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Abstract
This paper provides an introduction to multi-agent traffic simulation. Met-
ropolitan regions can consist of several million inhabitants, implying the
simulation of several million travelers, which represents a considerable
computational challenge. We reports on our recent case study of a real-
world Berlin scenario. The paper explains computational techniques neces-
sary to achieve results. It turns out that the difficulties there, because of data
availability and because of the special situation of Berlin after the re-
unification, are considerably larger than in previous scenarios that we have
treated.

1 Introduction

In recent years, microscopic traffic simulations have become an increasingly ac-
tive field of research in transport science. “Micro” refers to the fact that all ele-
ments of the transport system, like roads, crossings, vehicles, and – most impor-
tantly – travelers (referred to as “agents”) are resolved. This modeling approach is
in contrast with the more aggregate models implemented in current transport plan-
ning software and used by transportation planners. While those programs have
seen several decades of development and practical use, agent-based microscopic
simulation systems are still relatively new and are mostly used in small and me-
dium scale scientific scenarios rather than in real world applications. But new
technologies, such as robust and fast object-oriented programming languages and
high performance computing clusters make the applications increasingly realistic
and increasingly large scale. This paper addresses the issue of applying such a
model to a real world scenario of large dimensions.
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2 The Model

2.1 Physical vs. Mental Level

There are several ways from which a microscopic approach can be derived. One
way is the attempt, often used in physics, to start from “first principles”. First
principles implies to start from individual particles, and indeed the possibility to
do fast molecular dynamics (Beazley et al. 1995) and fast cellular automata simu-
lations (Stauffer 1991) on the microscopic level was one of the driving forces for
large scale microscopic traffic simulations (Nagel and Rickert 2001).

When going down this path, one notices eventually two things:

•  Building a microscopic simulation of vehicular traffic (or, for that matter, of
pedestrians) needs some diligence and care, but is essentially possible. 
In terms of size: Even large urban systems rarely have more than 107 inhabi-
tants, and rarely more than about 20% of those are simultaneously on the road.
This makes for considerably smaller numbers of particles than in many physics
applications, and moves the microscopic simulation of complete cities/regions
into the realm of the computationally feasible.
In terms of underlying dynamics: Despite considerable discussion about differ-
ent traffic states and possible phase transitions (Kerner et al. 2002; Helbing et
al. 1999; Jost and Nagel 2003), the absolutely most important elements of the
dynamics are, in fact, rather constrained: There is mass conservation (especially
if vehicles are tracked from parking to parking; see below); vehicles move on a
quasi one-dimensional geometry (roads) most of the time; there are quite severe
restrictions on acceleration and braking capabilities; and there are quite severe
excluded volume restrictions (not more than about 150 vehicles fit on a kilo-
meter of single-lane roadway when traffic is stopped). A consequence of this is
that a rather simple theory of traffic – that of kinematic waves (Lighthill and
Whitham 1955) – describes traffic rather well, by just using the equation of
continuity plus an equation of state (relating velocity to density, the so-called
“fundamental diagram”) (Nagel and Nelson 2005). Any microscopic model that
obeys the corresponding microscopic principles – mass conservation and ve-
locity related to the distance to the car ahead – will reach a similar level of re-
alism (Brockfeld et al. 2003). More complicated aspects, such as capacity drop
(Hall and Agyemang-Duah 1991), phase transitions (see above), or
“synchronized traffic” (Kerner 1998), matter for the management of individual
road segments, but they do not matter so much for where we currently are with
simulations of large scale urban systems.

• The other thing that one notices is that the behavior of the “particles” (vehicles,
pedestrians) is quite heavily influenced by behavioral aspects, i.e. by “what
goes on in people’s heads”. This is, however, not so much the realm of physics,
since one is not interested in, say, how 106 neurons together eventually make a
decision, but instead in models that generate realistic human decisions within
very short computing time. For typical computing situations, a lane changing



Preliminary Results of a Multi-Agent Traffic Simulation for Berlin   77

decision may not take more than 10 s of CPU time, and a decision about a daily
plan may not take more than a second of CPU time. That is, one is interested in
models that describe the outcome of human decision-making reasonably well,
without “looking at the neurons”.

Fig. 1. Physical vs. mental level

Accordingly, it is useful to differentiate between the physical layer and the
mental layer of a multi-agent simulation (MASim), see Fig. 1. The physical layer
essentially contains everything that can be observed. The mental layer essentially
contains everything that goes on in people’s heads.

2.2 The Physical Level

As just said, there is a variety of techniques available for the simulation of the
physical level. These techniques include molecular dynamics (Bando et al. 1995),
techniques based on differential equations (e.g. Helbing 2001), coupled maps
(Gipps 1981; Krauß et al. 1996; Gloor et al. 2003), cellular automata (Chowdhury
et al. 2000), methods where individual vehicles are moved with velocities based
on link densities (Ben-Akiva et al. 1998; Chang et al. 1985), methods where indi-
vidual vehicles are moved based on fluid-dynamical equations (Flötteröd and
Nagel 2005), and queue models (Gawron 1998). Some packages based on these
different techniques are SUMO (using coupled maps and more recently a queue
model; SUMO www page), DYNASMART, DYNAMIT, METROPOLIS (all us-
ing a combination of velocities based on link densities and a queuing approach;
DYNASMART www page; DYNAMIT www page; de Palma and Marchal 2002),
TRANSIMS, OLSIM (both using a cellular automata approach; TRANSIMS
www page; Esser 1998), or our own package MATSIM (using a queuing approach
and more recently also vehicle movement based on fluid-dynamics; MATSIM
www page). Since these are not the main focus of this paper, it shall suffice to
have given these references.
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2.3 The Mental Layer

As mentioned above, the mental layer models and simulates the human decision
processes. Those include:

• accelerating, braking, lane changing
• turning decisions at intersections; route choice
• time choices (when to depart? )
• mode choices (which mode of transport to use? )
• location choices (where to do an activity? )
• activity pattern choice (which activities should be done at a given day, and in

what sequence? )

This is an approximately hierarchical list, in the sense that decisions further
down the list are made less often, and in consequence decisions further up the list
depend on those further down the list. For example, in order to compute a route
from home to work, one first needs to know where home and work are located.
Although the above hierarchy can be justified by empirical observation (e.g.
Miller and Roorda 2003), there is also considerable inverse causality between the
levels. For example, location choice (for example for a shopping location) de-
pends on the available modes of transport.

With respect to model implementation, the following seems to establish itself in
the community:

•  Driving behavior, such as accelerating, braking, or lane changing, is included
into the physical layer. That is, it is not assumed to be part of any strategy, but
rather assumed to be purely reactive.

• Routes are typically generated using some kind of shortest (or fastest) path al-
gorithm. This is most probably due to the fact that a shortest/fastest path in a
traffic graph is relatively cheap to compute by using the Dijkstra algorithm
(Dijkstra 1959); it is, in fact, difficult to devise heuristics that are faster than
that exact algorithm. If several route alternatives are available, selection be-
tween them is often done using a so-called multinomial logit or probit model
(Ben-Akiva and Lerman 1985). Some care needs to be taken to correctly deal
with correlations between alternatives (Cascetta and Papola 1998): Assume
three route alternatives, where two of them differ in just one link, and the third
is very different. The intuitive split between those would be roughly
25% :  25% :  50%, while plain mult inomia l  log i t  re turns
33.3% : 33.3% : 33.3%. This is known as “independence from irrelevant alter-
natives (IIA-property)” (see, e.g., Ben-Akiva and Lerman 1985).

• The choices of times, modes, locations, and activity patterns are often done in
one model, called activity-based demand generation (ABDG). There are two
major strains of models: those based on econometrics/utility maximization, and
those based on rules. Most real-world implementations are a combination of
those two approaches (e.g. Pendyala, 2005; Bhat et al. 2004; Bowman et al.
1999; Jonnalagadda et al. 2001; Arentze and Timmermans 2000, 2005).
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The above assumes that the population and where it lives is given. That is, the
(synthetic) population can be seen as a fixed boundary condition of such simula-
tions. Synthetic populations are generated from demographic data (e.g. Beckman
et al. 1996). Some models, normally separate from traffic models, also consider
the evolution of a population over time (including aging, birth, and death), and in-
clude residential choice into those models (e.g. Salvini and Miller 2005; Waddell
et al. 2003; Strauch et al. 2002).

In our work, we call the output of the mental layer plans, which can look like:

<person id=="123" gender="male" income="50k">
<plan score="456">
<act type="home" link="234" endTime="08:05"/>
<leg mode="car" expectedTravelTime="00:55">
<route> 25 35 46 63 </route>

</leg>
<act type="work" link ="345" duration="09:00"/>
...

That is, a plan is a full description of the agents’ intentions. The above agent
intends to leave home at 8:05, take a pre-specified route to work with an expected
travel time of 55 min, work for 9 hours, etc. Although in much of our work, plans
are fully specified, conceptually they do not need to be so: It is quite reasonable to
assume that some elements (e.g. the time to leave work) is decided depending on
circumstances (e.g. how much work there is), and other elements are modified on
short notice (e.g. the route, in order to circumvent some exceptional congestion).

2.4 Adaptation and Learning; Day-To-Day vs. Within-Day Replanning

If one runs the sequential process of synthetic population generation, activity-
based demand generation, and routing, the resulting plans are often not useful
since they will not execute as expected. A typical obstacle is congestion, which is
a consequence of too many plans attempting to use a certain element of the infra-
structure at the same time. Congestion will make certain choices sub-optimal, in
the sense that an agent could find a better solution by modifying its plan.

There are two principal ways to model replanning:

•  Option 1, called day-to-day replanning. The physical level simulates a day,
then the plans of the agents are adapted, the physical level simulations a new
day based on the new plans, etc. In pseudo-code:

for ( day = 1 ; day <= lastDay ; day ++ ) {
for ( time = 0 ; time < endOfDay ; time ++ ) {
advance_physical_layer_by_one_time_step () ;

}
for ( agent in agents ) {
agent.replan() ;

}
}
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Most of the syntax is hopefully clear; for ( agent in agents ) means
that the loop goes through all agents; agent.replan() means that the spe-
cific agent is now asked to potentially replan.
In this version, agents pre-plan their complete day before they leave home in
the morning, and they can only re-consider their plan just before they start the
next morning. Agents can therefore not react to unforeseen circumstances.

•  Option 2, called within-day replanning. The physical level simulates a short
time period, then all agents can re-plan, the physical level simulates another
short time period, etc. In pseudo-code:

for ( day = 1 ; day <= lastDay ; day ++ ) {
for ( time = 0 ; time < endOfDay ; time ++ ) {
advance_physical_layer_by_a_one_time_step () ;
for ( agent in agents ) {
agent.replan() ;

}
}

}

More intelligent/efficient implementations of this can be considered, such as
agent replanning being triggered by certain conditions during the update of the
physical layer.
In this version, agents can replan while they are on the way, thus being able to
react to unforeseen circumstances. Important examples of unforeseen circum-
stances are fluctuations from one day to the next, or exceptional events, such as
accidents.

The two options face different levels of implementation difficulties:

•  Option 2 is easier to implement by a single programmer or by a tightly inte-
grated programming team where all members of the team have agreed to use
the same data structures (e.g. for the agents).

• Option 1 is easier to implement if there is pre-existing, non-integrated code, or
if the programming team is not tightly integrated.

In consequence, within-day replanning is often implemented by single-person
projects (Emmerink 1996; de Palma and Marchal 2002; SUMO www page; Flöt-
teröd and Nagel 2006) or by projects that can define and enforce their program-
ming standards, while day-to-day replanning is often the result of a multi-person
or multi-team project (DYNAMIT www page; TRANSIMS www page; Strauch et
al. 2002).

A direct consequence is that projects with within-day replanning are often
somewhat limited in scope, since it is difficult to combine pre-existing work.
Since, on the other hand, within-day replanning is an important aspect of reality, it
seems critical to overcome that obstacle.
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2.5 Scores and “Events”

For most applications, replanning only makes sense if the agent attempts to obtain
a “better” plan by replanning. This implies that one needs to be able to compare
plans. We assume that the plan is scored by submitting it to the physical layer, and
scoring the outcome. That is, the plan is seen as the description of the strategy of
the agent. The strategy is then interpreted and executed by the physical layer. If
the strategy contains infeasible elements (e.g. a route that is not connected), it will
fail completely. Even if the strategy is feasible, it may not be very good, since, for
example, assumptions about travel times may be optimistic. The physical layer
provides output in terms of events, which structurally look as follows:

<event time="08:05" agentID="123" eventType="leavingAct"
act ="home"/>
<event time="10:00" agentID="123" eventType="arrivingAtAct"
act ="work"/>
<event time="19:00" agentID="123" eventType="leavingAct"
act ="work"/>

This refers to the agent as described earlier by the example plan. The agent
leaves home as intended, but needs one more hour than intended to get to work.
Consequentially, she will leave work one hour later than intended, since the dura-
tion of work is fixed by the plan. The scoring will be based on the longer duration
of travel, and the later work start/work end times. If, as a result, she gets late to an
appointment later, that will cause further score reduction. If the morning travel
delay occurs regularly, she will learn, say, to depart earlier.

Scoring functions can be arbitrary, although in practice, it is currently easiest to
remain close to the utility functions used in economics. There is some research
into how to assign utilities to full daily plans (Jara-Diaz et al. 2003).

2.6 Co-Evolution, Dynamical Systems, and Evolutionary Game
Theory

Day-to-day learning can be described in terms of an evolutionary game. If, over
the iterations, all agents end up with plans that they cannot unilaterally improve,
then the system is at a Nash equilibrium. The plans can be seen as “strategies”;
the execution of the plans in the physical level can be seen as “scoring the strate-
gies” or “computing the fitness function”. The concept even holds when the
simulation of the physical level is stochastic; then “score” needs to be replaced by
“expected score”.

The day-to-day evolution of the system can be seen as a time-discrete dynami-
cal system where many agents co-evolve. For such systems, some theory is avail-
able (Hofbauer and Sigmund 1998), although there is a gap between theoretically
tractable systems in the traffic context and full-blown multi-agent simulations. For
such theoretically tractable systems, one can show: If, in every iteration (day), a
small fraction of the agents switches to what would have been the best expected
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plan in previous iterations (“best reply”), and if that system moves to a fixed
point, than that fixed point is a Nash Equilibrium. There are, however, at least two
caveats: (1) The implementation of “best expected score” is not easy to make op-
erational because a simulation is computationally rather expensive, and averaging
over several such simulations is even worse. (2) As is well known, dynamical
systems do not need to converge to fixed points. They can instead converge to cy-
cles, or to chaotic attractors (Schuster 1995).

3 Set-Up of the Berlin Simulations

Although the scenario focuses on the city of Berlin, in order to simulate average
traffic conditions we have to model and simulate Berlin’s surrounding as well but
with a lower level of detail. All together the study region covers an area of 150 km
x 250 km and has a population of about 6 million inhabitants. Network and de-
mand are derived from data used and produced by the aggregated macroscopic
model that Berlin’s planning department is working with. In contrast to this offi-
cial transport model used for mid and long term forecasts, in our simulations all
travelers are resolved as agents generating trips while following their day plans.
The following sub-sections describe the set-up of the Berlin scenario.

3.1 Boundary Conditions: The Network

As mentioned earlier, Berlin’s planning department provided us with a road net-
work of their transport model. This network has been used as part of the forecast
model for the year 2015. Since we aim to model and simulate Berlin’s current traf-
fic of an average workday, we had to adapt the network manually in order to ex-
clude modifications planned to be realized until 2015 (e.g. expansion of the inner
city highway southward). The final network consists of almost 30,000 links con-
necting more than 10,000 nodes, described by their coordinates. For our simula-
tion we need, for each link, the attributes free flow speed, length, number of lanes
and flow capacity. The network does indeed contain these attributes, but the use-
fulness of the data is variable. For example, the number of lanes in uniformly set
to one, presumably because the number of lanes does not matter for traditional as-
signment models. Link capacity is interpreted very differently by the aggregated
model used by the planning department of Berlin and our multi-agent simulation.
While in our simulation, capacity is understood as maximum outflow of a link in a
given time period, the aggregated model does not treat a link’s capacity as hard
constraint. In traffic assignment suitable functions are used to relate capacity and
flow with the resulting cost in terms of travel times. Thus, we had to adapt these
capacity values that were the basis for a 24 hours static assignment. In a first step,
we adjusted the 24 hours capacity values in order to derive 1-hour values based on
the assumption that daily traffic basically occurs in a 12-hours period. In a second
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step, we converted the resulting theoretical 1-hour values into maximum values of
outflow of a link in 1 hour to be used in our multi-agent simulation.

Free flow travel time is calculated as link length divided by the free flow speed
of the link. Additionally, the storage of a link is constrained. The storage of a link
is calculated as length times the number of lanes divided by the space a vehicle
occupies in a jam (7.5 m). Because of the incorrect number of lanes (uniformly
one, which is much too small for the wide roads of Berlin), the space capacity
needed correction as well. For the time being, we assume a storage of 3-lane roads
everywhere – note that this affects only the storage (maximum number of vehicles
on link), not the flow capacity.

In order to speed up the Berlin scenario, the demand and the network capacities
(both flow and storage) were scaled down to 10% of the actual values.

3.2 Initial Plans from an Activity-Based Demand Generation Program

Initial plans have their source in an activity-based demand generation (ABDG)
model (also known as Berliner Personenverkehrs-Modell; Kutter and Mikota
1990; Kutter 1984; Kutter et al. 2002). It has been used to calculate three daily (=
24-hour) OD-matrices used as input data for the static assignment used by Berlin’s
planning department, differentiated between personal travel, freight travel, and
through traffic. However, the model is in fact a disaggregated activity- and be-
havior-oriented traffic demand generation model. The demand of 72 person
groups with similar demographic attributes and homogeneous behaviors is calcu-
lated based on expectancies. The model was modified to output activity chains to
be used to produce initial agents’ plans for our multi-agent simulation (Rümenapp
and Steinmeyer 2006).

Activity chains are grouped by the 72 person groups. Each activity chain con-
tains information about the start location, up to four activities, and the frequency
of occurrence of the activity chain. Activities are described by their type, location,
and the transportation mode used to reach that location. The home location is start
and end location of each activity chain (round trips). Information on location re-
fers to traffic analysis zones (TAZ), since these represent sources and sinks of traf-
fic streams in the macroscopic model. Before transforming activity chains into
agents’ plans, location information and data has to be disaggregated. Additionally,
activity chains lack time information. For initial plans, all activities are assigned a
random activity duration within a type-dependent range. As a result, over 7 mil-
lion “virtual” agents are generated from the round-trips in the ABDG data. Each of
these agents has a plan corresponding to an activity chain generated by the Kutter
model. Unfortunately, the number of these agents does not correspond to the num-
ber of real persons in the area, since persons who make more than one round trip
per day are registered as separate “virtual” agents. This is due to the fact that the
Kutter model treats round trips, not persons. That is, activity chains with interme-
diate home stops are treated as completely separate round trips, resulting in sepa-
rate agents.
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We then decreased the number of agents in our simulation to the agents using
the car for transportation. As already mentioned, to speed up the Berlin scenario
we also scaled network capacities as well as demand down to 10, which gives a
total of about 205,000 car travelers with complete day plans in our simulation.

3.3 Mental Layer: “Planomat” and Router

As already described, an agent’s plan is a description of its intentions, but it might
not be executed as expected because of congestion effects. At the end of an itera-
tion, a score is calculated for each plan, corresponding to how successful an agent
was performing its plan (see Sec.3.5). A certain percentage of agents can adapt
their plans, before the next simulation of the physical layer starts.

Two strategy modules enable this day-to-day replanning. The first module is
the router. Given locations, departure times and activity durations, an agent tries to
find a better route in terms of minimum travel costs based on the previous itera-
tion. The router is based on Dijkstra’s shortest-path algorithm, and shortness is
measured by travel costs in terms of travel times on the links of a route. Travel
times depend on how congested the links are, and so they change throughout the
day. The second strategy module is the so-called planomat (Meister et al. 2006).
Using this module, departure times or activity durations can be altered in order to
optimize the score of the plan. Also, altering the activity sequencing and activity
dropping are possible modifications but are not implemented yet.

3.4 Physical Layer: Queue Simulation

The physical layer is simulated using a queuing approach (Gawron 1998). The
agents’ plans are executed, and according to the plans they are moved on the net-
work. As output of the simulation, events are produced allowing to calculate travel
time, speed, etc. In general, an agent is moved to the next link when it was on that
link for at least the free flow travel time, according to the maximum outflow, and
when there is space on the next lane. The mentioned networks attributes remain
fixed, as mentioned above. More information about the queue simulation can be
found in (Cetin et al. 2003).

3.5 Scoring

Scoring a plan is a precondition so that agents learn. Different plans can be com-
pared and an agent can pick the one with the highest value. A higher score implies
that the agent makes better use of its day. A scoring function needs to be defined,
which evaluates complete day plans. As scoring function, the traditional utility
function based on the Vickrey bottleneck model is used (Arnott et al. 1993), but
modified to be consistent with complete day plans. Scoring is based on events in-



Preliminary Results of a Multi-Agent Traffic Simulation for Berlin   85

formation from the physical layer. Performing an activity is rewarded, travel times
and late arrival are punished. The overall equation is:
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t0 can be seen as a minimum duration of an activity, but is better interpreted as a
priority: All other things being equal, activities with large t0 are less likely to be
dropped than activities with small t0. For details, see Charypar and Nagel (2005).

The utilities of traveling and of being late are both seen as disutilities which are
linear in time:

xxU travitrav ⋅= β)(,
(4)

(where x is the time spent traveling) and

xxU lateilate ⋅= β)(,
(5)

(where x is the time an agent arrives late at an activity). travβ  is set to -6 A€ /h, and

lateβ  is set to -18 A€ /h.

In principle, arriving early or leaving early could also be punished. There is,
however, no immediate need to punish early arrival, since waiting times are al-
ready indirectly punished by foregoing the reward that could be accumulated by
doing an activity instead (opportunity cost). In consequence, the effective
(dis)utility of waiting is already -6 A€ /h.

Similarly, that opportunity cost has to be added to the time spent traveling, ar-
riving at an effective (dis)utility of traveling of -12 A€ /h.

No opportunity cost needs to be added to late arrivals, because the late arrival
time is already spent somewhere else. In consequence, the effective (dis)utility of
arriving late remains at -18 A€ /h.

These effective values are the standard values of the Vickrey model (Arnott et
al. 1993).
It would make sense to consider an additional punishment (negative reward) for
leaving an activity early. This would describe, for example, the effect when there
are, on a specific day, better things to do than to continue to work, but some kind
of contract (e.g. shop opening hours) forces the agent to remain at work.
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If a new plan is built, an agent will execute it in the next iteration in order to
obtain a score. In general every plan is scored after being executed. A formerly
good plan can be scored at lower values if conditions change, e.g. congestion ef-
fects.

3.6 Details of the Learning Algorithm

The simulation starts with initial plans. Executing all agents’ plans simultaneously
gives the agents’ interactions in the network. By allowing the agents to re-adjust,
they can learn from the previous iteration (feedback learning). The iterations will
go on until the system does not show any further development. In other words,
agents adapt to their environment and learn how to improve their plans over many
iterations. In the simulation all agents learn at the same time, since their plans are
executed simultaneously. This also means, that an agent’s environment changes
due to the effect of the other agents in the system. Thus a plan’s score has to be
updated.

An agent database keeps track of agents and their decisions, allowing them to
choose a strategy based on their past actions. An agent can compare plans of its
repertoire by the score they got in previous iterations. In the course of the simula-
tion, the agents learn to build good plans in order to realize their intentions and to
use the transportation system efficiently. Agents add plans (their strategies) to
their repertoire by making use of the behavioral modules. A new plan will be used
immediately in order to assign a score to make it comparable to the plans already
existing in the repertoire. It can be expected that the average plan score will in-
crease during the simulation until reaching a level were the agents have found
their individually best strategies.

The agents have three different possibilities to replan: route replanning, time
replanning, choosing an already existing plan. As already mentioned, only a cer-
tain share of agents replan. The replanning probability is not fixed. The simulation
starts with 30% of agents replanning; each of the replan options is adopted by 10of
the agents. This is a relatively high share of agents changing their behavior and by
that changing the environment for the other agents as well. But this rather high re-
planning probability provides a quick learning process; the agents build a reper-
toire of plan alternatives. Later in simulation, the replanning probability is lowered
to a value of 15% (5% for each replan option). This gives better average scores
because of reduced fluctuations (see Fig. 2 and related text).
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4 Preliminary Results

Fig. 2. Average score as a function of the iteration number

The average score gives an overview of the iterations’ progress (Fig. 2). As ex-
pected, the average score is very low at the stage of initial plans, meaning the
agents, in average, have not yet found good solutions for themselves. But the
agents learn how to improve their situation by using different routes or changing
their timing. The higher replanning probability in the beginning allows a large
share of agents to learn. When the average score does not show further improve-
ments but oscillates, the replanning probability was set to half of the original
value. At iteration 60 the reconfiguration was set, which can be also seen in the
figure by improving scores around iteration 60. Also with the lower replanning
probability fluctuations occur, but this can be also observed in real traffic.
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Fig. 3. Departure times distributions

Figure 3 shows the departure time distribution of two trip types: to or from
work or education, and all others. The top plot shows the initial (iteration 0) de-
parture times, based on heuristic expert knowledge, encoded in the initial condi-
tions. The bottom plot shows the departure times after one hundred iterations. One
notices the following effects:

• The initial rectangular shapes are replaced by more plausible smooth shapes.
•  Travelers have, in average, moved to earlier departure times, with a peak be-

fore 7:00. We are, at this point, unable to judge if this is realistic.
• Those trips that are not coupled to office hours have moved to less congested

time windows. Notice, in particular, the “dip” of those departures around 16:00,
clearly avoiding the rush period.
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Fig. 4. Daily flows of vehicles. Dark gray: less than 10,000/day; gray: around 20,000/day;
black: more than 30,000/day

Figure 4 shows daily flows of vehicles. Flows below 10,000/day are displayed
in dark gray, flows of 20,000/day are displayed in gray, flows above 30,000/day
are displayed in black. Flows in between are displayed in interpolated colors. The
figure shows the result of iteration 100. Since the simulation uses only 10of the
population, the numbers from the simulation were multiplied by 10 in order to
have the same scale as real world numbers. – One observes that the pattern in the
south-western sector is significantly different from the pattern in the north-eastern
sector: While in the south-western half there is considerable traffic on the periph-
eral freeway, the patterns in the north-eastern sector are considerably more radial.
This is due to extended freeway construction in the western sector during the divi-
sion of the city, and the lack of such construction in the eastern sector.

It is, unfortunately, at this point difficult to say anything beyond the above.
After spending considerable effort cleaning up other issues, such as related to
network data or initial demand, our current issue are gridlocks as shown in Fig.5.
The problem here is that all links along the loop are full, and all vehicles that are
at the respective downstream ends of links want to enter the next link of the loop.
In this situation, no vehicle along the loop can move, which is why it is called
gridlock. Such situations can in principle occur along any closed loop of the net-
work graph, but have a much higher probability along short loops.

We have been aware of the gridlock issue for many years, and have conven-
tionally resolved it by the introduction of “lost vehicles”: Vehicles that could not
move for a certain amount of time were taken out of the simulation. This ap-
proach, however, does not seem to be sufficient for the Berlin simulations, and we
are currently investigating other solutions.
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Fig. 5. Gridlock at Grosser Stern in Berlin

5 Discussion

Considerable work was necessary to adapt the network data to our purposes. Al-
though the data requirements of the queue model are not particularly difficult
(apart from the number of lanes, all information is the same as for traditional
planning models), it turns out that the queue model is more sensitive to data errors
than the conventional models. This is due to the hard limit on the capacity: In a
conventional static assignment model, short links with reduced capacities have
very little effect, whereas in the queue model, they cause large spillbacks. This ef-
fect occurs in all dynamic models with hard capacity limits. Our hope is that some
of these issues will improve with the increasing availability of standardized com-
mercially maintained network data. For the time being, however, such data are
useful for routing and guidance, but do not possess reliable attributes (such as ca-
pacity) for traffic flow simulations.

Our demand generation suffers from the fact that the base model generates
round trips, not daily plans. In consequence, a person who has, say, the activity
chain home-work-home-leisure-home will be divided into two “virtual” agents,
one with activity chain home-work-home and the other with activity chain home-
leisure-home. There is no reason why those two virtual agents should perform
their trips in a sequential order, so in general they will, wrongly, not do so. This
issue is due to the orientation of the demand generation towards daily travel, with-
out consideration of the time-of-day. It will probably be necessary to devise a
completely new method of demand generation.

An additional problem is that our simulations currently lack commercial travel
and long-distance travel. Commercial travel, in particular, increases the overall
demand. Quite in general, it is difficult to get temporally consistent data – the data
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that we are currently using as input comes from many different years. In most
places, things do not change that quickly, and it is sufficient to have the road net-
work data and the traffic counts from the same year. Berlin, however, is a quickly-
changing city due to the re-unification, and in consequence, such differences mat-
ter considerably.

6 Summary and Conclusion

This paper provided an introduction to multi-agent traffic simulation. It included
some description of where we are with respect to the implementation of a real-
world Berlin scenario. It turns out that the difficulties there, because of data avail-
ability and because of the special situation of Berlin after the re-unification, are
considerably larger than in previous scenarios that we have treated.
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