
Chapter 7
Quay Crane Scheduling

This chapter deals with the QCSP on the basis of container groups. It is studied as
an isolated problem here and functionally integrated into the BACAP in the next
chapter. Crane scheduling for container groups has been introduced by Kim and
Park (2004). As noted by Moccia et al. (2006), the original QCSP model provided
by Kim and Park shows an inaccuracy regarding the detection of crane interfer-
ence. Unfortunately, even reworked problem formulations still tolerate certain cases
of crane interference. A corrected problem formulation and a heuristic solution
method have been provided by Bierwirth and Meisel (2009). The model and the
heuristic are presented in Sects. 7.1 and 7.2, respectively. In Sect. 7.3 the QCSP
is extended by incorporation of time windows for the cranes. Necessary modifi-
cations of the mathematical formulation and the solution method are described.
Computational tests follow in Sect. 7.4. The study on the QCSP is concluded
in Sect. 7.5.

7.1 Modeling the QCSP

7.1.1 Problem Description and Assumptions

In the QCSP for container groups a set of tasks Ω = {1,2, . . . ,n} and a set of QCs
Q = {1,2, . . . ,q} are given. Each task i ∈ Ω represents a loading or unloading oper-
ation of a certain container group. The tasks have individual processing times pi and
bay positions li. Additionally, dummy tasks 0 and T = n + 1 with processing times
p0 = pT = 0 are given to indicate the begin and the end of the service of the vessel.
Further task sets are defined by Ω0 = Ω∪{0}, ΩT = Ω∪{T}, and Ω = Ω∪{0,T}.
Precedence relations may exist between pairs of tasks that are located within the
same bay. Let Φ denote the set of precedence constrained task pairs. Furthermore,
let Ψ ⊇ Φ denote the set of all task pairs for which it is known in advance that

F. Meisel, Seaside Operations Planning in Container Terminals,
Contributions to Management Science,
DOI: 10.1007/978-3-7908-2191-8 7, c© Physica-Verlag Berlin Heidelberg 2009

85

86 7 Quay Crane Scheduling

they cannot be processed simultaneously. For each crane k ∈ Q a ready time rk and
an initial bay position lk

0 is given. Without loss of generality, it is assumed that the
cranes are indexed sequentially according to their initial positioning alongside the
vessel. All QCs can move between two adjacent bays in an identical travel time
t̂ > 0. It is supposed that no two QCs can operate at the same bay at the same time.
Moreover, cranes are not allowed to cross each other and have to keep a safety mar-
gin δ, measured in units of bays. The problem is to find completion times ci for all
tasks i ∈ Ω on the cranes with respect to the constraints, such that the completion
time cT of the final task T (i.e., the makespan) is minimized.

Assumptions of the QCSP with container groups are:

1. Container groups are predefined from given stowage plans.
2. Processing of tasks is non-preemptive.
3. All QCs show an identical, deterministic transshipment productivity. For this rea-

son fixed processing times of tasks are given. No consideration of individual
container moves or crane cycle times is necessary.

4. The order of processing the tasks of a bay is completely determined by prece-
dence constraints.

5. Crane operations cannot lead to an instable load configuration of the vessel, i.e.,
stability issues are not considered in the QCSP.

6. There is sufficient space beside the vessel to place idle QCs outside of the vessel
area.

The described problem corresponds to a minimum makespan scheduling problem
with parallel identical machines and precedence constraints. This problem is known
to be N P -hard in the strong sense, provided that more than two machines, non-
preemption or non-uniform processing times are given, see Pinedo (2002).

7.1.2 Conventional Formulation of Interference Constraints

In the BACAP study, the productivity loss caused by crane interference has been
modeled using an interference exponent α. Within the QCSP, interference effects
are considered in more detail in order to generate feasible QC schedules.

In correspondence with models in machine scheduling, it is supposed that no
two QCs can operate at the same bay at the same time. Moreover, since QCs are rail
mounted, two types of interference constraints have to be respected:

• Non-crossing constraint: QCs cannot cross each other.
• Safety constraint: Adjacent QCs have to keep a safety margin at all times.

The safety margin δ signifies a certain number of in-between bays between adjacent
QCs. If, for example, δ = 1 this means that QCs can simultaneously operate at the
vessel if they are separated by at least one bay. Safety margin must be respected not
only while QCs are working but also during the movement operations.

7.1 Modeling the QCSP 87

Interference constraints were first included in the QCSP model of Kim and Park
(2004). As noted by Moccia et al. (2006) this model does not detect interference
in every case. Therefore, Moccia et al. (2006) have revised the model of Kim and
Park by incorporating travel times for QCs that subsequently process tasks in the
same bay. A compact mathematical formulation of the revised model can be found
in Sammarra et al. (2007). Unfortunately, also the modification proposed in the
revised model may yield solutions where QCs cross or violate the safety margin.
To demonstrate the incorrectness of this model those constraints that are responsi-
ble for detecting crane interference, labeled (9)–(14) in the paper of Sammarra et al.
(2007), are briefly revisited:

ci + p j − c j ≤ M(1− zi j) ∀i, j ∈ Ω, (7.1)

ci + p j − c j + ∑
k∈Q

∑
u∈Ω0,
lu
=li

t̂xk
u j ≤ M(1− zi j) ∀i, j ∈ Ω, li = l j, (7.2)

c j − p j − ci ≤ Mzi j ∀i, j ∈ Ω, (7.3)

c j − p j − ci − ∑
k∈Q

∑
u∈Ω0,
lu
=li

t̂xk
u j ≤ Mzi j ∀i, j ∈ Ω, li = l j, (7.4)

zi j + z ji = 1 ∀(i, j) ∈ Ψ, (7.5)
k

∑
v=1

∑
u∈Ω0

xv
u j −

k

∑
v=1

∑
u∈ΩT

xv
ui ≤ M(zi j + z ji) ∀i, j ∈ Ω, li < l j, ∀k ∈ Q. (7.6)

In this formulation xk
i j and zi j denote binary decision variables. xk

i j is set to 1 if tasks
i and j are processed consecutively by crane k, and zi j is set to 1 if task j starts
after the completion of task i. The variables zi j are defined in Constraints (7.1) and
(7.3). Constraints (7.2) and (7.4) ensure that the travel time t̂ is kept between the
completion of a task and the start of the next task in the same bay if both tasks are
processed by different QCs. In order to express a safety margin of one bay between
adjacent QCs, Sammarra et al. (2007) include those pairs of tasks in set Ψ that
belong to adjacent bays. Constraints (7.5) ensure that these tasks are not processed
simultaneously. Finally, a simultaneous processing of tasks that inevitably requires
a crossing of the assigned cranes is forbidden by Constraints (7.6).

To demonstrate the incorrectness of the above interference constraints two small
example problems are considered which are solved infeasible. The first problem
consists of four tasks with processing times 10, 20, 40, and 30, positioned in bays
1, 3, 5, and 7, respectively, and two cranes. The safety margin is set to one bay
and the travel time to t̂ = 1 time unit per bay. Figure 7.1a shows an optimal sched-
ule derived from the above model. In this solution, tasks 1 and 3 are assigned to
QC 1, and tasks 2 and 4 are assigned to QC 2. Obviously, the solution is infeasi-
ble because QC 1 crosses QC 2 in order to process task 3. Since no two tasks are
positioned within the same bay or adjacent bays, Ψ = /0 in this problem. Therefore,
Constraints (7.2), (7.4), and (7.5) do not appear in the model instance. The start

88 7 Quay Crane Scheduling

Fig. 7.1 Violation of the non-crossing requirement (a) and a feasible schedule (b)

Fig. 7.2 Violation of the safety margin (a) and a feasible schedule (b)

time of task 4 is derived from the completion time of task 2 plus the time needed by
QC 2 to travel from bay 3 to bay 7. Furthermore, the start time of task 3 is delayed
by Constraint (7.1) because tasks 2 and 3 are not allowed to be processed simultane-
ously, as effected by setting z23 = 1 in Constraint (7.6). However, the inserted delay
is insufficient to avoid a crossing of the cranes. The corrected feasible solution is
shown in Fig. 7.1b. This solution is obtained by introducing a temporal distance of
four time units between the completion of task 2 and the start of task 3. Through
this correction the makespan increases from 60 to 64 time units.

The model formulation encounters a further weakness regarding QCs that stay
idle during the service. The second problem instance consists of two tasks with
identical processing time, positioned in bays 2 and 4. Three QCs, initially posi-
tioned at bays 1, 3, and 5, are available for the service. The safety margin and the
travel time of cranes are as above. Figure 7.2a shows one optimal schedule where
the QC positioned initially at bay 1 processes task 1 and the QC positioned at bay 5
processes task 2. Since there are no restrictions on idle cranes in the above model,
the shown solution is not forbidden. However, it is infeasible because the idle QC is
within the safety area of the active QCs. Without changing the task-to-QC assign-
ment, a corrected feasible solution requires processing of the tasks consecutively.
Moreover, as shown in Fig. 7.2b, the starting time of task 2 needs a further delay of
two time units to enable a safe movement of the cranes. Now the safety margin is

7.1 Modeling the QCSP 89

always kept during the entire operation. As in the first problem, the inclusion of a
suitable temporal distance between tasks resolves the crane conflict. Unfortunately,
the repair does not preserve optimality of the solution.

7.1.3 Corrected Formulation of Interference Constraints

The above analysis discloses a serious weakness in the existing QCSP models. Tem-
poral distances between tasks are only included if these tasks are positioned within
the same bay. The key to a correct model formulation is the determination of a
suitable temporal distance between any two tasks involved in a problem. For this
purpose, the temporal distance is computed as a function of the bay positions of
tasks, the safety margin, the QC travel time, and, last but not least, the realized
task-to-QC assignment.

Let Δvw
i j denote the minimum time span to elapse between the processing of

two tasks i and j, if processed by QCs v and w respectively. Due to the sequential
indexing of cranes, one can say that v operates below (above) w if v < w (v > w).
Generally, a crossing must be avoided if the lower QC processes a task which is
located at a bay above a task processed by the upper QC. Furthermore, compliance
of the safety margin must be guaranteed between any two cranes v and w. Let δvw

be the smallest allowed difference between the bay positions of cranes v and w. It is
calculated as

δvw = (δ+ 1)|v−w|. (7.7)

For all combinations of tasks i, j ∈ Ω and QCs v,w ∈ Q the minimum temporal
distance is now defined as

Δvw
i j =

⎧⎨
⎩

(li − l j + δvw)t̂, if v < w and i
= j and li > l j − δvw,
(l j − li + δvw)t̂, if v > w and i
= j and li < l j + δvw,
0, otherwise.

(7.8)

The first case of (7.8), in which v operates below w, is illustrated in Fig. 7.3. Here,
tasks i and j are processed by adjacent QCs v and w = v + 1. In the example, the
safety margin is set to δ = 2 and the QC travel time is set to t̂ = 1. Assuming that
task j is completed at time c j, QC v must not be positioned above l j − δvw at this
point in time because it operates below w. Since v processes its next task at bay li it
has to traverse at least li− (l j −δvw) bays. The resulting minimum travel time of v is
Δvw

i j = (li− l j +δvw)t̂ = 6 with li− l j = 3. Note, that Δvw
i j yields the same value if task

i is processed prior to j under ceteris paribus conditions. The reverse positioning of
QCs is treated in the second case of (7.8). Without loss of generality, every instance
of this case can be transformed into an identical instance of the former case by
exchanging the roles of tasks i and j. In all other cases, cranes cannot come into
conflict as indicated by setting the temporal distance to a value of 0.

The example in Fig. 7.3 considers interference of adjacent QCs. However, if v and
w are not adjacent, (7.8) calculates a sufficiently large temporal distance between the

90 7 Quay Crane Scheduling

Fig. 7.3 Necessary time span between the execution of tasks by adjacent QCs

processing of any two tasks permitting a safe movement of the in-between cranes.
This also applies if in-between cranes are idle, see Fig. 7.2b.

Let Θ denote the set of all combinations of tasks and QCs that potentially lead to
crane interference. It can be defined as

Θ = {(i, j,v,w) ∈ Ω2 ×Q2 | (i < j)∧ (Δvw
i j > 0)}. (7.9)

Due to the symmetry of the temporal distances Δvw
i j the consideration can be

restricted to pairs of tasks with i < j. Actually, a certain combination in Θ will
cause interference only if its task-to-QC assignment is selected in the QC schedule.
Since this is unknown in advance, every element of Θ must be treated by a constraint
in the QCSP model.

A correct formulation of the model of Sammarra et al. (2007) results, if Con-
straints (7.2), (7.4), and (7.6) are replaced by the following constraints:

∑
u∈Ω0

xv
ui+ ∑

u∈Ω0

xw
u j ≤ 1 + zi j + z ji ∀(i, j,v,w) ∈ Θ, (7.10)

ci+Δvw
i j +p j−c j ≤ M(3−zi j−∑

u∈Ω0

xv
ui−∑

u∈Ω0

xw
u j) ∀(i, j,v,w) ∈ Θ, (7.11)

c j+Δvw
i j +pi−ci ≤ M(3−z ji−∑

u∈Ω0

xv
ui−∑

u∈Ω0

xw
u j) ∀(i, j,v,w) ∈ Θ. (7.12)

In Constraints (7.10) those assignments of tasks to QCs are identified that are real-
ized in the schedule. Here, ∑u∈Ω0 xv

ui = 1 if and only if task i is processed by QC v
and ∑u∈Ω0 xw

u j = 1 if and only if task j is processed by QC w. If both assignments
take place, the left side reveals a value of two and the tasks are not allowed to be
processed simultaneously, i.e., either zi j = 1 or z ji = 1. In the case of zi j = 1 Con-
straints (7.11) insert the minimum temporal distance calculated by (7.8) between
the completion time of task i and the starting time of task j. The corresponding case
of z ji = 1 is handled in Constraints (7.12).

7.1 Modeling the QCSP 91

7.1.4 Optimization Model

In the original model of Kim and Park (2004) the minimization of the weighted sum
of makespan and QC finishing times is pursued. Due to the predominant importance
of short vessel handling times in current CT markets, most authors merely con-
sider the minimization of makespan, as has been done in the computational studies
of Kim and Park (2004), Moccia et al. (2006), and Sammarra et al. (2007) too.
The following formulation takes up this lead and ignores QC finishing times in the
objective function.

To model the movement of cranes, the travel time of QC k to traverse from its
initial position lk

0 to l j (j ∈ Ω) is defined as tk
0 j = t̂|lk

0 − l j|. The travel time between
bay positions li and l j (i, j ∈ Ω) is defined as ti j = t̂|li − l j|. If i or j or both belong
to {0,T} the travel time is set to ti j = 0. Since the minimization of QC finishing
times is ignored here, final repositioning movements of QCs after completion of the
vessel’s service are not considered in this formulation.

The QCSP is formulated as follows:

minimize cT (7.13)

subject to

∑
j∈ΩT

xk
0 j = 1 ∀k ∈ Q, (7.14)

∑
j∈Ω0

xk
jT = 1 ∀k ∈ Q, (7.15)

∑
k∈Q

∑
j∈ΩT

xk
i j = 1 ∀i ∈ Ω, (7.16)

∑
j∈Ω0

xk
ji− ∑

j∈ΩT

xk
i j = 0 ∀i ∈ Ω,∀k ∈ Q, (7.17)

ci+ti j+p j−c j ≤ M(1− xk
i j) ∀i, j ∈ Ω,∀k ∈ Q, (7.18)

ci + p j − c j ≤ 0 ∀(i, j) ∈ Φ, (7.19)

ci + p j − c j ≤ M(1− zi j) ∀i, j ∈ Ω, (7.20)

c j − p j − ci ≤ Mzi j ∀i, j ∈ Ω, (7.21)

zi j + z ji = 1 ∀(i, j) ∈ Ψ, (7.22)

∑
u∈Ω0

xv
ui+ ∑

u∈Ω0

xw
u j ≤ 1 + zi j + z ji ∀(i, j,v,w) ∈ Θ, (7.23)

ci+Δvw
i j +p j−c j ≤ M(3−zi j− ∑

u∈Ω0

xv
ui− ∑

u∈Ω0

xw
u j) ∀(i, j,v,w) ∈ Θ, (7.24)

c j+Δvw
i j +pi−ci ≤ M(3−z ji− ∑

u∈Ω0

xv
ui− ∑

u∈Ω0

xw
u j) ∀(i, j,v,w) ∈ Θ, (7.25)

92 7 Quay Crane Scheduling

rk+tk
0 j+p j−c j ≤ M(1− xk

0 j) ∀ j ∈ Ω,∀k ∈ Q, (7.26)
ci ≥ 0 ∀i ∈ Ω, (7.27)

xk
i j ∈ {0,1} ∀i, j ∈ Ω,∀k ∈ Q, (7.28)

zi j ∈ {0,1} ∀i, j ∈ Ω. (7.29)

The pursued objective given in (7.13) is to minimize the handling time of the ves-
sel referred to as the makespan. The makespan is defined by the completion time
of dummy task T because every crane is enforced to visit this task after process-
ing its assigned non-dummy tasks. Constraints (7.14) and (7.15) ensure that every
QC starts with the initial dummy task 0 and ends up with the final dummy task
T . If both fall together, i.e., xk

0T = 1, QC k remains idle during the entire ser-
vice. Constraints (7.16) ensure that each non-dummy task is processed exactly once.
Constraints (7.17) ensure that every non-dummy task has a preceding task and a suc-
ceeding task. The completion times of the tasks are computed in Constraints (7.18)
where M is again a sufficiently large positive number. Note that for j = T the
makespan is computed by this constraint. The precedence relations are included
in Constraints (7.19) with respect to the task completion times. Constraints (7.20)
and (7.21) set the variables zi j. On this basis the non-simultaneity condition of tasks
is represented in Constraints (7.22). Constraints (7.23)–(7.25) are the new interfer-
ence constraints formulated in the previous section. The ready times of QCs are
handled in (7.26) and the feasible domains of the decision variables are defined in
(7.27)–(7.29).

The number of variables used in this formulation grows in O(n2q), which is
the same as in Sammarra et al. (2007). Due to the newly formulated interference
handling, the number of constraints grows in O(n2q2) instead of O(n2q).

The QCSP formulation is classified using the scheme of Sect. 4.2.1. Tasks are
defined by container groups (Group) where precedence relations exist among pairs
of tasks (prec). The model considers ready times, initial positions, and move-
ment time of cranes, classified by the crane attribute values ready, pos, and move.
The non-crossing requirement and safety margins are respected (cross, save). The
makespan, i.e., the maximum completion time (compl) among tasks, is minimized.
Hence, the model is classified by Group, prec | ready, pos,move | cross,save
max(compl).

Example 7.1: QCSP instance: definition and optimal solution

Table 7.1 shows the data of a small QCSP instance, which is used in the following
to illustrate the proposed solution procedure. The problem contains nine container
groups placed in a vessel with eleven bays. Two QCs are assigned to this vessel.
The minimum temporal distances for combinations of task pairs and QC pairs are
preprocessed according to (7.8). E.g., for (i, j,v,w) = (7,8,2,1) one obtains δ21 = 2
and Δ21

78 = (9−7+2) = 4. The complete matrix Δvw
i j is shown in Table 7.2. From this

it can be seen that Δ is symmetric in i, j and v,w, i.e., Δvw
i j = Δwv

ji . Set Θ is composed

7.1 Modeling the QCSP 93

Table 7.1 Example QCSP instance

Task index i 1 2 3 4 5 6 7 8 9

Processing time pi 22 46 8 70 10 38 40 16 12
Bay position li 1 1 2 3 5 5 7 9 11

Precedence-constrained tasks Φ = {(1,2), (5,6)}
Non-simultaneous tasks Ψ = {(1,2), (1,3), (2,3), (3,4), (5,6)}
QC 1 l1

0 = 1, r1 = 0
QC 2 l2

0 = 4, r2 = 0
QC travel speed t̂ = 1
Safety margin δ = 1

Table 7.2 Obtained temporal distances Δvw
i j for the QCSP instance

i 1 2 3 4 5 6 7 8 9
v 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

j w

1
1 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 2 0 3 0 4 0 6 0 6 0 8 0 10 0 12 0

2
1 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 0 0 0 3 0 4 0 6 0 6 0 8 0 10 0 12 0

3
1 0 3 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0
2 1 0 1 0 0 0 3 0 5 0 5 0 7 0 9 0 11 0

4
1 0 4 0 4 0 3 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0 4 0 4 0 6 0 8 0 10 0

5
1 0 6 0 6 0 5 0 4 0 0 0 2 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 2 0 4 0 6 0 8 0

6
1 0 6 0 6 0 5 0 4 0 2 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 2 0 0 0 4 0 6 0 8 0

7
1 0 8 0 8 0 7 0 6 0 4 0 4 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 6 0

8
1 0 10 0 10 0 9 0 8 0 6 0 6 0 4 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0

9
1 0 12 0 12 0 11 0 10 0 8 0 8 0 6 0 4 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

according to Definition (7.9). In the example it consists of 41 elements indicated by
the positive entries below the main diagonal of matrix Δ.

The optimal solution to the problem is given by the task sequences 0-1-2-3-6-8-10
for QC 1 and 0-4-5-7-9-10 for QC 2. The associated task completion times are
ci = (0, 22, 68, 80, 71, 83, 123, 125, 145, 141, 145). The corresponding schedule
is depicted in Fig. 7.4. It respects the required temporal distances between task pairs
(3,4), (5,6), and (7,8) in order to avoid violations of constraints. Note that QC 1
becomes idle three times because it has to wait until QC 2 has finished a task and
moves away.

94 7 Quay Crane Scheduling

Fig. 7.4 Optimal QC schedule with makespan cT = 145

7.2 Unidirectional Scheduling Heuristic

7.2.1 Idea and Outline

Following Bierwirth and Meisel (2009) a QC schedule is called a unidirectional
schedule if the QCs do not change in moving direction after the initial repositioning
and have identical directions of movement either from upper to lower bays or vice
versa. The schedule depicted in Fig. 7.4 is a unidirectional schedule. As shown by
Lim et al. (2007) for the QCSP with tasks defined by complete bays, there is at
least one optimal schedule among the unidirectional ones. For this reason, anchoring
unidirectionality in mathematical models of this QCSP variant, as has been done by
Liu et al. (2006) and Lim et al. (2007), does not exclude the optimal schedule from
the solution space.

In contrast, for the QCSP with container groups, one can easily construct
instances with no unidirectional schedule existing among the optimal solutions. One
such example is shown in Fig. 7.5 where (a) shows the optimal schedule and (b) and
(c) show best unidirectional schedules. Note that the optimal schedule cannot be
transformed into a unidirectional schedule without increasing the makespan or vio-
lating the precedence constraints of tasks in bay 3. Therefore, an optimization model
for the QCSP with container groups must not restrict the structure to unidirectional
schedules.

Although searching the space of unidirectional schedules can fail in finding the
optimal solution, it might be a good strategy for solving the QCSP with container
groups heuristically. The basic idea of the proposed heuristic is to search the space
of unidirectional schedules exhaustively, ending up with an optimal schedule among
the unidirectional ones. The Unidirectional Scheduling (UDS) heuristic respects all
requirements of the QCSP including the issue of crane interference. It generates
schedules by making decisions at three distinct levels:

7.2 Unidirectional Scheduling Heuristic 95

Fig. 7.5 A QCSP instance with a non-unidirectional optimal schedule (a) and best unidirectional
schedules (b, c)

Fig. 7.6 Flowchart of the tree search

1. Task-to-QC Assignment: Using a tree search, the possible assignments of tasks
to QCs are generated that allow for a unidirectional schedule.

2. Sequencing of tasks: For every considered task-to-QC assignment, sequences of
tasks are determined that can be processed by QCs in a unidirectional movement.

3. Schedule building: Starting times for the tasks are iteratively determined with
respect to the task sequences and the required temporal distances.

Task-to-QC assignments are the most complex decisions that need to be made if a
unidirectional schedule is searched, see Lim et al. (2007). The UDS heuristic applies
a tree search to generate these assignments as shown in Fig. 7.6. A detailed descrip-
tion of the procedure is given in Sect. 7.2.2. Decisions regarding the sequencing and

96 7 Quay Crane Scheduling

scheduling of tasks result from a transformation of task-to-QC assignments. The
transformation is used in the UDS heuristic to evaluate assignments and appears as
a single component in the tree search procedure. The sequencing and scheduling of
tasks are described in Sects. 7.2.3 and 7.2.4, respectively.

Due to the initial positioning of the QCs, the optimal unidirectional schedule
with a downward movement of cranes can differ from the optimal unidirectional
schedule with an upward movement of cranes. Therefore, the above procedure must
be applied twice to a problem instance. First, a unidirectional schedule is generated
for an upward movement of the QCs. Afterwards, the bays are numbered in inverse
order and the starting positions of QCs are adapted. Then a unidirectional schedule
is generated for a downward movement of the QCs. The UDS heuristic delivers the
better of the two schedules.

7.2.2 Assignment of Tasks to Cranes

Lexicographical Sorting: In the first step of the assignment procedure, the tasks
involved in a problem are sorted in lexicographical order of increasing bay position
and, within a bay, by precedence relations. Afterwards, the tasks are indexed accord-
ing to the lexicographical sorting. An example is given by the tasks in Table 7.1. As
stated in Sect. 7.1.1, it is assumed for this study that the precedence constraints
completely determine the order for processing the tasks within every bay. Hence,
the lexicographical sorting is unique and the procedure searches the entire space of
unidirectional schedules. If no unique sorting is given, one may choose practical
precedence constraints to avoid the evaluation of an exponentially growing num-
ber of different lexicographical sortings. Of course, in this case the UDS heuristic
searches only a subset of the unidirectional schedules and does not necessarily end
up with the best possible one.

Structure of the Tree Search: The Branch-and-Bound procedure builds up an enu-
meration tree starting with a root node representing task 0. At the first level of the
tree, task 1 is assigned to QC m1 ∈ Q. At tree level 2, task 2 is assigned to QC
m2 ∈ Q, and so on. Figure 7.7 shows a sketch of the search tree for the QCSP
instance in Table 7.1. Since nine tasks are assigned to two QCs, each path from the
root to a leaf in the tree corresponds to one of the 29 task-to-QC assignments. The
bold printed path in the tree represents the task-to-QC assignment that underlies the
schedule depicted in Fig. 7.4.

To calculate an initial upper bound UB for the tree search, two task-to-QC assign-
ments are generated using the S-TASKS rule and the S-LOAD rule, as introduced
by Sammarra et al. (2007). They divide the entire task set into q subsets such
that the number of tasks (S-TASKS) or the workload (S-LOAD) is almost equally
shared among the cranes. The delivered task-to-QC assignments are evaluated by
the sequencing and scheduling procedures as described later in Sects. 7.2.3 and

7.2 Unidirectional Scheduling Heuristic 97

Fig. 7.7 Sketch of the search tree indicating the task-to-QC assignment

7.2.4. The shorter makespan computed for the two assignments serves as the initial
upper bound.

The tree is searched in depth-first manner. A node is inspected by computing
up to three lower bounds for the partial assignment. It is pruned if a lower bound
overshoots UB. Otherwise, branching criteria are applied to decide on the succes-
sor nodes of the current node. Nodes that have passed the criteria enter the set of
candidates that require further inspection. The upper bound UB is updated if a new
best schedule has been generated. The Branch-and-Bound procedure terminates if
the set of candidates is empty.

Bounding: The unique path leading from the root to a certain node in the search
tree represents a partial task-to-QC assignment. Three lower bounds are applied to
decide whether the current node at level i is pruned or not.

Lower bound 1: A lower bound on the makespan for the addressed partial task-to-
QC assignment is computed by estimating the points in time when the cranes finish
service. The finishing time ck of QC k ∈ Q is estimated by

ck = rk + wk + dk. (7.30)

Here, rk denotes the ready time of QC k, wk denotes the workload of QC k under
the current partial task-to-QC assignment, and dk denotes the minimum travel time
of QC k to traverse between the bays. The workload of QC k is computed by
wk = ∑ j∈Ωk p j, where Ωk denotes the set of all tasks prior to or equal to task i

98 7 Quay Crane Scheduling

in the lexicographical order and assigned to QC k. The travel time of the crane is
determined by its initial bay position and the distance between the lowest bay llo
and the upmost bay lup it has to visit. For unidirectional schedules it is calculated
as dk = (|lk

0 − lk
lo|+ lk

up − lk
lo)t̂. Given the case that a crane is completely idle, i.e.,

its workload is equal to zero, ck is also set to zero in order to neglect the possible
influence of a late ready time. The first lower bound is determined by the maximum
finishing time of all QCs

LB1 = max
k∈Q

{ck}. (7.31)

Lower bound 2: This bound takes advantage of the lexicographical sorting of tasks,
which ensures that unassigned tasks at level i address bay li or bays above. Consider
two QCs k and v where k operates above v. Let ck and cv denote the corresponding
estimated finishing times with ck > cv. Since the remaining unassigned tasks belong
to bays located above the position of QC k, QC v must remain idle as long as QC
k has not finished its service. This means that QC v is blocked for a time period
of length ck − cv. More precisely, the time QC v is blocked by QC k is given by
bk

v = max{wk + dk − cv,0}, which allows for the fact that late ready times do not
effect blocking. For a node at level i of the search tree, the expected total occupation
time of the cranes including time periods in which they are blocked by QC k is

ok =
q

∑
v=1

cv +
k−1

∑
v=1

bk
v +

n

∑
j=i+1

p j. (7.32)

It is calculated as the sum of the QC finishing times at the current state of task
assignment plus the total blocking time and the remaining workload of tasks unas-
signed so far. The shortest possible makespan results if the total occupation time is
uniformly distributed to the cranes. This leads to the second lower bound

LB2 = max
k∈Q

{
ok

q

}
. (7.33)

Lower bound 3: To obtain a third lower bound, a partial schedule for the given partial
task-to-QC assignment is computed and its makespan is determined as described in
the subsequent Sects. 7.2.3 and 7.2.4. This makespan serves as LB3. Obviously, LB3

dominates LB1 but the incurred computational cost is comparably high. Therefore,
LB3 is computed only if LB1 and LB2 did not effect a bounding. If a partial schedule
is completed by the last task n and LB3 < UB holds, the schedule represents a new
best solution. In this case UB is updated by LB3.

Branching: To continue the partial task-to-QC assignment, nodes passing the
bounding criteria are branched by adding successor nodes to the search tree at
level i + 1. The successor nodes represent possible assignments mi+1 = k of task

7.2 Unidirectional Scheduling Heuristic 99

i + 1 to one of the QCs k ∈ Q. They must meet two branching criteria, which limit
the tree search to the inspection of promising task-to-QC assignments for which a
unidirectional schedule can be created.

Branching criterion 1: Unidirectional schedules show no change in the direction
of QC movement after the initial crane repositionings. The first branching criterion
prohibits task-to-QC assignments that lead to unavoidable changes in the direction
of movement. Such a change is inevitable for precedence constrained tasks of the
same bay if the QC of the succeeding task operates above the QC of the preceding
task. Formally, for precedence constrained task pairs (j, i + 1) ∈ Φ the following
condition must hold

mj ≥ mi+1. (7.34)

The existence of precedence constraints leads to a strong reduction of branches in
the tree search. Note that task i + 1 is assigned to QC 1 if task j is assigned to
QC 1. Task i+1 is assigned either to QC 1 or to QC 2 if task j is assigned to QC 2.
Generally, task i + 1 is assigned to one of the QCs 1,2, . . . ,mj. For this reason, at
tree level i, at most mj nodes are created for further inspection.

Branching criterion 2: With the only exception of the initial repositioning, QCs are
not allowed to move downward in a unidirectional schedule. However, repositioning
QC v downward does not make sense if another QC w can reach the bay position
of the considered task i + 1 earlier, because w will stay idle while v processes task
i+1. Therefore, if adjacent QCs v and w = v−1 are not involved in the partial task-
to-QC assignment, a successor node mi+1 = v is only added to the search tree, if the
following condition holds:

rv + tv
0,i+1 ≤ rw + tw

0,i+1, (7.35)

As an example consider the instance in Fig. 7.4 but assume that task 1 is assigned
to the upper QC (v = 2). This forces the lower QC (w = 1) to move downward and
stay idle. Since there are no ready times given for both cranes and QC v has a longer
travel time to reach bay 1, Condition (7.35) does not hold, which prevents a further
investigation of this partial task-to-QC assignment.

7.2.3 Sequencing of Tasks

After the tasks have been assigned to QCs, a task sequence is determined for each
crane. Although a feasible schedule can be derived from any combination of QC
task sequences, only one certain combination of sequences leads to a unidirec-
tional schedule. Due to the lexicographical sorting, the right sequences are already
determined by the order in which the tasks have been treated in the assignment
process. In other words, the first task assigned to a QC is the first in its sequence,
the next assigned task is the second in its sequence, and so on. Each change in a

100 7 Quay Crane Scheduling

Fig. 7.8 Task sequences for the task-to-QC assignment of Fig. 7.7

sequence means that a unidirectional schedule can no longer be built. Precedence
constrained tasks can obviously not be changed in sequence. Changing the sequence
of unconstrained tasks belonging to different bays inevitably requires a change in
the moving direction of the crane. Consequently the sequencing of tasks follows the
lexicographical sorting which entails no computational effort for the UDS heuristic.

Example 7.2: Sequencing of tasks

From the task-to-QC assignment shown in Fig. 7.7 one obtains task sequences 1-2-
3-6-8 and 4-5-7-9 for QCs 1 and 2, respectively. The sequences and the resulting
distribution of the workload among the two cranes are shown in Fig. 7.8.

7.2.4 Scheduling of Tasks

Generally, one can build different schedules from a set of QC task sequences
depending on the priority given to tasks which are forbidden to be processed simul-
taneously. Therefore, a schedule generation scheme is applied to assign priorities to
tasks. In order to generate non-delay crane schedules, Kim and Park (2004) apply
the list scheduling scheme. In a non-delay schedule, cranes do not remain idle while
they could start processing a task. Since the set of non-delay schedules does not nec-
essarily contain the optimal solutions, the approach conducts a heuristic reduction of
the search space. Lim et al. (2007) generate unidirectional schedules by scheduling
tasks in the order of increasing bay position, i.e., priority is given to the task with
lower bay position. This schedule generation scheme can, however, not be applied
to QCSP formulations that respect a safety margin between QCs. A safety margin
can necessitate to give priority to a task with a higher bay position in order to gen-
erate an optimal unidirectional schedule (see tasks 3 and 4 in the schedule shown in
Fig. 7.4 on page 94).

A schedule generation scheme capable of capturing the optimal QCSP sched-
ule is based on the disjunctive graph model, which is well known in the field of
machine scheduling. In the approach of Sammarra et al. (2007) the sequencing and
the scheduling of QC tasks are commonly based on a problem representation using
disjunctive graphs.

7.2 Unidirectional Scheduling Heuristic 101

In the study at hand the disjunctive graph model is applied to build a unidi-
rectional schedule for every task-to-QC assignment generated in the tree search. In
face of a large number of possible task-to-QC assignments, the model turns out to be
very valuable because it reveals an efficient way for incorporating crane interference
issues into the schedule generation scheme.

In the disjunctive graph model, all tasks i ∈ Ω are represented as nodes. The
task sequence of crane k ∈ Q is represented by a set of conjunctive arcs Ak which
defines a path from node 0 to node T . The precedence constrained task pairs of set
Φ are represented by a further set of conjunctive arcs AΦ. The set of all conjunctive
arcs is defined as A =

⋃
k∈Q Ak ∪AΦ. The further task pairs that are forbidden to

be processed simultaneously are represented by pairs of disjunctive arcs. A pair
of disjunctive arcs between tasks expresses the two possible orders of processing
them. The set of disjunctive arcs in the graph is denoted as D. It contains arcs for
pairs of non-simultaneous tasks defined in Ψ. Additionally, D contains arcs for task
pairs which are not precedence constrained but can cause crane interference under
the given task-to-QC assignment. This latter task set is defined as ΨΘ = {(i, j) ∈
Ω2\Φ | (i, j,mi,m j) ∈ Θ}. Now, the set of all disjunctive arcs is D = {(i, j) ∈ Ω2 |
(i, j) ∈ Ψ∪ΨΘ ∨ (j, i) ∈ Ψ∪ΨΘ}. Note that if tasks i and j cannot be processed
simultaneously, both arcs, (i, j) and (j, i), must enter D.

Weights are defined for conjunctive and disjunctive arcs in different ways.
Weights for the conjunctive arcs (i, j) ∈ ⋃k∈Q Ak are given by

wi j =

⎧⎨
⎩

rmj + t
mj
0 j , if i = 0 and j ∈ Ω,

pi, if i ∈ Ω and j = T,
pi + ti j, otherwise.

(7.36)

These weights assess a processing time of a task or a ready time of a crane plus the
travel time needed by a QC to move to the bay position of the next task. Weights for
the conjunctive arcs (i, j) ∈ AΦ\⋃k∈Q Ak which belong to precedence constraints
not contained in the task sequences and weights for the disjunctive arcs (i, j) ∈ D
are defined slightly differently by

wi j = pi + Δmimj
i j . (7.37)

Next to a task processing time these weights also reflect the required temporal dis-
tance for a safe crane movement, before the next task can be started. Summarizing,
the disjunctive graph, which is obtained from a task-to-QC assignment, is denoted
as G = (Ω,A,D,W), where W = [wi j] represents the arc weights.

From the disjunctive graph G of a scheduling problem one can obtain a feasible
schedule by selecting one arc of each pair of disjunctive arcs (and dropping the
other) such that the resulting graph G′ becomes acyclic. The unidirectional schedule
is derived from G by always selecting those arcs from the pairs of disjunctive arcs
that are directed from nodes of the upper QC toward nodes of the lower QC. This
means that whenever two tasks cannot be processed simultaneously, the schedule
generation scheme gives priority to the upper QC. Consequently, a cycle in G′ can be
effected only by arcs from AΦ. However, due to the first branching criterion (7.34),
arcs corresponding to precedence constraints are strictly downward oriented too and,

102 7 Quay Crane Scheduling

therefore, G′ cannot become cyclic. The makespan of the resulting unidirectional
schedule is computed as the length of the longest path in G′.

Example 7.3: Scheduling of QC tasks (continued Example 7.2)

The schedule generation is illustrated for the task-to-QC assignment shown in
Fig. 7.7 and the corresponding task sequences shown in Fig. 7.8. Using the assign-
ment and the task sequences, the node and arc sets shown in Table 7.3 are generated
as described above. Here, A1 and A2 are the arc sets representing the task sequences
of QCs 1 and 2, respectively. AΦ represents the precedence constraint between
tasks 1 and 2 and between tasks 5 and 6. The disjunctive arcs in D are used for
handling crane interference.

The disjunctive graph G is shown in Fig. 7.9. The arc weights are calculated
using (7.36) and (7.37). The composition of weights is shown in detail for arcs
(0,4),(4,5), (7,8), and (9,T) in the figure.

Giving priority to the upper QC whenever two tasks cannot be processed simulta-
neously means selecting the downward oriented arc from each of the five disjunctive
arc pairs of graph G. Figure 7.10 shows the directed graph G′ that is obtained
from G. The corresponding longest path (0,4,5,7,8,T) is of length 145. This value
measures the makespan of the schedule shown in Fig. 7.4. While a two-crane prob-
lem has been considered for illustrating the proposed heuristic, the procedure can be
applied without restrictions to generate unidirectional schedules for larger problems.

Table 7.3 Objects for the construction of the disjunctive graph

Ω = {0,1,2,3,4,5,6,7,8,9,T}
A1 = {(0,1), (1,2), (2,3), (3,6), (6,8), (8,T)}
A2 = {(0,4), (4,5), (5,7), (7,9), (9,T)}
AΦ= {(1,2), (5,6)}
D = {(3,4), (4,3), (4,6), (6,4), (4,8), (8,4), (5,8), (8,5), (7,8), (8,7)}

Fig. 7.9 Graph G obtained for the task-to-QC assignment of Fig. 7.7

7.3 The QCSP with Time Windows 103

Fig. 7.10 Graph G′ corresponding to Fig. 7.9

7.3 The QCSP with Time Windows

The computational study of the BACAP has revealed that the quality of berth plans
is improved if variable-in-time QC-to-Vessel assignments are considered. While the
above QCSP formulation can handle non-zero ready times of cranes, it cannot be
applied if QCs are (temporarily) removed from a vessel during the service. Hence,
the incorporation of time windows for the cranes becomes necessary. A time window
defines a time span at which a crane is available at the vessel. The resulting prob-
lem is called the Quay Crane Scheduling Problem with Time Windows (QCSPTW).
To access the QCSPTW a consistent declaration of time windows for cranes is dis-
cussed, followed by a mathematical formulation of the problem. Afterwards, an
adaptation of the UDS heuristic is presented to solve the QCSPTW.

7.3.1 Declaration of Time Windows for Cranes

Since cranes can be temporarily removed from a vessel during the service, a crane
can possess multiple time windows. The following notation is used to state time
windows for a crane k ∈ Q. Let TWk = {1, . . . ,τk} denote the set of time windows
of k where τk is the number of time windows.

Each time window u ∈ TWk is defined by the quadruple (rku,dku, lku
0 , lku

T) with:

• The ready time rku, i.e., the begin of the time window
• The withdraw time dku, i.e., the end of the time window
• The initial crane position lku

0 at the begin of the time window
• The final crane position lku

T at the end of the time window

Without loss of generality it is assumed that the time windows of a crane are indexed
according to increasing ready times, i.e., rk,1 < rk,2 < · · · < rk,τk.

In order to obtain feasible QCSPTW solutions, time windows for cranes must be
consistently declared. For example, if overlapping time windows are declared for

104 7 Quay Crane Scheduling

two non-adjacent QCs, a corresponding time window needs to be declared for every
in-between crane because in-between cranes cannot be removed from the vessel
during the respective time span. Furthermore, the initial (final) positions of cranes
which approach (are removed from) the vessel at the same time have to respect the
safety margin and the non-crossing condition.

A specific QC-to-Vessel assignment as generated within the berth planning phase
can serve as a basis for the declaration of consistent time windows. Furthermore, the
following assumptions are made to simplify the declaration of time windows:

1. Ready times and withdraw times of QCs refer to full hours only.
2. There is sufficient clearance between vessels for positioning cranes.
3. The time needed to move a QC from one vessel to another vessel is neglected.
4. QCs which serve the considered vessel in its last handling hour (according to the

given QC-to-Vessel assignment) stay until the service is completed.

The first assumption is justified because the BACAP assigns cranes to vessels on an
hourly basis. The second assumption ensures that approaching cranes and removing
cranes can be positioned outside of the vessel area without getting into conflict with
cranes serving other vessels. The third assumption has already been stated for the
BACAP. This simplification allows to focus on the considered vessel without tak-
ing into account the origin of an approaching QC or the destination of a removed
QC. The fourth assumption ensures that there is always a feasible solution for a
QCSPTW instance existing under any QC-to-Vessel assignment. For this purpose
the latest-starting time window τk of those cranes k ∈ Q which are assigned to the
vessel in its last handling hour receives an infinite withdraw time. Such time win-
dows are called open-ended time windows. An open-ended time window enables a
QC to remain at the vessel and complete handling operations. It is mathematically
described by dk,τk = M.

Following these assumptions ready times and withdraw times of cranes can be
derived straightforward from a specific QC-to-Vessel assignment of a BACAP solu-
tion. Merely a time transformation is required. The berthing time of the considered
vessel in the BACAP is transformed into time 0 in the QCSPTW while the time
unit is changed from hours to minutes. This transformation is illustrated in Fig. 7.11
where a single vessel berths at time s1 = 3 and departs at time e1 = 9. Consider
QC 1, which approaches the vessel 1 h after the berthing time. The crane is removed
from the vessel 2 h later. Hence, the corresponding time window u = 1 of QC k = 1
in the QCSPTW shows a crane ready time r1,1 = 60 and a crane withdraw time
d1,1 = 180.

The initial crane positions of time windows are determined differently depending
on the crane ready time. Cranes which are assigned to the vessel at its berthing time
are lined up alongside the vessel with inter-crane clearance as required from the
safety margin. Cranes which approach the vessel at a later point in time are initially
positioned outside of the vessel area. For a vessel with b bays, these outside positions
can be addressed by virtual bays 0,−1, . . . and b+1,b+2, . . . , respectively. Assume
that a QC v approaches a vessel while the service is running. Let wlo and wup denote

7.3 The QCSP with Time Windows 105

Fig. 7.11 Time transformation between BACAP and QCSPTW

the downmost crane and the upmost crane among the already assigned QCs. The
initial position of crane v at the begin of time window u ∈ TWv is given by

lv,u
0 =

{
1− δv,wlo, if v < wlo,
b + δv,wup, if v > wup.

(7.38)

Here δv,wlo (δv,wup) denotes the smallest allowed difference between the bay positions
of QCs v and wlo (wup) as calculated by (7.7) on page 89. Eq. (7.38) positions a
crane at the nearest feasible position outside of the vessel area. The first case of
(7.38) applies if v is a crane positioned below the already assigned cranes at the
quay. It can be seen that v is initially positioned below bay 1. For example, if the
safety margin is set to δ = 1 bay, and v is the crane adjacent to wlo (v = wlo − 1),
crane v is initially positioned at bay lv,u

0 = 1− δv,wlo = 1−2 = −1. If the next crane
v′ = wlo − 2 approaches the vessel at the same time, the initial position of v′ is set

to bay lv′,u′
0 = 1−δv′,wlo

= 1−4 = −3, and so on. The second case of (7.38) applies
if v is a crane positioned above the already assigned cranes at the quay. In this case
the initial position is set to a bay position above bay b.

For calculating final crane positions of time windows, (7.38) is modified by
replacing lv,u

0 by lv,u
T . Furthermore, v refers to the QC that is removed from the

vessel, and wlo (wup) refers to the downmost (upmost) QC among the cranes that
remain at the vessel. From these modifications (7.38) calculates the final position
of a removed crane at the end of its time window. Note that the equation cannot be
applied to open-ended time windows because wlo and wup are not defined at the end
of a vessel’s service. Since the final crane positions of open-ended time windows
have no impact on the makespan of a schedule, they are of no particular interest
within the QCSPTW. For reasons of completeness the final positions of cranes with

106 7 Quay Crane Scheduling

an open-ended time window are lined up alongside the vessel as described for initial
positions above.

Crane positions as determined above ensure that the non-crossing requirement
and the safety margin are respected among approaching and removing cranes at
any time. Conflicts with operating QCs are avoided as well. However, one potential
conflict remains. According to the assumptions made for the QCSP, a crane can
move out of the vessel area in order to let another crane process a task. However,
in the QCSPTW, this crane may occupy the initial position of approaching cranes.
This conflict is avoided by the interference constraints introduced for the QCSP.
They insert a sufficient temporal distance between the processing of consecutive
tasks to allow a safe movement of cranes, which is also sufficient for temporarily
idle cranes. The example in Fig. 7.2b on page 88 gives an idea of this effect.

Example 7.4: Declaration of time windows

The declaration of time windows for cranes is demonstrated using the QC-to-Vessel
assignment shown in Fig. 7.11. The vessel is assumed to have b = 10 bays and the
safety margin is set to δ = 1 bay. The following time windows are derived from the
depicted QC-to-Vessel assignment:

QC 1 is assigned to the vessel from the beginning of the second service period
to the end of the third service period. According to the time transformation, the
corresponding time window in the QCSPTW shows a ready time of r1,1 = 60 and
a crane withdraw time of d1,1 = 180. The initial position of the crane at the begin
of the time window is calculated using (7.38) as l1,1

0 = 1−δ1,2 = −1, i.e., the crane
is placed outside of the vessel area. The calculation takes into account that QC 2 is
already assigned to the vessel at the ready time. Also the final position is set to l1,1

T =
1− δ1,2 = −1 because QC 2 remains at the vessel while QC 1 is removed. Hence,
one time window (r1,1,d1,1, l1,1

0 , l1,1
T) = (60,180,−1,−1) is declared for QC 1.

QC 2 is assigned to the vessel throughout its entire handling time. A time window
(r2,1,d2,1, l2,1

0 , l2,1
T)= (0,M,1,1) is declared for a consistent treatment. Note that this

time window is open-ended as stated above by the fourth assumption. The initial
position of the crane is taken from the lining up of those cranes that are assigned to
the vessel at its berthing time. The final position is taken from lining up all cranes
with an open-ended time window alongside the vessel.

The assignment of QC 3 to the vessel requires two time windows. The first time
window is defined by (r3,1,d3,1, l3,1

0 , l3,1
T) = (0,180,3,12). Here, the initial position

follows from lining next to QC 2 with respect to the safety margin. The final position
is calculated by b + δ3,2 = 12 which places the QC outside of the vessel area and,
thereby, respects that QC 2 remains at the vessel. The second time window of QC 3
is (r3,2,d3,2, l3,2

0 , l3,2
T) = (240,M,12,3).

7.3 The QCSP with Time Windows 107

7.3.2 Optimization Model

A mathematical formulation of the QCSPTW is derived by extending the QCSP for-
mulation given in Sect. 7.1. The formulation uses the additional terms tku

0i = t̂|lku
0 − li|

and tku
iT = t̂|lku

T − li|. The former denotes the travel time of QC k between the initial
crane position of time window u ∈ TWk and the bay position of task i ∈ Ω. The
latter denotes the travel time between the position of task i and the final crane posi-
tion at the end of the time window u. Moreover, binary decision variables yku

i are
introduced, set to 1 if and only if task i is processed by QC k in its time window u.

The QCSPTW is formulated as follows:

minimize cT (7.39)

subject to

∑
u∈TWk

yku
i = ∑

j∈Ω0

xk
ji ∀i ∈ Ω,∀k ∈ Q, (7.40)

ci − pi ≥ yku
i (rku + tku

0i) ∀i ∈ Ω,∀k ∈ Q,∀u ∈ TWk, (7.41)

ci ≤ M(1− yku
i)+ dku − tku

iT ∀i ∈ Ω,∀k ∈ Q,∀u ∈ TWk, (7.42)

yku
i ∈ {0,1} ∀i ∈ Ω,∀k ∈ Q,∀u ∈ TWk, (7.43)

and (7.14)–(7.25), (7.27) –(7.29).

As in the QCSP, the objective pursues the minimization of the makespan of the
schedule. Constraints (7.40) ensure that every task is processed within one time win-
dow of the assigned crane. Constraints (7.41) ensure that a task is not started earlier
than the crane ready time of the addressed time window plus the time needed by
the crane to move from its initial position to the task. Constraints (7.42) ensure that
each crane is able to reach its final position at the withdraw time of a time window.
The model is completed by the Constraints (7.14)–(7.25) and (7.27)–(7.29). The
QCSPTW is classified by Group, prec | TW, pos,move | cross,save | max(compl).

7.3.3 Adaptation of the UDS Heuristic

The UDS heuristic is adapted for the QCSPTW, referred to as the UDSTW heuristic.
The following adaptations are necessary:

1. The task-to-QC assignments generated by the S-TASKS and the S-LOAD rule
may not allow for the generation of feasible schedules in the presence of time
windows. In this case both rules are repeated, but this time only cranes with an
open-ended time window are considered. The derived task-to-QC assignments
lead to feasible schedules. The obtained schedules yield the initial upper bound
for the UDSTW heuristic.

108 7 Quay Crane Scheduling

2. The lower bounds that have been introduced for the UDS heuristic already
respect ready times rk and initial positions lk

0 of QCs. The bounds are appli-
cable in the UDSTW heuristic by replacing these values with the corresponding
values of the earliest time windows of the cranes, namely rk,1 and lk,1

0 .
3. The second branching criterion enforces that a task is assigned to the QC that can

reach it in the fastest possible way. However, if the chosen crane shows no time
window sufficiently large to process the task, the QCSPTW cannot be solved fea-
sible. For this reason, the second branching criterion is disabled in the UDSTW
heuristic.

4. The scheduling rule derived from the disjunctive graph representation of the
QCSP is applicable within the UDSTW heuristic. However, it may happen that
(i) the derived earliest starting time of a task does not fall within a time window
of the assigned QC, or (ii) the task cannot be completed before the addressed
time window ends. In both cases the task is postponed by shifting it to the next
time window of the assigned crane that is sufficiently large to allow processing
the task and the required crane movement. Successor tasks and tasks assigned
to QCs with lower priority are postponed accordingly. If no appropriate time
window can be found for a task, the task-to-QC assignment does not lead to a
feasible unidirectional schedule. The assignment is not further investigated by
the UDSTW heuristic.

The UDSTW heuristic searches the space of unidirectional schedules of a QCSPTW
instance. However, in the presence of time windows for the cranes, this search
space reduction can exclude the optimal schedule even if no precedence relations
exists among tasks. Figure 7.12 shows an optimal solution for a QCSPTW instance
with two cranes assigned to the vessel. In this example, the first assumption stated
in Sect. 7.3.1 is dropped, i.e., ready times and withdraw times of QCs do not
refer to full hours in this example. QC 1 is available within two time windows
(r1,1,d1,1, l1,1

0 , l1,1
T) = (0,15,1,−1) and (r1,2,d1,2, l1,2

0 , l1,2
T) = (25,M,−1,1). QC 2

is assigned to the vessel during the entire service interval, which is represented by
the single open-ended time window (r2,1,d2,1, l2,1

0 , l2,1
T) = (0,M,3,3). In order to

capture the optimal solution with a makespan of 69 time units, QC 1 needs to pro-
cess task 2 within its first time window and tasks 1 and 3 within its second time

Fig. 7.12 A non-unidirectional optimal solution for a QCSPTW instance

7.4 Computational Study 109

window. However, this task sequence contradicts the lexicographical task indexing,
i.e., the resulting schedule is not a unidirectional one. It can therefore not be gen-
erated by the UDSTW heuristic. The example illustrates that the reduction of the
solution space to unidirectional schedules might have a stronger impact on the qual-
ity of solutions for the QCSPTW than for the QCSP. A quantitative investigation on
the performance of the heuristic is left to the computational study in the subsequent
section.

7.4 Computational Study

The following tests assess the competitiveness of the UDS heuristic against methods
published in the literature, the sensitivity of the solutions on the problem parameter
settings, and the performance of the UDSTW in solving the problem variant with
time windows for the cranes:

• Performance of the UDS heuristic:

Test 7.1: Performance on small QCSP instances
Test 7.2: Performance on large QCSP instances
Test 7.3: Solution quality and runtime demand

• Sensitivity on problem parameter settings:

Test 7.4: Sensitivity on the task definition
Test 7.5: Sensitivity on the safety margin

• Performance of the UDSTW heuristic:

Test 7.6: Solution quality and runtime demand of the UDSTW heuristic

The heuristics have been implemented in JAVA. A PC P4 2.8 GHz is used for the
tests.

Benchmark Instances

A suite of benchmark problems is used that has been introduced by Kim and Park
(2004). It contains nine instance sets of different problem size with ten instances
each, see Table 7.4. For each instance the order of processing the tasks of a bay
is completely determined by precedence constraints, i.e., a unique lexicographical

Table 7.4 QCSP benchmarks of Kim and Park (2004)

Set

A B C D E F G H I

Tasks n 10 15 20 25 30 35 40 45 50
QCs q 2 2 3 3 4 4 5 5 6

110 7 Quay Crane Scheduling

sorting of tasks is always possible. The QC ready times rk are zero in all instances.
The safety margin δ is set to one bay. The travel time t̂ of QCs is set to one time unit
per bay. Variations in these settings are stated in the respective tests.

Test 7.1: Performance on small QCSP instances

This test assesses the performance of the UDS heuristic and compares it with the
QCSP solution methods published in the literature, see Table 7.5.

Since the studies of Kim and Park (2004), Moccia et al. (2006), and Sammarra
et al. (2007) tackled only the first 37 instances, named k13 to k49, from the bench-
mark suite, the comparison is carried out on this subset of benchmarks. Moccia et al.
(2006) report optimal solutions for 28 of these instances and tight lower bounds for
the remaining nine instances. While it is unknown whether the solutions are feasible
with respect to the corrected interference constraints, they can still serve as lower
bounds. This holds because optimal solutions generated for a model with incomplete
interference constraints will show a makespan that is not larger than the minimum
makespan of the corrected model’s solutions.

Table 7.6 shows the computational results of this first experiment. The optimal
makespan or best known lower bound to each of the instances appears in column
fopt. Note that previous studies weighted the obtained makespan of a schedule by a
fixed factor of 3, as is also done here to ease comparison. The performance of the
methods is reported on the basis of the relative error RE in percent of the best found
solution fbest against fopt, i.e., RE = (fbest − fopt)/ fopt×100. For the UDS heuristic
the objective function value of the best found solution is reported in cases where it
fails to reach fopt.

With the exception of the algorithms of Kim and Park (2004) all compared meth-
ods solve instance set A to optimality. The observed deviation between fbest and fopt

for the UDS solution of k22 results from the interference constraints (7.10)–(7.12)
in the corrected model. Replacing these constraints by (7.2), (7.4), and (7.6), which
are used by Sammarra et al. (2007), the UDS heuristic always reaches fopt. For this
reason it is assumed that the corrected solution for k22 is optimal with respect to
the revised QCSP model. For instance sets B and C, the relative error of the Tabu
Search clearly increases against the Branch-and-Cut algorithm and the UDS heuris-
tic. The Branch-and-Cut algorithm and UDS generate schedules of identical quality.
The relative error of 2.26% for the UDS solution of k42 stems again from the strict

Table 7.5 QCSP solution methods published in the literature

Abbr. Method Reference

B&B Branch-and-bound Kim and Park (2004)
GRASP Greedy randomized adaptive search procedure Kim and Park (2004)
B&C Branch-and-cut Moccia et al. (2006)
TS Tabu search Sammarra et al. (2007)

7.4 Computational Study 111

Table 7.6 Performance comparison of QCSP solution methods (RE in percent)

No. Set fopt B&B GRASP B&C TS UDS fbest

k13 A 453 0.00 0.00 0.00 0.00 0.00
k14 A 546 0.00 0.00 0.00 0.00 0.00
k15 A 513 0.00 0.58 0.00 0.00 0.00
k16 A 312 2.88 2.88 0.00 0.00 0.00
k17 A 453 0.66 0.66 0.00 0.00 0.00
k18 A 375 0.00 0.00 0.00 0.00 0.00
k19 A 543 1.66 1.66 0.00 0.00 0.00
k20 A 399 20.30 20.30 0.00 0.00 0.00
k21 A 465 0.00 0.00 0.00 0.00 0.00
k22 A 537 34.08 34.08 0.00 0.00 0.56 540b

k23 B 576 0.00 2.60 0.00 1.04 0.00
k24 B 666 0.45 1.35 0.00 0.45 0.00
k25 B 738 0.00 0.41 0.00 0.41 0.00
k26 B 639 0.00 1.88 0.00 0.00 0.00
k27 B 657 0.00 4.57 0.00 0.46 0.00
k28 B 531 1.13 3.39 0.00 0.00 0.00
k29 B 807 0.00 1.49 0.00 0.37 0.00
k30 B 891 0.00 1.68 0.00 0.00 0.00
k31 B 570 0.00 0.00 0.00 0.00 0.00
k32 B 591 0.00 1.02 0.00 0.00 0.00

k33 C 603 0.00 10.45 0.00 0.00 0.00
k34 C 717 0.00 6.28 0.00 2.51 0.00
k35 C 684 0.88 2.19 0.00 0.88 0.00
k36 C 678 6.19 4.42 0.00 0.44 0.00
k37 C 510 1.18 5.88 0.00 1.76 0.00
k38 C 613.67a 3.15 7.55 0.71 0.71 0.71 618
k39 C 508.38a 8.58 13.89 0.91 2.09 0.91 513
k40 C 564 2.13 5.85 0.00 0.53 0.00
k41 C 585.06a 11.78 9.73 0.50 1.53 0.50 588
k42 C 560.31a 4.94 18.86 1.73 2.80 2.26 573b

k43 D 859.32a 10.67 9.62 4.38 2.29 1.94 876c

k44 D 820.35a 7.15 4.59 0.20 1.66 0.20 822
k45 D 824.88a 4.38 5.83 1.83 3.29 1.11 834c

k46 D 690 2.61 6.52 0.00 0.00 0.00
k47 D 792 15.15 1.89 0.00 0.00 0.00
k48 D 628.87a 6.38 6.38 2.56 5.43 1.61 639c

k49 D 879.22a 4.07 10.55 5.43 3.73 1.68 894c

ARE (%) 4.06 5.65 0.49 0.87 0.31

aLower bound; bCorrected solution; cNew best solution

interference handling. The UDS heuristic returns the Branch-and-Cut solution if the
new interference constraints are not applied. For the larger instances of set D, the
Branch-and-Cut algorithm often fails to reach the optimum within the allowed run-
time of 2 h. Here, the UDS heuristic is clearly superior to all other methods. For
instances k43, k45, k48, and k49 it delivers new best solutions. This is also reflected
by a comparison of the average relative error (ARE) observed for the heuristics. The

112 7 Quay Crane Scheduling

Table 7.7 Runtime comparison of QCSP solution methods (average-in-set in minutes)

Set B&B GRASP B&C TS UDS

A 0.44 0.35 1.01 1.52 1.12 ×10−5

B 17.53 1.46 8.91 5.86 3.68 ×10−5

C 564.47 3.16 72.19 21.75 6.26 ×10−4

D 809.73 7.56 102.49 48.68 3.43 ×10−3

achieved excellent solution quality implies that at least the smaller instances of Kim
and Park (2004) have optimal solutions which are unidirectional, too. In total the
UDS heuristic is capable of solving all instances to optimality or to the best solution
quality known so far.

The average computation time demand of the various algorithms (as reported
in the literature) is presented for each of the four instance sets in Table 7.7. The
machines used were a PC P2 466 MHz for the Branch-and-Bound method and the
GRASP heuristic of Kim and Park, a PC P4 2.5 GHz for the Branch-and-Cut method
of Moccia et al., a PC P4 2.66 GHz for the Tabu Search of Sammarra et al., and a PC
P4 2.8 GHz for the UDS heuristic. Although within milliseconds, the computation
times of the UDS procedure are specified in minutes for the purpose of comparabil-
ity. Despite the fact that it has been tested on the fastest machine, it can be seen that
the UDS heuristic tremendously cuts down the computation times.

Test 7.2: Performance on large QCSP instances

The performance of the UDS heuristic on the instance sets A to D encourages one
to tackle the larger instances as provided in sets E to I of the benchmark suite, see
Table 7.4. They contain problems with up to six QCs and 50 tasks as observed for
large container vessels. It is supposed that previous studies had not tackled these
problems because the proposed methods ran into their boundaries. Computational
results obtained from the UDS heuristic for instances k50 to k102 are shown in
Table 7.8. The UDS heuristic is given a runtime limit of 1 h. Recall from Sect. 7.2.1
that the procedure searches consecutively for unidirectional schedules with respect
to upward and downward movements of the QCs. To ensure a fair allocation of com-
putation time, both search processes are performed concurrently. In the event that
one of the processes terminates within 30 min, the remaining computation time is
made available to the other process. The reported runtime is the sum of the run-
times spent on searching in the two directions. If the limit of 60 min is exceeded, no
runtime is reported. In these cases value fbest does not necessarily represent the opti-
mal unidirectional schedule. To assess the quality of UDS solutions a lower bound
is required. The lower bounds presented in Sect. 7.2.2 do not serve this purpose
because they evaluate given (partial) task-to-QC assignments. Therefore, a lower
bound on the makespan of the instances is calculated by solving a relaxed QCSP
model given in Appendix C using CPLEX.

7.4 Computational Study 113

Table 7.8 Results of the UDS heuristic for the remaining instances in sets D to I

No. LB fbest RE Time No. LB fbest RE Time

D E

k53 657 717 9.13 –
k54 753 774 2.79 0.02
k55 663 684 3.17 0.01

(see Table 7.6 k56 666 690 3.60 0.22
for k43–k49) k57 681 705 3.52 0.24

k58 765 786 2.75 0.17
k59 666 687 3.15 0.01

k50 723 741 2.49 <0.01 k60 765 783 2.35 0.19
k51 777 798 2.70 <0.01 k61 618 639 3.40 0.04
k52 939 960 2.24 <0.01 k62 828 837 1.09 0.01

ARE (%) 2.48 ARE (%) 3.50

F G

k63 927 948 2.27 1.51 k73 837 870 3.94 31.71
k64 714 741 3.78 1.06 k74 822 843 2.55 4.71
k65 816 837 2.57 1.61 k75 657 675 2.74 0.37
k66 903 924 2.33 0.63 k76 825 852 3.27 0.90
k67 858 882 2.80 0.24 k77 672 699 4.02 1.27
k68 945 963 1.90 0.03 k78 621 642 3.38 8.96
k69 783 807 3.07 1.40 k79 717 744 3.77 1.52
k70 936 957 2.24 0.61 k80 720 750 4.17 1.28
k71 807 834 3.35 3.77 k81 705 738 4.68 1.28
k72 720 744 3.33 0.35 k82 696 717 3.02 1.03

ARE (%) 2.76 ARE (%) 3.55

H I

k83 921 948 2.93 6.37 k93 786 816 3.82 –
k84 876 897 2.40 3.29 k94 765 786 2.75 –
k85 945 972 2.86 5.82 k95 801 834 4.12 –
k86 786 816 3.82 – k96 780 819 5.00 –
k87 840 867 3.21 – k97 690 720 4.35 –
k88 744 768 3.23 43.73 k98 711 735 3.38 23.79
k89 822 843 2.55 10.96 k99 819 852 4.03 –
k90 1,023 1,053 2.93 24.95 k100 852 900 5.63 –
k91 810 837 3.33 10.74 k101 765 813 6.27 –
k92 873 897 2.75 34.61 k102 870 903 3.79 –

ARE (%) 3.00 ARE (%) 4.31

The gained results of this test show that the UDS heuristic is capable of solv-
ing the majority of these instances within the runtime limit. Regarding instance sets
E to H, merely three instances are not solved. Set I is the only set for which the
heuristic fails in solving the majority of the instances. However, the observed devia-
tion between LB and fbest ranges moderately within a few percent for all considered
instances. This indicates that the UDS heuristic delivers schedules of good quality
also for large instances.

114 7 Quay Crane Scheduling

Table 7.9 Solution quality at selected runtimes (ARE-in-set in percent)

Set

Time E F G H I

0 16.00 12.73 19.67 14.77 20.34
1 3.50 2.76 3.75 3.35 4.95
10 3.50 2.76 3.55 3.07 4.60
60 3.50 2.76 3.55 3.00 4.31

Test 7.3: Solution quality and runtime demand

As shown by Test 7.2, the UDS heuristic may not terminate within an acceptable
runtime if applied to large-sized instances. For this reason, the relation between
runtime and solution quality is investigated here in order to determine a reasonable
runtime limit for the heuristic. The test considers the large-sized instances of sets
E to I. Table 7.9 reports the ARE for each set after running the UDS heuristic for
0, 1, 10, and 60 min. The values shown in the row of time 0 are those of the initial
solutions.

As can be seen in the table, the solution quality is drastically improved within the
first minute of computation for each of the five instance sets. For sets E and F, no
further improvement is observed after that time. This can hardly surprise because
most of these instances are solved within less than a minute, but it shows that also
for instances with longer runtimes no further improvement takes place. For sets G
to I, further improvements are observed. The most improvement, i.e., the largest
reduction in the ARE , is observed for set I. However, even this ARE reduction is
only 0.64%. It can be concluded that the UDS heuristic converges very quickly for
all instance sets. A runtime limit of 1 min per instance is sufficient to ensure that
finding solutions of acceptable quality is at a level of high likelihood.

Test 7.4: Sensitivity on the task definition

According to the QCSP classification scheme of Sect. 4.2.1, defining tasks on the
basis of container groups is only one possibility. Two alternatives are to define
tasks on the basis of complete bays, e.g., Lim et al. (2007), or on the basis of bay
areas, e.g., Winter (1999). The advantage of the container group approach is that
a more uniform distribution of workload among QCs can be achieved. However,
the QCSP becomes more difficult to solve because a larger number of tasks and
precedence relations between pairs of tasks come into the play. This test assesses
the dependency of solution quality and computational effort on the different task
definitions.

For the test, the QCSP instances and the UDS heuristic are slightly modified.
First, within each instance, all tasks belonging to the same bay are combined into
a single task. Applying the UDS heuristic to such an instance solves a QCSP with
tasks defined on the basis of complete bays. Second, to solve the QCSP with tasks

7.4 Computational Study 115

Table 7.10 Results for different tasks definitions

Container groups

Set A B C D E F G H I

ARE (%) 0.06 0.00 0.44 1.40 3.50 2.76 3.55 3.00 4.31
Max. RE (%) 0.56 0.00 2.26 2.70 9.13 3.78 4.68 3.82 6.27
Avg. time <0.01 <0.01 <0.01 <0.01 6.09 1.12 5.30 26.05 56.38

Complete bays

Set A B C D E F G H I

ARE (%) 3.00 2.89 1.77 1.88 4.70 3.73 5.25 3.90 4.78
Max. RE (%) 13.41 15.79 7.08 3.32 14.16 7.06 7.95 6.45 10.98
Avg. time <0.01 <0.01 <0.01 <0.01 0.86 0.06 0.98 0.88 19.51

Bay areas

Set A B C D E F G H I

ARE (%) 5.62 7.06 8.11 7.53 9.79 9.60 14.48 10.53 11.67
Max. RE (%) 19.55 36.32 15.07 12.86 15.53 17.10 23.85 17.04 18.70
Avg. time <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

defined on the basis of bay areas, a branching criterion is added to the UDS heuristic
that forbids task-to-QC assignments which lead to overlapping operation areas of
QCs at a vessel.

Table 7.10 shows comprehensive results for the benchmark sets if tasks are
defined on the basis of container groups (taken from Tests 7.1 and 7.2), on the basis
of complete bays, and on the basis of bay areas. It reports the ARE per set, the maxi-
mum RE observed for an instance within a set, and the required average runtime for
solving instances of a set. The relative errors are calculated with respect to the opti-
mal solutions and the lower bounds reported by Moccia et al. (2006) for instances
up to k49 and with respect to the CPLEX lower bounds presented in Table 7.8 for
the instances k50 to k102.

Comparing the results of tasks defined by container groups with tasks defined
by complete bays, one can see that the AREs differ by at minimum 0.47% (set I)
and at maximum 2.94% (set A). From these findings the solution quality seems to
deteriorate only little if tasks are defined on the basis of complete bays. However,
the observed maximum REs differ at a much higher rate. For sets A, B, E, and I the
maximum RE is even above 10% if tasks are defined by complete bays. Defining
tasks by container groups is clearly advantageous for the corresponding instances.
The required runtimes decrease significantly if tasks are defined by complete bays.
However, since the UDS heuristic can be prematurely terminated after 1 min if tasks
are defined by container groups (see Test 7.3), the saving of computation time does
not increase the attractiveness of a task definition on the basis of complete bays.

If tasks are defined by bay areas, runtimes are negligible even for the largest
instances. However, the solution quality deteriorates drastically compared to

116 7 Quay Crane Scheduling

Table 7.11 Relative increase in makespan for different safety margins (average-in-set in percent)

δ Set Avg.

A B C D E F G H I

2 5.75 0.16 0.76 0.20 2.27 0.14 2.56 0.06 0.81 1.41
3 15.04 3.02 8.15 2.16 6.23 4.61 9.16 3.49 3.80 6.18
4 26.98 7.72 19.28 10.63 15.97 15.01 18.29 10.39 9.72 14.89

solutions with tasks defined by container groups. AREs are above 10% for the large
instances in sets G, H, and I. The maximum RE in set B shows that the makespan
of an instance may increase by more than one-third compared to the solution with
tasks defined by container groups. Since such an increase in the handling time of a
vessel is unacceptable from a vessel operator’s point of view, defining tasks by bay
areas has to be rejected.

Test 7.5: Sensitivity on the safety margin

This test studies the impact of a safety margin on a schedule. Table 7.11 shows the
relative change of the makespan observed in the instance sets for different safety
margins against δ = 1. Note, that δ = 0 is not investigated because a QC’s uprights
occupy the bays adjacent to the crane’s location and, therefore, positioning QCs at
adjacent bays is technically forbidden as a matter of fact. The derived results confirm
that the larger the safety margin is, the more the handling times of vessels increase.
While the average increase over all sets is only 1.41% for δ = 2, this value rises
to 6.18% and even 14.89% for δ = 3 and δ = 4, respectively. Not surprisingly, the
small-sized vessels in instance set A suffer most from a large safety margin, but also
large-sized instances show a considerable increase in the makespan. The fluctuation
which is observed for a certain value of δ stems from the varying number of bays and
QCs involved in the different instance sets, see Table 7.4. The test results indicate
that incorporating safety margins in the QCSP model is by no means marginal, it is
an increasing need, the more safety requirements grow.

Test 7.6: Solution quality and runtime demand of the UDSTW heuristic

A final test assesses the performance of the UDSTW heuristic in solving crane
scheduling instances with time windows for the cranes. For the test, the benchmark
instances are modified by declaring time windows for the two upmost QCs as fol-
lows. The cranes are assigned to a vessel for the first 2 h of service, removed from
the vessel for the following 2 h, reassigned for two more hours, and then finally
removed. For instances in sets A and B, removing two QCs from a vessel means to
interrupt the service process, which, however, can be dealt with by UDSTW. The
UDSTW heuristic is given a runtime limit of 1 h per instance. Table 7.12 shows for

7.5 Summary 117

Table 7.12 Results of the UDSTW heuristic

Set A B C D E F G H I

ARE (%) 9.10 8.64 7.04 11.75 7.70 9.44 7.74 9.19 10.35
Max. RE (%) 13.29 12.50 9.96 20.25 11.46 12.87 14.20 12.91 19.46
Avg. time <0.01 <0.01 0.08 0.83 50.41 60.00 60.00 60.00 60.00

Table 7.13 Solution quality for the QCSPTW at selected runtimes (ARE-in-set in percent)

time set

E F G H I

0 62.25 64.66 52.10 52.90 46.75
1 7.95 9.80 7.89 9.32 10.68

10 7.76 9.47 7.80 9.27 10.41
60 7.70 9.44 7.74 9.19 10.35

every instance set A to I the ARE over the contained instances, the maximum RE
observed for the instances, and the required average runtime. For calculation of the
relative errors, a lower bound on the makespan of QCSPTW instances is derived
from solving the mathematical model in Appendix D by CPLEX.

As can be seen from this table, the solutions show considerable relative errors.
Although the heuristic terminates within the runtime limit for instances in sets A
to D, which means that the best unidirectional schedule has been found, AREs of
about 10% and a maximum RE of more than 20% (set D) are observed. However,
also for the larger instances, where UDSTW systematically fails to terminate within
the runtime limit, similar AREs and maximum REs are observed. This means that
the solution quality does hardly deteriorate in the problem size.

The fact that the UDSTW heuristic does not terminate within the runtime limit
does not necessarily mean that it is unable to find good solutions quickly. For this
reason, similar to Test 7.3, the AREs observed for instance sets E to I after running
the heuristic for 0, 1, 10, and 60 min are reported in Table 7.13.

It can be seen that the UDSTW heuristic drastically improves the initial solutions
in the first minute of computation. Different to the QCSP, further improvements
are observed for all instance sets even after 10 min of runtime. However, these
improvements are only marginal. Although the comparably high AREs indicate fur-
ther improvement potential, it can be concluded that the UDSTW heuristic delivers
solutions of acceptable quality for the QCSPTW even if terminated after 1 min of
runtime.

7.5 Summary

Within this chapter the problem of QC scheduling on the basis of container groups
has been studied, as pioneered by Kim and Park (2004). The problem formulation
considers crane scheduling in detail by incorporating crane interference constraints

118 7 Quay Crane Scheduling

and by respecting travel time for crane movement. However, the QCSP model and
also revised versions presented in later papers do not detect crane interference in
every case. To derive a correct QCSP model, a set of new interference constraints has
been formulated. A so-called UDS heuristic is used to solve the problem. It works on
a reduced search space of unidirectional schedules. Computational tests demonstrate
the power of the heuristic. It clearly outperforms all existing approaches to the QCSP
with container groups, in terms of solution quality as well as in terms of computation
times. It confirms that defining tasks by container groups leads to better solutions
than task definitions on the basis of complete bays or bay areas. Furthermore, safety
margins have a strong impact on the makespan of QC schedules and, therefore, need
to be incorporated into practical QCSP formulations.

Moreover, a variant of the QCSP that respects time windows for cranes, referred
to as the QCSPTW, has been formulated. The UDS heuristic has been adapted to
solve this problem. The resulting UDSTW heuristic solves with difficulty medium-
sized and large-sized QCSPTW instance within a runtime limit of 60 min. Never-
theless, the heuristic delivers solutions of good quality after a runtime of 1 min.

Summarizing this study, rich formulations for QC scheduling problems have
been derived, which can be solved to good or even optimal solution quality within
short runtimes by the proposed heuristics. These properties enable a functional
integration of crane scheduling into the BACAP.

