
Chapter 1

Markov Bases

This chapter introduces the fundamental notion of a Markov basis, which rep-
resents one of the first connections between commutative algebra and statistics.
This connection was made in the paper by Diaconis and the second author [33]
on contingency table analysis. Statistical hypotheses about contingency tables can
be tested in an exact approach by performing random walks on a constrained set
of tables with non-negative integer entries. Markov bases are of key importance
to this statistical methodology because they comprise moves between tables that
ensure that the random walk connects every pair of tables in the considered set.

Section 1.1 reviews the basics of contingency tables and exact tests; for more
background see also the books by Agresti [1], Bishop, Holland, Fienberg [18], or
Christensen [21]. Section 1.2 discusses Markov bases in the context of hierarchical
log-linear models. The problem of computing Markov bases is addressed in Sec-
tion 1.3, where the problem is placed into the setting of integer lattices and tied
to the algebraic notion of a lattice ideal.

1.1 Hypothesis Tests for Contingency Tables

A contingency table contains counts obtained by cross-classifying observed cases
according to two or more discrete criteria. Here the word ‘discrete’ refers to cri-
teria with a finite number of possible levels. As an example consider the 2 × 2-
contingency table shown in Table 1.1.1. This table, which is taken from [1, §5.2.2],
presents a classification of 326 homicide indictments in Florida in the 1970s. The
two binary classification criteria are the defendant’s race and whether or not the
defendant received the death penalty. A basic question of interest for this table is
whether at the time death penalty decisions were made independently of the de-
fendant’s race. In this section we will discuss statistical tests of such independence
hypotheses as well as generalizations for larger tables.
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Death Penalty
Defendant’s Race Yes No Total

White 19 141 160
Black 17 149 166
Total 36 290 326

Table 1.1.1: Data on death penalty verdicts.

Classifying a randomly selected case according to two criteria with r and c
levels, respectively, yields two random variables X and Y . We code their possible
outcomes as [r] and [c], where [r] := {1, 2, . . . , r} and [c] := {1, 2, . . . , c}. All
probabilistic information about X and Y is contained in the joint probabilities

pij = P (X = i, Y = j), i ∈ [r], j ∈ [c],

which determine in particular the marginal probabilities

pi+ :=
c∑

j=1

pij = P (X = i), i ∈ [r],

p+j :=
r∑

i=1

pij = P (Y = j), j ∈ [c].

Definition 1.1.1. The two random variables X and Y are independent if the joint
probabilities factor as pij = pi+p+j for all i ∈ [r] and j ∈ [c]. We use the symbol
X⊥⊥Y to denote independence of X and Y .

Proposition 1.1.2. The two random variables X and Y are independent if and only
if the r × c-matrix p = (pij) has rank 1.

Proof. (=⇒): The factorization in Definition 1.1.1 writes the matrix p as the prod-
uct of the column vector filled with the marginal probabilities pi+ and the row
vector filled with the probabilities p+j. It follows that p has rank 1.

(⇐=): Since p has rank 1, it can be written as p = abt for a ∈ Rr and b ∈ Rc.
All entries in p being non-negative, a and b can be chosen to have non-negative
entries as well. Let a+ and b+ be the sums of the entries in a and b, respectively.
Then, pi+ = aib+, p+j = a+bj , and a+b+ = 1. Therefore, pij = aibj = aib+a+bj =
pi+p+j for all i, j. �

Suppose now that we randomly select n cases that give rise to n independent
pairs of discrete random variables(

X(1)

Y (1)

)
,

(
X(2)

Y (2)

)
, . . . ,

(
X(n)

Y (n)

)
(1.1.1)

that are all drawn from the same distribution, that is,

P (X(k) = i, Y (k) = j) = pij for all i ∈ [r], j ∈ [c], k ∈ [n].
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The joint probability matrix p = (pij) for this distribution is considered to be an
unknown element of the rc− 1 dimensional probability simplex

Δrc−1 =
{

q ∈ Rr×c : qij ≥ 0 for all i, j and
r∑

i=1

c∑
j=1

qij = 1
}

.

A statistical model M is a subset of Δrc−1. It represents the set of all candidates
for the unknown distribution p.

Definition 1.1.3. The independence model for X and Y is the set

MX⊥⊥Y = {p ∈ Δrc−1 : rank(p) = 1} .

The independence model MX⊥⊥Y is the intersection of the probability sim-
plex Δrc−1 and the set of all matrices p = (pij) such that

pijpkl − pilpkj = 0 (1.1.2)

for all 1 ≤ i < k ≤ r and 1 ≤ j < l ≤ c. The solution set to this system of quadratic
equations is known as the Segre variety in algebraic geometry. If all probabilities
are positive, then the vanishing of the 2× 2-minor in (1.1.2) corresponds to

pij/pil

pkj/pkl
= 1. (1.1.3)

Ratios of probabilities being termed odds, the ratio in (1.1.3) is known as an odds
ratio in the statistical literature.

The order of the observed pairs in (1.1.1) carries no information about p and
we summarize the observations in a table of counts

Uij =
n∑

k=1

1{X(k)=i, Y (k)=j}, i ∈ [r], j ∈ [c]. (1.1.4)

The table U = (Uij) is a two-way contingency table. We denote the set of all
contingency tables that may arise for fixed sample size n by

T (n) :=
{

u ∈ Nr×c :
r∑

i=1

c∑
j=1

uij = n

}
.

Proposition 1.1.4. The random table U = (Uij) has a multinomial distribution,
that is, if u ∈ T (n) and n is fixed, then

P (U = u) =
n!

u11!u12! · · ·urc!

r∏
i=1

c∏
j=1

p
uij

ij .
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Proof. We observe U = u if and only if the observations in (1.1.1) include each
pair (i, j) ∈ [r]× [c] exactly uij times. The product

∏
i

∏
j p

uij

ij is the probability of
observing one particular sequence containing each (i, j) exactly uij times. The pre-
multiplied multinomial coefficient is the number of possible sequences of samples
that give rise to the counts uij . �

Consider now the hypothesis testing problem

H0 : p ∈ MX⊥⊥Y versus H1 : p �∈ MX⊥⊥Y . (1.1.5)

In other words, we seek to decide whether or not the contingency table U provides
evidence against the null hypothesis H0, which postulates that the unknown joint
distribution p belongs to the independence modelMX⊥⊥Y . This is the question of
interest in the death penalty example in Table 1.1.1, and we present two common
approaches to this problem.

Chi-square test of independence. If H0 is true, then pij = pi+p+j, and the ex-
pected number of occurrences of the joint event {X = i, Y = j} is npi+p+j . The
two sets of marginal probabilities can be estimated by the corresponding empirical
proportions

p̂i+ =
Ui+

n
and p̂+j =

U+j

n
,

where the row total

Ui+ =
c∑

j=1

Uij

counts how often the event {X = i} occurred in our data, and the similarly defined
column total U+j counts the occurrences of {Y = j}. We can thus estimate the
expected counts npi+p+j by ûij = np̂i+p̂+j . The chi-square statistic

X2(U) =
r∑

i=1

c∑
j=1

(Uij − ûij)2

ûij
(1.1.6)

compares the expected counts ûij to the observed counts Uij taking into account
how likely we estimate each joint event to be. Intuitively, if the null hypothesis is
true, we expect X2 to be small since U should be close to û. The chi-square test
rejects the hypothesis H0, if the statistic X2 comes out to be “too large.”

What is “too large”? This can be gauged using a probability calculation. Let
u ∈ T (n) be a contingency table containing observed numerical values such as,
for instance, Table 1.1.1. Let X2(u) be the corresponding numerical evaluation
of the chi-square statistic. We would like to compute the probability that the
random variable X2(U) defined in (1.1.6) takes a value greater than or equal to
X2(u) provided that H0 is true. This probability is the p-value of the test. If the
p-value is very small, then it is unlikely to observe a table with chi-square statistic
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value as large or larger than X2(u) when drawing data from a distribution in the
independence modelMX⊥⊥Y . A small p-value thus presents evidence against H0.

Suppose the p-value for our data is indeed very small, say 0.003. Then, as-
suming that the model specified by the null hypothesis H0 is true, the chance of
observing data such as those we were presented with or even more extreme is only
3 in 1000. There are now two possible conclusions. Either we conclude that this
rare event with probability 0.003 did indeed occur, or we conclude that the null
hypothesis was wrong. Which conclusion one is willing to adopt is a subjective
decision. However, it has become common practice to reject the null hypothesis
if the p-value is smaller than a threshold on the order of 0.01 to 0.05. The latter
choice of 0.05 has turned into a default in the scientific literature.

On the other hand, if X2(u) is deemed to be small, so that the p-value is
large, the chi-square test is inconclusive. In this case, we say that the chi-square
test does not provide evidence against the null hypothesis.

The above strategy cannot be implemented as such because the probability
distribution of X2(U) depends on where in the model MX⊥⊥Y the unknown un-
derlying joint distribution p = (pij) lies. However, this problem disappears when
considering limiting distributions for growing sample size n.

Definition 1.1.5. The standard normal distribution N (0, 1) is the probability dis-
tribution on the real line R that has the density function

f(x) =
1√
2π

e−x2/2.

If Z1, . . . , Zm are independent N (0, 1)-random variables, then Z2
1 + · · ·+ Z2

m has
a chi-square distribution with m degrees of freedom, which we denote by χ2m.

In the following proposition, we denote the chi-square statistic computed
from an n-sample by X2

n(U) in order to emphasize the dependence on the sample
size. A proof of this proposition can be found, for example, in [1, §12.3.3].

Proposition 1.1.6. If the joint distribution of X and Y is determined by an r× c-
matrix p = (pij) in the independence model MX⊥⊥Y and has positive entries, then

lim
n→∞P (X2

n(U) ≥ t) = P (χ2(r−1)(c−1) ≥ t) for all t > 0.

We denote such convergence in distribution by X2
n(U)

D−→ χ2(r−1)(c−1).

In this proposition, the shorthand P (χ2(r−1)(c−1) ≥ t) denotes the probability
P (W ≥ t) for a random variable W that follows a chi-square distribution with
(r−1)(c−1) degrees of freedom. We will continue to use this notation in subsequent
statements about chi-square probabilities.
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Each matrix p in the independence model MX⊥⊥Y corresponds to a pair of
two marginal distributions for X and Y , which are in the probability simplices
Δr−1 and Δc−1, respectively. Therefore, the dimension of MX⊥⊥Y is (r − 1) +
(c − 1). The codimension of MX⊥⊥Y is the difference between the dimensions of
the underlying probability simplex Δrc−1 and the model MX⊥⊥Y . We see that
the degrees of freedom for the limiting chi-square distribution are given by the
codimension (rc− 1)− (r − 1)− (c− 1) = (r − 1)(c− 1).

The convergence in distribution in Proposition 1.1.6 suggests that we gauge
the size of an observed value X2(u) by computing the probability

P (χ2(r−1)(c−1) ≥ X2(u)), (1.1.7)

which is referred to as the p-value for the chi-square test of independence.

Example 1.1.7. For the death penalty example in Table 1.1.1, r = c = 2 and the
degrees of freedom are (r− 1)(c− 1) = 1. The p-value in (1.1.7) can be computed
using the following piece of code for the statistical software R [75]:

> u = matrix(c(19,17,141,149),2,2)
> chisq.test(u,correct=FALSE)

Pearson’s Chi-squared test

data: u
X-squared = 0.2214, df = 1, p-value = 0.638

The p-value being large, there is no evidence against the independence model. �
We next present an alternative approach to the testing problem (1.1.5). This

approach is exact in that it avoids asymptotic considerations.

Fisher’s exact test. We now consider 2 × 2-contingency tables. In this case, the
distribution of U loses its dependence on the unknown joint distribution p when
we condition on the row and column totals.

Proposition 1.1.8. Suppose r = c = 2. If p = (pij) ∈ MX⊥⊥Y and u ∈ T (n),
then the conditional distribution of U11 given U1+ = u1+ and U+1 = u+1 is the
hypergeometric distribution HypGeo(n, u1+, u+1), that is, the probability

P (U11 = u11 |U1+ = u1+, U+1 = u+1) =

(
u1+
u11

)(
n−u1+

u+1−u11

)
(

n
u+1

)
for u11 ∈ {max(0, u1+ + u+1 − n), . . . ,min(u1+, u+1)} and zero otherwise.

Proof. Fix u1+ and u+1. Then, as a function of u11, the conditional probability in
question is proportional to the joint probability

P (U11 = u11, U1+ = u1+, U+1 = u+1) = P (U11 = u11, U12 = u1+ − u11,

U21 = u+1 − u11, U22 = n− u1+ − u+1 + u11).



1.1. Hypothesis Tests for Contingency Tables 7

By Proposition 1.1.4 and after some simplification, this probability equals(
n

u1+

)(
u1+
u11

)(
n− u1+

u+1 − u11

)
p

u1+
1+ p

n−u1+
2+ p

u+1
+1 p

n−u+1
+2 .

Removing factors that do not depend on u11, we see that this is proportional to(
u1+
u11

)(
n− u1+

u+1 − u11

)
.

Evaluating the normalizing constant using the binomial identity

∑
u11

(
u1+
u11

)(
n− u1+

u+1 − u11

)
=
(

n

u+1

)

yields the claim. �
Suppose u ∈ T (n) is an observed 2 × 2-contingency table. Proposition 1.1.8

suggests to base the rejection of H0 in (1.1.5) on the (conditional) p-value

P (X2(U) ≥ X2(u) |U1+ = u1+, U+1 = u+1). (1.1.8)

This leads to the test known as Fisher’s exact test. The computation of the p-value
in (1.1.8) amounts to summing the hypergeometric probabilities(

u1+
v11

)(
n−u1+

u+1−v11

)
(

n
u+1

) ,

over all values v11 ∈ {max(0, u1++u+1−n), . . . ,min(u1+, u+1)} such that the chi-
square statistic for the table with entries v11 and v12 = u1+−v11, v21 = u+1−v11,
v22 = n−u1+−u+1+v11 is greater than or equal to X2(u), the chi-square statistic
value for the observed table.

Fisher’s exact test can be based on criteria other than the chi-square statistic.
For instance, one could compare a random table U to the observed table u by
calculating which of U11 and u11 is more likely to occur under the hypergeometric
distribution from Proposition 1.1.8. The R command fisher.test(u) in fact
computes the test in this latter form, which can be shown to have optimality
properties that we will not detail here. A discussion of the differences of the two
criteria for comparing the random table U with the data u can be found in [28].

As presented above, Fisher’s exact test applies only to 2 × 2-contingency
tables but the key idea formalized in Proposition 1.1.8 applies more broadly. This
will be the topic of the remainder of this section.

Multi-way tables and log-linear models. LetX1, . . . , Xm be discrete random vari-
ables with Xl taking values in [rl]. Let R =

∏m
l=1[rl], and define the joint proba-

bilities

pi = pi1...im = P (X1 = i1, . . . , Xm = im), i = (i1, . . . , im) ∈ R.



8 Chapter 1. Markov Bases

These form a joint probability table p = (pi | i ∈ R) that lies in the #R − 1
dimensional probability simplex ΔR−1. (Note that, as a shorthand, we will often
use R to represent #R in superscripts and subscripts.) The interior of ΔR−1,
denoted by int(ΔR−1), consists of all strictly positive probability distributions.
The following class of models provides a useful generalization of the independence
model from Definition 1.1.3; this is explained in more detail in Example 1.2.1.

Definition 1.1.9. Fix a matrix A ∈ Zd×R whose columns all sum to the same value.
The log-linear model associated with A is the set of positive probability tables

MA =
{
p = (pi) ∈ int(ΔR−1) : log p ∈ rowspan(A)

}
,

where rowspan(A) = image(AT ) is the linear space spanned by the rows of A. Here
log p denotes the vector whose i-th coordinate is the logarithm of the positive real
number pi. The term toric model was used forMA in the ASCB book [73, §1.2].

Consider again a set of counts

Ui =
n∑

k=1

1{X(k)
1 =i1,...,X

(k)
m =im}, i = (i1, . . . , im) ∈ R, (1.1.9)

based on a random n-sample of independent and identically distributed vectors⎛
⎜⎜⎝

X
(1)
1
...

X
(1)
m

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

X
(2)
1
...

X
(2)
m

⎞
⎟⎟⎠ , . . . ,

⎛
⎜⎜⎝

X
(n)
1
...

X
(n)
m

⎞
⎟⎟⎠ .

The counts Ui now form an m-way table U = (Ui) in NR. Let

T (n) =
{

u ∈ NR :
∑
i∈R

ui = n

}
.

Definition 1.1.10. We call the vector Au the minimal sufficient statistics for the
modelMA, and the set of tables

F(u) =
{
v ∈ NR : Av = Au

}
is called the fiber of a contingency table u ∈ T (n) with respect to the modelMA.

Our definition of minimal sufficient statistics is pragmatic. In fact, sufficiency
and minimal sufficiency are general statistical notions. When these are applied to
the log-linear modelMA, however, one finds that the vectorAu is indeed a minimal
sufficient statistic in the general sense.

Note that since the row span of A is assumed to contain the vector of 1s, the
tables in the fiber F(u) sum to n. The next proposition highlights the special role
played by the sufficient statistics and provides a generalization of Proposition 1.1.8,
which drove Fisher’s exact test.
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Proposition 1.1.11. If p = eAT α ∈MA and u ∈ T (n), then

P (U = u) =
n!∏

i∈R ui!
eαT (Au),

and the conditional probability P (U = u |AU = Au) does not depend on p.

Proof. As a generalization of Proposition 1.1.4, it holds that

P (U = u) =
n!∏

i∈R ui!

∏
i∈R

pui

i =
n!∏

i∈R ui!

∏
i∈R

e(A
T α)iui =

n!∏
i∈R ui!

eαT (Au).

Moreover,

P (U = u |AU = Au) =
P (U = u)

P (AU = Au)
,

where

P (AU = Au) =
∑

v∈F(u)

n!∏
i∈R vi!

eαT (Av) = n! · eαT (Au)
∑

v∈F(u)

(∏
i∈R

vi!

)−1
.

It follows that

P (U = u |AU = Au) =
1/
(∏

i∈R ui!
)

∑
v∈F(u) 1/

(∏
i∈R vi!

) . (1.1.10)

This expression is independent of α and hence independent of p. �

Consider the hypothesis testing problem

H0 : p ∈ MA versus H1 : p �∈ MA. (1.1.11)

Based on Proposition 1.1.11, we can generalize Fisher’s exact test by computing
the p-value

P (X2(U) ≥ X2(u) |AU = Au). (1.1.12)

Here

X2(U) =
∑
i∈R

(Ui − ûi)2

ûi
(1.1.13)

is the natural generalization of the chi-square statistic in (1.1.6). Evaluation of
X2(U) requires computing the model-based expected counts ûi = np̂i, where p̂i

are the maximum likelihood estimates discussed in Section 2.1. There, it will also
become clear that the estimates p̂i are identical for all tables in a fiber F(u).
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Exact computation of the p-value in (1.1.12) involves summing over all non-
negative integer solutions to the system of linear equations in (1.1.10). Indeed, the
p-value is equal to ∑

v∈F(u) 1{X2(v)≥X2(u)}/
(∏

i∈R ui!
)

∑
v∈F(u) 1/

(∏
i∈R vi!

) .

In even moderately sized contingency tables, the exact evaluation of that sum can
become prohibitive. However, the p-value can still be approximated using Markov
chain Monte Carlo algorithms for sampling tables from the conditional distribution
of U given AU = Au.

Definition 1.1.12. Let MA be the log-linear model associated with a matrix A
whose integer kernel we denote by kerZ(A). A finite subset B ⊂ kerZ(A) is a
Markov basis for MA if for all u ∈ T (n) and all pairs v, v′ ∈ F(u) there exists a
sequence u1, . . . , uL ∈ B such that

v′ = v +
L∑

k=1

uk and v +
l∑

k=1

uk ≥ 0 for all l = 1, . . . , L.

The elements of the Markov basis are called moves.

The existence and computation of Markov bases will be the subject of Sec-
tions 1.2 and 1.3. Once we have found such a Markov basis B for the modelMA,
we can run the following algorithm that performs a random walk on a fiber F(u).
Algorithm 1.1.13 (Metropolis-Hastings).
Input: A contingency table u ∈ T (n) and a Markov basis B for the model MA.
Output: A sequence of chi-square statistic values (X2(vt))∞t=1 for tables vt in the
fiber F(u).
Step 1: Initialize v1 = u.
Step 2: For t = 1, 2, . . . repeat the following steps:

(i) Select uniformly at random a move ut ∈ B.

(ii) If min(vt + ut) < 0, then set vt+1 = vt, else set

vt+1 =

{
vt + ut

vt

with probability

{
q

1− q
,

where

q = min
{
1,

P (U = vt + ut |AU = Au)
P (U = vt |AU = Au)

}
.

(iii) Compute X2(vt).

An important feature of the Metropolis-Hasting algorithm is that the proba-
bility q in Step 2(ii) is defined as a ratio of two conditional probabilities. Therefore,
we never need to evaluate the sum in the denominator in (1.1.10).
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Theorem 1.1.14. The output (X2(vt))∞t=1 of Algorithm 1.1.13 is an aperiodic, re-
versible and irreducible Markov chain that has stationary distribution equal to the
conditional distribution of X2(U) given AU = Au.

A proof of this theorem can be found, for example, in [33, Lemma 2.1] or [78,
Chapter 6]. It is clear that selecting the proposed moves ut from a Markov basis
ensures the irreducibility (or connectedness) of the Markov chain. The following
corollary clarifies in which sense Algorithm 1.1.13 computes the p-value in (1.1.12).

Corollary 1.1.15. With probability 1, the output sequence (X2(vt))∞t=1 of Algo-
rithm 1.1.13 satisfies

lim
M→∞

1
M

M∑
t=1

1{X2(vt)≥X2(u)} = P (X2(U) ≥ X2(u) |AU = Au).

A proof of this law of large numbers can be found in [78, Chapter 6], where
heuristic guidelines for deciding how long to run Algorithm 1.1.13 are also given;
compare [78, Chapter 8]. Algorithm 1.1.13 is only the most basic scheme for sam-
pling tables from a fiber. Instead one could also apply a feasible multiple of a
selected Markov basis move. As discussed in [33], this will generally lead to a
better mixing behavior of the constructed Markov chain. However, few theoreti-
cal results are known about the mixing times of these algorithms in the case of
hypergeometric distributions on fibers of contingency tables considered here.

1.2 Markov Bases of Hierarchical Models

Continuing our discussion in Section 1.1, with each matrix A ∈ Zd×R we associate
a log-linear modelMA. This is the set of probability distributions

MA = { p ∈ int(ΔR−1) : log p ∈ rowspan(A)}.

We assume throughout that the sum of the entries in each column of the matrix
A is a fixed value.

This section introduces the class of hierarchical log-linear models and de-
scribes known results about their Markov bases. Recall that a Markov basis is a
special spanning set of the lattice kerZ A, the integral kernel of A. The Markov
basis can be used to perform irreducible random walks over the fibers F(u).

By a lattice we mean a subgroup of the additive group ZR. Markov bases,
and other types of bases, for general lattices will be discussed in Section 1.3. Often
we will interchangeably speak of the Markov basis forMA, the Markov basis for
the matrix A, or the Markov basis for the lattice kerZ A := kerA ∩ ZR. These
three expressions mean the same thing, and the particular usage depends on the
context. Before describing these objects for general hierarchical models, we will
first focus on the motivating example from the previous section, namely, the model
of independence. This is a special instance of a hierarchical model.
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Example 1.2.1 (Independence). An r × c probability table p = (pij) is in the
independence modelMX⊥⊥Y if and only if each pij factors into the product of the
marginal probabilities pi+ and p+j . If p has all positive entries, then

log pij = log pi+ + log p+j, i ∈ [r], j ∈ [c]. (1.2.1)

For a concrete example, suppose that r = 2 and c = 3. Then log p is a 2×3 matrix,
but we write this matrix as a vector with six coordinates. Then (1.2.1) states that
the vector log p lies in the row span of the matrix

A =

⎛
⎜⎜⎜⎜⎝

11 12 13 21 22 23

1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎞
⎟⎟⎟⎟⎠.

We see that the positive part of the independence model is equal to the log-linear
modelMA. For general table dimensions, A is an (r + c)× rc matrix.

Let u be an r× c table, which we again think of in “vectorized” format. The
matrix A that represents the model of independence is determined by the identity

Au =
(

u·+
u+·

)
,

where u·+ and u+· are the vectors of row and columns sums of the table u. In the
particular instance of r = 2 and c = 3, the above identity reads

Au =

⎛
⎜⎜⎜⎜⎝
1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

u11
u12
u13
u21
u22
u23

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

u1+
u2+
u+1
u+2
u+3

⎞
⎟⎟⎟⎟⎠ .

The moves to perform the random walk in Fisher’s exact test of independence are
drawn from the lattice

kerZ A =

{
v ∈ Zr×c :

r∑
k=1

vkj = 0 for all j, and
c∑

k=1

vik = 0 for all i

}
,

which consists of all r× c integer tables whose row and column sums are zero. �
For the standard model of independence of two discrete random variables,

the lattice kerZ A contains a collection of obvious small vectors. In the Markov
basis literature, these moves are often known as basic moves. Let eij denote the
standard unit table, which has a 1 in the (i, j) position, and zeroes elsewhere. If
u is a vector or matrix, then ‖u‖1 =

∑R
i=1 |ui| denotes the 1-norm of u.
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Proposition 1.2.2. The unique minimal Markov basis for the independence model
MX⊥⊥Y consists of the following 2 ·

(
r
2

)(
c
2

)
moves, each having 1-norm 4:

B =
{
±(eij + ekl − eil − ekj) : 1 ≤ i < k ≤ r, 1 ≤ j < l ≤ c

}
.

Proof. Let u �= v be two non-negative integral tables that have the same row and
column sums. It suffices to show that there is an element b ∈ B, such that u+b ≥ 0
and ‖u − v‖1 > ‖u + b − v‖1, because this implies that we can use elements of
B to bring points in the same fiber closer to one another. Since u and v are not
equal and Au = Av, there is at least one positive entry in u − v. Without loss of
generality, we may suppose u11 − v11 > 0. Since u− v ∈ kerZ A, there is an entry
in the first row of u− v that is negative, say u12− v12 < 0. By a similar argument
u22 − v22 > 0. But this implies that we can take b = e12 + e21 − e11 − e22 which
attains ‖u− v‖1 > ‖u+ b− v‖1 and u+ b ≥ 0 as desired.

The Markov basis B is minimal because, if one of the elements of B is omitted,
the fiber which contains its positive and negative parts will be disconnected. That
this minimal Markov basis is unique is a consequence of the characterization of
(non)uniqueness of Markov bases in Theorem 1.3.2 below. �

As preparation for more complex log-linear models, we mention that it is
often useful to use a unary representation for the Markov basis elements. That is,
we can write a Markov basis element by recording, with multiplicities, the indices
of the non-zero entries that appear. This notation is called tableau notation.

Example 1.2.3. The tableau notation for the moves in the Markov basis of the
independence model is [

i j
k l

]
−
[
i l
k j

]
,

which corresponds to exchanging eij + ekl with eil + ekj . For the move e11+ e12−
2e13 − e21 − e22 + 2e23, which arises in Exercise 6.1, the tableau notation is⎡

⎢⎢⎣
1 1
1 2
2 3
2 3

⎤
⎥⎥⎦−

⎡
⎢⎢⎣
1 3
1 3
2 1
2 2

⎤
⎥⎥⎦ .

Note that the indices 13 and 23 are both repeated twice, since e13 and e23 both
appear with multiplicity 2 in the move. �

Among the most important classes of log-linear models are the hierarchical
log-linear models. In these models, interactions between random variables are en-
coded by a simplicial complex, whose vertices correspond to the random variables,
and whose faces correspond to interaction factors that are also known as potential
functions. The independence model, discussed above, is the most basic instance of
a hierarchical model. We denote the power set of [m] by 2[m].
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Definition 1.2.4. A simplicial complex is a set Γ ⊆ 2[m] such that F ∈ Γ and
S ⊂ F implies that S ∈ Γ. The elements of Γ are called faces of Γ and the
inclusion-maximal faces are the facets of Γ.

To describe a simplicial complex we need only list its facets. We will use
the bracket notation from the theory of hierarchical log-linear models [21]. For
instance Γ = [12][13][23] is the bracket notation for the simplicial complex

Γ = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}} .

As described above, a log-linear model is defined by a non-negative integer
matrix A, and the model MA consists of all probability distributions whose co-
ordinatewise logarithm lies in the row span of A. If log p ∈ rowspan(A), there is
an α ∈ Rd such that log p = AT α. Exponentiating, we have p = exp(AT α). It is
natural to use this expression as a parametrization for the set of all probability
distributions lying in the model, in which case we must introduce a normalizing
constant Z(α) to guarantee that we get a probability distribution:

p =
1

Z(α)
exp(AT α).

We can make things simpler and more algebraic by avoiding the exponential
notation. Instead, we will often use the equivalentmonomial notation when writing
the parametrization of a log-linear model. Indeed, setting θi = exp(αi), we have

pj = P (X = j) =
1

Z(θ)
·

d∏
i=1

θ
aij

i (1.2.2)

where A = (aij). This monomial expression can be further abbreviated as θaj =∏d
i=1 θ

aij

i where aj denotes the jth column of A.
The definition of log-linear models depends on first specifying a matrix A =

(aij), and then describing a family of probability distributions via the parametriza-
tion (1.2.2). For many log-linear models, however, it is easiest to give the monomial
parametrization first, and then recover the matrix A and the sufficient statistics.
In particular, this is true for the family of hierarchical log-linear models.

We use the following convention for writing subindices. If i = (i1, . . . , im) ∈ R
and F = {f1, f2, . . .} ⊆ [m] then iF = (if1 , if2 , . . .). For each subset F ⊆ [m], the
random vector XF = (Xf )f∈F has the state space RF =

∏
f∈F [rf ].

Definition 1.2.5. Let Γ ⊆ 2[m] be a simplicial complex and let r1, . . . , rm ∈ N. For
each facet F ∈ Γ, we introduce a set of #RF positive parameters θ

(F )
iF

. The hierar-
chical log-linear model associated with Γ is the set of all probability distributions

MΓ =

{
p ∈ ΔR−1 : pi =

1
Z(θ)

∏
F∈facet(Γ)

θ
(F )
iF

for all i ∈ R
}

, (1.2.3)
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where Z(θ) is the normalizing constant (or partition function)

Z(θ) =
∑
i∈R

∏
F∈facet(Γ)

θ
(F )
iF

.

Example 1.2.6 (Independence). Let Γ = [1][2]. Then the hierarchical model con-
sists of all positive probability matrices (pi1i2)

pi1i2 =
1

Z(θ)
θ
(1)
i1

θ
(2)
i2

where θ(j) ∈ (0,∞)rj , j = 1, 2. That is, the model consists of all positive rank
1 matrices. It is the positive part of the model of independence MX⊥⊥Y , or in
algebraic geometric language, the positive part of the Segre variety. �
Example 1.2.7 (No 3-way interaction). Let Γ = [12][13][23] be the boundary of
a triangle. The hierarchical model MΓ consists of all r1 × r2 × r3 tables (pi1i2i3 )
with

pi1i2i3 =
1

Z(θ)
θ
(12)
i1i2

θ
(13)
i1i3

θ
(23)
i2i3

for some positive real tables θ(12) ∈ (0,∞)r1×r2 , θ(13) ∈ (0,∞)r1×r3 , and θ(23) ∈
(0,∞)r2×r3 . Unlike the case of the model of independence, this important statis-
tical model does not have a correspondence with any classically studied algebraic
variety. In the case of binary random variables, its implicit representation is the
equation

p111p122p212p221 = p112p121p211p222.

That is, the log-linear model consists of all positive probability distributions that
satisfy this quartic equation. Implicit representations for log-linear models will be
explained in detail in Section 1.3, and a general discussion of implicit representa-
tions will appear in Section 2.2. �
Example 1.2.8 (Something more general). Let Γ = [12][23][345]. The hierarchical
modelMΓ consists of all r1× r2× r3× r4× r5 probability tensors (pi1i2i3i4i5) with

pi1i2i3i4i5 =
1

Z(θ)
θ
(12)
i1i2

θ
(23)
i2i3

θ
(345)
i3i4i5

,

for some positive real tables θ(12) ∈ (0,∞)r1×r2 , θ(23) ∈ (0,∞)r2×r3 , and θ(345) ∈
(0,∞)r3×r4×r5 . These tables of parameters represent the potential functions. �

To begin to understand the Markov bases of hierarchical models, we must
come to terms with the 0/1 matrices AΓ that realize these models in the form
MAΓ . In particular, we must determine what linear transformation the matrix
AΓ represents. Let u ∈ NR be an r1 × · · · × rm contingency table. For any subset
F = {f1, f2, . . .} ⊆ [m], let u|F be the rf1 × rf2 × · · · marginal table such that
(u|F )iF =

∑
j∈R[m]\F

uiF ,j . The table u|F is called the F -marginal of u.
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Proposition 1.2.9. Let Γ = [F1][F2] · · · . The matrix AΓ represents the linear map

u �→ (u|F1 , u|F2 , . . .),

and the Γ-marginals are minimal sufficient statistics of the hierarchical modelMΓ.

Proof. We can read the matrix AΓ off the parametrization. In the parametrization,
the rows of AΓ correspond to parameters, and the columns correspond to states.
The rows come in blocks that correspond to the facets F of Γ. Each block has
cardinality #RF . Hence, the rows of AΓ are indexed by pairs (F, iF ) where F
is a facet of Γ and iF ∈ RF . The columns of AΓ are indexed by all elements
of R. The entry in AΓ for row index (F, iF ) and column index j ∈ R equals
1 if jF = iF and equals zero otherwise. This description follows by reading the
parametrization from (1.2.3) down the column of AΓ that corresponds to pj . The
description of minimal sufficient statistics as marginals comes from reading this
description across the rows of AΓ, where the block corresponding to F , yields the
F -marginal u|F . See Definition 1.1.10. �
Example 1.2.10. Returning to our examples above, for Γ = [1][2] corresponding to
the model of independence, the minimal sufficient statistics are the row and column
sums of u ∈ Nr1×r2 . Thus we have A[1][2]u = (u|1, u|2). Above, we abbreviated
these row and column sums by u·+ and u+·, respectively.

For the model of no 3-way interaction, with Γ = [12][13][23], the minimal
sufficient statistics consist of all 2-way margins of the 3-way table u. That is

A[12][13][23]u = (u|12, u|13, u|23)

and A[12][13][23] is a matrix with r1r2 + r1r3 + r2r3 rows and r1r2r3 columns. �
As far as explicitly writing down the matrix AΓ, this can be accomplished in a

uniform way by assuming that the rows and columns are ordered lexicographically.

Example 1.2.11. Let Γ = [12][14][23] and r1=r2=r3=r4=2. Then AΓ equals

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1111 1112 1121 1122 1211 1212 1221 1222 2111 2112 2121 2122 2211 2212 2221 2222

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where the rows correspond to ordering the facets of Γ in the order listed above
and using the lexicographic ordering 11 > 12 > 21 > 22 within each facet. �

Now that we know how to produce the matrices AΓ, we can begin to compute
examples of Markov bases. The program 4ti2 [57] computes a Markov basis of a
lattice kerZ(A) taking as input either the matrix A or a spanning set for kerZ A.
By entering a spanning set as input, 4ti2 can also be used to compute Markov
bases for general lattices L (see Section 1.3). A repository of Markov bases for a
range of widely used hierarchical models is being maintained by Thomas Kahle
and Johannes Rauh at http://mbdb.mis.mpg.de/.

Example 1.2.12. We use 4ti2 to compute the Markov basis of the no 3-way inter-
action model Γ = [12][13][23], for three binary random variables r1 = r2 = r3 = 2.
The matrix representing this model has format 12×8. First, we create a file no3way
which is the input file consisting of the size of the matrix, and the matrix itself:

12 8
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

The Markov basis associated to the kernel of this matrix can be computed using
the command markov no3way, which writes its output to the file no3way.mar.
This file is represented in matrix format as:

1 8
1 -1 -1 1 -1 1 1 -1

The code outputs the Markov basis up to sign. In this case, the Markov basis
consists of two elements, the indicated 2×2×2 table, and its negative. This move
would be represented in tableau notation as⎡

⎢⎢⎣
1 1 1
1 2 2
2 1 2
2 2 1

⎤
⎥⎥⎦−

⎡
⎢⎢⎣
1 1 2
1 2 1
2 1 1
2 2 2

⎤
⎥⎥⎦ .

The move corresponds to the quartic equation at the end of Example 1.2.7. �



18 Chapter 1. Markov Bases

One of the big challenges in the study of Markov bases of hierarchical models
is to find descriptions of the Markov bases as the simplicial complex Γ and the
numbers of states of the random variables vary. When it is not possible to give an
explicit description of the Markov basis (that is, a list of all types of moves needed
in the Markov basis), we might still hope to provide structural or asymptotic
information about the types of moves that could arise. In the remainder of this
section, we describe some results of this type.

For a simplicial complex Γ, let G(Γ) = ∪S∈ΓS denote the ground set of Γ.

Definition 1.2.13. A simplicial complex Γ is reducible, with reducible decomposi-
tion (Γ1, S,Γ2) and separator S ⊂ G(Γ), if it satisfies Γ = Γ1∪Γ2 and Γ1∩Γ2 = 2S .
Furthermore, we here assume that neither Γ1 nor Γ2 is 2S . A simplicial complex is
decomposable if it is reducible and Γ1 and Γ2 are decomposable or simplices (that
is, of the form 2R for some R ⊆ [m]).

Of the examples we have seen so far, the simplicial complexes [1][2] and
[12][23][345] are decomposable, whereas the simplicial complex [12][13][23] is not
reducible. On the other hand, the complex Γ = [12][13][23][345] is reducible but
not decomposable, with reducible decomposition ([12][13][23], {3}, [345]).

If a simplicial complex has a reducible decomposition, then there is naturally
a large class of moves with 1-norm equal to 4 that belong to the lattice kerZ AΓ.
Usually, these moves also appear in some minimal Markov basis.

Lemma 1.2.14. If Γ is a reducible simplicial complex with reducible decomposition
(Γ1, S,Γ2), then the following set of moves, represented in tableau notation, belongs
to the lattice kerZ AΓ:

D(Γ1,Γ2) =
{[

i j k
i′ j k′

]
−
[
i j k′

i′ j k

]
: i, i′ ∈ RG(Γ1)\S , j ∈ RS ,

k, k′ ∈ RG(Γ2)\S
}

.

Theorem 1.2.15 (Markov bases of decomposable models [34, 93]).
If Γ is a decomposable simplicial complex, then the set of moves

B =
⋃

(Γ1,S,Γ2)

D(Γ1,Γ2),

with the union over all reducible decompositions of Γ, is a Markov basis for AΓ.

Example 1.2.16. Consider the 4-chain Γ = [12][23][34]. This graph has two distinct
reducible decompositions with minimal separators, namely ([12], {2}, [23][34]) and
([12][23], {3}, [34]). Therefore, the Markov basis consists of moves of the two types
D([12], [23][34]) and D([12][23], [34]), which in tableau notation look like[

i1 j i3 i4
i′1 j i′3 i′4

]
−
[
i1 j i′3 i′4
i′1 j i3 i4

]
and

[
i1 i2 j i4
i′1 i′2 j i′4

]
−
[
i1 i2 j i′4
i′1 i′2 j i4

]
.
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Note that the decomposition ([12][23], {2, 3}, [23][34]) is also a valid reducible de-
composition of Γ, but it does not produce any new Markov basis elements. �

Theorem 1.2.15 is a special case of a more general result which determines
the Markov bases for reducible complexes Γ from the Markov bases of the pieces
Γ1 and Γ2. For details see the articles [35, 59].

One of the remarkable consequences of Theorem 1.2.15 is that the structure
of the Markov basis of a decomposable hierarchical log-linear model does not de-
pend on the number of states of the underlying random variables. In particular,
regardless of the sizes r1, r2, . . . , rm, the Markov basis for a decomposable model
always consists of moves with 1-norm equal to 4, with a precise and global com-
binatorial description. The following theorem of De Loera and Onn [29] says that
this nice behavior fails, in the worst possible way, already for the simplest non-
decomposable model. We fix Γ = [12][13][23] and consider 3×r2×r3 tables, where
r2, r3 can be arbitrary. De Loera and Onn refer to these as slim tables.

Theorem 1.2.17 (Slim tables). Let Γ = [12][13][23] be the 3-cycle and let v ∈ Zk

be any integer vector. Then there exist r2, r3 ∈ N and a coordinate projection
π : Z3×r2×r3 → Zk such that every minimal Markov basis for Γ on 3 × r2 × r3
tables contains a vector u such that π(u) = v.

In particular, Theorem 1.2.17 shows that there is no hope for a general bound
on the 1-norms of Markov basis elements for non-decomposable models, even for a
fixed simplicial complex Γ. On the other hand, if only one of the table dimensions
is allowed to vary, then there is a bounded finite structure to the Markov bases.
This theorem was first proven in [62] and generalizes a result in [81].

Theorem 1.2.18 (Long tables). Let Γ be a simplicial complex and fix r2, . . . , rm.
There exists a number b(Γ, r2, . . . , rm) <∞ such that the 1-norms of the elements
of any minimal Markov basis for Γ on s × r2 × · · · × rm tables are less than or
equal to b(Γ, r2, . . . , rm). This bound is independent of s, which can grow large.

From Theorem 1.2.15, we saw that if Γ is decomposable and not a sim-
plex, then b(Γ, r2, . . . , rm) = 4. One of the first discovered results in the non-
decomposable case was b([12][13][23], 3, 3) = 20, a result obtained by Aoki and
Takemura [10]. In general, it seems a difficult problem to actually compute the
values b(Γ, r2, . . . , rm), although some recent progress was reported by Hemmecke
and Nairn [58]. The proof of Theorem 1.2.18 only gives a theoretical upper bound
on this quantity, involving other numbers that are also difficult to compute.

1.3 The Many Bases of an Integer Lattice

The goal of this section is to study the notion of a Markov basis in more combina-
torial and algebraic detail. In particular, we will explain the relationships between
Markov bases and other classical notions of a basis of an integral lattice. In the
setting of log-linear models and hierarchical models, this integral lattice would be
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kerZ(A) as in Definition 1.1.12. One of the highlights of this section is Theorem
1.3.6 which makes a connection between Markov bases and commutative algebra.

We fix any sublattice L of Zk with the property that the only non-negative
vector in L is the origin. In other words, L is a subgroup of (Zk,+) that satisfies

L ∩ Nk = { 0 }.

This hypothesis holds for a lattice kerZ(A) given by a non-negative integer matrix
A, as encountered in the previous sections, and it ensures that the fiber of any point
u ∈ Nk is a finite set. Here, by the fiber of u we mean the set of all non-negative
vectors in the same residue class modulo L. This set is denoted by

F(u) := (u+ L) ∩ Nk =
{

v ∈ Nk : u− v ∈ L
}
.

There are four fundamental problems concerning the fibers: counting F(u), enu-
merating F(u), optimizing over F(u) and sampling from F(u).

The optimization problem is the integer programming problem in lattice form:

minimize w · v subject to v ∈ F(u). (1.3.1)

The sampling problem asks for a random point from F(u), drawn according to
some distribution on F(u). As seen in Section 1.1, the ability to sample from the
hypergeometric distribution is needed for hypothesis testing, but sometimes the
uniform distribution is also used [32].

These four problems can be solved if we are able to perform (random) walks
that connect the fibers F(u) using simple steps from the lattice L. To this end,
we shall introduce a hierarchy of finite bases in L. The hierarchy looks like this:

lattice basis ⊂ Markov basis ⊂ Gröbner basis
⊂ universal Gröbner basis ⊂ Graver basis.

The purpose of this section is to introduce these five concepts. The formal defi-
nitions will be given after the next example. Example 1.3.1 serves as a warm-up,
and it shows that all four inclusions among the five different bases can be strict.

Example 1.3.1. Let k = 4 and consider the three-dimensional lattice

L =
{
(u1, u2, u3, u4) ∈ Z4 : 3u1 + 3u2 + 4u3 + 5u4 = 0

}
.

The following three vectors form a lattice basis of L:

(1,−1, 0, 0), (0, 1,−2, 1), (0, 3,−1,−1). (1.3.2)

The choice of a lattice basis is not unique, but its cardinality 3 is an invariant of
the lattice. Augmenting (1.3.2) by the next vector gives a Markov basis of L:

(0, 2, 1,−2). (1.3.3)
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The Markov basis of L is not unique but it is “more unique” than a lattice basis.
The cardinality 4 of the minimal Markov basis is an invariant of the lattice. Aug-
menting (1.3.2) and (1.3.3) by the following two vectors leads to a Gröbner basis
of L:

(0, 1, 3,−3), (0, 0, 5,−4). (1.3.4)

This Gröbner basis is reduced. The reduced Gröbner basis of a lattice is not unique,
but there are only finitely many distinct reduced Gröbner bases. They depend on
the choice of a cost vector. Here we took w = (100, 10, 1, 0). This choice ensures
that the leftmost non-zero entry in each of our vectors is positive. We note that
the cardinality of a reduced Gröbner basis is not an invariant of the lattice L.

The universal Gröbner basis of a lattice is unique (if we identify each vector
with its negative). The universal Gröbner basis of L consists of 14 vectors. In
addition to the six above, it comprises the eight vectors

(1, 0,−2, 1), (3, 0,−1,−1), (2, 0, 1,−2), (1, 0, 3,−3),
(0, 4,−3, 0), (4, 0,−3, 0), (0, 5, 0,−3), (5, 0, 0,−3).

Besides the 14 vectors in the universal Gröbner basis, the Graver basis of L con-
tains the following additional ten vectors:

(1, 1, 1,−2) , (1, 2,−1,−1) , (2, 1,−1,−1) , (1, 3,−3, 0) , (2, 2,−3, 0) ,
(3, 1,−3, 0) , (1, 4, 0,−3) , (2, 3, 0,−3) , (3, 2, 0,−3) , (4, 1, 0,−3).

The Graver basis of a lattice is unique (up to negating vectors). �
We shall now give precise definitions for the five notions in our hierarchy of

bases for an integer lattice L ⊂ Zk. A lattice basis is a subset B = {b1, b2, . . . , br}
of L such that every vector v in L has a unique representation

v = λ1b1 + λ2b2 + · · · + λrbr, with λi ∈ Z.

All lattice bases of L have the same cardinality r. Each of them specifies a partic-
ular isomorphism L � Zr. The number r is the rank of the lattice L.

Consider an arbitrary finite subset B of L. This subset determines an undi-
rected graph F(u)B whose nodes are the elements in the fiber F(u). Two nodes
v and v′ are connected by an undirected edge in F(u)B if either v − v′ or v′ − v
is in B. We say that B is a Markov basis for L if the graphs F(u)B are connected
for all u ∈ Nk. (Note that this definition slightly differs from the one used in Sec-
tions 1.1 and 1.2, where it was more convenient to include both a vector and its
negative in the Markov basis.) We will usually require Markov bases to be minimal
with respect to inclusion. With this minimality assumption, the Markov basis B
is essentially unique, in the sense made precise in Theorem 1.3.2 below.

Every vector b ∈ L can be written uniquely as the difference b = b+ − b−

of two non-negative vectors with disjoint support. The fiber of b is the congruence
class of Nk modulo L which contains both b+ and b−. In symbols,

fiber(b) := F(b+) = F(b−).
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Theorem 1.3.2. For a minimal Markov basis B of a lattice L, the multiset{
fiber(b) : b ∈ B

}
(1.3.5)

is an invariant of the lattice L ⊂ Zk and hence so is the cardinality of B.

Proof. We shall give an invariant characterization of the multiset (1.3.5). For any
fiber f ∈ Nk/L we define a graph Gf as follows. The nodes are the non-negative
vectors in Nk which lie in the congruence class f , and two nodes u and v are
connected by an edge if there exists an index i such that ui �= 0 and vi �= 0.
Equivalently, {u, v} is an edge of Gf if and only if fiber(u− v) �= f .

We introduce the following multiset of fibers:{
f ∈ Nk/L : the graph Gf is disconnected

}
. (1.3.6)

The multiset structure on the underlying set is as follows. The multiplicity of f in
(1.3.6) is one less than the number of connected components of the graph Gf .

We claim that the multisets (1.3.5) and (1.3.6) are equal. In proving this
claim, we shall use induction on the partially ordered set (poset) Nk/L. This set
inherits its poset structure from the partial order on Nk. Namely, two fibers f and
f ′ satisfy f ′ ≤ f if and only if there exist u, u′ ∈ Nk such that

f = F(u) and f ′ = F(u′) and u′ ≤ u (coordinatewise).

Consider any fiber f = F(u) and let C1, . . . , Cs be the connected components
of Gf . Suppose that B is any minimal Markov basis and consider Bf = { b ∈ B :
fiber(b) = f }. We will reconstruct all possible choices for Bf . In order to prove
the theorem, we must show that each of them has cardinality s− 1.

By induction, we may assume that Bf ′ has already been constructed for all
fibers f ′ which are below f in the poset Nk/L. Let B<f be the union of these
sets Bf ′ where f ′ < f . The connected components of the graph F(u)B<f

are
precisely the components C1, . . . , Cs. The reason is that any two points in the
same component Ci can be connected by a sequence of moves from a smaller fiber
f ′, but no point in Ci can be connected to a point in a different component Cj

by such moves. Therefore, all the possible choices for Bf are obtained as follows.
First we fix a spanning tree on the components C1, . . . , Cs. Second, for any edge
{Ci, Cj} in that spanning tree, we pick a pair of points u ∈ Ci and v ∈ Cj . Finally,
the desired set Bf consists of the resulting s−1 difference vectors u−v. This proves
#Bf = s− 1, as desired. �

The previous proof gives a purely combinatorial algorithm which constructs
the minimal Markov basis of a lattice L. We fix a total order on the set of fibers
Nk/L which refines the natural partial order. Starting with the first fiber f =
F(0) = {0} and the empty partial Markov basis B<0 = ∅, we consider an arbitrary
fiber f and the already computed partial Markov basis B<f . The steps of the
algorithm are now exactly as in the proof:
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1. Identify the connected components C1, . . . , Cs of the graph Gf .

2. Pick a spanning tree on C1, . . . , Cs.

3. For any edge {Ci, Cj} of the tree, pick points u ∈ Ci and v ∈ Cj .

4. Define Bf as the set of those s− 1 difference vectors u− v.

5. Move on to the next fiber (unless you are sure to be done).

Example 1.3.3. We demonstrate how this method works for the lattice in Example
1.3.1. Recall that L is the kernel of the linear map

π : Z4 → Z , (u1, u2, u3, u4) �→ 3u1 + 3u2 + 4u3 + 5u4.

The poset of fibers is a subposet of the poset of non-negative integers:

N4/L = π(N4) = {0, 3, 4, 5, 6, . . .} ⊂ N.

The fiber 0 is trivial, so our algorithm starts with f = 3 and B<3 = ∅. The graph
G3 has two connected components

C1 =
{
(1, 0, 0, 0)

}
and C2 =

{
(0, 1, 0, 0)

}
,

so we have no choice but to take B3 = { (1,−1, 0, 0) }. The next steps are:
• G4 has only one node (0, 0, 1, 0) hence B4 = ∅.
• G5 has only one node (0, 0, 0, 1) hence B5 = ∅.
• G6 = {(2, 0, 0, 0), (1, 1, 0, 0), (0, 2, 0, 0)} is connected hence B6 = ∅.
• G7 = {(1, 0, 1, 0), (0, 1, 1, 0)} is connected hence B7 = ∅.
• G8 has two connected components, C1 = {(1, 0, 0, 1), (0, 1, 0, 1)} and C2 =
{(0, 0, 2, 0)}, and we decide to take B8 = {(0, 1,−2, 1)}.

• G9 has two connected components, namely C1={(3,0,0,0), (2,1,0,0), (1,2,0,0),
(0, 3, 0, 0)} and C2 = {(0, 0, 1, 1)}. We take B9 = {(0, 3,−1,−1)}.

• G10 has two connected components, C1 = {(2,0,1,0), (1,1,1,0), (0,2,1,0)} and
C2 = {(0, 0, 0, 2)}, and we take B10 = {(0, 2, 1,−2)}.

At this stage, divine inspiration tells us that the Markov basis for L is already
complete. So, we decide to stop and we output B = B≤10. The multiset of Markov
fibers (1.3.5) is the set {3, 8, 9, 10}, where each element has multiplicity 1. �

There are two obvious problems with this algorithm. The first is that we
need a termination criterion, and the second concerns the combinatorial explosion
(which becomes serious for n− rank(L) ≥ 3) of having to look at many fibers until
a termination criterion kicks in. The first problem can be addressed by deriving a
general bound on the sizes of the coordinates of any element in the Graver basis of
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L. Such a bound is given in [87, Theorem 4.7, p. 33]. However, a more conceptual
solution for both problems can be given by recasting the Markov basis property in
terms of commutative algebra [25, 87]. This will be done in Theorem 1.3.6 below.

First, however, we shall define the other three bases of L. Fix a generic cost
vector w ∈ Rk. Here generic means that each integer program (1.3.1) has only
one optimal solution. Suppose that b · w < 0 for all b ∈ B. We regard F(u)B as
a directed graph by introducing a directed edge v → v′ whenever v′ − v is in B.
In this manner, F(u)B becomes an acyclic directed graph. We say that B is a
Gröbner basis of L if the directed graph F(u)B has a unique sink, for all u ∈ Nk.

Remark 1.3.4. If B is a Gröbner basis then the sink of the directed graph F(u)B is
the optimal solution of the integer programming problem (1.3.1). For more back-
ground on the use of Gröbner bases in integer programming we refer to [87, §5].

Among all Gröbner bases for L there is a distinguished reduced Gröbner basis
which is unique when w is fixed. It consists of all vectors b ∈ L such that b− is a
sink (in its own fiber), b+ is not a sink, but b+ − ei is a sink for all i with bi > 0.

It is known that there are only finitely many distinct reduced Gröbner bases,
as w ranges over generic vectors in Rk. The union of all reduced Gröbner bases is
the universal Gröbner basis of L.

All of the bases of L discussed so far are contained in the Graver basis. The
Graver basis G of our lattice L is defined as follows. Fix a sign vector σ ∈ {−1,+1}k

and consider the semigroup

Lσ :=
{

v ∈ L : vi · σi ≥ 0
}
.

This semigroup has a unique minimal finite generating set Gσ called the Hilbert
basis of Lσ. The Graver basis G of L is the union of these Hilbert bases:

G :=
⋃

σ∈{−1,+1}k

Gσ.

This set is finite because each of the Hilbert bases Gσ is finite.

Proposition 1.3.5. The Graver basis G is the unique minimal subset of the lattice
L such that every vector v ∈ L has a sign-consistent representation in terms of G:

v =
∑
g∈G

λg · g with λg ∈ N and |vi| =
∑
g∈G

λg · |gi| for all i ∈ [k].

Markov bases, Gröbner bases, Hilbert bases, and Graver bases of integer lat-
tices can be computed using the software 4ti2, which was developed by Raymond
Hemmecke and his collaborators [57]. Further computations with 4ti2 will be
shown in the exercises in Chapter 6.

We now come to the interpretation of our bases in terms of algebraic geom-
etry. The given lattice L ⊂ Zk is represented by the corresponding lattice ideal

IL := 〈 pu − pv : u, v ∈ Nk and u− v ∈ L 〉 ⊂ R[p1, p2, . . . , pk].
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Here p1, . . . , pk are indeterminates, and pu = pu1
1 pu2

2 · · · puk

k denotes monomials
in these indeterminates. In our applications, pi will represent the probability of
observing the ith state of a random variable with k states. Hilbert’s Basis Theorem
states that every ideal in the polynomial ring R[p1, p2, . . . , pk] is finitely generated.
The finiteness of Markov bases is thus implied by the following result of [33], which
was one of the starting points for the field of algebraic statistics.

Theorem 1.3.6 (Fundamental theorem of Markov bases). A subset B of the lattice
L is a Markov basis if and only if the corresponding set of binomials { pb+ − pb− :
b ∈ B } generates the lattice ideal IL.

The notions of Gröbner bases and Graver bases are also derived from their
algebraic analogues. For a detailed account see [87]. In that book, as well as in most
statistical applications, the lattice L arises as the kernel of an integer matrix A.
The algebraic theory for arbitrary lattices is found in [70, Chapter 7]. The multiset
in Theorem 1.3.2 corresponds to the multidegrees of the minimal generators of IL.

Let A = (aij) ∈ Nd×k be a non-negative integer matrix. We assume that
all the column sums of A are equal. The columns aj = (a1j , a2j, . . . , adj)T of
A represent monomials θaj = θ

a1j

1 θ
a2j

2 · · · θadj

d in auxiliary unknowns θi that
correspond to model parameters. The monomials θaj all have the same degree.

The matrix A determines a monomial map

φA : Cd → Ck, θ �→ (θa1 , θa2 , . . . , θak).

The closure of the image of this map is the affine toric variety VA associated to the
matrix A. The connection to tori arises from the fact that VA is the closure of the
image of the algebraic torus φA((C∗)d). If we restrict the map φA to the positive
realsRd

>0, and consider the image in the probability simplex Δk−1 = Rk
≥0/scaling,

we get the log-linear modelMA. For this reason, log-linear models are sometimes
known as toric models. See Section 1.2 in [73] for more on toric models.

More generally, a variety is the solution set to a simultaneous system of
polynomial equations. If I is an ideal, then V (I) is the variety defined by the
vanishing of all polynomials in I. Often, we might need to be more explicit about
where the solutions to this system of equations lie, in which case we use the
notation V∗(I) to denote the solutions constrained by condition ∗. The different
types of solution spaces will be illustrated in Example 1.3.8.

Proposition 1.3.7. The lattice ideal IL for L = kerZ(A) is a prime ideal. Its ho-
mogeneous elements are exactly the homogeneous polynomials in R[p1, . . . , pk] that
vanish on probability distributions in the log-linear model specified by the matrix A.
In other words, the toric variety VA = V (IL) is the Zariski closure of the log-linear
model MA.

The binomials corresponding to the Markov basis generate the ideal IL and
hence they cut out the toric variety VA = V (IL). However, often one does not
need the full Markov basis to define the toric variety set-theoretically. Finding
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good choices of such partial bases is a delicate matter, as the following example
demonstrates.

Example 1.3.8. Let d = 3, k = 9 and consider the matrix

A =

⎛
⎝

p1 p2 p3 p4 p5 p6 p7 p8 p9

3 0 0 2 1 2 1 0 0
0 3 0 1 2 0 0 2 1
0 0 3 0 0 1 2 1 2

⎞
⎠ (1.3.7)

and the associated monomial parametrization

φA : (θ1, θ2, θ3) �→ (θ31 , θ
3
2 , θ

3
3, θ

2
1θ2, θ1θ

2
2, θ

2
1θ3, θ1θ

2
3 , θ

2
2θ3, θ2θ

2
3). (1.3.8)

The minimal Markov basis of the lattice L = kerZ(A) consists of 17 vectors. These
vectors correspond to the set of all 17 quadratic binomials listed in (1.3.9), (1.3.10),
(1.3.11) and (1.3.12) below. We start out with the following six binomials:{

p1p5 − p24, p2p4 − p25, p1p7 − p26, p3p6 − p27, p2p9 − p28, p3p8 − p29
}
. (1.3.9)

The vectors corresponding to (1.3.9) form a basis for the kernel of A as a vector
space over the rational numbers Q but they do not span L as a lattice over Z.
Nevertheless, a positive vector p = (p1, . . . , p9) is a common zero of these six
binomials if and only if p lies in the image of a positive vector (θ1, θ2, θ3) under
the map φA. The same statement fails badly for non-negative vectors. Namely, in
addition to V≥0(IL), which is the closure of the log-linear model, the non-negative
variety of (1.3.9) has seven extraneous components, which are not in the closure of
the log-linear modelMA. One such component is the three-dimensional orthant{

(p1, p2, p3, 0, 0, 0, 0, 0, 0) : p1, p2, p3 ∈ R≥0
}

⊂ V≥0
(
(1.3.9)

)
.

We invite the reader to find the six others. These seven extraneous components
disappear again if we augment (1.3.9) by the following three binomials:{

p1p2 − p4p5, p1p3 − p6p7, p2p3 − p8p9
}
. (1.3.10)

Hence the non-negative variety defined by the nine binomials in (1.3.9) and (1.3.10)
is the closure of the log-linear model. The same holds over the reals:

V≥0(IL) = V≥0
(
(1.3.9), (1.3.10)

)
and VR(IL) = VR

(
(1.3.9), (1.3.10)

)
.

On the other hand, the varieties over the complex numbers are still different:

VC(IL) �= VC

(
(1.3.9), (1.3.10)

)
.

The complex variety of the binomials in (1.3.9) and (1.3.10) breaks into three
irreducible components, each of which is a multiplicative translate of the toric
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variety VC(IL). Namely, if we start with any point p in VC(IL) and we replace p4
by ηp4 and p5 by η2p5, where η = − 1

2 +
√
3
2 i is a primitive cube root of unity,

then the new vector is no longer in VC(IL) but still satisfies the nine binomials in
(1.3.9) and (1.3.10). This is detected algebraically as follows. The binomial

p31p
3
8 − p35p

3
6 = (p1p8 − p5p6)(p1p8 − ηp5p6)(p1p8 − η2p5p6)

lies in the ideal of (1.3.9) and (1.3.10) but none of its factors does. To remove the
two extraneous complex components, we add six more binomials:

{
p1p8 − p5p6, p1p9 − p4p7, p2p6 − p4p8, p2p7 − p5p9,

p3p4 − p6p9, p3p5 − p7p8
}
. (1.3.11)

Let J denote the ideal generated by the 15 binomials in (1.3.9), (1.3.10) and
(1.3.11). The radical of the ideal J equals IL. This means that the complex variety
of J coincides with VC(IL). However, the ideal J is still strictly contained in IL.
To get the Markov basis, we still need to add the following two binomials:{

p6p8 − p4p9 , p5p7 − p4p9
}
. (1.3.12)

The lattice L in this example has the following special property. Its Markov basis
consists of quadratic binomials, but no Gröbner basis of IL has only quadratic
elements. Using the software Gfan [63], one can easily check that L has pre-
cisely 54, 828 distinct reduced Gröbner bases. Each of them contains at least
one binomial of degree 3. For instance, the reduced Gröbner basis with respect
to the reverse lexicographic order consists of our 17 quadrics and the two cubics
p1p7p8 − p4p6p9 and p27p8 − p6p

2
9. �

We remark that we will see quadratic binomials of the form pipj − pkpl

again in Chapter 3, where they naturally correspond to conditional independence
relations. The ideal of such relations will make its first appearance in Definition
3.1.5. We close the current chapter by describing a simple log-linear model in which
the algebraic structure from Example 1.3.8 arises.

Example 1.3.9. Bobby and Sally play Rock-Paper-Scissors according to the fol-
lowing rules. One round consists of three games, and it is not permissible to make
three different choices in one round. Should this happen then the round of three
games is repeated until a valid outcome occurs. After n = 1000 rounds of playing,
Sally decides to analyze Bobby’s choices that can be summarized in the vector

u =
(
urrr, uppp, usss, urrp, urpp, urrs, urss, upps, upss

)
,

where urrr is the number of rounds in which Bobby picks rock three times, urrp

is the number of rounds in which he picks rock twice and paper once, and so
on. Sally suspects that Bobby makes independent random choices picking rock
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with probability θ1, paper with probability θ2, and scissors with probability θ3 =
1− θ1 − θ2. Let prrr, pppp, etc. be the probabilities of Bobby’s choices. Under the
hypothesis of random choices, the vector of rescaled probabilities

(3prrr, 3pppp, 3psss, prrp, prpp, prrs, prss, ppps, ppss)

is a point in the toric variety discussed in Example 1.3.8. Sally can thus use the
Markov basis given there to test her hypothesis that Bobby makes random choices.
All she needs to do is to run the Metropolis-Hastings Algorithm 1.1.13, and then
apply the hypothesis testing framework that was outlined in Section 1.1. Note,
however, that the rescaling of the probabilities leads to an adjustment of the hy-
pergeometric distribution in (1.1.10). In this adjustment we divide the numerator
of (1.1.10) by 3urrr+uppp+usss (or multiply by 3urrp+urpp+urrs+urss+upps+upss) and
apply the corresponding division (or multiplication) to each term in the sum in
the denominator. �


