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6.1 Introduction

Factor models aim at explaining the associations among observed random variables
in terms of fewer unobserved random variables, called common factors. When data
have a hierarchical structure, multilevel mixture factor models are a powerful and
flexible tool useful to correctly take into account the correlation between first-level
units due to the data structure, and to evaluate the presence of latent sub-populations
of units with some typical profile at different levels of the analysis.

In the Chapter, we describe the specification of a multilevel mixture factor model
with continuous latent variables at the lower level of the analysis and a discrete la-
tent variable at the higher level, focusing on some technical and applied features
of the analysis. The theory will be illustrated by means of an application on the job
satisfaction of the graduates of the University of Florence. The main aim of the anal-
ysis is to describe and summarize some aspects of job satisfaction measured at the
individual level and, at the same time, to cluster higher level units (degree courses)
in classes with some typical characteristics, in order to analyse their effectiveness.

The Chapter is organized as follows. In Sect. 6.2 we introduce the multilevel mix-
ture factor model, and in Sect. 6.3 we collocate it in the Generalized Latent Variable
framework. The details of estimation procedures and of model selection for multi-
level mixture factor models are described in Sects. 6.4 and 6.5. Finally, in Sect. 6.6
we present and comment the main results of the case study on the evaluation of
University effectiveness.
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6.2 The multilevel mixture factor model

Factor models aim at finding a set of continuous latent variables, called factors, that
contains the same information of a given set of observed variables (Bartholomew
and Knott, 1999). One basic assumption of factor models states that the observed
variables are measured on a set of independent units. This assumption is inadequate
when units are nested in clusters having a hierarchical structure, sharing common
environments, experiences and interactions: in these cases multilevel techniques are
necessary in order to correctly take into account the correlation between first-level
units due to the data structure. In this Chapter, attention is limited to datasets with
two hierarchical levels, since the extension to more than two levels is conceptually
straightforward.

The basic idea of a factor model adapted to deal with multilevel data is that some
model parameters – indicator intercepts or thresholds and residual variances, fac-
tor loadings, factor means and variances – are allowed to differ across the observed
groups (higher level units). These differences can be modeled including group dum-
mies in the model, as in the multigroup (or fixed-effects) approach, or can be mod-
eled with a multilevel factor model with continuous latent variables at all levels of
the analysis by assuming that the group coefficients are random-effects coming from
a particular distribution whose parameters should be estimated (Searle et al., 1992;
Vermunt, 2003).

In a confirmatory perspective, the multilevel mixture factor model is a useful
model to take into account the hierarchical structure of the data and to compare the
observed groups of units, by evaluating the existence of unobserved subpopulations
(classes) of groups with similar features with respect to the factor model parameters
and overcoming the production of over-detailed information of the multigroup factor
model, which estimates as many group coefficients as the groups (Vermunt, 2003).

In one-level context, the term finite mixture (McLachlan and Peel, 2000) or la-
tent class model (Lazarsfield and Henry, 1968; Goodman, 1974) is typically used for
models including only a categorical latent variable, whereas the term factor mixture
model is used for models including both continuous latent variables and a categor-
ical latent variable (Lubke and Muthén, 2005). Both models are usually applied to
classify individual units into K latent classes with similar model parameters; in stan-
dard finite mixture models the clustering is based on the similarity of the observed
item parameters (intercept or thresholds), in factor mixture models the clustering
is based on the similarity of both the item parameters and/or the factor loadings.
A discrete latent variable can also be used as a non parametric specification of a
distribution of continuous latent variables (Aitkin, 1999; Vermunt and Magidson,
2005). Indeed, a finite mixture distribution results from the discretization of a con-
tinuous latent variable distribution into K probability masses πk at mass points zk;
the nonparametric specification is so represented by a finite mixture model with the
maximum number of identifiable latent classes.

Formally, a factor mixed model includes a categorical latent variable in the model
with a multinomial distribution; besides the parameters of the factor model, also the
parameters of the multinomial distribution have to be estimated.
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In two-level context, finite mixture components, formally “represented” by a cat-
egorical latent variable, may be present at the lower or/and higher level. When there
are mixture components at both levels of the analysis, the multilevel latent class
model is obtained (Vermunt, 2003), otherwise we obtain the multilevel mixture fac-
tor model. In the Chapter, we only discuss two-level models characterized by con-
tinuous latent variables at the lower level and a categorical latent variable at the
higher level. The main aims of this model are to analyse the underlying structure of
the phenomenon at the lower level and, at the same time, classify higher level units
in some latent classes with similar profiles.

Assume that there are J groups with a different number of individual units n j,
whose total number is equal to N = ∑J

i=1 n j. For each individual, H items are ob-
served. Conditional on the latent variables, the response model for the observed
variables is a generalized linear model specified via a linear predictor, a link, and a
distribution from the exponential family. Let yhi j denote the observed response on
indicator h (h = 1, . . . ,H) of individual i (i = 1, . . . ,n j) within group j ( j = 1, . . . ,J)
and let vhi j be the linear predictor of the response model. The conditional expecta-
tion of the response yhi j given the latent variables at different levels is “linked” to
the linear predictor vhi j via a link function:

g(E(yhi j|ηηη j)) = vhi j (6.1)

where ηηη j =
(
ηηη(2)′

j , . . . ,ηηη(L)′
j

)′

represents all latent variables, ηηη(l)
j =

(
η(l)

1 j , . . . ,η(l)
Ml j

)′

indicates all the latent variables varying at level l and Ml denotes the number of these
latent variables. In particular, the latent variables varying at the individual and clus-

ter level are denoted, respectively, with ηηη(2)
j and ηηη(3)

j ; indeed, since we are analysing
models for datasets with one level of hierarchy, l = 2,3. Following the conventions,
these models are called two-level models: the individual units i are the level-1 units,
and the group level units j are the level-2 units. If the items are treated as level-1
units, the models become three-level models with individual units at level 2 and
groups at level 3.

Different distributional forms are allowed for each indicator and the choice
among different link functions naturally follows from the scale types of the ob-
served variables. In particular, while in the traditional literature different terms are
used depending on the nature of both latent and observed variables (Bartholomew
and Knott, 1999), in the following we will use only the general term factor mod-
els. Recent developments in computational statistics extended the use of estimation
methods traditionally used for models with only continuous indicators to the analy-
sis of models with any kind of response variables.

As an example, with continuous responses an identity link and a normal distribu-
tion are usually assumed, so (we do not use the subscript j, for simplicity):

yhi = vhi + ehi

with f (e) ∼ N(0,σ2); therefore, the conditional density of yhi given the latent vari-
ables becomes:
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f (yhi|ηηη j) = σ−1φ(vσ−1)

where φ represents the standard normal density. As another example, with ordi-
nal responses several model specifications are possible. Let s, s = 1, . . . ,S be the
category of the ordinal response yhi, the model for the cumulative probabilities is
expressed by:

g[P(yhi ≤ s|ηηη j)] = αs − vhi s = 1, . . . ,S−1 (6.2)

where αs with α1 < .. . < αS−1 are the thresholds to be estimated. Typical choices
of link function include the probit, logit and complementary log-log.

The two-level mixture factor model for continuous indicators and with one cate-
gorical latent variable at the highest level of analysis is:

yhi j = μh j +
M2

∑
m=1

λ (2)
mh η

(2)
mi j + e(2)

hi j (6.3)

μh j =
K

∑
k=1

λ (3)
kh η(3)

k j + e(3)
h j (6.4)

η(2)
mi j =

K

∑
k=1

β (3)
km η(3)

k j + e(2)
mi j (6.5)

where η(2)
mi j denotes the mth common factor at individual level, λ (2)

mh represents the
factor loading for factor m and item h and μh j is the item h intercept for each group

j. The two terms e(2)
hi j and e(3)

h j represent the item-specific errors at lower and higher

level. The variable η(3)
k j in Eqs. (6.4) and (6.5) is an indicator variable taking value

1 if unit i belongs to latent class k of the categorical latent variable ηηη(3)
j and 0 oth-

erwise, and λ (3)
kh and β (3)

km represent the coefficients for each class k. The classes are

mutually exclusive and, for the identification of the model,∑K
k=1λ

(3)
kh = 0 or λ (3)

1h = 0

and ∑K
k=1β

(3)
km = 0 or β (3)

1m = 0. The term e(2)
mi j represents a residual component of the

relationship between η(2)
mi j and ηηη(3)

j .

The variable ηηη(3)
j =

(
η(3)

1 j , . . . ,η(3)
K j

)
has a multinomial distribution, with:

πk = P
(
η(3)

j = k
)

= P
(
η(3)

k j = 1
)

=
exp(γk)

∑K
t=1 exp(γt)

(6.6)

with
K

∑
k=1

πk = 1. (6.7)

The term γk in Eq. (6.6) represents the intercept term of the linear predictor of the
logit model for the expectation of the latent distribution (πk); models with covariate
effects on class membership can be defined by including covariate effects in this
linear term.
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The basic assumptions of multilevel mixture factor models are that each group
belongs to no more than one latent class k, the individuals are independent inside
each group conditional on the latent class k at the higher level and the H responses
of individual i are independent of each other given the continuous latent variables at
the individual level and the group latent class membership, which is often referred
to as the local independence assumption (Bartholomew and Knott, 1999).

The ηηη(2)
j are usually assumed to be normally independent and identically dis-

tributed with:

ηηη(2)
j ∼ MN(000,ΨΨΨ (2))

where MN indicates the Multivariate Normal distribution and ΨΨΨ (2) is the M2 ×M2

variance and covariance matrix with elements ψ(2)
mm′ .

It is also assumed that the item-specific error at both levels of the analysis, e(2)
hi j

and e(3)
h j , are mutually independent and identically normally distributed.

In the most general case of multilevel mixture factor analysis, both λ (3)
kh and β (3)

km
in Eqs. (6.4) and (6.5) may differ across higher-level mixture components in order
to capture the differences between individuals due to the hierarchical data structure.
Two special cases of the model are obtained by constraining these terms. In the first

case, λ (3)
kh = 0, therefore the outcome variables are not directly affected by the higher

level latent class and the item intercepts do not vary across group-level classes; in

the second case, β (3)
km = 0, so the individual-level latent variable does not vary across

group-level classes. The first case is typically used when the researchers’ interest
is in classifying the higher level units and comparing the obtained groups with a
confirmative approach, “pushing” up the information collected at the individual-
level to the group-level through the different “steps” of the model. The second case
is typically used with an exploratory approach, aiming at analysing separately the
lower and higher structure of the data.

The model is represented in Fig. 6.1. Following the conventions, circles represent
latent variables and rectangles represent observed variables. The latent categorical
variable are indicated with a filled circle. The arrows connecting latent and/or ob-
served variables do not necessarily represent linear relations and possible correla-
tions among latent variables or among items are represented with dotted lines. The
nested frames represent the nested levels, for example, variables located within the
outer frame labeled j vary between clusters and have a j subscript (Skrondal and
Rabe-Hesketh, 2004).

6.3 The Generalized Latent Variable framework

The two-level mixture factor model described so far belongs to the Generalized La-
tent Variable framework introduced by Muthén (2008) and Vermunt (2007). This
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general framework integrates specific methodologies for latent variable modelling,
such as multilevel, longitudinal and structural equation models as well as item re-
sponse models, factor models and so on, in a global theoretical context and allows to
define models with any combination of categorical and continuous latent variables
at each level of the hierarchy.

The generalized latent variable model is formally described by two elements: the
response model for the observed variables conditional on the latent variables and
the model for the latent variables. Using the index j to denote an independent ob-
servation corresponding to the highest level of the hierarchy, the two-level mixture
factor model is expressed by:

g[E(yyy j|ηηη j)] = Z jβββ +ΛΛΛ (1)ηηη j (6.8)

h[E(ηηη(2)
j )] = X jγγγ+ΛΛΛ (2)ηηη(3)

j (6.9)

where y j denotes the response vector with elements yhi j representing the response
to indicator h of each individual i belonging to group j.

In the two-level framework, the vector ηηη j =
(
ηηη(2)′

j ,ηηη(3)′
j

)′

in Eq. (6.8) denotes

the latent variables varying at the i-th and j-th level of the analysis affecting directly

the observed responses. The vector ηηη(3)
j in Eq. (6.9) denotes the latent variables at

the j-th level affecting the latent variables at the i-th level.
The two matrices Z j and X j with the corresponding coefficient vectors βββ and

γγγ denote the fixed part of the model affecting, respectively, the observed items and
the latent structure at level 2. Different links and distributions can be specified for
different responses. The matrices ΛΛΛ , which elements do not vary depending on j,
represent the factor loading matrix of the generalized latent variable model. In par-
ticular, ΛΛΛ (1) indicates the factor loading matrix relating the latent variables directly

Fig. 6.1 Two-level mixture
factor model.
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to the outcomes and ΛΛΛ (2) indicates the factor loading matrix relating level 3 to level
2 latent variables.

Table 6.1 schematically represents different specifications of the two-level mix-
ture factor model. In particular, a model with continuous latent variables at both
levels of the analysis is called two-level factor model, while models with both con-
tinuous and categorical latent variables are called two-level mixture factor models.
Which model should be selected depends on the aims of the specific research and
on the substantive reason to believe in the nature, continuous or categorical, of the
latent variables.

Table 6.1 Matrix of potential two-level models with underlying latent variables

Higher level latent variables

Lower level latent variables Continuous Categorical Combination

Continuous A1 A2 A3
Categorical B1 B2 B3
Combination C1 C2 C3

Model A1, in which both the lower and higher level latent variables are con-
tinuous, is represented by the multilevel factor model, as described by Goldstein
and McDonald (1988) and Longford and Muthén (1992); its extension to ordinal
indicators is given by Grilli and Rampichini (2007a). Model A1 contains also three-
level regression models with continuous random effects. Model B2, in which both
the lower and higher level latent variables are categorical, is the multilevel latent
class model. Vermunt (2003) proposes a model where lower level units are clus-
tered based on their observed responses and higher level units are clustered based
on the likelihood of their members to be in one of the unit level clusters. Vermunt
(2003) also proposes a multilevel latent class model with continuous random ef-
fects at the group level (B1). Palardy and Vermunt (2009) used specification A3 to
define a multilevel extension of the mixture growth model (Muthén, 2004), where
two-level units are classified into homogeneous groups based on properties of their
mean growth trajectories.

This brief and incomplete review of the literature shows how modelling using
a combination of continuous and categorical latent variables provides an extremely
general and flexible framework of analysis. Furthermore, different traditions such as
growth modelling, multilevel modelling, latent class analysis are brought together
using the unifying theme of latent variables.

6.4 Likelihood, estimation and posterior analysis

Recent developments in computational statistics have enhanced the feasibility of a
maximum likelihood analysis in the context of multilevel mixture factor models.
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In this section we briefly present the formulation of the likelihood that has to be
maximized.

In two-level models, the total marginal likelihood is:

L(θθθ) =
J

∏
j=1

L j(θθθ) =
J

∏
j=1

f ( j)(y( j)|θθθ) (6.10)

where L j indicates the likelihood of group j, the groups are assumed to be inde-
pendent and θθθ represents the complete set of unknown parameters to be estimated.
The complete likelihood can be derived recursively. In a model with ηηη(2) and ηηη(3)

being, respectively, continuous latent variables at the first and second level of the
analysis (not using the subscript j for the latent variables hereafter, for simplicity),
the likelihood for each group j is given by:

L j(θθθ) =
∫
ηηη(3)

n j

∏
i=1

Li j(θθθ |ηηη(3)) f (ηηη(3))dηηη(3) (6.11)

where the n j level-1 units within level-2 units are assumed to be independent given
the random coefficients ηηη(3). For each first-level unit, controlling for the effect of
the latent variables at the highest level, the likelihood is expressed by:

Li j(θθθ |ηηη(3)) =
∫
ηηη(2)

Li j(θθθ |ηηη(2),ηηη(3)) f (ηηη(2)|ηηη(3))dηηη(2). (6.12)

Finally, considering the local independence assumption, the observed indicators
are assumed to be independent given the latent variables, so:

Li j(θθθ |ηηη(2),ηηη(3)) =
H

∏
h=1

f (yhi j|ηηη(2),ηηη(3)) (6.13)

where f (yhi j|ηηη(2),ηηη(3)) indicates the distribution of the response variables.
When the latent variables are categorical, the multiple integrals are replaced by

multiple sums. In a model with ηηη(3) and ηηη(2) being, respectively, a categorical and
continuous latent variables, the likelihood is expressed by:

L j(θθθ) =
K

∑
k=1

P(ηηη(3) = k)
n j

∏
i=1

Li j(θθθ |ηηη(3) = k)

Li j(θθθ |ηηη(3) = k) =
∫
ηηη(2)

Li j(θθθ |ηηη(2),ηηη(3) = k) f (ηηη(2)|ηηη(3) = k)dηηη(2)

Li j(θθθ |ηηη(2),ηηη(3) = k) =
H

∏
h=1

f (yhi j|ηηη(2),ηηη(3) = k).

Maximum Likelihood estimation involves finding the estimates for θθθ that maxi-
mize the marginal likelihood function (or the log-likelihood function).
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In maximizing the likelihood, two separated problems must be considered: solv-
ing the integrals involved in the likelihood and maximizing the likelihood function.
With respect to the first aspect, while a closed form expression for these integrals is
available when all responses and latent variables are continuous and normally dis-
tributed, in the other cases there are several approaches to approximating the inte-
grals, as Laplace approximation, numerical integration using quadrature or adaptive
quadrature, Monte Carlo integration (Skrondal and Rabe-Hesketh, 2004). With re-
spect to the second aspect, several methods were proposed for maximizing the like-
lihood, the most common being the Expectation-Maximization (EM) algorithm and
Newton-Raphson or Fisher scoring algorithms. Of course, each integration method
may be combined with some maximization methods.

The main aim of a researcher using factor models is in what can be known about
the latent variables after the indicators have been observed (Bartholomew and Knott,
1999). At each level of the analysis, this information is represented by the condi-
tional density:

f (ηηη |y) = f (ηηη) f (y|ηηη)/ f (y). (6.14)

From the point of view of social behavioral scientists, this means locating units
on the dimensions of the latent space (factor scores), or classifying units in different
classes representing some typical profile. Obviously, units with the same response
pattern will be assigned the same factor score or class.

Some scoring methods are the ones based on the empirical Bayesian poste-
rior distribution and the maximum likelihood method (Skrondal and Rabe-Hesketh,
2004). Usually, the firsts are the most used; indeed, while the maximum likelihood
approach produces scores that are conditionally unbiased, it is not consistent with
the modelling assumptions since it requires that the latent variables are considered
fixed parameters and does not yield predictions for clusters with insufficient infor-
mation. For this reason, we only present the two Bayesian posterior distribution
methods.

With the empirical Bayesian approach, according to Bayes’ theorem, the condi-
tional posterior distribution of the latent variables given the observed variables is
expressed by:

f (ηηη |y, θ̂θθ) =
f (y,ηηη |θ̂θθ)

f (y|θ̂θθ)
=

f (y|ηηη , θ̂θθ) f (ηηη |θ̂θθ)∫
ηηη f (y|ηηη , θ̂θθ) f (ηηη |θ̂θθ)

(6.15)

where θ̂θθ represent the estimated parameters, f (y|θ̂θθ) is the distribution of the ob-
served variables and f (y,ηηη |θ̂θθ) is the joint distribution of the observed and latent
variables. This approach uses the term “Bayesian” since both the latent and ob-
served variables are treated as random variables. Actually, the full Bayesian ap-
proach would assume a prior distribution for θθθ in addition to the distribution for ηηη
and the θθθ in Eq. (6.15) would be treated as fixed constants.

The computation of the posterior distribution is strictly related to the specification
of the prior distribution of the latent variables. Usually, the posterior distribution
cannot be expressed in closed form and heavy numerical integration is required. In
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factor models with continuous random variables, it follows from standard results on
conditional multivariate normal densities that the posterior density is multivariate
normal; for other response types, the posterior density tends to multinormality as
the number of units in the clusters increases (Skrondal and Rabe-Hesketh, 2004).

After estimating the empirical Bayesian posterior distribution, two approaches
can be used to estimate the factor scores (or latent class) associated to each unit: the
prediction using empirical Bayes (also called a posteriori) and the prediction using
empirical Bayes modal (also known as modal a posteriori).

The empirical Bayes prediction is the most widely used method for scoring. The
predictors are represented by the mean of the posterior empirical Bayesian latent
variables distribution in Eq. (6.15), so:

ηηηEB = E(ηηη |y, θ̂θθ). (6.16)

With continuous normal latent variables, the empirical Bayes predictor is the best
linear unbiased predictor BLUP (Skrondal and Rabe-Hesketh, 2004).

The prediction using empirical Bayes modal uses the posterior mode instead of
the posterior mean for the prediction of the factor scores:

ηηηEBM =
max arg
ηηη (ηηη |y, θ̂θθ). (6.17)

This method does not require numerical integration, so when the posterior den-
sity is approximately multivariate normal it is often used as an approximation of the
empirical Bayes solutions. In particular, this method represents the standard classifi-
cation method in latent class modelling since it minimize the expected misclassifica-
tion rate (Skrondal and Rabe-Hesketh, 2004). Obviously, in standard factor models
the predictors obtained with the empirical Bayes and empirical Bayes modal coin-
cide.

6.5 Model selection

A number of overall and individual statistical measures of fit has been proposed in
order to evaluate a specified model on the basis of empirical data. In the following,
some tests based on the likelihood theory and some information criteria useful to
choose between different multilevel and multilevel mixture factor models are briefly
introduced.

One method to compare nested models is based on the likelihood ratio test
(Agresti, 2002). However, standard asymptotic results for the test do not hold if the
null hypothesis is on the boundary of the parameter space since regularity conditions
would be violated; well-known examples are testing the null hypothesis relating to
random effects (Self and Liang, 1987) and testing the hypothesis on the variability
of the latent factors. In these cases, a rule of thumb is to divide by two the asymptotic
p-value of the Chi-squared likelihood ratio test statistic distribution (Skrondal and
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Rabe-Hesketh, 2004). Also in the mixture models framework the likelihood ratio
statistic cannot be used to compare two nested models, one with k0 classes and one
with k1 classes (k0 < k1). Indeed, under the null hypothesis of k0 groups, some of the
parameters of the model with k1 classes lie on the boundary of the parameter space
so that regularity conditions for likelihood ratio statistic to be asymptotically Chi-
squared are not fulfilled. In particular, the correct null distribution of the likelihood
ratio statistic is unknown (Everitt, 1988) but a lot of conjectures and simulations
have been published on this topic (McLachlan and Peel, 2000).

Another approach for comparing models is based on the computation of some
indexes representing a penalized form of the likelihood: as the likelihood increases
with the addiction of some parameters, it is penalized by the subtraction of a term
related to the number of parameters. These information criteria are generally ex-
pressed in terms of:

−2logL(θθθ)+C (6.18)

where the first term measures the lack of fit of the model and C is the penalty term
that measures the complexity of the model. The intent is therefore to choose a model
to minimize this criterion.

Relating to the problem of choosing between models with different number of
latent classes, a variety of textbooks and articles suggest the use of the Bayesian
Information Criterion (BIC) (Schwarz, 1978) as a good indicator (Nylund et al.,
2007). The BIC is expressed by:

BIC = −2logL+ p× log(N) (6.19)

where logL is the loglikelihood value, p is the number of parameters and N is
the number of observations for the fitted model. In two-level models the number
of observations can refer to both within and between level; this distinction can
make a substantial difference when determining the number of classes of a mul-
tilevel mixture model. To our knowledge, while there is a wide variety of litera-
ture available on the performance of model selection statistics for determining the
number of mixture components in one-level mixture models, there are no works in
the two-level context, except that of Lukoc̆iené and Vermunt (2004). In their pa-
per, the authors show the results of a simulation study on multilevel latent class
analysis with a fixed number of classes at the lower level, aiming at individuat-
ing the best index for determining the number of mixture components at the higher
level.

6.6 Case study

In this section a multilevel mixture factor model is used in order to evaluate the uni-
versity external effectiveness of the degree courses of the University of Florence. As
suggested by Chiandotto (2004), students’ perception of the quality of the services
provided by an institution can be evaluated both at the time of the degree (internal
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effectiveness) and some date later (external effectiveness). In particular, we evaluate
the University performance from the users’ subjective point of view, as perceived
three years after the degree.

Different proposals on the use of multilevel methodologies to analyse both the
external and internal effectiveness of the university system can be found, as some
examples, in Giusti and Varriale (2008); Chiandotto et al. (in press); Chiandotto and
Varriale (2006); Chiandotto and Giusti (2006). In the present application the use of
multilevel mixture factor models, with a combination of continuous and categorical
latent variables at different levels of the analysis, allows to fulfill two objectives,
corresponding to the levels of the analysis. The “first level objective” is to under-
stand the latent constructs underlying the phenomenon of job satisfaction using the
information available at the individual level, that is the satisfaction expressed by
graduated students that are employed three years after the degree. At the same time
this individual information can be used to fulfill a “second level objective”, to clas-
sify the study programs attended by the graduates into a small number of classes
representing some typical profiles, that is to identify those programs with similar
characteristics with respect to job satisfaction.

The job satisfaction is a complex process naturally considered as a latent con-
struct not directly observable but measured by some indicators. Data come from
the AlmaLaurea survey “Employment opportunities, 2005” (Almalaurea, 2006) and
they concern graduates of the University of Florence. Data have a hierarchical struc-
ture, with graduates nested in different degree courses; in particular, it is interesting
to investigate the effect of this level of aggregation on job satisfaction.

We consider the graduates with the old Italian university system during the sum-
mer session of the solar year 2002 who are employed at the moment of the interview,
3 years after the degree. We focus on the analysis of job satisfaction three years after
the degree since it is reasonable that after that time all graduates find the job they
have studied for and they are usually no more involved in specialization and training
courses, except for the graduates in medicine. Obviously, as a confirmation of the
results obtained with the present work, it would be interesting to repeat the same
analyses when data referring to the graduates’ occupational status five years after
their degree will be available. For reasons of representativeness, we only consider
those degree courses with at least eight employed graduates. The 1,025 graduates
we include in the analysis represent almost 60% of the graduates at the University
of Florence in the summer session of 2002; the total and percentage numbers of
graduates in each degree course are in Table 6.2.

The questionnaire used for the Almalaurea survey “Employment opportunities”
is very comprehensive, since it deals with many aspects related to the current job
or the search for a job. The questionnaire section on the satisfaction with the actual
job consists in 14 items. Through a correlation analysis and other preliminary con-
siderations, we selected five of these items, measuring the satisfaction with: earn-
ings, career opportunities, coherence with the University studies, professionalism
and cultural interests. All these items are expressed on an ordinal scale with 10 cat-
egories; the items are considered as continuous variables because of the number of
the categories. The average evaluation for each of the 5 items is in Table 6.3.
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Table 6.2 Number of graduates employed three years after the degree, by degree course. Students
graduated (old system degree) at the University of Florence, summer session, year 2002

Degree course Number of employed graduates Percentage

Architecture 216 21.07
Chemistry 9 0.88
Business economics 26 2.54
Economics 67 6.54
Philosophy 16 1.56
Law 106 10.34
Civil engineering 31 3.02
Electronic engineering 29 2.83
Mechanical engineering 23 2.24
Literature 78 7.61
Foreign lang. and literature 48 4.68
Mathematics 11 1.07
Medicine 17 1.66
Psychology 51 4.98
Biology 11 1.07
Political sciences 131 12.78
History 8 0.78
Informatics engineering 10 0.98
Environmental engineering 21 2.05
Educational sciences 102 9.95
Forest and environ. sciences 14 1.37

1,025 100

As we can see, there are some differences between the degree courses in the
mean evaluations expressed by the graduates. For example, the graduates in philos-
ophy and history express the lowest mean evaluations for the aspects coherence and
cultural interests; moreover, they give low scores to the other three aspects. At the
opposite, the graduates in architecture and law are the most overall satisfied. For
the graduates in medicine we observe a really high evaluation for coherence, pro-
fessionalism and cultural interests, as expected, but lower mean values for career
and earnings, probably because these graduates are still involved in some special-
ization courses. There are also some differences between similar degree courses,
like the ones in engineering; for example, the interviewed who graduated in elec-
tronic engineering seem to be less satisfied with their careers with respect to their
colleagues. The differences in graduates’ satisfaction between degree courses show
an important influence of the hierarchical data structure on job satisfaction.

Due to the results of the preliminary analyses on the correlation structure be-
tween the items and to the latent (non observable) nature of the job satisfaction, we
proceeded with an exploratory (EFA) and a confirmatory one-level factor analysis
(CFA). As illustrated in Sect. 6.5, likelihood ratio tests have been used to compare
models with different factor loadings, while BICs have been used to compare mod-
els with different number of latent factors. In particular, with EFA we compared
models with 2 and 3 latent factors measured, at the same time, by all the indicators.
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Table 6.3 Mean evaluations with the selected items, by degree course. Students graduated (old
system degree) at the University of Florence, summer session, year 2002

Degree course Coherence Professionalism Cultural
interests

Earnings Career

Architecture 7.39 7.65 7.38 6.81 7
Chemistry 6.56 7.44 6.78 6.56 6.56
Business economics 7.85 7.85 6.85 7.19 6.92
Economics 6.91 7.34 6.46 6.85 6.78
Philosophy 4.81 6.63 5.06 5.63 5.73
Law 7.21 7.73 7.45 7.03 7.24
Civil engineering 7.74 7.68 7.29 6.55 6.41
Electronic engineering 6.55 7.14 6.83 6.28 5.97
Mechanical engineering 7.35 7.61 7.65 6.96 6.65
Literature 5.73 7.33 6.67 5.68 5.51
Foreign lang. and literature 5.71 7.15 6.4 6.08 6
Mathematics 5.36 7 6.82 6.64 5.64
Medicine 9.41 8.06 8.71 6.88 6.12
Psychology 6.2 7.12 6.75 5.59 5.82
Biology 7.82 8.55 7.18 5 5.18
Political sciences 5.53 7.16 6.57 6.29 6.43
History 3.25 7.13 5.75 6 5.75
Informatics engineering 7.4 7.2 7.1 6.3 6
Environmental engineering 7.76 8 7.38 6.9 6.45
Educational sciences 7.26 7.56 7.49 5.84 5.99
Forest and environ. sciences 6.43 7.21 7.21 5.79 5.93

6.76 7.47 7.03 6.42 6.44

Subsequently, we run a CFA following what suggested by the correlation structure
of the items and constraining to zero the loadings that resulted to be close to zero
with EFA. The results of these analyses suggest the presence of two factors: one
factor related to the Cultural features of the job, measured by career, professional-
ism, coherence and cultural interest, and one factor related to the Status of the job,
measured by earnings, career and professionalism.

In order to take into account the two-level data hierarchy and to classify the
degree courses in some latent classes with different profiles, we applied a two-level
mixture factor model. The final model is:

yhi = μh +
M2

∑
m=1

λ (2)
mh η

(2)
mi j + e(2)

hi j (6.20)

η(2)
mi j =

K

∑
k=1

β (3)
km η(3)

k j + e(2)
mi j (6.21)

At the program level, λ (3)
kh = 0, therefore it is assumed that the degree courses

differ only in the mean level of latent factors at the individual level
(
η(2)

mi j

)
and the

outcome variables are not directly affected by the higher level latent variable. In
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other words, β (3)
km represents the mean of the m-th factor at individual level for the

degree courses belonging to the k-th latent class.
In the model, the items coherence and earnings are the reference items (factor

loading equal to 1), respectively, for the factors Cultural and Status. At the second

level of the analysis, in Eq. (6.21) β (3)
1m are constrained to 0 for each m, m = 1,2, in

order to ensure the identification.
The Bayesian Information Criterion index calculated with N equal to the num-

ber of groups is used to choose between models with different number of classes at
group level. Table 6.4 shows BIC values for models composed of 1–4
classes.

Table 6.4 Two-level mixture factor model: loglikelihood and fit indexes. Students graduated (old
system degree) at the University of Florence, summer session, year 2002

N classes N param. Log-likelihood BIC (N obs.) BIC (N groups)

1 18 −9775.29 19675.37 19605.38
2 21 −9750.12 19645.82 19564.17
3 24 −9737.45 19641.27 19547.97
4 27 −9733.09 19653.36 19548.38

The final two-level mixture factor model is represented in Fig. 6.2.
At the individual level, the factor structure is very similar to that found with the

one-level factor analysis. Again, we acknowledge the presence of two highly corre-
lated latent factors (Table 6.6). The first factor (Status) is related to the satisfaction
with earnings, career and professionalism; the second factor (Cultural) is related to
career, professionalism and to the satisfaction with cultural interests and coherence
of the job with the previous studies.

Factor loadings are shown in Table 6.5. All the loadings have the same sign. As
is always the case, the latent dimension underlying the global satisfaction at the
program level has an arbitrary scale, which means that factor scores must be inter-
preted relatively to each other. The most important aspects relating to factor Status

Fig. 6.2 Two-level mixture
factor model. Students grad-
uated (old system degree) at
the University of Florence,
summer session, year 2002.
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are earnings and career, while this is the case for coherence and cultural interests
with the factor Cultural. In other words, for each degree course, the graduates’ sat-
isfaction with the job Status is measured mostly by their opinion on earnings and
career and the graduates’ satisfaction with the job Cultural is measured mostly by
their opinion on coherence and cultural interests. Thus, the multilevel mixture factor
model gives some insides on the dimensions influencing graduates’ job satisfaction
at the individual level.

Table 6.5 Factor loadings. Students graduated (old system degree) at the University of Florence,
summer session, year 2002

Status Cultural

Earnings 1
Career 0.98 0.13
Professionalism 0.16 0.57
Coherence 1
Cultural interests 0.82

Table 6.6 Variances, covariance and correlation of the factors. Students graduated (old system
degree) at the University of Florence, summer session, year 2002

Status Cultural

Status 3.23 0.39
Cultural 1.32 3.63

As already underlined, besides these results referring to the first level of analysis,
the model expressed by (6.20) and (6.21) allows also to interpret the effect of the
degree courses on graduates’ job satisfaction.

At the second level of analysis, the model classifies the courses in three classes.
The sizes of the three classes are different: a degree course has a probability equal
to 0.45 to be in the first class, of 0.36 to be in the second one and of 0.19 in the third
one (Table 6.7, last row). Due to the constraints, the class-specific effects must be
interpreted in terms of deviations from the “reference class” where the effects are
equal to 0; in this analysis, the reference class is the first (Fig. 6.3). The three classes
differ in the mean value of the two latent factors: the second class has a higher mean
level of satisfaction both for Status and Cultural and the third class has a slightly
lower mean value for the factor Status, while the satisfaction with Cultural is the
highest between the three.

Using the empirical Bayes modal prediction, the degree courses can be assigned
to the three classes (Table 6.7, column 2), so that we can better interpret the previ-
ous results. The main part of the courses, 11 out of 21, are attributed to the ref-
erence class. For some of these courses, in particular for chemistry, informatics
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Table 6.7 Two-level mixture factor model: study programs classification based on the empiri-
cal Bayesian posterior distribution. Students graduated (old system degree) at the University of
Florence, summer session, year 2002

Degree course Class (modal) Prob. Class 1 Prob. Class 2 Prob. Class 3

Architecture 2 0 1 0
Chemistry 1 0.52 0.43 0.05
Business economics 2 0.01 0.99 0
Economics 2 0.14 0.86 0
Philosophy 1 1 0 0
Law 2 0 1 0
Civil engineering 2 0.01 0.68 0.3
Electronic engineering 1 0.92 0.07 0.01
Mechanical engineering 2 0.02 0.95 0.03
Literature 1 1 0 0
Foreign lang. and literature 1 1 0 0
Mathematics 1 0.89 0.1 0.01
Medicine 3 0 0.04 0.96
Psychology 1 1 0 0
Biology 3 0.01 0.01 0.98
Political sciences 1 1 0 0
History 1 0.97 0.02 0
Informatics engineering 1 0.4 0.36 0.25
Environmental engineering 2 0.01 0.87 0.11
Educational sciences 3 0 0 1
Forest and environ. sciences 1 0.61 0.15 0.24

Mean values 0.45 0.36 0.19

engineering and forest and environmental sciences, the posterior probabilities of
belonging to a specific latent class at the group level are spread in the three classes
(Table 6.7, columns 3 to 5). A more in-depth analysis could be useful in order to
analyse the peculiarities of these courses. The degree courses belonging to the sec-
ond class, the “best” for the satisfaction with both latent factors, are architecture,
business economics, economics, law, civil engineering, mechanical engineering and

Fig. 6.3 Latent classes fea-
tures (latent factors Cultural
and Status. Students gradu-
ated (old system degree) at
the University of Florence,
summer session year 2002.
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environmental engineering. Graduates in these courses developed the skills and the
possibility to choose a job which guarantees a high level of satisfaction with the dif-
ferent aspects we considered. Graduates in the courses belonging to the third class,
namely medicine, biology and educational sciences, are instead more likely to have
a job with a high correspondence to their cultural interests and previous studies,
while the position or status of their jobs is maybe expected to increase in the future.
In particular, graduates in medicine are probably still involved in specialization and
training courses, while the other graduates can also be occupied in some occasional
and temporary positions because they are encountering some difficulties to find the
job they studied for.
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