
Chapter 1

Fluid Flow Modeling

Physics distinguishes four basic forms of matter: solids, liquids, gases, and plasmas.
The last three forms fall in the category of fluids. Fluid is a material that can
flow, meaning fluids cannot sustain stress in the equilibrium state. Any time a
force is applied to a fluid, the latter starts and keeps moving even when the force
is no longer active. Fluid mechanics studies flows of fluids under the principal
laws of mechanics. Examples of real fluid flows are numerous ranging from oceans
and atmosphere to gaseous stars. The relevant applications include meteorology,
engineering, and astrophysics to name only a few.

There are several qualitative levels of models studied in mathematical fluid
mechanics. The main conceptual idea is the fundamental hypothesis that matter
is made of atoms and molecules, viewed as solid objects with several degrees of
freedom, that obey the basic principles of classical mechanics.

• Molecular Dynamics (MD) studies typically a very large number of or-
dinary differential equations that govern the time evolution of each single
particle of the fluid coupled through the interaction forces of different kinds.
Numerical simulations based on (MD) are of fundamental importance when
determining the physical properties of “macroscopic” fluids, for instance their
interaction with a solid wall. Models based on (MD) are fully reversible in
time.

• Kinetic Models are based on averaging with respect to particles having
the same velocity. The basic state variable is the density of the fluid parti-
cles at a given time and spatial position with the same velocity. Accordingly,
the evolution is governed by a transport equation of Boltzmann’s type in-
cluding the so-called collision operator. The presence of collisions results in
irreversibility of the process in time.

• Continuum Fluid Mechanics is a phenomenological theory based on
macroscopic (observable) state variables such as density, fluid velocity, and
temperature. The time evolution of these quantities is described through a
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system of partial differential equations. The objective existence of the macro-
scopic quantities (fields) is termed the continuum hypothesis. The theory is
widely used in numerical analysis and real world applications. The processes,
in general, are irreversible in time.

• Models of Turbulence are based on further averaging of the macroscopic
models studied in continuum fluid mechanics. According to the present state
of knowledge, there is no universally accepted theory of turbulence. The
evolution of state variables is described by a system of partial differential
equations and is irreversible in time.

The mathematical theory of continuum fluid mechanics developed in this
book is based on fundamental physical principles that can be expressed in terms
of balance laws. These may be written by means of either a Lagrangian or a Eu-
lerian reference system. In Lagrangian coordinates, the description is associated
to particles moving in space and time. The Eulerian reference system is based on
a fixed frame attached to the underlying physical space. We will use systemati-
cally the Eulerian description more suitable for fluids which undergo unlimited
displacements. Accordingly, the independent variables are associated to the phys-
ical space represented by a spatial domain Ω ⊂ R

3, and a time interval I ⊂ R,
typically, I = (0, T ), T > 0.

1.1 Fluids in continuum mechanics

We adopt the standard mathematical description of a fluid as found in many
classical textbooks on continuum fluid mechanics. Unlike certain recently proposed
alternative theories based on a largely extended number of state variables, we
assume the state of a fluid at a given instant can be characterized by its density
and temperature distribution whereas the motion is completely determined by a
velocity field. Simplifying further we focus on chemically inert homogeneous fluids
that may be characterized through the following quantities.

� Fluids in Continuum Mechanics:

(a) a domain Ω ⊂ R3 occupied by a fluid in an ambient space;

(b) a non-negative measurable function � = �(t, x) defined for t ∈ (0, T ), x ∈ Ω,
yielding the mass density;

(c) a vector field u = u(t, x), t ∈ (0, T ), x ∈ Ω, defining the velocity of the fluid;

(d) a positive measurable function ϑ = ϑ(t, x), t ∈ (0, T ), x ∈ Ω, describing the
distribution of temperature measured in the absolute Kelvin scale;

(e) the thermodynamic functions: the pressure p = p(�, ϑ), the specific internal
energy e = e(�, ϑ), and the specific entropy s = s(�, ϑ);
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(f) a stress tensor T = {Ti,j}3
i,j=1 yielding the force per unit surface that the

part of a fluid in contact with an ideal surface element imposes on the part
of the fluid on the other side of the same surface element;

(g) a vector field q giving the flux of the internal energy;
(h) a vector field f = f(t, x), t ∈ (0, T ), x ∈ Ω, defining the distribution of a

volume force acting on a fluid;
(i) a function Q = Q(t, x), t ∈ (0, T ), x ∈ Ω, yielding the rate of production of

internal energy.

The trio {�,u, ϑ} introduced in (b)–(d) represents the basic state variables
characterizing completely the state of a fluid at a given instant t. The remaining
quantities are determined in terms of the state variables by means of a set of
constitutive relations.

Fluids are characterized among other materials through Stokes’ law

T = S − pI, (1.1)

where S denotes the viscous stress tensor . Viscosity is a property associated to the
relative motion of different parts of the fluid; whence S is always interrelated with
the velocity gradient ∇xu or rather its symmetric part ∇xu+∇T

x u. In particular,
the viscous stress vanishes whenever ∇xu +∇T

x u = 0, that means, when the fluid
exhibits a rigid motion with respect to a fixed coordinate system. In accordance
with the Second law of thermodynamics, viscosity is responsible for the irreversible
transfer of the mechanical energy associated to the motion into heat. Although
omitted in certain mathematical idealizations (Euler system), viscosity is always
present and must be taken into account when modeling the motion of fluids in the
long run.

The pressure p, similarly to the specific energy e and the specific entropy
s, are typical thermostatic variables attributed to a system in thermodynamic
equilibrium and as such can be evaluated as numerical functions of the density
and the absolute temperature. Moreover, in accordance with the Second law of
thermodynamics, p = p(�, ϑ), e = e(�, ϑ), and s = s(�, ϑ) are interrelated through

� Gibbs’ Equation:

ϑDs(�, ϑ) = De(�, ϑ) + p(�, ϑ)D
(1

�

)
. (1.2)

The symbol D in (1.2) stands for the differential with respect to the variables
�, ϑ. A common hypothesis tacitly assumed in many mathematical models asserts
that the time scale related to the macroscopic motion of a fluid is so large that
the latter can be considered at thermodynamic equilibrium at any instant t of the
“real” time, in particular, the temperature ϑ is well determined and can be taken
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as a state variable even if the system may be quite far from the equilibrium state
(see Öttinger [168]).

Gibbs’ equation (1.2) can be equivalently written in the form of Maxwell’s
relation

∂e(�, ϑ)
∂�

=
1
�2

(
p(�, ϑ) − ϑ

∂p(�, ϑ)
∂ϑ

)
. (1.3)

The precise meaning of (1.3) is that the expression 1/ϑ(De+pD(1/�)) is a perfect
gradient of a scalar function termed entropy.

1.2 Balance laws

Classical continuum mechanics describes a fluid by means of a family of state
variables – observable and measurable macroscopic quantities – a representative
sample of which has been introduced in the preceding part. The basic physical
principles are then expressed through a system of balance laws. A general balance
law takes the form of an integral identity∫

B

d(t2, x) dx −
∫

B

d(t1, x) dx +
∫ t2

t1

∫
∂B

F(t, x) · n(x) dSx dt

=
∫ t2

t1

∫
B

σ(t, x) dx dt (1.4)

to be satisfied for any t1 ≤ t2 and any subset B ⊂ Ω, where the symbol d stands
for the volumetric (meaning per unit volume) density of an observable property,
F denotes its flux, n is the outer normal vector to ∂B, and σ denotes the rate of
production of d per unit volume. The principal idea, pursued and promoted in this
book, asserts that (1.4) is the most natural and correct mathematical formulation
of any balance law in continuum mechanics.

The expression on the left-hand side of (1.4) can be interpreted as the integral
mean of the normal trace of the four-component vector field [d,F] on the boundary
of the time-space cylinder (t1, t2)×B. On the other hand, by means of the Gauss-
Green theorem, we can write∫

B

d(t2, x)ϕ(t2, x) dx −
∫

B

d(t1, x)ϕ(t1, x) dx +
∫ t2

t1

∫
∂B

F(t, x) · n(x)ϕ(t, x)dSx dt

=
∫ t2

t1

∫
B

(
∂td(t, x) + divxF(t, x)

)
ϕ(t, x) dx dt (1.5)

+
∫ t2

t1

∫
B

(
d(t, x)∂tϕ(t, x) + F(t, x) · ∇xϕ(t, x)

)
dx dt

for any smooth test function ϕ defined on R×R3. If all quantities are continuously
differentiable, it is easy to check that relations (1.4), (1.5) are compatible as soon as

∂td(t, x) + divxF(t, x) = σ(t, x) (1.6)
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yielding∫
B

d(t2, x)ϕ(t2, x) dx −
∫

B

d(t1, x)ϕ(t1, x) dx +
∫ t2

t1

∫
∂B

F(t, x) · n(x)ϕ(t, x)dSx dt

=
∫ t2

t1

∫
B

σ(t, x)ϕ(t, x) dxdt +
∫ t2

t1

∫
B

(
d(t, x)∂tϕ(t, x) + F(t, x) · ∇xϕ(t, x)

)
dxdt.

(1.7)

The integral identity (1.7) can be used as a proper definition of the normal
trace of the field [d,F] as long as∫ T

0

∫
Ω

(
d(t, x)∂tϕ(t, x) + F(t, x) · ∇xϕ(t, x)

)
dx dt

+
∫ T

0

∫
Ω

σ(t, x)ϕ(t, x) dx dt = 0 (1.8)

for any ϕ ∈ C∞
c ((0, T ) × Ω). In the terminology of the modern theory of partial

differential equations, relation (1.8) represents a weak formulation of the differen-
tial equation (1.6). If (1.8) holds for any test function ϕ ∈ C∞

c ((0, T )×Ω), we say
that equation (1.6) is satisfied in D′((0, T ) × Ω), or, in the sense of distributions.

The satisfaction of the initial condition d(0, ·) = d0, together with the pre-
scribed normal component of the flux Fb = F · n|∂Ω on the boundary, can be
incorporated into the weak formulation by means of the integral identity

−
∫

Ω

d0(x)ϕ(0, x) dx +
∫ T

0

∫
∂Ω

Fb(t, x)ϕ(t, x)dSx dt (1.9)

=
∫ T

0

∫
Ω

σ(t, x)ϕ(t, x) dxdt +
∫ T

0

∫
Ω

(
d(t, x)∂tϕ(t, x) + F(t, x) · ∇xϕ(t, x)

)
dxdt

to be satisfied for any ϕ ∈ C∞
c ([0, T ) × Ω).

As a matter of fact, the source term σ need not be an integrable function.
The normal trace of [d,F] is still well defined through (1.7) even if σ is merely a
signed measure, more specifically, σ = σ+ − σ−, where σ+, σ− ∈ M+([0, T ] × Ω)
are non-negative regular Borel measures defined on the compact set [0, T ] × Ω.
Accordingly, relation (1.9) takes the form of a general

� Balance Law:

〈σ; ϕ〉[M;C]([0,T ]×Ω) +
∫ T

0

∫
Ω

(
d(t, x)∂tϕ(t, x) + F(t, x) · ∇xϕ(t, x)

)
dx dt

=
∫ T

0

∫
∂Ω

Fb(t, x)ϕ(t, x) dSx dt −
∫

Ω

d0(x)ϕ(0, x) dx (1.10)

for any test function ϕ ∈ C∞
c ([0, T )× Ω).
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If (1.10) holds, the (outer) normal trace of the field [d,F] can be identified
through (1.7), in particular, the instantaneous values of d at a time t can be defined.
However, these may exhibit jumps if the rate of production σ is not absolutely
continuous with respect to the Lebesgue measure. Specifically, using (1.7), (1.10),
we can define the left instantaneous value of d at a time τ ∈ (0, T ] as

〈d(τ−, ·); ϕ〉[M;C](Ω) (1.11)

=
∫

Ω

d0(x)ϕ(x) dx +
∫ τ

0

∫
Ω

F(t, x) · ∇xϕ(x) dxdt + lim
δ→0+

〈σ; ψδϕ〉[M,C]([0,T ]×Ω]) ,

for any ϕ ∈ C∞
c (Ω), where ψδ = ψδ(t) is non-increasing,

ψδ ∈ C1(R), ψδ(t) =

{
1 for t ∈ (−∞, τ − δ],
0 for t ∈ [τ,∞).

Similarly, we define the right instantaneous value of d at a time τ ∈ [0, T ) as

〈d(τ+, ·); ϕ〉[M;C](Ω) (1.12)

=
∫

Ω

d0(x)ϕ(x) dx +
∫ τ

0

∫
Ω

F(t, x) · ∇xϕ(x) dxdt + lim
δ→0+

〈σ; ψδϕ〉[M,C]([0,T ]×Ω]) ,

where ψδ = ψδ(t) is non-increasing,

ψδ ∈ C1(R), ψδ(t) =

{
1 for t ∈ (−∞, τ ],
0 for t ∈ [τ + δ,∞).

Note that, at least for d ∈ L∞(0, T ; L1(Ω)), the left and right instantaneous
values are represented by signed measures on Ω that coincide with d(τ, ·) ∈ L1(Ω)
at any Lebesgue point of the mapping τ → d(τ, ·). Moreover, d(τ−, ·) = d(τ+, ·)
for any τ ∈ [0, T ] and the mapping τ → d(τ, ·) is weakly-(*) continuous as soon
as σ is absolutely continuous with respect to the standard Lebesgue measure on
(0, T )× Ω.

Under certain circumstances, notably when identifying the entropy produc-
tion rate, the piece of information that is provided by the available mathematical
theory enables us only to show that∫ T

0

∫
Ω

d(t, x)∂tϕ(t, x) + F(t, x) · ∇xϕ(t, x) dx ≤ 0 (1.13)

for any non-negative test function ϕ ∈ C∞
c ([0, T )× Ω). Intuitively, this means

∂td + divx(F) ≥ 0

though a rigorous verification requires differentiability of d and F.
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Let us show that (1.13) is in fact equivalent to the integral identity∫ T

0

∫
Ω

d(t, x)∂tϕ(t, x)+F(t, x)·∇xϕ(t, x) dx dt+〈σ; ϕ〉[M+;C]([0,T ]×Ω) = 0 (1.14)

for any ϕ ∈ C∞
c ([0, T ) × Ω), where σ ∈ M+([0, T ] × Ω) is a non-negative regular

Borel measure on the set [0, T ] × Ω. This fact may be viewed as a variant of the
well-known statement that any non-negative distribution is representable by a
measure.

In order to see (1.14), assume that

d ∈ L∞(0, T ; L1(Ω)) and F ∈ Lp((0, T ) × Ω; R3) for a certain p > 1.

Consider a linear form

〈σ; ϕ〉 = −
∫ T

0

∫
Ω

(
d(t, x)∂tϕ(t, x) + F(t, x) · ∇xϕ(t, x)

)
dx

which is well defined for any ϕ ∈ C1
c ([0, T )×Ω). Moreover, it follows from (1.13),

that
〈σ; ϕ〉 ≥ 0 for any ϕ ∈ C∞

c ([0, T )× Ω), ϕ ≥ 0. (1.15)

Next, for any compact set K ⊂ [0, T ) × Ω we can find a function χK such
that

χK = χK(t) ∈ C∞
c [0, T ), 0 ≤ χK ≤ 1, ∂tχK ≤ 0, χK = 1 on K. (1.16)

In particular, as a direct consequence of (1.15), we get

〈σ; χK〉 ≤ ess sup
t∈(0,T )

‖d(t, ·)‖L1(Ω) for any K. (1.17)

We claim that σ can be extended in a unique way as a bounded non-negative
linear form on the vector space Cc([0, T ) × Ω). Indeed for any sequence {ϕn}∞n=1

of (smooth) functions supported by a fixed compact set K ⊂ [0, T ) × Ω, we have

| 〈σ; ϕn〉 − 〈σ; ϕm〉 | ≤ 〈σ; χK〉 ‖ϕn − ϕm‖C(K),

with χK constructed in (1.16).
By virtue of Riesz’s representation theorem (Theorem 0.9), the linear form σ

can be identified with a non-negative Borel measure on the set [0, T )×Ω. Finally,
because of the uniform estimate (1.17) on the value of σ[K] for any compact set
K ⊂ [0, T )×Ω, the measure σ[[0, T )×Ω] of the full domain is finite, in particular σ
can be trivially extended (by zero) to the set [0, T ]×Ω. Let us point out, however,
that such an extension represents only a suitable convention (the measure σ is
defined on a compact set [0, T ]× Ω) without any real impact on formula (1.14).

To conclude, we recall that the weak formulation of a balance law introduced
in (1.10) is deliberately expressed in the space-fixed, Eulerian form rather than a
“body-fixed” material description. This convention avoids the ambiguous notion
of trajectory in the situation where F, typically proportional to the velocity of the
fluid, is not regular enough to give rise to a unique system of streamlines.
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1.3 Field equations

In accordance with the general approach delineated in Section 1.2, the basic phys-
ical principles formulated in terms of balance laws will be understood in the sense
of integral identities similar to (1.10) rather than systems of partial differential
equations set forth in classical textbooks on fluid mechanics. Nonetheless, in the
course of formal discussion, we stick to the standard terminology “equation” or
“field equation” even if these mathematical objects are represented by an infinite
system of integral identities to be satisfied for a suitable class of test functions
rather than a single equation. Accordingly, the macroscopic quantities character-
izing the state of a material in continuum mechanics are called fields, the balance
laws they obey are termed field equations.

1.3.1 Conservation of mass

The fluid density � = �(t, x) is a fundamental state variable describing the distri-
bution of mass. The integral

M(B) =
∫

B

�(t, x) dx

represents the total amount of mass of the fluid contained in a set B ⊂ Ω at an
instant t. In a broader sense, the density could be a non-negative measure defined
on a suitable system of subsets of the ambient space Ω. However, for the purposes
of this study, we content ourselves with �(t, ·) that is absolutely continuous with
respect to the standard Lebesgue measure on R

3, therefore representable by a
non-negative measurable function.

Motivated by the general approach described in the previous part, we write
the physical principle of mass conservation in the form∫

B

�(t2, x) dx −
∫

B

�(t1, x) dx +
∫ t2

t1

∫
∂B

�(t, x)u(t, x) · n dSx dt = 0

for any (smooth) subset B ⊂ Ω, where u = u(t, x) is the velocity field determining
the motion of the fluid. Thus assuming, for a moment, that all quantities are
smooth, we deduce the equation of continuity in the differential form

∂t�(t, x) + divx(�(t, x)u(t, x)) = 0 in (0, T ) × Ω. (1.18)

In addition, we impose impermeability of the boundary ∂Ω, meaning,

u · n|∂Ω = 0. (1.19)

Multiplying (1.18) on B(�)+�B′(�), where B is a continuously differentiable
function, we easily deduce that

∂t(�B(�)) + divx(�B(�)u) + b(�)divxu = 0 (1.20)



1.3. Field equations 9

for any b ∈ BC[0,∞) (bounded and continuous functions), where

B(�) = B(1) +
∫ �

1

b(z)
z2

dz. (1.21)

Equation (1.20) can be viewed as a renormalized variant of (1.18).
Summing up the previous discussion and returning to the weak formulation,

we introduce

� Renormalized Equation of Continuity:

∫ T

0

∫
Ω

(
�B(�)∂tϕ + �B(�)u · ∇xϕ − b(�)divxu ϕ

)
dxdt = −

∫
Ω

�0B(�0)ϕ(0, ·) dx

(1.22)

to be satisfied for any test function ϕ ∈ C∞
c ([0, T )×Ω), and any B, b interrelated

through (1.21), where b is continuous and uniformly bounded function on R.

The family of integral identities (1.22) represents a mathematical formulation
of the physical principle of mass conservation. Formally, relation (1.22) reduces to
(1.20) provided all quantities are smooth, and, furthermore, to (1.18) if we take
b ≡ 0, B(1) = 1. The initial distribution of the density is determined by a given
function �0 = �(0, ·), while the boundary conditions (1.19) are satisfied implicitly
through the choice of test functions in (1.22) in the spirit of (1.10).

In a certain sense, the renormalized equation (1.22) can be viewed as a very
weak formulation of (1.18) since, at least for B(1) = 0, the density � need not be
integrable. On the other hand, relation (1.22) requires integrability of the velocity
field u at the level of first derivatives, specifically, divxu must be integrable on the
set [0, T )× Ω.

In contrast to (1.18), relation (1.22) provides a useful piece of information on
the mass transport and possible density oscillations in terms of the initial data.
It is important to note that (1.22) can be deduced from (1.18) even at the level
of the weak formulation as soon as the density is a bounded measurable function
(see Section 10.18 in Appendix).

1.3.2 Balance of linear momentum

In accordance with Newton’s second law, the flux associated to the momentum �u
in the Eulerian coordinate system can be written in the form (�u⊗u−T), where
the symbol T stands for the stress tensor introduced in Section 1.1. In accordance
with Stokes’ law (1.1), the balance of linear momentum reads

∂t(�u) + divx(�u ⊗ u) + ∇xp = divxS + �f in D′((0, T ) × Ω; R3), (1.23)
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or, ∫ T

0

∫
Ω

(
(�u) · ∂tϕ + �(u ⊗ u) : ∇xϕ + pdivxϕ

)
dx dt

=
∫ T

0

∫
Ω

(
S : ∇xϕ − �f · ϕ

)
dx −

∫
Ω

(�u)0 · ϕ(0, ·) dx, (1.24)

to be satisfied by any test function ϕ ∈ C∞
c ([0, T ) × Ω; R3). Note that relation

(1.24) already includes the initial condition

�u(0, ·) = (�u)0 in Ω. (1.25)

Analogously, as in the previous sections, the variational formulation (1.24)
may include implicit satisfaction of boundary conditions provided the class of
admissible test functions is extended “up to the boundary”. Roughly speaking, the
test functions should belong to the same regularity class as the velocity field u.
Accordingly, in order to enforce the impermeability condition (1.19), we take

ϕ ∈ C∞
c ([0, T ) × Ω; R3), ϕ · n|∂Ω = 0. (1.26)

Postulating relation (1.24) for any test function satisfying (1.26), we deduce
formally that

(Sn) × n|∂Ω = 0, (1.27)

which means, the tangential component of the normal stress forces vanishes on
the boundary. This behavior of the stress characterizes complete slip of the fluid
against the boundary.

In the theory of viscous fluids, however, it is more customary to impose the
no-slip boundary condition

u|∂Ω = 0, (1.28)

together with the associated class of test functions

ϕ ∈ C∞
c ([0, T ) × Ω; R3). (1.29)

The no-slip boundary condition (1.28) and even the impermeability condition
(1.19) require a concept of trace of the field u on the boundary ∂Ω. Therefore the
velocity field u must belong to a “better” space than just Lp(Ω; R3). As for the
impermeability hypothesis (1.19), we recall the Gauss-Green theorem yielding∫

∂Ω

ϕu · n dSx =
∫

Ω

∇xϕ · u dx +
∫

Ω

ϕ divxu dx. (1.30)

Consequently, we need both u and divxu to be at least integrable on Ω for (1.19) to
make sense. The no-slip boundary condition (1.28) requires the partial derivatives
of u to be at least (locally) integrable in Ω (cf. Theorem 0.6).
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Before leaving this section, we give a concise formulation of Newton’s second
law in terms of

� Balance of Momentum:

∫ T

0

∫
Ω

(
(�u) · ∂tϕ + �(u ⊗ u) : ∇xϕ + pdivxϕ

)
dx dt

=
∫ T

0

∫
Ω

(
S : ∇xϕ − �f · ϕ

)
dx −

∫
Ω

(�u)0 · ϕ(0, ·) dx (1.31)

must be satisfied by any test function ϕ belonging to the class C∞
c ([0, T )×Ω; R3)

if the no-slip boundary conditions (1.28) are imposed, or

ϕ ∈ C∞
c ([0, T ) × Ω; R3), ϕ · n|∂Ω = 0,

in the case of complete slip boundary conditions (1.19), (1.27).

1.3.3 Total energy

The energy density E can be written in the form

E =
1
2
�|u|2 + �e(�, ϑ), (1.32)

where the symbol e denotes the specific internal energy introduced in Section 1.1.
Multiplying equation (1.23) on u we deduce the kinetic energy balance

∂t

(1
2
�|u|2

)
+ divx

(1
2
�|u|2u

)
= divx(Tu) − T : ∇xu + �f · u, (1.33)

where the stress tensor T is related to S and p by means of Stokes’ law (1.1).
On the other hand, by virtue of the First law of thermodynamics , the changes of
the energy of the system are caused only by external sources, in particular, the
internal energy balance reads

∂t(�e) + divx(�eu) + divxq = S : ∇xu − pdivxu + �Q, (1.34)

where the term �Q represent the volumetric rate of the internal energy production,
and q is the internal energy flux.

Consequently, the energy balance equation may be written in the form

∂tE + divx(Eu) + divx

(
q− Su + pu

)
= �f · u + �Q. (1.35)
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Relation (1.35) can be integrated over the whole domain Ω in order to ob-
tain the balance of total energy. Performing by parts integration of the resulting
expression we finally arrive at

� Total Energy Balance:

∫
Ω

E(t2, ·) dx −
∫

Ω

E(t1, ·) dx =
∫ t2

t1

∫
Ω

(
�f · u + �Q

)
dx dt (1.36)

for any 0 ≤ t1 ≤ t2 ≤ T provided

q · n|∂Ω = 0, (1.37)

and either the no-slip boundary condition (1.28) or the complete slip boundary
conditions (1.19), (1.27) hold.

In the previous considerations, the internal energy e has been introduced
to balance the dissipative terms in (1.33). Its specific form required by Gibbs’
equation (1.2) is a consequence of the Second law of thermodynamics discussed in
the next section.

1.3.4 Entropy

The Second law of thermodynamics is the central principle around which we intend
to build up the mathematical theory used in this study. As a matter of fact,
Gibbs’ equation (1.2) should be viewed as a constraint imposed on p and e by the
principles of statistical physics, namely 1

ϑ (De + pD 1
� ) must be a perfect gradient.

Accordingly, the internal energy balance equation (1.34) can be rewritten in the
form of entropy balance

∂t(�s) + divx(�su) + divx

(q
ϑ

)
= σ +

�

ϑ
Q, (1.38)

with the entropy production rate

σ =
1
ϑ

(
S : ∇xu − q · ∇xϑ

ϑ

)
. (1.39)

The Second law of thermodynamics postulates that the entropy production rate
σ must be nonnegative for any admissible thermodynamic process. As we will see
below, this can be viewed as a restriction imposed on the constitutive relations for
S and q.
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A weak formulation of equation (1.38) reads

� Entropy Balance Equation:

∫ T

0

∫
Ω

(
�s∂tϕ + �su · ∇xϕ +

(q
ϑ

)
· ∇xϕ dx

)
dt (1.40)

= −
∫

Ω

(�s)0ϕ dx −
∫ T

0

∫
Ω

σϕ dx dt −
∫ T

0

∫
Ω

�

ϑ
Qϕ dx dt

must be satisfied for any test function ϕ ∈ C∞
c ([0, T )×Ω). Note that (1.40) already

includes the no-flux boundary condition (1.37) as well as the initial condition
�s(0, ·) = (�s)0.

In the framework of the weak solutions considered in this book, the entropy
production rate σ will be a non-negative measure satisfying

σ ≥ 1
ϑ

(
S : ∇xu− q · ∇xϑ

ϑ

)
in place of (1.39). Such a stipulation reflects one of the expected features of the
weak solutions, namely they produce maximal dissipation rate of the kinetic energy
enhanced by the presence of singularities that are not captured by the “classical”
formula (1.39). As we will see in Chapter 2, this approach still leads to a (formally)
well-posed problem.

1.4 Constitutive relations

The field equations derived in Section 1.3 must be supplemented with a set of
constitutive relations characterizing the material properties of a concrete fluid.
In particular, the viscous stress tensor S, the internal energy flux q as well as
the thermodynamic functions p, e, and s must be determined in terms of the
independent state variables {�,u, ϑ}.

1.4.1 Molecular energy and transport terms

The Second law of thermodynamics, together with its implications on the sign
of the entropy production rate discussed in Section 1.3.4, gives rise to further
restrictions that must be imposed on the transport terms S, q. In particular, as
the entropy production is non-negative for any admissible physical process, we
deduce from (1.39) that

S : ∇xu ≥ 0, −q · ∇xϑ ≥ 0. (1.41)
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A fundamental hypothesis of the mathematical theory developed in this book
asserts that the constitutive equations relating S, q to the affinities ∇xu, ∇xϑ are
linear. Such a stipulation gives rise to

� Newton’s Rheological Law:

S = μ
(
∇xu + ∇T

x u− 2
3
divxu I

)
+ ηdivxu I; (1.42)

and

� Fourier’s Law:

q = −κ∇xϑ. (1.43)

The specific form of S can be deduced from the physical principle of the material
frame indifference, see Chorin and Marsden [47] for details.

Writing

S : ∇xu =
μ

2

∣∣∣∇xu + ∇T
x u− 2

3
divxuI

∣∣∣2 + η|divxu|2,

we conclude, by virtue of (1.41), that the shear viscosity coefficient μ, the bulk
viscosity coefficient η, as well as the heat conductivity coefficient κ must be non-
negative. As our theory is primarily concerned with viscous and heat conducting
fluids, we shall always assume that the shear viscosity coefficient μ as well as
the heat conductivity coefficient κ are strictly positive. On the other hand, it is
customary, at least for certain gases, to neglect the second term in (1.42) setting
the bulk viscosity coefficient η = 0.

1.4.2 State equations

Gibbs’ equation (1.2) relates the thermal equation of state

p = p(�, ϑ)

to the caloric equation of state

e = e(�, ϑ),

in particular, p and e must obey Maxwell’s relation (1.3).
The mathematical theory of singular limits developed in this book leans

essentially on

� Hypothesis of Thermodynamic Stability:

∂e(�, ϑ)
∂ϑ

> 0,
∂p(�, ϑ)

∂�
> 0. (1.44)
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The meaning of (1.44) is that both the specific heat at constant volume cv =
∂e/∂ϑ and the compressibility of the fluid ∂p/∂� are positive although the latter
condition is apparently violated by the standard Van der Waals equation of state.

In order to fix ideas, we focus on the simplest possible situation supposing
the fluid is a monoatomic gas. In this case, it can be deduced by the methods of
statistical physics that the molecular pressure p = pM and the associated internal
energy e = eM are interrelated through

pM (�, ϑ) =
2
3
�eM (�, ϑ) (1.45)

(see Eliezer et al. [71]). It is a routine matter to check that (1.45) is compatible
with (1.3) only if there is a function P such that

pM (�, ϑ) = ϑ5/2P
( �

ϑ3/2

)
. (1.46)

Indeed inserting (1.45) into (1.3) gives rise to a first-order partial differential equa-
tion that can be solved by means of the change of variables q(Z, ϑ) = p(Zϑ3/2, ϑ).

If P is linear, we recover the standard Boyle-Marriot state equation of perfect
gas,

pM (�, ϑ) = R�ϑ with a positive gas constant R. (1.47)

As a matter of fact, formula (1.46) applies to any real gas, monoatomic or
not, at least in the following two domains of the (�, ϑ)-plane:

• Non-Degenerate Region, where the density is low and/or the tempera-
ture is sufficiently large, specifically,

�

ϑ
3
2

< Z (1.48)

for a certain positive constant Z. Here the fluid can be considered as a mixture
of classical gases that obeys Dalton’s law, hence the pressure p is given by
the state equation (1.47) (see Galavotti [93]);

• Degenerate Area
�

ϑ
3
2

> Z, with Z � Z, (1.49)

where the gas is completely ionized, and the nuclei as well as the free electrons
behave like a monoatomic gas satisfying (1.46). If, in addition, we assume that
in the degenerate area at least one of the gas constituents, for instance the
cloud of free electrons, behaves as a Fermi gas, we obtain

lim
ϑ→0

eM (�, ϑ) > 0 for any fixed � > 0 (1.50)

(see Müller and Ruggeri [160]).



16 Chapter 1. Fluid Flow Modeling

Finally, we suppose that the specific heat at constant volume is uniformly
bounded, meaning

cv =
∂eM (�, ϑ)

∂ϑ
≤ c for all �, ϑ > 0, (1.51)

with obvious implications on the specific form of the function P in (1.46) discussed
in detail in Chapter 2.

It is worth noting that, unlike (1.47), the previous assumptions are in perfect
agreement with the Third law of thermodynamics requiring the entropy to vanish
when the absolute temperature approaches zero (see Callen [40]).

1.4.3 Effect of thermal radiation

Before starting our discussion, let us point out that the interaction of matter and
radiation (photon gas) occurring in the high temperature regime is a complex prob-
lem, a complete discussion of which goes beyond the scope of the present study.
Here we restrict ourselves to the very special but still physically relevant situation,
where the emitted photons are in thermal equilibrium with the other constituents
of the fluid, in particular, the whole system admits a single temperature ϑ (see
the monograph by Oxenius [169]).

Under these circumstances, it is well known that the heat conductivity is
substantially enhanced by the radiation effect, in particular, the heat conductivity
coefficient κ takes the form

κ = κM + κR, κR = kϑ3, k > 0, (1.52)

where κM denotes the standard “molecular” transport coefficient and κR repre-
sents the contribution due to radiation. The influence of the radiative transport is
particularly relevant in some astrophysical models studied in the asymptotic limit
of small Péclet (Prandtl) number in Chapter 6.

Similarly, the standard molecular pressure pM is augmented by its radiation
counterpart pR so that, finally,

p(�, ϑ) = pM (�, ϑ) + pR(ϑ), where pR(ϑ) =
a

3
ϑ4, a > 0; (1.53)

whence, in accordance with Gibbs’ equation (1.2),

e(�, ϑ) = eM (�, ϑ) + eR(�, ϑ), where �eR(�, ϑ) = aϑ4, (1.54)

and

s(�, ϑ) = sM (�, ϑ) + sR(�, ϑ), with �sR(�, ϑ) =
4
3
aϑ3. (1.55)
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1.4.4 Typical values of some physical coefficients

In order to get better insight concerning the magnitude and proportionality of
the different material forces acting on a fluid, we conclude this introductory part
by reviewing the typical values of several physical constants introduced in the
preceding text.

The quantity R appearing in formula (1.47) is the specific gas constant, the
value of which for a gas (or a mixture of gases) equals R/M , where R is the
universal gas constant (R = 8.314JK−1mol−1), and M is the molar mass (or a
weighted average of molar masses of the mixture components). For dry air, we get
R = 2.87Jkg−1K−1.

In formulas (1.53–1.55), the symbol a stands for the Stefan-Boltzmann con-
stant (a = 5.67 · 10−8JK−4m−2s−1), while the coefficient k in formula (1.52) is
related to a by k = 4

3alc, where l denotes the mean free path of photons (typically
l ≈ 10−7 − 10−8m), and c is the speed of light (c = 3 · 108ms−1).

The specific heat at constant volume cv takes the value cv = 2.87Jkg−1K−1

for the dry air, in particular, eR ≈ 1Jkg−1, eM ≈ 102 − 103Jkg−1 at the atmo-
spheric temperature, while at the temperature of order 103K attained, for instance,
in the solar radiative zone, eR ≈ 103 − 104Jkg−1 and eM ≈ 103 − 104Jkg−1. Ac-
cordingly, the effect of radiation is often negligible under the “normal” laboratory
conditions on the Earth (eM/eR ≈ 102 − 103) but becomes highly significant in
the models of hot stars studied in astrophysics (eM/eR ≈ 10−1 − 10). However,
radiation plays an important role in certain meteorological models under specific
circumstances.

The kinetic theory predicts the viscosity of gases to be proportional to
√

ϑ or a
certain power of ϑ varying with the specific model and characteristic temperatures.
This prediction is confirmed by experimental observations; a generally accepted
formula is the so-called Shutherlang correlation yielding

μ =
A
√

ϑ

1 + B/ϑ
for ϑ “large”,

where A and B are experimentally determined constants. For the air in the range
of pressures between 1 − 10atm, we have A = 1.46kgm−1s−1K−1/2, B = 100.4K.
The dependence of the transport coefficients on the temperature plays a significant
role in the mathematical theory developed in this book.

The specific values of physical constants presented in this part are taken over
from Bolz and Tuve [26].


