
Chapter 2

Weak Solutions,
A Priori Estimates

The fundamental laws of continuum mechanics interpreted as infinite families of
integral identities introduced in Chapter 1, rather than systems of partial differ-
ential equations, give rise to the concept of weak (or variational) solutions that
can be vastly extended to extremely divers physical systems of various sorts. The
main stumbling block of this approach when applied to the field equations of fluid
mechanics is the fact that the available a priori estimates are not strong enough in
order to control the flux of the total energy and/or the dissipation rate of the ki-
netic energy. This difficulty has been known since the seminal work of Leray [132]
on the incompressible Navier-Stokes system, where the validity of the so-called
energy equality remains an open problem, even in the class of suitable weak solu-
tions introduced by Caffarelli et al. [37]. The question is whether or not the rate of
decay of the kinetic energy equals the dissipation rate due to viscosity as predicted
by formula (1.39). It seems worth noting that certain weak solutions to hyperbolic
conservation laws indeed dissipate the kinetic energy whereas classical solutions
of the same problem, provided they exist, do not. On the other hand, however, we
are still very far from complete understanding of possible singularities, if any, that
may be developed by solutions to dissipative systems studied in fluid mechanics.
The problem seems even more complex in the framework of compressible fluids,
where Hoff [113] showed that singularities survive in the course of evolution pro-
vided they were present in the initial data. However, it is still not known if the
density may develop “blow up” (gravitational collapse) or vanish (vacuum state)
in a finite time. Quite recently, Brenner [28] proposed a daring new approach to
fluid mechanics, where at least some of the above mentioned difficulties are likely
to be eliminated.

Given the recent state of the art, we anticipate the hypothetical possibility
that the weak solutions may indeed dissipate more kinetic energy than indicated
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by (1.33), thereby replacing the classical expression of the entropy production rate
(1.39) by an inequality

σ ≥ 1
ϑ

(
S : ∇xu − q

ϑ
· ∇xϑ

)
. (2.1)

Similarly to the theory of hyperbolic systems, the entropy production rate σ is
now to be understood as a non-negative measure on the set [0, T ] × Ω, whereas
the term ∫ T

0

∫
Ω

σϕ dx is replaced by 〈σ; ϕ〉[M+;C]([0,T ]×Ω) in (1.40).

Although it may seem that changing equation to mere inequality may con-
siderably extend the class of possible solutions, it is easy to verify that inequality
(2.1) reduces to the classical formula (1.39) as soon as the weak solution is regular
and satisfies the global energy balance (1.36). By a regular solution we mean that
all state variables �, u, ϑ are continuously differentiable up to the boundary of the
space-time cylinder [0, T ] × Ω, possess all the necessary derivatives in (0, T ) × Ω,
and �, ϑ are strictly positive. Indeed if ϑ is smooth we are allowed to use the
quantity ϑϕ as a test function in (1.40) to obtain∫ T

0

∫
Ω

�s
(
∂tϑ + u · ∇xϑ

)
ϕ dx dt +

∫ T

0

∫
Ω

�sϑ
(
∂tϕ + u · ∇xϕ

)
dx dt

+
∫ T

0

∫
Ω

q · ∇xϕ dx dt + 〈σ; ϑϕ〉 +
∫ T

0

∫
Ω

q
ϑ
· ∇xϑϕ dx dt

= −
∫ T

0

∫
Ω

�Qϕ dx dt

for any ϕ ∈ C∞
c ((0, T ) × Ω). Moreover, as �, u satisfy the equation of continuity

(1.22), we get∫ T

0

∫
Ω

�s
(
∂tϑ + u · ∇xϑ

)
ϕ dx dt +

∫ T

0

∫
Ω

�sϑ
(
∂tϕ + u · ∇xϕ

)
dx dt

= −
∫ T

0

∫
Ω

�ϑ
(
∂ts + u · ∇xs

)
ϕ dx dt

= −
∫ T

0

∫
Ω

�
(
∂te + u · ∇xe

)
ϕ dx dt −

∫ T

0

∫
Ω

pdivxuϕ dx,

where we have used Gibbs’ relation (1.2). Consequently, we deduce∫
Ω

�e(�, ϑ)(t2) dx −
∫

Ω

�e(�, ϑ)(t1) dx

=
∫ t2

t1

∫
Ω

(
�Q− pdivxu

)
dx dt +

∫ t2

t1

∫
Ω

(
ϑσ +

q
ϑ
· ∇xϑ

)
dx dt

for 0 < t1 ≤ t2 < T .
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Conversely, since regular solutions necessarily satisfy the kinetic energy equa-
tion (1.33), we can use the total energy balance (1.36) in order to conclude that

∫
Ω

�e(�, ϑ)(t2) dx −
∫

Ω

�e(�, ϑ)(t1) dx =
∫ t2

t1

∫
Ω

(
�Q+ S : ∇xu− pdivxu

)
dx dt;

whence, by means of (2.1),

σ =
1
ϑ

(
S : ∇xu− q

ϑ
· ∇xϑ

)
in [t1, t2] × Ω.

Note that our approach based on postulating inequality (2.1), together with
equality (1.36) is reminiscent of the concept of weak solutions with defect measure
elaborated by DiPerna and Lions [64] and Alexandre and Villani [5] in the context
of Boltzmann’s equation. Although uniqueness in terms of the data is probably out
of reach of such a theory, the piece of information provided is sufficient in order to
study the qualitative properties of solutions, in particular, the long-time behavior
and singular limits for several scaling parameters tending to zero. Starting from
these ideas, we develop a thermodynamically consistent mathematical model based
on the state variables {�,u, ϑ} and enjoying the following properties:

• The problem admits global-in-time solutions for any initial data of finite
energy.

• The changes of the total energy of the system are only due to the action of
the external source terms represented by f and Q. In the absence of external
sources, the total energy is a constant of motion.

• The total entropy is increasing in time as soon as Q ≥ 0, the system evolves
to a state maximizing the entropy.

• Weak solutions coincide with classical ones provided they are smooth, notably
the entropy production rate σ is equal to the expression on the right-hand
side of (2.1).

2.1 Weak formulation

For reader’s convenience and future use, let us summarize in a concise form the
weak formulation of the problem identified in Chapter 1. The problem consists
of finding a trio {�,u, ϑ} satisfying a family of integral identities referred to in
the future as a Navier-Stokes-Fourier system. We also specify the minimal
regularity of solutions required, and interpret formally the integral identities in
terms of standard partial differential equations provided all quantities involved in
the weak formulation are smooth enough.
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2.1.1 Equation of continuity

(i) Weak (renormalized) formulation:∫ T

0

∫
Ω

�B(�)
(
∂tϕ + u · ∇xϕ

)
dx dt

=
∫ T

0

∫
Ω

b(�)divxuϕ dx dt −
∫

Ω

�0B(�0)ϕ(0, ·) dx. (2.2)

(ii) Admissible test functions:

b ∈ L∞ ∩ C[0,∞), B(�) = B(1) +
∫ �

1

b(z)
z2

dz, (2.3)

ϕ ∈ C1
c ([0, T )× Ω). (2.4)

(iii) Minimal regularity of solutions required:

� ≥ 0, � ∈ L1((0, T ) × Ω), (2.5)

�u ∈ L1((0, T )× Ω; R3), divxu ∈ L1((0, T )× Ω). (2.6)

(iv) Formal interpretation:

∂t(�B(�)) + divx(�B(�)u) + b(�)divxu = 0 in (0, T )× Ω, (2.7)
�(0, ·) = �0, u · n|∂Ω = 0. (2.8)

2.1.2 Balance of linear momentum

(i) Weak formulation:∫ T

0

∫
Ω

(
�u · ∂tϕ + �[u⊗ u] : ∇xϕ + pdivxϕ

)
dx dt

=
∫ T

0

∫
Ω

(
S : ∇xϕ − �f · ϕ

)
dx dt −

∫
Ω

(�u)0 · ϕ(0, ·) dx. (2.9)

(ii) Admissible test functions:

ϕ ∈ C1
c ([0, T )× Ω; R3), (2.10)

and either

ϕ · n|∂Ω = 0 in the case of the complete slip boundary conditions, (2.11)

or
ϕ|∂Ω = 0 in the case of the no-slip boundary conditions. (2.12)
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(iii) Minimal regularity of solutions required:

�u ∈ L1((0, T )× Ω; R3), �|u|2 ∈ L1((0, T ) × Ω), (2.13)

p ∈ L1((0, T ) × Ω), S ∈ L1((0, T ) × Ω; R3×3), �f ∈ L1((0, T ) × Ω; R3), (2.14)

∇xu ∈ L1(0, T ; Lq(Ω; R3×3)), for a certain q > 1; (2.15)

and, either

u · n|∂Ω = 0 in the case of the complete slip boundary conditions, (2.16)

or
u|∂Ω = 0 in the case of the no-slip boundary conditions. (2.17)

(iv) Formal interpretation:

∂t(�u) + divx(�u ⊗ u) + ∇xp = divxS + �f in (0, T )× Ω, (2.18)
(�u)(0, ·) = (�u)0, (2.19)

together with the complete slip boundary conditions

u · n|∂Ω = 0, (Sn) × n|∂Ω = 0, (2.20)

or, alternatively, the no-slip boundary condition

u|∂Ω = 0. (2.21)

2.1.3 Balance of total energy

(i) Weak formulation:∫ T

0

∫
Ω

E(t) dx ∂tψ(t) dt = −
∫ T

0

∫
Ω

(
�u · f(t) + �Q(t)

)
ψ(t) dx dt − ψ(0)E0

(2.22)

E(t) =
1
2
�|u|2(t) + �e(t) for a.a. t ∈ (0, T ). (2.23)

(ii) Admissible test functions:

ψ ∈ C1
c [0, T ). (2.24)

(iii) Minimal regularity of solutions required:

E , �u · f , �Q ∈ L1((0, T ) × Ω). (2.25)

(iv) Formal interpretation:

d
dt

∫
Ω

E dx =
∫

Ω

(
�u · f + �Q

)
dx in (0, T ),

∫
Ω

E(0) dx = E0. (2.26)
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2.1.4 Entropy production

(i) Weak formulation:∫ T

0

∫
Ω

�s
(
∂tϕ + u · ∇xϕ

)
dx dt +

∫ T

0

∫
Ω

q
ϑ
· ∇xϕ dx dt + 〈σ; ϕ〉[M+;C]([0,T ]×Ω)

= −
∫

Ω

(�s)0ϕ(0, ·) dx −
∫ T

0

∫
Ω

�

ϑ
Qϕ dx dt, (2.27)

where σ ∈ M+([0, T ] × Ω),

σ ≥ 1
ϑ

(
S : ∇xu − q

ϑ
· ∇xϑ

)
. (2.28)

(ii) Admissible test functions

ϕ ∈ C1
c ([0, T )× Ω). (2.29)

(iii) Minimal regularity of solutions required:

ϑ > 0 a.a. on (0, T ) × Ω, ϑ ∈ Lq((0, T ) × Ω),

∇xϑ ∈ Lq((0, T ) × Ω; R3), q > 1,
(2.30)

�s ∈ L1((0, T ) × Ω), �su,
q
ϑ
∈ L1((0, T ) × Ω; R3),

�

ϑ
Q ∈ L1((0, T ) × Ω),

(2.31)

1
ϑ

S : ∇xu,
1
ϑ2

q · ∇xϑ ∈ L1((0, T )× Ω). (2.32)

(iv) Formal interpretation:

∂t(�s) + divx(�su) + divx

(q
ϑ

)
≥ 1

ϑ

(
S : ∇xu− q

ϑ
· ∇xϑ

)
+

�

ϑ
Q in (0, T )× Ω, (2.33)

�s(0+, ·) ≥ (�s)0, q · n|∂Ω ≤ 0. (2.34)

2.1.5 Constitutive relations

(i) Gibbs’ equation:

p = p(�, ϑ), e = e(�, ϑ), s = s(�, ϑ) a.a. in (0, T ) × Ω,

where
ϑDs = De + pD

(1
�

)
. (2.35)
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(ii) Newton’s law:

S = μ
(
∇xu + ∇T

x u− 2
3
divxu I

)
+ ηdivxu I a.a. in (0, T ) × Ω, (2.36)

(iii) Fourier’s law:
q = −κ∇xϑ a.a. in (0, T )× Ω. (2.37)

2.2 A priori estimates

A priori estimates represent a corner stone of any mathematical theory related
to a system of nonlinear partial differential equations. The remarkable informal
rule asserts that “if we can establish sufficiently strong estimates for solutions of a
nonlinear partial differential equation under the assumption that such a solution
exists, then the solution does exist”. A priori estimates are natural bounds imposed
on the family of all admissible solutions through the system of equations they
obey, the boundary conditions, and the given data. The modern theory of partial
differential equations is based on function spaces, notably the Sobolev spaces, that
have been identified by means of the corresponding a priori bounds for certain
classes of elliptic equations.

Strictly speaking, a priori estimates are formal, being derived under the
hypothesis that all quantities in question are smooth. However, as we shall see
below, all bounds obtained for the Navier-Stokes-Fourier system hold even
within the class of the weak solutions introduced in Section 2.1. This is due to
the fact that all nowadays available a priori estimates follow from the physical
principle of conservation of the total amount of certain quantities as mass and
total energy, or they result from the dissipative mechanism enforced by means of
the Second law of thermodynamics.

2.2.1 Total mass conservation

Taking b ≡ 0, B = B(1) = 1 in the renormalized equation of continuity (2.2) we
deduce that ∫

Ω

�(t, ·) dx =
∫

Ω

�0 dx = M0 for a.a. t ∈ (0, T ), (2.38)

more specifically, for any t ∈ (0, T ) which is a Lebesgue point of the vector-
valued mapping t 
→ �(t, ·) ∈ L1(Ω). As a matter of fact, in accordance with the
property of weak continuity in time of solutions to abstract balance laws discussed
in Section 1.2, relation (2.38) holds for any t ∈ [0, T ] provided � was redefined on
a set of times of zero measure . Formula (2.38) rigorously confirms the intuitively
obvious fact that the total mass M0 of the fluid contained in a physical domain
Ω is a constant of motion provided the normal component of the velocity field u
vanishes on the boundary ∂Ω.
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2.2.2 Energy estimates

The balance of total energy expressed through (2.22) provides another sample of a
priori estimates. Indeed assuming, for simplicity, that both f and Q are uniformly
bounded we get∣∣∣ ∫

Ω

�f · u + �Q dx
∣∣∣

≤ ‖f‖L∞((0,T )×Ω;R3)

√
M0‖

√
�u‖L2(Ω;R3) + M0‖Q‖L∞((0,T )×Ω);

whence a straightforward application of Gronwall’s lemma to (2.22) gives rise to

ess sup
t∈(0,T )

∫
Ω

(1
2
�|u|2 + �e(�, ϑ)

)
(t) dx

≤ c
(
T, E0, M0, ‖f‖L∞((0,T )×Ω;R3), ‖Q‖L∞((0,T )×Ω)

)
. (2.39)

In particular,

ess sup
t∈(0,T )

∫
Ω

�|u|2(t) dx ≤ c(data), (2.40)

where the symbol c(data) denotes a generic positive constant depending solely on
the data

T, E0, M0, ‖f‖L∞((0,T )×Ω;R3), ‖Q‖L∞((0,T )×Ω), and S0 =
∫

Ω

(�s)0 dx. (2.41)

In order to get more information, we have to exploit the specific structure
of the internal energy function e. In accordance with hypotheses (1.44), (1.50),
(1.54), we have

�e(�, ϑ) ≥ aϑ4 + � lim
ϑ→0

eM (�, ϑ). (2.42)

On the other hand, the molecular component eM is given through (1.45),
(1.46) in the degenerate area � > Zϑ3/2, therefore

lim
ϑ→0

eM (�, ϑ) =
3�

2
3

2
lim
ϑ→0

ϑ
5
2

� 5
3

P
( �

ϑ
3
2

)
=

3�
2
3

2
lim

Z→∞
P (Z)
Z

5
3

, (2.43)

where, in accordance with (1.50),

lim
Z→∞

P (Z)
Z

5
3

= p∞ > 0. (2.44)

Consequently, going back to (2.42) we conclude

�e(�, ϑ) ≥ aϑ4 +
3p∞

2
�

5
3 , (2.45)
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in particular, it follows from (2.39) that

ess sup
t∈(0,T )

∫
Ω

(
ϑ4 + �

5
3

)
(t) dx ≤ c(data). (2.46)

It is important to note that estimate (2.46) yields a uniform bound on the
pressure p = pM + pR. Indeed the pressure is obviously bounded in the degener-
ate area (1.49), where pM satisfies (1.45) and the appropriate bound is provided
by (2.39). Otherwise, using the hypothesis of thermodynamic stability (1.44), we
obtain

0 ≤ pM (�, ϑ) ≤ pM (Zϑ
3
2 , ϑ) = ϑ

5
2 P (Z);

whence the desired bound follows from (2.46) as soon as Ω is bounded. Conse-
quently, we have shown that the energy estimate (2.39) gives rise to

ess sup
t∈(0,T )

∫
Ω

p(�, ϑ)(t) dx ≤ c(data) (2.47)

at least for a bounded domain Ω.

2.2.3 Estimates based on the Second law of thermodynamics

The Second law of thermodynamics asserts the irreversible transfer of the me-
chanical energy into heat valid for all physical systems. This can be expressed
mathematically by means of the entropy production equation (2.27). In order to
utilize this relation for obtaining a priori bounds, we introduce a remarkable quan-
tity which will play a crucial role not only in the existence theory but also in the
study of singular limits.

� Helmholtz Function:

Hϑ(�, ϑ) = �
(
e(�, ϑ) − ϑs(�, ϑ)

)
, (2.48)

where ϑ is a positive constant.

Obviously, the quantity Hϑ is reminiscent of the Helmholtz free energy albeit in
the latter ϑ must be replaced by ϑ.

It follows from Gibbs’ relation (2.35) that

∂2Hϑ(�, ϑ)
∂�2

=
1
�

∂p(�, ϑ)
∂�

=
1
�

∂pM (�, ϑ)
∂�

, (2.49)

while

∂Hϑ(�, ϑ)
∂ϑ

=
�

ϑ
(ϑ − ϑ)

∂e(�, ϑ)
∂ϑ

= 4aϑ2(ϑ − ϑ) +
�

ϑ
(ϑ − ϑ)

∂eM (�, ϑ)
∂ϑ

. (2.50)
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Thus, as a direct consequence of the hypothesis of thermodynamic stability (1.44),
we thereby infer that

• � 
→ Hϑ(�, ϑ) is a strictly convex function, which, being augmented by a
suitable affine function of �, attains its global minimum at some positive �,

• the function ϑ 
→ Hϑ(�, ϑ) is decreasing for ϑ < ϑ and increasing for ϑ > ϑ,
in particular, it attains its (global) minimum at ϑ = ϑ for any fixed �.

The total energy balance (2.22), together with the entropy production equa-
tion (2.27), gives rise to∫

Ω

(1
2
�|u|2 + Hϑ(�, ϑ)

)
(τ) dx + ϑσ

[
[0, τ ] × Ω

]
= E0 − ϑS0 +

∫ τ

0

∫
Ω

[
�
(
Q− ϑ

ϑ
Q
)

+ �f · u
]

dx dt (2.51)

for a.a. τ ∈ (0, T ), where we have introduced the symbol σ[Q] to denote the value
of the measure σ applied to a Borel set Q.

Now suppose there exists a positive number � > 0 such that∫
Ω

(� − �)(t) dx = 0 for any t ∈ [0, T ].

Clearly, if Ω is a bounded domain, we have � = M0/|Ω|, where M0 is the total
mass of the fluid. Accordingly, relation (2.51) can be rewritten as

� Total Dissipation Balance:

∫
Ω

(1
2
�|u|2 + Hϑ(�, ϑ) − (� − �)

∂Hϑ(�, ϑ)
∂�

− Hϑ(�, ϑ)
)
(τ) dx + ϑσ

[
[0, τ ] × Ω

]
= E0 − ϑS0 −

∫
Ω

(
(�0 − �)

∂Hϑ(�, ϑ)
∂�

+ Hϑ(�, ϑ)
)

dx

+
∫ τ

0

∫
Ω

(
�
(
Q− ϑ

ϑ
Q
)

+ �f · u
)

dx dt (2.52)

for a.a. τ ∈ (0, T ).

at least if Ω is a bounded domain. In contrast with (2.51), the quantity Hϑ(�, ϑ)−
(� − �)∂Hϑ

∂� (�, ϑ) − Hϑ(�, ϑ) at the left-hand side is obviously non-negative as a
direct consequence of the hypothesis of thermodynamic stability.

Consequently, assuming Q ≥ 0, we can use (2.28), together with (2.52), in
order to obtain ∫ T

0

∫
Ω

1
ϑ

(
S : ∇xu − q · ∇xϑ

ϑ

)
dx ≤ c(data). (2.53)
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As the transport terms S, q are given by (1.42), (1.43), notably they are linear
functions of the affinities ∇xu, ∇xϑ, respectively, we get

∫ T

0

∫
Ω

μ

ϑ

∣∣∣∇xu + ∇⊥
x u − 2

3
divxu I

∣∣∣2 dx dt ≤ c(data), (2.54)

and ∫ T

0

∫
Ω

κ

ϑ2
|∇xϑ|2 dx dt ≤ c(data). (2.55)

In order to continue, we have to specify the structural properties to be im-
posed on the transport coefficients μ and κ. In view of (1.52), it seems reasonable
to assume that the heat conductivity coefficient κ = κM + κR satisfies

0 < κM (1 + ϑα) ≤ κM (ϑ) ≤ κM (1 + ϑα),

0 < κRϑ3 ≤ κR(ϑ) ≤ κR(1 + ϑ3),
(2.56)

where κM , κM , κR, κR are positive constants.

Similarly, the shear viscosity coefficient μ obeys

0 < μ(1 + ϑα) ≤ μ(ϑ) ≤ μ(1 + ϑα) (2.57)

for any ϑ ≥ 0, positive constants μ, μ, and a positive exponent α specified below.
Note that κM , μ are not allowed to depend explicitly on � – a hypothesis that is
crucial in existence theory but entirely irrelevant in the study of singular limits.
We remark that such a stipulation is physically relevant at least for gases (see
Becker [20]) and certain liquids.

Keeping (2.56) in mind we deduce from (2.55) that

∫ T

0

∫
Ω

(
|∇x log(ϑ)|2 + |∇xϑ

3
2 |2
)

dx dt ≤ c(data). (2.58)

Combining (2.58) with (2.46) we conclude that the temperature ϑ(t, ·) be-
longs to W 1,2(Ω) for a.a. t ∈ (0, T ), where the symbol W 1,2(Ω) stands for the
Sobolev space of functions belonging with their gradients to the Lebesgue space
L2(Ω) (cf. the relevant part in Section 0.3). More specifically, we have, by the
standard Poincaré’s inequality (Theorem 10.14),

‖ ϑβ ‖L2(0,T ;W 1,2(Ω)) ≤ c(data) for any 1 ≤ β ≤ 3
2
. (2.59)

A similar estimate for log(ϑ) is more delicate and is postponed to the next section.
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From estimate (2.54) and Hölder’s inequality we get∥∥∥∇xu + ∇⊥
x u − 2

3
divxu I

∥∥∥
Lp(Ω;R3×3)

≤
∥∥∥
√

ϑ

μ(ϑ)

∥∥∥
Lq(Ω)

∥∥∥
√

μ(ϑ)
ϑ

(
∇xu + ∇⊥

x u − 2
3
divxu I

)∥∥∥
L2(Ω;R3×3)

≤ c‖(1 + ϑ
1−α

2 )‖Lq(Ω)

∥∥∥
√

μ(ϑ)
ϑ

(
∇xu + ∇⊥

x u − 2
3
divxu I

)∥∥∥
L2(Ω;R3×3)

provided
1
p

=
1
q

+
1
2
.

Thus we deduce from estimates (2.46), (2.54) that∥∥∥∇xu + ∇⊥
x u− 2

3
divxu I

∥∥∥
L2(0,T ;Lp(Ω;R3×3))

≤ c(data) (2.60)

for
p =

8
5 − α

, 0 ≤ α ≤ 1. (2.61)

Similarly, in accordance with (2.59) and the standard embedding W 1,2(Ω) ↪→
L6(Ω) (see Theorem 0.4), we have

‖ ϑ ‖L3(0,T ;L9(Ω)) ≤ c(data); (2.62)

whence, following the arguments leading to (2.60),∥∥∥∇xu + ∇⊥
x u− 2

3
divxu I

∥∥∥
Lq(0,T ;Lp(Ω;R3×3))

≤ c(data) (2.63)

for
q =

6
4 − α

, p =
18

10 − α
, 0 ≤ α ≤ 1. (2.64)

As we will see below, the range of suitable values of the parameter α in (2.61),
(2.62) is subjected to further restrictions.

The previous estimates concern only certain components of the velocity gra-
dient. In order to get uniform bounds on ∇xu, we need the following version of
Korn’s inequality proved in Theorem 10.17 in the Appendix.

� Generalized Korn-Poincaré Inequality:

Proposition 2.1. Let Ω ⊂ R
3 be a bounded Lipschitz domain. Assume that r is a

non-negative function such that

0 < M0 ≤
∫

Ω

r dx,

∫
Ω

rγ dx ≤ K for a certain γ > 1.
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Then

‖v‖W 1,p(Ω;R3) ≤ c(p, M0, K)
(∥∥∥∇xv + ∇⊥

x v − 2
3
divxv I

∥∥∥
Lp(Ω;R3)

+
∫

Ω

r|v| dx
)

for any v ∈ W 1,p(Ω; R3), 1 < p < ∞.

Applying Proposition 2.1 with r = �, γ = 5
3 , v = u, we can use estimates

(2.40), (2.46), (2.60), and (2.63) to conclude that

‖ u ‖L2(0,T ;W 1,p(Ω;R3)) ≤ c(data) for p =
8

5 − α
, (2.65)

and

‖ u ‖Lq(0,T ;W 1,p(Ω;R3)) ≤ c(data) for q =
6

4 − α
, p =

18
10 − α

. (2.66)

Estimates (2.65), (2.66) imply uniform bounds on the viscous stress tensor
S. To see this, write

μ(ϑ)
(
∇xu + ∇⊥

x u − 2
3
divxu I

)
=
√

ϑμ(ϑ)

√
μ(ϑ)

ϑ

(
∇xu + ∇⊥

x u − 2
3
divxu I

)
,

where
√

μ(ϑ)
ϑ

(
∇xu+∇⊥

x u− 2
3divxu I

)
admits the bound established in (2.54). On

the other hand, in view of estimates (2.46), (2.62), ϑ is bounded in L
17
3 ((0, T ) ×

Ω). This fact combined with hypothesis (2.57) yields boundedness of
√

ϑμ(ϑ) in
Lp((0, T ) × Ω) for a certain p > 2. Assuming the bulk viscosity η satisfies

0 ≤ η(ϑ) ≤ c(1 + ϑα), (2.67)

with the same exponent α as in (2.57), we obtain

‖ S ‖Lq(0,T ;Lq(Ω;R3×3)) ≤ c(data) for a certain q > 1. (2.68)

In a similar way, we can deduce estimates on the linear momentum and the
kinetic energy. By virtue of the standard embedding relation W 1,p(Ω) ↪→ Lq(Ω),
q ≤ 3p/(3 − p) (Theorem 0.4), we get

‖ u ‖
L2(0,T ;L

24
7−3α (Ω;R3))

+ ‖ u ‖
L

6
4−α (0,T ;L

18
4−α (Ω;R3))

≤ c(data), (2.69)

see (2.65), (2.66). On the other hand, by virtue of (2.40), (2.46),

ess sup
t∈(0,T )

‖�u‖
L

5
4 (Ω;R3)

≤ c(data). (2.70)

Combining the last two estimates, we get

‖ �u⊗ u ‖Lq((0,T )×Ω;R3×3)) ≤ c(data) for a certain q > 1, (2.71)
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provided

α >
2
5
. (2.72)

It is worth noting that (2.72) allows for the physically relevant exponent α = 1/2
(cf. Section 1.4.4).

2.2.4 Positivity of the absolute temperature

Our goal is to exploit estimate (2.58) in order to show∫ T

0

∫
Ω

(
| logϑ|2 + |∇x log ϑ|2

)
dx dt ≤ c(data). (2.73)

Formula (2.73) not only facilitates future analysis but is also physically relevant
as it implies positivity of the absolute temperature with a possible exception of a
set of Lebesgue measure zero.

In order to establish (2.73), we introduce the following version of Poincaré’s
inequality proved in Theorem 10.14 in the Appendix.

� Poincaré’s Inequality:

Proposition 2.2. Let Ω ⊂ R3 be a bounded Lipschitz domain. Let V ⊂ Ω be a
measurable set such that

|V | ≥ V0 > 0.

Then there exists a positive constant c = c(V0) such that

‖ v ‖W 1,2(Ω) ≤ c(V0)
(
‖∇xv‖L2(Ω;R3) +

∫
V

|v|dx
)

for any v ∈ W 1,2(Ω).

In view of Proposition 2.2 the desired relation (2.73) will follow from (2.58) as
soon as we show that the temperature ϑ cannot vanish identically in the physical
domain Ω. As the hypothetical state of a system with zero temperature minimizes
the entropy, it is natural to evoke the Second law of thermodynamics expressed in
terms of the entropy balance (2.27).

The total entropy of the system
∫
Ω �s(�, ϑ) dx is a non-decreasing function

of time provided the heat source Q is non-negative. In particular,∫
Ω

�s(�, ϑ)(t, ·) dx ≥
∫

Ω

(�s)0 dx for a.a. t ∈ (0, T ), (2.74)

where we assume that the initial distribution of the entropy is compatible with that
for the density, that means, (�s)0 = �0s(�0, ϑ0) for a suitable initial temperature
distribution ϑ0.
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If � ≥ Zϑ
3
2 , meaning if (�, ϑ) belong to the degenerate region introduced in

(1.49), the pressure p and the internal energy e are interrelated through (1.45),
(1.46). Then it is easy to check, by means of Gibbs’ equation (2.35), that the
specific entropy s can be written in the form s = sM + sR, where

sM (�, ϑ) = S(Z), Z =
�

ϑ
3
2
, S′(Z) = −3

2

5
3P (Z) − P ′(Z)Z

Z2
, Z ≥ Z. (2.75)

The quantity
5
3P (Z) − P ′(Z)Z

Z

plays a role of the specific heat at constant volume and is strictly positive in
accordance with the hypothesis of thermodynamic stability (1.44). In particular,
we can set

s∞ = lim
Z→∞

S(Z) = lim
ϑ→0

sM (�, ϑ) ≥ −∞ for any fixed � > 0. (2.76)

Moreover, modifying S by a suitable additive constant, we can assume s∞ = 0 in
the case when the limit is finite.

In order to proceed we need the following assertion that may be of indepen-
dent interest. The claim is that the absolute temperature ϑ must remain strictly
positive at least on a set of positive measure.

Lemma 2.1. Let Ω ⊂ R3 be a bounded Lipschitz domain. Assume that non-negative
functions �, ϑ satisfy

0 < M0 =
∫

Ω

� dx,

∫
Ω

(
ϑ4 + �

5
3

)
dx ≤ K,

and ∫
Ω

�s(�, ϑ) dx ≥ S0 > M0s∞ for a certain S0, (2.77)

where s∞ ∈ {0,−∞} is determined by (2.76).
Then there are ϑ > 0 and V0 > 0, depending only on M0, K, and S0 such

that ∣∣∣{x ∈ Ω
∣∣∣ ϑ(x) > ϑ

}∣∣∣ ≥ V0.

Proof. Arguing by contradiction we construct a sequence �n, ϑn satisfying (2.77)
and such that

�n → � weakly in L
5
3 (Ω),

∫
Ω

� dx = M0,∣∣{x ∈ Ω |ϑn > 1
n

}∣∣ < 1
n .

(2.78)

In particular,

ϑn → 0 (strongly) in Lp(Ω) for any 1 ≤ p < 4,

�nsR(�n, ϑn) =
4
3
aϑ3

n → 0 in L1(Ω).
(2.79)
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Next we claim that

lim sup
n→∞

∫
{�n≤Zϑ

3
2
n }

�nsM (�n, ϑn) dx ≤ 0. (2.80)

In order to see (2.80), we first observe that the specific (molecular) entropy sM is
increasing in ϑ; whence

sM (�, ϑ) ≤
{

sM (�, 1) if ϑ < 1,

sM (�, 1) +
∫ ϑ

1
∂sM (�,z)

∂z dz ≤ sM (�, 1) + c log ϑ for ϑ ≥ 1,

where we have used hypothesis (1.51). On the other hand, it follows from Gibbs’
equation (2.35) that

∂sM (�, ϑ)
∂�

= − 1
�2

∂pM (�, ϑ)
∂ϑ

;

whence
|sM (�, 1)| ≤ c(Z)(1 + | log(�)|) for all � ≤ Z.

Resuming the above inequalities yields

|sM (�, ϑ)| ≤ c(1 + | log(�)| + | log(ϑ)|). (2.81)

Returning to (2.80) we get∫
{�n≤Zϑ

3
2
n }

�nsM (�n, ϑn) dx ≤ c

∫
{�n≤Zϑ

3
2
n }

�n(1 + | log(�n)| + | log(ϑn)|) dx

≤ c(Z)
∫

Ω

(ϑ
3
2
n + ϑ

3
4
n
√

�n| log(
√

�n)| + ϑn

√
ϑn| log(

√
ϑn)|) dx → 0,

where we have used (2.78), (2.79).
Finally, we have

�sM (�, ϑ) = �S
( �

ϑ
3
2

)
in the degenerate area � > Zϑ

3
2 , and, consequently,∫

{�n>Zϑ
3
2
n }

�nsM (�n, ϑn) dx

=
∫
{Zϑ

3
2
n >�n>Zϑ

3
2
n }

�nS
( �n

ϑ
3
2
n

)
dx +

∫
{�n≥Zϑ

3
2
n }

�nS
( �n

ϑ
3
2
n

)
dx,

where ∫
{Zϑ

3
2
n >�n≥Zϑ

3
2
n }

�nS
( �n

ϑ
3
2
n

)
dx ≤ S(Z)Z

∫
Ω

ϑ
3
2
n dx → 0. (2.82)
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Combining (2.79–2.82), together with hypothesis (2.77), we conclude that

lim inf
n→∞

∫
{�n>Zϑ

3
2
n }

�nS
( �n

ϑ
3
2
n

)
dx > M0s∞ for any Z > Z. (2.83)

However, relation (2.83) leads immediately to contradiction as∫
{�n>Zϑ

3
2
n }

�nS
( �n

ϑ
3
2
n

)
dx ≤ S(Z)

∫
{�n>Zϑ

3
2
n }

�n dx → S(Z)M0.

Indeed write
∫
Ω

�n dx as
∫
{�n≤Zϑ

3
2
n }

�n dx +
∫
{�n>Zϑ

3
2
n }

�n dx, and observe that

0 ≤
∫
{�n≤Zϑ

3
2
n }

�n dx =
∫
{�n≤Z( 1

n )
3
2 }

�n dx +
∫
{ϑn> 1

n}
�n dx,

where the right-hand side tends to 0 by virtue of (2.77). �

By means of Proposition 2.2 and Lemma 2.1, it is easy to check that estimates
(2.46), (2.58) give rise to (2.73).

2.2.5 Pressure estimates

The central problem of the mathematical theory of the Navier-Stokes-Fourier

system is to control the pressure. Under the constitutive relations considered in
this book, the pressure p is proportional to the volumetric density of the internal
energy �e that is a priori bounded in L1(Ω) uniformly with respect to time, see
(2.45–2.47). This section aims to find a priori estimates for p in the weakly closed
reflexive space Lq((0, T ) × Ω) for a certain q > 1. To this end, the basic idea is
to “compute” p by means of the momentum equation (2.9) and use the available
estimates in order to control the remaining terms. Such an approach, however,
faces serious technical difficulties, in particular because of the presence of the time
derivative ∂t(�u) in the momentum equation. Instead we use the quantities

ϕ(t, x) = ψ(t)φ(t, x), with φ = B
[
h(�) − 1

|Ω|

∫
Ω

h(�) dx
]
, ψ ∈ C∞

c (0, T ) (2.84)

as test functions in the momentum equation (2.9), where B is a suitable branch of
the inverse div−1

x .
There are several ways to construct the operator B, here we adopt the for-

mula proposed by Bogovskii (see Section 10.5 in the Appendix). In particular, the
operator B enjoys the following properties.
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� Bogovskii Operator B ≈ div−1
x :

(b1) Given

g ∈ C∞
c (Ω),

∫
Ω

g dx = 0,

the vector field B[g] satisfies

B[g] ∈ C∞
c (Ω; R3), divxB[g] = g. (2.85)

(b2) For any non-negative integer m and any 1 < q < ∞,

‖ B[g] ‖W m+1,q(Ω;R3) ≤ c‖g‖W m,q(Ω) (2.86)

provided Ω ⊂ R
3 is a Lipschitz domain, in particular, the operator B can be

extended to functions g ∈ Lq(Ω) with zero mean satisfying

B[g]|∂Ω = 0 in the sense of traces. (2.87)

(b3) If g ∈ Lq(Ω), 1 < q < ∞, and, in addition,

g = divxG, G ∈ Lp(Ω; R3), G · n|∂Ω = 0,

then
‖ B[g] ‖Lp(Ω;R3) ≤ c‖G‖Lp(Ω;R3). (2.88)

In order to render the test functions (2.84) admissible, we take

ϕα(t, x) = ψ(t)[φ]α(t, x), with [φ]α = B
[
h(�) − 1

|Ω|

∫
Ω

h(�) dx
]α

, ψ ∈ C∞
c (0, T ),

(2.89)
where h is a smooth bounded function, and the symbol [v]α denotes convolution
in the time variable t with a suitable family of regularizing kernels (see Section
10.1 in Appendix). Here, we have extended h(�) to be zero outside the interval
[0, T ].

Since �, u satisfy the renormalized equation (2.2), we easily deduce that

∂t

[
h(�)

]α
+ divx

[
h(�)u

]α
+
[
(�h′(�) − h(�))divxu

]α
= 0

for any t ∈ (α, T − α) and a.a. x ∈ Ω,
(2.90)

in particular, from the properties (b2), (b3) we may infer that

∂t[φ]α = − B
[
divx(h(�)u)

]α
(2.91)

− B
[(

�h′(�) − h(�)
)
divxu− 1

|Ω|

∫
Ω

(
�h′(�) − h(�)

)
divxu dx

]α
(cf. Section 10.5 in Appendix).
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By virtue of (2.86–2.88), we obtain

‖ [φ]α(t, ·) ‖W 1,p(Ω;R3) ≤ c(p, Ω)‖ [h(�)]α(t, ·) ‖Lp(Ω), 1 < p < ∞, (2.92)

and

‖ [∂tφ]α(t, ·) ‖Lp(Ω;R3) ≤ c(p, s, Ω) ‖ [h(�)u]α(t, ·) ‖Lp(Ω) (2.93)

+

{
‖ [(�h′(�) − h(�))divu]α(t, ·) ‖

L
3p

3+p (Ω)
if 3

2 < p < ∞,

‖[(�h′(�) − h(�))divu]α(t, ·) ‖Ls(Ω) for any 1 < s < ∞ if 1 ≤ p ≤ 3
2 ,

for any t ∈ [α, T − α].
Having completed the preliminary considerations we take the quantities ϕα

specified in (2.89) as test functions in the momentum equation (2.9) to obtain∫ T

0

(
ψ

∫
Ω

p(�, ϑ)[h(�)]α dx
)

dt =
5∑

j=1

Ij , (2.94)

where

I1 =
1
|Ω|

∫ T

0

(
ψ

∫
Ω

[h(�)]α
∫

Ω

p(�, ϑ) dx
)

dt,

I2 = −
∫ T

0

(
ψ

∫
Ω

�u · ∂t[φ]α dx
)

dt,

I3 = −
∫ T

0

(
ψ

∫
Ω

�u⊗ u : ∇x[φ]α dx
)

dt,

I4 =
∫ T

0

(
ψ

∫
Ω

S : ∇x[φ]α dx
)

dt,

I5 = −
∫ T

0

(
ψ

∫
Ω

�f · [φ]α dx
)

dt,

and

I6 = −
∫ T

0

(
ψ′
∫

Ω

�u · [φ]α dx
)

dt.

Now, our intention is to use the uniform bounds established in Section 2.2.3,
together with the integral identity (2.94), in order to show that∫ T

0

∫
Ω

p(�, ϑ)�ν dx dt ≤ c(data) for a certain ν > 0. (2.95)

To this end, the integrals I1, . . . , I6 are estimated by means of Hölder’s in-
equality as follows:

|I1| ≤ ‖ψ‖L∞(0,T ) ‖ [h(�)]α ‖L1((0,T )×Ω) ‖p(�, ϑ)‖L∞(0,T ;L1(Ω)),

|I2| ≤ ‖ψ‖L∞(0,T ) ‖�u‖L∞(0,T ;L
5
4 (Ω;R3))

‖∂t[φ]α‖L1(0,T ;L5(Ω;R3)),
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|I3| ≤ ‖ψ‖L∞(0,T ) ‖�u⊗ u‖Lp((0,T )×Ω;R3×3) ‖∇x[φ]α‖Lp′((0,T )×Ω;R3),

where p is the same as in (2.71),
|I4| ≤ ‖ψ‖L∞(0,T ) ‖ S ‖Lq((0,T )×Ω;R3×3) ‖∇x[φ]α‖Lq′ ((0,T )×Ω;R3×3),

1
q

+
1
q′

= 1, with the same q as in (2.68),

|I5| ≤ ‖ψ‖L∞(0,T ) ‖f‖L∞((0,T )×Ω;R3)‖�‖L∞(0,T ;L
5
3 (Ω))

‖[φ]α‖
L1(0,T ;L

5
2 (Ω;R3))

,

|I6| ≤ ‖ψ′‖L1(0,T ) ‖�u‖L∞(0,T ;L
5
4 (Ω;R3))

‖ [φ]α ‖L∞(0,T ;L5(Ω;R3)).

Furthermore, by virtue of the uniform bounds established in (2.92), (2.93),
the above estimates are independent of the value of the parameter α, specifically,

|I1| ≤ ‖ψ‖L∞(0,T ) ‖h(�)‖L1((0,T )×Ω) ‖p(�, ϑ)‖L∞(0,T ;L1(Ω)),

|I2| ≤ ‖ψ‖L∞(0,T ) ‖�u‖L∞(0,T ;L
5
4 (Ω;R3))

×
(
‖h(�)u‖L1(0,T ;L5(Ω;R3)) + ‖(�h′(�) − h(�))divxu‖

L1(0,T ;L
15
8 (Ω))

)
,

|I3| ≤ ‖ψ‖L∞(0,T ) ‖�u⊗ u‖Lp((0,T )×Ω;R3×3) ‖h(�)‖Lp′((0,T )×Ω),

with p as in (2.71),
|I4| ≤ ‖ψ‖L∞(0,T ) ‖S‖Lq((0,T )×Ω;R3×3) ‖h(�)‖Lq′((0,T )×Ω),

with q as in (2.68),
|I5| ≤ ‖ψ‖L∞(0,T ) ‖f‖L∞((0,T )×Ω;R3)‖�‖L∞(0,T ;L

5
3 (Ω))

‖h(�)‖
L1(0,T ;L

15
11 (Ω))

,

|I6| ≤ ‖ψ′‖L1(0,T ) ‖�u‖L∞(0,T ;L
5
4 (Ω;R3))

‖h(�)‖
L∞(0,T ;L

15
8 (Ω))

.

Consequently, taking h(�) ≈ �ν in (2.94) for a sufficiently small ν > 0 and
sufficiently large values of �, we can use estimates (2.46), (2.47), (2.68–2.71), to-
gether with the bounds on the integrals I1, . . . , I6 established above, in order to
obtain the desired estimate (2.95).

Furthermore, as

c�
5
3 ≤ pM (�, ϑ) ≤ c

{
�ϑ for � ≤ Zϑ

3
2 ,

�
5
3 for � ≥ Zϑ

3
2 ,

(2.96)

estimate (2.95) implies

‖�‖
L

5
3+ν((0,T )×Ω)

≤ c(data). (2.97)

Finally (2.97) together with (2.46) and (2.96) yields

‖pM (�, ϑ)‖Lp((0,T )×Ω) ≤ c(data) for some p > 1. (2.98)



2.2. A priori estimates 39

2.2.6 Pressure estimates, an alternative approach

The approach to pressure estimates based on the operator B ≈ div−1
x requires

a certain minimal regularity of the boundary ∂Ω. In the remaining part of this
chapter, we briefly discuss an alternative method yielding uniform estimates in
the interior of the physical domain together with equi-integrability of the pressure
up to the boundary. In particular, the interior estimates may be of independent
interest since they are sufficient for resolving the problem of global existence for the
Navier-Stokes-Fourier system provided the equality sign in the total energy
balance (2.22) is relaxed to inequality “≤”.

Local pressure estimates. Similarly to the preceding part, the basic idea is to
“compute” the pressure by means of the momentum equation (2.9). In order to
do it locally, we introduce a family of test functions

ϕ(t, x) = ψ(t)η(x)(∇xΔ−1
x )[1Ωh(�)], (2.99)

where ψ ∈ C∞
c (0, T ), η ∈ C∞

c (Ω), h ∈ C∞
c (0,∞),

0 ≤ ψ, η ≤ 1, and h(r) = rν for r ≥ 1

for a suitable exponent ν > 0. Here the symbol Δ−1
x stands for the inverse of

the Laplace operator on the whole space R3, specifically, in terms of the Fourier
transform Fx→ξ,

Δ−1
x [v](x) = −F−1

ξ→x

[Fx→ξ[v]
|ξ|2

]
, (2.100)

see Sections 0.5 and 10.16.
Note that

∇xϕ = ψ∇xη ⊗∇xΔ−1
x [1Ωh(�)] + ψηR[1Ωh(�)],

where

R = [∇x ⊗∇x]Δ−1
x , Ri,j [v](x) = F−1

[ξiξjFx→ξ[v]
|ξ|2

]
(2.101)

is a superposition of two Riesz maps. By virtue of the classical Calderón-Zygmund
theory, the operator Ri,j is bounded on Lp(R3) for any 1 < p < ∞. In particular,
ϕ ∈ Lq(0, T ; W 1,p

0 (Ω; R3)) whenever h(�) ∈ Lq(0, T ; Lp(Ω)) for certain 1 ≤ q ≤ ∞,
1 < p < ∞, see Section 10.16 in Appendix.

Similarly, using the renormalized equation (2.2) with b(�) = h′(�)�−h(�) we
“compute”

∂tϕ = ∂tψη∇xΔ−1
x [1Ωh(�)]

+ ψη
(
∇xΔ−1

x

[
1Ω(h(�) − h′(�)�)divxu

]
−∇xΔ−1

x [divx(1Ωh(�)u)]
)
.
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Let us point out that equation (2.2) holds on the whole space R3 provided u has
been extended outside Ω and h replaced by 1Ωh(�). Note that functions belonging
to W 1,p(Ω) can be extended outside Ω to be in the space W 1,p(R3) as soon as Ω
is a bounded Lipschitz domain.

It follows from the above discussion that the quantity ϕ specified in (2.99)
can be taken as a test function in the momentum equation (2.9), more precisely,
the function ϕ, together with its first derivatives, can be approximated in the Lp-
norm by a suitable family of regular test functions satisfying (2.10), (2.12). Thus
we get ∫ T

0

∫
Ω

ψη
(
ph(�) − S : R[1Ωh(�)]

)
dx dt =

7∑
j=1

Ij , (2.102)

where

I1 =
∫ T

0

∫
Ω

ψη
(
�u · R[1Ωh(�)u] − (�u ⊗ u) : R[1Ωh(�)]

)
dx dt,

I2 = −
∫ T

0

∫
Ω

ψη �u · ∇xΔ−1
x

[
1Ω(h(�) − h′(�)�)divxu

]
dx dt,

I3 = −
∫ T

0

∫
Ω

ψη�f · ∇xΔ−1
x [1Ωh(�)] dx dt,

I4 = −
∫ T

0

∫
Ω

ψp∇xη · ∇xΔ−1
x [1Ωh(�)] dx dt,

I5 =
∫ T

0

∫
Ω

ψS : ∇xη ⊗∇xΔ−1
x [1Ωh(�)] dx dt,

I6 = −
∫ T

0

∫
Ω

ψ(�u⊗ u) : ∇xη ⊗∇xΔ−1[1Ωh(�)] dx dt,

and

I7 = −
∫ T

0

∫
Ω

∂tψ η�u · ∇xΔ−1
x [1Ωh(�)] dx dt.

Here, we have used the notation

A : R ≡
3∑

i,j=1

Ai,jRi,j , R[v]i ≡
3∑

j=1

Ri,j [vj ], i = 1, 2, 3.

Exactly as in Section 2.2.5, the integral identity (2.102) can be used to es-
tablish a bound∫ T

0

∫
K

p(�, ϑ)�ν dx dt ≤ c(data, K) for a certain ν > 0, (2.103)
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and, consequently,∫ T

0

∫
K

�
5
3+ν dx dt ≤ c(data, K), (2.104)∫ T

0

∫
K

|p(�, ϑ)|r dx dt ≤ c(data, K) for a certain r > 1 (2.105)

for any compact K ⊂ Ω.

Pressure estimates near the boundary. Our ultimate goal is to extend, in a cer-
tain sense, the local estimates established in Section 2.2.6 up to the boundary ∂Ω.
In particular, our aim is to show that the pressure is equi-integrable in Ω, where
the bound can be determined in terms of the data. To this end, it is enough to
solve the following auxiliary problem:

Given q > 1 arbitrary, find a function G = G(x) such that

G ∈ W 1,q
0 (Ω; R3), divxG(x) → ∞ uniformly for dist(x, ∂Ω) → 0. (2.106)

If Ω is a bounded Lipschitz domain, the function G can be taken as a solution
of the problem

divxG = g in Ω, G|∂Ω = 0, (2.107)

where

g = dist−β(x, ∂Ω) − 1
|Ω|

∫
Ω

dist−β(x, ∂Ω) dx, with 0 < β <
1
q
,

so that (2.106) is satisfied. Problem (2.107) can be solved by means of the operator
B introduced in Section 2.2.5 as soon as Ω is a Lipschitz domain. For less regular
domains, an explicit solution may be found by an alternative method (see Kukučka
[126]).

Pursuing step by step the procedure developed in the preceding section we
take the quantity

ϕ(t, x) = ψ(t)G(x), ψ ∈ C∞
c (0, T ),

as a test function in the momentum equation (2.9). Assuming G belongs to
W 1,q

0 (Ω; R3), with q > 1 large enough, we can deduce, exactly as in Section 2.2.6,
that ∫ T

0

∫
Ω

p(�, ϑ)divxG dx dt ≤ c(data). (2.108)

Note that this step can be fully justified via a suitable approximation of G by a
family of smooth, compactly supported functions. As divxG(x) → ∞ whenever
x → ∂Ω, relation (2.108) yields equi-integrability of the pressure in a neighborhood
of the boundary (cf. Theorem 0.8).


