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Summary. The main goal of the present paper is the analysis of the working 
position of graduates using multilevel and chain graph models, extended to the 
case of correlated data. After a brief introduction to multilevel modelling and a 
description of the conditional independence implied by the model, we describe 
chain graphs for multilevel models. The model put forward can analyse the 
factors influencing the graduates’ job position, using the data collected on stu-
dents of the University of Florence who graduated in the year 2000.  
Keywords: Chain graph models; Logistic regression; Multilevel models; Uni-
versity system evaluation. 

1.  Multilevel and chain graph modelling 

The university system evaluation requires ad hoc methods and statistical mod-
els able to capture the complexity of the phenomenon. Such a complexity 
originates from many facets, such as: 

(a) the hierarchical structure of the data, entailing a correlation among the 
observations and requiring the consideration of effects at different lev-
els of the hierarchy. This hierarchical structure (students within classes, 
classes within study programmes, and so on) is substantial for the 
analysis and the underestimation of cluster effects and the fact that 
some of the assumption of the usual regression models are not satisfied, 
may lead to incorrect standard errors of the estimated coefficients; 

(b) the presence of variables referring to different moments along the stu-
dents’ careers (e.g. parents education, high school grades, exam grades, 
graduation grades). This aspect implies a logical and temporal order 
among the involved variables that must be taken into consideration to 
shed light on the way students achieve their final result (e.g. getting a 
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job), and to distinguish between direct and indirect effects. 
Multilevel models (Snijders & Bosker, 1999; Goldstein, 2003) allow us to 

cope with the intra-class correlation and to analyse in a proper way the cluster 
effects. For such reasons, multilevel models are widely applied in the educa-
tion evaluation framework. Chain graph models (Cox & Wermuth, 1996) are a 
useful tool for the representation of the process described at point (b). 

In the following, we propose a method for the integration of multilevel and 
chain graph models that allows:  

(i) to properly model the relationships among the probability of find-
ing a job after the degree, the students’ careers and their individual 
characteristics;

(ii) to stress the contribution of the study programme to the student’s 
success in the labour market;  

(iii) to distinguish among direct and indirect effects of the background 
and career variables. 

In Section 2, we describe the two-level linear model and its extension to a 
binary response. In Section 3 the multilevel graph model derived from the in-
tegration among the multilevel model and the chain graph model is illustrated. 
In the fourth Section, we present the data at hand and the main results of the 
empirical analysis, and in the fifth we conclude by giving some lines for future 
research.

2.  The linear random intercept model 

Let us consider a two-level hierarchical structure, where Yij is the response 
variable for the i-th subject (first level unit) of the j-th cluster (second level 
unit), i=1,2,…,nj, j=1,2,…,J. For each subject, a vector Xij of individual (e.g. 
gender, high school rank) and cluster (e.g. number of enrolled students for 
each program course) variables is available. 

Let us assume Yij is a continuous variable. If the relationship between the 
response Yij and the covariates Xij is linear, it is possible to specify the follow-
ing linear random intercept model: 

'ij j ij ij

j j

Y
U

α ε
α α
= + +

= +

X  (1) 

where εij are the first level residuals, while Uj are the second level ones. Re-
siduals are assumed to be independent and normally distributed, with zero 
mean and variances Var(εij)=σ2 at subject level and Var(Uj)= τ2 at cluster 
level. Moreover, as it is common in regression models, the correlations among 
residuals at both levels and the covariates are assumed null. The independence 
hypotheses among the observations following from this model are: 
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  Yij⊥⊥         Yi’j| X,             ∀i≠i’, ∀j (2) 

Yij⊥⊥         Yi’j’| X,            ∀i,i’, ∀j≠j’, 

where  X={Xij : i = 1,2,…,nj,  j=1,2,…, J} . 
It can be seen from relationships (2), conditionally on the covariates X, that 

observations from different clusters are independent, while observations be-
longing to the same cluster are dependent. The intraclass correlation coeffi-
cient 
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measures the within-cluster dependence. Moreover, conditionally on the 
covariates X and the second-level errors Uj  also the observations belonging to 
the same cluster are independent: 

  Yij⊥⊥        Yi’j| X,Uj ,             ∀i≠i’, ∀j (3) 

For each cluster j the joint probability distribution can be factorised as 
follows1: 
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where y'j = {y1j, y2j,…, ynij}. Actually, from the independence among uj and X 
it follows that f(uj | x) = f(uj), while for the conditional independence (3) the 
conditional density f(yj | uj , x) corresponds to the product of the nj individual 
densities. 

In general, the effect of a first-level covariate can be decomposed into two 
parts: within and between clusters, according to the covariate variance decom-
position (Snijders & Bosker, 1999). For instance, in the linear model with only 
one covariate X, the OLS total coefficient ˆ

Tβ  is a linear combination of the 
coefficient of the regression among cluster means ˆ

Bβ  and of those within clus-
ters ˆ

Wβ : 
  ( )2 2ˆ ˆ ˆˆ ˆ1T X W X Bβ η β η β= ⋅ + − ⋅  (5) 

                                                 
1  In factorisation (4) it is the same if one considers the matrix of the covariates X of all the 

individuals or only the sub-matrix Xj of the covariates of the subjects of the j-th cluster, 
so, for the sake of simplicity, only the sub-matrix Xj is considered. 
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where 2ˆXη  is the correlation ratio of X.  As a result ˆ
Tβ  assumes an intermedi-

ate value among ˆ
Bβ  and ˆ

Wβ . The between and within coefficients have a dif-
ferent interpretation and they can take opposite values. Thus, the total coeffi-
cient can be non-significant, whilst the between and within coefficients are 
significant but opposite in sign.

Therefore, it is better to specify the model in order to estimate both the be-
tween and the within coefficients of each subject-level covariate. A way to 
perform such an estimation is to insert in the model both the covariate Xij and 
the cluster mean . jX :

.( )ij W ij B W jY X Xβ β β= + + − +� �
 . (6)

In model (6), the coefficient of the cluster mean represents the difference 
among the within and between coefficients, so the usual test for the . jX  coef-
ficient is to be interpreted as a test for the difference among the within and be-
tween coefficients. If the . jX  coefficient is not significant, the distinction 
among the between and within effects can be ignored, leaving among the pre-
dictors only the raw covariate Xij.

Note that the insertion of the cluster mean of a covariate allows us to elimi-
nate the possible correlation among the covariate and the random effects Uj
(Snijders & Bosker, 1999). 

When the response variable is binary, it is possible to assume the linear 
random intercept model (1) for a continuous latent variable that generates the 
observed binary variable Yij

obs as follows: 
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1 if  0
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ij

ij

Y
Y

Y
≤⎧

= ⎨ >⎩

.

Assuming a standard logistic distribution for the first-level errors εij  (equa-
tion 1), the logistic random intercept model for the probability of response is: 
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Many multilevel analysis textbooks (e.g. Snijders & Bosker, 1999) describe 
the properties of such a model. 

2.1 Graphical models for hierarchical data 

Graphical models are a class of probabilistic models on a set of random vari-
ables whose conditional independence structure can be represented by a graph. 
A graph is a mathematical object consisting of two sets: a set of nodes and a 
set of undirected or directed edges (arrows) between nodes. In the graph asso-
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ciated with a particular model, each node corresponds to a random variable in 
the model. Usually, a discrete random variable is depicted as a circle, ����, a 
continuous random variable is represented by a dot,  , an edge between two 
nodes stands for an association between the variables or, more precisely, the 
absence of a connection between two nodes indicates conditional independ-
ence between the corresponding variables.  

A chain graph admits both undirected and directed edges, and (partially) di-
rected cycles are forbidden. This implies that, starting from a node, it is not 
possible to go back to it through the edges and arrows of the graph. 

In a chain graph, nodes can be partitioned into an ordered sequence of 
blocks. Nodes in a same block can be connected by undirected edges, while 
only arrows can connect nodes in different blocks. The arrows stay for an 
asymmetric relationship between the variables, while undirected edges indi-
cate a symmetric relationship.  

A chain graph model for a set of random variables is specified by assuming 
that their joint distribution satisfies the chain graph Markov properties. There-
fore, chain graph models are a class of probabilistic models allowing for both 
symmetric and asymmetric relationships between variables, assuming a sort of 
logical and temporal order among the variables. Each variable in a block has 
to be considered explanatory of the variables in the following blocks.  

Because of the partial ordering among the variables, it is possible to distin-
guish the set of pure explanatory variables (usually in the last block on the 
right), from the set of pure response variables (last block on the left) and from 
the set of intermediate variables, that are both explanatory and responses, posi-
tioned in the intermediate blocks. In this work, we refer to the chain graph 
Markov properties proposed by Lauritzen & Wermuth (1989) and Fridenberg 
(1990). These properties are usually termed LWF Markov properties.  

An important Markov property for chain graphs is the global Markov prop-
erty, which is based on the definition of the ‘moral graph’. Starting from a 
given chain graph, a moral graph can be obtained by connecting parents of 
common children (or children belonging to the same chain component), and 
then converting all the arrows into undirected edges. See, for example, Figure 
1, where the graph in (b) is the moral graph of the chain graph in (a). More de-
tails can be found in Lauritzen (1996).  

The global Markov property combines the concept of conditional independ-
ence to that of separation between nodes in the moral graph. If, in the moral 
graph, a set of nodes S separates the nodes in A from the nodes in B, that is, 
each path from A to B passes by some node in S, then XA⊥⊥XB|XS, where Xk is 
the vector of random variables represented by nodes in k, k = A, B, C.  Markov 
properties induce a factorization of the joint distribution of the variables in a 
model, which is useful for the inferential procedures (Lauritzen, 1996). 

Graphical models are apt to represent the conditional independence rela-
tionships among a set of variables, if statistical units are independent. This as-
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sumption is no longer valid whenever the data have a hierarchical structure. 
Gottard & Rampichini (2004) propose to overcome this issue by representing 
in a graph all the variables of a generic group j, given that the J groups are as-
sumed independent and identically distributed. For instance, in a two-level 
model all the variables of the vector (Yj, Uj, X1j, …,XKj) of the j-th group are 
represented in the graph. Whatever the cluster sizes nj are, it is enough to de-
pict the minimal sub-graph suitable to read the conditional independence 
structure from the graph. For instance, in the case of a two-level structure, 
only two elementary observations have to be included in the minimal sub-
graph.

This solution implies additional definitions. An individual node is a node 
that represents a random variable for a specific statistical unit. A grouping la-
tent node, is a node representing a latent random variable Uj being a separator 
between the individual nodes, such that, Yij⊥⊥Yi’j|Uj. Such node is represented 
by the symbol . A deterministic node is a node representing a random vari-
able whose conditional distribution is degenerate. This node is represented 
with a double line block.  

The conditional independence structure of a two-level random intercept 
model can be represented by a chain graph where: the last block on the left, 
made up of pure response variables, contains two individual nodes and the 
second-last block contains a grouping latent node. LWF Markov properties 
can be used to encode the conditional independence structure of such a graph. 

Figure 1 shows an example of a chain graph for a two-level random inter-
cept model with only one explanatory variable. Therefore, the main advantage 
of this proposal is that the usual LWF Markov properties and the factorization 
criterion are valid in such chain graphs. For instance, in Figure 1, the pairwise 
chain graph Markov property suggests that the latent variable Uj is marginally 
independent from the explanatory variable Z1. Moreover, due to the global 
Markov property, looking at the moral graph in (b), one can see that Uj is not 
independent of Z1 conditionally on the response variables Yj.

Figure . Example of (a) two-level random intercept graphical model, and (b) corre-
sponding moral graph.
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3.  A multilevel graphical chain applied to graduates’  
employment 

We adopted the multilevel graphical chain model described in Section 2.1 to 
analyse the data collected on the students who graduated in year 2000 at the 
University of Florence. They had been interviewed at approximately two years 
from the attainment of the degree. We analysed the occupational condition at 
the interview for the graduates who, at that time, were working or were seek-
ing for an occupation. Our aim is to determine the factors that influence job 
finding, with reference to both individual characteristics and type of degree. 

The data include 2,917 graduates employed or seeking a job: 46% had an 
occupation with tenure, the other 54% was unemployed or with a temporary 
occupation. The graduates under consideration had 56 types of degrees, with a 
number of graduates per course ranging from 4 (Chemistry) to 504 (Architec-
ture), and a median of 22. Graduates (first level units) and degree programmes 
(second level units) thus characterize the hierarchical structure. 

The response variable is binary with a value of 1, if the graduate has a sta-
ble occupation to the date of the interview, and 0 otherwise.  

The use of a graphical model allows the study of the joint distribution of all 
the involved variables, bringing to light direct and indirect relationships. It is 
just this point that differs our contribution from others where the response 
variable is studied through a multilevel model, but the relationships among the 
explanatory variables are not modelled (e.g. Chiandotto & Bacci, 2004). 

The specification of the graphical chain model requires, first, the covariates 
to be ordered according to the prior knowledge of the phenomenon, following 
a logical and/or time order. The variables used in our analysis2 and their block 
ordering are shown in Table 1. 

The variables in block 5 are the cluster means of the corresponding subject 
level variables. As shown in equation (6), the insertion of the cluster mean al-
lows to decompose the total effect of a variable into a between and a within 
component. Since the conditional distribution of a cluster mean degenerates, 
that is 1( | , , ) 1

jj j n jf x x x =� , a cluster mean is represented in the graph as a 
deterministic node, located in a block following the block containing the cor-
responding individual-level variable and preceding the block containing the 
cluster latent variable. 

Block 6 contains only the random effect Uj, represented as a grouping latent 
node, whose role is to model the variance of the response. 
 

                                                 
2  The variables were selected on a logical basis and thanks to past analyses. Our aim was 

to design a relatively simple model able to catch the key features of the process under 
scrutiny. 
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Table . Block ordering of the variables. Graduates of the year 2000, University of 
Florence.

Block Variable Description 
1 exogenous MALE Gender: 1=male, 0=female 

MOTHER EDUC. Mother’s education: secondary school or 
low, high school (ref. cat.), degree 

2 intermediate LICEO High school: 1=lyceum, 0=other 
SCH. MARK High school final mark: 36-60 (mean=48.0) 

3 intermediate DIPLOMA Type of degree programme: 1=diploma (3 
years), 0=laurea (usually 4 years) 

4 intermediate AGE Age at graduation: 21-50 (mean=27.6) 
UNIV. MARK Average exam mark: 18-30 (mean=26.8) 
c.m. SCH. MARK Degree programme mean of SCH. MARK

c.m. AGE Degree programme mean of AGE

5 cluster means  

c.m. UNIV. MARK Degree programme mean of UNIV. MARK

6 cluster latent node 2~ (0, )jU N τ Degree programme latent variable 

7 response EMPLOYED Employment: 1=stable occupation, 0=other 

The block ordering shown in Table 1 and the independence assumptions of 
the multilevel model imply the following factorization of the joint distribution: 

[4] [3] [2] [1] [3] [2] [1] [2] [1]

( , , ) ( | , ) ( ) ( )

( ) ( | , , ) ( | , ) ( | )
j j j j jf u f u f u f

f f f f
=

=

y x y x x
x x x x x x x x x x

 (7) 

where X[k] denotes the variables of the k-th block, k=1,2,3,4, for example 
X[2]={LICEO, SCH. MARK}.

The fitting of the multilevel graphical chain model that corresponds to fac-
torization (7) requires the fitting of four regression models, some of which 
have a multivariate response.  

Given the alternation between categorical and continuous variables in con-
secutive blocks, we adopted the estimation procedure by Cox & Wermuth 
(1996). The procedure consists in fitting, for every endogenous variable, a 
univariate regression model whose explanatory variables are those in the same 
block and those in the previous ones. When the endogenous variable is con-
tinuous, a linear regression is fitted, while in the binary case a logistic model 
is used. The multilevel (random intercept) model is the one for the response 
variable EMPLOYED.

All the regression models are fitted by maximum likelihood. For the ran-
dom intercept logistic model, the likelihood is approximated through adaptive 
Gaussian quadrature using the gllamm command of Stata (Rabe-Hesketh et
al., 2004). 
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Figure 2. Multilevel graphical chain model: black (grey) arrows are positive (nega-
tive) effects at 10% significance level. Graduates of the year 2000, University of Flor-
ence. 

The resulting graphical model is shown in Figure 2. The arrows are drawn 
when the p-value of the corresponding regression coefficient is less than 0.10. 

In order to ease the reading of the graph the positive effects are represented 
by black arrows and the negative ones by grey arrows. The arrows pointing to 
the cluster means represent a deterministic relationship (as suggested by the 
double line block). The sign of the relationship between the response variable 
and the latent node Uj is not identifiable. Moreover, the two individual nodes 
in the final block are identically distributed, that is the dependence structure of 
the two nodes is the same even if, in order to simplify the reading of the graph, 
the arrows have been only traced for one of the two individual nodes. 

The estimates concerning the models for the intermediate variables are not 
shown, as the essential information for the aims of the analysis is encapsulated 
in the graph of Figure 2. The estimates concerning the random intercept logis-
tic model for the probability of a stable occupation are reported in Table 2.  

Figure 2 shows that the response variable EMPLOYED directly depends only 
on MALE and UNIV. MARK. Therefore, the variables MALE and UNIV. MARK 
constitute a separator set between the response variable and the other covari-
ates, in the sense that EMPLOYED is independent from AGE, DIPLOMA, LICEO, 
SCH. MARK and MOTHER EDUC. conditional on MALE and UNIV. MARK. 

If only the model for the response variable was fitted, one would conclude 
that the factors relevant for employment were MALE and UNIV. MARK. Actu-
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ally, also other covariates influence the result, even if indirectly. This high-
lights the potentiality of the graphical chain model: given a block ordering of 
the variables, such a model allows to study the phenomenon taking into ac-
count the whole dependence structure. 

The presence of an arrow between the cluster mean of UNIV. MARK and the 
response variable points out that UNIV. MARK has distinct within and between
effects. From expression (6) it follows that the within effect is the coefficient 
of the variable at the subject level (-0.055), while the between effect is the sum 
of the coefficient of the variable at the subject level and the coefficient of the 
cluster mean (-0.221), and it turns out to be -0.276. Both the effects are nega-
tive, but the between effect is stronger, so the negative effect of the mark is 
largely due to the degree programme: a higher mark is associated with a lower 
probability of a stable occupation, because high marks are more frequent in 
degree programmes that usually yield modest occupational opportunities, e.g. 
the Humanities.  

The effect at the subject level, even if significant and negative, is low. The 
effect at the subject level may be negative because the graduates with higher 
marks have greater ambitions and therefore are more demanding in job search. 

If between and within effects are not disentangled, namely if the model con-
tains UNIV. MARK without its cluster mean, the coefficient is -0.068 (s.e. 
0.029). Such a coefficient is the total effect of the variable UNIV. MARK and 
therefore is difficult to interpret. However, a reader not accustomed to multi-
level analysis is likely to misinterpret this effect as an effect at the subject 
level. 

The unobserved factors at degree programme level are relevant: the likeli-
hood ratio test comparing the models with and without random effects is sig-

Table 2. Random intercept logistic model for the probability of stable occupation. 
Graduates of the year 2000, University of Florence. 

Parameter Estimate Standard error p-value 
Intercept  4.925 6.024 0.414
MALE 0.372 0.087 0.000
MOTHER EDUC. (secondary sch.) -0.020 0.090 0.820 
MOTHER EDUC. (degree) -0.115 0.135 0.397 
LICEO -0.089 0.087 0.308
SCH. MARK -0.003 0.007 0.595
c.m. SCH. MARK 0.070 0.050 0.164
DIPLOMA 0.612 0.396 0.122
AGE -0.005 0.016 0.737
c.m. AGE -0.034 0.106 0.747
UNIV. MARK -0.055 0.030 0.069
c.m. UNIV. MARK -0.221 0.119 0.063
Cluster residual variance τ2  0.510 -0.148 
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nificant (test statistic 108.8 with 1 degree of freedom) and the intraclass corre-
lation coefficient ρ=0.134, that is 13.4% of the unexplained variance is at the 
degree programme level. Such value is rather high given the kind of model 
and the field of application. 

The probability of stable occupation ( )1| ,ij j ijP Y u= x  is a function of the 
subject level covariates Xij and the degree programme random effect Uj. To 
assess the role of the random effect, let us consider a particular graduate who 
is a male, has a mother with high education, attended a high school other than 
LICEO, had a high school final mark 48, obtained a ‘laurea’ degree, graduated 
at 27, and had an average examination mark of 26. For such a graduate the 
probability of a stable occupation is 0.56 if graduated in a mean course  
(uj = 0), 0.72 if graduated in a course yielding high occupational chances 
( ˆ2ju τ= + ) and 0.38 if graduated in a course yielding low occupational chances 
( ˆ2ju τ= − ). 

After parameter estimation, the residuals ˆ ju  can be calculated with the Em-
pirical Bayes method (Snijders & Bosker, 1999). The degree programmes with 
a positive (negative) residual yield graduates with a probability of a stable oc-
cupation higher (lower) than predicted. The ranking based on the residuals has 
Nursing in the first position and Physics in the last position. 

Figure 3 can be used to compare the residuals in pairs: two residuals are 
significantly different (at 95% average confidence level) if and only if the cor-
responding intervals do not overlap. The interval length is a decreasing func-
tion of the sample size of the degree programme: two extreme examples are 

 
Figure 3. Intervals for pairwise comparisons between residuals at the 
degree programme level (95% average confidence level). Graduates of 
the year 2000, University of Florence. 
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Chemistry (4 graduates) and Economics (394 graduates). For a study pro-
gramme with few graduates the considerable length of the interval hinders the 
comparison with the other programmes, as the differences are nearly not sig-
nificant.

The residuals ˆ ju  incorporate all the unobserved factors at the study pro-
gramme level, so they can be interpreted as a measure of external effective-
ness of the study programme, though not adjusted for the conditions of the la-
bour market. For example, the job opportunities yielded by Nursing depended 
not only on the quality of the programme, but also on the labour market needs 
(see, about this, Chiandotto & Grilli, 2003. 

4.  Final remarks 

In this paper, we presented and applied a method of analysis based on the in-
tegration between chain graph and multilevel models. This method has the ad-
vantage to make explicit the assumptions on the ordering of the variables and 
on the conditional independences underlying the multilevel model. Moreover, 
the use of the graph helps to visualize the direct and indirect effects on the re-
sponse variable and to read in a simple and direct way the conditional inde-
pendences among the variables. It is not necessary that the variables follow a 
joint Gaussian distribution, nor a Conditional Gaussian one, so the estimates 
depend on the assumed block ordering of the variables. With a different block 
ordering the estimates could change and so the conditional independences. 
However, in our application, the adopted block ordering was plausible because 
it follows a logical and/or time ordering. 

The potentiality of this class of models is still to be explored. It would be 
useful to extend the methodology in the following directions: several multi-
level regressions in the same graph, modelling of the process of formation of 
the clusters, regression of cluster-level variables on individual-level variables. 

The application based on data from the graduates employed or seeking a 
job, so the considered joint distribution is conditioned on this subset of gradu-
ates. For example, the relationship between the type of degree programme 
chosen by the student (DIPLOMA) and their characteristics (MALE, MOTHER
EDUC., LICEO, SCH. MARK) is not referred to all the students enrolling in uni-
versity, but only to students who eventually graduated and searched for jobs.  

This choice follows the need to have a random sample from the joint distri-
bution, as is customary in graphical models. The consideration of a wider 
sample, such as a cohort of freshmen, requires an adequate representation of 
the selection process in the graphical model: for example, for the freshmen 
who do not graduate, all the variables associated with graduation and succes-
sive job search are not observable, and they cannot be treated as missing at 
random. The development of multilevel graphical models able to represent 
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also the process of selection of the statistical units is an interesting topic for 
future search. 
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