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Preface

This volume contains a substantial number of the papers presented at the mODa
9 conference in Bertinoro, Forlı̀, Italy, in June 2010; mODa stands for Model Ori-
ented Data Analysis and Optimal Design. Design of experiments (DOE) is that part
of statistics which provides tools for gathering data from experimentation in order to
be able to draw conclusions in an efficient way. This subject began in an agricultural
context, but nowadays is applied in many areas, both in science and industry, and a
principal field of application is pharmacological research. Due to increasing compe-
tition, DOE has become crucial in drug development and clinical trials. Currently an
important field of application is genomic, with the need to design and analyse mi-
croarray experiments. This increased competition requires ever increasing efficiency
in experimentation, thus necessitating new statistical designs.

The theory for the design of experiments has accordingly developed a variety
of approaches. A model-oriented view, where some knowledge of the form of the
data-generating process is assumed, naturally leads to the so-called optimum design
of experiments. Standard methods of DOE are no longer adequate in drug testing
and biomedical statistics and research into new ways of planning clinical and non-
clinical trials for dose-finding is receiving keen attention. Furthermore, in recent
years the use of experimentation in engineering design has found renewed impe-
tus through the practice of computer experiments, which has been steadily growing
over the last two decades. These experiments are run on a computer code imple-
menting a simulation model of a physical system of interest. This enables one to
explore complex relationships between input and output variables. The main advan-
tage should be that the system becomes more “observable”, since computer runs
might be expected to be easier and cheaper than measurements taken in a physical
set-up. However, with very complicated models, only a relatively few simulation
runs are possible and good interpolators have to be found. The need to find opti-
mal or sub-optimal ways of integrating simulated experiments and physical ones is
paramount.

Leading experts on DOE have come together in the mODa group to promote
new research topics, joint studies and financial support for research in DOE and re-
lated areas. In order to stimulate the necessary exchange of ideas, the mODa group
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organises workshops. Previous conferences have been held on the Wartburg, then
in the German Democratic Republic (1987), St Kirik Monastery, Bulgaria (1990),
Petrodvorets, St Petersburg, Russia (1992), the Island of Spetses, Greece (1995),
the Centre International des Rencontres Mathématiques, Marseille, France (1998),
Puchberg / Schneeberg, Austria (2001), Kappellerput, Heeze, Holland (2004), and
Almagro, Spain, (2007). The purpose of these workshops has traditionally been to
bring together two pairs of groups: firstly scientists from the East and West of Eu-
rope with an interest in optimal design of experiments and related topics; and sec-
ondly younger and senior researchers. Thus an implicit aim of the mODa meetings
has always been to give young researchers in DOE the opportunity to establish per-
sonal contacts with leading scholars in the field. These traditions remain vital to the
health of the series. In recent years Europe has seen increasing unity and the scope of
mODa has expanded to countries beyond Europe, including the USA, South Africa
and India. Presentation of the work done by young researchers is very much encour-
aged in these workshops, either orally or by poster. The poster sessions have been
developed according to a new format of one-minute introductory presentations by
all, which ensures attention by the entire audience.

The 2010 edition of the conference is organized by the University of Bologna.
Bologna University began to take shape at the end of the eleventh century and
is probably the oldest university in the western world. Its history is one of great
thinkers in science and the humanities, making this university an indispensable ref-
erence point in the panorama of European culture. Unfortunately, the workshop hap-
pens to take place in the middle of a word-wide economic crisis that has affected
research opportunities in many countries, especially Italy, so that we are particularly
grateful to our sponsors for making it possible, with their support, nevertheless to
hold the workshop. GlaxoSmithKline have very kindly continued their support of
the series of conferences. New sources have been: JMP, UK, who have generously
funded the publication of these proceedings; the University of Bologna; the Depart-
ment of Statistics at Bologna University; and CEUB itself, namely the Centre where
the conference is hosted. We are very grateful for these contributions.

The major optimal design topics featuring in these proceedings include mod-
els with covariance structures, generalized linear models, sequential designs, ap-
plications in clinical trials, computer/screening experiments and designs for model
discrimination; also new models appear, and classical design topics feature too. A
breakdown is as follows:

1. The most common theme is that of covariance structures with the papers by
Ginsbourger and Le Riche, by Pázman and W. Müller, by Pepelyshev, by Biswas
and Mandal, by Rodrı́guez-Dı́az, Santos-Martı́n, Stehlı́k and Waldl, and by
Vazquez and Bect.

2. Non-linear models feature in the contributions of C. Müller and Schäfer, of
Manukyan and Rosenberger and of Torsney. Optimal designs for linear logistic
test models are investigated by Graßhoff, Holling and Schwabe

3. The topic of clinical trials arises both in the papers by Anisimov and by Fedorov,
Leonov and Vasiliev, and in the form of dose finding studies in Roth and in
Fedorov, Wu and Zhang.
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4. Screening experiments appear in the papers by Jones and Nachtsheim, and by
Peterson, whereas the paper by Roustant, Franco, Carraro, and Jourdan deals
with computer experiments.

5. The topic of both the papers by Atkinson and by Tommasi, Santos-Martı́n and
Rodrı́guez-Dı́az is discrimination between models.

6. Sequential design has been investigated by several authors: by Yao and Flournoy,
by Maruri-Aguilar and Trandafir, by Baldi Antognini and Zagoraiou, by Flournoy,
May, Moler and Plo, and by Pronzato.

7. The papers by Bischoff and by Mielke and Schwabe deal with optimality cri-
teria for experimental design; Bonnini, Corain, and Salmaso’s paper is about
sample size determination. Coetzer and Haines write about optimal design for
compositional data.

8. Finally, topics covered by just one paper are microarray experiments and split-
plot and robust designs. The authors thereof are Schiffl and Hilgers on the one
hand, and Berni on the other.

Bologna, Alessandra Giovagnoli
March 2010 Anthony C. Atkinson

Ben Torsney
with the collaboration of Caterina May
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4040 Linz, Austria, e-mail: werner.muller@ku.at

Christopher J. Nachtsheim
Carlson School of Management, University of Minnesota, Minneapolis, MN 55455,
USA, e-mail: nacht001@umn.edu

Andrej Pázman
Comenius University, Bratislava, Slovakia, e-mail: pazman@fmph.uniba.sk

Andrey Pepelyshev
University of Sheffield, Sheffield S3 7RH, UK, e-mail: a.pepelyshev@sheffield.ac.uk

John J. Peterson
GlaxoSmithKline Pharmaceuticals, 1250 So. Collegeville Rd, PO Box 5089,
Collegeville, PA, 19426, USA, e-mail: john.peterson@gsk.com

Fernando Plo
Universidad de Zaragoza, Pedro Cerbuna, 12 50009-Zaragoza, Spain, e-mail:
fplo@unizar.es



xxiv List of Contributors

Luc Pronzato
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Impact of Stratified Randomization in Clinical
Trials

Vladimir V. Anisimov

Abstract This paper deals with the analysis of randomization effects in clinical
trials. The two randomization schemes most often used are considered: unstrati-
fied and stratified block-permuted randomization. A new analytic approach using
a Poisson-gamma patient recruitment model and its further extensions is proposed.
The prediction of the number of patients randomized in different strata to different
treatment arms is considered. In the case of two treatments, the properties of the to-
tal imbalance in the number of patients on treatment arms caused by using stratified
randomization are investigated and for a large number of strata a normal approxi-
mation of imbalance is proved. The impact of imbalance on the power of the trial is
considered. It is shown that the loss of statistical power is practically negligible and
can be compensated by a minor increase in sample size. The influence of patient
dropout is also investigated.

1 Introduction

The properties of various types of randomization schemes are studied in the papers
Hallstrom and Davis (1988), Lachin (1988), Matts and Lachin (1988), and books by
Pocock (1983), Rosenberger and Lachin (2002). However, the impact of random-
ness in patient recruitment and the prediction of the number of randomized patients
in the case of multiple centres have not been fully investigated.

To investigate these phenomena, a new analytic approach using a Poisson-gamma
patient recruitment model developed in Anisimov and Fedorov (2006, 2007) is pro-
posed. The model accounts for the variation in recruitment over time and in recruit-
ment rates between strata. The prediction of the number of patients randomized in
different strata to different treatment arms is considered. In the case of two treat-
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ments, the properties of the total imbalance in the number of patients randomized to
different treatment arms caused by using stratified randomization are investigated as
well. For a large number of strata a normal approximation of imbalance is proved.
These results are used for investigating the impact of randomization on the power
and sample size of the trial. Note that in a special case of a centre-stratified random-
ization some results in these directions are obtained in Anisimov (2007). The effect
of patient dropout is also considered. These results form the basis for comparing
randomization schemes using combined criteria including statistical power, study
costs, drug supply costs, etc.

2 Recruitment in Different Strata

Consider a multicentre clinical trial carried out with the aim to recruit in total n
patients. Suppose that the patient population is divided into S strata. Strata can stand
for different countries, centres or regions, groups of population specified by some
covariates, etc. Upon registration, patients are randomized to one of the treatment
arms according to some randomization scheme. The recruitment is stopped when
the total number of recruited patients reaches n. Assume that the patients in different
strata are recruited independently. Accounting for a natural variation in recruitment
between strata, we can consider the following model: the recruitment in s-th stratum
is described by a Poisson process with rate μs, where μs is viewed as a realization of
a gamma distributed variable with parameters (αNs,β ) (shape and rate parameters),
and the values Ns reflect the sizes of strata. Denote N = ∑s Ns.

As a natural illustration of this model, assume that there are N clinical centres
divided among S regions, where a region s has Ns centres. Let us associate the re-
gion s with s-th stratum. Suppose that the recruitment in centres is described by a
Poisson-gamma model (Anisimov and Fedorov, 2006,2007): in centre i the patients
are recruited according to a Poisson process with rate λi, where {λi} are viewed
as a sample from a gamma distributed population with parameters (α,β ). Then the
recruitment in s-th region is described by a Poisson process with rate μs which is
gamma distributed with parameters (αNs,β ). For this case, in Anisimov and Fe-
dorov (2007) a ML-procedure for estimating parameters is proposed.

Consider now the prediction of the total number of patients ns recruited in a par-
ticular strata s. The variable ns has a mixed binomial distribution with parameters
(n,gs) where gs = μs/μ , μ = ∑S

s=1 μs. Thus, μ has a gamma distribution with pa-
rameters (αN,β ) and gs has a beta distribution with parameters (αNs,α(N−Ns)).
Denote by B(a,b) a beta function. Then ns has a beta-binomial distribution and
P(ns = k) = P(n,N,Ns,α,k), where

P(n,N,Ns,α,k) =
(

n
k

)B
(

αNs + k,α(N−Ns)+n− k
)

B
(

αNs,α(N−Ns)
) , k = 0, ..,n. (1)
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3 Randomization Effects

Description of randomization schemes can be found in the books by Pocock (1983),
Rosenberger and Lachin (2002). Consider the two often used in clinical trials ran-
domization schemes: unstratified and stratified block-permuted randomization. Un-
stratified randomization means that the patients registered for the study are random-
ized to treatment arms according to the independent randomly permuted blocks of a
fixed size without regard to stratum. Stratified randomization means that the patients
are randomized according to randomly permuted blocks separately in each stratum.
Clearly, unstratified randomization minimizes the imbalance in the number of pa-
tients on treatment arms for the whole study, but in general is likely to increase the
imbalance within each stratum compared to stratified randomization.

Assume that there are K treatments with the allocations (k1, ..,kK) within a ran-
domly permuted block of a size K1 = ∑K

j=1 k j. Denote by ns( j) the number of pa-
tients randomized to treatment j in s-th stratum.

Consider first an unstratified randomization. Assume that the value M = n/K1

is integer. Then there are Mk j patients on treatment j and all patients can be di-
vided into K groups with Mk j patients in group j, j = 1, ..K. Within each group the
patients are distributed among strata independently of other groups according to a
beta-binomial distribution as described in section 2. Thus, for any stratum s,

P(ns( j) = i j, j = 1, ..,K) =
K

∏
j=1

P(Mk j,N,Ns,α, i j). (2)

Consider now a stratified randomization. In this case in each stratum randomiza-
tion is carried out independently of other strata according to block-permuted ran-
domization. If in some stratum s, ns is not a multiple of K1, then the last block is
incomplete. The incomplete block may contain an unequal number of patients on
treatment arms and cause an imbalance in this stratum. Many incomplete blocks
in different strata may cause an imbalance between the total number of patients on
treatment arms and this may lead to power loss in the study.

Assume that s-th stratum contains an incomplete block of size m, m = 1, ..,K1−1,
and denote by ξ j(m) the number of instances of treatment j in this block. Then

ξ j(m) has a hypergeometric distribution and P(ξ j(m) = l) =
(k j

l

)(K1−k j
m−l

)(K1
m

)−1
, l =

0,1, ..,min(k j,m). Therefore, E[ξ j(m)] = k jm/K1, Var[ξ j(m)] = k jm(K1 − k j)×
(K1−m)/(K2

1 (K1− 1)). Let int(a) be the integer part of a, and mod(a,k) = a−
int(a/k)k. Then

ns( j) = int(ns/K1)k j +ξ j(mod(ns,K1)). (3)

As the distribution of ns is given by (1), the characteristics of ns( j) can be numer-
ically calculated. Closed-form expressions for the mean and the variance of ns( j)
also can be derived. In the case when strata are associated with different geographi-
cal regions, these results allow prediction of supply needed to cover patient demand
in regions, number of places in hospitals, etc.
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3.1 Impact of Randomization on the Power and Sample Size

Let us consider the impact of randomization scheme on the sample size and the
power of a statistical test. If one might expect a statistically significant stratum-
by-treatment interaction, then stratified randomization should be preferable from a
statistical point of view as it provides better balance within each stratum. Therefore,
let us assume that there is no stratum-by-treatment interaction. As stratified random-
ization in general causes the random imbalance between treatment arms, one would
expect that unstratified randomization should be preferable. However, we prove that
in general the size of imbalance is rather small compared to the total sample size
and its impact on the power and sample size is practically negligible.

3.1.1 Properties of Imbalance in Stratified Randomization

Assume for simplicity that there are only two treatments, a and b with equal treat-
ment allocations. Denote by ηs = ns(a)−ns(b) an imbalance in stratum s. Let n∗j be
the total number of patients on treatment j, j = a,b, and Δ = n∗a− n∗b be the total
imbalance in the number of patients on both treatments. Then Δ = ∑S

s=1 ηs.

Theorem 1. For large enough n and S such that nmin(Ns)/N ≥ K1, the imbalance
Δ is well approximated by a normal distribution with mean zero and variance s2

0S,
where s2

0 = (K1 +1)/6.

Proof. For equal treatment proportions k j = K1/2 and E[ξ j(m)]= m/2, Var[ξ j(m)]=
m(K1−m)/(4(K1−1)), j = 1,2. Thus, if in s-th stratum the incomplete block has
a size m, then the imbalance in this stratum is ηs(m) = ξ1(m)− (m− ξ1(m)) =
2ξ1(m)−m, and E[ηs(m)] = 0, Var[ηs(m)] = 4Var[ξ1(m)] = m(K1−m)/(K1−1).
In general, in stratum s the imbalance ηs is a random variable: ηs = ηs(m) with
probability qm(n,Ns,K1), m = 0, ..,K1− 1, where ηs(0) = 0, and qm(n,Ns,K1) =
P(mod(ns,K1) = m). Thus, E[ηs] = 0 and from (1) it follows

qm(n,Ns,K1) =
n/K1−1

∑
l=0

P(n,N,Ns,α,m+ lK1), m = 0,1, ..,K1−1. (4)

Furthermore, if on average the number of patients in a stratum is not less than
2K1, one can use the approximation qm(·) ≈ 1/K1 (compare with Hallstrom and
Davis (1988)). This is also supported by numerical calculations and Monte Carlo
simulations (Anisimov 2007). For example, for n = 60,S = 6,Ns = 1 (on aver-
age 10 patients in a stratum), K1 = 4 and α = 1.2, numerical calculations give
(q0,q1,q2,q3) = (0.269,0.259,0.244,0.228) and simulated values for 106 runs co-
incide with these values up to 3 digits.

Thus, using the approximation qm(n,Ns,K1) = 1/K1,m = 0, ..,K1− 1, we have
Var[ηs]≈ s2

0 = (K1 +1)/6. The variables ηs and ηp are not correlated as s �= p and
conditionally independent. Thus, E[ηsηp] = 0, Var[Δ ] ≈ s2

0S, and at large S, Δ is
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approximated by a normal distribution with parameters (0,s2
0S). This is supported

by Monte Carlo simulations (Anisimov 2007). ��
Remark 1. As shown above, for large enough numbers of patients the imbalance

ηs in each stratum can be approximated by a mixed hypergeometric distribution
η̃s = 2ξ (U)−U , where P(U = m) = 1/K1,m = 0, ..,K1−1, Eη̃s = 0,Varη̃s = s2

0,
and the variables η̃s are independent. Thus, for a few strata (S < 10), the imbalance
Δ can be approximated by the variable Δ̃ = ∑S

s=1 η̃s, where EΔ̃ = 0,VarΔ̃ = s2
0S.

3.1.2 Impact of Imbalance on the Power and Sample Size

In general imbalance is rather small compared to the sample size. Theorem 1 implies
that with probability 1− ε , for large S (S ≥ 10), |Δ | ≤ s0

√
Sz1−ε/2. If S < 10, then

|Δ | ≤ s0
√

S/ε (basing on Remark 1 and Chebyshev inequality). In particular, for
n≥ 100, K1 ≤ 4 with probability 0.95, |Δ | ≤ 8 as S = 20, and |Δ | ≤ 6 as S = 6.

Let us evaluate the increase in sample size required to maintain the same power
as for the balanced study accounting for possible imbalance. Consider as an example
a standard test that compares means in two patient populations.

Assume that n patients are randomized to two treatments, a and b, in S strata. If
one can expect a stratum-by-treatment interaction, then the stratified randomization
should be more preferable from a statistical point of view. Consider the case where
there is no stratum-by-treatment interaction. Then general guidelines indicate that
unstratified randomization should be more preferable from a statistical point of view.
However, we prove that stratified randomization leads practically to the same results.

Consider a stratified randomization by blocks of size K1 and equal treatment al-
locations. Let n∗j be the total number of patients randomized to treatment j, j = a,b,
and {x1,x2, ..,xn∗a} and {y1,y2, ..,yn∗b} be the patient responses on each treatment.
Suppose that the observations are independent with unknown means ma and mb and
the known variance σ2. It is known that for testing the hypothesis: H0 : ma−mb = 0
against H1 : ma−mb ≥ h with probabilities γ and δ of type I and type II errors, the
values n∗a and n∗b should satisfy the relation

h
(

σ
√

1/n∗a +1/n∗b
)−1

= z1−γ/2 + z1−δ . (5)

For a balanced study n∗a = n∗b = n/2 (assuming that n is even). Thus, in the balanced
case a sample size is nbal = 4σ2(z1−γ/2 + z1−δ )2/h2. Denote by Δ = n∗b− n∗a the
imbalance between treatment arms. Let us evaluate a sample size increase n+ =
n−nbal required to achieve the same power as for a balanced trial.

Theorem 2. At small S/n2
bal , n+ ≈ s2

0S(1 +
√

2z1−δ )(1 + ζ )/nbal , where ζ is the
error term of approximation, ζ = O(s2

0S/n2
bal).

Proof. Consider a standard test statistic

T ∗ =
x̄a− ȳb

σ
√

1/n∗a +1/n∗b
, (6)
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where x̄a and ȳb are sample means. Under the hypothesis H0 for large enough n∗a
and n∗b, T ∗ ≈ N (0.1), where N (0,1) has a standard normal distribution. Thus,
for testing H0 with error probabilities γ and δ , the acceptance region is the interval
(−z1−γ/2,z1−γ/2), and under the hypothesis H1 it should be

PH1(T
∗ ≤ z1−γ/2) = δ . (7)

Accounting for random imbalance, let us find n satisfying (7). Let ζi be the values
of the magnitude O(s2

0S/n2
bal). Then, under the hypothesis H1, given the imbalance

Δ and assuming that ma−mb = h and Δ/n is small, one can use the approximation:
T ∗ ≈ h

2σ
√

n(1−Δ 2(1 + ζ1)/(2n2))+N (0,1). As z1−γ/2 + z1−δ =
√

nbal
h

2σ , rela-
tion (7) is asymptotically equivalent to a quadratic equation n2

+ + nbaln+−Q(1 +

ζ2) = 0, where Q = s2
0S(1 +

√
2z1−δ ). Thus, n+ = nbal

2 (
√

1+4Q(1+ζ2)/n2
bal −

1) = Q(1 + ζ3)/nbal . Results of Monte Carlo simulation support this statement for
rather wide range of parameters and even for not so large n, e.g. n = 30. ��

As usually S < nbal/2 and for two treatments K1 = 4, this implies that in general
n+ ≤ 2. Thus, both randomization schemes lead practically to the same sample size.

Note that the impact of imbalance is concentrated in the term Δ 2/2n2 = O(S/n2)
and is negligible at large n. This is in agreement with Lachin (1988).

3.1.3 Impact of patient dropout

Consider the impact of a random patient dropout on a sample size for both random-
ization schemes on the example of the test that compares means (see Section 3.1.2).
Assume that each patient randomized to treatment j will stay till the end of the trial
with probability p j, j = a,b. Only these patients will be included into the analysis.
The values q j = 1− p j, j = a,b, define the probabilities of dropout. Let ν j be the
number of patients initially randomized to treatment j. Assume that νa−νb = G,
where G is a random variable with mean zero and variance D2. As νa +νb = n, then
νa = n/2 + G/2, νb = n/2−G/2. In this general setting we can combine together
the cases of unstratified and stratified randomization, as in the first case G = 0, and
in the second case G = Δ and according to Theorem 1, D2 ≈ s2

0S.
Let n∗j be the remaining number of patients on treatment j after dropout. Then

n∗a = Bin(n/2 + G/2, pa), n∗b = Bin(n/2−G/2, pb), where Bin(k, p) is a binomial
variable with parameters (k, p). If G is random, n∗a and n∗b are dependent and E[n∗j ] =
np j/2, Var[n∗j ] = np jq j/2+D2 p2

j/4, E[n∗an∗b] = pa pb(n2−D2)/4. Thus, at large n

(n∗a,n
∗
b)≈

(
(n/2)pa(1+ψaξa/

√
n),(n/2)pb(1+ψbξb/

√
n)
)
, (8)

where ψ j =
√

2q j/p j +D2/n, j = a,b, and vector (ξa,ξb) has a bivariate normal
distribution, Eξ j = 0,Varξ j = 1,E[ξaξb] =−D2/(nψ1ψ2). Denote



Impact of Stratified Randomization in Clinical Trials 7

M =
h

σ2

√
pa pb

2(pa + pb)
, R =

D2 pa pb(pa− pb)2

2n
, B2 =

h2

σ2

qa p3
b +qb p3

a +R

4(pa + pb)3 .

Under the hypothesis H1, after some algebra one can get an approximation for statis-
tic (6) in the form T ∗ ≈ √nM +

√
1+B2N (0,1). This relation together with (7)

implies the relation for the required sample size:

n≈ 2σ2(pa + pb)
h2 pa pb

(z1−γ/2 +
√

1+B2z1−δ )2. (9)

Consider now the averaged design (the number of patients on treatments a and b
are fixed and equal to (n/2)pa and (n/2)pb, respectively). Using (5) one can easily
establish that the sample size for the averaged design is

naver ≈ 2σ2(pa + pb)
h2 pa pb

(z1−γ/2 + z1−δ )2.

Thus, the sample size increase compared to the averaged design is concentrated in
the term B2 and is practically negligible. For example, if B2 is rather small,

n−naver ≈ qa p3
b +qb p3

a +R

2pa pb(pa + pb)2 z1−δ (z1−γ/2 + z1−δ ). (10)

In particular, for γ = δ = 0.05 and pa = pb = p, in the region p≥ 0.4 (dropout less
than 60%), n−naver ≤ 2 (sample size increases by no more than two patients).

The impact of the randomization scheme is concentrated in the term R. For
unstratified randomization R = 0, while in the case of stratified randomization
R = s2

0Spa pb(pa− pb)2/(2n) and is also rather small. Calculations show that us-
ing stratified randomization practically does not lead to sample size increase.

Table 1: Sample size calculations.

h 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Averaged design 409 284 209 160 127 103 85 71 61 53 46
Unstratified 411 286 211 162 129 105 87 73 63 55 48
Stratified 411 286 211 162 129 105 87 73 63 55 48

Table 1 shows the calculated values of sample sizes for a particular scenario. Con-
sider a study with S = 10 strata of equal sizes (Ns = 1). Let γ = 0.05,δ = 0.05, pa =
0.4, pb = 0.7,K = 2, block size K1 = 4. Consider three cases: averaged design (ran-
domness in dropout is not accounted for), unstratified randomization and stratified
randomization. We set σ2 = 1. The sample size is calculated for different values of h
in interval [0.5,1.5]. As one can see, a sample size increase accounting for random
patient dropout is only two patients, and using stratified randomization does not
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lead to an additional sample size increase compared to unstratified randomization.
Similar results are true for other scenarios and large number of strata.

4 Conclusions

Using the advanced patient recruitment model allows prediction at the design stage
of the number of patients randomized to different treatment arms in different strata
and investigation of the properties of imbalance caused by stratified randomization
and its impact on the power and sample size of the trial. For two treatment arms
with interest in a statistical test that compares means, it is shown, that the sample
size increase required to compensate for random imbalance is practically negligi-
ble. Randomness in patient dropout also leads to a negligible sample size increase
compared to averaged design (fixed number of randomized patients). These results
show that stratified randomization even for a large number of strata does not lead to
a visible sample size increase compared to unstratified randomization.

The type of randomization may affect other characteristics of the trial, e.g. centre-
stratified randomization in general requires less drug supply compared to unstrati-
fied randomization. Thus, in the cases when the choice of randomization is not dic-
tated by the type of data, it is beneficial to use various criteria accounting for sample
size, recruitment and supply costs, etc., when choosing a randomization scheme.
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The Non-Uniqueness of Some Designs for
Discriminating Between Two Polynomial Models
in One Variable

Anthony C. Atkinson

Abstract T-optimum designs for discriminating between two nested polynomial re-
gression models in one variable that differ in the presence or absence of the two
highest order terms are studied as a function of the values of the parameters of the
true model. For the value of the parameters corresponding to the absence of the
next-highest order term, the optimum designs are not unique and can contain an
additional support point. A numerical exploration of the non-uniqueness reveals a
connection with Ds-optimality for models which do contain the next highest term.
Brief comments are given on the analysis of data from such designs

1 Introduction

T-optimum designs for discriminating between two regression models were intro-
duced by Atkinson and Fedorov (1975). More recently, Dette and Titoff (2008) ex-
plored the structure of T-optimum designs in some detail. One of their examples was
of discrimination between linear and cubic models in one variable. For particular
parameter values the T-optimum design was not unique, consisting of convex com-
binations of two extreme designs. This example can be thought of as an extension of
Example 1 of Atkinson and Fedorov in which designs were found for discrimination
between a constant and a general quadratic. The paper illustrates how the designs
depend upon the parameters of the true model and gives a geometric interpretation
of the occurrence of non-unique designs as a function of the response.

The non-unique designs occur when the larger model contains a term of order xk

and all lower order terms except that of order xk−1, the smaller model containing
terms up to order xk−2. The structure of these non-unique designs is explored nu-
merically for k in the range two to six. A relationship is indicated with Ds-optimum
designs for the estimation of the coefficient of xk in a polynomial model which adds
a term in xk−1 to those of the larger model.
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The plan of the paper is as follows. The background theory for T-optimality is
in the next section. Two examples are in §3. Breaks in the structure of the designs
as functions of the parameters are shown to occur for the two polynomial examples
as one parameter goes to zero. Section 4 explores the structure of the designs when
the coefficient of xk−1 is zero. The paper concludes with brief comments on data
analysis and the power of tests as a function of the number of support points of a
design.

2 Background

The T-optimum design for discriminating between two models depends upon which
model is true and, usually, on the values of some of the parameters of the true model.
Without loss of generality let this be the first model and write

y = η(x)+ ε,= η1(x,θ1)+ ε, (1)

where the errors ε are i.i.d N (0,σ2). A good design for discriminating between
the models will provide a large lack-of-fit sum of squares for the second model.
When the second model is fitted to the data, the least squares estimates of the p2×1
parameter θ2 depend on the experimental design as well as on the value of θ1 and
the errors. In the absence of error the parameter estimates are

θ̂2(ξ ) = argmin
θ2

∫
X
{η(x)−η2(x,θ2)}2ξ (dx), (2)

yielding a residual sum of squares

Δ(ξ ) =
∫

X
[η(x)−η2{x, θ̂2(ξ )}]2ξ (dx). (3)

For linear models Δ(ξ ) is proportional to the non-centrality parameter of the χ2

distribution of the residual sum of squares for the second model when the design
is ξ . T-optimum designs maximise Δ(ξ ) and so provide the most powerful test for
lack of fit of the second model when the first is true. In general, T-optimum designs
have p2 +1 points of support.

3 Examples

Example 1. Constant Against Quadratic

Atkinson and Fedorov (1975) exhibit designs for discrimination between the models
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η(x) = β0 +β1x+β2x2 and η2 = β0. (4)

The T-optimum design depends on the ratio β1/β2, but not on the magnitude of
the parameters which will, however, affect the magnitude of the non-centrality pa-
rameter. Atkinson and Fedorov (1975) reparameterise by taking β1 = cos φ and
β2 = sin φ . Their Figure 1 shows the support points of the design for 0≤ φ ≤ 90◦.
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0
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Fig. 1: Example 1: constant against quadratic model. Support points of T-optimum design with
β1 = cos φ and β2 = sin φ when X = [−1,1]

In the general case the T-optimum design puts equal weight at the two points of
support of the design which are at the minimum and maximum of the quadratic over
the design region, taken as X = [−1,1]. Differentiation of η(x) shows that the turn-
ing point of the quadratic is at x∗ = −0.5cot(φ). When φ < 26◦54” = arctan(0.5)
this value lies outside the experimental region and, as Figure 1 shows, the support
points of the design are at ±1. For larger values of φ the support points, up to 90◦
are at x∗ and 1. Above 90◦ the support points are−1 and x∗ until φ ≥ 153◦26” when
the points again become −1 and 1. The figure repeats for values of φ > 180◦.

Three special values are of interest. When φ = 0, β2 = 0 and the model is a
straight line, when the maximum and minimum of η(x) are unambiguous. However,
when φ = 90◦ the model is a pure quadratic. There are two equal maxima of the
function at −1 and +1 with a minimum at x = 0. Thus one T-optimum design puts
half the weight at−1 and 0 and another, equally good, design is its reflection putting
half the weight at 0 and half at 1. Any convex linear combination of these designs
will also be T-optimum so that the most general T-optimum design is

ξ ∗T =
{

-1 0 1
0.5λ 0.5 0.5(1−λ )

}
(0≤ λ ≤ 1). (5)

Perhaps the most interesting of these designs is that for λ = 0.5 which is also the
D1-optimum design for β2 in η(x). We return to this design in §4. For values of φ
close to 90◦ this design has good T-efficiency as measured by the value of Δ(ξ ).
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The third value of interest in Figure 1 is φ = 180◦ when the model is again first-
order, although with a negative slope. For values of φ around 180◦ the design puts
half the weight at−1 and the other half at 1. The only break in the smooth evolution
of the designs in the figure with φ is at 90◦, for which value there is the family of
designs given by (5). The same design is optimum when φ = 270◦; now the minima
of the quadratic are at x =±1 and the maximum is at 0.

Example 2. Linear Against Cubic

Dette and Titoff (2008) extend Example 1 to a linear regression against a cubic so
that (4) becomes

η(x) = β0 +β1x+β2x2 +β3x3 and η2(x) = β0 +β1x. (6)

With η2(x) containing two parameters, the unique T-optimum designs have three
points of support.

Again consider a trigonometric transformation. We now take β2 = cos φ and
β3 = sin φ , again with X = [−1,1]. The support points of the T-optimum designs
are shown in the upper panel of Figure 2 with the design weights in the lower panel.

The general structure of the designs is similar to that shown in Figure 1, with
the non-unique design at φ = 90◦. When φ = 0, η(x) is a pure quadratic and the
design is the D1-optimum design for β2, namely with support points−1,0 and 1 and
weights 0.25, 0.5 and 0.25. As φ increases to 45◦ the value of the central support
point increases as does the weight on x = 1. For all designs the weight on the central
support point is 0.5.

When φ = 45◦,β2 = β3. The design weights are 1/6, 1/2 and 1/3, which values
are optimum for all designs up to φ = 90◦. Above φ = 45◦ the lower design point
increases away from −1, so that the designs no longer span the design region. The
two lower design points continue to increase until φ = 90◦ when β2 = 0 and η(x)
contains a cubic term, but no quadratic. Again at this value of φ there are two ex-
treme T-optimum designs; one design has support points −0.5,0.5 and 1. Another
is the reflection of this with support points −1,−0.5 and 0.5. As for Example 1, the
convex linear combination of these designs will also be T-optimum so that the most
general T-optimum design is

ξ ∗T =
{

-1 -0.5 0.5 1
λ/3 (1+2λ )/6 (3−2λ )/6 (1−λ )/3

}
(0≤ λ ≤ 1), (7)

which is a reparameterisation of Dette and Titoff’s (2.14). When λ = 0.5 we obtain
the D1-optimum design for β3 in η1(x), extending the result for the same design
criterion when φ = 90◦ but for β2 in Example 1.

For values of φ > 90◦ the designs are the reflection in X of those for 180◦ −φ .
As the figure shows, the cycle of designs repeats itself for values of φ above 180◦.
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Fig. 2: Example 2: linear against cubic model. Upper panel: support points of T-optimum design
with β2 = cos φ and β3 = sin φ when X = [−1,1]. Lower panel: design weights. The same sym-
bols are used for the three support points in the two panels

4 Designs for Higher-Order Models

The designs obtained above for φ = 90◦ are special cases of a more general discrim-
ination problem in which the models are

η2(x) =
k−2

∑
j=0

β jx
j and η(x) = η2(x)+βkxk, (8)

where, now, βk is not constrained to equal one. The two models thus differ by a
single term, but with the term in xk−1 absent from both.

For linear models differing by a single parameter the value of Δ(ξ ) for the T-
optimum design depends on the value of the extra parameter, here βk. However, the
T-optimum design does not depend on this value and is identical to the D1-optimum
design.

Table 1 gives numerically obtained T- and D1-optimum designs for k from two
to six. The designs shown have one support point at x =−1. Otherwise the support
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Table 1: Identical T- and D1-optimum designs for the term of order k in the pair of polynomial
models (8). Reflected designs with the signs of all x values reversed are also optimum

k Optimum Design

2

{ −1 0
1/2 1/2

}

3

{ −1 −0.5 0.5
1/3 1/2 1/6

}

4

{ −1 −√2/2 0
√

2/2
1/4 0.427 1/4 0.073

}

5

{ −1 −0.809 −0.309 0.309 0.809
1/5 0.362 0.262 0.138 0.038

}

6

{ −1 −√3/2 −0.5 0 0.5
√

3/2
1/6 0.311 1/4 1/6 0.083 0.022

}

points, but not the weights, are symmetrical around x = 0. There is appreciable
structure in the results. For example, the weights at x = −1 are 1/k. These and the
other ratios in the table, including

√
2/2 and

√
3/2, are accurate to 5 decimal places

in the numerical results.
To demonstrate that these numerically obtained designs are indeed optimum, the

derivative function for the appropriate equivalence theorem was used. In general,
for Ds-optimum designs, the variance ds(x,ξ ∗) (see, for example, Atkinson, Donev,
and Tobias 2007, p. 139), takes its maximum value of s at the points of support of
the design. Figure 3 shows the plot of the variance function over the design region
for the case of k = 6. Indeed the maximum values of the function are one and occur
at the points of support of the design.

The main interest in this section is whether the designs are unique for these higher
values of k. Figure 3 also provides an answer to this question. The curve of the
variance is symmetrical with a value of one at x = 1, which is not a support point
of the design, a phenomenon indicative of non-uniqueness of the design. Indeed,
from the symmetry of the reflected designs, it follows that the mirror image of the
design for k = 6 in Table 1 will have the same plot of the variance function as that
of Figure 3. Thus, as for the examples for k = 2 and 3 in the previous section, the
design is not unique and any convex linear combination will also be a T- and D1-
optimum design for k = 6. Similar numerical results hold for the other values of k
in Table 1.

A last comment is on the designs found by averaging the designs of Table 1 and
their reflections, that is the combinations with λ = 0.5. The numerical results in the
table show that such designs have weights 1/2k at the ends of the design region and
weights 1/k at the k−1 remaining points. They are, in fact, the D1-optimum designs
given by Kiefer and Wolfowitz (1959) for βk, but not in η(x) in (8), but rather for
the model also including a term in xk−1. The support points of these designs are
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Fig. 3: Fourth-order model against sixth-order: variance ds(x,ξ ∗) for the optimum design of Ta-
ble 1. The value is one at the points of support of the design, which are marked •. Note that x = 1
is not a support point of the design

x j =−cos{( jπ)/k} ( j = 0, . . . ,k),

so extending the results of §3 for λ = 0. An advantage of the designs for this value
of λ = 0.5 is that the weights are much more equal than those for the designs of
Table 1. They are therefore more accurately approximable to give small integer
designs. However they do have one more point of support than the asymmetrical
designs.

5 Design and the Analysis of Data

In all examples the designs with minimum support have p2 +1 points of support. In
the analysis of data from such designs it will therefore not be possible to estimate
η(x). The analysis of variance table will consist of a sum of squares for η2(x), a
sum of squares for pure error from replication and a lack of fit sum of squares, with
non-centrality parameter a multiple of Δ(ξ ), on one degree of freedom.

The larger model η(x) can be estimated from designs with at least p2 +2 support
points. For the special case of §4, designs with (0 < λ < 1) have this support. But
now the lack of fit sum of squares will have the same non-centrality parameter as the
component designs with p2 +1 support points, but on two degrees of freedom so that
the power will be reduced. A test with one degree of freedom in the numerator can be
obtained by breaking this sum of squares on two degrees of freedom into individual
components. However the result, for a sufficiently large number of observations,
will be a significance test for the highest term in η(x), with the next highest term
not significant. Such models are not usually recommended. Indeed, Nelder (1998)
states that they “are of very limited interest”. If the purpose of the experiment is not
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only to test the smaller model but to fit the larger if the smaller is rejected, the family
of DT-optimum designs (Atkinson 2008) is appropriate.

The discussion in this paper is in terms of least squares and known linear models.
For nonlinear models the relationship between T- and D1-optimality is more compli-
cated (López-Fidalgo, Tommasi, and Trandafir 2008; Atkinson and Bogacka 2010).
López-Fidalgo, Trandafir, and Tommasi 2007 describe designs using Kullback-
Leibler distance for discriminating between non-normal models. Wiens (2009) ex-
tends this work to designs when the models are only approximately specified and
considers designs both for model discrimination and parameter estimation.

Acknowledgements I am most grateful to a referee who suggested exploring the properties of
designs for discriminating between the pairs of models (8) and so led me to the results reported in
§4.

References

Atkinson, A. C. (2008). DT-optimum designs for model discrimination and param-
eter estimation. Journal of Statistical Planning and Inference 138, 56–64.

Atkinson, A. C. and B. Bogacka (2010). Optimum designs for the equality of pa-
rameters in enzyme inhibition kinetic models. (Submitted).

Atkinson, A. C., A. N. Donev, and R. D. Tobias (2007). Optimum Experimental
Designs, with SAS. Oxford: Oxford University Press.

Atkinson, A. C. and V. V. Fedorov (1975). The design of experiments for discrimi-
nating between two rival models. Biometrika 62, 57–70.

Dette, H. and S. Titoff (2008). Optimal discrimination designs. Annals of Statis-
tics 37, 2056–2082.

Kiefer, J. and J. Wolfowitz (1959). Optimum designs in regression problems. Annals
of Mathematical Statistics 30, 271–294.
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Covariate Adjusted Designs for Combining
Efficiency, Ethics and Randomness in Normal
Response Trials

Alessandro Baldi Antognini1 and Maroussa Zagoraiou1

Abstract This paper deals with the problem of allocating patients to two competing
treatments in the presence of covariates in order to achieve a good trade-off between
efficiency, ethical concern and randomization. We propose a compound criterion
that combines inferential precision and ethical gain by flexible weights depending
on the unknown treatment effects. In the absence of treatment-covariate interactions,
this criterion leads to a locally optimal allocation which does not depend on the co-
variates and can be targeted by a suitable implementation of the doubly-adaptive
biased coin design aimed at balancing the roles of randomization, ethics and infor-
mation. Some properties of the suggested procedure are described.

1 Introduction

Patients arrive sequentially in a clinical trial for comparing two treatments, say A
and B, where some concomitant variables, like the subjects’ gender, medical history
etc., potentially affect the experimental outcome. Suppose that for each incoming
subject, before assigning either treatment we observe a vector ZZZ of categorical co-
variates (also called block factors), which is assumed to be random, i.e. not under
the experimenters’ control. Let the treatments be assigned according to a given ran-
domization rule, with δi = 1 if the i-th subject is allocated to A and 0 otherwise, and
suppose that a normal response Yi is observed belonging to the linear homoscedastic
model in the form

E(Yi) = δiμA +(1−δi)μB + zzzt
iβββ , V (Yi) = σ2, i = 1, . . . ,n, (1)
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where zzzi represents the covariate profile of the i-th individual and βββ is the vector of
covariate effects. To avoid cumbersome notation, from now on we take into account
only one categorical covariate Z with levels z1, . . . ,zJ , so that zzzi is the (J− 1)-dim
vector of indicators for the i-th subject. Also, we denote by p j = Pr(Z = z j) for
j = 1, . . . ,J the probability distribution of the covariate in the population of interest.

At the end of the trial, suppose that n assignments of either treatment A or B
have been made to patients with i.i.d. covariates Z1, . . . ,Zn where, conditionally
on the covariates and the treatment allocations, patients’ responses are assumed to
be independent. Let Nn j = ∑n

i=11{Zi=z j} denote the number of subjects with co-
variate profile z j, where 1{·} is the indicator function, and Nn = (Nn1, . . . ,NnJ)t

with ∑J
j=1 Nn j = n. Moreover, πππnnn = (πn1, . . . ,πnJ)t represents the vector of allo-

cation proportions to A for each profile, where πn j = ∑n
i=1 δi1{Zi=z j}/Nn j , and

Dn j = Nn j(2πn j− 1) is the current imbalance between the two groups for the j-th
covariate level. Hence Dn = ∑J

j=1 Dn j is the global imbalance.

2 Optimal Allocations for Inference

Under model (1), the covariates affect the treatment responses in the same way for
all patients with the same profile, so that the superiority of A to B or vice-versa,
is uniformly constant over the covariates and it is customary to regard βββ as a nui-
sance parameter. Consequently, the inferential interest typically lies in estimating
the difference α = μA− μB between the treatment effects as precisely as possible.
Following Atkinson (2002), model (1) can be written as

E(Yn) = (2δδδ n−1n)α +Fθθθ , (2)

where Yn = (Y1, . . . ,Yn)t , δδδ n = (δ1, . . . ,δn)t and 1n is the n-dim vector of 1’s. Notice
that, under (2) the constant term and covariates are included in the 0-1 matrix F and
the nuisance θθθ incorporates βββ and an overall effect.

From an inferential viewpoint the design problem consists in finding the allo-
cation πππ∗I = (π∗I1, . . . ,π∗IJ)

t which minimizes a suitable measure ΦI of loss of pre-
cision, called the inferential criterion. In this setting it is customary to assume the
well-known DA-optimality, so let α̂n be the OLS (or ML) estimator of α , given the
covariates Zn = (Z1, . . . ,Zn)t and the design δδδ n, we have

V (α̂n|Zn,δδδ n) = σ2{n−bt(FtF)−1b}−1 = σ2{n−Ln}−1 ,

where b = Ft(2δδδ n−1n) =
(
Dn,Dn1, . . . ,Dn(J−1)

)t
and Ln = bt(FtF)−1b is the loss

after n assignments (see for instance Atkinson 2002). Since

FtF =
(

n Ñt
n

Ñn diag
(
Ñn
)
)

, (3)
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where Ñn =
(
Nn1, . . . ,Nn(J−1)

)t
and diag(Ñn) is the diagonal matrix with j-th entry

Nn j (for j = 1, . . . ,J− 1), the loss Ln depends on the covariates only through the
number Nn j of patients within each profile, which is not under the experimental
control, whereas it depends on the design through πππn, hence from now on we write
Ln = L(πππn,Nn) and V (α̂n|πππn,Nn).

As is well-known, in the case of perfect balance between the treatment groups
within each profile the loss is identically zero independently of the covariates.

Lemma 1. The loss after n steps can be written as

L(πππn,Nn) =
J

∑
j=1

(2πn j−1)2Nn j , (4)

which is minimized by πππ∗I =
(

1
2 , . . . , 1

2

)t
, independently of Nn.

Proof. Using some results on the inverses of partitioned matrices, from (3)

(FtF)−1 =
1

NnJ
·
(

1 −1t
J−1

−1t
J−1 JJ−1

)
+

(
0 0t

J−1

0J−1
(
diag

(
Ñn
))−1

)
,

where Jk is the (k× k) matrix of ones and 0k is the k-dim vector of zeros. Thus, the
loss in (4) can be derived by simple algebra since

bt
(

1 −1t
J−1

−1t
J−1 JJ−1

)
b = D2

nJ

and

bt

(
0 0t

J−1

0J−1
(
diag

(
Ñn
))−1

)
b =

J−1

∑
j=1

D2
n j

Nn j
.

��
Observe that the loss L(πππn,Nn) in (4) is a r.v. depending on Nn and therefore, in
order to remove the effect due to the random nature of the covariates and to derive
a standardized criterion varying in [0;1], from now on we take into account the loss
of design efficiency

ΦI(πππn) = 1−Eff(πππn) = 1− [V (α̂n|πππ∗I )/V (α̂n|πππn)] , (5)

where, since VZ[E(α̂n|πππn,Nn)] = 0, it follows that V (α̂n|πππn) = EZ[V (α̂n|πππn,Nn)] =
EZ[σ2{n− L(πππn,Nn)−1}]. As is well-known, V (α̂n|πππn) can be approximated by
σ2 {n−EZ[L(πππn,Nn)]}−1, so that the inferential criterion (5) becomes

ΦI(πππn) = EZ
[
n−1L(πππn,Nn)

]
=

J

∑
j=1

(2πn j−1)2 p j , (6)

since Nn is distributed according to a multinomial r.v. MN(n; p1, . . . , pJ).
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3 Optimal Allocations for Ethics

Assuming that the treatment effects are different and that larger is better, the ethical
cost-per-observation can be measured by the percentage of patients who receive the
worse treatment, i.e. 1

2 +[ 1
2 − 1

n ∑J
j=1 πn j Nn j]sgn(α), where sgn(x) is the sign of x.

Note that ∑J
j=1 πn j Nn j is the number of assignments to A in the trial, stressing that,

in the absence of treatment-covariate interactions the ethical gain depends on the
design only through the total proportion of allocations to A. As previously, from now
on we consider the expected percentage of subjects assigned to the worse treatment
as our ethical criterion

ΦE(πππn) =
1
2

+

(
1
2
−

J

∑
j=1

πn j p j

)
sgn(α). (7)

The optimal ethical target minimizing (7) is πππ∗E = (1{α>0}, . . . ,1{α>0})t , which is
constant over the covariate levels and depends only on α = μA−μB.

Note that (7) is well defined if and only if the treatment effects are different.
Indeed, μA = μB means that there is no longer a worse treatment, stressing that the
comparative experiment degenerates to observing just one treatment. Thus, from
now on we exclude the situation α = 0, since in this case criterion (7) no longer
depends on the design and the need to derive any kind of compromise between
ethics and inference vanishes.

4 Compound Optimal Designs

Several approaches have been proposed in the recent literature in order to achieve a
compromise between information gain and ethical concern for the subjects involved
in the trial. See for instance Bandyopadhyay and Biswas (2001), Rosenberger et al.
(2001), Atkinson and Biswas (2005), Geraldes et al. (2006) and Tymofyeyev et al.
(2007). In order to obtain a valid trade-off, we suggest a compromise based on a
suitable weighted combination of the ethical criterion ΦE in (7) and the inferential
one ΦI in (6) of the form1:

Φω(πππn) = ω ΦE(πππn)+(1−ω)ΦI(πππn). (8)

Clearly, if the treatment effects differ substantially, more care is required for the
ethical aspects, whereas when μA and μB tend to be similar, less attention may be
paid to ethics and more to inference, since it is harder to discriminate between A
and B. Thus, the relative importance of the two criteria changes on the basis of the
treatment effects, so we shall assume the weight ω assigned to ethics to be a function

1 A thorough discussion of the properties of the suggested compound criterion has been submitted
for publication elsewhere.
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of the unknown difference α = μA−μB. In order to treat A and B symmetrically, we
choose ω = ω(|α|) : R+ → [0;1) to be a continuous and non-decreasing function
with ω → 0 for α → 0. It is easy to see that Φω(·) is a convex function of πππn, since
it is a weighted combination of a linear and a convex function, and therefore there
exists a unique optimal allocation πππ∗ω minimizing (8), which depends in general on
the unknown parameter α .

Theorem 1. If the weight function is chosen so that ω < 4
5 , then the optimal target

πππ∗ω = (π∗ω1, . . . ,π∗ωJ)
t minimizing Φω in (8) is given by

π∗ω j =
sgn(α)

8
ω

(1−ω)
+

1
2
∈ (0;1) for any j = 1, . . . ,J. (9)

Otherwise, if ω ≥ 4
5 for some values of |α|, then the optimal target πππ∗ω may become

trivial and may coincide with the optimal ethical allocation πππ∗E.

Proof. By putting the first order partial derivatives of the compromise criterion
Φω(·) in (8) w.r.t. πn j’s equal to zero, we have

4[2πn j−1] = sgn(α)[ω/(1−ω)] for any j = 1, . . . ,J, (10)

where the left-hand side of the equation varies in [−4;4] and the right-hand side in
R. Thus, when ω(|α|) < 4

5 for any |α|, the solution of equation (10) lies in (0;1);
otherwise the compromise criterion Φω(·) may become monotonically increasing
(if α < 0) or decreasing (when α > 0), so that the optimal compound target can
degenerate to πππ∗E . ��
Assuming model (1), the optimal compound target does not depend on the covariate
profiles and is strictly related to the chosen weight function ω , since limω→0 πππ∗ω =
πππ∗I , limω→1 πππ∗ω = πππ∗E and, from (9), its behaviour depends on

∂π∗ω j

∂α
=

1
8[1−ω(|α|)]2

(
∂ω(|α|)

∂α

)
,

which can be regarded as the “ethical improvement rate”. Thus, the weight can be
chosen in order to model the optimal compound target in terms of the desired ethical
impact as α varies. For instance, a suitable class of weight functions is

ωs(x) = (4/5)
(
1+ x−2)−2s

[
2− (1+ x−2)−2

]
, with s≥ 1

and the following figure shows the behaviour of ωs for s = 2,3,5 and of the corre-
sponding optimal compound target (9).
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Fig. 1: Plots of the weight function ωs (left) and the corresponding optimal compound target π∗ω
(right) for s = 2,3,5 (solid, dashed and dotted, respectively) as α varies in R+.

5 Doubly-Adaptive Biased Coin Designs with Covariates

Letting ω < 4/5, the compound optimal allocation in (9) is non-trivial and depends
on the unknown parameter α , i.e. πππ∗ω = πππ∗ω(α), so that it can be targeted by applying
suitable modified versions of the doubly-adaptive biased coin design (Eisele 1994)
adjusted for covariates. A natural extension to the present setting is: i) start with a
pilot stage performed to derive initial parameter estimates; ii) at each step k estimate
α with all the collected data up to that step by α̂k, so the optimal target (9) can be
estimated by π∗ω j(α̂k); iii) when the next patient with covariate Zk+1 = z j is ready to

be randomized, he/she will be allocated to A with probability g
{

πk j ;π∗ω j(α̂k)
}

for

j = 1, . . . ,J, where the function g satisfies the following conditions:

C1) g(x;y) is continuous on (0;1)2, with g(x;x) = x;
C2) g(x;y) is strictly decreasing in x and strictly increasing in y.

Assuming this approach, Zhang and Hu (2009) suggest the family

gγ(x;y) =
y(y/x)γ

y(y/x)γ +(1− y)[(1− y)/(1− x)]γ
, (11)

where the parameter γ ≥ 0 controls the degree of randomness (as γ grows the al-
location tends to be more deterministic). Adopting this procedure (we refer to it as
a ZH-design) the randomization function g is the same for each covariate level, so
the closeness to the optimal target will be forced in the same way for each pattern.
However, the evolution of the procedure (and thus the convergence properties of the
allocation proportion in terms of both expectation and variability) depends on the
number of subjects belonging to each pattern entering the trial, and therefore it is
related to the distribution of the covariates in the population. This may be partic-
ularly critical for small samples, where some covariate profiles could be strongly
under-represented so that, both from the ethical and inferential viewpoint, the need
to force closeness to the target should be greater. Thus, when the covariate distri-
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bution is known a-priori we suggest an extension of Zhang and Hu’s design which
can change the degree of randomness between the covariate levels in order to force
the convergence towards optimality on the basis of the different representativeness
of the patterns in the population. Let g1, . . . ,gJ be a set of randomization functions
satisfying C1) and C2), we suggest to allocate the (k +1)-th patient with Zk+1 = z j

to A with probability

g j
(
πk j ;π∗ω j(α̂k)

)
, for j = 1, . . . ,J. (12)

Theorem 2. Adopting the compound criterion (8) with a weight function ω < 4/5,
under the allocation rule in (12) the following holds:

lim
n→∞

πππn = πππ∗ω a.s.

Proof. This result can be easily derived from Zhang and Hu (2009). ��
From (11), a suitable choice consists in setting

g j(x;y) =
y(y/x)γ j

y(y/x)γ j +(1− y)[(1− y)/(1− x)]γ j
(13)

with γ j ∝ p−1
j for any j = 1, . . . ,J, so the allocations for the profiles which may be

potentially under-represented can be forced towards the optimal target. This proce-
dure reflects a Covariate-adjusted Randomization and we shall call it a CR-design.

In order to perform some finite sample comparisons between our proposal and the
ZH-design, we take into account a binary covariate, say gender with male (M) and
female (F), and two different population scenarios where pM = 0.4 and pM = 0.1.
The results come from 1000 simulations with n = 40, μB = 0 σ2 = 1, β = 4 and ωs

with s = 2. To allow for homogeneous comparisons, we adopt the ZH-design in (11)
with γ = 2 and the CR-design in (13) with γ j = k/p j ( j = M,F) and γM + γF = 4.
As shown in Table 1, the CR-design tends to force the allocation proportion to the

Table 1: Expectation and standard deviation (in brackets) of the proportion of allocations to A for
male πn(M) and female πn(F).

pM = 0.4 pM = 0.1
n = 40 π∗ω ZH-design CR-design ZH-design CR-design

πn(M) πn(F) πn(M) πn(F) πn(M) πn(F) πn(M) πn(F)
α = 1 0.512 0.5222 0.5168 0.5185 0.5162 0.5227 0.5190 0.5166 0.5183

(0.0588) (0.0488) (0.0576) (0.0577) (0.1067) (0.0422) (0.0931) (0.0662)
α = 3 0.708 0.6969 0.7019 0.6979 0.7015 0.6795 0.7048 0.6824 0.7048

(0.0633) (0.0560) (0.0593) (0.0592) (0.1030) (0.0502) (0.0916) (0.0695)
α = 5 0.847 0.8363 0.8382 0.8368 0.8375 0.7672 0.8400 0.7827 0.8320

(0.0461) (0.0391) (0.0458) (0.0449) (0.0875) (0.0341) (0.0718) (0.0514)

target within the under-represented group, and this tendency grows as pM decreases.
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Moreover, the variabilities within the different profiles tend to be similar, since that
of the under-represented group decreases and, at the same time, the other grows wrt
the ZH-design. We have obtained similar results for n = 100.
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Split-Plot and Robust Designs: Weighting and
Optimization in the Multiple Response Case

Rossella Berni

Abstract This paper deals with experimental planning and optimization in response
surface methodology. It aims at addressing two main issues: i) the optimization of
a split-plot design in the multiple response case by the use of a robust-design ap-
proach and ii) the related problem of weighting the responses according to the actual
importance of these variables and the target values when performing simultaneous
optimization. An application to the study of a Numerical Control machine in order
to improve the accuracy of the measurement process and to reduce the measurement
time is presented.

1 Introduction

In the last decade, split-plot design, see Cochran and Cox (1957), has received great
attention as a valid plan in the technological field and as a robust-design approach.
In this paper, our main aim is to analyze such experimental designs from two points
of view: the theoretical basis of a split-plot is first evaluated as a specific and valid
experimentation for the robust-design concept, in order to estimate with accuracy
the interaction terms related to noise and design (control) factors, as in Box and
Jones (1992); the second point relates to the split-plot and optimization in a multire-
sponse case, within the Response Surface Methodology (RSM) setting, by involving
just one objective function and the possibility of weighting the response variables
according to their role in achieving the optimal value.
Many authors, building on the theory suggested by Derringer and Suich (1980) and
Khuri and Conlon (1981), have proposed methods to synthesize and optimize re-
sponses. More recently, the multiple response case has been appreciably extended
by consideration of other problems e.g. the correlation between the response vari-
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ables and, above all, the consideration of noise variables. The latter play an obvious
and central role in a robust design context (see, for example, Miró-Quesada and
Del Castillo 2004), where variability is studied according to the noise effect and the
uncertainty of estimated parameters. In Robinson, Brenneman and Myers (2006), at-
tention is focused on robust design and categorical noise variables when the values
of the control factors are evaluated jointly with cost and time issues.

We may summarize our theoretical and empirical contributions as follows:

1. In order to solve the problem of optimization in the multiple response case
of RSM and in the dual approach (two surfaces which consider location and
dispersion effects, we suggest a single measure (a weighted function of several
variables of interest) which allows us to fit just one surface in terms of all the
dependent variables;

2. We introduce the desirability approach (Derringer and Suich 1980), suitably
modified in order to accommodate our weighting;

3. We present a case study in which a robust design approach is studied through
a split-plot design, as in Box and Jones (1992), where we distinguish between
two types of factors: the first are considered as classification devices and are
included in the whole-plots; the second type are the main object of interest and
are used as sub-plot factors;

4. Within the case study, we check the quality of the optimization results accord-
ing to whether the response variables are standardized or not and we carry out
a comparison with the standard desirability approach of Derringer and Suich
(1980).

The organization of the paper is the following: in Section 2 the theory of split-
plot and robust design, in an RSM approach, is briefly explained; in Section 3 the
optimization procedure is outlined while Sections 4 and 5 are related to the case
study. Section 4 includes the planning of the split-plot experiment while the outcome
and results are reported in Section 5. Concluding remarks follow.

2 Split-Plot Theory

In general, let us define the set C = {C1, ..,CI} of Whole-Plot (W-P) factors, and
the set X = {X1, ..,XJ} of Sub-Plot (S-P) factors. Then, within each block k, (k =
1, ..,K), for a balanced split-plot design, we have n runs, and, therefore, the total
number of trials is N = nK. Furthermore, we define ci = (ci1, ..,ciu, ..,cin) as the
generic vector in [−1,+1], related to the i-th W-P factor, (i = 1, .., I) Further, we
suppose we have a single S-P factor (X1), J = 1, which is a categorical factor at
L levels. Let us consider the case of a a second-order split-plot model in an RSM
setting including a main-effect model for the S-P factor and the interaction terms
between the two sets of variables. Therefore, the split-plot model, defined for I W-P
variables, one S-P categorical factor, a single block (K=1), a single response variable
Y for each observation u, (u = 1, ..,n), can be written as:
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yu(C,X) = β0 +
I

∑
i=1

γiciu +
I−1

∑
i=2

I

∑
i′=i+1

γii′ciuci′u ++
L−1

∑
l=1

βlxu,l (1)

+
I

∑
i=2

L−1

∑
l=1

δilciuxu,l +
L−1

∑
l=1

δ(I−1)Ilc(I−1)ucIuxu,l +ψu(W−P) + εu(S−P).

Note that γi and γii′ are parameters related to the second-order model for the W-P
variables, while β0 and βl are intercept and main-effects for the S-P factor, denoted
as xu,l for the generic l level. The parameters δil and δ(I−1)Il are related to the inter-
action effects between the W-P variables and the S-P factor. These last terms play
a relevant role in the robust design approach, since they contain the parameters of
the control � noise interaction effects. The error terms are represented by ψu(W−P)

(whole-plot error) and εu(S−P) (sub-plot error). We suppose that ψ ∼ i.i.d. N(0,σ2
ψ)

and ε ∼ i.i.d. N(0,σ2
ε ); in addition, we suppose that the error terms are uncorrelated.

3 The Optimization Procedure

Consider a general response surface model, Yt (t = 1, ..,T ), for T dependent vari-
ables. The simultaneous optimization is carried out for these T estimated surfaces
where adjustment to a target value is to be performed. We define the following dis-
tance between the estimated surface Ŷt (considered as a function of C and X)and the
target value τt :

St(C,X) = (Ŷt(C,X)− τt)2. (2)

St can be viewed as a crude measure of variability. The aim is the minimization of
the following expression on the coded experimental region jointly with the weights
wt , defined as values in (0,1):

min
[C,X ]

{
∑

t
wtSt(C,X)

}
, (3)

constrained by:

∑
t

wt = 1. (4)

Two kinds of weighting choices may be available: “a-priori” fixed weights (as in
Berni 2009) or weights as parameters within the constrained optimization proce-
dure, as in (4). Note that our aim is to find the best solution for the set of factors
(C,X); the role of each weight in the minimization procedure is related to the term
St(C,X) in (2), i.e. the weight is defined at improving the adjustment of Ŷt to the tar-
get τt during the minimization procedure, carried out through the objective function
of (3).



28 Rossella Berni

3.1 Desirability Function and Weighting

The standard desirability approach suggested by Derringer and Suich (1980) is mod-
ified, as shown below, in order to include weighting and information from the exper-
imental data through the polynomial models estimated on the transformed values.
In the literature many authors have modified this optimization method; in our case,
we start by computing the transformed response values for all the N observations,
y∗u′t ;u′ = 1, ..,N; ∀ t as defined by Derringer and Suich (1980), then we fit the trans-
formed surface Y ∗t . The y∗u′t are obtained through a standardization which considers
the tolerance interval of the response variable Yt , and the corresponding target value.
In addition, the y∗u′t ∈ (0,1) ∀u′, i.e. the transformed value is null when the experi-
mental point is not desirable because it exceeds the limits of the two-sided interval.
The following weighted objective functions are suggested:

DM1(C,X) = (∏
t

wtŶ
∗

t (C,X))1/T ∑
t

wt = 1; t = 1, ..,T (5)

DM2(C,X) = (∏
t

Ŷ ∗t (C,X)wt )1/T ∑
t

wt = T ; t = 1, ..,T. (6)

The maximization of DM1 and DM2 is carried out by considering the estimated sur-
faces and the weighting. Therefore, the main differences in comparison with the
standard method are:

• We optimize the values given in (5) and (6) over the experimental coded region,
taking care of the relevance of the individual polynomial model for each Y ∗t ;

• Expression (5): we weight each Y ∗t surface through a weight;
• Expression (6): this is a geometric weighted mean;
• In both cases the weights may be determined a-priori or as parameters in (0,1),

with the defined constraints;
• Note that in both (5) and (6), we obtain the best-fitted T surfaces through the

desirability values y∗u′t (u′ = 1, ..,N; t = 1, ..,T ) and then we carry out the maxi-
mization of formulas (5) or (6).

We point out that both functions (5) and (6) are applied for improving the optimiza-
tion step and for comparing the suggested function (??).

4 An Application to a Case Study

The aim of the experiment is the improvement of the accuracy in measurements of
a Numerical Control (N/C) machine and the reduction of the measuring time. The
machine works by a feeler pin and it has a movable bridge framework to facilitate
the positioning of the piece which must be checked. For practical purposes, refer-
ence will be made to a dental implant as the piece to be measured, but the specific
nature of the piece is irrelevant. Note also that the reduction of measurement time
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is implicitly the only possibility in order to reduce costs, which are a secondary
problem in this case, where the risk for a patient due to measurement accuracy is
the most pressing problem. The machine needs specific environment conditions for
proper functioning: it has an integrated thermal compensation system which en-
sures proper measuring conditions and the setting of the external temperature has
been solved previously (see Berni and Gonnelli 2006). The steps of the experimen-
tal planning can be outlined as:

1. The response variables are five quantitative variables Yt , t = 1, ..,5 related to the
different positioning of the feeler pin on the dental implant during the process
measurement steps (targets in brackets): maximum circle diameter (τ1 : 3.000
mm), minimum circle diameter (τ2 : 2.790 mm), circle diameter measured at
−3.3 mm (τ3 : 2.827 mm), outside neck circle diameter (τ4 : 4.100 mm) and
eccentricity (τ5 : 0.000 mm). The Yt are expressed in the same units of mea-
surement, and, therefore, the choice of standardization is not compulsory. Note
that each type of measurement is carried out as a distinct step; in addition, each
response variable is an independent dimension of the measured piece.

2. The full measurement process includes six phases. In order to reduce the mea-
suring time, the only step where we may intervene is the location of the frustum
of a cone by 3 circles; i.e. the frustum of the cone is located by 3 circles at 3
different distances.

3. In order to locate each circle, the N/C machine software identifies a circum-
ference by selecting several points by the feeler pin. In the initial setting, the
numbers of points are set at (7,7,7) and a measuring time improvement may
be achieved by reducing the number of points. We therefore introduce a factor
“circle-point” (X1) with four levels, each represented by a different combination
of points in decreasing order of measuring time: (1)7,7,7; (2)7,5,7; (3)5,7,5;
(4)5,5,5.

4. Two other sources of variability are included in our planning: C2 is the mea-
surement speed (mm/sec) for each point; C3 (mm/sec) is the speed of the feeler
pin when it is drawn onto the piece or it turns around the piece. Both factors are
considered as fixed levels; their setting is chosen before beginning the measure-
ment process.

5. Therefore, a split-plot design with 3 factors is planned; the two whole-plot fac-
tors, both at two levels, are C2 and C3, while the single sub-plot factor (of greater
interest) is X1.

6. It should be noted that the noise related to the positioning of the piece on the
clamp is a source of variability out of our control. Each trial is thus performed
with replicates also to evaluate this experimental error. Note that, in whole-
plots, C1 corresponds to the block effect. The final split-plot has three W-P fac-
tors (I = 3), a single S-P factor (J = 1) and 112 runs given by seven replicates
(or blocks, K = 7), see Table 1.

7. Note that in this design, noise and control factors are studied according to a
robust process in just one design matrix, where noise factors are assigned to the
W-P and control factors to the S-P (as suggested in Box and Jones 1992). In
this case, however, the specific block structure at the split-plot level does not
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correspond to a combined array stricto sensu, i.e. a single array for noise and
design factors without replicates.

The design ensures the equivalence of Ordinary Least Squares (OLS) and General-
ized Least Squares (GLS) estimates because the conditions are satisfied (for details
see Vining, Kowalski and Montgomery 2005). Observe that, in the measurement
process, the noise levels, evaluated through C2 and C3, are fixed before the mea-
suring phase. At the same time, the response variables are related to the specific
measurement step and each type of measurement is independent of each other.

Table 1: Split-plot design: 22×41; description of k-th block; k = 1, ..,K, K=7 blocks

· ·
· ·
Block bk

W-P: C2,C3 1,1 |1,2 | 2,1 | 2,2
S-P: X1 1,2,3,4 | 2,4,3,1 | 4,2,3,1 | 1,2,3,4
· ·
· ·

5 Optimization Results

The application, (computed with the Statistical Analysis System -SAS- software),
starts by considering the results of the analysis of variance and the specific estimated
surface for each response variable, as in (8). The estimates are not displayed here;
in general, the significant main effects are the “circle point” (factor X1) and the
measurement speed (factor C2); drift speed (factor C3) shows significant p-values,
except for Y2. The significant interaction effects are mainly the interaction C2 �C3,
except for Y2 and Y5, and the interactions between X1 and the whole-plot factors,
C2 and C3. The results of the statistical models obtained from standardized data are
very close to the ones obtained on the basis of the original data. Note also that the
first error term is formed by the interactions between the replicate effect and the
W-P variables. The second error term is the residual error of the model.

The estimates of the surfaces for each Yt are used to optimize (??); the results are
displayed in Tables 2 and 3. Note that the simultaneous optimization was reached
by conditioning on the specific setting of points corresponding to the levels of the
“circle-point” factor X1. Optimization results are evaluated through the objective
function value, the gradient estimates (maximum absolute gradient value) (‖x‖∞),
the determinant of the Hessian matrix (|H|). The optimal experimental trial is also
identified according to the nearness to the target values jointly with the reduction of
measuring time (high level of factor C2) and the level of factor C3.

In Table 2 we show the best results obtained from (2) and (3) applied to original
and standardized data. We must point out that, especially for the original data, we
gain good and stable results for each level of X1. Weights, included in the mini-
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mization procedure, are well specified for the original data in comparison with the
standardized ones, but however, through the transformed data the ideal target values
are almost achieved. Diagnostic results are good and very steady.

Table 3 reports the optimal solution achieved through the modified desirability
approach, (5) and (6). As regards (5), by considering the factors C2 and C3, the opti-
mal levels are very close to the solutions shown before, above all to the solutions of
Table 2 and the standardized data. The level of factor X1 is the same level obtained
through standardized data (Table 2). The results from application of (6), shown in
Table 3, are similar to previous results when considering the gained level for X1,
level 2, with C2 and C3 equal to the maximum value. However, for this approach,
some remarks on the diagnostic results and on the weights are highlighted. In gen-
eral, the only level of X1 which has never come out as an optimal solution is the
level X1 = 1, which is the initial situation. The best solution for the “circle point”
factor is the level X1 = 4 achieved by the original data (Table 2); undoubtedly, the
level X1 = 2 is also a good result, and it is achieved from applying (3) to standard-
ized data, (5) and (6). Furthermore, a good combination for the whole-plot factors
is obtained from (3) with standardized data, while only (6), related to the modified
desirability approach, gains the maximum level (+1).

Table 2: Simultaneous optimization results: formula (3) on original and standardized data

Results Formula (3); original data Formula (3); standardized data

Optimal Soln X1 = 4; C2 = 0.710; C3 = 0.362 X1 = 2; C2 = 0.863; C3 = 0.812
Weights w1 = 0.285; w2 = 1.5e − 5;

w3 = 0.008 w4 = 0.651;
w5 = 0.055

w1 = 0.000; w2 = 0.509;
w3 = 0.490 w4 = 0.000;
w5 = 0.000

Estimated
Resp. Surf. τ̂t

τ̂1 = 3.003; τ̂2 = 2.785;
τ̂3 = 2.822; τ̂4 = 4.110;
τ̂5 = 0.001

τ̂1 = 3.000; τ̂2 = 2.788;
τ̂3 = 2.822; τ̂4 = 4.109;
τ̂5 = 0.000

Diagnostics
of; ‖x‖∞; |H| 3.1e−6; 1.3e-4; < 10e−8 3.4e−7; 7.5e−4;< 10e−8

Table 3: The modified desirability approach; formulae (10) and (11)

Results Formula (10) Formula (11)

Optimal Soln X1 = 2; C2 = 0.785; C3 = 0.986 X1 = 2; C2 = 1; C3 = 1
Weights w1 = 0.141; w2 = 0.334;

w3 = 0.189; w4 = 0.178;
w5 = 0.158

w1 = 0.001; w2 = 0.000;
w3 = 0.000; w4 = 4.999;
w5 = 0.000

Diagnostics
of; ‖x‖∞; |H| 4.0e−7; 9.9e-7; < 10e−8 0.1992; 5.5e-17; < 1.4e−15
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6 Concluding Remarks

In this paper we have dealt with optimization in the multiresponse case. Weight-
ing is a specific problem and is included in the optimization procedure through the
minimization of the objective function with respect to the weights as well as the
factors. The optimization methodology related to the split-plot experimental data in
the multiple response case of RSM is applied in a case study. We obtain satisfactory
results related to the optimizations, according to each level of the sub-plot factor
“circle-point”. However, the definition of a specific factor that identifies the frustum
of the cone is still critical and will require further analysis.
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An Improvement in the Lack-of-Fit Optimality
of the (Absolutely) Continuous Uniform Design
in Respect of Exact Designs

Wolfgang Bischoff

Abstract Designs which have equal numbers of observations taken over a finite set
of uniformly spaced points are most popular in practice. For optimum properties
of such exact uniform designs, however, reference is often made to the lack of fit
(LOF)-optimality of the corresponding absolutely continuous uniform design which
is considered as the asymptotic design for the exact uniform designs. It is shown
that LOF-optimality in its original form has no relation to exact uniform designs.
Subsequently we give conditions under which an interpretation for exact uniform
designs is possible.

1 Introduction

Many researchers in practice use designs which have equal numbers of observations
taken over a finite set of uniformly spaced points. These designs are called exact
uniform designs and a main reason for their popularity is their intuitive appeal and
ease in implementing them in practice. For optimum properties of exact uniform
designs, however, reference is made in a huge number of papers to an optimum
property of the corresponding absolutely continuous uniform design. The absolutely
continuous uniform design is the uniform distribution on the experimental region E
where E is a compact interval of R. It seems to be intuitive to approximate an ex-
act uniform design by the absolutely continuous design when, as is usual, an exact
design is considered as a probability measure. That optimum property of the abso-
lutely continuous uniform design is a maxmin property which maximizes (over a
class of designs) the minimal power (over a large class of alternatives) of a model
check for linear regression. The maxmin result for the absolutely continuous uni-
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form design was established by Wiens (1991). He investigated the F-test to check
for linear regression. Biedermann and Dette (2001) additionally considered three
non-parametric tests to check for linear regression. It is a surprising fact that the
power of all these tests is an increasing function, at least asymptotically, of the same
expression. This expression depends only on the (asymptotic) design, the regression
model and the true regression function. Furthermore, Biedermann and Dette (2001)
have generalized the maxmin property to any design being absolutely continuous
with positive density on E .

After introducing the models and notation in the next section we show that the
maxmin results of Wiens (1991) and Biedermann and Dette (2001) have no rele-
vance for exact designs. Finally, we give conditions under which an interpretation
for exact designs is possible.

2 Preliminaries

We consider a non-parametric regression model

Y = G+ ε (1)

where Y = (Y1, . . . ,Yn)� is the vector of observations, G = (g(t1), . . . ,g(tn))� is
the vector of evaluations of the true but unknown regression function g : E → R

at the design points t1, . . . , tn ∈ E and ε = (ε1, . . . ,εn)� is the vector of errors. We
assume that the experimental region E is a compact subset of R and that ε1, . . . ,εn

are uncorrelated real random variables with expectation 0 and unknown constant
variance σ2 ∈ (0,∞). To simplify notation we put E = [0,1].

We are interested in a model check for linear regression. For this purpose let
f1, . . . , fk : E → R be known regression functions. Let f = ( f1, . . . , fk)� : E → R

k

be the vector of these known regression functions. Under the null-hypothesis we
assume that model (1) can be written as linear regression model

Y = Xθ + ε (2)

where X = Xn = ( f (t1), . . . , f (tn))� is the design (model) matrix and θ ∈ R
k is an

unknown parameter vector.
An exact design for n observations determines n not necessarily distinct design

points t1, . . . , tn of the experimental region E . Each n-tuple τn = (t1, . . . , tn) ∈ E n is
called an exact design for n observations. Note that an exact design τn = (t1, . . . , tn)
can be considered as a probability measure ξn, say, by giving each design point ti
the mass 1/n, i.e. ξn = ξτn = 1

n ∑n
i=1 δti , where δt is the Dirac-measure (one-point

measure) in t. In the following we do not distinguish between an exact design and
its representation as a probability measure. In generalizing the above idea we regard
each probability measure on E (furnished with its Borel-σ -Algebra) as a (continu-
ous) design. Let Ξ be the set of all these continuous designs (probability measures)
and let Ξλ be the set of all absolutely continuous (with respect to Lebesgue mea-
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sure) designs in Ξ . Conversely, given a design ξ ∈ Ξ how can we realise a suit-
able sequence of exact designs which converges to ξ in some useful sense? For
this purpose we consider the cumulative distribution function Fξ of ξ and its quan-
tile function Qξ . Then we define the exact design ξn+1 for n + 1 design points by
ξn+1 = (0,Qξ (1/n), . . . ,Qξ ((n−1)/n),1). By this construction the cumulative dis-
tribution function Fξn

converges uniformly to Fξ . For more information, see Bischoff
(1998).

The absolutely continuous uniform design λ , say, is the Lebesgue measure re-
stricted to E = [0,1]. Intuitively the absolutely continuous uniform design λ is
considered as the asymptotic design of the sequence of exact uniform designs
λn = (0,1/(n− 1), . . . ,(n− 2)/(n− 1),1). For our purpose this intuition is made
mathematically rigorous through the result that Fλn converges uniformly to Fλ , see
the discussion above.

3 LOF Optimality

Wiens (1991) proved a maxmin property for the absolutely continuous uniform de-
sign λ . To explain this property in detail let us consider the linear space [ f1, . . . , fk]
spanned by the known regression functions f1, . . . , fk and let L2(ξ ),ξ ∈Ξ , be the set
of square integrable functions with respect to ξ furnished with its canonical norm
‖ · ‖L2(ξ ). The null-hypothesis

H0 : ∃ θ = (θ1, . . . ,θk)� ∈ R
k with g = f�θ , (3)

is of primary practical interest when researchers hope to interpret their data by the
linear regression model (2). A test for this problem is called a lack-of-fit-test (LOF-
test). For several test statistics (Wiens (1991) for the usual F-test, Biedermann and
Dette (2001) for three further tests based on nonparametric estimation of the un-
known regression function g) the following fact has been proved asymptotically
(n→ ∞):
Let ξ ∈ Ξλ be an absolutely continuous design and let ξn,n ∈ N, be its correspond-
ing sequence of exact designs defined at the end of Section 2. Then the asymptotic
power (the limit of the sequence of powers corresponding to ξn,n ∈ N,) is an in-
creasing function of

‖g− prL2(ξ )
[ f1,..., fk]

g‖2
L2(ξ ) =

∫
E

(
g− prL2(ξ )

[ f1,..., fk]
g
)

(x)2 ξ (dx), (4)

where prL2(ξ )
[ f1,..., fk]

is the orthogonal projector onto [ f1, . . . , fk] in L2(ξ ) (see also
Bischoff and Miller (2000) for a general approach).

Note that, given an exact design ξ the expression given in (4) is, up to a constant,
the non-centrality parameter of the F-test for the test of LOF. Hence, given an exact
design ξ the power of the F-test is an increasing function of (4). For shortness we
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call the expression in (4) asymptotic power. The bigger ‖g− prL2(ξ )
[ f1,..., fk]

g‖2
L2(ξ ) is,

the bigger is the asymptotic power. It is worth mentioning that assumptions are
needed to prove that the limit of the sequence of powers (corresponding to ξn,n ∈
N,) converges to (4). For instance, Biedermann and Dette (2001) used among others
the following assumption for their result:

g ∈C(r)([0,1]), where r ≥ 2. (5)

Since the true regression function g is unknown Wiens (1991) suggested a maxmin
approach for a specific set of designs Ξ0 and of alternatives F .

Definition 1. Let Ξ0 ⊆ Ξ . A design ξ0 ∈ Ξ0 is called lack-of-fit (LOF)-optimal in
Ξ0 for (the class of alternatives) F , if

max
ξ∈Ξ0

inf
h∈F

‖h− prL2(ξ )
[ f1,..., fk]

h‖2
L2(ξ ) = inf

h∈F
‖h− prL2(ξ0)

[ f1,..., fk]
h‖2

L2(ξ0).

Obviously, a design solving the above problem maximizes, in the class Ξ0, the min-
imal asymptotic power over the class F of alternatives. It is clear that the subset
of alternatives F must be separated from the hypothesis. Wiens (1991) investigated
the sets

F = Fλ ,c = {h ∈ L2(λ ) | ‖h− prL2(λ )
[ f1,..., fk]

h‖2
L2(λ ) ≥ c}, c > 0,

as alternatives. More generally, Biedermann and Dette (2001) considered the sets

F = Fξ ,c = {h ∈ L2(ξ ) | ‖h− prL2(ξ )
[ f1,..., fk]

h‖2
L2(ξ ) ≥ c}, c > 0,

as alternatives where ξ ∈ Ξλ with Lebesgue-density dξ
dλ (t) > 0 for all t ∈ E . Here ξ

gives more weight to those design points of E for which a deviation is more serious.
Since

inf
h∈Fξ ,c

‖h− prL2(ξ )
[ f1,..., fk]

h‖2
L2(ξ ) = c inf

h∈Fξ ,1

‖h− prL2(ξ )
[ f1,..., fk]

h‖2
L2(ξ ), c > 0,

a LOF-optimal design for Fξ ,1 is also LOF-optimal for Fξ ,c for each c > 0. There-
fore, we can fix c = 1 and put

Fξ := Fξ ,1 =
{

h ∈ L2(ξ )
∣∣∣‖h− prL2(ξ )

[ f1,..., fk]
h‖2

L2(ξ ) ≥ 1
}

.

Theorem 1. a) (Wiens (1991)) The absolutely continuous uniform design λ is LOF-
optimal in Ξ0 = Ξλ for F = Fλ .

b) (Biedermann and Dette (2001)) ξ ∈ Ξλ with dξ
dλ (t) > 0, t ∈ E , is LOF-optimal in

Ξ0 = Ξλ for F = Fξ .

Remark 1. It is obvious that in the above theorem the class Ξ0 of competing designs
can be enlarged. For instance, all discrete designs can be added. This was already
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pointed out by Wiens (1991). One can even show more: in the above theorem the
class of competing designs can be enlarged to Ξ0 = Ξ and the LOF-optimal designs
are unique.

Now the question arises what significance do the results of Theorem 1 have for
exact uniform (Wiens) or, more generally, for exact designs corresponding to ξ ∈Ξλ
(Biedermann and Dette)?

Wiens’ result,

max
ξ∈Ξλ

inf
h∈Fλ

‖h− prL2(ξ )
[ f1,..., fk]

h‖2
L2(ξ ) = inf

h∈Fλ
‖h− prL2(λ )

[ f1,..., fk]
h‖2

L2(λ ), (6)

is cited in many papers as an optimality property for exact uniform designs λn. If the
result has any relevance for exact designs, then there must be a useful interpretation
when we replace λ in (6) by an exact uniform design λn, at least if n is large enough.
In the first instance let us fix the class of alternatives F = Fλ as in Theorem 1. Then
for an arbitrary exact uniform design λn with n > k +1 it is the case that,

inf
h∈Fλ

‖h− prL2(λn)
[ f1,..., fk]

h‖2
L2(λn) = 0. (7)

However by the definition of Fλ ,

inf
h∈Fλ

‖h− prL2(λ )
[ f1,..., fk]

h‖2
L2(λ ) = 1. (8)

Equation (7) is even true if the set of alternatives is restricted to F = Fλ ∩C[0,1]∩
BV [0,1], where BV [0,1] is the class of functions having bounded variation, being
right continuous and having left hand limits. In the Appendix we construct a func-
tion h0 ∈Fλ ∩C[0,1]∩BV [0,1] with

‖h0− prL2(λn)
[ f1,..., fk]

h0‖2
L2(λn) = 0. (9)

Both papers (Wiens (1991), Biedermann and Dette (2001)) consider too large a
class of alternatives for LOF-optimality when we take into account the restrictions
on the alternatives imposed by convergence to (4); see (5). Indeed, in both papers the
problem of LOF-optimality is treated separately from convergence to the limit (4).
An interpretation is possible if the class of alternatives is restricted to the alternatives
imposed by convergence to (4).

Next, we consider only the F-test; the additional statistics considered by Bieder-
mann and Dette can be similarly treated. By considering Bischoff (1998) or Bischoff
and Miller (2000) and Bischoff (2002) one can discover that the class F = BV [0,1]
can be chosen when f1, . . . , fk are continuous and have bounded variation. By these
papers or by direct inspection we have for ξ ∈ Ξλ and h ∈ BV [0,1]

lim
n→∞

‖h− prL2(ξn)
[ f1,..., fk]

h‖2
L2(ξn) = ‖h− prL2(ξ )

[ f1,..., fk]
h‖2

L2(ξ ), (10)
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where (ξn) is the sequence of exact designs corresponding to ξ ; see the end of

Section 2. For the next result we have to restrict the class of designs. Let Ξ B[0,1]
λ be

the set of all absolutely continuous designs with densities in B[0,1].

Theorem 2. Let f1, . . . , fk ∈C[0,1]∩B[0,1]. Then for each h∈BV [0,1] and ξ ∈Ξλ ,
the convergence given in (10) holds true. Moreover, let ξ ,η ∈ Ξ . If

∃ k +1 disjoint intervals A1, . . . ,Ak+1with ξ −η(Ai) > 0, i = 1, . . . ,k +1, (11)

then there exists a function hη ∈ BV [0,1]∩Fξ with

‖hη − prL2(η)
[ f1,..., fk]

hη‖2
L2(η) < ‖hη − prL2(ξ )

[ f1,..., fk]
hη‖2

L2(ξ ) = 1. (12)

Hence, ξ ∈ Ξ B[0,1]
λ is the unique LOF-optimal design in Ξ0 = Ξ B[0,1]

λ for the class of
alternatives F = BV [0,1]∩Fξ .

Proof. Proof of (12). For designs ξ ,η Wiens (see also the corresponding proof of
Biedermann and Dette) constructed a measurable function hη ∈Fξ fulfilling

‖hη − prL2(η)
[ f1,..., fk]

hη‖2
L2(η) ≤ ‖hη − prL2(ξ )

[ f1,..., fk]
hη‖2

L2(ξ ) = 1. (13)

Using (11) for the construction of hη (see the proof of Wiens) we obtain ’<’ in (13)
and we recognize that then hη ∈ B[0,1].
Proof of the last statement of the theorem. For arbitrary ξ ,η ∈ Ξ B[0,1]

λ ,ξ �= η , con-
dition (11) holds true and hence (12). By (12) the assertion follows.

Remark 2. The class Ξ0 of competing designs can be enlarged. For example, all
exact designs can be added.

Remark 3. The above result does not imply a specific optimality for the uniform
design. The optimality depends on the chosen class of alternatives. This was already
pointed out by Biedermann and Dette (2001) for the original LOF optimality.

Remark 4. In Bischoff and Miller (2006) practically attractive designs are estab-
lished by a constrained optimal design approach. In a class of LOF-efficient designs
the optimal design is determined with respect to a classical design criterion.

Acknowledgment. The author thanks an unknown referee for her/his careful read-
ing of the first draft and for her/his suggestions.

4 Appendix

Let 0m = (0, . . . ,0)� ∈ R
m,m ∈ N, and let n ∈ N with n− 1 > k where k is the

number of known regression functions f1, . . . , fk. We define
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h(x) := 1− cos(2π · (n−1)x),x ∈ [0,1].

Then it holds that h(i/(n−1)) = 0, i = 0, . . . ,n−1. Let Bi = [(i−1)/(n−1), i/(n−
1)], i = 1, . . . ,n−1. Then we define

h0(x) :=
n−1

∑
j=1

w j ·1B j(x)h(x)/(
n−1

∑
j=1

w2
j

∫
B j

h2 dλ )1/2.

where w = (w1, . . . ,wn−1)� �= 0n−1 is a solution of the following k equations with
n−1 > k variables w1, . . . ,wn−1:

n−1

∑
j=1

w j

∫
B j

h(x) f (x) λ (dx) = 0k.

Thus h0 ∈C[0,1]∩B[0,1] and we have
∫

E
f (x)h0(x) λ (dx) = 0k,

hence h0− prL2(λ )
[ f1,..., fk]

h0 = h0, and
∫
E h2

0(x) λn(dx)= ‖h0‖2
L2(λn) = 0,

∫
E h2

0(x) λ (dx)=

‖h0‖2
L2(λ ) = 1. Therefore h0 ∈Fλ and ‖h− prL2(λn)

[ f1,..., fk]
h‖2

L2(λn) = 0.
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Optimal Allocation Proportion for a
Two-Treatment Clinical Trial Having Correlated
Binomial Responses

Atanu Biswas and Saumen Mandal

Abstract Optimal allocation designs for the allocation proportion are obtained in
the present paper for a two-treatment clinical trial, in the presence of possible cor-
relation between the proportion of successes for two treatments. The possibility of
such correlation is motivated by real data. It is observed that the optimal allocation
proportions highly depend on the correlation.

1 Introduction

Consider a clinical trial with two treatments, A and B, with binary responses. Sup-
pose n, possibly unknown, patients are treated in the trial, of which nA and nB pa-
tients are to be allocated to A and B, respectively, n = nA + nB. Here nA and nB

are also typically unknown, each patient being randomized with certain probability
among the competing treatments. The optimal design in this context may be to set a
target ratio R = nA/nB for the two competing treatments. Denote the number of suc-
cesses under the two treatments by YA and YB. The resulting data can be presented
as a 2×2 table as follows.

Risk factor
Present Absent Total

Outcome Favourable YA YB YA +YB

Adverse nA−YA nB−YB n−YA−YB

Total nA nB n = nA +nB

Suppose, marginally YA ∼ Bin(nA, pA) and YB ∼ Bin(nB, pB). The conditioning
argument in the table on the two marginals nA and nB is crucial here.

The usual assumption is independence between YA and YB, conditionally fixing
nA and nB. The optimal allocation design can be represented by the following opti-
mization problem:
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To minimize
ΨAnA +ΨBnB (1)

with respect to R = nA/nB, subject to Var(ξ̂ ) = K, where ξ = ξ (pA, pB) is a param-
eter combination of interest, and K is a preset positive constant. Here ΨA and ΨB are
suitable weights which are functions of ξ . Note Var(ξ̂ )≤K yields the same design.

Case 1: If ξ = pA− pB, the treatment difference (Ware (1989)), then Var(ξ̂ ) =
pAqA
nA

+ pBqB
nB

, with qk = 1− pk for k = A,B. For general ΨA and ΨB, the optimal
solution for R is

Ropt =
√

pAqA

pBqB

√
ΨB

ΨA
. (2)

If ΨA =ΨB = 1, (1) indicates minimization of the total sample size, and this gives
the well-known Neyman allocation. With Ψk = qk, k = A,B, (1) indicates minimiza-
tion of the total expected failures subject to the constant value of the variance of the
estimate of treatment difference. This problem is discussed by Rosenberger, Stal-
lard, Ivanova, Harper, and Ricks (2001). See also Rosenberger and Lachin (2002)
(pp. 174-176).

Case 2: If ξ is the Relative Risk, RR = qB/qA, we have

Var(ξ̂ ) =
pAq2

B

nAq3
A

+
pBqB

nBq2
A

,

and with Ψk = qk, k = A,B, the solution for R is

Ropt =
√

pA

pB

qB

qA
. (3)

See Rosenberger and Lachin (2002).

Case 3: If ξ is the Odds Ratio, OR = pAqB
pBqA

, we get

Var(ξ̂ ) =
pAq2

B

nAq3
A p2

A

+
p2

A pB

nBq2
A p3

B

,

and with Ψk = qk, k = A,B, the solution for R is

Ropt =
√

pB

pA

qB

qA
. (4)

See Rosenberger and Lachin (2002).

Almost all studies for 2×2 tables are done assuming independence of YA and YB,
conditionally fixing nA and nB. But, in reality, given nA and nB, often YA and YB are
correlated due to common social/economic/environmental exposures. In a clinical
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trial setting, the correlation appears due to the identical nature of care available to
the trial subjects irrespective of receiving treatment or placebo.

Ergin and Ergin (2005) described a meta-analysis of 11 studies (resulting in 11
2× 2 tables) of thrombolytic therapy versus placebo for the treatment of acute is-
chemic stroke patients. The total number of patients were 3709. The data is pro-
vided by Ergin and Ergin (2005). Here the observed correlation coefficient from the
11 pairs is 0.669, which is significantly away from 0 under the assumption of inde-
pendence for 2× 2 tables (P-value of 0.048). This correlation can be explained by
similar medical care and common environmental effect within each trial, which are
treated as unknown random effects. Thrombolytic therapy was associated with an
insignificant increase in mortality using the standard uncorrelated model. Here we
wish to study the situation by incorporating the correlation into account.

Hwang and Biswas (2008) discussed such a correlation in the context of a single
2×2 table, while Biswas and Hwang (2009) discussed the same for multiple tables.
For describing the correlated binomial distribution, they considered the bivariate bi-
nomial model of Biswas and Hwang (2002) and some extension of that. See Biswas
and Hwang (2002), Biswas and Hwang (2009) and Hwang and Biswas (2008) for
the bivariate models. According to the models, marginally Yk ∼ Binomial(nk, pk),
k = A,B, and corr(YA,YB) = ρ . Consequently, corr(p̂A, p̂B) = ρ . The correlation
is due to some common random effect associated with all the observations. The
model is obtained as follows: Suppose min(nA,nB) = m, and we assume m depen-
dent Bernoulli pairs (YAi,YBi) where marginally Yki ∼ Bernoulli(pk). The dependent
structure between YAi and YBi is introduced either by

P(YBi = 1|YAi) = pB +θ(YAi− pA)

or
P(Yki = 1|Y0i) = pk +θ(Y0i− p0), k = A,B,

where Y0i ∼ Bernoulli(p0), independent of YAi and YBi.
In the present paper we consider the situation of bivariate binomial models where

the correlation ρ is present. We obtain an optimal allocation proportion Ropt in the
presence of such correlation. This is obtained in Section 2. In Section 3 we provide
some numerical computational results. Finally Section 4 concludes.

2 Optimal Allocation Proportions in the Presence of Correlation

Under the correlated set up,

Var(p̂A− p̂B) =
pAqA

nA
+

pBqB

nB
−2ρ

√
pAqA pBqB√

nAnB
. (5)

Now, consider the case of odds ratio, OR. Writing μA = nA pA, k = A,B, we

expand log
(

YA
nA−YA

)
by retaining terms up to the first order. We get log ÔR as
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log ÔR� log

(
μA

nA−μA

)
+

nA

μA(nA−μA)
(YA−μA)

− log

(
μB

nB−μB

)
− nB

μB(nB−μB)
(YB−μB).

Hwang and Biswas (2008) showed that

Var(log ÔR)� 1
μA

+
1

nA−μA
+

1
μB

+
1

nB−μB
− fρ ,

where

fρ = 2ρ

√(
1

μA
+

1
nA−μA

)(
1

μB
+

1
nB−μB

)
,

where ρ is the correlation coefficient between YA and YB or between p̂A and p̂B.
So,

Var(log ÔR) =
1

nA pAqA
+

1
nB pBqB

−2ρ

√
1

nAnB pAqA pBqB
,

and consequently, under the presence of correlation,

Var(ÔR) =
p2

Aq2
B

p2
Bq2

A

Var(log ÔR) =
pAq2

B

nA p2
Bq3

A

+
p2

AqB

nBq2
A p3

B

− 2ρ p3/2
A q3/2

B√
nAnB p5/2

B q5/2
A

. (6)

In a similar fashion, under correlation,

Var(R̂R) =
pAq2

B

nAq3
A

+
pBqB

nBq2
A

−
2ρ
√

pA pBq3
B

√
nAnBq5/2

A

. (7)

It is interesting to note that all the correlation-adjusted variance expressions, (5),
(6) and (7), are of the form

σ2
A

nA
+

σ2
B

nB
− 2σAB√

nAnB

for some choice of σ2
A , σ2

B and σAB.
Thus, the problem at hand is to minimize (1) subject to

σ2
A

nA
+

σ2
B

nB
− 2σAB√

nAnB
= K. (8)

Writing nA = nR/(1+R) and nB = n/(1+R) in (8), we have

nK =
σ2

A(1+R)
R

+σ2
B(1+R)− 2σAB(1+R)√

R
. (9)
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Using (9) in (1), we get

(ΨAR+ΨB)(σ2
A +σ2

BR−2σAB
√

R)
RK

,

which is to be minimized. Thus, essentially we have to minimize

ΨAσ2
BR−2ΨAσAB

√
R−2ΨBσABR−1/2 +ΨBσ2

AR−1 +(ΨAσ2
A +ΨBσ2

B).

Differentiating with respect to R and equating to zero, we have to solve

ΨAσ2
BR2−ΨAσABR3/2 +ΨBσABR1/2−ΨBσ2

A = 0 (10)

to find a solution for minimum R, denoted by Ropt . If ρ = 0, the equation (10) has
two real roots of equal magnitude but of different signs. The positive root is the
solution Ropt . For ρ > 0, (10) has three roots, two being complex and the other is
positive real. The real root is the solution Ropt . Numerical computations are given
in the next Section.

3 Numerical Computations

We carry out a detailed numerical study to find the optimal proportion Ropt in differ-
ent situations. Part of our numerical results are provided in Tables 1-4. We provide
results with (5) as the constraint in Tables 1-2, and (6) as the constraint in Tables
3-4. We consider four choices of ρ , namely ρ = 0,0.3,0.6 and 0.9, ρ = 0 being the
case under independence. The existing results in Section 1 correspond to ρ = 0. We
always consider pB ≥ pA in our computations.

In Table 1, we consider Ψk = qk, k = A,B. We observe that when pA = pB, Ropt =
1 always. This does not depend on ρ as the roles of A and B are exchangeable.
However, for pA �= pB, the optimal allocation proportion Ropt depends on ρ to quite
an extent. When both pA and pB are smaller than 0.5, Ropt decreases as ρ increases.
But, if either of pA and pB is greater than 0.5, Ropt is an increasing function of ρ .
Ropt is so much influenced by ρ that it is possible that Ropt is less than 1 for some ρ ,
and it is greater than 1 for some other value of ρ . In Table 1, the row corresponding
to (pA, pB) = (0.4,0.8) exhibits such a pattern.

Table 2 corresponds to Neyman allocation (whereΨA =ΨB = 1). Here also Ropt =
1 when pA = pB, irrespective of the value of ρ . In addition, here Ropt = 1 and
independent of ρ , whenever pA = qB. In fact, here Ropt depends on ρ otherwise, but
Ropt is the same for (pA, pB) = (a,b),(a,1−b),(1−a,b),(1−a,1−b). Here Ropt is
decreasing in ρ when pA < pB and pA < 0.5; however Ropt is increasing in ρ when
0.5 < pA < pB.

In Tables 3 and 4 we present the results where the constraint corresponds to
the variance of the estimator of the Odds Ratio. Table 3 is for Ψk = qk, k = A,B,
while Table 4 corresponds to ΨA = ΨB = 1. From Table 3, we observe that Ropt = 1
and does not depend on ρ when pA = pB. Otherwise Ropt is always an increasing
function of ρ whenever pA < pB. However, even for pA < pB, Ropt can be less than
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Table 1: Optimal allocation proportion (Ropt ) for different pA < pB and ρ corresponding to Ψk = qk,
k = A,B, and Var( p̂A− p̂B) = K as the constraint.

pA pB ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9
0.2 0.2 1.000 1.000 1.000 1.000
0.2 0.4 0.707 0.700 0.689 0.674
0.2 0.6 0.577 0.592 0.614 0.650
0.2 0.8 0.500 0.567 0.680 0.892
0.4 0.4 1.000 1.000 1.000 1.000
0.4 0.6 0.816 0.846 0.891 0.964
0.4 0.8 0.707 0.811 0.990 1.328
0.6 0.6 1.000 1.000 1.000 1.000
0.6 0.8 0.866 0.956 1.102 1.366
0.8 0.8 1.000 1.000 1.000 1.000

Table 2: Optimal allocation proportion (Ropt ) for different pA < pB and ρ corresponding to ΨA =
ΨB = 1, and Var( p̂A− p̂B) = K as the constraint.

pA pB ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9
0.2 0.2 1.000 1.000 1.000 1.000
0.2 0.4 0.816 0.788 0.748 0.691
0.2 0.6 0.816 0.788 0.748 0.691
0.2 0.8 1.000 1.000 1.000 1.000
0.4 0.4 1.000 1.000 1.000 1.000
0.4 0.6 1.000 1.000 1.000 1.000
0.4 0.8 1.225 1.269 1.336 1.446
0.6 0.6 1.000 1.000 1.000 1.000
0.6 0.8 1.225 1.269 1.336 1.446
0.8 0.8 1.000 1.000 1.000 1.000

1 or more than 1 depending on the values of (pA, pB). The computational results
for ΨA = ΨB = 1 are given in Table 4. Here Ropt = 1 (and free of ρ) if pA = pB or
pA = qB. Also Ropt is increasing in ρ for small values of pA (< pB), and is decreasing
in ρ otherwise. Also, when pA + pB = 1, it is easy to check that both the constraints
corresponding to the variance expressions (5) and (6) become the same, and will
yield identical Ropt-values. This is also confirmed by our computations of Tables 1
and 3, and 2 and 4, corresponding to the rows where pA + pB = 1.

We also carried out numerical computations for the constraint corresponding to
(7), which is for the variance of the estimator of the Risk Ratio, for Ψk = qk, k =
A,B, and also for ΨA = ΨB = 1. We do not provide tables given space limitations.
However, here Ropt = 1 (and independent of ρ) only when pA = pB. Otherwise, for
pA < pB, we observe Ropt always decreases as ρ increases. Hence, for pA < pB, Ropt

is always less than 1. We observe an exactly similar feature for both choices of Ψk.
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Table 3: Optimal allocation proportion (Ropt ) for different pA < pB and ρ corresponding to Ψk = qk,

k = A,B, and Var(ÔR) = K as the constraint.

pA pB ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9
0.2 0.2 1.000 1.000 1.000 1.000
0.2 0.4 1.061 1.128 1.232 1.411
0.2 0.6 2.739 3.018 3.373 3.833
0.2 0.8 0.500 0.567 0.680 0.892
0.4 0.4 1.000 1.000 1.000 1.000
0.4 0.6 0.816 0.846 0.891 0.964
0.4 0.8 0.471 0.501 0.548 0.627
0.6 0.6 1.000 1.000 1.000 1.000
0.6 0.8 0.577 0.592 0.614 0.650
0.8 0.8 1.000 1.000 1.000 1.000

Table 4: Optimal allocation proportion (Ropt ) for different pA < pB and ρ corresponding to ΨA =
ΨB = 1, and Var(ÔR) = K as the constraint.

pA pB ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9
0.2 0.2 1.000 1.000 1.000 1.000
0.2 0.4 1.225 1.269 1.336 1.446
0.2 0.6 1.225 1.269 1.336 1.446
0.2 0.8 1.000 1.000 1.000 1.000
0.4 0.4 1.000 1.000 1.000 1.000
0.4 0.6 1.000 1.000 1.000 1.000
0.4 0.8 0.816 0.788 0.748 0.691
0.6 0.6 1.000 1.000 1.000 1.000
0.6 0.8 0.816 0.788 0.748 0.691
0.8 0.8 1.000 1.000 1.000 1.000

4 Concluding Remarks

In the present paper, we provide optimal design (allocation proportions) for a two-
treatment trial, where we minimize some suitable objective function subject to some
standard constraints. The focus of the present paper is to obtain an optimal design
under a possible correlation between the two treatment responses, possibly due to
some random effect. The optimal allocation proportion, Ropt , depends on the corre-
lation ρ , and hence it is unwise to ignore such correlations.

The optimal design Ropt , like a standard nonlinear optimization problem, depends
on the parameters pA, pB and ρ , which are typically unknown. One may work with
some prior idea about these parameters, or use sequentially updated estimates of the
parameters, as is done in adaptive designs (Rosenberger, Stallard, Ivanova, Harper,
and Ricks 2001; Biswas and Mandal 2004; Biswas and Mandal 2007).

There are, though, issues with respect to estimation of ρ . If a prior estimate of ρ
is available from past study, that can be used. If no past data can be available, and
the trial yields only one pair of success counts, YA and YB, an estimate of ρ cannot be
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determined. However, as in the example of multiple tables obtained in meta-analysis
or some specially structured single table where the data can be partially partitioned,
estimates of such correlations are obtained (see Biswas and Hwang 2009 and Hwang
and Biswas 2008). This is possible for matched case-control studies. The estimation
of ρ is possible for a multi-stage study, where the earlier stage data can be used to
estimate ρ and also update that estimate. This is, of course a sequential approach.

However, details on the estimation is beyond the scope of the present paper. The
optimal designs can be singular, ruling out estimation of some parameters. Here
no one trial, optimal or not, can facilitate estimation of ρ . This in turn means that
updated estimates of the variances of the estimates of D, RR, OR are not available.

Further extensions of the problem may be in the presence of covariates, multi-
treatments, or for the case of continuous responses. These are topics of future study.

Acknowledgements The authors wish to thank two anonymous referees for their careful read-
ing and constructive suggestions which led to some improvement over an earlier version of the
manuscript. The research of S. Mandal is supported by a Discovery Grant from the Natural Sci-
ences and Engineering Research Council (NSERC) of Canada.

References

Biswas, A. and J.-S. Hwang (2002). A new bivariate binomial distribution. Statistics
and Probability Letters 60, 231–240.

Biswas, A. and J.-S. Hwang (2009). Distribution of odds ratio in 2×2 contingency
tables: adjustment for correlation. (Submitted).

Biswas, A. and S. Mandal (2004). Optimal adaptive designs in phase III clinical
trials for continuous responses with covariates. In mODa 7 - Advances in Model-
Oriented Design and Analysis. Heidelberg: Physica-Verlag, 51–59.

Biswas, A. and S. Mandal (2007). Optimal three-treatment response-adaptive de-
signs for phase III clinical trials with binary responses. In mODa 8 - Advances in
Model-Oriented Design and Analysis, Heidelberg: Physica-Verlag, 33–40.

Ergin, A. and N. Ergin (2005). Is thrombolytic therapy associated with increased
mortality? Archives of Neurology 62, 362–366.

Hwang, J.-S. and A. Biswas (2008). Odds ratio for a single 2× 2 table with cor-
related binomial for two margins. Statistical Methods and Applications 17, 483–
497.

Rosenberger, W. and J. Lachin (2002). Randomization in Clinical Trials: Theory
and Practice. New York: Wiley.

Rosenberger, W., N. Stallard, A. Ivanova, C. Harper, and M. Ricks (2001). Optimal
adaptive designs for binary response trials. Biometrics 57, 909–913.

Ware, J. (1989). Investigating therapies of potentially great benefit: ECMO. Statis-
tical Science 4, 298–306.



Sample Size Determination for Multivariate
Performance Analysis with Complex Designs

Stefano Bonnini, Livio Corain and Luigi Salmaso

Abstract The literature of multiple comparison methods addresses the problem of
ranking treatment groups from best to worst. However, there is no clear indication
of how to deal with the information from pairwise multiple comparisons, particu-
larly in the case of blocking (or stratification) or in the case of multivariate response
variables. In the present paper we take three methods into consideration to produce
a performance ranking of C treatments under study. By means of a simulation study,
it is possible to calculate the percentages of correct classifications of the compared
methods and study their performances. The proposed simulation study also allows
us to determine the minimum sample size useful for detecting performance differ-
ences among treatments.

1 Introduction

In experimental design and analysis of variance the topic of defining a treatment
ranking from a multivariate point of view seems to be quite recent: it has been ad-
dressed for the first time by Bonnini et al. (2009). The literature of multiple compar-
ison methods addresses the problem of ranking treatment groups from best to worst.
However there is no clear indications of how to deal with the information from pair-
wise multiple comparisons, particularly in the case of blocking (or stratification) or
in the case of multivariate response variables.
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In industrial research a global ranking in terms of performance of all investigated
products/prototypes is very often a natural goal. As proof, in 2008 an international
industrial organization called AISE formally incorporated such a method as the offi-
cial standard for industrial research on house cleaning products (see www.aise.eu/).

Let Y be the multivariate numeric variable related to the response of any exper-
iment of interest and let us assume, without loss of generality, that high values of
each Y univariate element correspond to better performance and therefore to a higher
degree of treatment preference. The experimental design of interest is defined by the
comparison of C groups or treatments with respect to S different variables, where n
replications of a single experiment are performed by a random assignment of a sta-
tistical unit to a given group. The C-group multivariate statistical model (with fixed
effects) can be represented as follows:

Yi jk = μi j + εi jk, εi jk ∼ IID(0,σ2
i j), i = 1, ...,C; j = 1, ...,S;k = 1, ...,n; (1)

where, in the case of a balanced design, n is equal to the number of replications and
indices i and j label groups (treatments) and univariate response variables respec-
tively.

The resulting inferential problem of interest is concerned with a set of S hypoth-
esis testing procedures H0 j : μ1 j = μ2 j = · · ·= μC j vs. H1 j : H0 j. If H0 j is rejected,
a further possible set of C× (C−1)/2 all pairwise comparisons are performed:

{
H0 j(ih) : μi j = μh j

H1 j(ih) : H0 j(ih) is not true
.

In the framework of parametric methods, when assuming the hypothesis of normal-
ity for random error components, the inferential problem can be solved by means of
the ANOVA F-test and a further set of pairwise tests using Fisher’s LSD or Tukey
procedures, which are two of the most popular multiple comparison procedures. On
the basis of inferential results achieved at the univariate C-group comparison stage,
the next step consists in producing a ranking of the treatments in terms of perfor-
mance.

2 Global Ranking Methods

All the methods we take into consideration in this paper consist in producing a
ranking of the C treatments under study according to the following steps:

1. The starting point is the result of the multiple comparisons analysis, i.e. S C×C
matrices of p-values;

2. For each response variable a suitable score matrix is then defined;
3. Through a synthesis procedure (sum, mean or some combination function) the

scores are synthesized into S C-dimensional score vectors;
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4. The set of S score vectors is finally synthesized to perform one global score
vector;

5. The rank of this final global score provides the multivariate global ranking of
treatments, where rank 1 corresponds to the worst treatment/product/group and
rank C corresponds to the best one (increasing rank).

According to the AISE Method, we can define a set of S C×C score matrices,
where each element x j(ih) is related to the comparison between the treatments i and
h for the j-th response variable, as described in Bonnini et al. (2006) and Corain and
Salmaso (2007). Formally,

{
if H0 j(ih) : μi j = μh j is not rejected, then x j(ih) = x j(hi) = 0;
if H0 j(ih) : μi j = μh j is rejected, then x j(ih) = sgn(ȳi j− ȳh j) =−x j(hi);

(2)

where ȳi j and ȳh j, i,h = 1, . . . ,C, i �= h, are the sample means of groups i and h
for response variable Yj, j = 1, . . . ,S. Note that pairwise comparisons and the valid
score assignments are performed only when the C-sample test has rejected the null
hypothesis H0 j, j = 1, ...,S. In order to obtain a final global score, following the
AISE procedure, an additive function is applied:

Axi =
S

∑
j=1

C

∑
h=1

x j(ih), i = 1, ...,C. (3)

The global ranking obtained following the AISE Method is ARi = Rank(Axi), i =
1, ...,C.

Instead of summing ±1 scores, a function of the p-values of one-sided tests of
pairwise comparisons could be used. Let us use p j(ih) to indicate the p-value of the
two-sample test where the null hypothesis is H0 j(ih) and the alternative is H1 j(ih) :
μi j > μh j. The final global score, according to the NPC Method, can be calculated
as follows:

Nxi =
S

∑
j=1

ψ(p j(i1), ..., p j(iC)), (4)

i = 1, ...,C, where ψ() is a suitable combining function satisfying some weak prop-
erties described in Lago and Pesarin (2000). An example of a combining function is
Fisher’s function:

ψ(p j(i1), ..., p j(iC)) =
C

∑
h=1,h �=i

log(p j(ih)). (5)

It is worth noting that this combining method is non-parametric with respect to the
underlying dependence structure among p-values from different univariate response
variables, in that many kinds of monotonic relations are implicitly captured. Indeed,
no explicit model for this dependence structure is needed and no dependence pa-
rameters (i.e. covariances) have to be estimated directly from the data. The global
ranking obtained according to the NPC Method is NRi = Rank(Nxi), i = 1, ...,C.
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Another interesting method to calculate a global score is the so-called GPS
Method. Let us use ȳ(1) j ≥ ȳ(2) j ≥ ...≥ ȳ(C) j to indicate the ordered observed sample
means for Yj and assume that higher values correspond to better performances. The
algorithm to calculate the GPS score is the following:

1. For each of the S variables a C×C matrix W is created where the elements
under the main diagonal are null and those over the main diagonal take value 0
or 1 according to the following rule:

w j(uv) = g
[
y(u) j,y(v) j

]
=
{

1 if y(u) j is significantly not equal to y(v) j

0 otherwise;
(6)

2. A rank table is created, where each column corresponds to a treatment and
treatments are ordered according to the values of the sample means, according
to the following steps:

a. In row 1, rank C is assigned to the treatment with the highest mean (first
column), indicated by (1), and to all the other products with mean perfor-
mances which are not significantly different from that of (1);

b. In row 2, rank C−1 is assigned to the treatment with the highest mean from
among those excluded from rank C assignation, and to all the other products
with mean performances which are not significantly different from that of
(2);

c. In row r, rank C− r +1 is assigned to the treatment with the highest mean
from among those excluded from rank C−r assignation, and to all the other
products with mean performances which are not significantly different from
that of (r);

d. The iterated procedure stops when a rank is assigned to the product (C);

3. For each treatment, the arithmetic mean of the values from the rank table (mean
by columns) gives a partial performance score: w j(i);

4. In order to obtain the final global GPS score, the partial scores are summed:

Gxi =
S

∑
j=1

w j(i), (7)

i = 1, ...,C, and the global combined ranking is obtained through the usual rank
transformation: GRi = Rank(Gxi), i = 1, ...,C.

3 Simulation Study and Sample Size Determination

Let us consider a simulation study based on real case data to compare the perfor-
mances of the three described global ranking methods. The treatments of interest are
4 dosages (P1: 100%, P2: 95%, P3: 90%, P4: 85%) of a given detergent (C = 4). A
priori, we know the true ranking: P1� P2� P3� P4. Detergent performances are
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assessed by measuring the percentages of removed stain (so-called reflectance) from
a piece of fabric, previously soiled with 25 different stains (S = 25). The sample size
for these experiments is usually equal to four or five (AISE, 2009), but since we are
interested in the determination of a suitable sample size the experiment has been
replicated 24 times. Indeed, it is possible to randomly extract samples of different
sizes (i.e. 4,8,12,16,20) and to perform a Monte Carlo simulation study using data
randomly extracted from a huge real dataset. Then for each simulation, consisting
of a random selection of n experimental data (i.e. random selection of n replications
among the 24 observed) the ranking is established according to the score, calculated
as described in section 2 and the rates of correct classification can be calculated,
marginally for each product and jointly for all the treatments.

The advantage of this simulation approach is that we do not need to set the un-
known values of parameters (e.g. means and variance/covariance of model 1) and
results will be directly related to the real experimental framework. The stains can be
classified by their degree of importance (discrimination capability: 1, 2 or 3) and by
their main chemical properties (Bleachable, Enzymatic, General detergency).

Using R software, 1000 data-sets were simulated, and, for each of the three meth-
ods, the percentages of correct global rankings were calculated for all the products
jointly considered and for each product. For n = 4 the percentage of correct joint
classification, i.e. the percentage of estimated joint rankings exactly equal to the
true one, for the NPC Method is 40.7%, while the performances of the AISE and
GPS Methods are definitely worse (6.2% and 6.1%). Anyway in this specific study
we are mainly interested in the correct classification rates of one product, in partic-
ular the best one, so the marginal rates are more informative.

In Table 1, it is possible to see the results of these simulations in the case of sam-
ple size n = 4. Each row corresponds to the true rank of a given treatment, and the
columns correspond to the “empirical” ranks obtained applying the three methods.
Hence for each method, frequencies of a given row correspond to the marginal fre-
quencies of classification for the related treatment and they sum to the number of
simulations (1000). Even some columns sum to 1000 but this is always true only for
the NPC method. This is due to ties, which are more frequent in the AISE and GPS
Methods, because of the loss of information using ±1 scores, according to the sta-
tistical significance of the tests, instead of p-values for each pair-wise comparison.
The fact that the AISE and GPS rankings tend to overclassify to rank 1 depends on
the ranking assignment rules in the presence of ties: first of all rank 1 is assigned
to the worst treatment (more than one in the case of ties); rank 2 is assigned to the
worst of the remaining treatments; etc.

It is evident that the NPC Method is the best procedure because the percentages
of correct classifications are higher than those of the other two methods.

Table 2 shows the 2.5-th and 97.5-th percentiles (q0.025 and q0.975 respectively)
of the NPC global index for each treatment as a function of the sample size. As ex-
pected, the ranges of the pseudo-confidence intervals (i.e. the intervals from q0.025 to
q0.975) tend to decrease when the sample sizes increase. Suppose that the difference
between the upper limit of the interval for a given treatment and the lower limit of
the interval for a better treatment is negative, it can be considered empirical evidence
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Table 1: Counts and percentages of right and wrong classifications (ranks) of the four treatments.
true NPC AISE GPS
ranking 4 3 2 1 4 3 2 1 4 3 2 1

4 614 313 73 0 327 164 160 349 484 117 82 317
3 348 469 155 28 225 238 164 373 32 258 360 350
2 38 213 681 68 3 66 476 455 24 11 298 667
1 0 5 91 904 2 2 65 931 9 51 179 761
%
right 61% 47% 68% 90% 33% 24% 48% 93% 48% 26% 30% 76%
ranking

that the former is worse than the latter. In this way it is possible to deduce the sample
size which allows us to detect differences in the performance of the treatments. For
example, in Table 2 it is possible to see that from n = 12 the NPC Method can detect
the difference between the performances of P3 and P4. The differences between the
performances of P2 and P3 start to be significant when n = 20. Hence less infor-
mation is needed to detect differences between the two best treatments. The reason
is due to the nonlinear relation between the dosage and the treatment effect, i.e. the
difference between the main effects of P3 and P4 is less than the difference between
the main effects of P2 and P3 which is less than the difference between the main
effects of P1 and P2 as well.

Table 2: Percentiles and pseudo confidence intervals of the distribution of the NPC score.
sample size P1 P2 P3 P4
(n) q0.025 q0.975 q0.025 q0.975 q0.025 q0.975 q0.025 q0.975

4 3.9 37.3 6.1 60.3 17.5 70.4 43.5 94.2
8 5.1 24.6 7.5 42.3 21.8 55.7 48.3 82.6
12 6.1 19.1 9.9 32.7 24.1 47.2 51.5 77.3
16 7.0 16.1 11.2 27.6 26.6 42.8 54.6 73.1
20 8.4 14.2 13.3 23.5 29.3 39.5 57.0 68.7

q0.975−q0.025 q0.975−q0.025 q0.975−q0.025
4 31.2 42.8 26.8
8 17.1 20.5 7.5
12 9.2 8.7 - 4.4
16 4.9 1.0 - 11.8
20 0.9 - 5.8 - 17.5

4 Conclusions

AISE, NPC and GPS Methods are reliable tools to obtain a ranking of treatments
within an experimental design framework. The NPC Method may be preferable be-
cause the percentages of correct classifications are higher than those of the other
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methods. The proposed simulation study makes it possible to determine the min-
imum sample size useful for detecting performance differences among treatments
and to design an experiment from the point of view of number of replications, when
it is possible to have data from a preliminary experiment on the same treatments
under study.
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Optimal Design for Compositional Data

Roelof L. J. Coetzer and Linda M. Haines

Abstract In this paper optimal designs for experiments involving compositional
data, specifically locally D-optimal designs for the additive logistic normal model
and locally DS-optimal designs for Dirichlet regression, are investigated. The theory
underpinning the construction of these designs is based on the appropriate informa-
tion matrices and the development, while new, is relatively straightforward. The
ideas are illustrated by means of a simple example, that of two consecutive reac-
tions.

1 Introduction

Models for compositional data, that is data comprising proportions, and more specif-
ically models based on the additive logistic transformation developed by Aitchison
(2004), are well researched and widely used. In contrast however there appears to
have been no attention given in the literature to the design of experiments for compo-
sitional data, with the exception of a small comment in Atkinson, Donev and Tobias
(2007). The present study therefore represents a first attempt to investigate the con-
struction of optimal designs for proportions. Specifically two models together with
the attendant designs are considered, the additive logistic normal in Section 2 and
the Dirichlet in Section 3. The ideas developed in these sections are illustrated by
means of a simple example, that of two consecutive reactions, in Section 4 and some
broad conclusions and pointers for future research are given in Section 5.
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2 Additive Logistic Normal

2.1 Model

Consider the proportions y = (y1, . . . ,yD) constrained in the usual way so that
0≤ y j ≤ 1, j = 1, . . . ,D, and ∑D

j=1 y j = 1. Then, following Aitchison (2004), an im-
mediate approach to modelling such proportions is to introduce the additive logratio
transformation, that is to define

z j = ln
y j

yD
, j = 1, . . . ,d,

where d = D− 1, and to take the vector z = (z1, . . . ,zd) to be normally distributed
with mean μ and variance matrix Σ . The proportions y can be recovered by invoking
the logistic transformation

yi =
expzi

1+∑d
i=1 expzi

, i = 1, . . . ,d,

with yD = 1−y1− . . .−yd , and are said to follow an additive logistic normal distri-
bution.

Suppose now that the expected values of the proportions are specified by a mech-
anistic model and can be written as

E(yi) = ηi(x;θ), i = 1, . . . ,D,

where x = (x1, . . . ,xp) is a vector of explanatory variables defined on a design
space X , θ = (θ1, . . . ,θk) is a vector of unknown parameters, ηi(x;θ) repre-
sents a function nonlinear in and differentiable with respect to θ , and, necessarily,
∑D

i=1 ηi(x;θ) = 1. Since the means E(yi) cannot be expressed explicitly in terms of
the multivariate normal parameters μ and Σ , it is not a straightforward matter to
translate their specification into the logratio formulation. An obvious, albeit some-
what cavalier, strategy is therefore to “transform both sides of the model” to give

E(zi) = μi(x;θ) = ln

(
E(yi)
E(yD)

)
= ln

(
ηi(x;θ)
ηD(x;θ)

)
, i = 1, . . . ,d,

and this is the approach adopted here.
The additive logistic normal approach to the modelling of proportions offers con-

siderable flexibility in that all the advantages of the multivariate normal environment
accrue. There are however some drawbacks. In particular the logratio transforma-
tion stabilizes variance, a feature which is arguably not appropriate, and in addition
the resultant variance matrix Σ does not have an immediate interpretation. Further,
as explained above, it is a straightforward matter to model the means of the log
transformed variables but not to recover the means of the proportions themselves.
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2.2 Design

Consider now an approximate design ξ which puts weight wu on the vector of ex-
planatory variables xu, where 0 < wu < 1, ∑n

u=1 wu = 1 and u = 1, . . . ,n. Then it
follows immediately from standard multivariate normal theory that the information
matrix for the parameters θ at the design ξ is given by

M(ξ ;θ ,Σ) =
n

∑
u=1

wuDuΣ−1DT
u

where Du is the k×d matrix with ith column equal to the vector of first-order deriva-

tives
∂ μi(xu,θ)

∂θ
, i = 1, . . . ,d, u = 1, . . . ,n (Draper and Hunter, 1966). Note that

M(ξ ;θ ,Σ) is necessarily nonlinear in the parameters θ and also that M(x;θ ,Σ), the
information matrix evaluated at a single design point x, may well have rank greater
than 1.

Locally D-optimal designs, that is designs which minimize the generalized vari-
ance of θ̂ , the maximum likelihood estimate of θ , at best guesses of the unknown
parameters θ and Σ , can now be constructed by maximizing the determinant of the
information matrix M(ξ ,θ ;Σ) at those best guesses. Since the information matrix
depends in a complicated nonlinear manner on the design points and on the model
parameters, algebraically tractable expressions for its determinant are not available,
at least in general, and the required designs must therefore be obtained numerically.
An Equivalence Theorem for the locally D-optimal criterion within the context of
the present multi-response setting can be readily formulated following results pre-
sented in Fedorov (1972). Specifically the directional derivative of the criterion at a
design ξ in the direction of a single design point x is given by

d(x,ξ ;θ ,Σ) = tr
{

M−1(ξ ;θ ,Σ)M(x;θ ,Σ)
}− s

and the design ξ is globally optimal if this derivative is less than or equal to zero for
all values of x in the design space X , with equality holding at the support points
of the design. However checking that the condition for global optimality is satisfied
for a particular candidate design must again be done numerically.

3 Dirichlet Model

3.1 Model

The vector of proportions y = (y1, . . . ,yD) with E(yi) = ηi(x,θ) can also be mod-
elled directly by invoking the Dirichlet distribution with p.d.f.
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g(y) =
Γ (a1 + . . .+aD)

Γ (a1)Γ (a2) . . .Γ (aD)
ya1−1

1 ya2−1
2 . . .yaD−1

D

for yi > 0,∑n
i=1 yi = 1 and unknown parameters ai > 0, i = 1, . . . ,D. The means of the

proportions are given by E(yi) =
ai

a1 +a2 + . . .+aD
and are also specified through

a mechanistic model by ηi(x,θ). Thus the relation

ηi(x,θ) =
ai

φ
, i = 1, . . . ,D,

where φ = a1 + a2 + . . . + aD, holds, with the parameters ai identified as meta-
parameters. Furthermore the variances and covariances of the proportions can now
be expressed succinctly as

Var(yi) =
ηi(x,θ)(1−ηi(x,θ))

(φ +1)
and Cov(yi,y j) =−ηi(x,θ)η j(x,θ)

(φ +1)

for i �= j, i, j = 1, . . . ,D and the parameter φ can thus be regarded as a precision
parameter.

The Dirichlet distribution necessarily induces negative correlations between indi-
vidual proportions and for this reason has been rarely used to model compositional
data. It does however offer a more holistic approach to modelling proportions than
that provided by the additive logistic normal and there have in fact been a few iso-
lated studies within the context of Dirichlet regression. Specifically Campbell and
Mosimann (1987), and more recently Hijazi (2006) and Hijazi and Jernigan (2007),
introduced a constrained linear model to describe the Dirichlet parameters, while
Gueorguieva, Rosenheck and Zelterman (2008) present a log linear model for that
purpose. The strategy introduced in the present study is somewhat different in that
the means of the proportions themselves are modelled directly, albeit in a nonlin-
ear way. In fact the approach mirrors and extends that formulated and developed by
Ferrari and Cribari-Neto (2004) for beta regression.

3.2 Design

The information matrix for the parameters a = (a1, . . . ,aD) of the Dirichlet distribu-
tion can be expressed succinctly as

M(a) = Diag{ψ ′(ai)}−ψ ′(a1 +a2 + . . .+aD)J

where ψ ′(.) represents the trigamma function, that is the second derivative of the
logarithm of the gamma function, and J is a square matrix of ones of order D. It
thus follows that, within the present regression context, the information matrix for
the parameters θ and φ at a single design point x is given by
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M(x;θ ,φ) = F M(a) FT

where M(a) is expressed in terms of ηi(x;θ), the parameter φ through the relation-
ships ai = φ ηi(x;θ) and F is a (k +1)×D matrix with ith column

⎡
⎢⎢⎢⎣

∂ai

∂θ

∂ai

∂φ

⎤
⎥⎥⎥⎦=

⎡
⎢⎣φ

∂ηi(x;θ)
∂θ

ηi(x;θ)

⎤
⎥⎦

for i = 1, . . . ,D.
Consider again an approximate design ξ which puts weights wu on the design

points xu, u = 1, . . . ,n. Then the information matrix for the parameters θ and φ at
the design ξ is given by

M(ξ ;θ ,φ) =
n

∑
u=1

wuM(xu;θ ,φ)

and depends in a complicated way on the design points, in particular through the
trigamma functions embedded in the matrix M(a). Locally DS-optimal designs, that
is designs which maximize information on the regression parameters θ with φ re-
garded as a nuisance parameter and which are evaluated at best guesses of those
parameters, can now be constructed based on the matrix M(ξ ;θ ,φ). Specifically,
the DS-optimality criterion can be formulated quite straightforwardly as

ln |M(ξ ;θ ,φ)|− ln
[
Mφφ (ξ ;θ)

]
,

where Mφφ (ξ ;θ) is the scalar submatrix of the full information matrix M(ξ ;θ ,φ)
relating to φ , and the directional derivative used in the associated Equivalence The-
orem is given by

d(x,ξ ;θ ,φ) =
[

tr
{

M−1(ξ ;θ ,φ)M(x;θ ,φ)
}− Mφφ (x;θ)

Mφφ (ξ ;θ)

]
− k.

Thus the requisite locally DS-optimal designs can be constructed numerically and
the global optimality or otherwise of a candidate design can be confirmed by invok-
ing the appropriate Equivalence Theorem, again numerically.

4 Example

Consider two consecutive reactions represented schematically as A
θ1−→ B

θ2−→C
where θ1 and θ2 are rate constants. Then the expected proportions of the reactants
A,B and C at time x are given, respectively, by
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η1(x;θ) = exp(−θ1x)

η2(x;θ) =
θ1

(θ2−θ1)
[exp(−θ1x)− exp(−θ2x)]

η3(x;θ) = 1−
[

θ2 exp(−θ1x)−θ1 exp(−θ2x)
(θ2−θ1)

]
,

where x represents time and θ = (θ1,θ2). The best guesses for the parameters are
taken to be θ1 = 0.7 and θ2 = 0.2 and the design space to be the interval [1,10]. (See
for example Draper and Hunter, 1966, and Atkinson, 2003).

4.1 Additive Logistic Normal

Consider first modelling the proportion of a single reactant, either A, B or C.
Then the additive logistic normal model comprises a single response with mean
taken to be equal to the logit transformation of the mean of the proportion, that is

ln
ηi(x;θ)

1−ηi(x;θ)
where i = 1,2 or 3. Locally D-optimal designs for the three reactants,

considered separately, are somewhat curious. In particular the optimal design for re-
actant A comprises a single point at the maximum time, that is 10, the design for B
puts equal weights on the points 1.229 and the maximum time, and the design for
C places equal weights on the minimum and maximum times of 1 and 10. The re-
sults are similar in form to those presented by Atkinson (2003) for log transformed
means.

Consider now invoking the additive logistic normal to model the proportions of
the three reactants. In particular suppose that the proportions of reactants A and B,

with C as the benchmark, are modelled as μ1(x;θ) = ln
η1(x;θ)
η3(x;θ)

and μ2(x;θ) =

ln
η2(x;θ)
η3(x;θ)

for some choice of the variance matrix Σ . Locally D-optimal designs

for this setting were constructed for a range of Σ and, for example, for Σ =
(

1 0
0 1

)

and Σ =
(

1 0.1
0.1 1

)
single point designs comprising the maximum time point were

obtained while for Σ =
(

1 −0.9
−0.9 1

)
the optimal design places weights of 0.288

and 0.712 on the extreme time points 1 and 10 respectively. It is thus clear that
the designs depend sensitively on the choice of Σ . Furthermore suppose now that
proportions of B and C, with A as the benchmark, are modelled, that is μ1(x;θ) =

ln
η2(x;θ)
η1(x;θ)

and μ2(x;θ) = ln
η3(x;θ)
η1(x;θ)

. Then it is not immediately clear as to how

the choice of the variance matrix Σ in this case relates to that used to model A
and B with the proportion of C as the benchmark. The fact that the designs depend
crucially on Σ merely exacerbates this problem.
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4.2 Dirichlet

Consider first modelling the proportions of the reactants separately by invoking the
beta distribution as a special case of the Dirichlet. Locally DS-optimal designs for
this setting can be readily constructed numerically and the results for φ = 1 and 100
are summarized in Table 1. The dependence of the optimal designs on precision, as

Table 1: Optimal designs for beta regression. (Weights in brackets.)

φ = 1 φ = 100
A 1 (0.537) 10 (0.463) 2.277
B 1.227 (0.578) 10 (0.422) 1.227 (0.501) 9.743 (0.499)
C 1 (0.356) 4.950 (0.087) 10 (0.557) 2.582 (0.501) 10 (0.499)

captured by the parameter φ , is marked. Overall, and in contrast to the results for the
additive logistic normal model, the designs tend to favour times towards the centre
of the design space, that is times at which the variances of the responses are large
within the Dirichlet context, as well as times at the extremes of the design space.

Now consider extending the modelling context and using the Dirichlet distri-
bution to model the proportions of the three reactants A, B and C simultaneously.
Locally DS-optimal designs for selected values of the precision parameter φ are
presented in Table 2 and again, and not surprisingly, exhibit strong dependence on

Table 2: Optimal designs for Dirichlet regression.

φ = 1 φ = 10 φ = 100 φ = 1000
x 1 10 1 10 3.443 10 4.056
w 0.242 0.758 0.105 0.895 0.635 0.365 1

the precision parameter. Indeed the results essentially mirror those obtained for in-
dividual proportions.

5 Conclusions

The main aim of the present study has been to construct optimal designs for ex-
periments involving compositional data, specifically locally D-optimal designs for
the additive logistic normal model and locally DS-optimal designs for Dirichlet re-
gression. The theory underpinning the construction of these designs is based on
the appropriate information matrices and the development is quite straightforward.
The results for the selected example, that of two consecutive reactions, are however
somewhat disappointing. In particular the locally D-optimal designs for both mod-
els of interest tend to put weights on the minimum and maximum time points. In
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addition designs for the additive logistic normal setting are not easily formulated
and interpreted.

There is much scope for further research. From a modelling perspective, strate-
gies for fitting compositional data based, for example, on the Liouville distribu-
tion, following Iyengar and Dey (2002), and on the simplex dispersion model of
Barndorff-Nielson and Jorgensen (1991), could well be examined. From a design
perspective, extensions to the present setting relating to the model, the functions
invoked to describe the means of the proportions and the optimality criteria are im-
mediately attractive. At present work is in progress to explore in some detail the
construction of optimal designs for the base scenario, that of beta regression.
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Dose Finding Experiments: Responses of Mixed
Type

Valerii V. Fedorov, Yuehui Wu and Rongmei Zhang

Abstract Multiple-endpoint models are widely used in drug development and other
fields. It is common that the endpoints have different characteristics such as all con-
tinuous, all binary, or a mixture of them. This study investigates mixed responses,
one continuous and one binary, correlated and observed simultaneously. It is an ex-
tension of our previous studies based on a bivariate probit model for two binary
endpoints. We quantify the study goal with a utility function, construct locally two-
stage D-optimal designs under the constraints, and use them as benchmarks for the
two-stage designs with interim adjustment and fully adaptive designs. The simula-
tion results suggest that the two-stage design is almost as efficient as the locally two-
stage optimal design, as well as being logistically simpler than the fully adaptive de-
sign. We do not analyze asymptotic properties but confine ourselves to Monte-Carlo
simulations to evaluate their properties for reasonable (practical) sample sizes.

1 Introduction

This article is an extension of our research on designs based on a bivariate probit
model (Dragalin, Fedorov, and Wu 2008; Fedorov and Wu 2007) and is focused
on mixed correlated responses, one continuous and one binary, observed simultane-
ously.
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2 Model

Assume that the two responses (e.g. efficacy and toxicity) follow an underlying
bivariate normal distribution Z ∼ N(η ,Σ), where Z is a vector of responses, with

mean η = (η1,η2) and variance-covariance matrix Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
. In this

study, we focus on mixed observed responses when Y1 (efficacy) is continuous and
Y2 (toxicity) is binary (dichotomized) such that

Y1 = Z1, Y2 =
{

1, if Z2 ≥ c2

0, otherwise.
(1)

The marginal probability for toxicity is P(Y2 = 1) = p.1 = 1− F(v2) with v2 =
(c2−η2)/σ2, where F(x) denotes the c.d.f. of the standard normal distribution. The
conditional probability of Y2 = 1 given Y1 is p1|y1

= P(Y2 = 1|Y1 = y1) = 1−F (u2),

where u2 =
v2−ρ y1−η1

σ1√
1−ρ2

. We denote the marginal probability density of efficacy as

ϕ(y1), the probability density for a normal distribution with mean η1 and standard
deviation σ1. The other probabilities can easily be derived. The log likelihood for a
single observation is:

l(y1,y2;ϑ) ∝ y2 log{1−F (u2)}+(1− y2) log{F (u2)} − logσ1− (y1−η1)2

2σ2
1

,

where ϑ = (η1,v2,ρ,σ1)T are the elemental parameters. In practice, these param-
eters may depend on some covariates such as doses of various compounds (drugs),
age, gender, etc. Although η1 and σ1 can be estimated separately, their counterparts
η2 and σ2 cannot. Only (c2−η2)/σ2 is estimable (Dragalin et al. 2008).

2.1 Information Matrix for a Single Observation

In experimental design, the information matrix plays a crucial role since it is the
basis for the formulation of the optimality criterion and determines the allocation of
patients (Fedorov and Hackl 1997). Because the information matrix of independent
observations is the sum of the information matrices of all single observations, the
derivation of the information matrix for a single observation becomes a central step
in optimal design construction.

Elemental Information Matrix: The information matrix of a single observation
under model (1) can be found in (4.4) of Tate (1955):
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μ(ϑ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1−ρ2+ρ2a0
σ2

1 (1−ρ2)
ρa0

σ1(1−ρ2)
ρ(ρv2a0−a1)
σ1(1−ρ2)2

ρ2a1
σ2

1 (1−ρ2)
a0

(1−ρ2)
ρv2a0−a1
(1−ρ2)2

ρa1
σ1(1−ρ2)

Symmetric
a2−2ρv2a1+ρ2v2

2a0

(1−ρ2)3
ρ(ρv2a1−a2)
σ1(1−ρ2)2

2(1−ρ2)+ρ2a2
σ2

1 (1−ρ2)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2)

where

ak(v2,ρ) =
∫ +∞

−∞

tkϕ(t)ϕ2( v2−ρt√
1−ρ2

)

F( v2−ρt√
1−ρ2

)
[

1−F( v2−ρt√
1−ρ2

)
] dt and k = 0,1,2. (3)

In (3), except for ρ = 0, we have to use numerical integration to find ak. If Σ
is known, then ϑ = (η1,v2)T and their information matrix is the upper-left 2× 2
submatrix of (2).

Assume that η1 = θ T
1 f1(x) and v2 = (c2−η2)/σ2 = θ T

2 f2(x), i.e. θ = (θ1,θ2,ρ,σ1)T ,
then the information matrix for unknown parameters θ of a single observation can
be easily calculated using the Jacobian transformation.

2.2 Utility and Penalty Functions

For the mixed responses of continuous efficacy and binary toxicity, observed simul-
taneously, we define our utility function as the expected value of efficacy given no
toxicity multiplied by the probability of having no toxicity,

ζ (x,θ) = E(Y1|Y2 = 0)P(Y2 = 0) = η1F(v2)−ρσ1ϕ(v2)
= θ T

1 f1(x)F(θ T
2 f2(x))−ρσ1ϕ(θ T

2 f2(x)). (4)

In drug development studies, there are always ethical concerns and cost con-
straints associated with different doses. These needs can be quantified by introduc-
ing a penalty function φ(x,θ). We use a penalty function similar to that of Lai and
Robbins (1978):

φ(x,θ) = r{x−X∗(θ)}2 + c, (5)

where r is the constant controlling the magnitude of the penalty and c > 0 represents
the cost per subject; X∗(θ) = argmaxx∈X ζ (x,θ) is the best dose. Note that only
the ratio of r/c in (5) affects the optimal design; see (7). We assume that γ = r/c =
0.5. When γ = 0, the optimal design coincides with the optimal design without
constraints.

Figure 1 illustrates a possible relationship between the dose-response curves,
utility function and penalty function under the proposed model. Model parameters
were estimated from the VTE trial (see details in Dragalin et al. 2008).
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Fig. 1: Efficacy η , toxicity p1., utility ζ (x,θ) and penalty φ(x,θ) for the mixed-outcome model
with θ = (−0.9,1.9,3.98,−3),σ1 = 1, ρ = 0.5. The left y-axis is for efficacy, utility, and penalty;
the right y-axis is for toxicity and the bars denote the locally optimal design.

3 Optimal Designs

How to construct a locally optimal design is well known and discussed in detail
in Fedorov and Hackl (1997). Here we only focus on the construction of a two-
stage design. Compared to the administrative complexity of conducting fully adap-
tive designs, two-stage designs have the clear advantages of simplifying the patient
enrollment and drug supply procedure and providing results which statistically (in
terms of the bias and variability) are very close to, or even better than, fully adaptive
designs.

Let ξ = {xi,λi}k
1 denote the design, within the design region X . The sample size

at design point xi ∈X is ni, and the weight for design point xi is λi = ni/N, where
i = 1, . . . ,k, N = ∑k

i=1 ni.
The idea of the two-stage design is that after N0 observations in the initial design

stage, the researcher obtains initial estimates for the unknown parameters, θ̂0, and
then at the second design stage, the θ̂0 are treated as the “true” parameters on which
the locally optimal design is constructed. At the end of the second stage, we re-
estimate the unknown parameters using all N0 +N1 observations.

To get a benchmark for the actual two-stage design (i.e. with adaptation after the
first stage), we start with the locally two-stage optimal design. To build this design
we assume that the “true” values of the estimated parameters are known.

The study goal is to identify the target dose X∗(θ) and the behaviour of response
functions η1(x,θ1) and v2(x,θ2) which involve all the unknown parameters. There-
fore we select the D-criterion and define a locally optimal design as:
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ξ ∗(θ) = argmin
ξ
|{πM(ξ0,θ)+(1−π)M(ξ ,θ)}/ΦT (ξ ,θ)|−1, (6)

where ξ0 denotes the initial design, π = N0/(N0 + N1),Φ(ξ ,θ) = ∑k
i=1 λiφ(xi,θ),

ΦT (ξ ,θ) = πΦ(ξ0,θ)+(1−π)Φ(ξ ,θ).
The necessary and sufficient condition for optimality of ξ ∗ (see Fedorov and

Hackl 1997) is

ψ(x,ξ ∗,θ) = tr

{
μ(x,θ)
φ(x,θ)

[πM(ξ0,θ)+(1−π)M(ξ ∗,θ)]−1
}
≤

tr

{
M(ξ ∗,θ)
Φ(ξ ∗,θ)

[πM(ξ0,θ)+(1−π)M(ξ ∗,θ)]−1
}

, (7)

where x is any design point in the design region X . The forward and backward
steps in the first-order exchange algorithm, Fedorov (1972), are defined as

x+
s = argmax

x∈X
[ψ(x,ξs,θ)] and x−s = arg min

x∈X
[ψ(x,ξs,θ)]. (8)

In the actual two-stage (composite) design, the true parameters θ are replaced
by their estimates θ̂0 found after the analysis of the first stage data. The matrix
[πM(ξ0, θ̂0)+(1−π)M(ξ ∗, θ̂0)] is not the exact normalized information matrix any
more because ξ ∗ depends on θ̂0. However, at an intuitive level, we can make the
following conjecture. If the initial design ξ0 has a regular information matrix for
any θ ∈Ω , where the admissibility set Ω includes the true value of θ as an internal
point, then the maximum likelihood estimator θ̂0 = θ̂(N0) will be strongly consis-
tent, i.e. converge almost surely to θtrue when N0 → ∞. Consequently the sensitiv-
ity function ψ{x,ξ , θ̂(N0)} will converge almost surely to ψ(x,ξ ,θtrue), uniformly
with respect to x and ξ . Obviously, some smoothness of f1(x) and f2(x) is needed
together with the compactness of X (Rao 1973, §2.c). Consequently, the solution
ξ ∗{θ̂(N0)} will converge to ξ ∗(θtrue) and πM{ξ0, θ̂(N0)}+(1−π)M{ξ ∗, θ̂(N0)}
will converge to the “true” information matrix πM(ξ0,θtrue)+(1−π)M(ξ ∗,θtrue).
Of course, the above statement is only a conjecture without any rigourous math-
ematical proof, which is why we resort to Monte-Carlo simulations to confirm its
validity for our specific case.

3.1 Adaptive Designs

Fully D-adaptive designs under the penalty function (5) are also constructed for
comparison with the two-stage design. In an adaptive design, the estimates are up-
dated as new observations arrive. At each step, the next patient will be assigned
to the dose which maximizes the current sensitivity function ψ(x,ξs, θ̂N). Compare
this with the forward step in (8) with θ being replaced by θ̂N . Note that, as in the
two-stage design, in fully adaptive designs, the observations are not independent and
the likelihood function should be conditioned on the previous observations. Again,
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πM(ξ0, θ̂N)+ (1−π)M(ξ ∗, θ̂N) is random and it is not the actual information ma-
trix. However, the distribution of each element of the matrix heavily gravitates to-
wards to the corresponding element in [πM(ξ0,θtrue) + (1− π)M(ξ ∗,θtrue)]. See
our simulation results and Lai (2001) and Rosenberger and Hughes-Oliver (1999).

4 Examples

For illustration and comparison purposes, we used the model of Dragalin et al.
(2008) for trials on the prevention of VTE. In model (1), assume that the parameters
ρ = 0.5 and σ1 = 1 are known. For the other two elemental parameters η1 and v2,
assume η1 = θ11 +θ12x and v2 = c2−η2

σ2
= θ21 +θ22x, with θ = (θ11,θ12,θ21,θ22) =

(−0.9,1.9,3.98,−3). The design region is [0.2, 1.4]. The locally D-optimal design
is {0.2,0.13;0.81,0.38;1.4,0.49}, marked with bars in Figure 1.

The second-stage optimal design depends on the random vector θ̂0. We con-
ducted 1000 simulations of the two-stage design with N0 = 80 and N1 = 120 from
an evenly spaced, equally weighted, five-point first-stage design {0.2,0.2;0.5,0.2;
0.8,0.2;1.1,0.2;1.4,0.2}. The left plot of Figure 2 gives the location and frequency
of the design points in the second stage from the simulations. It shows that most
of the points are located close to or on the locally two-stage optimal design points
{0.2,0.02;0.81,0.35;1.4,0.63}, marked as black dots (with the size of the dots cor-
responding to the weight). Note that the locally two-stage D-optimal design con-
tains the same design points as the locally D-optimal design while the weights are
different; in the simulation study, the two-stage D-optimal design will be used as the
benchmark. The central plot illustrates the distribution for the predicted best dose X̂∗
after 200 observations. The reference line indicates the best dose (X∗(θ) = 1.095).
The curve denotes the fitted normal density with mean X∗ and variance coinciding
with the asymptotic variance of X∗ for the locally two-stage optimal design (6).

The simulation shows that for the selected sample sizes (80 + 120), the two-stage
procedure defined in Section 1.3 provides results that are hardly distinguishable
from the benchmarks derived for the locally two-stage optimal designs.

Practitioners may be interested in the choice of the proportion of the sample
sizes for the two stages in the two-stage designs. A larger N0 at the first stage leads
to a more accurate initial estimate of θ , but leaves a smaller sample size for the
optimized stage. Overall, we may have an inefficient design. On the other hand, a
small value of N0 can result in a less accurate θ̂ , which consequently may lead to an
optimal design far from the true one. Monte-Carlo simulations for different N0 can
be helpful to identify the acceptable range of N0 in terms of efficiency and accuracy.
As N0 varied from 20 to 120, with the other conditions fixed, the information per
penalty |M(ξ ,θ)/Φ(ξ ,θ)|1/m, where m is the number of unknown parameters, was
used to compare the different partitions of the total sample size. The values for
locally D-optimal and uniform designs are drawn in the right panel of Figure 2
as reference lines. The solid lines represent the values under true parameters; the
dashed lines represent the values for the 10th, 50th and 90th quantiles for 1000
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Fig. 2: Simulations for the two-stage design. Left: Locations of design points in the second stage.
Center: Distributions of the predicted “best dose” X̂∗. Right:Information per penalty unit for two-
stage designs with different N0.

simulations. The simulations suggest that a moderate sample size (60 or 80) in the
first stage has relatively high accuracy and low variation.

Fully adaptive design simulations were conducted under the same setting as the
two-stage design. Due to space limitations, these results are not shown here. The
allocations of the doses at the final stage are distributed quite close to those of the
locally D-optimal design and the distribution of the “best dose” X∗ has a normal
density similar to that of Figure 2.

5 Conclusions

Based on a bivariate model for continuous efficacy and discrete toxicity, we propose
a dose-finding procedure based on the theory of optimal experimental design. A
utility function is defined to quantify the targeted treatment effects, and a rather
flexible penalty function is used to address ethical issues and cost constraints in a
drug development study.

Two-stage design and the fully adaptive design for various scenarios were con-
structed and compared to the locally two-stage optimal designs via Monte-Carlo
simulations. The results confirm our conjectures about properties of two-stage and
fully-adaptive designs for reasonably large sample sizes. In both cases, the distribu-
tions of assignment of patients gravitate to the support points of the locally two-stage
optimal design. As for the accuracy of the estimation of the target dose X∗, the two-
stage design is quite close to the fully adaptive design with the same initial sample
size. Actually, the two-stage designs in our example have slightly smaller variance
than the fully adaptive designs, while the bias is minuscule. We recommend selec-
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tion of the sample size for the initial stage using information about quantiles of
the targeted “precision” matrices. These facts indicate that two-stage design is an
efficient and practical procedure that should be strongly recommended.
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Pharmacokinetic Studies Described by
Stochastic Differential Equations: Optimal
Design for Systems with Positive Trajectories

Valerii V. Fedorov, Sergei L. Leonov and Vyacheslav A. Vasiliev

Abstract In compartmental pharmacokinetic (PK) modelling, ordinary differential
equations (ODE) are traditionally used with two sources of randomness: measure-
ment error and population variability. In this paper we focus on intrinsic (within-
subject) variability modelled with stochastic differential equations (SDE), and con-
sider stochastic systems with positive trajectories which are important from a phys-
iological perspective. We derive mean and covariance functions of solutions of SDE
models, and construct optimal designs, i.e. find sampling schemes that provide the
most precise estimation of model parameters under cost constraints.

1 Introduction

In this paper we continue the research presented at the mODa-8 Conference, see
Anisimov et al. (2007), and discuss PK models described by stochastic differential
equations. We concentrate on within-subject variability or an “intrinsic variability
of the metabolic system”, as stated in Picchini et al. (2006). This intrinsic variability
suggests a move from ODE to SDE. Once expressions for the mean and covariance
functions of the solution of the SDE system are derived, one may address the optimal
design problem, i.e. selection of sequences of sampling times that “minimize”, in
some sense, the variance-covariance matrix of parameter estimates.

Anisimov et al. (2007) explored a popular PK model which is described by a
system of ODE, introduced its SDE analogue and derived the mean and covariance
functions of the solutions together with optimal designs for several examples. To
guarantee a meaningful physiological behaviour of the stochastic systems, a rather
restrictive constraint of diminishing variability of the noise process was imposed
in an attempt to have positive solutions of the SDE system. However, this goal has
not been fully accomplished; see Section 2 for details. In this paper we consider less
restrictive models that still guarantee the positiveness of the SDE solution. Note that
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in a number of previous publications on PK models, no attention was given to the
fact that trajectories of the continuous stochastic systems may become negative with
positive probability; see Overgaard et al. (2005) or Tornoe et al. (2004).

The paper is organized as follows. In Section 2 an outline of the earlier work
on optimal designs for stochastic PK models is presented and an SDE system with
positive trajectories is introduced and its covariance function derived. In Section 3
we present examples of optimal sampling schemes. It is shown that when costs are
taken into account, designs with fewer samples may be preferred to more “dense”
sampling schemes. Potential extensions are discussed in Section 4.

2 Response Models

To illustrate optimal design techniques for stochastic PK models, Anisimov et al.
(2007) considered a one-compartment model with first-order absorption,

dη1 =−θ1η1dt, dη2 = θ1η1dt−θ2η2dt; η1(0) = D; η2(0) = 0, (1)

where η1(t) is the drug amount at the site of administration, η2(t) is the drug amount
in the central compartment, D is the dose; θ1, θ2 are absorption and elimination
rates, respectively; θ1 > θ2. The solution of the system (1) is positive for any t > 0,

η1(t) = De−θ1t , η2(t) = [θ1D/(θ1−θ2)]
(

e−θ2t − e−θ1t
)

. (2)

The simplest stochastic analog of the system (1) may be introduced by

dy1(t) =−θ1y1(t)dt +σ1(t)dw1(t), y1(0) = D,

dy2(t) = θ1y1(t)dt−θ2y2(t)dt +σ2(t)dw2(t), y2(0) = 0, (3)

where σr(t)≥ 0 are deterministic functions, and wr(t) are independent Wiener pro-
cesses for which E[wr(t)] = 0, Cov[wr(t)wr(s)] = min(t,s); r = 1,2. Using proper-
ties of the Îto integral and the independence of w1(t) and w2(t), it is straightforward
to show the unbiasedness of the solution, i.e. E[yr(t)] = ηr(t), r = 1,2, and to de-
rive an expression for the covariance function S̃(t, t + s) = Cov[y2(t),y2(t + s)] via
weighted integrals of σ2

r (t). Anisimov et al. (2007) provided a closed-form solution
for σr(t) = σre−vrt and showed that when vr > 0, then Var[y2(t)]→ 0 as t → ∞,
and S̃(t, t + s)→ 0 as s → ∞ for any fixed t ≥ 0. However, the probability P̃t that
paths y2(t) may become negative, is nonzero for any fixed t. Moreover, if at least
one vr = 0, then Var[y2(t)]→ v∗ > 0, and P̃t → 0.5 as t → ∞ since E[y2(t)]→ 0.

Nevertheless models similar to (3) are popular due to their relative simplicity
and the Gaussian distribution of the solutions. For instance, Overgaard et al. (2005)
considered an exponential decay model analogous to the first equation in (3) with
σ1(t)≡ σw > 0, and then took logarithms of the solution in the discrete-time model
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of observations. Because of potential negativeness of y1, such a model seems coun-
terintuitive from physiological considerations, and taking logs is formally incorrect.

2.1 Stochastic Systems with Positive Trajectories

It would be desirable to consider stochastic models with positive solutions yr(t), for
example replacing the noise terms σr(t)dwr(t) on the right-hand side of (3) with
σryr(t)dwr(t), σr > 0, i.e. making them proportional to the signal,

dy1(t) =−θ1y1(t)dt +σ1y1(t)dw1(t), y1(0) = D,

dy2(t) = θ1y1(t)dt−θ2y2(t)dt +σ2y2(t)dw2(t), y2(0) = 0. (4)

Such variance terms are analogs of a proportional component of variance. The prob-
lem of deriving the covariance function S̃ for the system (4) was posed in Anisimov
et al. (2007), and in this section we report its closed-form solution.

Lemma 1. (a) The solution of system (4) is given by

y1(t) = De−(θ1+
σ2

1
2 )t+σ1w1(t),

y2(t) = θ1De−(θ2+
σ2

2
2 )t+σ2w2(t) ·

t∫
0

e(θ2−θ1+
σ2

2−σ2
1

2 )s+σ1w1(s)−σ2w2(s)ds. (5)

(b) The solution is unbiased: Eyr(t) = ηr(t), r = 1,2, with ηr(t) defined in (2).

(c) The covariance function S̃(t, t + s) satisfies

S̃(t, t + s) = θ 2
1 D2{a1e(−2θ1+σ2

1 )t−θ2s +a2e(−2θ1+σ2
1 )t−θ1s +a3e(−2θ2+σ2

2 )t−θ2s +

+a4e−(θ1+θ2)t−θ1s +a5e−(θ1+θ2)t−θ2s +a6(e−2θ1t−θ1s + e−2θ2t−θ2s)}, (6)

where

a1 =
σ2

2 −σ2
1

Δθ(Δθ +σ2
1 )[2Δθ −σ2

2 +σ2
1 ]

, Δθ = θ2−θ1,

a2 =
1

Δθ(Δθ +σ2
1 )

, a3 =
2

(Δθ −σ2
2 )[2Δθ −σ2

2 +σ2
1 ]

,

a4 =
σ2

1

(Δθ)2(Δθ +σ2
1 )

, a5 =
(σ2

1 −2σ2
2 )Δθ −σ2

1 σ2
2

(Δθ)2(Δθ +σ2
1 )(Δθ −σ2

2 )
, a6 =

−1
(Δθ)2 .

The derivation is postponed to the Appendix. Note that (5) immediately implies that
y1,y2 are positive, and it follows from (6) that S̃(t, t + s)→ 0 as t → ∞ for any fixed
s≥ 0 if θ1 > σ2

1 /2 and θ2 > σ2
2 /2; and S̃(t, t + s)→ 0 as s→∞ for any fixed t ≥ 0.
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Measurement Model. Let ti1, . . . , ti,ki be a sequence of ki sampling times for sub-
ject i and let S̃ =

{
S̃(ti j1 , ti j2), j1, j2 = 1, . . . ,ki

}
. The following model is often used

for measurements {Yi j} of drug concentration: Yi j = y2(ti j)/Vi + εi j, where Vi is
the volume of distribution, εi j are i.i.d. measurement errors with zero mean and
variance σ2

obs. Population variability is often taken into account in PK modelling,
e.g. γ i ∼ N(γ,Λ), with γ = (θ1,θ2,V )T . If all three sources of variability (mea-
surement, population, stochastic) are considered, then the first-order approximation
technique may be used to derive the variance-covariance matrix S of the vector
Y = [Yti1 , . . . ,Ytiki

]T . In this paper, we consider a fixed effects model for parameters

γ , so that S ≈ S̃/V 2 +σ2
obsIki , and Iki is a (ki× ki) identity matrix; cf. formula (8)

in Anisimov et al. (2007) which included the population variability term.

3 Optimal Designs

Once the mean and variance-covariance matrix S of the observed (k× 1)-vector Y
are derived, one can approximate the Fisher information matrix μ(x,ϑ) of a prop-
erly defined single observational unit x, where ϑ = (θ1,θ2,V ;σ2

1 ,σ2
2 ,σ2

obs) includes
all estimated parameters and, in the context of this paper, x = (t1, t2, . . . , tk) is a
(k×1) sequence of sampling times; see formula (9) in Anisimov et al. (2007). We
consider normalized designs and two types of normalization of the information ma-
trix MN(ϑ) = ∑i niμ(xi,ϑ) if ni subjects are assigned to sequence xi, ∑i ni = N:

(1) Traditional normalization, or “information per observation”, with the nor-
malized design ξ and the normalized information matrix M(ξ ,ϑ),

ξ = {(xi,wi), wi = ni/N, xi ∈ X}, M(ξ ,ϑ) = ∑
i

wiμ(xi,ϑ). (7)

where X is a set of admissible sampling sequences.
(2) Cost-based normalization, or ”information per unit cost”,

MC(ξ ,ϑ) = MN(ϑ)/C = ∑
i

piμ̃(xi,ϑ), (8)

with pi = nic(xi)/C, μ̃(x,ϑ) = μ(x,ϑ)/c(x), c(xi) is a cost of taking measure-
ments at sequence xi and C = ∑i nic(xi) is the total cost.

To construct locally D-optimal designs, we use the first-order optimization algo-
rithm with forward and backward steps; see Fedorov and Hackl (1997), Ch. 2, or
Fedorov et al. (2007), Section 7.1.5. For references on optimization of sampling
schemes for population models described by ODE, see Fedorov and Leonov (2007);
for a discussion of various software tools, see Mentré et al. (2007).

3.1 Sampling Times and Examples of Optimal Design

As in Fedorov and Leonov (2007), for candidate sampling times we first take a
uniform grid on the Y-axis (response) and then project points on the response curve
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to the X-axis to obtain times x1, or an “inverse linear” grid as in López-Fidalgo and
Wong (2002); see Fig.1, top panel. Then we select splits x̃i of different order:

• For some number n1 of subjects, samples are taken at all times from x1, i.e.
x̃1 = x1.

• Second-order split: for n21 subjects samples are taken at times
x2,1 = {x1,x3, ..,x2i−1, ..}, and for n22 subjects - at x2,2 = {x2,x4, ..,x2i, ..,xn}
(without loss of generality we may assume that n is even). Then a generalized
sequence x̃2 is the combination of two ‘half’-sequences x2,1 and x2,2 with, in
general, different weights. We use the notation w21 and w22 [not to be confused
with wr(t)] for weights of standard normalized designs, and p21 and p22 for cost-
based designs.

• Third-order: sampling times are x3,1 = {x1, ..,x3i+1, ..}, x3,2 = {x2, ..,x3i+2, ..}
and x3,3 = {x3, ..,x3i, ..} for n31, n32 and n33 subjects, respectively.
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Fig. 1: Sampling times (top panel) and examples of optimal designs (bottom panel)

The information matrix in this case is M(ξ ,ϑ) = ∑i ∑i
j=1 wi j μ(xi, j,ϑ), where, to

calculate μ(xi, j,ϑ), we use the techniques described in Gagnon and Leonov (2005).
If the cost function is selected as c(x) =Cv +Csk, where k is the length of a sequence
x, Cv is the cost of enrollment and Cs is the cost of analyzing a single sample, then

c(xi j) = Cv +Csn/i, j = 1, . . . , i, (9)
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where n is the length of the full sequence x1. Similarly to Anisimov et al. (2007),
x1 = [t1, . . . , t16] = [0.033, 0.069, 0.111, 0.158, 0.215, . . . 2,703, 3.433, 5],

n = 16, and the design region is X = {x1; x21,x22; x31,x32,x33}, i.e. all splits up to
the 3rd order. For all examples we use dim(ϑ) = 6; θ1 = 2, θ2 = 1, V = 1; σ1 =
σ2 = 0.4,σobs = 0.05; D = 1, and Cv = 1. When standard normalized designs, as in
(7), are constructed, then, as expected, the optimal design is the full sequence x1.
Once costs are incorporated, as in (8), the full sequence may lose its optimality.

• If Cs = 0.1, then the cost-based D-optimal design is the full sequence x1.
• If Cs = 0.15, then the optimal design ξ1 = {(x1, p1 = 0.43), (x22, p22 = 0.57)}.

Recall that to calculate frequencies ni for cost-based designs as in (8), the cost
function c(xi j) has to be taken into account. According to (9), this leads to
w22/w1 = [p22/p1]× [(1 + 0.15× 16)/(1 + 0.15× 8)] = 2.05. Thus about
33% of subjects should be randomized to the full sequence x1 and 67% - to x2,2.

• If Cs = 0.25, then the optimal design ξ2 is the sequence x22.
• If Cs = 0.3, then ξ3 = {(x22, p22 = 0.73), (x33, p33 = 0.27}, so that w22/w33 =

(p22/p33)× (2.5/3.4) = 2.15, and w22 ≈ 0.66, w33 ≈ 0.34; see Fig.1, bottom.

It is interesting to compare the standard D-efficiency of our constructed designs (i.e.
when Cs = 0) to the ratio of relative costs Rcξ : Deffξ1

= 0.77,Rcξ1
= 0.76; Deffξ2

=
0.65,Rcξ2

= 0.6; Deffξ3
= 0.59,Rcξ3

= 0.53, where

Deffξ = [|M(ξ ,ϑ)| / |μ(x1,ϑ)|]1/6 , Rcξ = ∑
i

i

∑
j=1

wi jc(xi j) / c(x1).

For practical reasons, one may force equal weights for subsequences in the same
split, i.e. w21 = w22, w31 = w32 = w33 etc. This restriction has essentially no effect
in our example since D-efficiency of such restricted designs drops by less than 0.01.
As shown in Fedorov and Leonov (2007), the use of split grids with equal weights
of subsequences may be beneficial for non-compartmental analysis of clinical data.

4 Discussion

The law of conservation of mass/matter entails that the term θ1y1(t)dt appears on
the right-hand side of both equations in (4), though with opposite signs. By the same
token it seems reasonable to consider the following analog of the second equation:

dy2(t) =−dy1(t)−θ2y2(t)dt +σ2y2(t)dw2(t).
However, using the same technique as in the proof of Lemma 1, it can be shown that
the solution y2 of such a modified system can be negative with positive probability.

Also it is worthwhile noting that the solution y1(t) in (4) is not monotonic. To
overcome this practical deficiency, one may consider the following model:

dy1(t) =−θ1eσ1w1(t)y1(t)dt, y1(0) = D,

dy2(t) = θ1eσ1w1(t)y1(t)dt−θ2eσ2w2(t)y2(t)dt, y2(0) = 0. (10)

The solution of system (10) is positive and is monotonic:
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y1(t) = De
−θ1

t∫
0

eσ1w1(s)ds
, y2(t) = θ1 ·

t∫
0

e
−θ2

t∫
s

eσ2w2(u)du · eσ1w1(s)y1(s)ds. (11)

Though we can derive the mean of processes y1(t),y2(t) defined in (11), the calcu-
lation of higher moments represents a formidable technical problem. In general, the
presence of “white noise” w leads to continuous but non-differentiable solutions of
the SDE models which may complicate their physiological interpretation. However,
their mean and variance that are of practical interest are smooth functions.

Appendix: Proof of Lemma 1

(a) The derivation of (5) is a simple exercise in the application of general results of
stochastic calculus and Îto’s formula, see Gardiner (2003), Ch. 4.4.7.
(b) The unbiasedness of solutions yr follows from the independence of increments
wr(v)−wr(u) and wr(u)−wr(s), 0≤ s < u < v, and the equality

Eeaξ = ea2/2, for normal ξ ∼ N(0,1) and any a. (12)

(c) It follows from (5) that for any s > 0,

y2(t +s)= α(t,s)y2(t)+β (t,s)eσ1w1(t), where α(t,s)= e−(θ2+
σ2

2
2 )s+σ2[w2(t+s)−w2(t)],

β (t,s) = θ1De−(θ2+
σ2

2
2 )(t+s) ·

t+s∫
t

e(θ2−θ1+
σ2

2
2 −

σ2
1
2 )u+σ1[w1(u)−w1(t)]+σ2[w2(t+s)−w2(u)]du.

Using (12), one can calculate the following conditional mathematical expectations:

E [α(t,s)|y2(t)] = α̃(s), E [β (t,s)|w1(t),y2(t)] = β̃ (t,s),

where α̃(s) = e−θ2s, β̃ (t,s) = (θ1D/Δθ) · e−(θ1+
σ2

1
2 )t · (e−θ1s− e−θ2s

)
. Thus

S̃(t, t + s) = α̃(s) ·Ey2
2(t)+ β̃ (t,s) ·Eeσ1w1(t)y2(t)−Ey2(t) ·Ey2(t + s). (13)

Next it follows from (5), (12) and the independence of increments of w1(t) that

Eeσ1w1(t)y2(t) = θ1De−(θ2+
σ2

2
2 )t ·

t∫
0

e(θ2−θ1+
σ2

2−σ2
1

2 )s ·Eeσ1[w1(t)−w1(s)]

·Ee2σ1w1(s) ·Eeσ2[w2(t)−w2(s)]ds =
θ1D

Δθ +σ2
1

[
e−(θ1−

3σ2
1

2 )t − e−(θ2−
σ2

1
2 )t
]
. (14)

Similarly, to calculate Ey2
2(t), introduce the notation M = max(s,u) and m =

min(s,u):
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Ey2
2(t) = θ 2

1 D2e−2(θ2+
σ2

2
2 )t ·

t∫
0

t∫
0

e(θ2−θ1+
σ2

2−σ2
1

2 )(s+u) ·Eeσ1[w1(M)−w1(m)]

·Ee2σ1w1(m) ·Ee2σ2[w2(t)−w2(M)] ·Eeσ2[w2(M)−w2(m)]ds du =

=
θ 2

1 D2

Δθ +σ2
1

[
2e(−2θ1+σ2

1 )t

2Δθ +σ2
1 −σ2

2

− 2e−(θ1+θ2)t

Δθ −σ2
2

+
2e(−2θ2+σ2

2 )t(Δθ +σ2
1 )

(Δθ −σ2
2 )(2Δθ +σ2

1 −σ2
2 )

]
.

The expression for the function S̃(t, t + s) now follows from (13)-(14). ��

References

Anisimov, V., V. Fedorov, and S. Leonov (2007). Optimal design of pharmacoki-
netic studies described by stochastic differential equations. In J. López-Fidalgo,
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On Testing Hypotheses in Response-Adaptive
Designs Targeting the Best Treatment

Nancy Flournoy, Caterina May, Jose A. Moler and Fernando Plo

Abstract We considerer a sequential, response-adaptive design for clinical trials
which is characterized by the fact that it assigns patients to the best treatment with
a probability converging to one. This property is optimal from an ethical point of
view; in this paper we analyze some inferential problems related to the design. In
particular, we want to establish, by means of a test of hypothesis, which treatment
is superior, in the sense that it has greater mean response. Together with the nat-
ural generalization of the classical t-statistic, we introduce a statistic based on the
probability of assigning patients to a treatment conditional on past observations.
Theoretical properties of the tests are studied, together with numerical evaluations
of the power for dichotomous responses.

1 Introduction

Response-adaptive designs have been the subject of increasing attention by many
researchers in the area of sequential procedures for several years. This is due to
the fact that they permit skewing the allocation probabilities during the experiment,
on the bases of the accrued information (previous allocations and/or previous re-
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sponses). In a clinical trial, this characteristic is fundamental from an ethical point
of view; moreover, these procedures present advantages also in other areas of in-
vestigation, including industrial and economic contexts. A recent review of a broad
class of such designs has been provided in Hu and Rosenberger (2006).

Let us consider an experiment conducted to compare two or more treatments.
Patients enter the experiment sequentially and they are randomly allocated to one of
the treatments, according to the adopted design. Most response-adaptive procedures
considered in the literature allocate patients with a probability converging to a target
allocation ρ ∈ (0,1), which can depend on the unknown parameters and more recent
procedures are chosen based on some optimality properties. Admissible target allo-
cations in (0,1), both from inferential and ethical points of view, have been recently
discussed in Baldi Antognini and Giovagnoli (2009).

In addition to these procedures, a class of response-adaptive designs based on a
randomly reinforced urn (RRU) which targets the best treatment with a probability
converging to ρ = 1 has been studied, from the early papers of Durham and Yu
(1990), Li, Durham, and Flournoy (1996), Durham, Flournoy, and Li (1998) and
then, among others, in Muliere, Paganoni, and Secchi (2006) and May, Paganoni,
and Secchi (2007), up to the recent work of May and Flournoy (2009). This property
is very desirable from an ethical point of view.

For tests of hypotheses to compare the mean responses between treatments, the
Wald t-test statistic is usually considered in the literature. In particular, the power of
the test between different response-adaptive designs targeting a ρ ∈ (0,1) has been
compared, for instance, in Hu and Rosenberger (2003) or Zhang and Rosenberger
(2006). Such a comparative study cannot be applied to the RRU-designs, where the
target proportion is ρ = 1, since the t-test statistic for RRU designs has different
asymptotic properties, as shown in May and Flournoy (2009).

In this work, we simulate the number of patients assigned to the superior treat-
ment in a finite-sample experiment modelled by a RRU-design, showing the ethical
advantage in comparison to some other designs proposed in the literature. Then we
analyze the power of the two sample t-test in a RRU-design and we propose also
a different test statistic based on the proportion of black balls contained in the urn.
We study the asymptotic power of each test and we perform numerical evaluations
of the power assuming fixed sample sizes. We perform our numerical simulation for
the basic case where treatments have dichotomous (success/failure) responses, but
the analysis may be extended to a more general situation. In the final Discussion,
we present further developments of this promising area of research.

2 RRU-Designs and Test of Hypotheses

Consider an experiment conducted to compare two treatments, say B and W . An
urn contains initially b balls of colour B and w balls of colour W . At each time
n = 1,2, . . . a patient enters the experiment and is allocated to treatment B or W ,
according to the colour of a ball randomly sampled from the urn. The response of
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the patient is then observed before the arrival of the (n + 1)-th patient. The ball
extracted is replaced in the urn along with a random number of balls that are of the
same colour as the ball that has been extracted. This random number is equal to the
response of the patient to the treatment or it is a suitable function of it. (For further
details on this model see May and Flournoy 2009).

Let us denote by δn the indicator of the event representing the extraction of a ball
of colour B, that is, the assignment of treatment B. The response of the patient at
time n is a random variable YB(n) with law LB if δn = 1, or a random variable YW (n)
with law LW if δn = 0. Moreover, we denote by

NB(n) =
n

∑
i=1

δi NW (n) =
n

∑
i=1

(1−δi)

the random numbers of patients assigned until time n to B and W , respectively.
Let Zn be the proportion of black balls contained in the urn at time n; Muliere,

Paganoni, and Secchi (2006) generalizes Durham, Flournoy, and Li (1998) in prov-
ing that, if treatment B has a higher mean response than W , Zn converges almost
surely to one. This means that, when treatment B is more favourable, the probability
of allocating a patient to B converges to one, and this property is very desirable from
an ethical point of view. It has been also proved that, when the treatments have the
same mean responses, the process Zn converges almost surely to a random variable
without point masses in [0,1].

In order to compare the performance of the treatments, we consider the hypoth-
esis test on the mean responses mB =

∫
yLB(dy) and mW =

∫
yLW (dy):

H0 : mB = mW , versus H1 : mB > mW . (1)

Let us now discuss two different test statistics to perform the test.

2.1 Test Based on the t-Statistic

In May and Flournoy (2009) the asymptotic properties of the following natural ex-
tension of the t-statistic

ζ0(n) =
ŶB(n)− ŶW (n)√

σ̂2
B

NB(n) + σ̂2
W

NW (n)

, (2)

where

ŶB(n) = ∑n
i=1 δiYB(i)
NB(n)

, σ̂2
B = ∑n

i=1 δi(YB(i)− ŶB(n))2

NB(n)

and ŶW (n) = ∑n
i=1(1−δi)YW (i)

NW (n)
, σ̂2

W = ∑n
i=1(1−δi)(YW (i)− ŶW (n))2

NW (n)
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have been studied. In particular, it is proved that ζ0(n) converges, under the null
hypotheses, to a standard normal distribution, while under the alternative hypothe-
sis it converges conditionally on η to a normal distribution with unit variance and
mean equal to

√
nmW /mBη mB−mW

σW
, where η is the positive square root of the random

variable η2 is defined by

η2 = limn→∞
NW (n)
nmW /mB

, a.s.

Hence, if we fix an asymptotic significance level α (and denoting by z1−α the quan-
tile of order 1− α of a standard normal distribution), we can then consider the
following critical region C1

α :

C1
α = {ζ0(N) > z1−α}.

Moreover, the power of the test, 1−β1, can be approximated, for a large number N
of patients, by

1−β1 = P

(
N +NmW /(2mB)η

mB−mW

mW (1−mW )
> z1−α

)
, (3)

where N is a standard normal random variable independent of η2 (see Proof of
Corollary 3 in May and Flournoy 2009), and N = NB(N)+NW (N).

2.2 Test Based on the ‘Proportion of Black Balls’ Statistic

The proportion of black balls Zn has relevant information about the performance of
both treatments. In a clinical trial with N patients, the behaviour of the trajectories
of the stochastic process {Zn} should be reflected in the value of ZN . In fact, for an
asymptotic significance level α we can consider the critical region

C2
α = {ZN > c1−α},

where c1−α is the quantile of order 1−α for the limit Z∞ of the process Zn. From
Corollary 2 in May and Flournoy (2009) we are also able to approximate the value
of the power 1−β2 = P(ZN > c1−α |H1) in this case. In fact, from

lim
n→+∞

1−Zn

nmW /mB−1
=

mW

mB
η2, a.s., (4)

we can approximate, for large N,

1−β2 = P

(
η2 < (1− c1−α)

mB

mW
N1−mW /mB

)
. (5)
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We remark that the distribution of η2 is in general unknown, but we can simulate
it by using (4) (a simulation study for continuous responses has been considered in
May, Paganoni, and Secchi 2007). Moreover, we can compare the two test-statistics
in terms of the rates with which their power functions converge to one, as the number
of patients N increases to infinity. In fact, if we compare 1− β1 and 1− β2, we
note that the rate is the same when the ratio mW /mB is equal to 2/3, while for
mW /mB < 2/3 the power of the proportion-test converges faster.

3 Numerical Results

In this section several simulation studies are reported. We focus on a clinical trial
with two treatments, B and W , with dichotomous responses (success/failure). Suc-
cess probabilities are denoted pB and pW respectively. This obviously means that,
according to the notation of Section 2, pB = mB and pW = mW . In the sequel, the
sample size, i.e., the number of patients in the experiment, is taken to be N = 400.
As in practical situations the best treatment is unknown, a balanced initial urn com-
position, b = w, is chosen. When a treatment is successful, we reinforce the urn with
one ball of the colour associated with this treatment.

First, we compare the ethical performance of the RRU-design with other designs
for a finite number N of patients. In fact, we simulate the number of patients NB(n)
allocated to the best treatment and the number of failures in the trial for the complete
randomization design (CR) , the Efron biased coin design (Efron) (see Chapter 3 in
Rosenberger and Lachin 2002), the randomized play-the-winner rule (PTW), the
drop the loser rule (DL) (see Ivanova and Flournoy 2001 and Ivanova 2003) and the
RRU-design when it is initialized with b=w=1 and with b=w=3.

Figure 1 displays the box-plots of the random variable NB(400) and the total
number of failures after 100 repetitions for each design in a clinical trial for which
pB = 0.8 and pW = 0.4. We can observe that equal allocation is obtained on average
with the non-response adaptive designs and the variance is smaller with the Efron
design. However, response-adaptive designs skew the allocation of patients towards
the best treatment and diminish the number of failures. The RRU-design provides the
empirical distribution of NB(400) most skewed towards the best treatment and the
empirical distribution of the number of failures most skewed towards zero. These
good properties imply a greater variability. Increasing the initial number of balls
(from b=w=1 to b=w=3) reduces both variability and skewness, but even in this
case the RRU-design is competitive with the other designs from an ethical point of
view. Note, also, that the variability in this case would decrease for smaller values
of pW /pB.

We remark also that the inverse relation between the power of the t-statistic and
the variability of allocations is proved in Hu and Rosenberger (2003) when the target
allocation is ρ ∈ (0, 1), but this is not the case for the RRU-design. Simulation
studies about the performance of the t-test in response-adaptive designs targeting a
ρ ∈ (0, 1) can be found, for instance, in Ivanova (2003).
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Fig. 1: Box-plots of NB(400) and of the total number of failures for some different designs, when
pB = 0.8 and pW = 0.4. The RRU-designs have been simulated for b = w = 1 and b = w = 3.

In Table 1, a comparative simulation study of the power of the ZN-test and the
t-test is carried out when the RRU-design is applied. This study shows two scenarios
which are reflected in two rows: the top panels result from the RRU-design initial-
ized with b = w = 1, and the bottom panels with b = w = 3. In each row, the left
panel gives results for the ZN-test, and the right panel for the t-test. For each combi-
nation of success probabilities given in the tables, we simulate the clinical trial 1000
times and obtain the proportion of simulated clinical trials for which the correspond-
ing statistic is in the critical region Ci

α , i = 1, 2. In the dichotomous situation here
considered, when pB = pW the limit of Zn is a Beta(b,w) distribution, so c1−α is the
(1−α)-percentile of the corresponding Beta distribution. The proportion obtained
is the simulated significance level of the test in the diagonal elements of each panel
and the simulated power of the test is reflected in the off-diagonal terms.

Observe that for b = w = 1 the empirical power of the t-test is higher than the
empirical power of the Zn-test. However, the significance level of the t-test is far
from 0.05 whereas this is not the case for the Zn-test. The power of the t-test is
inflated possibly because the normal approximation is not good enough when the
number of patients allocated to the worst treatment is small. On the other hand, the
Beta approximation for the Zn-test seems adequate to estimate the significance level
but the empirical power of this test is too small when the success probabilities are
very close. When b = w = 3 the RRU-design performs worse than b = w = 1 from
an ethical point of view, but it is still competitive with the other designs. The Zn-
test improves its empirical power but the t-test increases its empirical power too,
and its empirical significance level approaches 0.05 except for extremal success
probabilities.
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Table 1: Each row provides two tables with the power of the ZN statistic (on the left) and the power
of the t-test (on the right). The first block is obtained with the initial condition b = w = 1 and the
second with the initial condition b = w = 3. The empirical level of significance is on the diagonal.

Initial condition: b = w = 1

pB pW 0.1 0.2 0.3 0.5 0.7 0.8 0.9
0.1 0.05 - - - - - -
0.2 0.30 0.05 - - - - -
0.3 0.63 0.19 0.03 - - - -
0.5 0.95 0.61 0.29 0.05 - -
0.7 1.00 0.91 0.63 0.15 0.05 - -
0.8 1.00 0.94 0.78 0.34 0.07 0.04 -
0.9 1.00 0.98 0.85 0.40 0.15 0.10 0.04

pB pW 0.1 0.2 0.3 0.5 0.7 0.8 0.9
0.1 0.09 - - - - - -
0.2 0.80 0.11 - - - - -
0.3 0.98 0.64 0.09 - - - -
0.5 1.00 0.98 0.92 0.08 - - -
0.7 1.00 0.99 0.99 0.89 0.06 - -
0.8 1.00 0.99 0.99 0.96 0.59 0.06 -
0.9 1.00 1.00 0.99 0.98 0.92 0.67 0.08

Initial condition: b = w = 3

pB pW 0.1 0.2 0.3 0.5 0.7 0.8 0.9
0.1 0.03 - - - - - -
0.2 0.56 0.06 - - - - -
0.3 0.95 0.32 0.05 - - - -
0.5 1.00 0.94 0.58 0.05 - - -
0.7 1.00 1.00 0.95 0.39 0.04 - -
0.8 1.00 1.00 0.98 0.65 0.12 0.04 -
0.9 1.00 1.00 1.00 0.81 0.30 0.13 0.04

pB pW 0.1 0.2 0.3 0.5 0.7 0.8 0.9
0.1 0.06 - - - - - -
0.2 0.84 0.08 - - - - -
0.3 1.00 0.71 0.05 - - - -
0.5 1.00 0.94 0.58 0.05 - - -
0.7 1.00 1.00 1.00 0.98 0.06 - -
0.8 1.00 1.00 1.00 1.00 0.70 0.05 -
0.9 1.00 1.00 1.00 1.00 1.00 0.83 0.04

4 Discussion and Further Developments

In this paper we have investigated hypothesis tests for RRU-designs, which are char-
acterized by optimality from an ethical point of view. They can’t be approached
with the usual method for comparing designs having target allocations ρ in (0,1).
We have considered the well-known two sample t-test statistic and we have intro-
duced a new test statistic, the proportion of black balls. The numerical results on
the power of the tests suggest that a combination of the two tests could be a useful
way to obtain more efficient statistical inference. We leave this as a further research
topic.

Comparisons between the performance of different designs and between different
statistics are influenced by the choice of the initial parameters b, w and by the sample
size N. We think that it will be necessary to develop a comparison study focusing
on the initial parameters and on different sample sizes. Moreover, the study here
presented needs to be extended to the case of general outcomes (even continuous)
and to the case of K treatments.

We also believe that a further improvement of inference in response-adaptive
designs could be obtained by constructing sequential tests (as is also claimed in
Rosenberger 2002); we hope to deal in future with this promising area of research.



88 Nancy Flournoy, Caterina May, Jose A. Moler and Fernando Plo

Acknowledgements Thanks to Piercesare Secchi and Anna Maria Paganoni for the ideas and
discussions which have stimulated this work.

References

Baldi Antognini, A. and A. Giovagnoli (2009). Ethics and inference in binary clini-
cal trials: admissible allocations and response-adaptive randomization. Preprint.

Durham, S. D., N. Flournoy, and W. Li (1998). A sequential design for maximizing
the probability of a favourable response. Canadian Journal of Statististics 26,
479–495.

Durham, S. D. and K. F. Yu (1990). Randomized play-the leader rules for sequen-
tial sampling from two populations. Probability in Engineering and Information
Science 26, 355–367.

Hu, F. and W. Rosenberger (2003). Optimality, variability, power: evaluating
response-adaptive randomization procedures for treatment comparisons. Journal
of the American Statistical Association 98, 671–678.

Hu, F. and W. F. Rosenberger (2006). The Theory of Response-Adaptive Random-
ization in Clinical Trials. Wiley Series in Probability and Statistics. New York:
Wiley.

Ivanova, A. (2003). A play-the-winner-type urn design with reduced variability.
Metrika 58 1–13.

Ivanova, A and N. Flournoy (2001). A birth and death urn for ternary outcomes:
stochastic processes applied to urn models. In: Charalambides C, Koutras MV,
Balakrishnan (eds) Probability and Statistical Models with Applications., 583–
600. Boca Raton: Chapman and Hall/CRC.

Li, W., S. D. Durham, and N. Flournoy (1996). Randomized Polya urn designs. Pro-
ceedings of the Biometric Section of the American Statistical Association, 166–
170.

May, C. and N. Flournoy, N. (2009). Asymptotics in response-adaptive designs gen-
erated by a two-color, randomly reinforced urn. The Annals of Statistics 32, 1058–
1078.

May, C., A. Paganoni, and P. Secchi (2007). Response-adaptive designs targeting
the best treatment for clinical trials with continuous responses. In S.Co.2007 Fifth
Conference - Complex Models and Computational intensive methods for estima-
tion and prediction - Book of short papers, pp. 326–331. Cluep.

Muliere, P., A. Paganoni, and P. Secchi (2006). A randomly reinforced urn. Journal
of Statistical Planning and Inference 136, 1853–1874.

Rosenberger, W. F. (2002). Randomized urn models and sequential design. Sequen-
tial Analysis 21, 1–28.

Rosenberger, W. F. and J. M. Lachin (2002). Randomization in Clinical Trials. New
York: Wiley.

Zhang, L. and W. F. Rosenberger (2006). Response-adaptive randomization for clin-
ical trials with continuous responses. Biometrics 62, 562–569.



Towards Gaussian Process-based Optimization
with Finite Time Horizon

David Ginsbourger and Rodolphe Le Riche

Abstract During the last decade, Kriging-based sequential optimization algorithms
have become standard methods in computer experiments. These algorithms rely on
the iterative maximization of sampling criteria such as the Expected Improvement
(EI), which takes advantage of Kriging conditional distributions to make an explicit
trade-off between promising and uncertain points in the search space. We have re-
cently worked on a multipoint EI criterion meant to choose simultaneously several
points for synchronous parallel computation. The results presented in this article
concern sequential procedures with a fixed number of iterations. We show that max-
imizing the usual EI at each iteration is suboptimal. In essence, the latter amounts to
considering the current iteration as the last one. This work formulates the problem
of optimal strategy for finite horizon sequential optimization, provides the solution
to this problem in terms of a new multipoint EI, and illustrates the suboptimality of
maximizing the 1-point EI at each iteration on the basis of a first counter-example.

1 Introduction

The Gaussian Process (GP) has become a major tool in metamodeling for com-
puter experiments (Rasmussen and Williams 2006). When studying a simulator with
scalar output, y : x ∈D⊂R

d −→ y(x) ∈R, GP metamodeling consists in assuming
that y is one path of a GP Y . The main focus of this paper is on metamodel-based
optimization with finite time horizon. In GP-based optimization, it is common to se-
quentially enrich the current Design of the Experiment (DoE) X = {x1, . . . ,xn} ∈Dn

(n ∈ N
∗) —denoted by X = X0 and n = n0 in the initial state— by maximizing a

probabilistic criterion of interest, updating the GP model, and iterating. The Ex-
pected Improvement (EI) is now one of the most popular GP-based optimization
criteria:

EI(x) = E
[
(min{Y (X)}−Y{x})+ |Y (X) = Y

]
= E [I(x)|A] , (1)

Dr. David Ginsbourger
CHYN, Emile-Argand 11, CH-2009 Neuchâtel, Switzerland, e-mail: david.ginsbourger@unine.ch

Dr. Rodolphe Le Riche
CROCUS, Ecole des Mines, 158 cours Fauriel, Saint-Etienne, France, e-mail: leriche@emse.fr

A. Giovagnoli et al. (eds.), C. May (co-editor), mODa 9 – Advances in Model-Oriented 89
Design and Analysis, Contributions to Statistics, DOI 10.1007/978-3-7908-2410-0 12,
c© Springer-Verlag Berlin Heidelberg 2010



90 David Ginsbourger and Rodolphe Le Riche

where I(x) := [min{Y (X)}−Y (x)]+ = max [0,min{Y (X)}−Y (x)] is the random
improvement at x, and the event A sums up all available observations. EI is appreci-
ated for trading off exploitation of known information and exploration of unvisited
search space areas. Furthermore, EI is known in closed form (Jones, Schonlau, and
Welch 1998), which allows fast evaluations, and calculation of its derivatives. Such
a criterion, though updated by integrating new data, is typically considered at each
iteration without structural change. In fact, in EI algorithms like EGO, the point
visited at the jth iteration is determined by maximizing a conditional expectation:

Algorithm 1 EI algorithm with known Kriging parameters and r ∈ N
∗ iterations

1: for j← 1,r do
2: A j−1 =

{
Y (x1) = y(x1), . . . ,Y (xn+ j−1) = y(xn+ j−1)

}
3: xn+ j = argmaxx∈D

{
E
[
I(x)|A j−1

]}
4: end for

Example 1. We consider an objective function defined by y1 : x ∈ [0,1]→ y1(x) =
sin(10x + 1)/(1 + x)+ 2cos(5x)x4 ∈ R, where D = [0,1]. Fig. 1 illustrates y1 and
its actual minimizer, the initial DoE X0 = {0.1,0.2,0.85}, as well as the associated
1-point and 2-point EI functions. Simple Kriging is performed using a Matern co-
variance (ν = 3

2 ; see Stein (1999) for details), with a unit variance and a range of
0.3√

3
. Further comments can be found in the caption of Fig. 1 and in Section 3.
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Fig. 1: y1 (upper left) with its global minimizer (horizontal line, with a dot at the minimum) and
the design X0 (three dots above the former horizontal line); 1-point EI and 2-point EI criteria
(lower left, and right) corresponding to the Kriging model of Example 1. The vertical lines show
the 1-point EI maximizer, x≈ 0.57. The maximum of the 2-point EI is reached with one point as
previously, and one point at the boundary point x = 1.
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2 What is a Strategy and How to Measure its Performance?

Sequential Deterministic Strategies for Optimization with Finite Horizon. As-
sume that one has a budget of r evaluations after having evaluated y at an arbitrary
n-point design, X. One step of a sequential strategy consists in looking for the next
point where to evaluate y, say xn+1. In some sampling procedures like crude Monte
Carlo, xn+1 is determined without taking (X,Y) into account. However, in the con-
sidered case of adaptive strategies, xn+1 is determined on the basis of the available
information. Furthermore, we restrict ourselves to the case of deterministic strate-
gies, i.e. where xn+1 only depends on the past and does not involve any random
operator (like mutations in genetic algorithms). So xn+1 is defined as a function:

s1 : (X,Y) ∈ (D×R)n −→ xn+1 = s1(X,Y) ∈ D. (2)

For instance, s1(.) is defined in Algorithm 1 as argmaxx∈D E[I(x)|A0]. To use the
previous notation, one can similarly define a function s j for every j ∈ [2,r]:

Definition 1. We call a deterministic strategy with horizon r (r ∈ N
∗) any finite

sequence S = (s j) j∈[1,r] of measurable functions s j(.) : (D× R)n0+ j−1 −→ D
( j ∈ [1,r]), and denote by Sr the space of such S .

In Algorithm 1, the s′js are implicitly taken as argmaxx∈D E[I(x)|X j−1,Y (X j−1)] for
all j ∈ [2,r], where X j−1 = X0∪{xn0+1, . . . ,xn0+ j−1} and Y j−1 = Y (X j−1) denote
the augmented design and the vector of observations. The only change in the criteria
of such an EI algorithm is the updated information. Here we consider more general
strategies, where the s′js may be subject to structural changes at each iteration.

After r function evaluations, it is possible to evaluate the success of S ∈ Sr by com-
paring the initial best response, m0 := min(y(X0)), to the best response observed
during the additional runs, m1:r := min(y(xn0+1), . . . ,y(xn0+r)). The corresponding
performance measure (m0−m1:r)

+ can be written in terms of multipoint improve-
ment (see e.g. Schonlau 1997 or Ginsbourger, Le Riche, and Carraro 2010):

Definition 2. The improvement of S ∈ Sr seen from the initial state is defined as

i0(S ) :=
(
min{y(X0)}−min[y{s1(X0,Y0)}, . . . ,y{sr(Xr−1,Yr−1)}])+ . (3)

More generally (0 ≤ j ≤ r), i j(S ) :=
(
m j−m( j+1):r

)+
stands for the cumulative

improvement obtained between the jth step and the end of strategy S .

Our purpose is to find strategies that produce the largest possible a posteriori im-
provement in a given number of iterations. However, evaluating i0(S ) obviously
requires already knowing (Xr,Yr), i.e. being at the end of the algorithm. So we
need a criterion that takes a strategy S = (s j) j∈[1,r] as argument while not explic-
itly depending on the design points and response values to be observed during the
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algorithm. This is what we will propose in the next subsection with the adaptation
of the Expected Improvement criterion to sequential strategies.

EI of a Finite Time Sequential Strategy. The quantities X j and Y j are deter-
ministic for an observer having collected information at or after the jth itera-
tion. We now detail the case where the latter are seen from the past of iteration
j, and hence inherit from an epistemic random nature: X n0+ j denotes the ran-
dom variable corresponding to xn0+ j, and X

j = X0 ∪ {X n0+1, . . . ,X n0+ j} the
random design corresponding to Xn0+ j with known X0 (in all cases, j ∈ [1,r]).
Similarly, Y

j = Y0 ∪{Y (X n0+1), . . . ,Y (X n0+ j)}. Note that X n0+1 = s1(X0,Y0)
is non-random. However, X n0+2 = s2(X1,Y1) is random, and is more precisely
σ{Y (Xn0+1)}- or σ(Y1)-measurable. More generally, each X n0+ j is a σ(Y j−1)-
measurable random variable. We are now ready to introduce the random variables

I j(S ) = (min{Y (X j)}−min[Y{s j+1(X0,Y0)}, . . . ,Y{sr(Xr−1,Yr−1)}])+, (4)

where 0 ≤ j ≤ r− 1. Finally, let A j = {X j = X j,Y (X j) = Y j} (0 ≤ j ≤ r) denote
the information available right after the calculation of X n0+ j and y(X n0+ j).

Definition 3. The Expected Improvement of a strategy S = (s j) j∈[1,r] seen from its
initial state is given by EI0(S ) = E

[
I0(S )|A0

]

3 Towards Deriving the Optimal Finite Time Strategy

We restrict ourselves here to the case where D is a compact subset of R
d , and as-

sume for convenience that each considered E[I j(x, . . .)|A j] (0 ≤ j ≤ r) possesses
one unique global maximizer over D. Under these working assumptions, we denote
by Pr the problem: find S ∗

r = (s∗j) j∈[1,r] maximizing EI0. Let us first write a trivial
property of strategies with horizon 1 which will nevertheless be useful in the sequel:

Lemma 1. The solution of P1 is given by s∗1(X
0,Y0) = argmaxx∈D E[I0(x)|A0].

Proof. Follows directly from the definition of P1.

Lemma 2. ∀(a,b,c) ∈ R
3, (a−min(b,c))+ = (a−b)+ +(min(a,b)− c)+.

Proof. If a = min(a,b,c), then both left and right terms are 0. If b = min(a,b,c),
both terms equal (a− b) since min(b,c) = b and (min(a,b)− c)+ = 0. Finally, if
c = min(a,b,c), the left term equals (a− c) and the right one equals 0 +(a− c) if
b≥ a and (a−b)+(b− c) = (a− c) else. ��
Theorem 1. In Pr, choosing xn0+r amounts to maximizing E[Ir−1(.)|Ar−1].

Proof. After r− 1 iterations, {Xr−1,Yr−1} is known, and the maximization of EI
over Sr reduces to a simpler problem over S1. Noting M0 = min({Y (X0)} and
M1:(r−1) = min{Y (X n0+1), . . . ,Y (X n0+r−1)}, we have:
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xn0+r =argmax
x∈D

E[(M0−min{Y (X n0+1), . . . ,Y (X n0+r−1),Y (x)})+|Ar−1]

=argmax
x∈D

E[(M0−min{M1:(r−1),Y (x)})+|Ar−1].
(5)

We then use Lemma 2 with a = min{Y (X0)}, b = M1:(r−1), c = Y (x) and obtain:

E[(M0−min{M1:(r−1),Y (x)})+|Ar−1] = (m0−m1:(r−1))
+ +E[Ir−1(x)|Ar−1]. (6)

As (m0−m1:(r−1))+ does not depend on x, xn0+r maximizes E[Ir−1(x)|Ar−1]. ��
Corollary 1. The solution (s∗1, . . . ,s

∗
r ) of Pr is given by the following recursion:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s∗r (X
r−1,Yr−1) = argmax

x∈D
E[Ir−1(x)|Ar−1],

s∗r−1(X
r−2,Yr−2) = argmax

x∈D
E[Ir−2(x,s∗r{Xr−1(x),Yr−1(x)})|Ar−2], . . . ,

s∗1(X
0,Y0) = argmax

x∈D
E[I0(x,s∗2(X

1(x),Y1(x)), . . . ,s∗r{Xr−1(x),Yr−1(x)})|A0].

Proof. The first equality directly follows from Theorem (1). Now, the point xn0+r−1

is obtained after observation of Xr−2,Yr−2 by maximizing the overall criterion

E
[
(M0−min{Y (X n0+1), . . . ,Y (X n0+r−2),Y (x),Y (X n0+r)}+|Ar−2

]
=E

[
(m0−min(y(xn0+1), . . . ,y(xn0+r−2),Y (x),Y [s∗r{Xr−1(x),Yr−1(x)}])+|Ar−2

]
,

where equality is due to the facts that X n0+ j and that Y (X n0+ j) (1≤ j≤ r−2) are
known conditionally on Ar−2, and X n0+r = s∗r (Xr−1(x),Yr−1(x)) by the last result.
When we apply Lemma 2 with a = m0, b = m1:r−2,

c = min
(
Y (x),Y [s∗r ({Xr−1(x),Yr−1(x)}])

leads to maximizing E[Ir−2(x,s∗r{Xr−1(x),Yr−1(x)})|Ar−2]. The remaining points
are determined by Dynamic Programming (see Theorem 5.2 of Auger and Teytaud
(2010) for a more general result, and Chapter 1 of Bertsekas (2007) for the basics).

Example: Decomposing the EI of a Two-Iterations Strategy. We consider a fam-
ily of elementary 2-iterations strategies defined as follows (a ∈ D):

S (a) = “choose a at iteration 1, and maximize the 1-point EI at iteration 2.” (7)

Our purpose is to show that, in some cases, there exists a better strategy than se-
quentially maximizing the 1-point EI like Algorithm 1 does. Let us fix a ∈ D and
develop EI{S (a)}. The second point is given by

X n0+2 = s∗2(X
1,Y1) = argmax

x∈D
E

[{
min(Y1)−Y (x)

}+ ∣∣A0,Y (a)
]
. (8)

Lemma (2) then enables us once again to provide an interesting EI decomposition:
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EI0{S (a)}= E

[(
min(Y0)−min{Y (a),Y (X n0+2)})+ ∣∣A0

]

= E
[
I(a)

∣∣A0
]
+E

[{
min(Y1)−Y (X n0+2)

}+ ∣∣A0

]
.

(9)

The latter hence appears as the sum of the 1-point EI at point a and the expectation
of the future 1-point EI at X n0+2. Since EI(a) is analytically known, calculating
EI{S (a)} amounts to computing the second term of this sum. Now, seen from 0 ,
Y (a) is random. Under the usual assumptions of a centred GP with known kernel,
the law of Y (a) conditional on A0 sends us back to the results of Simple Kriging:

Y (a)|A0 ∼N
(
m0(a),s2

0(a)
)
, where

{
m0(a) := kT

0 (a)K−1
0 Y0

s2
0(a) := k(a,a)−k0(a)T K−1

0 k0(a).
(10)

Algorithm 2 Computation of EI0{S (a)} by Monte-Carlo

1: X1 = X0∪{a}
2: for j← 1,m do
3: ysim ∼N

{
m0(a),s2

0(a)
}

4: Y1 = Y0∪{ysim}
5: xn0+2

sim = argmaxx∈D
{
E
[
I1(x)|A1

]}
6: v j = E

[
I1(xn0+2

sim )
∣∣A1

]
7: end for
8: return ÊI0 = E

[
I0(a)|A0

]
+ 1

m ∑m
j=1 v j

Numerical Application. Back to Example 1, EI0{S (a)} is computed for the
boundary point a = 1 and compared to the EI value obtained with two iterations
of Algorithm 1, i.e. twice maximizing the regular EI. As detailed in Algorithm 2,

the computation of E

[{
min(Y1)−Y (X n0+2)

}+ ∣∣A0

]
is based on:

EI1{S (a)} ≈ 1
m

m

∑
i=1

E

[(
min{Y1(a)}−Y{X n0+2(a)})+ ∣∣A0,Y (a) = yi

a

]
, (11)

where the yi
a (1≤ i≤m) are i.i.d. following N {m0(a),s2

0(a)}. Figure 2 sums up the
results obtained by running Algorithm 2 with m = 1000, for both a = 1 and a fixed

to the 1-point EI maximizer. We compared the ÊI0 obtained for the two strategies
by means of a Welch t-test —using the t.test function of the stats R package. With
respective estimates of 0.6061 and 0.6132 for the means, the second corresponding
to a = 1, the t-test with alternative hypothesis “the true difference in means is less
than 0” returned a p-value of 0.056 (t =−1.589 and d f = 1847).
The slightly higher EI hence obtained with a = 1 supports the belief that maximizing
1-point EI at each iteration is not (always) the best sequential strategy with fixed
horizon. In this particular example, the phenomenon seems due to the delayed payoff
associated with sampling at a = 1. Indeed, evaluating y there at the first iteration
leaves room to explore the most interesting zone with a little bit more information at
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Fig. 2: The left graphics represents the two populations of X n0+2 points (1000 each) corresponding
to both strategies, and the right one compares the samples of improvement values, i0(S ) from eq.
(3), obtained in both cases.

iteration 2 than initially. In the straightforward strategy however, one greedily visits
the main bump of the 1-point EI at the first iteration and then almost systematically
samples y at the boundary point x = 1 during the second shot (See Fig. (2), upper
left).

Computational Cost of Finite Horizon Strategies. Evaluating the EI of a strategy
is an issue: for r = 2, m2 simulations are needed (m by using the 1-point EI for-
mula at step 2), m 1-point EI maximizations, not to mention the m Kriging model
updates and auxiliary computation costs. A direct extension of this computational
scheme to horizons r ≥ 3 results in costs of the order of mr operations, hence ex-
ponentially increasing with the horizon. This is one instance of Bellman’s famous
curse of dimensionality. Now, deriving the optimal strategy is even worse: not only
is the computational time exponentially increasing in r, but it is also exponential
in the time needed to optimize one-point criteria. Considering for simplicity an ex-
haustive maximization of the EI’s and EI{S (a)}’s over a p-point grid, finding the
optimal strategy costs p×m× (p− 1)×m improvement computations, which be-
comes Ar

pmr in the general case (1 ≤ r ≤ p− 1). Finding the optimal strategy by
such a method seems thus limited to an horizon of 2 or 3, and only makes sense
in the case of costly objective functions for which the optimal strategy is likely to
bring a higher improvement than the same computation time invested in additional
evaluations of y. However, 2- or 3-step optimal strategies might remain attractive in
the following contexts:

• Sequential evaluations of y with consecutive blocks of 2-step optimal strategies,
• Sequential-parallel evaluations of y with consecutive blocks of q ∈ 2N points,

with blocks of two q-point designs optimal in the sense of a 2-step strategy.
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Conclusion and perspectives. The presented results extend the multipoint EI to
optimization strategies with finite time horizons. Thanks to the modeling of the
future points and observations in terms of random variables, the latter criterion is
proposed and analyzed to derive the sequence of decisions to be made by the optimal
fixed horizon algorithm, obtained by dynamic programming. It has been illustrated,
on the basis of a specific example, that the classical EI algorithm is suboptimal.
To this end, the strategic value of a point is decomposed as the sum of its one-
point EI plus a delayed payoff, estimated by Monte-Carlo based on GP conditional
simulations.

Perspectives include a detailed study and improvements of the latter Monte-Carlo
method. Dimension reduction techniques and well-tuned heuristics may be required
to allow the computation of reasonable estimates for the EI of a strategy with hori-
zon r≥ 3. Furthermore, both large-scale practical examples and deeper connections
with existing work on sequential strategies in the fields of control theory and ap-
proximate dynamic programming (Powell 2007), are currently being considered. In
particular, the close (but not similarly proven nor illustrated) results given in Mockus
(1988), recently discovered by the authors, motivate revisiting this book two decades
later with a contemporary scientific approach and increased computational capacity.
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Optimal Designs for Linear Logistic Test Models

Ulrike Graßhoff, Heinz Holling and Rainer Schwabe

Abstract An important class of models within item response theory are Linear Lo-
gistic Test Models (LLTM). These models provide a means for rule-based item gen-
eration in educational and psychological testing based upon cognitive theories. After
a short introduction into the LLTM, optimal designs for the LLTM will be developed
with respect to the item calibration step assuming that persons’ abilities are known.
Therefore, the LLTM is embedded in a particular generalized linear model. Finally,
future developments are outlined.

1 Introduction

The following work is motivated by the construction of rule-based tests for mea-
suring intelligence. Intelligence is a very important prerequisite for academic and
vocational performance as it provides a basis for nearly all cognitive abilities and
skills. Thus, measurement of intelligence has played an important role in psycho-
logical test theory for a long time.

Recent approaches to developing intelligence tests are driven by attempts to auto-
mate item generation based on rule based items. Essential to rule-based item design
are cognitive models for “solving items” and linking the components affecting item
complexity and difficulty to the cognitive processes in operation during problem
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solving. The main principle is to analyze components of items that influence item
complexity and difficulty and then use these components to combine them and gen-
erate items of arbitrary complexity and difficulty level.

Typical examples for such rule-based items are figural analogy items. Figure 1
illustrates a sample for a figural analogy item with the basic test format A:B = C:?
(Kirchhoff and Holling 2010). Cognitive operations, defined by the relation between
the A and B term were specified based on theories of figural intelligence. These
operations constitute construction rules according to which items were generated.
Nine different rules transforming the elements from A to B and thus from C to D
were applied. These rules refer to four general rule classes: Reflection, rotation,
size, and sequence. The item exposed in the left of figure 1 contains two rules,
“sequence plus four” and “rotation 180◦”. When “sequence plus” is applied letters
were consecutive according to the alphabet and digits were increased according to
arithmetic addition. (The correct solution would be “ f ” for the problem in figure
1.)

Fig. 1: Example for an item of a rule based figural analogy test.

A statistical foundation for constructing such items is provided by LLTMs.
LLTMs constitute an important class of models in item response theory (IRT) which
is usually the foundation of modern educational and psychological testing. In IRT
models the probability of solving an item depends on item and person parameters.
The basic and very popular IRT model is the Rasch model which is based upon a
binary response variable Yi j where Yi j = 1 if person i solves an item j correctly and
Yi j = 0 otherwise. The success probability P(Yi j = 1) is given in terms of two pa-
rameters θi and σ j, which describe the person’s “ability” and the “difficulty” of the
given item, respectively. These quantities are connected by the logistic link function
as

P(Yi j = 1) =
exp(θi−σ j)

1+ exp(θi−σ j)
=

1
1+ exp{−(θi−σ j)} (1)

resulting from the log odds formulation

log
P(Yi j = 1)
P(Yi j = 0)

= θi−σ j .

Thus the logarithmic odds ratio is modeled as the difference between the person
ability and item difficulty parameters.

The number of correctly solved items is a sufficient statistic for the ability param-
eter. This is an important advantage of the Rasch model compared to other IRT mod-
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els. Closely connected with this feature is what Rasch (1966, p. 104 - 105) called
“specific objectivity”: “The comparison of any two subjects can be carried out in
such a way that no parameters are involved other than those of the two subjects ...
Similarly, any two stimuli can be compared independently of all other parameters
than those of the two stimuli as well as the parameters of the subjects having been
replaced with observable numbers. It is suggested that comparisons carried out un-
der such circumstances be designated as specific objective”. Thus, the Rasch model
stands out in IRT due the above mentioned features.

An important extension of the Rasch model especially for generating rule based
tests are LLTM. In the LLTM the difficulty of an item j is composed of K item
specific components or rules Xjk given as a weighted sum of basic parameters ηk,
k = 1, ...,K,

σ j =
K

∑
k=1

ηk Xjk + c

with a norming constant term c, so that

J

∑
j=1

K

∑
k=1

ηk Xjk + c = 0 ,

where the summation is taken over all possible items j = 1, ...,J.
Inserting this representation in (1) leads to

P(Yi j = 1) =
exp

(
θi − ∑K

k=1 ηk Xjk − c
)

1+ exp
(
θi − ∑K

k=1 ηk Xjk − c
) . (2)

Usually the model parameters in (1) and (2), i.e. σ j and ηk respectively, are esti-
mated in a two-step procedure. First, the item parameters are estimated by maximum
likelihood conditioned on fixed person parameters or by using a Bayesian approach.
This step is called item calibration. In the second step the person parameters θi can
be estimated under the relevant response model given the estimated item parameters.

An important tool for estimating the parameters of the item characteristics is pro-
vided by optimal designs. Optimal design has a long history in psychological and
educational testing starting with Birnbaum (1968). He was the first who realized
the importance of optimal test design for applications of IRT. When the interaction
between an examinee and a test item is described by a response model with pa-
rameters for the examinee and the item, the information in the response about the
examinee’s parameter is dependent on the item. Thus, the items or, more precisely,
their specific components may serve as design variables. An immediate question
is which distribution of item specific components would be optimal to measure an
examinee or a population of examinees. Birnbaum suggested optimizing Fisher’s
information about θ in the responses. His approach to optimal test designing con-
sisted of three steps: First, establishing the measurement goal of the test that is to
be assembled (e.g., diagnosis; pass-fail decision making; evaluation of educational
progress). Second, translating the goal into a target for the information function of
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the test. Third, selecting a test from the pool of calibrated items with an information
function which best approximates the target.

Meanwhile, innumerable applications of optimal design within IRT have been
developed (e.g. van der Linden 2005). These approaches may be categorised into
two types of design problems. The first type is known as test design and refers
to the optimal selection of items for estimating ability parameters. The second type,
sometimes called sampling design, deals with the sampling of test-takers for optimal
estimation of item parameters. Both types of design problem may be further differ-
entiated according to the kind of testing: testing using fixed-form tests vs. adaptive
testing. Buyske (2005) gives a short overview about important results of applying
optimal design to these four different situations.

A still open problem is the test design of an LLTM, i. e. how to select the items
for estimating the parameters of the item characteristics. Every item in an LLTM
is described by its properties and represented by a row in the design matrix. Usu-
ally, this matrix consists of binary elements (0: property is not given, 1: property is
given). But, in some cases properties may be applied several times and the elements
in the design matrix describe how often a property is given in this task. Further-
more, the collection of items has to be subjected to certain constraints to deal with
the content specifications of the test, its format, and practical restrictions, such as
the testing time available, uniform usage of items over time, and items which cannot
be used in the same test because one item contains a clue to the solution of the other.
In such situations a restricted design space is imposed.

2 Optimal Design

In the following optimal designs for the LLTM will be constructed with respect to
the item calibration step, where persons’ abilities are known and can be adjusted
arbitrarily. De Boeck and Wilson (2004) have shown that most IRT models like the
LLTM are special cases of generalized linear models. Following this approach we
embed model (2) in such a particular generalized linear model.

E(Y (x1,x2)) = μ(f(x1)�β + x2) (3)

with x1 ∈X , x2 ∈ R and μ(z) = exp(z)/(1+ exp(z)).
In order to establish the embedding of the LLTM we have to set f(x1 j)�β =

−∑K
k=1 ηk Xjk −c and x2i = θi. This means that in terms of x1 we can think of results

from K attributes with the vector of regression functions f = −(1, f�1 , ..., f�K )� for
x1 = (x11, ...,x1K)� and x1k is the value of the kth attribute. The regression functions
fk will represent dummy variables for qualitative factors or real valued functions
when quantitative factors are involved. Concerning the second part of the linear
component x2 is treated as a continuous factor and we can assume the corresponding
effect as a known parameter with value 1 due to the assumptions of the Rasch model
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and hence x2 is a free additional variable to choose. We assume in what follows that
each item is presented to exactly one person, this means i = j.

The vector of unknown parameters is denoted by β = (β0,β�1 , ...,β�K )� ∈ R
p,

where β0 = c is the normalizing constant and β k is related to the effect of the kth
attribute. The mean response μ as well as the response variance σ2 = μ(1− μ)
depend on the linear effect f(x1)�β +x2 only; so let Var(Y (x1,x2)) = σ2(f(x1)�β +
x2). Denote by λ (z) = μ ′(z)2/σ2(z) the intensity function, which is evaluated at z =
f(x1)�β + x2 gives the intensity of the information of an observation with settings
(x1,x2). For the present logistic model this intensity occasionally coincides with the
variance (λ = μ ′ = σ2). The Fisher information for any point can be approximated
by local linearisation for fixed β

M(x1,x2;β ) = σ2(f(x1)�β + x2)−1 ∂
∂β

μ(f(x1)�β + x2)
∂

∂β
μ(f(x1)�β + x2)�

= λ (f(x1)�β + x2) f(x1)f(x1)�

For measuring the quality of an exact design ξ on X ×R represented by N de-
sign points ξ = ((x�11,x21), ...,(x�1N ,x2N)), we use the normalized information ma-
trix namely

M(ξ ;β ) =
1
N

N

∑
i=1

M(x1i,x2i;β ) =
1
N

N

∑
i=1

λ (f(x1i)�β + x2i) f(x1i) f(x1i)�.

restrict the D-optimality criterion to local optimality at a given parameter vector β
at a first stage. A design ξ ∗ is called D-optimal (locally) at β , if it maximizes the
determinant of the information matrix M(ξ ;β ).

We denote for a design ξ by ξ1 the marginal design with respect to the first
component x1 and for the corresponding linear response E(Y1(x1)) = f(x1)�β the
“linear” information matrix by M1(ξ1) = 1/N ∑N

i=1 f(x1i)f(x1i)�, which does not
depend on β .

Theorem 1. Let ξ ∗1 be an exact D-optimal design on X for the marginal linear
model E(Y1(x1)) = f(x1)�111 given by N design points (x∗11, ...,x

∗
1N). For given 111

set x∗2i = −f(x∗1i)
�111. Then the combined design ξ ∗ = ((x∗11,x

∗
21), ....,(x

∗
1N ,x∗2N)) is

D-optimal at 111 for the model (3).

Proof of Theorem 1
Since λ (z) = exp(z)/(1+ exp(z))2 ≤ λ (0) is bounded by λ (0) = 1/4, we have for
the information at any setting (x1,x2) that M(x1,x2) ≤ 1

4 M1(x1). Hence for every
exact design ξ = ((x�11,x21), ...,(x�1N ,x2N)) the information is bounded 1

4 times the
marginal information of the first component,

M(ξ ;β )≤ 1
4

M1(ξ1) ,
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and equality is attained for ξ ∗ as f(x∗1i)
�β +x∗2i = 0. The monotonicity of the deter-

minant yields

detM(ξ ;β )≤ (
1
4
)p detM1(ξ1)≤ (

1
4
)p detM1(ξ ∗1 ) = detM(ξ ∗;β ) ,

where the second inequality holds due to the D-optimality of ξ ∗1 . This proves the
D-optimality of ξ ∗. �

This theorem justifies the usual practice of using a D-optimal design to determine
both the design matrix of the item components and furthermore a person parameter
which corresponds to the difficulty of the given item. For the Rasch model it is well-
known and easy to show that Fisher’s information is optimized when θi = σ j. Since
σ j = ∑K

k=1 ηk Xjk + c the result θi = ∑K
k=1 ηk Xjk + c is plausible.

Even though this theorem is formulated in terms of exact designs, it is valid for
approximate designs as well. Note that the present theorem is in the same spirit as
the standardization used in Graßhoff, Großmann, Holling, and Schwabe (2007) for
a slightly different model.

3 Discussion

The derived optimal design above is a locally D-optimal design. For practical pur-
poses this approach should be extended by developing sequential designs. Another
possibility is to use a weight distribution for the unknown parameters in a semi-
Bayesian spirit.

Furthermore, optimal designs should be derived for recent extensions of the
LLTM. In the traditional LLTM item effects are considered to be fixed effects. This
may be a rather strict assumption for certain test situations. A LLTM with relaxed
assumptions often called LLTME is obtained, when item-related random effects are
assumed (Janssen, Schepers, and Peres 2004). Thus, additional item variation is
taken into account. A further extension and relaxation of the LLTM is the RWLLTM
- random weights LLTM (Rijmen and De Boeck 2002) - in which the weights of the
item characteristics are random. For a more detailed exposition of these models see
De Boeck and Wilson (2004).

Applications of these LLTMs offer interesting opportunities compared to tra-
ditional, heuristic approaches to item construction. First, this model provides a
means to analyze and evaluate cognitive theories in the realm of task design
(e.g. Embretson 1998). The LLTM therefore constitutes a means which requires
pre-experimental hypotheses on item structure characteristics which are then to be
tested. Results of the LLTM may be used for testing the hypothesized cognitive
model.

Second, it enables automatic item generation as shown by Freund, Hofer, and
Holling (2008). Based on rationally constructed figural matrix items, these authors
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implemented algorithms and generated figural matrix items by computer. The main
advantages of such automatic item generation are increased economy, avoidance of
construction errors, and higher comparability of items due to more stringent con-
struction algorithms.

Third, rule based generated items are useful for adaptive testing. In adaptive test-
ing, the test is not assembled prior to the testing session but in real time by the
computer which runs the test session. Numerous studies have shown that the reduc-
tion in test length for an adaptive test relative to a traditional fixed test form can
be expected to be some 50-60%. But, adaptive testing, which is usually based on
item pools, suffered from severe security problems. In several cases, examinees re-
membered items and published them on the internet. However, using a rule based
approach a nearly infinite number of items may be generated on demand and ad-
ministered to the test takers.
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A Class of Screening Designs Robust to Active
Second-Order Effects

Bradley Jones and Christopher J. Nachtsheim

Abstract Screening designs are attractive for assessing the relative impact of a large
number of factors on a response of interest. Engineers prefer factors with three lev-
els over two-level factors because having three levels allows for some assessment
of curvature in the factor-response relationship. Yet, the most familiar screening de-
signs limit each factor to only two levels. We propose a new class of designs that
have three levels, allow for the estimation of quadratic effects, and have the property
that the linear effect of every factor is independent of all second-order effects. We
also provide an algorithm for design construction.

1 Introduction

An undesirable property of resolution III fractional-factorial screening designs Box
and Hunter (1961) is that they confound the main effects of the factors with one
or more two-factor interactions. If one or more of these confounded effects is ac-
tive, the experimenter is left with substantial ambiguity. Resolving this ambiguity
generally requires the experimenter to perform additional processing runs.

If there is strong reason to suspect active two-factor interactions, a resolution IV
fractional-factorial design is a desirable alternative. However, these designs require
twice as many runs as the resolution III design and they have no capability for
capturing curvature due to pure quadratic effects. Of course, it is traditional to add
centre runs to two-level screening designs to get a global assessment of curvature.
Still, these runs do not allow for separate estimation of the quadratic effects of each
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factor. So, an indication of curvature in the analysis leads to still more ambiguity
that can only be resolved with additional runs.

We introduce a class of screening designs for quantitative factors that have the
following desirable properties:

1. Two-factor interactions and quadratic effects are uncorrelated with main effects.
2. All quadratic effects are estimable.
3. The number of required runs is only one more than twice the number of factors.
4. With four or more factors, the design projects to the 3x3 factorial design in each

pair of factors.

The methodology proposed here is different from, but related to, several prior
contributions. For example, Cheng and Wu (2001) develop a novel approach for
factor screening and response surface estimation using fractions of 3m experiments
for n = 27, and by using fractions of mixed-level orthogonal arrays for n = 18 and
n = 36. Designs produced by Cheng and Wu are related, in that they employ three
levels and can provide estimates of first- and second-order effects. The designs pro-
posed here differ in that they (1) generally allow for substantially fewer runs for the
same number of factors, and (2) do not require orthogonality between main effects.

The approach of Tsai, et al. (2000) (TGM) is also related. They consider the
design and analysis of three-level designs using a design strategy that considers the
efficiencies of low-level projections. We note that this seemingly disparate approach
did lead to nearly the same arrangement as ours in one instance. Design 1 of TGM’s
Table 5 essentially identical our design for six factors, discussed below, with the
exception that TGM require two centre points to our one.

In Jones and Nachtsheim (2009), the current authors considered the construction
of designs that minimize the squared norm of the alias matrix subject to constraints
on the D-efficiency of the design. We found that designs similar to those discussed
here were sometimes produced using the proposed constrained optimal design ap-
proach.

We describe the structure of our designs using a simple illustrative example in
Section 2. In Section 3 we present an algorithm for generating these designs. Section
4 deals with design diagnostics and comparisons. Section 5 supplies some ideas for
modeling data obtained, and we conclude with a short summary in Section 6.

2 Design Structure: An Example

For two-level designs, one way to make two-factor interactions independent of main
effects involves mirroring each row in the design by another that reverses the signs
of all the elements in that row. This technique is called folding over the design.

Table 1 shows an example design with six factors and 13 runs. Note that the 2nd
row is obtained by multiplying each element of the first row by -1. Similarly, the 4th
row mirrors the 3rd row. This pattern repeats for each pair of rows through row 12.
The last row is a centre run.
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Another pattern in Table 1 is apparent by observing the location of the zero el-
ements. The first pair of runs has zero elements in the first column and the second
pair of runs has zero elements in the second column. This pattern repeats so that
each column has a contiguous pair of zero elements in the first 12 rows. Adding the
centre run in the last row results in a design can fit a model including an intercept
term, all the main effects and all the pure quadratic effects of each factor.

Table 1: Robust Screening Design for Six Factors (A through F), with a Simulated Response, y

Run A B C D E F y

1 0 1 -1 -1 -1 -1 21.04
2 0 -1 1 1 1 1 10.48
3 1 0 -1 1 1 -1 17.89
4 -1 0 1 -1 -1 1 10.07
5 -1 -1 0 1 -1 -1 7.74
6 1 1 0 -1 1 1 21.01
7 -1 1 1 0 1 -1 16.53
8 1 -1 -1 0 -1 1 20.38
9 1 -1 1 -1 0 -1 8.62
10 -1 1 -1 1 0 1 7.80
11 1 1 1 1 -1 0 23.56
12 -1 -1 -1 -1 1 0 15.24
13 0 0 0 0 0 0 19.91

The columns of this design are orthogonal to each other. Because of the mir-
roring in pairs of runs, the main effects are all independent of any active two-
factor interaction. However, the two-factor interactions are correlated with the pure
quadratic effects. Section 5 considers the resulting analytical complexity when both
pure quadratic effects and two-factor interactions are active.

Compared to the 12 run Plackett-Burman design with one additional centre run,
the above design has a D-efficiency of 85.5% for the main effects model. Both de-
signs are orthogonal for the main effects. The relative variance of each main effect
in our design is 1/10 compared to 1/12 for the Plackett-Burman design. The ability
to estimate pure quadratic effects and the independence of the main effects and the
two-factor interactions compensates for the loss of efficiency in fitting the main ef-
fects model. Note that each main effect in the Plackett-Burman design is partially
aliased with several two-factor interactions.

3 Algorithm

The patterns illustrated in the previous section are common to each member of the
class of designs. Each even numbered row is a mirror image of the previous row.
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The last row contains all zero elements. Finally, for the kth column, rows 2k and
2k−1 contain zeros.

The design algorithm maximizes the determinant of the information matrix of the
main effects model while enforcing this structure. The starting design includes zeros
in all the required places. These elements are not allowed to change in the course of
the algorithm. The other elements in the odd numbered rows of the starting design
are chosen randomly on the interval [-1 1]. The even numbered rows of the starting
design are obtained from the odd numbered rows by multiplying each element by
-1.

The starting design is improved using a variant of the coordinate exchange al-
gorithm of Meyer and Nachtsheim (1995). For each nonzero element of every row,
the algorithm evaluates the effect of changing that element to 1 or -1 while simul-
taneously changing the element in the mirroring row to -1 or 1 respectively. If the
determinant of the information matrix improves for either or both of these opera-
tions, then the current design is updated for the given row and the mirroring row for
the better of the two possible exchanges. After the first pass through each element
of the design, the algorithm makes a second pass through every nonzero element. If
any element of the design changes in the second pass, then the algorithm performs
another pass. This process continues until there are no changes in any pass through
the design or when a maximum iteration limit is reached. The resulting design, hav-
ing been obtained from one random starting design, may not be globally optimal,
so multiple random starting designs are used in an effort to avoid local maxima. A
JMP scripting language (JSL) code for creating any design in this class of designs
is available from the authors.

Note that to create a randomized design, the rows of the design generated by the
algorithm should be randomly shuffled.

4 Design Diagnostic Comparisons

The six factor design in Table 1 has orthogonal columns. This is not the case in
general. For example, the best seven factor design we found, shown in Table 2, had
column correlations of±1/6. This correlation has the effect of increasing the relative
variance of the main effects from a theoretical minimum of 0.083 to 0.098.

The best eight factor design, shown in Table 3, also has orthogonal columns and
is a strong alternative to the standard 28−4 regular fractional-factorial design with
one center run.

By construction, both designs have main effects independent of two-factor in-
teractions. The relative coefficient variance for each main effect in the fractional-
factorial design is 1/16 compared to 1/14 for the robust screening design. However
the robust screening design can estimate the pure quadratic effect of every factor.

Table 4 compares the D-efficiency of the robust screening design to the exact D-
optimal design for the main effects model. The D-optimal design was created using
the coordinate exchange algorithm in JMP. We added a center run to the D-optimal
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Table 2: Robust Screening Design for
Seven Factors

Run X1 X2 X3 X4 X5 X6 X7

1 0 1 -1 1 -1 1 -1
2 0 -1 1 -1 1 -1 1
3 -1 0 1 -1 1 1 -1
4 1 0 -1 1 -1 -1 1
5 1 -1 0 1 1 1 1
6 -1 1 0 -1 -1 -1 -1
7 1 -1 -1 0 1 -1 -1
8 -1 1 1 0 -1 1 1
9 -1 -1 1 1 0 -1 -1
10 1 1 -1 -1 0 1 1
11 -1 1 -1 1 1 0 1
12 1 -1 1 -1 -1 0 -1
13 1 1 1 1 1 -1 0
14 -1 -1 -1 -1 -1 1 0
15 0 0 0 0 0 0 0

Table 3: Robust Screening Design for
Eight Factors

Run X1 X2 X3 X4 X5 X6 X7 X8

1 0 -1 1 1 -1 1 1 1
2 0 1 -1 -1 1 -1 -1 -1
3 -1 0 -1 1 1 1 1 -1
4 1 0 1 -1 -1 -1 -1 1
5 -1 -1 0 1 1 -1 -1 1
6 1 1 0 -1 -1 1 1 -1
7 1 -1 1 0 1 1 -1 -1
8 -1 1 -1 0 -1 -1 1 1
9 -1 -1 1 -1 0 -1 1 -1

10 1 1 -1 1 0 1 -1 1
11 1 -1 -1 -1 1 0 1 1
12 -1 1 1 1 -1 0 -1 -1
13 -1 1 1 -1 1 1 0 1
14 1 -1 -1 1 -1 -1 0 -1
15 1 1 1 1 1 -1 1 0
16 -1 -1 -1 -1 -1 1 -1 0
17 0 0 0 0 0 0 0 0

design with 2m runs (where m is the number of factors) to provide a fair comparison.
That is, in each case both designs have the same number of runs including one center
run.

Table 4: Relative Efficiency of the Robust Screening Design to the D-optimal design for the main
effects model

Number of Factors: 6 7 8 9 10 11 12
D-Efficiency (%): 85.5 83.3 88.8 86.8 87.3 89.1 89.8

Compared to the D-optimal design for six to twelve factors, the robust screening
design gives up some efficiency in the estimation of the main effects. In compensa-
tion the robust screening design allows for the estimation of pure quadratic effects
of each factor and the main effects are unbiased by any two-factor interaction. In
general, a D-optimal design for the main effects model has main effects that can
experience substantial bias from active two-factor interactions.

We note that for the proposed class of designs, the correlation between quadratic
effects of a factor q and a factor r for a design involving m factors, denoted rqq,rr(m)
is:

rqq,rr(m) =
1
3
− 1

m−1
m > 1 (1)

This correlation is increasing in m and approaches +1/3 as m → ∞. Values for
two through 20 factors are shown in Table 5. We note that for m = 4 factors, the
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correlation is zero. It turns out that our algorithm produces a graeco-latin square in
this case.

Table 5: Correlations between
quadratic effects for two through
20 factors

Number of Correlation Between
Factors Quadratic Effects

(m) (rqq,rr(m))
2 -0.6667
3 -0.1667
4 0.0000
5 0.0833
6 0.1333
7 0.1667
8 0.1905
9 0.2083
10 0.2222
11 0.2333
12 0.2424
13 0.2500
14 0.2564
15 0.2619
16 0.2667
17 0.2708
18 0.2745
19 0.2778
20 0.2807

Table 6: Correlations between
quadratic effects and two-factor
interactions for four through 20 factors

Number of Correlation Between
Factors Quadratic Effects

(m) (rqq,rz(m))
4 0.7071
6 0.4655
8 0.3673

10 0.3118
12 0.2752
14 0.2489
16 0.2289
18 0.2129
20 0.1999
22 0.1890
24 0.1797
26 0.1716
28 0.1645
30 0.1582
32 0.1526
34 0.1476
36 0.1430
38 0.1388
40 0.1350

Characterizing correlations between quadratic effects and interactions is more
complex. If the number of factors is even and the two-factor interaction columns
are balanced, the correlations between quadratic effects and two-factor interactions
have have a simple closed form. Although we did observe balanced interaction
columns in the examples presented, we cannot guarantee that this condition will
always be met in globally optimal designs for the class. However, when the inter-
action columns are balanced and the number of factors is even, correlation assumes
one of three values, depending on whether or not the two terms have a factor in
common. For a common factor, rqq,qr = 0, otherwise:

rqq,rz =
±2√

12m2−36m+24
2m+1

m > 3, and m even (2)

The absolute value of this correlation decreases in m, approaching zero as m→ ∞.
Absolute values of the correlation for even numbers of factors ranging from m = 2
through m = 40 are shown in Table 6. We have not been able to develop general
closed-form expressions for the correlation if either m is odd, or if the optimal design
does not produce balanced interaction columns.
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Note that quadratic effects of any factor are uncorrelated with any two-factor
interaction involving that factor. Assuming that models exhibit effect heredity, this
is another beneficial property of this design class.

5 Suggestions for Analysis

The analysis of these designs is straightforward if only main effects or main and
pure quadratic effects are active. Then a multiple regression model containing the
main effects only or a saturated model containing both main and pure quadratic
effects will produce coefficients that are BLUE assuming no third order effects.

The analysis becomes more challenging if both two-factor interactions and pure
quadratic effects are active because these may have substantial correlations. Fig-
ure 1 shows the column correlations for the design shown in Table 1. Columns AA
through FF represent the pure quadratic terms. Columns AB through EF show the
correlations for the two-factor interaction columns. Note that the main effects are
uncorrelated with each other and all second-order effects.

The properties of the design do not depend on the response y, but in order to
illustrate how the analysis might proceed, we generated the column for y in Table 1
using the formula, y = 20+4A+3B+−2C+−D+5BC+6A2 +ε , where the errors,
ε , are independently normally distributed with mean zero and variance 1. We did an
all subsets regression for all models up to 7 terms including all terms up through
second order for consideration in the “full model”. The model with the minimum
corrected Akaike’s Information (AICc) criterion, 70.63, included terms A, B, C, BC
and A2. The next best model added the main effect of D yielding the true model, for
which AICc = 71.25.

We recommend all subset regression for models with up to m + 1 terms, where
the full set of model terms is comprised of all first- and second-order effects.

Note that if there are multiple active pure quadratic and two-factor interaction
terms, there may be model confounding. That is, two or more models may yield
identical predicted y-vectors. In such cases, the all subsets regression will identify
the confounded models and additional runs will be necessary to resolve the con-
founding.

6 Summary

We have introduced a class of screening designs for quantitative factors that are
robust to active second order effects. We have also provided an algorithm for gen-
erating these designs for any number of factors. Our designs have the minimum
possible number of runs for estimating both the main and pure quadratic effects
of the factors. For each factor pair they project to a 3×3 factorial design which is
D-optimal for the full quadratic model.
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Fig. 1: Absolute values of column correlations of terms through 2nd order for the six factor robust
screening design
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D-Optimal Design for a Five-Parameter Logistic
Model

Zorayr Manukyan and William F. Rosenberger

Abstract We explore the D-optimal design for a five-parameter logistic model,
which includes a shape parameter to handle asymmetries, and two threshold pa-
rameters to account for situations where the asymptotes are not at 0 and 1. The opti-
mal design is five points, including points at −∞ and ∞ representing the thresholds.
We compare the efficiencies of the optimal designs arising from the two- and five-
parameter models. We find a significant loss of efficiency when the two-parameter
model is used on data generated from the five-parameter model.

1 Introduction

The standard two-parameter logistic model is often used to characterize dose-
response relationships. Let d ∈ Ωd be a dose-level and y be a binary response. For
example, y could be toxicity or no toxicity, death or no death, cure or no cure, etc.
For a location parameter α and a scale parameter β > 0, we have

P(Y = 1|d) = F

(
d−α

β

)
, (1)

where

F(x) =
ex

(1+ ex)
. (2)
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When d is the log of a dose level, Ωd is some subset of the real line. In some cases,
Ωd may be restricted due to ethical or other constraints, but we do not deal with
restricted design spaces in this paper (see Biedermann, Dette, and Pepelyshev 2006
for a careful treatment of restricted designs spaces). It is well-known that the D-
optimal design for the model in (1) is a two-point design, putting equal weights
at the 17.6th and 82.4th percentiles (Kalish and Rosenberger 1978). Since these
percentiles depend on the unknown parameters θθθ 2 = (α,β ), they must be evaluated
at specified or local values of the parameter, leading to a locally optimal design.
Such designs are not useful in practice, but can be used to gauge the efficiency of
alternate designs, and can give insight into the relationship of the parameters in
designing an experiment.

The two-parameter logistic model is not rich enough to incorporate asymmetry
in the dose-response curves, or to account for dose-response problems that do not
have an asymptote at 0 or 1. For example, there may be no dose at which the cure
rate is 0 (e.g., consider the placebo effect), and often doses do not exist that are 100
percent effective or 100 percent toxic. (In rare cases, the dose-response curve may
not be monotonically non-increasing. We do not deal with that problem.) In this
paper, we examine a five-parameter logistic model which has a shape parameter that
can handle asymmetries and threshold parameters for when the asymptotes are not
0 or 1. The model is described as follows:

P(Y = 1|d) = (cmax− cmin)
[

F

(
d−α∗

β ∗

)γ]
+ cmin, (3)

where F is defined by (2). The γ parameter influences the shape and captures
asymmetries. The parameters cmin and cmax determine the asymptotes of the dose-
response curve at d =−∞ and d = ∞, respectively.

In this paper, we focus on the D-optimality criterion, which maximizes the log
determinant of the information matrix generated by the likelihood for model (3),
and consequently minimizes the volume of the confidence ellipsoid for the joint
estimation of θθθ 5 = (cmax,cmin,γ,α∗,β ∗). We compare the relative efficiency of the
D-optimal design for the two- and five-parameter models. In an attempt to determine
the effects of model misspecification, we also generate data from the five-parameter
model and fit the two-parameter model to these data, obtaining the maximum like-
lihood (ML) estimators of α and β . We then find the optimal design for the two-
parameter model at the local values of the ML estimates and compare its efficiency
to that of the true five-parameter model.

2 Methods

Let ξξξ be a design measure; i.e., dose levels d1, ...,dK with associated nonneg-
ative weights w1, ...,wK , where ∑K

i=1 wi = 1, where the dimension K is a priori
unknown. The information matrix is defined as MMM(ξξξ ,θθθ) = ∑K

i=1 wiIII(di,θθθ), where
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III(di,θθθ) is the information contributed by a single dose level di. For the two-
parameter model in (1), we use MMM2, III2, and θθθ 2 to refer to MMM, III, and θθθ , respec-
tively. Similarly, for the five-parameter model in (3), we use MMM5, III5 and θθθ 5, respec-
tively. The form of III5(d,θθθ 5), which is a 5× 5 matrix, is given in the Appendix.
In general, the D-optimal design will be the design measure ξξξ ∗ which maximizes
Ψ(ξξξ ,θθθ) = log |det(III(ξξξ ,θθθ)|. For the standard two-parameter logistic model in (1),
the information matrix is given by MMM2(ξξξ ,θθθ 2) = ∑K

i=1 wiIII2(di,θθθ 2), where

III2(d,θθθ 2) =
ez

β 2(1+ ez)2

[
1 z
z z2

]
,

and z = (d −α)/β . The D-optimal design is ξξξ ∗2, which maximizes Ψ2(ξξξ ,θθθ 2) =
log |det(III2(ξξξ ,θθθ 2)| for all K.

Define a design ξ̄ξξ to put unit mass at dose d. Given a design ξ , consider a per-
turbation towards the point d:

ξξξ ′ = (1−λ )ξξξ +λ ξ̄ξξ .

Due to the additive structure of the information matrix MMM, we have

MMM(ξξξ ′) = (1−λ )MMM(ξξξ )+λMMM(ξ̄ξξ ).

Then the directional derivative in the direction of ξ̄ξξ is given by:

φ(d,ξξξ ) = lim
λ→0+

1
λ

(
(1−λ )MMM(ξξξ )+λMMM(ξ̄ξξ )

)
−Ψ

(
MMM(ξ̄ξξ )

)
.

We employ the graphical technique of plotting directional derivatives that derives
from Kiefer and Wolfowitz (1960) general equivalence theorem. We begin by find-
ing an arbitrary K-point (n ≥ 5) optimal design and then perturb the design toward
the design point with a large directional derivative value, and continue until the di-
rectional derivatives satisfy the general equivalence criterion for D-optimality, given
in Atkinson, Donev, and Tobias (2007, p. 122): under mild assumptions, the most
important of which are the compactness of the design space and the convexity and
differentiability of Ψ , the following three conditions are equivalent:

• the design ξ ∗ maximizes Ψ ;
• the maximum of φ(d,ξξξ ) does not exceed 0;
• the directional derivative φ(d,ξξξ ) achieves its maximum at the design points.

MATLAB6R12 was used to compute the directional derivatives and optimize the
criterion for a fixed number of design points. Programs are available from the first
author upon request.

Let ξξξ ∗5 be the D-optimal design for the five-parameter model. Let ξξξ ∗2,ML be the
D-optimal design evaluated at local ML estimates computed from data generated
from the five-parameter model. We define the efficiency of the five-parameter model
at a parameter vector θθθ 5 to be Ψ5(ξξξ

∗
,θθθ 5). The relative efficiency is computed for



116 Zorayr Manukyan and William F. Rosenberger

Table 1: Parameterizations of the numerical example in Figure 1

Parameterization Model cmin cmax α β γ

a 5-parameter 0.1 0.9 843.0 222.0 2.0
2-parameter MLE 1052.8 341.8
2-parameter 843.0 222.0

b 5-parameter 0.1 0.9 843.0 222.0 3.0
2-parameter MLE 1209.3 392.5
2-parameter 843.0 222.0

c 5-parameter 0.2 0.7 843.0 222.0 0.6
2-parameter MLE 775.7 622.3
2-parameter 843.0 222.0

the five-parameter model evaluated at the optimal design obtained from the two-
parameter model, relative to the D-optimal design for the five-parameter model; i.e.,

Ψ5(ξξξ ,θθθ 5)
Ψ5(ξξξ

∗
5,θθθ 5)

, (4)

where ξξξ = ξξξ ∗2 and ξξξ = ξξξ ∗2,ML. Note that the numerator cannot be computed directly
since the information matrix is singular at a two-point design. We therefore estab-
lished a five-point design with negligible weights for three of the points.

Our numerical examples are based on an actual dose-response clinical trial
of a chemotherapeutic agent in leukemia, conducted at the University of Mary-
land Medical School (see Haines, Perevozskaya, and Rosenberger 2003). Here
Ωd = (100,300,600,1200) (in mg). From the data on 34 patients, the two-parameter
logistic model yielded an MLE of α of 843.0 and an MLE of β of 222.0. We gener-
ated 7000 data points from the five-parameter model and plugged these data into the
two-parameter model to yield α̂ and β̂ . Parameter values for each of our numerical
examples are given in Table 1.

3 Results

The left side of Figure 1 shows the three dose-response curves for Parameterizations
a, b, and c from Table 1. In Parametermization c, we have established a particularly
unlikely model, but it illustrates what happens when the thresholds are in the interior,
and γ is less than 1. The right side gives the directional derivative plots for the
three dose-response curves. In each case, the optimal design points occur when the
directional derivatives equal zero. Note that the directional derivatives are less than
zero at all other points, hence the general equivalence criterion is satisfied.

Table 2 gives the optimal design for each of the three parameterizations in Table
1. (Note that we did not take the logarithm of dose in these examples.) One can
see that the D-optimal design in each case puts points at ±∞ and three points in
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Table 2: D-Optimal designs for the two- and five-parameter logistic models, corresponding to Fig-
ure 1

Parameterization Model Design Points Weights

a 5-parameter (−∞,606,963,1415,∞) (0.2,0.2,0.2,0.2,0.2)
2-parameter MLE (500,1600) (0.5,0.5)
2-parameter (500,1185) (0.5,0.5)

b 5-parameter (−∞,744,1051,1486,∞) (0.2,0.2,0.2,0.2,0.2)
2-parameter MLE (630,1800) (0.5,0.5)
2-parameter (500,1185.6) (0.5,0.5)

c 5-parameter (−∞,50,660,1135,∞) (0.2,0.2,0.2,0.2,0.2)
2-parameter MLE (−100,1800) (0.5,0.5)
2-parameter (500,1185) (0.5,0.5)

Table 3: Relative efficiencies of designs arising from the two- and five-parameter models

Parameterization Model Ψ5(ξξξ ,θθθ 5) Relative Efficiency

a 5-parameter −33.94
2-parameter MLE −41.47 0.82
2-parameter −41.46 0.82

b 5-parameter −35.21
2-parameter MLE −42.92 0.82
2-parameter −42.88 0.82

c 5-parameter −35.92
2-parameter MLE −43.46 0.83
2-parameter −43.31 0.83

the middle with equal weights. The resulting design is always five points. As γ
increases, the tendency is for the three middle points to be shifted to the right. The
three middle points are always bounded by the optimal design from the 2-parameter
MLE.

Finally, in Table 3, we compute the efficiencies and relative efficiencies, as de-
fined in (4). It is clear that there is a significant loss of efficiency by using a two-
parameter model rather than the five-parameter model, in the range of 17 – 18 per-
cent.

4 Discussion

In this brief report, we have shown the effects of model misspecification when the
asymptotes of the logistic model are not 0 and 1. The two-parameter model ignores
the points ±∞, which are intuitively necessary to pick up the information on the
upper and lower threshold asymptotes. The effects of γ are not as clear and merit
more inspection.
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Bayesian optimal designs can be obtained by establishing a prior distribution on
θθθ ∈ΘΘΘ , g(θθθ), and integrating over the prior distribution to optimize the average; i.e.,
find ξξξ that maximizes ∫

ΘΘΘ
logdet |III(ξξξ ,θθθ)|g(θθθ)dθθθ .

This requires five-dimensional integration. In the past, this was computationally in-
feasible, but we were able to use Markov chain Monte Carlo methods quite effi-
ciently. Determining an appropriate prior distribution for the problem is nontrivial.
We typically used independent normal and beta distributions.

Of greater interest are adaptive or sequential designs in which the posterior is
updated after each response is recorded and a new design point selected based on
optimizing the updated criterion. This has application in clinical trials and extends
the work of Haines, Perevozskaya, and Rosenberger (2003) from the two-parameter
logistic distribution to the five-parameter logistic distribution. After n responses, let
g(θθθ |Dn) be the posterior distribution incorporating the data Dn observed thus far
and let ξξξ n be the design measure. Then for the (n + 1)th dose assignment, we find
the dose d that maximizes

∫
ΘΘΘ

logdet |nIII(ξξξ n,θθθ)+ III(d,θθθ)|g(θθθ |Dn)dθθθ .

Some preliminary results can be found in Manukyan (2009) and is being prepared
for publication elsewhere.

5 Appendix: Information Matrix

The entries of the information matrix III5(d,θθθ 5) for the parameter θθθ 5 = (cmin,cmax,
γ,α∗,β ∗) at the dose level d, under the model framework introduced in (3), are
given by:

I1,1(θ) = [1−F(z)γ ]2
1

p(1− p)
,

I2,2(θ) = F(z)2γ 1
p(1− p)

,

I3,3(θ) =
[

ΔcF(z)γ lnF(z)
]2 1

p(1− p)
,

I4,4(θ) =
[

Δc
β ∗

γF(z)γ−1F ′(z)
]2 1

p(1− p)
,

I5,5(θ) = z2 · I4,4,
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I1,2(θ) = I2,1(θ) =
[

1−F(z)γ
]

F(z)γ 1
p(1− p)

,

I1,3(θ) = I3,1(θ) = Δc lnF(z)I1,2,

I1,4(θ) = I4,1(θ) =−Δc
γ

β ∗
F(z)γ−1F ′(z)

[
1−F(z)γ] 1

p(1− p)
,

I1,5(θ) = I5,1(θ) = zI1,4(θ),

I2,3(θ) = I3,2(θ) = ΔcF(z)2γ lnF(z)
1

p(1− p)
,

I2,4(θ) = I4,2(θ) =−Δc
β ∗

γF(z)2γ−1F ′(z)
1

p(1− p)
,

I2,5(θ) = I5,2(θ) = zI2,4(θ),

I3,4(θ) = I4,2(θ) =−Δc2

β ∗
γF(z)2γ−1F ′(z) lnF(z)

1
p(1− p)

,

I3,5(θ) = I5,3(θ) = I3.4(θ)z,

I4,5(θ) = I5,4(θ) =
[

Δc
β ∗

γF(z)γ−1F ′(z)
]2

z
1

p(1− p)
,

where z = (d−α∗)/β ∗, Δc := cmax− cmin and p = P(Y = 1|d).
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(a) Parameterization a (b) Directional Derivatives

(c) Parameterization b (d) Directional Derivatives

(e) Parameterization c (f) Directional Derivatives

Fig. 1: Dose-response curves and directional derivatives for the parameterizations in Table 1



Sequential Barycentric Interpolation

Hugo Maruri-Aguilar and Paula Camelia Trandafir

Abstract Polynomial interpolators may exhibit oscillating behaviour which often
makes them inadequate for modelling functions. A well-known correction to this
problem is to use Chebyshev design points. However, in a sequential strategy it is
not very clear how to add points, while still improving polynomial interpolation.
We present a sequential design alternative by allocating an extra observation where
the difference between consecutive interpolators is largest. Our proposal is inde-
pendent of the response and does not require distributional assumptions. In simu-
lated examples, we show the good interpolation performance of our proposal and its
asymptotical convergence to the Chebyshev distribution.

1 Introduction

In classical optimal design theory, a connection can be established between a cer-
tain optimality criterion, a linear polynomial model and a design constructed with
zeros of , i.e. Chebyshev points. This connection was first noted by Studden (1968).
Subsequent research led to various articles and books which also exhibited designs
whose points are zeros of Jacobi, Laguerre, or Hermite polynomials, among oth-
ers. Among some of the better known examples of the connection between poly-
nomial models and Chebyshev points, we may cite, classified by optimality crite-
rion, Pukelsheim and Torsney (1991) for A-optimal designs, Fedorov (1972, pp.85),
Pázman (1986, pp.178), Pukelsheim (1993, pp.214–216) and Karlin and Studden
(1966) for D-optimality, Dette (1993b) for Ds-optimality; and Dette (1993a) and
Heiligers (1998) for E-optimality.

In the analysis of computer experiments, usually there is no random error asso-
ciated with the response and models interpolate the observed response values. A
variety of models are available for the analysis of such experiments. Spline models
can be used, but also models based on radial bases and kriging have become widely
used, see Müller (2001), O’Hagan (2006) and Fedorov and Müller (2007).
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We are concerned with sequential polynomial interpolation. Polynomials are
simple and potentially effective models, often with a straightforward interpretation.
However, they have a tendency to oscillate between design points. Those oscilla-
tions are called the Runge phenomenon, which in some cases can only get worse
as the number of data points increases. It is a well-known classical result that the
oscillation caused by Runge’s phenomenon can be minimized by interpolating at
the Chebyshev nodes. In Epperson (1987), additional conditions for mitigating the
phenomenon are studied. In the literature of approximation theory there are several
proposals which use Chebyshev points and may be used to interpolate. In Boyd and
Ong (2009) and Boyd and Xu (2009) the authors use a subsample of the uniform
distribution to generate “mock Chebyshev” (i.e. approximately Chebyshev) points,
while in Platte and Driscoll (2005), interpolation points are selected using more gen-
eral polynomial approximation techniques. The methods produce good interpolation
results, although the strategies are non-sequential.

The aim of the present paper is to introduce a sequential design strategy for uni-
variate polynomial interpolation. Our proposal is based on an equivalent form of
the Lagrange interpolator called the barycentric interpolator. In Section 2 we review
the Lagrange and barycentric interpolators. In Section 3 we present our sequential
problem, introduce a design algorithm and prove that it does not depend on response
values. Section 4 presents simulated examples to evaluate the performance of our al-
gorithm. Conclusions, future work and a conjecture are presented in Section 5.

2 Barycentric Lagrange Interpolation

Let Dn = {d1, . . . ,dn} be a design of n distinct univariate points. The values
f1, . . . , fn are observations, one for every design point. Those values are assumed
to be evaluations of a deterministic (but unknown) function which is to be interpo-
lated. A classic solution is the Lagrange interpolator gn(x) = ∑n

j=1 f j ∏n
i=1,i �= j

x−di
d j−di

.
Lagrange interpolation exhibits numerical and computational drawbacks and an al-
ternative form of it is available, known as the barycentric interpolator:

gn(x) = mn(x)
n

∑
j=1

wn, j f j

x−d j
, (1)

with barycentric weights defined by wn, j = {∏n
i=1,i �= j(d j − di)}−1 and mn(x) =

∏n
i=1(x− di). The first subindex in wn, j denotes the number of design points used

for computing it, while the second subindex relates the weight to a design point.

3 Sequential Interpolation

Barycentric formulæ allow sequential interpolation of data, that is, adding an extra
observation to an existing data set and updating the barycentric interpolator. Sequen-



Sequential Barycentric Interpolation 123

tial updating can be made part of an adaptive procedure, in which using information
from the interpolation process helps in selecting a new design point.

3.1 Response-based Update

Consider two interpolators, one of which is considered to be more accurate than
the other, as it is built with one extra observation. We postulate that the difference
between them can be used as a guide to future experimentation. In other words, the
more accurate interpolator may be used to validate the less accurate fit and to insert
another design point where this difference is largest over an arbitrary design region.
We set the design region to [0,1] but it can be adapted to other design region [a,b].

The starting point is gn(x), the barycentric interpolator as defined in Equation
(1). Consider an extra design point d∗n+1 and its corresponding observation. We term
d∗n+1 a dummy point and only require it to be different from existing design points.
Denote by Gn+1(x) the interpolator constructed with the temporary design consist-
ing of the original design plus the dummy point, Dn ∪ d∗n+1. A new design point is
selected according to

dn+1 = arg max
x∈[0,1]

|Gn+1(x)−gn(x)|. (2)

After the search, the dummy point d∗n+1 is discarded and the original design Dn is
augmented to Dn+1 = Dn∪dn+1. The search problem is well posed, i.e. maximisa-
tion of a bounded function over a closed compact set.

Example 1. Consider the function f (x) = 1/{1+25(2x−1)2}, which is to be inter-
polated using the design D10 = {0, 1

9 , . . . ,1}. Let g10(x) be the interpolator function
constructed with observations of f (x) at D10. The dummy point d∗11 = 1

2 is added to
build an updated interpolator G11(x). The next point is selected where the absolute
difference between the interpolators G11(x) and g10(x) is largest over [0,1]; this oc-
curs at the points 0.0325 and 0.9675. Any of these two points can be added to D10

and d∗11 is discarded.

3.2 Sequential Design Algorithm

The sequential design procedure described above simplifies to a response-independent
alternate maximization and update of mn(x). We now describe the algorithm.

Input An initial design Dn of n distinct points d1, . . . ,dn ⊂ [0,1]; a number k of
extra design points required.

Output A set of additional runs dn+1, . . . ,dn+k ⊂ [0,1].
Initialization Set mn(x) := ∏n

i=1(x−di); set j := 0.
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Step 1 Maximize |mn+ j(x)|with respect to x, in the interval [0,1], i.e. let dn+ j+1 :=
argmaxx∈[0,1] |mn+ j(x)|.

Step 2 Update mn+ j+1(x) := mn+ j(x)(x−dn+ j+1) and j := j +1. If j < k, repeat
from Step 1.

The algorithm does not depend on actual response values observed, but only on
the design points. Additionally, it does not depend on the actual location of the
dummy point. These two characteristics are implied by Theorem 1, which is proven
in the Appendix.

Theorem 1. For n > 0, let gn(x) and Gn+1(x) for n > 0, be two barycentric interpo-
lators, where gn(x) is defined as in Equation (1); and Gn+1(x) is constructed with
an additional dummy design point d∗n+1. Then

Gn+1(x)−gn(x) = mn(x)
n+1

∑
j=1

wn+1, j f j. (3)

The right hand side of Equation (3) is the product of mn(x), which depends on
x and on Dn (but not on the dummy d∗n+1), and a second quantity ∑n+1

j=1 wn+1, j f j

that depends on design points and responses (including dummy data), but not on
x and thus it can be ignored when searching for the new design point. Theorem
1 makes the search for a new design point independent of the response, indeed it
makes Equation (2) equivalent to dn+1 = argmaxx∈[0,1] |mn(x)|.
Example 2. Consider again the design of Example 1. The sequential algorithm is
applied for k = 10 extra runs and points d11 to d20 are sequentially obtained: 0.0325,
0.9684, 0.9335, 0.0662, 0.8306, 0.1677, 0.4999, 0.0099, 0.9902 and 0.2813.

A special condition arises from Equation (3), when ∑n+1
j=1 wn+1, j f j = 0 holds. This

implies that Gn+1(x)− gn(x) ≡ 0, in other words, that the dummy point d∗n+1 does
not update the interpolator and consequently, this step does not yield information for
the next design point dn+1. This condition appears, for instance, when all f j values
are equal. This could occur when sampling a constant function or a periodic function
at the same point in every period. A different instance appears when response data
truly come from a polynomial of degree at most n−1. In any of the above situations,
any point in the interval [0,1] could be selected as the new design point. However,
in all the examples we tried, none of them occurred and we suggest that they should
not be a cause of concern.

4 Performance and Large Sample Properties

In this section we first evaluate the performance of our sequential design strategy for
interpolation. We then study the large sample properties of our sequential designs.
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4.1 Interpolating Performance

The accuracy of polynomial interpolators with our sequential design algorithm
was assessed in a simulation study. The following four functions with domain
[0,1] were used as test functions: s1(x) is the function of Example 1; s2(x) =
1

20 exp(u1/3)sin(u/2)φ(u) with φ(u) the Heaviside unit step function and u =
60x− 30; s3(x) = sin(10x) and s4(x) = 2 1−cos(v)

v2 with v = 35x− 15. The functions
were selected to exhibit features which are not easy for modeling with polynomials,
such as flat regions followed by regions with sharp change, or periodic behaviour.

1

10

0.1

10−2

10−3

10−4

10−5

s2
s1

s4s3

n+ k11 15 20 25

Fig. 1: Maximum distance between simulators and barycentric interpolators, plotted against num-
ber of extra points k added.

From a uniform design of size ten, fifteen points were sequentially added, to-
talling 25 points. At every step, barycentric interpolators were fitted independently
for each function. The maximum distance between the true function s1(x), . . . ,s4(x)
and its barycentric interpolator, over the design region, was recorded. Decreasing
values of this distance show good approximation, while increasing values point to
the presence of the Runge phenomenon.

The results are plotted in Figure 1, where a decreasing trend is evident, thus
showing good approximation to simulators for all cases. Convergence to the true
function s3 was faster than the other cases, while convergence was slowest for s2.

4.2 Large Sample Properties

The points generated with our algorithm cluster in the borders of the design region.
We studied whether the points converge asymptotically to a known distribution.

To study large sample behaviour, points were sequentially added to each of
the following eight initial designs of size n: uniform designs 0, 1

n−1 , . . . ,1 (termed
UI) and 1

n+1 , . . . , n
n+1 (termed UII); first n points of Sobol’s space filling sequence

(termed S), see Bratley and Fox (1988); Chebyshev type I and II points (CI and
CII, respectively), see Berrut and Trefethen (2004); the designs labelled TI and TII
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were generated by transforming UI and UII to the symmetric triangular distribution
with mode in 1

2 ; and a design with random points (termed R). We used initial design
sizes n = 5,10,35,50,100,150, in each case sequentially adding points with our
algorithm up to one thousand. Two statistics were computed: a) Quantile-Quantile
(QQ) plot and b) goodness of fit Kolmogorov-Smirnoff (KS) statistic. The Beta dis-
tribution β ( 1

2 , 1
2 ) (also known as the Chebyshev or arcsine distribution) was used in

computations. This choice was suggested by the literature on polynomial interpola-
tion convergence (Berrut and Trefethen 2004).

Fig. 2: QQ plot for design UI.

We show results for n = 50, which are representative of the results for other
initial sizes. Figure 2 shows the QQ plot for UI, which converges to the Chebyshev
distribution with 20 extra points. QQ plots for other initial designs exhibit similar
pattern.
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Fig. 3: KS statistic vs. design size. The left-hand panel is a close up view of the right-hand panel.

The KS statistic “grouped” designs according to their initial performance, with
best (i.e. low) values obtained by Chebyshev points (CI, CII). In second place were
uniform designs (UI, UII, S), followed by the random design R. The worst values
were observed for designs with points clustered in the centre of the design region
(TI, TII). Figure 3 shows the evolution of the KS statistic for one design for each of
the observed “groups”: CII, R, S and TII. After adding about twice as many points
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as the initial design size, the designs behave similarly, showing a non-monotonic
decreasing linear trend (in the log-log scale) for the KS statistic. Simulation results
suggest a value for the slope of the linear trend between −0.8 and −1, see also
Figure 3.

5 Discussion and Future Work

We introduced a univariate sequential adaptive design algorithm. In the examples
we tried, the algorithm produced good points for polynomial interpolation, which
converged rapidly to the Chebyshev distribution and lead to the following claim:

Conjecture 1. For any initial design in [0,1], as the number of extra points k tends to
infinity, the algorithm of Section 3.2 produces samples from the distribution β ( 1

2 , 1
2 );

and the KS statistic is of order O(kα), with α a suitable constant.
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Appendix A: Proof of Theorem 1

The barycentric interpolator Gn+1(x) is

Gn+1(x) = mn(x)(x−d∗n+1)

(
n

∑
j=1

wn+1, j f j

x−d j
+

wn+1,n+1 fn+1

x−d∗n+1

)
,

where barycentric weights wn+1, j are computed using design and dummy points.
We have that Gn+1(x)−gn(x) = mn(x)A, where

A = (x−d∗n+1)

(
n

∑
j=1

wn+1, j f j

x−d j
+

wn+1,n+1 fn+1

x−d∗n+1

)
−

n

∑
j=1

wn, j f j

x−d j
.

We now show that A does not depend on x. After simplifying and using the updating
formula of barycentric weights wn+1, j = wn, j(d j−d∗n+1)

−1, we have

A =
n

∑
j=1

f j

x−d j

(
(x−d∗n+1)

wn, j

(d j−d∗n+1)
−wn, j

)
+wn+1,n+1 fn+1

=
n

∑
j=1

wn, j f j

(d j−d∗n+1)
+wn+1,n+1 fn+1 =

n+1

∑
j=1

wn+1, j f j.



128 Hugo Maruri-Aguilar and Paula Camelia Trandafir

References

Berrut, J.-P. and L. N. Trefethen (2004). Barycentric Lagrange interpolation. SIAM
Review 46, 501–517.

Boyd, J. P. and J. R. Ong (2009). Exponentially-convergent strategies for defeat-
ing the Runge phenomenon for the approximation of non-periodic functions. I.
Single-interval schemes. Communications in Computational Physics 5, 484–497.

Boyd, J. P. and F. Xu (2009). Divergence (Runge phenomenon) for least-squares
polynomial approximation on an equispaced grid and Mock-Chebyshev subset
interpolation. Applied Mathematics and Computation 210, 158–168.

Bratley, P. and B. L. Fox (1988). ALGORITHM 659 Implementing Sobol’s quasir-
andom sequence generator. ACM Transactions on Mathematical Software 14, 88–
100.

Dette, H. (1993a). A note on E-optimal designs for weighted polynomial regression.
Annals of Statistics 21, 767–771.

Dette, H. (1993b). On a mixture of the D- and D1-optimality criterion in polynomial
regression. Journal of Statistical Planning and Inference 35, 233–249.

Epperson, J. F. (1987). On the Runge example. American Mathematical Monthly 94,
329–341.

Fedorov, V. V. (1972). Theory of Optimal Experiments. New York: Academic Press.
Fedorov, V. V. and W. G. Müller (2007). Optimum design for correlated fields via

covariance kernel expansions. In J. Lopez-Fidalgo, J. M. Rodriguez-Diaz, and
B. Torsney (Eds.), mODa 8—Advances in Model-oriented Design and Analysis,
pp. 57–66. Heidelberg: Physica-Verlag.

Heiligers, B. (1998). E-optimal designs for polynomial spline regression. Journal of
Statistical Planning and Inference 75, 159–172.

Karlin, S. and W. J. Studden (1966). Optimal experimental designs. Annals of Math-
ematical Statistics 37, 783–815.

Müller, W. G. (2001). Collecting Spatial Data, rev. edn. Heidelberg: Physica-Verlag.
O’Hagan, A. (2006). Bayesian analysis of computer code outputs: a tutorial. Relia-

bility Engineering & System Safety 37, 1290–1300.
Pázman, A. (1986). Foundations of Optimum Experimental Design. Dordrecht: Rei-

del.
Platte, R. B. and T. A. Driscoll (2005). Polynomials and potential theory for Gaus-

sian radial basis function interpolation. SIAM Journal on Numerical Analysis 43,
750–766.

Pukelsheim, F. (1993). Optimal Design of Experiments. New York: Wiley.
Pukelsheim, F. and B. Torsney (1991). Optimal weights for experimental designs on

linearly independent support points. Annals of Statistics 19, 1614–1625.
Studden, W. J. (1968). Optimal designs on Tchebycheff points. Annals of Mathe-

matical Statistics 39, 1435–1447.



Some Considerations on the Fisher Information
in Nonlinear Mixed Effects Models

Tobias Mielke and Rainer Schwabe

Abstract The inverse of the Fisher Information Matrix is a lower bound for the co-
variance matrix of any unbiased estimator of the parameter vector and, given this,
it is important for the construction of optimal designs. For normally distributed ob-
servation vectors with known variance, the Fisher Information can be easily con-
structed. For nonlinear mixed effects models, the problem of the missing closed-
form solution of the likelihood function carries forward to the calculation of the
Fisher Information matrix. The often used approximation of the Fisher Information
by linearizing the model-function in the fixed effects case is generally not reliable,
as will be shown in this article.

1 Introduction

In population pharmacokinetic studies, the observations of different individuals are
often assumed to follow one common function with small differences, which are
generated by random individual parameters. One main interest in these studies lies
in the estimation of the population parameters. Usually maximum likelihood esti-
mation is desirable as fewer observations per individual are needed to estimate the
population parameters, than for a two-stage procedure. The occurring models are
nonlinear in the random parameters and with this the likelihood generally cannot be
described in a explicit form. Numerical procedures, such as described by Davidian
and Giltinan (1995) or Pinheiro and Bates (2000), are used to approximately solve
the maximum likelihood problem. Knowledge of the Fisher Information is of in-
terest for designing the experiment. A well known approach to approximating the
Fisher Information is to linearize the regression function and to assume the lin-
earized model to be normally distributed.
In this article we outline some problems occurring, when using this approximated
Fisher Information. The second section briefly describes estimation in nonlinear
models and asymptotic distributions of estimators. Continuing from the ideas of
nonlinear regression and of linear mixed effects models, we describe in section 3
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the first-order linearization, which is used to approximate the Fisher Information. In
section 4 a problem with this approximation is illustrated through a simple example.

2 Non-linear Models

In our considered model, the observation Y (xi), taken at known experimental set-
tings xi in a design region X is modeled by

Y (xi) = η(xi,β )+ εi,with E(εi) = 0 and Var(εi) = σ2.

The real valued regression function η is assumed to be nonlinear in the unknown
parameter vector β ∈ R

p. To avoid difficulties we assume that η is continuous in xi

and differentiable in β . For an unknown error-distribution, a standard approach for
the estimation of the vector β would be the use of least squares techniques.

Let ξ = (x1, ..,xk) be a concrete design and denote

Fβ (ξ ) := (
∂η(x1,β )

∂β
, ...,

∂η(xk,β )
∂β

)T .

For a vector β0 near to the true parameter vector β , the nonlinear model can be
approximated by a linear model:

Y ≈ η(ξ ,β0)+Fβ0
(ξ )(β −β0)+ ε,

with vectors Y = (Y (x1), ...,Y (xk))T , η(ξ ,β0) = (η(x1,β0), ...,η(xk,β0))T and
ε = (ε1, ...,εk)T . Under the assumption of a negligible linearization error, estimation
of β in the approximated model

Yβ0
= Fβ0

(ξ )β + ε , where Yβ0
:= Y −η(ξ ,β0)+Fβ0

(ξ )β0,

leads to an updated guess for the true parameter vector β . For β0 close enough to β ,
this procedure leads to an estimate approximately fulfilling the estimating equation

Fβ (ξ )T (y−η(ξ ,β )) = 0

which is fulfilled by the ordinary least squares estimator β̂OLS. For homoscedastic
errors εi, n replications of the design ξ and under appropriate regularity conditions,
the ordinary least squares estimator β̂OLS is asymptotically normally distributed:

√
n(β̂OLS−β )→ N(0,σ2(Fβ (ξ )T Fβ (ξ ))−1) as n→ ∞

and has for normally distributed homoscedastic errors εi the nice property of coin-
ciding with the ML-estimator.
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Since in ordinary least squares estimation each deviation receives equal weight,
this method may be inefficient for heteroscedastic observation errors. Weighted
least squares estimators for known variance structures and generalized least squares
methods for unknown variance structures take the heteroscedasticities into account.
With a variance matrix Vβ (ξ ) = diag(σ2(x1,β ), ...,σ2(xk,β )) depending on the
experimental settings and the parameter vector β , one might transform the origi-
nal model into a homoscedastic error model. Starting from a prior guess β0 of the
parameter vector β and a prior guess Vβ0

(ξ ) of Vβ (ξ ), new iterates for estimat-
ing β and Vβ (ξ ) in the transformed model can be deduced. For variance functions
σ2(x,β ), which are known up to the vector β , independent errors and with some reg-
ularity conditions, the GLS estimator β̂GLS is asymptotically normally distributed:

√
n(β̂GLS−β )→ N(0,(Fβ (ξ )TVβ (ξ )−1Fβ (ξ ))−1) as n→ ∞.

Contrary to the homoscedastic case with normally distributed errors, the ML-
estimator and GLS-estimator generally do not coincide for heteroscedastic errors.
For nonlinear regression functions with normally distributed heteroscedastic errors
and a known variance matrix Vβ (ξ ), additional information can be drawn from the
variance of the observations, such that the Fisher information for β results in

Mβ (ξ ) = E(
∂ ln( fY (y,β ))

∂β

T ∂ ln( fY (y,β ))
∂β

)

= FT
β (ξ )Vβ (ξ )−1Fβ (ξ )+

1
2

S̃(ξ ),

where fY (y,β ) is the likelihood function for the model of Y and S̃(ξ ) is a matrix
with

S̃(ξ )i j = Tr(
∂Vβ (ξ )

∂βi
Vβ (ξ )−1 ∂Vβ (ξ )

∂β j
Vβ (ξ )−1), i and j = 1, ..., p.

The ML-estimator in the normal model with heteroscedastic errors is known to be
asymptotically normally distributed:

√
n(β̂ML−β )→ N(0,Mβ (ξ )−1) as n→ ∞

and with this it follows that for normally distributed heteroscedastic errors the ML-
estimator is asymptotically more efficient than the GLS-estimator.

As Davidian and Giltinan (1995) point out, the ML-estimator under assumed
normality loses the advantage of efficiency very quickly in the case of nonnormal
data and is highly sensitive to outlying observations, while the GLS-estimator is
more robust. Moreover, misspecified variance functions σ2(x,β ) may result in bi-
ased ML-estimates, whereas GLS-estimates are not so sensitive to variance function
misspecification.
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Nonlinear models with heteroscedastic and homoscedastic errors have in com-
mon that the variance of the estimator β̂ depends on the parameter vector β itself,
so that optimal designs for these models are in general just locally optimal.

3 Mixed-Effects Models

Consider that the j-th observation of individual i with experimental settings xi j ∈ X
is described by

Y (xi j) = η(xi j,βi)+ εi j.

The individual parameter vector βi is assumed to be a random vector with mean β
and some covariance matrix D. The observation error is assumed to have zero mean
and a known constant variance σ2. Observation errors and individual parameter vec-
tor are considered to be independent of each other.

For linear regression functions, the assumption of normally distributed individ-
ual parameter vectors and observation errors carries forward to the marginal dis-
tribution of the observation vector. Let Y = (Y T

1 , ...,Y T
N ) describe the vector of all

observations, where Yi = (Y (xi1), ...,Y (ximi))
T is the observation vector of the i-th

individual with a concrete design ξi. As the regression function is linear in the pa-
rameter vector β , the design matrix F(ξi) = Fβ (ξi) defined in the previous section
does not depend on the parameter vector. For the observation vector Yi we obtain

Yi ∼ N(F(ξi)β ,(F(ξi)DF(ξi)T +σ2Imi)).

Often primary interest lies in estimating the mean parameter vector β . With

F := (F(ξ1)T , ...,F(ξN)T )T ,

G := diag(F(ξ1), ...,F(ξN)),
V (ξi) := (F(ξi)DF(ξi)T +σ2Imi) and

V := diag(V (ξ1), ...,V (ξN)),

the model of all observations is described by

Y = Fβ +Gb+ ε , where b = ((β1−β )T , ...,(βN−β )T )T and ε = (εT
1 , ...,εT

N )T .

It readily follows that Y ∼ N(Fβ ,V ) and that the ML- and GLS-estimators, in the
case of a known matrix D and σ2, coincide:

β̂ML = β̂GLS = (FTV−1F)−1FTV−1Y and cov(β̂ML) = (FTV−1F)−1.

Note that for a variance matrix Vβ depending on the parameter vector β , ML- and
GLS-estimator generally do not coincide, as the Fisher Information is then of a
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similar form as for nonlinear regression functions with normally distributed het-
eroscedastic errors (Atkinson and Cook 1995). For nonlinear mixed effects models,
these results usually cannot be observed, as the observations will generally not be
normally distributed. For estimating the population parameters in nonlinear mixed
effects models, two-stage procedures might be helpful. In a first step individual pa-
rameter vectors could be estimated and based on these estimates the population
parameter vector might be estimated. However, often reliable individual estimates
cannot be obtained for the subjects. Maximum likelihood estimation on the marginal
model of the observations would then be an alternative approach to obtain reliable
estimates of the population parameter vector. Due to the nonlinearity of the regres-
sion function in the random parameters, a closed-form description of the likelihood
of the observations y is in general nonexistent. Different numerical approaches are
used to make the optimization of the likelihood a tractable problem.

If we have prior knowledge in the form of a first guess β0 of the true population
mean β , then linearization of the model around β0 leads on the individual level by

Yi = η(ξi,βi)+ εi

≈ η(ξi,β0)+Fβ0
(ξi)(βi−β0)+ εi

= η(ξi,β0)+Fβ0
(ξi)(β −β0)+Fβ0

(ξi)(βi−β )+ εi

to a linear mixed effects model. With the earlier assumptions of the normal dis-
tribution for the parameter and the error vector and with the assumption that the
approximating model is almost exact, one obtains

Yi,β0
= Fβ0

(ξi)β +Fβ0
(ξi)(βi−β )+ εi, with Yi,β0

:= Yi−η(ξi,β0)+Fβ0
(ξi)β0.

As a consequence it is assumed

Yi,β0
∼ N(Fβ0

(ξi)β ,Vβ0
(ξi)), where Vβ0

(ξi) := Fβ0
(ξi)DFβ0

(ξi)T +σ2Imi

and with this

β̂ = (
N

∑
i=1

Fβ0
(ξi)TVβ0

(ξi)−1Fβ0
(ξi))−1

N

∑
i=1

Fβ0
(ξi)Vβ0

(ξi)−1Yi,β0

is the ML-Estimator for β in the linearized model around β0 and might be used as
starting point for a next iteration.

A second possible approach would be the linearization of the function η around
the unknown expected value of βi as described by Davidian and Giltinan (1995):

Yi = η(ξi,βi)+ εi

≈ η(ξi,β )+Fβ (ξi)(βi−β )+ εi.
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Assuming the linearization error as negligible and with a covariance matrix
Vβ (ξi) = Fβ (ξi)DFβ (ξi)T +σ2Imi depending on β , the marginal model results in

Yi,β ∼ N(η(ξi,β ),Vβ (ξi)).

For the estimation of β one might in this case resort to parameter estimation tech-
niques in nonlinear heteroscedastic models with normal observation errors.

This first-order linearization around the expected value of the individual param-
eter vector is often used to approximate the true nonlinear mixed effects model. In
their description of the first-order linearization in nonlinear mixed effects models,
Davidian and Giltinan (1995) point out that the observation vector Y is taken in this
method as approximately normally distributed with the moments

E(Yi)≈ η(ξi,β ) and cov(Yi)≈Vβ (ξi).

This has the drawback that if the inter-individual variation is substantial, then the
linearized model may lead to biased imprecise estimation of the fixed parameters.
In fact, the linearization around the population parameter vector might misleadingly
suggest generating some information, as can be seen in the following example.

4 Example

Assume the observations of an experiment to follow some quadratic model. The
measurements in the experimental settings x ∈ X are considered to be exact:

Yi(x) = β1,i +β2,ix+β3,ix
2 =: f (x)T βi, εi = 0

and the individual parameter vector βi is assumed to be normally distributed with
mean vector β and a positive definite covariance matrix D. For simplicity assume
that each individual is observed under 3 different experimental settings xi j ∈X . With
these assumptions it follows that

Yi ∼ N(Fiβ ,Vi), where Fi = ( f (xi1), f (xi2), f (xi3))T and Vi = FiDFT
i .

For the population model with N individuals follows:

Y ∼ N(Fβ ,V ), where F = (FT
1 , ...,FT

N )T and V = diag(V1, ...,VN).

In this model the ML-estimator and least squares estimator coincide:

β̂ = (FTV−1F)−1FTV−1Y with the covariance cov(β̂ ) = (FTV−1F)−1 =
1
N

D.



Some Considerations on the Fisher Information in Nonlinear Mixed Effects Models 135

This is obvious, since we obtain for each individual the true parameter vector and
with this:

β̂ ∼ N(β ,
1
N

D).

In a next step consider the lognormal model:

Yi(x) = η(x,βi) = exp(β1,i +β2,ix+β3,ix
2)

with the same assumptions as in the former example. Notice that the regression
function is no longer linear in the parameters. For the ML-estimate under the implied
lognormal model, with the design matrix Fi and variance Vi as before, we obtain

β̂ML = (
N

∑
i=1

FT
i V−1

i Fi)−1
N

∑
i=1

FT
i V−1

i ln(Yi)

= (ND)−1D
N

∑
i=1

F−1
i ln(Yi) =

1
N

N

∑
i=1

F−1
i Fiβi

=
1
N

N

∑
i=1

βi ∼ N(β ,
1
N

D).

Ignoring the obvious distribution of Yi and considering the linearization of the model
around some vector β0, we obtain for the linearized model:

Yi(x)≈ η(x,β0)+ fβ0
(x)T (βi−β )+ fβ0

(x)T (β −β0)

with

fβ (x) := (
∂η(x,β )

∂β1
,

∂η(x,β )
∂β2

,
∂η(x,β )

∂β3
)T and fβ0

(x) := fβ (x)|β=β0
.

As the linearized design matrix Fi,β0
= ( fβ0

(xi1), fβ0
(xi2), fβ0

(xi3))T is for β0 �= 0
and 3 different experimental settings xi j in X regular, it follows that the individual
information is

FT
i,β0

V−1
i,β0

Fi,β0
= FT

i,β0
(Fi,β0

DFT
i,β0

)−1Fi,β0
= D−1.

The resulting observation vector Ỹi,β0
= Yi−η(ξi,β0)+Fi,β0

β0 and the assumption
Ỹi,β0

∼ N(Fi,β0
β ,Vi,β0

) yield

β̂GLS = (
N

∑
i=1

FT
i,β0

V−1
i,β0

Fi,β0
)−1

N

∑
i=1

FT
i,β0

V−1
i,β0

Ỹi,β0

= (ND)−1D
N

∑
i=1

F−1
i,β0

Ỹi,β0
∼ N(β ,

1
N

D).



136 Tobias Mielke and Rainer Schwabe

The linearized model around the expectation of the individual effects follows as
described in the previous section:

Yi,β ∼ N(η(ξi,β ),Vi,β ) with Vi,β = Fi,β DFT
i,β .

The asymptotic variance of the ML-estimator in the heteroscedastic normal model
leads according to section 2 to

cov(β̂ ) = M−1
β = (

N

∑
i=1

FT
i,βV−1

i,β Fi,β +
1
2

S̃i,β )−1 = (ND−1 +
1
2

N

∑
i=1

S̃i,β )−1 <
1
N

D.

These differences in the information matrices are generally not negligible. Consider
D = I3 and X = [−1,1]; the determinant of the D-optimal information in the lin-
earized model is more than 20000 times the determinant of the information of the
ML-estimator in the lognormal model.

A consequence of these results for the linear mixed model would be, that the in-
formation might be improved by simply “nonlinearizing” the model and afterwards
applying a Taylor expansion conditional on the unknown population parameter vec-
tor β and assuming that this approximation is exact. This would mean that informa-
tion is generated by systematically misspecifying the model.

5 Discussion

The above example is a simple illustration of one main problem of the derivation
of the Fisher Information using the first-order linearization. Misspecifications of the
model may lead to wrong approximations of the Fisher Information and with this to
wrong optimal designs. For nonlinear mixed effects models, the vector of observa-
tions will generally not be normally distributed, to such an extent that the approxi-
mation of the Fisher Information by linearization around the population mean is not
reliable.
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Designs with High Breakdown Point in
Nonlinear Models

Christine H. Müller and Christina Schäfer

Abstract Least trimmed squares estimators are outlier robust since they have a high
breakdown point because of trimming large residuals. But the breakdown point de-
pends also on the design. In generalized linear models and nonlinear models, the
connection between breakdown point and design is given by the fullness parameter
defined by Vandev and Neykov (1998). As Müller and Neykov (2003) have shown,
this fullness parameter is given in generalized linear models by the largest subdesign
where the parameter of interest is not identifiable. In this paper, we show that this
connection does not hold for all nonlinear models. This means that the identifiabil-
ity at subdesigns cannot be used for finding designs which provide high breakdown
points. Instead of this, the fullness parameter itself must be determined. For some
nonlinear models with two parameters, the fullness parameter is derived here. It is
shown that the fullness parameter and thus a lower bound for the breakdown point
depends heavily on the design and the parameter space.

1 Introduction

We assume a nonlinear model given by

Yn = g(tn,θ)+Zn,

where Y1, . . . ,YN are independent observations, Z1, . . . ,ZN are independent errors,
θ ∈Θ ⊂ ℜr is an unknown parameter, t1, . . . , tN ∈ T ⊂ ℜq are nonrandom exper-
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imental conditions, and g : T ×Θ → ℜ is a known function which is nonlinear in
θ . Set Y = (Y1, . . . ,YN)� with realization y = (y1, . . . ,yN)� and let D = (t1, . . . , tN)�
be the design. The density of Yn is given by

f (yn, tn,θ) = h((yn−g(tn,θ))2) (1)

where h is a monotone decreasing function which is known. Then the negative log-
likelihood function given by ln(y,D,θ) =−log( f (yn,θ)) is a monotone increasing
function of |yn−g(tn,θ)|.

Here we will consider the breakdown point behaviour of estimators
θ̂ : ℜN → Θ . The breakdown point of an estimator θ̂ is defined according to
Rousseeuw and Leroy (1987) by

ε∗(θ̂ ,y) :=
1
N

min{M;

there exists no compact set Θ0 ⊂Θ with {θ̂(y); y ∈ YM(y)} ⊂Θ0
}

,

where YM(y) :=
{

y ∈ℜN ; card{n; yn �= yn} ≤M
}

is the set of contaminated sam-
ples corrupted by at most M observations. Often the condition Θ0 ⊂Θ is replaced
by

Θ0 ⊂ int(Θ) (2)

to include also the implosion point for restricted parameter spaces. To facilitate the
task here, we will consider only Θ0 ⊂Θ which means that the breakdown point is
only an explosion point.

There are several approaches to high breakdown point estimators for nonlinear
models. See e.g. Stromberg and Ruppert (1992), Vandev (1993), Sakata and White
(1995), Vandev and Neykov (1998). High breakdown point estimators are in par-
ticular obtained by trimming large residuals. See e.g. the least trimmed squares
estimators in Rousseeuw and Leroy (1987), Procházka (1988), or Jurečková and
Procházka (1994). However, in generalized linear models or nonlinear models it is
more appropriate to trim the smallest likelihood functions or the largest negative
loglikelihood functions as Vandev (1993) and Hadi and Luceño (1997) proposed.

Trimming the least likely observations, i.e. the observations with the largest
ln(y,θ), leads to trimmed likelihoods. Maximizing the trimmed likelihood provides
the trimmed likelihood estimator T Lh(y) given by

T Lh(y) := argmin
θ

h

∑
n=1

l(n)(y,D,θ),

where N−h observations are trimmed and l(1)(y,D,θ)≤ . . .≤ l(N)(y,D,θ). Vandev
(1993) and Vandev and Neykov (1998) studied the breakdown point behavior of
trimmed likelihood estimators and showed a relation between the breakdown point
and the fullness parameter d of {ln(y,D, ·); n = 1, . . . ,N}. They defined the d-
fullness as follows.
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Definition 1. A finite set Ψ = {ψn : Θ → ℜ; n = 1, . . . ,N} of functions is called
d-full if for every {n1, . . . ,nd} ⊂ {1, . . . ,N} the function ψ given by ψ(θ) :=
max{ψnk(θ); k = 1, . . . ,d} is sub-compact. If ψ(θ) := max{ψn(θ); n = 1, . . . ,N}
is not subcompact, then the fullness parameter of Ψ = {ψn : Θ →ℜ; n = 1, . . . ,N}
is defined as N +1.

Thereby a function ψ : Θ →ℜ is called sub-compact if the set {θ ∈Θ ; ψ(θ)≤
C} is contained in a compact set ΘC ⊂Θ for all C ∈ℜ.

Again we use here for simplicity ΘC ⊂Θ instead of ΘC ⊂ int(Θ) in the original
definition of Vandev and Neykov.

The relation between breakdown point and d-fullness was derived in more detail
by Müller and Neykov (2003). In particular they showed the following theorem.

Theorem 1. Assume that {ln(y,D, ·); n = 1, . . . ,N} is d-full and
⌊

N+d
2

⌋ ≤ h ≤⌊
N+d+1

2

⌋
. Then the breakdown point of a trimmed likelihood estimator T Lh satisfies

ε∗(T Lh,y)≥ 1
N

⌊
N−d +2

2

⌋
.

Theorem 1 means in particular that the fullness parameter d should be as small as
possible to achieve a high breakdown point. Müller and Neykov (2003) also proved
that the fullness parameter of {ln(y, ·); n = 1, . . . ,N} in linear models and in many
generalized linear models satisfies d = N (D)+1 where the so called identifiability
parameter

N (D)

:= max

{
N

∑
n=1

1D (tn); D ⊂ {t1, . . . , tN} where θ is not identifiable at D

}

was introduced by Müller (1995). In linear models and generalized linear models,
where g(tn,θ) = x(tn)�θ is satisfied, we have that

N (D) = max
0 �=θ∈ℜp

card
{

n ∈ {1, . . . ,N}; x(tn)�θ = 0
}

,

so that N (D) provides the maximum number of explanatory variables lying in a
subspace. This means in particular for linear and generalized linear models that
d = N (D)+ 1 is the smallest number so that every subset of the design with this
number of points provides identifiability of θ .

Although Theorem 1 holds also for nonlinear models and identifiability can be
defined also for nonlinear models, there is no simple relation between identifiability
and the fullness parameter d which holds for all nonlinear models. This is shown in
Section 2. Section 3 and Section 4 treat the determination of the fullness parameter
for two special nonlinear models with two parameters. In particular, nonlinear mod-
els with unrestricted parameter spaces are considered in Section 3, and nonlinear
models with restricted parameter spaces are studied in Section 4. It is shown that



140 Christine H. Müller and Christina Schäfer

the fullness parameter and thus the lower bound for the breakdown point depends
heavily on the design and the parameter space. In Section 5, extensions of the results
are discussed.

2 Identifiability and d Fullness

If the density satisfies (1), then the monotony of h and the logarithm implies with
the triangle inequality

max{lnk(y,D,θ); k = 1, . . . ,d}
= max{−log(h((ynk −g(tnk ,θ))2)); k = 1, . . . ,d} ≤C

⇐⇒ max{|g(tnk ,θ)|; k = 1, . . . ,d} ≤C2,

where the constants C, C1, and C2 are independent of θ , but depend on y. Hence the
following theorem holds.

Theorem 2.

{ln(y,D, ·); n = 1, . . . ,N} is d-full⇔{|g(tn,θ)|; n = 1, . . . ,N} is d-full.

Identifiability in nonlinear models is defined as follows.

Definition 2. θ is identifiable at D with respect to g if and only if

g(tn,θ) = g(tn, θ̃) for all n = 1, . . . ,N =⇒ θ = θ̃

for all θ , θ̃ ∈Θ .

Identifiability in nonlinear models with more than two unknown parameters is of-
ten difficult to verify. Therefore, only a simple nonlinear model is regarded, namely
g(t,θ) = α · exp(β t). Then the following result holds.

Theorem 3. If g(t,θ) = α · exp(β t) with θ = (α,β )� ∈ Θ = [a,∞)× [b,∞) and
0 < a < 1

exp(bt) and D = t with t > 0 then we have

• θ is not identifiable at D,
• |g(t, ·)| is subcompact and thus {l1(y,D, ·)} is 1-full.

Theorem 3 means for all designs D = (t1, . . . , tN) ∈ ℜN with tn �= 0 for n =
1, . . . ,N that the fullness parameter d of {ln(y,D, ·); n = 1, . . . ,N} is 1 while the
identifiability parameter satisfies N (D)≥ 1. Hence the relationship d = N (D)+1,
which holds in linear and many generalized linear models, is not satisfied.

Proof of Theorem 3. Since a < 1
exp(bt) , there exists α, α̃ with a < α < α̃ < 1

exp(bt) .

Set β = ln
(

1
α
)

1
t and β̃ = ln

(
1
α̃
)

1
t . Then we have β , β̃ > ln(exp(bt)) 1

t = b and
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g(t,(α,β )) = α exp
(
ln
(

1
α
)

1
t t
)
= 1 = α̃ exp

(
ln
(

1
α̃
)

1
t t
)
= g(t,(α̃, β̃ )), so that θ =

(α,β )� is not identifiable at D = t. Furthermore, |g(t,(α,β ))| = α · exp(β t) ≤ C
implies a ≤ α ≤ C

exp(β t) ≤ C
exp(bt) and exp(β t) ≤ C

α ≤ C
a so that θ = (α,β )� ∈[

a, C
exp(bt)

]
× [b, 1

t · ln
(

C
a

)]
which is a compact set. Hence {l1(y,D, ·)} is 1-full. �

A restricted parameter space like Θ = [a,∞)× [b,∞) used in Theorem 3 is typical
for nonlinear models based on exponential functions with high breakdown point.
This is discussed in more detail in the following two sections.

3 Nonlinear Models with Unrestricted Parameter Space

In this section, nonlinear models based on the exponential function with two pa-
rameters are studied. If the support of the design consists of one negative and one
positive value then no restriction of the parameter space is necessary.

Theorem 4. If t1 < 0 < t2 and g(t,θ) = α +exp(β t) or g(t,θ) = αt +exp(β t) with
θ = (α,β )� ∈Θ = ℜ×ℜ then

max{|g(t1, ·)|, |g(t2, ·)|}

is subcompact.

Proof. Consider at first g(t,θ) = α + exp(β t) and let be C ≥ 0 arbitrary. Then
max{|g(t1,θ)|, |g(t2,θ)|} ≤C

implies −C ≤ α + exp(β ti) ≤C for i = 1,2 so that −C− exp(β ti) ≤ α ≤C−
exp(β ti)≤C for i = 1,2. Since t1 < 0 < t2, it holds β t1 ≤ 0 or β t2 ≤ 0 for any β so
that α ≥−C− exp(0) =−C−1. Hence α ∈ [−C−1,C].

Moreover, exp(β ti)≤C−α ≤ 2C+1 for i = 1,2 so that β ti≤ ln(2C+1) for i =
1,2 which implies β ∈

[
ln(2C+1)

t1
, ln(2C+1)

t2

]
. Hence max{|g(t1, ·)|, |g(t2, ·)|} is sub-

compact for g(t,θ) = α + exp(β t).
Now consider g(t,θ) = αt + exp(β t). Again, let be C ≥ 0 arbitrary. Then

αti + eβ ti ≤C for i = 1,2 (3)

implies αti ≤C− eβ ti ≤C for i = 1,2 so that α ≥ C
t1

, α ≤ C
t2

. Hence there exists
k≥ 0 with−k≤α ≤ k. With this k we obtain−kt1≥αt1≥ kt1, and−kt2≤αt2≤ kt2
so that

kt1 ≤−αt1 ≤−kt1, kt2 ≥−αt2 ≥−kt2. (4)

Inequality (3) also implies eβ ti ≤ C−αti for i = 1,2. With (4) we obtain eβ t1 ≤
C−αt1 ≤ C− kt1 and eβ t2 ≤ C−αt2 ≤ C + kt2 so that β t1 ≤ ln(C− kt1), β t2 ≤
ln(C + kt2) and β ≥ ln(C−kt1)

t1
, β ≤ ln(C+kt2)

t2
. Hence, there exists k′ ≥ 0 with −k′ ≤
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β ≤ k′ so that (α,β )� ∈ [−k,k]× [−k′,k′]. This means that max{|g(t1, ·)|, |g(t2, ·)|}
is subcompact for g(t,θ) = αt + exp(β t) as well.�

If all experimental conditions are either negative or positive, then no subcompact-
ness is possible. Without loss of generality, we can consider only the case where all
experimental conditions are positive.

Theorem 5. If 0 ≤ t1 ≤ t2 ≤ . . . ≤ tN and g(t,θ) = α + exp(β t) or g(t,θ) = αt +
exp(β t) with θ = (α,β )� ∈Θ = ℜ×ℜ then

max{|g(tn, ·)|; n = 1, . . . ,N}

is not subcompact. In particular, the fullness parameter of {ln(y,D, ·); n = 1, . . . ,N}
is N +1.

Proof. Set α = 0. Then exp(β tn)≤C for all n = 1, . . . ,N is satisfies by β ≤ ln(C)
tN

.
Hence

{0}×
(
−∞,

ln(C)
tN

)
⊂ {θ ; max{|g(tn, ·)|; n = 1, . . . ,N} ≤C}

so that max{|g(tn, ·)|; n = 1, . . . ,N} is not subcompact.�

Now define for any design D = (t1, . . . , tN) ∈ℜN

N+(D) := card{tn; tn > 0} and N−(D) := card{tn; tn < 0}.

Corollary 1. If g(t,θ) = α +exp(β t) or g(t,θ) = αt +exp(β t) with θ = (α,β )� ∈
Θ = ℜ×ℜ and min{N+(D),N−(D)}> 0 then the fullness parameter of {ln(y,D, ·);
n = 1, . . . ,N} is given by

max{N−N+(D)+1,N−N−(D)+1}.

Since the fullness parameter should be as small as possible to maximize the lower
bound for the breakdown point according to Theorem 1, a breakdown point maxi-
mizing design for the setup of Corollary 1 is a design with N+(D) = N−(D) = N

2 .
In this case, the lower bound for the breakdown point is approximately 1

4 .
However, in most applications, a nonnegative design region is assumed for a

model like g(t,θ) = α +exp(β t) or g(t,θ) = αt +exp(β t). Then a fullness param-
eter less than N + 1 and thus a lower bound for the breakdown point greater than 0
is only achieved if the parameter space is restricted. This situation is studied in the
next section.
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4 Nonlinear Models with Restricted Parameter Space

Considering g(t,θ) = α +exp(β t) or g(t,θ) = αt +exp(β t), it is enough to restrict
the parameter space of β .

Theorem 6. If 0≤ t1 < t2 and g(t,θ) = α +exp(β t) or g(t,θ) = αt +exp(β t) with
θ = (α,β )� ∈Θ = ℜ× [b,∞) and b≥ 0 then

max{|g(t1, ·)|, |g(t2, ·)|}

is subcompact.

Proof. Consider at first g(t,θ) = αt + exp(β t) and let be C ∈ [0,∞) arbitrary. Then

−C ≤ αti + eβ ti ≤C for i = 1,2 (5)

implies αti ≤C− eβ ti ≤C, αti ≥−C− eβ ti so that α ≤ C
ti

and

α ≥ 1
ti
(−C− eβ ti). (6)

(6) means −α ≤ 1
ti
(C +eβ ti) so that with (5) we obtain eβ t j ≤C−αt j ≤C + 1

ti
(C +

eβ ti)t j = C
(

1+ 1
ti

)
+ t j

ti
eβ ti . Dividing by eβ ti ≥ 1 (ti ≥ 0,β ≥ 0) yields eβ (t j−ti) ≤

C
eβ ti

(
1+ 1

ti

)
+ t j

ti
≤ C

(
1+ 1

ti

)
+ t j

ti
so that β (t j − ti) ≤ ln

(
C
(

1+ 1
ti

)
+ t j

ti

)
. With

t j = t2, ti = t1 we obtain β ≤ 1
t2−t1

ln
(

C
(

1+ 1
t1

)
+ t2

t1

)
=: K1 because of t2− t1 > 0.

Inequality (6) provides then α ≥ 1
ti
(−C− eβ ti)≥ 1

ti
(−C− eK1ti). Hence there exists

K2 ≥ 0 such that (α,β )� ∈ [−K2,K2]× [b,K1].
The assertion for g(t,θ) = α + exp(β t) follows similarly.�

Theorem 6 means that {ln(y,D, ·); n = 1, . . . ,N} is 2-full if 0≤ t1 < t2 < .. . < tN .
In this case the lower bound for the breakdown point is approximately N

2 which is
the maximum possible value for the lower bound. It is also obvious that repeated
observation at the same experimental condition would reduce the breakdown point
as Müller (1995) showed for linear models.

5 Discussion

Extensions to nonlinear models with more than two parameters are possible and
will be published elsewhere. However, all these results concern only the explosion
point and not the implosion point, where condition (2) would be necessary in the
definition of the breakdown point. In particular for restricted parameter spaces, the
implosion point is of interest, in particular when the bound is 0. However, using
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condition (2) in the definition of subcompactness, as Vandev (1993) and Vandev
and Neykov (1998) did, would not help. It seems that the d-fullness criterion is only
useful for the explosion point.
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A Note on the Relationship between Two
Approaches to Optimal Design under
Correlation

Andrej Pázman and Werner G. Müller

Abstract The note demonstrates the relationship between two recently developed
methods for characterizing optimal designs, when the errors/observations in the
experiments are correlated according to a given correlation structure. The under-
standing of this relationship can help to improve the applicability of the methods by
providing new frameworks for their tuning parameters.

1 Introduction

In two previous mODa proceedings, Pázman and Müller (1998) and Fedorov and
Müller (2007) put forward two different approaches to finding optimal designs,
when the observations from an experiment are correlated according to a prespec-
ified correlation function. The former approach was based on an interpretation of
design measures that was very different from the classical one and it was eventually
further developed into Pázman and Müller (2001) and Müller and Pázman (2003).
The latter utilizes an expansion of the covariance kernel into independent compo-
nents, an idea which was first formulated in Fedorov (1996).

The setup we are interested in will be the linear random field observed at n dis-
tinct points x1, . . . ,xn yielding

y(xi) = f T(xi)β + ε(xi), (1)

where f T(x)β is a linear(ized) response function at x ∈ X containing q unknown
parameters β = (β1, . . . ,βq)T ∈ IRq and X denotes the design space, corresponding
to a finite set of potential trials. Note that we are using the notation of Fedorov and
Müller (2007) here and in the following.
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Let us further assume that the random noise ε(x) consists of two independent
components

ε(x) = u(x)+ e(x),

such that both E[u] = E[e] = 0, thus E[ε] = 0, and that Cov[e(x),e(x′)] = σ2(x)δx,x′ ,
and Cov[u(x),u(x′)] = k(x,x′), where x,x′ ∈ X, respectively. The latter - the so-
called covariance kernel - is a known function and δx,x′ denotes the Kronecker-
symbol. Component u(x) is a random field that describes the deviation on a particu-
lar instance from the local average and can thus not be replicated. Component e(x)
can be either viewed as an observational error (as in Fedorov and Müller 2007), or
as a regulatory device without physical meaning (as in Pázman and Müller 1998).
There, it was named ‘virtual noise’ and allows for the use of design measures in
this setup (cf. Müller and Pázman 2003). For that purpose its variance σ2(x) needs
to have specific forms, some of which are presented in Pázman and Laca (2008), a
particularly suitable form being

σ2(x) = ρ
(ξ (x)−1/n)2

ξ (x)
, (2)

with a small tuning parameter ρ and n the required number of points in the design.
Here ξ (x) denotes a design measure at x.

The resulting covariance structure is then given by Cov[ε(x),ε(x′)]= σ2(x)δx,x′+
k(x,x′), which results in a setup frequently utilized in computer simulation experi-
ments (cf. eg. Santner, Williams, and Notz 2003) or spatial sampling (cf. eg. Müller
2007).

2 Information Matrices

In the above setting Fedorov and Müller (2007) proceed by showing that the random
field (1) can be approximated by

yi = β T f (xi)+
p

∑
l=1

γlϕl(xi)+ ei,

with independent errors e, where the ϕl(x) and λl are the eigenfunctions and eigen-
values, respectively, of the covariance kernel k(x,x′) up to some degree p. Here, the
γl are random and independent, with Var(γl) = λl . The information matrix corre-
sponding to best linear unbiased estimation of the trend parameters β , which are the
focus of interest, is then given by

FWFT −FWΦT (ΦWΦT +Λ−1)−1 ΦWFT , (3)

with F = { f (x1), . . . , f (xn)}, Φ = {ϕ(x1), . . . ,ϕ(xn)}, Λl,l′ = Cov[γl ,γl′ ] = λlδl,l′ ,
and

Wii′ =
n

σ2 δii′ξ (xi). (4)



Optimal Design under Correlation 147

On the other hand, the typical form of the information matrices used in the ap-
proach of Pázman and Müller (1998) is

F [W−1 +K]−1FT ,

with Ki j = k(xi,x j), which they term ‘approximate information matrices’, however
with σ2(xi) from (2) instead of σ2/ξ in formula (4). Since the eigenfunction de-
composition means k(xi,x j) = ∑l φl(xi)λlφl(x j), we can write

F [W−1 +K]−1FT = F [W−1 +ΦT ΛΦ ]−1FT . (5)

Although the Appendix of Fedorov and Müller (2007) explores various transfor-
mations, the relationship between the two types of information matrices was over-
looked and we can indeed formulate the following
Theorem. The information matrices (3) and (5) are algebraically equivalent.

We first have for the inner part of (5):

[W−1 +ΦT ΛΦ ]−1 = [I +WΦT ΛΦ ]−1W.

Then we expand

[I +WΦT︸ ︷︷ ︸
A

ΛΦ︸︷︷︸
B

]−1 = I−WΦT︸ ︷︷ ︸
A

[I + ΛΦ︸︷︷︸
B

WΦT︸ ︷︷ ︸
A

]−1 ΛΦ︸︷︷︸
B

= I−WΦT [Λ−1 +ΦWΦT ]−1Φ ,

which leads to

F [W−1 +ΦT ΛΦ ]−1FT = F [I−WΦT [Λ−1 +ΦWΦT ]−1Φ ]WFT

= FWFT −FWΦT [ΦWΦT +Λ−1]−1ΦWFT ,

which corresponds to (3). ��
Here we have used a standard matrix equivalence, which is for instance given in

Problem 2.9 in Rao (2001).

3 Conclusions

We have thus shown in this brief note that the two seemingly different approaches
share a common framework. The remaining, but still important, difference lies in the
role of the matrix W reflecting the variances of the independent noise. In Fedorov
and Müller (2007) this variance needs to remain nonzero (albeit potentially small)
at all design points, whereas in Pázman and Müller (1998) it vanishes at the points
of the optimal design (zero virtual noise) and is very large at all other points, despite
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the small tuning parameter ρ . Note that both approaches allow for tuning, the former
via the choice of the order of the eigenvector expansion, the latter through choice
and parametrization of σ2(x), eg. specific choices of ρ . In particular situations the
relationships established above may aid in proper tuning.

Note also that the latter method can also be expanded to the case of unknown
correlation functions as proposed in Pázman and Laca (2008), which is the focus of
much current research (cf. Müller and Pronzato 2009).

Acknowledgements We are grateful to two anonymous referees, whose comments helped to
improve our paper, particularly our English.
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The Role of the Nugget Term in the Gaussian
Process Method

Andrey Pepelyshev

Abstract The maximum likelihood estimate of the correlation parameter of a Gaus-
sian process with and without a nugget term is studied in the case of the analysis of
deterministic models.

1 Introduction

The Gaussian process method is an elegant way to analyze the results of experiments
in many areas of science including machine learning (Rasmussen and Williams
2006), spatial statistics (Matheron 1973, Ripley 1981, Cressie 1993, Müller 2007),
and the Bayesian analysis of computer experiments (Sacks, Welch, Mitchell, and
Wynn 1989, Kennedy and O’Hagan 2001, Santner, Williams, and Notz 2003). Each
area has its own specific ways of employing and interpreting the Gaussian processes.
The purpose of this paper is not to give a full overview, which can be found in the
above references, but to discuss some issues concerning the nugget term for the
analysis of computer experiments.

The concept of the nugget term was first introduced in geostatistics by Matheron
(1962). Roughly speaking, the variogram and covariance often show a discontinuity
at the origin, termed the nugget effect. The nugget effect is considered as a random
noise and may represent a measurement error or short scale variability. The nugget
term is a well-explored object in spatial statistics (Pitard 1993).

Another area of the application of Gaussian processes is the Bayesian approach
developed for the analysis of computer experiments. In this approach, a so-called
emulator is introduced for making probabilistic judgments on the true output of the
given computer model, which is called a simulator. A Gaussian process is used for
a full probabilistic specification of the emulator. Thus, the emulator is utilized to
measure uncertainty of different kinds (see Kennedy and O’Hagan 2001).
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Formally, there is no nugget term in the Gaussian process method for the analysis
of deterministic models, but the nugget term can be introduced artificially, for exam-
ple, for the regularization of the inversion of a covariance matrix, see Neal (1997)
for details. Gramacy and Lee (2009) reported on the usefulness of the nugget term
in their research on supercomputer experiments.

The presence of the nugget term in the Gaussian process method is natural for
the analysis of stochastic and simulation models. The nugget effect may represent
a measurement error or an effect of random values used inside computer models
(Kleijnen and van Beers 2005, Kleijnen 2008).

The influence of the nugget term for optimal designs of experiments for a number
of cases has been studied in Zhu and Stein (2005) and in Stehlı́k et al. (2008).

The present paper focuses on the Gaussian process method applied for the anal-
ysis of deterministic models. It is shown that the nugget term has a great impact on
the likelihood and on the estimate of the correlation parameter.

2 The Likelihood for a Gaussian Process Without the Nugget
Term

In this section, it is shown that the likelihood of a Gaussian process has an unex-
pected behaviour in the analysis of non-stochastic models. More precisely, for a
deterministic model of observations, the maximum likelihood estimate of the cor-
relation parameter may tend to the infinity as the number of points increases. This
means that a deterministic model is approximated by a Gaussian process with the
correlation function r(x)≈ 1 for any x.

Indeed, let yi = η(xi) be the output of the model η(x) at the point xi ∈ [0,1],
i = 1, . . . ,n. Note that for a deterministic model, the replication of an observation at
some point gives the same output. Without loss of generality, let x1 < .. . < xn. The
likelihood for a Gaussian process with constant mean β , variance σ2 and correlation
function r(x, x̃) = e−|x−x̃|/ψ has the form

p(y|β ,σ ,ψ) =
|R|−1/2

(2πσ2)n/2
e
− 1

2σ2 (y−Hβ )T R−1(y−Hβ )

where y = (y1, . . . ,yn)T is the vector of output values, R = (r(xi,x j|ψ))n
i, j=1 is the

correlation matrix, H = (h(x1), . . . ,h(xn)), and h(x)≡ 1.
The maximum likelihood (ML) estimates of β and σ have the following explicit

forms

β̂ML = (HT R−1H)−1HR−1y

and

σ̂2
ML =

1
n
(y−Hβ̂ML)T R−1(y−Hβ̂ML).



The Role of the Nugget Term in the Gaussian Process Method 151

The ML estimate of ψ can be found only numerically in the following way

ψ̂ML = arg max
ψ∈(0,∞)

p(y|β̂ML, σ̂ML,ψ).

After substituting and simplifying, we obtain that the estimate ψ̂ML maximizes

L(ψ) = ln
[
|R|−1/2

]
− n

2
ln
[
(y−Hβ̂ML)T R−1(y−Hβ̂ML)

]
.

For the exponential correlation function, the inverse of matrix R admits the explicit
representation R−1 = V TV where the matrix V is defined by

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0
− μ2√

1−μ2
2

1√
1−μ2

2

0 · · · 0 0

0 − μ3√
1−μ2

3

1√
1−μ2

3

· · · 0 0

...
...

...
. . .

. . .
...

0 0 0 · · · − μn√
1−μ2

n

1√
1−μ2

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

μi = e−(xi−xi−1)/ψ . For n equidistant points xi = (i−1)/(n−1), i = 1, . . . ,n, straight-
forward calculation shows that

yR−1y =
y2

1 + y2
n

1−λ 2 +
n−1

∑
i=2

y2
i

1+λ 2

1−λ 2 −2
n−1

∑
i=1

yiyi+1
λ

1−λ 2

where λ = e
− 1

(n−1)ψ , and

|R|−1/2 =
1

(1−λ 2)(n−1)/2
.

For the model η(x) = x−1/2, we obtain that β̂ML = 0 and

yR−1y =
1
2

1
1−λ 2 +

n2−5n+6
12(n−1)

· 1+λ 2

1−λ 2 −
n2−2n−3

6(n−1)
· λ

1−λ 2 .

The estimate ψ̂ML can be found explicitly in Maple and is not presented since it is a
very large expression. Applying a power series expansion, we have

e
− 1

(n−1)ψ̂ML =1− 2
n2 −

20
3n2 +O

(
1
n3

)
and ψ̂ML =

n
2
− 7

6
− 7

18n
− 17

54n2 +O

(
1
n3

)
.

The dependence of ψ̂ML on n is given in Figure 1 for the model η(x) = x− 1/2
in the left-hand panel and for the model η(x) = sin(2πx) in the right-hand panel.
We observe that the estimate ψ̂ML increases almost linearly as n increases for both
models.

The maximum likelihood estimate of ψ for the Gaussian correlation function
r(x, x̃) = e−(x−x̃)2/ψ is given in Figure 2. For the model η(x) = x− 1/2 we have
that ψ̂ML = ∞ for any n. Note that for the model η(x) = sin(2πx), the condition
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Fig. 1: The maximum likelihood estimate of ψ for the Gaussian process with the exponential
correlation function and n equidistant points on the interval [0,1] for the model η(x) = x− 1/2
(left panel) and for the model η(x) = sin(2πx) (right panel) for n = 6, . . . ,20.

number of the correlation matrix R(ψ̂ML) is of order 107, 1014, 1022, 1030, and 1038

for n = 8, 11, 14, 17, and 20, respectively. These calculations were done in Maple
with 45 digits precision. However, the computer representation of floating numbers
typically has only 17 digits. Thus, it is impossible to find the maximum likelihood
estimate for large n using the ordinary floating representation in a computer. In par-
ticular, Ababou, Bagtzoglou, and Wood (1994) have shown that the condition num-
ber grows linearly for the exponential correlation function and grows exponentially
for Gaussian correlation functions.
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Fig. 2: At left: the maximum likelihood estimate of ψ for the Gaussian process with the Gaussian
correlation function and n equidistant points on the interval [0,1] for the model η(x) = sin(2πx)
for n = 6, . . . ,20. At right: the likelihood function of ψ for n = 7,14,20.

In more general situations for other correlation functions and other models, the
dependence of the maximum likelihood estimate and the restricted maximum likeli-
hood estimate of ψ on n remains typically the same and can be verified numerically
(Pepelyshev 2009).
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Thus, roughly speaking, the estimate of the parameters of a Gaussian process is
associated with the given data set and is not associated with the deterministic model.
This estimation is not simple and is not well-defined. It is easy to observe that if one
divides an input space into several regions, one may get quite different estimates
of parameters for different regions. However, if one is looking for one Gaussian
process over the full space, one has difficulty in finding the single estimate.

3 The Likelihood for a Gaussian Process With a Nugget Term

3.1 MLE for a Gaussian Process

In this section, the likelihood with the presence of the nugget term is investigated.
For this case, the correlation matrix R in the formulae from Section 2 should be
replaced by the correlation matrix

Rν =
{
(1−ν)r(xi− x j)+νδi, j

}
i, j

where ν is the nugget term.
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Fig. 3: At left: the maximum likelihood estimate of ψ for the Gaussian process with the Gaussian
correlation function and the nugget term ν = 0.02,0.05 for measurements of the model η(x) =
sin(2πx) at n equidistant points on the interval [0,1], n = 6, . . . ,20. At right: the likelihood function
of ψ for the nugget term ν = 0.02 and for n = 7,14,20.

The likelihood function and the maximum likelihood estimate for fixed values
of the nugget term are presented in Figure 3. One can observe that the nugget term
essentially changes the maximum likelihood estimate of ψ (and also of σ ). The
estimate ψ̂ML does not increase to infinity as n increases, since the Gaussian process
is fitted to a band around the deterministic function. It should also be noted that the
condition number of the correlation matrix Rα is of order 102 and is increasing very
slowly as n increases. Moreover, the estimate ψ̂ML is smaller with the presence of
the nugget term that also reduces the condition number of the correlation matrix.
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Ababou, Bagtzoglou, and Wood (1994) have shown that the condition number of
the correlation matrix for the Gaussian process models increases to a finite limit in
the presence of the nugget term.

Note one undesired effect of the nugget term. The likelihood may have a second
mode for large values of the correlation parameter (see Figure 4). The second mode
strongly depends on the value of the nugget term and can be considered as a false
mode. For some data, the likelihood function at the second mode may have a larger
value than at the first mode.
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Fig. 4: The likelihood function of ψ for the Gaussian process with the Gaussian correlation function
and the nugget term ν = 0,0.01,0.001,0.0001 for measurements of the model η(x) = sin(2πx) at
7 equidistant points on the interval [0,1].

Note that in the presence of the nugget term, the meta-model

mν(x) = Hβ + tT (x)R−1
ν (y−Hβ ),

where t(x) = (r(x,x1), . . . ,r(x,xn))T , does not possess the interpolation property.
Nevertheless, the deviations εi = yi−mν(xi) are very small. One may construct a
meta-model, that interpolates the dataset {(xi,εi)}n

i=1, by a method given in Cressie
(1993, Sect. 5.9). It is not necessary for the deviations εi to use the Kriging approach
without the nugget term. One may use the inverse distance weighted interpolation
(Cressie 1993, p. 371, Lu and Wong 2008) and define the meta-model in the follow-
ing form

m(x) = mν(x)+

n
∑

i=1
εi||x− xi||−2

2

n
∑

i=1
||x− xi||−2

2

.

3.2 MLE for Stationary Processes

Let us perform a small simulation study. Assume that the results of experiments
satisfy
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y(xi) = β +σ2ε(1)(xi)+ τ2ε(2)(xi),

where x1, . . . ,xn are points of measurement, ε(1)(x) denotes a stationary Gaussian
process with correlation function r(x) = e−x2/ψ and ε(2)(x) is white noise. Let
Eε( j)(x) = 0, Dε( j)(x) = 1, with processes ε(1)(x) and ε(2)(x) independent. The
values β + σ2ε(1)(xi) may be conceived as true values of a physical process. The
values τ2ε(2)(xi) may be interpreted as a measurement error or a rough rounding of
measured values. We compute the maximum likelihood estimators for 1000 realiza-
tions obtained for n = 8, xi = (i−1)/7, i = 1, . . . ,8, β = 2, ψ = 1.5, σ = 1, τ = 0
or τ = 0.01. Results of maximum likelihood estimation for different values of the
nugget term are presented in Table 1.

Table 1: The mean of maximum likelihood estimators of parameters using different values of the
nugget term. Standard deviations are given in brackets.

τ = 0 τ = 0.01
ν 0 0.01 0.02 0 0.01 0.02

β̂ML 2.03(0.68) 2.01(0.85) 2.02(0.86) 2.02(0.92) 2.04(0.85) 2.04(0.86)
σ̂ML 0.83(0.40) 0.29(0.17) 0.27(0.16) 0.33(0.23) 0.30(0.17) 0.28(0.16)
ψ̂ML 1.44(0.37) 0.54(0.25) 0.47(0.20) 0.14(0.06) 0.58(0.29) 0.49(0.23)

One can observe that the maximum likelihood estimators with a nonzero nugget
term does not depend on small perturbations {τ2ε(2)(xi)}i of the data {β +σ2ε(1)(xi)}i.
In contrast, for ν = 0, the maximum likelihood estimators of σ and ψ are signifi-
cantly changed due to adding small perturbations. In all cases, the accuracy of β̂ML

is approximately the same. Thus, as can be seen, the nugget term yields a regular-
ization effect on the maximum likelihood estimators.

4 Conclusions

In the analysis of deterministic models the presence of a nugget term has a sig-
nificant impact on the likelihood of a Gaussian process. The maximum likelihood
estimate of the correlation parameter with a nonzero nugget term is more reliable
and the condition number of the correlation matrix is moderate. Even if a determin-
istic model does not have any internal computational errors or other perturbations,
the artificial introduction of the nugget term can be recommended.
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A Bonferroni-Adjusted Trend Testing Method
for Excess over Highest Single Agent

John J. Peterson

Abstract Combination drug therapy offers much promise for discovering pharma-
ceutical treatments that are efficacious and safe. A key efficacy criterion for a com-
bination of two compounds is that the combination is superior to both of its compo-
nent compounds used alone. This article proposes a simultaneous testing procedure,
based upon step-down trend tests, that identifies dose combinations for pairs of com-
pounds that produce efficacy results with excess over highest single agent (i.e. the
combination is superior to both of the component compounds). This testing proce-
dure is applied to data from experiments for a pilot high-throughput screening study
for pairs of compounds evaluated at nine dose levels using 9× 9 factorial experi-
ments. This procedure is easily automated for high-throughput screening and can be
computed using the SAS R© MULTTEST procedure.

1 Testing for Excess Over Highest Single Agent (EOHSA)

1.1 Model and Testing for EOHSA

In dose-response high-throughput screening experiments, increasing doses of a
compound are robotically dispensed onto laboratory plates with many very small
wells. Typically, optical plate readers are used to measure (perhaps indirectly) the
result of a specific biological phenomenon, such as compounds binding to cell re-
ceptor targets or cell death. Monotone dose response profiles are the expected, with
noticeable increases (or decreases) for potent compounds. In this paper it is assumed
that “larger is better” for dose response. For experiments where pairs of chemical
agents are being screened in the search for some type of “synergy” or enhanced
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effects between the compounds, (square) factorial experiments are typically used.
Robots are programmed to dispense different doses of the two compounds to pro-
duce (K +1)× (K +1) factorial experiments, where there are K (positive) doses of
compound A and K (positive) doses of compound B. In total there are K2 (posi-
tive) dose combinations, K doses of compound A alone, K doses of compound B
alone, and possibly a control group (i.e. zero doses of compound). This experiment
may be replicated r (r ≥ 1) times. But typically in high-throughput screening r is
a small number (2 or 3 say) so that resources can be used to screen as many pairs
of compounds as possible. In some situations, such an experiment would be ripe
for modelling by way of a sophisticated combination-drug dose-response surface
model. However, for high-throughput screening, it is desirable to have a statistical
inference procedure that one can easily automate. This paper presents such a proce-
dure that appears to have better power than similar tests for “excess of highest single
agent” (EOHSA) that can be easily automated.

The statistical model proposed here is a saturated ANOVA (cell means) model.The
response (or a transformed version of it) is denoted by Yi jk. Here, Yi jk is the kth repli-
cate of the response at the ith dose of compound A and the jth dose of compound B.
The ANOVA model is,

Yi jk = μi j + ei jk, (1)

where ei jk are iid N
(
0,σ2

)
errors. If i = 0, then Yi jk is the kth replicate response asso-

ciated with the jth dose of compound B alone. Likewise, if j = 0, then Yi jk is the kth

replicate response associated with the ith dose of compound A alone. If (i, j) = (0,0),
then Yi jk is the kth replicate associated with the control group. For a single compound
combination, the most common test for EOHSA is the “min” test, denoted here
as MIN. (See Laska and Meisner (1989) for details.) Define θi j = min

{
δ A

i j , δ B
i j

}
,

where δ A
i j = μi j−μ0 j and δ B

i j = μi j−μi0 for i = 1, ...,K and j = 1, ...,K. Here, μi j

is the is the true mean response for the (i, j)th dose group, while μi0 and μ0 j denote
the true mean responses for the single compound dose groups at doses i and j, re-
spectively. Note that δ A

i j represents a difference of means along a compound A row

(or column) and at the jth level of compound B, while δ B
i j represents a difference of

means along a compound B row (or column) at the ith level of compound A. A MIN

test for the (i, j) compound pairs tests H(i, j)
0 : θi j ≤ 0 vs. H(i, j)

1 : θi j > 0. A p-value
for the MIN test can be obtained by taking the maximum of the p-values for separate

tests of H(i, j)
0A : δ A

i j ≤ 0 vs. H(i, j)
1A : δ A

i j > 0 and H(i, j)
0 : δ B

ji ≤ 0 vs. H(i, j)
1 : δ B

ji > 0
(Hung 2000).

For a factorial design, Hung et al. (1993) proposed two tests (the AVE test and
the MAX test) to test for the existence of at least one θi j > 0. As with the MIN test,
when all of the δ A

i j and δ B
i j are zero (indicating no compound effects), the probability

of rejecting for the AVE or MAX test becomes much less than α (Hung et al. 1993).
Hung (2000) proposes an alternative MAX test based upon using the Hochberg

(1988) p-value adjustment of all of the MIN test p-values for each combination.
This approach also provides an adjusted p-value for each of the compound combi-
nations. Westfall et al. (2001) have also proposed adjusted p-value approaches for
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the testing EOHSA for various clinical endpoints or fixed dose combinations. They
study three types “union-intersection intersection-union” (UIIU) tests, one based
upon Bonferroni -Holm (BHUIIU), one based upon Simes-Hommel (SHUIIU), and
one based upon parametric resampling (RBUIIU). They find that the SHUIIU and
RBUIIU tests are more powerful, with no overall domination between the two. They
recommend the SHUIIU due to it being easier to compute as it is simply the Hommel
(1988) step-up procedure applied to the MIN test p-values for each combination.

1.2 Approaches Based Upon Trend Tests

As a compromise approach, one possibility is to compute a (one-sided) trend test
for compound A at each (positive) dose level of compound B. Likewise, one can
also compute a (one-sided) trend test for compound B at each (positive) dose level
of compound A. For a fixed (positive) dose level of compound B, trend tests for
compound A can include all dose levels from 0 to the highest or from 0 to some
intermediate dose level by appropriate choice of contrast coefficients. An analogous
set of trend tests can be computed for compound B at fixed levels of compound A.
If a trend is statistically significant from 0 to the ith dose level of some drug, then
it follows that the mean response for ith dose of that drug must exceed the mean
response of that drug at the zero dose.

A trend testing approach for identifying EOHSA (and other related inferences)
has been proposed by Hellmich and Lehmacher (2005). However, this procedure is a
closed testing procedure that is difficult to implement unless the factorial designs are
rather small. As such, they suggest seeking approximate testing procedures which
have good power and are easier to compute. Such a procedure is proposed in this
article. Trend tests can be computed using standard ANOVA trend contrasts (e.g.
arithmetic, log, or ordinal contrasts). If two trends are (simultaneously) statistically
significant and intersect at a compound combination, then that combination exhibits
EOHSA in a statistically significant fashion (provided that proper adjustment has
been done to prevent excess Type I errors). A trend test uses all of the (K +1) levels
in a one-way ANOVA model to gain power to detect differences between an (i, j)
combination level and its corresponding (i,0), or (0, j), single-agent dose level.

A process for testing all K×K dose combinations using trend tests is proposed
as follows. Form sets of one-way ANOVA trend tests utilizing the K row trends for
compound A (at each positive dose level of compound B) and the K column trends
for compound B (at each positive dose level of compound A). Assemble these K row
trends and K column trends to form 2K trends of length (K + 1). These 2K trends
are then tested in a step-down fashion. The first set of 2K trend tests involves dose
levels from 0 to the highest level. Next, a second set of 2K trend tests is done which
involves dose levels from 0 to the ‘next-to-highest’ dose level. This continues until
the Kth set of 2K trend tests is done which involves only the two dose levels 0 and
the lowest (positive) dose. In each case, however, the mean squared error for each
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trend test uses all of the data (in a specific row or column of the factorial design)
pooled across the (K +1) relevant dose levels.

The first set of 2K trend tests (using dose levels from 0 to the highest level)
must be adjusted for multiple testing. This can be done, for example, using the
Bonferroni method to assign a significance level of α/(2K) to each trend test. By
applying the Tukey step-down trend testing process (Tukey et al. 1985) to each of
the 2K trends one can obtain trend tests where the highest doses tested intersect
so that eventually all of the K2 (i, j)-dose combinations are tested. So whenever
a statistically significant compound A trend is found at level i (for the jth level
compound B) and a statistically significant compound B trend is found at level j
(for the jth level of compound A) it follows that the (i, j)th dose combination exhibits
EOHSA in a statistically significant fashion. For each of the 2K trends, the Tukey
step-down trend test does not require adjustment of the significance level as the
step-down tests are conducted. This is because for each of the 2K trends, statistical
significance for a specific trend stops as soon as a trend is found not to be statistically
significant.

1.3 Multiplicity Adjusted p-Values

This procedure for testing for compound combinations that have EOHSA can also
be used to determine p-value measures for each combination. Let pi j (A) be the
(raw) p-value associated with a trend test of compound A for dose levels (0− i)
for the jth dose level of compound B. Likewise, let pi j (B) be the (raw) p-value
associated with a trend test of compound B for dose levels (0− i) for the jth dose
level of compound A. For i = 1, ...,K, let

pm
i1 (A) , ..., pm

iK (A) , pm
i1 (B) , ..., pm

iK (B) (2)

denote 2K multiplicity-adjusted p-values adjusted with respect to the 2K raw
p-values: pi1 (A) , ..., piK (A) , pi1 (B) , ..., piK (B). Next, let psm

i1 (A) , ..., psm
iK (A) ,

psm
1K (B) , ..., psm

iK (B) denote the step-down adjusted p-values corresponding to the

p-values in (2). Then one can take each pmax
i j = max

{
psm

i j (A) , psm
ji (B)

}
as a mea-

sure of evidence against the null hypothesis, H(i, j)
0 : θi j ≤ 0. The smallest pmax

i j can
be taken as evidence of the existence of at least one compound combination with
EOHSA. The following five step procedure summarizes the multiplicity-adjusted
(step-down) trend testing procedure described above.

Multiplicity-Adjusted (Step-Down) Trend Test Procedure
Step 1. Set k = K.
Step 2. Compute the 2K multiplicity adjusted (one-sided) trend test p-values:

pm
k1 (A) , ..., pm

kK (A) , pm
k1 (B) , ..., pm

kK (B) .
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Step 3. If k = 1 then go to Step 4. Otherwise, set k equal to (k−1) and go back
to Step 2.

Step 4. For i = 1, ...,(K−1) and j = 1, ...,(K−1) compute the step-down p-

value adjustments, psm
i j (A) = max

{
pm

i j (A) , psm
i+1, j (A)

}
and psm

i j (B) =

max
{

pm
i j (B) , psm

i+1, j (B)
}

. For i = K, j = 1, ...,K set: psm
K j (A) = pm

K j (A) and

psm
K j (B) = pm

K j (B).

Step 5. For each (i, j), compute pmax
i j = max

{
psm

i j (A) , psm
ji (B)

}
. If pmax

i j < α ,

then label the (i, j)th combination as having EOHSA in a statistically significant
way.

If the Bonferroni procedure is used in Step 2, then the above five-step procedure
strongly controls the Type I error rate of declaring any combination to have EOHSA
when in fact the corresponding true means do not possess EOHSA. This is stated
more formally in the theorem below.

Theorem. Given the ANOVA model described in (1) above, suppose that the mul-
tiplicity adjustment used for the 2K tests in Step 2 is the Bonferroni procedure with
an overall error Type I rate of α . Then the proposed procedure (Steps 1 -5) strongly
controls the overall error rate of falsely detecting at least one (i, j) combination as
having EOHSA to at be most α.

Proof: Let Ai j be the event that psm
i j (A) < α and let Bi j be the event that

psm
i j (B) < α . It follows directly that the (i, j)th combination is indicated as having

EOHSA in a statistically significant way if the event (Ai j ∩B ji) occurs.
Let C be the index set of all (i, j) combinations such that C =

{
(i, j) : θi j ≤ 0

}
.

To establish the proof one must show that

Pr

⎛
⎝ ⋃

(i, j)∈C

{
Ai j

⋂
B ji

}⎞⎠≤ α (3)

for any non-empty C. Now define

Si j =
{

Ai j if δ A
i j ≤ 0

B ji if δ A
i j > 0 and δ B

i j ≤ 0
for all i = 1, ...,K and j = 1, ...,K.

Note that the definition of Si j is such that the null space corresponding to H(i, j)
0 is

divided into two mutually exclusive and exhaustive parts. Next define N as

N =
⋃

(i, j)∈C

Si j.

It follows then that

Pr

⎛
⎝ ⋃

(i, j)∈C

{
Ai j

⋂
B ji

}⎞⎠≤ Pr(N) (4)



162 John J. Peterson

because
{

Ai j ∩B ji
}⊆ Si j. Now, due to the Tukey step-down process, for each trend,

Ai j ⇒ Ai ′ j where i ′ > i and B ji ⇒ B j ′i where j ′ > j. It follows then that for all (i, j),
(i ′, j), ( j, i) and ( j ′, i) in C, Ai j∪Ai ′ j = Ai ′ j for i ′ > i and B ji∪B j ′i = B j ′i for j ′ > j.
So it further follows that N can be expressed as a union of Ai j and B ji null events
where (the first indices) i and j are, respectively, as large as possible in C. But this
implies that such an N can be expressed as the union of at most 2K events, each of
which corresponds to a different null trend. Denote the corresponding index set of
(i, j) pairs that include only the largest possible first indices as Cmax. As such, Cmax

has only 2K (i, j) elements. It then follows that

Pr(N) = Pr

⎛
⎝ ⋃

(i, j)∈Cmax

Si j

⎞
⎠≤ ∑

(i, j)∈Cmax

Pr(Si j). (5)

Note that for any
(

δ A
i j ,δ B

j i

)
in the null space corresponding to H(i, j)

0 , Pr(Si j) ≤
α/2K. Since the Bonferroni procedures used in Step 2 are all based upon 2K tests,
and the Bonferroni adjustment is independent of the relative values of the raw p-
values, it follows that

∑
(i, j)∈Cmax

Pr(Si j)≤ 2K
( α

2K

)
= α. (6)

Thus (3) follows directly from (4), (5) and (6).

2 An Example

This section summarizes the results of 16 experiments, conducted for a compound-
pair screening pilot study. Here, the experimenters are looking for pairs of com-
pounds exhibiting EOHSA with respect to their ability to kill cancer cells.

The Bonferroni-adjusted trend testing procedure of this article is applied along
with four other procedures: AVE, SHUIIU, a version of the SHUIIU test employ-
ing trends, and a straightforward ANOVA application of PROC MULTTEST using
only (multiplicity adjusted) pairwise contrasts (denoted as MAPC). The multiplicity
adjusted trend testing approach proposed in this paper that is based upon the Bon-
ferroni adjustment is denoted as the MATBON procedure. Hung’s alternative MAX
test based upon the Hochberg procedure was not used because the Simes-Hommel
procedure (SHUIIU) is always more powerful, and will provide a more stringent
comparison with the MATBON procedure.

The MIN test concept can also be applied to trend contrast test statistics. This can
be done by simply replacing the p-value in (3) with max

{
p(Ai j) , p(B ji)

}
, where

pi j (A) and p ji (B) are the raw trend test p-values as defined previously. The SHUIIU
procedure can then be applied to the resulting MIN test p-values to gain more power.
Note, however, the MIN test p-values will not be independent as some trends will
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crisscross each other in the factorial design. However, SHUIIU procedure will typ-
ically not exceed a family-wise error rate for positive dependence among the p-
values (Westfall et al. 2001). Some positive dependence among the MIN test (trend)
p-values is expected due to the fact that intersecting trends are positively correlated.

The factorial experimental designs were 9× 9 layouts. The responses recorded
for data analysis were the percent reductions as a measure of viable cancer cells
relative to a positive control group (zero doses of both compounds A and B). There
were two replications of the 9× 9 factorial design (except for the positive control
group which had 16 replications). Since the responses for data analysis were defined
as “percent increase from the control mean”, the control group was not used directly
as a response in the factorial design, leaving 80 treatment groups for analysis.

One further point to make is that the competing AVE, SHUIIU, SHUIIUT, and
MAPC tests in this paper all use the pooled mean-squared-error (MSE) from the
entire ANOVA experiment, resulting in 80 df for error. However, the MATBON test
as shown in this paper only used the MSE from the trend test with nine groups, re-
sulting in 9 df for error. These two tests could be easily modified to use the pooled
error, but separate MSE’s for the trend tests was considered more flexible with re-
gard to a model to use for automated screening. Nonetheless, this test still appears
to be more powerful than the other four testing procedures due to the adjustment for
2K multiplicities rather than K2 multiplicities.

A brief summary of all six testing procedures for the 16 pilot screening exper-
iments is given as follows. (Further details are available in Peterson 2006.) The
proposed MATBON testing procedure found a compound combination with statisti-
cally significant EOHSA, in 8 out of 16 cases, and it found more such combinations
than any of the other procedures capable of identifying individual combinations as
statistically significant. In 7 of the 16 cases it tied with the SHUIIUT method for
finding the largest number of compound combinations with statistically significant
EOHSA. Hung’s AVE test behaved erratically. In four cases, the AVE test achieved
a very low p-value, but it in other cases it did poorly relative to other tests. This
is because, for some experiments, there were many compound combinations with
small positive or negative θ̂i j values. As such, the resulting test statistic, which is
the average of the θ̂i j values, was low. In each of the four cases where the AVE test
detected the existence of EOHSA, the MATBON test identified several statistically
significant compound combinations. When average rank of the p-values (ranked
across test types and averaged over the 16 experimental cases) was computed, the
MATBON test had the lowest average rank.

One of the reasons for the superiority of the MATBON test over the SHUIIUT,
SHUIIU, and MAPC tests is that for the MATBON test the p-values are adjusted
in a more parsimonious fashion. The MATBON p-values are adjusted over only
2K samples, and then adjusted in a prespecified, step-down fashion. However, the
SHUIIUT and SHUIIU tests adjust the MIN test p-values over K2 combinations.
The MAPC uses resampling-based adjustment, but the power of the trend test is
not used, and adjustment is done over 2K2 raw p-values to make inferences about
EOHSA combinations. Further work needs to be done to see how low K can be to
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remain competitive with other procedures. In the literature, K as low as five or six
has been reported, although K as large as ten has also been used (Borisy et al. 2003).
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Asymptotic Properties of Adaptive Penalized
Optimal Designs over a Finite Space

Luc Pronzato

Abstract Adaptive optimal design with a cost constraint is considered, both for
LS estimation in nonlinear regression and ML estimation in Bernoulli-type experi-
ments, with possible applications in clinical trials. We obtain the strong consistency
of the estimators for designs over a finite space, both when the cost level is fixed
(and the adaptive design converges to an optimum constrained design) and when
the objective is to minimize the cost. Moreover, the asymptotic normality of the es-
timators is obtained in the first situation, with an asymptotic covariance matrix given
by the inverse of the usual information matrix, calculated as if the design were not
constructed sequentially.

1 Introduction

Let X , a compact subset of R
d , denote the admissible domain for the experimen-

tal variables x (design points) and θ ∈Θ , a compact subset of R
p, denote the p-

dimensional vector of parameters, all of interest, in a parametric model with inde-
pendent observations Yi(xi) conditionally on the xi, i = 1,2 . . . The information ma-
trix for parameters θ and design measure ξ (a probability measure on X ) is denoted
by M(ξ ,θ) =

∫
X μ(x,θ)ξ (dx), with μ(x,θ) the contribution of the design point x.

We only consider the case of scalar observations, so that μ(x,θ) is a rank-one ma-
trix, which we denote μ(x,θ) = fθ (x)f�θ (x) with fθ (x) a p-dimensional vector. We
shall suppose that fθ (x) is continuously differentiable with respect to θ in the inte-
rior of Θ for all x ∈X . In a nonlinear situation, M(ξ ,θ) depends on θ and locally
optimal design maximizes a concave function Ψ(·) of M(ξ ,θ) for some nominal
value of θ . Here we shall only consider D-optimal design, i.e. Ψ(M) = logdet(M),
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but the extension to other global optimality criteria, such as [trace(M−1)]−1 for in-
stance, could be obtained by following a similar route. A rather common approach
to overcome the difficulty caused by the dependence of a locally optimal design on
the unknown value of the model parameters is to design the experiment sequentially.

In fully-adaptive D-optimal design, the next design point xn+1 after n observa-
tions is taken as

xn+1 = argmax
x∈X

trace[μ(x, θ̂ n)M−1(ξn, θ̂ n)] , (1)

where θ̂ n ∈Θ is the current estimated value for θ , based on x1, . . . ,xn and the asso-
ciated observations Y1, . . . ,Yn, and ξn = (1/n)∑n

i=1 δxi is the current empirical design
measure. We leave aside initialisation issues and simply assume that x1, . . . ,xp are
such that M(ξp,θ) is nonsingular for any θ ∈Θ .

When θ̂ n is frozen to a fixed value θ , the iteration (1) corresponds to one step of
a steepest-ascent vertex-direction algorithm with step-length 1/n and convergence
to a D-optimal design measure is proved in Wynn (1970). The fact that θ̂ n is es-
timated in adaptive design creates dependency among observations and makes the
investigation of the asymptotic behaviour of the design and estimator a much more
complicated issue for which few results are available: Ford and Silvey (1980), Wu
(1985) and Müller and Pötscher (1992) focus on a particular example with LS es-
timation; Hu (1998) is specific to Bayesian estimation by posterior mean and does
not use a fully sequential design of the form (1); Lai (1994) and Chaudhuri and
Mykland (1995) require the introduction of a subsequence of non-adaptive design
points to ensure consistency of the estimator and Chaudhuri and Mykland (1993)
require that the size of the initial non-adaptive experiment grows with the increase
in size of the total experiment. Notice that the situation is different in clinical trials
for comparing treatments: the designs considered are typically such that the number
of allocations of each treatment goes to infinity a.s., which then yields the strong
consistency of the ML estimators, see for instance the ML design in Antognini and
Giovagnoli (2005). It is shown in Pronzato (2009b) that the situation becomes much
simpler when X is a finite set and that, under reasonable assumptions, (1) yields
the a.s. convergence and asymptotic normality of the estimator θ̂ n. Using the results
in Pronzato (2009a), we show here that similar asymptotic properties are obtained
for adaptive penalized D-optimal design. We shall always assume that

X = {x(1),x(2), . . . ,x(K)} , K < ∞ .

2 Asymptotic Properties of Estimators when X is Finite

Consider a nonlinear regression model with observations

Yi = Y (xi) = η(xi, θ̄)+ εi , (2)
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where the εi are i.i.d. with zero mean and finite variance (which we take equal to
one without any loss of generality) and η(x,θ) is a known function of θ and x.
We suppose that θ̄ , the unknown ‘true’ value of θ , is in the interior of Θ . We have
μ(x,θ) = fθ (x)f�θ (x) with fθ (x) = ∂η(x,θ)/∂θ . The LS estimator θ̂ n

LS minimizes
Sn(θ) = ∑n

k=1[Y (xk)−η(xk,θ)]2 and we define

Dn(θ ,θ ′) =
n

∑
i=1

[η(xi,θ)−η(xi,θ ′)]2 . (3)

The following properties, see Pronzato (2009a), will be used in §3.2 and 3.3.

Theorem 1. Suppose that X is finite. If Dn(θ , θ̄) given by (3) satisfies for all δ > 0,[
inf‖θ−θ̄‖≥δ/τn

Dn(θ , θ̄)
]
/(log logn) a.s.→ ∞ (n→ ∞), with {τn} a nondecreasing se-

quence of positive deterministic constants, then τn‖θ̂ n
LS− θ̄‖ a.s.→ 0 as n→ ∞.

Theorem 2. Suppose that X is finite and that there exist non-random symmetric

positive definite p× p matrices Cn such that C−1
n M1/2(ξn, θ̄)

p→ I , with I the p-
dimensional identity matrix. If cn = λmin(Cn) and Dn(θ , θ̄) satisfy n1/4cn → ∞ and
for all δ > 0, inf‖θ−θ̄‖≥c2

nδ Dn(θ , θ̄)/(log logn) a.s.→ ∞ (n → ∞), then θ̂ n
LS satisfies

√
nM1/2(ξn, θ̂ n

LS)(θ̂
n
LS− θ̄) d→ ω ∼N (0,σ2I) as n→ ∞ .

Consider now the case of dose-response experiments with

Y ∈ {0,1} , with Pr{Y = 1|xi,θ}= η(xi,θ) . (4)

Suppose that the ‘true’ value of θ that generates the observations lies in the interior
of Θ , that η(x,θ) ∈ (0,1) for any θ ∈Θ and x ∈X , and that when n observations
Y1, . . . ,Yn are performed at the design points x1, . . . ,xn, the Yi are independent con-
ditionally on the xi. Also suppose that xi is a non-random function of Y1, . . . ,Yi−1,
x1, . . . ,xi−1 for all i. Theorems 1 and 2 are then also valid for the ML estimator θ̂ n

ML
in this model, see Pronzato (2009a), and, in the rest of the paper, θ̃ n will denote
indifferently θ̂ n

LS in the model (2) or θ̂ n
ML in (4).

3 Adaptive Penalized D-optimal Design

Consider constrained locally D-optimal design that maximizes logdet[M(ξ ,θ)] un-
der a constraint Φ(ξ ,θ) ≤C on the average cost Φ(ξ ,θ) =

∫
X φ(x,θ)ξ (dx). We

suppose that φ(x,θ), the cost induced by a single observation at x, is a positive
continuous function of θ for all x ∈X . The extension to nonlinear or multiple con-
straints is considered, e.g., in Cook and Fedorov (1995) and Fedorov and Hackl
(1997, Chap. 4). A necessary and sufficient condition for the optimality of ξ ∗C sat-
isfying Φ(ξ ∗C ,θ) ≤ C is the existence of a Lagrange coefficient λ ∗ = λ ∗(θ) ≥ 0
satisfying λ ∗[C−Φ(ξ ∗C ,θ)] = 0 and ∀x ∈ X , trace[μ(x,θ)M−1(ξ ∗C ,θ)] ≤ p +
λ ∗[φ(x,θ)−Φ(ξ ∗C ,θ)] . In practice, ξ ∗C can be determined by maximizing
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Hθ (ξ ,λi) = logdet[M(ξ ,θ)]−λi Φ(ξ ,θ) (5)

for an increasing sequence {λi} of coefficients, starting at λ0 = 0 and stopping at
the first λi such that the associated optimal design ξ ∗ satisfies Φ(ξ ∗,θ) ≤ C, see,
e.g., Mikulecká (1983) (notice that for C large enough the unconstrained D-optimal
design is optimal for the constrained problem). The coefficient λ in Hθ (ξ ,λ ) can
thus be considered as a penalty coefficient that penalizes costly experiments and sets
the tradeoff between the maximization of logdet[M(ξ ,θ)] and the minimization of
Φ(ξ ,θ). One may refer to Cook and Wong (1994) for the equivalence between
constrained and compound optimal designs.

In adaptive constrained D-optimal design, we take xn+1 that gives the steepest
ascent direction for Hθ̂ n(ξn,λn),

xn+1 = argmax
x∈X

{
trace[μ(x, θ̂ n)M−1(ξn, θ̂ n)]−λn φ(x, θ̂ n)

}
, (6)

where different choices for λn are discussed below. Since (1) can be considered as a
special case of (6), the results to be presented also cover the case of classical (uncon-
strained) adaptive D-optimal design (1) treated in Pronzato (2009b) (they therefore
also cover the case of the adaptive penalized designs considered in Dragalin and Fe-
dorov (2006), Dragalin, Fedorov, and Wu (2008), where the constrained problem is
formulated as a standard D-optimal design problem). One may notice the similarity
between (6) and the construction used in Pronzato (2000) to optimize a paramet-
ric function, the parameters of which being estimated by least-squares in a linear
regression model.

Two situations will be considered concerning the choice of the sequence {λn}
in (6), respectively in §3.2 and 3.3. In the first one, the objective is to obtain an
optimal design with a specified cost: we adapt λn to θ̂ n and take λn = λ ∗(θ̂ n), the
optimal Lagrange coefficient for the constrained D-optimal design problem with
parameters θ̂ n. The second situation corresponds to the case where {λn} forms an
increasing sequence, which gives more and more importance to the constraint in
the construction of the design. When φ(x,θ) has a single minimum, by letting the
Lagrange coefficient λn increase with n one may hope to be able to force the design
to concentrate at the minimizer of φ associated with the true value of θ . In clinical
trials, when φ(x,θ) is related to the probability of success of treatment x, this means
that we can focuss more and more on individual ethics by allocating treatments with
increasing efficacy, see Pronzato (2010).

3.1 A bound on the sampling rate of nonsingular designs

The key idea used below for investigating the asymptotic properties of an estimator
for a design generated by (6) is to suppose first that {θ̂ n} is an arbitrary sequence
in Θ . We shall use the following assumptions on the design space X , the vectors
fθ (x) and the Lagrange coefficients λn.
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HX -(i): infθ∈Θ λmin

[
∑K

i=1 fθ (x(i))f�θ (x(i))
]

> γ > 0;

Hλ -(i): 0≤ λn < λ̄ < ∞ , ∀n;
Hλ -(ii): {λn} is a non-decreasing positive sequence and limn→∞ λn = ∞.

Theorem 3. Let {θ̂ n} be an arbitrary sequence in Θ used to generate design points
according to (6) in a finite design space satisfying HX -(i), with an initialisation
such that M(ξn,θ) is non-singular for all θ in Θ and all n ≥ p. Let rn,i = rn(x(i))
denote the number of times x(i) appears in the sequence x1, . . . ,xn, i = 1, . . . ,K, and
consider the associated order statistics rn,1:K ≥ rn,2:K ≥ ·· · ≥ rn,K:K. Define

q∗ = max{ j : there exists α > 0 such that liminfn→∞ rn, j:K/n > α} ,
q∗∗ = max{ j : there exists α > 0 such that liminfn→∞ λn rn, j:K/n > α} .

Then Hλ -(i) implies q∗ ≥ p and Hλ -(ii) implies q∗∗ ≥ p. When the sequence {θ̂ n} is
random, the statement holds with probability one.

The proof is similar to that of Lemma 2 in Pronzato (2009b). X finite implies
that q∗ and q∗∗ > 1. Supposing that p ≥ 2, we show that assuming q∗ or q∗∗ < p
leads to a contradiction under Hλ -(i) or Hλ -(ii) respectively.

3.2 λn is bounded in (6)

When λn is bounded, for any sequence {θ̂ n} used in (6), the conditions of Th. 3
ensure the existence of n1 and α > 0 such that rn, j:K > αn for all n > n1 and all
j = 1, . . . , p. Under the additional assumption

HX -(ii): For all δ > 0 there exists ε(δ ) > 0 such that for any subset {i1, . . . , ip} of
distinct elements of {1, . . . ,K}, inf‖θ−θ̄‖≥δ ∑p

j=1[η(x(i j),θ)−η(x(i j), θ̄)]2 > ε(δ );

we thus obtain that Dn(θ , θ̄) given by (3) satisfies inf‖θ−θ̄‖≥δ Dn(θ , θ̄) > αnε(δ ),

n > n1. Therefore, θ̃ n a.s.→ θ̄ (n → ∞) from Th. 1, with θ̃ n = θ̂ n
LS in (2) or θ̂ n

ML in
(4). Since this holds for any sequence {θ̂ n} in Θ , it is true in particular when θ̃ n

is substituted for θ̂ n in (6). One can take in particular λn = λ ∗(θ̃ n), with λ ∗(θ)
the optimal Lagrange coefficient for the constrained D-optimal design problem with
parameters θ . The following condition then guarantees that Hλ -(i) is satisfied so
that Th. 3 applies and θ̃ n is strongly consistent from Th. 1.

Hλ -(i’): There exists C′ < C such that ∀θ ∈Θ , ∃ξ̂ (θ) ∈ Ξ with Φ [ξ̂ (θ),θ ]≤C′

and M[ξ̂ (θ),θ ] has full rank.

Making the following additional assumption on X

HX -(iii): λmin

[
∑p

j=1 fθ̄ (x(i j))f�̄θ (x(i j))
]
≥ γ̄ > 0 for any subset {i1, . . . , ip} of dis-

tinct elements of {1, . . . ,K},
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we then obtain the following concerning the convergence of M(ξn, θ̃ n).

Theorem 4. Suppose that the design points for n > p are generated sequentially
according to (6) with λn = λ ∗(θ̃ n) and θ̂ n = θ̃ n, the LS-estimator θ̂ n

LS in (2) or the
ML-estimator θ̂ n

ML in (4). Suppose, moreover, that the first p design points are such
that the information matrix is nonsingular for any θ ∈Θ . Then, under HX -(i-iii)
and Hλ -(i’) we have θ̃ n a.s.→ θ̄ and M(ξn, θ̃ n) a.s.→M[ξ ∗(θ̄), θ̄ ], n→ ∞, with ξ ∗(θ̄) a
constrained D-optimal design for θ̄ .

From Th. 4 we can take Cn = M1/2[ξ ∗(θ̄), θ̄ ] in Th. 2 and obtain the usual
asymptotic normality of θ̃ n for the adaptive design (6) (although the sequential
construction of the design implies that M(ξn,θ) is not the information matrix for
parameters θ ).

3.3 λn tends to infinity in (6)

For any sequence {θ̂ n} used in (6), the conditions of Th. 3 ensure the existence of n1

and α > 0 such that rn, j:K > αn/λn for all n > n1 and all j = 1, . . . , p. HX -(ii) then

implies that Dn(θ , θ̄) given by (3) satisfies
[
inf‖θ−θ̄‖≥δ Dn(θ , θ̄)

]
/(log logn) >

αnε(δ )/[λn (log logn)] for n > n1. Therefore, if λn(log logn)/n → 0 as n → ∞,
θ̃ n a.s.→ θ̄ from Th. 1. Since this holds for any sequence {θ̂ n} in Θ , it is true in partic-
ular when θ̃ n is substituted for θ̂ n in (6). (One may notice that Th. 1 provides some
indication about the rate of convergence of θ̃ n towards θ̄ : for ‖θ − θ̄‖ = δ small
enough, Dn(θ , θ̄)/n ≈ (θ − θ̄)�M(ξn, θ̄)(θ − θ̄), which is larger than αγ̄δ 2/λn

from HX -(iii); therefore, ‖θ̃ n− θ̄‖ = O(
√

λn(log logn)/
√

n) a.s.). The next theo-
rem indicates that when the following is satisfied in addition to Hλ -(ii):

Hλ -(iii): λn/n is non-increasing and λn(log logn)/n→ 0, n→ ∞;
Hφ : φ(x, θ̄) has a unique global minimizer in X : φ(x(i∗), θ̄) = minx∈X φ(x, θ̄) <

φ(x(i), θ̄), ∀i ∈ {1, . . . ,K}, i �= i∗;

then {xn} tends to accumulate at the point of minimum cost for θ̄ .

Theorem 5. Suppose that the design points for n > p are generated sequentially
according to (6), where λn satisfies Hλ -(ii) and Hλ -(iii). Suppose, moreover, that
the first p design points are such that the information matrix is nonsingular for any
θ ∈Θ . Then, under HX -(i-iii) we have θ̃ n a.s.→ θ̄ and

Φ(ξn, θ̄) a.s.→ φ ∗̄θ = min
x∈X

φ(x, θ̄) , n→ ∞ .

If, moreover, Hφ is satisfied, then ξn(x(i)) a.s.→ 0 for all i �= i∗.

Example. Suppose that η(x,θ) = [θ1/(θ1− θ2)] [exp(−θ2 x)− exp(−θ1 x)] in the
model (2) with i.i.d. errors N (0,1). The objective is to maximize η(x, θ̄) for x∈X
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consisting of 1001 points regularly spaced in [0,10]. We take φ(x,θ) = −η(x,θ)
and θ̄ = (0.7 , 0.2)�, so that η(x, θ̄) reaches its maximum value in X (approxi-
mately 0.606, indicated by a dashed line in Fig. 1) at x∗ = 2.51. The design points
are generated by (6) for n ≥ 2, with θ̂ n the LS estimator and x1 = 1.25, x2 = 6.6.

Three sequences are considered for {λn} : λ (a)
n = log2 n, λ (b)

n = n/(1 + log2 n) and

λ (c)
n = n1.1, n ≤ 1000 (notice that λ (b) < λ (a) on the horizon considered). Th. 5 is

satisfied for λ (a)
n and λ (b), but λ (c)

n increases too fast and does not insure conver-
gence of ξn to the delta measure at x∗, see Fig. 1 for a typical realization. Of course,
the behaviour is even worse for the “best intention design” (also called “forced cer-
tainty equivalence” in the control literature) xk+1 = argminx∈X φ(x, θ̂ k).
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Fig. 1: Evolution of η(xn, θ̄) as a function of n for three different sequences {λn}.

Similar results are obtained when the cost φ(x, θ̄) to be minimized is not directly
related to η(x, θ̄). Consider, for instance, a regulation problem where the objective
is to set a function ϕ(x, θ̄) on a given target T , so that one may take φ(x,θ) as a
measure of the distance between ϕ(x,θ) and T , e.g., φ(x,θ) = [ϕ(x,θ)−T ]2. There,
“best intention design” (the “continuous reassessment method” in dose finding),
or Robbins-Monro type procedures (see, e.g., Lai and Robbins 1978) can be used
when ϕ(x,θ) = η(x,θ). The adaptive design (6) may be convenient in more general
circumstances where the function ϕ(x,θ) to be regulated differs from η(x,θ).
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Filling and D-optimal Designs for the Correlated
Generalized Exponential Model

Juan M. Rodrı́guez-Dı́az, Teresa Santos-Martı́n, Milan Stehlı́k and Helmut Waldl

Abstract The aim of this paper is to provide guidelines for efficient statistical es-
timation of the parameters of the modified Arrhenius model for chemical kinetics.
We study D-optimal and filling designs for this model, assuming correlated obser-
vations and exponential covariance with or without nugget effect. We consider both
equidistant and exact designs for small samples, and study the behaviour of different
types of filling designs when a greater number of observations is preferred.

1 Introduction

The aim of this paper is to provide guidelines for the statistically efficient estimation
of the parameters of the modified Arrhenius model. This is used, for instance, for
modelling the flux of methane in the troposphere or in chemical kinetics for reac-
tions at membranes. As the troposphere, extensively studied because of greenhouse
gas emission, provides a very exotic environment for kinetics of chemical reactions
normally studied on earth, one can argue that the correlation parameter and mod-
ified Arrhenius equation can play a crucial role in this modelling. The Modified
Arrhenius (MA) model is

Y = at−me−β/T + ε = η(T,m,β )+ ε, (1)

where a, β ≥ 0, m are constants. This is equivalent to the Generalized Exponential
(GE) model through the change of variable X = 1/T . This later model has been
studied, for the case of uncorrelated errors, by Dette and Sperlich (1994) from a
Bayesian point of view and by Rodrı́guez-Dı́az and Santos-Martı́n (2009) for differ-
ent efficiency functions, optimality criteria and restrictions on the design space.

The model has applications in experimental sciences, especially in chemical ki-
netics. The influence of temperature on the rate of the process is usually given in
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terms of the Arrhenius equation for which optimal designs are given in
Rodrı́guez-Aragón and López-Fidalgo (2005). However, in some cases the Ar-
rhenius model does not seem to be adequate to describe the experimental results
and the MA (or GE) model appears as the right choice (Laidler 1984). Other ap-
plications of model (1) in chemistry include the transition state theory (TST) of
chemical reactions (International Union of Pure and Applied Chemistry (IUPAC)
2008). The Arrhenius-like expressions appearing in TST take various forms, e.g.
k = KBT/hexp(−δG/(RT )), where δG is the Gibbs free energy of activation, KB

is Boltzman’s constant and h is Planck’s constant.
The MA model is a so-called partially nonlinear regression model(Hill 1980).

This particularly means that the D-optimal designs do not depend on the value of
a, which is the linear trend parameter. A design will be a collection of points of the
independent variable {x1, . . . ,xn}, where n is the size of the design (exact design).
In this paper we concentrate on how to distribute temperatures optimally in order to
obtain statistically efficient estimators of trend parameters m and β and correlation
parameter r. After fitting the best temperature range for measurements (very often it
is not the whole interval) one may be interested in particular temperatures along this
interval. In this case space-filling designs would be useful, as described in Sections
4 and 5. We consider two covariance structures:

Cov1. Exponential covariance function C(T1,T2,r) = σ2 exp(−|T1 − T2|r),r > 0
where r is the covariance parameter and d = |T1−T2| is the distance between
the particular temperatures.

Cov2. Exponential with inverted arguments C(T1,T2,r) = σ2 exp(−| 1
T1
− 1

T2
|r),r >

0. The reason for using Cov2 is to avoid ill-conditioning of the covariance
matrix for some situations. Cov2 is also a natural translation of Cov1 from
the GE model, using the transformation X = 1/T .

For more discussion on the identifiability of the covariance parameters r and σ2

see Müller and Stehlı́k (2009), where the role of the nugget effect is also discussed. It
is well known that the parameters r and σ2 are not individually identifiable, which
is observed also in our simulation studies. The therein used maximum likelihood
estimators suffer from severe bias.

Here we centre on D-optimality, which corresponds to the maximization of the
criterion function Φ(M) = detM, the determinant of the Fisher information matrix.
Let θ be the vector of trend parameters and r the covariance parameter. The Fisher

information matrices are Mθ (n) and Mr(n) = 1
2 tr

{
C−1 (r) ∂C(r)

∂ r C−1 (r) ∂C(r)
∂ rT

}
. So

for both parameters of interest we have Mθ ,r(n) =
(

Mθ (n) 0
0 Mr(n)

)
. This method

comes from the widely developed uncorrelated setup and further development is
needed before it can be applied routinely in practice. Theoretical justifications for
using the Fisher information for D-optimal designs in the correlated setup designs
in the correlated setup can be found in Abt and Welch (1998) and Pázman (2007).
Further references on the Fisher information as a design criterion in the correlated
setup are in Stehlı́k (2007).
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The paper is organized as follows. Section 2 assumes m known and illustrates the
analytical peculiarities of exact designs. We must use numerical techniques to obtain
the D-optimal exact designs. In section 3 we consider m to be unknown, which is
the most interesting case. Usually practitioners prefer taking observations at a larger
number of points (more than three) and thus, from Section 4 onwards, filling designs
more or less covering a chosen interval with several points are studied and their be-
haviour compared through examples. As can be seen, the upper bounds of tempera-
ture intervals are present in the support of the optimal designs, which encompasses
the natural fact that reaction kinetics for higher temperatures are speedier.

2 Assuming m Known

When m is assumed to be known the only trend parameters are a and β . The
non-correlated case has been already studied in Rodrı́guez-Dı́az and Santos-Martı́n
(2009), where it was proved that, for approximate designs, a 2-point design is opti-
mal. The covariance structure Cov1 corresponds to the Ornstein-Uhlenbeck process,
for which Mr(n) is known, (see Müller and Stehlı́k 2010; Zagoraiou and Baldi-An-
tognini 2009): Mr(n) = ∑n−1

i=1 d2
i (e2rdi +1)/(e2rdi−1)2, where di = Ti+1−Ti are dis-

tances between neighbouring temperatures. For r→ 0+ we have Mr(n)→ ∞ which
encompasses the fact that neighbouring points are important for efficient estimation
of the correlation parameter (see e.g. Kiseľák and Stehlı́k 2008 or Zagoraiou and
Baldi-Antognini 2009).

Now let us consider two-point designs with the covariance Cov2, i.e. let n = 2,
and {x,x + d} be the design. The following Theorem, obtained by direct algebra,
gives the guidelines for computing the two-point D-optimal design.

Theorem 1. The exact two-point D-optimal design for the GE model with covari-
ance Cov2 is ξ2 = {x,x +d}, where x = (−βd +m+

√
β 2d2 +m2)/(2β ) and d is

the zero root of

β 2
(

42m+1de2drr +16mdr +24m+1 + e4dr
(

16mdr−24m+1 +16m
√

β 2d2 +m2
)
−16m

√
β 2d2 +m2

)
d2

+m
(

m+
√

β 2d2 +m2
){

42m+1de2drr +16mdr +24m+1 + e4dr
(
16mdr−24m+1)} .

For ξ2 we have d = 2x(m−xβ )
2xβ−m ; m,β ,r > 0; m

2β < x < m
β . For all m and r the unique

solution of x depending on β is bounded by the asymptotes

assl =

⎧⎨
⎩

1+4m−√1+4m
4β for βc ≤ β

m−Dβ+
√

m2+D2β 2

2β for β ≤ βc

assu =
m
β

,

where βc = 1+4m−√1+4m
2D(

√
1+4m−1)

and D = 1.8006
r . The asymptote assl is already a good ap-

proximation for the exact solution. The lower bound asymptote assl is for small
x-values very similar to the exact solution for the model with uncorrelated data ana-
lyzed in Rodrı́guez-Dı́az and Santos-Martı́n (2009), where x = (1+2m−√1+2m)/
(2β ). Furthermore we have limx→∞ d = D. On the other hand, the design given by
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(d,x) = (2assl(m−asslβ )/(2asslβ −m),assl) guarantees a minimum efficiency of
84% (Rodrı́guez-Dı́az et al. 2009).

When m = 0 the first optimal design point needs to be the lower bound of the
design space Rodrı́guez-Dı́az et al. 2009. The interesting feature of this setup is
that there exists a positive d� that maximizes det[M(2)(θ ,r)], and this behaviour
is different from that observed for the OU process studied in Kiseľák and Stehlı́k
(2008), Theorem 2. Therein it is observed that, when both parameters {θ ,r} have
to be estimated, there exist D-optimal equidistant designs with finite d when the
number of design points n is greater than 3 But for n = 2 or 3 the designs collapse,
which can be avoided by a so-called nugget effect (Stehlı́k et al. 2008).

The case of 2-point optimal designs with covariance Cov2 when only β and a
are parameters of interest has been studied in Rodrı́guez-Dı́az et al. (2009). The
results for 3-point designs with correlation led to complicated expressions for both
equidistant and general cases.

3 Case of Unknown m

Let us now study the correlated case with unknown m which should also be es-
timated. Thus we have a three-parameter model. The case of non equidistant de-
signs is again troublesome, thus let us take n = 3 and the equidistant design
{x,x + d,x + 2d} where the parameters to be estimated are a, β , m. The determi-
nant of the information matrix will be Dc = Ds2d2e4dr(1+e2dr)/(e2dr−1)4, where
Ds does not depend on r. After some algebra we get

x =
−3βe4drd +3βd−5e2drrd− e4drrd−2rd +2e4dr +3e4drm−3m−2

3β (−1+ e4dr)
,

whence the optimal d can be found numerically.

Example 1. For a = β = m = 1 and r = 0.5, the solution is x = 0.205 and d = 0.855

For a general 3-point design we get a complicated expression. A more detailed study
of design when m is unknown and further analysis is in Rodrı́guez-Dı́az et al. (2009).

4 Parabolic Designs

Parabolic Designs are a special case of filling designs. The name Filling Designs
refers to different types of designs that cover the design space with a specific num-
ber of points including both extremes. In previous works López-Fidalgo and Wong
(2002) study several alternatives with the name Sequence Designs for the Michaelis-
Menten model, with the distances between consecutive points increasing from the
beginning of the interval. Later on, Rodrı́guez-Aragón and López-Fidalgo (2005)
used such designs for the Arrhenius model with the distances increasing from the
centre c of the interval. Very recently Rodrı́guez-Dı́az and Santos-Martı́n (2009)
followed this last approach for studying the Modified Arrhenius model, introduc-
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ing the name Filling Designs. For uniform, arithmetic, geometric and linear inverse
designs the samples are either uniformly distributed (directly, or inversely through
the model), or more dense around the center of the interval. However, sometimes
it might be preferable to concentrate samples near a point different from the cen-
tre. Following this idea, a new type of filling design is presented, using a parabolic
transformation to spread a uniformly distributed set of points, in a way depending
on more parameters than the extremes of the interval and the number of points. The
procedure is described in Figure 1.

Fig. 1: Construction of Parabolic Designs: first select a design on the x-axis and move it to the
parabola (left), then project the points in the parabola again on the x-axis through rays from the
projection point Q. The spread can be modified by the choice of Q, the parabola’s curvature k and
a suitable movement v of the initial design. The final step is the adaptation of these last points to
the desired interval.

Let us take for instance a uniformly distributed initial design in [−1,1], maybe
moved by parameter v, pi = −1− v + 2(i− 1)/(n− 1), i = 1, ...,n; then using the
parabola y = kx2 and the projection point Q = (0,q) (q > max{p2

1, p2
n}), the ‘pro-

jected’ design will be Pi = piq/(q− kp2
i ) i = 1, ...,n. Finally let us adapt this last

design to fit in the interval [A,B], {A+ l (Pi−P1)/(Pn−P1)}i=1,...,n. The parame-
ters k and q regulate the dispersion of the points, and −1 ≤ v ≤ 1 controls the area
where the concentration of points is greatest (-1→ near A, 1→ near B, 0→ around
(A+B)/2).

Example 2. Joining the measurements of Vaghjiani and Ravishankara (1991) and
Gierczak et al. (1997) we get a sample of 62 temperatures in the interval [195,420] .
The arithmetic design chooses the best interval to be [257.9,420], with determinant
7.94892×1010. The parabolic design prefers [237, 420], with a determinant value of
1.71427×1011; that is more than double. But the most important fact is the value of
parameter v = 1 showing that the best design tries to concentrate the sample points
mainly at the upper extreme of the interval. The design is shown in Figure 2.

200 250 300 350 400

Fig. 2: Parabolic optimal design for Gierczak example in [195,420]
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5 Illustrative Example

METHANE: CH4 is an important greenhouse gas, the concentration of which in
the troposphere is steadily increasing. To estimate the flux of methane into the at-
mosphere and its atmospheric lifetime, its rate of removal needs to be accurately
determined. The main loss process for atmospheric methane is the reaction with
the hydroxyl radical, OH +CH4 →CH3 +H2O. This reaction has been extensively
studied, and it can be expressed in the MA form as k(T ) = aT−mexp(−β/T ), with
a = 2.80× 10−14, m = −0.667, and β = 1575 (Jet Propulsion Laboratory 2006).
This three-parameter fit may be preferred for lower stratosphere and upper tropo-
sphere calculations. Considering independent and normally distributed errors with
mean 0 and constant variance (σ2 = 1) and m known, the parameters to be estimated
are a and β . The locally D-optimal designs for the model are two-point designs
(Rodrı́guez-Dı́az and Santos-Martı́n 2009), and for these values of the parameters
the designs depend on the upper bound of the design interval.

Table 1: Best t1 for different designs when fixing the upper extreme, for different r

Uniform Design Arithmetic Design Geometic Design
r = .001 r = 0.05 r > 0.5 r = .001 r = 0.05 r > 0.5 r = .001 r = 0.05 r > 0.5

195-300 195 228.88 245.15 195 229.90 241.61 197.67 235.87 238.81
233-343 233 254.24 273.80 233 254.60 269.70 233 262.68 266.09
278-378 278 274.98 296.24 278 274.81 291.62 278 284.56 287.44
223-420 223 300.07 322.23 227.61 299.09 316.91 237.20 310.71 312.16
295-660 295 440.33 454.70 295 431.85 445.47 295 448.89 438.22

Let us now assume Cov1. For a general 3-point design we have fixed one design
point to be the upper bound and then we have computed the exact designs. For r
greater than 0.5 these designs almost coincide with the 3-point designs of the un-
correlated case. Considering four-point designs, Table 1 shows the best first design
point t1, when fixing the upper extreme of the interval in the correlated case for dif-
ferent r, for the Uniform, Arithmetic and Geometric designs respectively, when only
θ is the parameter of interest. It can be observed that for small r (high covariance)
the best efficiency is obtained taking the filling designs in the whole initial interval.
However, for independent observations it is more efficient to take the observations
in a part of the initial interval. We get similar results when r needs to be estimated
as well, especially when the nominal value of r is small.

200 250 300 350 400 450
t

 

 
Gierczak design
equally spaced design

Fig. 3: Different designs in the interval [208.8,420]

62 measurements have been taken at 18 different temperatures. Now the design
given by the 18 different points from Example 2 will be compared with an 18 point
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equidistant design on the interval [208.8,420] (see Figure 3). Mean and variance of
the empirical distributions of the ML-estimates of each parameter for both designs
can be seen in Table 2, showing that the designs are quite similar. As an estimate
for the D-optimality criterion, the determinant of the inverted empirical covariance
matrix of the parameter estimates was computed for each design: for the Gierzcak
design we got detMGierczak = 2.3984 · 107, while for the equidistant design we got
detMequidist = 6.3271 · 106. We noticed a remarkable estimation bias - especially
for r̂ML - which should be analyzed in more detail. An expanded version of these
examples can be found in Rodrı́guez-Dı́az et al. (2009).

Table 2: Statistics of the ML parameter estimates

true Gierczak design equidistant design
value mean bias variance mean bias variance

m 2.82 2.829 .009056 8.592 ·10−5 2.829 .008723 8.094 ·10−5

β 987 1009 21.77 530.9 1008 21.17 493.1
σ2 .2365 .1904 -.04615 .01021 .1936 -.04285 .01610
r .03643 .06560 .02917 .003477 .07058 .03415 .008176

6 Conclusions and Discussion

Probably the main lesson we can learn is that the D-optimal design is analytically
peculiar and these designs can be practically obtained only by numerical computa-
tion. However, especially two point locally D-optimal designs are of interest, since
they may help us to find a reasonable range for filling designs. The latter are proba-
bly the only applicable designs when seeking for a higher number of design points.
It is an interesting issue that very often the best designs do not use the whole design
interval, but only a part of it. This idea should be taken into account by practitioners
when they design their experiments. The second important observation is the large
bias of the ML estimator of r. From the theoretical point of view this is not surpris-
ing since σ2 and r are not simultaneously identifiable. Therefore an important issue
will be to develop bias reduction methods.
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Designs for Dose Finding Studies on Safety and
Efficacy

Katrin Roth

Abstract In early phase clinical trials usually only the safety and tolerability of a
new drug are investigated at first. We suggest a model with which safety, measured
on a categorical scale, and efficacy, a binary response, can be evaluated simultane-
ously. Subsequently we derive locally optimal designs for this model. Additionally,
we apply this model in a sequential approach and compare its features with ap-
proaches considering only one endpoint.

1 Introduction

Phase I dose escalation studies are part of the clinical drug development process. At
that stage of the development, little knowledge about how the drug and the human
body interact is available. Traditionally, the primary goal of these studies is to find
the maximum tolerated dose (MTD). The MTD typically is defined as the dose that
induces an intolerable toxic event (dose limiting toxicity, DLT) with a probability
less than 1

3 . Due to safety issues, dose escalation studies are performed sequentially.
An approach widely used is the 3+3 design. Following this method, subjects are
assigned in cohorts of three to one out of a sequence of specified doses. The first
cohort is assigned to the lowest dose. The following cohorts are assigned to the
next higher, the same or the next lower dose depending on the observed number of
toxicities in the previous cohort or cohorts. A maximum of two cohorts are treated
on the same dose step. The algorithm stops when we would either escalate to a dose
that has already been declared as too toxic (at least one third of observed DLTs) or
we would take further observations on a dose step where already 6 patients have
been observed. The highest dose with less than one third observed DLTs is then
declared the MTD. Details can be found in Ivanova (2006). The 3+3 design is safe
in the sense that only a few patients experience DLTs or are treated with doses
exceeding the MTD. However, the probability of finding the actual MTD can be

Katrin Roth
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quite low and in most cases, the MTD is underestimated. Additionally, the number
of subjects needed gets large if the true MTD is much larger than the starting dose.
These properties of the 3+3 design have been investigated in various simulation
studies, among others in Gerke and Siedentop (2007).

Even though the primary goal of dose escalation studies is usually finding the
MTD based on a binary toxicity outcome, the information on the toxicity is com-
monly recorded on a categorical scale (cf. National Cancer Institute, 2006). By the
dichotomization valuable information is ignored. Additionally, some first informa-
tion on the efficacy of the drug is often recorded, but only used and analyzed in an
exploratory way. Approaches where toxicity and safety, both measured on a binary
scale, are considered simultaneously are suggested among others by Dragalin and
Fedorov (2006). They introduce a bivariate model and derive designs for this model.

The purpose of this work is to improve the designs for dose escalation studies
in such a way that both the categorical toxicity information as well as first effi-
cacy information is accounted for. In Section 2 we introduce a bivariate model that
allows for incorporating this information. Subsequently, we derive locally optimal
designs for this model. In Section 3 we apply a sequential approach to the model.
We compare the features of this approach with traditional designs by conducting a
simulation study. We conclude with a discussion of the results.

2 Optimal Design in a Bivariate Model

2.1 Definition of the Model

Consider a bivariate response variable YYY = (T , E)T , with T being the toxicity end-
point and E the efficacy endpoint. Without loss of generality let the efficacy end-
point be measured on a binary scale with possible outcomes 0 (no efficacy) and 1
(efficacy), while the toxicity endpoint is observed in K+1 categories j = 0,1, ...,K,
where the higher category indicates stronger toxicity. These categories can e.g. be
defined by the Common Terminology Criteria for Adverse Events (cf. National Can-
cer Institute, 2006). As adequate univariate modelling, the logistic model and the
proportional odds model could be used for binary and ordered categorical outcomes,
respectively. The bivariate modelling should be analogous, and thus the marginal
distributions of the considered endpoints should follow a logistic and a proportional
odds model.

Consider a single control variable x, namely the dose.
Let P(T (x) = yT ) and P(E(x) = yE) denote the probability of the outcome being

yT ∈ {0, . . . ,K} and yE ∈ {0,1} given the treatment dose x.
Define F(x) := exp(x)/{1+exp(x)} and let the marginal distribution of the effi-

cacy endpoint be given by
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P(E(x) = 1) =
exp

( x−μ
σ
)

1+ exp
( x−μ

σ
) = F

(
x−μ

σ

)
.

For notational convenience let xμ := x−μ
σ and thus P(E(x) = 1) = F(xμ).

The marginal distribution of the toxicity endpoint is given by

P(T (x)≥ j) =
exp

(
x−α j

β

)

1+ exp
(

x−α j
β

) = F

(
x−α j

β

)
.

Here let xα j := (x−α j)/β , α = 1, ...,K and thus P(T (x) ≥ j) = F(xα j). This
gives consistency with adequate univariate modelling.

The joint distribution that yields the above marginal distributions is not necessar-
ily unique. We use a specific joint distribution for the bivariate modelling which is
rather simple to construct. It is given by the following functions.

Define G(x,y) := F(x)F(y) [1+ τ {1−F(x)}{1−F(y)}]. Then

P(T (x)≥ j∧E(x) = 1) = G(xα j ,xμ).

This is a bivariate distribution function from the class of Farlie-Gumbel-Morgenstern
distributions (cf. Kotz et al., 2000, §44.13), which arises quite naturally from the
given univariate marginal distributions. It describes the relationship between dose
and efficacy, and dose and each of the toxicity categories, respectively. The rela-
tionship is such that the probability for efficacy and toxicity of a certain grade,
respectively, is monotonically increasing with the dose.

The additional parameter τ is introduced to take into account a possible depen-
dence between both endpoints. It is restricted to the interval [−1,1] to ensure a valid
probability distribution. For τ = 0, both endpoints are independent, for τ > 0 we
have a positive correlation, and for τ < 0 the correlation is negative.

2.2 Optimal Designs for This Model

Following well-known optimal design theory, we first present the information ma-
trix for this model. Thereafter we give designs for specific parameter settings.

2.2.1 Information Matrices

The information matrix of a single observation at design point x given the parameter
vector θθθ = (μ ,α1, ...,αK ,σ ,β ,τ)T is denoted by MMM(x,θθθ), and can be derived from

MMM(x,θθθ) = E

(
∂ l
∂θθθ

∂ l

∂θθθ T

)
,
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where l denotes the log-likelihood function of a single observation yyy = ( j, i).
For notational convenience, let us define

H(x,y) := F(x)[1+ τ{1−F(x)}{1−2F(y)}].

Let α0 =−∞ and αK+1 = ∞. Note that H(xα0 ,xμ) = 1 and H(xαK+1 ,xμ) = 0.
Then the information matrix for this model is given by

MMM(x,θθθ) =
(

VVV ·DDD ·HHH
tttT

)
PPP
(

HHHT ·DDD ·VVV T , ttt
)
,

where:
DDD = diag

[
F(xμ){1−F(xμ)}/σ , F(xα1){1−F(xα1)}/β , . . . , F(xαK ){1−F(xαK )}/β

]
∼ (K +1)× (K +1);

PPP =

⎛
⎜⎝diag

(
1

p j0

)K

j=0
0

0 diag
(

1
p j1

)K

j=0

⎞
⎟⎠ ,

with p ji = P(T = j and E = i), and
HHH = (HHH1 | HHH2), where the matrix HHH is composed of two similar looking matrices
HHH1 and HHH2, both of dimension (K +1)× (K +1). Let

HHH0 = diagH(xμ ,xα j) , hhh =
(

H(xα j ,xμ)−H(xα j+1 ,xμ)
)K

j=0
and

AAA =

⎛
⎜⎜⎜⎜⎝

−1 1 0

0 −1
. . .

. . . 1 0
0 −1 1

⎞
⎟⎟⎟⎟⎠ .

Then HHH2 =
(

hhhT

HHH0AAA

)
. HHH1 has the same structure and is given by HHH1 =

(
000
AAA

)
−

HHH2.
Additionally,

VVV =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0
0 1 0
...

. . .
...

0 0 . . . 1
xμ 0 · · · 0
0 xα1 · · · xαK

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
∼ (K +3)× (K +1),

and ttt =
(
tttT

1 , −tttT
1

)
with
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Fig. 1: D-optimal design for the bivariate model with α1 = 0,α3 = 2α2,β = 1,σ = 1 and τ = 0.8;
left: optimal design points, right: optimal weights.

ttt1 =
(

F(xμ){1−F(xμ)}[F(xα j+1){1−F(xα j+1)}−F(xα j){1−F(xα j)}]
)K

j=0
.

MMM is of rank K + 1 and therefore not of full rank. This implies that e.g. a D-
optimal design has to comprise at least two distinct designs points, since a one-
point-design would lead to a singular information matrix.

Details of the derivation of the information matrix and its rank can be found in
Roth, 2009b.

2.2.2 Locally D-optimal Designs

In this section we present locally D-optimal designs for specific parameter settings.
These designs are derived numerically using the information matrix given above,
and thus are only approximations to the optimal designs, but with high efficiency.

Consider the following setting: there is one binary endpoint and one categorical
endpoint with 4 categories (i.e. K = 3). We consider a standardized model where,
without loss of generality, μ = 0 and σ = 1 (cf. Ford et al., 1992) and take β = 1 and
τ = 0.8. The value for α1 is fixed to 0, α2 is varied from α1 to 10 and α3 is given
by 2α2 to get equidistant categories. The D-optimal designs for these parameter
constellations are given in Figure 1.

The number of design points varies from 2 to 4. It increases as the differences
between the parameters α j increase. It stands out that two of the four design points
coincide with α2 and α3 for large values of these parameters, while the other design
points spread out around μ and α1. The weights corresponding to the design points
equal to α2 and α3 converge to equal values of approximately 0.15, while the other
weights differ and are approximately 0.34 and 0.37.

For other parameter settings, like different number of categories, different ratios
of σ and β and values of α1 different from zero, a similar structure is seen. The
number of design points always increases with the difference between the values of
the α js, but never gets larger than the number of location and dispersion parameters
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in the model. It is noteworthy that the number of design points is less than the
total number of parameters, due to the multivariate responses. For the case of 2×2
categories, the maximum number of design points is 4, whereas for the case of 2×4
categories, there are 6 design points at a maximum.

The results presented above show that for this model with a reasonable number
of categories, we can derive locally D-optimal designs with few design points, that
are thus applicable in practice.

3 Sequential Approach and Simulation Study

We now use the model described above in the setting of the Sequential Locally
Optimal Design (SLOD, cf. Roth, 2009a). SLOD generally works as follows. We
start with a usual 3+3 design, and continue until we can estimate the parameters in
a chosen model. Then we continue with the design that maximizes the cumulative
information of the experiment with respect to a specified optimality criterion by
adding a fixed number of additional subjects. The design space can be restricted to
satisfy safety constraints. We re-estimate the model parameters and adjust the design
space and the design after each cohort, and stop when the pre-specified maximum
sample size is reached.

Here we apply SLOD based on a logistic, a proportional odds and the bivariate
model derived above with 2×2 categories. We perform simulations to compare the
properties of these approaches with the traditional 3+3 design.

We display some of the results of a simulation study. We only consider one dose
response scenario and only display the results based on the D-criterion and a cohort
size of one. We only used the pre-specified sequence of doses, thus being able to
apply a simple grid search to find the best doses for the subsequent cohort. Addi-
tionally we introduced a safety constraint such that the highest admissible dose is
one dose step above the currently estimated MTD.

We assumed a dose-response scenario using the doses 0.6, 1.2, 2, 3, 4, 5.3, 7, 9,
12.4, 16.5, 22 and 29.4 mg. The true dose toxicity relationship is either given by

• a logistic model with parameter α = 30 and β = 7.67 or
• a proportional odds model with parameters α1 = 14, α2 = 22, α3 = 30 and β =

7.67 or
• the bivariate model described above with parameter α = 30, β = 7.67, μ = 20,

σ = 5 and τ = 0,

where the parameters α j and β describe the dose toxicity relationship, whereas pa-
rameters μ and σ are associated with the dose efficacy relationship.

Defining DLTs in the proportional odds model as toxicities observed in the high-
est of the four categories, which corresponds to the DLT definition within the frame-
work of the logistic model, the MTD is 22mg for all of the three models. Addition-
ally, in the bivariate model, the minimum effective dose (minED), being the lowest
dose where the estimated probability of efficacy is larger than 1

3 , is 18.5 mg.
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Fig. 2: Percentage of each dose being estimated as the MT D for the different methods.

For each of the four approaches, 10 000 simulation runs were conducted. In Fig-
ure 2, for each method, the percentage of correctly estimated MTDs and the distri-
bution of the estimated MTDs is displayed.

Other features of the respective methods are given in Table 1. The average num-
ber of subjects (N), the average number of DLTs, the average number of patiens
treated above the MTD and the MSE of the estimated MTD is displayed for all
methods. For SLOD, the ratio of the upper and lower 95% confidence interval for
the MTD is given.

Table 1: Average number of subjects (N), of observed DLT s (NDLT ), of subjects treated with doses
above the MT D (N>MT D), mean squared error for the MT D (MSE MTD) and minimum effective
dose (MSE minED), and median width of the 95% confidence intervals for the MT D (CI MTD)
and the minimum effective dose (CI minED) for the different methods.

SLOD

3+3 design logistic model prop. odds model bivariate model

N 38.43 35.35 37.94 37.97

NDLT 3.44 3.81 5.61 4.81

N>MTD 1.61 3.86 6.18 5.42

MSE MTD 73.05 69.16 39.39 47.25

CI MTD 1.95 1.96 2.03

For the approach based on the bivariate model, additional information on the
performance in estimating the minimum effective dose can be obtained from the
experiments. In these simulations, the MSE of the estimated minED is 8.83 and the
ratio of upper and lower limit of the 95% confidence interval for the minED is 1.87.

The results of this simulation study show the SLOD generally performs better
than the traditional 3+3 design with respect to finding the correct MTD. At the
same time, the risk for the patients is slightly increased with SLOD. Considering
the bivariate model, we observe that the precision of the estimated MTD is in the
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same range as for the logistic model, but with the advantage of additionally being
able to estimate the minED with considerable precision.

4 Discussion

We presented a bivariate model that is appropriate for simultaneously analyzing a
categorical toxicity outcome and a binary efficacy outcome. The locally D-optimal
designs in this model comprise relatively few design points and thus are applicable
in practice. We presented a sequential approach where we can apply the optimal
designs for this bivariate model, and thus introduced the possibility of incorporating
additional information on both toxicity and efficacy in early phase clinical trials.

The simulations show that the suggested approach performs better than the tra-
ditional 3+3 design. Accounting for the efficacy endpoint in the design does not
downgrade the information that can be obtained for the toxicity endpoint, yet valu-
able information on the efficacy endpoint can be gained.
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A Radial Scanning Statistic for Selecting
Space-filling Designs in Computer Experiments

Olivier Roustant, Jessica Franco, Laurent Carraro and Astrid Jourdan

Abstract In the study of computer codes, filling space as uniformly as possible is
important to describe the complexity of the investigated phenomenon. However, this
property is not conserved by reducing the dimension. Some numeric experiment de-
signs are conceived in this sense as Latin hypercubes or orthogonal arrays, but they
consider only the projections onto the axes or the coordinate planes. We introduce
a statistic which allows studying the good distribution of points according to all
1-dimensional projections. By angularly scanning the domain, we obtain a useful
graphical representation. The advantages of this new tool are demonstrated on usual
space-filling designs. Graphical, decisional and dimensionality issues are discussed.

1 Introduction

For the last 15 years or so, the design of experiments theory initiated by Fisher
(1926) has experienced a revival for the analysis of costly industrial computer codes.
This development has led to at least two major changes. First, these codes repre-
sent phenomena of an increasing complexity, which implies that the corresponding
models are often nonlinear and/or nonparametric. Second, the experiment itself is
different. Numerical experiments are simulations and, except for stochastic codes,
produce the same response for identical conditions. Thus, replications are useless.

In this new paradigm, the experiment planning methods are different. For exam-
ple, when the code is to be analyzed for the first time, one often tries to satisfy the
following two requirements. Firstly, distribute the points in the space as uniformly
as possible to catch non-linearities; this excludes repetitions also. Secondly, this
space coverage should remain well-distributed even when the effective dimension
is lowered. The first requirement was the starting point of research work in space-
filling designs (SFD) (see e.g. Fang, Li, and Sudjianto 2006; Santner, Williams, and
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Notz 2003). The second requirement stems from the observation that codes often
depend only on a few influential variables, which may be either the given variables
themselves or linear combinations of these variables. Note that dimension reducing
techniques like KDR (Fukumizu, Bach, and Jordan 2009) or SIR (Li 1991) effec-
tively identify the subspace generated by the influential variables. Hence, it is de-
sirable that the space-filling property should be also satisfied in the projection onto
subspaces. A good challenger is the uniform random design (UD). However, the
sampled points are often gathered or unequally spaced. Other candidates are Latin
hypercube designs (LHD), orthogonal arrays (OA), and low-discrepancy sequences
(LDS) (Koehler and Owen 1996; Niederreiter 1987). Nevertheless LHDs and OAs
consider the projections onto margins, which is not sufficient if, for example, the
code is a function of one linear combination of the variables. Finally, some LDSs
behave poorly in projection.

The aim of this article is to introduce a statistic based on all 1-dimensional or-
thogonal projections to check uniformity of an experimental design. Some work can
be found in the literature of random numbers generators testing. For instance, the
spectral test measures the maximal distance of points contained in oblique parallel
planes (Knuth 1997; Ripley 1987). However, the test applies to designs that exhibit
a lattice structure, which is not always the case in computer experiments since SFDs
are often obtained by sampling or scrambling. There are also some uniformity tests
to detect particular features such as clustering (see e.g. L’Ecuyer and Simard 2007).
Nevertheless, the orthogonal projection of a uniform distribution onto an oblique
direction is not uniform, which requires an adaptation.

The article is structured as follows. In section 2, we introduce the radial scanning
statistic and its the associated visualization tool, and address graphical and deci-
sional issues. In section 3, we show examples of applications for selecting space-
filling designs. In section 4, dimensionality issues and further researches are dis-
cussed. Software is available at http://www.emse.fr/ roustant.

2 The Radial Scanning Statistic

As a motivating example, let us consider a simulator depending on 8 variables
x1, . . . ,x8 on the cubic domain [−1,1]8. As a first stage, a reasonable way to study
its behaviour is to evaluate it at few points defined by a space-filling design. For
instance, let us choose an 80-point1 Sobol LDS Niederreiter (1987). As shown in
Figure 1, this is not always a good choice. Indeed, looking at the orthogonal projec-
tions onto the axis corresponding to the angle 3π

4 , we observe that if the code is a
function of x2− x7, the information brought by the 80 design points comes down to
only 16 different values. This problem was automatically detected by what we call
the “radial scanning statistic” (RSS). This tool scans angularly every 2-dimensional
(2D) cubic domain and detects the angles for which the projected points are not

1 We follow the rule argued by Loeppky, Sacks, and Welch (2008) to select the sample size as
approximately 10 times the problem dimension.
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Fig. 1: Defect detection of 8D-Sobol low discrepancy sequence of length 80: projected points onto
dimensions (2,7) [left], RSS curve [middle] and projected points onto the worst axis [right].

“well” distributed. Here, the 8D design is first projected orthogonally onto all the 28
coordinate planes, which provides 2D designs for which we can compute the RSS.
The worst case is detected for the dimensions (2,7). In that coordinate plane, note
that the two detected angles π

4 , 3π
4 correspond to situations where there are many

replications in the projection sample.
We now turn to the definition of the radial scanning statistic. It can be theoret-

ically defined for any k-dimensional cubic domain. For the sake of simplicity, we
present the 2D case. Let Ω = [−1,1]2 and let x(1), ...,x(n) be an experimental de-
sign. For a given angle θ , denote by Lθ the straight line in the direction θ and by
Πθ (x(1)), . . . ,Πθ (x(n)) the orthogonal projection of design points onto Lθ . The RSS
tests the null hypothesis H0 :“ x(1), ...,x(n) is a sample of the uniform distribution in
Ω ”. Ideally we would like that, for any θ , the projected points Πθ (x(i)) are close to
their theoretical distribution μθ under H0. This is a standard goodness-of-fit (GOF)
problem. As we see next, μθ is perfectly known, so the problem reduces to testing
for the uniform distribution after applying the Probability Integral Transformation
Fθ (see e.g. D’Agostino and Stephens 1986, Chapter 4), where Fθ is the cdf of μθ .
Finally the RSS is defined as follows:

Definition 1. Let S be a GOF statistic for the uniform distribution. For an angle
θ ∈ [0,2π], the radial scanning statistic (RSS) is defined by:

RS(θ) = S
{

Fθ ◦Πθ (x(1)), . . . ,Fθ ◦Πθ (x(n))
}

(1)

For simplicity’s sake, RSS will also refer to the family of statistics RS(θ) indexed
by θ ; the corresponding polar curve is called an RSS curve.

The cdf Fθ of μθ is known analytically in two or higher dimensions. First remark
that μθ is not the uniform distribution, except when θ corresponds to a coordinate

axis. For instance when θ = π
4 , Πθ (x(i)) =

√
2

2 (x(i)
1 + x(i)

2 ) so that μθ is a triangular
distribution. In the general case, the projection onto Lθ is a linear combination of
independent random variables of uniform distribution, which leads to a traditional
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problem of probabilities first solved by Lagrange in the 18th century. The result is
the following (see proof and discussion in Shiu 1987):

Proposition 1 If X is a random vector uniformly distributed over the hypercube
Ω = [−1,1]d and Z is the projection of X onto the straight line generated by a
unitary vector a such that a j �= 0,∀ j ∈ {1, . . . ,d}, then the cdf of Z is given by:

FZ(z) =
1

∏d
j=1 2a j

∑
s∈{−1,1}d

ε(s)
(x+ < s,a >)d

+

d!
, (2)

where ε(s) = ∏d
j=1 s j, < ., . > is the usual scalar product and y+ = max(y,0). As a

result, for a given axis, Z admits a piecewise linear density whose nodes correspond
to the projections of the domain corners.

2.1 Selecting a Goodness-of-fit Test for the Uniform Distribution

A key point is the choice of S. First remark that a single statistical test will not
detect all departures from uniformity. In our case, it seems reasonable to focus on
replications or clustering, since they result in losses of information, as explained in
the previous section. Then our choice should be guided by the power of the test.
For instance, the usual edf statistics such as Kolmogorov-Smirnov (KS) or Cramér-
Von Mises (CVM) fail to detect clustering (L’Ecuyer and Simard 2007). On the
other hand, the spacings transformation used to increase power in testing random
numbers generators results in over-detection: only uniform random designs will pass
the test. A compromise is reached with the statistics based on spacings (D’Agostino
and Stephens 1986). If U1, . . . ,Un is a sample from a uniform distribution on [0,1],
and U(1), . . . ,U(n) denotes the sorted values in increasing order, the spacings Di are
defined as:

Di = U(i)−U(i−1), i = 1, . . . ,n+1 (3)

where, by convention, U(0) = 0 and U(n+1) = 1. An example is the Greenwood statis-
tic Gn = ∑n+1

i=1 D2
i , equivalent2 to Vn = ∑n+1

i=1 (Di− 1
n+1 )2. As an illustration, we plot

the RSS curve of a 7× 7 factorial design obtained with KS, CVM and Greenwood
statistics (Figure 2). Remark that KS is a L∞-type statistic, while CVM and Green-
wood are L2-type. In each case, the worst angle corresponds to the coordinate axis
onto which the 49 values project to 7 different values, but the only case of rejection
is for Greenwood. In addition, the other undesirable angles π

4 , 3π
4 are also detected.

The reason why such a difference is visible for detection is that the statistics
based on cdf work roughly on differences between (empirical and theoretical) cu-
mulative probabilities U(i)− i

n+1 , while those based on spacings work on the cor-
responding differences Di− 1

n+1 = (U(i)− i
n+1 )− (U(i−1)− i−1

n+1 ). In the first case,
local deviations from uniformity are cumulated, and may be smoothed too much to
be detected. Another advantage of spacings is that the corresponding statistics look

2 Indeed it is easily shown that Vn = Gn− 1
n+1 .
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Fig. 2: Defect detection of a 2D Factorial design of size 49 with three GOF statistics: CVM [left],
KS [middle] and Greenwood [right]. The solid circle corresponds to the threshold at level 5%.

robust to small changes of the domain boundaries. As a conclusion, we recommend
using statistics based on spacings.

2.2 Graphical Properties

When looking at the examples in Figures 1 and 2, it appears that the RSS curve is
very irregular. Nevertheless, it is continuous in most cases as shown in the proposi-
tion below – an elementary proof is based on (1).

Proposition 2 Denote by S the GOF statistic used for testing uniformity, considered
as a function of the ordered sample values. If S is continuous, then RS is continuous
everywhere. If S is differentiable, then RS admits left and right derivatives every-
where and is differentiable at θ ∈ [0,2π] if and only if the projections onto Lθ are
all different.

As a consequence, continuity is ensured for all GOF statistics used in this paper.
The differentiability condition is suitable at least for Greenwood and CVM statis-
tics. In practice, we need to use a small discretization step. From our experience, a
reasonable value may be 0.5 degrees.

2.3 Decisional Issues

To build a unique statistical test with the radial scanning statistic raises several is-
sues.

First, many designs encountered in computer experiments are deterministic, and
statistical tests should be interpreted carefully. Actually, a correct interpretation is
possible by considering the probability of rejection pr. For a design generated at
random, pr is the usual p-value, defined as pr(θ) = P(RS(θ) > RS

obs(θ)|H0), where
RS
obs(θ) is the value taken by RS(θ) at the random design. For a given θ , pr(θ) is a

U(0,1) random variable, and H0 is rejected at level α if pr(θ) < α . Now if the de-
sign is deterministic, pr is defined as pr(θ) = P{RS(θ) > rS

obs(θ)}, where rS
obs(θ)

is now deterministic. Then rejecting at level α simply means that the proportion of
UDs that behave worse is less than α .
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More problematic is the multiple testing problem over angles and dimensions.
Indeed, for each coordinate plane onto which the design is first projected (see §§2
and 3), we have a family of statistical tests indexed by an angle θ ∈ [0,π] with null
hypothesis H0(θ) = H0 :“ x(1), ...,x(n) is a sample of the uniform distribution in
Ω ”. Multiple testing has been studied intensely since the work of Benjamini and
Hochberg (1995). In our case, a direct application seems to be difficult, due to the
dependencies between RS(θ). A partial solution could be proposed by considering
some global statistics, as maxθ RS(θ), which does not depend on θ .

3 Usage and Applications

For the sake of simplicity, the radial scanning statistic was presented in two dimen-
sions. Nevertheless, Proposition 1 is very general and Definition 1 is easily extended
to higher dimensions: in 3D, the RSS will give a surface in spherical coordinates
and, in general, a hyper-surface indexed by 1D directions. In this section, we de-
tail several applications of the 2D and 3D RSS to defect detection of d-dimensional
designs. The general case is discussed in the conclusion.

First remark that uniformity is preserved by orthogonal projections onto coor-
dinate subspaces. Thus, for a d-dimensional design x(1), . . . ,x(n), the 2D RSS can

be computed from the 2D design (x(i)
j1

,x(i)
j2

) for all pairs ( j1, j2) of dimensions. For
three dimensions, we have triplets. The RSS can be used in 2 steps:

1. Automatic defect detection3;
2. Defect visualization in a coordinate plane (or 3D subspace).

This scheme was followed for the 8D Sobol sequence of Figure 1 (see §2). As a
second example, consider the 3D random OA of size 49 of Figure 3 (right). It was
obtained from a deterministic OA (midpoint OA), by sampling uniformly one point
for every cell defined by the 49 points. This OA has strength 2, which implies that
its projections onto 1D and 2D coordinate subspaces are well distributed, as can be
seen in Figure 3 (left). As a result, no particular feature is noted by the 2D RSS.
However, a serious defect is detected by the 3D RSS: there are 4 clusters among the
projected points in one direction. This is because the 49 points of the underlying
midpoint OA are contained in 4 parallel oblique planes. By adding noise to the data,
the perfect alignments disappear but the clusters remain.

Automatic defect detection can be used to compare SFDs. For instance, let us
choose the best 8D design of size 80 among popular designs. In Table 1, we have
indicated the worst value of the Greenwood statistic over all pairs of dimensions and
angles for several LHDs and LDSs. The result for UDs is also mentioned, and will
be used as a benchmark. The worst design is clearly the Halton sequence, due to the
presence of alignments as well as a large empty region. Among LDSs, the best one
is Sobol. This design is not convenient (see Figure 1), but the result can be much
improved by “scrambling” (Koehler and Owen 1996). With Owen scrambling, the

3 The RSS typically detects alignments, clustering or empty regions. In computer experiments
these features can be viewed as defects, since they result in losses of information.
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Fig. 3: A 3D random OA of size 49 (2D projections, left) and its 3D RSS plot (right). The worst
direction and the corresponding orthogonal projections of design points are represented by solid
lines.

Sobol sequences behave as well as uniform designs with respect to 1-dimensional
projections. This is also the case for the Audze-Eglais LHD.

Table 1: Worst value of the Greenwood statistic for 8-dimensional SFDs of size 80

Design typea Statistic valueb

Uniform 0.039 (0.003)
Maximin Latin hypercube 0.048
Audze-Eglais Latin hypercube 0.037
Halton sequence 0.244
Sobol sequence 0.101
Sobol sequence, with Owen scrambling 0.041 (0.006)
Sobol sequence, with Faure-Tezuka scrambling 0.088 (0.010)
Sobol sequence, with Owen + Faure-Tezuka scrambling 0.041 (0.006)

aLHDs are taken from http://www.spacefillingdesigns.nl. Halton and Sobol sequences are com-
puted with the R package randtoolbox (http://www.r-project.org). bFor stochastic designs, the first
number is the mean of the results over 100 simulations, and the second (in brackets) their standard
deviation.

4 Conclusion and Further Research

The radial scanning statistic is a tool devoted to checking uniformity of d-dimensional
designs according to all 1-dimensional orthogonal projections, including non-factorial
axes. Despite the decisional issues encountered, the 2D and 3D RSS succeed in au-
tomatically detecting the main defects of several 8D popular LHDs and low discrep-
ancy sequences, and in comparing them. Thus, it may be used to select the SFDs that
satisfy the initial requirement of filling space after dimension reduction.

Further research will address dimensionality issues. As shown with the OA of
Figure 3, some defects cannot be seen by projections onto small dimensional sub-
spaces. Therefore, the development of d-dimensional RSS with d ≥ 4 is under con-
sideration. For computational reasons, an exhaustive search is impossible and an al-
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ternative is to use an optimization technique. Another direction is to adapt the radial
scanning statistic to orthogonal projections onto oblique 2D or higher subspaces.
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Optimal Designs for Two-Colour Microarray
Experiments for Estimating Interactions

Katharina Schiffl and Ralf-Dieter Hilgers

Abstract In recent years microarray experiments have become one of the most
prominent tools for analyzing gene expressions. However, microarrays are expen-
sive; thus carefully planning of these experiments is fundamental. Since in practical
applications researchers are often interested in interactions in multi-factor settings,
we derive optimal designs for their estimation in this paper. We will show the opti-
mality of candidate designs using equivalence theorems. The resulting designs help
to ensure precise results with minimal resources.

1 Introduction

Nowadays microarray experiments form a widely used tool in gene expression
analysis due to the fact that they can screen thousands of genes simultaneously. One
of their main goals is to identify differently expressed genes that can be made ac-
countable for a certain disease. Throughout this work we will focus on two channel
microarrays. They can hybridize two samples on the same array; mRNA transcripts
from two biological samples, called targets, are extracted and labelled with green
(Cy3) or red (Cy5) dyes, respectively, and are placed on the microarray. After hy-
bridization, a laser measures the dye fluorescence of each colour for all genes on the
array. These intensities correspond to the gene expressions of the considered genes.
Higher intensities indicate higher gene expressions. A detailed description of mi-
croarray experiments can be found in Wit and McClure (2004).
Since microarrays are expensive, it is fundamental to use appropriate designs to
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get precise results with minimal resources. Optimal designs assign the samples to
the microarrays in such a way as to ensure unbiased estimates with minimal vari-
ances of the effects of interest. Thereby, microarray experiments correspond to in-
complete block designs with block size two. Design issues for microarray exper-
iments have been investigated intensively in the last years (see, for example, Kerr
and Churchill 2001) although most authors focus on one factor of interest. Some au-
thors investigate main effects and first-order interactions. See, for example Glonek
and Solomon (2004) or Banerjee and Mukerjee (2007), who consider factorial de-
signs for microarray experiments under the baseline parametrization. Furthermore,
Kerr (2006) and Grossmann and Schwabe (2007) derive efficient designs for the es-
timation of main effects and two-way interactions when all factors have two levels.
Another reference is Stanzel and Hilgers (2007), who give approximate designs for
the estimation of two-factor interactions. However, in clinical trials scientists are
often interested in many factors and their interactions. For example, in experiments
with different drugs the interactions of these drugs are often of primary interest.
Therefore, the interesting question of optimal designs for estimating interactions in
multi factor settings arises and will be considered in this paper. We extend the in-
vestigations of Stanzel and Hilgers (2007), who focused on two factors of interest.
Section 2 introduces the underlying statistical model describing microarray experi-
ments, gives a definition of the optimality criteria used and presents a short overview
of the methods we apply. Optimal designs for the estimation of interactions are de-
rived in Section 3. The paper concludes with a brief discussion.

2 Preliminaries

Many authors have focused on the statistical analysis and modelling of microarray
experiments. Kerr, Martin, and Churchill (2000) analyzed two-colour microarray
data by analysis of variance (ANOVA) and recommended a model describing the
logarithms of the measured intensities dependent on treatment, array, dye and gene
effects including interactions, namely

log(y) = T τ +Aα +Dδ +Gγ + ε, (1)

where y = (y1, . . . ,y2ag) is the vector of all observed dye intensities. These dye
intensities depend on the treatment effect τ = (τ1, . . . ,τk), the array effect α =
(α1, . . . ,αa), the dye used δ = (δgreen,δred), and the gene investigated γ = (γ1, . . . ,
γg). The 2ag×(k+a+2+g) design matrix is written [T | A |D |G]. The error terms
ε = (ε1, . . . ,ε2ag) are assumed to be independently identically distributed with mean
zero and variance σ2.
Kerr’s work has been extended by many authors. For instance, Landgrebe, Bretz,
and Brunner (2006) analyzed the logarithmc ratios of dye intensities of each mi-
croarray separately for each gene. Instead of the two observations
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log(yi jgreen) = τi +α j +δgreen + εi jgreen and

log(yl jred) = τl +α j +δred + εl jred,

Landgrebe et al. considered the log ratio

log

(
yi jgreen
yl jred

)
= τi− τl +δgreen−δred + εi jgreen− εl jred.

Therefore, they investigated

z = Xτ +Wδ +η (2)

where z = (z1, . . . ,za) is the vector of all log ratios of the dye intensities of
each array dependent on the treatment effect τ = (τ1, . . . ,τk) and the dye δ =
(δgreen,δred). [X | W ] is the design matrix, where each row of X consists of
exactly one 1 and one −1, with all other entries equal to zero. W is equal to(

1 1 ... 1
−1 −1 ... −1

)T
and η is the independently identically distributed error with mean

zero and equal variance σ2. Throughout this paper we will consider model (2)
with the novel aspect that n factors of interest are involved. Thus, we denote by
τ = (τ11...1, . . . ,τ11...kn ; . . . ;τk1k2...kn−11, . . . ,τk1k2...kn) the vector of all combinations
of factor levels of interest, where ki is the number of factor levels of factor i,
i ∈ {1, . . . ,n}. For n = 1 the model reduces to model (2).

Optimal designs for a given contrast set C minimize a particular score function
of the variance

Var

{
CT
(

τ̂
δ̂

)}
= σ2CT ([X |W ]T [X |W ]

)−
C. (3)

Throughout this paper we will consider the family of φp-optimality criteria for p ∈
(−∞,1]. Thus the score function

(
1
r

r

∑
j=1

λ−p
j

)−1
p

is minimized for the positive eigenvalues λ1, . . . ,λr of the variance-covariance ma-

trix of the estimated parameters. For p = 0 the expression
(

∏r
j=1 λ j

)1/r
is mini-

mized to yield D-optimality; for p = −1 the A-optimality criterion results. Since
we are not interested in the dye effect, the last two rows of all contrast matrices C
contain only zero entries. Therefore, from now on, we will ignore the dye effect in
model 2 although all results go through with the dye effect present. One method in
approximate theory to show φp-optimality of a given candidate design is the follow-
ing equivalence theorem Pukelsheim 1993:
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Theorem 1. A design is φp-optimal, p ∈ (−∞,1], for estimation of the contrast set
CT τ if and only if there exists a generalized inverse G = (XT PX)− of XT PX that
satisfies the normality inequalities

xT GC
(
CT GC

)+ (
CT GC

)1−p (
CT GC

)+
CT GT x≤ Tr

((
CT GC

)+ (
CT GC

)1−p
)
(4)

for all possible design points x ∈X . X is the set of k1 · . . . ·kn dimensional column
vectors with exactly one entry equal to 1 and exactly one entry equal to−1, all other
entries are zero, X = {x ∈ {−1,0,1}k1···kn : ∃!i with xi = 1∧∃! j with x j = −1}.
∃! stands for the expression“there is one and only one”. P is the diagonal matrix
containing the optimal weights for all design points listed in the design matrix X.(
CT GC

)+
denotes the Moore-Penrose Inverse of

(
CT GC

)
.

Stanzel and Hilgers (2007) derived optimal designs for the estimation of two-way in-
teractions, i.e. they considered contrast matrices denoted by PT

k1
⊗PT

k2
, where k1 and

k2 are the levels of the two factors of interest. Pk is recursive defined by P2 := [1,−1]

and Pk :=

[
1k−1 −Ik−1

0(k−2
2 ) Pk−1

]
for all k ∈ N, whereas 1k and 0k are k-dimensional col-

umn vectors with all entries equal to 1 and 0, respectively. Ik denotes the k× k
identity matrix and⊗ denotes the Kronecker product. Hinkelmann and Kempthorne
(2005) denoted three-way interactions as PT

k1
⊗PT

k2
⊗PT

k3
, where k1,k2 and k3 are the

levels of the three factors of interest. Interactions in multi-factor settings are denoted
by PT

k1
⊗PT

k2
⊗ . . .⊗PT

kn
. In the following section, we consider the important ques-

tion of optimal designs for interactions. We will also extend the results of Stanzel
and Hilgers (2007) in the two-factor setting and consider contrast sets PT

k1
⊗C for

arbitrary contrast matrices C.

3 Optimal Designs

We derive φp-optimal designs, p ∈ (−∞,1], for the estimation of interactions in
multi-factor settings for model 2. Since we are not interested in the dyes, in this
section we will ignore the dye effect in model 2. Obviously, all results can be shown
similarly with the dye effect; only, in some cases, dye swaps should be added to
provide optimality.

3.1 Interactions in Multi-factor Settings for the Estimation of All
Pairwise Comparisons

The following theorem gives optimal designs for the estimation of interactions
Cn = PT

k1
⊗PT

k2
⊗ . . .⊗PT

kn
in multi-factor settings, if we are interested in all pair-

wise comparisons. In practice, these results are most interesting for n = 3 factors.
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Theorem 2. Consider the multi-factor model (2) with n ∈ N factors of interest: ki,
i∈ {1, . . . ,n}, denotes the number of levels of factor i, w.l.o.g. 2≤ k1 ≤ . . .≤ kn. The
φp-optimal design, p≤ 1, for estimation of the interactions CT

n = Pk1⊗Pk2⊗ . . .⊗Pkn

is the design with design matrix Xn = Pk1 ⊗ Ik2 ⊗ . . .⊗ Ikn and equal weights P(n) =
1

k2···kn(k1
2 )

I
k2···kn(k1

2 ).

The proof is relegated to the Appendix. At this point we know the optimal design
if our primary interest is only the multi-factor interactions. First, the factor with
the smallest number of levels is chosen. Then, all pairwise comparisons of these
factor levels are allocated on microarrays for each factor level combination of the
remaining factors. In many practical applications the number of factor levels does
not exceed ki = 3, i ∈ {1, . . . ,n}. See, for example, Churchill (2002). The derived
optimal designs also perform well for estimation of the main effects, although these
are not our primary interest. In particular, the constructed designs are also optimal
for one main effect (see Stanzel and Hilgers 2007).

3.2 Interactions in Two-factor Settings

In addition to the estimation of the interactions for all pairwise comparisons, bi-
ologists are often interested in further contrast sets, for instance comparisons with
a control treatment, Helmert contrasts or “all to next” contrasts. Considering two
factors with k1 and k2 factor levels, optimal designs for the contrasts PT

k1
⊗C are

investigated for arbitrary contrast matrices C.

Theorem 3. Suppose that the design with the a× k2 design matrix X and the
a× a weight matrix P is φp-optimal, p ≤ 1, for estimation of the contrasts CT τ
in the one-factor model (2) without dye. Then, the design with design matrix
X̃ = Ik1 ⊗ X and weight matrix P̃ = 1

k1

(
Ik1 ⊗P

)
is φp-optimal in the two-factor

model (2) without dye for the estimation of the contrast set C̃τ with C̃ = PT
k1
⊗C,

if ai j ≤ 0, i �= j and aii ≤ k1−1
2k1

const with const = Tr{(CT GC)+(CT GC)1−p} and

A = GC(CT GC)+(CT GC)1−p(CT GC)+CT GT .

The proof of this theorem is similar to the proof of Theorem 2. Considering
C = PT

k2
the conditions in Theorem 3 reduce to k2 ≤ k1. Therefore, for C = PT

k2
Theorem 3 yields the same results as stated in Stanzel and Hilgers (2007). However,
Theorem 3 can also be applied for other contrast sets. For instance, the conditions
in Theorem 3 also reduce to k2 ≤ k1, if the treatment control comparisons are of
interest, i.e. τ0− τi, i ∈ {1, . . . ,k2} are of interest, where τ0 denotes the effect of the
control treatment.
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4 Discussion

Interactions are of high interest in many applications. It is therefore important to
investigate optimal designs for their estimation. In this paper we have constructed
optimal designs for estimating interactions in multi-factor settings. In practice our
results have the potential to lead to precise results with minimal resources, so reduc-
ing the number of microarrays required in applications.
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ichen: 03HIPAB4).

Appendix: Proof of Theorem 2

We prove Theorem 2 by induction for fixed p using Theorem 1. Stanzel and Hilgers
(2007) provide the basis of the induction for n = 2. Define Gn := (XT

n P(n)Xn)+,
En := GnCn(GT

n GnCn)+(CT
n GnCn)1−p(CT

n GnCn)+CT
n GT

n & constn := Tr{(CT
n GnCn)+

(CT
n GnCn)1−p}. Let Jk be the k × k matrix with all entries equal to one. Us-

ing E2 = 2p−1k1−2p
2 k−p

1 (k1 − 1)1−p{(Ik1 − 1
k1

Jk1)⊗ (Ik2 − 1
k2

Jk2)} and const2 =

2pk−p
1 (k1− 1)1−p(k2− 1)k−2p

2 for k1 ≤ k2 (see Stanzel and Hilgers 2007), the fol-
lowing expressions can easily be shown:

En = 2p−1k−p
1 (k1−1)1−p

n

∏
i=2

k1−2p
i {(Ik1 −

1
k1

Jk1)⊗ . . .⊗ (Ikn −
1
kn

Jkn)},

constn = 2pk−p
1 (k1−1)1−p

n

∏
i=2

k
−2p
i (ki−1) =

(
k1−1

2k1

)−p n

∏
i=1

k−2p
i (ki−1).

Since Xn−1 with weights P(n−1) is φp-optimal for estimation of Cn−1, we know
that the normality inequalities xT En−1x ≤ constn−1 hold for all x ∈ Xn−1 = [x ∈
{−1,0,1}k1···kn−1 |∃!i : xi =−1∧∃! j : x j = 1]. Therefore, we have to show yT Eny≤
constn or equivalently yT (En−1⊗ (Ikn − 1

kn
Jkn))y kn ≤ (kn− 1)constn−1 for all y ∈

Xn = [y∈{−1,0,1}k1···kn |∃!i : yi =−1∧∃! j : y j = 1]. Suppose 1≤ h, l≤ k1k2 · · ·kn−1

and 1≤ i, j ≤ kn and partition

y = (y1; . . . ;yk1k2...kn−1) = (y11, . . . ,y1kn ; . . . ;yk1k2...kn−11, . . . ,yk1k2...kn−1kn).

The term xT En−1x≤ constn−1 for x∈Xn−1 with xh = 1 and xl =−1 is equivalent to

e(n−1)
hh +e(n−1)

ll −e(n−1)
hl −e(n−1)

lh ≤ constn−1. We will distinguish three cases. Firstly,
suppose h = l and i �= j, w.l.o.g. i < j and yhi = 1 as well as yl j =−1. Then
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yT kn(En−1⊗ (Ikn −
1
kn

Jkn))y = 2kne(n−1)
hh .

Due to the structure of En we know

e(n)
hh =

(
k1−1

2k1

)1−p n

∏
i=1

k−2p
i (ki−1).

Therefore we have to show

2kn

(
k1−1

2k1

)1−p n−1

∏
i=1

k−2p
i (ki−1)≤

(
k1−1

2k1

)−p n−1

∏
i=1

k−2p
i (ki−1)(kn−1)

⇔ kn(k1−1)≤ k1(kn−1).

This inequality is fulfilled for k1 ≤ kn. For h �= l and i = j the inequality can be
shown in a similar way. Assuming h �= l and i �= j, we get

yT kn(En−1⊗ (Ikn −
1
kn

Jkn))y = (kn−1)(e(n−1)
hh + e(n−1)

ll )+2e(n−1)
lh

≤ (kn−1)constn−1 +2kne(n−1)
hl .

Due to the structure of En−1 we know, for h �= l,

e(n−1)
lh ∈

{
(∏n

i=2 k
1−2p
i ) · (k1−1)q1(k2−1)q2 . . .(kn−1−1)qn−1(−1)q0

21−pkp
1 (k1−1)p−1 · k1k2 . . .kn−1∣∣∣∣∣for i ∈ {1, . . . ,n−1} is qi ∈ {0,1} and q0 = (n−1)−

n−1

∑
i=1

qi

}
.

Obviously, e(n−1)
hl ≤ 0 for q0 odd. Hence, let q0 be even and define

hn(k1, . . . ,kn) := 2p−1k−p
1 (k1−1)1−p(

n

∏
i=2

k
1−2p
i ).

Therefore, constn−1 = 2hn−1(k1, . . . ,kn−1)(∏n−1
i=2

ki−1
ki

) and we have to prove the fol-
lowing inequalities

2(kn−1)h(k1, . . . ,kn−1)(k1−1)(k2−1) · · ·(kn−1−1)
k1k2 · · ·kn−1

+
2h(k1, . . . ,kn−1)(k1−1)q1 · · ·(kn−1−1)qn−1(−1)q0

k1k2 · · ·kn−1

≤ 2(kn−1)h(k1, . . . ,kn−1)(
n−1

∏
i=2

ki−1
ki

)
k1

k1

⇔ (k1−1)q1(k2−1)q2 · · ·(kn−1−1)qn−1(−1)q0 ≤ (k2−1)(k3−1) · · ·(kn−1).
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This inequality is fulfilled for kn ≥ k1 ≥ 2 and for all qi ∈ {0,1} for i∈ {1, . . . ,n−1}
and q0 = n−∑n

i=1 qi, since all (ki−1)qi

ki−1 ≤ 1. This completes the proof.
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Discrimination Between Random and Fixed
Effect Logistic Regression Models

Chiara Tommasi, Maria Teresa Santos-Martı́n and Juan Manuel Rodrı́guez-Dı́az

Abstract Ds- and KL-optimum designs are computed for discriminating between
univariate logistic regression models with or without random effects. Both these
competing optimum designs are constructed numerically. The main problem in find-
ing them is the computation of some integrals at each step of the numerical proce-
dure. In order to improve the convergence speed of this numerical procedure some
integral approximations are suggested.

1 Introduction

In biosciences random effects play a fundamental role and the interest in finding
optimum designs in this context is growing. For instance, Mentré, Mallet, and Bac-
car (1997), Patan and Bogacka (2007) and Graßhoff, Holling, and Schwabe (2009)
discuss optimum designs for random effect regression models.

For fixed effect binary regression models, especially for logistic models, opti-
mum designs have been extensively studied in the literature. See Abdelbasit and
Plackett (1983), Minkin (1987) and Sitter and Fainaru (1997), among many oth-
ers. Recently, Ouwens, Frans, and Martijn (2006) have studied optimum designs
for logistic models with random intercepts. In all these papers the goal was to find
(locally) optimum designs for estimating the unknown parameters of the models
(or some functions of them). Sometimes, however, whether the model has random
or fixed effects may be unknown. In this case the aim of the experiment should
be dual, to choose between the rival models and to estimate the parameters of the
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chosen model. In this paper optimum designs for discriminating between fixed-
and random-effect univariate logistic regression models are computed. More specif-
ically, two different optimality criteria are consider: the well-known Ds-criterion
(see for instance Silvey 1980) and the KL-criterion, which is based on the Kullback-
Leibler discrepancy between the rival models and was proposed by López-Fidalgo,
Trandafir, and Tommasi (2007). Neither of the corresponding optimum designs can
be found analytically, thus numerical procedures must be used. The main problem
in constructing Ds- and KL-optimum designs is the computation of some integrals.
If such integrals are computed numerically the numerical procedures become very
slow, so that some approximations are needed. Theoretical details for deriving these
approximations to integrals are given in the Appendix.

The outline of the paper is as follows: in Section 2 the models and the notation
used throughout the work are introduced. In Sections 3 and 4, Ds- and KL-optimality
criteria are specialized for discriminating between logistic regression models with
or without random effects. Finally, in Section 5 an example is provided.

2 Logistic Regression Model

Let b = (b0,b1)′ be the vector of the so called fixed effects, where “ ′ ” denotes trans-
position, and let β = (β0,β1)′ be the vector of random coefficients, which come from
a Normal distribution with mean vector b and dispersion matrix V = diag(v2

0,v
2
1).

The case of non-diagonal V is somewhat more complex because it involves one
parameter more, but it does not change substantially the theoretical results of this
paper.

Let Y be a binary random response with success probability given by one of the
following models:

1. The random effect logistic regression model

⎧⎨
⎩

P(Y = 1|β ) = F(β0 +β1 x) =
eβ0+β1 x

1+ eβ0+β1 x

β ∼ N2(b,V);
(1)

2. The common (fixed effect) logistic regression model

P(Y = 1;b) = F(b0 +b1 x) =
eb0+b1 x

1+ eb0+b1 x . (2)

Let us denote model (1) by f1(y,x,θ1) and model (2) by f2(y,x,θ2) where θ1 =
(b′,v′)′ and θ2 = b are vectors of unknown parameters. Here v = (v0,v1)′ denotes
the vector of standard deviations of β .

The main aim of this paper is to find optimum designs for discriminating between
models (1) and (2). These two rival models are nested since the fixed effect model
is a special case of the random effect model when v0 = v1 = 0. Two possible cri-
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teria of optimality for handling this discrimination problem are the Ds-criterion for
estimating v (s = 2) and the KL-criterion. Both optimality criteria are motivated by
the likelihood ratio test for the hypothesis H0 : v0 = v1 = 0, because the correspond-
ing optimum designs are expected to yield good power for testing this hypothesis
(see for instance Dette and Titoff 2009 and López-Fidalgo, Trandafir, and Tommasi
2007).

3 Ds-Optimality Criterion

In order to construct a Ds-optimum design, the Fisher information matrix must be
computed.

It is well known that for fixed effect models the Fisher information matrix coin-
cides with the information matrix corresponding to the linearized binary regression
model. This equivalence holds even if the coefficients are random variables (Gaus-
sian or not). In order to have n independent observations, y1, . . . ,yn, it is assumed
that one observation per individual is taken, as in Graßhoff, Holling, and Schwabe
(2009). With this assumption, the log-likelihood corresponding to f1(y,x,θ1) is

logL(θ1) =
n

∑
i=1

log
∫

[F(β0 +β1 xi)]
yi [1−F(β0 +β1 xi)]

1−yi φ(β ,θ1) dβ ,

where the integration is taken over IR2 and φ(β ,θ1) denotes the pdf of β . The Fisher
information matrix is I(ξ ) = {Ik j(ξ )} where

Ik j(ξ ) = E

[
− ∂ 2

∂θ1k∂θ1 j
logL(θ1)

]
, k, j = 1, . . . ,4.

The random-effect logistic regression model (1) can be rewritten as Yi = E(Yi)+
εi where E(Yi) =

∫
F(β0 + β1 xi)φ(β ;θ1)dβ , E(εi) = 0 and Var(εi) =

∫
F(β0 +

β1 xi)φ(β ;θ1)dβ · [1− ∫
F(β0 + β1 xi)φ(β ;θ1)dβ ]. If this model is linearized at

some nominal values of the parameters then the corresponding information matrix
is M(ξ ) =

∫
X g(x)g(x)′ dξ (x), where g(x) = [g1(x),g2(x),g3(x),g4(x)]′ and

g j(x) =

∫
F(β0 +β1 xi) ∂

∂θ1 j
φ(β ;θ1)dβ√∫

F(β0 +β1 xi)φ(β ;θ1)dβ · [1− ∫ F(β0 +β1 xi)φ(β ;θ1)dβ ]
.

After some algebra it can be proved that M(ξ ) coincides with the Fisher information
matrix I(ξ ).

For the logistic regression model with Gaussian random effects,

g1(x) =
I1(x)

v0
√

I0(x)[1− I0(x)]
, g2(x) =

I2(x)
v1
√

I0(x)[1− I0(x)]
,
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g3(x)=
I3(x)− I0(x)

v0
√

I0(x)[1− I0(x)]
and g4(x)=

I4(x)− I0(x)
v1
√

I0(x)[1− I0(x)]
,

where

I0(x) =
1

2π

∫
eh1(β̃ ;x) dβ̃ , I1(x) =

1
2π

∫
β̃0eh1(β̃ ;x) dβ̃ , I2(x) =

1
2π

∫
β̃1eh1(β̃ ;x) dβ̃ ,

I3(x) =
1

2π

∫
β̃ 2

0 eh1(β̃ ;x) dβ̃ , I4(x) =
1

2π

∫
β̃ 2

1 eh1(β̃ ;x) dβ̃ ,

h1(β̃ ;x)=b0 +v0β̃0 +b1x+v1β̃1x−1
2

β̃ 2
0−

1
2

β̃ 2
1−log

[
1+exp

(
b0+ v0β̃0 +b1 x+ v1β̃1x

)]
,

β̃0 = (β0−b0)/v0 and β̃1 = (β1−b1)/v1.
If gb(x) = [g1(x),g2(x)]′ and gv(x) = [g3(x),g4(x)]′, then the Fisher information

matrix is

M(ξ ) =
∫

X
g(x)g(x)′ dξ (x) =

[
Mb(ξ ) Mb,v(ξ )
Mv,b(ξ ) Mv(ξ )

]
, (3)

where Mb(ξ ) =
∫
X gb(x)gb(x)′ dξ (x), Mb,v(ξ ) =

∫
X gb(x)gv(x)′ dξ (x), Mv,b(ξ ) =

M′
b,v(ξ ) and Mv(ξ ) =

∫
X gv(x)gv(x)′ dξ (x).

Let the inverse of the Fisher information matrix be

M−1(ξ ) =
[

Mb(ξ ) Mb,v(ξ )
Mv,b(ξ ) Mv(ξ )

]
,

when the asymptotic covariance matrix of the maximum likelihood estimator of v is

Mv(ξ ) = [Mv(ξ )−Mv,b(ξ )M−1
b (ξ )Mb,v(ξ )]−1.

A Ds-optimum design minimizes the determinant of Mv(ξ ) (or its logarithm), or
equivalently maximizes the criterion function

ΨDs(ξ ) = log
|M(ξ )|
|Mb(ξ )| ,

since |Mv(ξ )−Mv,b(ξ )M−1
b (ξ )Mb,v(ξ )|= |M(ξ )|/|Mb(ξ )|.

It is well known that ξ ∗Ds
is a Ds-optimum design if and only if it fulfills the

inequality

g(x)′M−1(ξ ∗Ds
)g(x)−gb(x)′M−1

b (ξ ∗Ds
)gb(x)− s≤ 0, x ∈X , (4)

where s = 2 as v is bidimensional. This inequality is also useful for constructing
Ds-optimum designs through the first order algorithm, since the left-hand side of (4)
is the directional derivative of ΨDs(ξ ) at ξ ∗Ds

in the direction of ξx− ξ ∗Ds
, where ξx

is the design which concentrates all weight at the point x. This algorithm converges
very slowly if the integrals I j(x), j = 0, . . . ,4, are evaluated numerically. In order
to improve the convergence rate, the approximations to integrals (15) - (19) may be
applied, since h1(β̃ ;x) is a concave function of β̃ for any x ∈X .
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4 KL-Optimality Criterion

Let us recall that the Kullback-Leibler discrepancy between the rival models f1(y,x,θ1)
and f2(y,x,θ2), assuming f1(y,x,θ1) as the “true” completely known model, is

I [ f1(y,x,θ1), f2(y,x,θ2)] =
∫

f1(y,x,θ1) log
f1(y,x,θ1)
f2(y,x,θ2)

dy (5)

=
[

log
I0(x)

1− I0(x)
−b0−b1x

]
I0(x)+ log[1− I0(x)]+ log

(
1+ eb0+b1x

)
.

The corresponding KL-criterion function is

I2,1(ξ ) = min
θ2∈Ω2

∫
X

I [ f1(y,x,θ1), f2(y,x,θ2)]ξ (dx).

A design ξ ∗21 which maximizes I2,1(ξ ) is a KL-optimum design. Exchanging the
role of f1(y,x,θ1) and f2(y,x,θ2) in (5) the Kullback-Leibler distance between
f2(y,x,θ2) and f1(y,x,θ1) is I [ f2(y,x,θ2), f1(y,x,θ1)] and the corresponding KL-
optimality criterion I1,2(ξ ) may be defined. In this paper, however, I1,2(ξ ) = 0 since
the fixed effect model is nested within the random-effect model and thus only I2,1(ξ )
can be computed. For this reason the random effect model has been considered as
“true”. López-Fidalgo, Trandafir, and Tommasi (2007) proved that a design ξ ∗21 is a
KL-optimum design if and only if ψ(x,ξ ∗21)≤ 0 for any x ∈X , where

ψ(x,ξ ) = I [ f1(y,x,θ1), f2(y,x, θ̂2)]−
∫

X
I [ f1(y,x,θ1), f2(y,x, θ̂2)]dξ (x) (6)

is the directional derivative of I2,1(ξ ) at ξ in the direction of ξx− ξ and θ̂2 is the
assumed unique element of

Ω2(ξ ) =
{

θ̂2 : θ̂2(ξ ) = arg min
θ2∈Ω2

∫
X

I [ f1(y,x,θ1), f2(y,x,θ2)]dξ (x)
}

.

In order to compute numerically a KL-optimum design (through the first-order algo-
rithm) the Kullback-Leibler discrepancy plays a fundamental role since it appears
in the expression of the directional derivative (6). Again, in order to improve the
convergence speed of the first-order algorithm, Laplacian approximation (15) has
been used for the integral I0(x).

5 Some Results

For the nominal values of the parameters b0 = 1, b1 = 2, v0 = 0.2 and v1 = 0.3, the
Ds- and KL-optimum designs are
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ξ ∗Ds
=
{

0 0.245 0.637 1
0.181 0.295 0.286 0.238

}
and ξ ∗21 =

{
0 0.433 1

0.207 0.471 0.322

}
,

respectively. The KL-optimum design has only three support points, while the Ds-
optimum design is supported at four points. However, since the Fisher information
matrix of ξ ∗Ds

has an eigenvalue close to zero, both ξ ∗Ds
and ξ ∗21 enable us to effi-

ciently estimate only the parameters of the common logistic regression model. The
efficiency of the KL-optimum design with respect to ξ ∗Ds

cannot be computed be-
cause ξ ∗21 is not a regular design, i.e. M(ξ ∗21) is a singular matrix. The efficiency
of the Ds-optimum design with respect to ξ ∗21 is Eff21(ξ ∗Ds

) = I2,1(ξ ∗Ds
)/I2,1(ξ ∗21) =

0.659. A more detailed study of efficiencies will be developed in our future work,
taking into consideration also different nominal values for the parameters.

From the computational point of view, the construction of KL-optimal designs
is less time-demanding than that of Ds-optimal designs. The reason may be the
different number of integrals involved in the expressions for directional derivatives
(4) and (6).

6 Appendix

Theorem 1. Let p(x,y) = a0 x2 + a1 y2 + a2 xy + a3 x + a4 y such that (x,y) ∈ IR2,
a0 < 0, a1 < 0, a2,a3,a4 ∈ IR and 4a0 a1−a2

2 > 0, then

∫ ∫
ep(x,y) dxdy=K, (7)

where

K =
2π e

− a0 a2
4+a1 a2

3−a2 a3 a4
4a0 a1−a2

2√
4a0 a1−a2

2

. (8)

Proof.
Let (x,y) be a bivariate Gaussian random vector such that E(x) = μx, E(y) = μy,
Var(x) = σ2

x , Var(y) = σ2
y and Cov(x,y) = σxy and let f (x,y) denote the pdf of

(x,y). The analytical solution (7) follows from the equality
∫ ∫

f (x,y)dxdy = 1.

Corollary 1. Let h(x,y) be a concave function of (x,y) ∈ IR2 and let h′x, h′y, h′′xx, h′′yy
and h′′xy denote the first- and the second-order partial derivatives of h(x,y) evaluated
at the point (x0,y0). Then

∫ ∫
eh(x,y) dxdy≈

∫ ∫
ep(x,y) dxdy = k0 K, (9)

where

k0 = exp

[
h(x0,y0)− x0 h′x− y0 h′y +

1
2

x2
0h′′xx +

1
2

y2
0h′′yy + x0 y0h′′xy

]
(10)
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and K is given by equation (8) with a0 = h′′xx/2, a1 = h′′yy/2, a2 = h′′xy, a3 = h′x−
x0 h′′xx− y0 h′′xy and a4 = h′y− y0 h′′yy− x0 h′′xy.

Proof
This corollary follows from Theorem 1 by replacing the function h(x,y) with its
second-order Taylor series expansion at the point (x0,y0) in the left-hand side of
equation (9).

Remark 1. Using the notation of Theorem 1, from the identities
∫ ∫

x f (x,y)dxdy =
μx,

∫ ∫
y f (x,y)dxdy = μy,

∫ ∫
x2 f (x,y)dxdy = σ2

x + μ2
x and

∫ ∫
y2 f (x,y)dxdy =

σ2
y + μ2

y it follows that

∫ ∫
xep(x,y) dxdy=−K

2a1 a3−a2 a4

4a0 a1−a2
2

, (11)

∫ ∫
yep(x,y) dxdy=−K

2a0 a4−a2 a3

4a0 a1−a2
2

, (12)

∫ ∫
x2 ep(x,y) dxdy=K

(2a1 a3−a2 a4)2−2a1(4a0 a1−a2
2)

(4a0 a1−a2
2)2

(13)

and

∫ ∫
y2 ep(x,y) dxdy=K

(2a0 a4−a2 a3)2−2a0(4a0 a1−a2
2)

(4a0 a1−a2
2)2

, (14)

with K given in (8). Under the same hypothesis as in Corollary 1, approximations for∫∫
xeh(x,y) dxdy,

∫∫
yeh(x,y) dxdy,

∫∫
x2 eh(x,y) dxdy and

∫∫
y2 eh(x,y) dxdy are given

on multiplying the right-hand side of each equation (11)-(14) by k0 given in (10).

Remark 2. If the function h(x,y) is approximated around its maximum point, i.e.
(xmax,ymax), then (9) becomes

∫ ∫
eh(x,y) dxdy≈ 2π Ĩ0(x), (15)

where Ĩ0(x) = eh(xmax,ymax)/
√

H and H = h′′xx h′′yy−h′′2xy is the determinant of the Hes-
sian matrix of h(x,y) evaluated at (xmax,ymax). The integral approximation (15) is
called a Laplacian approximation and is more accurate for small values of v0 and v1

(e.g. values less than 1). See for instance Demidenko (2004), pp. 340 and 400.
In addition, it can be proved that

∫ ∫
xeh(x,y) dxdy≈ xmax 2π Ĩ0(x), (16)

∫ ∫
yeh(x,y) dxdy≈ ymax 2π Ĩ0(x) (17)

∫ ∫
x2 eh(x,y) dxdy≈

(
x2

max−
h′′yy

H

)
2π Ĩ0(x), (18)
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and
∫ ∫

y2 eh(x,y) dxdy≈
(

y2
max−

h′′xx

H

)
2π Ĩ0(x). (19)
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Estimation and Optimal Designing under Latent
Variable Models for Paired Comparisons Studies
via a Multiplicative Algorithm

Bernard Torsney

Abstract We consider:

1. The problem of estimating the parameters of latent variable models such as the
Bradley Terry or Thurstone Model by the method of maximum likelihood, given
data from a paired comparisons experiment. The parameters of these models can
be taken to be weights which are positive and sum to one;

2. The problem of determining approximate locally optimal designs for good es-
timation of these parameters; i.e of determining optimal design weights which
are also positive and sum to one.

1 Paired Comparisons

1.1 Introduction

We have two alternative examples of a general problem, namely determining weights
optimally. Much theory for this problem, e.g. optimality conditions and numerical
techniques have been developed in the optimal design arena. So this can be trans-
ported to the estimation problem. We can extend techniques to this case. In section 1
we introduce the notion of paired comparisons studies and latent variable models. In
section 2 the parameter estimation problem is outlined with optimality results and a
general class of multiplicative algorithms outlined in sections 3 and 4 respectively.
A specific algorithm is applied to the Bradley Terry log-likelihood in section 5 and
locally optimal designing is considered in section 6.

We consider paired comparison experiments in which J treatments or products
are compared in pairs. In a simple form a subject is presented with two treatments
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and asked to indicate which he/she prefers or considers better. In reality the subject
will be an expert tester; for example, a food taster in examples arising in food tech-
nology. The link with optimal design theory (apart from the fact that a specialised
design, paired comparisons, is under consideration) is that, the parameters of latent
variable models for the resultant data are like weights. Hence the theory characteris-
ing and the methods developed for finding optimal design weights can be applied to
characterising and finding the maximum likelihood estimators of these latent vari-
able ’weights’.

1.2 The Data

In a simple experiment a set of such testers is available and each is presented with
one pair from a set of J treatments, say T1,T2, . . . ,TJ . The number of comparisons, ni j

of Ti to Tj, we assume has been predetermined. Sufficient summary data comprises
the set {Oi j : i = 1, . . . ,J; j = 1, . . . ,J; i < j or i > j}, where Oi j is the observed
frequency with which Ti is preferred to Tj. Of course Oi j +O ji = ni j

Bradley and El-Helbawy (1976) introduce an example involving 8 coffee types.
26 pairwise comparisons were made on each pair, i.e. ni j = 26.
So Oi j +O ji = 26 and N = ∑i ∑ j Oi j = 728.

The coffees are the eight combinations arising from a 23 factorial structure, the
factors being Brew Strength, Roast Colour, Coffee Brand. We are not exploiting this
structure and leave them arbitrarily labelled.

1.3 Models

1.3.1 A General Model

In the absence of other information the most general model here is to propose

Oi j ∼ Bi
(
ni j,θi j

)

where,
θi j = P(Ti is preferred to Tj).

Apart from the constraint Oi j + O ji = ni j, independence between frequencies is
an expected assumption. So, apart from the constraint θi j + θ ji = 1, these define
unrelated binomial parameters. The maximum likelihood estimator of θi j is Oi j/ni j

(the proportion of times Ti is preferred to Tj in these ni j comparisons), and formal
inferences can be based on the asymptotic properties of these.
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1.3.2 Latent Variable Models

These are more restricted models in that they impose interrelations between the θi j.
Assuming that F(·) is a symmetric distribution function, then

θi j = F(λi−λ j) = F
{

loge(pi/p j)
}

where pi = exp(λi). The symmetry of F(·) ensures that

θi j +θ ji = F(λi−λ j)+F(λ j−λi) = 1.

The pi or λi can be viewed as indices or quality characteristics, one for each treat-
ment. The implication of the model is that the difference in quality between two
treatments has distribution function F(·).

Two primary examples of this model are the Bradley Terry and Thurstone mod-
els. Respectively these take F(·) to be the Logistic and the Normal distributions.
In the Logistic case θi j has the simplistic form: θi j = pi/(pi + p j); see Thurstone
(1927), Bradley and Terry (1952), also Kuk (1995).

2 Parameter Estimation

The likelihood of the data is

L = ∏
r<

∏
s

[
F{loge(pr/ps)}

]Ors
[
F{loge(ps/pr)}

]Osr .

We focus on the parameters pi and denote the likelihood by L(p).
However we cannot estimate these as free parameters. This arises from the fact that
we only have observations on comparisons between treatments, and is reflected in
the property that θi j is invariant to proportional changes in pi and p j. In consequence
the pi are only unique up to a constant multiple; (likewise the λi up to a constant
shift). In keeping with this they are positive as the relationship pi = exp(λi) implies
pi > 0. Mathematically speaking θi j and hence L(p) is a homogeneous function of
degree zero in the pi i.e. L(cp) = L(p), where c is a scalar constant. So L(p) is
constant on rays running out from the origin. It will therefore be maximised along
one specific ray. We can identify this ray by finding a particular optimising p∗.
This we can do by imposing a constraint on p. Possible constraints are ∑i pi = 1 or
∏i pi = 1, or g(p) = 1 where g(p) is a surface which cuts each ray exactly once. In
the case J = 2 a suitable g(p) is defined by p2 = h(p1), where h(·) is a decreasing
function which cuts the two main axes, as in the case of h(p1) = 1− p1 , or has
these as asymptotes, as in the case of h(p1) = 1/p1. In general a suitable choice of
g(p) is one which is positive and homogeneous of some degree h. Note that other
alternatives are ∑i pi = C or ∏i pi = C, where C is any positive constant; e.g. C = J
or C = 100.
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The choice of ∏i pi = 1, being equivalent to ∑i ln(pi) = 0, confers on λi = ln(pi)
the notion of a main effect. However we will opt for the choice of ∑i pi = 1, which
conveys the notion of pi as a weight. We wish to maximise the likelihood or log-
likelihood subject to this constraint and to non-negativity too. This is an example of
the following general problem:

Problem (P)
Maximise φ(p) subjec to pi ≥ 0, ∑i pi = 1.
We wish to maximise φ(p) with respect to a probability distribution.

For the estimation problem we will take φ(p) = ln{L(p)}.
There are many examples of this problem arising in various areas of statistics, es-
pecially in the area of optimal regression design. We can exploit optimality results
and algorithms developed in this area. The feasible region is an open but bounded
set. Thus there should always be a solution to this problem allowing for the possi-
bility of an unbounded maximum, multiple solutions and solutions at vertices (i.e.
pt = 1, pi = 0, i �= t).

3 Optimality Conditions

We assume that φ(·) is differentiable. Let

Fj = d j− pT d = d j−∑
i

pidi, where d j = ∂φ/∂ p j.

We call Fj the jth vertex directional derivative of φ(·) at p.
Note that ∑ j p jFj = 0, so that, in general, some Fj are negative and some are posi-
tive.

Given φ(·) is differentiable at p∗, then a necessary condition for φ(p∗) to be a
local maximum of φ(·) in the feasible region of Problem (P) is

F∗j = 0 for p∗j > 0,

F∗j ≥ 0 for p∗j = 0.

If φ(·) is concave on its feasible region, then these first order stationarity conditions
are both necessary and sufficient. This is the general equivalence theorem in optimal
design. See Whittle (1973), Kiefer (1974). In fact the second condition is redundant
for this estimation problem, while, given homogeneity of degree zero of L(p), the
first reduces to standard first order conditions: d∗j = 0.
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4 Algorithms

4.1 Multiplicative Algorithm

Problem (P) has a distinct set of constraints, namely the variables p1, p2, . . . , pJ

must be nonnegative and sum to 1. Let f (d,δ ) be a function satisfying (for δ > 0):

• f (d,δ ) > 0,

• ∂ f (d,δ )
∂d > 0 (for δ > 0),

• f (d,0) = constant

(e.g. f (d,δ ) = Φ(δd) or f (d,δ ) = dδ (if d > 0.))
An iteration which neatly submits to these and has some suitable properties is the

multiplicative algorithm:

p(r+1)
j =

p(r)
j f (d(r)

j )

∑i p(r)
i f (d(r)

i )

where d(r)
j = ∂φ

∂ p j

∣∣∣∣
p
= p(r) , while f (d) is positive and strictly increasing in d and

may depend on one or more free parameters.

4.2 Properties of the Algorithm

Under the conditions imposed on f (·, ·), the above iterations possess the follow-
ing properties which are considered in more detail in Torsney (1988), Torsney and
Alahmadi (1992) and Mandal and Torsney (2000):

1. p(r) is always feasible.
2. Fφ{p(r), p(r+1)} ≥ 0, with equality when the d j’s corresponding to nonzero p j’s

have a common value d(= ∑i pidi ), in which case p(r) = p(r+1).

So an iterate p(r) is a fixed point of the iteration if derivatives d(r)
j corresponding

to nonzero p(r)
j are equal; i.e. if corresponding vertex directional derivatives F(r)

j
are zero.

3. If δ = 0 there is no change in p(r), given f (d,δ ) = constant
4. So the algorithm should be monotonic for small positive δ .

5 Fitting Bradley-Terry Models

Our criterion is
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φ(p) = ln{L(p)}

Since L(p) is a homogeneous function of degree zero ∑i pidi = 0. In fact d j = Fj. So
there are always positive and negative d j unless all are zero. We require a function
f (d,δ ) which is defined for positive and negative d, where we take d to represent
a partial derivative. Noting that all p∗j must be positive a suitable choice should be
governed by the fact that at the optimum d∗j = 0, j = 1,2, . . . ,J.

We opt for f (d,δ ) = Φ(δd), so that iterations prove to be

p(r+1)
j =

p(r)
j Φ(δd(r)

j )

∑i p(r)
i Φ(δd(r)

i )

Coffee Example.
In this case J = 8 coffee types were compared yielding a total of N = 728 obser-
vations; i.e. ∑∑Oi j = 728. A suitable δ is δ = 1/N. In effect we are standardising
the sample size to 1, through replacing observed by relative frequencies in the log-
likelihood, and then taking δ = 1.

Torsney (2004) reported the following results. Starting from p(0)
j = 1/J, the numbers

of iterations needed to achieve max |d j| = max |Fj| ≤ 10−n, for n = 0,1, . . . ,7 re-
spectively are 17, 21, 25, 32, 38, 45, 51, 59. The optimal p∗ is (0.190257, 0.122731,
0.155456, 0.106993, 0.091339, 0.149406, 0.080953, 0.102865).
Iterations were monotonic.

6 Local Optimal Designing

We have not introduced any design variables. However we can pose the question:
how many comparisons ni j there should be between Ti and Tj? This of course is an
exact design problem. The easier approximate design problem poses the question:
what proportion λi j of such comparisons there should be?

This depends on our model. We focus on the Bradley Terry Model. The param-
eters are now p1, p2, . . . , pJ . We wish good estimation of these. The information
matrix is

M(λ ) = ∑∑
i< j

λi jwi jvi jv
T
i j

where vi j = (ei− e j),ei being the ith unit vector wi j = 1/(pi + p j)2.
We note the following properties:

1. M(λ ) has the form of the information matrix of a weighted linear model with
weights wi j. This happens with a wide range of generalised linear models.

2. M(λ ) depends on the pi’s (but only through the wi j’s).
We need provisional values for them. A conventional choice is p j = 1/J.
However we have maximum likelihood estimates. This does not seem to have
been considered in the literature before.
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3. M(λ ) is singular. This is another manifestation of the fact that we only have
observations on comparisons between treatments. We can only estimate differ-
ences between treatments. This has implications for choice of design criteria.
We must restrict consideration to good estimation of such differences (or other
contrasts). This issue too appears to have been ignored in the literature.

Two feasible classes are:

DL− criteria : Ψ(M) =− logdet(LM+LT ),

AL− criteria : Ψ(M) =−trace(LM+LT ).

Here M+ denotes the Moore-Penrose inverse of M and L defines a set of (k−1)
linearly independent differences between the pi parameters.
The DL-criterion would be invariant to any such choice of L.

In general a locally optimal design problem is, for given p, to choose λ optimally
subject to λi j ≥ 0,∑∑i< j λi j = 1, i.e. solve Problem (P) for φ(λ ) = Ψ{M(λ )} for
some Ψ{·}.

We need derivatives with respect to λi j, which we denote by di j, for optimality
checking and numerical purposes. We have:

for the DL-criterion, di j = wi jv
T
i jM

+LT (LM+LT )−1LM+vi j

for the AL-criterion, di j = wi jv
T
i jM

+LT LM+vi j.

Of note is that these are positive, as is the case with all standard design criteria.
For the multiplicative algorithm a feasible choice is f (d,δ ) = dδ , the original form
of this function when the algorithm was first conceived for determining optimal
designs. The choices of δ we opt for here correspond to choices which have been
shown to be monotonic for the standard D-criterion and A-criterion, namely δ =
1,1/2 respectively.

Coffee example

We choose to determine locally optimal designs at the current maximum likelihood
estimates; i.e. at p∗ =
(0.190257, 0.122731, 0.155456, 0.106993, 0.091339, 0.149406, 0.080953, 0.102865).
We use the following choices of f (d,δ ): for the DL-criterion: f (d,δ ) = d; for the
AL-criterion: f (d,δ ) = d1/2.

Iterations begin at λ (0)
i j = 1/(J(J−1)).

We take L to be the matrix defining the 7 differences p1− p j, j = 2,3, . . . ,8.

We sumarise the implications if a further experiment is to be run and parameter
values are in the region of the maximum likelihood estimates: for DL-optimality no
comparisons would be made between coffee types 1 and 3 and between coffee types
1 and 6; under both designs maximum weight is put on the comparisons between
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coffee types 1 and 7, which have the largest and smallest estimated Bradley Terry
parameters; the AL-optimal weights of the 7 comparisons with the first coffee type
exceed 0.07 while the remainder are less than 0.03, which is in keeping with the
focus of the choice of L on differences with this coffee type.
For comparison we note that uniform weights of 1/28 = 0.0357143.

7 Discussion

There are several extensions of this work in respect of both parameter estimation and
local optimal designing (arguably new): for rankings; for “no preference” options;
for factorially structured treatments.
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Pointwise Consistency of the Kriging Predictor
with Known Mean and Covariance Functions

Emmanuel Vazquez and Julien Bect

Abstract This paper deals with several issues related to the pointwise consistency of
the kriging predictor when the mean and the covariance functions are known. These
questions are of general importance in the context of computer experiments. The
analysis is based on the properties of approximations in reproducing kernel Hilbert
spaces. We fix an erroneous claim of Yakowitz and Szidarovszky (J. Multivariate
Analysis, 1985) that, under some assumptions, the kriging predictor is pointwise
consistent for all continuous sample paths.

1 Introduction

The domain of computer experiments is concerned with making inferences about
the output of an expensive-to-run numerical simulation of some physical system,
which depends on a vector of factors with values in X⊆ R

d . The output of the sim-
ulator is formally an unknown function f : X → R. For example, to comply with
ever-increasing standards regarding pollutant emissions, numerical simulations are
used to determine the level of emissions of a combustion engine as a function of its
design parameters (Villemonteix 2008). The emission of pollutants by an engine in-
volves coupled physical phenomena whose numerical simulation by a finite-element
method, for a fixed set of design parameters of the engine, can take several hours on
high-end servers. It then becomes very helpful to collect the answers already pro-
vided by the expensive simulator, and to construct from them a simpler computer
model, that will provide approximate but cheaper answers about a quantity of inter-
est. This approximate model is often called a surrogate, or a metamodel, or an emu-
lator of the actual simulator f . The quality of the answers given by the approximate
model depends on the quality of the approximation, which depends, in turn and in
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part, on the choice of the evaluation points of f , also called experiments. The choice
of the evaluation points is usually called the design of experiments. Assuming that f
is continuous, it is an important question to know whether the approximate model
behaves consistently, in the sense that if the evaluation points xn are chosen sequen-
tially in such a way that a given point x∈X is an accumulation point of {xn, n≥ 1},
then the approximation at x converges to f (x).

Since the seminal paper of Sacks et al. (1989), kriging has been one of the most
popular methods for building approximations in the context of computer experi-
ments (see, e.g., Santner et al. 2003). In the framework of kriging, the unknown
function f is seen as a sample path of a stochastic process ξ , which turns the prob-
lem of approximation of f into a prediction problem for the process ξ . In this paper,
we shall assume that the mean and the covariance functions are known. Motivated
by the analysis by Vazquez and Bect (2009) of the expected improvement algorithm,
a popular kriging-based optimization algorithm, we discuss several issues related
to the pointwise consistency of the kriging predictor, that is, the convergence of the
kriging predictor to the true value of ξ at a fixed point x∈X. These issues are barely
documented in the literature, and we believe them to be of general importance for
the asymptotic analysis of sequential design procedures based on kriging.

The paper is organized as follows. Section 2 introduces notation and various
formulations of pointwise consistency, using the reproducing kernel Hilbert space
(RKHS) attached to ξ . Section 3 investigates whether L2-pointwise consistency at x
can hold when x is not in the adherence of the set {xn,n≥ 1}. Conversely, assuming
that x is in the adherence, Section 4 studies the set of sample paths f = ξ (ω, ·)
for which pointwise consistency holds. In particular, we fix an erroneous claim of
Yakowitz and Szidarovszky (1985)—namely, that the kriging predictor is pointwise
consistent for all continuous sample paths under some assumptions.

2 Several Formulations of Pointwise Consistency

Let ξ be a second-order process defined on a probability space (Ω ,A ,P), with
parameter x ∈ X⊆ R

d . Without loss of generality, it will be assumed that the mean
of ξ is zero and that X = R

d . The covariance function of ξ will be denoted by
k(x,y) := E [ξ (x)ξ (y)], and the following assumption will be used throughout the
paper:

Assumption 1. The covariance function k is continuous.

The kriging predictor of ξ (x), based on the observations ξ (xi), i = 1, . . . ,n, is the
orthogonal projection

ξ̂ (x;xn) :=
n

∑
i=1

λ i(x;xn)ξ (xi) (1)

of ξ (x) onto span{ξ (xi), i = 1, . . . ,n}. The variance of the prediction error, also
called the kriging variance in the literature of geostatistics (see, e.g., Chilès and
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Delfiner 1999), or the power function in the literature of radial basis functions (see,
e.g., Wu and Schaback 1993), is

σ2(x;xn) := var
[
ξ (x)− ξ̂ (x;xn)

]

= k(x,x)−∑
i

λ i(x;xn)k(x,xi) .

For any x ∈ R
d , and any sample path f = ξ (ω, ·), ω ∈ Ω , the values ξ (ω,x) =

f (x) and ξ̂ (ω,x;xn) can be seen as the result of the application of an evaluation
functional to f . More precisely, let δx be the Dirac measure at x ∈ R

d , and let λn,x

denote the measure with finite support defined by λn,x := ∑n
i=1 λ i(x;xn)δxi . Then,

for all ω ∈Ω , ξ (ω,x) = 〈δx, f 〉 and ξ̂ (ω,x;xn) = 〈λn,x, f 〉. Pointwise consistency
at x ∈ R

d , defined in Section 1 as the convergence of ξ̂ (ω,x;xn) to ξ (x), can thus
be seen as the convergence of λn,x to δx in some sense.

Let H be the RKHS of functions generated by k, and H ∗ its dual space. Denote
by (·, ·)H (resp. (·, ·)H ∗ ) the inner product of H (resp. H ∗), and by ‖·‖H (resp.
‖·‖H ∗ ) the corresponding norm. It is well-known (see, e.g., Wu and Schaback 1993)
that

∥∥δx−λn,x
∥∥2

H ∗ =
∥∥k(x, ·)−∑i λ i(x;xn)k(xi, ·)

∥∥2
H

= σ2(x;xn) .

Therefore, the convergence λn,x → δx holds strongly in H ∗ if and only if the krig-
ing predictor is L2(Ω ,A ,P)-consistent at x; that is, if σ2(x;xn) converges to zero.
Since k is continuous, it is easily seen that σ2(x;xn)→ 0 as soon as x is adherent
to {xn,n≥ 1}. Indeed,

σ2(x,xn)≤ E[(ξ (x)−ξ (xϕn))
2] = k(x,x)+ k(xϕn ,xϕn)−2k(x,xϕn),

with (ϕn)n∈N a non-decreasing sequence such that ∀n ≥ 1, ϕn ≤ n and xϕn → x.
As explained by Vazquez and Bect (2009), it is sometimes important to work with
covariance functions such that the converse holds. That leads to our first open issue,
which will be discussed in Section 3:

Problem 1. Find necessary and sufficient conditions on a continuous covariance k
such that σ2(x;xn)→ 0 implies that x is adherent to {xn,n≥ 1}.

Moreover, since strong convergence in H ∗ implies weak convergence in H ∗,
we have

lim
n→∞

σ2(x;xn) = 0 =⇒ ∀ f ∈H , lim
n→∞

〈λn,x, f 〉= 〈δx, f 〉= f (x) . (2)

Therefore, if x is adherent to {xn, n≥ 1}, pointwise consistency holds for all sample
paths f ∈H . However, this result is not satisfying from a Bayesian point of view
since P{ξ ∈H } = 0 if ξ is Gaussian (see, e.g., Lukic and Beder 2001, Driscoll’s
theorem). In other words, modeling f as a Gaussian process means that f cannot be
expected to belong to H . This leads to our second problem:
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Problem 2. For a given covariance function k, describe the set of functions G such
that, for all sequences (xn)n≥1 in R

d and all x ∈ R
d ,

lim
n→∞

σ2(x;xn) = 0 =⇒ ∀ f ∈ G , lim
n→∞

〈λn,x, f 〉= f (x) . (3)

An important question related to this problem, to be discussed in Section 4, is to
know whether the set G contains the set C(Rd) of all continuous functions. Before
proceeding, we can already establish a result which ensures that considering the
kriging predictor is relevant from a Bayesian point of view.

Theorem 1. If ξ is Gaussian, then {ξ �∈ G } is P-negligible.

Proof. If ξ is Gaussian, it is well-known that ξ̂ (x;xn) = E[ξ (x) |Fn] a.s., where
Fn denotes the σ -algebra generated by ξ (x1), . . . , ξ (xn). Note that (E[ξ (x) |Fn])
is an L2-bounded martingale sequence and therefore converges, a.s. and in L2-norm,
to a random variable ξ∞ (see, e.g., Williams 1991). ��

3 Pointwise Consistency in L2-Norm and the No-Empty-Ball
Property

The following definition has been introduced by Vazquez and Bect (2009):

Definition 1. A random process ξ has the No-Empty-Ball (NEB) property if, for all
sequences (xn)n≥1 in R

d and all x ∈ R
d , the following assertions are equivalent:

i) x is an adherent point of the set {xn, n≥ 1},
ii) σ2(x,xn)→ 0 when n→+∞.

The NEB property implies that there can be no empty ball centered at x if the pre-
diction error at x converges to zero—hence the name. Since k is continuous, the
implication 1.i ⇒ 1.ii is true. Therefore, Problem 1 amounts to finding necessary
and sufficient conditions on k for ξ to have the NEB property.

Our contribution to the solution of Problem 1 will be twofold. First, we shall
prove that the following assumption, introduced by Yakowitz and Szidarovszky
(1985), is a sufficient condition for the NEB property:

Assumption 2. The process ξ is second-order stationary and has spectral density S,
with the property that S−1 has at most polynomial growth.

In other words, Assumption 2 means that there exist C > 0 and r ∈ N
∗ such that

S(u)(1 + |u|r) ≥ C, almost everywhere on R
d . Note that this is an assumption

on k, which prevents it from being too regular. In particular, the so-called Gaussian
covariance,

k(x,y) = s2 e−α ‖x−y‖2
, s > 0, α > 0, (4)
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does not satisfy Assumption 2. In fact, and this is the second part of our contribution,
we shall show that ξ with covariance function (4) does not possess the NEB prop-
erty. Assumption 2 still allows consideration of a large class of covariance functions,
which includes the class of (non-Gaussian) exponential covariances

k(x,y) = s2 e−α ‖x−y‖β
, s > 0, α > 0, 0 < β < 2 , (5)

and the class of Matérn covariances (popularized by Stein 1999).
To summarize, the main result of this section is:

Proposition 1.

i) If Assumption 2 holds, then ξ has the NEB property.
ii) If ξ has the Gaussian covariance given by (4), then ξ does not possess the NEB

property.

The proof of Proposition 1 is given in Section 5. To the best of our knowledge,
finding necessary and sufficient conditions for the NEB property—in other words,
solving Problem 1—is still an open problem.

4 Pointwise Consistency for Continuous Sample Paths

An important question related to Problem 2 is to know whether the set G contains the
set C(Rd) of all continuous functions. Yakowitz and Szidarovszky (1985, Lemma
2.1) claim, but fail to establish, the following:

Claim 1. Let Assumption 2 hold. Assume that {xn, n ≥ 1} is bounded, and denote
by X0 its (compact) closure in R

d . Then, if x ∈ X0,

∀ f ∈C(Rd) , lim
n→∞

〈λn,x, f 〉= f (x) .

Their incorrect proof has two parts, the first of which is correct; it says in essence
that, if x ∈ X0 (i.e., if x is adherent to {xn, n≥ 1}), then

∀ f ∈S (Rd), lim
n→∞

〈λn,x, f 〉= f (x) , (6)

where S (Rd) is the vector space of rapidly decreasing functions1. In fact, this result

1 Recall that S (Rd) corresponds to those f ∈C∞(Rd) for which

sup
|ν |≤N

sup
x∈Rd

(1+ |x|2)N |(Dν f )(x)|< ∞

for N = 0,1,2, . . ., where Dν denotes differentiation of order ν .
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stems from the weak convergence result (2), once it has been remarked that2

S (Rd)⊂H under Assumption 2.
The second part of the proof of Claim 1 is flawed because the extension of the

convergence result from S (Rd) to C(Rd), on the ground that S (Rd) is dense
in C(Rd) for the topology of the uniform convergence on compact sets, does not
work as claimed by the authors. To get an insight into this, let f ∈ C(Rd), and let
(φk) ∈S (Rd)N be a sequence that converges to f uniformly on X0. Then we can
write

|〈λn,x, f 〉− f (x)| ≤ |〈λn,x, f −φk 〉|+ |〈λn,x−δx,φk 〉|+ |φk(x)− f (x)|
≤ (

1+‖λn,x‖TV

)
sup
X0

| f −φk| + |〈λn,x−δx,φk 〉| ,

where ‖λn,x‖TV := ∑n
i=1|λ i(x;xn)| is the total variation norm of λn,x, also called the

Lebesgue constant (at x) in the literature of approximation theory. If we assume that
the Lebesgue constant is bounded by K > 0, then we get, using (6),

limsup
n→∞

|〈λn,x, f 〉− f (x)| ≤ (1+K) sup
X0

| f −φk| −−−→
k→∞

0 .

Conversely, if the Lebesgue constant is not bounded, the Banach-Steinhaus theorem
asserts that there exists a dense subset G of

(
C(Rd),‖·‖∞

)
such that, for all f ∈ G,

supn≥1|〈λn,x, f 〉|= +∞ (see, e.g., Rudin 1987, Section 5.8).
Unfortunately, little is known about Lebesgue constants in the literature of krig-

ing and kernel regression. To the best of our knowledge, whether the Lebesgue con-
stant is bounded remains an open problem—although there is empirical evidence
in De Marchi and Schaback (2008) that the Lebesgue constant could be bounded in
some cases under Assumption 2.

Thus, the best result that we can state for now is a fixed version of Claim 1. Note
that the foregoing discussion is still valid if Assumption 2 is replaced by the weaker
assumption that H is dense in

(
C(Rd),‖·‖∞

)
. Kernels with this property have been

called universal kernels by Steinwart (2001).

Theorem 2. Let k be a universal kernel on X. Assume that {xn, n≥ 1} is bounded,
and denote by X0 its (compact) closure in R

d. Then, for all x ∈ X0, the following
assertions are equivalent:

i) ∀ f ∈C(Rd), limn→∞ 〈λn,x, f 〉= f (x),
ii) the Lebesgue constant at x is bounded.

The class of all universal kernels is wider than that of all kernels satisfying As-
sumption 2, and is not restricted to translation-invariant kernels—or equivalently,
kernels associated to stationary processes; see Steinwart (2001) for examples.

2 Indeed, under Assumption 2, we have ∀ f ∈S (Rd),

‖ f‖2
H =

1
(2π)d

∫
Rd

∣∣ f̃ (u)
∣∣2 S(u)−1du≤ 1

C (2π)d

∫
Rd

∣∣ f̃ (u)
∣∣2 (1+ |u|r) du < +∞ ,

where f̃ is the Fourier transform of f (see, e.g., Wu and Schaback 1993).
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Note also that the Gaussian covariance (4) is a universal kernel Steinwart (2001,
Example 1). Numerical experiments in De Marchi and Schaback (2008) suggest
that the Lebesgue constant could be unbounded for this model in some cases, which
would imply by Theorem 2 that the kriging predictor is not pointwise consistent for
all continuous sample paths.

5 Proof of Proposition 1

Assume that x ∈ R
d is not adherent to {xn, n≥ 1}. Then, there exists a C∞(Rd)

compactly supported function f such that f (x) �= 0 and f (xi) = 0, ∀i ∈ {1, . . . ,n}.
For such a function, the quantity 〈λn,x, f 〉 cannot converge to f (x) since

〈λn,x, f 〉 =
n

∑
i=1

λ i(x;xn) f (xi) = 0 �= f (x) .

Under Assumption 2, S (Rd)⊂H , as explained in Section 4. Thus, f ∈H ; and it
follows that λn,x cannot converge (weakly, hence strongly) to δx in H ∗. This proves
the first assertion of Proposition 1.

In order to prove the second assertion, pick any sequence (xn)n≥1 such that the
closure X0 of {xn, n≥ 1} has a non-empty interior. We will show that σ(x;xn)→ 0
for all x ∈ R

d . Then, choosing x �∈ X0 proves the claim.
Recall that ξ̂ (x;xn) is the orthogonal projection of ξ (x) onto span{ξ (xi), i =

1, . . . ,n} in L2 (Ω ,A ,P). Using the fact that the mapping ξ (x) #→ k(x, ·) extends
linearly to an isometry3 from span{ξ (y), y ∈ R

d} to H , we get that

σ(x;xn) =
∥∥ξ (x)− ξ̂ (x;xn)

∥∥ = dH (k(x, ·), Hn) ,

where dH is the distance in H , and Hn is the subspace of H generated by k(xi, ·),
i = 1, . . . ,n. Therefore

lim
n→∞

σ(x;xn) = lim
n→∞

dH (k(x, ·), Hn) = dH (k(x, ·), H∞) ,

where H∞ = ∪n≥1Hn. Any function f ∈ H⊥
∞ satisfies f (xi) = ( f , k(xi, ·)) = 0 and

therefore vanishes on X0, since H is a space of continuous functions. Corollary 3.9
of Steinwart, Hush, and Scovel (2006) leads to the conclusion that f = 0 since X0

has a non-empty interior. We have proved that H⊥
∞ = {0}, hence that H∞ = H

since H∞ is a closed subspace. As a consequence, limn→∞ σ(x;xn) = dH (kx, H∞) =
0, which completes the proof. ��

3 often referred to as Loève’s isometry (see, e.g., Lukic and Beder 2001)
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Information in a Two-stage Adaptive Optimal
Design for Normal Random Variables having a
One Parameter Exponential Mean Function

Ping Yao and Nancy Flournoy

Abstract This paper explores the characteristics of information derived from se-
quentially implementing estimated optimal designs. In such sequential experiments,
called adaptive optimal designs, each stage uses an optimal design estimated from
the data obtained in all prior stages. The measure that is used in adaptive optimal
designs to construct treatment allocation procedures is, by definition, neither the
observed nor the expected (Fisher) information. We explore these information mea-
sures in the context of a two-stage adaptive optimal design under a simple model.
Specifically, random variables are assumed to be normal with a one parameter ex-
ponential mean function. With this model, some explicit results are obtained.

1 Introduction

Chernoff (1953) suggested that optimal designs for nonlinear functions be approxi-
mated by guessing the parameter values; this may be inefficient when the guess is far
from the actual parameter value. In adaptive optimal design, sequential experiments
use an optimal design estimated from all prior stages. This approach was suggested
by Box and Hunter Box and Hunter (1963), White (1975), Silvey (1980), Dragalin,
Fedorov, and Wu (2008), among others. Its appeal is that if an adaptive optimal de-
sign converges to the true optimal design, heuristically arguing, the overall design
will become more efficient with additional stages.

In the adaptive optimal design literature, in place of constructing a likelihood
from the joint density for responses and design points, responses have been treated
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as independent conditional, on the treatment - both for selecting the next design
point and for evaluating the design’s efficiency. Silvey (1980) and others point out
that the information measure they employ is not, by definition, Fisher’s information.
While conditioning is generally accepted for analysis, the role of conditioning in
adaptive design construction has not been clarified.

Denote the likelihood after s stages by Ls; − d2

dθ 2 logLs|θ=θ̂ is the observed in-

formation (see Efron and Hinkley 1978 and Lindsay and Li 1997) ; Var( d
dθ logLs)

is the expected or Fisher’s information. The information measure M given in Sec-
tion 4 by (6) and used in the adaptive optimal design literature (e.g., Dragalin, Fe-
dorov, and Wu (2008) is not, by definition, either of these.

Section 2 introduces the nonlinear model and the two-stage design. Section 3
presents results on the stage 2 design point. In Section 4, properties of the informa-
tion measures are investigated. Section 5 concludes with a brief discussion.

2 A Two-stage Design for Normal Random Variables having a
One Parameter Exponential Mean Function

Let Y = η(X) + ε , 0 ≤ X ≤ b < ∞. Assume η(X) = exp(−θX), θ > 0. Assume
ε ∼ N (0,1). Suppose n subjects are treated at X = x1 (fixed) and independent
responses y1 = (y11, . . . ,y1n) are observed. The likelihood at the end of stage 1 is

L1(θ ,x1,y1) = (2π)−n/2 exp

{
−1

2

n

∑
j=1

(
y1 j−η(x1)

)2

}
.

Let ȳi = n−1 ∑n
j=1 yi j, j ≥ 1, i = 1,2. Then if ȳ1 ≤ 0, the score function, d

dθ logL1 =
−∑n

1

(
y1 j− e−θx1

)
x1e−θx1 , is positive; if 0 < ȳ1 < 1, setting the score function equal

to zero yields the maximum likelihood estimate (MLE). Then because the term
−log ȳ1/x1 becomes negative if ȳ1 > 1,

θ̂1 =

⎧⎪⎨
⎪⎩

∞ if ȳ1 ≤ 0,

−log ȳ1/x1, if 0 < ȳ1 < 1,

0 if ȳ1 ≥ 1.

(1)

The information with respect to f (y1 j|x1,θ) after stage 1, j = 1, . . . ,n is

M (x1,θ) =−Ey11|x1

(
d2

dθ 2 log f (y11|x1,θ)
)

= x2
1exp{−2θx1} .

Select the stage 2 design point as

x2 = argmax
x
−Ey21|x

(
d2

dθ 2 log f (y21|x,θ)
)∣∣∣∣

θ=θ̂1

= argmax
x

(
x2exp

{−2θ̂1x
})

,
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Fig. 1: Stage 2 Design Points: 2.5th, 50th and 97.5th Percentiles (θ = 1; b = 100)

which is

x2 =

⎧⎪⎨
⎪⎩

0 if ȳ1 ≤ 0 ,

−x1/ log ȳ1 if 0 < ȳ1 < 1 ,

b if ȳ1 ≥ 1.

(2)

Assuming cohorts of equal size, observe y2 = (y21, . . . ,y2n). Then assuming re-
sponses given the treatment are independent of the past, i.e., f (y2|x2,x1,y1,θ) =
f (y2|x2,θ), the likelihood after stage 2 is

L2(x1,x2,y1,y2,θ) = f (y2|x2,θ) f (x2|x1,y1,θ) f (y1|x1,θ).

Because x2 is completely determined by x1 and ȳ1, f (x2|x1,y1,θ) = 1; now the total
likelihood and score function for two stages, respectively, can be written as

L2(x1,x2,y1,y2,θ) =
2

∏
i=1

f (yi|xi,θ),
∂

∂θ
logL2 =

2

∑
i=1

∂
∂θ

log f (yi|xi,θ). (3)

3 Properties of the Stage 2 Design Point

For the model with b = 100 and θ = 1, Figure 3 displays the simulated 2.5th, 50th
and 97.5th percentiles of x2 as a function of x1 for n = 30 and 100. Ten thousand
replicates of x2 were simulated for each plotted value of x1. The median of x2 is
close to argmaxx {M (x,θ)} = 1 regardless of x1, but the range from the 2.5th to
97.5th percentile of x2 depends strongly on the initial design point.
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P(x2 = 0) ≥ 0.025 when x1 > 2 for n = 100 and x1 ≥ 1.2 for n = 30. The min-
imum of the 97.5th percentile of x2 occurs for values of x1 somewhat larger than
one, more so for n = 30 than for n = 100; for smaller x1, the 97.5th percentile of
x2 rises steeply to b; for larger values of x1, the 97.5th percentile rises much more
slowly toward b.

Given θ , the variance of x2 can be calculated numerically from

E (x2|x1) = bP(ȳ1 > 1|x1)− x1

∫ 1−

0+
(log ȳ1)

−1 f (ȳ1|x1)dȳ1;

E
(
x2

2|x1
)

= b2P(ȳ1 > 1|x1)+ x2
1

∫ 1−

0+
(log ȳ1)

−2 f (ȳ1|x1)dȳ1,

Theorem 1. θ̂ a.s.−→ θ and x2
a.s.−→ θ−1 as n−→ ∞.

Proof. Let Z denote a standard normal random variable. Then

P(ȳ1 ≤ 0|x1) = P
(

Z <−√ne−θx1

)
n→∞−→ 0,

P(ȳ1 ≥ 1|x1) = P
{

Z >
√

n
(

1− e−θx1

)}
n→∞−→ 0. (4)

The results follow from the law of large numbers and continuity of the transforma-
tions from ȳ1 to x2 within the range 0 < ȳ1 < 1. ��
Using (4) with the Delta Method, we obtain

Theorem 2. For the two stage design under the model y = e−xθ +ε , 0≤ x≤ b < ∞,
where ε ∼N (0,1) and x1 is given, as n→ ∞,

√
n
(
x2−θ−1) D−→N

(
0,σ2) , (5)

where σ2 = x−2
1 θ−4e2θx1 .

4 Information Measures

The observed information (per-subject), as defined by Efron and Hinkley (1978) , is

− 1
2n

d2

dθ 2 logL2 =− 1
2n

2

∑
i=1

d2

dθ 2 log f (yi|xi,θ)

=
1

2n

2

∑
i=1

n

∑
j=1

(
2e−θxi − yi j

)
x2

i e−θxi

∣∣∣
θ=θ̂

.

The adaptive optimal design information averages M (x1,θ) and M (x2,θ):
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M
({xi}2

1,θ
)

=− 1
2n

2

∑
i=1

Eyi|xi

(
d2

dθ 2 log f (yi|xi,θ)
)

=
1
2

2

∑
i=1

x2
i e−2θxi . (6)

Note the adaptive optimal information is a function of ȳ1 through x2, whereas the
observed information is a function of both ȳ1 and ȳ2. It follows from the strong law
of large numbers and continuity of the transformation from ȳ1 for ȳ1 ∈ (0,1) that

− d2

dθ 2 log f (yi|xi,θ) = M (xi,θ)− ∑n
j=1 εi j

2n
x2

i e−θxi a.s.−→M (xi,θ) as n→ ∞.

(7)
Because cross-product terms E(log f (yi|xi,θ) log f (y j|x j,θ)) are zero [see Hall and
Heyde (1980), page 8], Fisher’s information can be written as

Var

(
d

dθ
logL2

)
=

2

∑
i=1

E

[
n

∑
j=1

(
yi j− e−θxi

)
xie
−θxi

]2

= nE

(
E

[(
y2 j− e−θx2

)2
x2

2e−2θx2

]∣∣∣∣x1,x2,y1

)
+nx2

1e−2θx1 .

But E
((

y2 j− e−θx2
)2
∣∣∣x1,x2,y1

)
= Var

(
y2 j
∣∣y1,x2,x1

)
= 1, so

1
2n

Var

(
d

dθ
logL2

)
=

1
2

E
(

x2
2e−2θx2

)
+

1
2

x2
1e−2θx1

=
1
2

E (M (x2,θ))+
1
2

E (M (x1,θ)) = E
(
M

({xi}2
1,θ

))
.

Theorem 3 provides a large sample approximation of Fisher’s information.

Theorem 3.

lim
n−→∞

E
(

x2
2e−2θx2

)
p−→ θ−2e−2.

Proof. Expand M (x2,θ) into a Taylor series of order two about x:

x2
2e−2θx2 = x2e−2θx +(x2− x)

[
2xe−2θx(1−θx)

]

+(x2− x)2e−2θx (1−4xθ +2θ 2x2)+o
(
(x2− x)2) . (8)

Evaluating x at argmaxx {M (x,θ)} = θ−1, the second term on the right of (8) is
zero yielding

E
(

x2
2e−2θx2

)
= θ−2e−2−Var(x2)e−2 +o

(
(x2−θ−1)2) .

The error term goes to zero by Theorem 1 and Var(x2)→ 0 as Var(ȳ1)→ 0. ��

Var
(

d
dθ logL2

)
can be approximated by 1

2 θ̂−2e−2 + 1
2 x2

1e−2θ̂x1 .
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4.1 A Simulated Illustration

Again taking b = 100 and θ = 1, Figure 4.1 shows − d2

dθ 2 log f (y1|x1,θ) as a func-

tion of the stage 1 design point. The median of − d2

dθ 2 log f (y1|x1,θ) is M (x,θ) by
(7), which also equals Fisher’s information since x1 is given. The median values of
− d2

dθ 2 log f (y1|x1,θ) attain their maximum of 0.135 at argmaxx {M (x,θ)}= 1; the
97.5th percentiles are maximum at x > 1; the 2.5th percentiles are negative for many
stage one design points.

0 1 2 3 4 5 6

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

Stage 1 Design Point

O
b

se
rv

ed

2.5
50
97.5

(a) n = 30

0 1 2 3 4 5 6

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

Stage 1 Design Point

O
b

se
rv

ed
2.5
50
97.5

(b) n = 100

Fig. 2: Stage 1: 2.5th, 50th and 97.5th Percentiles of − d2

dθ 2 log f (y1|x1,θ); (θ = 1; b = 100)

Now focus on the increment in the information measures that comes from stage 2
of the experiment. Both the observed information for stage 2 and M (x2,θ) are ran-
dom, as they are functions ȳ1 via x2. Information measures obtained during stage 2
were calculated from 10,000 simulated replicates for each plotted value of x1. The
2.5th, 50th and 97.5th percentiles are shown in Figure 4.1.

The maxx1 {M (x2,θ)} = 0.135, which is the asymptotic Fisher’s information.
The 97.5th percentiles of M (x2,θ) attain 0.135 at all but the highest values of x1

for n = 100 and 30. In contrast, the 97.5th percentile of of − d2

dθ 2 log f (y2|x2,θ) is
greater than 0.135 except for values of x1 somewhat less than one. Furthermore,
− d2

dθ 2 log f (y2|x2,θ) is negative with high probability.
The median of the adaptive optimal information, M (x2,θ), attains its maxi-

mum value when x1 = 1 for n = 100 and 30. In addition, the median of M (x2,θ)
comes closer to 0.135 at x1 = 1 as the sample size increases. Indeed, the median
of M (x2,θ) is close to 0.135 for a range of values of x1 that includes x1 = 1; this
range is larger for for n = 100 than for n = 30. For n = 30, the 2.5th percentile of
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Fig. 3: Stage 2 Information: 2.5th, 50th and 97.5th Percentiles of − d2

dθ 2 log f (y2|x2,θ) in (a,b) and
M (x2,θ) in (c,d); (θ = 1; b = 100)

M (x2,θ) is zero, except for a very small blip for x1 just less than one; however,
for n = 100, the 2.5th percentile of M (x2,θ) is nearly quadratic for x1 ∈ (0.2,1.8)
with its maximum approximately 50% of 0.135.

The improvement of the adaptive optimal with sample size is impressive, par-
ticularly in a neighborhood of ±0.8 of argmaxx {M (x1,θ)} = 1. Convergence of

− d2

dθ 2 log f (y2|x2,θ) to the adaptive optimal appears to be slow.
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5 Discussion

We have explored information measures for a two-stage adaptive optimal design in
the context of a regression model with normal errors and exponential mean func-
tion. An exact expression for the second stage design point is obtained. The second
stage design point is shown to be consistent as the cohort size tends to infinity, and
asymptotically normal; also the variance of its asymptotic distribution is obtained.

Exact expressions for −d2 log f (yi|xi,θ)/dθ 2 and M (xi,θ), i = 1,2, are given.
Values of −d2 log f (y2|x2,θ)/dθ 2 are shown by (7) to fluctuate randomly, asym-
metrically, around M (x2,θ), yet to converge to M (x2,θ) as n → ∞. Efron and
Hinkley (1978) and Lindsay and Li (1997) argue that the observed information is to
be preferred over Fisher’s information, but our simulations call their argument into
question. Fisher’s information equals E(M (x2,θ)) which may be obtained numer-
ically. A simple large sample approximation of Fisher’s information is given. Our
illustration suggests M (x2,θ) is converging to the asymptotic value of Fisher’s in-
formation from below.
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