
Chapter 2
Latent variable models for ordinal data

Silvia Cagnone, Stefania Mignani and Irini Moustaki

2.1 Introduction

Latent variable models with observed ordinal variables are particularly useful for
analyzing survey data. Typical ordinal variables express attitudinal statements with
response alternatives like “strongly disagree”, “disagree”, “strongly agree” or “very
dissatisfied”, “dissatisfied”, “satisfied” and “very satisfied”.

In the literature, there are two main approaches for analyzing ordinal observed
variables with latent variables. The most popular one is the Underlying Variable
Approach (UVA) (Muthén, 1984; Jöreskog, 1990) which assumes that the observed
variables are generated by underlying normally distributed continuous variables.
This approach is used in structural equation modeling and the relevant methodolog-
ical developments are available in commercial software such as LISREL (Jöreskog
and Sörbom, 1988) and Mplus (Muthén and Muthén, 1998–2007). The other ap-
proach is the Item Response Theory (IRT) according to which the observed variables
are treated as they are. The unit of analysis is the entire response pattern of a sub-
ject, so no loss of information occurs. An overview of those type of models can be
found in Bartholomew and Knott (1999) and van der Linden and Hambleton (1997).
Moustaki and Knott (2000) and Moustaki (2000) discuss a Generalized Linear
Latent Variable Model framework (GLLVM) for fitting models with different types
of observed variables.
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Several studies (Jöreskog and Moustaki, 2001; Huber et al., 2004; Cagnone et al.,
2004) showed that the latter approach is preferable in terms of accuracy of estimates
and model fit. This is due to the fact the UVA is based on limited information estima-
tion methods whereas IRT is a full information approach. However, full information
methods are much more computationally intensive especially as the number of la-
tent variables increases. Solutions to computational problems for IRT models have
been recently proposed by Huber et al. (2004) and Schilling and Bock (2005).

In the following sections we review the latent variable models for ordinal data
within the GLLVM framework as introduced by Moustaki (2000). The chapter
will focus on the goodness-of-fit issue when sparseness is present (Reiser, 1996;
Maydeu-Olivares and Harry, 2005; Cagnone and Mignani, 2007) and the most re-
cent extension to longitudinal data (Cagnone et al., 2009). An application to a subset
of the National Longitudinal Survey of Freshmen (NLSF) is also presented.

2.2 The GLLVM for ordinal data

2.2.1 Model specification

Let y be a vector of K ordinal observed variables each of them with ck categories
and ηηη a vector of Q latent variables. The ck (k = 1, . . . ,K) ordered categories of
the variables yk have associated probabilities π1,k(ηηη),π2,k(ηηη), . . . ,πc,k(ηηη) which are
functions of the vector of the latent variables ηηη . Within this framework, the unit of
analysis is the response pattern of an individual; for the r-th individual it is defined
as yr = (y1 = s1,y2 = s2, . . . ,yK = sK). There are NR = ∏K

k=1 ck possible response
patterns.

The probability associated to yr is given by

f (yr) = πr =
∫

Rηηη
g(yr|ηηη)h(ηηη)dηηη =

∫
Rηηη
π(ηηη)h(ηηη)dηηη (2.1)

where h(ηηη) is assumed to be a multivariate normal distribution with 0 mean and
correlation (or covariance) matrix equal to ΦΦΦ and g(yr|ηηη) is the conditional prob-
ability of the observed variables given the latent variables following a multinomial
distribution. Under the assumption of conditional independence:

g(yr | ηηη) =
K

∏
k=1

g(yk | ηηη) =
K

∏
k=1

πs,k
ys,k =

K

∏
k=1

(γs,k − γs−1,k)ys,k s = 2, · · · ,ck (2.2)

where ys,k = 1 if a randomly selected individual responds into category s of the
kth item and ys,k = 0 otherwise. γs,k is the cumulative probability of responding
below category s. Unlike the model for binary data, in this case we define the condi-
tional distribution g(yk | ηηη) in terms of cumulative probabilities γs,k since they take
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into account the ranking of the categories of the ordinal variables. In more detail
γs,k = π1,k +π2,k + . . .+πs,k is the probability of a response in category s or lower
on the variable k. As in the classical generalized linear model, the relation between
the observed and the latent variables can be expressed through any monotone dif-
ferentiable link function. In the case of ordinal variables we can refer to the logit as
follows:

ln

[
γs,k

(1− γs,k)

]
= τs,k −

Q

∑
q=1

αkqηq, s = 1, . . . ,ck −1 (2.3)

where τs,k and αkq can be interpreted as thresholds and factor loadings of the model,
respectively. The ordinality is defined properly by the condition τ1,k ≤ τ2,k ≤ . . . ≤
τc−1,k. We refer to (2.3) as the Proportional Odds Model (POM) (McCullagh and
Nelder, 1983).

2.2.2 Model estimation

The parameters of the model are estimated with the E-M algorithm. The E-M has
been used for estimating the two-parameter logistic model for binary variables in
Bock and Aitkin (1981), and then used for estimating the GLLVM in Bartholomew
and Knott (1999). See Moustaki (2000) for the case of ordinal data.
Starting from Eq. (2.1) the joint density of the random variable for the ith individual
can be written as

f (yi,ηηη i) = g(yi|ηηη i)h(ηηη i). (2.4)

If we consider a sample of size n, the complete log-likelihood is given by:

n

∑
i=1

log f (yi,ηηη i) =
n

∑
i=1

log[g(yi|ηηη i)h(ηηη i)] =
n

∑
i=1

[logg(yi|ηηη i)+ logh(ηηη i)] . (2.5)

From the assumption of conditional independence we get:

n

∑
i=1

log f (yi,ηηη) =
n

∑
i=1

[
K

∑
k=1

logg(yki|ηηη i)+ logh(ηηη i)

]
. (2.6)

The thresholds and factor loadings are found in the first component of the log-
likelihood whereas the parameters related with the covariance matrix of the latent
variables are found in the second component.

Estimation of the correlation between latent variables. The E-M algorithm re-
quires first the computation of the expected score function of the correlation terms
with respect to the posterior distribution h(ηηη |y)

EiS(ΦΦΦ) =
∫

Rηηη
S(ΦΦΦ)h(ηηη |yi)dηηη (2.7)
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where

S(ΦΦΦ) =
∂ logh(ηηη ,ΦΦΦ)

∂ΦΦΦ
(2.8)

that is

S(ΦΦΦ) = ∂ log h(ηηη ,ΦΦΦ)/∂ΦΦΦ = −1
2
ΦΦΦ−1 +

1
2
ΦΦΦ−1(ηηηηηη ′)ΦΦΦ−1. (2.9)

By substituting (2.9) in Eq. (2.7) we get:

EiS(ΦΦΦ) =
∫

Rηηη

(
−1

2
ΦΦΦ−1 +

1
2
ΦΦΦ−1(ηηηηηη ′)ΦΦΦ−1

)
h(ηηη |yi)dηηη . (2.10)

The integrals can be approximated by using the Gauss-Hermite quadrature points.
Since the latent variables are correlated, the approximation is obtained by using
the Choleski factorization of the correlation matrix ΦΦΦ = CC′. The Gauss-Hermite
approximation will be applied to the integral of the transformed variables as follows

f (y) = (2π)−n/2 ∑
w1,...,wQ

g
(

z | C
(
βw1 , . . . ,βwQ

)′)
h
(

C
(
βw1 , . . . ,βwQ

)′)
(2.11)

where ηηη = Cβββ ,∑w1,...,wQ
=∑ν1

w1=1 . . .∑
νQ
tn=1 and ν1, . . . ,νQ are the quadrature points.

By solving ∑n
i=1 EiS(ΦΦΦ) = 0 using the above approximation, we get explicit solu-

tions for the maximum likelihood estimator of the elements of ΦΦΦ

[Φ̂ΦΦ ]l j =
∑n

i=1∑w1,...,wQ

[(
C
(
βw1 , . . . ,βwQ

)′)(C
(
βw1 , . . . ,βwQ

)′)′]
l j

h
(
C
(
βw1 , . . . ,βwQ

)
|yi
)

∑n
i=1∑w1,...,wQ

h
(
C
(
βw1 , . . . ,βwQ

)
|yi
)

(2.12)

Estimation of the parameters in g(y|ηηη). The expected score function of the pa-
rameters ak =

(
τ1,k , . . . ,τck−1 ,k ,αk1, . . . ,αkQ

)
,k = 1, . . . ,K with respect of h(ηηη |y)

is given by

EiS(ak) =
∫

Rηηη
Si(ak)h(ηηη |yi)dηηη , (2.13)

where in this case

Si(ak) =
∂ logg(yi|ηηη)

∂ak
. (2.14)

By solving EiS(ak) = 0 we get not-explicit solutions for the parameters ak. The
expressions of the derivatives (2.14) can be found in Moustaki (2000) and Moustaki
(2003).
The E-M algorithm works as follows:

• Choose initial estimates for the model parameters.
• E-step: Compute the Expected score functions given in (2.7) and (2.13).
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• M-step: Obtain improved estimates for the parameters by solving the non-linear
maximum likelihood equations for the parameters of the conditional distribution
g(y|ηηη) by using a Newton-Raphson iterative scheme and explicit solutions for
the correlations between the latent variables.

• Return to step 2 and continue until convergence is achieved.

2.3 The goodness-of-fit of the model

2.3.1 The problem of sparseness

The usual way of testing the goodness-of-fit of latent variable models for ordinal
data is to compare the observed and the expected frequencies of all possible re-
sponse patterns (NR). A test for the model may be based on the usual goodness-of-
fit statistics such as the likelihood ratio (LR) and the Pearson chi-square test (GF),
defined as follows:

LR = 2n
NR

∑
r=1

fr ln

(
fr

π̂r

)
, (2.15)

GF = n
NR

∑
r=1

( fr − π̂r)2

π̂r
, (2.16)

where fr is the sample proportion of the r-th response pattern, π̂r is the correspond-
ing estimated probability π̂r = πr(â) and n is the sample size.

Under regular conditions both statistics are approximately distributed as a χ2

with degrees of freedom d f = NR− 1− #pr where #pr is the number of the es-
timated parameters. With reference to the contingency table whose cells contain
the frequencies of the response patterns, the number of observations in each cell
should be large enough to justify the asymptotic approximation of the statistics
to the chi-square distribution. Nevertheless, in many cases, contingency tables do
not have large numbers of observations and the sparseness problem arise. To solve
the sparseness problem a number of theoretical strategies has been proposed. Such
strategies have been applied both to the goodness-of-fit statistics and to the resid-
uals calculated from the marginal distributions of the observed variables. For a re-
view of strategies applied to the former see Koheler and Larntz (1980), Agresti and
Yang (1987), Read and Cressie (1988), Bartholomew and Tzamourani (1999), and
Tollenar and Mooljaart (2003).

An alternative solution to the sparseness problem is to consider the residuals
computed from marginal distributions. The residuals express the discrepancies be-
tween observed and expected frequencies and can be defined in a number of dif-
ferent ways. Residuals can provide information on how well the model predicts
the one and two-way marginal distributions revealing items or pairs of items for
which the model does not fit well. In fact, even in the presence of a severe degree
of sparseness, almost always the univariate and the bivariate marginal frequencies
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distributions are quite large so that statistics based on these frequencies are not af-
fected by sparseness. A thorough treatment of the analysis of residuals is given by
Reiser (1996) with reference to the two-parameter item response model for binary
data. The use of residuals in GLLVM for binary data is discussed in Bartholomew
and Tzamourani (1999). They recommend to use them as supplementary analysis
to the overall goodness-of-fit testing. In particular, they argue that a good model
predicts well all the pairwise associations between observed variables. On the con-
trary, if some pairs of variables present high bivariate residuals, they indicate that
the model does not fit the data. As for POM, Jöreskog and Moustaki (2001) have
defined specific measures of fit based on the residuals. For the univariate marginal
distributions they have proposed the following measure related to the GF (an equiv-
alent measure is given also for the LR index but it is not reported here because it is
outside the scope of this work):

GF fit(k) = n
ck

∑
s=1

( fs,k − π̂s,k)2

π̂s,k
k = 1, . . . ,K (2.17)

where we can define:

π̂s,k =
NR

∑
r=1

yrsπ̂r, (2.18)

and

yrs =
{

1 if yk = s
0 otherwise.

(2.19)

The quantities ( fs,k − π̂s,k)2/π̂s,k (s = 1, . . . ,ck) are the standardized residuals com-
puted from the univariate marginal distribution of the variable k.
In the same way, for the bivariate marginal distributions of the variables k and l we
get:

GF fit(kl) = n ∑
sk,sl

( fsk,sl − π̂sk,sl)2

π̂sk,sl
k = 1, . . . ,K −1 l = k +1, . . . ,K (2.20)

where, as before, we can define:

π̂sk,sl =
NR

∑
r=1

yrskyrsl π̂r, (2.21)

and

yrsk =
{

1 if yk = sk

0 otherwise,
(2.22)

yrsl =
{

1 if yl = sl

0 otherwise.
(2.23)

In this case the quantities ( fsk,sl − π̂sk,sl)2/π̂sk,sl (s = 1, . . . ,ck;s = 1, . . . ,cl) are the
standardized residuals computed from the bivariate marginal distribution of the vari-
ables k and l.
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2.3.2 An overall goodness-of-fit test

The residuals based on the marginal distributions can be used for building a overall
goodness-of-fit test. To this aim, we need to define the unstandardized residuals for
the overall r-th response pattern as:

gr = fr − π̂r. (2.24)

Under regular conditions (Birch, 1964), the NR dimensional vector
√

ng converges
asymptotically to a gaussian random vector with mean equal to 0 and covariance
matrix ΩΩΩ g defined as:

ΩΩΩ g = D(πππ)−ππππππ ′ −T(F′F)−1T
′
, (2.25)

where D(πππ) is a diagonal matrix that contains the NR probabilities πr, the matrix F
is defined as F = D(πππ)−1/2∂πππ/∂a. Finally T = ∂πππ/∂a.
The residuals just defined are computed from the overall contingency table of the
manifest variables. From these residuals it is possible to obtain the unstandardized
residuals associated to the marginal distributions.We refer to the residuals for the
bivariate marginal distributions (considering, for simplicity, only the case in which
the observed variables have the same number of categories, that is ck = cl = c). For
category a of variable k and category b of variable l they can be defined as:

e = ( fsk,sl − π̂sk,sl). (2.26)

π̂sk,sl is directly computed by the estimated response probabilities π̂r. Passing to the
matrix form we can write:

e = M(f− π̂ππ) = Mg, (2.27)

where M is a matrix of 0s and 1s. The generic element of M, msk,sl is given by:

msk,sl =
{

1 if yk = s and yl = s
0 otherwise.

(2.28)

The elements of M have been derived in such a way that multiplying M by the
response probabilities πππ , we realize the summation across the response patterns
obtaining the second-order marginal proportions. From the asymptotic normality of
g and from (2.27) we get: √

ne → N(0,ΩΩΩ e) (2.29)

where ΩΩΩ e = MΩΩΩ gM′.
A consistent estimator for ΩΩΩ e is given by:

Σ̂ΣΣ e = n−1M(D(πππ)−ππππππ ′ −T(F′F)−1T
′
)M′|ααα=α̂αα,πππ=π̂ππ . (2.30)

The test of fit is developed for assessing the null hypothesis that the theoretical
residuals are not significantly different from 0. With this regard we can refer to the
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statistic:
X2

e = e′Σ̂ΣΣ+
e e (2.31)

that has an asymptotic χ2 distribution. Since Σ̂ΣΣ e is not a full rank matrix, its in-
version can be obtained in different ways. Cagnone and Mignani (2007) propose
to use the Moore-Penrose generalized inverse; in the case in which the compu-
tational of Σ̂ΣΣ+

e is not stable, Maydeu-Olivares and Harry (2005) propose to com-

pute a matrix that has Σ̂ΣΣ+
e as generalized inverse. The degrees of freedom of

the χ2 depend on the rank of ΣΣΣ e, that in general results less or equal to the

min

(
∑2

k=0

(
p
k

)
(c−1)k,NR−1− (KQ+K(c−1))

)
namely, the minimum be-

tween the ranks of M and ΩΩΩ g (Bishop et al., 1975), respectively.
Reiser (1996) argued that, when sparseness is present, this index can be very useful
for the goodness-of-fit of the overall model. In fact, although it is based on partial
information, if higher-order interactions are not present (because of the conditional
independence assumption) inferences regarding the parameters may be performed
without loss of information in smaller marginal table (collapsibility of the contin-
gency table). In this case this index produces good results in terms of both Type I
error and power of the test (Reiser and Lin, 1999; Cagnone and Mignani, 2007).
Nevertheless, when the collapsibility does not hold, this index is not as powerful as
the indexes computed from the full contingency table.

2.4 GLLVM for longitudinal ordinal data

When questionnaires are submitted to the same individuals over time, we deal with
longitudinal data or repeated measures. Recently many authors focused on latent
variable models for longitudinal data with the aim of analyzing traits, attitudes, or
any latent constructs over time (Roy and Lin, 2000; Dunson, 2003; Rabe-Hesketh
et al., 1996). The latent variable model for ordinal data discussed in the previous
sections has been extended to longitudinal data by Cagnone et al. (2009). The key
feature of this model is that the inter-relationships among items are explained by
time-dependent attitudinal latent variables whereas the associations across time are
modelled via item-specific random effects. The time changes in the attitudinal la-
tent variables are measured using a non-stationary autoregressive model. The re-
sulted covariance matrix allows the latent variables to be correlated with unknown
variances.

Formally, the model described in Sect. 2.2 is extended to longitudinal data in the
following way. Given the vector of the K ordinal observed variables yt measured at
time t (t = 1, . . . ,T ), the linear predictor defined in (2.3) becomes

ln

[
γt,k,s

(1− γt,k,s)

]
= τt,k,s−αktηt −uk, k = 1, . . . ,K;sk = 1, . . . ,ck−1; t = 1, . . . ,T

(2.32)
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where the uk’s are item-specific random effects. The latent variables ηt and their
variances allow to explain the associations among the items measured at time t. The
associations among the same item measured across time are explained by uk and the
covariances between ηt’s. The time dependent latent variables are related through a
first order autoregressive structure

ηt = φηt−1 +δt (2.33)

where for identification purposes δt ∼N(0,1) and η1 ∼N
(
0,σ2

1

)
. It is also assumed

that the random effects uk are independent of ηt and their common distribution func-
tion is NK(000,ΣΣΣ) with ΣΣΣ = diagk=1,...,K

(
σ2

uk

)
. It follows that Var(ηt) = φ 2(t−1)σ2

1 +
I(t ≥ 2)∑t−1

l=1 φ
2(l−1) and Cov(ηt ,ηt ′) = φ t+t ′−2σ2

1 + I(t ≥ 2)∑t−2
l=0 φ

t ′−t+2l , where
I(.) is the indicator function.

As before, model estimation is obtained by using maximum likelihood estimation
via the E-M algorithm. The substantial difference with the previous model in terms
of estimation procedure is in the matrix ΦΦΦ whose elements express the relationships
among both latent variables over time and latent variables and random effects. In
more detail it is a covariance block matrix given by

ΦΦΦ =
[
ΓΓΓ 0
0 ΣΣΣ

]
(2.34)

where ΓΓΓ is the variance covariance matrix of the time dependent latent variables. Its
elements depend on the parameters φ and σ2

1 in such a way that

ΓΓΓ−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
σ2

1
+φ 2 −φ 0 . . . 0 0 0

−φ 1+φ 2 −φ . . . 0 0 0
0 −φ 1+φ 2 . . . 0 0 0
...

...
...

. . .
...

...
0 0 0 . . . −φ 1+φ 2 −φ
0 0 0 . . . 0 −φ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Explicit solutions for the parameters φ , σ2
1 and σ2

uk (k = 1, . . . ,K) are obtained
whereas, as before, a Newton Raphson algorithm is used for the thresholds and the
factor loadings of the model (Cagnone et al., 2009) .

2.5 Case study: perceptions of prejudice on American campus

In order to illustrate the methodology described above we consider an example ex-
tracted from the National Longitudinal Survey of Freshmen (NLSF).1 The NLSF

1 This research is based on data from the National Longitudinal Survey of Freshmen, a project
designed by Douglas S. Massey and Camille Z. Charles and funded by the Mellon Foundation and
the Atlantic Philanthropies.
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evaluates the academic and social progress of college students at regular intervals
to capture emergent psychological processes, by measuring the degree of social in-
tegration and intellectual engagement and to control for pre-existing background
differences with respect to social, economic, and demographic characteristics. Data
are collected over a period of four waves (1999–2003). The sample was constituted
by students of different races and 3,924 completed the survey.
In this analysis we concentrate on the part of questionnaire that investigates the per-
ceptions of prejudice by the undergraduate students. It is composed by 13 ordinal
items concerning different aspects of the perceptions of prejudice. After a prelimi-
nary exploratory factor analysis, we selected the following most important (in terms
of reliability analysis) items:

1. How often, if ever, have students in your college classes ever made you feel
uncomfortable or self-conscious because of your race or ethnicity? [StudUnc]

2. Walking around campus, how often, if ever, have you been made to feel uncom-
fortable or self-conscious because of your race or ethnicity? [CampUnc]

3. How often, if ever, have you felt you were given a bad grade by a professor
because of your race or ethnicity [BadProf]

4. How often, if ever, have you felt you were discouraged by a professor from speak-
ing out in class because of your race or ethnicity [DiscProf]

Permitted responses are“Never”,“Rarely”,“Sometimes”, “Often”, “Very often”,
“Don’t know”, “Refused”. Since a small proportion of students responded to the
last categories, categories from 3 to 5 have been collapsed leaving three categories
for each item. Missing data have been treated by means of the listwise deletion. The
final sample size is n = 2,828. The items are the same only for waves 2000 and
2001, hence in the analysis we consider two time points.
The aim of the analysis is first to fit at each time point a confirmatory factor model
and then to perform a longitudinal analysis in order to evaluate if the perceptions
of prejudice changes from 2000 to 2001. From a previous exploratory analysis we
found that two factors can explain the variability between the items in both time
points. Hence a POM model with correlated latent variables has been fitted to the
data. In Table 2.1 the results of the estimates are reported.

Table 2.1 Parameter estimates with standard errors in brackets for the POM model, years 2000–
2001, NLSF

2000 2001

Items α̂i1 α̂12 α̂i1 α̂12

StudUnc 3.55 (0.32) − 3.80 (0.23) −
CampUnc 2.71 (0.18) − 2.86 (0.14) −
BadProf − 2.88 (0.16) − 4.36 (0.18)
DiscProf − 3.79 (0.27) − 2.73 (0.20)

φ12 0.56(0.02) 0.62(0.01)



2 Latent variable models for ordinal data 27

We can observe that the loadings are high and significant for both factors and
at both time points. Moreover they are very similar over time, indicating that the
measurement invariance assumption is probably satisfied (same loadings over time,
(Cagnone et al., 2009)). The correlations are quite high and significant in both ob-
served years.

As for the goodness-of-fit, in year 2000 the LR and GF are equal to 188.52 and
190.58 respectively with d f = 51 indicating that the two-factor model is rejected.
The same result is obtained for year 2001, LR and GF being equal to 200.09 and
170.32 and d f = 51. However, as discussed above, these tests can be affected by
sparse data and therefore limited test statistics are computed instead, X2

e . For 2000,
we obtained X2

e = 110.90 with d f = 21 and for 2001, we obtained X2
e = 97.51 with

d f = 21. Both statistics indicate that the two factor model is rejected. If we want to
investigate the reason of the poor fit we can look at the GFfits for each pair of items
and follow the rule of thumb by which a cell greater than 4 or a total greater than 36
is an indication of poor fit (Jöreskog and Moustaki, 2001). In Table 2.2 the values
of the GF fits are reported.

Table 2.2 Bivariate GF fit, years 2000–2001, NLSF

2000 2001
StudUnc −
CampUnc 53.74 − 56.28 −
BadProf 17.36 8.76 − 15.71 25.06 −
DiscProf 19.58 19.94 13.29 − 9.04 26.82 20.07 −

We can observe that the items responsible for bad fit are StudUnc and CampUnc
since the value of GF fit is greater than 36.

These results suggest that a longitudinal analysis should be performed only for
the second latent variable, that we can interpret as “Professor Prejudice”, since it is
well measured by the items Badprof and Discprof. In particular, we want to evaluate
if there is a significant change over time of this latent variable.

One fundamental assumption in latent variable models for longitudinal data is the
measurement invariance of thresholds and loadings, that is the thresholds and the
loadings have to be constrained to be invariant for the same item over time. We first
fitted the model described in Sect. 1.4 without imposing any equality measurement
constraints (Jöreskog, 2002) but the algorithm did not converge. Then we fitted the
model with constrained loadings (ModA) and constrained thresholds and loadings
(ModB) and in both cases the algorithm converged. However we found that the latter
model has a lower BIC than the former (39495.96 for ModA versus 28183.64 for
ModB). The results for ModB are reported in Table 2.3.

We fixed to 1 the loading associated to the same item in the two time points so
that the latent variable is identified over time. However the loading estimate associ-
ated to DiscProf is very close to 1 and significant, indicating that the two items have
the same influence on the latent variable. The variances of the random effects are
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Table 2.3 Estimated thresholds and factor loadings with standard errors in brackets for the non-
stationary model, NLSF

Items τ̂i(1) τ̂i(2) α̂i σ̂ui

Badprof 4.98 (0.08) 7.00 (0.12) 1.00 0.60 (0.13)
Discprof 5.09 (0.08) 6.65 (0.13) 0.92 (0.19) 0.45 (0.06)

significant too, that implies that the random effects explain significantly the vari-
ability of the items over time.

The estimated covariance matrix of the latent variable over time is

Γ̂ΓΓ =
[

8.04 7.43
7.43 7.86

]

and the estimated φ̂ = 0.92(0.03) shows a very strong significant correlation be-
tween the latent variables in the two time points. Moreover the variability of the
latent variable decreases over time.

The results highlight that the two items Badprof and Discprof measure the latent
construct with almost the same magnitude. Moreover the perception of prejudice
of the students towards the professors does not change substantially over the two
observed years.

2.6 Concluding remarks

Latent variable models for ordinal data have been discussed with particular atten-
tion to two aspects recently developed, the goodness-of-fit problem and the analysis
of longitudinal data. As for the former, a test based on bivariate marginal distribu-
tions has been presented. It allows to overcome the sparseness problem, typical of
categorical data, that invalidates the classical goodness of fit statistics.

As for the latter, model for ordinal data have been extended to longitudinal data in
such a way that different kinds of variability present in the data can be modelled. At
this regard the associations among items are explained by means of time dependent
latent variables. A non-stationary autoregressive structure allows to evaluate their
changes over time. Random effect components capture the variability of the same
item over time. The potentiality of this model and the validity of the goodness-of-fit
test based on residuals in presence of sparse data have been showed by means of a
full application to a subset of the NLSF.
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