
 

Configurable Process Models – A Foundational 
Approach 
Florian Gottschalk, Wil M. P. van der Aalst, Monique H. Jansen-Vullers 

Abstract: Off-the-shelf packages such as SAP need to be configured to suit the re-
quirements of an organization. Reference models support the configuration of 
these systems. Existing reference models use rather traditional languages. For ex-
ample, the SAP reference model uses Event-driven Process Chains (EPCs). Un-
fortunately, the choice construct within traditional process modeling languages 
like EPCs do not capture different scopes or impacts of decisions. That means they 
offer no opportunities to distinguish between decisions made for a single case 
(i. e. process instance) when executing the process and decisions made in advance 
for numerous cases impacting bigger parts of the company. This paper discusses 
the need for configurable process models. An analysis of configuration from a 
theoretical perspective provides a solid fundament for such models. Within the 
analysis a link is made to inheritance of dynamic behavior and previously defined 
inheritance concepts. By applying these concepts to process models the essence of 
configuration is determined, which enables the development of more mature con-
figurable process modeling languages.  

1 Introduction 

Reference models streamline the design of particular models by providing 
a generic solution [RoAa05]. Motivated by the “Design by Reuse” para-
digm they provide a repository of potentially relevant models which can be 
used to accelerate the modeling process. Ideally these models are “plug 
and play” but usually need some adjustment to individual requirements 
[Bern99; FeLo02; BeDK04; ADGR06]. Hereby it is required to distinguish 
between generating and non-generating adaptations. Non-generating ad-
aptations as Aggregation, Instantiation, Specialization, and Analogy are 
providing basic models with certain gaps which have to be filled in by the 
reference model user. That means, the individual part of the model is gen-
erated by the user and not by guidelines of the reference model. The refer-
ence model only provides interfaces. A generating approach on the other 
hand provides clear rules how the reference model can be configured and 
therefore adapted to the user's requirements [BeDK04; Schü98; Schw99; 
BrBu04]. Unfortunately, the languages used for reference modeling pro-
vide little or no support to include such different configuration options 
[BeKR03; CuKe97; Rose03]. The goal of this paper is to discuss the theo-
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retical requirements for configurable process modeling languages, i. e., we 
restrict ourselves to the control-flow perspective [JaBu96].  

Probably the most comprehensive reference model is the SAP reference 
model [CuKe97]. Its data model includes more than 4000 entity types and 
the reference process models cover more than 1000 business processes and 
inter-organizational business scenarios [RoAa05]. Most of the other domi-
nant ERP vendors have similar or alternative approaches towards reference 
models. Foundational conceptual work for the SAP reference model has 
been conducted by SAP AG and the Institute for Information Systems 
(IWi) of the Saarland University in a collaborative research project in the 
years 1990-1992 [KeNS92]. The outcome of this project was the process 
modeling language Event-Driven Process Chains (EPCs) [KeNS92; 
Kind04], which has been used for the design of the reference process mod-
els in SAP. EPCs also became the core modeling language in the Archi-
tecture of Integrated Information Systems (ARIS) [Sche94; Sche00]. It is 
now one of the most popular reference modeling languages and has also 
been used for the design of many SAP-independent reference models 
(e. g., the ARIS-based reference model for Siebel CRM or industry models 
for banking, retail, insurance, telecommunication, etc.). Despite its suc-
cess, the basic EPC model offers little support for process configuration. It 
contains (X)OR connectors but it is unclear whether the corresponding de-
cisions need to be taken at run-time (e. g., based on the stock-level), at 
build-time (e. g., based on the size of the organization using SAP), or 
somewhere in-between (e. g., based on the period of the year or resource 
availability). For that reason so-called Configurable EPCs (C-EPCs) were 
developed [RoAa05; DRAS05], extending EPCs (and previously devel-
oped extensions like build-time operators [Schü98; RoSc97; Rose96]), 
aiming at a generic-monolithic approach for constructing re-usable models 
[FeLo02]. Indeed C-EPCs allow for a clear distinction between run-time 
and build-time decisions. However, they only provide a partial solution as 
they are based on a specific language (i. e. EPCs). Within this paper we 
will look at configuration from an language-independent perspective. Af-
terwards we will use the results to analyze C-EPCs [RoAa05].  

The remainder of the paper is organized as follows. First, we elaborate 
on the concept of “choice” which is essential for configurable process 
models. Second, we approach the problem from a theoretical viewpoint, 
i. e., we depict what the essence of configuration is. Finally, we briefly 
discuss Configurable EPCs as a first step towards such configurable pro-
cess models.  
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2 It Is All About Making Choices 

There are many languages to model processes ranging from formal (e. g., 
Petri nets and process algebras such as Pi calculus) to informal (flow 
charts, UML activity diagrams, EPCs, etc.). Each of these languages pro-
vides some notion of choice (e. g., two transitions sharing a single input 
place in a Petri net, the “+”-operator in process algebra, the -symbol in 
UML activity diagrams, or an (X)OR-split connector in an EPC). Typi-
cally, it is not possible to describe the nature of such a choice. At best one 
can either specify a Boolean condition based on some data element (data-
based decision) or one can specify events that have to occur for triggering 
paths (event-based decision) [OwRa03]. The usual interpretation is that a 
choice is made at run-time, based on such a Boolean condition or based on 
occurring events. In the context of reference models, this interpretation is 
too narrow.  

The scope of a decision can vary. For example, if a hospital uses a rule 
like “If a patient has high blood pressure a day before the planned opera-
tion, the operation will be cancelled”, then the scope of each choice (oper-
ate or not) is limited to a single patient. There may also be choices which 
affect more cases, e. g., consider the rule “If there is a major disaster in the 
region, all planned operations will be cancelled.” or also an entire process, 
e. g., “The admittance process requires patients to pre-register”. There may 
even be choices that affect all processes within an organization. We call 
such choices that are made in advance and that are affecting more than a 
single instance of a process configuration choices. However note that the 
borderline between run-time choices and configuration choices may be a 
bit fuzzy as the following examples show.  

• The organization's management chooses not to allow for pre-shipments.  
• The Dutch branches require a deposit, while this is not needed for 

branches in other countries (nation-wide management decision).  
• If stock is below 100 items, only preferred customers are serviced (local 

management decision).  
• Based on the volume of the order, the goods are shipped by truck or 

mail (local management decision).  
• On Saturday, goods are shipped by truck (local, temporal decision).  

Each of these choices is at another level, i. e. they are made at other points 
in time with different validity limits and periods. However, classical pro-
cess modeling languages, e. g., the languages used in workflow manage-
ment systems [AaHe02; JaBu96] or in reference modeling [CuKe97], al-
low only for one level of choice. The examples demonstrate that reference 
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models have to allow for a broader spectrum of choices. All decisions have 
in common that they restrict the actual available options for decisions at a 
later point in time. For that reason one can view configuration as limiting 
choices by making choices. However, at a certain point in time it is not 
longer possible to postpone a decision without delaying the actual process 
flow. These decisions are called run-time decision and must be distin-
guished from build-time or configuration decisions which can be post-
poned to a later point in time without delaying the process flow. Seen from 
this viewpoint, process modeling languages need to distinguish at least 
between run-time choices and configuration choices.  

3 Configuration: A Theoretical Perspective 

The aim of configurable process models is to provide generic models inte-
grating possible process variations into one model. Afterwards such a 
model can be configured to a specific solution. This means a configurable 
model should guide the user to a solution that fits to the user's require-
ments [BeDK04]. In [FeLo02] this is also classified as a generic-mono-
lithic approach for model re-use. In order to provide such configuration 
opportunities a configurable model must be able to provide a complete, 
integrated set of all possible process configurations. Only in this case each 
individual model can be derived from the model. In other words the con-
figurable process model can be described as the “least common multiple” 
of all process variations. The task of configuration is to create a new model 
by selecting that parts of the configurable model that are relevant to the 
user or – the other way around – by deselecting the irrelevant parts. In 
practice such a configured process model can probably not satisfy all indi-
vidual requirements as the reference model will not include the complete 
set of all possible configurations. The gap has to be filled in manually by 
the user by applying non-generating adaptation mechanisms [BeDK04]. 
However this subsequent step is out of the scope of this paper.  

To depict and analyze process models we will use the notion of Labeled 
Transition Systems (LTS).  
 
Definition 1: A labeled transition system is a five-tuple LTS = (S, L, T, SI, 
SF), where  

• S is the set of states,  
• L is the set of transition labels,  
• τ ∈ L is the label reserved for silent transitions,  
• T ⊆ S×L ×S is the set of transitions,  
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• SI ⊆ S is the set of initial states, and  
• SF ⊆ S is the set of final states.  
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Figure 1:  A labeled transition system 

A state represents a complete set of properties, describing the actual situa-
tion within the process. A labeled transition describes the switching from 
one state to another. Therefore transitions are also representing any kind of 
activity or functionality that is executed and thereby changing the proper-
ties of the system. LTS can be depicted graphically as, e. g., in Figure 1. 
The actual process flow is from top to bottom. E. g., the execution of the 
transition labeled “a” transforms S2 into S4. If more than one outgoing arc 
leaves a state, there is a choice between the arcs for the continuation of the 
process. A silent transition, labeled τ, is a special transition that transforms 
a state into another without changing any of the externally visible proper-
ties of the state. Note that in S1 all three transitions a, b, and c can be exe-
cuted, in S2 only a and b can be executed, and in S3 only c can be executed, 
i. e., although the τ transitions are not visible they may limit the possible 
ways to continue.  

Although numerous process modeling languages are defined and used, 
all process models having formal semantics can be mapped onto labeled 
transition systems [BaAa01; GlWe96; Miln80]. By using labeled transition 
systems for our analysis, we are able to transfer the results into any of 
these languages.  

To depict the essence of configuration we make use of the concepts of 
inheritance of dynamic behavior [AaBb02; BaAa01]. The basic idea of in-
heritance – as also applied in object-oriented software development – is to 
provide a mechanism that allows constructing subclasses which are inher-
iting all behavior and features of superclasses. The subclass extends the 
superclass with additional behavior or features, i. e., the superclass sup-
ports less functionality than the subclass. By using multiple inheritance it 
is also possible that a subclass is the subclass of multiple superclasses. 
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Such a subclass includes the behavior of all superclasses, i. e. from the 
perspective of each single superclass the subclass is extended with the be-
havior of the other superclasses. If such a subclass is minimal (i. e., each 
extension is motivated by some superclass), we refer to it as the least 
common multiple of all superclasses. In this paper, we will show that this 
least common multiple corresponds to the unconfigured reference model. 
Each superclass of the subclass (i. e., the reference model) can be regarded 
as one of its configured variants. That means configuration is the process 
of transforming the subclass into the superclass, which is exactly the in-
verse of inheritance (cf. also Figure 2).  
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Figure 2: Configuration – the inverse of inheritance 

In [AaBa02; BaAa01] two different mechanisms for detecting inheritance 
in workflow models are defined. Both mechanisms are defined in the in-
verse direction. That means the behavior of the superclass is regarded from 
the viewpoint of the subclass. The first mechanism inhibits the execution 
of additionally functionality. If it is not possible to distinguish the behav-
iors of model x and model y when only transitions of x that are also present 
in y are executed, then x will be a subclass of y. That means all transitions 
of the subclass x that are not present in the superclass y are blocked (encap-
sulation). The second mechanism compares the effects of the superclass y 
and subclass x by considering only that effects of the subclass x that also 
occur within the superclass y. If it is not possible to distinguish the behav-
iors of x and y when arbitrary tasks of x are executed, but when only the ef-
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fects of tasks that are also present in y are considered, then x is a subclass 
of y. All effects of the subclass x not occurring in y are hidden in the su-
perclass y (abstraction).  

When configuring a process model, the complete, configurable model is 
restricted to a desired variant. As the two mechanisms of blocking and 
hiding are defined in the inverse direction and as we showed that configu-
ration can be regarded as the inverse of inheritance we can use these 
mechanisms to depict configuration in the following. However, as shown 
above, configuration implies decision making. Each configuration decision 
of blocking/not blocking or hiding/not hiding determines if a transition 
will be executable at run-time or not. A decision, however, requires infor-
mation which might not be available at build-time. Such decisions must be 
postponed to run-time and performed for each case individually. Therefore 
they must be integrated into a run-time (i. e., configured) process model. 
Thus, a transition can not only be configured as hidden or blocked but also 
as optional hidden or optional blocked. That means for an LTS:  
 
Definition 2: A configuration is a (partial) function c ∈ T →/ {τ, δ, τ0, δ0} 
where dom (c) is the set of configured transitions, and for t ∈ dom(c) 
( f A B∈ →/  denotes a partial function, ( )dom f A⊆  is the domain of f ): 

• c(t) = τ, is a hidden transition,  
• c(t) = δ, is a blocked transition,  
• c(t) = τ0, is a optionally hidden transition, and  
• c(t) = δ0, is a optionally blocked transition.  

Of course not all configurations are possible and therefore valid. E. g., for 
sure certain functionality and therefore certain transitions are mandatory 
and cannot be blocked or hidden. Also interdependencies between various 
transitions will probably exist. Therefore we define:  
 
Definition 3: A configurable process model is a tuple CPM = (LTS, CS) 
where:  

• LTS = (S, L, T, SI, SF) is a labeled transition system, and  
• CS ⊆ T →/ {τ, δ, τ0, δ0} is a set of configurations. 

Configuring the configurable process model means to select a configura-
tion c ∈ CS. To get a configured model the configuration must be applied 
to the labeled transition system. Figure 3 depicts some configuration-ex-
amples within an LTS. The first column depicts the configurable models. 
The subsequent columns depict the configured models of certain configu-
ration scenarios.  
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The configuration decision to block a transition implies that the transition 
will never be executed. That means the transition should not appear within 
the configured model. It must be removed from the model when trans-
forming the configurable model into a configured model as depicted in 
Figure 3a/b. The configurable transition a in Figure 3a is removed in the 
configured model in Figure 3b. As no alternative transition can be exe-
cuted from state S1 the state becomes a deadlock. State S2 and subsequent 
transitions and states become unreachable. They could be removed from 
the configured model, however as they are not reachable anyway this has 
no influence on the execution of the process. This situation differs from the 
situation if transition a is configured blocked in the second configurable 
model (Figure 3d). In this case transition b must be executed when reach-
ing S1 (Figure 3e).  

Figure 3: Configuration in a labeled transition system 

If the configuration decision is to hide a transition, the transition's external, 
i. e. observable, effects will be ignored. However the effects within the 
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model, that means on the execution of subsequent transitions, are kept. 
Therefore, when transforming the configurable model into a configured 
model, the transition must be transformed into a silent step without output 
by renaming the label into τ (cf. Figure 3a/c). The definition of hiding 
given above explicitly says that the task is executed, but the external effect 
is ignored. However, the desired result when configuring a process model 
differs slightly. In fact instead of ignoring the transition's external effects it 
should not even be executed. Only the non-observable, internal effect of 
reaching a subsequent state and triggering subsequent transitions has to 
occur. For that reason we will call this kind of configuration also skipping 
in the following. As the perceived results are identical, skipping can be 
handled in the same manner as hiding by introducing a silent step τ.  

If it is not possible to decide on hiding/blocking at configuration time, a 
configured model can – as depicted above – include the choice between 
blocking and not blocking or between hiding and not hiding. To include 
such a postponed choice into the configured model, the choice must of 
course be included before the actual transition. Each postponed configura-
tion decision needs to be resolved at run-time; either the transition will be 
hidden/blocked or it will not be hidden/not be blocked. In order to model 
such as run-time decision, we introduce new intermediate states into the 
model. Each state corresponds to the result of all postponed decisions in 
the particular state. We denote these as states sH,NH,B,NB where H ⊆ T is the 
set of hidden transitions in the particular state, NH ⊆ T are the non-hidden 
transitions, B ⊆ T are the blocked transitions, and NB ⊆ T are the non-
blocked transitions. If it is obvious which transition is referred to, we just 
use the label to describe a labeled transition, i. e. we write l instead of (s, l, 
s′). E. g., in Figure 4b the transition labeled a is configured as optional 
blocked. For that reason two additional states are introduced within the 
configured model: s1{},{},{},{a} for the case that a will not be blocked at run-
time and s1{},{},{a},{} for the case that a will be blocked at run-time. For the 
subsequent model each state matches exactly s1 of the case that it would 
have been configured blocked or not blocked at build-time, i. e. for exam-
ple s1{},{},{a},{} matches s1 in Figure 3b. It represents the deadlock. Both 
states s1{},{},{a},{} and s1{},{},{},{a} are reachable from s1 by silent transitions. As 
these silent transitions have no output, the execution of the model will re-
sult in the same process as if the configuration decision would have been 
made at build-time.  

Figure 4c depicts the same situation for the case that transition a is con-
figured as optionally hidden. Here state s1{},{a},{},{} represents the situation 
that transition a is not hidden and will be executed, whereas s1{a},{},{},{} 
represents the result of the configuration decision to hide transition a and 
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therefore corresponds to s1 in Figure 3c. Figures 4e/f provide further ex-
amples by depicting the optional configurations of a in figures 3e/f.  

Figure 4: Transitions configured optional in a labeled transition system 

Figure 4h depicts a situation where more than one transition that is outgo-
ing from the same state is configured optional. In this case it is required to 
generate 2n intermediate states, where n is the number of transitions that 
are configured optional. The sets H, NH, B, and NB depict the configura-
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tions of the transition. They define which configuration is represented by 
the particular state.  

To transform the configurable process model into a configured process 
model we provide the following algorithm: 
 
Algorithm 1. Let LTS = (S, L, T, SI, SF) be a labeled transition system and 
c ∈  T →/ {τ, δ, τ0, δ0} a configuration. The labeled transition system 
resulting from this configuration, notation cLTS = ( c c c c c

I FS L T S S, , , , ), is 
defined as follows: 

• ( ) ( ){ }0 0 0{ } ,T t dom c c t τ δ= ∈ | ∈ ,  
• 

( ){ }00 ,s l s TS s S s s′ ′′, , ∈ ′= ∈ | ∃ =  

• ( ) ( ){ }
( ) ( ) ( ) ( )( ){ }

0 0{ }

,l L

T t T t dom c c t

s s s l s dom c c s l s

τ δ

τ τ∈

′ = ∈ | ∈ ⇒ ∈ , ∪

′ ′ ′, , | ∃ , , ∈ ∧ , , =
 

• {
( )

( ) ( )( )
( )

( ) ( )( )
}

0

0 0

0 0

,

opt H NH B NBS s s S

H NH

H NH s l s T s s c s l s

B NB

B NB s l s T s s c s l s

τ

δ

, , ,

⎛ ⎞⎧ ⎫
⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠

⎛ ⎞⎧ ⎫
⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠

= | ∈

∧ ∩ = ∅

′ ′′ ′ ′ ′′∧ ∪ = , , ∈ | = ∧ , , =

∧ ∩ = ∅

′ ′′ ′ ′ ′′∧ ∪ = , , ∈ | = ∧ , , =

 

• 

( ) ( ) ( ){ }
( ) ( ){ }
( ) ( ) ( )0 0\

opt H NH B NB H NH B NB opt

H NH B NB H NH B NB opt

H NH B NB H NH B NB opt

H NH B NB H NH B NB opt

T s s s S

s l s s S l NH NB s l s T

s s s S l H s l s T

s l s s S s l s T T s S

τ

τ

⎧ ⎫⎛ ⎞
⎨ ⎬⎜ ⎟, , , , , ,⎝ ⎠⎩ ⎭

, , , , , ,

, , , , , ,

⎧ ⎫⎪
⎨

, , , , , ,⎪⎩

= , , | ∈ ∪

′ ′ ′, , | ∈ ∧ ∈ ∪ ∧ , , ∈ ∪

′ ′ ′, , | ∈ ∧ ∃ ∈ : , , ∈ ∪

′ ′ ′, , | ∈ ∧ , , ∈ ∧ ∈ ,⎪⎬
⎪⎭

 

• ,c
optS S S= ∪  

• ,cL L=  
• ( ){ }0 ,c

optT s l s T s S T′ ′′ ′ ′= , , ∈ | ∉ ∪  
• ,c

I IS S=  and 
• .c

F FS S=  

T0 is the set of transitions configured as either optionally hidden or option-
ally blocked. S0 are all states which are sources of transitions configured as 
optional. T ′ are all transitions of the configurable model that are not con-
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figured as blocked or hidden, merged with the transitions that are config-
ured as hidden with changed labels to τ. Sopt are all the additional interme-
diate states required for including postponed configuration choices. Topt are 
all transitions required to include Sopt into the model. There are four types 
of transitions. First, Topt includes all the silent transitions from the original 
states to the intermediate states. Second, it includes the original transitions 
repositioned between all new intermediate states in which they are listed in 
“NB” or in “NH” and their original targets. Third, Topt includes all the re-
named, silent transitions from the intermediate states where they are listed 
in “H” to their original target. Fourth, it also includes all non-configured 
transitions originally leaving a state in S0, reallocated between the particu-
lar intermediate state and its original destination. Of course, blocked tran-
sitions must not be included here.  

These sets enable us to specify the configured model. Labels, initial 
states, and final states remain the same as in the configurable model. The 
states of the configured model Sc are the states of the unconfigured model 
S plus the states required for the postponed choices Sopt. To define the tran-
sitions of the configured model, Tc consists of two types of transitions. 
First, Tc includes all the non-configured or hidden transitions defined in 
T ′, but without the transitions leaving a state that is split into intermediate 
states. Second, the transitions to include the intermediate states into the 
model are defined in Topt and also included in Tc.  

Some states and transitions become unreachable within such a config-
ured labeled transition system. An additional cleanup algorithm could of 
course remove these elements. Since this is a trivial technicality it is not 
shown here.  

After clearly defining what configuration of process models is and after 
defining what configurable process models formally are, we are now able 
to systematically analyze existing configurable process modeling lan-
guages and propose improvements.  

4 Configurable EPCs: An Example of a Language 

To conclude this paper we will introduce and analyze Configurable EPCs 
(C-EPCs) [RoAa05; DRAS05]. C-EPCs serve as an example of a config-
urable process modeling language and we compare its expressive power 
with the requirements for process configuration. C-EPCs are an extension 
of EPCs [KeNS92]. An EPC consists of functions, events, arcs, and con-
nectors. Events represent states and functions represent activities or func-
tionality. Arcs and connectors define the process flow. Functions follow 
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events and events follow functions. Moreover, to model splits and joins in 
a process, connectors may be used. There are three types of connectors: 
AND, OR and XOR.  

AND-splits and AND-joins may be used to model parallel routing. 
XOR-splits and XOR-joins may be used to model the selection of specific 
routes (e. g., a “switch case” construct). OR-splits and OR-joins may be 
used to model a mixture of conditional and parallel routing. (The depicted 
semantics are informal. There is an on-going discussion about mathemati-
cal sound semantics of EPCs, especially on the non-locality of the OR-
join, e. g. cf. [Kind06; AaDK02].)  

In a C-EPC, as defined in [RoAa05; DRAS05], both functions and con-
nectors may be configurable. Configurable functions may be included 
(ON), skipped (OFF) or conditionally skipped (OPT). Configurable con-
nectors may be restricted at build-time, e. g., a configurable connector of 
type OR may be mapped onto an AND connector, an XOR-connector or a 
sequence (for details cf. [RoAa05], Section 5.2). Local configuration 
choices like skipping a function may be limited by configuration require-
ments. For example, if one configurable function f1 is configured as “ON”, 
then another configurable function f2 needs to be excluded. This configu-
ration requirement may be denoted by the logical expression f1=ON ⇒ 
f2=OFF. In addition to these requirements it is possible to add guidelines, 
supporting the configuration process. 

Figure 5 shows a C-EPC describing an invoice verification process. The 
classical EPC is extended with configurable functions and connectors (in-
dicated using thick lines) as well as with requirements and guidelines at-
tached to functions. For example function Invoicing Plan Settlement (i) is 
configurable, i. e., it may be included (ON), skipped (OFF) or condition-
ally skipped (OPT) within the configured model. Note that skipping corre-
sponds to the notion of hiding, i. e., if a function is skipped, the process 
flow continues after the function without actually executing the function. 
This is also depicted in the first row of Figure 6. The function a within the 
C-EPC process fragment is switched “OFF”. This conforms to a hidden 
transition a within the corresponding LTS. Within the configured LTS, the 
transition is renamed into τ, whereas in the configured EPC function a is 
removed. In order to generate a lawful EPC also one of the events sur-
rounding a must be removed, which is indicated by the brackets around 
event A in Figure 6. Comparing the configured EPC and the configured 
LTS, the sequences of executed activities correspond to each other. Also 
optional hiding is supported by C-EPCs: If a function is configured as 
“OPT” this means that the decision about its execution is postponed to run-
time [MRRA05; DRAS05].  
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Figure 5: A Configurable EPC 

The example C-EPC in Figure 5 also shows two configurable connectors. 
By configuring the OR-join (ii), it is possible to specify which of the 
events has to occur in order to start the process. E. g., it is possible to re-
strict the connector to an AND-join, which would mean that all events 
have to occur. It is also possible to restrict it to an XOR-join which would 
mean that only one of the events has to occur. The configurable XOR-split 
(iii) can be configured to an XOR-connector or it can be restricted to a se-
quence. E. g., to disable automatic invoice release, it can be configured to 
a sequence only executing the left path (i. e. always performing manual in-
voice release). In fact this conforms to blocking of the other path leaving 
the XOR connector. The second row of Figure 6 depicts a process frag-
ment of a corresponding labeled transition system. In the third row of this 
Figure it becomes obvious that direct blocking of functionality is not avail-
able within C-EPCs. There is no construct available that would enable the 
blocking of function b as it is in the labeled transition system. A configur-
able function can only be hidden, but not blocked. That means within C-
EPCs blocking is only supported indirectly by configurable connectors. 
This also becomes obvious if it is required to postpone the choice of 
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blocking to run-time. A configurable connector cannot be configured as 
optional. However if it is not restricted, it keeps all configuration opportu-
nities. That means, the configuration choice will occur implicitly within 
the configured model, however it will not be modeled explicitly.  
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Figure 6: Configuration within LTSs and C-EPCs 

The third element type for configuration within C-EPCs are requirements. 
E. g., in Figure 5 the requirement attached to “Invoicing Plan Settlement” 
states that if it is switched “ON” also the function Evaluated Receipt Set-
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tlement has to be switched “ON” (iv). Requirements therefore ensure that 
only configurations are generated that are valid within the configurable 
process model (cf. Definition 3).  

Altogether the implementation of configuration within C-EPCs by 
blocking functionality within the process flow and directly skipping func-
tionality without changing the process flow can be seen as a rather restric-
tive, but very intuitive, approach. Although it does not provide complete 
support for all possible configuration scenarios, it already provides some 
support for both configuration techniques blocking and hiding as well as 
for optional blocking and optional hiding. It also provides opportunities to 
inhibit generation of invalid process models.  

5 Summary and Outlook 

Within this paper we have argued that it is required to distinguish between 
at least two types of choices as the scope and level of decisions varies: (1) 
configuration choices made at build-time and (2) “normal” choices made 
at run-time. To allow for a language-independent discussion on configur-
able process-models we tried to capture the essence of configuration by 
describing configuration as the inverse of inheritance. Instead of adding 
functionality, configurations restrict the model. The two techniques used 
for restriction are called blocking and hiding. Blocking stops the process 
flow whereas hiding disables functionality by continuing the process flow. 
As decisions regarding blocking and hiding require information which 
might not be available at build-time, configurable process modeling lan-
guages must support postponement of decisions to run-time.  

The important thing to note is that it is possible to extend a language 
like EPCs with configurable elements, supporting these requirements. Al-
though the current definition of C-EPCs lacks of some configuration op-
portunities, the extension is intuitive making it easy to apply. The target of 
this research was to formally define configuration of process models. Fur-
ther research has to analyze which of these configuration opportunities are 
sensible in a practical context. A reference model is always a trade-off 
between costs and benefits. I. e. configuration is the first step from the ref-
erence model towards the individual model. Afterwards further specializa-
tion has to be done individually by the user in order to include require-
ments not covered by the reference model.  

Using the theory developed within this paper on the one hand and prac-
tical experiences using C-EPCs on the other hand, we hope to develop 
more mature configuration languages. To improve the configuration pro-
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cess of Enterprise systems it will also be required to transfer the presented 
ideas from process modeling to truly executable models which can be used 
for enactment. As a starting point, we plan to work on adding configura-
bility features to workflow modeling languages like SAP workflow, Staff-
ware, or YAWL [RDBS02; Staf00; AaHo05]. 
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