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Preface

The 18th Conference of IASC-ERS, COMPSTAT’2008, is held in Porto, Por-
tugal, from August 24th to August 29th 2008, locally organised by the Faculty
of Economics of the University of Porto.

COMPSTAT is an initiative of the European Regional Section of the Inter-
national Association for Statistical Computing (IASC-ERS), a section of the
International Statistical Institute (ISI). COMPSTAT conferences started in
1974 in Wien; previous editions of COMPSTAT were held in Berlin (2002),
Prague (2004) and Rome (2006). It is one of the most prestigious world
conferences in Computational Statistics, regularly attracting hundreds of re-
searchers and practitioners, and has gained a reputation as an ideal forum
for presenting top quality theoretical and applied work, promoting interdisci-
plinary research and establishing contacts amongst researchers with common
interests. COMPSTAT’2008 is the first edition of COMPSTAT to be hosted
by a Portuguese institution.

Keynote lectures are addressed by Peter Hall (Department of Mathematics
and Statistics, The University of Melbourne), Heikki Mannila (Department
of Computer Science, Faculty of Science, University of Helsinki) and Timo
Teräsvirta (School of Economics and Management, University of Aarhus).
The conference program includes two tutorials: “Computational Methods in
Finance” by James Gentle (Department of Computational and Data Sciences,
George Mason University) and “Writing R Packages” by Friedrich Leisch
(Institut für Statistik, Ludwig-Maximilians-Universität). Each COMPSTAT
meeting is organised with a number of topics highlighted, which lead to In-
vited Sessions. The Conference program includes also contributed sessions in
different topics (both oral communications and posters).

The Conference Scientific Program Committee includes Paula Brito (Uni-
versity of Porto, Portugal), Helena Bacelar-Nicolau (University of Lisbon,
Portugal), Vincenzo Esposito-Vinzi (ESSEC, France), Wing Kam Fung (The
University of Hong Kong, Hong Kong), Gianfranco Galmacci (University
of Perugia, Italy), Erricos Kontoghiorghes (University of Cyprus, Cyprus),
Carlo Lauro (University of Naples Federico II, Italy), Alfredo Rizzi (Univer-
sity “La Sapienza”, Roma, Italy), Esther Ruiz-Ortega (University Carlos III,
Spain), Gilbert Saporta (Conservatoire National des Arts et Métiers, France),
Michael Schimek (Medical University of Graz, Austria), Antónia Turkman
(University of Lisbon, Portugal), Joe Whittaker (University of Lancaster,
UK), Djamel A. Zighed (University Lumière Lyon 2, France) and Edward
Wegman (George Mason University, USA), who were responsible for the Con-
ference Scientific Program, and whom the organisers wish to thank for their
invaluable cooperation and permanent availability. Special thanks are also
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due to Tomas Aluja, Chairperson of the IASC-ERS and Jaromir Antoch,
IASC President, for their continuous support and collaboration.

Due to space limitations, the Book of Proceedings includes keynote speakers’
papers and invited sessions speakers’ papers only, while the CD-Rom, which is
part of it, includes all accepted papers, as well as the tutorials’ support texts.
The chapters of the Book of Proceedings hence correspond to the invited
sessions, as follows:

Keynote
Advances on Statistical Computing Environments
Classification and Clustering of Complex Data
Computation for Graphical Models and Bayes Nets
Computational Econometrics
Computational Statistics and Data Mining Methods for Alcohol Studies
(Interface session)
Finance and Insurance (ARS session)
Information Retrieval for Text and Images
Knowledge Extraction by Models
Model Selection Algorithms
Models for Latent Class Detection (IFCS session)
Multiple Testing Procedures
Random Search Algorithms
Robust Statistics
Signal Extraction and Filtering

The papers included in this volume present new developments in topics
of major interest for statistical computing, constituting a fine collection of
methodological and application-oriented papers that characterize the current
research in novel, developing areas. Combining new methodological advances
with a wide variety of real applications, this volume is certainly of great value
for researchers and practitioners of computational statistics alike.

First of all, the organisers of the Conference and the editors would like
to thank all authors, both of invited and contributed papers and tutorial
texts, for their cooperation and enthusiasm. We are specially grateful to all
colleagues who served as reviewers, and whose work was crucial to the
scientific quality of these proceedings. We also thank all those who have
contributed to the design and production of this Book of Proceedings, Springer
Verlag, in particular Dr. Martina Bihn and Irene Barrios-Kezic, for their help
concerning all aspects of publication.

The organisers would like to express their gratitude to the Faculty of Eco-
nomics of the University of Porto, who enthusiastically supported the
Conference from the very start, and contributed to its success, and all people
there who worked actively for its organisation. We are very grateful to all
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our sponsors, for their generous support. Finally, we thank all authors and
participants, without whom the conference would not have been possible.

The organisers of COMPSTAT’2008 wish the best success to Gilbert Saporta,
Chairman of the 19th edition of COMPSTAT, which will be held in Paris in
Summer 2010. See you there!

Porto, August 2008 Paula Brito
Adelaide Figueiredo

Ana Pires
Ana Sousa Ferreira

Carlos Marcelo
Fernanda Figueiredo

Fernanda Sousa
Joaquim Pinto da Costa

Jorge Pereira
Lúıs Torgo

Lúısa Canto e Castro
Maria Eduarda Silva

Paula Milheiro
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XVI Contents

Fast Robust Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Stefan Van Aelst, Jafar A. Khan, Ruben H. Zamar

Part XI. Models for Latent Class Detection

Latent Classes of Objects and Variable Selection . . . . . . . . . . . . . . 373
Giuliano Galimberti, Angela Montanari, Cinzia Viroli

Modelling Background Noise in Finite Mixtures of
Generalized Linear Regression Models . . . . . . . . . . . . . . . . . . . . . . . . 385

Friedrich Leisch

Clustering via Mixture Regression Models with Random
Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Geoffrey J. McLachlan, Shu Kay (Angus) Ng, Kui Wang

Part XII. Multiple Testing Procedures

Testing Effects in ANOVA Experiments: Direct Combination
of All Pair-Wise Comparisons Using Constrained Synchro-
nized Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Dario Basso, Fortunato Pesarin, Luigi Salmaso

Multiple Comparison Procedures in Linear Models . . . . . . . . . . . 423
Frank Bretz, Torsten Hothorn, Peter Westfall

Inference for the Top-k Rank List Problem . . . . . . . . . . . . . . . . . . . 433
Peter Hall, Michael G. Schimek

Part XIII. Random Search Algorithms

Monitoring Random Start Forward Searches for Multivariate
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

Anthony C. Atkinson, Marco Riani, Andrea Cerioli

Generalized Differential Evolution for General Non-Linear
Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

Saku Kukkonen, Jouni Lampinen

Statistical Properties of Differential Evolution and Related
Random Search Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

Daniela Zaharie



Contents XVII

Part XIV. Robust Statistics

Robust Estimation of the Vector Autoregressive Model by a
Least Trimmed Squares Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

Christophe Croux, Kristel Joossens

The Choice of the Initial Estimate for Computing
MM-Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

Marcela Svarc, Vı́ctor J. Yohai

Metropolis Versus Simulated Annealing and the Black-Box-
Complexity of Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . 517

Ingo Wegener

Part XV. Signal Extraction and Filtering

Filters for Short Nonstationary Sequences: The Analysis of
the Business Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

Stephen Pollock

Estimation of Common Factors Under Cross-Sectional and
Temporal Aggregation Constraints: Nowcasting Monthly GDP
and Its Main Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

Tommaso Proietti

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

Contributed Papers on the CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

Tutorial Texts on the CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573



Part I

Keynote



Nonparametric Methods for Estimating

Periodic Functions, with Applications in
Astronomy

Peter Hall

Department of Mathematics and Statistics, University of Melbourne, Melbourne,
VIC 3130, Australia, p.hall@ms.unimelb.edu.au

Abstract. If the intensity of light radiating from a star varies in a periodic fashion
over time, then there are significant opportunities for accessing information about
the star’s origins, age and structure. For example, if two stars have similar period-
icity and light curves, and if we can gain information about the structure of one
of them (perhaps because it is relatively close to Earth, and therefore amenable to
direct observation), then we can make deductions about the structure of the other.
Therefore period lengths, and light-curve shapes, are of significant interest. In this
paper we briefly outline the history and current status of the study of periodic
variable stars, and review some of the statistical methods used for their analysis.

Keywords: astronomy, curve estimation, light curve, local-linear methods,
Nadaraya-Watson estimator, nonparametric regression, periodogram, stars.

1 Introduction

1.1 Periodic variation arising in astronomy

Stars for which brightness changes over time are referred to, unsurprisingly,
as variable stars. Some 31,000 such stars are known to exist, and at least an-
other known 15,000 light sources are likely candidates. For many (although
not all) such stars, brightness varies in a periodic, or approximately periodic,
way. Moreover, stars of this type can often be observed with relatively un-
sophisticated equipment, for example with small telescopes, binoculars and
even with the naked eye. The first variable stars were discovered by direct,
unaided observation.

The pulsating star Mira, Latin for “the wonderful,” was the first-discov-
ered periodic variable star. It was recorded by David Fabricius, a German
minister of religion, in 1596. At first he did not give it much of his attention,
but when he noticed the star brighten during 1609 he realised that he had
found a new type of light source.

The periodicity of Mira was established by Jan Fokkens Holwarda, a
Dutch astronomer, who during 1638 and 1639 estimated the period to be
about 11 months. Today we know that the length of the cycle is close to 331
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days. For much of its cycle, Mira can be seen unaided. Its brightness varies
from about magnitude 2 or 3 up to about 10, and then back again. (On the
“magnitude” scale of star brightness, stars of higher magnitude are dimmer,
or more difficult to see. Stars of magnitude 8 or larger are not visible to the
naked eye.) The relative brightness of Mira, at least for much of its period,
would have made it visible to astronomers in classical times.

Variable stars are catalogued into two broad classes — Intrinsic, for which
the sources of variability lie within the star itself, and Extrinsic, where the
variability comes, in effect, from the star’s surface or from outside the star.
About 65% of Intrinsic variable stars are “pulsating,” and in those cases the
brightness varies on account of cyclic expansions and contractions. Mira is of
this type; it is a Long-Period Variable star, and stars in this category have
periods of between a few days and several years.

Extrinsic variable stars are either Eclipsing Binaries or Rotating Vari-
ables. These sources of variation are perhaps the simplest for non-astronomers
to understand. In the case of Eclipsing Binaries, one star rotates around the
other, and when that star gets between its partner and the observer, the total
amount of recorded light is reduced. When the two stars are well separated,
as seen by the observer, the total amount of recorded light is maximised. The
light emitted by a Rotating Variable star changes through the rotation of
material on the star’s surface.

This brief account of the nature of variable stars, and more specifically of
periodic-variable stars, indicates that we often have only sketchy knowledge
of the mechanisms that cause brightness to fluctuate. Even in the case of
eclipsing binary stars, for which the nature of the mechanism is relatively
clear, the extent of interaction between the two stars may be unknown. For
example, mass can be transferred from one star to the other in an eclipsing
binary system, although the scale of the transfer may be unclear.

Having a graph of star brightness, as a function of phase during the cy-
cle, can give insight into the nature of these mechanisms within the star, or
within the star system. Sometimes an understanding of the mechanisms can
be gained for stars that are relatively close, and by comparing their brightness
curves with those of distant stars we have an opportunity to gain information
about the latter. It is therefore advantageous to have nonparametric estima-
tors of brightness curves, which do not impose mathematical models that
dictate the shape of the curve estimates.

1.2 Related literature in astronomy and statistics

Astronomers typically refer to a plot of the mean brightness of a periodic
variable star, representing a function of phase during the time duration of
a period, as the star’s “light curve.” Distinctions between the notion of a
theoretical light curve, on which we have only noisy data, and an estimate of
that curve based on the data, are generally not made. Likewise, the difference
between the function on which the true light curve or its estimate are based,
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and a graph of that function, is generally not remarked on. These issues
should be borne in mind when reading the astronomy literature, and also
when interpreting the discussion below.

Ways of explaining the mechanisms that lead to periodic variation in
brightness are continuously under development; see Prigara (2007), for in-
stance. Likewise, estimates and interpretations of the curves that represent
this variation are constantly becoming available. For example, Norton et
al. (2008) present and discuss the light curves of 428 such stars, of which only
68 of had previously been recognised as being of this type. Eyer and Cuypers
(2000) predict that the GAIA space mission, expected to be launched by the
European Space Agency in 2011, will be able to detect some 18 million vari-
able sources, among them five million classic periodic variable stars and two
to three million eclipsing binary systems. Thus, the potential scope of the
research problems discussed in this paper is likely to expand rapidly.

Book-length accounts of of variable stars, their properties and their light
curves, include those given by Hoffmeister et al. (1985), Sterken and Jaschek
(1996), Good (2003), North (2005), Warner (2006) and Percy (2007). The
MACHO project, where the acronym stands for MAssive Compact Halo Ob-
jects, includes a very large catalogue of light curves for variable stars. See
Axelrod et al. (1994) for discussion of statistical issues in connection with
the MACHO data.

The astronomy literature on periodic variable stars is sophisticated from a
quantitative viewpoint. For example, it includes methodology for discovering
light curves that are “outliers” in a catalogue of such curves; see e.g. Pro-
topapas et al. (2006). And it involves automated methodology for identifying
periodic variable stars among millions of light sources in the night sky; see
e.g. Derue et al. (2002) and Kabath et al. (2007).

There is a large literature on modelling curves in terms of trigonometric se-
ries. In statistics and related fields it includes work of Pisarenko (1973), Han-
nan (1974), Frost (1976), Quinn and Fernandes (1991), Quinn and Thompson
(1991), Quinn (1999) and Quinn and Hannan (2001). Many other contribu-
tions can be found in the engineering literature. If the number of components
is taken large then the methodology essentially amounts to nonparametric
curve estimation, and is closely related to approaches discussed below in sec-
tion 3. Computational and statistical-efficiency issues connected with the es-
timation of periodic functions are addressed by McDonald (1986) and Bickel
et al. (1993, p. 107), respectively.

Early work in astronomy on nonparametric methods for analysing data on
periodic variable stars includes contributions from Lafler and Kinman (1965)
and Renson (1978). The method most favoured by astronomers for estimating
light curves is the periodogram, which was used by statisticians more than
a century ago to assess periodicity. Work on formal testing for periodicity
includes that of Fisher (1929), Whittle (1954) and Chiu (1989). The theory
of periodogram estimation owes much to Walker (1971, 1973) and Hannan



6 Hall, P.

(1973). The periodgram was introduced to astronomy largely through the
work of Barning (1963), Deeming (1975), Lomb (1976), Ferraz-Mello (1981)
and Scargle (1982). See also Vityazev (1997). For examples of analyses un-
dertaken using this approach, see Waelkens et al. (1998), de Cat and Aerts
(2002), DePoy et al. (2004), Lanza et al. (2004), Aerts and Kolenberg (2005),
Maffei et al. (2005), Hall and Li (2006) and Shkedy et al. (2004). Bayesian
methods were proposed by Shkedy et al. (2007). Alternative techniques in-
clude those of Reimann (1994), Hall et al. (2000) and Hall and Yin (2003).

For some variable stars, the fluctuation of brightness is explained well by
a model where period and/or amplitude are also functions of time. See, for
example, work of Eyer and Genton (1999), Koen (2005), Rodler and Guggen-
berger (2005), Sterken (2005), Hart, Koen and Lombard (2007) and Genton
and Hall (2007).

1.3 Summary

Section 2 provides an account of least-squares methods for inference in the
simplest case, where the light curve can reasonably be modelled in terms of
a single periodic function. Periodogram-based methods, and inference when
the curve is more plausibly a superposition of p different periodic functions,
are treated together in section 3. The case of evolving periodic models is
addressed in section 4. Our treatment follows lines given in greater detail by
Hall et al. (2000), Hall and Yin (2003), Hall and Li (2006) and Genton and
Hall (2007).

2 Models and methodology in the case of periodicity
based on least squares

2.1 Models for brightness and observation times

Let g(x) denote the “true” value of brightness of the star at time x. A graph
of g, as a function of phase, would be called by astronomers the true “light
curve” of the star. We make observations Yi at respective times Xi, where
0 < X1 ≤ · · · ≤ Xn, and obtain the data pairs (Xi, Yi) for 1 ≤ i ≤ n. The
model is superficially one of standard nonparametric regression:

Yi = g(Xi) + εi , (1)

where the εi’s, describing experimental error, are independent and identically
distributed random variables with zero mean and finite variance. We take g
to be a periodic function with period θ; its restriction to a single period
represents the light curve. From the data (Xi, Yi) we wish to estimate both
θ and g, making only periodic-smoothness assumptions about the latter.

A range of generalisations is possible for the model (1). For example, we
might replace the errors εi by σ(Xi) εi, where the standard deviation σ(Xi)
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is either known, as is sometimes the case with data on star brightness, or
accurately estimable. Then, appropriate weights should be incorporated into
the series at used to estimate θ; see (3) below. To reflect many instances
of real data, the time points Xi should remain separated as n increases,
and in particular the standard “infill asymptotics” regime of nonparametric
regression is inappropriate here.

Neither should the Xi’s be modelled as equally spaced quantities. Indeed,
it is straightforward to see that in this case, and for many values of θ (in
particular where θ is a rational multiple of the spacing), consistent estimation
is not possible.

Realistic mathematical models for the spacings between successive Xj ’s
include the case where they are approximately stochastically independent.
One such model is

Xj =
j∑

i=1

Vi , 1 ≤ j ≤ n , (2)

where V1, V2, . . . are independent and identically distributed nonnegative
random variables. Clearly there are limitations, however, to the generality of
the distribution allowable for V , representing a generic Vi. In particular, if
the distribution is defined on an integer lattice, and if θ is a rational number,
then identifiability difficulties continue to cause problems.

These problems vanish if we assume that the Xj ’s are generated by (2),
where the distribution of V > 0 is absolutely continuous with an integrable
characteristic function and that all moments of V are finite. Call this model
(MX,1). The fact that the characteristic function should be integrable ex-
cludes the case where the Xi’s are points of a homogeneous Poisson process,
but that context is readily treated separately.

Another class of processes X is the sequence Xj = Xj(n) ≡ nYnj , where
Yn1 < · · · < Ynn are the order statistics of a random sample Y1, . . . , Yn from
a Uniform distribution on the interval [0, y], say. Call this model (MX,2).
Models (MX,1) and (MX,2) are similar, particularly if V has an exponen-
tial distribution. There, if X (n + 1) =

{
X1, · · · , Xn+1

}
is a sequence of

observations generated under (MX,1), if X ′(n) =
{
X ′

1, . . . , X
′
n

}
is gener-

ated under (MX,2) with y = 1, and if we define Xtot =
∑

i≤n+1 Xi, then{
X1/Xtot, . . . , Xn/Xtot

}
has the same distribution as X ′(n).

A third class of processes X is the jittered grid of Akaike (1960), Beutler
(1970) and Reimann (1994), where Xj = j + Uj , for j ≥ 1, and the vari-
ables Uj are independent and Uniformly distributed on (− 1

2 ,
1
2 ). Call this

model (MX,3). Each of (MX,1), (MX,2) and (MX,3) has the property that the
spacings Xj −Xj−1 are identically distributed and weakly dependent.

2.2 Least-squares estimation of g and θ

In this section we give an overview of methods for inference. The first step
is to construct a nonparametric estimator ĝ(· | θ) of g on (0, θ], under the
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assumption that the period of g is θ. Next we extend ĝ to the real line by
periodicity, and, using a squared-error criterion,

S(θ) =
n∑

i=1

{Yi − ĝ(Xi | θ)}2 , (3)

take our estimator θ̂ of θ to be the minimiser of S(θ). (We could use a leave-
one-out construction of S(θ), omitting the pair (Xi, Yi) from the data. While
this would give slightly different numerical results, it would not influence
first-order asymptotic properties of the method.) Finally, for an appropriate
estimator g̃(· | θ) of g under the assumption of period θ, we employ ĝ0 ≡ g̃(· | θ̂)
to estimate g.

Even if ĝ and g̃ are of the same type, for example both local-linear estima-
tors, it is usually not a good idea to take them to be identical. In particular,
to ensure approximately optimal estimation of θ, the version ĝ(· | θ) that we
use to define S(θ) at (3) should be smoothed substantially less than would be
appropriate for point estimation of g. In general the function S has multiple
local minima, not least because any integer multiple of θ can be considered
to be a period of g.

Next we discuss candidates for ĝ. Under the assumption that the true
period of g is θ, the design points Xi may be interpreted modulo θ as
Xi(θ) = Xi − θ�Xi/θ�, for 1 ≤ i ≤ n, where �x� denotes the largest in-
teger strictly less than x. Then, the design points of the set of data pairs
Y(θ) ≡ {(Xi(θ), Yi), 1 ≤ i ≤ n

}
all lie in the interval (0, θ]. We suggest re-

peating ad infinitum the scatterplot represented by Y(θ), so that the design
points lie in each interval ((j − 1)θ, jθ] for −∞ < j < ∞; and computing
ĝ(· | θ), restricted to (0, θ], from the data, using a standard second-order ker-
nel method such as a Nadaraya-Watson estimator or a local-linear estimator.
In practice we would usually need to repeat the design only in each of (−θ, 0],
(0, θ] and (θ, 2θ], since the effective bandwidth would be less than θ. We define
ĝ(· | θ) on the real line by ĝ(x | θ) = ĝ(x− θ�x/θ� | θ).

In view of the periodicity of g it is not necessary to use a function esti-
mation method, such as local linear, which accommodates boundary effects.
Indeed, our decision to repeat design points in blocks of width θ means that
we do not rely on the boundary-respecting properties of such techniques.
The Nadaraya-Watson estimator, which suffers notoriously from boundary
problems but is relatively robust against data sparseness, is therefore a good
choice here. The resulting estimator of g is

ĝ(x | θ) =
∑

i Yi Ki(x | θ)∑
i Ki(x | θ) , 0 ≤ x ≤ θ , (4)

where Ki(x | θ) = K[{x−Xi(θ)}/h], K is a kernel, h is a bandwidth, and the
two series on the right-hand side of (4) are computed using repeated blocks
of the data Y(θ).



Estimating Periodic Functions 9

Alternative estimators of g, of slightly lower statistical efficiency than that
defined in (4), can be based on the periodogram. This approach tends to be
favoured by astronomers, not least because it is readily extended to the case
of multiperiodic functions; see section 3.

2.3 Properties of estimators

If g has r bounded derivatives; if the estimator ĝ is of rth order, meaning
that its asymptotic bias is of size hr and its variance is of size (nh)−1; and if
h = h(n) has the property that for some η > 0, n−(1/2)+η ≤ h = o(n−1/(2r));
then θ̂ = argminS(θ) is consistent for θ and, under regularity conditions,

n3/2 (θ̂ − θ) → N
(
0, τ2

)
(5)

in distribution, where 0 < τ2 < ∞. When ĝ is a Nadaraya-Watson or local-
linear estimator,

τ2 = 12 σ2 θ3 µ−2

{∫ θ

0

g′(u)2 du

}−1

, (6)

where σ2 = var(εi) and µ = limj→∞ E(Xj − Xj−1), assumed to be finite
and nonzero. Formula (5) implies that θ̂ converges to θ at a parametric rate.
In Quinn and Thompson’s (1991) parametric analysis of a closely related
problem they obtained the same limit theorem for θ̂, albeit with a different
value of τ2.

Formula (6) implies that estimators of period have lower variance when
the function g is ‘less flat’, i.e. when g has larger mean-square average deriva-
tive. This accords with intuition, since a perfectly flat function g does not
have well-defined period, and more generally, the flatter g is, the more difficult
it is to visually determine its period.

If h ∼ Cn−1/(2r) for a constant C > 0, and ĝ is an r’th order regression
estimator, then n3/2 (θ̂−θ) remains asymptotically Normally distributed but
its asymptotic bias is no longer zero. In the r’th order case, h = O(n−1/(2r))
is the largest order of bandwidth that is consistent with the parametric con-
vergence rate, θ̂ = θ + Op(n−3/2).

This high degree of accuracy for estimating θ means that, if g̃(· | θ) is a
conventional estimator of g under the assumption that the period equals θ,
then first-order asymptotic properties of ĝ0 ≡ g̃(· | θ̂) are identical to those
of g̃(· | θ). That is, from an asymptotic viewpoint the final estimator ĝ0 be-
haves as though the true period were known. These results follow by Taylor
expansion. For example, if g̃(· | θ) is the Nadaraya-Watson estimator defined
at (2.4), but with a different bandwidth h0 say, satisfying h0 ≥ n−(1/2)+ξ for
some ξ > 0, then a Taylor-expansion argument shows that for all η > 0,

g̃(· | θ̂) = g̃(· | θ) + op

{
(nh0)−1/2

}
. (7)

The remainder op

{
(nh0)−1/2

}
here is of smaller order than the error of g̃(· | θ)

about its mean.
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3 The case of multiperiodic functions

3.1 Model for g, and issues of identifiability

In some cases the radiation from a star can reasonably be modelled as a
superposition of more than one periodic function. To avoid problems of non-
identifiability we take g to be representable as

g(x) = µ +
p∑

j=1

gj(x) , −∞ < x < ∞ , (8)

where µ denotes a constant, gj is a smooth, nonvanishing, real-valued periodic
function with minimal period θj , 0 < θ1 < . . . < θp < ∞, and each gj is
centred by the condition ∫ θj

0

gj(x) dx = 0 . (9)

Therefore, the constant term in any orthogonal expansion of gj on [0, θj], with
respect to an orthonormal system where one of the orthonormal functions is
constant, is absorbed into µ at (8). This property will motivate our estimators
of g1, . . . , gp; see section 3.3 below.

We assume p is known, and address the problem of estimating θ1, . . . , θp

and g1, . . . , gp without making parametric assumptions about the latter. Of
course, by conducting inference for different values of p one can obtain sig-
nificant information about its “true” value, but we do not have a satisfactory
approach to formally estimating p.

By saying that θj is the minimal period of gj we mean that if gj is also
periodic with period θ′ then θj ≤ θ′. This does not render either the θj ’s or the
representation at (8) uniquely defined, however. Indeed, the representation
is unique if and only if the periods are “relatively irrational”, meaning that
θi/θj is irrational for each 1 ≤ i < j ≤ p. We shall say that the periods are
“relatively rational” if each value of θi/θj is a rational number.

At first sight this suggests an awkward singularity in the statistical prob-
lem of conducting inference about gj and θj , as follows. Since each irrational
number is approximable arbitrarily closely by rational ones, then so too each
statistically identifiable problem can be approximated arbitrarily closely by
a non-identifiable one, by slightly altering the periods θj and leaving the
shape of each gj essentially unchanged. And since the periods in the approx-
imating problem can be chosen to be relatively rational, then new and quite
different representations may be constructed there, involving finite mixtures
of periodic functions that are different from those in the relatively irrational
form of the problem. This implies that, even if the original mean function g
uniquely enjoys the representation at (8), there is an infinity of alternative
mean functions that, while being themselves very close to g, have represen-
tations, as mixtures of periodic functions, that differ significantly from the
unique representation of g.
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While this is correct, it does not often hinder statistical analysis of real
or simulated data, since the alternative representations involve functions gj

that are either very rough or have very long periods. In such cases the gj ’s
are often not practically recognisable as periodic functions, and in particular
they lead to solutions that usually appear as pathological.

3.2 Period estimators based on the periodogram

Assume that the data pairs (Xi, Yi) are generated as at (1), but that g is now
a multiperiodic function. Least-squares methods can be used to construct
estimators of g and of the periods θj , but they are awkward to use in practice,
at least without appropriate “starting estimators,” since the analogue of S(θ),
at (3), has many local extrema. On the other hand, methods based on the
periodogram are relatively easy to implement; we describe them below.

Let cs denote either the cosine or the sine function. For any real number
ω, define the squared periodogram by

A(ω)2 ≡ Acos(ω)2 + Asin(ω)2 ,

where Acs(ω) = n−1
∑

i Yi cs(ωXi). If p = 1, in which case there is a unique
period θ, say, then the quantity ω̂ which produces a local maximum of A(ω)
achieves a local maximum in the vicinity of each value ω(k) = 2kπ/θ, where
k is any nonzero integer. This property is readily used to estimate θ.

More generally, in the multiperiodic case the periodogram A has its large
peaks near points 2kπ/θj, for arbitrary integers k and for j = 1, . . . , r. By
sorting peak locations into r disjoint sets, for each of which adjacent values
are approximately equal distances apart, the values of θj may be estimated
as before. In either case the estimators converge at the rate n−3/2 discussed
for the least-squares methods introduced in section 2.

3.3 Estimators of g

Having constructed θ̂1, . . . , θ̂p we use orthogonal series methods to develop
estimators ĝ1, . . . , ĝp, as follows. Let {ψ0, ψ1, . . .} denote a complete orthonor-
mal sequence of functions on the interval [0, 1], with ψ0 ≡ 1. Extend each
function to the real line by periodicity. Given an integer m ≥ 1, which will
play the role of a smoothing parameter; given generalised Fourier coefficients
ajk for 1 ≤ j ≤ p and 1 ≤ k ≤ m; and given a constant µ; put

g̃(x | a, µ) = µ +
p∑

j=1

m∑

k=1

ajk ψk(x/θ̂j) ,−∞ < x < ∞ , (10)

where a denotes the parameter vector of length q = mp made up of all values
of ajk. Of course, the functions ψk(·/θ̂j) used in this construction are periodic
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with period θ̂j . The estimator (10) reflects the model (8) and the constraint
(9), the latter imposed to help ensure identifiability.

Take (â, µ̂) to be the minimiser of

T (a, µ) =
n∑

i=1

{Yi − g̃(Xi|a, µ)}2 .

In this notation our estimator of gj is

ĝj(x) =
m∑

k=1

âjk ψk(x/θ̂j) .

In practice we recommend taking {ψj} to be the full trigonometric series:
ψ0 ≡ 1 and, for j ≥ 1,

ψ2j(x) = 21/2 cos(2jπx) and ψ2j−1(x) = 21/2 sin(2jπx) .

4 Evolving periodic functions

4.1 Introduction

The notion that star brightness is given by a fixed periodic function, un-
changing over time, is of course a simplification. The very mechanisms that
produce periodicity are themselves the subject of other mechanisms, which
affect their properties and so influence the period and amplitude of the sup-
posedly periodic function. Thus, while the model at (1) might be reasonable
in many circumstances, in some instances we should allow for the fact that
the characteristics of g will alter over time.

In the sections below we develop models for functions with evolving am-
plitude and period, and then we combine these to produce a model for g.
Finally we use that model to motivate estimators.

4.2 The notions of evolving period and amplitude

Write g0 for a periodic function with unit period, and let t denote a contin-
uously differentiable, strictly increasing function. Represent time by x, and
put tx = t(x) and t′x = t′(x) > 0. We shall consider the function t to provide
a change of time, from x to tx.

Assume that a function g can be represented as

g(x) = g0(tx) . (11)

We think of g as having period 1/t′x at time x, and in fact for small u > 0,

g(x + u) = g0{tx + t′x u + o(u)} .
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Since the function d(u) = g0(tx + t′x u) has period 1/t′x, then, if the time-
transformation tx+u were to be applied in a linear way for u > 0, g would
have period 1/t′x at all future times x+u. More generally, without the linearity
assumption, the function g given by (11) can be considered to have a period
1/t′x that evolves as time, x, increases.

Amplitude can also evolve. If a > 0 is a smooth function, representing
amplitude; and if we write ax for a(x); then we might generalise (11) to:

g(x) = ax g0(tx) . (12)

Here we could consider g to have period 1/t′x, and amplitude ax g0(tx), at x.
The concept of evolving amplitude has to be treated cautiously, however.

While altering time can change only the distances between successive peaks
and troughs in the function g0, altering both amplitude and time can produce
a function which is very different. Any smooth, strictly positive function g
can be constructed non-uniquely as at (12), with a > 0 representing a smooth
amplitude change, tx ≡ x being the identity transformation, and g0 denoting
any strictly positive, smooth function, periodic or otherwise.

One conclusion to be drawn from this discussion is that, unless amplitude
is determined by a relatively simple parametric model; and unless it changes
only very slowly over time, relative to the lengths of periods; it can interact
too greatly with period to be interpretable independently of period.

It is possible for non-identifiability of g0 to occur even when a ≡ 1 and
the function t has a simple parametric form. For example, suppose that, in
the particular case p = 1, tx+kp = tx + k for each x ∈ [0, 1] and each integer
k ≥ 1. Then, since g0 has period 1, it follows that g0(tx+k) = g0(tx) for each x
and each integer k. Therefore, the periodic function g ≡ g0(t) is representable
as either a time-changed version of the function g0 with unit period, or more
directly as the non-time changed function g1 ≡ g0(t) with unit period. If we
consider this particular time-change function t, and also the identity time-
change, to be members of a larger parametric class, T say, of time-change
functions, then there is ambiguity in determining the member s of T that
enables us to represent g ≡ g0(t) as g = g2(s) where g2 has period 1.

4.3 Models for period

We shall interpret (12) as a model for a regression mean, g, where the func-
tions a and t are determined parametrically and g0 is viewed nonparametri-
cally. In order for (12) to be interpretable in astronomical terms, it is helpful
for the models for t to be quite simple. For example, taking tx = θ−1

2 log(θ1 +
θ2x) + θ3, for constants θ1 > 0, θ2 and θ3, implies that 1/t′x = θ1 + θ2x. In
this case the initial period is θ1, and the period changes linearly with time,
with slope θ2. If we start measuring time at zero when x = 0 then we require
θ3 = −θ−1

2 log θ1, and then the model becomes:

tx = θ−1
2 log

(
1 + θ−1

1 θ2x
)
. (13)
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We might refer to (13) as a “linear model,” since it results from a linear
model for period. Analogously we could describe the model

tx = (θ1θ2)−1
(
1 − e−θ2x

)
, (14)

for which 1/t′x = θ1 eθ2x, as an “exponential model.” It is an attractive alter-
native to the linear model in certain cases, since its period is unequivocally
positive.

A time-change function such as

tx =
∫ x

0

(
θ1 + θ2 u + . . . + θk uk−1

)−1
du (15)

produces a period the evolution of which, in time, is described exactly by
a polynomial of degree k − 1, and represents a generalisation of the linear
model.

It should be appreciated that in models (13)–(15), and in a setting where
data are assumed to be observed at an approximately constant rate over
a time interval [0, n] of increasing length n, usually only the parameter θ1,
representing period at time x = 0, would be kept fixed as n increased. The
parameters θ2, . . . , θk would typically decrease to zero as n increased, and in
fact would usually decrease at such a rate that nj−1 |θj | was at least bounded,
if not decreasing to zero, for 2 ≤ j ≤ k. This prevents period from changing
by an order of magnitude over the observation time-interval. Moreover, if
θ1 > 0 is fixed and sup1≤j≤k nj−1 |θj | → 0 as n → ∞, then for all sufficiently
large values of n, tx is strictly monotone increasing on [0, n]. In such cases,
(15) is asymptotically equivalent to the simpler model,

tx = θ−1
1 x + θ2 x2 + . . . + θk xk , 0 ≤ x ≤ n , (16)

modulo a reparametrisation. An exponentiated version of (16) is also possible.

4.4 Models for amplitude

Models for the function ax can be constructed similarly to those for tx. How-
ever, in order to avoid identifiability problems we should insist that ax = 1 at
the initial time, so that initial amplitude is incorporated into the function g0.
Bearing this in mind, and taking the initial time to be x = 0, potential models
include

ax = 1 + ω1 x + . . . + ω� x
� , 0 ≤ x ≤ n ,

and its exponentiated form, ax = exp(ω1 x + . . . + ω� x
�).

4.5 Model for data generation

Assume that data (X1, Y1), . . . , (Xn, Yn) are generated by the model

Yi = a(Xi |ω0) g0{t(Xi | θ0)} + εi ,
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where ax = a(x |ω) and tx = t(x | θ) denote smooth, positive functions deter-
mined by finite vectors ω and θ of unknown parameters, ω0 and θ0 are the
true values of the respective parameters, t( · | θ) is strictly increasing, a( · |ω)
is bounded away from zero and infinity, and the experimental errors, εi, have
zero mean. For example, t( · | θ) and a( · |ω) could be any one of the models
introduced in sections 4.3 and 4.4, respectively.

As in section 4.2, g0 is assumed to be a smooth, periodic function with unit
period. Therefore, even if the regression mean, g(x) = a(x |ω) g0{t(x | θ)},
were a conventional periodic function, without any amplitude or time change,
the period, p say, would be inherited from the time-change function t(x | θ),
which here would be linear: t(x | θ) = x/p and θ = p, a scalar. We shall take
a(0 |ω) = 1 if x = 0 is the earliest time-point on our scale, so that amplitude
is inherited from g0.

Similar results, and in particular identical convergence rates of estimators,
are obtained for a variety of processes Xi that are weakly stationary and
weakly independent. They include cases where the Xi’s are (a) points of a
homogeneous Poisson process with intensity µ−1 on the positive real line; or
(b) the values of [n/µ] (integer part of n/µ) independent random variables,
each uniformly distributed on the interval [0, n]; or (c) the values within [0, n]
of the “jittered grid” data jµ−1 +Vj , where the variables Vj are independent
and identically distributed on a finite interval. See section 2.1 for discussion
of models such as (a), (b) and (c). In each of these cases the average spacing
between adjacent data is asymptotic to µ as n → ∞.

4.6 Estimators

To estimate g0, ω and θ, put

ĝ0

{
t(x | θ)

∣∣ θ, ω
}

=
∑

i a(Xi |ω)−1 Yi Ki(x | θ)∑
i Ki(x | θ) ,

S(θ, ω) =
∑

i

[
Yi − a(Xi |ω) ĝ0

{
t(Xi | θ)

∣∣ θ, ω
}]2

,

where Ki(x | θ) = K[{x(θ) − Xi(θ)}/h], K is a kernel function, h is a band-
width,

x(θ) = t(x | θ) − �t(x | θ)� , Xi(θ) = t(Xi | θ) − �t(Xi | θ)� ,

and �u� denotes the largest integer strictly less than u.
Let (θ, ω) = (θ̂, ω̂) be the minimiser of S(θ, ω). Then, potentially using,

to construct ĝ0, a bandwidth different from the one employed earlier, our
estimator of g0 is ĝ0( · | θ̂, ). Estimators of the time-change function tx =
t(x | θ0) and amplitude function ax = a(x |ω0) are given by t̂x = t(x | θ̂) and
âx = a(x | ω̂), respectively. We estimate g, defined at (12), as ĝ(x) = âx ĝ0(t̂x).
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Abstract. The application of cutting-edge statistical methodology is limited by
the capabilities of the systems in which it is implemented. In particular, the lim-
itations of R mean that applications developed there do not scale to the larger
problems of interest in practice. We identify some of the limitations of the com-
putational model of the R language that reduces its effectiveness for dealing with
large data efficiently in the modern era.

We propose developing an R-like language on top of a Lisp-based engine for
statistical computing that provides a paradigm for modern challenges and which
leverages the work of a wider community. At its simplest, this provides a convenient,
high-level language with support for compiling code to machine instructions for very
significant improvements in computational performance. But we also propose to
provide a framework which supports more computationally intensive approaches for
dealing with large datasets and position ourselves for dealing with future directions
in high-performance computing.

We discuss some of the trade-offs and describe our efforts to realizing this ap-
proach. More abstractly, we feel that it is important that our community explore
more ambitious, experimental and risky research to explore computational innova-
tion for modern data analyses.

Keywords: Lisp, optional typing, performance

1 Background

The growth in popularity of R over the last decade has been impressive and
has had a significant impact on the practice and research of statistics. While
the technical achievements have been significant, the fostering of a community
which has continued the development of R and the myriad of packages that
provide cutting-edge statistical methodology is perhaps the most significant
achievement of the R project.

R is not unlike the S language that was developed at Bell Labs over the last
3 decades of the last century. At that time, S was revolutionary in concept and
enabled a different approach to data analysis that continues today. A similar
change in the way we do data analysis and statistical computing is needed
again. This is no small part due to the changing nature of scientific computing
(parallel and distributed computing, Web-based data access and computing,
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massive data sets, computationally intensive methods). But also, we need
to be undertaking bold research that involves experimenting with these new
technologies and guiding statisticians to new computational paradigms rather
than focusing mostly on making the existing, familiar facilities easier to use
and implementing ideas available in numerous other programming languages.

It is important that the statistical community recognize the impact that
R has had and not assume that it is sufficient for the long-term or that new
developments will simply happen. Rather, they must encourage, support and
participate in the development of new ideas and infrastructure.

In part, due to the success and popularity of R, it is no longer a research
vehicle for more ambitious experiments. The focus of R development has
changed gradually to be one of adding important usability features found
in other languages, e.g. graphical user interfaces, support for Unicode and
internationalisation, and improving portability and ease of use. People want-
ing to pursue more experimental research projects have been faced with the
“nobody will use it” issue as there is a single, “official” R. Simply put, the
phrase “the good is the enemy of the better” expresses well the sentiment
that R has proven to be good enough for our needs and that an incremental,
more localized mindset has developed and has made development of R some-
what conservative. This has inhibited significant changes in direction and has
encouraged the more incremental, short term developments rather than a big
picture research oriented view of statistical computing. Unfortunately, this
has become dominant within the statistics community and journals, and we
are now focused more on implementations of existing algorithms than novel
new paradigms. To encourage and retain good minds in this field, we need
to provide a more significant innovative and exciting research environment
where concepts not code are the topics discussed and we are working on large
problems, not just details of smaller issues.

2 Issues with R

Before commenting on any of R’s deficiencies, we should note that R has
been and continues to very effective and successful and there have been nu-
merous significant developments within its history. However, modern data
analysis and statistical and scientific computing are continuing to change at
a dramatic rate and the essential computational model underlying R is tied
to that of the early S systems from 20 to 30 years ago. We outline some of
the issues below and note that they refer to efficiency of code execution and
support for better programming practices with type specification.

Copying: R uses a pass-by-value semantic for function calls. This means that
when a function modifies the contents of one of its arguments, it is a local
copy of the value which is changed, not the original value. This has many
desirable properties, including aiding reasoning about and debugging code,
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and ensuring precious data is not corrupted. However, it is very expensive
as many more computations need to be done to copy the data, and many
computations require excessive memory due to the large number of copies
needed to guarantee these semantics.

Whole-Object and Vectorized Computations versus Scalar Operations: There
is a significant benefit to using vectorized functions that perform operations
on the whole object rather than writing code that processes elements indi-
vidually. However, many operations are hard to vectorise and operations that
need to “unbox” individual values are extremely expensive. (See section 4 for
timing results.)

Compiled Native Code: To obtain efficient code, it is quite common to move
important code to C and access that from R. While this is not very difficult, it
does pose a challenge to many users and requires knowledge of an additional
programming language. Further, it make the resulting software less amenable
to extensions by others, and involves significantly more work by the author
to bridge the interface between the two languages, and especially debugging
the two separate pieces of code.

Software and Type checking: Like many high-level programming languages, R
does not require or support declarations and type specification for variables.
This is very useful for rapid, interactive programming and prototyping. How-
ever, when developing larger systems or software for others to use, being
able to annotate code with type information and have the system enforce it
is an important productivity gain and produces more robust and reflective
software.

These are issues with the language, not the implementation. They reflect
sensible decisions that we need to reevaluate in the face of significant changes
to computing and data analysis over the last and next decade.

3 Common Lisp

The R engine began life as a very simple Lisp interpreter. The similarities
between S and Lisp made it easy to impose an S-like syntax on the inter-
preter and produce a result which looked very much like S. The fact that
this approach has succeeded once raises the question of whether it might
be possible to do even better by building a statistical language over a more
robust, high-performance Lisp. There are both pluses and minus to taking
this approach. On the minus side, “we” will no longer own the implementa-
tion details of all aspects of our computing environment. This reduces our
independence to enact our own modifications. On the plus side, we gain the
experience and effort of an entirely different and broader community in the
implementation of an engine. This means that there is no necessity to add
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features like namespaces, conditions/exceptions and an object system to the
language. They are already present. One of the most important benefits of
the approach is that we can use a version of Lisp that compiles to machine
code and get significantly improved performance for general code via optional
specification of the data types. This raises the possibility of greatly improving
the performance of our statistical systems.

Common Lisp is a natural choice of Lisp for building large software sys-
tems. It is a formally standardized specification with many implementations
– both open source and commercial. The implementations of interest to us
provide various different types of small and very large number types (in-
cluding rationals); language macros; lexical scoping/closures; dynamic scop-
ing; optional type declarations; machine-code compilation; name spaces; a
basic package mechanism; extensible I/O types via connections/streams; for-
eign function interface (FFI); thread support; reflection and programming
on the language; additional user-level data structures (e.g. general hash ta-
bles, linked lists); unicode; reference semantics; destructive in-situ operations;
error handling system (conditions and exceptions); profiling and debugging
tools; interfaces for Emacs; IDEs for commercial versions of Lisp and an ob-
ject/class system similar but richer than the S4 system in R. It is one of
the few languages that is both high-level (interactive) and low-level & effi-
cient (compiled to machine code) and offers features similar to those that
have proven effective in statistics, with more idealized semantics for statis-
tical computing. The syntax is quirky, but a thin layer on top of this that
provides a more familiar form (see section 6) makes Lisp an extremely at-
tractive candidate for moving forward in statistical computing practice and
research.

Using Common Lisp provides significant advantages. It would free up
the limited and valuable resources that the statistical computing commu-
nity invests in maintaining, extending and innovating its own language and
interpreter when a better one is already available to us. We do lose some
control over aspects of the software environment, but the similarities of R
and Lisp are such that this does not seem of any consequence. We can con-
tribute changes to Open Source Lisp implementations (e.g. SBCL) or even
fork development if we truly need such autonomy. But with the resources
not tied to porting new features already existing in Lisp – both now and in
the future – we can focus on innovations in statistical computing rather than
computer science and information technology.

If we are willing to embark on building a new statistical computing en-
vironment, we need to consider all possible languages that might serve as a
good base, and not just Lisp. We discuss other candidates in section 8.
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4 Speed, compilation & timings

As mentioned previously, many R packages use compiled C/FORTRAN code
in order to gain efficiency. As a result, R is a good prototyping environment
but requires low-level programming for computationally intensive methods.
And this has led people to disregard it for use in large-scale, high perfor-
mance computing tasks. We want to reduce the gap between programming
in the high-level language (R) and making things efficient in the system-level
language (C), and also to allow methodology developed and implemented by
statisticians to be used in real, industrial-strength applications. We believe
that the optional type declaration and machine-code compiler provided by
implementations of Lisp achieves this.

Let’s consider a basic and overly simple example in which we implement
the sum function directly within a high-level language. The following are
obvious implementations of this in both R and Python1, also a dynamic,
interpreted language without type specification but with byte-code compila-
tion.

R Python

Sum =
function(x) {

ans = 0
for(e in x)
ans = ans + e

ans
}

def Sum(x):
ans = 0.0
for i in x:

ans = ans + i
return ans

We are ignoring issues such as missing values (NAs), and of course, both
systems provide built-in, compiled versions of the sum function. However,
we are interested in using this elementary example that focuses on scalar
computations to compare the performance of our implementations written in
the language with a similar implementation in Lisp.

We used a vector of length 100, 000 and computed its sum 10, 000 times to
compare the relative performances of our two implementations above with the
built-in ones and also a similar implementation Lisp. We also implemented
and measured equivalent code in Java and C and explored different ways to
compute the result in both Lisp and Python, i.e. using the general reduce
function in both systems. The example is sufficiently small and we want to
compare the näıve, obvious implementations, so we did not spend much time
optimizing the code. The results are given in Table 1.

Python’s built-in sum is much slower than R’s built-in function because,
while both are written in C, the Python code accepts generic, extensible
Python sequences and must use generic dispatch (at the C-level or perhaps

1 A potential point of confusion is that the compiler module within CMU Common
Lisp is called Python and predates the programming language Python.
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Implementation Time Performance factor relative to slowest

R interpreted 945.71 1
Python interpreted 385.19 2.50
Python reduce() function 122.10 7.75
Lisp no type declarations 65.99 14.33
Python built-in sum() 49.26 19.20
R built-in sum() 11.2 84.40
Lisp with type declarations∗ 2.49 379.80
Java 1.66 569.70
C 1.66 569.70

Table 1. Execution time (in seconds) of the summation of a vector of size 100, 000
repeated 10, 000 times. In all but the case of the call to R’s built-in sum() function,
there is no test for NAs. These measurements were taken on a Linux machine with a
2.4Ghz AMD 64 bit chip and 32 GB of RAM. ∗We also performed the experiments
on an Intel Mac (2.33Ghz, 3Gb RAM) and the results were similar, but the actual
values were quite different for some situations. The built-in R sum() took only
2.68 seconds and so is much more similar to Lisp which took 1.85 seconds on that
machine. The Java code was 3 times slower than the C code.

to a Python function) to fetch the next element of the sequence and then
similarly for adding the number to the total. While it is reasonable to point
out that both the Python and R built-in functions are more general than
the compiled lisp function in that they can handle arbitrary sequences and
numeric and integer vectors respectively, this objection has one serious flaw.
While the Lisp function has been limited to vectors of double-float elements,
Lisp allows us to declare these limitations; R and Python do not. We can
easily create a collection of specialized, fast sum functions for other data
types in Lisp, but we cannot in R and Python. This optimization is not
available to us in R and Python.

The timings show that the simple implementation entirely within Lisp is
essentially as fast as R’s C routine, taking into account that the latter tests
for NAs. What is also informative is the factor of 35 between the Lisp code
that has just two type declarations and the version that has none; optional
type declarations are effective. But the important comparison is between the
type-declared Lisp version and the equivalent version written entirely in both
R and Python. Here we see that the Lisp version is 380 times faster than R
and 150 times faster than Python.

Over the last several years, Luke Tierney has been making progress on
byte-code compilation of R code. His results indicate an improvement of a
factor between 2 and 5 (Tierney (2001)). Luke Tierney has also been exper-
imenting with using multiple processors within the internal numerical com-
putations done by R. This has the potential to speed up the code, but will
yield, at best, a factor given by the number of available processors. Further,
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this work would need to be done manually for all functions and would not
directly apply to user-level code.

The timing results illustrate that the optimized Lisp code runs about 30%
slower than optimized C code. Clearly, if the majority of the computations
in the high-level language amount to calling primitives written efficiently
in C, then this 30% slow-down will lead to an overall slow-down and the
resulting system will be a potential step-backwards. However, we can of course
implement such primitives ourselves in C and use them from within Lisp. But
more importantly, we do not believe that these primitives form the majority
of the operations, and further that copying objects is a large contributor
to performance issues in R. While vectorized operations are fundamental,
they are not relevant to the many common computations which cannot be
readily vectorized. And the primary message from this section is that when we
implement an algorithm that deals with individual elements of a vector in the
high-level language, the gains in the Lisp approach are immense. Some Lisp
implementations are not slow and the language is viable for high-performance
computing. Furthermore, the gains in speed are available incrementally along
a continuum ranging from an initial version that is subsequently annotated
with increasing amount of information about the types of the data/variables.
So the improvement in run-time will also be frequently accompanied by gains
in development time as we don’t have to switch to another language (e.g. C)
to obtain the necessary performance improvements.

5 Actual examples

5.1 Reinforced random walk

Motivated by a research problem of a colleague, we simulated a simple discrete
two dimensional reinforced random walk. This is a random walk in which
the transition probabilities of moving North, South, East or West from the
current position are a function of the number of times the walk has previously
visited the current spot. In our simulation, the probability of moving East if
this was the second or greater time we had visited the current location is (1+
β)/4 and the probability of moving West is (1− β)/4; all other probabilities
are 1/4.

This is a potentially expensive simulation as we must keep a record of how
often each location has been visited, and further we need to be able to quickly
determine the number of times we have visited the a particular position. The
choice of data structure and algorithm for computing this is important for
the efficiency of this algorithm. We use a hash table with the location as
a key (in Lisp the object can be used directly, but in R, we must create a
string from the x, y pair). Furthermore, since this is a Markov process, it is
not readily vectorized.

We implemented the algorithm in both R and Lisp using the same al-
gorithm. With β = .5, we ran 100, 000 steps of the random walk on several
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different machines. The execution times for 3 different machines are given
below. (the times are in seconds).

Lisp R Machine characteristics
0.215 6.572 2.33Ghz/3GB Intel, Mac OS X
0.279 7.513 2.4Ghz/32GB AMD Opteron, Linux
0.488 8.304 1Ghz/2GB AMD Athlon, Linux

So we see a significant benefit from using Lisp, with a speedup of a factor
ranging from 17 to 30.

The person interested in doing these simulations proposed looking at 50
different values of β and performing 10, 000 random walks, each of length
10, 000. The goal is to look at the distributions of both the drift and the
standard deviation of the walk. On the Intel Mac laptop, the R version takes
.75 seconds for 10, 000 iterations. 50 replications of this takes 39.912 seconds,
and 100 takes 80.213 seconds. So this is close to linear and 10, 000 replications
of 10, 000 iterations would take at least 133 minutes. And to do this for 50
values of beta would take at least 4 1

2 days! This assumes that the computation
will complete and not run out of memory.

The Lisp version takes 212.9 seconds for 10, 000 iterations of 10, 000 steps
for a given β. So for 50 values of β, the expected completion time is 3 hours
in total.

5.2 Biham-Middleton-Levine traffic model

We also implemented Biham-Middleton-Levine traffic model in both R, with
computationally intensive parts written in C code that are called from R
and in pure, type declared Lisp code. The results again indicate that the
Lisp code out-performed the combination of R and C code. While both R
implementation could be further optimized, a reasonable amount was done
using profiling in R and then recoding the bottlenecks in C.

6 Syntax

Lisp is a powerful computing language which provides a rich set of resources
for programmers. Despite this, many programmers have difficulty with it
because of its syntax. The S expression

sum(x)/length(x)

is represented in Lisp by the “s-expression”

(/ (sum x) (length x))

It is our intent to provide a thin layer of syntax over Lisp to provide a
comfortable environment for carrying out data analysis. Although we intend
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to change the appearance of Lisp, it is important that the layer which does
this be as thin as possible. This would make it possible for users to work in
Lisp, should they choose to do so. This would make the applications developed
in the framework useful to the Lisp community as well as to statisticians.

There are a number of ways in which the syntax layer could be imple-
mented. A standard LALR parser generator is available and this could be
used to translate an S-like syntax into Lisp. As an alternative, we (together
with Brendan McArdle of the University of Auckland) are examining the use
of a PEG (parsing expression grammar) based parser. Such parsers provide
the ability to extend the grammar at run-time which is useful for experimen-
tation.

The syntax of the language is not yet finalised, but we would expect
that a simple function definition such as the one below on the left would be
translated to a Lisp form given on the right.

defun sum(x)
{
local s = 0
do i = 1, n {
s = s + x[i]

}
s

}

(defun sum (x)
(let ((s 0))

(doloop (i 1 (length x))
(setf s (+ s (elt x i))))

s))

Here, doloop and elt are Lisp macros which implement a Fortran-style
do-loop and 1-based element access for vectors.

Adding declarations to the original code would simply add corresponding
declarations to the Lisp code. The annotated version of sum function above
is given below on the left and the Lisp translation on the right.

defun sum(double[*] x)
{
local double s = 0
do i = 1, n {
s = s + x[i]

}
s

}

(defun sum (x)
(declare

(type (simple-array double (*))
x))

(let ((s 0))
(declare (type double s))

(doloop (i 1 (length x))
(setf s (+ s (elt x i))))

s))

In fact, we will probably use macros to provide specialized versions for
the different data types from a single “template”.
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7 Other issues

Memory consumption & copying: As we have mentioned, the pass-by-value
semantics of R impose a significant performance penalty. Moving to a pass-
by-reference approach would avoid this but involve a very different style of
programming. For common, interactive use this may not be desirable, but
also would not be a significant issue. For more computationally intensive
tasks and “production analyses”, the approach may be very beneficial. So
too would be a computational model that facilitated working on data sets
record at a time or in blocks. This approach has been used very effectively
in SAS, for example. We plan on making streaming data and out-of-memory
computations a significant part of the fundamental framework. By combining
pass-by-reference with a flexible, fast programming language and data deliv-
ery mechanism for streaming data, we expect that statisticians and others can
use the same tools for interactive, exploratory data analysis and intensive,
production-level data processing and mining tasks.

Parallel computing: Parallel computing using multiple cores executing code
concurrently with shared memory is becoming increasingly important. Many
statistical methods are “embarrassingly parallel” and will benefit greatly from
such facilities. Thus, we want to be able use a high-level language to express
parallel algorithms. Progress on this front has been slow in R for various rea-
sons. By adopting another community’s engine, i.e. SBCL or Allegro Lisp, we
inherit much of the work that is already done to provide user-level parallel fa-
cilities which are close to completion for the different platforms. Additionally,
some of the commercial vendors of Lisp platforms have rich thread support.
Further, we expect that there will be advances in compiler technology in
general, and implemented in Lisp systems, for identifying and automating
aspects of parallelism that we are unlikely to achieve within the statistical
community alone.

Backward compatibility?: The R community is already large and growing.
There are over 1000 contributed R packages on CRAN (www.r-project.org),
150 from BioConductor (www.bioconductor.org) and 40 from Omegahat
(www.omegahat.org). It is a not a trivial decision to embark on building a
new system and losing access to this code. So backward-compatibility is an
important early decision. We could attempt to re-implement R on a Lisp
foundation and this would likely lead to improvements in performance. How-
ever, we feel that it is better to move to a new computational model. But,
we might still implement a Lisp-based R interpreter that can run concur-
rently within the Lisp session and can interpret R code. Alternatively, we
can develop a translator that converts R code to a Lisp equivalent. And an
additional approach is to embed R within Lisp so that we can call R functions
directly from within Lisp or our new language. rsbcl (Harmon (2007)) already
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provides this interface and allows us access to arbitrary R functionality. We
are exploring these different approaches to reusing R code.

Extensibility: The R interpreter is written in C and there is sharp divide
between R-language code, interpreted code and the system itself. The funda-
mental internal data structures are compiled and fixed. With a system written
using Lisp, however, we are working in a language that performs run-time
compilation to machine code. There is no divide between the “interpreter”
and the user-level language. This means that users can introduce new “core”
data types within their code and they can be used in the same manner as the
core data types provided by our “new” environment. This extensibility allows
others outside of the language developers to perform new experiments on the
system itself and to disseminate them to others without needing to alter the
system. This gives us a great deal of flexibility to handle new tasks and ex-
plore alternative approaches to computing. This is also important if we are to
foster research on the topic of statistical computing environments themselves,
which is necessary if statistical computing is to continue to evolve.

8 Alternative systems

If we are prepared to build a new system, an obvious question is why choose
Lisp as the underlying language/environment. Python is becoming increas-
ingly widely used and supported. There is a great deal of advanced design
in the upcoming Perl 6/Parrot environment. And each of Perl, Python and
Java have extensive add-on modules that are of interest to the scientific and
statistical communities.

Each of these systems is a worthy choice on which to build a new system.
All are compiled languages in the sense of creating byte-code that is executed
on a virtual machine. Java has just-in-time compilation (JIT) which gives
it performance comparable to code compiled to machine-instructions. But
this is what Lisp provides transparently. And Lisp provides optional type
checking, whereas Java requires type specification and Python and Perl do no
permit type specification (in the standard language). While Java is potentially
very fast, its focus on secure code execution and hence array-bound checking
introduces a significant overhead for scientific/numerical computing.

The timing results in section 4 indicate that a good Lisp implementation
outperforms each of these other higher-level languages. While most of these
are more popular than Lisp, we think it is important to engage in ambi-
tious work with greater potential to improve statistical computing and its
availability for, and impact on, scientific computing.

We could use a low-level language such as C++ and this would provide us
with a potentially better foundation than we currently have in the C-based
code underlying R. However, we would still be in the situation of owning
our own interpreter and so be responsible for every detail, both now and
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in the future. We could build on top of projects such as Root (Brun and
Rademakers (1997)), which provides an interactive C++-like language that
provides direct access to C++ libraries but we believe that there is a greater
benefit to using a rich high-level language which is compiled to machine code
rather than an interactive, interpreted C-based language.

Having chosen Lisp, we could elect to use one of the existing statistical
systems based on Lisp, i.e. XLisp-Stat, Quail. The choice of Common Lisp will
allow us to run the code on any of the standard Common Lisp implementa-
tions. For us, the main attraction is the presence of a good, high-performance
machine-code compiler. If the code for these systems can be deployed on such
a Common Lisp implementation and is not tied to a particular implementa-
tion of Lisp, then we will use it (license permitting). Otherwise, it is opportune
to design the environment anew with fundamental support for more modern
advanced data analysis, e.g. streaming data with out-of-memory algorithms.

9 Conclusion

The statistics community needs to engage in developing computing infras-
tructure for the modern and future challenges in computationally inten-
sive, data rich analyses. The combination of run- and development-time
speed and memory usage is important, and a language that supports op-
tional/incremental type specification helps in both compilation and good
programming, while enabling interactive use. We are pursuing Common Lisp,
with its several high-performance implementations to develop a framework on
which to implement a new statistical computing environment. And in this new
development, we are seeking to build in at a fundamental level different, mod-
ern computing paradigms (e.g. streaming data and out-of-memory/record-at-
a-time algorithms).

Starting the development of a new computing environment using Lisp is
not a guaranteed success. Lisp is not a widely used language within the statis-
tics community. And to a large extent, many people are content with their
existing environments. This is a long-term project and we are also hoping to
engage new and different additional communities and to benefit from their
knowledge and activity.

By putting an R-like syntax on Lisp, we feel that the obvious benefits
of Lisp can become accessible to a community in need of them, and allow
software developed by statisticians to be used in real, high-performance ap-
plications.
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Abstract. The work of research and applied statisticians is driven by both manual
and electronic computation. This computation, which supports our work, can be
crudely described by 3 stages: scoping, to assess what can and needs to be done;
analysis, where this is accomplished; and reporting, which communicates the results
to others. Barriers to the reuse of computations can be found in the translational
needs driving the transition between sub-activities; for example, scoping activities
are seldom directly reusable during analysis, and there is a limited amount of di-
rect reuse going from analysis to reporting. There is an additional high barrier for
translating statistical theory and methodology to practical activities, with both
sides (applied and theoretical statisticians) pointing the blame at the other for
not using appropriate tools or addressing appropriate needs. In this sense, much
statistical research is not really computable, but rather, translatable. This work
describes some proposals for exploring novel information technology support to
address the translational challenges during transition between stages of statistical
practice. These are illustrated in the on-going design of CommonLisp Stat, a plat-
form for investigating the interaction between statistical computing environments
supporting research and/or practice.

Keywords: statistical computing, Lisp, expressible research

1 Introduction

Statistical Computing concerns itself with technologies, systems, and method-
ologies which support both the on-going development as well as proper prac-
tice of statistics. The term statistical practice as used in this paper is intended
to describe the range of activities performed by a statistician, from practical
applications focusing on the analysis of data to the development of theory
which can support the selection of strategies for such analyses. Statistical
Computing drives efficiencies in statistical practice, and in an essential area
of research to drive better ways to express, communicate, and enable the
practice of statistics.

Process improvement first requires assessment of current work habits. The
processes surrounding statistical practices are no different, and the identifica-
tion of common activity patterns provide a baseline and context from which
to improve. Though there are many possibly characterisations, we will select
a 3 step process to describe the core components of the activity; these steps
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will be referred to as scoping, analysis/verification, and reporting. Other char-
acterisations can be used, and the methodology in the paper appropriately
applied.

The names given to the 3 steps have meanings in other related contexts, so
we briefly clarify. Scoping refers to the refinement of the problem to tackle,
whether methodological or applied, and describes the preparation work to
establish the feasibility of potential approaches. Analysis/verification refers
to the critical work for the activity, whether actually working through re-
quired proofs or the planned data analysis, both computations, though not
necessarily in the sense of using an electronic computer. Reporting refers to
generation of materials such as technical reports, journal articles, and pre-
sentations based on the computations. The critical point we want to make
is that the transistion between the stages can result in losing material which
otherwise might be available.

1.1 Biased history

The mid-90s, which predated the popularity of open source software, was a
golden time of statistical computing systems. Many experiments and features
were implemented, and there were a number of interesting experimental and
production systems in use. To a certain extent, many of the implementations
have died out or were marginalized. Part of this is due to the success of the
R system for statistical computing, which provides many features which pro-
vide adequate support for practical statistical applications and research. An
evolutionary process has resulted in selective pressure for R and eliminated
a number of interesting alternatives.

This is not to say that the field is dead. There are some very interesting
and more subtle improvements and experiments found in some of the R pack-
ages. These user interfaces provide interesting and more direct experiments
focused on enhancing particular practices. One example is the Rcmdr package
which provides workflow support for basic statistical analysis. This builds on
the usual introductory statistical package by mixing GUI and script work.
Another set of examples can be found in the tools supporting graphical mod-
els. The packages deal and dynamicGraph contain user interface support for
the analysis of data through bayesian networks (directed graphs) and other
graphical model methodologies.

However, current statistical computing research and experiments tend
towards the applied and target deliverables over exploration of new ideas
and approaches.

1.2 Considerations for design

The goal of the research program described in this paper is to construct a
system for experimenting with different data analysis workflows. Rather than
focusing on a limited or single workflow which a focused system such as R (R
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Core, 2008) or Mondrian (Theus, 2002) provide, this system works to focus
on workflow construction, though at the initial sacrifice of efficiency.

The key consideration we have is on work-flow support. In particular, we
focus on the identification of information surrounding the development of
theorems or data analyses which can be captured and reused later. Support
is required both for the experimentation and development of theorems as well
as for the application of these to data analysis.

The capabilities which such a platform should support include features for
flexible model specification and manipulation, numerical support for linear
algebra and optimization, reproducibility methods such as Literate Statisti-
cal Practice (Rossini, 2001), reporting capabilities such as visualization and
description of models and data, and algorithm description and characteriza-
tion support. One enabling feature would be the means to precisely describe
a model and optimization features which might provide a characterization
through the description (“source code”) of the algorithm of the theoretical
and practical features of a particular statistical procedure.

Programming language features and libraries can be used to implement
many of the Computational needs, but there needs to be a separation between
the realizations and instances of these features and the resulting capabilities.
From a systems design specification, the features form the user specifications
and functional requirements of such a system, while the implementation ap-
proach selects the tools that can be used to implement this. At the basic level,
any reasonable programming environment can be used to support statistical
computing innovations, but that is not the point. Through the description
of features which enhance support for statistical data analysis, we can se-
lect a programming platform primarily driving the breadth of focus of the
goals of a particular research program, or the depth of exploring or using the
capabilities of a specific computational aspect.

While the general overview presented just now provides a high-level view,
many of the specific details are perhaps poorly conveyed. We will consider
the following use-cases to drive requirements:

1. The consulting statistician who requires a wide toolbox of procedures as
well as clear reporting and summarization tools

2. A research statistician whose primary interest is the methodology being
developed rather than the application

3. The generalist who is interested in technology-transfer, studying compar-
ative procedures and equally interested in determining which procedures
in their own toolbox are acceptable as well as in getting the right level
of an answer to client and collaborator questions delivered at the right
time.

Wickham and Rossini (2008, in preparation) describe Statistical Design Pat-
terns, a structural approach to describing practical statistical activities which
can be additionally used to characterize statistical computing system fea-
tures. Once the features have been characterized in a value-free manner,
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opinions and beliefs can be placed on the structure to ascribe qualities and
rankings to it. We can use those concepts to both gauge the capabilities of
the current available systems as well plan future goals. Values can then be
laid on using context.

The next section of the paper describes some of the capabilities that we
aspire to in a statistical computing platform. We follow that by illustrating
how these capabilities are useful in supporting statistical activities. Com-
monLisp Stat design, status, and goals is described next, and we close by
describing tactics to achieve our long-term goals.

2 Capabilities

Statistical modeling activities strive towards the pinnacle of creating knowl-
edge, i.e. information and including the uncertainty that we comprehend
within the information. Moving along the knowledge pathway from data,
which could come in a numerical form from experiments or literature, or in
the form of quantitative opinions from interested parties or experts, to in-
formation, where this is organized in some form, to knowledge, where this is
then translated into informed uncertainty, is the process that we would like
to support. There is a range of functionality that can be automated through
computing systems to support this pathway, and we will cover a few of these
aspects.

Statistical Design Patterns (Wickham and Rossini, 2008, in preparation)
describes a framework for patterns, procedures, and activities which a statis-
tician would engage in. It describes an ontological structure, i.e. a framework
for constructing a vocabulary, which is intended for use in describing activi-
ties which can then have values assigned to them. This is useful for retroac-
tive quantitative decision analysis regarding both existing support systems
such as R as well as activities such as statistical consulting, explaining the
differences between pragmatic approaches to statistical consulting, as well as
proactive specification and valuing of desired features in a new system, which
is the application desired here.

2.1 Numerics

Numerical capabilities is perhaps the most obvious capability required, and
by this we refer to precision of calculation and infrastructure such as opti-
mization and numerical linear algebra facilities to provide building blocks for
constructing numerically suitable algorithmic implementations.

Historically this has served as a reachable and obvious value proposition,
dating back to World War 2 and earlier when calculators, both mechanical
and human were used to take care of calculations which were required for
accurate warfare. More recent work has used modern computers to make
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models and predictions of large scale phenomena ranging from the human
body in the context of health to financial and weather systems.

Many books and articles describe the importance of this capability; in fact,
it should be quite obvious. Traditionally, statistical computing has been con-
cerned with proper numerical computation, a focused attribute, rather than
the general problem we are striving to address, which is the communication
of the algorithm being followed for computation along with the corresponding
knowledge (estimates and uncertainty) that should be conveyed.

2.2 Reproducibility and reporting

Literate Statistical Practice (Rossini 2001; Rossini and Leisch; 2003) embod-
ies the reporting and reproducibility aspects. This has also been covered in
later work by Gentleman and Temple-Lang, as well as in domain specific
work, for example targeting Econometrics and Epidemiology.

There are two key pieces: the first is computational reproducibility, also
coined “reproducible research”, and this has been covered to a great extent
in the literature. The approach has been applied to a myriad of uses in both
teaching data analysis as well as describing the practical issues faced in ap-
plied statistical data analysis.

However, the second key concept, that of reporting, is not well covered.
While the reporting of substantive results has leveraged such literate prac-
tice, the reporting of computational methods has seen much less use of this
approach, with the precise communication of the computational implementa-
tion and details of the practical challenges often glossed over or left out. While
many research statisticians tend to use mathematical tricks to simplify proofs
to the bare essentials, honest statistical computation often requires just the
opposite, that is the accommodation of the full range of possibilities.

2.3 Algorithm expressibility

The description and characterization of algorithms is essential for better com-
munication of knowledge about statistical practice. It is very common to use
the equivalent of advertisements or “bullet-point arguments” to describe sta-
tistical research rather than precise characterizations of the implementation
and practical ramifications.

The implementation of expressibility and characterization can be done
through the use of computer science programming language theory such as
through the use of appropriately designed object systems, method and func-
tion selection and dispatch, the appropriate use of selective and non-selective
context, and understanding the limitations of modularity.

2.4 Data management

Computable, statistically oriented data structures are critical to simplifying
the analysis of data. While traditionally considered to be the realm of infor-



40 Rossini, A.

matics, this is a key prerequisite to enabling proper statistical analysis. The
quality of this activity can simplify the communication of computable data
analysis. Practically, this falls into the practice of data storage, integration,
annotation, and related management activities.

3 Lisp and statistical computing

There has been a strange interest in Lisp-based systems by a number of
statistical computing researchers in the last few years. While none of these
has become a functioning, widely used product, there are some experiments
which we hope will trickle down into production systems such as R and SAS.

Common Lisp is a particular Lisp-based language which has its roots
dating back to the beginning of computing languages. Information about its
history and development is readily available on the Internet. Common Lisp is
similar to Fortran, C, and C++ in being specified by a formal international
standard, rather than by a particular or “similar family” of implementations
, as Perl, Python, and Ruby.

3.1 LispStat

While S was clearly the first platform for interactive statistical data analysis,
it was closely followed by LispStat (Tierney, 1989) which provided a platform
for both modeling and graphics. LispStat was built on top of a small portable
Lisp system called XLisp. More information on this system can be found in
the corresponding book as well as on the WWW.

Around this time, 1989-1990, Tierney also experimented with moving
LispStat to the Common Lisp platform. The current work prospectively de-
scribed in this paper starts with the preliminary LispStat implementation,
with the goal of reusing some of the prior work implemented for XLispStat.

With apologies to John Chambers, Lisp is definitively the original Pro-
gramming with Data language, though data is used here in the computer
science rather than statistical sense. The distinction between operation and
data is blurred to the point that one can be the other and the other can be
one. This is no different than statistical practice, where some times the data
varies over a particular statistical procedure, and other times the statistical
procedures vary across a dataset.

3.2 CommonLisp Stat

CommonLisp Stat (CLS) is a statistical environment whose design is focused
towards exploring interactive and high-throughput interfaces for statistically-
oriented data analysis. It is being built to support the open source CLISP,
SBCL, and CMUCL Common Lisp environments, striving for portability and
clarity over efficiency and terseness.
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As the system specification is currently in flux, we have tried to point out
2 pieces which are worth consideration. The first are the design goals, and the
second is the approach of considering modules and patterns for prototyping
a system to experiment with different approaches for specifying statistical
expressions.

3.3 Design goals

Systems design of this environment is focused on expression of statistical
concepts in a clean manner; we rely on the semantics of Lisp to ensure closure
around the ideas conveyed in an computational expression. The use of the
word closure can be considered as a play on words – both in the sense of
knowledge completion as well as in the computer-science sense of the word
closure, i.e. an environment with associated data and actions (Gentleman and
Ihaka, 2000).

The list of primary design goals is:

• clear denotation of concepts: leverage Lisp syntax with parentheses to
demarcate.

• flexibility and modularity of how data and statistical procedures interact.
• feature statistical concepts as first class stand-alone components: for ex-

ample, a model for centrality should be separate from the inference engine
(Frequentist / Bayesian / Decision-theoretic) that is employed, which
should be separate from the optimization approach taken to make a par-
ticular philosophical inference on the centrality model.

• use of computer science concepts to cleanly describe the functionality
and limitations of implementation approaches: the example of scoping
by Gentleman and Ihaka (2000), as well as the use of such concepts as
predicate-dispatch, can enhance the expressibility of the implemented
algorithm.

Modularity of the system is a critical component for driving forward re-
search in statistical computing. As described in the last goal, experimentation
with how computer programming languages can work is a central component
of statistical computing which can lead to comprehending what features of a
language have better qualities for efficient execution, clean communication,
and understanding of the implied limitations and required assumptions for
both the expression and implementation within statistical research as well as
in the applied practice of statistics.

3.4 Data-driven results

With respect to placing an emphasis on the translation between stages of a
statistical activity, we need to let data structures which describe the statis-
tical data, through relational schemas as found in SQL and similar database
language, imply the possibility of statistical relatedness, as found in the con-
cept of variance.n
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4 Epilogue

We bring a sense of closure to this paper, but not to the goals behind this
paper, claiming that knowledge, both contained in statistical research as well
as due to the statistical analysis of substantive data, is generally poorly
expressed in a computational setting. In fact, similar hopes are stated for
technologies such as Web 2.0. While the selection of tools for this research
program (Common Lisp as a platform, LispStat as a starting point, Statisti-
cal Design Patterns to quantify value) can be challenged, the importance of
striving towards computational expressions which are clear and unambiguous
should be obvious. Who hasn’t had a problem understanding the conceptual
and computational nuances of theory when it gets supported in a practical
manner?

Fitted statistical models, both the best estimated versions along with their
uncertainty, form the basis of knowledge both within the realm of statistics
as well as by acting as a major contributor towards scientific inquiry. There
is a dearth of research in this area, and new tools and ideas are critical to
push the envelope towards better, self-expressed, statistical computing.
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Abstract. This paper outlines two approaches to introducing parallel computing
to the R statistical computing environment. The first approach is based on implicitly
parallelizing basic R operations, such as vectorized arithmetic operations; this is
suitable for taking advantage of multi-core processors with shared memory. The
second approach is based on developing a small set of explicit parallel computation
directives and is most useful in a distributed memory framework.
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1 Introduction

With increasing availability of muiti-core processors as well as computational
clusters it is useful to explore ways in which the R system can be modified or
extended so statisticians can take advantage of these resources and speed up
their computations or make computations feasible that would otherwise take
too long to complete. While a major rewrite of R to take advantage of parallel
resources would provide many interesting opportunities and challenges, the
current objectives are more modest: to see what can be accomplished with
reasonable levels of developer effort within the current R design. Several ap-
proaches are possible. One approach is to modify basic vectorized operations
to automatically split computations among all available processors. This im-
plicit approach tends to be most effective in a shared memory context. No
user input is required, thus making this approach simple to use.

A second approach is to develop some simple explicit parallel computing
constructs that can be used for expressing parallel computations explicitly.
This approach requires some learning on the part of users but will allow
coarser-grained parallelization and is also suitable for use in distributed mem-
ory settings that often allow much larger numbers of processors to be used.

This paper outlines efforts adding both forms of parallel computing to R.
The next section discusses one approach to parallelizing some basic arithmetic
operations. The third section outlines a simple explicit parallel computing
framework. The final section provides some discussion and outlines future
work.
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2 Implicit parallel computing in R

The basic idea in implicit parallelization of a high level language like R is to
identify operations that are computationally intensive and to arrange for the
work of these operations to be divided up among several processors without
requiring explicit intervention on the part of the user. This involves the use
of multiple threads. In some cases libraries using this approach are readily
available and can be used by linking them into R. For example, most lin-
ear algebra computations are based on the basic linear algepra subroutines
library, or BLAS. R provides its own basic implementation derived from an
open source reference implementation, but makes it easy to substitute an
altrnate implementation, such as a harware vendor library or one from the
ATLAS project (Whaley and Petitet (2005)). A number of BLAS implemen-
tations provide threaded versions that try to improve performance by using
multiple threads. A major challenge is that there is overhead associated with
synchronization of threads, among other things, that can result in threaded
versions running slower than non-threaded ones. This has been observed in
the use of threaded BLAS libraries.

Another candidate for implicit parallelization is R’s vectorized arithmetic
operations. The R math library includes many special functions, densities,
cumulative distribution functions, and quantile functions. R level versions
of these functions apply the functions to all elements of vector arguments.
This is currently implemented by a simple loop. If the work of this loop is
divided among several processors then the resulting computation may run
faster. However, care is needed as there is synchronization overhead, and
shared resources (memory, bus, etc.) impose bottlenecks. As a result, while
parallelization of vectorized operations will be beneficial for large vectors,
it can be harmful for short ones. Careful tuning is needed to ensure that
parallelization is only used if it will be helpful.

Figure 1 shows performance measurements for a range of vector sizes and
two functions on two 8-processor systems. Some simple empirical observations
from these and similar plots for other functions: Times are roughly linear in
vector length for each function/OS/thread number combination. The inter-
cepts are roughly the same for all functions on a given platform. If the slope
for P processors is sP then, at least for P = 2 and P = 4, the approximation
sp ≈ s1/P seems reasonable. Finally, the relative slopes for different functions
seem roughly independent of OS/architecture.

These observations motivate a simple strategy: Relative slopes are com-
puted using a number of runs on a range of platforms and recorded. The slope
for the normal density function dnorm is used as a base line; thus timings are
computed in units of single element dnorm calculations. Intercepts are esti-
mated for each OS/architecture combination. The two-processor intercept for
Linux/AMD/x86 64 is approximately 200 dnorm evaluations; for Mac OS X
10.4/Intel/i386 it is around 500. Using this information one can estimate for
each function f the value N2(f) such that using P = 2 processors is faster
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Fig. 1. Timings of vectorized function evaluations for qnorm and pgamma as a func-
tion of vector length for two 8-processor systems. Plots for 10 replications are shown.

than using a single processor for vectors of length n > N2(f). For P = 4
processors we use N4(f) = 2N2(f) and for P = 8 we use N8(f) = 4N2(f).

Figure 2 shows selected values of N2(f) for a Linux/AMD system. For
simple functions like sqrt parallel evaluation does not pay for vectors with
fewer that n = 2000 elements. For dnorm the cutoff is around 500. For some
very computationally intensive functions, such as qtukey, parallel evaluation
is useful for vectors of length n = 2.

Implementing the approach outlined above involves using threads to eval-
uate different parts of the basic vectorization loops. One possibility is to
directly use a basic threading API, such as pthreads, but a better choice is
to use Open MP (Chandra et al. 2000). Many commercial compilers as well
as gcc 4.2 support Open MP; Redhat has back-ported the Open MP support
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Fig. 2. Selected cutoff levels for switching to parallel evaluation of vectorized func-
tions.

to gcc 4.1 in recent Fedora and Redhat Linux releases. The current MinGW
Windows compiler suite also includes Open MP support.

Open MP uses compiler directives (#pragma statements in C; FORTRAN
uses structured comments) to request parallel implementation of a loop. For
example, Figure 3 shows the loop used for vectorizing a function of a single ar-
gument along with the Open MP parallelization directive. Functions of more

#pragma omp parallel for if (P > 0) num_threads(P) \

default(shared) private(i) reduction(&&:naflag)

for (i = 0; i < n; i++) {

double ai = a[i];

MATH1_LOOP_BODY(y[i], f(ai), ai, naflag);

}

Fig. 3. Vectorization loop for function of one argument with Open MP paralleliza-
tion directive.

than one argument are somewhat more complicated because of conventions
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for recycling shorter arguments. A compiler that does not support Open MP
will ignore the omp directive and compile this as a standard sequential loop.
If the compiler supports Open MP and is asked to use it, then this will be
compiled to use the number of threads specified by the variable P .

Use of Open MP eliminates the need to manually manage threads, but
some effort is still needed. Only loops with simple control structure can be
parallelized by Open MP, which requires rewriting some of the loops used in
the standard R code. Also, it is essential that the functions being called are
safe to call from multiple threads. For this to be true these functions cannot
use read/write global variables, call R’s memory manager, signal warnings
or errors, or check for user interrupts. Even creating internationalized error
messages can be problematic as the subroutines that do this are not guar-
anteed to be thread-safe. Almost all functions in the basic R math library
are either thread-safe or easily modified to be thread-safe. Exceptions are the
Bessel functions and the Wilcoxon and signed rank functions.

A preliminary implementation of the approach outlined here is available
as a package pnmath. Loading this package replaces the standard vectorized
functions in R by parallelized ones. For Linux and Mac OS X predetermined
intercept calibrations are used; for other platforms a calibration test is run at
package load time. The package requires a version of gcc that supports Open
MP and allows dlopen to be used with the support library libgomp.

3 Explicit parallel computing in R

Several packages are available to support explicit parallel computing in R,
including Rmpi, rpvm, nws, and snow. These packages are based on the idea
of coordinating several separate R processes running either on a single multi-
core machine or on several machines connected by a network. The packages
Rmpi and rpvm provide access from R to most features of the MPI (Pacheco,
1997) and PVM (Geist et al. 1994) message passing systems and as such are
powerful frameworks for parallel computing. However they are not easy to
use, and many parallel computations can be handled using a simpler frame-
work. The goal of the snow package is to provide such a simple framework
that is easy to use in an interactive context and is capable of expressing a
number of interesting parallel computations. A particular goal is to provide a
framework in which user code cannot create a deadlock situation, a common
error in parallel code written with many very general parallel frameworks.
A more extensive review of the snow framework is given in Rossini, Tierney,
and Li (2007). The snow package is designed to operate on top of a more ba-
sic communication mechanism; currently supported mechanisms are sockets,
PVM, and MPI.

Figure 4 shows a simple snow session. The call to the function makeCluster
creates a cluster of two worker R processes. clusterCall calls a specified
function with zero or more specified arguments in each worker process and
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> cl <- makeCluster(2)

> clusterCall(cl, function() Sys,info()["nodename"])

[[1]]

[1] "node02"

[[2]]

[1] "node03"

> clusterApply(cl, 1:2, function(x) x + 1)

[[1]]

[1] 2

[[2]]

[1] 3

> stopCluster(cl)

Fig. 4. A minimal snow session.

returns a list of the results. clusterApply is a version of lapply that ap-
plies the specified function to each element of the list or vector argument,
one element per worker process, and returns a list of the results. Finally,
stopCluster shuts down the worker processes.

clusterCall and clusterApply are the two basic functions from which
other functions are constructed. Higher level functions include parLapply,
parApply, and parMap. These are parallel versions of the standard functions
lapply, apply, and Map, respectively. A simple rule is used to partition input
into roughly equal sized batches, with the number of batches equal to the
number of worker processes. The process of converting a sequential R program
to a parallel one using snow usually involves identifying a loop that can benefit
from parallelization, rewriting the loop in terms of a function such as lapply,
and, once the rewrite has been debugged, replacing the lapply call by a call
to parLapply.

An important issue that needs to be addressed in parallel statistical com-
puting is pseudo-random number generation. If one uses standard R genera-
tors then there is a very good chance, though no guarantee, that all R worker
processes will see identical random number streams. If identical streams are
desired, as they might be at times for blocking purposes, then this can be
assured by setting a common seed. If, as is more commonly the case, one
wants to treat the workers as producing independent streams then it is best
to use R’s ability to replace the basic random number generator along with
one of several packages that are designed for parallel random number gen-
eration. snow supports using two of these packages, with the default being
the rlecuyer interface to the random number streams library of L’Ecyuer
et al. (2002). The function clusterSetupRNG is used to set up independent
random number streams on all cluster processes.

Figure 5 shows a comparison of a sequential bootstrap calculation and
a parallel one using a cluster of 10 worker processes. The elapsed time of
the parallel version is approximately one tenth of the elapsed time for the
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## sequential version:

> R <- 1000

> system.time(nuke.boot <-

+ boot(nuke.data, nuke.fun, R=R, m=1,

+ fit.pred=new.fit, x.pred=new.data))

user system elapsed

12.703 0.001 12.706

## Parallel version, using 10 processes:

> clusterEvalQ(cl,library(boot))

> clusterSetupRNG(cl)

> system.time(cl.nuke.boot <-

+ clusterCall(cl,boot,nuke.data, nuke.fun,

+ R=R/length(cl), m=1,

+ fit.pred=new.fit, x.pred=new.data))

user system elapsed

0.009 0.004 1.246

Fig. 5. Bootstrap example from the boot help page.

sequential version. The function clusterEvalQ is a utility function used to
evaluate an expression on all worker processes; in this case it is used to ensure
that the boot package is loaded on all worker processes.

Linear performance speedup as seen in this bootstrap example is not
always achievable. One issue is the cost of communication. Data is transferred
to and from the workers. If the amount of computation on each worker is not
large relative to the communication overhead then speedup will be less, and in
extreme cases parallel versions can run slower than single process sequential
versions. Another issue is that sometimes the time needed by each worker to
perform its task may vary from worker to worker, either because of variations
in tasks themselves or because of differing load conditions on the machines
involved. This can be addressed by load balancing. Currently snow provides
one function for doing this, clusterApplyLB, a load balancing version of
clusterApply. For a cluster of P processes and a vector on n > P elements
this function assigns the first P jobs to the P processes, and then assigns job
P +1 to the first process to complete its work, job P +2 to the second process
to complete its work, and so on. As a result, the particular worker process
that handles a given task is non-deterministic. This can create complications
with simulations if random number streams are assigned to processes but can
be very useful for non-stochastic applications.

4 Discussion and future work

Work on implicit parallelization within R is still in its early stages. The par-
allel vectorized math library package described in Section 2 above is a first
step. Over the next few months this work will be folded into the base R distri-
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bution, and we will explore other possibilities of using implicit parallelization
implemented via Open MP. Some reduction operations, such as row or col-
umn sum calculations, may also be amenable to this approach. One aspect
that will also be explored is whether the parallelization framework developed
within the R internals, such as the loop shown in Figure 3, can be made
available to package writers so package writers can easily define their own
parallel vectorized functions without reimplementing what has already been
done for the built-in functions.

Implicit parallelization is easiest from the user point of view as it requires
no special user action. However in an interpreted framework such as R im-
plicit parallelization is only easily applied at a very fine level of granularity
of individual vector or linear algebra operations. This means that speed im-
provements are only achievable for large data sets. It is hoped that work
currently underway on developing a byte code compiler for R may allow par-
allelization to be moved to a somewhat higher level of granularity by fusing
together several vector operations. This should significantly reduce the syn-
chronization overhead and allow parallel computation for much smaller data
sets. Compilation may also help in automatically parallelizing certain simple
uses of the apply family of functions.

Explicit parallel computing can more easily achieve substantial speedups
both because it is possible to work at higher levels of granularity and because
it is possible to bring to bear larger numbers of processors (though the num-
ber of processors available in multi-core computers is likely to increase in the
next few years; see for example Asanovic et al. 2006). More work is needed
on the interface provided by the snow framework. One area under consider-
ation is a redesign of the approach to load balancing to make it possible for
all parallel functions to optionally use load balancing. Another area is the
development of tools for measuring and displaying the parallel computation,
and the communication overhead in particular. Tools for doing this within
PVM and certain MPI frameworks are available, but it should be possible
to build on R’s own facilities and develop some useful tools that work more
easily and on all communications back ends.

The current snow framework is already quite effective for implementing a
range of parallel algorithms. It can easily handle any computation expressible
as a sequence of scatter-compute-gather steps. A useful addition would be to
allow some intermediate results to remain on the worker processes between
such scatter-compute-gather steps, but to be sure these results are cleaned
up after a complete computation. Also useful would be the ability to request
limited transfer of data between nodes. In Markov random field simulations
for example, one might divide the field among workers and need to exchange
boundary information in between iterations. Both of these ideas fit well within
a formalism known as bulk synchronous parallel computing (BSP; Bisseling
2005). Like snow, the BSP model is designed so code using the model cannot
create deadlock situations and is thus a good fit for generalizing the snow
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model. Extensions to snow to support the BSP model are currently being
explored.

More extensive rewriting of the R implementation might enable the inte-
gration of more advanced parallel libraries, such as ScaLAPACK (Blackford
et al. (1997)), and more advanced parallel programming approaches. This is
the subject of future research.
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Probabilistic Modeling for Symbolic Data
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Abstract. Symbolic data refer to variables whose ’values’ might be, e.g., intervals,
sets of categories, or even frequency distributions. Symbolic data analysis provides
exploratory methods for revealing the structure of such data and proceeds typically
by heuristical, even if suggestive methods that generalize criteria and algorithms
from classical multivariate statistics. In contrast, this paper proposes to base the
analysis of symbolic data on probability models as well and to derive statistical
tools by standard methods (such as maximum likelihood). This approach is exem-
plified for the case of multivariate interval data where we consider minimum volume
hypercubes, average intervals, clustering and regression models, also with reference
to previous work.

Keywords: symbolic data, interval data, probability models, minimum vol-
ume sets, average intervals, clustering, regression

1 Introduction

Starting with the seminal paper by Diday (1988), there is a large number of
publications, reports and software tools dealing with the analysis of what is
called ’symbolic data’, i.e. collections of data vectors whose components are
not (only) real numbers or labels (categories) as in classical statistics, but may
be intervals, sets of categories, or (empirical, theoretical) frequency distribu-
tions (Symbolic Data Analysis, SDA). Most articles dealing with such data,
e.g., with their descriptive characterization, the measurement of similarity
and dissimilarity, clustering and discrimination methods, etc. (see, e.g., Bock
and Diday 2000, Noirhomme and Diday 2007) proceed in an often surpris-
ingly empirical (even if: suggestive) way without referring to any underlying
formal structure or general principles as they are provided, e.g., by proba-
bilistic models in classical multivariate statistics where interesting analytical
results (e.g., on the performance of methods or the large sample behaviour
of estimators) can be derived. Even the relationship to approaches such as
’statistics for set-valued data’, ’fuzzy methods’, ’imprecise data theory’, etc.
is often neglected.

In this paper we concentrate on the case of interval-type data and point to
concepts and methods that rely on probabilistic models and may be useful or
even better alternatives to corresponding ’symbolic’ approaches. Through-
out we consider a set O = {1, ..., n} of n objects (entities, items) whose
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properties are described by p interval-type variables. We denote by x1, ..., xn

the resulting p-dimensional symbolic data vectors xk = (xk1, ..., xkp)′ =
([ak1, bk1], ..., [akp, bkp]) where the entries xkj = [akj , bkj ] are intervals from
R1 with upper/lower boundaries akj ≤ bkj (j = 1, ..., p, k = 1, ..., n). Then
the k-th recorded object is represented by a hyper-rectangle (hypercube, rect-
angle, interval) Qk = [ak1, bk1] × · · · × [akp, bkp] in Rp1.

2 Obtaining interval data from minimum volume
hypercubes

Consideration of symbolic data is appropriate in situations where the objects
under study are not n single individuals, but n specified groups (e.g., n cities)
of individuals for which classical data vectors might be available, but cannot
or should not be used for various reasons (e.g., for maintaining anonymity).
Then the first step in SDA consists in summarizing, for each k = 1, ..., n, the
properties of the k-th group G in the form of an interval-type vector xk (a
rectangle Qk), on the basis of the g = |G| single-valued classical data vectors
y1, ..., yg ∈ Rp that were recorded for the individuals in G. So we have to
find the interval boundaries akj , bkj within xk from the individual vectors
ys = (ys1, ..., ysp)′, s = 1, ..., g. For this task a range of empirical methods
have been be proposed or implemented in SDA, e.g.:

(1) the ’min/max option’ with akj = mins∈G ysj , bkj = maxs∈G ysj such
that Qk is the minimum hypercube in Rp that contains all individual vectors
y1, ..., yg.
(2) the ’confidence interval option’: Here the component-specific inter-
vals are given by xkj = [mj − u · sj ,mj + u · sj ] where mj := (

∑
s∈G ysj)/g

and s2
j := (

∑
s∈G(ysj − mj)2)/(g − 1) are the mean and empirical variance

of the g data values of variable j and u an appropriate quantile of the tn−1

distribution.
(3) the ’quantile option’ where akj , bkj are the lower and upper empiri-
cal β-quantiles of the g data values y1j , ..., ygj (typically, the quartiles with
β = 1/4); then Qk contains at least 100 · (1− 2pβ) % of the data points of G
(4) the ’(1−α)-coverage option’ where Qk is the smallest hypercube in Rp

that contains 100 · (1 − α) % of the data points y1, ..., yg.

Whereas the min/max option is quite sensitive to outliers and will typically
result in excessively large hypercubes for a large number g of individuals,
the (1 − α)-coverage option is robust in this respect and insofar much more
adequate when defining ’symbolic data vectors’ (but is computationally de-
manding). The following definition 1 shows that (4) is intimately related to
various concepts of classical probability where the empirical distribution of

1 For ease of notation, we will sometimes identify xk and Qk.
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the values y1, ..., yg is replaced by the distribution P of a p-dimensional ran-
dom vector Y with density f in Rp (w.r.t. the Lebesgue measure λp). The
subsequent definitions 2 and 3 modify these concepts with a view to SDA and
and are illustrated for the ideal case of a two-dimensional standard normal
distribution.

Def. 1: A minimum volume set (modal set) of level βfor Y is a measurable
subset S ⊂ Rp that resolves the minimization problem:

λp(S) → min
S ⊂ Rp

constrained by P (Y ∈ S) ≥ β (1)

where 0 < β < 1 a given threshold (e.g., β = 0.95).

It was shown by Nuñez-Garcia et al. (2003) that all level sets Ac := {y ∈
�p |f(y) ≥ c} are minimum volume sets (for the threshold α := P (Y ∈ Ac)).
These authors also determine conditions under which the inverse statement
holds. Note that modal sets are related to possibility theory as well as to
random set theory (see Nuñez-Garcia et al., 2003), and also to the classical
’high-density’ or ’contour’ clusters of Bock (1974, 1996a) and Hartigan (1975).
Estimation methods are described in Scott and Nowak (2006).

In the context of SDA and interval data, the following modification might
be considered:
Def. 2: A minimum volume hypercube of level β for Y is an interval S =
[a, b] ⊂ Rp that resolves the minimization problem:

λp(S) = λp([a, b]) → min
a≤b

constrained by P (a ≤ Y ≤ b) ≥ β. (2)

A third definition of an optimally representative (’prototype’) hypercube for
Y can be derived from work by Käärik and Pärna (2007). Starting from a
distance measure d(y, z) between points y, z ∈ Rp (typically the Euclidean
distance), they define the minimum distance between a point y ∈ Rp and
a set Q ⊂ Rp by the nearest neighbour distance D(y,Q) := minz∈Q d(y, z)
(that is = 0 for all y ∈ Q) and look for a solution of the optimization problem

E[D(Y,Q)] =
∫

Rp
minz∈Q {d(y, z)} dP (y) → min

Q∈Q
(3)

under the constraint that the set Q belongs to a given (sufficiently large)
family Q of subsets Q from Rp (typically: balls, hypercubes, unions of such
sets,...) and has a given coverage P (Y ∈ Q) = β (as an alternative: a given
volume λp(Q) = v). In SDA the following special case might be appropriate:
Def. 3: A prototype hypercube Q of level β (of volume v) for Y is any hyper-
cube Q = [a, b] ⊂ Rp that resolves (3) with Q the set of all intervals in Rp,
for a given coverage 0 < β < 1 (a given volume v > 0).
At first sight, both definitions 2 and 3 might be equally useful for SDA. How-
ever, the following simple situation reveals that they can yield qualitatively
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quite different solutions for Q (work together with K. Pärna): Let us assume
that Y = (Y1, Y2) has a two-dimensional standard normal distribution with
independent components Y1, Y2 ∼ N (0, 1) with distribution function Φ and
density φ. The following theorem shows that the optimum intervals have the
form Q = [−a,+a]× [b,+b] in both cases, but that ’real’ rectangles (i.e., with
a = b) may result only for Def. 2, and only for small volumes v. Note that
the criterion (3) has here the form:

E[D(Y,Q)] = 2(S(a) + S(b)) (4)

with S(a) := {(a2 + 1)(1 − Φ(a)) − aφ(a)}.
Theorem:
(1) Under Def. 1 and for all parameter values β ∈ (0, 1) and v > 0, an opti-
mum interval of level β (volume v) is a square Q = [−a,+a]2 with equal side
lengths a = b = Φ−1((1 +

√
β)/2) (respectively a = b =

√
(v)/2)).

(2) Under Def. 2 a centered optimum interval of coverage β (volume v) has
the form

Q = ([−a,+a]× [−b,+b]).
(a) It is a square Q = [−a, a]2 if β ≥ β∗ = 0.352... (v ≥ v∗ = 1.49819...);
then a = b = Φ−1((1 +

√
β)/2) (resp. a = b0

√
(v)/2).

(b) It is a ’typical’ rectangle (i.e. with different side lengths) if
β < β∗ = 0.352... (resp. v < v∗ = 1.49819...). Then the side lengths

are the solutions a = b of the equation
a2(1 − Φ(a)) − aφ(a) = b2(1 − Φ(b)) − bφ(b).

The threshold v∗ is the solution of vΦ(v/4) = 2φ(v/4). The following tables
illustrate the optimum configuration for some specifications of parameter val-
ues β = P (Y ∈ Q) and v = λp(Q). Note that for small β or v the solutions
(a, b) are not very precise since small changes in a result in large changes of
b, but lead only to very small changes in the coverage and probability values.

β v Sides a = b

0.146 1.00 0.50
0.467 4.00 1.00
0.950 20.07 2.24
0.990 31.58 2.81

β v Side a Side b

0.051 0.50 0.069 1.809
0.123 1.00 0.193 1.260
0.211 1.49819 0.612 0.612
0.466 4.00 1.000 1.000
0.500 4.46 1.052 1.052
0.950 20.07 2.236 2.236
0.990 31.58 2.806 2.806

Table 1: Optimum Q for Def. 1. Table 2: Optimum Q for Def. 2 and given v.

Remark: Various extensions exist for the case of non-spherical normal distri-
butions.
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3 Average intervals and class prototypes

This section deals with another major problem in SDA, i.e. the definition of
an ’average’ interval (and a ’variance’) of n data intervals Qk = [ak, bk] in
Rp that characterize a set O = {1, ..., n} of n objects. We recall the common
approach in SDA and an approach from geometric probability, and then pro-
pose a parametric and probabilistic approach.

a) Centrocubes as optimum class representatives
A basic approach in SDA starts from a dissimilarity measure D(Q,G) be-
tween two intervals Q,G in Rp and defines the ’average interval’ (’class pro-
totype, ’centrocube’) as an interval G = [u, v] ⊂ Rp with minimum average
deviation in the sense

g(C,G) :=
∑

k∈O
D(Qk, G) → min

G
(5)

(or some modification therof). Typically there will be no explicit solution of
this problem, but for some special choices of D (Hausdorff distance, Hausdorff-
type L1 or L2 distance) an exact solution can be easily obtained (see Chavent
& Lechevallier 2002, Chavent 2004, Bock 2005). The minimum value in (5)
can be used as a variance measure.

b) Approaches starting from geometric probability
In the framework of geometric probability there exist various proposals to
define the average of a random set, based on a measure-theoretical definition
of a ’random (closed) set Q’ in Rp and its distribution P (see, e.g., Mathéron
1975)2. The ’expectation’ E[Q] of Q is then defined in a way that retains
some useful properties of the classical concept of the ’expectation of a random
variable’ or maintains their validity at least in an extended sense. A wealth
of definitions and properties are presented and surveyed, e.g., in Molchanov
(1997), Baddeley and Molchanov (1997, 1998), and Nordhoff (2003), e.g.:

Def. 4: The ’Aumann expectation’ of Q is defined as the set

EAu[Q] := { E[Y ] | Y is a selection of Q with E[||Y ||] < ∞] } ⊂ Rp (6)

where ’a selection of Q’ is any random vector Y in Rp with Y ∈ Q almost
surely. – A corresponding variance definition is provided by Kruse (1987).

c) A parametric approach for defining an average interval
A hypercube G = [a, b] is characterized either by its ’lower’ and ’upper’ ver-
tices a, b ∈ Rp or, equivalently, by its midpoint m = (a+b)/2 and the vector of
(semi-)side lengths � = (b−a)/2. Similarly, a random hypercube Q is specified
by its random midpoint M = (M̃1, ..., M̃p) ∈ Rp and its random (semi-)side

2 In the case of SDA, P will be the empirical probability measure on {Q1, ..., Qn},
assigning mass 1/n to each hypercube.
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lengths vector L = (L̃1, ..., L̃p) ∈ Rp
+ with a joint distribution PM,L

ϑ (eventu-
ally parametrized by a parameter ϑ). The expected midpoint and side length
vectors µ := E[M ] = (µ̃1, ..., µ̃p)′ and λ := E[L] = (λ̃1, ..., λ̃p)′ are used in

Def. 5: The ’parametric average interval’ G of Q is given by the interval

PAI[Q] := [ E[M ]−u ·E[L], E[M ]+u ·E[L] ] = [ µ−u ·λ, µ+u ·λ ] (7)

where u > 0 is a specified constant (typically: u = 1).

Remark: For u = 1 the average interval (7) is optimum in the sense of min-
imizing the expected deviation E[D(G,Q)] between G = [a, b]=̂(m, �) and
the random interval Q = [A,B]=̂(M,L) in case of the dissimilarity measure
D(G,Q) := ||A−a||2 + ||B−b||2 = (1/2){||M−m||2 + ||L−�||2} (vertex-type
distance). – In the case of the distance D(G,Q) :=

∑p
j=1{|Mj−mj|+|Lj−�j|}

(Hausdorff-type L1 distance) the optimum prototype interval is provided by
G̃=̂(med{M},med{L}) with coordinates given by the medians of M̃j and L̃j

(similarly as in Chavent & Lechevallier 2002, Bock 2005).
Example: We illustrate Def. 5 by assuming that all 2p components of (M,L)
are stochastically independent with M̃j ∼ N (µ̃j , σ

2) and L̃j ∼ Γ (aj , bj).
Then (M,L) has a distribution I(µ, σ2;α, β), say, with parameters µ, σ2, α =
(a1, ..., ap), β = (b1, ..., bp) and a product density of the form f(m, �;µ, σ2, α, β)
= h1(m;µ, σ2) · h2(�;α, β). The expectations are given by µ̃j = E[M̃j ] and
λ̃j := E[L̃j] = aj/bj for j = 1, ..., p. – In this case the parametric average
interval of Q is given by

PAI[Q] := [ µ̃1 − u
a1

b1
, µ̃1 + u

a1

b1
] × · · · [ µ̃p − u

ap

bp
, µ̃p + u

ap

bp
]. (8)

Parameter estimation: In practice, we have to estimate the unknown param-
eter vector ϑ in the distribution PM,L

ϑ from n independent samples Q1, ..., Qn

of Q. In our example this amounts to estimating the parameters µ, σ2, α, and
β. If m1, ...,mn ∈ Rp are the observed midpoints and �1, ..., �n the observed
side lengths vectors of Q1, ..., Qn with �k = (�̃k1, ..., �̃kp)′, the m.l. estimates
are given by

µ̂ = m̄ :=
1
n

n∑

k=1

mk, σ̂2 =
1
np

n∑

k=1

||mk−m̄||2, ̂̃
λj = �̄j :=

1
n

n∑

k=1

�̃kj (9)

while the estimates âj and b̂j are the solutions of the m.l. equations

ln âj − ψ(âj) = ln
(
�̄j/�

∗
j

)
b̂j = âj/�̄j (10)

where �∗j := (Πk �̃kj)1/n is the geometric mean of �̃1j , ..., �̃nj and ψ(z) :=
Γ ′(z)/Γ (z) the digamma function (for details see, e.g., Johnson et al. (1994),
pp. 360, or Kotz et al. (2006), p. 2625).
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The benefits from the proposed parametric approach resides in the fact that
we can adapt the distribution type for, e.g., the side lenghts L̃j to the pro-
cedure by which the boundaries akj , bkj of the data intervals have been de-
termined from the sampled individuals (see the options (1) to (4) in section
1). For example, the situation where the side lengths L̃j have an exponential
distribution Exp(bj) with expectation λ̃j = E[L̃j ] = 1/bj, corresponds to the
case aj = 1 in the model above. Then the m.l. estimates are given by (9) and
b̂j = 1/�j . – If we assume that the side lengths L̃j have a uniform distribution
on an interval [0, ∆j] from Rp

+, the m.l. estimates of the boundaries ∆j are
given by ∆̂j := maxk{�̃kj}.
Another benefit from the probabilistic approach results insofar as we know or
may derive the theoretical properties of the parameter estimates and insofar
of the corresponding plug-in versions of the average interval (7) by the stan-
dard tools of mathematical statistics. This permits a statistical evaluation
of the practically obtained results (which is not possible for the exploratory
SDA approach).

4 Parametric probabilistic clustering models for
interval data

The parametric approach is particularly useful when deriving clustering meth-
ods for symbolic data, i.e., here, for n observed hypercubes Q1, ..., Qn. In fact,
by using parametric distributions for these intervals as in section 3.c, we can
formulate probabilistic clustering models directly along the lines of classi-
cal cases with single-valued data vectors. Essentially three model options
are available, i.e., a ’fixed-partition’ model, a ’random partition’ model, or a
mixture model (see Bock 1996a, 1996b, 1996c).

As a representative example we will consider here the following symbolic
fixed-partition model for n random intervals Q1, ..., Qn characterizing the n
objects in O := {1, ..., n}:
(1) There exists a fixed unknown partition C = (C1, ..., Cm) of O with a

known number m of classes Ci ⊂ O;
(2) For each class Ci there exist class-specific parameters µi, αi, βi with

µi ∈ �p and αi = (ai1, ..., aip)′, βi = (bi1, ..., bip)′ in �p
+, and σ2 > 0 such

that
(3) all intervals Qk from the same class Ci have the same distribution:

Qk ∼ I(µi, σ
2;αi, βi) for k ∈ Ci, i = 1, ...,m. (11)

Clustering is now conducted by maximizing the likelihood of the n observed
data rectangles Q1, ..., Qn with respect to the system ϑ = (µ1, ..., µm, σ2,
α1, ..., αp, β1, ..., βm) of all parameters and to the unknown m-partition C:

G(C, ϑ) := Πm
i=1 Πk∈Ci h1(mk;µi, σ

2) · h2(�k;αi, βi) → maxC,ϑ
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Taking logarithms leads to the m.l. clustering criterion:

g(C, ϑ) :=−
m∑

i=1

∑

k∈Ci

{log h1(mk;µi, σ
2)+log h2(�k;αi, βi)} → minC,ϑ (12)

Since it is impossible to determine the exact optimum configuration for com-
putational reasons, an optimum m-partition will be approximated by iterative
methods, typically by the classical k-means-type algorithm (alternating opti-
mization):
Starting from an initial partition C(0) = C = (C1, ..., Cm)
(a) we determine, in each class Ci, the m.l. estimates µ̂i, α̂i, β̂i, σ̂2 as in (9)
and (10),
(b) then build m new classes C

(1)
1 , ..., C

(1)
m by assigning each object k (data

interval Qk) to the class with maximum likelihood such that for i = 1, ...,m:

C
(1)
i := { k ∈ O | f(mk, �k; µ̂i, σ̂

2, α̂i, β̂i) = max
j=1,...,m

f(mk, �k; µ̂j , σ̂
2, α̂j , β̂j) }

(c) and iterate (a) and (b) until stationarity.
In contrast to clustering algorithms from common SDA which minimize,

e.g., criteria of the type

g(C,G) :=
m∑

i=1

∑

k∈Ci

D(Qk, Gi) → min
C,G

(13)

with respect to all systems G = (G1, ..., Gm) of m interval-type class pro-
totypes G1, ..., Gm and the m-partition C, the clustering approach proposed
here, exemplified by (12), avoids the definition of ’optimum class prototype
intervals’. Instead it deals with optimum class-specific parameter constella-
tions (µ̃i, αi, βi) and may insofar attain a better adaption to the observed
data configuration Q1, ..., Qn.

5 Probabilistic regression models for interval data

There were several attempts in SDA to extend classical regression methods
to the symbolic interval data situation. Here we face the basic problem that it
is not at all trivial to define a ’linear function of a hypercube’, a ’linear struc-
ture’ among n observed hypercubes Q1, ..., Qn, a ’linear dependence among
two hypercubes’ etc. Therefore some of the proposed ’symbolic’ regression
methods proceed mainly in a heuristic, empirical way without an underlying
general principle (see also de Carvalho et al. 2004, Neto et al. 2005).

In contrast, Billard and Diday (2000, 2002) propose a mathematical model
for the two-dimensional case that mixes probabilistic aspects with empirical
considerations as follows: They consider, within each observed rectangle Qk ∈
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R2, a uniform distribution with density fk, say, and introduce a (virtual) two-
dimensional random vector Z = (X,Y ) ∈ R2 with the mixture distribution
density f(x, y) = (

∑n
i=1 ·fk(x, y))/n. Then the regression tools from classical

statistics are applied to the linear prediction model ’Y = a + bX + e’ for the
random variables X,Y (under f), and the resulting parameters (expectations,
variances, regression coefficients, correlation,...) are interpreted with a view
to Q1, ...Qn (see also Billard 2004). - Obviously, this model does not really
describe a linear dependence between intervals or rectangles.

In contrast, Gil et al. (2001, 2007), González-Rodŕıguez et al. (2007) have
proposed a probabilistic regression model in the framework of random set
theory, with reference to the system K of all random convex compact sets
in Rp. They consider two alternative regression models for two random sets
X,Y , both in Rp (typically based on the Minkowski addition oplus of sets):
Affine model 1:

There exists a fixed set A ∈ K and a scalar b ∈ R1 (both unknown) such
that

Y = A⊕ bX := { y = a + bx | a ∈ A, x ∈ X } (14)

Regression model 2:
There exists a fixed set A ∈ K and a scalar b ∈ R1 (both unknown) such

that

Y |X = x ∼ εx ⊕ bx = { η + bξ | η ∈ εx, ξ ∈ x } (15)

where the random disturbance set εx belongs to K and has (for all values
x of X) the set A as its Aumann expectation:

EAu[ εx | X = x ] = A for all x ∈ K. (16)

For both models the statistical problem consists in determining a set A ∈ K
and the scalar b ∈ R1 such that the totality of predicted pairs {(xk, A ⊕
bxk)}k=1,...,n is close to the totality of all observed pairs {(xk, yk)}k=1,...,n

where for model 2 the data (hypercube) pairs (xk, yk) are supposed to fulfil
yk = εk ⊕ bxk with a convex set εk ∈ K. Gil et al. (2007) have used a least
squares approach in the sense of minimizing the criterion

G(A, b) :=
n∑

k=1

D2
W (yk, A⊕ bxk) → min

A,b
(17)

where DW is a distance between convex sets, and presented the explicit so-
lution of this optimization problem in terms of (set) averages and covariance
functions. – Note that in the SDA context, the convex set A will be a fixed hy-
percube and X a random one, and therefore the restricted hypercube model
of Gonzalez-Rodriguez et al. (2006) and the related estimation method can
be applied.
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Abstract. DIVCLUS-T is a descendant hierarchical clustering algorithm based on
a monothetic bipartitional approach allowing the dendrogram of the hierarchy to
be read as a decision tree. We propose in this paper a new version of this method
called C-DIVCLUS-T which is able to take contiguity constraints into account. We
apply C-DIVCLUS-T to hydrological areas described by agricultural and environ-
mental variables, in order to take their geographical contiguity into account in the
monothetic clustering process.

Keywords: divisive clustering, monothetic cluster, contiguity constraints

1 Introduction

DIVCLUS-T is a divisive and monothetic hierarchical clustering method
which proceeds by optimization of a polythetic criterion (Chavent et al.
(2007), Chavent (1998)). The bipartitional algorithm and the choice of the
cluster to be split are based on the minimization of the within-cluster in-
ertia. The complete enumeration of all possible bipartitions is avoided by
using the same monothetic approach as Breiman et al. (1984) who proposed,
and used, binary questions in a recursive partitional process, CART, in the
context of discrimination and regression. In the context of clustering, there
are no predictors and no response variable. Hence DIVCLUS-T is a DIVisive
CLUStering method whose output is not a classification nor a regression tree,
but a CLUStering-Tree. Because the dendrogram can be read as a decision
tree, it simultaneously provides partitions into homogeneous clusters and a
simple interpretation of those clusters.

This algorithm, design for classical data (either categorical or numerical),
has also been proposed to deal with more complex data (see Chapter 11.2 of
Bock and Diday (2000)). The modification concerns the within-cluster inertia
criterion which is replaced by a distance-based criterion and the definitions of
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binary questions. But with complex data, it is usually not possible to answer
directly by yes or no to a binary question, and the solutions proposed are not
always satisfactory.

In this paper we propose an extension of DIVCLUS-T, called C-DIVCLUS-
T which is able to take contiguity constraints into account. Because the new
criterion defined to include these constraints is a distance-based criterion,
C-DIVCLUS-T will be able to deal with complex data. In order to avoid the
problem pointed out below concerning the definition of binary questions for
complex data, we impose to the variables used in the the binary questions,
to be classical. The variables used in the calculation of the distance-based
criterion can however have complex descriptions.

Several survey of constrained classification can be found in the literature
(see for instance Murtagh (1985), Gordon (1996)). The method proposed
here has the specificity to be monothetic and its main advantage is then the
simple and natural interpretation of the dendrogram and the clusters of the
hierarchy. Of course these monothetic descriptions are also constraints which
may deteriorate the quality of the divisions. The price paid by construction in
terms of inertia by DIVCLUS-T for this additional interpretation has been
studied in Chavent et al. (2007) by applying DIVCLUS-T, Ward and the
k-means on six databases from the UCI Machine Learning repository.

In this paper, we present an application of C-DIVCLUS-T to hydrological
areas described by agricultural and environmental variables.

2 Definitions and notations

Let Ω = {1, ..., i, ..., n} be of n objects described by p variables X1, ..., Xj , ...,
Xp in a matrix X of n rows and p columns:

1 · · · j · · · p

X = (xj
i ) =

1
...
i
...
n

⎡

⎢⎢⎢⎢⎢⎢⎣

·
...

· · · xj
i · · ·
...
·

⎤

⎥⎥⎥⎥⎥⎥⎦
.

For classical data, if Xj is numerical then xj
i ∈ � and if Xj is categorical

then xj
i ∈ M j , with M j the set of categories. For complex data, Xj can be

described for instance by an interval xj
i = [aj

i , b
j
i ] or by a set of categories

xj
i ⊆ M j .

A weight wi is also associated to each object i. If the data result from
random sampling with uniform probabilities, the weights are also uniform :
wi = 1 for all i. It can however be useful for certain applications, to work
with non-uniform weights (reweighted sample, aggregate data).
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Let V1 be a subset of {X1, ..., Xj, ..., Xp} with either classical or complex
descriptions. Let D = (dii′ )n×n be a distance matrix with dii′ a distance (or
sometimes a dissimilarity) between two objects i and i′. This distances is
calculated on the column of X corresponding to the subset V1 of variables. In
the rest of this paper, we assume that the matrix D is standardized (∀i, i′ ∈ Ω,
dii′ ≤ 1) in the following way: If δ is the distance used to compare i and i′

on V1 we have:

dii′ =
δ(i, i′)
δm

, (1)

with δm = max
i,i′∈Ω

δ(i, i′). The criterion W , used at each division to evaluate

the homogeneity of the bi-partitions, will be defined from D.
Let V2 be an other subset of {X1, ..., Xj, ..., Xp}. As V1 is used to calculate

the matrix distance D and then the criterion W , the variables in V2 are used
to define at each division, the set of binary questions inducing the finite
number of admissible bi-partitions to evaluate. Thanks to the use of binary
questions, the computational complexity of the algorithm is reduced and the
best bi-partition, chosen according to the criterion W , is monothetic. We
recommend to choose in V2 variables with classical descriptions, such that
the binary questions have clear definitions.

We can note that V1 ∩ V2 is not necessarily empty: the same variable can
be used to calculate W and the set of binary questions.

3 DIVCLUST-T algorithm

The goal of DIVCLUST-T algorithm is to split recursively a cluster into two
sub-clusters, the algorithm starts from the set of objects Ω and the splitting
process is stopped after a number of iterations which may be specified by the
user. The output of this divisive clustering algorithm is an indexed hierarchy
(dendrogram) which is also a decision tree. More precisely at each recursive
step, the descendant hierarchical clustering algorithm DIVCLUS-T:

• splits a cluster C� into a bipartition (A�, Ā�) which minimizes the distance-
based criterion W . In Edward and Cavalli-Sforza (1965) method one
chooses the optimal bipartition (A�, Ā�) of C� among all 2ni−1 possi-
ble partitions where ni is the number of objects belonging C�. It is clear
thant the amount of calculation needed when ni is large will be pro-
hibitive. DIVCLUST approach reduce the complexity by choosing the
best bipartition among all the bipartitions induced by a set of all possi-
ble binary questions.

• chooses in the partition Pk the cluster C� to be split in such a way that
the new partition Pk+1 minimizes the distance-based criterion W .

In the complex data context the difficulty is to define (see Bock and Diday
(2000))a distance on the set of complex variables included in the set V1. In
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the following chapter we propose a new distance-based criterion where the
geographical contraints are added to the initial distances without changing
their calculation.

The binary questions on a numerical or categorical variables of the set
V2 are easily defined (Chavent et al. (2007)). Some approaches, decribed in
Chavent (1998) or in the chapter 11.2 of Bock and Diday (2000), give many
strategies to construct a set of binary questions on the complex variables
included in the set V2.

4 A distance-based criterion

Let PK = {C1, . . . , Ck, . . . , CK} be a K-clusters partition of Ω and D =
(dii′ )n×n the distance matrix. A distance-based homogeneity criterion can be
defined as:

W (PK) =
K∑

k=1

D(Ck),

with
D(Ck) =

∑

i∈Ck

∑

i′∈Ck

wiwi′

2µk
d2

ii′ , (2)

and µk =
∑

i∈Ck

wi.

In case of numerical data with uniform weights compared with the Eu-
clidean distance, W (PK) is the well-known within-clusters sum of squares
criterion.

This distance-based criterion has the advantage to avoid centroids, often
difficult to define explicitly in case of complex data. But because of the dou-
ble sum in its definition, it has the drawback to increase the computational
complexity.

Let now introduce geographical constraints in this criterion.

4.1 The geographical constraints

In the real application studied in this paper, the objects of Ω have geometrical
constraints. Generally speaking, spatial constraints can be represented in a
graph G = (Ω,E) where E is a set of edges (i, i′) between two objects of Ω.
There will be an edge between i and i′ if i′ is a neighbor of i.

Let Q = (qii′ )n×n be the adjacency matrix of G where

qii′ = 1 if (i, i′) ∈ E (i′ is a neighbor of i′) (3)
qii′ = 0 otherwise.
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4.2 The new distance-based criterion

The criterion D(Ck) can be decomposed in the following way:

D(Ck) =
∑

i∈Ck

wi

2µk
Di(Ck) where Di(Ck) =

∑

i′∈Ck

wi′d
2
ii′ (4)

The criterion Di(Ck) measures the proximity (dissimilarity) between the
object i and the cluster Ck to which it belongs.

In order to take the geographical constraints into account, the criterion
Di(Ck) is modified and re-written in the following way:

D̃i(Ck) = αai(Ck) + (1 − α)bi(Ck) (5)

with,

ai(Ck) =
∑

i′∈Ck

wi′(1 − qii′ )d2
ii′ (6)

bi(Ck) =
∑

i′ �∈Ck

wi′qii′ (1 − d2
ii′ ), (7)

and α ∈ [0, 1].
First we can notice that in the absence of constraints, the adjacency ma-

trix Q is a n×n null matrix and that D̃i(Ck) = αDi(Ck). Otherwise D̃i(Ck)
is decomposed into two parts. The first part ai(Ck) measures the coherence
between i and its cluster Ck. It it small when i is similar to the objects in
Ck(dii′ ≈ 0) and when these objects are neighbor (qii′ = 0) of i. The second
part bi(Ck) measures the coherence between i and objects in other clusters
than Ck. It is small when i is dissimilar from the objects not in Ck (dii′ ≈ 1)
and when these objects are not neighbors of i (qii′ = 0).

In other words, ai(Ck) measures of a dissimilarity between i and Ck by
assigning the value 0 for the neighbors of i and the square of the distance
for the other objects belonging to the clusters of i. The second part bi(Ck)
represents a penalty for the neighbors of i which belongs to other clusters.

The new distance-based criterion taking the constraints into account in
then:

W̃α(PK) =
K∑

k=1

∑

i∈Ck

wi

2µk
(αai(Ck) + (1 − α)bi(Ck)). (8)

4.3 Study of the parameter α

The parameter α can be chosen by the user (usually, α = 0.5) or defined
automatically. In this latter case, the idea is to chose α such that W̃α(P1) =
W̃α(Pn). Indeed, if α = 1,
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W̃1(PK) =
K∑

k=1

∑

i∈Ck

∑

i′∈Ck

wiwi′

2µk
(1 − qii′ )d2

ii′ , (9)

and W̃1(Pn) = 0. If α = 0,

W̃0(PK) =
K∑

k=1

∑

i∈Ck

∑

i′ �∈Ck

wiwi′

2µk
qii′(1 − d2

ii′), (10)

and W̃0(P1) = 0.
A compromise is then to take α such that W̃α(P1) = W̃α(Pn) which gives:

α =
A

A + B
, (11)

and
A =

∑

i∈Ω

∑

i′∈Ω,i�=i′
qii′ (1 − d2

ii′ ),

B =
∑

i∈Ω

∑

i′∈Ω

(1 − qii′ )d2
ii′ .

(12)

5 Hydrological areas clustering

Agricultural policies have recently experienced major reformulations and be-
came more and more spatialised. Defining policy priorities requires appro-
priate tools (indicators, models) with relevant results about ecological and
social features of agricultural practices (CEC, 20011). Agri-environmental
indicators (AEIs) provide an essential tool for formalizing information from
different sources and to address the impact of agricultural production on the
environment. These indicators combine information about agricultural activ-
ity and environmental conditions (data on climate, soils, slopes, hydrology,
etc.). In order to provide helpful results for decision makers, the statistical
information on agricultural activity (mainly at the scale of administrative
units) has to be transferred to environmentally relevant entities.

An important political issue is currently the implementation of WFD
(Water Framework Directive) in European countries. It stresses that an as-
sessment is required to implement efficient measurement programs to pre-
serve or restore the good ecological status of water bodies. The spatial unity
(hydrological unit) corresponds to the water body, which is the elementary
partition of aquatic environments selected for the water status assessment.

1 CEC, 2001. Statistical information needed for the indicators to monitor the in-
tegration of environmental concerns into the Common Agricultural Policy. Com-
mission of the European Communities. Communication to the Council and the
European Parliament, COM 2001, Brussels
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A study is carrying out at Cemagref in the context of the SPICOSA2

project and of the implementation of WFD: the purpose is to define the rel-
evant spatial unit, helpful for the integrated management of the continuum
“Pertuis Charentais Sea” and “Charente river basin”. We have to define ho-
mogeneous areas within the Charente basin to calculate the spatialised AEIs
and to implement an hydrological model (SWAT). The questions are: what
type of spatial organization can be used to analyze the impact of agriculture
on the freshwaters ? Are WFD existing ones (hydrographic units) relevant?
Or should new spatial entities be created ?

In this first step, we decide to use the hydrological area (water bodies)
as the relevant elementary spatial unit and to analyse all relevant variables
at this scale. There are 140 hydrological units within the studied area. The
goal is to partition the hydrological units and to obtain some clusters as
homogeneous as possible in order to implement AEIs and the SWAT model.
Two major types of variables are considered :

• Variables to characterize agricultural activities: because the territorial
limits resulting from the environmental zonings established to support
the implementation of the WFD are by construction independent of the
French administrative geographical area (région, canton, commune), we
used first the Ra-space method (Zahm and Vernier (2007)) to perform a
spatial analysis of agricultural activities at the scale of the hydrological
unit defined in the Water Framework Directive.

• Variables to characterize environmental conditions: some other variables
are needed to assess the potential risk of agricultural pesticide or nu-
trients transfer towards surface waters. These data concern structural
sensitivity (slope, soil, distance to river,..). We used GIS tools to inter-
sect geographical layers and calculate the values for these variables at the
hydrological unit scale.

The 140 hydrological units are then characterized by 14 types of soils (marsh-
land soils, terraces, valleys, artificial area, lakes, different types of groies, clay
soils, doucins, limestone soils, clay-limestone soils, and red lands), 17 types
of soil occupation (forest, orchards, vineyard...) , 8 main crops, a mean slope
and a drainage rate (sum of the length of rivers within the spatial unit/area
of the spatial unit). The file provided by the GIS tools includes the calcula-
tion of the percentage of area for each variable (see Table 1 below). A second
file, provided also by the GIS tools, includes for each hydological area the list
of its neighbors.

The DIVCLUS-T method has been applied to the first data file, and C-
DIVCLUS-T has been applied to the same data file taking into account the
contiguity of the data given in the neighbors file. The five-clusters partition
has been retained in both cases.

2 SPICOSA project web site: www.spicosa.eu
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Zhydro Type of soil Soil occupation Crope Mean slope Drainage rate
S1 S2 . . . S14 O1 O2 . . . O17 C1 C2 . . . C8

R000 12 22 . . . 7.8 9.8 12.6 . . . 9.4 12 8.7 . . . 32.1 4.44 11.28
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Table 1. The first rows of the data file.

Figures 1 and 2 give the map of the Charente basin and the clusters
obtained with the two clustering methods for the 140 hydrological units . In
order to illustrate the interest of using a monothetic approach for clustering,
we have also reported on figure 2 the binary questions of the dendrogram
obtained with C-DIVCLUS-T (see figure 3).

Fig. 1. The five-clusters partition obtained with DIVCLUS-T.

We can observe that the five clusters obtained with C-DIVCLUS-T are
more interpretable than those obtained without spatial constraints. Indeed
on the coastal zone three clusters are better delimited in figure 2 and a urban
area (two hydrological units) is highlighted. Moreover, the hydrological unit
of cluster 5 which was alone in the cluster 3 in figure 1, is merged to cluster
3 in figure 2.

Figure 2 can then be read in the following way: a part of the coastal
area can be linked to the presence of Doucins soils (moors). In the North
of the river basin, an homogeneous area with cereal crops stands out and
is not perturbed like in the previous classification. An other relevant area is
delimited in the south of the basin with the variable “limestone soils” : we can
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Fig. 2. The five-clusters partition obtained with C-DIVCLUS-T and α = 0.5.

find here vineyards and complex cultivation patterns. Finally, the cluster 1
can be linked to more artificialised areas.

Fig. 3. Dengrogram obtained with C-DIVCLUS-T.
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Abstract. In this paper, we present a new distance for comparing data described
by histograms. The distance is a generalization of the classical Mahalanobis distance
for data described by correlated variables. We define a way to extend the classical
concept of inertia and codeviance from a set of points to a set of data described by
histograms. The same results are also presented for data described by continuous
density functions (empiric or estimated). An application to real data is performed
to illustrate the effects of the new distance using dynamic clustering.
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1 Introduction

In many real experiences, data are collected and/or represented by frequency
distributions. If Y is a numerical and continuous variable, many distinct val-
ues yi can be observed. In these cases, the values are usually grouped in a
smaller number H of consecutive and disjoint bins Ih (groups, classes, inter-
vals, etc.). The frequency distribution of the variable Y is given considering
the number of data values nh falling in each Ih. A common way for repre-
senting this kind of data is the histogram representation of the variable Y.
The modeling of this kind of data has been proposed by Bock and Diday
(2000) in the framework of “symbolic data analysis”, where the concept of
histogram variable is presented as a particular case of modal variable.
The interest in analyzing data expressed by empiric frequency distributions,
as well as by histograms, is apparent in many fields of research. We refer to
the treatment of experimental data that are collected in a range of values,
whereas the measurement instrument gives only approximated (or rounded)
values. An example, can be given by air pollution control sensors located in
different zones of an urban area. The different distributions of measured data
about the different levels of air pollutants in a day, allow us to compare and
then to group into homogeneous clusters the different controlled zones.
In this paper, we propose to analyze data on the basis of the similarity of the
frequency distributions.
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After presenting histogram data and histogram variables in section 2, in sec-
tion 3, we suggest using a distance based on the Wassertein metric (Gibbs and
Su (2002)) for comparing two distributions, that is considered as an extension
of the Euclidean distance between quantile functions. All the obtained results
are generalizable to data described by density functions where the first two
moments are finite.
Data can be described by several (histogram) variables. The first problem to
solve in the analysis of multivariate data is the standardization of such data
in order to balance their contribution to the results of the analysis. Other
approaches dealing with the computation of the variability of a set of com-
plex data can be found in Billard (2007), Bertrand and Goupil (2000) and
Brito (2007). Billard (2007), Bertrand and Goupil (2000) apply the concept
of variability to interval-valued data considering interval-valued datum re-
alizations on [a, b] that are uniformly distributed U ∼ (a, b). On this basis,
Bertrand and Goupil (2000) developed some basic statistics to interval data
and Billard (2007) extends them for the computation of dependence and in-
terdependence measures for interval-valued data. In the case of histogram
data, in section 4, we propose to extend the classical concept of inertia to a
set of histogram data using the Wasserstein distance. The inertia computed
for each variable will be used for the standardization of data. Further, in
the analysis of a multivariate set of data it is important to take into con-
sideration the interdependency structure of the variables. To this end, we
propose a new distance for comparing multivariate histogram data extending
the Wasserstein distance in order to obtain a generalization of the Maha-
lanobis distance (in section 6), based on (5) a generalization of the classical
covariance measure for histogram variables.
In section 7, we present some results on a climatic dataset, using dynamic
clustering. Section 8 ends the paper with some conclusions and perspectives.

2 Histogram data and histogram variables

Let Y be a continuous variable defined on a finite support S = [y; y], where y
and y are the minimum and maximum values of the domain of Y. The variable
Y is partitioned into a set of contiguous intervals (bins) {I1, . . . , Ih, . . . , IH},
where Ih = [y

h
; yh). Given N observations of the variable Y, each semi-

open interval, Ih is associated with a random variable equal to Ψ(Ih) =∑N
u=1 Ψyu(Ih) where Ψyu(Ih) = 1 if yu ∈ Ih and 0 otherwise. Thus, it is

possible to associate with Ih an empirical distribution πh = Ψ(Ih)/N .
A histogram of Y is the representation in which each pair (Ih, πh) (for

h = 1, . . . , H) is represented by a vertical bar, with base interval Ih along
the horizontal axis and the area proportional to πh. Consider E as a set of n
empirical distributions Y(i) (i = 1, . . . , n).

In the case of a histogram description it is possible to assume that S(i) =
[y

i
; yi], where yi ∈ �. Considering a set of uniformly dense intervals Ihi =
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[
y

hi
, yhi

)
such that:

i. Ili ∩ Imi = ∅; l = m ; ii.
⋃

s=1,...,ni

Isi = [y
i
; yi]

the support can also be written as S(i) = {I1i, ..., Iui, ..., Inii}. In this paper,
we denote with ψi(y) the (empirical) density function associated with the
description of i and with Ψi(y) its distribution function. It is possible to
define the description of Y(i) as:

Y (i) = {(Iui, πui) | ∀Iui ∈ S(i);πui =
∫

Iui

ψi(y)dy ≥ 0} where
∫

S(i)

ψi(y)dy = 1.

According to Bock and Diday (2000), a histogram variable is a modal variable
that associates a histogram with each observation.

3 Wasserstein distance between two histogram data

If F and G are the distribution functions of two random variables f and g
respectively, with first moments µf and µg, and σf and σg their standard
deviations, the Wasserstein L2 metric is defined as (Gibbs and Su, (2002))

dM (F,G) :=

⎛

⎝
1∫

0

(
F−1(t) −G−1(t)

)2
dt

⎞

⎠
1/2

(1)

where F−1 and G−1 are the quantile functions of the two distributions. Irpino
and Romano (2007) proved that the distance can be decomposed as:

d2
W = (µf − µg)

2

︸ ︷︷ ︸
Location

+ (σf − σg)
2

︸ ︷︷ ︸
Size

+ 2σfσg(1 − ρQQ(F,G))︸ ︷︷ ︸
Shape

(2)

where

ρQQ(F,G) =

1∫
0

(
F−1(t) − µf

) (
G−1(t) − µg

)
dt

σfσg
=

1∫
0

F−1(t)G−1(t)dt− µfµg

σfσg

(3)
is the correlation of the quantiles of the two distributions as represented
in a classical QQ plot. It is worth noting that 0 < ρQQ ≤ 1 differently
from the classical range of variation of the Bravais-Pearson’s ρ correlation
index. This decomposition allows us to take into consideration two aspects
in the comparison of distribution functions. The first aspect is related to the
location: two distributions can differ in position and this aspect is explained
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by the distance between the mean values of the two distributions. The second
aspect is related to the different variability of the compared distribution. This
aspect is related to the different standard deviations of the distributions and
to the different shapes of the density functions. While the former sub-aspect is
taken into account by the distance between the standard deviations, the latter
sub-aspect is taken into consideration by the value of ρQQ. Indeed, ρQQ is
equal to one only if the two (standardized) distributions are of the same shape.
We may consider a histogram as a particular case of a continuous density
function built as a mixture of uniforms. Using this distance, we introduce an
extended concept of inertia for a set of histogram data.

4 The inertia of a set data described by a histogram
variable

A representative (prototype, barycenter) f̄E associated with a set E of n
described by a histogram variable X is an element of the space of description
of E, i.e., it is a histogram. Extending the inertia concept of a set of points
to a set of histograms, we may define such inertia as:

InertiaE =
∑n

i=1 d2
W (yi, f̄E) =

∑n
i=1

1∫
0

(
F−1

i (t) − F̄−1
E (t)

)2
dt =

=
∑n

i=1

[(
µfi − µf̄E

)2 +
(
σfi − σf̄E

)2 + 2σfiσf̄E
(1 − ρQQ(F,F̄E))

]
.

(4)

The f̄E barycenter is obtained by minimizing the inertia criterion in (4), in
the same way as the mean is the best least squares fit of a constant function
to the given data points.

The F̄E is a distribution where its tth quantile is the mean of the tth

quantiles of the n distributions belonging to E. In this paper we introduce
new measures of variability consistent with the classical concept of variability
of a set of elements, without discarding any characteristics of the complex
data (bounds, internal variability, shape, etc.).

It is interesting to note that the Wasserstein distance allows the Huygens
theorem of decomposition of inertia for clustered data. Indeed, we showed
(Irpino and Verde (2006) Irpino et al. (2006)) that it can be considered as an
extension of the Euclidean distance between quantile functions. Reasoning by
analogy, in Table 1 we introduce the sum of square deviation from the mean
(DEVF ), and the extension of the variance (V ARF ) and of the standard
deviation measure (STDF ) of a set of data described by a histogram variable.

4.1 The standardization of a histogram-valued dataset

A standardization of data is commonly applied when we need to analyze
multivariate datasets where variables have different scales of measures or the
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Euclidean Wasserstein
n∑

i=1

n∑

j=1

d2
E(xi, xj) =

n∑

i=1

n∑

j=1

d2
W F−1

1i , F−1
1j =

=
n∑

i=1

n∑

j=1

(xi − xj)2 = =
n∑

i=1

n∑

j=1

1∫

0

F−1
1i (t)− F−1

1j (t)
2
dt =

= 2n
n∑

i=1

(xi − x̄)2 = = 2n
n∑

i=1

1∫

0

F−1
1i (t)− F̄−1

1 (t)
2
dt =

= 2nDEV (X) = 2nDEVF (X1)

DEV (X) =

n∑

i=1

n∑

j=1
d2

E(xi,xj)

2n
DEVF (X1) =

n∑

i=1

n∑

j=1
d2

W (F−1
1i ,F−1

1j )

2n

V AR(X) =

n∑

i=1

n∑

j=1
d2

E(xi,xj)

2n2 V ARF (X1) =

n∑

i=1

n∑

j=1
d2

W (F−1
1i ,F−1

1j )

2n2

STD(X) =
√

V AR(X) STDF (X1) =
√

V ARF (X1)

(5)

Table 1. The inertia of a set of points and the inertia of a set of histograms using
Wassertein distance.

same scale but different variability. Indeed, in several contexts of analysis it
is important to homogenize data in order to treat them (clustering, classifi-
cation, principal component analysis, etc.). Having computed the standard
deviation, it is possible to introduce a method for the standardization of a set
of histogram data. Let us consider the ith deviation (Di) from the prototype
(mean, barycenter). It corresponds to a function of the quantile function of
the ith distribution minus the quantile distribution of the barycenter (F̄−1):

Di(t) = F−1
i (t) − F̄−1(t) 0 ≤ t ≤ 1. (6)

It can be proven that
n∑

i=1

Di(t) = 0 for 0 ≤ t ≤ 1. By analogy, we introduce

the standardized deviation–function as:

SDi(t) =
F−1

i (t) − F̄−1(t)
STDF (X)

0 ≤ t ≤ 1. (7)

It can be proven that n−1
n∑

i=1

1∫
0

(SDi(t))
2
dt = 1 as in the classical case. Using

standardization it is possible to extend some classic data analysis techniques
to the data analysis of histogram data.

5 Interdependencies between histogram variables

In order to introduce a Mahalanobis version of the Wasserstein distance it is
important to define an interdependence measure between two histogram vari-
ables. Given a set E described by p variables and the Σp×p covariance matrix,
the Mahalanobis distance between two points described in �p is defined as:

dm(xi,xi′ ) =
√

(xi − xi′)Σ−1(xi − xi′)T (8)
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where xi = [xi1, . . . , xip]. In order to compare two histograms, we need to
compute the covariance matrix of a histogram dataset. We propose to extend
the covariance measure for histogram data as:

COV ARF (Xj , Xj′) =
CODEVF (Xj , Xj′)

n
(9)

where CODEVF is the codeviance of a set of data described by two histogram
variables. In order to compute the CODEVF , for each individual we know
only the marginal distributions (the histograms) of the multivariate distribu-
tion that has generated it, and it is not possible to known the dependency
structure between two histogram values observed for two variables. We as-
sume that each individual is described by independent histogram variables.
This is commonly used in the analysis of symbolic data (Billard (2007)). On
this assumption, given two histogram variables Xj and Xj′ , a set E of n
histogram data with distribution Fij and Fij′ (i = 1, . . . , n), and considering
the barycenter distributions F̄j and F̄j′ of E for the two variables, we propose
to extend the classical codeviance measure to histogram data as:

CODEVF (Xj, Xj′ ) =
n∑

i=1

1∫

0

(
F−1

ij (t) − F̄−1
j (t)

)(
F−1

ij′ (t) − F̄−1
j′ (t)

)
dt.

(10)
Recalling equation (3), we may express it as:

CODEVF (Xj , Xj′) =

=
n∑

i=1

[αi · σijσij′ − βi · σjσij′ − γi · σijσj′ ] + n · δ · σjσj′+

+
(

n∑
i=1

µijµij′ − nµjµj′

)
(11)

where

• αi = ρQQ

(
F−1

ij , F−1
ij′

)
is the QQ-correlation between the jth histogram-

value and the j′th histogram-value of the ith individual,
• βi = ρQQ

(
F−1

ij′ , F̄
−1
j

)
is the QQ-correlation between the barycenter his-

togram of the j′th variable and the jth histogram of the ith individual,
• γi = ρQQ

(
F−1

ij , F̄−1
j′

)
is the QQ-correlation between the jth histogram

of the ith individual and the barycenter j′th histogram,
• δ = ρQQ

(
F̄−1

j , F̄−1
j′

)
is the QQ-correlation between the barycenter jth

histogram and the barycenter j′th histogram .

As a particular case, if all the distributions have the same shape (i.e., they
are all normal or uniform distributed) then the ρQQ’s are equal to 1 and
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CODEVF can be simplified as

CODEVF (Xj , Xj′) =

(
n∑

i

σijσij′ − nσjσj′

)
+

(
n∑

i

µijµij′ − nµjµj′

)

It is interesting to note that this approach is fully consistent with the classical
decomposition of the codeviance. Indeed, we may consider a histogram as in-
formation related to a group of individuals. It can be proven that having a set
of individuals grouped into k classes, the total codeviance can be decomposed
in two additive components, the codeviance within and the codeviance be-
tween groups. With minimal algebra it is possible to prove that |CODEVF |
cannot be greater than

√
DEVF (X1)DEVF (X2). Then, we introduce the

correlation measure for two histogram variables as:

CORRF (Xj, Xj′ ) =
CODEVF (Xj, Xj′ )√
DEVF (X1)DEVF (X2)

(12)

It is worth noting that if all histograms are identically distributed except
for the first moments, CORRF depends only on the correlation of their first
moments, and that if CORRF = 1 (resp. -1) then all the histograms have
their first moments aligned along a positive (resp. negative) sloped line and
are identically distributed (except for the first moments).

6 A Mahalanobis–Wasserstein distance for histogram
data

Given the vector Fi = [Fi1, . . . , Fip] and the inverse of CODEVF matrix
Σ−1

F = [s−1
hk ]p×p we can introduce the Mahalanobis-Wasserstein distance as

follows:

dMW (Fi,Fi′) = (13)

=

√√√√
p∑

h=1

p∑

k=1

∫ 1

0

s−1
hk

(
F−1

ih (t) − F−1
i′k (t)

) (
F−1

ih (t) − F−1
i′k (t)

)
dt.

The squared distance can be written:

d2
MW (Fi,Fi′) =

p∑
k=1

s−1
kk d2

W (Fik, Fi′k)+

+2
p−1∑
h=1

p∑
k=h

s−1
hk

[∫ 1

0

(
F−1

ih (t) − F−1
i′h (t)

) (
F−1

ik (t) − F−1
i′k (t)

)
dt
]

=

=
p∑

k=1

s−1
kk d2

W (Fik, Fi′k)+

+2
p−1∑
h=1

p∑
k=h

s−1
hk [(αhk − βhk − γhk + δhk) + (µih − µi′h) (µik − µi′k)]

(14)
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where:
αhk = ρQQ

(
F−1

ih , F−1
ik

)
· σihσik ; βhk = ρQQ

(
F−1

ih , F−1
i′k

)
· σihσi′k;

γhk = ρQQ

(
F−1

ik , F−1
i′h

)
· σikσi′h ; δhk = ρQQ

(
F−1

i′h , F−1
i′k

)
· σi′kσi′k.

If all distributions have the same shape (except for the first two moments)
the distance can be simplified as:

d2
MW (Xi, Xi′) =

p∑
k=1

d2
W (Fik, Fi′k)Σ−1

Fkk+

+2
p−1∑
h=1

[(σih − σi′h) (σik − σi′k) + (µih − µi′h) (µik − µi′k)]Σ−1
Fhk.

(15)

7 An application

In this section, we show some results of clustering of data describing the
mean monthly temperature, pressure, relative humidity, wind speed and total
monthly precipitations of 60 meteorological stations of the People’s Republic
of China1, recorded from 1840 to 1988. For the aims of this paper, we have
considered the distributions of the variables for January (the coldest month)
and July (the hottest month), so our initial data is a 60×10 matrix where the
generic (i, j) cell contains the distribution of the values for the jth variable
of the ith meteorological station. Figure 1 shows the geographic position of
the 60 stations, while in Table 2 we have the basic statistics as proposed in
section 4, and in Table 3 we show the interdependency measures as proposed
in section 5. In particular, the upper triangle of the matrix contains the
COV ARF ’s, while the bottom triangle contains the CORRF ’s for each pair
of the histogram variables.

7.1 Dynamic clustering

The Dynamic Clustering Algorithm (DCA) (Diday (1971)) represents a gen-
eral reference for partitioning algorithms. Let E be a set of n data described
by p histogram variables Xj (j = 1, . . . , p). The general DCA looks for the
partition P ∈ Pk of E in k classes, among all the possible partitions Pk, and
the vector L ∈ Lk of k prototypes representing the classes in P , such that,
the following ∆ fitting criterion between L and P is minimized:

∆(P ∗, L∗) = Min{∆(P,L) | P ∈ Pk, L ∈ Lk}. (16)

Such a criterion is defined as the sum of dissimilarity or distance measures
δ(xi, Gh) of fitting between each object xi belonging to a class Ch ∈ P and
the class representation Gh ∈ L:

∆(P,L) =
k∑

h=1

∑

xi∈Ch

δ(xi, Gh). (17)

1 Dataset URL: http://dss.ucar.edu/datasets/ds578.5/
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Fig. 1. The 60 meteorological stations of the China dataset; beside each point there
is the elevation in meters.

� Variable µj σj V ARF (Xj) STDF (Xj)

X1 Mean Relative Humidity (percent) Jan 67.9 7.0 127.9 11.3
X2 Mean Relative Humidity (percent) July 73.9 4.5 114.2 10.7
X3 Mean Station Pressure(mb) Jan 968.3 3.6 5864.7 76.5
X4 Mean Station Pressure(mb) July 951.1 3.0 5084.4 71.3
X5 Mean Temperature (Cel.) Jan -1.2 1.7 114.8 10.7
X6 Mean Temperature (Cel.) July 25.2 1.0 11.3 3.4
X7 Mean Wind Speed (m/s) Jan 2.3 0.6 1.1 1.0
X8 Mean Wind Speed (m/s) July 2.3 0.5 0.6 0.8
X9 Total Precipitation (mm) Jan 18.2 14.3 519.6 22.7

X10 Total Precipitation (mm) July 144.6 80.8 499.9 70.7

Table 2. Basic statistics of the histogram variables: µj and σj are the mean and
the standard deviation of the barycenter distribution of the jth variable, while
V ARF (Xj) and STDF (Xj) are the variability measures as presented in this paper.

Vars X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 128.0 49.1 510.2 486.1 34.0 20.0 0.7 1.6 109.9 97.9
X2 0.41 114.2 392.6 376.4 53.5 11.2 4.2 1.2 72.3 475.6
X3 0.59 0.48 5,864.7 5,455.2 162.9 198.3 32.0 24.3 672.4 1,570.2
X4 0.60 0.49 1.00 5,084.4 158.9 183.1 29.9 22.5 634.8 1,504.6
X5 0.28 0.47 0.20 0.21 114.8 22.5 0.0 -1.5 119.7 305.6
X6 0.52 0.31 0.77 0.76 0.62 11.3 0.4 0.3 41.4 56.9
X7 0.06 0.38 0.40 0.40 0.00 0.13 1.1 0.7 2.9 17.0
X8 0.17 0.14 0.39 0.39 -0.18 0.11 0.82 0.6 1.6 -0.7
X9 0.43 0.30 0.39 0.39 0.49 0.54 0.12 0.09 519.6 426.0

X10 0.12 0.63 0.29 0.30 0.40 0.24 0.23 -0.01 0.26 4,999.3

Table 3. Covariances and correlations (in bold) of the ten histogram variables.
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A prototype Gh associated with a class Ch is an element of the space of the
description of E, and it can be represented as a vector of histograms. The
algorithm is initialized by generating k random clusters or, alternatively, k
random prototypes. We here present the results of two dynamic clustering us-
ing k = 5. The former considers δ as the squared Wasserstein distance among
standardized data, while the latter uses the proposed squared Mahalanobis-
Wasserstein distance. We have performed 100 initializations and we have
considered the two partitions allowing the best quality index as defined in
Chavent et al. (2003):

Q(Pk) = 1 −
∑k

h=1

∑
xi∈Ch

δ(xi, Gh)
∑

i∈E δ(xi, GE)

where GE is the prototype of the set E. The Q(Pk) can be considered as
the generalization of the ratio between the inter-cluster inertia and the total
inertia of the dataset. Comparing the two clustering results, we may observe

Fig. 2. Dynamic Clustering of the China dataset into 5 clusters (in brackets there
is the cardinality of the cluster) using the Wasserstein distance on standardized
data Q(P5) = 0.6253.

that the two clusterings agree only on 65% of the observations (see Table
4): while the DCA using Wasserstein distance on standardized data allows
a 61.53% of intra cluster inertia, the DCA using Mahalanobis-Wasserstein
distance allows a 91.64%. Using covariance matrix, Mahalanobis distance re-
moves redundancy between the variables. In this case, the DCA allows the
definition of five clusters that collect stations at different elevations, respec-
tively, stations between 0 and 140 meters (cluster 3), between 140 and 400
meters (cluster 5), between 500 and 900 meters (cluster 1), between 1000 and
1800 (cluster 2), and between 2,000 and 3,500 meters (cluster 4). Observing
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Fig. 3. Dynamic Clustering of the China dataset into 5 clusters (in brackets there is
the cardinality of the cluster) using the Mahalanobis-Wasserstein distance, Q(P5) =
0.9164.

Clusters using
Mahal.-Wass. distance

Cl 1 Cl 2 Cl 3 Cl 4 Cl 5 Total

Cl 1 2 1 7 2 12
Clustering using Cl 2 4 7 11
Wasserstein distance Cl 3 19 2 21
between standardized Cl 4 3 2 5
data Cl 5 2 4 5 11

Total 8 11 30 2 9 60

Table 4. Cross-classification table of the clusters obtained from the two dynamic
clusterings.

a physical map of China, the obtained clusters seem more representative of
the different typologies of meteorological stations considering their location
and elevation. It is interesting to note that, also in this case, the use of a
Mahalanobis metric for clustering data gives the same advantages of a clus-
tering after a factor analysis (for example, a Principal Components Analysis),
because it removes redundant information (in terms of linear relationships)
among the descriptors.

8 Conclusions and future research

In this paper we have presented a new distance for comparing histogram
data. The proposed method can be used in the interval data analysis whereas
the intervals are considered as uniform densities according to Bertrand and
Goupil (2000) and Billard (2007). Using the Wasserstein distance, we showed
a way to standardize data, extending the classical concept of inertia for a set
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of histogram data. The Mahalanobis–Wasserstein distance and the proposed
interdependency measures between histogram variables can be considered
as new useful tools for developing further analysis techniques for histogram
data. The next step, considered very hard from a computational point of view
(see Cuesta-Albertos and Matrán (1997)), is to find a way of considering the
dependencies inside the histogram observations for multivariate histogram
data in the computation of the Wasserstein distance.
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Abstract. ‘Iterative conditional fitting’ is a recently proposed algorithm that can
be used for maximization of the likelihood function in marginal independence mod-
els for categorical data. This paper describes a modification of this algorithm, which
allows one to compute maximum likelihood estimates in a class of chain graph mod-
els for categorical data. The considered discrete chain graph models are defined us-
ing conditional independence relations arising in recursive multivariate regressions
with correlated errors. This Markov interpretation of the chain graph is consistent
with treating the graph as a path diagram and differs from other interpretations
known as the LWF and AMP Markov properties.

Keywords: categorical data, chain graph, conditional independence, graph-
ical model

1 Introduction

This paper considers models for categorical data that are analogous to Gaus-
sian models induced by systems of linear regression equations with possibly
correlated error terms. This analogy is of interest because systems of regres-
sion equations appear in many contexts, including structural equation mod-
elling and graphical modelling, see e.g. Koster (1999), Wermuth and Cox
(2004). For an example, consider the equations

X1 = β10 + ε1, (1)
X2 = β20 + β21X1 + ε2, (2)
X3 = β30 + ε3, (3)
X4 = β40 + ε4, (4)
X5 = β50 + β51X1 + ε5, (5)

in which the coefficients βij may be arbitrary real numbers and the error
terms εi have a centered joint multivariate normal distribution with positive
definite covariance matrix Ω = (ωij). This matrix Ω is assumed to have a
pattern of zero entries such that any pair of error terms is independent except
for the pairs (εi, εi+1), i = 2, 3, 4, which may have possibly non-zero correla-
tions. These assumptions lead to a particularly structured joint multivariate
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1

2 53 4

Fig. 1. Chain graph with directed and bi-directed edges. The use of bi-directed
edges is in the tradition of path diagrams employed in structural equation modelling.

normal distribution N (µ,Σ) for the random vector X = (X1, . . . , X5). While
the mean vector µ is arbitrary, the covariance matrix is of the form

Σ =

⎛

⎜⎜⎜⎜⎝

ω11 β21ω11 0 0 β51ω11

β21ω11 β2
21ω11 + ω22 ω23 0 β21β51ω11

0 ω23 ω33 ω34 0
0 0 ω34 ω44 ω45

β51ω11 β21β51ω11 0 ω45 β2
51ω11 + ω55

⎞

⎟⎟⎟⎟⎠
. (6)

The normal model induced by (1)-(5) and the assumptions on the error
terms εi comprises all distributions N (µ,Σ) with µ ∈ IR5 arbitrary and
Σ of the form (6). This model can be represented using the graph shown
in Figure 1. The directed edges in this graph represent covariate-response
relations and, in the tradition of the path diagrams employed in the structural
equation literature, bi-directed edges represent possible error correlations.
The graph in Figure 1 is an instance of a chain graph. Chain graphs may
have both oriented and unoriented edges, drawn here as directed and bi-
directed edges, subject to acyclicity constraints. A brief introduction to chain
graphs is given in §2. A more detailed treatment can be found, for example,
in Andersson et al. (2001) and Lauritzen (1996). Note, however, that the so-
called LWF and AMP chain graph models discussed in Andersson et al. (2001)
and Lauritzen (1996) differ from the models considered in this paper.

It can be shown that the normal model associated with the graph in
Figure 1 comprises all multivariate normal distributions in which

X1⊥⊥(X3, X4), X2⊥⊥(X4, X5) |X1 and (X2, X3)⊥⊥X5 |X1. (7)

Here ⊥⊥ denotes marginal or conditional independence depending on whether
a conditioning set is specified. Having such a model characterization in terms
of the non-parametric concept of conditional independence is useful because
it is also meaningful outside the realm of normal distributions. Character-
izations such as (7) are available more generally. In particular, if a system
of linear regression equations with correlated errors corresponds to a chain
graph, then the associated normal model can be characterized in terms of
conditional independence. For the details of these results, we refer the reader
to Koster (1999) and Richardson and Spirtes (2002).
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This paper considers discrete chain graph models for categorical data ob-
tained by imposing conditional independence relations such as (7). We review
these models in §3, and in §4 we describe how the recently proposed ‘iterative
conditional fitting’ algorithm can be modified for computation of maximum
likelihood estimates. Different chain graphs can be Markov equivalent, i.e.,
lead to the same statistical model. In §5 we discuss how the choice of the
graph can affect the computational efficiency of the associated fitting algo-
rithm. Concluding remarks are given in §6.

2 Chain graphs

Let G = (V,E) be a graph with finite vertex set V and edge set E ⊆ (V ×V )
such that there are no loops, i.e., (v, v) ∈ E for all v ∈ V . Two vertices v and
w are adjacent if (v, w) ∈ E or (w, v) ∈ E. If (v, w) ∈ E and (w, v) ∈ E, then
the edge (v, w) ∈ E is without orientation and, reflective of pictures such as
Figure 1, we refer to the edge as bi-directed. If (v, w) ∈ E but (w, v) ∈ E, then
the edge (v, w) is directed. We will also write v → w and v ↔ w to indicate
directed and bi-directed edges, respectively. If v → w then v is a parent of w.
The set of parents of v is denoted by pa(v), and for a set of vertices α ⊆ V
we define the parents as

pa(α) = {w ∈ V | ∃v ∈ α : w → v in G} .

A sequence of distinct vertices 〈v0, . . . , vk〉 is a path if vi−1 and vi are adjacent
for all 1 ≤ i ≤ k. A path 〈v0, . . . , vk〉 is a semi-directed cycle if (vi−1, vi) ∈ E
for all 0 ≤ i ≤ k and at least one of the edges is directed as vi−1 → vi. Here,
v−1 ≡ vk. If the graph G has no semi-directed cycles, then G is a chain graph.

Define two vertices v0 and vk in a chain graph G to be equivalent if
there exists a bi-directed path from v0 to vk, i.e., a path 〈v0, . . . , vk〉 such
that vi ↔ vi+1 for all 0 ≤ i ≤ k − 1. The equivalence classes under this
equivalence relation are the chain components of G. For example, the chain
graph in Figure 1 has the chain components {1} and {2, 3, 4, 5}. The chain
components (τ | τ ∈ T ) yield a partitioning of the vertex set

V =
⋃

τ∈T
τ,

and the subgraph Gτ induced by each chain component τ is a connected graph
with exclusively bi-directed edges. Moreover, the directed edges between two
chain components τ1 and τ2 all have the same direction, i.e., if (v1, v2) ∈ τ1×τ2
and (w1, w2) ∈ τ1 × τ2 are two pairs of adjacent vertices, then either v1 → v2

and w1 → w2, or v2 → v1 and w2 → w1.
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3 Discrete chain graph models of multivariate
regression type

Let X = (Xv | v ∈ V ) be a discrete random vector whose elements correspond
to the vertices of a chain graph G = (V,E). The graph G determines a list of
conditional independence statements such as (7). The details of the process
of determining the conditional independence statements are reviewed, for ex-
ample, in Drton (2008). Let component Xv take values in [dv] = {1, . . . , dv},
and define I = ×v∈V [dv]. For i = (iv | v ∈ V ) ∈ I, let

p(i) = P (X = i) = P (Xv = iv for all v ∈ V ). (8)

The joint distribution of X is determined by the array of probabilities p =(
p(i) | i ∈ I

)
, which is in the (

∏
v∈V dv) − 1 dimensional probability sim-

plex ∆ ⊂ IRI . Hence, the discrete chain graph model associated with G
corresponds to a subset P(G) ⊂ ∆, which comprises exactly those arrays of
probabilities p that lead to the desired conditional independence relations for
the random vector X .

An array p ∈ P(G) obeys a factorization over the chain components of
G. For a chain component τ ⊆ V , let

p(iτ | iπ(τ)) = P (Xτ = iτ |Xπ(τ) = iπ(τ)), (9)

where π(τ) is the union of all chain components τ ′ in G that contain a vertex
w that is a parent of a vertex in τ , i.e., all τ ′ such that τ ′ ∩ pa(τ) = ∅. If
π(τ) = ∅, then (9) refers to an unconditional probability. It then holds that
each p ∈ P(G) factors as

p(i) =
∏

τ∈T
p(iτ | iπ(τ)), i ∈ I. (10)

The factorization in (10) is of the type usually encountered in directed graph-
ical models (also known as Bayesian networks) but operates on the level of
chain components rather than individual vertices. The factorization for the
chain graph in Figure 1 is of the form

p(i) = p(i1)p(i2, i3, i4, i5 | i1), i ∈ I. (11)

The conditional independence relations that need to hold in an array of
probabilities p in order for it to be in the model P(G) lead to constraints
on the conditional probabilities p(iτ | iπ(τ)). Drton (2008) describes a change
of conditional probability coordinates that simplifies these constraints and
yields in particular that the positive distributions in the model P(G) form
a curved exponential family. This ensures regular large-sample asymptotics
such as asymptotically normal maximum likelihood estimators.

Consider a chain component τ ∈ T and let iπ(τ) ∈ Iπ(τ). For a non-empty
subset α ⊆ τ , define Jα = ×v∈α[dv − 1]. The set [dv − 1] = {1, . . . , dv − 1}
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is the range for random variable Xv but with the highest-numbered element
dv removed. (Any other element could be chosen as baseline and be removed
instead.) For each jα ∈ Jα, let

q(jα | iπ(τ)) = P (Xα = jα |Xπ(τ) = iπ(τ)).

The probabilities q(jα | iπ(τ)), ∅ = α ⊆ τ , jα ∈ Jα, can be shown to be in
one-to-one correspondence to the probabilities p(iτ | iπ(τ)), iτ ∈ Iτ . This gives
the above mentioned change of coordinates that simplifies the considered
conditional independence relations to the form in Theorem 1.

A subset α ⊆ τ is disconnected if there are two distinct vertices v, w ∈ α
such that no path from v to w in G has all its vertices in α. Otherwise, α is
a connected set. A disconnected set δ ⊆ τ can be partitioned uniquely into
inclusion-maximal disjoint connected sets γ1, . . . , γr ⊆ τ ,

δ = γ1 ∪ γ2 ∪ · · · ∪ γr. (12)

Theorem 1 (Drton, 2008). Let G be a chain graph with chain components
(τ | τ ∈ T ). An array p in the probability simplex ∆ belongs to the discrete
chain graph model P(G) if and only if the following three conditions hold:

(i) The components of p factor as in (10).
(ii) For all τ ∈ T and iπ(τ) ∈ Iπ(τ), it holds that

q(jδ | iπ(τ)) = q(jγ1 | iπ(τ))q(jγ2 | iπ(τ)) · · · q(jγr | iπ(τ))

for every disconnected set δ ⊆ τ and jδ ∈ Jδ. Here γ1, . . . , γr ⊆ τ are the
inclusion-maximal connected sets in (12).

(iii) For all τ ∈ T , connected subsets γ ⊆ τ and jγ ∈ Jγ , it holds that

q(jγ | iπ(τ)) = q(jγ | kπ(τ))

for every pair iπ(τ), kπ(τ) ∈ Iπ(τ) such that ipa(γ) = kpa(γ).

Example 1. For the graph from Figure 1, Theorem 1 only constrains the
conditional probabilities p(i2, i3, i4, i5 | i1) for the second chain component
{2, 3, 4, 5}. The constraints from condition (ii) are

q(j2, j4 | i1) = q(j2 | i1)q(j4 | i1), (13)
q(j2, j5 | i1) = q(j2 | i1)q(j5 | i1), (14)
q(j3, j5 | i1) = q(j3 | i1)q(j5 | i1), (15)

q(j2, j3, j5 | i1) = q(j2, j3 | i1)q(j5 | i1), and (16)
q(j2, j4, j5 | i1) = q(j2 | i1)q(j4, j5 | i1), (17)

for all i1 ∈ [d1] and j2345 ∈ J2345. Condition (iii) leads to the constraints

q(j3 | i1) = q(j3 | k1), (18)
q(j4 | i1) = q(j4 | k1), and (19)

q(j3, j4 | i1) = q(j3, j4 | k1), (20)

for all i1 < k1 ∈ [d1] and j34 ∈ J34.
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4 Iterative conditional fitting

Suppose X(1), . . . , X(n) are a sample of independent and identically dis-
tributed random vectors taking values in I = ×v∈V [dv]. Suppose further
that the probability array p for the joint distribution of the random vectors
X(k) is in a chain graph model P(G). If we define the counts

n(i) =
n∑

k=1

1{X(k)=i}, i ∈ I,

then the likelihood function of P(G) is equal to

L(p) =
∏

i∈I
p(i)n(i).

For α ⊆ V and iα ∈ Iα, define the marginal counts

n(iα) =
∑

j∈I:jα=iα

n(j),

and the marginal probabilities

p(iα) = P (Xα = iα) =
∑

j∈I:jα=iα

p(j).

Using the factorization in (10), the log-likelihood function �(p) = logL(p) can
be written as the sum �(p) =

∑
τ∈T �τ (p), where

�τ (p) =
∑

iπ(τ)

∑

iτ

n(iτ , iπ(τ)) log p(iτ | iπ(τ)) (21)

are the component log-likelihood functions. For different chain components,
the conditional probabilities p(iτ | iπ(τ)) are variation-independent. We can
thus maximize � over P(G) by separately maximizing the component log-
likelihood functions over their respective domains.

Example 2. For the graph from Figure 1 we obtain that �(p) = �1(p)+�2345(p)
with component log-likelihood functions

�1(p) =
∑

i1∈[d1]

n(i1) log p(i1), (22)

�2345(p) =
∑

i∈I
n(i) log p(i2, i3, i4, i5 | i1). (23)

The function �1 is maximized by p̂(i1) = n(i1)/n and only the maximization
of �2345 presents a challenge.
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Since the component log-likelihood function �τ in (21) is a sum over iπ(τ),
each term of this sum can be maximized separately if one has variation-
independence of the probabilities appearing in the different terms.

Proposition 1. Suppose τ is a chain component of the chain graph G such
that pa(v) = π(τ) for all v ∈ τ . If iπ(τ), jπ(τ) ∈ Iπ(τ) and iπ(τ) = jπ(τ),
then the two arrays of conditional probabilities (p(iτ | iπ(τ)) | iτ ∈ Iτ ) and
(p(iτ | jπ(τ)) | iτ ∈ Iτ ) are variation-independent.

Proof. Since pa(v) = π(τ) for all v ∈ τ , condition (iii) in Theorem 1 is void.
Condition (ii) constrains each one of the arrays (p(iτ | iπ(τ)) | iτ ∈ Iτ ) and
(p(iτ | jπ(τ)) | iτ ∈ Iτ ) separately. ��

Clearly, Proposition 1 applies only in very special cases. It does not apply,
for instance, to the chain component {2, 3, 4, 5} of the graph from Figure 1
because pa(2) = {1} differs from pa(3) = ∅.

Different approaches can be taken for maximization of a component log-
likelihood function �τ in an arbitrarily structured chain graph. One approach
is to express �τ in terms of parametrizations and then apply routines for un-
constrained numerical optimization. Note, however, that care must be taken
to avoid issues due to the fact that the involved parameters are generally
variation-dependent. Here we will take an alternative approach by general-
izing the ‘iterative conditional fitting’ (ICF) algorithm described in Drton
and Richardson (2008a). This algorithm was proposed for binary marginal
independence models and has a Gaussian version discussed in Chaudhuri et
al. (2007). The marginal independence models studied in Drton and Richard-
son (2008a) are special cases of the chain graph models considered here. They
are obtained from chain graphs with only one chain component, in which case
conditions (i) and (iii) in Theorem 1 are void.

Generalized ICF for maximization of �τ from (21) starts with a choice of
feasible estimates of the probabilities p(iτ | iπ(τ)). These estimates are then
improved iteratively. Each iteration cycles through all vertices in τ and when
considering vertex v ∈ τ an update step with three parts is performed:

(a) Use the current feasible estimates to compute the conditional probabili-
ties

p(iτ\{v} | iπ(τ)),

in which the variable Xv is marginalized out.
(b) Holding the probabilities computed in (a) fixed, solve a convex optimiza-

tion problem to find updated estimates of the conditional probabilities

p(iv | i(τ\{v})∪π(τ)).

(c) Compute new feasible estimates according to

p(iτ\{v} | iπ(τ)) = p(iv | i(τ\{v})∪π(τ))p(iτ\{v} | iπ(τ)).
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The update step (a)-(c) mirrors the corresponding step in the original ICF
algorithm, however, we now condition on the variables Xπ(τ) throughout.

It remains to explain which convex optimization problem has to solved
in part (b). The problem is to maximize �τ , treating the conditional proba-
bilities from part (a) as fixed quantities and imposing the constraints from
Theorem 1(ii) and (iii). To see the convexity of the problem, note that for
fixed values of p(iτ\{v} | iπ(τ)) the function �τ is a concave function of the
probabilities p(iv | i(τ\{v})∪π(τ)). Moreover, for fixed p(iτ\{v} | iπ(τ)), the con-
straints in Theorem 1(ii) and (iii) are linear in p(iv | i(τ\{v})∪π(τ)). Thus the
feasible set for the problem is convex.

Example 3. We illustrate the outlined algorithm for the chain graph G in
Figure 1 and the component log-likelihood function �2345 from (23). For sim-
plicity, we assume all five variables to be binary, i.e., dv = 2 for v = 1, . . . , 5.
Up to symmetry, there are only two different update steps in ICF, namely,
the one for v = 2 and the one for v = 3.

Update step for v = 2: In part (a) we compute the 16 conditional probabili-
ties

p(i3, i4, i5 | i1), i1, i3, i4, i5 = 1, 2.

These are then treated as fixed in part (b), in which we maximize

2∑

i1,...,i5=1

n(i1, i2, i3, i4, i5) log p(i2 | i1, i3, i4, i5) (24)

with respect to p(i2 | i1, i3, i4, i5). This maximization is done under con-
straints derived from (13), (14), (16) and (17). Since the probabilities
p(i3, i4, i5 | i1) are fixed, (15) is preserved automatically when updat-
ing the probabilities p(i2 | i1, i3, i4, i5). Moreover, since pa(2) = π(τ)
for τ = {2, 3, 4, 5}, conditions (18)-(20) do not constrain the probabil-
ities p(i2 | i1, i3, i4, i5). The important point is that (13), (14), (16) and
(17) are linear constraints in p(i2 | i1, i3, i4, i5). The second factor on the
right hand side of these equations is a function of the fixed quantities
p(i3, i4, i5 | i1) and thus also fixed. All other terms are linear combina-
tions of p(i2 | i1, i3, i4, i5). For instance, (17) is linearized by writing

q(j2, j4, j5 | i1) =
2∑

i3=1

p(j2 | i1, i3, j4, j5)p(i3, j4, j5 | i1), (25)

q(j2 | i1) =
2∑

i3,i4,i5=1

p(j2 | i1, i3, i4, i5)p(i3, i4, i5 | i1), (26)

and noting that the probabilities p(i3, i4, i5 | i1) are fixed quantities. In the
resulting constrained maximization of (24) the two terms corresponding
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to i1 = 1, 2 can in fact be maximized separately because none of the
constraints obtained from (13), (14), (16) and (17) involve two conditional
probabilities p(i2 | i1, i3, i4, i5) and p(k2 | k1, k3, k4, k5) with i1 = k1.

Update step for v = 3: In part (a) we compute again 16 conditional proba-
bilities, namely,

p(i2, i4, i5 | i1), i1, i2, i4, i5 = 1, 2.

The objective function for part (b) is analogous to (24) but the proba-
bilities p(i2 | i1, i3, i4, i5) are replaced by p(i3 | i1, i2, i4, i5). The relevant
constraints are now (15), (16), (18) and (20). These can be linearized
as in (25) and (26). The equations derived from (18) and (20) now in-
volve p(i2 | i1, i3, i4, i5) and p(k2 | k1, k3, k4, k5) with i1 < k1. Hence, the
optimization problem cannot be decomposed any further by splitting the
strata i1 = 1 and i1 = 2.

In the update step for v = 2 in the above example, the terms in (24)
indexed by different values of i1 can be maximized separately. This obser-
vation is general in that analogous decompositions are possible if a vertex
v ∈ τ satisfies pa(v) = π(τ). This follows because pa(v) = π(τ) implies that
condition (iii) in Theorem 1 remains void; also recall Proposition 1.

5 Fitting marginal independence models via chain
graphs

Graphical models based on graphs with directed edges generally lead to the
problem of Markov equivalence, which arises if two different graphs induce
the same statistical model. While such Markov equivalence poses challenges
for the statistical interpretation of graphs, it can sometimes be exploited
for more efficient computation of maximum likelihood estimates. Fitting al-
gorithms, such as ICF, are often specified in terms of the underlying graph.
The idea is then to find, among several Markov equivalent graphs, the one for
which the associated fitting algorithm runs the fastest. Drton and Richardson
(2008b) pursued this idea in the case of marginal independence models for
the multivariate normal distribution and presented an algorithm that con-
verts a graph with bi-directed edges into a Markov equivalent graph more
suitable for optimization of the likelihood function. As we illustrate next,
these constructions are also useful in the discrete case.

Table 2 in Drton and Richardson (2008a) presents data on seven binary
variables from the US General Social Survey (sample size n = 13 486). The
data and software for their analysis are available for download at a supporting
website for that article. A backward selection among bi-directed graphs for
these data yields the graph Ga in Figure 2(a), which is identical to the one in
Figure 4(a) in Drton and Richardson (2008a). Since all edges are bi-directed,
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(a)

MemUnion

MemChurch

ConBus

Trust Helpful

ConClerg

ConLegis

(b)

MemUnion

MemChurch

ConBus

Trust Helpful

ConClerg

ConLegis

Fig. 2. (a) Bi-directed graph Ga for data from the US General Social Survey. (b)
Chain graph Gb that is Markov equivalent to the bi-directed graph Ga.

the model P(Ga) can be characterized by marginal independences. The ICF
algorithm for Ga iteratively estimates conditional probabilities of each of the
seven variables given the remaining six variables. Running the algorithm for
the given data, the deviance of P(Ga) was found to be 32.67 over 26 degrees
of freedom, when compared with the saturated model of no independence.
The asymptotic chi-square p-value is 0.172.

Using the results in Drton and Richardson (2008b), it is easily seen that
the bi-directed graph Ga in Figure 2(a) is Markov equivalent to the chain
graph Gb in Figure 2(b), i.e., P(Ga) = P(Gb). When passing from Ga to Gb

all but one of the bi-directed edges were substituted by directed edges. The
remaining bi-directed edge in Gb between MemChurch and ConClerg cannot
be replaced by a directed edge without destroying Markov equivalence to Ga.
The graph Gb has six chain components, namely,

τ1 = {Trust}, τ2 = {Helpful}, τ3 = {MemUnion},
τ4 = {ConLegis}, τ5 = {MemChurch,ConClerg}, τ6 = {ConBus}.

The factorization (10) takes the form

p(i) = p(iT )p(iH | iT )p(iMU )p(iCL)p(iMC , iCC | iT , iH , iMU , iCL)×
p(iCB | iMC , iCC , iT , iH , iMU , iCL), (27)

where the indices identify the variables via the capital letters in their names.
The factorization in (27) reveals several closed-form maximum likelihood es-
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timates, namely,

p̂(iT ) =
n(iT )

n
,

p̂(iH | iT ) =
n(iT , iH )
n(iT )

,

p̂(iMU ) =
n(iMU )

n
,

p̂(iCL) =
n(iCL)

n
,

and

p̂(iCB | iMC , iCC , iT , iH , iMU , iCL) =
n(iCB , iMC , iCC , iT , iH , iMU , iCL)

n(iMC , iCC , iT , iH , iMU , iCL)
;

see Drton (2008) where this observation is made in generality. The problem
of computing maximum likelihood estimates in P(Gb) can thus be reduced
to the simpler problem of maximizing the component log-likelihood function
�τ5 . Moreover, since τ5 is a complete set (there is an edge between all of its
elements), �τ5 and thus also the likelihood function of P(Gb) have a unique
local and global maximum if all counts are positive as is the case for the
considered data; see again Drton (2008) for a general version of this result.

The maximization of �τ5 can be effected using the generalization of ICF
developed in §4. It requires alternating between two update steps that es-
timate the conditional probabilities of MemChurch and of ConClerg given
the respective five remaining variables in the components τm with m ≤ 5.
The variable ConBus in τ6 is marginalized out in this computation. The con-
straints in part (b) of the update step for MemChurch arise from condition
(iii) in Theorem 1. They take the form

2∑

iCC =1

p(jMC | iCC , iT , iH , iMU , iCL)p(iCC | iT , iH , iMU , iCL) =

2∑

iCC =1

p(jMC | iCC , iT , iH , iMU , kCL)p(iCC | iT , iH , iMU , kCL), (28)

for jMU = 1, iCL = 1, kCL = 2 and arbitrary combinations of iT , iH and iMU .
The variables being binary, (28) corresponds to a total of eight constraints.
The symmetry present in Gb implies that the update step for ConClerg is
analogous to that for MemChurch.

Running the ICF algorithm associated with Gb as opposed to Ga produced
the same results with substantial reduction in computation time. When im-
plementing the two algorithms in the statistical programming environment
‘R’ and using the same routine to solve the constrained optimization problem
arising in the parts (b) of the respective update steps, we found that using
Gb reduced the running time by a factor of about 70.
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6 Conclusion

We have described a simple modification of the ‘iterative conditional fitting’
(ICF) algorithm proposed for marginal independence models in Drton and
Richardson (2008a). This modification allows one to fit models associated
with chain graphs. In future work it would be interesting to compare or
even combine the ICF approach with other approaches to computation of
maximum likelihood estimates such as that of Lupparelli et al. (2008).

As illustrated in §5, fitting algorithms for graphical models may take
different forms for Markov equivalent graphs, and choosing the ‘right’ graph
from a Markov equivalence class can be crucial for computationally efficient
model fitting. Graphical constructions relevant for the models considered in
this paper are given in Drton and Richardson (2008b) and Ali et al. (2005).
However, these constructions generally do not return a chain graph but rather
a graph from the larger class of ancestral graphs introduced in Richardson
and Spirtes (2002). Generalizing ICF and other fitting algorithms to cover
discrete ancestral graph models is an interesting topic for future research.
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Abstract. The models we consider, generically denoted RCOX models, are a spe-
cial class of graphical Gaussian models. In RCOX models specific elements of the
concentration/partial correlation matrix can be restricted to being identical which
reduces the number of parameters to be estimated. Thereby these models can be
applied to problems where the number of variables is substantially larger than the
number of samples. This paper outlines the fundamental concepts and ideas behind
the models but focuses on model selection. Inference in RCOX models is facilitated
by the R package gRc.

Keywords: concentration matrix, conditional independence, graphical model,
graph, graph colouring, multivariate normal distribution, partial correlation

1 Introduction

Two types of graphical Gaussian models with edge and vertex symmetries are
introduced by Højsgaard and Lauritzen (2007, 2008). The models generalize
graphical Gaussian models, see for instance Whittaker (1990) and Lauritzen
(1996). See Højsgaard and Lauritzen (2008) for additional references to re-
lated work.

In one type of models, denoted RCON models, selected elements of the
concentration matrix (the inverse covariance matrix) are restricted to being
identical. In the other class of models, denoted RCOR models, it is the par-
tial correlations rather than the concentrations which are restricted to being
equal. We use RCOX models as a generic term for both types. Tools for sta-
tistical inference a provided by the gRc package for R, R Development Core
Team (2007).

A primary motivation for studying these models are potential applications
in areas where high dimensional measurements are recorded on relatively few
samples. A specific example is the analysis of gene expression data where the
expression of a large number of genes (measured in thousands) is recorded
on few samples (measured in tens or hundreds). For such data, parsimony
in terms of the number of parameters can be essential and RCOX models
provide a framework for obtaining this.
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The focus of this paper is on outlining the ideas behind the models and
discussing problems in relation to model selection for these models. For a
comprehensive treatment of the models, their properties and estimation al-
gorithms we refer to Højsgaard and Lauritzen (2007, 2008).

2 Preliminaries and notation

2.1 Graph colouring

Consider an undirected graph G = (V,E). Colouring the vertices of G with
R ≤ |V | different colours induces a partitioning of V into disjoint sets
V1, . . . , VR called vertex colour classes where all vertices in Vr have the same
colour. Here |V | denotes the number of elements in V . A similar colouring
of the edges E with S ≤ |E| different colours yields a partitioning of E into
disjoint sets E1, . . . , ES called edge colour classes where all edges in Es have
the same colour. We say that V = {V1, . . . , VR} is a vertex colouring and
E = {E1, . . . , ES} is an edge colouring. A colour class with only one element
is said to be atomic. A colour class which is not atomic is composite. A set
a ⊂ V is called neutral if its induced subgraph has only atomic colour classes.

When drawing vertices/edges we make the convention that black and
white are used for atomic colour classes. Thus two edges displayed in black
will be in different (atomic) colour classes.

Fig. 1 illustrates a graph colouring. To enable viewing in black and white
we have also annotated vertices and edges with symbols to indicate the colour-
ings. Vertices/edges with no annotation are in atomic colour classes. The edge
between vertices 1 and 2 is written 1:2 etc. The coloured graph in (a) is given
by (V , E) where

V = [1, 4][2, 3], E = (1:2, 1:3)(2:4, 3:4)

whereas the graph in (b) is given by V = [1, 4][2][3] and E = (1:2, 1:3)(2:4)(3:4).

2.2 Graphical Gaussian models

Graphical Gaussian models are concerned with the distribution of a multi-
variate random vector Y = (Yα)α∈V following a Nd(µ,Σ) distribution where
d = |V |. For simplicity we assume throughout that µ = 0. In the following we
use Greek letters to refer to single variables and Latin letters to refer to sets
of variables. We let K = Σ−1 denote the inverse covariance, also known as
the concentration with elements (kαβ)α,β∈V . The partial correlation between
Yα and Yβ given all other variables is then

ραβ|V \{α,β} = −kαβ/
√

kααkββ . (1)

Thus kαβ = 0 if and only if Yα and Yβ are conditionally independent given
all other variables.
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Fig. 1. Coloured graphs. (a): The edges 1:2 and 1:3 are in the same (light blue)
edge colour class as also indicated by the “+”-sign. Likewise, 2:4 and 3:4 are in
the same (green) edge colour class, also indicated by “++”. The vertices 1 and 4

are in the red vertex colour class (also indicated by “*”) while vertices 2 and 3 are
in the blue vertex colour class (indicated by “**”). (b): Illustration of atomic colour
classes. The vertices 2 and 3 are drawn in black and are atomic, so 2 and 3 are in
different vertex colour classes. Likewise for edges 2:4 and 3:4.

A graphical Gaussian model (hereafter abbreviated GGM) is represented
by an undirected graph G = (V,E) where V is a set of vertices representing
the variables and E is a set of undirected edges. The graph represents the
model with K being a positive definite matrix having kαβ = 0 whenever there
is no edge between α and β in G.

When the number n of samples is larger than the number of variables in
the largest clique of G, the maximum likelihood estimate exists and is unique.
Thus fitting the saturated model requires n > d. For example in analysis of
gene expression data, it is often the case that n << d.

Hence within GGMs attention must be restricted to graphs whose maxi-
mal clique size is small. In addition, parsimony can be obtained by considering
RCON and RCOR models.

2.3 RCON models – restricted concentration models

An RCON model with vertex colour classes V and edge colour classes E is
obtained by restricting the elements of K = Σ−1 further as follows: 1) All
partial variances (i.e. all diagonal elements of K) corresponding to vertices
in the same vertex colour class are identical. 2) All off–diagonal entries of
K corresponding to edges in the same edge colour class are identical. Thus,
the diagonal of K can be specified by an R dimensional vector η while the
off–diagonal elements are given by an S dimensional vector δ so we can write
K = K(η, δ). Figure 1 (a) thereby represents the concentration matrix

K =

⎡

⎢⎢⎣

η1 δ1 δ1 0
δ1 η2 0 δ2

δ1 0 η2 δ2

0 δ2 δ2 η1

⎤

⎥⎥⎦ .

To illustrate possible implications of such restrictions, let a = {1, 4} and
b = {2, 3}. The regression parameters when regressing b on a are given as
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−(Kbb)−1Kba. Thus the slope parameters for y2 and y3 become identical,

E(yi|y1, y4) = ai + (c1/c3)y1 + (c2/c3)y2 for i = 2, 3,

where ai is the intercept due to the mean. Thus the regression lines are
parallel (and if the mean is zero then they coincide).

Another property of this model is that some partial correlations are re-
stricted to being equal. For example it follows directly from (1) that

ρ12|34 = ρ13|24 = −δ1/
√
η1η2 and ρ32|14 = ρ42|13 = −δ2/

√
η1η2. (2)

2.4 RCOR models – restricted partial correlation models

An RCOR model with vertex classes V and edge classes E is obtained by
restricting the elements of K = Σ−1 as follows: 1) All partial variances
corresponding to vertices in the same vertex colour class are identical. 2) All
partial correlations corresponding to edges in the same edge colour class are
identical.

As an RCOR model, Figure 1 (b) represents a concentration matrix K
written as

K(η, δ) = A(η)C(δ)A(η),

where

A =

⎡

⎢⎢⎣

η1 0 0 0
0 η2 0 0
0 0 η3 0
0 0 0 η1

⎤

⎥⎥⎦ and C =

⎡

⎢⎢⎣

1 δ1 δ1 0
δ1 1 0 δ2

δ1 0 1 δ3

0 δ2 δ3 1

⎤

⎥⎥⎦ .

Hence from (1), A contains the inverse partial standard errors on the
diagonal while C contains minus the partial correlations on the off–diagonal.
The vertex colour classes of an RCOR model is then restricting elements of
A whereas the edge colour classes are restricting elements of C.

2.5 Example: Fret’s heads

Mardia et al. (1979) report a study of heredity of head dimensions originat-
ing from Frets (1921). Graphical models for these were also considered, for
instance by Whittaker (1990). Length and breadth of the heads of 25 pairs of
first and second sons are measured. Previous analyses of these data support
a model with conditional independence relations as in Figure 2, left. There is
an obvious symmetry between the two sons so it makes sense to investigate
a model where the joint distribution is unaltered if the two sons are inter-
changed. This model is obtained by adding restrictions as in Figure 2, right.
In this model, the vertices b1 and b2 are in the same composite vertex colour
class (and hence the corresponding diagonal elements of the concentration
matrix are identical). The vertices l1 and l2 are also in the same composite
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Fig. 2. Left: GGM describing the conditional independence structure for the Fret’s
heads data. Right: A corresponding RCON/RCOR model. Vertices/edges whose
parameters are restricted to being identical are annotated with identical symbols.

vertex colour class. Likewise, the edges b1:l1 and b2:l2 are in the same
composite edge colour class (and hence the corresponding off–diagonal ele-
ments of the concentration matrix are identical). The remaining edges, i.e.
b1:b2 and l1:l2 are in two different atomic edge colour classes and are hence
unconstrained.

It turns out that a model with this symmetry is both an RCON and
RCOR model, see Højsgaard and Lauritzen (2008) for further details.

The saturated model gives logL = −252.7 using 10 parameters. The
model in Figure 2, left, gives logL = −254.2 with 8 parameters. Finally, the
model in Figure 2, right, gives logL = −255.2 using 5 parameters, showing
an excellent fit to data.

2.6 Maximum likelihood estimation

A detailed description of estimation algorithms are given by Højsgaard and
Lauritzen (2007, 2008) and the algorithms are implemented in the gRc pack-
age. Hence we only outline methods here. There are two iterative methods in
the package: 1) Newton scoring and 2) Iterative partial maximization.

When good starting values exist, Newton scoring generally requires fewest
iterations, but with the drawback that Fisher information matrix needs to
be calculated (and inverted) in each iteration. Each entry in the information
matrix is based on calculation of traces of products of matrices, and this is
somewhat expensive in terms of computing time.

Iterative partial maximization is based on iteratively maximizing the like-
lihood over one parameter at the time while keeping all other parameters fixed
at their current values. This method generally requires more iterations than
Newton scoring, but each iteration is cheaper in terms of computing time.

Empirical evidence suggests that it is advantageous (in terms of comput-
ing time) to combine the algorithms: First use iterative partial maximization
for a small number of iterations to get near the maximum of the likelihood
and and then use Newton scoring to obtain fast convergence.



110 Højsgaard, S.

3 Model selection issues

3.1 The need for selection strategies

The number of different models which can be formed by colouring edges
and vertices in a graph is enormous. To illustrate the complexity, consider
graphs with three vertices (for which there are 8 different graphs). A tedious
enumeration shows that there are in total (over all 8 graphs) 15 possible
edge colour classes. There are 5 possible vertex colour classes which gives
5×15 = 75 different models. This number grows very rapidly with the number
of vertices.

In the following discussion we focus exclusively on edge colour classes.
There are two ways of obtaining model reductions:

1. Join edge colour classes and/or
2. Delete edge colour classes.

Likewise, there are two ways of obtaining model expansions:

1. Partition edge colour classes and/or
2. Add new edge colour classes.

A brute–force approach for model reduction (facilitated by functions im-
plemented in the gRc package) is as follows. Suppose the model under con-
sideration has p edge colour classes.

With respect to joining edge colour classes, an approach is as follows: 1)
Make all p(p−1)/2 possible pairwise comparisons of the edge colour classes, 2)
Form a new model by joining those two edge colour classes whose parameters
are not significantly different. If all colour classes are significantly different,
then stop; else go to 1). In complexity, step 1) is quadratic in p and the
number of times this step will be carried out is in the order of p. Hence this
scheme becomes computationally too expensive unless p is small.

Moreover, such model reductions should be combined with a scheme for
eliminating non–significant edge colour classes from the model, similiar to
what is often done in a backward selection scheme for graphical models.

Such a scheme explodes in computational complexity for models with
many variables. Therefore, alternative approaches to model selection become
important. A contribution in this area is given below.

3.2 The FB2 and FB3 schemes

Fig. 3 illustrates an iterative forward model selection scheme consisting of an
outer loop and an inner loop.

Let Mk denote the current model at the kth iteration of the outer loop. In
the inner loop we make use of a sequence of temporary models T1,T2, . . . ,T5.
The inner loop takes the following form:
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0: Initialisation: Set T1 ← Mk.
1: Forward step: Choose a set of candidate edges to add to T1. This forward

step gives T2. If there are no candidate edges to choose from, then stop.
For example, in Fig. 3, (T2), the four dashed edges are added.

2: Backward step 1: From T2 remove those candidate edges which do not
appear significant. This backward step gives T3 which is nested in T2. If
all candidate edges are removed, then stop.
In Fig. 3, (T3), the edge d:f has been removed.

3: Backward step 2: Join the remaining candidate edges in T3 into composite
colour classes whenever possible. This backward step gives T4 which is
nested in T3.
Thus, in Fig. 3, (T4), edges a:f and c:d are joined into a composite edge
colour class, while the edge a:c remains an atomic edge colour class.

4: Assign Mk+1 ← T4; go to 0.

This scheme, consisting of one forward step followed by two backward
steps, will be denoted FB2. The inner loop consists of a series of comparisons
of nested models. Morover, the sequence of models created by the outer loop
will also be nested; i.e. Mk is a submodel of Mk+1.

A modification of the scheme above is to replace step 4 by the following
steps:

4a: Backward step 3: Join colour classes from T4 whenever possible. This
backward step gives T5.
For example, in Fig. 3, (T5), the colour classes (a:b,b:c) and (a:f,c:d)
are joined into one colour class.

4b: Assign Mk+1 ← T5; go to 0.

This scheme, consisting of one forward step followed by three backward
steps will be denoted FB3. As for FB2, the inner loop of FB3 also consists
of a series of comparisons of nested models. However, the sequence of models
created by the outer loop will in general not be nested.

In each step of the FB2 and FB3 schemes there are several specific choices
to be made in each step. We will return to these in connection with an example
on analyzing gene expression data.

3.3 Genes from breast cancer patients

Miller et al. (2005) investigated gene expression signatures for “p53” mutation
status in 250 breast cancer samples. Of these, 58 samples have a mutation
in the p53 sequence and data from these are considered in the following.
The data have been standardized to have zero mean and unit variance. The
dataset has expression values on 1000 genes.

Specific choices have to be made in relation to each step op the FB3

scheme. Suggestions for these are described below. The starting model M1

is taken to be the independence model. The selection criterion used is AIC.
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Fig. 3. The sequence of models T1-T4 constitutes the FB2 scheme (forward + two
times backward). The sequence T1-T5 is the FB3 scheme (forward + three times
backward).

Notice that an approximation to the difference in AIC between two nested
models can be calculated by fitting the larger of the two models only: The
Wald test statistics for testing the smaller model under the larger is asymp-
totically equivalent to the likelihood ratio statistic.

The R package GeneNet implements a method for estimating partial cor-
relations in when there are more variables than samples, i.e. when d > n. The
package also allows for testing which of these are significantly different for
zero. Thereby we obtain a ranking of the possible edges in terms of the mag-
nitude of p–values; i.e. a list of candidate edges Ecand. Below Ecand will be
processed in chunks of Ncand edges starting with the most significant edges.
For later use we let A denote the edges from Ecand which have already been
considered for inclusion in the model.

1. Start by setting T1 ← M1. Set A = ∅.
2. Let C ⊂ Ecand\A denote the Ncand most significant edges from Ecand\A.

Form T2 by adding the edges C to T1. Set A = A ∪ C.
3. After fitting T2 we test whether each edge in C can be deleted from T2.

The tests are based on Wald statistics, i.e. on the asymptotic covariance
matrix under T2. It is here ignored that the test statistics in general are
correlated. Insignificant edges are removed from T2 and this gives T3.
(A computationally more expensive approach would be to apply a step-
wise elimination scheme removing one candidate edge at the time.)

4. We fit T3 and make a hierarchical clustering of candidate edges based
on their parameter estimates using hclust() of R. For a given number
Ne the clustering induces an edge colouring with Ne edge colour classes.
Because the clustering is hierarchical, increasing the values of Ne will
then produce a sequence of nested models. In finding the opimal value of
Ne we used Golden Section search. Based on this we take the model T4
to be the optimal model in terms of AIC.
(A computationally more demanding approach would be to apply a step-
wise scheme under which the two edge colour classes which are least
different are joined to a new edge colour class. This process would stop
when all edge colour classes are significantly different).
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5. The model T4 consists of those n1 edge colour classes inherited from
T1 plus additionally n2 new edge colour classes formed on the basis of
candidate edges as described above. On these n1 + n2 colour classes we
then apply the clustering scheme described above. This yields model T5.
(An computationally more demanding alternative would be to compare
each new edge colour class with those in T1 and join if possible. The
complexity of this scheme is of the order n1 × n2 so this can be feasible
if these numbers are moderate in size).

It is beyond the scope of this paper to make a thorough investigation of
whether models selected following the scheme above are biologically mean-
ingful. Instead we shall focus on numerical comparisons.

3.4 Experiment 1

We partition the 58 cases into two datasets: A training dataset D1 and a
validation dataset D2 each consisting of 29 cases. For simplicity we focus
on 15 genes only, because this enables us to also make model search within
GGMs and compare the results. Candidate edges are processed in chunks of
Ncand = 5 edges. We focus on RCON models with all vertex colour classes
being atomic. Hence the starting model M1 has 15 parameters.

On the basis of the dataset D1 we consider the following models:

M1: The independence model.
M2: A GGM obtained by forward selection starting from the independence

model.
M3: An RCON model selected from the FB3 scheme.
M4: The GGM induced from the RCON model, that is a GGM with the

same edges as in M3 but where all edge colour classes are atomic.
M5: The saturated model.

Table 1 shows the value of the log likelihood function under the respective
models when evaluated on the training data D1 and the validation data D2.
The interesting models to compare are M2, M3 and M4. When evaluation
the models on D1, we see that the fit of the models are very similar. The
same tendency can be seen on the validation data D2. However, we note that
M3 (the RCON model) is the most parsimonious in terms of numbers of
parameters.

The models M2 and M3 are shown in Fig. 4. The model M2 has 17 edges
and is close to being a tree while M3 has 18 edges but these are described
by only 10 parameters. The two graphs have 13 edges in common.

A tentative conclusion to be drawn from this is that when searching within
RCON models we can obtain models which are widely different in structure
from what we would find when searching among GGMs. The models fit about
equally well to the data from which they are inferred. Moreover, the models
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Table 1. Using 15 genes. Comparison of selected models based on calculating the
log–likelihood on the training data (D1) and on validation data (D2).

Model Dimension log L (based on D1) log L (based on D2)

M1 15 −222.91 −247.01
M2 32 −105.47 −206.54
M3 25 −105.03 −210.29
M4 33 −103.92 −214.54
M5 120 −41.28 −460.28

also fit about equally well to an external dataset (as measured in terms of
log likelihood). It remains a topic for further investigation whether models of
the RCON/RCOR type are actually biologically meaningful.

3.5 Experiment 2

Next we consider a larger problem with 100 genes. Hence the number of genes
is larger than the number of samples, so parsimoneous models are needed.
We processed candidate edges in chunks of Ncand = 8 edges in each iteration.
The initial model M1 was the independence model, but with all vertices in
the same vertex colour class. Hence the initial model contained one parameter
only. The settings were otherwise as in Experiment 1. (Notice that with only
one vertex colour class, all models are simultaneously both of the RCON and
RCOR type.) Applying the FB3 scheme for 100 iterations gave a resulting
model M3 with 558 edges but with only two edge colour classes (and hence
three parameters). The average number of neighbours of each node is 11 with
a standard deviation of 3, so the graph is far from having a tree structure. The
graph has 123 cliques with 2 nodes, 214 cliques with 3 nodes and 22 cliques
with 4 nodes. Hence the induced GGM M4 (which has 658 parameters) can
also be fitted to data.

Table 2 contains numerical summaries of the models. It follows that M3

gave a very parsimonious description of data compared with the other models.
When evaluating the models on the validation data we also see that M3

appears to be the best of the models in terms of predictive ability.

Table 2. Using 100 genes. Comparison of selected models based on calculating the
log–likelihood on the training data (D1) and on validation data (D2).

Model Dimension log L (based on D1) log L (based on D2)

M1 1 −1400.0 −1671.4
M3 3 −307.6 −1328.7
M4 658 −251.6 −2029.7
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Fig. 4. Top: The GGM M2 which has 17 edges and is close to being a tree. Bottom:
The RCON model M3 which has 18 edges but these are described by only 10
parameters. All vertices are in the same vertex colour class. Edges whose parameters
are restricted to being identical are annotated with identical symbols.

4 Discussion

We have outlined the two new classes of graphical Gaussian models with
edge and vertex symmetries as introduced by Højsgaard and Lauritzen (2007,
2008). These are denoted RCON and RCOR models and RCOX is used as a
generic name for the two classes.

The main focus in this paper has been on model selection in these mod-
els. The space of RCOX models for a given set of variables is immensely
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large. This makes model selection in RCOX models a complex issue. We have
proposed a simple forward selection scheme which is based on first adding
chunks of edges to a model (a large forward step) and then using clustering
algorithms for collecting these into a smaller number of edge colour classes
(several, typically smaller, backward steps). Empirical evidence suggests that
this scheme leads to models with few edge colour classes and to graphs which
are far from having a tree structure.

For RCOX models to be of practical use, further investigation of model
selection strategies in high dimensional problems is needed.
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Abstract. Graphical Markov models are multivariate statistical models in which
the joint distribution satisfies independence statements that are captured by a
graph. We consider models for discrete variables, that are analogous to multivariate
regressions in the linear case, when the variables can be arranged in sequences of
joint response, intermediate and purely explanatory variables. In the case of one
single group of variables, these models specify marginal independencies of pairs of
variables. We show that the models admit a proper marginal log-linear parame-
terization that can accommodate all the marginal and conditional independence
constraints involved, and can be fitted, using maximum likelihood under a multi-
nomial assumption, by a general iterative gradient-based algorithm. We discuss a
technique for determining fast approximate estimates, that can also be used for
initializing the general algorithm and we present an illustration based on data from
the U.S. General Social Survey.

Keywords: bi-directed graphs, covariance graphs, multivariate regression chain
graphs, complete hierarchical parameterizations, reduced model estimates.

1 Introduction

Joint-response chain graph models (Cox and Wermuth (1996), Wermuth and
Cox (2004)) are a flexible family of models representing dependencies in sys-
tems in which the variables are grouped in blocks as responses, intermedi-
ate responses and purely explanatory factors. In this paper we discuss the
properties of the subclass of multivariate regression chain graph models and
their parameterization when all the variables are discrete. These models can-
not be specified, in contrast with the classical chain graph models, within
the standard log-linear parameterization. However, they can be expressed as
marginal log-linear models (Bergsma and Rudas (2002)), and the paper dis-
cusses, mainly through examples, the definition of the parameters and of the
constraints required. Maximum likelihood fitting of the models can be carried
out with special iterative algorithms for constrained optimization, based on
Aitchison and Silvey (1958). In the last section a method is proposed which
approximates the maximum likelihood estimates, using a general method by
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Cox and Wermuth (1990), and it is applied to the analysis of a data set
from the U.S. General Social Survey. It is also shown that the approximate
estimates, used as starting point, yield a faster convergence of the iterative
algorithm.

2 Complete hierarchical marginal log-linear
parameterizations

We review the definition of marginal log-linear models for discrete probability
distributions, using complete hierarchical parameterizations; see Bergsma and
Rudas (2002). Let X = (Xv), v = 1, . . . , d be a discrete random vector,
with a strictly positive joint probability distribution p(i) > 0, where i is
a generic cell of the associated contingency table and let pM (iM ) be any
marginal probability distribution of a sub-vector XM , M ⊆ V . We call M
a margin of the table. Each marginal probability distribution pM has a log-
linear expansion

log pM (iM ) =
∑

L⊆M

λM
L (iL)

where the parameters have the formal definition

λM
L (iL) =

∑

A⊆L

(−1)|L\A| log pM (iA, i∗M\A)

with i∗ = (1, . . . , 1) denoting a baseline cell of the table; see Lauritzen (1996).
By definition of the baseline, the function λM

L (iL) is zero whenever at least one
index in iL is equal to 1. Also the parameter λM

φ = log p(i∗M ) is a function of
the others, due to the sum to one constraint on the probabilities. The coding
used here corresponds to the indicator coding, giving the parameters used for
example by the R environment (R Development Core Team (2008)) with the
function contr.treatment, but any other coding could be used as well. Let
λM

L be the vector of the not structurally zero parameters, for each M ⊆ V
and for any non-empty subset L ⊆ M .

A marginal log-linear parameterization of the joint probability distribu-
tion p is obtained by combining log-linear parameters of several marginal
distributions pM1 , . . . , pMs of interest. The parameterization is characterized
by a list of pairs

(M1,L1), . . . , (Ms,Ls)

each composed of a margin Mj and a list Lj used to define the parameters.
The essential requirements to obtain a proper parameterization are that:

(i) the sets Lj are a partition of all possible non-empty subsets L of the
variables V ;

(ii) if one log-linear parameter vector λM
L is defined within a margin M , then

the log-linear parameters λM
L′ for all supersets L′ such that L ⊆ L′ ⊆ M

must be defined in the same margin.
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Table 1. A hierarchical partition of all the subsets of 1234.

Margin Mj Parameters in Lj Minimal elements

14 {1, 4, 14} 1, 4
124 {2, 12, 24, 124} 2
134 {3, 13, 34, 134} 3
1234 {23, 123, 234, 1234} 23

If the parameterization satisfies the above requirements (i) and (ii), it is said
hierarchical and complete and the marginal log-linear parameters (λMj

L , L ⊆
Lj), j = 1, . . . , s define a smooth parameterization of the set of all strictly
positive probability distributions p; see Bergsma and Rudas (2002). Notice
that within each collection Lj we can find the minimal elements (with respect
to inclusion), such that all the other elements are generated by taking all the
supersets within Lj .

Example 4. Table 1, defining the pairs (Mj ,Lj) for j = 1, . . . , 4, satisfies
the requirements (i) and (ii) and thus defines a hierarchical and complete
log-linear parameterization. For each set Lj , the minimal elements are also
reported. For instance, the minimal element of L3 is 3 because all the sets in
L3 are the subsets of M3 = 134 that include 3. The maximal element of each
collection Lj is always the set Mj itself.

It can be shown that the sets Lj can be obtained from an ordered non-
decreasing sequence of margins Mj, j = 1, . . . , s, and with Ms = V , by
defining

L1 = P(M1); L2 = P(M2) \ L1; L3 = P(M3) \ (L1 ∪ L2), . . .

and so on, where P(M) denotes the power set of M . Note that given two non-
disjoint margins Mj and Mk, Mj precedes Mk if and only if the set Mj ∩Mk

is defined in Lj .

Example 5. The overall log-linear parameterization, and the multivariate lo-
gistic transformation (Glonek and McCullagh (1995)) are two special cases
of the marginal log-linear parameterization. The log-linear parameters are
defined by λV

L , for any L ⊆ V , and thus they are all considered with respect
to the joint distribution. The multivariate logistic parameters, instead, are
defined by λL

L, for any subset L ⊆ V , i.e. they are the highest order log-linear
parameters within each possible marginal distribution.

The model defined by the parameters λ
Mj

L for L ∈ Lj , j = 1, . . . , s is a
saturated marginal log-linear model. By a marginal log-linear model we mean
a subset of the probability distributions defined by the constraints

λ
Mj

L = 0 for L ∈ Cj, j = 1, . . . , s
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where Cj is any collection of subsets of Lj . Here we may require that the
constraints are hierarchical, that is that if L ∈ Cj , then L′ ∈ Cj , for any
L′ ∈ Lj , such that L ⊆ L′. This class of log-linear marginal models is much
wider and flexible than that of usual log-linear models. In the following we
discuss its application to the fitting of discrete graphical models, with special
emphasis to graphical models containing bi-directed edges.

3 Multivariate regression chain graph models

Discrete graphical Markov models are models for discrete distributions rep-
resentable by graphs, associating nodes with the variables and using rules
that translate properties of the graph into conditional independence state-
ments between variables. There are several classes of graphical models, see
Wermuth and Cox (2004) for a review. We consider here the two types called
covariance graphs and multivariate regression chain graphs.

Covariance graphs represent marginal independencies and describe the
associations between variables, all treated on the same footing, by a special
type of edges: Cox and Wermuth (1996) use dashed edges, whereas Richard-
son (2003) uses bi-directed edges. Following the second convention we define
a covariance graph as an undirected graph with node set V and edge set E,
in which an edge uv is denoted by u ←→ v. For this reason covariance graphs
are also called bi-directed graphs. A discrete random vector X = (Xv) with
v ∈ V is associated with a covariance graph by defining a Markov property.
The basic requirement for covariance graphs is that whenever two variables
Xu and Xv associated with the nodes u and v are not adjacent, then they
are marginally independent. We shall denote this statement by u⊥⊥ v. The
full set of requirements is summarized in the Appendix, equation (6), and if
the probability distribution satisfies this set we say that the distribution is
globally Markov with respect to the covariance graph.

Fig. 1. A covariance graph.

Example 6. The graph in Figure 1 is a covariance graph with 4 nodes. A
probability distribution is globally Markov with respect to this graph if

1 ⊥⊥ 4, 2 ⊥⊥ 4|1, 1 ⊥⊥ 3|4. (1)

or, equivalently, if 12 ⊥⊥ 4 and 1 ⊥⊥ 34. This also implies that for any missing
edge there is a marginal independence.
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Multivariate regression chain graphs represent instead situations in which the
variables can be arranged in an ordered series of groups and all the variables
within a group are considered to be on an equal footing, while the relation
between two variables in different groups is considered asymmetrically. The
associated graph is a special type of chain graph in which the edges between
components are arrows and the subgraphs within the chain components are
covariance graphs, i.e. with bi-directed edges. More precisely, a multivariate
regression chain graph is a graph G = (V,E) with node set V and edge set
E containing directed and/or bi-directed edges. Moreover the node set V
can be partitioned into disjoint subsets τ called chain components, such that
all edges in each subgraph Gτ are bi-directed and the edges between two
different subsets τ1 = τ2 are directed, pointing in the same direction. The
set of chain components is denoted by T , with V =

⋃
τ∈T τ . Multivariate

regression chain graphs, are also called bi-directed chain graphs by Drton et
al. (2007).

In chain graphs, the chain components are ordered, and for any chain com-
ponent τ , we can define the past of τ , composed of all the nodes contained
in the previous chain components. The Markov property for a multivariate
regression graph requires that any two variables Xu and Xv in a chain com-
ponent τ will be considered conditionally on all the variables in the previous
chain components. Thus, the meaning of a missing bi-directed edge between
u and v is that

u⊥⊥ v| the past of τ.

More generally, it is required that the conditional probability distribution of
Xτ conditional on all the variables in the past of τ is globally Markov with
respect to the covariance subgraph Gτ . Instead, a missing arrow u ← v, with
Xu and Xv belonging to two different chain components, is interpreted as
the conditional independence

u⊥⊥ v| the past of τ \ {v},

as is customary in multivariate regression models. These independencies are
contained in the block-recursive Markov property for the multivariate regres-
sion chain graphs, which is detailed in the Appendix, properties (i) to (iii).
Notice that a covariance graph is a trivial special case of a multivariate re-
gression chain graph with only one chain component.

Example 7. The graph in Figure 2 is a multivariate regression chain graph
with two chain components, τ1 = {1, 2, 3} and τ2 = {4, 5}. The independen-
cies implied by the block-recursive Markov property are

4 ⊥⊥ 5, 1 ⊥⊥ 5|4, 3 ⊥⊥ 4|5, 2 ⊥⊥ 45, 12 ⊥⊥ 5|4, 23 ⊥⊥ 4|5, 1 ⊥⊥ 3|45. (2)

The model associated with this graph is a variant of the seemingly unrelated
regression model with three responses and two explanatory variables.
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Fig. 2. A multivariate regression chain graph with two components.

4 Marginal log-linear parameterizations for
multivariate regression chain graphs

Marginal log-linear models can be used to fit several classes of discrete graph-
ical models. See Rudas et al. (2006), for directed acyclic graph models and
chain graphs, Bartolucci et al. (2007) for block recursive models with ordi-
nal variables and Lupparelli, et al. (2008), for bi-directed graph models. In
this paper we discuss the parameterization of multivariate regression chain
graph models, in the marginal log-linear approach, mainly through simple
examples.

In marginal log-linear models, the independence constraints are obtained
by zero restrictions on the parameters λM

L , for a specific collection of subsets
L ⊆ M . Given two subsets A,B of a set M define the collection QM (A,B) of
subsets of M containing at least one element of A and at least one element
of B. This set can be defined formally by

QM (A,B) = P(M) \ [P(A ∪ C) ∪ P(B ∪ C)] , with C = M \ (A ∪B),

where, as before, P(M) denotes the power set of M . For example,

Q1234(1, 23) = 12, 13, 123, 124, 134, 1234, and Q123(1, 23) = 12, 13, 123.

If λM
L , L ∈ L are the marginal log-linear parameters calculated within a

margin M , and if A, B are two disjoint subsets of M , then it can be shown
that

A⊥⊥ B | M \ (A ∪B) ⇐⇒ λM
L = 0 for L ∈ QM (A,B). (3)

This means that, for example, a conditional independence between two vari-
ables u and v given M \ {u, v} is equivalent to the vanishing of the log-linear
parameters indexed by all subsets of M containing u and v. Another useful
result is that, when M = A ∪B,

A⊥⊥ B ⇐⇒ λL
L = 0 for L ∈ QM (A,B) (4)

showing that marginal independencies are equivalent to zero restrictions on
selected multivariate logistic parameters; see Kauermann (1997) and Lup-
parelli, et al. (2008). Using relations (3) and (4), we can define a conditional
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Table 2. Parameterization of the discrete bi-directed graph model of Figure 1.

Margin Mj Terms Lj Independence Constraints Cj

14 1, 4, 14 1⊥⊥ 4 Q14(1, 4) = 14
124 2, 12, 24, 124 2⊥⊥ 4|1 Q124(2, 4) = 24, 124
134 3, 13, 34, 134 1⊥⊥ 3|4 Q134(1, 3) = 13, 134
1234 23, 123, 234, 1234

independence A⊥⊥ B|C within a margin M = A∪B ∪C, using marginal log-
linear parameters, provided that the set L contains QM (A,B). Notice that
the set of independence constraints is hierarchical in the sense explained in
Section 2.

Example 8. Consider the covariance graph models described by the graph of
Figure 1 and by the independencies (1). This model can be parameterized by
the marginal log-linear model defined by Table 1 and with the constraints of
Table 2. The constraints λ

Mj

L = 0 for L ∈ Cj , j = 1, . . . , 3 are exactly equiv-
alent to the three independencies stated in equation (1). For other marginal
log-linear parameterizations see Lupparelli et al. (2008) and for a different
approach to covariance graph models, see Drton and Richardson (2008).

Sometimes a conditional independence is defined by specifying constraints
on parameters of more than one margin, by combining independencies ob-
tained in previous margins with zero constraints on higher-order log-linear
parameters in the current margin, as shown in the following Example 9.

Example 9. The multivariate regression chain graph model shown in Figure 2,
specifying the conditional independencies of equation (2), can be parameter-
ized as detailed by Table 3. The first four independence statements can be

Table 3. Parameterization of the discrete multivariate regression chain graph model
of Figure 2.

Margin Mj Terms Lj Independence Constraints Cj

45 4, 5, 45 4⊥⊥ 5 Q45(4, 5) = 45.
145 1, 14, 15, 145 1⊥⊥ 5|4 Q145(1, 5) = 15, 145.
345 3, 34, 35, 345 3⊥⊥ 4|5 Q345(3, 4) = 34, 345.
245 2, 24, 25, 245 2⊥⊥ 45 Q245(2, 45) = 24, 25, 245.
1245 12, 124, 125, 1245 12⊥⊥ 5|4 125, 1245.
2345 23, 234, 235, 2345 23⊥⊥ 4|5 234, 2345.
1345 13, 134, 135, 1345 1⊥⊥ 3|45 Q1345(1, 3) = 13, 134, 135, 1345.
12345 all others

defined by separate constraints using the operator Q. The conditional inde-
pendence 12 ⊥⊥ 5|4 cannot be defined by the constraints Q1245(12, 5) that are
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not feasible with the available parameters. Instead, we use the equivalence

1 ⊥⊥ 5|4, 2 ⊥⊥ 5|4 and λ1245
125 = 0, λ1245

1245 = 0 ⇐⇒ 12 ⊥⊥ 5|4.

Therefore, as the first two conditional independencies are already defined by
the constraints in the margins 145 and 245, we need just the remaining con-
straints on the three-factor and four-factor log-linear parameters in margin
1245. The same argument is used to define the independence 23 ⊥⊥ 4|5.

The parameterization uses a first margin 45 containing the explanatory
variables, and then margins defined by the union of 45 and all possible sub-
sets of the responses 123. The meaning of the free parameters is in general
complicated by the presence of higher-level log-linear parameters. Thus, in
this case, it is tempting to say that the parameters λ145

14 and λ345
35 are con-

ditional association measures between a response and its direct explanatory
variable, i.e. between X1 and X4 given X5, and between X3 and X5 given
X4, respectively. However this interpretation is obscured by the presence of
the non-zero log-linear parameters defined by the supersets of 12 or 23, i.e.
indexed by 12, 23 and all higher level terms including them.

5 Maximum likelihood fitting and applications

Assuming a multinomial sampling scheme with sample size N , the vector of
cell frequencies n(i) for i ∈ I, has a multinomial distribution with parameters
N and p(i). If ω denotes the vector of ω(i) = logE{n(i)}, the full vector λ
of all marginal log-linear parameters in the saturated model may be written
in the form

λ = C log T exp(ω),

where T and C are suitable matrices defining the marginal expected counts
and the log-linear parameters, respectively. For details on the computation
of such matrices see Bartolucci et al. (2007). Given any marginal log-linear
model defined by a sequence of margins Mj and a sequence of constraints Cj ,
we can always split λ in two parts (λu,λc), such that the reduced model is
obtained by

λc = h(ω) = 0,

for a suitable function h. Thus, the inference problem is based on a log-
likelihood function

l(ω) =
∑

i∈I
n(i)ω(i) −

∑

i∈I
exp(ω(i)),

to be maximized under the constraints

h(ω) = 0,
∑

i∈I
exp(ω(i)) = N.
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This constrained estimation problem can be solved by the method of La-
grange multipliers, studied by Aitchison and Silvey (1958), and specifically
developed for marginal log-linear models by Bergsma (1997) among others.
Accounts of this approach can be found in Rudas et al. (2007) and Lup-
parelli et al. (2008). These authors discuss an iterative gradient-based proce-
dure, with step size adjustment, which usually converges if the model and the
chosen starting point are well specified. Here we discuss the related issue of
determining a good starting point of the algorithm, based on a technique, de-
veloped by Cox and Wermuth (1990), for generating close approximations to
maximum likelihood estimates, assuming that the independence constraints
of the model are well compatible with the observations. This theory concerns
general situations in which a curved exponential family model is expanded to
a saturated form, i.e. to the full family; see Cox (2006). Denoting by λ̂

sat
the

maximum likelihood estimates under the saturated (i.e. covering) model and
by λ̂, the maximum likelihood estimates under the constrained (i.e. originat-
ing) model, the latter can be approximated by the following explicit reduced
model estimates λ̃, with

λ̃u = λ̂
sat

u − ΣucΣ
−1
cc λ̂

sat

c , λ̃c = 0, (5)

where Σuc and Σcc are sub-matrices of the asymptotic covariance matrix
cov(λ̂), under the saturated model. This representation has the attractive
feature of expressing the constrained estimate of the parameters as a mod-
ification of the corresponding unconstrained estimate. Though the explicit
reduced model estimates are asymptotically efficient, they are recommended
only for observations which strongly support the reduced model. Wermuth
et al. (2006), use the approximate estimates (5) in case of Gaussian covari-
ance graph models and Roddam (2004) shows an application to multivariate
discrete data regression models. In our framework of chain graph models for
discrete data, denoting by p the vector of the cell probabilities, the asymp-
totic covariance matrix of the observed proportions p̂ is

cov(p̂) = N−1{diag(p) − ppT } = Ω(p),

where diag(p) is a diagonal matrix operator. Therefore, the explicit formula
can be used with

Σ = JΩ(p̂)JT , where J = Cdiag(T p̂)−1T .

The reduced model estimates λ̃ are relatively easy to obtain, provided that
the computation of the matrix J is carried out efficiently, because the matri-
ces involved are usually large and sparse. To use the approximation, we back
transform the estimates to the fitted counts, and this cannot be done explic-
itly in general, but by some iterative scheme. A Newton-Raphson algorithm is
usually fast (cf. Glonek and McCullagh (1995)). The approximate estimates
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ñ of the cell counts can be used as starting points ω̃ = log ñ for the general
constrained optimization algorithm discussed for example by Lupparelli et
al. (2008). Usually, the number of further iterations to convergence is around
20.

Example 10. We show an application to data collected on 13798 individuals
concerning 5 variables obtained from the U.S. General Social Survey (Davis
et al. (2007)), for years 1972-2006. The variables are reported below with the
original name from the GSS Codebook.

A abrape: do you think it should be possible for a pregnant woman to
obtain legal abortion if she became pregnant as a result of rape? (1= yes,
2 = no).

J satjob: how satisfied are you with the work you do? (1 = very satisfied,
2= moderately satisfied, 3 = a little dissatisfied, 4= very dissatisfied).
Categories 3 and 4 were merged together.

F confinan: confidence in banks and financial institutions (1= a great
deal, 2= only some, 3= hardly any).

G gunlaw: would you favor or oppose a law which would require a person
to obtain a police permit before he or she could buy a gun? (1=favor,
2=oppose).

S sex: Gender.

The data concern only individuals with complete observations, and we did
not attempt to correct for the high number of missing values. Therefore, the
following exploratory analysis is intended only as an illustration. We arranged
the variables in two components putting gender S in a block of explanatory
variables and treating the other variables as joint responses. A preliminary
analysis of data suggested the independencies J ⊥⊥ S, G⊥⊥ JA|S, A⊥⊥ FG|S.
The first resulted from a Pearson’s chi-squared test, whereas the others were
obtained after fitting two separate logit models for the responses G and A.
The multivariate regression chain graph model shown in Figure 3, represents
the stated independencies under the block-recursive Markov property, as de-

Fig. 3. A multivariate regression chain graph for the data from the U.S. General
Social Survey.
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tailed in the Appendix. These are equivalent to

J ⊥⊥ S, A⊥⊥ G|S, A⊥⊥ F |GS, G⊥⊥ J |AS,

and thus an appropriate marginal log-linear parameterization is generated
by the sequence of margins (AS, JS, FS,GS,AGS,AFGS,AGJS,AFGJS),
and the independencies can be specified by the constraints

C1 = QJS(J, S), C2 = QAGS(A,G), C3 = QAFGS(A,F ), C4 = QAGJS(G, J).

The model was fitted, by maximum likelihood, using the Aitchison and Silvey
approach, obtaining an adequate fit with a deviance of 19.14, on 20 degrees
of freedom. Starting from a default initial point, the algorithm takes 564
iterations to converge, but only 11 from the approximate reduced model
estimates (5). For comparison, the deviance of the reduced model fit is 19.16.

Appendix: Separation and Markov properties

In a covariance graph given three disjoint subsets A, B and C of the node set
V , A and B are said to be separated by C if for any node u in A and any v in
B all paths from u to v have at least one inner node in C. A joint probability
distribution p of the discrete random vector X = (Xv), for v ∈ V , is said to
be globally Markov with respect to a covariance graph G if, for any triple of
disjoint sets A, B and C,

A⊥⊥ B | V \ (A ∪B ∪C) whenever A is separated from B by C in G, (6)

(see Kauermann (1996)). Associated with any chain graph and thus also for
multivariate regression chain graphs is a directed acyclic graph D over the
chain components with nodes T and having an edge τ ← τ ′ if there exist an
arrow u ← v in G with u ∈ τ and v ∈ τ ′. We can thus define the two concepts
of parent of a node v in the chain graph G, pa(v) and of parent of a chain
component τ , paD(τ). Similarly we define the concept of non-descendants of
a component ndD(τ) as the set of all components τ ′ such that there is no
direction-preserving path from τ to τ ′ in D.

Then we say that a probability distribution p of the discrete random
vector X = (Xv) satisfies the block recursive Markov property with respect
to the multivariate regression chain graph G if for any chain component τ ,

(i) τ ⊥⊥ (ndD(τ) \ paD(τ)) | paD(τ)
(ii) the conditional distribution τ | paD(τ) is globally Markov with respect

to the covariance subgraph Gτ ;
(iii) for any subset A of τ : A⊥⊥ (paD(τ) \ pa(A)) | pa(A)).
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Exploring the Bootstrap Discrepancy
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Abstract. Many simulation experiments have shown that, in a variety of circum-
stances, bootstrap tests perform better than current asymptotic theory predicts.
Specifically, the discrepancy between the actual rejection probability of a boot-
strap test under the null and the nominal level of the test appears to be smaller
than suggested by theory, which in any case often yields only a rate of convergence
of this discrepancy to zero. Here it is argued that the Edgeworth expansions on
which much theory is based provide a quite inaccurate account of the finite-sample
distributions of even quite basic statistics. Other methods are investigated in the
hope that they may give better agreement with simulation evidence. They also
suggest ways in which bootstrap procedures can be improved so as to yield more
accurate inference.

Keywords: bootstrap discrepancy, bootstrap test, Edgeworth expansion

1 Introduction

Since the bootstrap was introduced by Efron (1979), its use by statisticians
and econometricians has grown enormously; see for instance Horowitz (2001)
for a useful survey. Asymptotic theory for the bootstrap has not been in short
supply; after Bickel and Freedman (1981), landmark contributions have been
Beran (1987) and (1988), and especially Hall (1992), in which a profound
connection is established between bootstrap inference and Edgeworth expan-
sions.

Although current asymptotic theory for the bootstrap accounts for many
of the properties of bootstrap inference as discovered by simulation experi-
ments, a recurrent phenomenon is that the bootstrap performs better than
theory indicates. In this paper, I argue that the approximations provided
by Edgeworth expansions are quite inadequate to describe the behaviour of
bootstrap tests, and look at other methods which, while still inadequate, give
quite different results. My hope is that the approach outlined here can give
better insights into the properties of the bootstrap. One suggestion devel-
oped in this paper leads to the possibility of designing improved bootstrap
schemes.
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2 The Bootstrap discrepancy

Suppose that a test statistic τ is designed to test a particular null hypothesis.
The set of all DGPs that satisfy that hypothesis is denoted as M0; this set
constitutes what we may call the null model. A bootstrap test based on the
statistic τ approximates the distribution of τ under a DGP µ ∈ M0 by its
distribution under a bootstrap DGP that also belongs to M0 and can be
thought of as an estimate of the true DGP µ.

We define the bootstrap discrepancy as the difference, as a function of the
true DGP and the nominal level, between the actual rejection probability and
the nominal level. In order to study it, we suppose, without loss of generality,
that the test statistic is already in approximate P value form, so that the
rejection region is to the left of a critical value.

The rejection probability function, or RPF, depends both on the nominal
level α and the DGP µ. It is defined as

R(α, µ) ≡ Prµ(τ < α). (1)

We assume that, for all µ ∈ M, the distribution of τ has support [0, 1] and
is absolutely continuous with respect to the uniform distribution on that
interval. For given µ, R(α, µ) is just the CDF of τ evaluated at α. The inverse
of the RPF is the critical value function, or CVF, which is defined implicitly
by the equation

Prµ

(
τ < Q(α, µ)

)
= α. (2)

It is clear from (2) that Q(α, µ) is the α-quantile of the distribution of τ
under µ. In addition, the definitions (1) and (2) imply that

R
(
Q(α, µ), µ

)
= Q

(
R(α, µ), µ

)
= α (3)

for all α and µ.
In what follows, we assume that the distribution of τ under the bootstrap

DGP, which we denote by µ∗, is known exactly. The bootstrap critical value
for τ at level α is then Q(α, µ∗). If τ is approximately (for example, asymptot-
ically) pivotal relative to the model M0, realisations of Q(α, µ∗) under DGPs
in M0 should be close to α. This is true whether or not the true DGP be-
longs to the null model, since the bootstrap DGP µ∗ does so. The bootstrap
discrepancy arises from the fact that, in a finite sample, Q(α, µ∗) = Q(α, µ).

Rejection by the bootstrap test is the event τ < Q(α, µ∗). Applying the
increasing transformation R(·, µ∗) to both sides and using (3), we see that
the bootstrap test rejects whenever

R(τ, µ∗) < R
(
Q(α, µ∗), µ∗) = α. (4)

Thus the bootstrap P value is just R(τ, µ∗), which can therefore be inter-
preted as a bootstrap test statistic.
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We define two random variables that are deterministic functions of the
two random elements, τ and µ∗, needed for computing the bootstrap P value
R(τ, µ∗). The first of these random variables is distributed as U(0, 1) under µ;
it is

p ≡ R(τ, µ). (5)

The uniform distribution of p follows from the fact that R(·, µ) is the CDF
of τ under µ and the assumption that the distribution of τ is absolutely
continuous on the unit interval for all µ ∈ M. The second random variable is

q ≡ R(Q(α, µ∗), µ) − α = R(Q(α, µ∗), µ) −R(Q(α, µ), µ). (6)

Let the CDF of q under µ conditional on the random variable p be denoted
as F (q | p). Then it is shown in Davidson and MacKinnon (2006) that the
bootstrap discrepancy can be expressed as

∫ 1−α

−α

xdF (x | α + x). (7)

that is, the expectation of q conditional on p being at the margin of rejection
at level α.

The random variable q + α is the probability that a statistic generated
by the DGP µ is less than the α-quantile of the bootstrap distribution, con-
ditional on that distribution. The expectation of q can thus be interpreted
as the bias in rejection probability when the latter is estimated by the boot-
strap. The actual bootstrap discrepancy, which is a nonrandom quantity, is
the expectation of q conditional on being at the margin of rejection.

2.1 An asymptotically normal statistic

In some approaches to approximating the bootstrap discrepancy, it is as-
sumed that the statistic is in asymptotically N(0,1) rather than approxi-
mately U(0,1) form. This is the case for the Edgeworth expansion approach
considered in the next section. It is useful to define the random variables p and
q in terms of new functions RN and QN that respectively express the CDF
and quantile function of the approximately normal statistic. Thus RN (x, µ)
is the CDF of the statistic under DGP µ, while QN (α, µ) is the α-quantile.
It is easy to see that RN (x, µ) = R(Φ(x), µ) and QN(α, µ) = Φ−1(Q(α, µ)),
where Φ is the CDF of the N(0,1) distribution. If now we denote the ap-
proximately normal statistic by τN , we see that q = RN (QN (α, µ∗), µ) − α
and p = RN (τN , µ); compare (6) and (5). Here we assume that the rejection
region is to the left, as it would be for a statistic in P value form. Straight-
forward modifications can handle two-tailed tests or tests that reject to the
right.
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3 Approximations to the Bootstrap discrepancy

3.1 Edgeworth expansion

Suppose that the statistic τN is computed using data generated by a DGP µ.
Under the null hypothesis that τN is designed to test, we suppose that its
distribution admits a valid Edgeworth expansion; see Hall (1992) for a com-
plete treatment of Edgeworth expansions in connection with the bootstrap.
The expansion takes the form

RN (x, µ) = Φ(x) − n−1/2φ(x)
∞∑

i=1

ei(µ)Hei−1(x). (8)

Here φ is the density of the N(0,1) distribution, Hei(·) is the Hermite polyno-
mial of degree i (see for instance Abramowitz and Stegun (1965), Chapter 22,
for details of these polynomials), and the ei(µ) are coefficients that are at most
of order 1 as the sample size n tends to infinity. The Edgeworth expansion
up to order n−1 then truncates everything in (8) of order lower than n−1.

The ei(µ) can be related to the moments or cumulants of the statistic τN

as generated by µ by means of the equation

n−1/2ei(µ) =
1
i!

Eµ

(
Hei(τN )

)
. (9)

The bootstrap DGP, µ∗, is realised jointly with τN , as a function of the
same data. We suppose that this CDF can be expanded as in (8), with
the ei(µ) replaced by ei(µ∗), and so the CDF of the bootstrap statistics
is RN (x, µ∗). We consider a one-tailed test based on τN that rejects to the
left. Then, from (8), the random variable p = RN (τN , µ) is approximated by
the expression

Φ(τN ) − n−1/2φ(τN )
∞∑

i=1

ei(µ)Hei−1(τN ) (10)

truncated so as to remove all terms of order lower than n−1. Similarly, the
variable q of (6) is approximated by R′

N (QN (α, µ), µ)
(
QN (α, µ∗)−QN(α, µ)

)
,

using a Taylor expansion where R′
N is the derivative of RN with respect to

its first argument.
It is convenient to replace µ and µ∗ as arguments of RN and QN by

the sequences e and e∗ of which the elements are the ei(µ) and ei(µ∗) re-
spectively. Denote by DeRN (x, e) the sequence of partial derivatives of RN

with respect to the components of e, and similarly for DeQN (α, e). Then, on
differentiating the identity RN (QN (α, e), e) = α, we find that

R′
N (QN (α, e), e)DeQN (α, e) = −DeRN (QN (α, e), e). (11)
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To leading order, QN(α, e∗) − QN(α, e) is DeQN(α, e)(e∗ − e), where the
notation implies a sum over the components of the sequences. Thus the vari-
able q can be approximated by

−DeRN (QN (α, e), e)(e∗ − e). (12)

The Taylor expansion above is limited to first order, because, in the cases
we study here, QN(α, µ∗) − QN (α, µ) is of order n−1. This is true if, as we
expect, the ei(µ∗) are root-n consistent estimators of the ei(µ). From (8)
we see that component i of DeR(x, e) is −n−1/2φ(x)Hei−1(x). To leading
order, QN (α, e) is just zα, the α-quantile of the N(0,1) distribution. Let
li = n1/2(ei(µ∗) − ei(µ)). In regular cases, the li are or order 1 and are
asymptotically normal. Further, let γi(α) = E(li |p = α). Then the bootstrap
discrepancy (7) at level α is a truncation of

n−1φ(zα)
∞∑

i=1

Hei−1(zα)γi(α). (13)

3.2 Approximation based on asymptotic normality

If the distribution of a statistic τN has an Edgeworth expansion like (8),
then it is often the case that τN itself can be expressed as a deterministic
function of a set of asymptotically jointly normal variables of expectation 0;
the special case of the next section provides an explicit example. If so, then
the distribution of τN can be approximated by that of the same function of
variables that are truly, and not just asymptotically, normal. This distribution
depends only on the covariance matrix of these variables, and so can be
studied at moderate cost by simulation.

In order to study the bootstrap discrepancy, one looks at the covariance
matrix under the bootstrap DGP. This is normally an estimate of the true
covariance matrix, and can often be expressed as a function of asymptoti-
cally normal variables, including those of which τN is a function. The joint
distribution of the approximate p and q can then be used to approximate the
bootstrap discrepancy, in what is of course a very computationally intensive
procedure.

3.3 Approximation by matching moments

The Edgeworth expansion (8) is determined by the coefficients ei(µ). These
coefficients are enough to determine the first four moments of a statistic τN

up to the order of some specified negative power of n. Various families of
distributions exist for which at least the first four moments can be specified
arbitrarily subject to the condition that there exists a distribution with those
moments. An example is the Pearson family of distributions, of which more
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later. A distribution which matches the moments given by the ei(µ), trun-
cated at some chosen order, can then be used to approximate the function
RN (τN , µ) for both the DGP µ and its bootstrap counterpart µ∗. An ap-
proximation to the bootstrap discrepancy can then formed in the same way
as (13), with a different expression for DeRN (zα, e).

4 A special case: I. The distribution

One of the simplest tests imaginable is a test that the expectation of a distri-
bution is zero, based on an IID sample of n drawings, ut, t = 1, . . . , n, from
that distribution. We suppose that the expectation is indeed zero, and that
the variance exists. The sample mean is â = n−1

∑
t ut, and the sample vari-

ance, under the null that the expectation is zero, is σ̂2 = n−1
∑

t u
2
t . A statis-

tic that is asymptotically standard normal under the null is then n1/2â/σ̂.
Since this is homogeneous of degree 0 in the ut, we may without loss of gen-
erality suppose that their true variance is 1. If we define the asymptotically
normal variables wi = n−1/2

∑n
t=1

(
Hei(ut) − E(Hei(ut)

)
, i = 1, 2, . . ., then

the statistic can be written as

w1/(1 + n−1/2w2)1/2. (14)

On expanding the denominator by use of the binomial theorem, and truncat-
ing everything of order lower than n−1, we can study the approximate test
statistic

τN = w1 − 1
2n

−1/2w1w2 + 3
8n

−1w1w
2
2. (15)

4.1 The Edgeworth expansion

In order to apply the methodologies of Section 3.1 or Section 3.3, we have first
to compute the expectations of the Hermite polynomials evaluated at τN . The
quantities ei(µ) can then be computed using (9) – here µ is the DGP that
generates samples of n IID drawings from the given distribution. Working
always only to order n−1 means that we need the ei(µ) only to order n−1/2.
We see that

e1(µ) = − 1
2κ3, e2(µ) = n−1/2κ2

3,

e3(µ) = − 1
3κ3, e4(µ) = 1

12n
−1/2(8κ2

3 − 3 − κ4) (16)

e5(µ) = 0, e6(µ) = 1
144n

−1/2(9 + 8κ2
3 − 3κ4),

where κ3 and κ4 are the third and fourth cumulants respectively of the distri-
bution from which the ut are drawn. All ei(µ) for i > 6 are zero to order n−1/2.
The Edgeworth expansion of the distribution of τN is then, from (8),

RN (x, µ) = Φ(x) + φ(x)
(

1
6n

−1/2κ3(1 + 2x2) + n−1
(

1
48x(8κ2

3 + 3κ4 − 81)

+ 1
72x

3(63 − 8κ2
3 − 9κ4) − 1

144x
5(9 + 8κ2

3 − 3κ4)
))

(17)
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For many numerical illustrations, we will use the Pearson family of dis-
tributions. By adjusting four parameters, the first and second moments can
be set to 0 and 1 respectively, and the third and fourth cumulants can be
chosen from a wide range. In Table 1 are shown the maximum differences
between the true CDF of a statistic of the form (14), as estimated using
100,000 simulations, and the asymptotically normal approximation (d0), the
approximation given by (17) through the n−1/2 term (d1), and through the
n−1 term (d2), for a range of sample sizes, and values of κ3 and κ4. It can
be seen that for large values of κ3 and κ4, the Edgeworth approximations
are not close to the true distribution until the standard normal approxima-
tion is also fairly close. What the table does not show is that the Edgeworth
approximations are not necessarily bounded between 0 and 1, and are not
necessarily increasing.

4.2 The asymptotic normality approximation

The distributions of the statistics (14) and (15), both functions of the asymp-
totically normal w1 and w2, can be approximated by those of the same func-
tions of two genuinely normal variables z1 and z2, with the same first and sec-
ond moments as those of w1 and w2. We have var(w1) = 1, var(w2) = 2+κ4,
and cov(w1, w2) = κ3. Measures of the maximum differences between the true
CDF and the approximation based on (14) are shown as d3 in Table 1. The
d3 are smaller than the d1, especially for large values of κ3 and κ4, and are
of similar magnitude to the d2. Of course, the approximations are themselves
true distributions, unlike the Edgeworth expansions.

4.3 Matching moments

The first four moments of the statistic (14) are implicitly given to order n−1

by (16). They are as follows:

E(τ) = − 1
2n

−1/2κ3 E(τ2) = 1 + 2n−1κ2
3

E(τ3) = − 7
2n

−1/2κ3 E(τ4) = 3 + 2n−1(14κ2
3 − κ4 − 3). (18)

The distribution of (14) can be approximated by a Pearson distribution with
those cumulants. Again, this is a true distribution. The maximum differences
between the true CDF and this approximation are given as d4 in Table 1.

5 A special case: II. The Bootstrap discrepancy

5.1 The Edgeworth approximation

In order to compute the approximate bootstrap discrepancy (13), we make
use of the differences ei(µ∗) − ei(µ) between the coefficients of the Edge-
worth expansion of the bootstrap statistic and that of the statistic itself. The
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ei(µ∗) are given by the expressions in (16) with κ3 and κ4 replaced by the
estimates κ̂3 and κ̂4 used, explicitly or implicitly, in the bootstrap DGP. The
most obvious bootstrap DGP is a resampling DGP in which the elements
of a bootstrap sample are drawn at random, with replacement, from the ut

after centring. Since the statistic is scale invariant, the distribution of the
bootstrap statistics would be the same if we resampled the (ut − â)/σ̂. The
third cumulant of the bootstrap distribution is then the third moment of the
rescaled quantities, and the fourth cumulant is their fourth moment minus 3.
Some algebra then shows that

n1/2(κ̂3 − κ3) = w3 − 3
2κ3w2 − 3

8n
−1/2

(
8w1w2 + 4w2w3 − 5κ3w

2
2) (19)

n1/2(κ̂4 − κ4) = w4 − 4κ3w1 − 2κ4w2 (20)

− n−1/2
(
6w2

1 − 8κ3w1w2 + 4w1w3 + 3(1 − κ4)w2
2 + 2w2w4)

Thus, from the formulas (16), we can see that

l1 = n1/2
(
e1(µ∗) − e1(µ)

)
= − 1

4 (2w3 − 3κ3w2) + Op(n−1/2); l3 = 2
3 l1

while all li for i = 1, 3 are of order lower than unity. By definition, the
wi are (jointly) asymptotically normal. The variance of w1 is 1, and so
E(wi | w1) = w1E(w1wi). Now

E(w1w2) = n−1
n∑

t=1

E
(
He1(ut)He2(ut)

)
= E(u3

t − ut) = κ3.

Similarly, E(w1w3) = κ4. The γi(α) used in the approximate expression (13)
for the bootstrap discrepancy are the expectations of the li conditional on
the event p = α. By (10), the variable p is approximated to leading order
by Φ(τN ), and, from (15), this is Φ(w1), again to leading order. Thus the
conditioning event can be written as w1 = zα. It follows that

γ1(α) = − 1
4zα(2κ4 − 3κ2

3) and γ3(α) = 2
3γ1(α)

with error of order lower than 1, all other γi(α) being of lower order. For our
special case, therefore, the bootstrap discrepancy at level α, as approximated
by (13), is

1
12n

−1φ(zα)(3κ2
3 − 2κ4)zα(1 + 2z2

α) (21)

We see that this expression vanishes if 3κ2
3 − 2κ4 = 0. This is true for the

normal distribution of course, for which all cumulants of order greater than 2
vanish. But it is true as well for many other commonly encountered distri-
butions. Among these, we find the central chi-squared, exponential, Pearson
Type III, and Gamma distributions.

Table 2 gives the maximum differences (d1) between the actual discrep-
ancy, as evaluated using a simulation with 100,000 replications with 399 boot-
strap repetitions, and the approximate discrepancy (21), again for various
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sample sizes and various cumulant values. When both κ3 and κ4 are zero, the
data are standard normal. Some other distributions for which 3κ2

3 − 2κ4 = 0
are also given.

The approximate discrepancy (21) is an odd function of zα. The discrep-
ancies approximated by simulation often do not seem to share this property
even roughly.

5.2 Matching moments

In this approach, the function RN (x, µ) is approximated by the CDF of a
Pearson distribution, characterised by the four moments (18). Denote this
approximation by RN (x, κ3, κ4). An approximation to the bootstrap discrep-
ancy can be found exactly as in the preceding subsection. Analogously to (12),
we approximate q by

−
4∑

i=3

∂RN

∂κi
(QN (α, κ3, κ4), κ3, κ4)(κ∗

i − κi). (22)

But, of the four moments (18), only the fourth depends on κ4, with κ4 mul-
tiplied by n−1. From (20), κ̂4 − κ4 = Op(n−1/2), and so only the term with
i = 3 contributes to (22) to order n−1. To leading order, QN(α, κ3, κ4) = zα,
and so the approximate bootstrap discrepancy is

1
2n

−1/2 ∂RN

∂κ3
(zα, κ3, κ4)(3κ2

3 − 2κ4)zα, (23)

since, from (19), E(κ̂3−κ3 |w1 = zα) = (2κ4−3κ2
3)zα/2. Column d2 in Table 2

gives the maximum differences between the actual discrepancy and (23). Of
course, it coincides with column d1 for all cases with 3κ2

3 − 2κ4 = 0.

6 Designing a better Bootstrap DGP

6.1 Theoretical considerations

It can be seen both from (7) and the discussion in the previous section of the
Edgeworth approximation of the bootstrap discrepancy that its rate of con-
vergence to 0 as n → ∞ is faster if the bootstrapped statistic is uncorrelated
with the determinants of the bootstrap DGP. This is often easy to realise with
a parametric bootstrap, since a statistic that tests a given null hypothesis is
often asymptotically independent of parameters estimated under that null;
see Davidson and MacKinnon (1999). But with a nonparametric bootstrap
like the resampling bootstrap studied in section 4, it is not obvious how to
achieve approximate independence of the statistic and the bootstrap DGP,
as shown by the fact the cumulant estimates given in (19) and (20) are cor-
related with the statistic (15), with the result that the discrepancy (21) is of
order n−1.
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However, the fact that the Edgeworth approximation (17) depends on just
two parameters of the DGP, κ3 and κ4, suggests that it might be possible to
construct a parametric bootstrap using just these parameters. For instance,
the elements of a bootstrap sample could be drawn from the Pearson distri-
bution with expectation 0, variance 1, and third and fourth cumulants given
by those estimated using the ut. The Edgeworth approximation of the boot-
strap discrepancy (21) would be unchanged, although the actual bootstrap
discrepancy could be smaller or greater than that of the ordinary resampling
bootstrap. Another possibility, that would involve no bootstrap simulations
at all, would be to use for the bootstrap distribution the Pearson distribution
with the moments (18) with the estimated cumulants. We will shortly explore
these possibilities by simulation.

We now turn to the questions of why (19) and (20) are correlated with
the statistic (15), and whether it is possible to find other cumulant estimates
that are approximately uncorrelated with it. First, we look at estimation of
the second cumulant, that is, the variance. The sample variance, σ̂2, always
assuming that the true variance is 1, can be see to be equal to 1 + n−1/2w2,
and, since E(w1w2) = κ3, it too is correlated with τN unless κ3 = 0. In fact,
σ̂2, as a variance estimator, is inefficient, since it does not take account of
the fact that, under the null, the expectation is 0.

An efficient estimator can be found by various means. Let mk denote the
uncentred moment of order k of the ut. It can be shown that m2, m3, and m4

can be estimated efficiently by m̃k ≡ m̂k − (m̂1m̂k+1)/m̂2, k = 2, 3, 4. Some
algebra then shows that, to leading order,

n1/2(κ̃3 − κ3) = w3 − κ4w2 − 3
2κ3(w2 − κ3w1) (24)

n1/2(κ̃4 − κ4) = w4 − κ5w1 − 4κ3w1 − 2κ4(w2 − κ3w1). (25)

Here κ5 is the fifth cumulant. It can be shown that E(w1w4) = κ5 +4κ3, and
that, consequently, (24) and (25) are uncorrelated with w1. Since σ̃2 is more
efficient that σ̂2, it makes sense to bootstrap the statistic n1/2â/σ̃ rather
than n1/2â/σ̂. To leading order, this statistic is also equal to w1, and is thus
uncorrelated with κ̃3 and κ̃4.

A bootstrap DGP that uses m̃3 and m̃4 can be constructed by using a
Pearson distribution parametrised with first and second moments 0 and 1
respectively, and these estimators as third and fourth moments.

6.2 Simulation evidence

The first set of experiments concerns the bootstrap without simulation, in
which the moments (18) are used to set up a Pearson distribution, which is
then used to obtain a bootstrap P value. There is little point in reporting the
simulation results, which, while they confirm that the procedure is possible,
show that the distortions are greater than for any other bootstrap procedure
considered here.
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n κ3 κ4 d0 d1 d2 d3 d4

50 2 3 0.042 0.011 0.005 0.017 0.012
100 2 3 0.027 0.005 0.004 0.009 0.007
50 6 40 0.180 0.127 0.095 0.059 0.096

100 6 40 0.106 0.060 0.040 0.038 0.052
50 13 175 0.617 0.599 0.585 0.326 0.604

100 13 175 0.437 0.415 0.400 0.210 0.395
1000 13 175 0.064 0.027 0.016 0.029 0.024

Table 1. Maximum differences between true distribution and various

approximations: d0 for N(0,1), d1 for n−1/2 Edgeworth approximation, d2 for n−1

approximation, d3 for asymptotic normality approximation, d4 for matching

moments.

n κ3 κ4 3κ2
3 − 2κ4 distribution d1 d2

20 0 0 0 N(0,1) 0.003 0.003
50 0 0 0 N(0,1) 0.003 0.003
20 2.828 12 0 χ2

1 0.022 0.022
50 2.828 12 0 χ2

1 0.010 0.010
20 2 6 0 exponential 0.017 0.017
50 2 6 0 exponential 0.009 0.009
20 1 1.5 0 Gamma(4) 0.009 0.009
50 1 1.5 0 Gamma(4) 0.004 0.004
20 0 -1.2 -2.4 uniform 0.003 0.005
50 0 -1.2 -2.4 uniform 0.004 0.004
50 2 3 6 Pearson I 0.008 0.008
50 3 11 5 Pearson I 0.013 0.016
50 6 40 28 Pearson I 0.070 0.133
50 9 83 77 Pearson I 0.199 0.434
50 12 175 82 Pearson I 0.228 0.467

100 12 175 82 Pearson I 0.120 0.233
500 12 175 82 Pearson I 0.017 0.025

Table 2. Maximum differences between bootstrap discrepancy and Edgeworth

approximation (d1) and moment-matching approximation (d2).

n distribution d1 d2 d3

20 χ2
1 0.029 0.033 0.052

50 χ2
1 0.010 0.011 0.018

20 exponential 0.006 0.024 0.035
50 exponential 0.006 0.011 0.014
20 uniform 0.012 0.006 0.007
50 uniform 0.007 0.003 0.006

Table 3. Maximum P value discrepancies: resampling (d1), Pearson with

inefficient (d2) and efficient (d3) moment estimates.
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The next set of experiments again uses a Pearson distribution, but this
time for the bootstrap disturbances. The moments of the distribution of the
residuals determine a Pearson distribution, and the bootstrap disturbances
are drawings from this. In a further set of experiments, the moments were
estimated with the zero expectation imposed, as discussed in the previous
subsection.

7 Conclusions

We have investigated various types of approximations to the bootstrap dis-
crepancy, including the traditional Edgeworth expansion approximations, but
not restricted to them. We find that all approaches that are implicitly or
explicitly based on estimates of the moments of the disturbances are quanti-
tatively not at all accurate, although their inaccuracies take on very different
forms.

We consider bootstrap DGPs based on both unrestricted and restricted
estimates of the first few moments of the disturbances, and find that these
essentially parametric bootstraps compete well with the conventional resam-
pling bootstrap. It appears that much remains to be learned about the de-
terminants of the bootstrap discrepancy for any given procedure, as well as
about different procedures.
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duchesne@dms.umontreal.ca
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Abstract. A class of univariate time series models is considered, which allows
general specifications for the conditional mean and conditional variance functions.
After deriving the asymptotic distributions of the residual autocorrelations based on
the standardized residuals, portmanteau test statistics are studied. If the asymptotic
covariance of a vector of fixed length of residual autocorrelations is non singular,
portmanteau test statistics could be defined, following the approach advocated
by Li (1992). However, assuming the invertibility of the asymptotic covariance of
the residual autocorrelations may be restrictive, and, alternatively, the popular
Box-Pierce-Ljung test statistic may be recommended. In our framework, that test
statistic converges in distribution to a weighted sum of chi-square variables, and
the critical values can be found using Imhof’s (1961) algorithm. However, Imhof’s
algorithm may be time consuming. In view of this, we investigate in this article the
use of generalized inverses and {2}-inverses, in order to propose new test statistics
with asymptotic chi-square distributions, avoiding the need to implement Imhof’s
algorithm. In a small simulation study, the following test statistics are compared:
Box-Pierce-Ljung test statistic, the test statistic based on the proposal of Li (1992),
and the new test statistics relying on generalized inverses and {2}-inverses.

Keywords: conditional heteroscedasticity, diagnostic checking, generalized
inverses, portmanteau test statistics, residual autocorrelations

1 Introduction

Let {Yt} be a stationary stochastic process. We consider the following uni-
variate time series model:

Yt = mθ0(Yt−1, Yt−2, . . . ) + σθ0(Yt−1, Yt−2, . . . )ηt, (1)

where θ0 denotes a s dimensional vector of unknown parameters belonging
to a subset Θ, where Θ ⊂ R

s. The error process {ηt} is an independent and
identically distributed (iid) sequence of random variables with mean zero and
unit variance. It is assumed that the random variable ηt is independent of
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{Yt−i, i > 0}. The nonlinear model (1) represents a very general class of time
series models with a general specification for the error term. It includes the
classical autoregressive moving-average (ARMA) time series model, with pos-
sible [general] conditional heteroskedasticity ([G]ARCH) in the error process,
and also nonlinear models, such as threshold autoregressive models (TAR),
self-exciting TAR models (SETAR), and smooth versions of TAR models.
Tong (1990) and Granger and Teräsvirta (1993) provide surveys of univari-
ate nonlinear models.

Let Yt, t = 1, . . . , n be a finite realization of the stochastic process {Yt}.
An important practical aspect is to validate an adjusted model such as (1),
using estimation procedures such as quasi-maximum likelihood (QML) and
nonlinear least squares (NLS) methods (the latter being obtained by assum-
ing a constant conditional variance). Klimko and Nelson (1978) investigated
general properties of conditional least squares estimators in univariate non-
linear time series. See also Potscher and Prucha (1997) and Taniguchi and
Kakizawa (2000), amongst others.

Residual autocorrelations have been found useful for checking model ad-
equacy of many time series models (see, e.g., Li (2004)). In view of this fact,
we first derive the asymptotic distributions of the residual autocorrelations
based on the standardized residuals. As an application of that result, port-
manteau test statistics are studied. If the asymptotic covariance of a vector
of fixed length of residual autocorrelations is non singular, portmanteau test
statistics could be defined, following the approach advocated by Li (1992).
However, assuming the invertibility of the asymptotic covariance of the resid-
ual autocorrelations may be somewhat restrictive. For example, in validating
an ARMA model with an iid error term, it is well-known that the asymptotic
covariance matrix of a vector of fixed length of residual autocorrelations is
approximatively idempotent, with rank n− p− q, where p and q correspond
to the autoregressive and moving average orders, respectively. On the other
hand, if model (1) represents a nonlinear time series model, such as the TAR
model considered in Li (1992), then, under some conditions, the asymptotic
covariance matrix is expected to be non-singular. See also Li (2004, pp. 79-80).
For a given model, the precise conditions which guarantee the invertibility of
the asymptotic covariance matrix may be hard to obtain. Alternatively, the
popular Box-Pierce-Ljung test statistic may be recommended (see Li (2004),
amongst others). In our framework, this test statistic converges in distribu-
tion to a weighted sum of chi-square variables, where, in practice, the weights
are determined with the data (see Francq, Roy and Zaköıan (2005) for general
results in the context of ARMA models with weak errors). Interestingly, the
range of applicability of Box-Pierce-Ljung test statistic appears to be more
general, in the sense that if the asymptotic covariance matrix is non-singular,
then all weights are strickly positive. However, contrary to the test procedure
of Li (1992, 2004), the Box-Pierce-Ljung test statistic is still appropriate in
linear time series models: for an AR(1) time series model, say, one weight
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in the weighted sum of chi-square variables is identically equal to zero, and
the others weights are strictly positives. In practice, the critical values of the
Box-Pierce-Ljung test statistic can be found using Imhof’s algorithm. Even
today, it may be still time consuming to implement this algorithm, since,
to the best of our knowledge, Imhof’s algorithm is not actually available in
popular softwares such as S-PLUS or R.

Since the asymptotic covariance matrix of a vector of fixed length of resid-
ual autocorrelations may be essentially singular in linear time series models,
and, under certain assumptions, invertible in non-linear time series models,
we investigate here the use of generalized inverses, such as the Moore-Penrose
inverse, and also of {2}-inverses of that covariance matrix. This leads us
to propose new portmanteau test statistics with asymptotic chi-square dis-
tributions. These new test statistics avoid the need to implement Imhof’s
algorithm. In a small simulation study, the following test statistics are com-
pared with respect to level and power: Box-Pierce-Ljung test statistic, the
test statistic based on the proposal of Li (1992), a new test statistic relying
on the Moore-Penrose inverse, and several new proposals relying on {2}-
inverses. The rest of the paper is organized as follows. In Section 2, we derive
the asymptotic distribution of the residual autocorrelations. Classical port-
manteau test statistics are discussed in Section 3. In Section 4, modified test
statistics are presented. A small simulation study is conducted in Section 5.

2 Asymptotic distribution of the residual
autocorrelations

Consider model (1). The first and second conditional moments are given by:

mt(θ0) := mθ0(Yt−1, Yt−2, . . . ) = E(Yt | Yt−1, Yt−2, . . . ),
σ2

t (θ0) := σ2
θ0

(Yt−1, Yt−2, . . . ) = Var(Yt | Yt−1, Yt−2, . . . ),

respectively. Given the time series data Y1, . . . , Yn, and the initial values
Y0 = y0, Y−1 = y−1, . . . , at any θ ∈ Θ the conditional moments mt(θ) and
σ2

t (θ) can be approximated by the measurable functions defined by m̃t(θ) =
mθ(Yt−1, . . . , Y1, y0, . . . ) and σ̃2

t (θ) = σ2
θ(Yt−1, . . . , Y1, y0, . . . ), respectively.

A natural choice for the initial values is to specify Yi = 0 for all i ≤ 0. A
QML estimator of θ0 is defined as any measurable solution θ̂n of

θ̂n = arg inf
θ∈Θ

Q̃n(θ),

where Q̃n(θ) = n−1
∑n

t=1 �̃t and �̃t = �̃t(θ) = (Yt − m̃t)2/σ̃2
t + log σ̃2

t . It can
be shown that the QML estimator is consistent and asymptotically normal
under Assumption A.

Assumption A: (i) Θ represents a compact set and the functions θ →
m̃t(θ) and θ → σ̃2

t (θ) > 0 are continuous; (ii) {Yt} corresponds to a non an-
ticipative strictly stationary and ergodic solution of (1); (iii) E log− σ2

t (θ) <
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∞ for all θ ∈ Θ, and E log+ σ2
t (θ0) < ∞; (iv) supθ∈Θ

∣∣∣�t − �̃t

∣∣∣ → 0

a.s. as t → ∞, where �t(θ) = (Yt − mt)2/σ2
t + log σ2

t ; (v) if θ = θ0

then mt(θ) = mt(θ0) or σ2
t (θ) = σ2

t (θ0) with non zero probability;

(vi) θ0 belongs to the interior
◦
Θ of Θ; (vii) θ → mt(θ) and θ → σt(θ) admit

continuous third order derivatives, and

E sup
θ∈Θ

∣∣∣∣
∂3�t(θ)

∂θi∂θj∂θk

∣∣∣∣ < ∞ ∀i, j, k.

(viii) The moments µi = Eηi
t, i ≤ 4, and the information matrices I =

E[{∂�t(θ0)/∂θ}{∂�t(θ0)/∂θ′}] and J = E{∂2�t(θ0)/∂θ∂θ′} exist. Further-
more, I and J are supposed to be non singular.

Write a
c= b when a = b + c. Under Assumption A:

√
n(θ̂n − θ0)

oP (1)
= −J−1 1√

n

n∑

t=1

Zt
L→ N

(
0,Σθ̂n

)
(2)

as n → ∞, where Σθ̂n
:= J−1IJ−1 and

Zt = −2
ηt

σt

∂mt(θ0)
∂θ

+
{
1 − η2

t

} 1
σ2

t

∂σ2
t (θ0)
∂θ

.

Following the current practice, the information matrices I and J are consis-
tently estimated by their empirical counterparts, that is by the formula Î =
n−1

∑n
t=1{∂�̃t(θ̂n)/∂θ}{∂�̃t(θ̂n)/∂θ′} and Ĵ = n−1

∑n
t=1 ∂2�̃t(θ̂n)/∂θ∂θ′,

respectively.
Define the following standardized residuals:

η̂t =
Yt − m̃t(θ̂n)

σ̃t(θ̂n)
, t = 1, . . . , n.

Portmanteau test statistics based on the autocorrelations of the residuals
are routinely performed for model adequacy checking. In order to derive the
asymptotic distribution of the residual autocorrelations, some additional no-
tations are needed. Let

ηt(θ) =
Yt −mt(θ)

σt(θ)
, η̃t(θ) =

Yt − m̃t(θ)
σ̃t(θ)

,

so that ηt = ηt(θ0) and η̂t = η̃t(θ̂n). For any fixed integer m ≥ 1, let

γm = (γ(1), . . . , γ(m))′ , ρm = (ρ(1), . . . , ρ(m))′ ,

where, for � ≥ 0,

γ(�) =
1
n

n−�∑

t=1

ηtηt+� and ρ(�) =
γ(�)
γ(0)

.



On Diagnostic Checking Time Series Models 147

Note that γm

oP (1)
= n−1

∑n
t=1 Υ tΥ

′
t where Υ t = ηtηt−1:t−m and ηt−1:t−m =

(ηt−1, . . . , ηt−m)′. In view of (2), the central limit theorem applied to the mar-
tingale difference

{
(Z ′

t,Υ
′
t)′;σ(ηu, u ≤ t)

}
implies the following asymptotic

distribution:
√
n

(
θ̂n − θ0

γm

)
L→ N

{
0,

(
Σθ̂n

Σθ̂nΥ m

Σ′
θ̂nΥ m

Im

)}
, (3)

where Im denotes the identity matrix of order m and:

Σθ̂nΥ m
= −J−1EZtΥ

′
t,

= 2J−1E
1
σt

∂mt(θ0)
∂θ

η′
t−1:t−m + J−1µ3E

1
σ2

t

∂σ2
t (θ0)
∂θ

η′
t−1:t−m.

We now turn to the residual autocorrelation function ρ̂(·) obtained by replac-
ing ηt by η̂t in ρ(·). Similarly, define the function γ̂(·) and the vectors γ̂m and
ρ̂m. A Taylor expansion of the function θ �→ n−1

∑n−�
t=1 ηt(θ)ηt+�(θ) around

θ̂n and θ0 gives γ̂(�)
oP (1)
= γ(�) + c′�(θ̂n − θ0), where

c� = Eηt−�
∂ηt

∂θ
(θ0) = −E

ηt−�

σt(θ0)

{
∂mt

∂θ
(θ0) +

ηt

2σt(θ0)
∂σ2

t

∂θ
(θ0)

}

= −E
ηt−�

σt(θ0)
∂mt

∂θ
(θ0).

Using (3) and the notation Cm = (c1 c2 · · · cm), it follows that:
√
nγ̂m

L→ N
{
0,Σγ̂m

}

as n → ∞, where Σγ̂m
= Im + C′

mΣ θ̂n
Cm + C′

mΣθ̂nΥ m
+ Σ′

θ̂nΥ m
Cm.

Some simplifications are possible. First, we note that Σθ̂nΥ m
= −2J−1Cm +

µ3J
−1Dm, where Dm = (d1 d2 · · · dm) and d� = Eηt−�σ

−2
t ∂σ2

t (θ0)/∂θ.
Thus, the asymptotic covariance matrix can be written as:

Σγ̂m
= Im + C ′

mJ−1IJ−1Cm − 4C ′
mJ−1Cm

+µ3

(
C′

mJ−1Dm + D′
mJ−1Cm

)
. (4)

Since γ̂(0) = 1 + oP (1), the asymptotic distribution of the residual autocor-
relations follows easily:

√
nρ̂m

L→ N
{
0,Σρ̂m

}
, (5)

where Σρ̂m
= Σγ̂m

. One can define empirical estimates Ĉm and D̂m by
replacing c� and d� in Cm and Dm by

ĉ� = − 1
n

n∑

t=�+1

η̂t−�

σt(θ̂n)

∂mt

∂θ
(θ̂n) and d̂� =

1
n

n∑

t=�+1

η̂t−�

σ2
t (θ̂n)

∂σ2
t

∂θ
(θ̂n).

We then obtain an estimator Σ̂ρ̂m
of Σρ̂m

by replacing µ3 and the matrices
I, J , Cm and Dm by their empirical counterparts in (4).
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3 Classical portmanteau tests

3.1 Box-Pierce-Ljung test statistics

For checking the adequacy of an ARMA(p, q) model, it is customary to employ
the so-called portmanteau tests, such as the Box-Pierce-Ljung test statistic
QBPL

m = n(n + 2)
∑m

i=1 ρ̂2(i)/(n − i). When diagnosing ARMA models, the
null hypothesis of an ARMA(p, q) model is rejected at the nominal level α
when QBPL

m > χ2
m−(p+q)(1− α), where m > p + q and χ2

�(1− α) denotes the
(1 − α)-quantile of a χ2 distribution with � degrees of freedom.

More generally, when the conditional mean mθ0(·) and the conditional
variance σθ0(·) are well specified in (1), the residual autocorrelations ρ̂(h)
are expected to be close to zero for all h = 0. Therefore, it is natural to reject
the null hypothesis H0 that the data generating process (DGP) is the model
(1) when ‖√nρ̂m‖2 is larger than a certain critical value. More precisely, (5)
shows that, under the null hypothesis H0 of model adequacy:

QBPL
m

L→
m∑

i=1

λiZ2
i as n → ∞, (6)

where Z1, . . . ,Zm correspond to independent N (0, 1) random variables and
λ1, . . . , λm represent the eigenvalues of Σρ̂m

. For an ARMA(p, q) model with
iid errors, it is shown in McLeod (1978) that the p + q smallest eigenvalues
λi are close to zero and that the other eigenvalues are equal to one. Thus, we
obtain a χ2

m−s approximation, where s = p + q is the number of estimated
parameters, for the asymptotic distribution of QBPL

m when the DGP is an
ARMA (p, q) model with iid errors.

When the errors are uncorrelated but not independent, and when the
ARMA coefficients are estimated by least squares, it is shown in Francq,
Roy and Zaköıan (2005) that the asymptotic distribution of QBPL

m is poorly
approximated by the chi-square distribution χ2

m−s.
In this paper, the framework is different from the one considered in

Francq, Roy and Zaköıan (2005): here, a more general model is permitted
than the classical ARMA model. However, in the present set-up, the error
process {ηt} is assumed to be iid and the error term in (1) represents a
martingale difference sequence.

It is clear that all the eigenvalues of the matrix Σρ̂m
are positive and

that, when µ3 = 0 and m > s, at least m − s of its eigenvalues are equal
to one. When µ3 = 0 and m > s, we then have limn→∞ P (QBPL

m > x) ≥
P (χ2

m−s > x). Consequently, the test statistic defined by the critical region
{QBPL

m > χ2
m−s(1 − α)} is expected to be liberal at the nominal level α. In

the sequel, this test statistic will be referred to as the χ2
m−s-based (BPLχ2

m−s
)

Box-Pierce-Ljung portmanteau test statistic.
It is possible to evaluate the distribution of the Gaussian quadratic form

in (6) by means of Imhof’s algorithm. Following Francq, Roy and Zaköıan
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(2005), one can thus propose a modified portmanteau test statistic based on
the following steps: 1) compute the eigenvalues λ̂1, . . . , λ̂m of a consistent
estimator Σ̂ρ̂m

of Σρ̂m
, 2) evaluate the (1 − α)-quantile cα(λ̂1, . . . , λ̂m) of∑m

i=1 λ̂iZ2
i using Imhof’s algorithm, 3) reject the null that the DGP is (1)

when nρ̂′
mρ̂m ≥ cα(λ̂1, . . . , λ̂m). For further reference, this test statistic will

be referred to as the Imhof-based (BPLImhof) Box-Pierce-Ljung portmanteau
test statistic. Compared to the BPLχ2

m−s
method, the BPLImhof version is

asymptotically more accurate (since the χ2
m−s distribution is only a crude

approximation of the true asymptotic distribution), but the BPLImhof test
statistic is relatively more involved to implement since an estimator of Σρ̂m

is required, and Imhof’s algorithm must be implemented, which is relatively
complicated and may be time consuming. Section 4 below proposes alterna-
tives to BPLχ2

m−s
and BPLImhof portmanteau test statistics.

3.2 An example

The autoregressive (AR) and the autoregressive conditional heteroscedastic
(ARCH) models are among the most widely used models for the conditional
mean and conditional variance. We combine the simplest versions of these
two models to obtain the AR(1)-ARCH(1) model:

{
Yt = a0Yt−1 + εt,
εt = σtηt, σ2

t = ω0 + α0ε
2
t−1.

(7)

Under very general assumptions, Assumption A holds true (see Francq and
Zaköıan (2004), who discuss Assumption A in the framework of ARMA-
GARCH models). The unknown parameter is θ0 = (a0, ω0, α0). In order to
be able to compute explicitly the information matrices I and J , we assume
α0 = 0. By (4.12), (4.13) and (4.40)–(4.42) in Francq and Zaköıan (2004):

∂�t(θ0)
∂θ

= −2
ηt√
ω0

⎛

⎝
Yt−1

0
0

⎞

⎠ + (1 − η2
t )

1
ω0

⎛

⎝
0
1

ε2t−1

⎞

⎠

and

∂2�t(θ0)
∂θ∂θ′ =

⎛

⎜⎜⎜⎝

2Y 2
t−1

ω0

2ηtYt−1

ω
3/2
0

2ηtYt−1ε2t−1

ω
3/2
0

+ 2(η2
t−1)εt−1Yt−2

ω0

· 2η2
t−1

ω2
0

(2η2
t −1)ε2t−1

ω2
0

· · (2η2
t −1)ε4t−1

ω2
0

⎞

⎟⎟⎟⎠ .

Thus we have:

I = Var
∂�t(θ0)

∂θ
=

⎛

⎜⎝

4
1−a2

0
0 2µ2

3

0 µ4−1
ω2

0

µ4−1
ω0

2µ2
3

µ4−1
ω0

µ4(µ4 − 1)

⎞

⎟⎠ ,
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J = E
∂2�t(θ0)
∂θ∂θ′ =

⎛

⎜⎝

2
1−a2

0
0 0

0 1
ω2

0

1
ω0

0 1
ω0

µ4

⎞

⎟⎠

and

Σθ̂n
=

⎛

⎜⎜⎝

1 − a2
0 −ω0µ2

3(1−a2
0)

µ4−1
µ2

3(1−a2
0)

µ4−1

−ω0µ2
3(1−a2

0)
µ4−1 ω2

0µ4 −ω0

µ2
3(1−a2

0)
µ4−1 −ω0 1

⎞

⎟⎟⎠ .

Note that, when ηt ∼ N (0, 1), we have I = 2J and Σθ̂n
= 2J−1. We also

have

Cm = −
(

1 a0 . . . am−1
0

02×m

)
, Dm =

(
02×m

µ3 0′m−1

)
.

Note that D′
mJ−1Cm = 0, J−1Cm = Cm(1−a2

0)/2 and I Cm = Cm4/(1−
a2
0) + 2µ3

3C
∗
m, where C∗

m is obtained by permuting the rows 1 and 3 of Cm,
so that C′

mC∗
m = 0. It follows that

Σγ̂m
= Im − (1 − a2

0)C
′
mCm.

When m is large or a0 is close to 0, Σγ̂m
! Im − C ′

m

(
CmC ′

m

)−1
Cm is

close to a projection matrix with m − 1 eigenvalues equal to 1, and one
eigenvalue equals to 0. Therefore, in this particular situation where α0 = 0,
the asymptotic distribution of the Box-Pierce-Ljung test statistics can be
approximated by a χ2

m−1 distribution. Note that this is not the approximation
usually employed in the ARMA case, namely the χ2

m−s where s is the number
of estimated parameters.

3.3 Test statistic based on a proposal of Li (1992)

Assume Σρ̂m
to be non-singular. A natural approach considered by Li (1992,

2004) in non-linear time series with independent errors consists to define the
following test statistic:

QINV
m = nρ̂′

mΣ̂
−1

ρ̂m
ρ̂m, (8)

which follows asymptotically a χ2
m distribution under the null hypothesis

H0 that the DGP satisfies (1), provided Σ̂ρ̂m
corresponds to a consistent

estimator of the nonsingular matrix Σρ̂m
.

However, as suggested by the example of the preceding section, the matrix
Σρ̂m

is not invertible in the ARMA case and conditions which guaranty the
invertibility of that asymptotic matrix seem difficult to find. If Σρ̂m

is sin-
gular, this invalidates the asymptotic χ2

m distribution. In practice, numerical
instability is expected in the computation of QINV

m when Σρ̂m
is singular.

In the next section, we investigate the use of several generalized inverses
of the matrix Σ̂ρ̂m

. Basic results on generalized inverses are reviewed in the
next section.
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4 Modified portmanteau tests using generalized
inverses and {2}-inverses

4.1 Generalized inverses and {2}-inverses

A generalized inverse (g-inverse) of a matrix Σ is a matrix Σ̃ satisfying
ΣΣ̃Σ = Σ. Usually this condition is the first of the four conditions defin-
ing the (unique) Moore-Penrose inverse of Σ, and Σ̃ is called a {1}-inverse
(Getson and Hsuan (1988)). On the other hand, a {2}-inverse of Σ is any
matrix Σ∗ satisfying the second relation defining the Moore-Penrose in-
verse of Σ, that is Σ∗ΣΣ∗ = Σ∗. When both requirements are satisfied,
the resulting matrix is sometimes called a reflexive g-inverse or a {1, 2}-
inverse (Rao (1973, p. 25)). Let Σ = 0 be a positive semidefinite sym-
metric matrix of order m, with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0.
The spectral decomposition of Σ is Σ = PΛP ′ =

∑m
i=1 λiviv

′
i, where

Λ = diag(λ1, . . . , λm) and the columns v1, . . . ,vm of the matrix P constitute
an orthonormal basis of R

m. If λm−s > 0 and λm−s+1 = · · · = λm = 0,
then the matrix Σ− = PΛ−P ′ where Λ− = diag(λ−1

1 , . . . , λ−1
m−s,0

′
s) is

the Moore-Penrose inverse (or pseudo-inverse) of Σ. For k = 1, . . . ,m − s,
let the matrix Σ−k = PΛ−kP ′ where Λ−k = diag(λ−1

1 , . . . , λ−1
k ,0′

m−k).
The matrix Λ−k is always a {2}-inverse, but this is not a g-inverse of Σ
when k < m − s. Now suppose that Z ∼ N (0m,Σ). Then, using nat-
ural notations, we have Λ−k1/2P ′Z ∼ N

{
0m, diag(1′

k,0
′
m−k)

}
and thus

Z ′Σ−kZ = ‖Λ−k1/2P ′Z‖2 ∼ χ2
k. Now suppose that Zn

L→ N (0m,Σ) and
Σn → Σ almost surely, as n → ∞. For k = 1, . . . , rank(Σ), the matrix
Σ−k exists and can be approximated by Σ−k

n , for all large enough n (note,
however, that the matrices Σ−k and Σ−k

n are not unique, because they de-
pend on the particular choice of the orthonormal basis in the decompositions
Σ = P ΛP ′ and Σn = P nΛnP ′

n). Using the continuity property of the
eigenvalues and eigenprojections (see Tyler (1981)), it can be shown under
mild regularity assumptions that:

Z ′
nΣ−k

n Zn
L→ χ2

k, ∀k ≤ rank(Σ). (9)

The condition k ≤ rank(Σ) appears to be essential. For example, con-

sider: Σn = P nΛnP ′
n, Λn =

(
1 0
0 1

n

)
, P n =

⎛

⎝

√
1
n −

√
n−1

n√
n−1

n

√
1
n

⎞

⎠ , and

the bivariate normal distribution Zn ∼ N
{(

0
0

)
,

(
c
n 0
0 1

)}
, c ≥ 0. Then

Zn
L→ N (02,Σ) and Σn → Σ with Σ = diag(0, 1), but Z ′

nΣ−2
n Zn ∼

(c + c
n2 − c

n )Z2
1 + (2− 1

n )Z2
2

L
→ χ2

2. In the next subsection, test statistics will
be constructed, relying on an appropriate estimator of the Moore-Penrose
inverse, and on estimators of the {2}-inverses considered in this section.
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4.2 Generalized portmanteau test statistics

Consider a consistent estimator Σ̂ρ̂m
of the matrix Σρ̂m

. Since Σρ̂m
in (5)

may be singular, one can propose:

QMP
m = nρ̂′

mΣ̂
−
ρ̂m

ρ̂m, (10)

where Σ̂
−
ρ̂m

is an estimator of the Moore-Penrose inverse of Σρ̂m
. At the

nominal level α, the null hypothesis H0 that the DGP follows a nonlinear
model of the form (1) is rejected when QMP

m > χ2
kn

(1 − α), with kn the
number of eigenvalues of Σ̂ρ̂m

larger that a certain tolerance ε (e.g, ε =
sqrt(.Machine$double.eps) = 1.49 × 10−8 with the R software). In view
of (5) and (9), test statistics relying on estimators Σ̂

−k

ρ̂m
of the {2}-inverses

Σ−k

ρ̂m
introduced in Section 4.1 can be proposed. For k ∈ {1, . . . ,m} fixed,

they are defined by:
Q−k

m = nρ̂′
mΣ̂

−k

ρ̂m
ρ̂m. (11)

At the nominal level α, the null hypothesis H0 is rejected when Q−k
m >

χ2
k(1 − α). The test statistics (10) and (11) constitute interesting alterna-

tives to BPLImhof ; they do not require the use of Imhof’s algorithm. How-
ever, the range of application of the test statistics relying on {2}-inverses is
more limited because the test statistic Q−k

m presumes the assumption that
rank(Σρ̂m

) ≥ k. The range of application of the Q−k
m -test decreases as k

increases from one to m. The test obtained with k = m, which is actually
that based on Q−m

m = QINV
m , that is the test statistic proposed by Li (1992),

is the most restrictive one, in the sense that the invertibility of Σρ̂m
is re-

quired. On the other hand, the set of the alternatives for which the Q−k
m -test

is consistent should increase with k: under appropriate regularity conditions
n−1Q−1

m → λ−1
1 (ρ′

mv1)
2 with probability one as n → ∞. Thus, the Q−1

m -test
should not have much power against alternatives such that ρ′

mv1 = 0. The
next section provides an empirical comparison of the different test statistics.

5 Numerical illustrations

Here, we compare empirically the following portmanteau tests: BPLImhof

and the liberal test statistic BPLχ2
m−s

described in Section 3.1, BPLχ2
m−1

advocated in Section 3.2, and the test statistics QMP
m (with ε = 1.49× 10−8)

and Q−k
m introduced in Section 4.2; QINV

m = Q−m
m of Section 3.3 is included in

our experiments. We concentrate on the case m = 4, which leads to comparing
eight tests. In a first set of Monte Carlo experiments, N = 1000 independent
trajectories of the AR(1)-ARCH(1) model (7) are simulated. The lengths of
the trajectories are n = 200, 2000. The code is written in R and FORTRAN.

Table 1 displays the empirical sizes. For the nominal level α = 5%, the
empirical size over the N = 1000 independent replications should belong to
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Table 1. Empirical size of portmanteau tests: relative frequencies (in %) of rejection
of the AR(1)-ARCH(1) model (7), when the DGP follows the same model. The
number of replications is N = 1000.

Model n α BPLχ2
m−1

BPLχ2
m−s

Q−1
4 Q−2

4 Q−3
4 Q−4

4 QMP
4 BPLImhof

1% 1.0 7.3 0.5 0.6 1.0 1.0 1.2 1.0
I 200 5% 4.2 24.9 4.1 2.7 4.0 2.9 3.7 3.7

10% 8.3 40.1 8.3 8.2 8.0 4.8 6.8 7.9

1% 1.0 9.1 1.2 1.0 1.0 1.3 1.2 1.0
I 2000 5% 5.9 26.9 5.3 4.8 5.9 3.6 6.3 5.9

10% 10.9 44.1 9.1 9.6 10.9 7.2 9.9 10.7

1% 1.2 9.6 0.6 0.6 0.5 0.9 0.9 0.8
II 200 5% 5.1 31.3 4.3 3.4 3.1 3.3 3.3 3.3

10% 11.7 48.7 8.7 7.8 6.9 6.8 6.8 6.2

1% 1.6 16.0 0.8 1.2 0.9 0.8 0.8 0.8
II 2000 5% 9.8 38.9 5.2 5.0 5.1 5.0 5.0 4.5

10% 18.0 58.9 10.7 10.5 10.4 12.1 12.1 12.0

I: a0 = 0, ω0 = 1 and α0 = 0 II: a0 = 0.95, ω0 = 1 and α0 = 0.55

Table 2. Empirical power of portmanteau tests: relative frequencies (in %) of rejec-
tion of the AR(1)-ARCH(1) model (7), when the DGP follows an AR(3)-ARCH(1)
model (model III) or an AR(1)-ARCH(3) model (model IV).

Model n α Q−1
4 Q−2

4 Q−3
4 Q−4

4 QMP
4 BPLImhof

1% 20.0 31.2 38.4 29.2 32.2 38.3
III 200 5% 36.1 53.2 65.3 52.6 57.0 65.8

10% 46.3 64.2 75.4 63.4 67.7 75.3

1% 35.6 61.0 80.8 71.4 73.9 81.2
III 400 5% 49.5 73.4 92.0 84.6 86.0 91.9

10% 58.7 79.3 95.4 88.7 89.2 95.2

1% 1.5 3.5 4.7 3.4 4.3 4.4
IV 200 5% 6.1 8.8 10.0 8.4 9.5 8.8

10% 11.1 14.1 16.5 11.3 14.9 14.9

1% 2.7 5.8 7.6 6.4 7.7 7.4
IV 400 5% 8.3 13.5 15.3 11.3 13.8 14.5

10% 13.9 20.9 22.7 16.2 19.9 21.4

III: Yt = 0.2Yt−3 + εt where ε2t =
√

1 + 0.2ε2t−1ηt

IV: Yt = 0.2Yt−1 + εt where ε2t =
√

1 + 0.5ε2t−3ηt

the interval [3.6%, 6.4%] with probability 95%. When the relative rejection
frequencies are outside the 95% significance limits, they are displayed in bold
in Table 1. When the relative rejection frequencies are outside the 99% signif-
icance limits [3.2%, 6.9%], they are underlined. It can be seen that: 1) the re-
jection frequency of BPLχ2

m−s
is definitely too high, 2) as expected, BPLχ2

m−1
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works well when a0 = 0 and α0 = 0, but not when a0 = 0 or α0 = 0, 3) the
empirical levels of Q−4

4 = QINV
4 are far from the nominal levels for Model I,

which is explained by the singularity of Σρm
, 4) the errors of the first kind of

the test statistics QMP
4 , Q−k

4 , k < 4, and BPLImhof are well controlled when
n is large. Table 2 compares the empirical powers, excluding BPLχ2

m−s
and

BPLχ2
m−1

, which display unsatisfactory empirical levels. The three highest
powers are displayed in bold, and the highest one is underlined. Note that
misspecification of the conditional mean (model III) seems easier to detect
than misspecification of the conditional variance (model IV). As expected,
the power of Q−k

m is function of k. From Table 2, Q−3
4 and BPLImhof are the

most powerful portmanteau test statistics, at least in our experiments. Inter-
estingly, QMP

4 offers an empirical power very close to the one of BPLImhof ,
and slightly better than the one of Q−4

4 . In general, BPLImhof seems to be
advisable in view of its good theoretical and finite sample performance, but
given its computational simplicity, QMP

4 appears to be a close competitor.
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Abstract. The paper reviews recent work on latent variable models for ordinal
longitudinal variables and factor models with non-linear terms. The model for lon-
gitudinal data has been recently proposed by Cagnone, Moustaki and Vasdekis
(2008). The model allows for time-dependent latent variables to explain the as-
sociations among ordinal variables within time where the associations among the
same items across time are modelled with item-specific random effects. Rizopou-
los and Moustaki (2007) extended the generalized latent variable model framework
to allow for non-linear terms (interactions and higher order terms). Both models
are estimated with full information maximum likelihood. Computational aspects,
goodness-of-fit statistics and an application are presented.

Keywords: latent variable models, ordinal data, longitudinal data, non-linear
terms.

1 Introduction

Latent variable models aim to explain the interrelationships (covariance struc-
ture) among a set of observed variables using a small number of latent vari-
ables. They are widely used in social sciences for measuring unobserved con-
structs such as ability, wealth, conservatism, political efficacy etc. Models and
methods have been developed to account for needs in Psychology (Psycho-
metrics), Sociology, Biostatistics, Educational Testing, Economics etc. Latent
variable models have different objectives depending on the area of applica-
tion. Some of the objectives can be summarized as follows:

• Reduce the original dimensionality of the data.
• Score subjects on the identified latent dimensions.
• Construction of scales.
• Test of a specific hypothesis (confirmatory factor analysis).

Latent variables can be either continuous, discrete or mixed leading to
a factor analysis type model, a latent class model or a hybrid model re-
spectively. Similarly manifest variables can be either continuous, categorical
(nominal/ ordinal) or mixed (see Bartholomew and Knott, 1999).
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For the treatment of categorical responses, different estimation methods
have been investigated in the literature. We mainly divide them into full
information maximum likelihood (FIML) and limited information methods
(LI). Classical as well Bayesian estimation methods have been used for FIML.
FIML use all the information in the data where LI methods use the informa-
tion from the lower order margins (univariate and bivariate margins). FIML
methods are known to be more computationally intensive but generally more
efficient than LI methods.

In this paper, we will review factor models for ordinal longitudinal data
as they have been developed in Cagnone et. al. (2008) and factor models that
allow for non-linear terms (Rizopoulos and Moustaki, 2007) using FIML.

Longitudinal data are collected for mainly studying changes across time.
Factor models for longitudinal data are known as growth curve models (see
e.g. Bollen and Curran, 2006), transition models as well as dynamic factor
analysis models. Here we present a latent variable model for longitudinal
ordinal items with non-linear terms such as interaction terms between the
latent variables as well as higher order terms. In multivariate longitudinal
data, the model needs to account for correlations among items within time
as well as correlations among the same items between time. If one considers
a continuous observed variable then the total variance can be decomposed
into common variance (variance explained by the latent variables common to
all items at a specific time point), the item-specific variance and the error
variance (see Raffalovich, and Bohrnstedt, 1987, Marsh and Grayson, 1994
and Eid, 1996). This decomposition of total variance can only be achieved
when longitudinal data are analyzed. In structural equation modelling (SEM)
literature (see e.g. Jöreskog and Sörbom, 1999) item-specific variance is taken
into account by considering correlated measurement errors for the same items
across time or item-specific factors (see e.g. multitrait-multimethod models).
Jöreskog (2002) discusses a SEM for longitudinal ordinal data where differ-
ences in means and covariances of latent variables over time are measured by
assuming measurement invariance of thresholds and factor loadings and by
correlating the measurement errors of same items over time.

Usually the effect of latent variables or covariates is additive. However,
the inclusion of interaction or quadratic terms might be necessary. Applica-
tions of latent variable models with nonlinear terms in different disciplines
such as marketing, social psychology, political theory, etc. can be found in
Schumacker and Marcoulides (1998) and references therein. The idea of non-
linear factor analysis goes back to Gibson (1960) and Mcdonald (1962). It
has been pointed out by Bartlett (1953) that the inclusion of the interaction
between two latent variables in the linear factor analysis model will produce
the same correlation properties of the manifest variables as if a third genuine
factor had been included. That opens some discussion on the identifiability
of latent variable models with non-linear terms. More references on the tech-
nical developments of non-linear factor analysis type models can be found in
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Rizopoulos and Moustaki (2007). In SEM, Kenny and Judd (1984) proposed
a methodology for handling non-linear terms. Their paper led to a series of
papers by other researchers discussing the limitation of their model and ways
of improving it. In the SEM approach, products of observed variables are used
as indicators for the interaction terms between the latent variables. Recently,
a series of papers by Lee and Zhu (2002), Lee and Song (2004) and Song
and Lee (2004) discuss Bayesian and ML estimation methods for nonlinear
factor models with mixed data that allow for missing outcomes and hierar-
chical structures. In all those papers dichotomous and ordinal variables are
assumed to be manifestations of underlying normally distributed continuous
variables.

Rizopoulos and Moustaki (2007) incorporated nonlinear terms in the fac-
tor analysis model without making complex distributional assumptions for
the joint distribution of the manifest variables. Their method is a full maxi-
mum likelihood estimation and therefore the computational burden is quite
significant.

The paper is organized as follows: section 2 reviews the model for longi-
tudinal data that has been developed in the paper by Cagnone et. al. (2008),
section 3 reviews the model with non-linear terns that has been developed in
Rizopoulos and Moustaki (2007), section 4 outlines the estimation method,
section 5 discusses goodness-of-fit issues and section 6 presents an application.

Notation

Let y1t, y2t, . . . , ypt be the ordinal observed variables measured at time t,
(t = 1, . . . , T ). The whole response vector for an individual m is denoted by
ym = (y′

1m, . . . ,y′
tm, . . . ,y′

Tm)′. In the case of cross-sectional data T = 1.
Small letters are used to denote both the variables and the values that these
variables take. Let ci denote the number of categories for the ith variable,
(i = 1, . . . , p).

The ci ordered categories have probabilities πi1(t)(z), πi2(t)(z), · · · ,
πici(t)(z), which are functions of the vector of latent variables z. As we will
see in the following section, the vector of latent variables in the longitudinal
case consists of two different types of latent variables. The time-dependent la-
tent variables ξt (t = 1, . . . , T ) and the random effects ui, (i = 1, . . . , p). The
time-dependent latent variables account for association among items within
time where the random effect terms account for association between the same
items across time. For the latent variable model with non-linear terms the
vector z consists of the main effects of the latent variables ξj , (j = 1, . . . , q)
and of higher order terms of those latent variables (quadratic or interaction
terms).

The latent variables z affect directly the manifest ordinal variables or to
be more precise the probability of responding into a specific category.
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2 Models for multivariate longitudinal ordinal
responses

We present here the model framework developed in Cagnone et. al. (2008)
for analyzing ordinal longitudinal manifest variables with latent variables.
At each time point, the association among the ordinal observed variables
yt is explained by a set of latent variables ξt. Those latent variables are
time dependent. In addition to the vector of latent variables an item-specific
random effect ui is included to capture the dependencies between same items
measured across time.

The linear predictor is written as:

ηit(s) = τi,s,t − α′
itξt + ui , i = 1, . . . , p; s = 1, . . . , ci; t = 1, . . . , T. (1)

where τi,s,t are item, time, category specific fixed intercepts and αit are factor
loadings measuring the effects of ξt on some function of the response proba-
bility. Finally, the link between the systematic component and the conditional
means of the random component distributions is ηit(s) = vit(s)(γit(s)) where
γit(s) = P (yit ≤ s | ξt, ui) and vit(s)(.) is the link function which can be any
monotonic differentiable function. Defining the linear predictor in this way,
the associations among the items measured at time t are explained by the
vector of latent variables ξt. The associations among the same item measured
across time (yi1, . . . , yiT ) are explained by the item-specific random effect ui.
We also assume that the time dependent latent variables are linked with a
first order autoregressive structure

ξt = φ′ξt−1 + δt (2)

where for identification purposes δt ∼ N(0, I). The assumption that ui ∼
N(0, σ2

u), completes the model definition. Equation (2) accounts for serial
correlation in the latent variables and expresses the dynamic nature of latent
variables. The random effects are assumed to have variances equal to σ2

ui
and

covariances equal to zero, i = 1, . . . , p.

3 Factor models for ordinal responses with non-linear
terms

The model presented here is discussed in detail in Rizopoulos and Moustaki
(2007). Let us consider the case of cross-sectional survey data. When non-
linear terms are added into the model the linear predictor is written as:

ηi(s) = τi,s − α′
iξ , i = 1, . . . , p; s = 1, . . . , ci. (3)

where now the vector of latent variables contains both main effects as well as
quadratic and interaction terms between the latent variables. In the case of
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two latent variables with an interaction term, the vector of latent variables
becomes ξ = (ξ1, ξ2, ξ1 × ξ2)′. The parameters αi remain the factor loadings.
The latent variables ξ= (ξ1, ξ2) are assumed to follow a bivariate standard
normal distribution with zero correlation. The assumption of zero correlation
can be also relaxed if necessary. The inclusion of higher-order terms allows
the analysis of complex real situations. The model has been estimated with
ML using a hybrid integration-maximization algorithm and standard errors
are corrected for model mis-specification via the sandwich estimator.

4 Estimation

We denote with ym the response vector for the mth individual. The vector
zm will contain both the latent variables ξm (those will be time-dependent
in the model for longitudinal responses) and the random effect component
term um required again for the longitudinal case.

All out inference is based on the joint density function of the data written
as:

f(ym) =
∫

· · ·
∫

h(zm) g(ym | zm) dzm, (4)

The model parameters are the factor loadings and the variances of the ran-
dom effects. In the vector z = (ξ,u), the ξ latent variables are taken to be
independent from the random effects (u).

If the EM algorithm is going to be used for estimating the model param-
eters one needs to write down the complete data log-likelihood. Therefore,
for a random sample of size n the complete log-likelihood is written as:

L =
n∑

m=1

log f(ym, zm)

= log
n∑

m=1

[log g(ym | zm) + log h(zm)] (5)

where g is the likelihood of the data conditional on the latent variables and
the random effects and h is the common distribution function of the latent
variables and the random effects. Note that factor loadings will be estimated
from the first component of the log-likelihood in (5) where the variances of the
random effects and the autoregressive parameter for the longitudinal model
will be estimated from the second component.

Responses across items and time are independent conditional on the latent
variables (ξm) or some function of those latent variables and the random
effects uim (conditional independence):

g(ym | zm) =
pT∏

i=1

g(ymi | zm), (6)
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where T = 1 in cross-sectional studies and the conditional distribution for
each item is taken to be the multinomial. In the longitudinal case, the latent
variables ξm are dependent through the autoregressive structure but they are
independent from the random effects uim according to the model specification
given in (1).

Note that in the case of the model with non-linear terms, there are some
computational advantages. First, their approach is based on conditional dis-
tributions of observed variables given the latent variables and that keep their
form within the known distributions of the exponential family. Second, for
the two-factor model with nonlinear terms the marginal distribution of the
data f(y) is computed using a double integral instead of a higher order inte-
gration, while allowing for more complex latent structures compared with a
two-factor model.

The E-M algorithm requires the following steps:

E-M algorithm

step1 Choose initial estimates for all model parameters.
step2 Compute the expected score function (E-step).
step3 Obtain improved estimates for the parameters by solving the maxi-

mum likelihood equations for the parameters. (M-step)
step4 Return to step 2 and continue until convergence is attained.

The integration involved in the E-step of the algorithm can be achieved either
by using adaptive Gauss-Hermite quadrature or Monte Carlo integration. De-
tails of the estimation of the models are given in Cagnone et. al. (2008) and
Rizopoulos and Moustaki (2007). Accelerated tools such as the PX-EM and
hybrid estimation algorithms have been proposed for speeding up the estima-
tion. The convergence of the E-M algorithm is monitored through the change
in the values of the log-likelihood. Initial estimates are chosen arbitrarily.

Model used for ordinal data

The linear predictor given in equations (1) and (3) is linked with the cumu-
lative probability of responding below a category s through a link function.
Possible links function are the logit, the complementary log-log function, the
inverse normal function, the inverse Cauchy, or the log-log function. The logit
and the inverse normal function also known as probit are the link functions
most often used in practice. The probit and the logit link function have very
similar shapes and therefore give similar results.

When the logit link is used the model is known as the proportional odds
model written as:

log
[

γi,s,t(z)
1 − γi,s,t(z)

]
= τi,s,t − α′

iz (7)
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where s = 1, . . . , ci − 1; i = 1, . . . , p; t = 1, . . . , T . From (7) we get that:

γi,s,t = P (yi,t ≤ s | z) =
exp(τi,s,t − α′

iz)
1 + exp(τi,s,t − α′

iz)
, (8)

where s = 1, 2, . . . , ci − 1 and γi,mi,t = 1. In cross-sectional studies, T = 1.

5 Goodness-of-fit tests and measures

Goodness-of-fit of the models can be checked in three different ways. One way
is to consider overall goodness-of-fit tests such as the Pearson X2 and the
likelihood ratio test. However, those statistics can rarely be used in practice
due to the fact that are both greatly distorted in the presence of sparseness
in multi-way contingency tables.

Alternatively, one can use goodness-of-fit measures such as those sug-
gested by Jöreskog and Moustaki (2001). They have proposed an alternative
procedure that does not provide a test statistic but rather focuses on mea-
surement of fit. They investigate how well the model fits the univariate and
bivariate marginal distributions. A Likelihood ratio (LR-fit) and a Pearson
goodness-of-fit statistic (GF-fit) are computed from the univariate and bi-
variate contingency tables. Those statistics are not χ2 distributed but they
can be used as measures of fit indicating items and pair of items where the
fit is not good.

Finally, one can use differences in the deviance as well as model selection
criteria such as the AIC and BIC information criteria for choosing among
alternative models.

6 Applications: Efficacy data

The data consists of the USA sample of the political action survey1 (Barnes
and Kaase, 1979). Initially, six variables were analyzed as being indicators
of political efficacy. Political efficacy has been defined as “the feeling that in-
dividual political action does have, or can have, an impact upon the political
process... The feeling that political and social change is possible, and that the
individual citizen can play a part in bringing about this change” (Campbell
et al., 1954, p.187). The data set has been extensively analyzed in the liter-
ature. Jöreskog and Moustaki (2001) has shown using different approaches
for analyzing ordinal data that the six items are not unidimensional. There-
fore, for the purpose of our analysis we chose just three items that form a
unidimensional scale. Those items are given below:

1 The data was made available by the Zentralarchiv für Empirische Sozialforschung,
University of Cologne. The data was originally collected by independent institu-
tions in different countries.
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NOSAY People like me have no say in what the government does
COMPLEX Sometimes politics and government seem so complicated that

a person like me cannot really understand what is going on
NOCARE I don’t think that public officials care much about what people

like me think

Permitted responses to these questions were agree strongly (AS), agree (A),
disagree (D), disagree strongly (DS), don’t know, and no answer . Missing
values have been eliminated from the analysis.

We fitted the non-stationary model with the item-specific random effects.
The results are given in Table 1. The estimated loadings are close to the
solution obtained from LISREL when correlated errors are estimated between
the same items across the two time points. The variances of the random effects
are found significant indicating that there is strong correlation between the
same items across time.

Table 1. Parameter estimates and standard errors in brackets, Efficacy data.

Items α̂i1 (time 1) α̂i2 (time 2) σ̂ui

NOSAY 1.00 1.00 0.29 (0.07)
COMPLEX 0.73 (0.16) 0.73 (0.16) 1.70 (0.44)
NOCARE 1.33 (0.17) 1.33 (0.17) 0.19 (0.03)

The estimated unrestricted covariance matrix of the time-dependent at-
titudinal latent variables is:

[
3.92 2.55
2.55 2.66

]

The estimated φ parameter (φ̂ = 0.65, with an estimated standard error
equal to 0.08) shows a strong and significant correlation between the latent
variable across the two time points.

The overall fit measure given in Table 2 indicate a very satisfactory fit.
The big chi-square value between item NOSAY and NOCARE at time 1 is
due to just one large discrepancy between category 1 for item NOSAY and
category 4 for item NOCARE where the observed frequency is only 3.

7 Conclusion

The paper reviews latent variable models for longitudinal ordinal data and
latent variable models with non-linear terms. Both models try to explain
complex data structures. The model for longitudinal data needs to use a
large number of factors including the random effects to be able to explain
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Table 2. Univariate and Bivariate GF-Fits, Efficacy data.

NOSAY(t = 1) –
COMPLEX(t = 1) 15.13 –
NOCARE(t = 1) 37.55 18.36 –
NOSAY(t = 2) 16.08 7.59 7.41 –
COMPLEX(t = 2) 12.91 7.91 6.47 25.93
NOCARE(t = 2) 6.19 7.76 6.49 19.87 23.70 –

OVERALL GF-FIT=14.62

the associations among the ordinal responses. Linking the time-dependent la-
tent variables with an autoregressive model complicates even more the model
assumptions and structure. Similarly complicated is the model with the non-
linear terms that tries to incorporate higher-order terms of the latent variables
in the predictor. The proposed estimation method for both models is FIML.
FIML requires heavy integrations that limits the number of items and factors
that can be analyzed. The use of adaptive quadrature routines have allowed
one to use a very small number of points for approximating the integrals. We
hope that with the further advances of computer power those computational
limitations will be eliminated and the use of FIML will become a common
practice among researchers for estimating complex models.

Issues of goodness-of-fit and model identification remain still open for
investigation.
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Abstract. In this paper, I consider data on fatal automobile crashes, DWI arrests,
and alcohol addiction admissions in Virginia, USA and use these as a basis for
estimating the hourly, weekly, monthly, and annual cycles associated with alcohol
consumption. In addition, I use surveys carried out by the Department of Alcoholic
Beverage Control in Virginia to establish geospatial patterns of purchases of distilled
spirits. This data analysis allows me to conjecture spatiotemporal patterns that can
be incorporated into calibration of a more complex ecological alcohol systems model.
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1 Introduction

Alcohol use and abuse contributes to both acute and chronic negative health
outcomes and represents a major source of mortality and morbidity in the
world as a whole (Ezzati et al., 2002) and in the developed world, such as the
United States, where alcohol consumption is one of the primary risk factors
for the burden of disease. It ranks as a leading risk factor after tobacco for
all disease and premature mortality in the United States (Rehm et al., 2003;
Said and Wegman, 2007). Said and Wegman (2006) outlined a graph-theoretic
agent-based simulation tool and applied this tool to examine alcohol-related
violence in Northern Virginia. That work did not incorporate spatial or tem-
poral factors except with respect to residence locations of the agents. In a
companion piece to this paper, Wegman and Said (2008) expand the model
to accommodate the temporal and geospatial dimensions of acute outcomes.
In contrast with the modeling paper, Wegman and Said (2008), this paper
focuses on methods to exploit temporal and spatial data with the idea of
calibrating the model to include these effects. The model proposed in Weg-
man and Said (2008) incorporates a social network component that was not
included in Said and Wegman (2006). The overall goal of the models is not
just to simulate known data, but to provide a policy tool that would allow
decision makers to examine the feasibility of alcohol-related interventions.
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Such interventions are designed to reduce one or more acute outcomes such
as assault, murder, suicide, sexual assault, domestic violence, child abuse and
DWI-related injuries and deaths. Unfortunately, interventions can sometimes
lead to unintended consequences, while suppressing one acute outcome, other
acute outcomes may be enhanced. By adjusting conditional probabilities, the
effect of interventions can be explored without actually introducing major
societal policy actions.

2 Estimating temporal and cyclic effects

It is well known that there are substantial seasonal and temporal effects as-
sociated with alcohol use and its acute outcomes (Fitzgerald and Mulford
1984; Cho et al. 2001; and Carpenter 2003). For purposes of analysis of inter-
ventions, it is desirable to understand when and where interventions may be
most effective. Alcohol use shows patterns on multiple scales including time-
of-day, day-of-week, and week-of-year as well as month-of-year. The detailed
construction of probabilities conditioned on job class, ethnicity, gender, so-
cioeconomic status, residential location, age, and a host of other demographic
factors results in many thousands of conditional probabilities to be estimated.
Adding temporal effects specific to each of the many thousands of combina-
tions of relevant variables and acute outcomes is unrealistic with existing
data sets. In order to incorporate temporal effects in the model outlined in
Wegman and Said (2008), I need to develop proxies for the temporal effects.
In this paper, I consider data from the Virginia Department of Motor Vehicles
concerning alcohol-related fatal crashes. In addition, I consider DWI arrest
data from Fairfax County, Virginia and, finally, alcohol treatment admission
data from Fairfax County, Virginia. I investigate the cyclic effects over the
period 2000-2005.

The main data resource consists of state-wide data from Virginia De-
partment of Motor Vehicles on all alcohol-related crashes from 2000 to 2005.
These data were made available with time-of-day as well as date information.
Based on this, I am able to assess day-of-week and month-of-year informa-
tion. These data are aggregated for each year and plotted in Figure 1 by time
of day. There is remarkable consistency in these plots suggesting that there
is comparatively little yearly effect. As one might expect, drinking behaviors
increase during late afternoon and early evening and this is reflected in the
increases in alcohol-related fatal crashes. The very early morning events (1 to
3 am) after closing hours of most alcohol outlets are associated with attempts
to drive after an extended evening of drinking.

Figure 2 plots the crashes by day-of-week. Again the data are aggregated
across the years by day of the week. There is once again remarkable con-
sistency over the annual period. As one might reasonably expect drinking
behaviors increase with the onset of the weekend. Typically, drinking behav-
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Fig. 1. Alcohol Related Crashes by Time-of-Day.

Fig. 2. Alcohol Related Crashes by Day-of-Week.

iors begin on Friday are most intense on Saturday and begin to subside on
Sunday.

Examining the month-of-year effect, I find that the lowest crash rates are
in January and February. The traditional holiday period, October, November,
and December incur the greatest number of fatal crash events. Surprisingly,
the peak of the summer driving/summer holiday season is comparatively low.
Even more surprising is the relative peak in May. I conjecture that this is
associated with the end of the semester for high schools and colleges with
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Fig. 3. Alcohol Related Crashes by Month of Year.

proms, graduations, and other social events for high schools and collegiate
celebrations at the end of final exams and commencements.

Figures 1-3 suggest that there are very substantial time-of-day effects,
substantial day-of-week effects, a somewhat less pronounced monthly effects,
and virtually no variation over the years. In order to investigate this more
analytically, I consider mixed effects linear models. The first part of this anal-
ysis examines data from the Virginia Department of Motor Vehicles alcohol-
related fatal crashes for the period 2000-2005 (896,574 instances). After sum-
marization, the data set has 2,192 instances (365×6). The date of the crash
is used to extract the year, month, week, and day of the week. Analysis is
done on the number of crashes on a particular day of the week. The second
part of my analysis focuses specifically on Fairfax County.

The response variable, alcohol-related fatal crashes, is skewed to the left.
This indicates non-normality. The square root transformation is used for this
data set and the resulting plots are shown in Figure 4.

I consider the mixed effects model:

yijk = µ + αi + βj + γk + εijk

where yijk is the observation of the ith day of the jth week of the kth year. In
this case, i = 1, . . . , 7, j = 1, . . . , 52, and k = 1, . . . , 6 where αi is the day-of-
week effect, βj is the week-of-year effect, γk is year, µ is the fixed intercept,
and εijk is the noise. Day-of-week variations are highly significant, week-of-
year variations marginally significant, and the year effect is not significant.

While the alcohol-related crash data are state-wide data, they do not
capture temporal characteristics of DWI arrests and alcohol-related hospi-
tal admissions. In Figure 5, we have the boxplot of DWI arrests by day-of-
week. This strongly resembles the day-of-week plot for alcohol-related fatal
crashes state-wide. Of course, there are many more DWI arrests than there
are alcohol-related fatal crashes. In these figures, day 1 is Monday and, as
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Fig. 4. Number of Crashes Plots Transformed by Square Root.

Fig. 5. Fairfax County DWI Arrests by Day of Week.

before, both fatal crashes and DWI arrests are lowest on Tuesdays. Figure
6 is the boxplot of alcohol-related treatment admissions. This essentially is
inversely correlated with the DWI and crash data. Here, Tuesday is the peak
day for admissions to treatment.

In summary, the time-of-day and day-of-week alcohol-related crashes pro-
vide an excellent proxy for the critical temporal effects needed in my model
and allow us to incorporate these temporal effects.
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Fig. 6. Fairfax County Hospital Admissions for Alcohol Treatment.

3 Estimating geospatial effects

Fundamental to understanding the alcohol ecological system is an under-
standing of the transportation system, of the geospatial distribution of al-
cohol availability, and of scenarios by which alcohol users acquire and use
their alcohol. This obviously is a data-intensive exercise and can become ex-
ceptionally complex. Ideally, simulating the entire transportation system and
its implications for the alcohol system would be the most desirable course
of action. Such transportation models are used to generate activities as part
of more comprehensive transportation simulation. A prime example is the
TRANSIMS system (Smith et al., 1995), which was a comprehensive model
developed under federal support at Los Alamos National Laboratory and
which has been commercialized by IBM. The TRANSIMS activity generator
constructs activities, their locations, and method of travel between locations,
for each member of every simulated household in a city. The program was
used in a demonstration project in Portland, Oregon, a city whose greater
metropolitan area was approximately 1.6 million residents and is currently
approximately 2.5 million residents.

Transportation planners regularly conduct extensive travel surveys. An
example was the Portland Travel/Activity Survey of 1994-1995 (Cambridge
Systematics, 1996; Shiftan and Suhrbier, 2002; Buliung and Kanaroglou,
2004). Participants in the survey kept diaries and recorded every activity
with duration and location for a two-day period for each member of the sur-
vey households. In addition, extensive demographic information was recorded.
There were 4,451 households and 10,048 individuals in the survey. 129,188
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activities were recorded. It should be noted that drinking behavior was not
recorded in this survey. A number of activities, presumably including drink-
ing, were aggregated in a leisure activity category. However, the survey did
provide valuable data on daily patterns of activity, periods of work, meals,
shopping, and leisure activities.

Because a large percentage of alcohol-related incidents take place between
alcohol outlets and the alcohol user’s residence, either at the outlet itself
where drinking behaviors take place, at the residence, the other principal site
for alcohol use, or in between for such incidents as DWI and alcohol-related
crashes, I take advantage of data collected by the Department of Alcoholic
Beverage Control in Virginia. The ABC survey is conducted periodically at
ABC Stores. Customers are asked their residential postal code and this in-
formation is recorded for planning purposes in order to determine the best
locations for new alcohol outlets. Presumably, best is judged relative to en-
hanced sales, not in terms of optimal societal or public health benefits. While
not as elaborate as something like the TRANSIMS simulation effort or the
Portland Travel/Activity Survey, it is more germane to geospatial aspects of
alcohol-related behaviors.

The ABC surveys essentially provide a two-mode social network and ar-
ranged in the form of an adjacency matrix, I can form associations between
alcohol outlets and postal codes. A gray-scale rendition of the ABC by postal
code adjacency matrix is given in Figure 7.

There is a fundamental duality between the graph representation of a
social network and the adjacency matrix. Because of this, the two-mode net-
work can easily be transformed into two one-mode networks. If Xm×n is the
m by n adjacency matrix of the two-mode network, then Am×m = Xm×n

XT
n×m, the matrix product of the X matrix with its transpose is the one-

mode adjacency matrix for the alcohol outlets relative to the postal codes
of purchasers. Similarly, Zn×n = XT

n×m Xm×n is the one-mode adjacency
matrix for the postal codes relative to the alcohol outlets. It is now desirable
to cluster these networks in order to determine which postal codes and which
ABC stores behave in a similar way.

Clustering in social networks begins with dividing the set of actors into
discrete, non-overlapping subsets called partitions. The partition determines
the block model (Wasserman and Faust, 1994). The block model is the device
that clusters the network data. The block, Bij , is formed from the ties of
actors in partition i, to the actors in partition j. If i = j, the block Bij

represents ties between partitions i and j. If i = j, Bij represents internal ties
of actors within the block. These latter diagonal blocks represent a clustering
of the actors. Generally speaking, we like to see blocks that are cliques or
nearly cliques in the usual graph-theoretic sense of a clique.

Rigsby (2005) developed the concept of allegiance in order to have a sys-
tematic way to form the partition and the blocks. As with the usual clustering
methods, the appropriate number of clusters is not usually known. A quanti-
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Fig. 7. ABC outlets versus postal codes. There are 25 ABC outlets in Fairfax
County, Virginia and more than 230 residential postal codes representing the homes
of people who purchase distilled spirits in Fairfax County. Fairfax County contains
48 postal codes, so a considerable amount of alcohol is purchased in Fairfax County
by non-county residents. In this Figure, the rows represent the alcohol outlets and
the columns represent the residential postal codes.

tative measure of block model strength allows us to estimate the true number
of partitions. Allegiance measures the support that an actor provides for the
structure of his block. An actor supports his block by having internal block
edges. A measure of this is the total number of edges that an actor has in-
ternal to his block. An actor supports his block by not having external edges
from the block to other actors or blocks. A measure of this is the total num-
ber of possible external edges minus the total number of existing external
edges. The allegiance for a block is a weighted sum of the measure of internal
allegiance and the measure of external allegiance. The overall allegiance for
a social network is the sum of the allegiances for the individual blocks. If
the overall allegiance is positive then a good partition was made. The par-
titioning continues recursively until a new partition no longer contributes to
a positive allegiance. A more technical discussion can be found in Said et al.
(2008).

Using the concept of allegiance, we can create block models for the A
and the Z matrices. These are represented respectively in Figures 8 and 9.

The blocks along the diagonal in Figure 8 represent ABC stores that
behave similarly with respect to their customers. That is to say, these stores
tend to serve the same customer postal code base. Similarly the block along
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Fig. 8. ABC Stores Block-Model Matrix Rendered in Gray Scale.

Fig. 9. Postal Codes Block-Model Matrix Rendered in Gray Scale.

the diagonals of Figure 9 represent postal codes that behave the same way
with respect to alcohol outlets, that is, the residents tend to purchase alcohol
from the same outlets. For many purposes, the block concept is a way of
aggregating actors in a network that behave the same way, in effect, reducing
the number of actors.
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Fig. 10. Fairfax County, Virginia with Postal Codes Outlined. The Color Shading
is Proportional to Actual Number of Acute Events in Each Postal Code. The Red
Markers are the Locations of ABC stores. The Black Markers are the Centroids of
Each Postal Code. From the Two-Mode Adjacency Matrix Restricted to Fairfax
County we can Determine Approximate Distances and Routes.

An interesting statistic associated with Figure 9 is that purchasers of
alcohol in Fairfax County, Virginia have their residence as far away as 340
miles. There are a large number of purchasers of alcohol in Fairfax County
that live approximately 100 miles away from Fairfax County. I conjecture
that these are commuters whose local ABC stores would be closed by the
time they arrive at their residences. Fairfax County is West of Washington,
DC and would be on a commuter route for those living in the more Western
parts of Virginia and West Virginia.

Still, if I focus on the 48 postal codes in Fairfax County and the 25 ABC
outlets in Fairfax County, I can establish approximate commuter routes for
purchasers of alcohol and thus determine what may well be local hotspots
for alcohol-related incidents, by virtue of the amount of alcohol purchased
as well as the likely commuter routes. Of course, ABC stores are off-license
establishments so that restaurants and bars that are on-license establishments
are not accounted for in this exercise. Still, the ABC stores are a reasonable
proxy for geospatial effects. Figure 10 represents the map of Fairfax County
with postal codes.

Based on the adjacency matrix of the two mode network weighted by the
amount of alcohol purchased (in terms of dollar sales) and the centroids of
the postal codes, I can estimate the distribution of distances traveled between
outlet and residence and to at least a crude approximation, estimate the
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routes alcohol users take between outlet and residence. These are relatively
crude proxies, but reasonable first approximations for purposes of calibrating
my model.

4 Conclusions

In this paper, I develop an estimation procedure for a comprehensive model-
ing framework based on agent-based simulation, social networks, and directed
graphs that captures some of the complexity of the alcohol ecological system.
I provide a framework for temporal and geospatial effects and discuss proxies
for approximating these effects. To completely specify the framework out-
lined in Wegman and Said (2008), considerable additional data collection ef-
forts must be undertaken. Nonetheless, with opportunistically available data
sources, I am able to reproduce with reasonable accuracy the actual expe-
riences for a diversity of alcohol-related acute outcomes in Fairfax County,
Virginia. The novelty of the framework I have proposed lies in the ability to
modify the conditional probabilities on the various paths through the directed
graph and thus experimentally determine what social interventions are most
likely to have a beneficial effect for reducing acute outcomes. Although this
model is cast in terms of acute alcohol-related outcomes, there is an obvious
applicability to expanding this framework to other settings such as homeland
security and criminal activities.
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Abstract. Users of alcohol are incorporated into a societal system, which for many
purposes resembles an ecological system. We have previously modeled such systems
using a directed graph with acute outcomes reflecting undesirable individual and
societal outcomes. In this paper, we expand the model to a hybrid social network
directed graph model for modeling the acute outcomes associated with alcohol use
and abuse. We describe the approximate estimates of conditional probabilities based
on available data. In the present model, we also approximate geospatial effects re-
lated to transportation as well as temporal effects. Acute outcomes include assault,
murder, suicide, sexual assault, infection with STDs or HIV, domestic violence,
child abuse, and DWI and alcohol related fatal crashes. The model is calibrated
using demographic, crime, alcohol-related, and alcohol outlet data from Virginia
and Fairfax County in Virginia. We propose proxy data and methods for capturing
temporal and geospatial effects. The goal is to investigate methods for simultane-
ous suppression of multiple negative public health consequences. The model may
be used as a public policy decision tool by adjusting conditional probabilities in
order to investigate the effect of interventions.

Keywords: directed graph, social networks, acute consequences, public
health, interventions, geospatial effects, temporal effects

1 Introduction

Alcohol use is a major cause of morbidity and mortality in all areas of the
world (Ezzati et al., 2002). In the developed world alcohol consumption is one
of the primary risk factors for the burden of disease; it ranks as the second
leading risk factor (after tobacco) for all disease and premature mortality in
the United States (Said and Wegman, 2007). Alcohol is such a potent risk fac-
tor because it is widely used, inexpensive, and causes both acute and chronic
consequences. A major difficulty in developing and assessing alcohol-related
public health interventions is that drinking behaviors and their consequences
form, in effect, a complex ecological system of individual behaviors embedded
in socio-cultural settings and interactions that are distributed over space and
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time. Interventions focused on any specific aspect of this system (e.g., drink-
ing and driving) may result in unintended consequences (e.g., a potential
increase in domestic violence as the result of high volume drinkers spend-
ing more time at home due to the anti-drinking-driving programs). Another
example of unintended consequences is alcohol-related promiscuous behavior
resulting in infections with sexually transmitted diseases (STD) and Human
Immunodeficiency Virus (HIV).

The research that we report here is designed to model simultaneously
acute alcohol-related outcomes among all individuals by specific geographic
areas. Thus, the potential impact of interventions that change any aspect
of the entire alcohol ecological system can be examined across population
subgroups and locations. This information can be used to guide the develop-
ment of interventions that are most likely to have the impact intended, and
to assist in the selection of interventions that are most worthy of deserving
the large amount of resources necessary for conducting a public health field
trial.

We develop a model of the alcohol ecological system based on population
subgroups, age, gender, ethnicity, socioeconomic status, composed of individ-
uals (i.e., the agents in the model), embedded in space (geographic location
identified by postal code areas), time (i.e., time-of-day, day-of-week), and
socio-cultural context (e.g., alcohol availability, neighborhood). The model
focuses on acute alcohol-related outcomes (e.g., domestic violence, homicide,
crashes, STD, HIV, etc.). The model is agent-based, meaning that individual
outcomes are simulated; this software design allows us to incorporate specific
agent interactions. This approach focuses on ecological systems, i.e., behav-
iors and interactions of individuals and their setting, not on aggregate groups
as the unit of analysis. The model is stochastic in that every agent in a spe-
cific demographic subgroup will have an individual outcome, rather than all
subgroups members having the same outcome.

The specific intent for this research is: 1) To create a spatiotemporal
social network stochastic directed-graph model of a population accounting
for agents’ alcohol use and the associated acute outcomes. We initially model
an “average” day (including activities by time-of-day), and then move to
models of weekend days and other days of the week. The model runs for
the entire population for a full year (365 days) to examine the distribution
of acute outcomes; 2) To collect and identify the data that are specifically
required to calibrate, validate, and verify the model. This includes assessing a
large number and variety of data sets describing alcohol-related behaviors. In
situations where there was no data, we consulted with experts in the field so
we could develop expert opinions, which, in turn, have guided us to estimate
the conditional marginal probabilities; and 3) To incorporate a policy tool in
the model in order to examine intervention strategies to understand where
policies may be most effective in suppressing simultaneously all of the acute
outcomes. This initial policy tool allows for examinations of the impact of
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changes in alcohol availability (by outlet type and by geographic location)
and population demographics on the number, type, and location of acute
alcohol-related outcomes.

2 Building the model

Graph theory allows for representation of many organizational and relational
structures (Bondy and Murty, 1976; Diestel, 2005). Special forms of graph
theory are the directed graph and stochastic or random graphs. (Chartrand
and Lesniak, 1986; Bang-Jensen and Gutin, 2000; Bollobos, 2001; Marchette,
2004). A directed graph (often called a digraph) G is a pair (V,E) where V
is a set of elements called vertices or nodes and E is a subset of the set of all
ordered pairs (a, b), where a and b are vertices. An element of E is called a
directed edge, an arc, or an arrow of G. An edge e = (a, b) is considered to be
directed from a to b; b is called the head and a is called the tail of the edge.
The pair (a, b) is not the same as the pair (b, a). Typically, we regard the
direction of the edge (a, b) as flowing from a to b. Conventionally, an edge of
the digraph is represented as two points representing a and b with an arrow
whose tail is at a and whose head is at b. A directed graph allows both (a, b)
and (b, a). Sometimes E is allowed to be multisets, so that there can be more
than one edge between the same two vertices. This is useful distinction when
the relationship between a pair of nodes is asymmetric.

Our model of the alcohol system is an agent-dependent, time-dependent
stochastic digraph. The concept is that the vertices of the digraph will rep-
resent the state of the agent (e.g. including such factors as physical location,
present activity, and level of Blood Alcohol Content (BAC)) and the edges
represent a decision/action that takes the agent into a new state. The agent
represents any individual in the population including the alcohol users as
well as the non-users. The edge going from one state to another will have a
conditional probability attached to it, hence, the notion of a stochastic di-
graph. The conditional probability attached to a given edge will depend on
the specific sub-population from which the agent is drawn, hence is agent-
dependent, and the conditional probability will, in principle, also depend on
the time-of-day, hence it is time-dependent.

Implicit in this description is that individuals represented in the network
relate to each other and to social institutions. Thus, overlaying the directed
graph model is a social network. Figure 1 is a representation of the social net-
work for the alcohol user. We develop an agent-based social network digraph
model of the alcohol system. Implicit in the social network is that each node
(each agent) carries with him or her covariates that characterize such factors
as residence, ethnicity, job class, gender, age, socioeconomic status, dispo-
sition to alcohol, and the like. While social networks are often represented
as graphs, they can also be characterized by adjacency matrices. Figure 2
represents the adjacency matrix characterizing Figure 1.
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Fig. 1. Social network for the alcohol user. This same network may apply to
nonusers with some edges removed.

The concept is that relatively homogeneous clusters of people (agents)
will be identified along with their daily activities. Agents can be alcohol
users, nonusers, and the whole suite of participants in the social network
mentioned above. Agents can interact with each other in asymmetric ways.
Their activities will be characterized by different states in the directed graph,
and decision resulting in actions by an agent will move the agent from state
to state in the directed graph. The leaf nodes in the graph will represent a
variety of outcomes, most of which are benign, but a number of which will
be acute alcohol-related outcomes. Specifically, we study simultaneously the
following acute outcomes: assault, suicide, domestic violence, child abuse,
sexual assault, STD and HIV, murder, DWI (drinking and driving episodes,
including fatalities).

Figure 3 represents the essentially complete model. In each of the “time
planes” we have the social network along with the attendant covariates. The
conditional probabilities are, of course, time and agent dependent. For ex-
ample, a white collar employee who has a normal day job and is not alcohol
dependent is unlikely to have an episode of domestic violence in the 6 to
8 am time sector, but could have a higher likelihood of DWI after a three
martini lunch. An unemployed worker, however, is more likely to get involved
in an assault situation, especially in the late afternoon or early evening out
of frustration associated with low income. We represent time as being quan-
tized in Figure 3 although it need not essentially be so. Indeed, while gender,
ethnicity, job class are inherently categorical, such covariates as age, socioe-
conomic status as represented by income level and other covariates may be
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Fig. 2. Adjacency matrix summarizing strengths of connectivity in the alcohol users
directed graph. The x’s are place holders for numerical probability values. There is
a general symmetry, but the bidirectional probabilities between any two nodes are
likely to be unequal.

continuously variable. In the next section we will address compromises made
related to data available to calibrate the data.

Now, as agents are introduced into the directed graph model, their ul-
timate outcomes whether benign or acute will be accumulated so that a
(multinomial) probability distribution over all outcomes can be estimated.
The ultimate goal is to introduce interventions that will alter the structure
of the directed graph or its associated probabilities and assess how those
interventions affect the probability distribution over the outcomes. It is pos-
sible that an intervention may reduce the incidence of one acute outcome, but
increase the prevalence of other acute outcomes. The goal of our research is
to study the alcohol system as a whole in order to evaluate best interventions
for reducing the overall incidence of acute outcomes.

3 Choosing the agents

Calibrating the model described in Section 3 would ideally involve calculating
the conditional probability of each acute event conditioned on residence lo-
cation, ethnicity, job class, gender, age, economic status, time-of-day, alcohol
availability, whether the individual had an alcohol abuse problem or not, and
conceivably many more factors that would affect the likelihood of that acute
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Fig. 3. Time-of-day directed graph with acute outcomes. For illustrative purposes,
we have blocked the day into twelve two-hour blocks. Note that any time of day,
all outcomes are possible, but because drinking patterns are time-dependent, the
likelihood changes throughout the day.

outcome. Unfortunately, there is no direct data to support estimation of the
conditional probabilities. Part of the reason, therefore, for turning to a di-
rected graph model is to decompose the desired probabilities into components
that can be justified by available data.

The first goal is to devise a procedure that chooses agents in a manner
that is representative of and consistent with the population of the geospatial
area of interest. Note that if we considered only the factors mentioned above
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Fig. 4. Directed graph model for a single population class. Note that only one tree
is shown; trees exist for each population class.

and quantized them at reasonable levels, say residence location: 50 postal
codes in an area, ethnicity: 5 ethnic classes, job class: 3 broad job classes,
gender: 2, age: 10 age blocks, socioeconomic status: 10, time-of-day: 12 two-
hour blocks, alcohol availability: perhaps 3, and alcohol abuse problem or
not: 2, we could be seeking to draw agents from 360,000 categories. And,
of course, for each of these 360,000 categories, we would have to know the
conditional probability of each of the eight acute events we are attempting
to model. If we knew all of these probabilities, modeling could be captured
by a relatively simple Bayesian network. Of course, we don’t have all of these
probabilities, so we turn to the directed graph model. What we are interested
in is estimating the multinomial distribution of acute outcomes together with
the benign outcome. Ultimately, we are interested in assessing interventions,
which will modify the probabilities we use in the directed graph.

For illustrative purposes and admittedly because of data availability, we
have chosen to use data from Fairfax County, Virginia, USA. Fairfax County
has a population of approximately 1,000,000 individuals living in the 48 postal
code areas in the county. A specimen directed graph model is presented in
Figure 4. As an approximation, we use a manageable number of population
subgroups (classes) that are based on ethnicity (White, African American,
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and Hispanic) and job type (based on Census job codes, i.e. blue collar,
white collar, and unemployed). For these classes, the probability of being
an alcohol misuser (alcohol abuse and alcohol dependence) or nonmisuser
(abstainer and drinkers who do not have a diagnosis) are estimated based
on data from population surveys for each class (e.g., National Longitudinal
Alcohol Epidemiological Survey, NLAES). Note that although the model is
based on classes, the stochastic approach simulates outcomes for each indi-
vidual, meaning that persons in the same class do not necessarily have the
same outcome.

We know the population distribution in Fairfax County based on Census
data. The simulation begins by choosing an agent at random from one of the
48 postal codes. Because we know the distribution of job class and ethnicity
within each postal code also from U.S. Census data and data from the U.S.
Bureau of Labor Statistics, we can attach to the selected agent information
about the agent’s ethnicity and job class. In principle, we could also attach
information about age, gender, and socioeconomic status based on Census
data, but we will not do so in this illustration. While the NLAES data does
not provide information on whether someone is an alcohol misuser or not
conditioned on postal code, it does provide this information conditioned on
ethnicity and job class. This we can estimate the probability that our agent
will be a misuser of alcohol. We also have information from the Virginia
Department of Alcoholic Beverage Control (ABC) on the availability of al-
cohol principally in terms of sales volumes of distilled spirits for each ABC
store within each postal code, but also more generically sales tax figures for
outlets selling beer and wine. Thus, we can estimate the alcohol availability
by postal code. It is known from studies such as Gorman et al. (2001) and
Gruenewald et al. (2002) that alcohol availability directly influences drink-
ing behaviors enhancing the probabilities of acute outcomes. The prevalence
of acute outcomes is dependent on the nature of the acute outcome, murder
and suicide are fairly rare, DWI and assaults are fairly common. However, we
have obtained annual aggregate figures in each category for Fairfax County
for a period from 1999-2005. Finally, being an alcohol misuser can enhance
the probability of engaging in violence by a factor of five or more (Collins
and Schlenger, 1988 and Leonard et al., 2003). Thus, except for the time-of-
day component, we can estimate the probability that our agent will engage
in some acute outcome, although we have no information on which specific
acute outcome. However, because we do know the distribution of acute out-
comes annually, we can estimate by proportion the probability that our agent
for each acute or benign outcome. This process will associate with each agent
a likelihood of specific type of acute outcome and simultaneously give us ag-
gregated information for each postal code, job class, ethnic type, and so on.
Thus, for purposes of our approximation, we compute the following proba-
bility:
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Fig. 5. Example of Software Interface for the Initial Model.

P (AcuteEventi|Agentj) =

P (Z)P (E, J |Z)P (M |E, J)P (A|Z)P (SomeAcuteEvent|M)P (AcuteEventi)+

P (Z)P (E, J |Z)P (M c|E, J)P (A|Z)P (SomeAcuteEvent|M c)P (AcuteEventi),

where P (Z) is the probability of choosing agent j from postal code Z, P (E,
J |Z) is the conditional probability that the agent is of ethnicity E and
job class J given postal code Z, P (M |E, J) is the conditional probability
of the agent being a misuser of alcohol given he is of ethnicity E and job
class J , P (A|Z) is the probability of alcohol availability A in postal code Z,
P (SomeAcuteEvent|M) is the probability that the agent will create some
acute event given that he is a misuser of alcohol, and, finally, P (AcuteEventi)
is the unconditional probability that Acute Event i occurs (in a given day).
Of course, M c indicates the agent is not a misuser of alcohol.

The model simulates an average day for each postal code and for each eth-
nicity and job class. Figure 4 shows the tree diagram for only a single postal
code; the entire digraph model is composed of similar decision trees for each
of the 48 postal code areas separately for low, medium, and high levels of
alcohol availability. In the general model, the complexity has increased sub-
stantially because population classes will be further split by gender and age
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categories. Also, instead of an “average” day, we estimate weekend and non-
weekend days separately. Note that Figure 4 also shows the paths through the
model (which are stochastic conditional probabilities) leading to drinking (or
not drinking) and having a benign outcome or a pathological/negative out-
come. The pathways will allow us to also include time-of-day factors where
the boxes are blank in the figure although we do not do so in this first ap-
proximation. More on time-of-day in Section 5. The model was implemented
as a web application as shown in Figure 5. This simulation is available at
http://alcoholecology.com. This website presents a JAVA-based implementa-
tion and allows the user to explore adjustments in alcohol availability and
ethnic balance for the whole county and within individual postal codes.

Outcome Type Actual/Year Simulated/Year Mean MSE
DWI 722 658 708 19.6
Assault 133 107 132 2.0
Murder 6 4 7 1.0
Sexual Assault 32 38 34 4.1
Domestic Violence 161 168 168 16.1
Child Abuse 221 213 216 17.4
Suicide 97 84 100 2.6
Benign 998993 998728 998635 888.4

Table 1. Actual and Simulated Results for the Model

As can be seen from Table 1, even with fairly simple assumptions, the
directed graph model reasonably approximates the actual data. The column
labeled “Mean” is calculated by running the simulation 100 times and trans-
forming this estimate to a yearly average value. The “MSE” column repre-
sents the error associated with the simulation results when compared with
the actual values using the probabilities for the year of the actual values.

4 Conclusions

Alcohol studies have traditionally focused on specific acute outcomes and
intervention strategies for mitigating those particular acute effects. Such ap-
proaches often have unintended consequences so that intervening to reduce
one acute effect may increase other undesirable outcomes. Geospatial and
temporal effects have been considered separately, but are not traditionally
integrated with intervention models. Statistical analysis in alcohol studies
is done often at a relatively elementary level applying relatively elementary
hypothesis testing procedures. Indeed, it is difficult to find outlets for mod-
eling innovations within the traditional alcohol literature. In the present pa-
per, we outline a comprehensive modeling framework based on agent-based
simulation, social networks, and directed graphs that captures some of the
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complexity of the alcohol ecological system. We aggregate agents into rela-
tively homogeneous clusters, but provide diversity by stochastic modeling of
outcomes. We provide a framework for temporal and geospatial effects and
discuss proxies for approximating these effects. We calibrate the model, again
using approximations based on actual data.
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Abstract. This paper focuses on multivariate and computational approaches that
are being developed in the alcohol field. There is substantial monetary support
for conducting alcohol research. Alcohol use and problems are complex behaviors
by individuals, across their life spans, while embedded in a number of social and
economic networks. This complexity, coupled with the research support primarily
from the National Institutes of Health (NIH), has led to numerous data collection
and research projects, many of which require sophisticated multivariate and spatial
statistical approaches. Some of the methods used to model alcohol use and prob-
lems are latent growth curves, multilevel models, and latent class analysis. These
techniques allow for the examination and modeling of both individual and group
level factors. However, these types of models are not suitable for mining large data
sets. In this paper, we exploit regional data in Erie County, NY to illustrate the
use of multivariate and spatial analysis tools in alcohol studies.

Keywords: GIS, social indicators, public health, interventions, CrystalVi-
sion, CCmaps

1 Introduction

Statistical methods are often used in health studies including alcohol studies
in order to test hypotheses about health risks. However, these relatively el-
ementary techniques do not exploit the newer methods of multivariate data
visualization and spatial statistics. The ability to manipulate multivariate
spatial data offers the possibility of extracting additional meaning and sug-
gests, in addition to the confirmatory role for statistical methods, also an
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exploratory role. Statistical spatial analysis often begins with spatial anal-
ysis using a geographic information systems (GIS). Such systems allow the
analysis of distance and connectivity including the measures of distances be-
tween points and between points and centroids, analysis of adjacency, analysis
of networks including roads and other transportation systems, and analysis
of buffer areas between otherwise adjacent areas. Spatial analysis of this sort
can give insight into effective distances which may be substantially different
from apparent Euclidean distances.

Key components of geographic information systems in spatial analysis
are the ability to access and enhance spatial data and the ability to present
these relationships in terms of maps, graphics, and data files. Spatial depen-
dencies define the relationships among spatially diverse entities, including
non-random patterns in geographic space, clusters, dispersion, and spatial
autocorrelation. Spatial factors are integral to the development of alcohol
simulation models such as those presented in Wegman and Said (2008) and
Said (2008). Spatial analysis contributes to hypothesis generation, spatial
epidemiology, multi-level/multi-resolution modeling, spatial interaction and
travel models, and understanding spatial processes in small areas. The lat-
ter capability allows the development and testing of psychosocial models,
especially with respect to spatial interactions among alcohol and drug users.

2 Risk factors and social indicators

Traditionally, health studies including alcohol studies collect data by surveys,
which provide data at the individual level. However, it is not always possi-
ble to collect data at the individual level because of cost, privacy, or lack
of resources. In many situations it is impractical or impossible to measure
a specific outcome such as early drinking, adolescent drug use, or alcohol
dependence. In contrast, information may be easily available on factors asso-
ciated with these phenomena such as poverty, immigration status, language
facility, and alcohol availability. These are examples of social indicators. So-
cial indicators are numerical data, usually archival in nature, that measure
the well-being of a population. There are frequently issues of data quality
including reliability and validity. Is the indicator a stable measure? Is the
indicator actually related to the phenomenon of interest? The advantage of
using social indicator data include the use of substantial amounts of ad-
ministratively available data, the ability to make data-driven decisions on
topics that are impractical to measure directly, and the fact that specific in-
dicators have conceptual and evidential relationships to difficult-to-measure
outcomes. Disadvantages of using social indicator data include the fact that
data are collected for purposes other than their use as indicators, hence, may
not have statistical validity, that there are few direct indicators (relationships
of indicator to outcome are indirect), that there are usually few indicators
at local geographic level (postal code or census tract, most are at county,
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state, or national levels), and that there are a huge number of indicators
from which to select many of which may be overlapping and collinear. Social
indicators provide an indirect method of needs assessment for public health
services. They show relative need for services and may be used to estimate
actual need for services in some situations. In addition, coupled with demo-
graphic information, social indicator analysis allows for tailoring services to
population characteristics.

Indicators can fall into a number of categories including neighborhood
indicators, family indicators, and individual indicators. Neighborhood indi-
cators would include availability of drugs and firearms, community attitudes
toward laws and social norms, attitudes favorable to drug use, firearms and
crime, state of transition and mobility within the neighborhood, levels of
neighborhood attachment, and community disorganization. Family-level in-
dicators include extreme economic privation, family history of problem behav-
iors, family management problems, family conflict, and lack of commitment
to schools. At the level of individual indicators, indicators include alienation
and rebeliousness, early academic failure, substance abuse, delinquency, lack
of parental involvement in problem behaviors, and teen pregnancy. This cat-
egorization of indicators is aligned with the well-known risk and protective
factor model presented by Hawkins and colleagues (1992).

3 Erie County risk indicators

Wieczorek and Delmerico (2005) assembled a database of risk indicators for
Erie County, NY using several sources. Erie County includes the city of Buf-
falo, New York. This database provides a data-rich snapshot of a relatively
small county-level geographic area. The sources include the U.S. Census 2000,
the New York State Education Department, and the New York State De-
partment of Criminal Justice Services. At the local level, sources include the
Center for Health and Social Research, the City of Buffalo Police Depart-
ment, the Erie County Board of Elections, the Erie County Department of
Health, the Erie County Department of Mental Health, and the Roswell Park
Cancer Institute. Indicators are calculated at two spatial levels: census tract
and five-digit zip code area. An indicator may be available at both census
tract and zip code levels or just one level as dictated by the availability of
data. Most indicators are available at the zip code level, although for a few,
there are just no data available for areas smaller than the entire county. Even
when an indicator is available, not every tract or zip code record will have an
associated value. For some, the value will be missing. Common reasons for
missing data are data availability and small populations.

Because all indicators are essentially ratios of the form: cases/population
(expressed as percent or per 10,000), it is important to avoid unreliable indi-
cator values due to small populations. For this reason, an arbitrary threshold
of population greater than 100 was set. Records for zip codes and tracts with
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populations below 100 have been removed from the database. Sometimes
the source data for calculation of the indicators were available at a spatial
level other than census tract or zip code area. In these cases, risk indicators
were first calculated at the available level, and then imputed to the zip level.
The imputation was performed using a population-based weighting method.
Three imputation schemes were utilized in calculating the risk indicators:

(a) From school districts to zip code areas. This scheme was used to trans-
fer data collected for school districts, e.g., performance on mathematics tests,
dropouts, to zip code areas and to calculate corresponding risk indicators.

(b) From police departments’ areas of responsibility to zip code areas.
Crime statistics obtained from New York State Department of Criminal
Justice Services (DCJS) are tabulated by law enforcement agencies in Erie
County. Areas served by each law enforcement agency (usually a town or an
incorporated place) were delineated and data were interpolated to zip code
areas for ease of use and for compatibility with crime data from Buffalo Police
Department.

(c) From 1994 census tracts to zip code areas (current, i.e. from census
2000). This scheme was needed to transfer crime data from Buffalo Police
Department to zip code areas. After the interpolation to zip code areas,
Buffalo Police Department data were integrated into DCJS crime data to
provide better spatial detail of crime within Buffalo.

4 Multivariate analysis

Alcohol use and abuse can be thought of in terms of both a cause and an effect.
Alcohol use and abuse is a cause insofar as it leads to acute outcomes such as
DWI/DUI, DWI with fatal crashes, assault, domestic violence, child abuse,
sexual assault, murder, suicide as well as chronic outcomes such as cirrhosis of
the liver and other alcohol-induced diseases. See Ezzati et al. (2002), Room et
al. (2005), and Said and Wegman (2007). Some social indicators for these out-
comes from the Erie County Risk Indicators Database include crm.dwi (DWI
crime), de.traffic (fatal crash deaths), crm.viol (violent crime), de.trauma
(trauma deaths), jar.viol (juvenile crime), crm.drug (drug-related crimes),
de.suicide (suicide deaths), and de.cirrohsis (cirrhosis deaths). Conversely,
alcohol use and abuse can be thought of as being caused by poverty, mari-
tal unhappiness, poor education, drug and alcohol availability, neighborhood
factors, parental alcoholism, and other demographic factors. Some social in-
dicators in the Erie County Risk Indicators Database include fam.pov (family
poverty), med.income (median income), unem (unemployment), divorce (di-
vorce rates), nv.married (never married), edu.g8 (education below 8th grade
level), edu.col.d (educated beyond college), dropout (dropout rates), alc.all
(all alcohol outlets), alc.off (off license outlets, i.e., stores that sell alcohol
to be consumed elsewhere), tobacco (tobacco outlets), vacant (neighborhood
vacancies), vote.gen (general voting registrations) and poor.eng (poor house-
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Fig. 1. Parallel coordinate display of 25 variables associated with alcohol use in
Erie County, NY. This figure shows postal codes with high levels of admissions to
treatment for alcohol and drugs for individuals over 18 years old. See the text for
interpretation.

Fig. 2. Parallel coordinate display of 25 variables associated with alcohol use in
Erie County, NY. This figure shows postal codes with low levels of admissions to
treatment for alcohol and drugs for individuals over 18 years old. See the text for
interpretation.

hold English usage rates). An indicator of overall alcohol problems for Erie
County is the rate of admissions to treatment for alcoholism and substance
abuse. The appropriate indicator is oasas.18ov, which is the rate per 10,000
by zip code for individuals over the age of 18. We use this as the primary
indicator of severe alcohol use problems.
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Fig. 3. Map of Erie County, NY showing major subdivisions.

Figures 1 and 2 are parallel coordinate displays of the 25-dimensional
multivariate indicator data. Parallel coordinate multivariate representations
have become a standard way of visualizing multivariate data. See Inselberg
(1985), Wegman (1990, 1998, 2003), Wegman et al. (1993), and Wegman and
Solka (2002). See especially Wegman (1990, 2003) for interpretation of these
displays as a exploratory data analysis tool. In Figures 1 and 2, we have
provided a parallel coordinate display keyed on the oasas.18ov indicator, the
rate of admissions by zip code of individuals over 18. For zip codes with high
rates of alcohol and drug related admissions are shown in Figure 1, while those
with lower rates of admission are shown in Figure 2. This gives a very clear
picture of associations. High admission rates are associated with high levels
of drug-related crimes, violent crime, trauma deaths, cirrhosis deaths, high
numbers of tobacco outlets, high number of alcohol off-license outlets, high
number of all alcohol outlets, high fraction of vacant houses, high percentage
of never married, high percentage of divorces, high levels of unemployment,
high percentage of population educated to the 8th grade or less, and high
levels of family poverty. Conversely, high admission rates are associated with
low levels of DWI arrests, low levels of voter registrations, low percentages of
college educated population, and low levels of median income. None of these
is surprising except possible the low levels associated with DWI arrests. In
view of the association with poverty in Erie County, one suspects that the low
correlation between alcohol and drug admissions and DWI arrests is because
poor people are less likely to drive frequently or to have automobiles.
Spatial analysis will give additional insight into this situation.
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Fig. 4. CCmap display with oasas.18ov as the response variable and vacant and
med.income as the independent predictor variables. For CCmaps, it is conventional
to start with the sliders adjusted so that about 1/3 is in the low range, 1/3 in the
middle range, and 1/3 in the high range. Further adjustments can isolate extremes.

5 Spatial analysis using CCmaps

Exploratory multivariate data analysis is suggestive of some further spatial
exploration. We have hypothesized that alcohol use and abuse has its roots
in poverty and related social indicators. Conversely, alcohol causes other ad-
verse societal effects. Indeed, causality is uncertain in many situations. Do
neighborhoods degenerate because of alcohol and drug availability or do de-
generating neighborhoods provide an easy environment for drugs and alcohol
to flourish? Do people commit crimes because of alcohol and drugs or does
a criminal life-style encourage use of alcohol and drugs? In any case, the
multivariate visualization in Figures 1 and 2 strongly suggests there is an as-
sociation. We include Figure 3, which is a map representation of Erie County
for the spatial orientation of the reader.

A spatial analysis tool that allows us to dynamically explore the rela-
tionships among these indicator variables is the conditioned choropleth maps
(CCmaps). See Carr et al. (2000, 2002, 2004, 2005) and Carr (2005). The
CCmaps software allows dynamic exploration of spatially-oriented data. The
software essentially supports a five-dimensional view of the data with two of
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the dimensions being geospatial and the other three being in our case indi-
cator variables. The indicator variables are essentially controlled by sliders
so that proportions may be dynamically adjusted. There are sliders on top,
to the right, and at the bottom of the display. The sliders are divided into
three regions, perhaps best thought of as high, medium, and low. The bottom
slider divides the display into three vertical regions. The right slider divides
the display into three horizontal regions. Thus in the CCmaps display, there
are nine panels. See Figure 4-6 for examples. The top slider is color-coded
into blue, gray, and red and these color codes show up in the map displays.
Conceptually, the top slider controls a response variable while the right and
bottom sliders control independent predictor variables. Due to the reproduc-
tion of the paper in gray scale, these color nuances are not available in the
printed version.

In Figure 4, we use Vacant Houses and Median Household Income as the
independent variables and the EtOH Treatment Admissions > 18 per 10,000
as the response variable. EtOH is short-hand for ethanol or ethyl alcohol.
This plot shows alcohol problems as a function of neighborhood character-
istics. The bottom right-hand panel shows a hot spot of alcohol problems
in Buffalo corresponding to neighborhoods that have a high percentage of
vacant houses and low median household income. Conversely, the upper left-
hand panel shows a more suburban region with low levels of alcohol problems
corresponding to low levels of vacant houses and relatively high levels of in-
come. By examining all nine panels, one can isolate spatial regions with high
and with low levels of alcohol problems.

In Figure 5, we replace the Median Household Income variable with an
alcohol availability variable. Again in the upper right panel, we see that there
is a hotspot in Buffalo for alcohol admissions associated with high levels of
housing vacancy and high levels of alcohol availability. As in Figure 4, the
lower left panel shows a spatial cluster of suburban locations with low levels
of alcohol problems associated with low levels of vacant houses and low levels
of alcohol availability. Figures 4 and 5 are very suggestive that poverty, poor
neighborhood infrastructure and high alcohol availability are associated with
high levels of alcohol problems as reflected by alcohol and drug treatment
admissions. The spatial analysis allows us to pinpoint problem areas where
interventions may make sense, as well as identify areas where interventions
may be less necessary.

In Figure 6, we choose alcohol and drug treatment over 18 and alcohol
off license availability as independent predictor variables and examine the
violent crimes variable as the response variable. Figures 4 and 5 focused
on environmental variables as predictors of alcohol problems. In Figure 6,
we change the perspective somewhat, and examine crime as a response to
alcohol problems. As before, we see a high crime area in the upper right
panel associated with high levels of alcohol availability and high levels of
individuals over 18 in treatment for alcohol and drug problems. Of course,
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Fig. 5. CCmap display with oasas.18ov as the response variable and vacant and
alc.off as the independent predictor variables. In both Figures 4 and 5, we examine
alcohol problems as a function of neighborhood quality.

the usual statistical caveat of association does not imply causation, but such
plots are suggestive. Please note that the problem areas highlighted in Figure
4, 5, and 6 are not identical.

Finally in Figure 7, we consider the same independent predictor variables
as in Figure 6, but consider DWI arrests as the response variable. In this
case, we have a startling difference. In what was a problem area before in the
upper right panel, we see that Buffalo is seemingly on the low end of DWI
arrests, while the previously non-problem areas in the more rural areas of
Erie County are now the apparent location of problem areas. It is clear that
the type of interventions required for distinct alcohol-related problems are
highly dependent on the spatial environments where the problems take place
and that the geospatial analysis presented here reinforce this point.

6 Conclusions

Wegman and Said (2008) and Said (2008) make the point that proposed
interventions for alcohol-related problems are highly dependent on multiple
factors including spatial and temporal analysis and that interventions not
carefully thought out may have unintended consequences. The analysis in this



200 Wieczorek, W.F. et al.

Fig. 6. In this figure we examine violent crime as a function of alcohol problems.
Here crm.viol is the response variable and oasas.18ov and alc.off are the indepen-
dent predictor variables.

paper focuses strongly on the multivariate spatial visualization and, by doing
so, strongly reinforces the points made by Wegman and Said. Although they
consider Fairfax County, VA and, in this paper, we consider Erie County, NY
the concepts presented are general in nature. Indeed, their geospatial analyses
also show relative hotspots as well. The data available for Erie County, NY
have a much larger collection of variables, hence, a more subtle analysis can be
made. Interestingly enough, there are common elements as well as differences.
Both locations have large university communities. Fairfax County is a largely
suburban community while Erie County contains a major city, with suburbs.
Fairfax County has a large military presence, which is not the case with Erie
County. The differences only highlight the commonality of the approaches.

The results of the analyses presented in this paper also have substantive
implications for more typical statistical models in alcohol research that use
multiple levels of data (e.g., data from individuals and indicator data at a
group level). The results of the CCmaps analyses suggest that it may be
possible to use weighted combinations of group level variables to explore in-
teractions effects at the group level. This could prove to be more enlightening
in multi-level models than using only simple multiplicative interactions and
should be explored in future research.
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Fig. 7. Here we examine DWI arrests as a function of alcohol problems. In this
figure, crm.dwi is the response variable and oasas.18ov and alc.off are the inde-
pendent predictor variables.
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Abstract. This paper considers the optimal investment strategy for an insurer
under the criterion of mean-variance. The risk process is a compound Poisson pro-
cess and the insurer can invest in a risk-free asset and multiple risky assets. We
obtain the optimal investment policy using the stochastic liner-quadrant (LQ) con-
trol theory. Then the efficient strategy (optimal investment strategy) and efficient
frontier are derived explicitly by a verification theorem with the classical solution
of Hamilton-Jacobi-Bellman (HJB) equation.
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1 Introduction

The problem of optimal investment for an insurer has attracted more and
more attention since the work of Browne (1995), where the risk process was
approximated by a Brownian motion with drift and the stock price process
was modeled by a geometric Brownian motion. The expected constant abso-
lute risk aversion (CARA) utility from the terminal wealth was maximized.
Browne (1995) also showed that the target of minimizing the ruin probability
and the target of maximizing the exponential utility of the reserve produce
the same type of strategy when the interest rate of the risk-free asset is zero.
In Hipp and Plum (2000), the risk process was described by the classical
Cramer-Lundberg model and the insurer can invest in a risky asset to mini-
mize the ruin probability. This set-up was adopted by most of the works on
this subject since 2000. Later, there were some papers considering the same
optimal investment problem, such as Gaier et al. (2003), Hipp and Schmidli
(2004), Yang and Zhang (2005), Wang (2007), and Wang, Xia and Zhang
(2007). In Wang (2007), the claim process was supposed to be a pure jump
process and the insurer had the option of investing in multiple risky assets.
In the sense of maximizing the exponential utility of the terminal wealth, the
optimal strategy was to put a fixed amount of money in each risky asset if
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there was no risk-free asset.
The mean-variance portfolio selection problem was firstly proposed by

Markowitz (1952). From then on, it became a rather popular criterion to
measure the risk in finance theory; see Merton (1972), Zhou and Li (2000),
and Li, Zhou and Lim (2002) etc. Recently, Wang, Xia and Zhang (2007)
pointed out that the mean-variance problem was also of interest in insurance
applications. They considered the optimal investment problem under the cri-
terion of mean-variance using a martingale approach and the insurer could
invest in a risk-free asset and a risky asset.

In this paper, we use stochastic LQ control as the framework for studying
the mean-variance portfolio selection problem. Compared with Wang (2007),
the criterion is mean-variance. Wang, Xia and Zhang (2007) considered one
risky asset and they used martingale approach, here we consider multiple
risky assets and use the stochastic LQ control theory. We give a new ver-
ification theorem of our jump-diffusion model, and then the optimal value
function and optimal strategy are derived explicitly.

2 Problem formulation

Let (Ω,F , P ) be a probability space with filtration {Ft} containing all objects
defined in the following.

The risk process (R(t)) of the insurer is modeled by

dR(t) = cdt− d

N(t)∑

i=1

Yi, R(0) = u, (1)

where constant c is the premium rate. {N(t)} is a Poisson process with inten-
sity λ > 0 and N(t) represents the number of claims occurring in time interval
[0, t]. Yi is the size of the ith claim and Yi is independent of {N(t)}. Thus
the compound Poisson process

∑N(t)
i=1 Yi represents the cumulative amount of

claims in time interval [0, t]. The claims’ sizes Y = {Yi, i ≥ 1} are assumed to
be an i.i.d sequence with a common distribution function F . The ith claim
occurs at time Ti. The expectation of Y is EY = µ1 > 0 and the second
moment of Y is E(Y 2) = µ2 > 0. The risk process defined in equation (1),
from the perspective of the insurer is really a pay-off process associated with
the (insurance) contracts he (or she) has entered.

Suppose that the insurer is allowed to invest all of his (or her) wealth in
a financial market consisting of one risk-free asset (bond) and m risky assets
(stocks). We consider the financial market where m + 1 assets are traded
continuously on a finite time horizon [0, T ]. The price of the bond is given by

{
dP0(t) = r(t)P0(t)dt, t ∈ [0, T ],
P0(0) = p0,

(2)
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where r(t)(> 0) is the interest rate of the bond.
The prices of the stocks are modeled by the following stochastic differential

equations
⎧
⎪⎪⎨

⎪⎪⎩

dPi(t) = Pi(t)[bi(t)dt +
m∑

j=1

σij(t)dW j(t)], t ∈ [0, T ],

Pi(0) = pi, i = 1, 2, · · · ,m,

(3)

where bi(t)(> r(t)) is the appreciation rate and σij(t) is the volatility coef-
ficient. We denote σ(t) := (σij(t)). W (t) := (W 1(t),W 2(t), · · · ,Wm(t))′ is
a standard {Ft}t≥0−adapted m−dimensional Brownian motion. The sign ′

here means the transposition. We assume that r(t), b(t) and σ(t) are deter-
ministic, Borel-measurable and bounded on [0, T ]. In addition, we assume
that the non-degeneracy condition

σ(t)σ(t)′ ≥ δI, ∀t ∈ [0, T ], (4)

where δ > 0 is a given constant, is satisfied.
Let ui(t), i = 0, 1, · · · ,m denote the total market value of the agent’s

wealth in the ith bond/stock, and u0(t) + u1(t) + · · · + um(t) = X(t). We
call u(t) := (u1(t), u2(t), · · · , um(t))′ a strategy. Thus, the resulting surplus
process X(t) is given by

⎧
⎪⎪⎨

⎪⎪⎩

dX(t) = [r(t)X(t) + B(t)′u(t) + c]dt + u(t)′σ(t)dW (t) − d

N(t)∑

i=1

Yi

X(0) = X0,

(5)

where B(t) := (b1(t) − r(t), · · · , bm(t) − r(t))′ ∈ R
m
+ .

A strategy u(t) is said to be admissible if u(t) is Ft-progressively measur-
able, and satisfies E

∫ T

0
(u2

1(t) + u2
2(t) + · · ·+ u2

m(t))dt < +∞. We denote the
set of all admissible strategies by Π .

Let Xu(T ) denote the terminal wealth when the strategy u(·) is applied.
Then the problem of mean-variance portfolio choice is to maximize the ex-
pected terminal wealth E[Xu(T )] and, in the meantime, to minimize the
variance of the terminal wealth Var[Xu(T)] over u(·) ∈ Π . This is a multi-
objective optimization problem with two conflicting criteria. The trading
strategy u∗ ∈ Π is said to be mean-variance efficient if there does not exist
a strategy u ∈ Π such that

E[Xu(T )] ≥ E[Xu∗
(T )] and Var[Xu(T)] ≤ Var[Xu∗

(T)]

with at least one inequality holding strictly. In this case, we call
(Var[Xu∗

(T)],E[Xu∗
(T)]) ∈ R

2 an efficient point. The set of all efficient points
is called the efficient frontier.
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We firstly consider the problem of finding an admissible investment policy
such that the expected terminal wealth satisfies EXu(T ) = d, where d is a
constant, while the risk measured by the variance of the terminal wealth

Var[Xu(T)] = E{Xu(T) − E[Xu(T)]}2 = E{[Xu(T) − d]2}
is minimized. We impose throughout this paper the following assumption
Assumption 1 The value of the expected terminal wealth d satisfies

d ≥ X0e
∫

T
0 r(s)ds + (c− λµ1)

∫ T

0

e
∫

T
v

r(s)dsdv.

Assumption 1 states that the investor’s expected terminal wealth d

can not be less than X0e
∫

T
0 r(s)ds + (c − λµ1)

∫ T

0 e
∫

T
v

r(s)dsdv, which coin-
cides with the expected amount that he/she would earn if all of the ini-
tial wealth is invested in the bond for the entire investment period. Clearly,
this is a reasonable assumption, for the solution of the problem under d <

X0e
∫ T
0 r(s)ds + (c − λµ1)

∫ T

0
e
∫ T

v
r(s)dsdv is foolish for rational investors. We

will discuss this assumption additionally later in this paper.
Definition 1. The above variance minimizing problem can be formulated as
the following optimization problem:

min Var[Xu(T)] = E[Xu(T) − d]2

subject to

⎧
⎪⎨

⎪⎩

EXu(T ) = d

u ∈ Π

(X(·), u(·)) satisfy (5).

(6)

The optimal portfolio for this problem (corresponding to a fixed d) is called a
variance minimizing portfolio, and the set of all points (VarX∗(T), d), where
VarX∗(T) denotes the optimal value of (6) corresponding to d and d runs over
[X0e

∫ T
0 r(s)ds +(c−λµ1)

∫ T

0 e
∫ T

v
r(s)dsdv,+∞), is called the variance minimiz-

ing frontier.
Since (6) is a convex optimization problem, the equality constraint EXu(T ) =
d can be dealt with by introducing a Lagrange multiplier β ∈ R. In this
way, problem (6) can be solved via the following optimal stochastic control
problem(for every fixed β)

min E{[Xu(T) − d]2 + 2β[EXu(T) − d]},

subject to

{
u ∈ Π

(X(·), u(·)) satisfy (5),

(7)

where the factor 2 in the front of β is introduced in the objective function
just for convenience. Clearly, this problem is equivalent to (letting b = d−β)

min E{[Xu(T) − b]2},

subject to

{
u ∈ Π

(X(·), u(·)) satisfy (5),

(8)
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in the sense that the two problems have exactly the same optimal control.

3 Solution to an auxiliary stochastic LQ-problem

Problem (8) formulated in the previous section is a stochastic optimal LQ
control problem. In the following, we will show how to solve this problem
with the help of the HJB equation.

Firstly, we need to solve a auxiliary problem. We consider the following
controlled linear stochastic differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

dx(t) = [r(t)x(t) + B(t)′u(t) + c(t)]dt + u(t)′σ(t)dW (t) − d

N(t)∑

i=1

Yi

x(0) = x0,

(9)

and the problem:

min E{1
2
[x(T)]2},

subject to

{
u ∈ Π

(x(·), u(·)) satisfy (9).

(10)

Note that if we set x(t) = X(t)− (d− β), c(t) = c + (d− β)r(t) and X(0) =
x(0) + (d− β), (9) is equivalent to (5).

We define the optimal value function by

J(t, x) = inf
u∈Π

E{1
2
[x(T )]2|x(t) = x}. (11)

Before starting, we recall the following lemma.

Lemma 1. Let h be a continuous, strictly convex quadratic functions, h(u) :=
1
2u

′DD′u + αB′u over u ∈ R, where B ∈ R
m, and D ∈ R

m×m. Then h has
a minimizer u∗ = −α(DD′)−1B and

h(u∗) = h(−α(DD′)−1B) = −1
2
α2B′(DD′)−1B.

Now we study the corresponding HJB equation of problem (9)-(10), which
is the following partial differential equation:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

inf
u
{vx(t, x)[r(t)x + B(t)′u + c(t)] +

1
2
vxx(t, x)u′σ(t)σ(t)′u}

+ vt(t, x) + λE[v(t, x − Y ) − v(t, x)] = 0

v(T, x) =
1
2
x2.

(12)
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Here σ(t)′ means the transposition of σ(t) and vt(t, x) means the partial
derivative of v(t, x).

Suppose that (12) has a solution which has the following form

V (t, x) =
1
2
P (t)x2 + Q(t)x + R(t). (13)

The boundary condition in (12) implies that P (T ) = 1, Q(T ) = 0, and
R(T ) = 0. Inserting this trivial solution into (12) and rearranging, we have

inf
u
{1
2
u′σ(t)σ(t)′u + B(t)′u[x +

Q(t)
P (t)

]}P (t) + [
1
2
Pt(t) + P (t)r(t)]x2

+ [Qt(t) + Q(t)r(t) + P (t)c(t) − λµ1P (t)]x + Rt(t) + Q(t)c(t)

− λµ1Q(t) +
1
2
λµ2P (t) = 0.

(14)

Using Lemma 1 by letting α = x + Q(t)
P (t) , u = u, D = σ(t), and B = B(t),

then u∗(t) = −[x + Q(t)
P (t) ]Σ(t), where Σ(t) = (σ(t)σ(t)′)−1B(t) and (14)

becomes

[ 12Pt(t) + P (t)r(t)]x2 + [Qt(t) + Q(t)r(t) + P (t)c(t) − λµ1P (t)]x + Rt(t)

+Q(t)c(t) − λµ1Q(t) + 1
2λµ2P (t) − 1

2 [x + Q(t)
P (t) ]

2B(t)′Σ(t)P (t) = 0.

Comparing the coefficients of x2, x, and the constants respectively, and
adding to the boundary conditions, we have the following differential equa-
tions {

Pt(t) = [−2r(t) + B(t)′Σ(t)]P (t)
P (T ) = 1

(15)

{
Qt(t) = [−r(t) + B(t)′Σ(t)]Q(t) + [λµ1 − c(t)]P (t)
Q(T ) = 0

(16)

⎧
⎪⎨

⎪⎩
Rt(t) = [λµ1 − c(t)]Q(t) − 1

2
λµ2P (t) +

1
2
B(t)′Σ(t)

Q(t)2

P (t)
R(T ) = 0.

(17)

Solving equations (15), (16), and (17), substituting the solutions into (13),
and rearranging, we obtain the following theorem

Theorem 1. A classical solution of the HJB equation (12) is

V (t, x) =
1
2
λµ2

∫ T

t

e
∫ T

v
[2r(s)−B(s)′Σ(s)]dsdv

+
1
2
e−

∫ T
t

B(s)′Σ(s)ds{xe
∫ T

t
r(s)ds +

∫ T

t

[c(s) − λµ1]e
∫ T

s
r(z)dzds}2

(18)
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and the value u∗(t, x) that minimize the left side of the first equation in (12)
is

u∗(t, x) = −Σ(t){x + e−
∫

T
t

r(s)ds

∫ T

t

[c(s) − λµ1]e
∫

T
s

r(z)dzds}.

4 Verification theorem

The classical verification theorem described by Fleming and Soner (1993)
for diffusion model can not be applied to our jump-diffusion model. In the
following, a new verification theorem is given for our model.

Theorem 2. Let V (t, x) be defined by Theorem 1. Then V (t, x) = J(t, x).
Furthermore, the optimal strategy u∗(v, x(v)) is equal to

−(σ(v)σ(v)′)−1B(v){x(v) + e−
∫

T
v

r(s)ds

∫ T

v

[c(s) − λµ1]e
∫

T
s

r(z)dzds}. (19)

Proof : For any admissible strategy u, applying Ito’s formula for jump-diffusion
process (9), we have

V (T, xu(T )) = V (t, x) +
N(T )∑

i=N(t)+1

[V (Ti, x
u(Ti)) − V (Ti−, xu(Ti−))]

+
∫ T

t

{Vs(s, xu(s)) + [r(s)xu(s) + B(s)′u(s) + c(s)]Vx(s, xu(s))}ds

+
∫ T

t

u(s)′σ(s)Vx(s, xu(s))dW (s) +
1
2

∫ T

t

u(s)′σ(s)σ(s)′u(s)Vxx(s, xu(s))ds.

Since V (t, x) fulfills HJB equation (12), we have

1
2
[xu(T )]2 ≥ λ

∫ T

t

∫ ∞

0

[V (s, xu(s)) − V (s, xu(s) − y)]dF (y)ds

+
N(T )∑

i=N(t)+1

[V (Ti, x
u(Ti)) − V (Ti−, xu(Ti−))]

+
∫ T

t

u(s)′σ(s)Vx(s, xu(s))dW (s) + V (t, x)

(20)

We know that

N(t)∑

i=0

[V (Ti, x
u(Ti)) − V (Ti−, xu(Ti−))] +

∫ t

0

u(s)′σ(s)Vx(s, xu(s))dW (s)

+ λ

∫ t

0

∫ ∞

0

[V (s, xu(s)) − V (s, xu(s) − y)]dF (y)ds
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is a martingale. Taking expectations on both sides of inequality (20), it follows
that

1
2
E{[xu(T )]}2 ≥ V (t, x),

which implies J(t, x) ≥ V (t, x). For the optimal strategy u∗, the inequality
becomes equality, that is 1

2E{[xu∗
(T )]2} = V (t, x). Thus J(t, x) ≤ V (t, x),

then J(t, x) = V (t, x), which completes the proof.

5 Efficient strategy and efficient frontier

In this section, we apply the results established in the previous section to the
mean-variance problem. First of all, we give the following definition

Definition 2. The mean-variance portfolio selection problem is formulated
as the following multi-objective optimization problem

min (J1(u(·)), J2(u(·))) := (Var[Xu(T)],−E[Xu(T)])

subject to

{
u ∈ Π

(X(·), u(·)) satisfy (5).

(21)

An admissible portfolio u∗(·) is called an efficient portfolio if there exists no
admissible portfolio u(·) such that

J1(u(·)) ≤ J1(u∗(·)), J2(u(·)) ≤ J2(u∗(·)) (22)

with at least one of the inequalities holding strictly. In this case, we call
(J1(u∗(·)),−J2(u∗(·))) ∈ R

2 an efficient point. The set of all efficient points
is called the efficient frontier.

In words, an efficient portfolio is one for which there does not exist another
portfolio that has higher mean and no higher variance, and/or has less vari-
ance and no less mean at the terminal time T . In other words, an efficient
portfolio is one that is Pareto optimal. It is well known that the variance
minimizing portfolio is really the efficient portfolio (see Bielecki, Jin et al
(2005)). So problem (6) is equivalent to problem (21).

Now, we present the optimal value of problem (7). For convenience, we
omit the superscript u of Xu(t). Set x(t) = X(t) − (d − β) (then X(t) =
x(t) + (d−β), X(0) = x(0)+ (d− β)) and c(t) = c+(d− β)r(t) in (9). Then
(9) is equivalent to (5). We have

E{1
2
[x(T )]2} = E{1

2
[X(T ) − (d− β)]2}

= E{1
2
[X(T )− d]2} + β[EX(T ) − d] +

1
2
β2.
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Hence, for every fixed β, we have

min
u∈Π

E{1
2
[X(T )− d]2} + β[EX(T )− d]

= min
u∈Π

E[
1
2
(x(T ))2] − 1

2
β2 = V (0, x(0)) − 1

2
β2.

Because c(s) = c + (d − β)r(s) in (19), the optimal investment strategy of
problem (7) is

u∗(t,X(t)) = (u∗
1(t,X(t)), u∗

2(t,X(t)), · · · , u∗
m(t,X(t)))

= −Σ(t)[x + (d− β)(1 − e−
∫ T

t
r(s)ds) + (c− λµ1)

∫ T

t

e−
∫ s

t
r(z)dzds]

= −Σ(t)[X(t) − (d− β)e−
∫ T

t
r(s)ds + (c− λµ1)

∫ T

t

e−
∫ s

t
r(z)dzds].

(23)

Therefore, we conclude that the optimal value of problem (7) is

min
u∈Π

E[X(T ) − d]2 + 2β[EX(T )− d]

=P (0)[X0 − (d− β)]2 + 2Q(0)[X0 − (d− β)] + 2R(0)− β2

=e−
∫

T
0 B(s)′Σ(s)ds[X0e

∫
T
0 r(s)ds + (c− λµ1)

∫ T

0

e
∫

T
v

r(s)dsdv − d]2

+ 2e−
∫

T
0 B(s)′Σ(s)ds[X0e

∫
T
0 r(s)ds + (c− λµ1)

∫ T

0

e
∫

T
v

r(s)dsdv − d]β

+ [e−
∫

T
0 B(s)′Σ(s)ds − 1]β2 + λµ2

∫ T

0

e
∫

T
v

[2r(s)−B(s)′Σ(s)]dsdv.

(24)

Note that the above value still depends on the Lagrange multiplier β, we
denote it as W (β). To obtain the optimal value (i.e., the minimum variance
Var X(T )) and optimal strategy for the original portfolio selection problem
(6), we need to maximize the value in (24) over β ∈ R according to the
Lagrange duality theorem (see Luenberger (1968)).

From (24) we can see that, W (β) is a concave function, so W (β) attains
its maximum

W (β∗) = [X0e
∫ T
0 r(s)ds+(c−λµ1)

∫ T
0 e

∫ T
v r(s)dsdv−d]2

e
∫ T
0 B(s)′Σ(s)ds−1

+λµ2

∫ T

0
e
∫ T

v
[2r(s)−B(s)′Σ(s)]dsdv

at β∗ = X0e
∫ T
0 r(s)ds+(c−λµ1)

∫ T
0 e

∫ T
v r(s)dsdv−d

e
∫ T
0 B(s)′Σ(s)ds−1

.

The above discussion leads to the following theorem

Theorem 3. The efficient strategy of portfolio selection problem (6) (or
(21)) corresponding to the expected terminal wealth EX(T ) = d, as a function
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of time t and wealth X(t), is

u∗(t,X(t)) = (u∗
1(t,X(t)), u∗

2(t,X(t)), · · · , u∗
m(t,X(t)))

= −Σ(t)[X(t) − (d− β∗)e−
∫

T
t

r(s)ds + (c− λµ1)
∫ T

t

e−
∫

s
t

r(z)dzds],
(25)

where

β∗ =
X0e

∫ T
0 r(s)ds + (c− λµ1)

∫ T

0
e
∫ T

v
r(s)dsdv − d

e
∫ T
0 B(s)′(σ(s)σ(s)′)−1B(s)ds − 1

.

Moreover, the efficient frontier is

Var[X(T)] =
[X0e

∫
T
0 r(s)ds + (c− λµ1)

∫ T

0 e
∫

T
v

r(s)dsdv − EX(T )]2

e
∫ T
0 B(s)′(σ(s)σ(s)′)−1B(s)ds − 1

+ λµ2

∫ T

0

e
∫

T
v

[2r(s)−B(s)′(σ(s)σ(s)′)−1B(s)]dsdv.

(26)

The expected terminal wealth EX(T ) satisfies

EX(T ) ≥ X0e
∫ T
0 r(s)ds + (c− λµ1)

∫ T

0

e
∫ T

v
r(s)dsdv.

Remark 1. From (25) and (26), we can see that if we do not consider the
premium income and the claim payout, that is c = 0 and λ = 0, the efficient
strategy and efficient frontier in this paper are the same as those in Zhou and
Li (2000).

Remark 2. If there is a strategy u1 leading to EXu1(T ) < X0e
∫

T
0 r(s)ds +(c−

λµ1)
∫ T

0
e
∫ T

v
r(s)dsdv, we can get another strategy u2 satisfying V ar[Xu1(T )] =

V ar[Xu2(T )] and EXu2(T ) = 2[X0e
∫

T
0 r(s)ds + (c − λµ1)

∫ T

0
e
∫

T
v

r(s)dsdv] −
EXu1(T ) > X0e

∫
T
0 r(s)ds + (c − λµ1)

∫ T

0 e
∫

T
v

r(s)dsdv > EXu1(T ) from (26).
u2 is mean-variance efficient. So Assumption 1 is reasonable.

Example 11. Let m = 3, T = 1, µ1(= EY ) = 0.1, r(t) ≡ r, B(t) ≡ B =⎛

⎝
0.02
0.03
0.04

⎞

⎠, and σ(t) ≡ σ =

⎛

⎝
1 0 2

3
0 1 0
0 0 2

3

⎞

⎠ .

(1) Let µ2 = 0.02 (that is, V ar(Y ) = µ2 − µ2
1 = 0.01), λ = 3, r = 0.04

and c takes values 0.32, 0.30, and 0.28, then the efficient frontier is given
by Figure 1 (the upside of the parabola). From Figure 1 we conclude that c
does not effect the shape of the efficient frontier and the higher c, the higher
EX(T ) with the same Var(X(T)).

(2) Let c = 0.32, λ = 3, r = 0.04 and µ2 takes values 0.025, 0.020, and
0.015 (that is V ar(Y ) take values 0.015, 0.010, and 0.005), then the efficient
frontier is given by Figure 2 (the upside of the parabola). From Figure 2 we
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can see that the higher µ2, the lower EX(T ) with the same Var(X(T)) and
this phenomenon is not obvious when Var(X(T)) is big enough.

(3) Let µ2 = 0.02 (that is, V ar(Y ) = 0.01), c = 0.32, r = 0.04 and λ
takes values 3.5, 3, and 2.5, then the efficient frontier is given by Figure 3
(the upside of the parabola). From Figure 3 we can see that the higher λ, the
lower EX(T ) with the same Var(X(T)).

(4) Let µ2 = 0.02 (that is, V ar(Y ) = 0.01), c = 0.32, λ = 3, and r takes
values 0.05, 0.04, and 0.03, then the efficient frontier is given by Figure 4 (the
upside of the parabola).
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Fig. 1. Efficient frontier of different c. Fig. 2. Efficient frontier of different µ2.
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6 Some other criteria

In Wang (2007), their objective is maximizing the expected exponential util-
ity of the terminal wealth, that is maxu∈Π E[1 − e−ηX(T )]. We can consider
it as maximizing the benefit. They do not consider the risk. Then the opti-
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mal strategy is u(t) = η−1ert((σ(t)σ(t)′)−1)B(t), which is independent of the
current wealth X(t).

In Yang and Zhang (2005), they minimize the ruin probability which is
a measure of the company’s risk and they do not consider the benefit of the
company. Their optimal investment strategy is also not related to the current
wealth.

In this paper, we consider both the benefit (mean) and the risk (vari-
ance) under the mean-variance criterion. Our optimal investment strategy is
related to the current wealth.
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Abstract. This paper discusses the statistical behaviors and applicability of the
jump-GARCH model proposed by Chen and Sato (2007), in which jump arrivals
are time inhomogeneous and also state dependent. We discuss maximum likelihood
estimation and likelihood ratio tests for the model. We investigate the statistical
behaviors of the jump-GARCH model through financial time series analysis and
showing comparisons of this model with GARCH and traditional jump models.
Our results indicate that this model can reveal many important characteristics
related with jump dynamics and volatility structures in asset prices.

Keywords: jump dynamics, jump-GARCH model, volatility

1 Introduction

Nowadays it has become a stylized fact that many financial asset prices pos-
sess jumps and the importance of taking considerations of jumps into the
models has been widely recognized in finance literature. How do jumps oc-
cur? Empirical evidence indicates that jump arrivals tend to cluster, among
others. As such, jump arrivals do not follow a traditional homogeneous Pois-
son process, which is a common assumption in many models used so far.
Financial modeling with jump models and processes is thoroughly discussed
by a recent work of Cont and Tankov (2004), in which Lévy processes with
applications in modeling and option pricing of asset prices are fully treated.
These authors also show some drawbacks of Lévy processes and indicate the
importance of considering more general processes such as time inhomoge-
neous jump processes and stochastic volatility models with jumps. Recent
researches have begun to develop jump models to cope with time inhomoge-
neous effects in jump arrivals by introducing a time-varying jump intensity
into the model. Bates (2000), Andersen et al. (2002) and Pan (2002) consid-
ered continuous time jump-SV processes with a time-varying jump intensity
depending on volatility. Maheu and Mccudy (2004) proposed a discrete time
jump-GARCH model in which the conditional jump intensity is autoregres-
sive.
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Another important characteristic of jump dynamics revealed by empiri-
cal study of stock prices is that jump arrivals tend to be state-dependent,
or asymmetric, which means that jump arrivals in a downside period may
possess different characteristics with those in an upside period. It seems
that the state-dependent structure of jump dynamics has not been taken
into consideration in most of the models proposed so far. To incorporate
state dependent jump dynamics, Chen and Sato (2007) proposed a nonlinear
jump-GARCH model in which jump arrivals are allowed to be time-varying
and also state-dependent. In this research we investigate in some details the
statistical behaviors of the jump-GARCH model. We discuss maximum like-
lihood estimation and likelihood-ratio tests for this model. The model is used
to analyze the jump dynamics of some financial asset prices. We will report
the results related with the characteristics of jump dynamics and structures
of volatilities of financial asset prices, which include some individual stocks,
TOPIX, Yen-Dollar exchange rate and yields of bonds. Finally, we indicate
possibilities for extending the jump-GARCH model to achieve more general-
ity, flexibility and applicability.

2 Jump-GARCH models

Let St be the price of some financial asset at time t and rt = logSt− logSt−1

its return. In practice the return series is often fitted by some simple models
such as an AR(1) model:

rt = µ + φ1rt−1 + εt,

where εt is the return shock, representing the one-step forecast error of the
return. In many cases εt exhibits the behaviors of heteroscedastic weak white
noise with heavy-tailed distribution, and the most widely used models for
the return shock are ARCH and the GARCH-zoo models. However, GARCH
models do not presume the existence of jumps and are not suitable for finan-
cial asset prices that actually have jumps. To remedy the problem of GAHCH
models and also drawbacks of time homogeneous jump models, Maheu and
Mccudy (2004) proposed a jump-GARCH model by adding an inhomoge-
neous jump component into the GARCH models. Although the model of
Maheu and Mccudy (2004) shows nice behaviors for modeling inhomoge-
neous jump dynamics and volatility structures, it does not specify explicitly
how jump dynamics depend on the state of asset prices. To incorporate both
time inhomogeneous and state dependent structures of jump dynamics, Chen
and Sato (2007) proposed another jump-GARCH model, which is introduced
in this section.

Taking jumps of financial prices into consideration, now the return shock
is expressed as a sum of two conditionally independent components:

εt = εt,1 + εt,2, {εt,1|Ft−1} ⊥ {εt,2|Ft−1},
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where εt,1 represents the one-step forecast error of the part of the return that
changes smoothly, while εt,2 is the one-step forecast error of the part of the
return that is due to a jump. Here Ft−1 is the information of the prices up
to time t− 1. We model the component εt,1 in the following way:

εt,1 = σt,1zt, {zt} ∼ NID(0, 1),

σ2
t,1 := Var(εt,1|Ft−1) = ω + βσ2

t−1,1 + αε2
t−1,

where ω, β, α > 0 and β + α < 1. We call εt,1 the GARCH-shock and
σ2

t,1 the GARCH-volatility. This model is close to a GARCH(1,1) model. It
would become a genuine GARCH(1,1) model if the shock εt−1 was substituted
with the GARCH-shock εt−1,1. Here the consideration behind this is that
the GARCH-shock can not be observed, and that jumps occurred previously
cause impacts on GARCH-volatility.

In order to model the jump component εt,2, we need to make some as-
sumptions about the jump dynamics. Suppose in the t-th day there will be
Nt jumps to occur, among which the jump size of the k-th jump is Yt,k. Let
Jt denote the jump amplitude in the t-th day. We make the following major
assumptions:

Nt|Ft−1 ∼ Poisson(λt), {Yt,k}∞k=1 ∼ NID(θ, δ2).

We further assume that Nt and {Yt,k} are independent. Here λt is the con-
ditional jump intensity which controls the jump dynamics. We propose to
model the conditional intensity in the following way:

λt = ν0 + ν1λt−1 + τε2
t−1 + γε2

t−1I(εt−1<0),

where ν0, τ, γ ≥ 0, 0 ≤ ν1 < 1, and IA is the indicator function of the
event A. The main roles of the parameters are as follows: ν1 controls the
persistence of jump-clustering effect, τ and γ control the time-varying and
state-dependent (asymmetric) effects in jump dynamics. By definition, the
jump component εt,2 represents the one-step forecast error of the jump am-
plitude Jt. Under the above assumptions we easily understand that εt,2 is
expressed as

εt,2 := Jt − E(Jt|Ft−1) =
Nt∑

k=1

Yt,k − θλt.

We call εt,2 the jump-shock. It induces another source of risk (volatility),
which is given by

σ2
t,2 := Var(εt,2|Ft−1) = (θ2 + δ2)λt.

We call σ2
t,2 the jump-volatility. The total volatility is the sum of the GARCH-

vol. and the jump-vol.:

σ2
t := Var(εt|Ft−1) = σ2

t,1 + σ2
t,2.
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In the jump-GARCH model, if we set ν0 = ν1 = τ = γ = 0, the model
turns to be a GARCH(1,1) model. Furthermore, if we let ν1 = τ = γ = 0, the
model becomes a jump-SV model with time homogeneous jump arrivals. Thus
GARCH and essential jump-SV models are embedded into the jump-GARCH
model, which enables us to perform likelihood ratio tests for GARCH or time
homogeneous jump-SV models vs. jump-GARCH model.

The major contribution of this research is in adding the time-varying
and state-dependent term τε2

t−1 + γε2
t−1I(εt−1<0) into the conditional jump

intensity, which allows us to cope with jump dynamics more flexibly. Our
empirical study to be given in the next section will show that the proposed
jump-GARCH model can reveal much more important and interesting char-
acteristics of jump dynamics and structures of volatility for various financial
assets than GARCH and traditional jump models.

� Maximum likelihood estimation of the model

Suppose an AR(1) model is fitted to the return series and the return shock
is fitted by the jump-GARCH model. Then the model includes the following
unknown parameters:

θ = (µ, φ1, ω, β, α, θ, δ2, ν0, ν1, τ, γ)′ ∈ R
11.

To estimate these unknown parameters, we consider the maximum likelihood
estimation. Through some conditioning arguments, the likelihood function is
evaluated as follows:

εt = rt − φ1rt−1 − µ, t = 1, . . . , T ;
εt|(Nt = j, Ft−1) ∼ N(jθ − θλt, σ2

t,1 + jδ2);
Nt|Ft−1 ∼ Poisson(λt);

f(εt|Ft−1) =
∞∑

j=0

f(εt|Nt = j, Ft−1)P (Nt|Ft−1)

=
∞∑

j=0

1√
2π(σ2

t,1 + jδ2)
exp

{
− (εt − jθ + θλt)2

2(σ2
t,1 + jδ2)

}
· λ

j
t

j!
e−λt

=:
∞∑

j=0

g(t, j) =: Lt(θ);

Likelihood function: L(θ) =
T∏

1

Lt(θ);

Log-likelihood function: l(θ) = logL(θ) =
T∑

1

logLt(θ).

The score of the model is given in the Appendix. Based on the score, numer-
ical calculation of the MLE θ̂T can be undertaken by using Newton-Raphson
method:

θ̂
(k)

T = θ̂
(k−1)

T +

[
T∑

t=1

St

(
θ̂

(k−1)

T

)(
St(θ̂

(k−1)

T )
)′
]−1 T∑

t=1

St

(
θ̂

(k−1)

T

)
,
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where S(θ) = 1
T

∑T
1 St(θ) is the score. Under suitable assumptions, it can

be shown that the MLE θ̂T is asymptotically normally distributed:

θ̂T ∼ AN

⎛

⎝θ,

[
T∑

t=1

St

(
θ̂T

)(
St(θ̂T )

)′
]−1

⎞

⎠ .

Using these results, we can perform likelihood-ratio tests and t-tests for the
parameters and calculate the standard errors of the MLE.

3 Empirical study

We investigate statistical behaviors of the jump-GARCH model through an
empirical study. Then we use this model to reveal characteristics of jump
dynamics and volatility structures for various financial assets.

� Data
Data sets include the following daily time series:

(1) TOPIX (From Jan. 4, 1985 to Jun. 30, 2005; T = 5177);
(2) TEPCO —Tokyo Electricity Production Co., traded in the 1st division

of TSE (From Jan. 4, 1990 to Dec. 16, 2005; T = 3932);
(3) WOWOW, an equity traded in the newly raised Mothers-Market of TSE

(From Apr. 20, 2001 to Aug. 1, 2005; T = 1039);
(4) Yields of the Japanese 10 years bond (From Mar. 1, 1989 to Sep. 30,

2004; T = 3844);
(5) Japanese Yen-US Dollar exchange rate (From Jan. 1, 1990 to Dec. 22,

2005; T = 4169).

� Estimation and likelihood-ratio tests
For these series, we fit an AR(1) model to the return series and a jump-
GARCH model to the return shock. All of the parameters are estimated
via maximum likelihood estimation. Table 1 shows the results, where (·) is
the corresponding standard error. The four parameters θ, ν1, τ and γ are
important in characterizing the different structures of the jump dynamics
among the various financial assets. Before discussing this, we undertake some
likelihood-ratio tests for the parameters in the jump part. Here we focus on
the following likelihood-ratio tests:

• Test I: ν0 = ν1 = τ = γ = 0 — A test of GARCH vs. jump-GARCH, or
existence of a jump;

• Test II: ν1 = τ = γ = 0 — A test of inhomogeneity of jump arrivals;
• Test III: ν1 = 0 — A test of jump-cluster effect;
• Test IV: τ = 0 — A test of state-dependent effect in jump dynamics.
• Test V: γ = 0 — A test of asymmetric state-dependent effect in jump

dynamics.
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Table 1. Maximum likelihood estimates of the jump-GARCH model.

TOPIX TEPCO WOWOW Bond Yen-Dollar

µ 0.000146 −0.00015 0.000238 −0.00183 −0.00004
(0.000125) (0.000179) (0.001043) (0.000536) (9.82E − 05)

φ1 0.139983 −0.03947 0.002016 0.004708 −0.01915
(0.01492) (0.017589) (0.033106) (0.017995) (0.016531)

ω 1.21E − 06 7.66E − 06 1.32E − 05 1.55E − 05 3.59E − 07
(2.12E − 07) (1.49E − 06) (8.15E − 06) (3.66E − 06) (1.00E − 07)

β 0.911955 0.708497 0.925189 0.901333 0.963008
(0.008758) (0.0338) (0.038663) (0.011993) (0.006586)

α 0.052896 0.128189 0.011300 0.060886 0.017217
(0.007555) (0.01504) (0.009652) (0.009833) (0.003567)

θ −0.00235 0.001590 0.013822 0.012108 −0.00315
(0.001012) (0.000682) (0.00316) (0.005372) (0.000885)

δ2 0.000266 0.000219 0.001274 0.003445 0.000120
(3.86E − 05) (2.65E − 05) (0.000233) (0.000523) (1.97E − 05)

ν0 0.005842 9.99E − 09 0.100161 0.031170 0.019717
(0.004837) (0.000926) (0.049801) (0.016251) (0.009185)

ν1 0.680868 0.973631 0.635636 0.443532 0.621479
(0.061651) (0.005459) (0.105102) (0.180614) (0.100486)

τ 1.81E − 05 0.000010 100.9098 25.92714 96.12646
(51.97723) (8.290643) (38.74718) (9.853342) (153.1217)

γ 707.8508 112.7074 6.970889 3.50E − 12 790.3226
(170.2787) (31.40688) (41.03209) (13.46923) (282.9626)

Table 2. The p-values of the likelihood-ratio tests.

TOPIX TEPCO WOWOW Bond Yen-Dollar

Test I 0.0000 0.0000 0.0000 0.0000 0.0000

Test II 0.0000 0.0000 0.0015 0.0007 0.0000

Test III 0.0000 0.0000 0.0015 0.2920 0.0000

Test IV 1.0000 0.9989 0.0008 0.0000 0.5074

Test V 0.0000 0.0000 0.8608 1.0000 0.0008

The p-values of these likelihood-ratio tests are given in Table 2. The results
for Test I show that, in all the cases the null hypothesis of a GARCH model
is rejected even at a significance level 1%, and thus provide strong evidence
for existence of a jump. Furthermore, the results for Test II show that, jump
arrivals in the asset prices are not time homogeneous. Tests III, IV and V
reveal some clear differences in structures of the time inhomogeneous and
state dependent jump dynamics of the various financial assets, which we
summarize as follows:
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• Among the various assets, jump arrivals in yields of the Japanese 10-
year bond appear to have the simplest structure: they are weakly state
dependent, but not asymmetric and not persistent;

• Jump arrivals in WOWOW are state dependent and persistent, but not
asymmetric.

• Jump arrivals in TOPIX, TEPCO and Yen-Dollar exchange rate are per-
sistent and only asymmetrically state dependent, which mean that only
a large fall in prices lead to a jump cluster. However, we observe that
the jump-size parameter θ < 0 in TOPIX and Yen-Dollar, while θ > 0
in TEPCO. These indicate that, large falls of TOPIX and Yen-Dollar
exchange rate tend to cause a cluster of downward jumps, while a large
fall of TEPCO tends to lead to a cluster of upward jumps. The diamet-
rical way in jump dynamics of TEPCO against TOPIX and Yen-Dollar
exchange rate reflects the fact that this equity has been traded as a defen-
sive asset in TSE. On the other hand, the jump dynamics of TOPIX and
Yen-Dollar exchange rate seem to real the mechanism of the well-known
leverage effect: If jump arrivals are persistent and only asymmetrically
state-dependent, then a large fall in price tends to lead to a downward
jump cluster, which in turn increases the jump-vol. and thus the total
volatility. However, as in the cases of TEPCO, WOWOW and Bond,
leverage effects may not be a common and significant effect for various
assets, and our empirical study shows that the proposed jump-GARCH
model is much more flexible for treating more general effects than the
leverage effect.

� Goodness-of-fit
It is not easy to perform a test of goodness-of-fit for the jump-GARCH model,
since the distributions of the residuals are much more complicated. Here we
show initially goodness-of-fit by comparing the marginal distribution of the
model with the empirical distribution and the marginal distribution of a
GARCH(1,1) model. Fig.1 shows comparisons among the distributions. We
find that the jump-GARCH model fits remarkably well and much more better
than a GARCH(1,1) model.

� Jump dynamics
Our empirical study based on the jump-GARCH model shows that jumps do
occur in asset prices and that in general jump arrivals are time inhomogeneous
and state dependent, and may be also asymmetric. To deepen understanding
for jump dynamics, we show time series plots of conditional jump intensities
for the various assets in Fig.2. We find that jumps seem to occur more often
in the individual equities, namely TEPCO and WOWOW, than in TOPIX,
Yen-Dollar exchange rate and the Bond. We can also observe that jump
arrivals in TEPCO are strongly persistent.

The jump-GARCH model provides an efficient way to obtain an ex post
estimate of the probability of the event that jumps occurred in a certain day,
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Fig. 1. Density.

which is important in risk management. The ex post estimate of the jump
probability in the t-th day is given as follows:

Pt := P{Nt ≥ 1|Ft} = 1 − P{Nt = 0|Ft}

= 1 − f(εt|Nt = 0,Ft−1)P{Nt = 0|Ft−1}
f(εt|Ft−1)

= 1 −

1√
2πσ2

t,1

exp

{
− (εt + θλt)2

2σ2
t,1

− λt

}

∞∑

j=0

g(t, j)

Ex post estimates of jump probabilities for the various assets are given in
Fig.3. Paying attentions to the days whose ex post estimates of jump proba-
bilities are close to 1, we find that jumps occurred more often in the individual
asset than the other assets. Again, we find that jump arrivals in TEPCO are
strongly persistent.
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Fig. 3. Jump probability.
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� Structures of volatility
The presence of jumps causes another source of volatility — the jump-

volatility. Since jump arrivals are due to the impacts of news arrivals, the
jump-vol. can be explained as an external or nonsystematic risk in some
sense, while the GARCH-vol. an essential or systematic risk. From a point
of view of risk management, it is important to measure the contributions of
jump-vol. to total-vol. in an asset. Fig.4 shows ratios of jump-vol. to total-vol.
for the various assets, where the average ratios are also given. In the cases
of TOPIX, Bond and Yen-Dollar exchange rate, the jump-vol. contributes
in average about 30% to the total volatility. However, in these assets we
have found that when a jump occurred, the contributions of jump-vol. may
increase to 60% or 70%. On the other hand, contributions of jump-vol. in
individual equities are much higher than those in TOPIX, bond and Yen-
Dollar exchange rate. In particular, jump-vol. in WOWOW turns to be the
dominating part of volatility in most of the trading days. We think that
volatileness of a financial asset is best characterized by the contribution of
the jump-vol. to the total-vol., which can be evaluated by using the jump-
GARCH model.

Since GARCH models have widely used in financial engineering, it is
useful to compare the volatilities measured by GARCH and jump-GARCH
models. Fig.5 shows such comparisons, where absolute returns and the jump
volatilities are also plotted. We have found that there are considerably dif-
ferences in the volatilities measured by the two models. Since our empirical
study strongly support the jump-GARCH model, we think that the jump-
GARCH model is more reasonable than a GARCH model for measuring risks.

� Further extensions
The jump-GARCH model can be further extended along some directions

to gain its flexibility and applicability. We provide some possibilities here.
Firstly, we can input some explanatory variables related with macro economic
market and worldwide political situations into the conditional jump intensity.
If we have additional information such as opening prices, minimum/maximum
prices or traded volumes, we can also input these information into the jump
intensity, which may improve behaviors of the jump-GARCH model.

Other possibility to gain applicability of the model is to combine the use
of the jump-GARCH model with some nonlinear mean time series models,
such as threshold AR models, Markov switching models and simultaneous
switching AR models (Kunitomo and Sato (1996)).

4 Summary

In this research we have investigated statistical behaviors of the jump-GARCH
model proposed by Chen and Sato (2007). This model is efficient in reveal-
ing structures of jump dynamics in asset prices. Based on this model, we
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have found that jump arrivals in asset prices are time inhomogeneous and
state dependent, and may be persistent and asymmetrically state dependent,
which together characterize the nature of jump dynamics of an asset. As a
result, this model can detect the fine structure of volatility dynamics, which
is important for financial risk measurement and management. .

© Appendix: The score of the jump-GARCH model
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Abstract. In recent years, insurance risk models with dividend payments have
been studied extensively. The threshold dividend strategy assumes that dividends
are paid out at the maximal admissible rate whenever the surplus exceeds a certain
threshold. In this paper, we consider the classical risk model with constant interest
under the threshold strategy. We derive integro-differential equations for the ex-
pected discounted penalty function. In some special cases with exponential claims,
we are able to obtain closed-form expressions for the expected discounted penalty
function.

Keywords: classical risk model, dividend payments, threshold strategy

1 Introduction

Suppose that the surplus process of an insurer follows the classical risk model
given by

U(t) = u + ct−
N(t)∑

k=1

Zk = u + ct− S(t), t ≥ 0, (1)

where u ≥ 0 is the initial surplus, c > 0 is the rate of premium, N(t) is a
Poisson process with intensity λ > 0, and {Zk, k = 1, 2, · · · } is a sequence of
independent and identically distributed non-negative random variables with
common distribution F . It is assumed that F (0) = 0 and that N(t) and
Zk’s are independent. Since N(t) indicates the number of claims up to time
t and Zk’s represent the claim amounts, the compound Poisson process S(t)
is usually called the aggregate claims process. Note that the surplus process
(1) is also known as the compound Poisson risk model.

In the classical risk model (1), the assumption that the claim amounts
Zk’s are independent is often not met in many non-life insurance problems.
In view of this, the study of risk models with various dependence relations
among claim amounts as well as different classes of insurance business has
become one of the popular actuarial topics in the past decade. Hence, one
may try to extend the main results presented in this paper to a risk model
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with both correlated claims and dividend payments. Undoubtedly, such an
extension would be a challenging one.

Assume that the insurer pays out certain amount of his surplus as divi-
dends to the policyholders according to some dividend strategy. Let D(t) be
the total dividends paid up to time t, and X(t) be the resulting surplus of
the insurer at time t. Thus,

X(t) = U(t) −D(t), t ≥ 0. (2)

Here, we also assume that the insurer receives interest from his surplus at a
constant rate δ > 0. Then, the surplus process (2) becomes

Y (t) = eδt

(
u +

∫ t

0

e−δsdX(s)
)

= eδt

(
u +

∫ t

0

e−δsd (U(s) −D(s))
)

, t ≥ 0. (3)

In the actuarial literature, the issue of dividend strategies has received re-
markable attention recently. The study of the optimal dividend problem goes
back to De Finetti (1957). Due to its practical importance, much research
on dividend-payment problems has been carried out for various surplus pro-
cesses since then. For example, see Gerber and Shiu (2006), Lin and Pavlova
(2006), Yuen et al. (2007, 2008a, 2008b), and references therein.

Under the threshold dividend strategy, dividends are paid at the maximal
admissible rate α < c whenever the surplus is above the threshold level b, and
that no dividends are paid whenever the surplus is below b. For the surplus
process (2) under the threshold strategy, Gerber and Shiu (2006) examined
the optimal dividend problems and derived a rule for deciding between plow-
back and dividend payout while Lin and Pavlova (2006) derived and solved
two integro-differential equations for the expected discounted penalty func-
tion. For the surplus process (3), Fang and Wu (2007) studied the optimal
dividend problems under the threshold strategy.

In this paper, we extend the work of Fang and Wu (2007) to investigating
the expected discounted penalty function which embraces many important
actuarial functions. In Section 2, we derive integro-differential equations for
the expected discounted penalty function. In Section 3, a few examples with
closed-form expressions for the expected discounted penalty function are pre-
sented.

2 Expected discounted penalty function under the
threshold strategy

Under the threshold strategy, the surplus process (3) can be rewritten as

dY (t) =
{

cdt− dS(t) + δY (t)dt, if Y (t) < b,
(c− α)dt− dS(t) + δY (t)dt, if Y (t) > b,

(4)
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for t ≥ 0, where α < c is the dividend rate, and b > 0 is the threshold level. Let
T = inf{t : Y (t) < 0} be the time of ruin. Then, for the surplus process (4),
the expected discounted penalty function introduced by Gerber-Shiu (1998)
has the form

Lb(u) = Eu
[
e−γTw(Y (T−), |Y (T )|)I(T < ∞)

]
, (5)

where the penalty function w is a nonnegative measurable function on [0,∞)×
[0,∞), Y (T−) is the surplus just prior to ruin, |Y (T )| is the deficit at ruin,
I(B) is the indicator function of event B, and the parameter γ ≥ 0 can be
interpreted as a force of interest. It is obvious that (5) is the expectation of
the discounted value of the the penalty function depending on the surplus
just prior to ruin and the deficit at ruin.

The expected discounted penalty function is a very useful technical tool
for studying various ruin problems in modern risk theory. It includes many
important actuarial functions, for example, the probability of ruin (γ = 0
and w(Y (T−), |Y (T )|) ≡ 1), the Laplace transform of the time of ruin
(w(Y (T−), |Y (T )|) ≡ 1), the distribution of the surplus just prior to ruin
(γ = 0 and w(Y (T−), |Y (T )|) = I(Y (T−) ≤ x), the distribution of the
deficit at ruin (γ = 0 and w(Y (T−), |Y (T )|) = I(|Y (T )| ≤ y)), and the joint
distribution of the surplus just prior to ruin and the deficit at ruin (γ = 0
and w(Y (T−), |Y (T )|) = I(Y (T−) ≤ x, |Y (T )| ≤ y)).

To show the continuity of Lb(u) in u, especially, the continuity at u = b,
we first derive some integral equations for (5). Define

φ1(u, t) = eδt

(
u + c

∫ t

0

e−δsds

)
,

φ2(u, t) = eδt

(
u + (c− α)

∫ t

0

e−δsds

)
.

Let

tb =
1
δ

ln
(

δb + c

δu + c

)
,

such that φ1(u, tb) = b. By conditioning on the time and the amount of the
first claim, we obtain the following integral equations for Lb(u)

Lb(u) =
∫ tb

0

λe−(λ+γ)tξ(φ1(u, t), b)dt

+
∫ ∞

tb

λe−(λ+γ)tξ(φ2(b, t− tb), b)dt, 0 ≤ u < b, (6)

and

Lb(u) =
∫ ∞

0

λe−(λ+γ)tξ(φ2(u, t), b)dt, u ≥ b, (7)
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where

ξ(u, b) =
∫ u

0

Lb(u− z)dF (z) + ζ(u),

and

ζ(u) =
∫ ∞

u

w(u, z − u)dF (z). (8)

By changing variables, we derive from (6) and (7) that

Lb(u) =
∫ b

u

λ

(
δu + c

δy + c

)λ+γ
δ ξ(y, b)

δy + c
dy

+
∫ ∞

b

λ

(
(δu + c)(δb + c− α)
(δb + c)(δy + c− α)

)λ+γ
δ ξ(y, b)

δy + c− α
dy, (9)

for 0 ≤ u < b, and

Lb(u) =
∫ ∞

u

λ

(
δu + c− α

δy + c− α

)λ+γ
δ ξ(y, b)

δy + c− α
dy, (10)

for u ≥ b. Then, it follows from (9) and (10) that Lb(u) is continuous on
[0,∞). In particular, we have

Lb(b−) = Lb(b) = Lb(b+), b > 0. (11)

An integro-differential equation is an equation that involves both integrals
and derivatives of an unknown function. The theory of integro-differential
equations is close in spirit to the classical ordinary differential equations. In
the actuarial literature, many ruin problems were often studied by means
of integro-differential equations. For instance, see Lin and Pavlova (2006)
and Yuen et al. (2007, 2008a, 2008b). Here, we also employ this method for
studying the expected discounted penalty function Lb(u).

Differentiating both sides of (9) and (10) with respect to u shows that
Lb(u) satisfies the integro-differential equations

(c + δu)L′
b(u) − (λ + γ)Lb(u) + λ

∫ u

0

Lb(u − z)dF (z) + λζ(u) = 0, (12)

for 0 ≤ u < b, and

(c− α + δu)L′
b(u)− (λ + γ)Lb(u) + λ

∫ u

0

Lb(u− z)dF (z) + λζ(u) = 0, (13)

for u ≥ b. It is obvious that

lim
u→∞

Lb(u) = 0. (14)
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Hence, the expected discounted penalty function Lb(u) can be determined
using (12) and (13) with the boundary conditions (11) and (14). Moreover,
(12) and (13) imply that

(c + δb)L′
b(b

−) = (c− α + δb)L′
b(b

+).

Thus, L′
b(u) may not be continuous at u = b.

3 Examples

In this section, we present a few special cases of the expected discounted
penalty function (5) in which closed-form solutions to (12) and (13) can be
derived.

Denote the probability of ruin for the surplus process (4) by Ψ(u) =
P (T < ∞). It is obvious that if γ = 0 and w ≡ 1, Lb(u) = E[I(T < ∞)] =
Ψ(u). Hence, it follows from (12) and (13) that Ψ(u) satisfies the integro-
differential equations

(c + δu)Ψ ′(u)− λΨ(u) + λ

∫ u

0

Ψ(u− z)dF (z) + λF (u) = 0, 0 ≤ u < b, (15)

and

(c− α + δu)Ψ ′(u)− λΨ(u) + λ

∫ u

0

Ψ(u− z)dF (z) + λF (u) = 0, u ≥ b, (16)

where F (u) = 1 − F (u). The boundary conditions for determining Ψ(u) are

lim
u→∞

Ψ(u) = 0 and Ψ(b−) = Ψ(b+). (17)

Example 3.1. Let f(z) be exponential with mean β−1. It follows from (15)
and (16) that Ψ(u) satisfies the differential equations

(c + δu)Ψ ′′(u) + (β(c + δu) + δ − λ)Ψ ′(u) = 0, 0 ≤ u < b, (18)

and

(c− α + δu)Ψ ′′(u) + (β(c − α + δu) + δ − λ)Ψ ′(u) = 0, u ≥ b. (19)

Define

K(u, c) =
∫ u

0

e−
∫ t
0 (β+ δ−λ

c+δs )dsdt, u ≥ 0. (20)

Let K ′ be the derivative of K with respect to u. So,

K ′(b, c) = (c + δb)
λ
δ −1c1−

λ
δ e−βb.
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Put

M = −(c− α + δb)(c + λK(b, c))K ′(b, c− α)
+λ(c + δb)K ′(b, c) (K(b, c− α) −K(∞, c− α)) . (21)

Solving the differential equations (18) and (19) with the boundary conditions
in (17) as well as

(c + δb)Ψ ′(b−) = (c− α + δb)Ψ ′(b+), and cΨ ′(0+) − λΨ(0) = −λ,

we have

Ψ(u) =
{

a1K(u, c) + a2, 0 ≤ u < b,
a3K(u, c− α) + a4, u ≥ b,

(22)

where

a1 = M−1λ(c− α + δb)K ′(b, c− α), (23)
a2 = M−1

(
− λ(c− α + δb)K(b, c)K ′(b, c− α)

+ λ(c + δb)K ′(b, c)(K(b, c− α) −K(∞, c− α))
)
, (24)

a3 = M−1λ(c + δb)K ′(b, c), (25)
a4 = −M−1λ(c + δb)K ′(b, c)K(∞, c− α). (26)

From (21)-(26), closed-form expressions for the probability of ruin Ψ(u)
on [0,∞) can be obtained.

Let c = 1.6, α = 0.4, λ = β = 1, δ = 0.02, and b = 8. Then,

Ψ(u) =
{
−0.2414K(u, 1.6)+ 0.6137, 0 ≤ u < b,
−0.0724K(u, 1.2)+ 0.3149. u ≥ b.

From Table 1 ,we see that the ruin probability Ψ(u) is a decreasing function
of u (for each b) and also a decreasing function of b (for each u).

u\b 1 3 5 8 10 15 25 40

0 0.7404 0.6725 0.6349 0.6137 0.6095 0.6071 0.6069 0.6069
1 0.6061 0.5031 0.4460 0.4138 0.4073 0.4038 0.4035 0.4035
2 0.4741 0.3889 0.3187 0.2791 0.2711 0.2668 0.2664 0.2664
5 0.2136 0.1818 0.1397 0.0897 0.0797 0.0742 0.0737 0.0737
8 0.0882 0.0751 0.0577 0.0362 0.0256 0.0198 0.0193 0.0193
12 0.0239 0.0203 0.0156 0.0098 0.0072 0.0035 0.0030 0.0029
20 0.0012 0.0010 0.0008 0.0005 0.0004 0.0002 0.0001 0.0001

Table 1. Ruin probabilities with c = 1.6, α = 0.4, λ = β = 1, δ = 0.02, and b = 8.

�

Example 3.2. Let f(x) = A1µe
−µx+A2νe

−νx, x > 0, where µ, ν,A1, A2 > 0
are constants and A1 +A2 = 1. Without loss of generality, let θ = µ− ν > 0.
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Because
(

d

du
+ ν

)(
d

du
+ µ

)∫ u

0

Ψ(u− z)f(z)dz = µνΨ(u),

applying the operator (d/du + ν)(d/du + µ) to (15) and (16) yields

(c + δu)Ψ ′′′(u) + (2δ − λ + (µ + ν)(c + δu))Ψ ′′(u)
+ ((c + δu)µν − λ(A2µ + A1ν) + (µ + ν)δ)Ψ ′(u) = 0, 0 ≤ u < b,

(27)

and

(c− α + δu)Ψ ′′′(u) + (2δ − λ + (µ + ν)(c− α + δu))Ψ ′′(u)
+ ((c− δ + δu)µν − λ(A2µ + A1ν) + (µ + ν)δ)Ψ ′(u) = 0, u ≥ b.

(28)

Substituting c + δu = −δz/θ and Ψ ′(u) = e−µz/θy(z) into (27), we get the
confluent hypergeometric form

zy′′(z) +
(

2 − z − λ

δ

)
y′(z) +

(
1 − A1λ

δ

)
y(z) = 0.

Hence, from Slater (1960) (also see Example 4.2 of Yuen and Wang (2005)
and Example 4.2 of Yuen et al. (2007)), we get two independent solutions

Ψ ′
1(u, c) = e−µu

( c

δ
+ u

)λ
δ −1

G1

(
A2λ

δ
,
λ

δ
, θ

( c

δ
+ u

))
,

Ψ ′
2(u, c) = e−µu

( c

δ
+ u

)λ
δ −1

G2

(
A2λ

δ
,
λ

δ
, θ

( c

δ
+ u

))
,

where

G1(a, d, u) =
Γ (d)

Γ (d− a)Γ (a)

∫ 1

0

eutta−1(1 − t)d−a−1dt, d > a > 0, u ≥ 0,

is the standard confluent hypergeometric function, and its second form is

G2(a, d, u) =
1

Γ (a)

∫ ∞

0

e−utta−1(1 + t)d−a−1dt, a > 0, u ≥ 0.

Since

G′
1(a, d, u) =

a

d
G1(a + 1, d + 1, u),

G′
2(a, d, u) = −aG2(a + 1, d + 1, u),
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for u > 0, we have

Ψ ′′
1 (u, c) =

(
λ− δ

c + δu
− µ

)
Ψ ′

1(u, c)

+ A2e
−µu

( c

δ
+ u

)λ
δ −1

G1

(
1 +

A2λ

δ
, 1 +

λ

δ
, θ

( c

δ
+ u

))
,

and

Ψ ′′
2 (u, c) =

(
λ− δ

c + δu
− µ

)
Ψ ′

2(u, c)

−A2λ

δ
e−µu

( c

δ
+ u

)λ
δ −1

G2

(
1 +

A2λ

δ
, 1 +

λ

δ
, θ

( c

δ
+ u

))
.

Set
Ψi(u) =

∫ u

0

Ψ ′
i(x, c)dx, i = 1, 2, 0 ≤ u < b.

Then, the general solution to (27) has the form

Ψ(u) = c0 + c1Ψ1(u) + c2Ψ2(u), 0 ≤ u < b, (29)

where c0, c1, and c2 are arbitrary constants. Along the same line, a similar
expression for (28) can be derived. Following the steps in the derivation of
(29), we obtain the following general solution to (28)

Ψ(u) = c3 + c4Ψ1(u) + c5Ψ2(u), u ≥ b,

where
Ψ i(u) =

∫ ∞

u

Ψ ′
i(x, c− α)dx, i = 1, 2, u ≥ b,

and c3, c4, and c5 are arbitrary constants.
It follows from (15)-(17) that

lim
u→∞

Ψ(u) = 0, (30)

Ψ(b−) = Ψ(b+), (31)

(c + δb)Ψ ′(b−) = (c− α + δb)Ψ ′(b+), (32)

cΨ ′(0+) − λΨ(0) = −λ. (33)

It is easy to see that (30) implies c3 = 0.
Differentiating (27) and (28) with respect to u yields

(c + δu)Ψ ′′(u) + (δ − λ)Ψ ′(u) + λΨ(u)(A1µ + A2ν)
− λ(A1µe

−µu + A2νe
−νu)

− λ

∫ u

0

Ψ(z)
(
A1µ

2e−µ(u−z) + A2ν
2e−ν(u−z)

)
dz = 0, 0 ≤ u < b,

(34)
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and

(c− α + δu)Ψ ′′(u) + (δ − λ)Ψ ′(u) + λΨ(u)(A1µ + A2ν)
− λ(A1µe

−µu + A2νe
−νu)

− λ

∫ u

0

Ψ(z)
(
A1µ

2e−µ(u−z) + A2ν
2e−ν(u−z)

)
dz = 0, u ≥ b.

(35)

Because of the continuity of Ψ(u) at b, (34) and (35) lead to the boundary
condition

(c + δb)Ψ ′′(b−) + (δ − λ)Ψ ′(b−) = (c− α + δb)Ψ ′′(b+) + (δ − λ)Ψ ′(b+). (36)

Furthermore, (33) and (35) with u = 0 give the boundary condition

cΨ ′′(0+) + (δ − λ + c(A1µ + A2ν))Ψ ′(0+) = 0. (37)

Let

d = δ − λ + c(A1µ + A2ν),
d12 = Ψ1(b−), d13 = Ψ2(b−),
d14 = −Ψ1(b+), d15 = −Ψ2(b+),
d22 = −cΨ ′

1(0
+), d23 = −cΨ ′

2(0
+),

d32 = (c + δb)Ψ ′
1(b−), d33 = (c + δb)Ψ ′

2(b−),
d34 = −(c− α + δb)Ψ

′
1(b+), d35 = −(c− α + δb)Ψ

′
2(b+),

d42 = cΨ ′′
1 (0+) + dΨ ′

1(0
+), d43 = cΨ ′′

2 (0+) + dΨ ′
2(0

+),
d52 = (c + δb)Ψ ′′

1 (b−) + (δ − λ)Ψ ′
1(b

−),
d53 = (c + δb)Ψ ′′

2 (b−) + (δ − λ)Ψ ′
2(b−),

d54 = −(c− α + δb)Ψ
′′
1 (b+) − (δ − λ)Ψ

′
1(b+),

d55 = −(c− α + δb)Ψ
′′
2 (b+) − (δ − λ)Ψ

′
2(b+).

To determine ci, i = 0, 1, 2, 4, 5, we define the matrix M and the column
vector B as ⎛

⎜⎜⎜⎜⎝

1 d12 d13 d14 d15

λ d22 d23 0 0
0 d32 d33 d34 d35

0 d42 d43 0 0
0 d52 d53 d54 d55

⎞

⎟⎟⎟⎟⎠
,

and
B = (0,−λ, 0, 0, 0)T .

Let Mi denote the matrix with the form of M except that the i-th column
of M is replaced by B. Denote the determinant of a matrix by det(·). Using
boundary conditions (31)-(33), (36) and (37), we get

ci =
det(Mi)
det(M)

, i = 0, 1, 2, 4, 5.
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�

Let Hb(u) = Eu[h(|Y (T )|)I(T < ∞)] denotes the expectation of the
penalty of the deficit at ruin for the surplus process (4). It can be obtained
by letting γ = 0 and w(x1, x2) = h(x2) in (5) of Lb(u). In this case, ζ(u) of
(8) becomes

ζ(u) =
∫ ∞

0

h(z)f(u + z)dz.

From (12) and (13), we see that Hb(u) satisfies the integro-differential equa-
tions

(c + δu)H ′
b(u) − λHb(u) + λ

∫ u

0

Hb(u − z)f(z)dz

+ λ

∫ ∞

0

h(z)f(u + z)dz = 0, (38)

for 0 ≤ u < b, and

(c− α + δu)H ′
b(u) − λHb(u) + λ

∫ u

0

Hb(u− z)f(z)dz

+ λ

∫ ∞

0

h(z)f(u + z)dz = 0, (39)

for u ≥ b, with the boundary conditions

lim
u→∞

Hb(u) = 0 and Hb(b−) = H(b+). (40)

Therefore, one can use (38)-(40) to find closed-form expressions for Hb(u).
�

Example 3.3. Let f(z) be exponential with mean β−1. Hence, ζ(u) =
He−βu with H =

∫∞
0

h(z)βe−βzdz. Then, it follows from (38) and (39) that
Hb(u) satisfies the differential equations

(c + δu)H ′′
b (u) + (β(c + δu) + δ − λ)H ′

b(u) = 0, 0 ≤ u < b (41)

and

(c− α + δu)H ′′
b (u) + (β(c− α + δu) + δ − λ)H ′

b(u) = 0, u ≥ b, (42)

with the boundary conditions in (40) as well as

(c+ δb)H ′
b(b

−) = (c−α+ δb)H ′
b(b

+), and cH ′
b(0

+)−λHb(0+) = −λH.
(43)

Similar to (22), the general solutions to (41) and (42) are given by

Hb(u) =
{

e1K(u, c) + e2, 0 ≤ u < b
e3K(u, c− α) + e4, u ≥ b,
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where K is defined in (20). Using the boundary conditions in (40) and (43),
we get

ei = Hai, i = 1, 2, 3, 4,

where ai’s are given in (23)-(26). Hence,

Hb(u) = HΨ(u), u ≥ 0. (44)

From (44) and the result in Example 3.1, one can obtain closed-form expres-
sions for Hb(u).

From (44), we see that the expected penalty of the deficit at ruin is pro-
portional to the probability of ruin if the claims are exponentially distributed.
Applying (44) yields

Hb(u) =
{

n!β−nΨ(u), if h(x) = xn,
β

η+βΨ(u), if h(x) = e−ηx, and η > 0, (45)

for u ≥ 0. That is, (45) gives the nth moment and the Laplace transform of
the deficit at ruin when the claims are exponentially distributed. �
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Estimation of Structural Parameters in

Crossed Classification Credibility Model Using
Linear Mixed Models

Wing K. Fung and Xiaochen Xu

Department of Statistics and Actuarial Science, The University of Hong Kong
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Abstract. In this paper, the linear mixed model is used under the Dannenburg’s
two-way crossed classification model. Maximum likelihood (ML) and restricted
maximum likelihood (REML) methods are employed to estimate the structural
parameters with both independent and exchangeable error structures. Evidenced
by results of simulation studies, the proposed linear mixed effects estimators appear
to outperform those given by Dannenburg with both independent and exchangeable
error structures.

Keywords: linear mixed model, crossed classification credibility model, ma-
ximum likelihood estimator, restricted maximum likelihood estimator, SAS

1 Introduction

In credibility context, the credibility data can be treated as longitudinal data.
Therefore the longitudinal data interpretation suggests additional techniques
that actuaries can use in credibility ratemaking. The theoretical development
of credibility theory has been linked with random effects models. Linear mixed
models can be used to capture the data structure of repeated measurements
and longitudinal data. Hence the implementation of linear mixed models can
help us to capture the within panel correlation structure under credibility
context.

Frees et al. (1999) and Antonio and Beirlant (2006) have demonstrated
the implementation of the linear mixed model and generalized linear mixed
model in the classical credibility models with the assumption that the consec-
utive error terms with regard to the same risk entity are independent. Later
developments given by Cossette and Luong (2003), Lo, Fung and Zhu (2006)
and Lo, Fung and Zhu (2007) have employed regression models in credibility
context, and proposed the weighted least squares method and the generalized
estimating equations (GEE) respectively in order to estimate the stuctural
parameters with the presence of an assumed correlation structure for error
terms. In both literatures, their proposed methods have been examined by
simulation studies.
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Since the Dannenburg’s two-way crossed classification model is of the
form of a linear mixed model, we simply apply the maximum likelihood (ML)
and restricted maximum likelihood (REML) estimation methods to estimate
the structural parameters. It can be shown that the linear mixed effects
estimation method can outperform the Dannenburg’s method in general with
both independent and exchangeable error structures.

The structure of this paper is organized as follows. In section 2, linear
mixed models are introduced, and the definition of the exchangeable cor-
relation is provided. Section 3 gives a brief introduction on ML and REML
methods, and their applications to the linear mixed model. Section 4 discusses
the Dannenburg’s crossed classification model. Several simulation study re-
sults are analyzed in section 5.

2 Model specification

2.1 Linear mixed model

In this paper, we employ the linear mixed model which extends the classical
linear model by incorporating the random effects. Linear mixed models have
the following form:

yi = Xiβ + Ziαi + εi, i = 1, 2, . . . , n. (1)

Each element yij in the ni × 1 vector yi corresponds to the observed value or
the realized value of some measurable characteristic as regards observation
j of the ith sector or group. Xi, of dimensions ni × m, enters the model as
a known constant matrix. Zi, of dimensions ni × q, is another explanatory
matrix. The dimension of the vector of regression coefficients αi, labeled q,
is essentially the size of the covariance matrix present in our model. αi’s are
assumed to be independent and normally distributed, with common mean
0 and covariance matrix F for all i. And the vector β captures the mean
of the random variable yi. The error vectors εi’s are assumed to be inde-
pendently distributed from normal distribution with mean 0 and covariance
matrix σ2Vi = σ2W−1/2

i Γ iW
−1/2
i , where Wi is a weight matrix and Γ i is a

correlation matrix. W−1/2
i is a square matrix with known positive constants

along the principal diagonal and zero elements elsewhere. We assume Γ i,
which describes the correlation between the error terms εij ’s for entity i, to
be positive definite and depend on some fixed unknown parameters which are
to be estimated. Aided by the specifications stated above, readers may then
easily derive the following about yi:

a) yi and yj are statistically independent for i = j;
b) E(yi|αi) = Xiβ + Ziαi and µi = E(yi) = Xiβ;

c) V (yi) = ZiFZ
′
i + σ2W−1/2

i Γ iW
−1/2
i .
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2.2 Exchangeable correlation matrix

The exchangeable type of correlation is commonly used to model the error
structure. It is also known as the uniform correlation. By using relatively few
unknown parameters, it can help us to capture the correlation structure well.
Under the Dannenburg’s model, the observations are classified into different
sectors. Therefore the observations in the same sector have certain similari-
ties. If we assume the same correlation among observations in the same sector,
it is reasonable to consider exchangeable correlation structure. There are also
other correlation structures that we can consider, namely the moving aver-
age and the autoregressive types of correlation. In our empirical studies we
have only incorporated the exchangeable error correlation structure into the
Dannenburg’s model for brevity.

The correlation matrix (Γij)n×n of the exchangeable type of error can be
written as:

Γij =
{

1, for i = j,
ρ, otherwise.

So the exchangeable correlation matrix takes the explicit form of

Γ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ ρ · · · ρ

ρ 1 ρ
. . .

ρ ρ 1
. . .

. . . . . . . . .
ρ · · · ρ ρ 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

3 The MLE and REML methods

In the regression credibility model, the variance and covariance parameters
can be estimated using the well-known maximum likelihood (ML) and the
restricted maximum likelihood (REML) estimation methods. Under normal-
ity the likelihood is portioned into two parts, one of which is free of fixed
effects. REML estimators are obtained by maximizing the part that is free
from fixed effects.

From our assumption, the error vectors, εi, and regression coefficient vec-
tors, αi, are normally distributed, this implies yi follows a multivariate nor-
mal distribution with derivable mean and variance-covariance matrix

yi ∼ N(Xiβ, XiFX
′
i + σ2W−1/2

i Γ iW
−1/2
i ).
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Hence we can derive the log likelihood and the restricted log likelihood
function of yi. They have been shown as

LML = c1 −
1
2

n∑

i=1

log|V(yi)| −
1
2

n∑

i=1

r′iV(yi)ri, (2)

LREML = c2 −
1
2

n∑

i=1

log|V(yi)| −
1
2
log(

n∑

i=1

|X′
iV

−1
i Xi|) −

1
2

n∑

i=1

r′iV(yi)ri,

(3)
where

ri = yi − Xi

(
n∑

i=1

X′
i · V−1(yi) · Xi

)−1 ( n∑

i=1

X′
i · V−1(yi) · yi

)
,

and c1, c2 are appropriate constants.
To estimate the parameters that we are interested in, we define the vector

γ to contain all of them. For example γ = (b, σ2, ρ)′, where b indicates the
element of the covariance matrix F of αi. We could solve γ by maximizing
the log likelihood function with respect to γ or by solving the score function

∂LML

∂γ

∣∣∣∣
γ=γ̂

= 0

for the ML approach, and

∂LREML

∂γ

∣∣∣∣
γ=γ̂

= 0

for the REML approach. More details about the derivation of the likelihood
and restricted likelihood functions, fixed and random effects, estimates of the
variance and covariance components can be found in Laird and Ware (1982),
McCulloch (1997) and Verbeke and Molenberghs (2000).

Computationally there are various ways to obtain the ML and the REML
estimators, for example, the Newton-Raphson method and the simplex algo-
rithm. Details of those methods can be found in Lindstrom and Bates (1988)
and Nelder and Mead (1965) respectively. There are also many statistical
packages available that can be used to perform such estimation, for example,
SAS, Matlab, R and S+.

4 Dannenburg’s model and method

Dannenburg et al. (1996) proposed the two-way crossed classification model.
In Dannenburg’s model, the risk factors are treated in a symmetrical way, in-
stead of fully nested. The model is a two-way analysis model with interaction
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terms and having random effects. It takes the following form:

yijt = β + α
(1)
i + α

(2)
j + α

(12)
ij + εijt, t = 1, · · · , Tij . (4)

In this model, there are two risk factors, 1 and 2. The number of cate-
gories of the first factor is I and of the second risk factor is J . An insurance
portfolio which is subdivided by these two risk factors can be viewed as a
two-way table. Suppose I is 2, J is 3. We have

α
(1)
1 + → +α

(12)
11 +α

(12)
12 +α

(12)
13

α
(1)
2 + → +α

(12)
21 +α

(12)
22 +α

(12)
23

↑ ↑ ↑
+α

(2)
1 +α

(2)
2 +α

(2)
3

The first risk factor α
(1)
i can be called the row factor. The second risk

factor α
(2)
j can be called the column factor. The structural parameters are

defined as follows:

V ar(α(1)
i ) = b(1), V ar(α(2)

j ) = b(2),

V ar(α(12)
ij ) = a, V ar(εijt) = s2/wijt.

The credibility estimator of yij,Tij+1 is equal to (Dannenburg et al., 1996):

yij,Tij+1 = β + zij(yijw − β) + (1 − zij)z
(1)
i (xizw − β)

+(1 − zij)z
(2)
j (xzjw − β),

(5)

where the credibility factors are

zij =
a

a + σ2/wijΣ
, with wijΣ =

∑

t

wijt, (6)

z
(1)
i =

b(1)

b(1) + a/ziΣ
, with ziΣ =

∑

j

zij , (7)

z
(2)
j =

b(2)

b(2) + a/zΣj
, with zΣj =

∑

i

zij . (8)

xizw , xzjw are the adjusted weighted average, which can give us a much
clearer view on the risk experience with regard to different risk factors,

xizw =
∑

j

zij

ziΣ
(yijw −Ξ

(2)∗
j ), (9)

xzjw =
∑

i

zij

zΣj
(yijw −Ξ

(1)∗
i ), (10)
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where
yijw =

∑

t

wijt

wijΣ
yijt.

And Ξ
(1)∗
i , Ξ(2)∗

j are the row effect and the column effect respectively. They
can be found as the solution of the following I + J linear equations using
iterative approach.

Ξ
(1)∗
i = z

(1)
i

[∑

j

zij

ziΣ
(yijw −Ξ

(2)∗
j ) − β

]
, (11)

Ξ
(2)∗
j = z

(2)
j

[∑

i

zij

zΣj
(yijw −Ξ

(1)∗
i ) − β

]
. (12)

In Dannenburg’s approach, the structural parameters β and s2 can be
found by the following equations (Dannenburg et al., 1996):

β = xwww =
∑

i

∑

j

wijΣ

wΣΣΣ
yijw , (13)

s2• =

∑
i

∑
j

∑
t wijt(yijt − yijw)2

∑
i

∑
j(Tij − 1)+

. (14)

To obtain the estimators a, b(1) and b(2), we can solve the following linear
equations (Dannenburg et al., 1996):

E
[

1
I

∑
i

(∑
j

wijΣ

wiΣΣ
(yijw − yiww)2 − s2•(J − 1)/wiΣΣ

)]

= (b(2) + a)
(
1 − 1

I

∑
i

∑
j(

wijΣ

wiΣΣ
)2
)
,

(15)

E
[

1
J

∑
j

(∑
i

wijΣ

wΣjΣ
(yijw − ywjw)2 − s2•(I − 1)/wΣjΣ

)]

= (b(1) + a)
(
1 − 1

J

∑
j

∑
i(

wijΣ

wΣjΣ
)2
)
,

(16)

E
[∑

i

∑
j

wijΣ

wΣΣΣ
(yijw − ywww)2 − s2•(IJ − 1)/wΣΣΣ

]

= b(1)
(
1 −

∑
i(

wiΣΣ

wΣΣΣ
)2
)

+ b(2)
(
1 −

∑
j(

wΣjΣ

wΣΣΣ
)2
)

+a
(
1 −

∑
i

∑
j(

wijΣ

wΣΣΣ
)
)
,

(17)

where yiww =
∑

j
wijΣ

wiΣΣ
yijw and ywjw =

∑
i

wijΣ

wΣjΣ
yijw . To find the “unbiased

estimator” of a, b(1) and b(2), we can drop the expectation operation of the
above linear equations.
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Table 1. Estimation results for Study 1 associated with independent error struc-
ture.

Method
Parameter REML-I REML-EX Dannenburg

β Bias 0.047 0.047 0.047
MSE 2.051(1.00a) 2.051 (1.00) 2.051

yb Bias 0.149 0.149 0.149
MSE 21.050 (1.00) 21.050 (1.00) 21.050

zij Bias −0.049 −0.049 −0.049
MSE 0.021 (1.00) 0.021 (1.00) 0.021

z
(1)
i Bias −0.018 −0.018 −0.018

MSE 0.003 (1.00) 0.003 (1.00) 0.003

z
(2)
j Bias 0.055 −0.055 −0.066

MSE 0.029 (2.14) 0.029 (2.14) 0.062

b(1) Bias 0.031 0.031 0.031
MSE 29.929 (1.00) 29.928 (1.00) 29.930

b(2) Bias 0.135 0.135 0.133
MSE 9.174 (1.00) 9.174 (1.00) 9.186

a Bias −0.057 −0.057 −0.056
MSE 0.207 (1.00) 0.208 (1.00) 0.208

s2 Bias 0.124 0.124 0.124
MSE 0.015 (1.00) 0.015 (1.00) 0.015

a Relative efficiency of the estimator. Dannenburg estimator serves as the baseline.
b Credibility premium, which can be written as yij,Tij+1

5 Empirical studies

Since the Dannenburg’s crossed classification model is of the form of linear
mixed models, we could make use of the statistical packages that are designed
especially for the parameter estimation in linear mixed models. One possible
software is SAS. In our simulation studies, the results are obtained from the
SAS procedure PROC MIXED. Since the simulation results for the ML and
REML estimators are very similar, we only present the results for REML in
this paper.

5.1 Study 1

In this study, we assign equal weight to each observation. The simulation
study is based on the following choice of parameters:

I = 7, J = 5, Tij = n = 20,

b(1) = 9, b(2) = 4, a = 1, s2 = 16.

The error structure is independent for Table 1, and exchangeable with
ρ = 0.4 for Table 2. The above scenario is simulated 500 times. We use two
approaches to estimate the structural parameters.
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Table 2. Estimation results for Study 1 associated with exchangeable error struc-
ture.

Method
Parameter REML-I REML-EX Dannenburg

β Bias −0.041 −0.041 −0.041
MSE 2.182 (1.00) 2.182 (1.00) 2.182

y Bias 0.150 0.150 0.150
MSE 12.365 (1.00) 12.368 (1.00) 12.368

zij Bias 0.357 0.357 0.357
MSE 0.128 (1.00) 0.127 (1.00) 0.127

z
(1)
i Bias −0.112 −0.098 −0.098

MSE 0.028 (0.86) 0.023 (1.04) 0.024

z
(2)
j Bias −0.252 −0.232 −0.275

MSE 0.121 (2.83) 0.110 (3.09) 0.345

b(1) Bias 0.741 2.104 2.102
MSE 37.061 (1.42) 52.619 (1.00) 52.626

b(2) Bias −0.689 −0.205 −0.218
MSE 8.004 (1.29) 10.169 (1.01) 10.278

a Bias 4.222 4.201 4.214
MSE 18.661 (1.00) 18.475 (1.01) 18.591

s2 Bias −6.248 −6.248 −6.248
MSE 39.035 (1.00) 39.036 (1.00) 39.036

1. Dannenburg: The unbiased estimators for s2, a, b(1) and b(2) are computed
using Equations (14), (15), (16) and (17).

2. REML: The restricted maximum likelihood estimation is used to compute
the structural parameters. Two REML estimators are used in this paper.
They are linked with the independent and exchangeable error structures
and are denoted by REML-I and REML-EX respectively.

After we obtain the estimators of a, b(1) and b(2), we can use Equations
(6), (7) and (8) to find the credibility factors zij , z

(1)
i and z

(2)
j . The next

step is to find the credibility estimator yij,Tij+1 using Equation (5), while the
parameters xizw , xzjw , Ξ(1)∗

i and Ξ
(2)∗
j that are used in Equation (5) can be

estimated using Equations (9), (10), (11) and (12).
As for the simulation results, we show the bias and mean square error

(MSE) of the Dannenburg’s and REML estimators for β, yij,Tij+1, zij , z
(1)
i ,

z
(2)
j , b(1), b(2), a and s2.

Table 1 summarizes the results when the data are independent, i.e.
ρ = 0 when generating data. In term of MSE, the three estimation meth-
ods are quite close to each other, except that both REML-I and REML-EX
methods show obvious advantage in estimating z

(2)
j . The results show that

the “unbiased” estimator proposed by Dannenburg may not be the best, even
when its independent error structure assumption coincides with the actual
error structure.
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Table 3. Estimation results for Study 2 associated with independent error struc-
ture.

Method
Parameter REML-I REML-EX Dannenburg

Bias 8.35× 10−1 8.45 × 10−1 −3.11× 10−2

β MSE 8.04× 101 8.04 × 101 9.04 × 101

(1.12) (1.12)
Bias −8.19× 10−1 −8.20× 10−1 7.14 × 10−1

y MSE 1.46× 103 1.46 × 103 2.65 × 104

(18.15) (18.15)
Bias −1.09× 10−2 −5.44× 10−3 −4.43× 10−1

zij MSE 4.03× 10−3 5.25 × 10−3 6.50 × 102

(> 105) (> 105)
Bias −3.68× 10−3 −3.05× 10−3 3.89 × 10−3

z
(1)
i MSE 9.60× 10−5 9.27 × 10−5 2.36 × 10−3

(24.58) (25.46)
Bias −3.71× 10−2 −3.51× 10−2 5.16 × 10−2

z
(2)
j MSE 1.29× 10−2 1.27 × 10−2 1.47 × 102

(> 104) (> 104)
Bias −6.10× 101 4.49 5.11

b(1) MSE 1.28× 105 1.46 × 105 1.50 × 105

(1.17) (1.03)
Bias −1.39× 10−1 3.76 3.21 × 10−1

b(2) MSE 3.35× 103 3.73 × 103 1.78 × 104

(5.31) (4.77)
Bias −1.22× 10−1 1.85 −2.01

a MSE 1.31× 102 1.95 × 102 1.18 × 104

(90.08) (60.51)
Bias 2.18× 102 2.61 × 102 2.60 × 102

s2 MSE 6.06× 104 6.80 × 104 6.79 × 104

(1.12) (1.00)

When the assumption of independent error structure is violated, with
reference to Table 2, we can see that REML-I still performs well in compar-
ing with the Dannenburg’s method, especially in reducing the bias and the
mean squared error for b(1) and b(2). With the correct assumption about the
error structure, REML-EX outperforms the Dannenburg’s estimator in the
estimation of all the parameters that we are interested in.

5.2 Study 2

The setting of Study 2 is similar to Study 1; the values of the parameters are
chosen as follows:

I = 12, J = 8, Tij = n = 10

b(1) = 900, b(2) = 100, a = 36, s2 = 25600.
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Table 4. Estimation results for Study 4 associated with exchangeable error struc-
ture.

Method
Parameter REML-I REML-EX Dannenburg

Bias 1.17 8.07 × 10−1 −3.80× 10−1

β MSE 8.65 × 101 8.71 × 101 9.58 × 101

(1.11) (1.10)
Bias −1.35 −1.17 −1.49

y MSE 9.99 × 102 1.13 × 103 9.70 × 102

(0.98) (0.86)
Bias 3.39× 10−1 8.65 × 10−2 4.17 × 10−1

zij MSE 1.21× 10−1 1.73 × 10−2 2.17 × 10−1

(1.79) (12.54)
Bias −3.28× 10−2 −2.20 × 10−3 −6.92× 10−2

z
(1)
i MSE 1.60× 10−3 7.91 × 10−5 6.87 × 10−3

(4.29) (86.85)
Bias −1.75× 10−1 −8.41 × 10−2 2.32 × 10−1

z
(2)
j MSE 8.06× 10−2 6.06 × 10−2 7.66 × 10−1

(9.50) (12.64)
Bias −8.21× 101 −3.17 × 101 −1.04× 102

b(1) MSE 1.28 × 105 1.36 × 105 1.45 × 105

(1.13) (1.07)
Bias −5.78 −7.26 −2.78× 102

b(2) MSE 5.13 × 103 5.62 × 103 1.01 × 105

(19.69) (17.97)
Bias 1.52 × 102 6.95 3.51 × 102

a MSE 2.40 × 104 3.72 × 102 1.42 × 105

(5.92) (381.72)
Bias −9.41× 103 −9.67 × 103 −9.67× 103

s2 MSE 8.85 × 107 9.36 × 107 9.36 × 107

(1.06) (1.00)

In contrast to Study 1, the weight of the observations are not always the
same. In this study, the observations are divided into I × J cells (96 cells).

We randomly select 48 cells, and this 48 cells have weight wijt = 150; the
other cells have weight wijt = 10. The above scenario is simulated 500 times.
And the sectors retain its weight which has been assigned during the first
replicate. The error structure is independent for Table 3, and exchangeable
with ρ = 0.4 for Table 4. The methods we considered in this study are the
same as in Study 1.

With reference to Table 3, we can see that with independent error struc-
ture, significant advantage has been recorded for both the REML-I and
REML-EX methods in estimating the structural parameters, especially in
estimating b(2) and a. Hence the accuracy of the estimation for the credibil-
ity estimators z

(1)
i , z

(2)
j and zij has been largely improved. With regard to
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Table 3, enormous discrepancies between the REML approach and the Dan-
nenburg’s approach have been recorded as regards to the estimation of the
credibility estimators. Therefore remarkable improvement on the estimation
of the credibility premium occurs.

For exchangeable error structure with ρ = 0.4, we can see from Table 4
that the REML approach can largely improve the estimation efficiency. With
the correct assumption on the error structure, REML-EX shows apparent
advantage in estimating the structural parameters, especially in estimating a
(relative efficiency beyond 380). As a result, better estimations of the struc-
tural parameters improve the accuracy of estimations of the credibility factors
z
(1)
i , z

(2)
j and zij . While REML-I has also largely improved the estimation

efficiencies comparing to the Dannenburg’s approach.
From Tables 3 and 4, we can see that REML approach can outperform

the Dannenburg’s approach in general even when its assumption of the error
structure does not coincide with the actual error structure.

References

ANTONIO, K., and BEIRLANT, J. (2006): Actuarial Statistics with Generalized
Linear Mixed Models. Insurance: Mathematics and Economics 40, 58-76.

COSSETTE, H., and LUONG, A. (2003): Generalized Least Squares Estimators for
Covariance Parameters for Credibility Regression Models with Moving Average
Errors. Insurance: Mathematics and Economics 32, 281-93.

DANNENBURG, D.R., KAAS, R. and GOOVAERTS, M.J. (1996): Practical Ac-
tuarial Credibility Model. Leuven: Institution of Actuarial Science and Econo-
metrics.

FREES, E.W., YOUNG, V.R. and LOU, Y. (1999): A Longitudinal Data Analysis
Interpretation of Credibility Models. Insurance: Mathematics and Economics
24, 229-47.

LAIRD, N.M. and WARE, J.H. (1982): Random-Effect Models for Longitudinal
Data. Biometrics 38, 963-74.

LINDSTROM, M.J., and BATES, D.M. (1988): Newton-Raphson and EM Algo-
rithms for Linear Mixed-Effects Models for Repeated-Measures Data. Journal
of the American Statistical Association 83, 1014-22.

LO, C.H., FUNG, W.K. and ZHU, Z.Y. (2006): Generalized Estimating Equa-
tions for Variance and Covariance Parameters in Credibility Models. Insurance:
Mathematics and Economics 39, 99-113.

LO, C.H., FUNG, W.K. and ZHU, Z.Y. (2007): Structural Parameter Estimation
Using Generalized Estimating Equations for Regression Credibility Models.
ASTIN Bulletin 37, 323-43.

MCCULLOCH, C.E. (1997): Maximum Likelihood Algorithms for Generalized Lin-
ear Mixed Models. Journal of the American Statistical Association 92, 162-170.

NELDER, J.A., and MEAD, R. (1965): A Simplex Algorithm for Function Mini-
mization. Computer Journal 7, 308-313.

VERBEKE, G., and MOLENBERGHS, G. (2000): Linear Mixed Models for Lon-
gitudinal Data. Springer, New York.



Part VIII

Information Retrieval for Text and Images



A Hybrid Approach for Taxonomy Learning

from Text

Ahmad El Sayed1 and Hakim Hacid2

1 University of Lyon 2 - ERIC Laboratory
5, avenue Pierre Mendès-France - 69676 Bron cedex - France,
asayed@eric.univ-lyon2.fr

2 University of New South Wales
Sydney NSW 2052, Australia,
hakimh@cse.unsw.edu.au�

Abstract. Ontology learning from text is considered as an appealing and challeg-
ing alternative to address the shortcomings of the hand-crafted ontologies. In this
paper, we present OLea, a new framework for ontology learning from text. The
proposal is a hybrid approach combining the pattern-based and the distribution-
nal approaches. It addresses key issues in the area of ontology learning: context-
dependency, low recall of the pattern-based approach, low precision of the distribu-
tionnal approach, and finally ontology evolution. Experiments performed at each
stage of the learning process show the advantages and drawbacks of the proposal.

Keywords: taxonomy learning, knowledge acquisition, relevance feedback

1 Introduction

In spite of the great efforts to elaborate tools and normalized methodologies
for building ontologies with help of engineers and domain experts, the task
still requires an incredible amount of human labour for the intellectual encod-
ing of “semantics”. Further, hand-crafted ontologies will always suffer from
a poor coverage comparing to the enormous amount of information available
today in real-world repositories, like the Web.

An appealing and challenging approach is thus to build such ontologies
automatically from wealthy resources like texts. This led to the emergence of
the field of ontology learning as an important sub-field of ontology engineering
Maedche and Staab (2001). In litterature, approaches for ontology learning
can be generally classified as linguistic (pattern-based) or stastical approaches
(distributionnal).

In this paper, we present OLEA (Ontology LEArning), a new framework
for ontology learning from text1. The proposal is a hybrid approach that aims
to deal with key issues in the area of ontology learning:
� This work has been done when the author was a PhD student at the University

of Lyon 2.
1 The accomplished work concerns though the concepts learning and the concepts

hierarchies learning, so we will rather refer to the task as taxonomy learning
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On Low Recall of the Pattern-Based Approach. The pattern-based
approach Hearst (1992), though yealding “‘acceptable” precision, suffers from
very low recall since detecting relations depends on the rare appearance of
a set of rigid lexico-syntactic patterns (e.g., NP such as {NP,NP..}). Some
authors face this difficulty by matching patterns on larger text resources like
the Web Cimiano et al. (2005), Etzioni et al. (2004) or Wikipedia Maria Ruiz-
Casado and Castellas (2005). We argue that this can resolve only partially
the problem, and a more flexible method taking into account the complex and
sparse nature of text is still needed. Our framework deals with this drawback,
and proposes a technique able to capture and match more “flexibily” patterns
in text.

On Low Precision of the Distributionnal Approach. The distribution-
nal approach consisting mainly of clustering terms basing on their similarities,
lacks generally from low precision. This is due to two main reasons. (1) The
commonly used hierarchical methods are not quiet adaptive to build tax-
onomies Cimiano et al. (2005), Grefenstette (1994), Caraballo (1999) since
they provide binary trees of crisp clusters. (2) Methods lack of reliability
since they rely, in most cases, on a single semantic relation (e.g., synonymy).
That is, we present a learning procedure involving more semantic relations,
and thus supplying us with more reliable decisions while building hierarchies.

On Ontology Evolution. It is known that an ontology should be subject
of continuous refinements in order to adapt it to new users’ and applications’
requirements. However, existing approaches either ignore the evolution issue,
or require regular human interventions, which is a tedious task. That is, we
propose a preminalary approach that places the learned taxonomy at the core
of a search engine, in order to adapt the taxonomy to users vision over text,
without any manual effort.

The remainder of this paper is organized as follows: we start by presenting
the general architecture of the proposed framework in Section 2. Next, we
show how we build the taxonomy in Sections 3, 4, and then how we evolve
the learned taxonomy in Section 5. Evaluations of the different proposed
techniques are outlined at the end of each section. Finally, we conclude and
draw some future works in Section 6.

2 OLea: general architecture

The general architecture of OLea, illustrated in Figure 1, is composed of three
principal stages:

1. we estimate confidence rates for a set of semantic relations between cooc-
curing terms in a corpus. To achieve this, semantic relations are first
estimated between terms that could be matched in WordNet (i.e., con-
cepts). This will build the learning base, that will serve for mining the
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relations’ confidence rates between terms uncovered by WordNet (Section
3);

2. semantic relations are used as input for a concept learning algorithm that
will output terms clustered into senses that will be regarded as concepts.
Then, discovered ’concepts’ along with the semantic relations between
them will be the input of a concepts hieararchy learning algorithm (Sec-
tion 4).

3. the learned taxonomy is involved in an IR environment, where users inter-
actions with the search engine are taken into account in order to launch
a relevance feedback mechanism able to adapt the taxonomy to the user
vision over text (Section 5).

Fig. 1. OLea: General Architecture.

3 Estimating semantic relations

First, we present a technique able to to capture and match more “flexibily”
semantic relations in text. The purpose is to identify larger number of seman-
tic relations in text, thus resulting in a greater recall. The overall technique
is described as follows. Each pair of terms occuring in a corpus is represented
by a set of lexico-syntactic features. Pairs that could be matched in WordNet
will be augmented by confidence rates for each of their semantic relation (e.g,
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synonymy, hypernymy). This will construct the learning base that will serve
to predict the semantic relation rates between pairs uncovered by WordNet.

3.1 Calculating relations between concepts

For pairs of concepts that could be matched in WordNet, we calculate a con-
fidence rate for each of their semantic relations basing on the semantic struc-
ture of the taxonomy. What we are seeking at the end, is statements assessing,
for instance, that “object” and “car” are 0.1-synonyms, 0.8-hypernyms, and
0-meronyms. The calculation of such rates depends on the target relation.
While hypernymy confidence relies on the edges count along the shortest
path separating two concepts, confidences for antonymy and meronymy are
boolean, depending simply on the presence/absence of such relations. All val-
ues will be then normalized between [-1, 1] for the asymmetric relations (e.g.,
hypernymy) and [0,1] for the symetric ones (e.g., antonymy, meronymy)2.

Fortunately, synonymy relations can be expressed more significantly using
semantic similarity measures. Note that the goal of ontology learning from
text is not to construct an output structure that will be “an extended miror”
of an existing structure like WordNet, but must reflect the context of the
target corpus/domain. That is, an important point is that our semantic dis-
tance (synonymy) defined between terms must be context-dependent, which
is not the case with the existing measures in the literature. This pushed us
to develop a context-dependent semantic distance measure between concepts
El Sayed et al. (2007). The proposed measure led us to a very promising
correlation rate of 0.876 with human rankings on a set of words pairs.

3.2 Mining relations between terms

Semantic relations calculated so far, although ’enough’ accurate, are limited
to the terms covered by WordNet. An option is indeed to use text as a
computing resource for terms uncovered by WordNet. However, it is known
that such approach lacks reliability, since it relies on distributional frequency
of words in text. The problem would get even more complicated when it
comes to compute other relations, such as hypernymy or part-meronymy.

Instead of relying solely on unstructured text, we will make use of the
obtained rates from the previous step (relying on a taxonomy) as a “reference”
for predicting semantic relations between the uncovered pairs in WordNet.
The assumption is that term pairs appearing in similar contexts tend to have
similar semantic relations. Our motivation for using taxonomy-based rates as
a “reference” cames essentially from the high correlation ratio obtained in our
approach which we believe can hardly be exceeded by a “pure” corpus-based
measure.
2 In this paper, we assume that these relations are symmetric which is true in most

cases since we are dealing with disambiguated terms , i.e., concepts
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Consider an uncovered pair P represented by a set of lexico-syntactic
features F (context), and associated to a set of semantic relations R, whose
confidence rates are null. We wish to predict the values of R. To do this, we
retrieve for P its K Nearest Neighbors (K-NN) from the set of covered pairs,
thus where confidence rates are known. Subsequently, each semantic relation
in R is predicted by means of a weighted average of the relations among the
K closest pairs3.

Similarity between two pairs, P1 and P2, is computed on the basis of their
respective lexico-syntactic features, F1 and F2. Lexico-syntactic features F
that characterize a pair P are issued from another area of research (i.e.,
Semantic Role Labeling Gildea and Jurafsky (2002), Pradhan et al. (2004))
and are defined as follows: Terms POS, Head Word lemma and POS, partial
path, chunk path, lexical path, path length.

In order to compare two contexts, a distance is calculated as a combina-
tion of many sub-distances between each of these features. Sub-distances all
range in the [0,1] interval. Some sub-distances are based on a simple integer
or a string comparison. However, since paths are highly sparse (e.g., 68.4% of
distinct partial paths in our experiments), we turned to the Waterman align-
ment algorithm Smith and Waterman (1981), basically created for comparing
sequences of proteins, DNA, RNA in bioinformatics. Consequently, our final
distance between two contexts is defined as the combination of sub-distances
between the different features:

Dist(F1, F2) = β1.POSDist + β2.HWDist + β3.HWPOSDist + (1)
β4.PartPathDist + β5.FullDist + (2)

β6.LexiPathDist + β7.PathLenDist + ε (3)

where β1...β7 denotes the coefficients assigned for each sub-distance dur-
ing the distance calculation, and ε denotes the intercept or the model error.

Consider a relation r for a pair P . Finding its K best confidence rates
depends on how much we can “optimize” the distances between pairs of fea-
tures. These distances can be optimized when reaching a maximal correlation
with distances between pairs of semantic relations (response variables). That
is, we applied a multiple linear regression model to find the parameters that
optimize the correlation between Dist(r1, r2) and Dist(F1, F2). Then, we ap-
ply the discovered optimal parameters on the previous equation in order to
find more accurately the K-NN.

Following that, for each P uncovered by WordNet, a set of K relation
confidences along with their respective distances with P are retrieved from
the learning base. The final relation confidence is then calculated by means
of the weighted average of the K-nearest relation confidences:

3 Each semantic relation is treated separately.
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r(Pj) =
1
K

∑

i=1..K

(
1

dist(Fj , Fi)
∗ r(Pi)) (4)

where r(Pj) denotes the relation confidence of relation r in pair Pj ;
dist(Fj , Fi) denotes the distance between the features sets Fj and Fi of the
two pairs Pj and Pi respectively.

Finally, same pairs appearing in several contexts will have their semantic
relations averaged. Using the proposed hybrid method, semantic relations
can be detected between any couple of co occurring terms in text, and do not
depend on matching exactly a set of predefined patterns.

3.3 Evaluation and results

Our experiments have been carried out on a benchmark composed of 1000
documents picked from the Reuters corpus4 along with the WordNet tax-
onomy. The key question of this evaluation is to figure out to which extent
the predicted relation confidences (by means of supervised learning) can ap-
proach the taxonomy-based relation confidences (by means of WordNet). For
this, we divided the set of concept pairs into 80% for the training set, and
20% for the test set.

From Figure 2, we can notice that K has no significant effect on the
results, and that models performance depends more on the obtained Pearson’s
coeficient of the regression model R2. Without using this model, thus by
setting an equal coefficient of 1 to all variables, we obtained a best correlation
ratio of 0.32 for synonymy. However, when incorporating the regression model
with KNN, we could dramatically increase correlation, attaining a rate of 0.82
for synonymy. Figure 3 shows clearly that the final performance depends on
how successful the regression model is.

Fig. 2. Effect of K variation on the fi-
nal correlation rate for each regression
model.

Fig. 3. Effect of R2 on the final corre-
lation rate for each semantic relation.

4 Reuters corpus, volume 1, english language, release date: 2000-11-03
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4 Taxonomy learning

In this section, we present a two-phases procedure that takes as an input the
semantic relations rates, and provides as an output a hierarchy of concepts.
It includes concepts learning, and concepts hiearchy learning.

4.1 Concepts learning

The goal here is to group terms into a set of sense-bearing clusters, where
each cluster will be perceived as a new concept. Hence, we define a soft
hierarchical-based clustering algorithm able to deal with polysemous words.

Algorithm 1 Concept Learning Process
input: Initialize each term ti in the set T as a cluster ci in the set C
1: repeat
2: Identify the closest pair P of clusters cp and ck in C having synonymy exceeding a

threshold θ1 and having no other relation exceeding a threshold θ2
3: Create a new cluster cn containing the instances of cp and ck

4: if cp is not basically a term then
5: Remove cp from C
6: end if
7: if ck is not basically a term then
8: Remove ck from C
9: end if

10: for all other clusters oc in C do
11: if oci ⊂ cn OR cn ⊂ oci then
12: continue
13: end if
14: Compute relations Ri between cn and oci

15: if Ri(synonymy) is above θ1 and all other Ri are below θ2 then
16: Merge oci instances in cn

17: if oci is not basically a term then
18: Remove oci from C
19: end if
20: end if
21: end for
22: Mark cp and ck as a considered pair (to not be considered again)
23: until P is empty
24: return the set of created clusters along with the set of terms that were not added to any

cluster

Rather than clustering terms by relying solely on semantic similarity
which is error-prone, our algorithm offers more reliable decisions by taking
into account a larger set of relations. The point is that two related clusters will
be merged only if they are found “purely” synonyms, therefore do not have
any other relation with a confidence rate greater than a specified threshold.

4.2 Concepts hierarchy learning

Following concepts learning, the goal is to learn taxonomic is-a relations in
order to build a hierarchy of concepts. The Algorithm 2 used for this purpose
is somehow similar to the previous one in the sense that hypernyms relations



262 El Sayed, A. and Hacid, H.

are created recursively by considering at each iteration the “best” concepts
pair with respect to predefined thresholds.

Algorithm 2 Taxonomic-Relations Learning Process
input: Let P be the set of concepts pairs with their relations confidence obtained from the

previous phase
input: Define direct-hypernymy confidence dirhyp(cpi) for a concept pair cpi in P as

synonymy(cpi)*hypernymy(cpi)
1: repeat
2: Identify the concept pair cpk with the highest absolute(dirhyp(cpk)) that must be above

a threshold α1 and having the other relations confidence (except synonymy and hyper-
nymy) below a threshold α2

3: Create a hypernymy link for cpk

4: until cpk is empty
5: for each remaining concept cr sharing no link with any other concept do
6: find the K closest concepts for cr by means of synonymy
7: for each close concept ci do
8: calculate a score si as a function of synonymy(cr, ci) and

synonymy(cr, hyponyms(ci))
9: end for

10: create a hypernym link between cr and the ci with the highest score MAX(ci)

11: end for

The formula dirhyp(ci, cj) = synonymy(ci, cj).hypernymy(ci, cj) is de-
signed under the simple assumption that a concept ci is judged as a “good”
direct hypernym for another concept cj if ci and cj share a high hypernymy
and a high synonymy confidence. In addition to that, as shown in the algo-
rithm, we ensure that ’is-a’ links are created between concept pairs that are
“purely” hypernyms, thus sharing any other relation (except synonymy) with
a confidence rate greater than θ2.

As hypernyms occur rarely between pairs of terms, lot of concepts will
remain unlinked. To overcome this shortcoming, we start by identifying for
each unliked concept cr its K closest concepts Ck by means of synonymy.
Next, in order to identify which of the Ck is the most appropriate hypernym
for cr, a direct-hypernymy score is calculated for each ci in Ck basing on the
synonymy relations that cr shares with the children of ci :

dirhyp(ci, cr) =
AvgSyno(cr, hypo(ci))

(1 + V arSyno(cr, hypo(ci)))
(5)

AvgSyno(cr, hypo(ci)) denotes the average of synonyms confidences that
cr has with the children of ci, while V arSyno(cr, hypo(ci)) denotes the vari-
ance of synonyms confidences that cr has with the children of ci.

The underlying assumption of this measure is that the ideal hypernym ci

for a concept cr is found when: 1) ci has the highest semantic similarity with
cr, 2) no children of ci has a highest semantic similarity with cr than with ci

itself, 3) cr has exactly the same semantic similarity (or a minimum variance)
with all the children of ci. These assumptions are the result of observation of
the optimal behavior for a semantic similarity measure in a taxonomy.



A Hybrid Approach for Taxonomy Learning from Text 263

After learning taxonomic relations between concepts, multiple disparate
hierarchies are created that will be merged by means of an expert5. At the
end of this phase, we obtain a fuzzy taxonomy in the sense that related
terms within a concept are assigned a synonymy confidence between each
others, and that concepts are related to each others by an ’is-a’ relation
being assigned a hypernymy confidence as well.

4.3 Evaluation and results

In literature, one of the approaches for evaluating a learned ontology is to
compare it with another reference ontology. Actually, ontology learning com-
munity lacks of common evaluation frameworks which leads to a lack of com-
parative results showing the effectiveness and efficiency for each technique.
Concerning our work, we performed a preminelary evaluation against human
judgments. Typically, after specifying the actual context of newspapers, we
asked a human subject to group and organize in one or many trees a set of
50 terms. Finally, we compare the human-made tree with our learned tree
in terms of precision of recall by means of the number of correct vs incor-
rect learned relations. Furthermore, all instances in a concept are considered
inter-related and will have their relations evaluated as well.

Concepts Learning Evaluation. Since precision and recall depends on the
predefined thresholds θ1 and θ2 (Algorithm 1), we altered θ1 in the range of
[0.88, 0.97], while fixing θ2to 0.05. As we can see in Figure 4, while precision
tends to drop dramatically when reducing θ1, recall tends to be somehow
stable along the different parameter values.

Taxonomic-Relations Learning Evaluation. We consider here the number of
correct vs incorrect links between validated concepts by the user, which dis-
carded 6 out of 37 learned concepts. We fixed the parameter θ1 at 0,95, since
it gave the optimal trade-off between precision and recall. Then, we applied
Algorithm 2 by alternating α1 in the interval [0.1, 0.2] and fixing α2 at 0.05.
Results illustrated in Figure 5 show interesting performance, especially from
a recall point of view.

Let’s quote here that a comparison with other methods is still needed to
assess the added-value of the proposed method. This is not an easy task due to
the lack of common frameworks for evaluation. We argue that an application-
oriented evaluation is the most meanigfull way to compare different methods.

5 Improving taxonomy with relevance feedback

Involving human subjects in the learning process, although extremly benefic,
can be a very tedious and time-consuming task Faure and Poibeau (2000),
5 This a very complex task to perform automatically. This issue will be addressed

in future works.
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Fig. 4. Concept learning performance
in terms of precision and recall with
different parameter values.

Fig. 5. Taxonomic-relations learning
performance in terms of precision and
recall with different parameter values.

Moldovan and Girju (2001). What we propose here is to add supervision
to the learning process without any manual effort: Since our taxonomy seeks
essentially to integrate a IR environment, we involve human visions implicitly
in the learned taxonomy by considering their interactions with a search engine
using the relevance feedback mechanism Ruthven and Lalmas (2003).

Therefore, we placed our learned taxonomy at the core of our IR system El
Sayed et al. (2007b). Keywords queries, after being mapped in the taxonomy,
will be expanded to other related terms by means of the synonymy and
hypernymy relations. At the end, relevant documents will be returned to the
user by their titles and two-lines outlines. Four possible situations are present
here:

• A document viewed by the user and containing an expansion term ⇒
confidence ↗

• A document viewed by the user and not containing an expansion term
⇒ confidence↘

• A document not viewed by the user and containing an expansion term
⇒ confidence ↘

• A document not viewed by the user and not containing an expansion
term ⇒ confidence↗

Subsequently, an implicit relevance feedback mechanism Ruthven and Lal-
mas (2003) is involved in order to strengthen/weaken the relations confidences
between the query terms and the expansion terms. Since our query expansion
depends on the taxonomy’s fuzzy relations, feedbacks will enable the system
to take more subjective decisions about accepting or rejecting a specific ex-
pansion term in future queries. Note that only synonymy and hypernymy re-
lations are covered by the mechanism, since other relations do not contribute
to any query expansion, playing the simple role of ”prevention” during tax-
onomy learning. Moreover, the mechanism will not cover concepts detected
in Wordnet because we consider that they yield the optimal accuracies that
one could reach, and that updates would tend to deteriorate them.



A Hybrid Approach for Taxonomy Learning from Text 265

5.1 Evaluation and results

To evaluate the effect of relevance feedback on taxonomy learning, we observe
the concepts and relations learning accuracy that is likely to increase as new
queries are sent to the IR system. Thus, we took as a starting point the
results given by the learned taxonomy obtained using the optimal parameters
(Section 4.3). Next, 100 keywords queries (related to the selected hierarchy
for evaluation) are sent consecutively to the system. At the end of session
of each query, viewed and unviewed documents by the user are considered
for the feedback. Taxonomy is updated at the end of each 20 queries in
order to be reevaluated against the hand-built taxonomy of 50 terms (Section
4.3). Figure 6 shows the precision and recall values for both concepts and
relations learning along the 100 sent queries. We can notice the slight but
sure improvement in the final results (especially in precision). Yet, we argue
that the improvement can be seen more clearly with larger set of queries.

Fig. 6. Performance evolution along queries using Relevance Feedback

6 Conclusion and future works

To wrap up, we presented in this paper OLea, a framework for learning on-
tology from a text corpus. It has the advantage to be able to deal with the
sparse nature of text, offering more flexible recognition for semantic relations
between terms. In addition to that, we presented two algorithms that make
use of the detected relations in order to output a taxonomy while dealing
with polysemic terms. At the end, we showed how results can be improved
by placing our learned taxonomy in the core of an Information Retrieval en-
vironment. As for future works, we are seeking possible solutions for merging
different disparate hierarchies into one final hierarchy. Then, we are planning
to extend the current approach in order to learn non-taxonomic semantic re-
lations from text. Since no ”correct” ontology exists for any domain, we argue
that a learned ontology is better evaluated by assessing its positive/negative
contribution for the environment and the task(s) that it was intended for (e.g.
Agirre et al. (2000)) for Word Sense Disambiguation.). Thus, we are intend-
ing to perform a task-oriented evaluation in environments like Information
Retrieval and Text Classification.
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Abstract. Modeling an image or an image-set, which share similar visual con-
tents, by means of a discrete distribution (such as a signature) or by means of a
mixture model (such as a Gaussian mixture-model) has a major utility, and may
serve as a basis for Content Based Image Retrieval and other related areas. Mix-
ture model can encode information about color, texture, and spatial relationships
between colored/textured regions. Image modeling is used in several tasks, such
as Image retrieval, Automatic annotation, Unsupervised or Semi-supervised Clus-
tering. Linear optimization techniques offer a reliable and efficient way to compute
distance, in both cases, discrete distributions and mixture models. Linear optimiza-
tion can be also used for modeling image-sets, by computing a mixture model that
minimizes distances.

Keywords: image modeling, image-set modeling, discrete distribution, Gaus-
sian mixture model, linear optimization

1 Introduction

Early approaches in Content Based Image Retrieval (CBIR) were based on
extracting low-level visual content from images by using histograms of color,
texture, and other low-level features. Another common approach in the litera-
ture is based on fixed-size feature vector. A feature vector codes information
about color (for instance, color moments and histogram of color), texture
and shape. Evaluating the similarity between feature vectors is worked out
by using a weighted linear combination of subsets of features. The distance
between subsets of feature is computed by using a simple distance such as
the Euclidean distance.
More recent techniques use discrete distributions like signatures, and mixture
model like Gaussian Mixture Models (GMMs) to model the low-level visual
content. Mixture model are well suited to abstract the content of images, and
they can be adapted to the image content complexity. Simple images have a
few mixture components while complex images have many components. Mix-
ture distributions can serve also for modeling image-sets in a compact form
for supervised, unsupervised, and semi-supervised learning.
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Models are computed directly from the images by unsupervised learning, us-
ing, for example, the k-Means algorithm in the case of discrete distributions,
or the Expectation Maximization (EM) algorithm with GMM in the case
of mixture model. Unlike fixed-size feature vector, where the centroid that
minimizes the distance to a set of vectors can be computed by averaging the
values in the feature vectors, mixture model’s centroid needs a more complex
technique to be computed.

2 Related work

Rubner et al. (2000) use signatures as discrete distributions to model image
content, instead of histograms, leading to better results in CBIR. They use a
k-d tree to perform clustering using color content to extract the signature of
an image. The Earth Mover’s Distance (EMD), a transportation algorithm,
has been proposed to calculate distance between signatures.
Li and Wang (2006), seeking automatic annotation through supervised learn-
ing, use signatures of color and texture to model the image contents. Mallows
distance was used as a metric to evaluate distance between signatures. A lin-
ear optimization algorithm, called D2-clustering, was proposed to compute
a set of centroids for every image-set category. Every categorical class is
modeled by a set of signatures for every visual content (color/texture) using
D2-clustering, an algorithm in the same spirit as the K-Means algorithm.
Datta et al. (2006) build two models to capture different visual aspects. A
structure-composition model, which uses Beta distributions to capture color
interactions, and a Gaussian mixture model in the joint color-texture feature
space. These two models are used in a supervised learning in order to cate-
gorize unseen images. The image is examined from two separate viewpoints
in order to place it in a category.
Goldberger et al. (2006) propose an information theoretic framework for un-
supervised image-set clustering. They model the color content of images by
a mixture of Gaussian distributions by applying the EM algorithm. Monte-
Carlo simulation is used to approximate the KL-divergence distance between
GMM distributions. An information framework called Information Bottle-
neck (IB) was used afterwards for agglomerative unsupervised clustering of
the images. The image-set is modeled by averaging all the models within the
set, so that all the information present in the image-set is conserved; the
main disadvantage is the growing if the complexity with the growing of the
number of images in the set.
Image-set modeling requires compressing mixture models of single images
into a compact form. Zhang and Kwok (2006) reduce the model size by first
grouping the components into clusters, and then perform local function ap-
proximation that minimizes an upper bound of the approximation error. The
L2 norm is used as the error criterion. Goldberger at al. (2007) propose to
reduce a large Gaussian mixture to smaller one by minimizing a KL-based
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distance between the two mixtures through a clustering based on unscented
transform.

3 Image modeling

In this work we use the color of an image as low-level content. Color has been
proved to be a more powerful feature, in the case of natural color images, than
texture or shape features. Obviously, using discrete distribution or Gaussian
mixture model we can model other low-level image content like texture and
edges. Discrete distribution and Gaussian mixture model are considered as
alternative rather then the simple statistical representation by histograms.
A pre-processing of the image is need to extract color content. We first smooth
each band of the image’s RGB representation using a 2D-Gaussian filter, with
the aim of reducing the possible color quantization and dithering artifacts.
We then transform the image representation into the LUV perceptual color
space. Images are partitioned into blocks of 4 x 4 pixels. The block size is
chosen as a compromise between the color details and the computation time,
owing to the large number of images to be processed in an image database.
Three features are extracted from each block, concerning the color, namely
the average value of the luminance L, and of the chrominance, captured by
the parameters U and V, which encode color information. It has been proved
that the LUV color space has a good correlation with human perception.
Each image is represented by a set of feature vectors extracted from each
block. These feature vectors are then used to model the content of images
by discrete distributions/GMMs. The feature vector can include either three
features per block (L,U and V) or five features (x, y, L, U and V) where x
and y are the coordinate of block in the image.

3.1 Discrete distribution

Modeling images by a discrete distribution is realized by computing its sig-
nature. In this work we use the color content to compute a signature. We
use a method similar to the one used by Li and Wang (2006). The K-Means
algorithm is used to cluster the feature vectors of color into several classes.
The number of clusters in the algorithm is determined dynamically by thresh-
olding the average within-cluster variation.

Let us suppose that the observations (color vectors) are {x1,x2, ...,xM}.
The role of the K-Means algorithm is to partition the observations into k
groups with means x̂1, x̂2, ..., x̂k such that the following objective function
D(k) (the distortion) is minimized:

D(k) =
M∑

i=1

min1≤j≤K(xi − x̂j)2
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K-Means does not specify how many clusters to choose. We adaptively choose
the number of clusters by gradually increasing k and stopping when some halt
condition is met. We start with k = 2 and stop increasing k when one of the
following conditions is satisfied:

1. The distortion D(k) is below a given threshold. A low D(k) indicates
high purity in the clusters.

2. The discrete approximation of the first derivative of the distortion with
respect to k, i.e., [D(k)−D(k− 1)], is below a threshold. A low [D(k)−
D(k − 1)] indicates convergence in the clustering process.

3. The number k exceeds an upper bound. We force an image signature
to only consists of no more than 8 elements. Usually, the segmentation
process generates a much lower number of classes.

Once the clusters of color have been found, the color signature Sl =
{(Sl

i, w
l
i)| i = 1, ..., kl} of image Il are computed; this amounts to calculate

the fraction of pixels that belong to each cluster. This fraction is computed
by finding, for each pixel in the image, its nearest-neighbor set.
The EMD distance is used to compute the distance between signatures. Eu-
clidean distance is used internally by the EMD distance. Mallows distance
(Levina and Bickel (2001)) can be used instead of EMD distance, and this
leads to the same results, because we normalized the signature weights in
such a way that have

∑kl

i=1 wl
i = 1.

3.2 Gaussian mixture model

In order to include spatial information, the (x, y) position is appended to the
color feature vectors extracted from blocks. The image is represented by a
collection of feature vectors with five dimensions. Afterward, images Il are
modeled using a mixture of Gaussian. The expectation-maximization (EM)
algorithm is used to determine the maximum likelihood parameters of the
model. The minimum description length (MDL) principle is useful to select
among values of k. k is the number of Gaussian components in the mixture
model that ranges, in this work, from 2 to 8.
Blocks are grouped into homogeneous regions which are represented by a
Gaussian mixture model. The distribution of a 5-dimensional random variable
y, representing a feature vector, is a mixture of k Gaussians with density
function:

fl(y) =
kl∑

i=1

αi
1√

(2π)d|Σi|
exp{−1

2
(y − µi)TΣ−1

i (y − µi)}

The EMD is the minimum cost of changing one mixture into another one
when the cost is that of moving a probability mass from one component in
the first mixture to another component in the second mixture. A common
choice of the cost is the symmetrized KL-distance (Goldberger et al. (2006));
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with this cost the EMD does not obey the triangle inequality. Instead we

use normalized L2 distance. Let f
′
l (y) = fl/

√∫
fl(y)2dy. The normalized

L2 distance dnL2(Ia, Ib) =
∫

Rd (f
′
a(y) − f

′
b(y))2dy, and the normalized L2

distance is a continuous version of cosine distance (Jensen et al. (2007)):

dnL2(Ia, Ib) = 2(1 −
∫

Rd

f
′
a(y)f

′
b(y)dy)

For Gaussian Model, closed form expression for the normalized L2 distance
can be computed (Ahrendt (2005)):

dnL2(Ia, Ib) = 2(1 −
∫

Rd

f
′
a(y)f

′
b(y)dy)

= 2(1 −
∫

Rd

Ny(µa, Σa)√∫
Rd N2

y (µa, Σa)dy
∗ Ny(µb, Σb)√∫

Rd N2
y (µb, Σb)dy

dy)

= 2(1 −
∫

Rd Ny(µa, Σa) ∗Ny(µb, Σb)dy√∫
Rd N2

y (µa, Σa)dy ∗
√∫

Rd N2
y (µb, Σb)dy

)

= 2(1 −
|2π(Σa + Σb)|−

1
2 exp(− 1

2 (µa − µb)T (Σa + Σb)−1(µa − µb))

(
√∫

Rd N2
y (µa, Σa)dy ∗

√∫
Rd N2

y (µb, Σb)dy)
)

4 Image-set modeling

Image modeling can be extended to image-set modeling using mixture models.
By image-set, we mean a collection of images that exhibit visual similarity in
color content and/or in spatial relationships between colored regions. Image-
sets are generated either by supervised categorization, unsupervised or by
semi-supervised clustering of image collection into groups. Let Il (l ∈ Cn =
{1, ..., N}) denote the images within the image-set. Modeling an image-set
can be done by computing a mixture model that minimizes the distance to
all mixture models of images within the image-set, as can be modeled by
a mixture of mixture models; in this case the image-set is partitioned into
homogenuous subsets, and for every subset a prototype is computed.

The prototype is a mixture model, as well as the image-set and every
component of the image-set distribution. In this paper we are concerned
with the case of computing a mixture model as centroid of other mixture
models. We first choose the mixture model that minimizes the distance to
all other models. Afterwards, we use linear optimization algorithm, similar
to D2-clustering, to compute a mixture model that minimizes the distance
to all models in the image-set.
Let α = {(z1, q1), (z2, q2), ..., (zm, qm)} be the mixture model to be computed
as a centroid. Let {(vl

1, p
l
1), (vl

2, p
l
2), ..., (vl

ml
, pl

ml
)} be the mixture model of
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Il, where zk (k = 1, ...,m) and vl
j (j = 1, ...,ml) are the parameters of the

mixture model, namely a vector of features, in the case of discrete distri-
butions (signatures), and the mean vector µ and covariance matrix Σ of a
Gaussian distribution in the case of GMMs. Let qk and pl

j be the probabilities
associated to each component with:

m∑

k=1

qk =
ml∑

j=1

pl
j = 1

In the case of discrete distribution, the algorithm proceeds as follows:

1. Fix zk, k = 1, ..,m. Update qk and wl
k,j by using linear optimization

technique:

Minimize:
∑

l∈Cn

∑m
k=1

∑ml

j=1 wl
k,jd(zk, v

l
j)

subject to:

∑m
k=1 qk = 1; qk ≥ 0, k = 1, ...,m∑ml

j=1 wl
k,j = qk; k = 1, ...,m, for every l ∈ Cn∑m

k=1 wl
k,j = pl

j ; j = 1, ...,ml, for every l ∈ Cn

wl
k,j ≥ 0, l ∈ Cn j = 1, ...,ml and k = 1, ...,m

2. Fix qk, wl
k,j update zk, ∀ k ∈ {1, ...,m}

zk =
∑

l∈Cn

∑ml
j=1 wl

k,j∗vl
j∑

l∈Cn

∑ml
j=1 wl

k,j

3. Compute
∑m

k=1

∑ml

j=1 wl
k,jd(zk, v

l
j)

if the rate of decrease from the previous iteration is below a threshold,
return (optimization ended); otherwise go to Step 1.

(d(zk, vj) is the distance between components of discrete distributions, i.e.
distance between two vectors)

In the case of GMMs the algorithm operates as follows:

1. Fix zk, k = 1, ..,m. Update qk and wk,j by using linear optimization
technique:

Minimize:
∑

l∈Cn

∑m
k=1

∑ml

j=1 wk,jd(zk, v
l
j)

subject to:

∑m
k=1 qk = 1; qk ≥ 0, k = 1, ...,m∑ml

j=1 wk,j = qk; k = 1, ...,m, for every l ∈ Cn
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∑m
k=1 wk,j = pl

j ; l ∈ Cn, j = 1, ...,ml

wk,j ≥ 0, l ∈ Cn j = 1, ...,ml and k = 1, ...,m
2. Fix qk, wk,j update zk, ∀ k ∈ {1, ...,m}

µk =
∑

l∈Cn

∑ml
j=1 wk,j∗µl

j∑
l∈Cn

∑ml
j=1 wk,j

Σk =
∑

l∈Cn

∑ml
j=1 wk,j∗(Σl

j+(µl
j−µk)(µl

j−µk)T )
∑

l∈Cn

∑ml
j=1 wk,j

3. Compute
∑m

k=1

∑ml

j=1 wk,jd(zk, v
l
j)

if the rate of decrease from the previous iteration is below a threshold,
return (optimization ended); otherwise go to step 1.

5 Experiments

In order to test image modeling, we used Wang’s dataset, which contains one
thousand general purpose images, manually selected from the Corel database.
The dataset contain 10 classes of 100 images each. Images are 384 × 256
or 256 × 384 pixels, compressed in JPEG format. Afterwards, these mix-
ture distributions are used separately in unsupervised clustering. First, a
matrix of distances between images is computed. We use simple k-Means
algorithm for unsupervised clustering, using the distance matrix as input.
Multi-dimensional scaling is used afterward within clusters, in order to re-
flect the similarity between images. Images that have smaller distance among
themselves are displayed near each other.

5.1 Quality evaluation

The capacity of modeling can be evaluated by the quality of clustering. The
quality of clustering is dependent in part on the quality of the model repre-
senting items and on the distance measure. Items are known to the clustering
algorithm only by their distances. The quality of clustering results is difficult
to measure. In particular, one needs to find a quality measure that is not
dependent on the technique used in the cluster generation process, on the
representation scheme, and on the distance measure. Using a ground truth
clustering database gives an independent evaluation of clustering quality. We
use Normalized Mutual Information (NMI) (Strehl at el. (2000)) between
true and predicted labels to measure the quality of clustering. The NMI
measures the amount of information that the knowledge of one variable value
provides about another one. The NMI ranges between 0 and 1:

NMI = 2
H(L) −H(L|L̂)

H(L) + H(L̂)
(1)

A high value of NMI indicates a strong content resemblance inside clusters.
In (1) L and L̂ are random variables corresponding to the ground-truth labels
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and to the labels assigned by the clustering algorithm, respectively. H(L) and
H(L̂) are the marginal entropies of L and L̂, whereas H(L|L̂) is the condi-
tional entropy. Using the NMI measure, we get 0.46 as result of clustering
using color signatur, and 0.41 using the GMM of color plus coordinates (x,y).
The results of quality clustering of discrete and continuous distributions can
also be measured using the ”F-measure”:

F −measure =
2 ∗ Precision ∗Recall

Precision + Recall

The F-measures concerns every class (Africa, Beach, Bus, etc.) in contrast
to NMI, which provides an overall evaluation. Then, for every cluster, we
compute the ”F-measure” (Yang and Liu (1999)) regarding a class (Africa,
Beach, Bus, etc.), and afterward we take the maximum value found. This
value is considered as a quality clustering regarding a specific categorical
class. The results of the experiments are reported in Table 1.

class Discrete Distribution Color+XY GMM

Africa 0.37 0.57

Beach 0.32 0.35

Historical Building 0.32 0.29

Bus 0.36 0.48

Dinosaurs 0.84 0.73

Elephants 0.54 0.35

Flowers 0.55 0.78

Horses 0.77 0.72

Mountains 0.49 0.33

Foods 0.46 0.66

Table 1. Clustering evaluation for discrete and GMMs.

6 Conclusion

In this paper we presented image and image-set modeling by mixture of
distributions. Mixture models serve as an efficient way to summarize visual
contents of images. We proposed linear optimization algorithms as a reliable
way to calculate distance between mixture distributions, as well as for com-
puting a centroid of mixture models sets in both cases discrete distributions
and GMMs.
Clustering enables us to evaluate the modeling capacity. Using a fully labeled,
ground truth image database we have evaluated the clustering quality.
The results show that color discrete distributions give the best overall cluster-
ing results in term of NMI. Gaussian mixture models of color plus coordinates
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give good results in modeling class categories as flowers and foods that exhibit
colored regions correlated to spatial locations. In spite of the large number of
works in image representation, we are still far from handling high semantic
level. Image features still are closely related to low-level such as color and
texture.
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Abstract. This paper deals with the automatic retrieval of issues reported in legal
texts and presents an experience with expert’s reports on the application of ILO
Conventions. The aim is to provide the end user, i.e. the legal expert, with a set of
rules that permits her/him to find among a predefined list of issues those addressed
by any new text. Since the end user is not supposed to be able to pre-process
the text, we need rules that can be directly applied on raw texts. We present the
strategy followed for generating the rules in this ILO legal setting and single out a
few possible improvements that should significantly improve the performance of the
retrieval process. Our approach consists in characterizing in a first stage a list of
descriptor concepts, which are then used to get a quantitative representation of the
texts. In the learning phase, using a sample of texts labeled by legal experts with
the issues they actually address, we build the rules by means of induced decision
trees.

Keywords: information retrieval, content prediction, quantitative text rep-
resentation, legal texts

1 Introduction

The concern of the paper is the automatic identification of the type of issues
reported by given legal texts, for example which violations are pointed out
in experts’ comments on the application of ILO (International Labor Office)
Conventions. Such an automatic text mining process becomes necessary when
we face a large number of texts for either 1) pointing out the most relevant
texts when one wants to investigate a given issue, or 2) drawing synthetic
analyses of the relationships between issues as well as with other factors. The
objective is then essentially to provide the end user, i.e. the legal expert, with
prediction rules of the issues addressed by each text. We consider the case
where the issues of interest have been previously specified. We assume thus
that we have a closed list of issues.

The paper describes the process followed for building such rules within
a joint research project between the ILO, the University of Geneva and the
University of Lyon 2 (Ritschard et al., 2007) on the Social dialogue regimes
prevailing in democratic countries. We also single out the main weaknesses
of the approach and propose a series of strategies for improving the process.
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The approach followed consists in characterizing in a first stage a list of
descriptor concepts from which we derive then a quantitative representation
of the texts. In the learning phase, using a sample of texts labeled with the
addressed issues by legal experts we build the rules by means of induced
decision trees. A separate tree is grown for each of the issue. Each time a
binary variable indicating whether the issue is present or not is used as tar-
get variable and the descriptor concepts serve as predictive attributes. The
characterization of the descriptor concepts and the quantification of their im-
portance within each text is obviously a crucial stage in our process. Once the
rules were obtained, we had to provide the end user (legal expert) a simple
piece of software that 1) builds in an automatic way the quantitative repre-
sentation of any new text, i.e. evaluates the importance of each descriptor
concept in the text, and 2) determines from that representation what the
probability is that the text addresses each issue of interest.

To make our presentation less abstract, a few words are worth on the
application context for which the described text mining strategy was devel-
oped. The aim of text mining was to help us identify the nature of issues
raised by a Committee of experts (CEACR) regarding the application of ILO
Conventions. Due to space constraints we consider here only Convention 87
on Freedom of association and protection of right to organize. What we want
to know is what types of violations of this Convention does the Committee
identify in its reports. Using a priori knowledge, we categorized the possible
violations in the form of a list of 9 key concepts — types of violations —
(Table 1) themselves derived from a more detailed list of 27 key concepts
listed in Ritschard et al. (2007).

v1 Right to life and physical integrity (not observed)
v2 Right to liberty and security of person / Right to a fair trial (not observed)
v3 Right to establish and join workers’ organizations
v4 Trade union pluralism
v5 Dissolution or suspension of workers’ organizations (not observed)
v6 Election of representatives / Eligibility criteria
v7 Organization of activities / Protection of property / Financial independence
v8 Approval and registration of workers’ organizations
v9 Restrictions on the right to industrial action

Table 1. Retained key concepts, i.e. types of violation.

The paper is organized as follows. In Section 2 we discuss the usefulness
and inconvenience of text pre-processing and explain in Section 3 the semantic
preserving text representation that was retained. The learning process itself
is described in Section 4, where we give also some experimentation results
illustrating the efficiency of the process. Concluding remarks are given in
Section 5.
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2 Text pre-processing

Text mining (Feldman and Dagan, 1995; Fan et al., 2006) refers to the process
of analysing text to extract information that is useful for particular purposes
(Witten and Frank, 2005, pp 351-356). It is supposed to be more than just
finding documents or pages containing a given keyword — which is what
simple indexing or search engines do well. For instance, if we are looking for
texts commenting on violations of the freedom to organize the election of
trade union representatives, we will not be satisfied with just texts contain-
ing the keyword “election”, but we may want to consider also all terms or
expressions more or less related to this notion such as for example “elected
workers’ representative” or “union leader”.

As opposed to numerical data, text data are essentially unstructured.
Synonymy (different expressions with same meaning) and polysemy (different
meanings for a same expression), among others, make them hard to analyse
in an automatic way and necessitate heavy pre-processing. The aim of the
pre-processing is to transform the essentially unstructured text data into a
suitable structured representation for further automatic processing. By struc-
tured representation we mean a representation where each useful notion is
uniquely and unambiguously defined so that we can surely rely on the counts
of its occurrences.

There are basically two main ways of representing a text: through n-grams
and as a bag of words. The former ignores the meaning of the words and
considers each subsequence of say 3 letters — 3-gram — that can be found
in the words as a countable characteristic (Damashek, 1995; Mayfield and
McNamee, 1998). The second (Salton et al., 1992, 1996) retains each different
observed word as a characteristic and focuses essentially on its frequency in
the text and among the texts. The latter approach is best suited for our
supervised classification purpose where the semantic content of the text is of
primary importance.

Now, texts contain a huge number of different words. Some of them may
have a same or similar meaning (synonyms), may have a context dependent
meaning (polysemy), or, as in the case of function or stop words (the, to,
from, or, and, ...), will clearly be useless for discrimination purposes. The
general practice is then to reduce the number of descriptors by dropping
useless stop words and by merging synonyms into equivalence classes.

A first step for solving ambiguities is tagging words grammatically, which
can be done automatically using for instance freely available tools such as
Brill (Brill, 1995) or TreeTagger (Schmid, 1994). The grammatical tag
permits indeed to distinguish for example between the noun, verb or adjective
usage of the word “trade”, or the conjunction, verb or adjective usage of the
word “like”. This grammatical tagging will also pinpoint stop words that
could be dropped from the list of descriptors.

To avoid bothering with the various inflected forms of nouns, verbs and
adjectives, other often applied pre-processing operations are lemmatization
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and stemming (Plisson et al., 2004). The former consists in retaining just the
base form — e.g. the infinite of a conjugated verb — of each encountered
word, and the latter in extracting the lemma — the root — of each word.
This can again be done almost automatically with freely available tools such
as TreeTagger (Schmid, 1994).

In our case, since the goal is to facilitate the processing of new additional
texts by legal experts with no experience in these pre-processing steps, we
opted for an approach that avoids in its application phase any pre-processing
operation that could not be fully automatized. Therefore, we chose to not
lemmatize the texts, and resorted to grammatical tagging only during the
learning phase in order to facilitate the extraction of the useful terminology.

3 The chosen text representation

For the purpose of our analysis, we decided to represent the CEACR com-
ments by means of a limited set of descriptor concepts. These concepts were
defined in a partially automated process consisting in first extracting the
useful terminology, then grouping the terms into concepts and eventually
refining the description of the concepts. We begin by commenting the termi-
nology extraction process.

3.1 Extracting the useful terminology

The terminology that could be used for predicting violations reported in the
Committees’s observations includes not only single words, but also composite
expressions such as “trade union” or “right to organize”. It is then essential
to find and list the terms useful for the analysis.

Several tools can be used for this. Some of them, such as Xtract (Smadja,
1993), ATR (Frantzi et al., 2000), Lexter (Bourigault and Jacquemin, 1999)
proceed automatically either by comparison with a pre-specified lexicon or by
seeking frequent sub-sequences of words. Others, such as Exit (Heitz et al.,
2005), are semi-automatic and require a domain expert to guide the process.
The latter are best suited when, as in our case, we do not have access to a
lexicon of the considered specialized language. Since we had the possibility to
interact with legal experts, we chose to extract the useful terminology with
the aid of the Exit software.

The input data provided to Exit is the grammatically tagged text (the
set of all comments merged into a single file). We then select the useful terms
in an iterative way. First, we chose successively among single words or pairs of
a given type — noun-noun, noun-adjective, adjective-noun, verb-noun, noun-
verb, etc. — that satisfy a minimal frequency criterion those that the expert
considers relevant for the analysis. For example, “worker organization” and
“national security” are two retained pairs, the former being of the noun-
noun type and the latter of the “adjective-noun” type. A grammatical tag is
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assigned to each new retained term according to rules that could be changed
by the user. For instance, adjective-noun terms such as “national security”
are automatically tagged as noun. Then by iterating the process we single out
terms that include themselves previously defined terms. We get thus terms
composed of more than two words such as “minimum level of service”.

3.2 Descriptor concepts

There is a huge number of different terms — words and composite expressions
— used in the CEACR comments and it is not convenient to use all of them
as text descriptors. We therefore, decided to represent texts through a small
number of descriptor concepts that: (i) Characterize the conceptual content of
the text; (ii) Are useful for predicting the issues — violation or key concepts
— reported in the observations.

A first entirely statistical possibility of characterizing descriptor concepts
(Kumps et al., 2004) would be to seek the words that best discriminate the
key concepts we want to predict, and then to group them according to their
co-occurrences. Lemmatization would be necessary in that case.

However, since we had the possibility to interact with legal experts, we
preferred to rely on a linguistic approach. Such an approach where terms
— words and expressions — are grouped according to both their statistical
characteristics and the similarity of their meaning, provide concepts that are
semantically better founded.

Thus, the approach followed consists in three steps carried out on the
overall corpus: i) a preliminary set of concepts is built during the terminology
extraction with Exit; ii) this preliminary set and the concept definitions are
refined through an extensional induction process (Kodratoff, 2004) with the
legal experts; and iii) the experts’ amended list is once again compared with
the text content for a final coherence check.

The preliminary concept set is obtained in a semi-automatic way by start-
ing the term extraction process with a high threshold, which provides a rela-
tively short list of terms. Those terms may be considered as initial represen-
tatives of the main conceptual axes that can be found inside the texts. We
obtain a starting set of concepts after possibly grouping terms with similar
semantic meaning. Then, we repeat the process by lowering successively the
minimal frequency threshold. At every iteration, we get additional terms and
then assign each one of them to the most appropriate preexisting concept.
In case there is no reasonable preexisting concept with which the new term
could be associated, a new concept is created. At the end of the terminol-
ogy extraction we get our preliminary list of concepts, where each concept is
characterized by its list of associated terms.

This preliminary list of descriptor concepts serves then as a starting list
for the experts who may either confirm the relevance of the concepts or change
them to fit their overall knowledge of the domain. The preliminary list is thus
transformed into an expert’s amended list of concepts.
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In order to increase even further the coherence of the amended descriptor
concepts, we carried out some additional checking. Indeed, we observed that
the overall corpus of CEACR comments contains some infrequent terms that
clearly belong to one of the retained descriptor concepts. Ignoring them would
undoubtedly be a source of errors. The goal of the additional checking is to
browse the corpus for such relevant but infrequent terms. More specifically,
for each term already associated to a concept, we look for the presence in
the corpus of synonyms and alternative inflection forms as well as for the
presence of extended terms obtained by inserting one or more words in the
term. For example, the term “call a strike” is frequent in the corpus and was
detected as representing the strike action descriptor concept. Less frequent
expressions such as “calling a strike” or “calling of a strike”, were not detected
however. The search of such alternative forms is easily done by browsing the
terms found with regular expressions. For example, using the two strong
words “call” and “strike”, all three aforementioned terms were found with
the PCRE regular search expression:1

"/[^;\.]*call[^;\.\,]{0,45}strike[^;\.]*/i" .

As for synonyms, a lexicon such as the online WordNet may be useful for usual
terms. For a specialized corpus such as the one formed by our legal texts, it
is more helpful to ask experts in the domain. This is what was done in our
analysis. Good sense may also prove useful. For example, we noticed in the
reports that experts used independently and equivalently the terms “trade
union” and “workers organization”. Hence, each time a concept definition
list included a term such as “registration of a trade union”, we augmented,
when it made sense, the list with “registration of a workers organization”,
even when this new expression was infrequent in the corpus.

The final list of descriptor concepts is given in Table 2 and examples of
their list of associated terms can be found in Ritschard et al. (2007).

The designing of the descriptor concepts is clearly a crucial stage of our
text mining process. It is also time-consuming and requires clever tuning
through individual interventions from both the domain experts and the text
mining experts. Furthermore, because of these multiple personal interven-
tions, the resulting descriptor concepts remain somewhat subjective. Im-
provement and systematization of the process is possible and would here
be necessary. It requires, however, an access to a detailed ontology of the
concerned legal domain which does not yet exist. The designing of such an
ontology that puts together the characteristic terminology of the domain,
organizes it in terms of concepts and sub-concepts, and also describes the
interrelation between concepts would then be our next development priority.
1 The regular expression searches the text for expressions in which the word “call”

is preceded by any sequence of characters other than a semi-column or a dot,
the word “strike” is followed by any sequence of characters other than a semi-
column or a dot, and the two words are separated by any sequence of at most 45
characters other than a semi-column, a dot or a comma.
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c1 Life and physical integrity c10 Industrial action
c2 Liberty and security of persons c11 Essential service
c3 Property and financial independence c12 Arbitration
c4 Service c13 Strike action
c5 Pluralism c14 Union establishment limitations
c6 Election c15 Specific workers
c7 Opinion and expression freedom c16 Number of workers
c8 Restrictions on trade union activities c17 Supervision
c9 Trade union approval

Table 2. Retained descriptor concepts.

3.3 The quantitative text representation

Having now defined our descriptor concepts, we get a quantitative represen-
tation of the texts by assigning for each document (comment) a load on each
concept. A classical way is to use the tf × idf , which is the term frequency
(tf ) — indeed the term count — in the document weighted by the inverse
of the document frequency (idf ), the document frequency being the number
of documents in which the concept has been observed (Salton and Buckley,
1988). The general idea of this tf × idf is that a term — a concept in our case
— is characteristic of a text when it is frequently mentioned in it (high tf )
and only few other documents mention it (high idf ). Let tfij be the term fre-
quency of concept j in document i, and idfj be the inverse term frequency of
concept j. Formally, the inverse document frequency is defined as log(d/dj),
where d is the total number of documents and dj the number of documents
mentioning concept j. The tf × idf weight of concept j in a document i, is
then

wij = tfij idfj = tfij log
( d

dj

)
.

With this formulation, the lengthier a document i the greater chance it has
to have large tfij ’s and hence important weights. To avoid this size effect,
Salton et al. (1992) propose the length normalized form w̃ij = wij/||wi||,
with wi the vector of the tfij × idfj ’s of the document i.

For our objectives, what matters is the absolute place devoted to a given
concept in a comment whatever other issues the comment addresses. In that
sense, the normalized tf × idf is not useful in our setting. In other words, we
consider that the importance of a concept in a text is reflected by its number
of occurrences independently of the document’s length.

Using the tf × idf ’s of the retained descriptor concepts, our text data set
can be put in the form of a classical quantitative data table as illustrated in
Table 3, which exhibits an extract of the data for comments on the application
of Convention 87.
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CEACR Comment Descriptor Concepts
c1 c2 c3 c4 c5 c6 c7 · · ·

Algeria 1991 0 0 0 0 2.75 0 0.8 · · ·
Argentina 1991 0 0 0 0 20.59 2.39 0.8 · · ·
Bangladesh 1991 1.0 0.77 2.35 1.24 0 1.59 5.59 · · ·
· · ·
Table 3. Extract of data representing comments in terms of descriptor concepts.

4 Learning process

Through the previous steps, i.e. extracting useful terms, organizing them into
a limited number of relevant descriptor concepts and finally measuring the
importance devoted to each descriptor concept by each CEACR comment
with the tf × idf weight, we were able to code the comments numerically.
What remains now is to learn the prediction rules.

This learning phase requires a learning sample of texts — comments —
previously labeled in accordance with the type of violation they report. The
labeling was done by a legal expert for 78 out of 671 CEACR texts concerning
Convention 87. The labels are represented by a set of � 0-1 indicator variables
vk, k = 1, . . . , � that take value 1 when the text mentions violation k, and
zero otherwise. Remember that the violations we are interested in correspond
to the key concepts listed in Table 1.

Using this learning sample the aim is to find rules for predicting each key
concept (violation) from the quantified descriptor concepts. We then consider
successively each key concept in turn, and build the prediction rule for it.
Letting cj denote the tf × idf of the jth descriptor concept, we look for each
k for a prediction rule v̂k = fk(c1, . . . , cc).

Since our texts are numerically coded, classical supervised statistical or
machine learning techniques may be considered. We used induced classifi-
cation trees, which produce usually good classification results and have the
advantage of being easily applicable, of detecting automatically interaction
effects of the predictors and of providing easily interpretable rules.

Classification trees are grown by seeking, through recursive splits of the
learning data set, some optimal partition of the predictor space for predict-
ing the outcome class, i.e. whether the comment does or does not report a
violation of type k. Each split is done according to the values of one predictor
— descriptor concept —. The process is greedy. At first step, it tries all pre-
dictors to find the “best” split using, for quantitative predictors as those we
face here (the concept tf × idf ’s), an automatic local optimal discretisation.
Then, the process is repeated at each new node until some stopping rule is
reached. This requires a local criterion to determine the “best” split at each
node. The choice of the criterion is the main difference between the various
tree growing methods that have been proposed in the literature.
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Fig. 1. Induced tree for v7, Restrictions on organization of trade union activities.

Figure 1 shows the tree grown for violation 7 — restrictions on the orga-
nization of trade union activities — using Exhaustive CHAID (the improved
CHAID method by Biggs et al., 1991) with a significance threshold of 5%, the
Bonferroni correction, a minimal leaf size of 10 and a minimal parent node
size of 30. The descriptors retained are whether the comment explicitly refers
to property and financial independence and whether it talks about election.

The tree has 4 terminal nodes, which are called leaves. We associate to
each of them a rule taking the form condition ⇒ conclusion. The condition
is defined by the path from the root node to the leaf, and the conclusion is,
for a classification tree, usually the most frequent class in the leaf.

A similar tree is grown for each type of violation, which results in 6 sets
of rules. Some violations (v1, v2 and v5 for instance), are not covered by any
comment in the learning sample, and no tree is grown for them. In two cases,
we did not rely on the mere statistical criterion and forced the algorithm to
split at the first step using the second best variable that seemed theoretically
better sounded from our knowledge base.

The classification performance of each tree may be evaluated by means
of its classification error, i.e. the percentage of cases which are misclassified

Key concept Learning Cross-validation Test sample (size 21)
(violation) error rate error rate std err number of errors

v3 14.10% n.a.∗ n.a.∗ 3
v4 5.13% 5.13% 2.50% 0
v6 12.82% 14.1% 3.94% 4
v7 15.38% n.a.∗ n.a.∗ 7
v8 7.69% 7.69% 3.01% 4
v9 2.56% 2.56% 1.79% 2

∗Cross-validation is not available for v3 and v7, because first split is enforced.

Table 4. Error rates, Convention 87.
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Key Positives Negatives % with key concept
Concept true predicted true predicted reported predicted Recall Precision

v3 30 32 37 46 50.0% 41.0% 76.9% 93.8%
v4 29 31 45 47 39.7% 39.7% 93.5% 93.5%
v6 35 38 33 40 53.8% 48.7% 83.3% 92.1%
v7 50 59 16 19 67.9% 75.6% 94.3% 84.7%
v8 29 30 43 48 43.6% 38.5% 85.3% 96.7%
v9 57 59 19 19 73.1% 75.6% 100.0% 96.6%

Table 5. False Positives, False Negatives, Recall and Precision, Convention 87.

by the derived classification rules. Table 4 shows learning error rates (i.e.
rates computed on the learning sample) and 10-fold cross-validation error
rates with their standard error. It gives in addition the number of errors on
a small test sample of 21 comments about the application of Convention 87.

Table 5 exhibits some additional useful indicators. Column ‘True positives’
gives the number of comments classified as reporting a violation of type k
that effectively report it, and column ‘Predicted positives’ the total number
of comments classified as reporting the violation. For key concept v7, for
example, 50 out of 57 comments classified as reporting the violation actually
report it. The number of true and predicted negatives is also shown. Table 5
gives the percentage of the 78 comments that report on the relevant key
concept and the percentage of comments that are classified as reporting the
key concept. For v7 again, we may check that 59 = 75.6%× 78, are classified
as reporting the violation, while there is actually a total 53 = 67.9% × 78
reporting v7. The ‘Recall’ is the percentage of this total that is classified
as reporting the violation — true positives —, e.g. 94.7% = 50/53 for v7.
The ‘Precision’ is the ratio of the number of true positives on the number of
predicted positives, e.g. 84.7% = 50/59 for v7.

These results are quite good when compared with those obtained with
other classifiers. For instance, we experimented with support vector machine
(SVM) as well as with neighboring graphs. These methods did not produce
significantly better results, while producing much less explicit rules. Nev-
ertheless, error rates above 10% as well as recall and precision percentages
below 90% may look unsatisfactory. Remember, however, that the learning
was done with a sample of only 78 texts. It is also worth mentioning that
errors may be more or less important depending on the research objectives.
In our case, as stated in the introduction, the text mining has two main pur-
poses: To help the legal expert interested in a given issue in identifying texts
reporting this issue (it is not supposed to replace the expert in this task), and
to provide material for analysing synthetically the relationship between is-
sues, i.e. types of violations. With such objectives, it is not dramatic to make
false predictions for a small number of texts. If the end user wants to find
all texts dealing with an issue of interest, false positive cases will generally
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be easier to identify than false negative ones. Hence we should in that case
favor a strategy that limits false negatives even if it is at the cost of more
false positives. This can easily be done by lowering for instance the probabil-
ity threshold used for assigning the outcome class to the rules. For synthetic
analyses, on the other hand, we may prefer to retain only the most reliable
predictions. We would then primarily limit the number of false positives.

5 Conclusion

We described in this paper an ad hoc text mining process for identifying issues
reported in legal texts. The process described is semi-automatic. The build-
ing of the prediction rules relies on an interaction with the domain expert at
several points and especially for defining relevant descriptor concepts. This
stage of the process could, however, be improved on at least two sides. First,
the interest of the descriptor concepts for the targets (each associated to one
of the considered violations) is based solely on the opinion of the domain ex-
pert. By specifying a global criterion taking simultaneously into account all
considered targets, it should be possible to measure the global discriminating
power of terms and hence select objectively the most discriminating ones.
Likewise, we should be able to measure the similarity in the discriminating
capacity of the terms and use these similarities as a guide for grouping them
into descriptor concepts. Second, organizing the descriptor concepts into hi-
erarchical ontology would allow for some freedom for choosing between con-
cepts and sub-concepts. It would also produce reusable knowledge material
for other applications in similar domains. Beside the systematization of the
descriptor concept definition stage, significant improvement may also be ex-
pected at the learning level. For instance, taking account of the preference
for limiting false positives rather than false negatives (or conversely) during
learning and not only during class assignment should most probably generate
better suited rules.
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Abstract. A method called Sequential Automatic Search of a Subset of Classifiers
is hereby introduced to deal with classification problems requiring decisions among
a wide set of competing classes. It utilizes classifiers in a sequential way by restrict-
ing the number of competing classes while maintaining the presence of the true
(class) outcome in the candidate set of classes. Some features of the method are
discussed, namely: a cross-validation-based criteria to select the best classifier in
each iteration of the algorithm, the resulting classification model and the possibility
of choosing between an heuristic or probabilistic criteria to predict test set obser-
vations. Furthermore, the possibility to cast the whole method in the framework of
unsupervised learning is also investigated. Advantages of the method are illustrated
analyzing data from a letter recognition experiment.

Keywords: classification, subset selection, decision tree, cross-validation,
rule

1 Introduction

Multiclass classification is a difficult task in statistical learning. It requires a
classifier to discriminate instances (objects) among several classes of an out-
come (response) variable. Typical examples are handwritten character recog-
nition (Lee and Seung, 1997), POS-tagging (Even-Zohar and Roth, 2001) and
Customer Relationship Management (Prinzie and Van den Poel, 2005).
To get K-class classifiers, the most common approach is to construct a set of
binary classifiers each trained to separate one class from the rest (the so-called
One Versus the Rest), and to combine them according to a model averaging
criteria as, for example, by voting (Cutzu, 2003). Main shortcomings of this
winner-takes-all strategy is that the resulting binary classifiers are obtained
from different asymmetric binary classification problems. Thus, it is unclear
whether they are comparable or not. Difficulty in class-assignment may arise
when each classifier assigns an instance to its reference-“one”-class leading
to a situation in which no final class can be chosen. An alternative (voting-
based) approach is Pairwise Classification (Hastie and Tibshirani, 1998). It
uses an all-versus-all strategy by training a classifier for each possible pairs
of response classes. Although larger training time is required compared to the
previous case, the individual classification problems are significantly smaller

Bayes



292 Mola, F. and Conversano, C.

because the training sets are smaller and the learning goals are easier since the
classes are less overlapped. A somewhat similar approach is Error-Correcting
Output Coding (Dietterich and Bakiri, 1995). Here, a large number of binary
classification problems is generated by splitting the original set of clsses into
two subsets and by training a binary classifier for each possible dichotomiza-
tion. The final classification derives from a synthesis of the results obtained
from each binary classification example which are stored in a decoding matrix
composed of {±1}. Finally, other approaches directly cast the multiclass clas-
sification problem into an objective function that simultaneously allows the
computation of a multiclass classifier as, for instance, in the Weston and Her-
brich’s (2000) approach based on Support Vector Machines (SVM). Despite
of its elegant formulation and high accuracy, this approach lacks of feasibil-
ity in same situations because it has to deal simultaneously with many SVs.
All the aforementioned approaches are quite effective, but it is fair to say
that there is probably no multiclass approach that generally outperforms the
others (Scholkopf and Smola, 2001: p. 214).

In the following, we introduce a multiclass classification algorithm called
Sequential Automatic Search of a Subset of Classifiers (SASSC) that build
on some of the advantages of the main approaches proposed in the litera-
ture. It adaptively and sequentially aggregates subset of instances related to
a proper aggregation of a subset of the response classes, that is, to a super-
class. In each iteration, aggregations are based on the search of the subset
of instances whose response classes generate a classifier presenting the low-
est generalization error compared to other alternative aggregations. Cross-
validation is used to estimate such generalization errors. User can choose a
final number of subsets of the response classes (superclasses) obtaining a final
classifier-based model for multiclass classification presenting an high level of
accuracy without neglecting parsimony. In this respect, this approach is in-
spired by the model-based knowledge discovery paradigm since the number of
classifiers included in the final model is relatively small so that interpretabil-
ity of results is strictly preserved.

The motivation underlying the formalization of the SASSC algorithm de-
rives from the following intuition: basically, since standard classifiers unavoid-
ably lead to prediction inaccuracy in the presence of multiclass response, it
would be favourable to look for a relatively reduced number of classifiers each
one relating to a subset of classes of the response variable (superclasses). Re-
ducing the number of response classes for each of those classifiers naturally
leads to improve the overall prediction accuracy. To further enforce this guess,
an appropriate criterion to derive the correct number of superclasses and the
most parsimonious classifier for each of them has to be found. To this pur-
pose, a sequential approach that automatically proceeds through subsequent
aggregations of the response classes might be a natural starting point.

The remainder of the paper is as follows. Section 2 describes the SASSC
algorithm and introduces the related classification model. The results from
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both the application of such a model on the Letter Recognition dataset
and the comparison of the performance of SASSC with respect to alterna-
tive approaches are summarized in section 3. Section 4 briefly introduces a
dendrogram-based visualization of the aggregations produced by the algo-
rithm and cast the method in the framework of unsupervised learning. Sec-
tion 5 discusses the possible advantages connected to the use of the proposed
method.

2 Sequential aggregation of a subset of classifiers

2.1 Algorithm

SASSC produces a partition of the set of the response classes into a re-
duced number of superclasses. It is applicable to a dataset D composed of
N instances characterized by a set of J (numerical or categorical) inputs
Xj (j = 1, . . . , J) and an outcome Y presenting K classes. Such response
classes identify the initial set of classes C(0) = (c1, c2, . . . , cK). Partitioning
D with respect to C(0) allows to identify K disjoint subsets D(0)

k , such that:
D(0)

k = {xs : ys ∈ ck}, with s = 1, . . . , Nk. In practice, D(0)
k is the set of

instances presenting the k-th class of Y . The algorithm works by aggregating
the K classes in pairs and by learning a classifier for each subset of corre-
sponding instances. The “best” aggregation (superclass) is chosen as the one
minimizing the generalization error estimated using V -fold cross-validation.
Suppose that, in the �-th iteration, such a best aggregation is found for the
pair of classes ci∗ and cj∗ (with i∗ = j∗ and i∗, j∗ ∈ (1, . . . ,K)) that allow
to aggregate subsets Di∗ and Dj∗ . Denoting with T(i∗,j∗) the classifier mini-
mizing the cross-validated generalization error θ

(�)
cv , the criteria for selecting

the best classifier can be formalized as follows:

(i∗, j∗) = arg min
(i,j)

{
θ(�)

cv

(
T(i,j)|Di ∩ Dj

)}
(1)

The SASSC algorithm is analytically described in Table 1. It proceeds
by learning all the possible classifiers obtainable by joining in pairs the
K subgroups, retaining the one satisfying the selection criteria introduced
in (1). After the �-th aggregation, the number of subgroups is reduced to
K(�) = K(�−1) − 1, since the subgroups of instances presenting the response
classes ci∗ and cj∗ are discarded from the original partition and replaced by
the subset D(�)

(i∗,j∗) = (Di∗∩Dj∗) identified by the super-class c(�) = (ci∗∩cj∗).
The initial set of classes C is replaced by C(�), the latter being composed of
a reduced number of classes since some of the original classes form the su-
perclasses coming out from the � aggregations. Likewise, also D(�)

k is formed
by a lower number of subsets as a consequence of the � aggregations. The
algorithm proceeds sequentially in the iteration � + 1 by searching for the
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Table 1. The SASSC algorithm.

Input: C = {c1, . . . , cK}ci∩cj=�;i�=j;i,j∈(1,...,K)

Set: C(0) = C; K(0) = K; θ
(0)
cv = 0;

D
(0)
k = {xs : ys ∈ ck}s=1,...,Nk;k=1,...,K

For: � in 1 to K

c(�) = {ci∗ ∩ cj∗} : θ
(�)
cv (T(i∗,j∗)|Di∗ ∩Dj∗ ) = min

K(�) = K(�−1) − 1

C(�) = {c1, . . . , cK(	)−2+1 = c(�)}
D

(�)
k = {xs : ys ∈ ck}k=1,...,K(	)−1

end For

Output: C(1), . . . , C(K−1); T(1), . . . , T(K−1); Θ
(1)
cv , . . . , Θ

(K−1)
cv

most accurate classifier over all the possible ones obtainable by joining in
pairs the K(�) subgroups. The sequential search is repeated until the number
of subgroups reduces to one in the K-th iteration. The classifier learned on
the last subgroup corresponds to the one obtainable by learning a classifier
on the original dataset.
The output of the procedure is a sequence of sets C(1), . . . , C(K−1) of re-
sponse classes with the associated sets of classifiers T(1), . . . , T(K−1). The
latter are derived by learning K − k classifiers (k = 1, . . . ,K − 1) on dis-
joint subgroups of instances whose response classes complete the initial set
of classes C(0): these response classes identify the superclasses relating to the
sets of classifiers T(k). An overall generalization error is associated to each
T(k): such an error is also based on V -fold cross-validation and it is computed
as a weighted average of the generalization errors obtained from each of the
K − k classifiers composing a set C(k)(k = 1, . . . ,K − 1). In accordance to
the previously introduced notation, the overall generalization errors can be
denoted as Θ

(1)
cv , . . . , Θ

(k)
cv , . . . , Θ

(K−1)
cv . Of course, by decreasing the number

of classifiers composing a sequence T(k) (that is, when moving k from 1 to
K − 1) the corresponding Θ

(k)
cv increases, since the number of superclasses

associated to T(k) is also decreasing. This means that a lower number of clas-
sifiers are learned on more heterogeneous subsets of instances, because each of
those subsets pertain to a relatively large number of response classes. Taking
this inverse relationship into account, the analyst can be aware of the overall
prediction accuracy of the final model on the basis of the relative increase in
Θ

(k)
cv when moving from 1 to K−1. In this respect, he can select accordingly a

suitable number of classifiers to be included in the final classification model.
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2.2 Tree-based classification model

The SASSC algorithm can be applied by using as classifier one of the pre-
diction model typically used in the statistical learning framework such as,
among others: discriminant analysis, logistic regression, kernel methods or
SVM. The current implementation uses CART-like decision trees (Breiman
et al., 1984) as classifier, because of their nonparametric and distribution-free
characteristics as well as of their effectiveness in dealing with nonlinearly as-
sociated inputs. Besides their functional flexibility, classification trees are also
useful in dealing with heterogeneity, as separate models can be automatically
fit to previously identified subsets of data. Last but not least, they are very
efficient at selecting from large number of inputs, which is a typical prereq-
uisite in data mining applications. Despite these advantages, decision trees
suffer from instability: we account for such a drawback using cross-validation.

Supposing a final subset C(∗) of g classifiers has been selected (g <<
K − 1), the estimated classification model can be represented as:

f̂(X) =
g−1∑

i=1

Mi∑

mi=1

τ̂iĉk,iI((X1, . . . , XJ) ∈ Rmi) (2)

This notation is consistent with that used in Hastie et al. (2001). The pa-
rameter τ is called “vehicle parameter”. It allows to assign a new instance to
the most suitable classifier in the subset C(∗). It is defined by a set of g − 1
dummy variables. Each of them equals 1 if the object belongs to the i-th
classifier (i = 1, . . . , g − 1) and zero otherwise. The Mi regions, correspond-
ing to the number of terminal nodes of the classifier i, are created by splits
on inputs (X1, . . . , XJ). The classification tree i assigns a new object to the
class ĉk,i of Y according to the region Rmi . I(·) is an indicator function with
value 1 if an instance belongs to Rm and value 0 if not. Rmi is identified by
the inputs used in the splits leading to that terminal node. The modal class
of the instances in a region Rmi (also called the mth terminal node of the
i-th classifier) is usually taken as an estimate for ĉk,i in the training step of
the algorithm.

Using decision trees as classifiers, another option of the algorithm is the
possibility to learn classifiers and to select the suitable pair of response classes
satisfying (1) by using alternative splitting criteria. As for CART, either the
Gini index or Twoing can be used as alternative splitting rules. It is known
that, unlike Gini rule, Twoing searches for two classes that make up together
more than 50% of the data and allows us to build more balanced trees even if
the resulting recursive partitioning algorithm works slower. As an example,
if the total number of classes is equal to K, Twoing uses 2K−1 possible
splits. Since it has been proved (Breiman et al., pag.95) that decision tree
accuracy is insensitive to the choice of the splitting rule, it can be interesting
to investigate how different splitting criteria works in the SASSC’s framework
characterized by the search of the most accurate classifiers.
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2.3 Decision rule

To classify test-set instances it is useful to consider the prediction accuracy of
each classifier in the final subset C(∗): each decision tree allows to estimate the
predicted class and to derive the test conditions used for such a prediction. At
the same time, the assigned class ĉk,i lead to the estimation of τi for each test
set instance. Once that a new instance is slipped into each of the g classifiers
of C(∗), two alternative criteria can be applied:

a) a heuristic estimation of ck,i: the assigned class ĉk,i is found with respect
to the tree whose terminal node better classifies the new instance. In other
words, a new instance is assigned to the purest terminal node among all
the g classifiers and the estimated class is the modal class of Y for the
training instances falling in that node.

b) a probabilistic estimation of ck,i: Supposing, in the simplest case, that
C(∗) is composed of two subsets identified by the corresponding decision
tree, a new object can fall into one terminal node for each tree. These two
terminal nodes assign new objects to two disjoint subsets of the response
classes. Remembering K is the original number of response classes, we
can define P (ck) as the prior probability for class k (k = 1, . . . ,K) and
P (τi = 1|ck) as the likelihood of k given the i-th classifier, corresponding
to the proportion of training instances that are correctly classified in
the assigned terminal node of the i-th classifier. To decide which is the
assigned class for the new object a measure of the (posterior) probability
that the assigned class for the terminal node of the i-th decision tree is
k can be obtained using the Bayes rule as follows:

P (ck|τi = 1) =
P (ck)P (τi = 1|ck)

∑K
k=1 P (ck)P (τi = 1|ck)

(3)

P (ck|τi = 1) refers to the response classes related to the assigned termi-
nal node of the i-th classifier. By computing such a probability for each
assigned terminal node of all the g classifiers of C(∗), the final estimated
class is obtained as the maximum value of the posterior probability mea-
sured with respect to k and i, namely:

ĉk,i = arg min
(k,i)

P (ck|τi = 1) (k = 1, . . . ,K); (i = 1, . . . , g) (4)

In a nutshell, this probabilistic criteria derives from averaging the pro-
portion of correct-classified training instances of each terminal node with
respect to the prior probabilities.

3 Analyzing the Letter Recognition dataset

In the following, SASSC is applied on the “Letter Recognition” dataset from
the UCI Machine Learning Repository (Asuncion and Newman, 2008). This
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dataset is originally analyzed in Frey and Slate (1991), who not achieve a
good performance in terms of prediction accuracy. Later on, the same dataset
is analyzed in Fogarty (1992) using nearest neighbours classification. Ob-
tained results give over 95.4% accuracy compared to the best result of 82.7%
reached in Frey and Slate (1991). Nevertheless, no information about the in-
terpretability of the nearest neighbour classification model is provided and
the computational inefficiency of such a procedure is deliberately admitted
by the authors.
In the Letter Recognition analysis, the task is to classify 20, 000 black-and-
white rectangular pixel displays into one of the 26 letters in the English al-
phabet on the basis of 16 numerical attributes. Dealing with K = 26 response
classes, SASSC provides 25 sequential aggregations. Classification trees ag-
gregated at each single step were chosen according to 10-fold cross validation.
A tree was aggregated to the sequence if it provided the lowest cross validated
generalization error with respect to the other trees obtainable from different
aggregations of (subgroups of) response classes. The results of the SASSC
algorithm are summarized in Figure 1. It compares the performance of the
SASSC model formed by g = 2 up to g = 6 subsets of the response classes

Fig. 1. The generalization errors for the Letter Recognition dataset provided by
alternative approaches: as for SASSC, subscript G (T ) indicates the Gini (Twoing)
splitting rule, whereas apex g indicates the number of superclasses (i.e., classifiers)
identified by the algorithm. The subscript for Bagging and Random Forest indicates
the number of classifiers used to obtain the classification by majority voting.
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with that of the CART algorithm using in both cases either Gini or Twoing
as splitting rules. Bagging (Breiman, 1996) and Random Forest (Breiman,
2001) are used as benchmarking methods. Computations have been carried
out using the R software for statistical computing (R Development Core
Team, 2008).
The SASSC model using 2 superclasses consistently improves the results of
CART using the Gini (Twoing) splitting rule since the generalization error
reduces to 0.49 (0.34) from 0.52 (0.49). As expected, the choice of the split-
ting rule (Gini or Twoing) is relevant when the number of superclasses g is
relatively small (2 ≤ g ≤ 4), whereas it becomes negligible for higher val-
ues of g (reuslts for g ≥ 5 are almost identical). Focusing on Gini splitting
criterion, the SASSC’s generalization error further reduces to 0.11 when the
number of superclasses increases to 6. For comparative purposes, Bagging
and Random Forest have been trained using 6 and 10 classifiers respectively
and, in these cases, obtained generalization errors are worse than those de-
riving from SASSC with g = 6. As for Bagging and Random Forest, as far as
the number of trees used to classify each subset of randomly drawn objects
increases, the performance of these two methods in terms of prediction accu-
racy improves. The reason is that their predictions derive form (“in-sample”)
independent bootstrap replications. Instead, cross-validation predictions in
SASSC derives from aggregations of classifications made on “out-of-sample”
observations that are excluded from the tree growing procedure. Thus, it
is natural to expect that cross-validation predictions are more inaccurate
than bagged ones. Of course, as far as the number of subsets of the response
classes in SASSC increases, the cross-validated generalization error reduces
but, at the same time, the complexity of the final classification model also
increases. In spite of a relatively lower accuracy, interpretability of the re-
sults in SASSC with g = 6 is strictly preserved. Figure 2 shows the classifiers
obtained for g = 6. As in standard classification trees, the user can easily
understand the more influential inputs and their relative split points for each
classifier. Whereas, the same kind of interpretation is not easily achievable
in the case of Bagging (Random Forest) with 25 (500) bootstrap replications.

4 A partially unsupervised learning perspective

Under a different perspective SASSC consists in building a taxonomy of
classes in an ascendant manner: this is done by the solution of a multiclass
problem obtained by decomposing it to several r-nary problems (r ≥ 2) in
an agglomerative way. The algorithm begins with every class representing a
singleton object. At each of the K − 1 steps the closest two (less dissimilar)
classes (or subsets of classes) are merged into a single superclass, producing
one less class at the next higher level. To define a measure of dissimilarity,
we refer to the generalization error obtained with cross-validation once that
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Fig. 2. The six classifiers obtained from the SASSC algorithm with g = 6 super-
classes using the Gini splitting rule and 10-fold cross validation.

two classes (or superclasses) are aggregated. The best aggregation is the one
producing the lowest generalization error. Consequently, an overall measure
of quality for the superclasses obtained in each iteration is provided by the
weighted average of the generalization errors obtained from the classifiers
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Fig. 3. A dendrogram-based representation of the SASSC’s results: The horizontal
line cuts the dendrogram and provides information about the global CV error pro-
vided by the six classifiers obtained by choosing g = 6 superclasses and by using
the Gini splitting rule and 10-fold cross validation.

trained on each superclass: such a measure has been denoted with Θ
(k)
cv in

section 2.1.

Figure 3 provides a graphical insight into a dendrogram-based representa-
tion of the SASSC’s results. A somewhat similar representation for multiclass
classification is in Benabdeslem and Bennani (2006). Dendrogram provides
information about the overall aggregation process by illustrating the classes
(English alphabet letters) aggregated at each step as well as the overall mea-
sure of impuity (global CV error) associated to each possible set of super-
classes. As in standard hierarchical classification, the visual inspection of such
a dendrogram can influence the user in deciding which is the final partition
to take as a result of the method and to cut the dendrogram accordingly.
In this respect, SASSC’s approach partially resembles what happens in stan-
dard unsupervised hierarchical clustering (see, among others, Duda et al.,
2001: p. 550) with a main distinguishing issue: aggregations in SASSC involve
groups of observations identified by a unique response class. As a consequence,
the SASSC’s classification model can not be considered as a completely un-
supervised learning approach, as it uses an apriori classification of instances
induced by the response classes. Nevertheless, instances are aggregated with
respect to an overall goodness of fit measure (the global CV error) that par-
tially depends on measurements of the outcome variable. As a result, SASSC
can be defined as a partially unsupervised learning method.
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5 Discussion

A large number of applications in statistical learning can be viewed as prob-
lems of resolving ambiguity based on the properties of the surrounding con-
text. These, in turn, can all be viewed as classification problems in which
the goal is to select a class label from a large collection of classes. In many
of these classification problems a significant source of difficulty is the fact
that the number of candidate classes is very large. Since general purpose
learning algorithms do not handle this multiclass classification problems in
a proper manner, most of the studies do not address the whole problem;
rather, a small set of classifiers is trained to choose among these. While this
approach is important in that it allows the research community to develop
better learning methods and evaluate them in a range of applications, it is
worth realizing that an important stage is missing: in some situation, like in
the Letter Recognition example, the small set of candidates is not fixed and
it could be difficult to determine it.

Our SASSC method can be meant as a general data driven approach to
the study of multiclass classifiers. It results in a sequential learning model
that utilizes general purpose classifiers to sequentially restrict the number of
competing candidate classes while maintaining the presence of the true class
in the candidate set. In fact, in each iteration of the algorithm the sought-
after classifier has to choose a single response class (or a small set of them)
from among a large set of response classes. The method works by sequen-
tially applying simple classifiers. In fact, the classifiers in the sequence are
selected to be simple in the sense that they typically work only on subgroup
of observations, where the detection of such subgroups is done according to
an overall goodness of fit criteria. Simple classifiers are chosen so that the
presence of the true class in the candidate set of classes is maintained: one of
the option of the method allows for a Bayesian-like probabilistic assessment
of such a presence. The order of the sequence is determined so as to maxi-
mize the rate of decreasing accuracy of the overall model, estimated through
cross-validation.

Finally, the analysis of the Letter Recognition dataset has demonstrated
that the SASSC algorithm can be applied by pursuing two complementary
goals: 1) a content-related goal, resulting in the specification of a classification
model that provides a good interpretation of the results without disregarding
accuracy; 2) a performance-related goal, dealing with the development of a
model which is effective in terms of predictive accuracy without neglecting
interpretability.

Taking all of the above mentioned considerations into account, SASSC
appears as a valuable alternative to evaluate whether a restricted number
of independent classifiers improves the generalization error of a classification
model.
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Abstract. Structural equation models are reference techniques for measuring cause-
effect relationships in complex systems. In many real cases observations are a priori
grouped into homogeneous segments according to a specific characteristic, so that
different models can be assessed for each segment. The present paper proposes to
adopt an Euclidean metric based on the model parameters: the aim is to determine
differences among models. However, estimated models assess the relation structures
in different proportions, i.e. the residual component can vary with respect to the
different models. In order to overcome this shortcoming, the present work proposes
alternative models with fuzzy parameters.

Keywords: imprecise data, fuzzy regression, PLS-path modeling

1 Introduction

The study of a modern socio-economic system, and in wide sense the study of
complex systems, requires to measure several structured relationships: evalu-
ate relationships among and within two or more sets of variables. Structural
Equation Models (SEM) (Bollen, (1989)) cope with the complex relations
statistical analysis inside a complex system. SEM basic principles consist in
assuming that there are some not directly measurable variables (latent vari-
ables) measured by means of a number of observable indicators (manifest
variables).

In the complex multivariate relationships modelling framework, Partial
Least Squares Path Modeling (PLS-PM) (Tenenhaus et al., (2005)) repre-
sents a statistical approach to SEM, with an increasing popularity in several
areas. PLS-PM formulates the causality dependencies between latent vari-
ables in terms of linear conditional expectations. This approach privileges a
prediction-oriented discovery process to the statistical testing of causal hy-
potheses.

In many real situations, e.g. customer satisfaction analysis and sensory
data analysis, statistical units may belong to different a priori defined homo-
geneous groups, which are distinct according to one specific characteristic.
Assuming that groups have the same structural connections, the same model
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can be replicated and estimated, for each group. Evaluating the differences
in the model parameters leads to understand behavioral differences in the
groups: multigroup comparison.

The present paper presents a novel approach to multigroup comparison
in the multivariate case: the technique is based on the comparison of (local)
fuzzy parameterized models. Fuzzy PLS-PM (FPLS-PM) (Romano; 2007)
combines Fuzzy Possibilistic Regression (FPR) (Tanaka et al.; 1982) and PLS-
PM. Differently from crisp parameters-based models, structural and residual
information are gathered together in fuzzy models. Exploiting this special
property, the paper proposes to compare the local FPLS-PM. A suitable dis-
tance measure for interval data is introduced to compare models. Moreover,
to get easier interpretation and more intuitive results, distances among the
local models are graphically displayed by means of hierarchical trees.

The procedure is based on the following assumptions: 1) variables belong
to disjoint sets and each set of variables is well represented by a correspond-
ing latent variable; 2) the resulting latent structure is identical in all groups
of units; 3) the structural relationships among the latent variables are repre-
sented by appropriate multiple regression models linking the adjacent latent
variables.

The paper consists of the following sections: this introduction; some basic
notations and definitions are provided in section (2); section (3) comprises two
sub-sections that shortly introduce the Partial Least Squares Path-Modeling
and the Fuzzy Possibilistic Regression Model (FPRM); section (4) shows
the combining of Fuzzy approach and PLS-PM, which is used in section
(5.1) for comparing different PLS-PM models. Last section summarizes most
significant results coming from an application on a real dataset.

2 Notation and basic definitions

Let Y and {X} ≡ {X1, X2, . . . , XP } be a quantitative dependent variable
and a set of independent variables, respectively. Regression analysis studies
the statistical dependence of Y with respect to {X}.
Given the generic model:

Y = f(X,β) + ε

the aim is to find the set of unknown parameters β so that Ŷ = f(X, β̂) is a
good prediction of Y . (Multiple) Linear Regression Model (MLRM) assumes
that the dependent variable Y would be expressed as the weighted sum of
the independent variables {X1, X2, . . . , XP }. Least Squares allow us to iden-
tify the unknown weights {β1, β2, . . . , βP } according to the minimization of
the sum of squared deviations: {

∑
(Y − f(X, β̂))2}. The term ε indicates the

deviation of Y from the model.
As the system complexity increases the MLRM may become ineffective be-
cause more dependencies must be taken into account to explain the involved
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relationships. SEM and PLS-PM offer satisfactory solutions to take into ac-
count higher complexity degrees.
Formally, the variables {X} = {X1, X2, . . . , XP } are divided into J disjoint
sets (blocks) of manifest variables Xj (j = 1, . . . , J); each block related to a
latent variable ξj . Variable blocks {X1, X2, . . . , XP } are observed on N sta-
tistical units (n = 1, . . . , N) belonging to G a priori defined disjoint groups
whose sizes are indicated by Ng, with g = 1, . . . , G and not necessarily as-
sumed to be equal.
The resulting data structure is a multiple table where the general term is
indicated by xg

np, g ∈ [1, . . . , G] refers to the group, p = 1, . . . , P refers
to the variable and n = 1, . . . , N refers to the statistical unit. Notice that∑

g Ng = N .

3 Methodological framework

3.1 Partial Least Squares Path Modeling (PLS-PM)

PLS-PM approach aims to study the relationships among two or more sets
of variables: each set is summarized by a latent variable; relationships among
latent variables are defined through a system of interdependent equations
based on simple and multiple regressions. Causal relationships among the
latent variables define the structural model, while relations between latent
variables and related manifest variables define the measurement model.
The structural model is formalized as follows:

ξj = βj0 +
J∑

j′=1
j �=j′

βjj′ξj′ + ψj , (1)

where ξj and ξj′ are adjacent latent variables, j assumes value in [1, . . . , J ]
and ψj represent the error term. An iterative procedure permits to estimate
the outer weights (ω) for constructing the latent variable scores (ξ). The path
coefficients (β) then come from a regular regression between the estimated
latent variables. Differently from SEM, the estimation PM procedure solves
blocks iteratively and separately. It is named partial because of that.

PLS-PM is a soft modeling approach to be preferred when the traditional
assumptions related to the distributions, the measurement scale and the sam-
ple size are not satisfied.

3.2 Fuzzy possibilistic regression models

The basic concept of the fuzzy theory is the fuzzy set (Zadeh, (1965)). For-
mally, given the set of objects Ω, ω1 as the generic element, a fuzzy set Ã in
Ω is defined as a set of ordered pairs:

Ã = {(ωi, µÃ(ωi))|ωi ∈ Ω} (2)
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where the value µÃ(ωi) = hi expresses the membership degree for a generic
element ωi ∈ Ω. The larger the value of µÃ(ωi), the higher the grade of
membership of ωi in Ã. If the membership function is permitted to have only
the values 0 and 1 then the fuzzy set is reduced to a classical crisp set. If
a fuzzy set A ⊂ R and satisfies the following properties then it is a fuzzy
number:

i) sup (µA(ωi)) = 1 −→ the fuzzy set is normal;
ii) µA[λωi + (1 − λ)ωi′ ] ≥ µA(ωi) ∧ µA(ωi′) −→ all h−cuts are convex and

bounded.

Where {ωi, ωi′} ∈ R, i and i′ vary in [1, . . . , I] and λ ∈ [0, 1].
The triangular fuzzy number is the most popular fuzzy number for its

easy codification. An interval value is a special case of fuzzy number where
µA(ωi) = 1, ∀i ∈ [1, . . . , I] (Tanaka and Guo (1999)).

According to the above definitions, symmetrical triangular fuzzy numbers
and interval values can be numerically represented by two values: midpoint
(or center) and spread (or radius), alternatively [min,max].

When a phenomenon under consideration has not stochastic variability
but is uncertain in the fuzzy way, it is more natural to seek a fuzzy model
for the given data.

In this work, attention is given to the Tanaka’s possibilistic fuzzy regres-
sion (FPR). Specifically, to the FPR for crisp input and fuzzy parameters
which is based on the following fuzzy linear model:

Y = β̃0 + β̃1X1 + . . . + β̃pXp,+ . . . + β̃PXP , (3)

where the coefficients are symmetric triangular fuzzy numbers denoted by
β̃p. In terms of midpoint and spread β̃p = (cp; ap).
Differently from statistical regression, the deviations between data and linear
models are assumed to depend on the vagueness of the parameters and not
on measurement errors. The basic idea of Tanaka’s approach was to minimize
the uncertainty of the estimates by minimizing the total spread of the fuzzy
coefficients. Spread minimization must be pursued under the constraint of
the inclusion of the whole given data set, which satisfies a degree of belief h
(0 < h < 1) defined by the decision maker. The above analysis leads to the
following linear programming problem:

minimize
ap

P∑

p=0

(
N∑

n=1

ap|xnp|
)

(4)

subject to the following constraints:

P∑

p=0

cpxnp + (1 − h)
P∑

p=0

ap|xnp| ≥ yn, ∀n = 1, . . . , N ;
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P∑

p=0

cpxnp − (1 − h)
P∑

p=0

ap|xnp| ≤ yn, ∀n = 1, . . . , N ;

satisfying the following conditions: i) ap ≥ 0, ii) cp ∈ R, iii) xn0 = 1.
There are no restrictive assumptions on the model. Increasing the h–

coefficient expands the fuzzy intervals as well as increasing the confidence
level in statistical regression expands the confidence interval width.

Kim et al. (1996) have carried out that fuzzy linear regression is more
useful when the data set is too small to support statistical regression analysis
and/or the aptness of the model is poor due to vague relationships among
variables or a poor model specification.

Romano and Palumbo (2006), comparing the classical statistical linear
regression model with the FPR model, have pointed out that fuzzy estima-
tors are unbiased. Moreover, they have shown that FPR estimators are not
affected by quasi multi-collinearity.

4 Fuzzy PLS path modeling

PLS-PM and FPR present many similar characteristics so that a combination
of these two methodologies seems to be very appropriate. They are well suited
methodologies for analyzing phenomena where human judgment is influen-
tial. For instance in consumer analysis, where consumers give their opinions
on a certain number of products and/or services. In this framework such as
in many other decision processes the major source of uncertainty is fuzzi-
ness rather than randomness. In addition, both PLS-PM and FPR are soft
modeling approaches, i.e. sample size does not influence the quality of the
estimators and there are no constraints on distributions and measurement
scale. This connection implies the following two stage estimation procedure,
where FPR joins PLS-PM in its final step allowing for a fuzzy structural
model but a still crisp measurement model:

stage 1 : latent variable scores are estimated according to the PLS-PM es-
timation procedure;

stage 2 : FPR on the estimated latent variable scores is performed so that
the following fuzzy structural model is obtained:

ξj = β̃j0 +
∑

j′
β̃jj′ξj′ (5)

where β̃jj′ refers to the generic fuzzy path coefficient and j and j′ vary
as described in section 3.1.
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It is worth noticing that the structural model from this procedure is different
with respect to the traditional structural model in section 3.1. Here path coef-
ficients are fuzzy numbers and there is no error term, as a natural consequence
of FPR: the error term is reflected in the model via fuzzy parameters.

5 Comparing models

The analysis of complex systems, characterized by particularly heterogeneous
statistical populations, leads to split the whole population into more homo-
geneous groups or segments. Like in classical inferential problems, sampling
from heterogeneous populations, the stratified sampling is preferred to the
random sampling. The segments are based on some predetermined criteria
such as geographic location, size or any demographic characteristic. It is
important the segments are as heterogeneous as possible according to the
predetermined criterion. Population segmentation leads to estimate the same
model as many times as the segments identified in the target population. Sev-
eral approaches have been proposed to compare the sub-populations. One of
the main approaches consists in comparing the estimated parameters (Clogg
et al.; 1995). However, estimated models assess the relation structures in dif-
ferent proportions; in fact the residual component can vary with respect to
the different models. It is important to stress that comparing models in such
a way could lead to biased results. Let us consider the simple linear regression
analysis. Specifically, let us consider two models with equal parameters (slope
and location). Such models should be considered statistically equivalent, ac-
cording to the approach based on the parameters comparison. However, the
models could have a different fit.
In the analysis of a statistical model one should always, in one way or an-
other, take into account the goodness of fit, above all in comparing different
models. The estimation of fuzzy parameters, instead of single-valued (crisp)
parameters, permits us to gather both the structural and the residual infor-
mation. In fact, FPR embeds the residual in the model via fuzzy parameters
allowing a full comparison among the models.

5.1 Comparing PLS-PM models

In the specific framework of SEM, the model comparison problem is consid-
ered as a special case of moderating effects. Moderating effects (also called
interaction effects) arise when some variables influence a direct effect between
the latent variables inside the model. In particular if the moderator variable is
categorical, it becomes a grouping variable involving group comparisons, i.e.
comparisons of model estimates for different groups of observations. Once the
observations are grouped according to the moderator variable, the strategy
is then to estimate local models with direct effects for each group and look
for differences in path coefficients across groups. To this aim, non-parametric
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approaches may be used to test for different path coefficients among groups
(Chin and Dibbern; 2007).
If there is no difference between the parameters from the different models
then there is no reason for considering local models. In other words, a global
model is effective for the whole population. If there exist differences between
parameters, these are evaluated as differences between local models.
It should be noticed how the moderating effects only concern the structural
models. That is equivalent to assuming that the differences among measure-
ment models are not significant.
Under this hypothesis, in this work, model differences are gathered comparing
the fuzzy structural parameters in terms of distances. The strategy consists
of three basic steps:

a) estimate local fuzzy structural models for each group

ξg
j = β̃g

j0 +
∑

j′
β̃g

jj′ξ
g
j′

b) gather model differences comparing the related fuzzy path coefficients,
describing the local models

β̃j,1 . . . β̃J,1 . . . β̃J,j

model[1] b̃j,1 . . . b̃J,1 . . . b̃J,j

. . . . . . . . . . . .

model[g] b̃j,1 . . . b̃J,1 . . . b̃J,j

. . . . . . . . . . . .

model[G] b̃j,1 . . . b̃J,1 . . . b̃J,j

Table 1. Data matrix.

c) displaying distances for fuzzy/interval data by hierarchical trees or pyra-
mids.

The G estimated fuzzy structural models are characterized by fuzzy path
coefficients. That means there are no residual terms, because in the fuzzy
model the error terms are embedded in the parameters themselves. This
peculiarity confers to the G fuzzy structural models the same explicative
power, making the comparison, that is based on the estimated fuzzy path
coefficients, meaningful. The hierarchical classification (step c) is used to
easily visualize similarities/differences between models. Alternative methods
like Multidimensional Scaling can be used for visualizing results.

5.2 PLS-PM distances visualization by hierarchical pyramids

This proposal exploits a fuzzy classification algorithm for interval data to
compare the groups with respect to the identified PLS-PM fuzzy structural
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parameters. In particular the paper refers to the HIPYR hierarchical clas-
sification algorithm (Brito (2000)). The procedure is implemented in the
SODAS c© software (Symbolic Official Data Analysis System, rel. 2.5) and
is designed to cluster symbolic datasets (Bock and Diday (2000)). It is worth
noticing that fuzzy data and interval data can also be defined as special cases
of symbolic data, only characterized by quantitative continuous variables.
HIPYR displays hierarchical tress or pyramids starting from a distance ma-
trix computed on an interval data matrix. HIPYR clustering procedure de-
termines the G(G−1)/2 distances between models by the Hausdorff metric in
R

p. This allows us to appreciate the differences in the R
p parameters space.

6 Example

A typical application for PLS-PM is the estimation of customer satisfaction.
Within this framework, a widely adopted model is the one specified for the
European Customer Satisfaction Index (ECSI) (Tenenhaus et al. (2005)).
ECSI model allows us to estimate latent variable scores from their respective
manifest variables and to build individual indexes of satisfaction.
The global model contains the following latent variables: perceived quality, ex-
pectation, perceived value, satisfaction index, image, loyalty and complaints.
In particular, customer satisfaction is explained by the drivers perceived qual-
ity, expectation, perceived value and image.
The present application has been performed on a data set used to estimate
the customer satisfaction of a service industry. Data contains 23 variables
observed on 366 units. Variables are grouped in 6 blocks: perceived quality
(7 manifest variables), expectations (4 manifest variables), perceived value
(3 manifest variables), satisfaction index (3 manifest variables), image (3
manifest variables) and loyalty (3 manifest variables). According to the mod-
erator variable sector of activity, statistical units are groped into 8 classes
(labels are indicated in round brackets): hospital (Hosp), health authority
(HeAu), school (Scho), university (Univ), local administration (LoAd), Red
Cross (RCro), social security (SoSe), public administration (PaAd). Variable
names cannot be revealed because of confidential constraints on the data.
First, results from the global Fuzzy PLS-PM on the whole dataset are pre-
sented. It is important to remember how in such a procedure the FPR is
introduced just in the last step of the algorithm. In other words, as this ap-
proach provides a fuzzy structural model but a still crisp measurement model,
all the results of the algorithm are the same as in the traditional PLS-PM
except those related to the inner model. The five fuzzy structural equations
may be written as follows:

expectation = β̃21image
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perceived quality = β̃32customer expectation
perceived value = β̃42customer expectation + β̃43perceived quality

loyalty = β̃61image + β̃65CSI
satisfaction = β̃51customer expectation + β̃52perceived quality

+ β̃53perceived value + β̃54image

Table (2) shows the path coefficients of the classical PLS-PM and the
fuzzy path coefficients of the fuzzy PLS-PM, with the possibility level α = 0.5.
In order to compare results from classical PLS-PM with results from the

Latent Variable path coeff. fuzzy path coeff. fuzzy path coeff.
center, spread min, max

expectation 0.5077 [3.8923, 3.6378] [0.2544, 7.5301]
perceived quality 0.5269 [2.7954, 2.4719] [0.3235, 5.2673]
perceived value 0.2987 [0.1833, 0.1350] [0.0483, 0.3183]

0.6067 [0.6604, 0.4797] [0.1807, 1.1401]
loyalty 0.3570 [0.7374, 0.7191] [0.0183, 1.4565]

0.5248 [0.3872, 0.1400] [0.2472, 0.5273]
satisfaction 0.0829 [0.0500, 0.1772] [−0.127, 0.227]

0.1940 [0.2582, 0.0758] [0.1824, 0.3339]
0.3687 [0.0203, 0.0071] [0.0132, 0.0273]
0.3273 [0.3895, 0.2220] [0.1675, 0.6115]

Table 2. Inner model weights.

fuzzy PLS-PM, some outputs of the classical approach are shown in table
(3): the R2 of each structural equation, the bootstrap confidence intervals
and the value of test-statistic t for each path coefficient. Comparing results in
table (2) and (3) it can be seen that fuzzy path coefficients with wider spread

Latent Variable R2 confidence interval T-Statistic

expectation 0.2578 [0.4227, 0.5827] 12.0471
perceived quality 0.2777 [0.4607, 0.6084] 13.5374
perceived value 0.6484 [0.2309, 0.3768] 7.9238

[0.5371, 0.6594] 20.9333
loyalty 0.6951 [0.2620, 0.4590] 8.4573

[0.4176, 0.6159] 11.5011
satisfaction 0.7479 [0.0118, 0.1594] 2.27795

[0.1161, 0.2579] 5.25735
[0.2405, 0.4874] 5.80815
[0.2319, 0.4318] 6.91954

Table 3. PLS-PM output.
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correspond to structural equations with lower R2. This is a natural conse-
quence of the FPR, which is extremely sensitive to outliers. Furthermore, the
relation between the expectation and satisfaction seems to be not significant
in both approaches. In fact, in the fuzzy approach the corresponding fuzzy
interval embed the value 0, whereas in the classical approach the t-value is
close to 2. The t-values are computed on the basis of the percentiles of the
bootstrap distribution: the relation between two latent variables is considered
statistically significant if the t-value of the corresponding path coefficient is
more or less higher than 2.

The multi-group structure data suggests significantly different models: 8
local models have been estimated according to the procedure in section (4).

The eight estimated models are compared on the basis of their fuzzy path
coefficients. In other words, the distances among the different local models
are considered for a pyramidal classification procedure.

Results show two fuzzy groups:
Cluster 1 [Scho, Hosp, SoSe, RCro, HeAu]
Cluster 2 [Hosp, SoSe, RCro, HeAu, Univ, LoAd, PaAd]

The overlapping Hosp, SoSe, RCro, HeAu appears in both clusters.
It is quite evident that Cluster 1 is mainly characterized by public bodies
having autonomy of expenditure. On the contrary Cluster 2 is mainly char-
acterized by Local and Central administrations. Notice that these two later
groups only appear in the Cluster 2. In order to compare results with classi-
cal multi-group analysis in PLS-PM, the multi-group t test (for any number
of groups) implemented in the XL-STAT-PLSPM software has been applied.
This test uses the estimates obtained from the bootstrap sampling in a para-
metric sense via t-tests for the difference in path coefficients between groups.

Fig. 1. Pyramid.
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Results from the multi-group t-test 6 are coherent with the proposed
analytical approach. In fact, SoSe shows a significant different model from
the group {PuAd, LoAd, Univ, HeAu, Hosp}. In addition, SoSe present a
similar model to Scho, which is different from Rcro. In other words it is
confirmed the presence of two groups with similar model.

Groups Difference p-value alpha Significant

Path coefficient (E − > PV)
HeAu vs PuAd 0,278 0,033 0,050 Yes
Path coefficient (PQ − > PV)
Hosp vs SoSe 0,364 0,044 0,050 Yes
Path coefficient (I − > S)
LoAd vs SoSe 0,495 0,041 0,050 Yes
Scho vs LoAd 0,360 0,017 0,050 Yes
Scho vs Univ 0,356 0,043 0,050 Yes
HeAu vs SoSe 0,568 0,029 0,050 Yes
HeAu vs Scho 0,433 0,008 0,050 Yes
Hosp vs HeAu 0,381 0,045 0,050 Yes
Path coefficient (E − > S)
Rcro vs PuAd 0,576 0,002 0,050 Yes
Rcro vs SoSe 0,496 0,050 0,050 Yes
LoAd vs Rcro 0,451 0,011 0,050 Yes
Univ vs Rcro 0,515 0,027 0,050 Yes
Scho vs Rcro 0,401 0,021 0,050 Yes
HeAu vs Rcro 0,470 0,037 0,050 Yes
Hosp vs PuAd 0,272 0,043 0,050 Yes
Path coefficient (PQ − > S)
HeAu vs LoAd 0,323 0,040 0,050 Yes
Path coefficient (PV − > S)
SoSe vs PuAd 0,627 0,012 0,050 Yes
LoAd vs SoSe 0,658 0,008 0,050 Yes
Univ vs SoSe 0,834 0,009 0,050 Yes
Scho vs PuAd 0,271 0,040 0,050 Yes
Scho vs LoAd 0,302 0,024 0,050 Yes
Scho vs Univ 0,478 0,007 0,050 Yes
HeAu vs PuAd 0,434 0,023 0,050 Yes
HeAu vs SoSe 1,061 0,005 0,050 Yes
HeAu vs Rcro 0,771 0,026 0,050 Yes
HeAu vs LoAd 0,402 0,036 0,050 Yes
HeAu vs Scho 0,705 0,001 0,050 Yes
Hosp vs HeAu 0,653 0,026 0,050 Yes
Path coefficient (I − > L)
SoSe vs PuAd 0,554 0,013 0,050 Yes
LoAd vs SoSe 0,688 0,008 0,050 Yes
HeAu vs SoSe 0,571 0,040 0,050 Yes
Hosp vs SoSe 0,764 0,023 0,050 Yes
Path coefficient (S − > l)
SoSe vs PuAd 0,523 0,023 0,050 Yes
LoAd vs SoSe 0,695 0,006 0,050 Yes
Univ vs SoSe 0,638 0,041 0,050 Yes
HeAu vs SoSe 0,827 0,019 0,050 Yes
Hosp vs SoSe 0,639 0,035 0,050 Yes

Table 4. Multi-group t-test results.
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Abstract. According to a standard point of view, statistical modelling consists
in establishing a parsimonious representation of a random phenomenon, generally
based upon the knowledge of an expert of the application field: the aim of a model
is to provide a better understanding of data and of the underlying mechanism which
have produced it. On the other hand, Data Mining and KDD deal with predictive
modelling: models are merely algorithms and the quality of a model is assessed by
its performance for predicting new observations. In this communication, we develop
some general considerations about both aspects of modelling.

Keywords: model choice, data mining, complexity, predictive modelling

1 Models for understanding

A statistical model consists usually in the formulation of a parametric for-
mula for the distribution of a (multidimensional) random variable. When the
interest lies in a particular response, the usual form is y = f(x; θ) + ε. When
the model is completely specified by an expert (economist, biologist, etc.)
the statistical work consists in estimating the unknown parameters, and (or)
refute the model according to a goodness of fit test. If the model is rejected,
the expert should think of an other one.
Generally a model should be simple, and parameters should be interpretable
in terms of the application field : elasticity, odds-ratio, etc. The need for
interpretation explains why for instance logistic regression is preferred to dis-
criminant analysis by biostatisticians and econometricians, the coefficients
being uniquely estimated and having the meaning of log-odds.
The purpose of a model is to give insights in the nature of a stochastic phe-
nomenon, not necessarily to give accurate predictions. This may be viewed
as a paradox, since eg in natural sciences, a good model must give good
predictions, otherwise the model is replaced by an other one. It is due to
the importance of the random term ε . In epidemiology for instance, it is
more important to find risk indicators than having an accurate individual
prediction of getting some disease.



316 Saporta, G.

1.1 Model estimation

Maximum likelihood estimation is by far the standard technique : the like-
lihood principle which comes back to R.A.Fisher says that among several
values of a parameter θ, one must choose the one which maximizes the prob-
ability density function which is equal for iid observations to

L (x1, .., xn; θ) =
n∏

i=1

f (xi; θ)

considered as a function of θ.
Advantages of ML estimation are in availability of asymptotic standard er-
rors, as well as tests. The extensive use of ML estimation is recent: the first
technique for estimating the logistic regression model proposed by Berkson
in the 40’s was the minimum chi-squared, see Berkson (1980).
Least squares estimation is often more robust and need less assumption (both
are related) and is of common use, especially in exploratory analysis, includ-
ing PLS structural equation modelling.

1.2 Model choice

Choosing between several models occurrs when the ”expert” hesitates be-
tween several formulations. Statistics may help to choose among several mod-
els using some parsimony principle. This is conform to Occam’s razor, which
is often considered as a scientific principle against unnecessary hypotheses .
The major use of model selection is for variable selection including interac-
tion selection.
A considerable amount of literature has been devoted to model selection by
minimizing penalized likelihood criteria like AIC, BIC, see Burnham and
Anderson (2000).

AIC = −2 ln
(
L(θ̂)

)
+ 2k BIC = −2 ln

(
L(θ̂)

)
+ ln(n)k (1)

BIC favourizes more parsimonious models than AIC due to its penalization.
AIC, but not BIC, is biassed in the following sense: if the true model belongs
to the family Mi, the probability that AIC chooses the true model does not
tend to one when the number of observations goes to infinity.
AIC and BIC have similar formulas but originates from different theories
and there is no rationale to use simultaneously AIC and BIC: AIC is an
approximation of the Kullback-Leibler divergence between the true model
and the estimated one, while BIC comes from a bayesian choice based on the
maximisation of the posterior probability of the model, given the data.



Models: understand or predict? 317

1.3 Some limitations

Even if we knew the ”true” model, parameter estimation could be a difficult
task when the number of cases is low. For example in a multiple regression
model, this can lead to severe multicollinearity. If we want to estimate all pa-
rameters, without discarding variables (and we should not discard variables
if we believe in our model), it is necessary to put some constraints or in other
words to do some regularization. Ridge regression which is a direct applica-
tion of Tikhonov regularisation is a well known remedy to multicollinearity.
Projecting onto a lower dimension space is another kind of regularization and
includes principal components regression as well as PLS regression.
Bayesian statistics provides an elegant solution: it balances the lack of ob-
servations by using prior information. For the normal regression model with
normal priors on the parameters, bayesian estimation comes down to ridge
regression and provides an enlightening interpretation of this technique.

Model choice by penalized likelihood suffers from practical limitations:
penalized likelihood cannot be applied to ridge or PLS regression, since there
may be no simple likelihood nor a simple number of parameters: what is
eg the right number of parameters for a ridge regression? There are still p
parameters but since they are constrained by a condition like ‖β‖2

< k, we
need an equivalent number of parameters less than p depending on k but the
exact formula is unknown. No need to say that penalized likelihood is hard
to apply to choose a decision tree, or between a decision tree and a logistic
regression. Let us also remark that the underlying hypothesis for BIC of hav-
ing a uniform prior on models is not very realistic.

The ambition of finding the ”true” model belonging to the family of dis-
tributions is questionable and we must remind of the famous dictum from
George Box (Box and Draper,1987, p.424): ”Essentially, all models are wrong,
but some are useful.” This is especially true for very large data sets where no
simple parsimonious model can fit to the data: it is well known that signifi-
cance or goodness of fit tests always reject any precise null hypothesis when
one has millions of observations: a correlation of 0.01 will be considered as
significatively different from zero, but the point of interest is in the strength
of the relationship, not in its existence (assuming that a correlation different
from zero is a proof of existence...)

1.4 Models for exploration

Most of what have been said before is about regression in the broad sense of
relating a response to some inputs. There is a slightly different use of models,
applied to some kind of exploratory problems.
Let us suppose that we analyze a sample drawn iid from a population defined
by some model, then it is possible to do some inference for the outputs of
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the analysis: confidence intervals for the eigenvalues of a PCA, confidence
regions for the positions of points in multidimensional scaling, PCA, or Cor-
respondence Analysis etc. The model is here an help to interpret and provide
additional knowledge to what can be seen from graphical displays of ex-
ploratory analysis.
However the validity of the model is is often dubbious for numerical variables.
The standard model for inference in PCA is the multivariate normal, as one
can find in any textbook, and for most data sets this model is wrong : there
is here a contradiction in using both an exploratory technique, which has
for goal to reveal the underlying structure of frequently heterogenous data
and a single simple model. The situation is more comfortable for categorical
data where a multinomial scheme is realistic. For instance in contingency ta-
bles analysis it is true, provided that the sampling scheme is simply random,
that the joint distribution of the frequencies nij , is the multinomial M(n; pij)
where the pij are unknown parameters. This lead to exact results (however
difficult) for the distribution of eigenvalues in correspondence analysis. This
may be extended to the case where the margins of one variable are fixed
(stratified sampling).
Many experiences have proved that resampling, eg bootstrap, provides more
reliable results than using unrealistic models, see Hatabian and Saporta
(1986) or Lebart (2006). Let us however mention the neglected fixed-effect
model for PCA (Besse et al. , 1988) which is less demanding in its hypotheses
than the multivariate normal and lead to inferences on dimensionality and
on the displays.

2 Models for prediction

In data mining applications, a model is merely an algorithm, coming more
often from the data than from a theory. The focus here is not on an accurate
estimation of the parameters, or on the adequacy of a model on past observa-
tions but on the predictive ability, ie the capacity of making good predictions
for new observations : forecasting differs from fitting.
The ”black-box model” (Vapnik, 2006, p.416) illustrates the differences with
the previous conception of a model, while keeping the same mathematical
formulation y = f(x; θ) + ε. Statistical modelling (understanding data) look
for a parsimonious function f(x; θ) belonging to a prespecified set. On the
other hand, in predictive modelling, the aim is not to approximate the true
function but to get a function which gives as accurate predictions as the
model, since it is a stochastic one. The question is not to discover the hidden
mechanism but to perform as well.
In many operational applications, like in Customer Relationship Management
or pattern recognition, understanding the phenomenon would be a too com-
plex and vain task: a banker does not need a theory for predicting if a loan
will at risk or not, but only a good score function. In predictive inference,
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models could be very complex like multilayer perceptrons or non-linear SVM,
and we have the paradox that a good prediction does not need a deep under-
standing of what is observed. This may not be confused with the readability
of a model: a decision tree is very simple to use for the end-user but is not a
model of the hidden mechanism producing the data.

2.1 Risk minimization

Let L be a loss fonction and R=E(L) its expectation, called here ”risk”.

R = E(L) =
∫

L(z, θ)dP (z) (2)

The risk is the average loss for new observations. The ideal would be to choose
the model among some family of models in order to minimize R but it is an
impossible task, since we do not know the true distribution P. Choosing the
model which minimizes the empirical risk (ie the risk on observed data, or
learning set)

Remp =
1
n

n∑

i=1

L(yi; f(xi; θ)) (3)

usually leads to overfitting.
For binary classification where one chooses as loss function the misclassifi-
cation rate, Vapnik’s inequality gives an upper bound relying on the VC-
dimension h :

R < Remp +

√
h (ln (2n/h) + 1) − ln (α/4)

n
(4)

Based on the upper bound of R, the structured risk minization principle or
SRM provides a model choice methodology different from penalized likeli-
hood, since no distributional assumptions are necessary. Given a family of
models, the principle is (for fixed n) to choose the model which minimizes
the upper bound : this realizes a trade-off between the fit and the general-
ization capacity.
This inequality proves that (provided h is finite) one may increase the com-
plexity of a family of models (eg in a simple case increase the degree of
polynomials) when the number of learning cases increases, since it is the ra-
tio h/n which is of interest. This shows a strong difference between SRM and
model choice based on BIC, since the penalization in BIC increases with n
and tends to choose simpler models for large n. Devroye et al. (1996) proved
that SRM is strongly universally consistent.

2.2 AUC-like measures of efficiency

Error rate estimation corresponds to the case where one applies a strict deci-
sion rule and depend strongly on prior probabilities and on group frequencies.
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But in many applications one just needs a “score” S which is a rating of the
risk to be a member of one group, and any monotonic increasing transforma-
tion of S is also a score like

S′ =
exp(S)

1 + exp(S)

Usual scores are obtained with linear classifiers (Fisher’s discriminant analy-
sis, logistic regression) but since a probability is also a score (ranging from 0
to 1), almost any technique, even decision trees gives a score. SVM classifier
also provide scores.
The ROC curve is a popular measure of efficiency which synthesizes the
performance of a score for any threshold s such that if S(x) > s then x is
classified in group 1. Using s as a parameter, the ROC curve links the true
positive rate to the false positive rate. The true positive rate (or specificity)
is the probability of being classified in G1 for a member of G1 :P (S > s|G1).
The false positive rate (or 1- sensitivity) is the probability of being wrongly
classified to G1 : P (S > s|G2). In other words, the ROC curve links the power
of the procedure 1 − β to α the probability of error of first kind. ROC curve
is invariant with respect to increasing transformations of S.
Since the ideal curve is the one which sticks to the edges of the unit square,
the most popular measure is given by the area under the ROC curve (AUC );
another measure is the so-called Gini index which is equal to twice the area
between the ROC curve and the diagonal: Gini = 2AUC − 1. Since theo-
retical AUC is equal to the probability of “concordance” : AUC = P (X1 >
X2) when one draws at random two observations independently from both
groups, AUC reduces to an old measure of nonparametric comparison: Mann-
Whitney’s U statistic.
ROC curve and AUC are extensively used in the banking industry to assess
the quality of the credit risk rating system and are recommanded by the
Basel Committee on Banking Supervision (see BCBS 2005).
Model choice using AUC should of course not be based on the learning sam-
ple. Inequalities similar to (4) , may be obtained for AUC but are not very
useful in practice. Moreover ROC curve and AUC do not take into account
some elements of interest in business applications like the error costs and the
fact that very often the two subpopulations are not balanced at all.

2.3 Empirical model choice

Even if Vapnik’s inequality is not directly applicable, for it is often difficult
to evalute the VC dimension, SRM theory gives a way to handle methods
where penalized likelihood is not applicable. One important idea is that one
has to realize a trade-off between the fit and the robustness of a model.
An empirical way of choosing a model in the spirit of Statistical Learning
Theory is the following (Hastie et al. 2001): Split the available data into 3
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parts: the first set (training) is used to fit the various models of a family, the
second set (validation set) is used to estimate the prediction error of each
previously estimated model and choose the best one, the last set (test set)
is reserved to assess the generalization error rate of the best model. This
last set is necessary, because using repeatedly the validation step is itself a
“learning” step.
However split only once the data set into 3 parts is not enough, and may
lead to unexpected sampling variations, see Niang and Saporta (2007). In
order to avoid too specific patterns, all this process should be repeated a
number of times to get mean values and standard errors. For measuring
the prediction error in regression, Borra and Di Ciaccio (2007) compared
several resampling technique including bootstrap and .632 bootstrap; they
showed by simulation that a resampled 10-fold cross-validation technique
outperformed other estimators. Since Fisher’s supervised classification in 2
classes is a special case of the linear model, the latter results may be also
valid for discrimination.

3 Conclusions

Two very different conceptions correspond to the same name of ”model”,
and this may be a cause of misunderstanding. As Cherkassky and Mulier
(1998) wrote: ”Too many people use different terminology to solve the same
problem; even more people use the same terminology to address completely
different issues”. Models for understanding data correspond to the part of
statistics considered as an auxiliary of science. Models for prediction belong
to the other face of statistics as an help for decision. There are more job
opportunities for graduate students in predictive modelling but also more
competitors coming from other disciplines.
But one may question this opposition between science and action : when
a technique gives really good predictions, it is also an improvement of the
knowledge we have on data. Predictive modelling belongs to empiricism which
is itself a theory of knowledge.
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Abstract. The framework of this paper is classification and regression trees, also
known as tree-based methods, binary segmentation, tree partitioning, decision trees.
Trees can be fruitfully used either to explore and understand the dependence re-
lationship between the response variable and a set of predictors or to assign the
response class or value for new objects on which only the measurements of predic-
tors are known. Since the introduction of two-stage splitting procedure in 1992, the
research unit in Naples has been introducing several contributions in this field, one
of the main issues is combining tree partitioning with statistical models. This paper
will provide a new idea of knowledge extraction using trees and models. It will deal
with the trade off between the interpretability of the tree structure (i.e., exploratory
trees) and the accuracy of the decision tree model (i.e., decision tree-based rules).
Prospective and retrospective view of using models and trees will be discussed. In
particular, we will introduce a tree-based methodology that grows an optimal tree
structure with the posterior prediction modelling to be used as decision rule for
new objects. The general methodology will be presented and a special case will be
described in details. An application on a real world data set will be finally shown.

Keywords: tree-based model, model prediction, optimal partitioning

1 Introduction

This paper is about tree-based methods. Trees result from a supervised learn-
ing approach where a response or output variable is predicted by more predic-
tors or inputs. Two main directions of research can be distinguished according
to the aim of the analysis, namely exploratory and confirmatory (Siciliano,
1998).

1.1 Exploratory trees

In the exploratory context, binary segmentation can be understood as a re-
cursive partitioning of objects due to some splitting variables derived from
available predictors such to obtain internally homogeneous and externally
heterogeneous subgroups with respect to a target or response variable. The
final result is an exploratory tree, either classification or regression tree, that
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can be analysed to understand the dependence relationship between the re-
sponse variable (of categorical or numerical type) and the predictors (of any
type). At any internal node of the tree, a predictor generates the splitting
variable (i.e., dummy variable) to discriminate the objects falling into the
left subnode from those falling into the right subnode. Usually, the best split-
ting variable is chosen among all possible splits generated by the predictors
such to maximize the decrease of impurity of the response variable within
the two subnodes (Breiman et al. 1984), where the impurity is a measure
of deviance or variation for numerical responses (i.e., regression tree) and a
measure of hetereogeneity or entropy for categorical responses (i.e., classi-
fication tree). Two-stage splitting criterion finds first the best predictor(s)
and then the best split of the best predictor(s) on the basis of predictability
measures using in cross-classifications (Mola and Siciliano, 1992, 1996). Fast
algorithm allows to find the best split without trying out all possible splits,
thus using a subset of best predictors (Mola and Siciliano, 1997; Siciliano
et al. 1998). Terminal nodes include disjoint and homogeneous subgroups of
objects, defining a partition of the starting group of objects with respect to
the response variable.

1.2 Decision tree-based rules

In the confirmatory context, the aim is to predict a response class/value of
new objects in which only the measurements of predictors are known. One
approach is to define a set of nested pruned subtrees by removing at turn the
most unreliable branches and then select the most accurate subtree for new
cases (Breiman et al., 1984; Mola and Siciliano, 1994). As measure of accu-
racy the error rate for classification problem and the mean squared error for
regression problem are evaluated on independent test sample as well as ac-
cording to a cross-validated sampling procedure. Model selection procedures
can be also considered to select the best among alternative decision trees.
Another approach consists in ensemble methods, such as boosting and bag-
ging algorithms. Ensemble methods are learning algorithms that construct a
set of classifiers and then classify new data points by taking a vote of their
predictions. The most popular ensemble methods work by manipulating the
training examples through re-sampling methods. Bagging (Breiman, 1996)
uses V -fold bootstrap replication, whereas Boosting (Freund and Schapire,
1997) uses V -fold weighted-bootstrap replications in the sense that the prob-
ability of each object to be included in the subsequent sample increases if
the same object is misclassified by the learning algorithm. Both algorithms
aggregate the object decisions by voting. This approach improves accuracy of
decision tree-based rules but it does not yield to a prediction tree structure.
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1.3 This paper

This paper provides a one-step methodology for both exploratory and confir-
matory analysis. Main idea is to obtain a prediction tree structure based on
the optimal partitioning of known objects and a posterior prediction model for
unknown objects. The proposed approach can be understood as a retrospec-
tive view of using trees and models, that is an alternative to the prospective
view where models are considered either in the splitting criterion definition
(Siciliano and Mola, 1994) or in the terminal node description (Conversano
et al. 2001). The concepts of optimal partitioning and posterior prediction
modeling will be defined. In the following, after recalling some previous and
related work, we will describe the general methodology and a special case
when using the logit-linear modelling. An application on a dataset available
in Machine Learning Repository will be shown for completeness.

2 Key issues of Tree Harvest

Tree Harvest is the name of our specialized software for tree-based methods
proposed by our research group in Naples during the last sixteen years. Pio-
neer method has been the two-stage splitting procedure (Mola and Siciliano,
1992). Benchmarking is the well known CART methodology and related ap-
proaches (Breiman et al. 1984; Breiman, 1996; Hastie et al. 2002; Berthold
and Hand, 2003). In the following, we outline the key issues characterizing
any tree-based method: the task of the analysis, as we have above discussed,
either exploratory or confirmatory; the type of target variable, namely a
dummy response variable, a multi-class response, an ordinal response, a nu-
merical response, more recently we are dealing with preference rankings as
well as the number of responses, i.e., univariate and multivariate trees (Si-
ciliano and Mola, 2000); the type of predictors (i.e., all categorical, all nu-
merical, mixed); the type of splitting variable, i.e., either simple or multiple
split (Siciliano and Mola, 2002); the prior information, so that the predictors
can be either active or illustrative if they generate splitting variables or not
(Siciliano and Mola, 2004); the data structure, such as data can be classified
either in two ways, i.e., measurements of variables on a sample of objects, or
in three ways, i.e., variables, objects and occasions, where the latter can be
understood as an instrumental variable to stratify either groups of predictors
or groups of objects (Tutore et al., 2008); the optimality criteria, specifying
the splitting criterion, the model selection, etc.; the context application, as for
instance incremental tree-based methods have been proposed in Data Edit-
ing, such as missing data imputation (Conversano et al., 2004; D’Ambrosio et
al. 2007a), data fusion (D’Ambrosio et al. 2007b), data validation (Petrakos
et al., 2004).
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3 Prospective view of trees and models

3.1 Prospective splitting by model fit

A greedy searching procedure is usually applied to look forward for the best
partition of objects into two groups trying out all possible (or a suitable sub-
set of) splits, that can be deduced from the predictor space. This results in
the best prospective split at a given node. The optimality criterion usually
takes into account the maximization of the decrease of impurity (or varia-
tion) of the response variable. As measure of impurity, the residual sum of
squares obtained from the model fitting to the parent node as well as to
the two sub-nodes can be considered. In this sense, some approaches using
generalized linear regression models (Ciampi 1991) and Cox models (Ciampi
1995) as partitioning criteria have been proposed. The goodness of fit of a
given model in the two subnodes allows to select the best prospective split
of the predictor space. Main idea is that sub-groups at the left and the right
nodes are internally homogeneous and externally heterogeneous with respect
to the selected sub-models. A hierarchy of models is associated to the nodes
of the binary tree according to the following rules: (a) if a model at the left
sub-node is accepted, then the model at the parent node has been accepted,
and (b) if a model at the parent node is rejected, then the models at the
left and the right sub-nodes are also rejected. While rule (a) ensures that the
hierarchy is respected, rule (b) ensures to stop the procedure when a model
is rejected. This methodology is known as model selection tree (Siciliano and
Mola, 2004). Two special cases have proved to given interesting results: the
use of logistic regression for classification trees (Siciliano et al. 1996) and the
use of test for total heterogeneity in regression for regression trees (Siciliano
and Mola, 1996).

3.2 Prospective splitting by model parameters

An alternative approach is to choose the best prospective split using model
parameters in place of the model fit. Basically, a two-stage criterion can be
considered: first, the best predictor is selected to fit the dependence relation
with a given model and, then, the best split is chosen on the basis of the
fitted model parameters. As an example, the latent budget model has been
fruitfully considered to improve classification when the response variable is
multi-class (Siciliano, 1999). In particular, Multi-Class Latent Budget Trees
(Aria, 2005) selects the best predictor maximizing the goodness of fit of the
latent budget model and then the best split on the basis the estimated mix-
ing parameters. These describe the conditional probability of an object to fall
into either the left subnode or the right subnode given the predictor feature,
thus tho object falls into the subnode where the estimated mixing parameter
is the highest. Another example is Ternary Trees by NonSymmetric Corre-
spondence Analysis (Siciliano and Mola, 1998) where the model parameters



Posterior Prediction Modelling of Optimal Trees 327

are the factorial scores of the objects on the first axis. The idea is to parti-
tion the objects into three groups: two of them include those objects with a
positive score and those with a negative score respectively, but both induced
by predictor features resulting with the highest predictability power, the re-
maining group includes objects with scores nearly to zero. This procedure
allows to identify outliers as well as well predicted tree paths. Other factorial
approaches to classification trees are based on discriminant linear functions
(Cappelli and Conversano, 2002) and nonlinear canonical correlation analysis
such as optimal scaling trees (Tutore et al., 2007).

4 Retrospective view of trees and models

4.1 Retrospective split

The concept of retrospective splits has been introduced in Two-Stage Dis-
criminant Trees for regression trees (Mola and Siciliano, 2002) and also con-
sidered in Clockwork Trees through Visual Multivariate Splitting (Conver-
sano et al. 2003). The split induced by splitting the objects on the basis of
the response variable, discarding the predictors, is called retrospective. For
instance, the measurement values of a numerical response variable can be
classified into two groups on the basis of the highest between deviation. The
result is the optimal (theoretical) retrospective split of the objects at a given
node. Two properties can be mentioned: 1) the set of prospective splits is not
necessarily coincident with the set of retrospective splits, being the former
included into the latter; 2) a split of objects based just on the response (i.e.,
a retrospective split) could not present any split of the predictor features
(i.e., a prospective split) yielding to the same partition. As a result, at any
node, for any optimal partition of the objects due to the best retrospective
split it might not exist an observed partition of the predictor features pro-
vided by any observed prospective split. Thus, for interpretative purposes, it
is necessary to look backward to find the most coherent observed split of the
predictor features to be associated to such an optimal split of the objects.
A tree growing procedure based on the best retrospective splits yields to the
optimal splitting tree retrospectively, where the optimality is referred to the
optimal partition of objects obtained at each node of the tree.

4.2 Optimal tree growing algorithm

A tree is optimal if it is recursively partitioned on the basis of the optimal
(theoretical) retrospective split at each node. Thus, partitioning is only gov-
erned by the response variable, in this respect ensuring at each node the
most internally homogeneous subgroups as well as the most heterogeneous
subgroups. Table 1 shows the pseudo-code of the optimal tree growing algo-
rithm. Once in the preliminary step the response variable is sorted, all its
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n− 1 possible binary partition are considered. The split is then generated by
maximizing the between sum of squares. Stopping rules to tree growing are
node size and tree depth.

Let X be a n× p matrix of numerical and categorical predictors.
Let Y be a n× 1 vector of numerical responses.
Sort the data matrices X and Y according to the response variable distribution.
Let t the number of a tree-node;
Let s ∈ S be the generic binary split of Y .
Let Dbs the Y between sum of squares measure calculated between the two
sub-distributions obtained by the s split.

Start from root node.

• while a tree growing stopping rule does not occur, repeat for each child node
– find the optimal binary split S∗ of Y maximizing Dbs respect to s ∈ S
– generate the two children nodes according to the split s∗

• Output: Optimal tree according to the Y distribution.

Table 1. Optimal tree growing algorithm.

4.3 Posterior model prediction criterion

The most coherent prediction model with respect to the optimal retrospective
split needs to be found. In particular, a class of models has to be used to
generate the prediction rules. Table 2 shows the pseudo-code of the prediction
modelling algorithm. For each node, a suitable model generates the rules
to explain the partitioned response variable. This process continues until a
pruning rule does not occur. The pruning rule at a node t is defined by
the significance of the selected model. In other words, if the model is not
significant the branch is pruned and the node t becomes terminal. As a result,
the prediction modelling is assigned a-posteriori the optimal partition.

5 An application using the logistic regression

Concrete Compressive Strength data set (available on UCI machine learning
repository) consists on nine numerical variables and 1030 instances. The goal
is to predict the concrete compressive strength given a set of predictors. The
complete set of variables is the following:

• X1: cement, kg in a m3 mixture;
• X2: blast furnace slag, kg in a m3 mixture;
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Let M a class of models according to the splitting criterion of the optimal tree;
Let m ∈M a generic model function;
Let mt ∈M a generic model function selected at the node t ;

Start from root node.

• while a tree pruning rule does not occur, repeat for each child node
– estimate ms, the best model m ∈ M at the father node t.
– generate by the model ms the prediction rule Ht for new observations.

• Output: Prediction rules set by the class of models M.

Table 2. Prediction modelling algorithm.

• X3: fly ash, kg in a m3 mixture;
• X4: water, kg in a m3 mixture;
• X5: superplasticizer, kg in a m3 mixture;
• X6: coarse aggregate, kg in a m3 mixture;
• X7: fine aggregate, kg in a m3 mixture;
• X8: age, day (1 - 365);
• Response variable: concrete compressive strength, MPa.

Once the optimal tree was built, response variable was iteratively re-coded
in a binary one with respect to the node in which its values fallen down.
Starting form root node, values of the response variable were re-coded as 0
if they fallen down child node 2 (the left one) and as 1 otherwise (the right
one); considering node 2, response variable values were re-coded as 0 if they
fallen down child node 4 (its left child node) and as 1 otherwise; and so on.
Since in building the optimal tree the response variable needs to be sorted,
for each split its lower values are re-coded as 0 as well as its higher values are
re-coded as 1.
The posterior prediction model chosen was the logistic regression model. In
each node the logistic regression was fitted using a backward procedure to
select the predictors to be included in the model. Goodness of fit measure of
the models was the McCullagh and Nelder deviance (McCullagh and Nelder,
1990), which compares the actual model with the saturated one: the higher is
the p-value associated to this statistics, the better is the model because the
null hypothesis concerns the difference between the saturated and the actual
model. Figure 1 shows the resulting tree, as well as table 3 shows the detailed
output. The numbers above nodes indicate node number, whereas under the
nodes the p-value of the model deviance at node is reported.

Table 3 consists of several columns which describe the characteristics of
each node. Columns model coefficients at node show the coefficients of the
logistic regression. As an example, by considering the root node the first
logistic model is the following:



330 Siciliano, R., Aria, M., D’Ambrosio, A.

1

P−value 1

2

P−value 1

3

P−value 0.99965

4

P−value 0.80818

5 6 7

P−value 0.23407

8

P−value 0.14023

9 14

P−value 0.040405

15

P−value 0.025707

16 17

P−value 0.51412

28

P−value 0.28619

29 30 31

34 35 56 57

Fig. 1. Posterior prediction modelling tree.

πY = (1 + exp− (0.0171X1 + 0.0132X2 + 0.0129X3 − 0.0391X4

−0.0015X7 + 0.0341X8))−1

This means that the probability of each observation to belong to class 1
increases when values of X1, X2, X3, X8 variables (Cement, Blast Furnace
Slag, Fly Ash, Age) increases, as well as probability to belong to the same
class decreases when values of both X4 (Water) and X7 (Fine Aggregate)
variables increase. In several non-terminal nodes, the model suggests an in-
teraction among more than one variable which explains the best partition
determined by the tree-growing phase (in fact in all internal nodes except for
the nodes number 15 and 28).
The column named cutting point shows the assignment rule of the logistic
model in terms of probability to belong to either class 0 or class 1. This as-
signment rule works in this way:
Start from the minimum probability value assigned by the model at each
individual at the generic t node.

• assign response class according to the given probability representing the
actual cutting point and compute the relative misclassification ratio;

• increase the cutting point by 0.01, assign response class and compute the
relative misclassification ratio;

• repeat the last step until the cutting point reaches the minimum misclas-
sification ratio.

The column called model error rate shows the misclassification ratio of the
logistic model for each node in predicting the re-coded binary response vari-
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able. As an example, the previously described logistic model in the root node
makes an error of 15.73% in classifying the re-coded response variable. With
few exceptions, the model error rates tend to increase when node size de-
creases. An important remark is that if there is a bad performance of a
model in terms of misclassification ratio in a given node, there is not propa-
gation of this error in the subsequent nodes because the initial tree partition
is optimal in the sense that tree-structure has been built through an optimal
retrospective split.

6 Conclusions

The optimal partition of objects obtained at each node of the tree is achieved
through the retrospective splitting procedure. The model prediction criterion
introduced in this paper tries to confirm this optimal partition with the use
of predictors. Once a class of suitable models is chosen, the risk of an error
propagation through the tree structure is minimum because the models are
independent between them.
Indeed in a CART-like process if the splitting rules do not sufficiently dis-
criminate the partition in terms of the response variable, this lack of discrim-
ination can be updated in the overall tree-based structure. An advantage of
this procedure is that if within a given node a model does not work in the
best way, in any case the subsequent partition is the optimal one because it
is not governed by predictors.
In addiction, the posterior prediction modelling criterion considers interac-
tions among more variables in a given node whereas CART-like procedure
considers only one variable at turn in determining the partition.

Acknowledgements: Financial support from MIUR of Italy and from Eu-
ropean FP6 Project iWebCare IST-4-02-8055 (Scientific Responsible: Prof.
Roberta Siciliano).
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Node Model coefficients at node Deviance Cutting Parent Model Node
Number intercept positive negative p-value point node error size

coefficient coefficient rate
— β1 = 0.0171 β4 = −0.0391

1 β2 = 0.0132 β7 = −0.0015 1.0000 0.3059 root node 0.1573 1030
β3 = 0.0129
β8 = 0.0341

β0 = −43.0641 β1 = 0.0483
β2 = 0.0385

2 β3 = 0.0392 — 1.0000 0.4513 1 0.1252 583
β6 = 0.0093
β7 = 0.00184
β8 = 0.1839

β0 = −65.5352 β1 = 0.0588
β2 = 0.0471

4 β3 = 0.0428 — 0.8082 0.4542 2 0.1941 237
β6 = 0.0209
β7 = 0.0304
β8 = 0.2235

8 — β1 = 0.0165 β4 = −0.0195 0.1402 0.4293 4 0.2523 107
β8 = 0.0951

β0 = 89.1956 β1 = 0.0171 β4 = −0.2168
17 β6 = −0.0245 0.5141 0.4798 8 0.1846 65

β7 = −0.0340
β0 = −23.7535 β1 = 0.0276 β4 = −0.0379

β2 = 0.0281
3 β3 = 0.0282 0.9996 0.6508 1 0.1655 447

β6 = 0.0089
β7 = 0.0090
β8 = 0.0146
β1 = 0.0219 β4 = −0.0739

7 — β2 = 0.0315 β5 = −0.1501 0.2341 0.5620 3 0.2252 151
β3 = 0.0223
β8 = 0.0144
β1 = 0.0061 β4 = −0.446

14 — β2 = 0.0072 β5 = −0.1790 0.0404 0.4279 7 0.3000 90
β7 = 0.0080

28 — — β4 = −0.0071 0.2862 0.2665 14 0.2549 51
15 — — β4 = −0.0019 0.0257 0.4107 7 0.5574 61
5 Tn, ŷ = 30.2373 — — — — 2 — 346
9 Tn, ŷ = 18.4120 — — — — 4 — 130
34 Tn, ŷ = 11.2834 — — — — 17 — 27
35 Tn, ŷ = 13.3061 — — — — 17 — 38
16 Tn, ŷ = 7.7974 — — — — 8 — 42
6 Tn, ŷ = 44.5802 — — — — 3 — 296
29 Tn, ŷ = 62.0715 — — — — 14 — 39
30 Tn, ŷ = 68.5765 — — — — 15 — 35
31 Tn, ŷ = 77.0979 — — — — 15 — 26
56 Tn, ŷ = 55.8595 — — — — 28 — 39
57 Tn, ŷ = 58.2646 — — — — 28 — 12

Tn = Terminal node

Table 3. Posterior prediction modelling tree: main results.
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COMPSTAT 2002 Proceedings in Computational Statistics, Physica-Verlag,
Heidelberg, pag. 213-218.

CAPPELLI, C., MOLA, F., and SICILIANO, R. (2002). A Statistical Approach to
Growing a Reliable Honest Tree, Computational Statistics and Data Analysis,
38, 285-299.

CIAMPI, A. (1991). Generalized Regression Trees. Computational Statistics and
Data Analysis 12, 57-78.

CIAMPI, A., NEGASSA, A., LOU, Z. (1995) Tree-structured prediction for cen-
sored survival data and the Cox model. Journal of Clinical Epidemiology 48(5),
675-689.

CONVERSANO C., and CAPPELLI C., (2002). Missing Data Incremental Impu-
tation through Tree Based Methods, in Härdle W. et al. (eds.), Proceedings in
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Abstract. Model selection is a difficult task for which it is often profitable to take
into account the modeller point of view. Hidden structure models are a good exam-
ple for which this point of view can be dealt with in a simple way. In the model-based
clustering context, we present model selection criteria focussing on the clustering
purpose. Their rationale and theoretical features are given and their practical be-
havior in comparison with classical penalized likelihood criteria is discussed from
numerical experiments.
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1 Selection of hidden structure models

Standard model selection criteria as AIC or BIC implicitly assume that the
sampling distribution is belonging to, at least, one of the models in com-
petition (see for instance Burnham and Anderson 1998). This assumption is
most often unrealistic and can lead to underpenalize complex models. Taking
into account the modelling purpose can counter efficiently this tendency. This
point of view is much sensible for hidden structure models. In this setting,
discovering the hidden structure is often of primary interest for the user to
derive a reliable clustering of his data set. In this article, we present model
selection criteria aiming at favoring models for which the ratio ”observed
information/complete information” is small.

In hidden structure models, complete data x = (x1, . . . ,xn) take the
form xi = (yi, zi), yi being the observed data for unit i and zi being a
hidden state in {1, . . . ,K}. Denoting respectively p(x|θ) and p(y|θ) the pa-
rameterized density of complete data and observed data y = (y1, . . . ,yn)
and z = (z1, . . . , zn) the vector of missing labels, we get

p(x|θ) = p(y|θ)p(z|y, θ) (1)

and
p(y|θ) =

∑

z

p(y|z, θ)p(z|θ). (2)
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Finite mixture models, hidden Markov chains models, competing risk mod-
els are examples of hidden structure models (cf. McLachlan and Peel, 2000,
Cappé, Moulines and Ryden, 2005, and Crowder, 2001). An important issue
when using such models is to choose an appropriate number K of labels.
In that purpose, when focussing on a good estimation of the density of the
observed data, standard penalized likelihood criteria such as BIC can be
recommended (Schwarz 1978). But, when the purpose is to get the ”best”
clustering of the observed data, it is highly desirable to take this focus into
account to design a relevant model selection criterion.

The aim of this paper is to present such criteria and discuss their interest.
To be more specific, we concentrate the presentation on finite mixture models
used in the model-based clustering context.

Model-based clustering (MBC) consists of assuming that the observed
data y = (y1, . . . ,yn) in Rnd arise from a mixture

p(yi | K, θK) =
K∑

k=1

pkφ(yi | ak)

where the pk’s are the mixing proportions (0 < pk < 1 for all k = 1, . . . ,K
and

∑
k pk = 1) φ(. | ak) denotes a parameterized density (often the d-

dimensional Gaussian density) with parameter ak, and the vector parameter
to be estimated is θK = (p1, . . . , pK , a1, . . . ,aK). A mixture model involves
missing label data z = (z1, . . . , zn) where the z′is are binary vectors with
zik = 1 if and only if yi arises from component k. Those indicator vectors
define a partition P = (P1, . . . , PK) of data y with Pk = {yi | zik = 1}.

2 The integrated complete likelihood criterion

Two likelihoods can be defined with finite mixture models. The observed
loglikelihood of θ = (p1, . . . , pK , a1, . . . ,aK) is

L(K) =
n∑

i=1

log

[
K∑

k=1

pkφ(yi | ak)

]
.

The complete loglikelihood of θ for the complete sample x is

CL(K) =
n∑

i=1

K∑

k=1

zik log(pkφ(yi | ak)).

Those loglikelihoods are linked by the following relation (Hathaway 1986)

CL(K) = L(K) − E(K) (3)

where E(K) = −
K∑

k=1

n∑

i=1

zik log tik ≥ 0,
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tik =
pkφ(yi | ak)

∑K
j=1 pjφ(yi | aj)

being the conditional probability that yi arises from component k.
In a Bayesian perspective, a classical way for choosing a model is to select

the model maximizing the integrated likelihood,

f(y | K) =
∫

f(y | K, θ)π(θ | K)dθ, (4)

f(y | K, θ) =
n∏

i=1

f(yi | K, θ),

π(θ | K) being a non or weakly informative prior distribution on θ. For n
large enough, formula (4) can be approximated with the BIC criterion (see
for instance Raftery, 1995)

log f(y | K) ≈ log f(y | K, θ̂) − νK

2
logn,

where θ̂ is the maximum likelihood estimate (MLE) of θ derived from y and
νK is the number of free parameters in the model. Simulation experiments
(see Roeder and Wasserman 1997) show that BIC works well when K is to
be chosen in a density estimation purpose.

But when the aim is to choose K to get the mixture giving rise to parti-
tioning data with the greatest evidence, it makes sense to take into account
the conditional distribution of the missing labels which define a fuzzy classi-
fication matrix: t = ({tik}, i = 1, . . . , n; k = 1, . . . ,K). As shown in Biernacki
et al. (2000), the mixture entropy

ENT(K) = −
K∑

k=1

n∑

i=1

tik log tik ≥ 0, (5)

is a measure of the ability of the K-component mixture to provide a relevant
”hard” partition of the data. If the mixture components are well-separated,
the classification matrix t tends to define a partition of (y1, . . . ,yn) and
ENT(K) ≈ 0. But if the mixture components are poorly separated, ENT(K)
has a large value.

The integrated likelihood of the complete data (y, z) is

f(y, z | K) =
∫

f(y, z | K, θ)π(θ | K)dθ.

It can be approximated using a BIC-like approximation (Biernacki et al.,
2000):

log f(y, z | K) ≈ log f(y, z | K, θ̂∗) − νK

2
logn
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with
θ̂∗ = argmax

θ
f(y, z | K, θ).

But z and θ̂∗ are unknown. However, assuming that, for n large enough,θ̂ ≈
θ̂∗, Biernacki et al. (2000) propose, in an empirical way, to replace the missing
data z with ẑ = MAP(θ̂) defined by

ẑik =
{

1 if argmax� ti�(θ̂) = k
0 otherwise.

This leads to the criterion

ICL(K) = log f(y, ẑ | K, θ̂) − νK

2
logn. (6)

¿From formulae (6) and (3), criterion ICL can be interpreted as BIC penalized
by the estimated entropy ENT(K) defined in (5). Because of this additional
entropy term, ICL can be helpful to identify a number of clusters which need
not be the same as the number of mixture components which provides a good
fit of the data. Thus, ICL is expected to provide a stable and reliable estimate
of K for real data sets and also for simulated data sets from mixtures when
the components are not too much overlapping. But ICL, which is not aiming
at discovering the true number of mixture components, can underestimate the
number of components for simulated data arising from mixture with poorly
separated components. In the model-based clustering context, ICL can be
expected to be mode robust than BIC : as a matter of fact, the additional
entropic term ENT(K) in ICL can be regarded as a term counterbalancing
the model mispecification.

3 Minimum contrast estimation and slope heuristic

In the following, Y = (Y1, . . . ,Yn) denotes the random variables, and y =
(y1, . . . ,yn) a realization.

3.1 Minimum contrast estimation

Let s∗ be a target distribution belonging to a universe U , related to the sam-
pling distribution f of (Y1, . . . ,Yn). Minimum constrast estimation consists
of estimating s∗ in a model Sm ⊂ U , Sm belonging to a family of models
{Sm}m∈M, by considering some empirical contrast function γn, depending
on (Y1, . . . ,Yn), such that s ∈ U �−→ E[γn(s)] attains its minimum at
s∗. Examples of standard empirical contrasts are mean squared error and
−loglikelihood of a model. The target in model Sm is sm = argmins∈Sm

E[γn(s)]. It is estimated by

ŝm = arg min
s∈Sm

γn(s).
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In this framework, the oracle model is

m̂(s∗) = arg min
m∈M

EY′
{

EY

[
γY

n (ŝY
′

m )
]
− EY

[
γY

n (s∗)
]}

.

Remark 3. In this formula, γY
n denotes the empirical contrast associated to

Y, and the expectation with respect to Y′, which is supposed to be indepen-
dent from Y, is related to ŝY

′
m . Here, ŝY

′
m = arg mins∈Sm γY′

n (s).

The penalized minimum contrast estimation procedure consists of con-
sidering some proper penalty function pen : M �−→ R+ and choosing m̂
minimizing γn(ŝm)+pen(m) over M. It can be shown that, under regularity
conditions, the criterion to be minimized takes the form

γn(ŝm) + 2Vm,

where Vm is a variance term of the form Vm ≈ βDm, Dm being the number
of free parameters in the model Sm (see Massart, 2007, Section 8.5). With
this approach, it remains to choose the constant β from an heuristic point of
view. . .

In the model-based cluster analysis context, we consider CCL, the condi-
tional expectation of the complete likelihood contrast, rather than the likeli-
hood contrast. As a matter of fact, the approximation made in Biernacki et
al. (2000), θ̂ ≈ θ̂∗ (see page 340), can be misleading. The setting is as follows:
• Y1, . . . ,Yn ∈ R

d are iid random variables with density p,
• U is the set of finite Gaussian mixtures on R

d, and s is denoting the
density of a finite Gaussian mixture,

• The family of models is {Sm}m∈M, with Sm = {p(· ; θm)|θm ∈ Θm} ⊂ U ,
Θm being the set of parameters for model Sm,

• ∀s ∈ U , the empirical contrast is the opposite of the conditional expecta-
tion of the complete loglikelihood

γn(s) = − 1
n

n∑

i=1

log s(yi) + ENT(y1, . . . ,yn; s),

where ENT(y1, . . . ,yn; s) = −
n∑

i=1

∑

k∈s

tki (s) log tki (s)

with tki (s) = Ps[Yi arose from component k of mixture s |yi]

Thus, in model Sm, ŝm = p(· ; θ̂MccLE
m ), θ̂MccLE

m minimizing in Sm:

−CCL(θm) = − 1
n

n∑

i=1

logp(yi ; θm) + ENT(y1, . . . ,yn; θm).

The model selection criterion to be minimized is then

− 1
n

n∑

i=1

logp(yi ; θ̂MccLE
m ) + ENT(y1, . . . ,yn; θ̂MccLE

m ) + 2βDm,

β being a constant to be chosen.
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3.2 Slope heuristic

The constant β has to be chosen in a heuristic way. The slope heuristic is
directly deduced from the form of the model selection criterion to be designed.
In good settings, the bias

E[γn(sm)] − E[γn(s�)]

is expected to be constant –if not null– for models with high complexities.
Therefore the empirical constrast is expected to behave linearly with respect
to the number of parameters for those models. Then, the heuristic consists
of choosing β to be the slope of the linear part of the empirical contrast as
illustrated in Figure 1.
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Fig. 1. Calibration of the slope.

In practice, this slope is computed in the following way: The maximum
values of CCL for K = 1, . . . ,Kmax are computed. Then, for i = 1, . . . ,Kmax−
1, a slope βi is derived from a linear regression on the values maxCCL for
{i, . . . ,Kmax}. The idea is to choose β = βi0 , where i0 is the index from which
the sequence (βi) becomes stable. In the following applications, the choice of
i0 such that |βi0+1 − βi0 | < 2 mini |βi+1 − βi| works well.

Remark 4. On the graph of the complete loglikelihood at its maxima, the
emergence of a linear part when the numbers of components increases con-
firms that the heuristic can be applied (Massart 2007). Nevertheless, because
of possible numerical difficulties (spurious or unsensible maxima), some points
out of this linear part could appear. In such a case, using a robust linear re-
gression method (see Rousseuw and Leroy 2003) instead of standard linear
regression is recommended.
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3.3 Computing MccLE

Computing the MLE for a Gaussian mixture is usually done with the EM al-
gorithm. Computing the parameter value maximizing CCL is more difficult.
However, it is possible to adapt the EM algorithm along the lines described in
Lange (1999, chapter 12) to obtain a Bayesian version of EM to compute the
maximum CCL estimator (MccLE) for a Gaussian mixture model Sm. The it-
eration � of the adapted EM algorithm is as follows (the m index is omitted):

• E step: Compute Eθ	 [CCL(θ)|y] = L(θ) +
∑n

i=1

∑K
k=1 tki (θ�) log tki (θ).

• M step: Maximize Eθ	 [CCL(θ)|y] − ENT(y; s(·; θ))

θ�+1 = arg max
θ∈Sm

{
L(θ) +

n∑

i=1

K∑

k=1

tki (θ�) log tki (θ) − ENT(y; s(·; θ))
}

= arg max
θ∈Sm

{
L(θ) +

n∑

i=1

K∑

k=1

(tki (θ�) + tki (θ)) log tki (θ)

}

︸ ︷︷ ︸
A(θ)

.

The difference with EM lies in the M step: the M step for mixtures is an
easy step with EM. But maximizing the conditional expectation of the com-
plete loglikelihod, the M step needs to call a gradient-maximization program.
Gradient optimisation could be applied directly on the conditional expecta-
tion of the complete loglikelihood, but the adapted EM algorithm improves
the performances. Moreover, it can be expected to do the job because of the
following result:
Proposition 2 (Adapted EM algorithm).
If

A(θ�+1) > A(θ�) (see M step),
Then

CCL(θ�+1) < CCL(θ�).

Proof. From the M step

L(θ�+1) +
∑n

i=1

∑K
k=1 (tki (θ�) + tki (θ�+1)) log tki (θ�+1) >

L(θ�) +
n∑

i=1

K∑

k=1

(tki (θ�) + tki (θ�)) log tki (θ�).

Then, denoting

ENT(y1, . . . ,yn; θ) = −
n∑

i=1

K∑

k=1

tki (θ) log tki (θ),

we have



344 Baudry, J.-P., Celeux, G. and Marin, J.-M.

L(θ�+1) − ENT(y; θ�+1) > L(θ�) − ENT(y; θ�) +
n∑

i=1

K∑

k=1

tki (θ�) log
tki (θ�)

tki (θ�+1)
.

But
∑n

i=1

∑K
k=1 tki (θ�) log tk

i (θ	)

tk
i (θ	+1)

=
∑n

i=1 dKL(ti(θ�), ti(θ�+1)). Kullback-Lei-
bler distances between probability distributions being non-negative quanti-
ties, the proposition is proved. (

Another difficulty to be discussed is the initialization step: we suggest the
following strategy, which works well in our experiments:

• Run the adapted EM algorithm a lot of times with a few iterations from
random initial positions.

• Choose the solution for which the complete loglikelihood is the largest,
to initialize the adapted EM algorithm with a large number of iterations.

4 Numerical comparisons

The two model selection criteria presented in Section 2 and 3 are compared
with BIC on Monte Carlo numerical experiments in an illustrative purpose.
Two different simulated mixture models are considered.

4.1 Experiments with overlapping clusters

A four-component Gaussian mixture model depicted in Figures 2 and 3 has
been simulated with a sample size n = 200. The experiments have been re-
peated 100 times. A diagonal Gaussian mixture model has been fitted with
the EM algorithm, the Table 1 provides the frequencies of the resulting num-
ber of components K with criteria BIC, ICL and MccLE (slope heuristic)
among 100 experiences.

K 2 3 4 5 6 7 8

BIC 0 11 87 2 0 0 0

ICL 0 98 2 0 0 0 0

Slope heuristic (MccLE) 2 79 8 8 3 0 0

Table 1. Frequencies of resulting number of components for each criterion.

The true distribution of the data belongs to the model with four compo-
nents. BIC does its job: it mostly selects the true number of components, and
achieves good performances in a density estimation purpose. At the opposite,
ICL mostly selects three components. It corresponds to the three clusters ap-
pearing in this data set: ICL behaves as expected. The slope heuristic for
MccLE behaves analogously, but is not as good as ICL. It might be the
consequence of optimisation difficulties.
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Typical solutions on an example of 200 simulated observations (overlapping case):
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Fig. 2. BIC.
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Fig. 3. ICL and slope heuristic (MccLE).
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Fig. 4. A few examples of linear parts of the empirical contrast.

4.2 Experiments with biased models

Data arise from a four component Gaussian mixture whose covariance ma-
trices are not diagonal: see Figures 5 or 6. But the fitted models are diagonal
Gaussian mixture models.

Since the sampling distribution does not belong to considered models, BIC
has a strong tendency to overestimate the complexity of the model because
it is aiming at discovering the true distribution. On the contrary, ICL, taking
into account the entropy, tends to select the right number of clusters. Here,
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K 3 4 5 6 7 8

BIC 0 16 37 28 14 5

ICL 0 49 41 5 3 2

Slope heuristic (MccLE) 0 81 17 2 0 0

Table 2. Frequencies of resulting number of components for each criterion.

’Typical’ solutions on an example of 200 simulated observations (biased case):
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Fig. 5. BIC.
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Fig. 6. ICL and slope heuristic (MccLE).

the slope heuristic has the best behavior in a clustering purpose, as it mostly
selects the four clusters solution. See Table 2.

4.3 Experiments with a disturbing component

Data arise from a Gaussian mixture with three big components and a smaller
disturbing component with a small proportion and attached to one of them.
See Figure 7. We fitted diagonal mixture models to this data set.

K 3 4 5 6 7 8

BIC 42 57 0 0 0 1

ICL 93 7 0 0 0 0

Slope heuristic (MccLE) 78 17 4 1 0 0

Table 3. Frequencies of resulting number of components for each criterion.

All criteria have a satisfactory behavior: BIC hesitates between three and
four components, ICL clearly points out three clusters and SH(MccLE) has an
intermediate position between BIC and ICL. It expresses well that the oracle
achieves close values for three and four components (results not reported
here).



Selecting Focused Models 347

’Typical’ solutions on an example of 200 simulated observations (biased case):
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Fig. 7. BIC.
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Fig. 8. ICL and slope heuristic (MccLE).

5 Discussion

We have exhibited two promising criteria, ICL and SH(MccLE) (Slope Heuris-
tic on the conditional expectation of the complete likelihood) to assess the
number of clusters in a model-based clustering framework. ICL is a BIC-like
criterion, designed on a heuristic ground. The framework in which SH(MccLE)
has been designed, namely penalized model selection for contrast minimiza-
tion, seems to be more convenient in the purpose of a theoretical study. From
a practical point of view, both criteria seem to behave analogously. Neverthe-
less, ICL is much easier to compute and, up to now, computing SH(MccLE)
can involve numerical difficulties. On the basis of our experience, we claim
that when the deviation of the model family from the true distribution is
negligible, ICL should be preferred to SH(MccLE). But when the bias is neg-
ligible for no model, SH(MccLE) should be preferred to ICL. And in the real
world, all models are wrong, therefore SH(MccLE) could be expected to be
useful...

References

BIERNACKI C., CELEUX, G. and GOVAERT, G. (2000): Assessing a mixture
model for clustering with the integrated complete likelihood. IEEE Trans. on
PAMI 22, 719-725.

BURNHAM, K.P. and ANDERSON, D.R. (1998): Model selection and inference.
Springer-Verlag, New York.
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Abstract. A strategy is proposed for finding the most significant linear regression
submodel for fat-structure data, that is when the number of variables n exceeds
the number of available observations m. The method consists of two stages. First,
a heuristic is employed to preselect a number of variables nS such that nS ≤ m.
The second stage performs an exhaustive search on the reduced list of variables. It
employs a regression tree structure that generates all possible subset models. Non-
optimal subtrees are pruned using a branch-and-bound device. Cross validation
experiments on a real biomedical dataset are presented and analyzed.

Keywords: regression tree, branch-and-bound, model selection, fat-structure
data

1 Introduction

An important problem in statistical modeling is that of computing the best-
subset regression models or, equivalently, finding the best regression equation
(Hastie et al. (2001)). Given a list of possible variables to be included in
the regression model, the aim is to identify a subset that optimizes some
statistical criterion. Most of the criteria used to evaluate the subsets rely on
the residual sum of squares (Searle (1971), Sen and Srivastava (1990)). In
the case of the standard regression model with n parameters there are 2n − 1
possible submodels that have to be evaluated and compared.

Forward, backward and stepwise procedures based on adding and/or delet-
ing variables with respect to specific criteria can be employed in regression
subset selection. However, these methods search few combinations of variables
and rarely succeed in finding the best model (Hocking (1976), Seber (1977)).
More enhanced procedures include ridge regression, the non-negative gar-
rote, the least angle regression and the least shrinkage and selection operator
(Breiman (1995), Efron et al. (2004), Fan and Li (2001), Tibshirani (1996)).
These methods employ a form of automatic variable selection and shrinkage
with the aim of identifying a parsimonious submodel that has good predic-
tion ability. Another common approach to subset selection is the exhaustive
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computation of the best-subset regression models. This can be achieved by
enumerating and evaluating all possible submodels (Edwards and Havranek
(1987), Hocking (1983), Miller (2002), Sen and Srivastava (1990), Gatu and
Kontoghiorghes (2006a)). The restriction of this approach is that the number
of variables to choose from should not be too large. The advantage of such
an exhaustive search is that it is guaranteed to yield the optimum solution.

Here, the special case where the number of variables exceeds the number
of available observations (hereafter called fat-structure data), is considered.
A two step optimization strategy is proposed. This combines the heuristic
approach and the exhaustive search aiming at saving computational time
and obtaining quality solutions, respectively.

The structure of the paper is as follows. In the next section the biomedical
data motivating the work is described. Section 3 gives pointers to a previously
introduced exhaustive search method for subset selection. It is based on a
regression tree structure and employs a branch-and-bound device. The new
strategy for subset selection for fat-structure data is described in Section 4
together with a cross validation procedure for choosing the best submodels.
Experiments on the biomedical data are presented and analyzed in Section 5.
Finally, Section 6 provides conclusions.

2 Biomedical data

The dataset used in this paper was generated using a mass spectrometry
based lipidomics platform (Orešič et al. (2006)), applied to adipose tissue
biopsies of 44 subjects with varying degrees of obesity, and the correspond-
ing Body Mass Index (BMI). The BMI is defined as the individual’s body
weight divided by the square of their height. The formulas universally used
in medicine produce a unit of measure of kg/m2. The BMI provides a simple
numeric measure of a person’s ”fatness” or ”thinness”, allowing health pro-
fessionals to discuss over- and under-weight problems more objectively with
their patients.

A total of 333 lipid metabolites were detected using the UPLC/MS lipido-
mics platform. Raw data was processed using MZmine v0.60 software (Kata-
jamaa et al. (2006)), and the lipids were identified using an internal library as
previously described (Yetukuri et al. (2007)). Thus, the design of the study
enables the investigation of the changes in the adipose tissue lipid profile in
the context of other clinical variables (e.g., BMI). The regression analysis
may therefore reveal which variables (i.e., lipids) best describe the observed
changes in clinical variables associated with obesity. Inferences on potential
biological mechanisms associated with changes in clinical variables can be
made by knowing the lipid changes and their identities.
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3 Exhaustive methods for regression subset selection

Consider the standard regression model

y = Xβ + ε, ε ∼ (0, σ2Im), (1)

where y ∈ �m is the dependent variable vector, X ∈ �m×n is the exogenous
data matrix, β ∈ �n is the coefficient vector and ε ∈ �n is the noise vector.
The columns of X correspond to the exogenous variables V = {v1, . . . , vn}.
A submodel S of (1) comprises some of the variables in V . The problem of
finding the best-subset regression model can be formulated as optimizing a
statistical criterion which is a function of the residual sum of squares and
the dimensions of the model. This is equivalent in finding the best submodels
corresponding to each model size, i.e., in computing

argmin
S⊆V

RSS(S) subject to |S| = k, for k = 1, . . . , n, (2)

where RSS(S) denotes the residual sum of squares of the submodel comprising
only the variables in S.

One approach in solving (2) is the straight-forward method of generating
all 2n −1 possible submodels (Hocking (1976), LaMotte and Hocking (1970),
Miller (1984)). As n increases the number of submodels to be computed
increases exponentially. The dropping columns algorithm (DCA) derives all
submodels by generating a regression tree (Clarke (1981), Smith and Bremner
(1989), Gatu and Kontoghiorghes (2003)). The parallelization of the DCA
moderately improves its practical value (Gatu and Kontoghiorghes (2003)).

A computationally efficient branch-and-bound algorithm (BBA) has been
devised (Gatu and Kontoghiorghes (2006a), Gatu et al. (2007), Hofmann et
al. (2007)). The BBA provides the solution of (2) and avoids the computation
of the whole regression tree generated by the DCA. Specifically, it employs
a cutting test to prune non-optimal subtrees when searching for the best
submodels. The algorithm was built on the fundamental property

if S1 ⊆ S2 then RSS(S1) ≥ RSS(S2). (3)

That is, deleting variables from a regression increases the residual sum of
squares of the resulting submodel (Gatu and Kontoghiorghes (2006a)). The
BBA-1 which is an improved version of the BBA, preorders the n variables
according to their strength in the root node, i.e. prior the generation of
the DCA regression tree. The ith and jth variables are sorted such that
RSS(V−i) ≥ RSS(V−j) for each 1 ≤ i ≤ j ≤ n, where V−i is the set V
from which the ith variable has been deleted. The BBA-1 has been shown
to outperform computationally the previously introduced leaps-and-bounds
algorithm (Furnival and Wilson (1974), Gatu and Kontoghiorghes (2006a),
Hofmann et al. (2007)).



352 Gatu, C., Sysi-Aho, M. and Orešič, M.

The BBA-1 will be used in the subsequent to perform exhaustive subset
selection and will be referred to as best-subset search. Details on the BBA and
the BBA-1 can be found in Gatu and Kontoghiorghes (2006a) and Hofmann
et al. (2007).

4 New heuristic strategy for subset selection

The particular constraint considered here is the fat structure. Specifically, the
data contains measurements on 333 variables (lipid metabolites), from which
part of them (173) are discarded based on biological arguments. Still, 160
variables remain to be investigated while only 44 observations are available.

Here, a two-stage procedure that aims to identify the best-subset regres-
sion model is proposed. The aim is to find a good quality solution in a reason-
able computing time. The first stage reduces the number of variables in the
original set. Specifically, it employs a heuristic algorithm to select nS ≤ m
most promising variables out of n. The heuristic could be a know method
such as forward, backward, stepwise, least angle regression, etc., or a new
purposely designed procedure. The main constraint in choosing the heuris-
tic is the available computing time. The selected variables are used in the
second stage to perform an exhaustive best-subset search. The procedure is
summarized in Algorithm 1.

Algorithm 1. Subset regression selection for fat-structure data

1: procedure select( y, X , nS )
2: Use a heuristic to preselect nS variables VS ⊆ V .
3: Build XS with the columns from X that correspond to VS .
4: Perform best-subset search on the model (y,XS).
5: end procedure

The input of the “select” procedure is the original data of form (y,X)
and nS , the number of variables to be preselected by the heuristic. The latter
is performed in line 2 of Algorithm 1. Once the set of the most promising
variables VS are preselected a new submodel (y,XS) is built. The matrix
XS contains the columns of X that corresponds to the elements of VS . The
best-subset search is performed on (y,XS) in line 4 of Algorithm 1 by calling
BBA-1 (Gatu and Kontoghiorghes (2006a)). The output of the procedure is
a list containing the best submodels found for each model size from 1 to nS ,
i.e., the solution of problem (2), where now n = nS and V = VS .

It is important to know how well a selected model does generalize to new
data. Since the number of variables (160) is much larger than the number of
observations (44), it is possible to select a linear model that perfectly fits to
the sample, giving zero training error. That is, the residual error from the
observations into which the model is fitted. However, the model with zero
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training error is over-fitted to the training data and will typically general-
ize poorly. In general, if the complexity of the model is increased then its
bias decreases and its variance increases. One widely used measure for the
generalization error is

ERR = E
[ m∑

i=1

(
yi − f(Xi)

)2
]
, (4)

where method f is applied to an independent test sample from the joint
distribution of y and X .

The generalization error provides a convenient criterion for comparing
different models, even if they do not belong to the same functional class. If
the generalization error of model f1 is smaller than that of the model f2,
then it is clear that one should prefer using model f1 for prediction purposes.
Thus, it is reasonable for the model selection to search the minimum of the
generalization error.

In practice, a major challenge with the use of generalization error is the
difficulty of its estimation. Several methods have been proposed for this pur-
pose (Hastie et al. (2001)), but probably the simplest and most widely used
method for estimating prediction error is cross-validation (CV). This method
directly estimates the generalization error (4). In cross-validation, part of the
data is used to fit the model and a different part is used to test the fitted
model. The selection of the training and testing data can be implemented in
several ways. Random subset selection of the observations have been used in
order to modulate the effect of chance on affecting the estimate. Specifically,
from the m available observations, the m1 are randomly selected for training
and the remaining m−m1 are used for testing. This random selection is then
repeated T times and can be written as

(y X) ≡
(
y
(i)
1 X

(i)
1

y
(i)
2 X

(i)
2

)
m1

m−m1
, where i = 1, · · · , T. (5)

The estimated generalization error is then computed by

CV(k) =
1
T

T∑

i=1

(
y
(i)
2 − f

(i)
k (X(i)

2 )
)T (

y
(i)
2 − f

(i)
k (X(i)

2 )
)
, (6)

where k = 1, · · · ,m1 indexes the model size and f
(i)
k denotes the best sub-

model of size k found in the ith step of the CV procedure. Algorithm 2
summarizes this method.

Algorithm 2. Cross-validation procedure for subset selection

1: procedure cv( y, X , T , m1 )
2: for i = 1, · · · , T do
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3: Use (5) to select the training and the testing sample.
4: call select( y

(i)
1 , X(i)

1 , m1 ).
5: Store f

(i)
1 , · · · , f (i)

m1 , the best submodels of size 1, · · · ,m1.
6: end for
7: Use (6) to compute CV(k), for k = 1, · · · ,m1.
8: end procedure

5 Experimental results

The algorithms were implemented as C++ shared libraries and subsequently
used in the R statistical software environment (R Development Core Team
(2005)). The GNU compiler collection was used to generate the libraries.
The tests were run on a Pentium-class machine with 1 Gb RAM in a Linux
environment. An intercept term was included in all submodels.

In the cross validation procedure 34 and 10 observations were used as
training and testing data, respectively. The number of runs T was set to 1000.
In the first stage 32 variables out of 160 are preselected using as heuristic the
least angle regression method (Efron et al. (2004)). The best-subset search
is performed on the model which has 32 variables and an intercept. A list of
best submodels of size 1, · · · , 32 is obtained in each of the T runs.

The left-hand side of Figure 1 plots the 1000 run median value of the
sum of squared errors (SSE) computed on the test data when using the best
submodels corresponding to each model size 1, · · · , 32. This is given by the
continuous curve. The dotted curves bound the 0.5 – 0.95 confidence interval.
The plot suggests 2 as optimum model size.
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Fig. 1. The 1000 run median values of the cross validated SSE and R2 for the
(BMI, Adipose Lipidomics) data.
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The right-hand side of Figure 1 plots the 1000 run median value of the
cross validated R2 (CV-R2) for each model size. Its optimum (maximum)
value is one, and can be negative if the submodel obtained using the training
data fits the testing data worst than the model having only an intercept. The
plot indicates that the best submodel has 2, 3 or 4 variables. The simplest
model with 2 variables is retained.

The cross validation procedure outputs a list of 1000 best submodel for the
retained optimum size 2. An important issue arising is the stability of the best
model of size 2 over the runs. Figure 2 shows the 1000 run selection frequencies
for the two variables. In 951 runs the variable 145 has been selected as one of
the variables. As second variable, 30 and 27 have been selected in 480 and 351
runs, respectively. The latter variables are highly correlated and correspond
to similar biological measurements.
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Fig. 2. The 1000 run selection frequencies of the variables of the size 2 best sub-
models for the (BMI, Adipose Lipidomics) data.

Figure 3 plots the values of the observed testing values of the BMI against
the estimated ones, when using the submodels built with the variables (145,
30) and (145, 27). Over the 1000 runs these submodels have been selected
as the best one in 480 and 351 runs, respectively. The median R2 value of
training data and the CV-R2 of the testing data are also displayed.

6 Conclusions

An optimization strategy that aims to identify the best-subset regression
models was proposed. The special case of fat-structure data was considered.
The new approach consists of two stages that combine the heuristic and ex-
haustive search aiming to reduce the computation time and to obtain quality
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Fig. 3. The 1000 runs cross validation fit of the best submodels. The observed
against the estimated values of the testing output variable.

solutions, respectively. In the first stage a heuristic was employed to pre-select
the nS ≤ m variables from the original list. The selected variables depend on
the choice of the heuristic. The second stage — which is the core of the pro-
posed strategy — performs an exhaustive best-subset search on the reduced
list of variables. For this purpose a previously introduced branch-and-bound
algorithm was employed. The algorithm is based on a regression tree strategy
that generates all possible submodels of a given set. During the exhaustive
search, non-optimal subtrees are pruned using a cutting test (Gatu and Kon-
toghiorghes (2006a), Gatu et al. (2007), Hofmann et al. (2007)). The new
strategy outputs a list of best submodels corresponding to each model size
1, · · · , nS .

In order to improve the selected submodels the cross validation method
was employed. In each cross validation run a list of best subset models were
generated. Experiments on real biomedical data showed that highly sparse
submodels with a good prediction accuracy can be identified. The method was
compared on the same data with other established methods such as LASSO,
LARS and ElasticNet (Efron et al. (2004), Hui and Trevor (2005), Tibshirani
(1996)). The same random splits of training and testing data were used in
the cross-validation test. None of these methods obtained a stable solution.
Over the 1000 runs, the obtained submodels were highly dependent on the
data split. Furthermore, for a given split, the submodels had worse fit than
the models obtained by our method.

The proposed strategy promises to be an effective statistical model se-
lection method for fat-structure data, which may replace or complement the
existing methods. Furthermore, it can be extended and adapted to deal with
more complex models such as the general linear, the vector autoregressive
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and seemingly unrelated regression models (Gatu and Kontoghiorghes (2005
and 2006b), Gatu et al. (2008)).
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Abstract. We discuss some computationally efficient procedures for robust vari-
able selection in linear regression. A key component in these procedures is the com-
putation of robust correlations between pairs of variables. We show that the robust
variable selection procedures can easily handle missing data under the assumption
that data are missing completely at random.

Keywords: correlation, missing data, robustness, variable selection

1 Introduction

Variable selection for regression in large data sets with a large number of can-
didate predictors is a challenging task that requires computationally efficient
algorithms. Two issues that often further complicate this task are (i) that
large data sets are often of uneven quality and thus may contain outliers and
other anomalies and (ii) large data sets often contain missing values. Deleting
all observations with missing values (complete-case analysis) can lead to a
huge loss of information in high dimensional data sets. Therefore, good vari-
able selection procedures need to be computationally efficient and robust and
be able to handle missing data such that observations with missing values do
not need to be deleted.

Robust model selection for linear regression so far has mainly focused
on the development of robust selection criteria that can be used to compare
models. See e.g. Ronchetti (1997) for robust versions of the selection criteria
AIC and Cp, respectively. Maronna et al. (2006, p. 151) proposed a robust Fi-
nal Prediction Error (FPE) criterion. Ronchetti, Field, and Blanchard (1997)
proposed robust model selection by cross-validation while Müller and Welsh
(2005) and Salibian-Barrera and Van Aelst (2007) considered robust selec-
tion criteria based on bootstrap procedures. However, most of these papers
do not propose any strategy to select the set of models that are to be com-
pared, and often suggest using the time-consuming all-subsets approach. For
least squares regression, time-efficient techniques for all-subsets selection ex-
ist (see e.g. Furnival and Wilson (1974), Gatu and Kontoghiorghes (2006),
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Hofmann et al. (2007)). However, it does not seem to be straightforward to
extend these techniques beyond least squares.

Two major drawbacks of most robust model selection methods are that
(i) they make variable selection very time consuming, as they require the
calculation of a time demanding robust fit for a large number of submodels
and (ii) they have no way to handle missing values beyond deleting cases
with missing values. To address the first drawback, Khan et al. (2007a,b)
recently proposed computationally efficient procedures for robust variable
selection that can handle a large number d of possible predictors - e.g. several
hundreds of candidate predictors. Note that in such cases a robust fit of the
‘full model’ may not be feasible anymore due to the numerical complexity
of robust estimates when d is very large (e.g. d ≥ 200) or simply because d
exceeds the number of cases, n.

The procedures of Khan et al. (2007a,b) focus on sequencing the candi-
date predictors in order of importance. Standard methods to sequence the
candidate predictors are step-by-step algorithms such as forward (FS) or
stepwise (SW) selection (see, e.g. Weisberg (1985), chap. 8). Note that these
algorithms are agressive in the sense that they include or exclude predictors
completely. Selected variables are included completely as their contribution
is determined by the least squares estimate of their regression coefficient.
This greedy approach may prevent important predictors that are correlated
with predictors already included in the model to enter the model. Efron et al.
(2004) recently proposed Least angle regression (LARS) which is a powerful
and computationally very efficient technique to sequence candidate predictors
that is less agressive than FS or SW. At each step LARS selects the predictor
that has the largest correlation with the current residual. This predictor is
included in the model with the size of its coefficient determined such that the
updated residuals have a correlation with the predictor that is equal to the
maximal correlation between the updated residuals and the not yet selected
predictors. Note that also the coefficients of all other predictors already in
the model are updated such that the correlation of the updated residual and
each predictor in the model is equal to the maximal correlation between the
updated residuals and the not yet selected predictors. At this moment the
next predictor enters the model and all regression coefficients are updated
again. The ’partial’ including of predictors in the model in LARS allows im-
portant predictors correlated with already selected predictors to enter the
model as well if they contribute sufficiently in explaining the response.

The sequencing procedures FS, SW and LARS are all based on classical
correlations among variables. Unfortunately, this makes them extremely sen-
sitive to outliers and thus these procedures yield poor results when the data
are contaminated. These algorithms attempt to select the covariates that will
fit well all the cases (including the outliers), and often fail to select the model
that would have been chosen if those outliers were not present in the data.
Moreover, even if it would be possible to detect outliers beforehand, similar
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as for observations with missing values, aggressive deletion of outliers is not
desirable, because we may end up deleting a lot of observations which are
outliers only with respect to predictors that will not be in the model. There-
fore, Khan et al. (2007a,b) developed robust alternatives to the standard FS,
SW and LARS procedures that yield reliable results if the data are contam-
inated, but at the same time mostly preserve the computational efficiency
of the standard procedures. These procedures are not confined to continuous
predictors but can handle mixtures of continuous and categorical predictors.

Note that in the prediction of future cases, outliers can occur as well.
However, we argue that it is not reasonable to attempt to predict the fu-
ture outliers without knowledge of the underlying mechanism that produces
them. Therefore, our robust algorithms will select important variables in the
presence of outliers, and predict well the future non-outlying cases.

In the next Section we shortly review the key parts of the algorithms for
robust forward (RFS) and stepwise (RSW) selection and robust least angle
regression (RLARS) as developed in Khan et al. (2007a,b). We explain how
missing values can easily be handled with these algorithms under the assump-
tion of data missing completely at random. Section 3 shows the results of a
simulation study to investigate the effect of missing data on the performance
of the algorithms. The conclusions are given in Section 4.

2 Robust variable selection procedures

In Khan et al. (2007a,b) it is shown that, once the data are standardized
using the sample means and sample standard deviations, the FS, SW, and
LARS algorithms can be expressed completely in terms of correlations of the
original variables. This explains why they are very fast to compute but yield
poor results when the data is contaminated. To strengthen the robustness
properties of these procedures without affecting their computational efficiency
too much, Khan et al. (2007a,b) robustly standardized the data and then
replaced the nonrobust sample correlations by robust counterparts.

Note that affine equivariance and regression equivariance are generally
considered to be important properties for (robust) regression estimators.
However, these properties are not required in the context of variable selection,
because we do not consider general linear transformations of the given covari-
ates. The only transformations that should not affect the selection result are
linear transformations of individual variables, i.e., shifts and scale changes.
Hence, variable selection methods such as FS, SW and LARS are based on
correlations among the variables. Therefore, robust variable selection pro-
cedures need to be robust against correlation outliers, that is, outliers that
affect the classical correlation estimates but can not be detected by looking at
the individual variables separately. The RFS, RSW, and RLARS procedures
are based on robust correlation estimates. Hence, they are robust against
correlation outliers and thus suitable for robust variable selection.
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Note that the robust variable selection algorithms RSF, RSW, and RLARS
only handle the problem of “selecting” a list of important predictors, but we
do not yet “fit” the selected model. The final model(s) resulting from the
selection procedure usually contains only a small number of predictors com-
pared to the initial dimension d, when d is large. Therefore, to robustly fit
the final model, we can use a highly robust regression estimator such as an
MM-estimator (Yohai (1987)) that is resistant to all types of outliers. Note
that we always use models with intercept.

To robustly standardize the data, straightforward choices for the mea-
sures of center and scale are the highly robust and rapidly computable median
(med) and median absolute deviation (mad). Note that to avoid singularities,
categorical predictors are standardized using their sample mean and sample
variance. Obtaining good robust estimates of correlation among the variables
is less straightforward. For d-dimensional datasets, robust estimates of corre-
lation are often derived from affine-equivariant, robust estimators of scatter.
However, this is very time-consuming, particularly for large values of d. More-
over, the computation of such robust correlation matrices becomes unstable
when the dimension d is large compared to the sample size n. On the other
hand, only a few of the d covariates are typically included in the final model,
and the computation of the whole d-dimensional correlation matrix at once
will unnecessarily increase the numerical complexity of the otherwise com-
putationally efficient algorithms. Therefore, we resort to robust approaches
that calculate pairwise correlations one at the time. This pairwise approach
for robust correlation estimation is not only computationally suitable and
provides robustness against bivariate correlation outliers, but it is also more
convenient (compared to the full d-dimensional approach) for robust variable
selection because it allows us to compute only the required correlations at
each step of the algorithm.

A computationally efficient, robust estimator of bivariate correlation can
be derived from an affine-equivariant bivariate M-estimator of scatter as de-
fined by Maronna (1976). For robustly standardized data xi = (xi1, xi2)t; i =
1, . . . , n, the bivariate M-estimator of scatter is defined as the solution V of

1
n

∑

i

u2(d2
i )xixt

i = V,

where d2
i = xt

iV
−1xi, and the function u2(t) = min(c/t, 1). The constant c

controls the robustness and efficiency of the M-estimator. Points at distance
from the center (which is zero in our case) larger than c are downweighted.
Therefore, a smaller value of c increases robustness in the sense that obser-
vations are downweighted sooner, but also the efficiency of the estimator is
lower. A larger value of c yields a higher efficiency, but also less robustness
because observations need to be further from the center before they get down-
weighted. Following Khan et al. (2007a), we use c = 9.21, the 99% quantile
of a χ2

2 distribution. The M-estimator of scatter is affine equivariant and has
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breakdown point 1/3 in two dimensions (Maronna (1976)). Note that the
breakdown point is the smallest fraction of contamination that can make the
largest eigenvalue of the scatter estimator arbitrarily large or the smallest
eigenvalue arbitrarily small. The M-estimator of scatter can be calculated
using a standard iteratively reweighted least squares procedure starting from
the identity matrix.

The stepwise procedure (SW) requires stopping rules to determine at each
step of the algorithm whether a variable is added or deleted or the proce-
dure stops. Also in forward selection a stopping rule is often used to decide
how many variables will be selected. In the standard nonrobust procedures
these stopping rules are often based on partial F-statistics and corresponding
critical values of the corresponding F-distribution. Khan et al. (2007a) have
shown that these partial F-statistics can also be completely written in terms
of correlations. Hence, also robust values of these partial F-statistics can be
obtained by using robust correlations in the calculation of these statistics.
Moreover, in Khan et al. (2007a) it is argued that the critical values of the
F-distribution are still reasonable critical values if the robust correlations are
M-estimates of bivariate correlation with c = 9.21. To determine the number
of important predictors when sequencing the variables with the RLARS pro-
cedure, Khan et al. (2007b) have proposed to use a ’learning curve’. Once the
RLARS sequence has been obtained, the successive models (starting from a
model with only one predictor) can be fitted using a robust estimator such
as an MM-estimator. A robust measure of R2 for each of these models can
then be plotted against the size of the model. The size that corresponds with
the point where the curve in this elbow plot levels off can then be used as an
estimate of the number of important predictors.

For very large, high-dimensional data sets, Khan et al (2007b) introduced
an even faster robust pairwise correlation estimator. This correlation estima-
tor uses the principle of bivariate Winsorization, a generalization of the uni-
variate Winsorization as introduced in Huber (1981), see also Alqallaf et al.
(2002). A bivariate Winsorization of robustly standardized bivariate data is
based on an initial robust bivariate correlation matrix R0 and corresponding
tolerance ellipse. The outliers are shrunken to the border of this ellipse by us-
ing the bivariate transformation u = min(

√
c/d(x), 1) x with x = (x1, x2)t.

Here d(x) =
√

xtR−1
0 x is the Mahalanobis distance of x based on the initial

bivariate correlation matrix R0. The tuning constant c again controls the
robustness of the procdure. Khan et al. (2007b) proposed to use c = 5.99,
the 95% quantile of the χ2

2 distribution. Figure 1 illustrates bivariate Win-
sorization. Bivariate Winsorization shrinks the outliers to the boundary of
the ellipse. Correlation outliers are thus appropriately downweighted so that
a robust correlation estimate is obtained. The bivariate Winsorized correla-
tion estimate is the classical correlation estimate obtained from the bivariate
Winsorized data.
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Fig. 1. Bivariate Winsorization tolerance ellipse which connects points of equal
Mahalanobis distance (2.45) based on an initial correlation matrix R0.

Choosing an appropriate initial correlation matrix R0 is a crucial part
of the bivariate Winsorization procedure. Khan et al (2007b) proposed a
new method called adjusted Winsorization. This method applies univariate
Winsorization to each of the two components of the robustly standardized
bivariate data. That is, for each component, the observations x1j , . . . , xnj ,
are transformated to uij = min(max(−c, xij), c); i = 1, . . . , n, and j = 1, 2.
However, two different values of the tuning constant c are used. The four
quadrants relative to the center zero are considered. A larger tuning con-
stant c1 is used to Winsorize the points lying in the two diagonally opposed
quadrants that contain the majority of the data points (called the “major
quadrants”) and a smaller tuning constant c2 is used to Winsorize the re-
maining data (in the “minor quadrants”). Khan et al. (2007b) used c1 = 2
and c2 =

√
hc1, where h = n2/n1 with n1 the number of observations in

the major quadrants and n2 = n − n1. The initial correlation matrix R0 is
obtained by computing the classical correlation matrix of the adjusted Win-
sorized data. For the same data as in Figure 1, Figure 2 shows how adjusted
Winsorization deals with bivariate outliers. The outliers are shrunken to the
boundaries of the squares. By using a smaller tuning constant in the minor
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Fig. 2. Adjusted Winsorization to compute the initial robust correlation estimate
R0 (with c1 = 2 and c2 =

√
hc1). The outlying points are shrunken to the edges or

corners of the squares.

constants, correlation outliers are sufficiently shrunken to obtain a robust
correlation estimate.

If the data set contains missing values, then each robust pairwise correla-
tion can be calculated from all observations that are complete for the variables
under consideration (available-case analysis). This simple approach avoids the
aggressive deletion of all observations with at least one missing component
prior to the analysis. Available-case analysis is a valid approach under the
assumption that the data are missing completely at random (MCAR) which
means that the probability of missingness does not depend on the data (ob-
served nor missing) (Little and Rubin (1987), Little (1992)). Hence, if the
MCAR assumption is reasonable, by applying an available-case analysis we
can avoid a huge loss of information if missing data are scattered throughout
the data set.

To obtain more stable and reliable results the robust sequencing proce-
dures can be combined with bootstrap (see Khan et al. (2007b)). This is
a common approach in machine learning methods such as random forests
(Breiman (2001), see also Hastie et al. (2001)). The bootstrap procedure
works as follows. We generate B bootstrap samples from the original dataset,
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and for each bootstrap sample we sequence the covariates using the robust
sequencing procedure, i.e. RLARS, RFS, or RSW. This produces B sequences
of the candidate predictors. For each covariate we then calculate its average
rank in the B sequences to obtain the bootstrap sequence of the variables.

When dealing with high-dimensional datasets it may not be convenient or
even possible to sequence all the covariates for each bootstrap sample. Note
that the original sample would already be singular if the dimension d of the
data exceeds the sample size. We easily overcome this problem by sequencing
only the first m < n covariates for each bootstrap sample. We then rank
the covariates according to the number of times (out of B) they are actually
sequenced. When ties occur, the order of the covariates is determined by
their average rank in the sequences. The resulting procedures are denoted B-
RLARS, B-RFS, and B-RSW, where the B naturally stands for ’bootstrap’.

3 Simulations

To investigate the behavior of our robust variable sequencing procedures and
the effect of missing values, we consider the simulation setting of Khan et al.
(2007b) which is based on the design of Frank and Friedman (1993). We first
create a linear model

y = L1 + L2 + · · · + Lk + σε,

with k latent variables, where L1, L2, . . . , Lk and ε are independent standard
normal variables. The value of σ is chosen so that the signal to noise ratio is
equal to 3. A set of d candidate predictors is created as follows. Let e1, ..., ed

be independent standard normal variables and let

Xi = Li + τei, i = 1, ..., k
Xk+1 = L1 + δek+1

Xk+2 = L1 + δek+2

Xk+3 = L2 + δek+3

Xk+4 = L2 + δek+3

...
X3k−1 = Lk + δe3k−1

X3k = Lk + δe3k

and Xi = ei i = 3k + 1, ..., d

The constants δ = 5 and τ = 0.3 are chosen so that corr (X1, Xk+1) =
corr (X1, Xk+2) = corr (X2, Xk+3) = · · · = corr (Xk, X3k) = 0.5. Note that
covariates X1, ..., Xk are “low noise” perturbations of the latent variables and
constitute our “target covariates”. Variables X3k+1, ..., Xd are independent
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noise covariates and variables Xk+1, ..., X3k are noise covariates which are
correlated with the target covariates.

To allow for a fraction ε of outliers we considered the following sampling
distributions, listed in increasing order of difficulty:

(1) ε ∼ N (0, 1), no contamination;
(2) ε ∼ (1 − ε)N (0, 1)+ ε N (0, 1) /Uniform(0, 1), symmetric, slash contam-

ination;
(3) ε ∼ (1 − ε)N (0, 1)+ ε N (20, 1), asymmetric, shifted normal contamina-

tion;
(4) same as (2), except that contaminated cases come along with high lever-

age X–values for all 50 candidate predictors (normal random variables
with mean 50 and variance 1 in our simulation);

(5) same as (3), but with high leverage outliers, as described in (4).

We generated 100 independent samples of size n = 150 from the five
simulation designs described above, with k = 6 latent variables and d = 50
candidate covariates and fraction of contamination ε = 10%. For each of
these datasets we sequenced the variables using B-LARS and B-RFS (with-
out stopping rule) using B = 50 bootstrap samples. We sequenced the first
25 predictors for each simulated data set. To study the effect of missing val-
ues on these procedures, we then introduced 10% of missing values (that is,
15 cases) at random in each of the 6 target predictors, as well as in the 12
correlated noise variables. Note that this implies that about 85% of the ob-
servations contains missing values, and thus a complete-case analysis would
not be feasible due to the huge loss of information.

To summarize the simulation results, we determine for each sequence the
number tm of target variables included in the first m sequenced variables,
with m ranging between 1 and 25. Figure 3 shows for each of the sampling
situations the average (over the 100 datasets) of tm for both B-RLARS and
B-RFS and for data without and with missing values.

From Figure 3a we see that in this setting both procedures B-RLARS
and B-RFS are equally effective in selecting the important predictors at the
beginning of the sequence when there is no contamination in the data. More-
over, the large fraction of missing values does not affect the performance of
the procedures. Figures 3b and c show that 10% of contamination in the re-
sponse (symmetric or asymmetric) does not affect much the performance of
B-RLARS. The missing values also do not have much inpact on its perfor-
mance. For symmetric contamination (Figure 3b) B-RFS also performs well,
but its performance is worse with asymmetric contamination (Figure 3c).
Similarly as for B-RLARS, the missing values only have a small impact on
the performance of B-RFS. From Figures 3d and e we see that 10% of leverage
points (symmetric or asymmetric contamination) clearly affects the robust
procedures to some extent. Asymmetric contamination has a larger effect
than symmetric contamination. Note that Khan et al. (2007a,b) have shown
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Fig. 3. Averages of the number of target variables tm versus m for each of the
methods and sampling situations considered. We generated datasets with d = 50
predictors, k = 6 latent variables, and 10% of contamination (ε = 0.1).
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that the effect on the robust procedures is much smaller than on the nonro-
bust selection procedures. Also with high leverage contamination, the effect of
missing values on B-RLARS is small. Surprisingly, the performance of B-RFS
is better for data with missing values than for data without missing values,
the effect being larger for asymmetric leverage points. A possible explanation
may be that with missing values the leverage points affect less the robust cor-
relation estimates because part of the missing data are in the leverage points
(and thus dropped when calculating robust correlations). Moreover the miss-
ing data occurs in the target variables and the correlated noise variables.
Due to the missingness, the correlation estimates among these values might
be lower, leading to a better performance for the greedy forward selection
procedure.

4 Conclusions

We have shown that the robust sequencing procedures RLARS, RFS, and
RSW can easily be extended to handle data with missing values under the
assumption of data missing completely at random. For the design considered
in the simulation study we can conclude that missing values have only a small
effect on the performance of the bootstrapped version of RLARS while boot-
strap RFS showed actually better performance for contaminated data with
missing values than for contaminated data without missing values. Further
research will focus on computationally efficient procedures to handle missing
data in the context of variable selection under the more general assumption of
data missing at random (that is, the missingness may depend on the observed
data for the observation, but not on the missing data).
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Abstract. In this paper we present a model based clustering approach which con-
textually performs dimension reduction and variable selection. In particular we
assume that the data have been generated by a linear factor model with latent
variables modeled as gaussian mixtures (thus obtaining dimension reduction) and
we shrink the factor loadings, resorting to a penalized likelihood method, with an L1
penalty (thus realizing automatic variable selection). We derive an EM algorithm
to obtain the penalized model estimates and a modified BIC criterion to select the
penalization parameter. We evaluate the performance of the proposed method on
simulated data.

Keywords: factor analysis, LASSO, finite Gaussian mixtures

1 Introduction

When a large number of variables is observed on a set of units, with the
goal of detecting clusters of units, it may be extremely unlikely that natural
groupings will exist based on all the attributes. Usually clustering, if it exists,
occurs only within a relatively small unknown subset of variables.

It is well known that most clustering methods are strongly derailed by
the presence of non informative variables.

Model based clustering assumes that the data come from a finite mix-
ture model with each component corresponding to a cluster. For quantitative
data each mixture component is usually modeled as a multivariate gaussian
distribution.

When the number of observed variables is large, it is well known that
gaussian mixture models represent an over-parameterized solution as, be-
sides the mixing weights, it is required to estimate the mean vector and the
variance covariance matrix for each component. This issue has been widely
and variously addressed in the statistical literature.

There has also been an increasing interest in variable selection for model
based clustering, mostly within the Bayesian framework (Liu et al., 2003,
Hoff, 2005), but recently also in the frequentist one (Pan and Shen, 2007).
The idea is to parameterize the mean of the k-th cluster µk = µ + δk, where
µ is the global mean. If some components of δk are 0, then the corresponding
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attributes are non informative to clustering, at least as far as the cluster
location is concerned.

In this paper we address both issues simultaneously by assuming that
the data have been generated by a linear factor model with latent variables
modeled as gaussian mixtures and by shrinking the factor loadings, resorting
to a penalized likelihood method with an L1 penalty.

In the following we first briefly review the standard model based cluster-
ing and present our approach to dimension reduction; afterwards we propose
an implementation with an L1 penalty resulting in soft-thresholding on the
estimated factor loadings and thus realizing automatic variable selection. We
derive an EM algorithm to obtain the penalized model estimates and a mod-
ified BIC criterion to select the penalization parameter. We evaluate the
performance of the proposed method on simulated data.

2 Model based clustering

Let y be a p-dimensional vector of continuous observed variables. According
to the model based approach to clustering the density of y can be modelled
by a mixture of a sufficiently large enough number k of multivariate normal
component distributions each of which corresponds to a unit cluster

f(y; θ) =
k∑

i=1

wiφ(y; µi,Σi), (1)

where the vector θ of unknown parameters consists of the mixing proportions
wi, the component means µi, and the component-covariance matrices Σi and
φ(y; µi,Σi) denotes the p-variate normal density function with mean µi and
covariance matrix Σi.

Banfield and Raftery (1993) proposed a general structure for geomet-
ric cross-cluster constraints by parameterizing covariance matrices through
eigenvalue decomposition in the form

Σi = λiDiAiD�
i , (2)

where Di is the orthogonal matrix of eigenvectors (controlling component
orientation), Ai is a diagonal matrix whose elements are proportional to
the eigenvalues (thus defining shape), and λi is an associated constant of
proportionality (defining the volume). Those parameters could be the same
for each cluster or might be allowed to vary across the different components.

However if p is large relative to the sample size, the recourse to this
decomposition may not be problem-free. A different approach is given by
the so called mixture of factor analyzers which assumes that within each
component the data are generated according to an ordinary factor model,
thus reducing the number of parameters from which the variance covariance
matrices depend (McLachlan et al., 2003).
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2.1 Dimension reduction

In this paper we assume, without loss of generality, that the mean centered
p observed continuous variables have been generated according to the linear
factor model

y = Λz + u. (3)

where z is a r-dimensional vector of latent variables, Λ is the factor loading
matrix and u is a p-dimensional Gaussian term which includes the so called
specific factors with zero mean and diagonal covariance matrix Ψ . We further
assume that the vector of latent variables z can be modeled according to a
finite mixture of multivariate Gaussians

z ∼
k∑

i=1

wiφ
(r)
i (µi,Σi) (4)

where wi are the unknown mixing proportions, φ(r)
i is the r-dimensional Gaus-

sian density with component mean and variance covariance matrix µi and Σi

respectively. The only requirements we impose on the factors are that they
have zero mean and identity covariance matrix, thus the mixture parameters
must satisfy the requirements:

E(z) =
k∑

i=1

wiµi = 0

V ar(z) =
k∑

i=1

wi

(
Σi + µiµ

�
i

)
−

(
k∑

i=1

wiµi

)(
k∑

i=1

wiµi

)�

= Ir

These assumptions mean that the latent variables are centered and un-
correlated but they are mutually dependent, since for non Gaussian random
variables uncorrelatedness does not imply independence. This approach rep-
resents a generalization of the ordinary factor analysis model which is repro-
duced when the number of mixture components is equal to one, k = 1.

It is worth noting that modeling the factors as a multivariate Gaussian
mixture amounts to model the observed variables as a particular multivariate
Gaussian mixture model too:

f(y) =
∫

f(y|z)f(z)dz

=
∫

φ(p)(Λz,Ψ )
k∑

i=1

wiφ
(r)
i (µi,Σi)dz

=
k∑

i=1

wi

∫
φ(p)(Λz,Ψ)φ(r)

i (µi,Σi)dz,
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that is

y ∼
k∑

i=1

wiφ
(p)
i (Λµi,ΛΣiΛ

� + Ψ ) (5)

which allows for heteroscedastic mixture components, sharing the same Λ
and Ψ matrices. From (5) it clearly turns out that the proposed approach
yields a remarkable reduction in the number of free parameters either in the
mean vectors and in the variance covariance matrices.

The log-likelihood of the proposed model is given by

�(θ) =
n∑

h=1

log
k∑

i=1

wiφ
(p)
i (yh; Λµi,ΛΣiΛ

� + Ψ ) (6)

where θ collectively denotes the set of model parameters.

2.2 Variable selection

Within the regression context, variable selection has recently been addressed
through maximum penalized likelihood. In particular the LASSO approach
has turn out to be able to perform a soft thresholding on the estimated
coefficients, thus realizing automatic variable selection (Tibshirani, 1996).
Following this approach we propose a penalized model based clustering within
model (5). Specifically the LASSO penalization is introduced on the factor
loadings. The penalized log likelihood is

Q(θ) = �(θ) − nγ

p∑

j=1

r∑

l=1

|λjl|, (7)

where �(θ) is the log-likelihood of the model and γ is a trade-off parameter
that needs to be properly selected. As pointed out by Fan and Li (2001), the
derivation of penalized maximum likelihood estimates is a challenging task,
due to the fact that the penalization term is not differentiable at λjl = 0.
To overcome this difficulty they propose to locally approximate the penalty
term |λjl| ∀ j, l, by a quadratic function

|λjl| ≈ |λjl0| +
(λ2

jl − λ2
jl0)

2 (|λjl0|)
(8)

for λjl ≈ λjl0. This local quadratic approximation allows the use of a Newton-
Raphson algorithm for maximizing the penalized likelihood in (7). At each
iteration of this algorithm, the value of λjl0 in (8) represents the provisional
estimate of λjl. However the drawback of this choice is that when λjl0 = 0,
the denominator 2 (|λjl0|) makes (8) undefined. In this situation, Fan and
Li (2001) suggest to set the estimate for λjl equal to zero and to stop the
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algorithm when λjl0 is very close to zero. As an alternative to this solu-
tion, Hunter and Li (2005) extend the local quadratic approximation idea by
perturbing expression (8) as follows

pε (λjl) = |λjl0| +
(λ2

jl − λ2
jl0)

2 (ε + |λjl0|)
(9)

for some ε > 0. Then maximum penalized likelihood estimates for the factor
loadings can be obtained by replacing |λjl| in (7) with (9) by resorting to
a minorize-maximize (MM) procedure (see Hunter and Li (2005) for further
details).

2.3 Model selection

The number of factors r, the number of groups k and the value of the penalty
parameter γ can be chosen through an exhaustive search, using model selec-
tion criteria, which take into account both the fit and the complexity of the
model. The fit of the model is measured by the optimal value of the log like-
lihood, while the complexity can be given by the number of free parameters
denoted by v. The presence of a penalty term reduces the number of free pa-
rameters of the factor loading matrix. According to Hunter and Li (2005) and
Khalili and Chen (2007), the effective degrees of freedom of Λ are computed
as follows:

tr
{
[�′′(θ) − nγE(Λ)]−1

�′′(θ)
}

where �′′(θ) contains the second derivatives of the log likelihood function
with respect to λjl, and E(Λ) is a diagonal matrix with elements 1

ε+|λjl|
(with j = 1, . . . , p and l = 1, . . . , r) evaluated at the maximum penalized
estimates.

In the literature, different criteria for combining fit and complexity have
been proposed, each of which has its own advantages and limitations. In
this work we consider the Bayesian Information Criterion (BIC) proposed by
Schwarz (1978), which takes the form

−2�(θ̂) + v logn.

The BIC is one of the most widely used criterion, particularly in the
context of model based clustering (see for example McLachlan and Peel,
2000, Fraley and Raftery, 2002a).

3 Maximum penalized likelihood estimation

In order to derive the maximum penalized likelihood estimates for the pro-
posed model parameters, the penalized likelihood function has to be maxi-
mized but it is clear from expression (6) and (7) that its direct optimization
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with respect the different parameters is intractable. The maximum likelihood
estimation problem can be solved using the EM-algorithm (Dempster et al.,
1977), since the proposed model consists of two layers of missing data and
the complete density of the observed and latent variables can be expressed
in a simplified hierarchical form.

The two layers of missing data are given by the factors, z, and by the so
called allocation variable, which derives from modeling the factor as a mix-
ture of Gaussians. In fact, in finite mixture models a sample of observations
can be viewed as arising from k underlying populations of proportions wi

with i = 1, . . . , k. The so called allocation latent variable, s, is a vector of
dimension k which assumes value equal to 1 if the observation belongs to one
of the k populations and 0 elsewhere. Without loss of generality, we imagine
hereinafter that s(i) = 1 where s(i) denotes the ith element of s.

It is evident that s follows a multinomial distribution

f(s; θ) =
k∏

i=1

ws(i)

i , (10)

and therefore f(s(i) = 1; θ) = wi.
The conditional density of the factors given the allocation variable is

multivariate Gaussian

f(z|s(i) = 1; θ) = φ
(r)
i (µi,Σi). (11)

Given the two layers of latent variables the complete density f(y, z, s; θ)
can be expressed in the hierarchical form:

f(y, z, s; θ) = f(y|z; θ)f(z|s; θ)f(s; θ). (12)

This hierarchical form allows to decompose the complete density as the prod-
uct of three known densities; the first term is a p-dimensional Gaussian
f(y|z) = φ(p)(Λz,Ψ ) as a consequence of the model assumptions and the
other two terms have been reported in (10) and (11).

As the complete density depends on unobservable variables we maximize
its conditional expectation given the observed data, using a fixed set of pa-
rameters, θ′:

arg max
θ

⎧
⎨

⎩Ez,s|y,θ′

[
n∑

h=1

log f (yh, zh, sh|θ)

]
− nγ

p∑

j=1

r∑

l=1

pε (λjl)

⎫
⎬

⎭ .

The EM-algorithm alternates between two steps, the expectation and the
maximization ones, until convergence in Q(θ). In the first step, the so called
E-step, the expected value of the penalized log-likelihood given the observed
data is calculated on the basis of provisional estimates of the parameters,
denoted by θ′. In the second step, the M-step, the expectation of Q(θ) is
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Fig. 1. Factor distribution.

maximized with respect to θ to obtain new provisional estimates. Due to the
presence of the penalty term, a Newton-Raphson procedure has been imple-
mented to derive the factor loading estimates as they can not be expressed
in closed form.

Even if the EM algorithm represents an elegant way to solve the estima-
tion problem for the proposed model, it is well known that it suffers from
some limitations, such as the dependence of the solution upon the starting
values and the possibility of falling into a local optimum. In implementing
the EM algorithm for the proposed model, we considered the ordinary uncon-
strained factor analysis estimates as starting points for Λ and Ψ and multiple
random starting points for the other model parameters.

4 Experimental results: a simulation study

The effectiveness of the proposed penalized model based clustering is evalu-
ated on simulated data. A sample of n = 500 observations is generated from
the noisy mixing process of two factors distributed according to a bivariate
Gaussian mixture with k = 4 components.

In Figure 1 the scatterplot of the two factor scores is displayed. It is
clear from this graph that the 4 groups are jointly well separated. The two
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Fig. 2. Performances of the penalized mixture factor analysis model. The first
graph shows the values of the BIC for estimated models with different levels of
penalty term. The second graph represents the number of correctly classified units
accordingly to the different estimated models.

dependent factors which represent the latent structure of the model have
been linearly mixed by the coefficients of the factor loading matrix reported
in the first two columns of table 1 and a reasonable level of Gaussian noise
is added to the resulting p = 20 variables.

The factor loading coefficients have been chosen in order to identify a set
of 10 relevant variables which are linear combination of the factors and a set
of 10 not relevant variables which are only expression of some Gaussian noise,
according to the assumption on the specific term.

On this data several penalized mixture models have been estimated with
different values of penalty parameter ranging from 0 to 1. The different es-
timated models are then compared by evaluating the BIC criterion with the
effective degrees of freedom of the penalized model. In the first graph of fig-
ure 2 the values of the BIC for estimated models with different values of the
penalty parameter are shown. The curve exhibits its minimum in γ = 0.174,
corresponding to a BIC value of 13625.38. The BIC value for the unrestricted
model is 13767.02. For comparison purposes, we also fitted a 20−dimensional
Gaussian mixture model with k = 4 components by Mclust software (Fraley
and Raftery, 1999, 2002b, 2003). The BIC value for the model selected by
Mclust is 14755.18.
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Table 1. Factor loading coefficients.

True Unrestricted Varimax Penalized
parameters estimates rotation estimates

Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2

y1 0.00 0.50 −0.06 0.46 -0.13 0.45 −0.03 0.45
y2 0.00 −0.40 0.04 −0.43 0.10 −0.42 0.02 −0.42
y3 0.00 0.30 −0.04 0.28 −0.07 0.27 −0.02 0.27
y4 0.40 0.60 0.32 0.61 0.24 0.65 0.35 0.58
y5 -0.70 0.20 −0.72 0.14 −0.73 0.04 −0.70 0.17
y6 0.50 -0.30 0.55 −0.27 0.58 −0.19 0.52 −0.29
y7 0.30 0.00 0.29 0.04 0.28 0.07 0.28 0.00
y8 -0.40 0.00 −0.43 −0.04 −0.42 −0.10 −0.42 0.00
y9 0.70 0.00 0.70 0.05 0.69 0.15 0.69 0.00
y10 -0.50 0.00 −0.50 −0.03 −0.49 −0.09 −0.48 0.00
y11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
y12 0.00 0.00 0.04 0.01 0.04 0.02 0.00 0.00
y13 0.00 0.00 0.04 −0.01 0.04 −0.01 0.00 0.00
y14 0.00 0.00 0.03 0.03 0.03 0.03 0.00 0.00
y15 0.00 0.00 −0.01 −0.02 −0.01 −0.03 0.00 0.00
y16 0.00 0.00 −0.01 0.00 −0.01 0.00 0.00 0.00
y17 0.00 0.00 0.00 0.04 −0.01 0.04 0.00 0.01
y18 0.00 0.00 −0.04 −0.04 −0.03 −0.05 −0.01 0.00
y19 0.00 0.00 −0.04 −0.04 −0.03 −0.04 0.00 0.00
y20 0.00 0.00 −0.04 0.00 −0.04 −0.01 −0.01 0.00

In the second graph the number of correctly classified units is computed
for each estimated model. The BIC based optimal penalized model correctly
classifies 432 units out of the total of 500 observations thus yielding an im-
provement of the classification performance of both the unrestricted mixture
factor analysis (402 units) and the model selected by Mclust (406 units).

In order to be sure that the obtained results are not affected by overfitting,
a second independent dataset has been generated with the same parameter
setting. Units of this dataset have been classified in k = 4 clusters according to
their posterior probabilities computed on the basis of the previously estimated
models. Table 2 shows their confusion matrices. The number of correctly
classified units in this second dataset is equal to 353 in the unrestricted
mixture factor analysis (MFA), 432 in the penalized mixture factor analysis
(PMFA) and 399 in Gaussian mixture model (MCLUST). Again, the BIC
based optimal penalized model yields an improvement of the classification
performance. It is interesting to note that the unrestricted mixture factor
analysis is strongly affected by overfitting, since its classification performance
dramatically worsens on the independent data set.

Columns 3 and 4 of table 1 contain the factor loading estimates of the
unrestricted mixture factor analysis with γ = 0. It is evident from the table
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Table 2. Confusion matrices on a test dataset.

Estimated cluster membership

True cluster MFA PMFA MCLUST
membership 1 2 3 4 1 2 3 4 1 2 3 4

1 38 33 0 1 46 25 0 1 69 3 0 0
2 68 51 13 1 16 105 12 0 48 1 75 9
3 14 0 104 13 0 0 131 0 0 3 25 103
4 2 0 14 148 2 0 12 150 0 152 1 11

that, although the factor loadings of the irrelevant variables are small, in
most cases they are not equal to zero thus not allowing to objectively discard
them. Even a varimax rotation of these coefficient estimates (columns 5 and
6 of table 1) does not solve the selection problem. In the last columns the
factor loading estimates of the penalized model with γ = 0.174 are reported.
In this case the introduction of the penalty term, not only allows to obtain
a better classification of the units, but also leads to a sparse structure of the
factor loading matrix, in which most of the irrelevant variables are correctly
discarded.
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Abstract. In this paper we show how only a few outliers can completely break
down EM-estimation of mixtures of regression models. A simple, yet very effective
way of dealing with this problem, is to use a component where all regression pa-
rameters are fixed to zero to model the background noise. This noise component
can be easily defined for different types of generalized linear models, has a familiar
interpretation as the empty regression model, and is not very sensitive with respect
to its own parameters.
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1 Introduction

Finite mixture models have been used for more than 100 years, but have
seen a real boost in popularity over the last decades due to the tremendous
increase in available computing power. The areas of application of mixture
models range from biology and medicine to physics, economics and marketing.
On the one hand these models can be applied to data where observations
originate from various groups and the group affiliations are not known, and
on the other hand to provide approximations for multi-modal distributions
(Everitt & Hand (1981), Titterington et al (1985); McLachlan & Peel (2000)).

In the 1990s finite mixture models have been extended by mixing standard
linear regression models as well as generalized linear models (Wedel & De-
Sarbo (1995)). An important area of application of mixture models and also
of these extensions are in market segmentation (Wedel & Kamakura (2001)),
where finite mixture models replace more traditional cluster analysis and
cluster-wise regression techniques as state of the art.

For mixtures without a regression part, i.e., model-based clustering, sev-
eral authors have investigated the effect of outliers on parameter estimates,
and how outliers can be treated to get more robust behaviour. A comprehen-
sive theoretical analysis for breakdown points of ML-estimators of location-
scale mixtures can be found in Hennig (2004). Suggested solutions for robus-
tification against outliers include
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1. to add a noise component which is either uniform over the convex hull
of the complete data set (Banfield & Raftery (1993)), or an improper
constant uniform (Hennig & Coretto (2007)),

2. replace Gaussian densities with t-densities (Mclachlan & Peel (2000)),
and

3. trimming observations (Cuesta-Albertos et al (1997)).

In this paper we present a new noise component to model outliers and
show that our approach combines several aspects of the above. In addition,
it can be easily extended to mixtures of regression models and has a natural
interpretation in this context as the null model of no interaction between
predictors and response.

2 Mixtures of GLMs

Consider finite mixture models with K components of form

h(y|x, ψ) =
K∑

k=1

πkf(y|x, θk) (1)

πk ≥ 0,
K∑

k=1

πk = 1

where y is a (possibly multivariate) dependent variable with conditional den-
sity h, x is a vector of independent variables, πk is the prior probability of
component k, θk is the component specific parameter vector for the density
function f , and ψ = (π1, , . . . , πK , θ′1, . . . , θ

′
K)′ is the vector of all parameters.

If f is a univariate normal density with component-specific mean µk(x) =
αk + β′

kx and variance σ2
k, we have θk = (αk, β

′
k, σ

2
k)′ and Equation (1) de-

scribes a mixture of standard linear regression models, also called latent class
regression. If f is a member of the exponential family, we get a mixture of
generalized linear models. For multivariate normal f and x ≡ 1 we get a
mixture of Gaussians without a regression part (model-based clustering).

The posterior probability that observation (x, y) belongs to class j is given
by

P(j|x, y, ψ) =
πjf(y|x, θj)∑
k πkf(y|x, θk)

(2)

The posterior probabilities can be used to segment data by assigning each
observation to the class with maximum posterior probability. In the following
we will refer to f(·|·, θk) as mixture components or classes, and the groups in
the data induced by these components as clusters.

The log-likelihood of a sample of N observations {(x1, y1), . . . , (xN , yN )}
is given by

logL =
N∑

n=1

log h(yn|xn, ψ) =
N∑

n=1

log

(
K∑

k=1

πkf(yn|xn, θk)

)
(3)
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and can usually not be maximized directly. The most popular method for
maximum likelihood estimation of the parameter vector ψ is the iterative
expectation-maximization algorithm (EM, Dempster et al (1977)):

Estimate the posterior class probabilities for each observation

p̂nk = P(k|xn, yn, ψ̂)

using Equation (2) and derive the prior class probabilities as

π̂k =
1
N

N∑

n=1

p̂nk

Maximize the log-likelihood for each component separately using the pos-
terior probabilities as weights

max
θk

N∑

n=1

p̂nk log f(yn|xn, θk) (4)

The E- and M-steps are repeated until the likelihood improvement falls under
a pre-specified threshold or a maximum number of iterations is reached.

Parameter estimates in standard linear models with Gaussian errors and
most other GLMs are rather sensitive to outliers, because the maximum like-
lihood estimate is basically a mean value, which is not a robust statistic. For
mixtures of regression models the problem is even more pronounced, because
the variance is no longer a nuisance parameter, it needs to be estimated to
compute likelihoods and posterior probabilities in each EM iteration.

One solution would be to use robust regression in the M-step, however
this would violate the EM principle as the resulting estimates are no longer
maximum likelihood estimates. Hence, convergence is no longer guaranteed
even for clean data. In addition we run into the problem that robust estimates
ususally themselves are computationally very demanding, we need estimates
for every component in every EM-iteration, and convergence of EM is usually
rather slow. Hence, we would need to compute expensive estimates very often.

3 Modelling background noise

Outliers or background noise can be modeled by adding a noise component
f0 to our mixture model from Equation 1:

h(y|x, ψ) = π0f0(y|x, θ0) +
K∑

k=1

πkf(y|x, θk) (5)

πk ≥ 0,
K∑

k=0

πk = 1
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In the following we will call f0 the noise component, and the remaining com-
ponents for k = 1, . . . ,K the regular components.

Banfield & Raftery (1993) and Hennig & Coretto (2007) use a uniform
distribution for f0, the main difference is that the former estimate the range
of the uniform from the data, while the latter use either an improper uniform
with pre-specified fixed value for the height of the density, or an ML estimate
for the complete mixture including the noise component. Both consider only
the case of model-based clustering, i.e., no regression.

3.1 Gaussian response

For mixtures of regression models there is a natural other candidate for the
noise component, the null model which assumes no relationship between pre-
dictors x and response y. For notational simplicity, consider for the moment
standard linear regression models with Gaussian noise, such that

f(y|x, θk) = φ

(
y − µk(x)

σk

)
= φ

(
y − αk − β′

kx

σk

)

where φ(·) denotes the density of the standard normal distribution. Using a
noise component of form

f0(y|x, θ0) = f0(y|θ0) = φ(
(
y − µ0

σ0

)

means we add a compontent corresponding to an empty regression model of
form y = µ0 + ε.

There are three possible ways to define the noise parameters µ0 and σ0:

NP1: set to fixed values in advance based on expert opinion,
NP2: estimate from data but hold fixed during EM iterations, e.g., to mean

and standard deviation of y, or
NP3: treat f0 as a regular mixture component and estimate its parameters

by EM together with all other parameters of the model.

Obvously NP1 is the most robust variant, because it does not depend on the
data at all. However, our simulations show that NP2 is also very robust, so
we consider only the data-driven solutions NP2 and NP3 for the remainder
of this paper.

Using an empty regression model as noise component has several attrac-
tive features: The noise component has the same functional form as the other
components, so it is particularly easy to implement in software given the rest
of the mixture model, see Section 4. There is also a natural interpretation of
parameter π0, which is the probability that an observation originated from
the empty model. This is closely related to popular statistics of standalone
regression models such as R2 or analysis of variance F , which also compare
a regression model with the empty model.
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The effects of including the noise component can easily be seen by taking
a look at the posterior probabilities (4). If we fix σ2

0 ≡ var(y), then

σ0 ≥ σk, k = 1, . . . ,K

with (approximate) equality only for components where βk ≈ 0, and usually
all σk are smaller than σ0. Hence, the posterior probability of the noise com-
ponent equals the ratio of a normal density with large density to the sum of
several normal densities, see Equation 2.

Figure 1 shows examples for σ0 = 2σ1, σ0 = 4σ1, and σ0 = 8σ1. The
posterior probabilities of the noise component are larger than 0.99 outside the
interval [−4, 4], and larger than 0.9 outside of [−3, 3]. Observations which are
further than 4 standard deviations away from a regular mixture component
have zero weight in the M step in Equation 4 of the EM-procedure.

Choosing a Gaussian noise component rather than a uniform makes no
large difference in which observations are marked as outliers. If σ0 is large
(as intended), then the Gaussian is very flat and over the main part it is
very similar to the uniform. The big advantage is that the support of the
Gaussian is unbounded, although it will become very small outside of, say,
µ0 ± 4σ0. However, the weights used in (4) are ratios of densities (2), and
due to the larger variance the density of the Gaussian noise component will
always be much larger than the densities of the regular components in regions
far away from the center. Thus, we knock out outliers everywhere except for
the main support regions of the regular components. For uniforms, we need to
solve the ill-conditioned estimation problem of the boundaries of the uniform
distribution, see Hennig & Coretto (2007) for a detailed discussion. For the
Gaussians exact estimation of variance is not really critical (a rather unusual
situation!), Figure 1 shows that the value of σ0 has not much influence on
which observations are marked as outliers. Preliminary simulations studies
(not shown here) confirm this bahaviour.

3.2 Other GLMs

The same form of noise component can easily be used in other continous
members of the exponential family, as well as in some discrete distributions
like the Poisson. Due to the limited space of this conference paper we cannot
give full formulas or examples. The basic principle is always to have the
null model with no regression part as noise component, and estimate the
parameters of the noise component from the complete data set.

E.g., an exponential distribution with a large and constant mean value
gives a noise component with a rather flat density on R

+, which downweights
large outliers, similar for the gamma distribution. For Poisson responses one
can use overdispersed quasi-Poisson noise components. It is not so clear how
the concept can be used for GLMs for categorical data (binomial, multino-
mial), but in this case even the definition of “outliers” or “background noise”
is problematic.
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Fig. 1. Posterior probability of the noise component.

4 Software implementation

All simulation results shown below were computed using R (R Develop-
ment Core Team (2007)) extension package flexmix (Leisch (2004), Gruen
& Leisch (2007)). The standard driver for mixtures of GLMs in flexmix
is FLXMRglm. The new extension fixes the first component to be the noise
component, and dispatches to the standard driver for the rest. The current
development version of the software can be obtained from the author upon
request and will be released on CRAN (http://cran.r-project.org) as
part of flexmix later this year.

It allows to estimate the parameters of the noise component either fixed
from the complete data set, in which case only π0 is estimated by maximum
likelihood, or by weighted maximum likelood with weights proportional to the
probability of being a member of the noise component. The latter approach
has the advantage that the null model can be interpreted at par with the
regular components, but is not robust against outliers which are located close
to each other.

5 Artificial example

First we consider a simple example introduced by Leisch (2004) with two
latent classes of size 100 each:
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Fig. 2. A two component mixture regression example. The lines correspond to the
fitted values of a model estimated with the EM algorithm.

Class 1: y = 5x + ε
Class 2: y = 15 + 10x− x2 + ε

with ε ∼ N(0, 9) and prior class probabilities π1 = π2 = 0.5. The data set can
be loaded into R with the command data("NPreg", package="flexmix").
The result of fitting a mixture model of with two quadratic polynomial com-
ponents to the data can be seen in Figure 2.

If we add three outliers on the top left corner to the data set, EM esti-
mation breaks down and gives completely wrong results, see Figure 3. Note
that this is the result with the best likelihood of 20 replications of the EM
algorithm, and not simply a problem of convergence in a local minimum. Es-
timating the model with an additional noise component correctly identifies
the three outliers with posterior probabilities numerically equal to 1. As a
result, estimation of the two regular components is now correct again, see
Figure 4.

Mean and variance of the noise component were fixed to the corresponding
empirical estimates from the response variable. If we have only a few outliers
in the same spot, we cannot reliably estimate the parameters µ0 and σ0

by EM. Another situation is shown in Figure 5, where 20 uniform noise
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Fig. 3. The same data set as in Figure 2 with three outliers. The lines correspond
to the best model found by EM, which is completely broken.

observations have been added on a rectangle that is larger than the original
data range. Again, outliers not located in the main part of the original data
set are correctly identified, and both the linear and the parabolic components
were almost exactly identified. There is now a little bit more curvature in the
fitted model for the linear class, but note that both components have a linear
model with parameter estimates for intercept, x and x2. It is impossible to
distinguish original data points from background noise that is located close
to the original data, so some effect is to be expected.

6 Simulation study

We also conducted several simulation studies to see whether it makes a huge
difference if we estimate the parameters of the noise component by NP2
or NP3 for the case of uniform background noise. We fixed the data set
described above and added 0, 5, 10, . . . , 50 noise observations from a uniform
distribution on [−5, 15]× [−10, 60] in the same way as we did in Figure 5. For
each number of noise points we drew 100 data sets, ran the EM algorithm
5 times on each and kept only the best model to avoid local minima. The
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Fig. 4. The same data set as in Figure 3 using a model with a noise component.
The three outliers are correctly identified.

estimated regression coefficients of the mixture models where then compared
to the true parameter values.

Figure 6 shows boxplots of the Euclidean distance between estimated and
true parameters. Without noise (“zero points added”) EM converged to the
same solution all the time, these values can be used as reference baseline. As
expected, estimation error increases when more and more noise points are
added, but there is no large difference between schemes NP2 and NP3. NP2
seems to be slightly better for fewer outliers, while NP3 is slightly better for
more outliers. There are 2 components with 3 regression coefficents each, i.e.,
a total of 6 coefficients. Estimation errors range between almost zero to a
median of about 7 for 50 noise points. If we divide this by the number of
coefficients, we get an average error of 7/6 ≈ 1.1 per coefficient. This is not
too bad, considering that 20% of the complete data set are noise and the
sample size is not that large.

If we fit a mixture model without noise component, we get a median error
of about 7 if we add only 5 noise points, and a median error of 15 for 10 noise
points. In both cases variation is very large and EM often gets stuck in bad
solutions like Figure 3. For more than 10 noise points EM estimation breaks
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Fig. 5. The same data set as in Figure 2 with 20 outliers distributed uniformly on
[−5, 15]× [−10, 60].
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Fig. 6. Distance between estimated and true parameter values for data sets with
0–50 uniform background noise values.
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completely down and yields only random results with median errors of 45 and
larger. Thus, by using a noise component, we can add 10 times as many noise
points for comparable increase in estimation error. Simulations with other
data sets of different size, dimension and number of mixture components
showed similar results.

7 Outlook

We have successfully applied the proposed methodology in a consulting project
modelling customer satisfaction. The data are surveys of tourists rating Aus-
trian alpine skiing resorts. Each respondent rated dozens of detailed aspects
of the resort (quality of slopes, lifts, restaurants, entertainment, . . . ), the task
was to identify which items had a strong impact on the overall satisfaction.
A global model for all tourists makes no sense, as different subgroups of the
tourist population will have different preferences. For most tourists it can be
assumed, that only few items have a strong impact on overall satisfaction,
the remainder being more or less noise.

We are currently working on a systematic benchmark study to confirm
the findings of our preliminary simulations studies like the one presented
above. This also includes GLMs with other response distributions, which were
only discussed shortly in this paper due to space limitations. Another line of
research is to see how other approaches presented in the literature for model
based-clustering can be adapted to the case of mixtures of regression models.
E.g., it should be rather straightforward to replace the normal distribution
with a t-distribution if the degrees of freedom are fixed in advance.
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Abstract. In this paper, we consider the use of mixtures of linear mixed models to
cluster data which may be correlated and replicated and which may have covariates.
For each cluster, a regression model is adopted to incorporate the covariates, and
the correlation and replication structure in the data are specified by the inclusion of
random effects terms. The procedure is illustrated in its application to the clustering
of gene-expression profiles.
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1 Introduction

Finite mixture models are being commonly used in a wide range of applica-
tions in practice concerning density estimation and clustering. In the 1960s,
the fitting of finite mixture models by maximum likelihood had been stud-
ied in a number of papers, including the seminal papers by Day (1969) and
Wolfe (1965). However, it was the publication of the seminal paper of Demp-
ster et al. (1977) on the EM algorithm that greatly stimulated interest in
the use of finite mixture distributions to model heterogeneous data. This is
because the fitting of mixture models by maximum likelihood is a classic ex-
ample of a problem that is simplified considerably by the EM’s conceptual
unification of maximum likelihood (ML) estimation from data that can be
viewed as being incomplete; see, for example, Ganesalingam and McLach-
lan (1978), McLachlan (1982), McLachlan and Basford (1988), Banfield and
Raftery (1994), Fraley and Raftery (1998, 2002), and McLachlan and Peel
(2000).

We let Y denote a random vector consisting of p feature variables associ-
ated with the random phenomenon of interest. We let y1, . . . , yn denote an
observed random sample of size n on Y . With the finite mixture model-based
approach to density estimation and clustering, the density of Y is modelled
as a mixture of a number (g) of component densities fi(y) in some unknown
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proportions π1, . . . , πg. That is, each data point is taken to be a realization
of the mixture probability density function (p.d.f.),

f(y; Ψ ) =
g∑

i=1

πifi(y), (1)

where the mixing proportions πi are nonnegative and sum to one. In density
estimation, the number of components g can be taken sufficiently large for (1)
to provide an arbitrarily accurate approximation to the underlying density
function. For clustering purposes, each component in the mixture model (1)
corresponds to a cluster. The posterior probability that an observation with
feature vector yj belongs to the ith component of the mixture is given by

τi(yj) = πifi(yj)/f(yj) (2)

for i = 1, . . . , g. A probabilistic clustering of the data into g clusters can be
obtained in terms of the fitted posterior probabilities of component member-
ship for the data.

An outright partitioning of the observations into g nonoverlapping clusters
C1, . . . , Cg is effected by assigning each observation to the component to
which it has the highest estimated posterior probability of belonging. Thus
the ith cluster Ci contains those observations yj

ẑij = arg max
h

τ̂h(yj), (3)

and τ̂i(yj) is an estimate of τi(yj). As the notation implies, ẑij can be viewed
as an estimate of zij which, under the assumption that the observations come
from a mixture of g groups G1, . . . , Gg, is defined to be one or zero according
as the jth observation yj does or does not come from Gi (i = 1, . . . , g; j =
1, . . . , n).

For the clustering of continuous multivariate data, it is common to specify
the component densities in (1) as belonging to the multivariate normal family
with

fi(y) = φ(y; µi, Σi), (4)

where φ(y; µi, Σi) denotes the multivariate normal density function with
mean µi and covariance matrix Σi. We let Ψ be the vector of unknown
parameters, consisting of the mixing proportions πi, the component mean
means µi, and the distinct elements of the component-covariance matrices
Σi (i = 1, . . . , g). The maximum likelihood estimate (MLE) of Ψ , Ψ̂ , is given
by an appropriate root of the likelihood equation,

∂ logL(Ψ )/∂Ψ = 0, (5)

where L(Ψ ) denotes the likelihood function for Ψ ,

L(Ψ ) =
n∏

j=1

f(yj ; Ψ ),
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and

f(yj ; Ψ ) =
g∑

i=1

πiφ(yj ; µi, Σi). (6)

Solutions of (5) corresponding to local maximizers of logL(Ψ ) can be ob-
tained via the expectation-maximization (EM) algorithm of Dempster et al.
(1997); see also McLachlan and Krishnan (2008). Let Ψ̂ denote the estimate
of Ψ so obtained.

It can be seen from (6) that the mixture model with unrestricted
component-covariance matrices in its normal component distributions is a
highly parameterized one with 1

2p(p + 1) parameters for each component-
covariance matrix Σi (i = 1, . . . , g). Thus some form of variable selection
and/or regularization is needed with high-dimensional data as, for example,
proposed in McLachlan et al. (2002).

In this paper, we wish to consider mixture model-based methods for clus-
tering where there is known to be some structure on the data. In particular,
we wish to focus on the approach proposed by Ng et al. (2006). Two exam-
ples will be given to illustrate its application. Although attention is focussed
here solely on the clustering of the gene profiles that can be formed from
the output from a series of microarray experiments, the procedure is widely
applicable to the clustering of data from other experimental sources.

2 Mixtures of linear mixed models

In applying the normal mixture model (6) to cluster multivariate (continuous)
data, it is assumed as in most typical cluster analyses using any other method
that

(a) there are no replications on any particular entity specifically identified as
such;

(b) all the observations on the entities are independent of one another.

These assumptions should hold for the clustering of, say, tissue samples
consisting of the expression levels of many (possibly thousands) of genes,
although the tissue samples have been known to be correlated for different
tissues due to flawed experimental conditions. However, condition (b) will
not hold for the clustering of gene profiles, since not all the genes are inde-
pendently distributed, and condition (a) will generally not hold either as the
gene profiles may be measured over time or on technical replicates. While
this correlated structure can be incorporated into the normal mixture model
(6) by appropriate specification of the component means µi and covariance
matrices Σi, it can be difficult to fit the model under such specifications.

To illustrate this, we assume in the sequel that the observed data vector
yj (j = 1, . . . , n) contains the expression levels of the jth gene obtained
from a series of p microarray experiments; see, for example, McLachlan et
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al. (2004). Typically in such problems, the number of genes n is very large
relative to the number of microarray experiments p. In molecular biology,
the yj are referred to as the gene profiles. The underlying idea for clustering
the gene profiles is that if coregulation indicates shared functionality, then
clusters defined to this level of abstraction represent biological modules. If
the microarray experiments were measured at p different time points, then
the problem is one of clustering time-course data (that is, time series data).

Suppose, for example, the first p1 tissue samples were obtained from p1

healthy patients (Group G1) and the remaining p2=1-p1 tissue samples were
from unhealthy patients (Group G2). Then we could cluster the gene pro-
files yj by applying the normal mixture model (6) provided we impose some
restrictions on the component means µi and covariance matrices Σi to rep-
resent this known structure. We would put

µi = X (µT
1i, µT

2i)
T , (7)

where the design matrix X is given by

X =
(

Ip1 O
O Ip2

)
, (8)

and where
µhi = µhi1ph

(h = 1, 2).

Here Ip denotes the p × p identity matrix and and 1ph
denotes the ph-

dimensional vector with each element equal to one. Similarly, the ith
component-covariance matrix Σi can be appropriately specified. Taking the
microarray experiments to be independent of one another, then it would be
reasonable to assume that

Σi =
(

Σ1i O
O Σ2i

)
(i = 1, 2), (9)

where Σhi = σ2
hiIph

(h = 1, 2).
In this simple case of cross-sectional data, the normal mixture model

(6) can be fitted with minor modifications to incorporate the constraints
(7) and (8). However, if the ph tissue samples are measured over ph time
points in Group Gi, then it would not be reasonable to take Σhi to be
diagonal. In such cases the M-step will most likely not exist in closed form
even for simple models to specify the dependence over time of the tissue
samples. The problems will be exacerbated if there is replication of the tissue
samples (longitudinal data), in particular, technical replicates. Moreover, this
approach is assuming that all the genes are independently distributed. Thus,
we consider an approach to this problem that is based on mixtures of linear
mixed models.
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3 EMMIX-WIRE procedure

We consider the so-called EMMIX-WIRE (EM-based MIXture analysis With
Random Effects) procedure developed by Ng et al. (2006) to handle the clus-
tering of correlated data that may be replicated. They adopted conditionally
a mixture of linear mixed models to specify the correlation structure between
the variables and to allow for correlations among the observations.

To formulate this procedure, we consider the clustering of n gene profiles
yj (j = 1, . . . , n), where we let yj = (yT

1j , . . . , yT
mj)

T contain the expression
values for the jth gene profile and ytj = (y1tj , . . . , yrttj)T (t = 1, . . . , m)
contains the rt replicated values in the tth biological sample (t = 1, . . . , m)
on the jth gene. The dimension d of yj is given by p =

∑m
t=1 rt. With the

EMMIX-WIRE procedure, the observed d-dimensional vectors y1, . . . , yn

are assumed to have come from a mixture of a finite number, say g, of com-
ponents in some unknown proportions π1, . . . , πg, which sum to one. Con-
ditional on its membership of the ith component of the mixture, the profile
vector yj for the jth gene (j = 1, . . . , n) follows the model

yj = Xβi + Ubij + V ci + εij (i = 1, . . . , g), (10)

where the elements of the qβ-dimensional vector βi are fixed effects (unknown
constants) used in modelling the conditional mean of yj in the ith component
(i = 1, . . . , g). In (10), bij (a qb-dimensional vector) and ci (a qc-dimensional
vector) represent the unobservable gene- and cluster-specific random effects,
respectively. These random effects represent the variation due to the het-
erogeneity of genes and samples (corresponding to bi = (bT

i1, . . . , b
T
ip)T and

ci, respectively). The random effects bi and ci, and the measurement error
vector (εT

i1, . . . , εT
ip)

T are assumed to be mutually independent, where X,
U , and V are known design matrices of the corresponding fixed or random
effects, respectively. If the covariance matrix H i is taken to be diagonal, then
the expression levels on the jth gene in different biological samples are taken
to be independent. The presence of the random effect ci for the expression
levels of genes in the ith component induces a correlation between the pro-
files of genes within the same cluster. This is in contrast to the mixed-effects
models approaches in Luan and Li (2003), McLachlan et al. (2004), Celeux et
al. (2005), and Qin and Self (2006) that involve only gene-specific random ef-
fects. Their methods thus require the independence assumption for the genes
which, however, will not hold in practice for all the genes. Recently, Booth et
al. (2008) have adopted a Bayesian approach to this problem in which genes
within the same cluster are taken to be correlated.

With the LMM, the distributions of bij and ci are taken, respectively, to
be multivariate normal Nqb

(0,H i) and Nqc(0, θciIqc), where Hi is a qb × qb

covariance matrix. The measurement error vector εij is also taken to be
multivariate normal Np(0,Ai), where Ai = diag(Wξi) is a diagonal matrix
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constructed from the vector (Wξi) with ξi = (σ2
i1, . . . , σ

2
iqe

)T and W a
known p× qe zero-one design matrix.

We now consider two examples in which we apply the EMMIX-WIRE
procedure to a real data set and a simulated data set, as considered previously
in the literature.

4 Example 1: Yeast cell data

In this example, we consider the CDC28 dataset, which contains more than
6000 genes measured at 17 time points (0, 10, 20, . . . , 160) over 160 minutes,
which is about two periods of yeast cell under CDC28 condition. Cho et al.
(2001) and Yeung et .al. (2001) identified and clustered some of the 6000 genes
into different functional groups. For example, Yeung et al. (2001) presented
384 genes corresponding to five functional groups, among which there are
237 genes falling into four MIPS functional groups (DNA synthesis and repli-
cation, organization of centrosome, nitrogen and sulphur metabolism, and
ribosomal proteins). Wong et al. (2007) reanalysed the 237 cell cycle data,
using their two-stage clustering method and found that it outperformed the
other methods that they tried. They were an hierarchical method, k-means,
SOM, SOTA, and a normal mixture model-based procedure corresponding to
(6), which were all used to cluster the 237 genes into g = 4 clusters. On com-
paring the latter with the four MIPS functional groups, they reported that the
the Rand Index (RI) for their two-stage method was equal to 0.7087. In this
paper, we shall compare the EMMIX-WIRE procedure with the two-stage
clustering method.

In this example, the gene profile vector yj for the jth gene is given by

yj = (yj1, . . . , yjp)T ,

where yjt denotes the expression level of the jth gene at time t (t = 1, . . . , p)
and p=17. Before proceeding to fit the model (10), we first estimated the
period T in the linear regression model in which

yjt = β0 + β1cos(2πt/T ) + β2sin(2πt/T ) + ejt,

where tj = 0, 10, 20, . . ., 160, and T is the period, and where it is assumed

that ejt
i.i.d.∼ N(0, σ2). To estimate the period T of the data, we first fixed T

at its lower limit T0, and then calculated the Least Squares (LS) estimate and
its mean squared error. We then increased T0 by 1 to get a new T , and then
calculated the LS estimate and its MSE. This was repeated until a reasonable
upper limit of T , T1(> T0), was obtained. Comparing all the MSE’s, the LS
estimate of T corresponding to the minimum MSE is taken as our estimated
period T. As these time course data consist of 17 time points of ten minute
intervals (starting from zero), we took T0 = 10.
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Using the dataset of 384 genes posted by Yeung et al. (2001), we obtained
an estimated cell cycle period of 73 min, assuming the initial phase to be
zero. As a period of 73 min is about half of 160 min, it would seem to be
a reasonable estimate. Also, since the 237 cell cycle data is a subset of the
384 cell cycle data, we assume here that it follows the same time cycle of 73
minutes.

The model (10) was fitted with βi = (β1i, β2i)T as the fixed-effects vec-
tor for the ith component and with the tth row of the design matrix X,
corresponding to the time point t, given by

(cos(2πt/T ) sin(2πt/T )) (11)

for t = 1, . . . , p. The design matrix U was taken to be 1p (that is, qb = 1)
with b’ij = bij , the common random effect for all time points shared by the
jth gene, and H i = Ip. The cluster-specific random effect ci was specified
as ci = (ci1, . . . , cip)T with qc = p and V = Ip. With respect to the error
terms, we took W = Ip with qe = p.

Concerning the number of components, we report in Table 1 the values
of BIC obtained for various levels of the number of components g. As we
were unable to calculate the likelihood exactly under the model (10) in the
case of nonzero cluster-specific random-effects terms ci, we approximated it
by taking the gene-profile vectors to be independently distributed in forming
the log likelihood in calculating the value of BIC. According to the tabulated
values of BIC in Table 1, we should choose g = 4 components, which agrees
with the number of MIPS functional groups in these genes.

Table 1. Values of BIC for Various Levels of the Number of Components g.

The Number of Components
2 3 4 5 6 7

10883 10848 10837 10865 10890 10918

For g = 4, we found that the estimated variance θci for the cluster-specific
random-effects term was equal to 0.227, 0.280, 0.043, and 0.137, which in-
dicates some level of correlation within at least three of the four clusters.
The Rand Index and its adjusted value were equal to 0.7808 and 0.5455,
which compare favourably to the corresponding values of 0.7087 and 0.3697,
as obtained by Wong et al. (2007) for their method. On permuting the clus-
ter labels to minimize the error rate of the clustering with respect to the
four MIPS functional groups, we obtained an error rate of 0.291. We also
clustered the genes into four clusters by not having cluster-specific random-
effects terms ci in (10), yielding lower values of 0.7152 and 0.4442 for the
Rand Index and its adjustment. The estimated error rate was equal to 0.316.
Hence in this example, the use of cluster-specific random-effects terms leads
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to a clustering that corresponds more closely to the underlying functional
groups than without their use.
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Fig. 1. Clusters of Gene-Profiles Obtained by Mixture of Linear Mixed Models with
Cluster-Specific Random Effects.

The clustering obtained in the latter case, however, is still superior in
terms of the Rand Index and its adjusted value for the two-stage method of
Wong et al. (2007), which was the best on the basis of these criteria in their
comparative analysis. We also fitted the mixed linear model mixture (10)

Table 2. Summary of Clustering Results for g = 4 Clusters.

Model Rand Index Adjusted Rand Index Error Rate

1 0.7808 0.5455 0.291
2 0.7152 0.4442 0.316
3 0.7133 0.3792 0.4093

Wong 0.7087 0.3697 Not available

without the sine-cos regression model (11) for the mean, but with a separate
(fixed effects) term at each of the p = 17 time points; that is, we set X = Ip

and took βi to be a p-dimensional vector of fixed effects. We did not include
cluster-specific random-effects terms ci due to their nonidentifiability in this
case. This nonregression model gave worse results for the Rand Index and
the error rate than with the regression model (10) using the sine-cos curve
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Fig. 2. Clusters of Gene-Profiles Obtained by Mixture of Linear Mixed Models
without Cluster-Specific Random Effects.
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Fig. 3. Plots of Gene Profiles Grouped According to Their True Functional Group-
ing.

to specify the mean at a given time point. The results for this nonregression
version are listed under Model 3 in Table 2, where the clustering results have
been summarized. In this table, Models 1 and 2 correspond to the use of the
regression model (10) with and without cluster-specific random-effects terms.
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In Figures 1 and 2, we give the plots of the gene profiles as clustered into
g = 4 clusters as obtained by fitting the mixture of linear mixed models (10)
with and without cluster-specific random-effects terms ci. In Figure 3, the
plots of the gene profiles are grouped according to their actual functional
grouping.

5 Example 2: Simulated data

Another example in Wong et al. (2007) is a simulated data from Michaud
et al. (2003). Using EMMIX-WIRE, we have recognized all nine patterns
perfectly correct (See Figure 4). Rand index is 1, error rate is zero. Wong et
al.(2007) got their Rand Index as 0.9961 and Adjusted Rand Index as 0.9806.
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Fig. 4. Clusters of Simulated Gene-Profiles Obtained by Mixture of Linear Mixed
Models with Cluster-Specific Random Effects.
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Abstract. Synchronized permutation tests have been introduced to test for main
effects and interaction in two-way ANOVA problems (Pesarin, 2001, Salmaso, 2003,
Basso et al., 2007). The permutation space is restricted in order the test statistic
for each factor or interaction to depend only on the true effects (if any) under
testing and on exchangeable errors. The proposed test statistics can be viewed as
a direct combination (i.e. the sum) of partial statistics to perform all pair-wise
comparisons between the effects of a main factor. Note that the tests for each
comparison are dependent. Constrained synchronized permutations allow to test
all pair-wise comparisons between pairs of effects of a main factor. Simultaneous
and individual confidence intervals for each comparison can be provided through
CSP tests.

Keywords: confidence intervals, dependent tests, multiple comparisons.

1 Introduction

In all ANOVA problems the main interest is on testing the null hypothesis
of no treatment effects. In case the null hypothesis is rejected, the aim of the
researcher is to find out which levels of the treatments caused the rejection of
the null hypothesis. This is usually done after the global test, and it is com-
monly known as post hoc comparisons. Here on, by global test we mean a test
which is suitable to test for the null hypothesis involving all treatment levels.
The post hoc comparisons are carried out by considering all possible pair-wise
comparisons between pairs of treatment effects. A correction accounting for
multiplicity is usually adopted, as in the well known Tukey honest significant
difference (Hsu, 1996, Dean and Voss, 1999), which is based on Student’s t
test.
As a matter of fact, the tests for each pair-wise comparison are dependent.
In this work we introduce a permutation test which is suitable to test for
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main effects and interaction in two-way ANOVA. The test for main effects
can be decomposed into several partial tests which are suitable for pair-wise
comparisons. A restricted kind of permutation, introduced by Pesarin (2001)
and Salmaso (2003) is adopted in order the partial test to depend only on
the specific effects under study. This kind of randomization, named synchro-
nized permutations, allow us to account for dependence among K ≥ 2 partial
tests. Simultaneous confidence intervals can be provided for each pair-wise
comparison in order to easily understand which effects led to the rejection of
the global null hypothesis, as in Basso et al. (2007).
The problem when dealing with (exact) permutation tests under the two-way
ANOVA model assumptions is that units from different blocks are not ex-
changeable, since they may differ in their expected values (which depend on
main effects and interaction effects not being tested). However, a sufficient
condition in order to apply a permutation test is that the test statistic (e.g.
to test for factor A) has a discrete uniform null distribution over is support.
Another requirement in order to obtain separate inferences (for each main
factor and interaction effects) is that the test statistic depends only on the
effects of interest. This can be done by adopting a restricted kind of per-
mutation, and by applying the side-conditions on nuisance effects, as will be
shown in Section 2.

2 Partial tests for each pair-wise comparison

Let yijk (i = 1, . . . , I, j = 1, . . . , J , k = 1, . . . , n) denote the generic response
element on a balanced I × J ANOVA model. That is:

yijk = µ + αi + βj + γij + εijk

where µ is the population mean, αi and βj are main effects, γij are interaction
effects and εijk’s are exchangeable errors with zero mean and finite variance
σ2. We also assume that side-conditions

∑
i αi =

∑
j βj =

∑
i γij =

∑
j γij =

0 hold. Let us first consider the problem of testing His
0A : αi = αs against

the alternative His
1A : αi = αs, 1 ≤ i < s ≤ I. Here on, we will refer to

His
0A as a partial hypothesis and we define a partial test as a suitable test to

assess His
0A. The response elements in blocks AiBj and AsBj depend on the

effects of interest αi and αs and on nuisance effects βj, γij and γsj . In order
to obtain a separate inference for His

0A, we need the partial test statistic to
depend only on the effects of interest. To this end, note that the statistic:

ATis|j =
∑

k

yijk −
∑

k

ysjk (1)

= n (αi − αs + γij − γsj + ε̄ij· − ε̄sj·) ,

does not depend on the nuisance effect βj . Here ε̄ij· and ε̄sj· are sampling
means of n exchangeable errors. The side conditions on the interaction effects
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allow us to obtain a test statistic to assess His
0A which does not depend on

γij and γsj . If we sum ATis|j over index j:

ATis =
∑

j

ATis|j = nJ(αi − αs) +
∑

j

γij −
∑

j

γsj +
∑

j

ε̄ij· −
∑

j

ε̄sj·

= nJ [αi − αs] + nJ [ε̄i·· − ε̄s··], (2)

we obtain a test statistic which only depends on the effects of interest and
on a linear combination of exchangeable errors. Therefore ATis is a suitable
partial test statistic for H is

0A within a permutation framework.
In order to obtain the permutation null distribution of ATis some care is
needed: the response elements are not exchangeable with respect to different
treatments of factor B, because of potential active effects βj , j = 1, . . . , J .
This means that only permutations within blocks sharing the same level of
factor B are allowed. Moreover, consider a permutation between the response
elements of blocks AiBj and AsBj , and denote as y∗ijk and y∗sjk the generic
response elements of those blocks after a random permutation of yis|j =
[yij ,ysj ]′. This means that 0 ≤ ν∗

is|j ≤ n units have been exchanged between
blocks AiBj and AsBj . The permutation structure of ATis|j (the statistic (1)
computed on the permuted data) is:

AT ∗
is|j = (n− ν∗

is|j)(αi + γij) + ν∗
is|j(αs + γsj) + n[βj + ε̄∗ij·]

− (n− ν∗
is|j)(αs + γsj) − ν∗

is|j(αi + γij) − n[βj + ε̄∗sj·]
= (n− 2ν∗

is|j)[(αi − αs) + (γij − γsj)] + n[ε̄∗ij· − ε̄∗sj·].

Let us consider J random permutations between blocks AiBj and AsBj for
j = 1, . . . , J (i.e. ν∗

is|j depends on the index j). The partial test ATis computed
on the permuted observations is:

∑

j

AT ∗
is|j = K[αi − αs] +

∑

j

(n− 2ν∗
is|j)(γij − γsj) + nJ [ε̄∗i·· − ε̄∗s··], (3)

where K = nJ − 2
∑

j ν
∗
is|j and ε̄∗i·· and ε̄∗s·· are sampling means of nJ ex-

changeable errors. Clearly, (3) does not depend on nuisance effects γij and
γsj if and only if ν∗

is|j does not depend on index j. That is, if we let ν∗
is|j = ν∗

is

∀j, then:
AT ∗

is = (n− 2ν∗
is)J [αi − αs] + nJ [ε̄∗i·· − ε̄∗s··]. (4)

This means that, if H is
0A is true, ATis and AT ∗

is are realizations of the same
random variable, since the errors are assumed to be exchangeable. Therefore,
the null permutation distribution of the partial test statistic ATis can be
obtained by considering all possible permutations between pairs of blocks
AiBj and AsBj (j = 1, . . . , J) involving the same number of exchanges ν∗

is

in each pair and by computing each time the test statistic (4). Because of
that, this restricted kind of permutation is called ’synchronized’, since they
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require the same number of units to be exchanged in each pair of blocks. This
is necessary in order to obtain a null distribution which does not depend on
the nuisance effects.
The cardinality of the support of the partial test statistic depends on how the
synchronized permutations are obtained, as will be discussed in next section.
It is straightforward to see that the null distribution of (2) is symmetric with
respect to zero. Let C be the cardinality of the support of (4), then define
the partial p-value for two-sided alternatives as:

Apis = 2 min

{
1
C

B∑

b=1

I(AT ∗
is ≤ ATis),

1
C

B∑

b=1

I(AT ∗
is ≥ ATis)

)
,

where I(·) is the indicator function. Of course, there are other test statistics
leading to the same inference on αi−αs: a permutationally equivalent statistic
is for instance ATis = ȳi·· − ȳs··, where ȳi·· = (nJ)−1

∑
j

∑
k yijk. We will

consider this partial test statistic in order to determine permutation tests
and confidence intervals for αi − αs.
Similarly we can define test statistics and permutation strategies to test for
the partial hypothesis Hjh

0B : βj = βh. Here the same number of units ν∗
jh

must be exhanged between pairs of blocks AiBj and AiBh, i = 1, . . . , I. The
partial test statistic for one pair of factor B effects is:

BT ∗
jh =

∑

i

[
∑

k

y∗ijk −
∑

k

y∗ihk

]
= (n− 2ν∗

jh)(βj − βh) + nI(ε̄∗·j· − ε̄∗·h·).

Suitable tests for interaction effects have also been developed, but this topic
falls out the scope of this paper, and we refer to Pesarin (2001) for further
discussion.

3 Global tests for main factor hypotheses

In the previous section we have introduced some partial tests which are
suitable for testing partial null hypotheses His

0A (or Hjh
0B). Since the aim of

ANOVA analysis is to determine whether there is at least one active (i.e. non
null) effect, the partial tests should be combined togheter in order to obtain a
global test to assess the global null hypothesis H0A : α1 = α2 = · · · = αI = 0.
Note that if the global null hypothesis holds, then His

0A is true for any couple
of indeces 1 ≤ i < s ≤ I. Therefore we may also write:

H0A :
⋂

1≤i<s≤I

His
0A.

On the contrary, H0A must be rejected when at least one of the partial null
hypothesis is rejected. A suitable combining test accounting for the signifi-
cance of the partial test should therefore be applied in order to assess H0A.
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This can be done adopting the nonparametric combination of dependent tests
(Pesarin, 2001). The nonparametric combination (NPC) is a continuous func-
tion whose arguments are monotonic functions of the partial test statistics,
such as the test statistics themselves or their related p-values. In our testing
problem, we have K = I(I − 1)/2 partial hypotheses to be combined. Let
λk, k = 1, . . . ,K be a partial test statistic (or its related p-value): a suitable
NPC function ψ should satisfy the following properties:

1. It should be continuous in all its K arguments;
2. It should be non-decreasing on all its arguments, i.e.:

ψ(λ1, λ2, . . . , λk, . . . , λI) ≤ ψ(λ1, λ2, . . . , λ
′
k, . . . , λI)

whenever λ′
k is at least as significant as λk against the related partial null

hypothesis;
3. It should reach its supremum (possibly not finite) when a least one of

its arguments leads to reject the related partial null hypothesis almost
surely.

There are many functions which satisfy the above requirements. For example,
if λk = ATis, then some suitable combining functions are:

• the maxT combining function: ψ = max1≤i<s≤I
ATis

2;
• the Direct combining function: ψ =

∑
1≤i<s≤I

ATis
2.

Other suitable combining function, when the arguments are the partial p-
values Apij , are:

• the minP combining function: ψ = min1≤i<s≤I
Apis;

• the Fisher combining function: ψ = −2
∑

1≤i<s≤I log(ATis);
• the Liptak combining function: ψ =

∑
1≤i<s≤I [1 − φ(log ATis)], where

φ(·) is the inverse cumulative distribution function of a standard normal
random variable;

Focusing the attention on the direct combining function, we have that ATis
2

is significant against His
0A for large values. Let I = 3, then a suitable global

test for H0A is:
AT = AT 2

12 + AT 2
13 + AT 2

23. (5)

Clearly, (5) is continuous and non-decreasing on all its arguments (properties
1 and 2), and it reaches its maximum when ATis

2 = max AT ∗
is

2 ∀ i, s, i.e. when
all partial tests are extremely significant against the related null hypothesis.
Focusing the attention on the Fisher combining function, let λk = Apis, then
we may also define as a global test:

AT = −2[log(Ap12) + log(Ap13) + log(Ap23)].

The above global test still satisfies the required properties 1 → 3. In this case,
the combinig function reaches its supremum (not finite) when at least one
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partial p-value tends to zero. In both the considered examples, large values
of AT are significant against the global null hypothesis H0A.
Note that the partial tests in (5) are dependent, even though the orignal ob-
servations are independent. To account for this dependence, a suitable per-
mutation strategy is the following: let y∗

is|1 = π1[yi1,ys1]′ be a random per-
mutation of observations in blocks AiB1 and AsB1. If the same permutation
is applied to the remaining J−1 pairs of blocks (i.e. if y∗

is|j = πj [yij ,ysj ]′ ∀j),
then the dependence structure among the partial test statistics is maintained.
This entails the cardinality of the permutation null distribution of each par-
tial test statistic to be equal to:

C =
(

2n
n

)
,

since the number of exchanges in each pair of blocks is entirely determined by
π1. This kind of permutations are called Constrained Synchronized Permu-
tations (CSPs), since units in each pair of blocks are swapped according to
their original positions within each block. Another possible choice is to swap
the same number of units in each pair of blocks independently, provided that
the same number of exchanges has to be made in each pair of blocks. This
kind of permutations are called Unconstrained Synchronized Permutations
(USPs). It is easy to understand that the dependence among the partial test
statistics is not maintained by the USPs. Figure 3 represents the projections
of the permutation space points [AT ∗

12,
AT ∗

13,
AT ∗

23] when CSPs (black dots)
and USPs (grey dots) are applied in a 3× 2 ANOVA model with n = 4. The
correlations between partial tests are evident when the CPSs are applied.
USPs are suitable when only few replicates are available (say n ≤ 3) because
the number of available permutations rapidly increases with n, I and J . This
fact is directly related to the minimum achivable significance level, which, in
permutation tests, is equal to 1/C (for CSPs).
The algorithm to perform partial tests to assess each H is

0A and a global test
on the effects of factor A adopting the direct combining function and CSPs
is as follows:

• Let Π = [π1, π2, . . . , πC ], C =
(

2n
n

)
, be the set of all possible rearrange-

ments of 2n observations into groups of n, and let π1 be the identity
transformation: π1(1, . . . , 2n) = [1, . . . , 2n];

• for c = 1, . . . , C, repeat the following steps:

1. Obtain y∗
is|j = [y∗

ij ,y
∗
sj ]

′, where y∗
is|j = πc(yis|j) and yis|j = [yij ,ysj ]′;

yis|j is the pooled vector of observations from blocks AiBj and AsBj ,
j = 1, . . . , J ;

2. Compute the permutation values of the partial test statistics:

AT ∗c
is = (ȳ∗i·· − ȳ∗s··)

2 1 ≤ i < s ≤ I;
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Fig. 1. Projections of the permutation points [AT ∗
12,

AT ∗
13,

AT ∗
23] in a 3 × 2 design

with n = 4. Black dots = CSPs; Grey dots = USPs.

3. Compute the permutation value of the global test statistic as:

AT ∗c =
∑

i<s

AT ∗c
is

• obtain the partial p-values to assess His
0A as:

Apis =
1
C

C∑

c=1

I(AT ∗c
is ≥ AT ∗1

is );

• obtain the global p-value to assess H0A as:

Ap =
1
C

C∑

c=1

I(AT ∗c ≥ AT ∗1);

Be reminded that AT ∗1
is = ATis and AT ∗1 = AT , i.e. the first elements of

the (partial and global) permutation distributions are the observed values
of the test statistics because they are obtained from the observed data. A
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multiplicity problem arises since we are dealing with C partial tests. A suit-
able multiplicity correction should therefore be applied to the partial test
in order to control the family-wise error rate (FWE). In this work we will
consider the classic Bonferroni correction, although other corrections may be
adopted. Partial and global tests are exact since, under partial and global
null hypotheses, the related test statistics only depend on combinations of
exchangeable errors. Global and partial tests can be viewed similarly to the F
test and post-hoc comparison tests in the parametric framework. Moreover,
they can be performed simoultaneously.

4 Individual and simultaneous pseudo confidence
intervals

The nonparametric combination of dependent tests allow us to perform par-
tial and global tests at the same time, and a quick analysis tool can be
provided by drawing the confidence intervals for all pairwise differences of
main effects. The upper bound of the CSP confidence intervals for αi − αs

can be provided by applying the following algorithm:

• Choose the desired confidence level 1 − α and degree of precision ε; α
should be multiple of 1/C;

• Choose δis = αi − αs > 0; let:

ỹijk = yijk

ỹsjk = ysjk − ȳs·· + ȳi·· + δis;

• Obtain the observed value of the test statistic:
AT̃ (δis) = ¯̃ys·· − ¯̃yi·· = δis

• repeat C times:
1. Apply the CSPs to each pair of block AiBj and AsBj . Let ỹ∗ijk and

ỹ∗sjk be the observations in blocks AiBj and AsBj after a CSP has
been performed for j = 1, . . . , J .

2. Compute the value of the test statistic according to the constrained
synchronized permutation methodology:

AT̃ ∗(δis) = ¯̃y∗s·· − ¯̃y∗i··

• Obtain the p-value of AT̃ (δis):

Ap̃(δis) =
#[AT̃ ∗(δis) ≥ AT̃ (δis)]

C

• if the condition:
|Ap̃(δis) − α/2| < ε

is satisfied, then ȳs·· − ȳi·· + δis is the upper bound of the permutation
confidence interval. Otherwise, repeat the algorithm by increasing δis

until the above condition is satisfied.
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In order to obtain the lower bound of the confidence interval, just repeat the
same algorithm by adding a negative δis and by computing the p-value as
Ap̃(δis) = #[AT̃ ∗(δis) ≤ AT̃ (δis)]C−1. The previous algorithm is motivated
by the fact that the permutation null distribution depends on δis.
Note that the confidence interval and the permutation test are neither ob-
tained by the same permutation approach nor with the same data. This
is because the null distribution of the test statistic (4) implicitly assumes
that His

0A is true, otherwise exchangeability does not hold. Instead, the confi-
dence interval must be derived for whatever δis, not necessarely when δis = 0
(i.e., the necessary condition to apply the test). Data of one sample in the
confidence interval algorithm are first centered in order the variance of the
samples to depend not on δis (just like the pooled variance of the t-test for a
two sample problem does not depend on δis), then δis is added to these data.
This means that there is no one-to-one correspondence between the statisti-
cal test and the confidence interval, as usually happens when the parametric
approach is applied.
However, it is possible to define a ’pseudo’ confidence interval by obtaining
the permutation distribution of the test statistic (4) and by centering it on
the observed difference ȳi·· − ȳs··. In this way, there is a one-to-one corre-
spondence between the permutation test and the pseudo-CI. By that, we
mean that the permutation test rejects the null hypothesis if and only if the
’pseudo’ confidence interval does not contain zero.
Let AC̃I

is

1−α be the pseudo CI obtained from the corresponding permutation
test at a significance level α, then a (non randomized) global test can be also
defined as a function of AC̃I

is

1−α’s:

AT̃ = 1 −
∏

i<s

I
(
0 ) AC̃I

is

1−α

)
,

where AT̃ = 1 means the rejection of the global null hypothesis. If all
AC̃I

is

1−α’s are obtained with the same confidence level 1 − α, then:

P [AT̃ = 1] = 1 − (1 − α)K ,

therefore by applying Bonferroni’s correction to the partial test significance
levels, we can obtain a simultaneous acceptance region for the global null
hypothesis. A suitable representation is shown in Figure 2, which is referred
to a simulation under H0A in a 3 × 2 balanced design with n = 4. This rep-
resentation has been suggested by Hsu (1996). The segments represent the
AC̃I

is

1−α’s: as long as every segment crosses the 45◦ line the global null hy-
pothesis is not rejected at a significance level αG = 1−(1−α)K. The symbols
m1, m2 and m3 indicates the observed values of δ̂is, 1 ≤ i < s ≤ 3.
In order to control the FWE at an αG significance level, a Bonferroni cor-
rection can be applied by performing each partial test at a significance level
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α = 1− (1−αG)
1
K . Individual pseudo CI’s can be provided by not consider-

ing the correction for multiplicity, and by performing each partial test with
a significance level equal to α.
The discrete nature of permutation null distributions should be recalled. Since
not all significance levels are attainable, it is not possible to achieve the exact
confidence level when n is too small (say n = 4, 5), however, with n = 6 the
(partial) permutation distribution consists in 924 distinct values, therefore
the usual nominal significance levels can be adopted (see next section).
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Fig. 2. Representation of the ’pseudo’ - confidence intervals due to Hsu (1996).

5 Simulation study

In this section we investigate the behaviour of the CSP tests when I = 3,
J = 2 and n = 4, 6. The proposed testing procedure is then compared to
Tukey’s well known honest significant method. All simulations were imple-
mented with the R software and involved 1000 independent data generations
from a standard normal distribution and from a Student’s t distribution with
2 d.f. The last choice does not satisfy the assumption of finite error variance,
which, however, is not necessary in order the permutation test to be unbi-
ased.
When n = 4, the attainable confidence levels of the partial tests are multiple
of 1/35 (since the alternative is always two-sided). Thus, we have considered
34/35, 33/35 and 31/35 as nominal confidence levels, which are reported in
the 1−α column of the result tables. The attainable significance levels of the
global test are multiple of 1/35 as well, therefore it is not possible to achieve
the exact global theoretical confidence level 1 − αG = (1 − α)3.
Instead, when n = 6, the cardinality of the permutation distribution elements
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is high enough to achieve the nominal confidence levels almost exactly, there-
fore we have set the nominal significance levels for the global test equal to
0.01, 0.05, 0.1, and applied a Bonferroni correction to the significance levels
of the partial tests.
Each table reports the results of the comparison between CSP and Tukey tests
for a given sample size and error distribution. The true difference among pairs
of effects are reported in the second line of each table (so that HG

0A holds on
the left side of the tables). For each nominal confidence level 1−α (in bold),
the proportion of times a partial AC̃I

is

1−α strictly contained zero is reported.
The same results are shown for the global test, which are the proportion of
times that all the (pseudo) partial CIs (strictly) contained zero. Note that
the displayed results are equal to 1− π̂(δ), where π̂(δ) is the observed power
of the related test.

1− α δ12 δ13 δ23 1− αG 1− α δ12 δ13 δ23 1− αG

CSP 0 0 0 P̂ [AT̃ = 0] CSP 1 1 0 P̂ [AT̃ = 0]

0.971 0.962 0.972 0.970 0.917 0.917 0.971 0.757 0.747 0.975 0.917 0.607
0.943 0.933 0.943 0.916 0.838 0.844 0.943 0.601 0.597 0.931 0.838 0.423
0.886 0.888 0.879 0.867 0.695 0.747 0.886 0.413 0.410 0.888 0.695 0.246

Tukey Partial Tests Global Test Tukey Partial Tests Global Test

0.971 0.950 0.968 0.959 0.917 0.901 0.971 0.606 0.580 0.963 0.917 0.445
0.943 0.899 0.910 0.926 0.838 0.809 0.943 0.436 0.415 0.928 0.838 0.277
0.886 0.837 0.842 0.856 0.695 0.679 0.886 0.274 0.251 0.836 0.695 0.130

Table 1. Observed confidence levels of individual CI’s and acceptance rates of HG
0A

with CSP and Tukey test. ε ∼ N(0, 1), n = 4.

1− α δ12 δ13 δ23 1− αG 1− α δ12 δ13 δ23 1− αG

CSP 0 0 0 P̂ [AT̃ = 0] CSP 1 1 0 P̂ [AT̃ = 0]

0.996 0.996 0.993 1 0.990 0.989 0.996 0.819 0.844 0.996 0.990 0.721
0.983 0.987 0.977 0.976 0.950 0.950 0.983 0.615 0.610 0.983 0.950 0.454
0.966 0.955 0.95 0.958 0.900 0.892 0.966 0.481 0.519 0.968 0.900 0.332

Tukey Partial Tests Global Test Tukey Partial Tests Global Test

0.996 0.995 0.997 0.997 0.990 0.989 0.996 0.728 0.752 0.995 0.990 0.617
0.983 0.987 0.983 0.980 0.950 0.959 0.983 0.525 0.498 0.980 0.950 0.353
0.966 0.944 0.947 0.954 0.900 0.883 0.966 0.371 0.419 0.959 0.900 0.247

Table 2. Observed confidence levels of individual CI’s and acceptance rates of HG
0A

with CSP and Tukey test. ε ∼ N(0, 1), n = 6.
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1− α δ12 δ13 δ23 1− αG 1− α δ12 δ13 δ23 1− αG

CSP 0 0 0 P̂ [AT̃ = 0] CSP 1 1 0 P̂ [AT̃ = 0]

0.971 0.966 0.970 0.972 0.917 0.921 0.971 0.871 0.873 0.978 0.917 0.777
0.943 0.949 0.949 0.928 0.838 0.858 0.943 0.793 0.793 0.936 0.838 0.646
0.886 0.892 0.892 0.884 0.695 0.749 0.886 0.682 0.705 0.890 0.695 0.526

Tukey Partial Tests Global Test Tukey Partial Tests Global Test

0.971 0.970 0.974 0.981 0.917 0.934 0.971 0.880 0.884 0.982 0.917 0.808
0.943 0.932 0.935 0.931 0.838 0.852 0.943 0.771 0.757 0.931 0.838 0.638
0.886 0.847 0.860 0.831 0.695 0.661 0.886 0.624 0.651 0.831 0.695 0.461

Table 3. Observed confidence levels of individual CI’s and acceptance rates of HG
0A

with CSP and Tukey test. ε ∼ t2, n = 4.

1− α δ12 δ13 δ23 1− αG 1− α δ12 δ13 δ23 1− αG

CSP 0 0 0 P̂ [AT̃ = 0] CSP 1 1 0 P̂ [AT̃ = 0]

0.996 0.996 0.996 0.998 0.990 0.991 0.996 0.930 0.932 0.995 0.990 0.876
0.983 0.979 0.988 0.98 0.950 0.954 0.983 0.850 0.835 0.988 0.950 0.738
0.966 0.963 0.964 0.959 0.900 0.903 0.966 0.780 0.779 0.967 0.900 0.652

Tukey Partial Tests Global Test Tukey Partial Tests Global Test

0.996 0.999 0.998 0.998 0.990 0.995 0.996 0.955 0.943 0.998 0.990 0.913
0.983 0.986 0.989 0.982 0.950 0.964 0.983 0.868 0.857 0.988 0.950 0.789
0.966 0.969 0.96 0.961 0.900 0.905 0.966 0.770 0.782 0.964 0.900 0.655

Table 4. Observed confidence levels of individual CI’s and acceptance rates of HG
0A

with CSP and Tukey test. ε ∼ t2, n = 6.

The permutation pseudo - CI’s and Tukey’s CI’s show similar perfor-
mances in each scenario, although Tukey’s test seems to be a little more
powerful when normal errors are considered. Note how both procedures main-
tain the nominal confidence level 1 − α in the power comparison regarding
AT23.
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Abstract. Multiplicity is a difficult and ubiquitous problem. The problem of eval-
uating multiple experimental questions occurs in many areas of applications, such
as, for example, in clinical trials assessing more than one outcome variable, or
in agricultural field experiments comparing several irrigation systems. If multiple
null hypotheses are tested simultaneously, the probability of declaring effects when
none exists increases beyond the nominal type I error level used for the individual
comparisons. In this paper we review multiple comparison procedures in the linear
model framework. We use the multcomp package from R to illustrate the methods
with a linear regression example.
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1 Introduction

Over the past decades, multiplicity has attracted more and more attention.
Multiplicity, and thus the need for adequate multiple comparison procedures,
arises in many areas of applications, such as, for example, in clinical trials
assessing multiple outcome variables, or in agricultural field experiments com-
paring several irrigation systems. Potential sources of multiplicity include the
comparison of several treatments or dose groups, multiple endpoints, multi-
ple time points, interim analyses, multiple tests of the same hypothesis (for
example, parametric and nonparametric), variable and model selection, and
subgroup analysis. For a detailed theoretical treatise of multiple comparison
procedures we refer to Hochberg and Tamhane (1987), Hsu (1996), and to
Dmitrienko, Tamhane and Bretz (2009) in the context of clinical trials.

Assume for the purpose of illustration that two null hypotheses H1 and
H2 are tested each at level α = 0.05 using independent test statistics. If both
H1 and H2 are true, the probability of incorrectly rejecting at least one of the
two null hypothesis is 1−(1−α)2 = 0.0975, which is substantially larger than
the nominal level of 0.05. For increasing number of hypotheses the inflation in
size becomes even larger. If, for example, 20 truly null hypotheses are tested,
one incorrect rejection is to be expected.
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The Bonferroni approach is a common multiple testing procedure, which
compares the observed marginal p-values p1, . . . , pm with the common thresh-
old α/m, where m is the number of hypotheses under investigation. Assuming
that the m null hypotheses H1, . . . , Hm are all true and that the p-values are
identically distributed as uniform on (0, 1), it follows from the Bonferroni
inequality that the probability to reject at least one of the m null hypotheses
is

P

(
m⋃

i=1

{
pi ≤

α

m

})
≤

m∑

i=1

P
(
pi ≤

α

m

)
= α.

The Bonferroni approach is thus a very general method, which is valid for
any correlation structure among the test statistics. However, it is well known
that the Bonferroni approach is conservative in the sense that other test
procedures exist, which reject at least as many hypotheses as the Bonferroni
approach.

In the following we describe a general approach to multiple comparison
procedures in linear models, which includes additional assumptions on the
joint distribution of the test statistics. In Section 2 we use a linear regression
example to motivate the problem and to illustrate the use of the multcomp
package in R, which implements the methods described in this paper. In
Section 3 we give a general description of multiple comparison procedures in
linear models. We conclude with some remarks in Section 4.

2 A linear regression example

2.1 Motivation

We consider the cats regression example from Venables and Ripley (1997) to
motivate the subsequent discussion. The aim is to predict the heart weight
Y from body weight X for 144 cats using the linear regression model

Y = β1 + β2X + ε,

where β1 denotes the intercept, β2 denotes the slope, and ε denotes the
Gaussian error term. A linear regression model can be fitted in R using the
command

R> lm.cats <- lm(Hwt ~ Bwt, data = cats)
R> lm.cats
Call: lm(formula = Hwt ~ Bwt, data = cats)

Coefficients:
(Intercept) Bwt

-0.357 4.034
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Fig. 1. A scatter plot of the cats data.

Figure 1 displays a scatter plot of the data including the regression line.
Assume that we are interested in testing whether the intercept or the

slope equal zero. The two related null hypotheses

H1 : β1 = 0 and H2 : β2 = 0. (1)

can be tested using correlated t tests. To simplify the notation, let

β =
(

β1

β2

)
and C =

(
1 0
0 1

)
. (2)

The estimates of the regression coefficients β and their covariance matrix
can be extracted from the previously fitted model by calling

R> betahat <- coef(lm.cats)
R> Vbetahat <- vcov(lm.cats)

Given these numbers we can compute the vector t containing the two indi-
vidual t test statistics and its associated correlation matrix as (see Section 3
for the theoretical background)



426 Bretz, F. et al.

R> C <- diag(2)
R> Sigma <- diag(1/sqrt(diag(C %*% Vbetahat %*% t(C))))
R> t <- Sigma %*% C %*% betahat
R> Cor <- Sigma %*% (C %*% Vbetahat %*% t(C)) %*% t(Sigma)

Note that t = (−0.5152, 16.1194)t with associated correlation matrix

[,1] [,2]
[1,] 1.0000 -0.9846
[2,] -0.9846 1.0000

Adjusted p-values are finally computed from the underlying bivariate t dis-
tribution using the pmvt function in the mvtnorm package (Hothorn et al.,
2002; Genz and Bretz, 2002):

R> library("mvtnorm")
R> df.cats <- nrow(cats) - length(betahat)
R> q <- sapply(abs(t), function(x) 1 - pmvt(-rep(x,
+ 2), rep(x, 2), corr = Cor, df = df.cats))

Note that by construction the adjusted p-values qi, i = 1, 2, are corrected
for multiplicity and can thus directly be compared with the pre-specified
significance level α. In our example, q1 = 0.6562 and q2 < 0.0001, which
indicates that the slope is significantly different from 0 but the intercept is
not.

Alternatively, we can compute a critical value u1−α derived from the
bivariate t distribution and compare the test statistics t = (t1, t2)t with
it. Using the function

R> delta <- rep(0, 2)
R> myfct <- function(x, conf) {
+ lower <- rep(-x, 2)
+ upper <- rep(x, 2)
+ pmvt(lower, upper, df = df.cats, corr = Cor,
+ delta, abseps = 1e-04)[1] - conf
+ }

we can compute the critical value u1−α with the uniroot function

R> u <- round(uniroot(myfct, lower = 1, upper = 5,
+ conf = 0.95)$root, 3)
R> u
[1] 2.043

In our example we set the confidence level as 1 − α = 0.95 and obtain
u1−α = 2.043. Since t1 = −0.5152 < u1−α and t2 = 16.1194 > u1−α, we
thus obtain the same test decisions as before. In addition, the critical value
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u1−α = 2.043 can be used to compute simultaneous confidence intervals for
the parameters β1 and β2. Since the parameter estimates are so highly corre-
lated, the critical value 2.043 from the bivariate t distribution is much smaller
than the Bonferroni critical value t0.9875,142 = 2.265.

2.2 The multcomp package

As seen from the example in Section 2.1, implementing multiple comparisons
involve a number of individual steps. The multcomp package provides a formal
framework to replace the previous calculations by standardized function calls.
In the following we apply it to the cats example to illustrate its use. The glht
function from multcomp takes a fitted response model and a matrix C defining
the hypotheses of interest to perform the multiple comparisons:

R> library("multcomp")
R> cats.ht <- glht(lm.cats, linfct = C)
R> summary(cats.ht)

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = Hwt ~ Bwt, data = cats)

Linear Hypotheses:
Estimate Std. Error t value p value

(Intercept) == 0 -0.357 0.692 -0.52 0.66
Bwt == 0 4.034 0.250 16.12 <1e-10 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
(Adjusted p values reported)

For each parameter βi, i = 1, 2, multcomp reports its estimate and standard
error. Taking the ratio of these two values for each parameter results in the
value of the test statistic. The adjusted p-values are reported in the last
column. Note that they are the same as calculated Section 2.1.

In addition, simultaneous confidence intervals can be calculated for each
parameter using the the confint function:

R> confint(cats.ht)
Simultaneous Confidence Intervals for General Linear Hypotheses

Fit: lm(formula = Hwt ~ Bwt, data = cats)

Estimated Quantile = 2.043

Linear Hypotheses:
Estimate lwr upr
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(Intercept) == 0 -0.357 -1.771 1.058
Bwt == 0 4.034 3.523 4.545

95% family-wise confidence level

The two-sided confidence interval for the intercept includes the 0, thus re-
flecting the previous test decision that we can not conclude the intercept to
be statistically significant. We further conclude that the slope parameter lies
roughly between 3.5 and 4.5.

3 Multiple comparisons in linear models

We now introduce a unified framework for multiple hypothesis testing in
general linear models. We use the example from Section 2 to illustrate some
of subsequent expressions. For details on linear model theory we refer to
standard textbooks, such as Searle (1971), for example.

We consider the common general linear model

Y = Xβ + ε, (3)

for a n× 1 vector of observations Y = (Y1, . . . , Yn)t. In model (3), X denotes
n× p design matrix with fixed and known entries (xij) and β = (β1, . . . , βp)t

denotes the fixed and unknown parameter vector. The n × 1 error vector ε
is assumed to follow a n-dimensional normal distribution with mean vector
0 = (0, . . . , 0)t and covariance matrix σ2In, where σ2 denotes the residual
error and In denotes the identity matrix of dimension n. Model (3) implies
that each individual observation yi follows the linear model

Yi = β1xi1 + . . . + βpxip + εi,

where εi
iid∼ N(0, σ2).

Assume that we are interested in performing pre-specified comparisons
among the parameters β1, . . . , βp. To this end, define a p × 1 vector c =
(c1, . . . , cp)t of known constants. The vector c thus reflects a single experi-
mental comparison of interest by considering the linear combination ctβ with
associated null hypothesis

H : ctβ = a (4)

for a fixed and known constant a. In the following, we refer to ctβ as the
(linear) function of interest. If we have multiple experimental questions, m
say, we obtain m vectors c1, . . . , cm, which can be summarized by the matrix
C = (c1, . . . , cm).

In the linear regression example from Section 2, we have measurements
of heart and body weight for n = 144 cats which are assumed to follow the
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linear model (3), where

Y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7.0
7.4
9.5
...

16.8
14.4
20.5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2.0
1 2.0
1 2.0
...

...
1 3.8
1 3.9
1 3.9

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The m = 2 hypotheses are given in equation (1) with a = (a1, a2)t = 0,
which result in the matrix C specified in equation (2).

Standard linear model theory ensures that the usual least square estimates

β̂ = (XtX)−XtY (5)

and

σ̂2 =
(Y − Xβ̂)t(Y − Xβ̂)

ν
(6)

are unbiased estimates of β and σ, respectively, where ν = n− rank(X) and
(XtX)− denotes some generalized inverse of XtX. We are interested in the
pivotal quantities

tj =
ct

j β̂ − aj

σ̂
√

ct
j(XtX)−cj

, j = 1, . . . ,m, (7)

one for each experimental question defined through cj . By construction, each
test statistic tj , j = 1, . . . ,m, follows under the null hypothesis (4) a central
univariate t distribution with ν degrees of freedom. The joint distribution of
t1, . . . , tm is multivariate t with ν degrees of freedom and correlation matrix

R = DCt(XtX)−CD,

where D = diag(ct
i(X

tX)−ci)−1/2. In the asymptotic case ν → ∞ or if σ
is known, the corresponding limiting multivariate normal distribution holds.
Confidence intervals for ct

jβ−aj with simultaneous coverage probability 1−α
are given by

[
ct

jβ̂ − aj − u1−ασ̂
√

ct
j(XtX)−cj ; ct

jβ̂ − aj + u1−ασ̂
√

ct
j(XtX)−cj

]
,

j = 1, . . . ,m, where u1−α denotes the critical value derived from the multi-
variate normal or t distribution. Numerical integration methods to calculate
the multivariate normal and t probabilities required for the computation of
adjusted p-values qi, i = 1, . . . ,m, and critical values u1−α are described by
Genz and Bretz (2002). For a general overview about these distributions we
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refer to the books of Kotz and Nadarajah (2004), Kotz, Balakrishnan and
Johnson (2000) and Tong (1990).

In the cats example, we have β̂ = (−0.3567, 4.0341)t and σ̂ = 1.4524. In
Section 2 we extracted this information from the fitted linear model. Alterna-
tively, one can compute these numbers using equations (5) and (6). One also
checks that plugging these estimates into equation (7) gives the test statistics
t1 = −0.5152 and t2 = 16.1194 with ν = 142 degrees of freedom. Recalling
the correlation −0.9846 between the two test statistics, one can then compute
the required bivariate t probabilities for the multiplicity adjusted p-values,
as shown in Section 2.1.

4 Conclusions

We have reviewed the general theory of multiple comparison procedures in
the context of linear models. The framework outlined in Section 3 allows
the inclusion of covariates and/or factorial treatment structures in classical
regression and ANOVA applications. Many well-known multiple comparison
procedures fit into this framework, such as the Tukey test for all-pairwise com-
parisons and the Dunnett test for many-to-one comparisons, see Hochberg
and Tamhane (1987) and Hsu (1996) for details.

Hothorn et al. (2008) extended the canonical description from Section 3 to
more general parametric and semi-parametric models, which allows a unified
treatise of multiple comparisons for generalized linear models, mixed mod-
els, survival models, etc. The underlying methods are all implemented in the
multcomp package, which in turn relies on the multivariate normal or t prob-
abilities returned by mvtnorm. We refer to Hothorn et al. (2008) for further
examples on its use.

As a matter of fact, the methods discussed in this paper can be used to
construct more powerful closed test procedures, as first discussed by Westfall
(1997). That is, for a given family of null hypotheses H1, . . . , Hn, an individ-
ual hypothesis Hi is rejected only if all intersection hypotheses HJ =

⋂
j∈J Hj

with i ∈ J ⊆ {1, . . . , n} are rejected (Marcus et al., 1976). The multcomp
package uses max t type statistics for each intersection hypothesis based on
the methods from this paper, thus accounting for stochastic dependencies.
Furthermore, the implementation of multcomp exploits logical constraints,
leading to computationally efficient, yet powerful truncated closed test pro-
cedures, see Westfall and Tobias (2007).
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Abstract. Consider a problem where N items (objects or individuals) are judged
by assessors using their perceptions of a set of performance criteria, or alternatively
by technical devices. In particular, two assessors might rank the items between 1 and
N on the basis of relative performance, independently of each other. We aggregate
the rank lists in that we assign one if the two assessors agree, and zero otherwise.
How far can we continue into this sequence of 0’s and 1’s before randomness takes
over? In this paper we suggest methods and algorithms for addressing this problem.
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1 Introduction

In various fields of application we are confronted with lists of distinct objects
in rank order. The ordering might be due to a measure of strength of evidence
or to an assessment based on expert knowledge or a technical device. The
ranking might also represent some measurement taken on the objects which
might not be comparable across the lists, for instance, because of different
assessment technologies or levels of measurement error.

In this paper our interest is to consolidate such lists of common objects,
under the assumption of a general decrease of the probability for consen-
sus of rankings with increasing distance from the top rank position. This
assumption is reasonable for the rank aggregation applications we have in
mind, and is equivalent to the notion of random degeneration of paired rank
information (when our input consists of two lists). Applications include the
combined analysis of gene expression measurements across experiments and
array platforms, data integration of results from internet search engines, or
the determination of consensus rankings in customer surveys. The first two
examples involve an additional aspect we wish to consider, namely lists of
extreme length, say, ten thousand and more (usually resulting from high-
dimensional analysis problems). The longer the lists, the more likely we are
to observe non-overlapping ranks.

Rank order problems are not new. They have been intensively studied in
psychometrics in the nineteen twenties (e.g. Thurstone, 1931), and later on
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in biometric experimental design problems (e.g. Bradley and Terry, 1952). A
more recent account is given in the book by Kendall and Gibbson (1990),
however, the classical statistical methodology cannot cope with very long
lists.

The last few years have seen an increasing research interest in rank ag-
gregation, focusing on computational approaches that allow calculation of a
consolidated list that satisfies a suitable minimum total distance criterion
with respect to two or more input lists. The goal of combining information
across multiple large data sources, studies or experiments is highly challeng-
ing indeed. The naive approach would be combinatorial, however, even for
moderately sized data sets it would be NP hard (see e.g. Fagin et al., 2003).
Current attempts to overcome this difficulty follow two different strategies.
Dwork et al. (2001), and Fagin, Kumar and Sivakumar (2003), developed
Markov chain meta-search algorithms for the internet, summarizing majority
preferences between pairs of objects across lists. DeConde et al. (2006) ap-
plied the Markov process framework to microarray findings obtained across
different array platforms. Lin and Ding (2008) derived a cross-entropy Monte
Carlo method for the integration of rank lists in genomic studies. What these
new algorithms have in common is the fact that they are still computation-
ally highly demanding. Our experience for the simple two-list integration case,
with the cross-entropy Monte Carlo method, is that the number of rankings
needs to be limited to about two hundred. Because of that, partial instead
of full lists are analyzed all the time, and the list length k of a so-called
top-k list is chosen arbitrarily. Such an ad-hoc approach is dissatisfying. This
motivates us to propose a moderate deviation-based inference concept for
identifying the k as the rank position where the consensus information of the
two lists, representing the same objects, degenerates into noise. To cope with
the above-mentioned demands, we need to provide a mathematical concept,
as well as an algorithmic solution, that can cope with very long lists of the
order of tens of thousands. In the problems that motivate this work, the total
number of objects is much larger than the number of comparable rankings
before noise prevails. In particular, assessors or technical devices often agree
in the case of many of the first 100 or so objects, but can give extremely noisy
rankings to the remaining objects, out of perhaps 10,000.

In Section 2 a sequence that represents the paired rank information of
two lists is introduced. Then in Section 3, for the problem outlined in Section
1, a simplified mathematical model is proposed, and a suitable algorithm is
derived. In Section 4 we study the numerical properties of the proposed algo-
rithm via simulations, and give recommendations for the choice of technical
and tuning parameters. The theoretical properties of our methodology are
derived in Section 5, summarized in three theorems 1. Finally we illustrate
our top-k list inference procedure on real data from a study in molecular
medicine.

1 A journal paper also providing the proofs is in preparation
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2 Definition of the problem

Assume data are observed as a sequence of 0’s and 1’s, say I1, . . . , IN . Early
entries in the sequence are predominantly 1’s, but the sequence eventually
degenerates into noise, at which point the 0’s and 1’s arise randomly and in
approximately equal proportions. Our main interest in the sequence is this
non-stationarity; we wish to define what is meant by, and to estimate, the
point j0 at which the sequence degenerates into noise, i.e. identify the proper
length of a partial list, usually denoted a top-k list.

Taking a mathematical view of the problem for a moment, and defining
pj = P (Ij = 1), we assume that there exists j0 ≥ 2 with the property that
pj ≥ 1

2 for 1 ≤ j ≤ j0 − 1, pj0−1 > 1
2 , and pj = 1

2 , for j ≥ j0. We seek to
estimate j0. We might interpret j0 as the point at which an estimable signal
in the sequence I1, . . . , IN ceases, and noise takes over.

Let us assume that there are two “assessors” that both rank, indepen-
dently of each other, N distinct objects o1, . . . , oN according to the extent to
which a particular attribute is present. The ranking is from 1 to N , without
ties. We might take Ij = 1 if the ranking given by the second assessor to the
object ranked j by the first assessor, is not distant more than d, say, from j,
and Ij = 0 otherwise. We could symmetrise this definition with respect to
the assessors, for example by asking that both, or at least one, of the two
distances not exceed 1. If we take d = 0 then symmetry already prevails, but
then we may need to adjust for “irregular” rankings; see Subsection 3.3.

Of course, the value of d represents a tuning parameter. In numerical
practice it would generally be chosen by a mixture of experimentation with
the real data, and simulation from a model which gave results reflecting those
data.

3 Model and methodology

3.1 A simplified mathematical model

In the discussion below, and in theoretical work in Section 5, we shall as-
sume that the Bernoulli random variables Ij are independent. Clearly, this
is not exactly correct, but it is a reasonable working approximation. Given
that our interest is in assessing distinctly nonstationary features of the pro-
cess Ij ; because it is all but simple to model dependence in a nonstationary
time-series of 0’s and 1’s; and since, in the real-data examples that motivate
our work, it is awkward to identify dependencies between assessors; it seems
difficult to replace independence by a practical alternative assumption. Our
independence assumption is justified in practice because k * N . Even in the
top-k list many Ij ’s are expected to have negligible dependence because of
irregular rankings.

As a consequence our simplified mathematical model is based on the fol-
lowing two assumptions:
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1. Independent Bernoulli random variables I1, . . . , IN are observed, with
pj ≥ 1

2 for each j ≤ j0 − 2, pj0−1 > 1
2 , and pj = 1

2 for j ≥ j0. From this
information we wish to estimate the value of j0, the point of degeneration
into noise.

2. The “general decrease” of pj for increasing j, implied by this condition,
need not be monotone.

3.2 The algorithm for estimating j0

The algorithm consists of an ordered sequence of “test stages,” s1, s2, . . ..
Stage sk terminates a distance Jsk

into the sequence I1, . . . , IN . When k is
odd, Jsk

is a potential lower bound to j0. We use the word potential since ran-
dom fluctuations can lead to errors, in which case the assertion that Js2k−1

is a lower bound may not be strictly correct. However, one can show that
when k = 1, the probability that Js2k−1 is a lower bound for j0 is approxi-
mately equal to 1 under our mathematical model (an analogous result could
be derived for each k ≥ 1).

Stage sk starts by drawing a pilot sample of size ν, consisting of the set of
values Ij for which j is among the first ν indices to the right of Jsk−1 −rν, if k
is odd, or to the left of Jsk−1 + rν, if k is even. (We could use a different pilot
sample size for each k, but considerations of simplicity lead us not to.) Here,
r > 1 is fixed; if r is not an integer then we interpret rν as the integer part of
that quantity. We include Jsk−1 ± rν in the set of ν indices, although it could
be excluded. The sequence of consecutive steps that leads from Jsk

± rν to
Jsk

is called the test stream for stage sk.
More generally, we use pilot samples of size ν to construct

p̂+
j =

1
ν

j+ν−1∑

�=j

I� and p̂−j =
1
ν

j∑

�=j−ν+1

I� . (1)

These quantities represent estimates of pj computed from the ν data pairs
I� for which � lies immediately to the right of j, or immediately to the left,
respectively. Pilot-sample size plays the role of a smoothing parameter in our
algorithm; its practical choice will be discussed in Section 4.

Choose the constant C > 0 so that

zν ≡
(
C ν−1 log ν

)1/2 (2)

is a moderate-deviation bound for testing the null hypothesis H0 that pk = 1
2

for ν consecutive values of k, versus the alternative H1 that pk > 1
2 for at

least one of the values of k. In particular, assuming that H0 applies to the
ν consecutive values of k in the respective series at (1), we reject H0 if and
only if either p̂+

j − 1
2 > zν or p̂−j − 1

2 > zν .
Under H0, the variance of p̂±j equals (4ν)−1. Therefore we should take

C > 1
4 if we are to control moderate deviations; see Section 4 for aspects
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of selection. These considerations are similar to the moderate-deviation ar-
guments implicit in work of Donoho and Johnstone (1994), and Donoho et
al. (1995), when constructing thresholds for wavelet expansions. See Amosova
(1972), and Rubin and Sethuraman (1965), for discussion of bounds for mod-
erate deviations.

Stage s1 of the algorithm starts with Js0 = 1, and takes the jth pilot
sample equal to the set of values Ik, j ≤ k ≤ j + ν− 1. From these respective
samples we compute the estimators p̂+

1 , p̂+
2 , . . ., defined at (1), and we conduct

successive tests by asking whether it is true that p̂+
j − 1

2 > zν . We stop at
the first integer j = Js1 for which this inequality fails, i.e. for which the
null hypothesis H0 is not rejected. The test stream corresponding to the first
stage of the algorithm is the increasing sequence of integers 1, . . . , Js1 .

Thus, Js1 is our first potential lower bound to the value of j0. Stage s1, and
any stage sk for odd k, consists of a sequence of tests conducted by moving
to the right; stage s2, and any stage sk for even k, consists of a sequence of
tests conducted by moving to the left.

The second stage starts at j = Js1 + rν. More generally, any even-
numbered stage starts rν to the right of the point where the previous odd-
numbered stage ended, and any odd-numbered stage starts rν units to the
left of where the previous even-numbered stage concluded. (The algorithm
terminates if the latter point would be less than 1.)

In stage s2 we conduct successive tests by asking whether it is true that
p̂−j − 1

2 > zν for j = Js1 + rν, Js1 + rν − 1, . . .. We stop at the first integer
j = Js2 for which the inequality holds. By construction, Js2 ≥ Js1 + ν −
2. The decreasing sequence of integers Js1 + rν, . . . , Js2 is the test stream
corresponding to stage s2 of the algorithm.

More generally, in odd-numbered stages we move to the right in one-unit
steps, and stop as soon as the inequality p̂+

j − 1
2 > zν fails; in even-numbered

stages we move to the left and stop as soon as p̂−j − 1
2 > zν . This see-sawing

action helps to guard against the algorithm stopping too soon because of a
chance cluster of “noisy” values of Ij . By jumping rν units in the direction
we had been moving during the previous test stream, and then working in the
opposite direction, we make the algorithm more robust against such clusters.

Our rules for constructing the estimator ĵ0 of j0, and for terminating the
algorithm, are as follows:
The algorithm is terminated and the results of stage s2k−1 are stored if one
or more of the following three cases arise:
(i) The algorithm enters a loop where the two adjacent stages, s2k−1 and s2k,
are repeated ad infinitum;
(ii) for some k, Js2k+1 ≤ Js2k−1 ;
(iii) Js2k

− 2ν ≤ 1.
In each of these cases our estimator of j0 is ĵ0 = Js2k−1 + 1

2ν. If the algorithm
has not terminated by stage s2k−1 then Js2k+1 > Js2k−1 (see Theorem 1 in
Section 5). Therefore, if the algorithm does not terminate then it ultimately
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reaches the right-hand end of the sequence 1, . . . , N of integers, and in this
case we define ĵ0 = N .

The suggestion that ĵ0 = Js2k−1 + 1
2ν is based on the fact that there is

moderately strong evidence that j0 lies towards the middle of the set of ν
indices immediately to the right of Js2k−1 .

3.3 Adjustments to allow for irregular rankings

There are situations in which our idealised mathematical model can be upset
by, among other things, one assessor’s inability to rank an object which the
other assessor can rank, and in fact ranks quite highly; or by the two assessors
giving quite different rankings to an object, with one of these rankings being
so high that it alters other high rankings that would otherwise be among
those on which the assessors agreed. Let us give an extreme example of the
last-mentioned difficulty. One assessor might give rank 1 to object o1, which
the other assessor ranks as N , and the assessors might concur on the relative
rankings of each of the objects o2, . . . , oN−1. In this case, and despite the
latter concurrence, all rankings of all objects differ.

We may deal with these problems by allowing the experimenter to discard
up to a predetermined number, m say, of ranked objects at each test stage,
prior to carrying out the test. Other adjustments could also be made, for
example by allowing interchanges of a given number of rankings, or by ad-
joining new “pseudo objects” with rankings determined by the experimenter.
However, the number of possibilities that need to be checked in these cases is
so large that the associated computational demand leads to difficulties. Our
decision to remove the first m objects at each stage, rather than only at the
start of the algorithm, is also made on grounds of simplicity. If the objects
were removed only at the start then we would typically have to go back and
adjust the choice of omitted objects during the sth stage, for each s.

The procedure in which a predetermined number, m say, of objects is
omitted from the rankings can be incorporated into the algorithm as follows.
Suppose we have just reached test stage s. We construct the subsequent test
stream, including the pilot sample, as described in Subsection 3.2; and we
also construct the analogue of that stream which is obtained by removing
any �, where 1 ≤ � ≤ m, of the objects among 1, . . . , N . The point Jsk

at
which we declare the stream to have concluded is taken to be the minimum,
if k is odd, or the maximum, if k is even, of the conclusion points over all
choices of k, for 1 ≤ k ≤ m.

4 Numerical properties

Because our mathematical model in Subsection 3.1 cannot be more than an
approximation to the complex decision problem we wish to address, an itera-
tive algorithm, adjustable for irregularity, was developed. Its implementation
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in the statistical and graphical computing environment R is highly efficient
(the numerical operations are approximately linear in N).

To execute the algorithm several parameters need to be set. Some of
them are technical parameters, one is a tuning (smoothing) parameter. The
same is true for all the rank aggregation algorithms mentioned in Section 1,
independently of what kind of methodology they use. In that sense there is
no way to “automatically” consolidate lists of ranked objects for the reason
of irregular rankings, and because of unknown probabilities pj in the top-k
rank list. In the aforementioned rank aggregation algorithms default values
are used (usually based on ad hoc assumptions about the data).

To study the numerical properties of the algorithm we performed a sim-
ulation experiment and analyzed its sensitivity with respect to the estimate
ĵ0 for various parameter settings. Because we have assumed that the data
(a top-k list plus the remainder part of the list where noise has taken over)
are observed as a sequence of I1, . . . , Ij0−1, Ij0 , . . . , IN , where k = j0 − 1,
we could generate the Ij ’s of the two list segments, separated by the in-
dex j0, as follows: Construct all non-stationary sequences as combinations of
two independent Bernoulli random variables, with the probabilities p(seg1) ∈
[0.6, 0.7, 0.8, 0.9, 1] for segment 1, and p(seg2) ∈ [0.1, 0.2, 0.3, 0.4, 0.5] for seg-
ment 2. For the top-k list it is assumed that P (Ij = 1) is larger than 0.5,
hence there is perfect or at least some consensus of rankings. For the remain-
ing part of the list it is supposed that P (Ij = 1) is 0.5 or smaller, which
means no or low consensus. The R function rbinom() was used to construct
these sequences. The length N of the full list was always 1,000. The range of
indices j0 we wished to estimate via our inference procedure was taken to be
j ∈ [10, 20, 30, 40, 50, 100, 150, 200, 250, . . . , 500].

Let us next specify the range of technical parameters, i.e. r and C, and
tuning parameters, i.e. ν, where the latter represents the pilot sample size.
We require r > 1, a parameter necessary to define the test stream for stage
sk. It is connected to the pilot sample size ν, and was considered for r ∈
[1.1, 1.2, 1.3, 1.4, 1.5, 1.6, . . . , 2.0]. The specification of the moderate deviation
bound in equation (2) requires us to choose the constant C. We know from
Subsection 3.2 that under H0, the variance of p̂±j equals (4ν)−1. Therefore
we should take C > 1

4 if we are to control moderate deviations. Actually we
studied the algorithm for C ∈ [0.251, 0.3, 0.35, 0.4, 0.45, 0.50, . . . , 1].

The pilot sample size ν plays the role of a smoothing parameter and is
therefore critical with respect to the estimation of ĵ0. We considered values
ν ∈ [10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500] in our simula-
tions.

Finally we comment on the parameter m. It allows the experimenter to
discard a predetermined number of ranked objects at each test stage sk. Its
choice demands some prior knowledge of the original data that are subject
to ranking, but it does not matter in the simulations as we constructed the
data stream without that sort of irregularity.
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Fig. 1. Plot of estimates ĵ0 against the true j0 for selected choices of parameter ν.

To illustrate the results of our simulation study we display two typical
plots. In Fig. 1 (assuming C = 0.4 and r = 1.2) for an input sequence
characterised by p(sec1) = 0.8 and p(sec2) = 0.2, we compare the real j0 with
the estimates ĵ0 for various values of ν. It can be seen clearly that longer top-
k rank lists require a larger pilot sample size ν. In general, we observed the
following approximate relationship: ν should be larger than j0, not exceeding
2j0, when C is chosen appropriately. (Our theoretical work in section 5 will
address the case where j0/N is relatively small, in which case the ranking
degenerates into noise relatively early. There, somewhat smaller values of ν/j0
are generally appropriate. However, as j0/N increases, a different theoretical
argument can be used to show that improved performance occurs for larger
values of ν/j0.) The role of the constant C is illustrated by Fig. 2 (p(sec1) =
0.8 and p(sec2) = 0.3). There the point of degeneration into noise is fixed at
40. We study pilot sample sizes in the proximity of j0, ranging between 10
and 100. The best estimation of j0 is obtained for C < 0.6 as long as we do
not grossly over- or undersmooth (i.e. avoid selecting ν = 10 or ν = 100).

Our main simulation results can be summarized in the following way. The
technical constant r can be fixed at, say r = 1.2, without substantial influence
on the estimate ĵ0 in most scenarios. Indeed, our method seems to be robust
against choice of r, provided we take care, as indicated above, when selecting
ν. (For example, if we were to choose ν too small it would be advisable to
attempt to correct for this by choosing r relatively large.)

We observe that the constant C has a quite different influence. The ef-
fect of its choice on the estimate is highly dependent on the combination of
the probabilities p(seg1) and p(seg2). When p(seg1) is numerically close to
p(seg2), i.e. the two segments are poorly separated, the value of C is im-
portant. Choices that allow us to compensate for poor segment separability
are in the range of 0.25 < C < 0.6. Larger values of C should not be con-
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Fig. 2. Plot of estimates ĵ0 in dependence of constant C and tuning parameter ν.

sidered (obviously the worst choice is C = 1). The pilot sample size ν is
our smoothing parameter and seems to be empirically best approximated
by values ranging from j0 to 2j0 (of course, in reality we do not know j0).
This means in practice that a set of values related to the assumed index k
of the top list (at least its order of magnitude should be known) should be
considered. The choice of ν is certainly more critical than the selection of C.

5 Theoretical properties

Our first theorem justifies the claims made by rules about long-run properties
of the algorithm, and in particular about termination.

Theorem 1. For each integer k, Js2k−1 +ν−1 ≤ Js2k
. The values of Js2k−1 ,

for k ≥ 1, form a strictly monotone increasing sequence, until the algorithm
terminates. That is, for each k ≥ 1, if the algorithm has not terminated by
the end of stage s2k−1 then Js2k+1 > Js2k−1 .

Next we take an asymptotic view of properties of the estimator ĵ0. We
suppose that j0 = j0(n) is on the scale of n, in particular that C1 n ≤ j0 ≤
C2 n where 0 < C1 < C2 < ∞ are constants, and n is an integer that we
shall permit to diverge to infinity. Furthermore, it is assumed that N is much
larger than n, i.e. n/N → 0 as n → ∞. These assumptions reflect the sizes of
j0 and N in the simulated examples in Section 4. We take the pilot sample
size, ν, to diverge with n; it will increase at a slower rate than n itself. Given
B > C1/2, put p̄j =

∑
j≤k≤j+ν−1 pk and

j1 = j1(B, ν) = sup
{
j ∈ [1, j0] : p̄j −

1
2
≥ B

(
ν−1 log ν

)1/2
}
, (3)

with j1 = j0 if this set is empty.
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Theorem 2. Assume that the data I1, . . . , IN are generated by our mathe-
matical model; that C, in the definition of zν at (2), satisfies C > 1

2 ; that
ν = ν(n) = o(n); and that, for constants 0 < B1 < 1 and B2 > 0, ν ≥ B2 nB1 .
Then, if B is so large that 2B1 (B − C1/2)2 > 1, and with j1 = j1(B, ν), we
have |ĵ0 − j0| = Op{min(j0 − j1, ν)}.

To illustrate the implications of Theorem 2, let us suppose that pj de-
creases to 1

2 in a way that is bounded below by a linear function:

pj ≥ min
{

1
2 + αn (j0 − j), 1

}
for 1 ≤ j ≤ j0 , and pj = 1

2 for j > j0 , (4)

where αn > 0 denotes a small quantity depending on n and decreasing to
zero. As αn decreases more rapidly, the problem of estimating j0 becomes,
in general, more difficult. In particular, taking ν = �nβ� (the integer part of
nβ) where 0 < β < 1 is fixed, we see from Theorem 2 that

αn = n−3β/2 (logn)1/2 (5)

represents an order of magnitude of αn for which approximation of j0 by ĵ0
at rate nβ is possible. As β decreases, the rate of approximation to j0 by ĵ0
improves, but to achieve the faster rate the difficulty of the problem must
decrease; that is, the order of magnitude of αn must increase.

It can be shown that, in the context of sequences {pj} satisfying (4), the
order of magnitude of αn at (5) is minimax-optimal, except for the logarith-
mic factor there. If it were known that pj admitted the concise “no faster
than linear” rate of decrease at (4), then an improved estimator of j0 could
be constructed, and the logarithmic factor could be removed from (5). Nev-
ertheless, ĵ0 is minimax-optimal in a different sense. We treat this problem
next.

First we describe a class P of probability sequences p = (p1, . . . , pN).
Given 0 < C1 < C2 < ∞, 0 < C3 < 1

2 and 0 < β < 1, let J denote
the set of integers j0 ∈ [C1 n,C2 n]; let P(j0) be the class of p for which
p̄j ≥ 1

2 + C3 for all j ≤ j0 − 2 �nβ�, pj0−1 > 0, and pj = 0 for j ≥ j0; and
let P denote the union of P(j0) over j0 ∈ J . Assume the data are generated
by our simplified model in Subsection 3.1, let ĵ0 denote the estimator of j0
introduced in Subsection 3.2, with ν = �nβ�, and let j̃0 be any measurable
function of the data. Property (6) below is a version of Theorem 2 holding
uniformly in p ∈ P , and (7) is a converse to that result.

Theorem 3. If the data I1, . . . , IN are generated by our mathematical model,
then there exist constants B1, B2 > 0 such that

lim
n→∞

sup
p∈P

P
(∣∣ĵ0 − j0

∣∣ ≥ B1 nβ
)

= 0 , (6)

and for all sufficiently large n,

inf
j̃0

sup
p∈P

P
(∣∣j̃0 − j0

∣∣ > B2 nβ
)

= 1 . (7)
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Fig. 3. Plot of cumulative probabilities Pcum(Ij = 1) across a range of distances d.

6 An application in molecular medicine

To illustrate our approach we applied it to publicly available genomic data.
They are part a large breast cancer study (Sørlie et al., 2001) with the aim of
classifying carcinomas based on variations in gene expression patterns derived
from cDNA microarrays (Stanford technology). We reanalyzed one set of
genes, hybridized in two different laboratories, applying the R package samr,
thus obtaining two rankings (rank lists) consisting of the same genes, based on
differential expression (criterion: four-fold change). The list length was N =
500 (no missing values). Our goal was to estimate the point of degeneration
into noise j0, assuming p = 1

2 , and a top-k list of genes highly supported by
the assessment of both laboratories.

To execute our algorithm we had to specify the distance parameter d. For
that purpose we produced an exploratory plot (see Fig. 3) of the cumulative
probabilities Pcum(Ij = 1) for j and for d ∈ {5, 10, 15, 20, 25, . . . , 500}, point-
ing at d = 20 (vertical line at that j = d where the steps of Pcum(Ij = 1)
stabilise). Assuming m = 0 and that C is chosen from the interval (0.25, 1],
a pilot sample size of ν = 40 resulting in ĵ0 = 22 seems to be reasonable; see
Fig. 4. Further we can conclude from this plot that 0.25 < C < 0.6 robustifies
the effect of the pilot sample size on the estimate ĵ0 (ν = 10 is too small and
ν = 50 is too large, the other values produce a ĵ0 ∈ [18, 24]). The length of
the top-k rank list is k = ĵ0 − 1 = 21 (remember, the full lists consist of 500
objects). For this value of k, the overlap of objects (genes) between the two
laboratories is about 80%. These are the differentially expressed genes that
should for sure be further analysed with respect to patient survival.
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maier (Medical University of Graz) for technical support.



444 Hall, P. and Schimek, M.G.

0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

C

ha
t(

j_
0)

nu = 10
nu = 20
nu = 30
nu = 40
nu = 50
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Abstract. During a forward search from a robustly chosen starting point the plot
of maximum Mahalanobis distances of observations in the subset may provide a
test for outliers. This is not the customary test. We obtain distributional results
for this distance during the search and exemplify its use. However, if clusters are
present in the data, searches from random starts are required for their detection.
We show that our new statistic has the same distributional properties whether the
searches have random or robustly chosen starting points.

Keywords: clustering, Mahalanobis distance, order statistic, outlier detec-
tion, robustness

1 Introduction

The forward search is a powerful general method for detecting systematic or
random departures from statistical models, such as those caused by outliers
and the presence of clusters. The forward search for multivariate data is
given book-length treatment by Atkinson, Riani and Cerioli (2004). To detect
outliers they study the evolution of Mahalanobis distances calculated during
a search through the data that starts from a carefully selected subset of
observations. More recently Atkinson and Riani (2007) suggested the use of
many searches starting from random starting points as a tool in the detection
of clusters. An important aspect of this work is the provision of bounds
against which to judge the observed values of the distances. Atkinson and
Riani (2007) use simulation for this purpose as well as providing approximate
numerical values for the quantiles of the distribution.

These theoretical results are for the minimum Mahalanobis distance of
observations not in the subset used for fitting when the starting point of the
search is robustly selected. In this paper we consider instead the alternative
statistic of the maximum Mahalanobis distance amongst observations in the
subset. We derive good approximations to its distribution during the forward
search and empirically compare its distribution to that of the minimum dis-
tance, both for random and robust starts. We find for the maximum distance,
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but not for the minimum, that the distribution of the distance does not de-
pend on how the search starts. Our ultimate purpose is a more automatic
method of outlier and cluster identification.

We start in §2 with an introduction to the forward search that emphasises
the importance of Mahalanobis distances in outlier detection. Some introduc-
tory theoretical results for the distributions of distances are in §3. Section 4
introduces the importance of random start searches in cluster detection. Our
main theoretical results are in §5 where we use results on order statistics
to derive good approximations to the distribution of the maximum distance
during the search. Our methods are exemplified in §6 by the analysis of data
on horse mussels. The comparison of distributions for random and elliptical
starts to the search is conducted by simulation in §7.

2 Mahalanobis distances and the forward search

The tools that we use for outlier detection and cluster identification are plots
of various Mahalanobis distances. The squared distances for the sample are
defined as

d2
i (µ̂, Σ̂) = {yi − µ̂}T Σ̂−1{yi − µ̂}, (1)

where µ̂ and Σ̂ are estimates of the mean and covariance matrix of the n
observations.

In the forward search the parameters µ and Σ are replaced by their stan-
dard unbiased estimators from a subset of m observations, yielding estimates
µ̂(m) and Σ̂(m). From this subset we obtain n squared Mahalanobis distances

d2
i (m) = {yi − µ̂(m)}T Σ̂−1(m){yi − µ̂(m)}, i = 1, . . . , n. (2)

We start with a subset of m0 observations which grows in size during the
search. When a subset S(m) of m observations is used in fitting, we order
the squared distances and take the observations corresponding to the m + 1
smallest as the new subset S(m + 1). In what we call ‘normal progression’
this process augments the subset by one observation, but sometimes two or
more observations enter as one or more leave.

In our examples we look at forward plots of quantities derived from the
distances di(m). These distances tend to decrease as n increases. If interest
is in the latter part of the search we may use scaled distances

d sc
i (m) = di(m) ×

(
|Σ̂(m)|/|Σ̂(n)|

)1/2v

, (3)

where v is the dimension of the observations y and Σ̂(n) is the estimate of
Σ at the end of the search.

To detect outliers Atkinson et al. (2004) and Atkinson and Riani (2007)
examined the minimum Mahalanobis distance amongst observations not in
the subset

dmin(m) = min di(m) i /∈ S(m), (4)
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or its scaled version d sc
min(m). In either case let this be observation imin(m).

If observation imin(m) is an outlier relative to the other m observations, the
distance (4) will be large compared to its reference distribution.

In this paper we investigate instead the properties of the maximum Ma-
halanobis distance amongst the m observations in the subset

dmax(m) = max di(m) i ∈ S(m), (5)

letting this be observation imax(m). Whether we monitor dmax(m) or
dmin(m) the search is the same, progressing through the ordering of d2

i (m).

3 Minimum and maximum Mahalanobis distances

We now consider the relationship between dmin(m) and dmax(m) as outlier
tests. This relationship depends on the subsets S(m) and S(m + 1).

Let the kth largest ordered Mahalanobis distance be d[k](m) when esti-
mation is based on the subset S(m). In normal progression

d[m+1](m) = dmin(m) (6)

and S(m + 1) is formed from S(m) by the addition of observation imin(m).
Likewise, in normal progression this will give rise to the largest distance
within the new subset, that is

d[m+1](m + 1) = dmax(m + 1) = dimin(m)(m + 1). (7)

The distance dimin(m)(m+ 1) is that for the new observation imin(m) when
the parameters are estimated from S(m + 1). The consequence of (7) is that
both dmax(m + 1) and dmin(m) are tests of the outlyingness of observation
imin(m).

Although both statistics are testing the same hypothesis they do not have
the same numerical value and should be referred to different null distribu-
tions. In §5 we discuss the effect of the ranking of the observations on these
distributions as well as the consequence of estimating µ and Σ from a subset
of the observations. For estimates using all n observations dmax(n) is one of
the distances in (1). Standard distributional results in, for example, Atkinson
et al. (2004, §2.6) show that

d2
i (µ̂, Σ̂) = d2

i (n) ∼ (n− 1)2

n
Beta

(
v

2
,
n− v − 1

2

)
. (8)

On the other hand, d2
min(n − 1) is a deletion distance in which the pa-

rameters are estimated, in general, with the omission of observation i. The
distribution of such distances is

d2
(i) ∼

n

(n− 1)
v(n− 2)

(n− v − 1)
Fv,n−v−1, (9)
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although the distribution of d2
min(n− 1) depends on the order statistics from

this distribution. For moderate n the range of the distribution of d2
i (n) in

(8) is approximately (0, n) rather than the unbounded range for the F dis-
tribution of the deletion distances. As we shall see, the consequence is that
the distribution of d2

max(m) has much shorter tails than that of d2
min(m),

particularly for small m.
Our argument has been derived assuming normal progression. This occurs

under the null hypothesis of a single multivariate normal population when
there are no outliers or clusters in the data, so that the ordering of the obser-
vations by closeness to the fitted model does not alter appreciably during the
search. Then we obtain very similar forward plots of dmax(m) and dmin(m),
even if they have to be interpreted against different null distributions. In fact,
we do not need the order to remain unchanged, but only that imin(m) and
imax(m + 1) are the same observation and that the other observations in
S(m+ 1) are those that were in S(m). Dispersed outliers likewise do not ap-
preciably affect the ordering of the data. This is however affected by clusters
of observations that cause appreciable changes in the parameter estimates
as they enter S(m). A discussion of the ordering of observations within and
without S(m) is on pp. 68-9 of Atkinson et al. (2004).

4 Elliptical and random starts

To find the starting subset for the search Atkinson et al. (2004) use the robust
bivariate boxplots of Zani, Riani and Corbellini (1998) to pick a starting
set S∗(m0) that excludes any two-dimensional outliers. The boxplots have
elliptical contours, so we refer to this method as the elliptical start. However,
if there are clusters in the data, the elliptical start may lead to a search
in which observations from several clusters enter the subset in sequence in
such a way that the clusters are not revealed. Searches from more than one
starting point are then needed to reveal the clustering structure. If we start
with an initial subset of observations from each cluster in turn, the other
clusters are revealed as outliers. However, such a procedure is not suitable for
automatic cluster detection. Atkinson and Riani (2007) therefore instead run
many forward searches from randomly selected starting points, monitoring
the evolution of the values of dmin(m) as the searches progress. Here we
monitor dmax(m).

As the search progresses, the examples of Atkinson and Riani (2007) show
that the effect of the starting point decreases. Once two searches have the
same subsets S(m) for some m, they will have the same subsets for all succes-
sive m. Typically, in the last third of the search the individual searches from
random starts converge to that from the elliptical start. The implication is
that the same envelopes can be used, except in the very early stages of the
search, whether we use random or elliptical starts. If we are looking for a few
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outliers, we will be looking at the end of the search. However, the envelopes
for dmin(m) and dmax(m) will be different.

5 Envelopes from order statistics

For relatively small samples we can use simulation to obtain envelopes for
dmax(m) during the search. For larger samples we adapt the method of Ri-
ani, Atkinson and Cerioli (2007) who find very good approximations to the
envelopes for dmin(m) using order statistics and a result of Tallis (1963) on
truncated multivariate normal distributions.

Let Y[m] be the mth order statistic from a sample of size n from a univari-
ate distribution with c.d.f. G(y). From, for example Lehmann (1991, p. 353)
and Guenther (1977), the required quantile of order γ of the distribution of
Y[m] say ym,n;γ can be obtained as

ym,n;γ = G−1

(
m

m + (n−m + 1)x2(n−m+1),2m;1−γ

)
, (10)

where x2(n−m+1),2m;1−γ is the quantile of order 1 − γ of the F distribution
with 2(n−m + 1) and 2m degrees of freedom. Riani et al. (2007) comment
that care needs to be taken to ensure that the numerical calculation of this
inverse distribution is sufficiently accurate as m → n, particularly for large
n and extreme γ.

We now consider our choice of G(x), which is different from that of Riani
et al. (2007). We estimate Σ on m− 1 degrees of freedom. The distribution
of the m distances in the subset can, from (8), be written as

d2
i (m) ∼ (m− 1)2

m
Beta

(
v

2
,
m− v − 1

2

)
, i ∈ S(m). (11)

The estimate of Σ that we use is biased since it is calculated from the m
observations in the subset that have been chosen as having the m smallest
distances. However, in the calculation of the scaled distances (3) we ap-
proximately correct for this effect by multiplication by a ratio derived from
estimates of Σ. So the envelopes for the scaled Mahalanobis distances derived
from dmax(m) are given by

Vm,γ =

√
(m− 1)2

m

√
ym,n;γ, (12)

with G the beta distribution in (11).
For unscaled distances we need to correct for the bias in the estimate

of Σ. We follow Riani et al. (2007) and consider elliptical truncation in the
multivariate normal distribution. From the results of Tallis (1963) they obtain
the large-sample correction factor

cFS(m) =
m/n

P (X2
v+2 < χ2

v,m/n)
, (13)
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with χ2
v,m/n the m/n quantile of χ2

v and X2
v+2 a chi-squared random vari-

able on v + 2 degrees of freedom. Envelopes for unscaled distances are then
obtained by scaling up the values of the order statistics

V ∗
m,γ = cFS(m)Vm,γ .

Figure 1 shows the agreement between simulated envelopes (continuous
lines) and theoretical envelopes (dotted lines) for dmax(m) when n = 1000.
Scaled distances are in the upper panel; agreement between the two sets of
envelopes is excellent throughout virtually the whole range. Agreement for
the unscaled distances in the lower panel of the figure is less good, but is
certainly more than satisfactory for inferences about outliers at least in the
last half of the search.

Unfortunately, the inclusion of Σ̂(n) in the expression for scaled distances
(3) results in small distances in the presence of outliers, due to the inflation
of the variance estimate and to consequent difficulties of interpretation. For
practical data analysis we have to use the unscaled distances, which are less
well approximated.

6 Horse mussels

As an example of the uses of elliptical and random starts in the analysis
of multivariate data we look at measurements on horse mussels from New
Zealand introduced by Cook and Weisberg (1994, p. 161) who treat them as
regression with muscle mass, the edible portion of the mussel, as response.
They focus on independent transformations of the response and of one of
the explanatory variables. Atkinson et al. (2004, §4.9) consider multivariate
normality obtained by joint transformation of all five variables.

There are 82 observations on five variables: shell length, width, height
and mass and the mass of the mussels’ muscle, which is the edible part.

We begin with an analysis of the untransformed data using a forward
search with an elliptical start. The left-hand panel of Figure 2 monitors
dmin(m), whereas the right-hand panel monitors dmax(m). The two sets
of simulation envelopes were found by direct simulation of 5,000 forward
searches. The figure shows how very different the two distributions are at
the beginning of the search. That in the left-hand panel for dmin(m) is de-
rived from the unbounded F distribution (9) whereas that for dmax(m) in
the right-hand panel is derived from the beta distribution (11).

The two traces are very similar once they are calibrated by the envelopes.
They both show appreciable departure from multivariate normality in the last
one third of the search. Since we are selecting observations by their closeness
to the multivariate normal model, we expect departure, if any, to be at the
end of the search. Even allowing for the scaling of the two plots, the maximum
distances seem to show less fluctuation at the beginning of the search. For
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Fig. 1. Envelopes for Mahalanobis distances dmax(m) when n = 1000 and v = 5.
Dotted lines from order statistics, continuous lines from 5,000 simulations. Upper
panel scaled distances, lower panel unscaled distances. Elliptical starts. 1%, 50%
and 99% points.
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Fig. 2. Horse mussels: forward search on untransformed data. Left-hand panel
dmin(m), right-hand panel dmax(m). Elliptical starts; 1%, 50% and 99% points
from 5,000 simulations.

much of the rest of the paper we focus on plots of the maximum Mahalanobis
distances dmax(m).

We now analyse the data using a multivariate version of the paramet-
ric transformation of Box and Cox (1964). As a result of their analy-
sis Atkinson et al. (2004) suggest the vector of transformation parameters
λ = (0.5, 0, 0.5, 0, 0)T ; that is, the square root transformation for y1 and y3

and the logarithmic transformation for the other three variables. We look at
forward plots of dmax(m) to see whether this transformation yields multi-
variate normality.

The upper-left panel of Figure 3 shows the maximum distance for all
n = 82 observations for the transformed data. The contrast with the right-
hand panel of Figure 2 is informative. The plot still goes out of the 99%
envelope at the end of the search, but the number of outliers is much smaller,
now only around 5.

The last five units to enter are those numbered 37, 16, 78, 8 and finally 48.
The plot of the maximum distance in the upper-right panel of Figure 3 shows
that, with these five observations deleted, the last value just lies below the
99% point of the distribution. We have found a multivariate normal sample,
after transformation, with five outliers. That there are five outliers, not four,
is confirmed in the lower panel of Figure 3 where observation 37 has been re-
included. Now the plot of maximum distances goes outside the 99% envelope
at the end of the search.

The limits in figures like 3 have been simulated to have the required
pointwise level, that is they are correct for each m considered independently.
However, the probability that the observed trace of values of dmax(m) ex-
ceeds a specific bound at least once during the search is much greater than
the pointwise value. Atkinson and Riani (2006) evaluate such simultaneous
probabilities; they are surprisingly high.
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Fig. 3. Horse mussels: forward search on transformed data. Plots of dmax(m) for
three different sample sizes. Upper-left panel n = 82; upper-right panel, observa-
tions 37, 16, 78, 8 and 48 removed (n = 77). Lower panel, observation 37 re-included
(n = 78). Elliptical starts; 1%, 50% and 99% points from 5,000 simulations. There
are five outliers.

7 Elliptical and random starts

We have analysed the mussels data and investigated the properties of
dmax(m) and dmin(m) using searches with elliptical starts. Finally we look
at the properties of plots of both distances when random starts are used, for
example to aid in the identification of clusters.

The upper panel of Figure 4 presents a comparison of simulated envelopes
for random and elliptical starts for dmax(m) from data with the same dimen-
sions as the mussels data. For this small data set there is no operationally
important difference between the two envelopes. The important conclusion
is that, for larger data sets, we can use the approximations of §5 based on
order statistics whether we are using random or elliptical starts.

The surprising conclusion that we obtain the same envelopes for searches
from elliptical or random starts however does not hold when instead we moni-
tor dmin(m). The lower panel of Figure 4 repeats the simulations for dmin(m).
Now there is a noticeable difference, during the first half of the search, be-
tween the envelopes for random and those from elliptical starts.

We now consider the implications of this difference on the properties of
individual searches. The left-hand panel of Figure 5 repeats the simulated
envelopes for elliptical starts from the upper panel of Figure 4 and adds 250
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Fig. 4. Simulated envelopes for Mahalanobis distances when n = 82 and v = 5.
Upper panel, dmax(m), lower panel dmin(m) Dotted lines from elliptical starts,
continuous lines from random starts. 1%, 50% and 99% points from 5,000 simula-
tions.
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trajectories of distances for dmax(m) for simulations from random starting
points. The simulated values nicely fill the envelope, although there are a
surprising number of transient peaks above the envelope. The right-hand
panel of the figure repeats this process of envelopes from elliptical starts and
trajectories from random starts but for the minimum distances dmin(m).
Now, as we would expect from Figure 4, the simulated values sit a little low
in the envelopes. If a subset contains one or more outliers, these will give rise
to a too large estimate of Σ. As a consequence, some of the distances of units
not included in the subset will be too small and the smallest of these will be
selected as dmin(m). On the contrary, if outliers are present in S(m) when
we calculate dmax(m), the distance that we look at will be that for one of
the outliers and so will not be shrunken due to the too-large estimate of Σ.
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Fig. 5. Simulated envelopes from elliptical starts for Mahalanobis distances when
n = 82 and v = 5 with 250 trajectories from random starts. Left-hand panel
dmax(m), right-hand panel dmin(m).

Our justification for the use of random start forward searches was that
searches from elliptical starts may not detect clusters in the data if these start
from a subset of units in more than one cluster. We have however analysed the
mussels data using values of dmax(m) from elliptical starts. Our conclusion,
from Figure 3, was that after transformation there were 77 units from a
multivariate normal population and five outliers. We checked this conclusion
using random start forward searches with dmax(m) and failed to detect any
clusters.

The purpose of this paper has been to explore the properties of the max-
imum distance dmax(m). We have found its null distribution and obtained
good approximations to this distribution for use in the forward search.The
lack of dependence of this distribution on the starting point of the search is
an appealing feature. However, we need to investigate the properties of this
measure when the null distribution does not hold. One particular question is
whether use of dmax(m) provides tests for outliers and clusters that are as
powerful as those using the customary minimum distance dmin(m).
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Abstract. In this article different development phases and the current state of the
Generalized Differential Evolution algorithm, that we have developed, are summa-
rized. Generalized Differential Evolution is a general purpose solver for non-linear
global optimization problems with multiple constraints and objectives. It is based
on a relatively recent Evolutionary Algorithm, Differential Evolution, extending it
for solving constrained multi-objective problems.
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1 Introduction

During the last couple of decades Evolutionary Algorithms (EAs) have gained
increasing popularity due to their capability of dealing with difficult objective
functions, which are, e.g., discontinuous, non-convex, multi-modal, and non-
differentiable. Also multi-objective EAs (MOEAs) have gained popularity
since they are capable of providing multiple solution candidates in a single
run that is especially desirable with multi-objective optimization problems
(MOPs).

Constrained multi-objective optimization is referring to simultane-
ous optimization of M objective functions subjected to K constraint func-
tions:

minimize {f1(x), f2(x), . . . , fM (x)}
subject to gk(x) ≤ 0, k = 1, 2, . . . ,K .

(1)

Typically, MOPs are converted to single-objective optimization problems by
predefining weighting factors for different objectives to express the relative
importance of each. Optimizing several objectives simultaneously without
articulating the relative importance of each objective a priori is called Pareto-
optimization (Pareto (1896)). A solution is Pareto-optimal if none of the
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objectives can be improved without impairing at least one other objective.
If the solution can be improved so, that at least one objective improves and
the other objectives do not decline, the new solution (Pareto-)dominates the
original solution.

The objective of Pareto-optimization is to find a set of solutions that are
not dominated by any other solution. A set of Pareto-optimal solutions form
a Pareto front, and an approximation of the Pareto front is called a set of
non-dominated solutions, because the solutions in this set are not dominating
each other in the space of objective functions. From the set of non-dominated
solutions the decision-maker picks a solution, which provides a suitable com-
promise between the objectives for his/her needs. This can be viewed as a
posteriori articulation of the decision-makers preferences on the relative im-
portance of each objective.

Weak dominance relation + between two vectors is defined such that x1

weakly dominates x2, i.e., x1 + x2 iff ∀i : fi(x1) ≤ fi(x2). Dominance re-
lation ≺ between two vectors is defined such a way that x1 dominates x2,
i.e., x1 ≺ x2 iff x1 + x2 ∧ ∃i : fi(x1) < fi(x2). The dominance relationship
can be extended to take into consideration constraint values besides objec-
tive values. Constraint-domination ≺c is defined here such a way that x1

constraint-dominates x2, i.e., x1 ≺c x2 iff any of the following conditions is
true (Lampinen (2001)):

1. x1 and x2 are infeasible and x1 dominates x2 in the constraint function
violation space.

2. x1 is feasible and x2 is not.
3. x1 and x2 are feasible and x1 dominates x2 in the objective function

space.

The definition for weak constraint-domination +c is analogous when the dom-
inance relation is changed to weak dominance in the above definition. The
weak constraint-domination relation can be formally defined as:

x1 +c x2 iff

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩

∃k ∈ {1, . . . ,K} : gk(x1) > 0
∧
∀k ∈ {1, . . . ,K} : g′k(x1) ≤ g′k(x2)

∨⎧
⎨

⎩

∀k ∈ {1, . . . ,K} : gk(x1) ≤ 0
∧
∃k ∈ {1, . . . ,K} : gk(x2) > 0

∨⎧
⎨

⎩

∀k ∈ {1, . . . ,K} : gk(x1) ≤ 0 ∧ gk(x2) ≤ 0
∧
∀m ∈ {1, . . . ,M} : fm(x1) ≤ fm(x2)

, (2)

where g′k(x) = max (gk(x), 0) represents a constraint violation.
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2 Differential Evolution

Differential Evolution (DE) (Storn and Price (1995), Price et al. (2005)) is
a relatively new EA that has gained considerable popularity during the pre-
vious years. Design principles in DE are simplicity, efficiency, and use of
floating-point encoding instead of binary numbers that are often used in Ge-
netic Algorithms (Goldberg (1989)). The original DE algorithm was designed
for unconstrained single objective optimization over continuous spaces. This
article describes Generalized Differential Evolution (GDE) algorithm, a DE
extension for multi-objective and multi-constrained optimization, and its de-
velopment phases.

In the following, the most popular DE variant, DE/rand/1/bin, is de-
scribed in detail. Since DE/rand/1/bin, is designed for unconstrained single-
objective optimization, the notations in this section are for single-objective
optimization.

Like any typical EA, DE is starting with an initial population of candi-
date solutions, which is then improved by applying selection, mutation, and
crossover operations until stopping criterion, e.g., a predefined for the num-
ber of generations to be computed, is reached. Typically, the values for the
initial population are generated randomly. Formally this can be presented as:

PG = {x1,G,x2,G, . . . ,xNP,G} , xi,G = (x1,i,G, x2,i,G, . . . , xD,i,G)
xj,i,G=0 = x

(lo)
j + rand j [0, 1] ·

(
x

(hi)
j − x

(lo)
j

)

i = 1, 2, . . . , NP, NP ≥ 4, j = 1, 2, . . . , D
, (3)

where PG denotes a population after G generations, xi,G denotes a decision
vector (or individual) of the population, and rand j [0, 1] denotes a uniformly
distributed random variable in the range [0, 1]. Terms x

(lo)
j and x

(hi)
j are the

lower and upper parameter bounds, respectively. The size of the population
is denoted by NP and the dimension of decision vectors is denoted by D.

The new trial solutions are generated by mutation and crossover oper-
ations. DE goes through each decision vector xi,G of the population and
creates a corresponding trial vector ui,G as follows:

r1, r2, r3 ∈ {1, 2, . . . , NP} ,
(randomly selected,

except mutually different and different from i)
jrand = round (rand i[0, 1) ·D)
for(j = 1; j ≤ D; j = j + 1)
{

if(rand j [0, 1) < CR ∨ j == jrand)
uj,i,G = xj,r3,G + F · (xj,r1,G − xj,r2,G)

else
uj,i,G = xj,i,G

}

. (4)
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Indices r1, r2, and r3 are referring to three randomly selected population
members. CR and F are user defined control parameters. CR is a probability
value controlling the crossover operation. F is a scaling factor controlling
mutation and its value is typically (0, 1+] (1+ is expressing that there is no
hard theoretical upper limit). The weighted difference between two randomly
chosen vectors F · (xr1,G − xr2,G) defines the magnitude and direction of
mutation. The difference is then simply added to a third randomly chosen
vector, xr3,G , in order to mutate it. Thus, the weighted differential of two
population members is applied to mutate the third one.

DE is a self-adaptive process in the same way as in Covariance Matrix
Adaptation Evolutionary Strategies (Hansen and Ostermeier (1996)) but
without such algorithmic complexity and the computational burden of co-
variance matrix calculations that are scaling unfavorably with the problem
dimensionality. Other strengths of DE are simplicity and ability to perform
a rotationally invariant search.

Finally, after each mutation and crossover operation the generated new
trial vector ui,G is compared to the old decision vector xi,G. If the trial
vector has equal or lower objective value, then it replaces the old vector in
the population:

xi,G+1 =
{

ui,G if f(ui,G) ≤ f(xi,G)
xi,G otherwise . (5)

Thereby, the overall presentation of basic DE version, DE/rand/1/bin, is:

Input :D,Gmax, NP ≥ 4, F ∈ (0, 1+], CR ∈ [0, 1], and initial bounds: x(lo),x(hi)

Initialize :

{
∀i ≤ NP ∧ ∀j ≤ D : xj,i,G=0 = x

(lo)
j + rand j [0, 1] ·

(
x

(hi)
j − x

(lo)
j

)

i = {1, 2, . . . , NP} , j = {1, 2, . . . , D} , G = 0, rand j [0, 1] ∈ [0, 1]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

While G < Gmax

∀i ≤ NP

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mutate and recombine:
r1, r2, r3 ∈ {1, 2, . . . , NP} , randomly selected,

except mutually different and different from i
jrand ∈ {1, 2, . . . , D} , randomly selected for each i

∀j ≤ D,uj,i,G =

⎧
⎨

⎩

xj,r3,G + F · (xj,r1,G − xj,r2,G)
if rand j [0, 1) < CR ∨ j == jrand

xj,i,G otherwise
Select :

xi,G+1 =
{

ui,G iff (ui,G) ≤ f (xi,G)
xi,G otherwise

G = G + 1

.

(6)
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3 Generalized Differential Evolution

Generalized Differential Evolution (GDE) is an extension of DE for an ar-
bitrary number of objectives and constraints. In the following, different de-
velopment versions of GDE are briefly described and their performances are
compared with two well known test problems, ZDT2 problem taken from
(Deb (2001), p. 357) and DTLZ4 taken from (Deb et al. (2005)). With the
both problems control parameter values CR = 0.2, F = 0.2, and Gmax = 250
were applied. The size of the population, NP , for the bi-objective ZDT2 prob-
lem was 100, and for the tri-objective DTLZ4 problem was 200. The results
for these problems are shown in Figure 1.

3.1 The first version, GDE1

The first version, GDE1, was proposed by Lampinen (2001) as a further devel-
opment from the constraint handling approach based on dominance relation
(Lampinen (2002)). GDE1 extended basic DE for constrained multi-objective
optimization simply by modifying the selection operation of DE to apply weak
constraint-domination as the selection criteria:

xi,G+1 =
{

ui,G if ui,G +c xi,G

xi,G otherwise . (7)

The weak constraint-domination relation is used to have a congruity with the
selection operation of DE. Thus, in the case of equality, the trial vector is
preferred.

The final populations of GDE1 for the ZDT2 and DTLZ4 problems are
shown in Figure 1. Only edges of Pareto-front of DTLZ4 are found. In
both cases solution points are rather unevenly distributed. Especially DTLZ4
demonstrates that the diversity of solutions found by GDE1 isn’t particularly
good, since there is no diversity maintenance mechanism. Such a mechanism
was therefore added into the subsequent GDE versions. Still, GDE1 pro-
vided surprisingly good results with some problems (Kukkonen and Lampinen
(2004a), Kukkonen and Lampinen (2004b)) but has been found rather sensi-
tive to the control parameters values (Kukkonen and Lampinen (2005)).

3.2 The second version, GDE2

The second version, GDE2, added on a diversity maintenance operation.
Again, only the selection operation of basic DE was modified. The selection
is based on crowding in the objective space when the trial and old vector are
feasible and non-dominating each other (Kukkonen and Lampinen (2004c)):
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Fig. 1. The results for ZDT2 and DTLZ4 problems using GDE1, GDE2, and, GDE3
with the 2-NN diversity maintenance technique.



Generalized Differential Evolution for General Non-Linear Optimization 465

xi,G+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui,G if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui,G +c xi,G

∨⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀k ∈ {1, . . . ,K} : gk(ui,G) ≤ 0
∧
¬ (xi,G ≺ ui,G)
∧
dui,G

≥ dxi,G

xi,G otherwise

, (8)

where di is a distance measure for measuring the distance from a particular
solution i to its neighbor solutions. As a distance measure crowding distance
(Deb (2001) pp. 248–249) was used. Since there is no non-dominated sorting
(Deb (2001) pp. 33–44), crowding is measured among the whole population.
This improves the extent and distribution of the obtained set of solutions but
slows down the convergence of the overall population because it favors iso-
lated solutions far from the Pareto-front until all the solutions are converged
near the Pareto-front. GDE2 is also observed sensitive to the selection of the
control parameter values.

The final populations of GDE2 for ZDT2 and DTLZ4 problems are shown
in Figure 1. A better diversity especially for DTLZ4 was obtained in com-
parison to GDE1 can be observed.

3.3 The third version, GDE3

The third version, GDE3, is the latest version (Kukkonen and Lampinen
(2005), Kukkonen and Deb (2006a)). Besides the selection, another part of
basic DE has also been modified. Now, in the case of comparing feasible
and non-dominating solutions, both vectors are saved. Therefore, at the end
of a generation the population may become larger than originally. Before
proceeding to the next generation, the population size is reduced using non-
dominated sorting and pruning based on diversity preservation to select the
best solution candidates to survive.

The GDE3 algorithm is presented in Equation 9. Parts that are new com-
pared to previous GDE versions are framed in Equation 9. Without these
parts, the algorithm is identical to GDE1. After a generation, the size of the
population may be larger than originally. In this case, the population size is
then reduced back to the original size based on a similar selection approach
used in NSGA-II (Deb (2001) pp. 245–253). Population members are sorted
based on non-dominance and crowding. Then the worst population mem-
bers according to these measurements are removed. Non-dominated sorting
is modified to take into consideration also constraints. The selection based
on the crowding distance is improved over the original method of NSGA-II
to provide a better distributed set of vectors (Kukkonen and Deb (2006a)).

Compared to the earlier GDE versions GDE3 improves the ability to han-
dle MOPs by giving a better distributed set of solutions and being less sen-
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Input :D, Gmax, NP ≥ 4, F ∈ (0, 1+], CR ∈ [0, 1], and initial bounds: x(lo), x(hi)

Initialize :

{
∀i ≤ NP ∧ ∀j ≤ D : xj,i,G=0 = x

(lo)
j + rand j [0, 1] · x

(hi)
j − x

(lo)
j

i = {1, 2, . . . , NP} , j = {1, 2, . . . , D} , G = 0, n = 0, rand j [0, 1] ∈ [0, 1],

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

While G < Gmax

∀i ≤ NP

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mutate and recombine:
r1, r2, r3 ∈ {1, 2, . . . , NP} , randomly selected,

except mutually different and different from i
jrand ∈ {1, 2, . . . , D} , randomly selected for each i

∀j ≤ D, uj,i,G =

⎧
⎨

⎩

xj,r3,G + F · (xj,r1,G − xj,r2,G)
if rand j [0, 1) < CR ∨ j == jrand

xj,i,G otherwise
Select :

xi,G+1 =
ui,G if ui,G �c xi,G

xi,G otherwise

Set :

n = n + 1
xNP+n,G+1 = ui,G

if

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀k : gk(ui,G) ≤ 0
∧
xi,G+1 == xi,G

∧
¬ (xi,G ≺ ui,G)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

While n > 0

Select x ∈ P = {x1,G+1, x2,G+1, . . . , xNP+n,G+1} :⎧
⎨

⎩

x belongs to the last non-dominated set of P
∧
x is the most crowded in the last non-dominated set

Remove x
n = n− 1

G = G + 1
(9)
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sitive to the selection of control parameter values. GDE3 has been compared
against NSGA-II and found at least comparable according to experimental
results (Kukkonen and Lampinen (2005)).

GDE3 has been later improved with a pruning technique for problems
with more than two objectives (Kukkonen and Deb (2006b)). The final pop-
ulations of GDE3 with the improved pruning technique (based on distances
to two nearest neighbors, 2-NN) for the ZDT2 and DTLZ4 problems are
shown in Figure 1. The distributions are clearly better for both problems
than those provided by GDE1 and GDE2. In fact, the distribution is ap-
proaching the ideal one, and can be distinguished from it only by numerical
measurements, not anymore by visual observations. GDE3 with the described
diversity preservation technique participated a multi-objective optimization
competition arranged at the 2007 IEEE Congress on Evolutionary Compu-
tation (Kukkonen and Lampinen (2007)). GDE3 received a winning entry
nomination in the competition.

4 Constrained multi-objective optimization example

All GDE versions include a constraint handling mechanism. This mechanism
was first introduced for single-objective optimization with DE by Lampinen
(2002) and later extended into multi-objective optimization with the GDE.

To provide a practical example of solving a constrained multi-objective
problem, we applied each GDE version to a bi-objective spring design problem
(Deb (2001) pp. 453–455). The problem is to design a helical compression
spring, which has a minimum volume and minimal stress. Both objective
functions are non-linear and the problem has three variables: the number
of spring coils x1 (integer), the wire diameter x2 (discrete having 42 non-
equispaced values), and the coil diameter x3 (real). Besides the boundary
constraints, the problem has eight inequality constraints from which most
are non-linear. Formal description of the problem is:

Minimize f1(x) = 0.25π2x2
2x3(x1 + 2),

Minimize f2(x) = 8KPmaxx3
πx23 ,

subject to g1(x) = lmax − Pmax

k − 1.05(x1 + 2)x2 ≥ 0,
g2(x) = x2 − dmin ≥ 0,
g3(x) = Dmax − (x2 + x3) ≥ 0,
g4(x) = C − 3 ≥ 0,
g5(x) = δpm − δp ≥ 0,
g6(x) = Pmax−P

k − δw ≥ 0,
g7(x) = S − 8KPmaxx3

πx23 ≥ 0,
g8(x) = Vmax − 0.25π2x2

2x3(x1 + 2) ≥ 0,
x1 is integer, x2 is discrete, x3 is continuous .

(10)
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The parameters used are as follows:

K = 4C−1
4C−4 + 0.615x2

x3
, P = 300 lb, Dmax = 3 in, k = Gx2

4

8x1x33 ,

Pmax = 1000 lb, δw = 1.25 in, δp = P
k , lmax = 14 in,

S = 189000 psi, δpm = 6 in, dmin = 0.12 in, C = D/d,
G = 11500000, Vmax = 30 in3 .

(11)

Non-dominated points extracted from the final population of the different
GDE versions after a single run are shown in Figure 2. The applied control
parameter values for all GDE versions were CR = 0.5, F = 0.3, NP = 100,
and Gmax = 100.

The GDE versions can be implemented in such a way that the number
of function evaluations is reduced. The reason for this is that the constraint-
domination relation is used in the selection. Even comparison between single
constraint values can reveal that the trial vector does not constraint-dominate
the old vector, and therefore the old vector is preserved. The number of func-
tion evaluations needed for the GDE versions with the spring design problem
are reported in Table 1. It can be observed that the constraint handling
approach used in the GDE versions reduce the actual number of function
evaluations.

Further examples on solving constrained multi-objective problems by
GDE can be found from (Kukkonen and Lampinen (2004a), Kukkonen and
Lampinen (2005), Kukkonen and Lampinen (2006)).

g1 g2 g3 g4 g5 g6 g7 g8 f1 f2

GDE1 10100 8619 8526 8458 7321 7320 4607 3862 3857 1881
GDE2 10100 8155 8104 7966 7300 7298 5184 4622 4604 4604
GDE3 10100 9036 8963 8912 8582 8582 4874 4361 4353 4353

Table 1. Number of needed constraint (g) and objective (f) function evaluations
by GDE1, GDE2, and GDE3 for the spring design problem.

5 Conclusions

Generalized Differential Evolution (GDE) is a real-coded general purpose EA
extended from DE to handle multiple objectives and constraints.

The first version, GDE1, extended DE for constrained multi-objective op-
timization in a simple way by applying a modified the selection rule of basic
DE. The basic idea is that the trial vector is selected to replace the old vector
in the next generation if the trial vector weakly constraint-dominates the old
vector. There is neither explicit non-dominated sorting during the optimiza-
tion process nor any mechanism for maintaining diversity. Also, there is no
extra repository for non-dominated vectors. Still, GDE1 has been observed
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Fig. 2. The spring design problem solved with GDE1, GDE2, and GDE3.

to provide surprisingly good results but also found rather sensitive to the
selection of the control parameter values.

The second version, GDE2, makes a decision based on crowding when
the trial and the old vector are feasible and non-dominating each other in
the objective function space. This improves the extent and distribution of an
obtained set of solutions but slows down the convergence of the population
because it favors isolated solutions far from the Pareto-front. This version,
too, has been observed to be rather sensitive to the selection of the control
parameters values.

The third and latest version is GDE3. Besides the selection, another part
of basic DE has also been modified. Now, in the case of feasible and non-
dominating solutions, both vectors are saved for the population of the next
generation. Before starting the next generation, the size of the population is
reduced using non-dominated sorting and pruning based on diversity preser-
vation. GDE3 has been later improved with a pruning technique for problems
with more than two objectives. GDE3 provides better distribution than the
earlier GDE versions, and it seems to be also more robust in terms of the
selection of the control parameter values.

In the end, it can be concluded that GDE3 is a potential alternative for
constrained multi-objective global optimization.
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Statistical Properties of Differential Evolution

and Related Random Search Algorithms

Daniela Zaharie
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Abstract. The aim of this paper is to analyze the impact on the expected pop-
ulation mean and variance of several variants of mutation and crossover operators
used in differential evolution algorithms. As a consequence of this analysis a simple
variance based mutation operator which does not use differences but has the same
impact on the population variance as classical differential evolution operators is
proposed. A preliminary analysis of the distribution probability of the population
in the case of a differential evolution algorithm for binary encoding is also presented.

Keywords: differential evolution, population variance, mutation and
crossover operators, premature convergence, binary encoding

1 Introduction

The analysis of the population dynamics induced by evolutionary operators is
an important issue in understanding the behavior of evolutionary algorithms
and in inferring rules about choosing adequate operators and control param-
eters. There are two main approaches in analyzing the dynamics of an evo-
lutionary algorithm (Okabe (2005)): a cumulants based approach which tries
to describe the dynamics by using cumulants (e.g. mean, variance etc.) and
a model based approach which tries to build a probability model of the pop-
ulation based on the properties of the operators. Most results were obtained
in the case of mutation operators based on normally distributed additive per-
turbations (Beyer (1998)). In the case of other evolutionary operators similar
studies are significantly fewer. This is also the case of Differential Evolution
(DE), a successful stochastic heuristic for global optimization for which the
theoretical results on the impact of operators on the population properties
are still limited. DE was introduced in (Storn and Price (1995)) and is based
on a particular way of constructing so-called mutant vectors by using dif-
ferences between randomly selected elements from the current population.
Unlike stochastic mutation, typical to evolution strategies, the DE mutation
uses only information extracted from the current population. For each mutant
vector, a trial vector is constructed through a crossover operation. This trial
vector competes with the corresponding element of the current population
and the best one, with respect to the objective function, is transferred into
the next generation. In the following we shall consider objective functions,
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f : D ⊂ R
n → R, to be minimized thus we are dealing with minimization

problems of size n. The overall structure of DE (see Algorithm 1) is typical
for evolutionary algorithms, the particularities of the algorithm being related
with the mutation and crossover operators. By combining different DE mu-
tation and crossover operators various schemes have been designed. In the
DE literature these schemes are specified by using the convention DE/a/b/c
where a denotes the manner of constructing the mutant vector, b denotes the
number of differences involved in the construction of the mutant vector and
c denotes the crossover type.

Population initialization: X(0)← {x1(0), . . . , xm(0)}
g ← 0
while the stopping condition is false do

for i = 1, m
yi ← generateMutant(X(g))
zi ←crossover(xi(g),yi)
if f(zi) < f(xi(g)) then xi(g + 1)← zi else xi(g + 1)← xi(g)

endfor
g ← g + 1

endwhile

Fig. 1. The overall structure of a generational DE.

Previous work on analyzing DE behavior by using a model-based ap-
proach is presented in Xue et al. (2005) and in Ali and Fatti (2006). Xue et
al. analyze the impact of mutation on the population distribution starting
from the assumption that the population current has a normal distribution.
On the other hand, Ali and Fatti derive a rather sophisticated distribution
probability which corresponds to the offspring obtained by mutation starting
from a population uniformly distributed in the search space. The cumulants
based approach is used in Zaharie (2002) where the influence of DE mutation
and binomial crossover on the expected population variance is analyzed.

The main aim of this paper is to extend the results presented in Zaharie
(2002) and in Zaharie (2007) for other crossover variants and to analyze a
simple variance based mutation. The next section presents the mutation and
crossover operators involved in the analysis while the main theoretical results
are presented in Section 3. A variance based mutation having a behavior
similar to DE/rand/1/* with respect to the impact on the population variance
is presented in Section 4. Section 5 presents some preliminary results on a
DE for binary encoding and Section 6 concludes the paper.

2 Differential evolution operators

2.1 Mutation operators

Mutation in differential evolution algorithms has the role of constructing
mutant vectors by perturbing elements of the current population. The main
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particularity of DE mutation is the fact that the perturbation term is related
with the difference between some randomly selected elements. Such a differ-
ence based mutation operator is more related to a recombination than to a
classical mutation operator. Its main property is the fact that it acts as a
self-referential mutation allowing a gradual exploration of the search space.
The general form of the standard DE mutation is:

yi = λx∗ + (1 − λ)xIi +
L∑

l=1

Fl · (xJil
− xKil

), i = 1,m (1)

where x∗ is the best element of the current population, λ ∈ [0, 1] is a coef-
ficient which controls the influence of the best element, L is the number of
differences, Fl > 0 is for each l ∈ {1, . . . , L} a scaling factor. Ii, Jil and Kil

are random values uniformly selected from {1, . . . ,m} and such that they are
distinct. Most frequently used particular cases are when L = 1 and λ ∈ {0, 1}.
Thus for λ = 0 one obtains the DE/rand/1/* variant:

yi = xIi + F · (xJi − xKi), i = 1,m (2)

and for λ = 1 one obtains the DE/best/1/* variant:

yi = x∗ + F · (xJi − xKi), i = 1,m. (3)

Other simple variants of these mutation operators are obtained by replacing
the constant F with a random variable, ξ. Examples of such variants are
when ξ ∼ N(0, F ) (in Abbas (2001)), ξ ∼ N(F, σ) (in Ronkkonen (2003)) or
even ξ ∼ U [Fmin, Fmax].

2.2 Crossover operators

In Evolutionary Algorithms the crossover operator usually combines features
from different parents. In the case of DE algorithms, since the mutation oper-
ator is already based on a recombination of individuals, the role of crossover
is somewhat different. It just allows the construction of an offspring by com-
bining the current element and that generated by mutation. This can be
ensured either by mixing the components (as in binomial and exponential
DE crossover) or by an arithmetical recombination between the current and
the mutant elements (as in the DE/current-to-rand variants). In the case of
binomial crossover the components of the trial element zi are obtained as:

zj
i =

{
yj

i if Uj(0, 1) < CR or j = j0
xj

i otherwise
, i = 1,m, j = 1, n (4)

where Uj(0, 1) is a random value uniformly distributed in [0, 1], j0 is a
randomly selected value from {1, . . . , n} and CR ∈ [0, 1] is a parameter
which controls the number of components taken from the mutant vector,
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yi, and is called crossover rate. The number of components taken form
the mutant vector follows a binomial distribution of parameters n and
pm = CR(1 − 1/n) + 1/n. The value pm can be interpreted as mutation
probability as long as it specifies the probability for a component to be taken
from the mutant vector.

In the exponential crossover the trial vector is constructed by taking con-
secutive components from the mutant:

zj
i =

{
yj

i for j ∈ {j0, 〈j0 + 1〉n, . . . , 〈j0 + L− 1〉n}
xj

i otherwise
(5)

In eq. (5) j0 is a randomly selected index, 〈j〉n denotes the remainder of the
division of j by n plus 1 and L is a random variable which follows a truncated
geometric distribution (Zaharie (2007)). In this case the mutation probability
satisfies:

pm =
1 − CRn

n(1 − CR)
(6)

The arithmetical recombination consists in a convex combination of the cur-
rent and mutant vector. Thus

zi = (1 − q)xi + qyi, i = 1,m (7)

with q ∈ [0, 1] controlling the relative weight of the mutant vector. In
some implementations (see for instance Mezura et.al (2006)) the arithmetical
crossover is used just as a second step in generating the mutant vector while
the trial vector is obtained by mixing the components of the vector given in
Eq. (7) with the current element using binomial or exponential crossover.

3 Influence of mutation and crossover on the
population mean and variance

As a result of the application of evolutionary operators the population
changes its distribution. The parameters of the population distribution, es-
pecially the mean and variance, can give information about the region in the
search space where the population is concentrated and about its diversity. A
population can be interpreted as a set of random vectors, but since all com-
ponents are evolved based on the same rule the analysis can be conducted
componentwise. In the following we shall analyze the impact of several DE
mutation and crossover operators on the population mean and variance. Let
us denote by {X1, . . . , Xm} the current population and by {Z1, . . . , Zm} the
population obtained after mutation and crossover. Each element of this pop-
ulation is a random variable Zi = Yi · 1Mi + Xi · 1M i

, with 1Mi denoting
the indicator function corresponding to the event that Zi equals the mutant
element, Yi. Thus 1Mi is a random variable with the mean E(1Mi) = pm.



Statistical Properties of Differential Evolution 477

Similarly E(1Mi
) = 1−pm. The difference between binomial and exponential

crossover is given only by different means of 1Mi and 1Mi
.

As mutation operators we shall analyze the following variants:

Yi = λX∗ + (1 − λ)XIi +
L∑

l=1

ξl · (XJil
−XKil

) (8)

and
Yi = (1 − η)Xi + ηXIi + ξ · (XJi −XKi) (9)

In eq. (8) X∗ denotes the best element of the current population, λ ∈ [0, 1] and
ξl denote random variables independent with respect to all other variables.
The most known case is when L = 1 and ξ is constant and equal to the
scaling factor, F . If λ = 0 one obtains the DE/rand/1/* variant and when
λ = 1 one have the DE/best/1/* variant.

In eq. (9), η is usually a random variable on [0, 1]. This variant is related
both to current-to-rand variants and to those which use arithmetical recom-
bination (in the case when η = q and ξ = q · F ). In both cases Ii, Ji and Ki

are uniformly distributed on {1, ...m} and have distinct values.
In the following we shall estimate the expected mean and variance of

the population obtained by applying mutation and crossover. The expected
mean, E(Z), of a population {Z1, . . . , Zm} of identically distributed random
variables equals E(Zi) for an arbitrary i. Thus E(Z) = E(Zi) = pmE(Yi) +
(1−pm)E(Xi). Since for any random index I one have that E(XI) = E(X) it
follows that in the case of eq. (8) one have that E(Yi) = λX∗ + (1−λ)E(X),
thus E(Z) = pmλX∗ + (1 − pmλ)E(X). Therefore when λ = 0 the expected
population mean remains unchanged by mutation and crossover. When λ > 0
the population mean is biased toward the best element of the population.
It is easy to check that the property of conserving the population mean
is also true in the case of the mutation specified by eq. (9). The impact
of selection depends on the objective function and is more difficult to be
analyzed. However it is easy to see that after selection, the mean of the
objective function values corresponding to the population elements decreases
for all variants of mutation and crossover.

Let us turn now to the analysis of the expected population variance.
Preserving the population diversity plays an important role in avoiding
premature convergence and in stimulating the ability of differential evo-
lution to follow dynamic optima. A natural measure of the diversity of
a population of scalars, X = {X1, . . . , Xm}, is the population variance
V ar(X) =

∑
i<j(Xi − Xj)2/m2. In the case of populations of vectors the

average of componentwise variances can be considered as a measure of di-
versity. In the following we shall analyze, in the one-dimensional case, the
impact on the population variance of the mutation variants given by eqs. (8)
and (9) combined with binomial, exponential and arithmetical crossover. In
all cases we estimate the expected population variance, E(V ar(Z)).
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Proposition 3. The expected population variance after mutation and
crossover is:

E(V ar(Z)) =
(
1 + 2pm

∑L
l=1 E(ξ2

l ) − pm(2−pm)
m − λp2

m
m−1

m

)
E(V ar(X))

+λ2pm(1 − pm)m−1
m E((X∗ −XIi)2)

(10)
in the case of mutation operator given by (8) and

E(V ar(Z)) =
(
1 + 2pm

(
E(η2) − m−1

m E(η) + E(ξ2)
)

− p2
m

m (2E(η) + E(η2))
)
E(V ar(X))

(11)

in the case of mutation operator given by (9).

Proof. See Appendix.
In Proposition 1, pm is given by pm = CR(1 − 1/n) + 1/n in the case of
binomial crossover and by eq. (6) in the case of exponential crossover. Im-
portant particular cases of eq. (10) are when λ = 0 and pm = 1. By denoting
F 2 =

∑L
l=1 E(ξ2

l ) we have in the first case:

E(V ar(Z)) =
(

1 + 2pmF 2 − pm(2 − pm)
m

)
E(V ar(X)) (12)

and in the second

E(V ar(Z)) =
(

(1 − λ)
m− 1
m

+ 2F 2

)
E(V ar(X)). (13)

When η is a constant q, E(ξ2) = F 2 and pm = 1 one obtains a simple
current-to-rand version for which the eq. (11) becomes:

E(V ar(Z)) =
(

1 + 2F 2 − 2q +
2m− 1

m
q2

)
E(V ar(X)). (14)

If F 2 is replaced with q2F 2 then eq. (14) corresponds to the DE/rand/1
variant combined with arithmetical crossover. On the other hand, when η is
uniformly distributed on [0, 1] and pm ∈ [0, 1] then

E(V ar(Z)) =
(

1 + 2pmF 2 − 1
3m

(4p2
m + (m− 3)pm)

)
E(V ar(X)). (15)

In almost all cases (except for the case when λ > 0 and pm < 1) there is a
simple linear relationship between the expected variance of the population
obtained by mutation and crossover and the variance of the current pop-
ulation: E(V ar(Z)) = c(CR,F, q,m, n)E(V ar(X)). The coefficient of this
dependence involves all parameters which influence the algorithm behavior.
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Fig. 2. Dependence between the variance factor, c, and F for DE/rand/1/* (dashed
line) and DE/current-to-rand/1/* with η ∈ U(0, 1)(continuous line). Parameters:
m = n = 50, CR = 0.1 (left) and CR = 0.9 (right).
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Fig. 3. Dependence between the variance factor,c, and CR for DE/rand/1/*
(dashed line) and DE/current-to-rand/1/* with η ∈ U(0, 1) (continuous line). Bi-
nomial crossover: linear dependence, exponential crossover: nonlinear dependence.
Parameters: m = n = 50, F = 0.2 (left) and F = 1 (right).

The advantage of such a property is the fact that one can control the impact
which mutation and crossover have on the population variance by changing
the values of the parameters involved in c. Figures 2,3,4 and 5 illustrate the
dependence of the factor c(CR,F, q,m, n) on the values of parameters and
on the algorithm type. The main remarks are: (i) c usually increases with
CR and F but in a different way in the case of binomial and exponential
crossover; (ii) the DE/current-to-rand variant is characterized by values of c
slightly smaller than DE/rand; moreover, for small values of F (e.g. F = 0.2)
c decreases when CR increases; (iii) the ratio m/n does not significantly in-
fluence the factor c, meaning that using larger populations does not stimulate
the population diversity; (iv) both in the case of DE/best and DE/current-
to-rand the variance is significantly increasing with the value of F but it
decreases with λ and has a non-monotonous behavior with respect to q.
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Fig. 4. Dependence of the variance factor, c, on the population size factor, s
(m = sn) for DE/rand/1/* (dashed line) and DE/current-to-rand/1/* with
η ∈ U(0, 1)(continuous line). Parameters: CR = 0.5, F = 1, n = 10 (left) and
n = 100 (right).
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Fig. 5. Dependence of the variance factor, c, on the parameter λ in the case of
DE/best-to-rand (left) and on parameter q in the case of DE/current-to-rand when
η = q (right). Parameters: CR = 1, m = n = 50.

4 A simple variance based variant

Classical mutation operators based on an additive perturbation also lead
to a linear dependence but with a non zero free term, i.e. E(V ar(Z)) =
aE(V ar(X)) + b. Let us consider the case when Zi = (XIi + ξi)1Mi +Xi1Mi

with E(Mi) = pm and ξi independent random variables having E(ξi) = 0
and E(ξ2

i ) = F 2. In this case one obtains that E(V ar(Z)) = (1 + p2
m/m −

2pm/m)E(V ar(X)) + 2pm(m − 1)/mF 2. It is easy to see that if E(ξ2
i ) =

F 2E(V ar(X))m/(m − 1) one obtains the same dependence between the ex-
pected variances as in the case of mutation given by eq. (8) with λ = 0 and
L = 1. Thus using the mutation rule

yj
i = xIj

i
+ F

√
m

m− 1
V ar(xj)N(0, 1), j = 1, n (16)

where V ar(xj) is the variance of the current population corresponding to the
jth component, one obtains a simple mutation rule which combined with a
crossover strategy leads to the same behavior with respect to the evolution
of the population variance as DE/rand/1/*. Empirical studies conducted for
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classical test functions show that the mutation given by eq. (16) behaves
better than a simple evolution strategy based on a normal perturbation of
distribution N(0, F ). Table 1 presents results obtained by 30 independent
runs of the algorithms on Griewank test function for n = 100. The maximal
number of function evaluations (nfe) is set to 500000 and a run is considered
successful if the best value of the population (f∗) is less than ε = 10−8.
These results illustrate the fact that for some pairs of values (CR,F ) the
variance based mutation leads to a behavior similar to that of DE. Thus by
just ensuring that the population variance have the same dynamics one can
partially reproduce the behavior of DE. On the other hand, the empirical
results show that the difference-based perturbation cannot just be replaced
with a variance-based perturbation since for other values of parameters or
for other test functions the difference-based mutation leads to better results
than the variance-based one.

5 Binary differential evolution

Encouraged by the success of DE in continuous optimization several authors
recently proposed variants of DE for binary encoding (Gong (2006)). A sim-
ple approach is just to use the classical operators in order to evolve trial
vectors in [0, 1]n and transform their components in binary values, using a
threshold function, only when the objective function is to be evaluated. The
variant which we analyze uses a binary encoding and is based on the following
mutation rule, inspired from (Gong (2006)):

Y j
i =

{
xj

Ii
if xj

Ji
= xj

Ki
or U ≥ F

1 − xj
Ii

otherwise
(17)

where F ∈ [0, 1] and U is a random value uniformly generated in [0, 1]. The
components of the trial vector, Zi, are obtained by applying one of the DE
crossover operators. Disregarding the type of crossover we shall denote by
pm the probability that a component in the trial vector is taken from the
mutant vector. In the following we shall analyze the influence the mutation
and crossover have on the distribution of a population of scalar elements.

Let (p0, p1) be the probability distribution of the current population (p0

is the probability that a randomly selected element has the value 0). Thus
for two randomly selected elements xKi and xJi we have that

Prob(xKi = xJi) = p2
0 + p2

1 and Prob(xKi = xJi) = 2p0p1 (18)

It follows that Prob(Yi = 0) = p0(p2
0 + p2

1) + 2Fp0p
2
1 + 2(1 − F )p0p

2
1 and

Prob(Yi = 1) = p1(p2
0 + p2

1) + 2Fp2
0p1 + 2(1 − F )p2

0p1. Consequently, the
probabilities corresponding to the trial element Zi are Prob(Zi = 0) = p0(1+
2pmFp1(p1−p0)) and Prob(Zi = 1) = p1(1+2pmFp0(p0−p1)). On the other
hand, in the case of a simple binary mutation (Zi = 1 −Xi with probability
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Table 1. Comparative results of DE/rand/1/bin, variance based mutation
(var/bin) and normal mutation (norm/bin) combined with binomial crossover. Test
function: Griewank. Parameters: m = n = 100.

CR F DE/rand/1/bin var/bin norm/bin
〈f∗〉 Success 〈f∗〉 Success 〈f∗〉 Success
stdev(f∗) 〈nfe〉 stdev(f∗) 〈nfe〉 stdev(f∗) 〈nfe〉

0.1 0.5 9 · 10−9 30/30 9 · 10−9 30/30 0.3304 0/30
±10−10 (380416) ±10−10 (190290) ±0.3134 (500000)

0.5 0.5 10−4 0/30 9 · 10−9 30/30 0.2890 0/30
±10−5 (500000) ±10−10 (204703) ±0.087 (500000)

0.9 0.5 0.0078 18/30 1.27 · 10−8 27/30 0.5523 0/30
±0.0125 (306933) ±10−8 (470792) ±0.039 (500000)

0.1 0.2 9 · 10−9 30/30 0.0158 24/30 0.6352 0/30
±2 · 10−10 (137090) 0.0318 (131887) ±0.365 (500000)

0.5 0.2 0.0959 18/30 1.3469 0/30 0.4322 0/30
±0.1657 (87666) 1.5373 (500000) ±0.3319 (500000)
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Fig. 6. Dependence of Prob(Zi = 0) on p0 and pm in the case of binary DE mutation
(left) and classical binary mutation (right).

pm) the corresponding probabilities are Prob(Zi = 0) = p0 +pm(p1−p0) and
Prob(Zi = 1) = p1 + pm(p0 − p1). The different impact on the population
distribution of the DE binary mutation and of the classical binary mutation
is illustrated in Figure 6. Unlike the classical binary mutation, the DE binary
mutation leads to small changes in the population distribution for all values
of pm. On the other hand one have to remark that Prob(Zi = 0)−Prob(Zi =
1) = (1−2pm)(p0−p1) in the case of classical binary mutation and Prob(Zi =
0)−Prob(Zi = 1) = (1−2pmFp0p1)(p0−p1) in the case of DE mutation. Both
variants tend to decrease the difference between p0 and p1 but the decrease
is smaller in the case of DE variant.

6 Conclusions

Almost for all DE variation operators the expected population variance after
mutation and crossover is related to the current population variance by a



Statistical Properties of Differential Evolution 483

simple linear dependence based on a coefficient c(CR,F, q,m, n) which in-
volves all parameters characterizing the algorithm. This allows us to control
the evolution of the population diversity by just changing the algorithm’s
parameters. Significant differences have been identified between the behavior
of binomial, exponential and arithmetical crossover. A simple mutation rule
which does not involve differences but just the estimation of the current vari-
ance was proposed. It has the same behavior as DE/rand/1/* with respect
to the population variance evolution. Numerical experiments show that for
some sets of parameters the variance based mutation combined with bino-
mial crossover behaves better than DE/rand/1/bin but for other ones worse.
This suggests on one hand that the evolution of the population variance has
a significant influence on the behavior of the algorithm and on the other
hand that the difference based mutation induces a dynamics which cannot
be entirely mimicked by using the population variance estimation instead.
The analysis of the influence of the DE binary mutation on the population
distribution shows that it leads to a dynamics different than that induced
by classical binary mutation. However further analysis is needed to assess its
effectiveness for real problems.

Appendix. Proof of Proposition 1. Since E(V ar(X)) =
m− 1
2m

E((Xi−Xj)2)

for any pair of distinct indices (i, j) it follows that it is enough to find the
relationship between E((Zi − Zj)2) and E((Xi −Xj)2) for an arbitrary pair
(i, j) of distinct values. Based on the fact that Zi = Yi1Mi +Xi1Mi

it follows:

E((Zi − Zj)2) = p2
mE((Yi − Yj)2) + 2pm(1 − pm)E((Yi −Xj)2)

+(1 − pm)2E((Xi −Xj)2)
(19)

If I and J are two random indices from {1, ...,m} then E((XI −
XJ)2) = 2E((V ar(X)) if I and J can be identical and E((XI − XJ)2) =
2m

m−1E((V ar(X)) if I and J take distinct values. Using these relations one
can compute E((Yi − Yj)2) and E((Yi − Xj)2) when Yi is given by eqs. (8)
and (9).

By taking into account that Ii and Ij can be identical but Kil and Jil,
Kjl and Jjl are respectively distinct one obtains, in the case of eq.(8) that

E((Yi − Yj)2) =
2m

m− 1
((1 − λ)2 + 2

L∑

l=1

E(ξ2
l ))E(V ar(X))

and

E((Yi −Xj)2) = 2(1 +
m

m− 1

L∑

l=1

ξ2
l )E(V ar(x)) + λ2E((X∗ −XIi)

2)
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By replacing these into eq. (19) one obtains eq. (10). In the case of eq.(9) one
have that:

E((Yi − Yj)2) =
2m

m− 1

(
E((1 − η)2) + 2E(ξ2) +

m− 1
m

E(η2)
)

E(V ar(X))

and

E((Yi −Xj)2) =
2m

m− 1

(
1 + E(η2) + E(ξ2) − m− 1

m
E(η)

)
E(V ar(X))

By replacing these into eq. (19) one obtains eq. (11).
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Robust Estimation of the Vector

Autoregressive Model by a Least Trimmed
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Naamsestraat 69, B-3000 Leuven, Belgium, christophe.croux@econ.kuleuven.be

Abstract. The vector autoregressive model is very popular for modeling multi-
ple time series. Estimation of its parameters is typically done by a least squares
procedure. However, this estimation method is unreliable when outliers are present
in the data, and therefore we propose to estimate the vector autoregressive model
by using a multivariate least trimmed squares estimator. We also show how the
order of the autoregressive model can be determined in a robust way. The robust
procedure is illustrated on a real data set.

Keywords: robustness, multivariate time series, outliers, trimming, vector
autoregressive models

1 Introduction

The use of autoregressive models for predicting and modelling univariate time
series is standard and well known. In many applications, one does not observe
a single time series, but several series, possibly interacting with each other.
For these multiple time series the vector autoregressive model became very
popular, and is described in standard textbooks on time series (e.g. Brockwell
and Davis 2003, Chapter 7). In this paper we propose a robust procedure to
estimate vector autoregressive models and to select their order.

Let {yt | t ∈ Z} be a p-dimensional stationary time series. The vector
autoregressive model of order k, denoted by VAR(k), is given by

yt = B′
0 + B′

1yt−1 + . . . + B′
kyt−k + εt, (1)

with yt a p-dimensional vector, the intercept parameter B′
0 a vector in R

p

and the slope parameters B1, . . . ,Bk being matrices in R
p×p. Throughout the

paper M ′ will stand for the transpose of a matrix M . The p-dimensional error
terms εt are supposed to be independently and identically distributed with
a density of the form

fεt(u) =
g(u′Σ−1u)
(detΣ)1/2

, (2)

with Σ a positive definite matrix, called the scatter matrix and g a pos-
itive function. If the second moment of εt exists, Σ will be (proportional
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to) the covariance matrix of the error terms. Existence of a second moment,
however, will not be required for the robust estimator. We focus on the un-
restricted VAR(k) model, where no restrictions are put on the parameters
B0,B1, . . . ,Bk.

Suppose that the multivariate time series yt is observed for t = 1, . . . , T .
The vector autoregressive model (1) can be rewritten as a multivariate re-
gression model

yt = B′xt + εt, (3)

for t = k+1, . . . , T and with xt = (1, y′t−1, . . . , y
′
t−k)′ ∈ R

q, where q = pk+1.
The matrix B = (B′

0,B′
1, . . . ,B′

k)′ ∈ R
q×p contains all unknown regression

coefficients. In the language of regression, X = (xk+1, . . . , xT )′ ∈ R
n×q

is the matrix containing the values of the explanatory variables and Y =
(yk+1, . . . , yT )′ ∈ R

n×p the matrix of responses, where n = T − k. The clas-
sical least squares estimator for the regression parameter B in (3) is given by
the well known formula

B̂OLS = (X ′X)−1X ′Y,

and the scatter matrix Σ is estimated by

Σ̂OLS =
1

n− p
(Y −XB̂OLS)′(Y −XB̂OLS). (4)

In applied time series research, one is aware of the fact that outliers can
seriously affect parameter estimates, model specification and forecasts based
on the selected model. Outliers in time series can be of different nature,
the most well known types being additive outliers and innovational outliers.
With respect to the autoregressive model (1), an observation yt is an additive
outlier if only its own value has been affected by contamination. On the
other hand, an outlier is said to be innovational if the error term εt in (1) is
contaminated. Innovational outliers will therefore have an effect on the next
observations as well, due to the dynamic structure in the series. Additive
outliers have an isolated effect on the time series, but they still may seriously
affect the parameter estimates.

Several procedures to detect different types of outliers for univariate time
series have been proposed. For a detailed treatment of robust univariate time
series analysis we refer to Maronna, Martin and Yohai (2006, Chapter 8).
While most previous studies focus on a single series, this paper deals with
robust analysis of multivariate time series.

A common practice for handling outliers in a multivariate process is to
first apply univariate techniques to the component series in order to remove
the outliers, followed by treating the adjusted series as outlier-free and model
them jointly. But this procedure encounters several difficulties. First, in a
multivariate process, contamination in one component may be caused by
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an outlier in the other components. Secondly, a multivariate outlier cannot
always be detected by looking at the component series separately, since it can
be an outlier for the correlation structure only. Therefore it is better to cope
with outliers in a multivariate framework. Tsay, Peña and Pankratz (2000)
discuss the problem of multivariate outliers in detail.

The aim of this paper is to propose a robust estimation procedure for
the vector autoregressive model, the most popular model for multiple time
series analysis. Not much work has been done for the robust estimation of
multivariate time series. Franses, Kloek and Lucas (1999) used Generalized
M-estimators, which are known to have low robustness in higher dimensions.
Another approach was taken by Garćıa Ben, Mart́ınez and Yohai (1999), us-
ing so-called Residual Autocovariance (RA)-estimators, being an affine equiv-
ariant version of the estimators of Li and Hui (1989). Garćıa Ben et al. (1999)
showed, by means of a simulation study, that the RA-estimators are resis-
tant to outliers. Using an appropriate starting value, the RA-estimators are
iteratively computed as solutions of certain estimating equations.

Our proposal for obtaining a resistant estimator for the VAR model is
to replace the multivariate least squares estimator for (3) by a highly robust
estimator. We will use the Multivariate Least Trimmed Squares (MLTS) es-
timator, discussed in Agulló, Croux and Van Aelst (2008). This estimator is
defined by minimizing a trimmed sum of squared Mahalanobis distances, and
can be computed by a fast algorithm. The procedure also provides a natural
estimator for the scatter matrix of the residuals, which can then be used for
model selection criteria. This estimator is reviewed in Section 2. The robust-
ness of the estimator is studied by means of several simulation experiments
in Section 3, where a comparison with the RA-estimators is also made. In
Section 4 it is explained how to select the autoregressive order of the model
in a robust way. The robust VAR methodology is applied on real data sets
in Section 5, while Section 6 concludes.

2 The multivariate least trimmed squares estimator

The unknown parameters of the VAR(k) will be estimated via the multivari-
ate regression model (3). For this the Multivariate Least Trimmed Squares
estimator (MLTS), based on the idea of the Minimum Covariance Deter-
minant estimator (Rousseeuw and Van Driessen 1999), is used. The MLTS
selects the subset of h observations having the property that the determinant
of the covariance matrix of its residuals from a least squares fit, solely based
on this subset, is minimal.

Consider the data set Z = {(xt, yt), t = k + 1, . . . , T} ⊂ R
p+q. Let

H = {H ⊂ {k + 1, . . . , T} | #H = h} be the collection of all subsets of size
h. For any subset H ∈ H, let B̂OLS(H) be the classical least squares fit based
on the observations of the subset:

B̂OLS(H) = (X ′
HXH)−1X ′

HYH ,
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where XH and YH are submatrices of X and Y , consisting of the rows of
X , respectively Y , having an index in H . The corresponding scatter matrix
estimator computed from this subset is then

Σ̂OLS(H) =
1

h− p
(YH −XH B̂OLS(H))′(YH −XH B̂OLS(H)).

The MLTS estimator is now defined as

B̂MLTS(Z) = B̂OLS(Ĥ) where Ĥ = argmin
H∈H

det Σ̂OLS(H), (5)

and the associated estimator of the scatter matrix of the error terms is given
by

Σ̂MLTS(H) = cαΣ̂OLS(Ĥ). (6)

In definition (6), cα is a correction factor to obtain consistent estimation of
Σ at the model distribution (2) of the error terms, and α the trimming pro-
portion for the MLTS estimator, i.e. α ≈ 1− h/n. In the case of multivariate
normal error terms it has been shown (e.g. Croux and Haesbroeck 1999) that
cα = (1 − α)/Fχ2

p+2
(qα). Here Fχ2

q
is the cumulative distribution function of

a χ2 distribution with q degrees of freedom, and qα = χ2
q,1−α is the upper

α-quantile of this distribution.
Equivalent characterizations of the MLTS estimator are given by Agulló,

Croux and Van Aelst (2008). They prove that any B̃ ∈ R
p×q minimizing the

sum of the h smallest squared Mahalanobis distances of its residuals (subject
to detΣ = 1) is a solution of (5). In mathematical terms,

B̂MLTS = argmin
B, Σ; |Σ|=1

h∑

s=1

d2
s:n(B, Σ).

Here d1:n(B, Σ) ≤ . . . ≤ dn:n(B, Σ) is the ordered sequence of the residual
Mahalanobis distances

ds(B, Σ) =
(
(yt − B′xt)′Σ−1(yt − B′xt)

)1/2
, (7)

for B ∈ R
p×q. We see that the MLTS-estimator minimizes the sum of the

h smallest squared distances of its residuals, and is therefore the multivari-
ate extension of the Least Trimmed Squares (LTS) estimator of Rousseeuw
(1984).

Since the efficiency of the MLTS estimator is rather low, the reweighted
version is used in this paper, to improve the performance of MLTS. The
Reweighted Multivariate Least Trimmed Squares (RMLTS) estimates are de-
fined as

B̂RMLTS = B̂OLS(J) and Σ̂RMLTS = cδΣ̂OLS(J), (8)

where J = {j ∈ {1, . . . , n} | d2
j (B̂MLTS, Σ̂MLTS) ≤ qδ} and qδ = χ2

q,1−δ.
The idea is that outliers have large residuals with respect to the initial ro-
bust MLTS estimator, resulting in a large residual Mahalanobis distance
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d2
j(B̂MLTS, Σ̂MLTS). If the latter is above the critical value qδ, then the obser-

vation is flagged as an outlier. The final RMLTS is then based on those ob-
servations not having been detected as outliers. In this paper, we set δ = 0.01
and take as trimming proportion for the initial MLTS estimator α = 25%.

3 Simulation experiments

In order to study the robustness of the estimators, we perform a simulation
study comparing the OLS estimator with the robust RMLTS and the RA
estimators. As in Garćıa Ben et al. (1999), RA estimators are computed as
iteratively reweighted maximum likelihood estimates, with a Tukey Biweight
weight function (tuned to have a 95% relative asymptotic efficiency for Gaus-
sian innovations). Since this weight function is redescending, it is important
to use a robust starting value to ensure convergence to the “right” solution.
In our implementation, the RMLTS was used as starting value.

We generate bivariate time series according to the VAR(2) model
(
y1,t

y2,t

)
=

(
.10
.02

)
+
(
.40 .03
.04 .20

)(
y1,t−1

y2,t−1

)
+
(
.100 .005
.010 .080

)(
y1,t−2

y2,t−2

)
+
(
ε1,t

ε2,t

)
, (9)

where εt ∼ N2(0, Σ) with

Σ =
(

1 .2
.2 1

)
. (10)

The aim is to look at the effect of the outliers on the parameter estimates.
There are 10 regression parameters to be estimated, and to summarize the
performance of the estimators, we calculate the total Bias and total Mean
Squared Error (MSE). The former is computed as

Bias =

√√√√√
q∑

i=1

p∑

j=1

(
1

nsim

nsim∑

s=1

B̂s
ij − Bij)2 ≈ ‖E[B̂ − B]‖,

where B̂s, for s = 1, ...,nsim, is the estimate obtained from the s-th gener-
ated series, B is the true parameter value and nsim= 1000 the number of
simulations. The MSE is given by

MSE =
q∑

i=1

p∑

j=1

[
1

nsim

nsim∑

s=1

(B̂s
ij − Bij)2].

After generating series of length T =500, according to model (9), m outliers
will be introduced. The classical and robust estimators are used to estimate
this VAR(2) model for the uncontaminated series (m = 0), and for the con-
taminated ones (m > 0), where several types of outliers are considered. Below
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we look at the effect of additive, innovational, and correlation outliers on the
different estimators. Note that other types of contamination do exist, like
level shifts and patches of outliers.

Additive outliers are introduced by randomly selecting m bivariate observa-
tions, and contaminating them by adding the value 10 to all the components
of the selected observations. We consider different contamination levels, rang-
ing from one single outlier up to 5% of additive outliers, i.e. m = 25. The
Bias and MSE for the OLS, RA and RMLTS estimator are given in Table 1,
as a function of the number m of additive outliers.

Both Bias and MSE grow with the number of outliers, the increase being
much faster for the non robust OLS. Using the robust estimators instead of
OLS leads to a very small loss in efficiency when no outliers are present.
When even only one outlier is present, the RA and RMLTS are already
more efficient, and this decrease in MSE becomes very substantial for larger
amounts of outliers. Comparing the robust procedures, RMLTS performs
slightly better as RA in this simulation setting.

Table 1. Simulated Bias and Mean Squared Error for the OLS, and the robust
RA and RMLTS estimator of a bivariate VAR(2) model, in presence of m additive
outliers in a series of length 500.

OLS RA RMLTS

m Bias MSE Bias MSE Bias MSE

0 0.00 0.020 0.00 0.022 0.00 0.022
1 0.08 0.030 0.02 0.023 0.02 0.023
2 0.14 0.045 0.03 0.025 0.03 0.024
3 0.18 0.063 0.05 0.028 0.04 0.026
4 0.22 0.079 0.06 0.031 0.04 0.027
5 0.25 0.096 0.07 0.035 0.05 0.029
10 0.38 0.193 0.14 0.061 0.07 0.039
15 0.51 0.319 0.21 0.086 0.11 0.057
20 0.64 0.478 0.25 0.101 0.17 0.080
25 0.76 0.659 0.29 0.115 0.25 0.104

Innovational outliers are generated by first randomly selecting m innovation
terms εt in (9). Then add the value 10 to the first component of the in-
novations, yielding the contaminated innovations series εC

t . Bivariate series
are then simulated according to (9), but with εt replaced by εC

t . The Bias
and MSE when estimating the uncontaminated (m = 0) and contaminated
series are given in Table 2, for the classical as well as the robust estimation
procedures.

The Bias and MSE for OLS grow for an increasing number of outliers,
although at a smaller rate than for contamination with additive outliers. For
the robust estimator we see a small decrease of the MSE, implying that the
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Table 2. Simulated Bias and Mean Squared error for the OLS, and the robust RA
and RMLTS estimator of a bivariate VAR(2) model, in presence of m innovational
outliers in a series of length 500.

OLS RA RMLTS

m Bias MSE Bias MSE Bias MSE

0 0.00 0.021 0.00 0.022 0.00 0.022
1 0.02 0.022 0.00 0.021 0.00 0.021
2 0.04 0.023 0.01 0.020 0.01 0.020
3 0.06 0.025 0.01 0.019 0.01 0.019
4 0.08 0.029 0.01 0.018 0.01 0.018
5 0.10 0.033 0.01 0.018 0.01 0.018
10 0.20 0.068 0.01 0.017 0.01 0.017
15 0.30 0.123 0.01 0.016 0.01 0.016
20 0.40 0.198 0.01 0.016 0.01 0.016
25 0.49 0.289 0.01 0.017 0.01 0.016

robust procedure is precise in presence than in absence of innovational out-
liers! This is due to the fact that an innovational outlier in the time series
results in a single vertical outlier, but also in several good leverage points
when estimating the autoregressive model. The robust method can cope with
the vertical outlier and takes profit of the good leverage points to decrease
the MSE. The OLS estimator gets biased due to the vertical outliers, but the
presence of the good leverage points explains why the effect of innovational
outliers is less strong than for additive outliers. Finally, note that the dif-
ference between the two robust approaches is not significant here, showing
again that RMLTS and RA perform very similarly. Hence, the RA method
does neither improves, neither deteriorates the initial RMLTS estimate.

Correlation outliers are generated as innovational outliers, but instead of
(10), we take

Σ =
(

1 .9
.9 1

)
(11)

and place the innovation outliers all at the same position (2,−2)′. By placing
the outliers in this way, they are only outlying for the correlation structure,
and not with respect to the marginal distributions of the innovations. This
type of outliers strongly influences results of a (robust) univariate analysis. To
illustrate this, we will estimate the VAR model (9) equation by equation, ap-
plying twice a univariate reweighted least trimmed squares estimator (RLTS)
instead of the RMLTS. Bias and MSE when estimating the uncontaminated
and contaminated series by OLS, the univariate RLTS and the multivariate
RMLTS, are given in Table 3.

When no outliers are present, there is hardly any difference between the
different estimation procedures: the robust procedures show only a marginal
loss in MSE. From Table 3 one can see that the univariate RLTS yields a
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Table 3. Simulated Bias and Mean Squared error for the OLS, robust univari-
ate (RLTS) and multivariate (RMLTS) estimators of a bivariate VAR(2) model in
presence of m correlation outliers in a series of length 500.

OLS RLTS RMLTS

m Bias MSE Bias MSE Bias MSE

0 0.01 0.084 0.01 0.098 0.01 0.093
1 0.01 0.074 0.01 0.088 0.01 0.083
2 0.02 0.069 0.02 0.083 0.01 0.076
3 0.02 0.056 0.02 0.074 0.01 0.069
4 0.02 0.054 0.03 0.067 0.01 0.062
5 0.03 0.046 0.03 0.065 0.01 0.059
10 0.06 0.046 0.06 0.054 0.01 0.044
15 0.08 0.043 0.08 0.049 0.01 0.037
20 0.11 0.044 0.11 0.048 0.01 0.032
25 0.14 0.049 0.14 0.053 0.01 0.030

comparable Bias as for OLS, growing for an increasing number of correlation
outliers. On the other hand, the multivariate RMLTS approach offers protec-
tion against the correlation outliers, remaining almost without bias. As for
the previous simulation scheme, the MSE tends to decrease with the number
of outliers (because the latter introduce good leverage points). We conclude
from this simulation experiment that a fully multivariate robust approach is
necessary when estimating a VAR model.

4 Determining the autoregressive order

To select the order k of a vector autoregressive model, information criteria
are computed for several values of k and an optimal order is selected by
minimizing the criterion. Most information criteria are in terms of the value
of the log likelihood lk of the VAR(k) model. Using the model assumption
(2) for the distribution of the error terms, we get

lk =
T∑

t=k+1

g(ε′tΣ
−1εt) −

n

2
log detΣ,

with n = T − k. When error terms are multivariate normal the above leads
to

lk = −n

2
log detΣ − np

2
log(2π) − 1

2

T∑

t=k+1

ε′tΣ
−1εt. (12)

The log likelihood will depend on the autoregressive order via the estimate
of the covariance matrix of the residuals. For the ordinary least squares esti-
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mator we have

Σ̂OLS =
1

n− p

T∑

t=k+1

ε̂t(k)ε̂′t(k),

where the ε̂t(k) are the residuals corresponding with the estimated VAR(k)
model. Using trace properties, the last term in (12) equals the constant −(n−
p)p/2 for the OLS estimator. To prevent that outliers might affect the optimal
selection of the information criteria, we estimate Σ by the RMLTS estimator:

Σ̂RMLTS =
cδ

m(k) − p

∑

t∈J(k)

ε̂t(k)ε̂′t(k),

with J(k) as in (8) and m(k) the number of elements in J(k). The last term
in (12) equals now −(m(k) − p)p/(2cδ).

The most popular information criteria to select the order of the autore-
gressive model are of the form

−2
n

lk + h(n)
(kp + 1)p

n
,

where (kp + 1)p is the number of unknown parameters, which penalizes for
model complexity, and where h(n) can take different forms. We will con-
sider the following three criteria: the popular Akaike information criterion,
corresponding to h(n) = 2, the Hannan-Quinn criterion, corresponding to
h(n) = 2 log(log(n)) and the Schwarz criterion, also called the Bayesian In-
formation Criterium), for which h(n) = log(n).

5 Example

As an example, we consider the bivariate time series of maturity rates (Tsay
2002, p. 324–325). The first series “GS1” is the 1-year Treasury constant
maturity rate, and the second series “N3” is the 3-year Treasury constant
maturity rate. The data are monthly and sampled from April 1953 to January
2001. As in the book of Tsay (2002), we work with the log-transformed version
of both series. We consider the series as stationary. From the plot of the series
(Figure 1), it can be seen that there might be some outliers around the years
1954 and 1958.

In Table 4 different lag length criteria, as discussed in Section 4, are
presented, once based on the OLS estimator, and once based on the RMLTS.
The information criteria clearly depend on the chosen estimator. For example,
when using the AIC the classical method suggests a VAR(8) model while the
robust indicates a VAR(6) model. On the other hand the Schwarz criterion
selects an optimal order 3 for both estimators. Since it is well known that the
latter criterion yields a consistent estimate of the optimal order we continue
the analysis with k = 3.



498 Croux, C. and Joossens, K.

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
−0.5

0

0.5

1

1.5

2

2.5

3

m
at

ur
ity

 ra
te

 (i
n 

lo
g)

year

GS1
N3

Fig. 1. Time plot of the “maturity rate” series. The solid line represents the 1-Year
Treasury constant maturity rate and the dashed line the 3-Year Treasury constant
maturity rate, both in logs.

Table 4. Lag length criteria using the OLS and RMLTS estimator for the “maturity
rate” series.

k 1 2 3 4 5 6 7 8

Based on OLS estimation

AIC -7.35 -7.58 -7.61 -7.62 -7.61 -7.60 -7.62 -7.62
HQ -7.33 -7.55 -7.57 -7.57 -7.54 -7.53 -7.53 -7.52
SC -7.306 -7.50 -7.51 -7.48 -7.44 -7.40 -7.39 -7.36

Based on RMLTS estimation

AIC -7.43 -7.62 -7.67 -7.69 -7.69 -7.74 -7.69 -7.71
HQ -7.42 -7.59 -7.63 -7.64 -7.62 -7.67 -7.60 -7.61
SC -7.39 -7.55 -7.57 -7.564 -7.52 -7.55 -7.46 -7.45

After estimating the VAR(3) model with the robust RMLTS estimator,
the corresponding robust residual distances dt(B̂RMLTS, Σ̂RMLTS) are com-
puted as in (7), for t = k + 1, . . . , T . Figure 2 displays these distances with
respect to the time index, and high residual distances indicate outlying ob-
servations. It is important to compute these distances based on the robust
RMLTS, in order to avoid the well-known masking effect. Furthermore, it is
common to compare these distances with a critical value from the chi-square
distribution with p degrees of freedom, and we took χp,0.99. Figure 2 reveals
that several suspectable high residuals are detected, in particular around
the years 1954 and 1958. But there are also a couple of other, less extreme
outliers, which are more difficult to retrieve from the time series plot in Fig-
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ure 1. Due to the presence of outliers, it is appropriate to make use of robust
methods for further analysis of this data set.
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Fig. 2. Robust residual distances for the “maturity rate” series, based on RMLTS
estimator of a VAR(3) model. The dashed line represents the critical value at the
1% level.

6 Conclusions

For multivariate time series correlation outliers can be present, which are
not necessarily visible in plots of the single univariate series. Development
of robust procedures for multiple time series analysis is therefore even more
important than for univariate time series analysis.

In this paper we have shown how robust multivariate regres-
sion estimators can be used to estimate Vector Autoregressive mod-
els. We use the reweighted multivariate least trimmed squares esti-
mator, but other robust multivariate regression estimators could be
used as well. Software to compute the MLTS estimator is available at
http://www.econ.kuleuven.be/christophe.croux/public.

The estimation of VAR models as multivariate regression models has one
major disadvantage. A fraction ε of outliers in the original series can produce
up to kε outliers for the regression model (1), due to the fact that k delayed
versions of the time series are used as explanatory variables. Hence, if a
robust regression estimator has a breakdown point of, for example, 1/2, this
reduces to 1/(2k) when estimating the VAR(k) model. To solve this problem
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of propagation of outliers, it has been proposed to first filter the series with
a robust filter, and then to apply a robust estimator on the robustly filtered
data (see Bianco et al. 2001, Maronna et al. 2006). Other types of robust
filters were proposed by Davies et al. (2004) and Fried et al. (2006). However,
while robust filters are available for univariate series, multivariate versions
have not been developed yet, up to our best knowledge, and we leave this for
future research.

In the simulation experiments the RMLTS estimators have been com-
pared with the residual autocovariance (RA) estimators of Garćıa Ben et al.
(1999). The RA estimates are computed iteratively, and we propose to use
the RMLTS as a starting value for computing the RA estimators. It turned
out that both robust estimators behave then similarly. If there are no outliers
in the data set present, the robust estimators perform almost as good as the
classical estimator. But if there are outliers, bias and MSE only remain under
control when using the robust estimator.
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Abstract. We show, using a Monte Carlo study, that MM-estimates with projec-
tion estimates as starting point of an iterative weighted least squares algorithm,
behave more robustly than MM-estimates starting at an S-estimate and similar
Gaussian efficiency. Moreover the former have a robustness behavior close to the
P-estimates with an additional advantage: they are asymptotically normal making
statistical inference possible.

Keywords: robust regression, S-estimates, P-estimates

1 Introduction

The most commonly used estimator for linear models is the least squares (LS)
estimate. An observation is an atypical point or outlier if it does not fit the
regression model which is followed by the large majority of the observations.
It is well known that the LS estimate is extremely sensitive to outliers. In fact,
a single outlier can have an unbounded effect on the LS estimate. Estimators
which are not much influenced by outliers are called robust.

One measure of robustness of an estimate is its breakdown point. Heuristi-
cally, the breakdown point is the minimum fraction of arbitrary outliers that
can take the estimate beyond any limit. Hampel (1971) introduced the break-
down point as an asymptotic concept, and Donoho and Huber (1983) gave
the corresponding finite sample notion. The maximum possible asymptotic
breakdown point of an equivariant regression estimate is 0.5.

Yohai (1987) introduced the class of MM-estimates which simultaneously
have high breakdown point and high efficiency under normal errors. An MM-
estimate requires an initial estimate with high breakdown point but not nec-
essarily efficient. This initial estimate is used to compute an M-scale of the
residuals Then using this scale and starting with the initial estimate, a re-
descending efficient M-estimate is computed using the iterated weighted least
squares (IWLS) algorithm.
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In general the MM-estimate computed with the IWLS algorithm corre-
sponds to a local minimum of the M-estimate loss function, which is close to
the initial estimate. Since, as we shall see later, this loss function may have
more than one local minima, the degree of robustness of the MM-estimate is
going to be related to the degree of robustness of the initial estimate used to
start the IWLS algorithm. The most common implementation of the MM-
estimate is to take as initial value an S-estimate with breakdown point 0.5.

Maronna and Yohai (1993) proposed the class of projection estimates
(P-estimates) for linear models. They show that these estimates are highly
robust. In fact, when the degree of robustness is measured by the maximum
asymptotic bias (MAB), these estimates are much more robust than Least
Median of Squares, Least Trimmed Squares and S-estimates. One shortcom-
ing of P-estimates is that they are not asymptotically normal.

In this work we compare by Monte Carlo simulation the MM-estimate
which uses the P-estimate as initial value with the MM-estimates that start
with the S-estimate. We found that MM-estimates that use a P-estimate as
initial value have better robustness properties than MM-estimates starting
at an S-estimate. Moreover, the advantage of the MM-estimates starting at a
P-estimate over the P-estimates is that they are asymptotically normal and
highly efficient.

2 Robustness measures

Consider the linear model with p random regressors

yi = α0 + β.′
0 xi + ui , i = 1, . . . , n , (1)

where β0 = (β01...β0p)′ and xi = (xi1, . . . , xip)′ . We will assume that
(u1,x1), ..., (un,xn) are i.i.d. random vectors and that ui is independent
of xi. We denote by F0 the distribution of the errors ui’s, G0 the distribution
of the xi’s and H0 the joint distribution of (y,x). Throughout the paper we
will assume

P1. F0 has a density f0 which is symmetric and unimodal.
One way to measure the degree of robustness for large samples is the

maximum asymptotic bias which is defined as follows.
Define the contamination neighborhood of size ε of H0 given by

Vε(H0) = {H : H = (1 − ε)H0 + εH∗, where H∗ is arbitrary}.

Consider a sequence of estimates γ̂n = (α̂n, β̂n) of γ0 = (α0, β0) such that
for any H ∈ Vε(H0), if (x1, y1), ...., (xn, yn) is a random sample of H , then

lim
n→∞

γ̂n((x1, y1), ...., (xn, yn)) = γ̂∞(H) = (α̂∞(H), β̂∞(H)) a.s.,



The Choice of the Initial Estimate for Computing MM-Estimates 505

where (α̂∞(H), β̂∞(H)) ∈ R2. Then, the maximum asymptotic biases (MAB)
of α̂n and β̂n are defined by

MAB({α̂n}, H0, ε) = max
H∈Vε(H0)

|α̂∞(H) − α0|,

and

MAB({β̂n}, H0, ε) = max
H∈Vε(H0)

(̂β∞(H) − β0)′Σx(̂β∞(H) − β0), (2)

where Σx is the covariance matrix of x. The reason why Σx is included in
(2) is to make this definition affine equivariant.

For some estimates it is very complicated to compute MAB. In this cases,
we can consider the pointwise MAB (PMAB)

PMAB({β̂n}, H0, ε) = max
H∈V ∗

ε (H0)
(β̂∞(H) − β0)′Σx(β̂∞(H) − β0),

where

V ∗
ε (H0) = {H : H = (1 − ε)H0 + εδ(y∗,x∗), (y∗,x∗) ∈ Rp+1},

and where δ(y∗,x∗) is the point mass distribution at (y∗,x∗). In a similar way
we can define PMAB({α̂n}, H0, ε).

A measure of the robustness behavior for finite samples of an estimate
(α̂n, β̂n), is the pointwise maximum mean square error (PMMSE) defined by

PMMSE(α̂n, H0, ε) = max
H∈V ∗

ε (H0)
E((α̂n(H) − α0)2)

and

PMMSE(β̂n, H0, ε) = max
H∈V ∗

ε (H0

(E((β̂n(H) − β0)′Σx(β̂n(H) − β0)).

3 S-estimates

Put γ = (α, β), γ0= (α0, β0). Define the residual vector r(γ) =
(r1(γ), ..., rn(γ)) by ri(γ) = yi − α − β′xi. Consider a function ρ satisfying
property P2 below

P2. ρ : R → R satisfies: (i) ρ is even, (ii) ρ(0) = 0, (iii) 0 ≤ u1 < u2

implies ρ(u1) ≤ ρ(u2), (iv) ρ is bounded, (v) sup ρ > 0.
The S-estimates introduced by Rousseeuw and Yohai (1984) are defined

by

γ̂ = arg min
γ∈Rp+1

S(γ),
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where S(γ) is defined as the value s solving

1
n− p− 1

n∑

i=1

ρ

(
ri(γ)
s

)
= b,

where b is a given number.
Rousseeuw and Yohai (1984) and Davies (1990) proved that under general

assumptions that include P1 and P2 we have

n1/2(γ̂−γ0) →D N(0, σ2c(ψ, F0, σ)E(x̃x̃′)),

where x̃′ = (1,x′), →D denotes convergence in distribution, ψ = ρ′, σ is the
asymptotic value of s which is given by the solution of

EF0

(
ρ
(u

σ

))
= b, (3)

and where

c(ψ, F, σ) =
EF

(
ψ2

(
u
σ

))

E2
F

(
ψ′

(
u
σ

)) . (4)

Generally ρ is calibrated so that σ coincides with the standard deviation
when F0 is normal. A necessary and sufficient condition for this is that the
solution of (3) be σ = 1 when F0 is the N(0,1) distribution function.

Rousseeuw and Yohai (1984) have also shown that if P (a′x = b) = 0 for
all a ∈ Rp and b ∈ R, the asymptotic breakdown point of an S-estimate is
given by

ε∗ = min
(

b

a
, 1 − b

a

)
,

where a = maxu ρ(u). Note that if b = a/2 then ε∗ = 0.5, which is the highest
asymptotic breakdown point that a regression equivariant estimate can have.

One family of functions satisfying P2 is the bisquare family ρB
c where

c > 0, given by

ρB
c (u) =

{
3
(

u
c

)2 − 3
(

u
c

)4 +
(

u
c

)6 if |u| ≤ c
1 if |u| > c.

(5)

If we take c = 1.56 and b = 0.5, the asymptotic breakdown point of
the corresponding S-estimate is 0.5. Moreover with these choices, when F0 is
normal, the solution σ of (3) coincides with the standard deviation.

Hossjer (1992) showed that S-estimates can not be simultaneously highly
efficient under a normal model and have a high breakdown point such as 0.5.
The largest asymptotic efficiency of an S-estimate with breakdown point 0.5
is 0.33.

For S-estimates, it may be proved that the MAB and PMAB coincide,
and closed expressions can be found in Martin, Yohai and Zamar (1989). For
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MM-estimates there are no closed expressions for MAB and PMAB. However
numerical calculations (see Chapter 5 of Maronna, Martin and Yohai (2006))
show that at least in the case that ρ0 and ρ1 are taken in the bisquare family,
the PMAB of the MM-estimates with efficiencies 0.85 and 0.95 starting at
the S-estimate coincide with the PMAB of the initial S-estimate.

4 P-estimates

Maronna and Yohai (1993) introduced the P-estimates which are defined as
follows. For any γ =(α, β) ∈ Rp+1, and η = (µ, ν) ∈ Rp+1 let

A(γ, η)=median1≤i≤n
ri(γ)
η′x̃i

.

Note that since ui and xi are independent, under P1 we have

A(γ0, η) = median
ui

η′x̃i
→ 0 a.s.. for all γ ∈Rp+1

Then it is natural to define the projection estimates by

γ̂=arg min
γ∈Rp+1

B(γ),

where
B(γ) = sup

η∈Rp+1
s(η)|A(γ, η)|.

and where s(η) =MAD(η′x̃i)
The main results on P-estimates that can be found in Maronna an Yohai

(1993) are

• The P-estimates are regression, affine and scale equivariant.
• The rate of consistency of the P-estimates is n1/2 . However the asymp-

totic distribution is not normal.
• Assume that P (a′x = b) = 0 for all a ∈ Rp and b ∈ R. Then the

asymptotic breakdown point of P-estimates is 0.5
• The maximum bias of the P-estimates satisfies MAB(γ̂n, ε,H) ≤

2C(ε,H)+ o(ε), where C(ε,H) is a lower bound of MAB for equivariant
regression estimates

In Table 1 we compare the MAB of several estimates: the S-estimate
based on the bisquare function with breakdown point 0.5, the least median
of squares (LMS) and least trimmed squares (LTS) proposed by Rousseeuw
(1984) and the P-estimate. Note that the P-estimate has the smallest MAB.
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Table 1. Maximum Asymptotic Bias of Robust Estimates.

Estimate ε
0.05 0.10 0.15 0.20

LMS 0.53 0.83 1.13 1.52
LTS 0.73 1.02 1.46 2.02
S 0.56 0.88 1.23 1.65
P 0.16 0.36 0.56 0.82

5 MM-estimates

The class of MM-estimates proposed by Yohai (1987) combines high break-
down point with high asymptotic efficiency under normality. To define the
MM-estimates we require two functions ρ0 and ρ1 satisfying P2 and such
that ρ1 ≤ ρ0. Then the MM-estimates are defined as follows:

1-Start with a consistent estimate γ̂0 with breakdown point 0.5. It is not
necessary that this estimate has high efficiency.

2- Compute an M-scale s of r(γ̂0) with breakdown point 0.5 by

1
n− p− 1

n∑

i=1

ρ0

(
ri(γ̂0)

s

)
= b,

where b = maxu ρ0(u)/2.
3- Compute a local minimum γ̂1 of

Mn(γ) =
1
n

n∑

i=1

ρ1

(
ri(γ)
s

)

such that
Mn(γ̂1) ≤ Mn(γ̂0).

Yohai (1987) proved that, under very general assumptions, β̂1 conserves
the breakdown of γ̂0 independently of the choice of ρ1. Moreover, under very
general assumptions,

n1/2(β̂1 − β) →D N(0, σ2c(ψ1, F0, σ)E(x̃x̃′),

where ψ1 = ρ′1, σ is the asymptotic value of s which is given by (3) and
c(ψ, F, σ) is given by (4). When ρ0 is chosen so that σ coincides with the
standard error when u is normal, the Gaussian asymptotic efficiency of the
MM-estimate with respect to the LS-estimate is

EFF =
E2

φ (ψ′
1 (u))

Eφ (ψ2
1 (u))

,

where φ is the standard normal distribution.
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Therefore, since this efficiency depends only on ρ1, we can choose this
function so that under Gaussian errors EFF be equal to any desired value.
For example, we can choose ρ0 and ρ1 in the bisquare family; i.e., we can
take ρ0 = ρB

c0
and ρ1(u) = ρB

c1
. In that case it will be convenient to take

c0 = 1.55 so that the value of σ coincides with the standard deviation under
normal errors. The value of c1 should be chosen according to the desired
Gaussian efficiency. For example for an efficiency of 0.95, c1 = 4.65, and for
an efficiency of 0.85 c1 = 3.46.

One way to compute the MM-estimate γ̂1 is by means of the iterative
weighted least squares (IWLS) algorithm starting at γ(1) = γ̂0. The recursion
step for this algorithm is as follows:

Given γ(j) we define the weights wi = w(ri(γ(j))/s), 1 ≤ i ≤ n, where
w(u) = ψ(u)/u. Then, γ(j+1) is the weighted least square estimate

γ(j+1) = arg min
γ

n∑

i=1

wir
2
i (γ)

In general the function Mn(γ) has several local minima. When n → ∞,
Mn(γ) converges to

M∞(γ) = EH

(
ρ1

(
y − γ′x̃
σ(H)

))
, (6)

where H is the joint distribution of (y,x) and σ(H) is the asymptotic scale
defined by

EH

(
ρ0

(
y − α̂0∞ − β̂′

0∞x
σ(H)

))
= b.

When the linear model is satisfied and P1 holds for F0, the only local minima
of (6) is at γ = γ0.

Suppose now for simplicity that the model does not have intercept, β0 =
0 and that there is a fraction (1 − ε) of outliers equals to (y0,x0),where
x0 = (x0, 0, ..., 0). In this case M∞ depends only on β1, the first coordinate
of β. The worst situation is when |x0| → ∞ an in this case M∞(β1) has
two local minima, one at 0 and another close to the the contamination slope
m0 = y0/x0. There exists a value m∗ such that that when m0 < m∗ the
global minimum is the local minimum closest to m0, and when m0 > m∗ the
global minimum is at 0. As a consequence of this, if we choose as estimate
the global minimum, the maximum asymptotic bias is m∗. We illustrate this
behavior in Figure 1, where M∞(β) is plotted for three values of the slope
m0. In this case we take x ∼ N(0, I) and u ∼ N(0, 1) so that β0 = 0.

The local minimum γ̂1 to which the IWLS algorithm converges, depends
on the initial estimate γ̂0. In general we can state the following rule: if we start
the IWLS algorithm sufficiently close to a local minimum, it will converge to
that local minimum. Therefore the degree of robustness of γ̂1 is going to be
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Fig. 1. Plot of M∞(β) for three values of the contamination slope: (a) the global
minimum is close to the contamination slope (b) there are two global minima (c)
the global minimum is at 0.

related to the degree of robustness of γ̂0. However as it is shown in Yohai
(1987), the asymptotic efficiency of the MM-estimate is independent of the
choice of γ̂0.

The most popular choice of γ̂0 (the one employed in the SPLUS, R and
SAS. programs) is to start with an S-estimate based on ρ0. However, as is
shown in Table 1, the MAB of the P-estimate is smaller that the one of the
S-estimate. For that reason we can expect that an MM-estimate that takes
as γ̂0 a P-estimate would be more robust than the MM-estimate that starts
at an S-estimate. Simultaneously, since both MM-estimates have the same
asymptotic efficiency we can expect a similar behavior under a linear model
with Gaussian errors and no outliers.

6 Monte Carlo results

In this Section we report the results of a Monte Carlo study aimed to compare
the performance of the MM-estimates starting at an S- and a P- estimate.
The functions ρ0 and ρ1 were taken in the bisquare family (5). We took
ρ0 = ρ

(B)
1.55 and b = 0.5 so that (3) holds. Moreover, we chose ρ1 = ρ

(B)
3.44 which

corresponds to an MM-estimate having an asymptotic Gaussian efficiency of
0.85.
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We consider samples of size n = 100, and p = 2, 5 and 10. In all cases a
fraction (1−ε) of the observations (yi,xi) were taken from a multivariate nor-
mal distribution, and the remaining observations are equal outliers (y0,x0).
Because of the equivariance properties of all the estimates considered in this
study, without loss of generality, the normal observations were taken with
mean 0 and identity covariance matrix. This corresponds to β0 = 0 and
α0 = 0.

Because of the equivariance of the estimates considered in the study, with-
out loss of generality, the values of x0 were taken of the form (x0, 0, .., 0) and
y0 = mx0. We took two values of x0: x0 = 1 (low leverage outliers) and
x0 = 10 (high leverage outliers). We took a grid of values of m with step 0.1
and looked for the value that achieves the maximum mean square error. The
number of the Monte Carlo replications was N = 500.

The S-estimate was computed with the fast algorithm for S-estimates
proposed by Salibian-Barrera and Yohai (2006) and the P-estimate with the
algorithm based on subsampling described in Maronna and Yohai (1993)
taking the same set of candidates than for the S-estimate. The number of
subsamples used for both estimates was 500.

In order to measure the performance of each estimate we compute the
sample mean squared error (MSE) as follows. Suppose that γ

(1)
n = (α̂(1)

n , β̂
(1)
n ),

..., γ̂
(N)
n = (α̂(N)

n , β̂
(N)
n ) are N replications of an estimate γ̂n = (α̂n, β̂n) of γ0.

Then we estimate the MSE of α̂n and of β̂n by

M̂SE (α̂n) =
1
N

N∑

i=1

∣∣∣α̂(i)
n − α0

∣∣∣
2

(7)

and

M̂SE
(
β̂n

)
=

1
N

N∑

i=1

∥∥∥β̂(i)
n − β0

∥∥∥
2

, (8)

where ‖‖ denotes the Euclidean norm.
We compute the following estimates: the P-estimate (P), the S-estimate

(S), the MM-estimate starting from an S-estimate (SMM) and the MM-
estimate starting from a P-estimate (PMM).

Table 2 show the MSE ’s when there are no outliers. Tables 3 and 4
report the maximum MSE’s for the case that ε = 0.10 for low and high
leverage outliers respectively. Finally, Tables 5 and 6 give the MSE ’s for the
case ε = 0.20. Table 7 contains the standard errors of the difference between
the MSE’s of the SMM- and PMM-estimates when there are no outliers. The
standard errors under outlier contamination stay close to these values. From
the analysis of Tables 2-7 we can draw the following conclusions

• When there are not outliers both MM-estimates have a similar behavior
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• When x0 = 1, the MMS- and MMP-estimates have similar maximum
MSE’s for p equal 2 and 5. When p = 10 the MMP-estimate outperforms
the MMS-estimate.

• When x0 = 10, the MMP-estimate behave much better than the MMS-
estimate for all values of p.

Table 2. Mean Square Errors Without Outliers.

Estimates α̂n β̂n

p
2 5 10 2 5 10

P 0.015 0.016 0.018 0.034 0.08 0.18
S 0.033 0.036 0.040 0.067 0.21 0.43
MMP 0.012 0.012 0.012 0.023 0.06 0.13
MMS 0.012 0.013 0.013 0.023 0.06 0.14

Table 3. Maximum Mean Square Errors when ε = 0.10 and x0 = 1.

Estimates α̂n β̂n

p
2 5 10 2 5 10

P 0.040 0.044 0.054 0.099 0.19 0.33
S 0.128 0.162 0.223 0.218 0.46 0.92
MMP 0.049 0.052 0.057 0.067 0.11 0.21
MMS 0.049 0.051 0.055 0.067 0.11 0.21

Table 4. Maximum Mean Square Errors when ε = 0.20 and x0 = 1.

Estimates α̂n β̂n

p
2 5 10 2 5 10

P 0.15 0.15 0.25 0.43. 0.84 1.92
S 0.55 0.73 1.29 1.20 2.31 4.82
MMP 0.29 0.33 0.40 0.35 0.48 0.72
MMS 0.26 0.30 0.44 0.33 0.48 1.01

Figure 2 shows the MSE as a function of the contamination slope for the
two MM-estimates in the case of x0 = 10, ε = 0.10 and p = 10. We observe
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Table 5. Maximum Mean Square Errors when ε = 0.10 and x0 = 10.

Estimates α̂n β̂n

p
2 5 10 2 5 10

P 0.037 0.035 0.035 0.13 0.26 0.52
S 0.076 0.073 0.090 0.50 0.79 1.33
MMP 0.017 0.017 0.020 0.20 0.24 0.43
MMS 0.024 0.026 0.034 0.42 0.56 0.84

Table 6. Maximum Mean Square Errors when ε = 0.20 and x0 = 10.

Estimates α̂n β̂n

p
2 5 10 2 5 10

P 0.12 0.12 0.15 0.71 1.30 2.59
S 0.21 0.27 0.31 1.90 3.09 4.90
MMP 0.03 0.05 0.07 0.65 1.12 2.17
MMS 0.07 0.11 0.17 1.75 2.48 3.84

Table 7. Standard errors of the difference of the MSE’s of the SMM- and PMM-
estimates.

Coefficient p
2 5 10

intercept 0.0005 0.002 0.004
slopes 0.001 0.004 0.013

that the MMP estimate behaves better than the MMS estimate uniformly on
the contamination slope m. Similar behaviors occurs for all the other values
of p and ε at x0 = 10.

The computing time required to fit the PMM with 500 subsamples to a
data set of 500 observations and 10 regressors is approximately 4 seconds
using a MATLAB program and a PC computer with an AMD Athlon 1.8
GHz processor

7 Concluding remarks

A Monte Carlo study has shown that MM-estimates that use a P-estimate
as starting value, have a degree of robustness comparable to that of the
P-estimate. and much higher than that of the MM-estimate starting at an
S-estimate. On the other hand both MM-estimates have comparable Gaus-
sian efficiencies. An additional advantage of the MM-estimate starting at
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Fig. 2. MSE ’s of MM-estimates for x0 = 10.

a P-estimate is that, contrary to what happens with the P-estimate, it is
asymptotically normal and thus allows statistical inference.
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the Black-Box-Complexity of Optimization
Problems
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Abstract. Many real-world optimization problems cannot be modeled by a well-
described objective function to apply methods from mathematical optimization
theory. Then randomized search heuristics are applied - often with good success.
Although heuristical by nature, they are algorithms and can be analyzed like all
randomized algorithms, at least in principle. Two fundamental results of this kind
are presented to show how such a theory can be developed.

Keywords: randomized search heuristics, minimum spanning tree, black-
box-complexity

1 Introduction

One of the best-studied areas in computer science is the design and analysis
of algorithms for optimization problems. This holds for deterministic algo-
rithms as well as for randomized algorithms (see, e.g., Cormen, Leiserson,
and Rivest (1996) and Motwani and Raghavan (1995)). The criterion of
the analysis is the asymptotic (with respect to the problem dimension)
worst-case (with respect to the problem instance) expected (with respect
to the random bits used by the algorithm) run time of the algorithms. Up
to now, large lower bounds need some complexity theoretical assumption
like NP = P . For almost all well-known optimization problems the best
algorithms in this scenario are problem-specific and use essentially the
structure of the considered problem.

Therefore, randomized search heuristics like randomized local search,
tabu search, simulated annealing, and all variants of evolutionary and
genetic algorithms are typically not considered in this context. They do
not beat the highly specialized algorithms in their domain. Nevertheless,
practitioners repeat surprisingly good results for these heuristics. This makes

� Supported in part by the DFG collaborative research projects SFB 475 (Reduc-
tion of Complexity for Multivariate Data Structures) and SFB 531 (Computa-
tional Intelligence).
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it necessary to develop a theory of randomized search heuristics. Some
early approaches should be mentioned: Glover and Laguna (1993) for tabu
search, Kirkpatrick, Gelett, and Vecchi (1983) and Sasaki and Hajek (1988)
for simulated annealing, Wegener (2001) and Droste, Jansen, and Wegener
(2002) for evolutionary algorithms. Here we present two fundamental results
in this direction.

First, a problem known as open since more than ten years about the
Metropolis algorithm and simulated annealing is solved (this is based on We-
gener (2005)). Then we describe a complexity theory for randomized search
heuristics excluding highly specialized algorithms and apply the theory of
two-person zero-sum games to prove a large lower bound for a fundamental
class of functions (this is based on Droste, Jansen, and Wegener (2006)).

2 The Metropolis algorithm and Simulated Annealing

We describe the Metropolis algorithm (CMA) with temperature T for
minimization problems on {0, 1}m. The first search point x is chosen in some
way discussed later. Each round of an infinite loop consists of local change
and selection.

Local change: Let x be the current search point. Choose i ∈ {1, . . . ,m}
uniformly at random and flip xi, i.e., let x′ = (x′

1, . . . , x
′
m) where x′

j = xj , if
j = i, and x′

i = 1 − xi.
Selection of the new current search point with respect to a fitness function
f :

if f(x′) ≤ f(x): select x′,
if f(x′) > f(x): select x′ with probability exp{−(f(x′) − f(x))/T },
otherwise select x.

We have to discuss some details in order to ensure that our results are not
based on too special choices. Randomized search heuristics do not produce
a certificate that a search point is opimal. Therefore, the algorithm contains
an infinite loop, but the run time is defined as the number of rounds until
an optimal search point is produced. A round cannot be performed in time
O(1) but quite efficiently and people have agreed to count the number of
rounds.

We choose 1m as starting point. This is for our problems the worst
legal search point and similar to the choice 0n for the maximum matching
problem (Sasaki and Hajek (1988)) and the maximum clique problem
(Jerrum (1992)). This choice excludes the lower bound technique of Sasaki
(1991) which only ensures the existence of a bad starting point.
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Finally, we introduce SA based on a cooling schedule T (t). The initial
temperature T (1) may depend on m and the largest possible weight ωmax.
The temperature T (t) applied by the selection operator in step t equals αt−1.
T (1), there α < 1 is a constant which may depend on m and an upper bound
on ωmax. This cooling schedule does not include any knowledge about the
problem instance. We use a kind of “continuous cooling”, other possibilities
are longer phases with a constant temperature or dynamic cooling schedules
that depend on the success rate (where a step is called successful if x′ is
selected) or the rate of f -improving steps.

Next we describe a challenge posed in the literature. For graphs on m
edges a search point x ∈ {0, 1}m chooses all edges ei where xi = 1. We inves-
tigate the minimum spanning tree problem (MSTP) on connected graphs.

We have chosen the fitness function f where f(x) = ∞ for search points
x describing unconnected graphs and where f(x) is the total weight of all
chosen edges if x describes a connected graph. Unconnected graphs are never
accepted as current search points. This again is in accordance with Sasaki
and Hajek (1988) and Jerrum (1992). All search points are legal solutions in
the graph bisection problem and therefore Jerrum and Sorkin (1993, 1998)
start with randomly chosen search points.
We follow Sasaki and Hajek (1988) and Jerrum (1992) in allowing only 1-
bit neighborhoods. Neumann and Wegener (2004) have analyzed RLS with
1-bit and 2-bit flips (RLS equals the frozen MA at temperature T = 0)
and a simple EA for the MSTP. These algorithms do not select new search
points which are worse than the old one. Hence, their search strategy is
completely different from the strategy applied by MA and SA that have to
accept sometimes worsenings to find the optimum. Flips of two bits allow
to include an edge into a tree and to exclude simultaneously an edge of the
newly created cycle. RLS and the simple EA find an MST in an expected
number of O(m2(logm+ logωmax)) steps, where ωmax denotes the maximal
weight. Note that we are not looking for a “best” algorithm for the MSTP.
The main idea of an elitist EA is to reject worsenings and to escape from local
optima by non-local steps. The main idea of MA and SA is to work with very
local steps and to escape from local optima by accepting worsenings. The
situation here is similar to the case of maximum mathcings where also flips
of 2 bits are helpful to shorten augmenting paths, compare Sasaki and Hajek
(1988) who analyze SA with 1-bit flips only and Giel and Wegener (2003)
who analyze RLS with 1-bit and 2-bit flips and a simple EA.

3 Efficiency measures

There are many well-known convergence results on MA and SA. We
want to distinguish “efficient behavior” from non-efficient one. The first
idea is to define efficiency as expected polynomial time. We think that
this is not a good choice. There may be a small probability of missing a
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good event for temperatures in some interval [T1, T2]. For temperatures
smaller then T1 it may be very unlikely that the good event happens. This
may cause a superpolynomial or even exponential expected run time al-
though the run time is polynomially bounded with overwhelming probability.

Definition 3. Let A be a randomized search heuristic (RSH) running for a
polynomial number of p(m) rounds and let s(m) be the success probability,
i.e., the probability that A finds an optimal search point whithin this phase.
A is called

- successful, if s(m) ≥ 1/q(m) for some polynomial q(m),
- highly successful, if s(m) ≥ 1 − 1/q(m) for some polynomial q(m), and
- successful with overwhelming probability, if s(m) = 1−e−Ω(mε) for some
ε > 0.

One can be satisfied with successful RSHs, since then multistart variants
not depending on p and q are successful with overwhelming probability and
have an expected polynomial run time. An RSH is called unsuccessful if, for
each polynomial p, the success probability within p(m) steps is o(m−k) for
each constant k. This implies a superpolynomial expected optimization time.
Moreover, multistart variants do not help.

4 Metropolis vs. simulated annealing

Here, we are interested in simulated annealing and the Metropolis algorithm
(which can be defined as SA with a fixed temperature). Both algorithms are
defined in Section 2. It is an obvious question how to use the freedom to
choose a cooling schedule for SA and whether this option is essential. Lit-
tle is known about this leading Jerrum and Sinclair (1996, page 516) to the
following statement: “It remains an outstanding open problem to exhibit a
natural example in which simulated annealing with any non-trivial cooling
schedule provably outperforms the Metropolis algorithm at a carefully cho-
sen fixed value of α.” In their paper, α is the temperature. The notion of a
“natural example” is vague, but the known examples are obviously artificial.
Sorkin (1991) has proven the considered effect for a so-called fractal energy
landscape. The chaotic behavior of this function asks for different tempera-
tures in different phases of the search. The artificial example due to Droste,
Jansen, and Wegener (2001) allows a simpler analysis.

Jerrum and Sorkin (1998) have analyzed the Metropolis algorithm for the
graph bisection problem. They focus the interest on problems from combina-
torial optimization: “Unfortunately no combinatorial optimization problem
that has been subjected to rigorous theoretical analysis has been exhibited
this phenomenon: those problems that can be solved efficiently by simulated
annealing can be solved just as effectively by ‘annealing’ at a single carefully
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. . .

Fig. 1. Graphs called connected triangles.

selected temperature. A rigorous demonstration that annealing is provably
beneficial for some natural optimization problems would rate as a significant
theoretical advance.”

Our problem of choice is the minimum spanning tree problem (MSTP)
which is contained in all textbooks on combinatorial optimization and should
be accepted as “natural optimization problem.” It should be obvious that
SA cannot beat MA for each problem instance. E. g., for graphs where all
edge weights equal 1 the frozen MA (at temperature 0) cannot be beaten
by SA. In Section 3, we describe the notion of efficiency for randomized
search heuristics and, in Section 5, we describe simple instances of the MSTP
where SA outperforms MA. The underlying graphs will be so-called connected
triangles (CT), see Figure 1.

The idea is to produce examples as simple as possible. This allows proofs
which can be taught in introductory courses on randomized search heuris-
tics. Afterwards, we try to understand which instances of the MSTP can be
solved efficiently by SA and MA, only by SA, or by none of them. Weights
w1, . . . , wm are called (1 + ε)-separated if wi > wj implies wi ≥ (1 + ε) · wj .
For each ε(m) = o(1) there are graphs with (1+ε(m))-separated weights such
that SA cannot attack them efficiently (Section 6). For each constant ε > 0,
SA can attack all graphs with (1 + ε)-separated weights efficiently. These
results imply that SA outperforms MA on a much larger class of graphs than
the connected triangles discussed in Section 5.

It should be obvious that we do not hope that SA or MA beats the well-
known algorithms due to Kruskal and to Prim. Again we like to transfer a
statement of Jerrum and Sorkin (1998) from minimum bisections to minimum
spanning trees (MSTs): “Our main contribution is not, then, to provide a
particularly effective algorithm for the minimum bisection problem . . . , but
to analyze the performance of a popular heuristic applied to a reasonably
realistic problem in combinatorial optimization.”

5 Simulated annealing beats Metropolis on some
simple graphs

Our plan is to present simple graphs where SA beats MA for each tem-
perature. The graphs should allow proofs as simple as possible. The idea
behind the chosen graphs is the following. The problem to compute an MST
on graphs with many two-connected components is separable, i. e., an MST
consists of MSTs on the two-connected components. We investigate graphs
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where each two-connected component can be handled easily by MA with a
well-chosen temperature, but different components need different tempera-
tures. To keep the analysis easy the components have constant size. This
implies that, for high temperatures, each component can be optimized, but
the solutions are not stable. They are destroyed from time to time and then
reconstructed. Therefore, it is unlikely that all the components are optimized
simultaneously. SA can handle these graphs efficiently.

As announced, we investigate connected triangles (CT), see Figure 1, with
m = 6n edges. The number of triangles equals 2n and the number of vertices
equals 4n + 1. The weight profile (w1, w2, w3) of a triangle is simply the
ordered vector of the three edge weights. We investigate CTs with n triangles
with weight profile (1, 1,m) and n triangles with weight profile (m2,m2,m3).
The unique MST consists of all edges of weight 1 or m2.

Theorem 1. The probability that the Metropolis algorithm applied to CTs
with n triangles with weight profile (1, 1,m) and n triangles with weight profile
(m2,m2, m3) computes the MST within ecm steps (c a positive constant which
is small enough) is bounded above by e−Ω(m), i. e., MA is unsuccessful on
these instances.

Proof. We distinguish the cases of high temperature (T ≥ m) and low tem-
perature (T < m).

The low temperature case is easy. We do not care about the triangles with
weight profile (1, 1,m). For each other triangle, MA accepts the exclusion of
the first flipping edge. By Chernoff bounds, with probability 1 − 2−Ω(m), we
obtain Ω(m) triangles where the first spanning tree contains the heavy edge.
In order to obtain the MST it is necessary to include the missing edge of
weight m2. If this edge is chosen to flip, the probability of selecting the new
search point equals e−m2/T ≤ e−m. Hence, the success probability within
em/2 steps is e−Ω(m).

In the high temperature case, we do not care about the heavy triangles.
For the light triangles, we distinguish between complete triangles (the search
point chooses all three edges), optimal triangles (the two weight-1 edges are
chosen), and bad triangles. The status of each triangle starts with “complete”
and follows a Markov chain with the following transition probabilities:

complete optimal bad
complete 1 − 3/m 1/m 2/m
optimal 1

m · e−m/T 1 − 1
m · e−m/T 0

bad 1
m · e−1/T 0 1 − 1

m · e−1/T

Let Xt be the number of optimal triangles after time step t, i. e., X0 =
0. We are waiting for the first point of time t when Xt = n. Obviously,
|Xt+1 −Xt| ≤ 1. Moreover,

Pr(Xt+1 = a + 1 | Xt = a) ≤ n− a

m
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since it is necessary to flip the heaviest edge in one of the at most n − a
complete triangles, and

Pr(Xt+1 = a− 1 | Xt = a) =
a

m
· e−m/T ≥ a

3m

since T ≥ m and since it is necessary to flip the heaviest edge in one of the
optimal triangles and to accept the new search point. Since we are interested
in lower bounds, we use the upper bound for the probability of increasing
a and the lower bound for the probability of decreasing a. Ignoring steps
not changing a, we obtain the following transition probabilities for the new
Markov chain Yt:

Pr(Yt+1 = a− 1|Yt = a) =
a/(3m)

a/(3m) + (n− a)/m
=

a

3n− 2a
.

There has to be a phase where the Y -value increases from (10/11)n to n
without reaching (9/11)n. In such a phase the probability of decreasing steps
is bounded below by (9/11)n

3n−(18/11)n = 3
5 . Applying results on the gambler’s

ruin problem, the probability that one phase starting at a = (10/11)n and
finishing at a = (9/11)n or a = n stops at a = n is bounded above by

((3/2)n/11 − 1)/((3/2)2n/11 − 1) = e−Ω(m)

since the probability of decreasing steps is at least by a factor of 3/2 larger
than the probability of increasing steps. Hence, the probability of finding the
MST within ecm steps, c > 0 small enough, is bounded by e−Ω(m). ��

Theorem 2. Let p be a polynomial and let the cooling schedule be described
by T (1) = m3 and α = 1 − 1/(cm) for some constant c > 0. If c is
large enough, the probability that simulated annealing applied to CTs with
n (1, 1,m)-triangles and n (m2,m2,m3)-triangles computes the MST within
3cm lnm steps is bounded below by 1 − 1/p(m).

Proof. We only investigate the search until the temperature drops below 1.
This phase has a length of at most 3cm lnm steps and contains two subphases
where the temperature is in the interval [m2,m5/2] or in the interval [1,m1/2].
The length of each subphase is at least (c/4)m lnm.

If T ≤ m5/2, the probability of including an edge of weight m3 is bounded
above by e−m1/2

. Each run where such an event happens is considered as un-
successful. If T ∈ [m2,m5/2] and an (m2,m2,m3)-triangle is optimal, this
triangle remains optimal unless the event considered above happens. Apply-
ing Chernoff bounds to each edge and choosing c large enough, the probability
of not flipping edges of each triangle at least c′′ logm times is bounded by
m−k, c′′ > 0 and k arbitrary constants. This is a second source of bad be-
havior. Now, we investigate one (m2,m2,m3)-triangle and the steps flipping
one of its edges. For each complete or bad triangle, there is a chance that it
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turns into optimal within the next two steps concerning this triangle. This
happens if the right two edges flip in the right order (probability 1/9) and the
inclusion of the edge with weight m2 is accepted (probability e−m2/T ≥ e−1).
The probability of not having a good pair among the at least (c′′/2) logm
step pairs, can be made much smaller than m−k by choosing c′′ large enough.
Altogether, the probability that the first subphase does not finish with MSTs
on all (m2,m2,m3)-triangles can be made smaller than 1/(3p(m)).

The same calculations for T ∈ [1,m1/2] and the (1, 1,m)-triangles show
that the probability that the second subphase does not finish with MSTs
on all (1, 1,m)-triangles can be made smaller than 1/(3p(m)). Finally, the
probability that an (m2,m2,m3)-triangle has turned from optimal into non-
optimal after the first subphase is smaller than 1/(3p(m)). This proves the
theorem. ��

We have proved that SA is highly successful for the considered graph in-
stances. It is easy to choose a cooling schedule such that SA is even successful
with overwhelming probability, e. g., T (1) = m3 and α = 1 − 1/m2.

This section contains the result announced in the title of the paper. In the
following two sections, we investigate which graphs can be handled efficiently
by MA and SA, only by SA, or by none of them.

6 Connected triangles with the same weight profile

It is interesting to understand how much different weights have to differ such
that MA or SA are able to construct efficiently an MST. For this reason,
we investigate graphs consisting of connected triangles in more detail. In
this section, we consider the case of n CTs with the same weight profile
(w,w, (1 + ε(m)) · w) where ε(m) > 0. We distinguish the cases where ε(m)
is bounded below by a positive constant ε and the case where ε(m) = o(1).

Theorem 3. If ε(m) ≥ ε > 0, MA with an appropriate temperature finds the
MST on CTs with n (w,w, (1 + ε(m)) · w)-triangles in expected polynomial
time and is successful with overwhelming probability.

Proof. A good temperature has to fulfil two properties:

• It has to be low enough to distinguish w-edges effectively from (1+ε) ·w-
edges.

• It has to be high enough to allow the inclusion of a w-edge in expected
polynomial time.

We choose γ := 3/ε and T := w/(γ · lnm). The probability to accept the
inclusion of a w-edge equals e−w/T = m−γ while the corresponding proba-
bility for a ((1 + ε(m)) ·w)-edge equals m−γ·(1+ε(m)) ≤ m−γ−3. We analyze
the success probability of a phase of length mγ+2 starting with an arbitrary
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connected graph. The event to accept the inclusion of a heavy edge is con-
sidered as an unsuccessful phase. The probability of this event is bounded
above by 1/m. Following the lines of the proof of Theorem 2 we have for
each triangle with overwhelming probability Ω(mγ+1) steps flipping an edge
of this triangle which we partition into Ω(mγ+1) pairs of consecutive steps.
The probability that a complete or bad triangle is turned within such two
steps into an optimal one is Ω(m−γ). Hence, with overwhelming probabil-
ity, all triangles turn into optimal during this phase and with probability at
least 1 − 1/m none of them is turned into non-optimal. Hence, the expected
number of phases is O(1) and the probability that a sequence of m phases is
unsuccessful is exponentially small. ��

It is obvious how to tune the parameters in order to get improved run
times. We omit such calculations which do not need new ideas. SA finds
the MST in polynomial time with a probability exponentially close to 1 if it
starts with T (1) := w/(γ · lnm) and has a cooling schedule that cools down
the temperature sufficiently slow. This follows in the same way as Theorem 3.

Theorem 4. If ε(m) = o(1), MA and SA are unsuccessful on CTs with
n (w,w, (1 + ε(m)) · w)-triangles.

Proof. First, we investigate MA. The search starts with n complete triangles
and each one has a probability of 2/3 to be turned into a bad one before it is
turned into an optimal one. With overwhelming probability, at least n/2 bad
triangles are created where the missing w-edge has to be included in order
to be able to turn it into an optimal triangle. The probability of including
a w-edge within a polynomial number of p(m) steps is bounded above by
p(m) · e−w/T . This is bounded below by Ω(m−k) only if e−w/T = Ω(m−γ)
for some constant γ > 0. Hence, we can assume that T ≥ w/(γ · lnm) for
some constant γ > 0.

Let p∗(T ) be the probability of accepting the inclusion of a w-edge and
p∗∗(T ) the corresponding probability for a ((1 + ε(m)) · w)-edge. Since T ≥
w/(γ · lnm) and ε(m) = o(1),

p∗(T )/p∗∗(T ) = e−w/T · e(1+ε(m))·w/T

= eε(m)·w/T

≤ eε(m)·γ·lnm

= mε(m)·γ .

Choosing m large enough, this gets smaller than any mδ, δ > 0. It will turn
out that this advantage of w-edges against ((1+ε(m)) ·w)-edges is too small.
The stochastic process behind MA can be described by the parameters b
(number of bad triangles) and c (number of complete triangles). We use the
potential function 2b+c which starts with the value n and has the value 0 for
the MST. The value of the potential function changes in the following way:
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• It increases by 1 if a complete triangle turns into a bad one or an optimal
one turns into a complete one. The probability of the first event equals
2c/m, since we have to flip one of the two light edges of one of the
complete triangles. The probability of the second event equals p∗∗(T ) ·
(n− b− c)/m since we have to flip the heavy edge in one of the n− b− c
optimal triangles and to accept this flip.

• It decreases by 1 if a complete triangle turns into an optimal one (prob-
ability c/m) or a bad triangle turns into a complete one (probability
p∗(T ) · b/m).

• It remains unchanged, otherwise.

Since we are interested in lower bounds on the optimization time, we
can ignore all non-accepted steps, i. e., all steps not changing the potential.
If b ≤ n1/2 and m is large enough, the probability that an accepted step
increases the potential is at least 3/5. This claim is equivalent to

2c/m + p∗∗(T ) · (n− b− c)/m
2c/m + p∗∗(T ) · (n− b− c)/m + c/m + p∗(T ) · b/m ≥ 3

5

which is equivalent to

2c + p∗∗(T ) · (n− b− c) ≥ 9
5
c +

3
5
· p∗∗(T ) · (n− b− c) +

3
5
p∗(T ) · b

and
1
5
c +

2
5
p∗∗(T ) · (n− b− c) ≥ 3

5
· p∗(T ) · b.

This is obviously true if c ≥ 3 · b. Otherwise, n− b− c ≥ n− 4b ≥ n− 4n1/2

and it is sufficient to show that

2 · p∗∗(T ) · (n− 4n1/2) ≥ 3 · p∗(T ) · n1/2

or
p∗(T )/p∗∗(T ) ≤ 2

3
(n1/2 − 4).

We have shown that this holds for large enough m, since n = Ω(m). The
claim for MA follows now from results on the gambler’s ruin problem. The
probability to start with a potential of n1/2/2 and to reach the value 0 before
the value n1/2 is exponentially small. Finally, we investigate a polynomial
number of p(m) steps of SA. Let d be chosen such that p(m) ≤ md. We claim
that it is unlikely that the potential drops below n1/2/4 within md steps.
With overwhelming probability, we produce a bad triangle. Therefore, it is
necessary to accept the inclusion of a w-edge. Hence, as seen above, only steps
where the temperature is at least w/(γ · lnm) for some appropriate constant
γ > 0 have to be considered. However, the analysis of MA treats all these
temperatures in the same way. The probability to start with a potential of
n1/2/2 and to reach the value n1/2/4 before (3/4)n1/2 is still exponentially
small. ��
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The proof also shows that SA with an arbitrary cooling schedule is un-
successful in the considered situation.
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Abstract. This paper gives an account of some techniques of linear filtering which
can be used for extracting the business cycle from economic data sequences of lim-
ited duration. It is argued that there can be no definitive definition of the business
cycle. Both the definition of the business cycle and the methods that are used to
extract it must be adapted to the purposes of the analysis; and different definitions
may be appropriate to different eras.

Keywords: linear filters, spectral analysis, business cycles

1 Introduction

In recent years, there has been a renewed interest amongst economists in
the business cycle. However, compared with the economic fluctuations of the
nineteenth century, the business cycle in modern western economies has been
a tenuous affair. For many years, minor fluctuations have been carried on
the backs of strongly rising trends in national income. Their amplitudes have
been so small in relative terms that they have rarely resulted in absolute
reductions in the levels of aggregate income. Usually, they have succeeded
only in slowing its upward progress.

Faced with this tenuous phenomenon, modern analysts have also had
difficulties in reaching a consensus on how to define the business cycle and in
agreeing on which methods should be used to extract it from macroeconomic
data sequences. Thus, the difficulties have been both methodological and
technical. This paper will deal with both of these aspects, albeit that the
emphasis will be on technical matters.

It seems that many of the methodological difficulties are rooted in the
tendency of economists to objectify the business cycle. If there is no doubt
concerning the objective reality of a phenomenon, then it seems that it must
be capable of a precise and an unequivocal definition.

However, the opinion that is offered in this paper is that it is fruitless to
seek a definitive definition of the business cycle. The definition needs to be
adapted to the purposes of the analysis in question; and it is arguable that
it should also be influenced by the behaviour of the economy in the era that
is studied.
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It is also argued that a clear understanding of the business cycle can
be achieved only in the light of its spectral analysis. However, the spectral
approach entails considerable technical difficulties. The classical theory of
statistical Fourier analysis deals with stationary stochastic sequences of un-
limited duration. This accords well with the nature of the trigonometrical
functions on which spectral analysis is based. In business cycle analysis, one
is faced, by contrast, with macroeconomic sequences that are of strictly lim-
ited durations and that are liable to be strongly trended.

In order to apply the methods of spectral analysis to the macroeconomic
data, two problems must be addressed. First, the data must be reduced to
stationarity by an appropriate method of detrending. There are various ways
of proceeding; and a judicious choice must be made. Then, there is the short
duration of the data, which poses the problem acutely of how one should
treat the ends of the sample.

One way of dealing with the end-of-sample problem is to create a circular
sequence from the detrended data. By travelling around the circle indefinitely,
the infinite periodic extension of the data sequence is generated, which is the
essential object of an analysis that employs the discrete Fourier transform.

Such an analysis is liable to be undermined whenever there are radical
disjunctions in the periodic extension at the points where the end of one
replication joins the beginning of the next. Therefore, a successful Fourier
analysis depends upon a careful detrending of the data. It seems that it was
the neglect of this fact that led one renowned analyst to declare that spectral
analysis was inappropriate to economic data. (See Granger 1966.)

2 The interaction of the trend and the business cycle

The business cycle has no fixed duration. In a Fourier analysis, it can be
represented as a composite of sinusoidal motions of various frequencies that
fall within some bandwidth. We shall consider one modern convention that
defines the exact extent of this bandwidth; but it seems more appropriate
that it should be determined the light of the data.

If they are not allowed to overlap, it may be crucial to know where the low
frequency range of the trend is deemed to end and where the higher range of
the business cycle should begin. However, in this section, we shall avoid the
issue by assuming that the business cycle is of a fixed frequency and that the
trend is a simple exponential function.

In that case, the trend can be described by the function T (t) = exp{rt},
where r > 0 is constant rate of growth. The business cycle, which serves to
modulate the trend, is described by an exponentiated cosine function C(t) =
exp{γ cos(ωt)}. The product of the two functions, which can regarded as a
model of the trajectory of aggregate income, is

Y (t) = β exp{rt + γ cos(ωt)}. (1)
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Fig. 1. The function Y (t) = β exp{rt + γ cos(ωt)} as a model of the business cycle.
Observe that, when r > 0, the duration of an expansion exceeds the duration of a
contraction.
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Fig. 2. The function ln{Y (t)} = ln{β}+rt+γ cos(ωt) representing the logarithmic
business cycle data. The duration of the expansions and the contractions are not
affected by the transformation.

The resulting business cycles, which are depicted in Figure 1, have an asym-
metric appearance. Their contractions are of lesser duration than their ex-
pansions; and they become shorter as the growth rate r increases.

Eventually, when the rate exceeds a certain value, the periods of contrac-
tion will disappear and, in place of the local minima, there will be only points
of inflection. In fact, the condition for the existence of local minima is that
ωγ > r, which is to say that the product of the amplitude of the cycles and
their angular velocity must exceed the growth rate of the trend.

Next, we take logarithms of the data to obtain a model, represented in
Figure 2, that has additive trend and cyclical components. This gives

ln{Y (t)} = y(t) = µ + rt + γ cos(ωt), (2)

where µ = ln{β}. Since logs effect a monotonic transformation, there is no
displacement of the local maxima and minima. However, the amplitude of
the fluctuations around the trend, which has become linear in the logs, is
now constant.



534 Pollock, S.

9.7

9.8

9.9

10

10.1

10.2

0 30 90 90 120

Fig. 3. The function µ + γ cos(ωt) representing the detrended business cycle. The
duration of the expansions and the contractions are equal.

The final step is to create a stationary function by eliminating the trend.
There are two equivalent ways of doing this in the context of the schematic
model. On the one hand, the linear trend ξ(t) = µ + rt can be subtracted
from y(t) to create the pure business cycle γ cos(ωt).

Alternatively, the function y(t) can be differentiated to give dy(t)/dt =
r− γω sin(ωt). When the latter is adjusted by subtracting the growth rate r,
by dividing by ω and by displacing its phase by −π/2 radians—which entails
replacing the argument t by t−π/2—we obtain the function γ cos(ωt) again.
Through the process of detrending, the phases of expansion and contraction
acquire equal duration, and the asymmetry of the business cycle vanishes.

There is an enduring division of opinion, in the literature of economics,
on whether we should be looking at the turning points and phase durations
of the original data or at those of the detrended data. The task of finding the
turning points is often a concern of analysts who wish to make international
comparisons of the timing of the business cycle.

However, since the business cycle is a low-frequency component of the
data, it is difficult to find the turning points with great accuracy. In fact, the
pinnacles and pits that are declared to be the turning points often seem to
be the products of whatever high-frequency components happen to remain
in the data after it has been subjected to a process of seasonal adjustment.

If the objective is to compare the turning points of the cycles, then the
trends should be eliminated from the data. The countries that might be
compared are liable to be growing at differing rates. From the trended data,
it will appear that those with higher rates of growth have shorter recessions
with delayed onsets, and this can be misleading.

The various indices of an expanding economy will also grow at diverse
rates. Unless they are reduced to a common basis by eliminating their trends,
their fluctuations cannot be compared easily. Amongst such indices will be
the percentage rate of unemployment, which constitutes a trend-stationary
sequence. It would be difficult to collate the turning points in this index
with those within a rapidly growing series of aggregate income, which might
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not exhibit any absolute reductions in its level. A trenchant opinion to the
contrary, which opposes the practice of detrending the data for the purposes
of describing the business cycle, has been offered by Harding and Pagan
(2003).

3 The bandpass definition of the business cycle

The modern definition of the business cycle that has been alluded to in the
previous section is that of a quasi cyclical motion comprising sinusoidal el-
ements that have durations of no less than one-and-a-half years and not
exceeding eight years.

This definition has been proposed by Baxter and King (1999) who have
declared that it was the definition adopted by Burns and Mitchell (1947) in
their study of the economic fluctuations in the U.S. in the late nineteenth
century and in the early twentieth century. However, it is doubtful whether
Burns and Mitchell were so firm in their definition of what constitutes the
business cycle. It seems, instead, that they were merely speaking of what
they had discerned in their data.

The definition in question suggests that the data should be filtered in order
to extract from it the components that fall within the stated range, which
is described as the pass band. Given a doubly infinite data sequence, this
objective would be fulfilled, in theory, by an ideal bandpass filter comprising
a doubly infinite sequence of coefficients.

The ideal bandpass filter that transmits all elements within the frequency
range [α, β] and blocks all others has the following frequency response:

ψ(ω) =

{
1 if |ω| ∈ (α, β),

0, otherwise.
(3)

The coefficients of the corresponding time-domain filter are obtained by ap-
plying an inverse Fourier transform to this response to give

ψk =
∫ β

α

eikωdω =
1
πk

{sin(βk) − sin(αk)}. (4)

In practice, all data sequences are finite, and it is impossible to apply a
filter that has an infinite number of coefficients. However, a practical filter
may be obtained by selecting a limited number of the central coefficients of
an ideal infinite-sample filter. In the case of a truncated filter based on 2q+1
central coefficients, the elements of the filtered sequence are given by

xt = ψqyt−q + ψq−1yt−q+1 + · · · + ψ1yt−1 + ψ0yt (5)
+ ψ1yt+1 + · · · + ψq−1yt+q−1 + ψqyt+q.
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Fig. 4. The frequency response of the truncated bandpass filter of 25 coefficients
superimposed upon the ideal frequency response. The lower cut-off point is at π/15
radians (11.25◦), corresponding to a period of 6 quarters, and the upper cut-off
point is at π/3 radians (60◦), corresponding to a period of the 32 quarters.

Given a sample y0, y1, . . . , yT−1 of T data points, only T−2q processed values
xq, xq+1 . . . , xT−q−1 are available, since the filter cannot reach the ends of the
sample, unless it is extrapolated.

If the coefficients of the truncated bandpass or highpass filter are adjusted
so that they sum to zero, then the z-transform polynomial ψ(z) of the coeffi-
cient sequence will contain two roots of unit value. The adjustments may be
made by subtracting

∑
k φk/(2q + 1) from each coefficient. The sum of the

adjusted coefficients is ψ(1) = 0, from which it follows that 1 − z is a factor
of ψ(z). The condition of symmetry, which is that ψ(z) = ψ(z−1), implies
that 1 − z−1 is also a factor. Thus the polynomial contains the factor

(1 − z)(1 − z−1) = −z−1(1 − z)2, (6)

within which ∇2(z) = (1−z)2 corresponds to a twofold differencing operator.
Since it incorporates the factor ∇2(z), the effect of applying the filter to a

data sequence with a linear trend will be to produce an untrended sequence
with a zero mean. The effect of applying it to a sequence with a quadratic
trend will be to produce an untrended sequence with a nonzero mean.

The usual effect of the truncation will be to cause a considerable spectral
leakage. Thus, if the filter is applied to trended data, then it is liable to
transmit some powerful low-frequency elements that will give rise to cycles of
high amplitudes within the filtered output. The divergence of the frequency
response function from the ideal specification of (3) is illustrated in Figure 4.

An indication of the effect of the truncated filter is provided by its appli-
cation to a quarterly sequence of the logarithms of consumption in the U.K.
that is illustrated in Figure 5. The filtered sequence is in Figure 6, where the
loss of the data from the ends is indicated by the vertical lines.

An alternative filter that is designed to reach the ends of the sample has
been proposed by Christiano and Fitzgerald, (2003). The filter is described
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Fig. 5. The quarterly sequence of the logarithms of consumption in the U.K., for
the years 1955 to 1994, together with a linear trend interpolated by least-squares
regression.
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Fig. 6. The sequence derived by applying the truncated bandpass filter of 25 coef-
ficients to the quarterly logarithmic data on U.K. Consumption.

by the equation

xt = Ay0 + ψty0 + · · · + ψ1yt−1 + ψ0yt (7)
+ ψ1yt+1 + · · · + ψT−1−tyT−1 + ByT−1.

This equation comprises the entire data sequence y0, . . . , yT−1; and the value
of t determines which of the coefficients of the infinite-sample filter are en-
tailed in producing the current output. Thus, the value of x0 is generated
by looking forwards to the end of the sample, whereas the value of xT−1 is
generated by looking backwards to the beginning of the sample.

If the process generating the data is stationary and of zero mean, then it
is appropriate to set A = B = 0, which is tantamount to approximating the
extra-sample elements by zeros. In the case of a data sequence that appears
to follow a first-order random walk, it has been proposed to set A and B to
the values of the sums of the coefficients that lie beyond the span of the data
on either side. Since the filter coefficients must sum to zero, it follows that

A = −(
1
2
ψ0 + ψ1 + · · · + ψt) and B = −(

1
2
ψ0 + ψ1 + · · · + ψT−t−1). (8)
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Fig. 7. The sequence derived by applying the bandpass filter of Christiano and
Fitzgerald to the quarterly logarithmic data on U.K. Consumption.

The effect is tantamount to extending the sample at either end by constant
sequences comprising the first and the last sample values respectively.

For data that have the appearance of having been generated by a first-
order random walk with a constant drift, it is appropriate to extract a linear
trend before filtering the residual sequence. In fact, this has proved to be the
usual practice in most circumstances.

It has been proposed to subtract from the data a linear function f(t) =
α + βt interpolated through the first and the final data points, such that
α = y0 and β = (yT−1 − y0)/T . In that case, there should be A = B = 0.
This procedure is appropriate to seasonally adjusted data. For data that
manifest strong seasonal fluctuations, such as the U.K. consumption data, a
line can be fitted by least squares through the data points of the first and
the final years. Figure 7, shows the effect of the application of the filter to
the U.K. data adjusted in this manner.

The filtered sequence of Figure 7 has much the same profile in its mid-
dle section as does the sequence of Figure 6, which is derived by applying
truncated bandpass filter. (The difference in the scale of the two diagrams
tends to conceal this similarity.) However, in comparing filtered sequence to
the adjusted data, it seems fair to say that it fails adequately to represent
the prominent low-frequency fluctuations. It is also beset by some noisy high-
frequency fluctuations that would not normally be regarded as part of the
business cycle.

4 Polynomial detrending

The problems besetting the filtered sequence can be highlighted with refer-
ence to the periodogram of the residuals that are obtained by interpolating a
polynomial trend line thorough the logarithmic data. Therefore, it is appro-
priate, at this juncture, to derive a formula for polynomial regression.

Therefore, let LT = [e1, e2, . . . , eT−1, 0] be the matrix version of the lag
operator, which is formed from the identity matrix IT = [e0, e1, e2, . . . , eT−1]
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of order T by deleting the leading column and by appending a column of
zeros to the end of the array. The matrix that takes the p-th difference of a
vector of order T is

∇p
T = (I − LT )p. (9)

We may partition this matrix so that ∇p
T = [Q∗, Q]′, where Q′

∗ has p rows.
If y is a vector of T elements, then

∇p
T y =

[
Q′

∗

Q′

]
y =

[
g∗

g

]
; (10)

and g∗ is liable to be discarded, whereas g will be regarded as the vector of
the p-th differences of the data.

The inverse matrix, which corresponds to the summation operator, is
partitioned conformably to give ∇−p

T = [S∗, S]. It follows that

[
S∗ S

]
[
Q′

∗

Q′

]
= S∗Q

′
∗ + SQ′ = IT , (11)

and that [
Q′

∗

Q′

]
[
S∗ S

]
=

[
Q′

∗S∗ Q′
∗S

Q′S∗ Q′S

]
=

[
Ip 0

0 IT−p

]
. (12)

If g∗ is available, then y can be recovered from g via y = S∗g∗ + Sg.
The lower-triangular Toeplitz matrix ∇−p

T = [S∗, S] is completely charac-
terised by its leading column. The elements of that column are the ordinates
of a polynomial of degree p − 1, of which the argument is the row index
t = 0, 1, . . . , T − 1. Moreover, the leading p columns of the matrix ∇−p

T ,
which constitute the submatrix S∗, provide a basis for all polynomials of
degree p− 1 that are defined on the integer points t = 0, 1, . . . , T − 1.

A polynomial of degree p − 1, represented by its ordinates in the vector
f , can be interpolated through the data by minimising the criterion

(y − f)′(y − f) = (y − S∗f∗)′(y − S∗f∗) (13)

with respect to f∗. The resulting values are

f∗ = (S′
∗S∗)−1S′

∗y and f = S∗(S′
∗S∗)−1S′

∗y. (14)

An alternative representation of the estimated polynomial is available,
which is provided by the identity

S∗(S′
∗S∗)−1S′

∗ = I −Q(Q′Q)−1Q′. (15)

It follows that the polynomial fitted to the data by least-squares regression
can be written as

f = y −Q(Q′Q)−1Q′y. (16)
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Fig. 8. The periodogram of the residual sequence obtained from the linear de-
trending of the logarithmic consumption data. A band, with a lower bound of π/16
radians and an upper bound of π/3 radians, is masking the periodogram.

A more general method of curve fitting, which embeds polynomial regres-
sion as a special case, is one that involves the minimisation of a combination
of two sums of squares. Let f denote the vector of fitted values. Then, the
criterion for finding the vector is to minimise

L = (y − f)′(y − f) + f ′QΛQ′f. (17)

The first term penalises departures of the resulting curve from the data,
whereas the second term imposes a penalty for a lack of smoothness in the
curve. The second term comprises d = Q′f , which is the vector of pth-order
differences of f . The matrix Λ serves to generalise the overall measure of the
curvature of the function that has the elements of f as its sampled ordinates,
and it serves to regulate the penalty for roughness, which may vary over the
sample.

Differentiating L with respect to f and setting the result to zero, in ac-
cordance with the first-order conditions for a minimum, gives

(y − f) = QΛQ′f = QΛd. (18)

Multiplying the equation by Q′ gives Q′(y− f) = Q′y− d = Q′QΛd, whence
Λd = (Λ−1 + Q′Q)−1Q′y. Putting this into the equation f = y −QΛd gives

f = y −Q(Λ−1 + Q′Q)−1Q′y. (19)

If Λ−1 = 0 in (19), and if Q′ is the matrix version of the twofold difference
operator, then the least-squares interpolator of a linear function is derived in
the form equation (16). The sequence of regression residuals will be given by
the vector r = Q(Q′Q)−1Q′y; and it is notable that these residuals contain
exactly the same information as the vector g = Q′y of the twofold differences
of the data. However, whereas the low-frequency structure would be barely
visible in the periodogram of the differenced data, it will be fully evident in
the periodogram of the residuals of a ploynomial regression.
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Fig. 9. The residual sequence from fitting a quadratic trend to the logarithmic
consumption data. The interpolated line, which represents the business cycle, has
been synthesised from the Fourier ordinates in the frequency interval [0, π/8].
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Fig. 10. The trend/cycle component of U.K. Consumption determined by the
Fourier method, superimposed on the logarithmic data

The periodogram of the residual sequence obtained from a linear detrend-
ing of the logarithmic consumption data is presented in Figure 8. Superim-
posed upon the figure is a highlighted band that spans the interval [π/16, π/3],
which corresponds to the nominal pass band of the filters applied in the pre-
vious section.

Within this periodogram, the spectral structure extending from zero fre-
quency up to π/8 belongs to the business cycle. The prominent spikes located
at the frequency π/2 and at the limiting Nyquist frequency of π are property
of the seasonal fluctuations. Elsewhere in the periodogram, there are wide
dead spaces, which are punctuated by the spectral traces of minor elements
of noise. The highlighted pass band omits much of the information that might
be used in synthesising the business cycle.

5 The synthesis of the business cycle

To many economists, it seems implausible that the trend of a macroeconomic
index, which is the product of events within the social realm, should be mod-



542 Pollock, S.

elled by polynomial, which may be described as a deterministic function. A
contrary opinion is represented in this paper. We deny the objective real-
ity of the trend. Instead, we consider it to be the product of our subjective
perception of the data. From this point of view, a polynomial function can
often serve as a firm benchmark against which to measure the fluctuations
of the index. Thus, the linear trend that we have interpolated through the
logarithms of the consumption data provides the benchmark of constant ex-
ponential growth.

It is from the residuals of a log-linear detrending of the consumption
data that we wish to extract the business cycle. The appropriate method is
to extract the Fourier components of the residual sequence that lie within
the relevant frequency band. Reference to Figure 8 suggests that this band
should stretch from zero up to the frequency of π/8 radians per quarter, which
corresponds to a cycle with a duration of 4 years. In Figure 9, the sequence
that is synthesised from these Fourier ordinates has been superimposed upon
the sequence of the residuals of the linear detrending.

To provide a symbolic representation of the method, we may denote the
matrix of the discrete Fourier transform and its inverse by

U = T−1/2[exp{−i2πtj/T }; t, j = 0, . . . , T − 1], (20)

Ū = T−1/2[exp{i2πtj/T }; t, j = 0, . . . , T − 1],

Then, the residual vector r = Q(Q′Q)−1Q′y and its Fourier transform ρ are
represented by

r = T 1/2Ūρ ←→ ρ = T−1/2Ur. (21)

Let J be a matrix of which the elements are zeros apart from a string
of units on the diagonal, which serve to select from ρ the requisite Fourier
ordinates within the band [0, π/8]. Then, the filtered vector that represents
the business cycle is given by

x = T 1/2ŪJρ = {ŪJU}r = Ψr. (22)

Here, ŪJU = Ψ = [ψ◦
|i−j|; i, j = 0, . . . , T − 1] is a circulant matrix of the

filter coefficients that would result from wrapping the infinite sequence of the
ideal bandpass coefficients around a circle of circumference T and adding the
overlying elements. Thus

ψ◦
k =

∞∑

q=−∞
ψqT+k. (23)

Applying the wrapped filter to the finite data sequence via a circular
convolution is equivalent to applying the original filter to an infinite periodic
extension of the data sequence. In practice, the wrapped coefficients would
be obtained from the Fourier transform of the vector of the diagonal elements
of the matrix J .
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The Fourier method can also be exploited to create a sequence that rep-
resents a combination of the trend and the business cycle. There are various
ways of proceeding. One of them is to add the vector x to that of the lin-
ear or polynomial trend that has generated the sequence of residuals. An
alternative method is to obtain the trend/cycle component by subtracting
its complement from the data vector.

The complement of the trend/cycle component is a stationary component.
Since a Fourier method can be applied only to a stationary vector, we are
constrained to work with the vector g = Q′y, obtained by taking the twofold
differences of the data.

Since the twofold diffencing entails the loss of two points, the vecotor g
may be supplemented by a point at the beginning and a point at the end.
The resulting vector may be denoted by q. The relevant Fourier ordinates
are extracted by applying the selection matrix I − J to the transformed
vector γ = Uq. Thereafter, they need to be re-inflated to compensate for the
differencing operation.

The frequency response of the twofold difference operator, which is ob-
tained be setting z = exp{−iω} in equation (6), is

f(ω) = 2 − 2 cos(ω), (24)

and that of the anti-differencing operation is the inverse 1/f(ω). The Fourier
ordinates of a differenced vector will be reinflated by pre-multiplying their
vector by the diagonal matrix V = diag{v0, v1, . . . , vT−1}, which comprises
the values vj = 1/f(ωj); j = 0, . . . , T − 1, where ωj = 2πj/T .

The matrix that is to be applied to the Fourier ordinates of the differenced
data is therefore H = V (I − J). The resulting vector is transformed back
to the time domain via the matrix Ū to produce the vector that is to be
subtracted from the data vector y. The resulting estimate of the trend/cycle
component is

z = y − ŪHUq. (25)

This is represented in Figure 10.

6 More flexible methods of detrending

Methods of detrending may be required that are more flexible than the poly-
nomial interpolations that we have we considered so far. For a start, there
is a need to minimise the disjunctions that occur in the periodic extension
of the data sequence where the end of one replication joins the beginning of
the next. This purpose can be served by a weighted version of a least-squares
polynomial regression. If extra weight is given to the data points at the begin-
ning and the end of the sample, then the interpolated line can be constrained
pass through their midst; and, thereby, a major disjunction can be avoided.

The more general method of trend estimation that is represented by equa-
tion (19) can also be deployed. By setting Λ−1 = λ−1I, a familiar filtering
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Fig. 11. The logarithms of annual U.K. real GDP from 1873 to 2001 with an
interpolated trend. The trend is estimated via a filter with a variable smoothing
parameter.

device is obtained that has been attributed by economists to Hodrick and
Prescott (1980, 1997). In fact, an earlier exposition this filter was provided
by Leser (1961), and its essential details can be found in a paper of Whittaker
(1923).

The effect of the Hodrick–Prescott (H–P) filter depends upon the value
of the smoothing parameter λ. As the value of the parameter increases, the
vector f converges upon that of a linear trend. As the value of λ tends to
zero, f converges to the data vector y. The effect of using the more flexible
H–P trend in place of a linear trend is to generate estimates of the business
cycle fluctuations that have lesser amplitudes and a greater regularity.

The enhanced regularity of the fluctuations is a consequence of the re-
moval from the residual sequence of a substantial proportion of the fluctu-
ations of lowest frequency, which can cause wide deviations from the line.
This enhancement might be regarded as a spurious. However, it can be ar-
gued that such low-frequency fluctuations are liable to escape the attention
of many economic agents, which is a reason for excluding them from a rep-
resentation of the business cycle.

Whereas the H–P filter employs a globally constant value for the λ, it
is possible to vary this parameter over the course of the sample. This will
allow the trend to absorb the structural breaks or disturbances that might
occasionally interrupt the steady progress of the economy. If it can be made to
absorb the structural breaks, then the trend will not be thrown off course for
long; and, therefore, it should serve as a benchmark against which to measure
the cyclical variations when the economy resumes its normal progress. At
best, the residual sequence will serve to indicate how the economy might
have behaved in the absence of the break.

Figure 11 shows a trend function that has been fitted, using a variable
smoothing parameter, to the logarithms of a sequence of annual data on real
U.K. gross domestic product that runs from 1873 to 2001. Only the breaks
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after the ends of the first and second world wars have been accommodated,
leaving the disruptions of the 1929 recession to be expressed in the residual
sequence. The effect has been achieved by attributing a greatly reduced value
to the smoothing parameter in the vicinity of the post-war breaks. In the
regions that are marked by shaded bands, the smoothing parameter has been
given a value of 5. Elsewhere, it has been given a high value of 100,000, which
results in trend segments that are virtually linear.

This example serves to illustrate the contention that the trend and the
accompanying business cycle are best regarded as subjective concepts. The
intention of the example is to remove from the residual sequence—and, there-
fore, from the representation of business cycle—the effects of two major eco-
nomic disruptions. For the purpose of emphasising the extent of these disrup-
tions, the contrary approach of fitting a stiff polynomial trend line through
the data should be followed.
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Abstract. The paper estimates a large-scale mixed-frequency dynamic factor
model for the euro area, using monthly series along with Gross Domestic Product
(GDP) and its main components, obtained from the quarterly national accounts.
Our model is a traditional dynamic factor model formulated at the monthly fre-
quency in terms of the stationary representation of the variables, which however
becomes nonlinear when the observational constraints are taken into account.

Keywords: non linear state space models, temporal disaggregation, nonlin-
ear smoothing, monthly GDP, chain-linking

1 Introduction

Large scale factor models aim at extracting the main economic signals from
a very large number of time series. The underlying idea is that the comove-
ments among economic time series can be traced to a limited number of
common factors. Factor models have been used in an increasing number of
applications. The two most prominent areas are the construction of synthetic
indicators, such as coincident indicators of real economic activity (Forni et
al., 2000, 2001) and core inflation (Cristadoro et al., 2005), and forecasting
macroeconomic variables (Stock and Watson, 2002a, Forni et al. 2005), in
which case the information contained in large number of economic indicators
is summarized in a few latent factors, which are then employed to forecast
real output growth, or inflation. Other areas of applications are surveyed in
Stock and Watson (2006).

The information set used for the estimation of factor models in typical ap-
plications is strongly unbalanced towards the series collected from the supply
side of the economy, that is establishments surveys (e.g., industrial produc-
tion and turnover, retail sales, financial statistics), and from administrative
records (e.g. building permits and car registration). Important information
from other institutional units and economic agents, namely households, is
missed out, just because the underlying measurement process is more com-
plex, with the consequence that the information becomes available with larger
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delays. Notable examples are the Labor Force Survey and the Consumer Ex-
penditure Surveys, which are carried out by the euro area member state and
constitute essential sources for the labor market and consumption.

On the other hand, national accounts (NA) statistics provide a compre-
hensive and detailed record of the economic activities taking place within an
economy, which are translated into a set of coherent and integrated measures
of economic activity. The most comprehensive measure is provided by Gross
Domestic Product (GDP); furthermore, the aggregates that arise from its
decomposition according to the expenditure and the output approach (e.g.
final consumption, gross capital formation, sectorial value added) are among
the most relevant economic statistics for purposes of macroeconomic analysis
and policy-making.

Hence, the NA aggregates can be considered as aggregate indicators of
economic activity based on a set of definitions, concepts, classifications and
accounting rules that are internationally agreed. The main problem is their
observation frequency, which at present is quarterly for the euro area, and
their timeliness, i.e., the fact that they are made available with considerable
delay. A related point is that they are first released as preliminary estimates
and then revised as new information accrues.

The aim of this paper is to estimate a large scale factor model of the euro
area economy which combines the monthly information carried by a number
of economic indicators (concerning industrial production, construction, retail
sales, financial intermediation, employment and wages, exchange rates, ex-
ternal trade and business and consumer surveys) with the quarterly national
accounts series. In particular, we consider a panel of 149 series, referring to
the euro area for the period from January 1995 to June 2007, 17 of which
are NA series and concern quarterly real GDP and its breakdown according
to the expenditure and the output approaches. The presence of these series
raises the fundamental issue of incorporating the observational constraints
into the estimation process. The issue has two facets, the first being tempo-
ral aggregation and the second being contemporaneous aggregation. As far as
the former is concerned, the factor model is specified in terms of the station-
ary representation of the series; our series can be taken to be stationary in
terms of the logarithmic change with respect to the previous month (assum-
ing that all are nonseasonal or seasonally adjusted). For the NA series the
monthly changes are unobserved. What we observe are the quarterly totals,
i.e. the sum of the levels of the three months making up the quarter. This
simple fact renders the observational constraint nonlinear. Secondly, the NA
series are subject to accounting identities that, due to chain linking, hold
when the data are expressed at the prices of the previous year (see Eurostat,
1999, Bloem, et. al, 2001). This again makes the cross-sectional constraints
nonlinear.

The introduction of the NA series in the model can be considered as the
main contribution of this paper. Their consideration is essential to improve
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the coverage of the economy and the representativeness of the factors. Sec-
ondly, as a by product our model produces nowcasts of monthly GDP and
its components, along with measures of their reliability. Not only the factor
estimates will benefit from the inclusion of GDP and its components, but
also the disaggregate estimates of GDP will embody a large information set.

2 Description of the dataset

The available data consist of 132 monthly and 17 quarterly time series (i.e.
a total of 149 series) for the period starting in January (1st quarter of) 1995
and ending in June (second quarter) of 2006, for a total of 150 monthly ob-
servation (38 quarterly observations). The series, extracted from the Europa
database (http://epp.eurostat.ec.europa.eu/), can be grouped under the fol-
lowing main headings.

National accounts: 17 quarterly time series concerning the euro area GDP
and its main components, the breakdown of total GDP by the output the
expenditure approaches. All the series are expressed in millions of euro,
chain-linked volumes, reference year 2000.

Industry: 53 monthly time series.
Construction: 7 monthly time series.
Retail Trade: 28 monthly time series.
Monetary and Financial indicators: 13 monthly time series.
Labour market: 5 monthly time series.
Business and consumer surveys: 22 monthly time series.

3 The Complete Data Factor Model

Let us suppose that the N time series are fully available and let us denote
the individual time series in the original scale of measurement by Yit, i =
1, . . . , N, t = 0, 1, . . . , n. We also assume that the series can be rendered
stationary by the transformation yit − ϕiyi,t−1, t = 1, . . . , n, where yit is
the Box-Cox transformation (Box and Cox, 1964) with parameter λi of the
original series,

yit =

{
Y

λi
it −1

λi
, λi = 0,

lnYit, λi = 0,

and ϕi = 1 if the series is difference stationary and 0 otherwise. For the series
considered in our application, we can assume that the monthly logarithmic
changes are stationary, so that λi = 1 and ϕi = 1, except for the Business
and Consumer Survey series, for which λi = 0 and ϕi = 1.

The factor model that we formulate for the complete monthly series (i.e.,
the model that would be entertained if a complete set of N monthly time
series were available) is a standard dynamic factor model, according to which
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the series are conditionally independent, given a set of common factors. The
common factors are generated by a stationary first order vector autoregressive
process. The model for the i-th time series is formulated as follows:

yit = ϕiyi,t−1 + µi + σixit, i = 1, . . . , N, t = 1, . . . , n,
xit = θ′

ift + ξit, ξit ∼ NID(0, ψi),
ft = Φft−1 + ηt, ηt ∼ NID(0,Ση);

(1)

here µi represents the mean of the stationary transformation yit−ϕiyi,t−1, σi

is its standard deviation, and xit is the standardized stationary transforma-
tion of the original time series. The latter is expressed as a linear combination
of K stationary common factors, ft, with zero mean, with weights collected
in the K×1 vector θi (factor loadings), plus an idiosyncratic component, ξit.
The idiosyncratic component is orthogonal to the factors.

If we further let ∆yit = yit − ϕiyi,t−1 and ∆yt denote the stack of the
stationary series, µ = [µ1, . . . , µN ]′, D = diag(σ1, . . . , σN ), and similarly
xt = [x1t, . . . , xNt]′, we can write ∆yt = µ + Dxt, and the model for xt has
state space representation:

xt = Θft + ξt, ξt ∼ N(0,Ψ)
ft = Φft−1 + ηt, ηt ∼ NID(0,Ση) (2)

where Θ = [θ1, . . . ,θN ]′ and Ψ = diag{ψ1, . . . , ψN}, E(ξtη
′
t) = 0 and f0 ∼

N(0,Σf ), where Σf satisfies the matrix equation Σf = ΦΣfΦ′ + Ση.
As it is well known, the factor model is identified up to an invertible

K × K matrix. A unique solution is obtained by imposing K2 restrictions.
We identify our factor model using the restriction that the upper K×K block
of the loadings matrix is equal to the identity matrix, that is Θ = [IK ,Θ∗′

]′.
The restriction exactly identifies the model; see Geweke and Singleton (1981),
proposition 2.

Let us define the parameter vector Ξ = [(Θ∗)′, (Φ)′, vech(Ση), ψ1,
. . . , ψN ]′. For small N the parameters can be estimated by maximum like-
lihood, where the likelihood is evaluated by the Kalman filter (KF) via the
prediction error decomposition, using a numerical quasi-Newton method. An
application is Stock and Watson (1991). With large N , the evaluation of
the likelihood is still efficiently performed by the KF; however the difficulty
with maximising the likelihood via gradiend based methods is due to the
high dimensionality of Ξ, which has NK + N + K2 unrestricted elements.
In our application, in which N = 149 and K = 6, the number of unrestricted
parameters is 1079.

A computationally viable alternative is to use the Expectation- Maxi-
mization (EM) algorithm of Dempster et al. (1977). The EM algorithm for
state space models was introduced by Shumway and Stoffer (1982). For N
large, an alternative asymptotically equivalent estimation strategy is to use
principal components analysis, when we allow the number of time series N ,
or both N and n, to go to infinity.
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4 Temporal aggregation

The N time series yit are available at different frequencies of observation. In
particular, the first block of N1 = 17 time series, GDP and its main compo-
nents, are quarterly. Since Yit, 1, . . . , N1, is subject to temporal aggregation,
we observe the quarterly totals:

Yiτ =
3∑

i=1

Yi,3τ−i, τ = 1, 2, . . . , [(n + 1)/3], (3)

where [·] is the integer part of the argument.
For the statistical treatment it is useful to convert temporal aggregation

into a systematic sampling problem; this can be done by constructing a cu-
mulator variable, generated as a time-varying first order autoregression (see
Harvey, 1989, and Harvey and Chung, 2000):

Y c
it = ρtY

c
i,t−1 + Yit, t = 0, . . . , n

= ρtY
c
i,t−1 + hi(yit)

(4)

where hi(·) is the Box-Cox inverse transformation,

hi(yit) =
{

(1 + λiyit)1/λi , λi = 0,
exp(yit), λi = 0,

and ρt is the cumulator coefficient, equal to zero for t corresponding to the
first month in the quarter and 1 otherwise:

ρt =
{

0 t = 3(τ − 1), τ = 1, . . . , [(n + 1)/3]
1 otherwise .

The cumulator (4) is nothing more than a recursive implementation of the
temporal aggregation rule (3). Only a systematic sample of the cumulator
variable Y c

it is available; in particular, if the sample period starts with the
first month of the quarter at t = 0, the observed end of quarter values occur
at times t = 3τ − 1, τ = 1, 2, . . . , [(n + 1)/3]

In the case of the logarithmic transformation (λi = 0), Y c
i0 = exp yi0,

Y c
i1 = exp(yi0)+exp(yi1), Y c

i2 = exp(yi0)+exp(yi1)+exp(yi2), Y c
i3 = exp(yi3),

Y c
i4 = exp(yi3) + exp(yi4), Y c

i5 = exp(yi3) + exp(yi4) + exp(yi5), . . . Only the
values Y c

i2, Y
c
i5, . . . are observed, while the intermediate ones will be missing.

It it important to remark that in general, when the Box-Cox transforma-
tion parameter is different from one, the quarterly totals are a nonlinear
function of the underlying (unobserved) monthly values yit (e.g. the sum of
the exponentials of three consecutive values). Now, since we postulate that
the first differences ∆yit are stationary and they have a linear factor model
representation, the temporal aggregation constraints are nonlinear. In other
words, we observe Y c

iτ = Yi,3τ−1 + Yi,3τ−2 + Yi,3τ−3, but the linear model is
formulated in terms of the unobserved yi,3τ−i, i = 1, 2, 3, which are the Box-
Cox power transformation of Yi,3τ−i. Hence, temporal aggregation yields a
nonlinear observational constraint.
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5 Nonlinear smoothing

Conditional on Ξ, we face the problem of estimating the factors ft and the
missing values yit, i = 1, . . . , N1, from the available information, which con-
sists of Y c

it, i = 1, . . . , N1, t = 3τ−1, τ = 1, 2, . . . , [(n+1)/3], for the quarterly
time series and yit for i = N1 +1, . . . , N. This is a nonlinear smoothing prob-
lem that can be solved by iterating the Kalman filter and smoother adapted
to a sequentially linearized state space model.

The estimation is carried out by an iterative algorithm which is a sequen-
tial linear constrained method for solving a constrained nonlinear optimiza-
tion problem; see Gill et al. (1989), section 7. This method has been applied
to nonlinear aggregation in mixed models Proietti (2006).

Let us partition the vectors Yt = [Y′
1t,Y

′
2t]

′, yt = [y′
1t,y

′
2t]

′, such that
Yt = h(yt) is the inverse Box-Cox transform of yt, ∆yt = [∆y′

1t, ∆y′
2t]′, xt =

[x′
1t,x

′
2t]

′, µ = [µ1,µ2]
′, and the matrices D = diag(D1,D2), Θ = [Θ′

1,Θ
′
2]

′,
Ψ = diag(Ψ1,Ψ2), where the subscript 1 indexes the national accounts series,
and the dimension of the blocks are respectively N1 and N2. Further, define
ξ = [ξ′1, . . . , ξ

′
n]′, i.e. the stack of the idiosyncratic disturbances.

If xt were fully observed and Ξ were known, the KFS would yield the
values of f and ξ that maximise the complete data likelihood g(x, f ; Ξ) =
g(x|f ; Ξ)g(f ; Ξ). Now, x1t, t = 1, . . . , n, is not available, but we observe a
systematic sample of the cumulator

Yc
1t = ρtYc

1,t−1 + Y1t,
= ρtYc

1,t−1 + h(y1t),

and x1t is related to y1t by x1t = D−1
1 (∆y1t − µ1).

The smoothing problem is now to obtain the values f and ξ that maximise
the complete data likelihood g(x, f ; Ξ), subject to the nonlinear observational
constraints that we observe a systematic sample of Yc

1t = ρtYc
1,t−1 +h(y1t),

and x1t = D−1
1 (∆y1t − µ1).

The optimisation problem is handled with the support of the KFS. Each
time the observation constraint is linearised around a trial value by a first
order Taylor series expansion; this operation yields a linear state space model
and the corresponding KFS provides a new trial value for the disaggregate
series. This sequence of linearisations is iterated until convergence and the
end result is a set of disaggregate monthly estimates Y1 and factor scores
which incorporate the temporal aggregation constraints. As a by-product,
disaggregate (monthly) estimates of the missing values x1t and thus of y1t

and Yit will be made available.

5.1 Estimation of the factors and the disaggregated series

The factors and disaggregate values Y1t are estimated by the following iter-
ative scheme:



Nowcasting Monthly GDP and Its Main Components 553

1. Start from a trial value y∗
1t, t = 0, . . . , n, (e.g. obtained from application

of the univariate Chow-Lin disaggregation method, see Chow and Lin,
1971).

2. Form the linear state space approximating model, using the first-order
Taylor expansion around y∗

1t.
3. Use the Kalman filter and smoother to estimate the factors ft, the id-

iosyncratic components, and the disaggregate series y1t, and thus Y1t.
4. If ||y∗

1t − ŷ∗
1t|| is greater than a specified tolerance value, set y∗

1t = ŷ∗
1t

and return to step 2; else, set Y∗
1t = h(y∗

1t).

At convergence, the estimated disaggregate values satisfy the aggregation
constraints, that is the observed quarterly aggregate Y1τ equals h(y∗

1,3τ−1)+
h(y∗

1,3τ−2) + h(y∗
1,3τ−3).

6 Chain-linking and contemporaneous aggregation
constraints

The quarterly national accounts series are subject to a number of accounting
deterministic constraints, when the aggregates are expressed at current prices
and at the average prices of the previous year. In particular, the 17 series are
bound together by the identities:

GDP at basic prices =
∑

Value added of the 6 branches
GDP at market prices = GDP at basic prices + Taxes less subsidies
GDP at market prices+IMP = CONS+INV+EXP
Domestic demand = CONS+INV
CONS = CONSH+CONSG

where CONS = Final consumption expenditures, CONSH = Household and
NPISH final consumption expenditure, CONSG = Final consumption expen-
diture: general government, INV = Gross Capital Formation, EXP = Exports
of goods and services, IMP = Imports of goods and services.

The production of chained linked national accounts estimates has changed
drastically the role of the contemporaneous aggregation constraints consid-
ered above. In particular, the constraints hold only when the series are ex-
pressed at the average prices of the previous year; loosely speaking, only in
that case they are expressed genuinely at constant prices. Otherwise, chain-
ing, which is a multiplicative operation, destroys the additivity of the con-
straints, and a nonzero discrepancy arises. GDP and its main components
are expressed in chain-linked volumes (millions of euros), with reference year
2000, which implies that the constraints hold exactly for the four quarters of
the year 2001. Interestingly, due to the application of the annual overlap tech-
nique, exposed below, the constraints are not entirely lost, but they continue
to hold after a transformation of the data that we call ”dechaining”, which
aims at expressing the chained values at the prices of the previous year.
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The cross-sectional constraints can be enforced by a multistep procedure
that de-chains the estimated monthly values, expressing them at the average
prices of the previous year, and projects the estimates on the subspace of the
constraints. The dechaining procedure is in line with that advocated by the
IMF manual (see Bloem et al., 2001).

7 Estimation results

Estimation of the unknown parameters and temporal disaggregation is car-
ried out by an iterative algorithm which alternates two main steps until
convergence. We start from a trial disaggregate time series y∗

1t, t = 0, . . . , n,,
obtained from the temporal disaggregation of the quarterly national accounts
series according to the univariate Chow-Lin procedure, using industrial pro-
duction and retail sales (total) as monthly indicators. The disaggregate time
series serve to construct the standardized stationary series xt, that form a
balanced panel of monthly time series. The initial estimate of the parameter
is computed by a principal component analysis of the covariance matrix of
the xt’s.

The number of factors, K, is selected at this stage according to the infor-
mation criteria proposed by Bai and Ng (2002).

Conditional on K, the estimation of the factor model involves the follow-
ing steps:

1. Given a set of estimated disaggregate values ŷ1t, satisfying the temporal
and contemporaneous aggregation constraints, we construct the pseudo
complete balanced panel of time series yt = [ŷ′

1t,y
′
2t]

′, where y2t are
the observed monthly series. We then obtain the stationary transforma-
tion ∆yt and estimate µ and D by computing the sample average and
the standard deviation of the individual time series. We construct the
standardized stationary series xt = D̂−1(∆y − µ̂), and estimate the pa-
rameters of the factor model Θ,Φ,Ση,Ψ by maximum likelihood using
the EM algorithm or by principal component analysis.

2. Conditional on the parameter estimates, we estimate the disaggregate
time series ŷ1t (and thus Ŷ1t = h(ŷ1t)), consistent with the temporal
and cross-sectional constraints. This step is carried out iteratively, with
each iteration consisting of two steps:
(a) estimate ŷ1t enforcing the nonlinear temporal aggregation con-

straints, as detailed in (5.1);
(b) enforce the cross-sectional temporal aggregation constraints by the

de-chaining and chaining-back procedure outlined in section (6).

The estimated number of factors is K = 6: this can be considered as a
conservative estimate. The share of the variance explained by the first three
principal components is 34.13%, whereas that explained by the first six is
45.18%.
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Fig. 1. Point and 95% interval estimates of the common factors.

The estimation of the factor model was carried out using both the EM
algorithm and PCA, as far as the estimation of the parameter vector Ξ is
concerned. Less than 200 iterations are required for convergence in both cases.
The estimation results are very similar, both for Ξ and the disaggregate
series; however, the estimated factors conditional on the PCA parameter
estimates are slightly smoother than those obtained from the EM method.
As a consequence, the disaggregate series Ŷ1t have a smaller variation at the
high frequencies. Since ceteris paribus we would prefer smoother estimates
of monthly GDP and its components, the presentation of the results will
henceforth concentrate on the PCA method. It should be recalled that PCA
is used only for estimating the parameters in Ξ; the factors are estimated
along with the monthly GDP and its components according to the second
step of our procedure (i.e. incorporating the temporal and cross-sectional
aggregation constraints).

Figure 1 displays the point estimates of the six factors, f̃t|n, and the
approximate 95% interval estimates, based on the assumption of normality.
As the plot illustrates, the dynamic of the estimated factors is dominated
by high frequency variation, resulting in a negative autocorrelation; also, the
third factor captures the main economic shocks that affected the construction
sectors. However, the factors capture also the dynamics of the euro area
business cycle: in particular, this information is carried by the 2nd, 4th and
5th factors.

Figure 2 is a biplot of the estimated factor analysis. Series that load on
the same factors will be represented by two close points; the labels ”NA”,
”I”, ”C”, ”R”, ”F”, ”S” refer, respectively, to the national accounts series,
industry, construction, retail, financial and monetary indicators, business and
consumer surveys. A group of series with the same loadings pattern is hours
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Fig. 2. Biplot of the factor loadings.

worked in industry, displayed to the left of the biplot. In general, series be-
longing to the same group tend to cluster together. The loading of a particular
variable on a specific factor can be approximated by the orthogonal projec-
tion of the point representing the variable on the line representing the factor.
The survey series are mostly related to the second and the third factors,
whereas the financial variables are associated to the 4th and 6th factors. The
monthly construction series are mostly associated to factor 3 (the loading of
value added in the construction sector is 1).

A most important side output of our modeling effort is the estimation of
monthly GDP and its main components. The estimates comply with the tem-
poral aggregation constraints and the cross-sectional identities for the year
2001, and if the series are expressed at the prices of the previous year. More-
over, they are highly informative as they incorporate the information that is
common to a large set of monthly indicators. Figure 3 displays monthly GDP
at market prices, final consumption expenditures and gross capital formation,
along with their monthly and yearly growth rates. It must be stressed that
approximate measures of reliability of the estimates are directly available
from the our methodology.

8 Conclusive remarks

The paper has proposed an iterative scheme for estimating a large scale fac-
tor model with data at different frequencies, providing an exact treatment of
the temporal and cross-sectional aggregation constraints. The model is used
to nowcast monthly GDP and its decomposition by expenditure type and by
the output approach. The results are relevant not only because the estimated
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Fig. 3. Monthly estimates of GDP at market prices, Final Consumption and Gross
Capital Formation (chained 2000 volumes), and monthly and yearly growth. Point
and 95% interval estimates.

common factors embody the economic information contained in the national
accounts macro variables, but also because the availability of monthly esti-
mates of the national accounts series can be seen as a useful addition to the
available published data.
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Iulian Ilieş, Adalbert Wilhelm



Contributed Papers on the CD 567

A New Approach to Spatial Clustering Based on Hierarchical
Structure
Fumio Ishioka, Koji Kurihara

Bootstrap Methods for Finding Confidence Intervals of Mahalanobis
Distance
Parameshwaran S. Iyer, Anil Kumar Maddulapalli

Detecting Social Interactions in Bivariate Probit Models: Some
Simulation Results
Johannes Jaenicke

A Toolbox for Bicluster Analysis in R
Sebastian Kaiser, Friedrich Leisch

Time Series Analysis Using Local Standard Fractal Dimension-Application
to Fluctuations in Seawater Temperature-
Kenichi Kamijo, Akiko Yamanouchi

Visualizing Exploratory Factor Analysis Models
Sigbert Klinke, Cornelia Wagner

AOQL Plans by Variables when the Remainder of Rejected
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