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Preface

The book presents statistical methods and models that can usefully support the eval-
uation of educational services and quality of products. The contributions collected
in this book summarize the work of several researchers from the universities of
Bologna, Firenze, Napoli and Padova. The contributions are written with a consis-
tent notation and a unified view, and concern methodological advances developed
mostly with reference to specific problems of evaluation using real data sets.

The evaluation of educational services, as well as the analysis of judgements and
preferences, poses severe methodological challenges because of the presence of one
or more of the following aspects: the observational (non experimental) nature of the
context, which is associated with the well-known problems of selection bias and
presence of nuisance factors; the hierarchical structure of the data, that entails cor-
related observations and consideration of effects at different levels of the hierarchy
and their interactions (multilevel analysis); the multivariate and qualitative nature
of the dependent variable, that requires the use of ad hoc statistical methodologies;
the presence of non observable factors, e.g. the satisfaction, calling for the use of
latent variables models; the simultaneous presence of components of pleasure and
components of uncertainty in the explication of the judgments, that asks for the
specification and estimation of mixture models.

The first part of the book deals with latent variable models. In many fields of
application most of the variables under investigation are not directly observable,
and hence not measurable. In this context latent variable models assume a promi-
nent role. Traditionally, latent variable models were used in psychometrics and have
been concerned with measurement error, and latent variable constructs measured
with multiple indicators (factor analysis). Nowadays, latent variables are used to
represent different phenomena, such as true variables measured with error, hierar-
chical and longitudinal data, unobserved heterogeneity and missing data. Chapters
2, 3 and 4 illustrate latent variable models with educational behaviour applications.
Since the variables under investigation are abilities, initial status, or rate of change
in temporal achievement, the models rely on continuous latent variables, but dif-
ferent types of observations can be considered. Latent variable models for hierar-
chical data, i.e. multilevel models, are considered in Chaps. 5 and 6. In particular,
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Chapter 5 reviews the use of multilevel models for value-added analysis in educa-
tion. Chapter 6 describes the specification and estimation of a multilevel mixture
factor model with continuous and categorical latent variables.

From a different point of view, Chap. 7 proposes an approach mainly based
on individual perceptions about the discrete choices. In this framework, the latent
process guiding the preferences and the judgements is represented by a mixture
model. Extensions dealing with multi-attribute methods, such as conjoint analysis
and choice modelling, are provided in Chap. 8, carrying out a brief and critical re-
view in order to clarify the distinctions between the models as well as to point out
their common issues.

A frequently encountered problem in fitting statistical models is the presence
of outliers. Chapter 9 deals with a robust diagnostic approach known as Forward
Search that detects the presence of outliers and assesses their influence on the esti-
mates of the model parameters. In particular, the use of this approach is investigated
in generalized liner models applied in studies on university performance evaluation.

The last chapters are devoted to nonparametric hypotheses testing via permu-
tation methods for complex observational studies and to nonparametric construc-
tion of composite indicators. Chapter 10 presents a novel global performance score
for the construction of a global performance index when the focus is at evaluat-
ing the product performances in connection with more than one aspect (dimension)
and/or under several conditions (strata). Chapter 11 considers permutation meth-
ods for multivariate testing on ordered categorical variables within the framework
of multivariate randomised complete block designs with application to a case study
related to food sensorial evaluation. Chapter 12 is devoted to permutation tests for
stochastic ordering problems where the main goal is to find out where the treatment
peak is located (so called “umbrella alternative”). Chapter 13 deals with a novel
method for constructing preference rankings based on the nonparametric combina-
tion procedure with application to the evaluation of professional profiles of munici-
pal directors.

The Editors would like to thank all the people who, by their intensive research
and aptitude of integration, have contributed to the realization of this book.

We thank Carla Rampichini of University of Florence for her precious collabo-
ration to the editing work.

Matilde Bini - University of Firenze
Paola Monari - University of Bologna
Domenico Piccolo - University of Napoli Federico II
Luigi Salmaso - University of Padova

The Research Units were partially supported by a research grant from the Italian
Ministry of University and Research (MIUR): PRIN 2006 “Statistical Methods
and Models for the Evaluation of the Educational Processes”, by the University
of Padova CPDA088513 and by the CFEPSR, Portici.
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dell’Univeristà 16, 35020 Legnaro (PD), Italy, rosa.arboretti@unipd.it

Caterina Giusti
Department of Statistics and Mathematics Applied to Economics, University of
Pisa, Via C. Ridolfi 10, 56124, Pisa, Italy, caterina.giusti@ec.unipi.it

Leonardo Grilli
Department of Statistics “G. Parenti”, University of Florence, Viale Morgagni 59,
50134, Florence, Italy, grilli@ds.unifi.it

Maria Iannario
Department of Statistical Sciences, University of Naples Federico II, Via Leopoldo
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Chapter 1
Introduction

Matilde Bini, Paola Monari, Domenico Piccolo and Luigi Salmaso

1.1 Generalized linear latent variable models

In many fields of application most of the variables under investigation are not di-
rectly observable and hence not measurable. In these contexts latent variable mod-
els assume a prominent role. Their origins can be traced back to the early twentieth
century, notably in the study of human abilities. The main ideas lie behind factor
analysis and the newer applications of linear structural models. An account of their
innovative role in many fields to which statistical methods are applied can be found
in Bartholomew (1995) and Bartholomew and Knott (1999). In the recent literature
there have been several proposals for generalized latent variable modelling frame-
works, integrating specific methodologies in a global theoretical context. One exam-
ple is the Generalized Linear Latent And Mixed Models (GLLAMM) framework of
Skrondal and Rabe-Hesketh (2004). This approach unifies and extends latent vari-
able modelling as multilevel, longitudinal, and structural equation models as well as
generalized linear mixed models, random coefficient models, item response mod-
els, factor models, and so on. Other two examples are Muthén (2008) and Vermunt
(2007), both proposing general frameworks that allow to define models with any

Matilde Bini
Department of Statistics “G. Parenti”, University of Florence, Viale Morgagni 59, 50134, Florence,
Italy, e-mail: bini@ds.unifi.it

Paola Monari
Department of Statistical Sciences, University of Bologna, via Belle Arti 41, 40126 Bologna, Italy,
e-mail: paola.monari@unibo.it

Domenico Piccolo
Department of Statistical Sciences, University of Naples Federico II, Via Leopoldo Rodinó, 22
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combination of categorical and continuous latent variables at each level of the hier-
archy.

Latent variable models specify the joint distribution of a set of observed and la-
tent variables. Variables that are directly observed, also known as manifest variables,
will be denoted by Y . A collection of K manifest variables will be distinguished by
subscripts and written as column vector yyy = (Y1, ...,YK)′. Latent variables will be
denoted by X , and Q latent variables will form the column vector ηηη . In practice,
Q will be much smaller than K. Both latent and manifest variables can be metrical
and/or categorical and vary from one individual to another. The relationships be-
tween them must be expressed in terms of probability distributions, so that, after the
Y ’s have been observed, the information we have about ηηη is given by its conditional
distribution given yyy

h(ηηη |yyy) =
h(ηηη)g(yyy|ηηη)

f (yyy)
(1.1)

where h(ηηη) is the prior distribution of ηηη , and g(yyy|ηηη) is the conditional distribution
of yyy given ηηη . As only yyy can be observed, any inference must be based on the joint
distribution whose density may be expressed as

f (yyy) =
∫

Rηηη
h(ηηη)g(yyy|ηηη)dηηη , (1.2)

where Rηηη is the range space of ηηη .
The main assumption in this framework is the conditional (or local) indepen-

dence of the observations yyy given the latent variables ηηη . Hence, Q must be chosen
so that

g(yyy|ηηη) =
K

∏
i=1

gi(yi|ηηη) (1.3)

A latent variable model consists of two parts. The first part is given by the prior
distribution of the latent variables h(ηηη). This accounts for the nature of ηηη , but it
was seen to be essentially arbitrary and its choice is largely a matter of conven-
tion. The second element in the model is the set of conditional distributions of the
manifest variables given the latent variables gi(yi|ηηη). A convenient family of distri-
butions which allows to account for both discrete and continuous observations is the
exponential family

gi(yi|ηηη) = exp

{
yyyθ −b(θi)

φi
+d(y,φi)

}
(1.4)

where θi is some function of ηηη . The simplest assumption about the form of this
function is to suppose that it is a linear function, in which case we have

θi = αi0 +αi1ηi1 + ...+αiQηiQ i = 1,2, ...,K (1.5)

This is the General Linear Latent Variable Model (GLLVM). The term “linear”
refers to its linearity in the αs.
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Several statistical methodologies based on observed and latent variables of differ-
ent nature are encompassed in the GLLVM described above and they are formalized
by Bartholomew and Knott (1999). It provides a generalization of both the classical
Generalized Linear Models (GLMs) by including latent dependent variables, and
the classical factor model by allowing observations of different nature as well as
linear relationships among the factors. From this point of view, GLLVM also gen-
eralizes the LISREL model by describing the relationship between dependent and
independent latent variables in terms of probability distributions.

Chapters 2, 3 and 4 illustrate GLLVM with application in the educational evalu-
ation. Since the variables under investigation are abilities, initial status and rate of
change in temporal achievement, we deal with continuous latent variables, but dif-
ferent types of observations are considered. From a different point of view, Chapter
7 proposes an approach mainly based on individual perceptions about the discrete
choice; thus, latent variables are a fundamental issues but they are quantified by
explicit parameters in the model and by subjects covariates when it is convenient.

Chapter 2 deals with the problem of ordinal observations. In the literature
(Jöreskog and Moustaki, 2001) there are two main approaches for conducting latent
variable analysis with categorical observed data. The most popular is the Underlying
Variable Approach (UVA) which assumes that each manifest variable is an indirect
observation of a standardized normal variable. This approach is used in the general
framework of structural equation modelling (LISREL). The other main approach
is the Item Response Function (IRF) approach by which the manifest variables are
treated as they are. The unit of analysis is the entire response pattern of a subject, so
no loss of information occurs. The models for ordinal data within the IRF has been
recently developed by Moustaki (2000). After a review of basic concepts of the
two approaches, some methodological developments are introduced. This method-
ological extension requires an improvement of the computational algorithms for
parameter estimation. Furthermore some theoretical results on the goodness of fit
problems due to the severe sparseness, typical of variables with many categories,
are presented.

Chapter 3 deals with Item Response Theory (IRT), or latent trait models for the
study of individual responses to a set of items designed to measure latent abili-
ties. IRT is a measurement theory that was first formalized in the Sixties with the
fundamental work of Lord and Novick (1968) and it has a predominant role in ed-
ucational testing. An IRT model describes the relationship between the observable
examinee performance in the test, typically in the form of responses to categorical
items, and the unobservable latent ability. Therefore, IRT models can be included
in the GLLVM framework. IRT is used in all phases of test administration, from
the test calibration to the estimation of individual abilities, in which the estimated
item parameters are used to characterize the examinees. After a brief presentation
of the main assumptions of IRT models, several aspects related to specific problems
in the context of test administration are treated. This decision has been motivated
by the many advances introduced over the last few years, that allow both to sup-
port more complex models and to improve the estimation algorithms. In particu-
lar, issues on multidimensionality (Wang et al., 2004), incomplete design (Béguin
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and Glas, 2001) and the inclusion of prior information (van der Linden, 1999) are
discussed, referring both to current literature and to some contributions of the au-
thors. A particular attention is given to the use of the Gibbs sampler, in the Markov
Chain Monte Carlo (MCMC) methods, for the estimation of IRT models (Albert,
1992; Fox and Glas, 2001). Finally, applications related to these topics are presented
in the context of educational assessment.

Chapter 4 describes the application of GLLVM for the analysis of individual
data repeated over a period of time, that allows dynamical studies of social pro-
cesses, rather than static cross-sectional analyses. The analysis of repeated mea-
sures has been considered from different points of view, such as individual growth
techniques (Singer and Willett, 2004), time series and econometric analysis (Diggle
et al., 1994), and multilevel modelling (Skrondal and Rabe-Hesketh, 2004). They
can be encompassed into the general class of random coefficient models, in which
random effects are incorporated into the model in view of reflecting unobserved het-
erogeneity in the individual behavior. More generally, the random coefficients can
be incorporated into GLLVM by considering them as latent variables. Borrowing
from Meredith and Tisak (1990), we refer to these models as Latent Curve Models
(LCMs), since random coefficients permit each case in the sample to have a dif-
ferent trajectory over time. Growth curve models are studied to compare University
student careers over time. We focus on continuous response variables, using conven-
tional normal-theory estimators, such as maximum likelihood, into the framework
of GLLVM.

In Chapter 7 we assume that evaluation is a psychological process where a
rater/judge expresses the agreement within a prefixed scale. This process is gen-
erated by the perception of value/quality/performance and is governed by latent
variables. In order to model the empirical results of a survey and to infer on the
stochastic mechanism that generated ordinal data, we suppose that the final choice
is determined by personal feeling/attractiveness towards the item and intrinsic un-
certainty always present in human decisions. These aspects are combined in an ef-
fective way by introducing a mixture random variable where both components are
expressed and weighted, as in D’Elia and Piccolo (2005). Thus, we will introduce
CUB models by considering the observed ordinal response y as a realization of a dis-
crete random variable Y defined on the support {y = 1,2, . . . ,m}, for a given integer
m > 3, as a mixture of Uniform and Shifted Binomial random variables. Formally,
its probability mass function is defined by:

Pr(Y = y) = π
(

m−1
y−1

)
(1−ξ )y−1ξm−y +(1−π)

1
m

, y = 1,2, . . . ,m ,

where π ∈ (0,1] and ξ ∈ [0,1]. By examining the π parameter we quantify the
propensity of the respondent to adhere to a completely random choice whereas 1−ξ
parameter is related to the strength of feeling. Recently, Iannario (2009c) proved
that these models are fully identifiable. This probability structure adheres to most
of observed shapes for real ordinal data and it has been generalized to take into ac-
count the effect of significant covariates (Piccolo and D’Elia, 2008) or atypical situ-
ations (Iannario, 2009b). Then, asymptotic maximum likelihood inference has been
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developed (Piccolo, 2006) by using EM algorithm and a software in R is currently
available (Iannario and Piccolo 2009) for the estimation of CUB models, without
and with covariates. In this regard, a few application to real data set concerning uni-
versity evaluation of teaching and services will be discussed. A special topic is a
model-based clustering procedure, firstly performed by Corduas (2008a,c), where
a Kullback-Liebler divergence criterion is applied for selecting subgroups of ex-
pressed ratings by university students. The characteristic of the proposal is the pos-
sibility to assess classical classification methods by an inferential approach within
the unique framework of ordinal modelling. Although CUB models are focused on
the marginal distribution of the respondents, their use seems effective for investigat-
ing sound relationships among ordinal responses and covariates and for enhancing
unobserved traits in the data. Thus, differences and integrations with IRT are worth
of interest.

1.2 Multilevel models

The class of multilevel models is suitable for the analysis of hierarchical data, where
level 1 units are nested in level 2 units, which are possibly nested in level 3 units
and so on. For example, students nested in classrooms, classrooms nested in schools,
schools nested in districts. Longitudinal and repeated measures data can be seen as
special cases of hierarchical data, with occasions nested in subjects.

The basic two-level model is the linear random intercept model:

yi j = α+βββxi j + γγγw j +u j + ei j (1.6)

where j indexes the level 2 units (clusters) and i indexes the level 1 units (subjects).
For example, in the evaluation of schools the clusters are the schools and the subjects
are the students. The variables in the model are:

• yi j the outcome of subject i of cluster j;
• xi j a vector with the features of subject i of cluster j;
• w j a vector with the features of cluster j.

Then, u j is the random effect of cluster j, i.e. an unobservable quantity char-
acterizing such a cluster and shared by all its subjects. The term u j is a residual
component that captures all the relevant factors at the cluster level not accounted for
by the covariates and thus its meaning depends on which covariates enter the model.
The effect u j is called random because it is a random variable, assuming indepen-
dence among the clusters. For consistency of the estimates, the crucial assumption
on u j is that its expectation conditionally on the covariates is null (exogeneity). Less
crucial, but standard assumptions are the homoscedasticity, i.e. u j has constant vari-
ance, and the normality of the distribution. Finally, the level 1 errors ei j are residual
components taking into account all the unobserved factors at the subject level mak-
ing the outcome different from what predicted by the covariates and the random
effect. The ei j are assumed independent among subjects and independent of u j. The
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other standard assumptions are similar to those on u j, i.e. exogeneity, homoscedas-
ticity and normality. Model (1.6) is named random intercept since each cluster has
its own intercept that has both fixed and random components. However, the slopes
are assumed to be constant across clusters, so the regression lines are parallel.

The simple random intercept model (1.6) can be extended in several ways. For
example, it is often found that the relationship between the outcome yi j and a level
1 covariate xi j varies from cluster to cluster, so the regression lines are no longer
parallel. This leads to the so called random coefficient model that can be written as

yi j = α+u0 j +(β +u1 j)xi j + ei j (1.7)

where it is usually assumed that (u0 j,u1 j) is bivariate normal. The random coeffi-
cient also implies that the between-cluster variance is a quadratic function of the
covariate.

Now there are plenty of textbooks on multilevel modelling. Snijders and Bosker
(1999) is an excellent introduction. Hox (2002) has fewer details, but it covers a
wider range of topics. Raudenbush and Bryk (2002) present the models in a careful
way along with thoroughly discussed applications. Goldstein (2003) is a classical,
though not easy, reference with wide coverage and many educational applications.

Chapter 5 deals with the use of multilevel models for value-added analysis in ed-
ucation. The chapter reviews the concept of effectiveness in the educational setting
and outlines the value-added approach. Multilevel models are presented as a tool for
measuring effectiveness, with a discussion of several issues in model specification,
such as the choice of the set of the covariates and the modelling of the achievement
progress. The chapter ends with some remarks on the use of the model results for
ranking the schools and for predicting the outcome of an hypothetical student.

1.2.1 Multilevel mixture factor models

Factor analysis is a well-known statistical method used to describe the correlations
among some manifest variables, indicators, in terms of fewer latent variables, fac-
tors. In its standard formulation, factor analysis assumes that the variables are mea-
sured on a set of independent units; this assumption may be inadequate when units
are nested in clusters assuming what is called a hierarchical structure (Goldstein,
2003; Snijders and Bosker, 1999). These differences can be modeled including
group dummies in the model, as in the multigroup approach, or can be modeled with
a multilevel factor model with continuous latent variables at all level of the analysis.
Besides the difference in the nature, fixed or random, of the group effects, these two
models differ in their perspective: the multilevel factor model usually aims at ex-
ploring the latent structure underlying the observed phenomenon at different levels
of the analysis (see, as some examples, Goldstein and McDonald (1988), Longford
and Muthén (1992) and Grilli and Rampichini (2007a)) while the multigroup fac-
tor model has a confirmatory approach and aims at comparing the observed groups
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of units with respect to the different parameters of the factor model (Bollen, 1989;
Meredith, 1993; Muthén, 1989). In a confirmatory perspective, another model use-
ful to compare the observed groups of units is the multilevel mixture factor model
with a categorical latent variable at the higher level of the analysis. This model eval-
uates the existence of unobserved subpopulation (classes) of groups with similar
features with respect to the factor model parameters and overcomes the creation of
over-detailed information of the multigroup factor model, which estimates as many
group coefficients as the groups. Mixture factor analyses have been developed and
largely used in the one-level context (McLachlan and Peel, 2000; Magidson and
Vermunt, 2001; Lubke and Muthén, 2005). More recently, the specification of mix-
ture factor models in the multilevel context has received a growing interest. As en
example, Palardy and Vermunt (2009) and Muthén (2008) use a two-level mixture
model in the context of growth analysis and Vermunt (2007) use a mixture model in
the context of IRT analysis; Muthén and Asparouhov (2008) also describe a more
general two-level mixture model with different types of latent variables.

Chapter 6 deals with the use of multilevel models in the context of factor anal-
ysis and, more precisely, in the context of mixture factor models. This chapter de-
scribes the specification and estimation of a multilevel mixture factor model with
continuous latent variables at the lower level of the analysis and a categorical latent
variable at the higher level focusing, on one hand, on the illustration of some theo-
retical issues of the model and, on the other hand, on the applied results that can be
achieved Varriale (2007). Then, a multilevel mixture factor model is used in order
to evaluate the external effectiveness of the Italian university using, as indicator of
the phenomenon, the information on the job satisfaction expressed by the graduates.
In particular, the model is used to analyse the underlying structure of the job sat-
isfaction at the individual level and, at the same time, to cluster higher level units
represented by the programs that the individuals attended during the university in
classes with some typical characteristics.

1.3 Choices and conjoint analysis: critical aspects and recent
developments

Standard conjoint analysis (CA) is a multi-attribute quantitative method useful to
study the evaluation of a consumer/user about a new product/service. In the lit-
erature many authors (see for example Alvarez-Farizo and Hanley (2002)), have
studied and applied this method; the main theoretical problems are faced by Green
and Srinivasan (1990) about statistical models and by Moore (1980), related to the
insertion of baseline variables related to the respondent.

In Chapter 8 a joint study including a modified conjoint analysis and the Re-
sponse Surface Methodology, in order to improve the analysis of multi-attribute
valuation methods, is presented.

Our proposal is based on the conjoint analysis jointly with the status-quo evalu-
ation, Hartman et al. (1991), which is the alternative related to the current situation.



8 Matilde Bini, Paola Monari, Domenico Piccolo and Luigi Salmaso

The statistical analysis is carried out through the Response Surface Methodology
(RSM) (for more details see Khuri and Cornell (1987) and Myers and Montgomery
(1995)) by considering the quantitative judgement of each respondent for each pro-
file with respect to the assessed score about the status-quo and taking the individ-
ual information into account. The final result is achieved carrying out an optimiza-
tion procedure on the estimated statistical models, by defining an objective function
in order to reach the optimal solution for the revised (or new) service/product. In
this context, it is relevant to point out the modified structured data, through a new
questionnaire, in order to collect information about the baseline variables of the re-
spondent, the quantitative data about the current situation (status-quo) of the prod-
uct/service and the proper CA analysis by means of the planning of an experimental
design.

In general, we may define the set of experimental variables, which influence
the measurement process: x = [x1, ..,xk, ..,xK ]; and the set of noise variables:
z = [z1, ..,zs, ..,zS].

The general RSM model can be written as:

Yi j(x,z) = β0 +x
′
β+x

′
Bx+z

′
δ+z

′
ΔΔΔz+x

′
ΛΛΛz+ei j i = 1, .., I; j = 1, ..,J (1.8)

where x and z are the vectors of variables as described above; β, B, δ, ΔΔΔ, and ΛΛΛ
are vectors and matrices of the model parameters, ei j is the random error which
is assumed Normally distributed with zero mean and variance equal to σ . ΛΛΛ is a
K × S matrix which plays an important role since it contains the parameters of the
interaction effects between the x and z sets.

Note that, in general, if J are the profiles and I the respondents, the observations
are IxJ. In this context, the set x are the judgements, expressed through votes in a
metric scale [0,100], on the attributes involved in the experimental planning; while
the set z is related to the baseline individual variables, which are relevant for the
service or product studied and that may change according to the specific situation.
The response variable Y is defined as a quantitative variable of the process; in this
case, the judgements expressed, on each full profile of the plan, by the respondents
in the same metric scale.

The final aim is to find the best preference, by evaluating both the quantitative
judgements about the full profiles and the judgements about the current situation,
which is the most insensitive to the heterogeneity of the respondent.

1.4 Robust diagnostic analysis with forward search

A frequently encountered difficulty in statistical inference problems is the pres-
ence of outliers in the data. Outliers can be defined as observations which appear
to be inconsistent or somewhat different from the rest of the data. They can arise
from models different from the one we intend to estimate (contaminants) or can be
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atypical observations generated by the assumed model. Their identification is of ex-
treme importance since they can have strong negative effects on classical estimator
efficiency, and should hence be eliminated or down-weighted in the estimation of the
model. Furthermore, their pattern should be thoroughly examined since they could
provide valuable new information on the problem being analyzed. Unfortunately,
their identification is often very difficult, particularly when multivariate distribu-
tions are being dealt with.

The Forward Search, introduced by Atkinson and Riani (2000), is a general diag-
nostic approach for detecting the presence of outliers and assessing their influence
on the estimates of the model parameters. The method was applied to regression
analysis, but it could as well be applied to almost any model and multivariate method
(Atkinson et al., 2004).

This algorithm is based on the following steps: the start is a robust fit to very few
observations and then a successive fit is done with larger subsets. More specifically,
it starts by finding a presumably outlier-free subset of observations, for example the
set proposed by Rousseeuw (1984) to find the least median of squares estimators
(LMS), i.e., the value of the parameters that yields the smallest median squared
residual. The surface to be minimized has many local minima and the minimum
value can only be obtained by approximation. Rousseeuw proposed restricting the
search to all the estimates obtained by using only subsets of size p. The starting
subset of the Forward Search, is given by the p observations which yield the smallest
median squared residual. This is an approximation of the real LMS estimate and
unfortunately still requires the evaluation of all possible subsets of size p (Bertaccini
and Bini, 2007).

Formally, let Z = (X ,y) a data matrix of dimension nx(p+1). If n is moderate and
p << n, the choice of the initial subset can be performed by exhaustive enumeration

of all

(
n
p

)
distinct ptuple S(p)

i1,...,ip
≡
{

z1, ...,zp
}

, where ZT
i j

is the i jth row of Z, for

and 1 < i j �= i j∗ < n . Specifically, let ιT = [i1, ..., ip] and let e
ι ,S(p)

t
be the least squares

residual for the unit i given the model has been fitted with the observations in S(p)
ι .

The initial subset is which satisfies e2
[med],S(p)

∗
= minι

[
e2
[med],S(p)

ι

]
where e2

[k],S(p)
∗

is

the kth ordered squared residual among e2
[i],S(p)

∗
, with i = 1, ...,n and med = integer

part of (n + p + 1)/2. If

(
n
p

)
is too large, the choice is made using 3,000 ptuples

sampled from Z matrix.
The subset size is increased by one and the model refitted to the observations

with the smallest residuals for the increased subset size.
The initial subset S(m)

∗ of dimension m≥ p is increased by one and the new subset

S(∗)
m+1 consists of m∗1 units with the smallest ordered residuals e2

[k],S(m)
∗

. The model

is refitted to the new subset and the procedure continues with increasing subset

sizes until all the data are fitted, i.e. when S(m)
∗ = S(n). The result is an ordering of

the observations by their closeness to the assumed model. Usually one observation
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enters the subset used for fitting, but sometimes two or more observations enter the
subset as one or more leave.

Chapter 9 proposes to validate this robust diagnostic approach when university
performance analyses are carried out. In particular, the algorithm is investigated
in generalized liner models. The analysis also reviews some robust studies recently
performed about effectiveness and efficiency of Italian universities (Bini et al., 2002;
Biggeri and Bini, 2003); Bini et al., 2003; Bini and Bertaccini, 2004; Bini, 2004a,
2004b; Bertaccini and Polverini, 2006).

1.5 Nonparametric combination of dependent permutation tests
and rankings

Chapters 10, 11, 12 and 13 of the book deal with the Nonparametric Combination
approach of dependent permutation Tests (NPC Test) and Rankings (NPC Ranking)
to face a variety of univariate and multivariate problems for the evaluation of educa-
tional services and quality of products. After a short abstract of each chapter, in this
section we provide an introduction on notation and basic theory of nonparametric
combination methodology of permutation tests or rankings.

Chapter 10 presents a novel Global Performance Score (GPS) for the construc-
tion of a global performance index when we are facing a complex problem of prod-
uct quality evaluation, that is when the focus is on evaluating the product perfor-
mances in connection with more than one aspect (dimension) and/or under several
conditions (strata). The methodological solution we propose to cope with this prob-
lem is described and applied, considering different possible data transformation and
an application problem related to the performance evaluation of new detergents.

Chapter 11 considers permutation methods for testing on ordered categorical
variables within the framework of randomised complete block designs. The pro-
posed approach is studied and validated via a Monte Carlo simulation study and it
has been applied to a food sensorial evaluation study.

Chapter 12 is devoted to permutation tests for stochastic ordering problems
where the main goal is to find out where the treatment peak is located (so called
“umbrella alternative”). The proposed solution involves testing for stochastic order-
ing of continuous variables and the nonparametric combination methodology. Since
the location of the peak is generally unknown, it can be detected by sequential tests
on possible picks and combining together those tests.

Chapter 13 deals with a novel method for constructing preference rankings based
on the nonparametric combination procedure and the proposed method is compared
with that based on the arithmetic mean. Subsequently, in order to verify to what
extent two rankings concord, a new permutation test for the evaluation of concor-
dance between dependent rankings is developed. Finally, the method is applied to
the evaluation of professional profiles of municipal directors.
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1.5.1 Introduction to permutation tests

The importance of the permutation approach in resolving a large number of infer-
ential problems is well-documented in the literature, where the relevant theoretical
aspects emerge, as well as the extreme effectiveness and flexibility from an appli-
catory point of view (Manly, 1997; Pesarin, 2001; Edgington and Onghena, 2007;
Basso et al., 2009).

The great majority of univariate problems may be usefully and effectively solved
within standard parametric or nonparametric methods as well, although in relatively
mild conditions their permutation counterparts are generally asymptotically as good
as the best parametric ones. Moreover, it should be noted that permutation methods
are essentially of a nonparametrically exact nature in a conditional context. In ad-
dition, there are a number of parametric tests the distributional behavior of which
is only known asymptotically. Thus, for most sample sizes of practical interest, the
relative lack of efficiency of permutation solutions may sometimes be compensated
by the lack of approximation of parametric asymptotic counterparts. In addition,
assumptions regarding the validity of parametric methods (such as normality and
random sampling) are rarely satisfied in practice, so that consequent inferences,
when not improper, are necessarily approximated, and their approximations are of-
ten difficult to assess.

For any general testing problem, in the null hypothesis (H0), which usually as-
sumes that data come from only one (with respect to groups) unknown population
distribution P, the whole set of observed data x is considered to be a random sample,
taking values on sample space X n, where x is one observation of the n-dimensional
sampling variable X(n) and where this random sample does not necessarily have in-
dependent and identically distributed (i.i.d.) components. We note that the observed
data set x is always a set of sufficient statistics in H0 for any underlying distribution.

Given a sample point x, if x∗ ∈X n is such that the likelihood ratio f (n)
P (x)/ f (n)

P (x∗)
= ρ(x,x∗) is not dependent on fP for whatever P ∈P , then x and x∗ are said to con-
tain essentially the same amount of information with respect to P, so that they are
equivalent for inferential purposes. The set of points that are equivalent to x, with
respect to the information contained, is called the orbit associated with x, and is
denoted by X n

/x, so that X n
/x = {x∗ : ρ(x,x∗) is fP-independent}.

The same conclusion is obtained if f (n)
P (x) is assumed to be invariant with respect

to permutations of the arguments of x; i.e., the elements (x1, . . . ,xn). This happens
when the assumption of independence for observable data is replaced by that of

exchangeability, f (n)
P (x1, . . . ,xn) = f (n)

P

(
xu∗1

, . . . ,xu∗n

)
, where (u∗1, . . . ,u

∗
n) is any per-

mutation of (1, . . . ,n). Note that, in the context of permutation tests, this concept
of exchangeability is often referred to as the exchangeability of the observed data
with respect to groups. Orbits X n

/x are also called permutation sample spaces. It is
important to note that orbits X n

/x associated with data sets x ∈ X n always contain
a finite number of points, as n is finite.
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Since, in the null hypothesis and assuming exchangeability, the conditional prob-
ability distribution of a generic point x′ ∈X n

/x, for any underlying population distri-
bution P ∈ P , is P-independent, permutation inferences are invariant with respect
to P in H0. Some authors, emphasizing this invariance property , prefer to give them
the name of invariant tests. However, due to this invariance property, permutation
tests are distribution-free and nonparametric.

Formally, let X n/x be the orbit associated with the observed vector of data x.
The points of X n/x can also be defined as x∗ : x∗ = πx where π is a random per-
mutation of indexes 1,2, . . . ,n. Define a suitable test statistic T on X n/x for which
large values are significant for a right-handed one-sided alternative: The support of
X n/x through T is the set T that consists of C elements (if there are no ties in the
given data). Let

T ∗
(1) ≤ T ∗

(2) ≤ . . . ≤ T ∗
(C)

be the ordered values of T . Let T o be the observed value of the test statistic, T o =
T (x). For a chosen attainable significance level α ∈ {1/C,2/C, . . . ,(C−1)/C}, let
k = C(1−α). Define a permutation test, the function φ ∗ = φ(T ∗) for a one-sided
alternative

φ ∗(T ) =

{
1 if T o ≥ T ∗

(k)
0 if T o < T ∗

(k)
.

Permutation tests have general good properties such as exactness, unbiasedness
and consistency (see Pesarin, 2001; Hoeffding, 1952).

1.5.2 Multivariate permutation tests and nonparametric
combination methodology

In this section, we provide details on the construction of multivariate permutation
tests via nonparametric combination approach. Consider, for instance, a multivari-
ate problem where q (possibly dependent) variables are considered. The main dif-
ficulties arise because of the underlying dependence structure among variables (or
aspects), which is generally unknown. Moreover, a global answer involving several
dependent variables (aspects) is often required, so the question is how to combine
the information related to the q variables (aspects) into one global test.

In a multivariate problem, when the aim is to compare two o more groups, the
matrix of data is generally partitioned into n q-dimensional arrays; that is,

Xn×q =

⎡
⎢⎢⎢⎣

x11 x12 . . . x1q

x21 x22 . . . x2q
...

...
. . .

...
xn1 xn2 . . . xnq

⎤
⎥⎥⎥⎦ .
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Each row of X is a determination of the multivariate variable [X1,X2, . . . ,Xq], which
has distribution P with unknown dependence structure.

In this framework the null hypothesis H0, which states the equality in distribu-
tion of the multivariate distribution of the q variables in all groups, is supposed
to be properly decomposed into q sub-hypotheses H0 j each appropriate for partial
(univariate) aspects,

H0 :
q⋂

j=1

H0 j.

Hence, the global null hypothesis H0 can be viewed as an intersection of partial
null hypotheses H0 j. Under the global null hypothesis, the rows of X are exchange-
able. We can thus define q partial test statistics. Let Tj, j = 1, . . . ,q, be a partial test
statistic for the univariate hypothesis H0 j involving each of the q variables.

A desirable property of a multivariate test is that the global null hypothesis should
be rejected whenever one of the partial null hypothesis is rejected. To this end, let us
consider the rule large is significant, which means that the global test statistic should
assume large values whenever at least one of its arguments leads to the rejection of
at least one partial null hypothesis H0 j. Accordingly, the global test ψ∗ should be
based on a suitable combining function ψ that satisfies the following requirements:

1. A combining function ψ must be non-increasing in each argument:

ψ(λ1, . . . ,λ j, . . . ,λq) ≥ ψ
(
λ1, . . . ,λ ′

j, . . . ,λq
)

if λ j < λ ′
j, j ∈ {1, . . . ,q}.

1. Every combining function ψ must attain its supremum value ψ̄ , possibly not
finite, even when only one argument attains zero:

ψ(..,λ j, ..) → ψ̄ if λ j → 0, j ∈ {1, . . . ,q}.

2. ∀α > 0, the critical value of every ψ is assumed to be finite and strictly smaller
than the supremum value: T ′′

α < ψ̄ .

The λ ’s in the definition of the combining function are p-values: αi = Pr{T ∗
i ≥

T o
i |H0i}. It is possible, of course, to express ψ also in terms of partial statistics. For

instance, if the λ ’s are test statistics that are significant for large values (as in the
bivariate example), some suitable combining functions are the following:

• the direct combining function: ψ = ∑q
j=1λ j;

• the maxT combining function: ψ = max j λ j.

Instead, if the combining function is based on the partial p-values (i.e., λ j = p j =

Pr
[
T ∗

j ≥ Tj|Y
]
, which are significant against H0 j for small values), the following

combining functions are of interest:

• Fisher’s: ψ = −2∑q
j=1 log(p j), 0 ≤ ψ ≤ +∞;

• Tippett’s: ψ = 1−min j p j, 0 ≤ ψ ≤ 1;
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• Liptak’s: ψ =∑q
j=1 φ

−1(1− p j), where φ is the standard normal cumulative dis-
tribution function, 0 ≤ ψ ≤ +∞.

The global p-value is defined as:

pG =
1
C

C

∑
b=1

I(ψ∗ ≥ ψ).

Remember that, in order to preserve the underlying dependence relations among
variables, permutations must always be carried out on individual data vectors, so
that all component variables and partial tests must be jointly analyzed. If the global
p-value is significant, then there is empirical evidence that at least one partial null
hypothesis is not true.

It can be proved that the multivariate permutation tests maintain the properties of
univariate permutation tests (for details see Pesarin, 2001; Basso et al., 2009).

1.5.3 Nonparametric combination of dependent rankings

The main purpose of the nonparametric combination of dependent rankings method
(NPC Ranking, Lago and Pesarin (2000)) is to obtain a single ranking indicator for
the statistical units being studied, which summarizes many partial rankings. This
method is defined as being nonparametric since it needs neither the knowledge of
the underlying statistical distribution for the variables being studied, nor the depen-
dence structure among partial rankings, apart for the assumption that all regressions
are monotonic. Given a multivariate phenomenon X = [X1,X2, . . . ,Xq], observed on
n statistical units, and once we have calculated the q partial rankings R1,R2. . . . ,Rq,
starting from the variables Xj, j = 1, . . . ,q, each one being informative about a par-
tial aspect of X, we wish to build up a global combined ranking G:

G = ψ(X1,X2, . . . ,Xq;w1,w2, . . . ,wq), IR2q → IR,

whereψ is a real function allowing us to combine the partial dependent rankings and
w1,w2, . . . ,wq is a set of weights, defined on the basis of technological, functional or
economic considerations, which measure the relative degree of importance among
the q aspects of X.

In order to build up G we introduce a set of minimal reasonable conditions related
to the variables Xj, j = 1, . . . ,q:

1. for each of the q informative variables a partial ordering criterion is well estab-
lished, in the sense that “large is better” (if it is not so, it is possible to recode the
variables by means of any appropriate transformation like 1/X or −X);

2. regression relationships within the q rankings are monotonic (increasing or
decreasing).
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If by chance, the marginal distribution of any informative variable is degenerate,
then the corresponding partial ranking can be discharged from analysis, since it is
non informative. Indeed, in this case all n statistical units have assigned the same
rank, hence the combined ranking is unaffected by it.

Moreover, we do not need any further assumption both on the statistical distribu-
tion of the informative variables, and on their dependence structure. Finally, notice
that we do not need to assume the continuity of Xj, j = 1, . . . ,q, so that the proba-
bility of ex-equo can be positive.

Without loss of generality, Xj, j = 1, . . . ,q, are assumed to behave in accordance
with the rule “large is better” and in this setting, we consider the rank transforma-
tions Ri j (partial rankings):

{Ri j = R(Xi j) = #(Xi j ≥ Xh j)} i,h = 1, . . . ,n; j = 1, . . . ,q.

Associated with these ranks are the scores:
{
λi j =

Ri j +0.5
n+1

, i = 1, . . . ,n; j = 1, . . . ,q

}
.

Once a combining function ψ (for more details see Pesarin, 2001) has been chosen,
we compute the transformation

ψ : {Qi = ψ(λi1, . . . ,λiq;w1,w2, . . . ,wq), i = 1, . . . ,n},

and finally, applying the rank transformation, we obtain the global combined rank-
ing G:

{Gi = R(Qi) = #(Qi ≥ Qh), i,h = 1, . . . ,n}
In the global ranking G, each statistical units is ranked in a unique way, by taking
into consideration the whole set of the q informative variables.

The real combining function ψ is chosen from class Ψ of combining functions
satisfying the following minimal properties:

1. ψ must be continuous in all 2q arguments, in that small variations in any subset
of arguments imply a small variation in the ψ-index;

2. ψ must be monotone non-decreasing with respect to each argument:

ψ (. . . ,Xi, . . . ;w1, . . . ,wq) ≥ ψ
(
. . . ,X ′

i , . . . ;w1, . . . ,wq
)

if 0 < X ′
i < Xi < 1, i = 1, . . . ,n;

3. ψ must be symmetric with respect to permutations of the arguments, in that if,
for instance, u1, . . . ,uq is any permutation of 1, . . . ,q then:

ψ
(
Xu1 , . . . ,Xuq ;wu1 , . . . ,wuq

)
= ψ (X1, . . . ,Xq;w1, . . . ,wq) .

Property 1 is obvious. Property 2 means that if, for instance, two subjects have
exactly the same values for all Xs, except for the i-th, then the one with Xi > X ′

i
must have assigned at least the same ψ-index. Property 3 states that any combining
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functionψ must be invariant with respect to the order in which informative variables
are processed.

Some of the combining functions most often used are Fisher, Liptak or Tippett.
If in the overall analysis it is of interest to give different weights to partial rank-
ings, then by using appropriate weights opportunely fixed: w j ≥ 0, j = 1, . . . ,q, the
combining function using the Fisher becomes:

ψF = −
q

∑
j=1

w j log(1−λ j).

NPC Ranking has been proved to be effective with respect to standard methods to
combine simple indicators (Arboretti et al., 2008). Moreover, it has been success-
fully applied in the industrial field for development and quality assessment of new
products (Bonnini et al., 2006; Corain and Salmaso, 2007).



Chapter 2
Latent variable models for ordinal data

Silvia Cagnone, Stefania Mignani and Irini Moustaki

2.1 Introduction

Latent variable models with observed ordinal variables are particularly useful for
analyzing survey data. Typical ordinal variables express attitudinal statements with
response alternatives like “strongly disagree”, “disagree”, “strongly agree” or “very
dissatisfied”, “dissatisfied”, “satisfied” and “very satisfied”.

In the literature, there are two main approaches for analyzing ordinal observed
variables with latent variables. The most popular one is the Underlying Variable
Approach (UVA) (Muthén, 1984; Jöreskog, 1990) which assumes that the observed
variables are generated by underlying normally distributed continuous variables.
This approach is used in structural equation modeling and the relevant methodolog-
ical developments are available in commercial software such as LISREL (Jöreskog
and Sörbom, 1988) and Mplus (Muthén and Muthén, 1998–2007). The other ap-
proach is the Item Response Theory (IRT) according to which the observed variables
are treated as they are. The unit of analysis is the entire response pattern of a sub-
ject, so no loss of information occurs. An overview of those type of models can be
found in Bartholomew and Knott (1999) and van der Linden and Hambleton (1997).
Moustaki and Knott (2000) and Moustaki (2000) discuss a Generalized Linear
Latent Variable Model framework (GLLVM) for fitting models with different types
of observed variables.
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Several studies (Jöreskog and Moustaki, 2001; Huber et al., 2004; Cagnone et al.,
2004) showed that the latter approach is preferable in terms of accuracy of estimates
and model fit. This is due to the fact the UVA is based on limited information estima-
tion methods whereas IRT is a full information approach. However, full information
methods are much more computationally intensive especially as the number of la-
tent variables increases. Solutions to computational problems for IRT models have
been recently proposed by Huber et al. (2004) and Schilling and Bock (2005).

In the following sections we review the latent variable models for ordinal data
within the GLLVM framework as introduced by Moustaki (2000). The chapter
will focus on the goodness-of-fit issue when sparseness is present (Reiser, 1996;
Maydeu-Olivares and Harry, 2005; Cagnone and Mignani, 2007) and the most re-
cent extension to longitudinal data (Cagnone et al., 2009). An application to a subset
of the National Longitudinal Survey of Freshmen (NLSF) is also presented.

2.2 The GLLVM for ordinal data

2.2.1 Model specification

Let y be a vector of K ordinal observed variables each of them with ck categories
and ηηη a vector of Q latent variables. The ck (k = 1, . . . ,K) ordered categories of
the variables yk have associated probabilities π1,k(ηηη),π2,k(ηηη), . . . ,πc,k(ηηη) which are
functions of the vector of the latent variables ηηη . Within this framework, the unit of
analysis is the response pattern of an individual; for the r-th individual it is defined
as yr = (y1 = s1,y2 = s2, . . . ,yK = sK). There are NR = ∏K

k=1 ck possible response
patterns.

The probability associated to yr is given by

f (yr) = πr =
∫

Rηηη
g(yr|ηηη)h(ηηη)dηηη =

∫
Rηηη
π(ηηη)h(ηηη)dηηη (2.1)

where h(ηηη) is assumed to be a multivariate normal distribution with 0 mean and
correlation (or covariance) matrix equal to ΦΦΦ and g(yr|ηηη) is the conditional prob-
ability of the observed variables given the latent variables following a multinomial
distribution. Under the assumption of conditional independence:

g(yr | ηηη) =
K

∏
k=1

g(yk | ηηη) =
K

∏
k=1

πs,k
ys,k =

K

∏
k=1

(γs,k − γs−1,k)ys,k s = 2, · · · ,ck (2.2)

where ys,k = 1 if a randomly selected individual responds into category s of the
kth item and ys,k = 0 otherwise. γs,k is the cumulative probability of responding
below category s. Unlike the model for binary data, in this case we define the condi-
tional distribution g(yk | ηηη) in terms of cumulative probabilities γs,k since they take
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into account the ranking of the categories of the ordinal variables. In more detail
γs,k = π1,k +π2,k + . . .+πs,k is the probability of a response in category s or lower
on the variable k. As in the classical generalized linear model, the relation between
the observed and the latent variables can be expressed through any monotone dif-
ferentiable link function. In the case of ordinal variables we can refer to the logit as
follows:

ln

[
γs,k

(1− γs,k)

]
= τs,k −

Q

∑
q=1

αkqηq, s = 1, . . . ,ck −1 (2.3)

where τs,k and αkq can be interpreted as thresholds and factor loadings of the model,
respectively. The ordinality is defined properly by the condition τ1,k ≤ τ2,k ≤ . . . ≤
τc−1,k. We refer to (2.3) as the Proportional Odds Model (POM) (McCullagh and
Nelder, 1983).

2.2.2 Model estimation

The parameters of the model are estimated with the E-M algorithm. The E-M has
been used for estimating the two-parameter logistic model for binary variables in
Bock and Aitkin (1981), and then used for estimating the GLLVM in Bartholomew
and Knott (1999). See Moustaki (2000) for the case of ordinal data.
Starting from Eq. (2.1) the joint density of the random variable for the ith individual
can be written as

f (yi,ηηη i) = g(yi|ηηη i)h(ηηη i). (2.4)

If we consider a sample of size n, the complete log-likelihood is given by:

n

∑
i=1

log f (yi,ηηη i) =
n

∑
i=1

log[g(yi|ηηη i)h(ηηη i)] =
n

∑
i=1

[logg(yi|ηηη i)+ logh(ηηη i)] . (2.5)

From the assumption of conditional independence we get:

n

∑
i=1

log f (yi,ηηη) =
n

∑
i=1

[
K

∑
k=1

logg(yki|ηηη i)+ logh(ηηη i)

]
. (2.6)

The thresholds and factor loadings are found in the first component of the log-
likelihood whereas the parameters related with the covariance matrix of the latent
variables are found in the second component.

Estimation of the correlation between latent variables. The E-M algorithm re-
quires first the computation of the expected score function of the correlation terms
with respect to the posterior distribution h(ηηη |y)

EiS(ΦΦΦ) =
∫

Rηηη
S(ΦΦΦ)h(ηηη |yi)dηηη (2.7)
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where

S(ΦΦΦ) =
∂ logh(ηηη ,ΦΦΦ)

∂ΦΦΦ
(2.8)

that is

S(ΦΦΦ) = ∂ log h(ηηη ,ΦΦΦ)/∂ΦΦΦ = −1
2
ΦΦΦ−1 +

1
2
ΦΦΦ−1(ηηηηηη ′)ΦΦΦ−1. (2.9)

By substituting (2.9) in Eq. (2.7) we get:

EiS(ΦΦΦ) =
∫

Rηηη

(
−1

2
ΦΦΦ−1 +

1
2
ΦΦΦ−1(ηηηηηη ′)ΦΦΦ−1

)
h(ηηη |yi)dηηη . (2.10)

The integrals can be approximated by using the Gauss-Hermite quadrature points.
Since the latent variables are correlated, the approximation is obtained by using
the Choleski factorization of the correlation matrix ΦΦΦ = CC′. The Gauss-Hermite
approximation will be applied to the integral of the transformed variables as follows

f (y) = (2π)−n/2 ∑
w1,...,wQ

g
(

z | C
(
βw1 , . . . ,βwQ

)′)
h
(

C
(
βw1 , . . . ,βwQ

)′)
(2.11)

where ηηη = Cβββ ,∑w1,...,wQ
=∑ν1

w1=1 . . .∑
νQ
tn=1 and ν1, . . . ,νQ are the quadrature points.

By solving ∑n
i=1 EiS(ΦΦΦ) = 0 using the above approximation, we get explicit solu-

tions for the maximum likelihood estimator of the elements of ΦΦΦ

[Φ̂ΦΦ ]l j =
∑n

i=1∑w1,...,wQ

[(
C
(
βw1 , . . . ,βwQ

)′)(C
(
βw1 , . . . ,βwQ

)′)′]
l j

h
(
C
(
βw1 , . . . ,βwQ

)
|yi
)

∑n
i=1∑w1,...,wQ

h
(
C
(
βw1 , . . . ,βwQ

)
|yi
)

(2.12)

Estimation of the parameters in g(y|ηηη). The expected score function of the pa-
rameters ak =

(
τ1,k , . . . ,τck−1 ,k ,αk1, . . . ,αkQ

)
,k = 1, . . . ,K with respect of h(ηηη |y)

is given by

EiS(ak) =
∫

Rηηη
Si(ak)h(ηηη |yi)dηηη , (2.13)

where in this case

Si(ak) =
∂ logg(yi|ηηη)

∂ak
. (2.14)

By solving EiS(ak) = 0 we get not-explicit solutions for the parameters ak. The
expressions of the derivatives (2.14) can be found in Moustaki (2000) and Moustaki
(2003).
The E-M algorithm works as follows:

• Choose initial estimates for the model parameters.
• E-step: Compute the Expected score functions given in (2.7) and (2.13).
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• M-step: Obtain improved estimates for the parameters by solving the non-linear
maximum likelihood equations for the parameters of the conditional distribution
g(y|ηηη) by using a Newton-Raphson iterative scheme and explicit solutions for
the correlations between the latent variables.

• Return to step 2 and continue until convergence is achieved.

2.3 The goodness-of-fit of the model

2.3.1 The problem of sparseness

The usual way of testing the goodness-of-fit of latent variable models for ordinal
data is to compare the observed and the expected frequencies of all possible re-
sponse patterns (NR). A test for the model may be based on the usual goodness-of-
fit statistics such as the likelihood ratio (LR) and the Pearson chi-square test (GF),
defined as follows:

LR = 2n
NR

∑
r=1

fr ln

(
fr

π̂r

)
, (2.15)

GF = n
NR

∑
r=1

( fr − π̂r)2

π̂r
, (2.16)

where fr is the sample proportion of the r-th response pattern, π̂r is the correspond-
ing estimated probability π̂r = πr(â) and n is the sample size.

Under regular conditions both statistics are approximately distributed as a χ2

with degrees of freedom d f = NR− 1− #pr where #pr is the number of the es-
timated parameters. With reference to the contingency table whose cells contain
the frequencies of the response patterns, the number of observations in each cell
should be large enough to justify the asymptotic approximation of the statistics
to the chi-square distribution. Nevertheless, in many cases, contingency tables do
not have large numbers of observations and the sparseness problem arise. To solve
the sparseness problem a number of theoretical strategies has been proposed. Such
strategies have been applied both to the goodness-of-fit statistics and to the resid-
uals calculated from the marginal distributions of the observed variables. For a re-
view of strategies applied to the former see Koheler and Larntz (1980), Agresti and
Yang (1987), Read and Cressie (1988), Bartholomew and Tzamourani (1999), and
Tollenar and Mooljaart (2003).

An alternative solution to the sparseness problem is to consider the residuals
computed from marginal distributions. The residuals express the discrepancies be-
tween observed and expected frequencies and can be defined in a number of dif-
ferent ways. Residuals can provide information on how well the model predicts
the one and two-way marginal distributions revealing items or pairs of items for
which the model does not fit well. In fact, even in the presence of a severe degree
of sparseness, almost always the univariate and the bivariate marginal frequencies
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distributions are quite large so that statistics based on these frequencies are not af-
fected by sparseness. A thorough treatment of the analysis of residuals is given by
Reiser (1996) with reference to the two-parameter item response model for binary
data. The use of residuals in GLLVM for binary data is discussed in Bartholomew
and Tzamourani (1999). They recommend to use them as supplementary analysis
to the overall goodness-of-fit testing. In particular, they argue that a good model
predicts well all the pairwise associations between observed variables. On the con-
trary, if some pairs of variables present high bivariate residuals, they indicate that
the model does not fit the data. As for POM, Jöreskog and Moustaki (2001) have
defined specific measures of fit based on the residuals. For the univariate marginal
distributions they have proposed the following measure related to the GF (an equiv-
alent measure is given also for the LR index but it is not reported here because it is
outside the scope of this work):

GF fit(k) = n
ck

∑
s=1

( fs,k − π̂s,k)2

π̂s,k
k = 1, . . . ,K (2.17)

where we can define:

π̂s,k =
NR

∑
r=1

yrsπ̂r, (2.18)

and

yrs =
{

1 if yk = s
0 otherwise.

(2.19)

The quantities ( fs,k − π̂s,k)2/π̂s,k (s = 1, . . . ,ck) are the standardized residuals com-
puted from the univariate marginal distribution of the variable k.
In the same way, for the bivariate marginal distributions of the variables k and l we
get:

GF fit(kl) = n ∑
sk,sl

( fsk,sl − π̂sk,sl)2

π̂sk,sl
k = 1, . . . ,K −1 l = k +1, . . . ,K (2.20)

where, as before, we can define:

π̂sk,sl =
NR

∑
r=1

yrskyrsl π̂r, (2.21)

and

yrsk =
{

1 if yk = sk

0 otherwise,
(2.22)

yrsl =
{

1 if yl = sl

0 otherwise.
(2.23)

In this case the quantities ( fsk,sl − π̂sk,sl)2/π̂sk,sl (s = 1, . . . ,ck;s = 1, . . . ,cl) are the
standardized residuals computed from the bivariate marginal distribution of the vari-
ables k and l.
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2.3.2 An overall goodness-of-fit test

The residuals based on the marginal distributions can be used for building a overall
goodness-of-fit test. To this aim, we need to define the unstandardized residuals for
the overall r-th response pattern as:

gr = fr − π̂r. (2.24)

Under regular conditions (Birch, 1964), the NR dimensional vector
√

ng converges
asymptotically to a gaussian random vector with mean equal to 0 and covariance
matrix ΩΩΩ g defined as:

ΩΩΩ g = D(πππ)−ππππππ ′ −T(F′F)−1T
′
, (2.25)

where D(πππ) is a diagonal matrix that contains the NR probabilities πr, the matrix F
is defined as F = D(πππ)−1/2∂πππ/∂a. Finally T = ∂πππ/∂a.
The residuals just defined are computed from the overall contingency table of the
manifest variables. From these residuals it is possible to obtain the unstandardized
residuals associated to the marginal distributions.We refer to the residuals for the
bivariate marginal distributions (considering, for simplicity, only the case in which
the observed variables have the same number of categories, that is ck = cl = c). For
category a of variable k and category b of variable l they can be defined as:

e = ( fsk,sl − π̂sk,sl). (2.26)

π̂sk,sl is directly computed by the estimated response probabilities π̂r. Passing to the
matrix form we can write:

e = M(f− π̂ππ) = Mg, (2.27)

where M is a matrix of 0s and 1s. The generic element of M, msk,sl is given by:

msk,sl =
{

1 if yk = s and yl = s
0 otherwise.

(2.28)

The elements of M have been derived in such a way that multiplying M by the
response probabilities πππ , we realize the summation across the response patterns
obtaining the second-order marginal proportions. From the asymptotic normality of
g and from (2.27) we get: √

ne → N(0,ΩΩΩ e) (2.29)

where ΩΩΩ e = MΩΩΩ gM′.
A consistent estimator for ΩΩΩ e is given by:

Σ̂ΣΣ e = n−1M(D(πππ)−ππππππ ′ −T(F′F)−1T
′
)M′|ααα=α̂αα,πππ=π̂ππ . (2.30)

The test of fit is developed for assessing the null hypothesis that the theoretical
residuals are not significantly different from 0. With this regard we can refer to the
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statistic:
X2

e = e′Σ̂ΣΣ+
e e (2.31)

that has an asymptotic χ2 distribution. Since Σ̂ΣΣ e is not a full rank matrix, its in-
version can be obtained in different ways. Cagnone and Mignani (2007) propose
to use the Moore-Penrose generalized inverse; in the case in which the compu-
tational of Σ̂ΣΣ+

e is not stable, Maydeu-Olivares and Harry (2005) propose to com-

pute a matrix that has Σ̂ΣΣ+
e as generalized inverse. The degrees of freedom of

the χ2 depend on the rank of ΣΣΣ e, that in general results less or equal to the

min

(
∑2

k=0

(
p
k

)
(c−1)k,NR−1− (KQ+K(c−1))

)
namely, the minimum be-

tween the ranks of M and ΩΩΩ g (Bishop et al., 1975), respectively.
Reiser (1996) argued that, when sparseness is present, this index can be very useful
for the goodness-of-fit of the overall model. In fact, although it is based on partial
information, if higher-order interactions are not present (because of the conditional
independence assumption) inferences regarding the parameters may be performed
without loss of information in smaller marginal table (collapsibility of the contin-
gency table). In this case this index produces good results in terms of both Type I
error and power of the test (Reiser and Lin, 1999; Cagnone and Mignani, 2007).
Nevertheless, when the collapsibility does not hold, this index is not as powerful as
the indexes computed from the full contingency table.

2.4 GLLVM for longitudinal ordinal data

When questionnaires are submitted to the same individuals over time, we deal with
longitudinal data or repeated measures. Recently many authors focused on latent
variable models for longitudinal data with the aim of analyzing traits, attitudes, or
any latent constructs over time (Roy and Lin, 2000; Dunson, 2003; Rabe-Hesketh
et al., 1996). The latent variable model for ordinal data discussed in the previous
sections has been extended to longitudinal data by Cagnone et al. (2009). The key
feature of this model is that the inter-relationships among items are explained by
time-dependent attitudinal latent variables whereas the associations across time are
modelled via item-specific random effects. The time changes in the attitudinal la-
tent variables are measured using a non-stationary autoregressive model. The re-
sulted covariance matrix allows the latent variables to be correlated with unknown
variances.

Formally, the model described in Sect. 2.2 is extended to longitudinal data in the
following way. Given the vector of the K ordinal observed variables yt measured at
time t (t = 1, . . . ,T ), the linear predictor defined in (2.3) becomes

ln

[
γt,k,s

(1− γt,k,s)

]
= τt,k,s−αktηt −uk, k = 1, . . . ,K;sk = 1, . . . ,ck−1; t = 1, . . . ,T

(2.32)
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where the uk’s are item-specific random effects. The latent variables ηt and their
variances allow to explain the associations among the items measured at time t. The
associations among the same item measured across time are explained by uk and the
covariances between ηt’s. The time dependent latent variables are related through a
first order autoregressive structure

ηt = φηt−1 +δt (2.33)

where for identification purposes δt ∼N(0,1) and η1 ∼N
(
0,σ2

1

)
. It is also assumed

that the random effects uk are independent of ηt and their common distribution func-
tion is NK(000,ΣΣΣ) with ΣΣΣ = diagk=1,...,K

(
σ2

uk

)
. It follows that Var(ηt) = φ 2(t−1)σ2

1 +
I(t ≥ 2)∑t−1

l=1 φ
2(l−1) and Cov(ηt ,ηt ′) = φ t+t ′−2σ2

1 + I(t ≥ 2)∑t−2
l=0 φ

t ′−t+2l , where
I(.) is the indicator function.

As before, model estimation is obtained by using maximum likelihood estimation
via the E-M algorithm. The substantial difference with the previous model in terms
of estimation procedure is in the matrix ΦΦΦ whose elements express the relationships
among both latent variables over time and latent variables and random effects. In
more detail it is a covariance block matrix given by

ΦΦΦ =
[
ΓΓΓ 0
0 ΣΣΣ

]
(2.34)

where ΓΓΓ is the variance covariance matrix of the time dependent latent variables. Its
elements depend on the parameters φ and σ2

1 in such a way that

ΓΓΓ−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
σ2

1
+φ 2 −φ 0 . . . 0 0 0

−φ 1+φ 2 −φ . . . 0 0 0
0 −φ 1+φ 2 . . . 0 0 0
...

...
...

. . .
...

...
0 0 0 . . . −φ 1+φ 2 −φ
0 0 0 . . . 0 −φ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Explicit solutions for the parameters φ , σ2
1 and σ2

uk (k = 1, . . . ,K) are obtained
whereas, as before, a Newton Raphson algorithm is used for the thresholds and the
factor loadings of the model (Cagnone et al., 2009) .

2.5 Case study: perceptions of prejudice on American campus

In order to illustrate the methodology described above we consider an example ex-
tracted from the National Longitudinal Survey of Freshmen (NLSF).1 The NLSF

1 This research is based on data from the National Longitudinal Survey of Freshmen, a project
designed by Douglas S. Massey and Camille Z. Charles and funded by the Mellon Foundation and
the Atlantic Philanthropies.
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evaluates the academic and social progress of college students at regular intervals
to capture emergent psychological processes, by measuring the degree of social in-
tegration and intellectual engagement and to control for pre-existing background
differences with respect to social, economic, and demographic characteristics. Data
are collected over a period of four waves (1999–2003). The sample was constituted
by students of different races and 3,924 completed the survey.
In this analysis we concentrate on the part of questionnaire that investigates the per-
ceptions of prejudice by the undergraduate students. It is composed by 13 ordinal
items concerning different aspects of the perceptions of prejudice. After a prelimi-
nary exploratory factor analysis, we selected the following most important (in terms
of reliability analysis) items:

1. How often, if ever, have students in your college classes ever made you feel
uncomfortable or self-conscious because of your race or ethnicity? [StudUnc]

2. Walking around campus, how often, if ever, have you been made to feel uncom-
fortable or self-conscious because of your race or ethnicity? [CampUnc]

3. How often, if ever, have you felt you were given a bad grade by a professor
because of your race or ethnicity [BadProf]

4. How often, if ever, have you felt you were discouraged by a professor from speak-
ing out in class because of your race or ethnicity [DiscProf]

Permitted responses are“Never”,“Rarely”,“Sometimes”, “Often”, “Very often”,
“Don’t know”, “Refused”. Since a small proportion of students responded to the
last categories, categories from 3 to 5 have been collapsed leaving three categories
for each item. Missing data have been treated by means of the listwise deletion. The
final sample size is n = 2,828. The items are the same only for waves 2000 and
2001, hence in the analysis we consider two time points.
The aim of the analysis is first to fit at each time point a confirmatory factor model
and then to perform a longitudinal analysis in order to evaluate if the perceptions
of prejudice changes from 2000 to 2001. From a previous exploratory analysis we
found that two factors can explain the variability between the items in both time
points. Hence a POM model with correlated latent variables has been fitted to the
data. In Table 2.1 the results of the estimates are reported.

Table 2.1 Parameter estimates with standard errors in brackets for the POM model, years 2000–
2001, NLSF

2000 2001

Items α̂i1 α̂12 α̂i1 α̂12

StudUnc 3.55 (0.32) − 3.80 (0.23) −
CampUnc 2.71 (0.18) − 2.86 (0.14) −
BadProf − 2.88 (0.16) − 4.36 (0.18)
DiscProf − 3.79 (0.27) − 2.73 (0.20)

φ12 0.56(0.02) 0.62(0.01)
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We can observe that the loadings are high and significant for both factors and
at both time points. Moreover they are very similar over time, indicating that the
measurement invariance assumption is probably satisfied (same loadings over time,
(Cagnone et al., 2009)). The correlations are quite high and significant in both ob-
served years.

As for the goodness-of-fit, in year 2000 the LR and GF are equal to 188.52 and
190.58 respectively with d f = 51 indicating that the two-factor model is rejected.
The same result is obtained for year 2001, LR and GF being equal to 200.09 and
170.32 and d f = 51. However, as discussed above, these tests can be affected by
sparse data and therefore limited test statistics are computed instead, X2

e . For 2000,
we obtained X2

e = 110.90 with d f = 21 and for 2001, we obtained X2
e = 97.51 with

d f = 21. Both statistics indicate that the two factor model is rejected. If we want to
investigate the reason of the poor fit we can look at the GFfits for each pair of items
and follow the rule of thumb by which a cell greater than 4 or a total greater than 36
is an indication of poor fit (Jöreskog and Moustaki, 2001). In Table 2.2 the values
of the GF fits are reported.

Table 2.2 Bivariate GF fit, years 2000–2001, NLSF

2000 2001
StudUnc −
CampUnc 53.74 − 56.28 −
BadProf 17.36 8.76 − 15.71 25.06 −
DiscProf 19.58 19.94 13.29 − 9.04 26.82 20.07 −

We can observe that the items responsible for bad fit are StudUnc and CampUnc
since the value of GF fit is greater than 36.

These results suggest that a longitudinal analysis should be performed only for
the second latent variable, that we can interpret as “Professor Prejudice”, since it is
well measured by the items Badprof and Discprof. In particular, we want to evaluate
if there is a significant change over time of this latent variable.

One fundamental assumption in latent variable models for longitudinal data is the
measurement invariance of thresholds and loadings, that is the thresholds and the
loadings have to be constrained to be invariant for the same item over time. We first
fitted the model described in Sect. 1.4 without imposing any equality measurement
constraints (Jöreskog, 2002) but the algorithm did not converge. Then we fitted the
model with constrained loadings (ModA) and constrained thresholds and loadings
(ModB) and in both cases the algorithm converged. However we found that the latter
model has a lower BIC than the former (39495.96 for ModA versus 28183.64 for
ModB). The results for ModB are reported in Table 2.3.

We fixed to 1 the loading associated to the same item in the two time points so
that the latent variable is identified over time. However the loading estimate associ-
ated to DiscProf is very close to 1 and significant, indicating that the two items have
the same influence on the latent variable. The variances of the random effects are
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Table 2.3 Estimated thresholds and factor loadings with standard errors in brackets for the non-
stationary model, NLSF

Items τ̂i(1) τ̂i(2) α̂i σ̂ui

Badprof 4.98 (0.08) 7.00 (0.12) 1.00 0.60 (0.13)
Discprof 5.09 (0.08) 6.65 (0.13) 0.92 (0.19) 0.45 (0.06)

significant too, that implies that the random effects explain significantly the vari-
ability of the items over time.

The estimated covariance matrix of the latent variable over time is

Γ̂ΓΓ =
[

8.04 7.43
7.43 7.86

]

and the estimated φ̂ = 0.92(0.03) shows a very strong significant correlation be-
tween the latent variables in the two time points. Moreover the variability of the
latent variable decreases over time.

The results highlight that the two items Badprof and Discprof measure the latent
construct with almost the same magnitude. Moreover the perception of prejudice
of the students towards the professors does not change substantially over the two
observed years.

2.6 Concluding remarks

Latent variable models for ordinal data have been discussed with particular atten-
tion to two aspects recently developed, the goodness-of-fit problem and the analysis
of longitudinal data. As for the former, a test based on bivariate marginal distribu-
tions has been presented. It allows to overcome the sparseness problem, typical of
categorical data, that invalidates the classical goodness of fit statistics.

As for the latter, model for ordinal data have been extended to longitudinal data in
such a way that different kinds of variability present in the data can be modelled. At
this regard the associations among items are explained by means of time dependent
latent variables. A non-stationary autoregressive structure allows to evaluate their
changes over time. Random effect components capture the variability of the same
item over time. The potentiality of this model and the validity of the goodness-of-fit
test based on residuals in presence of sparse data have been showed by means of a
full application to a subset of the NLSF.



Chapter 3
Issues on item response theory modelling

Mariagiulia Matteucci, Stefania Mignani and Bernard P. Veldkamp

3.1 Introduction

Item response theory (IRT) models have been developed in order to study the
individual responses to a set of items designed to measure latent abilities. IRT is
a measurement theory that was first formalized in the sixties with the fundamental
work of Lord and Novick (1968) and it has a predominant role in educational as-
sessment (see van der Linden and Hambleton, 1997). An IRT model describes the
relationship between the observable examinee’s performance in the test, typically
in the form of responses to categorical items, and the unobservable latent ability.
Therefore, IRT models can be included in the more general framework of latent
variable modelling (see Skrondal and Rabe-Hesketh, 2004).

IRT is used in all phases of test administration, from the test calibration to the
estimation of individual abilities, in which the estimated item parameters are used
to characterize the examinees. After a brief presentation of the main assumptions
of IRT models, several aspects related to specific problems in the context of test
administration are treated. Many advances have been introduced over the last few
years, that allow both to support more complex models and to improve the esti-
mation algorithms. In particular, issues on multidimensionality (Wang et al., 2004),
incomplete design (Béguin and Glas, 2001) and the inclusion of prior information
(van der Linden, 1999) are discussed, referring both to current literature and to some
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contributions of the authors. Particular attention is given to the use of the Gibbs sam-
pler, in the Markov chain Monte Carlo (MCMC) methods, for the estimation of IRT
models (Albert, 1992; Fox and Glas, 2001). Finally, an application related to one of
this topics is presented in the context of educational assessment.

3.2 Basics of item response theory

Item response theory (IRT) has been developed in the field of psychometrics and
has been intensely applied since the 1990s, especially in the field of educational
assessment. The roots of IRT can be traced back in the thirties and forties but the
theoretical work was formalized for the first time in the sixties with the fundamen-
tal work of Lord and Novick (1968). IRT has been developed for overcoming the
lacks of classical test theory (CTT) (Novick, 1966), especially in terms of sensitiv-
ity to sample conditions. Nowadays, the use of IRT is widespread but researchers
are advised to make a complementary use of both methodologies in order to get
well-founded results.

As a measurement theory, IRT focuses on the relationship between the exami-
nees’ performance in a test and the latent ability(ies) and it is included in the frame-
work of latent variable modelling (see Bartholomew and Knott, 1999; Skrondal and
Rabe-Hesketh, 2004). In this context, IRT is used with categorical observed and con-
tinuous latent variables and it is sometimes named latent trait analysis (LTA), where
the concept of trait stands for ability. An IRT model is a mathematical function used
to describe the trace line(s) or conditional probability of a response given the latent
variable, for an item with categorical responses (Thissen and Steinberg, 1986). Es-
sentially, the parametric model describes the relationship between the observable
(the individual responses to the items in the test) and the unobservable (the latent
ability). IRT models are founded on the assumption of local independence which
implies that, when the latent space has been completely specified, the examinees’
responses to a set of items are statistically independent. Another ordinary assump-
tion is unidimensionality, with reference to the presence of a single trait affecting
the test performance. This condition is hardly achievable in practice, because exam-
inees usually employ different abilities to answer a set of items. Nevertheless, what
is required for unidimensionality is the existence of a single dominant component
characterizing the responses. In Sect. 3.3.1 this assumption will be relaxed with the
introduction of multidimensional models.

The choice of IRT model depends on the data structure. Items can have only two
response categories (correct and incorrect) or more than two (nominal or ordinal).
In the first case, models for binary data should be employed, while in the second
one, models for polytomous data are recommended. Different models may be ob-
tained by using different mathematical functions to model the relation between the
performance and the ability, and varying the number of item parameters. Examples
of application of IRT models in educational and vocational testing may be found in
Matteucci and Stracqualursi (2006); Matteucci et al. (2008).
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Consider a set of binary items and suppose the existence of a single latent ability
η underlying the response process. A unidimensional IRT model for binary data
expresses the probability of a correct response for each item as a function of the
ability and a set of item parameters. Most common probability models make use
of the logistic or the normal distribution function. When the distribution is logistic
and two item parameters are considered in the model, the two-parameter logistic
(2PL) model (Birnbaum, 1968) specifies the probability of a correct response for
the individual i on item k, with i = 1, ...,n examinees and k = 1, ...,K items, as
follows

Pr(Yik = 1|ηi,αk,δk) =
exp(αkηi −δk)

1+ exp(αkηi −δk)
, (3.1)

where Yik is the binary response variable of individual i to item k, αk and δk are the
item parameters, and ηi is the latent ability of person i. Traditionally, the ability is
denoted by the Greek letter θ in IRT, but it has been changed into η in order to keep
the notation consistent within the book. Sometimes, the linear predictor is denoted
as αk(ηi − βk), where αk is the item discrimination and βk is the item difficulty.
In model (3.1), the parameter δk is the negative of the intercept or δk = αkβk; the
parameter δk is called item difficulty as well.

When the normal distribution is employed, the two-parameter normal ogive
(2PNO) model (Lord, 1952) is obtained as follows

Pr(Yik = 1|ηi,αk,δk) =Φ(αkηi −δk) =
∫ αkηi−δk

−∞

1√
2π

e−z2/2dz, (3.2)

where Φ is the standard normal cumulative distribution function.
The use of models (3.1) and (3.2) is widespread in case of dichotomous data,

because they allow to study the psychometric properties of difficulty and differen-
tiating power. In both models the probability of a correct response is expressed as
a monotonically increasing function of the trait. The curve is called item charac-
teristic curve (ICC) and allows a test-taker with high ability to have a high prob-
ability of endorsing the item. Haley (1952) proved that models (3.1) and (3.2) are
equivalent in terms of predicting the same probability, after the introduction of a
scaling constant D = 1.702 into the logistic model. Other popular models are the
one-parameter logistic model (Rasch, 1960) and the three-parameter logistic model
(Birnbaum, 1968).

The probability of observing an individual response pattern (the complete se-
quence of responses) can be expressed, by using the assumption of local indepen-
dence, as

Pr(Yi1, ...,YiK |ηi,ξξξ ) =
K

∏
k=1

[Pr(Yik = 1|ηi,ξξξ )]Yik [1−Pr(Yik = 1|ηi,ξξξ )]1−Yik , (3.3)

where ξξξ is the vector of item parameters for all the K items.
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Furthermore, the complete likelihood function is obtained multiplying over all
the examinees, thanks to the assumption of experimental independence, such as

Pr(Y|ηηη ,ξξξ ) =
n

∏
i=1

K

∏
k=1

[Pr(Yik = 1|ηi,ξξξ )]Yik [1−Pr(Yik = 1|ηi,ξξξ )]1−Yik . (3.4)

Usually we assume that the observed data are a random sample from a popula-
tion where ability is normally distributed. Clearly, from (3.1) and (3.2) we can see
that both models are not univocally determined: if we multiply ηi by a constant and
divide αk by the same constant or if we add to ηi and to δk/αk the same quan-
tity, the model does not change. Constraints on item or person parameters allow
to solve these two indeterminacies. Usually, in the case of unidimensionality, the
model identification is conducted by fixing the mean value and the standard devia-
tion of the ability distribution to 0 and 1, respectively.

When the item response model fits, some useful properties are achieved. First
of all, item and ability estimates are said to be invariant. This property implies that
the item parameter estimates are independent of the group of examinees used from
the population of examinees for whom the test was designed. As a consequence,
item parameters can be estimated, collected and stored in an item bank. From this
item bank, new tests can be assembled for application to different populations (van
der Linden, 2005). Besides, examinee ability estimates are not dependent on the par-
ticular choice of test items used from the population of items which were calibrated,
i.e. which item parameters have been estimated. So, scores of examinees resulting
from different tests can be compared to each other. This property is often applied in
computer-based testing, e.g. in computerized adaptive testing (CAT) (Wainer et al.,
1990). CAT is a form of individualized testing, where the difficulty of the items is
adapted to the estimated ability level of the examinee. Another advantage is that
estimates of standard errors for individual ability estimates are possible instead of a
single estimate of error for all the examinees, as in the case of CTT.

3.2.1 Parameter estimation

In item response models, the probability of a correct response is a function of ex-
aminees’ ability and item parameters. These two characteristics are both unknown.
The only available data are the responses to a set of items given by a sample of
individuals. In the estimation process, two important features should be taken into
account: the nonlinearity of the response model and the impossibility of observing
the latent variable η . The model estimation is analogous to performing a non-linear
regression with unknown predictor values. The main focus is on the determination
of the η values for each examinee and the item parameters from the item responses.

The simultaneous estimation of the ability and the item parameters can be
performed according to either maximum likelihood (ML) methods or a Bayesian
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framework. As a general rule, the estimation depends on how the probability of the
observed response patterns is conceptualized. In the stochastic subject interpretation
of probability, the observed persons are regarded as fixed. The probability represents
the unpredictability of specific events, i.e. the encounter of a person with a partic-
ular item. Within this approach, the latent variables are constructed as unknown
fixed parameters. In the random sampling interpretation of probability, the observed
persons are regarded as a random sample from a population. Therefore, a specific
distribution of the latent trait must be assumed to interpret the probability and the
latent variables are treated as random. Three ML estimation methods are available:

• Joint maximum likelihood (JML).
• Conditional maximum likelihood (CML).
• Marginal maximum likelihood (MML).

The first two methods imply the concept of fixed latent variable while in the
MML estimation the latent variables are treated as random.

The JML implements the maximum likelihood through an iterative procedure to
estimate the item parameters and the abilities simultaneously. Simply, we look for
the values of the parameters that jointly maximize the log-likelihood function. After
the specification of the starting values, the item parameter estimates and the ability
estimates are alternatively updated. This method is very simple to implement but the
complexity increases as the number of observations increases. The standard limit
theorems do not apply and the resulting parameter estimators are not consistent.

The CML is based on the availability of a sufficient statistic for the ability so
that the likelihood function can be simplified conditioning to it. This method can be
applied only for models belonging to the Rasch family, as the one-parameter logistic
model (Rasch, 1960) for the binary case, where a sufficient statistic for the ability is
represented by the total test score. The JML and CML methods have been applied
intensively in the past but are rather limited.

Nowadays, the model estimation technique which is used mostly is MML, which
is based on the marginal probability of observing a response pattern, obtained inte-
grating out over the distribution of ability as follows

Pr(Y) =
∫ +∞

−∞
Pr(Y,η)dη =

∫ +∞

−∞
Pr(Y|η)φ(η)dη , (3.5)

where φ(η) is the prior density of the latent ability. The MML employs the EM
iterative procedure (Dempster et al., 1977; Bock and Aitkin, 1981), which is based
on computing first the expected values of the response patterns for each item, con-
ditioned on the data and current parameter estimates, and subsequently on the maxi-
mization of the log-likelihood with respect of the item parameters using the expected
values. Afterwards, a single ability value may be associated to each examinee by
using, among the other techniques, maximum a posteriori (MAP) or expected a pos-
teriori (EAP) methods.

All the ML estimators refer to fixed item parameters. On the other hand, the
Bayesian approach regards both the latent variable and the item parameters as
random. In the following, the focus will be on the implementation of the Gibbs
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sampler algorithm (Geman and Geman, 1984; Gelfand and Smith, 1990) in a
Bayesian framework in order to estimate the 2PNO model (see Albert, 1992), which
is easier to treat than the 2PL model within this approach. The Gibbs sampler is a
member of the Markov chain Monte Carlo (MCMC) class of techniques and it is
applied when the posterior distribution is high-parameterized and difficult to sam-
ple from. The basic idea of the algorithm is to subdivide the parameter vector (in
the Bayesian notation, the parameters are random variables) in order to sequentially
generate parameter values from the single conditional distributions. Due to the com-
putational intensity that limited its use in the past, the Gibbs sampler is a relatively
new estimation method in IRT but it is now widely employed thanks to modern
technologies.

In order to use the Gibbs sampler for the estimation of item and person param-
eters in model (3.2), we need to model the presence of the dichotomous variable
Yik, indicating correct or incorrect response of person i to item k, through the in-
troduction of the underlying variables Y ∗

ik, independent and identically distributed as
Y ∗

ik ∼ N(αkηi −δk;1), with i = 1, ...,n individuals and k = 1, ...,K items. Afterwards,
we should be able to simulate from the joint posterior distribution of (Y∗,ηηη ,ξξξ ) us-
ing the following assumptions:

•
{

Y ∗
ik

}
i.i.d.∼ N(ζik,1), with ζik = αkηi −δk.

• {Yik} indicators of values of
{

Y ∗
ik

}
.

• standard normal prior distribution on ability: {ηi} i.i.d.∼ N(0,1).
• prior distribution on item parameters: Pr(ξξξ ) =∏K

k=1 I(αk > 0).

The last assumption insures that the discrimination parameters are positive to
preserve the increasing monotonic trend of the item characteristic curve. Thus, the
joint posterior distribution is given by

Pr(Y∗,ηηη ,ξξξ |Y) = Pr(Y∗|ηηη ,ξξξ ,Y)Pr(ηηη)Pr(ξξξ )

∝
n

∏
i=1

K

∏
k=1

{φ (Y ∗
ik;ζik,1) [I (Y ∗

ik > 0) I(Yik = 1)

+ I (Y ∗
ik ≤ 0) I(Yik = 0)]}

n

∏
i=1

φ(ηi;0,1)
K

∏
k=1

I(αk > 0), (3.6)

where I(·) is the indicator function, taking value 1 when the argument is true and 0
otherwise. Because of the intractable form of (3.6) we can resort to the Gibbs sam-
pler using the conditional distributions of Y∗, ηηη and ξξξ , respectively Pr(Y∗|ηηη ,ξξξ ,Y),
Pr(ηηη |Y∗,ξξξ ,Y) and Pr(ξξξ |Y∗,ηηη ,Y), which are tractable and easy to draw samples
from. The conditional distribution of the independent Y ∗

ik is normal, with expected
value ζik = αkηi − δk and variance equal to 1, truncated by 0 to the left if Yik = 1
and to the right if Yik = 0, as follows

Y ∗
ik|ηηη ,ξξξ ,Y ∼

{
N(ζik,1) with Y ∗

ik > 0 if Yik = 1,
N(ζik,1) with Y ∗

ik ≤ 0 if Yik = 0.
(3.7)
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The conditional distribution of ηηη is also normal: the person parameters η1, ...,ηn

are independent with the following conditional posterior distribution

Pr(ηi|Y∗,ξξξ ,Y) ∝
K

∏
k=1

φ (Y ∗
ik;ζik,1)φ(ηi;0,1). (3.8)

A normal regression model is assumed for observation i in the form of

Y ∗
ik = αkηi −δk +υik

Y ∗
ik +δk = αkηi +υik, (3.9)

where υik i.i.d.∼ N(0,1). The second formulation of (3.9) can be interpreted as
the multiple regression of

(
Y ∗

ik +δk
)

on the regressors αk, with k = 1, ...,K, con-
sidering the ηi as regression coefficients. On the assumption of standard normal
prior distribution for ηi, we need to combine the likelihood and prior distribution
information together in a normal model. The likelihood function of ηi follows a
normal distribution with mean equal to the least square estimate of ηi, specifically
η̂i =∑K

k=1αk
(
Y ∗

ik +δk
)
/∑K

k=1α2
k , and variance v = 1/∑K

k=1α2
k . Therefore, the com-

bination of our standard normal prior distribution and the likelihood results, leads to
the following normal posterior distribution for ηi

ηi|Y∗,ξξξ ,Y ∼ N

(
η̂i/v

1/v+1
;

1
1/v+1

)
. (3.10)

The third conditional distribution Pr(ξξξ |Y∗,ηηη ,Y) can be computed by using the
same approach applied to the fully conditional distribution of ηi. Consider the K
vectors of item parameters ξξξ 1, ...,ξξξK , with ξξξ ′

k = [αk;δk], independent with the fol-
lowing posterior distribution

Pr(ξξξ k|Y∗,ηηη ,Y) ∝
n

∏
i=1

φ (Y ∗
ik;ζik,1) I(αk > 0). (3.11)

The normal regression model for each item k, with k = 1, ...,K, is

Y∗
k = [ηηη −1]ξξξ k +νννk, (3.12)

where ηηη is the n-dimensional vector of individual abilities, −1 is a n-dimensional
vector with entries equal to −1 and νννk = (ν1k, ...,νnk) is a random sample from
a standard normal distribution. The model can be interpreted as the regression of
Y∗

k on the explanatory variables U = [ηηη − 1], considering the ξξξ k as regression co-
efficients. Therefore, the likelihood function of ξξξ k follows the normal distribution
with mean equal to the usual least squares estimate ξ̂ξξ k = (U′U)−1U′Y∗

k and variance
equal to (U′U)−1. Consequently, the posterior distribution obtained combining the
likelihood function and the prior distribution on item parameters ξξξ k is given by

ξξξ k|Y∗,ηηη ,Y ∼ N(ξ̂ξξ k;(U′U)−1)I(αk > 0). (3.13)
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Another possible solution for computing the posterior density is to choose a prior
covariance matrix for the item parameters denoted by

ΣΣΣ 000 =
(

s2
α 0
0 s2

δ

)
,

where sα and sδ are the prior standard deviations for αk and δk. Therefore, the
conditional posterior distribution of ξξξ k is a multivariate normal with mean vector

equal to
(
U′U+ΣΣΣ−1

000

)−1
U′Y∗

k and covariance matrix equal to
(
U′U+ΣΣΣ−1

000

)−1
.

After the specification of the single conditional distributions for Y∗, ηηη and ξξξ , it
is possible to implement the Gibbs sampler to generate a sequence of drawings from
these distributions in three steps:

1. Start with initial values ξξξ (0), ηηη(0) and sample YYY ∗(0) from Pr(Y∗|ηηη ,ξξξ ,Y).
2. Use YYY ∗(0), ξξξ (0) and sample ηηη(1) from Pr(ηηη |Y∗,ξξξ ,Y).
3. Use YYY ∗(0), ηηη(1) and sample ξξξ (1) from Pr(ξξξ |Y∗,ηηη ,Y).

Steps 1–3 should be repeated iteratively until convergence. Generally, the MCMC
sampling procedures are not sensitive to the choice of starting values; however, rea-
sonable initial values can reduce the time of convergence. Coherently with the prior
assumptions about the ηs, a possible solution is to initialize the ability parameters
to their prior mean, which is equal to 0. According to Albert (1992), starting values

for the item parameters αk and δk, can be set to 2 and −Φ−1
[
(p̂k)

√
5
]
, respectively,

where p̂k = ∑i Yik/n is the proportion of correct answers for each item k. However,
one can decide to initialize the item parameters to suitable values, according to prior
knowledge. For example, we may expect that the discrimination parameters vary
between 0 and 2 and since the difficulty parameters are on the real line, a possible
initialiazion is to set all αs to 1 and all δ s to 0 (see Béguin and Glas, 2001). Another
possibility is to use the marginal maximum likelihood (MML) parameter estimates,
but the procedure requires the implementation of the EM algorithm.

3.3 Advances in IRT: some issues

For a long time, the focus of item response theory has been on the estimation of
models for binary and polytomous (nominal or ordinal) data, under the assumption
of unidimensionality. Within this assumption, a large variety of models with differ-
ent features has been developed (Thissen and Steinberg, 1986). However, the idea
of a multidimensional latent space has occurred in the IRT specific literature with
the formulation of the multidimensional two-parameter normal ogive model due to
Lord (1952) and Lord and Novick (1968). Despite the wide interest shown for this
approach, the use of multidimensional models has been limited in practice, due both
to the computational intensity of the estimation procedures and to the difficulty of
making this approach easily employable in practice. Recently, general models have
been proposed, that allow for the presence of more than one latent trait (Adams
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et al., 1997; Segall, 1996; Veldkamp, 1999; Veldkamp and van der Linden, 2002;
Wang et al., 2004), and are characterized by high flexibility. Furthermore, the in-
troduction of modern computers has facilitated the implementation of algorithms
based on MCMC simulation, such as the Gibbs sampler (see Sect. 3.2.1), which,
despite the computational intensity, may be applied easily to a wide range of com-
plex models. Besides the issue of multidimensionaly, the Gibbs sampler has shown
great potential in treating several issues in test administration, like missing data due
to incomplete designs and the use of prior information. In this section, these issues
will be discussed within the framework of Bayesian parameter estimation.

3.3.1 Multidimensionality

The detection of dimensionality is a crucial issue in IRT and in latent variable mod-
elling. Many IRT models are based on the assumption of unidimensionality, which
refers to the presence of a single latent ability. Especially when a test contains mu-
tually exclusive subsets of items or when the underlying dimensions are not highly
correlated, the use of a unidimensional model can bias the parameter estimation and
the trait administration. Violation of the assumption of unidimensionality may affect
the further assumption of local independence, which is valid only when the complete
latent space has been specified. For this reason, many researchers tried to develop
methods for the detection of dimensionality. Among others, exploratory factor anal-
ysis is used intensively in order to detect the dimensionality of a test structure. Of-
ten in educational testing, the plot of eigenvalues shows only one dominant factor,
which accounts for a small percentage of variability. In the classical test theory, the
reliability coefficient Alpha is used to investigate the internal consistency of the test,
and high value is an indicator of unidimensionality. Despite all the efforts in detect-
ing the correct dimensionality of a test, a single and effective statistical procedure is
not available yet, due to the latent nature of the phenomenon and the impossibility
of comparison with observed results. Nowadays, testing is also oriented towards the
evaluation of multiple competencies and the use of multidimensional models has
become very important. The contemporary presence of more that one latent trait
increases the complexity of the model but allows a deeply investigation of the data
structure. A generalization of model (3.2) to the presence of more than one single
trait is the multidimensional two-parameter normal ogive model (Lord, 1952; Lord
and Novick, 1968), given by

Pr(Yik = 1|ηηη i) =Φ
( Q

∑
q=1

αkqηiq −δk

)
, (3.14)

where ηηη i = (ηi1, ....,ηiQ)′ is the vector of length Q of abilities for the individual i.
Model (3.14) is referred as a compensatory model, because a low value on one
ability can be compensated by a higher value on another dimension.
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A necessary condition for identification of model (3.14) is that a scale must be
assigned to each latent variable. Another issue is latent variable indeterminacy, since
different rotations for the discrimination parameters are possible. There are two
different approaches to identify the model: the first one is to constrain the ability
parameters while the other one is to act on the item parameters. The first solution
consists of setting the mean and the variance-covariance matrix of the latent abilities
equal to a vector of zeros and to the identity matrix, respectively. Furthermore one
has to fix αkq = 0 for k = 1, ...,Q−1 and q = k + 1, ...,Q. Another way to identify
the model is to set some restrictions only on item parameters, that is

• Impose αkq = 1 if k = q and αkq = 0 if k �= q, for k = 1, ...,Q and q = 1, ...,Q.
• Set Q item difficulties δk equal to 0.

Béguin and Glas (2001) proved that the two identification methods are inter-
changeable; however, because in multidimensional models the interpretation of the
ability is more complicated, it is convenient to impose constraints on item parame-
ters, rather than on person parameters. Béguin and Glas (2001) extended the imple-
mentation of the Gibbs sampler by Albert (1992) to multidimensional IRT models.
In particular, they implemented the algorithm for the three-parameter normal ogive
(3PNO) model, which includes a guessing parameter. Following Albert (1992) and
Béguin and Glas (2001), the Gibbs sampler has been implemented for the multi-
dimensional 2PNO (Matteucci, 2007a, b). The focus has been on the 2PNO model
respect to the 3PNO because, even if the presence of a guessing factor is intrinsic to
multiple-choice items, the 3PNO model presents several estimation problems and
it is not so flexible to be included in the generalized linear latent variable models
(GLLVM).

Assuming the existence of an underlying continuous response variable Y ∗
ik, the

posterior distribution of interest is Pr(Y∗,ηηη ,ξξξ ,μμμ,ΣΣΣη |Y), where Y∗ is the n×K ma-
trix of the underlying variables, ηηη is the n×Q matrix of abilities, ξξξ is the K×(Q+1)
matrix of item parameters, μμμ and ΣΣΣη are the mean and variance-covariance ma-
trix of the latent abilities, respectively. A multivariate normal distribution is as-
sumed for the abilities, i.e. ηηη1, ....,ηηηn are independent and ηηη i ∼ N(μμμ,ΣΣΣη). Fur-
thermore, a multivariate normal and an inverse-Wishart prior distributions for μμμ
and ΣΣΣη are considered, respectively: μμμ|ΣΣΣη ∼ N

(
μμμ0,

ΣΣΣη
κ0

)
, where μμμ0 is the prior

mean vector and κ0 is the number of prior measurements on the ΣΣΣη scale, and

ΣΣΣη ∼ Inv-Wishartν0

(
ΛΛΛ−1

0

)
, with ν0 degrees of freedom and a symmetric, positive

definite scale matrix ΛΛΛ 0. Finally, normal distributions are assumed for the item pa-
rameters: α ∼ N

(
μα ,σ2

α
)

and δ ∼ N
(
μδ ,σ2

δ
)
.

As for the unidimensional model, it is possible to express the joint posterior
distribution of Y∗,ηηη ,ξξξ ,μμμ and ΣΣΣη as follows
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Pr (Y∗,ηηη ,ξξξ ,μμμ,ΣΣΣη |Y) = Pr(Y∗|Y,ξξξ ,ηηη)Pr(ηηη |μμμ,ΣΣΣη)Pr(μμμ|ΣΣΣη)Pr(ΣΣΣη)Pr(ξξξ )

∝
n

∏
i=1

K

∏
k=1

{φ (Y ∗
ik;ζik,1) [I (Y ∗

ik > 0) I(Yik = 1)+ I (Y ∗
ik ≤ 0) I(Yik = 0)]}

n

∏
i=1

φ(ηηη i;μμμ ,ΣΣΣη)Pr(μμμ|ΣΣΣη)Pr(ΣΣΣη)Pr(ξξξ ). (3.15)

Assuming initial appropriate estimates for ηηη and ξξξ , the Gibbs sampler works
with the conditional densities Pr(μμμ,ΣΣΣη |ηηη), Pr(Y∗|ηηη ,ξξξ ,Y), Pr(ηηη |Y∗,ξξξ ,Y,μμμ,ΣΣΣη)
and Pr(ξξξ |Y∗,ηηη ,Y).

Combining the information of the prior distributions and the likelihood func-
tion, the first conditional distribution Pr(μμμ,ΣΣΣη |ηηη) turns out to be a normal-inverse-
Wishart with parameters μμμn, ΣΣΣη/κn, νn and ΛΛΛ n, where:

μμμn =
κ0

κ0 +n
μμμ0 +

n
κ0 +n

η̄ηη

κn = κ0 +n

νn = ν0 +n

ΛΛΛ n = ΛΛΛ 0 +S+
κ0n
κ0 +n

(η̄ηη−μμμ0)(η̄ηη−μμμ0)
′.

The matrix S is the Q×Q sum of squares matrix relative to the sample mean η̄ηη .
The second conditional distribution of interest, Pr(Y∗|ηηη ,ξξξ ,Y), is a truncated

normal, particularly

Y ∗
ik|ηηη ,ξξξ ,Y ∼

{
N(ζik,1) with Y ∗

ik > 0 if Yik = 1,
N(ζik,1) with Y ∗

ik ≤ 0 if Yik = 0,
(3.16)

where ζik = ∑Q
q=1αkqηiq −δk.

Due to a transformation on the vector of ability parameters ηηη i = μμμ +Lηηηo
i , with

ΣΣΣη = LL′, and the normal regression interpretation of the model, the conditional
distribution of Pr(ηηη |Y∗,ξξξ ,Y,μμμ,ΣΣΣη) is obtained as follows

ηηηo
i |Y∗,ξξξ ,Y ∼ N

(
(I+ΣΣΣ−1)−1ΣΣΣ−1η̂ηηo

i ;(I+ΣΣΣ−1)−1), (3.17)

where ΣΣΣ = (B′B)−1, with B = AL, A is the K ×Q discrimination matrix and η̂ηηo
i =

(B′B)−1B′ (Y∗
i +δδδ −Aμμμ).

Finally, following the normal assumption of item parameters, it is possible to ex-
press the prior distribution of the item parameters for the item k, with k = 1, ...,K,
as a multivariate normal distribution. Particularly, the vector of item parameters
ξξξ k = (αk1,αk2, ...,αkQ,δk)′ has a multivariate normal distribution with a mean vec-
tor equal to μμμξξξ 000

= (μα1, ...,μαQ,μδ )′ and variance ΣΣΣξξξ 000
= diag(σα1, ...,σαQ,σδ ).

Therefore, the conditional distribution of the item parameters can be expressed as

ξξξ k|Y∗,ηηη ,Y ∼ N
(
μμμξξξ kkk

;
(
ΣΣΣ−1
ξξξ 000

+U′U
)−1)

, (3.18)
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where μμμξξξ kkk
=
(
ΣΣΣ−1
ξξξ 000

+U′U
)−1(

ΣΣΣ−1
ξξξ 000
μμμξξξ 000

+U′Y∗
k

)
and U is a n× (Q + 1) matrix

with the ηiq and a column with elements equal to −1.
The Gibbs sampler can be implemented to generate a sequence of drawings from

the conditional distributions in the following four steps:

1. Starting with an initial value ηηη(0), sample ΣΣΣ (0)
η from ΣΣΣη ∼ Inv-Wishartνn

(
ΛΛΛ−1

n

)

and then sample μμμ(0) from μμμ|ΣΣΣη ,ηηη ∼ N
(
μμμn,

ΣΣΣη
κn

)
.

2. Start with initial values of ξξξ (0) and ηηη(0) and sample YYY ∗(0) from Pr(Y∗|ηηη ,ξξξ ,Y).
3. Use YYY ∗(0), ξξξ (0), ΣΣΣ (0)

η and μμμ(0) to sample ηηη(1) from Pr(ηηη |Y∗,ξξξ ,Y,μμμ,ΣΣΣη).
4. Use YYY ∗(0) and ηηη(1) to sample ξξξ (1) from Pr(ξξξ |Y∗,ηηη ,Y).

Steps 1–4 should be repeated with the updated values, iteratively.

3.3.2 Incomplete design

So far we have supposed that all the data are available, that is the Y data matrix
is complete and consists of correct and wrong responses coded by 1 and 0, respec-
tively. In practice, item responses may contain missing data due to respondents or
test administrators. In the first case, the missing response may be considered as a
wrong response in the educational field. In the second case the test design is in-
complete because not all the items are submitted to the totality of the candidates,
and the missing due to not-presented items should not be included in the estimation
procedure.

The incomplete design can be implemented in the Gibbs sampler, imposing the
algorithm to skip the missing data, as suggested in Béguin and Glas (2001). Next
to the data matrix Y, which contains correct, incorrect and missing responses corre-
sponding to n examinees and K items, we can create a new matrix D as indicator of
the incomplete design. Particularly, we have

dik =
{

1 if the item k is administered to the respondent i,
0 otherwise.

(3.19)

In order to estimate the unidimensional model (3.2), steps 1–3 of Sect. 3.2.1 are
replaced as follows

1. Start with initial values ξξξ (0), ηηη(0) and sample YYY ∗(0) from Pr(Y∗|ηηη ,ξξξ ,Y) only for
the elements equal to 1 of the D matrix.

2. Use YYY ∗(0), ξξξ (0) and sample ηηη(1) from Pr(ηηη |Y∗,ξξξ ,Y) conditionally on D.

3. Use YYY ∗(0), ηηη(1) and sample ξξξ (1) from Pr(ξξξ |Y∗,ηηη ,Y) conditionally on D.

Analogously, for the multidimensional model (3.14) the Gibbs sampler works
sampling from the single conditional distributions conditionally to the D matrix,
and steps 1–4 of Sect. 3.3.1 are replaced by the followings
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1. Starting with an initial value ηηη(0), sample ΣΣΣ (0)
η from ΣΣΣη ∼ Inv-Wishartνn

(
ΛΛΛ−1

n

)

and then sample μμμ(0) from μμμ|ΣΣΣη ,ηηη ∼ N
(
μμμn,

ΣΣΣη
κn

)
.

2. Start with initial values of ξξξ (0) and ηηη(0) and sample YYY ∗(0) from Pr(Y∗|ηηη ,ξξξ ,Y),
only for the elements corresponding to dik = 1.

3. Use YYY ∗(0), ξξξ (0), ΣΣΣ (0)
η and μμμ(0) to sample ηηη(1) from Pr(ηηη |Y∗,ξξξ ,Y,μμμ,ΣΣΣη), condi-

tionally to the D matrix.
4. Use YYY ∗(0) and ηηη(1) to sample ξξξ (1) from Pr(ξξξ |Y∗,ηηη ,Y), conditionally to the D

matrix.

The implementation and the application of the incomplete design are also dis-
cussed in Matteucci (2007a).

3.3.3 Inclusion of prior information

In testing occasions, collateral information on the candidates may be available. This
may include socio-demographic variables or information about the performances
obtained during other testing phases. The inclusion of background variables which
are strongly related to the latent ability in the item response model may be inves-
tigated in order to improve the process of ability estimation. The introduction of
prior information in the IRT model can be performed by considering a set of Xp

background variables, with p = 1, ...,P, as follows

ηi = β0 +β1Xi1 + ...+βPXiP + εi, (3.20)

where the error terms εi are i.i.d. ∼ N(0,σ2).
Therefore, a linear relation between the background and the latent variables is

considered. The conditional distribution of ηi, given the Xps, is normal

ηi|Xi1, ...,XiP ∼ N(β0 +β1Xi1 + ...+βPXiP;σ2). (3.21)

The direct estimation of the β s and σ2 may be conducted substituting (3.20) into
the IRT model. In the literature, this method has been applied through MML via
EM algorithm for the Rasch model (Zwinderman, 1991) and for the 2PL model (van
der Linden, 1999). On the other hand, the inclusion of prior information is possible
within the MCMC methods. The Gibbs sampler has been implemented to estimate a
general multilevel IRT model (Fox and Glas, 2001) and to model hierarchically the
measurement model and prior information in the form of response times (Fox et al.,
2007).

Starting from the estimation of model (3.2), the Gibbs sampler has been extended
to the inclusion of prior information on η (Matteucci and Veldkamp, 2008). As
usual, from a fully Bayesian perspective, the joint posterior distribution of interest
is



42 Mariagiulia Matteucci, Stefania Mignani and Bernard P. Veldkamp

Pr(Y∗,ηηη ,ξξξ ,βββ ,σ2|Y,X) = Pr(Y∗|ηηη ,ξξξ ,Y)Pr(ηηη |βββ ,σ2,X)Pr(ξξξ )Pr(βββ )Pr(σ2).
(3.22)

Because the (3.22) has an intractable form, the Gibbs sampler algorithm can be ap-
plied in order to iteratively sample from the conditional distribution of each variable
respect to all the others.

The first conditional distribution of interest is Y∗|ηηη ,ξξξ ,Y, which, analogously to
(3.7) and (3.16), is

Y ∗
ik|ηηη ,ξξξ ∼

{
N(ζik,1) with Y ∗

ik > 0 if Yik = 1,
N(ζik,1) with Y ∗

ik ≤ 0 if Yik = 0,
(3.23)

with ζik = αkηi −δk.
The conditional distribution of the latent ability ηηη |Y∗,ξξξ ,βββ ,σ2 is expressed com-

bining the likelihood function of ηi and the prior distribution (3.21), as follows

ηi|Y∗,ξξξ ,βββ ,σ2 ∼ N

(
η̂i/v+Xiβββ/σ2

1/v+1/σ2 ;
1

1/v+1/σ2

)
, (3.24)

where η̂i =
(
α ′

kαk
)−1α ′

k

(
Y ∗

ik +δk
)

and v =
(
α ′

kαk
)−1

.
The conditional distribution of the item parameters ξξξ |ηηη ,Y∗, assuming a prior

covariance matrix ΣΣΣ 000, is a multivariate normal

ξξξ k|ηηη ,Y∗ ∼ N
((

W′W+ΣΣΣ−1
000

)−1
W′Y∗

k ;
(
W′W+ΣΣΣ−1

000

)−1
)

, (3.25)

where W = [ηηη −1].
The remaining conditional distributions are referred to the regression parame-

ters, specifically βββ |ηηη ,σ2 and σ2|ηηη ,βββ . The former follows a multivariate normal
distribution

βββ |ηηη ,σ2 ∼ N(β̂ββ ;σ2(X′X)−1), (3.26)

with β̂ββ = (X′X)−1X′ηηη .
The latter follows an inverse-Chi-square distribution, specifically

σ2|ηηη ,βββ ∼ Inv−χ2(n;S2), (3.27)

where S2 = 1
n (ηηη−Xβββ )′(ηηη−Xβββ ).

All the conditional distributions are dependent on the data Y and X, which have
been suppressed for notational convenience. Starting from a set of initial values,
the Gibbs sampler proceeds with the iterative sampling from the single conditional
distributions until convergence. The identification of the model is conducted by
fixing the distribution of η so that its mean and standard deviation are 0 and 1,
respectively.
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3.4 Case study: prior information in educational assessment

Among the different issues described in Sect. 3.3, we have decided to focus on
the use of prior information (see Sect. 3.3.3) in a case study. The aim of the ap-
plication is to show how collateral information about individuals can be used in
order to estimate both the measurement model and the relationship between ability
and covariates in a single step. For the purpose of the analysis, we consider data
from the 2008 final exam in the Italian lower secondary school. In fact, a written
standardized test was submitted by the National Evaluation Institute for the School
System (INVALSI) to all Italian students in the third class. The test consists of two
different subscales (Mathematics and Italian) and contains multiple-choice, close
constructed-response, and open constructed-response items. The Mathematics sec-
tion consists of 22 items while the Italian test contains 25 items dealing with read-
ing comprehension and grammar. Besides the responses of the candidates on all
the items, also several background variables were recorded. A random stratified by
geographic area, three-stage sample of 4,865 students is considered in the analysis.

The idea is to use the performance of the examinees in the Italian subscale as
background information for the ability in the Mathematics subscale. Because the re-
sponses were dichotomized, maximum likelihood estimates of the ability have been
computed for each subscale according to model (3.1). Besides the ability estimates
in the Italian section, collateral information about gender, scholastic career and ge-
ographic origin are therefore included in the following multiple regression model

ηi = β0 +β1Xi1 +β2Xi2 +β3Xi3 +β4Xi4 + εi, (3.28)

where X1 are the ML ability estimates concerning the Italian test, X2 is the gender
variable (coded 1 for females and 0 for males), X3 is the scholastic career (coded
1 for students repeating the scholastic year at least once, and 0 otherwise) and X4

is the indicator variable for the geographic origin (1 for foreign students and 0 for
Italians).

The Gibbs sampler algorithm described in Sect. 3.3.3 has been run for 40,000
iterations, with a burn-in of 1,000 iterations. Table 3.1 contains the item parameter
estimates of model (3.2) for the Mathematics test.

The parameter estimates are comparable to the results obtained by using stan-
dard IRT software. As Table 3.1 shows, the items are rather discriminating and are
related to different levels of difficulties, which leads to an accurate test for the stu-
dent evaluation. The chain length has been considered sufficient in order to obtain a
Monte Carlo standard error which is less than 1% of the corresponding standard de-
viation for each parameter. The estimates of the regression parameters are reported
in Table 3.2.

The regression coefficient estimates highlight a positive and large effect of the
student performance in the Italian test on the Mathematics ability (β1 = 0.788),
given the standard normal scale of the trait, while moderate negative effects are
reported for females (β2 = −0.305) and students repeating the year (β3 = −0.210).
In particular, it seems that males perform slightly better than females in the test,
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Table 3.1 Item parameter estimatesa

Item α̂k δ̂k Item α̂k δ̂k

01 0.433(0.025) −0.842 (0.022) 12 0.487(0.025) −0.698 (0.021)
02 0.506(0.024) −0.467 (0.020) 13 0.559(0.025) −0.507 (0.022)
03 0.439(0.022) −0.141 (0.019) 14 0.432(0.022) −0.021 (0.019)
04 0.424(0.024) −0.632 (0.020) 15 0.523(0.023) 0.192 (0.019)
05 0.405(0.026) 0.984 (0.023) 16 0.422(0.028) −1.112 (0.025)
06 0.902(0.033) −0.773 (0.025) 17 0.776(0.031) −0.781 (0.024)
07 0.828(0.032) −0.722 (0.024) 18 0.566(0.029) −1.069 (0.026)
08 0.645(0.026) 0.338 (0.020) 19 0.761(0.028) −0.423 (0.021)
09 0.605(0.025) −0.270 (0.020) 20 0.875(0.038) 1.253 (0.033)
10 0.866(0.033) 0.776 (0.025) 21 0.386(0.024) −0.687 (0.021)
11 0.586(0.027) 0.696 (0.022) 22 0.777(0.029) 0.304 (0.020)

astandard deviations in brackets

Table 3.2 Regression parameters a

Estimates

β0 0.168 (0.017)
β1 0.788 (0.014)
β2 −0.305 (0.025)
β3 −0.210 (0.049)
β4 0.063 (0.057)
σ2 0.500 (0.013)

a standard deviations in brackets

confirming the results obtained in educational literature. Finally, the effect of being
a foreign student is estimated to be almost null (β4 = 0.063). This seems to be a
controversial result, because descriptive analysis showed that foreign students had
average performances significantly lower than Italian students. This outcome is also
confirmed by estimating a simple regression model with the geographic origin as
the only covariate. However, when the performance in the Italian test is introduced
in the model, the effect of the individual origin is absorbed by the ability covariate.

3.5 Concluding remarks

The chapter discussed the use of item response theory for the analysis of individual
responses to a set of items, focusing on specific issues in the context of test admin-
istration, as multidimensionality and incomplete design, all implemented by using
the Gibbs sampler. Despite the well-known properties of the MCMC methods, the
estimation algorithms have been applied only recently in IRT due to their computa-
tional intensity but have shown great capability of estimation in special situations.
A particular attention has been given to the inclusion of prior information in the test



3 Issues on item response theory modelling 45

administration, due to its relevance for future research. In fact, the use of collateral
information about the examinees may be especially useful in computerized adap-
tive testing (CAT), when the items are iteratively adapted to the test-taker’s ability,
updated after the administration of each single item. The use of prior information
should be investigated in order to improve the measurement precision and to reduce
the test length.
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Chapter 4
Nonlinearity in the analysis of longitudinal data

Estela Bee Dagum, Silvia Bianconcini and Paola Monari

4.1 Introduction

In recent years, the use of longitudinal designs has increased appreciably and the
study of change has become an essential component of research in the behavioural
sciences. The availability of “micropanels”, that consists of large cross-sections of
individuals observed for short time periods, provides informations for answering
questions about (i) how each individual performs over time, and (ii) what are the
predict differences among individuals in their change. These questions form the
core of every study about achievement growth, and we need suitable models to in-
vestigate the dependence structure of these longitudinal data.

Two important features have to be taken into account: (i) the clustering of re-
sponses within units, and (ii) the chronological ordering of the responses. Both (i)
and (ii) imply dependence among observations on the same unit. Including random
effects into statistical models is a common way of distinguishing between-subject
and within-subject source of variability in view of reflecting unobserved heterogene-
ity in the individual behaviour (Laird and Ware, 1982). In particular, the random
effects can be incorporated into Structural Equation Models (SEM) by considering
them as latent variables (see e.g. Bollen and Curran (2006)). Baker (1954) was the
first to suggest the use of latent variable models to study panel data, whereas Tucker
(1958) gave a more technical expression of this idea for exploratory factor anal-
ysis. Meredith and Tisak (1990) took this to the confirmatory factor analysis and
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demonstrated that trajectory modelling fits naturally into this framework. We refer
to these models as Latent Curve Models (LCMs). The basic idea is that individu-
als differ in their growth over time, and they are likely to have different temporal
behaviours as a function of differences in particular characteristics, such as gender,
scholar background etc. The model allows both the level of the response and the
effects of covariates to vary randomly across units. In this context, an issue that re-
searchers have to address is the nonlinearity of the functional form and particularly
in the parameters. The individual growth is generally assumed to be linear, but many
behavioural processes exhibit differential rates of change. Since LCM is a confirma-
tory factor model, it cannot estimate complex nonlinear functions directly. Hence,
several methods have been developed in view of treating nonlinear dynamics via
models which are linear in the parameters.

This chapter considers nonlinear latent curve models for the study of longitudi-
nal developmental data. Section 4.2 describes linear LCM, in terms of model spec-
ification and estimation. In Sect. 4.3, we review several methods for the estimation
of nonlinear LCMs. Finally, Sect. 4.4 illustrates an application on nonlinear aca-
demic performance data based on a cohort of students enrolled at the University of
Bologna.

4.2 Latent curve models

In this section, we review the linear LCM to illustrate its main features. Many impor-
tant texts describe a large number of extensions, and we refer the reader to Singer
and Willett (2004), Skrondal and Rabe-Hesketh (2004), and Bollen and Curran,
2006.

The latent curve model posits the existence of continuous underlying trajectories
which are not directly observable, but only indirectly using repeated measures. It
actually consists of the following three parts:

1. The linear function that describes the change over time in the repeated measures.
It is defined for individual subjects and employs subject-specific random coeffi-
cients βi0 and βi1 as follows

yit = βi0 +βi1(t −1)+ εit , t = 1,2, ...,Ti i = 1,2, ...,n, (4.1)

where yit is the value of the response variable y for the individual i at time point
t, and βi0 and βi1 are assumed to be uncorrelated among individuals.

2. The covariance structure of the residuals, also defined as within-subject structure.
In Eq. (4.1), the disturbances εit are assumed to be normally distributed with
zero means and heteroscedastic variances. They are also uncorrelated over time
(cov(εi,t ,εi,t+s) = 0 for s �= 0), over individuals (cov(εi,t ,εk,t+s) = 0 for i �= k and
∀ s), and with the random coefficients (cov(βi j,εit) = 0,∀ j, i).

3. The set of models for the regression coefficients βi0 and βi1 that summarize the
differences between individuals. Key modelling results are estimates of the over-
all means, that are measures of central tendencies in the trajectories, and of the
variation across individuals of the random coefficients. That is,
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βi j = μβ j
+ζβi j

j = 0,1 i = 1, ...,n, (4.2)

where the disturbances ζβi j
’s are assumed to be correlated and normally dis-

tributed with zero means and variances ψ2
β j

.

By incorporating covariates in Eq. (4.2), we can test for potential influences on
the trajectory parameters. That is,

βi j = μβ j
+ γγγ ′

β j
wi +ζβi j

, j = 0,1 i = 1,2, ...,n (4.3)

where γγγ’s are the regression coefficients of the time-invariant covariates wi, and μβ j

are mean coefficients when the covariates are zero.
Although many questions about the trajectories are possible, three are the main ones:
(i) the characteristics of the mean trajectory of the entire group, determined by μβ0

and μβ1
, (ii) the evaluation of individual differences in trajectories picked up by the

variances and covariances introduced to estimate the sampling fluctuations around
the mean trajectory, and (iii) the potential incorporation of predictors to better un-
derstand the variability observed in the individual trajectories.
Random coefficients can be treated within the Structural Equation Modelling (SEM)
perspective, where the case-specific parameters βi0 and βi1 are viewed as latent vari-
ables. They are commonly known as Latent Curve Models (LCMs).
Let the repeated measures yit be stacked into the vector y and the latent variables βi0

and βi1 into ηηη , the model can be reexpressed as follows

y = ΛΛΛηηη+ εεε, (4.4)

ηηη = τττ+Bηηη+ΓΓΓw+ζζζ . (4.5)

In Eq. (4.4), ΛΛΛ is a matrix of factor loadings, and εεε is the vector of time varying
errors, assumed to have zero mean and covariance matrix ΘΘΘε . In Eq. (4.5), B is a
null matrix, τττ contains μβ0

and μβ1
, whereas ΓΓΓ refers to the regression coefficients

related to the covariates w. The latent residual vector ζζζ is assumed to be normally
distributed with zero mean and covariance matrixΨΨΨ .
Differently from the classical structural equation modelling approach where the
loadings are estimated, the linear LCM fixes them to specific a priori values. More-
over in SEM, the means of the factors and observed variables are usually omitted.
In contrast, the LCM explicitly models both of the mean and covariance structures
among the observed measures. However, a restrictive structure is imposed on these
means. The intercepts of the repeated measures are set to zero, and the means for
the latent trajectory factors are estimated. In this way the mean structure of the data
is determined entirely by the means of the latent trajectory factors.

Even if we focus on continuous observations, the model can be easily extended
to deal with noncontinuous responses. In the literature several approaches have been
developed for conducting latent variable analysis with discrete data. The most pop-
ular one used in SEM is the Underlying Variable Approach (UVA), which assumes
that the manifest variables are indirect observations of multivariate normal vari-
ables. As shown in Chap. 2, another main approach is to set the model within the
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Generalized Linear Latent Variable Model (GLLVM) (Moustaki and Knott, 2000).
It allows to link the latent variables to observed ones of different types. Although
the two approaches seem different because of different assumptions, Bartholomew
and Knott (1999) have noticed an equivalence between them. Hence, the choice of
one method over the other for practical applications depends both on the properties
of the estimates and on the efficiency of the estimation procedures.

4.2.1 Estimation

As in the classical SEM approach, model estimation is obtained by minimizing a
fitting function depending on the discrepancy between the theoretical covariance
matrix of the observed variables, ΣΣΣ , and the correspondent sample covariance ma-
trix, S. Hence, the information coming from the data is considered to be sufficient
to get a unique estimation value of the parameters, that is the model is identifiable
(Bollen, 1989). In this case, the inclusion of the information coming from the mean
structure μμμ is also required.
Specifically, from Eqs. (4.4) and (4.5) we define μμμ and ΣΣΣ as

μμμ = ΛΛΛ(τττ+ΓΓΓ w̄) (4.6)

ΣΣΣ =
[
ΛΛΛ(ΓΓΓSwwΓΓΓ ′ +ΨΨΨ)ΛΛΛ ′ +ΘΘΘε ΛΛΛΓΓΓSww

SwwΓΓΓ ′ΛΛΛ ′ Sww

]
(4.7)

where w̄ is the sample mean vector of the covariates and Sww the corresponding
covariance matrix. Different fitting functions can be chosen according to the nature
of the vector y. The following Maximum Likelihood fitting function can be used
(Muthén and Khoo, 1998) if it is either a multivariate normally distributed or its
components do not present excessive kurtosis,

FML = ln |ΣΣΣ |− ln|S|+ tr(ΣΣΣ−1S)− p+(ȳ−μμμ)′ΣΣΣ−1(ȳ−μμμ). (4.8)

As well known, under regular conditions, FML has desirable asymptotic proper-
ties as it gives asymptotically efficient estimators of the parameters and associated
correct test statistics. For evaluating the goodness of fit of the SEM models the most
used statistic is defined as (n−1)FML. It is asymptotically distributed as a chi-square
with degrees of freedom equal to the number of the variances and covariances in ΣΣΣ
minus the number of the estimated parameters.

4.3 Modelling nonlinearity in latent curve models

Regardless of the specific form, there are many situations in which a linear model of
change does not correspond to the theoretical model of interest. Trends over time of-
ten follow a nonlinear trajectory, and ignoring nonlinearity can lead to misspecified
models and biased inferences.
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Two different kinds of nonlinearity can be observed: (i) nonlinearity of form, which
refers to the nonlinearity of the trajectory function; (ii) nonlinearity in the parame-
ters, that is in the subject-specific coefficients. This second type of nonlinearity is
problematic in latent curve models, because LCM is a confirmatory factor model in
which parameters enter linearly.

Several approaches have been developed in order to overcome these limitations.
Some define an a priori formal function, and evaluate its goodness of fit to the ob-
served data. Polynomial trajectories are commonly applied, but also bounded curves
can be taken into account. On the other hand, other methods do not make assump-
tions on the global form of the trajectory function. They fit curves that are more
reflective of the characteristic of the given data set. On this regard we shall discuss
completely latent and linear piecewise trajectory models.

4.3.1 Polynomial trajectories

A straightforward formulation of a nonlinear model which is linear in the param-
eters is based on polynomial functions, such as quadratic or cubic growth curves.
Nonlinearity is often modeled as follows

yit =
P

∑
p=0

βip(t −1)p + εit i = 1, ...,n t = 1, ...,Ti. (4.9)

The linear model corresponds to a first degree (p = 1) polynomial trajectory. Given
an adequate number of repeated measures to allow for proper model identification,
higher-order polynomials can be specified as regression coefficients in theΛΛΛ matrix.
For example, for an unconditional quadratic model, given ηηη = (βi0,βi1,βi2)

T , the
factor loading matrix results

ΛΛΛ =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0
1 1 1
1 2 4
...

...
...

1 T −1 (T −1)2

⎞
⎟⎟⎟⎟⎟⎠

(4.10)

One necessary condition for model identification is that we must have at least as
many known to be identified parameters as we have unknown parameters. In gen-
eral, a polynomial function of degree p requires a minimum of T = p + 2 repeated
observations (Bollen and Curran, 2006).

The number of latent variables included in ηηη is dependent on the trend that is
modeled. While the intercept is typically interpreted as initial status, the interpreta-
tion of the slope depends on the number of parameter in ηηη . For example, consider
the quadratic LCM. The intercept continues to reflect the model-implied value at the
initial assessment, whereas the linear component of the quadratic model describes
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the instantaneous rate of change at the initial assessment. However, as this number
increases, the interpretation becomes more difficult.

4.3.2 Exponential trajectories

Polynomial functions are not always well suited to capture all forms of nonlinear
change. Social and psychological processes often change at a nonlinear rate with
a tendency for performance to stabilize after a period of time. An application of a
quadratic function to such data might do well in capturing the increase in ability at
the beginning, but would then imply that the ability decreases thereafter. Although
many interesting nonlinear functions are available (e.g. exponential, logistic, Gom-
pertz), not all are easy to incorporate directly into LCM since the hypothesized
model has to be linear in the parameters.

Du Toit and Cudeck (2001) describe methods for the estimation of several types
of nonlinear functions within the SEM framework particularly focusing on the ex-
ponential model of change. Exponential functions are common to model growth or
decay that tends toward an asymptote. The exponential trajectory is defined as

yit = βi0 +βi1[1− exp(−γ(t −1))]+ εit , t = 1, ...,T i = 1, ..,n, (4.11)

where βi0 represents the intercept of the trajectory at the initial time period, since
for t = 1 exp(−γ0) = 1, βi1 represents the model-implied expected total change in
y as time goes to infinity. Finally, γ affects the exponential rate of change in y over
time.

Du Toit and Cudeck (2001) demonstrate that within the SEM framework we can
estimate random components for the intercept and slope, but we need to treat γ as
fixed. This implies that individual variability is allowed in the initial starting point
and in the total amount of change over time, but the rate of change is fixed for all
cases in the sample.

The factor loadings for this exponential curve have a more complex form than
polynomial models, that is

ΛΛΛ =

⎛
⎜⎜⎜⎝

1 0
1 1− exp(−γ(1))
...

...
1 1− exp(−γ(T −1))

⎞
⎟⎟⎟⎠ (4.12)

The constraints on the factor loadings require a nonlinear function that depends on
γ . These nonlinear constraints can either be estimated directly, as in Eq. (4.12), or
using a higher-order polynomial (see Du Toit and Cudeck, 2001). One advantage
of this exponential trajectory is that unlike the polynomial family of functions, the
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exponential one is strictly monotonic. That is, the exponential trajectory approaches
an asymptote without changing directions. In contrast, for example, the quadratic
polynomial trajectory will change directions at an inflection point and continue
toward plus or minus infinity. Since most social and psychological processes are
bounded, there is an advantage to use a function that does not increase or decrease
without limits.

Other methods have been developed for estimating exponential functions within
the SEM framework (see e.g. Browne and Du Toit (1991) and Browne (1993)), but
we refer to the Du Toit and Cudeck (2001) since it is the most commonly applied.

4.3.3 Complex nonlinear curves

There are empirical situations where complex nonlinear trajectories of change can
make difficult a priori specification of the elements in ηηη . Instead of fitting predefined
trajectories, there are alternative methods in which we can fit functions that are more
reflective of the characteristic of the given empirical data set. In this section, we
illustrate complete latent models and piecewise linear trajectories.

4.3.3.1 Complete latent models

The completely latent model introduced by Meredith and Tisak (1990) is one of
the most often applied method. Given a two-factor model, it consists in modelling
curvilinear trajectories by freeing one or more of the loadings in the latent curve
model. As suggested by Aber and McArdle (1991), the approach “stretches” the unit
of time. It allows the value of time to be estimated in order to linearize the relation
between time and yit by transforming the metric of time. Meredith and Tisak (1990)
proposed to set the first loading to zero, the second to 1 to define the metric of the
latent factor, and to freely estimate λt for t = 3, ...,T .
Hence, Eq. (4.4) results

⎛
⎜⎜⎜⎜⎜⎝

yi1

yi2

yi3
...

yiT

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1 0
1 1
1 λ3
...

...
1 λT

⎞
⎟⎟⎟⎟⎟⎠
(
βi0

βi1

)
+

⎛
⎜⎜⎜⎜⎜⎝

εi1

εi2

εi3
...
εiT

⎞
⎟⎟⎟⎟⎟⎠

i = 1, ...,n. (4.13)

where yit is the value of the response variable y for the individual i at time point t,
i = 1, ...,n and t = 1, ...,T , whereas εit , i = 1, ...,n, t = 1, ...,T are the disturbances
assumed to be normally distributed with zero means and heteroscedastic variances.
The estimated loadings λt , t = 2, ...,T, will reflect the observed change between
times 1 and t. On the other hand, McArdle (1988) suggested to fix λ1 = 0 and
λT = 1, and to freely estimate all of the loadings between the first and last time point.
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Although the overall model fit statistics will be identical in the two formulations, the
estimated loadings have a different interpretation. Specifically, in the latter, the free
loadings will reflect the proportion of change between two time points relative to
the total change occurring from the first to the last time point.
The free loadings give flexibility in fitting nonlinear forms, and the model iden-
tification is less demanding than in the polynomial approach (Bollen and Curran,
2006).

4.3.3.2 Piecewise linear trajectories

Another method for modelling nonlinear relations over time is to approximate the
nonlinear function through the use of two or more piecewise linear polynomial or
splines. This model comes from the mixed modelling framework (e.g. Snijders and
Bosker, 1999), but has been less widely utilized in the SEM approach.
The general procedure is to identify a fixed transition point during the time period
under study, and to fit a linear trajectory up to that point and a linear trajectory after
it. The transition point might be explicit and determined theoretically, or it may be
more data driven.
Although recent works have explored the ability to model transition points that vary
randomly over individuals, these methods are currently not well developed. We thus
focus on fitting a piecewise linear latent curve model to repeated measures in which
all individuals share the same transition point. The subject specific trajectory is thus

yit = βi0 +βi1λ1t +βi2λ2t + εit , (4.14)

where λ1t represents one value of time at assessment t, and λ2t represents a second
value of time at assessment t. It is with these two time values that we will be able
to combine the two linear trajectories. Conceptually, the first piece will bring the
trajectory up to the transition point t∗ and then allow the second piece to continue
after the transition. Thus, the factor loading matrix will be

ΛΛΛ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
...

...
...

1 λ1t∗ 0
1 λ1t∗ 1
...

...
...

1 λ1t∗ λ2T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the first column of ΛΛΛ represents the intercept factor, the second column rep-
resents the first linear piece, and the third column represents the second linear piece.
The coding of time nicely highlights that the first piece is defining the trajectory up
to the transition point, after which the first piece turns over to the trajectory to the
second piece. Similarly, the second piece makes no contribution to the trajectory
prior to the transition, but picks up the trajectory after that point.
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As before, because the intercept and two linear pieces are treated as random vari-
ables, these can be expressed as

βi0 = μβ0
+ζβi0

βi1 = μβ1
+ζβi1

βi2 = μβ2
+ζβi2

.

The interpretation of the model parameters is straightforward. The means of the
three latent factors represent the fixed effects for the corresponding trajectory com-
ponents. On the other hand, the variance estimates of each factor represent the
degree of individual variability around each of the fixed effects. The covariances
among the latent factors represent linear relations among the intercept and two lin-
ear pieces. An interesting parameter in this model is the covariance between the
first and second linear pieces. This covariance represents the association between
individual differences in rates of change prior to and following the transition point.
In terms of identification, Bollen and Curran (2006) showed that a piecewise linear
LCM is identified with five or more waves of data.

4.4 Case study: analysis of university student achievements

This section examines how several methods used to model nonlinearity in longi-
tudinal observations perform on real data sets. Longitudinal analyses of university
student data allow to fulfil the new requirements of the university system. With the
beginning of the Bologna process, a series of reforms are initiated with the aim to
create an European Higher Education area, in which students could choose from a
wide and transparent range of high quality courses and benefit from smooth recogni-
tion procedures. Hence, the evaluation of formative processes has received a grow-
ing attention by policy makers and public agents in order to identify critical factors
for achievement that can improve curricula, instructional strategies, and conditions
for learning.

An important emerging problem is the comparison between students’ perfor-
mances: (i) when different supporting and tutoring actions are adopted during the
course of studies, and (ii) in presence of different personal situations.

4.4.1 The data

The data set analysed was extracted from the Data WareHouse (DWH) of the
University of Bologna. This latter is a system that collects and constantly updates
information by integrating data coming from sources of different nature. The project
started in 2002 in order to support planning, control and decision processes.
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Table 4.1 Descriptive statistics for GRAD1, GRAD2, and NOGRAD

GRAD1 GRAD2 NOGRAD

Mean StDev Mean StDev Mean StDev
y1 7.62 1.49 5.77 1.86 3.87 1.70
y2 8.51 1.67 6.35 1.76 4.53 1.85
y3 9.81 1.63 7.61 2.00 4.31 1.98
y4 − − 4.51 2.47 4.14 2.16
y5 − − − − 3.05 1.83

Table 4.2 Correlation matrices for GRAD1, GRAD2, and NOGRAD

GRAD1 GRAD2 NOGRAD

y1 1.00 1.00 1.00
y2 −0.07 1.00 −0.11 1.00 0.25 1.00
y3 −0.31 −0.48 1.00 0.02 −0.14 1.00 0.15 0.23 1.00
y4 − − − −0.44 −0.33 −0.54 1.00 −0.02 0.21 0.10 1.00
y5 − − − − − − − 0.01 −0.14 −0.02 −0.05 1.00

The DWH contains a great amount of information per each student and al-
lows to build the overall university student career. It is also possible to find socio-
demographic information (gender, country/region of origin, etc.) and the mark ob-
tained in the final exam of the High School.
In this chapter, we analyze a cohort of n = 714 students enrolled in 2001 at the
Faculty of Economics of the University of Bologna. Five different time points (aca-
demic years) are observed: t1 = 2001/2002, t2 = 2002/2003, t3 = 2003/2004, t4 =
2004/2005, t5 = 2005/2006. Bianconcini et al. (2007) show that within the cohort
it is possible to distinguish three different patterns :

1. Students (n1 = 195) who graduated in t3 (GRAD1).
2. Students (n2 = 268) who graduated in t4 (GRAD2).
3. Students (n3 = 251) who have not graduated yet (NOGRAD).

Only the first group graduates on time. To build an indicator of the student perfor-
mance we decided to involve the two most relevant variables present in the DWH,
that is, the mark (ranging from 18 to 30 cum laude), and the number of credits asso-
ciated to each exam (ranging from 2 to 15). In more detail, the response variable yit is
computed as the weighted average mark obtained by each student i (i = 1,2, ...,714)
over time tl (l = 1–5) divided by the total number of credits required to get the de-
gree, equal to 160. The weights are given by the credits corresponding to each exam.
Thus the variable obtained is continuous and it can range from 0, if the student does
not take any exam, to a maximum that depends on both the number of credits ex-
pected in each academic year, and on the average of the marks.
Tables 4.1 and 4.2 show for each pattern, the means, the standard deviations, and
the correlation matrices of the response variable across time.
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We can observe that GRAD1 is the group of students that presents the best aver-
age performance, increasing almost linearly during the 3 years. The performance of
the students belonging to GRAD2 is quite good in the first three years, but decreases
suddenly in the last year. It may be due to the fact that students prefer to achieve
their degree of study in the year t4 despite the marks obtained or, more commonly,
they almost conclude their studies in the first three years, and spend the last one
in preparing few exams and the final thesis. The group of NOGRAD shows a low
average performance in all the time points observed. As for the correlation values,
they are quite low for all the groups indicating that in general there are no strong
associations between lagged performance indicators. Only for GRAD2, y4 presents
negative correlations with y1,y2 and y3. It confirms the different behaviour of this
group of students in t4.

4.4.2 Results

Before fitting latent curve models to the data it is necessary to evaluate if GRAD1,
GRAD2 and NOGRAD can be considered as three samples of the same population.
Indeed, since the three groups have three time points in common we can test if
any difference in these observed points can be ignored. On this regard, the data
not observed for GRAD2 and NOGRAD are considered missing by design. Hence,
a missing data three group analysis can be conducted by assuming that the three
groups have been drawn from a single population (Muthén and Khoo, 1998). The
tested model is the one where equality constraints are imposed for mean vector
and covariance matrix elements that the three cohorts have in common. Bianconcini
et al. (2007) showed that this hypothesis is rejected for these data, and, hence, the
three patterns cannot be considered random samples from the same population. This
requires a different latent growth specification for each of the three cohorts. Latent
curve analyses are implemented by using LISREL 8.8.

Concerning the students who got their degree at t1, only three time points are
available. Hence, only a linear growth model with uncorrelated residuals among the
achievement scores is identified. Since the main aim of the analysis is to show how
to deal with nonlinearity in longitudinal data, we refer the reader to Bianconcini
et al. (2007) for a complete study of the temporal pattern of GRAD1 students.

4.4.2.1 The GRAD2 students

The linear growth model for students who got their degree at t4 does not fit well.
The source of this misfit should not be only sought in the covariance structure, but
also in the mean structure. This suggests that a linear growth assumption is not
realistic, so we explored nonlinear trajectories. As shown in the previous section,
several approaches can be followed in order to estimate nonlinear LCM. We started
by consider the simplest extension of a linear LCM, and fitted a polynomial trajec-
tory model. Since we have four waves of observations, a quadratic polynomial is
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correctly identified. The results are reported in Table 4.3. The model fits the data
poorly, as indicated by the chi-square value with one degree of freedom. Hence, we
need to estimate a different nonlinear model for these data. Since it is difficult to

Table 4.3 Parameter estimation for the unconditional nonlinear models for GRAD2 students

Quadratic Completely latent
Estimate SE Estimate SE

λ1 – – – –
λ2 – – −0.499 0.189
λ3 – – −1.423 0.304
λ4 – – – –
λ5 – – – –

Mean
βi0 5.41 0.11 5.77 0.11
βi1 2.21 0.19 −1.28 0.22
βi2 −0.77 0.07 – –

Variance
βi0 4.92 1.24 1.04 0.16
βi1 8.93 2.30 0.29 0.79
βi2 0.84 0.23 – –

Covariances
βi0,βi1 6.15 1.51 −0.87 0.22
βi0,βi2 −1.75 0.39 – –
βi1,βi2 2.59 0.69 – –

χ2 55.45 2.19
d f 1 1
p-value 0.000 0.14

define a priori a functional form for the GRAD2 data, we apply the complete la-
tent approach by following the time parametrization suggested by McArdle (1988).
We only fix λ1 = 0 and λ4 = 1, and all others are freely estimated. By correlating
the residuals between t2 and t3, and t3 and t4, the model fit results are excellent
(Table 4.3), according to the chi-square statistic [chi-squared: 2.19, df: 1, p-value:
0.14]. The values of the freely estimated loadings are λ̂2 = −0.50, and λ̂3 = −1.42,
revealing the nonlinear pattern observed in the means. In particular, −0.50 reflects
the decreasing change between t1 and t2 relative to the total change occurring from
the first to the last time point. On the other hand, −1.42 is the decreasing change
between t2 and t3 relative to the total change occurred in the entire period of time of
4 years.
The means corresponding to the intercept (μ̂β0

= 5.767) and slope (μ̂β1
= −1.277)

factors are both significant, as well as the variance of the intercept (ψ̂β0
= 1.036),

but not of the slope (ψ̂β1
= 0.293). These variance components reflect that there are

individual differences in the starting point, but not in the nonlinear rate of change
over time. On the other hand, there is significant negative covariance between
the random intercept and slope, equal to −0.866. Although a linear interpretation
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cannot be given to these results, the value of the intercept indicates that the initial
level of the analyzed cohort is quite good. On the other hand, the negative slope
estimate as well as the negative loading estimates imply an increasing growth in its
performance over time and a steeply decrease at the end of the studies.

4.4.2.2 The NOGRAD students

For the students who did not graduated yet, we have observed the score for five
time points. Also in this case, a linear growth model fits the data poorly, whereas a
quadratic trend with correlated residuals is adequate (Bianconcini et al., 2007). This
is confirmed by the chi-square value (Table 4.4) corresponding to a quadratic trend
with two degrees of freedom equal to 3.82 (p = 0.15). All the mean estimates are

Table 4.4 Parameter estimation for the unconditional nonlinear models for NOGRAD students

Quadratic Completely latent
Estimate SE Estimate SE

λ1 – – – –
λ2 – – −0.77 0.22
λ3 – – −0.39 0.18
λ4 – – −0.24 0.17
λ5 – – – –

Mean
βi0 3.90 0.11 3.90 0.10
βi1 0.77 0.13 −0.86 0.14
βi2 −0.24 0.03 – –

Variance
βi0 1.79 0.58 0.31 0.11
βi1 2.90 0.85 0.87 0.37
βi2 0.18 0.05 – –

Covariances
βi0,βi1 −1.19 0.64 −0.32 0.15
βi0,βi2 0.19 0.13 – –
βi1,βi2 −0.70 0.18 – –

χ2 3.82 8.94
d f 2 7
p-value 0.15 0.26

significant and equal to 3.90, 0.77, and −0.24 for βi0,βi1, and βi2, respectively. The
variance estimates are all significant (ψ̂β0

= 1.79, ψ̂β1
= 2.90, ψ̂β2

= 0.18) and also
the covariance between βi1 and βi2, equal to −0.70.
Thus the students belonging to this cohort present a low initial level and, although
the value βi1 indicates on average a positive linear growth, the negative value of βi2

highlights that its increment decreases over time. Taken jointly, these results reflect
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that the performance of this group of students is in general lower than GRAD1 and
GRAD2.

We can also estimate a complete latent model for this group of data, without mak-
ing any assumption on the functional form of the latent curve. As in the previous
case, we fix λ1 = 0 and λ4 = 1, and all others are freely estimated. The results are
reported in Table 4.4. We found that this model fits well the data, with a chi-square
statistic with seven degrees of freedom equal to 8.94 (p-value 0.26). The values of
the freely estimated loadings are λ̂2 = −0.77, λ̂3 = −0.39, λ̂4 = −0.24, revealing
the nonlinear pattern observed in the means. In particular, the relative change with
respect to the total change occurring from the first to the last time points is greater
between t1 and t2 and decreases constantly over time. The loading λ̂4 is not signifi-
cant, indicating that the worst performance is in the first two academic years.
The means corresponding to the intercept (μ̂β0

= 3.90) and slope (μ̂β1
= −0.86)

factors are both significant, as well as the variance for the intercept (ψ̂β0
= 2.87),

but not for the slope (ψ̂β1
= 2.36). These variance components reflect there are in-

dividual differences in the starting point, and also in the nonlinear rate of change
over time. On the other hand, there is significant negative covariance between the
random intercept and slope, equal to −2.04. Hence, there is a similar variability in
both the initial status and rate of growth for this group of students, and the relation-
ship among the two growth components is negative. Negative are also the loading
estimates which imply a slightly increasing growth in its performance over time.

4.5 Concluding remarks

This chapter discussed the analysis of longitudinal data focusing on several methods
developed for modelling nonlinear latent curves in the SEM framework. Based on
the idea that individuals differ in their growth over time, and they are likely to have
different temporal behaviours as a function of differences in particular characteris-
tics, several methods have been developed with the main goal of treating nonlinear
dynamics via models which are linear in the parameters. An application study on
a cohort of students enrolled in 2001 at the University of Bologna showed how
different approaches provide good estimates of the nonlinear growth. In particular,
models based on complete latent trajectories always seem to fit well the nonlinear
data, but when the functional form of the trajectory is known a priori, as in the case
of the NOGRAD student pattern, this approach is to be preferred relative to the fully
latent model.



Chapter 5
Multilevel models for the evaluation
of educational institutions: a review

Leonardo Grilli and Carla Rampichini

5.1 The evaluation of educational institutions

The methodology for the evaluation of educational systems is being developed in
different fields, such as educational statistics, psychometrics, sociology and econo-
metrics. Each discipline has developed approaches suitable for the analysis of par-
ticular aspects of the evaluation process. For example, educational statistics focuses
on learning curves using standardized scores, while econometrics mainly deals with
private returns (e.g. in terms of wages) or social returns (e.g. in terms of produc-
tivity). Anyway, there is a considerable overlap among the fields, for example peer
effects are studied both in educational statistics, as a major topic, and econometrics,
as a minor topic.

In this review we focus on the methods for comparing educational institutions.
Most of the literature concerns primary and secondary schools rather than universi-
ties. This preponderance is due to several factors: (i) primary and secondary educa-
tion is compulsory and has an enormous social and economic impact; (ii) the major-
ity of schools are under the responsibility of a single subject, namely the State; (iii)
the schools share a core curriculum in mathematics and reading that allow to build
standardized tests. Indeed, the potentialities of standardized tests attracted much
methodological work. Anyway, most of the topics we consider in this review apply
to both schools and universities and we often make reference to the evaluation of
universities, which is our own research area.

The interest in the evaluation of the educational system is proved by some recent
special issues edited by top-level scientific journals: Journal of Econometrics (The
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econometrics of higher education, Lawrence and Marsh (2004)), Journal of Educa-
tional and Behavioral Statistics (Value-Added Assessment, Wainer (2004), Journal
of the Royal Statistical Society series A (Performance monitoring in the public ser-
vices, Bird (2004)).

The research activity in the evaluation of educational institutions influences, and
is influenced by, the real applications in school districts or states. For example, in
UK the publication of the ranking of schools based on raw measures of achievement
(the so called league tables) started a debate and a methodological work that in-
duced the government to add adjusted measures (Goldstein and Spiegelhalter, 1996;
Leckie and Goldstein, 2009).

As for Italy, in the last years there are have been many research projects on the
evaluation of universities (Chiandotto et al., 2005; Boero and Staffolani, 2006; Fab-
bris, 2007; Capursi and Ghellini, 2008), in addition to the intense activity of the
National Committee for the Evaluation of the University System (www.cnvsu.it).
On the other hand, the evaluation of primary and secondary schools
played a minor role, even if there have been several projects financed by the
government (www.invalsi.it) and some regions (e.g., Lombardia:
www.irrelombardia.it). In Italy the research is more on universities than on
schools mainly because a law imposed the evaluation of the universities since 1993.
Indeed, in Italy the standardized tests on student achievement are few and occa-
sional and the Government is still working to build the evaluation system. Anyway,
the availability of the standardized tests of the OECD-PISA surveys is generating
some valuable research activity (Martini and Ricci, 2007).

This review is written from a statistician’s point of view, so the focus is on the
methodological challenges connected with statistical modelling and data analysis.
The second Section is devoted to the definition of effectiveness in education, while
the third Section deals with multilevel models and their role in assessing effective-
ness. The fourth Section gathers several statistical issues arising in effectiveness
evaluation, while the fifth Section discusses the use of model results. The sixth Sec-
tion concludes with some remarks.

5.2 Effectiveness

The effectiveness of an organization is the degree of achievement of its institutional
targets. In the case of education (schools, universities) some targets are internal,
such as the attainment of an adequate level of knowledge, while other targets are
external, such as a high proportion of employed graduates or a good consistency
between job and curriculum.

The degree of achievement of the targets can be measured in absolute terms (ab-
solute effectiveness or impact analysis) or in relative terms (relative or comparative
effectiveness). Absolute effectiveness is appropriate for the evaluation of interven-
tions, e.g. a specific vocational training course, while relative effectiveness is suited
for situations with many institutions offering the same service and thus interest
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focuses on comparing institutions. In a comparative setting, the effectiveness is usu-
ally operationalized as a measure of performance adjusted for the factors out of
the control of the institution. In other words, the effectiveness is seen as an extra-
performance entirely due to the behaviour of the institution itself.

In terms of economic theory, the issue of comparative effectiveness can be
viewed through the Principal-Agent-User model (Fabbri et al., 1996). In the con-
text of education, the Principal is the Ministry of Education, the Agents are the
educational institutions (schools or universities) and the Users are the students. The
subjects are in a situation of asymmetric information and need some kind of as-
sessment of the service offered by the Agents: in fact, each User has to choose one
Agent (the best for her), while the Principal wishes to rank the Agents in terms of ef-
fectiveness in order to understand the good practices and to take actions to improve
effectiveness (e.g. assigning incentives).

The key point is that the quality of the output of the educational process cannot
be defined in absolute terms, but only with respect to the effects on the students.
However, the effects on the students are affected by the features of the students
themselves, so if two institutions of similar quality have students with markedly
different degrees of motivation and ability, the outcome of the two institutions is
likely to be quite different. Therefore, a fair comparison of educational institutions
requires to control for the characteristics of the students, in other words education
is a field where the evaluation of the Agents must be adjusted for the features of the
Users. In economic terms, the customers (students) are also inputs of the production
function of the educational institution.

The educational process leads to multiple outcomes, so many measures of ef-
fectiveness are conceivable. As for the university, relevant internal measures are the
drop-out rate, the duration of studies (time to the degree), the number of credits after
a given period and the satisfaction of the students expressed through questionnaires;
relevant external measures are the occupational status at a certain date after degree
(employed or not), the duration of unemployment (time to first job), the wage, the
job satisfaction and the consistency between job and curriculum. The definition of
the outcome to be studied depends on the purpose of the evaluation and ultimately on
the policy objectives. Since the stake-holders (government, management, students)
give different weights to the outcomes according to their preferences, the evaluation
system should avoid summarizing the various kinds of effectiveness into a single
overall indicator.

In general the effectiveness is a feature that is outcome and time specific. There-
fore judgements about schools need to address at least five key questions: (i) Ef-
fective in promoting which outcomes? (ii) Effective over what period of time? (iii)
Effective for whom? (iv) Effective for which curriculum stage? (v) Effective in what
educational policy or regional context?

A framework for the assessment of school effectiveness is outlined by Hanushek
(1986). A broad review of the methodological and statistical issues connected with
performance indicators is given by Bird et al. (2005).
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5.2.1 The value-added approach

The analysis of the educational process is difficult, so the quality of educational
institutions is usually measured via a value-added approach, where the process is a
black-box and the output, called outcome, is evaluated in the light of the input. In
this perspective, the effectiveness is just the value added by the school:

[value added] = [actual outcome]− [expected outcome given the input]

Empirical studies have found that the differences in student outcomes across schools
are due mainly to differences in student prior achievement and socio-economic
background and for a minor part to differences in school factors such as teach-
ers ability, organization and so on. Thus comparing the unadjusted outcomes is
markedly unfair and a value-added approach is needed.

There is an extensive literature on value-added student achievement, where the
main methodological point is how to properly adjust the final raw achievement for
the initial conditions (initial level of knowledge, motivation, socio-economic status,
etc.). As explained by Tekwe et al. (2004), “Value-Added is a term used to label
methods of assessment of school/teacher performance that measure the knowledge
gained by individual students from 1 year to the next and then use that measure
as the basis for a performance assessment system. It can be used more generally
to refer to any method of assessment that adjusts for a valid measure of incoming
knowledge or ability”.

The issue of adjustment is crucial also in external effectiveness evaluations (em-
ployment chances, consistency between job and curriculum), but in such cases the
adjustment for a ceteris paribus comparison is even more difficult: in fact, there is
no initial measure of the outcome under study and the external nature of the re-
sult requires adjusting also for external conditions (e.g. the unemployment rate). In
essence, to achieve a fair evaluation the main difficulty is to make a proper adjust-
ment.

5.2.2 Type A and type B effectiveness

The kind of adjustment required for assessing effectiveness is not the same for the
various subjects interested in the results. In this regard, it is useful to distinguish
between two types of effectiveness. In fact, a potential student (User) and the Min-
istry of Education (Principal) are interested in different types of effectiveness of the
educational institutions (Agents):

• Type A – Potential student: interested in comparing the results she can obtain by
enrolling in different institutions, irrespective of the way such results are yielded;

• Type B – Ministry of Education: interested in assessing the “production process”
in order to evaluate the ability of the institutions to exploit the available resources.
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The two types of effectiveness are called A and B after Raudenbush and Willms
(1995), who focused on internal measures, but the concept naturally extends to
external measures. In a comparative setting, the effectiveness is usually assessed
through a measure of performance adjusted for the factors out of the control of the
institution, so the difference between Type A and Type B effectiveness simply lies
in the kind of adjustment:

• Type A effectiveness: performance of the Agent adjusted for the features of its
Users;

• Type B effectiveness: performance of the Agent adjusted for the features of its
Users, the features of the Agent itself (out of its control) and the context in which
it operates.

In the evaluation of schools or universities the features of the students to adjust
for are the initial knowledge, ability, motivation etc., or proxies easier to measure,
such as the socio-economic status. Examples of features of the institutions to ad-
just for are the public or private status, the student/teacher ratio and the amount of
funding. The features of the context requiring adjustment depend on the kind of
evaluation, for example to assess the effectiveness in terms of chances of employ-
ment an adjustment should be made for the conditions of the local labour market.

As pointed out by Raudenbush and Willms (1995), in practice the adjustment
required for the assessment of Type B effectiveness is particularly difficult, as it
involves many variables whose measurement is problematic.

5.3 Multilevel models as a tool for measuring effectiveness

The statistical models for assessing the relative effectiveness of educational institu-
tions must face two main problems:

• adjustment: a fair comparison requires to adjust the raw outcome for several fac-
tors, depending on the type of effectiveness;

• quantification of uncertainty (accidental variability): this is necessary in order
to formulate judgements supported by empirical evidence, accounting for sam-
pling variability and other sources of error, such as fluctuations in the unobserved
features of the institutions and measurement error.

The raw rankings, sometimes called league tables, ignore both issues (Goldstein
and Spiegelhalter, 1996; Goldstein and Leckie, 2008; Leckie and Goldstein, 2009).

The main statistical tool for making a proper adjustment, while quantifying un-
certainty, is regression. However, in a comparative evaluation of educational institu-
tions, standard regression models (such as the Generalized Linear Models) are not
adequate as they do not take into account a crucial feature of the data, namely the hi-
erarchical structure. In fact, the students are nested into the institutions and the aim
is to measure the effectiveness of the institutions using outcomes defined at the stu-
dent level. From a statistical viewpoint, standard regression models make unsuitable
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assumptions on the variance-covariance structure since they assume independence
of the observations, while the results of the students of the same institution are posi-
tively correlated as they share several unobserved factors at the institution level. The
consequence is a poor quantification of uncertainty (and in nonlinear models also a
systematic attenuation of the regression coefficients). In addition, standard models
are unable to represent some key features, e.g. varying slopes.

A class of models well suited for assessing the relative effectiveness of insti-
tutions is that of multilevel models, also known as mixed models or hierarchical
models. The reason is that multilevel models allow to:

• specify distinct sub-models for the behaviour of the institutions and the behaviour
of their users;

• represent adequately the variance-covariance structure, achieving a good quan-
tification of the uncertainty;

• represent explicitly the concept of effectiveness by means of a random effect
added to the linear predictor.

There are plenty of textbooks on multilevel modelling. Snijders and Bosker
(1999) is an excellent introduction. Hox (2002) has fewer details, but it covers a
wider range of topics. Raudenbush and Bryk (2002) present the models in a careful
way along with thoroughly discussed applications. Goldstein (2003) is a classical,
though not easy, reference with wide coverage and many educational applications.
A useful handbook is De Leeuw and Meijer (2008).

The web is rich of resources on multilevel modelling, for example the Centre for
Multilevel Modelling at www.cmm.bristol.ac.uk. There is also a very active
email discussion group for exchanging information and suggestions about multilevel
modelling (see www.jiscmail.ac.uk/lists/multilevel.html).

Multilevel models can be fitted with Maximum Likelihood or Bayesian methods
(Raudenbush and Bryk, 2002; Goldstein, 2003), using specialized software (e.g.
MLwiN, HLM) or procedures of statistical packages such as SAS, Stata, R, Mplus.

5.3.1 The random intercept model

The basic multilevel model is the linear random intercept model:

yi j = α+βxi j + γw j +u j + ei j (5.1)

where j indexes the level 2 units (clusters) and i indexes the level 1 units (subjects).
In terms of the Principal-Agent-User model outlined in the previous Section, the
clusters are the Agents and the subjects are the Users. Specifically, in the evaluation
of schools the clusters are the schools and the subjects are the students.

The variables in the model are: yi j, the outcome of student i of school j (a raw
measure of performance); xi j, a vector with the features of student i of school j; w j,
a vector with the features of school j and the context in which it operates.
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Moreover, u j is the random effect of school j, i.e. an unobservable quantity char-
acterizing such a school and shared by all its students. The term u j is an adjusted
measure of performance: in fact, it is a residual component that captures all the
relevant factors at the school level not accounted for by the covariates and thus its
meaning depends on which covariates enter the model. The effect u j is called “ran-
dom” because it is a random variable, assuming independence among the schools.
For consistency of the estimates, the crucial assumption on u j is that its expecta-
tion conditionally on the covariates is null (exogeneity). Less crucial, but standard
assumptions are the homoscedasticity, i.e. the u j have constant variance σ2

u , and the
normality of the distribution.

Finally, the level 1 errors ei j are residual components taking into account all the
unobserved factors at the student level making the outcome yi j different from what
predicted by the covariates and the random effect. The ei j are assumed independent
among students and independent of u j. The other standard assumptions are similar
to those on u j, i.e. exogeneity, homoscedasticity (with variance denoted as σ2

e ) and
normality.

The model is named random intercept since each school has its own intercept
α + γw j + u j that has both fixed and random components. However, the slopes are
assumed to be constant across schools, so the regression lines are parallel (see the
left panel of Fig. 5.1).

To make clear the value-added interpretation, model (5.1) can be written as fol-
lows:

yi j −
(
α+βxi j + γw j

)
= u j + ei j

actual outcome − expected outcome = value added + residual
(5.2)

Fig. 5.1 Regression lines in a random intercept model and in a random slope model.
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The expected outcome is the outcome predicted by the model on the basis of the
available school-level and student-level covariates. For student i of school j the
difference between actual and expected outcome has a school-level component u j

(the value added) and a residual student-level component ei j. The value added u j is
thus a school-level unexplained deviation of the actual outcome from the expected
outcome. Since what is expected depends on the covariates, the meaning of the
value-added term depends on how the model adjusts for the covariates, namely: (i)
which covariates are included in the model; (ii) how the covariates enter the model
(nonlinearities, interactions).

To illustrate the random intercept model, let us consider a simple example where
yi j is a measure of final achievement and the only available covariate is the corre-
sponding measure of prior achievement xi j. While xi j is a student-level covariate,
its school mean x̄ j is a school-level covariate measuring the quality of the context.
In educational research the slope of x̄ j, called contextual coefficient, is often found
to be significant, meaning that the context has an effect on the individual outcomes.
For example, assume the contextual effect is positive and consider two students i and
k with the same prior achievement: if the school attended by student k has a higher
mean prior achievement then the school attended by student i, then the model pre-
dicts an higher final achievement for student k. The reason is that the school attended
by student k operates in a more favourable context that substantially improves the
learning process.

In order to allow for contextual effects, the random intercept model for a single
covariate should be specified as:

yi j = α+βxi j + γ x̄ j +u j + ei j

= (α+ γ x̄ j +u j)+βxi j + ei j
(5.3)

where the covariate (prior achievement) has a within slope β and a contextual slope
γ . Indeed, when the contextual coefficient is not null the covariate has a within
slope different from the between slope and also from the total slope, see Snijders
and Bosker (1999) and Raudenbush and Bryk (2002).

In model (5.3) all the school factors beyond the cluster mean of the covariate
(school mean of prior achievement) are included in the random effect u j which is
broadly interpreted as the effect of school practice or value added. Denoting with
Ai j and Bi j the Type A and B effects for student i of school j outlined in the previous
Section, model (5.3) implies

Ai j = γ x̄ j +u j (5.4)

Bi j = u j (5.5)

Thus the random intercept model implies uniform Type A and B effects, i.e. attend-
ing a given school has the same effect for all the students, regardless of their features.
In statistical terms, there is no interaction between school practice and student fea-
tures. The uniformity of the effects leads to straightforward rankings of the schools:
once the model is fitted, the schools can be ranked on the basis of the estimated Type
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A or Type B effects, yielding two rankings that may differ in a substantial way if
contextual effects are relevant.

5.3.2 The random slope model

Unfortunately, uniform effects are often a restrictive assumption since typically a
given school practice has more or less impact on student learning depending on the
kind of student under consideration. Some schools are egalitarian, trying to reduce
the gap in the prior achievement, while other schools are competitive, tending to
boost the initial differences: in statistical terms, competitive schools have an higher
slope on prior achievement. A multilevel model accounting for varying slopes is the
linear random slope model:

yi j = α+βxi j + γw j +u0 j +u1 jzi j + ei j (5.6)

where zi j is the subset of student-level covariates xi j having a random slope.
The random slope extension of model (5.3) is

yi j = α+βxi j + γ x̄ j +u0 j +u1 jxi j + ei j

=
(
α+ γ x̄ j +u0 j

)
+
(
β +u1 j

)
xi j + ei j

(5.7)

so each school has its own regression line as depicted in the right panel of Fig. 5.1.
Snijders and Bosker (1999, Sect. 5.3.1) discuss some specification issues.

Model (5.7) implies the following Type A and B effects:

Ai j = γ x̄ j +u0 j +u1 jxi j (5.8)

Bi j = u0 j +u1 jxi j (5.9)

Thus the random slope model implies non-uniform school effects, i.e. attending a
given school does not have the same effect for all the students, since the effect de-
pends on the features of the student under consideration. Non-uniform effects make
difficult to rank the schools, since the ranking changes whenever two regression
lines cross, and any couple of schools has a different crossing point. A practical so-
lution is to use the covariates to define a few relevant profiles (e.g. low-achievement
student, medium-achievement student etc.) and to produce one ranking for each pro-
file.

5.3.3 Cross-level interactions

As in standard regression, multilevel models can be extended to allow for inter-
actions, namely the effect of a covariate depends on the level of another covari-
ate. However, in multilevel analysis there is a special kind of interaction that is
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important for a fine modelling of the relationships between hierarchical levels: it is
the cross-level interaction, i.e. the interaction between an individual-level covariate
and a cluster-level covariate. For example, Ladd and Walsh (2002) used non para-
metric regression to show that the effect of the prior school mean score on the final
individual score depends on the prior individual score: most students benefit from
being in a school with high-scoring schoolmates, but for students with a very low
prior score the effect is reversed. This situation can be modelled through cross-level
interactions, for example model (5.3) may be expanded as

yi j = α+βxi j + γ x̄ j +δxi jx̄ j +u j + ei j (5.10)

so the effect of the prior school mean score x̄ j is γ + δxi j, which depends linearly
on the prior individual score xi j.

Model (5.10) implies the following Type A and B effects:

Ai j = (γ+δxi j) x̄ j +u j (5.11)

Bi j = u j (5.12)

Thus, the random intercept model with cross-level interactions implies uniform
Type B school effects, but non-uniform Type A school effects. Thus, there is a
unique ranking of schools based on Type B effects, while the ranking based on
Type A effects depends on student features.

5.3.4 Fixed versus random effects

As implied by the name, the random intercept and random slope models treat the
cluster residual effects as random variables. Alternatively, such effects could be
treated as unknown fixed quantities, i.e. fixed effects.

In principle, the choice between fixed and random effects is straightforward: use
fixed effects whenever you wish to make inference on the clusters in the data; use
random effects whenever you wish to make inference on a population of clusters,
assuming that the clusters in the data are a random sample from such a popula-
tion (Snijders and Berkhof, 2008). However, the choice is complicated by other,
more practical, considerations. In fact, fixed effects models have the advantage of
requiring fewer assumptions: there is no need to specify the distribution of the ran-
dom effects, nor to assume that they are uncorrelated with the covariates (exogene-
ity). Moreover, Draper and Gittoes (2004) demonstrate the large sample functional
equivalence between a method based on indirect standardization and a fixed effects
model. Also note that when the cluster sizes become large, the fixed parameter esti-
mates yielded by a random effects model tend towards the fixed parameter estimates
yielded by a fixed effects model. See, for example, Wooldridge (2002).

Unfortunately, fixed effects models are unable to include cluster-level covariates:
the technical reason is that cluster-level covariates would be perfectly collinear with
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the cluster indicators, while an intuitive explanation is that the fixed effects fully
explain the cluster-level variability, so there is no scope for cluster-level explanatory
variables. In a value-added analysis, the impossibility to include the covariates of
the school/context is a serious limitation. For example, Type B effects cannot be
estimated with a fixed effects model.

Another drawback of the fixed effects approach is the incidental parameter prob-
lem arising in non-linear models, yielding inconsistent estimators of all the param-
eters. Wooldridge (2002) gives some details.

The random effects approach is generally to be preferred, even if it entails a risk
of misspecification of the conditional distribution of the random effects given the co-
variates, yielding biased inferences. It is therefore crucial to check the assumptions
on the random effects and possibly adopt alternative specifications: for example, the
non-normality of the random effects can be addressed by using a discrete distribu-
tion with estimable support points and masses (yielding non-parametric maximum
likelihood estimates), while the correlation of the random effects with the covari-
ates (endogeneity) can be solved by extending the model with the cluster means
(Snijders and Bosker, 1999).

A further advantage of a random effects model is the availability of empirical
Bayes (shrunken) residuals to predict the cluster effects, as discussed in Sect. 5.5.1.

5.3.5 Non-linear and multivariate multilevel models

The nature of the outcome determines the kind of multilevel (mixed) model to be
used:

• continuous (test score, wage . . . ): linear mixed model;
• count (number of enrolled students . . . ): e.g. Poisson mixed model;
• time (time to degree, time to get first job . . . ): duration mixed model;
• binary (dropout, employment status . . . ): e.g. logistic mixed model;
• ordinal (satisfaction, grade . . . ): e.g proportional odds mixed model;
• nominal (type of job, course subject . . . ): e.g multinomial logit mixed model.

All the previous models belong to the class of Generalized Linear Mixed Models
(GLMM). A wider class including also Rasch, IRT, factor and structural equation
models is the Generalized Linear Latent And Mixed Models (GLLAMM: Skrondal
and Rabe-Hesketh (2004)). The GLLAMM framework is not only a relevant theo-
retical advance, but it also gives the researchers an easy way to extend and integrate
their models: for example, in the GLLAMM framework it is quite straightforward
to specify and fit multilevel IRT models.

To give an idea of the applications of non-linear and/or multivariate multilevel
models, we mention some of our works on graduates’ placement using data from
the Italian system: multilevel discrete-time survival models for the time to obtain
the first job (Biggeri et al., 2001; Grilli, 2005); multilevel chain graph models to
study the probability of employment after one year (Gottard et al., 2007); multilevel
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factor models for ordinal indicators to study the satisfaction on several aspects of
the current job (Grilli and Rampichini, 2007a); multilevel multinomial logit models
for studying where the skills needed for the current job have been acquired (Grilli
and Rampichini, 2007b).

5.3.6 Multilevel models for non-hierarchical structures

The multilevel models considered so far are appropriate only for hierarchical (also
called nested) structures. Two extensions are worth to mention: models for cross-
classified structures and models for multiple membership.

A structure is called cross-classified when the individuals are classified along two
or more dimensions. For example, students may be classified by school and neigh-
borhood, so the model has both school random effects and neighborhood random
effects. See Raudenbush (1993) and Rasbash and Goldstein (1994).

A multiple membership multilevel model takes into account that some individu-
als may change their cluster. For example, during a school cycle of 5 years a student
may spend 4 years in school A and then move to school B, where she takes a final
examination aimed at assessing the learning during the whole cycle. It is clearly un-
fair to ascribe the gain of such a student only to school B, as in a standard multilevel
model. A more reasonable assumption is that the gain of such a student is due to
school A for 4/5 and to school B for 1/5, as in a multiple membership model.

An example of multiple membership model is the Layered Mixed Effects Model
(Sanders and Horn, 1994), which has the limitation of not allowing covariates. How-
ever, Browne et al. (2001) show that the multiple membership feature can be added
to any multilevel model, encompassing models with covariates and crossed random
effects. Goldstein et al. (2007) and Leckie (2009) apply multiple membership and
cross-classified models to the analysis of pupil achievement.

5.4 Issues in model specification

The implementation of statistical models for value-added analysis raises several
questions, where statistical issues and policy considerations are often inextricably
mixed. The following considerations hold in general for value-added models, re-
gardless of their multilevel nature.

5.4.1 Simple versus complex models

The value-added approach recognizes that the learning process is too complex to be
fully modelled, so the pragmatic aim of accountability is pursued. Therefore, it is
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recommended to keep the model as simple as possible. As noted by Tekwe et al.
(2004), “there is a natural desire on the part of the public and the educational es-
tablishment that implementation of school accountability systems involve simple
methods understood by many, not just those with extensive methodological train-
ing”. The authors state that simple models are to be preferred if they are “just as
good as” complex models, so there is a “burden of proof” on value-added measures
developed from complex models.

Tekwe et al. (2004) made an empirical comparison of several value-added models
using data from a medium sized Florida district of 22 elementary schools. They
found that the rankings originated from different models were highly correlated,
with the notable exception of a mixed model with socio-economic covariates at the
student level. Models without covariates produced similar rankings, e.g. a simple
fixed effects model on the change score yielded essentially the same results as a
complex Layered Mixed Effects Model. So the main question is if and how a value-
added model should adjust for student-level and school-level covariates.

5.4.2 To adjust or not to adjust?

The notion of value-added implies to adjust the final achievement at least for the
prior achievement. It is widely accepted that “the minimal requirement for valid
institutional comparison is an analysis based on individual level data which adjusts
for intake differences” (Aitkin and Longford, 1986).

Unfortunately, there is no general agreement on which other factors should be
controlled for. The value-added measures should be purged from the factors out of
the control of the school, but in practice the separation between factors under control
and factors out of control is not so clean. Tekwe et al. (2004) state that “if schools
are partly but not wholly responsible for the effects of covariates, then bias results
from either including or excluding them”. Usually the schools are not responsible
for the socio-economic status (SES) of their students, which is mainly determined
by the features of the district where the school is located, so adjusting for SES is
appropriate. However, if the admission to the schools is selective, it may be that the
worst schools have few students with high SES just because they are known to be
bad. In that case the adjustment is unduly beneficial for the bad schools.

The decision to adjust for socio-economic factors also depends on the purpose of
the evaluation process. Tekwe et al. (2004) stated that a model that adjusts only for
the prior achievement “. . . might be preferred in a low-stakes accountability sys-
tem that provides incentives and resources for ‘less effective’ schools to improve
and that does not base salary raises on the value-added measures. In a high stakes
system, however, where teachers’ salaries and school budgets depend on ‘high per-
formance’, not adjusting for significant socio-demographic factors could encourage
the flight of good teachers and administrators from schools with high percentages
of poor or minority students. On the other hand, adjusting for these factors could
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institutionalize low expectations for poor or minority students and thereby limit
their opportunity to achieve their full potential.”

Ladd and Walsh (2002, pp. 3–4) discuss the issue of adjusting for race, as imple-
mented in the value-added system of Dallas: “The educational logic for including
race is not transparent. At best it serves as a proxy for income and family charac-
teristics, such as low income and single parent families, for which other data were
not available or were incomplete. In contrast, the political logic for Dallas to con-
trol for the student’s race in the equation was very clear. Dallas officials wanted to
make sure that schools serving minority students had the same probability of being
judged an effective school as any other school. The problem is that by applying this
criterion of perceived fair treatment, Dallas officials could well have been conceal-
ing some true differences in the relative effectiveness of schools serving minorities.
Policy makers in other states have specifically chosen not to control for the race
of the student based on political considerations of a different sort. If they were to
include race as a control variable, they faced the possibility that they might be mis-
interpreted as sending a signal that the academic expectations for minority children
are lower than those for white children. Such a message would be inconsistent with
the rhetoric that underlies much of the outcomes oriented reform efforts, namely
that all children can learn to high levels. While this concern about a specific demo-
graphic variable applies most pointedly to a student’s race, it applies as well to other
background characteristics of students, such as family income.”

As statisticians, we believe that a model for value-added analysis should control
for all the relevant factors, paying attention to issues such as endogeneity and mea-
surement error. Once a good model has been fitted, how to use the results is a policy
matter: for example, one can decide to publish only Type A effects.

5.4.3 Endogeneity

The difficulty of adjusting for student covariates can be seen as stemming from the
correlation between such covariates and the school effects, i.e. endogeneity (Braun
and Wainer, 2007). Note, however, that adding the cluster mean makes a student-
level covariate uncorrelated with the school effects, so valid estimates of the Type
A effects can be obtained. In a sense, the bias induced by the correlation is shifted
to Type B effects. In general, the estimation of Type B effects is biased by the endo-
geneity of school-level covariates (Raudenbush and Willms, 1995). For example, if
the less effective schools receive more resources (e.g. measured by expenditure per
pupil and pupil-teacher ratio) then the estimated resource effects are attenuated due
to endogeneity. Steele et al. (2007) try to solve the endogeneity problem by using a
multilevel model with two simultaneous equations, one for pupil achievement and
the other one for school resources.

The most common source of endogeneity is the omission of relevant
covariates (Kim and Frees, 2007). Other sources are sample selection bias
(Grilli and Rampichini, 2007c) and measurement error (see Sect. 5.4.5).
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5.4.4 Modelling the achievement progress

The value-added accountability systems typically produce databases reporting, for
any student and any subject, the measures of achievement (scores) at several grades.
The measurements of achievement at different grades should be on the same scale
(vertical scaling), which is problematic since the content of a subject varies across
grades. Braun and Wainer (2007) discuss the case of mathematics, where the role
of geometry in the curriculum substantially increases in later grades, so in a sense
“math is not math”.

When the prior achievement yt−1,i j is measured on the same scale as the
final achievement yt,i j, the response variable of a value-added model can be either
the final achievement yt,i j or the difference between final and prior achievement
yt,i j −yt−1,i j (progress). Consider the following random intercept model on the final
achievement:

yt,i j = α+βyt−1,i j + γxi j +u j + ei j (5.13)

where xi j is a student-level covariate. In this model, if β = 1 the progress, i.e. the fi-
nal achievement minus the prior achievement, does not depend on the prior achieve-
ment, but only on the covariates; if β < 1 the progress is higher for students with
lower prior achievement; on the contrary if β > 1 the progress is higher for students
with higher prior achievement. Usually β < 1 in public schools, where one of the
main goals is to reduce differences among students’ abilities. Usually the behaviour
of the schools in this respect is not the same, i.e. β can vary between schools, calling
for a random slope model such as (5.7).

The interpretation of the parameters of model (5.13) is clearer if we subtract
the prior achievement yt−1,i j from both sides, obtaining the corresponding random
intercept model for the progress:

yt,i j − yt−1,i j = α+(β −1)yt−1,i j + γxi j +u j + ei j (5.14)

The only difference in the slopes of models (5.13) and (5.14) concerns the slope of
prior achievement. The slopes of the other covariates are unchanged, making clear
that in model (5.13) the slopes of the covariates have to be interpreted as effects on
the progress and not on the level: indeed, even if the response is the final achieve-
ment, the prior achievement is controlled for. Note that a model for the progress
without adjusting for the prior achievement amounts to assume β = 1, which is in
general not plausible.

In principle, the effect of the covariate xi j on the final achievement yt,i j can be
decomposed in the sum of two components: the effect on the prior achievement
yt−1,i j and the effect on the progress yt,i j − yt−1,i j. Denoting with ϕ the slope of the
regression of yt−1,i j on xi j, the total effect of xi j on yt,i j is ϕβ + γ . If the covariate
has a cumulative effect on the achievement, then ϕβ is likely to be greater than γ ,
and such a gap tends to increase with the educational grade. In applied work many
value-added models omit the covariates: the rationale is that the covariates affect
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the achievement level but not the progress. However, such an assumption should be
tested whenever possible by adding the covariates to the model.

5.4.5 Measurement error

Value-added models are based on measures of pupil achievement, usually obtained
through standardized tests. The score of a test is a fallible measure of the true
achievement, with a measurement error that depends on the reliability of the test.
When the score is the response variable of the model, its measurement error is cap-
tured by the model error and there are no consequences on the estimates. However,
the prior score is often used as a covariate in value-added models, as in (5.13) and
(5.14), causing measurement error bias. The problem disappears in the change score
model (5.14) if the prior score is omitted, but such an omission as to be tested.

For illustration, let us consider model (5.13), where the final achievement is the
response and the prior achievement enters as a covariate:

⎧⎨
⎩

yt,i j = α+βyt−1,i j + γxi j +u j + ei j

st−1,i j = yt−1,i j +mt−1,i j

st,i j = yt,i j +mt,i j

(5.15)

where the m’s are measurement errors with zero mean and variance σ2
mt−1

for prior

scores and σ2
mt

for final scores. The measurement errors are assumed to be indepen-
dent of the model variables and independent across students and across occasions.
Replacing the final achievement with the final score, the model becomes

{
st,i j = α+βyt−1,i j + γxi j +u j + e∗i j
st−1,i j = yt−1,i j +mt−1,i j

(5.16)

where e∗i j = ei j + mt,i j. Under the standard assumptions, e∗i j is independent of the
covariates and thus β and γ can be estimated without bias. However, replacing the
prior achievement with the prior score yields a student-level error correlated with
the prior score and thus the estimators are biased. In model (5.16), if γ = 0 and
u j is dropped, the probability limit of the least squares estimator is βλt−1, where

λt−1 = σ2
yt−1

/
(
σ2

yt−1
+σ2

mt−1

)
is the reliability of the prior score. Since the reliabil-

ity is less than one, the slope of the prior achievement is biased toward zero (atten-
uated). Therefore, the effect of the prior achievement in not fully controlled for, so
the analysis penalizes the schools with disadvantaged students. For example, in the
application of Ladd and Walsh (2002) two-fifths of the differentially favourable out-
come for schools serving advantaged students result from measurement error bias,
so after correcting for measurement error the relative rankings of the schools change
substantially.

If the model has a covariate xi j, the slope of the prior achievement yt−1,i j is
still attenuated, while the slope of xi j is inflated or attenuated depending on the
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correlation structure. Indeed, the attenuation of the slope of yt−1,i j implies that the
effect of yt−1,i j is partially controlled for, so part of its effect is absorbed by the
slope of xi j. For example, if xi j is the socio-economic status, which typically has
a positive effect on achievement, the measurement error on the prior achievement
causes an upward bias in the estimation of the slope of xi j.

The basic difficulty with a model whose covariates are affected by measurement
error is that the model parameters are not identified, so the correction usually re-
lies on unverifiable assumptions or on external data (Fuller, 1987). The issue of
measurement error in multilevel models is discussed in Battauz et al. (2005) and in
Ferrão and Goldstein (2009).

5.5 Use of the model results

Once a suitable model is fitted, the results can be used to:

1. study the relationship between the outcome and the explanatory variables;
2. rank the schools according to their effectiveness;
3. predict the outcome for a given student in a given school.

The first aim is common to all statistical models when they are used to understand
real phenomena. In general, the findings can be legitimately interpreted in terms of
associations since, apart from the rare controlled experiments, a casual interpretation
requires strong untestable assumptions. On this point, Rubin et al. (2004) argue that
“without ‘heroic assumptions’ causal inferences cannot be legitimately drawn”. See
also Raudenbush (2004), Braun and Wainer (2007), Hong and Raudenbush (2008)
and Jin and Rubin (2009).

5.5.1 Ranking the schools

The aim of ranking the schools according to effectiveness has two main purposes:
accountability and information to the potential users. The rankings are widely used
for accountability, especially as a tool to identify schools with anomalous perfor-
mances deserving special attention. On the other hand, the dissemination of the
rankings to the potential users is less frequent and it is still the object of heated de-
bates (Ladd and Walsh, 2002; Goldstein and Leckie, 2008; Leckie and Goldstein,
2009).

School rankings are derived from school-level residuals, which can be seen as
predictions of the random effects representing the effectiveness. The residuals can
be obtained in two main ways (Raudenbush and Willms, 1995): in a conventional
way by subtracting the expected outcome from the observed outcome, or via empir-
ical Bayes (EB). The conventional method gives unbiased estimates of the school
effects, while the EB method produces the so called shrunken residuals, which are
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biased but efficient estimates of the school effects. The shrinkage pulls the conven-
tional residual towards its population mean, i.e. zero, depending on the cluster size:
the smaller the size the greater the shrinkage. Apart from efficiency considerations,
shrunken residuals are usually preferred in school evaluation settings, since they
provide protection against the fortuitous assignment of a school to the top or bottom
of the ranking.

Since the residuals are affected by the sampling variability and other sources of
error, the corresponding ranking has a degree of uncertainty. Such uncertainty is
difficult to represent, since it involves multiple comparisons. The usual approach
is to build pairwise confidence intervals (Goldstein and Healy, 1995), even if more
sophisticated approaches are possible (Afshartous and Wolf, 2007). For example,
Fig. 5.2 reports the EB predictions of random effects along with 95% pairwise bars
for a set of schools: the effectiveness of two schools is statistically different when-
ever the 95% pairwise bars of the two residuals do not overlap.

Figure 5.2 is a typical picture arising in empirical analyses: only a few schools
at the top and at the bottom of the ranking are statistically different, so there is little
evidence for ranking the schools. In addition, Leckie and Goldstein (2009) point
out that potential students are interested in future rather than past effectiveness: this
implies larger error bars around the residuals, so the comparisons are even more
inconclusive.

Fig. 5.2 EB predictions of random effects with 95% pairwise bars.
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5.5.2 Predicting the outcome

The prediction of the outcome for a given student is relevant for guidance purposes.
After estimation of the parameters and prediction of the random effects, it is possible
to predict the outcome of a student with certain features in a specific school. For
example, the predicted outcome from the random intercept model (5.3) is:

ŷi j = (α̂+ γ̂ x̄ j + û j)+ β̂xi j (5.17)

Since the random intercept model without cross-level interactions implies uniform
school effects, the ranking of the schools based on the predicted outcomes (5.17) is
the same as the ranking based on the predicted Type A effects (5.4).

The predicted outcome from the random slope model (5.7) is:

ŷi j =
(
α̂+ γ̂ x̄ j + û0 j

)
+
(
β̂ + û1 j

)
xi j (5.18)

In this model the ranking of the schools changes with the student’s characteristics,
so a student-specific prediction is needed for guidance purposes. The same is true
for the random intercept model with cross-level interactions (5.10).

To guide the students in their choice, the government could set up a system where
the student plugs in her characteristics xi j and obtain the predicted outcome for
every school. It is worth to note that the usefulness of the predictions depend on
their precision, which is difficult to compute. Raudenbush and Willms (1995) show
how to estimate the variance of Type A effects.

5.6 Concluding remarks

This paper has reviewed some methodological issues in the evaluation of school ef-
fectiveness focusing on the value-added approach and its implementation via multi-
level modelling.

Even if multilevel models represent a theoretically satisfactory tool for the assess-
ment of educational institutions, their implementation must face serious problems
such as misspecification due to omitted variables, measurement error bias, and low
power in ranking the institutions.

In general, the value-added approach itself suffers from some limitations: (i) it
does not explain why a school is effective or ineffective; (ii) studies of school effects
are quasi-experiments, so causal conclusions are questionable; (iii) a satisfactory
adjustment for the input requires several good-quality covariates; (iv) measurement
error in the covariates (especially prior achievement) may bias the slope estimates;
(v) it is difficult to fully account for all the uncertainty; (vi) it is difficult to commu-
nicate the results to a non specialized audience.

In spite of its limitations, the value-added approach is an extremely useful tool to
analyze the factors related with the student achievement and to identify outstanding
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students and schools, even if it needs to be used in conjunction with qualitative
analysis in order to give reliable and effective indications for the accountability of
schools.
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Chapter 6
Multilevel mixture factor models
for the evaluation of educational
programs’ effectiveness

Roberta Varriale and Caterina Giusti

6.1 Introduction

Factor models aim at explaining the associations among observed random variables
in terms of fewer unobserved random variables, called common factors. When data
have a hierarchical structure, multilevel mixture factor models are a powerful and
flexible tool useful to correctly take into account the correlation between first-level
units due to the data structure, and to evaluate the presence of latent sub-populations
of units with some typical profile at different levels of the analysis.

In the Chapter, we describe the specification of a multilevel mixture factor model
with continuous latent variables at the lower level of the analysis and a discrete la-
tent variable at the higher level, focusing on some technical and applied features
of the analysis. The theory will be illustrated by means of an application on the job
satisfaction of the graduates of the University of Florence. The main aim of the anal-
ysis is to describe and summarize some aspects of job satisfaction measured at the
individual level and, at the same time, to cluster higher level units (degree courses)
in classes with some typical characteristics, in order to analyse their effectiveness.

The Chapter is organized as follows. In Sect. 6.2 we introduce the multilevel mix-
ture factor model, and in Sect. 6.3 we collocate it in the Generalized Latent Variable
framework. The details of estimation procedures and of model selection for multi-
level mixture factor models are described in Sects. 6.4 and 6.5. Finally, in Sect. 6.6
we present and comment the main results of the case study on the evaluation of
University effectiveness.
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6.2 The multilevel mixture factor model

Factor models aim at finding a set of continuous latent variables, called factors, that
contains the same information of a given set of observed variables (Bartholomew
and Knott, 1999). One basic assumption of factor models states that the observed
variables are measured on a set of independent units. This assumption is inadequate
when units are nested in clusters having a hierarchical structure, sharing common
environments, experiences and interactions: in these cases multilevel techniques are
necessary in order to correctly take into account the correlation between first-level
units due to the data structure. In this Chapter, attention is limited to datasets with
two hierarchical levels, since the extension to more than two levels is conceptually
straightforward.

The basic idea of a factor model adapted to deal with multilevel data is that some
model parameters – indicator intercepts or thresholds and residual variances, fac-
tor loadings, factor means and variances – are allowed to differ across the observed
groups (higher level units). These differences can be modeled including group dum-
mies in the model, as in the multigroup (or fixed-effects) approach, or can be mod-
eled with a multilevel factor model with continuous latent variables at all levels of
the analysis by assuming that the group coefficients are random-effects coming from
a particular distribution whose parameters should be estimated (Searle et al., 1992;
Vermunt, 2003).

In a confirmatory perspective, the multilevel mixture factor model is a useful
model to take into account the hierarchical structure of the data and to compare the
observed groups of units, by evaluating the existence of unobserved subpopulations
(classes) of groups with similar features with respect to the factor model parameters
and overcoming the production of over-detailed information of the multigroup factor
model, which estimates as many group coefficients as the groups (Vermunt, 2003).

In one-level context, the term finite mixture (McLachlan and Peel, 2000) or la-
tent class model (Lazarsfield and Henry, 1968; Goodman, 1974) is typically used for
models including only a categorical latent variable, whereas the term factor mixture
model is used for models including both continuous latent variables and a categor-
ical latent variable (Lubke and Muthén, 2005). Both models are usually applied to
classify individual units into K latent classes with similar model parameters; in stan-
dard finite mixture models the clustering is based on the similarity of the observed
item parameters (intercept or thresholds), in factor mixture models the clustering
is based on the similarity of both the item parameters and/or the factor loadings.
A discrete latent variable can also be used as a non parametric specification of a
distribution of continuous latent variables (Aitkin, 1999; Vermunt and Magidson,
2005). Indeed, a finite mixture distribution results from the discretization of a con-
tinuous latent variable distribution into K probability masses πk at mass points zk;
the nonparametric specification is so represented by a finite mixture model with the
maximum number of identifiable latent classes.

Formally, a factor mixed model includes a categorical latent variable in the model
with a multinomial distribution; besides the parameters of the factor model, also the
parameters of the multinomial distribution have to be estimated.
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In two-level context, finite mixture components, formally “represented” by a cat-
egorical latent variable, may be present at the lower or/and higher level. When there
are mixture components at both levels of the analysis, the multilevel latent class
model is obtained (Vermunt, 2003), otherwise we obtain the multilevel mixture fac-
tor model. In the Chapter, we only discuss two-level models characterized by con-
tinuous latent variables at the lower level and a categorical latent variable at the
higher level. The main aims of this model are to analyse the underlying structure of
the phenomenon at the lower level and, at the same time, classify higher level units
in some latent classes with similar profiles.

Assume that there are J groups with a different number of individual units n j,
whose total number is equal to N = ∑J

i=1 n j. For each individual, H items are ob-
served. Conditional on the latent variables, the response model for the observed
variables is a generalized linear model specified via a linear predictor, a link, and a
distribution from the exponential family. Let yhi j denote the observed response on
indicator h (h = 1, . . . ,H) of individual i (i = 1, . . . ,n j) within group j ( j = 1, . . . ,J)
and let vhi j be the linear predictor of the response model. The conditional expecta-
tion of the response yhi j given the latent variables at different levels is “linked” to
the linear predictor vhi j via a link function:

g(E(yhi j|ηηη j)) = vhi j (6.1)

where ηηη j =
(
ηηη(2)′

j , . . . ,ηηη(L)′
j

)′

represents all latent variables, ηηη(l)
j =

(
η(l)

1 j , . . . ,η(l)
Ml j

)′

indicates all the latent variables varying at level l and Ml denotes the number of these
latent variables. In particular, the latent variables varying at the individual and clus-

ter level are denoted, respectively, with ηηη(2)
j and ηηη(3)

j ; indeed, since we are analysing
models for datasets with one level of hierarchy, l = 2,3. Following the conventions,
these models are called two-level models: the individual units i are the level-1 units,
and the group level units j are the level-2 units. If the items are treated as level-1
units, the models become three-level models with individual units at level 2 and
groups at level 3.

Different distributional forms are allowed for each indicator and the choice
among different link functions naturally follows from the scale types of the ob-
served variables. In particular, while in the traditional literature different terms are
used depending on the nature of both latent and observed variables (Bartholomew
and Knott, 1999), in the following we will use only the general term factor mod-
els. Recent developments in computational statistics extended the use of estimation
methods traditionally used for models with only continuous indicators to the analy-
sis of models with any kind of response variables.

As an example, with continuous responses an identity link and a normal distribu-
tion are usually assumed, so (we do not use the subscript j, for simplicity):

yhi = vhi + ehi

with f (e) ∼ N(0,σ2); therefore, the conditional density of yhi given the latent vari-
ables becomes:
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f (yhi|ηηη j) = σ−1φ(vσ−1)

where φ represents the standard normal density. As another example, with ordi-
nal responses several model specifications are possible. Let s, s = 1, . . . ,S be the
category of the ordinal response yhi, the model for the cumulative probabilities is
expressed by:

g[P(yhi ≤ s|ηηη j)] = αs − vhi s = 1, . . . ,S−1 (6.2)

where αs with α1 < .. . < αS−1 are the thresholds to be estimated. Typical choices
of link function include the probit, logit and complementary log-log.

The two-level mixture factor model for continuous indicators and with one cate-
gorical latent variable at the highest level of analysis is:

yhi j = μh j +
M2

∑
m=1

λ (2)
mh η

(2)
mi j + e(2)

hi j (6.3)

μh j =
K

∑
k=1

λ (3)
kh η(3)

k j + e(3)
h j (6.4)

η(2)
mi j =

K

∑
k=1

β (3)
km η(3)

k j + e(2)
mi j (6.5)

where η(2)
mi j denotes the mth common factor at individual level, λ (2)

mh represents the
factor loading for factor m and item h and μh j is the item h intercept for each group

j. The two terms e(2)
hi j and e(3)

h j represent the item-specific errors at lower and higher

level. The variable η(3)
k j in Eqs. (6.4) and (6.5) is an indicator variable taking value

1 if unit i belongs to latent class k of the categorical latent variable ηηη(3)
j and 0 oth-

erwise, and λ (3)
kh and β (3)

km represent the coefficients for each class k. The classes are

mutually exclusive and, for the identification of the model,∑K
k=1λ

(3)
kh = 0 or λ (3)

1h = 0

and ∑K
k=1β

(3)
km = 0 or β (3)

1m = 0. The term e(2)
mi j represents a residual component of the

relationship between η(2)
mi j and ηηη(3)

j .

The variable ηηη(3)
j =

(
η(3)

1 j , . . . ,η(3)
K j

)
has a multinomial distribution, with:

πk = P
(
η(3)

j = k
)

= P
(
η(3)

k j = 1
)

=
exp(γk)

∑K
t=1 exp(γt)

(6.6)

with
K

∑
k=1

πk = 1. (6.7)

The term γk in Eq. (6.6) represents the intercept term of the linear predictor of the
logit model for the expectation of the latent distribution (πk); models with covariate
effects on class membership can be defined by including covariate effects in this
linear term.



6 Multilevel mixture factor models 85

The basic assumptions of multilevel mixture factor models are that each group
belongs to no more than one latent class k, the individuals are independent inside
each group conditional on the latent class k at the higher level and the H responses
of individual i are independent of each other given the continuous latent variables at
the individual level and the group latent class membership, which is often referred
to as the local independence assumption (Bartholomew and Knott, 1999).

The ηηη(2)
j are usually assumed to be normally independent and identically dis-

tributed with:

ηηη(2)
j ∼ MN(000,ΨΨΨ (2))

where MN indicates the Multivariate Normal distribution and ΨΨΨ (2) is the M2 ×M2

variance and covariance matrix with elements ψ(2)
mm′ .

It is also assumed that the item-specific error at both levels of the analysis, e(2)
hi j

and e(3)
h j , are mutually independent and identically normally distributed.

In the most general case of multilevel mixture factor analysis, both λ (3)
kh and β (3)

km
in Eqs. (6.4) and (6.5) may differ across higher-level mixture components in order
to capture the differences between individuals due to the hierarchical data structure.
Two special cases of the model are obtained by constraining these terms. In the first

case, λ (3)
kh = 0, therefore the outcome variables are not directly affected by the higher

level latent class and the item intercepts do not vary across group-level classes; in

the second case, β (3)
km = 0, so the individual-level latent variable does not vary across

group-level classes. The first case is typically used when the researchers’ interest
is in classifying the higher level units and comparing the obtained groups with a
confirmative approach, “pushing” up the information collected at the individual-
level to the group-level through the different “steps” of the model. The second case
is typically used with an exploratory approach, aiming at analysing separately the
lower and higher structure of the data.

The model is represented in Fig. 6.1. Following the conventions, circles represent
latent variables and rectangles represent observed variables. The latent categorical
variable are indicated with a filled circle. The arrows connecting latent and/or ob-
served variables do not necessarily represent linear relations and possible correla-
tions among latent variables or among items are represented with dotted lines. The
nested frames represent the nested levels, for example, variables located within the
outer frame labeled j vary between clusters and have a j subscript (Skrondal and
Rabe-Hesketh, 2004).

6.3 The Generalized Latent Variable framework

The two-level mixture factor model described so far belongs to the Generalized La-
tent Variable framework introduced by Muthén (2008) and Vermunt (2007). This
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general framework integrates specific methodologies for latent variable modelling,
such as multilevel, longitudinal and structural equation models as well as item re-
sponse models, factor models and so on, in a global theoretical context and allows to
define models with any combination of categorical and continuous latent variables
at each level of the hierarchy.

The generalized latent variable model is formally described by two elements: the
response model for the observed variables conditional on the latent variables and
the model for the latent variables. Using the index j to denote an independent ob-
servation corresponding to the highest level of the hierarchy, the two-level mixture
factor model is expressed by:

g[E(yyy j|ηηη j)] = Z jβββ +ΛΛΛ (1)ηηη j (6.8)

h[E(ηηη(2)
j )] = X jγγγ+ΛΛΛ (2)ηηη(3)

j (6.9)

where y j denotes the response vector with elements yhi j representing the response
to indicator h of each individual i belonging to group j.

In the two-level framework, the vector ηηη j =
(
ηηη(2)′

j ,ηηη(3)′
j

)′

in Eq. (6.8) denotes

the latent variables varying at the i-th and j-th level of the analysis affecting directly

the observed responses. The vector ηηη(3)
j in Eq. (6.9) denotes the latent variables at

the j-th level affecting the latent variables at the i-th level.
The two matrices Z j and X j with the corresponding coefficient vectors βββ and

γγγ denote the fixed part of the model affecting, respectively, the observed items and
the latent structure at level 2. Different links and distributions can be specified for
different responses. The matrices ΛΛΛ , which elements do not vary depending on j,
represent the factor loading matrix of the generalized latent variable model. In par-
ticular, ΛΛΛ (1) indicates the factor loading matrix relating the latent variables directly

Fig. 6.1 Two-level mixture
factor model.
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to the outcomes and ΛΛΛ (2) indicates the factor loading matrix relating level 3 to level
2 latent variables.

Table 6.1 schematically represents different specifications of the two-level mix-
ture factor model. In particular, a model with continuous latent variables at both
levels of the analysis is called two-level factor model, while models with both con-
tinuous and categorical latent variables are called two-level mixture factor models.
Which model should be selected depends on the aims of the specific research and
on the substantive reason to believe in the nature, continuous or categorical, of the
latent variables.

Table 6.1 Matrix of potential two-level models with underlying latent variables

Higher level latent variables

Lower level latent variables Continuous Categorical Combination

Continuous A1 A2 A3
Categorical B1 B2 B3
Combination C1 C2 C3

Model A1, in which both the lower and higher level latent variables are con-
tinuous, is represented by the multilevel factor model, as described by Goldstein
and McDonald (1988) and Longford and Muthén (1992); its extension to ordinal
indicators is given by Grilli and Rampichini (2007a). Model A1 contains also three-
level regression models with continuous random effects. Model B2, in which both
the lower and higher level latent variables are categorical, is the multilevel latent
class model. Vermunt (2003) proposes a model where lower level units are clus-
tered based on their observed responses and higher level units are clustered based
on the likelihood of their members to be in one of the unit level clusters. Vermunt
(2003) also proposes a multilevel latent class model with continuous random ef-
fects at the group level (B1). Palardy and Vermunt (2009) used specification A3 to
define a multilevel extension of the mixture growth model (Muthén, 2004), where
two-level units are classified into homogeneous groups based on properties of their
mean growth trajectories.

This brief and incomplete review of the literature shows how modelling using
a combination of continuous and categorical latent variables provides an extremely
general and flexible framework of analysis. Furthermore, different traditions such as
growth modelling, multilevel modelling, latent class analysis are brought together
using the unifying theme of latent variables.

6.4 Likelihood, estimation and posterior analysis

Recent developments in computational statistics have enhanced the feasibility of a
maximum likelihood analysis in the context of multilevel mixture factor models.
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In this section we briefly present the formulation of the likelihood that has to be
maximized.

In two-level models, the total marginal likelihood is:

L(θθθ) =
J

∏
j=1

L j(θθθ) =
J

∏
j=1

f ( j)(y( j)|θθθ) (6.10)

where L j indicates the likelihood of group j, the groups are assumed to be inde-
pendent and θθθ represents the complete set of unknown parameters to be estimated.
The complete likelihood can be derived recursively. In a model with ηηη(2) and ηηη(3)

being, respectively, continuous latent variables at the first and second level of the
analysis (not using the subscript j for the latent variables hereafter, for simplicity),
the likelihood for each group j is given by:

L j(θθθ) =
∫
ηηη(3)

n j

∏
i=1

Li j(θθθ |ηηη(3)) f (ηηη(3))dηηη(3) (6.11)

where the n j level-1 units within level-2 units are assumed to be independent given
the random coefficients ηηη(3). For each first-level unit, controlling for the effect of
the latent variables at the highest level, the likelihood is expressed by:

Li j(θθθ |ηηη(3)) =
∫
ηηη(2)

Li j(θθθ |ηηη(2),ηηη(3)) f (ηηη(2)|ηηη(3))dηηη(2). (6.12)

Finally, considering the local independence assumption, the observed indicators
are assumed to be independent given the latent variables, so:

Li j(θθθ |ηηη(2),ηηη(3)) =
H

∏
h=1

f (yhi j|ηηη(2),ηηη(3)) (6.13)

where f (yhi j|ηηη(2),ηηη(3)) indicates the distribution of the response variables.
When the latent variables are categorical, the multiple integrals are replaced by

multiple sums. In a model with ηηη(3) and ηηη(2) being, respectively, a categorical and
continuous latent variables, the likelihood is expressed by:

L j(θθθ) =
K

∑
k=1

P(ηηη(3) = k)
n j

∏
i=1

Li j(θθθ |ηηη(3) = k)

Li j(θθθ |ηηη(3) = k) =
∫
ηηη(2)

Li j(θθθ |ηηη(2),ηηη(3) = k) f (ηηη(2)|ηηη(3) = k)dηηη(2)

Li j(θθθ |ηηη(2),ηηη(3) = k) =
H

∏
h=1

f (yhi j|ηηη(2),ηηη(3) = k).

Maximum Likelihood estimation involves finding the estimates for θθθ that maxi-
mize the marginal likelihood function (or the log-likelihood function).
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In maximizing the likelihood, two separated problems must be considered: solv-
ing the integrals involved in the likelihood and maximizing the likelihood function.
With respect to the first aspect, while a closed form expression for these integrals is
available when all responses and latent variables are continuous and normally dis-
tributed, in the other cases there are several approaches to approximating the inte-
grals, as Laplace approximation, numerical integration using quadrature or adaptive
quadrature, Monte Carlo integration (Skrondal and Rabe-Hesketh, 2004). With re-
spect to the second aspect, several methods were proposed for maximizing the like-
lihood, the most common being the Expectation-Maximization (EM) algorithm and
Newton-Raphson or Fisher scoring algorithms. Of course, each integration method
may be combined with some maximization methods.

The main aim of a researcher using factor models is in what can be known about
the latent variables after the indicators have been observed (Bartholomew and Knott,
1999). At each level of the analysis, this information is represented by the condi-
tional density:

f (ηηη |y) = f (ηηη) f (y|ηηη)/ f (y). (6.14)

From the point of view of social behavioral scientists, this means locating units
on the dimensions of the latent space (factor scores), or classifying units in different
classes representing some typical profile. Obviously, units with the same response
pattern will be assigned the same factor score or class.

Some scoring methods are the ones based on the empirical Bayesian poste-
rior distribution and the maximum likelihood method (Skrondal and Rabe-Hesketh,
2004). Usually, the firsts are the most used; indeed, while the maximum likelihood
approach produces scores that are conditionally unbiased, it is not consistent with
the modelling assumptions since it requires that the latent variables are considered
fixed parameters and does not yield predictions for clusters with insufficient infor-
mation. For this reason, we only present the two Bayesian posterior distribution
methods.

With the empirical Bayesian approach, according to Bayes’ theorem, the condi-
tional posterior distribution of the latent variables given the observed variables is
expressed by:

f (ηηη |y, θ̂θθ) =
f (y,ηηη |θ̂θθ)

f (y|θ̂θθ)
=

f (y|ηηη , θ̂θθ) f (ηηη |θ̂θθ)∫
ηηη f (y|ηηη , θ̂θθ) f (ηηη |θ̂θθ)

(6.15)

where θ̂θθ represent the estimated parameters, f (y|θ̂θθ) is the distribution of the ob-
served variables and f (y,ηηη |θ̂θθ) is the joint distribution of the observed and latent
variables. This approach uses the term “Bayesian” since both the latent and ob-
served variables are treated as random variables. Actually, the full Bayesian ap-
proach would assume a prior distribution for θθθ in addition to the distribution for ηηη
and the θθθ in Eq. (6.15) would be treated as fixed constants.

The computation of the posterior distribution is strictly related to the specification
of the prior distribution of the latent variables. Usually, the posterior distribution
cannot be expressed in closed form and heavy numerical integration is required. In
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factor models with continuous random variables, it follows from standard results on
conditional multivariate normal densities that the posterior density is multivariate
normal; for other response types, the posterior density tends to multinormality as
the number of units in the clusters increases (Skrondal and Rabe-Hesketh, 2004).

After estimating the empirical Bayesian posterior distribution, two approaches
can be used to estimate the factor scores (or latent class) associated to each unit: the
prediction using empirical Bayes (also called a posteriori) and the prediction using
empirical Bayes modal (also known as modal a posteriori).

The empirical Bayes prediction is the most widely used method for scoring. The
predictors are represented by the mean of the posterior empirical Bayesian latent
variables distribution in Eq. (6.15), so:

ηηηEB = E(ηηη |y, θ̂θθ). (6.16)

With continuous normal latent variables, the empirical Bayes predictor is the best
linear unbiased predictor BLUP (Skrondal and Rabe-Hesketh, 2004).

The prediction using empirical Bayes modal uses the posterior mode instead of
the posterior mean for the prediction of the factor scores:

ηηηEBM =
max arg
ηηη (ηηη |y, θ̂θθ). (6.17)

This method does not require numerical integration, so when the posterior den-
sity is approximately multivariate normal it is often used as an approximation of the
empirical Bayes solutions. In particular, this method represents the standard classifi-
cation method in latent class modelling since it minimize the expected misclassifica-
tion rate (Skrondal and Rabe-Hesketh, 2004). Obviously, in standard factor models
the predictors obtained with the empirical Bayes and empirical Bayes modal coin-
cide.

6.5 Model selection

A number of overall and individual statistical measures of fit has been proposed in
order to evaluate a specified model on the basis of empirical data. In the following,
some tests based on the likelihood theory and some information criteria useful to
choose between different multilevel and multilevel mixture factor models are briefly
introduced.

One method to compare nested models is based on the likelihood ratio test
(Agresti, 2002). However, standard asymptotic results for the test do not hold if the
null hypothesis is on the boundary of the parameter space since regularity conditions
would be violated; well-known examples are testing the null hypothesis relating to
random effects (Self and Liang, 1987) and testing the hypothesis on the variability
of the latent factors. In these cases, a rule of thumb is to divide by two the asymptotic
p-value of the Chi-squared likelihood ratio test statistic distribution (Skrondal and
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Rabe-Hesketh, 2004). Also in the mixture models framework the likelihood ratio
statistic cannot be used to compare two nested models, one with k0 classes and one
with k1 classes (k0 < k1). Indeed, under the null hypothesis of k0 groups, some of the
parameters of the model with k1 classes lie on the boundary of the parameter space
so that regularity conditions for likelihood ratio statistic to be asymptotically Chi-
squared are not fulfilled. In particular, the correct null distribution of the likelihood
ratio statistic is unknown (Everitt, 1988) but a lot of conjectures and simulations
have been published on this topic (McLachlan and Peel, 2000).

Another approach for comparing models is based on the computation of some
indexes representing a penalized form of the likelihood: as the likelihood increases
with the addiction of some parameters, it is penalized by the subtraction of a term
related to the number of parameters. These information criteria are generally ex-
pressed in terms of:

−2logL(θθθ)+C (6.18)

where the first term measures the lack of fit of the model and C is the penalty term
that measures the complexity of the model. The intent is therefore to choose a model
to minimize this criterion.

Relating to the problem of choosing between models with different number of
latent classes, a variety of textbooks and articles suggest the use of the Bayesian
Information Criterion (BIC) (Schwarz, 1978) as a good indicator (Nylund et al.,
2007). The BIC is expressed by:

BIC = −2logL+ p× log(N) (6.19)

where logL is the loglikelihood value, p is the number of parameters and N is
the number of observations for the fitted model. In two-level models the number
of observations can refer to both within and between level; this distinction can
make a substantial difference when determining the number of classes of a mul-
tilevel mixture model. To our knowledge, while there is a wide variety of litera-
ture available on the performance of model selection statistics for determining the
number of mixture components in one-level mixture models, there are no works in
the two-level context, except that of Lukoc̆iené and Vermunt (2004). In their pa-
per, the authors show the results of a simulation study on multilevel latent class
analysis with a fixed number of classes at the lower level, aiming at individuat-
ing the best index for determining the number of mixture components at the higher
level.

6.6 Case study

In this section a multilevel mixture factor model is used in order to evaluate the uni-
versity external effectiveness of the degree courses of the University of Florence. As
suggested by Chiandotto (2004), students’ perception of the quality of the services
provided by an institution can be evaluated both at the time of the degree (internal
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effectiveness) and some date later (external effectiveness). In particular, we evaluate
the University performance from the users’ subjective point of view, as perceived
three years after the degree.

Different proposals on the use of multilevel methodologies to analyse both the
external and internal effectiveness of the university system can be found, as some
examples, in Giusti and Varriale (2008); Chiandotto et al. (in press); Chiandotto and
Varriale (2006); Chiandotto and Giusti (2006). In the present application the use of
multilevel mixture factor models, with a combination of continuous and categorical
latent variables at different levels of the analysis, allows to fulfill two objectives,
corresponding to the levels of the analysis. The “first level objective” is to under-
stand the latent constructs underlying the phenomenon of job satisfaction using the
information available at the individual level, that is the satisfaction expressed by
graduated students that are employed three years after the degree. At the same time
this individual information can be used to fulfill a “second level objective”, to clas-
sify the study programs attended by the graduates into a small number of classes
representing some typical profiles, that is to identify those programs with similar
characteristics with respect to job satisfaction.

The job satisfaction is a complex process naturally considered as a latent con-
struct not directly observable but measured by some indicators. Data come from
the AlmaLaurea survey “Employment opportunities, 2005” (Almalaurea, 2006) and
they concern graduates of the University of Florence. Data have a hierarchical struc-
ture, with graduates nested in different degree courses; in particular, it is interesting
to investigate the effect of this level of aggregation on job satisfaction.

We consider the graduates with the old Italian university system during the sum-
mer session of the solar year 2002 who are employed at the moment of the interview,
3 years after the degree. We focus on the analysis of job satisfaction three years after
the degree since it is reasonable that after that time all graduates find the job they
have studied for and they are usually no more involved in specialization and training
courses, except for the graduates in medicine. Obviously, as a confirmation of the
results obtained with the present work, it would be interesting to repeat the same
analyses when data referring to the graduates’ occupational status five years after
their degree will be available. For reasons of representativeness, we only consider
those degree courses with at least eight employed graduates. The 1,025 graduates
we include in the analysis represent almost 60% of the graduates at the University
of Florence in the summer session of 2002; the total and percentage numbers of
graduates in each degree course are in Table 6.2.

The questionnaire used for the Almalaurea survey “Employment opportunities”
is very comprehensive, since it deals with many aspects related to the current job
or the search for a job. The questionnaire section on the satisfaction with the actual
job consists in 14 items. Through a correlation analysis and other preliminary con-
siderations, we selected five of these items, measuring the satisfaction with: earn-
ings, career opportunities, coherence with the University studies, professionalism
and cultural interests. All these items are expressed on an ordinal scale with 10 cat-
egories; the items are considered as continuous variables because of the number of
the categories. The average evaluation for each of the 5 items is in Table 6.3.
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Table 6.2 Number of graduates employed three years after the degree, by degree course. Students
graduated (old system degree) at the University of Florence, summer session, year 2002

Degree course Number of employed graduates Percentage

Architecture 216 21.07
Chemistry 9 0.88
Business economics 26 2.54
Economics 67 6.54
Philosophy 16 1.56
Law 106 10.34
Civil engineering 31 3.02
Electronic engineering 29 2.83
Mechanical engineering 23 2.24
Literature 78 7.61
Foreign lang. and literature 48 4.68
Mathematics 11 1.07
Medicine 17 1.66
Psychology 51 4.98
Biology 11 1.07
Political sciences 131 12.78
History 8 0.78
Informatics engineering 10 0.98
Environmental engineering 21 2.05
Educational sciences 102 9.95
Forest and environ. sciences 14 1.37

1,025 100

As we can see, there are some differences between the degree courses in the
mean evaluations expressed by the graduates. For example, the graduates in philos-
ophy and history express the lowest mean evaluations for the aspects coherence and
cultural interests; moreover, they give low scores to the other three aspects. At the
opposite, the graduates in architecture and law are the most overall satisfied. For
the graduates in medicine we observe a really high evaluation for coherence, pro-
fessionalism and cultural interests, as expected, but lower mean values for career
and earnings, probably because these graduates are still involved in some special-
ization courses. There are also some differences between similar degree courses,
like the ones in engineering; for example, the interviewed who graduated in elec-
tronic engineering seem to be less satisfied with their careers with respect to their
colleagues. The differences in graduates’ satisfaction between degree courses show
an important influence of the hierarchical data structure on job satisfaction.

Due to the results of the preliminary analyses on the correlation structure be-
tween the items and to the latent (non observable) nature of the job satisfaction, we
proceeded with an exploratory (EFA) and a confirmatory one-level factor analysis
(CFA). As illustrated in Sect. 6.5, likelihood ratio tests have been used to compare
models with different factor loadings, while BICs have been used to compare mod-
els with different number of latent factors. In particular, with EFA we compared
models with 2 and 3 latent factors measured, at the same time, by all the indicators.
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Table 6.3 Mean evaluations with the selected items, by degree course. Students graduated (old
system degree) at the University of Florence, summer session, year 2002

Degree course Coherence Professionalism Cultural
interests

Earnings Career

Architecture 7.39 7.65 7.38 6.81 7
Chemistry 6.56 7.44 6.78 6.56 6.56
Business economics 7.85 7.85 6.85 7.19 6.92
Economics 6.91 7.34 6.46 6.85 6.78
Philosophy 4.81 6.63 5.06 5.63 5.73
Law 7.21 7.73 7.45 7.03 7.24
Civil engineering 7.74 7.68 7.29 6.55 6.41
Electronic engineering 6.55 7.14 6.83 6.28 5.97
Mechanical engineering 7.35 7.61 7.65 6.96 6.65
Literature 5.73 7.33 6.67 5.68 5.51
Foreign lang. and literature 5.71 7.15 6.4 6.08 6
Mathematics 5.36 7 6.82 6.64 5.64
Medicine 9.41 8.06 8.71 6.88 6.12
Psychology 6.2 7.12 6.75 5.59 5.82
Biology 7.82 8.55 7.18 5 5.18
Political sciences 5.53 7.16 6.57 6.29 6.43
History 3.25 7.13 5.75 6 5.75
Informatics engineering 7.4 7.2 7.1 6.3 6
Environmental engineering 7.76 8 7.38 6.9 6.45
Educational sciences 7.26 7.56 7.49 5.84 5.99
Forest and environ. sciences 6.43 7.21 7.21 5.79 5.93

6.76 7.47 7.03 6.42 6.44

Subsequently, we run a CFA following what suggested by the correlation structure
of the items and constraining to zero the loadings that resulted to be close to zero
with EFA. The results of these analyses suggest the presence of two factors: one
factor related to the Cultural features of the job, measured by career, professional-
ism, coherence and cultural interest, and one factor related to the Status of the job,
measured by earnings, career and professionalism.

In order to take into account the two-level data hierarchy and to classify the
degree courses in some latent classes with different profiles, we applied a two-level
mixture factor model. The final model is:

yhi = μh +
M2

∑
m=1

λ (2)
mh η

(2)
mi j + e(2)

hi j (6.20)

η(2)
mi j =

K

∑
k=1

β (3)
km η(3)

k j + e(2)
mi j (6.21)

At the program level, λ (3)
kh = 0, therefore it is assumed that the degree courses

differ only in the mean level of latent factors at the individual level
(
η(2)

mi j

)
and the

outcome variables are not directly affected by the higher level latent variable. In
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other words, β (3)
km represents the mean of the m-th factor at individual level for the

degree courses belonging to the k-th latent class.
In the model, the items coherence and earnings are the reference items (factor

loading equal to 1), respectively, for the factors Cultural and Status. At the second

level of the analysis, in Eq. (6.21) β (3)
1m are constrained to 0 for each m, m = 1,2, in

order to ensure the identification.
The Bayesian Information Criterion index calculated with N equal to the num-

ber of groups is used to choose between models with different number of classes at
group level. Table 6.4 shows BIC values for models composed of 1–4
classes.

Table 6.4 Two-level mixture factor model: loglikelihood and fit indexes. Students graduated (old
system degree) at the University of Florence, summer session, year 2002

N classes N param. Log-likelihood BIC (N obs.) BIC (N groups)

1 18 −9775.29 19675.37 19605.38
2 21 −9750.12 19645.82 19564.17
3 24 −9737.45 19641.27 19547.97
4 27 −9733.09 19653.36 19548.38

The final two-level mixture factor model is represented in Fig. 6.2.
At the individual level, the factor structure is very similar to that found with the

one-level factor analysis. Again, we acknowledge the presence of two highly corre-
lated latent factors (Table 6.6). The first factor (Status) is related to the satisfaction
with earnings, career and professionalism; the second factor (Cultural) is related to
career, professionalism and to the satisfaction with cultural interests and coherence
of the job with the previous studies.

Factor loadings are shown in Table 6.5. All the loadings have the same sign. As
is always the case, the latent dimension underlying the global satisfaction at the
program level has an arbitrary scale, which means that factor scores must be inter-
preted relatively to each other. The most important aspects relating to factor Status

Fig. 6.2 Two-level mixture
factor model. Students grad-
uated (old system degree) at
the University of Florence,
summer session, year 2002.
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are earnings and career, while this is the case for coherence and cultural interests
with the factor Cultural. In other words, for each degree course, the graduates’ sat-
isfaction with the job Status is measured mostly by their opinion on earnings and
career and the graduates’ satisfaction with the job Cultural is measured mostly by
their opinion on coherence and cultural interests. Thus, the multilevel mixture factor
model gives some insides on the dimensions influencing graduates’ job satisfaction
at the individual level.

Table 6.5 Factor loadings. Students graduated (old system degree) at the University of Florence,
summer session, year 2002

Status Cultural

Earnings 1
Career 0.98 0.13
Professionalism 0.16 0.57
Coherence 1
Cultural interests 0.82

Table 6.6 Variances, covariance and correlation of the factors. Students graduated (old system
degree) at the University of Florence, summer session, year 2002

Status Cultural

Status 3.23 0.39
Cultural 1.32 3.63

As already underlined, besides these results referring to the first level of analysis,
the model expressed by (6.20) and (6.21) allows also to interpret the effect of the
degree courses on graduates’ job satisfaction.

At the second level of analysis, the model classifies the courses in three classes.
The sizes of the three classes are different: a degree course has a probability equal
to 0.45 to be in the first class, of 0.36 to be in the second one and of 0.19 in the third
one (Table 6.7, last row). Due to the constraints, the class-specific effects must be
interpreted in terms of deviations from the “reference class” where the effects are
equal to 0; in this analysis, the reference class is the first (Fig. 6.3). The three classes
differ in the mean value of the two latent factors: the second class has a higher mean
level of satisfaction both for Status and Cultural and the third class has a slightly
lower mean value for the factor Status, while the satisfaction with Cultural is the
highest between the three.

Using the empirical Bayes modal prediction, the degree courses can be assigned
to the three classes (Table 6.7, column 2), so that we can better interpret the previ-
ous results. The main part of the courses, 11 out of 21, are attributed to the ref-
erence class. For some of these courses, in particular for chemistry, informatics
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Table 6.7 Two-level mixture factor model: study programs classification based on the empiri-
cal Bayesian posterior distribution. Students graduated (old system degree) at the University of
Florence, summer session, year 2002

Degree course Class (modal) Prob. Class 1 Prob. Class 2 Prob. Class 3

Architecture 2 0 1 0
Chemistry 1 0.52 0.43 0.05
Business economics 2 0.01 0.99 0
Economics 2 0.14 0.86 0
Philosophy 1 1 0 0
Law 2 0 1 0
Civil engineering 2 0.01 0.68 0.3
Electronic engineering 1 0.92 0.07 0.01
Mechanical engineering 2 0.02 0.95 0.03
Literature 1 1 0 0
Foreign lang. and literature 1 1 0 0
Mathematics 1 0.89 0.1 0.01
Medicine 3 0 0.04 0.96
Psychology 1 1 0 0
Biology 3 0.01 0.01 0.98
Political sciences 1 1 0 0
History 1 0.97 0.02 0
Informatics engineering 1 0.4 0.36 0.25
Environmental engineering 2 0.01 0.87 0.11
Educational sciences 3 0 0 1
Forest and environ. sciences 1 0.61 0.15 0.24

Mean values 0.45 0.36 0.19

engineering and forest and environmental sciences, the posterior probabilities of
belonging to a specific latent class at the group level are spread in the three classes
(Table 6.7, columns 3 to 5). A more in-depth analysis could be useful in order to
analyse the peculiarities of these courses. The degree courses belonging to the sec-
ond class, the “best” for the satisfaction with both latent factors, are architecture,
business economics, economics, law, civil engineering, mechanical engineering and

Fig. 6.3 Latent classes fea-
tures (latent factors Cultural
and Status. Students gradu-
ated (old system degree) at
the University of Florence,
summer session year 2002.
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environmental engineering. Graduates in these courses developed the skills and the
possibility to choose a job which guarantees a high level of satisfaction with the dif-
ferent aspects we considered. Graduates in the courses belonging to the third class,
namely medicine, biology and educational sciences, are instead more likely to have
a job with a high correspondence to their cultural interests and previous studies,
while the position or status of their jobs is maybe expected to increase in the future.
In particular, graduates in medicine are probably still involved in specialization and
training courses, while the other graduates can also be occupied in some occasional
and temporary positions because they are encountering some difficulties to find the
job they studied for.



Chapter 7
A class of statistical models for evaluating
services and performances

Marcella Corduas, Maria Iannario and Domenico Piccolo

7.1 Introduction

Evaluation can be described as the psychological process which a subject has to per-
form when a subject is requested to give a determination of merit regarding an item
(the attributes of a service, a product or in general, any tangible or intangible object)
using a certain ordinal scale. This process is rooted in the subject’s perception of the
value/quality/performance of the object under evaluation.

The mechanism governing individual choices between a set of possible alterna-
tive options has been widely studied by the latent variables theory. From a statistical
point of view, however, the focus is concentrated on modelling empirical observa-
tions from sample surveys and on the investigation of the stochastic mechanism
generating the ordinal data.

Sample surveys gather measures of satisfaction which are a manifest expression
of respondents’ constructs. For instance, measuring the satisfaction with a given ser-
vice, the agreement with a specific statement, the strength of consensus on a certain
rule, the perceived experience of a system’s performance represent situations where
a continuum latent variable (representing the profound belief of the respondent) has
to be transformed by a mental process into a discrete state in order to assign an
evaluation referred to the graded scale proposed by the interviewer.
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The general pattern of responses to a questionnaire aimed at evaluating a service
surely presents common features originating from a few latent traits (constructs,
variables, factors). This condition, of course, is not immediately recognizable from
the observed ratings. Empirical evidences confirm that similarities, differences and
contrasts among responses are very common. However, although a remarkable num-
ber of hypothetical patterns can be conjectured for rating distributions, only a small
subset of them are observed in practice with noticeable frequency.

In the previous Chapters, various approaches widely discussed and applied in
the literature have been examined. Attention has been focused on generalized linear
latent models, Item Response Theory, unobserved variable approach, and several
methodological developments and tools for real applications have been discussed.
The main merit of such approaches relies on the possibility of dealing with manifest
and latent variables starting from a unique paradigm.

In this Chapter a mixture distribution for ordinal data is introduced. This pro-
posal, as with any innovative tool, is not aimed at replacing existing modelling
which are surely based on theories widely investigated and experimented. Instead, it
is intended as an additional tool which may be of help in order to better understand
real data providing an alternative point of view.

The Chapter is organized as follows: firstly, a simplified description of the eval-
uation process is presented in order to specify the final result originated from such
a process as the combined effect of two unobservable components, one related to
the individual feeling for the object under evaluation and the other related to the
intrinsic uncertainty which affects any human decision. Later, in Sect. 7.3, a class of
models (named CUB) is logically derived from these assumptions, and properties and
extensions are illustrated. In Sect. 7.4, inferential issues and numerical procedures
for maximum likelihood parameter estimation and related asymptotic inference are
discussed; in addition, the main steps of the EM estimation algorithm is provided for
a specific CUB model. Sections 7.5 and 7.6 deal with possible applications of this
class of models for ordinal data analysis. In particular, a data set concerning stu-
dents’ satisfaction with university “orientation” services is examined. Finally, some
remarks on further generalizations and extensions conclude this contribution.

7.2 Unobserved components in the evaluation process

Perception is a cognitive process by which a subject attains awareness or under-
standing of sensory information and translates them into a form that is meaningful
for his/her conscience. In real applications, where statistical tools are needed to an-
alyze evaluation data a simplified archetype of such a process may be of help. In
this respect, we can start by considering a simple example concerning university
teaching assessment. When a student is asked to answer a specific question about
the quality of teaching, he/she has to bring his/her perception of the problem into
focus and then he/she has to summarize this perception into a well-defined category
using a finite set of ordinal values.
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Thus, the final evaluation is the effect of complex causes. It is influenced by con-
siderations fully related to the object of evaluation, but also by the inherent uncer-
tainty that accompanies any human decisions. Moreover, individual behaviours may
significantly differ depending on a specific subject’s characteristics. Consequently,
judgements can be considered as the realization of a stochastic phenomenon which
needs to be modelled by taking into account the impact of individual covariates
on the expression of the perception. Specifically, with respect to the assessment of
university teaching and services, a sensible approach should study how expressed
evaluations change with students’ profiles.

For this purpose, final judgements, originating from a mental process of selecting
among a discrete number of options, can be described as the compounding of two
elements:

• a primary component, generated by the respondent’s sound impression related to
awareness and a full understanding of problems, personal or previous experience,
group partnership, etc.;

• a secondary component, generated by the intrinsic uncertainty affecting the final
choice. This may be due, for instance, to the amount of time spent elaborating
the answer, the limited range of available information, a partial understanding of
the question or to subject’s laziness.

Then, the psychological mechanism, by which the choice is made, is the result
of a personal feeling for the object under judgement and an inherent uncertainty
associated with the selection of the ordinal value of the response.

7.2.1 Rationale for a new class of models

The interpretation of the respondents’ final choice as a weighted combination of
individual feeling (agreement) and some intrinsic uncertainty (fuzziness) leads to the
definition of a mixture distribution that will be formally introduced in the following
pages. Here, we briefly discuss the rationale behind this new probabilistic model.

Feeling is usually related to subjects’ motivations, whereas uncertainty mostly
depends on circumstances that surround the process of judging. Consequently, the
first component is related to the several causes leading to a certain choice, whereas
the second is simply related to the confidence/firmness/resolution of such a choice.

In order to model the first component, a shifted Binomial random variable is
introduced. This is motivated by two arguments.

From a statistical point of view, a standard Binomial distribution is generated by
adding several independent and identically distributed Bernoulli choices. Then, we
may think that when a subject chooses a rating (among m possible categories) he/she
excludes the others by a pairwise comparison (D’Elia, 2000, 2001). For instance,
assuming a m-points graded scale (where 1 is related to the best rate), assigning the
third grade to an item means that this rate is worse than the first two and better than
the other (m−3) ones. Generally, one chooses (Y = y) when the selected choice y is
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not preferred to the previous (y−1) but it is instead preferable to the remaining (m−
y) alternatives. If (1−ξ ) and ξ are the probability that each comparison is lost and
won, respectively, a given sequence of “failure/success” has a probability of (1−
ξ )y−1 ξm−y. A combinatorial argument proves immediately that the probability of a
given choice is:

(m−1
y−1

)
(1−ξ )y−1ξm−y, for y = 1,2, . . . ,m. Of course, this reasoning

assumes that the random variables describing comparisons are both independent and
identically distributed, and, as often happens for a statistical model, this provides a
crude approximation of the respondents’ effective behaviour.

From a heuristic point of view, the shifted Binomial distribution is able to map
a continuous latent variable (characterized by a single mode distribution: Normal,
Student-t, logistic, etc.) into a discrete set of values {1,2, . . . ,m}. The shape of the
resulting distribution depends on the way the cut-points are originally chosen. This
fact adds further flexibility in modelling the observations since it allows for very
different mode location and skewness.

The second component, describing uncertainty, is given by a discrete Uniform
random variable over the support {1,2, . . . ,m}. This probability distribution is in-
tended as an extreme solution to represent the evaluation process. In this regard,
we are not stating that people answer questions in a purely random manner, instead
we are saying that the uncertainty affecting any choice can, at worst, be constituted
by a situation where no category prevails over the others, and that is the case of a
uniform distribution. In fact, the latter maximizes entropy with respect to any other
distribution which shares the same finite discrete support.

The random variables related to feeling and uncertainty, are then combined in
a mixture distribution with different weights (π) and (1− π) respectively, which
denote propensities of the subject for one or the other way of constructing his/her
choice. In addition, the interpretation for the two unobserved components implies
an immediate meaning for the two involved parameters: (1−ξ ) will be considered
a measure of agreement/feeling for the item of interest whereas (1−π) will provide
a measure of fuzziness/uncertainty that accompanies the choice.

Some further remarks on the rationale behind the proposed mixture distribution
may be useful at this stage. Firstly, it is important to make clear that we are not
conjecturing that the population is composed of two subgroups of respondents, each
behaving according to one of the two above-mentioned probability distributions.

Secondly, it is worth noticing that uncertainty, the component related to choos-
ing, is completely different from randomness, which is instead a concept related to
sampling variability of surveys.

7.3 Specification and properties of CUB models

Formally, CUB models are specified by considering the ordinal response y as a real-
ization of a discrete random variable Y defined on the support {y = 1,2, . . . ,m}. For
given m > 3, the random variable Y is a mixture of Uniform and shifted Binomial
random variables and its probability mass function is given by:
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Pr(Y = y) = π
(

m−1
y−1

)
(1−ξ )y−1ξm−y +(1−π)

1
m

, y = 1,2, . . . ,m ,

where π ∈ (0,1] and ξ ∈ [0,1] (Piccolo, 2003; D’Elia and Piccolo, 2005). Thus, the
parametric space is:

Ω(π,ξ ) = {(π,ξ ) : 0 < π ≤ 1; 0 ≤ ξ ≤ 1}.

From a theoretical point of view, Iannario (2009c) proved that CUB models are
fully identifiable for any m > 3. Moreover, the proposed mixture distribution is
rather flexible and, depending on the parameters, it is able to assume very differ-
ent shapes: symmetric or extremely skewed, rather flat or with definite mode, and
this fact makes it a very useful tool for describing observed ordinal data.

As mentioned in the previous section, (1−π) is a measure of uncertainty whereas
(1− ξ ) may be interpreted as a measure of performance. Considering the whole
random variable support, (1−π)/m is a measure of the related uncertainty share.

The interpretation of ξ needs some caution because it depends on the initial cod-
ing of the responses (as a matter of fact, the graded scale may represent the strongest
feeling/concern either by the highest value or by the lowest value). In particular, in
several studies conducted in various fields, the parameter ξ has been related to the
degree of perception, the strength of selectiveness/awareness, the measure of con-
cern and the threshold of pain.

The parameter values help to locate CUB models in the parametric space defined
by the unit square. This is a convenient way of giving an interpretation to results
since it allows immediate comparisons among probability structures describing ob-
served ratings. Thus, since 1−π quantifies the propensity of respondents to behave
in accordance to a completely random choice, the more π is located to the right side
of the unit square, the more respondents give definite answers (uncertainty is low).
Similarly, since 1− ξ measures the strength of feeling of the subjects for a direct
and positive evaluation of the object, the closer ξ is located to the border of the
upper region of the unit square the less the item has been preferred.

Fitting to observed ordinal data usually improves when the subjects’ covariates
are introduced in order to relate both the feeling and the uncertainty to the respon-
dents’ features. Besides the presence of significant covariates helps the model inter-
pretation and the discrimination among different sub-populations. The latter aim is
accomplished by using dummy covariates (Iannario, 2008b) or by clustering meth-
ods (Corduas, 2008c,b). In addition, objects’ covariates may be introduced (Piccolo
and D’Elia, 2008) and thus, similarly to other contexts, CUB models may include
choices’ covariates and chooser’s covariates: Agresti (2002).

In this regard, we should observe that the expected value of Y is given by:

E(Y ) = π (m−1)
(

1
2
−ξ
)

+
(m+1)

2
.

Consequently, different parameter vectors θθθ = (π, ξ )′ may generate the same mean
value. In such a context, it would not be therefore correct to introduce a link
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among expectation and covariates (as usually happens in GLM framework). In fact,
CUB distributions can be rather different even if they have the same mean value. For
this reason, we prefer a more general framework (advocated by King et al., 2000)
where parameters describing the probability distribution are directly related to co-
variates.

Then, the general formulation of a CUB (p,q) model (with p covariates to ex-
plain uncertainty and q covariates to explain feeling) is expressed by the stochastic
component:

Pr(Y = y | xxxi; wwwi) = πi

(
m−1
y−1

)
ξm−y

i (1−ξi)y−1 +(1−πi)
(

1
m

)
, y = 1,2, . . . ,m,

and two systematic components:

πi =
1

1+ e−xxxi βββ
; ξi =

1
1+ e−wwwi γγγ

; i = 1,2, . . . ,n;

where xxxi and wwwi are the subjects’ covariates for explaining πi e ξi, respectively
(Table 7.1).

Table 7.1 Notation of CUB (p,q) models, without and with covariates

Models Covariates Parameters Parameter spaces
CUB (0,0) No covariates θθθ = (π,ξ )′ (0,1]× [0,1]

CUB (p,0) Only for π θθθ = (βββ ′,ξ )′ R
p+1 × [0,1]

CUB (0,q) Only for ξ θθθ = (π,γγγ ′)′ (0,1]×R
q+1

CUB (p,q) For π and ξ θθθ = (βββ ′,γγγ ′)′ R
p+q+2

Notice that this formalization allows that the two sets of covariates may present
some overlapping.

The nature of the probability distributions (Uniform and shifted Binomial) in-
cluded in the mixture and the presence of Covariates justify the acronym CUB (the
acronym MUB was used in some initial contributions).

With respect to the classical GLM approach (where proportional, adjacent or
continuation ratio probabilities are introduced for ordinal data), CUB models offer
a straightforward relationship between a probability statement for ordinal answers
and subjects’ covariates by means of a monotone function (logistic function, in most
cases). Moreover, although latent variables are conceptually necessary in order to
specify the nature of the mixture components, the inferential procedures are not
based upon the knowledge (or estimation) of cut-points. As a consequence, when the
CUB model turns out to be adequate in fitting data, it is usually more parsimonious
with respect to models derived by the GLM approach.

CUB models have been further generalized for taking the possible effect of atyp-
ical situations into account. Sometimes, these are derived by shelter choices, which
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represent categories frequently selected by respondents in order to avoid more elab-
orate decisions.

Specifically, an extended CUB model is defined by:

py(θθθ) = π1

(
m−1
y−1

)
ξm−y(1−ξ )y−1 +π2

1
m

+(1−π1−π2)D(c)
y , y = 1,2, . . . ,m,

where θθθ = (π1, π2, ξ )′ is the parameter vector characterizing the distribution of

this new mixture random variable and D(c)
y is a degenerate random variable whose

probability mass is concentrated at y = c, that is:

D(c)
y =

{
1, if y = c;

0, otherwise.

We observe that extended CUB models are identifiable only for m > 4.
Of course, if π1 +π2 = 1 the extended CUB model collapses to the standard one.

Instead, if π2 = 0 we are just considering a mixture of a shifted Binomial distribu-
tion and a degenerate probability with mass at (Y = c). Moreover, if π1 = π2 = 0
the extended model is able to account also for the (rare) situation where most of
respondents’ choices are concentrated at a single intermediate category.

A remarkable feature of the extended model is that parameter δ = 1− π1 − π2

measures the added relative contribution of the shelter choice at y = c with respect
to the standard version of the model. Since its significance may be tested via stan-
dard asymptotic inference, extended CUB models may check the effective relevance
of the presence of a shelter choice. Furthermore, it should be noted that in some
circumstances – if one avoids considering this component – parameter estimates are
biased and inefficient, and fitting and predictions are not satisfactory.

Among others, this effect has been found in the evaluations of a data set collected
among students attending courses at the University of Naples Federico II. The main
objective of the survey was to measure several aspects of students’ satisfaction with
the teaching, lecture halls, time scheduling, services, etc. The survey was conducted
using a questionnaire where the assessment of each item was based on the following
7 points scale: “extremely unsatisfied” (= 1), “very unsatisfied” (= 2), “unsatisfied”
(= 3), “indifferent” (= 4), “satisfied” (= 5), “very satisfied” (= 6), “extremely sat-
isfied” (= 7). Thus, the assessment of a given item generates a rating Y with m = 7.
In general, it has been observed that the distributions for most of the items under
investigation present a very marked mode at Y = 5 (corresponding to the “satisfied”
category).

Since respondents were a selected subset of enrolled students (those who regu-
larly attend lectures are more likely to be satisfied with University life), a consis-
tent part of them preferred to select the first positive judgement available on the
proposed graded scale in order to avoid a more thoughtful assessment. In these
cases, one should test the hypothesis H0 : δ = 0 in the extended CUB model with
c = 5. In the examined data set, the parameter estimate δ̂ = 0.223 (with a standard
error of 0.004) confirms a substantial effect of the shelter choice with respect to the
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expected one. Moreover, the model fitting and the prediction of expected responses
are improved.

A final remark concerns the possible presence of bimodal (multimodal) distri-
butions which, at a first sight, may suggest adding further Binomial components to
the mixture distribution in order to model the presence of various modes. In our
opinion, adding random variables of the same family in order to explain the differ-
ent behavior of respondents should be avoided since problems concerning model
identifiability may arise. Instead, for this purpose, the introduction of subjects co-
variates should be seriously considered so that clustered responses might be taken
into account. For instance, when people are asked to give a rate to a politician, the
bimodal distributions of responses may be easily modelled if the ideological po-
sition (left/right) of the respondents are surveyed. In such a case, dichotomous or
polytomous variables will be introduced as explanatory variables in the CUB model
in order to explain the opposite expressed feeling.

7.4 Inferential issues and numerical procedures

Given a sample of observed ordinal data and covariates (yi, xxxi, wwwi)′, for i = 1,2, . . . ,n,
the log-likelihood function for the parameter vector θθθ = (βββ ′,γγγ ′)′ in a general
CUB (p,q) model is defined by:

�(θθθ) =
n

∑
i=1

log

[
1

1+ e−xxxiβββ

{(
m−1
yi −1

)
e(−wwwiγγγ)(yi−1)

(1+ e−wwwiγγγ)m−1 − 1
m

}
+

1
m

]
.

Inferential issues for the joint efficient estimation of the parameters are discussed
in details by Piccolo (2006) who derived the EM algorithm for maximum likelihood
(ML) estimation. The procedure is effective but convergence to maximum can be
rather slow; then, several proposals for improving preliminary parameter estimates
have been suggested in order to improve the rate of convergence (Iannario, 2009a).
In this regard, moment estimators provide useful initial values but some problems
arise for models with covariates. These aspects are currently under investigation.

In the following section, a brief illustration of the EM estimation algorithm is
presented with special reference to the extended model without covariates.

7.4.1 The EM algorithm

Let yyy = (y1,y2, . . . ,yn)′ be the sample of ordinal data generated by a survey where n
respondents are asked to choose an integer in the support {1,2, . . . ,m}, for a given
m > 4. We suppose the location c ∈ {1,2, . . . ,m} of the shelter choice is known.

For the extended CUB model, the log-likelihood function �(θθθ) for the sample yyy,
with θθθ = (π1, π2, ξ )′, is
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�(θθθ) =
n

∑
i=1

log [Pr (Y = yi | θθθ)]

=
n

∑
i=1

log
[
π1 byi(ξ )+π2Uyi(m)+(1−π1 −π2)D

(c)
yi

]
,

where the components of the mixture are specified, for i = 1,2, . . . ,n, by:

pg(yi; θθθ g) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

byi(ξ ) =
(m−1

yi−1

)
ξm−yi(1−ξ )yi−1, g = 1;

Uyi(m) = 1
m , g = 2;

D(c)
yi , g = 3.

We introduce the unobservable vector zzz = (zzz1,zzz2, . . . ,zzzn)′ where each zzzi =
(z1i,z2i,z3i)′ is a three-dimensional vector such that, for g = 1,2,3:

zgi =
{

1, if the i-th subject belongs to the g group;
0, otherwise.

Simplifying the notation, we let:

πg =

⎧⎨
⎩
π1, g = 1;
π2, g = 2;
1−π1 −π2, g = 3.

θθθ g =

⎧⎪⎪⎨
⎪⎪⎩

θθθ 1 = (π1,ξ )′, g = 1;

θθθ 2 = π2, g = 2;

θθθ 3 = 1−π1 −π2, g = 3.

Then, the likelihood function of the complete-data vector (yyy′, zzz′)′ is given by:

Lc(θθθ) =
3

∏
g=1

n

∏
i=1

[πg pg(yi; θθθ g)]
zgi ,

and the complete-data log-likelihood function is:

�c(θθθ) =
3

∑
g=1

n

∑
i=1

zgi [log(πg)+ log(pg(yi; θθθ g))] .

The (k +1)-th iteration of the EM algorithm consists of the following steps:

• E-step:

The conditional expectation of the indicator random variable Zgi, given the ob-
served sample yyy, is:

E

(
Zgi | yyy,θθθ (k)

)
= Pr

(
Zgi = 1 | yyy,θθθ (k)

)
=

π(k)
g pg

(
yyy;θθθ (k)

g

)
3

∑
j=1

π(k)
j p j

(
yyy;θθθ (k)

j

) = τg(yi;θθθ (k)),
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for any g = 1,2,3. This quantity is the posterior probability that the i-th subject of
the sample with the observed yi belongs to the g-th component of the mixture.

Then, the expected log-likelihood of complete-data vector is obtained as:

E(�c(θθθ)) =
3

∑
g=1

n

∑
i=1

τg(yi;θθθ (k))
[
log
(
π(k)

g

)
+ log

(
pg

(
yi; θθθ (k)

g

))]
.

• M-step:

At the (k+1)-th iteration, the function Q(θθθ (k)) = E(�c(θθθ)) has to be maximized
with respect to the parameters (π1,π2) and ξ . If the parameters of the components
are specified, this quantity may be expressed as follows:

Q(θθθ (k)) =
n

∑
i=1

[
τ1

(
yi;θθθ

(k)
1

)
log
(
π(k)

1

)
+ τ2

(
yi;θθθ

(k)
2

)
log
(
π(k)

2

)
+ τ3

(
yi;θθθ

(k)
3

)
log
(
π(k)

3

)]

+
n

∑
i=1

3

∑
g=1

[
τg

(
yi;θθθ (k)

g

)
log
(

pg

(
yi; θθθ (k)

g

))]

= S1 log
(
π(k)

1

)
+S2 log

(
π(k)

2

)
+(n−S1 −S2) log

(
1−π(k)

1 −π(k)
2

)
+Q∗

where Q∗ is independent from π(k)
g parameters, and

Sg =
n

∑
i=1

τg(yi;θθθ (k)), g = 1,2; S3 = n−S1 −S2.

Then, by solving the system: ∂ Q(θθθ (k))
∂ πg

= 0, for g = 1,2, we get:

π(k+1)
1 =

S1

n
=

1
n

n

∑
i=1

τ1(yi;θθθ (k)); π(k+1)
2 =

S2

n
=

1
n

n

∑
i=1

τ2(yi;θθθ (k)) .

Instead, the estimate of ξ , for a given k, is obtained from:

n

∑
i=1

τ1

(
yi;θθθ

(k)
1

) ∂ log(p1(yi; ξ ))
∂ ξ

= 0.

A simple algebra produces the solution:

ξ (k+1) =
m−Y n(p)

m−1
; Y n(p) =

n

∑
i=1

yi τ1

(
yi;θθθ

(k)
1

)

n

∑
i=1

τ1

(
yi;θθθ

(k)
1

) .

Here, Y n(p) is the average of the observed sampled values weighted with the poste-
rior probability that yi is a realization of the first component of the mixture (that is
a shifted Binomial distribution).
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Then, E- and M- steps are repeated with new parameters
(
π(k+1)

1 ,π(k+1)
2 ,ξ (k+1)

)′
until a convergence criterion is satisfied. For instance, this could be given by:

| �(θθθ (k+1))− �(θθθ (k)) |< ε , for a small ε > 0.
Notice that, as far as ML estimation is concerned, sample data (y1,y2, . . . ,yn)′

is equivalently represented by the vector of absolute frequencies (n1,n2, . . . ,nm)′.
For computational efficiency, it is therefore convenient to use in previous steps the
log-likelihood function for grouped data. To this end, we will compute:

Sg =
m

∑
y=1

ny τg(y;θθθ (k)), g = 1,2 .

The step-by-step formulation of the EM algorithm may be easily programmed in
formal languages (such as GAUSS c©, Matlab c© or R).

Maximum likelihood inference has been developed by using standard approaches
(Piccolo, 2006). Specifically, the asymptotic variance-covariance matrix VVV (θθθ) of
ML estimators θ̂θθ of the parameter θθθ of CUB model is based on the observed in-
formation matrix I (θθθ), that is the negative of the Hessian computed at θθθ = θ̂θθ ; it
shares the same asymptotic properties of the expected information matrix (as argued
by Pawitan (2001), 244–247 among others).

Then, the asymptotic variance-covariance matrix VVV (θθθ) of the ML estimators of
θθθ , computed at θθθ = θ̂θθ = (π̂, ξ̂ )′, is obtained as:

VVV (θθθ) =
[
I (θ̂θθ)

]−1
= −

⎛
⎜⎝

∂ 2 �(θθθ)
∂π2

∂ 2 �(θθθ)
∂π ∂ ξ

∂ 2 �(θθθ)
∂π ∂ ξ

∂ 2 �(θθθ)
∂ξ 2

⎞
⎟⎠

−1

(θθθ=θ̂θθ)

.

The computational details for implementing these results are discussed by
Piccolo (2006) and a related software in R is currently available for estimation
and inference about CUB models with (or without) covariates (Iannario and Piccolo
2009).

7.4.2 Fitting measures

The adequacy of models may be checked by means of several measures (signifi-
cance of parameters, sensible increase in log-likelihood, and so on). However, the
sample size of evaluation data sets is generally large and thus, in order to verify how
estimated CUB models fit empirical data, we prefer to introduce a descriptive mea-
sure for models without covariates and refer to likelihood-based indexes for more
general comparisons.

Specifically, from a descriptive point of view, we consider the normed dissimi-
larity index Diss ∈ [0,1] defined by:
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Diss =
1
2

m

∑
y=1

∣∣∣Pr

(
Y = y | θ̂θθ

)
− ny

n

∣∣∣ .

This index has an appealing interpretation since it measures the proportion of sub-
jects that should modify their choices in order to reach a perfect fit between observed
and theoretical distributions (Leti, 1979; Simonoff, 2003). Unfortunately, it cannot
be immediately extended to the case of CUB models with covariates.

For this aim, using an obvious notation, log-likelihoods of CUB models can be
compared as follows:

Comparisons Deviances difference Degrees of freedom
CUB (p,0) versus CUB (0,0) 2 (�10 − �00) p
CUB (0,q) versus CUB (0,0) 2 (�01 − �00) q
CUB (p,q) versus CUB (0,0) 2 (�11 − �00) p+q

The difference between deviances should be compared with the quantile of the χ2

distribution with degrees of freedom as reported in the table above.
In this regard, the log-likelihood for the saturated CUB model can provide a

useful benchmark:

�sat = −n log(n)+
m

∑
y=1

ny log(ny) .

The fitting measure may be obtained by defining a pseudo-R2, that is named
ICON (=Information CONtent), which compares the log-likelihood of the estimated
model with the log-likelihood of a discrete Uniform random variable fitted to data
(this is in fact the uninformative model). Thus, the ICON index is:

ICON = 1+
�(θ̂θθ)/n
log(m)

.

It measures the improvement achieved by a CUB model, without or with covariates,
with respect to a completely uninformative distribution (such as the Uniform distri-
bution). In other words, this index is related to the displacement of the log-likelihood
of the estimated model with respect to an extreme situation.

7.5 Fields of application

In opinion surveys people are often requested to arrange a list of m items in order
of preferences or, alternatively, they are asked to express judgements or evaluations
using a given m-point ordinal scale. In this respect, we need to distinguish clearly
between two situations: the rating where the subject’s answer is a single score for
each item, and the ranking where the answer is a permutation of the first m integers,
that is a vector of numbers specifying sequentially the degree of preferences for the
m objects.
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For the correct understanding of the usage of CUB models, it is important to
underline that our approach suggests a mixture distribution useful for modelling the
random variable generated by the assessment of a single item (rating) or by the
positions of a single object in the ordering (ranking). However, notice that while in
the first case the CUB model is applied to study the univariate response of a group
of subjects, in the second case the model is used for the marginal analysis of the
discrete multivariate random variable generated by the observed preferences for m
objects. In the latter case, it is evident that adopting this strategy in turn for all the
m marginal distributions of the ranks leads to non independent random variables.

In previous studies, various applications of the proposed approach have been
elaborated in order to fit and interpret univariate rating data, especially in relation
to evaluations of attributes of goods and services (Corduas, 2008c) and other fields
of analysis such as social analysis (Iannario, 2007, 2008a), medicine (D’Elia, 2008),
sensometric studies (Piccolo and D’Elia, 2008) and linguistics (Balirano and Cor-
duas, 2008). In such contexts, the paradigm based on modelling the feeling and
uncertainty components has turned out to be very useful for its interpretative con-
tent.

A further kind of application stems from categorical data that are qualitative in
their nature although they are actually measured by means of a quantitative scale.
In these cases, a genuine ordinal approach proves to be more fruitful for the inter-
pretation and assessment of original data. This approach has been pursued in order
to investigate how final grades achieved by university students are related to gender
and time spent to complete the university program of studies. As a matter of fact,
although the final grade is expressed on a quantitative scale it should be regarded
as a qualitative assessment of the examining committee about candidates. This case
study has confirmed the better performance of qualitative models with respect to
standard quantitative models in relation to the tails of the distribution (given the
robustness property of ordinal values) and to the prediction of extreme data.

Finally, the transformation of subjective survival probability (expressed by a per-
centage on [0,100] scale) into an ordinal score described by a standard 7-point scale
has provided another interesting data base for further modelling. This is, in fact, a
typical case where the numerical value, that a subject gives in reply to a question, is
clearly generated by a qualitative consideration about the perception he/she has of
“high” or “low” probability. Again, CUB models has proved to be effective.

7.6 Further developments: a clustering approach

In order to compare rating distributions related to a number of items or to different
groups of respondents, a clustering procedure for ordinal data based on estimated
CUB models has been introduced by Corduas (2008d).

The search for a special approach is motivated by the risk of misleading interpre-
tations of data arising from the representation of CUB models in the parameter space,
because in such a situation the user tends to assess the closeness of two (estimated)



112 Marcella Corduas, Maria Iannario and Domenico Piccolo

CUB distributions in terms of the Euclidean distance between the corresponding es-
timated parameters. As a matter of fact, the variability of π and ξ estimators are
different and, in addition, the role of CUB coefficients in determining the shape of
the estimated distribution is very dissimilar (Piccolo, 2003).

For this reason, Kullback-Liebler (KL) divergence can be used for testing sim-
ilarities among distributions. Consider two discrete populations each characterized
by a probability distribution function having the same functional form p(y,θθθ i) with
unspecified parameters θθθ i, i = 1,2. Also assume that p(y,θθθ i) > 0, ∀y. Suppose that
two samples of n1 and n2 observations have been randomly drawn from each popu-
lation, respectively. In order to test the hypothesis H0 : θθθ 1 = θθθ 2, the KL divergence
statistic is defined by:

Ĵ =
n1 n2

n1 +n2

[
∑
y

(
p(y;θθθ 1)− p(y;θθθ 2)

)
log

p(y;θθθ 1)
p(y;θθθ 2)

]

(θθθ1=θ̂θθ1,θθθ2=θ̂θθ2)

where the parameters θθθ 1 and θθθ 2 have been replaced by the ML estimators. Under
the null hypothesis, it can be shown that Ĵ is asymptotically distributed as a χ2

(g)
random variable (Kullback, 1959), being g the common dimension of the parameter
vector; in the special case under investigation g = 2.

The strategy for grouping a set of CUB models combines hypotheses testing with
a clustering algorithm. Firstly, Ĵ for each couple of models is evaluated. Secondly,
a binary matrix is built by setting the (i, j)th entry equal to 0, when the hypothesis
of homogeneity of the i-th and j-th models is rejected, and 1 otherwise. Finally, by
means of convenient algorithms (such as BEA: McCormick et al., 1972; Arabie and
Hubert, 1990), this matrix is rearranged into an approximate block diagonal form. A
clearly defined (unit) triangle immediately under the diagonal will indicate a cluster
of items for which the judgements expressed by respondents (and summarized by
CUB distributions) are similar. The presence of any zero value in such a triangle
indicates that the cluster may be elongated or constituted by other well separated
small clusters.

The proposed technique is able to discriminate the different patterns of the rat-
ing distributions with respect to skewness, kurtosis, mode and it is very effective
and selective as has been proved by various empirical studies (for instance, see
Corduas, 2008b,c,d for a study concerning university students’ opinions about
teaching quality) .

7.7 Case study

In the years 2002–2004 and 2007–2008, the University of Naples Federico II carried
out an extensive survey of students’ opinions concerning the Orientation services
which operated in the 13 Faculties. In this section, the study will focus on the data
sets gathered in the last 2-year period.
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A questionnaire was submitted to a sample of users and each student was asked
to give a score for expressing his/her satisfaction with various aspects of the Ori-
entation service. Eight items have been investigated: staff willingness (=WILL) and
competence (=COMPE), clearness of information (=INFO), suitable opening hours
(=TIME), adequate equipment and structure (=STRU), advertisement of the service
(=ADVE), usefulness of information for decisions (=DECI), and a final overall eval-
uation (=GLOBA). Judgments were expressed using the ordinal scale ranging from
1 (=“completely unsatisfied”) to 7 (=“completely satisfied”).
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Fig. 7.1 CUB models of students’ satisfaction with University Orientation services.

In Fig. 7.1, the estimated parameters of CUB models built for the eight items for
2007 and 2008 surveys are plotted in the parameter space. The results refer to 3,511
and 4,042 validated questionnaires for the first and second survey, respectively.

Respondents show a different attitude towards the activities performed by the
staff and the aspects related to office organization and equipment since the former
type of items systematically receive higher evaluations than the others.

Moreover, comparing the results from the first and the second survey, the ex-
pressed satisfaction with items concerning office organization and equipment seems
to improve. In Fig. 7.1, the corresponding estimated CUB models, in fact, moves
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from the top part of the graph to the lower one. Noticeably, the opinion for the lack
of adequate advertisements of the service is very critical. Finally, items related to
staff evaluations receive more resolute assessment in the second year; the estimated
value of (1−ξ ) for this type of items is higher than for any other.

Furthermore, the plot suggests that at least two latent variables may govern the
responses since the models appear to be grouped in two separate clusters.

The merit of the previous examples is that CUB models are able to summarize
and visualize rating distributions originating from thousands of opinions given in
different periods of time.

Afterwards, attention is concentrated on 2007 data sets which have been partly
examined by Iannario and Piccolo (2008). We conjecture that the CUB model related
to students’ satisfaction with the office opening hours (=TIME) may improve by in-
troducing significant covariates. Then, available covariates have been added to the
CUB model by a stepwise strategy. Specifically, the covariate that mostly improves
the log-likelihood function, compared to the others, has been preferred. The result-
ing parameter estimates (in parentheses their standard errors) and the corresponding
log-likelihood values are presented in Table 7.2. Comparison of deviances (not re-
ported here) confirms that the fitted models are all significant and better than the
nested ones.

Table 7.2 CUB (p,q) models of students’ evaluation for opening hours

Models π̂ ξ̂ (www) log-likelihood
� CUB (0,0) 0.918 (0.011) ξ̂ = 0.319 (0.004) �00 = −5714.8
� CUB (0,1) 0.920 (0.011) γ̂0 = 1.464 (0.347) �01 = −5693.6
log(Age) γ̂1 = −0.722 (0.113)
� CUB (0,2) 0.921 (0.010) γ̂0 = 1.505 (0.348) �02 = −5687.6
log(Age) γ̂1 = −0.756 (0.114)
Gender γ̂2 = 0.116 (0.034)
� CUB (0,3) 0.921 (0.010) γ̂0 = 1.601 (0.349) �03 = −5681.6
log(Age) γ̂1 = −0.793 (0.114)
Gender γ̂2 = 0.114 (0.034)
Change γ̂3 = 0.190 (0.054)
� CUB (0,4) 0.922 (0.010) γ̂0 = 1.879 (0.375) �04 = −5679.4
log(Age) γ̂1 = −0.866 (0.120)
Gender γ̂2 = 0.116 (0.034)
Change γ̂3 = 0.182 (0.054)
Full-time (FT) γ̂4 = −0.078 (0.038)

We denote the covariates for the i-th subject as:

wwwi = (log(Agei), Genderi, Changei, FTi)′ .

Then, given m = 7, the best CUB (0,4) model implies the following probability
distributions for the expressed evaluations:

Pr(Y = y | wwwi) = 0.011+0.922

(
6

y−1

)
(1−ξi)y−1ξ 7−y

i , y = 1,2, . . . ,7,
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where the parameters ξi = ξi | wwwi, i = 1,2, . . . ,n, are specified by:

1
1+ exp{−1.879+0.866 log(Agei)−0.116Genderi −0.182Changei +0.078FTi}

Since (1− ξ ) is a measure of satisfaction, the estimated model shows that eval-
uation increases with Age and for full-time students (FT = 1) whereas women
(Gender = 1) and students who change their original enrollment and move from
one Faculty to another (Change = 1) lower their preferences, and thus they are more
critical about Opening Hours.

Table 7.3 Comparison of different students’ profiles and corresponding parameters

Profiles Age Gender Change Full-time wwwi ξi | wwwi Pr (Y ≥ 5)
A 20 Woman No Yes (20,1,0,1)′ 0.337 0.654
B 40 Woman No Yes (40,1,0,1)′ 0.218 0.843
C 20 Man Yes Yes (20,0,1,1)′ 0.352 0.627
D 40 Man Yes Yes (40,0,1,1)′ 0.229 0.828
E 20 Woman Yes Yes (40,1,1,1)′ 0.379 0.576
F 40 Woman Yes Yes (40,1,1,1)′ 0.251 0.798

The model allows immediate comparison of different profiles; some of them are
proposed in Table 7.3. Notice that the implied coefficient π = 0.922 is constant for
all profiles since there are no significant covariates for the uncertainty component in
the best estimated model.

It is evident from Fig. 7.2 how the age of the student is the relevant covariate forc-
ing rating distribution into higher values. The last column in Table 7.3 shows that
the probability of a positive evaluation mostly changes with age. Marginal changes
in the distribution shape are determined by job position and by changing the original
university enrollment to enter a new Faculty. Because of the large sample size, these
covariates are significant although they achieve a modest impact.

The examination of expected evaluation for given profiles of respondents allows
further considerations about the use of CUB models in empirical studies. As far
as ordinal variables are concerned, expected values should only be considered for
comparative purposes rather than being used as an index which is meaningful in
itself.

In the present work, ordinal variables are intended as a monotone transformation
of a latent variable Y ∗ then the study of the expected value of the random variable Y
is worthy of interest whenever it is referred to groups of respondents with the same
profile.
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Figure 7.3 exemplifies this approach. In particular, the expected satisfaction is
shown for the varying age of the students and their significant covariates. The plots
confirm that satisfaction improves with age in a systematic way, a small increase
may be observed for full-time students and those that did not change Faculty and a
more severe judgement is formulated by women compared to men.

7.8 Concluding remarks

Although CUB models only describe univariate distributions of judgements, their
use seems to be effective for investigating sound relationships among ordinal re-
sponses and covariates and, in addition, for enhancing unobserved traits in the data.
In particular, the role of covariates is made manifest in the model and result in a
useful device for the analysis of profiles.

Some unexplored issues that deserve further research are worth mentioning:

• Evaluation data and performances measures are collected in stratified subgroups
both for economic reasons and research needs. Then, the introduction of multi-
level CUB models is a relevant issue for further developments in this area.

• It is well-known that the range of multivariate distributions implied by the
given marginal CUB models is limited. Thus, the efforts for generalizing the ap-
proach to a multivariate framework should help to retain the effectiveness of this
parametrization and improve current interpretations.

• Fitting measures should be examined closely in order to exploit information car-
ried by likelihood functions for sampled data.

• Differences and areas of complementary usage with other well-established ap-
proaches, such as Item Response Theory, are currently under investigation.

• Since large data sets with a great quantity of information about subjects are com-
monly available from surveys, further studies are needed in order to improve the
criteria for the selection of significant covariates and the preliminary parame-
ter estimation by considering both numerical algorithms and data mining proce-
dures.



Chapter 8
Choices and conjoint analysis: critical aspects
and recent developments

Rossella Berni and Riccardo Rivello

8.1 Introduction

In the literature, a large number of researchers and practitioners are dealing with
preference measurements which are considered as one of the most general methods
in order to study and improve the consumer’s behaviour intended as the consumer’s
decision about improving his/her utility in changing a service or a product. Nev-
ertheless, a wide range of preference measurements’ methods is defined according
to the specific aim of the research, or of the application, and the basic theoretical
elements involved therein.

In particular, the preference theory must be evaluated according to the nature
and definition of preference, namely revealed or stated preferences and, in case of
stated preferences, we may distinguish between Contingent Valuation (CV), Con-
joint Analysis (CA) and Choice Modelling (CM), Hanley et al. (2001), Netzer et al.
(2008). Nevertheless, by considering CA and CM, since the fundamental elements
of distinctions are positively overlapped or interchanged, the classification is not so
clearly definable; this can be observed when these methods are generally defined as
multi-attribute methods.

However, the preference measurements about a product or a service are usually
related to a new product/service and the main distinction between CA and CM is
the monetary evaluation, namely the Willingness to Pay (WTP), which is the quan-
titative expression of the respondents about their willingness to accept a change in
the product/service concerned or in a single attribute.
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Furthermore, even though some steps and methods of these two techniques could
be viewed as very similar, e.g. the experimental design, the basic elements of the ex-
periments theory are defined and applied in both contexts taking into account, at the
same time, that there exists many theoretical differentiations. Thus, the related sta-
tistical models were separately developed in the last decades, McFadden (1974),
McFadden and Train (2000), Lenk et al. (1996), Greene and Hensher (2003); but,
the recent developments in this field were mainly directed at improving common
features, such as the heterogeneity of respondents and the complexity of the alter-
natives (profiles).

In this chapter, we focus on stated preferences (SP) and, namely, on CA and
CM, carrying out a brief and critical review in order to clarify the distinctions, as
well as to point out the common issues. In addition, we deal with the possibility of
reaching the best profile in CA through the theory of statistical methods in the en-
gineering field by considering the current situation and the user’s preferences. Our
proposal is discussed by showing an empirical example. In this context, we point
out the presence in the literature of similar attempts, where the common issue is re-
lated to the statistical method applied, the Response Surface Methodology (RSM),
Danaher (1997), Jiao et al. (2007), or to the general aim of creating a link be-
tween the needs of the manufacturer (design product/service stage) and the con-
sumer/user’s preferences, Michalek et al. (2005), Du et al. (2006).

This chapter is organized as follows: a literature review on CA and CM is pre-
sented in the second section, by pointing out the methods and recent developments
related to CE and CA, respectively; in the third section, our proposal of applying
RSM in a CA context is discussed in detail. Section four presents the data and re-
sults about the empirical example, while the concluding remarks are outlined in the
final section.

8.2 Literature review

Many developments and improvements in consumer/user’s preferences by consid-
ering the experimental design and the statistical modelling were achieved in the last
two decades. Nevertheless, we mainly pay attention to the period 2000–2008, when
methods and related applications gave an in-depth consideration to specific issues.
Undoubtedly, a further and clear distinction must be made when we refer to pref-
erence measurements or, more in general, to the preference theory. Hence, we deal
with Stated Preferences (SP), where we define as SP the preference of a respondent
related to a hypothetical scenario shown as an alternative in a choice-set (CM) or
presented as one of the suggested profiles (CA). However, in the literature, some
recent developments are also reported in the Revealed Preference case, which is de-
fined as the preference of the respondent about a real situation, such as in Scarpa
et al. (2003).

Another more subtle differentiation is when we refer to CV, CA, CM. Contingent
Valuation (CV) is defined as a method in which the respondent is asked to give
his/her preference on a product by considering only its total price (mono-attribute
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method); on the other hand, when we refer to CM and CA, the respondent is asked to
express his/her preference or choice about a product or a service by also evaluating
the monetary impact of several attributes, and, therefore, the Willingness to Pay
(WTP) may be estimated for each single aspect (multi-attribute valuation methods -
MAVs).

In our context, we mainly consider the two CA and CM methods, by pointing
out the further distinction within CM between Contingent Ranking (CR) and Choice
Experiments (CE). The CE situation is related to a set of alternatives, called choice-
set, which is selected from an experimental design; the respondent is asked to give
his/her preference within each choice-set. The CR situation is applied when the
respondent is asked not to give his/her preference, but he/she must rank or order
the alternatives of the choice-set (obviously, in this case, each choice-set is com-
prised of more than two alternatives). The further distinction between the three types
of response variables is a straightforward matter. In CA, rating (metric scale) and
ranking (ordinal scale) are the preferred response variables, owing to the different
framework of profiles. In the CM situation, choice (binary or not) and ranking are
surely the conditioning response variables. Our expression “conditioning” means
the corresponding statistical models involved in the analysis. Undoubtedly, CE is
the preferred method in the literature and, consequently, the related theory has been
largely developed in the last few years, by considering the experimental design with
its optimality criteria and statistical models and first of all the class of Random
Utility Models (RUM) and its variations, see Train (1998), McFadden and Train
(2000), Boxall and Adamowicz (2002), Hynes et al. (2008), Wen and Koppelman
(2001).

It is not irrelevant to point out that when a methodology is comprised of sev-
eral theoretical steps, as CM and CA, these elements (mainly experimental designs
and statistical models) are closely connected (Yu et al. (2009), Toubia and Hauser
(2007)), and the properties of one design affect the corresponding model. When
these properties do not exist in the design, this must be taken into account in the
model. This is the case of an improvement in the design optimality specifically de-
fined for a Mixed Multinomial Logit (MMNL), Sandor and Wedel (2002); on the
other hand, when considering the respondents’ heterogeneity, a specific design ma-
trix for each respondent is planned (Sandor and Wedel (2005)), by including the
heterogeneity evaluation directly in the design step instead of the model step.

However, as was said hereinabove, a different evolution has characterized the ex-
perimental CA and CM designs, even though some features are in common, such as
specific methods, algorithms and models, in order to select alternatives, by consider-
ing the planning step (De Bruyn et al. (2008) or Toubia et al. (2007)) or the analysis
of collected data, such as in Netzer and Srinivasan (2007), where a dynamic evalua-
tion of the questionnaire through an Adaptive Self Explication method is performed
in a Multi-Attribute context.

In Table 8.1, differentiations are summarized between CA and CM, namely CE
and CR, by considering these first issues and the time developments.

As is shown in the summary (Table 8.1), where some specific features such
as status-quo are not yet included, the preference theory is more articulated when



122 Rossella Berni and Riccardo Rivello

Table 8.1 MAV methods- A summary of recent developments

Steps Conjoint Analysis-CA Choice Experiments-CE Contingent Ranking-CR

Preference profile alternative-choice alternative-order
Dep.var. rate; rank choice rank
Exp. design factorial; frac. factorial D-optimal; Local Bay. opti-

mal; optimality ad-hoc
D-optimal

Stat. models linear model; Hyerar-
chical Bayesian

Random Utility Model
(RUM): Nested Logit (NL),
Generalized NL

RUM: Rank Ordered
Logit-Asc, Kernel logit

finite-mixture model RUM: Mixed-MNL; Latent
Class Model (LCM)

RUM: Rank Ordered
Logit-LC

considering all the steps within the three methods. Furthermore, having previously
outlined the differentiations related to the type of preference and to the dependent
variable, we may now observe that the experimental design step could be varied
within these methods. Undoubtedly, CA is an easier task at this point: the theory
and applications in the literature present above all developments and studies about
the complexity and selection of profiles in the model step, (De Bruyn et al. (2008),
Netzer and Srinivasan (2007)), i.e. some problems of complexity, such as prefer-
ence uncertainty and conflicts solved through the evaluation of judgement time and
response error in a rating task (Fischer et al. (2000)). The design of experiments is
involved in order to create an orthogonal design (sometimes optimal) where all the
created profiles, according to the set of attributes considered, are eventually reduced
by applying a fractional factorial design of high Resolution.

The complexity of statistical models developed in the recent years, like finite-
mixture models and hierarchical Bayes models, such as in Gilbride and Allenby
(2004) and Lenk et al. (1996), in order to take account of the respondents’ hetero-
geneity or the complexity of alternatives, or in Bradlow et al. (2004) for imputing
missing levels of profiles, has not yet received in the literature an adequate response
when considering the properties of the experimental design. Instead, a different situ-
ation is presented in the CM sector, namely in the CE method, where optimality cri-
teria, above all D-optimality, ad-hoc algorithms and specified information matrices
for the experimental design involved were entirely defined in 1990s (Zwerina et al.
(1996)). Recent developments are related to the construction of optimal or near op-
timal designs with two-level attributes for binary choices in the presence of the first
order interactions, Street and Burgess (2004), or when optimal designs are defined
with mixed-level attributes, Burgess and Street (2005). Furthermore, a new opti-
mum criterium is suggested, the M-optimality (Toubia and Hauser (2007)), where
attempts in order to focus the planning by considering the manager’s need were
introduced; in fact, M-optimality means optimality manager. Note that a common
feature of recent years is to create a link among designs and models together with
the need of a guiding thread between manufacturers and consumers. In addition, it
is not so irrelevant to quote the paper of Sandor and Wedel (2002) which reflects the
strict connection between experimental designs and statistical models, because they
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suggest an experimental design with ad-hoc properties for a Mixed Multinomial
Logit. This model, belonging to the class of Random Utility models, is certainly
the most widely applied and developed model in recent years for the CE situation.
Its success is easily explained when considering the theoretical results of McFad-
den and Train (2000), Train (1998) and the possibility, by adding additional random
parameters, to study respondents’ heterogeneity and the correlation structures due
to repeated choices. The last developments of this model include its relationship
with the latent class model, in order to create a finite number of respondent groups
(Greene and Hensher (2003), Hynes et al. (2008), Boxall and Adamowicz (2002),
Scarpa and Thiene (2005)). Furthermore, a distinct class (anyhow, close enough) is
that of Generalized Nested Logit (GNL) models, Wen and Koppelman (2001). This
class of models, which generalizes the Nested Logit (NL) model, impose an a-priori
tree structure with nests and nodes. The relationship between the NL and the Multi-
nomial Logit model (MNL) is very strong because an NL model can be viewed as
the product of a series of MNL models, each MNL for each node. The main issue of
the GNL model could be its flexibility due to the nesting structure; undoubtedly, this
can also be viewed as a limit because an a-priori tree-structure must be imposed.

Finally, before entering into details related to Conjoint Analysis and Choice Ex-
periments (Sects. 8.2.1 and 8.2.2), we briefly outline some features about Contingent
Ranking. In this situation, the ordinal response variable conditions the respondent’s
interview (repeated and ordered choices) and, therefore, the statistical models to be
apply. The repeated and ordered choices, called also panel, create a correlation be-
tween choices which can not be adequately treated through the Rank Ordered Logit
(ROL) also when including the Alternative Specific Constant (ROL-ASC). An im-
provement may be obtained through the Kernel Logit (KL) model, which allows to
take care of heteroschedasticity and correlations; in general, in this case, an Alter-
native Specific Constant (ASC) is introduced in order to discriminate, during the
model estimation, for the status-quo (Herriges and Phaneuf (2002)). A recent study
(Van Dijk et al. (2007)) introduces the concept of latent segments (Latent Class)
jointly with a Rank Ordered Logit model (ROL-LC), in order to treat the hetero-
geneity of respondents due to their difficulty at ranking.

8.2.1 Choice Experiment: theory and advances

As shown hereinabove (Table 8.1), the CE theory considers the experiments and
statistical models as main theoretical elements; nevertheless, further issues should
be evaluated in order to completely discuss this methodology, such as the estimation
methods and simulation algorithms to solve the model’s expression, Bhat (2001). In
this brief section, we mainly focus on the model step, by evaluating the solutions
suggested in the literature in order to solve the effective problems when this method
is applied.

The role of the experimental design is not irrelevant when we consider its prop-
erties; broadly speaking, the search of a D-optimal design implies the maximization
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of the determinant of information matrix and, therefore, this directly influences the
variances of parameter estimates and, obviously, the volume of the ellipsoid, confi-
dence region for the parameters, which is strictly connected to the precision of the
design. This implies a larger efficiency in the estimates. In the specific literature
about CE, the consideration of a D-optimal design, from the fractional factorials to
more complex designs (Zwerina et al. (1996), Yu et al. (2009)) built through spe-
cific algorithms of trial-point selections, has been replaced in recent years by using
Bayesian optimal designs (Kessels et al. (2004)). However, the experimental plan-
ning through D-optimal designs can not be considered as a limited tool because it
guarantees optimal properties jointly with a notable manageability in comparison
with the implementation of Bayesian designs.

By considering the experimental planning for a choice or conjoint experiment,
some features are general common rules for a valid experimental planning, indepen-
dently of the application field. Therefore, the attributes must be accurately defined
in their number and in the number of levels. Surely, an experimental design formed
by attributes with the same number of levels is more easy to treat; at the same time,
a great attention must be paid to the distance among levels. Undoubtedly, the inclu-
sion of a large number of attributes with distant levels increases the complexity of
the design and the decision of the user/consumer becomes more difficult and im-
plies a response error; Swait and Adamowicz (2001) face this problem from the
point of view of the choice capability and its difficulty through a heteroschedastic
Multinomial Logit Model.

In Scott (2002) a problem of dominant preferences is focused in the health care
system, by considering the consumer’s decision task and its complexity when evalu-
ating the defined levels and the presence of a lexicographic preference- i.e. when the
consumer always prefers the same alternative, independently of the other alternative
settings. In addition, a relationship between a general alternative and the status-quo
or current situation, is created according to these general criteria. If alternatives are
very distant, a problem of a dominant alternative could be found; on the contrary,
when alternatives have close level values, the presence of the status-quo alternative
could be much more appealing and the respondent tends to prefer the current situ-
ation without changing. Nevertheless, the inclusion of status-quo alternative cannot
be disregarded in Choice Modelling (CM) for the interpretation and estimation of
economical concepts, first of all the Willingness To Pay (WTP) for a relative change
in each single attribute. Furthermore, the complexity of choice and the planning is-
sues outlined previously must be evaluated together with the number of choice-sets
given to a single respondent and with the kind of response variable adopted, ranking
or binary-choice variable. Undoubtedly, in the CR field, the complexity is increased
by the ranking task; on the other hand, for example, in CE environmental situation,
a choice-set is usually comprised of two alternatives and the status-quo alternative.
In the literature, several studies attempted to improve these issues by starting from
the planning phase or by considering improvements in the model step; in DeShazo
and Fermo (2002) the sources of variability are studied in order to identify the im-
pact of complexity on the consistency of choice, by introducing measures of com-
plexity and studying the effect of complexity as in the variance-components field.
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In fact, the authors analyze the problem by defining an heteroschedastic logit model
according to the five complexity measures defined; thus, the dependent variable is
the variability due to the characteristics of the choice-set. In a previous study, on
the same subject, (Dellaert et al., 1999), the consistency is evaluated by consid-
ering the specific attribute of cost. Recent developments about the complexity of
choice and related problems, such as discontinuity, where discontinuity could be
defined as a “break point” in the likelihood function due to extreme situations of
the consumer/user’s behaviour, are studied in Gilbride and Allenby (2004), where
discontinuity points are evaluated in the estimation step by introducing the con-
cept of consideration-set and screening-rules for consumers. Thus, threshold values
are defined by discriminating according to specific rules of consumer’s utility. In
Campbell et al. (2008) the impact of discontinuous preferences, from the point of
view of respondents, is evaluated on the WTP estimates; the respondents with dis-
continuous preferences are identified during the decision process through a multi-
nomial error component logit model which includes the constant term, namely the
ASC, in order to consider the status-quo situation. These authors deal with the corre-
lation between the utility of changing alternatives and the status-quo aspect together
with the heterogeneity due to the different type of the respondent’s preference. A
very interesting remark is the consideration of different scale parameters according
to the number of respondents’ discontinuities; this allows to treat differently the sets
of respondents owing to their preferences.

Furthermore, recent developments about the WTP estimates are in Garrod et al.
(2002), Strazzera et al. (2003), Scarpa et al. (2007), Sonnier et al. (2007); in Scarpa
et al. (2007) this theoretical problem is faced by defining a parallel Willingness To
Pay (WTP) space where parameter estimates are evaluated by considering a more
specific economic definition of the WTP, in order to improve its interpretation; in
Sonnier et al. (2007) a Bayesian approach for the WTP estimates is introduced.
Willingness To Pay estimates and zero values, according to the typology of response
motivations, are studied in Strazzera et al. (2003).

In order to deal with the above features, the general class of Random Utility Mod-
els (RUM) is defined. In general, every alternative is indicated by j ( j = 1, ...,J),
while i denotes the consumer/user (i = 1, ..., I); thus, the following expression is
characterized by a stochastic utility index Ui j, which may be expressed, for each
unit i, as:

Ui j = Vi j + εi j (8.1)

where Vi j is the deterministic part of utility, while εi j is the random component, in-
dependent and Gumbel distributed. The class of RUM, which aims to achieve the
utility maximization, enlarges the characteristics of Logit and Nested Logit (NL)
models where the Independence of Irrelevant Alternatives (IIA) is hypothesized.
The relaxation of this assumption is undoubtedly a very substantial improvement
because the IIA means that the choosing probability in one choice-set is independent
of the presence of other attribute values or any other alternative; on the other hand,
we may say that IIA derives from the hypothesis of independence and homoschedas-
ticity of the error terms. In addition, this can also be interpreted by considering the
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cross-elasticity term. In fact, IIA implies an equal proportional substitution between
alternatives.

Furthermore, these models cannot take account of a different behaviour of the
consumer; i.e. each respondent, with different baseline characteristics, is treated
in a similar way (the same estimate values of attributes) according only to their
judgement, exclusively.

In the literature, a first contribution to improving these issues is in Train (1998),
where a Random Parameter Logit (RPL) model is introduced. At present, this
model is more precisely called Mixed Multinomial Logit (MMNL). In fact, this
RUM model allows to evaluate the respondents’ heterogeneity or, better, the con-
sumer/user’s variability is estimated by considering the attributes as random vari-
ables and not fixed variables, i.e. as random variables across respondents; in addi-
tion, just because more choice-sets are supplied to the respondents, the repeated
choices (during time) imply a correlation which is confounded with the con-
sumer/user’s variability (unobserved utility).

In this case, an appropriate example is in Train (1998) where, in a fishing case, the
unobserved utility of the consumer is identified in the difference for each fisherman,
when he must choose the fishing site. Further, according to repeated choices, this
unobserved utility is confounded with the correlation due to several sites and trips;
so, a correlation over trips and over sites for each fisherman’s decision must be taken
into account.

A general formulation for a single decision, according to McFadden and Train
(2000), for a MMNL is:

PrC(i | x;λλλ ) =
∫
ℜI

LC(i;x,α)G(dα;λλλ ) (8.2)

LC(i;x,α) =
exp(xiα)

∑ j∈C exp(x jα)

where C = (1, ..., j, ..J) is the general choice-set; x is the vector of attributes (x =
x1, ...,x j, ...xJ), and xi is the observed value of the decision i; α is the vector (Ix1) of
random parameters which expresses the respondents’ heterogeneity. The term LC(·)
is the general expression for a Multinomial Logit (MNL), where the G(·) is the
mixing component. It is very important to note that the random parameter α varies
in the mixing term, where the differential over the integration is performed over
α, because is G(dα;λλλ ), where λλλ is the vector of parameters related to the mixing
distribution.

By considering expression (8.2), we may further assume that an individual i be-
longs to the s group or segment, (s = 1, ...,S), i.e. we assume a finite number of
groups identified through the consumer baseline characteristics; from a theoretical
point of view it is like assuming that the mixing term G(·) is defined on a finite
support. Therefore, the probability for the unit i of belonging to the set s is included
in [0,1] and ∑s Pris = 1.
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The deterministic term of the utility function may be expressed through a func-
tion of attributes and the characteristics of the s group; thus, the utility function
defined by (8.1) may be now formulated as:

Ui j|s = Vi j|s + εi j|s (8.3)

Vi j|s = αsxi j (8.4)

Note that formula (8.3) expresses the deterministic term conditional to the belonging
to the group s and the specific choice is weighted through the utility characteristics
of the set s.

Therefore, for each segment s, the probability to choose the alternative j� for the
unit i belonging to s is:

Pri|s( j�) =
exp(μsαsx j�)

∑ j∈C exp(μsαsx j)
(8.5)

where αs is the specific utility parameter for the segment s and μs is the specific
scale factor, usually re-scaled to one, and here generically assumed. Note that if
x j� is an alternative-specific value, as defined in Sect. 8.2.1, then α includes the
alternative specific variable, in this case evaluated as a random effect.

Furthermore, we have the following relation:

Pri( j�) =∑
s

PrisPri|s( j�) (8.6)

Formula (8.6) expresses the global likelihood for a generic individual i who
prefers j� as the sum of products of two terms: the probability of the unit i of be-
longing to the group s is multiplied by the probability of the unit i belonging to s to
choose the alternative j�.

Formula (8.6) may be explicitly written as:

Pri( j�) =∑
s

exp(βγszi)
∑s exp(βγszi)

exp(μμμsαsx j�)
∑ j∈C exp(μμμsαsx j)

(8.7)

where zi is the vector of baseline individual characteristics, γs is the vector of pa-
rameters for the group s, while β is the scale factor, usually re-scaled to one as in
(8.2) when considering LC.

The last formula (8.7) could be interpreted as the model expression for a La-
tent Class Model (LCM) and it is also called as finite-mixture model (Boxall and
Adamowicz (2002)), in comparison with the MMNL, formula (8.2), where the mix-
ing term is assumed as distributed according to a continuous distribution (normal
or log-normal, for example); by referring to formulas (8.2) and (8.7), in this case,
the probability to choose the j� alternative of the choice-set C is multiplied by the
probability to choose given that i belongs to the group s.

It is not so irrelevant to remark that the scale factors μμμs should be posed equal
to one in order to avoid imposing parameter values. This formula (8.7) expresses
a flexible range of situations: if S = 1 there are not differences between baseline
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characteristics of the consumers; otherwise, if S = I a group is defined for each unit,
assuming the extreme situation of a total differentiation between individuals.

8.2.2 Conjoint Analysis: theory and advances

Conjoint Analysis (CA), (Netzer et al., 2008), can be defined, in our opinion, as the
historical MAV method, where the term conjoint means the measurement of relative
attribute values jointly. The first studies were made in 1970s where the basic funda-
mental theory of CA was posed (Johnson, 1974; Green and Rao, 1971; Green and
Srinivasan, 1978). In Johnson (1974) trade-offs among alternatives were evaluated
by considering a pair of attributes at-a-time and the respondent (consumer) must
rank his/her preference as to these two attributes. The empirical example reported,
(Johnson, 1974), is about the car-market, and the author assumes the independence
of attributes and his analysis does not include the interaction first order terms. A not
irrelevant point is a first introduction of the individual’s characteristics, through a
suggested weighting.

In Green and Srinivasan (1978), a further improvement was introduced, by con-
sidering a full profile (and not paired) evaluation where the global consumer/user’s
utility is then decomposed in order to estimate each single attribute’s utility. Rat-
ing and ranking are the response variables preferred and the suggested statistical
analysis usually applies the linear regression model. In the paired comparisons case,
logit and probit are applied. Then, further studies have developed these issues, by
pointing out model definition and estimation, (Green, et al., 1981; Green, 1984),
where a hybrid utility estimation model for CA is suggested. Here, a self-explicated
model, based on a procedure of measuring preference functions, is used with a con-
joint model, with the inclusion of interaction (I order) terms. This model, which also
takes account of differences (through clusters) of respondents, by evaluating their
similarities in the self-explicated model, may be considered a basic model of CA.
An enlargement of this model has different parameters for each attribute within each
cluster. However, the correlation due to the evaluation of the same attributes in the
two model steps is not completely assessed. A further note relates to the burden of
respondent in this context; the respondent, in CA and more precisely for participat-
ing to a hybrid CA model, is asked to perform a heavy task, because he/she must
participate two times to a judgement procedure.

Undoubtedly, the first attempts of respondents’ segmentation are found in CA
method. Currim (1981) and Moore (1980) applied strategies in order to satisfy the
need of an intermediate level of consumer’s aggregation through cluster analysis,
individual a-priori information and preferences.

In fact, the multivariate statistical analysis played a relevant role in CA during
1980s, and the first half of 1990s (Punj and Stewart, 1983; Hagerty, 1985), above
all the cluster analysis.

After dealing with this historical picture of fundamental CA elements, and, in
general, with the evolution of MAV methods, we point out the different configu-
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rations of CA and the following developments in order to gain the respondent’s
coherency and reliability.

Starting from Green and Srinivasan (1990), CA had many differentiations ac-
cording to a decompositional or compositional or mixed approach. All of these
methods are related to an easy-to-treat multi-attribute situation; the self-explicated
technique, just cited, requires the respondent to have a two-step evaluation; the
Adaptive Conjoint Analysis (ACA) also applies the mixed approach and a paired
comparison is performed through a computer-assisted interview. It is important to
note that the attempts are directed towards a mitigation of the respondent’s task, es-
pecially when the number of attributes and/or levels is high (Netzer and Srinivasan,
2007). In this respect, some studies are in common with Choice Modelling (CM)
methods, such as De Bruyn et al. (2008).

A dynamic evaluation of CA was implemented in Bradlow et al. (2004); a con-
sumer’s learning phase is suggested through partial conjoint profiles in order to
avoid the missing levels problem, which may exist when the experimental plan-
ning is conducted by a fractional factorial design, which is a reduced design of the
corresponding full factorial design. Surely, optimal designs and specific algorithms
are further solutions in order to overcome this problem.

In Bradlow et al. (2004), as in Lenk et al. (1996), the respondent’s heterogeneity
is taken into account through the application of a hierarchical Bayes model. Further-
more, in Lenk et al. (1996), the reduction of the number of profiles supplied to each
respondent is studied in order to improve the estimation accuracy.

Therefore, three issues are variously combined in order to solve the CA prob-
lems: the reduction of the consumer’s task; the complexity of data collection (the
experimental planning step); the respondents’ heterogeneity. Even though some fea-
tures are strictly connected with CM methods, as was said previously, the respon-
dent’s stimulus, also introduced in Green and Srinivasan (1990), was also studied
in recent years. Conjoint Analysis often appears in mixed techniques, such as in
Barone et al. (2007) and in Schütte and Eklund (2005), where a Kansei Engineering
(KE) is applied; KE is a multidisciplinary approach where the consumer is stimu-
lated through real perceptions of existing products in order to give a weight to the
technical and performance characteristics.

The link between consumer’s preferences and the engineering field is largely
used in recent years. The Response Surface Methodology (RSM) is also applied in
the Customer Satisfaction (CS) field, see, for example Danaher (1997), but the strict
relation between CA and the quality measures is in Kazemzadeh et al. (2008), Du
et al. (2006) and Jiao and Tseng (2004). In Jiao and Tseng (2004), an Adaptive CA
is applied jointly with the RSM. Two issues must be outlined: the concept of mass
customization, i.e. the product design performed to attract the consumer’s attention
(through cost and customization value), and the consideration of a cost variable.
A remark is the evaluation of RSM in a discrete context. An approach similar to
Jiao and Tseng (2004) is in Du et al. (2006), where a more in-depth analysis is
performed by considering the unit costs. Indexes about quality performance, costs
and satisfaction are defined and applied in Kazemzadeh et al. (2008).
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8.3 Our proposal: conjoint analysis and response surface
methodology

The aim of the present study is the proposal of a modified Conjoint Analysis (CA) in
order to establish an optimal solution for the product/service from the point of view
of the user/consumer. The subsequent procedure is performed through the Response
Surface Methodology (RSM) theory, by considering the quantitative judgement of
each respondent for each profile with respect to the assessed score about the status-
quo, and taking into account the individual information. The final result is achieved
by carrying out an optimization procedure on the estimated models, and defining
an objective function in order to reach the optimal solution for the revised (or new)
service/product. Furthermore, it is relevant to point out the modifying structured
data, through a new questionnaire, in order to collect information about the baseline
variables of the respondent, the quantitative data about the current situation (status-
quo) of the product/service, and the proper CA analysis by means of the planning
of an experimental design. Therefore, two remarks must be made: the former is the
consideration of the status-quo as the current situation for a revised product, other-
wise the status-quo may be interpreted as the center of design or, alternatively, the
full profile which identifies the medium situation; the latter is that the search of the
best profile for the respondent is performed on a surface delimited by the range of
attributes and centered on the status-quo.

8.3.1 The outlined theory

In this and in the following sections we briefly explain the RSM theory and the
general optimization measures applied, according to a robust design approach (for
details see Khuri and Cornell, 1987). Note that we focus our attention on the sta-
tistical models and optimization in the RSM; the fundamental elements of the ex-
perimental design (Box et al., 1978) are, however, indirectly introduced through the
experimental planning related to CA.

In this case, the concept of a robust design approach is used for optimizing the
service/product as more insensitive as possible with respect to the respondents het-
erogeneity or in order to adjust the service/product by considering those respondents
characteristics which are relevant for the product/service studied. In general, we may
define the set of experimental variables, which influence the measurement process:
x = [x1, ..,xk, ..,xK ] and the set of noise variables: z = [z1, ..,zs, ..,zS]. In this con-
text, the set x are the judgements, expressed through votes in a metric scale [0,100],
on the attributes involved in the experimental planning; while the set z is related to
the baseline individual variables, which are relevant for the service or product stud-
ied and that may change according to the specific situation. The response variable
Y is defined as a quantitative variable of the process; in this case, the judgements
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expressed, on each full profile of the plan, by the respondents in the same metric
scale. Note that, in general, if J are the profiles and I the respondents, the observa-
tions are IxJ. The general RSM model can be written as:

Yi j(x,z) = β0 +x
′
β+x

′
Bx+z

′
δ+z

′
ΔΔΔz+x

′
ΛΛΛz+ei j i = 1, .., I; j = 1, ..,J (8.8)

where x and z are the vectors of judgements attributes as described above; β, B, δ,
ΔΔΔ, and ΛΛΛ are vectors and matrices of the model parameters, ei j is the random error
which is assumed Normally distributed with zero mean and variance equal to σ . ΛΛΛ
is a [K ×S] matrix which plays an important role since it contains the parameters of
the interaction effects between the x and z sets.

In general, a noise variable may be defined as a categorical or quantitative vari-
able which is also controllable and measurable. In the technological context, a noise
effect which has these characteristics is introduced in the experimental design to re-
duce the pure experimental error and to set the variables controlling the process vari-
ability in order to find the experimental run which is the most insensitive to noise,
through the first order interaction effect. In this situation, the set z is comprised of
measurable categorical or quantitative variables which measure the baseline respon-
dents characteristics. Therefore, the best profile is reached through the estimation
of (8.8) conditional to the heterogeneity of respondents, taking into account judge-
ments and individual data through the interaction terms. Furthermore, the response
variable is comprised of the individual scores for each hypothetical profile and this
information is used to gain an optimal solution on the surface around the status-quo
(the attribute judgements x) and conditionally to z. In addition, it is not irrelevant to
observe that the individual characteristics are an external source of variability with
respect to an ideal design of service or product. In order to perform this procedure,
it is necessary to effect a combined interview, with three steps: (1) gathering infor-
mation about baseline variables; (2) quantitative judgements about each attribute in
the status-quo when the service/product is revised, or, when the service/product is
new, the judgements about each attribute in the medium profile: x0 = (0, ..,0); (3)
the quantitative judgement on each full profile for each respondent. Note that the
set x is the same by considering either the attributes involved in the experimental
design (profiles) and the attributes in the status-quo.

Therefore, the prospective evaluation of the new or revised product/service is ob-
tained by computing the optimal hypothetical solution through the status-quo. Note
that, as explained hereinafter (Sect. 8.3.2), the estimated surface is subsequently
optimized in order to gain the best preference on the basis of the attributes and judg-
ments involved. Nevertheless, if the service/product studied is new, the status-quo is
the centered scenario (always hypothetical); if the service/product studied is under
revision, then the status-quo represents the real and current scenario in comparison
with the other hypothetical scenarios supplied in the CA step, as usually happens in
a Choice Experiments context (Sect. 8.2.1).

A further issue about the baseline variables must be outlined. In general, there
are some aspects we wish to examine and which may have an influence on the
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expressed judgement of the respondent. We refer to those aspects related to social
and demographic characteristics such as gender, age, educational level, income, job
status. As described in Sect. 8.2, the heterogeneity of respondents plays a central
role in MAV methods and this is confirmed by recent developments in the literature.
In fact, there are sensible reasons to believe that such features affect the final results.
In this proposal, we suggest and compare two analyses which differently include the
individual information. In the first analysis, baseline variables are included in the
model (8.8) as explained before; if a baseline variable is categorical, as the gender,
this must be considered both in the estimation of the model and in the optimization
step, carrying out an optimal surface for each level of the categorical variable.

This proposal is compared with the consideration of building a-priori strata ac-
cording to the baseline level variables. In this case, the response surface model (8.8)
does not include the set of variables z which are used to build the strata. The com-
parison is not trivial, just because in the first case we may estimate the interaction
effects which may add useful information to obtain the full optimal solution; in the
second case, where the problem of a categorical baseline variable is not relevant,
the stratification allows to carry out the optimization process within every a-priori
stratum.

8.3.2 The searching of the best profile through optimization

As was said in the previous section, our aim is the optimization of the the model
(8.8) according to the status-quo situation. The expressed rate for each conjoint pro-
file is considered as the response or dependent variable (formulated on a continuous
scale); for example, a vote expressed according to the metric scale [0,100] may lead
to a valid evaluation of the response as a continuous variable. Therefore, in general,
the optimal target score may be defined as the maximum value of the metric scale;
in the above example, this is equal to 100.

Two optimization measures are defined for the optimization process, with only
one dependent variable; both measures allows to consider the optimization within
a specific delimited surface defined by the range of attribute scores. The first mea-
sure is formulated by considering the quadratic deviation of the estimated surface
model Ŷ from the maximum score τ. Therefore, the formula to be minimized is the
following:

F1 = (Ŷ (x,z)− τ)2 (8.9)

The second optimization measure is defined by considering the approaching of
E(Ŷ ) to the maximum score; thus, we carry out the minimization of the model vari-
ance of Ŷ jointly with the approaching to the ideal maximum score.

The formula is:

minF2 = V (Ŷ )(x,z) = E(Ŷ −E(Ŷ ))2 (8.10)
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according to the following decomposition of the Mean Square Error (MSE):

MSE = E(Ŷ −E(Ŷ ))2 +(τ−E(Ŷ ))2 (8.11)

B(τ) = (τ−E(Ŷ ))2 (8.12)

where (8.12) explains the adjustment of the expected score value to the target score.
A further issue is about the computation of E(Ŷ ) which is calculated by considering
the expected value of the estimated surface model.

The optimization procedure, carried out through the Statistical Analysis System
(SAS) and the procedure NLP, is preferably computed using non-coded data, just
because we are not in a technological context (for further details, see Berni and
Gonnelli, 2006). Note that, as regards optimization, the final result expresses the
optimal score for each attribute involved in the model according to the respondents’
preferences. Furthermore, the final optimal score for an attribute may be explained
as the importance/utility of that variable in order to reach the best profile when con-
sidering the judgement of the respondent about the current situation (status-quo).
A further consideration may concern the inclusion of a categorical baseline infor-
mation in the optimization process by including the proportion of units belonging
to each level of the baseline variable, or belonging to level combinations for several
baseline variables (strata), as in Robinson et al. (2006) where this case is studied in a
technological field; nevertheless, the optimization must be always performed taking
account of different surfaces according to these different strata.

8.4 Case study

The main aim is the evaluation of an interdisciplinary degree course of the Univer-
sity of Florence. As regards the data collection, a “questionnaire” is planned and
submitted to a sample of students of the II-nd and III-rd year. The questionnaire
is articulated on three parts according to the three different sets of information:(i)
baseline variables; (ii) judgements about status-quo; (iii) the specific planned ex-
perimental design for the basic CA.

Every judgement is expressed on the metric scale [0,100]. The first set of vari-
ables is related to the social and demographical data for each student: gender, age,
exam average, enrolment status, job status. In the second part, the current situation is
analyzed according to the specific five attributes: contents of the basic subjects (cb);
practice/laboratory (pl); intermediate exam (ie); exam modalities (me); professional
subjects for the future job (prof), see Table 8.2.

The third part contains the conjoint study planning through a fractional factorial
design 25−1

V . Note that the profiles are 16 and the students are 46; therefore, the
total number of observations is 736. Furthermore, in the following application, we
consider as noise categorical variable the job status of the student (job), identified
also by case (i) working, and case (ii) non-working.
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Table 8.2 Attributes and levels

Attributes −1 1

cb basic subjects with lower theoretical deep-
ening

basic subjects with higher theoretical
deepening

pl practice and laboratory as compulsory
part of typical courses

practice and laboratory only as two dis-
tinct courses

ie one intermediate exam no intermediate exam
me oral test with practice written and oral test
prof a general degree course in order to con-

tinue studies
a more specifical degree course, in order
to seek a job

8.4.1 Optimization results

The general response surface model (8.8) is applied by considering judgements of
the full profiles and judgements on the attributes in the current situation. Parame-
ter estimates with standard error and p-values are displayed in Table 8.3. Note that
all the variables are significant, except “prof”, which has a non significant p-value.
However, this main effect must be inserted given that it is relevant when consider-
ing the interaction effects of “prof” with the other variables, and, above all, with
the “ie” variable. In addition, a highly significant p-value results for the interaction
effect of “prof” with the noise variable “job”. The same observation can be made
considering “ie” and “cb”. The optimization procedure is performed applying the
two measures (8.9) and (8.10) defined above. The optimization results are described
also by considering diagnostic results such as: the objective function value (of), the
infinity norm of the gradient (‖x‖∞), the determinant of the Hessian matrix (|H|).
We have also checked the max-step, i.e. a specified limit for the step length of the
line search algorithm, during the first r iterations. Two surfaces are optimized, ac-
cording to the two levels of the job variable: working and non-working. The results
are shown in Tables 8.4 and 8.5, related to the results about the measures (8.9) and
(8.10), respectively. We must point out that, in this case, even though convergency
is always reached and diagnostic results are quite satisfactory, the starting diagnos-
tic results are not perfect. The reason of this problem may be leaded to the kind of
data, so different with respect to technological data, where the experimental trials
are usually conducted with high accuracy.

In this respect, we must remark that a non controllable variability due to the re-
spondent is implicitly inserted in our data. In fact, in this context, the optimization
measure (8.10) is more precise with respect to measure (8.9) just because the com-
putation of E(Ŷ ) takes care of non orthogonal data and of moments values. This is
also confirmed when selecting the best fitted models; in this context, by including
or not a model term may be very relevant for the following optimization procedure.
By considering the optimization measure (8.10), the best solution considers “cb”
and “ie” (Table 8.5) as relevant attributes for the non-working students. The scores
are very high for case (ii): 84.98 and 99.90, respectively. The attribute “ie” is in-
cluded in the final solution also for the working students. The scores for the opti-
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Table 8.3 Model estimates; job status as noise variable

Parameter Estimate Stand. Error t-value p-value

Intercept −281.20 47.863 −5.87 0.0001
cb 2.33 0.751 3.10 0.0020
pl −1.54 0.705 −2.18 0.0293
me 3.05 0.843 3.62 0.0003
ie 4.04 0.667 6.05 0.0001
prof 0.36 1.069 0.34 0.7375
job −44.53 24.862 −1.79 0.0737
cb*pl −0.01 0.004 −2.23 0.0262
cb*ie 0.02 0.005 4.43 0.0001
cb*me −0.05 0.011 −4.17 0.0001
cb*prof 0.01 0.008 1.30 0.1958
cb*job −2.69 0.359 −7.49 0.0001
pl*ie −0.03 0.004 −5.76 0.0001
pl*me 0.067 0.012 5.41 0.0001
pl*prof −0.01 0.006 −2.99 0.0029
me2 0.02 0.007 3.76 0.0002
me*ie −0.08 0.011 −7.02 0.0001
me*prof −0.02 0.011 −1.91 0.0565
me*job 0.24 0.154 1.54 0.1232
ie2 0.01 0.004 1.31 0.1909
ie*prof 0.02 0.005 3.76 0.0002
ie*job −1.04 0.218 −4.79 0.0001
prof*job 3.52 0.430 8.18 0.0001

Table 8.4 Optimization through measure (8.9). Case (i) working; case (ii) non-working

Results measure (8.9); case (i) measure (8.9); case (ii)

Best score:cb cb = 26.76 cb = 7.01
Best score:pl pl = 0.00 pl = 2.00
Best score:me me = 0.00 me = 4.00
Best score:ie ie = 34.50 ie = 46.09
Best score:prof prof = 0.00 prof = 59.47
o.f. 5.0e-27 2.0e-28
‖x‖∞ 8.6e-13 1.3e-13
|H| < 10e-8 < 10e-8

Table 8.5 Optimization through measure (8.10). Case (i) working; case (ii) non-working

Results measure(8.10); case (i) measure (8.10); case (ii)

Best score:cb cb = 42.04 cb = 84.98
Best score:pl pl = 0.00 pl = 0.00
Best score:me me = 0.00 me = 0.06
Best score:ie ie = 56.85 ie = 99.90
Best score:prof prof = 0.00 prof = 22.10
o.f. 3.2e-27 3.2e-25
‖x‖∞ 7.5e-13 1.0e-11
|H| <10e-8 < 10e-8
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mization measure (8.9) show very low values for all variables involved, except “ie”
and “prof” in case (ii), Table 8.4. This may be viewed as a higher interest of non-
working students versus professional learning. As regards case (i), (Tables 8.4 and
8.5), “cb” and “ie” are the only relevant attributes; however, in table 8.4, scores are
low for both variables, 26.76 and 34.50 respectively; while, by considering mea-
sure (8.10), “ie” and “cb” achieve higher scores (42.04 and 56.85, respectively).
These solutions allow us to hypothesize a larger consideration of the professional
elements by the non-working student in comparison with the one who works. The
optimal solution obtained through measure (8.10) highlights the importance of “cb”,
“ie”, “prof”, by confirming the results obtained applying the (8.9) and the previous
considerations about the relevance of computing E(Ŷ ).

Furthermore, we compare these results with those obtained by using the baseline
variables, in particular the job status of the student, for setting a-priori strata.

Two response surface models are estimated within each level of the job variable
(estimates are not shown); “prof”, “cb” and “pl” are significant attributes for the
working students. The estimated surface model related to the non-working students
allows us to confirm a large interest towards “cb” and “prof”. Furthermore, “prof” is
a common relevant attribute within each stratum; “pl” is relevant when considering
the working students, while “cb” is more relevant for the students without a job,
which express a great interest towards the basic courses in conjunction with more
professional tools.

By considering the optimization results, (Tables 8.6 and 8.7), the diagnostic mea-
sures are always good, even though the results obtained through measure (8.10) have
a high objective function value; however, the values of |H| are very good. Optimiza-
tion measures (8.9) and (8.10) highlight “pl” and “prof” as the attributes with the
highest scores for the working students. Within non-working students, “prof” and
“cb” result as relevant attributes, confirming the propensity of the non-working stu-
dent towards studying.

Table 8.6 Optimization through measure (8.9); a-priori strata; case (i) working; case (ii)
non-working

Results measure (8.9); case (i) measure (8.9); case (ii)

Best score:cb cb = 0.13 cb = 65.77
Best score:pl pl = 73.57 pl = 0.00
Best score:me me = 0.00 me = 0.00
Best score:ie ie = 0.00 ie = 0.00
Best score:prof prof = 84.21 prof = 50.99
o.f. 8.1e-28 1.5e4
‖x‖∞ 1.3e-13 2.1e-14
|H| <10e-8 8.4e-1
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Table 8.7 Optimization through measure (8.10); a-priori strata; case (i) working; case (ii)
non-working

Results measure (8.10); case (i) measure (8.10); case (ii)

Best score:cb cb = 0.00 cb = 65.77
Best score:pl pl = 56.49 pl = 0.00
Best score:me me = 0.00 me = 0.00
Best score:ie ie = 0.00 ie = 0.00
Best score:prof prof = 100.00 prof = 51.00
o.f. 2.7e4 3.4e2
‖x‖∞ 2.1e-9 3.6e-15
|H| <10e-8 1.9e-2

8.5 Concluding remarks

By concluding, the main feature of this empirical example is the application of RSM
jointly with CA in order to establish the best profile according to the judgements, ex-
pressed in metric scale, on the full profiles and on the status-quo. With this approach
it is possible to take into account both a new service/product and a revised one. In
addition, baseline variables of respondents, evaluated as noise variables, are intro-
duced in the optimization procedure, by also considering their categorical nature.
Note that in this case (Sect. 8.4.1) an only one surface is estimated and two optimal
solutions are evaluated in the optimization step. The empirical results confirm the
relevance of our proposal, also when comparing these results with the optimization
within a-priori strata and the working situation.



Chapter 9
Robust diagnostics in university performance
studies

Matilde Bini, Bruno Bertaccini and Silvia Bacci

In almost every true series of observations, some are found, which differ so much from the
others as to indicate some abnormal source of error not contemplated in the theoretical
discussions, and the introduction of which into the investigations can only serve to perplex
and mislead the inquirer.

(Peirce, 1852)

9.1 Introduction

The presence of anomalous observations (outliers) in a set of data is one of the great-
est problems in methodological statistics, one that scientists were already aware of
many years ago, as can be seen in the comments made by the American astronomer
Peirce1 over 150 years ago.

An anomalous value can be defined generally as an observation that appears to
be non-compatible with the probabilistic model that has generated the rest of the
data (Barnett and Lewis, 1993). However, this statement bears a certain degree of
subjectivity the moment the judgement of compatibility has to be expressed. This
concept can be explained if we consider certain divorce cases that have been filed
on the grounds of abnormalities discovered in the duration of pregnancies (Barnett,
1976). In 1949 a certain Mr. Hadlum appealed against the rejection of his previous
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case for divorce, which was based on his wife’s suspected adultery because she had
given birth to a child 349 days after he, the husband, had left to go to the war. Since
the average gestation in humans is 280 days, 349 days seemed surprisingly long
to Mr. Hadlum, causing him to judge the span of time an anomalous value, that
is, an observation deriving from another population (in this case, originating after
the moment declared by the wife). Mr. Hadlum lost the case; the Court of Appeal
maintained that the wife’s period of gestation, while highly improbable (“extreme”
value), was not scientifically impossible, in contrast to Mr. Hadlum who considered
the value “contaminant”, that is, deriving from a different distribution and therefore
clear evidence of the wife’s adultery. It is very likely that Mr. Hadlum would not
have been suspicious if, for example, his wife had given birth 290 days after his
departure for the war: nevertheless, even this length of time for the gestation could
have been considered a “contaminant” value in the afore-mentioned sense, since
the wife could have become pregnant, for instance, 20 days after the husband’s
departure plus a normal gestation of 270 days.

The keywords used here are outlier, extreme value and contaminant value. There-
fore, these concepts must be made clearer, and an attempt must be made to formalise
their definitions; for this purpose, we must consider an ordinate sample of n univari-
ate observations

x(1),x(2), ...,x(n)

all deriving from a certain F distribution, with the exception of two from a G distri-
bution (see Fig. 9.1).

x1 xn

F

G

Fig. 9.1 Outliers, extremes values and contaminants.

The x(1) and x(n) observations are the extreme values of the sample; in the case
being examined, however, only x(n) can be considered anomalous because of its po-
sition in relationship to the F model generator hypothesized. Hence, the extreme val-
ues are not necessarily outliers, whereas any individual outlier is always an extreme
(or relatively extreme) value of the sample. The observations deriving from the G
distribution are indicated with a black dot in the figure; though both can be defined
contaminant values, only the second one, coinciding with x(n−1), can be considered
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anomalous regards F, differing from x(n) (even more anomalous than x(n−1)), which
nevertheless is not contaminant. Hence, the contaminant values can be or cannot
be identified as outliers, and these can be more or less contaminant values (that is,
deriving from distributions different to the one hypothesized). Unfortunately, there
is no way we can know if an observation is contaminant (this is why Mr. Hadlum
would probably not have been suspicious of a pregnancy lasting 290 days); all we
can do is try to understand if the outliers are possible manifestations of some form
of contamination (Barnett, 1988).

The importance of this problem led Box and Andersen (1955) to coin the term
“robust” when referring to estimation methods that continue to have desirable prop-
erties, in spite of the fact that part of the data might result presumably contaminated
to a certain degree.

In this respect, Tukey (1960) defines the mixture (1− ε)F + εG a contaminated
distribution, where the F distribution is contaminated by the G distribution with
ε probability (known as contamination quota). In his famous work, for evaluating
the effects of a casual-type contamination on the efficiency properties of traditional
estimation procedures, Tukey presumed the extraction of a sample of n observations
from the contaminated distribution

(1− ε)N
(
μ ,σ2)+ εN

(
μ ,9σ2) .

Figure 9.2 illustrates the effect of the contamination Tukey proposed for certain
ε values between 0 and 0.5: the contamination weighs down the tails of the original
distribution, and this weight becomes heavier as the ε value increases.
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Fig. 9.2 Tukeys’ mixture.
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Tukey demonstrated how small, natural contaminations (between 1 and 10%)
in the theoretic model could make the traditional asymptotic theory on optimality
absolutely insignificant.2

There are various sources of contamination that can produce anomalous values;
sometimes they are concomitant and they are certainly never known beforehand.
The anomalous aspect might reflect the natural variability of the phenomenon being
investigated, generated by erroneous measurement or, more often, they might derive
from mistakes in the “implementation of the design” caused by distraction or due
to ignorance of the person responsible for recording the information.3 But detection
of these sources appears as a problem of secondary importance compared to the
adoption of tools that allow efficacious identification of the outliers.

After a description of the characteristics of robust methods in Sect. 9.2, an
introduction of the Forward Search algorithm and its implementation in the Gener-
alized Linear Models applied to the university effectiveness evaluation are reported
in Sect. 9.3. Section 9.4 presents the Forward Search for the fixed effects ANOVA
models and its application to the evaluation of the Italian University reform. Finally,
Sect. 9.5 is devoted to some concluding remarks.

9.2 Robust methods vs diagnostic analysis

The aim of any diagnostic analysis is to define a more or less general outline of the
collective phenomenon under investigation, in order to identify the peculiar charac-
teristics, which, at a further stage, will require advanced statistical techniques and
tools. This process of comprehension often originates in the implementation of a
probabilistic model,4 capable of synthesizing the state of knowledge of the phe-
nomenon in question. Therefore, the model is a description of the process that gen-
erates the data and its implementation becomes the main criterion for recognition
of the anomalous observations; hence, a non-typical value is considered such if it is
able to produce a “surprise” effect regarding the particular probabilistic model pre-
sumed to have generated the data. For instance, in a sample of 7 observations made
up of:

0.47,6.18,0.09,−0.60,−1.09,−1.19,1.86

the second value is surprising if connected with a theory that presumes a proba-
bilistic model of the N family (0,1) to be the generator; however, this supposition

2 In his famous work, Tukey proposed a comparison of relative efficiency between the dn =
1
n ∑ |xi − x̄| and sn =

[
1
n ∑(xi − x̄)2

]1/2
estimators of the σ variability parameter, revealing how

only two out 1,000 observations are able to annihilate the efficiency of the sn estimator; in partic-
ular, Tukey demonstrated how dn results to be preferable for all the ε values within the interval
[0.002, 0.52].
3 The mistakes in measurement and in “implementation of the design” (which lead to the inclusion
of non-representative units) are defined by Anscombe (1960) as false observations.
4 The description of any type of reality is often a very complicated operation, because of the inter-
relationships that are nearly always present.
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would appear completely misleading since the data have been really generated by a
Cauchy distribution with a parameter of 1 on the scale.5

From a typically parametric point of view, the initial theories indicate a proba-
bilistic model in this manner, hoping it to be only a fair approximation of reality,
without ever being able to presume that it is absolutely correct. Hence, all statistic
procedures should have the following, desirable properties (Huber, 1981):

1. they should demonstrate a reasonable (almost optimal) level of efficiency regards
the model presumed;

2. they must be robust, meaning that slight deviations from the theoretic model
should bring about similarly slight penalization in performance (for instance,
the asymptotic variance of an estimator ought to be near its nominal value as
calculated in relationship to the theoretic model);

3. any appreciable deviation from the theoretic model should not cause a “catastro-
phe”.

At this point, one might wonder if the robust procedures are really necessary or
if, on the other hand, it would be sufficient to resort to the traditional procedures
after adopting some technique that can discard the anomalous observations.

Unfortunately, this is not the case. First of all, the techniques that discard outliers
are not free of errors; in Tukey’s example, the removal of outliers from the dataset
generated by mixed distribution would continue to produce a sample of observations
that are not normal – because of wrong exclusions and wrong preservation of data –
leading to a framework that would be just as inappropriate as the initial one, which
advises against applying the traditional theory to normality.

Moreover, the difficulties encountered in the detection of anomalous values in-
crease as the number of variables composing the structure of the available data rise.
In fact, a univariate analysis of the context, while being an important part of the
statistical procedure, is often of limited interest since many modern investigational
techniques (confirmed by appropriate graphical analyses) are able to distinguish
atypical situations.

Much more interesting is the multivariate analysis, in which the spatial compo-
sition of the observations makes the placing of anomalies less intuitive and, conse-
quently, the formal methods for detecting them much more complex.

Lastly, the best procedure for removing outliers cannot match the performance
shown by the best robust procedure Barnett and Lewis (1993). Indeed, this latter is
definitely superior because it is a gradual (and not immediate) transaction between
the total acceptance and the total deletion of an anomalous observation manifesting
a contaminant distribution.

In the case of linear regression models, the presence of anomalous values can
be easily depicted by simply plotting the data or the residuals; however, even in
the multiple regression model, when the number of explicative variables increases,
their detection by means of graphical tools may not be so immediate, especially in
the presence of groups of outliers that mask each other.

5 Observations beyond the body of the data can be caused by casual extractions from the Pareto
and Cauchy distributions.
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To overcome this problem, some estimation methods called robust or resistant
have been proposed; these terms are used in the literature to illustrate their capac-
ity to produce estimates that are not easily influenced by contaminant data. These
methods all identify as outliers those units that show the highest residuals. Among
the various robust approaches proposed, special mention must be made of the Least
Median of Squares – LMS – (Rousseeuw, 1984) because it is intuitive and easy to
use. However, the robust estimators (LMS, MAD, trimmed mean, etc.) have the dis-
advantage of under weighing or neglecting some of the observations; furthermore,
they can fail completely if the observations do not derive from one population alone,
but from various distinct populations.

Another approach to the problem is through the so-called diagnostic analyses,
which foresee statistical calculation capable of detecting the anomalous values and
the most influent among them. These can be examined and then either deleted or
corrected, in order to allow the model to re-adapt by means of the traditional tech-
niques. Worthy of note among the diagnostic techniques is that known as the single
deletion diagnostic, which, at every step of the analysis, foresees the elimination
of one observation at a time from the n available, and calculation of the new esti-
mates and new parameters on the remaining observations. With two outliers, pairs
of observations can be deleted and the process can be extended to several units
at the same time. However, the traditional diagnostic methods suffer from serious
inconveniences; the masking effect that takes place in the presence of groups of out-
liers makes the individual influence of each single one very limited and therefore
unidentifiable; this aspect requires the diagnostic process to be extended to several
observations simultaneously. Nevertheless, one realises immediately that the com-
binatory explosion of the number of observations to be taken into account can create
considerable problems from a computational point of view and in interpretation of
the results. An alternative to these limitations can be to repeat the single deletion
processes; but in this case, the set of observations used in the adaption process de-
creases as the analysis proceeds. Atkinson and Riani (2000) demonstrated that this
procedure, which is commonly known as backward deletion, might sometimes fail.

Note that the robust approaches, in spite of the fact that they focus on the same
diagnostic target, proceed in a completely opposite manner, adapting the model first
of all by using techniques that take into account the characteristics of the dataset,
then examining the units that diverge most from the predicted values. However, the
two approaches often lead to the same results. Some authors, while agreeing on the
need to resort to robust criteria for the analysis, do not approve of the deletion of
cases that have been really observed (though many robust methods do not consider
the outliers at all); on the contrary, others, in spite of agreeing on the necessity to
remove the anomalies, maintain that to resort to a robust method rather than another
type is arbitrary (even though the preventive deletion of the observations and the
subsequent adaption by means of ordinary least squares is itself a robust method).

In effect, this debate does not at all solve the problem of the outliers. What is
undoubtedly important is to judge each single technique on the basis of the number
of outliers it manages to identify – or tolerate – before they can influence the infer-
ential process somehow. This property is formalised by introducing the breakdown
point (Donoho and Huber, 1983; Rousseeuw and Leroy, 1987) which is defined the
smallest fraction of contamination that can make a certain estimator assume values
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far away from the estimates that would have been obtained if the contamination was
absent.6

9.2.1 The Forward Search algorithm

The Forward Search (Atkinson and Riani, 2000; Atkinson et al., 2004) is a proce-
dure that is capable of combining the efficiency of traditional inferential methods
with the capacity to identify anomalous observations within a sample of data and
then assess the effects achieved. Its main feature is that it proceeds in a manner ex-
actly opposite the backward one, that is typical of the traditional diagnostic methods
that assess the anomaly or the influence of an observation on the statistic model only
after this has been adapted to the entire sample of data. On the contrary, the Forward
Search, given the n observations of the sample, starts by searching among the data
available for a minimal dataset presumed – on the basis of the model – to be free
from outliers. This starting subset is detected by means of different approaches ac-
cording to the analysis context: in the case of linear regression models, the adaption
of a high number of small subsets is evaluated, employing robust statistical methods
to define which of these procedures produces the best adaption; in the case of mul-
tivariate statistical analysis, boxplot bivariate matrix and spline functions adapted to
the actual placement of the observations in space are used.

The evolution of the procedure is therefore ensured by evaluation of the adaption
to increasingly larger observations obtained by the sequential inclusion of the re-
maining observations in relationship to their proximity to the theoretic model. The
process obviously stops when all the units observed participate in the inferential
process. The arrangement of the data performed at every step excludes the prob-
lems of masking encountered by the traditional diagnostic methods, the targets of
which are reached by monitoring the various statistics (i.e. the goodness of fit test,
significance of parameters) during the evolution of the algorithm.

The result of this procedure is the arrangement of the observations with respect
to the degree of their proximity to the presumed model7; in the case of linear regres-
sion, this arrangement is achieved by starting from a robust adaption and reaching
one of ordinary least squares.8 Monitoring the various statistics usually employed
in the traditional inferential approaches permits gathering a set of data capable not
only of detecting the outliers but also – and this is even more important – of under-
standing the influence that each of them has on the inference of the model.

The next sections propose the robust diagnostic analysis made using the forward
search algorithm as a useful tool to detect anomalous situations in university perfor-
mance evaluation.

6 For example, for ordinary least squares even one observation alone might be sufficient for this to
take place. In this case, the OLS estimator would have a breakdown point of 0%.
7 In regression models, “proximity” is expressed by the residuals; in multivariate analysis, by a
measurement of distance (Mahalanobis, Manhattan, etc.).
8 If the model agrees with the data, the robust adaption and the least squared one will produce
similar results, both in estimation of the parameters and in the errors. However, the estimates and
the residuals of the adapted model change considerable during the search process.
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9.3 The Forward Search for Generalized Linear Models

The Forward Search is an approach for detecting the presence of outliers and as-
sessing their influence on the estimates of the model parameters. The method was
first applied to regression analysis, but it could as well be applied to almost any
model (Atkinson et al., 2004). The procedure starts out by fitting the model to a
subset of the observations, say m observations, which is chosen in some robust way.
The observations of the entire set are then ordered by their closeness to the estimated
model. The model is then refitted using the subset of the (m+1) observations which
are closest to the previously estimated model. The observations are ordered again,
the model is refitted to a larger subset and the process is continued until all the data
have entered. At every step the subset size is increased by one unit (usually one case
is added to the previous subset, but sometimes two or more are added as one or more
leave the subset), bringing about an ordering of all the observations. At every step,
the fitting of the model will also produce estimates of the parameters of the model
under study as well as other relevant statistics. Changes of these statistics, as the
Forward Search is carried out, are analyzed (graphically or otherwise) for the pur-
pose of assessing the influence of each observation on the estimation of the model
and - under the hypothesis that the outliers are the last ones to enter - of identifying
a cut-off point that divides the outliers from the “good” data. More formally, it is
based on the following steps:

The start is a robust fit to very few observations and then a successive fit is done
with larger subsets. The initial subset is identified using the least median of squares
method (Rousseeuw, 1984) that guarantees that no outliers are included in the initial
subset.

Formally, (see details in Atkinson and Riani, 2000, p. 31): let Z = (X ,y) a data
matrix of dimension n× (p+1). If n is moderate and p << n the choice of the

initial subset can be performed by exhaustive enumeration of all

(
n
p

)
distinct

ptuple S(p)
i1,...,ip

≡ {zi1 , . . . ,zip}, where zT
i j

is the ijth row of Z, for j = 1, . . . , p and
1 ≤ i j �= i j∗ ≤ n.

Specifically, let ιT = [i1, ..., ip] and let e
i,S(p)

ι
be the least squares residual for the

unit i given the model has been fitted with the observations in S(p)
ι . The initial subset

is S(p)
∗ which satisfies

e2

[med],S(p)
∗

= min
ι

[
e2

[med],S(p)
ι

]
(9.1)

where e2

[k],S(p)
ι

is the kth ordered squared residual among e2

i,S
(p)
ι

, with i=1.. . . .n and

med=integer part of (n+ p+1)
/

2. If

(
n
p

)
is too large, the choice is made using

3,000 ptuples sampled from Z matrix.
The subset size is increased by one and the model refitted to the observations

with the smallest residuals for the increased subset size.



9 Robust diagnostics in university performance studies 147

The initial subset S(m)
∗ of dimension m≥ p is increased by one and the new subset

S(m+1)
∗ consists of m+1 units with the smallest ordered residuals e2

[k],S(m)
∗

. The model

is refitted to the new subset and the procedure continues increasing subset sizes until

all the data are fitted, i.e. when S(m)
∗ = S(n).

The result is an ordering of the observations by closeness to the assumed model.

9.3.1 Robust GLMs for the university effectiveness evaluation.
The case of the first year college drop out rate

One of the most important indicators of efficacy, as well as of efficiency, which the
Ministry takes into account in judging the teaching activity of a university, is the
drop out rate, which continues to be extremely high in all the Italian universities
even after the reform. Recent findings confirm that the drop out rate is still well
over 30 percent and this calls for new research to discover the reasons and possible
solutions of a problem that has strong social and political implications.

Past research and commonsense tell us that the most important factors affecting
the probability of dropping out from college are the characteristics of students at
time of enrollment, but also possible changes of their characteristics during their
study, as well as the characteristics of teaching activity. These factors are important
for every university but their impact is probably different for different institutions.
This justifies a research on drop out rate conducted on data from the University of
Florence (Italy) (Bini et al., 2003; Bini and Bertaccini, 2007).

The present study has been performed using two sets of data which have been
linked. Administrative data, collected by each Italian university at time of enroll-
ment and survey data, collected in June 2003 through Computer Assisted Tele-
phone Interview (CATI) interviews of the students that enrolled at the University of
Florence in the year 2001–2002.

The analysis was conducted using regression models which attempted to explain
the probability of dropping out by using a set of individual, institutional and contex-
tual variables.

Since the observed response variable is a dichotomous one, the estimation of
such probabilities were first made through generalized linear models with classical
estimation procedures (maximum likelihood estimation). This was considered as an
exploratory phase of the project which would identify a set of significant variables
as well as an improved general understanding of the problem. The data were then
fitted using a robust approach proposed by Atkinson and Riani (2000), whose results
will be reported and commented in another publication.

The procedure we adopted for the estimation of the model classifies all the ob-
servations with a hierarchical order in terms of adherence to the model. The char-
acteristics of the extreme groups will be analyzed with descriptive methods and,
hopefully, will give us information which could be useful for planning policies that
will reduce the university drop out rate.
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The use of the robust approach allows identifying singles or groups of students
with particular characteristics, for example it may be possible to find groups of
individuals who withdrawn the same course programs, otherwise single or groups
of freshmen who leaved different course programs. In the first case the explanations
should be given to the characteristics of these course programs: it is probable that
the learning is too difficult because of the capability and behaviour of instructors, or
the organization of classes is poor, or some other reasons due to the teaching activity.
The second case, that is groups of withdrawers of different course programs, could
depend to specific characteristics of these freshmen (because they are workers, or
they got a low score at high school), or even the information about them is biased
due to the interviews not correctly carried out or the questionnaire not so clear.

9.3.1.1 Dataset descritption

The analysis on dropout, regarding to all the freshmen enrolled in the past
2001–2002 a.y., used a data set containing some information from the administrative
data and some other ones collected from a survey conducted by the Department of
Statistics of the University of Florence in June 2003. A number of 2,908 freshmen
who left the initial attended course program, which represent the 30% of the total
freshmen of that year (10,053 cases). From questionnaire the first information we
have, is about the different kinds of withdrawal (here called profiles of drop out) like
moving from one to another course program, or degree program, or even to another
university, withdrawal declared with a written communication or not declared.

Then, for all the withdrawers we know:

1. the reasons of changes due to the university activity, such as problems
concerning:

• the organization of the structures (i.e. if classrooms, laboratories, libraries
are adequate to number of students and to technology requested for teaching,
etc. . . );

• the organization of the course (i.e. amount of class hours with respect to the
length of semester, schedules, number of exams during the semesters, etc..);

• teaching quality of instructors (i.e. clarity, instructor enthusiasm, usefulness
of exercises, organization of examinations, the availability of teachers after
class, workhome, materials of study, etc. . . ;

2. personal reasons such as: change of residency; health problems; family problems;
the occupational status at the enrolment.
Moreover:

3. in case of moving to another course, degree program or university, which degree
and course program they enrolled;

4. in case they did not enroll, or there is no news about their enrolment, whether
they intend to enroll again, and eventually in which course/degree program and
university.
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The response variable of interest in these regression models is the students drop
out, identified with the binary variable Y as follows: Y = 1 if dropped out includes
all the profiles of withdrawal except to one concerning students who moved to an-
other course or degree program; Y = 0 otherwise.

A preliminary descriptive analysis revealed that among all the variables included
in the updated administrative data set, only the covariates shown in Fig. 9.3 yielded
a strong association with the response variable.

However, just two covariates are strictly linked to the response variable as indi-
cator of the efficacy and efficiency of teaching activity (i.e. Course Program and
Degree Program selected at the enrolment); whereas the other ones strictly pertain
to characteristics of individuals, i.e. gendre (Sex), Age at the enrolment (AgeEnroll),
Residence (County), Kind of High school (Hschool), Level score of undergraduate
entrants (HSScore), Occupational status when enrolled (Occup).

Fig. 9.3 Covariates with a stronger association with the response variable.
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9.3.1.2 Fitting models

The fit of a logit model for binary data on this reduced data set, allowed to select the
significant covariates (AgeEnroll, County, Degree, Hschool, HSScore).

The aim of this study is to detect groups of students, having particular character-
istics.

To this purpose the analysis is accomplished by grouping individuals on the basis
of the levels of the significant covariates.

The result of this grouping yielded some very low size clusters among 826 groups
obtained, so that, as it is known, some test statistics are not reliable anymore. Then,
a second fit of a logit model followed using a data set formed by a number of clusters
equal to 454, each one at least having more than five units.

The related results led to reject the kind of high school covariate (see results in
Fig. 9.4).

Fig. 9.4 Fitting logit model for binomial data.

9.3.1.3 Main results

The algorithm of forward search applied to GLMs, has been carried out with a macro
implemented using the R package.

Looking at some forward plots, it is possible to observe the influential importance
of some groups.

The first plot to be consider is the goodness of link test along the forward search.
This plot allows to explore different possible link functions (logit, probit, clog-

log and arcsin) and then to choice the best one. Looking at the t statistic values of
each link put together in a plot (not reported here), it can be noted that trajectories are
different and the order of introduction of the observations is different for each link.
Moreover, each statistic has an increasing or decreasing trend and it goes outside
of bounds (at the 5% level) at different steps of the forward search. Although this
means a bad fit in all these cases, from a comparison among trends, it follows that
the arcsin link is the most satisfactory one.

Figure 9.5, which reports the goodness of link test of the arcsin function, shows
decreasing trend of the statistic as we move towards the end of the forward until it
goes out of the significant bounds (5% level) after the step m = 356.
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Fig. 9.5 Forward Search: goodness of link tests.

This is due to the presence of groups that differ more than other ones from the
bulk of the data; more specifically, they are the last 98 groups entering the subset (as
highlighted by the red circle). The presence of observations different from the bulk
of data, as well as their affecting the fit of the model, is also highlighted from the
monitoring of the deviance of the model.

In Fig. 9.6 it can be noted that the last 98 clusters entering the subset (after the
step m = 356) cause an exponential increasing of the values of the residual deviance
and an exponential decreasing of the values of the Pseudo-R2 statistic; this means
that these observations have a significant influence.

Fig. 9.6 Forward Search: deviance of the Model.
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The importance of the effect of the influential groups can be well depicted, once
again, by plotting the values of the goodness of link test (5% level). Figure 9.7
reports the three plots of the t statistic during the forward search respectively with
the entire data set, after deleting the last 5 and then the last 98 clusters entered the
subset. Even though the statistic is inside the bounds after the deletion of the last 98
groups, the trend still shows the bad fit of the model due to all the observations.

Fig. 9.7 Forward Search: goodness of link tests.

Once the groups of outliers have been detected, the next step should be the inves-
tigation of the characteristics of the units inside the groups by the implementation
of descriptive analyses, that should allows us to depict various situations useful for
the intervention policies aiming to improve the teaching quality and consequently
to reduce the drop out rate.
As an example of this kind of analysis, let consider, here, two particular situations
arose last steps of the search: the first and the third last groups entering the subset,
respectively labeled 270 and 62.

Fig. 9.8 Descriptive analyses of last cluster, number 270 (left panel) and of the third last cluster
number 62 (right panel) entered the subset.
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Results reported in Fig. 9.8 show their main characteristics. As concerns the clus-
ter 270, it consists of 11 graduates of nursery, and about all the students (81.8%)
dropped out.

It can be noted that with respect to the characteristics of students of the entire
nursery course which shows a low drop out rate (27.4%) even including the outlier
cluster, they are in average older and less “clever” as highlighted by the lower aver-
age of the high school score; moreover, as concerns the residence characteristic they
all come from Tuscany region but out of the county of Florence, with respect to the
31% of the entire course program.

This particular situation tells us that the drop out of this course maybe de-
pends more on the characteristics of students than to those of the teaching activity.
Anyway, the supplementary information we have from survey, allows us to verify
whether this conclusion is correct or some other reasons due to the courses efficiency
have to be included.

The second example, indeed, depicts an opposite situation where 47 students
attending different courses programs of Mathematical Science do not drop out (0%)
and they have in average better performance than the average of all the graduates
of the same degree program. About the residence characteristic, all students of the
cluster live in Florence and hinterland, while only the 32% of the total enrolled in
this degree (also here the number of 109 includes the 47 students of the cluster 62)
have the same characteristics.

Here, since the drop out rate of the degree is quite low, we are led to not in-
vestigate on the characteristics of these courses but rather on the characteristics of
students.

In this particular case, it should have even been interesting to collect, by specific
interviews, the evaluations on teaching activities of the courses these outliers attend.

9.4 The Forward Search for ANOVA models

In this section the implementation of the Forward Search method in the ANOVA
framework is presented, in order to identify the observations that differ from the
bulk of the data and to analyse their effect on the estimation of parameters and
on inferences on the model. The methodology is adapted to the peculiarity of the
ANOVA models taking into account the differences between the fixed effects and
the random effects ANOVA models. In particular, a procedure is explained to obtain
a Robust Forward F Test for the former case and a Robust Forward Likelihood-Ratio
Test (LRT ) for the latter case.

We remind briefly the main characteristics of the one-way ANOVA model. Let
yi j be the observed outcome variable of individual i (i = 1,2, . . . ,n j) within group, or
factor level, j ( j = 1,2, . . . ,J) where J is the total number of groups and N =∑J

j=1 n j

is the total number of individuals. The simplest linear model in this framework is
expressed by:

yi j = μ+u j + ei j = μ+ xi j (9.2)
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where μ is the grand mean outcome in the population, u j is the group effect associ-
ated with unit j and ei j is the residual error at the lower level of the analysis. This
model can be interpreted as a fixed or random effects model, depending on the as-
sumptions about the nature of u j. When u j are interpreted as the effects attributable
to a finite set of levels of a factor that occur in the data, we have a fixed effect model.
On the contrary, when u j are the effects attributable to a infinite set of levels of a
factor of which only a random sample are deemed to occur in the data, we have a
random effects model.

Classical assumption on the fixed effects ANOVA model is:

ei j ∼ N(0,σ2) ∀i, j.

For the random effects ANOVA model other assumptions are added:

u j ∼ N(0,τ2) ∀ j

cov(ei j,ei′ j′) = 0 ∀i �= i′ and j �= j′

cov(u j,u j′) = 0 ∀ j �= j′

cov(ei j,u j) = 0 ∀i, j

and, as a consequence:

var(yi j) = var(u j)+ var(ei j) = τ2 +σ2

cov(yi j,yi′ j) = τ2 ∀i �= i′,

where τ2 expresses the variance among groups and σ2 expresses the variance
within groups.

In the following sections the specific steps to implement the Forward Search
are briefly reminded and then an application of the proposed approach to real data,
using a set of information referring to the performance of the Italian university sys-
tem is illustrated. For more details about the theoretical aspects of Forward Search
for ANOVA models see Bertaccini and Varriale (2007) and Bertaccini and Varriale
(2008).

9.4.1 The Forward Search for the fixed effects ANOVA

9.4.1.1 What is the problem in presence of outliers?

In the fixed effects ANOVA model, we are usually interested in the null hypothesis:

H0 : u1 = u2 = ... = uJ = 0,

that means that there is not any effect of the factor on the average level of Y .
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The statistics used to verify the null hypothesis is defined as:

F =
DB/(J−1)
DW/(N − J)

, (9.3)

where DB is the deviance between groups and DW is the deviance within groups.
From the normality in the ANOVA assumptions, if the null hypothesis is true, it
follows that the ratio statistics F is distributed as a Fisher’s F distribution with (J−1)
and (N − J) degrees of freedom.

Due to the presence of the sample means in both the DW and DB, the value of the
F statistic is strongly affected by the presence of outliers. In fact, it is known that the
sample mean is the best unbiased estimator of a population mean under normality
assumption, but it shows a strong loss of efficiency in case of contamination or
misspecification of the model. This means that in the presence of contaminated data,
the “real” value of the first type error probability is systematically higher than the α
nominal value (e.g. 0.01, 0.05, ...) and, therefore, the test F will often erroneously
reject the null hypothesis.

9.4.1.2 The Forward Search steps

The methodology proposed takes into consideration the presence of groups in the
data structure of the ANOVA model. At every step of the Forward Search parame-
ters estimates, residuals, classical F value and other considerable statistics are com-
puted. As usual in the Forward Search method, the procedure is carried on through
the classical three steps, that are specified in according to the characteristics of the
model:

• Step 1: choice of the initial subset

The specific proposal in the ANOVA framework is to start with the observations
yi j that satisfy min|yi j −med j| in each group j ( j = 1, ...,J), where med j is the group
j sample median.

• Step 2: adding observation during the search

At each step, the Forward Search algorithm adds to the subset the observations
closer to the previously fitted model. This can be accomplished following two differ-
ent strategies: the first, called non-proportional, adds just one new unit at each step,
while the other, proportional, enters the minimum number of observations necessary
to respect the overall composition (the group proportions) of the sample.

• Step 3: monitoring the search

At each stage of the search, parameter estimates, residuals and other relevant
statistics, such as classical F test values, are calculated in order to detect the outliers.
The main difference between the non-proportional and the proportional approach is
that, with the non-proportional strategy the observation belonging to the groups with
the minimum variance will enter before the others: hence, the outliers will enter the
model last. Instead, in the proportional strategy outliers are forced to enter together
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with good observations in order to maintain the proportionality of the dimension of
the groups.

Finally, a Robust Forward F Test is defined to divide the group of outliers from
the other observations, and to evaluate correctly the null hypothesis of fixed ef-
fects ANOVA model. The Robust Forward F Test can be defined as a collection
FFS = F(k), ...,F(n) of the classical F test in each step of the search; to obtain a
Robust Forward F Test it is possible to individuate a cut-off point of the progress
procedure dividing the group of observations that differ to the bulk of the data from
the others. The search of the cut-off point can not be “automatic” but is completely
based on graphical analysis and is strictly connected to the context of the observed
phenomenon.

With the proposed method, the probability of accepting H1 when H0 is true is
always lower than the same probability obtained with the classical ANOVA F Test.

9.4.2 The Forward Search for the random effects ANOVA

9.4.2.1 What is the problem in presence of outliers?

In a random effects model, such as the ANOVA ones in Eq. (9.2), the observations
are aggregated in different levels, so that it is possible to discern first-level units
and second-level units or groups. Therefore, we have two different kinds of out-
liers: first- and second-level outliers. For example, if we consider the hierarchical
structure of university system, where students (or first-level units) are aggregated
in degree programmes (or second-level units or groups), we could observe one or
more students in one or more degree programmes that are anomalous with respect
to the student population for some characteristics, or we could observe one or more
degree programmes that are anomalous with respect to the degree programmes pop-
ulation. So, we need to focus on the evaluation of the effect of both first and second
level outliers on the inferences on the model and, in particular, on their effect on the
higher level variance which is statistically evaluated with the LRT.

In many applications of hierarchical analysis, one common research question is
whether the variability of the random effects at the group level u j is significatively
equal to 0, namely

H0 : τ2 = 0.

If the null hypothesis is accepted, then we can conclude that the hierarchical
structure of data has no effect on the dependent variable Y . The most used proce-
dure to test this hypothesis is the Likelihood-Ratio Test. In a random effects one-
way ANOVA model the asymptotic distribution of the Likelihood-Ratio statistic is
a mixture of Chi-squares distributions. However, due to the presence of outliers in
the data, the value of the LRT statistic can erroneously suggest to reject the null
hypothesis H0 even when there is no second level residual variability.
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Therefore, in presence of contaminated data, the classical LRT for the random ef-
fects ANOVA model has a similar behavior to the classical F test for the fixed effects
ANOVA model. The “true” α value is systematically higher than the nominal ones.

9.4.2.2 The Forward Search steps

The three steps of the Forward Search for the random effects ANOVA model de-
velop in a very similar way to the fixed effects ANOVA model.

• Step 1: choice of the initial subset

As in the previous case, the search starts with the observations yi j that minimize
|yi j −med j| ( j = 1, ...,J), where med j is the group j sample median. Moreover, we
impose that every group has to be represented by at least two observations; in this
way, every group contributes to the estimation of the within random effects.

• Step 2: adding observation during the search

At each step of the search, all the observations are ordered inside each group
according to their squared total residuals. The total residuals express the closeness of
each unit to the grand mean estimate, making possible the detection of both first and
second level outliers. For each group j we choose the first m j ordered observations
and add the one with the smallest squared residual among the remaining.

• Step 3: monitoring the search

At each stage of the search, parameter estimates, residuals and other relevant
statistics, such as classical LRT values, are calculated in order to detect the outliers.

Among the most useful outputs there are the plots of the within (σ̂2) and between
(τ̂2) variance components and the values of the classical LRT estimated at each
step of the Forward Search. See Varriale and Bertaccini (2009) for an analysis of
the different trend of the two kinds of plots in presence of first-level outliers or in
presence of second-level outliers.

Finally, a Robust Forward LRT is defined to evaluate correctly the null hypoth-
esis of random effects ANOVA model. It can be defined in an analog way to the
Robust Forward F test: it is a collection of the values of the classical LR Test statis-
tic computed at each step of the search, and to obtain a Robust Forward LR Test
we identify a cut-off point of the progress procedure that best divides the group of
observations that differ to the bulk of the data from the others. With the proposed
method, the probability of accepting H1 when H0 is true is always lower than the
same probability obtained with the classical LRT.



158 Matilde Bini, Bruno Bertaccini and Silvia Bacci

9.4.3 The use of the robust ANOVA for the evaluation
of the Italian university reform

In this section it is presented an application of the Forward Search for ANOVA mod-
els in order to evaluate the impact on the Italian university system of the reform on
degree programs, that was enacted in the academic year 2001/02. One of the main
aims of this reform was obtain a reduction of the withdrawal rate. The data come
from annual surveys conducted by the Italian National University Evaluation Com-
mittee (NUEC) during the years 2001, 2002, 2004 and 2005 and refer to the activi-
ties of all the public universities during the academic years 1999/2000, 2000/2001,
2002/2003, 2003/2004; the study is limited to the Italian degree programs in Math-
ematical Science. The dataset is composed by four groups identified by the years
in which the NUEC surveys were conducted: two years before the reform and other
two after the reform, with 276, 283, 342, 351 observations, respectively. For our pur-
poses, we use the first-year retention rate indicator (RR), defined as RR = 1−WR,
where WR is the withdrawal rate.

To find out the effect of the reform on the RT over different years a fixed effects
ANOVA model is estimated, where RT is the dependent variable. First of all, a
classical ANOVA F test is conducted: the F value is equal to 2.50 with a p-value
equal to 0.058, that is larger than the nominal α value of 0.05. Therefore, on the
base of the classical ANOVA F test, the null hypothesis is accepted, and we can
conclude that the reform had no effect on the first-year retention rate.

Because of the presence of many outliers in the data set, it is interesting to con-
duct also a Robust Forward ANOVA F Test, in order to evaluate if the presence of
outliers influence the results of the classical test. Among the outputs produced by
the Forward Search procedure, the most interesting are shown. In Figs. 9.9, 9.10 and
9.11 are plotted the residual standard error, the estimated RRs, and the classical F
values, respectively, at each step of the Forward Search.

The exponential increasing of the curve in Fig. 9.9 confirms the presence of out-
liers in the dataset, and we can see that they enter the model during the last steps
of the Forward Search. From Fig. 9.10 it can be seen that the estimated RRs refer-
ring to the two years after the reform (2004 and 2005) are almost systematically
higher than the two others. Only when the outliers enter the model the F values
for years 2004 and 2005 converge to the F values referred to years 2001 and 2002.
Finally, form the analysis of Fig. 9.11 is evident that the F statistics is always in the
reject region: only when the outliers enter in the procedure, the F values fall in the
acceptance region.

Therefore, on the basis of the results shown in Figs. 9.10 and 9.11 it can be con-
cluded that: (i) by taking into account only data conformed with the ANOVA model
hypotheses, the university system reform had a positive effect on the increasing of
the first year retention rate; (ii) the presence of outliers induces to an opposite, and
wrong, conclusion. This example highlights the superiority of the Forward Search
approach in comparison with a classical approach, such as classical ANOVA F test,
for the inference in presence of outliers.
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Fig. 9.9 Forward plots of the residual standard error.

Fig. 9.10 Forward plots of the estimated coefficients for the first year retention rate of the Italian
degree programs in Mathematical Science.

9.5 Concluding remarks

The peculiarities of Forward Search and its analytical possibilities, which have been
highlighted in this work, make it an approach that is usually preferred to other robust
methods; in fact:

1. Forward Search combines robustness and efficiency because, during the evolu-
tion of the analysis, the estimation procedures are based on well-known statis-
tical algorithms (maximum likelihood, least squares,. . . ) with proven efficiency
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and quick computation abilities; in other words, no ad hoc high intensity compu-
tation algorithms are required for estimating parameters;

2. The approach is easily extended to different analytical contexts (regression, gen-
eralised linear models, multivariate method of analysis, etc.) and is therefore ap-
plicable to most of the situations of which multidimensional data are available;

3. The method can be generalised even to cases in which there is auto-correlation
between the observations (historical sets, models for spatial data);

4. The approach features a higher degree of generality compared to other robust
methods, since the outliers are neither deleted nor “underweighted”; Forward
Search actually allows their entrance probably in the final stages of the procedure,
thus offering the analyst the possibility of evaluating the effects on the inferential
conclusions drawn from the adapted statistical model.

5. Finally, we know that the analyses and the representation of a certain degree of
the performance of university are a useful support for planning some interven-
tions and actions as concern the organization of the structures, but especially
the teaching activities. To perform a deeper studies about the complex system
of relationships and factors which affect problem like for example the drop out
of University, or the impact of a new reform, it is necessary to use appropriate
analytical models. The robust diagnostics regression analyses are able not only
to supply an answer to these needs, but also allow identifying observations or
groups of units (outliers) having specific characteristics. The inspections on these
outliers could really help to implement university programmes on the teaching
activities aimed at improving the quality of this service.

Fig. 9.11 Forward plots of the F statistics.



Chapter 10
A novel global performance score with an
application to the evaluation of new detergents

Stefano Bonnini, Livio Corain, Antonio Cordellina, Anna Crestana, Remigio
Musci and Luigi Salmaso

10.1 Introduction

In the research and development of new products often the aim is focused at eval-
uating the product performances in connection with more than one aspect (dimen-
sion) and/or under several conditions (strata). In this framework the main goal of
statistical data analysis consists in the calculation of an index to obtain a global per-
formance evaluation of the products under investigation which is a synthesis of the
information given by whole performance data.

The goal of this chapter is twofold: at first we present a novel Global Per-
formance Score (GPS) for the construction of a global performance index when
we are facing a complex problem of product quality evaluation; then, we wish to
investigate the main consequences for GPS when different standardization methods
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and aggregation techniques are used. The considered experimental design presents
a multivariate response variable where the univariate components have different de-
grees of importance. In general, each dimension of the global performance should
be evaluated under different conditions which can be represented by two or more
strata, jointly considered. The methodological solution to cope with this problem
is described and applied, considering different possible data transformation and an
application problem related to the performance evaluation of new detergents.

Let us suppose that the global performance is represented by a variable η , that
indicates a complex and underlying concept, often named construct, which is not
directly measurable, hence it is broken into a set of measurable components, dimen-
sions or items. In order to build up a global performance index, two main critical
steps have to be taken into account: standardization and aggregation.

Standardization methods should take into account both the data properties and
objectives of the analysis. Let Y1,Y2, . . . ,YK be the informative variables representing
the measurable components of η . Standardization of Y1,Y2, . . . ,YK is a transforma-
tion that replaces each Yk by a new variable Tk(Yk). The main goal of standardization
is to allow for the comparability among variables. A review of the most commonly
used transformations and an exploration of the main mathematical and statistical
consequences of their application is proposed in Aiello and Attanasio (2004).

After the transformation of non homogeneous data, it is necessary to put together
the variables Tk(Yk) through an aggregating function g(·). Hence the aggregation al-
lows for obtaining a global final variable which gives a measure of the construct or
latent variable η :

Y = g [T1(Y1),T2(Y2), . . . ,TK(YK);ω1,ω2, . . . ,ωK ] , (10.1)

where ω1, . . . ,ωK are the weights (degrees of importance) assigned to Y1, . . . ,YK , re-
spectively. Weights usually have an important impact on the aggregated values of the
performance index. Although some weights could be negative, in general ωk ≥ 0,
k = 1,2, . . . ,K and ∑kωk = 1. From now on we will assume this condition unless
a different assumption is explicitly done. The most frequent aggregation functions
proposed in the literature (see Fayers and Hand, 2002, for an extensive review) are
based on additive methods and require assumptions about indicators and weights
which are often not desirable and difficult to meet and to test (Nardo et al., 2008).
For this reason other aggregation methods have been proposed. Among these, we
mention multiplicative methods, such as geometric aggregation, and multi-criteria
analysis.

In this chapter we are facing the problem of determining a comparative global
performance evaluation of C products, summing up partial performance measures
coming from multivariate experimental data in presence of multistratification. The
complexity of the experimental design is due to the following aspects: (i) the re-
sponse variable is multivariate and the univariate component variables present dif-
ferent degrees of importance; (ii) one or more component variables represent pri-
mary performances, while other ones represent secondary performances and two
partial aggregated evaluations are at least needed along with the global



10 A novel global performance score 163

evaluation; (iii) some experiments (in general those related to primary perfor-
mances) allow replications hence, for some responses, comparative evaluations can
be based on multiple comparisons of one-way ANOVA but, for economic or prac-
tical reasons, other responses are characterized by unreplicated designs, hence, for
these variables, inferential procedures are not possible; (iv) each dimension of the
global performance should be evaluated under different conditions which can be
represented by two or more strata, jointly considered.

The present chapter is organized as follows. Section 10.2 is dedicated to the de-
scription of the most common standardization and aggregation techniques which are
devoted to properly define composite indexes. In Sect. 10.3 the general procedure
to define and calculate the GPS is shown. In Sect. 10.4 the results of the applica-
tion of GPS to a real industrial problem, using different normalization and aggrega-
tion methods, are presented. Section 10.5 illustrates a comparative simulation study
where the combination of normalization and aggregation methods are compared.
Finally, Sect. 10.6 is dedicated to the final remarks.

10.2 Composite indexes

A composite index has to measure a complex and underlying phenomenon η which
is not measurable but can be broken into K measurable components, dimensions or
items. Data transformation procedure for the calculation of a composite indicator
consists in a sequence of steps aimed to achieve comparability among component
variables Y1,Y2, . . . ,YK and to make a synthesis of the available information. The for-
mer purpose is obtained through standardization. The latter can be achieved through
the application of an aggregation technique.

10.2.1 Standardization: data transformations to obtain
homogeneous variables

Let us suppose that Yck represents the value of k-th variable for c-th unit (product).
A possible standardization approach to have comparability is to rank each variable
across units. For example, in the case of decreasing rank transformation we have:

Tk(Yck) = R(Yck) =
C

∑
u=1

Iuk(Yck)+1, (10.2)

where

Iuk(x) =
{

1 if Yuk > x .
0 otherwise
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This typical non linear transformation requires just simple calculations and is ro-
bust in presence of outliers. The main disadvantage is the loss of information related
to the original metric. The evaluation of a unit based on a given variable consists in
the position of the unit in the ranking based on that variable. Relative rank R(Yck)/C
can be preferable to R(Yck) because it takes values in the interval [0,1]. To avoid
computational problems in the aggregation phase (i.e. null denominator, null ar-
gument of logarithm, etc.), relative rank [R(Yck) + c1]/(C + c2) can be calculated,
where c1 and c2 are constants such that the relative rank takes values in the open
interval (0,1).

The traditional standardization method converts all original variables to vari-
ables with zero mean and standard deviation equal to one, applying the well-known
transformation:

Tk(Yck) =
Yck −Y k

Sk
, (10.3)

where Y k is the sample mean and Sk the sample standard deviation of Yk. This trans-
formation is not robust with respect to outliers. Sometimes a similar linear trans-
formation, with median instead of mean as a location measure and median absolute
deviation instead of standard deviation as a variability measure, is used.

The re-scaling technique produces standardized variables with identical range
[0,1]:

Tk(Yck) =
Yck −minu(Yuk)

maxu(Yuk)−minu(Yuk)
. (10.4)

Since this method uses range instead of standard deviation as denominator, outliers
have a great effect on standardization. Standardization can be applied just comparing
the original data with the maximum value, according to the following formula:

Tk(Yck) =
Yck

maxu(Yuk)
.

In this case the standardized variables assume values in
[

minu(Yuk)
maxu(Yuk)

,1
]
. A similar

transformation can be obtained just considering the minimum value, for instance:

Tk(Yck) = 1− minu(Yuk)
Yck

,

and the range of standardized variable is
[
0,1− minu(Yuk)

maxu(Yuk)

]
. It is worth noting that the

latter transformation is nonlinear while standardization based on maximum value
and (10.4), are linear.

When standardization is aimed at the comparison with a reference unit (or with
a target), value one is given to the reference unit, i.e. Tk

(
Y ∗

k

)
= 1, and transformed

values are calculated through the ratio



10 A novel global performance score 165

Tk(Yck) =
Yck

Y ∗
k

, (10.5)

where Y ∗
k indicates the value of Yk corresponding to the reference unit or the tar-

get value for Yk. With this method, typical of economic applications where all Yck

are nonnegative (e.g. index numbers), transformed data take value in [0,∞). Alterna-
tively, when we are interested in gaps, the relative variations Tk

(
Yck) = (Yck −Y ∗

k

)
/Y ∗

k ,
taking values in (−∞,+∞), can be calculated.

A similar, but more robust, method of standardization distinguishes among val-
ues above, close to, or below a certain percentage threshold around the mean or a
reference value:

Tk(Yck) =

⎧⎨
⎩

−1 if Yck −mk < −δk|mk|
akYck if −δk|mk| ≤ Yck −mk ≤ +δk|mk| ,
+1 if Yck −mk > +δk|mk|

(10.6)

where mks are the means or the reference values, δks are the percentage thresholds
and aks are non negative constants. As a special case some aks could be null. The
disadvantages of this nonlinear transformation are the arbitrariness of δk and the
loss of the information about the original metric.

10.2.2 Aggregation: synthesis of information

The application of an aggregation technique consists in the choice of an appropri-
ate function g : ℜK → ℜ to apply (10.1). The most used are additive techniques
but they require assumptions which are often not desirable and sometimes diffi-
cult to meet and to verify (see Nardo et al., 2008). Hence some authors propose
alternative aggregation methods such as multiplicative (geometric) aggregations or
non-compensatory aggregations (e.g. multi-criteria methods).

Additive aggregation is based on the weighted sum of standardized variables:

Y =
K

∑
k=1

ωkTk(Yk). (10.7)

There should be no conflict or synergy among standardized variables. In case of
conflict, standardization should be used also to change direction of the original vari-
ables decreasingly related to the latent variable Y .

Additive aggregation is a fully compensatory approach because low values in
some variables can be completely compensated by sufficiently high values in other
variables. Assuming all Tk are positive, geometric aggregation presents less com-
pensability because it is based on a multiplicative approach:

Y =
K

∏
k=1

Tk(Yk)ωk . (10.8)
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If a geometric aggregation is applied to calculate a composite performance indicator,
a unit under evaluation should prefer to increase partial indicators (variables) with
low score than those with high score to improve its position in the global ranking.

The multi-criteria approach is based on a non compensatory rationale. The main
assumption is the comparability between units for each variable Yk. The method
consists in ordering the units after pair-wise comparisons across the whole set of
variables. Multi-criteria analysis allows us for considering jointly qualitative and
numeric variables and in general it does not necessarily require standardization to
assure comparability among variables. For each variable Yk a preference function is
defined, such that for each couple of units (u,v), it indicates if u is worse, equivalent
or better than v (u,v = 1, . . . ,C). The preference function can be written:

hk(Yuk,Yvk) =

⎧⎨
⎩

−1 if u is worse than v according to Yk

0 if u is equivalent to v according to Yk .
+1 if u is better than v according to Yk

(10.9)

The above general definition of the preference function can be applied to a wide
range of functions. The choice about which function should be used depends on the
decision-making problem and from the nature of Yk. Hence for each aspect (crite-
rion) a specific preference function must be defined. The most common preference
functions are the following:

• subjective: values +1, 0 and −1 are assigned according to judgements of experts;
• dichotomic: −1 is assigned if a requested characteristic or property is satisfied

by v but not by u, 0 is assigned if both units or neither of them satisfy the char-
acteristic/property and +1 is assigned otherwise;

• ordinal: the k-th preference function takes the value +1 if Yuk > Yvk, −1 if Yuk <
Yvk and 0 otherwise;

• ε-ordinal: the k-th preference function takes the value +1 if Yuk > Yvk + ε , −1 if
Yuk < Yvk + ε and 0 otherwise;

• α-stochastic: value +1 (−1) is given if the observed value of Yuk is greater (less)
than the observed value of Yvk and if they are stochastically not equal (at signifi-
cance level α); value 0 is given otherwise.

Hence, considering Yk, for each unit a flow is computed according to:

Tk(Yck) =Φ (k)
c =

C

∑
v=1

hk(Yck,Yvk).

The flow measure the degree of preference associated to each unit. A positive flow
express how much the unit dominates the other ones and a negative flow indicates
how much it is dominated by the other ones. Based on these flows, K partial rankings
of the C units are obtained. The global synthesis respect to the K aspects can be
obtained through a weighted mean of flows (or of flow transformations which do not
modify partial rankings) according to (10.7). For a review of the main multi-criteria
methods related to the construction of a composite index see Gori and Vittadini
(1999).



10 A novel global performance score 167

10.3 Global performance score

In general, in order to develop a new industrial product, a comparative evaluation
of the performances of the new product with other existing ones is required. The
performance has to be evaluated from several points of view and in different ex-
perimental conditions. Hence experimental data present a multidimensional struc-
ture and a stratification or blocking factor has to be considered in the design of the
experiments and in the statistical data analysis. For example a chemical company
operating in the field of detergents should be interested in comparative evaluations
of detergents about cleaning efficacy, whiteness degree, etc. Each of these aspects
can be represented by one variable. One or more variables represent primary perfor-
mances and other variables represent secondary performances. To identify the best
detergents, different kinds of stains, different kinds of textile, different numbers of
washing cycles, etc. should be included in the experimental design. For this reason
this is a typical example of a multistrata problem.

Without loss of generality, let us suppose that the primary performance is repre-
sented by Y1 and secondary performances are represented by Y2,Y3, . . . ,YK . More-
over, let us consider two stratification factors and let us indicate with Yctsk the vari-
able that represents the performance of product c, when the first stratum is at level t
and the second is at level s, considering the k-th partial aspect (component response
variable) with c = 1, . . . ,C, t = 1, . . . ,T , s = 1, . . . ,St , ∑T

t=1 St = S and k = 1, . . . ,K.
In this work we take into account a peculiar (but realistic) design where n experi-
mental replications are performed to evaluate the primary performance but just one
replication is available for the secondary performances. Hence the method proposed
presents an initial step with two distinct procedures: the first one is dedicated to the
calculation of an index for the primary performance, called Global Score on Primary
performance (GSP); the second one is aimed to construct an index for the secondary
performances, called Global Score on Secondary performance (GSS). The final step
consists in the aggregation of GSP and GSS to obtain a global performance measure
named Global Performance Score (GPS).

10.3.1 Global score on primary performance

Within each stratum an ANOVA test is performed and from the usual C× (C−1)/2
pairwise comparisons it is possible to test the statistical significance of the differ-
ences between the mean performances for each couple of products (u,v). Let us
indicate with y(1)ts1 ≥ y(2)ts1 ≥ . . .y(C)ts1 the ordered observed sample means for Y1

and assume that high values correspond to better performance. The algorithm to cal-
culate the GSP is the following:

1. for each of the T ×S strata a C×C matrix X is created (see the example in Table
10.1) where the elements under the main diagonal are null and those over the
main diagonal take value 0 or 1 according to the following rule:
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X [u,v] = h
[
y(u)ts1,y(v)ts1

]{ 1 if y(u)ts1 is significantly not equal to y(v)ts1
0 otherwise;

2. a rank table, as shown in the example of Table 10.1, is created according to the
following steps:

a. in row 1, rank 1 is assigned to the product with the higher mean (first column),
indicated with (1), and to all the other products whose mean performances are
not significantly different from that of (1);

b. in row 2, rank 2 is assigned to the product with the higher mean, among those
excluded from rank 1 assignation, and to all the other products whose mean
performances are not significantly different from that of (2);

c. in row r, rank r is assigned to the product with the higher mean, among those
excluded from rank (r− 1) assignation, and to all the other products whose
mean performances are not significantly different from that of (r);

d. the iterated procedure stops when a rank is assigned to the product (C);

3. for each product, the arithmetic mean of the values from the rank table (mean by
columns) gives a partial performance score: Z(c)ts1;

4. aggregated values Zct·1 respect to one stratification factor are obtained. For
example if an additive aggregation is used,

Zct·1 =
St

∑
s=1

πtsZcts1;

while the application of a geometric rule gives

Zct·1 =
St

∏
s=1

Zπts
cts1.

In general
Zct·1 = g(Zct11, . . . ,ZctSt 1;πt1, . . . ,πtSt );

5. to have comparability among indicators and to facilitate the reading of the results,
standardization has to be performed:

Z̃ct·1 = T1(Zct·1);

6. aggregation respect to the other stratification factor allows us to obtain a non-
standardized measure of the primary performance for product c:

Zc··1 = g(Z̃c1·1, . . . , Z̃cT ·1;π1, . . . ,πT );

7. final standardization gives the requested Global Score on Primary performance:

GSPc = Z̃c··1 = T1(Zc··1),

where π11, . . . ,πT ST ,π1, . . . ,πT are predetermined weights.
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Table 10.1 Example of X matrix for the multiple comparisons between pairs of products (C = 8)

Ordered products (1) (2) (3) (4) (5) (6) (7) (8)

(1) 0 0 1 1 1 1 1
(2) 0 0 0 0 1 1
(3) 0 0 0 0 1
(4) 0 0 0 0
(5) 0 0 0
(6) 0 0
(7) 0
Rank
1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4
Z(c)tsk 1 1.5 2 3 3 3 3.5 4

10.3.2 Global score on secondary performance

For variables Y2,Y3, . . . ,YK just one replication is available, hence a synthetic mea-
sure of the secondary performances can be obtained by means of a sequential pro-
cedure of standardizations and aggregations. In general the secondary performance
of product c, for a given t and a given s, related to the k-th aspect is calculated as a
non decreasing function of the absolute difference

∣∣Yctsk −Y ∗
tsk

∣∣ (k = 2,3, . . . ,K). Y ∗
tsk

is the value corresponding to the best theoretical or observed performance. Hence
the starting point of the sequential procedure consists in a transformation which
takes into account such value and allows standardization useful for the subsequent
aggregation. The phases of the procedure are:

1. initial data transformation: Zctsk = Tk
(∣∣Yctsk −Y ∗

tsk

∣∣/CFk
)
, where CFk represents

the so-called “calibration factor”, that is the a priori maximum difference sup-
posed to exist between products with equal washing performance;

2. aggregation respect to one stratification factor:
Zct·k = g(Zct1k, . . . ,ZctSt k;πt1, . . . ,πtSt );

3. standardization: Z̃ct·k = Tk(Zct·k);
4. aggregation respect to the other stratification factor:

Zc··k = g(Z̃c1·k, . . . , Z̃cT ·k;π1, . . . ,πT );
5. standardization: Z̃c··k = Tk(Zc··k);
6. aggregation respect to the variables: Zc··· = g(Z̃c··2, . . . , Z̃c··K ;ω2, . . . ,ωK);
7. final standardization: GSSc = Z̃c··· = T (Zc···),

where π11, . . . ,πT ST ,π1, . . . ,πT ,ω2, . . . ,ωK are predetermined weights.
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10.3.3 Aggregation of GSP and GSS

The final aggregation of GSP and GSS can be obtained using one of the considered
aggregation technique. It is possible to use different aggregation methods at different
levels of the procedure but, as suggested by Vitali and Merlini (1999), if it is possible
and consistent with the specific application problem and with data, it is preferable
to use the same aggregation function and standardization technique during all the
steps of the procedure. Hence the final aggregation can be written as:

GPSc = T [g(GSPc,GSSc;τ1,τ2)],

where τ1 and τ2 represents the degrees of importance assigned to primary perfor-
mance evaluation and secondary performance evaluation respectively.

10.4 Case study: comparative performance evaluations of new
detergents

As a real case study of GPS methodology, we propose to apply it to evaluate the
performance of laundry detergents. In this context, the primary performace can be
viewed as primary detergency, i.e. the assessment of the stain removal (cleaning)
performance of a detergent (A.I.S.E., 2009). As secondary performance, we can
refer to the so-called secondary detergency, that is the assessment of benefits which
are measurable only after a certain minimum number of washing cycles (usually 5,
10 and 15). There are several useful secondary detergency performances: Whiteness
Degree, Greying or Y-Value, Tint Value, Dye Fading and Dye Transfer Inhibition
(A.I.S.E., 2009).

In the field of detergency, the GPS methodology can be applied to several types
of common protocols, e.g.:

• cleaning stains in washing machines or laboratory scale equipments as a Lini-test
and a Tergotometer;

• measuring performance results instrumentally or through expert panels;
• stains can be standard ones (i.e. EMPA167, CFT BC3, WFK 10J, etc.) or freshly

prepared (i.e. ASTM D4265, Hohenstein, etc.).

Moreover, the GPS can be applied only to primary or secondary detergency or only
to some parts of them, because to each variable/stratum corresponds a “weight”,
which can be set equal to zero if needed.

Let us consider the measuring of primary performance results through expert
panels, hence we refer to a 5-point index where 1 means “stain completely removed”
and 5 “stain completely not removed”. Experimental replications are here provided
by a visual evaluation of four experts (panelists). We consider the comparison of
eight products and, as strata, three kinds of textile and several kinds of stains. Sec-
ondary performances are measured through instrumental values and are represented
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by three variables: Whitness Ganz (W ), Graying (G) and Tint Value (T ). Experi-
ments are performed considering three different numbers of washing cycles (5, 10,
15) and several kinds of textile. Since the “target” values for the three secondary
performances are the observed maximum for W and G and 0 for T , hence the initial
transformations of data are:

• Z(W )
cts = maxc(Wcts)−Wcts

7 ;

• Z(G)
cts = maxc(Gcts)−Gcts

0.7 ;

• Z(T )
cts = |0−Tcts|

0.5 = |Tcts|
0.5 ;

where denominators are the so called “calibration factors”, i.e. scale parameters
used in processing data calculated by means of previous secondary performance
studies with many experimental replicates, the results of which have been statis-
tically processed. The calibration factors are defined as the maximum difference
reported between the experimental data relative to products with equal washing per-
formance.

The weights of partial indexes, strata and variables have been set up by deter-
gency experts of Reckitt-Benckiser R&D Division and are shown in Table 10.2. For
primary performance, within each kind of textile, weights of stains are equal. For
secondary performance, within each kind of textile, weights of washing cycles are
the same.

GPS methodology has been applied to evaluate the global performance of the
eight products. Different combinations of standardization techniques and aggregat-
ing functions are considered. The results are illustrated in Table 10.3. Methods (V)
and (VI) differ from methods (III) and (IV) because are based on the theoretical
maximum instead of the observed one.

As expected, different combinations of standardization and aggregation perform
scores which range in a different domain but, of course, they keep the same ordering.
In fact, the rankings in Table 10.3 are the same: B is always the best product whereas
A and G are always the worst. The methods (VIII), (IX), (XII) and (XIII), with
standardizations based on decreasing transformations (inverse and rescaling respect
to the maximum), do not give results substantially different from the other methods
but just a different reading key for the observed values. On the other hand methods
(VIII) and (IX) allow to obtain values in (0,1) but cause a large reduction of the
score variability. Moreover the inverse transformation does not remove the influence
of the units of measurement of variables. If the goal of the analysis is the comparison
of each product just with the best (or with the worst) product, methods (I), (II), (III)
and/or (IV) are preferable. However methods (X), (XI), (XII) and (XIII) are the
most useful, from the interpretation point of view, because extreme (best and worst)
performances are indicated with values 0 and 1 (or viceversa) and for all the other
products it is possible to see how much they are distant from the best but also from
the worst performance. Methods (VII), (VIII) and (IX) give absolute evaluations, in
the sense that the domain of the global index does not present a finite limit, but they
are less useful from the interpretation point of view.
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Table 10.2 Weights of partial indexes, textiles (strata) and variables in washing performance
evaluations

Index/Variable/textile weights

GSP (Global Score on Primary performance) 0.70
Cotton 0.70
Polyester/Cotton 0.18
Polyester 0.12
GSS (Global Score on Secondary performance) 0.30
W (Whiteness) 0.33
Cotton 0.30
Terry towel 0.25
Single jersey 0.20
Polyester/Cotton 0.15
Polyamide 0.15
G (Graying) 0.33
Cotton 0.25
Terry towel 0.25
Single jersey 0.15
Polyester/Cotton 0.15
Polyester 0.10
Polyamide 0.10
T (Tint Value) 0.33
Cotton 0.35
Terry towel 0.25
Single jersey 0.15
Polyester/Cotton 0.15
Polyamide 0.10

Table 10.3 Detergent scores by methods according to GPS methodology

Method Standardization Aggregation B D C E F H A G

(I) Z̃ = Z
min(Z) additive 1.00 1.02 1.04 1.07 1.08 1.08 1.13 1.15

(II) geometric 1.00 1.03 1.04 1.06 1.08 1.08 1.13 1.15
(III) Z̃ = Z

max(Z) additive 0.87 0.90 0.91 0.93 0.94 0.94 0.98 0.99
(IV) geometric 0.78 0.80 0.88 0.92 0.93 0.94 0.97 0.98
(V) additive 0.14 0.14 0.14 0.14 0.15 0.14 0.15 0.15
(VI) geometric 0.10 0.10 0.10 0.11 0.11 0.11 0.11 0.11
(VII) Z̃ = Z−Z

SZ
additive −0.85 −0.38 −0.39 −0.15 0.12 0.17 0.60 0.87

(VIII) Z̃ = 1
Z additive 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11

(IX) geometric 0.10 0.09 0.09 0.08 0.08 0.08 0.08 0.08

(X) Z̃ = Z−min(Z)
max(Z)−min(Z) additive 0.11 0.22 0.33 0.46 0.57 0.48 0.80 0.86

(XI) geometric 0.00 0.09 0.21 0.32 0.31 0.20 0.80 0.80

(XII) Z̃ = max(Z)−Z
max(Z)−min(Z) additive 0.89 0.78 0.67 0.54 0.43 0.52 0.20 0.14

(XIII) geometric 0.30 0.42 0.92 0.36 0.06 0.26 0.10 0.01
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10.5 A comparative simulation study

In order to evaluate the degree of accuracy of GPS method in detecting the true
“unknown” product global performance, in this section we perform a comparative
simulation study with the goal of comparing the statistical performance of the set of
all possible combinations of standardization and aggregation techniques. We under-
line that the proposed comparative simulation study has been developed with refer-
ence to the industrial experiment presented in the previous section, hence it mimics
in details a real comparison among several existing products. Let us consider the
following setting:

• 8 units (products) to be compared (C = 8), labelled A,B,. . . ,H, with “hypotheti-
cal” true global performance as follows: B = D > E = F > C = H > A = G;

• for the primary performance, let 3 be the number of main strata (T = 3) and let
S1 = 20 and S2 = S3 = 5 be the number of levels for the second stratification
factor;

• let 3 be the number of secondary performance variables (K = 4), and 5 be the
number of main strata (T = 5) and S1 = . . . = S5 = 3 the number of levels for the
second stratification factor;

• the weights of strata and variables are shown in Table 10.2 (in previous section);
• we suppose to know, for each of the 8 products, the true partial performances;

more specifically, we set the true partial performances as reported in Tables 10.4
and 10.5.
Note that, since we have set the true partial performances we are also able to
calculate the “true” GPS scores, for each combination of standardistation and
aggregation techniques (Table 10.6). It is worth noting that the true “hypotheti-
cal” global performance (i.e. B = D > E = F > C = H > A = G) matches actually
the ‘true’ product scores for each one of the thirteen considered GPS methods.

We recall that primary performance are supposed to be generated by a repli-
cated experimental design, hence Table 10.4 represents the true supposed mean
values of each product by strata. Therefore, in order to perform our simulation
study, we have to add to the true mean values an i.i.d. random component. For
this goal, our simulation setting can be characterized by:

• a set of 1,000 random independent simulations, where for the primary simulated
data we consider:

• a fixed number of experimental replicates equal to 4;
• two possible values for the variance of the random component: σcts = 0.25 or

0.5, c = 1, . . . ,8, t = 1, . . . ,3, s = 1, . . . ,St (S1 = 20 and S2 = S3 = 5);
• three type of random errors: normal errors, exponential errors (as an example

of an asymmetric distribution) and Student’s t (with 2 d.f.; as an example of
an heavy tailed distribution).

• With the aim of generating the secondary performaces, the values of Table 10.5
were added to a random error with variance equal to the half value of the corre-
sponding calibration factor (i.e. σW = 3.5, σG = 0.35, σT = 0.25).
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Table 10.4 “True” primary performances by product and strata

Str. fact. Str. fact. Product
(Textile) (Stain) A B C D E F G H

Cotton Tea 4 4 4 4 4 4 4 4
Cotton Red wine 4.5 4.5 4.5 4.5 4 4 4.5 4.5
Cotton Blueberry juice 3.5 3.5 3 3.5 3 3 3.5 3
Cotton Cherry juice 2 2 2 2 2 2 2 2
Cotton Chocolate dessert 2 2 2.5 2 2 2 2 2.5
Cotton Cacao 3 2.5 3 2.5 2.5 2.5 3 3
Cotton Chocolate ice cream 3 2.5 3 2.5 3 3 3 3
Cotton Spinach 3 2.5 2.5 2.5 2.5 2.5 3 2.5
Cotton Grass 3.5 3 3 3 3.5 3.5 3.5 3
Cotton Carrots 3 3 4 3 4 4 3 4
Cotton Chocolate pudding 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Cotton Curry sauce 4 3 3.5 3 3.5 3.5 4 3.5
Cotton Tomato sauce 4 3.5 4 3.5 4 4 4 4
Cotton Gravy 2 2 2 2 2 2 2 2
Cotton Frying fat 2.5 2.5 2 2.5 2 2 2.5 2
Cotton Lard 2.5 2 2 2 2 2 2.5 2
Cotton Motor oil, mixture 5 5 4.5 5 4.5 4.5 5 4.5
Cotton Make-up 5 5 4.5 5 4.5 4.5 5 4.5
Cotton Lipstick 2.5 2.5 2.5 2.5 3 3 2.5 2.5
Cotton Garden soil 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
Pol./Cot. Frying fat 3.5 3 3.5 3 3.5 3.5 3.5 3.5
Pol./Cot. Lard 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
Pol./Cot. Motor oil 5 5 5 5 5 5 5 5
Pol./Cot. Make-up 5 5 5 5 5 5 5 5
Pol./Cot. Lipstick 3 2.5 2 2.5 2.5 2.5 3 2
Polyester Frying fat 2.5 2 2 2 2 2 2.5 2
Polyester Lard 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Polyester Motor oil 4 3.5 3.5 3.5 3.5 3.5 4 3.5
Polyester Make-up 5 5 5 5 5 5 5 5
Polyester Lipstick 2.5 2.5 2 2.5 2 2 2.5 2

In order to evaluate the degree of accuracy of all possible combinations of stan-
dardistation and aggregation methods, we consider the following three criteria:

1. the mean value of the Spearman’s rank correlation coefficient (Spearman’s ρ)
between the performed GPS scores and the corresponding “true” GPS scores;

2. the mean square error (MSE) of the whole set of performed GPS scores (with
reference to the “true” GPS scores);

3. the 95% “pseudo” confidence intervals for the GPS score of three selected
products (B, F and G), that is the 0.025 and 0.975 percentiles of the empirical
distribution we obtained from the 1,000 simulations for the GPS score. Note
that the upper and the lower “pseudo” confidence limits represent the range
where we observed the 95% of the individual GPS score distribution.

Results of the proposed simulation study are presented in Tables 10.7 and 10.8.
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Table 10.5 “True” secondary performances by product and strata

Second. 1. Str. fact. 2. Str. fact. Product
perform. (Textile) (Cycle) A B C D E F G H

W Cotton 5 187 195 190 195 191 191 187 190
W Cotton 10 202 210 205 210 206 206 202 205
W Cotton 15 212 220 215 220 216 216 212 215
W Terry towel 5 222 230 225 230 226 226 222 225
W Terry towel 10 232 240 235 240 236 236 232 235
W Terry towel 15 237 245 240 245 241 241 237 240
W Single jersey 5 222 230 225 230 226 226 222 225
W Single jersey 10 227 235 230 235 231 231 227 230
W Single jersey 15 229 237 232 237 233 233 229 232
W Pol./Cot. 5 212 220 215 220 216 216 212 215
W Pol./Cot. 10 214 222 217 222 218 218 214 217
W Pol./Cot. 15 217 225 220 225 221 221 217 220
W Polyamide 5 107 115 110 115 111 111 107 110
W Polyamide 10 109 117 112 117 113 113 109 112
W Polyamide 15 112 120 115 120 116 116 112 115
G Cotton 5 90 91 90.5 91 90.5 90.5 90 90.5
G Cotton 10 90 91 90.5 91 90.5 90.5 90 90.5
G Cotton 15 90 91 90.5 91 90.5 90.5 90 90.5
G Terry towel 5 90 91 90.5 91 90.5 90.5 90 90.5
G Terry towel 10 89 90 89.5 90 89.5 89.5 89 89.5
G Terry towel 15 89 90 89.5 90 89.5 89.5 89 89.5
G Single jersey 5 89 90 89.5 90 89.5 89.5 89 89.5
G Single jersey 10 89 90 89.5 90 89.5 89.5 89 89.5
G Single jersey 15 89 90 89.5 90 89.5 89.5 89 89.5
G Pol./Cot. 5 86 87 86.5 87 86.5 86.5 86 86.5
G Pol./Cot. 10 86 87 86.5 87 86.5 86.5 86 86.5
G Pol./Cot. 15 85 86 85.5 86 85.5 85.5 85 85.5
G Polyester 5 86 87 86.5 87 86.5 86.5 86 86.5
G Polyester 10 85 86 85.5 86 85.5 85.5 85 85.5
G Polyester 15 85 86 85.5 86 85.5 85.5 85 85.5
G Polyamide 5 89 90 89.5 90 89.5 89.5 89 89.5
G Polyamide 10 87 88 87.5 88 87.5 87.5 87 87.5
G Polyamide 15 86 87 86.5 87 86.5 86.5 86 86.5
T Cotton 5 −1 −0.4 −0.7 −0.4 −0.6 −0.6 −1 −0.7
T Cotton 10 −0.8 −0.2 −0.5 −0.2 −0.4 −0.4 −0.8 −0.5
T Cotton 15 −0.6 0 −0.3 0 −0.2 −0.2 −0.6 −0.3
T Terry towel 5 1.6 1 1.3 1 1.2 1.2 1.6 1.3
T Terry towel 10 1.7 1.1 1.4 1.1 1.3 1.3 1.7 1.4
T Terry towel 15 2.1 1.5 1.8 1.5 1.7 1.7 2.1 1.8
T Single jersey 5 1.3 0.7 1 0.7 0.9 0.9 1.3 1
T Single jersey 10 1.4 0.8 1.1 0.8 1 1 1.4 1.1
T Single jersey 15 1.5 0.9 1.2 0.9 1.1 1.1 1.5 1.2
T Pol./Cot. 5 1.6 1 1.3 1 1.2 1.2 1.6 1.3
T Pol./Cot. 10 1.7 1.1 1.4 1.1 1.3 1.3 1.7 1.4
T Pol./Cot. 15 2.1 1.5 1.8 1.5 1.7 1.7 2.1 1.8
T Polyamide 5 0.9 0.3 0.6 0.3 0.5 0.5 0.9 0.6
T Polyamide 10 1.2 0.6 0.9 0.6 0.8 0.8 1.2 0.9
T Polyamide 15 1.6 1 1.3 1 1.2 1.2 1.6 1.3
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Table 10.6 “True” product scores by methods according to GPS methodology

Method Standardization Aggregation B D E F C H A G

(I) Z̃ = Z
min(Z) additive 1.00 1.00 1.17 1.17 1.19 1.19 1.54 1.54

(II) geometric 1.00 1.00 1.15 1.15 1.17 1.17 1.50 1.50
(III) Z̃ = Z

max(Z) additive 0.68 0.68 0.77 0.77 0.78 0.78 1.00 1.00
(IV) geometric 0.44 0.44 0.64 0.64 0.67 0.67 1.00 1.00
(V) additive 0.13 0.13 0.14 0.14 0.14 0.14 0.18 0.18
(VI) geometric 0.09 0.09 0.11 0.11 0.11 0.11 0.14 0.14
(VII) Z̃ = Z−Z

SZ
additive −0.90 −0.90 −0.33 −0.33 −0.25 −0.25 1.47 1.47

(VIII) Z̃ = 1
Z additive 0.14 0.14 0.11 0.11 0.11 0.11 0.08 0.08

(IX) geometric 0.11 0.11 0.08 0.08 0.07 0.07 0.05 0.05

(X) Z̃ = Z−min(Z)
max(Z)−min(Z) additive 0.00 0.00 0.23 0.23 0.26 0.26 1.00 1.00

(XI) geometric 0.00 0.00 0.12 0.12 0.07 0.07 1.00 1.00

(XII) Z̃ = max(Z)−Z
max(Z)−min(Z) additive 1.00 1.00 0.77 0.77 0.74 0.74 0.00 0.00

(XIII) geometric 1.00 1.00 0.80 0.80 0.77 0.77 0.00 0.00

It is interesting to highlight that the considered thirteen methods (combinations
of standardization and aggregation techniques) do not perform in the same way. The
best one is the method labelled as IV, i.e. standardization by the maximum observed
value and aggregation by multiplicative function. In fact, method IV is denoted by
higher Spearman’s ρ , lower MSE and lower width of the “pseudo” confidence in-
terval. With reference to the last criterion, which seems to be the more consistent,
note that method IV is the only one able to not overlay the “pseudo” confidence
intervals of products B and E. In general, it is worth noting that not all methods
have the same behaviour when the experimental variability is increasing and when
the random distribution is changing (especially for Student’s t error). Hence, some
methods are more robust than others, in particular the most robust are VIII and IX
and the less robust are the method labelled as VII and X-XIII.

10.6 Conclusions

The new method proposed in this chapter, named “Global Performance Score” or
simply GPS, offers a suitable and consistent approach for the construction of a
global performance index when we are facing a complex problem of product quality
evaluation. As shown by the real case study and by the simulation study, GPS offers
an immediate understanding of the results, thus facilitating their interpretation. The
GPS methodology is based on data standardization and on aggregating techniques.
Data standardization is necessary to compare different kinds of phenomena which
have been included in the same performance evaluation: usually, these variables can
be grouped into the so called “Primary” and “Secondary” performances. The GPS
can be applied entirely to Primary and Secondary performances or just to some
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Table 10.7 Simulation study results: mean value of the Spearman’s rank correlation and MSE
score

Normal errors Exponential errors Student’s t errors
Method Spear.’s ρ MSE Spear.’s ρ MSE Spear.’s ρ MSE

σ=0.25

(I) 0.89 0.081 0.89 0.090 0.87 0.263
(II) 0.89 0.078 0.88 0.084 0.88 0.265
(III) 0.88 0.068 0.88 0.072 0.87 0.282
(IV) 0.92 0.061 0.92 0.071 0.91 0.180
(V) 0.82 0.072 0.81 0.075 0.83 0.099
(VI) 0.89 0.099 0.88 0.101 0.88 0.080
(VII) 0.84 0.154 0.84 0.150 0.71 0.412
(VIII) 0.87 0.067 0.87 0.073 0.88 0.093
(IX) 0.92 0.070 0.92 0.081 0.91 0.085
(X) 0.84 0.115 0.84 0.111 0.72 0.286
(XI) 0.79 0.114 0.80 0.113 0.76 0.262
(XII) 0.84 0.115 0.84 0.111 0.72 0.286
(XIII) 0.81 0.140 0.80 0.138 0.71 0.350

σ=0.5

(I) 0.91 0.195 0.90 0.211 0.87 0.340
(II) 0.90 0.219 0.90 0.229 0.89 0.362
(III) 0.89 0.254 0.89 0.253 0.88 0.390
(IV) 0.93 0.138 0.92 0.152 0.91 0.212
(V) 0.88 0.121 0.87 0.111 0.83 0.175
(VI) 0.90 0.060 0.90 0.061 0.89 0.087
(VII) 0.74 0.400 0.75 0.384 0.55 0.589
(VIII) 0.90 0.047 0.89 0.053 0.90 0.088
(IX) 0.93 0.035 0.92 0.045 0.91 0.071
(X) 0.72 0.304 0.73 0.290 0.55 0.382
(XI) 0.78 0.283 0.79 0.261 0.62 0.362
(XII) 0.72 0.304 0.73 0.290 0.55 0.382
(XIII) 0.69 0.328 0.70 0.317 0.61 0.398

parts of them: as a matter of fact to each partial aspect of performance corresponds
a “weight”, which can be set to zero if needed.

When considering a global performance index it is possible the application of
different standardization methods and aggregating techniques. In the application
problem described in this chapter, in general, the rankings coming from different
combinations of standardization and aggregations are obviously similar but they can
substantially differ in accuracy. Moreover, the methods with standardizations based
on decreasing transformations (inverse and rescaling respect to the maximum) do
not give results substantially different from the other methods but just a different
reading key for the observed values. Methods based on inverse transformation al-
low to obtain values in (0,1) but cause a large reduction of the variability and of
performance differences between products and the influence of the units of mea-
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Table 10.8 Simulation study results: “pseudo” confidence intervals (with σ = 0.25)

product B product E product C product A
Method lower

lim.
upper
lim.

lower
lim.

upper
lim.

lower
lim.

upper
lim.

lower
lim.

upper
lim.

Normal errors
(I) 1.00 1.12 1.10 1.27 1.12 1.28 1.39 1.58
(II) 1.00 1.11 1.09 1.25 1.10 1.26 1.35 1.55
(III) 0.67 0.78 0.73 0.86 0.74 0.86 0.95 1.00
(IV) 0.44 0.55 0.59 0.73 0.61 0.76 0.92 1.00
(V) 0.14 0.16 0.14 0.17 0.15 0.17 0.18 0.21
(VI) 0.11 0.12 0.12 0.14 0.12 0.14 0.15 0.17
(VII) −1.22 −0.31 −0.73 0.15 −0.66 0.23 0.93 1.59
(VIII) 0.11 0.12 0.09 0.10 0.09 0.10 0.07 0.08
(IX) 0.08 0.10 0.06 0.07 0.06 0.07 0.04 0.05
(X) 0.00 0.29 0.12 0.53 0.14 0.55 0.78 1.00
(XI) 0.00 0.11 0.00 0.44 0.01 0.46 0.78 1.00
(XII) 0.71 1.00 0.47 0.88 0.45 0.86 0.00 0.22
(XIII) 0.53 1.00 0.30 0.92 0.39 0.89 0.00 0.06

Expon. errors
(I) 1.00 1.12 1.10 1.25 1.10 1.26 1.37 1.56
(II) 1.00 1.11 1.08 1.23 1.09 1.24 1.34 1.53
(III) 0.67 0.78 0.74 0.85 0.74 0.87 0.95 1.00
(IV) 0.46 0.56 0.59 0.73 0.62 0.76 0.90 1.00
(V) 0.14 0.17 0.15 0.17 0.15 0.17 0.18 0.21
(VI) 0.11 0.13 0.12 0.14 0.12 0.14 0.15 0.17
(VII) −1.19 −0.33 −0.70 0.12 −0.67 0.22 0.98 1.62
(VIII) 0.10 0.12 0.09 0.10 0.09 0.10 0.07 0.08
(IX) 0.07 0.09 0.06 0.07 0.06 0.07 0.04 0.05
(X) 0.00 0.29 0.11 0.50 0.14 0.55 0.79 1.00
(XI) 0.00 0.11 0.00 0.41 0.01 0.46 0.76 1.00
(XII) 0.71 1.00 0.50 0.89 0.45 0.86 0.00 0.21
(XIII) 0.50 1.00 0.30 0.91 0.40 0.89 0.00 0.06

Stud.’s t errors
(I) 1.00 1.14 1.05 1.28 1.07 1.28 1.18 1.42
(II) 1.00 1.10 1.05 1.22 1.06 1.23 1.16 1.35
(III) 0.77 0.89 0.83 0.95 0.83 0.96 0.93 1.00
(IV) 0.50 0.67 0.64 0.86 0.67 0.89 0.86 1.00
(V) 0.12 0.14 0.13 0.15 0.13 0.16 0.14 0.17
(VI) 0.10 0.12 0.11 0.13 0.11 0.13 0.12 0.14
(VII) −1.29 0.14 −0.78 0.66 −0.81 0.72 −0.16 1.40
(VIII) 0.10 0.12 0.09 0.11 0.09 0.11 0.08 0.09
(IX) 0.07 0.10 0.06 0.08 0.05 0.07 0.04 0.06
(X) 0.00 0.57 0.12 0.86 0.13 0.88 0.39 1.00
(XI) 0.00 0.22 0.00 0.72 0.01 0.76 0.02 1.00
(XII) 0.43 1.00 0.14 0.88 0.12 0.87 0.00 0.61
(XIII) 0.26 1.00 0.01 0.89 0.01 0.88 0.00 0.23
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surement of variables is not removed. If the goal of the analysis is the comparison
of each product just with the best (or just with the worst) product, standardizations
respect to the observed maximum or to the observed minimum methods are prefer-
able. However rescaling-based methods are the most useful, from the interpreta-
tion point of view, because for each product it is possible to measure the degree of
proximity to the best but also to the worst performance. Methods based on inverse
transformation and on standardization give absolute evaluations, in the sense that
the domain of the global index does not present a finite limit, but they are less useful
from the interpretation point of view.



Chapter 11
Nonparametric tests for the randomized
complete block design with ordered categorical
variables

Livio Corain and Luigi Salmaso

11.1 Introduction

In many scientific disciplines and industrial fields, when dealing with comparisons
between two or more treatments, researchers and practitioners are often faced with
theoretical and practical problems within the framework of Randomized Complete
Block (RCB) design with ordered categorical response variables. This situations can
arise very often in the field of the evaluation of educational services or quality of
products, for example in connection with the sensorial testing studies, where several
useful experimental performance indicators, especially in the food and body care in-
dustry, are provided by individual sensorial evaluations by trained people (panelists)
during a so-called sensory test (Meilgaard et al., 2006). Within this framework the
experimental design typically handles panelists as blocks.

In general, the requirement to take into consideration a RCB design occurs when
the experimental units are heterogeneous, hence the notion of blocking is used to
control the extraneous sources of variability. The major criteria of blocking are char-
acteristics associated with the experimental material and the experimental setting.
The purpose of blocking is to sort experimental units into blocks, so that the varia-
tion within a block is minimized while the variation among blocks is maximized. An
effective blocking not only yields more precise results than an experimental design
of comparable size without blocking, but also increases the range of validity of the
experimental results.

In this contribution we propose a general solution within the Nonparametric
Combination (NPC) of Dependent Permutation Tests (Pesarin, 2001) which is
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particularly suitable for the RCB design, especially in case of ordered categori-
cal response variables such that used for sensorial studies. In the next section, we
present an update review of the procedures proposed in the literature for the hypoth-
esis testing on the RCD design. In Sect. 11.3 we present the proposed permutation
solution for the RCB Design. In Sects. 11.4 and 11.5 a comparative simulation study
and a real case study are presented. Finally, we conclude, in Section 6, with some
directions of current and future research.

11.2 Overview on procedures proposed in the literature for the
RCB design

Let us consider the experimental design where there are n blocks and, within each
block, experimental units are randomly assigned to the C treatments (C > 2) and
exactly one unit is assigned to each of the C treatments. The statistical model (with
fixed effects) for the randomized complete block (RCB) design can be represented
as follows:

Yi j = μ+βi + τ j + εi j,εi j ∼ IID(0,σ2), i = 1, ...,n, j = 1, ...,C, (11.1)

where βi, τ j and Yi j, are respectively the effect of the i-th block, the effect of the j-
th treatment and the response variable for the i-th block and the j-th treatment. The
random term εi j represents the experimental error with zero mean, variance σ2 and
unknown continuous distribution P. The usual side-conditions for effects are given
by the constrains ∑iβi = ∑ j τ j = 0.

Model (11.1) is called “effect model” (Montgomery, 2005). If we define μ j =
μ + τ j, j = 1, ...,C, an alternative representation of model (11.1) is the so called
“mean model”, i.e.

Yi j = μ j +βi + εi j. (11.2)

The resulting inferential problem of interest is concerned with the following hy-
potheses: H0 :

{
τ j = 0, ∀ j

}
, against H1 :

{
∃ j : τ j �= 0

}
. Note that this hypothesis

is referred to a global test; if H0 is rejected, it is of interest to perform inference
on each pairwise comparison between couples of treatments, i.e. H0( jh) : τ j = τh, j,
h = 1, ...,C, j �= h, against H1( jh) : τ j �= τh; with reference to model (11.2), an equiv-
alent representation of H0( jh) is the following: H0( jh) : μ j − μh = 0, j, h = 1, ...,C,
j �= h, against H1( jh) : μ j −μh �= 0.

We recall that in the framework of RCB designs there is usually no interest in
testing the block effect which is handled as a nuisance factor. Note that, since no in-
teraction effect between treatments and blocks is here supposed to exist, expressions
(11.1) and (11.2) do not consider any interaction effect.
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In the framework of traditional parametric methods, when assuming random nor-
mal components, it is appropriate to test the equality of all treatment means by using
the traditional F statistic:

F =
SSTreatments/(C−1)

SSE/(n−1)(C−1)
, (11.3)

where SSTreatments = n
C
∑
j=1

(Y · j −Y ··)2, SSE =
n
∑

i=1

C
∑
j=1

(Yi j −Y · j −Y i· +Y ··)2 and

Y · j is the mean of the n experimental units in the j-th treatment, Y i· is the block
mean for the i-th block, and Y ·· is the overall mean. The F statistic is distributed as
FC−1,(C−1)(n−1) if the null hypothesis H0 is true, hence we would reject H0, at the
significance level α , if F0 > Fα;(C−1),(C−1)(n−1). If the analysis indicates a significant
difference in treatment means, we are usually interested in multiple comparisons
to find out which treatment means differ. That is, when the global null hypothesis
H0 would be rejected we would consider the post-hoc set of C(C−1)/2 individual
H0( jh) null hypotheses. Under normality, Bonferroni adjusted t-tests or Tukey’s tests
are the most recommended procedures. We recall that when carrying out multiple
testing, there should be a formal guarantee against incorrect decisions. The so called
multiplicity problem is particularly relevant in multiple comparison problems, since
omitting to consider the multiplicity issue can often cause biased statistical analyses
(Westfall et al., 1999).

Since the normality assumption is often questionable, if we do not assume the
normality of random errors we can take into consideration a nonparametric ap-
proach. In the framework of nonparametric rank-based testing procedures, one of
the earlier tests has been proposed by Friedman (1937). A general form of the Fried-
man’s statistic T , which incorporates a correction for ties (Lehmann and D’Abrera,
2006), is given by:

T =
(C−1)

C
∑
j=1

[R+ j −n(C +1)/2]2

n
∑

i=1

C
∑
j=1

(Ri j)2 −nC(C +1)2/4
, (11.4)

where Ri j is the rank of Yi j among the experimental units in block i and R+ j =∑ j Ri j

is the sum of the ranks for the j-th treatment over the n blocks. Under the null hy-
pothesis, the R+ j’s should be close to n(C + 1)/2 which is the average of the R+ j.
Since T has an asymptotic Chi-square distribution with C−1 degree of freedom, we
would reject the null hypothesis H0 if T0 > χ2

α,C−1. After rejection of H0, the com-
parisons between pairs of treatments can be performed via absolute differences of
the sums of within-blocks ranks. This set of values have to be compared with an ap-
propriate value rα which is function of C and n. For small values of C and n, rα has
been tabulated whereas, as n tends to infinity, it can be approximated by the distribu-
tion of the range of independent standard normal variables. This procedure, called
Wilcoxon-Nemenyi-McDonald-Thompson procedure (Hollander and Wolfe, 1999),
has been designed in order to maintain an appropriate Maximum Experimentwise
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Error Rate (MEER) α , where EER is defined as the probability to reject at least one
true hypotheses in the set of C(C−1)/2 individual H0( jh) null hypotheses.

Following Lehmann and D’Abrera (2006), the formula (11.4) can be replaced
by:

T = nd′Σ−1
0 d, (11.5)

where Σ0 = (σ j j′) is the covariance matrix under the null hypothesis of Ri =
(Ri1, · · · ,Ri,C−1), that is the rank order of the first C−1 treatments, and

d′ =
[
R+1 − (C +1)/2,R+2 − (C +1)/2, · · · ,R+(C−1) − (C +1)/2

]
, (11.6)

where R+ j = ∑ j Ri j. Sepansky (2007) suggests a modification of (11.6), by the fol-
lowing test statistic:

TP = nd′Σ̂−1d, (11.7)

where Σ̂−1 = (s j j′) is the sample covariance matrix of the Ri. Note that TP is an
Hotelling-type T 2 statistic and its limiting distribution is the χ2 distribution with C−
1 degrees of freedom (see Hollander and Wolfe, 2003). Sepansky (2007) examines
also the covariance matrix in the test statistic (11.7) when the number of blocks or
sample size is small and he claims that the null hypothesis of no treatment difference
should be rejected when the sample covariance matrix is singular. It is worth noting
that while the Friedman test statistic is well defined when n is less than C, TP is
not since the sample covariance matrix is singular for all possible data matrices in
this case. The idea of Sepanky of rejecting the null hypothesis when the sample
covariance matrix is questionable and he does not support this statement with any
kind of formal proof and the motivation he provided is quite debatable. Moreover,
the simulation results presented by author clearly show that, especially for small
values of n, his test statistic does not maintain the nominal levels under the null
hypothesis. Hence, this proposal might be unreliable to properly perform inference
for RCB designs.

Another approach, refereed as aligned rank test (Lehmann and D’Abrera, 2006),
is to make all blocks comparable so that comparisons between treatments in dif-
ferent blocks are meaningful. This can be done by subtracting the median or mean
value of the experimental units in the block from all experimental units in that block.
After this alignment is completed, the aligned experimental units are ranked over all
blocks and treatments. It can be shown that, under the null hypothesis, the following
statistic is a χ2

C−1 for large samples:

S =
(C−1)n2

C
∑
j=1

(
R· j −R

2
··

)2

n
∑

i=1

C
∑
j=1

(
Ri j −Ri·

)2
, (11.8)



11 Nonparametric tests for the RCB design with ordered categorical variables 185

where now Ri j denotes the aligned rank for Yi j, Ri· is the average rank for the i-th
block, R· j is the average rank for the j-th treatment and R·· is the overall average
rank.

In the literature there are a few other test statistics proposed for the RCB design.
Among others, Quade (1979) proposed a test based on within-block rankings that
gives greater weights to blocks that have greater variability. However, since several
simulations studies (Fawcett and Salter, 1984); Groggel (1987) have shown that
the Quade procedure is not well performing in some situations, hence as suggested
by O’Gorman (2001), it will be not included in the simulations we will present
afterwards in this work. O’Gorman (2001) reviews and evaluates several tests for
RCB design, including the F-test, Friedman’s test, and a few aligned rank tests. His
simulations show that Friedman’s test has low power compared with the aligned
rank tests if the number of treatments does not exceed six and a novel aligned rank-
based F-test proposed by the author shows relatively high power for several skewed
distributions if there is a large number of experimental units.

11.3 Permutation tests for multivariate RCB design

When dealing with complex designs conditional nonparametric methods can rep-
resent a reasonable approach. We recall that traditional unconditional parametric
testing methods (such as t test or F test) may be available, appropriate and effec-
tive only when a set of restrictive conditions are satisfied. Accordingly, just as there
are circumstances in which unconditional parametric testing procedures may be ap-
propriate, there are others where they may be unsuitable or even impossible to be
properly applied. In conditional testing procedures, provided that exchangeability
of data with respect to groups is satisfied in the null hypothesis, permutation meth-
ods play a central role. This is because they allow for quite efficient solutions, are
useful when dealing with many difficult problems, provide clear interpretations of
inferential results, and allow for weak extensions of conditional to unconditional
inferences. For a detailed discussion on the topic of the comparison between per-
mutation conditional inferences with traditional unconditional inferences we refer
to Pesarin (2002).

In this chapter we propose a novel solution for the whole set of hypotheses of
interest within the nonparametric framework of NonParametric Combination (NPC)
of dependent permutation tests (Pesarin, 2001; Corain and Salmaso, 2004).

In order to better explain the proposed approach let us denote an (n×C) data set
Y as:

Y =
[
Y1, ...,Y j, ...,YC

]
=

⎡
⎢⎢⎢⎢⎣

Y11 ... Y1 j ... Y1C

... ... ... ... ...
Yi1 ... Yi j ... YiC

... ... ... ... ...
Yn1 ... Yn j ... YnC

⎤
⎥⎥⎥⎥⎦,
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where Yi j represents the i jth observed response for ith block and jth treatment,
i = 1, ...,n, j = 1, ...,C, (C ≥ 2).

In the framework of NonParametric Combination (NPC) of dependent permuta-
tion tests we suppose that, if the global null hypothesis H0 is true, the hypothesis of
exchangeability of random errors within the same block holds. Hence, the following
set of mild conditions should be jointly satisfied:

(i) Suppose that for Y = [Y1, ...,YC] an appropriate distribution Pj exists, Pj ∈
F , j = 1, ...,C, belonging to a (possibly non-specified) family F of non-
degenerate probability distributions;

(ii) The null hypothesis H0 states the equality in distribution of the response vari-
able in all C groups:

H0= [P1, ...,PC] =[Y1
d= ...

d= YC].

Null hypothesis H0 implies the exchangeability, within each block, of the in-
dividual data with respect to the C groups. Moreover H0 is supposed to be
properly decomposed into C×(C−1)/2 sub-hypotheses H0( jh), j,h = 1, ...,C,
j �= h, each one related to the jhth pairwise comparison between couples of
treatments:

H0= [
C⋂

j,h=1
j �=h

Y j
d= Yh] = [

C⋂
j,h=1
j �=h

H0( jh)].

H0 is called the global or overall null hypothesis, and H0( jh), j,h = 1, ...,C,
j �= h, are the partial null hypotheses.

(iii) The alternative hypothesis H1 is represented by the union of partial H1( jh) sub-
alternatives:

H1= [
C⋃

j,h=1
j �=h

H1( jh)] = [
C⋃

j,h=1
j �=h

H1( jh)],

so that H1 is true if at least one of sub-alternatives is true.
In this context, H1 is called the global or overall alternative, and H1( jh), j,h =
1, ...,C, j �= h, are called the partial alternatives.

(iv) Let T = T(Y) represent a vector of test statistics, whose components T( jh),
j,h = 1, ...,C, j �= h, represent the partial univariate and non-degenerate par-
tial test appropriate for testing the sub-hypothesis H0( jh) against H1( jh). With-
out loss of generality, all partial tests are assumed to be marginally unbiased,
consistent and significant for large values (for more details see Pesarin, 2001).

At this point, in order to test the global null hypothesis H0 and the C× (C−1)/2
hypotheses H0( jh), we perform the partial (univariate) tests and then we combine
them, with an appropriate combining function, in order to test the global null hy-
pothesis H0.

However, we should observe that in most real problems when the number of
blocks is large enough, there might be computational difficulties in calculating the
conditional permutation distribution. This means that it is not possible to calculate
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the exact p-value of observed statistic T( jh)0. This drawback is overcome by using
the Conditional Monte Carlo (CMC) Procedure. The CMC on the pooled data set
Y is a random simulation of all possible permutations of the same data under H0

(for more details refer to Pesarin, 2001). Hence, in order to obtain an estimate of the
permutation distribution under H0 of all test statistics, a CMC can be used. It should
be emphasized that CMC only considers permutations of individual data vectors
within each individual block, so that all underlying dependence relations which are
present in the component variables are preserved. From this point of view, the CMC
is essentially a multivariate procedure.

A suitable algorithm for calculating the proposed permutation test is composed
of the following steps:

(a) For each pairwise comparison between couples of treatments calculate the vec-
tor of the observed values of test statistics oT(Y), whose components oTjh =
T (Y j,Yh), j, h = 1, . . . ,C, j �= h, are appropriate for testing the sub-hypothesis
H0( jh) against H1( jh).

(b) Consider Y∗ as a permutation of the data set Y, carried out within each ith
block in order to preserve the dependence structure of data, then calculate the
permutation value of the test statistics:

T ∗
jh = T

(
Y∗

j ,Y
∗
h

)
, j, h = 1, . . . ,C, j �= h.

(c) Carry out B independent repetitions (i.e. Conditional Monte Carlo, CMC, itera-

tions) of step (b). The set of CMC results
{

bT ∗
jh, b = 1, . . . ,B

}
is thus a random

sampling from the permutation distribution of the test statistics.
(d) Obtain the p-value from each partial sub-hypothesis H0( jh):

λ jh = #
(
T ∗

jh ≥o Tjh
)
/B, b = 1, . . . ,B, j, h = 1, . . . ,C, j �= h.

(e) The combined observed value of the global or overall null hypothesis H0 is:

oT
′′
= ψ(λ11, . . . ,λ(C−1)C).

(f) The combined value is then computed by:

T
′′∗ = ψ

(
λ ∗

11, . . . ,λ ∗
(C−1)C

)
.

where λ ∗
jh = #

(
T

′′∗
jh ≥ bT

′′∗
jh

)
/B, b = 1, . . . ,B.

(g) The global p-value is computed as:

λ
′′
= #(T

′′∗ ≥ oT
′′
), b = 1, . . . ,B.

Matlab routines implementing permutation test for RCB design are available upon
request by authors.

It can be seen that under the general null hypothesis the CMC procedure pro-
vides a consistent estimation of the permutation distributions, both marginal and
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combined, of the S partial tests. In the nonparametric combination procedure,
Fisher’s combination function is usually considered, principally for its good prop-
erties which are both finite and asymptotic (Pesarin, 2001). Of course, if it were
considered appropriate, it would be possible to take into consideration any other
combining function. The combined test is unbiased and consistent.

A general characterization of the class of combining functions is given by the
following three main features for the combining function ψ:

(a) it must be non-increasing in each argument:

ψ(. . . ,λs, . . .) ≥ ψ (. . . ,λ ′
s , . . .) if λs < λ ′

s , s ∈ {1, . . . ,S};

(b) it must attain its supreme value, possibly not finite, even when only one argu-
ment reaches zero:

ψ(. . . ,λs, . . .) → ψ if λs → 0, s ∈ {1, . . . ,S};

(c) ∀α > 0, the critical value of everyψ is assumed to be finite and strictly smaller
than the supreme value:

T ′′
α < ψ .

The above properties define the class C of combining functions. Some of the
functions most often used to combine independent tests (Fisher, Lancaster, Liptak,
Tippett, Mahalanobis, etc.) are included in this class. For a detailed description on
how to build partial and global permutation tests refer to Pesarin (2001) and Corain
and Salmaso (2004).

11.4 Simulation study

In order to validate the proposed method and to evaluate its performance in com-
parison with either the traditional parametric (F and t test) and the nonparametric
approach (Friedman and aligned rank tests), in this section we perform a compar-
ative simulation study. The goal is focused either on the global test H0 and on the
related treatment pairwise comparisons (hypotheses H0( jh)).

The real context we are referring to is a typical sensorial study where the number
of blocks (panel lists) usually ranges around 10–15 people and the sensorial evalua-
tion is provided with a Likert 1–5 rating ordinal scale, where we suppose that the 0.5
scores are admitted as well. Note that we are actually considering a 9 point ordered
categorical response variable.

Let us consider the following setting:

• 1,000 independent simulations;
• number of blocks: n = 6,10,20; number of treatment: C = 3,5,7;
• block effect βi, i = 1, ...,n, generated from a discrete uniform distribution with

values (−1,−0.5,0,0.5,1);
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• with reference to model (11.2), the treatment effects μ j, j = 1, ..,C, are set in
Fig. 11.1.

• three type of random errors: normal, exponential (as an example of an asymmet-
ric distribution) and Student’s t with 2 degree of freedom (as an example of an
heavy tailed distribution). The variability of random errors has been calibrated to
the value of σ = 2, with the aim of properly reveal and compare the power among
the considered procedures. Finally, in order to better represent a genuine ordinal
scale, before being added to the true effects the random errors were rounded to
the nearest integer.

Fig. 11.1 Scheme of treatment effects for the simulation study.

For each simulation we performed the permutation tests (with 1,000 CMC), us-
ing the Fisher combining function, and we considered as counterparts the traditional
F-test, the Friedman test and finally the Mean Aligned Rank (MAR) test proposed
by O’Gorman (2001). The considered significance level was α = 0.05. In case of
rejection of the global null hypothesis H0k, in order to perform the treatment pair-
wise comparisons, we considered permutation tests for two paired samples. Least
Significant Difference (LSD) for the difference of mean ranks and t-tests as post-
hoc procedures respectively for Friedman test and F-test and MAR have been con-
sidered as well. We recall that all post-hoc pairwise procedures should take into
account for the problem of multiplicity (Westfall et al., 1999) hence they have to be
well defined in order to maintain at the desired α-level the type I error probability
of the main global hypothesis H0. For this goal, for permutation tests we adopted a
multiplicity correction strategy by using the closed testing approach (Marcus et al.,
1976) via Tippett combining function (i.e. the so called minP procedure, Westfall
et al., 1999) which is particularly suitable to be implemented within the framework
of permutation tests (Finos and Salmaso, 2007), while for all other pairwise pro-
cedures we adopted the Bonferroni correction. Table 11.1 summarizes the obtained
rejection rates (α = 0.05). Note that, in order to be able to properly compare the
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performances of the compared procedures with different values of C (i.e. no. of
treatments), rejection rates of pairwise comparisons are presented in terms of delta
(δ ), that is of the true differences (in term of σ ) between treatment effects, where
delta is defined as

δ jh = τ j − τh, j,h = 1, ...,C, j �= h.

For example we get δ = 1σ for C = 3 from the difference between μ2 and μ1,
whereas we get δ = 1σ for C = 5 from the differences μ3 −μ1, μ4 −μ3, μ5 −μ4.

As first remark for the simulation study, we can observe that under null hypoth-
esis all procedures appear to properly behave according to the nominal level. From
a general point of view, as expected, the power for the global hypothesis increases
when increasing the number of blocks and the number of active treatments. On
the contrary, power for pairwise comparisons decreases from 3 to 5 treatments and
slightly increases from 5 to 7. This is probably due to a drawback of the multiplicity
correction strategy which is too much conservative.

Obviously, F-test shows a better behaviour under normality, but in case of ex-
ponential errors and particularly of Student’s t errors, all nonparametric procedures
show a greater power. Among nonparametric tests, the worst one is the Friedman
test whereas a good behaviour is provided by the Mean Aligned Rank test. It should
be noted that Friedman test is actually not satisfactory when data have ties as in case
of ordered categorical variables we considered in this chapter. In fact, the continuity
correction proposed by several authors is valid only asymptotically and for finite
samples it does not provides a conservative test. Permutation test has an interme-
diate performance which is denoted by some strength and weakness aspects: it is
particularly powerful when the number of treatments is not too high and the num-
ber of blocks is around ten. An advantage of the permutation method is that it can
be easily extended to the multivariate case, i.e. when the response variable in mul-
tidimensional, by means of the nonparametric combination methodology (Pesarin,
2001).

11.5 Case study

In this section we face a real case study proposed in the literature. Suppose, as in
Lamond (1970), p. 28, that we wish to compare the flavour of meat from three breeds
of geese X , Y , and Z on a five point scale with categories ranging from “excellent”
to “very poor” and that the data from eight consumers shown in Table 11.2 are
obtained, where we have labelled the ordered categories as 1–5 scores.

When applying the considered RCB procedures to meat flavour data we can ob-
tain results reported in Table 11.3, where we performed pairwise comparisons only
if the global test had been rejected (α = 0.05). Note that, in addition to the Fisher
combining function, we considered here for the global test Tippett and Liptak com-
bining functions (Pesarin, 2001).
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Table 11.1 Rejection rates (α = 0.05) and nominal levels (only for global test)

H1 (rejection rates) H0 (nominal level)
Test n C = 3 C = 5 C = 7 Glob. test

δ δ δ
Glob 1 2 3 Glob 1 2 3 Glob 1 2 3 C = 3 C = 5 C = 7

Normal errors

6 0.485 0.034 0.175 0.393 0.532 0.020 0.107 0.309 0.557 0.024 0.057 0.245 0.050 0.043 0.045
F 10 0.813 0.092 0.377 0.761 0.823 0.036 0.236 0.632 0.832 0.048 0.127 0.533 0.043 0.054 0.050

20 0.982 0.191 0.730 0.977 0.993 0.100 0.614 0.968 0.996 0.140 0.357 0.941 0.047 0.056 0.060
6 0.382 0.017 0.094 0.292 0.406 0.005 0.043 0.164 0.440 0.005 0.020 0.127 0.044 0.041 0.030

Friedman 10 0.701 0.032 0.220 0.609 0.721 0.009 0.116 0.454 0.736 0.018 0.058 0.363 0.049 0.048 0.048
20 0.959 0.066 0.530 0.935 0.975 0.043 0.417 0.878 0.987 0.078 0.223 0.878 0.045 0.047 0.054
6 0.415 0.058 0.206 0.365 0.442 0.025 0.107 0.277 0.475 0.022 0.055 0.206 0.051 0.052 0.038

Mean AR 10 0.714 0.104 0.370 0.657 0.744 0.033 0.202 0.536 0.751 0.040 0.105 0.455 0.050 0.052 0.058
20 0.964 0.174 0.651 0.943 0.975 0.086 0.532 0.912 0.987 0.127 0.315 0.899 0.048 0.050 0.057
6 0.311 0.018 0.083 0.185 0.347 0.007 0.031 0.060 0.363 0.008 0.016 0.048 0.030 0.033 0.032

Permutation 10 0.738 0.091 0.350 0.643 0.721 0.027 0.135 0.357 0.729 0.036 0.073 0.301 0.044 0.039 0.049
20 0.985 0.259 0.761 0.973 0.988 0.113 0.566 0.935 0.991 0.158 0.329 0.909 0.048 0.055 0.047

Exponential errors

6 0.567 0.057 0.252 0.489 0.571 0.024 0.123 0.375 0.584 0.030 0.069 0.310 0.040 0.045 0.046
F 10 0.815 0.104 0.390 0.756 0.812 0.049 0.253 0.620 0.846 0.058 0.141 0.563 0.046 0.051 0.046

20 0.980 0.211 0.728 0.972 0.991 0.103 0.600 0.955 0.991 0.144 0.369 0.931 0.050 0.044 0.043
6 0.554 0.018 0.092 0.460 0.597 0.005 0.054 0.326 0.637 0.009 0.027 0.261 0.035 0.027 0.029

Friedman 10 0.850 0.041 0.241 0.785 0.904 0.014 0.188 0.680 0.936 0.036 0.111 0.618 0.054 0.056 0.039
20 0.997 0.139 0.657 0.993 1.000 0.050 0.603 0.987 1.000 0.134 0.400 0.979 0.049 0.036 0.048
6 0.596 0.137 0.296 0.545 0.643 0.035 0.177 0.462 0.684 0.046 0.095 0.404 0.042 0.039 0.040

Mean AR 10 0.861 0.207 0.470 0.820 0.917 0.059 0.360 0.769 0.943 0.087 0.221 0.734 0.059 0.067 0.045
20 0.997 0.325 0.840 0.995 1.000 0.140 0.767 0.993 1.000 0.222 0.538 0.990 0.053 0.043 0.052
6 0.421 0.028 0.155 0.260 0.449 0.012 0.033 0.085 0.478 0.016 0.018 0.074 0.026 0.031 0.027

Permutation 10 0.900 0.156 0.486 0.792 0.914 0.058 0.253 0.545 0.940 0.086 0.155 0.520 0.056 0.056 0.043
20 0.988 0.314 0.768 0.966 0.994 0.150 0.602 0.917 0.995 0.238 0.422 0.914 0.053 0.042 0.050

Student’s t errors

6 0.189 0.019 0.050 0.134 0.165 0.006 0.026 0.067 0.139 0.006 0.008 0.029 0.036 0.033 0.040
F 10 0.261 0.037 0.079 0.203 0.263 0.011 0.042 0.133 0.222 0.006 0.015 0.072 0.030 0.026 0.039

20 0.478 0.052 0.195 0.395 0.430 0.017 0.080 0.237 0.379 0.012 0.033 0.144 0.030 0.025 0.053
6 0.216 0.013 0.044 0.154 0.197 0.004 0.017 0.071 0.234 0.003 0.010 0.052 0.046 0.034 0.046

Friedman 10 0.352 0.031 0.101 0.254 0.397 0.008 0.049 0.183 0.388 0.007 0.022 0.115 0.039 0.034 0.051
20 0.693 0.058 0.265 0.624 0.746 0.024 0.155 0.501 0.790 0.030 0.086 0.443 0.050 0.042 0.056
6 0.241 0.049 0.091 0.192 0.232 0.011 0.045 0.116 0.273 0.013 0.022 0.086 0.051 0.043 0.054

Mean AR 10 0.372 0.068 0.155 0.294 0.438 0.018 0.082 0.231 0.422 0.014 0.034 0.162 0.047 0.042 0.061
20 0.703 0.095 0.316 0.641 0.756 0.040 0.209 0.543 0.802 0.047 0.111 0.495 0.057 0.046 0.061
6 0.155 0.018 0.029 0.089 0.146 0.006 0.014 0.029 0.172 0.007 0.007 0.022 0.029 0.028 0.039

Permutation 10 0.403 0.066 0.155 0.312 0.428 0.014 0.057 0.171 0.412 0.011 0.024 0.120 0.039 0.033 0.040
20 0.550 0.096 0.266 0.458 0.559 0.032 0.134 0.329 0.593 0.037 0.071 0.300 0.039 0.045 0.051

It is interesting to observe that not all procedures agree to reject the global null
hypothesis (α = 0.05). Moreover, the use of different combining functions for per-
mutation tests seems to provide decision rules which are potentially more or less
powerful.

It can be proved that the combined permutation test obtained using Fisher, Liptak
or Tippet combining functions are so called ’admissible’ combination, i.e. it does not
exist any other type of combination which is uniformly more powerful. Note that if
several combining functions are admissible they are equivalent as well.
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Table 11.2 Category ratings for meat flavour for three breeds of geese

Consumer X Y Z

1 3 2 3
2 4 5 4
3 3 2 3
4 1 4 2
5 2 4 2
6 1 3 3
7 2 5 4
8 2 5 2

Table 11.3 Category ratings for meat flavour for three breeds of geese

Test Pairwise comparisons
Global X vs. Y X vs. Z Y vs. Z

F 0.028 0.026 0.675 0.292
Friedman 0.152 – – –
Mean AR 0.158 – – –
Permutation

Fisher 0.049 0.048 0.235 0.113
Tippet 0.107 – – –
Liptak 0.019 0.026 0.256 0.103

11.6 Conclusions

In this chapter we have presented a combination-based permutation solution for hy-
pothesis testing within the framework of randomized complete block design. The
proposed solution may suggest to practitioners in the field of evaluation for educa-
tional services and quality of products an effective approach, especially when using
ordered categorical variables, such as in the case of sensorial evaluations. As con-
firmed by the presented simulation study, the nonparametric tests are certainly good
alternatives, in particular respect to the traditional parametric F and t test. In fact,
even in case of normality, the power of permutation tests is nearly the same as that of
the parametric tests, while in case of asymmetric or heavy tailed error distributions
permutation tests can provide higher power. Hence, in each practical situation where
the normality assumption is hard to justify, the proposed nonparametric procedure
can be considered a valid solution.

Finally, as suggested by the real case study, a possible way to improve power of
permutation tests is to better investigate the role of the combining functions. Note
that our proposed permutation test applies a combining function two times: at first in
order to combine the partial pairwise permutation tests to obtain a global test, then
we apply a combining function in order to perform a suitable multiplicity correction
strategy for pairwise permutation p-values.



Chapter 12
A permutation test for umbrella alternatives

Dario Basso, Fortunato Pesarin and Luigi Salmaso

12.1 Introduction

There is a wide variety of stochastic ordering problems where J groups (typically
ordered with respect to time) are observed along with a (continuous) response. The
interest of the study may be on finding the change-point group, i.e. the group where
an inversion of trend of the variable under study is observed. A change point is not
merely a maximum (or a minimum) of the time-series function, but a further re-
quirement is that the trend of the time-series is monotonically increasing before that
point, and monotonically decreasing afterwards. A suitable solution can be provided
within a conditional approach, i.e. by considering some suitable nonparametric com-
bination of dependent tests for simple stochastic ordering problems.

In a one-way ANOVA experiments, it is common that the response variable in-
creases with an increase in the treatment level up to a point, then decreases with
further increase in the treatment level. In the literature, this up-then-down pattern
has been identified as umbrella ordering (Mack and Wolfe, 1981). Umbrella or-
derings can be observed with many physical and biological phenomena in a wide
variety of scientific research areas.

There has been considerable previous work on procedures designed to test homo-
geneity against umbrella ordering alternatives. Such testing procedures are generally
based on ranks. An introductory review on such tests can be found in Wolfe (2006)
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and in Millen and Wolfe (2005). Mack and Wolfe (1981) proposed a test statistic
based on the Jonckheere-Terpstra statistic.
Hettmansperger and Norton (1987) pointed out that no comparisons are made in the
Mack-Wolfe test between samples preceding the known peak and those following it.
Pan (1996) proposed to retrieve the information across the peak using a test statis-
tic which is the maximum of the Jonckheere-Terpstra statistics. However, within
this kind of alternatives, tests for umbrella alternatives with an unknown peak are
much more practical. The most common approach to construct test statistics for this
setting is to take the maximum of the test statistics for umbrella alternatives with
known peaks (Mack and Wolfe, 1981; Hettmansperger and Norton, 1987; Chen and
Wolfe, 1990; Shi, 1998; Hartlaub and Wolfe, 1999). Magel and Qin (2003) proposed
a test that extends the Chen and Wolfe (1990) test for umbrella alternatives with an
unknown peak to use with ranked-set samples data which is essentially based on
the procedure proposed by Hartlaub and Wolfe (1999). The proposed test, however,
is not the best in situations where the first location shift or the last location shift is
much higher than the others. If the first or last location shift is expected to be much
higher than the remaining shifts, and the remaining location shifts are expected to be
approximately equal, both the Chen–Wolfe and Mack–Wolfe tests are recommended
for use. It has also been shown (Kössler, 2006) that generally the Hettmansperger-
Norton-type test performs better, densely followed by the Chen–Wolfe-type test and
the Shi-type test. Recently, Pan (2008) proposed a non-parametric distribution-free
confidence procedure for umbrella orderings by constructing a random confidence
subset of the ordered treatments such that it contains all the unknown peaks (op-
timal treatments) of an umbrella ordering with any pre-specified confidence level.
Anyway in the literature it is well recognized that Mack and Wolfe and Chen and
Wolfe type tests are the milestones for the umbrella alternative problems.

There are very few papers concerning nonparametric permutation proposals for
umbrella alternatives a part for some hints given in Manly (1997) and the recent
paper by Neuhäuser et al. (2003) where a modified Jonckheere–Terpstra test is pre-
sented in a suitable permutation version in order to obtain reliable results with small,
sparse, unbalanced, and tied data.

In this chapter, we introduce a permutation test for umbrella alternatives. Per-
mutation tests do not require assumption on the distribution of data. Moreover, the
distribution of the test statistic is exact, whereas the majority of existing tests for um-
brella alternatives are exact only asymptotically. Therefore, permutation tests can be
applied at any α-values, whereas the existing competitors require tabulated critical
values for some α-levels that have been chosen by the related authors. The proce-
dure we are introducing works even with very small sample sizes (say 2 replicates
for each treatment) and/or in unbalanced cases. Thus, we recommend this procedure
when small sample sizes are available or when data cannot be assumed to follow a
specific distribution.

The procedure proposed makes use of the nonparametric combination, intro-
duced by Pesarin (2001). This methodology is based on the decomposition of com-
plex hypotheses (such as the umbrella alternative) into a set of simple “partial” hy-
potheses. Each partial hypothesis is then tested by a suitable “partial test” and the
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information related to partial tests is then combined together through the nonpara-
metric combination leading to a global test statistic for the complex problem.

The context is that of one-way ANOVA experiments, where the experimental fac-
tor (time, increasing doses of drug) levels determines the treatments which identify
the J groups.
Let Yi j be the observed response variable on the ith subject from group j = 1, . . . ,J.
We assume Yi j to follow the additive model:

Yi j = μ+δ j + εi j i = 1, . . . ,n j, (12.1)

where μ is the population mean, δ j is the treatment effect on the jth group (which
may also be stochastic) and εi j are exchangeable errors with zero mean and finite
variance σ2 (typically i.i.d. random variables, independent of δ j’s), and n j are fixed
sample sizes. Let Fj(y) be the cumulative distribution function of the response vari-
able in group j. Then we wish to assess the null hypothesis of no treatment effect:

H0 : F1(y) = F2(y) = · · · = FJ(y) ∀ y ∈ IR,

against the umbrella alternative hypothesis:

H1 : F1(y) ≥ ·· · ≥ Fj−1(y) ≥ Fj(y)
≤ Fj+1(y) ≤ ·· · ≤ FJ(y)

for some j ∈ {1, . . . ,J}, and with at least one strict inequality. That is, the inter-
est of the study is on finding the change-point group j (if it exists), i.e. the group
where an inversion of trend of the variable under study is observed. A change point
is not merely a maximum of the time-series function. Actually, a further require-
ment is that the trend of the time-series is monotonically alternative before group
j and monotonically non increasing afterwards. Thus there are two main aspects to
consider: (i) is there any umbrella behaviour due to the experimental factor? (ii) If
so, which one is the change-point group? A parametric solution to this problem is
very difficult, especially when J > 2. These hypotheses define a problem of isotonic
inference (see Hirotsu, 1998).

The proposal of this work is a conditional approach to the observed data. If we
knew the peak group, say the ĵth one, the problem of umbrella alternatives could be
simplified in an intersection of alternative hypotheses:

H1 = H↗
1 ĵ

⋂
H↘

1 ĵ

where:

H↗
1 ĵ

= F1(y) · · · ≥ Fĵ−1(y) ≥ Fĵ(y)

H↘
1 ĵ

= Fĵ(y) ≤ Fĵ+1(y) ≤ ·· · ≤ FJ(y).
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That is, if the peak group were known, the umbrella alternative could be writ-
ten as the intersection of two simple stochastic ordering alternatives (an increasing
one and a decreasing one). In order to introduce the permutation test for umbrella
alternative, we first need to introduce some suitable permutation tests for ordinary
stochastic ordering problems (Sect. 12.2). This will latter require the nonparametric
combination (NPC) methodology, which is a useful tool when one needs to com-
bine different informations/aspects of the same problem. The NPC methodology is
introduced in Chap. 1 and it will be applied for defining the permutation test for
simple stochastic ordering problems. Section 12.4 of this chapter is dedicated to our
proposal for umbrella problems. In Sect. 12.4 the test proposed is evaluated through
a simulation study, and compared with that of Mack & Wolfe. In Sect. 12.5 an ap-
plication example is discussed.

12.2 Simple stochastic ordering alternatives

Under the assumption of model (12.1), let us consider the simple stochastic ordering
problem for the first ĵ samples to assess the null hypothesis F1(y) = F2(y) = · · · =
Fĵ(y) against the alternative hypothesis F1(y) ≥ ·· · ≥ Fĵ−1(y) ≥ Fĵ(y). Note that
under the null hypothesis the elements of the response are exchangeable (this fact
enables us to provide the null distribution of a proper test statistic).

If ĵ = 2, the stochastic ordering problem reduces to a two-sample problem with
restricted alternative. If ĵ > 2, then let us consider the whole data set is split into
two pooled pseudo-groups, where the first is obtained by pooling together data of
the first k groups (ordered with respect to the treatment levels), and the second by
pooling together the remaining observations. In order to better understand the rea-
son why we pool together the ordered groups, suppose ĵ = 3 and let us consider the
following theorem:

Theorem 1: Let X1, X2, X3 be mutually independent random variables which ad-

mit cumulative distribution function Fj(t), t ∈ IR, j = 1,2,3. Then, if X1
d
≤ X2

d
≤ X3,

we have:

(i) X1
d
≤ X2 ⊕X3 and (ii) X1 ⊕X2

d
≤ X3,

where W ⊕V indicates a mixture of random variables W and V , i.e. FW⊕V (t) =
ωW FW (t)+ωV FV (t), t ∈ IR, ωW ,ωV ∈ [0,1], ωW +ωV = 1.

Proof: By definition, X1
d
≤ X2

d
≤ X3 is equivalent to F1(t) ≥ F2(t) ≥ F3(t), ∀ t ∈

IR. The random variable X1 ⊕X2 has cumulative distribution function equal to:

FX1⊕X2(t) = ω1F1(t)+ω2F2(t),

with ω1,ω2 ∈ [0,1], ω1 +ω2 = 1. Therefore, by hypothesis:
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FX1⊕X2(t) = ω1F1(t)+ω2F2(t)
≥ ω1F2(t)+ω2F2(t) = F2(t),

so X1⊕X2
d
≤X2 and we have proved (ii). In the same way, let FX2⊕X3(t) =ω2FX2(t)+

ω3FX3(t) with ω2,ω3 ∈ [0,1], ω2 +ω3 = 1, then:

FX2⊕X3(t) = ω2F2(t)+ω3F3(t)
≤ ω2F2(t)+ω3F2(t) = F2(t),

therefore X2 ⊕X3
d
≥ X2, and this proves (i).

Now, conditionally to the observed data, consider the pooled vector of observa-
tions y1�y2 = [y1,y2]′, where y j is a vector of n j observations from FYj(y), j = 1,2,
and the symbol � denotes the pooling of two vectors. Then the random variable
Y1⊕Y2 describing the generic observation of y1�y2 has (empirical) cumulative dis-
tribution function equal to:

F̂Y1⊕Y2(y) =
1

n1 +n2

2

∑
j=1

n j

∑
i=1

I(yi j ≤ y)

=
n1

n1 +n2

∑n1
i=1 I(yi1 ≤ y)

n1
+

n2

n1 +n2

∑n2
i=1 I(yi2 ≤ y)

n2

= ω1F̂Y1(y)+ω2F̂Y2(y),

where I(·) is the indicator function. Therefore, conditionally, Y1 ⊕Y2 has a mixture
distribution.

By extending this result to the ĵ groups and by applying Theorem 1, we have that

if Y1
d
≤ Y2

d
≤ ·· ·

d
≤ Yĵ(y) holds, then:

Y1⊕2⊕···⊕k
d
≤ Yk+1⊕k+2⊕···⊕ ĵ ∀ k ∈ {1, . . . , ĵ−1}.

In general, let z1(k) = y1 �y2 � ·· ·�yk be the first and z2(k) = yk+1 � ·· ·�y ĵ be the

second (ordered) pseudo-group, k = 1, . . . , ĵ − 1. Let Z1(k) and Z2(k) be the ran-
dom variables describing the generic observation of the pooled vectors z1(k) and
z2(k), respectively. In the null hypothesis, data of every pair of pseudo-groups are

exchangeable because the related variables satisfy the relationships Z1(k)
d= Z2(k),

k = 1, . . . , ĵ − 1. In the alternative, by Theorem 1, we have Z1(k)
d
≤ Z2(k), which

corresponds to the monotonic stochastic ordering (dominance) between any pair of
pseudo-groups (i.e. for k = 1, . . . , ĵ−1). This suggests that we express the hypothe-
ses in the equivalent form:
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H0 :

{⋂ ĵ−1

k=1
(Z1(k)

d= Z2(k))
}

,

against

H↗
1 ĵ

:

{⋃ ĵ−1

k=1
(Z1(k)

d
≤ Z2(k))

}
,

where a breakdown into a set of sub-hypotheses (or partial hypotheses) is empha-
sized.

Let us pay attention to the kth sub-hypothesis H0k : {Z1(k)
d= Z2(k)} against

H1k : {Z1(k)
d
≤ Z2(k)}. Note that the related sub-problem corresponds to a two-sample

comparison for restricted alternatives, a problem which has an exact and unbiased
permutation solution (for further details see Pesarin, 2001). This solution is based
on the test statistics (among others):

Tk↗ =
Z̄2(k) − Z̄1(k)√
σ̂2

k

(
1

n1(k)
+ 1

n2(k)

) k = 1, . . . , ĵ−1, (12.2)

where Z̄2(k) and Z̄1(k) are sample means of the second and the first pseudo-group, re-
spectively, σ̂2

k is the pooled estimate of the error variance, and n1(k) and n2(k) are the
lengths of z1(k) and z2(k). Large values of the test statistics Tk↗ are significant against

H0k : Z1(k)
d= Z2(k) in favor of the alternatives H↗

1k : Z1(k)
d
≤ Z2(k). We can obtain a

permutation test for each sub-problem H0k vs. H↗
1k by the following algorithm:

• Let y = [y1,y2, . . . ,y ĵ]
′ be the vector of the observed data in ĵ groups.

• for k = 1, . . . , ĵ−1, repeat:

1. Let z1(k) = [y1, . . . ,yk]′ and z2(k) = [yk+1, . . . ,y ĵ]
′;

2. Compute the observed values of the partial test statistics for the sub-problem
H0k vs. H↗

1k by computing:

Tk↗ =
z̄2(k)− z̄1(k)√

σ̂2
k

(
1

n1(k)
+ 1

n2(k)

) . (12.3)

• Consider a large number B of independent random permutations of the response
y, and let y∗b be a random permutation of y. At each step b = 1, . . . ,B, repeat:

1. let z∗1(k) be the vector with the first n1(k) = ∑k
�=1 n� observations and z∗2(k) be

the vector of the last n2(k) = ∑ ĵ
�=k+1 n� observations of y∗b;

2. Obtain the permutation null distribution of the test statistic by computing:
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bT ∗
k↗ =

z̄∗2(k)− z̄∗1(k)√
σ̂∗2

k

(
1

n1(k)
+ 1

n2(k)

) ,

where z̄∗2(k) and z̄∗1(k) are the means of z∗2(k) and z∗1(k), respectively, and σ̂∗2
k is

the pooled estimate of the error variance. Thus, the set
{

bT ∗
k↗,b = 1, . . . ,B

}
is a random sample from the null permutation distribution of the test statistic
Tk↗.

• Obtain the p-value of each sub-problem (partial p-value) by computing:

pk↗ =
#
[
T ∗

k↗ ≥ Tk↗
]

B
.

The previous algorithm provides ĵ−1 p-values related to the sub-hypothesis system
H0k against H↗

1k . In order to combine the partial information into a global test we
require the NPC methodology which is introduced in Chap. 1. Obviously, if the
alternative hypothesis is:

H↘
1 ĵ

: Fĵ(y) ≤ Fĵ+1(y) · · · ≤ FJ(y),

the previous algorithm still apply by replacing the test statistic (12.2) with:

Tk↘ =
Z̄1(k) − Z̄2(k)√
σ̂2

k

(
1

n1(k)
+ 1

n2(k)

) , k = ĵ, . . . ,J−1.

12.3 Permutation test for umbrella alternatives

If the peak group were known, then the umbrella alternative could be detected
by combining together two partial tests for simple stochastic ordering alternatives.
However, it is generally unknown. Nevertheless we can detect the peak group by re-
peating the procedure for known peak as if every group were the known peak group:
that is, for each j ∈ 1, . . . ,J. Let:

ψ j↗ =
j

∑
k=1

Tk↗ and ψ j↘ =
J−1

∑
k= j

Tk↘

be two partial test to assess H0 j : F1(y) = F2(y) = · · · = FK(y) against respectively

H↗
1 j and H↘

1 j by applying the direct nonparametric combination of the partial tests
Tk↗’s and Tk↘’s, then:
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• Obtain the partial p-values to assess H0 j against H↗
1 j and H↘

1 j , respectively. Let(
pG

j↗, pG
j↘

)
be the pair of p-values from the observed data.

• Obtain null distribution of the pair of p-values to assess H0 j against respectively

H↗
1 j and H↘

1 j . This will be indicated with the pair
(

b pG∗
j↗,b pG∗

j↘

)
, b = 1, . . . ,B.

That is,
(

b pG∗
j↗,b pG∗

j↘

)
is obtained by applying the previous algorithm for simple

stochastic ordering alternatives and by replacing y with y∗b;
• Obtain the observed value of the test statistic with Fisher’s NPC function:

Ψj = −2log
(

pG
j↗ · pG

j↘

)
.

• Obtain the null distribution ofΨj by computing:

bΨ ∗
j = −2log

(
b pG∗

j↗ · b p∗G
j↘

)
, b = 1, . . . ,B.

• Obtain the p-value for umbrella alternative on group k as:

π j =
#
[

bΨ ∗
j ≥Ψj

]

B
.

Note that if π j is significant then there is evidence on data of an umbrella alterna-
tive with peak group j. In order to evaluate if there is a significant presence of any
umbrella alternative, we finally combine the p-values for umbrella alternative of
each group.

• To do so: obtain the null distribution of the p-value for umbrella alternative on
group j as:

bπ∗
j =

#
[
Ψ∗ ≥ bΨ ∗

j

]

B
, b = 1, . . . ,B,

where Ψ∗ is the vector with the permutation null distribution ofΨj.
• Apply Tippett’s combining function to the π j’s, providing the observed value of

the global test statistic for umbrella alternative in any group as:

Π = min(π1,π2, . . . ,πJ).

Note that small values of Π are significant against the null hypothesis.
• Obtain the null distribution of ΠG by computing:

bΠ ∗ = min
(

bπ∗
1 ,bπ∗

2 , . . . ,bπ∗
K

)
, b = 1, . . . ,B.

• Obtain the global p-value as:

ΠG =
#[bΠ ∗ ≤Π ]

B
.
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Note that the combining functions are applied simultaneously to each random per-
mutation, providing the null distributions of partial and global tests as well. The
NPC methodology applies three times in this testing procedure:

1. When obtaining simple stochastic ordering tests to assess H↗
1k and H↘

1k for the
kth group (“direct” combining function).

2. when combining together two partial tests for simple stochastic ordering alter-
natives, providing a test for umbrella for each group as it were the known peak
group (“Fisher’s” combining function).

3. when combining together the partial tests for umbrella on each group (“Tippett’s”
combining function).

A significant global p-value ΠG indicates that there is evidence in favor of an
umbrella alternative. The peak group is then identified by looking at the partial p-
values for umbrella alternatives {π1,π2, . . . ,πk, . . . ,πK}. The peak group (if any) is
then identified as the one with minimum p-value.
The proposed algorithm may still apply with different combining functions in first
two steps, but not in the third step. This is because Tippett’s ψ is significant only
when at least one of its arguments is significant. As regards our choices in the first
two steps of the algorithm, the direct combining function in step 1 has been chosen
for computational reasons, whereas Fisher’s combining function in step 2 has been
applied because Fisher’s ψ is generally suitable when no specific knowledge of the
sub-alternatives is expected.

12.4 Simulation study

In this section we show the performances of the permutation test for umbrella al-
ternatives by providing results on some simulations under the null hypothesis and
under some alternatives. The chosen settings are K = 5 groups with n j = 3 obser-
vations each ( j = 1, . . . ,5). The simulated data have a standard normal distribution,
possibly with some non random location shifts in some groups (under the alternative
hypothesis). The location shifts considered in each simulation are indicated by the
symbols δk on the top of each table. Each simulation is based on 1,000 independent
Monte Carlo data generations. The simulation settings have been chosen in accor-
dance with the example appeared in Mack and Wolfe (1981). This example is about
a score intelligence test: five male groups with three subjects each were evaluated
through the Welchsler Adult Intelligence Scale (WAIS). The groups were identi-
fied by different classes of age. The authors conjectured that the intelligence score
follows an umbrella trend. Figure 12.1 shows the boxplot representation of data,
and the dotted line is the trend line connecting the group means. For details on the
test statistic and data of the example we refer to Mack and Wolfe (1981). The data
of Example 1 in Mack and Wolfe were analyzed by both the permutation test and
Mack and Wolfe’s test. Mack and Wolfe’s test gave pretty significant results in fa-
vor of the umbrella alternative, providing an approximated p-value equal to 0.0328
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Fig. 12.1 Boxplot representation of the example from Mack and Wolfe (1981).

with the third age-group as the estimated peak group. The results of the permuta-
tion test are shown in Table 12.1: the global p-value is equal to 0.014, indicating
a strongly significant presence of an umbrella alternative. The peak group is then
individuated through the partial p-values: provided that the global test is significant,
the peak group is the one with minimum partial p-value. In this example the third
group (π3 = 0.00299) is the peak group.

Table 12.1 Permutation Test results, WAIS score data

Age 15–19 20–34 35–54 55–69 > 70

πk 0.05794 0.00599 0.00299 0.12687 0.94306

ΠG = 0.014

Table 12.2 reports the results of a simulation under H0. The rejection rates of
the null hypothesis of partial and global tests at different α-sizes are shown. Note
how the rejection rates of the global test column (indicated by “G.T.”) are close
to the nominal ones. Then, for each group, the rejection rates of the partial tests
for peak-known umbrella are also shown. In order to account for multiplicity, the
partial p-values are compared to the adjusted α-level through a Bonferroni’s cor-
rection (therefore the actual nominal level for the partial tests is α/5). Under the
null hypothesis, the probability of observing a peak group should be uniformly
distributed among the K groups, therefore the estimated probabilities of the event
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πk = min{p1, . . . ,πK} conditional to the rejection of the global null hypothesis are
also shown.

Table 12.2 Rejection rates of the permutation test under H0

Group 1 2 3 4 5
δk 0 0 0 0 0
α Partial tests G.T.

0.05 0.006 0.014 0.010 0.012 0.012 0.046
0.10 0.028 0.024 0.020 0.028 0.030 0.100
0.20 0.042 0.050 0.044 0.056 0.046 0.192
α Pr{πk = min j π j|ΠG ≤ α} Tot.

0.05 0.206 0.176 0.206 0.235 0.176 1
0.10 0.196 0.214 0.196 0.196 0.196 1
0.20 0.208 0.188 0.208 0.198 0.198 1

Table 12.3 shows the behaviour of the test under an umbrella alternative with
peak on third group. Note that the rejection rates of the global test are far bigger than
the nominal levels. Moreover, the rejection rates of the partial tests (accounting for
multiplicity) are directly proportional to the sizes of δk’s, and that group 3 has been
detected as the peak group about 35% of the times that the global null hypothesis
has been rejected at all α levels (however note that the nonzero δk sizes are very
close to each other and to the variance of data distribution σ2 = 1).

Table 12.3 Rejection rates of the permutation test under umbrella alternative

Group 1 2 3 4 5
δk 0 0.9 1 0.9 0
α Partial tests G.T.

0.05 0.002 0.116 0.128 0.094 0.004 0.306
0.10 0.006 0.166 0.216 0.144 0.008 0.446
0.20 0.014 0.264 0.290 0.226 0.030 0.622
α P{πk = min j π j|ΠG ≤ α} Tot.

0.05 0.007 0.366 0.366 0.248 0.013 1
0.10 0.018 0.332 0.386 0.247 0.018 1
0.20 0.023 0.354 0.354 0.241 0.029 1

In Table 12.4 we have set the location shifts in order to simulate an anti-umbrella
alternative. That is, data are not under the null hypothesis, but the true alternative
hypothesis is not of umbrella kind. The trend is first decreasing then increasing,
and the permutation test should not recognize this kind of alternative, since it has
been specifically created for umbrella alternatives. Indeed, the rejection rates of the
global tests are always lower than the related nominal levels.
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Table 12.4 Rejection rates of the permutation test under anti-umbrella alternative

Group 1 2 3 4 5
δk 1 0.5 0 0.5 1
α Partial tests G.T.

0.05 0.010 0.000 0.000 0.000 0.015 0.022
0.10 0.020 0.002 0.000 0.000 0.018 0.040
0.20 0.027 0.004 0.000 0.000 0.028 0.068
α P{πk = min j π j|ΠG ≤ α}

0.05 0.455 0.000 0.000 0.000 0.545 1
0.1 0.500 0.050 0.000 0.000 0.450 1
0.2 0.441 0.088 0.000 0.000 0.471 1

12.5 Case study: graduates in engineering

We have applied the testing procedure described above to a dataset of session
degrees at the School of Engineering of the University of Padova in the period
2003–2006. Data are 1529◦ from 16 Engineering Courses in period 2003–2006.
The groups are defined by the session of degree (E1, E2, E5: summer sessions; A1:
autumn sessios; I1, I2, I5, I6, I7, I8: winter sessions). Each Course has a different
number of degree sessions (from 4 to 8), and students within the same degree ses-
sion (even from different years) are treated as replicates.
The aim of the study is to find out if there are some courses where the degree evalu-
ation has a significant umbrella trend and, if so, to determine the peak session. Our
feeling is that the best students should take a bit to complete their degree thesis and
therefore we expect to find them not in the early session (e.g. summer sessions E1,
E2, E5 or autumn sessions A1).

We have run the permutation test for umbrella alternatives on the degree data
for each Engineering Course and found the results shown in Table 12.5. There is
a significant presence of the umbrella alternative in 7 courses over 16 at a nomi-
nal significance level α = 0.05; All those courses which showed an umbrella trend
on the degree evaluation did also indicate that the peak group was in session I1
or I2, that correspond to the first winter sessions. Note that the testing procedure
may produce ex aequo, as in the Mechanical Engineering course (the peaks are
I1 and I2). We have only emphasized (in bold face) those courses whose global
p-value is less than 5%, although the early winter sessions have often provided
singificant partial p-values, thus indicating that our feeling about when the best stu-
dents take their degree was right. We have considered 1,000 permutation per each
analysis.

Finally, let us explore in detail the degree evaluation trend of some courses in
Table 12.5: Figs. 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8 and 12.9 represent, for each
course, a boxplot representation, and the dotted lines link the group means. In the
title of each boxplot there is the name of the course and its global p-value. The
partial p-values are displayed at the bottom, together with the group labels.
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Table 12.5 Results of the analysis on Engineering Courses. Global and partial p-values

Partial tests (Degree sessions)
Course G.T. E1 E2 E5 A1 I1 I2 I5 I6 I7 I8
Aereospatial 0.006 – 0.894 – 0.317 0.004 0.001 0.016 0.107 – –
Automation 0.685 0.461 0.520 – 0.536 0.210 0.730 0.929 0.576 – –
Biomedic 0.054 0.950 0.740 – 0.927 0.300 0.004 0.150 0.054 – –
Building 0.008 0.994 0.738 1 0.526 0.001 0.018 0.010 0.007 – –
Chemical 0.192 – 0.716 – 0.657 0.040 0.049 1 0.266 – –
Civil 0.008 0.416 0.726 1 0.591 0.001 0.134 0.311 0.585 – –
Computer Science 0.046 0.132 0.894 – 0.748 0.007 0.008 0.512 0.869 – –
Electronic 0.019 0.541 0.124 – 0.263 0.005 0.003 0.369 0.459 – –
Electrotechnical 0.344 1 0.945 – 0.917 0.170 0.410 0.942 1 – –
Energetic 0.983 1 0.997 – 0.999 0.919 0.860 1 – – –
Environmental 0.153 0.486 0.362 0.520 0.831 0.025 0.112 0.530 0.556 – –
Information 0.267 1 0.992 – 0.992 0.149 1 – – – –
Management 0.008 0.949 0.808 0.004 0.219 0.001 0.003 0.021 0.059 – –
Materials 0.389 – 0.124 – 0.560 1.000 0.934 – – – –
Mechanical 0.009 0.405 0.628 0.106 0.098 0.001 0.001 0.059 0.542 0.169 0.617
Telecommunications 0.750 1 0.724 0.596 0.888 0.876 0.437 0.931 1 – –

Fig. 12.2 Boxplot and results
of the analysis of Aerospa-
tial Engineering Course. The
global p-values is shown on
the top of the figure, the par-
tial p-values are displayed at
the bottom, in correspondence
of each session’s name.
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In Aerospatial Engineering course (Fig. 12.2), there is a well-defined umbrella
trend with peak group in early winter session I2. The global p-value is equal to
0.006, indicating evidence of an umbrella trend. In order to determine the peak
group, we must look at the partial p-values: in this case the minimum p-value is that
of session I2 (p = 0.001).

The degree evaluation trend is not well defined in Building Engineering course
(Fig. 12.3). However, the global p-value is highly significant (ΠG = 0.008), and,
visually, there seems to be two candidates as peak groups (I1 and I5). Note how
group I1 has higher variance than group I5, although their sample means are very
close to each other. The partial p-value of group I1 is equal to 0.001, that is more
significant than that of group I5, therefore the peak group is situated in the first
winter session.
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Fig. 12.3 Boxplot and results
of the analysis of Building
Engineering Course. The
global p-values is shown on
the top of the figure, the par-
tial p-values are displayed at
the bottom, in correspondence
of each session’s name.
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Fig. 12.4 Boxplot and results
of the analysis of Chemi-
cal Engineering Course. The
global p-values is shown on
the top of the figure, the par-
tial p-values are displayed at
the bottom, in correspondence
of each session’s name.
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In the Chemical Engineering course (Fig. 12.4), instead, there seems to be no
evidence of an umbrella trend, as there is a sort of plateau in winter sessions. The
global p-value is not significant (ΠG = 0.192). Note, however, that the degree eval-
uations of early winter sessions are pretty higher than those of summer, autum, and
late winter sessions. Thus, even if there is no significant evidence of a real umbrella
trend, our feeling about student behaviour seems to be still valid. Note that in session
I5 there was a single student, and the related p-value is equal to 1.

The global p-value of Civil Engineering course is highly significant (ΠG =
0.008). The boxplot representation (Fig. 12.5) is somehow misleading, since in ses-
sion E5 there was only a single student. If we do not consider session E5 and look at
the medians of each boxplot, there is graphical evidence of an umbrella trend with
peak group in session I1 (its partial p-value is equal to 0.001).

In Computer Science Engineering course (Fig. 12.6), there is a pretty clear trend
of degree evaluation if we do not consider group E1 (that is made of 5 students only).
The global p-value is ΠG = 0.046, and the peak group is the first winter session I1,
whose partial p-value is equal to 0.007.
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Fig. 12.5 Boxplot and results
of the analysis of Civil En-
gineering Course. The global
p-values is shown on the top
of the figure, the partial p-
values are displayed at the
bottom, in correspondence of
each session’s name.
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Fig. 12.6 Boxplot and results
of the analysis of Computer
Science Engineering Course.
The global p-values is shown
on the top of the figure, the
partial p-values are displayed
at the bottom, in correspon-
dence of each session’s name.
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Fig. 12.7 Boxplot and results
of the analysis of Electronic
Engineering Course. The
global p-values is shown on
the top of the figure, the par-
tial p-values are displayed at
the bottom, in correspondence
of each session’s name.
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The global p-value of the Electronic Engineering course (Fig. 12.7) is moderately
significant (ΠG = 0.019). By looking at the partial p-values of each group, we find
out that session I2 has the minimum partial p-value equal to 0.003.

In the Management Engineering course (Fig. 12.8), there seems to be a peak
group in E5 session. But there only two students in this session, and the sample
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Fig. 12.8 Boxplot and results
of the analysis of Manage-
ment Engineering Course.
The global p-values is shown
on the top of the figure, the
partial p-values are displayed
at the bottom, in correspon-
dence of each session’s name.
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mean of this group is equal to 99.5. The global p-value is ΠG = 0.008, that is
highly significant in favor of the umbrella alternative. The group with minimum
partial p-values is again I1, with a p-value equal to 0.001.

Fig. 12.9 Boxplot and results
of the analysis of Mechani-
cal Engineering Course. The
global p-values is shown on
the top of the figure, the par-
tial p-values are displayed at
the bottom, in correspondence
of each session’s name.
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Finally, the evaluation of the Mechanical Engineering course (Fig. 12.9) does not
show a clear trend. Nevertheless, the global p-value is significant at 1% level, and
there is an ex-aequo in estimating the peak group. Groups I1 and I2 have a partial
p-value equal to 0.001.



Chapter 13
Nonparametric methods for measuring
concordance between rankings: a case study on
the evaluation of professional profiles of
municipal directors

Rosa Arboretti Giancristofaro, Mario Bolzan and Livio Corain

13.1 Introduction

The various areas of public administration management have, for several years, been
the subject of considerable review, including legislative review. The particular im-
portance of the need to redefine identities and responsibilities, as well as the knowl-
edge and skills of the personnel operating in the field, has been recognised.

In this context a study was set up in association with the National Association
of the Communes of Italy (Veneto section) which aimed to reconceptualise the mu-
nicipal director profile. The study involved an initial stage in which privileged wit-
nesses were interviewed through a Delphi survey in order to chart the dimensions
constituting the municipal director’s profile. Based on the dimensions identified, a
questionnaire was prepared and presented to a sample of municipal directors from
the communes of the Veneto. The questionnaire was split into two parts: firstly, the
director was asked to assess the importance of possessing the qualities indicated by
each item; secondly the director was asked to express an opinion in relation to the
usefulness of investing in each of the dimensions. With regard to both parts of the
questionnaire, it is of interest to obtain a ranking of the items. A method for con-
structing preference rankings based on the nonparametric combination procedure
has been proposed to compete with the usual method based on the arithmetic mean.
Subsequently in order to verify to what extent the rankings related to the two parts
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of questionnaire concord, a new permutation test for the evaluation of concordance
between dependent rankings has been applied.

13.2 Sample survey of municipal directors’ professional profiles

13.2.1 Context of the evaluation of the role of Communes and of
municipal directors

The various areas of public administration management (role, services provided,
professional profiles, material resources) have, for several years, been the subject
of considerable review, including legislative review. The particular importance, in
this process, of the need to redefine identities and responsibilities, as well as the
knowledge and skills of the personnel operating in the field, has been recognised.

In particular, the coming into force of the Bassanini Law (59/1997 as amended)
sparked a reorganisation process in all communes, diversified by speed, sharing and
quality of results. These processes of change have led and continue to lead com-
munes to reinvent themselves in terms of objectives, and from there the way in
which they act.

In this process cultural dimensions are the most interesting. Revision of the role
of clerk of the council, increase in the responsibilities of directors, promotion of
subsidization, but above all division of roles between the political field and the op-
erative field are the dimensions that mark the change.

The new national legislative context in fact requires of Local Authority func-
tionaries and more generally of Public Authorities a training background aimed
at changing perspectives: from an administration based on authority to one that
provides citizens/area promoters with services, in which the functionary must be
suitably trained to take on this role of not just management but also government
collaborator with regard to the changes and implementation of the programmes.

The starting point as well as reference point is the typical professional figure de-
scribed in the ministerial decree of 4 August 2000 which describes the employment
prospects of graduates in the specific Public Authority disciplines of interest.

The “savoir-faire” required of senior degree-holding functionaries includes the
ability to “effectively interpret change and organisational innovation in public and
private organisations”, to “assist public institutions and business, services and third
sector private organisations in planning and implementing initiatives aimed at pro-
moting the economic, social and civil development of communities”, to “implement
specific public policies” and “contribute to the management of human resources and
trade-union relations”.

The predicted impact of this change is on the one hand a repositioning of the role
of local authority, on the other the repositioning of the role of municipal manage-
ment.
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With regard to the repositioning of municipal directors, the role’s evolution
places directors in direct contact with a variety of internal and external stakehold-
ers, politicians or technicians with regard to whom it is necessary to reflect on the
competencies and ability to act/interact. By stakeholders we mean all those with
an interest in the activity of the Local Authority because they can influence activi-
ties, decisions, or can be influenced by them: mayor, councillors, citizens (organised
into various levels), directors of an equal level, functionaries, municipalities, legisla-
tors, directors of other communes, directors of higher institutions (province, region,
state).

Against this backdrop, initiatives aimed at reinterpreting and redesigning the pro-
fessional profile of municipal directors are certainly desirable in order to consolidate
the acquired knowledge and identify routes for development.

13.2.2 Sample survey among Communes of the Veneto

In 2008 a study was completed in association with the National Association of the
Communes of Italy (Veneto section) which aimed to verify the perception and ex-
pectations of the role of the Commune with regard to the local area and community
and to reconceptualise the municipal director profile (Bolzan et al., 2008).

The study provided for an initial stage in which privileged witnesses were inter-
viewed through a Delphi survey in order to chart the dimensions that constitute the
municipal director’s profile in relation to his or her “savoir-faire” and “savoir-être”.
Based on 26 dimensions identified during this first stage, a questionnaire was then
prepared and presented via e-mail (backed up by telephone calls) to a sample of
municipal directors and clerks of the 581 communes of the Veneto.

The questionnaire was divided into two parts: firstly, respondents were asked to
assess the importance of possessing the qualities indicated by the 26 items on a
scale of 1 (of little importance) to 10 (very important); secondly, using the same
scale, respondents were asked to express their opinion in relation to the usefulness
of investing in each of the 26 dimensions in order to improve his or her professional
profile.

The sample was made up of 193 communes from the 8 provinces of the Veneto,
of which 47% had less than 5,000 inhabitants, 30% had between 5,000 and 10,000
inhabitants and the remaining 23% had over 10,000 inhabitants.

83% of the interviewed municipal directors and clerks (67% males) had a degree.
81% of clerks of the council had held their post for over 8 years (3% of respondents
for less than 3 years).
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13.3 Analysis of concordance between rankings

13.3.1 The construction of ranks

This paragraph discusses a method for constructing preference or importance rank-
ings using evaluations taken from a sample of statistical units and expressed gener-
ally by scores in relation to a series of aspects representing partial dimensions of a
given phenomenon of interest. It should be noted that the arithmetic mean (whether
weighted or not) is the method mainly used for pooling preference ratings. A method
based on the nonparametric combination of rankings has been proposed to compete
with the usual method based on the arithmetic mean (Arboretti et al., 2005). A sim-
ulation study showed that this method generally performs better than the arithmetic
mean.

Let us consider n subjects who are asked to rate each of M dimensions on a
scale of 1–10. The problem of how to obtain this ranking, i.e. how to pool sub-
ject preferences, is addressed. Let Xmi be the rate of dimension m given by sub-
ject i, i=1, ..., n. Assume that if Xmi > Xm′i, then subject i rates dimension m
better than dimension m’. In the literature this problem is usually solved by av-
eraging subject ratings X̄ = ∑n

i=1 Xmi
/

n, m=1, ..., M, and dimension m̃ such that
X̄m̃ = max(X̄1, ..., X̄M) is then the best dimension with first rank position, dimension
m̂ such that X̄m̂ = max{i=1,...,M,i �=m̃} (X̄i) is the dimension with the second rank posi-
tion, and so on. For simplicity’s sake, it is assumed that there are no ties in ranking
positions.

An alternative way to pool preferences is based on the nonparametric combi-
nation (NPC) ranking method. The procedure consists of three steps. In the first

step a score for item m is computed as follows: ηmi =
# (Xmi≥Xm′i)+0.5

M+1 , where
# (Xmi ≥ Xm′i) indicates the rank transformation of Xmi. This step is repeated for

each subject i and item m. With regard to relative rank transformation
# (Xmi≥Xm′i)

M
of Xmi, 0.5 and 1 have been added respectively to the numerator and the denominator
to obtain ηmi varying in the open interval (0, 1). The reason for such corrections is
merely computational, in order to avoid numerical problems with logarithmic trans-
formations later on. Note that the scores ηmi are one-to-one increasingly related to
the ranks # (Xmi ≥ Xm′i). By considering ηmis after the first step, it is straightfor-
ward to obtain a (partial) ranking of the M dimensions for each subject, but it is the
global dimension rank that is of interest. In the second step, the scores that subjects
have assigned to dimension m are combined as follows: Cm = −∑n

i=1 log(1−ηmi).
This step is repeated for the remaining M-1 dimensions and a nonparametric com-
bination of subjects’ scores is performed. In the last step, the (global) ranking for
item mis computed as Rm = # (Cm ≥Cm′). Of course dimension m̃ with Rm̃ = M is
the first rank position item, m̂ with Rm̂ = M − 1 is the second, and so on. It should
be noted that Fisher’s omnibus combining function is used in the second step. Of
course, other combining functions may be of interest in this problem (e.g. Liptak’s
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function, Tippett’s function, . . . ). The combining real function φ is chosen from
class Φ of combining functions satisfying the following minimal properties:

1. φ must be continuous in all ηmi arguments, in that small variations in any subset
of arguments imply small variations in the φ -index;

2. φ must be monotone non-decreasing in respect of each ηmi argument:

φ(. . . ,ηmi, . . .) ≥ φ
(
. . . ,η ′

mii , . . .
)

if1 > ηmi > η ′
mi > 0, i = 1, . . . ,n;

3. φ must be symmetric with respect to permutations of the arguments, in that if for
instance u1, ...,un is any permutation of 1, . . . ,n then:

φ (ηu1 , ...,ηun) = φ (η1, ...,ηn) .

Property 1 is obvious; property 2 means that if for instance two subjects have ex-
actly the same values for all ηs, except for the m-th, then the one with ηm > η ′

m
must have assigned at least the same satisfaction φ -index. Property 3 states that any
combining function φ must be invariant with respect to the order in which subjects
are processed.

It should also be noted that a central feature of NPC ranking is the possibility of
assigning different degrees of importance to different types of subjects. If there is
more interest in a certain group of subjects, we can assign them a weight of 0.5<
w <1. This weighted approach is taken into account in step two of the procedure by
computing: Cm = −∑n

i=1 wi × log(1−ηmi).

13.3.2 Hypothesis testing on concordance between rankings

The construction of several rankings of preference or importance, each referring to a
set of dimensions or items indicative of a complex phenomenon, can lead to another
objective, i.e. analysing the possible correlation between the obtained rankings (e.g.
with the definition of the municipal director’s professional profile, consider the rank-
ing of the importance of possessing a certain set of competencies and the ranking of
the need to invest to improve such competencies). Where stratification variables are
present (e.g. size of the commune), analysis of the correlation could also be carried
out both for each stratum and globally on the set of strata.

In the field of nonparametric combination of dependent permutation tests method-
ology (NPC, Pesarin, 2001), it is possible to find exact nonparametric solutions for
these types of problems. The NPC approach can be considered a general methodol-
ogy for many multivariate situations, such as cases in which sample sizes are lower
than the number of observed variables or where there is missing data (even in the
case of non-random missing data), or when some variables are categorical (ordi-
nal or nominal) and others are quantitative and in many other complex situations.
Additionally, the NPC solutions are of particular interest when there are restricted
alternatives because in this specific case they prove to be particularly efficient in
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terms of power, easy to justify, simple to plan and, with the processors and software
currently available, easy to carry out.

Suppose we have two rankings each made up of M items and we have a stratifi-
cation variable (should there be more than one stratification variable, it is possible
to make use of solutions such as propensity score in order to restore the situation to
one stratification variable). The aim is to construct a test to verify the hypothesis of
absence of correlation between the two rankings both globally on all the strata, and
singularly by stratum. The problem can be solved by first considering a set of M
partial permutation tests, each directed at testing the significance of the correlation
between corresponding pairs of items in the rankings, followed by their nonpara-
metric combination into a global test.

For ordered variables, a suitable test statistic for permutation partial tests is based
on Spearman’s rank-order correlation coefficient (a reference is provided in Siegel
and Castellan, 1988). This measure of association capture in a single number (vary-
ing from −1 to 1) the relationship between two ordered data series. In particular we
can use this measure of association if we are reluctant to make the assumption of
bivariate normality in relation to the two data series.

Spearman’s rank-order correlation coefficient uses ranks derived from the raw
data. Specifically, if the data are represented in the form of a r×c contingency table,
formed from n observations cross-classified into r row categories and c column cat-
egories with xi j of the observations falling into row-category i and column-category
j, and m1, m2, . . . , mr, and n1, n2, . . . , nc are respectively the marginal row totals
and column totals, Spearman’s measure uses ui = m1 + m2+...+mi−1+(mi+1)/2, for
i= 1, 2,..., r, and v j = n1 +n2+...+n j−1+(n j+1)/2, for j = 1, 2,..., c, to obtain:

S =
∑r

i=1∑
c
j=1 xi j (ui − ū)(vi − v̄)√

∑r
i=1 mi (ui − ū)2

√
∑c

j=1 n j (vi − v̄)2

where:
ū =∑r

i=1 miui
/

n, v̄ =∑c
j=1 n jv j

/
n.

When implementing permutation partial tests, we have the problem of determining
the permutation cumulative distribution function associated to each test. The exact
derivation of the permutation cumulative distribution function connected to a statis-
tical test under the null hypothesis is computationally difficult in cases where sample
sizes are not very small. Hence, the exact derivation of the permutation distribution
associated with any statistic of interest is at the very least impractical, if not impos-
sible. The problem may be dealt with by means of Monte Carlo simulation from
permutational space. This solution leads to a resampling technique, conditional on
the pooled data set. This is done through a without-replacement resampling proce-
dure, also called the CMC (Conditional Monte Carlo) method (Pesarin, 2001). The
CMC method on the pooled data set is a random simulation of all possible per-
mutations of the same data under H0. Hence, in order to obtain an estimate of the
permutation distribution under H0 of the test statistic, and therefore proceed with
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the calculation of the p-value λm,m = 1, ...,M associated with each partial test, a
CMC procedure can be used.

For the sake of simplicity, let Xm,m = 1, ...,M, indicate either a continuous or a
categorical response variable. Let Tm be the statistic related to the partial test of the
m-th variable.

The CMC procedure considers the following steps:

1. calculate the M-dimensional vector of the test statistics, each one related to par-
tial tests for observed data X :

T0
M×1

= T (X) = [Tm0 = Tm (X) ,m = 1, ...,M] ;

2. consider a data permutation X∗ by a random resampling of X , in order to ran-
domly assign every individual data vector to a proper group and then calculate
the value of the test statistic T ∗ = T (X∗);

3. independently repeat the above step 2. B times. {T ∗
r ,r = 1, ...,B} indicates the

resulting vectors of B conditional CMC-iterations;
4. the empirical M-variate cumulative distribution function (EDF) is given by:

F̂B (z|X) =

[
1
2

+
B

∑
r=1

I (T ∗
r ≤ z)

]/
(B+1),∀z ∈ RM

where I(.) is the indicating function. F̂B (z|X) gives an estimate of corresponding
permutation M-dimensional distributions F (z|X) of T , and the functions:

L̂i (z |X ) =

[
1
2

+
B

∑
r=1

I (T ∗
ir ≥ z)

]/
(B+1) ,m = 1, ...,M,

give an estimate ∀z ∈ R1 of permutation marginal significance levels Lm (z |X ) =
Pr{T ∗

m ≥ z|X}. Consequently:

λ̂m = L̂m (Tm0 |X ) =

[
1
2

+
B

∑
r=1

I (T ∗
mr ≥ Tm0)

]/
(B+1),m = 1, ...,M

give an estimate of marginal p-values λm = Pr{T ∗
m ≥ Tm0|X}, relative to partial

tests Tm.
If λ̂m ≤ α , the null hypothesis relating to the m-th variable is rejected at signifi-

cance level α .
Note that in comparison with standard estimators of the empirical cumulative

distribution function, values 1/2 and 1 were added respectively to the numerator and
denominator to obtain estimates of p-values in the open interval (0, 1). This does
not change inferential conclusions, does not influence the asymptotic behavior of
estimators and proves to be useful for the combination of partial tests.

The nonparametric combination of M partial tests allows us to obtain a suit-
able solution for the global hypothesis system. The nonparametric combination of
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M p-values associated with the partial tests into the global test is achieved by
using an appropriate real, continuous, non-increasing and non degenerate function
ψ : (0,1)→ R1. Let us assume the combining function ψ has the following features:

a. it is monotone non-increasing in respect of each argument: ψ (...,λm, ...) >
ψ (...,λ ′

m, ...) ifλm < λ ′
m,m = 1, ...,M,

b. it attains its upper limit ψ̄ , possibly not finite, when at least one argument goes
to 0: ψ (...,λm, ...)→ ψ̄ for λm → 0, and the negative lower limit ψ when at least
one argument goes to 1: ψ (...,λm, ...) → ψ for λm → 1;

c. ∀α > 0, the acceptance region is limited:ψ < T ′′
α/2 < T ′′ < T ′′

(1−α/2) <
ψ̄ .

The above properties define a class Ψ of combining functions (Pesarin, 2001).
Some of the functions most often used to combine independent tests (Fisher, Lan-
caster, Liptak, Tippett, Mahalanobis, etc.) are included in this class. Let us look at
Tippett combinig function which is given by T ′′

T = max1≤m≤M (1−λm)
By again using the results of the same conditional simulation procedure CMC,

used to estimate the p-values of partial tests, we achieve the nonparametric combi-
nation of M partial tests Tm, m = 1, ..., M. Let us start again from step (4), the NPC
considers the following steps:

5. we determine the combined observed value of the global test using the same
CMC results as the previous step, given by:

T ′′
0 = ψ

(
λ̂1, ..., λ̂M

)
;

6. the r-th combined value is then calculated by:

T ′′
r ∗ = ψ (λ1r∗, ...,λMr∗) ,r = 1, ...,B;

7. estimate the p-value for the combined test T ′′in the following way:

λ̂ ′′
ψ =

B

∑
r=1

I
(
T ′′

r ∗ ≥ T ′′
0

)/
B,

8. if λ̂ ′′
ψ ≤ α , we reject the null hypothesis H0 at significance level α .

When a stratification variable is present, the nonparametric combination takes
place firstly within each stratum and then between the strata.

13.3.3 Closed testing procedure

Multiple comparisons and multiple testing problems arise frequently in statistical
data analysis, and it is important to address them appropriately. Actually, the prob-
lem of multiplicity control arises in all cases where the number of hypotheses to
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be tested is greater than one. Such partial tests, possibly after adjustment for multi-
plicity (Westfall et al., 1999), may be useful for marginal or separate inferences. If
they are jointly considered they provide information on a general overall or global
hypothesis, which typically represents the true objective of the majority of multi-
variate testing problems. In order to produce a valid test for the combination of a
large number of p-values, we must guarantee that such test is unbiased and produces,
therefore, p-values below the significance level with a probability less or equal to α
itself. This combination could be very troublesome unless we are working in a per-
mutation framework. A Bonferroni correction is valid but the conservativeness of
this solution is often unacceptable for both theoretical and practical purposes. Actu-
ally, this combination loses power in case of dependence between p-values. On the
contrary, using appropriate permutation methods, dependencies may be controlled.
With reference to multiple testing procedures mentioned before, these have their
starting point in an overall test and look for significant tests on partial contrasts.
Conversely combination procedures start with a a set of partial tests, each appro-
priate for a partial aspect, and look for joint analyses leading to global inferences.
The global p-value obtained through NPC procedure of p-values associated to sub-
hypotheses is an exact test, thus providing a weak control of the multiplicity. The in-
ference in this case must be limited to the global evaluation of the phenomenon. Due
to the use of NPC methods, a more detailed analysis may be carried out. Actually,
what is important is to select potentially active hypotheses (i.e. under the alterna-
tive). A correction of each single p-value is hence necessary in this case. A possible
solution within a nonparametric permutation framework is represented by Closed
testing procedures (Westfall et al., 1999). A property that is generally required is the
strong control of the Familywise Error Rate (FWE), i.e. the probability of making
one or more errors on the whole of the considered hypotheses (Marcus et al., 1976).
On the other hand, a weak control of the FWE means simply controlling α for the
global test (i.e. the test where all hypotheses are null). Although the latter is a more
lenient control, it does not allow the selection of active variables because it simply
produces a global p-value that does not allow interesting hypotheses to be selected,
so the former is usually preferred because it makes inference on each (univariate)
hypothesis (Finos and Salmaso, 2007). An alternative approach to multiplicity con-
trol is given by the False Discovery Rate (FDR). This is the maximum proportion
of type I errors in the set of elementary hypotheses. The FWE guarantees a more
severe control than the FDR, which in fact only controls the FWE in the case of
global null hypotheses, i.e. when all involved hypotheses are under H0 (Benjamini
and Hochberg, 1995). In confirmatory studies, for example, it is usually better to
strongly control the FWE, thus ensuring an adequate inference when you want to
avoid making even one error. On the contrary, when it is of interest to highlight a
pattern of potentially involved variables, especially when dealing with thousands of
variables, the FDR would appear to be a more reasonable approach. In this way it is
accepted that part (no greater than the α proportion) of the rejected hypotheses are
in fact under the null (Finos and Salmaso, 2007).
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The goal of multiple testing procedures is to control the “maximum overall Type I
error rate”, i.e. the maximum probability that one or more null hypotheses is rejected
incorrectly. This quantity also goes by the name “Maximum Experimentwise Error
Rate” (MEER).
With reference to the closed testing, here we give just some hints and we refer the
reader to Westfall et al. (1999). Suppose we wish to test hypotheses H1, H2, H3

and H4, e.g. concerning 4 variables. Hence, with reference to the Fig. 13.1 we start
applying closed testing. The closed testing method works as follows.

1. Test each hypothesis H1, H2, H3 and H4 using an appropriate α-level test.
2. Create the “closure” of the set, which is the set of all possible intersections among

H1, H2, H3 and H4 (in this case the hypotheses H12, H13, H14, H23, H24, H34,
H123, H134, H234 and H1234). In Fig. 13.1 we illustrate the procedure. We have
enumerated all the possible intersections, but of course we are interested only
in some of these intersections. Actually some of these are useful for inferential
purpose, some other are only instrumental and are not investigated. Intersections
of interest are represented by the red bounded boxes, corresponding respectively
to the variable level (i.e., H1, H2, H3 and H4), to the domain level (i.e., H12 and
H34) and to the global test (H1234).

3. Test each intersection using an appropriate α-level test. In general any test that
is valid for the given intersection.

4. You may reject any hypothesis Hi, with control of the MEER, when the following
conditions both hold

– The test of Hi itself yields a statistically significant result, and
– The test of every intersection hypothesis that includes Hi is statistically sig-

nificant.

Hence, a statistically significant result has been obtained for the H3 test, as well
as a significant result for all hypotheses that include H3, in this case, H13, H23, H34,
H123, H134, H234 and H1234 (blue boxes in Fig. 13.1). Since the p-value for one of
the including tests, the H1234 test in this case, is greater than 0.05, you may not re-
ject the H3 test at the MEER = 0.05 level. In this example, we could reject the H3

hypothesis for MEER levels as low as, but no lower than 0.0618, since this is the
largest p-value among all hypotheses containing H3. This suggests an informative
way of reporting the results of a closed testing procedure. When using a closed test-
ing procedure, the adjusted p-value for a given hypothesis Hi is the maximum of all
p-values for tests that include Hi as a special case (including the p-value for the Hi

test itself). The adjusted p-value for testing H3 is, therefore, formally computed as
max(0.0067,0.0220,0.0285,0.0285,0.0570,0.0580,0.0600,0.0618) = 0.0618.
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Fig. 13.1 Illustration of the closed testing procedure (k = 4).

13.3.4 Rankings of the municipal director’s professional profile in
the Communes of the Veneto survey

In relation to the two parts of the Communes of the Veneto questionnaire (the first
part in which respondents were asked to assess the importance of possessing the
qualities indicated by the items; the second in which they was asked to express their
opinion in relation to the usefulness of investing in each of the dimensions), it is
of interest to obtain a ranking of the items and subsequently verify to what extent
the two rankings concord. This verification is carried out by applying the procedure
discussed in the previous paragraph.

Table 13.1 shows the rankings of the importance and need for development of
the various competencies.

Table 13.2 shows the correlation indices for each competence, calculated by con-
sidering the positions assigned in the two rankings. The different colours of the
table’s cells correspond to the significance of the partial tests for each competence.

Tables 13.3, 13.2, 13.3, 13.4 and 13.5 show the results of the analyses carried out
taking as stratification variable the commune size. The p-values relating to com-
binations by stratum and to the global combination are illustrated in Table 13.6,
where p-values have been adjusted for multiplicity using a closed testing procedure.
P-values are displayed according to a grey scale sequence:

p-values < 0.001 < 0.001 < 0.05 n.s.
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Table 13.1 Rankings of the importance of competencies and of the need for development of com-
petencies

Importance of competencies Need for development of competencies
1 Ability to motivate staff 1.0000 1 Ability to motivate staff 1.0000
2 Ability to build teams, 0.9615 2 Ability to build teams, 0.9615

integrate skills integrate skills
3 Ability to make decisions 0.9231 3 Ability to obtain results 0.9231
4 A clear knowledge of the 0.8846 4 Ability to organise 0.8846

objectives of the local planning
authority for which one works

5 Loyal in relationships 0.8462 5 Ability to make decisions 0.8462
6 Ability to obtain results 0.8077 6 Ability to manage conflict 0.8077
7 Authoritative leader, 0.7692 7 Authoritative leader, 0.7692

not authoritarian not authoritarian

8 A sense of duty 0.7308 8 A clear knowledge 0.7308
of the objectives
of the local authority
for which one works

9 Ability to organise planning 0.6923 9 Being creative 0.6923
(open to innovation, ability
to think up solutions)

10 Ability to inspire trust 0.6538 10 Ability to interpret 0.6538
the local area
(needs and resources)

11 Knowledge of how 0.6154 11 Ability to give reasons 0.6154
administrative processes for choices
operate

12 Ability to manage 0.5769 12 Ability to exploit the 0.5769
conflict produced knowledge

13 Being creative 0.5385 13 Ability to communicate 0.5385
(open to innovation, with local
ability to citizens
think up solution

14 Ability to give reasons 0.5000 14 Able with regard to 0.5000
for choices management control

15 Technical know-how 0.4615 15 Ability to inspire 0.4615
linked to the specificity trust
of the role

16 Ability to evaluate situations 0.4231 16 Technical know-how 0.4231
case by case, linked to the specificity
not ideologically of the role

17 Ability to interpret 0.3846 17 Accountable 0.3846
the local area
(needs and resources)

18 Ability to exploit the 0.3462 18 Knowledge of how 0.3462
produced knowledge administrative processes

operate
19 Ability to communicate 0.3077 19 A sense 0.3077

with local citizens of duty

20 Ability to relate 0.2692 20 Ability to evaluate situations 0.2692
to politicians case by case,

not ideologically
21 Accountable 0.2308 21 Loyal in relationships 0.2308
22 Autonomous and independent 0.1923 22 A governing 0.1923

of political power mentality
23 Able with regard to 0.1538 23 Ability to relate 0.1538

management control to politicians
24 A governing mentality 0.1154 24 Basic knowledge 0.1154

of cross-sector themes
(e.g computers, statistics, quality)

25 Basic knowledge 0.0769 25 Autonomous and 0.0769
of cross-sector themes independent of political
(e.g. computers, statistics, quality) power

26 An administrative mind 0.0385 26 An administrative mind 0.0385

13.3.5 Discussion

Analysis of the rankings for all interviewed communes (Table 13.1) and by size of
the commune (Tables 13.3 and 13.4) highlights recognition common to both small
and medium/large communes of the importance of competencies regarding the so-
cial dimension of the municipal director’s profile. This profile should play a clear,
collaborative role proposing solutions specific to relationships within the municipal
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Table 13.2 Index of correlation between rankings by competence

Correlation Index
Technical know-how linked to the specificity of the role 0.4493
Basic knowledge of cross-sector themes (e.g. computers, statistics, quality) 0.3693
Knowledge of how administrative processes operate 0.3157
A clear knowledge of the objectives of the local authority for which one works 0.2807
An administrative mind 0.4868
Ability to organise planning 0.4793
Able with regard to management control 0.4967
Accountable 0.4809
Ability to relate to politicians 0.3596
Ability to communicate with local citizens 0.4166
Ability to motivate staff 0.3028
Ability to build teams, integrate skills 0.3578
Ability to exploit the produced knowledge 0.4928
Ability to manage conflict 0.2867
Ability to make decisions 0.2827
A governing mentality 0.5269
Loyal in relationships 0.2478
Ability to inspire trust 0.2903
A sense of duty 0.1688
Autonomous and independent of political power 0.3076
Authoritative leader, not authoritarian 0.1166
Ability to obtain results 0.3893
Ability to give reasons for choices 0.3197
Ability to evaluate situations case by case, not ideologically 0.2637
Being creative (open to innovation, ability to think up solutions) 0.3548
Ability to interpret the local area (needs and resources) 0.4012

structure (e.g. ability to motivate staff, ability to build teams and integrate skills).
The necessary, priority competencies can also be associated with the identity of the
authority for which the director works (a clear knowledge of the objectives of one’s
local authority), which is expressed in terms of an ability to make decisions and

AQ1

look towards results, not merely dealing with administrative practices. Such compe-
tencies do however require directors to advance in a direction that is not of ordinary
administration or, worse still, play it by ear. Being a director does not mean being
authoritarian – it involves team playing and he or she must be credible and convinc-
ing. What count are results, not the management of what is already present.

Less characteristic of the director’s role are the competencies or culture of an
administrative or management control nature, and transversal knowledge of a spe-
cific or technical nature. Sitting at the bottom of the ranking, there is no recognition
of a need for training inputs to support their further development. Also low in the
ranking is the ability to relate with politicians and with the local community (ex-
cept in large communes where greater importance is given to initiatives favouring
communication with citizens).
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Table 13.3 Ranking of the importance of competencies by size of commune
Size of commune

< 5,000 5,000−10,000 ≥ 10,000
1 Ability to motivate staff 1.0000 Ability to motivate staff 1.0000 Ability to build teams, 1.0000

integrate skills
2 Loyal in relationships 0.9615 Authoritative leader, not 0.9615 Ability to motivate staff 0.9615

authoritarian
3 A clear knowledge 0.9231 Ability to make decisions 0.9231 Ability to make decisions 0.9231

of the objectives of the
local authority
for which one works

4 Ability to build teams, 0.8846 A clear knowledge 0.8846 A clear knowledge 0.8846
integrate skills of the objectives of the of the objectives of the

local authority local authority
for which one works for which one works

5 Ability to obtain results 0.8462 Loyal in relationships 0.8462 Loyal in relationships 0.8462
6 Ability to make 0.8077 Ability to build teams, 0.8077 Ability to inspire 0.8077

decisions integrate skills trust
7 Authoritative leader, not 0.7692 A sense of duty 0.7692 Ability to obtain results 0.7692

authoritarian

8 A sense of duty 0.7308 Ability to obtain 0.7308 Ability to manage 0.7308
results conflict

9 Ability to inspire 0.6923 Ability to organise 0.6923 Authoritative leader, 0.6923
trust planning not authoritarian

10 Ability to organise 0.6538 Knowledge of how 0.6538 A sense of duty 0.6538
planning administrative

processes operate
11 Knowledge of how 0.6154 Being creative 0.6154 Ability to organise 0.6154

administrative (open to innovation, planning
processes operate ability to think up solutions)

12 Ability to give reasons 0.5769 Ability to inspire 0.5769 Ability to give reasons 0.5769
for choices trust 0.5769 for choices

13 Ability to manage conflict 0.5385 Technical know-how 0.5385 Being creative (open to 0.5385
linked to the innovation, ability to
specificity of the role think up solutions)

14 Being creative 0.5000 Ability to interpret 0.5000 Ability to communicate 0.5000
(open to innovation, the local area with local
ability to think up solutions) (needs and resources) citizens

15 Technical know-how 0.4615 Ability to evaluate 0.4615 Ability to 0.4615
linked to the situations case by exploit the
specificity of the role case, not ideologically produced knowledge

16 Ability to evaluate 0.4231 Ability to give reasons 0.4231 Accountable 0.4231
situations case for choices
by case, not ideologically

17 Ability to exploit 0.3846 Autonomous and 0.3846 Ability to evaluate 0.3846
the produced independent of situations case 0.3846
knowledge political power by case, not ideologically

18 Ability to interpret 0.3462 Ability to communicate 0.3462 Technical know-how 0.3462
the local area with local 0.3462 linked to the
(needs and resources) citizens specificity of the role

19 Autonomous and 0.3077 Ability to manage 0.3077 Ability to interpret 0.3077
independent of conflict the local area
political power (needs and resources)

20 Ability to relate 0.2692 Ability to exploit the 0.2692 Ability to relate 0.2692
to politicians produced knowledge to politicians

21 Ability to communicate 0.2308 Able with regard to 0.2308 Knowledge of how 0.2308
with local management administrative
citizens control processes operate

22 Accountable 0.1923 Ability to relate to 0.1923 Able with regard to 0.1923
politicians management control

23 Able with regard to 0.1538 Accountable 0.1538 Autonomous and 0.1538
management independent of 0.1538
control political power

24 A governing mentality 0.1154 A governing mentality 0.1154 A governing mentality 0.1154
25 Basic knowledge of 0.0769 Basic knowledge of 0.0769 Basic knowledge of 0.0769

cross-sector cross-sector cross-sector
themes (e.g. computers, themes (e.g. computers, themes (e.g. computers,
statistics, quality) statistics, quality) statistics, quality)

26 An administrative mind 0.0385 An administrative mind 0.0385 An administrative mind 0.0385
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Table 13.4 Ranking of the need for development of competencies by size of commune
Size of commune

< 5,000 5,000−10,000 ≥ 10,000
1 Ability to motivate 1.0000 Ability to motivate 1.0000 Ability to obtain 1.0000

staff staff results
2 Ability to obtain 0.9615 Ability to organise 0.9615 Ability to motivate 0.9615

results planning staff
3 Ability to build teams, 0.9231 Ability to build teams, 0.9231 Ability to build teams, 0.9231

integrate skills integrate skills integrate skills
4 Ability to organise 0.8846 Ability to make Ability to make 0.8846

planning decisions decisions
5 Ability to manage 0.8462 Able with regard to 0.8462 Ability to manage 0.8462

conflict management control conflict
6 Ability to make 0.8077 Ability to manage 0.8077 Ability to organise 0.8077

decisions conflict planning
7 A clear knowledge of the 0.7692 Ability to obtain 0.7692 Ability to inspire 0.7692

of the objectives results trust
of the local authority
for which one works

8 Authoritative leader, 0.7308 Authoritative leader, 0.7308 Ability to exploit 0.7308
not authoritarian not authoritarian the produced knowledge

9 Being creative 0.6923 Ability to interpret 0.6923 Accountable 0.6923
(open to innovation, the local area
ability to think up (needs and resources)
solutions)

10 Ability to give reasons 0.6538 Being creative 0.6538 Authoritative leader, 0.6538
for choices (open to innovation, not authoritarian

ability to think up solutions)
11 Ability to interpret 0.6154 A clear knowledge of the 0.6154 Being creative 0.6154

the local area objectives of the local (open to innovation,
(needs and resources) authority for which ability to think up

one works solutions)
12 Ability to inspire 0.5769 Ability to communicate 0.5769 Ability to interpret 0.5769

trust with local citizens the local area
(needs and resources)

13 Ability to communicate 0.5385 Ability to exploit 0.5385 Able with regard to 0.5385
with local citizens the produced knowledge management control

14 Ability to exploit 0.5000 Ability to give reasons 0.5000 A clear knowledge 0.5000
the produced for choices of the objectives
knowledge of the local authority

for which one works
15 Knowledge of 0.4615 Technical know-how 0.4615 A sense of 0.4615

how administrative linked to the specificity duty
processes operate of the role

16 Technical know-how linked 0.4231 Knowledge of 0.4231 Ability to give 0.4231
linked to the specificity how administrative reasons for choices
of the role processes operate

17 A sense of 0.3846 Accountable 0.3846 Ability to communicate 0.3846
duty with local citizens

18 Ability to evaluate, 0.3462 Basic knowledge 0.3462 Loyal in 0.3462
situations case by case of cross-sector themes relationships
not ideologically (e.g. computers,

statistics, quality)
19 Able with regard to 0.3077 Ability to inspire 0.3077 Ability to evaluate 0.3077

management control trust situations case by case,
not ideologicaly

20 Accountable 0.2692 A governing 0.2692 A governing 0.2692
mentality mentality

21 Ability to relate 0.2308 Loyal in 0.2308 Technical know-how 0.2308
to politicians relationships linked to the specificity

of the role
22 Loyal in 0.1923 A sense of duty 0.1923 Knowledge of 0.1923

relationships duty how administrative
processes operate

23 A governing 0.1538 Ability to relate 0.1538 Basic knowledge 0.1538
mentality to politicians of cross-sector themes

(e.g. computers,
statistics, quality)

24 Autonomous and 0.1154 Ability to evaluate 0.1154 Autonomous and 0.1154
independent of political situations case by case, independent of political
power not ideologically power

25 Basic knowledge 0.0769 Autonomous and 0.0769 Ability to relate 0.0769
of cross-sector themes independent of political to politicians
(e.g. computers, power
statistics, quality)

26 An administrative 0.0385 An administrative 0.0385 An administrative 0.0385
mind mind mind



224 Rosa Arboretti Giancristofaro, Mario Bolzan and Livio Corain

Table 13.5 Correlation index between rankings by competence and size of commune

Correlation index
Size of commune

< 5,000 5,000–10,000 ≥ 10,000
Technical know-how linked to the specificity of the role 0.4381 0.4014 0.5474
Basic knowledge of cross-sector themes (computers, statistics etc.) 0.4829 0.1818 0.4826
Knowledge of how administrative processes operate 0.5234 0.1468 0.0162
Knowledge of objectives of local authority for which one works 0.4389 0.2912 –0.0462
An administrative mind 0.4996 0.4250 0.4604
Ability to organise planning 0.5240 0.4855 0.4354
Able with regard to management control 0.5301 0.4154 0.5580
Accountable 0.4658 0.4763 0.4684
Ability to relate to politicians 0.5142 0.1331 0.2422
Ability to communicate with local citizens 0.5160 0.3214 0.2137
Ability to motivate staff 0.4517 0.1074 0.1654
Ability to build teams, integrate skills 0.4292 0.3529 0.0380
Ability to exploit the produced knowledge 0.5145 0.6499 0.1636
Ability to manage conflict 0.4154 0.1928 –0.0538
Ability to make decisions 0.3854 0.3914 –0.0093
A governing mentality 0.5804 0.5534 0.3102
Loyal in relationships 0.3048 0.0738 0.1179
Ability to inspire trust 0.3532 0.2505 0.2192
A sense of duty 0.2537 –0.1290 0.3532
Autonomous and independent of political power 0.4046 0.0497 0.3071
Authoritative leader, not authoritarian 0.1897 –0.0165 0.1743
Ability to obtain results 0.4278 0.3651 0.2921
Ability to give reasons for choices 0.4243 0.2651 –0.0019
Ability to evaluate situations case by case, not ideologically 0.4321 0.0509 0.1083
Being creative (open to innovation, ability to think up solutions) 0.4403 0.1117 0.4950
Ability to interpret the local area (needs and resources) 0.4605 0.4168 0.3701

Table 13.6 Significance of the correlation between rankings by stratum (size of commune) and
global

Size of the Commune p-value
< 5,000 0.000999
5,000−10,000 0.008991
≥ 10,000 0.000999
Global 0.000999

Having identified this ordering, it is natural to consider the distance between this
profile and the one currently present, particularly the profile that the clerks of the
council or directors, as central figures in the “administrative machine”, believe they
have, or better still which aspects they believe they need to develop. Analysis of the
rankings dealing with the need to develop the considered competencies (Tables 13.1
and 13.4) suggests a consideration that appears to be symmetric to the interpretation
of the importance of the competencies. The greatest need for training is identified
in specific operational dimensions (ability to obtain results, plan, integrate skills, in
short, ability to organise and manage resources). With these results it would seem
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that the culture of responsibility and transparency has begun to spread to all levels of
Italian administration, including suburban local authorities where the elective office
– starting with the mayor – is “measured” on the basis of “results” and no longer, or
at least not exclusively as in the past, on the basis of political persuasion. Heads of
administrations are thus motivated to choose staff who pursue visible objectives that
can be presented to the people. Less need is felt for aspects that are perhaps already
common within the public authority environment, and thus considered obsolete. It
is perhaps felt that the new local authority operating framework requires greater
commitment to investing in sectors the command of which makes and will make the
difference in terms of quality of the profession, sectors in which until now traditional
education, both university and postgraduate, have invested insufficiently.

It can be seen that the dimensions to which greater importance is given are also
those that require greater investment, therefore indicating a very clear perspective.
Substantially, high opinions of the importance of single competencies correspond
with high opinions of the need to develop such competencies (Tables 13.2 and 13.5);
the global correlation between the two rankings is significant, both for the total
number of interviews (p <0.0001) and for the three dimensions of the communes
(Table 13.6). Analysis of the correlation between necessary competencies and the
respective need to invest in training provides interesting points for reflection, par-
ticularly if the analysis is carried out separately by size of the commune to which
the interviewee belongs (Table 13.5). The results show that in smaller communes all
correlations are significant (at times with elevated significance) and confirm that the
identity perceived as necessary for directors requires adequate wide-ranging invest-
ment, perhaps in the knowledge that these local authorities are the ones that will play
a propulsive role in the area’s development, as well as offering an excellent opportu-
nity for directors to invest in their own professional future. Larger communes, on the
other hand, display a more articulate panorama: a less consistent spread of signifi-
cant correlations perhaps indicates greater caution towards what should be invested
in, or greater experience or professional maturity that leads to the association of cer-
tain competencies with specific educators or training agencies which cannot always
– when contacted – live up to expectations. In particular it can be seen that among
the non-significant correlations for medium and large communes, seven relate to the
same competencies while the remainder relate to different competencies. The need
for competencies would appear not to be correlated to the respective importance of
training in the following cases: knowledge of how administrative processes oper-
ate, ability to motivate staff, ability to manage conflict, loyal in relationships, ability
to inspire trust, authoritative leader and not authoritarian, ability to evaluate situ-
ations case by case and not ideologically. One possible interpretation is that these
competencies are the expression of abilities which are “not learnt at school” but are
the result of years of experience, particularly working in smaller communes where
one can reasonably expect to start and where the need to learn what appears to be
necessary for the profession is more greatly felt (therefore the correlations are all
significant).

In short, analysis seems to highlight a recognition of the complexity of the mu-
nicipal director’s role with regard to the new prospects of local authority positioning,



226 Rosa Arboretti Giancristofaro, Mario Bolzan and Livio Corain

and therefore the need to affirm a new identity for their professional profile that goes
beyond the abilities traditionally associated with it and probably already acquired.
As a result, therefore, new forms of training are required, especially in relation to
the ability to act/interact with various interlocutors both within and outwith the ad-
ministration.

As regards theoretical aspects, the above presented method of analysis is very
flexible and allows the experimenter to perform hypothesis testing on concordance
between dependent rankings for problems with ordinal data. Where stratification
variables are present, the nonparametric combination procedure along with closed
testing allows us to obtain a suitable solution for the global hypothesis system for
each stratum of stratification variables and for each dimension belonging to the over-
all ranking.
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narie e Specializzate, CLEUP, Padova, pp. 327–338

AISE (2009) A.I.S.E. detergent test protocol – 2009. WWW page, URL www.aise.eu/
aisedetergenttestprotocol2009/

Aitkin M (1999) A general maximum likelihood analysis of variance components in generalized
linear models. Biometrics 55:117–128

Aitkin M, Longford N (1986) Statistical modelling issues in school effectiveness studies. Journal
of the Royal Statistical Society A 149:1–43

Albert JH (1992) Bayesian estimation of normal ogive item response curves using Gibbs sampling.
Journal of Educational Statistics 17(3):251–269

Almalaurea (2006) Condizione occupazionale dei laureati. Consorzio Interuniversitario Almalau-
rea, Bologna

Alvarez-Farizo B, Hanley N (2002) Using conjoint analysis to quantify public preferences over the
environmental impact of wind farms. An example from spain. Energy Policy 30:107–116.

Anscombe FJ (1960) Rejection of outliers. Technometrics 2:123–147
Arabie P, Hubert LJ (1990) The bond energy algorithm revisited. IEEE Transactions on Systems,

Man and Cybernetics 20:268–274
Arboretti GR, Marozzi M, Salmaso L (2005) Nonparametric pooling and testing of preference

ratings for full-profile conjoint analysis experiments. Journal of Modern Applied Statistical
Methods 4:545–552

Arboretti GR, Basso D, Bonnini S, Corain L (2008) A robust approach for treatment ranking within
the multivariate one-way anova layout. In: Proceedings in Computational Statistics (Edited by
Paula Brito), International Conference on Computational Statistics, Porto – Portugal, August
24th–29th 2008, pp. 649–657

Atkinson AC, Riani M (2000) Robust Diagnostic Regression Analysis. Springer, New York

M. Bini et al. (eds.), Statistical Methods for the Evaluation of Educational 227
Services and Quality of Products, Contributions to Statistics,
DOI 10.1007/978-3-7908-2385-1, c© Springer-Verlag Berlin Heidelberg 2009



228 References

Atkinson AC, Riani M, Cerioli A (2004) Exploring Multivariate Data with the Forward Search.
Springer, New York

Baker GA (1954) Factor analysis of relative growth. Growth 18:137–143.
Balirano G, Corduas M (2008) Detecting semiotically expressed humor in diasporic tv productions.

HUMOR: International Journal of Humor Research 3:227–251
Barnett V (1976) The ordering of multivariate data. Journal of the Royal Statistical Society, RSS –

Series A 139:318–339
Barnett V (1988) Outlier and order statistics. Communications in Statistics Theory and Methods

17:2109–2118
Barnett V, Lewis T (1993) Outliers in Statistical Data, 3rd edn. John Wiley and Sons, New York.
Barone S, Lombardo A, Tarantino P (2007) A weighted logistic regression for conjoint analysis

and kansei engineering. Quality Reliability Engineering International 23:689–706
Bartholomew DJ (1995) Spearman and the origin and development of factor analysis. British Jour-

nal of Statistical and Mathematical Psychology 48:211–220
Bartholomew DJ, Knott M (1999) Latent Variable Models and Factor Analysis. Hodder Arnold,

London
Bartholomew DJ, Tzamourani P (1999) The goodness of fit of latent trait models in attitude mea-

surement. Sociological Methods and Research 27:525–546
Basso D, Pesarin F, Salmaso L, Solari A (2009) Permutation Tests for Stochastic Ordering and

ANOVA: Theory and Applications with R. Springer, New York
Battauz M, Bellio R, Gori E (2005) A multilevel measurement error model for value-added assess-

ment in education. In: Atti Convegno S.Co. 15–17 settembre 2005, Bressanone, pp. 91–96
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di Firenze, Firenze

Bhat CR (2001) Quasi-random maximum simulated likelihood estimation of the mixed multino-
mial logit model. Transportation Research: Part B: Methodological 35:677–693

Bianconcini S, Cagnone S, Mignani S, Monari P (2007) A latent curve analysis of unobserved
heterogeneity in university student achievements. Statistica LV:40–56

Biggeri L, Bini M (2003) Performance evaluation of the university system in italy: a robust clus-
tering approach to validate homogeneous groups of units. Proceedings of the Joint Statistical
Meetings of the American Statistical Association, 03–07 August 2003, San Francisco MIRA:
Digital Publishing, USA

Biggeri L, Bini M, Grilli L (2001) The transition from university to work: a multilevel approach
to the analysis of the time to obtain the first job. Journal of the Royal Statistical Society A
164:293–305

Bini M (2004a) Robust multivariate methods for the analysis of the university performance. In:
Studies in Classification, Data Analysis, and Knowledge Organization, Springer, Berlin



References 229

Bini M (2004b) Valutazione del processo di formazione universitaria: un’analisi robusta degli ab-
bandoni. In: Aureli Cutillo, E. (Eds.), Strategie metodologiche per lo studio della transizione
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