes of
the experiment. Each matrix has n rows and m columns, where n is the number of
pixels that represent the cell and m is the number of time points in the experiment.
All cells were observed the same number of times so m = 512. Let Xk represent the
n×m calcium signal matrix for the kth cell. The singular value decomposition of Xk
is

Xk = UkSkV T
k . (1)

Here Vk is a m× n matrix whose column vectors, vk j ∈ Rm, form an orthonormal
basis for the Ca2+ signal, and are called EigenSignal vectors. In (1), Uk is a n× n
matrix whose column vectors, uk j ∈Rn, form an orthonormal basis for the pixels of
the cell, called EigenPixel vectors. In addition, Sk is a n×n square matrix of singular
values arranged from largest to smallest sk1 ≥ sk2 ≥ ...≥ skn.

We can generate a rank-L matrix that approximates Xk by using the first L uk j and
vk j vectors, i.e.

XL
k =

L

∑
j=1

uk jsk jvT
k j. (2)

In equation (2), XL
k is the best rank-L matrix that approximates Xk, in the sense that

it minimizes the sum of squares difference between XL
k and Xk among all rank-L

matrices, see Trefethen & Bau (1997). Low rank approximations are useful because
less data are needed to represent the original matrix; these techniques are often used in
image compression. We will use the smallest number of EigenPixel and EigenSignal
vectors that summarize both pixel and Ca2+ signal information.

3.2 Ca2+ Rough Segmentation

As may be apparent from the sequence of images shown in Figure 1, it is difficult to
distinguish cell boundaries before oxytocin is delivered. For this reason, in order to
determine the location of the cells, as well as their boundaries, it is common to use
the brightest image to isolate the cells. We then draw large rectangular regions each
containing a cell. If Xk represents the matrix of pixels× time, we obtain a summary
of the pixel information by taking the SVD of Xk and obtaining the first EigenPixel.
In the data, the first singular value explains the majority of the variance in these data,
hence the first EigenPixel summarizes all the pixel information to one vector. We
take this vector and plot it spatially on the corresponding pixel location. What we
get is a 2-dimensional image where the pixel intensity reflects the importance of the
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Fig. 2 Top Row: Image of the First EigenPixel vector obtained from the SVD of the rough 777 ×
512 pixel-wise matrix and the resulting segmentation of cell 2 after using the First EigenPixel to
perform the segmentation. Bottom Row: The corresponding 131 × 512 pixel-wise matrix for this
new segmentation and the corresponding first EigenSignal over the 85 minute experiment.

pixel in representing the Ca2+ signal of this cell (Top left panel of Figure 2). This
image is a better candidate for use in identification of the Ca2+ signal than the “peak”
image because it summarizes the importance of each pixel across the 512 images in
the experiment.

3.3 Ca2+ Final Segmentation

Once we obtain this first EigenPixel image from Xk we use the EBImage package
from Bioconductor to segment and index the cell, R Development Core Team (2008).
We first blurred the image to smooth out any noisy pixels. We then used thresholding
to pick out the region of high pixel values which usually contains the cell, and finally
used a watershedding algorithm to close the cell boundaries and separate other cell
chucks that are close together. The result is the final segmentation of the cell shown
in the top right panel of Figure 2. In effect, we have chosen the region with highest
EigenPixel intensity which in turn should give us the spatial location of the pixels that
contain most of the Ca2+ signal information. We then collect each of the 131 pixels in
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this final segmentation from each of the 512 images and get a matrix representation
of the cell, see the bottom left panel of Figure 2. We used this segmentation process
to generate contours of each cell, and used these contours to pick out the cell position
from every image at every one of the 512 time points. This process yielded 20 to
50 cells from each treatment. In our data, we found that the first EigenSignal and
EigenPixel vectors that correspond to this first singular value, summarize almost all
the Ca2+ signal and pixel information in each of these matrices.

The oscillatory behavior observed in Figures 2 and 3 is present because cal-
cium ions (Ca2+) are responsible for many important physiological functions. In
smooth muscle cells that surround hollow organs of the body, transient increases in
intracellular Ca2+ can be stimulated by a number of hormones to activate smooth
muscle contraction. Because sustained elevation of Ca2+ is toxic to cells, Ca2+ sig-
nals in many cell types frequently occur as repetitive increases in Ca2+, referred to
as Ca2+ oscillations. The periodic Ca2+ spikes which increase with increasing hor-
mone concentration are thought to constitute a frequency encoded signal with a high
signal-to-noise ratio which limits prolonged exposure of cells to high intracellular
Ca2+, see Sneyd et al. (1995). Interestingly, the frequency of Ca2+ oscillations in
smooth muscle cells is relatively low (e.g., 2 to 10 mHz), see Burghardt et al. (1999),
whereas in liver cells which use Ca2+ oscillations to stimulate ATP production in
mitochondria and the breakdown of glycogen to glucose, the frequency of Ca2+ os-
cillations is much greater (e.g., range from 5 to 100 MHz), see Barhoumi et al. (2002,
2006). The spatial and temporal organization and the control of these intracellular
Ca2+ signals is of considerable interest to cellular biologists.

3.4 Cell Saturation and the Weighted SVD

The grayscale values of some of the pixels that represent cell 2, shown in Figure 2,
reach a ceiling of 255, see Figure 3. The bottom panel of Figure 3 shows the intensity
of 20 pixels over time and it is clear that some reach a maximum intensity at values
that are larger than 255 and some at much lower values. Martinez et al. (2010)
implement a novel weighted SVD, WSVD, using the low rank matrix approximation
of Gabriel & Zamir (1979) where they introduce the use of indicators in the weights,
as in Beckers & Rixen (2003), to treat the saturated pixels as missing data, with a
clever choice of weights that allows for accurate recovery of the original signal.

Briefly, the method works as follows. Let uuu and vvv be the first EigenPixel and
EigenSignal associated with the second SVD used to extract the putative Ca2+ signal,
which includes saturated pixels, so that uuu and vvv comprise most of the pixel and signal
information. The matrix of interest is X

′
k. Let the dimensions of the X

′
k be n×m;

because most of the variation is explained by the first component in the SVD the
rank one approximation can be obtained by minimizing the error

n

∑
i=1

m

∑
j=1

(x′ki j −uiv j)2 (3)
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Fig. 3 Top: The Calcium intensity curves over the 85 minute experiment of the 131 pixels in the
131 × 512 pixel-wise matrix X

′
k . Bottom: 20 randomly selected pixels from X

′
k .

with respect to uuu and vvv. We also wish to weight each term in the double summation so
that it removes the influence of saturated pixels and takes into account the appropriate
variation. We let the weights be wi j = Ii j/(uiv j)2, where Ii j = 0 when a pixel is
saturared, i.e. x′ki j = 255, and Ii j = 1, otherwise. The minimization problem becomes

n

∑
i=1

m

∑
j=1

wi j(x′ki j −uiv j)2. (4)

We solve the minimization by alternating between ui and v j. Fixing j, we can expand
the expression in (4), let A j(uuu) = ∑i Ii j(x′ki j/ui)2 and B j(uuu) = ∑i Ii j(x′ki j/ui) and we
get that v′j = A j(uuu)/B j(uuu) solves that portion of the minimization. Similarly if we fix i,
u′i = Ai(vvv)/Bi(vvv), where Ai(vvv)=∑ j Ii j(x′ki j/v j)2 and Bi(vvv) =∑ j Ii j(x′ki j/v j). The new
proposed EigenPixel and EigenSignal vectors are uuunew = uuu′/‖uuu′‖ and vvvnew = vvv′/‖vvv′‖
respectively. This gives us a recurrence relation that can used to obtain a clearer
version of the EigenPixel and EigenSignal, where the EigenSignal will represent the
clarified Ca2+ signal of interest. The missing values are imputed by the corresponding
uiv j after the convergence of the algorithm. We check to make sure that any imputed
value for initially saturated pixels does not fall below its saturated value.
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4 Clustering

We now aim to understand how the cells within a given treatment respond to the
oxytocin exposure. Here we investigate the high hormone level data, both with and
without TCDD exposure. To do clustering, we take the final first EigenSignal vectors
described in Section 3.4, but restricted to the first 2 minutes after exposure, the so-
called “peak" time where the response is the greatest. In other analyses, we found
that the greatest difference between the control and TCDD-treated cells occurred
in this peak period, at least for peak height and peak area under the curve. Our
interest is in understanding if the two groups have structures within themselves, and
if the structures are comparable. For clustering, we used the “pam( )" function in
the “cluster" package in R to cluster the first EigenSignal vectors. This function
implements a more robust version of k-means clustering, and we used an L1 metric
to measure distances between EigenSignal vectors.

We first normalized the data so that the initial values were 1.0, and hence what is
observed is a type of fold change. Figures 4 and 5 give the results of clustering the first
EigenSignal vectors with 3 clusters in both the control and the TCDD-treated cells:
the former gives a plot, while the latter gives a heat map of the cells within a cluster
over time. Roughly, in both control and TCDD-treated, looking at either the line
plots or the heat maps, there are three modes of action, which can be characterized as
(a) much reduced peak heights (Cluster 3 in the control and 2 in the TCDD-treated);
(b) less rapid decline over time for those with higher peak heights, with for example
cluster 1 in the controls and cluster 3 in the TCDD-treated cells showing less decline
over time. Looking at the sizes of the clusters, it is immediately apparent that the
control cells have overall a greater response than the TCDD-treated cells, a finding
shown to be statistically significant in Martinez et al. (2010).

5 Conclusion

Martinez et al. (2010) developed a methodology for extracting low-dimensional
representations from images taken over time of cells. The methodology includes cell
segmentation, normalization, and imputation to avoid image saturation.

In this note, we have shown that such methods can also be used to cluster cells, and
to learn more about the different patterns of response among a group of cells given
the same treatment. In the data analysis, the basic responses to oxytocin exposure
were qualitatively the same with three modes of action, but the TCDD-exposed cells
and the control cells differed in the frequency of the modes of action.
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Fig. 4 Three clusters of the first EigenSignal vectors. The clusters on the right are those from cells
treated with TCDD, while those on the left are controls. All were from the culture grown in the
Low Hormone level.
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On the self-regularization property of the EM
algorithm for Poisson inverse problems

Axel Munk and Mihaela Pricop

Abstract One of the most interesting properties of the EM algorithm for image
reconstruction from Poisson data is that, if initialized with a uniform image, the first
iterations improve the quality of the reconstruction up to a point and it deteriorates
later dramatically. This ’self- regularization’ behavior is explained in this article for
a very simple noise model. We further study the influence of the scaling of the kernel
of the operator involved on the total error of the EM algorithm. This is done in a
semi- continuous setting and we compute lower bounds for the L1 risk. Numerical
simulations and an example from fluorescence microscopy illustrate these results.

1 Introduction

1.1 The EM algorithm for Poisson inverse problems

In this article we consider the problem of estimating an intensity λ of a spatial
Poisson point process with the help of the EM-ML algorithm based on n independent
realizations of another spatial point process, whose intensity μ is related to λ with
the help of an integral operator

Aλ = μ (1)

where A : L1(Ω) → L1(Σ) is a linear integral operator with positive kernel a :
Σ ×Ω → R and Ω ⊂ Rd , Σ ⊂ Rl are closed, bounded subsets of the corresponding
Euclidean spaces Rd , respectively Rl .
We have at our disposal the data {Yi}i=1,...,n which are modelled as Poisson dis-
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tributed random variables with expectation μ(tni) =
∫
Ω a(tni,s)dλ (s), where tni rep-

resent the discretization points in the data space corresponding to the sample size
n. Estimating the intensity function λ in this setting is a classical theme and has
been investigated by various communities. Areas of application include positron
emission tomography (Vardi, Shepp & Kaufman 1985), molecular microscopy or
various problems in astrophysics (Bertero & Boccacci 1998), (Meinshausen, Rice
& Schücker 2006), (Bertero, Boccacci, Desiderà & Vicidomini 2009) among others.
Nowadays, there is a vast amount of reconstruction methods and algorithms avail-
able, many of them rely on penalisation techniques, also in combination with fast
algorithms (see (Natterer 2001) and the references given there). A minimax approach
for this statistical inverse problem was studied in (Johnstone & Silverman 1990),
(Koo & Chung 1998) or (Korostelëv & Tsybakov 1993). Wavelet- based methods
were discussed in (Cavalier & Koo 2002) and (Antoniadis & Bigot 2006).
One of the most prominent algorithms in this context has been suggested by Vardi,
Shepp and Kaufman (1985) and results from the expectation maximization (EM) al-
gorithm, introduced by Dempster, Laird and Rubin (1977) in a more general context.
In the Poisson set up, this algorithm is also denoted as Richardson- Lucy algorithm. In
the above paper the problem is stated in a discrete formulation, i.e. the data {Yi}i=1...n
is modeled as random variables with distribution Po((Aλ )i), a Poisson distribution
with intensity (Aλ )i and λ = (λ1, . . . ,λm) being a vector. Here (Aλ )i = ∑m

j=1 ai jλ j
and the matrix A fulfills

n

∑
i=1

ai j = 1

ai j ≥ 0,∀i = 1, . . . ,n, j = 1, . . . ,m,

and we assume w.l.o.g. that

m

∑
j=1
λ j = 1.

We are interested in estimating the discrete unknown intensity
{
λ j
}

j=1,...,m of this
Poisson process which models the emission density in medical imaging techniques
like PET. The emission space is seen as a grid with λ j constant in each box j. The
’exact solution’ for each discretization is going to be denoted with

{
λ j
}

j=1,...,m and
the discretization of the matrix A with ai j.The number of total emissions in box j
has mean ∑n

i=1λ jai j = λ j.
This is a typical estimation problem from incomplete data which can be solved with
the help of the EM algorithm. The complete data is represented by the number of
emissions in box j detected in tube i

{
Ni j

}
i=1...n, j=1...m, which is unobservable. The

likelihood function is

LN(λ ) =
n

∏
i=1

m

∏
j=1

exp(−λ jai j)
(λ jai j)Ni j

Ni j!
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and the log-likelihood function is

lN(λ ) =
n

∑
i=1

m

∑
j=1
−λ jai j + Ni j log(λ jai j)− log(Ni j!)

= −
m

∑
j=1
λ j +

n

∑
i=1

m

∑
j=1

Ni j log(λ j)+
n

∑
i=1

m

∑
j=1

Ni j log(ai j)− log(Ni j!).

In the estimation step of the EM algorithm we start with an initial value f old for λ
and we compute the conditional expectation as

E(Ni j | {Yi}i=1,...,n , f old)
(1)
= E(Ni j | f old ,Yi)

(2)
= f old

j
Yiai j

∑k f old
k aik

.

In (1) we used that {Yi}i=1,...,n are independent random variables and in (2) that,
since for any i = 1, . . . ,n

{
Ni j

}
j=1,...,m are independent Poisson distributed random

variables with parameter f old
j ai j and∑m

j=1 Ni j = Yi, the conditional expectation of Ni j

given ∑m
j=1 Ni j is a binomial random variable with parameters

(
Yi,

f old
j ai j

∑m
j=1 f old

j ai j

)
and

E(Ni j | f old ,Yi) = f old
j

Yiai j

∑m
j=1 f old

j ai j
. After estimating Ni j with E(Ni j | f old ,{Yi}i=1,...,n),

in the maximization step we choose Ni j as the maximum likelihood estimator in
lE(Ni j |{Yi}i=1,...,n, f old)(·), which is again equal to E(Ni j | f old ,Yi) = f old

j
Yiai j

∑m
j=1 f old

j ai j
.

Hence, we obtain

f new
j = E(

n

∑
i=1

Ni j | f old ,{Yi}i=1,...,n) =
n

∑
i=1

E(Ni j | f old ,{Yi}i=1,...,n)

= f old
j

n

∑
i=1

Yiai j

∑m
k=1 f old

k aik
, j = 1, . . . ,m. (2)

This is a gradient-type algorithm which maximizes the log- likelihood of the data
{Yi}i=1,...,n with respect to

{
λ j
}

j=1,...,m. We remark that

m

∑
j=1

f new
j =

m

∑
j=1

f old
j

n

∑
i=1

ai jYi

∑m
k=1 aik f old

k

=
n

∑
i=1

Yi

m

∑
j=1

ai j f old
j

∑m
k=1 aik f old

k
=

n

∑
i=1

Yi. (3)

We also notice that, since {Yi}i are independent, Poisson distributed random vari-
ables, ∑n

i=1 Yi is also Poisson distributed with parameter

n

∑
i=1

(Aλ )i =
n

∑
i=1

m

∑
j=1

ai jλ j =
m

∑
j=1
λ j

n

∑
i=1

ai j =
m

∑
j=1
λ j = 1.
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This algorithm can be extended in an obvious manner to the model (1). In fact,
the continuous version of the EM algorithm for positive linear integral equations
was proposed for the first time in (Kondor 1983). In (Shepp & Vardi 1982) a
semi-continuous model was proposed for emission tomography, where the intensity
of the Poisson process λ is a density. In this case the random variables {Yi}i=1...n
are distributed as Po((Aλ )i), where (Aλ )i =

∫
Ω a(tni,s)λ (s)ds, the kernel ai(s) =

a(tni,s) fulfills

n

∑
i=1

ai(s) = 1 a.e. (4)

ai(s) ≥ 0 a.e.,

and it holds ∫
Ω
λ (s)ds = 1 a.e. (5)

From Kuhn- Tucker conditions for maximizing the log- likelihood of the data we
obtain in analogy to (2) the fixed- point semi-continuous EM algorithm

fk+1 = fk

n

∑
i=1

aiYi∫
Σ ai(s) fk(s)ds

, (6)

where f0 ∈ L1(Ω) is a positive initial guess.
In (Mair, Rao & Anderson 1996) the authors remark that the emission inten-
sity is not necessarily a density and the theoretical properties of the EM algo-
rithm can be extended to the continuous case for the weak topology. Hence, a
more general approach is studied in this paper. In this case we want to reconstruct
the intensity λ of a Poisson process as a finite signed Borel measure belonging
to the Banach space (B,‖ · ‖B) of Borel measures on Ω with the total variation
norm ‖λ‖B = sup{λ (C) : C ⊆Ω Borel set}. Now, we have independent Poisson
distributed random variables {Yi}i=1,...,n with parameters

∫
Ω ai(s)dλ (s), with ai ≥ 0,

∑n
i=1 ai(s) = 1 a.e. and

∫
Ω dλ = 1. It follows that ∑n

i=1 Yi is also a Poisson random
variable with parameter ∑n

i=1
∫
Ω ai(x)dλ (x) =

∫
Ω ∑

n
i=1 ai(x)dλ =

∫
Ω dλ = 1. The

EM algorithm is written as

fp+1(s) = fp(s)
n

∑
i=1

Yiai(s)
(T fp(s))i

(7)

where T : B→Rn, (Tλ )i =
∫
Ω ai(x)dλ (x). We remark that fp is a random measure

i.e. a measurable mapping from a probability space (Γ ,K,P) to (B,‖ · ‖B). We endow
the space of random measures with the metric

β (λ ,ν) =
∫
Γ
‖λ (s)−ν(s)‖B dP (s) ,



On the self-regularization property of the EM algorithm for Poisson inverse problems 435

see (Crauel 2002). Similar to the finite dimensional case we remark that P−almost
surely ∫

Ω
d fp+1 =

∫
Ω

n

∑
i=1

Yiai(s)
(T fp)i

d fp

=
n

∑
i=1

Yi

(T fp)i

∫
Ω

ai d fp =
n

∑
i=1

Yi. (8)

Note again, the analogy to the basic algorithm (2) and the equality (3).

1.2 Convergence Properties

The numerical convergence of the EM algorithm in the discrete model towards the
maximum likelihood estimator was investigated in a series of papers see e.g. (Vardi,
Shepp & Kaufman 1985), (Csiszár & Tusnády 1984), (Cover 1984) or (Iusem 1992)
and is satisfactorily understood nowadays. However, the more subtle issue is the in-
vestigation of statistical properties of this estimator. This turns out to be a surprisingly
difficult problem and we are far from a theoretical understanding. Since computing
the maximum likelihood estimator in the continuous case is an ill-posed problem,
letting the EM algorithm converge to the MLE will give an inconsistent estimator in
general, when the dimension of the underlying parameter space is too large compared
to the number of observations. This inconsistency of the algorithm was noticed in
(Anderson, Mair & Rao 1996). This problem can be overcome by additional regu-
larization of the maximum likelihood estimator e.g. by smoothing every step of the
EM algorithm like in (Eggermont 1999), (Latham & Anderssen 1994), (Silverman,
Jones, Nychka & Wilson 1990) or by introducing a penalization term into the EM
algorithm like in (Eggermont& LaRiccia 1996), (Fessler 1994) and many others.
Nonetheless, the (unpenalized) EM algorithm (and faster variants thereof) is used
in practice (Natterer 2001), (Hudson & Larkin 1994), (Ahn & Fessler 2003) and
typically it is terminated in an early stage of iteration, tending to surprisingly good
results of reconstruction. The typical situation (observed and documented in numer-
ous simulation studies and confirmed on many real life applications see e.g. (Shepp
& Vardi 1982), (Bissantz , Mair & Munk 2008), (Vardi & Lee 1993), (Mair, Rao &
Anderson 1996), (Szkutnik 2000) and the references given there) is the following. If
the EM algorithm is initialized with a uniform image, the iterates initially improve,
then after a certain point gradually deteriorate in appearance and accuracy. We can
observe in Figure 1 and Figure 2 this behavior of the EM algorithm for both simulated
and experimental Poisson data for a convolution and uniform initial guess.
The source for the experimental data is 4π- microscopy which aims for a reconstruc-
tion of a certain protein distribution in a cell (see e.g. (Lang, Müller, Engelhard &
Hell 2007) and (Vicidomini, Hell & Schönle 2009)). In our experimental data, the
distribution of the trans-Golgi protein taken from the VERO cells of a green African
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monkey is studied. The aim of the research is to develop a vaccine against a broad
range of viruses.

1.3 Self-Regularization

We would like to call the above described property self-regularization due to the fact
that iteration itself has the effect of regularization up to a certain point. Subsequent
iterations tend to undersmoothing until finally the ML estimator is achieved which,
due to the ill posedness of the problem, lacks consistency, in general. A similar phe-
nomenon for other iterative algorithms has been recently investigated by (Bissantz,
Hohage, Munk & Ruymgaart 2007) and in the context of boosting algorithms by
(Bühlmann & Yu 2003). For the linear algorithms considered there it is possible to
compute the mean square error as a function of the iteration step k and to compute
the minimizing k = k(n,λ ,σ), which typically depends on the sample size n, the
smoothness of the true signal λ , the noise level σ and the regularization properties
of the underlying algorithm. Early stopping of these algorithms introduces already
a regularization step, which can be shown to be minimax-optimal in certain settings
(see (Bissantz, Hohage, Munk & Ruymgaart 2007)).
For the EM algorithm in the present setting, a similar behavior can be observed
numerically, however a theoretically understanding is very difficult due to the non-
linearity of the EM algorithm in the Poisson case, i.e. the algorithm can not be written
as an iteration of a linear operator T acting on the data, f n+1 = T k f n.

1.4 Stopping Rules

This observation has initiated some research how to stop the EM properly. We will
give a brief overview. One approach in choosing the stopping rule for the EM al-
gorithm is based on statistical hypothesis testing. A first stopping criterion based
on Pearson’s criterion test was proposed in (Veklerov & Llacer 1987). In (Hebert,
Leahy & Singh 1988) a new rule is proposed for approximating the maximum like-
lihood estimator by a stopped EM algorithm, using the Poisson distribution of the
data which allows the use of Pearson’s criterion for multinomial distribution. Herbert
(1990) proposed another stopping rule using Wilcoxon’s signed rank statistics. These
methods suffer from lack of robustness, which was overcome to some extent through
the multi- scale rule proposed in (Bissantz , Mair & Munk 2005). Roughly speaking
this criterion tests simultaneously at all points whether the residuals are consistent
with the distribution of the noise.
Cross- validation as a stopping rule for the EM algorithm was proposed in (Coakley
1991) and (Coakley & Llacer 1991) and implemented in (Llacer, Veklerov, Coakley,
Hoffman & Nunez 1993). A single set of data is randomly split to produce two (or
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Exact solution for simulated case First step of the EM algorithm
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Fig. 1 Evolution of the EM algorithm for simulated data with convolution operator and uniform
initial guess
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Experimental data First step of the EM algorithm
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Fig. 2 Evolution of the EM algorithm for experimental data with convolution operator and uniform
initial guess



On the self-regularization property of the EM algorithm for Poisson inverse problems 439

more) data sets possessing similar statistical properties. The estimate corresponding
to the full data is obtained by adding the image estimates for each data set. This
stopping rule proves to be robust in practical applications but shows difficulties at
high count levels. To overcome this, in (Johnson 1994) a jackknife criterion and in
(Coakley 1996) a bootstrap method is proposed.
Another approach, using the limit properties of the EM algorithm was proposed in
(Kontaxakis & Tzanakos 1993). The algorithm is stopped when a threshold value
has been reached which corresponds to convergence to the maximum likelihood es-
timator. But, as we argued before, this does not seem to be a good idea since the
problem we want to study is ill-posed and the maximum likelihood estimator will be
very irregular and hence is far away from the exact solution.
Nonetheless, all these methods lack any theoretical foundation, in the sense, that
there are no results available which guarantee statistical convergence of the properly
stopped EM algorithm to the true intensity λ . To our knowledge the only work in
this direction is due to (Resmerita, Engl, & Iusem 2007) in the context of a deter-
ministic linear model. Their result, however, requires a supplementary condition on
the boundedness of the iterations, which was not proven until now (see (Resmerita,
Engl & Iusem 2008)).
The convergence analysis so far does not explain the self-regularization property of
the EM algorithm. In our paper we take a first step in this direction and we explain
this regularizing behavior in some specific cases. Moreover, we prove that for the
right scaling this self- regularization improves asymptotically and we derive lower
bounds for its total error.

2 Scaling properties of the EM algorithm

In this section we study the influence of the scaling of the kernel of the operator A on
the total error of the EM algorithm. To this end we mention that property (8) of the
EM algorithm is crucial for its convergence analysis. We will see that this property
implies a rescaling of the kernel in order to be consistent. We consider the setting
introduced in (Anderson, Mair & Rao 1996) (see also the Introduction). Under the
normalizing condition (4) we can not obtain a consistent estimator by stopping this
algorithm.

Lemma 1. The total error ‖ fp−λ‖β of the step p of the EM algorithm (7) is bounded
from below by 2exp(−1), for any p≥ 1 and n≥ 1.

Proof. The following inequalities hold true:
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‖ fp−λ‖β =
∫
Γ
‖ fp(γ)−λ‖B dP(γ)

=
∫
Γ

sup
{| fp(γ)(C)−λ (C)| : C Borel set ,C ⊆Ω}

dP(γ)

≥
∫
Γ
| fp(γ)(Ω)−λ (Ω)|dP(γ)

(7)
=

∫
Γ
|

n

∑
i=1

Yi(γ)−
∫
Ω

dλ |dP(γ)

= E

[
|

n

∑
i=1

Yi−
∫
Ω

dλ |
]

(4)
= E

[
|

n

∑
i=1

Yi−1|
]

= 2exp(−1) ,

since for any Poisson random variable Y with parameter θ it holds

E [|Y −θ |] =
∞

∑
k=0

|k−θ |exp(−θ )
θ k

k !

= exp(−θ )

{
[θ ]

∑
k=0

(θ − k)
θ k

k !
+

∞

∑
k=[θ ]+1

(k−θ )
θ k

k !

}

= exp(−θ )

{
[θ ]

∑
k=0

θ k+1

k !
−

[θ ]−1

∑
k=0

θ k+1

k !
+

∞

∑
k=[θ ]

θ k+1

k !
−

∞

∑
k=[θ ]+1

θ k+1

k !

}

= 2exp(−θ )
θ [θ ]+1

[θ ] !
= 2θP{Y = [θ ]} .

Here [θ ] is the integer part of θ . This suggests that the L1 risk does not depend on n
and it can not converge towards 0. &'
Hence we notice that the normality property for the kernel i.e. ∑n

i=1 ai = 1 implies
that any stopping rule will not provide a consistent estimator. We remark the scaling
properties of the EM algorithm: by multiplying the step fk with a constantα , the next
step fk+1 does not change, while if the data is scaled by a constant α , every iteration
of the EM algorithm will be multiplied with α . In other iterative regularization
methods like Landweber or iterated Tikhonov (see (Engl, Hanke, Neubauer 1996))
scaling the k-step or the data by a constant α implies scaling the (k + 1)-iteration
by α . Moreover, the scaling of the kernel ∑n

i=1 ai = α implies that the sample size
∑n

i=1 Yi is Poisson distributed with parameter α . As we will see in the next lemma, a
necessary condition for the lower bound to go to 0 is that α converges to infinity as
n goes to infinity. Therefore we consider now the rescaled EM algorithm
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fp+1(s) =
fp(s)
α

n

∑
i=1

Yiai(s)
(T fp(s))i

(9)

Lemma 2. Let us assume that ∑n
i=1 ai = α and consider the rescaled algorithm (9).

Then ∑n
i=1 Yi is Poisson distributed with parameter α and the expected TV- risk has

a lower bound equal to 2 exp(−α)
[α ]! α [α ].

Proof. The proof is similar to the proof of Lemma 1. We have

‖ fp−λ‖β ≥
∫
Γ
| fp(γ)(Ω)−λ (Ω)|dP(γ)

=
∫
Γ
| 1
α

n

∑
i=1

Yi(γ)−
∫
Ω

dλ |dP(γ)

=
1
α

E

[
|

n

∑
i=1

Yi−α
∫
Ω

dλ |
]

=
1
α

E

[
|

n

∑
i=1

Yi−α|
]

= 2exp(−α)
α [α ]

[α] !
(10)

&'
Lemma 3. Let us consider the rescaled algorithm with α = αn and ∑n

i=1 ai = αn. If
αn → ∞ as n→ ∞ then

‖ fp−λ‖β ≥
√

2π
e
α−

1
2

n + o(1). (11)

Proof. We use the properties of Γ function to obtain a lower bound for the risk. It is
well known that for integral, positive values [αn] we have thatΓ ([αn]) = ([αn]−1) !.
We abbreviate that an ≈ bn if an

bn

n→∞→ 1. We also have with Stirling’s formula
Γ (αn)

αn
αn− 1

2 exp(−αn)
=
√

2π+ o(1). It follows that

exp(−[αn])
[αn][αn]− 1

2

([αn]−1) !
=
√

2π+ o(1).

Hence it holds

exp(−[αn])
[αn]

[αn]

[αn] !
≈

√
2π√
[αn]

.

Since 1 ≤ [αn] ≤ αn < [αn] + 1 we have that exp(−[αn]−1) < exp(−αn) ≤
exp(−[αn]) and [αn][αn] ≤ α [αn]

n . Putting these relations together we can write the
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lower bound as
√

2π
e

1√
[αn]

≈ exp(−[αn]−1)
[αn][αn]

[αn] !
≤ exp(−αn)

α [αn]
n

[αn] !
.

&'
Remark 1. As a direct consequence of the Lemma 2 under the assumption (4) for
the semi-continuous formulation (6) of the EM algorithm for λ ∈ L1(Ω), the total
error of the step k of the EM algorithm E

∫
Ω | fk(s)−λ (s)|ds is bounded from below

by 2exp(−1), for any k ≥ 1 and n≥ 1. Moreover, Lemma 2 and 3 also holds for the
L1− risk E

∫
Ω | fk(s)−λ (s)|ds.

From Stirling’s formula it holds exp(−n) nn

n! = o
(

1√
n

)
. Hence the right hand side of

(10) exp(−α) α
[α]

[α ] ! → 0 for α = n. This suggests us that instead of the data Yi to use
1
nYi and to scale the kernel ai proportionally, i.e. ∑n

i=1 ai = n. Since ai(s) = a(tni,s),
this condition implies 1

n ∑
n
i=1 a(tni,s)

n→∞→ ∫
Σ a(t,s)dt. We will see that, while in the

case of the normal scaling in (4) the numerical simulations do not suggest that the
minimum of the L1−risk goes to zero, for the n−scaled kernel and the EM algorithm

fk+1 =
fk

n

n

∑
i=1

aiYi∫
Σ ai(s) fk(s)ds

.

this minimum goes to zero and, from Stirling’s formula, a lower bound for the L1−
risk is o

(
1√
n

)
.

We illustrate in the following the scaling property of the EM algorithm by some
numerical results. We fix the operator A as a convolution with a gaussian kernel
restricted on the domain [0,1]× [0,1]. First we choose the exact solution λ as the
Heaviside function and we apply the EM algorithm scaled with 1,

√
n and n, respec-

tively. The number of simulations is always N = 100. We display in Figure 3 (a)
the minimum L1− risk as the sample size increases from 300 to 15,000. The lack
of consistency becomes apparent in the first case and the improvement for a bigger
scale. In Figure 3 (b) we consider a smooth function λ (s) = 1+cos(s) and the same
scalings as before. The previous remark applies to this simulation, too. Moreover, the
improvement in the rates for the minimum error of the

√
n, respectively n scaling is

obvious. In Figure 4 we plotted the total error E‖ fk −λ‖L1 for the first 100 iterations
if the exact solution is the Heaviside function and the smooth function, respectively.
For the

√
n and n scaled algorithm we notice that the error decreases up to a minimum

in the first iterations, then increases and tends to converge in the last iterations.
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and n (continuous line) scaled EM algorithm with uniform initial guess for a smooth function as
exact solution (a) and for a Heaviside function as exact solution (b)
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Fig. 4 Comparison of the L1 risk for the first 100 iterations of the 1 (dotted discontinuous line),√
n (discontinuous line) and n (continuous line) scaled EM algorithm with uniform initial guess for

smooth exact solution (a) and for Heaviside exact solution (c)

3 The effect of the initial guess

In this section we will give a heuristic explanation for the observation, that early
stopping of the EM algorithm leads to the self- regularization of the true solution.
For this purpose we consider a multiplicative error model with deterministic noise
level δ > 0. Our simplified data model will be

Y δi = δ
∫
Ω

ai(s)λ (s)ds, i = 1, . . . ,n,

where δ = 1 corresponds to the noiseless case. We can write the iterations of the EM
algorithm as
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f δk+1 = f δk AT

(
δAλ
A f δk

)
,

where

AT : Rn → L1(Ω), AT y =
n

∑
i=1

ai(s)yi.

As it is custom in many applications (Shepp & Vardi 1982) we investigate the
situation of a uniform initial solution. Let us assume

f δ0 = 1a.e., ,A f δ0 = c. (12)

It follows

f δ1 = f δ0 δAT

(
Aλ
A f δ0

)
=

1
c
δAT Aλ ,

and

f δ2 = f δ0 δAT

(
Aλ
A f δ0

)
AT

⎛⎜⎜⎝ Aλ

A f δ0 AT

(
Aλ
A f δ0

)
⎞⎟⎟⎠

=
δ
c

AT AλAT

⎛⎝ Aλ

AAT
(

Aλ
c

)
⎞⎠

= δAT AλAT
(

Aλ
AAT Aλ

)
.

Finally, we get

f δ3 = δAT AλAT
(

Aλ
AAT Aλ

)
AT

⎛⎝ Aλ

AAT AλAT
(

Aλ
AAT Aλ

)
⎞⎠ .

Let us assume now that c = 1 to simplify notation further. Then we obtain

f δ1 = f δ0 δAT Aλ
A f δ0

= δAT Aλ ,

f δ2 = δAT AλAT
(

Aλ
AAT Aλ

)
,

f δ3 = δAT AλAT
(

Aλ
AAT Aλ

)
AT

⎛⎝ Aλ

AAT AλAT
(

Aλ
AAT Aλ

)
⎞⎠ .
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Fig. 5 Minimum L1-risk of the n- scaled EM algorithm for smooth exact solution for uniform
initial guess (a), for parabolic initial guess (b) and for exact solution as initial guess (c)

Let us assume in addition that the true solution λ is an eigen function of AT A with
corresponding eigenvalue θ (i.e. AT Aλ = θλ ). Then

f δ0 = 1,

f δ1 = δθλ ,

f δ2 = f δ3 = · · ·= δλ .

This provides an explanation for the self-regularization behavior of the EM al-
gorithm: We obtain a good approximation of the solution already in the first step of
the algorithm, and the improvement or the worsening of this approximation in the
second iteration depends on the behavior of δθ . As long as |δθ − 1| > |δ − 1| the
first step is improved by the second iteration for any δ and as δ → 1 this holds for
any θ �= 1.
If the initial guess f δ0 = λ then we have in the first step of the EM algorithm f δ1 = δλ
and hence

f δk = δλ ,k ≥ 1
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under the assumptions (12).
In Figure 5 we compare the minimum L1 risk for different initial guesses for the
n− scaled EM algorithm. Again, the same setting has been used as at the end of the
section 2. As expected, starting with the exact solution presents the smallest total
error. The uniform initial guess has also a small risk and the much bigger minimum
L1 error is obtained for a parabolic initial guess which is far away from the exact
solution.
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Constrained Optimization

Brian J. Williams, Thomas J. Santner, William I. Notz and Jeffrey S. Lehman

Abstract This paper proposes a sequential method of designing computer or physi-
cal experiments when the goal is to optimize one integrated signal function subject
to constraints on the integral of a second response function. Such problems occur,
for example, in industrial problems where the computed responses depend on two
types of inputs: manufacturing variables and noise variables. In industrial settings,
manufacturing variables are determined by the product designer; noise variables rep-
resent field conditions which are modeled by specifying a probability distribution
for these variables. The update scheme of the proposed method selects the control
portion of the next input site to maximize a posterior expected “improvement” and
the environmental portion of this next input is selected to minimize the mean square
prediction error of the objective function at the new control site. The method allows
for dependence between the objective and constraint functions. The efficacy of the
algorithm relative to the single-stage design and relative to a design assuming in-
dependent responses is illustrated. Implementation issues for the deterministic and
measurement error cases are discussed as are some generalizations of the method.
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1 Introduction

Computer models refer to settings in which a mathematical description of a physical
system is implemented numerically via computer code so that system “responses”
can be computed for any set of inputs. In a computer experiment, the inputs are
manipulated to study their effect on the physical system that the computer code
represents. For example, Bernardo et al. (1992) used computer-aided design simu-
lators to model electrical current reference and voltage shifter circuits. Haylock &
O’Hagan (1996) modeled the radiation dose received by body organs after ingesting
radioactive iodine. Chang et al. (2001) modeled “proximal bone stress shielding”
and “implant relative motion” for an in vivo hip prosthesis. Ong (2004) modeled the
stability of acetabular hip components.

Computer experiments are attractive alternatives to physical experiments when the
latter involve high-dimensional inputs, when running the corresponding physical ex-
periment poses ethical issues, or when the conduct of the physical experiment would
involve substantial time or other resources. Motivated by these concerns, numerous
authors have developed statistical techniques both for prediction of the response at
untried input sites based on a (small) training sample of computed responses and
for selection of the inputs at which to compute the training sample, i.e., the analy-
sis and design of computer experiments. Both frequentist (Sacks et al. 1989, Welch
et al. 1992) and Bayesian (Currin et al. 1991, O’Hagan 1992) principles have been
used to suggest methodology to predict responses at untried input sites for computer
experiments (see also Santner et al. 2003). This paper follows the Bayesian approach;
it regards the unknown function calculated by the computer code to be a realization
of a random function whose properties embody the prior information about the code
output.

We propose a sequential design for computer experiments when the goal is to
optimize the mean of one computer code (the objective function) under constraints
defined by the mean of a second computer code (the constraint function). To motivate
this formulation, consider Chang et al. (2001), who study the design of a hip prosthe-
sis. Their computer code calculated a pair of competing responses which depend on
both manufacturing (control) input variables and environmental input variables. The
computer outputs were the “proximal bone stress shielding” and “implant relative
motion.” Biomechanically, long-term shielding of the bone from stress can cause
bone resorption and thus weaken the hip; conversely, too much motion of the im-
plant within the femur can cause the implant to loosen. In this application, the control
input variables describe the geometry of the implant while the environmental input
variables account for variability in patient bone properties and the level of patient
activity. The distribution of the environmental variables in human populations was
inferred from studies in the orthopedic literature. Chang et al. (2001) determined
the combination of geometry variables that minimized mean stress shielding subject
to an upper limit on the mean implant relative motion where both responses were
averaged over a discrete probability distribution for the environmental variables.

While the mathematical programming literature contains numerous algorithms to
solve constrained and unconstrained optimization problems, essentially all such tech-
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niques require too many function evaluations to be directly useful in many computer
experiments because of the substantial length of time the codes require to calculate
the response(s). As a result, the computer experiment literature has coupled the use
of statistical predictors in place of exact computer code evaluations with traditional
optimization algorithms. For example, Bernardo et al. (1992) implemented an algo-
rithm for response minimization that sequentially focuses on the region of the input
variable space where the optimum appears to be located. Jones et al. (1998) and
Schonlau et al. (1998) introduced a criterion-based sequential strategy for response
minimization. Williams et al. (2000b) extended the methodology of Schonlau et al.
(1998) to situations in which there are both control and environmental input variables.

Schonlau et al. (1998) proposed extending their single-response expected im-
provement algorithm to accommodate multiple signals for constrained optimization
problems under the assumptions that the objective and constraint signals be modeled
as mutually independent and both were computable at any input. Their methods are
not useable in the hip replacement problem because neither of these assumptions
holds in this application. First, modeling the computer outputs as mutually inde-
pendent is unreasonable because the computer outputs represent competing design
objectives and thus the outputs are negatively correlated with large values for one
tending to be associated with small values for the other. Second, neither the objec-
tive function nor the constraint function in the hip design application were directly
computable because each was a mean over the environmental variables; in this case,
because the enviromental distribution consisted of twelve points, twelve runs of the
code were required to calculate a single value of either the objective or constraint
functions at any desired control variable. With each run of the finite element code
requiring five to ten hours of workstation time, a single value of either the objective
or constraint function would require roughly five days to calculate.

The Bayesian model of Section 2 that is used in this paper allows for both com-
puter experiments and physical (spatial) applications that contain measurement error.
The details of the proposed biVariate constraIned exPectEd impRovement algorithm
(called VIPER hereafter) are presented for this general model in Section 3. An ex-
ample comparing the performance of this algorithm to a single-stage design is given
in Section 4 and to a sequential algorithm that assumes the constraint and objective
signals can be modeled as independent processes. Section 5 contains a discussion of
several important issues regarding implementation and extensions of the algorithm.

2 Modeling

We base the development in Section 3 on the following Bayesian model. Our interest
is in expectations of the “smooth” signals z1(x) and z2(x) defined on a common
compact domain X ⊂ IRp. In computer experiments, each zi(x) is observed exactly
while in spatial applications a corrupted version of each zi(x) is observed. Denote
the observed responses by y1(x) and y2(x).
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For i = 1,2, the prior information about the signal and the observed responses are
specified by regarding them as draws from the random functions

Zi(x) = βββ$i f i(x)+Wi(x) and Yi(x) = Zi(x)+ εi(x) (1)

For i = 1,2, in physical experiments, εi(·) is a zero-mean Gaussian white noise
process with unknown variance σ2

i > 0 that represents measurement error; in com-
puter experiments, σ2

i ≡ 0 so that yi(x) = zi(x). We refer to Zi(·) as the signal
process.

All signal processes are statistically independent of all noise processes and the
two noise processes are independent. The term βββ$i f i(x) of the signal process is the
(nonstationary) mean of the Zi(·) and Yi(·) processes while the “residual” Wi(·) is
a stationary Gaussian stochastic process having mean 0, correlation function Ri(·),
and unknown process variance τ2

i > 0. The vector of regression coefficients f i(·)
is a ki× 1 set of known regression functions and βββ i ∈ IRki is a vector of unknown
regression parameters. We let βββ = (βββ$1 ,βββ$2 )$ denote the vector of all k = k1 + k2
regression parameters. The model (1) is completed upon specification of a positive
definite joint covariance structure for the signal processes. Stationarity implies that
the covariance (correlation) between Zi(x1) and Zi(x2)depends only on the difference
x1 − x2. In the general discussion of Section 3, we allow the arbitrary form for
Cov[Z1(x1),Z2(x2)] = τ1τ2R12(x1− x2) (subject to positive definiteness of the full
bivariate covariance matrix at any finite set of inputs).

Most correlation functions commonly used in practice are members of some para-
metric family. We assume that the correlation function Ri(·) depends on an unknown
parameter vector ξξξ i, for i = 1,2, and that the cross-correlation function R12(·) de-
pends on the unknown parameter vector ξξξ 12. The joint correlation parameter vector
ξξξ = (ξξξ 1,ξξξ 2,ξξξ 12) is allowed to take any value for which the covariance structure
of the joint process {Z(x) = (Z1(x),Z2(x)),x ∈X } is positive definite. The means
βββ$i f i(x) and the correlation parameter ξξξ determine the permissible sample paths of
this joint process. In Section 4, we introduce a specific spatial autoregressive model
for the signal processes where we use the product power exponential correlation
function. We complete specification of the prior by assuming the noninformative
prior distribution,

[βββ ,τ2
1 ] ∝

1
τ2

1

for the final stage of this hierarchical model.
In the formulas that follow, it is notationally convenient to adopt the following

reparameterization of the model in terms of the variance τ2
1 of Z1(·) and the variance

ratios: η = τ2
2 /τ2

1 , ρ1 = σ2
1 /τ2

1 , and ρ2 = σ2
2 /τ2

2 = σ2
2 /(ητ2

1 ). The quantity η is
the ratio of the signal process variances and the ρi are the inverse of signal-to-noise
ratios.

In this article, all posterior distributions assume that we are given the unknown
vector of parameters γγγ = (η ,ρ1,ρ2,ξξξ ). It is possible to carry out a fully Bayesian
analysis by integrating γγγ out of these posterior distributions. However, due to the
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substantial additional computational complexity of this approach, we adopt the sim-
pler strategy of setting γγγ equal to its posterior mode and proceed by substituting this
mode for γγγ wherever required.

Let xc and xe represent the control and environmental variable vectors, and denote
their corresponding domains by Xc and Xe. We assume that the environmental vari-
ables have a joint probability distribution with finite support {xe, j}ne

j=1 and associated
probabilities (weights) {wj}ne

j=1; in practice, this assumption is sufficiently flexible
that it can serve as an adequate approximation for many continuous environmental
variable distributions. The functions μi(·) are the mean of the signal processes over
the environmental variables given by

μi(xc) =
ne

∑
j=1

wj zi(xc,xe, j) .

Our goal is to identify the control variable settings x∗c that minimize μ1(·) subject
to a constraint on μ2(·), i.e.,

x∗c = argmin μ1(xc) subject to μ2(x∗c)≤U .
xc∈Xc

(2)

A straightforward modification of the algorithm presented in this paper can be applied
to the situation where the constraint function is bounded from below or within an
interval. Prior uncertainty in μi(·) is induced directly from the Zi processes, i.e., the
prior of μi(·) is specified by the distribution of Mi(xc) = ∑ne

j=1 wj Zi(xc,xe, j) .

3 A Minimization Algorithm

The algorithm described in this section uses statistical predictors of the objective
and constraint functions in conjunction with traditional optimization algorithms to
solve (2). The formulas required to implement the algorithm are stated for a gen-
eral bivariate (Z1(x),Z2(x)) process and, in Section 4, are specialized to the spatial
autoregressive model of Kennedy & O’Hagan (2000). In brief, the algorithm

1. Computes both responses for the set of points in an initial (space-filling) design.
2. Uses the information from these runs to select the next point according to a

bivariate expected improvement criterion.
3. Continues selecting points using the necessary information from all of the pre-

vious runs until a stopping criterion is met.
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3.1 The VIPER Algorithm

The first stage of the VIPER algorithm observes y1(x) and y2(x) at every input site
for an initial design Sn = {xt

1, . . . ,x
t
n} where the notation xt

j = (xt
c, j,xt

e, j) is used to
emphasize that the input sites are training data at which the y1(·) and y2(·) are to
be evaluated. An attractive choice of Sn is a space-filling design (see Chapter 5 of
Santner et al. (2003) for several methods of generating space-filling designs). Let Yn

i
denote the vector of random responses associated with Sn for i ∈ {1,2}. Finally, let
Sc

n = {xt
c,1, . . . ,x

t
c,n}. denote the control variable portions of Sn.

For any potential new control variable site xc, define the improvement at xc to be

in(xc) = max{0,μmin
1 − μ1(xc)}× χ [μ2(xc)≤U ] ,

where μmin
1 = min{μ1(xt

c,i) : μ2(xt
c,i) ≤U} is the minimum of μ1(·) over feasible

points in Sc
n and χ [A] is 1 if A occurs and is 0 otherwise. Thus in(xc) measures the

amount of improvement in the value of the objective function μ1(·) at the candidate
site xc compared with the minimum of μ1(·) over the current feasible training data
points subject to xc satisfying the μ2(·) constraint. We take the distribution of

In(xc,γγγ) = max{0,Mmin
1 −M1(xc)}× χ [M2(xc)≤U ]

as a prior for in(·) where Mmin
1 is defined to be

min{M1(xt
c,i) : E{M2(xt

c,i) |Yn
1,Y

n
2,γγγ}− t2n−k,.95

√
Var{M2(xt

c,i)|Yn
1,Y

n
2,γγγ} ≤U}

and tν,.95 is the upper 95th percentile of the t-distribution with ν degrees of freedom
and k = k1 + k2 is the total number of unknown parameters that describe the means
of Z1(·) and Z2(·). The quantity Mmin

1 is an intuitive estimate of μmin
1 because it is the

minimum of M1(·) at the control sites that appear to be in the μ2(xc)-based feasible
region, as judged by a point-wise (posterior) 95% confidence band for μ2(xc).

With the above notation, we present a more detailed description of the proposed
algorithm and then provide implementation specifics in Section 3.2. Additional im-
plementation details can be found in Williams et al. (2000a).

S0: Choose the initial set of design points Sn = {xt
1, . . . ,x

t
n}.

S1: Estimate the covariance parameter vector γγγ by the mode of the posterior density
of γγγ given (Yn

1,Y
n
2) (given by (6), below). Let γ̂γγn denote this posterior mode.

S2: Select the (n + 1)-st control variable site, xt
c,n+1, to maximize the posterior

expected improvement given the current data, i.e.,

xt
c,n+1 = argmax E{ In(xc, γ̂γγn) |Yn

1,Y
n
2, γ̂γγn } ,

xc∈Xc
(3)

where E{· |Yn
1,Y

n
2,γγγ } denotes the posterior conditional mean given the observed

data (Yn
1,Y

n
2) and the parameter vector γγγ .
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S3: Choose the environmental variable site xt
e,n+1 corresponding to xt

c,n+1 to min-
imize the posterior mean square prediction error given the current data, i.e.

xt
e,n+1 = argmin E

{ [
M̂n+1

1 (xt
c,n+1)−M1(xt

c,n+1)
]2

∣∣∣∣ Yn
1,Y

n
2, γ̂γγn

}
,

xe∈Xe
(4)

where M̂n+1
1 (·) is the posterior mean of M1(·), based on the data from the n-point

design Sn and the Y1(·) and Y2(·) signals at the location (xt
c,n+1,xe).

S4: If the stopping criterion is not met, set Sn+1 = Sn∪{(xt
c,n+1, xt

e,n+1)}, calculate
y1(xt

c,n+1,x
t
e,n+1) and y2(xt

c,n+1,x
t
e,n+1), increment n to (n + 1), and go to S1. If

the criterion is met, the global minimizer is estimated to be the minimizer of
the empirical Best Linear Unbiased Predictor (EBLUP) of M1(·) subject to the
EBLUP of M2(·) satisfying the upper bound constraint. Specific stopping criteria
are discussed in the examples of Section 4.

The parameter estimation in Step S1 can be very time consuming. The objective
functions to be optimized in (3) and (4) can have numerous local optima. These
optimizations are carried out using the simplex algorithm of Nelder & Mead (1965).
Our code makes repeated attempts to find an optimal solution to avoid getting trapped
in the local optima. A quasi-Newton algorithm is applied to the candidate solutions
of the simplex algorithm. One point of each starting simplex in (3) is obtained by
searching a Latin Hypercube design (LHD) for good candidates; the remaining points
are determined randomly. Each starting simplex in (4) is determined randomly. In
Section 4, we examine a modification to this algorithm where parameter estimates
from S1 are used to add groups of several points sequentially according to S2–S4.

3.2 Implementation Details

In the following, we let Tq(μμμ ,ΣΣΣ ,ν) denote the q-variate t-distribution with location–
shift μμμ , scale-matrix ΣΣΣ , and ν degrees of freedom, i.e., the distribution with joint
density function

f (w) =
Γ ([ν+ q]/2)

|ΣΣΣ |1/2 (νπ)q/2Γ (ν/2)

(
1 +

1
ν

(w− μ)$ΣΣΣ−1(w− μ)
)−(ν+q)/2

, w ∈ IRq.

(5)

3.2.1 Step S0: Initial Design

While not the only possible space-filling designs, we have found that maximin dis-
tance LHDs or, perhaps better, maximin distance orthogonal array LHDs (Tang 1993)
work well.
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3.2.2 Step S1: Maximizing the Posterior of γγγ given Yn
1 and Yn

2

The probability density function of the posterior distribution of γγγ given Yn
1 and Yn

2,
is

p(γγγ |Yn
1,Y

n
2) ∝ p(γγγ) |R|−1/2 |F$R−1F|−1/2 [τ̂2

1 ]−(n−k/2) , (6)

where p(γγγ) is the prior distribution of γγγ (see Handcock & Stein 1993), F and R
are the regression and correlation matrices of the vector (Yn

1
$,Yn

2
$)$, and τ̂2

1 is the
posterior estimate of τ2

1 given (Yn
1,Y

n
2) and γγγ .

3.2.3 Step S2: Selection of Control Variables

We obtain an expression for the posterior expected improvement (3). Let Zc de-
note the column vector (Mn

1
$, Yn

1
$, Yn

2
$)$ of length 3n where Mn

1 is the vector
of M1(·) values evaluated at Sc

n. Given Mn
1, note that In(xc) is a function only of

(M1(xc),M2(xc)). Hence, we evaluate the posterior expected improvement using

E{ In(xc) |Yn
1,Y

n
2,γγγ }= EMn

1 |Yn
1,Yn

2,γγγ {E{In(xc) |Zc,γγγ }} . (7)

To evaluate the inner expectation we require the posterior distribution of (M1(xc),
M2(xc)), given Zc and γγγ , which is a shifted, bivariate t:

[M1(xc) ,M2(xc) |Zc,γγγ ] ∼ T2 (mc , τ̂2
1,c Rc ,3n− k ) , (8)

where the posterior mean mc is the vector of BLUPs of M1(xc) and M2(xc) given

Zc, and τ̂2
1,c Rc is proportional to the posterior covariance matrix. Using (8), a

formula for the inner conditional expectation (7) can be written in terms of the

quantities: r̂ ≡ Rc,12/
√

Rc,11Rc,22 , U1 ≡ (Mmin
1 −mc,1)/

√
τ̂2

1,cRc,11, U2 ≡ (U −
mc,2)/

√
τ̂2

1,cRc,22, ζ 2
r̂ (z) = (1− r̂2)(z2 +3n− k)/(3n−1− k), and C(z)≡√

3n− k

t3n−2−k
(
z
√

3n−2− k/
√

3n− k
)

/
√

3n−2− k as

E{ In(xc) |Zc,γγγ }=

√
τ̂2

1,c Rc,11×
[

U1 T2 (U1 ,U2 ,02, r̂,3n− k ) +

C(U1)T3n−1−k

(
U2− r̂U1

ζr̂(U1)

)
+ r̂C(U2)T3n−1−k

(
U1− r̂U2

ζr̂(U2)

) ]
, (9)

where tν(·) (Tν(·)) denotes the probability density function (cumulative distribution
function) of the standard univariate t distribution with ν degrees of freedom, and
T2 ( · , r̂ ,ν ) denotes the bivariate t cumulative distribution function with ν degrees of

freedom, location-shift (0,0)$, and scale-matrix
(

1 r̂
r̂ 1

)
. Note that r̂ is the posterior

correlation between M1(xc) and M2(xc) given Zc and γγγ .
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The conditional posterior expected improvement in (9) has the following interpre-
tation. It forces xt

c,n+1 to be chosen roughly in an area of the control variable space
where M1(·) is predicted to be small or there is high uncertainty in the prediction of
M1(·), and the constraint is satisfied with high probability. When M1(·) and M2(·) are
positively correlated, high uncertainty in the prediction of M2(·) can also contribute
to favorable consideration of a candidate point.

We use Monte Carlo simulation to compute the (outer) unconditional posterior
expected improvement in (7) by integrating (9). A random sample of size Nc is
obtained from the posterior distribution of Mn

1 given Yn
1, Yn

2 and γγγ . For each sample,
the minimum loss Mmin

1 is obtained and the expectation in (9) is computed. We
estimate the posterior expected improvement as the average of these quantities over
the Nc draws. One feature of using (7) is that the same Monte Carlo sample can
be used to estimate the posterior expected improvement at all control sites xc (this
method will provide dependent estimates of the improvement across different control
sites). This follows from the fact that the posterior distribution of Mn

1 given Yn
1, Yn

2
and γγγ does not depend on xc.

3.2.4 Step S3: Selection of Environmental Variables

In words, we select the environmental portion of the input corresponding to xt
c,n+1 to

minimize the prediction error of the predicted mean at xt
c,n+1. We evaluate the expec-

tation in (4). Let Jn(xe) = [M̂n+1
1 (xt

c,n+1)−M1(xt
c,n+1)]

2 be the squared prediction
error at xt

c,n+1 as a function of xe. Set

Ze = (Z1(xt
c,n+1,xe),Z2(xt

c,n+1,xe),Yn
1
$,Yn

2
$)$ .

Recall that M̂n+1
1 (xt

c,n+1) is the posterior mean of M1(xt
c,n+1) given Ze and γγγ . Hence

E[Jn(xe) | Yn
1 ,Yn

2 ,γγγ ] can be evaluated as

EZ1(xt
c,n+1,xe) ,Z2(xt

c,n+1,xe) |Yn
1 ,Yn

2 ,γγγ {E[Jn(xe) |Ze ,γγγ ]} . (10)

An analytic expression for the inner expectation can be obtained from the fact that the
posterior distribution of M1(xt

c,n+1) given Ze and γγγ is a scaled and shifted univariate
t:

[M1(xt
c,n+1) |Ze ,γγγ ] ∼ T1(me

1, τ̂2
1,e Re, 2n + 2− k) . (11)

The posterior mean me
1 is the BLUP of M1(xt

c,n+1) based on responses from the

design Sn and the signals evaluated at (xt
c,n+1,xe), and τ̂2

1,e Re is proportional to the
posterior variance. Then,

E{Jn(xe) |Ze ,γγγ }=
2n + 2− k

2n− k
τ̂2

1,e Re , (12)

which is the variance of the posterior distribution in (11).
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Finally, a closed form expression for the posterior mean square prediction error
in (10) at xe is obtained by computing the expectation of (12) with respect to the
conditional distribution of (Z1(xt

c,n+1,xe),Z2(xt
c,n+1,xe)) given Yn

1, Yn
2 and γγγ . The

outer expectation in (10), the integral of (12), is

E {Jn(xe) |Yn
1,Y

n
2,γγγ }=

1
2n− k

[
M$

e QeMe +
2n− k

n−1− k/2
τ̂2

1

]
Re ,

where M$
e = (m$,Yn

1
$,Yn

2
$), m contains the posterior means of Z1(xt

c,n+1,xe) and
Z2(xt

c,n+1,xe), given Yn
1, Yn

2 and γγγ , and Qe is the matrix of the quadratic form defining

τ̂2
1,e.

4 An Autoregressive Model and Example

Below we present recommendations concerning the implementation choices for
VIPER based on an autoregressive bivariate model; these recommendations are based
on a variety of examples, of which that in Section 4.2 is typical. We also discuss the
fundamental problem of quantifying the benefit of using the sequential algorithm
compared with a one-stage design that takes the same total number of observations
as the sequential algorithm in a space-filling manner and then uses the same con-
strained optimizer used by VIPER in its final stage.

4.1 A Bivariate Gaussian Stochastic Process Model

The following example illustrates the operation of the VIPER algorithm in the com-
puter expements set-up (no measurement error). In this example, we specialize the
general formulas of Section 3 to a variant of the nonisotropic spatial autoregressive
model of Kennedy & O’Hagan (2000). For x ∈X , the Zi(x) model of (1) is taken to
have constant mean βi, i = 1,2, with the {Wi(·)}i processes built from independent
covariance stationary Gaussian processes. W1(·) is a mean zero, stationary Gaussian
stochastic process with process variance τ2

1 , and correlation function R1(·); W2(·) is
defined by

W2(x) = rW1(x)+Wδ (x) , (13)

where Wδ (·) is a mean zero stationary Gaussian stochastic process independent of
W1(·) with process variance τ2

δ , and covariance function Rδ (·). Thus η ≡ τ2
2 /τ2

1 =
r2 + τ2

δ/τ
2
1 and, upon specification of R1(·) and Rδ (·), it is straightforward to deter-

mine the form of the correlation function R2(·) for the signal process Z2(·), and the
cross-correlation function R12(·) between Z1(·) and Z2(·), as follows

R2(x1−x2) = Cor[Z2(x1),Z2(x2)] = [r2R1(x1−x2)+ (η− r2)Rδ (x1−x2)]/η and
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R12(x1−x2) = Cor[Z1(x1),Z2(x2)] = rR1(x1−x2)/
√
η .

The bivariate Gaussian process (Z1(x1),Z2(x2)) has positive definite covariance
structure if and only if r2 < η . When r = 0, Z1(·) and Z2(·) are independent Gaussian
processes. The size and direction of the dependence between Z1(x1) and Z2(x2) is
measured by the cross-correlation function R12(·). The cross-correlation is strongest
when x1 = x2 and decreases as x1 and x2 move further apart. The correlation function
R2(·) is a weighted average of the correlation functions R1(·) and Rδ (·); the Wδ (·)
process plays a more prominent role in adjusting W1(·) locally to obtain W2(·) when
r2 ( η , because R2(·)≈ Rδ (·) in this case.

The calculations for the example below are made using the power exponential
correlation function. For h ∈ {1,δ}, the power exponential correlation function is
given by

Rh(x1−x2) =
p

∏
i=1

exp
(
−θ h

i |x1,i− x2,i|αh
i

)
, (14)

where θ h
i > 0 and 0 < αh

i ≤ 2, i = 1,2. Smaller values of the range parame-
ters θ h

i indicate increased dependence between the responses at fixed input sites.
If αh

i = 2, the process is infinitely mean square differentiable and the sample
paths are infinitely differentiable in the i-th direction; for all other allowable val-
ues of αh

i , the process is mean square continuous but not differentiable in the i-
th direction. The correlation parameter vector for the power exponential family is
γγγ =

(
η ,{ρi},θ 1

1 , . . . ,θ 1
p ,α1

1 , . . . ,α1
p ,θδ1 , . . . ,θδp ,αδ1 , . . . ,αδp ,r

)
.

4.2 An Example with Six Input Variables

This is a six input example with xc = (x1,x2) and xe = (x3,x4,x5,x6). The objective
function is the mean of z1(xc,xe) = n1(xc)×o1(xe) with respect to the distribution
of Xe = (x3,x4,x5,x6) specified below where

n1(x1,x2) =
[

x2− 5.1x2
1

4π2 +
5x1

π
−6

]2

+ 10
(

1− 1
8π

)
cos(x1)+ 10,

o1(x3,x4,x5,x6) = 2(2x3)
2 + 4.5(2x4)

1.5 + 2x4 + 14x3x5 + 2
√

x4x6

and (x1,x2,x3,x4,x5,x6) ∈ [−5,10]× [0,15]× [0,1]4. The Xe = (X3,X4,X5,X6) envi-
ronmental variable is taken to have the discrete uniform distribution over the 34 = 81
points in four-fold cross product of {0.25,0.50,0.75}. The objective function is

μ1(x1,x2) = E{z1(x1,x2,Xe)}= n1(x1,x2)
1
81∑o1(x3,x4,x5,x6) (15)

where the sum is over the 81 points (x3,x4,x5,x6) in {0.25,0.50,0.75}4. The ob-
jective function roughly varies between 5 and 2,000 (see Figure 1); μ1(x1,x2) has
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Fig. 1 The objective function (15) for the worked example.

three global minima—at (π ,2.275), (3π ,2.475), and (−π,12.275), with a (common)
minimum objective function value of 1.526798.

The constraint function is the mean of z2(xc,xe) = n2(xc)×o2(xe) with respect
to the same 81 point discrete uniform distribution for Xe = (X3,X4,X5,X6) as μ1(·)
where

n2(x1,x2) = −
√

(10.5− x1)(x1 + 5.5)(x2 + 0.5)

− 1
30

(
x2− 5.1x2

1
4π2 +

5x1

π
−6

)2

− 1
3

(
1− 1

8π

)
cos(x1)− 1

3
,

o2(x3,x4,x5,x6) = 1.2(2x4)(2x3)
1.3 + 4.5(2x4)

3 + 2.0(2x4)
0.6

+ 3.5(4x3x5)
1.7 +(4x4x6)

0.7

and (x1,x2,x3,x4,x5,x6) ∈ [−5,10]× [0,15]× [0,1]4. The constraint function

μ2(x1,x2) = E{z2(x1,x2,Xe)}

takes values -307.2373, -201.3822, -104.8448 at the three global μ1(·) minimizers
(−π ,12.275), (π ,2.275), and (3π ,2.475), respectively.

We use the constraint bound μ2(x1,x2) ≤ −250 which gives the unique value
(−π ,12.275) as the true constrained global minimizer. This example has moderately
correlated objective and constraint functions. If X = (X1, . . . ,X6) has independent
components with each Xi uniformly distributed over [0,1], then Cor(z1(X), z2(X))≈
−0.51. Thus, for this example, the bivariate predictor of the objective and constraint
functions based on (13) may be more accurate than separate predictors based on
individual data from each output.

In this example, we study the effect of several implementation choices on the
performance of VIPER. These choices are discussed next and then the performance
criteria for the resulting algorithm are defined.
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• Use of standardized or non-standardized responses: We always center the set
of objective (constraint) function values by subtracting the sample mean of the
objective (constraint) values. In some runs we divided the centered objective and
constraint function values by their sample standard deviation while in others we
only centered the values. We denote this two-level factor by Standardized below.

• Number of Monte Carlo samples used to estimate (9): In various runs, the number
of Monte Carlo samples was either 100 or 1,000. We denote this two-level factor
by MC runs below.

• Choice of predictor: Schonlau et al. (1997) proposed predicting the constraint
and objective functions in constrained optimization problems using independent
Gaussian stochastic processes. We compare the results of using the VIPER algo-
rithm based on independent predictors of the objective and constraint functions,
which we denote by VIPER-IND, with VIPER based on the bivariate predictor ob-
tained from (13)-(14), which we denote by VIPER-BIV. We denote this two-level
factor by Predictor below.

• Sequential versus one-stage design: In addition to implementation choices, we
also attempt to quantify the improvement in using the sequential algorithm com-
pared with constrained optimization based on predictors that use the same total
number of observations as the sequential procedure, but taken in a space-filling
manner. We answered this question in the case of Example 4.2 by running VIPER
for each combination of the three factors above, starting VIPER with 45 initial
observations per output and stopping VIPER after 70 observations have been col-
lected per output. We also ran the same constrained optimizer used by the final
stage of VIPER, but based on a one-stage design that takes 70 observations per
output. In the latter case, the 70 observations were taken according to a maximin
distance LHD, while in the former the initial 45 observations are selected by the
same criterion. We denote this two-level factor by Design below.

We evaluated the performance of VIPER using two criteria. The first criterion is
the Euclidean distance

‖xc,opt − x̂c,opt‖ (16)

between the true constrained global minimizer xc,opt and its estimator x̂c,opt obtained
as the solution to the constrained optimization problem defined by μ̂1(·) and μ̂2(·),
which are the EBLUPs of μ1(·) and μ2(·) based on the total number of output
evaluations. This is a bottom-line measure of performance. Our second criterion is
the square root of the sum of the squared relative prediction errors of the objective
and constraint functions at xc,opt([

(μ1(xc,opt)− μ̂1(x̂c,opt))
μ1(xc,opt)

]2

+
[
(μ2(xc,opt)− μ̂2(x̂c,opt))

μ2(xc,opt)

]2
) 1

2

. (17)

Notice that our estimate of μ1(xc,opt) is the value of the estimated μ1(·) at the esti-
mated xc,opt . Of course, both criteria are tied to the prediction accuracy of z1(·) and
z2(·).
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Table 1 ANOVA table for the main effects plus two-way interaction model for response (16).

Source df Sum of Squares F ratio P-value
Predictor 1 0.0502 1.0334 0.3560
Standardized 1 0.1632 3.3618 0.1262
MC runs 1 0.1364 2.8086 0.1546
Design 1 10.94 225.38 < 0.0001
Predictor × Standardized 1 0.0510 1.0506 0.3524
Predictor × MC runs 1 0.0284 0.5840 0.4793
Predictor × Design 1 0.1493 3.0740 0.1399
Standardized × MC runs 1 < 0.0001 0.0018 0.9676
Standardized × Design 1 0.0017 0.0351 0.8588
MC runs × Design 1 0.0751 1.5459 0.2689

Table 2 Estimates of the Standardized main effect for response (16).

Standardized Mean Standard Error
No 1.2984 0.0779
Yes 1.0963 0.0779

Table 3 Estimates of the Design main effect for response (16).

Design Mean Standard Error
Sequential 0.3703 0.0779
One-stage 2.0244 0.0779

Table 4 Estimates of the Predictor × Design interaction effects for response (16).

Interaction Mean Standard Error
Viper-BIV × Sequential 0.2177 0.1102
Viper-BIV × One-stage 2.0650 0.1102
Viper-IND × Sequential 0.5229 0.1102
Viper-IND × One-stage 1.9838 0.1102

4.3 Implementation Recommendations

Below we report the results of running VIPER according to the 24 factorial exper-
iment described in Section 4.2, with the factors Predictor, Standardized, MC runs,
Design where the responses are (16) and then (17).

4.3.1 Use of Standardization

Typical of other examples, Tables 1, 2, 5, and 6 clearly show that basing the prediction
of the optimal xc and the associated μ1(xc) and μ2(xc) on the standardized responses
improves prediction accuracy. This is true whether VIPER uses the BIV or IND
predictor. Only in the case where the range of the response is narrow, will there not
be a noticable advantage for standardizing y(·). Therefore, we recommend always
standardizing the response.
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Table 5 ANOVA table for the main effects plus two-way interaction model for response (17).

Source df Sum of Squares F ratio P-value
Predictor 1 0.0107 2.8871 0.1500
Standardized 1 0.0361 9.7687 0.0261
MC runs 1 0.0122 3.3022 0.1289
Design 1 11.028 2984 < 0.0001
Predictor × Standardized 1 0.0003 0.0730 0.7978
Predictor × MC runs 1 0.0014 0.3816 0.5638
Predictor × Design 1 0.0459 12.423 0.0168
Standardized × MC runs 1 0.0016 0.4272 0.5422
Standardized × Design 1 0.0021 0.5708 0.4840
MC runs × Design 1 0.0147 3.9690 0.1030

Table 6 Estimates of the Standardized main effect for response (17).

Standardized Mean Standard Error
No 1.0340 0.0215
Yes 0.9390 0.0215

Table 7 Estimates of the Design main effect for response (17).

Design Mean Standard Error
45 0.1562 0.0215
70 1.8167 0.0215

Table 8 Estimates of the Predictor × Design interaction effects for response (17).

Interaction Mean Standard Error
Viper-BIV × Sequential 0.0768 0.0304
Viper-BIV × One-stage 1.8444 0.0304
Viper-IND × Sequential 0.2356 0.0304
Viper-IND × One-stage 1.7889 0.0304

4.3.2 Monte Carlo Sampling

While as few as 100 MC samples can be adequate to produce estimates of the posterior
expected improvement (7), our experience is that VIPER produced more accurate
and stable estimates when 1,000 MC samples were drawn. Although the main effects
of MC were not significant for any of the three criteria, the mean of each criterion
was smaller for 1,000 MC runs than for 100 MC runs. For (16), the mean for 100
MC runs is 1.2897 and for 1,000 MC runs is 1.1050. For (17), the mean for 100 MC
runs is 1.0141 and for 1,000 MC runs is 0.9588.

For the examples we have investigated (problems of 6 and fewer input dimen-
sions), using more than 1,000 MC samples did not improve the performance of
VIPER relative to results based on 1,000 MC samples. However if the dimension of
the input space grows, we conjecture that larger numbers of MC samples would be
required for VIPER to operate most effectively.
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4.3.3 Choice of Predictor

Although the main effect of Predictor is not significant in Table 1 or 5 for (16) or
(17), the interaction between Predictor and Design is significant for (17). Tables 4
and 8 indicate that VIPER-BIV yields smaller mean errors for the sequential pro-
cedure but slightly larger mean errors for the one-stage procedure. Thus using the
bivariate-model predictor appears to be superior to using independent predictors in
the sequential VIPER procedure. Because the sequential procedure outperforms the
one-stage procedure (see Section 4.4.1), the VIPER-BIV algorithm is recommended.

Other examples we have run have had both smaller and greater correlations be-
tween the objective and constraint functions. In general, VIPER-BIV is more effective
with examples having large values of Cor(z1(X),z2(X)) because of the ability of the
bivariate predictor to glean information about each function from all 2n observations.

Thus it would seem that VIPER-BIV would always be preferred to VIPER-IND, at
least when using a sequential strategy. However, there is one cautionary note to this
recommendation. VIPER-BIV requires greater computational effort than VIPER-
IND. This is because if n observations have been taken from both the objective
and constraint functions, the BIV predictor of z1(·) must invert a 2n×2n correlation
matrix whereas the VIPER-IND predictors must invert two n×n correlation matrices.
Thus if it is known that the objective and constraint functions are likely to be only
mildly correlated, VIPER-IND will be quicker to run and will produce the same
answer as VIPER-BIV.

4.3.4 Stopping Rules

This example stops VIPER after a fixed number of additional sites have been added
to the initial input sites. In a more automatic mode, one requires an adaptive stopping
rule to terminate VIPER. We recommend that the algorithm should not be terminated
after a cycle in which there is a single small maximum expected improvement. The
reasons for this are (1) there can be numerical uncertainties in the calculated value of
maximum expected improvement caused by the fact that the expected improvement
surface can contain many local optima and (2) the expected improvement surface
can change somewhat dramatically from one iteration to the next as correlation para-
meters are re-estimated. We have investigated stopping the algorithm when a longer
series of small expected improvements suggested that it be terminated. We recom-
mend terminating the algorithm when both a moving average and a moving range of
the expected improvements become “small.” Formally, suppose that m iterations have
been completed, then let Î j denote the observed maximum expected improvement at
stage j, let A j = (Î j + · · ·+ Î j−g+1)/g denote a moving average of window length
g terminating at stage j, and let R j = max{Î j, . . . , Î j−g+1}−min{Î j, . . . , Î j−g+1} de-
note the range of the same g maximum expected improvements. Then we terminate
the algorithm if Am ≤ 0.0005 and Rm ≤ 0.005 although, in general, these tolerances
are problem specific. The stopping criteria should be “small” relative to typical val-
ues of the moving averages and ranges observed at the start of the algorithm. It is
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also recommended that the stopping criteria be met by two or more successive values
of the moving average and range before stopping the algorithm.

4.4 Other Conclusions

Below we report the results of pursuing a sequential design strategy relative to adopt-
ing a fixed design. Finally, we compare accuracy in predicting values of the objective
and constraint functions based on the final designs produced by VIPER-BIV and
VIPER-IND.

4.4.1 Sequential versus One-stage Design

In every example we have run, the sequential design produced by VIPER outperforms
a naive one-stage optimization based on the same number of code runs. This is clearly
seen in Tables 1, 3, 5, and 7. The improvement in this example is on the order
of 6-10 based on Tables 3 and 7. Intuitively, this is not surprising. The sequential
procedure makes use of information at each stage about current estimates of the
location of the optimum and where the constraint is satisfied, whereas the one-stage
strategy can not.

4.4.2 Effect of Predictor on Overall Prediction Accuracy

While the goal of VIPER is to identify global optima, it is still of interest to assess
the effect of Predictor on the overall accuracy of prediction. We assess this effect in
two ways. First, we compute, for a space-filling set of x input values, the average
empirical root mean square prediction error (ERMSPE) for z1(x) and z2(x) predictors
based on the final designs produced by VIPER-BIV and VIPER-IND. The ERMSPE
of the predictor ẑ(x) of a generic function z(x) over the set of points {xi}m

i=1 is defined
to be (

1
m

m

∑
i=1

(ẑ(xi)− z(xi))
2

)1/2

.

For each of z1(·) and z2(·), we computed the ERMSPE in Example 4.2 for the
VIPER-BIV and VIPER-IND predictors, each algorithm starting with 45 inputs
(taken to be a maximin distance LHD in 6-dimensions) and stopping after 70 eval-
uations. We evaluated the z1(x) and z2(x) predictors at a set of 300 6-d inputs that
were seletected to form a maximin distance LHD (50 points per dimension). These
ERMSPE values are given in Table 9. The function z1(·) ranges over a relatively
narrow range compared with z2(·). In this case, the IND predictor is slightly more
accurate for the narrow-range response and greatly inferior for the wide-range re-
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Table 9 ERMSPE values for the VIPER-BIV and VIPER-IND predictors.

z1(·) z2(·)
VIPER-BIV 0.7103 89.2995
VIPER-IND 0.6885 115.0035
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Fig. 2 Comparison of estimated standard errors using VIPER-BIV and VIPER-IND of {z1(xi)}
and {z2(xi)} for the 300 space-filling points {xi} at which these functions are evaluated in the
worked example.

sponse. In most, but not all examples that we constructed, the bivariate predictor has
smaller ERMSPE for both components.

Second, we study the estimated standard errors of the 300 space-filling points from
the previous paragraph. Figure 2 plots the estimated standard errors for the VIPER-
IND and VIPER-BIV predictors of z1(·) and z2(·). The left panel corresponds to z1(·)
and the scatter about the 45◦ line shows that VIPER-BIV produces smaller estimated
standard errors for those points with “small” estimated standard errors and larger
standard errors for those points with “large” estimated standard errors. The right
panel corresponds to z2(·) and the scatter about the 45◦ line shows that VIPER-BIV
almost uniformly yields smaller estimated standard errors. In this case, VIPER-BIV
outperforms VIPER-IND.

5 Discussion

Our implementation of VIPER uses traditional minimization methods, appropriate
for rapidly computed functions, in three places. First, the correlation parameters of
the empirical best linear unbiased predictors are estimated by restricted maximum
likelihood (or other methods that also require numerical optimization); second, the
control portion of the updated input site is selected to maximize the poster expected
improvement; third, the environmental portion of the updated input site is chosen
to minimize the posterior mean square prediction error. The maximization of the
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Fig. 3 Typical estimated posterior expected improvement surfaces.

posterior expected improvement is particularly difficult; typically, this surface is
highly multi-modal because it is nearly zero throughout most of the control variable
space, but has areas of large improvement concentrated in specific regions (see Fig-
ure 3). Even using multiple starting points, standard minimization algorithms such
as the Nelder-Mead simplex algorithm, can become trapped in a local optimum of
the expected improvement surface if no starting points are located near these regions
(Nelder & Mead 1965).

The multiple-mode nature of all three of the surfaces described in the previous
paragraph motivated the use of a space-filling set of sites to locate promising starting
points. The starting points for each optimization were obtained by estimating the
posterior expected improvementon a 200-pointmaximin distance LHD in the control
variable space, and selecting the five input sites with the highest value for further
improvement. The Nelder-Mead simplex algorithm was applied to improve each of
these five input values with random generation of points. Finally a quasi-Newton
algorithm was applied to the output of the Nelder-Mead stopping value in a further
attempt to maximize the surface.

When the control variable space is of high dimension, the number of sites needed
to fill the control space is large, extending the run time of the algorithm. This situation
can potentially be remedied by a strategy that concentrates starting points near areas
where local improvement has been demonstrated, and in boundary regions where
global searches are often made because of large prediction uncertainty.

Correlation parameter estimation is the most time-consuming component of run-
ning the VIPER algorithm. One approach to reducing the time associated with this
aspect of the algorithm is to update the correlation parameter estimates only after
groups of input sites have been added, rather than after each input site has been
added. While it is computationally simple to implement this strategy using a fixed
group size, say update the correlation parameter estimates after every five inputs
have been added, a more sophisticated approach to the grouping is based on the fol-
lowing observations. Correlation parameter estimates tend to fluctuate considerably
at the outset of the algorithm, and then they stabilize as more input sites are added
to the design. Thus a correlation parameter estimation approach that requires more
frequent updates for smaller designs and fewer updates for larger designs has intu-
itive appeal. This would reduce run times because the time to perform correlation
parameter estimation increases substantially with design size.
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The spatial autoregressive model of Section 4 is a specific application of the gen-
eral formulas from Section 3. In some settings, it may be more reasonable to assume
that the strongest cross-correlation between Z1(x1) and Z2(x2) occurs when x1 and
x2 differ by some unknown spatial shift parameter ΔΔΔ . For example, suppose Z1(·)
and Z2(·) represent the spatial distribution of rainfall over a fixed geographical area
at two distinct time points. The spatial shift parameter would model the movement
of any weather systems between the two times at which rainfall measurements are
taken. Ver Hoef & Barry (1998) include spatial shift in their development of meth-
ods for fitting variogram and cross-variogram models to spatial data. Equation (13)
is easily modified as W2(x) = rW1(x−ΔΔΔ)+Wδ (x) to include a spatial shift para-
meter ΔΔΔ . This modified model gives R12(x1− x2) = rR1(x1− x2 +ΔΔΔ)/

√
η , so the

dependence between Z1(x1) and Z2(x2) is strongest when x2−x1 = ΔΔΔ .
An alternative to the spatial autoregressive model that treats the objective and

constraint functions symmetrically was constructed by Ver Hoef & Barry (1998).
Let W0(·), W1(·) and W2(·) denote mutually independent, mean zero, Gaussian white
noise processes. Set

Zi(w) =
√

1−ρ2
i Wi(w)+ρiW0(w−ΔΔΔ i) ,

where −1 ≤ ρi ≤ 1 and the ΔΔΔ i are spatial shift parameters. The models for the
objective and constraint functions are the integrated Zi processes with respect to a
square integrable moving average function gi(·|θθθ i) plus a nonzero mean βββ$f i(·):

Yi(x) = βββ$f i(x)+
∫

gi(w−x|θθθ i) Zi(w) dw .

Many commonly used variogram models can be reproduced with this moving average
construction.

VIPER can be applied to output that contains measurement errors. If, in (1), ε1(x)
and ε2(x) are independent zero-mean Gaussian white noise processes, then R1 and
R2 are modified by adding the variances of the associated Gaussian measurement
errors σ2

1 > 0 and σ2
2 > 0 to the diagonal elements of R1 and R2, respectively. In

particular, for the spatial autoregressive model,

Cov(Z1(x1),Z1(x2)) = τ2
1 R1(x1−x2)+σ2

1δ[x1=x2]

where δ[x1=x2] = 1 or 0 according as x1 = x2 or x1 �= x2. Similarly

Cov(Z2(x1),Z2(x2)) = τ2
1
[
r2R1(x1−x2)+ (η− r2)Rδ (x1−x2)

]
+σ2

2δ[x1=x2].

The matrix R12 is unchanged from the deterministic, non-error case.
Another case where VIPER applies is when the environmental variables have dif-

ferent distributions that define the objective and constraint functions. While this may
not occur frequently, the general formulas of Section 3 apply with the modification
that the μ1(·) and μ2(·) estimates must be summed over different support sets with
their associated weights.
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Section 4 presented one approach to identifying a stopping rule for the VIPER
algorithm. Other approaches are certainly worth considering. For example, a stopping
rule based on the sequence of predicted global optimum values of the empirical
BLUP and the associated prediction uncertainties could be examined. The difficulty
in identifying a “best” rule lies in the fact that the criterion used for stopping is
not monotone as the number of input sites is increased and the actual values of
the objective function being optimized are never directly observed. This is the one
aspect of the algorithm that requires monitoring by the investigator, as choice of an
appropriate stopping criterion is problem specific and requires tracking the expected
improvement sequence in its entirety. Also, when the total number of observations is
limited, there are significant issues involving allocation of effort between the initial
design and the subsequent sequential search that will affect the stopping rule.

In applications where y1(·) and y2(·) require separate computer runs, VIPER can
be made more efficient by modifying the algorithm to select only one of y1(·) and
y2(·) at each stage. For example, it may be rather simple to determine the feasibility
of a subregion of the domain in which the minimizer of the objective function ap-
pears to be located; in such a case, further evaluation of y2(·) would be wasteful of
resources. It is not difficult to define appropriate maximum expected improvements
for each of y1(·) and y2(·) and, in each cycle, to select both the next function to
be evaluated as well as the control portion of the next input at which to evaluate
that function. The modified VIPER would select the function yi(·) having greater
maximum expected improvement and xc as the point that produces this maximum
for the selected function. Thus, for example, the algorithm might decide to evaluate
only y1(x) from some point onward. See Lehman (2002) for more details about such
a modification.

The full Bayesian approach to working with the correlation parameters is also
readily available. The posterior expected improvement (9) and mean square predic-
tion error (12) could be estimated based on a sample from the posterior distribution
of γγγ given Yn

1 and Yn
2. This distribution is provided, up to the normalizing constant,

in (6). Sampling from this distribution is non-trivial, requiring an MCMC approach.
However, the time required to obtain such a sample for each iteration of the algorithm
may turn out to be much less than the current approach of obtaining the posterior
mode.

Finally we note that the VIPER algorithm can be extended to incorporate multiple
(≥ 2) constraints. Identify the control variable settings x∗c that minimize μ1(·) subject
to constraints on μi(·), i = 2, . . . ,q, i.e.,

x∗c = argmin μ1(xc) subject to μi(x∗c)≤ ui, i = 2, . . . ,q .
xc∈Xc

The improvement function is extended to incorporate the additional constraints:

in(xc) = max{0,μmin
1 − μ1(xc)}× χ [μ2(xc)≤ u2]×·· ·× χ [μq(xc)≤ uq] .

For simplicity of notation, we suppose (M1(xc), . . . ,Mq(xc)) has a multivariate
Gaussian distribution with mean vector m and covariance matrix τ2

1 R. The mean and
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covariance are computed conditional on all quantities required to calculate the poste-
rior expected improvement analogous to (3). We assume τ2

1 is distributed as inverse

chi-square with ν degrees of freedom and scale parameter ντ̂2
1 . Define the following

quantities: U1 = (Mmin
1 −m1)/

√
τ̂2

1 R11, Ui = (ui−mi)/
√
τ̂2

1 Rii for i = 2, . . . ,q, and

C = diag(R)−1/2 R diag(R)−1/2. Let

(
1 c$i
ci Ci

)
denote the matrix formed by permut-

ing the i-th row and column of C with its first row and column. Define C̃i = Ci−cic$i ,

Ũi =

⎛⎝U1−Ui ci1√
C̃i,11

, . . . ,
Ui−1−Ui ci,i−1√

C̃i,(i−1,i−1)

,
Ui+1−Ui ci,i√

C̃i,ii

, . . . ,
Uq−Ui ci,q−1√

C̃i,(q−1,q−1)

⎞⎠ ,

and R̃i = diag(C̃i)−1/2 C̃i diag(C̃i)−1/2.
The posterior expected improvement is given by

E{In(xc)} =√
τ̂2

1 R11

[
U1 Tq,C (U1, . . . ,Uq,ν)+

q

∑
i=1

C1i Cν (Ui) Tq−1,R̃i

(
Ũi

ζν (Ui)
,ν−1

)]

where Tp,ΣΣΣ (·,ν) is the p-variate t cumulative distribution function with ν degrees of
freedom, zero mean and scale matrix ΣΣΣ ,

Cν(w) =
√

ν
ν−2

tν−2

(
w

√
ν−2
ν

)
, ζν(w) =

√
w2 +ν
ν−1

,

and tν (·) is the standard t density function with ν degrees of freedom. It is straightfor-
ward to extend this improvement criterion to accommodate lower bound or interval
constraints.

A practical problem implementing such an algorithm with multiple constraints
is that correlation parameter estimation will become substantially more difficult if
product correlation structures are used to model each response. The additional com-
putation of the multivariate t cumulative distribution function will slow estimation
of posterior expected improvements. One approach to modeling in such a setting is
to increase the complexity of the global trend (regression) part of the model at the
expense of the local trend (correlation) part of the model. This would reduce the
dimensionality of the correlation parameter vector, making sampling or estimation
easier. More generally, empirical work would also need to be accomplished to de-
termine if the algorithm proposed herein is as successful at locating the constrained
optimum with simple correlation parameter models as it is with the more complicated
product structures.
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