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Preface

Another advantage of a mathematical statement is
that it is so definite that it might be definitely wrong. . .
Some verbal statements have not this merit.

L.F. Richardson (1881–1953)

Many interesting problems in mathematical fluid mechanics involve the behavior
of solutions to systems of nonlinear partial differential equations as certain param-
eters vanish or become infinite. Frequently the solutions converge, provided the
limit exists, to a solution of a limit problem represented by a qualitatively different
system of differential equations. The simplest physically relevant example of this
phenomenon is the behavior of a compressible fluid flow in the situation when the
Mach number tends to zero, where the limit solution formally satisfies a system
describing the motion of an incompressible fluid. Other interesting phenomena
occur in the equations of magnetohydrodynamics, when either the Mach or the
Alfven number, or both, tend to zero. As a matter of fact, most, if not all mathe-
matical models used in fluid mechanics rely on formal asymptotic analysis of more
complex systems. The concept of incompressible fluid itself should be viewed as a
convenient idealization of a medium in which the speed of sound dominates the
characteristic velocity.

Singular limits are closely related to scale analysis of differential equations.
Scale analysis is an efficient tool used both theoretically and in numerical experi-
ments to reduce the undesirable and mostly unnecessary complexity of investigated
physical systems. The simplified asymptotic limit equations may provide a deeper
insight into the dynamics of the original, mathematically more complicated, sys-
tem. They reduce considerably the costs of computations, or offer a suitable alter-
native in the case when these fail completely or become unacceptably expensive
when applied to the original problem. However, we should always keep in mind
that these simplified equations are associated with singular asymptotic limits of
the full governing equations, this fact having an important impact on the behavior
of their solutions, for which degeneracies as well as other significant changes of the
character of the governing equations become imminent.

Despite the vast amount of existing literature, most of the available studies
devoted to scale analysis are based on formal asymptotic expansion of (hypothet-
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ical) solutions with respect to one or several singular parameters. Although this
might seem wasted or at least misguided effort from the purely theoretical point
of view, such an approach proved to be exceptionally efficient in real world ap-
plications. On the other hand, progress at the purely theoretical level has been
hampered for many years by almost complete absence of a rigorous existence the-
ory that would be applicable to the complex nonlinear systems arising in math-
ematical fluid dynamics. Although these problems are essentially well posed on
short time intervals or for small, meaning close to equilibrium states, initial data,
a universal existence theory is still out of reach of modern mathematical methods.
Still, understanding the theoretical aspects of singular limits in systems of partial
differential equations in general, and in problems of mathematical fluid mechanics
in particular, is of great interest because of its immediate impact on the develop-
ment of the theory. Last but not least, a rigorous identification of the asymptotic
problem provides a justification of the mathematical model employed.

The concept of weak solution based on direct integral formulation of the un-
derlying physical principles provides the only available framework for studying the
behavior of solutions to problems in fluid mechanics in the large. The class of weak
solutions is reasonably wide in order to accommodate all possible singularities that
may develop in a finite time because of the highly nonlinear structures involved.
Although optimality of this class of solutions may be questionable and still not
completely accepted by the whole community, we firmly believe that the mathe-
matical theory elaborated in this monograph will help to promote this approach
and to contribute to its further development.

The book is designed as an introduction to problems of singular limits and
scale analysis of systems of differential equations describing the motion of com-
pressible, viscous, and heat conducting fluids. Accordingly, the primitive problem
is always represented by the Navier-Stokes-Fourier System of equations gov-
erning the time evolution of three basic state variables: the density, the velocity,
and the absolute temperature associated to the fluid. In addition we assume the
fluid is linearly viscous, meaning the viscous stress is determined through New-
ton’s rheological law, while the internal energy flux obeys Fourier’s law of heat
conduction. The state equation is close to that of a perfect gas, at least for mod-
erate values of density and temperature. General ideas as well as the variational
formulation of the problem based on a system of integral identities rather than
partial differential equations are introduced and properly motivated in Chapter 1.

Chapters 2, 3 contain a complete existence theory for the full Navier-Stokes-
Fourier system without any essential restriction imposed on the size of the data
as well as the length of the existence interval. The ideas developed in this part are
of fundamental importance for the forthcoming analysis of singular limits.

Chapter 4 resumes the basic concepts and methods to be used in the study
of singular limits. The underlying principle used amply in all future considera-
tions is a decomposition of each quantity as a sum of its essential part, relevant
in the limit system, and a residual part, where the latter admits uniform bounds
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induced by the available a priori estimates and vanishes in the asymptotic limit.
This chapter also reveals an intimate relation between certain results obtained in
this book and the so-called Lighthill’s Acoustic Analogy used in numerous
engineering applications.

Chapter 5 gives a comprehensive treatment of the low Mach number limit for
the Navier-Stokes-Fourier system in the regime of low stratification, that means,
the Froude number is strongly dominated by the Mach number. As a limit sys-
tem, we recover the well-known Oberbeck-Boussinesq Approximation widely
used in many applications. Remarkably, we establish uniform estimates of the set
of weak solutions of the primitive system derived by help of the so-called dissi-
pation inequality. This can be viewed as a direct consequence of the Second Law
of Thermodynamics expressed in terms of the entropy balance equation, and the
hypothesis of thermodynamic stability imposed on the constitutive relations. Con-
vergence toward the limit system in the field equations is then obtained by means
of the nowadays well-established technique based on compensated compactness.
Another non-standard aspect of the analysis is a detailed description of propaga-
tion of the acoustic waves that arise as an inevitable consequence of ill-prepared
initial data. In contrast with all previous studies, the underlying acoustic equation
is driven by an external force whose distribution is described by a non-negative
Borel measure. This is one of the intrinsic features encountered in the framework
of weak solutions, where a piece of information concerning energy transfer through
possible singularities is lost.

Chapter 6 is primarily concerned with the strongly stratified fluids arising in
astrophysics and meteorology. The central issue discussed here is anisotropy of the
propagation of sound waves resulting from the strong stratification imposed by the
gravitational field. Accordingly, the asymptotic analysis of the acoustic waves must
be considerably modified in order to take into account the dispersion effects. As
a model example, we identify the asymptotic system proposed by several authors
as a suitable Model of Stellar Radiative Zones.

Most wave motions, in particular the sound waves propagation examined in
this book, are strongly influenced by the effect of the boundary of the underlying
physical space. If viscosity is present, a strong attenuation of sound waves is ex-
pected, at least in the case of the so-called no-slip boundary conditions imposed on
the velocity field. These phenomena are studied in detail in Chapter 7. In particu-
lar, it is shown that under certain geometrical conditions imposed on the physical
boundary, the convergence of the velocity field in the low Mach number regime is
strong, meaning free of time oscillations. Although our approach parallels other
recent studies based on boundary layer analysis, we tried to minimize the num-
ber of necessary steps in the asymptotic expansion to make it relatively simple,
concise, and applicable without any extra effort to a larger class of problems.

Another interesting aspect of the problem arises when singular limits are
considered on large or possibly even unbounded spatial domains, where “large”
is to be quantified with regard to the size of other singular dimensionless param-
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eters. Such a situation is examined in Chapter 8. It is shown that the acoustic
waves redistribute rapidly the energy and, leaving any fixed bounded subset of
the physical space during a short time as the speed of sound becomes infinite,
render the velocity field strongly (pointwise) convergent. Although the result is
formally similar to those achieved in Chapter 7, the methods are rather different
based on dispersive estimates of Strichartz type and finite speed of propagation
for the acoustic equation.

Chapter 9 interprets the results on singular limits in terms of the acoustic
analogies used frequently in numerical analysis. We identify the situations where
these methods are likely to provide reliable results and point out their limitations.
Our arguments here rely on the uniform estimates obtained in Chapter 5.

The book is appended by two supplementary parts. In order to follow the
subsequent discussion, the reader is recommended first to turn to the preliminary
chapter, where the basic notation, function spaces, and other useful concepts,
together with the fundamental mathematical theorems used in the book, are re-
viewed. The material is presented in a concise form and provided with relevant
references when necessary. Appendix (Chapter 10) provides for reader’s conve-
nience some background material, with selected proofs, of more advanced but
mostly standard results widely applicable in the mathematical theory of viscous
compressible fluids in general, and, in the argumentation throughout this mono-
graph, in particular. Besides providing a list of the relevant literature, Appendix
offers a comprehensive and self-contained introduction to various specific recent
mathematical tools designed to handle the problems arising in the mathematical
theory of compressible fluids. As far as these results are concerned, the proofs are
performed in full detail.

Since the beginning of this project we have greatly profited from a number
of seminal works and research studies. Although the most important references
are included directly in the text of Chapters 1–10, Chapter 11 is designed to take
the reader through the available literature on the topics addressed elsewhere in
the book. In particular, a comprehensive list of reference material is given, with a
clear indication of the corresponding part discussed in the book. The reader is en-
couraged to consult these resources, together with the references cited therein, for
a more complex picture of the problem as well as a more comprehensive exposition
of some special topics.

The authors sincerely appreciate all who have offered comments and criti-
cisms concerning the content of this book, in particular, many thanks go to Gio-
vanni P. Galdi for many fruitful discussions, and to Jan Březina, Petr Kaplický,
Josef Málek, William Layton, Šárka Nečasová, Hana Petzeltová, Milan Pokorný,
Dalibor Pražák, Jan Stebel, and Ivan Straškraba for careful reading of several
chapters of the manuscript.

Eduard Feireisl and Antońın Novotný
Praha and Toulon, September 2008
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Notation, Definitions,
and Function Spaces

0.1 Notation

Unless otherwise indicated, the symbols in the book are used as follows:

(i) The symbols const, c, ci denote generic constants, usually found in inequali-
ties. They do not have the same value when used in different parts of the text.

(ii) Z, N, and C are the sets of integers, positive integers, and complex num-
bers, respectively. The symbol R denotes the set of real numbers, RN is the N -
dimensional Euclidean space.

(iii) The symbol Ω ⊂ RN stands for a domain – an open connected subset of RN .
The closure of a set Q ⊂ RN is denoted by Q, its boundary is ∂Q. By the symbol
1Q we denote the characteristic function of the set Q. The outer normal vector to
∂Q, if it exists, is denoted by n.

The symbol T N denotes the flat torus,

T N =
(
[−π, π]|{−π;π}

)N = (R|2πZ)N

considered as a factor space of the Euclidean space RN , where x ≈ y whenever
all coordinates of x differ from those of y by an integer multiple of 2π. Functions
defined on T N can be viewed as 2π-periodic in RN .

The symbol B(a; r) denotes an (open) ball in RN of center a ∈ RN and
radius r > 0.

(iv) Vectors and functions ranging in a Euclidean space are represented by sym-
bols beginning by a boldface minuscule, for example u, v. Matrices (tensors) and
matrix-valued functions are represented by special Roman characters such as S,
T, in particular, the identity matrix is denoted by I = {δi,j}N

i,j=1. The symbol I is
also used to denote the identity operator in a general setting.
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The transpose of a square matrix A = {ai,j}N
i,j=1 is AT = {aj,i}N

i,j=1. The
trace of a square matrix A = {ai,j}N

i,j=1 is trace[A] =
∑N

i=1 ai,i.

(v) The scalar product of vectors a = [a1, . . . , aN ], b = [b1, . . . , bN ] is denoted by

a · b =
N∑

i=1

aibi,

the scalar product of tensors A = {Ai,j}N
i,j=1, B = {Bi,j}N

i,j=1 reads

A : B =
N∑

i,j=1

Ai,jBj,i.

The symbol a ⊗ b denotes the tensor product of vectors a, b, specifically,

a ⊗ b = {a⊗ b}i,j = aibj .

The vector product a × b is the antisymmetric part of a ⊗ b. If N = 3, the
vector product of vectors a = (a1, a2, a3), b = (b1, b2, b3) is identified with a vector

a × b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

The product of a matrix A with a vector b is a vector Ab whose components
are

[Ab]i =
N∑

j=1

Ai,jbj for i = 1, . . . , N,

while the product of a matrix A = {Ai,j}N,M
i,j=1 and a matrix B = {Bi,j}M,S

i,j=1 is a
matrix AB with components

[AB]i,j =
M∑

k=1

Ai,kBk,j .

(vi) The Euclidean norm of a vector a ∈ RN is denoted by

|a| =
√

a · a =

√√√√ N∑
i=1

a2
i .

The distance of a vector a to a set K ⊂ RN is denoted as

dist[a, K] = inf{|a − k| | k ∈ K},
and the diameter of K is

diam[K] = sup
(x,y)∈K2

|x − y|.

The closure of K is denoted by closure[K], the Lebesgue measure of a set Q is |Q|.
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0.2 Differential operators

The symbol

∂yig(y) ≡ ∂g

∂yi
(y), i = 1, . . . , N,

denotes the partial derivative of a function g = g(y), y = [y1, . . . , yN ], with respect
to the (real) variable yi calculated at a point y ∈ RN . The same notation is used for
distributional derivatives introduced below. Typically, we consider functions g =
g(t, x) of the time variable t ∈ (0, T ) and the spatial coordinate x = [x1, x2, x3] ∈
Ω ⊂ R3. We use italics rather than boldface minuscules to denote the independent
variables, although they may be vectors in many cases.

(i) The gradient of a scalar function g = g(y) is a vector

∇g = ∇yg = [∂y1g(y), . . . , ∂yN g(y)];

∇T g denotes the transposed vector to ∇g.
The gradient of a scalar function g = g(t, x) with respect to the spatial

variable x is a vector

∇xg(t, x) = [∂x1g(t, x), ∂x2g(t, x), ∂x3g(t, x)].

The gradient of a vector function v = [v1(y), . . . , vN (y)] is the matrix

∇v = ∇yv = {∂yj vi}N
i,j=1;

∇T v denotes the transposed matrix to ∇v. Similarly, the gradient of a vector
function v = [v1(t, x), v2(t, x), v3(t, x)] with respect to the space variables x is the
matrix

∇xv(t, x) = {∂xj vi(t, x)}3
i,j=1.

(ii) The divergence of a vector function v = [v1(y), . . . , vN (y)] is a scalar

divv = divyv =
N∑

i=1

∂yivi.

The divergence of a vector function depending on spatial and temporal variables
v = [v1(t, x), v2(t, x), v3(t, x)] with respect to the space variable x is a scalar

divxv(t, x) =
3∑

i=1

∂xivi(t, x).

The divergence of a tensor (matrix-valued) function B = {Bi,j(t, x)}3
i,j=1 with

respect to the space variable x is a vector

[divB]i = [divxB(t, x)]i =
3∑

j=1

∂xj Bi,j(t, x), i = 1, . . . , 3.
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(iii) The symbol Δ = Δx denotes the Laplace operator ,

Δx = divx∇x.

(iv) The vorticity (rotation) curl of a vectorial function v = [v1(y), . . . , vN (y)] is
an antisymmetric matrix

curl v = curlyv = ∇v −∇T v =
{
∂yj vi − ∂yivj

}N

i,j=1
.

The vorticity of a vectorial function v = [v1(t, x), . . . , v3(t, x)] is an antisym-
metric matrix

curlxv = ∇xv −∇T
x v =

{
∂xj vi − ∂xivj

}3

i,j=1
.

The vorticity operator in R3 is sometimes interpreted as a vector curl v = ∇x×v.

(v) For a surface S ⊂ R3, with an outer normal n, we introduce the normal
gradient of a scalar function g : G → R3 defined on an open set G ⊂ R3 containing
S as

∂ng = ∇xg · n,

and the tangential gradient as

[∂S ]ig = ∂xig − (∇xg · n)ni, i = 1, 2, 3.

The Laplace-Beltrami operator on S is defined as

Δsg =
3∑

i=1

[∂S ]i[∂S ]ig

(see Gilbarg and Trudinger [96, Chapter 16]).

0.3 Function spaces

If not otherwise stated, all function spaces considered in this book are real. For a
normed linear space X , we denote by ‖ · ‖X the norm on X . The duality pairing
between an abstract vector space X and its dual X∗ is denoted as 〈·; ·〉X∗;X , or
simply 〈·; ·〉 in case the underlying spaces are clearly identified in the context. In
particular, if X is a Hilbert space, the symbol 〈·; ·〉 denotes the scalar product
in X .

The symbol span{M}, where M is a subset of a vector space X , denotes the
space of all finite linear combinations of vectors contained in M .
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(i) For Q ⊂ RN , the symbol C(Q) denotes the set of continuous functions on
Q. For a bounded set Q, the symbol C(Q) denotes the Banach space of functions
continuous on the closure Q endowed with norm

‖g‖C(Q) = sup
y∈Q

|g(y)|.

Similarly, C(Q; X) is the Banach space of vectorial functions continuous in Q and
ranging in a Banach space X with norm

‖g‖C(Q) = sup
y∈Q

‖g(y)‖X .

(ii) The symbol Cweak(Q; X) denotes the space of all vector-valued functions on
Q ranging in a Banach space X continuous with respect to the weak topology.
More specifically, g ∈ Cweak(Q; X) if the mapping y → ‖g(y)‖X is bounded and

y → 〈f ; g(y)〉X∗;X

is continuous on Q for any linear form f belonging to the dual space X∗.
We say that gn → g in Cweak(Q; X) if

〈f ; gn〉X∗;X → 〈f ; g〉X∗;X in C(Q) for all g ∈ X∗.

(iii) The symbol Ck(Q), Q ⊂ RN , where k is a non-negative integer, denotes the
space of functions on Q that are restrictions of k-times continuously differentiable
functions on RN . Ck,ν(Q), ν ∈ (0, 1) is the subspace of Ck(Q) of functions having
their k-th derivatives ν-Hölder continuous in Q. Ck,1(Q) is a subspace of Ck(Q)
of functions whose k-th derivatives are Lipschitz on Q. For a bounded domain Q,
the spaces Ck(Q) and Ck,ν(Q), ν ∈ (0, 1] are Banach spaces with norms

‖u‖Ck(Q) = max
|α|≤k

sup
x∈Q

|∂αu(x)|

and
‖u‖Ck,ν(Q) = ‖u‖Ck(Q) + max

|α|=k
sup

(x,y)∈Q2, x �=y

|∂αu(x) − ∂αu(y)|
|x − y|ν ,

where ∂αu stands for the partial derivative ∂α1
x1

. . . ∂αN
xN

u of order |α| =
∑N

i=1 αi.
The spaces Ck,ν(Q; RM ) are defined in a similar way. Finally, we set C∞ =
∩∞

k=0C
k.

(iv)

� Arzelà-Ascoli Theorem:

Theorem 0.1. Let Q ⊂ RM be compact and X a compact topological metric space
endowed with a metric dX . Let {vn}∞n=1 be a sequence of functions in C(Q; X)
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that is equi-continuous, meaning, for any ε > 0 there is δ > 0 such that

dX

[
vn(y), vn(z)

]
≤ ε provided |y − z| < δ independently of n = 1, 2, . . . .

Then {vn}∞n=1 is precompact in C(Q; X), that is, there exists a subsequence
(not relabeled) and a function v ∈ C(Q; X) such that

sup
y∈Q

dX

[
vn(y), v(y)

]
→ 0 as n → ∞.

See Kelley [119, Chapter 7, Theorem 17]. �

(v) For Q ⊂ RN an open set and a function g : Q → R, the symbol supp[g]
denotes the support of g in Q, specifically,

supp[g] = closure [{y ∈ Q | g(y) �= 0}] .

(vi) The symbol Ck
c (Q; RM ), k ∈ {0, 1, . . . ,∞} denotes the vector space of func-

tions belonging to Ck(Q; RM ) and having compact support in Q. If Q ⊂ RN is an
open set, the symbol D(Q; RM ) will be used alternatively for the space C∞

c (Q; RM )
endowed with the topology induced by the convergence:

ϕn → ϕ ∈ D(Q) if supp[ϕn] ⊂ K, K ⊂ Q a compact set,

ϕn → ϕ in Ck(K) for any k = 0, 1, . . . .
(1)

We write D(Q) instead of D(Q; R).
The dual space D′(Q; RM ) is the space of distributions on Ω with values in

RM . Continuity of a linear form belonging to D′(Q) is understood with respect to
the convergence introduced in (1).

(vii) A differential operator ∂α of order |α| can be identified with a distribution

〈∂αv; ϕ〉D′(Q);D(Q) = (−1)|α|
∫

Q

v∂αϕ dy

for any locally integrable function v.

(viii)The Lebesgue spaces Lp(Q; X) are spaces of (Bochner) measurable functions
v ranging in a Banach space X such that the norm

‖v‖p
Lp(Q;X) =

∫
Q

‖v‖p
X dy is finite, 1 ≤ p < ∞.

Similarly, v ∈ L∞(Q; X) if v is (Bochner) measurable and

‖v‖L∞(Q;X) = ess sup
y∈Q

‖v(y)‖X < ∞.
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The symbol Lp
loc(Q; X) denotes the vector space of locally Lp-integrable func-

tions, meaning

v ∈ Lp
loc(Q; X) if v ∈ Lp(K; X) for any compact set K in Q.

We write Lp(Q) for Lp(Q; R).
Let f ∈ L1

loc(Q) where Q is an open set. A Lebesgue point a ∈ Q of f in Q
is characterized by the property

lim
r→0+

1
|B(a, r)|

∫
B(a;r)

f(x)dx = f(a). (2)

For f ∈ L1(Q) the set of all Lebesgue points is of full measure, meaning
its complement in Q is of zero Lebesgue measure. A similar statement holds for
vector-valued functions f ∈ L1(Q; X), where X is a Banach space (see Brezis [34]).

If f ∈ C(Q), then identity (2) holds for all points a in Q.

(ix)

� Linear Functionals on Lp(Q; X):

Theorem 0.2. Let Q ⊂ RN be a measurable set, X a Banach space that is reflexive
and separable, 1 ≤ p < ∞.

Then any continuous linear form ξ ∈ [Lp(Q; X)]∗ admits a unique represen-
tation wξ ∈ Lp′

(Q; X∗),

〈ξ; v〉Lp′(Q,X∗);Lp(Q;X) =
∫

Q

〈wξ(y); v(y)〉X∗;X dy for all v ∈ Lp(Q; X),

where
1
p

+
1
p′

= 1.

Moreover the norm on the dual space is given as

‖ξ‖[Lp(Q;X)]∗ = ‖wξ‖Lp′(Q;X∗).

Accordingly, the spaces Lp(Q; X) are reflexive for 1 < p < ∞ as soon as X is
reflexive and separable.

See Gajewski, Gröger, Zacharias [91, Chapter IV, Theorem 1.14, Remark 1.9]. �

Identifying ξ with wξ, we write

[Lp(Q; RN )]∗ = Lp′
(Q; RN), ‖ξ‖[Lp(Q;RN )]∗ = ‖ξ‖Lp′(Q;RN ), 1 ≤ p < ∞.

This formula is known as the Riesz representation theorem.
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(x) If the Banach space X in Theorem 0.2 is merely separable, we have

[Lp(Q; X)]∗ = Lp′

weak−(∗)(Q; X∗) for 1 ≤ p < ∞,

where
Lp′

weak−(∗)(Q; X∗)

:=
{
ξ : Q → X∗

∣∣∣ y ∈ Q → 〈ξ(y); v〉X∗;X measurable for any fixed v ∈ X,

y → ‖ξ(y)‖X∗ ∈ Lp′
(Q)
}

(see Edwards [69, Theorem 8.20.3], Pedregal [172, Chapter 6, Theorem 6.14]).

(xi) Hölder’s inequality reads

‖uv‖Lr(Q) ≤ ‖u‖Lp(Q)‖v‖Lq(Q),
1
r

=
1
p

+
1
q

for any u ∈ Lp(Q), v ∈ Lq(Q), Q ⊂ RN (see Adams [1, Chapter 2]).

(xii) Interpolation inequality for Lp-spaces reads

‖v‖Lr(Q) ≤ ‖v‖λ
Lp(Q)‖v‖

(1−λ)
Lq(Q),

1
r

=
λ

p
+

1 − λ

q
, p < r < q, λ ∈ (0, 1)

for any v ∈ Lp ∩ Lq(Q), Q ⊂ RN (see Adams [1, Chapter 2]).

(xiii)

� Gronwall’s Lemma:

Lemma 0.1. Let a ∈ L1(0, T ), a ≥ 0, β ∈ L1(0, T ), b0 ∈ R, and

b(τ) = b0 +
∫ τ

0

β(t) dt

be given. Let r ∈ L∞(0, T ) satisfy

r(τ) ≤ b(τ) +
∫ τ

0

a(t)r(t) dt for a.a. τ ∈ [0, T ].

Then

r(τ) ≤ b0 exp
(∫ τ

0

a(t) dt

)
+
∫ τ

0

β(t) exp
(∫ τ

t

a(s) ds

)
dt

for a.a. τ ∈ [0, T ].

See Carroll [41]. �
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0.4 Sobolev spaces

(i) A domain Ω ⊂ RN is of class C if for each point x ∈ ∂Ω, there exist r > 0
and a mapping γ : RN−1 → R belonging to a function class C such that – upon
rotating and relabeling the coordinate axes if necessary – we have

Ω ∩ B(x; r) = {y | γ(y′) < yN} ∩ B(x, r)
∂Ω ∩ B(x; r) = {y | γ(y′) = yN} ∩ B(x, r)

}
, where y′ = (y1, . . . , yN−1).

In particular, Ω is called a Lipschitz domain if γ is Lipschitz.
If A ⊂ Γ := ∂Ω ∩ B(x; r), γ is Lipschitz and f : A → R, then one can define

the surface integral

∫
A

f dSx :=
∫

Φγ (A)

f(y′, γ(y′))

√√√√1 +
N−1∑
i=1

(
∂γ

∂yi

)2

dy′,

where Φγ : RN → RN , Φγ(y′, yN ) = (y′, yN − γ(y′)), whenever the (Lebesgue)
integral at the right-hand side exists. If f = 1A then SN−1(A) =

∫
A dSx is the

surface measure on ∂Ω of A that can be identified with the (N − 1)-Hausdorff
measure on ∂Ω of A (cf. Evans and Gariepy [75, Chapter 4.2]). In the general case
of A ⊂ ∂Ω, one can define

∫
A f dSx using a covering B = {B(xi; r)}M

i=1, xi ∈ ∂Ω,
M ∈ N of ∂Ω by balls of radii r and subordinated partition of unity F = {ϕi}M

i=1,
and set ∫

A

f dSx =
M∑
i=1

∫
Γi

ϕif dSx, Γi = ∂Ω ∩ B(xi; r),

see Nečas [162, Section I.2] or Kufner, Fučik, John [125, Section 6.3].
A Lipschitz domain Ω admits the outer normal vector n(x) for a.a. x ∈ ∂Ω.

Here a.a. refers to the surface measure on ∂Ω.
The distance functiond(x) = dist[x, ∂Ω] is Lipschitz continuous. Moreover, d

is differentiable a.a. in R3, and

∇xd(x) =
x − ξ(x)

d(x)

whenever d is differentiable at x ∈ R3 \ Ω, where ξ denotes the nearest point to
x on ∂Ω (see Ziemer [207, Chapter 1]). Moreover, if the boundary ∂Ω is of class
Ck, then d is k-times continuously differentiable in a neighborhood of ∂Ω (see
Foote [88]).

(ii) The Sobolev spaces W k,p(Q; RM ), 1 ≤ p ≤ ∞, k a positive integer, are the
spaces of functions having all distributional derivatives up to order k in Lp(Q; RM ).
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The norm in W k,p(Q; RM ) is defined as

‖v‖W k,p(Q;RM ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
( M∑

i=1

∑
|α|≤k

‖∂αvi‖p
Lp(Q)

)1/p

if 1 ≤ p < ∞

max
1≤i≤M, |α|≤k

{‖∂αvi‖L∞(Q)} if p = ∞

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

where the symbol ∂α stands for any partial derivative of order |α|.
If Q is a bounded domain with boundary of class Ck−1,1, then there exists

a continuous linear operator which maps W k,p(Q) to W k,p(RN ); it is called an
extension operator. If, in addition, 1 ≤ p < ∞, then W k,p(Q) is separable and the
space Ck(Q) is its dense subspace.

The space W 1,∞(Q), where Q is a bounded domain, is isometrically isomor-
phic to the space C0,1(Q) of Lipschitz functions on Q.

For basic properties of Sobolev functions, see Adams [1] or Ziemer [207].

(iii) The symbol W k,p
0 (Q; RM ) denotes the completion of C∞

c (Q; RM ) with re-
spect to the norm ‖ · ‖W k,p(Q;RM). In what follows, we identify W 0,p(Ω; RN ) =
W 0,p

0 (Ω; RN ) with Lp(Ω; RN ).
We denote L̇p(Q) = {u ∈ Lp(Q) |

∫
Q

u dy = 0} and Ẇ 1,p(Q) = W 1,p(Q) ∩
L̇p(Q). If Q ⊂ R

N is a bounded domain, then L̇p(Q) and Ẇ 1,p(Q) can be viewed
as closed subspaces of Lp(Q) and W 1,p(Q), respectively.

(iv) Let Q ⊂ RN be an open set, 1 ≤ p ≤ ∞ and v ∈ W 1,p(Q). Then we have:

(a) |v|+, |v|− ∈ W 1,p(Q) and

∂xj |v|+ =

{
∂xk

v a.a. in {v > 0}
0 a.a. in {v ≤ 0}

}
,

∂xj |v|− =

{
∂xk

v a.a. in {v < 0}
0 a.a. in {v ≥ 0}

}
,

j = 1, . . . , N , where |v|+ = max{u, 0} denotes a positive part and |v|− =
min{u, 0} a negative part of v.

(b) If f : R → R is a Lipschitz function and f ◦ v ∈ Lp(Q), then f ◦ v ∈ W 1,p(Q)
and

∂xj [f ◦ v](x) = f ′(v(x))∂xj v(x) for a.a. x ∈ Q.

For more details see Ziemer [207, Section 2.1].
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(v) Dual spaces to Sobolev spaces.

� Dual Sobolev Spaces:

Theorem 0.3. Let Ω ⊂ R
N be a domain, and let 1 ≤ p < ∞. Then the dual space

[W k,p
0 (Ω)]∗ is a proper subspace of the space of distributions D′(Ω). Moreover, any

linear form f ∈ [W k,p
0 (Ω)]∗ admits a representation

〈f ; v〉[W k,p
0 (Ω)]∗;W k,p

0 (Ω) =
∑
|α|≤k

∫
Ω

(−1)|α|wα ∂αv dx, (3)

where wα ∈ Lp′
(Ω),

1
p

+
1
p′

= 1.

The norm of f in the dual space is given as

‖f‖[W k,p
0 (Ω)]∗ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

inf
{(∑

|α|≤k ‖wα‖p′

Lp′(Ω)

)1/p′ ∣∣∣wα satisfy (3)
}

for 1 < p < ∞;

inf
{

max|α|≤k{‖wα‖L∞(Q)}
∣∣∣wα satisfy (3)

}
if p = 1.

The infimum is attained in both cases.

See Adams [1, Theorem 3.8], Mazya [154, Section 1.1.14]. �

The dual space to the Sobolev space W k,p
0 (Ω) is denoted as W−k,p′

(Ω).
The dual to the Sobolev space W k,p(Ω) admits formally the same represen-

tation formula as (3). However it cannot be identified as a space of distributions
on Ω. A typical example is the linear form

〈f ; v〉 =
∫

Ω

wf · ∇xv dx, with divxwf = 0

that vanishes on D(Ω) but generates a non-zero linear form when applied to v ∈
W 1,p(Ω).

(vi)

� Rellich-Kondrachov Embedding Theorem:

Theorem 0.4. Let Ω ⊂ RN be a bounded Lipschitz domain.

(i) Then, if kp < N and p ≥ 1, the space W k,p(Ω) is continuously embedded in
Lq(Ω) for any

1 ≤ q ≤ p∗ =
Np

N − kp
.

Moreover, the embedding is compact if k > 0 and q < p∗.
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(ii) If kp = N , the space W k,p(Ω) is compactly embedded in Lq(Ω) for any q ∈
[1,∞).

(iii) If kp > N , then W k,p(Ω) is continuously embedded in Ck−[N/p]−1,ν(Ω), where
[ ] denotes the integer part and

ν =

{
[N

p ] + 1 − N
p if N

p /∈ Z,

arbitrary positive number in (0, 1) if N
p ∈ Z.

Moreover, the embedding is compact if 0 < ν < [N
p ] + 1 − N

p .

See Ziemer [207, Theorem 2.5.1, Remark 2.5.2]. �

The symbol ↪→ will denote continuous embedding, ↪→↪→ indicates compact
embedding.

(vii) The following result may be regarded as a direct consequence of Theorem 0.4.

� Embedding Theorem for Dual Sobolev Spaces:

Theorem 0.5. Let Ω ⊂ RN be a bounded domain. Let k > 0 and q < ∞ satisfy

q >
p∗

p∗ − 1
, where p∗ =

Np

N − kp
if kp < N,

q > 1 for kp = N, or q ≥ 1 if kp > N.

Then the space Lq(Ω) is compactly embedded into the space W−k,p′
(Ω), 1/p +

1/p′ = 1.

(viii)The Sobolev-Slobodeckii spaces W k+β,p(Q), 1 ≤ p < ∞, 0 < β < 1,
k = 0, 1, . . ., where Q is a domain in RL, L ∈ N, are Banach spaces of functions
with finite norm

W k+β,p(Q) =

⎛
⎝‖v‖p

W k,p(Q)
+
∑
|α|=k

∫
Q

∫
Q

|∂αv(y) − ∂αv(z)|p
|y − z|L+βp

dy dz

⎞
⎠

1
p

,

see, e.g., Nečas[162, Section 2.3.8].
Let Ω ⊂ RN be a bounded Lipschitz domain. Referring to the notation

introduced in (i), we say that f ∈ W k+β,p(∂Ω) if (ϕf)◦(I′, γ) ∈ W k+β,p(RN−1) for
any Γ = ∂Ω∩B with B belonging to the covering B of ∂Ω and ϕ the corresponding
term in the partition of unity F . The space W k+β,p(∂Ω) is a Banach space endowed
with an equivalent norm ‖ · ‖W k+β,p(∂Ω), where

‖v‖p
W k+β,p(∂Ω)

=
M∑
i=1

‖(vϕi) ◦ (I′, γ)‖p
W k+β,p(RN−1)

.
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In the above formulas (I′, γ) : RN−1 → RN maps y′ to (y′, γ(y′)). For more details
see, e.g., Nečas [162, Section 3.8].

In the situation when Ω ⊂ R
N is a bounded Lipschitz domain, the Sobolev-

Slobodeckii spaces admit similar embeddings as classical Sobolev spaces. Namely,
the embeddings

W k+β,p(Ω) ↪→ Lq(Ω) and W k+β,p(Ω) ↪→ Cs(Ω)

are compact provided (k + β)p < N , 1 ≤ q < Np
N−(k+β)p , and s = 0, 1, . . . , k,

(k − s + β)p > N , respectively. The former embedding remains continuous (but
not compact) at the border case q = Np

N−(k+β)p .

(ix)

� Trace Theorem for Sobolev Spaces and Green’s formula:

Theorem 0.6. Let Ω ⊂ RN be a bounded Lipschitz domain.
Then there exists a linear operator γ0 with the following properties:

[γ0(v)](x) = v(x) for x ∈ ∂Ω provided v ∈ C∞(Ω),

‖γ0(v)‖
W

1− 1
p

,p
(∂Ω)

≤ c‖v‖W 1,p(Ω) for all v ∈ W 1,p(Ω),

ker[γ0] = W 1,p
0 (Ω)

provided 1 < p < ∞.
Conversely, there exists a continuous linear operator

� : W 1− 1
p ,p(∂Ω) → W 1,p(Ω)

such that
γ0(�(v)) = v for all v ∈ W 1− 1

p ,p(∂Ω)

provided 1 < p < ∞.
In addition, the following formula holds:∫

Ω

∂xiuv dx +
∫

Ω

u∂xiv dx =
∫

∂Ω

γ0(u)γ0(v)ni dSx, i = 1, . . . , N,

for any u ∈ W 1,p(Ω), v ∈ W 1,p′
(Ω), where n is the outer normal vector to the

boundary ∂Ω.

See Nečas [162, Theorems 5.5, 5.7]. �
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The dual [W 1− 1
p ,p(∂Ω)]∗ to the Sobolev-Slobodeckii space W 1− 1

p ,p(∂Ω)) =
W

1
p′ ,p(∂Ω) is denoted simply by W

− 1
p′ ,p′

(∂Ω).

(ix) If Ω ⊂ RN is a bounded Lipschitz domain, then we have the interpolation-
inequality

‖v‖W α,r(Ω) ≤ c‖v‖λ
W β,p(Ω)‖v‖1−λ

W γ,q(Ω), 0 ≤ λ ≤ 1, (4)

for

0 ≤ α, β, γ ≤ 1, 1 < p, q, r < ∞, α = λβ + (1 − λ)γ,
1
r

=
λ

p
+

1 − λ

q

(see Sections 2.3.1, 2.4.1, 4.3.2 in Triebel [190]).

0.5 Fourier transform

Let v = v(x) be a complex-valued function integrable on RN . The Fourier trans-
form of v is a complex-valued function Fx→ξ[v] of the variable ξ ∈ RN defined as

Fx→ξ[v](ξ) =
(

1
2π

)N/2 ∫
RN

v(x) exp(−iξ · x) dx. (5)

Therefore, the Fourier transform Fx→ξ can be viewed as a continuous linear map-
ping defined on L1(RN ) with values in L∞(RN ).

(i) For u, v complex-valued square integrable functions on RN , we have Parse-
val’s identity: ∫

RN

u(x)v(x) dx =
∫

RN

Fx→ξ[u](ξ)Fx→ξ[v](ξ) dξ,

where bar denotes the complex conjugate. Parseval’s identity implies that Fx→ξ

can be extended as a continuous linear mapping defined on L2(RN ) with values
in L2(RN ).

(ii) The symbol S(RN ) denotes the space of smooth rapidly decreasing (complex-
valued) functions, specifically, S(RN ) consists of functions u such that

sup
|α|≤m

sup
x∈RN

(1 + |x|2)s|∂αu| < ∞

for all s, m = 0, 1, . . . . We say that un → u in S(RN ) if

sup
|α|≤m

sup
x∈RN

(1 + |x|2)s|∂α(un − u)| → 0, s, m = 0, 1, . . . . (6)

The space of tempered distributions is identified as the dual S′(RN ). Continuity
of a linear form belonging to S′(RN ) is understood with respect to convergence
introduced in (6).
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The Fourier transform introduced in (5) can be extended as a bounded linear
operator defined on S(RN ) with values in S(RN ). Its inverse reads

F−1
ξ→x[f ] =

( 1
2π

)N/2
∫

RN

f(ξ)exp(ix · ξ)dξ. (7)

(iii) The Fourier transform of a tempered distribution f ∈ S′(RN ) is defined as

〈Fx→ξ[f ]; g〉 = 〈f ;Fx→ξ[g]〉 for any g ∈ S(RN ). (8)

It is a continuous linear operator defined on S′(RN ) onto S′(RN ) with the inverse
F−1

ξ→x, 〈
F−1

ξ→x[f ]; g
〉

=
〈
f ;F−1

ξ→x[g]
〉

, f ∈ S′(RN ), g ∈ S(RN ). (9)

(iv) We recall formulas

∂ξk
Fx→ξ[f ] = Fx→ξ[−ixkf ], Fx→ξ[∂xk

f ] = iξkFx→ξ[f ], (10)

where f ∈ S′(RN ), and

Fx→ξ[f ∗ g] =
(
Fx→ξ[f ]

)
×
(
Fx→ξ[g]

)
, (11)

where f ∈ S(RN ), g ∈ S′(RN ) and ∗ denotes convolution.

(v) A partial differential operator D of order m,

D =
∑

|α|≤m

aα∂α,

can be associated to a Fourier multiplier in the form

D̃ =
∑

|α|≤m

aα(iξ)α, ξα = ξα1
1 . . . ξαN

N

in the sense that

D[v](x) = F−1
ξ→x

⎡
⎣ ∑
|α|≤m

aα(iξ)αFx→ξ[v](ξ)

⎤
⎦ , v ∈ S(RN ).

The operators defined through the right-hand side of the above expression are
called pseudodifferential operators.



xxxii Notation, Definitions, and Function Spaces

(vi) Various pseudodifferential operators used in the book are identified through
their Fourier symbols:

• Riesz transform:

Rj ≈ −iξj

|ξ| , j = 1, . . . , N.

• Inverse Laplacian:

(−Δ)−1 ≈ 1
|ξ|2 .

• The “double” Riesz transform:

{R}N
i,j=1, R = Δ−1∇x ⊗∇x, Ri,j ≈ ξiξj

|ξ|2 , i, j = 1, . . . , N.

• Inverse divergence:

Aj = ∂xj Δ
−1 ≈ iξj

|ξ|2 , j = 1, . . . , N.

We write

A : R ≡
3∑

i,j=1

Ai,jRi,j , R[v]i ≡
3∑

j=1

Ri,j [vj ], i = 1, 2, 3.

(vii)

� Hörmander-Mikhlin Theorem:

Theorem 0.7. Consider an operator L defined by means of a Fourier multiplier
m = m(ξ),

L[v](x) = F−1
ξ→x [m(ξ)Fx→ξ[v](ξ)] ,

where m ∈ L∞(RN ) has classical derivatives up to order [N/2] + 1 in RN \ {0}
and satisfies

|∂α
ξ m(ξ)| ≤ cα|ξ|−|α|, ξ �= 0,

for any multiindex α such that |α| ≤ [N/2] + 1, where [ ] denotes the integer part.
Then L is a bounded linear operator on Lp(RN ) for any 1 < p < ∞.

See Stein [186, Chapter 4, Theorem 3]. �
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0.6 Weak convergence of integrable functions

Let X be a Banach space, BX the (closed) unit ball in X , and BX∗ the (closed)
unit ball in the dual space X∗.

(i) Here are some known facts concerning weak compactness :

(1) BX is weakly compact only if X is reflexive. This is stated in Kakutani’s
theorem, see Theorem III.6 in Brezis [35].

(2) BX∗ is weakly-(*) compact. This is the Banach-Alaoglu-Bourbaki theorem,
see Theorem III.15 in Brezis [35].

(3) If X is separable, then BX∗ is sequentially weakly-(*) compact, see Theorem
III.25 in Brezis [35].

(4) A non-empty subset of a Banach space X is weakly relatively compact only
if it is sequentially weakly relatively compact. This is stated in the Eberlein-
Shmuliyan-Grothendieck theorem, see Kothe [124], Paragraph 24, 3.(8); 7.

(ii) In view of these facts:

(1) Any bounded sequence in Lp(Q), where 1 < p < ∞ and Q ⊂ RN is a domain,
is weakly (relatively) compact.

(2) Any bounded sequence in L∞(Q), where Q ⊂ RN is a domain, is weakly-(*)
(relatively) compact.

(iii) Since L1 is neither reflexive nor dual of a Banach space, the uniformly
bounded sequences in L1 are in general not weakly relatively compact in L1. On
the other hand, the property of weak compactness is equivalent to the property of
sequential weak compactness.

� Weak Compactness in the Space L1
:

Theorem 0.8. Let V ⊂ L1(Q), where Q ⊂ R
M is a bounded measurable set.

Then the following statements are equivalent:

(i) any sequence {vn}∞n=1 ⊂ V contains a subsequence weakly converging in
L1(Q);

(ii) for any ε > 0 there exists k > 0 such that∫
{|v|≥k}

|v(y)| dy ≤ ε for all v ∈ V ;

(iii) for any ε > 0 there exists δ > 0 such for all v ∈ V∫
M

|v(y)|dy < ε

for any measurable set M ⊂ Q such that

|M | < δ;
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(iv) there exists a non-negative function Φ ∈ C([0,∞)),

lim
z→∞

Φ(z)
z

= ∞,

such that
sup
v∈V

∫
Q

Φ(|v(y)|) dy ≤ c.

See Ekeland and Temam [70, Ch. 8, Thm. 1.3], Pedregal [172, Lem. 6.4]. �

Condition (iii) is termed equi-integrability of a given set of integrable func-
tions and the equivalence of (i) is the Dunford-Pettis theorem (cf., e.g., Diestel [62,
p.93]. Condition (iv) is called the De la Vallé-Poussin criterion, see Pedregal [172,
Lemma 6.4]. The statement “there exists a non-negative function Φ ∈ C([0,∞))”
in condition (iv) can be replaced by “there exists a non-negative convex function
on [0,∞)”.

0.7 Non-negative Borel measures

(i) The symbol Cc(Q) denotes the space of continuous functions with compact
support in a locally compact Hausdorff metric space Q.

(ii) The symbol M(Q) stands for the space of signed Borel measures on Q. The
symbol M+(Q) denotes the cone of non-negative Borel measures on Q. A measure
ν ∈ M+(Q) such that ν[Q] = 1 is called probability measure.

(iii)

� The Riesz Representation Theorem:

Theorem 0.9. Let Q be a locally compact Hausdorff metric space. Let f be a non-
negative linear functional defined on the space Cc(Q).

Then there exist a σ-algebra of measurable sets containing all Borel sets and
a unique non-negative measure on μf ∈ M+(Q) such that

〈f ; g〉 =
∫

Q

g dμf for any g ∈ Cc(Q). (12)

Moreover, the measure μf enjoys the following properties:

• μf [K] < ∞ for any compact K ⊂ Q.
• μf [E] = sup {μf [K] | K ⊂ E} for any open set E ⊂ Q.
• μf [V ] = inf {μ(E) | V ⊂ E, E open} for any Borel set V .
• If E is μf measurable, μf (E) = 0, and A ⊂ E, then A is μf measurable.

See Rudin [175, Chapter 2, Theorem 2.14]. �
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(iv)

Corollary 0.1. Assume that f : C∞
c (Q) → R is a linear and non-negative func-

tional, where Q is a domain in RN .
Then there exists a measure μf enjoying the same properties as in Theo-

rem 0.9 such that f is represented through (12).

See Evans and Gariepy [75, Chapter 1.8, Corollary 1].

(v) If Q ⊂ R
M is a bounded set, the space M(Q) can be identified with the dual

to the Banach space C(Q) via (12). The space M(Q) is compactly embedded into
the dual Sobolev space W−k,p′

(Q) as soon as Q ⊂ RM is a bounded Lipschitz
domain and kp > M , 1/p + 1/p′ = 1 (see Evans [73, Chapter 1, Theorem 6]).

(vi) If μ is a probability measure on Ω and g a μ-measurable real-valued function,
then we have Jensen’s inequality

Φ
(∫

Ω

g dμ

)
≤
∫

Ω

Φ(g) dμ (13)

for any convex Φ defined on R.

0.8 Parametrized (Young) measures

(i) Let Q ⊂ RN be a domain. We say that ψ : Q×RM is a Carathéodory function
on Q × RM if{

for a. a. x ∈ Q, the function λ → ψ(x, λ) is continuous on RM ;

for all λ ∈ RM , the function x → ψ(x, λ) is measurable on Q.

}
(14)

We say that {νx}x∈Q is a family of parametrized measures if νx is a proba-
bility measure for a.a. x ∈ Q, and if{

the function x →
∫

RM φ(λ) dνx(λ) := 〈νx; φ〉 is measurable on Q

for all φ : RM → R, φ ∈
(
C(RM ) ∩ L∞(RM )

)
.

}
(15)

(ii)

� Fundamental Theorem of the Theory of Parameterized (Young)

Measures:

Theorem 0.10. Let {vn}∞n=1, vn : Q ⊂ RN → RM be a sequence of functions
bounded in L1(Q; RM ), where Q is a domain in R

N .
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Then there exist a subsequence (not relabeled) and a parameterized family
{νy}y∈Q of probability measures on RM depending measurably on y ∈ Q with the
following property:

For any Carathéodory function Φ = Φ(y, z), y ∈ Q, z ∈ RM such that

Φ(·,vn) → Φ weakly in L1(Q),

we have
Φ(y) =

∫
RM

ψ(y, z) dνy(z) for a.a. y ∈ Q.

See Pedregal [172, Chapter 6, Theorem 6.2]. �

(iii) The family of measures {νy}y∈Q associated to a sequence {vn}∞n=1,

vn → v weakly in L1(Q; RM ),

is termed Young measure. We shall systematically denote by the symbol Φ(·,v)
the weak limit associated to {Φ(·,vn)}∞n=1 via the corresponding Young measure
constructed in Theorem 0.10. Note that a Young measure need not be unique for
a given sequence.



Chapter 1

Fluid Flow Modeling

Physics distinguishes four basic forms of matter: solids, liquids, gases, and plasmas.
The last three forms fall in the category of fluids. Fluid is a material that can
flow, meaning fluids cannot sustain stress in the equilibrium state. Any time a
force is applied to a fluid, the latter starts and keeps moving even when the force
is no longer active. Fluid mechanics studies flows of fluids under the principal
laws of mechanics. Examples of real fluid flows are numerous ranging from oceans
and atmosphere to gaseous stars. The relevant applications include meteorology,
engineering, and astrophysics to name only a few.

There are several qualitative levels of models studied in mathematical fluid
mechanics. The main conceptual idea is the fundamental hypothesis that matter
is made of atoms and molecules, viewed as solid objects with several degrees of
freedom, that obey the basic principles of classical mechanics.

• Molecular Dynamics (MD) studies typically a very large number of or-
dinary differential equations that govern the time evolution of each single
particle of the fluid coupled through the interaction forces of different kinds.
Numerical simulations based on (MD) are of fundamental importance when
determining the physical properties of “macroscopic” fluids, for instance their
interaction with a solid wall. Models based on (MD) are fully reversible in
time.

• Kinetic Models are based on averaging with respect to particles having
the same velocity. The basic state variable is the density of the fluid parti-
cles at a given time and spatial position with the same velocity. Accordingly,
the evolution is governed by a transport equation of Boltzmann’s type in-
cluding the so-called collision operator. The presence of collisions results in
irreversibility of the process in time.

• Continuum Fluid Mechanics is a phenomenological theory based on
macroscopic (observable) state variables such as density, fluid velocity, and
temperature. The time evolution of these quantities is described through a



2 Chapter 1. Fluid Flow Modeling

system of partial differential equations. The objective existence of the macro-
scopic quantities (fields) is termed the continuum hypothesis. The theory is
widely used in numerical analysis and real world applications. The processes,
in general, are irreversible in time.

• Models of Turbulence are based on further averaging of the macroscopic
models studied in continuum fluid mechanics. According to the present state
of knowledge, there is no universally accepted theory of turbulence. The
evolution of state variables is described by a system of partial differential
equations and is irreversible in time.

The mathematical theory of continuum fluid mechanics developed in this
book is based on fundamental physical principles that can be expressed in terms
of balance laws. These may be written by means of either a Lagrangian or a Eu-
lerian reference system. In Lagrangian coordinates, the description is associated
to particles moving in space and time. The Eulerian reference system is based on
a fixed frame attached to the underlying physical space. We will use systemati-
cally the Eulerian description more suitable for fluids which undergo unlimited
displacements. Accordingly, the independent variables are associated to the phys-
ical space represented by a spatial domain Ω ⊂ R

3, and a time interval I ⊂ R,
typically, I = (0, T ), T > 0.

1.1 Fluids in continuum mechanics

We adopt the standard mathematical description of a fluid as found in many
classical textbooks on continuum fluid mechanics. Unlike certain recently proposed
alternative theories based on a largely extended number of state variables, we
assume the state of a fluid at a given instant can be characterized by its density
and temperature distribution whereas the motion is completely determined by a
velocity field. Simplifying further we focus on chemically inert homogeneous fluids
that may be characterized through the following quantities.

� Fluids in Continuum Mechanics:

(a) a domain Ω ⊂ R3 occupied by a fluid in an ambient space;

(b) a non-negative measurable function � = �(t, x) defined for t ∈ (0, T ), x ∈ Ω,
yielding the mass density;

(c) a vector field u = u(t, x), t ∈ (0, T ), x ∈ Ω, defining the velocity of the fluid;

(d) a positive measurable function ϑ = ϑ(t, x), t ∈ (0, T ), x ∈ Ω, describing the
distribution of temperature measured in the absolute Kelvin scale;

(e) the thermodynamic functions: the pressure p = p(�, ϑ), the specific internal
energy e = e(�, ϑ), and the specific entropy s = s(�, ϑ);
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(f) a stress tensor T = {Ti,j}3
i,j=1 yielding the force per unit surface that the

part of a fluid in contact with an ideal surface element imposes on the part
of the fluid on the other side of the same surface element;

(g) a vector field q giving the flux of the internal energy;
(h) a vector field f = f(t, x), t ∈ (0, T ), x ∈ Ω, defining the distribution of a

volume force acting on a fluid;
(i) a function Q = Q(t, x), t ∈ (0, T ), x ∈ Ω, yielding the rate of production of

internal energy.

The trio {�,u, ϑ} introduced in (b)–(d) represents the basic state variables
characterizing completely the state of a fluid at a given instant t. The remaining
quantities are determined in terms of the state variables by means of a set of
constitutive relations.

Fluids are characterized among other materials through Stokes’ law

T = S − pI, (1.1)

where S denotes the viscous stress tensor . Viscosity is a property associated to the
relative motion of different parts of the fluid; whence S is always interrelated with
the velocity gradient ∇xu or rather its symmetric part ∇xu+∇T

x u. In particular,
the viscous stress vanishes whenever ∇xu +∇T

x u = 0, that means, when the fluid
exhibits a rigid motion with respect to a fixed coordinate system. In accordance
with the Second law of thermodynamics, viscosity is responsible for the irreversible
transfer of the mechanical energy associated to the motion into heat. Although
omitted in certain mathematical idealizations (Euler system), viscosity is always
present and must be taken into account when modeling the motion of fluids in the
long run.

The pressure p, similarly to the specific energy e and the specific entropy
s, are typical thermostatic variables attributed to a system in thermodynamic
equilibrium and as such can be evaluated as numerical functions of the density
and the absolute temperature. Moreover, in accordance with the Second law of
thermodynamics, p = p(�, ϑ), e = e(�, ϑ), and s = s(�, ϑ) are interrelated through

� Gibbs’ Equation:

ϑDs(�, ϑ) = De(�, ϑ) + p(�, ϑ)D
(1

�

)
. (1.2)

The symbol D in (1.2) stands for the differential with respect to the variables
�, ϑ. A common hypothesis tacitly assumed in many mathematical models asserts
that the time scale related to the macroscopic motion of a fluid is so large that
the latter can be considered at thermodynamic equilibrium at any instant t of the
“real” time, in particular, the temperature ϑ is well determined and can be taken
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as a state variable even if the system may be quite far from the equilibrium state
(see Öttinger [168]).

Gibbs’ equation (1.2) can be equivalently written in the form of Maxwell’s
relation

∂e(�, ϑ)
∂�

=
1
�2

(
p(�, ϑ) − ϑ

∂p(�, ϑ)
∂ϑ

)
. (1.3)

The precise meaning of (1.3) is that the expression 1/ϑ(De+pD(1/�)) is a perfect
gradient of a scalar function termed entropy.

1.2 Balance laws

Classical continuum mechanics describes a fluid by means of a family of state
variables – observable and measurable macroscopic quantities – a representative
sample of which has been introduced in the preceding part. The basic physical
principles are then expressed through a system of balance laws. A general balance
law takes the form of an integral identity∫

B

d(t2, x) dx −
∫

B

d(t1, x) dx +
∫ t2

t1

∫
∂B

F(t, x) · n(x) dSx dt

=
∫ t2

t1

∫
B

σ(t, x) dx dt (1.4)

to be satisfied for any t1 ≤ t2 and any subset B ⊂ Ω, where the symbol d stands
for the volumetric (meaning per unit volume) density of an observable property,
F denotes its flux, n is the outer normal vector to ∂B, and σ denotes the rate of
production of d per unit volume. The principal idea, pursued and promoted in this
book, asserts that (1.4) is the most natural and correct mathematical formulation
of any balance law in continuum mechanics.

The expression on the left-hand side of (1.4) can be interpreted as the integral
mean of the normal trace of the four-component vector field [d,F] on the boundary
of the time-space cylinder (t1, t2)×B. On the other hand, by means of the Gauss-
Green theorem, we can write∫

B

d(t2, x)ϕ(t2, x) dx −
∫

B

d(t1, x)ϕ(t1, x) dx +
∫ t2

t1

∫
∂B

F(t, x) · n(x)ϕ(t, x)dSx dt

=
∫ t2

t1

∫
B

(
∂td(t, x) + divxF(t, x)

)
ϕ(t, x) dx dt (1.5)

+
∫ t2

t1

∫
B

(
d(t, x)∂tϕ(t, x) + F(t, x) · ∇xϕ(t, x)

)
dx dt

for any smooth test function ϕ defined on R×R3. If all quantities are continuously
differentiable, it is easy to check that relations (1.4), (1.5) are compatible as soon as

∂td(t, x) + divxF(t, x) = σ(t, x) (1.6)
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yielding∫
B

d(t2, x)ϕ(t2, x) dx −
∫

B

d(t1, x)ϕ(t1, x) dx +
∫ t2

t1

∫
∂B

F(t, x) · n(x)ϕ(t, x)dSx dt

=
∫ t2

t1

∫
B

σ(t, x)ϕ(t, x) dxdt +
∫ t2

t1

∫
B

(
d(t, x)∂tϕ(t, x) + F(t, x) · ∇xϕ(t, x)

)
dxdt.

(1.7)

The integral identity (1.7) can be used as a proper definition of the normal
trace of the field [d,F] as long as∫ T

0

∫
Ω

(
d(t, x)∂tϕ(t, x) + F(t, x) · ∇xϕ(t, x)

)
dx dt

+
∫ T

0

∫
Ω

σ(t, x)ϕ(t, x) dx dt = 0 (1.8)

for any ϕ ∈ C∞
c ((0, T ) × Ω). In the terminology of the modern theory of partial

differential equations, relation (1.8) represents a weak formulation of the differen-
tial equation (1.6). If (1.8) holds for any test function ϕ ∈ C∞

c ((0, T )×Ω), we say
that equation (1.6) is satisfied in D′((0, T ) × Ω), or, in the sense of distributions.

The satisfaction of the initial condition d(0, ·) = d0, together with the pre-
scribed normal component of the flux Fb = F · n|∂Ω on the boundary, can be
incorporated into the weak formulation by means of the integral identity

−
∫

Ω

d0(x)ϕ(0, x) dx +
∫ T

0

∫
∂Ω

Fb(t, x)ϕ(t, x)dSx dt (1.9)

=
∫ T

0

∫
Ω

σ(t, x)ϕ(t, x) dxdt +
∫ T

0

∫
Ω

(
d(t, x)∂tϕ(t, x) + F(t, x) · ∇xϕ(t, x)

)
dxdt

to be satisfied for any ϕ ∈ C∞
c ([0, T ) × Ω).

As a matter of fact, the source term σ need not be an integrable function.
The normal trace of [d,F] is still well defined through (1.7) even if σ is merely a
signed measure, more specifically, σ = σ+ − σ−, where σ+, σ− ∈ M+([0, T ] × Ω)
are non-negative regular Borel measures defined on the compact set [0, T ] × Ω.
Accordingly, relation (1.9) takes the form of a general

� Balance Law:

〈σ; ϕ〉[M;C]([0,T ]×Ω) +
∫ T

0

∫
Ω

(
d(t, x)∂tϕ(t, x) + F(t, x) · ∇xϕ(t, x)

)
dx dt

=
∫ T

0

∫
∂Ω

Fb(t, x)ϕ(t, x) dSx dt −
∫

Ω

d0(x)ϕ(0, x) dx (1.10)

for any test function ϕ ∈ C∞
c ([0, T )× Ω).
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If (1.10) holds, the (outer) normal trace of the field [d,F] can be identified
through (1.7), in particular, the instantaneous values of d at a time t can be defined.
However, these may exhibit jumps if the rate of production σ is not absolutely
continuous with respect to the Lebesgue measure. Specifically, using (1.7), (1.10),
we can define the left instantaneous value of d at a time τ ∈ (0, T ] as

〈d(τ−, ·); ϕ〉[M;C](Ω) (1.11)

=
∫

Ω

d0(x)ϕ(x) dx +
∫ τ

0

∫
Ω

F(t, x) · ∇xϕ(x) dxdt + lim
δ→0+

〈σ; ψδϕ〉[M,C]([0,T ]×Ω]) ,

for any ϕ ∈ C∞
c (Ω), where ψδ = ψδ(t) is non-increasing,

ψδ ∈ C1(R), ψδ(t) =

{
1 for t ∈ (−∞, τ − δ],
0 for t ∈ [τ,∞).

Similarly, we define the right instantaneous value of d at a time τ ∈ [0, T ) as

〈d(τ+, ·); ϕ〉[M;C](Ω) (1.12)

=
∫

Ω

d0(x)ϕ(x) dx +
∫ τ

0

∫
Ω

F(t, x) · ∇xϕ(x) dxdt + lim
δ→0+

〈σ; ψδϕ〉[M,C]([0,T ]×Ω]) ,

where ψδ = ψδ(t) is non-increasing,

ψδ ∈ C1(R), ψδ(t) =

{
1 for t ∈ (−∞, τ ],
0 for t ∈ [τ + δ,∞).

Note that, at least for d ∈ L∞(0, T ; L1(Ω)), the left and right instantaneous
values are represented by signed measures on Ω that coincide with d(τ, ·) ∈ L1(Ω)
at any Lebesgue point of the mapping τ → d(τ, ·). Moreover, d(τ−, ·) = d(τ+, ·)
for any τ ∈ [0, T ] and the mapping τ → d(τ, ·) is weakly-(*) continuous as soon
as σ is absolutely continuous with respect to the standard Lebesgue measure on
(0, T )× Ω.

Under certain circumstances, notably when identifying the entropy produc-
tion rate, the piece of information that is provided by the available mathematical
theory enables us only to show that∫ T

0

∫
Ω

d(t, x)∂tϕ(t, x) + F(t, x) · ∇xϕ(t, x) dx ≤ 0 (1.13)

for any non-negative test function ϕ ∈ C∞
c ([0, T )× Ω). Intuitively, this means

∂td + divx(F) ≥ 0

though a rigorous verification requires differentiability of d and F.
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Let us show that (1.13) is in fact equivalent to the integral identity∫ T

0

∫
Ω

d(t, x)∂tϕ(t, x)+F(t, x)·∇xϕ(t, x) dx dt+〈σ; ϕ〉[M+;C]([0,T ]×Ω) = 0 (1.14)

for any ϕ ∈ C∞
c ([0, T ) × Ω), where σ ∈ M+([0, T ] × Ω) is a non-negative regular

Borel measure on the set [0, T ] × Ω. This fact may be viewed as a variant of the
well-known statement that any non-negative distribution is representable by a
measure.

In order to see (1.14), assume that

d ∈ L∞(0, T ; L1(Ω)) and F ∈ Lp((0, T ) × Ω; R3) for a certain p > 1.

Consider a linear form

〈σ; ϕ〉 = −
∫ T

0

∫
Ω

(
d(t, x)∂tϕ(t, x) + F(t, x) · ∇xϕ(t, x)

)
dx

which is well defined for any ϕ ∈ C1
c ([0, T )×Ω). Moreover, it follows from (1.13),

that
〈σ; ϕ〉 ≥ 0 for any ϕ ∈ C∞

c ([0, T )× Ω), ϕ ≥ 0. (1.15)

Next, for any compact set K ⊂ [0, T ) × Ω we can find a function χK such
that

χK = χK(t) ∈ C∞
c [0, T ), 0 ≤ χK ≤ 1, ∂tχK ≤ 0, χK = 1 on K. (1.16)

In particular, as a direct consequence of (1.15), we get

〈σ; χK〉 ≤ ess sup
t∈(0,T )

‖d(t, ·)‖L1(Ω) for any K. (1.17)

We claim that σ can be extended in a unique way as a bounded non-negative
linear form on the vector space Cc([0, T ) × Ω). Indeed for any sequence {ϕn}∞n=1

of (smooth) functions supported by a fixed compact set K ⊂ [0, T ) × Ω, we have

| 〈σ; ϕn〉 − 〈σ; ϕm〉 | ≤ 〈σ; χK〉 ‖ϕn − ϕm‖C(K),

with χK constructed in (1.16).
By virtue of Riesz’s representation theorem (Theorem 0.9), the linear form σ

can be identified with a non-negative Borel measure on the set [0, T )×Ω. Finally,
because of the uniform estimate (1.17) on the value of σ[K] for any compact set
K ⊂ [0, T )×Ω, the measure σ[[0, T )×Ω] of the full domain is finite, in particular σ
can be trivially extended (by zero) to the set [0, T ]×Ω. Let us point out, however,
that such an extension represents only a suitable convention (the measure σ is
defined on a compact set [0, T ]× Ω) without any real impact on formula (1.14).

To conclude, we recall that the weak formulation of a balance law introduced
in (1.10) is deliberately expressed in the space-fixed, Eulerian form rather than a
“body-fixed” material description. This convention avoids the ambiguous notion
of trajectory in the situation where F, typically proportional to the velocity of the
fluid, is not regular enough to give rise to a unique system of streamlines.
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1.3 Field equations

In accordance with the general approach delineated in Section 1.2, the basic phys-
ical principles formulated in terms of balance laws will be understood in the sense
of integral identities similar to (1.10) rather than systems of partial differential
equations set forth in classical textbooks on fluid mechanics. Nonetheless, in the
course of formal discussion, we stick to the standard terminology “equation” or
“field equation” even if these mathematical objects are represented by an infinite
system of integral identities to be satisfied for a suitable class of test functions
rather than a single equation. Accordingly, the macroscopic quantities character-
izing the state of a material in continuum mechanics are called fields, the balance
laws they obey are termed field equations.

1.3.1 Conservation of mass

The fluid density � = �(t, x) is a fundamental state variable describing the distri-
bution of mass. The integral

M(B) =
∫

B

�(t, x) dx

represents the total amount of mass of the fluid contained in a set B ⊂ Ω at an
instant t. In a broader sense, the density could be a non-negative measure defined
on a suitable system of subsets of the ambient space Ω. However, for the purposes
of this study, we content ourselves with �(t, ·) that is absolutely continuous with
respect to the standard Lebesgue measure on R

3, therefore representable by a
non-negative measurable function.

Motivated by the general approach described in the previous part, we write
the physical principle of mass conservation in the form∫

B

�(t2, x) dx −
∫

B

�(t1, x) dx +
∫ t2

t1

∫
∂B

�(t, x)u(t, x) · n dSx dt = 0

for any (smooth) subset B ⊂ Ω, where u = u(t, x) is the velocity field determining
the motion of the fluid. Thus assuming, for a moment, that all quantities are
smooth, we deduce the equation of continuity in the differential form

∂t�(t, x) + divx(�(t, x)u(t, x)) = 0 in (0, T ) × Ω. (1.18)

In addition, we impose impermeability of the boundary ∂Ω, meaning,

u · n|∂Ω = 0. (1.19)

Multiplying (1.18) on B(�)+�B′(�), where B is a continuously differentiable
function, we easily deduce that

∂t(�B(�)) + divx(�B(�)u) + b(�)divxu = 0 (1.20)
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for any b ∈ BC[0,∞) (bounded and continuous functions), where

B(�) = B(1) +
∫ �

1

b(z)
z2

dz. (1.21)

Equation (1.20) can be viewed as a renormalized variant of (1.18).
Summing up the previous discussion and returning to the weak formulation,

we introduce

� Renormalized Equation of Continuity:

∫ T

0

∫
Ω

(
�B(�)∂tϕ + �B(�)u · ∇xϕ − b(�)divxu ϕ

)
dxdt = −

∫
Ω

�0B(�0)ϕ(0, ·) dx

(1.22)

to be satisfied for any test function ϕ ∈ C∞
c ([0, T )×Ω), and any B, b interrelated

through (1.21), where b is continuous and uniformly bounded function on R.

The family of integral identities (1.22) represents a mathematical formulation
of the physical principle of mass conservation. Formally, relation (1.22) reduces to
(1.20) provided all quantities are smooth, and, furthermore, to (1.18) if we take
b ≡ 0, B(1) = 1. The initial distribution of the density is determined by a given
function �0 = �(0, ·), while the boundary conditions (1.19) are satisfied implicitly
through the choice of test functions in (1.22) in the spirit of (1.10).

In a certain sense, the renormalized equation (1.22) can be viewed as a very
weak formulation of (1.18) since, at least for B(1) = 0, the density � need not be
integrable. On the other hand, relation (1.22) requires integrability of the velocity
field u at the level of first derivatives, specifically, divxu must be integrable on the
set [0, T )× Ω.

In contrast to (1.18), relation (1.22) provides a useful piece of information on
the mass transport and possible density oscillations in terms of the initial data.
It is important to note that (1.22) can be deduced from (1.18) even at the level
of the weak formulation as soon as the density is a bounded measurable function
(see Section 10.18 in Appendix).

1.3.2 Balance of linear momentum

In accordance with Newton’s second law, the flux associated to the momentum �u
in the Eulerian coordinate system can be written in the form (�u⊗u−T), where
the symbol T stands for the stress tensor introduced in Section 1.1. In accordance
with Stokes’ law (1.1), the balance of linear momentum reads

∂t(�u) + divx(�u ⊗ u) + ∇xp = divxS + �f in D′((0, T ) × Ω; R3), (1.23)
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or, ∫ T

0

∫
Ω

(
(�u) · ∂tϕ + �(u ⊗ u) : ∇xϕ + pdivxϕ

)
dx dt

=
∫ T

0

∫
Ω

(
S : ∇xϕ − �f · ϕ

)
dx −

∫
Ω

(�u)0 · ϕ(0, ·) dx, (1.24)

to be satisfied by any test function ϕ ∈ C∞
c ([0, T ) × Ω; R3). Note that relation

(1.24) already includes the initial condition

�u(0, ·) = (�u)0 in Ω. (1.25)

Analogously, as in the previous sections, the variational formulation (1.24)
may include implicit satisfaction of boundary conditions provided the class of
admissible test functions is extended “up to the boundary”. Roughly speaking, the
test functions should belong to the same regularity class as the velocity field u.
Accordingly, in order to enforce the impermeability condition (1.19), we take

ϕ ∈ C∞
c ([0, T ) × Ω; R3), ϕ · n|∂Ω = 0. (1.26)

Postulating relation (1.24) for any test function satisfying (1.26), we deduce
formally that

(Sn) × n|∂Ω = 0, (1.27)

which means, the tangential component of the normal stress forces vanishes on
the boundary. This behavior of the stress characterizes complete slip of the fluid
against the boundary.

In the theory of viscous fluids, however, it is more customary to impose the
no-slip boundary condition

u|∂Ω = 0, (1.28)

together with the associated class of test functions

ϕ ∈ C∞
c ([0, T ) × Ω; R3). (1.29)

The no-slip boundary condition (1.28) and even the impermeability condition
(1.19) require a concept of trace of the field u on the boundary ∂Ω. Therefore the
velocity field u must belong to a “better” space than just Lp(Ω; R3). As for the
impermeability hypothesis (1.19), we recall the Gauss-Green theorem yielding∫

∂Ω

ϕu · n dSx =
∫

Ω

∇xϕ · u dx +
∫

Ω

ϕ divxu dx. (1.30)

Consequently, we need both u and divxu to be at least integrable on Ω for (1.19) to
make sense. The no-slip boundary condition (1.28) requires the partial derivatives
of u to be at least (locally) integrable in Ω (cf. Theorem 0.6).
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Before leaving this section, we give a concise formulation of Newton’s second
law in terms of

� Balance of Momentum:

∫ T

0

∫
Ω

(
(�u) · ∂tϕ + �(u ⊗ u) : ∇xϕ + pdivxϕ

)
dx dt

=
∫ T

0

∫
Ω

(
S : ∇xϕ − �f · ϕ

)
dx −

∫
Ω

(�u)0 · ϕ(0, ·) dx (1.31)

must be satisfied by any test function ϕ belonging to the class C∞
c ([0, T )×Ω; R3)

if the no-slip boundary conditions (1.28) are imposed, or

ϕ ∈ C∞
c ([0, T ) × Ω; R3), ϕ · n|∂Ω = 0,

in the case of complete slip boundary conditions (1.19), (1.27).

1.3.3 Total energy

The energy density E can be written in the form

E =
1
2
�|u|2 + �e(�, ϑ), (1.32)

where the symbol e denotes the specific internal energy introduced in Section 1.1.
Multiplying equation (1.23) on u we deduce the kinetic energy balance

∂t

(1
2
�|u|2

)
+ divx

(1
2
�|u|2u

)
= divx(Tu) − T : ∇xu + �f · u, (1.33)

where the stress tensor T is related to S and p by means of Stokes’ law (1.1).
On the other hand, by virtue of the First law of thermodynamics , the changes of
the energy of the system are caused only by external sources, in particular, the
internal energy balance reads

∂t(�e) + divx(�eu) + divxq = S : ∇xu − pdivxu + �Q, (1.34)

where the term �Q represent the volumetric rate of the internal energy production,
and q is the internal energy flux.

Consequently, the energy balance equation may be written in the form

∂tE + divx(Eu) + divx

(
q− Su + pu

)
= �f · u + �Q. (1.35)
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Relation (1.35) can be integrated over the whole domain Ω in order to ob-
tain the balance of total energy. Performing by parts integration of the resulting
expression we finally arrive at

� Total Energy Balance:

∫
Ω

E(t2, ·) dx −
∫

Ω

E(t1, ·) dx =
∫ t2

t1

∫
Ω

(
�f · u + �Q

)
dx dt (1.36)

for any 0 ≤ t1 ≤ t2 ≤ T provided

q · n|∂Ω = 0, (1.37)

and either the no-slip boundary condition (1.28) or the complete slip boundary
conditions (1.19), (1.27) hold.

In the previous considerations, the internal energy e has been introduced
to balance the dissipative terms in (1.33). Its specific form required by Gibbs’
equation (1.2) is a consequence of the Second law of thermodynamics discussed in
the next section.

1.3.4 Entropy

The Second law of thermodynamics is the central principle around which we intend
to build up the mathematical theory used in this study. As a matter of fact,
Gibbs’ equation (1.2) should be viewed as a constraint imposed on p and e by the
principles of statistical physics, namely 1

ϑ (De + pD 1
� ) must be a perfect gradient.

Accordingly, the internal energy balance equation (1.34) can be rewritten in the
form of entropy balance

∂t(�s) + divx(�su) + divx

(q
ϑ

)
= σ +

�

ϑ
Q, (1.38)

with the entropy production rate

σ =
1
ϑ

(
S : ∇xu − q · ∇xϑ

ϑ

)
. (1.39)

The Second law of thermodynamics postulates that the entropy production rate
σ must be nonnegative for any admissible thermodynamic process. As we will see
below, this can be viewed as a restriction imposed on the constitutive relations for
S and q.
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A weak formulation of equation (1.38) reads

� Entropy Balance Equation:

∫ T

0

∫
Ω

(
�s∂tϕ + �su · ∇xϕ +

(q
ϑ

)
· ∇xϕ dx

)
dt (1.40)

= −
∫

Ω

(�s)0ϕ dx −
∫ T

0

∫
Ω

σϕ dx dt −
∫ T

0

∫
Ω

�

ϑ
Qϕ dx dt

must be satisfied for any test function ϕ ∈ C∞
c ([0, T )×Ω). Note that (1.40) already

includes the no-flux boundary condition (1.37) as well as the initial condition
�s(0, ·) = (�s)0.

In the framework of the weak solutions considered in this book, the entropy
production rate σ will be a non-negative measure satisfying

σ ≥ 1
ϑ

(
S : ∇xu− q · ∇xϑ

ϑ

)
in place of (1.39). Such a stipulation reflects one of the expected features of the
weak solutions, namely they produce maximal dissipation rate of the kinetic energy
enhanced by the presence of singularities that are not captured by the “classical”
formula (1.39). As we will see in Chapter 2, this approach still leads to a (formally)
well-posed problem.

1.4 Constitutive relations

The field equations derived in Section 1.3 must be supplemented with a set of
constitutive relations characterizing the material properties of a concrete fluid.
In particular, the viscous stress tensor S, the internal energy flux q as well as
the thermodynamic functions p, e, and s must be determined in terms of the
independent state variables {�,u, ϑ}.

1.4.1 Molecular energy and transport terms

The Second law of thermodynamics, together with its implications on the sign
of the entropy production rate discussed in Section 1.3.4, gives rise to further
restrictions that must be imposed on the transport terms S, q. In particular, as
the entropy production is non-negative for any admissible physical process, we
deduce from (1.39) that

S : ∇xu ≥ 0, −q · ∇xϑ ≥ 0. (1.41)
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A fundamental hypothesis of the mathematical theory developed in this book
asserts that the constitutive equations relating S, q to the affinities ∇xu, ∇xϑ are
linear. Such a stipulation gives rise to

� Newton’s Rheological Law:

S = μ
(
∇xu + ∇T

x u− 2
3
divxu I

)
+ ηdivxu I; (1.42)

and

� Fourier’s Law:

q = −κ∇xϑ. (1.43)

The specific form of S can be deduced from the physical principle of the material
frame indifference, see Chorin and Marsden [47] for details.

Writing

S : ∇xu =
μ

2

∣∣∣∇xu + ∇T
x u− 2

3
divxuI

∣∣∣2 + η|divxu|2,

we conclude, by virtue of (1.41), that the shear viscosity coefficient μ, the bulk
viscosity coefficient η, as well as the heat conductivity coefficient κ must be non-
negative. As our theory is primarily concerned with viscous and heat conducting
fluids, we shall always assume that the shear viscosity coefficient μ as well as
the heat conductivity coefficient κ are strictly positive. On the other hand, it is
customary, at least for certain gases, to neglect the second term in (1.42) setting
the bulk viscosity coefficient η = 0.

1.4.2 State equations

Gibbs’ equation (1.2) relates the thermal equation of state

p = p(�, ϑ)

to the caloric equation of state

e = e(�, ϑ),

in particular, p and e must obey Maxwell’s relation (1.3).
The mathematical theory of singular limits developed in this book leans

essentially on

� Hypothesis of Thermodynamic Stability:

∂e(�, ϑ)
∂ϑ

> 0,
∂p(�, ϑ)

∂�
> 0. (1.44)
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The meaning of (1.44) is that both the specific heat at constant volume cv =
∂e/∂ϑ and the compressibility of the fluid ∂p/∂� are positive although the latter
condition is apparently violated by the standard Van der Waals equation of state.

In order to fix ideas, we focus on the simplest possible situation supposing
the fluid is a monoatomic gas. In this case, it can be deduced by the methods of
statistical physics that the molecular pressure p = pM and the associated internal
energy e = eM are interrelated through

pM (�, ϑ) =
2
3
�eM (�, ϑ) (1.45)

(see Eliezer et al. [71]). It is a routine matter to check that (1.45) is compatible
with (1.3) only if there is a function P such that

pM (�, ϑ) = ϑ5/2P
( �

ϑ3/2

)
. (1.46)

Indeed inserting (1.45) into (1.3) gives rise to a first-order partial differential equa-
tion that can be solved by means of the change of variables q(Z, ϑ) = p(Zϑ3/2, ϑ).

If P is linear, we recover the standard Boyle-Marriot state equation of perfect
gas,

pM (�, ϑ) = R�ϑ with a positive gas constant R. (1.47)

As a matter of fact, formula (1.46) applies to any real gas, monoatomic or
not, at least in the following two domains of the (�, ϑ)-plane:

• Non-Degenerate Region, where the density is low and/or the tempera-
ture is sufficiently large, specifically,

�

ϑ
3
2

< Z (1.48)

for a certain positive constant Z. Here the fluid can be considered as a mixture
of classical gases that obeys Dalton’s law, hence the pressure p is given by
the state equation (1.47) (see Galavotti [93]);

• Degenerate Area
�

ϑ
3
2

> Z, with Z � Z, (1.49)

where the gas is completely ionized, and the nuclei as well as the free electrons
behave like a monoatomic gas satisfying (1.46). If, in addition, we assume that
in the degenerate area at least one of the gas constituents, for instance the
cloud of free electrons, behaves as a Fermi gas, we obtain

lim
ϑ→0

eM (�, ϑ) > 0 for any fixed � > 0 (1.50)

(see Müller and Ruggeri [160]).
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Finally, we suppose that the specific heat at constant volume is uniformly
bounded, meaning

cv =
∂eM (�, ϑ)

∂ϑ
≤ c for all �, ϑ > 0, (1.51)

with obvious implications on the specific form of the function P in (1.46) discussed
in detail in Chapter 2.

It is worth noting that, unlike (1.47), the previous assumptions are in perfect
agreement with the Third law of thermodynamics requiring the entropy to vanish
when the absolute temperature approaches zero (see Callen [40]).

1.4.3 Effect of thermal radiation

Before starting our discussion, let us point out that the interaction of matter and
radiation (photon gas) occurring in the high temperature regime is a complex prob-
lem, a complete discussion of which goes beyond the scope of the present study.
Here we restrict ourselves to the very special but still physically relevant situation,
where the emitted photons are in thermal equilibrium with the other constituents
of the fluid, in particular, the whole system admits a single temperature ϑ (see
the monograph by Oxenius [169]).

Under these circumstances, it is well known that the heat conductivity is
substantially enhanced by the radiation effect, in particular, the heat conductivity
coefficient κ takes the form

κ = κM + κR, κR = kϑ3, k > 0, (1.52)

where κM denotes the standard “molecular” transport coefficient and κR repre-
sents the contribution due to radiation. The influence of the radiative transport is
particularly relevant in some astrophysical models studied in the asymptotic limit
of small Péclet (Prandtl) number in Chapter 6.

Similarly, the standard molecular pressure pM is augmented by its radiation
counterpart pR so that, finally,

p(�, ϑ) = pM (�, ϑ) + pR(ϑ), where pR(ϑ) =
a

3
ϑ4, a > 0; (1.53)

whence, in accordance with Gibbs’ equation (1.2),

e(�, ϑ) = eM (�, ϑ) + eR(�, ϑ), where �eR(�, ϑ) = aϑ4, (1.54)

and

s(�, ϑ) = sM (�, ϑ) + sR(�, ϑ), with �sR(�, ϑ) =
4
3
aϑ3. (1.55)
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1.4.4 Typical values of some physical coefficients

In order to get better insight concerning the magnitude and proportionality of
the different material forces acting on a fluid, we conclude this introductory part
by reviewing the typical values of several physical constants introduced in the
preceding text.

The quantity R appearing in formula (1.47) is the specific gas constant, the
value of which for a gas (or a mixture of gases) equals R/M , where R is the
universal gas constant (R = 8.314JK−1mol−1), and M is the molar mass (or a
weighted average of molar masses of the mixture components). For dry air, we get
R = 2.87Jkg−1K−1.

In formulas (1.53–1.55), the symbol a stands for the Stefan-Boltzmann con-
stant (a = 5.67 · 10−8JK−4m−2s−1), while the coefficient k in formula (1.52) is
related to a by k = 4

3alc, where l denotes the mean free path of photons (typically
l ≈ 10−7 − 10−8m), and c is the speed of light (c = 3 · 108ms−1).

The specific heat at constant volume cv takes the value cv = 2.87Jkg−1K−1

for the dry air, in particular, eR ≈ 1Jkg−1, eM ≈ 102 − 103Jkg−1 at the atmo-
spheric temperature, while at the temperature of order 103K attained, for instance,
in the solar radiative zone, eR ≈ 103 − 104Jkg−1 and eM ≈ 103 − 104Jkg−1. Ac-
cordingly, the effect of radiation is often negligible under the “normal” laboratory
conditions on the Earth (eM/eR ≈ 102 − 103) but becomes highly significant in
the models of hot stars studied in astrophysics (eM/eR ≈ 10−1 − 10). However,
radiation plays an important role in certain meteorological models under specific
circumstances.

The kinetic theory predicts the viscosity of gases to be proportional to
√

ϑ or a
certain power of ϑ varying with the specific model and characteristic temperatures.
This prediction is confirmed by experimental observations; a generally accepted
formula is the so-called Shutherlang correlation yielding

μ =
A
√

ϑ

1 + B/ϑ
for ϑ “large”,

where A and B are experimentally determined constants. For the air in the range
of pressures between 1 − 10atm, we have A = 1.46kgm−1s−1K−1/2, B = 100.4K.
The dependence of the transport coefficients on the temperature plays a significant
role in the mathematical theory developed in this book.

The specific values of physical constants presented in this part are taken over
from Bolz and Tuve [26].



Chapter 2

Weak Solutions,
A Priori Estimates

The fundamental laws of continuum mechanics interpreted as infinite families of
integral identities introduced in Chapter 1, rather than systems of partial differ-
ential equations, give rise to the concept of weak (or variational) solutions that
can be vastly extended to extremely divers physical systems of various sorts. The
main stumbling block of this approach when applied to the field equations of fluid
mechanics is the fact that the available a priori estimates are not strong enough in
order to control the flux of the total energy and/or the dissipation rate of the ki-
netic energy. This difficulty has been known since the seminal work of Leray [132]
on the incompressible Navier-Stokes system, where the validity of the so-called
energy equality remains an open problem, even in the class of suitable weak solu-
tions introduced by Caffarelli et al. [37]. The question is whether or not the rate of
decay of the kinetic energy equals the dissipation rate due to viscosity as predicted
by formula (1.39). It seems worth noting that certain weak solutions to hyperbolic
conservation laws indeed dissipate the kinetic energy whereas classical solutions
of the same problem, provided they exist, do not. On the other hand, however, we
are still very far from complete understanding of possible singularities, if any, that
may be developed by solutions to dissipative systems studied in fluid mechanics.
The problem seems even more complex in the framework of compressible fluids,
where Hoff [113] showed that singularities survive in the course of evolution pro-
vided they were present in the initial data. However, it is still not known if the
density may develop “blow up” (gravitational collapse) or vanish (vacuum state)
in a finite time. Quite recently, Brenner [28] proposed a daring new approach to
fluid mechanics, where at least some of the above mentioned difficulties are likely
to be eliminated.

Given the recent state of the art, we anticipate the hypothetical possibility
that the weak solutions may indeed dissipate more kinetic energy than indicated
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by (1.33), thereby replacing the classical expression of the entropy production rate
(1.39) by an inequality

σ ≥ 1
ϑ

(
S : ∇xu − q

ϑ
· ∇xϑ

)
. (2.1)

Similarly to the theory of hyperbolic systems, the entropy production rate σ is
now to be understood as a non-negative measure on the set [0, T ] × Ω, whereas
the term ∫ T

0

∫
Ω

σϕ dx is replaced by 〈σ; ϕ〉[M+;C]([0,T ]×Ω) in (1.40).

Although it may seem that changing equation to mere inequality may con-
siderably extend the class of possible solutions, it is easy to verify that inequality
(2.1) reduces to the classical formula (1.39) as soon as the weak solution is regular
and satisfies the global energy balance (1.36). By a regular solution we mean that
all state variables �, u, ϑ are continuously differentiable up to the boundary of the
space-time cylinder [0, T ] × Ω, possess all the necessary derivatives in (0, T ) × Ω,
and �, ϑ are strictly positive. Indeed if ϑ is smooth we are allowed to use the
quantity ϑϕ as a test function in (1.40) to obtain∫ T

0

∫
Ω

�s
(
∂tϑ + u · ∇xϑ

)
ϕ dx dt +

∫ T

0

∫
Ω

�sϑ
(
∂tϕ + u · ∇xϕ

)
dx dt

+
∫ T

0

∫
Ω

q · ∇xϕ dx dt + 〈σ; ϑϕ〉 +
∫ T

0

∫
Ω

q
ϑ
· ∇xϑϕ dx dt

= −
∫ T

0

∫
Ω

�Qϕ dx dt

for any ϕ ∈ C∞
c ((0, T ) × Ω). Moreover, as �, u satisfy the equation of continuity

(1.22), we get∫ T

0

∫
Ω

�s
(
∂tϑ + u · ∇xϑ

)
ϕ dx dt +

∫ T

0

∫
Ω

�sϑ
(
∂tϕ + u · ∇xϕ

)
dx dt

= −
∫ T

0

∫
Ω

�ϑ
(
∂ts + u · ∇xs

)
ϕ dx dt

= −
∫ T

0

∫
Ω

�
(
∂te + u · ∇xe

)
ϕ dx dt −

∫ T

0

∫
Ω

pdivxuϕ dx,

where we have used Gibbs’ relation (1.2). Consequently, we deduce∫
Ω

�e(�, ϑ)(t2) dx −
∫

Ω

�e(�, ϑ)(t1) dx

=
∫ t2

t1

∫
Ω

(
�Q− pdivxu

)
dx dt +

∫ t2

t1

∫
Ω

(
ϑσ +

q
ϑ
· ∇xϑ

)
dx dt

for 0 < t1 ≤ t2 < T .
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Conversely, since regular solutions necessarily satisfy the kinetic energy equa-
tion (1.33), we can use the total energy balance (1.36) in order to conclude that

∫
Ω

�e(�, ϑ)(t2) dx −
∫

Ω

�e(�, ϑ)(t1) dx =
∫ t2

t1

∫
Ω

(
�Q+ S : ∇xu− pdivxu

)
dx dt;

whence, by means of (2.1),

σ =
1
ϑ

(
S : ∇xu− q

ϑ
· ∇xϑ

)
in [t1, t2] × Ω.

Note that our approach based on postulating inequality (2.1), together with
equality (1.36) is reminiscent of the concept of weak solutions with defect measure
elaborated by DiPerna and Lions [64] and Alexandre and Villani [5] in the context
of Boltzmann’s equation. Although uniqueness in terms of the data is probably out
of reach of such a theory, the piece of information provided is sufficient in order to
study the qualitative properties of solutions, in particular, the long-time behavior
and singular limits for several scaling parameters tending to zero. Starting from
these ideas, we develop a thermodynamically consistent mathematical model based
on the state variables {�,u, ϑ} and enjoying the following properties:

• The problem admits global-in-time solutions for any initial data of finite
energy.

• The changes of the total energy of the system are only due to the action of
the external source terms represented by f and Q. In the absence of external
sources, the total energy is a constant of motion.

• The total entropy is increasing in time as soon as Q ≥ 0, the system evolves
to a state maximizing the entropy.

• Weak solutions coincide with classical ones provided they are smooth, notably
the entropy production rate σ is equal to the expression on the right-hand
side of (2.1).

2.1 Weak formulation

For reader’s convenience and future use, let us summarize in a concise form the
weak formulation of the problem identified in Chapter 1. The problem consists
of finding a trio {�,u, ϑ} satisfying a family of integral identities referred to in
the future as a Navier-Stokes-Fourier system. We also specify the minimal
regularity of solutions required, and interpret formally the integral identities in
terms of standard partial differential equations provided all quantities involved in
the weak formulation are smooth enough.
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2.1.1 Equation of continuity

(i) Weak (renormalized) formulation:∫ T

0

∫
Ω

�B(�)
(
∂tϕ + u · ∇xϕ

)
dx dt

=
∫ T

0

∫
Ω

b(�)divxuϕ dx dt −
∫

Ω

�0B(�0)ϕ(0, ·) dx. (2.2)

(ii) Admissible test functions:

b ∈ L∞ ∩ C[0,∞), B(�) = B(1) +
∫ �

1

b(z)
z2

dz, (2.3)

ϕ ∈ C1
c ([0, T )× Ω). (2.4)

(iii) Minimal regularity of solutions required:

� ≥ 0, � ∈ L1((0, T ) × Ω), (2.5)

�u ∈ L1((0, T )× Ω; R3), divxu ∈ L1((0, T )× Ω). (2.6)

(iv) Formal interpretation:

∂t(�B(�)) + divx(�B(�)u) + b(�)divxu = 0 in (0, T )× Ω, (2.7)
�(0, ·) = �0, u · n|∂Ω = 0. (2.8)

2.1.2 Balance of linear momentum

(i) Weak formulation:∫ T

0

∫
Ω

(
�u · ∂tϕ + �[u⊗ u] : ∇xϕ + pdivxϕ

)
dx dt

=
∫ T

0

∫
Ω

(
S : ∇xϕ − �f · ϕ

)
dx dt −

∫
Ω

(�u)0 · ϕ(0, ·) dx. (2.9)

(ii) Admissible test functions:

ϕ ∈ C1
c ([0, T )× Ω; R3), (2.10)

and either

ϕ · n|∂Ω = 0 in the case of the complete slip boundary conditions, (2.11)

or
ϕ|∂Ω = 0 in the case of the no-slip boundary conditions. (2.12)
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(iii) Minimal regularity of solutions required:

�u ∈ L1((0, T )× Ω; R3), �|u|2 ∈ L1((0, T ) × Ω), (2.13)

p ∈ L1((0, T ) × Ω), S ∈ L1((0, T ) × Ω; R3×3), �f ∈ L1((0, T ) × Ω; R3), (2.14)

∇xu ∈ L1(0, T ; Lq(Ω; R3×3)), for a certain q > 1; (2.15)

and, either

u · n|∂Ω = 0 in the case of the complete slip boundary conditions, (2.16)

or
u|∂Ω = 0 in the case of the no-slip boundary conditions. (2.17)

(iv) Formal interpretation:

∂t(�u) + divx(�u ⊗ u) + ∇xp = divxS + �f in (0, T )× Ω, (2.18)
(�u)(0, ·) = (�u)0, (2.19)

together with the complete slip boundary conditions

u · n|∂Ω = 0, (Sn) × n|∂Ω = 0, (2.20)

or, alternatively, the no-slip boundary condition

u|∂Ω = 0. (2.21)

2.1.3 Balance of total energy

(i) Weak formulation:∫ T

0

∫
Ω

E(t) dx ∂tψ(t) dt = −
∫ T

0

∫
Ω

(
�u · f(t) + �Q(t)

)
ψ(t) dx dt − ψ(0)E0

(2.22)

E(t) =
1
2
�|u|2(t) + �e(t) for a.a. t ∈ (0, T ). (2.23)

(ii) Admissible test functions:

ψ ∈ C1
c [0, T ). (2.24)

(iii) Minimal regularity of solutions required:

E , �u · f , �Q ∈ L1((0, T ) × Ω). (2.25)

(iv) Formal interpretation:

d
dt

∫
Ω

E dx =
∫

Ω

(
�u · f + �Q

)
dx in (0, T ),

∫
Ω

E(0) dx = E0. (2.26)
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2.1.4 Entropy production

(i) Weak formulation:∫ T

0

∫
Ω

�s
(
∂tϕ + u · ∇xϕ

)
dx dt +

∫ T

0

∫
Ω

q
ϑ
· ∇xϕ dx dt + 〈σ; ϕ〉[M+;C]([0,T ]×Ω)

= −
∫

Ω

(�s)0ϕ(0, ·) dx −
∫ T

0

∫
Ω

�

ϑ
Qϕ dx dt, (2.27)

where σ ∈ M+([0, T ] × Ω),

σ ≥ 1
ϑ

(
S : ∇xu − q

ϑ
· ∇xϑ

)
. (2.28)

(ii) Admissible test functions

ϕ ∈ C1
c ([0, T )× Ω). (2.29)

(iii) Minimal regularity of solutions required:

ϑ > 0 a.a. on (0, T ) × Ω, ϑ ∈ Lq((0, T ) × Ω),

∇xϑ ∈ Lq((0, T ) × Ω; R3), q > 1,
(2.30)

�s ∈ L1((0, T ) × Ω), �su,
q
ϑ
∈ L1((0, T ) × Ω; R3),

�

ϑ
Q ∈ L1((0, T ) × Ω),

(2.31)

1
ϑ

S : ∇xu,
1
ϑ2

q · ∇xϑ ∈ L1((0, T )× Ω). (2.32)

(iv) Formal interpretation:

∂t(�s) + divx(�su) + divx

(q
ϑ

)
≥ 1

ϑ

(
S : ∇xu− q

ϑ
· ∇xϑ

)
+

�

ϑ
Q in (0, T )× Ω, (2.33)

�s(0+, ·) ≥ (�s)0, q · n|∂Ω ≤ 0. (2.34)

2.1.5 Constitutive relations

(i) Gibbs’ equation:

p = p(�, ϑ), e = e(�, ϑ), s = s(�, ϑ) a.a. in (0, T ) × Ω,

where
ϑDs = De + pD

(1
�

)
. (2.35)
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(ii) Newton’s law:

S = μ
(
∇xu + ∇T

x u− 2
3
divxu I

)
+ ηdivxu I a.a. in (0, T ) × Ω, (2.36)

(iii) Fourier’s law:
q = −κ∇xϑ a.a. in (0, T )× Ω. (2.37)

2.2 A priori estimates

A priori estimates represent a corner stone of any mathematical theory related
to a system of nonlinear partial differential equations. The remarkable informal
rule asserts that “if we can establish sufficiently strong estimates for solutions of a
nonlinear partial differential equation under the assumption that such a solution
exists, then the solution does exist”. A priori estimates are natural bounds imposed
on the family of all admissible solutions through the system of equations they
obey, the boundary conditions, and the given data. The modern theory of partial
differential equations is based on function spaces, notably the Sobolev spaces, that
have been identified by means of the corresponding a priori bounds for certain
classes of elliptic equations.

Strictly speaking, a priori estimates are formal, being derived under the
hypothesis that all quantities in question are smooth. However, as we shall see
below, all bounds obtained for the Navier-Stokes-Fourier system hold even
within the class of the weak solutions introduced in Section 2.1. This is due to
the fact that all nowadays available a priori estimates follow from the physical
principle of conservation of the total amount of certain quantities as mass and
total energy, or they result from the dissipative mechanism enforced by means of
the Second law of thermodynamics.

2.2.1 Total mass conservation

Taking b ≡ 0, B = B(1) = 1 in the renormalized equation of continuity (2.2) we
deduce that ∫

Ω

�(t, ·) dx =
∫

Ω

�0 dx = M0 for a.a. t ∈ (0, T ), (2.38)

more specifically, for any t ∈ (0, T ) which is a Lebesgue point of the vector-
valued mapping t → �(t, ·) ∈ L1(Ω). As a matter of fact, in accordance with the
property of weak continuity in time of solutions to abstract balance laws discussed
in Section 1.2, relation (2.38) holds for any t ∈ [0, T ] provided � was redefined on
a set of times of zero measure . Formula (2.38) rigorously confirms the intuitively
obvious fact that the total mass M0 of the fluid contained in a physical domain
Ω is a constant of motion provided the normal component of the velocity field u
vanishes on the boundary ∂Ω.
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2.2.2 Energy estimates

The balance of total energy expressed through (2.22) provides another sample of a
priori estimates. Indeed assuming, for simplicity, that both f and Q are uniformly
bounded we get∣∣∣ ∫

Ω

�f · u + �Q dx
∣∣∣

≤ ‖f‖L∞((0,T )×Ω;R3)

√
M0‖

√
�u‖L2(Ω;R3) + M0‖Q‖L∞((0,T )×Ω);

whence a straightforward application of Gronwall’s lemma to (2.22) gives rise to

ess sup
t∈(0,T )

∫
Ω

(1
2
�|u|2 + �e(�, ϑ)

)
(t) dx

≤ c
(
T, E0, M0, ‖f‖L∞((0,T )×Ω;R3), ‖Q‖L∞((0,T )×Ω)

)
. (2.39)

In particular,

ess sup
t∈(0,T )

∫
Ω

�|u|2(t) dx ≤ c(data), (2.40)

where the symbol c(data) denotes a generic positive constant depending solely on
the data

T, E0, M0, ‖f‖L∞((0,T )×Ω;R3), ‖Q‖L∞((0,T )×Ω), and S0 =
∫

Ω

(�s)0 dx. (2.41)

In order to get more information, we have to exploit the specific structure
of the internal energy function e. In accordance with hypotheses (1.44), (1.50),
(1.54), we have

�e(�, ϑ) ≥ aϑ4 + � lim
ϑ→0

eM (�, ϑ). (2.42)

On the other hand, the molecular component eM is given through (1.45),
(1.46) in the degenerate area � > Zϑ3/2, therefore

lim
ϑ→0

eM (�, ϑ) =
3�

2
3

2
lim
ϑ→0

ϑ
5
2

� 5
3

P
( �

ϑ
3
2

)
=

3�
2
3

2
lim

Z→∞
P (Z)
Z

5
3

, (2.43)

where, in accordance with (1.50),

lim
Z→∞

P (Z)
Z

5
3

= p∞ > 0. (2.44)

Consequently, going back to (2.42) we conclude

�e(�, ϑ) ≥ aϑ4 +
3p∞

2
�

5
3 , (2.45)
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in particular, it follows from (2.39) that

ess sup
t∈(0,T )

∫
Ω

(
ϑ4 + �

5
3

)
(t) dx ≤ c(data). (2.46)

It is important to note that estimate (2.46) yields a uniform bound on the
pressure p = pM + pR. Indeed the pressure is obviously bounded in the degener-
ate area (1.49), where pM satisfies (1.45) and the appropriate bound is provided
by (2.39). Otherwise, using the hypothesis of thermodynamic stability (1.44), we
obtain

0 ≤ pM (�, ϑ) ≤ pM (Zϑ
3
2 , ϑ) = ϑ

5
2 P (Z);

whence the desired bound follows from (2.46) as soon as Ω is bounded. Conse-
quently, we have shown that the energy estimate (2.39) gives rise to

ess sup
t∈(0,T )

∫
Ω

p(�, ϑ)(t) dx ≤ c(data) (2.47)

at least for a bounded domain Ω.

2.2.3 Estimates based on the Second law of thermodynamics

The Second law of thermodynamics asserts the irreversible transfer of the me-
chanical energy into heat valid for all physical systems. This can be expressed
mathematically by means of the entropy production equation (2.27). In order to
utilize this relation for obtaining a priori bounds, we introduce a remarkable quan-
tity which will play a crucial role not only in the existence theory but also in the
study of singular limits.

� Helmholtz Function:

Hϑ(�, ϑ) = �
(
e(�, ϑ) − ϑs(�, ϑ)

)
, (2.48)

where ϑ is a positive constant.

Obviously, the quantity Hϑ is reminiscent of the Helmholtz free energy albeit in
the latter ϑ must be replaced by ϑ.

It follows from Gibbs’ relation (2.35) that

∂2Hϑ(�, ϑ)
∂�2

=
1
�

∂p(�, ϑ)
∂�

=
1
�

∂pM (�, ϑ)
∂�

, (2.49)

while

∂Hϑ(�, ϑ)
∂ϑ

=
�

ϑ
(ϑ − ϑ)

∂e(�, ϑ)
∂ϑ

= 4aϑ2(ϑ − ϑ) +
�

ϑ
(ϑ − ϑ)

∂eM (�, ϑ)
∂ϑ

. (2.50)
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Thus, as a direct consequence of the hypothesis of thermodynamic stability (1.44),
we thereby infer that

• � → Hϑ(�, ϑ) is a strictly convex function, which, being augmented by a
suitable affine function of �, attains its global minimum at some positive �,

• the function ϑ → Hϑ(�, ϑ) is decreasing for ϑ < ϑ and increasing for ϑ > ϑ,
in particular, it attains its (global) minimum at ϑ = ϑ for any fixed �.

The total energy balance (2.22), together with the entropy production equa-
tion (2.27), gives rise to∫

Ω

(1
2
�|u|2 + Hϑ(�, ϑ)

)
(τ) dx + ϑσ

[
[0, τ ] × Ω

]
= E0 − ϑS0 +

∫ τ

0

∫
Ω

[
�
(
Q− ϑ

ϑ
Q
)

+ �f · u
]

dx dt (2.51)

for a.a. τ ∈ (0, T ), where we have introduced the symbol σ[Q] to denote the value
of the measure σ applied to a Borel set Q.

Now suppose there exists a positive number � > 0 such that∫
Ω

(� − �)(t) dx = 0 for any t ∈ [0, T ].

Clearly, if Ω is a bounded domain, we have � = M0/|Ω|, where M0 is the total
mass of the fluid. Accordingly, relation (2.51) can be rewritten as

� Total Dissipation Balance:

∫
Ω

(1
2
�|u|2 + Hϑ(�, ϑ) − (� − �)

∂Hϑ(�, ϑ)
∂�

− Hϑ(�, ϑ)
)
(τ) dx + ϑσ

[
[0, τ ] × Ω

]
= E0 − ϑS0 −

∫
Ω

(
(�0 − �)

∂Hϑ(�, ϑ)
∂�

+ Hϑ(�, ϑ)
)

dx

+
∫ τ

0

∫
Ω

(
�
(
Q− ϑ

ϑ
Q
)

+ �f · u
)

dx dt (2.52)

for a.a. τ ∈ (0, T ).

at least if Ω is a bounded domain. In contrast with (2.51), the quantity Hϑ(�, ϑ)−
(� − �)∂Hϑ

∂� (�, ϑ) − Hϑ(�, ϑ) at the left-hand side is obviously non-negative as a
direct consequence of the hypothesis of thermodynamic stability.

Consequently, assuming Q ≥ 0, we can use (2.28), together with (2.52), in
order to obtain ∫ T

0

∫
Ω

1
ϑ

(
S : ∇xu − q · ∇xϑ

ϑ

)
dx ≤ c(data). (2.53)
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As the transport terms S, q are given by (1.42), (1.43), notably they are linear
functions of the affinities ∇xu, ∇xϑ, respectively, we get

∫ T

0

∫
Ω

μ

ϑ

∣∣∣∇xu + ∇⊥
x u − 2

3
divxu I

∣∣∣2 dx dt ≤ c(data), (2.54)

and ∫ T

0

∫
Ω

κ

ϑ2
|∇xϑ|2 dx dt ≤ c(data). (2.55)

In order to continue, we have to specify the structural properties to be im-
posed on the transport coefficients μ and κ. In view of (1.52), it seems reasonable
to assume that the heat conductivity coefficient κ = κM + κR satisfies

0 < κM (1 + ϑα) ≤ κM (ϑ) ≤ κM (1 + ϑα),

0 < κRϑ3 ≤ κR(ϑ) ≤ κR(1 + ϑ3),
(2.56)

where κM , κM , κR, κR are positive constants.

Similarly, the shear viscosity coefficient μ obeys

0 < μ(1 + ϑα) ≤ μ(ϑ) ≤ μ(1 + ϑα) (2.57)

for any ϑ ≥ 0, positive constants μ, μ, and a positive exponent α specified below.
Note that κM , μ are not allowed to depend explicitly on � – a hypothesis that is
crucial in existence theory but entirely irrelevant in the study of singular limits.
We remark that such a stipulation is physically relevant at least for gases (see
Becker [20]) and certain liquids.

Keeping (2.56) in mind we deduce from (2.55) that

∫ T

0

∫
Ω

(
|∇x log(ϑ)|2 + |∇xϑ

3
2 |2
)

dx dt ≤ c(data). (2.58)

Combining (2.58) with (2.46) we conclude that the temperature ϑ(t, ·) be-
longs to W 1,2(Ω) for a.a. t ∈ (0, T ), where the symbol W 1,2(Ω) stands for the
Sobolev space of functions belonging with their gradients to the Lebesgue space
L2(Ω) (cf. the relevant part in Section 0.3). More specifically, we have, by the
standard Poincaré’s inequality (Theorem 10.14),

‖ ϑβ ‖L2(0,T ;W 1,2(Ω)) ≤ c(data) for any 1 ≤ β ≤ 3
2
. (2.59)

A similar estimate for log(ϑ) is more delicate and is postponed to the next section.
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From estimate (2.54) and Hölder’s inequality we get∥∥∥∇xu + ∇⊥
x u − 2

3
divxu I

∥∥∥
Lp(Ω;R3×3)

≤
∥∥∥
√

ϑ

μ(ϑ)

∥∥∥
Lq(Ω)

∥∥∥
√

μ(ϑ)
ϑ

(
∇xu + ∇⊥

x u − 2
3
divxu I

)∥∥∥
L2(Ω;R3×3)

≤ c‖(1 + ϑ
1−α

2 )‖Lq(Ω)

∥∥∥
√

μ(ϑ)
ϑ

(
∇xu + ∇⊥

x u − 2
3
divxu I

)∥∥∥
L2(Ω;R3×3)

provided
1
p

=
1
q

+
1
2
.

Thus we deduce from estimates (2.46), (2.54) that∥∥∥∇xu + ∇⊥
x u− 2

3
divxu I

∥∥∥
L2(0,T ;Lp(Ω;R3×3))

≤ c(data) (2.60)

for
p =

8
5 − α

, 0 ≤ α ≤ 1. (2.61)

Similarly, in accordance with (2.59) and the standard embedding W 1,2(Ω) ↪→
L6(Ω) (see Theorem 0.4), we have

‖ ϑ ‖L3(0,T ;L9(Ω)) ≤ c(data); (2.62)

whence, following the arguments leading to (2.60),∥∥∥∇xu + ∇⊥
x u− 2

3
divxu I

∥∥∥
Lq(0,T ;Lp(Ω;R3×3))

≤ c(data) (2.63)

for
q =

6
4 − α

, p =
18

10 − α
, 0 ≤ α ≤ 1. (2.64)

As we will see below, the range of suitable values of the parameter α in (2.61),
(2.62) is subjected to further restrictions.

The previous estimates concern only certain components of the velocity gra-
dient. In order to get uniform bounds on ∇xu, we need the following version of
Korn’s inequality proved in Theorem 10.17 in the Appendix.

� Generalized Korn-Poincaré Inequality:

Proposition 2.1. Let Ω ⊂ R
3 be a bounded Lipschitz domain. Assume that r is a

non-negative function such that

0 < M0 ≤
∫

Ω

r dx,

∫
Ω

rγ dx ≤ K for a certain γ > 1.
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Then

‖v‖W 1,p(Ω;R3) ≤ c(p, M0, K)
(∥∥∥∇xv + ∇⊥

x v − 2
3
divxv I

∥∥∥
Lp(Ω;R3)

+
∫

Ω

r|v| dx
)

for any v ∈ W 1,p(Ω; R3), 1 < p < ∞.

Applying Proposition 2.1 with r = �, γ = 5
3 , v = u, we can use estimates

(2.40), (2.46), (2.60), and (2.63) to conclude that

‖ u ‖L2(0,T ;W 1,p(Ω;R3)) ≤ c(data) for p =
8

5 − α
, (2.65)

and

‖ u ‖Lq(0,T ;W 1,p(Ω;R3)) ≤ c(data) for q =
6

4 − α
, p =

18
10 − α

. (2.66)

Estimates (2.65), (2.66) imply uniform bounds on the viscous stress tensor
S. To see this, write

μ(ϑ)
(
∇xu + ∇⊥

x u − 2
3
divxu I

)
=
√

ϑμ(ϑ)

√
μ(ϑ)

ϑ

(
∇xu + ∇⊥

x u − 2
3
divxu I

)
,

where
√

μ(ϑ)
ϑ

(
∇xu+∇⊥

x u− 2
3divxu I

)
admits the bound established in (2.54). On

the other hand, in view of estimates (2.46), (2.62), ϑ is bounded in L
17
3 ((0, T ) ×

Ω). This fact combined with hypothesis (2.57) yields boundedness of
√

ϑμ(ϑ) in
Lp((0, T ) × Ω) for a certain p > 2. Assuming the bulk viscosity η satisfies

0 ≤ η(ϑ) ≤ c(1 + ϑα), (2.67)

with the same exponent α as in (2.57), we obtain

‖ S ‖Lq(0,T ;Lq(Ω;R3×3)) ≤ c(data) for a certain q > 1. (2.68)

In a similar way, we can deduce estimates on the linear momentum and the
kinetic energy. By virtue of the standard embedding relation W 1,p(Ω) ↪→ Lq(Ω),
q ≤ 3p/(3 − p) (Theorem 0.4), we get

‖ u ‖
L2(0,T ;L

24
7−3α (Ω;R3))

+ ‖ u ‖
L

6
4−α (0,T ;L

18
4−α (Ω;R3))

≤ c(data), (2.69)

see (2.65), (2.66). On the other hand, by virtue of (2.40), (2.46),

ess sup
t∈(0,T )

‖�u‖
L

5
4 (Ω;R3)

≤ c(data). (2.70)

Combining the last two estimates, we get

‖ �u⊗ u ‖Lq((0,T )×Ω;R3×3)) ≤ c(data) for a certain q > 1, (2.71)
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provided

α >
2
5
. (2.72)

It is worth noting that (2.72) allows for the physically relevant exponent α = 1/2
(cf. Section 1.4.4).

2.2.4 Positivity of the absolute temperature

Our goal is to exploit estimate (2.58) in order to show∫ T

0

∫
Ω

(
| logϑ|2 + |∇x log ϑ|2

)
dx dt ≤ c(data). (2.73)

Formula (2.73) not only facilitates future analysis but is also physically relevant
as it implies positivity of the absolute temperature with a possible exception of a
set of Lebesgue measure zero.

In order to establish (2.73), we introduce the following version of Poincaré’s
inequality proved in Theorem 10.14 in the Appendix.

� Poincaré’s Inequality:

Proposition 2.2. Let Ω ⊂ R3 be a bounded Lipschitz domain. Let V ⊂ Ω be a
measurable set such that

|V | ≥ V0 > 0.

Then there exists a positive constant c = c(V0) such that

‖ v ‖W 1,2(Ω) ≤ c(V0)
(
‖∇xv‖L2(Ω;R3) +

∫
V

|v|dx
)

for any v ∈ W 1,2(Ω).

In view of Proposition 2.2 the desired relation (2.73) will follow from (2.58) as
soon as we show that the temperature ϑ cannot vanish identically in the physical
domain Ω. As the hypothetical state of a system with zero temperature minimizes
the entropy, it is natural to evoke the Second law of thermodynamics expressed in
terms of the entropy balance (2.27).

The total entropy of the system
∫
Ω �s(�, ϑ) dx is a non-decreasing function

of time provided the heat source Q is non-negative. In particular,∫
Ω

�s(�, ϑ)(t, ·) dx ≥
∫

Ω

(�s)0 dx for a.a. t ∈ (0, T ), (2.74)

where we assume that the initial distribution of the entropy is compatible with that
for the density, that means, (�s)0 = �0s(�0, ϑ0) for a suitable initial temperature
distribution ϑ0.
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If � ≥ Zϑ
3
2 , meaning if (�, ϑ) belong to the degenerate region introduced in

(1.49), the pressure p and the internal energy e are interrelated through (1.45),
(1.46). Then it is easy to check, by means of Gibbs’ equation (2.35), that the
specific entropy s can be written in the form s = sM + sR, where

sM (�, ϑ) = S(Z), Z =
�

ϑ
3
2
, S′(Z) = −3

2

5
3P (Z) − P ′(Z)Z

Z2
, Z ≥ Z. (2.75)

The quantity
5
3P (Z) − P ′(Z)Z

Z

plays a role of the specific heat at constant volume and is strictly positive in
accordance with the hypothesis of thermodynamic stability (1.44). In particular,
we can set

s∞ = lim
Z→∞

S(Z) = lim
ϑ→0

sM (�, ϑ) ≥ −∞ for any fixed � > 0. (2.76)

Moreover, modifying S by a suitable additive constant, we can assume s∞ = 0 in
the case when the limit is finite.

In order to proceed we need the following assertion that may be of indepen-
dent interest. The claim is that the absolute temperature ϑ must remain strictly
positive at least on a set of positive measure.

Lemma 2.1. Let Ω ⊂ R3 be a bounded Lipschitz domain. Assume that non-negative
functions �, ϑ satisfy

0 < M0 =
∫

Ω

� dx,

∫
Ω

(
ϑ4 + �

5
3

)
dx ≤ K,

and ∫
Ω

�s(�, ϑ) dx ≥ S0 > M0s∞ for a certain S0, (2.77)

where s∞ ∈ {0,−∞} is determined by (2.76).
Then there are ϑ > 0 and V0 > 0, depending only on M0, K, and S0 such

that ∣∣∣{x ∈ Ω
∣∣∣ ϑ(x) > ϑ

}∣∣∣ ≥ V0.

Proof. Arguing by contradiction we construct a sequence �n, ϑn satisfying (2.77)
and such that

�n → � weakly in L
5
3 (Ω),

∫
Ω

� dx = M0,∣∣{x ∈ Ω |ϑn > 1
n

}∣∣ < 1
n .

(2.78)

In particular,

ϑn → 0 (strongly) in Lp(Ω) for any 1 ≤ p < 4,

�nsR(�n, ϑn) =
4
3
aϑ3

n → 0 in L1(Ω).
(2.79)
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Next we claim that

lim sup
n→∞

∫
{�n≤Zϑ

3
2
n }

�nsM (�n, ϑn) dx ≤ 0. (2.80)

In order to see (2.80), we first observe that the specific (molecular) entropy sM is
increasing in ϑ; whence

sM (�, ϑ) ≤
{

sM (�, 1) if ϑ < 1,

sM (�, 1) +
∫ ϑ

1
∂sM (�,z)

∂z dz ≤ sM (�, 1) + c log ϑ for ϑ ≥ 1,

where we have used hypothesis (1.51). On the other hand, it follows from Gibbs’
equation (2.35) that

∂sM (�, ϑ)
∂�

= − 1
�2

∂pM (�, ϑ)
∂ϑ

;

whence
|sM (�, 1)| ≤ c(Z)(1 + | log(�)|) for all � ≤ Z.

Resuming the above inequalities yields

|sM (�, ϑ)| ≤ c(1 + | log(�)| + | log(ϑ)|). (2.81)

Returning to (2.80) we get∫
{�n≤Zϑ

3
2
n }

�nsM (�n, ϑn) dx ≤ c

∫
{�n≤Zϑ

3
2
n }

�n(1 + | log(�n)| + | log(ϑn)|) dx

≤ c(Z)
∫

Ω

(ϑ
3
2
n + ϑ

3
4
n
√

�n| log(
√

�n)| + ϑn

√
ϑn| log(

√
ϑn)|) dx → 0,

where we have used (2.78), (2.79).
Finally, we have

�sM (�, ϑ) = �S
( �

ϑ
3
2

)
in the degenerate area � > Zϑ

3
2 , and, consequently,∫

{�n>Zϑ
3
2
n }

�nsM (�n, ϑn) dx

=
∫
{Zϑ

3
2
n >�n>Zϑ

3
2
n }

�nS
( �n

ϑ
3
2
n

)
dx +

∫
{�n≥Zϑ

3
2
n }

�nS
( �n

ϑ
3
2
n

)
dx,

where ∫
{Zϑ

3
2
n >�n≥Zϑ

3
2
n }

�nS
( �n

ϑ
3
2
n

)
dx ≤ S(Z)Z

∫
Ω

ϑ
3
2
n dx → 0. (2.82)
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Combining (2.79–2.82), together with hypothesis (2.77), we conclude that

lim inf
n→∞

∫
{�n>Zϑ

3
2
n }

�nS
( �n

ϑ
3
2
n

)
dx > M0s∞ for any Z > Z. (2.83)

However, relation (2.83) leads immediately to contradiction as∫
{�n>Zϑ

3
2
n }

�nS
( �n

ϑ
3
2
n

)
dx ≤ S(Z)

∫
{�n>Zϑ

3
2
n }

�n dx → S(Z)M0.

Indeed write
∫
Ω

�n dx as
∫
{�n≤Zϑ

3
2
n }

�n dx +
∫
{�n>Zϑ

3
2
n }

�n dx, and observe that

0 ≤
∫
{�n≤Zϑ

3
2
n }

�n dx =
∫
{�n≤Z( 1

n )
3
2 }

�n dx +
∫
{ϑn> 1

n}
�n dx,

where the right-hand side tends to 0 by virtue of (2.77). �

By means of Proposition 2.2 and Lemma 2.1, it is easy to check that estimates
(2.46), (2.58) give rise to (2.73).

2.2.5 Pressure estimates

The central problem of the mathematical theory of the Navier-Stokes-Fourier

system is to control the pressure. Under the constitutive relations considered in
this book, the pressure p is proportional to the volumetric density of the internal
energy �e that is a priori bounded in L1(Ω) uniformly with respect to time, see
(2.45–2.47). This section aims to find a priori estimates for p in the weakly closed
reflexive space Lq((0, T ) × Ω) for a certain q > 1. To this end, the basic idea is
to “compute” p by means of the momentum equation (2.9) and use the available
estimates in order to control the remaining terms. Such an approach, however,
faces serious technical difficulties, in particular because of the presence of the time
derivative ∂t(�u) in the momentum equation. Instead we use the quantities

ϕ(t, x) = ψ(t)φ(t, x), with φ = B
[
h(�) − 1

|Ω|

∫
Ω

h(�) dx
]
, ψ ∈ C∞

c (0, T ) (2.84)

as test functions in the momentum equation (2.9), where B is a suitable branch of
the inverse div−1

x .
There are several ways to construct the operator B, here we adopt the for-

mula proposed by Bogovskii (see Section 10.5 in the Appendix). In particular, the
operator B enjoys the following properties.
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� Bogovskii Operator B ≈ div−1
x :

(b1) Given

g ∈ C∞
c (Ω),

∫
Ω

g dx = 0,

the vector field B[g] satisfies

B[g] ∈ C∞
c (Ω; R3), divxB[g] = g. (2.85)

(b2) For any non-negative integer m and any 1 < q < ∞,

‖ B[g] ‖W m+1,q(Ω;R3) ≤ c‖g‖W m,q(Ω) (2.86)

provided Ω ⊂ R
3 is a Lipschitz domain, in particular, the operator B can be

extended to functions g ∈ Lq(Ω) with zero mean satisfying

B[g]|∂Ω = 0 in the sense of traces. (2.87)

(b3) If g ∈ Lq(Ω), 1 < q < ∞, and, in addition,

g = divxG, G ∈ Lp(Ω; R3), G · n|∂Ω = 0,

then
‖ B[g] ‖Lp(Ω;R3) ≤ c‖G‖Lp(Ω;R3). (2.88)

In order to render the test functions (2.84) admissible, we take

ϕα(t, x) = ψ(t)[φ]α(t, x), with [φ]α = B
[
h(�) − 1

|Ω|

∫
Ω

h(�) dx
]α

, ψ ∈ C∞
c (0, T ),

(2.89)
where h is a smooth bounded function, and the symbol [v]α denotes convolution
in the time variable t with a suitable family of regularizing kernels (see Section
10.1 in Appendix). Here, we have extended h(�) to be zero outside the interval
[0, T ].

Since �, u satisfy the renormalized equation (2.2), we easily deduce that

∂t

[
h(�)

]α
+ divx

[
h(�)u

]α
+
[
(�h′(�) − h(�))divxu

]α
= 0

for any t ∈ (α, T − α) and a.a. x ∈ Ω,
(2.90)

in particular, from the properties (b2), (b3) we may infer that

∂t[φ]α = − B
[
divx(h(�)u)

]α
(2.91)

− B
[(

�h′(�) − h(�)
)
divxu− 1

|Ω|

∫
Ω

(
�h′(�) − h(�)

)
divxu dx

]α
(cf. Section 10.5 in Appendix).
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By virtue of (2.86–2.88), we obtain

‖ [φ]α(t, ·) ‖W 1,p(Ω;R3) ≤ c(p, Ω)‖ [h(�)]α(t, ·) ‖Lp(Ω), 1 < p < ∞, (2.92)

and

‖ [∂tφ]α(t, ·) ‖Lp(Ω;R3) ≤ c(p, s, Ω) ‖ [h(�)u]α(t, ·) ‖Lp(Ω) (2.93)

+

{
‖ [(�h′(�) − h(�))divu]α(t, ·) ‖

L
3p

3+p (Ω)
if 3

2 < p < ∞,

‖[(�h′(�) − h(�))divu]α(t, ·) ‖Ls(Ω) for any 1 < s < ∞ if 1 ≤ p ≤ 3
2 ,

for any t ∈ [α, T − α].
Having completed the preliminary considerations we take the quantities ϕα

specified in (2.89) as test functions in the momentum equation (2.9) to obtain∫ T

0

(
ψ

∫
Ω

p(�, ϑ)[h(�)]α dx
)

dt =
5∑

j=1

Ij , (2.94)

where

I1 =
1
|Ω|

∫ T

0

(
ψ

∫
Ω

[h(�)]α
∫

Ω

p(�, ϑ) dx
)

dt,

I2 = −
∫ T

0

(
ψ

∫
Ω

�u · ∂t[φ]α dx
)

dt,

I3 = −
∫ T

0

(
ψ

∫
Ω

�u⊗ u : ∇x[φ]α dx
)

dt,

I4 =
∫ T

0

(
ψ

∫
Ω

S : ∇x[φ]α dx
)

dt,

I5 = −
∫ T

0

(
ψ

∫
Ω

�f · [φ]α dx
)

dt,

and

I6 = −
∫ T

0

(
ψ′
∫

Ω

�u · [φ]α dx
)

dt.

Now, our intention is to use the uniform bounds established in Section 2.2.3,
together with the integral identity (2.94), in order to show that∫ T

0

∫
Ω

p(�, ϑ)�ν dx dt ≤ c(data) for a certain ν > 0. (2.95)

To this end, the integrals I1, . . . , I6 are estimated by means of Hölder’s in-
equality as follows:

|I1| ≤ ‖ψ‖L∞(0,T ) ‖ [h(�)]α ‖L1((0,T )×Ω) ‖p(�, ϑ)‖L∞(0,T ;L1(Ω)),

|I2| ≤ ‖ψ‖L∞(0,T ) ‖�u‖L∞(0,T ;L
5
4 (Ω;R3))

‖∂t[φ]α‖L1(0,T ;L5(Ω;R3)),
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|I3| ≤ ‖ψ‖L∞(0,T ) ‖�u⊗ u‖Lp((0,T )×Ω;R3×3) ‖∇x[φ]α‖Lp′((0,T )×Ω;R3),

where p is the same as in (2.71),
|I4| ≤ ‖ψ‖L∞(0,T ) ‖ S ‖Lq((0,T )×Ω;R3×3) ‖∇x[φ]α‖Lq′ ((0,T )×Ω;R3×3),

1
q

+
1
q′

= 1, with the same q as in (2.68),

|I5| ≤ ‖ψ‖L∞(0,T ) ‖f‖L∞((0,T )×Ω;R3)‖�‖L∞(0,T ;L
5
3 (Ω))

‖[φ]α‖
L1(0,T ;L

5
2 (Ω;R3))

,

|I6| ≤ ‖ψ′‖L1(0,T ) ‖�u‖L∞(0,T ;L
5
4 (Ω;R3))

‖ [φ]α ‖L∞(0,T ;L5(Ω;R3)).

Furthermore, by virtue of the uniform bounds established in (2.92), (2.93),
the above estimates are independent of the value of the parameter α, specifically,

|I1| ≤ ‖ψ‖L∞(0,T ) ‖h(�)‖L1((0,T )×Ω) ‖p(�, ϑ)‖L∞(0,T ;L1(Ω)),

|I2| ≤ ‖ψ‖L∞(0,T ) ‖�u‖L∞(0,T ;L
5
4 (Ω;R3))

×
(
‖h(�)u‖L1(0,T ;L5(Ω;R3)) + ‖(�h′(�) − h(�))divxu‖

L1(0,T ;L
15
8 (Ω))

)
,

|I3| ≤ ‖ψ‖L∞(0,T ) ‖�u⊗ u‖Lp((0,T )×Ω;R3×3) ‖h(�)‖Lp′((0,T )×Ω),

with p as in (2.71),
|I4| ≤ ‖ψ‖L∞(0,T ) ‖S‖Lq((0,T )×Ω;R3×3) ‖h(�)‖Lq′((0,T )×Ω),

with q as in (2.68),
|I5| ≤ ‖ψ‖L∞(0,T ) ‖f‖L∞((0,T )×Ω;R3)‖�‖L∞(0,T ;L

5
3 (Ω))

‖h(�)‖
L1(0,T ;L

15
11 (Ω))

,

|I6| ≤ ‖ψ′‖L1(0,T ) ‖�u‖L∞(0,T ;L
5
4 (Ω;R3))

‖h(�)‖
L∞(0,T ;L

15
8 (Ω))

.

Consequently, taking h(�) ≈ �ν in (2.94) for a sufficiently small ν > 0 and
sufficiently large values of �, we can use estimates (2.46), (2.47), (2.68–2.71), to-
gether with the bounds on the integrals I1, . . . , I6 established above, in order to
obtain the desired estimate (2.95).

Furthermore, as

c�
5
3 ≤ pM (�, ϑ) ≤ c

{
�ϑ for � ≤ Zϑ

3
2 ,

�
5
3 for � ≥ Zϑ

3
2 ,

(2.96)

estimate (2.95) implies

‖�‖
L

5
3+ν((0,T )×Ω)

≤ c(data). (2.97)

Finally (2.97) together with (2.46) and (2.96) yields

‖pM (�, ϑ)‖Lp((0,T )×Ω) ≤ c(data) for some p > 1. (2.98)
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2.2.6 Pressure estimates, an alternative approach

The approach to pressure estimates based on the operator B ≈ div−1
x requires

a certain minimal regularity of the boundary ∂Ω. In the remaining part of this
chapter, we briefly discuss an alternative method yielding uniform estimates in
the interior of the physical domain together with equi-integrability of the pressure
up to the boundary. In particular, the interior estimates may be of independent
interest since they are sufficient for resolving the problem of global existence for the
Navier-Stokes-Fourier system provided the equality sign in the total energy
balance (2.22) is relaxed to inequality “≤”.

Local pressure estimates. Similarly to the preceding part, the basic idea is to
“compute” the pressure by means of the momentum equation (2.9). In order to
do it locally, we introduce a family of test functions

ϕ(t, x) = ψ(t)η(x)(∇xΔ−1
x )[1Ωh(�)], (2.99)

where ψ ∈ C∞
c (0, T ), η ∈ C∞

c (Ω), h ∈ C∞
c (0,∞),

0 ≤ ψ, η ≤ 1, and h(r) = rν for r ≥ 1

for a suitable exponent ν > 0. Here the symbol Δ−1
x stands for the inverse of

the Laplace operator on the whole space R3, specifically, in terms of the Fourier
transform Fx→ξ,

Δ−1
x [v](x) = −F−1

ξ→x

[Fx→ξ[v]
|ξ|2

]
, (2.100)

see Sections 0.5 and 10.16.
Note that

∇xϕ = ψ∇xη ⊗∇xΔ−1
x [1Ωh(�)] + ψηR[1Ωh(�)],

where

R = [∇x ⊗∇x]Δ−1
x , Ri,j [v](x) = F−1

[ξiξjFx→ξ[v]
|ξ|2

]
(2.101)

is a superposition of two Riesz maps. By virtue of the classical Calderón-Zygmund
theory, the operator Ri,j is bounded on Lp(R3) for any 1 < p < ∞. In particular,
ϕ ∈ Lq(0, T ; W 1,p

0 (Ω; R3)) whenever h(�) ∈ Lq(0, T ; Lp(Ω)) for certain 1 ≤ q ≤ ∞,
1 < p < ∞, see Section 10.16 in Appendix.

Similarly, using the renormalized equation (2.2) with b(�) = h′(�)�−h(�) we
“compute”

∂tϕ = ∂tψη∇xΔ−1
x [1Ωh(�)]

+ ψη
(
∇xΔ−1

x

[
1Ω(h(�) − h′(�)�)divxu

]
−∇xΔ−1

x [divx(1Ωh(�)u)]
)
.
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Let us point out that equation (2.2) holds on the whole space R3 provided u has
been extended outside Ω and h replaced by 1Ωh(�). Note that functions belonging
to W 1,p(Ω) can be extended outside Ω to be in the space W 1,p(R3) as soon as Ω
is a bounded Lipschitz domain.

It follows from the above discussion that the quantity ϕ specified in (2.99)
can be taken as a test function in the momentum equation (2.9), more precisely,
the function ϕ, together with its first derivatives, can be approximated in the Lp-
norm by a suitable family of regular test functions satisfying (2.10), (2.12). Thus
we get ∫ T

0

∫
Ω

ψη
(
ph(�) − S : R[1Ωh(�)]

)
dx dt =

7∑
j=1

Ij , (2.102)

where

I1 =
∫ T

0

∫
Ω

ψη
(
�u · R[1Ωh(�)u] − (�u ⊗ u) : R[1Ωh(�)]

)
dx dt,

I2 = −
∫ T

0

∫
Ω

ψη �u · ∇xΔ−1
x

[
1Ω(h(�) − h′(�)�)divxu

]
dx dt,

I3 = −
∫ T

0

∫
Ω

ψη�f · ∇xΔ−1
x [1Ωh(�)] dx dt,

I4 = −
∫ T

0

∫
Ω

ψp∇xη · ∇xΔ−1
x [1Ωh(�)] dx dt,

I5 =
∫ T

0

∫
Ω

ψS : ∇xη ⊗∇xΔ−1
x [1Ωh(�)] dx dt,

I6 = −
∫ T

0

∫
Ω

ψ(�u⊗ u) : ∇xη ⊗∇xΔ−1[1Ωh(�)] dx dt,

and

I7 = −
∫ T

0

∫
Ω

∂tψ η�u · ∇xΔ−1
x [1Ωh(�)] dx dt.

Here, we have used the notation

A : R ≡
3∑

i,j=1

Ai,jRi,j , R[v]i ≡
3∑

j=1

Ri,j [vj ], i = 1, 2, 3.

Exactly as in Section 2.2.5, the integral identity (2.102) can be used to es-
tablish a bound∫ T

0

∫
K

p(�, ϑ)�ν dx dt ≤ c(data, K) for a certain ν > 0, (2.103)
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and, consequently,∫ T

0

∫
K

�
5
3+ν dx dt ≤ c(data, K), (2.104)∫ T

0

∫
K

|p(�, ϑ)|r dx dt ≤ c(data, K) for a certain r > 1 (2.105)

for any compact K ⊂ Ω.

Pressure estimates near the boundary. Our ultimate goal is to extend, in a cer-
tain sense, the local estimates established in Section 2.2.6 up to the boundary ∂Ω.
In particular, our aim is to show that the pressure is equi-integrable in Ω, where
the bound can be determined in terms of the data. To this end, it is enough to
solve the following auxiliary problem:

Given q > 1 arbitrary, find a function G = G(x) such that

G ∈ W 1,q
0 (Ω; R3), divxG(x) → ∞ uniformly for dist(x, ∂Ω) → 0. (2.106)

If Ω is a bounded Lipschitz domain, the function G can be taken as a solution
of the problem

divxG = g in Ω, G|∂Ω = 0, (2.107)

where

g = dist−β(x, ∂Ω) − 1
|Ω|

∫
Ω

dist−β(x, ∂Ω) dx, with 0 < β <
1
q
,

so that (2.106) is satisfied. Problem (2.107) can be solved by means of the operator
B introduced in Section 2.2.5 as soon as Ω is a Lipschitz domain. For less regular
domains, an explicit solution may be found by an alternative method (see Kukučka
[126]).

Pursuing step by step the procedure developed in the preceding section we
take the quantity

ϕ(t, x) = ψ(t)G(x), ψ ∈ C∞
c (0, T ),

as a test function in the momentum equation (2.9). Assuming G belongs to
W 1,q

0 (Ω; R3), with q > 1 large enough, we can deduce, exactly as in Section 2.2.6,
that ∫ T

0

∫
Ω

p(�, ϑ)divxG dx dt ≤ c(data). (2.108)

Note that this step can be fully justified via a suitable approximation of G by a
family of smooth, compactly supported functions. As divxG(x) → ∞ whenever
x → ∂Ω, relation (2.108) yields equi-integrability of the pressure in a neighborhood
of the boundary (cf. Theorem 0.8).



Chapter 3

Existence Theory

The informal notion of a well-posed problem captures many of the desired features
of what we mean by solving a system of partial differential equations. Usually a
given problem is well posed if

• the problem has a solution;
• the solution is unique in a given class;
• the solution depends continuously on the data.

The first condition is particularly important for us as we want to perform the sin-
gular limits on existing objects. It is a peculiar feature of non-linear problems that
existence of solutions can be rigorously established only in the class determined
by a priori estimates. Without any extra assumption concerning the magnitude
of the initial data and/or the length of the existence interval (0, T ), all available
and known a priori bounds on solutions to the Navier-Stokes-Fourier Sys-

tem have been collected in Chapter 2. Accordingly, the existence theory to be
developed in the forthcoming chapter necessarily uses the framework of the weak
solutions introduced in Chapter 1 and identified in Chapter 2. To begin, let us
point out that the existence theory is not the main objective of this book, and,
strictly speaking, all results concerning the singular limits can be stated without
referring to any specific solution. On the other hand, however, it seems important
to know that the class of objects we deal with is not void.

The complete proof of existence for the initial-boundary value problem asso-
ciated to the Navier-Stokes-Fourier system is rather technical and consider-
ably long. The following text aims to provide a concise and self-contained treat-
ment starting directly with the approximate problem and avoiding completely the
nowadays popular “approach” based on reducing the task of existence to showing
the weak sequential stability of the set of hypothetical solutions.

The principal tools to be employed in the existence proof can be summarized
as follows:
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• Nowadays “classical” arguments based on compactness of embeddings of
Sobolev spaces (the Rellich-Kondrashov theorem);

• a generalized Arzelà-Ascoli compactness result for weakly continuous func-
tions and its variants including the Lions-Aubin lemma;

• the Div-Curl lemma developed in the theory of compensated compactness;

• the “weak continuity” property of the so-called effective viscous flux estab-
lished by P.-L. Lions and its generalization to the case of non-constant vis-
cosity coefficients via a commutator lemma;

• the theory of parametrized (Young) measures, in particular, its application to
compositions of weakly converging sequences with a Carathéodory function;

• the analysis of density oscillations via oscillations defect measures in weighted
Lebesgue spaces.

3.1 Hypotheses

Before formulating our main existence result, we present a concise list of hy-
potheses imposed on the data. To see their interpretation, the reader may consult
Chapter 1 for the physical background and the relevant discussion.

(i) Initial data: The initial state of the system is determined through the choice
of the quantities �0, (�u)0, E0, and (�s)0.

The initial density �0 is a non-negative measurable function such that

�0 ∈ L
5
3 (Ω),

∫
Ω

�0 dx = M0 > 0. (3.1)

The initial distribution of the momentum satisfies a compatibility condition

(�u)0 = 0 a.a. on the set {x ∈ Ω | �0(x) = 0}, (3.2)

notably the total amount of the kinetic energy is finite, meaning,∫
Ω

|(�u)0|2
�0

dx < ∞. (3.3)

The initial temperature is determined by a measurable function ϑ0 satisfying

ϑ0 > 0 a.a. in Ω, (�s)0 = �0s(�0, ϑ0), �0s(�0, ϑ0) ∈ L1(Ω). (3.4)

Finally, we assume that the initial energy of the system is finite, specifically,

E0 =
∫

Ω

( 1
2�0

|(�u)0|2 + �0e(�0, ϑ0)
)

dx < ∞. (3.5)
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(ii) Source terms: For the sake of simplicity, we suppose that

f ∈ L∞((0, T ) × Ω; R3), Q ≥ 0, Q ∈ L∞((0, T )× Ω). (3.6)

(iii) Constitutive relations: The quantities p, e, and s are continuously differen-
tiable functions for positive values of �, ϑ satisfying Gibbs’ equation

ϑDs(�, ϑ) = De(�, ϑ) + p(�, ϑ)D
(1

�

)
for all �, ϑ > 0. (3.7)

In addition,

p(�, ϑ) = pM (�, ϑ) + pR(ϑ), pR(ϑ) =
a

3
ϑ4, a > 0, (3.8)

and
e(�, ϑ) = eM (�, ϑ) + eR(�, ϑ), �eR(�, ϑ) = aϑ4, (3.9)

where, in accordance with the hypothesis of thermodynamic stability (1.44), the
molecular components satisfy

∂pM (�, ϑ)
∂�

> 0 for all �, ϑ > 0, (3.10)

and

0 <
∂eM (�, ϑ)

∂ϑ
≤ c for all �, ϑ > 0. (3.11)

Furthermore,

lim
ϑ→0+

eM (�, ϑ) = eM (�) > 0 for any fixed � > 0, (3.12)

and, ∣∣∣�∂eM (�, ϑ)
∂�

∣∣∣ ≤ c eM (�, ϑ) for all �, ϑ > 0. (3.13)

Finally, we suppose that there is a function P satisfying

P ∈ C1[0,∞), P (0) = 0, P ′(0) > 0, (3.14)

and two positive constants 0 < Z < Z such that

pM (�, ϑ) = ϑ
5
2 P
( �

ϑ
3
2

)
whenever 0 < � ≤ Zϑ

3
2 , or, � > Zϑ

3
2 , (3.15)

where, in addition,

pM (�, ϑ) =
2
3
�eM (�, ϑ) for � > Zϑ

3
2 . (3.16)
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(iv) Transport coefficients: The viscosity coefficients μ, η are continuously differ-
entiable functions of the absolute temperature ϑ, more precisely μ, η ∈ C1[0,∞),
satisfying

0 < μ(1 + ϑα) ≤ μ(ϑ) ≤ μ(1 + ϑα), (3.17)

sup
ϑ∈[0,∞)

|μ′(ϑ)| ≤ m, (3.18)

0 ≤ η(ϑ) ≤ η(1 + ϑα). (3.19)

The heat conductivity coefficient κ can be decomposed as

κ(ϑ) = κM (ϑ) + κR(ϑ), (3.20)

where κM , κR ∈ C1[0,∞), and

0 < κRϑ3 ≤ κR(ϑ) ≤ κR(1 + ϑ3), (3.21)
0 < κM (1 + ϑα) ≤ κM (ϑ) ≤ κM (1 + ϑα). (3.22)

In formulas (3.17–3.22), μ, μ, m, η, κR, κR, κM , κM are positive constants
and

2
5

< α ≤ 1. (3.23)

Remark: Some of the above hypotheses, in particular those imposed on the ther-
modynamic functions, are rather technical and may seem awkward at first glance.
The reader should always keep in mind the prototype example

p(�, ϑ) = ϑ
5
2 P
( �

ϑ
3
2

)
+

a

3
ϑ4, P (0) = 0, P ′(0) > 0, P (Z) ≈ Z

5
3 for Z >> 1

which meets all the hypotheses stated above. Note that if a > 0 is small and P (Z) is
close to a linear function for moderate values of Z, the above formula approaches
the standard Boyle-Marriot law of a perfect gas.

The present hypotheses cover, in particular, the physically reasonable case
when the constitutive law for the molecular pressure is that of the monoatomic
gas, meaning

pM =
2
3
�eM ;

for more details see Section 1.4.2.

Very roughly indeed, we can say that the pressure is regularized in the area
where either � or ϑ are close to zero. The radiation component pR prevents the
temperature field from oscillating in the vacuum zone where � vanishes, while the
superlinear growth of P for large arguments guarantees strong enough a priori
estimates on the density � in the “cold” regime ϑ ≈ 0.
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3.2 Structural properties of constitutive functions

The hypotheses on constitutive relationsfor the pressure, the internal energy and
the entropy entail further restrictions imposed on the structural properties of the
functions p, e, and s. Some of them have already been identified and used in
Chapter 2. For reader’s convenience, they are recorded and studied in a systematic
way in the text below.

(i) The first observation is that for (3.15), (3.16) to be compatible with the hy-
pothesis of thermodynamic stability expressed through (3.10), (3.11), the function
P must obey certain structural restrictions. In particular, relation (3.10) yields

P ′(Z) > 0 whenever 0 < Z < Z, or, Z > Z,

which, together with (3.14), yields

P ′(Z) > 0 for all Z ≥ 0, (3.24)

where P has been extended to be strictly increasing on the interval [Z, Z].
Similarly, a direct inspection of (3.11), (3.15), (3.16) gives rise to

0 <
3
2

5
3P (Z) − ZP ′(Z)

Z
:= cv,M < c, whenever Z =

�

ϑ3/2
≥ Z. (3.25)

In particular P (Z)/Z5/3 possesses a limit for Z → ∞, specifically, in accordance
with (3.15), (3.16),

lim
ϑ→0+

eM (�, ϑ) =
3
2

lim
ϑ→0+

ϑ5/2

�
P
( �

ϑ3/2

)
=

3
2
�

2
3 lim

Z→∞
P (Z)
Z5/3

for any fixed � > 0.

Moreover, in agreement with (3.12),

lim
Z→∞

P (Z)
Z5/3

= p∞ > 0, (3.26)

and
lim

ϑ→0+
eM (�, ϑ) = eM (�) =

3
2
�2/3p∞. (3.27)

(ii) By virtue of (3.11), the function ϑ → eM (�, ϑ) is strictly increasing on the
whole interval (0,∞) for any fixed � > 0. This fact, together with (3.9), (3.27),
gives rise to the lower bound

�e(�, ϑ) ≥ 3p∞
2

�
5
3 + aϑ4. (3.28)

On the other hand,

eM (�, ϑ) = eM (�) +
∫ ϑ

0

∂eM

∂ϑ
(�, τ) dτ, (3.29)
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which, together with (3.11) and (3.27), yields

0 ≤ eM (�, ϑ) ≤ c(�
2
3 + ϑ). (3.30)

Similarly, relation (3.24), together with (3.14–3.16), and (3.26), yield the
following bounds on the molecular pressure pM :

c�ϑ ≤ pM (�, ϑ) ≤ c�ϑ if � < Zϑ
3
2 , (3.31)

and

c�
5
3 ≤ pM (�, ϑ) ≤ c

{
ϑ

5
2 if � < Zϑ

3
2

�
5
3 if � > Zϑ

3
2 .

}
(3.32)

Here, we have used the monotonicity of pM in � in order to control the behavior
of the pressure in the region

Zϑ
3
2 ≤ � ≤ Zϑ

3
2 .

Moreover, in accordance with (3.30), (3.32), it is easy to observe that

eM , pM are bounded on bounded sets of [0,∞)2. (3.33)

(iii) In agreement with Gibbs’ relation (3.7), the specific entropy s can be writ-
ten as

s = sM + sR,
∂sM

∂ϑ
=

1
ϑ

∂eM

∂ϑ
, �sR(�, ϑ) =

4
3
aϑ3, (3.34)

where the molecular component sM satisfies

sM (�, ϑ) = S(Z), Z =
�

ϑ3/2
, S′(Z) = −3

2

5
3P (Z) − ZP ′(Z)

Z2
< 0 (3.35)

in the degenerate area � > Zϑ
3
2 . Note that the function S is determined up to an

additive constant.
On the other hand, due to (3.11), the function ϑ → sM (�, ϑ) is increasing on

(0,∞) for any fixed ϑ. Accordingly,

sM (�, ϑ) ≤
{

sM (�, 1) if ϑ ≤ 1

sM (�, 1) +
∫ ϑ

1
∂sM

∂ϑ (�, τ) dτ ≤ sM (�, 1) + c log ϑ if ϑ > 1

}
,

(3.36)
where we have exploited (3.11) combined with (3.34) in order to control∣∣∣∣∣

∫ ϑ

1

∂sM

∂ϑ
(�, τ) dτ

∣∣∣∣∣ ≤ c| log ϑ| for all ϑ > 0. (3.37)
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Another application of Gibbs’ relation (3.7) yields

∂sM

∂�
= − 1

�2

∂pM

∂ϑ
,

see also (1.3); therefore

sM (�, 1) = sM (1, 1) +
∫ �

1

1
τ2

∂pM

∂ϑ
(τ, 1) dτ.

By virtue of (3.15) and (3.25),

∂pM

∂ϑ
(ρ, 1) =

5
2
P (�) − 3

2
�P ′(�) ≤ c� for all � ∈ (0, Z] ∪ [Z,∞),

whereas
|∂pM

∂ϑ
(ρ, 1)| is bounded in [Z, Z].

Consequently,
|sM (�, 1)| ≤ c(1 + | log �|) for all � ∈ (0,∞). (3.38)

Writing

sM (�, ϑ) = sM (�, 1) +
∫ �

1

∂sM

∂ϑ
(�, τ) dτ

and resuming the previous estimates, we conclude that

|sM (�, ϑ)| ≤ c(1 + | log �| + | log ϑ|) for all �, ϑ > 0. (3.39)

(iv) It follows from (3.35) that

limZ→∞ S(Z) = s∞ =

{
−∞
0

}
;

whence

limϑ→0+ sM (�, ϑ) = s∞ for any fixed � > 0.

(3.40)

where, in the latter case, we have fixed the free additive constant in the definition
of S in (3.35) to obtain s∞ = 0.

(v) Finally, as a direct consequence of (3.15),

∂pM

∂�
(�, ϑ) = ϑP ′

(
�

ϑ
3
2

)
if � < Zϑ

3
2 , or, � > Zϑ

3
2 ,

where, by virtue of (3.24), (3.25), and (3.26),

P ′(Z) ≥ c(1 + Z
2
3 ), c > 0, for all Z ≥ 0. (3.41)
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Thus we can write

pM (�, ϑ) = ϑ
5
2 P

(
�

ϑ
3
2

)
+ pb(�, ϑ),

with

pb(�, ϑ) = pM (�, ϑ) − ϑ
5
2 P

(
�

ϑ
3
2

)
.

In accordance with (3.15), (3.32), we have

|pb(�, ϑ)| ≤ c(1 + ϑ
5
2 ). (3.42)

Finally, we conclude with help of (3.41) that there exists d > 0 such that

pM (�, ϑ) = d�
5
3 + pm(�, ϑ) + pb(�, ϑ), (3.43)

where
∂pm

∂�
(�, ϑ) > 0 for all �, ϑ > 0. (3.44)

3.3 Main existence result

Having collected all the preliminary material, we are in a position to formulate
our main existence result concerning the weak solutions of the Navier-Stokes-

Fourier system.

� Global Existence for the Navier-Stokes-Fourier System:

Theorem 3.1. Let Ω ⊂ R
3 be a bounded domain of class C2,ν , ν ∈ (0, 1). Assume

that

• the data �0, (�u)0, E0, (�s)0 satisfy (3.1–3.5);
• the source terms f , Q are given by (3.6);
• the thermodynamic functions p, e, s, and the transport coefficients μ, η, κ

obey the structural hypotheses (3.7–3.23).

Then for any T > 0 the Navier-Stokes-Fourier system admits a weak solution
{�,u, ϑ} on (0, T )×Ω in the sense specified in Section 2.1. More precisely, {�,u, ϑ}
satisfy relations (2.2–2.6), (2.9–2.17), (2.22–2.25), (2.27–2.32), with (2.35–2.37).

The complete proof of Theorem 3.1 presented in the remaining part of this
chapter is tedious, rather technical, consisting in four steps:

• The momentum equation (2.9) is replaced by a Faedo-Galerkin approxima-
tion, the equation of continuity (2.2) is supplemented with an artificial vis-
cosity term, and the entropy production equation (2.27) is replaced by the
balance of internal energy. The approximate solutions are obtained by help
of the Schauder fixed point theorem, first locally in time, and then extended
on the full interval (0, T ) by means of suitable uniform estimates.
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• Performing the limit in the Faedo-Galerkin approximation scheme we re-
cover the momentum equation supplemented with an artificial pressure term.
Simultaneously, the balance of internal energy is converted to the entropy
production equation (2.27), together with the total energy balance (2.22)
containing some extra terms depending on small parameters.

• We pass to the limit in the regularized equation of continuity sending the
artificial viscosity terms to zero.

• Finally, the proof of Theorem 3.1 is completed letting the artificial pressure
term go to zero.

3.3.1 Approximation scheme

(i) The equation of continuity (2.2) is regularized by means of an artificial vis-
cosity term:

∂t� + divx(�u) = εΔ� in (0, T )× Ω, (3.45)

and supplemented with the homogeneous Neumann boundary condition

∇x� · n|∂Ω = 0, (3.46)

and the initial condition
�(0, ·) = �0,δ, (3.47)

where
�0,δ ∈ C2,ν(Ω), inf

x∈Ω
�0,δ(x) > 0, ∇x�0,δ · n|∂Ω = 0. (3.48)

(ii) The momentum balance expressed through the integral identity (2.9) is re-
placed by a Faedo-Galerkin approximation:∫ T

0

∫
Ω

(
�u · ∂tϕ + �[u ⊗ u] : ∇xϕ +

(
p(�, ϑ) + δ(�Γ + �2)

)
divxϕ

)
dx dt

=
∫ T

0

∫
Ω

(
ε(∇x�∇xu) · ϕ + Sδ : ∇xϕ − �fδ · ϕ

)
dx dt −

∫
Ω

(�u)0 · ϕ dx, (3.49)

to be satisfied for any test function ϕ ∈ C1
c ([0, T ); Xn), where

Xn ⊂ C2,ν(Ω; R3) ⊂ L2(Ω; R3) (3.50)

is a finite-dimensional vector space of functions satisfying either

ϕ · n|∂Ω = 0 in the case of the complete slip boundary conditions, (3.51)

or
ϕ|∂Ω = 0 in the case of the no-slip boundary conditions. (3.52)

The space Xn is endowed with the Hilbert structure induced by the scalar product
of the Lebesgue space L2(Ω; R3).
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Furthermore, we set

Sδ = Sδ(ϑ,∇xu)

= (μ(ϑ) + δϑ)
(
∇xu + ∇T

x u − 2
3
divxu I

)
+ η(ϑ)divxu I, (3.53)

while the function
fδ ∈ C1([0, T ]× Ω; R3) (3.54)

is a suitable approximation of the driving force f .

(iii) Instead of the entropy balance (2.27), we consider a modified internal energy
equation in the form:

∂t(�eδ(�, ϑ)) + divx(�eδ(�, ϑ)u) − divx∇xKδ(ϑ) (3.55)

= Sδ(ϑ,∇xu) : ∇xu− p(�, ϑ)divxu + �Qδ + εδ(Γ�Γ−2 + 2)|∇x�|2 + δ
1
ϑ2

− εϑ5,

supplemented with the Neumann boundary condition

∇xϑ · n|∂Ω = 0, (3.56)

and the initial condition

ϑ(0, ·) = ϑ0,δ, (3.57)

ϑ0,δ ∈ W 1,2(Ω) ∩ L∞(Ω), ess inf
x∈Ω

ϑ0,δ(x) > 0. (3.58)

Here

eδ(�, ϑ) = eM,δ(�, ϑ) + aϑ4, eM,δ(�, ϑ) = eM (�, ϑ) + δϑ,

Kδ(ϑ) =
∫ ϑ

1

κδ(z) dz, κδ(ϑ) = κM (ϑ) + κR(ϑ) + δ
(
ϑΓ +

1
ϑ

)
, (3.59)

and
Qδ ≥ 0, Qδ ∈ C1([0, T ]× Ω). (3.60)

In problem (3.45–3.60), the quantities ε, δ are small positive parameters,
while Γ > 0 is a sufficiently large fixed number. The meaning of the extra terms
will become clear in the course of the proof. Loosely speaking, the ε-dependent
quantities provide more regularity of the approximate solutions modifying the
type of the field equations, while the δ-dependent quantities prevent concentra-
tions yielding better estimates on the amplitude of the approximate solutions. For
technical reasons, the limit passage must be split up in two steps letting first ε → 0
and then δ → 0.
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3.4 Solvability of the approximate system

We claim the following result concerning solvability of the approximate problem
(3.45–3.60).

� Global Existence for the Approximate System:

Proposition 3.1. Let ε, δ be given positive parameters.
Under the hypotheses of Theorem 3.1, there exists Γ0 > 0 such that for any

Γ > Γ0 the approximate problem (3.45–3.60) admits a strong solution {�,u, ϑ}
belonging to the following regularity class:

� ∈ C([0, T ]; C2,ν(Ω)), ∂t� ∈ C([0, T ]; C0,ν(Ω)), inf
[0,T ]×Ω

� > 0,

u ∈ C1([0, T ]; Xn),

ϑ ∈ C([0, T ]; W 1,2(Ω)) ∩ L∞((0, T )× Ω), ∂tϑ, ΔKδ(ϑ) ∈ L2((0, T ) × Ω),
ess inf

(0,T )×Ω
ϑ > 0. (3.61)

Remark: As a matter of fact, since the velocity field u is continuously differentiable,
a bootstrap argument could be used in order to show that ϑ is smooth, hence a
classical solution of (3.55) for t > 0, as soon as the thermodynamic functions p,
e as well as the transport coefficients μ, λ, and κ are smooth functions of �, ϑ on
the set (0,∞)2.

In spite of a considerable number of technicalities, the proof of Proposition
3.1 is based on standard arguments. We adopt the following strategy:

• The solution u of the approximate momentum equation (3.49) is looked for as
a fixed point of a suitable integral operator in the Banach space C([0, T ]; Xn).
Consequently, the functions �, ϑ have to be determined in terms of u. This
is accomplished in the following manner:

• Given u, the approximate continuity equation (3.45) is solved directly by
means of the standard theory of linear parabolic equations.

• Having solved (3.45–3.47) we determine the temperature ϑ as a solution of
the quasilinear parabolic problem (3.55–3.57), where �, u play a role of given
data.

3.4.1 Approximate continuity equation

The rest of this section is devoted to the proof of Proposition 3.1. We start with
a series of preparatory steps. Following the strategy delineated in the previous
paragraph, we fix a vector field u and discuss solvability of the Neumann-initial
value problem (3.45–3.47).
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� Approximate Continuity Equation:

Lemma 3.1. Let Ω ⊂ R3 be a bounded domain of class C2,ν , ν ∈ (0, 1) and let
u ∈ C([0, T ]; Xn) be a given vector field. Suppose that �0,δ belongs to the class of
regularity specified in (3.48).

Then problem (3.45–3.47) possesses a unique classical solution � = �u, more
specifically,

�u ∈ V ≡
{

� ∈ C([0, T ]; C2,ν(Ω)),

∂t� ∈ C([0, T ]; C0,ν(Ω)).

}
(3.62)

Moreover, the mapping u ∈ C([0, T ]; Xn) → �u maps bounded sets in C([0, T ]; Xn)
into bounded sets in V and is continuous with values in C1([0, T ]× Ω).

Finally,

�
0
exp
(
−
∫ τ

0

‖divxu‖L∞(Ω) dt
)
≤ �u(τ, x) (3.63)

≤ �0 exp
( ∫ τ

0

‖divxu‖L∞(Ω) dt
)

for all τ ∈ [0, T ], x ∈ Ω,

where �
0

= infΩ �0,δ, �0 = supΩ �0,δ.

Proof. Step 1. The unique strong solution of problem (3.45–3.48)

� ∈ L2(0, T ; W 2,2(Ω)) ∩ C([0, T ]; W 1,2(Ω)), ∂t� ∈ L2((0, T )× Ω)

that satisfies the estimate

‖�‖C([0,T ];W 1,2(Ω)) + ‖�‖L2(0,T ;W 2,2(Ω)) + ‖∂t�‖L2((0,T )×Ω) ≤ c‖�0,δ‖W 1,2(Ω),

with c = c(ε, T, ‖u‖C([0,T ];Cν(Ω))) > 0, may be constructed by means of the stan-
dard Galerkin approximation within the standard L2 theory.

The maximal Lp − Lq regularity resumed in Theorem 10.22 in Appendix
applied to the problem

∂t� − εΔx� = f := −divx(�u), ∇x� · n|∂Ω = 0, �(0) = �0,δ (3.64)

combined with a bootstrap argument gives the bound

‖�‖
C([0,T ];W

2− 2
p

,p
(Ω))

+ ‖�‖Lp(0,T ;W 2,p(Ω)) + ‖∂t�‖Lp((0,T )×Ω) ≤ c‖�0,δ‖
W

2− 2
p

,p
(Ω)

for any p > 3.
Since W 2− 2

p ,p(Ω) ↪→ C1,ν(Ω) for any sufficiently large p, we have divx(�u) ∈
C([0, T ]; C1,ν(Ω)) and may employ Theorem 10.23 from Appendix to show relation
(3.62) as well as boundedness of the map u → �u: C([0, T ]; Xn) → V .



3.4. Solvability of the approximate system 55

Step 2. The difference ω = �u1 − �u2 satisfies

∂tω − εΔω + divx(ωu1) = f := divx(�u2(u1 − u2)), ∇xω · n|∂Ω = 0, ω(0) = 0.

Similar reasoning as in the first step applied to this equation yields the continuity
of the map u → �u from C([0, T ]; Xn) to C1([0, T ] × Ω).

Step 3. The difference

ω(t, x) = �u(τ, x) − �0exp
(∫ τ

0

‖divxu‖L∞(Ω) dt

)

obeys a differential inequality

∂tω + divx(ωu) − εΔxω ≤ 0, ∇xω · n|∂Ω = 0, ω(0) = �0 − �0 ≤ 0.

When multiplied on the positive part |ω|+ of ω and integrated over Ω, the first
relation gives ‖ |ω|+(t)‖L2(Ω) ≤ 0 which shows the right inequality in (3.63). The
left inequality can be obtained in a similar way. Lemma 3.1 is thus proved. The
reader may consult [79, Chapter 7.3] or [166, Section 7.2] for more details. �

3.4.2 Approximate internal energy equation

Having fixed u, together with � = �u – the unique solution of problem (3.45–3.47)
– we focus on the approximate internal energy equation (3.55) that can be viewed
as a quasilinear parabolic problem for the unknown ϑ.

Comparison principle. To begin, we establish a comparison principle in the class
of strong (super, sub) solutions of problem (3.55–3.57). We recall that a function
ϑ is termed a super (sub) solution if it satisfies (3.55) with “=” sign replaced by
“≥” (“≤”).

Lemma 3.2. Given the quantities

u ∈ C([0, T ]; Xn), � ∈ C([0, T ]; C2(Ω)),

∂t� ∈ C([0, T ]× Ω), inf
(0,T )×Ω

� > 0,
(3.65)

assume that ϑ and ϑ are respectively a sub and super-solution to problem (3.55–
3.57) belonging to the class{

ϑ, ϑ ∈ L2(0, T ; W 1,2(Ω)), ∂tϑ, ∂tϑ ∈ L2((0, T ) × Ω),

ΔKδ(ϑ), ΔKδ(ϑ) ∈ L2((0, T ) × Ω),

}
, (3.66)

{
0 < ess inf(0,T )×Ωϑ ≤ ess sup(0,T )×Ωϑ < ∞,

0 < ess inf(0,T )×Ωϑ ≤ ess sup(0,T )×Ωϑ < ∞,

}
(3.67)
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and satisfying
ϑ(0, ·) ≤ ϑ(0, ·) a.a. in Ω. (3.68)

Then
ϑ(t, x) ≤ ϑ(t, x) a.a. in (0, T ) × Ω.

Proof. As ϑ, ϑ belong to the regularity class specified in (3.66), we can compute

sgn+
(
�eδ(�, ϑ) − �eδ(�, ϑ)

)[(
∂t

(
�eδ(�, ϑ) − �eδ(�, ϑ)

)
+ ∇x

(
�eδ(�, ϑ) − �eδ(�, ϑ)

)
· u
]

+ Δx

(
Kδ(ϑ) −Kδ(ϑ)

)
sgn+

(
�e(�, ϑ) − �e(�, ϑ)

)
≤ |F (t, x, ϑ) − F (t, x, ϑ)| sgn+

(
�eδ(�, ϑ) − �eδ(�, ϑ)

)
, (3.69)

where we have introduced

sgn+(z) =

{
0 if z ≤ 0,

1 if z > 0,

and where we have set

F (t, x, ϑ) = Sδ(ϑ,∇xu(t, x)) : ∇xu(t, x) +
(
εδ(Γ�Γ−2 + 2)|∇x�|2

)
(t, x)

− �(t, x)eδ(�(t, x), ϑ)divxu(t, x)

− p(�(t, x), ϑ)divxu(t, x) + δ
1
ϑ2

− εϑ5 + �Qδ.

In accordance with our hypotheses, we may assume that F = F (t, x, ϑ) is globally
Lipschitz with respect to ϑ.

Denoting by |z|+ = max{z, 0} the positive part, we have

∂t|w|+ = sgn+(w)∂tw, ∇x|w|+ = sgn+(w)∇xw a.a. in (0, T ) × Ω

for any w ∈ W 1,2((0, T )× Ω), in particular,

sgn+
(
�eδ(�, ϑ) − �eδ(�, ϑ)

)
×
[(

∂t

(
�eδ(�, ϑ) − �eδ(�, ϑ)

)
+ ∇x

(
�eδ(�, ϑ) − �eδ(�, ϑ)

)
· u
]

= ∂t

∣∣∣�eδ(�, ϑ) − �eδ(�, ϑ)
∣∣∣+ + ∇x

∣∣∣�eδ(�, ϑ) − �eδ(�, ϑ)
∣∣∣+ · u.

Moreover, as both eδ and Kδ are increasing functions of ϑ, we have

sgn+
(
�eδ(�, ϑ) − �eδ(�, ϑ)

)
= sgn+

(
Kδ(ϑ) −Kδ(ϑ)

)
.
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Seeing that∫
Ω

Δxw sgn+(w) dx ≤ 0 whenever w ∈ W 2,2(Ω), ∇xw · n|∂Ω = 0,

we can integrate (3.69) in order to deduce∫
Ω

∣∣∣�eδ(�, ϑ) − �eδ(�, ϑ)
∣∣∣+(τ) dx

≤ c

∫ τ

0

∫
Ω

(1 + |divxu|)
∣∣∣�eδ(�, ϑ) − �eδ(�, ϑ)

∣∣∣+ dx dt

for any τ > 0. Here we have used Lipschitz continuity of F (t, x, ·) and the fact
that |ϑ − ϑ| sgn+[�eδ(�, ϑ) − �eδ(�, ϑ)] ≤ c|�eδ(�, ϑ) − �eδ(�, ϑ)|+ which follows
from (3.9), (3.11), (3.65), (3.67). Thus a direct application of Gronwall’s lemma,
together with the monotonicity of eδ with respect to ϑ, completes the proof. �
Corollary 3.1. For given data �, u satisfying (3.65), and a measurable function
ϑ0,δ such that

0 < ϑ0 = ess inf
Ω

ϑ0,δ ≤ ess sup
Ω

ϑ0,δ = ϑ0 < ∞, (3.70)

problem (3.55–3.57) admits at most one (strong) solution ϑ in the class specified
in (3.66–3.67).

Another application of Lemma 3.2 gives rise to uniform bounds on the func-
tion ϑ in terms of the data.

Corollary 3.2. Let �, u belong to the regularity class (3.65), and let ϑ0,δ satisfy
(3.70). Suppose that ϑ is a (strong) solution of problem (3.55–3.57) belonging to
the regularity class (3.66).

Then there exist two constants ϑ, ϑ depending only on the quantities

‖u‖C([0,T ];Xn), ‖�‖C1([0,T ]×Ω), (3.71)

satisfying
0 < ϑ ≤ ϑ0 ≤ ϑ0 ≤ ϑ, (3.72)

and
ϑ ≤ ϑ(t, x) ≤ ϑ for a.a. (t, x) ∈ (0, T ) × Ω. (3.73)

Proof. It is a routine matter to check that a constant function ϑ is a subsolution
of (3.55–3.57) as soon as

δ

ϑ2 ≥
[
εϑ5 + pM (�, ϑ)divxu + aϑ4divxu (3.74)

+ �
∂eM (�, ϑ)

∂�

(
∂t� + u · ∇x�

)
+
(
eM (�, ϑ) + aϑ4 + δϑ

)(
∂t� + divx(�u)

)
− Sδ(ϑ,∇xu) : ∇xu − εδ(Γ�Γ−2 + 2)|∇x�|2 − �Qδ

]
.
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Revoking (3.30) we can use hypotheses (3.65), (3.13), together with estimate
(3.32), in order to see that all quantities on the right-hand side of (3.74) are
bounded in terms of ‖�‖C1([0,T ]×Ω) and ‖u‖C([0,T ];Xn) provided, say, 0 < ϑ <
1. Note that all norms are equivalent when restricted to the finite-dimensional
space Xn.

Consequently, a direct application of the comparison principle established in
Lemma 3.2 yields the left inequality in (3.73).

Following step by step with obvious modifications the above procedure, the
upper bound claimed in (3.73) can be established by help of the dominating term
−εϑ5 in (3.55). �

Remark: Corollary 3.2 reveals the role of the extra term δ/ϑ2 in equation (3.55),
namely to keep the absolute temperature ϑ bounded below away from zero at this
stage of the approximation procedure. Positivity of ϑ is necessary for the passage
from (3.55) to the entropy balance equation used in the weak formulation of the
Navier-Stokes-Fourier system.

A priori estimates. We shall derive a priori estimates satisfied by any strong
solution of problem (3.55–3.57).

Lemma 3.3. Let the data �, u belong to the regularity class (3.65), and let ϑ0,δ ∈
W 1,2(Ω) satisfy (3.70).

Then any strong solution ϑ of problem (3.55–3.57) belonging to the class
(3.66–3.67) satisfies the estimate

ess sup
t∈(0,T )

‖ϑ‖2
W 1,2(Ω) +

∫ T

0

(
‖∂tϑ‖2

L2(Ω) + ‖ΔxKδ(ϑ)‖2
L2(Ω)

)
dt (3.75)

≤ h
(
‖�‖C1([0,T ]×Ω), ‖u‖C([0,T ;Xn), ( inf

(0,T )×Ω
�)−1, ‖ϑ0,δ‖W 1,2(Ω)

)
,

where h is bounded on bounded sets.

Proof. Note that relation (3.75) represents the standard energy estimates for prob-
lem (3.55–3.57). These are easily deduced via multiplying equation (3.55) by ϑ and
integrating the resulting expression by parts in order to obtain

1
2

∫
Ω

�
∂eδ

∂ϑ
(�, ϑ)∂tϑ

2 dx −
∫

Ω

�eδ(�, ϑ)∇xϑ · u dx +
∫

Ω

κδ(ϑ)|∇xϑ|2 dx

=
∫

Ω

F1(t, x)ϑ dx, (3.76)

where

F1 = − ∂(�eδ)
∂�

(�, ϑ)∂t� + Sδ(ϑ,∇xu) : ∇xu

+ εδ(Γ�Γ−2 + 2)|∇x�|2 − p(�, ϑ)divxu + δ
1
ϑ2

− εϑ5 + �Qδ.
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In view of the uniform bounds already proved in (3.73), the function F1 is bounded
in L∞((0, T ) × Ω) in terms of the data.

Similarly, multiplying (3.55) on ∂tKδ(ϑ) gives rise to

d
dt

∫
Ω

1
2
|∇xKδ(ϑ)|2 dx +

∫
Ω

�κδ(ϑ)
∂eδ

∂ϑ
(�, ϑ)|∂tϑ|2 dx

+
∫

Ω

�
∂eδ

∂ϑ
(�, ϑ) ∂tϑ∇xKδ(ϑ) · u dx =

∫
Ω

F2(t, x)∂tϑ dx (3.77)

where

F2 = − κδ(ϑ)
(
∂�[�eδ](�, ϑ)∂t� − ∂�[�eδ](�, ϑ)∇x� · u

− �eδ(�, ϑ)divxu
)

+ Sδ(ϑ,∇xu) : ∇xu + εδ(Γ�Γ−2 + 2)|∇x�|2

− p(�, ϑ)divxu + δ
1
ϑ2

− εϑ5 + �Qδ

is bounded in L∞((0, T )× Ω) in terms of the data.
Taking the sum of (3.76), (3.77), and using Young’s inequality and Gronwall’s

lemma, we conclude that

ess sup
t∈(0,T )

‖∇xKδ(ϑ)‖2
L2(Ω;R3) +

∫ T

0

‖∂tϑ‖2
L2(Ω) dt

≤ h
(
‖�‖C1([0,T ]×Ω), ‖u‖C([0,T ;Xn), ( inf

(0,T )×Ω
�)−1, ‖ϑ0‖W 1,2(Ω)

)
.

Finally, evaluating ΔxKδ(ϑ) by means of equation (3.55), we get (3.75). �

Existence for the approximate internal energy equation. Having prepared the
necessary material, we are ready to show existence of strong solutions to problem
(3.55–3.57). In fact, the a priori bounds (3.73), (3.75) imply compactness of so-
lutions in the space C([0, T ]; W 1,2(Ω)), in particular, any accumulation point of
a family of strong solutions is another solution of the same problem. Under these
circumstances, showing existence is a routine matter. Regularizing the data �, u
with respect to the time variable, and approximating the quantities μ, η, κδ, e,
p by smooth ones as the case may be, we can construct a family of approximate
solutions to problem (3.55–3.57) via the classical results for quasilinear parabolic
equations. Then we pass to the limit in a suitable sequence of approximate solu-
tions to recover the (unique) solution of problem (3.55–3.57). The relevant theory
of quasilinear parabolic equations taken over from the book Ladyzhenskaya et al.
[129, Chapter V]) is summarized in Section 10.15 in Appendix.

Hereafter we describe a possible way to construct the approximations to
problem (3.55–3.57).

(i) Let ν ∈ (0, 1) be the same parameter as in Lemma 3.1. To begin, we extend
� ∈ C([0, T ]; C2,ν(Ω)) ∩ C1([0, T ]; C0,ν(Ω)), u ∈ C([0, T ]; Xn), continuously to
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� ∈ C(R; C2,ν(Ω)) ∩ C1(R; C0,ν(Ω)), supp� ⊂ (−2T, 2T ) × Ω, u ∈ C(R, Xn),
suppu ⊂ (−2T, 2T )×Ω. We approximate Qδ by smooth functions Qω on [0, T ]×Ω
and we take a sequence of initial conditions

C2,ν(Ω) � ϑ0,ω → ϑ0,δ in W 1,2(Ω) ∩ L∞(Ω)

such that infx∈Ω ϑ0,ω(x) > ϑ0 uniformly with respect to ω → 0+, where ϑ0 is a
positive constant.

(ii) We denote
EM (�, ϑ) = �eM (�, ϑ)

and set

Eδ,ω(�, ϑ) = [〈EM 〉]ω(�, θω) + aθ4
ω + δ�ϑ, (3.78)

{∂ϑE}δ,ω(�, ϑ) = [〈∂ϑEM 〉]ω(�, ϑ) + 4a
ϑ4

√
ϑ2 + ω2

+ δ�,

κδ,ω(ϑ) = [〈κM 〉]ω(θω) + [〈κR〉]ω(θω) + δ(θΓ
ω +

1√
ϑ2 + ω2

),

Kδ,ω(ϑ) =
∫ ϑ

1

κδ,ω(τ) dτ,

pω(�, ϑ) = [〈pM 〉]ω(�, θω) +
a

3
θ4

ω,

G(t, x) =
(
(Γ�Γ−2 + 2)|∇x�|2

)
(t, x), Gω(t, x) = Gω(t, x),

Sδ,ω(ϑ,∇xuω) = 〈μ〉ω (θω)
(
∇uω + ∇T uω − 2

3
divuω

I

)
+ 〈η〉ω (θω)divuω

I,

where

θω = θω(ϑ) =
√

ϑ2 + ω2

1 + ω
√

ϑ2 + ω2
,

〈a〉 (z) =

{
a(z) if z ∈ (0,∞)N

max{infz∈(0,∞)N a(z) , 0}

}
, N = 1, 2.

(3.79)

The operator b → bω, ω > 0 is the standard regularizing operator, see (10.2) in
Appendix 10.1, that applies to all independent variables in the case of functions
〈EM 〉, 〈∂ϑEM 〉, 〈p〉, 〈μ〉, 〈η〉, 〈κM 〉, and to the variable t in the case of functions
�(t, x), u(t, x), G(t, x). Notice that by virtue of hypotheses (3.21–3.23) and (3.11),

κδ,ω(ϑ) ≥ κM > 0, {∂ϑE}δ,ω(�, ϑ) > δ� > 0 (3.80)

for all (�, ϑ) ∈ R
2, where � = inf(0,T )×Ω �.
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(iii) We will find a solution of problem (3.55–3.57), as a limit of the sequence
{ϑω}ω>0 of solutions to the equation

{∂ϑE}δ,ω(�ω, ϑ)∂tϑ + div
(
Eδ,ω(�ω, ϑ)u

)
− ΔxKδ,ω(ϑ)

= −∂�Eδ,ω(�ω , ϑ)∂t�
ω + Sδ,ω(∇xuω, ϑ) : ∇uω

+ εδGω − pω(�ω, ϑ) − δ

ϑ2 + ω2
+ εθ5

ω + �ωQω,

∇xϑ · n|∂Ω = 0, ϑ(0, x) = ϑ0,ω(x). (3.81)

Problem (3.81) for the unknown ϑ has the following quasilinear parabolic equation
form:

∂tϑ −
3∑

i,j=1

aij(t, x, ϑ)∂xi∂xj ϑ + b(t, x, ϑ,∇xϑ) = 0 in (0, T )× Ω,

( 3∑
i,j=1

aij∂xj ϑ ni + ψ
)∣∣∣

(0,T )×∂Ω
= 0, (3.82)

ϑ|{0}×Ω = 0,

where

aij(t, x, ϑ) =
κδ,ω(ϑ)

[∂ϑE]δ,ω(�ω(t, x), ϑ)
δij , i, j = 1, 2, 3, ψ = 0 (3.83)

and

b(t, x, ϑ, z) =
1

{∂ϑE}δ,ω(�ω(t, x), ϑ)
(3.84)

×
[
− κ′

δ,ω(ϑ)|z|2 + ∂�Eδ,ω(�ω(t, x), ϑ)∂t�
ω(t, x)

+ ∂�Eδ,ω(�ω(t, x), ϑ)
(
∇�ω · uω

)
(t, x)

− Sδ,ω(∇xuω(t, x), ϑ) : ∇uω(t, x)

+ ∂ϑEδ,ω(�ω(t, x), ϑ)
(
z · uω

)
(t, x)

+ Eδ,ω(�ω(t, x), ϑ)divxuω + pω(�ω(t, x), ϑ)divxuω(t, x)

− εδGω(t, x) +
δ

ϑ2 + ω2
− εθ5

ω(ϑ) − �ωQω(t, x)
]
.

In accordance with the properties of mollifiers recalled in Section 10.1 in
Appendix, aij , b, ψ satisfy assumptions of Theorem 10.24 from Section 10.15.
Therefore, problem (3.81) admits a (unique) solution ϑ = ϑω which belongs to
class

ϑω ∈ C([0, T ]; C2,ν(Ω)) ∩ C1([0, T ]× Ω), ∂tϑω ∈ C0,ν/2([0, T ]; C(Ω)).



62 Chapter 3. Existence Theory

(iv) The proofs of Lemma 3.2, Corollary 3.2 and Lemma 3.3 apply with minor
modifications to system (3.81), yielding the uniform bounds

‖ 1
ϑω

‖L∞((0,T )×Ω) + ‖ϑω‖L∞((0,T )×Ω) ≤ c,

ess sup
t∈(0,T )

‖ϑω‖2
W 1,2(Ω) +

∫ T

0

(
‖∂tϑω‖2

L2(Ω) + ‖ΔxKδ(ϑω)‖2
L2(Ω)

)
dt ≤ c

with respect to ω → 0+. With these bounds and the properties of mollifiers recalled
in Section 10.1 at hand, the limit passage from system (3.81) to (3.55–3.57) is an
easy exercise.

The results achieved in this section can be stated as follows.

� Approximate Internal Energy Equation:

Lemma 3.4. Let Ω ⊂ R3 be a bounded domain of class C2,ν , ν ∈ (0, 1). Let
u ∈ C([0, T ]; Xn) be a given vector field and let � = �u be the unique solution of
the approximate problem (3.45–3.47) constructed in Lemma 3.1. Further

(i) let the initial datum ϑ0,δ ∈ W 1,2(Ω) ∩ L∞(Ω) be bounded below away from
zero as stated in hypothesis (3.58) and the source term Qδ satisfies (3.60);

(ii) let the constitutive functions p, e, s and the transport coefficients μ, η, κ obey
the structural assumptions (3.7–3.23).

Then problem (3.55–3.57), with eδ, Kδ defined in (3.59) and u, �u fixed,
possesses a unique strong solution ϑ = ϑu belonging to the regularity class

Y =

{
∂tϑ ∈ L2((0, T ) × Ω), ΔxKδ(ϑ) ∈ L2((0, T ) × Ω),

ϑ ∈ L∞(0, T ; W 1,2(Ω) ∩ L∞(Ω)), 1
ϑ ∈ L∞((0, T ) × Ω).

}
(3.85)

Moreover, the mapping u → ϑu maps bounded sets in C([0, T ]; Xn) into bounded
sets in Y and is continuous with values in L2(0, T ; W 1,2(Ω)).

3.4.3 Local solvability of the approximate problem

At this stage, we are ready to show the existence of approximate solutions on a
possibly short time interval (0, Tmax). In accordance with (3.50), Xn is a finite-
dimensional subspace of L2(Ω, R3) endowed with the Hilbert structure induced
by L2(Ω; R3). We denote by Pn the orthogonal projection of L2(Ω, R3) onto Xn.
Furthermore, we set

u0,δ =
(�u)0
�0,δ

, u0,δ,n = Pn[u0,δ]. (3.86)

We start rewriting (3.49) as a fixed point problem:

u(τ) = J
[
�(τ),

∫ τ

0

M(t, �(t), ϑ(t),u(t))dt + (�u)∗0
]
≡ S[u](τ), τ ∈ [0, T ], (3.87)
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where we have written

(�u)∗0 ∈ X∗
n, 〈(�u)∗0; ϕ〉 ≡

∫
Ω

(�u)0 · ϕ dx for all ϕ ∈ Xn,

M(t, �, ϑ,u) ∈ X∗
n,

〈M(t, �, ϑ,u); ϕ〉 =
∫

Ω

(
�[u⊗ u] : ∇xϕ + (p + δ(�Γ + �2))divxϕ

)
dx

−
∫

Ω

(
ε(∇x�∇xu) · ϕ + Sδ : ∇xϕ − �fδ(t) · ϕ

)
dx for all ϕ ∈ X∗

n,

and

J [�, ·] : X∗
n → Xn,

∫
Ω

�J [�, χ] · ϕ dx = 〈χ; ϕ〉 for all χ ∈ X∗
n, ϕ ∈ Xn.

Note that

‖ J [�, χ] ‖Xn ≤ 1
A

‖ χ ‖X∗
n
, A = inf

(t,x)∈(0,T )×Ω
�(t, x) (3.88)

and
‖ J [�1, χ] − J [�2, χ] ‖Xn ≤ c

A1A2
‖�1 − �2‖L∞(Ω)‖χ‖X∗

n
,

Ai = inf
(t,x)∈(0,T )×Ω

�i(t, x), i = 1, 2,
(3.89)

where c > 0 depends solely on n; in particular, it is independent of the data
specified in (2.41) and the parameters ε, δ, Γ.

Given u ∈ C([0, T ]; Xn), the density � = �u can be identified as the unique
(classical) solution of the parabolic problem (3.45–3.48), the existence of which is
guaranteed by Lemma 3.1. In particular, the (approximate) density �u remains
bounded below away from zero as soon as we can control divxu. Note that, at
this level of approximation, the norm of divxu is dominated by that of u as the
dimension of Xn is finite.

With u, �u at hand, the temperature ϑ = ϑu can be determined as the unique
solution of problem (3.55–3.57) constructed by means of Lemma 3.4, in particular,
ϑ is strictly positive with a lower bound in terms of the data, see Corollary 3.2.

If ‖u‖C([0,T ];Xn) ≤ R, then

‖J [�(τ),
∫ τ

0

M(t, �(t),u(t), ϑ(t)) dt + (�u)∗0‖Xn

≤ c0
�0

�
0

exp(2Rτ)‖u0,δ,n‖Xn + τh(R) for all τ ∈ [0, T ], (3.90)

where we have used Lemmas 3.1, 3.4, specifically, bounds (3.62), (3.85). The con-
stant c0, determined in terms of equivalence of norms on Xn, depends solely on n
and h is a positive function bounded on bounded sets.
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Consequently, if

R > 2c0
�0

�
0

‖u0,δ,n‖Xn , (3.91)

the operator u → S[u] determined through (3.87) maps the ball

BR,τ0 =
{
u ∈ C([0, τ0], Xn)

∣∣∣ ‖u‖C([0,τ0];Xn) ≤ R, u(0) = u0,δ,n

}
(3.92)

into itself as soon as τ0 is small enough.

Moreover, as a consequence of (3.89) and smoothness of �, the image of BR,τ0

consists of uniformly Lipschitz functions on [0, τ0], in particular, it belongs to a
compact set in C([0, τ0]; Xn). Thus a direct application of the Leray-Schauder fixed
point theorem yields existence of a solution {�,u, ϑ} of the approximate problem
(3.45–3.57) defined on a (possibly short) time interval [0, T (n)]. Finally, taking
advantage of Lemma 3.1, we deduce from (3.87) that

u ∈ C1([0, T (n)]; Xn). (3.93)

The above procedure can be iterated as many times as necessary to reach
T (n) = T as long as there is a bound on u independent of T (n). The existence of
such a bound is the main topic discussed in the next section.

3.4.4 Uniform estimates and global existence

Let {�,u, ϑ} be an approximate solution of problem (3.45–3.57) defined on a time
interval [0, Tmax], Tmax ≤ T . The last step in the proof of Proposition 3.1 is
to establish a uniform (in time) bound on the norm ‖u(t)‖Xn for t ∈ [0, Tmax]
independent of Tmax. The existence of such a bound allows us to iterate the local
construction described in the previous section in order to obtain an approximate
solution defined on the full time interval [0, T ]. To this end, the a priori estimates
derived in Section 2.2 will be adapted in order to accommodate the extra terms
arising at the actual level of approximation.

First of all, it follows from (3.45), (3.46) that the total mass remains constant
in time, specifically,

∫
Ω

�(t) dx =
∫

Ω

�0,δ dx = M0,δ for all t ∈ [0, Tmax]. (3.94)

The next observation is that the quantity ψu, with ψ = ψ(t), ψ ∈ C1
c [0, Tmax),

can be taken as a test function in the variational formulation of the momentum
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equation (3.49) to obtain

∫
Ω

(1
2
�|u|2 + δ(

�Γ

Γ − 1
+ �2)

)
(τ) dx + εδ

∫ τ

0

∫
Ω

|∇x�|2(Γ�Γ−2 + 2) dx dt

=
∫

Ω

(1
2
(�u)0u(0) + δ(

�Γ
0,δ

Γ − 1
+ �2

0,δ)
)

dx +
∫ τ

0

∫
Ω

(
pdivxu− Sδ : ∇xu

)
dx dt

+
∫ τ

0

∫
Ω

�fδ · u dx dt, (3.95)

which, combined with (3.55), gives rise to the approximate energy balance

∫
Ω

(1
2
�|u|2 + �eδ(�, ϑ) + δ(

�Γ

Γ − 1
+ �2)

)
(τ) dx (3.96)

=
∫

Ω

(1
2
(�u)0u(0) + �0,δeδ(�0,δ, ϑ0,δ) + δ(

�Γ
0,δ

Γ − 1
+ �2

0,δ)
)

dx

+
∫ τ

0

∫
Ω

(
�fδ · u + �Qδ + δ

1
ϑ2

− εϑ5
)

dx dt for all τ ∈ [0, Tmax].

Moreover, dividing the approximate internal energy equation (3.55) on ϑ, we
obtain, after a straightforward manipulation, an approximate entropy production
equation in the form

∂t(�sδ(�, ϑ)) + divx(�sδ(�, ϑ)u) − divx

[(κ(ϑ)
ϑ

+ δ(ϑΓ−1 +
1
ϑ2

)
)
∇xϑ

]
=

1
ϑ

[
Sδ : ∇xu +

(κ(ϑ)
ϑ

+ δ(ϑΓ−1 +
1
ϑ2

)
)
|∇xϑ|2 + δ

1
ϑ2

]
+

εδ

ϑ
(Γ�Γ−2 + 2)|∇x�|2

+ ε
Δx�

ϑ

(
ϑsδ(�, ϑ) − eδ(�, ϑ) − p(�, ϑ)

�

)
− εϑ4 +

�

ϑ
Qδ (3.97)

satisfied a.a. in (0, Tmax) × Ω, where

sδ(�, ϑ) = s(�, ϑ) + δ log ϑ, (3.98)

and

ϑsδ(�, ϑ) − eδ(�, ϑ) − p(�, ϑ)
�

= ϑsM,δ(�, ϑ) − eM,δ(�, ϑ) − pM (�, ϑ)
�

. (3.99)

Relations (3.96), (3.97) give rise to uniform estimates similar to those ob-
tained in Section 2.2.3. Indeed, multiplying (3.97) on ϑ, where ϑ is an arbitrary
positive constant, integrating over Ω, and subtracting the resulting expression from
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(3.97), we get∫
Ω

(1
2
�|u|2 + Hδ,ϑ(�, ϑ) + δ(

�Γ

Γ − 1
+ �2)

)
(τ) dx

+ ϑ

∫ τ

0

∫
Ω

1
ϑ

[
Sδ : ∇xu +

(κ(ϑ)
ϑ

+ δ(ϑΓ−1 +
1
ϑ2

)
)
|∇xϑ|2 + δ

1
ϑ2

+ εδ(Γ�Γ−2 + 2)|∇x�|2
]
dx dt +

∫ τ

0

∫
Ω

εϑ5 dxdt

=
∫

Ω

(1
2
�0,δ|u0,δ|2 + Hδ,ϑ(�0,δ, ϑ0,δ) + δ(

�Γ
0,δ

Γ − 1
+ �2

0,δ)
)

dx

+
∫ τ

0

∫
Ω

(
�fδ · u + �

(
1 − ϑ

ϑ

)
Qδ +

δ

ϑ2
+ εϑϑ4

)
dx dt

− εϑ

∫ τ

0

∫
Ω

Δx�

ϑ

(
ϑsδ(�, ϑ) − eδ(�, ϑ) − p(�, ϑ)

�

)
dx dt

for all τ ∈ [0, Tmax], (3.100)

where Hδ,ϑ is an analogue of the Helmholtz function introduced in (2.48), specifi-
cally,

Hδ,ϑ(�, ϑ) = �eδ(�, ϑ) − ϑ�sδ(�, ϑ) = Hϑ(�, ϑ) + δ�(ϑ − ϑ log ϑ). (3.101)

Here, in accordance with (3.99),∫ τ

0

∫
Ω

Δx�

ϑ

(
ϑsδ(�, ϑ) − eδ(�, ϑ) − p(�, ϑ)

�

)
dx dt (3.102)

= −
∫ τ

0

∫
Ω

∂

∂�

(
ϑsM (�, ϑ) − eM (�, ϑ) − pM (�, ϑ)

�

) |∇x�|2
ϑ

dx dt

−
∫ τ

0

∫
Ω

∂

∂ϑ

(
sM,δ(�, ϑ) − eM,δ(�, ϑ)

ϑ
− pM (�, ϑ)

�ϑ

)
∇x� · ∇xϑ dx dt,

where, by virtue of Gibbs’ relation (3.7),

∂

∂�

(
ϑsM (�, ϑ) − eM (�, ϑ) − pM (�, ϑ)

�

)
= −1

�

∂pM

∂�
(�, ϑ), (3.103)

∂

∂ϑ

(
sM,δ(�, ϑ) − eM,δ(�, ϑ)

ϑ
− pM (�, ϑ)

�ϑ

)
=

1
ϑ2

(
eM,δ(�, ϑ) + �

∂eM (�, ϑ)
∂�

)
.

(3.104)

Equality (3.100) therefore transforms to∫
Ω

(1
2
�|u|2 + Hδ,ϑ(�, ϑ) + δ(

�Γ

Γ − 1
+ �2)

)
(τ) dx

+ ϑ

∫ τ

0

∫
Ω

σε,δ dx dt +
∫ τ

0

∫
Ω

εϑ5 dxdt
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=
∫

Ω

(1
2
�0,δ|u0,δ|2 + Hδ,ϑ(�0,δ, ϑ0,δ) + δ(

�Γ
0,δ

Γ − 1
+ �2

0,δ)
)

dx

+
∫ τ

0

∫
Ω

(
�fδ · u + �

(
1 − ϑ

ϑ

)
Qδ +

δ

ϑ2
+ εϑϑ4

)
dx dt

+ ε

∫ τ

0

∫
Ω

ϑ

ϑ2

(
eM,δ(�, ϑ) + �

∂eM

∂�
(�, ϑ)

)
∇x�∇xϑ dxdt

for all τ ∈ [0, Tmax], (3.105)

where

σε,δ =
1
ϑ

[
Sδ : ∇xu +

(κ(ϑ)
ϑ

+ δ(ϑΓ−1 +
1
ϑ2

)
)
|∇xϑ|2 + δ

1
ϑ2

+
εδ

ϑ
(Γ�Γ−2 + 2)|∇x�|2 + ε

ϑ

�ϑ

∂pM

∂�
(�, ϑ)|∇x�|2. (3.106)

Similarly to Section 2.2.3, relation (3.105) provides all the necessary uni-
form estimates as soon as we check that the terms on the right-hand side can
be controlled by the positive quantities on the left-hand side. In order to see
that, observe that the term δ/ϑ2 on the right-hand side of (3.105) is dominated
by its counterpart δ/ϑ3 in the entropy production term σε,δ. Analogously, the
quantity εϑϑ4 at the right-hand side is “absorbed” by the term εϑ5 at the left-
hand side of (3.105). Finally, the term �(1 − ϑ

ϑ )Qδ can be written as a sum
�(1 − ϑ

ϑ )Qδ1{ϑ≤ϑ} + �(1 − ϑ
ϑ )Qδ1{ϑ>ϑ}, where

∫ τ

0

∫
Ω

�(1 − ϑ
ϑ )Qδ1{ϑ≤ϑ} dxdt ≤ 0,

while |
∫ τ

0

∫
Ω

�(1 − ϑ
ϑ )Qδ1{ϑ>ϑ} dxdt| is bounded by �T |Ω|‖Qδ‖L∞((0,T )×Ω).

Consequently, it remains to handle the quantity

ε

∫
Ω

1
ϑ2

(
eM (�, ϑ) + �

∂eM (�, ϑ)
∂�

)
∇x� · ∇xϑ dx

appearing on the right-hand side of (3.105). To this end, we first use hypothesis
(3.13), together with (3.30), in order to obtain

∣∣∣ 1
ϑ2

(
eM (�, ϑ) + �

∂eM (�, ϑ)
∂�

)
∇x� · ∇xϑ

∣∣∣ ≤ c
(�

2
3 + ϑ

ϑ2

)
|∇x�||∇xϑ|,

where, furthermore,

|∇x�||∇xϑ|
ϑ

≤ ω
|∇x�|2

ϑ
+ c(ω)

|∇xϑ|2
ϑ

for any ω > 0,

and, similarly,
�

2
3 |∇x�||∇xϑ|

ϑ2
≤ ω

�
4
3 |∇x�|2

ϑ
+ c(ω)

|∇xϑ|2
ϑ3

.
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Thus we infer that

ε

∫
Ω

1
ϑ2

∣∣∣eM (�, ϑ) + �
∂eM (�, ϑ)

∂�

∣∣∣|∇x�||∇xϑ| dx

≤ 1
2

∫
Ω

[
δ
(
ϑΓ−2 +

1
ϑ3

)
|∇xϑ|2 +

εδ

ϑ

(
Γ�Γ−2 + 2

)
|∇x�|2

]
dx (3.107)

provided ε = ε(δ) > 0 is small enough.
Taking into account the properties of the function Hδ,ϑ (see (2.49–2.50) in

Section 2.2.3), we are ready to summarize the so-far obtained estimates as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ess supt∈(0,Tmax)

∫
Ω

(
1
2�|u|2 + Hδ,ϑ(�, ϑ) + δ( �Γ

Γ−1 + �2)
)

dx ≤ c,∫ Tmax

0

∫
Ω

1
ϑ

[
Sδ(ϑ,∇xu) : ∇xu

]
dx dt ≤ c,∫ Tmax

0

∫
Ω

1
ϑ

(
κ(ϑ)

ϑ + δ(ϑΓ−1 + 1
ϑ2 )
)
|∇xϑ|2

)
dx dt ≤ c,

ε
∫ Tmax

0

∫
Ω

(
δ 1

ϑ3 + ϑ5
)

dx dt ≤ c,

εδ
∫ Tmax

0

∫
Ω

1
ϑ (Γ�Γ−2 + 2)|∇x�|2 dx dt ≤ c,∫ Tmax

0

∫
Ω ε ϑ

�ϑ
∂pM

∂� (�, ϑ)|∇x�|2 dx dt ≤ c,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.108)

where c is a positive constant depending on the data specified in (2.41) but inde-
pendent of Tmax, n, ε, and δ.

At this stage, following the line of arguments presented in Section 2.2.3, we
can use the bounds listed in (3.108) in order to deduce uniform estimates on the
approximate solutions defined on the time interval [0, Tmax] independent of Tmax.
Indeed it follows from (3.108) that

ess sup
t∈(0,Tmax)

‖√�u‖2
L2(Ω;R3) +

∫ Tmax

0

∫
Ω

1
ϑ

Sδ(ϑ,∇xu) : ∇xu dx dt ≤ c(data, ε, δ),

(3.109)
in particular, by means of hypothesis (3.53) and Proposition 2.1,∫ Tmax

0

∫
Ω

(
|u|2 + |∇xu|2

)
dx dt ≤ c(data, ε, δ).

Consequently, by virtue of (3.63), the density � is bounded below away from
zero uniformly on [0, Tmax], and we conclude

sup
[0,Tmax]

‖u‖Xn ≤ c(data, ε, δ). (3.110)

As already pointed out, bound (3.110) and the local construction described in the
previous section give rise to an approximate solution {�,u, ϑ} defined on [0, T ].
We have proved Proposition 3.1.
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3.5 Faedo-Galerkin limit

In the previous section, we constructed a family of approximate solutions to the
Navier-Stokes-Fourier system satisfying (3.45–3.60), see Proposition 3.1.
Our goal in the remaining part of this chapter is to examine successively the
asymptotic limit for n → ∞, ε → 0, and, finally, δ → 0. The first step of this
rather long procedure consists in performing the limit n → ∞.

We recall that the spaces Xn introduced in Section 3.3.1 are formed by suf-
ficiently smooth functions ϕ (belonging at least to C2,ν(Ω)) satisfying either the
complete slip boundary condition (3.51) or the no-slip boundary conditions (3.52)
as the case may be. Clearly, the approximate velocity field u ∈ C1([0, T ]; Xn)
belongs to the same class for each fixed t ∈ [0, T ]. In the remaining part of the
chapter, we make an extra hypothesis that the vector space X ,

X ≡ ∪∞
n=1Xn is dense in W 1,p

n (Ω; R3), W 1,p
0 (Ω; R3), respectively,

for any 1 ≤ p < ∞, where

W 1,p
n (Ω; R3) =

{
v
∣∣∣v ∈ Lp(Ω; R3), ∇xv ∈ Lp(Ω; R3×3),

v · n|∂Ω = 0 in the sense of traces
}

,

W 1,p
0 (Ω; R3) =

{
v
∣∣∣v ∈ Lp(Ω; R3), ∇xv ∈ Lp(Ω; R3×3),

v|∂Ω = 0 in the sense of traces
}

.

Such a choice of Xn is possible provided Ω belongs to the regularity class C2,ν

required by Theorem 3.1. The interested reader may consult Section 10.7 in Ap-
pendix for technical details.

3.5.1 Estimates independent of the dimension
of Faedo-Galerkin approximations

For ε > 0, δ > 0 fixed, let {�n,un, ϑn}∞n=1 be a sequence of approximate solutions
constructed in Section 3.4. In accordance with (3.108), this sequence admits the
following uniform estimates:

ess sup
t∈(0,T )

∫
Ω

(1
2
�n|un|2 + Hδ,ϑ(�n, ϑn) + δ(

�Γ
n

Γ − 1
+ �2

n)
)
(t) dx ≤ c, (3.111)

∫ T

0

∫
Ω

{ 1
ϑn

[
Sδ(ϑn,∇xun) : ∇xun

+
(κ(ϑn)

ϑn
+ δ(ϑΓ−1

n +
1
ϑ2

n

)
)
|∇xϑn|2

]
+ δ

1
ϑ3

n

+ εϑ5
n

}
dx dt ≤ c, (3.112)

εδ

∫ T

0

∫
Ω

1
ϑn

(Γ�Γ−2
n + 2)|∇x�n|2 dx dt ≤ c, (3.113)
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and ∫ T

0

∫
Ω

ε
ϑ

�nϑn

∂pM

∂�
(�n, ϑn)|∇x�n|2 dx dt ≤ c, (3.114)

where c denotes a generic constant depending only on the data specified in (2.41),
in particular, c is independent of the parameters n, ε, and δ.

By virtue of the coercivity properties of Hδ,ϑ established in (2.49), (2.50),
the uniform bound (3.111) implies that

{�n}∞n=1 is bounded in L∞(0, T ; LΓ(Ω)), (3.115)

therefore we can assume

�n → � weakly-(*) in L∞(0, T ; LΓ(Ω)). (3.116)

On the other hand, estimate (3.112), together with hypothesis (3.53) and Propo-
sition 2.1, yield

{un}∞n=1 bounded in L2(0, T ; W 1,2(Ω; R3)), (3.117)

in particular
un → u weakly in L2(0, T ; W 1,2(Ω; R3)), (3.118)

at least for a suitable subsequence.
At this point it is worth noting that the limit density � is still a non-negative

quantity albeit not necessarily strictly positive as this important property stated
in (3.63) is definitely lost in the limit passage due to the lack of suitable uniform
estimates for divxun. The fact that the class of weak solutions admits cavities
(vacuum regions) seems rather embarrassing from the point of view of the model
derived for non-dilute fluids, but still physically acceptable.

Convergence (3.116) can be improved to

�n → � in Cweak([0, T ]; LΓ(Ω)) (3.119)

as �n, un solve equation (3.45). Indeed we check easily that for all ϕ ∈ C∞
c (Ω),

the functions t → [
∫
Ω

�nϕdx](t) form a bounded and equi-continuous sequence in
C[0, T ]. Consequently, the standard Arzelà-Ascoli theorem (Theorem 0.1) yields∫

Ω

�nϕdx →
∫

Ω

�ϕdx in C[0, T ] for any ϕ ∈ C∞
c (Ω).

Since �n satisfy (3.115), the convergence extends easily to each ϕ ∈ LΓ′
(Ω) via

density.
In order to deduce uniform estimates on the approximate temperature ϑn,

we exploit the structural properties of the Helmholtz function Hϑ. Note that these
follow directly from the hypothesis of thermodynamic stability and as such may
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be viewed as a direct consequence of natural physical principles. The following
assertion will be amply used in future considerations.

� Coercivity of the Helmholtz Function:

Proposition 3.2. Let the functions p, e, and s be interrelated through Gibbs’ equa-
tion (1.2), where p and e comply with the hypothesis of thermodynamic stability
(1.44).

Then for any fixed � > 0, ϑ > 0, the Helmholtz function

Hϑ(�, ϑ) = �e(�, ϑ) − ϑ�s(�, ϑ)

satisfies

Hϑ(�, ϑ) ≥ 1
4

(
�e(�, ϑ) + ϑ�|s(�, ϑ)|

)
−
∣∣∣(� − �)

∂H2ϑ

∂�
(�, 2ϑ) + H2ϑ(�, 2ϑ)

∣∣∣
for all positive �, ϑ.

Proof. As the result obviously holds if s(�, ϑ) ≤ 0, we focus on the case s(�, ϑ) > 0.
It follows from (2.49), (2.50) that

H2ϑ(�, ϑ) ≥ (� − �)
∂H2ϑ

∂�
(�, 2ϑ) + H2ϑ(�, 2ϑ);

whence

Hϑ(�, ϑ) =
1
2
�e(�, ϑ) +

1
2
H2ϑ(�, ϑ) ≥ 1

2
�e(�, ϑ)

+
1
2

(
(� − �)

∂H2ϑ

∂�
(�, 2ϑ) + H2ϑ(�, 2ϑ)

)
,

and, similarly,

Hϑ(�, ϑ) = ϑ�s(�, ϑ) + H2ϑ(�, ϑ) ≥ ϑ�s(�, ϑ)

+ (� − �)
∂H2ϑ

∂�
(�, 2ϑ) + H2ϑ(�, 2ϑ).

Summing up the last two inequalities we obtain the desired conclusion. �

On the basis of Proposition 3.2, we can deduce from hypothesis (3.9) and the
total energy estimate (3.111) that

{ϑn}∞n=1 is bounded in L∞(0, T ; L4(Ω)), (3.120)

therefore we may assume

ϑn → ϑ weakly-(*) in L∞(0, T ; L4(Ω)). (3.121)
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In addition, using boundedness of the entropy production rate stated in (3.112)
we get

{∇xϑ
Γ
2
n }∞n=1,

{
∇x

( 1√
ϑn

)}∞

n=1
bounded in L2(0, T ; L2(Ω; R3)). (3.122)

Estimates (3.120), (3.122), together with Poincaré’s inequality formulated in terms
of Proposition 2.2, yield

{ϑn}∞n=1, {ϑ
Γ
2
n }∞n+1 bounded in L2(0, T ; W 1,2(Ω)), (3.123)

in particular,
ϑn → ϑ weakly in L2(0, T ; W 1,2(Ω)). (3.124)

Moreover, by virtue of estimate (3.112), we have

∫ T

0

∫
Ω

1
ϑ3

n

dx dt ≤ c, (3.125)

notably the limit function ϑ is positive almost everywhere in (0, T )×Ω and satisfies

∫ T

0

∫
Ω

1
ϑ3

dx dt ≤ lim inf
n→∞

∫ T

0

∫
Ω

1
ϑ3

n

dx dt, (3.126)

where we have used convexity of the function z → z−3 on (0,∞), see Theorem
10.20 in Appendix.

Finally, the standard embedding relation W 1,2(Ω) ↪→ L6(Ω), together with
(3.122), can be used in order to derive higher integrability estimates of ϑn, namely

{ϑn}∞n=1 bounded in LΓ(0, T ; L3Γ(Ω)). (3.127)

Note that, as a byproduct of (3.126), (3.127),

{log(ϑn)}∞n=1 is bounded in Lq((0, T )× Ω) for any finite q ≥ 1. (3.128)

3.5.2 Limit passage in the approximate continuity equation

At this stage, we are ready to show strong (pointwise) convergence of the approx-
imate densities and to let n → ∞ in equation (3.45). To this end, we need to
control the term pdivxu in the approximate energy balance (3.95).

A direct application of (3.32) yields

∣∣∣ ∫ T

0

∫
Ω

p(�n, ϑn)divxu dx dt
∣∣∣ ≤ c

∫ T

0

∫
Ω

(�
5
3
n + ϑ

5
2
n + ϑ4

n)|divxun| dx dt,
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where, by virtue of (3.115), (3.117), (3.120), and (3.127), the last integral is
bounded provided Γ > 5. Accordingly, relation (3.95) gives rise to

εδ

∫ T

0

∫
Ω

(Γ�Γ−2
n + 2)|∇x�n|2 dx dt ≤ c, (3.129)

with c independent of n. Applying the Poincaré inequality (see Proposition 2.2)
we get

{�n}∞n=1, {�
Γ
2
n }∞n=1 bounded in L2(0, T ; W 1,2(Ω)), (3.130)

and
{�n}∞n=1 bounded in LΓ(0, T ; L3Γ(Ω)). (3.131)

The next step is to obtain uniform estimates on ∂t�n, Δ�n. This is a delicate
task as

(∂t − εΔ)[�n] = −∇x�n · un − �ndivxun,

where, in accordance with (3.117), (3.130), ∇x�n·un is bounded in L1(0, T ; L
3
2 (Ω)),

notably this quantity is merely integrable with respect to time. To overcome this
difficulty, multiply equation (3.45) on G′(�n) and integrate by parts to obtain

∂t

∫
Ω

G(�n) dx + ε

∫
Ω

G′′(�n)|∇x�n|2 dx =
∫

Ω

(
G(�n) − G′(�n)�n

)
divxun dx.

(3.132)
This is of course nothing other than an integrated “parabolic” version of the renor-
malized continuity equation (2.2). Taking G(�n) = �n log(�n) we easily deduce

ε

∫ T

0

∫
Ω

|∇x�n|2
�n

dx dt ≤ c. (3.133)

As a consequence of (3.111), the kinetic energy is bounded, specifically,

ess supt∈(0,T )

∫
Ω

�n|un|2 dx dt ≤ c; (3.134)

whence estimate (3.133) can be used to obtain

‖∇x�n · un‖L1(Ω) ≤
∥∥∥∇x�n√

�n

∥∥∥
L2(Ω;R3)

‖√�nun‖L2(Ω;R3),

where the product on the right-hand side is bounded in L2(0, T ). Then a standard
interpolation argument implies{

{∇x�n · un}∞n=1 bounded in Lq(0, T ; Lp(Ω))

for any p ∈ (1, 3
2 ), where q = q(p) ∈ (1, 2).

}
(3.135)
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Applying the Lp − Lq theory to the parabolic equation (3.45) (see Section
10.14 in Appendix) we conclude that

{∂t�n}∞n=1, {∂xi∂xj �n}∞n=1, i, j = 1, . . . , 3
are bounded in Lq(0, T ; Lp(Ω))

for any p ∈
(
1,

3
2

)
, where q = q(p) ∈ (1, 2). (3.136)

Now we are ready to carry out the limit passage n → ∞ in the approximate
continuity equation (3.45). To begin, the uniform bounds established (3.136), to-
gether with the standard compactness embedding relations for Sobolev spaces,
imply

�n → � a.a. in (0, T ) × Ω. (3.137)

Moreover, in view of (3.100), (3.118), (3.135), (3.136), and (3.137), it is easy to
let n → ∞ in the approximate continuity equation (3.45) to obtain

∂t� + divx(�u) = εΔ� a.a. in (0, T )× Ω, (3.138)

where � is a non-negative function satisfying

∇x�(t, ·) · n|∂Ω = 0 for a.a. t ∈ (0, T ) in the sense of traces, (3.139)

together with the initial condition

�(0, ·) = �0,δ, (3.140)

where �0,δ has been specified in (3.48).
Our next goal is to show strong convergence of the gradients ∇x�n. To this

end, we use the “renormalized” identity (3.132) with G(z) = z2, together with the
pointwise convergence established in (3.137), to deduce∫

Ω

�2
n(τ) dx + 2ε

∫ τ

0

∫
Ω

|∇x�n|2 dx dt →
∫

Ω

�2
0,δ dx −

∫ τ

0

∫
Ω

�2divxu dx dt

for any 0 < τ ≤ T . On the other hand, multiplying equation (3.138) on � and
integrating by parts yields∫

Ω

�2
0,δ dx −

∫ τ

0

∫
Ω

�2divxu dx dt =
∫

Ω

�2(τ) dx + 2ε

∫ τ

0

∫
Ω

|∇x�|2 dx dt;

whence
∇x�n → ∇x� (strongly) in L2(0, T ; L2(Ω; R3)). (3.141)
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3.5.3 Strong convergence of the approximate temperatures
and the limit in the entropy equation

Strong convergence of the approximate temperatures. The next step is to per-
form the limit in the approximate entropy balance (3.97). Here the main problem
is to show strong (pointwise) convergence of the temperature. Indeed all esti-
mates on {ϑn}∞n=1 established above concern only the spatial derivatives leaving
open the question of possible time oscillations. Probably the most elegant way to
overcome this difficulty is based on the celebrated Div-Curl lemma discovered by
Tartar [187].

� Div-Curl Lemma:

Proposition 3.3. Let Q ⊂ RN be an open set. Assume

Un → U weakly in Lp(Q; RN ),

Vn → V weakly in Lq(Q; RN ),

where
1
p

+
1
q

=
1
r

< 1.

In addition, let

div Un ≡ ∇ · Un,

curl Vn ≡ (∇Vn −∇T Vn)

}
be precompact in

{
W−1,s(Q),

W−1,s(Q, RN×N),

for a certain s > 1.
Then

Un ·Vn → U ·V weakly in Lr(Q).

Prop. 3.3 is proved in Sect. 10.13 in the Appendix for reader’s convenience. �

The basic idea is to apply Proposition 3.3 to the pair of functions

Un = [�nsδ(�n, ϑn), r(1)
n ],

Vn = [ϑn, 0, 0, 0],
(3.142)

defined on the set Q = (0, T ) × Ω ⊂ R4, where the term r(1)
n , together with

the necessary piece of information concerning divt,xUn, are provided by equation
(3.97).
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To see this, we observe first that the only problematic term on the right-hand
side of (3.97) can be handled as

Δx�n

ϑn

(
ϑnsδ(�n, ϑn) − eδ(�n, ϑn) − p(�n, ϑn)

�n

)
(3.143)

= divx

[(
ϑnsM,δ(�n, ϑn) − eM,δ(�n, ϑn) − pM (�n, ϑn)

�n

)∇x�n

ϑn

]
+

∂pM

∂�
(�n, ϑn)

|∇x�n|2
�nϑn

−
(
eM,δ(�n, ϑn) + �n

∂eM

∂�
(�n, ϑn)

)∇x�n · ∇xϑn

ϑ2
n

(cf. (3.102–3.104)). Indeed, in accordance with the uniform estimates (3.107),
(3.112), the approximate entropy balance equation (3.97) can be now written in
the form

∂t(�nsδ(�n, ϑn)) + divx(r(1)
n ) = r(2)

n + r(3)
n , (3.144)

where

r(1)
n = �nsδ(�n, ϑn)un − κδ(ϑn)

ϑn
∇xϑn

− ε
(
ϑnsM,δ(�n, ϑn) − eM,δ(�n, ϑn) − pM (�n, ϑn)

�n

)∇x�n

ϑn
,

r(2)
n =

1
ϑn

[
Sδ(ϑn,∇xun) : ∇xun +

(κ(ϑn)
ϑn

+ δ(ϑΓ−1
n +

1
ϑ2

n

)
)
|∇xϑn|2 + δ

1
ϑn

2

]
+

εδ

ϑn
(Γ�Γ−2

n + 2)|∇x�n|2 + ε
1

�nϑn

∂pM

∂�
(�n, ϑn)|∇x�n|2 ≥ 0,

and

r(3)
n = −ε

(
eM,δ(�n, ϑn) + �n

∂eM

∂�
(�n, ϑn)

)∇x�n · ∇xϑn

ϑ2
n

− εϑ4
n +

�n

ϑn
Qδ.

Hence, by virtue of the uniform estimates (3.107), (3.112–3.114), and (3.120),

divt,xUn = r(2)
n + r(3)

n

is bounded in L1((0, T ) × Ω), therefore precompact in W−1,s((0, T ) × Ω) pro-
vided s ∈ [1, 4

3 ) (cf. Section 0.7). On the other hand, due to (3.117), curlt,xVn

is obviously bounded in L2((0, T ) × Ω; R4) which is compactly embedded into
W−1,2((0, T ) × Ω; R4). Let us remark that the “space-time” operator curlt,x ap-
plied to the vector field [ϑn, 0, 0, 0] involves only the partial derivatives in the
spatial variable x.

Consequently, in order to apply Proposition 3.3 in the situation described
in (3.142), we have to show that �ns(�n, ϑn) and r(1)

n are bounded in a Lebesgue
space “better” than only L1.
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To this end, write

�sδ(�, ϑ) =
4
3
aϑ3 + �sM (�, ϑ) + δ� log(ϑ),

where �nsM (�n, ϑn) satisfies (3.39), therefore

�n|sδ(�n, ϑn)| ≤ c(�n + ϑ3
n + �n| log �n| + �n| log ϑn|).

Consequently, thanks to estimates (3.128), (3.130),

{�nsδ(�n, ϑn)}∞n=1 is bounded in L
Γ
3 ((0, T ) × Ω),

{�nsδ(�n, ϑn)un}∞n=1 is bounded in Lp((0, T ) × Ω), 1
p = 1

2 + 3
Γ provided Γ > 6.

(3.145)
Next we observe that (3.112) implies in the way explained in (2.58) that

{∇ log(ϑn)}∞n=1 is bounded in L2((0, T ) × Ω; R3).

Furthermore, it follows from (3.112) that{√
κδ(ϑn)
ϑn

∇xϑn

}∞

n=1

is bounded in L2((0, T )× Ω; R3).

Moreover, estimates (3.125), (3.127) and (3.120) combined with a simple interpo-
lation yield

{
√

κδ(ϑn)}∞n=1 is bounded in Lp((0, T ) × Ω) for a certain p > 2,

on condition that Γ > 6. From the last two estimates, we deduce that{κδ(ϑn)
ϑn

∇xϑn

}∞

n=1
is bounded in Lp((0, T )×Ω; R3) for a certain p > 1. (3.146)

Finally, the ε-dependent quantity contained in r(1)
n can be handled in the

following way:

• Similarly to the proof of formula (3.145), we conclude, by help of estimates
(3.127), (3.128), (3.133), that

{sδ(�n, ϑn)∇�n}∞n=1 is bounded in L
2Γ

Γ+6 ((0, T ) × Ω) (3.147)

provided Γ > 6.
• Since the specific internal energy eM satisfies (3.30), we have

∣∣∣eM (�n, ϑn)
ϑn

∇x�n

∣∣∣ ≤ c(1 +
�

2
3
n

ϑn
)|∇x�n|;

whence, in accordance with estimates (3.115), (3.125), and (3.130),{eM (�n, ϑn)
ϑn

∇x�n

}∞

n=1
is bounded in L

6Γ
5Γ+4 ((0, T ) × Ω; R3). (3.148)
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• By virtue of (3.31) and (3.32),

∣∣∣pM (�n, ϑn)
�nϑn

∇x�n

∣∣∣ ≤ c|∇x�n|
(
1 +

�
2
3
n

ϑn

)
, (3.149)

where the right-hand side can be controlled exactly as in (3.148).

Having verified the hypotheses of Proposition 3.3 for the vector fields Un,
Vn specified in (3.142), we are allowed to conclude that

�sδ(�, ϑ)ϑ = �sδ(�, ϑ)ϑ (3.150)

provided Γ > 6. In formula (3.150) and hereafter, the symbol F (U) denotes a weak
L1-limit of the sequence of composed functions {F (Un)}∞n=1 (cf. Section 0.8).

Since the entropy is an increasing function of the absolute temperature, rela-
tion (3.150) can be used to deduce strong (pointwise) convergence of the sequence
{ϑn}∞n=1.

To begin, we recall (3.98), namely

�sδ(�, ϑ) = �sM (�, ϑ) + δ� log(ϑ) +
4
3
aϑ3.

As all three components of the entropy are increasing in ϑ, we observe that

�sM (�, ϑ)ϑ ≥ �sM (�, ϑ)ϑ, � log(ϑ)ϑ ≥ � log(ϑ)ϑ, and ϑ4 ≥ ϑ3ϑ. (3.151)

Indeed, as {�n}∞n=1 converges strongly (see (3.137)) we have

�sM (�, ϑ)ϑ = �sM (�, ϑ)ϑ, �sM (�, ϑ) = �sM (�, ϑ),

where, as a direct consequence of monotonicity of sM in ϑ,

sM (�, ϑ)ϑ ≥ sM (�, ϑ)ϑ,

see Theorem 10.19 in Appendix. Here, we have used (3.124), (3.137) yielding

sM (�n, ϑ)(ϑn − ϑ) → 0 weakly in L1((0, T ) × Ω).

The remaining two inequalities in (3.151) can be shown in a similar way.
Combining (3.150), (3.151) we infer that

ϑ4 = ϑ3ϑ,

in particular, at least for a suitable subsequence, we have

ϑn → ϑ a.e. in ((0, T ) × Ω) (3.152)

(cf. Theorems 10.19, 10.20 in Appendix).
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Limit in the approximate entropy equation. Our ultimate goal in this section is
to let n → ∞ in the approximate entropy equation (3.144).

First of all, we estimate the term

ε
(
eM,δ(�n, ϑn) + �n

∂eM

∂�
(�n, ϑn)

)∇x�n · ∇xϑn

ϑ2
n

in the same way as in (3.107) transforming (3.144) to inequality

∂t(�nsδ(�n, ϑn)) + divx

(
�nsδ(�n, ϑn)un − κδ(ϑn)

ϑn
∇xϑn

)
(3.153)

− εdivx

[(
ϑnsM,δ(�n, ϑn) − eM,δ(�n, ϑn) − pM (�n, ϑn)

�n

)∇x�n

ϑn

]
≥ 1

ϑn

[
Sδ(ϑn,∇xun) : ∇xun +

(κ(ϑn)
ϑn

+
δ

2
(ϑΓ−1

n +
1
ϑ2

n

)
)
|∇xϑn|2 + δ

1
ϑn

2

]
+

εδ

2ϑn
(Γ�Γ−2

n + 2)|∇x�n|2 + ε
1

�nϑn

∂pM

∂�
(�n, ϑn)|∇x�n|2 − εϑ4

n +
�n

ϑn
Qδ.

As a consequence of (3.137), (3.145), (3.152),

�nsδ(�n, ϑn) → �sδ(�, ϑ) (strongly) in L2((0, T ) × Ω), (3.154)

and, in accordance with (3.117),

�nsδ(�n, ϑn)un → �sδ(�, ϑ)u weakly in L1((0, T ) × Ω; R3). (3.155)

Since the sequence {ϑn}∞n=1 converges a.a. in (0, T )×Ω, we can use hypotheses
(3.21), (3.22), together with estimates (3.120), (3.123), (3.125), (3.127), to get

κ(ϑn)
ϑn

→ κ(ϑ)
ϑ

(strongly) in L2((0, T ) × Ω)

yielding, in combination with (3.124),

κ(ϑn)
ϑn

∇xϑn → κ(ϑ)
ϑ

∇xϑ weakly in L1((0, T )× Ω; R3). (3.156)

On the other hand, by virtue of relations (3.122), (3.125), (3.127),(
ϑΓ−1

n +
1
ϑ2

n

)
∇xϑn =

1
Γ
∇x(ϑΓ

n) −∇x(1/ϑn) (3.157)

→ 1
Γ
∇x(ϑΓ) −∇x1/ϑ weakly in Lp((0, T ) × Ω) for some p > 1,

where, according to (3.152),

1
Γ
∇x(ϑΓ) −∇x1/ϑ =

1
Γ
∇x(ϑΓ) −∇x1/ϑ = ϑΓ−1∇xϑ +

1
ϑ2

∇xϑ. (3.158)
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In order to control the ε-term on the left-hand side of (3.153), we first observe
that∣∣∣ 1
ϑ

(
ϑsM,δ(�, ϑ)− eM,δ(�, ϑ)− pM (�, ϑ)

�

)
∇�
∣∣∣ ≤ c(| log ϑ|+ | log �|+ �2/3

ϑ
+ 1)|∇�|,

where we have used (3.31), (3.32), (3.39).
As a next step, we apply relations (3.123), (3.130), and (3.133), together with

the arguments leading to (3.148), in order to deduce boundedness of the quantity

1
ϑn

(
ϑsM,δ(�n, ϑn) − eM,δ(�n, ϑn) − pM (�n, ϑn)

�n

)
∇�n

in Lp((0, T )× Ω; R3) for some p > 1.

In particular, by virtue of (3.137), (3.141), (3.152), we obtain

1
ϑn

(
ϑnsM,δ(�n, ϑn) − eM,δ(�n, ϑn) − pM (�n, ϑn)

�n

)
∇�n (3.159)

→ 1
ϑ

(
ϑsM,δ(�, ϑ) − eM,δ(�, ϑ) − pM (�, ϑ)

�

)
∇� weakly in L1((0, T )× Ω; R3).

Finally, we identify the asymptotic limit for n → ∞ of the approximate
entropy production rate represented through the quantities on the right-hand side
of (3.153). In accordance with (3.112), we have⎧⎨
⎩
√

(
(μ(ϑn)

ϑn
+ δ
)(

∇xun + ∇T
x un − 2

3
divxun

)⎫⎬
⎭

∞

n=1

,

⎧⎨
⎩
√

η(ϑn)
ϑn

divxun

⎫⎬
⎭

∞

n=1

bounded in L2((0, T )×Ω; R3×3), and in L2((0, T )×Ω), respectively. In particular,√(μ(ϑn)
ϑn

+ δ
)(

∇xun + ∇T
x un − 2

3
divxun

)
(3.160)

→
√(μ(ϑ)

ϑ
+ δ
)(

∇xu + ∇T
x u− 2

3
divxu

)
weakly in L2((0, T ) × Ω; R3×3),

where we have used (3.118) and (3.152).
Similarly,√

η(ϑn)
ϑn

divxun →
√

η(ϑ)
ϑ

divxu weakly in L2((0, T ) × Ω), (3.161)

and, by virtue of (3.112), (3.124) and (3.152),√
κδ(ϑn)
ϑn

∇xϑn →
√

κδ(ϑ)
ϑ

∇xϑ weakly in L2((0, T ) × Ω; R3). (3.162)
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By the same token, due to (3.113), (3.137), (3.141),√(Γ�Γ−2
n + 2
ϑn

)
∇x�n →

√(Γ�Γ−2 + 2
ϑ

)
∇x� weakly in L2((0, T ) × Ω; R3),

(3.163)
while, by virtue of (3.114), (3.137), (3.141), (3.152),

1√
�nϑn

√
∂pM

∂�
(�n, ϑn)∇x�n (3.164)

→ 1√
�ϑ

√
∂pM

∂�
(�, ϑ)∇x� weakly in L2((0, T ) × Ω; R3).

Finally, as a consequence of (3.137), (3.152), and the bounds established in
(3.125), (3.127), (3.131), we have

εϑ4
n − �n

ϑn
Qδ → εϑ4 − �

ϑ
Qδ in Lp((0, T ) × Ω) for some p > 1. (3.165)

The convergence results just established are sufficient in order to perform
the weak limit for n → ∞ in the approximate entropy balance (3.153). Although
we are not able to show strong convergence of the gradients of �, ϑ, and u, the
inequality sign in (3.153) is preserved under the weak limit because of lower semi-
continuity of convex superposition operators (cf. Theorem 10.20 in Appendix).
Consequently, we are allowed to conclude that∫ T

0

∫
Ω

�sδ(�, ϑ)
(
∂tϕ + u · ∇xϕ

)
dx dt +

∫ T

0

∫
Ω

(qδ

ϑ
+ εrε

)
· ∇xϕ dx dt

+
∫ T

0

∫
Ω

σε,δϕ dx dt ≤ −
∫

Ω

(�s)0,δϕ(0, ·) dx +
∫ T

0

∫
Ω

(
εϑ4 − �

ϑ
Qδ

)
ϕ dx dt,

for any ϕ ∈ C∞
c ([0, T ) × Ω), ϕ ≥ 0, (3.166)

where we have set

qδ = qδ(ϑ,∇ϑ) = κδ(ϑ)∇xϑ, κδ(ϑ) = κ(ϑ) + δ
(
ϑΓ +

1
ϑ

)
,

sδ(�, ϑ) = s(�, ϑ) + δ log ϑ,
(3.167)

and

σε,δ =
1
ϑ

[
Sδ : ∇xu +

(κ(ϑ)
ϑ

+
δ

2
(ϑΓ−1 +

1
ϑ2

)
)
|∇xϑ|2 + δ

1
ϑ2

]
(3.168)

+
εδ

2ϑ
(Γ�Γ−2 + 2)|∇x�|2 + ε

∂pM

∂�
(�, ϑ)

|∇x�|2
�ϑ

,

rε = −
(
ϑsM,δ(�, ϑ) − eM,δ(�, ϑ) − pM (�, ϑ)

�

)∇x�

ϑ
.
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3.5.4 Limit in the approximate momentum equation

With regard to formulas (3.32), (3.53), estimates (3.115), (3.117), (3.120), (3.127),
(3.130), (3.131), and the asymptotic limits established in (3.118), (3.137), (3.141),
(3.152), it is easy to identify the limit for n → ∞ in all quantities appearing in
the approximate momentum equation (3.49) for a fixed test function ϕ, with the
exception of the convective term. Note that, even at this level of approximation,
we have already lost compactness of the velocity field in the time variable because
of the hypothetical presence of vacuum zones.

To begin, observe that

�nun ⊗ un → �u ⊗ u weakly in Lq((0, T ) × Ω; R3×3) for a certain q > 1,

where we have used the uniform bounds (3.111), (3.117). Thus we have to show

�u⊗ u = �u⊗ u. (3.169)

To this end, observe first that

�nun → �u weakly-(*) in L∞(0, T ; L
5
4 (Ω; R3))

as a direct consequence of estimates (3.115), (3.134), and strong convergence of
the density established in (3.137).

Moreover, it can be deduced from the approximate momentum equation
(3.49) that the functions{

t →
∫

Ω

�nun · φ dx

}
are equi-continuous and bounded in C([0, T ]) (3.170)

for any fixed φ ∈ ∪∞
n=1Xn. Since the set ∪∞

n=1Xn is dense in L5(Ω; R3) we obtain,
by means of the Arzelà-Ascoli theorem, that

�nun → �u in Cweak([0, T ]; L5/4(Ω)).

On the other hand, as the Lebesgue space L5/4(Ω) is compactly embedded into
the dual W−1,2(Ω), we infer that

�nun → �u (strongly) in Cweak([0, T ]; W−1,2(Ω; R3)). (3.171)

Relation (3.171), together with the weak convergence of the velocities in the
space L2(0, T ; W 1,2(Ω; R3)) established in (3.118), give rise to (3.169).

3.5.5 The limit system resulting from the
Faedo-Galerkin approximation

Having completed the necessary preliminary steps, in particular, the strong con-
vergence of the density in (3.141), and the strong convergence of the temperature
in (3.152), we can let n → ∞ in the approximate system (3.45–3.60) to deduce
that the limit quantities {�,u, ϑ} satisfy:
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(i) Approximate continuity equation:

∂t� + divx(�u) = εΔ� a.a. in (0, T )× Ω, (3.172)

together with the homogeneous Neumann boundary condition

∇x� · n|∂Ω = 0, (3.173)

and the initial condition
�(0, ·) = �0,δ. (3.174)

(ii) Approximate balance of momentum:∫ T

0

∫
Ω

(
�u · ∂tϕ + �[u ⊗ u] : ∇xϕ +

(
p + δ(�Γ + �2)

)
divxϕ

)
dx dt (3.175)

=
∫ T

0

∫
Ω

(
ε(∇x�∇xu) · ϕ + Sδ : ∇xϕ − �fδ · ϕ

)
dx dt −

∫
Ω

(�u)0 · ϕ dx,

satisfied for any test function ϕ ∈ C∞
c ([0, T ) × Ω; R3), where either

ϕ · n|∂Ω = 0 in the case of the complete slip boundary conditions, (3.176)

or
ϕ|∂Ω = 0 in the case of the no-slip boundary conditions, (3.177)

and where we have set

Sδ = Sδ(ϑ,∇xu) = (μ(ϑ) + δϑ)
(
∇xu+∇⊥

x u− 2
3
divxu I

)
+ η(ϑ)divxu I. (3.178)

(iii) Approximate entropy inequality:∫ T

0

∫
Ω

�sδ(�, ϑ)
(
∂tϕ + u · ∇xϕ

)
dx dt +

∫ T

0

∫
Ω

(κδ(ϑ)∇xϑ

ϑ
+ εr

)
· ∇xϕ dx dt

+
∫ T

0

∫
Ω

σε,δϕ dx dt ≤ −
∫

Ω

(�s)0,δϕ(0, ·) dx +
∫ T

0

∫
Ω

(
εϑ4 − �

ϑ
Qδ

)
ϕ dx dt

(3.179)

for any test function ϕ ∈ C∞
c ([0, T )× Ω), ϕ ≥ 0, where we have set

sδ(�, ϑ) = s(�, ϑ) + δ log ϑ, κδ(ϑ) = κ(ϑ) + δ
(
ϑΓ +

1
ϑ

)
, (3.180)

and

σε,δ =
1
ϑ

[
Sδ : ∇xu +

(κ(ϑ)
ϑ

+
δ

2
(ϑΓ−1 +

1
ϑ2

)
)
|∇xϑ|2 + δ

1
ϑ2

]
(3.181)

+
εδ

2ϑ
(Γ�Γ−2 + 2)|∇x�|2 + ε

∂pM

∂�
(�, ϑ)

|∇x�|2
�ϑ

,

r = −
(
ϑsM,δ(�, ϑ) − eM,δ(�, ϑ) − pM (�, ϑ)

�

)∇x�

ϑ
.
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(iv) Approximate total energy balance:∫
Ω

(1
2
�|u|2 + �eδ(�, ϑ) + δ(

�Γ

Γ − 1
+ �2)

)
(τ) dx (3.182)

=
∫

Ω

(1
2
|(�u)0,δ|2

�0,δ
+ �0,δe0,δ + δ(

�Γ
0,δ

Γ − 1
+ �2

0,δ)
)

dx

+
∫ τ

0

∫
Ω

(
�fδ · u + �Qδ + δ

1
ϑ2

− εϑ5
)

dx dt for a.a. τ ∈ [0, T ],

where
eδ(�, ϑ) = e(�, ϑ) + δϑ. (3.183)

3.5.6 The entropy production rate represented
by a positive measure

In accordance with the general ideas discussed in Section 1.2, the entropy inequal-
ity can be interpreted as a weak formulation of a balance law with the production
rate represented by a positive measure. More specifically, writing (3.179) in the
form ∫

Ω

(�s)0,δϕ(0, ·) dx −
∫ T

0

∫
Ω

(
εϑ4 − �

ϑ
Qδ

)
ϕ dx dt

−
∫ T

0

∫
Ω

�sδ(�, ϑ)
(
∂tϕ + u · ∇xϕ

)
dx dt

+
∫ T

0

∫
Ω

(κδ(ϑ)∇xϑ

ϑ
+ εr

)
· ∇xϕ dx dt ≥

∫ T

0

∫
Ω

σε,δϕ dx dt

for any ϕ ∈ C∞
c ([0, T ) × Ω), ϕ ≥ 0, the left-hand side can be understood as a

non-negative linear form defined on the space of smooth functions with compact
support in [0, T )× Ω.

Consequently, by means of the classical Riesz representation theorem, there
exists a regular, non-negative Borel measure Σε,δ on the set [0, T ) × Ω, that can
be trivially extended on the compact set [0, T ]× Ω such that∫ T

0

∫
Ω

�sδ(�, ϑ)
(
∂tϕ + u · ∇xϕ

)
dx dt +

∫ T

0

∫
Ω

(κδ(ϑ)∇xϑ

ϑ
+ εr

)
· ∇xϕ dx dt

+ 〈Σε,δ; ϕ〉[M;C]([0,T ]×Ω) = −
∫

Ω

(�s)0,δϕ(0, ·) dx +
∫ T

0

∫
Ω

(
εϑ4 − �

ϑ
Qδ

)
ϕ dx dt

(3.184)

for any ϕ ∈ C∞
c ([0, T )× Ω). Moreover,

Σε,δ ≥ σε,δ, (3.185)

where we have identified the function σε,δ ∈ L1((0, T ) × Ω) with a non-negative
measure, see (1.13–1.17) for more details.
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3.6 Artificial diffusion limit

The next step in the proof of Theorem 3.1 is to let ε → 0 in the approximate
system (3.172–3.182) in order to eliminate the artificial diffusion term in (3.172)
as well as the other ε-dependent quantities in the remaining equations. Such a step
is not straightforward, as we lose the uniform bound on ∇x�; whence compact-
ness of � with respect to the space variable becomes an issue. In particular, the
lack of pointwise convergence of the densities has to be taken into account in the
proof of pointwise convergence of the approximate temperatures; accordingly, the
procedure described in the previous section relating formulas (3.151), (3.152) has
to be considerably modified. Apart from these principal new difficulties a number
of other rather technical issues has to be addressed. In particular, uniform bounds
must be established in order to show that all ε-dependent quantities in the approxi-
mate continuity equation (3.172), momentum equation (3.175), and energy balance
(3.182) vanish in the asymptotic limit ε → 0. Similarly, the non-negative quanti-
ties appearing in the approximate entropy production rate σε,δ are used to obtain
uniform bounds in order to eliminate the “artificial” entropy flux r in (3.179).

In order to show pointwise convergence of the approximate temperatures,
we take advantage of certain general properties of weak convergence of composed
functions expressed conveniently in terms of parameterized (Young) measures (see
Section 3.6.2). On the other hand, similarly to the recently developed existence
theory for compressible viscous fluids, we use the extra regularity properties of the
quantity Π := p(�, ϑ)− (4

3μ(ϑ) + η(ϑ))divxu, called effective viscous flux, in order
to establish pointwise convergence of the approximate densities. Such an approach
requires a proper description of possible oscillations of the densities provided by
the renormalized continuity equation (cf. Section 10.18 in Appendix).

3.6.1 Uniform estimates and limit in the
approximate continuity equation

Let {�ε,uε, ϑε}ε>0 be a family of solutions to the approximate system (3.172–
3.182) constructed in Section 3.5. Similarly to Section 2.2.3, the total energy bal-
ance (3.182), together with the entropy inequality represented through (3.184),
give rise to the dissipation balance∫

Ω

(1
2
�ε|uε|2 + Hδ,ϑ(�ε, ϑε) + δ(

�Γ
ε

Γ − 1
+ �2

ε)
)
(τ) dx (3.186)

+ ϑΣε,δ

[
[0, τ ] × Ω

]
+
∫ τ

0

∫
Ω

εϑ5 dx dt

=
∫

Ω

(1
2
|(�u)0|2

�0,δ
+ Hδ,ϑ(�0,δ, ϑ0,δ) + δ(

�Γ
0,δ

Γ − 1
+ �2

0,δ)
)

dx

+
∫ τ

0

∫
Ω

(
�εfδ · uε + �

(
1 − ϑ

ϑε

)
Qδ +

δ

ϑ2
ε

+ εϑϑ4
)

dx dt for a.a. τ ∈ [0, T ],
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where Σε,δ ∈ M+([0, T ]×Ω) is the entropy production rate introduced in Section
3.5.6, and the “approximate Helmholtz function” Hδ,ϑ is given through (3.101).

Repeating the arguments used after formula (3.105) we obtain

sup
ε>0

{
ess sup

t∈(0,T )

∫
Ω

(1
2
�ε|uε|2 + Hδ,ϑ(�ε, ϑε) + δ(

�Γ
ε

Γ − 1
+ �2

ε)
)
(t) dx

}
< ∞,

(3.187)
together with

sup
ε>0

{
Σε,δ

[
[0, T ]× Ω

]
+
∫ T

0

∫
Ω

εϑ5
ε dx dt

}
< ∞, (3.188)

where, in accordance with (3.181), (3.185), estimate (3.188) further implies

sup
ε>0

{∫ T

0

∫
Ω

{ 1
ϑε

[
Sδ(ϑε,∇xuε) : ∇xuε (3.189)

+
(κ(ϑε)

ϑε
+ δ(ϑΓ−1

ε +
1
ϑ2

ε

)
)
|∇xϑε|2

]
+ δ

1
ϑ3

ε

+ εϑ5
ε

}
dx dt

}
< ∞,

sup
ε>0

{
εδ

∫ T

0

∫
Ω

1
ϑε

(Γ�Γ−2
ε + 2)|∇x�ε|2 dx dt

}
< ∞, (3.190)

and

sup
ε>0

{∫ T

0

∫
Ω

ε
ϑ

�εϑε

∂pM

∂�
(�ε, ϑε)|∇x�ε|2 dx dt

}
< ∞. (3.191)

Exactly as in Section 3.5, the above estimates can be used to deduce that

�ε → � weakly-(*) in L∞(0, T ; LΓ(Ω)), (3.192)

uε → u weakly in L2(0, T ; W 1,2(Ω; R3)), (3.193)

and

ϑε → ϑ weakly-(*) in L∞(0, T ; L4(Ω)), (3.194)

at least for suitable subsequences. Moreover, we have u(t, ·) ∈ W 1,2
n (Ω; R3) for a.a.

t ∈ (0, T ) in the case of the complete slip boundary conditions, while u(t, ·) ∈
W 1,2

0 (Ω; R3) for a.a. t ∈ (0, T ), if the no-slip boundary conditions are imposed.
Multiplying equation (3.172) by �ε and integrating by parts we get

1
2

∫
Ω

�2
ε(τ) dx + ε

∫ τ

0

∫
Ω

|∇x�ε|2 dx dt

=
1
2

∫
Ω

�2
0,δ dx − 1

2

∫ τ

0

∫
Ω

�2
εdivxuε dx dt;
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whence, taking (3.192–3.194) into account, we can see that

{
√

ε∇x�ε}ε>0 is bounded in L2(0, T ; L2(Ω; R3)),

in particular,
ε∇x�ε → 0 in L2(0, T ; L2(Ω; R3)). (3.195)

As the time derivative ∂t�ε can be expressed by means of equation (3.172),
convergence in (3.192) can be, similarly to (3.119), strengthened to

�ε → � in Cweak([0, T ]; LΓ(Ω)). (3.196)

Relation (3.196), combined with (3.193) and boundedness of the kinetic energy,
yields

�εuε → �u weakly-(*) in L∞(0, T ; L
2Γ

Γ+1 (Ω; R3)). (3.197)

Thus we conclude that the limit functions �, u satisfy the integral identity∫ T

0

∫
Ω

(
�∂tϕ + �u · ∇xϕ

)
dx dt +

∫
Ω

�0,δϕ(0, ·) dx = 0 (3.198)

for any test function ϕ ∈ C∞
c ([0, T ) × Ω). Moreover, since the boundary ∂Ω is

regular (Lipschitz) we can extend continuously the velocity field u outside Ω in
such a way that the resulting vector field belongs to W 1,2(R3; R3). (In the case of
no-slip boundary conditions one can take trivial extension, where u = 0 outside
Ω.) Accordingly, setting � ≡ 0 in R

3\Ω we can assume that �, u solve the equation
of continuity

∂t� + divx(�u) = 0 in D′((0, T ) × R
3). (3.199)

3.6.2 Entropy balance and strong convergence of the
approximate temperatures

Our principal objective is to show strong (pointwise) convergence of the family
{ϑε}ε>0. Following the same strategy as in Section 3.5.3, we divide the proof into
three steps:

(i) Div-Curl lemma (Proposition 3.3) is applied to show that

�sδ(�, ϑ)G(ϑ) = �sδ(�, ϑ) G(ϑ)

for any G ∈ W 1,∞(0,∞). This relation is reminiscent of formula (3.150); the
quantity G playing a role of a cut-off function is necessary because of the low
integrability of ϑ. The proof uses the same arguments as in Section 3.5.3.

(ii) Although strong convergence of the densities is no longer available at this
stage, we can still show that

b(�)G(ϑ) = b(�) G(ϑ), (3.200)
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where b ∈ C([0,∞))∩L∞((0,∞)), and G is the same as in the previous step.
In order to prove this identity, we use the properties of renormalized solu-
tions to the approximate continuity equation (cf. Section 10.18 in Appendix).
Very roughly indeed, we can say that possible oscillations in the sequence of
approximate densities and temperatures take place in orthogonal directions
of the space-time.

(iii) The simple monotonicity argument used in formula (3.151) has to be replaced
by a more sophisticated tool. Here, the desired relation

sM (�ε, t, x)(G(ϑε) − G(ϑ)) → 0

is shown to follow directly from (3.200) by means of a general argument
borrowed from the theory of parameterized (Young) measures. An elementary
alternative proof of this step involving a compactness argument based on
the renormalized continuity equation (more precisely on Theorem 10.30 in
Appendix) is shown in Section 3.7.3.

In the remaining part of this section, we develop the ideas delineated in the
above program in a more specific way.

Uniform estimates. Seeing that the sequence {�ε,uε, ϑε}ε>0 admits the bounds
obtained in (3.189), we infer that {ϑε}ε>0 satisfies the estimates stated in (3.122–
3.128), namely

{ϑε}ε>0, {ϑΓ/2
ε }ε>0 are bounded in L2(0, T ; W 1,2(Ω)),

{∇(ϑ−1/2
ε )}ε>0 is bounded in L2((0, T ) × Ω; R3),

{ϑ−1
ε }ε>0 is bounded in L3((0, T ) × Ω), (3.201)

{log ϑε}ε>0 is bounded in L2(0, T ; W 1,2(Ω)) ∩ LΓ(0, T ; L3Γ(Ω)).

Moreover, relations (3.129), (3.130) imply that

{
√

ε�ε}ε>), {
√

ε�
Γ
2
ε }ε>0 are bounded in L2(0, T ; W 1,2(Ω)). (3.202)

Application of the Div-Curl lemma. Now we rewrite the approximate entropy
balance (3.184) in the form

∂t

(
�εsδ(�ε, ϑε)

)
+divx

(
�εsδ(�ε, ϑε)uε +

κδ(ϑε)∇xϑε

ϑε
+ εrε

)
= Σε,δ +

�ε

ϑε
Qδ − εϑ4

ε

to be understood in the weak sense specified in Sections 1.2, 3.5.6.
Similarly to Section 3.5.3, we intend to apply the Div-Curl lemma (Proposi-

tion 3.3) to the four-component vector fields

Uε :=
[
�εsδ(�ε, ϑε), �εsδ(�ε, ϑε)uε +

κδ(ϑε)∇xϑε

ϑ
+ εrε

]
, (3.203)

Vε := [G(ϑε), 0, 0, 0] , (3.204)

where G is a bounded globally Lipschitz function on [0,∞).
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First observe that the families

divt,xUε = Σε,δ +
�ε

ϑε
Qδ − εϑ4

ε, curlt,xVε = G′(ϑε)
(

0 ∇ϑε

∇T ϑε 0

)

are relatively compact in W−1,s((0, T ) × Ω)), W−1,s((0, T ) × Ω; R4×4) for s ∈
[1, 4

3 ), respectively. Indeed, it is enough to use estimates (3.188), (3.192), (3.194),
(3.201), and compactness of the embeddings M+([0, T ]×Ω) ↪→ W−1,s((0, T )×Ω)),
L1((0, T ) × Ω)) ↪→ W−1,s((0, T ) × Ω)). Notice that we have, in particular,

εϑ4
ε → 0 in L1((0, T )× Ω) (3.205)

as a direct consequence of (3.194).
As the sequence {G(ϑε)}ε>0 is bounded in L∞((0, T ) × Ω), it is enough

to show boundedness of the family {Uε}ε>0 in Lp((0, T ) × Ω; R4) for a certain
1 < p < ∞. Combining the arguments already used in (3.145), (3.146) with the
bounds (3.192), (3.201), we infer that

{�εsδ(�ε, ϑε)}ε>0 is bounded in Lp((0, T )× Ω) for a certain p > 2, (3.206)

while

{�εsδ(�ε, ϑε)uε}ε>0,

{
κδ(ϑε)

ϑε
∇ϑε

}
ε>0

are bounded in Lq((0, T ) × Ω; R3)

for a certain q > 1 provided Γ > 6. (3.207)

Finally, following the reasoning of (3.147–3.149), we use (3.201) and (3.202) to
obtain

εrε → 0 in Lp((0, T ) × Ω; R3)) for a certain p > 1. (3.208)

Having verified all hypotheses of Proposition 3.3 we conclude that

�sδ(�, ϑ)G(ϑ) = �sδ(�, ϑ) G(ϑ) (3.209)

for any bounded and continuous function G.

Monotonicity of the entropy and strong convergence of the approximate temper-
atures – application of the theory of parametrized (Young) measures.
Similarly to Section 3.5.3, relation (3.209) can be used to show strong (pointwise)
convergence of {ϑε}ε>0. Decomposing

�sδ(�, ϑ) = �sM (�, ϑ) + δ� log(ϑ) +
4
3
aϑ3,

we have to show that

�sM (�, ϑ)G(ϑ) ≥ �sM (�, ϑ) G(ϑ), � log(ϑ)G(ϑ) ≥ � log(ϑ) G(ϑ),

ϑ3G(ϑ) ≥ ϑ3 G(ϑ)
(3.210)
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for any continuous and increasing G chosen in such a way that all the weak limits
exist at least in L1. Indeed, relations (3.210) combined with (3.209) imply

ϑ3G(ϑ) = ϑ3 G(ϑ); whence ϑ4 = ϑ3ϑ (3.211)

yielding, in particular, the desired conclusion

ϑε → ϑ a.a. in (0, T ) × Ω. (3.212)

In order to see (3.210), write

0 ≤
(
�εsM

(
�ε, G

−1(G(ϑε))
)
− �εsM

(
�ε, G

−1(G(ϑ))
))(

G(ϑε) − G(ϑ)
)

= �εsM (�ε, ϑε)
(
G(ϑε) − G(ϑ))

)
− �εsM

(
�ε, G

−1(G(ϑ))
)(

G(ϑε) − G(ϑ)
)
.

Consequently, the first inequality in (3.210) follows as soon as we can show that

�εsM

(
�ε, G

−1(G(ϑ))
)(

G(ϑε) − G(ϑ)
)
→ 0 weakly in L1((0, T )× Ω). (3.213)

The quantity

�εsM

(
�ε,
[
G−1(G(ϑ))

]
(t, x)

)
= ψ(t, x, �ε)

may be regarded as a superposition of a Carathéodory function with a weakly
convergent sequence. In such a situation, a general argument of the theory of
parameterized (Young) measures asserts that (3.213) follows as soon as we show
that

b(�)G(ϑ) = b(�) G(ϑ) (3.214)

for arbitrary smooth and bounded functions b and G (see Theorem 0.10).

Indeed, if ν
(�,ϑ)
(t,x) , ν�

(t,x) and νϑ
(t,x) are families of parametrized Young mea-

sures associated to sequences {(�ε, ϑε)}ε>0, {�ε}ε>0 and{ϑε}ε>0, respectively, then
(3.214) implies∫

R2
b(λ)G(μ) dν

(�,ϑ)
(t,x) (λ, μ) =

∫
R

b(λ) dν�
(t,x)(λ) ×

∫
R

G(μ) dνϑ
(t,x)(μ).

This evidently yields a decomposition

ν
(�,ϑ)
(t,x) (A × B) = ν�

(t,x)(A)νϑ
(t,x)(B),

where A, B are open subsets in R. Consequently, for any Carathéodory function
ψ(t, x, λ) and a continuous function G(ϑ), such that sequences ψ(·, ·, �n)G(ϑn) and
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ψ(·, ·, �n), G(ϑn) are weakly convergent in L1((0, T )× Ω; R2) and L1((0, T ) × Ω),
respectively, we have

[ψ(·, ·, �)G(ϑ)](t, x) =
∫

R2
ψ(t, x, λ)G(μ) dν

(�,ϑ)
(t,x) (λ, μ)

=
∫

R2
ψ(t, x, λ)G(μ) dν�

(t,x)(λ)dνϑ
(t,x)(μ)

= [ψ(·, ·, �) G(ϑ)](t, x)

which is nothing other than (3.213).
In order to verify (3.214), multiply the approximate continuity equation

(3.172) by b′(�)ϕ, ϕ ∈ C∞
c (Ω), and integrate over Ω to obtain

d
dt

∫
Ω

b(�)ϕdx −
∫

Ω

b(�)u · ∇xϕdx + ε

∫
Ω

b′′(�)|∇x�|2ϕdx

+ ε

∫
Ω

b′(�)∇x� · ∇xϕdx +
∫

Ω

(�b′(�) − b(�))divxuϕdx = 0. (3.215)

Consequently, the sequence {t →
∫
Ω b(�ε)ϕ}ε>0 is uniformly bounded and equi-

continuous in C([0, T ]); whence

b(�ε) → b(�) in Cweak([0, T ]; LΓ(Ω)) (3.216)

at least for any smooth function b with bounded second derivative.
Now, we use compactness of the embedding LΓ(Ω) ↪→ W−1,2(Ω) to deduce

b(�ε) → b(�) in C([0, T ]; W−1,2(Ω)). (3.217)

On the other hand, in accordance with the uniform bounds established in (3.201),

G(ϑε) → G(ϑ) weakly in L2(0, T ; W 1,2(Ω)); (3.218)

whence (3.214) follows from (3.217), (3.218).
In addition to (3.212), the limit temperature field ϑ is positive a.a. on the

set (0, T ) × Ω, more precisely, we have

ϑ−3 ∈ L1((0, T ) × Ω). (3.219)

Indeed, (3.219) follows from the uniform bounds (3.201), the pointwise convergence
of {ϑε}ε>0 established in (3.212), and the property of weak lower semi-continuity
of convex functionals (see Theorem 10.20 in Appendix).

Asymptotic limit in the entropy balance. At this stage, we are ready to let ε → 0
in the approximated entropy equality (3.184). Using relations (3.201–3.212) we
obtain, in the same way as in (3.156), (3.157),

κδ(ϑε)
ϑε

∇xϑε → κδ(ϑ)
ϑ

∇xϑ

weakly in Lp((0, T ) × Ω; R3) for some p > 1.
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Furthermore, in accordance with (3.192), (3.212), we get
�ε

ϑε
Qδ → �

ϑ
Qδ weakly in Lp((0, T ) × Ω) for some p > 1.

Applying the Div-Curl lemma (Proposition 3.3) to the sequence {Uε}ε>0

defined in (3.203) and {Vε}ε>0,

Vε = [(uε)i, 0, 0, 0], i = 1, 2, 3,

we deduce

�εsδ(�ε, ϑε)uε → �sδ(�, ϑ)u weakly in Lp((0, T ) × Ω; R3) for a certain p > 1.

The terms 1
ϑε

Sδ(ϑε,uε) : ∇uε,
κδ(ϑε)

ϑε
|∇ϑε|2 appearing in σε,δ are weakly

lower semi-continuous as we have already observed in (3.160–3.165), while the
remaining ε-dependent quantities in σε,δ are non-negative. Finally, by virtue of
(3.188), we may assume

Σε,δ → σδ ∈ weakly-(*) in M([0, T ]× Ω), where σδ ∈ M+([0, T ]× Ω).

Recalling the limits (3.205) and (3.208), we let ε → 0 in (3.184) to obtain∫ T

0

∫
Ω

�sδ(�, ϑ)
(
∂tϕ + u · ∇xϕ

)
dx dt (3.220)

+
∫ T

0

∫
Ω

κδ(ϑ)∇xϑ

ϑ
· ∇xϕ dx dt + 〈σδ; ϕ〉[C;M]([0,T ]×Ω)

= −
∫

Ω

(�s)0,δϕ(0, ·) dx −
∫ T

0

∫
Ω

�

ϑ
Qδϕ dx dt, for all ϕ ∈ C∞

c ([0, T ) × Ω),

where

σδ ≥ 1
ϑ

Sδ(ϑ,∇xu) : ∇xu +
κδ(ϑ)

ϑ
|∇ϑ|2.

Consequently, in order to perform the limit ε → 0 in the remaining equations
of the approximate system (3.172–3.182), we have to show

(i) uniform pressure estimates analogous to those established in Section 2.2.5,
or, alternatively, in Section 2.2.6,

(ii) strong (pointwise) convergence of the approximate densities.

3.6.3 Uniform pressure estimates

The pressure estimates are derived in the same way as in Section 2.2.5, namely we
use the quantities

ϕ = ψφ, ψ ∈ C∞
c (0, T ), φ = B[�ε − �] (3.221)

as test functions in the approximate momentum equation (3.175), where

� =
1
|Ω|

∫
Ω

�ε dx,
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and B ≈ div−1
x is the Bogovskii operator introduced in Section 2.2.5 and investi-

gated in Section 10.5 in Appendix.
Since �ε satisfies the approximate continuity equation (3.172), we have

∂tφ = −B [divx(�u − ε∇x�)] . (3.222)

Consequently, by virtue of the basic properties of the operator B listed in Section
2.2.5,

‖φ(t, ·)‖W 1,p(Ω;R3) ≤ c(p, Ω)‖�ε(t, ·)‖Lp(Ω) for a.a. t ∈ (0, T ), (3.223)

and

‖∂tφ(t, ·)‖Lp(Ω;R3) ≤ c(p, Ω)
∥∥∥�εuε(t, ·) + ε∇x�ε(t, ·)

∥∥∥
Lp(Ω;R3)

for a.a. t ∈ (0, T )

(3.224)
for any 1 < p < ∞.

The last two estimates, together with those previously established in (3.192–
3.197), (3.201), and (3.202), render the test functions (3.221) admissible in (3.175)
provided, say, Γ ≥ 4. Note that, unlike in Section 2.2.5, the argument of the
operator B is an affine function of �ε, whereas the necessary uniform estimate on
{�ε}ε>0 in L∞(0, T ; LΓ(Ω)) is provided by the extra pressure term δ�Γ.

In view of these arguments, we can write, similarly to (2.94),∫ T

0

[
ψ

∫
Ω

(
p(�ε, ϑε) + δ(�Γ

ε + �2
ε)
)
�ε dx

]
dt =

7∑
j=1

Ij , (3.225)

where

I1 =
∫ T

0

[
ψ�

∫
Ω

(
p(�ε, ϑε + δ(�Γ

ε + �2
ε)
)

dx
]

dt,

I2 = −
∫ T

0

[
ψ

∫
Ω

�εuε · ∂tφ dx
]

dt,

I3 = −
∫ T

0

[
ψ

∫
Ω

�εuε ⊗ uε : ∇xφ dx
]

dt,

I4 =
∫ T

0

[
ψ

∫
Ω

Sδ(uε, ϑε) : ∇xφ dx
]

dt,

I5 = −
∫ T

0

[
ψ

∫
Ω

�εf · φ dx
]

dt,

I6 = −
∫ T

0

[
ψ′
∫

Ω

�εuε · φ dx
]

dt,

and

I7 =
∫ T

0

ψ
[ ∫

Ω

ε∇x�ε∇xuε · φ dx
]

dt.
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The simple form of I7 conditioned by the specific form of the test function ϕ,
where the argument of B is an affine function of �ε, is the only technical reason
why the limit processes for ε → 0 and δ → 0 must be separated.

The integral identity (3.225) can be used to obtain uniform bounds on the
pressure independent of ε. Exactly as in Section 2.2.5, we deduce that

‖�ε‖LΓ+1((0,T )×Ω) ≤ c(data, δ), (3.226)

and
‖pM (�ε, ϑε)‖Lp((0,T )×Ω) ≤ c(data, δ) for a certain p > 1. (3.227)

Indeed, these bounds can be obtained by dominating the integrals I1 − I7 in the
spirit of Section 2.2.5, specifically, by means of estimates (3.223), (3.224), (3.192–
3.197), and (3.201), provided Γ ≥ 4. In particular, by virtue of (3.193), (3.195),

ε∇x�ε∇xuε → 0 in L1((0, T ) × Ω; R3)) (3.228)

yielding boundedness of integral I7.

3.6.4 Limit in the approximate momentum equation
and in the energy balance

In accordance with estimates (3.226), (3.227), together with (3.194), (3.201), and
(3.212),

pδ(�ε, ϑε) → pδ(�, ϑ) = pM (�, ϑ) + a
4ϑ4 + δ(�Γ + �2)

weakly in Lp((0, T ) × Ω) for a certain p > 1,
(3.229)

where we have written

pδ(�, ϑ) = pM (�, ϑ) +
a

4
ϑ4 + δ(�Γ + �2). (3.230)

On the other hand, by virtue of (3.17), (3.23), (3.194), and (3.212),

μ(ϑε) → μ(ϑ), η(ϑε) → η(ϑ) (strongly) in Lp((0, T )× Ω) for any 1 ≤ p < 4.

Moreover, since Sδ takes the form specified in (3.53), we can use (3.193) in order
to deduce

Sδ(ϑε,∇xuε) → Sδ(ϑ,u)weakly in Lp((0, T ) × Ω), for a certain p > 1. (3.231)

As the limits of the families �εf , �εuε, and ε∇�ε∇uε have already been
identified through (3.192), (3.197) and (3.228), we are left with the convective
term �εuε ⊗ uε. Following the arguments of Section 3.5.4 we observe that

�εuε → �u in Cweak([0, T ]; L
2Γ

Γ+1 (Ω; R3)). (3.232)
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Consequently, because of compact embedding Ls(Ω) ↪→ W−1,2(Ω), s > 6
5 ,

�εuε → �u (strongly) in Lp(0, T ; W−1,2(Ω; R3))

for any 1 ≤ p < ∞. In accordance with (3.193),

�εuε ⊗ uε → �u⊗ uweakly in Lp((0, T ) × Ω) for a certain p > 1. (3.233)

Letting ε → 0 in the approximate momentum equation (3.175) we get∫ T

0

∫
Ω

(
�u · ∂tϕ + �[u⊗ u] : ∇xϕ + pδ(�, ϑ)divxϕ

)
dx dt (3.234)

=
∫ T

0

∫
Ω

(
Sδ(ϑ,∇xu) : ∇xϕ − �fδ · ϕ

)
dx dt −

∫
Ω

(�u)0 · ϕ dx,

for any test function ϕ ∈ C∞
c ([0, T )× Ω; R3)) such that either

ϕ · n|∂Ω = 0 in the case of the complete slip boundary conditions,

or
ϕ|∂Ω = 0 in the case of the no-slip boundary conditions.

Finally, as the sequence {�εeδ(�ε, ϑε)}ε>0 is bounded in Lp((0, T ) × Ω) (see
(3.30), (3.192–3.194), (3.201)), we are allowed to let ε → 0 in the approximate
energy balance (3.182) to obtain∫

Ω

(1
2
�|u|2 + �eδ(�, ϑ) + δ(

�Γ

Γ − 1
+ �2)

)
(τ) dx (3.235)

=
∫

Ω

(1
2
|(�u)0,δ|2

�0,δ
+ �0,δe0,δ + δ(

�Γ
0,δ

Γ − 1
+ �2

0,δ)
)

dx

+
∫ τ

0

∫
Ω

(
�fδ · u + �Qδ + δ

1
ϑ2

− εϑ5
)

dx dt for a.a. τ ∈ [0, T ].

3.6.5 Strong convergence of the densities

In order to show strong (pointwise) convergence of {�ε}ε>0, we adapt the method
introduced in the context of barotropic fluids with constant viscosity coefficients
by P.-L.Lions [140], and further developed in [80] in order to accommodate the
variable transport coefficients.

Similarly to Section 2.2.6, we use the quantities

ϕ(t, x) = ψ(t)ζ(x)φ, φ = (∇xΔ−1
x )[1Ω�ε], ψ ∈ C∞

c ((0, T )), ζ ∈ C∞
c (Ω), (3.236)

as test functions in the approximate momentum equation (3.175), where the sym-
bol Δ−1

x stands for the inverse Laplace operator considered on the whole space
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R3 introduced in (2.100). The operator ∇xΔ−1
x is investigated in Section 10.16 in

Appendix.
Since �εuε and ∇�ε possess zero normal traces, the approximate continuity

equation (3.172) can be extended to the whole R3, specifically,

∂t(1Ω�ε) + divx(1Ω�εuε) − εdivx(1Ω∇�ε) = 0 a.e. in (0, T )× R3. (3.237)

Accordingly, we have

∂tφ = −(∇xΔ−1
x ) [divx(1Ω�εuε − ε1Ω∇x�)] , (3.238)

cf. Theorem 10.26 in Appendix.
Now, exactly as in Section 2.2.6, we can use the uniform estimates (3.192–

3.197), (3.201), and (3.202), in order to observe that ϕ defined through (3.236) is
admissible in the integral identity (3.175) as soon as Γ ≥ 4. Thus we get

∫ T

0

∫
Ω

ψζ
(
pδ(�ε, ϑε)�ε − Sδ(ϑε,∇xuε) : R[1Ω�ε]

)
dx dt =

8∑
j=1

Ij,ε, (3.239)

where

I1,ε =
∫ T

0

∫
Ω

ψζ
(
�εuε · R[1Ω�εuε] − (�εuε ⊗ uε) : R[1Ω�ε]

)
dx dt,

I2,ε = −ε

∫ T

0

∫
Ω

ψζ �εuε · ∇xΔ−1[divx(1Ω∇x�ε)] dx dt,

I3,ε = −
∫ T

0

∫
Ω

ψζ�εfδ · ∇xΔ−1
x [1Ω�ε] dx dt,

I4,ε = −
∫ T

0

∫
Ω

ψpδ(�ε, ϑε)∇xζ · ∇xΔ−1
x [1Ω�ε] dx dt,

I5,ε =
∫ T

0

∫
Ω

ψSδ(ϑε,∇xuε) : ∇xζ ⊗∇xΔ−1
x [1Ω�ε] dx dt,

I6,ε = −
∫ T

0

∫
Ω

ψ(�εuε ⊗ uε) : ∇xζ ⊗∇xΔ−1
x [1Ω�ε] dx dt,

I7,ε = −
∫ T

0

∫
Ω

∂tψ ζ�εuε · ∇xΔ−1
x [1Ω�ε] dx dt,

and

I8,ε = ε

∫ T

0

∫
Ω

∇x�ε∇xuε · (∇xΔ−1
x )[1Ω�ε] dx dt.

Here, the symbol R stands for the double Riesz transform, defined componentwise
as Ri,j = ∂xiΔ

−1
x ∂xj , introduced in (2.101).



3.6. Artificial diffusion limit 97

Repeating the same procedure we use the quantities

ϕ(t, x) = ψ(t)ζ(x)(∇xΔ−1
x )[1Ω�], ψ ∈ C∞

c (0, T ), ζ ∈ C∞
c (Ω),

as test functions in the limit momentum equation (3.234) in order to obtain

∫ T

0

∫
Ω

ψζ
(
pδ(�, ϑ)� − Sδ(ϑ,∇xu) : R[1Ω�]

)
dx dt =

6∑
j=1

Ij , (3.240)

where

I1 =
∫ T

0

∫
Ω

ψζ
(
�u · R[1Ω�u] − (�u⊗ u) : R[1Ω�]

)
dx dt,

I2 = −
∫ T

0

∫
Ω

ψζ�fδ · ∇xΔ−1
x [1Ω�ε] dx dt,

I3 = −
∫ T

0

∫
Ω

ψpδ(�, ϑ)∇xζ · ∇xΔ−1
x [1Ω�] dx dt,

I4 =
∫ T

0

∫
Ω

ψSδ(ϑ,∇xu) : ∇xζ ⊗∇xΔ−1
x [1Ω�] dx dt,

I5 = −
∫ T

0

∫
Ω

ψ(�u ⊗ u) : ∇xζ ⊗∇xΔ−1
x [1Ω�] dx dt,

and

I6 = −
∫ T

0

∫
Ω

∂tψ ζ�u · ∇xΔ−1
x [1Ω�] dx dt.

Combining (3.192) with (3.216) we get

�ε → � in Cweak([0, T ]; LΓ(Ω)).

In accordance with the standard theory of elliptic problems, the pseudodifferential
operator (∇xΔ−1

x ) “gains” one spatial derivative, in particular, by virtue of the
embedding W 1,Γ(Ω) ↪→ C(Ω), we get

(∇xΔ−1)[1Ω�ε] → (∇xΔ−1)[1Ω�] in C([0, T ]× Ω; R3)

provided Γ > 3 (see Theorem 10.26 in Appendix). Consequently, we can use rela-
tions (3.192), (3.197), (3.229–3.233) in order to see that (i) I2,ε, I8,ε → 0, while (ii)
the integrals Ij,ε, j = 3, . . . , 7, converge for ε → 0 to their counterparts in (3.240).
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We infer that

lim
ε→0

∫ T

0

∫
Ω

ψζ
(
pδ(�ε, ϑε)�ε − Sδ(ϑε,∇xuε) : R[1Ω�ε]

)
dx dt (3.241)

=
∫ T

0

∫
Ω

ψζ
(
pδ(�, ϑ)� − Sδ(ϑ,∇xu) : R[1Ω�]

)
dx dt

+ lim
ε→0

∫ T

0

∫
Ω

ψζ
(
�εuε · R[1Ω�εuε] − (�εuε ⊗ uε) : R[1Ω�ε]

)
dx dt

−
∫ T

0

∫
Ω

ψζ
(
�u · R[1Ω�u] − (�u⊗ u) : R[1Ω�]

)
dx dt.

Now, the crucial observation is that the difference of the two right-most
quantities in (3.241) vanishes. In order to see this, we need the following assertion
(Theorem 10.27 in Appendix) that can be viewed as a straightforward consequence
of the Div-Curl lemma.

Lemma 3.5. Let
Uε → U weakly in Lp(R3; R3),

Vε → V weakly in Lq(R3; R3),

where
1
p

+
1
q

=
1
r

< 1.

Then

Uε · R[Vε] −R[Uε] ·Vε → U · R[V] −R[U] · V weakly in Lr(R3).

This statement provides the following corollary:

Corollary 3.3. Let
Vε → V weakly in Lp(R3; R3),

rε → r weakly in Lq(R3),

where
1
p

+
1
q

=
1
s

< 1.

Then
rεR[Vε] −R[rε]Vε → rR[V] −R[r]V weakly in Ls(R3; R3).

Hereafter, we shall use Corollary 3.3 to show that

lim
ε→0

∫ T

0

∫
Ω

ψζuε ·
(
�εR[1Ω�εuε] −R[1Ω�ε]�εuε

)
dx dt (3.242)

=
∫ T

0

∫
Ω

ψζu ·
(
�R[1Ω�u] −R[1Ω�]�u

)
dx dt,
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where, recall, R[v] is a vector field with i-th component
∑3

j=1 Ri,j [vj ] while R[a]v
is a vector field with i-th component

∑3
j=1 Ri,j [a]vj .

As shown in (3.196), (3.232),{
�ε(t, ·) → �(t, ·)weakly in LΓ(Ω),

(�εuε)(t, ·) → (�u)(t, ·)weakly in L
2Γ

Γ+1 (Ω; R3)

}
for all t ∈ [0, T ].

Applying Corollary 3.3 to rε = �ε(t, ·), Uε = �εuε(t, ·) (extended by 0 outside Ω),
we obtain

(�εR[1Ω�εuε] −R[1Ω�ε]�εuε) (t, ·) → (�R[1Ω�u] −R[1Ω�]�u) (t, ·))

weakly inL
2Γ

Γ+3 (Ω), provided Γ > 9
2

for all t ∈ [0, T ].
As the embedding L

2Γ
Γ+3 (Ω) ↪→ W−1,2(Ω) is compact for Γ > 9/2, we conclude

that
�εR[1Ω�εuε] −R[1Ω�ε]�εuε → �R[1Ω�u] −R[1Ω�]�u

in Lq(0, T ; W−1,2(Ω; R3)) for any q ≥ 1,
(3.243)

which, together with (3.193), yields (3.242). Consequently, (3.241) reduces to

lim
ε→0

∫ T

0

∫
Ω

ψζ
(
pδ(�ε, ϑε)�ε − Sδ(ϑε,∇xuε) : R[1Ω�ε]

)
dx dt (3.244)

=
∫ T

0

∫
Ω

ψζ
(
pδ(�, ϑ)� − Sδ(ϑ,∇xu) : R[1Ω�]

)
dx dt.

Our next goal is to replace in (3.244) the quantity Sδ(ϑε,∇xuε) : R[1Ω�ε] by
�ε

(
4
3μδ(ϑε) +η(ϑε)

)
divxuε, and, similarly, Sδ(ϑ,∇xu) : R[1Ω�] by the expression

�
(

4
3μδ(ϑ) +η(ϑ)

)
divxu in (3.244), where μδ(ϑ) = μ(ϑ) + δϑ.

To this end write∫ T

0

∫
Ω

ψζμδ(ϑε)
(
∇xuε + ∇T

x uε

)
: R[1Ω�ε] dx dt

=
∫ T

0

∫
Ω

ψR :
[
ζμδ(ϑε)

(
∇xuε + ∇T

x uε

)]
�ε dx dt,

and ∫ T

0

∫
Ω

ψζμδ(ϑ)
(
∇xu + ∇T

x u
)

: R[1Ω�] dx dt

=
∫ T

0

∫
Ω

ψR :
[
ζμδ(ϑ)

(
∇xu + ∇T

x u
)]

� dx dt,

where we have used the evident properties of the double Riesz transform recalled
in Section 10.16 in Appendix.
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Furthermore,

R :
[
ζμδ(ϑε)

(
∇xuε + ∇T

x uε

)]
= 2ζμδ(ϑε)divxuε + ω(ϑε,uε),

and

R :
[
ζμδ(ϑ)

(
∇xu + ∇T

x u
)]

= 2ζμδ(ϑ)divxu + ω(ϑ,u),

with the commutator

ω(ϑ,u) = R :
[
ζμδ(ϑ)

(
∇xu + ∇T

x u
)]

− ζμδ(ϑ)R :
[
∇xu + ∇T

x u
]
.

In order to proceed, we report the following result in the spirit of Coifman
and Meyer [49] proved as Theorem 10.28 in Appendix.

� Commutator Lemma:

Lemma 3.6. Let w ∈ W 1,2(R3) and Z ∈ Lp(R3; R3) be given, where 6
5 < p < ∞.

Then for any 1 < s < 6p
6+p ,∥∥∥R[wZ] − wR[Z]
∥∥∥

W β,s(R3;R3)
≤ c‖w‖W 1,2(R3)‖Z‖Lp(R3;R3),

where 0 < β = 3
s − 6+p

6p < 1 and c = c(p, s) is a positive constant.

Applying Lemma 3.6 to w = wε = ζ(μ(ϑε)+δϑε), Z = Zε = [Zε,1, Zε,2, Zε,3],
with Zε,i = ∂xiuε,j + ∂xj uε,i, j = 1, 2, 3, where {wε}ε>0, {Zε}ε>0 are bounded in
L2(0, T ; W 1,2(Ω)) and L2((0, T )× Ω; R3), respectively, cf. (3.193), (3.201), (3.17–
3.18), we deduce that

{ω(ϑε,uε)}ε>0 is bounded in L1(0, T ; W β,s(Ω)) (3.245)

for certain 1 < s < 3
2 , 0 < β = 3−2s

s < 1.
Next we claim that

ω(ϑε,uε)�ε → ω(ϑ,u)� weakly in L1((0, T ) × Ω), (3.246)

where, in accordance with relations (3.17), (3.23), (3.193), (3.194), and (3.212),

ω(ϑ,u) = ω(ϑ,u). (3.247)

In order to show (3.246), we apply the Div-Curl lemma (see Proposition 3.3)
to the four-component vector fields

Uε = [�ε, �εuε], Vε = [ω(ϑε,uε), 0, 0, 0].
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In view of relations (3.172), (3.195), (3.245) yielding the sequences {divt,xUε}ε>0

and {curlt,xVε}ε>0 compact in W−1,s((0, T ) × Ω) and W−1,s((0, T ) × Ω; R3×3)
for a certain s > 1, it is enough to observe that

{Uε}ε>0

{Vε}ε>0

}
are bounded in

{
Lq((0, T ) × Ω; R4),
Lr((0, T )× Ω; R4),

respectively,

with 1/r + 1/q < 1. This is certainly true provided Γ is large enough.

Relations (3.244), (3.246), (3.247) give rise to a remarkable identity.

� Weak Compactness Identity for Effective Pressure (Level ε) :

pδ(�, ϑ)� −
(4

3
μ(ϑ) +

4
3
δϑ + η(ϑ)

)
�divxu (3.248)

= pδ(�, ϑ)� −
(4

3
μ(ϑ) +

4
3
δϑ + η(ϑ)

)
�divxu,

where the quantity p − (4
3μ + η)divxu is usually termed effective viscous flux or

effective pressure. As we will see below, the quantity

�divxu − �divxu

plays a role of a “defect” measure of the density oscillations described through the
(renormalized) equation of continuity. Relation (3.248) enables us to relate these
oscillations to the changes in the pressure.

In order to exploit (3.248), we multiply the approximate continuity equation
(3.172) on G′(�ε), where G is a smooth convex function, integrate by parts, and
let ε → 0 to obtain∫

Ω

G(�)(τ) dx +
∫ τ

0

∫
Ω

(
G′(�)� − G(�)

)
divxu dx dt ≤

∫
Ω

G(�0,δ) dx (3.249)

from which we easily deduce that∫
Ω

� log(�)(τ) dx +
∫ τ

0

∫
Ω

�divxu dx dt =
∫

Ω

�0,δ log(�0,δ) dx (3.250)

for a.a. τ ∈ (0, T ).
To derive a relation similar to (3.250) for the limit functions �, u, we need the

renormalized continuity equation introduced in (1.20). Note that we have already
shown that the quantities �, u solve the continuity equation (3.198) in (0, T ) ×
R

3. On the other hand, the general theory of transport equations developed by
DiPerna-Lions asserts that any solution of (3.198) is automatically a renormalized
one as soon as, roughly speaking, the quantity �divxu is integrable.

More precisely, we report the following result proved in Section 10.18 in
Appendix.
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Lemma 3.7. Assume that � ∈ L2((0, T ) × R3), u ∈ L2(0, T ; W 1,2(R3)) solve the
equation of continuity (3.198) in D′((0, T )× R3)).

Then �, u represent a renormalized solution in the sense specified in (2.2).

As a consequence of Lemma 3.7 (see also Theorem 10.29 and Lemma 10.13
for more details), we deduce∫

Ω

� log(�)(τ) dx +
∫ τ

0

∫
Ω

�divxu dx dt ≤
∫

Ω

�0,δ log(�0,δ) dx. (3.251)

Since the pressure pδ is non-decreasing with respect to � and we already know
that ϑε → ϑ strongly in L1((0, T ) × Ω), we have

pδ(�, ϑ)� ≥ pδ(�, ϑ)�.

Indeed,

lim
n→∞

∫
B

(
pδ(�n, ϑn)�n − pδ(�n, ϑn)�

)
dx dt

= lim
n→∞

∫
B

(
pδ(�n, ϑn) − pδ(�, ϑn)

)
(�n − �)dx dt

+ lim
n→∞

∫
B

pδ(�, ϑn)(�n − �)dx dt,

where the first term is non-negative, and the second term tends to zero by virtue of
the asymptotic limits established in (3.192), (3.212), the bounds (3.194), (3.201),
(3.226), (3.227), and the structural properties of pδ stated in (3.230).

Consequently, relation (3.248) yields

�divxu ≥ � divxu;

whence (3.250) together with (3.251) imply the desired conclusion

� log(�) = � log(�).

As z → z log(z) is a strictly convex function, we may infer that

�ε → � a.a. in (0, T ) × Ω, (3.252)

in agreement with Theorem 10.20 in Appendix.

3.6.6 Artificial diffusion asymptotic limit

Strong convergence of the sequence of approximate densities established in (3.252)
completes the second step in the proof of Theorem 3.1, eliminating completely the
ε-dependent terms in the approximate system. For any δ > 0, we have constructed
a trio {�,u, ϑ} solving the following problem:
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(i) Renormalized continuity equation:∫ T

0

∫
Ω

�B(�)
(
∂tϕ + u · ∇xϕ

)
dx dt (3.253)

=
∫ T

0

∫
Ω

b(�)divxuϕ dx dt −
∫

Ω

�0,δB(�0,δ)ϕ(0, ·) dx

for any

b ∈ L∞ ∩ C[0,∞), B(�) = B(1) +
∫ �

1

b(z)
z2

dz,

and any test function
ϕ ∈ C∞

c ([0, T ) × Ω).

(ii) Approximate balance of momentum:∫ T

0

∫
Ω

(
�u · ∂tϕ + �[u⊗ u] : ∇xϕ +

(
p + δ(�Γ + �2)

)
divxϕ

)
dx dt (3.254)

=
∫ T

0

∫
Ω

(
Sδ : ∇xϕ − �fδ · ϕ

)
dx dt −

∫
Ω

(�u)0 · ϕ dx,

for any test function ϕ ∈ C∞
c ([0, T )× Ω; R3), where either

ϕ · n|∂Ω = 0 in the case of the complete slip boundary conditions, (3.255)

or
ϕ|∂Ω = 0 in the case of the no-slip boundary conditions. (3.256)

Furthermore,

Sδ = (μ(ϑ) + δϑ)
(
∇xu + ∇⊥

x u− 2
3
divxu I

)
+ η(ϑ)divxu I. (3.257)

(iii) Approximate entropy balance:∫ T

0

∫
Ω

�sδ(�, ϑ)
(
∂tϕ + u · ∇xϕ

)
dx dt (3.258)

+
∫ T

0

∫
Ω

κδ(ϑ)∇xϑ

ϑ
· ∇xϕ dx dt + 〈σδ; ϕ〉[M,C]([0,T ]×Ω)

= −
∫

Ω

(�s)0,δϕ(0, ·) dx −
∫ T

0

∫
Ω

�

ϑ
Qδϕ dx dt

for all ϕ ∈ C∞
c ([0, T ) × Ω), where σδ ∈ M+([0, T ]× Ω) satisfies

σδ ≥ 1
ϑ

[
Sδ : ∇xu +

(κ(ϑ)
ϑ

+
δ

2
(ϑΓ−1 +

1
ϑ2

)
)
|∇xϑ|2 + δ

1
ϑ2

]
, (3.259)
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and where we have set

sδ(�, ϑ) = s(�, ϑ) + δ log(ϑ), κδ(ϑ) = κ(ϑ) + δ
(
ϑΓ +

1
ϑ

)
. (3.260)

(iv) Approximate energy balance:∫
Ω

(1
2
�|u|2 + �e(�, ϑ) + δ(

�Γ

Γ − 1
+ �2)

)
(τ) dx (3.261)

=
∫

Ω

(1
2
|(�u)0|2

�0,δ
+ �0,δe0,δ + δ(

�Γ
0,δ

Γ − 1
+ �2

0,δ)
)

dx

+
∫ τ

0

∫
Ω

(
�fδ · u + �Qδ + δ

1
ϑ2

)
dx dt for a.a. τ ∈ [0, T ].

3.7 Vanishing artificial pressure

The last and probably the most illuminative step in the proof of Theorem 3.1 is
to let δ → 0 in the approximate system (3.253–3.261). Although many arguments
are almost identical or mimic closely those discussed in the previous text, there
are still some new ingredients coming into play. Notably, we introduce a concept
of oscillation defect measure in order to control the density oscillations beyond
the theory of DiPerna and Lions. Moreover, weighted estimates of this quantity
are used in order to accommodate the physically realistic growth restrictions on
the transport coefficients imposed through hypotheses (3.17), (3.23).

3.7.1 Uniform estimates

From now on, let {�δ,uδ, ϑδ}δ>0 be a family of approximate solutions satisfying
(3.253–3.261). To begin, we recall that the total mass is a constant of motion,
specifically, ∫

Ω

�δ(t, ·) dx =
∫

Ω

�0,δ dx for any t ∈ [0, T ]. (3.262)

Since we assume that
�0,δ → �0 in L1(Ω), (3.263)

the bound (3.262) is uniform for δ → 0.
The next step is the dissipation balance∫

Ω

(1
2
�δ|uδ|2(τ) + Hϑ(�δ, ϑδ)(τ) + δ(

1
Γ − 1

�Γ
δ + �2

δ)(τ)
)

dx + ϑ σδ

[
[0, τ ] × Ω

]
=
∫

Ω

(1
2
|(�u)0|2

�0,δ
+ Hϑ(�0,δ, ϑ0,δ) + δ(

�Γ
0,δ

Γ − 1
+ �2

0,δ)
)

dx

+
∫ τ

0

∫
Ω

(
�δfδ · uδ + �δ(1 − ϑ

ϑδ
)Qδ + δ

1
ϑδ

2

)
dx dt (3.264)
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satisfied for a.a. τ ∈ [0, T ], which can be deduced from (3.258), (3.261), with the
Helmholtz function Hϑ introduced in (2.48). Accordingly, in order to get uniform
estimates, we have to take

{fδ}δ>0 bounded in L∞((0, T ) × Ω; R3),

Qδ ≥ 0, {Qδ}δ>0 bounded in L∞((0, T )× Ω)
(3.265)

as well as∫
Ω

(1
2
|(�u)0|2

�0,δ
+ Hϑ(�0,δ, ϑ0,δ) + δ(

�Γ
0,δ

Γ − 1
+ �2

0,δ)
)

dx ≤ c (3.266)

uniformly for δ → 0.
As the term δ/ϑ2

δ is “absorbed” by its counterpart in the entropy production
σδ satisfying (3.259), the dissipation balance (3.264) gives rise, exactly as in Section
3.6.1, to the following uniform estimates:

ess sup
t∈(0,T )

‖√�δuδ(t)‖L2(Ω;R3) ≤ c, (3.267)

ess sup
t∈(0,T )

‖�δ(t)‖
L

5
3 (Ω)

≤ c, (3.268)

ess sup
t∈(0,T )

‖�δ(t)‖LΓ(Ω) ≤ δ−
1
Γ c, (3.269)

and

ess sup
t∈(0,T )

‖ϑδ(t)‖L4(Ω) ≤ c. (3.270)

In addition, we have

σδ

[
[0, T ]× Ω

]
≤ c, (3.271)

and, as a consequence of (3.259),∫ T

0

∫
Ω

|∇x log(ϑδ)|2 dx dt ≤ c, (3.272)∫ T

0

∫
Ω

|∇xϑ
3
2
δ |2 dx dt ≤ c, (3.273)

and

δ

∫ T

0

∫
Ω

1
ϑ3

δ

dx dt ≤ c, (3.274)

δ

∫ T

0

∫
Ω

(
ϑΓ−2

δ +
1
ϑ3

δ

)
|∇xϑδ|2 dx dt ≤ c. (3.275)
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Finally, making use of Korn’s inequality established in Proposition 2.1 we
deduce, exactly as in (2.65), (2.66), that

‖ uδ ‖L2(0,T ;W 1,p(Ω;R3)) ≤ c for p =
8

5 − α
, (3.276)

and
‖ uδ ‖Lq(0,T ;W 1,s(Ω;R3)) ≤ c for q =

6
4 − α

, s =
18

10 − α
, (3.277)

where α was introduced in hypotheses (3.17–3.23). Moreover,

δ

∫ T

0

∫
Ω

∣∣∣∇xuδ + ∇T
x uδ −

2
3

I

∣∣∣2 dx dt ≤ c. (3.278)

Note that estimates (3.270–3.273) yield

{ϑβ
δ }δ>0 bounded in L2(0, T ; W 1,2(Ω)) for any 1 ≤ β ≤ 3

2
, (3.279)

while (3.276), (3.277), together with hypotheses (3.17), (3.19), and (3.23), imply
that

{Sδ}δ>0 is bounded in Lq((0, T )× Ω; R3×3)) for a certain q > 1, (3.280)

(cf. estimate (2.68)).
Now, positivity of the absolute temperature can be shown by help of Proposi-

tion 2.2 and Lemma 2.1, exactly as in Section 2.2.4. In particular, estimate (3.272)
can be strengthened to∫ T

0

∫
Ω

(
| log ϑδ|2 + |∇x log ϑδ|2

)
dx dt ≤ c. (3.281)

In order to complete our list of uniform bounds, we evoke the pressure esti-
mates obtained in Section 2.2.5. In the present context, relation (2.95) reads

∫ T

0

∫
Ω

(
δ�Γ

δ + pδ(�δ, ϑδ)
)
�ν

δ dx dt ≤ c(data), (3.282)

where ν > 0 is a constant exponent.

3.7.2 Asymptotic limit for vanishing artificial pressure

The piece of information provided by the uniform bounds established in the pre-
vious section is sufficient for taking δ → 0 in the approximate system of equations
(3.253–3.261).
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Due to the structural properties of the molecular pressure pM derived in
(3.32), and because of (3.230), estimates (3.268), (3.270), and (3.276), (3.277)
imply that

�δ → � weakly-(*) in L∞(0, T ; L
5
3 (Ω)), (3.283)

ϑδ → ϑ weakly-(*) in L∞(0, T ; L4(Ω)), (3.284)

and

uδ → u

{
weakly in L2(0, T ; W 1,p(Ω; R3)), p = 8

5−α ,

weakly in Lq(0, T ; W 1,s(Ω; R3)), q = 6
4−α , s = 18

10−α ,

}
(3.285)

at least for suitable subsequences.
Taking b ≡ 0 in the renormalized equation (3.253), we deduce, in view of the

previous estimates, that

�δ → � in Cweak([0, T ]; L
5
3 (Ω)). (3.286)

On the other hand, as the Lebesgue space L
5
3 (Ω) is compactly embedded into

the dual W−1,p′
(Ω), p′ = 8/(3 + α) as soon as α ∈ (2/5, 1] , we conclude, taking

(3.283) together with (3.267), (3.268) into account, that

�δuδ → �u weakly-(*) in L∞(0, T ; L
5
4 (Ω; R3)). (3.287)

A similar argument in the case when the time derivative of the momentum
�δuδ is expressed via the approximate momentum equation (3.254) gives rise to

�δuδ → �u in Cweak([0, T ]; L
5
4 (Ω; R3)). (3.288)

Since

W 1,s(Ω) is compactly embedded into L5(Ω) for s =
18

10 − α
, (3.289)

we can use (3.285) to conclude that

�δuδ ⊗ uδ → �u⊗ u weakly in Lq(0, T ; Lq(Ω; R3×3)) for a certain q > 1. (3.290)

In order to handle the approximate pressure in the momentum equation
(3.254), we first observe that, as a direct consequence of (3.282),

δ�δ → 0 in L1((0, T ) × Ω). (3.291)

Moreover, writing

p(�δ, ϑδ) = pM (�δ, ϑδ) +
a

3
ϑ4

δ ,
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and interpolating estimates (3.270), (3.279), we have

ϑ4
δ → ϑ4 weakly in Lq((0, T )× Ω) for a certain q > 1. (3.292)

In accordance with hypotheses (3.15), (3.16), the asymptotic structure of pM

derived in (3.32), and in agreement with (3.282), (3.292),

p(�δ, ϑδ) = pM (�δ, ϑδ)+
a

3
ϑ4

δ → pM (�, ϑ)+
a

3
ϑ4 weakly in L1((0, T )×Ω). (3.293)

At this stage, it is possible to let δ → 0 in equations (3.253), (3.254) to obtain∫ T

0

∫
Ω

(
�B(�)∂tϕ + �B(�)u · ∇xϕ− b(�)divxuϕ

)
dx dt = −

∫
Ω

�0B(�0)ϕ(0, ·) dx

(3.294)
for any test function ϕ ∈ C∞

c ([0, T )× Ω) and any

b ∈ L∞ ∩ C[0,∞), B(�) = B(1) +
∫ �

1

b(z)
z

dz.

Similarly, we get∫ T

0

∫
Ω

(
�u · ∂tϕ + �u⊗ u : ∇xϕ + (pM (�, ϑ) +

a

3
ϑ4)divxϕ

)
dx dt (3.295)

=
∫ T

0

∫
Ω

(
S(ϑ,∇xu) : ∇xϕ − �f · ϕ

)
dx dt −

∫
Ω

(�u)0 · ϕ(0, ·) dx

for any test function ϕ ∈ C∞
c ([0, T )×Ω; R3) satisfying ϕ·n|∂Ω = 0, or, in addition,

ϕ|∂Ω = 0 in the case of the no-slip boundary conditions. Here we have set

S(ϑ,∇xu) = μ(ϑ)
(
∇xu + ∇⊥

x u− 2
3
divxuI

)
+ η(ϑ)divxuI. (3.296)

Finally, letting δ → 0 in the approximate total energy balance (3.261) we
conclude ∫

Ω

(1
2
�|u|2 + �e(�, ϑ)

)
(τ) dx (3.297)

=
∫

Ω

(1
2
|(�u)0|2

�0
+ �0e(�0, ϑ0)

)
dx

+
∫ τ

0

∫
Ω

(
�f · u + �Q

)
dx dt for a.a. τ ∈ (0, T ),

where we have used estimate (3.274) in order to eliminate the singular term δ/ϑ2
δ.

Moreover, we have assumed strong convergence (a.a.) of the approximate data fδ,
�0,δ, ϑ0,δ, and Qδ.
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3.7.3 Entropy balance and pointwise convergence
of the temperature

Similarly to the preceding parts, specifically Section 3.6.2, our aim is to use Div-
Curl lemma (Proposition 3.3), together with the monotonicity of the entropy, in
order to show

ϑδ → ϑ a.a. on (0, T ) × Ω. (3.298)

Uniform estimates. We have to show that all terms appearing on the left-hand
side of the approximate entropy balance (3.258) are either non-negative or belong
to an Lp-space, with p > 1.

To this end, we use the structural properties of the specific entropy s stated
in (3.34), (3.39), together with the uniform estimates (3.268), (3.270), (3.281), to
deduce that

�δs(�δ, ϑδ) → �s(�, ϑ) weakly in Lp((0, T ) × Ω) for a certain p > 1. (3.299)

Similarly, we have

|�δs(�δ, ϑδ)uδ| ≤ c
(
|ϑδ|3|uδ| + �δ| log(�δ)||uδ| + |uδ| + �δ| log(ϑδ)||uδ|

)
;

whence, by virtue of (3.289), combined with estimates (3.283–3.285), there is p > 1
such that{

|ϑδ|3|uδ| + �δ| log(�δ)||uδ| + |uδ|
}

δ>0
is bounded in Lp((0, T ) × Ω). (3.300)

In addition, relations (3.278), (3.291) give rise to

{�δ log(ϑδ)uδ}δ>0 bounded in Lp((0, T ) × Ω; R3) for a certain p > 1. (3.301)

The entropy flux can be handled by means of the uniform estimates estab-
lished in (3.270), (3.279). Indeed, writing

κ(ϑδ)
ϑδ

|∇xϑδ| ≤ c
(
|∇x log(ϑδ)| + ϑ

3
2
δ |∇xϑ

3
2
δ |
)

we observe easily that{κ(ϑδ)
ϑδ

∇xϑδ

}
δ>0

is bounded in Lp((0, T ) × Ω; R3) (3.302)

for a suitable p > 1.
Finally, relations (3.270), (3.275), (3.281) can be used to obtain⎧⎨

⎩ δ
∫ T

0
‖ϑ

Γ
2
δ (t, ·)‖2

W 1,2(Ω) dt ≤ c,

δ
∫ T

0 ‖ϑ− 1
2

δ (t, ·)‖2
W 1,2(Ω) dt ≤ c,

⎫⎬
⎭ (3.303)
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uniformly for δ → 0. Consequently, seeing that

δϑΓ−1
δ ∇xϑδ = δ

Γ
2

ϑ
Γ
2
δ ∇xϑ

Γ
2
δ = δ

Γ
2

ϑ
1
4
δ ϑ

Γ
2 − 1

4
δ ∇xϑ

Γ
2
δ ,

we can use (3.284), (3.303), together with Hölder’s inequality and the embedding
relation W 1,2(Ω) ↪→ L6(Ω), in order to conclude that

δϑΓ−1
δ ∇xϑδ → 0 in Lp((0, T )× Ω; R3)) for δ → 0 and a certain p > 1. (3.304)

Similarly, by the same token,

δ

ϑ2
δ

∇xϑδ → 0 in Lp((0, T ) × Ω; R3), where p > 1. (3.305)

Strong convergence of temperature via the Young measures. Having established
all necessary estimates we can proceed as in Section 3.6.2.

By virtue of (3.281),

δ log(ϑδ)G(ϑδ) → 0 in L1((0, T ) × Ω). (3.306)

We can apply the Div-Curl lemma (Proposition 3.3) in order to obtain identity

�s(�, ϑ)G(ϑ) = �s(�, ϑ) G(ϑ). (3.307)

Consequently, employing Theorem 10.30, we show identity (3.214). Now we apply
Theorem 0.10 in the same way as in Section 3.6.2 and conclude that

�sM (�, ϑ)G(ϑ) ≥ �sM (�, ϑ) G(ϑ). (3.308)

We also observe that, according to Theorem 10.19,

ϑ3G(ϑ) ≥ ϑ3 G(ϑ). (3.309)

The symbol G in the last four formulas denotes an arbitrary nondecreasing and
continuous function on [0,∞), chosen in such a way that all the L1-weak limits in
the above formulas exist.

Relations (3.308–3.309) combined with identity (3.307) yield (3.211). The
latter identity implies the pointwise convergence (3.298).

Strong convergence of temperature – an alternative proof. The departure point
is formula (3.307) with G(ϑ) = Tk(ϑ), where the truncation function Tk are defined
by formula (3.317) below. The goal is to show the inequality (3.308) by using more
elementary arguments than in the previous section. Once this is done, (3.307) and
Theorem 10.19 yield

ϑ3Tk(ϑ) = ϑ3 Tk(ϑ).
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Since the sequence ϑδ is bounded in L∞(0, T ; L4(Ω)) ∩ L2(0, T ; L6(Ω)), the last
inequality and Corollary 10.2 in Appendix, imply

ϑ4 = ϑ3 ϑ

which proves (3.298).
Accordingly, it is enough to show

�sM (�, ϑ)Tk(ϑ) ≥ �sM (�, ϑ) Tk(ϑ). (3.310)

Due to Corollary 10.2 and property (3.39), we have

sup
ε>0

‖�δsM (�δ, ϑδ)Tk(ϑδ) − �δsM (�δ, Tk(ϑδ))Tk(ϑδ)‖L1((0,T )×Ω) → 0

and

sup
ε>0

‖�δsM (�δ, ϑδ)Tk(ϑ) − �δsM (�δ, Tk(ϑδ))Tk(ϑ)‖L1((0,T )×Ω) → 0

as k → ∞. It is therefore sufficient to prove

�sM (�, Tk(ϑ))Tk(ϑ) ≥ �sM (�, Tk(ϑ)) Tk(ϑ). (3.311)

Due to the monotonicity of function ϑ → sM (�, ϑ), we have(
�δsM (�δ, Tk(ϑδ)) − �δsM (�δ, Tk(ϑ))

)(
Tk(ϑδ) − Tk(ϑ)

)
≥ 0.

Therefore, (3.311) will be verified if we show that∫
B

�δsM (�δ, Tk(ϑ))
(
Tk(ϑδ) − Tk(ϑ)

)
dxdt → 0 as ε → 0+, (3.312)

where B is an arbitrary ball in (0, T )× Ω.
Since log is a concave function, we have log(Tk(ϑ)) ≤ log(Tk(ϑ)). Moreover,

the sequence {log(ϑδ)}δ>0 is bounded in L2(0, T ; W 1,2(Ω)) and the same holds for
{log(Tk(ϑδ))}δ>0. Consequently,

log(Tk(ϑ)) 1{Tk(ϑ)≤1} ∈ L2(0, T ; L6(Ω)),

0 < log(Tk(ϑ)) 1{Tk(ϑ)>1} ≤ Tk(ϑ) ∈ L2(0, T ; L6(Ω)),

therefore log(Tk(ϑ)) belongs to the space L2(0, T ; L6(Ω)). In particular, there ex-
ists zε ∈ C1([0, T ] × Ω) such that

‖zε − log(Tk(ϑ))‖L2(0,T ;L6(Ω)) < ε
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where ε > 0 is a parameter that can be taken arbitrarily small. Setting Θ = exp(zε)
we have

Θ ∈ C1([0, T ] × Ω), min
(t,x)∈[0,T ]×Ω

Θ(t, x) > 0.

Now, we write∫
B

�δsM (�δ, Tk(ϑ))
(
Tk(ϑδ) − Tk(ϑ)

)
dx dt

=
∫

B

(
�δsM (�δ, Tk(ϑ)) − �δsM (�δ, Θ)

)(
Tk(ϑδ) − Tk(ϑ)

)
dx dt

+
∫

B

�δsM (�δ, Θ)
(
Tk(ϑδ) − Tk(ϑ)

)
dx dt. (3.313)

We may use (3.11), (3.34) to verify that∣∣∣�δsM (�δ, Tk(ϑ)) − �δsM (�δ, Θ)
∣∣∣

= �δ

∣∣∣ ∫ Θ

Tk(ϑ)

1
r

∂eM

∂ϑ
(�δ, r) dr

∣∣∣ ≤ c�δ

∣∣∣ log(Tk(ϑ)) − log(Θ)
∣∣∣.

Since �δ is bounded in L∞(0, T ; L
5
3 (Ω)), we infer that

sup
δ>0

∥∥∥�δ

(
log(Tk(ϑ)) − log(Θ)

)∥∥∥
L2(0,T ;L

30
23 (Ω))

≤ cε;

whence the first integral on the right-hand side of (3.312) tends to 0 as ε → 0+.
As a consequence of (3.39), the sequence B(t, x, �δ) = �δsM (�δ, Θ(t, x)) satis-

fies hypothesis (10.127) of Theorem 10.30 in Appendix. We can therefore conclude
that

{�δsM (�δ, Θ)}δ>0 is precompact in L2(0, T ; W−1,2(Ω)),

which, together with the fact that Tk(ϑδ) → Tk(ϑ) weakly in L2(0, T ; W 1,2(Ω)),
concludes the proof of inequality (3.310).

Asymptotic limit in the entropy balance. Using weak lower semicontinuity of
convex functionals, we can let δ → 0 in the approximate entropy balance (3.258)
to conclude that ∫ T

0

∫
Ω

�s(�, ϑ)
(
∂tϕ + u · ∇xϕ

)
dx dt

+
∫ T

0

∫
Ω

q
ϑ
· ∇xϕ dx dt + 〈σ; ϕ〉[M;C]([0,T ]×Ω)

= −
∫

Ω

(�s)0ϕ(0, ·) dx −
∫ T

0

∫
Ω

�

ϑ
Qϕ dx dt, (3.314)
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for any ϕ ∈ C∞
c ([0, T )× Ω). In this equation

q = −κ(ϑ)∇xϑ, (3.315)

and σ ∈ M+([0, T ]×Ω) is a weak-(*) limit in M([0, T ]×Ω) of the sequence σδ that
exists at least for a chosen subsequence due to estimate (3.271). Employing (3.259),
(3.271), (3.285), (3.298) and lower weak semicontinuity of convex functionals, using
the fact that all δ-dependent quantities in the entropy production rate at the right-
hand side of (3.259) are non-negative, we show that

σ ≥ 1
ϑ

(
S(ϑ,∇xu) : ∇xu +

κ(ϑ)
ϑ

|∇ϑ|2
)
. (3.316)

For more details see the similar reasoning between formulas (3.159–3.161) in Sec-
tion 3.5.3.

Consequently, in order to complete the proof of Theorem 3.1, we have to
show pointwise convergence of the densities. This will be done in the next section.

3.7.4 Pointwise convergence of the densities

We follow the same strategy as in Section 3.6.5, however, some essential steps have
to be considerably modified due to lower Lp-integrability available for {�δ}δ>0,
{uδ}δ>0.

To begin, we introduce a family of cut-off functions

Tk(z) = kT
(z

k

)
, z ≥ 0, k ≥ 1, (3.317)

where T ∈ C∞[0,∞),

T (z) =

⎧⎪⎨
⎪⎩

z for 0 ≤ z ≤ 1,

concave on [0,∞),
2 for z ≥ 3.

(3.318)

Similarly to Sections 2.2.6, 3.6.5, we use the quantities

ϕ(t, x) = ψ(t)ζ(x)(∇xΔ−1
x )[1ΩTk(�δ)], ψ ∈ C∞

c (0, T ), ζ ∈ C∞
c (Ω),

with the operators (∇xΔ−1
x ) introduced in (2.100), as test functions in the ap-

proximate momentum equation (3.254) to deduce

∫ T

0

∫
Ω

ψζ
[(

p(�δ, ϑδ) + δ(�Γ
δ + �2

δ)
)
Tk(�δ) − Sδ : R[1ΩTk(�δ)]

]
dx dt =

7∑
j=1

Ij,δ,

(3.319)
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where Sδ := Sδ(ϑδ,∇xuδ) and

I1,δ =
∫ T

0

∫
Ω

ψζ
(
�δuδ · R[1ΩTk(�δ)uδ] − (�δuδ ⊗ uδ) : R[1ΩTk(�δ)]

)
dx dt,

I2,δ = −
∫ T

0

∫
Ω

ψζ �δuδ · ∇xΔ−1
x

[
1Ω(Tk(�δ) − T ′

k(�δ)�δ)divxuδ

]
dx dt,

I3,δ = −
∫ T

0

∫
Ω

ψζ�δfδ · ∇xΔ−1
x [1ΩTk(�δ)] dx dt,

I4,δ = −
∫ T

0

∫
Ω

ψ
(
p(�δ, ϑδ) + δ(�Γ

δ + �2
δ)
)
∇xζ · ∇xΔ−1

x [1ΩTk(�δ)] dx dt,

I5,δ =
∫ T

0

∫
Ω

ψSδ : ∇xζ ⊗∇xΔ−1
x [1ΩTk(�δ)] dx dt,

I6,δ = −
∫ T

0

∫
Ω

ψ(�δuδ ⊗ uδ) : ∇xζ ⊗∇xΔ−1
x [1ΩTk(�δ)] dx dt,

and

I7,δ = −
∫ T

0

∫
Ω

∂tψ ζ�δuδ · ∇xΔ−1
x [1ΩTk(�δ)] dx dt.

Now, mimicking the strategy of Section 3.6.5, we use

ϕ(t, x) = ψ(t)ζ(x)(∇xΔ−1
x )[1ΩTk(�)], ψ ∈ C∞

c (0, T ), ζ ∈ C∞
c (Ω)

as test functions in the limit momentum balance (3.295) to obtain

∫ T

0

∫
Ω

ψζ
[(

pM (�, ϑ) +
a

4
ϑ4)
)
Tk(�) − S : R[1ΩTk(�)]

]
dx dt =

7∑
j=1

Ij , (3.320)

where

I1 =
∫ T

0

∫
Ω

ψζ
(
�u · R[1ΩTk(�)u] − (�u⊗ u) : R[1ΩTk(�)]

)
dx dt,

I2 = −
∫ T

0

∫
Ω

ψζ �u · ∇xΔ−1
x

[
1Ω(Tk(�) − T ′

k(�)�)divxu
]

dx dt,

I3 = −
∫ T

0

∫
Ω

ψζ�f · ∇xΔ−1
x [1ΩTk(�)] dx dt,

I4 = −
∫ T

0

∫
Ω

ψp(�, ϑ)∇xζ · ∇xΔ−1
x [1ΩTk(�)] dx dt,

I5 =
∫ T

0

∫
Ω

ψS : ∇xζ ⊗∇xΔ−1
x [1ΩTk(�)] dx dt,
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I6 = −
∫ T

0

∫
Ω

ψ(�u ⊗ u) : ∇xζ ⊗∇xΔ−1
x [1ΩTk(�)] dx dt,

and

I7 = −
∫ T

0

∫
Ω

∂tψ ζ�u · ∇xΔ−1
x [1ΩTk(�)] dx dt.

We recall that R = Ri,j is the double Riesz transform introduced in Section 0.5.
To get formula (3.320) we have used (3.285), (3.298) to identify ϑ4 with ϑ4

and S(ϑ,∇xu) with S := S(ϑ,∇xu). We also recall that R = Ri,j is the double
Riesz transform introduced in Section 0.5.

Now, letting δ → 0+ in (3.319), we get

∫ T

0

∫
Ω

ψζ
[
pM (�, ϑ)Tk(�) + aϑ4Tk(�) − S : R[1Ω Tk(�)]

]
dxdt =

7∑
j=1

Ij , (3.321)

where the right-hand side is the same as the right-hand side in (3.320). Here, we
have used the commutator lemma in form of Corollary 3.3 with rδ = 1Ω Tk(�δ)
and Vδ = 1Ω�δuδ to show that

I1,δ → I1 as δ → 0+,

exactly in the same way as explained in detail in Section 3.6.5. We have also
employed the pointwise convergence (3.298) to verify that ϑ4 = ϑ4 and that
ϑ4 Tk(�) = ϑ4Tk(�).

Combining (3.320) and (3.321), we get identity

∫ T

0

∫
Ω

ψζ
[
pM (�, ϑ)Tk(�) − pM (�, ϑ) Tk(�)

]
dxdt

=
∫ T

0

∫
Ω

ψζ
[
S : R[1ΩTk(�)] − S : R[1ΩTk(�)]

]
dxdt.

We again follow the great lines of Section 3.6.5. Employing the evident properties
of the Riesz transform evoked in formulas (10.103), we may write

∫ T

0

∫
Ω

ψζS : R[1Ω Tk(�)] dxdt

= lim
δ→0+

∫ T

0

∫
Ω

ψω(ϑδ,uδ)Tk(�δ) dxdt

+ lim
δ→0+

∫ T

0

∫
Ω

ψζ(
4
3
μ(ϑδ) + η(ϑδ))divxuTk(�δ) dxdt
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and ∫ T

0

∫
Ω

ψζS : R[1ΩTk(�)] dxdt

=
∫ T

0

∫
Ω

ψω(ϑ,u)Tk(�) dxdt

+
∫ T

0

∫
Ω

ψζ(
4
3
μ(ϑ) + η(ϑ))divxuTk(�) dxdt,

where

ω(ϑ,u) = R :
[
ζμ(ϑ)

(
∇xu + ∇T

x u
)]

− ζμ(ϑ)R :
[
∇xu + ∇T

x u
]
.

Applying Lemma 3.6 to w = ζμ(ϑδ), Z = [∂xiuε,j + ∂xj uε,i]3i=1, j ∈ {1, 2, 3}
fixed, where, according to (3.17–3.18), (3.279), (3.276), the sequences w, Z are
bounded in L2(0, T ; W 1,2(Ω)) and L8/(5−α)((0, T ) × Ω), respectively, we deduce
that

{ω(ϑδ,uδ)}δ>0 is bounded in L1(0, T ; W β,s(Ω)) for certain β ∈ (0, 1), s > 1.
(3.322)

Now, we consider four-dimensional vector fields

Uδ = [Tk(�δ), Tk(�δ)uδ], Vδ = [ω(�δ, ϑδ), 0, 0, 0]

and take advantage of relations (3.253), (3.267), (3.268), (3.270), (3.279), (3.276)
and (3.322) in order to show that Uδ, Vδ verify all hypotheses of the Div-Curl
lemma stated in Proposition 3.3. Using this proposition, we may conclude that

ω(ϑδ,uδ)Tk(�δ) → ω(ϑ,u) Tk(�) = ω(ϑ,u) Tk(�) weakly in L1((0, T ) × Ω),
(3.323)

where we have used (3.285), (3.298) to identify ω(ϑ,u) with ω(ϑ,u).
We thus discover on this level of approximation again the weak compactness

identity for the effective pressure

� Weak Compactness Identity for Effective Pressure (Level δ):

pM (�, ϑ)Tk(�) −
(4

3
μ(ϑ) + η(ϑ)

)
Tk(�)divxu

= pM (�, ϑ) Tk(�) −
(4

3
μ(ϑ) + η(ϑ)

)
Tk(�) divxu. (3.324)

Thus our ultimate goal is to use relation (3.324) in order to show pointwise
convergence of the family of approximate densities {�δ}δ>0. To this end, we revoke



3.7. Vanishing artificial pressure 117

the “renormalized” limit equation (3.294) yielding∫ T

0

∫
Ω

(
�Lk(�)∂tϕ + �Lk(�)u · ∇xϕ − Tk(�)divxuϕ

)
dx dt

= −
∫

Ω

�0Lk(�0)ϕ(0, ·) dx (3.325)

for any test function ϕ ∈ C∞
c ([0, T )× Ω), where we have set

Lk(�) =
∫ �

1

Tk(z)
z2

dz.

Assume, for a moment, that the limit functions �, u also satisfy the equation
of continuity in the sense of renormalized solutions, in particular,∫ T

0

∫
Ω

(
�Lk(�)∂tϕ + �Lk(�)u · ∇xϕ − Tk(�)divxuϕ

)
dx dt

= −
∫

Ω

�0Lk(�0)ϕ(0, ·) dx (3.326)

for any test function ϕ ∈ C∞
c ([0, T )× Ω).

Now, relations (3.325), (3.326) give rise to∫
Ω

(
�Lk(�) − �Lk(�)

)
(τ) dx +

∫ τ

0

∫
Ω

(
Tk(�)divxu − Tk(�)divxu

)
dx dt

=
∫ τ

0

∫
Ω

(
Tk(�)divxu − Tk(�)divxu dx dt for any τ ∈ [0, T ]. (3.327)

As {ϑδ}δ>0 converges strongly in L1 and pM is a non-decreasing function of �, we
can use relation (3.324) to obtain

Tk(�)divxu− Tk(�)divxu ≥ 0.

Letting k → ∞ in (3.327) we obtain

� log(�) = � log(�) a.a. on (0, T ) × Ω, (3.328)

as soon as we are able to show that∫ τ

0

∫
Ω

(
Tk(�)divxu− Tk(�)divxu

)
dx dt → 0 for k → ∞. (3.329)

Relation (3.328) yields
�δ → � in L1((0, T ) × Ω), (3.330)

see Theorem 10.20 in Appendix. This completes the proof of Theorem 3.1.
Note, however, that two fundamental issues have been left open in the pre-

ceding discussion, namely
• the validity of the renormalized equation (3.326),
• relation (3.329).

These two intimately related questions will be addressed in the following section.
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3.7.5 Oscillations defect measure

The oscillations defect measure introduced in [87] represents a basic tool for study-
ing density oscillations. Given a family {�δ}δ>0, a set Q, and q ≥ 1, we introduce:

� Oscillations Defect Measure:

oscq[�δ → �](Q) = sup
k≥1

(
lim sup
δ→0+

∫
Q

∣∣∣Tk(�δ) − Tk(�)
∣∣∣q dx dt

)
, (3.331)

where Tk are the cut-off functions introduced in (3.317).
Assume that

divxu ∈ Lr((0, T )×Ω), oscq[�δ → �]((0, T )×Ω) < ∞, with
1
r

+
1
q

< 1. (3.332)

Seeing that

Tk(�) → �, Tk(�) → � in L1((0, T ) × Ω) for k → ∞,

we conclude easily that (3.332) implies (3.329).
A less obvious statement is the following assertion.

Lemma 3.8. Let Q ⊂ R4 be an open set. Suppose that

�δ → � weakly in L1(Q),

uδ → u weakly in Lr(Q; R3), (3.333)

∇xuδ → ∇xu weakly in Lr(Q; R3×3), r > 1, (3.334)

and

oscq[�δ → �](Q) < ∞ for
1
q

+
1
r

< 1, (3.335)

where �δ, uδ solve the renormalized equation (2.2) in D′(Q).
Then the limit functions �, u solve the renormalized equation (2.2) in D′(Q).

Proof. Clearly, it is enough to show the result on the set J × K, where J is
a bounded time interval and K is a ball such that J × K ⊂ Q. Since �δ is a
renormalized solution of (2.2), we get

Tk(�δ) → Tk(�) in Cweak(J ; Lβ(K)) for any 1 ≤ β < ∞;

whence, by virtue of hypotheses (3.333), (3.334),

Tk(�δ)uδ → Tk(�)u weakly in Lr(J × K; R3).
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Consequently, we deduce

∂tTk(�) + divx

(
Tk(�)u

)
+
(
T ′

k(�)� − Tk(�)
)
divxu

)
= 0 in D′(J × K). (3.336)

Since Tk(�) are bounded, we can apply the regularization technique intro-
duced by DiPerna and Lions [65] (Theorem 10.29), already used in Lemma 3.7, in
order to deduce

∂th(Tk(�)) + divx

(
h(Tk(�))u

)
+
(
h′(Tk(�)) Tk(�) − Tk(�)

)
divxu

= h′(Tk(�))
(
Tk(�) − T ′

k(�)�
)
divxu in D′(J × K),

where h is a continuously differentiable function such that h′(z) = 0 for all z large
enough, say, z ≥ M .

Consequently, it is enough to show

h′(Tk(�))
(
Tk(�) − T ′

k(�)�
)
divxu → 0 in L1(J × K) for k → ∞. (3.337)

To this end, denote

Qk,M = {(t, x) ∈ J × K | |Tk(�)| ≤ M}.

Consequently, ∥∥∥h′(Tk(�))
(
Tk(�) − T ′

k(�)�
)
divxu

∥∥∥
L1(J×K)

(3.338)

≤
(

sup
0≤z≤M

|h′(z)|
)(

sup
δ>0

‖divxuδ‖Lr(J×K)

)
lim inf

δ→0
‖Tk(�δ) − T ′

k(�δ)�δ‖Lr′(Qk,M ),

where 1/r + 1/r′ = 1.
Furthermore, a simple interpolation argument yields

‖Tk(�δ) − T ′
k(�δ)�δ‖Lr′(Qk,M ) (3.339)

≤ ‖Tk(�δ) − T ′
k(�δ)�δ‖β

L1(J×K)‖Tk(�δ) − T ′
k(�δ)�δ‖1−β

Lq(Qk,M ),

with β ∈ (0, 1).
As the family {�δ}δ>0 is equi-integrable, we deduce

sup
δ>0

{
‖Tk(�δ) − T ′

k(�δ)�δ‖L1(J×K)

}
→ 0 for k → ∞. (3.340)

Finally, seeing that |T ′
k(�δ)�δ| ≤ Tk(�δ), we conclude

‖Tk(�δ) − T ′
k(�δ)�δ‖Lq(Qk,M )

≤ 2
(
‖Tk(�δ) − Tk(�)‖Lq(J×K) + ‖Tk(�) − Tk(�)‖Lq(J×K) + ‖Tk(�)‖Lq(Qk,M )

)
≤ 2
(
‖Tk(�δ) − Tk(�)‖Lq(J×K) + oscq[�δ → �](J × K + |J × K| 1q ;
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whence

lim sup
δ→0

‖Tk(�δ) − T ′
k(�δ)�δ‖Lq(Qk,M ) ≤ 4oscq[�δ → �](J × K) + 2M |J × K| 1q .

(3.341)
Clearly, relation (3.337) follows from (3.338–3.341). �

In order to apply Lemma 3.8, we need to establish suitable bounds on
oscq[�δ → �]. To this end, revoking (3.42–3.44) we write

pM (�, ϑ) = d�
5
3 + pm(�, ϑ) + pb(�, ϑ), d > 0, (3.342)

where
∂pm(�, ϑ)

∂�
≥ 0, (3.343)

and
|pb(�, ϑ)| ≤ c(1 + ϑ

5
2 ) (3.344)

for all �, ϑ > 0.
Consequently,

d lim sup
δ→0+

∫ T

0

∫
Ω

ϕ|Tk(�δ) − Tk(�)| 83 dx dt

≤ d

∫ T

0

∫
Ω

ϕ
(
�

5
3 Tk(�) − �

5
3 Tk(�)

)
dx dt

+ d

∫ T

0

∫
Ω

ϕ
(
�

5
3 − �

5
3

)(
Tk(�) − Tk(�)

)
dx dt

≤
∫ T

0

∫
Ω

ϕ
(
pM (�, ϑ)Tk(�) − pM (�, ϑ) Tk(�)

)
dx

+

∣∣∣∣∣
∫ T

0

∫
Ω

ϕ
(
pb(�, ϑ)Tk(�) − pb(�, ϑ) Tk(�)

)
dx dt

∣∣∣∣∣
for any ϕ ∈ C∞

c ((0, T ) × Ω), ϕ ≥ 0, where we have used (3.343), convexity of
� → �

5
3 , and concavity of Tk on [0,∞).

In accordance with the uniform bound (3.270) and (3.344), we have∣∣∣∣∣
∫ T

0

∫
Ω

ϕ
(
pb(�, ϑ)Tk(�) − pb(�, ϑ) Tk(�)

)
dx dt

∣∣∣∣∣ (3.345)

≤ c1

(
1 + sup

δ>0
‖ϑ

5
2
δ ‖L

8
5 ((0,T )×Ω)

)(∫ T

0

∫
Ω

ϕ|Tk(�δ) − Tk(�)| 83 dx dt

) 3
8

≤ c2 lim sup
δ→0

(∫ T

0

∫
Ω

ϕ|Tk(�δ) − Tk(�)| 83 dx dt

) 3
8

.
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Furthermore, introducing a Carathéodory function

Gk(t, x, z) = |Tk(z) − Tk(�(t, x))| 83

we get, in accordance with (3.345),

Gk(·, ·, �) ≤ c
(
1 + pM (�, ϑ)Tk(�)− pM (�, ϑ) Tk(�)

)
, with c independent of k ≥ 1.

Thus, evoking once more (3.324) we infer that

Gk(·, ·, �) ≤ c
(
1 + (

4
3
μ(ϑ) + η(ϑ))(divxu Tk(�) − divxu Tk(�))

)
for all k ≥ 1.

(3.346)
On the other hand, by virtue of hypothesis (3.17) and estimate (3.276), we

get∫ T

0

∫
Ω

(1 + ϑ)−αGk(t, x, �) dx dt (3.347)

≤ c
(
1 + sup

δ>0
‖divxuδ‖

L
8

5−α ((0,T )×Ω)
lim sup
δ→0+

‖Tk(�δ) − Tk(�)‖
L

8
3+α ((0,T )×Ω)

)
≤ c
(
1 + lim sup

δ→0+
‖Tk(�δ) − Tk(�)‖

L
8

3+α ((0,T )×Ω)

)
.

Taking
8

3 + α
< q <

8
3
, β =

3qα

8
and using Hölder’s inequality, we obtain∫ T

0

∫
Ω

|Tk(�δ) − Tk(�)|q dx dt (3.348)

=
∫ T

0

∫
Ω

(1 + ϑ)−β(1 + ϑ)β |Tk(�δ) − Tk(�)|q dx dt

≤ c
( ∫ T

0

∫
Ω

(1 + ϑ)−α|Tk(�δ) − Tk(�)| 83 dx dt +
∫ T

0

∫
Ω

(1 + ϑ)
3αq
8−3q dx dt

)
.

Finally, choosing q such that

8
3 + α

< q ≤ 32
3α + 12

, meaning
3αq

8 − 3q
≤ 4,

we can combine relations (3.347), (3.348), together with estimate (3.270), in order
to conclude that

oscq[�δ → �]((0, T ) × Ω) < ∞ for a certain q >
8

3 + α
. (3.349)
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Relation (3.349) together with (3.276) allow us to apply Lemma 3.8 in order
to conclude that

• the limit functions � u satisfy the renormalized equation (3.326),
• relation (3.329) holds.

Thus we have rigorously justified the strong convergence of {�δ}δ>0 claimed in
(3.330). The proof of Theorem 3.1 is complete.

3.8 Regularity properties of the weak solutions

The reader will have noticed that the weak solutions constructed in the course of
the proof of Theorem 3.1 enjoy slightly better regularity and integrability proper-
ties than those required in Section 2.1. As a matter of fact, the uniform bounds
obtained above can be verified for any weak solution of the Navier-Stokes-

Fourier system in the sense of Section 2.1 and not only for the specific one
resulting from our approximation procedure. Similarly, the restrictions on the
geometry of the spatial domain can be considerably relaxed and other types of
domains, for instance, the periodic slab, can be handled.

� Regularity of the Weak Solutions:

Theorem 3.2. Let Ω ⊂ R3 be a bounded Lipschitz domain. Assume the data �0,
(�u)0, E0, (�s)0, the source terms f , Q, the thermodynamic functions p, e, s, and
the transport coefficients μ, η, κ satisfy the structural hypotheses (3.1–3.23) listed
in Section 3.1. Let {�,u, ϑ} be a weak solution to the Navier-Stokes-Fourier system
on (0, T ) × Ω in the sense specified in Section 2.1.

Then, in addition to the minimal integrability and regularity properties re-
quired in (2.5–2.6), (2.13–2.15), (2.30–2.31), there holds:

(i) � ∈ Cweak([0, T ]; L
5
3 (Ω)) ∩ C([0, T ]; L1(Ω)),

(3.350)
�u ∈ Cweak([0, T ]; L

5
4 (Ω)),

ϑ ∈ L2(0, T ; W 1,2(Ω)) ∩ L∞(0, T ; L4(Ω)),

log ϑ ∈ L2(0, T ; W 1,2(Ω)),
(3.351)

{
S(ϑ,∇xu) ∈ Lq((0, T ) × Ω; R3×3) for a certain q > 1,

u ∈ Lq(0, T ; W 1,p(Ω; R3)) for q = 6
4−α , p = 18

10−α ,

}
(3.352)

{
� ∈ Lq((0, T )× Ω) for a certain q > 5

3 ,

p(�, ϑ) ∈ Lq((0, T )× Ω) for a certain q > 1.

}
(3.353)
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(ii) The total kinetic energy
∫
Ω

|�u|2
� 1{�>0} dx is lower semicontinuous on (0, T ),

left lower semicontinuous at T and right lower semicontinuous at 0; in par-
ticular

lim inf
t→0+

(∫
Ω

|�u|2
�

1{�>0} dx
)
(t) ≥

∫
Ω

|(�u)0|2
�0

1{�0>0} dx. (3.354)

(iii) The entropy satisfies{
ess limt→0+

∫
Ω

�s(�, ϑ)(t, ·)ϕdx ≥
∫
Ω

�0s(�0, ϑ0)ϕdx

for any ϕ ∈ C∞
c (Ω), ϕ ≥ 0.

}
(3.355)

If, in addition, ϑ0 ∈ W 1,∞(Ω), then

ess lim
t→0+

∫
Ω

�s(�, ϑ)(t, ·)ϕdx =
∫

Ω

�0s(�0, ϑ0)ϕdx, for all ϕ ∈ C∞
c (Ω).

(3.356)

Proof. Step 1. Unlike the proof of existence based on the classical theory of
parabolic equations requiring Ω to be a regular domain, the integrability proper-
ties (3.350–3.353) of the weak solutions follow directly from the total dissipation
balance (2.52) and the space-time pressure estimates obtained by means of the
operator B ≈ div−1

x introduced in Section 2.2.5; for more details, see estimates
(2.40), (2.46), (2.66), (2.68), (2.73), (2.96) and (2.98). In particular, it is enough
to assume Ω ⊂ R3 to be a bounded Lipschitz domain.

Step 2. Strong continuity in time of the density claimed in (3.350) is a general
property of the renormalized solutions that follows from the DiPerna and Lions
transport theory [65], see Lemma 10.14 in Appendix. Once � ∈ C([0, T ]; L1(Ω)))∩
Cweak([0, T ]; L

5
3 (Ω)), we deduce from the momentum equation (2.9) and estimates

(3.351–3.353) that one may take a representative of u ∈ Lq(0, T ; W 1,p(Ω)) such
that m := �u ∈ Cweak([0, T ]; L

5
4 (Ω; R3)). In addition, we may infer from the

inequality

‖m(t)‖2

L
5
4 (Ω)

≤ ‖�(t)‖
L

5
3 (Ω)

‖�(t)|u(t)|2‖L∞(0,T ;L1(Ω)), t ∈ [0, T ]

that m(t) vanishes almost anywhere on the set {x ∈ Ω | �(t) = 0}. The expression
|m(t)|2

�(t) 1{�(t)>0} is therefore defined for all t ∈ [0, T ] and is equal to �|u|2(t) a.a. on
(0, T ).

Since
∫
Ω

|m(t)|2
�(t)+ε dx ≤ ‖�u‖L∞(0,T ;L1(Ω)) uniformly with ε → 0+, we deduce

by the Beppo-Lévi monotone convergence theorem that∫
Ω

|m(t)|2
�(t) + ε

dx →
∫

Ω

|m(t)|2
�(t)

1{�(t)>0} dx < ∞ for all t ∈ [0, T ].
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This information together with (3.350) guarantees m(t)/
√

�(t) + ε ∈ Cweak([0, T ];
L2(Ω)). Therefore, for any α > 0 and sufficiently small 0 < ε < ε(α), and for any
τ ∈ [0, T ),∫

Ω

|m(τ)|2
�(τ)

1{�(τ)>0} dx − α ≤
∫

Ω

|m(τ)|2
�(τ) + ε

dx

≤ lim inf
t→τ+

∫
Ω

|m(t)|2
�(t)

1{�(t)>ε} dx ≤ lim inf
t→τ+

∫
Ω

|m(t)|2
�(t)

1{�(t)>0} dx,

where, to justify the inequality in the middle, we have used (3.350) and the lower
weak semicontinuity of convex functionals discussed in Theorem 10.20 in Ap-
pendix. We have completed the proof of lower semicontinuity in time of the total
kinetic energy, and, in particular, formula (3.354).

Step 3. In agreement with formulas (1.11–1.12), we deduce from the entropy bal-
ance (2.27) that

[�s(�, ϑ)](τ+) ∈ M+(Ω), τ ∈ [0, T ), [�s(�, ϑ)](τ−) ∈ M+(Ω), τ ∈ (0, T ],
[�s(�, ϑ)](τ+) ≥ [�s(�, ϑ)](τ−), τ ∈ (0, T ),

where the measures [�s(�, ϑ)](τ+), τ ∈ [0, T ) and [�s(�, ϑ)](τ−), τ ∈ (0, T ] are
defined in the following way:

〈[�s(�, ϑ)](τ±); ζ〉[M;C](Ω) := lim
δ→0+

∫
I±

τ,δ

∫
Ω

[�s(�, ϑ)](t)[ψτ,±
δ ]′(t)ζ dxdt

=
∫

Ω

�0s(�0, ϑ0)ζ dx + lim
δ→0+

〈
σ; ψ(τ,±)

δ ζ
〉

[M;C]([0,T ]×Ω)
(3.357)

+
∫

Ω

�0s(�0, ϑ0)ζ dx +
∫ τ

0

∫
Ω

(
�s(�, ϑ)u +

q
ϑ

)
· ∇xζ dx +

∫ τ

0

∫
Ω

Q
ϑ

ζ dx.

In this formula, ζ ∈ C(Ω), I+
τ,δ = (τ, τ + δ), I−τ,δ = (τ − δ, τ) and ψ

(τ,±)
δ ∈ C1(R)

are non-increasing functions such that

ψ
(τ,+)
δ (t) =

{
1 if t ∈ (−∞, τ),

0 if t ∈ [τ + δ,∞),

}
, ψ

(τ,−)
δ (t) =

{
1 if t ∈ (−∞, τ − δ),

0 if t ∈ [τ,∞),

}
.

According to the theorem about the Lebesgue points applied to function �s(�, ϑ)
(belonging to L∞(0, T ; L1(Ω)), we may infer

〈[�s(�, ϑ)](τ−); ζ〉[M;C](Ω) = 〈[�s(�, ϑ)](τ+); ζ〉[M;C](Ω) (3.358)

=
∫

Ω

[�s(�, ϑ)](τ)ζ dx, ζ ∈ C∞
c (Ω), ζ ≥ 0 for a.a. τ ∈ (0, T ).
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Letting δ → 0+ in (3.357), we obtain∫
Ω

[�s(�, ϑ)](τ+)ζ dx − 〈σ; ζ〉[M;C]([0,τ ]×Ω) (3.359)

=
∫

Ω

�0s(�0, ϑ0)ζ dx +
∫ τ

0

∫
Ω

(
�
Q
ϑ

ζ + (�s(�, ϑ)u +
q
ϑ

) · ∇xζ

)
dx.

In the remaining part of the proof, we shall show that

ess lim
τ→0+

〈σ; ζ〉[M;C]([0,τ ]×Ω) = 0. (3.360)

Step 4. To this end we employ in the entropy balance (2.27) the test function
ϕ(t, x) = ψ

(τ,+)
δ (t)ϑ0(x), τ ∈ (0, T ), which is admissible provided ϑ0 ∈ W 1,∞(Ω).

Using additionally (3.358), we get∫
Ω

([�s(�, ϑ)](τ) − �0s(�0, ϑ0))ϑ0 dx (3.361)

= 〈σ; ϑ0〉[M;C]([0,τ ]×Ω) +
∫ τ

0

∫
Ω

(
�s(�, ϑ)u +

q
ϑ

)
· ∇xϑ0 dx +

∫ τ

0

∫
Ω

Q
ϑ

ϑ0 dx

for a.a. τ ∈ (0, T ). On the other hand, the total energy balance (2.22) with the
test function ψ = ψ

(τ,+)
δ yields∫

Ω

(
[
1
2�

|�u|2 + �e(�, ϑ)](τ) − [
1

2�0
|�0u0|2 + �0e(�0, ϑ0)]

)
dx

=
∫ τ

0

∫
Ω

(�fu + �Q) dxdt (3.362)

for a.a. τ ∈ (0, T ). Now, we introduce the Helmholtz function

Hϑ0(�, ϑ) = �e(�, ϑ) − ϑ0�s(�, ϑ)

and combine (3.361–3.362) to get∫
Ω

(
[
1
2�

|�u|2](τ) − 1
2�0

|�0u0|2
)

dx +
∫

Ω

[Hϑ0(�, ϑ) − Hϑ0(�, ϑ0)](τ) dx

+
∫

Ω

(
Hϑ0(�(τ), ϑ) − Hϑ0(�0, ϑ0) − (�(τ) − �0)

∂Hϑ0

∂�
(�0, ϑ0)

)
dx

+
∫

Ω

(�(τ) − �0)
∂Hϑ0

∂�
(�0, ϑ0) dx + 〈σ; ϑ0〉[M;C]([0,τ ]×Ω)

=
∫ τ

0

∫
Ω

(
�fu + �Q

(
1 − ϑ0

ϑ

)
−
(
�s(�, ϑ)u +

q
ϑ

)
· ∇ϑ0

)
dxdt (3.363)

for a.a. τ in (0, T ).
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It follows from the thermodynamic stability hypothesis (1.44) that � →
Hϑ0(�, ϑ0) is strictly convex for any fixed ϑ0 and that ϑ → Hϑ0(�, ϑ) attains
its global minimum at ϑ0, see Section 2.2.3 for more details. Consequently,

Hϑ0(�, ϑ) − Hϑ0(�, ϑ0) ≥ 0,

Hϑ0(�, ϑ) − Hϑ0(�0, ϑ0) − (� − �0)
∂Hϑ0

∂�
(�0, ϑ0) ≥ 0.

Moreover, due to the strong continuity of density with respect to time stated in
(3.350), we show

limτ→0+

∫
Ω

(�(τ) − �0)
∂Hϑ0

∂�
(�0, ϑ0) dx = 0,

while the last integral at the right-hand side of (3.363) tends to 0 as τ → 0+ since
the integrand belongs to L1((0, T )×Ω). Thus, relation (3.363) reduces in the limit
τ → 0+ to

ess lim
τ→0+

〈σ; ϑ0〉[M;C]([0,τ ]×Ω) ,

whence ess limτ→0+σ
[
[0, τ ] × Ω

]
= 0 and (3.360) follows. Having in mind identity

(3.358), statement (3.356) now follows by letting τ → 0+ in (3.359) (evidently, the
right-hand side in (3.359) tends to zero as the integrand belongs to L1((0, T )×Ω)).

Theorem 3.2 is proved. �



Chapter 4

Asymptotic Analysis –
An Introduction

The extreme generality of the full Navier-Stokes-Fourier system whereby the
equations describe the entire spectrum of possible motions – ranging from sound
waves, cyclone waves in the atmosphere, to models of gaseous stars in astrophysics
– constitutes a serious defect of the equations from the point of view of applica-
tions. Eliminating unwanted or unimportant modes of motion, and building in the
essential balances between flow fields, allow the investigator to better focus on a
particular class of phenomena and to potentially achieve a deeper understanding
of the problem. Scaling and asymptotic analysis play an important role in this ap-
proach. By scaling the equations, meaning by choosing appropriately the system of
the reference units, the parameters determining the behavior of the system become
explicit. Asymptotic analysis provides a useful tool in the situations when certain
of these parameters called characteristic numbers vanish or become infinite.

The main goal of many studies devoted to asymptotic analysis of various
physical systems is to derive a simplified set of equations solvable either ana-
lytically or at least with less numerical effort. Classical textbooks and research
monographs (see Gill [97], Pedlosky [171], Zeytounian [204], [206], among others)
focus mainly on the way the scaling arguments together with other characteristic
features of the data may be used in order to obtain, mostly in a very formal way, a
simplified system, leaving aside the mathematical aspects of the problem. In par-
ticular, the existence of classical solutions is always tacitly anticipated, while exact
results in this respect are usually in short supply. In fact, not only has the prob-
lem not been solved, it is not clear that in general smooth solutions exist. This
concerns both the primitive Navier-Stokes-Fourier system and the target
systems resulting from the asymptotic analysis. Notice that even for the “simple”
incompressible Navier-Stokes system, the existence of regular solutions repre-
sents an outstanding open problem (see Fefferman [77]). Consequently, given the
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recent state of the art, a rigorous mathematical treatment without any unnecessary
restrictions on the size of the observed data as well as the length of the time inter-
val must be based on the concept of weak solutions defined in the spirit of Chapter
2. Although suitability of this framework might be questionable because of possi-
ble loss of information due to its generality, we show that this class of solutions is
sufficiently robust to perform various asymptotic limits and to recover a number of
standard models in mathematical fluid mechanics (see Sections 4.2–4.4). Accord-
ingly, the results presented in this book can be viewed as another piece of evidence
in support of the mathematical theory based on the concept of weak solutions.

In the following chapters, we provide a mathematical justification of several
up to now mostly formal procedures, hope to shed some light on the way the sim-
plified target problems can be derived from the primitive system under suitable
scaling, and, last but not least, contribute to further development of the related
numerical methods. We point out that formal asymptotic analysis performed with
respect to a small (large) parameter tells us only that certain quantities may be
negligible in certain regimes because they represent higher order terms in the
(formal) asymptotic expansion. However, the specific way, i.e., how they are fil-
tered off is very often more important than the limit problem itself. A typical
example is the high frequency acoustic waves in meteorological models that may
cause the failure of certain numerical schemes. An intuitive argument states that
such sizeable elastic perturbations cannot establish themselves permanently in the
atmosphere as the fast acoustic waves rapidly redistribute the associated energy
and lead to an equilibrium state void of acoustic modes. Such an idea anticipates
the existence of an unbounded physical space with a dominating dispersion effect.
However any real physical as well as computational domain is necessarily bounded
and the interaction of the acoustic waves with its boundary represents a serious
problem from both analytical and numerical points of view, unless the domain is
large enough with respect to the characteristic speed of sound in the fluid. Rele-
vant discussion of these issues appears formally in Section 4.4, and, at a rigorous
mathematical level, in Chapters 7, 8 below. As we shall see, the problem involves
an effective interaction of two different time scales, namely the slow time motion
of the background incompressible flow interacting with the fast time propagation
of acoustic waves through the convective term in the momentum equation. This is
an intrinsic physical feature that requires the use of adequate mathematical tech-
niques in order to handle the fast time oscillations (see Chapter 9). In particular,
such a problem lies beyond the scope of the standard methods based on formal
asymptotic expansions.

The key idea pursued in this book is that besides justifying a number of im-
portant models, the asymptotic analysis carried out in a rigorous way provides a
considerably improved insight into their structure. The purpose of this introduc-
tory chapter is to identify some of the basic problems arising in the asymptotic
analysis of the complete Navier-Stokes-Fourier system along with the rele-
vant limit equations. To begin, we introduce a rescaled system expressed in terms
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of dimensionless quantities and identify a sample of characteristic numbers. The
central issue addressed in this study is the passage from compressible to incom-
pressible fluid models. In particular, we always assume that the speed of sound
dominates the characteristic speed of the fluid, the former approaching infinity in
the asymptotic limit (see Chapter 5). In addition, we study the effect of strong
stratification that is particularly relevant in some models arising in astrophysics
(see Chapter 6). Related problems concerning the propagation of acoustic waves
in large domains and their interaction with the physical boundary are discussed
in Chapters 7, 8. Last but not least, we did not fail to notice a close relation be-
tween the asymptotic analysis performed in this book and the method of acoustic
analogies used in engineering problems (see Chapter 9).

4.1 Scaling and scaled equations

For the physical systems studied in this book we recognize four fundamental di-
mensions: Time, Length, Mass, and Temperature. Each physical quantity that
appears in the governing equations can be measured in units expressed as a prod-
uct of fundamental ones.

The field equations of the Navier-Stokes-Fourier system in the form
introduced in Chapter 1 do not reveal anything more than the balance laws of
certain quantities characterizing the instantaneous state of a fluid. In order to get
a somewhat deeper insight into the structure of possible solutions, we can identify
characteristic values of relevant physical quantities: the reference time Tref , the
reference length Lref , the reference density �ref , the reference temperature ϑref ,
together with the reference velocity Uref , and the characteristic values of other
composed quantities pref , eref , μref , ηref , κref , and the source terms fref , Qref .
Introducing new independent and dependent variables X ′ = X/Xref and omitting
the primes in the resulting equations, we arrive at the following scaled system.

� Scaled Navier-Stokes-Fourier System:

Sr ∂t� + divx(�u) = 0, (4.1)

Sr ∂t(�u) + divx(�u ⊗ u) +
1

Ma2∇xp =
1

Re
divxS +

1
Fr2

�f , (4.2)

Sr ∂t(�s) + divx(�su) +
1
Pe

divx

(q
ϑ

)
= σ + Hr�

Q
ϑ

, (4.3)

together with the associated total energy balance

Sr
d
dt

∫ (Ma2

2
�|u|2 + �e

)
dx =

∫ (Ma2

Fr2
�f · u + Hr�Q

)
dx. (4.4)
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Here, in accordance with the general principles discussed in Chapter 1, the ther-
modynamic functions p = p(�, ϑ), e = e(�, ϑ), and s = s(�, ϑ) are interrelated
through Gibbs’ equation

ϑDs(�, ϑ) = De(�, ϑ) + p(�, ϑ)D
(1

�

)
, (4.5)

while

S = μ
(
∇xu + ∇T

x u − 2
3
divxuI

)
+ ηdivxuI, (4.6)

q = −κ∇xϑ, (4.7)

and

σ =
1
ϑ

(Ma2

Re
S : ∇xu − 1

Pe
q · ∇xϑ

ϑ

)
. (4.8)

Note that relation (4.5) requires satisfaction of a natural compatibility condition

pref = �referef . (4.9)

The above procedure gives rise to a sample of dimensionless characteristic
numbers listed below.

� Symbol � Definition � Name

Sr Lref/(TrefUref) Strouhal number

Ma Uref/
√

pref/�ref Mach number
Re �refUrefLref/μref Reynolds number
Fr Uref/

√
Lreffref Froude number

Pe prefLrefUref/(ϑrefκref) Péclet number
Hr �refQrefLref/(prefUref) Heat release parameter

The set of the chosen characteristic numbers is not unique, however, the max-
imal number of independent ones can be determined by means of Buckingham’s
Π-theorem (see Curtis et al. [51]).

Much of the subject to be studied in this book is motivated by the situation,
where one or more of these parameters approach zero or infinity, and, consequently,
the resulting equations contain singular terms. The Strouhal number Sr is often
set to unity in applications; this implies that the characteristic time scale of flow
field evolution equals the convection time scale Lref/Uref . Large Reynolds number
characterizes turbulent flows, where the mathematical structure is far less under-
stood than for the “classical” systems. Therefore we concentrate on a sample of
interesting and physically relevant cases, with Sr = Re = 1, the characteristic
features of which are shortly described in the rest of this chapter.
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4.2 Low Mach number limits

In many real world applications, such as atmosphere-ocean flows, fluid flows in en-
gineering devices and astrophysics, velocities are small compared with the speed
of sound proportional to 1/

√
Ma in the scaled Navier-Stokes-Fourier sys-

tem. This fact has significant impact on both exact solutions to the governing
equations and their numerical approximations. Physically, in the limit of vanish-
ing flow velocity or infinitely fast speed of sound propagation, the elastic features
of the fluid become negligible and sound-wave propagation insignificant. The low
Mach number regime is particularly interesting when accompanied simultaneously
with smallness of other dimensionless parameters such as Froude, Reynolds, and/or
Péclet numbers. When the Mach number Ma approaches zero, the pressure is al-
most constant while the speed of sound tends to infinity. If, simultaneously, the
temperature tends to a constant, the fluid is driven to incompressibility. If, in ad-
dition, the Froude number is small, specifically if Fr ≈

√
Ma, a formal asymptotic

expansion produces a well-known model – the Oberbeck-Boussinesq approx-

imation – probably the most widely used simplification in numerous problems in
fluid dynamics (see also the introductory part of Chapter 5). An important con-
sequence of the heating process is the appearance of a driving force in the target
system, the size of which is proportional to the temperature.

In most applications, we have

f = ∇xF,

where F = F (x) is a given potential. Taking Ma = ε, Fr =
√

ε, and keeping all
other characteristic numbers of order unity, we formally write

� = � + ε�(1) + ε2�(2) + · · · ,

u = U + εu(1) + ε2u(2) + · · · ,

ϑ = ϑ + εϑ(1) + ε2ϑ(2) + · · · .

(4.10)

Regrouping the scaled system with respect to powers of ε, we get, again formally
comparing terms of the same order,

∇xp(�, ϑ) = 0. (4.11)

Of course, relation (4.11) does not imply that both � and ϑ must be constant;
however, since we are primarily interested in solutions defined on large time in-
tervals, the necessary uniform estimates on the velocity field have to be obtained
from the dissipation equation introduced and discussed in Section 2.2.3. In partic-
ular, the entropy production rate σ = σε is to be kept small of order ε2 ≈ Ma2.
Consequently, as seen from (4.7), (4.8), the quantity ∇xϑ vanishes in the asymp-
totic limit ε → 0. It is therefore natural to assume that ϑ is a positive constant;
whence, in agreement with (4.11),

� = const in Ω
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as soon as the pressure is a strictly monotone function of �. The fact that the
density � and the temperature ϑ will be always considered in a vicinity of a
thermodynamic equilibrium (�, ϑ) is an inevitable hypothesis in our approach to
singular limits based on the concept of weak solution and energy estimates “in-
the-large”.

Neglecting all terms of order ε and higher in (4.1–4.4), we arrive at the
following system of equations.

� Oberbeck-Boussinesq Approximation:

divxU = 0, (4.12)

�
(
∂tU + divx(U ⊗ U)

)
+ ∇xΠ = divx

(
μ(ϑ)(∇xU + ∇T

x U)
)

+ r∇xF, (4.13)

�cp(�, ϑ)
(
∂tΘ + divx(ΘU)

)
− divx(GU) − divx(κ(ϑ)∇xΘ) = 0, (4.14)

where
G = � ϑα(�, ϑ)F, (4.15)

and
r + �α(�, ϑ)Θ = 0. (4.16)

Here r can be identified with �(1) modulo a multiple of F , while Θ = ϑ(1). The
specific heat at constant pressure cp is evaluated by means of the standard ther-
modynamic relation

cp(�, ϑ) =
∂e

∂ϑ
(�, ϑ) + α(�, ϑ)

ϑ

�

∂p

∂ϑ
(�, ϑ), (4.17)

where the coefficient of thermal expansion α reads

α(�, ϑ) =
1
�

∂ϑp

∂�p
(�, ϑ). (4.18)

An interesting issue is a proper choice of the initial data for the limit system.
Note that, in order to obtain a non-trivial dynamics, it is necessary to consider gen-
eral �(1), ϑ(1), in particular, the initial values �(1)(0, ·), ϑ(1)(0, ·) must be allowed
to be large. According to the standard terminology, such a stipulation corresponds
to the so-called ill-prepared initial data in contrast with the well-prepared data for
which

�(0, ·) − �

ε
≈ �

(1)
0 ,

ϑ(0, ·) − ϑ

ε
≈ ϑ

(1)
0 provided ε → 0,

where �
(1)
0 , ϑ

(1)
1 are related to F through

∂p

∂�
(�, ϑ)�(1)

0 +
∂p

∂ϑ
(�, ϑ)ϑ(1)

0 = �F

(cf. Theorem 5.3 in Chapter 5).
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Moreover, as we shall see in Chapter 5 below, the initial distribution of the
temperature Θ in (4.14) is determined in terms of both �(1)(0, ·) and ϑ(1)(0, ·).
In particular, the knowledge of �(1) – a quantity that “disappears” in the target
system – is necessary in order to determine Θ ≈ ϑ(1). The piece of information pro-
vided by the initial distribution of the temperature for the full Navier-Stokes-

Fourier system is not transferred entirely on the target problem because of the
initial-time boundary layer. This phenomenon is apparently related to the prob-
lem termed by physicists the unsteady data adjustment (see Zeytounian [205]). For
further discussion see Section 5.5.

The low Mach number asymptotic limit in the regime of low stratification is
studied in Chapter 5.

4.3 Strongly stratified flows

Stratified fluids whose densities, sound speed as well as other parameters are
functions of a single depth coordinate occur widely in nature. Several so-called
mesoscale regimes in the atmospheric modeling involve flows of strong stable strat-
ification but weak rotation. Numerous observations, numerical experiments as well
as purely theoretical studies to explain these phenomena have been recently sur-
veyed in the monograph by Majda [147].

From the point of view of the mathematical theory discussed in Section 4.1,
strong stratification corresponds to the choice

Ma = Fr = ε.

Similarly to the above, we write

� = �̃ + ε�(1) + ε2�(2) + · · · ,

u = U + εu(1) + ε2u(2) + · · · ,

ϑ = ϑ + εϑ(1) + ε2ϑ(2) + · · · .

Comparing terms of the same order of the small parameter ε in the Navier-

Stokes-Fourier System (4.1–4.4) we deduce

� hydrostatic balance equation:

∇xp(�̃, ϑ) = �̃∇xF, (4.19)

where we have assumed the driving force in the form f = ∇xF , F = F (x3) de-
pending solely on the depth coordinate x3. Here the temperature ϑ is still assumed
constant, while, in sharp contrast with (4.11), the equilibrium density �̃ depends
effectively on the depth (vertical) coordinate x3.



134 Chapter 4. Asymptotic Analysis – An Introduction

Accordingly, the standard incompressibility conditions (4.12) has to be re-
placed by

� Anelastic Constraint:

divx(�̃U) = 0 (4.20)

– a counterpart to the equation of continuity in the asymptotic limit.
In order to identify the asymptotic form of the momentum equation, we

assume, for a while, that the pressure p is given by the standard perfect gas state
equation:

p(�, ϑ) = R�ϑ. (4.21)

Under these circumstances, the zeroth order terms in (4.2) give rise to

∂t(�̃U) + divx(�̃U⊗ U) + �̃∇xΠ (4.22)

= μ(ϑ)ΔU +
(1

3
μ(ϑ) + η(ϑ)

)
∇xdivxU − ϑ(2)

ϑ
�̃∇xF.

Note that, similarly to Section 4.2, the quantities �(1), ϑ(1) satisfy the Boussinesq
relation

�̃∇x

(�(1)

�̃

)
+ ∇x

( �̃

ϑ
ϑ(1)
)

= 0,

which, however, does not seem to be of any practical use here. Instead we have to
determine ϑ(2) by means of the entropy balance (4.3).

In the absence of the source Q, comparing the zeroth order terms in (4.3)
yields

divx(�̃s(�̃, ϑ)U) = 0.

However, this relation is compatible with (4.20) only if

U3 ≡ 0. (4.23)

In such a case, the system of equations (4.20–4.22) coincides with the so-
called layered two-dimensional incompressible flow equations in the limit of strong
stratification studied by Majda [147, Section 6.1]. The flow is layered horizon-
tally, whereas the motion in each layer is governed by the incompressible Navier-

Stokes equations, the vertical stacking of the layers is determined through the
hydrostatic balance, and the viscosity induces transfer of horizontal momentum
through vertical variations of the horizontal velocity.

An even more complex problem arises when, simultaneously, the Péclet num-
ber Pe is supposed to be small, specifically, Pe = ε2. A direct inspection of the
entropy balance equation (4.3) yields, to begin with,

ϑ(1) ≡ 0,
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and, by comparison of the terms of zeroth order,

�̃∇xF · U + κ(ϑ)Δϑ(2) = 0. (4.24)

Equations (4.20–4.22), together with (4.24), form a closed system introduced
by Chandrasekhar [43] as a simple alternative to the Oberbeck-Boussinesq

approximation when both Froude and Péclet numbers are small. More recently,
Ligniéres [135] identified a similar system as a suitable model of flow dynamics in
stellar radiative zones. Indeed, under these circumstances, the fluid behaves as a
plasma characterized by the following features:

(i) a strong radiative transport predominates the molecular one; therefore the
Péclet number is expected to be vanishingly small;

(ii) a strong stratification effect due to the enormous gravitational potential of
gaseous celestial bodies determines many of the properties of the fluid in the
large;

(iii) the convective motions are much slower than the speed rendering the Mach
number small.

In conclusion, it is worth noting that system (4.20–4.22) represents the so-
called Anelastic Approximation introduced by Ogura and Phillipps [167], and
Lipps and Hemler [145]. The low Mach number limits for strongly stratified fluids
are examined in Chapter 6.

4.4 Acoustic waves

Acoustic waves, as their proper name suggests, are intimately related to compress-
ibility of the fluid and as such should definitely disappear in the incompressible
limit regime. Accordingly, the impact of the acoustic waves on the fluid motion is
neglected in a considerable number of practical applications. On the other hand,
a fundamental issue is to understand the way the acoustic waves disappear and
to what extent they may influence the motion of the fluid in the course of the
asymptotic limit.

4.4.1 Low stratification

The so-called acoustic equation provides a useful link between the first-order terms
�(1), ϑ(1), and the zeroth order velocity field U introduced in the formal asymptotic
expansion (4.10). Introducing the fast time variable τ = t/ε and neglecting terms
of order ε and higher in (4.1–4.3), we deduce

∂τ�(1) + divx(�U) = 0,

∂τ (�U) + ∇x

[
∂�p(�, ϑ)�(1) + ∂ϑp(�, ϑ)ϑ(1) − �F

]
= 0,

∂τ

[
∂�s(�, ϑ)�(1) + ∂ϑs(�, ϑ)ϑ(1)

]
= 0.

⎫⎪⎪⎬
⎪⎪⎭ (4.25)
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Thus after a simple manipulation we easily obtain

� Acoustic Equation:

∂τ r + divxV = 0,

∂τV + ω∇xr = 0,
(4.26)

where we have set

r =
1
ω

(
∂�p(�, ϑ)�(1) + ∂ϑp(�, ϑ)ϑ(1) − �F

)
, V = �U,

ω = ∂�p(�, ϑ) +
|∂ϑp(�, ϑ)|2
�2∂ϑs(�, ϑ)

.

System (4.26) can be viewed as a wave equation, where the wave speed
√

ω is
a real number as soon as the hypothesis of thermodynamic stability (1.44) holds.
Moreover, the kernel N of the generator of the associated evolutionary system
reads

N = {(r,V) | r = const, divxV = 0}. (4.27)

Consequently, decomposing the vector field V in the form

V = H[V]︸ ︷︷ ︸
solenoidal part

+ H⊥[V]︸ ︷︷ ︸
gradient part

, where divxH[V] = 0, H⊥[V] = ∇xΨ

(cf. Section 10.6 and Theorem 10.12 in Appendix), system (4.26) can be recast as

∂τ r + ΔΨ = 0,

∂τ (∇xΨ) + ω∇xr = 0.
(4.28)

Returning to the original time variable t = ετ we infer that the rapidly
oscillating acoustic waves are supported by the gradient part of the fluid velocity,
while the time evolution of the solenoidal component of the velocity field remains
essentially constant in time, being determined by its initial distribution. In terms of
stability of the original system with respect to the parameter ε → 0, this implies
strong convergence of the solenoidal part H[uε], while the gradient component
H⊥[uε] converges, in general, only weakly with respect to time. Here and in what
follows, the subscript ε refers to quantities satisfying the scaled primitive system
(4.1–4.3). The hypothetical oscillations of the gradient part of the velocity field
reveal one of the fundamental difficulties in the analysis of asymptotic limits in
the present study, namely the problem of “weak compactness” of the convective
term divx(�εuε ⊗ uε).

Writing

divx(�εuε ⊗ uε) ≈ divx(�uε ⊗ uε)
= � divx(uε ⊗ H[uε]) + � divx(H[uε] ⊗∇xΨε)

+
1
2
�∇x|∇xΨε|2 + � ΔΨε∇xΨε,
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where we have set Ψε = H⊥[uε], we realize that the only problematic term is
ΔΨε∇xΨε, as the remaining quantities are either weakly pre-compact or can be
written as a gradient of a scalar function, therefore irrelevant in the target system
(4.12), (4.13), where they can be incorporated in the pressure.

A bit naive approach to solving this problem would be to rewrite the material
derivative in (4.13) by means of (4.12) in the form

∂t(�εuε) + divx(�εuε ⊗ uε) = �ε∂tuε + �εuε · ∇xuε ≈ �∂tuε + �uε · ∇xuε

≈ �∂tuε + �uε · ∇xH[uε] + �H[uε] · ∇xH⊥[uε] + �
1
2
∇x|∇xΨε|2.

Unfortunately, in the framework of the weak solutions, such a step is not allowed
at least in a direct fashion.

Alternatively, we can use the acoustic equation (4.28) in order to see that

ΔΨε∇xΨε = −∂τ (rε∇xΨε) −
ω

2
∇xr2

ε = −ε∂t(rε∇xΨε) −
ω

2
∇xr2

ε ,

where the former term on the right-hand side is pre-compact (in the sense of
distributions) while the latter is a gradient. This is the heart of the so-called local
method developed in the context of isentropic fluid flows by Lions and Masmoudi
[141].

4.4.2 Strong stratification

Propagation of the acoustic waves becomes more complex in the case of a strongly
stratified fluid discussed in Section 4.3. Similarly to Section 4.4.1, introducing the
fast time variable τ = t/ε and supposing the pressure in the form p = �ϑ, we
deduce the acoustic equation in the form

∂τr +
1
�̃
divxV = 0,

∂τV + ϑ �̃∇xr + ∇x(�̃ϑ(1)) = 0,

(4.29)

where we have set r = �(1)/�̃, V = �̃U.
Assuming, in addition, that Pe = ε2 we deduce from (4.3) that ϑ(1) ≡ 0;

whence equation (4.29) reduces to

� Stratified Acoustic Equation:

∂τr +
1
�̃
divxV = 0,

∂τV + ϑ �̃∇xr = 0.

⎫⎬
⎭ (4.30)

Apparently, in sharp contrast with (4.26), the wave speed in (4.30) depends effec-
tively on the vertical coordinate x3.
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4.4.3 Attenuation of acoustic waves

There are essentially three rather different explanations why the amplitude of the
acoustic waves should be negligible.

Well-prepared vs. ill-prepared initial data. For the sake of simplicity, assume
that F = 0 in (4.25). A proper choice of the initial data for the primitive system
can eliminate the effect of acoustic waves as the acoustic equation preserves the
norm in the associated energy space. More specifically, taking

�(1)(0, ·) ≈ ϑ(1)(0, ·) ≈ 0, U(0, ·) ≈ V,

where V is a solenoidal function, we easily observe that the amplitude of the
acoustic waves remains small uniformly in time. As a matter of fact, the problem is
more complex, as the “real” acoustic equation obtained in the course of asymptotic
analysis contains forcing terms of order ε, that are not negligible in the “slow”
time of the limit system. These issues are discussed in detail in Chapter 9.

Moreover, we point out that, in order to obtain an interesting limit problem,
we need

ϑ(1) ≈ Θ

to be large (see Section 4.2). Consequently, the initial data for the primitive sys-
tem considered in this book are always ill-prepared, meaning compatible with the
presence of large amplitude acoustic waves.

The effect of the kinematic boundary. Although it is sometimes convenient to
investigate a fluid confined to an unbounded spatial domain, any realistic physical
space is necessarily bounded. Accordingly, the interaction of the acoustic waves
with the boundary of the domain occupied by the fluid represents an intrinsic
feature of any incompressible limit problem.

Viscous fluids adhere completely to the boundary. That means, if the latter
is at rest, the associated velocity field u satisfies the no-slip boundary condition

u|∂Ω = 0.

The no-slip boundary condition, however, is not compatible with free prop-
agation of acoustic waves, unless the boundary is flat or satisfies very particular
geometrical constraints. Consequently, a part of the acoustic energy is dissipated
through a boundary layer causing a uniform time decay of the amplitude of acous-
tic waves. Such a situation is discussed in Chapter 7.

Dispersion of the acoustic waves on large domains. As already pointed out, re-
alistic physical domains are always bounded. However, it is still reasonable to
consider the situation when the diameter of the domain is sufficiently large with
respect to the characteristic speed of sound in the fluid. The acoustic waves quickly
redistribute the energy and, leaving a fixed bounded subset of the physical space,
they will be reflected by the boundary but never come back in a finite lapse of
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time as the boundary is far away. In practice, such a problem can be equivalently
posed on the whole space R3. Accordingly, the gradient component of the velocity
field decays to zero locally in space with growing time. This problem is analyzed
in detail in Chapter 8.

4.5 Acoustic analogies

The mathematical simulation of aeroacoustic sound presents in many cases numer-
ous technical problems related to modeling of its generation and propagation. Its
importance for diverse industrial applications is nowadays without any doubt in
view of various demands in relation to user comfort or environmental regulations.
A few examples where aeroacoustics enters into the game are the sounds produced
by jet engines of an airliner, the noise produced in high speed trains and cars,
wind noise around buildings, ventilator noise in various household appliances, etc.

The departure point of many methods of acoustic simulations (at least those
called hybrid methods) is Lighthill’s theory [133], [134]. The starting point in
Lighthill’s approach is the system of Navier-Stokes equations describing the
motion of a viscous compressible gas in isentropic regime, with unknown functions
density � and velocity u. The system of equations reads:

∂t� + divx�u = 0,

∂t(�u) + divx(�u ⊗ u) + ∇xp = divxS + �f ,
(4.31)

where p = p(�), and

S = μ(∇xu + ∇T
x u − 2

3
divxuI) + ηdivxuI, μ > 0, η ≥ 0.

We can rewrite this system in the form

∂tR + divxQ = 0,

∂tQ + ω∇xR = F − divxT,
(4.32)

where
Q = �u, R = � − � (4.33)

are the momentum and the density fluctuations from the basic constant density
distribution � of the background flow. Moreover, we have set

ω = ∂p
∂�(�) > 0, F = �f ,

T = �u ⊗ u +
(
p − ω(� − �)

)
I − S.

(4.34)

The reader will have noticed an apparent similarity of system (4.32) to the acoustic
equation discussed in the previous part. Condition ω > 0 is an analogue of the
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hypothesis of thermodynamics stability (3.10) expressing positive compressibility
property of the fluid, typically a gas.

Taking the time derivative of the first equation in (4.32) and the divergence
of the second one, we convert the system to a “genuine” wave equation

∂2
t R − ωΔxR = −divxF + divx(divx T), (4.35)

with wave speed
√

ω. The viscous component is often neglected in T because of
the considerable high Reynolds number of typical fluid regimes.

The main idea behind the method of acoustic analogies is to view system
(4.32), or, equivalently (4.35), as a linear wave equation supplemented with a
source term represented by the quantity on the right-hand side. In contrast with
the original problem, the source term is assumed to be known or at least it can be
determined by solving a kind of simplified problem. Lighthill himself completed
system (4.32) adding extra terms corresponding to acoustic sources of different
types. The resulting problem in the simplest possible form captures the basic
acoustic phenomena in fluids and may be written in the following form.

� Lighthill’s Equation:

∂tR + divxQ = Σ,

∂tQ + ω∇xR = F − divxT.
(4.36)

According to Lighthill’s interpretation, system (4.36) is a non-homogenous
wave equation describing the acoustic waves (fluctuations of the density), where
the terms on the right-hand side correspond to the mononopolar (Σ), bipolar
(−F), and quadrupolar (divxT) acoustic sources, respectively. These source terms
are considered as known and calculable from the background fluid flow field. The
physical meaning of the source terms can be interpreted as follows:

• The first term Σ represents the acoustic sources created by the changes of
control volumes due to changes of pressure or displacements of a rigid surface:
this source can be schematically described via a particle whose diameter
changes (pulsates) creating acoustic waves (density perturbations). It may
be interpreted as a non-stationary injection of a fluid mass rate ∂tΣ per unit
volume. The acoustic noise of a gun shot is a typical example.

• The second term F describes the acoustic sources due to external forces
(usually resulting from the action of a solid surface on the fluid). These
sources are responsible for the most of the acoustic noise in machines and
ventilators.

• The third term divx(T) is the acoustic source due to the turbulence and
viscous effects in the background fluid flow which supports the density os-
cillations (acoustic waves). The noise of steady or non-steady jets in aero-
acoustics is a typical example.
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• The tensor T is called the Lighthill tensor . It is composed of three tensors
whose physical interpretation is the following: the first term is the Reynolds
tensor with components �uiuj describing the (nonlinear) turbulence effects,
the term (p−ω(�− �))I expresses the entropy fluctuations and the third one
is the viscous stress tensor S.

The method for predicting noise based on Lighthill’s equation is usually re-
ferred to as a hybrid method since noise generation and propagation are treated
separately. The first step consists in using data provided by numerical simulations
to identify the sound sources. The second step then consists in solving the wave
equation (4.36) driven by these source terms to determine the sound radiation. The
main advantage of this approach is that most of the conventional flow simulations
can be used in the first step.

In practical numerical simulations, the Lighthill tensor is calculated from the
velocity and density fields obtained by using various direct numerical methods and
solvers for compressible Navier-Stokes equations. Then the acoustic effects are
evaluated from Lighthill’s equation by means of diverse direct numerical methods
for solving the non-homogenous wave equations (see, e.g., Colonius [50], Mitchell
et al. [158], Freud et al. [90], among others). For flows in the low Mach number
regimes the direct simulations are costly, unstable, inefficient and non-reliable,
essentially due to the presence of rapidly oscillating acoustic waves (with periods
proportional to the Mach number) in the equations themselves (see the discussion
in the previous part). Thus in the low Mach number regimes the acoustic analogies
as Lighthill’s equation, in combination with the incompressible flow solvers, give
more reliable results, see [90].

Acoustic analogies, in particular Lighthill’s approach in the low Mach number
regime, will be discussed in Chapter 9.

4.6 Initial data

Motivated by the formal asymptotic expansion discussed in the previous sections,
we consider the initial data for the scaled Navier-Stokes-Fourier system in
the form

�(0, ·) = �̃ + ε�
(1)
0,ε, u(0, ε) = u0,ε, ϑ(0, ·) = ϑ + εϑ

(1)
0,ε,

where ε = Ma, �
(1)
0,ε, u0,ε, ϑ

(1)
0,ε are given functions, and �̃, ϑ represent an equilibrium

state. Note that the apparent inconsistency in the form of the initial data is a
consequence of the fact that smallness of the velocity with respect to the speed of
sound is already incorporated in the system by scaling.

The initial data are termed ill-prepared if

{�(1)
0,ε}ε>0, {ϑ(1)

0,ε}ε>0 are bounded in Lp(Ω),

{u0,ε}ε>0 is bounded in Lp(Ω; R3)
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for a certain p ≥ 1, typically p = 2 or even p = ∞. If, in addition,

�
(1)
0,ε → �

(1)
0 , ϑ

(1)
0,ε → ϑ

(1)
0 , H⊥[u0,ε] → 0 a.a. in Ω,

where �
(1)
0 , ϑ

(1)
0 satisfy certain compatibility conditions, we say that the data are

well prepared. For instance, in the situation described in Section 4.2, we require

∂p

∂�
(�, ϑ)�(1)

0 +
∂p

∂ϑ
(�, ϑ)ϑ(1)

0 = �F.

In particular, the common definition of the well-prepared data, namely �
(1)
0 =

ϑ
(1)
0 = 0, is recovered as a special case provided F = 0.

As observed in Section 4.4, the ill-prepared data are expected to generate
large amplitude rapidly oscillating acoustic waves, while the well-prepared data
are not. Alternatively, following Lighthill [135], we may say that the well-prepared
data may be successfully handled by the linear theory, while the ill-prepared ones
require the use of a nonlinear model.

4.7 A general approach to singular limits for
the full Navier-Stokes-Fourier system

The overall strategy adopted in this book leans on the concept of weak solutions for
both the primitive system and the associated asymptotic limit. The starting point
is always the complete Navier-Stokes-Fourier System introduced in Chapter
1 and discussed in Chapters 2, 3, where one or several characteristic numbers listed
in Section 4.1 are proportional to a small parameter. We focus on the passage to
incompressible fluid models, therefore the Mach number Ma is always of order
ε → 0. On the contrary, the Strouhal number Sr as well as the Reynolds number
Re are assumed to be of order 1. Consequently, the velocity of the fluid in the
target system will satisfy a variant of incompressible (viscous) Navier-Stokes

equations coupled with a balance of the internal energy identified through a
convenient choice of the characteristic numbers Fr and Pe.

Our theory applies to dissipative fluid systems that may be characterized
through the following properties.

� Dissipative Fluid System:

(P1) The total mass of the fluid contained in the physical space Ω is constant
at any time.

(P2) In the absence of external sources, the total energy of the fluid is constant
or non-increasing in time.

(P3) The system produces entropy, in particular, the total entropy is a non-
decreasing function of time. In addition, the system is thermodynamically
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stable, that means, the maximization of the total entropy over the set of
all allowable states with the same total mass and energy delivers a unique
equilibrium state provided the system is thermally and mechanically insu-
lated.

The key tool for studying singular limits of dissipative fluid systems is the
dissipation balance, or rather inequality, analogous to the corresponding equality
introduced in (2.52). Neglecting, for simplicity, the source terms in the scaled
system (4.1–4.3), we deduce

� Scaled Dissipation Inequality:

∫
Ω

(
Ma2

2
�|u|2 + Hϑ(�, ϑ) − (� − �)

∂Hϑ(�, ϑ)
∂�

− Hϑ(�, ϑ)
)

(τ, ·) dx + σ
[
[0, τ ] × Ω

]
≤
∫

Ω

(
Ma2

2
|(�u)0|2

�0
+ Hϑ(�0, ϑ0) − (�0 − �)

∂Hϑ(�, ϑ)
∂�

− Hϑ(�, ϑ)
)

dx (4.37)

for a.a. τ ∈ (0, T ),

σ ≥ 1
ϑ

(
Ma2

Re
S : ∇xu − 1

Pe
q · ∇xϑ

ϑ

)
, (4.38)

where Hϑ = �e − ϑ�s is the Helmholtz function introduced in (2.48). Note that,
in accordance with (P2), there is an inequality sign in (4.37) because we admit
systems that dissipate energy.

The quantities � and ϑ are positive constants characterizing the static dis-
tribution of the density and the absolute temperature, respectively. In accordance
with (P1), we have ∫

Ω

(�(t, ·) − �) dx = 0 for any t ∈ [0, T ],

while ϑ is determined by the asymptotic value of the total energy for t → ∞. In ac-
cordance with (P3), the static state (�, ϑ) maximizes the entropy among all states
with the same total mass and energy and solves the Navier-Stokes-Fourier

system with the velocity field u = 0, in other words, (�, ϑ) is an equilibrium state.
In Chapter 6, the constant density equilibrium state � is replaced by �̃ = �̃(x3).

Basically all available bounds on the family of solutions to the scaled system
are provided by (4.37), (4.38). If the Mach number Ma is proportional to a small
parameter ε, and, simultaneously Re = Pe ≈ 1, relations (4.37), (4.38) yield a
bound on the gradient of the velocity field provided the integral on the right-hand
side of (4.37) divided on ε2 remains bounded.

On the other hand, seeing that

Hϑ(�0, ϑ0) − (�0 − �)
∂Hϑ(�, ϑ)

∂�
− Hϑ(�, ϑ) ≈ c

(
|�0 − �|2 + |ϑ0 − ϑ|2

)
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at least in a neighborhood of the static state (�, ϑ), we conclude, in agreement
with the formal asymptotic expansion discussed in Section 4.2, that the quantities

�
(1)
0,ε =

�(0, ·) − �

ε
and ϑ

(1)
0,ε =

ϑ(0, ·) − ϑ

ε
, and u0,ε = u(0, ·)

have to be bounded uniformly for ε → 0, or, in the terminology introduced in
Section 4.6, the initial data must be at least ill-prepared.

As a direct consequence of the structural properties of Hϑ established in
Section 2.2.3, it is not difficult to deduce from (4.37) that

�(1)(t, ·) =
�(t, ·) − �

ε
and ϑ(1) =

ϑ(t, ·) − ϑ

ε

remain bounded, at least in L1(Ω), uniformly for t ∈ [0, T ] and ε → 0.
Now, we introduce the set of essential values Oess ⊂ (0,∞)2,

Oess :=
{

(�, ϑ) ∈ R
2
∣∣∣ �/2 < � < 2�, ϑ/2 < ϑ < 2ϑ

}
, (4.39)

together with its residual counterpart

Ores = (0,∞)2 \ Oess. (4.40)

Let {�ε}ε>0, {ϑε}ε>0 be a family of solutions to a scaled Navier-Stokes-

Fourier system. In agreement with (4.39), (4.40), we define the essential set
and residual set of points (t, x) ∈ (0, T ) × Ω as follows.

� Essential and Residual Sets:

Mε
ess ⊂ (0, T )× Ω,

Mε
ess = {(t, x) ∈ (0, T )× Ω | (�ε(t, x), ϑε(t, x)) ∈ Oess}, (4.41)

Mε
res = ((0, T ) × Ω) \Mε

ess. (4.42)

We point out that Oess, Ores are fixed subsets of (0,∞)2, while Mε
ess, Mε

res

are measurable subsets of the time-space cylinder (0, T )×Ω depending on �ε, ϑε.
It is also convenient to introduce the “projection” of the set Mε

ess for a fixed
time t ∈ [0, T ],

Mε
ess[t] = {x ∈ Ω | (t, x) ∈ Mε

ess}
and

Mε
res[t] = Ω \Mε

ess[t], (4.43)

where both are measurable subsets of Ω for a.a. t ∈ (0, T ).
Finally, each measurable function h can be decomposed as

h = [h]ess + [h]res, (4.44)
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where we set
[h]ess = h 1Mε

ess
, [h]res = h 1Mε

res
= h − [h]ess. (4.45)

Of course, we should always keep in mind that such a decomposition depends on
the actual values of �ε, ϑε.

The specific choice of Oess is not important. We can take Oess = U , where
U ⊂ U ⊂ (0,∞)2 is a bounded open neighborhood of the equilibrium state (�, ϑ).
A general idea exploited in this book asserts that the “essential” component [h]ess
carries all information necessary in the limit process, while its “residual” counter-
part [h]res vanishes in the asymptotic limit for ε → 0. In particular, the Lebesgue
measure of the residual sets |Mres[t]| becomes small uniformly in t ∈ (0, T ) for
small values of ε.

Another characteristic feature of our approach is that the entropy production
rate σ is small, specifically of order ε2, in the low Mach number limit. Accord-
ingly, in contrast with the primitive Navier-Stokes-Fourier system, the target
problem can be expressed in terms of equations rather than inequalities. The ill-
prepared data, for which the perturbation of the equilibrium state is proportional
to the Mach number, represent a sufficiently rich scaling leading to non-trivial
target problems.



Chapter 5

Singular Limits –
Low Stratification

This chapter develops the general ideas discussed in Section 4.2 focusing on the
singular limits characterized by the spatially homogeneous (constant) distribution
of the limit density. We start with the scaled Navier-Stokes-Fourier system

introduced in Section 4.1 as a primitive system, where we take the Mach number
Ma proportional to a small parameter ε,

Ma = ε, with ε → 0.

In addition, we assume that the external sources of mechanical energy are small,
in particular,

Ma
Fr

→ 0.

Specifically, we focus on the case

Fr =
√

ε

corresponding to the low stratification of the fluid matter provided f is proportional
to the gravitational force. Keeping the remaining characteristic numbers of order
unity, we recover the well-known Oberbeck-Boussinesq approximation as a
target problem in the asymptotic limit ε → 0. As a byproduct of asymptotic
analysis, we discover a variational formulation of Lighthill’s acoustic equation and
discuss the effective form of the acoustic sources in the low Mach number regime.

The overall strategy adopted in this chapter is somehow different from the
remaining part of the book. We abandon the standard mathematical scheme of
theorems followed by proofs and rather concentrate on a general approach, where
hypotheses are made when necessary and goals determine the appropriate meth-
ods. The final conclusion is then stated in full rigor in Section 5.5. The reader
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preferring the traditional way of presentation is recommended to consult Section
5.5 first.

In accordance with the general hypotheses discussed above, the scaled
Navier-Stokes-Fourier system introduced in Section 4.1 can be written in
the following form.

� Primitive System:

∂t� + divx(�u) = 0, (5.1)

∂t(�u) + divx(�u ⊗ u) +
1
ε2

∇xp(�, ϑ) = divxS +
1
ε
�∇xF, (5.2)

∂t(�s(�, ϑ)) + divx

(
�s(�, ϑ)u

)
+ divx

(q
ϑ

)
= σε, (5.3)

d
dt

∫
Ω

(ε2

2
�|u|2 + �e(�, ϑ) − ε�F

)
dx = 0, (5.4)

where, similarly to Section 1.4, the viscous stress tensor is given through Newton’s
law

S = S(ϑ,∇xu) = μ(ϑ)
(
∇xu + ∇T

x u − 2
3
divxuI

)
+ η(ϑ)divxuI, (5.5)

the heat flux obeys Fourier’s law

q = q(ϑ,∇xϑ) = −κ(ϑ)∇xϑ, (5.6)

while the volumetric entropy production rate is represented by a non-negative
measure σε satisfying

σε ≥ 1
ϑ

(
ε2

S : ∇xu− q · ∇xϑ

ϑ

)
. (5.7)

Note that for the total energy balance (5.4) to be compatible with equations
(5.1–5.3), system (5.1–5.4) must be supplemented by a suitable set of boundary
conditions to be specified below.

Similarly to Section 4.2, we write

� = � + ε�(1) + ε2�(2) + · · · ,

u = U + εu(1) + ε2u(2) + · · · ,

ϑ = ϑ + εϑ(1) + ε2ϑ(2) + · · · .

Grouping equations (5.1–5.4) with respect to powers of ε, and dropping terms
containing powers of ε higher than zero in (5.1), (5.2), we formally obtain

divxU = 0, (5.8)

�
(
∂tU + divx(U ⊗ U)

)
+ ∇xΠ = divx

(
μ(ϑ)(∇xU + ∇⊥

x U)
)

+ r∇xF (5.9)
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with a suitable “pressure” or, more correctly, normal stress represented by a scalar
function Π, where r = �(1) + Φ(F ) for a continuous function Φ. Note that the
component Φ(F )∇xF can always be incorporated in the pressure gradient ∇xΠ.

In order to establish a relation between �(1) and ϑ(1), we use (5.2) to deduce

∇x

(∂p(�, ϑ)
∂�

�(1) +
∂p(�, ϑ)

∂ϑ
ϑ(1)
)

= �∇xF,

therefore

�(1) +
∂ϑp(�, ϑ)
∂�p(�, ϑ)

ϑ(1) =
�

∂�p(�, ϑ)
F + h(t) (5.10)

for a certain spatially homogeneous function h.
In a similar way, the entropy balance equation (5.3) gives rise to

�∂t

(
∂s(�, ϑ)

∂�
�(1) +

∂s(�, ϑ)
∂ϑ

ϑ(1)

)
(5.11)

+ �divx

[(
∂s(�, ϑ)

∂�
�(1) +

∂s(�, ϑ)
∂ϑ

ϑ(1)

)
U
]
− divx

(
κ(ϑ)

ϑ
∇xϑ(1)

)
= 0.

Supposing the “conservative” boundary conditions

U · n|∂Ω = 0, ∇xϑ(1) · n|∂Ω = 0

we can combine (5.10) with (5.11) to obtain

�cp(�, ϑ)
(
∂tΘ + divx(ΘU)

)
− divx(GU) − divx(κ(ϑ)∇xΘ) = 0, (5.12)

where we have set
Θ = ϑ(1),

and
G = � ϑα(�, ϑ)F. (5.13)

We recall that the physical constants α, cp have been introduced in (4.17), (4.18).

Moreover, equality (5.10) takes the form of

� Boussinesq Relation:

r + �α(�, ϑ)Θ = 0, (5.14)

where r is the same as in equation (5.9).
The system of equations (5.8), (5.9), (5.12), together with (5.14), is the well-

known Oberbeck-Boussinesq Approximation having a wide range of appli-
cations in geophysical models, meteorology, and astrophysics already discussed in
Section 4.1 (see also the survey paper by Zeytounian [205]).

The main goal of the present chapter is to provide a rigorous justification of
the formal procedure discussed above in terms of the asymptotic limit of solutions
to system (5.1–5.4). Accordingly, there are three main topics to be addressed:
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• Identifying a suitable set of physically relevant hypotheses, under which the
primitive system (5.1–5.4) possesses a global in time solution {�ε,uε, ϑε} for
any ε > 0 in the spirit of Theorem 3.1.

• Uniform bounds on the quantities

uε, �ε, ϑε as well as �(1)
ε =

�ε − �

ε
, ϑ(1)

ε =
ϑε − ϑ

ε

independent of ε → 0.

• Analysis of oscillations of the acoustic waves represented by the gradient
component in the Helmholtz decomposition of the velocity field uε. Since
the momentum equation (5.2) contains a singular term proportional to the
pressure gradient, we do not expect any uniform estimates on the gradient
part of the time derivative ∂t(�u) not even in a very weak sense.

5.1 Hypotheses and global existence for
the primitive system

The existence theory developed in Chapter 3 can be applied to the scaled system
(5.1–5.4). In order to avoid unnecessary technical details in the analysis of the
asymptotic limit, the hypotheses listed below are far less general than those used
in Theorem 3.1.

5.1.1 Hypotheses

We assume that the fluid occupies a bounded domain Ω ⊂ R3. In order to eliminate
the effect of a boundary layer on propagation of the acoustic waves, we suppose
that the velocity field u satisfies the complete slip boundary conditions

u · n|∂Ω = 0, Sn × n|∂Ω = 0. (5.15)

Although such a stipulation may be at odds with practical experience in many
models, it is still physically relevant and mathematically convenient. The more
realistic no-slip boundary conditions are examined in Chapter 7.

In agreement with (5.4), the total energy of the fluid is supposed to be a
constant of motion, in particular, the boundary of the physical space is thermally
insulated, meaning,

q · n|∂Ω = 0. (5.16)

The structural restrictions imposed on the thermodynamic functions p, e, s
as well as the transport coefficients μ, η, and κ are motivated by the existence
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theory established in Chapter 3. Specifically, we set

p(�, ϑ) = pM (�, ϑ) + pR(ϑ), pM = ϑ
5
2 P
( �

ϑ
3
2

)
, pR =

a

3
ϑ4, a > 0, (5.17)

e(�, ϑ) = eM (�, ϑ) + eR(�, ϑ), eM =
3
2

ϑ
5
2

�
P
( �

ϑ
3
2

)
, eR = a

ϑ4

�
, (5.18)

and

s(�, ϑ) = sM (�, ϑ) + sR(�, ϑ), sM (�, ϑ) = S
( �

ϑ
3
2

)
, sR =

4
3
a
ϑ3

�
, (5.19)

where

S′(Z) = −3
2

5
3P (Z) − ZP ′(Z)

Z2
for all Z > 0. (5.20)

Furthermore, in order to comply with the hypothesis of thermodynamic sta-
bility formulated in (1.44), we assume P ∈ C1[0,∞) ∩ C2(0,∞),

P (0) = 0, P ′(Z) > 0 for all Z ≥ 0, (5.21)

0 <
5
3P (Z) − ZP ′(Z)

Z
≤ sup

z>0

5
3P (z) − zP ′(z)

z
< ∞, (5.22)

and, similarly to (2.44),

lim
Z→∞

P (Z)
Z

5
3

= p∞ > 0. (5.23)

The reader may consult Chapter 1 for the physical background of the above
assumptions. As a matter of fact, the presence of the radiative components pR,
eR, and sR is not necessary in order to perform the low Mach number limit.
On the other hand, the specific form of the molecular pressure pM , in particular
(5.23), provides indispensable uniform bounds and cannot be relaxed. Hypotheses
(5.17–5.23) are more restrictive than in Theorem 3.1.

For the sake of simplicity, the transport coefficients μ, η, and κ are assumed
to be continuously differentiable functions of the temperature ϑ satisfying the
growth restrictions

0 < μ(1 + ϑ) ≤ μ(ϑ) ≤ μ(1 + ϑ),
0 ≤ η(ϑ) ≤ η(1 + ϑ)

}
for all ϑ ≥ 0, (5.24)

0 < κ(1 + ϑ3) ≤ κ(ϑ) ≤ κ(1 + ϑ3) for all ϑ ≥ 0, (5.25)

where μ, μ, η, κ, and κ are positive constants. The linear dependence of the vis-
cosity coefficients on ϑ facilitates considerably the analysis and is still physically
relevant as the so-called hard sphere model. On the other hand, the theory devel-
oped in this chapter can accommodate the whole range of transport coefficients
specified in (3.17–3.23).
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The initial data are taken in the form

�(0, ·) = �0,ε = � + ε�
(1)
0,ε, u(0, ·) = u0,ε, ϑ(0, ·) = ϑ0,ε = ϑ + εϑ

(1)
0,ε, (5.26)

where
� > 0, ϑ > 0,

∫
Ω

�
(1)
0,ε dx = 0 for all ε > 0. (5.27)

5.1.2 Global-in-time solutions

The following result may be viewed as a straightforward corollary of Theorem 3.1:

Theorem 5.1. Let Ω ⊂ R3 be a bounded domain of class C2,ν . Assume that p,
e, s satisfy hypotheses (5.17–5.23), and the transport coefficients μ, η, and κ
meet the growth restrictions (5.24), (5.25). Let the initial data be given through
(5.26), (5.27), where �

(1)
0,ε, u0,ε, ϑ

(1)
0,ε are bounded measurable functions, and let

F ∈ W 1,∞(Ω).
Then, for any ε > 0 so small that the initial data �0,ε and ϑ0,ε are strictly

positive, there exists a weak solution {�ε,uε, ϑε} to the Navier-Stokes-Fourier sys-
tem (5.1–5.7) on the set (0, T ) × Ω, supplemented with the boundary conditions
(5.15), (5.16), and the initial conditions (5.26). More specifically, we have:

•
∫ T

0

∫
Ω

�εB(�ε)
(
∂tϕ + uε · ∇xϕ

)
dx dt

=
∫ T

0

∫
Ω

b(�ε)divxuεϕ dx dt −
∫

Ω

�0,εB(�0,ε)ϕ(0, ·) dx (5.28)

for any b as in (2.3) and any ϕ ∈ C∞
c ([0, T ) × Ω);

•
∫ T

0

∫
Ω

(
�εuε · ∂tϕ + �ε[uε ⊗ uε] : ∇xϕ +

1
ε2

p(�ε, ϑε)divxϕ
)

dx dt (5.29)

=
∫ T

0

∫
Ω

(
Sε : ∇xϕ − 1

ε
�ε∇xF · ϕ

)
dx dt −

∫
Ω

(�0,εu0,ε) · ϕ(0, ·) dx

for any test function ϕ ∈ C∞
c ([0, T ) × Ω; R3), ϕ · n|∂Ω = 0;

•
∫

Ω

(ε2

2
�ε|uε|2 + �εe(�ε, ϑε) − ε�εF

)
(t) dx (5.30)

=
∫

Ω

(ε2

2
�0,ε|u0,ε|2 + �0,εe(�0,ε, ϑ0,ε) − ε�εF

)
dx for a.a. t ∈ (0, T );

•
∫ T

0

∫
Ω

�εs(�ε, ϑε)
(
∂tϕ + uε · ∇xϕ

)
dx dt +

∫ T

0

∫
Ω

qε

ϑε
· ∇xϕ dx dt

+ 〈σε; ϕ〉[M;C]([0,T ]×Ω) = −
∫

Ω

�0,εs(�0,ε, ϑ0,ε)ϕ(0, ·) dx (5.31)
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for any ϕ ∈ C∞
c ([0, T )× Ω), with σε ∈ M+([0, T ]× Ω),

σε ≥ 1
ϑε

(
ε2

Sε : ∇xuε −
qε

ϑε
· ∇xϑε

)
, (5.32)

where

Sε = S(ϑε,∇xuε) = μ(ϑε)
(
∇xuε + ∇T

x uε −
2
3
divxuε I

)
+ η(ϑε)divxuε I,

(5.33)

and
qε = q(ϑε,∇xϑε) = −κ(ϑε)∇xϑε. (5.34)

We recall that the weak solution {�ε,uε, ϑε} enjoys the regularity and in-
tegrability properties collected in Theorem 3.2. Let us point out that smallness
of the parameter ε is irrelevant in the existence theory and needed here only to
ensure that the initial distribution of the density and the temperature is positive.

5.2 Dissipation equation, uniform estimates

A remarkable feature of all asymptotic limits investigated in this book is that the
initial values of the thermostatic state variables �0,ε, ϑ0,ε are close to the stable
equilibrium state (�, ϑ). As an inevitable consequence of the Second law of thermo-
dynamics, the total entropy of the system is non-decreasing in time approaching
its maximal value attained at (�, ϑ). The total mass and energy of the fluid being
constant, the state variables are trapped in a kind of potential well (or rather
“cap”) in the course of evolution. This is a physical interpretation of the uniform
bounds obtained in this section. Mathematically, the same is expressed through the
coercivity properties of the Helmholtz function Hϑ = �e−ϑ�s discussed in Section
2.2.3. In particular, the uniform bounds established first in Chapter 2 apply to the
family {�ε,uε, ϑε} of solutions of the primitive system uniformly for ε → 0. This
observation plays an indispensable role in the analysis of the asymptotic limit.

5.2.1 Conservation of total mass

In accordance with hypothesis (5.27), the total mass

M0 =
∫

Ω

�ε(t) dx = �|Ω| (5.35)

is a constant of motion independent of ε. Note that, by virtue of Theorem 3.2,
�ε ∈ Cweak([0, T ]; L

5
3 (Ω)), therefore (5.35) makes sense for any t ∈ [0, T ]. The case

when the total mass of the fluid depends on ε can be accommodated easily by a
straightforward modification of the arguments presented below.
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5.2.2 Total dissipation balance and related estimates

As observed in Section 4.7, the total dissipation balance is the central principle
yielding practically all uniform bounds available for the primitive system. Pur-
suing the ideas of Section 2.2.3 we combine relations (5.30), (5.31) to obtain the
dissipation equality∫

Ω

(ε2

2
�ε|uε|2 + Hϑ(�ε, ϑε) − ε�εF

)
(t) dx + ϑσε

[
[0, t]× Ω

]
(5.36)

=
∫

Ω

(ε2

2
�0,ε|u0,ε|2 + Hϑ(�0,ε, ϑ0,ε) − ε�0,εF

)
dx

satisfied for a.a. t ∈ (0, T ), where the function Hϑ was introduced in (2.48).
In addition, as the total mass M0 does not change in time, relation (5.36)

can be rewritten in the form∫
Ω

(1
2
�ε|uε|2 −

(�ε − �)
ε

F
)
(t) dx (5.37)

+
∫

Ω

1
ε2

(
Hϑ(�ε, ϑε) − (�ε − �)

∂Hϑ(�, ϑ)
∂�

− Hϑ(�, ϑ)
)
(t) dx +

ϑ

ε2
σε

[
[0, t] × Ω

]
=
∫

Ω

(1
2
�0,ε|u0,ε|2 −

(�0,ε − �)
ε

F
)

dx

+
∫

Ω

1
ε2

(
Hϑ(�0,ε, ϑ0,ε) − (�0,ε − �)

∂Hϑ(�, ϑ)
∂�

− Hϑ(�, ϑ)
)

dx

(cf. (4.37)).
At this stage, we associate to each function hε its essential part [hε]ess and

residual part [hε]res introduced through formulas (4.44), (4.45) in Section 4.7. A
common principle adopted in this book asserts that:

• The “residual” components of all ε-dependent quantities appearing in the
primitive equations (5.28–5.31) admit uniform bounds that are exactly the
same as a priori bounds derived in Chapter 2. Moreover, the measure of the
“residual” subset Mres of (0, T )×Ω being small, the “residual” parts vanish
in the asymptotic limit ε → 0.

• The decisive piece of information concentrates in the “essential” components,
in particular, they determine the limit system of equations. The fact that
the “essential” values of �ε, ϑε are bounded from above as well as from
below away from zero facilitates the analysis considerably as all continuously
differentiable functions on R2 are globally Lipschitz when restricted to the
range of “essential” quantities.

In order to exploit relation (5.37) we need a piece of information concerning
the structural properties of the Helmholtz function Hϑ. More precisely, we show
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that the quantity

Hϑ(�ε, ϑε) − (�ε − �)
∂Hϑ(�, ϑ)

∂�
− Hϑ(�, ϑ)

is non-negative and strictly coercive, attaining its global minimum zero at the
equilibrium state (�, ϑ). Moreover, it dominates both �e(�, ϑ) and s(�, ϑ) whenever
(�, ϑ) is far from the equilibrium state. These structural properties utilized in (5.37)
yield the desired uniform estimates on �ε, ϑε as well as on the size of the “residual
subset” of (0, T ) × Ω.

Lemma 5.1. Let � > 0, ϑ > 0 be given constants and let

Hϑ(�, ϑ) = �
(
e(�, ϑ) − ϑs(�, ϑ)

)
,

where e, s satisfy (5.18–5.23). Let Oess, Ores be the sets of essential and residual
values introduced in (4.39), (4.40).

Then there exist positive constants ci = ci(�, ϑ), i = 1, . . . , 4, such that

(i) c1

(
|� − �|2 + |ϑ − ϑ|2

)
≤ Hϑ(�, ϑ) − (� − �)

∂Hϑ(�, ϑ)
∂�

− Hϑ(�, ϑ)

≤ c2

(
|� − �|2 + |ϑ − ϑ|2

)
(5.38)

for all (�, ϑ) ∈ Oess;

(ii) Hϑ(�, ϑ) − (� − �)
∂Hϑ(�, ϑ)

∂�
− Hϑ(�, ϑ) (5.39)

≥ inf
(r,Θ)∈∂Oess

{
Hϑ(r, Θ) − (r − �)

∂Hϑ(�, ϑ)
∂�

− Hϑ(�, ϑ)
}

= c3(�, ϑ) > 0

for all (�, ϑ) ∈ Ores;

(iii) Hϑ(�, ϑ) − (� − �)
∂Hϑ(�, ϑ)

∂�
− Hϑ(�, ϑ) (5.40)

≥ c4

(
�e(�, ϑ) + �|s(�, ϑ)|

)
for all (�, ϑ) ∈ Ores.

Proof. To begin, write

Hϑ(�, ϑ) − (� − �)
∂Hϑ(�, ϑ)

∂�
− Hϑ(�, ϑ) = F(�) + G(�, ϑ),
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where

F(�) = Hϑ(�, ϑ) − (� − �)
∂Hϑ(�, ϑ)

∂�
− Hϑ(�, ϑ)

and
G(�, ϑ) = Hϑ(�, ϑ) − Hϑ(�, ϑ).

As already observed in Section 2.2.3, the function F is strictly convex attain-
ing its global minimum zero at the point �, while G(�, ·) is strictly decreasing for
ϑ < ϑ and strictly increasing for ϑ > ϑ as a direct consequence of the hypothe-
sis of thermodynamic stability expressed in terms of (5.21), (5.22). In particular,
computing the partial derivatives of Hϑ as in (2.49), (2.50) we deduce estimate
(5.38). By the same token, the function

ϑ → Hϑ(�, ϑ) − (� − �)
∂Hϑ(�, ϑ)

∂�
− Hϑ(�, ϑ)

is decreasing for ϑ < ϑ and increasing whenever ϑ > ϑ; whence (5.39) follows.
Finally, as F is strictly convex, we have

Hϑ(�, ϑ) − (� − �)
∂Hϑ(�, ϑ)

∂�
− Hϑ(�, ϑ) ≥ c(�, ϑ)� whenever � ≥ 2�,

and, consequently, estimate (5.40) can be deduced from (5.39) and Proposition 3.2.
�

In order to exploit the dissipation balance (5.37), we have to ensure that its
right-hand side determined in terms of the initial data is bounded uniformly with
respect to ε → 0. Since the initial data are given by (5.26), (5.27), this can be
achieved if

{√�0,εu0,ε}ε is bounded in L2(Ω; R3), (5.41)

and

{
�
(1)
0,ε =

�0,ε − �

ε

}
ε>0

,
{
ϑ

(1)
0,ε =

ϑ0,ε − ϑ

ε

}
ε>0

are bounded in L∞(Ω). (5.42)

Observe that these hypotheses are optimal with respect to the chosen scaling and
the desired target problem.

Consequently, using estimate (5.38) we deduce from (5.37) that

ess supt∈(0,T )

∥∥∥ [�ε − �]ess(t)
∥∥∥2

L2(Ω)
≤ ε2c,

ess supt∈(0,T )

∥∥∥ [ϑε − ϑ]ess(t)
∥∥∥2

L2(Ω)
≤ ε2c,
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and, by virtue of (5.40),

ess supt∈(0,T )‖ [�εe(�ε, ϑε)]res ‖L1(Ω) ≤ ε2c, (5.43)

ess supt∈(0,T )‖ [�εs(�ε, ϑε) ]res‖L1(Ω) ≤ ε2c. (5.44)

Note that, as a consequence of the coercivity properties of the Helmholtz function
Hϑ established in Lemma 5.1, the quantity∫

Ω

(�ε − �)
ε

F dx

can be handled as a lower order term.
In addition, we have

ess sup
t∈(0,T )

‖√�εuε‖L2(Ω;R3) ≤ c, σε

[
[0, T ]× Ω

]
≤ ε2c,

and, as a direct consequence of (5.39),

ess sup
t∈(0,T )

| Mε
res[t] | ≤ ε2c,

where the sets Mε
res[t] ⊂ Ω have been introduced in (4.43). Note that the last

estimate reflects the previously vague statement “the measure of the residual set
is small”.

Since the entropy production rate σε remains small of order ε2, we deduce
from (5.32) that (i) the term 1

ϑε
Sε : ∇xuε is bounded in L1((0, T ) × Ω), and, in

accordance with hypothesis (5.25), (ii) ∇x(ϑε/ε) is bounded in L2((0, T ) × Ω).
In particular, we observe that ∇xϑε vanishes in the asymptotic limit, that is to
say ϑε approaches a spatially homogeneous function. As the pressure becomes
constant in the low Mach number regime, the density is driven to a constant as
well. This observation justifies our choice of the initial data. On the other hand,
it is intuitively clear that we need a uniform bound on the entropy production
rate in order to control the norm of the velocity gradient. In other words, we have
to impose the hypothesis of thermodynamic stability (1.44) for the thermostatic
variables �ε, ϑε to remain close to the equilibrium state. We can see again the
significant role of dissipativity of the system in our approach to singular limits.

5.2.3 Uniform estimates

In this rather technical part, we use the structural properties of thermodynamic
functions imposed through the constitutive relations (5.17–5.25) to reformulate
the uniform estimates obtained in the previous section in terms of the standard
function spaces framework. These estimates or their analogues will be used repeat-
edly in the future discussion so it is convenient to summarize them in a concise
way.
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� Uniform Estimates:

Proposition 5.1. Let the quantities e = e(�, ϑ), s = s(�, ϑ) satisfy hypotheses
(5.17–5.23), and let the transport coefficients μ = μ(ϑ), η = η(ϑ), and κ = κ(ϑ)
obey the growth restrictions (5.24), (5.25).

Then we have:

ess sup
t∈(0,T )

| Mε
res[t] | ≤ ε2c, (5.45)

ess supt∈(0,T )

∥∥∥ [�ε − �

ε

]
ess

(t)
∥∥∥

L2(Ω)
≤ c, (5.46)

ess supt∈(0,T )

∥∥∥ [ϑε − ϑ

ε

]
ess

(t)
∥∥∥

L2(Ω)
≤ c, (5.47)

ess sup
t∈(0,T )

∫
Ω

(
[�ε]

5
3
res + [ϑε]4res

)
(t) dx ≤ ε2c, (5.48)

ess sup
t∈(0,T )

‖√�εuε‖L2(Ω;R3) ≤ c, (5.49)

σε

[
[0, T ]× Ω

]
≤ ε2c, (5.50)∫ T

0

‖uε(t)‖2
W 1,2(Ω;R3) dt ≤ c, (5.51)∫ T

0

∥∥∥(ϑε − ϑ

ε

)
(t)
∥∥∥2

W 1,2(Ω))
dt ≤ c, (5.52)∫ T

0

∥∥∥( log(ϑε) − log(ϑ)
ε

)
(t)
∥∥∥2

W 1,2(Ω))
dt ≤ c, (5.53)

and

∫ T

0

∥∥∥[�εs(�ε, ϑε)
ε

]
res

(t)
∥∥∥q

Lq(Ω)
dt ≤ c, (5.54)∫ T

0

∥∥∥[�εs(�ε, ϑε)
ε

]
res

uε(t)
∥∥∥q

Lq(Ω;R3)
dt ≤ c, (5.55)∫ T

0

∥∥∥[κ(ϑε)
ϑε

]
res

(∇xϑε

ε

)
(t)
∥∥∥q

Lq(Ω;R3)
dt ≤ c (5.56)

for a certain q > 1, where the generic constant c is independent of ε → 0.

Proof. (i) Estimates (5.45–5.47) and (5.49), (5.50) have been proved in the pre-
vious section. Estimate (5.48) follows immediately from (5.18), (5.43), and the
structural hypotheses (5.21), (5.23).
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(ii) Estimate (5.50) combined with (5.32–5.34) and hypothesis (5.24) gives rise to∫ T

0

‖∇xuε + ∇T
x uε −

2
3
divxuεI‖2

L2(Ω;R3×3) dt ≤ c. (5.57)

On the other hand, we can use estimates (5.49), (5.57), together with (5.45)
and Korn’s inequality established in Proposition 2.1, in order to obtain (5.51).

(iii) In a similar fashion, we deduce from (5.50) a uniform bound∫ T

0

[∥∥∥∇x

(ϑε

ε

)∥∥∥2
L2(Ω)

+
∥∥∥∇x

( log(ϑε)
ε

)∥∥∥2

L2(Ω)

]
dt ≤ c,

which, together with (5.47), (5.45) and Proposition 2.2, gives rise to (5.52), (5.53).

(iv) By virtue of the structural hypotheses (5.21), (5.22), we get

|�s(�, ϑ)| ≤ c
(
1 + �| log(�)| + �| log(ϑ) − log(ϑ)| + ϑ3

)
(5.58)

(cf. (3.39)).
On the other hand, it follows from (5.45) that

ess sup
t∈(0,T )

‖ [
1
ε

]res(t)‖L2(Ω) ≤ c, (5.59)

while (5.48) yields

ess sup
t∈(0,T )

∥∥∥∥
[
�ε log(�ε)

ε

]
res

(t)
∥∥∥∥

Lq(Ω)

≤ c for any 1 ≤ q <
5
3
. (5.60)

Furthermore, by means of (5.48), (5.53),∫ T

0

∥∥∥∥
[
�ε(log(ϑε) − log(ϑ))

ε

]
res

∥∥∥∥
2

Lp(Ω)

dt ≤ c for a certain p > 1, (5.61)

and, finally,

ess sup
t∈(0,T )

∥∥∥∥
[
ϑ3

ε

ε

]
res

(t)
∥∥∥∥

L
4
3 (Ω)

≤ cε, (5.62)

where we have used (5.48).
Relations (5.59–5.62), together with (5.58), imply (5.54).

(v) In order to see (5.55), we use estimates (5.49), (5.48), and (5.53) to obtain{[�ε(log(ϑε) − log(ϑ))uε

ε

]
res

}
ε>0

bounded in Lq(0, T ; Lq(Ω; R3))

for a certain q > 1, which, combined with (5.58–5.62), and (5.45), gives rise to
(5.55).
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(vi) Finally, in accordance with hypothesis (5.25),[κ(ϑε)
ϑε

]
res

∣∣∣∇xϑε

ε

∣∣∣ ≤ c
(∣∣∣∇x log(ϑ)

ε

∣∣∣+ [ϑ2
ε]res

∣∣∣∇xϑε

ε

∣∣∣),
where, as a consequence of estimates (5.48), (5.52), and the embedding relation
W 1,2(Ω) ↪→ L6(Ω),

{[ϑε]res}ε>0 is bounded in L∞(0, T ; L2(Ω)) ∩ L1(0, T ; L3(Ω)). (5.63)

Thus (5.56) follows from (5.52), (5.53) combined with (5.63) and a simple inter-
polation argument. �

5.3 Convergence

The uniform estimates established in Proposition 5.1 will be used in order to let
ε → 0 in equations (5.28), (5.29), (5.31) and to identify the limit problem. As
we have observed in Proposition 5.1, the residual parts of the thermodynamic
quantities related to the state variables �, ϑ are small of order ε. In order to
handle the essential components, we need the following general result exploited
many times in the forthcoming considerations.

Proposition 5.2. Let {�ε}ε>0, {ϑε}ε>0 be two sequences of non-negative measurable
functions such that

[�(1)
ε ]ess → �(1),

[ϑ(1)
ε ]ess → ϑ(1)

}
weakly-(*) in L∞(0, T ; L2(Ω)) as ε → 0,

where we have denoted

�(1)
ε =

�ε − �

ε
, ϑ(1)

ε =
ϑε − ϑ

ε
.

Suppose that
ess sup

t∈(0,T )

|Mε
res[t]| ≤ ε2c. (5.64)

Let G ∈ C1(Oess) be a given function, where the sets Mε
ess[t], Oess have been

introduced in (4.43), (4.39), respectively.
Then

[G(�ε, ϑε)]ess − G(�, ϑ)
ε

→ ∂G(�, ϑ)
∂�

�(1) +
∂G(�, ϑ)

∂ϑ
ϑ(1)

weakly-(*) in L∞(0, T ; L2(Ω)).
If, in addition, G ∈ C2(Oess), then∥∥∥ [G(�ε, ϑε)]ess − G(�, ϑ)

ε
−∂G(�, ϑ)

∂�
[�(1)

ε ]ess+
∂G(�, ϑ)

∂ϑ
[ϑ(1)

ε ]ess
∥∥∥

L∞(0,T ;L1(Ω))
≤ εc.

(5.65)
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Remark: If, in addition, the functions �ε, ϑε satisfy estimate (5.48), then (5.65)
may be replaced by

∥∥∥ [G(�ε, ϑε)]ess − G(�, ϑ)
ε

− ∂G(�, ϑ)
∂�

�(1)
ε +

∂G(�, ϑ)
∂ϑ

ϑ(1)
ε

∥∥∥
L∞(0,T ;L1(Ω))

≤ εc.

(5.66)

Proof. To begin, by virtue of (5.64),

‖1
ε
[G(�, ϑ)]res‖L1(Ω) ≤ εc, ‖1

ε
[G(�, ϑ)]res‖L2(Ω) ≤ c,

and, consequently, it is enough to show that

[G(�ε, ϑε) − G(�, ϑ)
ε

]
ess

→ ∂G(�, ϑ)
∂�

�(1) +
∂G(�, ϑ)

∂ϑ
ϑ(1) (5.67)

weakly-(*) in L∞(0, T ; L2(Ω)).
The next step is to observe that (5.67) holds as soon as G ∈ C2(Oess). Indeed

as G is twice continuously differentiable, we have

∣∣∣ [G(�ε, ϑε) − G(�, ϑ)
ε

−
(∂G(�, ϑ)

∂�

�ε − �

ε
+

∂G(�, ϑ)
∂ϑ

ϑε − ϑ

ε

)]
ess

∣∣∣
≤ εχε

[(�ε − �

ε

)2

+
(ϑε − ϑ

ε

)2]
,

where
‖ [χε]ess‖L∞((0,T )×Ω) ≤ c‖G‖C2(Oess)

.

In particular, we have shown (5.65).
Finally, seeing that

∣∣∣[G(�ε, ϑε) − G(�, ϑ)
ε

]
ess

∣∣∣ ≤ ‖G‖C1(Bess)

(∣∣∣[�ε − �

ε

]
ess

∣∣∣+ ∣∣∣[ϑε − ϑ

ε

]
ess

∣∣∣)
we complete the proof approximating G by a family of smooth functions uniformly
in C1(Oess). �

5.3.1 Equation of continuity

In the low Mach number regime, the equation of continuity (5.28) reduces to the
incompressibility constraint (5.8). In order to verify this observation, we first use
the uniform estimate (5.51) to deduce

uε → U weakly in L2(0, T ; W 1,2(Ω; R3)) (5.68)

passing to a suitable subsequence as the case may be.
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Furthermore, we have

�ε − �

ε
=
[�ε − �

ε

]
ess

+
[�ε − �

ε

]
res

,

where, in accordance with (5.46),[�ε − �

ε

]
ess

→ �(1) weakly-(*) in L∞(0, T ; L2(Ω)), (5.69)

while estimates (5.45), (5.48) give rise to[�ε − �

ε

]
res

→ 0 in L∞(0, T ; L
5
3 (Ω)); (5.70)

whence
�ε − �

ε
→ �(1) weakly-(*) in L∞(0, T ; L

5
3 (Ω)). (5.71)

In particular, (5.71) implies

�ε → � in L∞(0, T ; L
5
3 (Ω)), (5.72)

and we can let ε → 0 in the continuity equation (5.28) in order to conclude that∫ T

0

∫
Ω

U · ∇xϕ dx dt = 0

for all ϕ ∈ C∞
c ((0, T ) × Ω). Since the limit velocity field U belongs to the class

L2(0, T ; W 1,2(Ω; R3)), we have shown

divxU = 0 a.a. in (0, T )× Ω, U · n|∂Ω = 0 in the sense of traces (5.73)

provided the boundary ∂Ω is at least Lipschitz (cf. Section 10.3 in Appendix).

5.3.2 Entropy balance

With regard to (5.28), we recast the entropy balance (5.31) in the form∫ T

0

∫
Ω

�ε

(s(�ε, ϑε) − s(�, ϑ)
ε

)(
∂tϕ + uε · ∇xϕ

)
dx dt (5.74)

−
∫ T

0

∫
Ω

κ(ϑε)
ϑε

∇x

(ϑε

ε

)
· ∇xϕ dx dt +

1
ε
〈σε; ϕ〉[M,C]([0,T ]×Ω)

= −
∫

Ω

�0,ε

(s(�0,ε, ϑ0,ε) − s(�, ϑ)
ε

)
ϕ(0, ·) dx

to be satisfied for any ϕ ∈ C∞
c ([0, T ) × Ω).
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Adopting the notation introduced in Proposition 5.2 and using estimate
(5.47) we get

[ϑε − ϑ

ε

]
ess

→ ϑ(1) weakly-(*) in L∞(0, T ; L2(Ω)), (5.75)

passing to a suitable subsequence as the case may be. On the other hand, in
accordance with (5.52),

ϑε − ϑ

ε
→ ϑ(1) weakly in L2(0, T ; W 1,2(Ω)). (5.76)

Note that the limit functions in (5.75), (5.76) coincide since the measure of the
“residual” subset of (0, T ) × Ω tends to zero as claimed in (5.45).

In order to identify the limit problem resulting from (5.74) we proceed by
several steps:

(i) Write

�ε

(s(�ε, ϑε) − s(�, ϑ)
ε

)
= [�ε]ess

[s(�ε, ϑε)]ess − s(�, ϑ)
ε

+
[�ε

ε

]
res

(
[s(�ε, ϑε)]ess − s(�, ϑ)

)
+
[�εs(�ε, ϑε)

ε

]
res

,

where, by virtue of (5.48),[�ε

ε

]
res

(
[s(�ε, ϑε)]ess − s(�, ϑ)

)
→ 0 in L∞(0, T ; L

5
3 (Ω)), (5.77)

and, in accordance with (5.45), (5.54),[�εs(�ε, ϑε)
ε

]
res

→ 0 in Lp((0, T )× Ω) for a certain p > 1. (5.78)

Similarly, combining (5.45) with (5.55), (5.68), (5.77), we obtain[�ε

ε

]
res

(
[s(�ε, ϑε)]ess − s(�, ϑ)

)
uε → 0 in Lp(0, T ; Lp(Ω; R3)), (5.79)

and [�εs(�ε, ϑε)
ε

]
res

uε → 0 in Lp(0, T ; Lp(Ω; R3)) (5.80)

for a certain p > 1.
Finally, Proposition 5.2 together with (5.72) yield

[�ε]ess
[s(�ε, ϑε)]ess − s(�, ϑ)

ε
→ �

(∂s(�, ϑ)
∂�

�(1) +
∂s(�, ϑ)

∂ϑ
ϑ(1)
)

(5.81)

weakly-(*) in L∞(0, T ; L2(Ω; R3)).
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(ii) In a similar way, the entropy flux can be written as

κ(ϑε)
ϑε

∇x

(ϑε

ε

)
=
[κ(ϑε)

ϑε

]
ess

∇x

(ϑε − ϑ

ε

)
+
[κ(ϑε)

ϑε

]
res

∇x

(ϑε

ε

)
,

where, as a consequence of (5.75), (5.76),

[κ(ϑε)
ϑε

]
ess

∇x

(ϑε − ϑ

ε

)
→ κ(ϑ)

ϑ
∇xϑ(1) weakly in L2(0, T ; L2(Ω; R3)), (5.82)

and, in accordance with (5.45), (5.56),

[κ(ϑε)
ϑε

]
res

∇x

(ϑε

ε

)
→ 0 in Ls(0, T ; Ls(Ω; R3)) for a certain s > 1. (5.83)

(iii) Eventually, we have to identify the weak limit D of the product

[�ε]ess
[s(�ε, ϑε)]ess − s(�, ϑ)

ε
uε → D weakly in L2(0, T ; L

3
2 (Ω; R3)).

To this end, we revoke the Div-Curl lemma formulated in Proposition 3.3.
Following the notation of Proposition 3.3 we set

Uε =
[
[�ε]ess

[s(�ε, ϑε)]ess − s(�, ϑ)
ε

,

[�ε]ess
[s(�ε, ϑε)]ess − s(�, ϑ)

ε
uε −

[κ(ϑε)
ϑε

]
ess

∇x

(ϑε

ε

)]
,

Vε = [G(uε), 0, 0, 0]

considered as vector fields defined on the set ((0, T )×Ω) ⊂ R4 with values in R4,
for an arbitrary function G ∈ W 1,∞(R3).

Using estimates (5.77–5.83), together with (5.50), we can check that Uε, Vε

meet all hypotheses of Proposition 3.3; whence, in agreement with (5.81),

[�ε]ess
[s(�ε, ϑε)]ess − s(�, ϑ)

ε
G(uε) → �

(∂s(�, ϑ)
∂�

�(1) +
∂s(�, ϑ)

∂ϑ
ϑ(1)
)
G(u)

for any G, yielding the desired conclusion

[�ε]ess
[s(�ε, ϑε)]ess − s(�, ϑ)

ε
uε → �

(∂s(�, ϑ)
∂�

�(1) +
∂s(�, ϑ)

∂ϑ
ϑ(1)
)
U (5.84)

weakly in L2(0, T ; L
3
2 (Ω; R3)).
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At this stage, we are ready to let ε → 0 in the entropy balance equation
(5.74) in order to conclude that∫ T

0

∫
Ω

�
(∂s(�, ϑ)

∂�
�(1) +

∂s(�, ϑ)
∂ϑ

ϑ(1)
)(

∂tϕ + U · ∇xϕ
)

dx dt (5.85)

−
∫ T

0

∫
Ω

κ(ϑ)
ϑ

∇xϑ(1) · ∇xϕ dxdt

= −
∫

Ω

�
(∂s(�, ϑ)

∂�
�
(1)
0 +

∂s(�, ϑ)
∂ϑ

ϑ
(1)
0

)
ϕ(0, ·) dx

for any ϕ ∈ C∞
c ([0, T )× Ω), where

�
(1)
0,ε =

�0,ε − �

ε
→ �

(1)
0 weakly-(*) in L∞(Ω), (5.86)

and

ϑ
(1)
0,ε =

ϑ0,ε − ϑ

ε
→ ϑ

(1)
0 weakly-(*) in L∞(Ω). (5.87)

A remarkable feature of this process is that the entropy production rate represented
by the measure σε disappears in the limit problem (5.85) as a consequence of the
uniform bound (5.50). Loosely speaking, the entropy balance “inequality” (5.74)
becomes an equation (5.85).

To conclude, we deduce from (5.85) that∫
Ω

�
(∂s(�, ϑ)

∂�
�(1) +

∂s(�, ϑ)
∂ϑ

ϑ(1)
)
(t) dx

=
∫

Ω

�
(∂s(�, ϑ)

∂�
�
(1)
0 +

∂s(�, ϑ)
∂ϑ

ϑ
(1)
0

)
dx for a.a. t ∈ (0, T ).

However, since we have assumed that �(1) has zero mean and the total mass is
conserved, this relation reduces to∫

Ω

ϑ(1)(t) dx =
∫

Ω

ϑ
(1)
0 dx for a.a. t ∈ (0, T ).

Assuming, in addition to (5.27), that∫
Ω

ϑ
(1)
0,ε dx = 0 for all ε > 0 (5.88)

we conclude ∫
Ω

ϑ(1)(t) dx = 0 for a.a. t ∈ (0, T ). (5.89)

Clearly, the resulting equation (5.85) should give rise to the heat equation
(5.12) in the Oberbeck-Boussinesq approximation as soon as we establish a
relation between �(1) and ϑ(1). This will be done in the next section.
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5.3.3 Momentum equation

The asymptotic limit in the momentum equation is one of the most delicate steps
as the latter contains the convective term �εuε ⊗uε, difficult to handle because of
possible violent time oscillations of the acoustic waves represented by the gradient
component of the velocity.

Incompressible limit. It follows from (5.68), (5.72), combined with the standard
embedding relation W 1,2(Ω) ↪→ L6(Ω), that

�εuε → �U weakly in L2(0, T ; L
30
23 (Ω; R3)). (5.90)

Moreover, we deduce from (5.49), (5.72) that

�εuε → �U weakly-(*) in L∞(0, T ; L
5
4 (Ω; R3)), (5.91)

which, combined with (5.68), gives rise to

�εuε ⊗ uε → �U ⊗ U weakly in L2(0, T ; L
30
29 (Ω; R3×3)). (5.92)

As already noted in Section 4.4, we do not expect to have �U ⊗ U = �U ⊗ U
because of possible time oscillations of the gradient component of the velocity
field.

Next, as a consequence of (5.48), (5.52),

{ϑε}ε>0 is bounded in L∞(0, T ; L4(Ω)) ∩ L2(0, T ; L6(Ω)). (5.93)

Thus hypothesis (5.24), together with (5.68), (5.93), and a simple interpolation
argument, give rise to

Sε → μ(ϑ)(∇xU+∇T
x U) weakly in Lq(0, T ; Lq(Ω; R3)) for a certain q > 1. (5.94)

Note that, in accordance with (5.73), divxU = 0.
Now, it is easy to let ε → 0 in the momentum equation (5.29) as soon as the

test function ϕ is divergenceless. If this is the case, we get∫ T

0

∫
Ω

(
�U · ∂tϕ + �U⊗ U : ∇xϕ

)
dx dt (5.95)

=
∫ T

0

∫
Ω

(
μ(ϑ)[∇xU + ∇T

x U] : ∇xϕ − �(1)∇xF · ϕ
)

dx dt −
∫

Ω

(�U0) · ϕ dx

for any test function

ϕ ∈ C∞
c ([0, T )× Ω; R3), divxϕ = 0 in Ω, ϕ · n|∂Ω = 0,

where we have assumed

u0,ε → U0 weakly-(*) in L∞(Ω; R3). (5.96)
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Note that ∫
Ω

�ε

ε
∇xF · ϕ dx =

∫
Ω

�ε − �

ε
∇xF · ϕ dx

as ϕ is a solenoidal function with vanishing normal trace.
Relation (5.95) together with (5.73) represent a weak formulation of the

incompressible Navier-Stokes system (5.8), (5.9), supplemented with the com-
plete slip boundary condition

U · n|∂Ω = 0,
(
[∇xU + ∇T

x U]n
)
× n|∂Ω = 0, (5.97)

provided we can replace �U × U by �U × U. Moreover, the function U satisfies
the initial condition

U(0, ·) = H[U0], (5.98)

where the symbol H denotes the Helmoltz projection onto the space of solenoidal
functions (see Section 5.4.1 below and Section 10.6 in Appendix).

The fact that we completely lose control of the pressure term in the asymp-
totic limit is inevitable for problems with ill-prepared data. As a result, the limit
process is spoiled by violent oscillations yielding merely the weak convergence to-
wards the target problem.

Pressure. The pressure, deliberately eliminated in the previous part, is the key
quantity to provide a relation between the limit functions �(1), ϑ(1). We begin by
writing

p(�ε, ϑε) = [p(�ε, ϑε)]ess + [p(�ε, ϑε)]res,

where, in accordance with hypotheses (5.21), (5.23),

0 ≤ [p(�ε, ϑε)]res
ε

≤ c
([1

ε

]
res

+
[� 5

3
ε

ε

]
res

+
[ϑ4

ε

ε

]
res

)
, (5.99)

see also (3.32). Consequently, estimates (5.45), (5.48) imply that

ess sup
t∈(0,T )

∥∥∥ [p(�ε, ϑε)
ε

]
res

∥∥∥
L1(Ω)

≤ εc. (5.100)

Thus by means of Proposition 5.2 and estimate (5.100), we multiply the
momentum equation (5.29) on ε and let ε → 0 to obtain∫ T

0

∫
Ω

(∂p(�, ϑ)
∂�

�(1)+
∂p(�, ϑ)

∂ϑ
ϑ(1)
)
divxϕ dx dt = −

∫ T

0

∫
Ω

�∇xF ·ϕ dx (5.101)

for all ϕ ∈ C∞
c ((0, T ) × Ω; R3), which is nothing other than (5.10).

If we assume, without loss of generality, that∫
Ω

F dx = 0, (5.102)
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relation (5.101) yields the desired conclusion

�(1) = −∂ϑp

∂�p
(�, ϑ)ϑ(1) +

�

∂�p(�, ϑ)
F. (5.103)

Expressing �(1) in (5.85) by means of (5.103) and using Gibbs’ equation
(2.35), we get∫ T

0

∫
Ω

�cp(�, ϑ)ϑ(1)
(
∂tϕ + U · ∇xϕ

)
dx dt (5.104)

−
∫ T

0

∫
Ω

(
� ϑα(�, ϑ)FU · ∇xϕ + κ(ϑ)∇xϑ(1) · ∇xϕ

)
dx dt

= −
∫

Ω

� ϑ
(∂s(�, ϑ)

∂�
�
(1)
0 +

∂s(�, ϑ)
∂ϑ

ϑ
(1)
0 + α(�, ϑ)F

)
ϕ(0, ·) dx

for any ϕ ∈ C∞
c ([0, T ) × Ω), where the physical constants cp, α are determined

through (4.17), (4.18). Relation (5.104) represents a weak formulation of equation
(5.12) with Θ = ϑ(1), supplemented with the homogeneous Neumann boundary
condition.

Moreover, it follows from estimate (5.49) combined with (5.68), (5.72) that

√
�εuε →

√
�U weakly in L∞(0, T ; L2(Ω; R3)),

in particular,

U ∈ L∞(0, T ; L2(Ω; R3)) ∩ L2(0, T ; W 1,2(Ω; R3)), (5.105)

and, consequently,

divx(Uϑ(1)) = U · ∇xϑ(1) ∈ Lq((0, T )× Ω) for a certain q > 1.

Thus we may use the standard L2-theory for linear parabolic equations com-
bined with the Lp −Lq estimates reviewed in Section 10.14 of Appendix, in order
to conclude that

ϑ(1) ∈ W 1,q(δ, T ; Lq(Ω)) ∩ Lq(δ, T ; W 2,q(Ω)) ∩ C([0, T ]; Lq(Ω)) (5.106)

for a certain q > 1 and any 0 < δ < T .

Thus, setting Θ = ϑ(1), we obtain

�cp(�, ϑ)
(
∂tΘ + U · ∇xΘ)

)
− � ϑα(�, ϑ)U · ∇xF − divx(κ(ϑ)∇xΘ) = 0 (5.107)

for a.a. (t, x) ∈ (0, T )× Ω,

∇xΘ · n|∂Ω = 0 in the sense of traces for a.a. t ∈ (0, T ), (5.108)
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and

cp(�, ϑ)Θ(0, ·) = ϑ
(∂s(�, ϑ)

∂�
�
(1)
0 +

∂s(�, ϑ)
∂ϑ

ϑ
(1)
0 + α(�, ϑ)F

)
a.a. in Ω. (5.109)

Note that we can take δ = 0 in (5.106) as soon as the initial data in (5.109) are
more regular (see Section 10.14 in Appendix).

Finally, we deduce the celebrated Boussinesq relation

r + �α(�, ϑ)Θ = 0 (5.110)

putting

r = �(1) − �

∂�p(�, ϑ)
F (5.111)

in (5.103). Note that �(1) can be replaced by r in (5.95) as the difference multiplied
by ∇xF is a gradient, irrelevant in the variational formulation based on solenoidal
test functions.

5.4 Convergence of the convective term

So far we have almost completely identified the limit problem for the full Navier-

Stokes-Fourier system in the regime of the low Mach number and low strati-
fication, specifically,

Ma = ε, Fr =
√

ε, ε → 0.

The only missing point is to clarify the relation between the weak limit �U ⊗ U
and the product of weak limits �U⊗ U in the momentum equation (5.95).

As already pointed out in Section 4.4.1, we do not really expect to show that

�U ⊗ U = �U ⊗ U,

however, we may still hope to prove a weaker statement∫ T

0

∫
Ω

�U ⊗ U : ∇xϕ dx dt =
∫ T

0

∫
Ω

[�U ⊗ U] : ∇xϕ dx dt (5.112)

for any
ϕ ∈ C∞

c ((0, T ) × Ω; R3), divxϕ = 0, ϕ · n|∂Ω = 0.

Relation (5.112) can be interpreted in the way that the difference

divx

(
�U ⊗ U − �U ⊗ U

)
is proportional to a gradient that may be incorporated into the limit pressure;
whence (5.112) is sufficient for replacing �U ⊗ U by �U⊗U in (5.95) as required.
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The remaining part of this section is devoted to the proof of (5.112). The
main ingredients include:

• Helmholtz decomposition of the momentum;
• proof of compactness of the solenoidal part;
• analysis of the acoustic equation governing the time evolution of the gradient

component.

5.4.1 Helmholtz decomposition

Before commencing a rigorous analysis, we have to identify the solenoidal part
(divergenceless, incompressible) and the gradient part (acoustic) of a given vector
field. The following material is classical and may be found in most of the modern
textbooks devoted to mathematical fluid mechanics (see Section 10.6 in Appendix).

� Helmholtz Decomposition:

A vector function v : Ω → R3 is written as

v = H[v]︸ ︷︷ ︸
solenoidal part

+ H⊥[v]︸ ︷︷ ︸
gradient part

,

where

H⊥[v] = ∇xΨ,

ΔΨ = divxv in Ω, ∇xΨ · n|∂Ω = v · n,

∫
Ω

Ψ dx = 0. (5.113)

The standard variational formulation of problem (5.113) reads∫
Ω

∇xΨ · ∇xϕ dx =
∫

Ω

v · ∇xϕ dx,

∫
Ω

Ψ dx = 0 (5.114)

to be satisfied for any test function ϕ ∈ C∞
c (Ω). In particular, as a direct con-

sequence of the standard Lp-theory of elliptic operators (see Section 10.2.1 in
Appendix), it can be shown that the Helmholtz projectors

v →
{

H[v],

H⊥[v]

map continuously the spaces Lp(Ω; R3) and W 1,p(Ω; R3) into itself for any 1 <
p < ∞ as soon as ∂Ω is at least of class C2.
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5.4.2 Compactness of the solenoidal part

Keeping in mind our ultimate goal, meaning a rigorous justification of (5.112),
we show first that the solenoidal part of the momentum H[�εuε] does not exhibit
oscillations in time; in particular, it converges a.a. in the set (0, T ) × Ω. To this
end, take H[ϕ], ϕ ∈ C∞

c ([0, T ) × Ω; R3), ϕ · n = 0, as a test function in the
variational formulation of the momentum equation (5.29). Note that the normal
trace of H[ϕ] vanishes on ∂Ω together with that of ϕ. Consequently, in accordance
with the uniform estimates obtained in Section 5.2, notably (5.46), (5.48), and
(5.49), we conclude that

H[�εuε] → H[�U] = �U in Cweak([0, T ]; L
5
4 (Ω; R3)), (5.115)

where we have used (5.73). Note that, similarly to (5.95), the singular terms in
equation (5.29) are irrelevant as divxH[ϕ] = 0.

In addition, by virtue of (5.71), (5.115), we have

�H[uε] · uε =
(
εH[

� − �ε

ε
uε] + H[�εuε]

)
· uε → �|U|2 weakly in L1(Ω);

in particular, ∫ T

0

∫
Ω

|H[uε]|2 dx =
∫

Ω

H[uε] · uε dx →
∫

Ω

|U|2 dx.

As U = H[U], the last relation allows us to conclude that

H[uε] → U in L2(0, T ; L2(Ω; R3)). (5.116)

Coming back to (5.112) we write

�εuε ⊗ uε = H[�εuε] ⊗ uε + H⊥[�εuε] ⊗ H[uε] + H⊥[�εuε] ⊗ H⊥[uε],

where, by means of (5.68), (5.115), the compact embedding W 1,2(Ω) ↪→ L5(Ω),
and the arguments used in (3.232–3.233),

H[�εuε] ⊗ uε → �U ⊗ U weakly in L2(0, T ; L
30
29 (Ω; R3×3)). (5.117)

Moreover, combining (5.116) with (5.90) we infer that

H⊥[�εuε] ⊗ H[uε] → 0 weakly in L2(0, T ; L
30
29 (Ω; R3×3)). (5.118)

In the previous discussion we have repeatedly used the continuity of the Helmholtz
projectors on Lp and W 1,p.

In view of (5.117), (5.118), the proof of relation (5.112) reduces to showing∫ T

0

∫
Ω

H⊥[�εuε] ⊗ H⊥[uε] : ∇xϕ dx dt → 0 (5.119)

for any
ϕ ∈ C∞

c ((0, T ) × Ω; R3), divxϕ = 0, ϕ · n|∂Ω = 0.
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A priori, our uniform estimates do not provide any bound on the time deriva-
tive of the gradient part of the velocity. Verification of (5.119) must be therefore
based on a detailed knowledge of possible time oscillations and their mutual can-
cellations in the acoustic waves described by means of H⊥[�εu] governed by the
acoustic equation introduced in Section 4.4.1. Accordingly, the next three sections
are devoted to a detailed deduction of the acoustic equation and the spectral anal-
ysis of the corresponding wave operator. The proof of relation (5.119) is postponed
to Sections 5.4.6, 5.4.7.

5.4.3 Acoustic equation

A formal derivation of the acoustic equation was given in Section 4.4.1. Here we
consider a variational formulation in the spirit of Chapter 2. To this end, we write
system (5.28–5.29) in the form:∫ T

0

∫
Ω

(
ε�(1)

ε ∂tϕ + Vε · ∇xϕ
)

dx dt = 0, (5.120)

for any ϕ ∈ C∞
c ((0, T ) × Ω),∫ T

0

∫
Ω

(
εVε · ∂tϕ +

[ [p(�ε, ϑε)]ess − p(�, ϑ)
ε

− �F
]
divxϕ

)
dx dt (5.121)

=
∫ T

0

∫
Ω

(� − �ε)∇xF · ϕ dx dt +
∫ T

0

∫
Ω

h1
ε : ∇xϕ dx dt

for any ϕ ∈ C∞
c ((0, T ) × Ω; R3), ϕ · n|∂Ω = 0, where we have set

�(1)
ε =

�ε − �

ε
, Vε = �εuε, and h1

ε = εSε − ε�εuε ⊗ uε −
[p(�ε, ϑε)]res

ε
I.

Similarly, the entropy balance equation (5.31) can be rewritten with help of
(5.28) as ∫ T

0

∫
Ω

ε
(
�ε

s(�ε, ϑε) − s(�, ϑ)
ε

)
∂tϕ dx (5.122)

=
∫ T

0

∫
Ω

h2
ε · ∇xϕ dx dt − 〈σε; ϕ〉[M;C]([0,T ]×Ω)

for any ϕ ∈ C∞
c ((0, T ) × Ω), where

h2
ε =

κ(ϑε)
ϑε

∇xϑε +
(
�εs(�, ϑ) − �εs(�ε, ϑε)

)
uε.

Following the ideas delineated in Section 4.4.1 we have

[p(�ε, ϑε)]ess − p(�, ϑ)
ε

=
∂p(�, ϑ)

∂�
�(1)

ε +
∂p(�, ϑ)

∂ϑ
ϑ(1)

ε + h3
ε, ϑ(1)

ε =
ϑε − ϑ

ε
,
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and, analogously,

�ε
s(�ε, ϑε) − s(�, ϑ)

ε
(5.123)

=
[
�ε

s(�ε, ϑε) − s(�, ϑ)
ε

]
ess

+
[
�ε

s(�ε, ϑε) − s(�, ϑ)
ε

]
res

= �
[∂s(�, ϑ)

∂�
�(1)

ε +
∂s(�, ϑ)

∂ϑ
ϑ(1)

ε

]
+
[
�ε

s(�ε, ϑε) − s(�, ϑ)
ε

]
res

+ h4
ε,

where, by virtue of Proposition 5.2, specifically (5.65),

ess sup
t∈(0,T )

∫
Ω

|h3
ε(t)| dx ≤ εc, (5.124)

ess sup
t∈(0,T )

∫
Ω

|h4
ε(t)| dx ≤ εc, (5.125)

since p and s are twice continuously differentiable on the set (0,∞)2.
Now, we rewrite system (5.120–5.122) in terms of new independent variables

rε =
1
ω

(
ω�(1)

ε + A�ε
s(�ε, ϑε) − s(�, ϑ)

ε
− �F

)
, Vε = �εuε,

where we have set

ω = ∂�p(�, ϑ) +
|∂ϑp(�, ϑ)|2
�2 ∂ϑs(�, ϑ)

and A =
∂ϑp(�, ϑ)

� ∂ϑs(�, ϑ)
. (5.126)

After a bit lengthy but straightforward manipulation we arrive at the system∫ T

0

∫
Ω

(
εrε∂tϕ+Vε ·∇xϕ

)
dx dt =

A

ω

[ ∫ T

0

∫
Ω

h2
ε ·∇xϕ dx dt−〈σε; ϕ〉

]
(5.127)

for any ϕ ∈ C∞
c ((0, T ) × Ω),

∫ T

0

∫
Ω

(
εVε · ∂tϕ + ωrεdivxϕ

)
dx dt (5.128)

=
∫ T

0

∫
Ω

(� − �ε)∇xF · ϕ dx dt +
∫ T

0

∫
Ω

(
h1

ε : ∇xϕ − h3
εdivxϕ

)
dx dt

+ A

∫ T

0

∫
Ω

([
�ε

s(�ε, ϑε) − s(�, ϑ)
ε

]
res

+ h4
ε

)
divxϕ dx dt

for any ϕ ∈ C∞
c ((0, T ) × Ω; R3), ϕ · n|∂Ω = 0. System (5.127), (5.128) represents

a non-homogeneous variant of the acoustic equation (4.26).
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Our ultimate goal in this section is to show that the quantities on the right-
hand side of (5.127), (5.128) vanish for ε → 0. In order to see this, we use first the
uniform estimates (5.46), (5.48) to obtain

ess sup
t∈(0,T )

‖(�ε − �)∇xF‖
L

5
3 (Ω;R3)

= ε ess sup
t∈(0,T )

∥∥∥�ε − �

ε
∇xF

∥∥∥
L

5
3 (Ω;R3)

≤ εc,

(5.129)
and, by virtue of (5.92), (5.94), (5.100),

‖h1
ε‖Lq(0,T ;L1(Ω;R3×3)) ≤ εc for a certain q > 1. (5.130)

In a similar way, relation (5.44) together with (5.45), (5.48) give rise to

ess sup
t∈(0,T )

∥∥∥ [�ε
s(�ε, ϑε) − s(�, ϑ)

ε

]
res

∥∥∥
L1(Ω)

≤ εc. (5.131)

Finally, writing

h2
ε = ε

κ(ϑε)
ϑε

∇x
ϑε

ε
− ε
( [�εs(�ε, ϑε)]ess − �s(�, ϑ)

ε

)
uε

− ε
[�εs(�ε, ϑε)

ε

]
res

uε + ε
�ε − �

ε
s(�, ϑ)uε

we can use estimates (5.51), (5.53), (5.56), and (5.71), together with Proposition
5.2, in order to conclude that

‖h2
ε‖Lq(0,T ;Lq(Ω;R3)) ≤ εc for a certain q > 1. (5.132)

Having established all necessary estimates, we can use (5.123–5.125), together
with (5.129–5.132), in order to rewrite system (5.127), (5.128) in a more concise
form. We should always keep in mind, however, that the resulting problem is
nothing other than the primitive Navier-Stokes-Fourier system conveniently
rearranged in the form of an acoustic analogy in the spirit of Lighthill [135] dis-
cussed in Section 4.5.

� Scaled Acoustic Equation:

∫ T

0

∫
Ω

(
εrε∂tϕ + Vε · ∇xϕ

)
dx dt

=
A

ω

(∫ T

0

∫
Ω

h2
ε · ∇xϕ dx dt − 〈σε; ϕ〉[M;C]([0,T ]×Ω)

)
(5.133)

for any ϕ ∈ C∞
c ((0, T ) × Ω),
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∫ T

0

∫
Ω

(
εVε · ∂tϕ + ωrεdivxϕ

)
dx dt

=
∫ T

0

∫
Ω

(
h5

ε : ∇xϕ + h6
ε · ϕ

)
dx dt (5.134)

for any ϕ ∈ C∞
c ((0, T ) × Ω; R3), ϕ · n|∂Ω = 0.

In accordance with the previous estimates, the functions h2
ε, h5

ε, and h6 satisfy{
‖h2

ε‖Lq(0,T ;L1(Ω;R3)) + ‖h6
ε‖Lq(0,T ;L1(Ω;R3)) ≤ εc,

‖h5
ε‖Lq(0,T ;L1(Ω;R3×3)) ≤ εc

}
(5.135)

for a certain q > 1, and, in accordance with (5.50), σε ∈ M+([0, T ] × Ω) is a
non-negative measure such that

| 〈σε; ϕ〉[M;C]([0,T ]×Ω) | ≤ ε2c‖ϕ‖C([0,T ]×Ω). (5.136)

5.4.4 Formal analysis of the acoustic equation

In view of estimates (5.135), (5.136), the right-hand side of system (5.133), (5.134)
is small of order ε. In particular, these terms are negligible in the fast time scaling
τ ≈ t/ε as we have observed in Section 4.4.1. In order to get a better insight
into the complexity of the wave phenomena described by the acoustic equation,
we perform a formal asymptotic analysis of (5.133), (5.134) in real time t, keeping
all quantities of order ε and lower. Such a procedure leads formally to the system

ε∂trε + divxVε = εG1
ε, (5.137)

ε∂tVε + ω∇xrε = εG2
ε, (5.138)

with

G1
ε =

A

εω

(
divxh2

ε + 〈σε; ϕ〉[M;C]([0,T ]×Ω)

)
, (5.139)

G2
ε =

1
ε

(
divxh5

ε − h6
ε

)
. (5.140)

Solutions of the linear system (5.137), (5.138) can be expressed by means of
Duhamel’s formula[

rε(t)
Vε(t)

]
= S

(
t

ε

)[
rε(0)
Vε(0)

]
+
∫ t

0

(
S

(
t − s

ε

)[
G1

ε(s)
G2

ε(s)

])
ds,

where

S(t)
[

R0

Q0

]
=
[

R(t)
Q(t)

]
(5.141)
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is the solution group of the homogeneous problem

∂tR + divxQ = 0, ∂tQ + ω∇xR, Q · n|∂Ω = 0, R(0) = R0, Q(0) = Q0.

We easily deduce the energy equality∫
Ω

1
2
(
ωR2 + |Q|2

)
(t) dx =

∫
Ω

1
2
(
ωR2

0 + |Q0|2
)

dx

satisfied for any t ∈ R. In particular, the mapping t → S(t) represents a group of
isomorphisms on the Hilbert space L2(Ω) × L2(Ω; R3).

For the sake of simplicity, assume that G1
ε, G2

ε are more regular in the x-
variable than guaranteed by (5.135), (5.136), namely

‖G1
ε‖Lq(0,T ;W 1,2(Ω)) ≤ c, ‖G2

ε‖Lq(0,T ;W 1,2(Ω;R3)) ≤ c for a certain q > 1

uniformly with respect to ε.
Writing[

rε(t)
Vε(t)

]
= S

(
t

ε

)[[
rε(0)
Vε(0)

]
+
∫ t

0

(
S

(−s

ε

)[
G1

ε(s)
G2

ε(s)

])
ds

]

we observe that the family of mappings

t ∈ [0, T ] →
[[

rε(0)
Vε(0)

]
+
∫ t

0

(
S

(−s

ε

)[
G1

ε(s)
G2

ε(s)

])
ds

]

is precompact in the space C([0, T ]; L2(Ω) × L2(Ω; R3)) provided

rε(0) → r0 in L2(Ω), Vε(0) → V0 in L2(Ω; R3).

Consequently, we have

supt∈[0,T ] ‖rε(t) − Rε(t)‖L2(Ω) → 0,

supt∈[0,T ] ‖Vε(t) − Qε(t)‖L2(Ω;R3) → 0

}
for ε → 0,

where [
Rε(t)
Qε(t)

]
= S

(
t

ε

)[[
r0

V0

]
+
∫ t

0

[
F 1(s)
F2(s)

]
ds

]
, (5.142)

and where [F 1,F2] denote a weak limit of

S
(
−s

ε

) [ G1
ε(s)

Gε(s)

]

in Lq(0, T ; L2(Ω) × L2(Ω; R3)).
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Finally, (5.142) can be written in the form

ε∂tRε + divxQε = εH1
ε , (5.143)

ε∂tQε + ω∇xRε = εH2
ε, (5.144)

with [
H1

ε (t)
H2

ε(t)

]
= S

(
t

ε

)[
F 1(t)
F2(t)

]
.

System (5.143), (5.144) may be regarded as a scaled variant of Lighthill’s
equation (4.36) discussed in Section 4.5, where the acoustic source terms can be
determined in terms of fixed functions F 1, F2. For a fixed ε > 0, system (5.143),
(5.144) provides a reasonable approximation of propagation of the acoustic waves
in the low Mach number regime.

In practice the functions F 1, F2, or even their oscillating counterparts H1
ε ,

H2
ε, should be fixed by experiments. This is the basis of the so-called hybrid

methods in numerical analysis, where the source terms in the acoustic equation
are determined by means of a suitable hydrodynamic approximation. Very often,
the limit passage is performed at the first step, where the functions G1

ε, G2
ε are

being replaced by their formal incompressible limits for ε → 0 (see Golanski et al.
[101]). As we have seen, however, the effective form of the acoustic sources has to
be deduced as a kind of time average of highly oscillating quantities on which we
do not have any control in the low Mach number limit. This observation indicates
certain limitations of the hybrid methods used in numerical simulations. Indeed
as we show in Chapter 9, any method based on linear acoustic analogy can be
effective only for problems with well-prepared data. This is due to the fact that
the wave operator used in (5.143), (5.144) is linear thus applicable only to small
perturbations of the limit problem. In the case of ill-prepared data, the non-linear
character of the equations, in particular of the convective term, must be taken into
account in order to obtain reliable results. These topics will be further elaborated
in Chapter 9.

The purpose of the previous discussion was to motivate the following steps
in the analysis of the low Mach number limit. In particular, we shall reduce the
problem to a finite number of modes represented by the eigenfunctions of the
wave operator in (5.133), (5.134) that are smooth in the x-variable. Inspired by
the formal approach delineated above, we show that the non-vanishing oscillatory
part of the convective term can be represented by a gradient of a scalar function
irrelevant in the incompressible limit.

5.4.5 Spectral analysis of the wave operator

We consider the following eigenvalue problem associated to the operator on the
left-hand side of (5.133), (5.134):

divxw = λq, ω∇xq = λw in Ω, w · n|∂Ω = 0. (5.145)
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System (5.145) can be reformulated as a homogeneous Neumann problem

−Δxq = Λq in Ω, ∇xq · n|∂Ω = 0, −Λ =
λ2

ω
. (5.146)

As is well known, problem (5.146) admits a countable system of eigenvalues

0 = Λ0 < Λ1 ≤ Λ2 ≤ · · ·

with the associated system of (real) eigenfunctions {qn}∞n=0 forming an orthogonal
basis of the Hilbert spaces L2(Ω) (see Theorem 10.7 in Appendix). The correspond-
ing (complex) eigenfunctions w±n are determined through (5.145) as

w±n = ±i
√

ω

Λn
∇xqn, n = 1, 2, . . . .

Furthermore, the Hilbert space L2(Ω; R3) admits an orthogonal decomposi-
tion

L2(Ω; R3) = L2
σ(Ω; R3) ⊕ L2

g(Ω; R3), (5.147)

where
L2

g(Ω; R3) = closureL2

{
span { −i√

ω
wn}∞n=1

}
,

and where the symbol L2
σ denotes the subspace of divergenceless functions

L2
σ(Ω; R3) = closureL2{v ∈ C∞

c (Ω; R3) | divxv = 0 in Ω}

(see Sections 10.6, 10.2.2 in Appendix).

5.4.6 Reduction to a finite number of modes

Having collected the necessary material, we go back to problem (5.119). To begin,
we make use of spatial compactness of {uε}ε>0 in order to reduce the problem to
a finite number of modes associated to the eigenfunctions {i wn}∞n=1 introduced
in (5.147). To this end, let

PM : L2(Ω; R3) → span{ −i√
ω

wn}n≤M , M = 1, 2, . . .

denote the corresponding orthogonal projectors. Note that PM commutes with
H⊥ and set

H⊥
M [v] = PMH⊥[v] = H⊥[PMv].

For any function v ∈ L1(Ω; R3) we introduce the Fourier coefficients

an[v] =
−i√
ω

∫
Ω

v · wn dx (5.148)
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along with a scale of Hilbert spaces Hα
g (Ω; R3) ⊂ L2

g(Ω; R3) endowed with the
norm

‖v‖2
Hα

g
=

∞∑
n=1

Λα
n|an[v]|2,

where {Λn}∞n=0 is the family of eigenvalues associated to the Neumann problem
(5.146). It is easy to check that ‖ · ‖H1

g (Ω;R3) is equivalent to the standard Sobolev
norm ‖ · ‖W 1,2(Ω;R3) restricted to the space H1

g (Ω; R3).
A straightforward computation yields

‖H⊥[v] − H⊥
M [v]‖2

H
α1
g

=
∞∑

n=M

Λα1
n |an[v]|2 ≤ ΛM

α1−α2

∞∑
n=M

Λα2
n |an[v]|2 (5.149)

= ΛM
α1−α2‖H⊥[v] − H⊥

M [v]‖2
H

α2
g (Ω;R3)

for α2 ≥ α1.

Moreover, since H0
g = L2

g and H1
g (Ω; R3) ↪→ L6(Ω; R3), a simple interpolation

argument yields

Hα
g (Ω; R3) ↪→ L5(Ω; R3) whenever α ≥ 9

10
. (5.150)

Consequently, writing the quantity (5.119) in the form∫ T

0

∫
Ω

H⊥[�εuε] ⊗ H⊥[uε] : ∇xϕ dx dt

=
∫ T

0

∫
Ω

H⊥[�εuε] ⊗ H⊥
M [uε] : ∇xϕ dx dt

+
∫ T

0

∫
Ω

H⊥[�εuε] ⊗ (H⊥[uε] − H⊥
M [uε]) : ∇xϕ dx dt

we can use the uniform estimate (5.91), together with (5.149), (5.150), in order to
conclude that∣∣∣ ∫ T

0

∫
Ω

H⊥[�εuε] ⊗ (H⊥[uε] − H⊥
M [uε]) : ∇xϕ dx dt

∣∣∣ ≤ cΛM
− 1

20

uniformly with respect to ε → 0 for any fixed ϕ, where ΛM → ∞ for M → ∞.
Similarly, by means of (5.150) and a simple duality argument,

‖ H⊥[v] − H⊥
M [v] ‖2

[W 1,2(Ω;R3)]∗ ≤ cM− 1
10 ‖v‖2

L
5
4 (Ω;R3)

,

where we have identified v with a bounded linear form on W 1,2(Ω; R3) via the
standard Riesz formula

〈v; ϕ〉[W 1,2]∗;W 1,2 =
∫

Ω

v · ϕ dx.
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In view of these arguments, the proof of (5.119) reduces to showing∫ T

0

∫
Ω

H⊥
M [�εuε] ⊗ H⊥

M [uε] : ∇xϕ dx dt → 0,

or, equivalently, in agreement with (5.72),∫ T

0

∫
Ω

H⊥
M [�εuε] ⊗ H⊥

M [�εuε] : ∇xϕ dx dt → 0, (5.151)

for any fixed M ≥ 1 and any ϕ ∈ C∞
c ((0, T ) × Ω; R3), divxϕ = 0, ϕ · n|∂Ω = 0.

In principle, the operator H⊥
M in (5.151) could have been replaced by any

smoothing operator, for instance, a spatial convolution with a suitable family of
regularizing kernels. The advantage of our choice based on the spectral decompo-
sition of the wave operator is that the problem is reduced to a finite number of
ordinary differential equations.

5.4.7 Weak limit of the convective term – time lifting

The analysis of the asymptotic limit of system (5.1–5.4) will be completed as soon
as we establish (5.151). To this end, we exploit the fact that the time oscillations
of the quantities H⊥

M [�εuε] are completely determined by means of the scaled
acoustic equation (5.133), (5.134).

We start noticing that equation (5.133) contains the measure σε as a forcing
term. In particular, the corresponding solutions of the acoustic equation (5.133),
(5.134) may not be continuous with respect to time. In order to eliminate this
rather unpleasant phenomenon, we use the method of time-lifting introducing the
“primitive” Σε through formula

〈Σε; ϕ〉[M;C]([0,T ]×Ω) = 〈σε; I[ϕ]〉[M;C]([0,T ]×Ω) ,

where we set

I[ϕ](τ, x) =
∫ τ

0

ϕ(t, x) dt for all ϕ ∈ C([0, T ] × Ω).

Accordingly, system (5.133), (5.134) can be rewritten in the form∫ T

0

∫
Ω

(
εZε∂tϕ + Vε · ∇xϕ

)
dx dt =

A

ω

∫ T

0

∫
Ω

h2
ε · ∇xϕ dx dt (5.152)

for any ϕ ∈ C∞
c ((0, T ) × Ω),∫ T

0

∫
Ω

(
εVε ·∂tϕ+ωZεdivxϕ

)
dx dt =

∫ T

0

∫
Ω

(
h7

ε : ∇xϕ+h6
ε ·ϕ
)

dx dt (5.153)
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for any ϕ ∈ C∞
c ((0, T ) × Ω; R3), ϕ · n|∂Ω = 0, where we have set

Zε =
1
ω

(
ω�(1)

ε + A�ε
s(�ε, ϑε) − s(�, ϑ)

ε
− �F + A

Σε

ε

)
, Vε = �εuε,

h7
ε = h5

ε +
A

εω
ΣεI.

Note that, by virtue of the standard representation theorem (Theorem 0.2),
the quantity Σε can be viewed as a bounded (non-negative) linear form on the
Banach space L1(0, T ; C(Ω)) that can be identified with an element of the dual
space L∞(0, T ;M+(Ω)). As a matter of fact, it is easy to check that

〈Σε(τ); ϕ〉[M;C](Ω) = lim
δ→0+

〈σε; ψδϕ〉[M;C]([0,T ]×Ω) , ϕ ∈ C(Ω), (5.154)

for any τ ∈ [0, T ), where

ψδ(t) =

⎧⎪⎨
⎪⎩

1 if t ≤ τ,
1
δ (t − τ) for t ∈ (τ, τ + δ),
0 if t ≥ τ + δ.

In particular, as a direct consequence of the uniform bound established in (5.50),
we get

ess sup
t∈(0,T )

‖Σε(t)‖M+(Ω) ≤ ‖σε‖M+([0,T ]×Ω) ≤ ε2c. (5.155)

Accordingly, we have identified∫
Ω

Σεϕ dx := 〈Σε; ϕ〉[M;C](Ω) (5.156)

everywhere in (5.152), (5.153).
Loosely speaking, possible instantaneous changes of Σε are matched by those

of the entropy density so that the quantity Zε remains continuous in time. Note
that the wave equation (5.152), (5.153) is well posed even for measure-valued initial
data as the space of measures can be identified with a subspace of a Sobolev space
of negative order.

For qn, Λn solving the eigenvalue problem (5.146), we take

ϕ(t, x) = ψ(t)qn(x), ψ ∈ C∞
c (0, T )

as a test function in (5.152), and

ϕ(t, x) = ψ(t)
1√
Λn

∇xqn, ψ ∈ C∞
c (0, T ),

as a test function in (5.153). After a straightforward manipulation, we deduce a
system of ordinary differential equations{

ε∂tbn[Zε] −
√

Λnan[Vε] = χ1
ε,n,

ε∂tan[Vε] + ω
√

Λnbn[Zε] = χ2
ε,n, n = 1, . . .

}
(5.157)
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to be satisfied by the Fourier coefficients an defined in (5.148), and

bn[Zε] =
∫

Ω

Zεqn dx,

with convention (5.156). Here, in agreement with (5.135), (5.155),

‖χ1
ε,n‖L1(0,T ) + ‖χ2

ε,n‖L1(0,T ) ≤ εc for any fixed n = 1, . . . . (5.158)

Moreover, it is convenient to rewrite (5.157) in terms of the Helmholtz pro-
jectors, namely {

ε∂t[Zε]M + divx(H⊥
M [�εuε]) = χ̃1

ε,M ,

ε∂tH⊥
M [�εuε] + ω∇x[Zε]M = χ̃2

ε,M ,

}
(5.159)

where we have set

[Zε]M =
M∑

n=1

bn[Zε]qn,

and where, by virtue of (5.158),

‖χ̃1
ε,M‖L1((0,T )×Ω) + ‖χ̃2

ε,M‖L1((0,T )×Ω;R3) ≤ εc (5.160)

for any fixed M ≥ 1. Let us remark that both [Zε]M and H⊥
M [�εuε] are at least

twice continuously differentiable with respect to x and absolutely continuous in t
so that (5.159) makes sense.

Now we are in the situation discussed in Section 4.4.1. Introducing the po-
tential Ψε,M ,

∇xΨε,M = H⊥
M [�εuε],

∫
Ω

Ψε,M dx = 0,

we can rewrite the integral in (5.151) as∫ T

0

∫
Ω

H⊥
M [�εuε] ⊗ H⊥

M [�εuε] : ∇xϕ dx dt = −
∫ T

0

∫
Ω

ΔxΨε,M∇xΨε,M · ϕ dx dt

provided
ϕ ∈ C∞

c ((0, T ) × Ω; R3), divxϕ = 0, ϕ · n|∂Ω = 0.

Furthermore, keeping in mind that ϕ is a solenoidal function with vanishing
normal trace, meaning orthogonal to gradients, we can use equation (5.159) in
order to obtain∫ T

0

∫
Ω

ΔΨε,M∇xΨε,M · ϕ dx dt

= ε

∫ T

0

∫
Ω

[Zε]M∇xΨε,M · ∂tϕ dx dt

+
∫ T

0

∫
Ω

(
χ̃1

ε,MH⊥
M [�εuε] · ϕ + [Zε]M χ̃2

ε,M · ϕ
)

dx dt,
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where, in accordance with the uniform bounds established in (5.160), the right-
hand side tends to zero as ε → 0 for any fixed ϕ (cf. the formal arguments in
Section 4.4.1). Thus we have shown (5.151) yielding the desired conclusion (5.112).
Accordingly, the term �U ⊗ U can be replaced by �U ⊗ U in the momentum
equation (5.95), which, together with (5.73), (5.107), represent a weak formulation
of the Oberbeck-Boussinesq approximation. We shall summarize our results
in the next section.

5.5 Conclusion – main result

In this chapter, we have performed the asymptotic limit in the primitive Navier-

Stokes-Fourier system in the case of low Mach number and low stratification.
We have identified the limit (target) problem as Oberbeck-Boussinesq ap-

proximation. In the remaining part, we recall a weak formulation of the target
problem and state our convergence result in a rigorous way. In addition, we discuss
validity of the energy inequality for the target system and the problem of a proper
choice of the initial data (data adjustment). The fact that the weak formulation
of the limit momentum equation is based on solenoidal test functions should be
viewed as the weakest point of this framework, based on the ideas of Leray [132]
and Hopf [115]. The reader will have noticed that the pressure or rather the nor-
mal stress Π is in fact absent in the weak formulation of the limit problem and
may be recovered by the methods described in Caffarelli et al. [37]. Apparently,
we were not able to establish any relation between Π and the asymptotic limit of
the thermodynamic pressure p(�ε, ϑε).

5.5.1 Weak formulation of the target problem

We say that functions U and Θ represent a weak solution to the Oberbeck-

Boussinesq approximation if

U ∈ L∞(0, T ; L2(Ω; R3)) ∩ L2(0, T ; W 1,2(Ω; R3)),

Θ ∈ W 1,q
loc ((0, T ]; Lq(Ω)) ∩ Lq

loc((0, T ]; W 2,q(Ω)) ∩ C([0, T ]; Lq(Ω))

for a certain q > 1, and the following holds:

(i) Incompressibility and impermeability of the boundary:

divxU = 0 a.a. on (0, T )× Ω, U · n|∂Ω = 0 in the sense of traces. (5.161)

(ii) Incompressible Navier-Stokes system with complete slip on the boundary:∫ T

0

∫
Ω

(
�U · ∂tϕ + �U ⊗ U : ∇xϕ

)
dx dt (5.162)

=
∫ T

0

∫
Ω

(
μ(ϑ)[∇xU + ∇T

x U] : ∇xϕ − r∇xF · ϕ
)

dx dt −
∫

Ω

(�U0) · ϕ dx
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for any test function

ϕ ∈ C∞
c ([0, T )× Ω; R3), divxϕ = 0 in Ω, ϕ · n|∂Ω = 0.

(iii) Heat equation with insulated boundary:

�cp(�, ϑ)
(
∂tΘ + U · ∇xΘ)

)
− divx(κ(ϑ)∇xΘ)

= � ϑα(�, ϑ)U · ∇xF a.a. in (0, T ) × Ω,
(5.163)

∇xΘ · n|∂Ω = 0 in the sense of traces for a.a. t ∈ (0, T ), (5.164)

Θ(0, ·) = Θ0 a.a. in Ω. (5.165)

(iv) Boussinesq relation:

r + �α(�, ϑ)Θ = 0. (5.166)

The integral identity (5.162), together with the incompressibility constraint
imposed through (5.161), represent the standard weak formulation of the incom-
pressible Navier-Stokes system (5.8), (5.9), supplemented with the complete
slip boundary conditions

U · n|∂Ω = 0, [∇xU + ∇T
x U]n × n|∂Ω = 0. (5.167)

Moreover, it is easy to check that U ∈ Cweak([0, T ]; L2(Ω; R3)) and∫
Ω

U(0, ·) · ϕ dx =
∫

Ω

U0 · ϕ dx for all ϕ ∈ C∞
c (Ω), divxϕ = 0, ϕ · n|∂Ω = 0,

in other words,
U(0, ·) = H[U0],

where H is the Helmholtz projection onto the space of solenoidal functions. This
fact can be interpreted in terms of the asymptotic limit performed in this chapter
in the sense that the piece of information provided by the gradient component
H⊥[u0,ε] is lost in the limit problem because of the process of acoustic filtering
removing the rapidly oscillating acoustic waves from the system. This rather un-
pleasant but inevitable feature obviously disappears if we consider well-prepared
data, specifically,

H⊥[u0,ε] → 0 in L2(Ω)

(cf. Section 4.6). A similar problem connected with the initial distribution Θ0 of
the limit temperature will be discussed in the remaining part of this chapter. We
would like to point out, however, that considering well-prepared data in all state
variables would eliminate completely the heat equation, giving rise to a system
with constant temperature.



5.5. Conclusion – main result 185

5.5.2 Main result

We are in a position to state the main result concerning the asymptotic limit
of solutions to the complete Navier-Stokes-Fourier system in the regime of
low Mach number Ma = ε and under low stratification – the Froude number
Fr=

√
ε. We recall that the underlying physical system is energetically isolated,

in particular, the normal component of the heat flux vanishes on the boundary.
The boundary is assumed to be acoustically hard, meaning, the complete slip
boundary conditions are imposed on the fluid velocity. The initial state of the
system is determined through a family of ill-prepared data. The system is driven
by a potential force ∇xF , where F is a regular time independent function.

� Low Mach Number Limit – Low Stratification:

Theorem 5.2. Let Ω ⊂ R3 be a bounded domain of class C2,ν . Assume that p,
e, s satisfy hypotheses (5.17–5.23), with P ∈ C1[0,∞) ∩ C2(0,∞), the transport
coefficients μ, η, and κ meet the growth restrictions (5.24), (5.25), and the driving
force is determined by a scalar potential F = F (x) such that

F ∈ W 1,∞(Ω),
∫

Ω

F dx = 0.

Let {�ε,uε, ϑε}ε>0 be a family of weak solutions to the scaled Navier-Stokes-
Fourier system (5.1–5.7) on the set (0, T ) × Ω, supplemented with the boundary
conditions (5.15), (5.16), and the initial data

�ε(0, ·) = � + ε�
(1)
0,ε, uε(0, ·) = u0,ε, ϑε(0, ·) = ϑ0,ε = ϑ + εϑ

(1)
0,ε,

where
� > 0, ϑ > 0

are constant, and ∫
Ω

�
(1)
0,ε dx =

∫
Ω

ϑ
(1)
0,ε dx = 0 for all ε > 0.

Moreover, assume that⎧⎪⎨
⎪⎩

�
(1)
0,ε → �

(1)
0 weakly-(*) in L∞(Ω),

u0,ε → U0 weakly-(*) in L∞(Ω; R3),

ϑ
(1)
0,ε → ϑ

(1)
0 weakly-(*) in L∞(Ω).

⎫⎪⎬
⎪⎭ (5.168)

Then
ess sup

t∈(0,T )

‖�ε(t) − �‖
L

5
3 (Ω)

≤ εc,
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and, at least for a suitable subsequence,

uε → U weakly in L2(0, T ; W 1,2(Ω; R3)),

ϑε − ϑ

ε
= ϑ(1)

ε → Θ weakly in L2(0, T ; W 1,2(Ω; R3)),

where U and Θ solve the Oberbeck-Boussinesq approximation in the sense speci-
fied in Section 5.5.1, where the initial distribution of the temperature Θ0 can be
determined in terms of �

(1)
0 , ϑ

(1)
0 , and F , specifically,

Θ(0, ·) = Θ0 ≡ ϑ

cp(�, ϑ)

(∂s(�, ϑ)
∂�

�
(1)
0 +

∂s(�, ϑ)
∂ϑ

ϑ
(1)
0 + α(�, ϑ)F

)
. (5.169)

5.5.3 Determining the initial temperature distribution

As indicated by formula (5.169), determining the initial distribution of the temper-
ature represents a rather delicate issue. Note that the initial state of the primitive
Navier-Stokes-Fourier system is uniquely determined by three state variables
{�0,ε,u0,ε, ϑ0,ε}, while the limit Oberbeck-Boussinesq approximation contains
only two independent state functions, namely U and Θ. On the other hand, de-
termining the initial distribution of Θ in (5.163) requires the knowledge of �

(1)
0 –

a meaningless quantity for the limit problem! Here, similarly to Section 5.5.1, an
extra hypothesis imposed on the data may save the game, for instance,

�
(1)
0,ε =

�0,ε − �

ε
→ 0 in L2(Ω) for ε → 0. (5.170)

An alternative choice of data will be discussed in the next section.
Obviously, the above mentioned problems are intimately related to the ex-

istence of an initial-time boundary layer resulting from the presence of rapidly
oscillating acoustic waves discussed in Section 5.4.

5.5.4 Energy inequality for the limit system

It is interesting to see if the resulting Oberbeck-Boussinesq system specified
in Section 5.5.1 satisfies some form of the kinetic energy balance. Formally, taking
the scalar product of the momentum equation (5.9) with U we obtain

d
dt

1
2

∫
Ω

�|U|2 dx +
μ(ϑ)

2

∫
Ω

|∇xU + ∇T
x U|2 dx =

∫
Ω

r∇xFU dx, (5.171)

where r obeys Boussinesq’s relation (5.166). However, for the reasons explained in
detail in the introductory part of Chapter 2, the weak solutions are not expected



5.5. Conclusion – main result 187

to satisfy (5.171) but rather a considerably weaker energy inequality

1
2

∫
Ω

�|U|2(τ) dx +
μ(ϑ)

2

∫ τ

0

∫
Ω

|∇xU + ∇T
x U|2 dx dt (5.172)

≤ 1
2

∫
Ω

�|U0|2 dx +
∫ τ

0

∫
Ω

r∇xF · U dx dt

for a.a. τ ∈ [0, T ]. The weak solutions of the incompressible Navier-Stokes sys-
tem satisfying, in addition, the energy inequality (5.172) were termed “turbulent”
solutions in the seminal paper of Leray [132].

A natural idea is to derive (5.172) directly from the dissipation equality
(5.37). To this end, however, supplementary assumptions have to be imposed on
the family of initial data. In addition to the hypotheses of Theorem 5.2, suppose
that ⎧⎪⎨

⎪⎩
�
(1)
0,ε → �

(1)
0 ,

u0,ε → U0,

ϑ
(1)
0,ε → ϑ

(1)
0

⎫⎪⎬
⎪⎭ a.a. in Ω, (5.173)

in particular, by virtue of hypothesis (5.168), the data converge strongly in Lp(Ω)
for any 1 ≤ p < ∞. Still relation (5.173) does not imply that the initial data are
well prepared.

We recall that, in accordance with (5.71), (5.76),

�(1)
ε =

�ε − �

ε
→ �(1) weakly-(*) in L∞(0, T ; L5/3(Ω)),

ϑ(1)
ε =

ϑε − ϑ

ε
→ ϑ(1) ≡ Θ weakly in L2(0, T ; W 1,2(Ω)),

where the limit quantities are interrelated through

∂p

∂�
(�, ϑ)�(1) +

∂p

∂ϑ
(�, ϑ)ϑ(1) = �F (5.174)

(see (5.103)).

Asymptotic form of the dissipation balance. Rewriting the dissipation equality
(5.37) by help of (5.32) we get

−
∫ T

0

∫
Ω

(
1
2
�ε|uε|2 −

�ε − �

ε
F

)
∂tψ dx dt (5.175)

−
∫ T

0

∫
Ω

1
ε2

(
Hϑ(�ε, ϑε) − (�ε − �)

∂Hϑ(�, ϑ)
∂�

− Hϑ(�, ϑ)

)
∂tψ dx dt

+
∫ T

0

∫
Ω

ϑ

ϑε

(
Sε : ∇xuε +

κ(ϑε)|∇xϑε|2
ε2ϑε

)
ψ dx dt
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≤
∫

Ω

(1
2
�0,ε|u0,ε|2 −

(�0,ε − �)
ε

F
)

dx

+
∫

Ω

1
ε2

(
Hϑ(�0,ε, ϑ0,ε) − (�0,ε − �)

∂Hϑ(�, ϑ)
∂�

− Hϑ(�, ϑ)
)

dx

for any function ψ ∈ C1[0, T ] such that

ψ(0) = 1, ψ(T ) = 0, ∂tψ ≤ 0 in [0, T ].

Assume, for simplicity, that Hϑ = Hϑ(�, ϑ) is three times continuously dif-
ferentiable in an open neighborhood O of the equilibrium state (�, ϑ). As Hϑ is
determined in terms of the function P , it is enough that P be in C3(0,∞). Under
this extra hypothesis, since ∂ϑHϑ(�, ϑ) = 0, we have

Hϑ(�, ϑ) − (� − �)
∂Hϑ(�, ϑ)

∂�
− Hϑ(�, ϑ) (5.176)

=
1
2

(
∂2Hϑ(�, ϑ)

∂�2
(� − �)2 + 2

∂2Hϑ(�, ϑ)
∂�∂ϑ

(� − �)(ϑ − ϑ) +
∂2Hϑ(�, ϑ)

∂ϑ2
(ϑ − ϑ)2

)

+ χ(�, ϑ),

with
|χ(�, ϑ)| ≤ c

(
|� − �|3 + |ϑ − ϑ|3

)
as soon as (�, ϑ) ∈ Oess,

where Oess is the set of essential values introduced in (4.39).
Note that, in accordance with (2.49), (2.50),

∂2Hϑ(�, ϑ)
∂�2

=
1
�

∂p(�, ϑ)
∂�

,
∂2Hϑ(�, ϑ)

∂ϑ2
=

�

ϑ

∂e(�, ϑ)
∂ϑ

, and
∂2Hϑ(�, ϑ)

∂�∂ϑ
= 0.

Consequently, by virtue of hypotheses (5.168), (5.173), the expression on the right-
hand side of inequality (5.175) tends to∫

Ω

(
1
2
�|U0|2 +

1
2�

∂p(�, ϑ)
∂�

|�(1)
0 |2 +

�

2ϑ

∂e(�, ϑ)
∂ϑ

|ϑ(1)
0 |2 − �

(1)
0 F

)
dx. (5.177)

Next, we have∫ T

0

∫
Ω

ϑ

ϑε

(
Sε : ∇xuε +

κ(ϑε)|∇xϑε|2
ε2ϑε

)
ψ dx dt

≥
∫ T

0

∫
Ω

[
ϑμ(ϑε)

2ϑε

]
ess

∣∣∣∣∇xuε + ∇T
x uε −

2
3
divxuεI

∣∣∣∣2 ψ dx dt

+
∫ T

0

∫
Ω

[
ϑκ(ϑε)

ϑ2
ε

]
ess

∣∣∣∣∇x

(
ϑε − ϑ

ε

)∣∣∣∣
2

ψ dx dt,
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therefore

lim inf
ε→0

∫ T

0

∫
Ω

ϑ

ϑε

(
Sε : ∇xuε +

κ(ϑε)|∇xϑε|2
ε2ϑε

)
ψ dx dt (5.178)

≥
∫ T

0

∫
Ω

(
μ(ϑ)

2

∣∣∇xU + ∇T
x U
∣∣2 +

κ(ϑ)
ϑ

|∇xΘ|2
)

ψ dx dt.

Moreover,

− lim inf
ε→0

∫ T

0

∫
Ω

(
1
2
�ε|uε|2 −

�ε − �

ε
F

)
∂tψ dx dt (5.179)

≥ −
∫ T

0

∫
Ω

(
1
2
�|U|2 + �(1)F

)
∂tψ dx dt,

where, similarly to (5.178), we have used weak lower semi-continuity of convex
functionals, see Theorem 10.20 in Appendix.

Writing

Hϑ(�ε, ϑε) − (�ε − �)
∂Hϑ(�, ϑ)

∂�
− Hϑ(�, ϑ)

= Hϑ(�ε, ϑ) − (�ε − �)
∂Hϑ(�, ϑ)

∂�
− Hϑ(�, ϑ) + H(�ε, ϑε) − H(�ε, ϑ)

we observe easily that the function

� → h(�) = Hϑ(�, ϑ) − (� − �)
∂Hϑ(�, ϑ)

∂�
− Hϑ(�, ϑ)

is strictly convex, attaining its global minimum at � = �. Moreover, in agreement
with (2.49),

∂2h(�)
∂�2

=
1
�

∂p(�, ϑ)
∂�

.

Our goal is to show that

lim inf
ε→0

∫ T

0

∫
Ω

1
ε2

h(�ε)ϕ dx dt ≥ 1
2�

∂p(�, ϑ)
∂�

∫ T

0

∫
Ω

|�(1)|2ϕ dx dt (5.180)

for any non-negative ϕ ∈ C∞
c ([0, T ]× Ω). To this end, we first observe that∫ T

0

∫
Ω

1
ε2

h(�ε)ϕ dx dt ≥
∫
{�ε | |�ε−�|<D}

1
ε2

h(�ε)ϕ dx dt

≥ 1
2

inf{∂2
�h(�) | |� − �| < D}

∫ T

0

∫
Ω

1{�ε | |�ε−�|<D}|�(1)
ε |2ϕ dx dt
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for any D > 0 small enough. By virtue of (5.45), we have

1{�ε | |�ε−�|<D} → 1 as ε → 0 a.a. in (0, T )× Ω;

whence, using (5.69), we conclude that

lim inf
ε→0

∫ T

0

∫
Ω

1
ε2

h(�ε)ϕ dx dt ≥ 1
2

inf{∂2
�h(�) | |� − �| < D}

∫ T

0

∫
Ω

|�(1)|2ϕ dx dt

for any D > 0 small enough. Thus, letting D → 0 we get (5.180).
In accordance with (5.180),

− lim inf
ε→0

∫ T

0

∫
Ω

1
ε2

(
Hϑ(�ε, ϑε) − (�ε − �)

∂Hϑ(�, ϑ)
∂�

− Hϑ(�, ϑ)

)
∂tψ dx dt

≥ −
∫ T

0

∫
Ω

1
2�

∂p(�, ϑ)
∂�

|�(1)|2∂tψ dx dt

− lim inf
ε→0

∫ T

0

∫
Ω

(
Hϑ(�ε, ϑε) − Hϑ(�ε, ϑ)

ε2

)
∂tψ dx dt, (5.181)

where, similarly to (5.176),

Hϑ(�, ϑ) − Hϑ(�, ϑ) =
(ϑ − ϑ)2

2
�
∂s(�, ϑ)

∂ϑ
+ χ(�, ϑ),

with
|χ(�, ϑ)| ≤ c|ϑ − ϑ|3 for all (�, ϑ) ∈ Oess.

It follows from the uniform bounds established in (5.46), (5.52), and (5.62)
that {

ϑε − ϑ

ε

}
ε>0

is bounded in Lq((0, T ) × Ω) for a certain q > 2.

Consequently, going back to (5.181) we infer that

− lim inf
ε→0

∫ T

0

∫
Ω

1
ε2

(
Hϑ(�ε, ϑε) − (�ε − �)

∂Hϑ(�, ϑ)
∂�

− Hϑ(�, ϑ)

)
∂tψ dx dt

≥ −
∫ T

0

∫
Ω

1
2�

∂p(�, ϑ)
∂�

|�(1)|2∂tψ dx dt

− lim inf
ε→0

∫ T

0

∫
Ω

[
Hϑ(�ε, ϑε) − Hϑ(�ε, ϑ)

ε2

]
ess

∂tψ dx dt,

≥ −
∫ T

0

∫
Ω

1
2

(
1
�

∂p(�, ϑ)
∂�

|�(1)|2 + �
∂s(�, ϑ)

∂ϑ
|Θ|2

)
∂tψ dx dt. (5.182)
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Summing up relations (5.175–5.182), we derive the asymptotic form of the
dissipation inequality

∫
Ω

(
1
2
�|U|2 +

1
2�

∂p(�, ϑ)
∂�

|�(1)|2 +
�

2ϑ

∂e(�, ϑ)
∂ϑ

|Θ|2 − �(1)F

)
(τ, ·) dx (5.183)

+
∫ τ

0

∫
Ω

(
μ(ϑ)

2

∣∣∇xU + ∇T
x U
∣∣2 +

κ(ϑ)
ϑ

|∇xΘ|2
)

dx dt

≤
∫

Ω

(
1
2
�|U0|2 +

1
2�

∂p(�, ϑ)
∂�

|�(1)
0 |2 +

�

2ϑ

∂e(�, ϑ)
∂ϑ

|ϑ(1)
0 |2 − �

(1)
0 F

)
dx

for a.a. τ ∈ (0, T ).

Asymptotic thermal energy balance. Our next goal is to compare (5.183) with
the associated thermal energy balance computed by means of equation (5.163). To
this end, we need to multiply (5.163) on Θ and integrate over Ω. Although equation
(5.163) is satisfied in the strong sense (a.a. in (0, T )×Ω), the regularity of the limit
temperature field Θ is not sufficient to justify this step. Instead we multiply (5.163)
on H ′(Θ), where H is a smooth bounded function with two bounded derivatives.
After a straightforward manipulation, we obtain

�cp(�, ϑ)
∫

Ω

H(Θ)(τ, ·) dx +
∫ τ

δ

∫
Ω

κ(ϑ)H ′′(Θ)|∇xΘ|2 dx dt

= �cp(�, ϑ)
∫

Ω

H(Θ(δ, ·)) dx + �ϑα(�, ϑ)
∫ τ

δ

∫
Ω

H ′(Θ)∇xF ·U dx dt

for any 0 < δ < τ ≤ T . Moreover, since Θ ∈ C([0, T ]; Lq(Ω)) for a certain q > 1,
we can let δ → 0 to deduce

�cp(�, ϑ)
∫

Ω

H(Θ)(τ, ·) dx +
∫ τ

0

∫
Ω

κ(ϑ)H ′′(Θ)|∇xΘ|2 dx dt

= �cp(�, ϑ)
∫

Ω

H(Θ0) dx + �ϑα(�, ϑ)
∫ τ

0

∫
Ω

H ′(Θ)∇xF · U dx dt.

Now, approximating H(z) ≈ z2 we can use the Lebesgue convergence theorem to
conclude

�cp(�, ϑ)
∫

Ω

|Θ|2(τ, ·) dx + 2
∫ τ

0

∫
Ω

κ(ϑ)|∇xΘ|2 dx dt (5.184)

= �cp(�, ϑ)
∫

Ω

|Θ0|2 dx + 2�ϑα(�, ϑ)
∫ τ

0

∫
Ω

Θ∇xF · U dx dt

for any τ ∈ [0, T ].
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Computing F by means of (5.174), we combine (5.183), (5.184) to obtain,
after a bit of tedious but straightforward manipulation,

∫
Ω

1
2
�|U|2(τ, ·) dx +

∫ τ

0

∫
Ω

μ(ϑ)
2

|∇xU + ∇T
x U|2 dx dt (5.185)

≤
∫

Ω

1
2
�|U0|2 dx +

∫ τ

0

∫
Ω

r∇xF ·U dx dt +
�

2∂�p(�, ϑ)

∫
Ω

F 2 dx

+
∫

Ω

(
1
2�

∂p(�, ϑ)
∂�

|�(1)
0 |2 +

�

2ϑ

∂e(�, ϑ)
∂ϑ

|ϑ(1)
0 |2 − �

(1)
0 F

)
dx

−
∫

Ω

�cp(�, ϑ)
2ϑ

|Θ0|2 dx.

Initial data adjustment. Our ultimate goal is to fix the initial distribution of �
(1)
0

in such a way that the last two integrals in (5.185) vanish. To this end, we assume
that �

(1)
0 , ϑ

(1)
0 are chosen to satisfy

∂p(�, ϑ)
∂�

�
(1)
0 +

∂p(�, ϑ)
∂ϑ

ϑ
(1)
0 = �F. (5.186)

Relation (5.186) can be regarded as a kind of pressure compatibility condition to
be compared with (5.174).

If this is the case, we easily check that

(i) Θ0 given through formula (5.169) coincides with ϑ
(1)
0 ,

and, moreover,

(ii) we obtain the desired conclusion

∫
Ω

(
1
2�

∂p(�, ϑ)
∂�

|�(1)
0 |2 +

�

2ϑ

∂e(�, ϑ)
∂ϑ

|ϑ(1)
0 |2 − �

(1)
0 F

)
dx

+
�

2∂�p(�, ϑ)

∫
Ω

F 2 dx =
∫

Ω

�cp(�, ϑ)
2ϑ

|Θ0|2 dx,

in particular, relation (5.185) gives rise to the kinetic energy inequality
(5.172).

In the light of the previous arguments, it is relation (5.186) rather than
(5.170) that yields the correct data adjustment for the limit problem. Note that
(5.186) coincides with our definition of well-prepared data introduced in Sec-
tion 4.6.
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As for the energy balance for the limit problem, we have shown the following
result.

� Kinetic Energy Inequality:

Theorem 5.3. In addition to the hypotheses of Theorem 5.2, let P ∈ C1[0,∞) ∩
C3(0,∞), and let ⎧⎪⎨

⎪⎩
�
(1)
0,ε → �

(1)
0 ,

u0,ε → U0,

ϑ
(1)
0,ε → ϑ

(1)
0

⎫⎪⎬
⎪⎭ a.a. in Ω,

where �
(1)
0 , ϑ

(1)
0 satisfy the pressure compatibility condition (5.186).

Then the limit quantities U, Θ identified in Theorem 5.2 satisfy the kinetic
energy inequality

1
2

∫
Ω

�|U|2(τ) dx +
μ(ϑ)

2

∫ τ

0

∫
Ω

|∇xU + ∇T
x U|2 dx dt

≤ 1
2

∫
Ω

�|U0|2 dx +
∫ τ

0

∫
Ω

r∇xF ·U dx dt

for a.a. τ ∈ (0, T ).

Since r and Θ are interrelated through Boussinesq equation (5.166), we can
use (5.184) to deduce the total energy inequality for the Oberbeck-Boussinesq

approximation in the form

1
2

∫
Ω

(
�|U|2 + �cp(�, ϑ)|Θ|2

)
(τ) dx (5.187)

+
∫ τ

0

∫
Ω

(
μ(ϑ)

2
|∇xU + ∇T

x U|2 + κ(ϑ)|∇xΘ|2
)

dx dt

≤ 1
2

∫
Ω

(
�|U0|2 + �cp(�, ϑ)|Θ0|2

)
dx for a.a. τ ∈ [0, T ].



Chapter 6

Stratified Fluids

We expand the methods developed in the previous chapter in order to handle the
strongly stratified systems discussed briefly in Section 4.3. In comparison with the
previous considerations, a new aspect arises, namely the thermodynamic state vari-
ables � and ϑ undergo a scaling procedure similar to that of kinematic quantities
like velocity, length, and time. In particular, both thermal and caloric equations
of state modify their form reflecting substantial changes of the material properties
of the fluid.

6.1 Motivation

Many recent applications of mathematical fluid mechanics are motivated by prob-
lems arising in astrophysics. However, investigations in this field are hampered
by both theoretical and observational problems. The vast range of different scales
extending in the case of stars from the stellar radius to 102 m or even less en-
tirely prevents a complex numerical solution. Progress in this field therefore calls
for a combination of physical intuition with rigorous analysis of highly simplified
mathematical models.

A typical example is the flow dynamics in stellar radiative zones representing
a major challenge of the current theory of stellar interiors. Under these circum-
stances, the fluid is a plasma characterized by the following specific features:

• A strong radiative transport predominates the molecular one. This is due to
extremely hot and energetic radiation fields prevailing in the plasma. The
Péclet number is therefore expected to be vanishingly small.

• Strong stratification effects, because of the enormous gravitational potential
of gaseous celestial bodies, determine many of the properties of the fluid in
the large.
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• The convective motions are much slower than the speed of sound yielding
a small Mach number. The fluid is therefore almost incompressible, whereas
the density variations can be simulated via the anelastic approximation (see
also Gough [104], Gilman and Glatzmaier [99], [98]).

Motivated by the previous discussion and in accordance with the general
philosophy of this book, we assume that the time evolution of the fluid we deal with
is governed by the Navier-Stokes-Fourier System subjected to an appropriate
scaling. Similarly to the preceding chapters we suppose the Mach number is small,
specifically,

Ma = ε, ε → 0.

Unlike the situation studied in Chapter 5, the strongly stratified fluids are char-
acterized by the Froude number Fr proportional to Ma,

Fr = ε.

Finally, the transport coefficients enhanced by radiation give rise to a small Péclet
number, specifically,

Pe = ε2.

As a matter of fact, there are several possibilities of different scaling leading
to the above values of the characteristic numbers Ma, Fr, and Pe. The subsequent
analysis is based on a proper choice of constitutive equations reflecting the relevant
physical properties of the fluid in the high temperature regime. In particular, the
radiation component of the pressure, specific internal energy, and entropy as well
as the heat conductivity coefficient augmented by a radiation part will be taken
into account and play a significant role in the analysis of the asymptotic limit.

6.2 Primitive system

6.2.1 Field equations

A suitable but still highly simplified platform for studying fluids under the specific
circumstances required by models in astrophysics is represented by the Navier-

Stokes-Fourier system (balance of mass, momentum, and entropy) introduced
in Section 1 that may be stated in a concise form:

∂t� + divx(�u) = 0, (6.1)
∂t(�u) + divx(�u ⊗ u) + ∇xp(�, ϑ) = divxS − �gj, (6.2)

∂t(�s(�, ϑ)) + divx(�s(�, ϑ)u) + divx

(q
ϑ

)
= σ, (6.3)

where g > 0 is the gravitational constant and j = (0, 0, 1).
In order to develop the essential ideas without becoming entangled in the

complexities of shapes of the underlying physical space, we confine ourselves to
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a very simple geometry expressed by means of the Cartesian coordinates x =
(x1, x2, x3), where (x1, x2) denotes the horizontal directions, while x3 stands for
the depth pointing downward parallel to the gravitational force gj. In addition,
the periodic boundary conditions are imposed in the horizontal plane, the physical
domain Ω ⊂ R3 being an infinite slab bounded above and below by two parallel
plates. Such a stipulation can be written in a concise form

Ω = T 2 × (0, 1), (6.4)

where
T 2 =

(
[0, 1]|{0,1}

)2

is a two-dimensional flat torus.

Similarly to the preceding chapters, the physical boundary is assumed to
be impermeable and mechanically “smooth” (acoustically hard) so that the fluid
velocity satisfies the complete slip boundary conditions

u · n|∂Ω = 0, [Sn] × n|∂Ω = 0. (6.5)

The bottom part of the boundary is thermally insulated:

q · n|{x3=0} = 0, (6.6)

while a radiative condition

q · n = β(ϑ)(ϑ − ϑ)|{x3=1} (6.7)

is imposed on the upper part of the boundary.
Accordingly, the total energy balance takes the form

d
dt

∫
Ω

(1
2
�|u|2 + �e(�, ϑ) + �gx3

)
dx =

∫
{x3=1}

β(ϑ)(ϑ − ϑ) dSx. (6.8)

Obviously, condition (6.7), frequently used in astrophysical models, has a strong
stabilizing effect driving the system to the state of the reference temperature ϑ.

6.2.2 Constitutive relations

A pivoting preliminary idea of how to obtain a simplified model under the circum-
stances described in Section 6.1 asserts that the characteristic temperature of the
system is very large. This fact, in combination with physically relevant constitu-
tive equations, gives rise to a tentative scaling to be incorporated in the values of
the characteristic numbers Ma, Fr, and Pe.

Similarly to Chapter 5, the thermodynamic functions p, e, and s are deter-
mined through a single function P and a scalar parameter a as follows:

p(�, ϑ) = pM (�, ϑ) + pR(ϑ), pM = ϑ
5
2 P
( �

ϑ
3
2

)
, pR =

a

3
ϑ4, a > 0, (6.9)
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e(�, ϑ) = eM (�, ϑ) + eR(�, ϑ), eM =
3
2

ϑ
5
2

�
P
( �

ϑ
3
2

)
, eR = a

ϑ4

�
, (6.10)

and

s(�, ϑ) = sM (�, ϑ) + sR(�, ϑ), sM (�, ϑ) = S
( �

ϑ
3
2

)
, sR =

4
3
a
ϑ3

�
, (6.11)

where

S′(Z) = −3
2

5
3P (Z) − ZP ′(Z)

Z2
for all Z > 0. (6.12)

Moreover, the hypothesis of thermodynamic stability requires

P ′(Z) > 0,
5
3P (Z) − ZP ′(Z)

Z
> 0 for all Z > 0. (6.13)

Here we assume P ∈ C2[0,∞) such that

P (0) = 0, P ′(0) = p0 > 0, (6.14)

and, similarly to hypotheses (5.22), (5.23),

sup
Z>0

5
3P (Z) − ZP ′(Z)

Z
< ∞, lim

Z→∞
P (Z)
Z

5
3

= p∞ > 0. (6.15)

The viscous stress tensor S obeys the classical Newton’s law

S[ϑ,∇xu] = μ(ϑ)
(
∇xu + ∇t

xu− 2
3
divxuI

)
, (6.16)

where we have deliberately omitted the bulk viscosity component assumed to be
zero for the plasma. The heat flux q is given by Fourier’s law

q[ϑ,∇xϑ] = −κ(ϑ)∇xϑ. (6.17)

In order to avoid unnecessary technicalities, we simply assume that μ is an
affine function of the absolute temperature, specifically,

μ(ϑ) = μ0 + μ1ϑ, with μ0, μ1 > 0. (6.18)

Similarly,

κ(ϑ) = κM (ϑ) + dϑ3, κM (ϑ) = κ0 + κ1ϑ, with d, κ0, κ1 > 0, (6.19)

and
β(ϑ) = β1ϑ, β1 > 0. (6.20)

As already pointed out in Section 1.4.3, the extra cubic term in (6.19) is responsible
for the fast transport of heat due to radiation.
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6.2.3 Scaling

Keeping in mind the characteristic features of the underlying physical system
discussed in Section 6.1, we introduce a tentative scaling as follows:

• the characteristic temperature of the system is large, specifically of order
ε−2α/3, where ε is a small positive parameter, and 2 < α < 3;

• the radiative constants satisfy a ≈ ε2α+1, d ≈ ε4α/3−2;
• the characteristic velocity is of order ε1−α/3, the characteristic length of order

ε−1−α/3, the reference time is of order ε−2 so that the Strouhal number
equals 1;

• the gravitational constant g is of order ε1−α/3;
• β1 ≈ εα/3.

The reader may consult Section 1.4.4 for typical values of the physical constants
appearing above.

Under these circumstances, the re-scaled system (6.1–6.3), (6.8) reads as
follows:

� Scaled Navier-Stokes-Fourier System:

∂t� + divx(�u) = 0, (6.21)

∂t(�u) + divx(�u ⊗ u) +
1
ε2

∇xpε(�, ϑ) = divxSε[ϑ,∇xu] − 1
ε2

�gj, (6.22)

∂t(�sε(�, ϑ)) + divx(�sε(�, ϑ)u) +
1
ε2

divx

(qε[ϑ,∇xϑ]
ϑ

)
= σε, (6.23)

d
dt

∫
Ω

(ε2

2
�|u|2 + �eε(�, ϑ) + �gx3

)
dx =

∫
{x3=1}

β1ϑ
ϑ − ϑ

ε
dSx, (6.24)

supplemented with

� Scaled Equations of State:

pε(�, ϑ) =
ϑ

5
2

εα
P
(
εα �

ϑ
3
2

)
+ ε

a

3
ϑ4, (6.25)

eε(�, ϑ) =
3
2�

ϑ
5
2

εα
P
(
εα �

ϑ
3
2

)
+ εa

ϑ4

�
, (6.26)

sε(�, ϑ) = S
(
εα �

ϑ
3
2

)
− S(εα) + ε

4a

3
ϑ3

�
. (6.27)
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Accordingly, the viscous stress tensor Sε is given as

Sε(ϑ,∇xu) = (ε2α/3μ0 + μ1ϑ)
(
∇xu + ∇⊥

x u− 2
3
divxuI

)
, (6.28)

while the heat flux qε reads

qε(ϑ,∇xϑ) = −
(
ε2+2α/3κ0 + ε2κ1ϑ + dϑ3

)
∇xϑ. (6.29)

We recall that in the framework of weak solutions considered in this book,
the entropy production rate σε is a non-negative measure on the set [0, T ] × Ω
satisfying

σε ≥ 1
ϑ

(
ε2

Sε(ϑ,∇xu) : ∇xu− 1
ε2

qε(ϑ,∇xϑ) · ∇xϑ

ϑ

)
, (6.30)

where
1
ϑ

(
ε2

Sε(ϑ,∇xu) : ∇xu − 1
ε2

qε(ϑ,∇xϑ) · ∇xϑ

ϑ

)
(6.31)

≥ ε2

2
μ1

∣∣∣∇xu +∇T
x u− 2

3
divxuI

∣∣∣2 + ε2α/3κ0|∇x log(ϑ)|2 +
κ1

ϑ
|∇xϑ|2 +

d

ε2
ϑ|∇xϑ|2.

The homogeneous boundary conditions (6.5), (6.6) remain unaffected by the
scaling, while the radiative condition (6.7) is converted to

1
ε2

qε(ϑ,∇xϑ) · n = β1ϑ
ϑ − ϑ

ε
|{x3=1}. (6.32)

Thus, at least formally, system (6.21–6.24) corresponds to system (4.1–4.4)
with the values of the characteristic numbers

Ma = Fr = ε, Pe = ε2.

A fundamentally new feature of the present problem is the fact that the
material properties of the fluid change during the scaling process. In this context,
it is interesting to note that the state equation for the pressure approaches the
standard perfect gas law in the asymptotic limit ε → 0, namely

pε(�, ϑ) → p0�ϑ as ε → 0.

This is in good agreement with the well-founded observation that any monoatomic
gas obeys approximately the perfect gas state equation in the non-degenerate
area of high temperatures and moderate values of the density. This remarkable
property plays a significant role in the asymptotic analysis of the system for ε → 0
eliminating artificial pressure components in the so-called anelastic limit discussed
below.



6.3. Asymptotic limit 201

6.3 Asymptotic limit

6.3.1 Static states

Static states are solutions of system (6.21–6.24) with vanishing velocity field. In
the present setting, the temperature corresponding to any static state is constant,
specifically, ϑ = ϑ. Accordingly, the density � must satisfy

∇xpε(�, ϑ) + �gj = 0 in Ω, � ≥ 0,

where � is uniquely determined by the total mass

M0 =
∫

Ω

� dx.

Note that, in general, any static solution � may and indeed does depend on ε.
For future analysis, it seems more convenient to approximate the pressure by

its linearization, namely
pε(�, ϑ) ≈ p0�ϑ,

and to solve the corresponding linear problem

p0ϑ∇x�̃ + �̃gj = 0 in Ω,

∫
Ω

�̃ dx = M0. (6.33)

It is easy to check that (6.33) admits a unique (non-negative) solution in the form

�̃ = �̃(x3) = c(M0) exp
(
− gx3

p0ϑ

)
.

In agreement with our previous discussion, the density distribution given by
�̃ is a very good approximation of the static state provided ε is small enough.

6.3.2 Solutions to the primitive system

Analogously as in Chapter 5, we prescribe the initial data in the form:

�(0, ·) = �0,ε = �̃ + ε�
(1)
0,ε, u(0, ·) = u0,ε, ϑ(0, ·) = ϑ + εϑ

(1)
0,ε, (6.34)

where �̃ = �̃(x3) solves (6.33), ϑ is the equilibrium temperature introduced in
(6.32), and ∫

Ω

�
(1)
0,ε dx = 0. (6.35)

Given ε > 0, we suppose that the scaled Navier-Stokes-Fourier system

(6.21–6.30), supplemented with the boundary conditions (6.5), (6.6), (6.32), and
the initial conditions (6.34) admits a weak solution {�ε,uε, ϑε} on the set (0, T )×Ω
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in the sense specified in Section 2.1. As a matter of fact, the main existence result
established in Theorem 3.1 does not cover the case of the radiative boundary
condition (6.32). On the other hand, however, the abstract theory developed in
Chapter 3 can be easily modified in order to accommodate more general boundary
conditions including (6.32).

In accordance with Theorems 3.1, 3.2, we assume that⎧⎪⎪⎨
⎪⎪⎩

�ε ≥ 0, �ε ∈ L∞(0, T ; L
5
3 (Ω)),

uε ∈ L2(0, T ; W 1,2(Ω; R3)), uε · n|∂Ω = 0,

ϑε > 0 a.a. in (0, T ) × Ω, ϑε ∈ L∞(0, T ; L4(Ω)) ∩ L2(0, T ; W 1,2(Ω)),

⎫⎪⎪⎬
⎪⎪⎭
(6.36)

and the following integral identities hold:

(i) Renormalized equation of continuity:∫ T

0

∫
Ω

�εB(�ε)
(
∂tϕ + uε · ∇xϕ

)
dx dt (6.37)

=
∫ T

0

∫
Ω

b(�ε)divxuεϕ dx dt −
∫

Ω

�0,εB(�0,ε)ϕ(0, ·) dx

for any test function ϕ ∈ C∞
c ([0, T )× Ω), and any b as in (2.3);

(ii) Momentum equation:∫ T

0

∫
Ω

(
�εuε · ∂tϕ + �εuε ⊗ uε : ∇xϕ +

1
ε2

pε(�ε, ϑε)divxϕ
)

dx dt (6.38)

=
∫ T

0

∫
Ω

(
Sε(ϑε,∇xuε) : ∇xϕ +

1
ε2

�gϕ3

)
dx dt −

∫
Ω

�0,εu0,εϕ(0, ·) dx,

for any test function ϕ ∈ C∞
c ([0, T ) × Ω; R3), ϕ · n|∂Ω = 0, where Sε is given by

(6.28);

(iii) Entropy balance equation:∫ T

0

∫
Ω

[
�εsε(�ε, ϑε)

(
∂tϕ + uε · ∇xϕ

)
+

1
ε2

qε(ϑε,∇xϑε)
ϑε

· ∇xϕ
]

dx dt (6.39)

+ 〈σε; ϕ〉[M;C]([0,T ]×Ω) −
∫ T

0

∫
{x3=1}

β1
ϑε − ϑ

ε
ϕ dSx dt

= −
∫

Ω

�0,εsε(�0,ε, ϑ0,ε)ϕ(0, ·) dx

for any ϕ ∈ C∞
c ([0, T )×Ω), where qε is given by (6.29), and σε is a non-negative

measure satisfying inequality (6.30);
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(iv) Total energy balance:∫
Ω

(ε2

2
�ε|uε|2 + �εeε(�ε, ϑε) + �εgx3

)
(τ) dx (6.40)

=
∫

Ω

(ε2

2
�0,ε|u0,ε|2 + �0,εeε(�0,ε, ϑ0,ε) + �0,εgx3

)
dx

+
∫ τ

0

∫
{x3=1}

β1ϑε
ϑ − ϑε

ε
dSx dt

for a.a. τ ∈ (0, T ).

6.3.3 Main result

The limit problem has been formally identified in Section 4.3. It consists of the
following set of equations.

� Hydrostatic Balance Equation:

p0ϑ∇x�̃ + �̃gj = 0; (6.41)

� Anelastic Constraint:

divx(�̃U) = 0; (6.42)

� Momentum Equation:

∂t(�̃U) + divx(�̃U ⊗ U) + �̃∇xΠ = μ1ϑΔU +
1
3
μ1ϑ∇xdivxU +

ϑ(2)

ϑ
�̃gj, (6.43)

where U satisfies the complete slip boundary conditions

U · n|∂Ω = 0,
[
μ1ϑ
(
∇xU + ∇T

x U
)
n
]
× n|∂Ω = 0, (6.44)

and ϑ(2) is related to the vertical component of the velocity through

�̃gU3 = dϑ
3
Δϑ(2) in Ω, ∇xϑ(2) · n|∂Ω = 0. (6.45)

A suitable weak formulation of the momentum equation (6.43), supplemented
with the anelastic constraint (6.42), and the complete slip boundary conditions
(6.44), reads: ∫ T

0

∫
Ω

(
�̃U · ϕ + �̃U ⊗ U : ∇xϕ

)
dx dt (6.46)

=
∫ T

0

∫
Ω

μ1ϑ
(
∇xU + ∇T

x U − 2
3
divxUI

)
: ∇xϕ dx dt

−
∫ T

0

∫
Ω

ϑ(2)

ϑ
�̃gϕ3 dx dt −

∫
Ω

�̃U0 · ϕ(0, ·) dx
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to be satisfied for any test function

ϕ ∈ C∞
c ([0, T ) × Ω; R3), ϕ · n|∂Ω = 0, divx(�̃ϕ) = 0.

Formula (6.46) suggests that the standard concept of Helmholtz projectors
introduced in Section 5.4.1 has to be modified in order to handle the anelastic
approximation. To this end, any vector function v : Ω → R3 is now decomposed as

� Weighted Helmholtz Decomposition:

v = H�̃[v]︸ ︷︷ ︸
solenoidal part

+ H⊥
�̃ [v]︸ ︷︷ ︸

weighted gradient part

, (6.47)

with the weighted gradient part given through formula

H⊥
�̃ [v] = �̃∇xΨ,

where the scalar potential Ψ is determined as a unique solution to the Neumann
problem:

divx(�̃∇xΨ) = divxv in Ω, �̃∇xΨ · n|∂Ω = v · n,

∫
Ω

Ψ dx = 0. (6.48)

A weak (variational) formulation of (6.48) can be written in the form∫
Ω

�̃∇xΨ · ∇xϕ dx =
∫

Ω

v · ∇xϕ dx,

∫
Ω

Ψ dx = 0 (6.49)

to be satisfied for any test function ϕ ∈ C∞
c (Ω). Since the function �̃ is regular

and bounded below on Ω away from zero, the mappings H�̃, H⊥
�̃ enjoy the same

continuity properties as the standard Helmholtz projectors, in particular, they are
bounded on W 1,p(Ω; R3) as well as on Lp(Ω; R3) provided 1 < p < ∞ (see Section
10.6 in Appendix).

Having collected the preliminary material we are in a position to state the
main result to be proved in the remaining part of this chapter. The resulting
problem, arising as a simultaneous singular limit of the Mach, Froude, and Péclet
numbers, can be viewed as a simple model of the fluid motion in stellar radiative
zones.

� Low Mach Number Limit – Strong Stratification:

Theorem 6.1. Let Ω = T 2 × (0, 1). Suppose that P ∈ C2[0,∞) satisfies hypotheses
(6.13–6.15). Let {�ε,uε, ϑε}ε>0 be a family of weak solutions to the rescaled Navier-
Stokes-Fourier system (6.21–6.30) on (0, T ) × Ω in the sense specified in Section
6.3.2, with the parameter α ∈ (2, 3), supplemented with the boundary conditions
(6.5), (6.6), (6.32), and the initial conditions

�(0, ·) = �0,ε = �̃ + ε�
(1)
0,ε, u(0, ·) = u0,ε, ϑ(0, ·) = ϑ + εϑ

(1)
0,ε,
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where �̃ solves the linearized static problem (6.33), �
(1)
0,ε satisfies (6.35), and{

{�(1)
0,ε}ε>0, {ϑ(1)

0,ε}ε>0 are bounded in L∞(Ω),

u0,ε → u0 weakly-(*) in L∞(Ω; R3).

}

Then, at least for suitable subsequences, we have

�ε → �̃ in C([0, T ]; Lq(Ω)) for any 1 ≤ q <
5
3
,

uε → U weakly in L2(0, T ; W 1,2(Ω; R3)),

ϑε → ϑ in L2(0, T ; W 1,2(Ω)),

and

∇x

(ϑε − ϑ

ε2

)
→ ∇xϑ(2) weakly in L1(0, T ; L1(Ω; R3)),

where �̃, ϑ, U, ϑ(2) is a weak solution to problem (6.41–6.45), supplemented with
the initial condition

�̃U0 = H�̃[�̃u0].

Remark: The same result can be shown provided that Ω ⊂ R
3 is a bounded regular

domain, the driving force of the form f = ∇xF , where F ∈ W 1,∞(Ω), and the
boundary condition (6.7) imposed on the whole ∂Ω.

At a purely conceptual level, the principal ideas of the proof of Theorem 5.1
are identical to those introduced in Chapter 4 and further developed in Chapter 5.
In particular, each function h defined on the set (0, T )×Ω will be decomposed as

h = [h]ess + [h]res,

where, similarly to (4.44), (4.45),

[h]ess = h 1Mε
ess

, [h]res = h 1Mε
res

,

Mε
ess = {(t, x) ∈ (0, T ) × Ω | �/2 < �ε(t, x) < 2�, ϑ/2 < ϑε(t, x) < 2ϑ},

Mε
res = ((0, T ) × Ω) \Mε

ess,

where the constants �, � have been fixed in such a way that

0 < � < inf
x∈Ω

�̃(x) ≤ sup
x∈Ω

�̃(x) < �. (6.50)

As already pointed out in Chapter 5, the “residual” parts are expected to vanish
for ε → 0, while the total information on the asymptotic limit is carried by the
“essential” components.

A significant new aspect of the problem arises in the analysis of propagation
of the acoustic waves. In agreement with the formal arguments discussed in Section
4.4.2, the speed of the sound waves in a highly stratified fluid changes effectively
with the depth (vertical) coordinate. Consequently, the spectral analysis of the
wave operator must be considerably modified, the basic modes being orthogonal
in a weighted space reflecting the anisotropy in the system.
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6.4 Uniform estimates

Although the uniform bounds deduced below are of the same nature as in Section
5.2, a rigorous analysis becomes more technical as the structural properties of the
thermodynamic functions depend on the parameter ε.

6.4.1 Dissipation equation, energy estimates

To begin, observe that the total mass is a constant of motion, specifically,∫
Ω

�ε(t, ·) dx =
∫

Ω

�̃ dx = M0 for all t ∈ [0, T ]. (6.51)

Exactly as in Chapter 5, combining the entropy production equation (6.39)
with the total energy balance (6.40) we arrive at the total dissipation balance:∫

Ω

[1
2
�ε|uε|2 +

1
ε2

(
Hε

ϑ
(�ε, ϑε) + �εgx3

)]
(τ, ·) dx (6.52)

+
ϑ

ε2
σε

[
[0, τ ] × Ω

]
+
∫ τ

0

∫
{x3=1}

β1
(ϑε − ϑ)2

ε3
dSx dt

=
∫

Ω

[1
2
�0,ε|u0,ε|2 +

1
ε2

(
Hε

ϑ
(�0,ε, ϑ0,ε) + �0,εgx3

)]
dx for a.a. τ ∈ [0, T ],

where we have set
Hε

ϑ
(�, ϑ) = �eε(�, ϑ) − ϑ�sε(�, ϑ).

Since the functions pε, eε, and sε satisfy Gibbs’ equation (1.2) for any fixed
ε > 0, we easily compute

∂2Hε
ϑ
(�, ϑ)

∂�2
=

1
�

∂pε(�, ϑ)
∂�

=
ϑ

�
P ′
(
εα �

ϑ
3
2

)
; (6.53)

whence
∂Hε

ϑ
(�, ϑ)

∂�
=
∫ �

1

1
z

∂pε(z, ϑ)
∂�

dz + const,

in particular,
∂Hε

ϑ
(�̃ε, ϑ)

∂�
+ gx3 = const, (6.54)

where �̃ε is the solution of the “exact” static problem

∇xpε(�̃ε, ϑ) + �̃εgj = 0,

∫
Ω

�̃ε dx = M0. (6.55)
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In accordance with (6.54), relation (6.52) can be rewritten in the form

1
2

∫
Ω

�ε|uε|2(τ, ·) dx +
1
ε2

∫
Ω

(
Hε

ϑ
(�ε, ϑε) − Hε

ϑ
(�ε, ϑ)

)
(τ, ·) dx (6.56)

+
1
ε2

∫
Ω

(
Hε

ϑ
(�ε, ϑ) − (�ε − �̃ε)

∂Hε
ϑ
(�̃ε, ϑ)

∂�
− Hε

ϑ
(�̃ε, ϑ)

)
(τ, ·) dx

+
ϑ

ε2
σε

[
[0, τ ] × Ω

]
+
∫ τ

0

∫
{x3=1}

β1
(ϑε − ϑ)2

ε3
dSx dt

=
1
2

∫
Ω

�0,ε|u0,ε|2(τ, ·) dx +
1
ε2

∫
Ω

(
Hε

ϑ
(�0,ε, ϑ0,ε) − Hε

ϑ
(�0,ε, ϑ)

)
(τ, ·) dx

+
1
ε2

∫
Ω

(
Hε

ϑ
(�0,ε, ϑ) − (�0,ε − �̃ε)

∂Hε
ϑ
(�̃ε, ϑ)

∂�
− Hε

ϑ
(�̃ε, ϑ)

)
(τ, ·) dx

for a.a τ ∈ [0, T ].

The following assertion shows that the “exact” static solution �̃ε and the
“limit” static solution �̃ are close as soon as ε is small enough.

Lemma 6.1. Let �̃ be the solution of problem (6.33), while �̃ε satisfies (6.55).
Then

sup
x∈Ω

|�̃ε(x) − �̃(x)| ≤ cεα, (6.57)

where the constant c is independent of ε, and α has been introduced in Section
6.2.3.

Proof. Obviously both �̃ε and �̃ depend solely on the vertical coordinate x3, and,
in addition, ∫ 1

0

(
�̃ε(x3) − �̃(x3)

)
dx3 = 0. (6.58)

Moreover, as a consequence of hypothesis (6.14), there exist positive constants
�, � such that

0 < � < inf
x∈Ω

�̃ε(x) ≤ sup
x∈Ω

�̃ε(x) < � (6.59)

uniformly for ε → 0.
Finally, as P ∈ C2[0,∞), a direct inspection of (6.25), (6.33), (6.55) yields∣∣∣ d

dx3
(log(�̃ε) − log(�̃))

∣∣∣ ≤ εαc,

which, combined with (6.58), (6.59), implies (6.57). �

In order to exploit the total dissipation balance (6.56) for obtaining uniform
estimates, we first observe that the expression on the right-hand side is bounded,
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in terms of the initial data, uniformly for ε → 0. To this end, we use Gibbs’
equation (1.2) to obtain

∂Hε
ϑ
(�, ϑ)

∂ϑ
= �(ϑ − ϑ)

∂sε(�, ϑ)
∂ϑ

, (6.60)

in particular,

1
ε2

∣∣∣Hε
ϑ
(�0,ε, ϑ0,ε) − Hε

ϑ
(�0,ε, ϑ)

∣∣∣ ≤ c1

∣∣∣ϑ0,ε − ϑ

ε

∣∣∣2 = c1|ϑ(1)
0,ε|2 ≤ c2.

Indeed a direct computation yields

∂sε(�, ϑ)
∂ϑ

= − 3
2ϑ

S′(Z)Z + ε
4a

�
ϑ2 for Z = εα �

ϑ
3
2
; (6.61)

whence the desired bound follows from hypothesis (6.15).
Similarly, in accordance with (6.53), the function Hε

ϑ
is twice continuously

differentiable in �, in particular,

1
ε2

∣∣∣Hε
ϑ
(�0,ε, ϑ) − (�0,ε − �̃ε)

∂Hε
ϑ
(�̃ε, ϑ)

∂�
− Hε

ϑ
(�̃ε, ϑ)

∣∣∣ ≤ c1

∣∣∣�0,ε − �̃ε

ε

∣∣∣2
≤ c2

(∣∣∣�0,ε − �̃

ε

∣∣∣2 +
∣∣∣ �̃ − �̃ε

ε

∣∣∣2) = c2

(
|�(1)

0,ε|2 +
∣∣∣ �̃ − �̃ε

ε

∣∣∣2);
whence the desired uniform bound is provided by Lemma 6.1, where α ∈ (2, 3).

The hypothesis of thermodynamic stability expressed through (6.13), to-
gether with (6.53), (6.60), imply that all integrated quantities on the left-hand
side of the total dissipation balance (6.56) are non-negative, and, consequently, we
deduce immediately the following uniform estimates:

ess sup
t∈(0,T )

∫
Ω

�ε|uε|2 dx ≤ c, (6.62)

‖σε‖M+([0,T ]×Ω) ≤ ε2c, (6.63)

and, by virtue of hypothesis (6.20),∫ T

0

∫
{x3=1}

∣∣∣ϑε − ϑ

ε

∣∣∣2 dSx dt ≤ εc. (6.64)

Note that ϑε ∈ L2(0, T ; W 1,2(Ω)) possesses a well-defined trace on ∂Ω for a.a.
t ∈ (0, T ).

As for the integrals containing the function Hε
ϑ
, observe first that

Hε
ϑ
(�ε, ϑε) − Hε

ϑ
(�ε, ϑ) ≥ c|ϑε − ϑ|2
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as soon as
�/2 < �ε < 2�, ϑ/2 < ϑε < 2ϑ,

where, as a direct consequence (6.13), (6.60), and (6.61), the constant c is inde-
pendent of ε. In particular, we have obtained

ess sup
t∈(0,T )

∥∥∥[ϑε − ϑ

ε

]
ess

∥∥∥
L2(Ω)

≤ c. (6.65)

Furthermore, it follows from hypotheses (6.13–6.15) that

P ′(Z) ≥ c(1 + Z
2
3 ) > 0 for all Z ≥ 0, (6.66)

in particular,
∂2Hε

ϑ
(�, ϑ)

∂�2
=

ϑ

�
P ′
(
εα �

ϑ
3
2

)
≥ c

�
. (6.67)

Consequently, boundedness of the third integral in (6.56) gives rise to

ess sup
t∈(0,T )

∥∥∥[�ε − �̃ε

ε

]
ess

∥∥∥
L2(Ω)

≤ c;

whence, by virtue of Lemma 6.1,

ess sup
t∈(0,T )

∥∥∥[�ε − �̃

ε

]
ess

∥∥∥
L2(Ω)

≤ c. (6.68)

Next, it follows from (6.53), (6.60), and (6.61) that

inf
(�,ϑ)∈Mres

(
Hε

ϑ
(�, ϑ) − (� − �̃ε)

∂Hε
ϑ
(�̃ε, ϑ)

∂�
− Hε

ϑ
(�̃ε, ϑ)

)
(6.69)

= inf
(�,ϑ)∈∂Mess

(
Hε

ϑ
(�, ϑ) − (� − �̃ε)

∂Hε
ϑ
(�̃ε, ϑ)

∂�
− Hε

ϑ
(�̃ε, ϑ)

)
≥ c > 0,

where, by virtue of Lemma 6.1, the constant c is independent of ε, �̃ε. Thus we
infer, exactly as in Chapter 5, that

ess sup
t∈(0,T )

|Mε
res[t]| ≤ ε2c, (6.70)

where, similarly to (4.43), we have set

Mε
res[t] = Mε

res|{t}×Ω ⊂ Ω.

In other words, the measure of the residual set is small and vanishes with ε → 0.
In addition, by virtue of (6.67), (6.70),

ess sup
t∈(0,T )

∫
Ω

| [�ε log(�ε)]res | dx ≤ ε2c. (6.71)
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As a direct consequence of estimates (6.70), (6.71), we deduce that the resid-
ual component of any affine function of �ε divided on ε2 is bounded in the space
L∞(0, T ; L1(Ω)). On the other hand, by virtue of Proposition 3.2,

Hε
ϑ
(�, ϑ) ≥ 1

4

(
�eε(�, ϑ) + ϑ�|sε(�, ϑ)|

)
−
∣∣∣(� − �)

∂Hε
2ϑ

∂�
(�, 2ϑ) + Hε

2ϑ
(�, 2ϑ)

∣∣∣
for any �, ϑ, therefore we can use again relation (6.56) in order to conclude that

ess sup
t∈(0,T )

∫
Ω

[�εeε(�ε, ϑε)]res dx ≤ ε2c, (6.72)

and

ess sup
t∈(0,T )

∫
Ω

| [�εsε(�ε, ϑε)]res | dx ≤ ε2c. (6.73)

Note that, as a consequence of (6.27) and hypothesis (6.15), both
∂Hε

2ϑ

∂� (�, 2ϑ) and
Hε

2ϑ
(�, 2ϑ) are uniformly bounded for ε → 0.
In accordance with hypothesis (6.26) and (6.66),

ess sup
t∈(0,T )

∫
Ω

[�εϑε]res dx ≤ ε2c, (6.74)

ess sup
t∈(0,T )

∫
Ω

[ϑε]4res dx ≤ εc, (6.75)

and

ess sup
t∈(0,T )

∫
Ω

[�ε]
5
3
res dx ≤ ε2−2α/3c. (6.76)

Note that 2 − 2α/3 > 0 as α ∈ (2, 3).
To conclude, we exploit the piece of information provided by the uniform

bound (6.63). In accordance with (6.28–6.30), we deduce immediately that∫ T

0

∫
Ω

|∇xuε + ∇T
x uε −

2
3
divxuεI|2 dx dt ≤ c, (6.77)∫ T

0

∫
Ω

ϑε

∣∣∣∇x

(ϑε − ϑ

ε2

)∣∣∣2 dx dt ≤ c, (6.78)∫ T

0

∫
Ω

1
ϑε

∣∣∣∇x

(ϑε − ϑ

ε

)∣∣∣2 dx dt ≤ c, (6.79)

and ∫ T

0

∫
Ω

∣∣∣∇x

(
log(ϑε) − log(ϑ)

)∣∣∣2 dx dt ≤ ε2−2α/3c. (6.80)

Note that (6.80) implies ∇x log(ϑε) ≈ 0 in the asymptotic limit as α < 3.
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Combining estimates (6.62), (6.70), (6.77) we get, by help of a variant of
Korn’s inequality established in Proposition 2.1,

{uε}ε>0 bounded in L2(0, T ; W 1,2(Ω)). (6.81)

Similarly, by means of Proposition 2.2, relations (6.70), (6.74), together with
(6.78), (6.79), (6.80) yield

{ϑε − ϑ

ε

}
ε>0

bounded in L2(0, T ; W 1,2(Ω)), (6.82)

{√ϑε −
√

ϑ

ε

}
ε>0

bounded in L2(0, T ; W 1,2(Ω)), (6.83)

and
‖ log(ϑε) − log(ϑ)‖L2(0,T ;W 1,2(Ω)) ≤ ε1−α/3c. (6.84)

6.4.2 Pressure estimates

The upper bound (6.76) on the residual component of the density is considerably
weaker than its counterpart (5.48) established in Chapter 5. This is an inevitable
consequence of the scaling that preserves only the linear part of the pressure
yielding merely the “logarithmic” estimate (6.71). Deeper considerations, based
on the pressure estimates discussed in Section 2.2.5, are necessary in order to
provide better bounds required later in the limit passage.

Following the leading idea of Section 2.2.5, we define the quantities

ϕ(t, x) = ψ(t)B
[
b(�ε) −

1
|Ω|

∫
Ω

b(�ε) dx
]
, ψ ∈ C∞

c (0, T )

to be used as test functions in the variational formulation of the momentum equa-
tion (6.38). Here the symbol B stands for the Bogovskii operator on the domain
Ω introduced in Section 10.5 in Appendix.

After a bit tedious but rather straightforward manipulation, which is com-
pletely analogous to that one performed and rigorously justified in Section 2.2.5,
we arrive at the following relation:

1
ε2

∫ T

0

∫
Ω

ψpε(�ε, ϑε)b(�ε) dx dt (6.85)

=
1

ε2|Ω|

∫ T

0

∫
Ω

ψpε(�ε, ϑε) dx
( ∫

Ω

b(�ε) dx
)
dt

+
1
ε2

∫ T

0

∫
Ω

gψ�εj · B
[
b(�ε) −

1
|Ω|

∫
Ω

b(�ε) dx
]

dx dt + Iε,
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where we have set

Iε =
∫ T

0

∫
Ω

ψSε : ∇xB
[
b(�ε) −

1
|Ω|

∫
Ω

b(�ε) dx
]

dx dt

−
∫ T

0

∫
Ω

ψ�εuε ⊗ uε : ∇xB
[
b(�ε) −

1
|Ω|

∫
Ω

b(�ε) dx
])

dx dt

−
∫ T

0

∫
Ω

∂tψ�εuε · B
[
b(�ε) −

1
|Ω|

∫
Ω

b(�ε) dx
]

dx dt

+
∫ T

0

∫
Ω

ψ�εuε · B[divx(b(�ε)uε)] dx dt

+
∫ T

0

ψ

∫
Ω

�εuε · B
[
(�εb

′(�ε) − b(�ε))divxuε

− 1
|Ω|

∫
Ω

(b(�ε) − b′(�ε)�ε)divxuε dx
]

dx dt.

Taking the uniform estimates established in Section 6.4.1 into account we can
show, exactly as in Section 2.2.5, that all integrals contained in Iε are bounded
uniformly for ε → 0 as soon as

|b(�)| + |�b′(�)| ≤ c�γ for 0 < γ < 1 small enough. (6.86)

In order to comply with (6.86), let us take b ∈ C∞[0,∞) such that

b(�) =

⎧⎪⎪⎨
⎪⎪⎩

0 for 0 ≤ � ≤ 2�,

∈ [0, �γ ] for 2� < � ≤ 3�,

�γ if � > 3�,

(6.87)

with γ > 0 sufficiently small to be specified below. In particular, we have

b(�ε) = b([�ε]res);

whence, in accordance with (6.71),

ess sup
t∈(0,T )

∫
Ω

b(�ε) dx ≤ cε2 (6.88)

as soon as 0 < γ < 1. Consequently, the first integral at the right-hand side of
(6.85) is bounded.

In order to control the second term, we use the fact that �̃, ϑ solve the static
problem (6.41).
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Accordingly, we get

1
ε2

∫
Ω

�εgj · B
[
b(�ε) −

1
|Ω|

∫
Ω

b(�ε) dx
]

dx (6.89)

=
1
ε

∫
Ω

[�ε − �̃

ε

]
ess

gj · B
[
b(�ε) −

1
|Ω|

∫
Ω

b(�ε) dx
]

dx

+
∫

Ω

[�ε − �̃

ε2

]
res

gj · B
[
b(�ε) −

1
|Ω|

∫
Ω

b(�ε) dx
]

dx

− p0

ε2

∫
Ω

�̃ ϑ
(
b(�ε) −

1
|Ω|

∫
Ω

b(�ε) dx
)

dx,

where the last integral is uniformly bounded because of (6.88).
On the other hand, by virtue of the Lp-estimates for B (see Theorem 10.11

in Appendix),

1
ε

∣∣∣ ∫
Ω

[�ε − �̃

ε

]
ess

j · B
[
b(�ε) −

1
|Ω|

∫
Ω

b(�ε) dx
]

dx
∣∣∣ (6.90)

≤ c

ε
ess sup

t∈(0,T )

∥∥∥[�ε − �̃

ε

]
ess

∥∥∥
L2(Ω)

ess sup
t∈(0,T )

∥∥∥ b(�ε) −
1
|Ω|

∫
Ω

b(�ε) dx
∥∥∥

L
6
5 (Ω)

,

and, by the same token,

∣∣∣ ∫
Ω

[�ε − �̃

ε2

]
res

j · B
[
b(�ε) −

1
|Ω|

∫
Ω

b(�ε) dx
]

dx
∣∣∣ (6.91)

≤ ess sup
t∈(0,T )

∥∥∥[�ε − �̃

ε2

]
res

∥∥∥
L1(Ω)

ess sup
t∈(0,T )

∥∥∥ b(�ε) −
1
|Ω|

∫
Ω

b(�ε) dx
∥∥∥

L4(Ω)
.

Finally, in accordance with (6.71), (6.88),∫
Ω

|b(�ε)|q dx ≤
∫

Ω

[�ε]γq
res dx ≤

∫
Ω

[�ε log(�ε)]res dx ≤ cε2 (6.92)

as soon as γ ≤ 1/q.
Estimates (6.89–6.92) yield a uniform bound on the second term at the right-

hand side of (6.85). The remaining integrals grouped in Iε are bounded by virtue
of the estimates established in the previous part exactly as in Section 2.2.5. Con-
sequently, we conclude that

∫ T

0

∫
Ω

pε(�ε, ϑε)b(�ε) dx dt ≤ ε2c, (6.93)

provided b is given by (6.87), with 0 < γ < 1/4.
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6.5 Convergence towards the target system

The uniform estimates deduced in the preceding section enable us to pass to the
limit in the family {�ε,uε, ϑε}ε>0.

Specifically, by virtue of (6.68), (6.70), (6.76), we have

�ε → �̃ in L∞(0, T ; L
5
3 (Ω)) ∩ C([0, T ]; Lq(Ω)) for any 1 ≤ q <

5
3
. (6.94)

Moreover, in accordance with (6.81), we may assume

uε → U weakly in L2(0, T ; W 1,2(Ω; R3)), (6.95)

passing to a subsequence as the case may be, where

U · n|∂Ω = 0 in the sense of traces. (6.96)

Finally, it follows from (6.82) that

ϑε → ϑ in L2(0, T ; W 1,2(Ω)). (6.97)

Our goal in the remaining part of this section is to identify the limit system
of equations governing the time evolution of the velocity U.

6.5.1 Anelastic constraint

Combining (6.94), (6.95) we let ε → 0 in the equation of continuity expressed
through the integral identity (6.37) in order to obtain

divx(�̃U) = 0 a.a. in (0, T )× Ω. (6.98)

This is the so-called anelastic approximation discussed in Section 4.3 characterizing
the strong stratification of the fluid in the vertical direction.

6.5.2 Determining the pressure

As already pointed out in Section 4.3, a successful analysis of the anelastic limit
in the isothermal regime is conditioned by the fact that the thermal equation of
state relating the pressure to the density and the temperature is that of a perfect
gas, namely p = p0�ϑ.

Let us examine the quantity

1
ε2

(
pε(�ε, ϑε) − p0�εϑε − ε

a

3
ϑ

4
)

(6.99)

=
1
ε2

(
ϑ

5
2
ε

εα
P
(
εα �ε

ϑ
3
2
ε

)
− ϑ

5
2
ε

εα
εαP ′(0)

�ε

ϑ
3
2
ε

)
+

a

3
ϑ4

ε − ϑ
4

ε
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=
1
ε2

[ϑ 5
2
ε

εα
P
(
εα �ε

ϑ
3
2
ε

)
− ϑ

5
2
ε

εα
εαP ′(0)

�ε

ϑ
3
2
ε

]
ess

+
1
ε2

[ϑ 5
2
ε

εα
P
(
εα �ε

ϑ
3
2
ε

)
− ϑ

5
2
ε

εα
εαP ′(0)

�ε

ϑ
3
2
ε

]
res

+
a

3
ϑ4

ε − ϑ
4

ε
.

To begin, since P is twice continuously differentiable, we deduce

1
ε2

∣∣∣[ϑ 5
2
ε

εα
P
(
εα �ε

ϑ
3
2
ε

)
− ϑ

5
2
ε

εα
εαP ′(0)

�ε

ϑ
3
2
ε

]
ess

∣∣∣ ≤ cεα−2
[ �2

ε

ϑ
1
2
ε

]
ess

, (6.100)

where the expression on the right-hand side tends to zero for ε → 0 uniformly on
(0, T )× Ω as soon as α > 2.

Next, by virtue of hypothesis (6.15),

1
ε2

∣∣∣[ϑ 5
2
ε

εα
P
(
εα �ε

ϑ
3
2
ε

)
− ϑ

5
2
ε

εα
εαP ′(0)

�ε

ϑ
3
2
ε

]
res

∣∣∣ ≤ c
ε2α/3

ε2
[�ε]5/3

res . (6.101)

On the other hand, it follows from the refined pressure estimates (6.93) that

1
ε2

∫ T

0

∫
Ω

[�ε]5/3+γ
res dx dt ≤ c for a certain γ > 0. (6.102)

Thus writing

ε2α/3

ε2

∫ T

0

∫
Ω

[�ε]5/3
res dx

= ε2α/3 1
ε2

∫ ∫
{0≤�ε≤K}

[�ε]5/3
res dx dt +

ε2α/3

ε2

∫ ∫
{�ε>K}

[�ε]5/3
res dx dt

we have, by means of (6.70),

ε2α/3 1
ε2

∫ ∫
{0≤�ε≤K}

[�ε]5/3
res dx dt ≤ cε2α/3K5/3,

while, in accordance with (6.102),

ε2α/3

ε2

∫ ∫
{�ε>K}

[�ε]5/3
res dx dt ≤ cK−γ .

Consequently, we conclude that

ε2α/3

ε2
[�ε]5/3

res → 0 in L1((0, T ) × Ω) for ε → 0. (6.103)
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Finally, the radiation pressure can be decomposed as

ϑ4
ε − ϑ

4
= [ϑ4

ε − ϑ
4
]res + [ϑ4

ε − ϑ
4
]ess,

where, by virtue of the uniform estimates (6.70), (6.75), and (6.82),∫ T

0

∫
Ω

|[ϑ4
ε − ϑ

4
]res| dx dt ≤ c

∫ T

0

∫
Ω

|ϑε − ϑ|([ϑε]3res + [ϑ]3res)| dx dt (6.104)

≤ c‖ϑε − ϑ‖L2(0,T ;L4(Ω))ess sup
t∈(0,T )

(
‖[ϑε]3res‖L

4
3 (Ω)

+ ‖[ϑ]3res‖L
4
3 (Ω)

)
≤ cε

7
4 .

In order to control the essential component of the radiation pressure, we first
recall a variant of Poincaré’s inequality

‖ϑ
3
2
ε − ϑ

3
2 ‖2

L2((0,T )×Ω)

≤ c
[ ∫ T

0

∫
Ω

ϑε|∇xϑε|2 dx +
( ∫ T

0

∫
{x3=1}

|ϑ
3
2
ε − ϑ

3
2 | dSx dt

)2]
,

where ( ∫ T

0

∫
{x3=1}

|ϑ
3
2
ε − ϑ

3
2 | dSx dt

)2

≤ c

∫ T

0

∫
{x3=1}

|ϑε − ϑ|2 dSx dt

∫ T

0

∫
{x3=1}

(ϑε + ϑ)dSx dt.

Here and hereafter, we have used that

c1|[ϑε − ϑ]ess| ≤ |[ϑp
ε − ϑ

p
]ess| ≤ c2|[ϑε − ϑ]ess|, p > 0.

Thus the uniform estimates (6.64), (6.78) imply that

‖[ϑp
ε − ϑ

p
]ess‖L2((0,T )×Ω) ≤ c‖[ϑ

3
2
ε − ϑ

3
2 ]ess‖L2((0,T )×Ω) ≤ c(p)ε

3
2 for any p > 0.

(6.105)
Moreover, from (6.104), (6.105) we infer that

∥∥∥ϑ4
ε − ϑ

4

ε

∥∥∥
L1((0,T )×Ω)

≤ cε
1
2 . (6.106)

Summing up the estimates (6.101), (6.103–6.106) we conclude that

1
ε2

(
pε(�ε, ϑε) − p0�εϑε − ε

a

3
ϑ

4
)
→ 0 in L1((0, T ) × Ω). (6.107)

In other words (1/ε2)∇xpε(�ε, ϑε) ≈ (p0/ε2)∇x(�εϑε) in the asymptotic limit
ε → 0.
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6.5.3 Driving force

Our next goal is to determine the asymptotic limit of the driving force acting on
the fluid through the momentum equation (6.38). In accordance with (6.107), the
thermal equation of state reduces to that of a perfect gas, therefore it is enough
to examine the quantity

1
ε2

∫ T

0

∫
Ω

(
p0�εϑεdivxϕ − �εgϕ3

)
dx dt (6.108)

=
p0

ε2

∫ T

0

∫
Ω

ϑ

�̃
�εdivx(�̃ϕ) dx dt + p0

∫ T

0

∫
Ω

�ε
ϑε − ϑ

ε2
divxϕ dx dt,

where we have exploited the fact that �̃ solves the linearized static problem (6.41).
In order to handle the latter term on the right-hand side of (6.108), we first

write∫ T

0

∫
Ω

�ε
ϑε − ϑ

ε2
divxϕ dx dt (6.109)

=
1
ε2

∫ T

0

∫
Ω

(�ε − �̃)(ϑε − ϑ)divxϕ dx dt +
∫ T

0

∫
Ω

�̃
ϑε − ϑ

ε2
divxϕ dx dt,

and, furthermore,

1
ε2

(�ε − �̃)(ϑε − ϑ) =
[�ε − �̃

ε

]
ess

[ϑε − ϑ

ε

]
ess

+
[�ε − �̃

ε

]
res

(ϑε − ϑ

ε

)
,

where, as a straightforward consequence of the uniform estimates (6.68), (6.105),

∥∥∥[�ε − �̃

ε

]
ess

[ϑε − ϑ

ε

]
ess

∥∥∥
L1((0,T )×Ω)

≤
√

εc → 0.

In addition, using (6.82) in combination with the standard embedding rela-
tion W 1,2(Ω) ↪→ L6(Ω), we obtain

∥∥∥[�ε − �̃

ε

]
res

(ϑε − ϑ

ε

)∥∥∥
L1((0,T )×Ω)

≤ c
∥∥∥[�ε − �̃

ε

]
res

∥∥∥
L2(0,T ;L

6
5 (Ω)

.

Moreover, by a simple interpolation argument,∥∥∥[�ε − �̃

ε

]
res

∥∥∥
L

6
5 (Ω)

≤
∥∥∥[�ε − �̃

ε

]
res

∥∥∥ 7
12

L1(Ω)

∥∥∥[�ε − �̃

ε

]
res

∥∥∥ 5
12

L
5
3 (Ω)

,

where, in accordance with the bounds (6.70), (6.71), (6.76),

ess sup
t∈(0,T )

∥∥∥[�ε − �̃

ε

]
res

∥∥∥ 7
12

L1(Ω)

∥∥∥[�ε − �̃

ε

]
res

∥∥∥ 5
12

L
5
3 (Ω)

≤ ε
1
6 c → 0.



218 Chapter 6. Stratified Fluids

Resuming the previous considerations we may infer that

1
ε2

(�ε − �̃)(ϑε − ϑ) → 0 in L1((0, T ) × Ω), (6.110)

therefore it is enough to find a suitable uniform bound on the family {(ϑε −
ϑ)/ε2}ε>0. To this end, write√

ϑ∇x
ϑε − ϑ

ε2
=

√
ϑ −

√
ϑε

ε
∇x

ϑε − ϑ

ε
+
√

ϑε∇x
ϑε − ϑ

ε2
,

where, by virtue of (6.65), (6.75), (6.83), and the embedding W 1,2(Ω) ↪→ L6(Ω),{√ϑ −
√

ϑε

ε

}
ε>0

is bounded in L∞(0, T ; L1(Ω)) ∩ L2(0, T ; L6(Ω)).

Consequently, by means of (6.78), (6.82), and a simple interpolation argument, we
get{

∇x

(ϑε − ϑ

ε2

)}
ε>0

bounded in Lq(0, T ; Lq(Ω; R3)) for a certain q > 1. (6.111)

Thus, finally,∫ T

0

∫
Ω

�̃
ϑε − ϑ

ε2
divxϕ dx dt

=
∫ T

0

∫
Ω

�̃ϑ(2)
ε divxϕ dx dt +

1
|Ω|

∫ T

0

(∫
Ω

ϑε − ϑ

ε2
dx
) ∫

Ω

�̃divxϕ dx dt,

where we have set

ϑ(2)
ε =

ϑε − ϑ

ε2
− 1

|Ω|

∫
Ω

ϑε − ϑ

ε2
dx. (6.112)

In accordance with (6.111),

ϑ(2)
ε → ϑ(2) weakly in Lq(0, T ; W 1,q(Ω)) for a certain q > 1. (6.113)

Furthermore, after a simple manipulation, we observe that∫
Ω

�̃divxϕ dx =
∫

Ω

(
1 + log(�̃)

)
divx(�̃ϕ) dx. (6.114)

Putting together relations (6.108–6.114) we conclude that

1
ε2

∫ T

0

∫
Ω

(
p0�εϑεdivxϕ − �εgϕ3

)
dx dt =

p0

ε2

∫ T

0

∫
Ω

ϑ

�̃
�εdivx(�̃ϕ) dx dt

+
p0

|Ω|

∫ T

0

(∫
Ω

ϑε − ϑ

ε2
dx
) ∫

Ω

(
1 + log(�̃)

)
divx(�̃ϕ) dx dt

+ p0

∫ T

0

∫
Ω

�̃ϑ(2)
ε divxϕ dx dt +

∫ T

0

∫
Ω

χεdivxϕ dx dt, (6.115)
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where
χε → 0 in L1((0, T ) × Ω).

Note that the terms containing divx(�̃ϕ) are irrelevant in the limit ε → 0 as the
admissible test functions in (6.46) obey the anelastic constraint divx(�̃ϕ) = 0.

6.5.4 Momentum equation

At this stage, we can use the limits obtained in Section 6.5 in combination with
(6.107), (6.115), in order to let ε → 0 in the momentum equation (6.38). We
thereby obtain

∫ T

0

∫
Ω

(
�̃U · ∂tϕ + �U ⊗ U : ∇xϕ

)
dx dt (6.116)

=
∫ T

0

∫
Ω

(
S : ∇xϕ − p0�̃ϑ(2)divxϕ

)
dx dt −

∫
Ω

�̃u0ϕ(0, ·) dx,

for any test function

ϕ ∈ C∞
c ([0, T ) × Ω; R3), ϕ · n|∂Ω = 0, divx(�̃ϕ) = 0,

where

S = μ1ϑ
(
∇xU + ∇T

x U − 2
3
divxUI

)
, (6.117)

and the symbol �U ⊗ U denotes a weak limit of {�εuε ⊗ uε}ε>0. Moreover, since
�̃ satisfies (6.41), we have

p0

∫ T

0

∫
Ω

�̃ϑ(2)divxϕ dx dt =
∫ T

0

∫
Ω

ϑ(2)

ϑ
�̃gϕ3 dx dt

in agreement with (6.46).
Consequently, in order to complete the proof of Theorem 6.1, we must verify:

(i) identity

∫ T

0

∫
Ω

�U⊗ U : ∇xϕ dx dt =
∫ T

0

∫
Ω

�̃U ⊗ U : ∇xϕ dx dt (6.118)

for any admissible test function in (6.116);

(ii) equation (6.45) relating the temperature ϑ(2) to the vertical component of
the velocity U3. These are the main topics to be discussed in the next two
sections.
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6.6 Analysis of acoustic waves

As already pointed out in Section 4.4.2, the acoustic equation describing the time
evolution of the gradient part of the velocity in strongly stratified fluids exhibits
a wave speed varying with direction, in particular, with the vertical (depth) coor-
dinate. A typical example of a highly anisotropic wave system due to the presence
of internal gravity waves arises in the singular limit problem discussed in this
chapter.

6.6.1 Acoustic equation

Formally, the equation of continuity (6.21) can be written in the form

ε∂t

(
�ε − �̃

ε�̃

)
+

1
�̃
divx(�εuε) = 0. (6.119)

Similarly, by means of the identity,

p0ϑ∇x�ε + �εgj = p0ϑ�̃∇x

(
�ε − �̃

�̃

)
,

momentum equation (6.22) reads

ε∂t(�εϑε) + p0ϑ�̃∇x

(
�ε − �̃

ε�̃

)
(6.120)

=
1
ε
∇x

(
p0�εϑε − p(�ε, ϑε) − p0�ε(ϑε − ϑ)

)
+ εdivx (Sε − �εuε ⊗ uε) .

System (6.119), (6.120) may be regarded as a classical formulation of the acoustic
equation discussed in Section 4.4.2.

In terms of the weak solutions, the previous formal arguments can be justified
in the following manner. Taking ϕ/�̃ as a test function in (6.37) we obtain∫ T

0

∫
Ω

(
ε
�ε − �̃

ε�̃
∂tϕ + �̃

�εuε

�̃
· ∇x

ϕ

�̃

)
dx dt = −

∫
Ω

ε
�0,ε − �̃

ε�̃
ϕ(0, ·) dx (6.121)

to be satisfied for any ϕ ∈ C∞
c ([0, T ) × Ω). In a similar fashion, the momentum

equation (6.38) gives rise to∫ T

0

∫
Ω

(
ε
�εuε

�̃
· ∂tϕ + p0ϑ

�ε − �̃

ε�̃
divxϕ

)
dx dt (6.122)

= −
∫

Ω

ε
�0,εu0,ε

�̃
· ϕ(0, ·) dx

+
∫ T

0

∫
Ω

(
εhεdivx

ϕ

�̃
+ εGε : ∇x

ϕ

�̃
+ p0�̃

ϑ − ϑε

ε
divx

ϕ

�̃

)
dx dt,
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for any ϕ ∈ C∞
c ([0, T )× Ω; R3), ϕ · n|∂Ω = 0, where

hε =
1
ε2

(
p0�εϑε − pε(�ε, ϑε)

)
+ p0

(
�̃ − �ε

ε

)(
ϑε − ϑ

ε

)
,

and
Gε = Sε − �εuε ⊗ uε.

In accordance with the uniform bounds (6.107), (6.110),

hε → 0 in L1((0, T ) × Ω),

while, by virtue of (6.62), (6.75), (6.76), and (6.81),

{Gε}ε>0 is bounded in Lq(0, T ; Lq(Ω; R3×3)) for a certain q > 1.

In addition, relation (6.105) implies∥∥∥[ϑε − ϑ

ε

]
ess

∥∥∥
L2((0,T )×Ω)

≤
√

εc,

and (6.70), together with (6.82), give rise to∥∥∥[ϑε − ϑ

ε

]
res

∥∥∥
L1((0,T )×Ω)

≤ εc.

Consequently, introducing the quantities

rε =
�ε − �̃

ε�̃
, Vε =

�εuε

�̃
,

we can rewrite system (6.121), (6.122) in a concise form as

� Stratified Acoustic Equation:

∫ T

0

∫
Ω

(
εrε∂tϕ + �̃Vε · ∇x

(
ϕ

�̃

))
dx dt = −

∫
Ω

εrε(0, ·)ϕ(0, ·) dx (6.123)

for any ϕ ∈ C∞
c ([0, T )× Ω),

∫ T

0

∫
Ω

(
εVε · ∂tϕ + p0ϑrεdivxϕ

)
dx dt = −

∫
Ω

εVε(0, ·) · ϕ(0, ·) dx (6.124)

+
√

ε

∫ T

0

∫
Ω

Hε : ∇x
ϕ

�̃
dx dt

for any ϕ ∈ C∞
c ([0, T )× Ω; R3), ϕ · n|∂Ω = 0,

where
{Hε}ε>0 is bounded in L1((0, T ) × Ω; R3×3). (6.125)
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We recall that the left-hand side of (6.123), (6.124) can be understood as a weak
formulation of the wave operator introduced in (4.30).

Two characteristic features of the wave equation (6.123), (6.124) can be easily
identified:

• the wave speed depends effectively on the vertical (depth) coordinate x3,
• the right-hand side is “large” of order

√
ε in comparison with the frequency

of the characteristic wavelength proportional to ε.

6.6.2 Spectral analysis of the wave operator

We consider the eigenvalue problem associated to the differential operator in
(6.123), (6.124), namely

�̃∇x

( q

�̃

)
= λw, p0ϑdivxw = λq in Ω, (6.126)

supplemented with the boundary condition

w · n|∂Ω = 0. (6.127)

Equivalently, it is enough to solve

−divx

[
�̃∇x

( q

�̃

)]
= Λ�̃

( q

�̃

)
in Ω, (6.128)

with
∇x

( q

�̃

)
· n|∂Ω = 0, (6.129)

where
λ2 = −Λp0ϑ. (6.130)

It is a routine matter to check that problem (6.128), (6.129) admits a com-
plete system of real eigenfunctions {qj,m}∞,mj

j=0,m=1, together with the associated
eigenvalues Λj,m such that{

m0 = 1, Λ0,1 = 0, q0,1 = �̃,

0 < Λ1,1 = · · · = Λ1,m1(= Λ1) < Λ2,1 = · · · = Λ2,m2(= Λ2) < · · · ,

}
(6.131)

where mj stands for the multiplicity of Λj . Moreover, it can be shown that the
system of functions {qj,m}∞,mj

j=0,m=1 forms an orthonormal basis of the weighted
Lebesgue space L2

1/�̃(Ω) endowed with the scalar product

〈v; w〉L2
1/
̃

(Ω) =
∫

Ω

vw
dx

�̃

(see Section 10.2.2 in Appendix and also Chapter 3 in the monograph by Wilcox
[202]).
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Consequently, any solution of (6.126), (6.127) can be written in the form⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ = λ±j = ±i
√

p0ϑΛj, q = qj,m, w = w±j,m,

w±j,m = ∓i(
√

p0ϑΛj)−1�̃∇x
qj,m

�̃ ,

for j = 1, . . . , m, m = 1, . . . , mj,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (6.132)

where a direct computation yields∫
Ω

wj,m · wk,l
dx

�̃
= − 1

p0ϑ

∫
Ω

qj,mqk,l
dx

�̃
. (6.133)

In addition, the eigenspace corresponding to the eigenvalue λ0 = Λ0,1 = 0 coincides
with

N =
{
(c�̃,w)

∣∣∣ c = const, w ∈ L2
σ,1/�̃(Ω; R3)

}
,

where the symbol L2
σ,1/�̃(Ω; R3) stands for the space of solenoidal functions

L2
σ,1/�̃(Ω; R3) = closureL2

1/
̃
{w ∈ C∞

c (Ω; R3) | divxw = 0} = L2
σ(Ω, R3).

Accordingly, the Hilbert space L2
1/�̃(Ω; R3) admits an orthogonal decompo-

sition

L2
1/�̃(Ω; R3) = L2

σ,1/�̃(Ω; R3) ⊕ closureL2
1/
̃

{span{iwj,m}∞,mj

j=1,m=1},

with the corresponding orthogonal projections represented by the Helmholtz pro-
jectors H�̃, H⊥

�̃ introduced in (6.47).
Finally, taking ϕ = ψ1(t)qj,m as a test function in (6.123), and ϕ = ψ2wj,m

in (6.124), with ψ1, ψ2 ∈ C∞
c (0, T ), we arrive at an infinite system of ordinary

differential equations in the form:{
ε∂tbj,m[rε] − ω

√
Λj aj,m[Vε] = 0,

ε∂taj,m[Vε] +
√

Λj bj,m[rε] =
√

εHj,m
ε

}
(6.134)

for j = 1, 2, . . . , and m = 1, . . . , mj, where we have introduced the “Fourier
coefficients”

bj,m[rε] =
∫

Ω

rεqj,m dx, aj,m[V] =
i√
ω

∫
Ω

Vε · wj,m dx, and ω = p0ϑ. (6.135)

In accordance with (6.125),

{Hj,m
ε }ε>0 is bounded in L1(0, T ) for any fixed j, m. (6.136)
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6.6.3 Convergence of the convective term

The description of the time oscillations of the acoustic modes provided by (6.134)
is sufficient in order to identify the asymptotic limit of the convective term in the
momentum equation (6.38). More precisely, our aim is to show that

∫ T

0

∫
Ω

�ε[uε ⊗ uε] : ∇x

(ϕ

�̃

)
dx dt →

∫ T

0

∫
Ω

�̃[U ⊗ U] : ∇x

(ϕ

�̃

)
dx dt (6.137)

for any function ϕ such that

ϕ ∈ C∞
c ((0, T ) × Ω; R3), divxϕ = 0, ϕ · n|∂Ω = 0. (6.138)

If this is the case, the limit equation (6.116) gives rise to (6.46).
In order to see (6.137), we follow formally the approach used in Section 5.4.6,

that means, we reduce (6.137) to a finite number of modes that can be explicitly
expressed by help of (6.134).

Strong convergence of the solenoidal part. We claim that

H�̃[�εuε] → H�̃[�̃U] = �̃U in L1((0, T ) × Ω; R3). (6.139)

To this end, we take

ϕ(t, x) =
ψ(t)
�̃

H�̃[�̃Φ], Φ ∈ C∞
c (Ω; R3), Φ · n|∂Ω = 0, ψ ∈ C∞

c (0, T )

as a test function in the momentum equation (6.38). Seeing that

∫ T

0

∂tψ

∫
Ω

H�̃[�εuε] · Φ dx dt =
∫ T

0

∫
Ω

�εuε · ∂tϕ dx dt,

and taking into account relations (6.107), (6.115), together with the uniform esti-
mates obtained in Section 6.4.1, we conclude that the mappings

t ∈ [0, T ] →
∫

Ω

H�̃[�εuε](t) · Φ dx

are precompact in C[0, T ], in other words,

H�̃[�εuε] → H�̃[�̃U] = �̃U in Cweak([0, T ]; L
5
4 (Ω; R3)), (6.140)

where we have used (6.62), (6.94), and compactness of the embedding L
5
4 (Ω) ↪→

[W 1,2(Ω)]∗.
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On the other hand, as H�̃, H⊥
�̃ are orthogonal in the weighted space L2

1/�̃,
and (6.95) holds, we can use (6.140) in order to obtain

∫ T

0

(∫
Ω

H�̃[�εuε] ·H�̃[�̃uε]
dx

�̃

)
dt

=
∫ T

0

∫
Ω

H�̃[�εuε] · uε dt →
∫ T

0

∫
Ω

H�̃[�̃U] · U dx dt

=
∫ T

0

(∫
Ω

�̃2|U|2 dx

�̃

)
dt. (6.141)

In accordance with (6.94),

ess sup
t∈(0,T )

‖�ε(t) − �̃‖
L

5
3 (Ω)

→ 0,

and we may infer from (6.141) that

H�̃[�̃uε] → �̃U in L2((0, T ) × Ω; R3), (6.142)

which, by the same token, gives rise to (6.139).

Time oscillations of the gradient part. Initially, we write

�εuε ⊗ uε =
1
�̃
H�̃[�εuε] ⊗ �̃uε +

1
�̃
H⊥

�̃ [�εuε] ⊗ H�̃[�̃uε] +
1
�̃
H⊥

�̃ [�εuε] ⊗ H⊥
�̃ [�̃uε].

Since both H�̃ and H⊥
�̃ are continuous in Lp(Ω; R3) for any 1 < p < ∞ (see Section

10.2.1 in Appendix), we have

H⊥
�̃ [�εuε] → 0 weakly-(*) in L∞(0, T ; L

5
4 (Ω; R3)). (6.143)

Consequently, we can use (6.139), (6.142) to reduce (6.137) to showing

∫ T

0

∫
Ω

(
H⊥

�̃ [�̃Vε] ⊗ H⊥
�̃ [�̃uε]

)
: ∇x

(ϕ

�̃

) dx

�̃
dt → 0 for ε → 0 (6.144)

for any ϕ satisfying (6.137), where Vε = �εuε/�̃ is the quantity appearing in the
acoustic equation (6.123), (6.124).

We proceed in two steps:

(i) To begin, we reduce (6.144) to a finite number of modes. Similarly to (6.135),
we introduce the “Fourier coefficients”

aj,m[Z] =
i√
ω

∫
Ω

Z · wj,m dx for any Z ∈ L1(Ω; R3).
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Moreover, similarly to Section 5.4.6, we set

H⊥
�̃,M [�̃Z] =

−i√
ω

∑
j,0<Λj≤M

mj∑
m=1

aj,m[Z]wj,m. (6.145)

Now a straightforward manipulation yields⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H⊥
�̃ [�̃Vε] ⊗ H⊥

�̃ [�̃uε]

=
[
H⊥

�̃,M [�̃Vε] +
(
H⊥

�̃ [�̃Vε] − H⊥
�̃,M [�̃Vε]

)]
⊗[

H⊥
�̃,M [�̃uε] +

(
H⊥

�̃ [�̃uε] − H⊥
�̃,M [�̃uε]

)]
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.146)

where we can write

H⊥
�̃ [�̃Vε] − H⊥

�̃,M [�̃Vε]

= H⊥
�̃ [(�ε − �̃)uε] − H⊥

�̃,M [(�ε − �̃)uε] + H⊥
�̃ [�̃uε] − H⊥

�̃,M [�̃uε].

Using relations (6.94), (6.95) we obtain

H⊥
�̃ [(�ε − �̃)uε] − H⊥

�̃,M [(�ε − �̃)uε] → 0 in L1((0, T ) × Ω; R3) as ε → 0 (6.147)

for any fixed M .
On the other hand, using orthogonality of the functions {qj,m}, together

with Parseval’s identity with respect to the scalar product of L2
1/�̃(Ω) and relation

(6.132), we get

‖divx(�̃uε)‖2
L2

1/
̃
(Ω) =

∞∑
j=1

mj∑
m=1

Λja
2
j,m[uε].

Moreover, in accordance with (6.133),

‖H⊥
�̃ [�̃uε] − H⊥

�̃,M [�̃uε]‖2
L2

1/
̃
(Ω;R3)

=
∑

j;Λj>M

mj∑
m=1

a2
j,m[uε] ≤

1
M

‖divx(�̃uε)‖2
L2

1/
̃
(Ω).

Thus, by virtue of (6.81), we are allowed to conclude that

H⊥
�̃ [�̃uε] − H⊥

�̃,M [�̃uε] → 0 in L2(0, T ; L2
1/�̃(Ω; R3)) as M → ∞ (6.148)

uniformly with respect to ε → 0.
In view of relations (6.147), (6.148), the proof of (6.137) simplifies consider-

ably, being reduced to showing∫ T

0

∫
Ω

(
H⊥

�̃,M [�̃Vε] ⊗ H⊥
�̃,M [�̃uε]

)
: ∇x

(ϕ

�̃

)dx

�̃
dt → 0
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or, equivalently, by virtue of (6.94),∫ T

0

∫
Ω

(
H⊥

�̃,M [�̃Vε] ⊗ H⊥
�̃,M [�̃Vε]

)
: ∇x

(ϕ

�̃

)dx

�̃
dt → 0 (6.149)

for any test function ϕ satisfying (6.138) and any fixed M .

(ii) In order to see (6.149), we first observe that∫ T

0

∫
Ω

(
H⊥

�̃,M [�̃Vε] ⊗ H⊥
�̃,M [�̃Vε]

)
: ∇x

(ϕ

�̃

)dx

�̃
dt

=
∫ T

0

∫
Ω

(�̃∇xΨε ⊗∇xΨε) : ∇x

(ϕ

�̃

)
dx dt,

where, by means of (6.145),

Ψε =
1
ω

∑
j≤M

mj∑
m=1

aj,m[Vε]√
Λj

(qj,m

�̃

)
. (6.150)

First, integrating the above expression by parts and making use of the fact
that divxϕ = 0, we get∫ T

0

∫
Ω

(�̃∇xΨε ⊗∇xΨε) : ∇x

(ϕ

�̃

)
dx dt

= −
∫ T

0

∫
Ω

divx

(
�̃∇xΨε

)
∇xΨε ·

(ϕ

�̃

)
dx dt,

where, in agreement with (6.128),

−divx(�̃∇xΨε) =
1
ω

∑
j≤M

mj∑
m=1

√
Λjaj,m[Vε]qj,m.

The next step is to use system (6.134) in order to obtain

−
∫ T

0

∫
Ω

divx

(
�̃∇xΨε

)
∇xΨε ·

(ϕ

�̃

)
dx dt

=
ε

ω2

∫ T

0

∫
Ω

∑
j≤M

mj∑
m=1

∂tbj,m[rε]
qj,m

�̃
∇xΨε · ϕ dx dt

= − ε

ω2

∫ T

0

∫
Ω

∑
j≤M

mj∑
m=1

bj,m[rε]
qj,m

�̃
∇xΨε · ∂tϕ dx dt

=
ε

ω2

∫ T

0

∫
Ω

∑
j≤M

mj∑
m=1

bj,m[rε]
qj,m

�̃
∂t∇xΨε · ϕ dx dt.
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We see immediately that the first integral on the right-hand side of the above
equality tends to zero for ε → 0, therefore the proof of (6.149) will be complete
as soon as we are able to verify that the amplitude of ∂t∇xΨε · ϕ grows at most
as ε−k for a certain k < 1. Thus it is enough to show that

∣∣∣ ∫ T

0

∫
Ω

∑
j≤M

mj∑
m=1

bj,m[rε]
qj,m

�̃
∂t∇xΨε · ϕ dx dt

∣∣∣ ≤ c√
ε
. (6.151)

In order to see (6.151), we make use of the second equation in (6.134), and
(6.150) to express

∂t∇xΨε = − 1
εω

∑
j≤M

mj∑
m=1

bj,m[rε]∇x

(qj,m

�̃

)
+

1√
εω

∑
j≤M

mj∑
m=1

1√
Λj

Hj,m
ε ∇x

(qj,m

�̃

)
,

where Hj,m
ε are bounded in L1(0, T ) as stated in (6.136).

Finally, we observe that the expression

( ∑
j≤M

mj∑
m=1

bj,m[rε]
qj,m

�̃

) ∑
j≤M

mj∑
m=1

bj,m[rε]∇x

(qj,m

�̃

)

=
1
2
∇x

( ∑
j≤M

mj∑
m=1

bj,m[rε]
qj,m

�̃

)2

is a perfect gradient, in particular∫ T

0

∫
Ω

( ∑
j≤M

mj∑
m=1

bj,m[rε]
qj,m

�̃

) ∑
j≤M

mj∑
m=1

bj,m[rε]∇x

(qj,m

�̃

)
· ϕ dx dt = 0

as divxϕ = 0, ϕ ·n|∂Ω = 0. Consequently, we have verified (6.151); whence (6.149).
Thus we conclude that (6.118) holds, notably the integral identity (6.116)

coincides with (6.46). Consequently, in order to complete the proof of Theorem
6.1, we have to check that ϑ(2) identified in (6.113) is related to the vertical
component U3 through (6.45). This is the objective of the last section.

6.7 Asymptotic limit in entropy balance

In contrast with Chapter 5, the analysis of the entropy equation (6.39) is rather
simple. To begin, we get

〈σε; ϕ〉[M;C]([0,T ]×Ω) −
∫ T

0

∫
{x3=1}

β1
ϑε − ϑ

ε
ϕ dSx dt → 0 as ε → 0 (6.152)

for any fixed ϕ ∈ C∞
c ([0, T )×Ω) as a direct consequence of the uniform estimates

(6.63), (6.64).
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Similarly, by virtue of (6.82), (6.84),

ε2α/3κ0∇x log(ϑε) + κ1∇xϑ → 0 in L2((0, T ) × Ω; R3),

and, consequently,

− lim
ε→0

∫ T

0

∫
Ω

1
ε2

qε

ϑε
· ∇xϕ dx dt = lim

ε→0

∫ T

0

∫
Ω

dϑ2
ε

∇xϑε

ε2
· ∇xϕ dx dt

= lim
ε→0

∫ T

0

∫
Ω

dϑ2
ε∇xϑ(2)

ε · ∇xϕ dx dt,

where the quantities ϑ
(2)
ε have been introduced in (6.112).

Furthermore, writing∫ T

0

∫
Ω

dϑ2
ε∇xϑ(2)

ε · ∇xϕ dx dt

=
∫ T

0

∫
Ω

d[ϑε]2ess∇xϑ(2)
ε · ∇xϕ dx dt +

∫ T

0

∫
Ω

d[ϑε]3/2
res

√
ϑε∇x

(ϑε

ε2

)
· ∇xϕ dx dt,

we can use (6.97), (6.113) to deduce∫ T

0

∫
Ω

d[ϑε]2ess∇xϑ(2)
ε · ∇xϕ dx dt →

∫ T

0

∫
Ω

dϑ
2∇xϑ(2) · ∇xϕ dx dt,

while the uniform estimates (6.75), (6.78) give rise to∫ T

0

∫
Ω

d[ϑε]3/2
res

√
ϑε∇x

(ϑε

ε2

)
· ∇xϕ dx dt → 0.

Thus, we conclude that

lim
ε→0

∫ T

0

∫
Ω

1
ε2

qε

ϑε
· ∇xϕ dx dt = −dϑ

2
∫ T

0

∫
Ω

∇xϑ(2) · ∇xϕ dx dt (6.153)

for any ϕ ∈ C∞
c ([0, T )× Ω).

Finally, in order to handle the convective term in (6.39), we write

�εsε(�ε, ϑε) = [�εsε(�ε, ϑε)]ess + [�εsε(�ε, ϑε)]res,

where, in accordance with (6.72),

[�εsε(�ε, ϑε)]res → 0 in L1((0, T ) × Ω). (6.154)

Now, similarly to (6.11), we can decompose

�εsε(�ε, ϑε) = �εsM,ε(�ε, ϑε) + �εsR,ε(�ε, ϑε),
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where, by virtue of (6.75),

�εsR,ε(�ε, ϑε) = ε
4a

3
ϑ3

ε → 0 in L∞(0, T ; L
4
3 (Ω)), (6.155)

in particular
�εsR,ε(�ε, ϑε)uε → 0 in L2(0, T ; L

12
11 (Ω; R3)). (6.156)

On the other hand, due to (6.11), (6.12),

�εsM,ε(�ε, ϑε) = �ε

(
S
(
εα �ε

ϑ
3/2
ε

)
− S(εα)

)
,

where, in accordance with hypothesis (6.15),

∣∣∣S(εα �ε

ϑ
3/2
ε

)
− S(εα)

∣∣∣ ≤ ∣∣∣ ∫ εα
ε

ϑ
3/2
ε

εα

S′(Z) dZ
∣∣∣ ≤ c(| log(�ε)| + | log(ϑε)|).

Consequently, using the uniform bounds established in (6.62), (6.71), (6.76), and
(6.84), we obtain

[�εsε(�ε, ϑε)]resuε → 0 in Lq((0, T ) × Ω; R3) for a certain q > 1. (6.157)

Thus in order to complete our analysis, we have to determine the asymptotic
limit of the “essential” component of the entropy [�εsM,ε(�ε, ϑε)]ess. To this end,
write

S(Z) = − log(Z) + S̃(Z),

where

S̃′(Z) = −3
2

5
3 (P (Z) − p0Z) − (P ′(Z) − p0)Z

Z2
.

As P is twice continuously differentiable on [0,∞), and, in addition, satisfies
(6.15), we have

|S̃′(Z)| ≤ c for all Z > 0.

Consequently, we obtain

[�εsM,ε(�ε, ϑε)]ess → p0�̃
(3

2
log(ϑ) − log(�̃)

)
in Lq((0, T )× Ω) (6.158)

for any 1 ≤ q < ∞.
Going back to (6.39) and resuming relations (6.152–6.158) we conclude that

−dϑ
2
∫ T

0

∫
Ω

∇xϑ(2) · ∇xϕ dx dt = p0

∫ T

0

∫
Ω

�̃ log(�̃)U · ∇xϕ dx dt (6.159)

for any test function ϕ ∈ C∞
c ((0, T ) × Ω), where we have used the anelastic

constraint (6.98) and (6.95). Since �̃ solves the static problem (6.41), relation
(6.159) is nothing other than a variational formulation of (6.45). Theorem 6.1 has
been proved.



Chapter 7

Interaction of Acoustic Waves
with Boundary

As we have seen in the previous chapters, one of the most delicate issues in the
analysis of singular limits for the Navier-Stokes-Fourier system in the low
Mach number regime is the influence of the acoustic waves. If the physical domain
is bounded, the acoustic waves, being reflected by the boundary, inevitably develop
high frequency oscillations resulting in the weak convergence of the velocity field.
This rather unpleasant phenomenon creates additional problems when handling
the convective term in the momentum equation (cf. Sections 5.4.7, 6.6.3 above). In
this chapter, we focus on the mechanisms so-far neglected by which the acoustic
energy is dissipated into heat, and the ways in which the dissipation may be used
in order to show strong (pointwise) convergence of the velocity.

The principal mechanism of dissipation in the Navier-Stokes-Fourier

system is of course viscosity, here imposed through Newton’s rheological law. At a
first glance, the presence of the viscous stress S in the momentum equation does not
seem to play any significant role in the analysis of acoustic waves. In the situation
described in Section 4.4.1, the acoustic equation can be written in the form{

ε∂trε + divx(Vε) = “small terms”,
ε∂tVε + ω∇xrε = εdivxSε + “small terms”.

}
(7.1)

Replacing for simplicity divxSε by ΔVε, we examine the associated eigenvalue
problem:

divxw = λr,

ω∇xr − εΔxw = λw.
(7.2)

Applying the divergence operator to the second equation and using the first
one to express all quantities in terms of r, we arrive at the eigenvalue problem

−Δxr = λ2r
/

(ελ − ω).
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Under the periodic boundary conditions, meaning Ω = T 3, the corresponding
eigenvalues are given as

λ2
n

ελn − ω
= Λn,

where Λn are the (real non-negative) eigenvalues of the Laplace operator supple-
mented with the periodic boundary conditions. It is easy to check that

λn =
εΛn ± i

√
4ωΛn − ε2Λ2

n

2
.

Moreover, the corresponding eigenfunctions read

{rn,wn}, wn =
ω − ελn

λn
∇xrn,

where rn are the eigenfunctions of the Laplacian supplemented with the periodic
boundary conditions.

The same result is obtained provided the velocity field satisfies the complete
slip boundary conditions (1.19), (1.27) leading to the Neumann boundary condi-
tions for r, namely

w · n|∂Ω = ∇xr · n|∂Ω = 0.

In particular, the eigenfunctions differ from those of the limit problem with ε = 0
only by a multiplicative constant approaching 1 for ε → 0.

Physically speaking, the complete slip boundary conditions correspond to
the ideal mechanically smooth boundary of the physical space. As suggested by
the previous arguments, the effect of viscosity in this rather hypothetical situation
does not change significantly the asymptotic analysis in the low Mach number
limit.

� Conjecture I (negative):

The dissipation of acoustic energy caused by viscosity in domains with mechanically
smooth boundaries is irrelevant in the low Mach number regime. The decay of
acoustic waves is exponential with a rate independent of ε.

On the other hand, the decay rate of the acoustic waves may change sub-
stantially if the fluid interacts with the boundary, meaning, if some kind of “dis-
sipative” boundary conditions is imposed on the velocity field. Thus, for instance,
the no-slip boundary conditions (1.28) give rise to

w|∂Ω = 0. (7.3)

Accordingly, system (7.2), supplemented with (7.3), becomes a singularly perturbed
eigenvalue problem. In particular, if the (overdetermined) limit problem

divxw = λr, ω∇xr = λw, w|∂Ω = 0 (7.4)
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admits only the trivial solution for λ �= 0, we can expect that a boundary layer
is created in the limit process ε → 0 resulting in a faster decay of the acoustic
waves. This can be seen by means of the following heuristic argument. Suppose
that problem (7.2), (7.3) admits a family of eigenfunctions {rε,wε}ε>0 with the
associated set of eigenvalues {λε}ε>0. Multiplying (7.2) on rε, wε, where the bar
stands for the complex conjugate, integrating the resulting expression over Ω, and
using (7.3), we obtain

ε

∫
Ω

|∇xwε|2 dx = (1 + ω)Re[λε]
∫

Ω

(
|rε|2 + |wε|2

)
dx,

where Re denotes the real part of a complex number. Normalizing {rε,wε}ε>0 in
L2(Ω) × L2(Ω; R3) we easily observe that

Re[λε]
ε

→ ∞,

since otherwise {wε}ε>0 would be bounded in W 1,2(Ω; R3) and any weak accu-
mulation point (r,w) of {rε,wε}ε>0 would represent a nontrivial solution of the
overdetermined limit system (7.4).

� Conjecture II (positive):

Sticky boundaries in combination with viscous effects may produce a decay rate
of acoustic waves that is considerably faster than their frequency in the low Mach
number regime. In particular, mechanical energy is converted into heat and the
acoustic waves are annihilated at a time approaching zero in the low Mach number
limit.

7.1 Problem formulation

Motivated by the previous discussion, we examine the low Mach number limit for
the Navier-Stokes-Fourier system supplemented with the no-stick boundary
condition for the velocity. The fact that the fluid adheres completely to the wall
of the physical space imposes additional restrictions on the propagation of the
acoustic waves. Our goal is to identify the geometrical properties of the domain,
for which this implies strong convergence of the velocity field in the asymptotic
limit.

7.1.1 Field equations

We consider the same scaling of the field equations as in Chapter 5. Specifically,
we set

Ma = ε, Fr =
√

ε

obtaining
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� Scaled Navier-Stokes-Fourier system:

∂t�ε + divx(�εuε) = 0, (7.5)

∂t(�εuε) + divx(�εuε ⊗ uε) +
1
ε2

∇xp(�ε, ϑε) = divxSε +
1
ε
�ε∇xF, (7.6)

∂t(�εs(�ε, ϑε)) + divx(�εs(�ε, ϑε)uε) + divx

(qε

ϑ

)
= σε, (7.7)

d
dt

∫
Ω

(ε2

2
�ε|uε|2 + �εe(�ε, ϑε) − ε�εF

)
dx = 0, (7.8)

where

σε ≥ 1
ϑε

(
ε2

Sε : ∇xuε −
qε · ∇xϑε

ϑε

)
. (7.9)

System (7.5–7.8) is supplemented, exactly as in Chapter 5, with the constitutive
relations:

Sε = S(ϑε,∇xuε) = μ(ϑε)
(
∇xuε + ∇T

x uε −
2
3
divxuεI

)
, (7.10)

qε = q(ϑε,∇xϑε) = −κ(ϑε)∇xϑε, (7.11)

and

p(�ε, ϑε) = pM (�ε, ϑε) + pR(ϑε), pM = ϑ
5
2
ε P
( �ε

ϑ
3
2
ε

)
, pR =

a

3
ϑ4

ε, (7.12)

e(�ε, ϑε) = eM (�ε, ϑε) + eR(�ε, ϑε), eM =
3
2

ϑ
5
2
ε

�ε
P
( �ε

ϑ
3
2
ε

)
, eR = a

ϑ4
ε

�ε
, (7.13)

s(�ε, ϑε) = sM (�ε, ϑε) + sR(�ε, ϑε), sM (�ε, ϑε) = S
( �ε

ϑ
3
2
ε

)
, sR =

4
3
a
ϑ3

ε

�ε
, (7.14)

where

S′(Z) = −3
2

5
3P (Z) − ZP ′(Z)

Z2
for all Z > 0. (7.15)

The reader will have noticed that the bulk viscosity has been neglected in (7.10)
for the sake of simplicity.

As always in this book, equations (7.5–7.8) are interpreted in the weak sense
specified in Chapter 1 (see Section 7.2 below). We recall that the technical restric-
tions imposed on the constitutive functions are dictated by the existence theory
developed in Chapter 3 and could be relaxed, to a certain extent, as far as the
singular limit passage is concerned.
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7.1.2 Physical domain and boundary conditions

As indicated in the introductory part, the geometry of the physical domain plays a
crucial role in the study of propagation of the acoustic waves. As already pointed
out, the existence of an effective mechanism of dissipation of the acoustic waves is
intimately linked to solvability of the (overdetermined) system (7.4) that can be
written in a more concise form as

−Δxr = Λr in Ω,
λ2

ω
= −Λ, ∇xr|∂Ω = 0. (7.16)

The problem of existence of a non-trivial, meaning non-constant, solution to (7.16)
is directly related to the so-called Pompeiu property of the domain Ω. A remarkable
result of Williams [203] asserts that if (7.16) possesses a non-constant solution in a
domain in RN whose boundary is homeomorphic to the unit sphere, then, necessar-
ily, ∂Ω must admit a description by a system of charts that are real analytic. The
celebrated Schiffer’s conjecture claims that (7.16) admits a non-trivial solution in
the aforementioned class of domains only if Ω is a ball.

In order to avoid the unsurmountable difficulties mentioned above, we restrict
ourselves to a very simple geometry of the physical space. Similarly to Chapter
6, we assume the motion of the fluid is 2π-periodic in the horizontal variables
(x1, x2), and the domain Ω is an infinite slab determined by the graphs of two
given functions Bbottom, Btop,

Ω = {(x1, x2, x3) | (x1, x2) ∈ T 2, Bbottom(x1, x2) < x3 < Btop(x1, x2)}, (7.17)

where T 2 denotes the flat torus,

T 2 =
(
[−π, π]|{−π,π}

)2
.

Although the specific length of the period is not essential, this convention simplifies
considerably the notation used in the remaining part of this chapter.

In the simple geometry described by (7.17), it is easy to see that problem
(7.16) admits a non-trivial solution, namely r = cos(x3) as soon as the boundary
is flat, more precisely, if Bbottom = −π, Btop = 0. On the other hand, we claim
that problem (7.16) possesses only the trivial solution in domains with variable
bottoms as stated in the following assertion.

Proposition 7.1. Let Ω be given through (7.17), with⎧⎪⎪⎨
⎪⎪⎩

Bbottom = −π − h(x1, x2), Btop = 0,

where

h ∈ C(T 2), |h| < π for all (x1, x2) ∈ T 2.

⎫⎪⎪⎬
⎪⎪⎭ (7.18)

Assume there is a function r �= const solving the eigenvalue problem (7.16) for a
certain Λ.

Then h ≡ constant.
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Proof. Since r is constant on the top part, specifically r(x1, x2, 0) = r0, the func-
tion

V (x1, x2, x3) = r(x1, x2, x3) − r0 cos(
√

Λx3)

satisfies

−ΔxV = ΛV in Ω, and, in addition, ∇xV |Btop = V |Btop = 0.

Accordingly, the function V extended to be zero in the upper half plane {x3 > 0}
solves the eigenvalue problem (7.16) in Ω ∪ {x3 ≥ 0}. Consequently, by virtue
of the unique continuation property of the elliptic operator Δx + ΛI (analyticity
of solutions to elliptic problems discussed in Section 10.2.1 in Appendix), we get
V ≡ 0, in other words,

r = r0 cos(
√

Λx3) in Ω.

However, as r must be constant on the bottom part {x3 = −π − h(x1, x2)}, we
conclude that h ≡ const. �

Our future considerations will be concerned with fluids confined to domains
described through (7.17), with flat “tops” and variables “bottoms” as in (7.18)
with h �≡ const. We impose the no-slip boundary conditions for the velocity field

uε|∂Ω = 0, (7.19)

together with the no-flux boundary condition for the temperature

qε · n|∂Ω = 0. (7.20)

Accordingly, the system is energetically insulated in agreement with (7.8).
As we shall see, our approach applies to any bounded sufficiently smooth spa-

tial domain Ω ⊂ R
3, on which the overdetermined problem (7.16) admits only the

trivial (constant) solution r. In particular, the arguments in the proof of Propo-
sition 7.1 can be used provided a part of the boundary is flat and the latter is
connected.

7.2 Main result

7.2.1 Preliminaries – global existence

Exactly as in Chapter 5, we consider the initial data in the form⎧⎪⎪⎨
⎪⎪⎩

�ε(0, ·) = �0,ε = � + ε�
(1)
0,ε,

uε(0, ·) = u0,ε,

ϑε(0, ·) = ϑ0,ε = ϑ + εϑ
(1)
0,ε,

⎫⎪⎪⎬
⎪⎪⎭ (7.21)
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where ⎧⎪⎪⎨
⎪⎪⎩
∫
Ω �

(1)
0,ε dx = 0, �

(1)
0,ε → �(1) weakly-(*) in L∞(Ω),

u0,ε → u0 weakly-(*) in L∞(Ω; R3),∫
Ω

ϑ
(1)
0,ε dx = 0, ϑ

(1)
0,ε → ϑ

(1)
0 weakly in L∞(Ω),

⎫⎪⎪⎬
⎪⎪⎭ (7.22)

with positive constants �, ϑ.
For readers’ convenience, we recall the list of hypotheses, under which system

(7.5–7.15), supplemented with the boundary conditions (7.19), (7.20), and the
initial conditions (7.21), possesses a weak solution defined on an arbitrary time
interval (0, T ). To begin, we need the hypothesis of thermodynamic stability (1.44)
expressed in terms of the function P as

P ∈ C1[0,∞) ∩ C2(0,∞), P (0) = 0, P ′(Z) > 0 for all Z ≥ 0, (7.23)

0 <
5
3P (Z) − ZP ′(Z)

Z
≤ sup

z>0

5
3P (z) − zP ′(z)

z
< ∞, (7.24)

together with the coercivity assumption

lim
Z→∞

P (Z)
Z

5
3

= p∞ > 0. (7.25)

Similarly to Chapter 5, the transport coefficients μ, η, and κ are assumed to
be continuously differentiable functions of the temperature ϑ satisfying the growth
restrictions

0 < μ(1 + ϑ) ≤ μ(ϑ) ≤ μ(1 + ϑ) for all ϑ ≥ 0, μ′ bounded in [0,∞), (7.26)

and
0 < κ(1 + ϑ3) ≤ κ(ϑ) ≤ κ(1 + ϑ3) for all ϑ ≥ 0, (7.27)

where μ, μ, κ, and κ are positive constants.
Now, as a direct consequence of the abstract existence result established in

Theorem 3.1, we claim that for any ε > 0, the scaled Navier-Stokes-Fourier

system (7.5–7.9), supplemented with the boundary conditions (7.19–7.20), and
the initial conditions (7.21), possesses a weak solution {�ε,uε, ϑε}ε>0 on the set
(0, T )× Ω such that

�ε ∈ L∞(0, T ; L
5
3 (Ω)), uε ∈ L2(0, T ; W 1,2

0 (Ω; R3)), ϑε ∈ L2(0, T ; W 1,2(Ω)).

More specifically, we have:

(i) Renormalized equation of continuity:∫ T

0

∫
Ω

�εB(�ε)
(
∂tϕ + uε · ∇xϕ

)
dx dt (7.28)

=
∫ T

0

∫
Ω

b(�ε)divxuεϕ dx dt −
∫

Ω

�0,εB(�0,ε)ϕ(0, ·) dx

for any b as in (2.3) and any ϕ ∈ C∞
c ([0, T ) × Ω);
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(ii) Momentum equation:

∫ T

0

∫
Ω

(
�εuε · ∂tϕ + �ε[uε ⊗ uε] : ∇xϕ +

1
ε2

p(�ε, ϑε)divxϕ
)

dx dt (7.29)

=
∫ T

0

∫
Ω

(
Sε : ∇xϕ − 1

ε
�ε∇xF · ϕ

)
dx dt −

∫
Ω

(�0,εu0,ε) · ϕ dx

for any test function
ϕ ∈ C∞

c ([0, T )× Ω; R3);

(iii) Total energy balance:∫
Ω

(ε2

2
�ε|uε|2 + �εe(�ε, ϑε) − ε�εF

)
(t) dx (7.30)

=
∫

Ω

(ε2

2
�0,ε|u0,ε|2 + �0,εe(�0,ε, ϑ0,ε) − ε�εF

)
dx for a.a. t ∈ (0, T );

(iv) Entropy balance:

∫ T

0

∫
Ω

�εs(�ε, ϑε)
(
∂tϕ + uε · ∇xϕ

)
dx dt

+
∫ T

0

∫
Ω

qε

ϑε
· ∇xϕ dx dt + 〈σε; ϕ〉[M;C]([0,T ]×Ω)

= −
∫

Ω

�0,εs(�0,ε, ϑ0,ε)ϕ(0, ·) dx (7.31)

for any ϕ ∈ C∞
c ([0, T )× Ω), where σε ∈ M+([0, T ]× Ω) satisfies (7.9).

Note that the satisfaction of the no-slip boundary conditions is ensured by
the fact that the velocity field uε(t, ·) belongs to the Sobolev space W 1,2

0 (Ω; R3)
defined as a completion of C∞

c (Ω; R3) with respect to the W 1,2-norm. Accordingly,
the test functions in the momentum equation (7.29) must be compactly supported
in Ω, in particular, the Helmholtz projection H[ϕ] is no longer an admissible test
function in (7.29).

7.2.2 Compactness of the family of velocities

In order to avoid confusion, let us point out that the principal result to be shown
in this chapter is pointwise compactness of the family of velocity fields {uε}ε>0.
Indeed following step by step the analysis presented in Chapter 5 we can show
that the limit system obtained by letting ε → 0 is the same as in Theorem 5.2,
specifically, the Oberbeck-Boussinesq approximation (5.161–5.166).
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Thus the main result of this chapter reads as follows:

� Compactness of Velocities on Domains with Variable Bottoms:

Theorem 7.1. Let Ω be the infinite slab introduced in (7.17), (7.18), where the
“bottom” part of the boundary is given by a function h satisfying

h ∈ C3(T 2), |h| < π, h �≡ const. (7.32)

Assume that Sε, qε as well as the thermodynamic functions p, e, and s are given
by (7.10–7.15), where P meets the structural hypotheses (7.23–7.25), while the
transport coefficients μ and κ satisfy (7.26), (7.27). Finally, let {�ε,uε, ϑε}ε>0 be
a family of weak solutions to the Navier-Stokes-Fourier system satisfying (7.28–
7.31), where the initial data are given by (7.21), (7.22).

Then, at least for a suitable subsequence,

uε → U in L2((0, T ) × Ω; R3), (7.33)

where U ∈ L2(0, T ; W 1,2
0 (Ω; R3)), divxU = 0.

The remaining part of this chapter is devoted to the proof of Theorem 7.1
which is tedious and rather technical. It is based on careful analysis of the singular
eigenvalue problem (7.2), (7.3) in a boundary layer by means of the abstract
method proposed by Vishik and Ljusternik [198] and later adapted by Desjardins
et al. [61] to the low Mach number limit problems in the context of isentropic fluid
flows. In contrast with [61], we “save” one degree of approximation – a fact that
simplifies considerably the analysis and makes the proof relatively transparent and
easily applicable to other choices of boundary conditions (see [83]).

7.3 Uniform estimates

We begin the proof of Theorem 7.1 by recalling the uniform estimates that can
be obtained exactly as in Chapter 5. Thus we focus only on the principal ideas,
referring to the corresponding parts of Section 5.2 for all technical details.

As the initial distribution of the density is a zero mean perturbation of the
constant state �, we have∫

Ω

�ε(t) dx =
∫

Ω

�0,ε dx = �|Ω|,

in particular, ∫
Ω

(�ε(t) − �) dx = 0 for all t ∈ [0, T ]. (7.34)
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To obtain further estimates, we combine (7.30), (7.31) to deduce the dissipa-
tion balance equality in the form∫

Ω

[1
2
�ε|uε|2 +

1
ε2

(
Hϑ(�ε, ϑε) − ε�εF

)]
(τ) dx +

ϑ

ε
σε

[
[0, τ ] × Ω

]
(7.35)

=
∫

Ω

[1
2
�0,ε|u0,ε|2 +

1
ε2

(
Hϑ(�0,ε, ϑ0,ε) − ε�εF

)]
dx for a.a. τ ∈ [0, T ],

where Hϑ is the Helmholtz function introduced in (2.48).
As we have observed in (2.49), (2.50), the hypothesis of thermodynamic sta-

bility ∂�p > 0, ∂ϑe > 0, expressed in terms of (7.23), (7.24), implies that

� → Hϑ(�, ϑ) is a strictly convex function,

while
ϑ → Hϑ(�, ϑ) attains its strict minimum at ϑ for any fixed �.

Consequently, subtracting a suitable affine function of � from both sides of
(7.35), and using the coercivity properties of Hϑ stated in Lemma 5.1, we deduce
the following list of uniform estimates:

• Energy estimates:

ess sup
t∈(0,T )

‖√�εuε‖L2(Ω;R3) ≤ c [cf. (5.49)], (7.36)

ess sup
t∈(0,T )

∥∥∥[�ε − �

ε

]
ess

∥∥∥
L2(Ω)

≤ c [cf. (5.46)], (7.37)

ess sup
t∈(0,T )

∥∥∥[�ε − �

ε

]
res

∥∥∥
L

5
3 (Ω)

≤ ε
1
5 c [cf. (5.45), (5.48)], (7.38)

ess sup
t∈(0,T )

∥∥∥[ϑε − ϑ

ε

]
ess

∥∥∥
L2(Ω)

≤ c [cf. (5.47)], (7.39)

ess sup
t∈(0,T )

∥∥∥[ϑε]res
∥∥∥

L4(Ω)
≤ ε

1
2 c [cf. (5.48)], (7.40)

ess sup
t∈(0,T )

∥∥∥[p(�ε, ϑε) − p(�, ϑ)
ε

]
res

∥∥∥
L1(Ω)

≤ εc [cf. (5.45), (5.100)]. (7.41)

• Estimates based on energy dissipation:

‖σε‖M+([0,T ]×Ω) ≤ ε2c [cf. (5.50)], (7.42)∫ T

0

‖uε‖2
W 1,2

0 (Ω;R3)
dt ≤ c [cf. (5.51)], (7.43)∫ T

0

∥∥∥ϑε − ϑ

ε

∥∥∥2
W 1,2(Ω)

dt ≤ c [cf. (5.52)], (7.44)∫ T

0

∥∥∥ log(ϑε) − log(ϑ)
ε

∥∥∥2
W 1,2(Ω)

dt ≤ c [cf. (5.53)]. (7.45)
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• Entropy estimates:

ess sup
t∈(0,T )

∥∥∥[�εs(�ε, ϑε)
ε

]
res

∥∥∥
L1(Ω)

dt ≤ εc [cf. (5.44)], (7.46)

∫ T

0

∥∥∥[�εs(�ε, ϑε)
ε

]
res

∥∥∥q

Lq(Ω)
dt ≤ c for a certain q > 1 [cf. (5.54)],

(7.47)∫ T

0

∥∥∥[�εs(�ε, ϑε)
ε

uε

]
res

∥∥∥q

Lq(Ω;R3)
dt ≤ c for a certain q > 1 [cf. (5.55)],

(7.48)∫ T

0

∥∥∥[κ(ϑε)
ϑε

]
res

∇xϑε

ε

∥∥∥q

Lq(Ω;R3)
dt → 0 for a certain q > 1 [cf. (5.56)].

(7.49)

Let us recall that the “essential” component [h]ess of a function h and its “residual”
counterpart [h]res have been introduced in (4.44), (4.45).

We conclude with the estimate on the “measure of the residual set” estab-
lished in (5.46), specifically,

ess sup
t∈(0,T )

|Mε
res[t]| ≤ ε2c, (7.50)

with Mε
res[t] ⊂ Ω introduced in (4.43).

7.4 Analysis of acoustic waves

7.4.1 Acoustic equation

The acoustic equation governing the time oscillations of the gradient part of the
velocity field is essentially the same as in Chapter 5. However, a refined analysis to
be performed below requires a more elaborate description of the “small” terms as
well as the knowledge of the precise rate of convergence of these quantities toward
zero.

We start rewriting the equation of continuity (7.5) in the form

∫ T

0

∫
Ω

(
ε
�ε − �

ε
∂tϕ + �εuε · ∇xϕ

)
dx dt = −

∫
Ω

ε
�0,ε − �

ε
dx (7.51)

for any ϕ ∈ C∞
c ([0, T )× Ω).
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Similarly, the momentum equation (7.29) can be written as∫ T

0

∫
Ω

ε�εuε · ∂tϕ dx dt (7.52)

+
∫ T

0

∫
Ω

(∂p(�, ϑ)
∂�

[�ε − �

ε

]
ess

+
∂p(�, ϑ)

∂ϑ

[ϑε − ϑ

ε

]
ess

− �F
)
divxϕ dx dt

−
∫ T

0

∫
Ω

εSε : ∇xϕ dx dt

= −ε

∫
Ω

�0,εu0,ε · ϕ dx + ε

∫ T

0

∫
Ω

G
ε
1 : ∇xϕ dx dt + ε

∫ T

0

∫
Ω

G2
ε · ϕ dx dt

+
∫ T

0

∫
Ω

(
G3

ε + G4
ε

)
divxϕ dx dt,

for any ϕ ∈ C∞
c ([0, T )× Ω; R3), where we have set

G
1
ε = −�εuε ⊗ uε, G2

ε =
� − �ε

ε
∇xF, (7.53)

G3
ε = − [p(�ε, ϑε)]res

ε
, (7.54)

and

G4
ε =

∂p(�, ϑ)
∂�

[�ε − �

ε

]
ess

+
∂p(�, ϑ)

∂ϑ

[ϑε − ϑ

ε

]
ess

−
( [p(�ε, ϑε)]ess − p(�, ϑ)

ε

)
.

(7.55)

It is important to notice that validity of (7.52) can be extended to the class of
test functions satisfying

ϕ ∈ C∞
c ([0, T ]× Ω; R3), ϕ|∂Ω = 0 (7.56)

by means of a simple density argument. Indeed, in accordance with the integra-
bility properties of the weak solutions established in Theorem 3.2, it is enough to
use the density of C∞

c (Ω) in W 1,p
0 (Ω) for any finite p.

Since uε ∈ L2(0, T ; W 1,2
0 (Ω; R3)), in particular, the trace of uε vanishes on

the boundary, we are allowed to use the Gauss-Green theorem to obtain∫ T

0

∫
Ω

εSε : ∇xϕ dx dt (7.57)

= −ε

∫ T

0

∫
Ω

2μ(ϑ)
�

�εuε · divx[[∇xϕ]] dx dt

+
∫ T

0

∫
Ω

2εμ(ϑ)
�

(�ε − �)uε · divx[[∇xϕ]] dx dt

+
∫ T

0

∫
Ω

ε
(
μ(ϑε) − μ(ϑ)

)(
∇xuε + ∇⊥

x uε −
2
3
divxuεI

)
: ∇xϕ dx dt
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for any ϕ as in (7.56), where we have introduced the notation

[[M]] =
1
2

[
M + M

T − 2
3
trace[M] I

]
.

In a similar fashion, the entropy balance (7.31) can be rewritten as∫ T

0

∫
Ω

ε
(�εs(�ε, ϑε) − �εs(�, ϑ)

ε

)
∂tϕ dx dt (7.58)

= −
∫

Ω

ε
(�0,εs(�0,ε, ϑ0,ε) − �0,εs(�, ϑ)

ε

)
ϕ(0, ·) dx − 〈σε; ϕ〉[M;C]([0,T ]×Ω)

+
∫ T

0

∫
Ω

(κ(ϑε)
ϑε

∇xϑε +
(
�εs(�, ϑ) − �εs(�ε, ϑε)

)
uε

)
· ∇xϕ dx dt

for any ϕ ∈ C∞
c ([0, T )× Ω).

Summing up relations (7.51–7.58) we obtain, exactly as in Section 5.4.3, a
linear hyperbolic equation describing the propagation of acoustic waves.

� Acoustic Equation:

∫ T

0

∫
Ω

(
εrε∂tϕ + Vε · ∇xϕ

)
dx dt (7.59)

= −
∫

Ω

εr0,εϕ(0, ·) dx +
A

ω

( ∫ T

0

∫
Ω

Gε
5 · ∇xϕ dx dt − 〈σε, ϕ〉

)
for any ϕ ∈ C∞

c ([0, T )× Ω),∫ T

0

∫
Ω

(
εVε · ∂tϕ + ωrεdivxϕ + εDVε · divx[[∇xϕ]]

)
dx dt (7.60)

= −
∫

Ω

εV0,ε · ϕ(0, ·) dx

+
∫ T

0

∫
Ω

(
Gε

6 · divx[[∇xϕ]] + G
ε
7 : ∇xϕ + Gε

8divxϕ + Gε
9 · ϕ

)
dx dt

for any ϕ ∈ C∞
c ([0, T )× R3; R3), ϕ|∂Ω = 0,

where we have set

rε =
1
ω

(
ω

�ε − �

ε
+ A�ε

s(�ε, ϑε) − s(�, ϑ)
ε

− �F
)
,Vε = �εuε, (7.61)

r0,ε =
1
ω

(
ω

�0,ε − �

ε
+ A�0,ε

s(�0,ε, ϑ0,ε) − s(�, ϑ)
ε

− �F
)
,V0,ε = �0,εu0,ε, (7.62)
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with

ω = ∂�p(�, ϑ) +
|∂ϑp(�, ϑ)|2
�2 ∂ϑs(�, ϑ)

, A =
∂ϑp(�, ϑ)

� ∂ϑs(�, ϑ)
, D =

2μ(ϑ)
�

. (7.63)

Note that the integral identities (7.59), (7.60) represent a weak formulation
of equation (7.1), where the “small” terms read as follows:

Gε
5 =

κ(ϑε)
ϑε

∇xϑε +
(
�εs(�, ϑ) − �εs(�ε, ϑε)

)
uε, (7.64)

Gε
6 = εD(�ε − �)uε, (7.65)

G
ε
7 = 2ε(μ(ϑε) − μ(ϑ))[[∇xuε]] − ε�εuε ⊗ uε, (7.66)

Gε
8 = A�ε

[s(�ε, ϑε) − s(�, ϑ)
ε

]
res

−
[p(�ε, ϑε)

ε

]
res

(7.67)

+ A
{[

�ε
s(�ε, ϑε) − s(�, ϑ)

ε

]
ess

− �
(∂s(�, ϑ)

∂�

[�ε − �

ε

]
ess

+
∂s(�, ϑ)

∂ϑ

[ϑε − ϑ

ε

]
ess

)}
−
{ [p(�ε, ϑε)]ess − p(�, ϑ)

ε
−
(∂p(�, ϑ)

∂�

[�ε − �

ε

]
ess

+
∂p(�, ϑ)

∂ϑ

[ϑε − ϑ

ε

]
ess

)}
+ ω
[�ε − �

ε

]
res

,

and
Gε

9 = (� − �ε)∇xF. (7.68)

7.4.2 Spectral analysis of the acoustic operator

In this part, we are concerned with the spectral analysis of the linear operator
associated to problem (7.59), (7.60), namely we examine the differential operator[

v
w

]
→ A

[
v
w

]
+ εB

[
v
w

]
, (7.69)

with

A
[

v
w

]
=
[

ωdivxw
∇xv

]
, B
[

v
w

]
=
[

0
Ddivx[[∇xw]]

]
that can be viewed as the formal adjoint of the generator in (7.59), (7.60). In
accordance with (7.19), we impose the homogeneous Dirichlet boundary condition
for w,

w|∂Ω = 0. (7.70)
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Let us start with the limit eigenvalue problem

A
[

v
w

]
= λ

[
v
w

]
, meaning

{
ωdivxw = λv,

∇xv = λw

}
(7.71)

which can be equivalently reformulated as

−Δxv = Λv, Λ = −λ2

ω
, (7.72)

where the boundary condition (7.70) transforms to ∇xv|∂Ω = 0, in particular,

w · n|∂Ω = ∇xv · n|∂Ω = 0. (7.73)

Note that the null space (kernel) of A is

Ker[A] =

[
span{1}

L2
σ(Ω; R3)

]
(7.74)

= {(v,w) | v = const, w ∈ L2(Ω; R3), divxw = 0, w · n|∂Ω = 0}.

As is well known, the Neumann problem (7.72), (7.73) admits a countable
set of real eigenvalues {Λn}∞n=0,

0 = Λ0 < Λ1 < Λ2 · · · ,

where the associated family of real eigenfunctions {vn,m}∞,mn

n=0,m=1 forms an or-
thonormal basis of the Hilbert space L2(Ω). Moreover, we denote by

En = span{vn,m}mn
m=1, n = 0, 1, . . .

the eigenspace corresponding to the eigenvalue Λn of multiplicity mn. In particular,
m0 = 1, E0 = span{1} (see Theorem 10.7 in Appendix).

Under hypothesis (7.32), Proposition 7.1 implies that v0 = 1/
√
|Ω| is the only

eigenfunction that satisfies the supplementary boundary condition ∇xv0|∂Ω = 0.
Thus the term εB, together with (7.70), may be viewed as a singular perturbation
of the operator A.

Accordingly, the eigenvalue problem (7.71), (7.73) admits a system of eigen-
values

λ±n = ±i
√

ωΛn, n = 0, 1, . . .

lying on the imaginary axis. The associated eigenspaces are⎧⎨
⎩

span{1} × L2
σ(Ω; R3) for n = 0,

span
{
(vn,m,w±n,m) = 1

λ±n
∇xvn,m

}mn

m=1
for n = 1, 2, . . . .

⎫⎬
⎭
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In the remaining part of this chapter, we fix n > 0 and set

λ = λn = i
√

ωΛn, v = vn,1, w = wn,1 =
1
λn

∇xvn,1, (7.75)

together with

E = En = span{v(1), . . . , v(m)}, v(j) = vn,j , m = mn. (7.76)

In order to match the incompatibility of the boundary conditions (7.70),
(7.73), we look for “approximate” eigenfunctions of the perturbed problem (7.80),
(7.82) in the form

vε = (vint,0 + vbl,0) +
√

ε(vint,1 + vbl,1), (7.77)

wε = (wint,0 + wbl,0) +
√

ε(wint,1 + wbl,1), (7.78)

where we set
vint,0 = v, wint,0 = w. (7.79)

The functions vε, wε are determined as solutions to the following approximate
problem.

� Approximate Eigenvalue Problem:

A
[

vε

wε

]
+ εB

[
vε

wε

]
= λε

[
vε

wε

]
+
√

ε

[
s1

ε

s2
ε

]
,

meaning, {
ωdivxwε = λεvε +

√
εs1

ε,

∇xvε + εDdivx[[∇xwε]] = λεwε +
√

εs2
ε,

}
(7.80)

where
λε = λ0 +

√
ελ1, with λ0 = λ, (7.81)

supplemented with the homogeneous Dirichlet boundary condition

wε|∂Ω = 0. (7.82)

There is a vast amount of literature, in particular in applied mathematics,
devoted to formal asymptotic analysis of singularly perturbed problems based on
the so-called WKB (Wentzel-Kramers-Brilbuin) expansions for boundary layers
similar to (7.77), (7.78). An excellent introduction to the mathematical aspects of
the theory is the book by Métivier [155]. The “interior” functions vint,k = vint,k(x),
wint,k = wint,k(x) depend only on x ∈ Ω, while the “boundary layer” functions
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vbl,k(x, Z) = vbl,k(x, Z), wbl,k = wbl,k(x, Z) depend on x and the fast variable
Z = d(x)/

√
ε, where d is a generalized distance function to ∂Ω,

d ∈ C3(Ω), d(x) =

{
dist[x, ∂Ω] for all x ∈ Ω such that dist[x, ∂Ω] ≤ δ,

d(x) ≥ δ otherwise.
(7.83)

Note that the distance function enjoys the same regularity as the boundary ∂Ω,
namely as the function h appearing in hypothesis (7.32).

The rest of this section is devoted to identifying all terms in the asymptotic
expansions (7.77), (7.78), the remainders s1

ε, s
2
ε, and the value of λ1. In accordance

with the heuristic arguments in the introductory part of this chapter, we expect to
recover λ1 �= 0, specifically, Re[λ1] < 0 yielding the desired exponential decay rate
of order

√
ε (no contradiction with the sign of Re[λε] in the introductory section

as the elliptic part of problem (7.80–7.82) has negative spectrum!). This rather
tedious task is accomplished in several steps.

Differential operators applied to the boundary layer correction functions.
To avoid confusion, we shall write ∇xwbl,k(x, d(x)/

√
ε) for the gradient of the

composed function x → wbl,k(x, d(x)/
√

ε), while ∇xwbl,k(x, Z), ∂Zwbl,k(x, Z)
stand for the differential operators applied to a function of two variables x and Z.
It is a routine matter to compute:

[[∇xwbl,k(x, d(x)/
√

ε)]] = [[∇xwbl,k(x, Z)]]

+
1

2
√

ε

[
∂Zwbl,k(x, Z) ⊗∇xd + ∇xd ⊗ ∂Zwbl,k(x, Z) − 2

3
∂Zwbl,k(x, Z) · ∇xd I

]
.

Similarly, we get

divx[wbl,k(x, d(x)/
√

ε)] = divxwbl,k(x, Z) +
1√
ε
∂Zwbl,k(x, Z) · ∇xd(x),

∇x[vbl,k(x, d(x)/
√

ε)] = ∇xvbl,k(x, Z) +
1√
ε
∂Zvbl,k(x, Z)∇xd(x),

and

divx[[∇xwbl,k(x, d(x)/
√

ε)]] = divx[[∇xwbl,k(x, Z)]]

+
1√
ε

{
[∂Z∇xwbl,k(x, Z)]∇xd(x) +

1
6
(∂Zdivxwbl,k(x, Z))∇xd(x)

+
1
6
[∂Z∇T

x wbl,k(x, Z)]∇xd(x)

+
1
2
∂Zwbl,k(x, Z)Δxd(x) +

1
6
[∇2

xd(x)]∂Zwbl,k(x, Z)
}

+
1
2ε

{
∂2

Zwbl,k(x, Z)|∇xd(x)|2 +
1
3
∂2

Zwbl,k(x, Z) · ∇xd(x)∇xd(x)
}

for k = 0, 1, where Z stands for d(x)/
√

ε.
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Consequently, substituting ansatz (7.77), (7.78) in (7.80), (7.81), we arrive
at the following system of equations:

ωdivxwint,1(x) = λ0vint,1(x) + λ1vint,0(x), (7.84)

∇xvint,1(x) = λ0wint,1(x) + λ1wint,0(x), (7.85)

∂Zwbl,0(x, Z) · ∇xd(x) = 0, (7.86)

ω
(
divxwbl,0(x, Z) + ∂Zwbl,1(x, Z) · ∇xd(x)

)
= λ0vbl,0(x, Z), (7.87)

∂Zvbl,0(x, Z)∇xd(x) = 0, (7.88)

and (
∇xvbl,0(x, Z) + ∂Zvbl,1(x, Z)∇xd(x)

)
(7.89)

+
D

2

(
∂2

Zwbl,0(x, Z)|∇xd(x)|2 +
1
3
∂2

Zwbl,0(x, Z) · ∇xd(x)∇xd(x)
)

= λ0wbl,0(x, Z).

Moreover, the remainders s1
ε, s2

ε are determined by means of (7.80) as

s1
ε = divx(wbl,1(x, Z)) − λ0vbl,1(x, Z) (7.90)

− λ1vbl,0(x, Z) −
√

ελ1
(
vint,1(x) + vbl,1(x, Z)

)
,

s2
ε = D

{
[∂Z∇xwbl,0(x, Z)]∇xd(x) +

1
6
[∂Zdivxwbl,0(x, Z)]∇xd(x) (7.91)

+
1
6
[∂Z∇T

x wbl,0(x, Z)]∇xd(x) +
1
2
∂Zwbl,0(x, Z)Δxd(x)

+
1
6
[∇2

xd(x)]∂Zwbl,0(x, Z) +
1
2
∂2

Zwbl,1(x, Z)|∇xd(x)|2

+
1
6
∂2

Zwbl,1(x, Z) · ∇xd(x)∇xd(x)
}

+ ∇xvbl,1(x, Z) − λ0wbl,1(x, Z) − λ1wbl,0(x, Z)

+
√

ε
{
D
(
divx[[∇xwint,0(x)]] + divx[[∇xwbl,0(x, Z)]]

+ [∂Z∇xwbl,1(x, Z)]∇xd(x) +
1
6
[∂Zdivxwbl,1(x, Z)]∇xd(x)

+
1
6
[∂Z∇T

x wbl,1(x, Z)]∇xd(x)

+
1
2
∂Zwbl,1(x, Z)Δxd(x) +

1
6
[∇2

xd(x)]∂Zwbl,1(x, Z)
)

− λ1wint,1(x) − λ1wbl,1(x, Z)
}

+ ε
{
divx[[∇xwint,1(x)]] + divx[[∇xwbl,1(x, Z)]]

}
,

where Z = d(x)/
√

ε.
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Finally, in agreement with (7.82), we require

wbl,k(x, 0) + wint,k(x, 0) = 0 for all x ∈ ∂Ω, k = 0, 1. (7.92)

Determining the zeroth order terms. System (7.84–7.89) consists of six equations
for the unknowns vbl,0, wbl,0, vint,1, wint,1, and vbl,1, wbl,1. Note that, in agreement
with (7.79),

ωdivxwint,0 = λ0vint,0, λ0wint,0 = ∇vint,0,

wint,0 · n|∂Ω = ∇xvint,0 · n|∂Ω = 0.
(7.93)

Moreover, since the matrix {
∫

∂Ω ∇xv(i) · ∇xv(j) dSx}m
i,j=1 is diagonalizable, the

basis {v(1), . . . , v(m)} of the eigenspace E introduced in (7.75), (7.76) may be
chosen in such a way that∫

Ω

v(i)v(j) dx = δi,j ,

∫
∂Ω

∇xv(i) · ∇xv(j) dSx = 0 for i �= j, (7.94)

where vint,0 = v(1).
Since there are no boundary conditions imposed on the component v, we can

take
vbl,0(x, Z) ≡ vbl,1(x, Z) ≡ 0, (7.95)

in particular, equation (7.88) holds.
Furthermore, equation (7.86) requires the quantity wbl,0(x, Z) ·∇xd(x) to be

independent of Z. On the other hand, by virtue of (7.73), (7.92), the function x →
wbl,0(x, d(x)/

√
ε) must have zero normal trace on ∂Ω. Since d(x) = 0, ∇xd(x) =

−n(x) for any x ∈ ∂Ω, we have to take

wbl,0(x, Z) · ∇d(x) = 0 for all x ∈ Ω, Z ≥ 0. (7.96)

Consequently, equation (7.89) reduces to

D

2
∂2

Zwbl,0(x, Z)|∇xd(x)|2 = λ0wbl,0(x, Z) to be satisfied for Z > 0. (7.97)

For a fixed x ∈ Ω, relation (7.97) represents an ordinary differential equation
of second order in Z, for which the initial conditions wbl,0(x, 0) are uniquely
determined by (7.92), namely

wbl,0(x, 0) = −wint,0(x) for all x ∈ ∂Ω. (7.98)

It is easy to check that problem (7.97), (7.98) admits a unique solution that decays
to zero for Z → ∞, specifically,

wbl,0(x, Z) = −χ(d(x))wint,0 (x − d(x)∇xd(x)) exp(−ΓZ), (7.99)
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where χ ∈ C∞[0,∞),

χ(d) =

{
1 for d ∈ [0, δ/2],

0 if d > δ,
(7.100)

and

Γ2 =
2λ0

D
, Re[Γ] > 0. (7.101)

It seems worth noting that formula (7.99) is compatible with (7.96) as for x ∈ Ω
the point x−∇xd(x)/d(x) is the nearest to x on ∂Ω as soon as d(x) coincides with
dist[x, ∂Ω].

First order terms. Equation (7.87), together with the ansatz made in (7.95), give
rise to

∂Z

(
wbl,1(x, Z) · ∇xd(x)

)
= −divx(wbl,0(x, Z)). (7.102)

In view of (7.99), equation (7.102) admits a unique solution with exponential decay
for Z → ∞ for any fixed x ∈ Ω, namely

wbl,1(x, Z) · ∇xd(x) =
1
Γ

divx(wbl,0(x, Z)).

Thus we can set

wbl,1(x, Z) =
1
Γ

divx(wbl,0(x, Z))∇xd(x) + H(x) exp(−ΓZ), (7.103)

for a function H such that
H(x) · ∇xd(x) = 0 (7.104)

to be determined below. Note that, in accordance with formula (7.99), |∇xd(x)| =
|∇xdist[x, ∂Ω]| = 1 on the set where wbl,0 �= 0.

Determining λ1. Our ultimate goal is to identify vint,1, wint,1, and, in particular
λ1, by help of equations of (7.84), (7.85). In accordance with (7.92), the normal
trace of the quantity wint,1(x) + wbl,1(x, 0) must vanish for x ∈ ∂Ω; whence, by
virtue of (7.103),

0 = wint,1(x) · n(x) + wbl,1(x, 0) · n(x) = wint,1(x) · n(x) − 1
Γ

divx(wbl,0(x, 0))

(7.105)
for any x ∈ ∂Ω.

As a consequence of (7.93), system (7.84), (7.85) can be rewritten as a second
order elliptic equation

Δxvint,1 + Λvint,1 = 2
λ1λ0

ω
vint,0 in Ω, (7.106)
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where Λ = −(λ0)2/ω. Problem (7.106) is supplemented with the non-homogeneous
Neumann boundary condition determined by means of (7.93), (7.85), and (7.105),
namely

∇xvint,1 · n(x) =
λ0

Γ
divx(wbl,0(x, 0)) for all x ∈ ∂Ω. (7.107)

According to the standard Fredholm alternative for elliptic problems (see
Section 10.2.2 in Appendix), system (7.106), (7.107) is solvable as long as

ω

Γ

∫
∂Ω

divx(wbl,0(x, 0))v(k) dSx = 2λ1

∫
Ω

vint,0v(k) dx for k = 1, . . . , m,

where {v(1), . . . , v(m)} is the system of eigenvectors introduced in (7.94). In accor-
dance with our agreement, v(1) = vint,0, therefore we set

λ1 =
ω

2Γ

∫
∂Ω

divx(wbl,0(x, 0))vint,0 dSx (7.108)

and verify that ∫
∂Ω

divx(wbl,0(x, 0))v(k) dSx = 0 for k = 2, . . . , m. (7.109)

To this end, use (7.93), (7.99) to compute

divx(wbl,0(x, 0))

= −divx

(
wint,0(x − d(x)∇xd(x))

)
= − 1

λ0
divx

(
∇xvint,0(x − d(x)∇xd(x))

)
= − 1

λ0
∇2

xvint,0 (x − d(x)∇xd(x)) :
(
I −∇xd(x) ⊗∇xd(x) − d(x)∇2d(x)

)
whenever dist[x, ∂Ω] < δ/2. Consequently,∫

∂Ω

divx(wbl,0(x, 0))v(k) dSx = − 1
λ0

∫
∂Ω

∇2
xvint,0 : (I − n⊗ n)v(k) dSx

=
1
λ0

∫
∂Ω

ΔSvint,0v(k) dSx =
1
λ0

∫
∂Ω

∇xvint,0 · ∇xv(k) dSx,

where the symbol ΔS denotes the Laplace-Beltrami operator on the (compact)
Riemannian manifold ∂Ω. Indeed expression

[
∇2

xvint,0 : (n⊗n− I)
]

represents the

standard “flat” Laplacian of the function vint,0 with respect to the tangent plane
at each point of ∂Ω that coincides (up to a sign) with the associated Laplace-
Beltrami operator on the manifold ∂Ω applied to the restriction of vint,0|∂Ω pro-
vided ∇xvint,0 · n = 0 on ∂Ω (see Gilbarg and Trudinger [96, Chapter 16]).



252 Chapter 7. Interaction of Acoustic Waves with Boundary

In accordance with (7.94), we infer that

∫
∂Ω

∇xvint,0 · ∇xv(k) dSx =

{ ∫
∂Ω

|∇xvint,0|2 dSx if k = 1,

0 for k = 2, . . . , m.

In particular, we get (7.109), and, using (7.72), (7.101),

λ1 = −Γ
D

4Λ

∫
∂Ω

|∇xvint,0|2 dSx.

Seeing that Λ > 0, and, by virtue of (7.101), Re[Γ] > 0, we utilize hypothesis
(7.32) together with Proposition 7.1 to deduce the desired conclusion

Re[λ1] < 0. (7.110)

This is the crucial point of the proof of Theorem 7.1.
Having identified vint,1 by means of (7.106), (7.107) we use (7.85) to compute

wint,1 =
1
λ0

(
∇xvint,1 − λ1wint,0

)
.

Finally, in order to meet the boundary conditions (7.92), we set

H(x) = −χ(d(x))
(
wint,1(x) − (wint,1 · ∇xd(x))∇xd(x)

)
for x ∈ Ω

in (7.103), with χ given by (7.100).

Conclusion. By a direct inspection of (7.90), (7.91), where all quantities are
evaluated by means (7.95), (7.99), (7.103), we infer that

|s1
ε| + |s2

ε| ≤ c

(√
ε + exp

(
−Re[Γ]

d(x)√
ε

))
,

in particular s1
ε, s2

ε are uniformly bounded in Ω and tend to zero uniformly on any
compact K ⊂ Ω.

The results obtained in this section are summarized in the following assertion.

Proposition 7.2. Let Ω be given through (7.17), with

Btop = 0, Bbottom = −π − h,

h ∈ C3(T 2), |h| < π, h �≡ const.

Assume that vint,0, wint,0, and λ0 �= 0 solve the eigenvalue problem (7.71), (7.73).
Then the approximate eigenvalue problem (7.80–7.82) admits a solution in

the form (7.77), (7.78), where
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• the functions vint,1 = vint,1(x), wint,1 = wint,1(x) belong to the class C2(Ω);
• the boundary layer corrector functions vbl,0 = vbl,1 = 0, wbl,0 = wbl,0(x, Z),

wbl,1 = wbl,1(x, Z) are all of the form h(x) exp(−ΓZ), where h ∈ C2(Ω; R3),
and Re[Γ] > 0;

• the approximate eigenvalue λε is given by (7.81), where

Re[λ1] < 0; (7.111)

• the remainders s1
ε, s2

ε satisfy

s1
ε → 0 in Lq(Ω), s2

ε → 0 in Lq(Ω; R3) as ε → 0 for any 1 ≤ q < ∞. (7.112)

7.5 Strong convergence of the velocity field

We are now in a position to establish the main result of this chapter stated in
Theorem 3.1, namely

uε → U strongly in L2((0, T ) × Ω; R3). (7.113)

We recall that, in accordance with (7.43),

uε → U weakly in L2(0, T ; W 1,2
0 (Ω; R3)); (7.114)

at least for a suitable subsequence. Moreover, exactly as in Section 5.3.1, we have

divx U = 0.

Consequently, it remains to control possible oscillations of the velocity field in time.
To this end, similarly to Chapter 5, the problem is reduced to a finite number of
acoustic modes that can be treated by means of the spectral theory developed in
the preceding section.

7.5.1 Compactness of the solenoidal component

It follows from the uniform estimates (7.36–7.38) that

�εuε → �U weakly-(*) in L∞(0, T ; L
5
4 (Ω; R3)). (7.115)

Using quantities

ϕ(t, x) = ψ(t)φ(x), ψ ∈ C∞
c (0, T ), φ ∈ C∞

c (Ω), divxφ = 0

as test functions in the momentum equation (7.29) we deduce, by means of the
standard Arzelà-Ascoli theorem, that the scalar functions

t →
∫

Ω

�εuε · φ dx are precompact in C[0, T ].
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Note that ∫
Ω

1
ε
�ε∇xF · φ dx =

∫
Ω

�ε − �

ε
∇xFφ dx

as φ is a divergenceless vector field.
Consequently, with the help of (7.115) and a simple density argument, we

infer that the family

t →
∫

Ω

�εuε ·H[φ] dx is precompact in C[0, T ]

for any φ ∈ C∞
c (Ω; R3), where H denotes the Helmholtz projection introduced in

Section 5.4.1. In other words,

H[�εuε] → �H[U] = �U in Cweak([0, T ]; L
5
4 (Ω; R3)). (7.116)

Let us point out that H[φ] is not an admissible test function in (7.29), however, it
can be approximated in Lp(Ω; R3) by smooth solenoidal functions with compact
support for finite p (see Section 10.6 in Appendix).

Thus, combining relations (7.114), (7.116), we infer∫ T

0

∫
Ω

H[�εuε] · H[uε] dx dt → �

∫ T

0

∫
Ω

|H[U]|2 dx dt,

which, together with estimates (7.37), (7.38), gives rise to∫ T

0

∫
Ω

|H[uε]|2 dx dt →
∫ T

0

∫
Ω

|U|2 dx dt

yielding, finally, the desired conclusion

H[uε] → U (strongly) in L2((0, T ) × Ω; R3). (7.117)

7.5.2 Reduction to a finite number of modes

Exactly as in (5.146), we decompose the space L2 as a sum of the subspace of
solenoidal vector fields L2

σ and gradients L2
g:

L2(Ω; R3) = L2
σ(Ω; R3) ⊕ L2

g(Ω; R3).

Since we already know that the solenoidal components of the velocity field uε are
precompact in L2, the proof of (7.113) reduces to showing

H⊥[uε] → H⊥[U] = 0 in L2((0, T ) × Ω; R3).

Moreover, since the embedding W 1,2
0 (Ω; R3) ↪→ L2(Ω; R3) is compact, it is enough

to show [
t →

∫
Ω

uε ·w dx
]
→ 0 in L2(0, T ), (7.118)
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for any fixed w = 1
λ∇xv, where v, w, λ �= 0 solve the eigenvalue problem (7.71),

(7.73) (cf. Section 5.4.6).
In view of (7.37), (7.38), relation (7.118) follows as soon as we show

[
t →

∫
Ω

�εuε · w dx
]
→ 0 in L2(0, T ),

where the latter quantity can be expressed by means of the acoustic equation
(7.59), (7.60). In addition, since the solutions of the eigenvalue problem (7.71),
(7.73) come in pairs [v,w, λ], [v,−w,−λ], it is enough to show

[
t →

∫
Ω

(
rεv + Vε ·w

)
dx
]
→ 0 in L2(0, T ) (7.119)

for any solution v, w of (7.71), (7.73) associated to an eigenvalue λ �= 0, where rε,
Vε are given by (7.61).

Finally, in order to exploit the information on the spectrum of the perturbed
acoustic operator, we claim that (7.119) can be replaced by

[
t →

∫
Ω

(
rεvε + Vε ·wε

)
dx
]
→ 0 in L2(0, T ), (7.120)

where vε, wε are the solutions of the approximate eigenvalue problem (7.80), (7.82)
constructed in the previous section. Indeed, by virtue of Proposition 7.2, we have

vε → v in C(Ω), wε → w in Lq(Ω; R3) for any 1 ≤ q < ∞.

Accordingly, the proof of Theorem 7.1 reduces to showing (7.120). This will be
done in the following section.

7.5.3 Strong convergence

In order to complete the proof of Theorem 7.1, our ultimate goal consists in show-
ing (7.120). To this end, we make use of the specific form of the acoustic equation
(7.59), (7.60), together with the associated spectral problem (7.80), (7.82). Taking
the quantities ψ(t)vε(x), ψ(t)wε(x), ψ ∈ C∞

c (0, T ), as test functions in (7.59),
(7.60), respectively, we obtain

∫ T

0

(
εχε∂tψ+λεχεψ

)
dt+

√
ε

∫ T

0

ψ

∫
Ω

(
rεs

1
ε +Vε ·s2

ε

)
dx dt =

7∑
m=1

Iε
m, (7.121)

where we have set

χε(t) =
∫

Ω

(
rε(t, ·)vε + Vε(t, ·) ·wε

)
dx,
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and the symbols Iε
m stand for the “small” terms:

Iε
1 =

A

ω

∫ T

0

ψ

∫
Ω

[κ(ϑε)
ϑε

∇xϑε +
(
�εs(�, ϑ) − �εs(�ε, ϑε)

)
uε

]
· ∇xvε dx dt,

Iε
2 = −A

ω
< σε; ψvε >[M;C]([0,T ]×Ω),

Iε
3 = D

∫ T

0

ψ

∫
Ω

ε2
(�ε − �

ε

)
uε · divx[[∇xwε]] dx dt,

Iε
4 =

∫ T

0

ψ

∫
Ω

ε2
(μ(ϑε) − μ(ϑ)

ε

)
[[∇xuε]] : ∇xwε dx dt,

Iε
5 = −

∫ T

0

ψ

∫
Ω

ε�εuε ⊗ uε : ∇xwε dx dt,

Iε
6 =

∫ T

0

ψ

∫
Ω

ε
(� − �ε

ε

)
∇xF ·wε dx dt,

and

Iε
7 =

∫ T

0

ψ

∫
Ω

Gε
8 divxwε dx dt,

where Gε
8 is given by (7.67).

Our aim is to show that each of the integrals can be written in the form

Iε ≈
∫ T

0

ψ(t)
(
εγε(t) + ε1+βΓε(t)

)
dt,

where {
{γε}ε>0 is bounded in Lq(0, T ) for a certain q > 1,

{Γε}ε>0 is bounded in L1(0, T ), and β > 0.

}

This rather tedious task, to be achieved by means of Proposition 7.2 combined with
the uniform estimates listed in Section 7.3, consists of several steps as follows:

(i) By virtue of Hölder’s inequality, we have∣∣∣ ∫
Ω

[κ(ϑε)
ϑε

∇xϑε · ∇xvε dx
∣∣∣ (7.122)

≤ ε‖vε‖W 1,∞(Ω)

∣∣∣ ∫
Ω

[κ(ϑε)
ϑε

]
ess

∣∣∣∇xϑε

ε

∣∣∣ dx
∣∣∣+ ∣∣∣ ∫

Ω

[κ(ϑε)
ϑε

]
res

∣∣∣∇xϑε

ε

∣∣∣ dx
∣∣∣

= εγε
1,1, with {γε

1}ε>1 bounded in Lq(0, T ) for a certain q > 1,

where we have used estimates (7.44) and (7.49). Note that, in accordance with
Proposition 7.2, both correction terms vbl,0, vbl,1 vanish identically, in particular,

‖vε‖W 1,∞(Ω) ≤ c uniformly in ε. (7.123)
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In a similar way,∣∣∣ ∫
Ω

(
�εs(�, ϑ) − �εs(�ε, ϑε)

)
uε · ∇xvε dx

∣∣∣ (7.124)

≤ ε‖vε‖W 1,∞(Ω)

[∫
Ω

∣∣∣ [�εs(�, ϑ) − �εs(�ε, ϑε)
ε

]
ess

∣∣∣|uε| dx

+
∫

Ω

∣∣∣ [�εs(�ε, ϑε)
ε

]
res

uε

∣∣∣ dx dt + |s(�, ϑ)|
∫

Ω

[�ε

ε

]
res

|uε| dx

]
= εγε

1,2.

Thus we can use Proposition 5.2, together with estimates (7.37–7.39), (7.43),
(7.48), (7.50), in order to conclude that

{γε
1,2}ε>0 is bounded in Lq(0, T ) for a certain q > 1.

Summing up (7.122), (7.124) we infer that

Iε
1 = ε

∫ T

0

ψ(t)γε
1(t) dt, with {γε

1}ε>0 bounded in Lq(0, T ) for a certain q > 1.

(7.125)

(ii) As a straightforward consequence of estimate (7.42) we obtain

Iε
2 = ε2 〈Γε

2; ψ〉[M;C][0,T ] , where {Γε
2}ε>0 is bounded in M+[0, T ]. (7.126)

(iii) Taking advantage of the form of wbl,0, wbl,1 specified in Proposition 7.2, we
obtain

‖εdivx[[∇xwε]] ‖L∞(Ω;R3) ≤ c

uniformly for ε → 0. This fact, combined with the uniform bounds established in
(7.37), (7.38), (7.43), and the standard embedding W 1,2(Ω) ↪→ L6(Ω), gives rise
to

Iε
3 = ε

∫ T

0

ψ(t)γε
3(t) dt, (7.127)

where
{γε

3}ε>0 is bounded in L2(0, T ).

(iv) Similarly to the preceding step, we deduce

‖
√

εwε‖W 1,∞(Ω;R3) ≤ c; (7.128)

whence, by virtue of (7.40), (7.43), and (7.44),

Iε
4 = ε3/2

∫ T

0

ψ(t)Γε
4(t) dt, (7.129)

where
{Γε

4}ε>0 is bounded in L1(0, T ).



258 Chapter 7. Interaction of Acoustic Waves with Boundary

(v) Probably the most delicate issue is how to handle the integrals in Iε
5 . To this

end, we first write∫ T

0

ψ

∫
Ω

ε�εuε ⊗ uε : ∇xwε dx dt

=
∫ T

0

ψ

∫
Ω

ε2
(�ε − �

ε

)
uε ⊗ uε : ∇xwε dx dt + �

∫ T

0

ψ

∫
Ω

εuε ⊗ uε : ∇xwε dx dt,

where, by virtue of (7.37), (7.38), (7.43), and the gradient estimate established in
(7.128),∫ T

0

ψ

∫
Ω

ε2
(�ε − �

ε

)
uε ⊗ uε : ∇xwε dx dt = ε3/2

∫ T

0

ψ(t)Γε
5,1(t) dt, (7.130)

with
{Γε

5,1}ε>0 bounded in L1(0, T ).

On the other hand, a direct computation yields∫
Ω

(uε ⊗ uε) : ∇xwε dx = −
∫

Ω

divxuεuε ·wε dx−
∫

Ω

(∇xuεuε) ·wε dx. (7.131)

Now, we have∫
Ω

divxuεuε ·wε dx =
∫

Ω

divxuε[uε]ess · wε dx +
∫

Ω

divxuε[uε]res · wε dx,

where, in accordance with estimates (7.36), (7.43),

{divxuε[uε]ess}ε>0 is bounded in L2(0, T ; L1(Ω; R3)),

while

‖divxuε[uε]res‖L1(0,T ;L1(Ω;R3))

≤ cε2/3‖∇xuε‖L2(0,T ;L2(Ω;R3×3))‖uε‖L2(0,T ;L6(Ω;R3)),

where we have used (7.43), the embedding W 1,2(Ω) ↪→ L6(Ω), and the bound on
the measure of the “residual set” established in (7.50).

Applying the same treatment to the latter integral on the right-hand side of
(7.131) and adding the result to (7.130) we conclude that

Iε
5 = ε3/2

∫ T

0

ψ(t)Γε
5,1 dt + ε

∫ T

0

ψ(t)γε
5(t) dt + ε5/3

∫ T

0

ψ(t)Γε
5,2 dt, (7.132)

where
{γε

5}ε>0 is bounded in L2(0, T ),

and
{Γε

5,1}ε>0, {Γε
5,2}ε>0 are bounded in L1(0, T ).
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(vi) In view of estimates (7.37), (7.38), it is easy to check that

Iε
6 = ε

∫ T

0

ψ(t)γε
6(t) dt, (7.133)

with
{γε

6}ε>0 bounded in L∞(0, T ).

(vii) Finally, in accordance with the first equation in (7.80) and Proposition 7.2,

‖divxwε‖L∞(Ω) ≤ c;

therefore relations (7.38–7.41), (7.46), together with Proposition 5.2, can be used
in order to conclude that

Iε
7 = ε

∫ T

0

ψ(t)γε
7(t) dt, (7.134)

where
{γε

7}ε>0 is bounded in L∞(0, T ).

We are now in a position to use relation (7.121) in order to show (7.120). To
begin, we focus on the integral

√
ε

∫ T

0

ψ

∫
Ω

(
rεs

1
ε + Vε · s2

ε

)
dx

appearing on the left-hand side of (7.121), with rε, Vε specified in (7.61). Writing

√
ε

∫ T

0

ψ

∫
Ω

(
rεs

1
ε + Vε · s2

ε

)
dx

=
√

ε

∫ T

0

ψ

∫
Ω

(
[rε]esss1

ε + [rε]ress1
ε + (�εuε) · s2

ε

)
dx

we can use the uniform estimates (7.36–7.41), together with pointwise convergence
of the remainders established in (7.112), in order to deduce that

√
ε

∫ T

0

ψ

∫
Ω

(
rεs

1
ε + Vε · s2

ε

)
dx =

√
ε

∫ T

0

ψ(t)βε(t) dt, (7.135)

where
βε → 0 in L∞(0, T ). (7.136)

Next, we use a family of standard regularizing kernels

ζδ(t) =
1
δ
ζ
( t

δ

)
, δ → 0,

ζ ∈ C∞
c (−1, 1), ζ ≥ 0,

∫ 1

−1

ζ(t) dt = 1
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in order to handle the “measure-valued” term in (7.121). To this end, we take ζδ

as a test function in (7.121) to obtain

d
dt

χε,δ −
λε

ε
χε,δ =

√
εh1

ε,δ + h2
ε,δ +

1√
ε
h3

ε,δ, (7.137)

where we have set
χε,δ(t) =

∫
R

ζε(t − s)ψδ(s) ds

for t ∈ (δ, T − δ).
In accordance with the uniform estimates (7.122–7.134), we have

{h1
ε,δ}ε>0 bounded in L1(0, T ), {h2

ε,δ}ε>0 bounded in Lp(0, T ) for a certain p > 1,
(7.138)

uniformly for δ → 0, where we have used the standard properties of mollifiers
recorded in Theorem 10.1 in Appendix. Similarly, by virtue of (7.135), (7.136),

sup
δ>0

‖h3
ε,δ‖L∞(0,T ) ≤ ν(ε), ν(ε) → 0 for ε → 0. (7.139)

Here all functions in (7.138), (7.139) have been extended to be zero outside
(δ, T − δ).

The standard variation-of-constants formula yields

|χε,δ(t)| ≤ exp
(
Re[λε/ε](t − δ)

)
ess sup

s∈(0,T )

|χε,δ(s)| +
√

ε

∫ T

0

|h1
ε,δ(s)| ds

+
∫ t

δ

exp
(
Re[λε/ε](t − s)

)
|h2

ε,δ(s)| ds +
∫ t

δ

1√
ε

exp
(
Re[λε/ε](t − s)

)
|h3

ε,δ(s)| ds;

therefore letting first δ → 0 and then ε → 0 yields the desired conclusion (7.120).
Note that, in accordance with (7.111),

Re[λε/ε] ≤ − c√
ε

for a certain c > 0,

in particular ∫ t

0

1√
ε

exp
(
Re[λε/ε](t − s)

)
ds < c

uniformly for ε → 0. The proof of Theorem 7.1 is now complete.



Chapter 8

Problems on Large Domains

Many theoretical problems in continuum fluid mechanics are formulated on un-
bounded physical domains, most frequently on the whole Euclidean space R3.
Although, arguably, any physical but also numerical space is necessarily bounded,
the concept of an unbounded domain offers a useful approximation in situations
when the influence of the boundary on the behavior of the system can be neglected.
The acoustic waves examined in the previous chapters are often ignored in meteo-
rological models, where the underlying ambient space is large when compared with
the characteristic speed of the fluid as well as the speed of sound. However, as we
have seen in Chapter 5, the way the acoustic waves “disappear” in the asymptotic
limit may include fast oscillations in the time variable that may produce undesir-
able numerical instabilities. In this chapter, we examine the incompressible limit of
the Navier-Stokes-Fourier System in the situation when the spatial domain
is large with respect to the characteristic speed of sound in the fluid. Remarkably,
although very large, our physical space is still bounded exactly in the spirit of the
leading idea of this book that the notions of “large” and “small” depend on the
chosen scale.

8.1 Primitive system

Similarly to the previous chapters, our starting point is the full Navier-Stokes-

Fourier system, where the Mach number is proportional to a small parameter
ε, while the remaining characteristic numbers are kept of order unity.

� Scaled Navier-Stokes-Fourier system:

∂t� + divx(�u) = 0, (8.1)

∂t(�u) + divx(�u ⊗ u) +
1
ε2

∇xp = divxS, (8.2)
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∂t(�s) + divx(�su) + divx

(q
ϑ

)
= σ, (8.3)

with

σ ≥ 1
ϑ

(
ε2

S : ∇xu − q · ∇xϑ

ϑ

)
, (8.4)

where the inequality sign in (8.4) is motivated by the existence theory developed in
Chapter 3. The viscous stress tensor S satisfies the standard Newton’s rheological
law

S = S(ϑ,∇xu) = μ(ϑ)
(
∇xu + ∇t

xu − 2
3
divxuI

)
, (8.5)

where we have deliberately omitted the contribution of bulk viscosity, while the
heat flux q obeys Fourier’s law

q = q(ϑ,∇xϑ) = −κ(ϑ)∇xϑ. (8.6)

For the sake of simplicity, we ignore the influence of external forces assumed to be
zero in the present setting.

System (8.1–8.3) is considered on a family of spatial domains {Ωε}ε>0 large
enough in order to eliminate the effect of the boundary on the local behavior of
acoustic waves. Seeing that the speed of sound in (8.1–8.3) is proportional to 1/ε
we shall assume that the family {Ωε}ε>0 has the following property.

� Property (L):

For any x ∈ R3, there is ε0 = ε0(x) such that x ∈ Ωε for all 0 < ε < ε0. Moreover,

εdist[x, ∂Ωε] → ∞ for ε → 0 (8.7)

for any x ∈ R3.

In other words, given a fixed bounded cavity B ⊂ Ωε in the ambient space, the
acoustic waves initiated in B cannot reach the boundary, reflect, and come back
during a finite time interval (0, T ).

Similarly to Chapter 5, we suppose that the initial distribution of the density
and the temperature are close to a spatially homogeneous state, specifically,

�(0, ·) = �0,ε = � + ε�
(1)
0,ε, (8.8)

ϑ(0, ·) = ϑ0,ε = ϑ + εϑ
(1)
0,ε, (8.9)

where �, ϑ are positive constants. In addition, we denote

u(0, ·) = u0,ε. (8.10)
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Problem formulation. We consider a family {�ε,uε, ϑε}ε>0 of (weak) solutions
to problem (8.1–8.6) on a compact time interval [0, T ] emanating from the initial
state satisfying (8.8–8.10). Our main goal formulated in Theorem 8.1 below is to
show that

uε → u in L2((0, T ) × B; R3) for any bounded ball B ⊂ R
3, (8.11)

at least for a suitable subsequence ε → 0, where the limit velocity field complies
with the standard incompressibility constraint

divxu = 0. (8.12)

Thus, in contrast with the case of a bounded domain examined in Chapter 5, we
recover strong (pointwise) convergence of the velocity field regardless of the specific
shape of the domain and the boundary conditions imposed.

The strong convergence of the velocity is a consequence of the dispersive
properties of the acoustic equation – waves of different frequencies move in different
directions – mathematically formulated in terms of Strichartz’s estimates. Here we
use their local variant discovered by Smith and Sogge [184].

As already pointed out, the considerations should be independent of the
behavior of {�ε,uε, ϑε}ε>0 “far away” from the set B, in particular we do not
impose any specific boundary conditions. On the other hand, certain restrictions
have to be made in order to prevent the energy from being “pumped” into the
system at infinity. Specifically, the following hypotheses are required:

(i) The total mass of the fluid contained in Ωε is proportional to |Ωε|, in partic-
ular the average density is constant.

(ii) The system dissipates energy, specifically, the total energy of the fluid con-
tained in Ωε is non-increasing in time.

(iii) The system produces entropy, the total entropy is non-decreasing in time.

The matter in this chapter is organized as follows. Similarly to the preceding
part of this book, our analysis is based on the uniform estimates of the family
{�ε,uε, ϑε}ε>0 resulting from the dissipation inequality deduced in the same way
as in Chapter 5 (see Section 8.2). The time evolution of the velocity field, specifi-
cally its gradient component, is governed by a wave equation (acoustic equation)
discussed in Section 5.4.3 and here revoked in Section 8.3. Since the acoustic
waves propagate with a finite speed proportional to 1/ε, the acoustic equation
may be considered on the whole of physical spaces R

3, where efficient tools based
on Fourier analysis are available (see Section 8.4). In particular, we obtain the
desired conclusion stated in (8.11) (see Section 8.5) and reformulated in a rigorous
way in Theorem 8.1.
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8.2 Uniform estimates

The uniform estimates derived below follow immediately from the general axioms
(i)–(iii) stated in the previous section, combined with the hypothesis of thermody-
namic stability (see (1.44))

∂p(�, ϑ)
∂�

> 0,
∂e(�, ϑ)

∂ϑ
> 0, (8.13)

where e = e(�, ϑ) is the specific internal energy interrelated to p and s through
Gibbs’ equation (1.2). We recall that the first condition in (8.13) asserts that the
compressibility of the fluid is always positive, while the second one says that the
specific heat at constant volume is positive.

Although the estimates deduced below are formally the same as in Chapter 5,
we have to pay special attention to the fact that the volume of the ambient space
expands for ε → 0. In particular, the constants associated to various embedding
relations may depend on ε. A priori, we do not assume that Ωε are bounded, how-
ever, the existence theory developed in Chapter 3 relies essentially on boundedness
of the underlying physical domain.

8.2.1 Estimates based on the hypothesis of
thermodynamic stability

In accordance with assumption (i) in Section 8.1, the total mass of the fluid con-
tained in Ωε is proportional to |Ωε|. This can be formulated as∫

Ωε

(
�ε(t, ·) − �

)
dx = 0 for a.a. t ∈ (0, T ), (8.14)

in particular, we take ∫
Ωε

�
(1)
0,ε dx = 0 (8.15)

in (8.8).
Similarly, by virtue of assumption (ii), the total energy is a non-increasing

function of time, meaning∫
Ωε

[ε2

2
�ε|uε|2(t) + �εe(�ε, ϑε)(t) −

ε2

2
�0,ε|u0,ε|2(0) − �0,εe(�0,ε, ϑ0,ε)

]
dx ≤ 0.

(8.16)
Finally, in accordance with the Second law of thermodynamics expressed

through assumption (ii), the system produces entropy, in particular,∫
Ωε

[
�εs(�ε, ϑε)(t) − �0,εs(�0,ε, ϑ0,ε)

]
dx = σε

[
[0, t] × Ωε

]
(8.17)
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for a.a. t ∈ (0, T ), where the entropy production rate σε is a non-negative measure
satisfying

σε ≥ 1
ϑε

(
ε2

Sε : ∇xuε−
qε · ∇xϑε

ϑε

)
, Sε = S(ϑε,∇xuε), qε = q(ϑε,∇xϑε). (8.18)

As we have observed several times in this book, the previous relations can
be combined to obtain:

� Total Dissipation Inequality:

∫
Ωε

[1
2
�ε|uε|2 +

1
ε2

(
Hϑ(�ε, ϑε) − ∂�Hϑ(�, ϑ)(�ε − �) − Hϑ(�, ϑ)

)]
(t) dx

+
ϑ

ε2
σε

[
[0, t] × Ωε

]
(8.19)

≤
∫

Ωε

[1
2
�0,ε|u0,ε|2 +

1
ε2

(
Hϑ(�0,ε, ϑ0,ε) − ∂�Hϑ(�, ϑ)(�0,ε − �) − Hϑ(�, ϑ)

)]
dx

for a.a. t ∈ [0, T ],

where
Hϑ(�, ϑ) = �e(�, ϑ) − ϑ�s(�, ϑ)

is the Helmholtz function introduced in (2.48). If Ωε are bounded domains and the
problem is supplemented with the boundary conditions (5.15), (5.16) compatible
with the general principles (i)–(iii), validity of (8.19) has been verified in Chapter 5.

Since, by virtue of Gibbs’ relation (1.2),

∂2Hϑ(�, ϑ)
∂�2

=
1
�

∂p(�, ϑ)
∂�

,
∂Hϑ(�, ϑ)

∂ϑ
=

�

ϑ
(ϑ − ϑ)

∂e(�, ϑ)
∂ϑ

,

the hypothesis of thermodynamic stability (8.13) implies that

� → Hϑ(�, ϑ) is strictly convex on (0,∞),

and
ϑ → Hϑ(�, ϑ) is decreasing for ϑ < ϑ and increasing for ϑ > ϑ

(see Section 2.2.3).
At first glance, it may seem incorrect to introduce the integral

∫
Ωε

Hϑ(�, ϑ) dx

in (8.19) as soon as Ωε is unbounded. However, the integrated quantity on the
right-hand side of (8.19) is non-negative and the integral converges provided we
assume, say,

‖�(1)
0,ε‖L1∩L∞(Ωε) + ‖ϑ(1)

0,ε‖L1∩L∞(Ωε) + ‖u0,ε‖L2∩L∞(Ωε;R3) ≤ c, (8.20)

with c independent of ε.
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As a direct consequence of the structural properties of the Helmholtz function
observed in Lemma 5.1, boundedness of the left-hand side of (8.19) gives rise to a
number of useful uniform estimates. Similarly to Section 5.2, we obtain

ess sup
t∈(0,T )

‖√�εuε‖L2(Ωε;R3) ≤ c, (8.21)

ess sup
t∈(0,T )

∥∥∥[�ε − �

ε

]
ess

∥∥∥
L2(Ωε)

≤ c, (8.22)

ess sup
t∈(0,T )

∥∥∥[ϑε − ϑ

ε

]
ess

∥∥∥
L2(Ωε)

≤ c, (8.23)

ess sup
t∈(0,T )

‖ [�εe(�ε, ϑε)]res‖L1(Ωε) ≤ ε2c, (8.24)

and
ess sup

t∈(0,T )

‖ [�εs(�ε, ϑε)]res‖L1(Ωε) ≤ ε2c, (8.25)

where the “essential” and “residual” components have been introduced through
(4.44), (4.45). In addition, we control the measure of the “residual set”, specifically,

ess sup
t∈(0,T )

|Mε
res[t]| ≤ ε2c, (8.26)

where Mε
res[t] ⊂ Ω was introduced in (4.43). Note that estimate (8.26) is par-

ticularly important as it says that the measure of the “residual” set, on which
the density and the temperature are far away from the equilibrium state (�, ϑ), is
small, and, in addition, independent of the measure of the whole set Ωε.

Finally, we deduce
‖σε‖M+([0,T ]×Ωε) ≤ ε2c, (8.27)

therefore, ∫ T

0

∫
Ωε

1
ϑε

Sε : ∇xuε dx dt ≤ c, (8.28)

and ∫ T

0

∫
Ωε

−qε · ∇xϑε

ϑ2
ε

dx dt ≤ ε2c. (8.29)

8.2.2 Estimates based on the specific form of constitutive relations

The uniform bounds obtained in the previous section may be viewed as a conse-
quence of the general physical principles postulated through axioms (i)–(iii) in the
introductory section, combined with the hypothesis of thermodynamic stability
(8.13). In order to convert them to a more convenient language of the standard
function spaces, structural properties of the thermodynamic functions as well as
of the transport coefficients must be specified.
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Motivated by the general hypotheses of the existence theory developed in
Section 3, exactly as in Section 5, we consider the state equation for the pressure
in the form

p(�, ϑ) = pM (�, ϑ)︸ ︷︷ ︸
molecular pressure

+ pR(ϑ)︸ ︷︷ ︸
radiation pressure

, pM = ϑ
5
2 P
( �

ϑ
3
2

)
, pR =

a

3
ϑ4, a > 0,

(8.30)
while the internal energy reads

e(�, ϑ) = eM (�, ϑ) + eR(�, ϑ), eM =
3
2

ϑ
5
2

�
P
( �

ϑ
3
2

)
, eR = a

ϑ4

�
, (8.31)

and, in accordance with Gibbs’ relation (1.2),

s(�, ϑ) = sM (�, ϑ) + sR(�, ϑ), sM (�, ϑ) = S
( �

ϑ
3
2

)
, sR =

4
3
a
ϑ3

�
, (8.32)

where

S′(Z) = −3
2

5
3P (Z) − ZP ′(Z)

Z2
for all Z > 0. (8.33)

The hypothesis of thermodynamic stability (8.13) reformulated in terms of
the structural properties of P requires

P ∈ C1[0,∞) ∩ C2(0,∞), P (0) = 0, P ′(Z) > 0 for all Z ≥ 0, (8.34)

0 <
5
3P (Z) − ZP ′(Z)

Z
≤ sup

z>0

5
3P (z) − zP ′(z)

z
< ∞. (8.35)

Furthermore, it follows from (8.35) that P (Z)/Z5/3 is a decreasing function of Z,
and we assume that

lim
Z→∞

P (Z)
Z

5
3

= p∞ > 0. (8.36)

The transport coefficients μ and κ will be continuously differentiable func-
tions of the temperature ϑ satisfying the growth restrictions{

0 < μ(1 + ϑ) ≤ μ(ϑ) ≤ μ(1 + ϑ),

0 < κ(1 + ϑ3) ≤ κ(ϑ) ≤ κ(1 + ϑ3) for all ϑ ≥ 0,

}
(8.37)

where μ, μ, κ, and κ are positive constants.
Having completed the list of hypotheses on constitutive relations, we observe

that (8.37), together with estimate (8.28), and Newton’s rheological law expressed
in terms of (8.5), give rise to∫ T

0

‖ ∇xuε + ∇t
xuε −

2
3
divxuεI ‖2

L2(Ωε;R3×3) dt ≤ c, (8.38)

with c independent of ε → 0.
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At this stage, we apply Korn’s inequality in the form stated in Proposition 2.1
to r = [�ε]ess, v = uε and use the bounds established in (8.26), (8.38) in order to
conclude that ∫ T

0

‖ uε ‖2
W 1,2(Ω̃ε;R3)

dt ≤ c uniformly for ε → 0, (8.39)

where Ω̃ε ⊂ Ωε denotes the largest ball centered at zero such that

inf
x∈Ω̃ε

dist[x, ∂Ωε] > 2,

specifically,
Ω̃ε = B(0; rε), rε = inf

x∈∂Ωε

|x| − 2.

It is important to observe that the constant c in (8.39) is independent of
the radius of the ball Ω̃ε. This can be seen by writing Ω̃ε as a union of a finite
number of unit cubes with mutually disjoint interiors contained in Ωε and applying
Proposition 2.1 to each of them, separately. It is easy to see that Property (L)

stated in the introductory part, as well as all the uniform estimates established so
far, remain valid if we replace Ωε by Ω̃ε. In general, we cannot expect (8.39) to be
valid on Ωε unless some restrictions are imposed on the boundary ∂Ωε.

In a similar fashion, we can use Fourier’s law (8.6) together with (8.29) to
obtain ∫ T

0

∫
Ωε

κ(ϑε)
ϑ2

ε

|∇xϑε|2 dx dt ≤ ε2c, (8.40)

which, combined with the structural hypotheses (8.37), the uniform bounds es-
tablished in (8.23), (8.26), and the Poincaré inequality stated in Proposition 2.2,
yields∫ T

0

‖ϑε − ϑ‖2
W 1,2(Ω̃ε)

dt +
∫ T

0

‖ log(ϑε) − log(ϑ)‖2
W 1,2(Ω̃ε)

dt ≤ ε2c. (8.41)

Finally, a combination of (8.24), (8.36) yields

ess sup
t∈(0,T )

∫
Ωε

[�ε]5/3
res dx ≤ ε2c. (8.42)

8.3 Acoustic equation

The acoustic equation, introduced in Chapter 4 and thoroughly investigated in
various parts of this book, governs the time evolution of the acoustic waves and
as such represents a key tool for studying the time oscillations of the velocity field
in the incompressible limits for problems endowed with ill-prepared data. It can
be viewed as a linearization of system (8.1–8.3) around the static state {�, 0, ϑ}.
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If {�ε,uε, ϑε}ε>0 satisfy (8.1–8.3) in the weak sense specified in Chapter 1,
we get, exactly as in Section 5.4.3,∫ T

0

∫
Ωε

[
ε
(�ε − �

ε

)
∂tϕ + �εuε · ∇xϕ

]
dx dt = 0 (8.43)

for any test function ϕ ∈ C∞
c ((0, T ) × Ωε);∫ T

0

∫
Ωε

ε�ε

(s(�ε, ϑε) − s(�, ϑ)
ε

)
∂tϕ dx dt (8.44)

=
∫ T

0

∫
Ωε

ε�ε

(s(�, ϑ) − s(�ε, ϑε)
ε

)
uε · ∇xϕ dx dt

+
∫ T

0

∫
Ωε

κ(ϑε)∇xϑε

ϑε
· ∇xϕ dx dt− < σε; ϕ >[M;C]([0,T ]×Ω)

for any test function ϕ ∈ C∞
c ((0, T ) × Ωε); and

∫ T

0

∫
Ωε

[
ε(�εuε) · ∂tϕ +

(p(�ε, ϑε) − p(�, ϑ)
ε

)
divxϕ

]
dx dt (8.45)

=
∫ T

0

∫
Ωε

ε
(
Sε − �εuε ⊗ uε

)
: ∇xϕ dx dt

for any test function ϕ ∈ C∞
c ((0, T ) × Ωε; R3).

Thus, after a simple manipulation, we obtain∫ T

0

∫
Ωε

[
εωrε∂tϕ + ω�εuε · ∇xϕ

]
dx dt (8.46)

= A

∫ T

0

∫
Ωε

ε�ε

(s(�, ϑ) − s(�ε, ϑε)
ε

)
uε · ∇xϕ dx dt

+ A

∫ T

0

∫
Ωε

κ∇xϑε

ϑε
· ∇xϕ dx dt − A 〈σε; ϕ〉[M;C]([0,T ]×Ω)

for all ϕ ∈ C∞
c ((0, T ) × Ωε), and

∫ T

0

∫
Ωε

[
ε(�εuε) · ∂tϕ + ωrεdivxϕ

]
dx dt (8.47)

=
∫ T

0

∫
Ωε

[
ωrε −

(p(�ε, ϑε) − p(�, ϑ)
ε

)]
divxϕ dx dt

+
∫ T

0

∫
Ωε

ε
(
Sε − �εuε ⊗ uε

)
: ∇xϕ dx dt
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for any test function ϕ ∈ C∞
c ((0, T ) × Ωε; R3), where we have set

rε =
�ε − �

ε
+

A

ω
�ε

(s(�ε, ϑε) − s(�, ϑ)
ε

)
, (8.48)

with the constants ω, A determined through

A�
∂s(�, ϑ)

∂ϑ
=

∂p(�, ϑ)
∂ϑ

, ω + A�
∂s(�, ϑ)

∂�
=

∂p(�, ϑ)
∂�

. (8.49)

As a direct consequence of Gibbs’ equation (1.2), we have

∂s

∂�
= − 1

�2

∂p

∂ϑ
,

in particular, ω > 0 as soon as e, p comply with the hypothesis of thermodynamic
stability stated in (8.13).

Finally, exactly as in Section 5.4.7, we introduce the “time lifting” Σε of the
measure σε as

Σε ∈ L∞(0, T ;M+(Ωε)),

〈Σε; ψ〉[L∞(0,T ;M(Ωε));L1(0,T ;C(Ω))] := 〈σε; I[ϕ]〉[M;C]([0,T ]×Ωε) , (8.50)

where

I[ϕ](t, x) =
∫ t

0

ϕ(s, x) ds.

Consequently, system (8.46), (8.47) can be written in a concise form as

� Acoustic Equation:

∫ T

0

∫
Ωε

[
εZε∂tϕ + Vε · ∇xϕ

]
dx dt =

∫ T

0

∫
Ωε

εF1
ε · ∇xϕ dx dt (8.51)

for all ϕ ∈ C∞
c ((0, T ) × Ωε),∫ T

0

∫
Ωε

[
εVε · ∂tϕ + ωZεdivxϕ

]
dx dt =

∫ T

0

∫
Ωε

(
εF

2
ε : ∇xϕ + εF 3

ε divxϕ
)

dx dt

+
A

εω
〈Σε; divxϕ〉[L∞(0,T ;M(Ωε));L1(0,T ;C(Ωε))] (8.52)

for all ϕ ∈ C∞
c ((0, T ) × Ωε; R3),

where we have set

Zε =
�ε − �

ε
+

A

ω
�ε

(s(�ε, ϑε) − s(�, ϑ)
ε

)
+

A

εω
Σε, Vε = �εuε, (8.53)

F1
ε =

A

ω
�ε

(s(�, ϑ) − s(�ε, ϑε)
ε

)
uε +

A

ω

κ∇xϑε

εϑε
, (8.54)

F
2
ε = Sε − �εuε ⊗ uε, (8.55)
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and

F 3
ε = ω

(
�ε − �

ε2

)
+ A�ε

(s(�ε, ϑε) − s(�, ϑ)
ε2

)
−
(p(�ε, ϑε) − p(�, ϑ)

ε2

)
. (8.56)

Here, similarly to Chapter 5, we have identified∫
Ω

Σεϕ dx := 〈Σε; ϕ〉[M;C](Ω) .

8.4 Regularization and extension to R
3

The acoustic equation (8.51), (8.52) provides a suitable platform for studying the
time evolution of the velocity field. Since our ultimate goal is to establish the
pointwise convergence of the family {uε}ε>0, and since the latter is bounded in
the space L2(0, T ; W 1,2(Ω̃ε; R3)), where the Sobolev space W 1,2(Ω̃ε) is compactly
embedded into L2(B; R3) for any fixed ball B ⊂ R

3, it is enough to control only
the oscillations with respect to time. Consequently, in order to facilitate the future
analysis, we regularize equations (8.51), (8.52) in the x-variable and extend them
to the whole physical space R

3. By virtue of Property (L), any solution of the
extended system will coincide with the original one on any compact B as the speed
of sound is proportional to 1/ε. Moreover, since Ω̃ε satisfies Property (L) and
all uniform bounds established in the previous part hold on Ω̃ε, we can assume
that Ωε = Ω̃ε.

8.4.1 Uniform estimates

To begin, we establish uniform bounds for all terms appearing on the right-hand
side of the acoustic equation (8.51), (8.52).

Writing

�ε

(s(�,ϑ)−s(�ε,ϑε)
ε

)
=[�ε]ess

(s(�,ϑ)−s(�ε,ϑε)
ε

)
+[�ε]res

(s(�,ϑ)−s(�ε,ϑε)
ε

)
,

we can use the uniform estimates (8.22), (8.23) in order to obtain

ess sup
t∈(0,T )

∥∥∥[�ε]ess
(s(�, ϑ) − s(�ε, ϑε)

ε

)∥∥∥
L2(Ωε)

≤ c. (8.57)

Furthermore, estimate (8.57) combined with (8.39) yields∫ T

0

∥∥∥[�ε]ess
(s(�, ϑ) − s(�ε, ϑε)

ε

)
uε

∥∥∥2

L1(Ωε;R3)
≤ c, (8.58)

where both (8.57) and (8.58) are uniform for ε → 0.
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On the other hand, in accordance with (8.25), (8.26), and (8.42),

ess sup
t∈(0,T )

∥∥∥[�ε]res
(s(�, ϑ) − s(�ε, ϑε)

ε

)∥∥∥
L1(Ωε)

≤ εc. (8.59)

Now, it follows from the structural hypotheses (8.33–8.35) that

|�sM (�, ϑ)| ≤ c(1 + �| log(�)| + �| log(ϑ)|) for all positive �, ϑ.

We deduce from (8.26), (8.42) that

ess sup
t∈(0,T )

∥∥∥ [�ε]res| log(�ε)|
ε

∥∥∥
L6/5(Ωε)

≤ c, (8.60)

which, together with (8.21), gives rise to the uniform bound

ess sup
t∈(0,T )

∥∥∥ [�ε]res| log(�ε)|
ε

uε

∥∥∥2
L1(Ωε)

dt ≤ c. (8.61)

We can write∣∣∣ [�ε]res| log(ϑε)|uε

ε

∣∣∣ ≤√[�ε]res
| log(ϑε) − log(ϑ)|

ε

√
[�ε]res |uε|+

[�ε]res
ε

|uε| | log(ϑ)|

and use the uniform estimates (8.21), (8.26), (8.41), and (8.42) in order to obtain∫ T

0

∥∥∥ [�ε]res| log(ϑε)|
ε

uε

∥∥∥2
L1(Ωε)

dt ≤ c. (8.62)

Note that, as Ωε = Ω̃ε is a ball of radius tending to infinity for ε → 0, we have

‖v‖L6(Ωε) ≤ c‖v‖W 1,2(Ωε), (8.63)

with c independent of ε. Thus we conclude∫ T

0

∥∥∥[�ε]res
(sM (�, ϑ) − sM (�ε, ϑε)

ε

)
uε

∥∥∥2
L1(Ωε;R3)

≤ c. (8.64)

As the contribution of the radiation energy in (8.24) gives rise to a bound

ess sup
t∈(0,T )

∫
Ωε

[ϑε]4res dx ≤ ε2c, (8.65)

it is easy to check that (8.64) holds also for the radiation component �εsR(�ε, ϑε) ≈
ϑ3

ε; whence we infer∫ T

0

∥∥∥[�ε]res
(s(�, ϑ) − s(�ε, ϑε)

ε

)
uε

∥∥∥2
L1(Ωε;R3)

≤ c. (8.66)
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Furthermore, using estimates (8.39), (8.40) we get∫ T

0

(
‖ [ Sε]ess‖2

L2(Ωε;R3×3) +
∥∥∥ [κ(ϑε)]ess

∇xϑε

εϑε

∥∥∥2
L2(Ωε;R3)

)
dt ≤ c. (8.67)

Finally, estimate (8.65) can be used in combination with (8.28), (8.40) in
order to conclude that∫ T

0

(
‖ [ Sε]res‖2

L2(Ωε;R3×3) +
∥∥∥ [κ(ϑε)]res

∇xϑε

εϑε

∥∥∥2

L1(Ωε;R3)

)
dt ≤ c. (8.68)

As a matter of fact, it can be shown that the presence of the radiation terms is
not necessary provided we content ourselves with a weaker bound∫ T

0

(
‖ [ Sε]res‖L2(Ωε;R3×3) +

∥∥∥ [κ(ϑε)]res
∇xϑε

εϑε

∥∥∥
L1(Ωε;R3)

)
dt ≤ c.

The above estimates allow us to establish uniform bounds on all quantities
appearing in the acoustic equation (8.51), (8.52). To begin, it follows from (8.22),
(8.26), (8.27), (8.57), and (8.59) that

Zε = Z1
ε + Z2

ε + Z3
ε , (8.69)

with ⎧⎪⎪⎨
⎪⎪⎩

{Z1
ε}ε>0 bounded in L∞(0, T ; L2(Ωε)),

{Z2
ε}ε>0 bounded in L∞(0, T ; L1(Ωε)),

{Z3
ε}ε>0 bounded in L∞(0, T ;M+(Ωε)).

⎫⎪⎪⎬
⎪⎪⎭ (8.70)

Similarly, using (8.21), (8.26) together with (8.42), we obtain

Vε = V1
ε + V2

ε, (8.71)

where {
{V1

ε}ε>0 is bounded in L∞(0, T ; L2(Ωε; R3)),

{V2
ε}ε>0 is bounded in L∞(0, T ; L1(Ωε; R3)).

}
(8.72)

Furthermore, in accordance with (8.58), (8.66–8.68),

F1
ε = F1,1

ε + F1,2
ε , (8.73)

with {
{F1,1

ε }ε>0 bounded in L2(0, T ; L2(Ωε; R3)),

{F1,2
ε }ε>0 bounded in L2(0, T ; L1(Ωε; R3)).

}
(8.74)

By the same token, estimate (8.68) yields

F
2
ε = F

2,1
ε + F

2,2
ε , (8.75)
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where {
{F2,1

ε }ε>0 is bounded in L2(0, T ; L2(Ωε; R3×3)),

{F2,2
ε }ε>0 is bounded in L2(0, T ; L1(Ωε; R3×3)).

}
(8.76)

Finally, by virtue of our choice of the parameters A, B in (8.49), we conclude,
with the help of (8.22–8.27), that

F 3
ε = F 3,1

ε + F 3,2
ε , (8.77)

with {
{F 3,1

ε }ε>0 bounded in L∞(0, T ; L1(Ωε)),

{F 3,2
ε }ε>0 bounded in L∞(0, T ;M+(Ωε)).

}
(8.78)

8.4.2 Regularization

Since the acoustic equation is considered on “large” domains, a suitable regular-
ization is provided by a spatial convolution with a family of regularizing kernels
{ζδ}δ>0, namely

[v]δ(t, x) =
∫

R3
ζδ(x − y)v(t, y) dy,

where the kernels ζδ are specified in Section 10.1 in Appendix.
To begin, in view of (8.39), we can suppose that

uε → u weakly in L2(0, T ; W 1,2(B; R3)) (8.79)

for any bounded domain B ⊂ R3. Moreover, in view of the uniform bounds (8.22),
(8.42), we can pass to the limit in the continuity equation (8.1) to observe that

divxu = 0.

Now, we claim that the desired relation (8.11) follows as soon as we are able to
show {

[�εuε]δ → �[u]δ in L2((0, T ) × B; R3) as ε → 0

for any bounded domain B ⊂ R3, and any fixed δ > 0.

}
(8.80)

Indeed relation (8.80), together with the uniform bounds (8.22), (8.39), and
(8.42), imply that

[� uε]δ = ε[
� − �ε

ε
uε]δ + [�εuε]δ → �[u]δ,

meaning

[uε]δ → [u]δ in L2((0, T )× B; R3) for any bounded B ⊂ R
3.
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On the other hand,

v(x) − [v]δ(x) =
∫

R3

v(x) − v(x − y)
|y| ζδ(y)|y| dy, (8.81)

where, by virtue of the standard property of functions in W 1,2 known as Lagrange’s
formula,∥∥∥∥v(·) − v(· − y)

|y|

∥∥∥∥
L2(B;R3)

≤ c‖v‖W 1,2(Ωε;R3) for any v ∈ W 1,2(Ωε; R3) for y �= 0.

Consequently, taking v = uε in (8.81) and applying Young’s inequality, we obtain

‖uε(t, ·) − [uε(t, ·)]δ‖L2(B;R3) ≤ δc‖uε(t, ·)‖W 1,2(Ωε;R3) for a.a. t ∈ (0, T ).

Thus, in view of the uniform bound (8.39), we conclude that (8.80) implies (8.11).
The time evolution of the quantities [�εuε]δ is governed by a system of equa-

tions obtained by means of regularization of (8.51), (8.52). Taking the quantities
ϕ(t, y) = ψ(t)ζδ(x − y) as test functions in (8.51), (8.52), we obtain the following
system of equations:

� Regularized Acoustic Equation, I:

ε∂t[Zε]δ + divx[Vε]δ = εdivxGε,δ, (8.82)

ε∂t[Vε]δ + ω∇x[Zε]δ = εdivxHε,δ (8.83)

for a.a. t ∈ (0, T ), x ∈ Ωε,δ,

where

Ωε,δ = {x ∈ Ωε | dist[x, ∂Ωε]} > δ.

In accordance with the uniform estimates established in Section 8.4.1, we
have

{Gε,δ}ε>0 bounded in L2(0, T ; W k,2(Ωε,δ; R3)), (8.84)

{Hε,δ}ε>0 bounded in L2(0, T ; W k,2(Ωε,δ; R3×3)), (8.85)

{[Zε]δ}ε>0 bounded in C([0, T ]; W k,2(Ωε,δ)), (8.86)

and

[Vε]δ = [�εuε]δ, {[Vε]δ}ε>0 bounded in C([0, T ]; W k,2(Ωε,δ; R3)), (8.87)

for any k = 0, 1, . . . , where we have used the standard properties of the smoothing
operators collected in Theorem 10.1 in Appendix. All estimates depend on k, “blow
up” if the parameter δ approaches zero, but are uniform for ε → 0. Note that
such a procedure cannot improve the spatial decay of the regularized quantities
determined by the “worst” space in (8.74–8.78), namely L2.
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8.4.3 Extension to the whole space R
3

The acoustic equation (8.82), (8.83) enjoys the property of finite speed of propa-
gation that is equal to

√
ω/ε. In other words, if Zi = [Zε]δ, Vi = [Vε]δ, i = 1, 2,

satisfy (8.82), (8.83) for Gε,δ = Gi, Hε,δ = Hi, respectively, and if

Z1(0, ·) = Z2(0, ·), V1(0, ·) = V2(0, ·)
in BT

√
ω/ε = {x ∈ R3, dist[x, B] < T

√
ω/ε},

G1 = G2, H1 = H2 a.a. in (0, T )× BT
√

ω/ε,

for some ball B ⊂ R3, then

Z1 = Z2, V1 = V2 in [0, T ]× B.

Indeed the functions Z = Z1−Z2, V = V1−V2 satisfy the homogeneous equation

∂tZ +
1
ε
divxV = 0, ∂tV +

ω

ε
∇xZ = 0 in (0, T )× BT

√
ω/ε,

supplemented with the initial data

Z(0, ·) = 0, V(0, ·) = 0 in BT
√

ω/ε.

In particular,

∂t

(
ωZ2 + |V|2

)
+

2ω

ε
divx(ZV) = 0 in (0, T )× BT

√
ω/ε; (8.88)

whence we get the desired result

Z(τ, ·) = 0, V(τ, ·) = 0 in B for any τ ∈ [0, T ]

integrating (8.88) over the cone{
(t, x)

∣∣∣ t ∈ (0, τ), x ∈ BT
√

ω/ε, dist[x, ∂BT
√

ω/ε] > t
√

ω/ε
}
.

In view of this observation and Property (L), the functions Gε,δ, Hε,δ ap-
pearing in the acoustic equation (8.82), (8.83) as well as the initial values [Zε]δ(0, ·),
[Vε]δ(0, ·) can be extended outside Ωε in such a way that

[�εuε]δ = Vε,δ in [0, T ]× B, (8.89)

where Zε,δ, Vε,δ represent the unique solution of the problem:
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� Regularized Acoustic Equation, II:

ε∂tZε,δ + divxVε,δ = εdivxGε,δ, (8.90)
ε∂tVε,δ + ω∇xZε,δ = εdivxHε,δ, (8.91)

for a.a. t ∈ (0, T ), x ∈ R3, supplemented with the initial conditions

Zε,δ(0, ·) = Z0,ε,δ, Vε,δ = V0,ε,δ. (8.92)

In accordance with hypothesis (8.20) on integrability of the initial data, re-
lation (8.53), and the uniform estimates (8.84), (8.85), we may assume that

{Z0,ε,δ}ε>0 is bounded in W k,1(R3), (8.93)

{V0,ε,δ}ε>0 is bounded in W k,1(R3; R3), (8.94)

{Gε,δ}ε>0 is bounded in L2(0, T ; W k,2(R3; R3)), (8.95)
and

{Hε,δ}ε>0 is bounded in L2(0, T ; W k,2(R3; R3)) (8.96)

for any k = 0, 1, . . . , and any fixed δ > 0. Let us point out again that the previous
estimates depend on k and δ but are independent of ε → 0.

Moreover, without loss of generality, we may suppose that all functions are
compactly supported, and, in addition,∫

R3
Z0,ε,δ dx = 0. (8.97)

8.5 Dispersive estimates and time decay

of the acoustic waves

In view of relations (8.80), (8.89), the proof of strong convergence of the velocities
claimed in (8.11) reduces to showing

Vε,δ → Vδ strongly in L2((0, T ) × B; R3) as ε → 0 for any fixed δ > 0, (8.98)

where Vε,δ solves the acoustic equation (8.90), (8.91), and, in view of (8.79),

Vδ|(0,T )×B = �[u]δ|(0,T )×B.

Since δ > 0 is fixed, we drop the subscript δ in what follows.
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Compactness of the solenoidal component. To begin, observe that∫
R3

Zε(t, ·) dx = 0 (8.99)

as a direct consequence of (8.90), (8.97).
Analogously as in Chapter 5, we introduce the Helmholtz decomposition in

the form
v = H[v] + H⊥[v],

where H⊥ ≈ ∇xΔ−1
x divx can be determined in terms of the Fourier symbols as

H⊥[v] = F−1
ξ→x

[ξ ⊗ ξ

|ξ|2 Fx→ξ[v]
]
,

where F denotes the Fourier transform in the x-variable.
Applying H to equation (8.91) we immediately see that

{∂t (H[Vε])}ε>0 is bounded in L2(0, T ; W k,2(R3; R3)), (8.100)

in particular, given the regularity of the initial data stated in (8.93), (8.94), we
can assume

H[Vε] → V in L2((0, T )× B; R3) (8.101)

for a certain (solenoidal) vector field V ∈ L2((0, T )×B; R3). Note that, as a direct
consequence of the embedding relation Wn,3(R3) ↪→ L∞(R3) for n > 3, we have
Wm,1(R3) ↪→ W k,2(R3) as soon as m > k + 3.

A wave equation for the gradient component. In view of (8.101), the proof of
(8.98) reduces to showing strong convergence for the gradient components H⊥[Vε].
In accordance with (8.99), the acoustic equation (8.90), (8.91) gives rise to

� Linear Wave Equation:

ε∂tzε − ΔΨε = εgε, (8.102)
ε∂tΨε − ωzε = εhε, (8.103)

with the initial condition

zε(0, ·) = z0,ε, Ψε(0, ·) = Ψ0,ε, (8.104)

where we have introduced

zε = −Zε, Ψε = Δ−1
x divx[Vε], ∇xΨε = H⊥[Vε].

In accordance with (8.90–8.97), we have

{z0,ε}ε>0 bounded in W k,1(R3), {Ψ0,ε}ε>0 bounded in W k,2(R3), (8.105)
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together with

{gε}ε>0, {hε}ε>0 bounded in L2(0, T ; W k,2(R3)). (8.106)

Moreover, ∫
R3

gε dx =
∫

R3
hε dx = 0. (8.107)

Here, we have used the fact that

ε∂t∇xΨε − ω∇xzε = ε∇xhε

implies (8.103) since the quantities ∂tΨε, zε, hε belong to L2((0, T ) × R3).
Note that, in contrast with ∇xΨ0,ε belonging to the class (8.94), the potential

Ψ0,ε may not belong to the space L1(R3).

Dispersive estimates and decay for the wave equation. In accordance with
(8.101), we have to verify strong convergence of the potential Ψε on the set
(0, T )× B. In fact, we show that

∇xΨε → 0 in L2((0, T ) × B; R3), (8.108)

which, in particular, completes the proof of (8.11). To this end, we invoke the
dispersive estimates available for the linear wave equation (8.102), (8.103).

To begin, we express solutions of the evolutionary problem (8.102–8.104) by
means of Duhamel’s formula[

zε

Ψε

]
(t) = S

( t

ε

)[
z0,ε

Ψ0,ε

]
+
∫ t

0

S
( t − s

ε

)[
gε(s)
hε(s)

]
ds, (8.109)

where

S(t)
[

z0

Ψ0

]
=
[

z(t)
Ψ(t)

]
(8.110)

is the unique solution of the homogeneous problem

∂tz − ΔΨ = 0, ∂tΨ − ωz = 0, z(0) = z0, Ψ(0) = Ψ0. (8.111)

The spatial Fourier transform is an exceptionally well-suited tool in order to
deal with solutions of the homogeneous wave equation (8.111). More specifically,
we have

z(t, x) = exp(i
√
−ωΔxt)

[
1
2

(
i√
ω

√
−Δx[Ψ0] + z0

)]
(8.112)

+ exp(−i
√
−ωΔxt)

[
1
2

(
− i√

ω

√
−Δx[Ψ0] + z0

)]
,

Ψ(t, x) = exp(i
√
−ωΔxt)

[
1
2

(
Ψ0 − i

√
ω√

−Δx

[z0]
)]

(8.113)

+ exp(−i
√
−ωΔxt)

[
1
2

(
Ψ0 + i

√
ω√

−Δx

[z0]
)]

,
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or, in terms of the spatial Fourier transform,

Fx→ξ[z](t, ξ) =
1
2

(
i√
ω
|ξ|Fx→ξ[Ψ0](ξ) + Fx→ξ[z0](ξ)

)
exp
(
i
√

ω|ξ|t
)

+
1
2

(
− i√

ω
|ξ|Fx→ξ[Ψ0](ξ) + Fx→ξ[z0](ξ)

)
exp
(
− i

√
ω|ξ|t

)
,

Fx→ξ[Ψ](t, ξ) =
1
2

(
Fx→ξ[Ψ0](ξ) − i

√
ω

|ξ| |Fx→ξ[z0](ξ)
)

exp
(
i
√

ω|ξ|t
)

+
1
2

(
Fx→ξ[Ψ0](ξ) + i

√
ω

|ξ| |Fx→ξ[z0](ξ)
)

exp
(
− i

√
ω|ξ|t

)
.

At this stage, it is convenient to introduce the scale of homogeneous Sobolev
spaces Hα(R3),

Hα(R3) =
{

v ∈ S′(R3)
∣∣∣ ‖v‖Hα

= ‖(−ωΔx)α/2v‖L2(R3) ≡
∫

R3
ωα|ξ|2α|Fx→ξ[v](ξ)|2 dξ < ∞

}
, α ∈ R,

where the symbol S′(R3) denotes the Schwartz space of tempered distributions
on R3.

Using formulas (8.112), (8.113) we recover the standard energy equality for
the homogeneous wave equation (8.110), namely

‖Φ(t, ·)‖2
Hα+1(R3) + ‖z(t, ·)‖2

Hα(R3) = ‖Φ0‖2
Hα+1(R3) + ‖z0‖2

Hα(R3) for all t ∈ R

(8.114)
whenever the right-hand side is finite.

The following result is the key tool for proving (8.108) (cf. Smith and Sogge
[184, Lemma 2.2]).

Lemma 8.1. Let B ⊂ R
3 be a bounded ball.

Then ∫ ∞

−∞

∥∥∥exp
(
i
√
−ωΔxt

)
[v]
∥∥∥2

L2(B)
dt ≤ cB‖v‖2

L2(R3) (8.115)

for any v ∈ L2(R3).

Proof. It is enough to show (8.115) for a smooth function v. Take a non-negative
function ϕ ∈ C∞

c (R3) such that ϕ|B ≡ 1. It is easy to see that∫ ∞

−∞

∥∥∥exp
(
i
√
−ωΔxt

)
[v]
∥∥∥2

L2(B)
dt ≤

∫
R4

∣∣∣ϕ exp
(
i
√
−ωΔxt

)
[v]
∣∣∣2 dx dt.
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Denoting by
ŵ = Fx→ξ[w]

the space Fourier transform, we can compute

F(t,x)→(τ,ξ)

[
ϕ exp

(
i
√
−ωΔxt

)
[v]
]

=
1√
2π

∫
R3

ϕ̂(ξ − η)δ(τ −
√

ω|η|)v̂(η) dη

=
1√
2π

∫
{τ=

√
ω|η|}

ϕ̂(ξ − η)v̂(η) dSη,

where δ is the Dirac distribution at zero and F(t,x)→(τ,ξ) denotes the time-space
Fourier transform. In particular, by virtue of Plancherel’s identity,∫

R4

∣∣∣ϕ exp
(
i
√

−ωΔxt
)

[v]
∣∣∣2 dx dt

=
∫ ∞

−∞

∫
R3

∣∣∣∣∣
∫
{τ=

√
ω|η|}

ϕ̂(ξ − η)v̂(η) dSη

∣∣∣∣∣
2

dξ dτ.

Furthermore, using the Cauchy-Schwartz inequality in the variable η we get∣∣∣∣∣
∫
{τ=

√
ω|η|}

ϕ̂(ξ − η)v̂(η) dSη

∣∣∣∣∣
2

≤
∫
{τ=

√
ω|η|}

|ϕ̂(ξ − η)| dSη

∫
{τ=

√
ω|η|}

|ϕ(ξ − η)| |v̂(η)|2 dSη,

where we exploit the fact that ϕ ∈ C∞
c (R3) in order to observe that

sup
τ∈R, ξ∈R3

{∫
{τ=

√
ω|η|}

|ϕ̂(ξ − η)| dSη

}
≤ c1(ϕ).

Consequently,

∫ ∞

−∞

∫
R3

∣∣∣∣∣
∫
{τ=

√
ω|η|}

ϕ̂(ξ − η)v̂(η) dSη

∣∣∣∣∣
2

dξ dτ

≤ c1(ϕ)
∫ ∞

−∞

∫
R3

∫
{τ=

√
ω|η|}

|ϕ̂(ξ − η)||v̂(η)|2 dSη dξ dτ

= c1(ϕ)
∫

R3

∫
R3

|ϕ̂(ξ − η)||v̂(η)|2 dη dξ

≤ c2(ϕ)
∫

R3
|v̂(η)|2 dη = c2(ϕ)‖v‖2

L2(R3). �



282 Chapter 8. Problems on Large Domains

Using the explicit formulas (8.112), (8.113), together with Lemma 8.1, we
deduce ∫ ∞

−∞

∥∥∥∥ S(t)
[

z0

Ψ0

]∥∥∥∥2
E(B)

dt ≤ c

∥∥∥∥
[

z0

Ψ0

]∥∥∥∥2

H0(R3)×H1(R3)

, (8.116)

where we have introduced the semi-norm∥∥∥∥
[

z
Ψ

]∥∥∥∥2
E(B)

= ‖z‖2
L2(B) + ‖∇xΨ‖2

L2(B;R3).

Rescaling (8.116) in t we get∫ ∞

−∞

∥∥∥∥S( t

ε

) [ z0,ε

Ψ0,ε

]∥∥∥∥2
E(B)

dt ≤ εc

∥∥∥∥
[

z0,ε

Ψ0,ε

]∥∥∥∥2
H0(R3)×H1(R3)

. (8.117)

Finally, by the same token,∫ T

0

∥∥∥∥
∫ t

0

S
( t − s

ε

) [
gε(s)
hε(s)

]
ds

∥∥∥∥2
E(B)

dt (8.118)

≤ c(T )
∫ T

0

∫ ∞

−∞

∥∥∥∥S( t

ε

)
S
(−s

ε

) [
gε(s)
hε(s)

]∥∥∥∥2
E(B)

dt ds

≤ εc(T )
∫ T

0

∥∥∥∥S(−s

ε

) [
gε(s)
hε(s)

]∥∥∥∥2
H0(R3)×H1(R3)

ds

= εc(T )
∫ T

0

∥∥∥∥
[

gε(s)
hε(s)

]∥∥∥∥2
H0(R3)×H1(R3)

ds,

where we have used the fact that (S(t))t∈R is a group of isometries on the energy
space H0(R3) × H1(R3).

Revoking formula (8.109), we can use (8.117), (8.118), together with the
uniform estimates (8.105), (8.106) in order to obtain the desired relation (8.108).

8.6 Conclusion – main result

The main result of this chapter can be stated in the following form.

� Local Decay of Acoustic Waves:

Theorem 8.1. Let {Ωε}ε>0 be a family of domains in R3 having Property (L).
Assume that the thermodynamic functions p, e, s as well as the transport coef-
ficients μ, κ satisfy the structural hypotheses (8.30–8.37). Let {�ε,uε, ϑε}ε>0 be
a solution of the Navier-Stokes-Fourier system (8.1–8.6) in D′((0, T ) × Ωε)
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satisfying (8.14–8.18), where the initial data (8.8), (8.9), (8.10) satisfy hypothesis
(8.20).

Then, at least for a suitable subsequence, we have

uε → u in L2((0, T ) × B; R3) for any bounded ball B ⊂ R
3,

where divxu = 0.

The presence of the radiation terms in the system is not necessary. The same
result can be obtained if a = 0 in (8.30). Moreover, exactly as in Chapter 5, we can
show that the solutions {�ε,uε, ϑε}ε>0 of the complete Navier-Stokes-Fourier

system tend to the corresponding solution of the Oberbeck-Boussinesq sys-

tem (locally in space) as ε → 0. The details are left to the reader.



Chapter 9

Acoustic Analogies

We interpret our previous results on the singular limits of the Navier-Stokes-

Fourier system in terms of the acoustic analogies discussed briefly in Chapters
4, 5. Let us recall that an acoustic analogy is represented by a non-homogeneous
wave equation supplemented with source terms obtained simply by regrouping
the original (primitive) system. In the low Mach number regime, the source terms
may be evaluated on the basis of the limit (incompressible) system. This is the
principal idea of the so-called hybrid method used in numerical analysis. Our goal
is to discuss the advantages as well as limitations of this approach in light of the
exact mathematical results obtained so far.

As a model problem, we revoke the situation examined in Chapter 5, where
the fluid is driven by an external force f of moderate strength in comparison with
the characteristic frequency of the acoustic waves. More precisely, we consider a
family of weak solutions {�ε,uε, ϑε}ε>0 to the Navier-Stokes-Fourier system:

∂t�ε + divx(�εuε) = 0, (9.1)

∂t(�εuε) + divx(�εuε ⊗ uε) +
1
ε2

∇xp(�ε, ϑε) = divxSε + �εf , (9.2)

∂t(�εs(�ε, ϑε)) + divx(�εs(�ε, ϑε)uε) + divx

(
qε

ϑε

)
= σε, (9.3)

d
dt

∫
Ω

(
ε2

2
�ε|uε|2 + �εe(�ε, ϑε)

)
dx = ε2

∫
Ω

�εf · uε dx, (9.4)

where the thermodynamic functions p, e, and s satisfy hypotheses (5.17–5.23)
specified in Section 5.1.

In addition , we suppose that

Sε = μ(ϑε)
(
∇xuε + ∇T

x uε −
2
3
divxuε I

)
, (9.5)

qε = −κ(ϑε)∇xϑε, (9.6)
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and, in agreement with our concept of weak solutions,

σε ≥ 1
ϑε

(
ε2

Sε : ∇xuε −
qε · ∇xϑε

ϑε

)
, (9.7)

where the transport coefficients μ, κ obey (5.24), (5.25).
Exactly as in Chapter 5, the problem is posed on a regular bounded spatial

domain Ω ⊂ R
3, and supplemented with the conservative boundary conditions

uε · n|∂Ω = 0, Sεn × n|∂Ω = 0, qε · n|∂Ω = 0. (9.8)

The initial data are taken in the form⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�ε(0, ·) = � + ε�
(1)
0,ε + ε2�

(2)
0,ε,

uε(0, ·) = u0,ε + εu(1)
0,ε,

ϑε(0, ·) = ϑ + εϑ
(1)
0,ε + ε2ϑ

(2)
0,ε,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (9.9)

where � > 0, ϑ > 0 are constant, and∫
Ω

�
(j)
0,ε dx =

∫
Ω

ϑ
(j)
0,ε dx = 0 for j = 1, 2, and ε > 0. (9.10)

9.1 Asymptotic analysis and the limit system

In accordance with the arguments set forth in Chapter 5, the limit problem can
be identified exactly as in Theorem 5.2. Assuming that

f is a function belonging to L∞((0, T ) × Ω; R3), (9.11)⎧⎨
⎩ {�(2)

0,ε}ε>0, {ϑ(2)
0,ε}ε>0 are bounded in L∞(Ω),

{u(1)
0,ε}ε>0 is bounded in L∞(Ω; R3),

⎫⎬
⎭ (9.12)

and ⎧⎪⎪⎨
⎪⎪⎩

�
(1)
0,ε → �

(1)
0 weakly-(*) in L∞(Ω)

u0,ε → U0 weakly in L∞(Ω; R3),

ϑ
(1)
0,ε → ϑ

(1)
0 weakly-(*) in L∞(Ω),

⎫⎪⎪⎬
⎪⎪⎭ (9.13)

we have that, at least for a suitable subsequence,

�ε − �

ε
:= �(1)

ε → �(1) weakly-(*) in L∞(0, T ; L5/3(Ω)), (9.14)

uε → U weakly in L2(0, T ; W 1,2(Ω; R3)), (9.15)

ϑε − ϑ

ε
:= ϑ(1)

ε → Θ weakly in L2(0, T ; W 1,2(Ω)), (9.16)
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where U, Θ solve the target problem in the form

divxU = 0, (9.17)

�
(
∂tU + divx(U ⊗ U)

)
+ ∇xΠ = divx

(
μ(ϑ)(∇xU + ∇T

x U)
)

+ �f , (9.18)

�cp(�, ϑ)
(
∂tΘ + U∇xΘ

)
− divx

(
κ(ϑ)∇xΘ

)
= 0, (9.19)

with the boundary conditions

U · n|∂Ω = 0, (∇xU + ∇T
x U)n × n|∂Ω = 0, ∇xΘ · n = 0, (9.20)

and the initial data

U(0, ·) = H[U0], Θ(0, ·) =
ϑ

cp(�, ϑ)

(∂s(�, ϑ)
∂�

�
(1)
0 +

∂s(�, ϑ)
∂ϑ

ϑ
(1)
0

)
. (9.21)

Moreover, by virtue of (5.103),

∂p(�, ϑ)
∂�

�(1) +
∂p(�, ϑ)

∂ϑ
Θ = 0. (9.22)

The proof is precisely like that of Theorem 5.2, except that we have to deal
with a bounded driving term f in place of a singular one 1

ε∇xF . Accordingly,
the fluid part represented by the incompressible Navier-Stokes system (9.17),
(9.18) is completely independent of the limit temperature field Θ. The reader can
consult the corresponding parts of Chapter 5 for the weak formulation of both the
primitive and the target system as well as for all details concerning the proof. We
recall that the specific heat at constant pressure cp is related to �, ϑ by (4.17).

9.2 Acoustic equation revisited

The primitive system (9.1–9.3) can be written in the form of a linear wave equation
derived in Section 5.4.3, namely

� Scaled Acoustic Equation:

∫ T

0

∫
Ω

(
εrε∂tϕ + Vε · ∇xϕ

)
dx dt (9.23)

= ε
A

ω

(∫ T

0

∫
Ω

s1
ε · ∇xϕ dx dt − 1

ε
〈σε; ϕ〉[M;C]([0,T ]×Ω)

)

for any ϕ ∈ C∞
c ((0, T ) × Ω),



288 Chapter 9. Acoustic Analogies

∫ T

0

∫
Ω

(
εVε · ∂tϕ + ωrεdivxϕ

)
dx dt (9.24)

= ε

∫ T

0

∫
Ω

(
s2ε : ∇xϕ + s3

ε · ϕ + s4
εdivxϕ

)
dx dt

for any ϕ ∈ C∞
c ((0, T ) × Ω; R3), ϕ · n|∂Ω = 0,

where A, ω > 0 are constants given by (5.126), and the source terms s1
ε, s2ε, s3

ε, s4
ε

have been identified as follows:

s1
ε =

κ(ϑε)
ϑε

(
∇x

ϑε

ε

)
+ �ε

(
s(�ε, ϑε) − s(�, ϑ)

ε

)
uε, (9.25)

s2ε = Sε − �εuε ⊗ uε, (9.26)

s3
ε = −�εf , (9.27)

s4
ε =

1
ε

(
p(�, ϑ) − p(�ε, ϑε)

ε
+ A�ε

s(�ε, ϑε) − s(�, ϑ)
ε

+ ω
�ε − �

ε

)
. (9.28)

In addition, we have

rε =
1
ω

(
ω

�ε − �

ε
+ A�ε

s(�ε, ϑε) − s(�, ϑ)
ε

)
, Vε = �εuε. (9.29)

In accordance with the uniform bounds established in Section 5.3, specifically
(5.44), (5.69), (5.70), and (5.77), we have

rε = [rε]ess + [rε]res,

with
{[rε]ess}ε>0 bounded in L∞(0, T ; L2(Ω)), (9.30)

and
[rε]res → 0 in L∞(0, T ; L1(Ω)). (9.31)

Similarly, by virtue of (5.41), (5.45), and (5.48),

Vε = [Vε]ess + [Vε]res,

where
{[Vε]ess}ε>0 is bounded in L∞(0, T ; L2(Ω; R3)), (9.32)

while
[Vε]res → 0 in L∞(0, T ; L1(Ω; R3)). (9.33)

Finally,⎧⎪⎪⎨
⎪⎪⎩

{s1
ε}ε>0, {s3

ε}ε>0 are bounded in Lq(0, T ; L1(Ω; R3)),

{s2
ε}ε>0 is bounded in Lq(0, T ; L1(Ω; R3×3)),

{s4
ε}ε>0 is bounded in Lq(0, T ; L1(Ω))

⎫⎪⎪⎬
⎪⎪⎭ (9.34)
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for a certain q > 1, and
‖σε‖M+([0,T ]×Ω) ≤ ε2c (9.35)

as stated in (5.135), (5.136). It is worth noting that these bounds are optimal, in
particular, compactness of the source terms in the afore-mentioned spaces is not
expected. This fact is intimately related to the time oscillations of solutions to the
acoustic equation.

We conclude this part by introducing a “lifted” measure, namely Σε ∈
L∞(0, T ;M+(Ω)),

〈Σε; ϕ〉[L∞(0,T ;M;L1(0,T ;C(Ω))] = 〈σε; I[ϕ]〉[M;C]([0,T ]×Ω) ,

I[ϕ](τ, x) :=
∫ τ

0

ϕ(t, x) dt for ϕ ∈ L1(0, T ; C(Ω)),

and rewriting system (9.23), (9.24) in the form

∫ T

0

∫
Ω

(
εZε∂tϕ + Vε · ∇xϕ

)
dx dt = ε

A

ω

∫ T

0

∫
Ω

s1
ε · ∇xϕ dx dt (9.36)

for any ϕ ∈ C∞
c ((0, T ) × Ω),

∫ T

0

∫
Ω

(
εVε · ∂tϕ + ωZεdivxϕ

)
dx dt (9.37)

= ε

∫ T

0

∫
Ω

(
s2ε : ∇xϕ + s3

ε · ϕ + s4
εdivxϕ + s5

εdivxϕ
)

dx dt

for any ϕ ∈ C∞
c ((0, T ) × Ω; R3), ϕ · n|∂Ω = 0, where

Zε = rε +
A

εω
Σε, s5

ε =
A

ε2
Σε,

where, exactly as in Section 5.4.7, we identify∫
Ω

Σεϕ dx = 〈Σε; ϕ〉[M;C](Ω) .

Solutions of system (9.36), (9.37) may be written in a more concise form in
terms of the Fourier coefficients:

aσ
n[V] :=

∫
Ω

V · vn dx, ag
n[V] :=

1√
Λn

∫
Ω

V · ∇xqn dx, n = 1, 2, . . . ,

b0[Z] =
1√
|Ω|

∫
Ω

Z dx, bn[Z] =
∫

Ω

rqn dx, n = 1, 2, . . . ,
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where {vn}∞n=1 is an orthonormal basis of the space L2
σ(Ω; R3) of solenoidal fields

with zero normal trace, and {qn}∞n=0 is the complete orthonormal system of eigen-
functions of the homogeneous Neumann problem

−Δxqn = Λnqn, 0 = Λ0 < Λ1 ≤ Λ2 ≤ · · · , q0 =
1√
|Ω|

.

We start with the homogeneous wave equation{
∂tRt + divxQ = 0,

∂tQ + ω∇xR = 0,

}
in (0, T ) × Ω, Q · n|∂Ω = 0, R(0) = R0, Q(0) = Q0.

It is easy to check that the associated solution operator

S(t)
[

R0

Q0

]
=
[

R(t)
Q(t)

]
can be expressed in terms of the Fourier coefficients as

b0[R(t)] = b0[R0], aσ
n[Q(t)] = aσ

n[Q0] for n = 1, 2, . . . , (9.38)

bn[R(t)] = exp(i
√

ωΛnt)
[
1
2

(
−i

1√
ω

ag
n[Q0] + bn[R0]

)]
(9.39)

+ exp(−i
√

ωΛnt)
[
1
2

(
i

1√
ω

ag
n[Q0] + bn[R0]

)]
for n = 1, 2, . . .

and

ag
n[Q(t)] = exp(i

√
ωΛnt)

[
1
2
(
ag

n[Q0] + i
√

ωbn[R0]
)]

(9.40)

+ exp(−i
√

ωΛnt)
[
1
2
(
ag

n[Q0] − i
√

ωbn[R0]
)]

for n = 1, 2, . . . .

These formulas are the discrete counterparts to those defined in (8.112),
(8.113) by means of the Fourier transform. Accordingly, the solution operator
S(t) can be extended to a considerably larger class of initial data, for which the
Fourier coefficients an, bn may be defined, in particular, the data may belong to
the space M of measures or distributions of higher order.

Similarly, we can identify solutions of the non-homogeneous problem{
∂tR + divxQ = h1,

∂tQ + ω∇xR = h2,

}
in (0, T ) × Ω, Q · n|∂Ω = 0, R(0) = R0, Q(0) = Q0,

by means of the standard Duhamel’s formula[
R(t)
Q(t)

]
= S(t)

[
R0

Q0

]
+
∫ t

0

S(t − s)
[

h1(s)
h2(s)

]
ds.
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Finally, the solutions of the scaled equation{
ε∂tR + divxQ = εh1,

ε∂tQ + ω∇xR = εh2,

}
in (0, T )× Ω, Q · n|∂Ω = 0, R(0) = R0, Q(0) = Q0,

(9.41)
can be expressed as[

R(t)
Q(t)

]
= S

(
t

ε

)[
R0

Q0

]
+
∫ t

0

S

(
t − s

ε

)[
h1(s)
h2(s)

]
ds, (9.42)

where again the right-hand side may belong to a suitable class of distributions,
in particular, formula (9.42) applies to solutions of the acoustic equation (9.36),
(9.37).

9.3 Two-scale convergence

As we have observed several times in the previous chapters, solutions of the scaled
acoustic equation (9.23), (9.24) are expected to develop fast time oscillations with
the frequency proportional to 1/ε. It is therefore natural to investigate the asymp-
totic behavior of solutions with respect to both the real (slow) time t and the
fast time τ = t/ε. To this end, we adapt the concept of two-scale convergence
introduced by Allaire [6] and Nguetseng [163] to characterize the limit behavior
of oscillating solutions in the theory of homogenization. The reader may consult
the review paper by Visintin [200] for more information on the recent develop-
ment of the two-scale calculus. Here we use the following weak-strong definition
of two-scale convergence.

� Two-Scale Convergence:

We shall say that a sequence {wε = wε(t, x)}ε>0 ⊂ L∞(0, T ; L1(Ω)) two-scale
converges to a function w = w(τ, t, x), w ∈ L∞

loc([0,∞) × [0, T ]; L1(Ω)), if

ess sup
t∈(0,T )

∣∣∣∣
∫

Ω

[
wε(t, x) − w

(
t

ε
, t, x

)]
ϕ(x) dx

∣∣∣∣→ 0 (9.43)

for any ϕ ∈ C∞
c (Ω).

Now, we are ready to formalize the ideas discussed in Section 5.4.4 in terms
of the two-scale convergence. The main issue to be discussed here is to investi-
gate the time oscillations, as our definition requires only weak convergence in the
spatial variable. Unfortunately, the result presented below gives only a very rough
description of oscillations in terms of completely unknown driving terms.
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Theorem 9.1. Let
[

rε

Vε

]
be a family of solutions to the scaled acoustic equations

(9.23), (9.24) belonging to class (9.30–9.33), where the terms on the right-hand
side satisfy (9.34), (9.35).

Then [
rε

Vε

]
two-scale converges to S (τ)

[
G1(t, ·)
G2(t, ·)

]
, τ =

t

ε
,

for certain functions

G1 ∈ Cweak ∩ L∞([0, T ]; L2(Ω)), G2 ∈ Cweak ∩ L∞([0, T ]; L2(Ω; R3)),

where S is the solution operator defined by means of (9.38–9.40).

Remark: As solutions of the acoustic equation are almost-periodic, the preceding
result implies (it is in fact stronger than) the two-scale convergence on general
Besicovitch spaces developed by Casado-Dı́az and Gayte [42].

Proof. (i) Seeing that

rε = Zε −
A

εω
Σε,

where, by virtue of (9.35),

ess sup
t∈(0,T )

‖Σε(t)‖M(Ω) ≤ ε2c, (9.44)

it is enough to show the result for Zε, Vε solving system (9.36), (9.37). Moreover,
as the two-scale convergence defined through (9.43) is weak with respect to the
spatial variable, we have to show the result only for each Fourier mode in (9.38–
9.40), separately. More specifically, we write[

Zε

Vε

]
= S

(
t

ε

)[
G1

ε

G2
ε

]
(9.45)

and show that

bn[G1
ε], aσ

n[G2
ε], ag

n[G2
ε] are precompact in C[0, T ] for any fixed n. (9.46)

To this end, we associate to the forcing terms in (9.36), (9.37) their Fourier
projections

b0[h1
ε] = 0, bn[h1

ε] = −A

ω

∫
Ω

s1
ε · ∇xqn dx, n = 1, 2, . . . ,

aσ
n[h2

ε] = −
∫

Ω

(
s2ε : ∇xvn + s3

ε · vn

)
dx, n = 1, 2, . . . ,
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and

ag
n[h2

ε] = − 1√
Λn

∫
Ω

(
s2
ε : ∇2

xqn + s3
ε · ∇xqn − Λn(s4

ε + s5
ε)qn

)
dx, n = 1, 2, . . . .

As a direct consequence of the uniform bounds (9.34), (9.35),

{bn[h1
ε]}ε>0, {aσ

n[h2
ε]}ε>0, {ag

n[h2
ε]}ε>0 are bounded in Lq(0, T ) (9.47)

for a certain q > 1.
Using Duhamel’s formula (9.42), we obtain

b0[Zε(t)] = b0[Zε(0)], aσ
n[Vε(t)] = aσ

n[Vε(0)] +
∫ t

0

aσ
n[h2

ε(s)] ds, n = 1, 2, . . . .

By virtue of (9.30–9.33), together with (9.44), we can assume that

Zε(0, ·) → Z0 weakly-(*) in M(Ω), Vε(0, ·) → V0 weakly in L1(Ω), (9.48)

with
Z0 ∈ L2(Ω), V ∈ L2(Ω; R3).

In particular,

bn[Zε(0)] → bn[Z0], aσ
n[Vε(0)] → aσ

n[V]0, and ag
n[Vε(0)] → ag

n[V0] as ε → 0

for any fixed n.
Moreover, it follows from (9.47) that the family

{t →
∫ t

0

aσ
n[h2

ε(s)] ds}ε>0 is precompact in C[0, T ].

Similarly, in accordance with (9.39),

bn[Zε(t)] = exp
(

i
√

ωΛn
t

ε

)

×
[
1
2

(
− i√

ω

(
ag

n[Vε(0)] +
∫ t

0

exp
(
−i
√

ωΛn
s

ε

)
ag

n[h2
ε(s)] ds

)

+bn[Zε(0)] +
∫ t

0

exp
(
−i

√
ωΛ

s

ε

)
bn[h1

ε(s)]ds

)]

+ exp
(
−i
√

ωΛn
t

ε

)

×
[
1
2

(
i√
ω

(
ag

n[Vε(0)] +
∫ t

0

exp
(
i
√

ωΛn
s

ε

)
ag

n[h2
ε(s)] ds

)

+bn[Zε(0)] +
∫ t

0

exp
(
i
√

ωΛ
s

ε

)
bn[h1

ε(s)]ds

)]
,
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where the family of functions{
t →

∫ t

0

exp
(
±i
√

ωΛn
s

ε

)
ag

n[h2
ε(s)] ds

}
, t ∈ [0, T ],{

t →
∫ t

0

exp
(
±i
√

ωΛn
s

ε

)
bn[h1

ε(s)] ds

}
, t ∈ [0, T ]

are precompact in C[0, T ].
As the remaining terms can be treated in a similar way, we have shown (9.45),

(9.46). Consequently, we may assume that

bn[G1
ε] → bn[G1]

aσ
n[G2

ε] → aσ
n[G2]

aσ
g [G2

ε] → aσ
n[G2]

⎫⎪⎪⎬
⎪⎪⎭ in C[0, T ] for any fixed n,

where the limit distributions G1, G2
ε are uniquely determined by their Fourier

coefficients. In other words,[
P 1

M [rε]
P2

M [Vε]

]
two-scale converges to S (τ)

[
P 1

M [G1]
P2

M [G2]

]
, τ =

t

ε
,

for any fixed M , where P 1
M , P2

M are projections on the first M Fourier modes,
specifically,

P 1
M [r] =

∑
n≤M

bn[r]qn, P2
M [V] =

∑
n≤M

(
aσ

n[V]vn + ag
n[V]

1√
Λn

∇xqn

)
.

(ii) It remains to show that the quantities G1, G2 are bounded in the L2-norm
uniformly in time. To this end, we use the estimates (9.56–9.59) in order to see
that

lim sup
ε→0

(
ess sup

t∈(0,T )

‖P 1
M [rε]‖L2(Ω)

)
≤ c1, (9.49)

lim sup
ε→0

(
ess sup

t∈(0,T )

‖P2
M [Vε]‖L2(Ω;R3)

)
≤ c2, (9.50)

where the constants c1, c2 are independent of M .
On the other hand, since P 1

M [rε], P2
M [Vε] two-scale converge, we have

ess sup
t∈(0,T )

∥∥∥∥
[

P 1
M [rε]

P2
M [Vε]

]
− S

(
t

ε

)[
P 1

M [G1]
P2

M [G2]

]∥∥∥∥
L2(Ω)×L2(Ω;R3)

→ 0
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as ε → 0 for any fixed M . Since S is an isometry on L2(Ω)×L2(Ω; R3), we conclude
that

ess sup
t∈[0,T ]

∥∥∥∥
[

P 1
M [G1]

P2
M [G2]

]∥∥∥∥
L2(Ω)×L2(Ω;R3)

= ess sup
t∈[0,T ]

∥∥∥∥S
(

t

ε

)[
P 1

M [G1]
P2

M [G2]

]∥∥∥∥
L2(Ω)×L2(Ω;R3)

≤ lim sup
ε→0

[
ess sup

t∈(0,T )

∥∥∥∥
[

P 1
M [rε]

P2
M [Vε]

]∥∥∥∥
L2(Ω)×L2(Ω;R3)

]

≤ c,

where, as stated in (9.49), (9.50), the constant is independent of M . �

9.3.1 Approximate methods

We intend to simplify system (9.23), (9.24) by replacing the source terms by their
asymptotic limits for ε → 0. To begin, by virtue of the uniform bound (5.50), we
observe that

σε/ε → 0 in M([0, T ]× Ω).

Similarly, by means of the same arguments as in Section 5.3.2,

s1
ε → s1 weakly in L1((0, T ) × Ω; R3),

where

s1 =
κ(ϑ)

ϑ
∇xΘ + �

(
∂s(�, ϑ)

∂�
�(1) +

∂s(�, ϑ)
∂ϑ

Θ
)

U.

We simplify further by eliminating completely the temperature fluctuations,
supposing that the initial state of the primitive system is almost isentropic, specif-
ically,

∂s(�, ϑ)
∂�

�
(1)
0 +

∂s(�, ϑ)
∂ϑ

ϑ
(1)
0 = 0.

Consequently, the limit temperature Θ solves the Neumann problem for the heat
equation (9.19) with the prescribed initial state Θ0 = 0. As a straightforward
consequence of the heat energy balance established in (5.184), we obtain Θ = 0.
Moreover, utilizing relation (9.22), we get �(1) = 0; whence s1 = 0. Thus we have
shown that it is reasonable, at least in view of the uniform bounds obtained in
Section 5.2, to replace the right-hand side in (9.23) by zero, provided the initial
entropy of the primitive system is close to its (maximal) value attained at the
equilibrium state (�, ϑ).

A similar treatment applied to the acoustic sources in (9.24) requires more
attention. Obviously, we can still replace

Sε ≈ μ(ϑ)
(
∇xU + ∇T

x U
)
, and s3

ε ≈ s3 := −�f
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but the asymptotic limit of the convective term �εuε ⊗uε is far less obvious as we
have already observed in Section 5.4. All we know for sure is

�εuε ⊗ uε → �U⊗ U weakly in L1((0, T )× Ω; R3×3),

where, in general,

U ⊗ U �≡ U ⊗ U

unless the velocity fields uε converge pointwise to U in (0, T ) × Ω.
A similar problem occurs when dealing with s4

ε. Note that, in accordance
with our choice of the parameters ω, Λ (cf. (5.126)),

−∂�p(�, ϑ) + A�∂�s(�, ϑ) + ω = 0, −∂ϑp(�, ϑ) + A�∂ϑs(�, ϑ) = 0;

whence, by virtue of the uniform bounds established in Section 5.2,

∥∥∥∥p(�, ϑ) − p(�ε, ϑε)
ε

+ A�ε
s(�ε, ϑε) − s(�, ϑ)

ε
+ ω

�ε − �

ε

∥∥∥∥
L1((0,T )×Ω)

≤ εc.

However, in order to obtain s4
ε → 0 in some sense, we need strong convergence

�ε − �

ε
:= �(1)

ε → �(1) = 0,
ϑε − ϑ

ε
:= ϑ(1) → Θ = 0 pointwise in (0, T )× Ω.

In light of the previous arguments, any kind of linear acoustic analogy is
likely to provide a good approximation of propagation of the acoustic waves only
when their amplitude is considerably smaller than the Mach number, or, in the
standard terminology, in the case of well-prepared data. We are going to discuss
this issue in the next section.

9.4 Lighthill’s acoustic analogy in the

low Mach number regime

9.4.1 Ill-prepared data

Motivated by the previous discussion, we suppose that solutions rε, Vε of the
scaled acoustic equation can be approximated by Rε, Qε solving a wave equation,
where, in the spirit of Lighthill’s acoustic analogy, the source terms have been
evaluated on the basis of the limit system (9.17), (9.18). In addition, we shall
assume that the limit solution is smooth so that the weak formulation of the
problem may be replaced by the classical one as follows.
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� Lighthill’s Equation:

ε∂tRε + divxQε = 0, (9.51)

ε∂tQε + ω∇xRε = ε
(
μ(ϑ)divx(∇xU + ∇T

x U) − divx(�U ⊗ U) + �f
)
, (9.52)

Qε · n|∂Ω = 0, (9.53)

supplemented with the initial conditions

Rε(0, ·) = rε(0, ·), Qε(0, ·) = Vε(0, ·). (9.54)

Since U is a smooth solution of the incompressible Navier-Stokes system

(9.17), (9.18), we can rewrite (9.51), (9.52) in the form

ε∂t(Rε − ε(Π/ω)) + divx(Qε − �U) = −ε2∂t(Π/ω),
ε∂t(Qε − �U) + ω∇x(Rε − ε(Π/ω)) = 0,

which can be viewed as another non-homogeneous wave equation with the same
wave propagator and with a source of order ε2. In other words, if the initial data
are ill-prepared, meaning

rε,0 ≈ r0,ε − ε(Π/ω), H⊥[V0,ε] of order 1,

the presence of Lighthill’s tensor in (9.52) yields a perturbation of order ε with
respect to the homogeneous problem. Consequently, for the ill-prepared data,
Lighthill’s equation can be replaced, with the same degree of “precision”, by the
homogeneous wave equation

ε∂tRε + divxQε = 0,

ε∂tQε + ω∇xRε = 0.

Thus we conclude, together with Lighthill [135, Chapter 1], that use of a linear
theory, for waves of any kind, implies that we consider disturbances so small that
in equations of motion we can view them as quantities whose products can be
neglected. In particular, the ill-prepared data must be handled by the methods of
nonlinear acoustics (see Enflo and Hedberg [72]).

9.4.2 Well-prepared data

If the initial data are well prepared, meaning

rε,0, H⊥[V0,ε] are of order ε,

or, in terms of the initial data for the primitive system,

�
(1)
0,ε = ϑ

(1)
0,ε = 0, u0,ε = U0
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in (9.9), then, replacing Rε ≈ Rε/ε, Qε ≈ Qε/ε, we can write Lighthill’s equation
(9.51), (9.52) in the form

ε∂tRε + divxQε = 0, (9.55)

ε∂tQε + ω∇xRε =
(
μ(ϑ)divx(∇xU + ∇T

x U) − divx(�U⊗ U) + �f
)
, (9.56)

Qε · n|∂Ω = 0, (9.57)
Rε(0, ·) = R0,ε, Qε(0, ·) = Q0,ε, (9.58)

where the initial data R0,ε, Q0,ε are determined by means of the “second-order”
terms �

(2)
0,ε, ϑ

(2)
0,ε, and u(1)

0,ε.
For simplicity, assume that U, Π represent a smooth solution of the in-

compressible Navier-Stokes system (9.17), (9.18), (9.20), satisfying the initial
condition

U(0, ·) = U0,

where U0 solves the stationary problem

�divx(U0 ⊗U0) + ∇xΠ0 = divx

(
μ(ϑ)(∇xU0 + ∇T

x U0)
)

+ �f0, divxU0 = 0 in Ω,

(9.59)
Π0 = Π(0, ·),

supplemented with the boundary conditions (9.20). Here, the driving force f0 is
a function of x only, and the solution U0, Π0 is called the background flow. We
normalize the pressure so that∫

Ω

Π(t, ·) dx =
∫

Ω

Π0 dx = 0

for all t ∈ [0, T ].

Our aim is to find a suitable description for the asymptotic limits of Rε, Qε

when ε → 0. These quantities, solving the scaled Lighthill’s equation (9.55), (9.56),
are likely to develop fast oscillations in time that would be completely ignored
should we use the standard concept of weak limits. Instead we use again the
two-scale convergence introduced in the previous section. We claim the following
result.

� Asymptotic Lighthill’s Equation:

Theorem 9.2. Let Rε, Qε be the (unique) solution of problem (9.55–9.58), where

R0,ε → R0 in L2(Ω); Q0,ε → Q0 in L2(Ω; R3), H[Q0,ε] = 0,

and where U, Π is a smooth solution of problem (9.17), (9.18), (9.20), with
U(0, ·) = U0, Π(0, ·) = Π0 satisfying (9.59).
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Then

{Rε,Qε}ε>0 two-scale converges to {R + Π/ω − Π0/ω;Q},
where R, Q is the unique solution of the problem (9.51), (9.52) in the form

ε∂tR + divxQ = 0,

ε∂tQ + ω∇xR =
(
μ(ϑ)divx(∇xU0 + ∇T

x U0) − divx(�U0 ⊗ U0) + �f0
)
,

Q · n|∂Ω = 0,

R(0, ·) = R0, Q(0, ·) = Q0.

Remark: In particular, solutions R, Q of the limit system can be written in the
form R = R(t/ε, t, x), Q = Q(t/ε, t, x).

Proof. As all quantities are smooth, it is easy to check that

Rε = Π/ω + Zε, Qε = Yε,

where Zε, Yε is the unique solution of the problem

ε∂tZε + divxYε = −ε∂tΠ/ω,

ε∂tYε + ω∇xZε = 0,

Yε · n|∂Ω = 0,

Zε(0, ·) = R0,ε − Π0/ω, Yε(0, ·) = Q0,ε.

Similarly to Section 5.4.4, we can write[
Zε(t)
Yε(t)

]
= S

(
t

ε

)[
R0,ε − Π0/ω

Q0,ε

]
− S

(
t

ε

)∫ t

0

S

(−s

ε

)[
∂tΠ/ω

0

]
ds,

where S is the solution operator associated to the homogeneous problem intro-
duced in Section 9.2.

It is easy to check that (Zε,Yε) two-scale converges to[
Z
Y

]
= S

(
t

ε

)[
R0 − Π0/ω

Q0

]
,

which completes the proof. Indeed since
∫
Ω Π dx = 0, we get

t →
∫ t

0

S

(−s

ε

)[
∂tΠ/ω

0

]
ds → 0 in C([0, T ]; L2(Ω)), (9.60)

as the integrated quantity can be written as a Fourier series with respect to the
eigenvectors of the wave operator identified in Section 5.4.5. Since all (non-zero)
Fourier modes take the form

exp
(
±i|Λ|s

ε

)
a(s)

[
q(x)

− i√
|Λ|∇xq(x)

]
, Λ �= 0,

relation (9.60) follows. �
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In this section, we have deliberately omitted a highly non-trivial issue, namely
to what extent Lighthill’s equation can be used as a description of the acoustic
waves for well-prepared data. Apparently, we need higher order uniform bounds
that implicitly imply regularity of solutions of the target system. Moreover, these
bounds also imply existence of regular solutions for the primitive system provided
the data are close to the equilibrium state. Positive results in this direction were
obtained by Hagstrom and Lorentz [105].

In order to conclude this section, let us point out that Lighthill’s equation
(9.51–9.54) may indicate completely misleading results when applied on bounded
domains with acoustically soft boundary conditions. As we have seen in Chapter
7, the oscillations of the acoustic waves are effectively damped by a boundary layer
provided the velocity vanishes on the boundary as soon as the latter satisfies cer-
tain geometrical conditions, even for ill-prepared data. On the contrary, Lighthill’s
equation predicts violent oscillations of the velocity field with the frequency pro-
portional to 1/ε in the low Mach number limit. Of course, in this case, system
(9.51), (9.52) is not even well posed if the boundary condition (9.53) is replaced
by Qε|∂Ω = 0.

9.5 Concluding remarks

In the course of the previous discussion, we have assumed that the solution U of the
limit incompressible Navier-Stokes system is smooth. Of course, smoothness
of solutions should be determined by the initial datum U0. Unfortunately, in the
three-dimensional physical space, it is a major open problem whether solutions to
the incompressible Navier-Stokes system emanating from smooth data remain
smooth at any positive time. Still there is a large class, although not explicitly
known, of the initial data for which the system (9.17), (9.18) admits a smooth solu-
tion. In particular, this is true for small perturbations of smooth stationary states.

The problem becomes even more delicate in the framework of the asymptotic
limits studied in this book. Although we are able to identify the low Mach number
limit as a weak solution of system (9.17), (9.18) emanating from the initial datum
U0, it is still not completely clear if this weak solution coincides with the strong
(regular) one provided the latter exists.

Fortunately, such a weak-strong uniqueness result holds provided the weak
solution U of (9.17), (9.18) satisfies the energy inequality:

1
2

∫
Ω

�|U|2(τ) dx +
μ(ϑ)

2

∫ τ

0

∫
Ω

|∇xU + ∇T
x U|2 dx dt (9.61)

≤ 1
2

∫
Ω

�|U0|2(τ) dx +
∫ τ

0

∫
Ω

�f · U dx dt for a.a. τ ∈ (0, T ).
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As we have shown, the solutions obtained in the low Mach number asymptotic
analysis do satisfy (9.61) as soon as the data are “suitably” prepared (see Theo-
rem 5.3).

Now, for the sake of simplicity, assume that f is independent of t and that
U0 = w, where w is a regular stationary solution to the incompressible Navier-

Stokes system, specifically,

divxw = 0, (9.62)

divx(�w ⊗ w) + ∇xΠ = μ(ϑ)divx

(
∇xw + ∇T

x w
)

+ �f , (9.63)

satisfying the complete slip boundary conditions

w · n|∂Ω = 0, (∇xw + ∇T
x w)n × n|∂Ω = 0. (9.64)

We claim that w = U as soon as U is a weak solution of (9.17), (9.18),
(9.20), with U(0, ·) = U0 = w, in the sense specified in Section 5.5.1 provided
U satisfies the energy inequality (9.61). Indeed as w is smooth and satisfies the
boundary conditions (9.64), the quantities ψ(t)w, ψ ∈ C1

c (0, T ), can be used as
test functions in the weak formulation of (9.18), and, conversely, the stationary
equation (9.63) can be multiplied on U and integrated by parts. Thus, after a
straightforward manipulation, we obtain∫

Ω

|U(τ) − w|2 dx +
μ(ϑ)

�

∫ τ

0

∫
Ω

∣∣∇x(U − w) + ∇T
x (U − w)

∣∣2 dx dt

≤ 2
∫ τ

0

∫
Ω

((U ⊗ U) : ∇xw + (w ⊗ w) : ∇xU) dx dt for a.a. τ ∈ (0, T ),

where, by means of by-parts integration,∫
Ω

((U ⊗ U) : ∇xw + (w ⊗ w) : ∇xU) dx

=
3∑

i,j=1

∫
Ω

∂xiwjUj(Ui − wi) dx

=
∫

Ω

[∇xw(U − w)] · (U − w) dx +
1
2

∫
Ω

∇x|w|2 · (U − w) dx

=
∫

Ω

[∇xw(U − w)] · (U − w) dx.

Consequently, the desired result U = w follows directly from Gronwall’s lemma.
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Appendix

For readers’ convenience, a number of standard results used in the preceding text
is summarized in this chapter. Nowadays classical statements are appended with
the relevant reference material, while complete proofs are provided in the cases
when a compilation of several different techniques is necessary. A significant part
of the theory presented below is related to general problems in mathematical fluid
mechanics and may be of independent interest.

Throughout this appendix, M denotes a positive integer while N ∈ N refers
to the space dimension. The space dimension is always taken greater than or equal
to 2, if not stated explicitly otherwise.

10.1 Mollifiers

A function ζ ∈ C∞
c (RM ) is termed a regularizing kernel if

supp[ζ] ⊂ (−1, 1)M , ζ(−x) = ζ(x) ≥ 0,

∫
RM

ζ(x) dx = 1. (10.1)

For a measurable function a defined on R
M with values in a Banach space X , we

denote

Sω[a] = aω(x) = ζω ∗ a =
∫

RM

ζω(x − y)a(y) dy, (10.2)

where

ζω(x) =
1

ωM
ζ(

x

ω
), ω > 0,

provided the integral on the right-hand side exists. The operator Sω : a → aω is
called a mollifier. Note that the above construction easily extends to distributions
by setting aω(x) = 〈a; ζω(x − ·)〉[D′;D](RM).
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� Mollifiers:

Theorem 10.1. Let X be a Banach space. If a ∈ L1
loc(R

M ; X), then we have aω ∈
C∞(RM ; X). In addition, the following holds:

(i) If a ∈ Lp
loc(R

M ; X), 1 ≤ p < ∞, then aω ∈ Lp
loc(R

M ; X), and

aω → a in Lp
loc(R

M ; X) as ω → 0.

(ii) If a ∈ Lp(RM ; X), 1 ≤ p < ∞, then aω ∈ Lp(RM ; X),

‖aω‖Lp(RM ;X) ≤ ‖a‖Lp(RM ;X), and aω → a in Lp(RM ; X) as ω → 0.

(iii) If a ∈ L∞(RM ; X), then aω ∈ L∞(RM ; X), and

‖aω‖L∞(RM ;X) ≤ ‖a‖L∞(RM ;X).

(iv) If a ∈ Ck(U ; X), where U ⊂ RM is an (open) ball, then (∂αa)ω(x) = ∂αaω(x)
for all x ∈ U , ω ∈ (0, dist[x, ∂U ]) and for any multi-index α, |α| ≤ k.
Moreover,

‖aω‖Ck(B;X) ≤ ‖a‖Ck(V ;X)

for any ω ∈ (0, dist[∂B, ∂V ]), where B, V are (open) balls in RM such that
B ⊂ V ⊂ V ⊂ U . Finally,

aω → a in Ck(B; X) as ω → 0.

See Amann [8, Chapter III.4], or Brezis [35, Chapter IV.4]. �

10.2 Basic properties of some elliptic operators

Let Ω ⊂ RN be a bounded domain. We consider a general elliptic equation in the
divergence form

A(x, u) = −
N∑

i,j=1

∂xi(ai,j(x)∂xj u) + c(x)u = f for x ∈ Ω, (10.3)

supplemented with the boundary condition

δu + (δ − 1)
N∑

j=1

ai,j∂xj u nj |∂Ω = g, (10.4)

where δ = 0, 1. We suppose that

ai,j = aj,i ∈ C1(Ω),
∑
i,j

ai,jξiξj ≥ α|ξ|2 (10.5)
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for a certain α > 0 and all ξ ∈ RN , |ξ| = 1. The case δ = 1 corresponds to the
Dirichlet problem, δ = 0 is termed the Neumann problem.

In several applications discussed in this book, Ω is also taken in the form

Ω = {(x1, x2, x3) | (x1, x2) ∈ T 2, Bbottom(x1, x2) < x3 < Btop(x1, x2)}, (10.6)

where the horizontal variable (x1, x2) belongs to the flat torus

T 2 =
(
[−π, π]|{−π,π}

)2
.

Although all results below are formulated in terms of standard domains, they
apply to domains Ω given by (10.6) as well, provided we identify

∂Ω = {(x1, x2, x3) | (x1, x2) ∈ T 2, x3 = Bbottom(x1, x2)}
∪{(x1, x2, x3) | (x1, x2) ∈ T 2, x3 = Btop(x1, x2)}.

This is due to the fact that all theorems concerning regularity of solutions to
elliptic equations are of local character.

10.2.1 A priori estimates

We start with the classical Schauder estimates.

� Hölder Regularity:

Theorem 10.2. Let Ω ⊂ R
N be a bounded domain of class Ck+2,ν , k = 0, 1, . . . ,

with ν > 0. Suppose, in addition to (10.5), that ai,j ∈ Ck+1,ν(Ω), i, j = 1, . . . , N ,
c ∈ Ck,ν(Ω). Let u be a classical solution of problem (10.3), (10.4), where f ∈
Ck,ν(Ω), g ∈ Ck+δ+1,ν (∂Ω).

Then

‖u‖Ck+2,ν(Ω) ≤ c
(
‖f‖Ck,ν(Ω) + ‖g‖Ck+1,ν(∂Ω) + ‖u‖C(Ω)

)
.

See Ladyzhenskaya and Uralceva [130, Theorems 3.1 and 3.2, Chapter 3],
Gilbarg and Trudinger [96, Theorem 6.8]. �

Similar bounds can be also obtained in the Lp-framework. We report the cel-
ebrated result by Agmon, Douglis, and Nirenberg [2] (see also Lions and Magenes
[138]). The hypotheses we use concerning regularity of the boundary and the co-
efficients ai,j , c are not optimal but certainly sufficient in all situations considered
in this book.
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� Strong Lp
-regularity:

Theorem 10.3. Let Ω ⊂ RN be a bounded domain of class C2. In addition to
(10.5), assume that c ∈ C(Ω). Let u ∈ W 2,p(Ω), 1 < p < ∞, be a (strong) solution
of problem (10.3), (10.4), with f ∈ Lp(Ω), g ∈ W δ+1−1/p,p(∂Ω).

Then

‖u‖W 2,p(Ω) ≤ c
(
‖f‖Lp(Ω) + ‖g‖W δ+1−1/p,p(∂Ω) + ‖u‖Lp(Ω)

)
.

See Agmon, Douglis and Nirenberg [2]. �

The above estimates can be extrapolated to “negative” spaces. For the sake
of simplicity, we set g = 0 in the Dirichlet case δ = 1. In order to formulate
adequate results, let us introduce the Dirichlet form associated to the operator A,
namely

[Au, v] :=
∫

Ω

ai,j(x)∂xj u∂xiv + c(x)uv dx.

In such a way, the operator A can be regarded as a continuous linear mapping

A : W 1,p
0 (Ω) → W−1,p(Ω) for the Dirichlet boundary condition

or
A : W 1,p(Ω) → [W 1,p′

(Ω)]∗ for the Neumann boundary condition,

where
1 < p < ∞,

1
p

+
1
p′

= 1.

� Weak Lp
-regularity:

Theorem 10.4. Assume that Ω ⊂ RN is a bounded domain of class C2, and 1 <
p < ∞. Let ai,j satisfy (10.5), and let c ∈ L∞(Ω).

(i) If u ∈ W 1,p
0 (Ω) satisfies

[Au, v] = 〈f, v〉
[W−1,p;W 1,p′

0 ](Ω)
for all v ∈ W 1,p′

0 (Ω)

for a certain f ∈ W−1,p(Ω), then

‖u‖W 1,p
0 (Ω) ≤ c

(
‖f‖W−1,p(Ω) + ‖u‖W−1,p(Ω)

)
.

(ii) If u ∈ W 1,p(Ω) satisfies

[Au, v] = 〈F, v〉[[W 1,p′ ]∗;W 1,p′ ](Ω) for all v ∈ W 1,p′
(Ω)
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for a certain F ∈ [W 1,p′
]∗(Ω), then

‖u‖W 1,p(Ω) ≤ c
(
‖F‖[W 1,p′ ]∗(Ω) + ‖u‖[W 1,p′ ]∗(Ω)

)
.

In particular, if

[Au, v] =
∫

Ω

fv dx −
∫

∂Ω

gv dSx for all v ∈ W 1,p′
(Ω),

then

‖u‖W 1,p(Ω) ≤ c
(
‖f‖[W 1,p′ ]∗(Ω) + ‖g‖W−1/p,p(∂Ω) + ‖u‖[W 1,p′ ]∗(Ω)

)
.

See J.-L. Lions [137], Schechter [177]. �

Remark: The hypothesis concerning regularity of the boundary can be relaxed to
C0,1 in the case of the Dirichlet boundary condition, and to C1,1 for the Neumann
boundary condition.

Remark: The norm containing u on the right-hand side of the estimates in The-
orems 10.2–10.4 is irrelevant and may be omitted, provided that the solution is
unique in the given class.

Remark: As we have observed, elliptic operators, in general, enjoy the degree of
regularity allowed by the data. In particular, the solutions of elliptic problems with
constant or (real) analytic coefficients are analytic on any open subset of their
domain of definition. For example, if

Δu + b · ∇xu + cu = f in Ω ⊂ R
N ,

where b, c are constant, and Ω is a domain, then u is analytic in Ω provided that
f is analytic (see John [118, Chapter VII]) . The result can be extended to elliptic
systems and even up to the boundary, provided the latter is analytic (see Morrey
and Nirenberg [159]).

10.2.2 Fredholm alternative

Now, we focus on the problem of existence. Given the scope of applications consid-
ered in this book, we consider only the Neumann problem, specifically δ = 0 in sys-
tem (10.3), (10.4). Similar results hold also for the Dirichlet boundary conditions.
A useful tool is the Fredholm alternative formulated in the following theorem.
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� Fredholm Alternative:

Theorem 10.5. Let Ω ⊂ RN be a bounded domain of class C2. In addition to
(10.5), assume that c ∈ C(Ω), 1 < p < ∞, k = 1, 2, and δ = 0.

Then either

(i) Problem (10.3), (10.4) possesses a unique solution u ∈ W k,p(Ω) for any f , g
belonging to the regularity class

f ∈ [W 1,p′
(Ω)]∗, g ∈ W− 1

p ,p(∂Ω) if k = 1, (10.7)

f ∈ Lp(Ω), g ∈ W 1− 1
p ,p(∂Ω) if k = 2; (10.8)

or
(ii) the null space

ker[A] = {u ∈ W k,p(Ω) | u solve (10.3), (10.4) with f = g = 0}

is of finite dimension, and problem (10.3), (10.4) admits a solution for f , g
belonging to the class (10.7), (10.8) only if

〈f ; w〉[[W 1,p′ ]∗;W 1,p′ ](Ω) − 〈g; w〉[W−1/p,p,W 1/p,p′ ](∂Ω) = 0

for all w ∈ ker[A].

See Amann [7, Theorem 9.2], Geymonat and Grisvard [95]. �

In the concrete cases, the Fredholm alternative gives existence of a solution
u, while the estimates of u in W k,p(Ω) in terms of f and g follow from Theorems
10.3 and 10.4 via a uniqueness contradiction argument.

For example, in the sequel, we shall deal with a simple Neumann problem
for generalized Laplacian

−divx

(
η∇x

(
v

η

))
= f in Ω, ∇x

(
v

η

)
· n|∂Ω = 0,

where η is a sufficiently smooth and positive function on Ω and f ∈ Lp(Ω) with a
certain 1 < p < ∞. In this case the Fredholm alternative guarantees existence of
u ∈ W 2,p(Ω) provided f ∈ Lp(Ω),

∫
Ω fdx = 0. The solution is unique in the class

u ∈ W 2,p(Ω),
∫
Ω

u
η dx = 0 and satisfies estimate

‖u‖W 2,p(Ω) ≤ c‖f‖Lp(Ω).
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10.2.3 Spectrum of a generalized Laplacian

We begin by introducing a densely defined (unbounded) linear operator

Δη,N = divx

(
η∇x

(
v

η

))
, (10.9)

with the function η to be specified later, acting from Lp(Ω) to Lp(Ω) with domain
of definition

D(Δη,N ) = {u ∈ W 2,p(Ω) | ∇x

(
v

η

)
· n|∂Ω = 0}. (10.10)

Further we denote ΔN = Δ1,N the classical Laplacian with the homogenous Neu-
mann boundary condition.

We shall apply the results of Sections 10.2.1–10.2.2 to the spectral problem
that consists in finding couples (λ, v), λ ∈ C, v ∈ D(Δη,N ) that verify

−divx

(
η∇x

(
v

η

))
= λv in Ω, ∇x

(
v

η

)
· n|∂Ω = 0.

The results announced in the main theorem of this section are based on a gen-
eral theorem of functional analysis concerning the spectral properties of compact
operators.

Let T : X → X be a linear operator on a Hilbert space X endowed with
scalar product 〈·; ·〉. We say that a complex number λ belongs to the spectrum of
T (one writes λ ∈ σ(T )) if ker(T − λI) �= {0} or if (T − λI)−1 : X → X is not a
bounded linear operator (here I denotes the identity operator). We say that λ is
an eigenvalue of T or belongs to the discrete (pointwise) spectrum of T (and write
λ ∈ σp(T ) ⊂ σ(T )) if ker(T − λI) �= {0}. In the latter case, the non-zero vectors
belonging to ker(T − λI) are called eigenvectors and the vector space ker(T − λI)
an eigenspace.

� Spectrum of a Compact Operator:

Theorem 10.6. Let H be an infinite-dimensional Hilbert space and T : H → H a
compact linear operator. Then

(i) 0 ∈ σ(T );
(ii) σ(T ) \ {0} = σp(T ) \ {0};

(iii)

{
σ(T ) \ {0} is finite, or else

σ(T ) \ {0} is a sequence tending to 0.

(iv) If λ ∈ σ(T ) \ {0}, then the dimension of the eigenspace ker(T − λI) is finite.
(v) If T is a positive operator, meaning 〈Tv; v〉 ≥ 0, v ∈ H, then σ(T ) ⊂

[0, +∞).
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(vi) If T is a symmetric operator, meaning 〈Tv; w〉 = 〈v; Tw〉, v, w ∈ H, then
σ(T ) ⊂ R. If in addition H is separable, then H admits an orthonormal basis
of eigenvectors that consists of eigenvectors of T .

See Evans [74, Chapter D, Theorems 6,7]

The main theorem of this section reads:

� Spectrum of the Generalized Laplacian with

Neumann Boundary Condition:

Theorem 10.7. Let Ω ⊂ RN be a bounded domain of class C2. Let

η ∈ C1(Ω), inf
x∈Ω

η(x) = η > 0.

Then the spectrum of the operator −Δη,N , where Δη,N is defined in (10.9–
10.10), coincides with the discrete spectrum and the following holds:

(i) The spectrum consists of a sequence {λk}∞k=0 of real eigenvalues, where λ0 =
0, 0 < λk < λk+1, k = 1, 2, . . ., and limk→∞ λk = ∞;

(ii) 0 < dim(Ek) < ∞ and E0 = span{η}, where Ek = ker(−Δη,N − λkI) is the
eigenspace corresponding to the eigenvalue λk;

(iii) L2(Ω) =
⊕∞

k=0 Ek, where the direct sum is orthogonal with respect to the
scalar product

〈u; v〉1/η =
∫

Ω

uv
dx

η

(here the line over v means the complex conjugate of v).

Proof. We set

T : L2(Ω) → L2(Ω), T f =

{
−Δ−1

η,N f if f ∈ L̇2(Ω),

0 if f ∈ span{1},

Δ−1
η,N : L̇2(Ω) = {f ∈ L2(Ω) |

∫
Ω

f dx = 0} → {u ∈ L2(Ω) |
∫

Ω

u

η
dx = 0},

−Δ−1
η,N f = u ⇔ −Δη,Nu = f.

In accordance with the regularity properties of elliptic operators collected in Sec-
tions 10.2.1–10.2.2 (see notably Theorems 10.3 and 10.5), the operator T is a
compact operator.

A double integration by parts yields

−
∫

Ω

divx

(
η∇x

(
v

η

))
u

dx

η
=
∫

Ω

η∇x

(
v

η

)
· ∇x

(
u

η

)
dx

= −
∫

Ω

divx

(
η∇x

(
u

η

))
v

dx

η
.
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Taking in the last formula u = Tf , f ∈ L2(Ω), v = Tg, g ∈ L2(Ω) and recalling
that functions Tf

η , Tg
η have zero mean, we deduce that∫

Ω

Tf g
dx

η
=
∫

Ω

f Tg
dx

η
and

∫
Ω

Tf f
dx

η
≥ 0.

To resume, we have proved that T is a compact positive linear operator on
L2(Ω) that is symmetric with respect to the scalar product 〈· ; ·〉1/η. Now, all
statements of Theorem 10.7 follow from Theorem 10.6. �

10.3 Normal traces

Let Ω be a bounded domain in RN . For 1 ≤ q, p ≤ ∞, we introduce a Banach
space

Eq,p(Ω) = {u ∈ Lq(Ω; RN )| divu ∈ Lp(Ω)}. (10.11)

endowed with norm

‖u‖Eq(Ω) := ‖u‖Eq(Ω;R3) + ‖divu‖Lp(Ω). (10.12)

We also define
Eq,p

0 (Ω) = closureEq,p(Ω)

{
C∞

c (Ω; RN )
}

and
Ep(Ω) = Ep,p(Ω), Ep

0 (Ω) = Ep,p
0 (Ω).

Our goal is to introduce the concept of normal traces and to derive a variant of
Green’s formula for the functions belonging to Eq,p(Ω).

� Normal Traces:

Theorem 10.8. Let Ω ⊂ R
N be a bounded Lipschitz domain, and let 1 < p < ∞.

Then there exists a unique linear operator γn with the following properties:

(i) γn : Ep(Ω) → [W 1− 1
p′ ,p′

(∂Ω)]∗ := W− 1
p ,p(∂Ω), (10.13)

and
γn(u) = γ0(u) · n a.a. on ∂Ω whenever u ∈ C∞(Ω; RN ). (10.14)

(ii) The Stokes formula∫
Ω

vdivu dx +
∫

Ω

∇v · u dx = 〈γn(u) ; γ0(v)〉 , (10.15)

holds for any u ∈ Ep(Ω) and v ∈ W 1,p′
(Ω), where 〈· ; ·〉 denotes the duality

pairing between W
1− 1

p′ ,p′
(Ω) and W− 1

p ,p(Ω).

(iii) ker[γn] = Ep
0 (Ω). (10.16)

(iv) If u ∈ W 1,p(Ω; RN ), then γn(u) in Lp(∂Ω), and γn(u) = γ0(u) · n a.a. on
∂Ω.
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Proof of Theorem 10.8. As a matter of fact, Theorem 10.8 is a standard result
whose proof can be found in Temam [189, Chapter 1]. We give a concise proof
based on the following three lemmas that may be of independent interest.

Step 1. We start with a technical result, the proof of which can be found in Galdi
[92, Lemma 3.2]. We recall that a domain Q ⊂ RN is said to be star-shaped if
there exists a ∈ Q such that Q = {x ∈ RN | |x − a| < h( x−a

|x−a|)}, where h is a
positive continuous function on the unit sphere; it is said to be star-shaped with
respect to a ball B ⊂ Q if it is star-shaped with respect to any of its points.

Lemma 10.1. Let Ω be a bounded Lipschitz domain.
Then there exists a finite family of open sets {Oi}i∈I and a family of balls

{B(i)}i∈I such that each Ωi := Ω ∩ Oi is star-shaped with respect to the ball B(i),
and

Ω ⊂ ∪i∈IOi.

Step 2. The main ingredient of the proof of Theorem 10.8 is the density of smooth
functions in the spaces Eq,p(Ω).

Lemma 10.2. Let Ω be a bounded Lipschitz domain and 1 ≤ p ≤ q < ∞. Then
C∞(Ω; RN ) = C∞

c (Ω) is dense in Eq,p(Ω).

Proof of Lemma 10.2. Hypothesis q ≥ p is of technical character and can be re-
laxed if, for instance, Ω is of class C1,1. It ensures that uϕ ∈ Eq,p(Ω) as soon as
ϕ ∈ C∞

c (Ω). Moreover, according to Lemma 10.1, any bounded Lipschitz domain
can be decomposed as a finite union of star-shaped domains with respect to a ball.
Using the corresponding subordinate partition of unity we may assume, without
loss of generality, that Ω is a star-shaped domain with respect to a ball centered
at the origin of the Cartesian coordinate system.

For u ∈ Eq,p(Ω) we write uτ (x) = u(τx), τ > 0, so that if τ ∈ (0, 1),
uτ ∈ Eq,p(τ−1Ω) and div(uτ ) = τ(divu)τ in D′(τ−1Ω), where τ−1Ω = {x ∈
RN | τx ∈ Ω}. We therefore have

‖div(u − uτ )‖Lp(Ω) ≤ (1 − τ)‖divu‖Lp(Ω) + ‖divu − (divu)τ‖Lp(Ω). (10.17)

Since the translations RN � h → u(· + h) ∈ Ls(RN ) are continuous for any
fixed u ∈ Ls(RN ), 1 ≤ s < ∞, the right-hand side of formula (10.17) as well as
‖u− uτ‖Lq(Ω) tend to zero as τ → 1−. Thus it is enough to prove that uτ can be
approximated in Eq,p(Ω) by functions belonging to C∞(Ω; RN ).

Since Ω ⊂ τ−1Ω, the mollified functions ζε∗uτ belong to C∞(Ω; RN )∩Eq,p(Ω)
provided 0 < ε < dist(Ω, ∂(τ−1Ω)) and tend to uτ in Eq,p(Ω) as ε → 0+ (see
Theorem 10.1). This observation completes the proof of Lemma 10.2. �

Step 3. We are now in a position to define the operator of normal traces. Let Ω be
a bounded Lipschitz domain, 1 < p < ∞, v ∈ W

1− 1
p′ ,p′

(∂Ω), and u ∈ C∞(Ω; RN).
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According to the trace theorem (see Theorem 0.6), we have∫
∂Ω

vu · n dσ =
∫

Ω

�(v)divu dx +
∫

Ω

∇�(v) · u dx,

and∣∣∣ ∫
∂Ω

vu · n dσ
∣∣∣ ≤ ‖u‖Ep(Ω) ‖�(v)‖W 1,p′(Ω) ≤ c(p, Ω)‖u‖Ep(Ω) ‖v‖W 1−1/p′,p′(∂Ω),

where the first identity is independent of the choice of the lifting operator �.
Consequently, the map

γn : u → γ0(u) · n (10.18)

is a linear, densely defined (on C∞(Ω)) and continuous operator from Ep(Ω) to
[W 1−1/p′,p′

(∂Ω)]∗ = W− 1
p ,p(∂Ω). Its value at u is termed the normal trace of u

on ∂Ω and denoted by γn(u) or (u · n)|∂Ω.

Step 4. In order to complete the proof of Theorem 10.8, it remains to show that
ker[γn] = Ep

0 (Ω). �
Lemma 10.3. Let Ω be a bounded Lipschitz domain, 1 < p < ∞, and let γn :
Ep(Ω) → W− 1

p ,p(∂Ω) be the operator defined as a continuous extension of the
trace operator introduced in (10.18). Then ker[γn] = Ep

0 (Ω).

Proof of Lemma 10.3. Clearly, C∞
c (Ω) ⊂ ker[γn]; whence, by continuity of γn,

Ep
0 (Ω) ⊂ ker[γn].

Conversely, we set

ũ(x) =

{
u(x) if x ∈ Ω,
0 otherwise.

Assumption u ∈ ker[γn] yields
∫
Ω

vdivu dx+
∫
Ω
∇v ·u dx = 0 for all v ∈ C∞

c (RN ),
meaning that, in the sense the distributions,

divũ(x) =

{
divu(x) if x ∈ Ω,

0 otherwise

}
∈ Lp(RN ),

and, finally, ũ ∈ Ep(RN ).
In agreement with Lemma 10.2, we suppose, without loss of generality, that

Ω is star-shaped with respect to the origin of the coordinate system. Similarly
to Lemma 10.2, we deduce that supp[(ũ1/τ )] belongs to the set τΩ ⊂ Ω, and,
moreover, ‖ũ− ũ1/τ‖Ep(Ω) → 0 as τ → 1−.

Consequently, it is enough to approximate ũ1/τ by a suitable function belong-
ing to the set C∞

c (Ω; RN ). However, according to Theorem 10.1, functions ζε∗u1/τ

belong to C∞
c (Ω) ∩Ep(Ω), provided 0 < ε < 1

2dist(τΩ, ∂Ω), and ζε ∗ ũ1/τ → ũ1/τ

in Ep(Ω). This completes the proof of Lemma 10.3 as well as that of Theo-
rem 10.8. �
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10.4 Singular and weakly singular operators

The weakly singular integral transforms are defined through formula

[T (f)](x) =
∫

RN

K(x, x − y)f(y) dy, (10.19)

where

K(x, z) =
θ(x, z)
|z|λ , 0 < λ < N, θ ∈ L∞(RN × R

N ). (10.20)

A function K satisfying (10.20) is called a weakly singular kernel.
The singular integral transforms are defined as

[T (f)](x) = lim
ε→0+

(∫
|x−y|≥ε

K(x, x − y)f(y) dy
)

:= v.p.

∫
RN

K(x, x − y)f(y) dy,

(10.21)
where

K(x, z) = θ(x,z/|z|)
|z|N , θ ∈ L∞(RN × S),

S = {z ∈ RN | |z| = 1},
∫
|z|=1

θ(x, z) dSz = 0.
(10.22)

The kernels satisfying (10.22) are called singular kernels of Calderón-Zygmund
type.
The basic result concerning the weakly singular kernels is the Sobolev theorem.

� Weakly Singular Integrals:

Theorem 10.9. The operator T defined in (10.19) with K satisfying (10.20) is a
bounded linear operator on Lq(RN ) with values in Lr(RN ), where 1 < q < ∞,
1
r = λ

N + 1
q − 1. In particular,

‖T (f)‖Lr(RN ) ≤ c‖f‖Lq(RN ),

where the constant c can be expressed in the form c0(q, N)‖θ‖L∞(RN×RN ).

See Stein [186, Chapter V, Theorem 1] �
The fundamental result concerning the singular kernels is the Calderón-

Zygmund theorem.

� Singular Integrals:

Theorem 10.10. The operator T defined in (10.21) with K satisfying (10.22) is a
bounded linear operator on Lq(RN ) for any 1 < q < ∞. In particular,

‖T (f)‖Lq(RN ) ≤ c‖f‖Lq(RN ),

where the constant c takes the form c = c0(q, N)‖θ‖L∞(RN×S).

See Calderón-Zygmund [38, Theorem 2], [39, Section 5, Theorem 2]. �
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10.5 The inverse of the div-operator
(Bogovskii’s formula)

We consider the problem

divxu = f in Ω, u|∂Ω = 0 (10.23)

for a given function f , where Ω ⊂ RN is a bounded domain. Clearly, problem
(10.23) admits many solutions that may be constructed in different manners. Here,
we adopt the integral formula proposed by Bogovskii [24] and elaborated by Galdi
[92]. In such a way, we resolve (10.23) for any smooth f of zero integral mean.
In addition, we deduce uniform estimates that allow us to extend solvability of
(10.23) to a significantly larger class of right-hand sides f , similarly to Geissert,
Heck and Hieber [94]. The main advantage of our construction is that it requires
only Lipschitz regularity of the underlying spatial domain. Extensions to other
geometries including unbounded domains are possible. We recommend that the
interested reader consult the monograph by Galdi [92] or [166, Chapter III] for
both positive and negative results in this direction.

Our results are summarized in the following theorem.

� The Inverse of the Div-Operator:

Theorem 10.11. Let Ω ⊂ RN be a bounded Lipschitz domain.

(i) Then there exists a linear mapping B,

B : {f | f ∈ C∞
c (Ω),

∫
Ω

f dx = 0} → C∞
c (Ω; RN ),

such that divx(B[f ]) = f , meaning, u = B[f ] solves (10.23).

(ii) We have

‖B[f ]‖W k+1,p(Ω;RN ) ≤ c‖f‖W k,p(Ω) for any 1 < p < ∞, k = 0, 1, . . . , (10.24)

in particular, B can be extended in a unique way as a bounded linear operator

B : {f | f ∈ Lp(Ω),
∫

Ω

f dx = 0} → W 1,p
0 (Ω; RN ).

(iii) If f ∈ Lp(Ω),
∫
Ω f dx = 0, and, in addition, f = divxg, where g ∈ Eq,p

0 (Ω),
1 < q < ∞, then

‖B[f ]‖Lq(Ω;R3) ≤ c‖g‖Lq(Ω;R3). (10.25)

(iv) B can be uniquely extended as a bounded linear operator

B : [Ẇ 1,p′
(Ω)]∗ = {f ∈ [W 1,p′

(Ω)]∗ | 〈f ; 1〉 = 0} → Lp(Ω; RN )
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in such a way that

−
∫

Ω

B[f ] · ∇v dx = 〈f ; v〉{[W 1,p′ ]∗;W 1,p′}(Ω) for all v ∈ W 1,p′
(Ω), (10.26)

‖B[f ]‖Lp(Ω;RN ) ≤ c‖f‖[W 1,p′(Ω)]∗ . (10.27)

Here, a function f ∈ C∞
c (Ω) is identified with a linear form in [W 1,p′

(Ω)]∗

via the standard Riesz formula

〈f ; v〉[W 1,p′ (Ω)]∗;W 1,p′ (Ω) =
∫

Ω

fv dx for all v ∈ W 1,p′
(Ω). (10.28)

Remark: Since B is linear, it is easy to check that

∂tB[f ](t, x) = B[∂tf ](t, x) for a.a. (t, x) ∈ (0, T ) × Ω (10.29)

provided

∂tf, f ∈ Lp((0, T )× Ω),
∫

Ω

f(t, ·) dx = 0 for a.a. t ∈ (0, T ).

The proof of Theorem 10.11 is given by means of several steps which may be
of independent interest.

Step 1. The first ingredient of the proof is a representation formula for functionals
belonging to [Ẇ 1,p′

(Ω)]∗.

Lemma 10.4. Let Ω be a domain in RN , and let 1 < p ≤ ∞.
Then any linear form f ∈ [Ẇ 1,p′

(Ω)]∗ admits a representation

〈 f ; v〉[Ẇ 1,p′ (Ω)]∗,Ẇ 1,p′ (Ω) =
N∑

i=1

∫
Ω

wi∂xiv dx,

where

w = [w1, . . . , wN ] ∈ Lp(Ω; RN ) and ‖f‖[Ẇ 1,p′(Ω)]∗ = ‖w‖Lp(Ω;RN ).

Proof of Lemma 10.4. The operator I : Ẇ 1,p′
(Ω) → Lp′

(Ω; RN ), I(u) = ∇u is an
isometric isomorphism mapping Ẇ 1,p′

(Ω) onto a (closed) subspace I(Ẇ 1,p′
(Ω)) of

Lp′
(Ω; RN ). The functional φ defined as

〈φ;∇u 〉 := 〈 f ; u 〉[Ẇ 1,p′ (Ω)]∗,Ẇ 1,p′ (Ω)

is a linear functional on I(Ẇ 1,p′
(Ω)) satisfying condition

sup
{
〈φ;v 〉 |v ∈ I(Ẇ 1,p′

(Ω)), ‖v‖Lp′(Ω;RN ) ≤ 1
}

= ‖f‖[Ẇ 1,p′(Ω)]∗ .
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Therefore by the Hahn-Banach theorem (see, e.g., Brezis [35, Theorem I.1]), there
exists a linear functional Φ defined on Lp′

(Ω; RN ) satisfying

〈Φ;∇u 〉 = 〈φ;∇u 〉 , u ∈ Ẇ 1,p′
(Ω), ‖Φ‖[Lp′(Ω;RN )]∗ = ‖f‖[Ẇ 1,p′(Ω)]∗ .

According to the Riesz representation theorem (cf. Remark following Theorem
0.2) there exists a unique w ∈ Lp(Ω; RN ) such that

〈Φ;v 〉 =
∫

Ω

w · v, v ∈ Lp′
(Ω; RN ),

‖Φ‖[Lp′(Ω;RN )]∗ = ‖w‖Lp(Ω;RN ).

This yields the statement of Lemma 10.4. �

Step 2. We use Lemma 10.4 to show that C∞
c (Ω) is dense in [Ẇ 1,p′

(Ω)]∗.

Lemma 10.5. Let Ω ⊂ RN be an open set, 1 < p′ ≤ ∞.
Then the set {C∞

c (Ω) |
∫
Ω

v dx = 0}, identified as a subset of [Ẇ 1,p′
(Ω)]∗ via

(10.28), is dense in [Ẇ 1,p′
(Ω)]∗.

Proof of Lemma 10.5. Let w ∈ Lp(Ω; RN ) be a representant of f ∈ [Ẇ 1,p′
(Ω)]∗

constructed in Lemma 10.4 and let wn ∈ C∞
c (Ω; RN ) be a sequence converging

strongly to w in Lp(Ω; RN ). Then a family of functionals fn = divwn ∈ {v ∈
C∞

c (Ω) |
∫
Ω v dx = 0}, defined as 〈 fn; v 〉 =

∫
Ω wn · ∇v dx = −

∫
Ω divwnv dx,

converges to f in [Ẇ 1,p′
(Ω)]∗. This completes the proof. �

Step 3. Having established the preliminary material, we focus on particular solu-
tions to the problem divxu = f with a smooth right-hand side f . These solutions
have been constructed by Bogovskii [24], and their basic properties are collected
in the following lemma.

Lemma 10.6. Let Ω be a bounded Lipschitz domain.
Then there exists a linear operator

B : {f ∈ C∞
c (Ω)|

∫
Ω

f dx = 0} → C∞
c (Ω; RN ) (10.30)

such that:

(i) divxB(f) = f , (10.31)

and

‖∇xB(f)‖W k,p(Ω;RN×N) ≤ c‖f‖W k,p(Ω), 1 < p < ∞, k = 0, 1, . . ., (10.32)

where c is a positive constant depending on k, p, diam(Ω) and the Lipschitz
constant associated to the local charts covering ∂Ω.
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(ii) If f = divxg, where g ∈ C∞
c (Ω; RN ), then

‖B(f)‖Lq(Ω;RN×N) ≤ c‖g‖Lq(Ω;R3), 1 < q < ∞, (10.33)

where c is a positive constant depending on q, diam(Ω), and the Lipschitz
constant associated to ∂Ω.

(iii) If f, ∂tf ∈ {v ∈ C∞
c (I × Ω) |

∫
Ω

v(t, x) dx = 0, t ∈ I}, where I is an (open)
interval, then

∂B(f)
∂t

(t, x) = B
(∂f

∂t

)
(t, x) for all t ∈ I, x ∈ Ω. (10.34)

Remark: In the case of a domain star-shaped with respect to a ball of radius r and
for k = 1, the estimate of the constants in (10.6), (10.33) are given by formula
(10.38) below. In the case of a Lipschitz domain, it may be evaluated by using
(10.38) combined with Lemma 10.1, and Lemma 10.7 below.

Step 4. Before starting the proof of Lemma 10.6, we observe that it is enough to
consider star-shaped domains.

Lemma 10.7. Let Ω ⊂ RN be a bounded Lipschitz domain, and let

f ∈ C∞
c (Ω),

∫
Ω

f dx = 0.

Then there exists a family of functions

fi ∈ C∞
c (Ωi),

∫
Ωi

fi dx = 0, Ωi = Ω ∩ Oi for i ∈ I,

where {O}i∈I is the covering of Ω constructed in Lemma 10.1, and Ωi are star-
shaped with respect to a ball. Moreover,

‖fi‖W k,p(Ωi) ≤ c‖f‖W k,p(Ω), 1 ≤ p ≤ ∞, k = 0, 1, . . . ,

where c is a positive constant dependent solely on p, k and |Oi|, i ∈ I.

Proof of Lemma 10.7. Let {ϕi}i∈I∪J be a partition of unity subordinate to the
covering {Oi}i∈I of Ω. We set

Ω1 = Ω ∩ O1, Ω1 = ∪i∈I\{1}Ωi, where Ωi = Oi ∩ Ω.

Next, we introduce

f1 = fϕ1 − κ1

∫
Ω1

fϕ1 dx, g = fφ − κ1

∫
Ω1

fφdx,

where
κ1 ∈ C∞

c (Ω1 ∩ Ω1),
∫

Ω

κ1 dx = 1, φ =
∑

i∈I\{1}
ϕi.
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With this choice,

f1 ∈ C∞
c (Ω1),

∫
Ω1

f1 dx = 0, g ∈ C∞
c (Ω1),

∫
Ω1

g dx = 0,

and both f1 and g satisfy W k,p-estimates stated in Lemma 10.7. Applying the
above procedure to g in place of f and to Ω1 in place of Ω, we can proceed by
induction and complete the proof after a finite number of steps. �

Step 5.

Proof of Lemma 10.6. In view of Lemma 10.7, it is enough to assume that Ω is a
star-shaped domain with respect to a ball B(0; r), where the latter can be taken
of radius r centered at the origin of the coordinate system.

In such a case, a possible candidate satisfying all properties stated in Lemma
10.6 is the so-called Bogovskii’s solution given by the explicit formula:

B[f ](x) =
∫

Ω

f(y)
[ x − y

|x − y|N
∫ ∞

|x−y|
ζr

(
y + s

x − y

|x − y|
)
sN−1 ds

]
dy, (10.35)

or, equivalently, after the change of variables z = x − y, r = s/|z|,

B[f ](x) =
∫

RN

[
f(x − z)z

∫ ∞

1

ζr(x − z + rz)rN−1 dr
]
dz, (10.36)

where ζr is a mollifying kernel specified in (10.1–10.2). A detailed inspection of
these formulas yields all statements of Lemma 10.6.

Thus, for example, we deduce from (10.36) that B[f ] ∈ C∞(Ω), and that
supp[B[f ]] ⊂ M where

M = {z ∈ Ω | z = λz1 + (1 − λ)z2, z1 ∈ supp(f), z2 ∈ B(r; 0), λ ∈ [0, 1]}.

Since M is closed and contained in Ω, (10.30) follows.
Now we explain how to get (10.6) and estimate (10.6) with k = 1. Differen-

tiating (10.36) we obtain

(
∂iBj(f)

)
(x) =

∫
RN

∂f

∂xi
(x − z)zj

[ ∫ ∞

1

ζr(x − z + rz)rN−1 dr
]
dz

+
∫

RN

f(x − z)zj

[ ∫ ∞

1

∂ζr

∂xi

(
x − z + rz

)
rN dr

]
dz.

Next, we split the set RN in each integral into a ball B(0; ε) and its comple-
ment, realizing that the integrals over B(0; ε) tend to zero as ε → 0+. The first
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of the remaining integrals over RN \B(0; ε) is handled by means of integration by
parts. This direct but rather cumbersome calculation leads to

(
∂iBj [f ]

)
(x) = lim

ε→0+

{∫
|z|≥ε

f(x − z)

×
[
δi,j

∫ ∞

1

ζr(x − z + rz)rN−1 dr + zj

∫ ∞

1

∂ζr

∂xi

(
x − z + rz

)
rN dr

]
dz

+
∫
|z|=ε

f(x − z)
[
zj

zi

|z|

∫ ∞

1

ζr(x − z + rz)rN−1 dr

]
dσz

}
,

or, equivalently,

(
∂iBj [f ]

)
(x) = lim

ε→0+

{∫
|y−x|≥ε

f(y)

×
[

δi,j

|x − y|N
∫ ∞

0

ζr

(
x + r

x − y

|x − y|
)
(|x − y| + r)N−1 dr

+
xj − yj

|x − y|N+1

∫ ∞

0

∂ζr

∂xi

(
x + r

x − y

|x − y|
)
(|x − y| + r)N dr

]
dy

}

+ f(x) lim
ε→0+

{∫
|z|=ε

[
zj

zi

|z|

∫ ∞

1

ζr(x − z + rz)rN−1 dr

]
dσz

}
,

where we have used the fact that

lim
ε→0+

{∫
|z|=ε

[(
f(x − z) − f(x)

)
zj

zi

|z|

∫ ∞

1

ζr(x − z + rz)rN−1 dr
]
dσz

}
= 0.

Developing the expressions (|x − y| + r)N−1, (|x − y| + r)N in the volume
integral of the above identity by using the binomial formula, we obtain(

∂iBj [f ]
)
(x) = v.p.

( ∫
Ω

Ki,j(x, x − y)f(y) dy
)

(10.37)

+
∫

Ω

Gi,j(x, x − y)f(y) dy + f(x)Hi,j(x).

The terms on the right-hand side have the following properties:

(i) The first kernel reads

Ki,j(x, z) =
θi,j(x, z/|z|)

|z|N

with

θi,j

(
x,

z

|z|
)

= δi,j

∫ ∞

0

ζr

(
x + r

z

|z|
)
rN−1 dr +

zj

|z|

∫ ∞

0

∂ζr

∂xi

(
x + r

z

|z|
)
rN dr.
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Thus a close inspection shows that∫
|z|=1

θ(x, z) dσz = 0, x ∈ R
N ,

|θ(x, z)| ≤ c(N)
(diam(Ω))N

rN

(
1 +

diam(Ω)
r

)
, x ∈ R

N , |z| = 1.

We infer that Ki,j are singular kernels of Calderón-Zygmund type obey-
ing conditions (10.22) that were investigated in Theorem 10.10.

(ii) The second kernel reads

Gi,j(x, z) =
θi,j(x, z)
|z|N−1

,

where

|θi,j(x, z)| ≤ c(N)
(diam(Ω))N

rN

(
1 +

diam(Ω)
r

)
, (x, z) ∈ R

N × R
N .

Thus Gi,j are weakly singular kernels obeying conditions (10.20) discussed
in Theorem 10.9.

(iii) Finally,

Hi,j(x) =
∫

RN

zizj

|z|2 ζr(x + z) dz,

where

|Hi,j(x)| ≤ c(N)
(diam(Ω))N

rN
, x ∈ R

N and
N∑

i=1

Hi,i(x) = 1.

Using these facts together with Theorems 10.9, 10.10 we easily verify estimate
(10.6) with k = 1. We are even able to give an explicit formula for the constant
appearing in the estimate, namely

c = c0(p, N)
(diam(Ω)

r

)N(
1 +

diam(Ω)
r

)
. (10.38)

Since

d

dr

[
ζr

(
x + r

x − y

|x − y|
)
(|x − y| + r)N

]

=
N∑

k=1

xk − yk

|x − y|
∂ζr

∂xk

(
x + r

x − y

|x − y|
)
(|x − y| + r)N

+ Nζr

(
x + r

x − y

|x − y|
)
(|x − y| + r)N−1,
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we have
N∑

i=1

(∫
|x−y|≥ε

f(y)(Ki,i(x, x − y) + Gi,i(x, x − y)
)

dy = ζr(x)
∫

Ω

f(y) dy = 0.

Moreover, evidently,
N∑

i=1

Hi,i(x) =
∫

Ω

ζr(y) dy = 1;

whence (10.6) follows directly from (10.37).
In a similar way, the higher order derivatives of B[f ] can be calculated by

means of formula (10.36). Moreover, they can be shown to obey a representation
formula of type (10.37), where, however, higher derivatives of f do appear; this
leads to estimate (10.6) with an arbitrary positive integer k.

Last but not least, formula (10.36) written in terms of divxg yields, after
integration by parts, a representation of B[divxg] of type (10.37), with f replaced
by g. Again, the same reasoning as above yields naturally estimate (10.33).

Finally, property (10.34) is a consequence of the standard result concerning
integrals dependent on a parameter.

The proof of Lemma 10.6 is thus complete. �

Step 6.

End of the proof of Theorem 10.11. For

〈 f ; v 〉[Ẇ 1,p′(Ω)]∗,Ẇ 1,p′ (Ω) =
∫

Ω

w · ∇v dx, with w ∈ Lp(Ω; RN ),

we can take
〈 fε; v 〉[Ẇ 1,p′ (Ω)]∗,Ẇ 1,p′ (Ω) =

∫
Ω

wε · ∇v dx,

where wε ∈ C∞
c (Ω; RN ) have been constructed in Lemma 10.5.

Furthermore, let hε ∈ Lp(Ω; RN ),∫
Ω

fεv dx = −
∫
Ω

hε · ∇v dx for all v ∈ C∞(Ω),

‖fε‖[Ẇ 1,p′ (Ω)]∗,Ẇ 1,p′ (Ω) = ‖hε‖Lp(Ω;RN ),

be a sequence of representants of fε introduced in Lemma 10.4. The last formula
yields

fε = divhε,

∫
Ω

(
vdivhε + hε · ∇v

)
dx = 0,

meaning, in particular,

γn(hε) = 0 and, equivalently, hε ∈ Ep
0 (Ω), 1 < p < ∞

(see (10.8) in Theorem 10.8).
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In view of the basic properties of the spaces Ep
0 (Ω), we can replace hε by

gε ∈ C∞
c (Ω; RN ) so that

‖hε − gε‖Ep(Ω) → 0.

In particular, the sequence f̃ε, < f̃ε; v >[Ẇ 1,p′ (Ω)]∗,Ẇ 1,p′ (Ω)=
∫
Ω

gε · ∇v dx, con-

verges to f , 〈 f ; v 〉[Ẇ 1,p′ (Ω)]∗,Ẇ 1,p′(Ω) =
∫
Ω w · ∇v dx, strongly in [Ẇ 1,p′

(Ω)]∗.
Due to estimate (10.33), the operator B is densely defined and continuous

from [Ẇ 1,p′
(Ω)]∗ to Lp(Ω; RN ), therefore it can be extended by continuity to the

whole space [Ẇ 1,p′
(Ω)]∗.

If 〈 f ; v 〉[Ẇ 1,p′ (Ω)]∗,Ẇ 1,p′(Ω) =
∫
Ω wv dx, with w = W k,p

0 (Ω) ∩ L̇p(Ω), we take
fε such that 〈 fε; v 〉[Ẇ 1,p′ (Ω)]∗,Ẇ 1,p′ (Ω) =

∫
Ω wεv dx, wε = ζε ∗ w − κ

∫
Ω(ζε ∗w) dx,

where κ ∈ C∞
c (Ω),

∫
Ω κ dx = 0 so that

C∞
c (Ω) � fε = wε → f = w in W k,p(Ω).

If 〈 f ; v 〉[Ẇ 1,p′ (Ω)]∗,Ẇ 1,p′ (Ω) =
∫
Ω

w · ∇v dx with w ∈ Eq,p
0 (Ω), we take a se-

quence fε such that 〈 fε; v 〉[Ẇ 1,p′ (Ω)]∗,Ẇ 1,p′ (Ω) =
∫
Ω wε·∇v dx, with w ∈ Lp(Ω; RN )

=
∫
Ω divwεv dx, where wε ∈ C∞

c (Ω; RN ), wε → w in Eq,p
0 (Ω).

By virtue of estimates (10.6), (10.33), the operator B is in both cases a
densely defined bounded linear operator on W k,p

0 (Ω) (↪→ [Ẇ 1,p′
(Ω)]∗) ranging in

W k+1,p
0 (Ω), and on Eq,p

0 (Ω) (↪→ [Ẇ 1,p′
(Ω)]∗) with values in Lq(Ω) ∩ W 1,p

0 (Ω); in
particular, it can be continuously extended to W k,p

0 (Ω), and Eq,p
0 (Ω), respectively.

This completes the proof of Theorem 10.11. �

10.6 Helmholtz decomposition

Let Ω be a domain in RN . Set

Lp
σ(Ω; RN ) = {v ∈ Lp(Ω; RN ) | divxv = 0, v · n|∂Ω = 0}

and
Lp

g,η(Ω; RN ) = {v ∈ Lp(Ω; RN ) | v = η∇xΨ, Ψ ∈ W 1,p
loc (Ω)},

where η ∈ C(Ω). The definition and the basic properties of the Helmholtz decom-
position are collected in the following theorem.

� Helmholtz Decomposition:

Theorem 10.12. Let Ω be a bounded domain of class C1,1, and let

η ∈ C1(Ω), inf
x∈Ω

η(x) = η > 0.
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Then the Lebesgue space Lp(Ω; RN ) admits a decomposition

Lp(Ω; RN ) = Lp
σ(Ω; RN ) ⊕ Lp

g,η(Ω; RN ), 1 < p < ∞;

more precisely,

v = Hη[v] + H⊥
η [v] for any v ∈ Lp(Ω; RN ),

with H⊥
η [v] = η∇xΨ, where Ψ ∈ W 1,p(Ω) is the unique (weak) solution of the

Neumann problem∫
Ω

η∇xΨ · ∇xϕ dx =
∫

Ω

v · ∇xϕ dx for all ϕ ∈ C∞(Ω),
∫

Ω

Ψ dx = 0.

In the particular case p = 2, the decomposition is orthogonal with respect to the
weighted scalar product

〈v;w〉1/η =
∫

Ω

v ·wdx

η
.

Proof. We start the proof with a lemma which is of independent interest.

Lemma 10.8. Let Ω be a bounded domain of class C0,1 and 1 < p < ∞. Then

Lp
σ(Ω; RN ) = closureLp(Ω;RN )C

∞
c,σ(Ω; RN ),

where
C∞

c,σ(Ω; RN ) = {v ∈ C∞
c (Ω; RN ) | divxv = 0}.

Proof of Lemma 10.8. Let u ∈ Lp
σ(Ω; R3). Due to Lemma 10.3, there exists a

sequence wε ∈ C∞
c (Ω, RN ), such that wε → u in Lp(Ω; R3) and divxwε → 0 in

Lp(Ω) as ε → 0+. Next we take the sequence uε = wε − B[divxwε], where B is
the Bogovskii operator introduced in Section 10.5. According to Theorem 10.11,
the functions uε belong to C∞

c,σ(Ω; RN ) and the sequence {uε}ε>0 converges to u
in Lp(Ω; RN ). This completes the proof of Lemma 10.8. �

Existence and uniqueness of Ψ follow from Theorems 10.4, 10.5. Evidently,
according to the definition, Hη[v] = v − η∇xΨ ∈ Lp

σ(Ω; RN ). Finally, we may
use density of C∞

c,σ(Ω; RN ) in Lp
σ(Ω; RN) and integration by parts to show that

the spaces L2
σ(Ω; RN ) and L2

g,η(Ω; RN ) are orthogonal with respect to the scalar
product 〈·; ·〉1/η. This completes the proof of Theorem 10.12. �

Remark: In accordance with the regularity properties of the elliptic operators re-
viewed in Section 10.2.1, both Hη and H⊥

η are continuous linear operators on
Lp(Ω; RN ) and W 1,p(Ω; RN ) for any 1 < p < ∞ provided Ω is of class C1,1.

If η = 1, we recover the classical Helmholtz decomposition denoted as H,
H⊥ (see, for instance, Galdi [92, Chapter 3]). The result can be extended to a
considerably larger class of domains, in particular, it holds for any domain Ω ⊂ R

3
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if p = 2. For more details about this issue in the case of arbitrary 1 < p < ∞ see
Farwig, Kozono, Sohr [76] or Simader, Sohr [183], and references quoted therein.

If Ω = R
N , the operator H⊥ can be defined by means of the Fourier multiplier

H⊥[v](x) = F−1
ξ→x

[
ξ ⊗ ξ

|ξ|2 Fx→ξ[v]
]

.

10.7 Function spaces of hydrodynamics

Let Ω be a domain in RN . We introduce the following closed subspaces of the
Sobolev space W 1,p(Ω; RN ), 1 ≤ p ≤ ∞:

W 1,p
0,σ (Ω) = {v ∈ W 1,p

0 (Ω; RN ) | divx v = 0},
W 1,p

n (Ω) = {v ∈ W 1,p(Ω; RN ) |v · n|∂Ω = 0},
W 1,p

n,σ(Ω; RN ) = {v ∈ W 1,p
n (Ω) | divxv = 0}.

We also consider the vector spaces

C∞
c,σ(Ω; RN ) = {v ∈ C∞

c (Ω; RN ) | divv = 0},
Ck,ν

n (Ω; RN ) = {v ∈ Ck,ν
c (Ω; RN ) |v · n|∂Ω = 0},

Ck,ν
n,σ(Ω, RN ) = {v ∈ Ck,ν

n (Ω; RN ) | divxv = 0},
C∞

n (Ω; RN ) = ∩∞
k=1C

k,ν
n (Ω; RN ), C∞

n (Ω; RN ) = ∩∞
k=1C

k,ν
n,σ(Ω; RN ).

Under certain regularity assumptions on the boundary ∂Ω, these spaces are
dense in the afore-mentioned Sobolev spaces, as stated in the following theorem.

� Density of Smooth Functions:

Theorem 10.13. Suppose that Ω is a bounded domain in RN , and 1 < p < ∞.
Then we have:

(i) If the domain Ω is of class C0,1, then the vector space C∞
c,σ(Ω; RN ) is dense

in W 1,p
0,σ (Ω; RN ).

(ii) Suppose that Ω is of class Ck,ν , ν ∈ (0, 1), k = 2, 3, . . ., then the vector space
Ck,ν

n,σ(Ω; RN ) is dense in W 1,p
n,σ(Ω; RN ).

(iii) Finally, if Ω is of class Ck,ν , ν ∈ (0, 1), k = 2, 3, . . ., then the vector space
Ck,ν

n (Ω; RN ) is dense in W 1,p
n (Ω; RN ).

Proof. Step 1. In order to show statement (i), we reproduce the proof of Galdi
[92, Section II.4.1]. Let v ∈ W 1,p

0,σ (Ω) ↪→ W 1,p
0 (Ω; RN ). There exists a sequence

of smooth functions wε ∈ C∞
c (Ω; RN ) such that wε → v in W 1,p(Ω; RN ), and,

obviously, divwε → 0 in Lp(Ω). Let uε = B[divxwε], where B ≈ div−1
x is the
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operator constructed in Theorem 10.11. In accordance with Theorem 10.11, uε ∈
C∞

c (Ω; RN ), divuε = divwε, and ‖uε‖W 1,p(Ω;RN ) → 0.
In view of these observations, we have

vε = wε − uε ∈ C∞
c (Ω; RN ), divxvε = 0,

vε → v in W 1,p(Ω; RN )

yielding part (i) of Theorem 10.13.

Step 2. Let v ∈ W 1,p
n,σ(Ω; RN ) ↪→ W 1,p(Ω; RN ). Take wε ∈ C∞

c (Ω; RN ) such that
wε → v in W 1,p(Ω; RN ). Obviously, we have

divwε → 0 in Lp(Ω), wε · n|∂Ω → 0 in W 1− 1
p ,p(∂Ω).

Let ϕε ∈ Ck,ν
c (Ω),

∫
Ω ϕε dx = 0 be an auxiliary function satisfying

Δϕε = divwε, ∇ϕε · n|∂Ω = wε · n|∂Ω.

Then, in accordance with Theorem 10.2,

Ck,ν
n,σ(Ω; RN ) � wε −∇ϕε → v in W 1,p(Ω; RN ).

This finishes the proof of part (ii).

Step 3. Let v ∈ W 1,p
n (Ω; RN ). We take u = B(divxv), where B is the Bogovskii op-

erator constructed in Theorem 10.11, and set w = v−u. Clearly w ∈ W 1,p
n,σ(Ω; RN ).

In view of statement (ii), there exists a sequence wε ∈ Ck,ν
n,σ(Ω; RN ) such that

wε → w in W 1,p(Ω; RN ).

On the other hand, for u belonging to W 1,p
0 (Ω; RN ), there exists a sequence uε ∈

C∞
c (Ω; RN ) such that

uε → u in W 1,p(Ω; RN ).

The sequence vε = wε +uε belongs to Ck,ν
n (Ω; RN) and converges in W 1,p(Ω; RN )

to v.
This completes the proof of Theorem 10.13 �

The hypotheses concerning regularity of the boundary in statements (ii), (iii)
are not optimal but sufficient in all applications treated in this book.

If the domain Ω is of class C∞, the density of the space C∞
n (Ω; RN) in

W 1,p
n (Ω; RN ) and of C∞

n,σ(Ω; RN) in W 1,p
n (Ω; RN ) is a consequence of the theorem.
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10.8 Poincaré type inequalities

The Poincaré type inequalities allow us to estimate the Lp-norm of a function by
the Lp-norms of its derivatives. The basic result in this direction is stated in the
following lemma.

� Poincaré Inequality:

Lemma 10.9. Let 1 ≤ p < ∞, and let Ω ⊂ RN be a bounded Lipschitz domain.
Then the following holds:

(i) For any A ⊂ ∂Ω with non-zero surface measure, there exists a positive con-
stant c = c(p, N, A, Ω) such that

‖v‖Lp(Ω) ≤ c

(
‖∇v‖Lp(Ω;RN ) +

∫
A

|v| dSx

)
for any v ∈ W 1,p(Ω).

(ii) There exists a positive constant c = c(p, Ω) such that

‖v − 1
|Ω|

∫
Ω

v dx‖Lp(Ω) ≤ c‖∇v‖Lp(Ω;RN ) for any v ∈ W 1,p(Ω).

The above lemma can be viewed as a particular case of more general results,
for which we refer to Ziemer [207, Chapter 4, Theorem 4.5.1].

Applications in fluid mechanics often require refined versions of Poincaré
inequality that are not directly covered by the standard theory. Let us quote
Babovski, Padula [11] or [67] as examples of results going in this direction. The
following version of the refined Poincaré inequality is sufficiently general to cover
all situations treated in this book.

� Generalized Poincaré Inequality:

Theorem 10.14. Let 1 ≤ p ≤ ∞, 0 < Γ < ∞, V0 > 0, and let Ω ⊂ RN be a bounded
Lipschitz domain.

Then there exists a positive constant c = c(p, Γ, V0) such that

‖ v ‖W 1,p(Ω) ≤ c
[
‖∇xv‖Lp(Ω;RN ) +

( ∫
V

|v|Γdx
) 1

Γ
]

for any measurable V ⊂ Ω, |V | ≥ V0 and any v ∈ W 1,p(Ω).

Proof. Fixing the parameters p, Γ, V0 and arguing by contradiction, we construct
sequences wn ∈ W 1,p(Ω), Vn ⊂ Ω such that

‖wn‖Lp(Ω) = 1, ‖∇wn‖W 1,p(Ω;RN ) +
( ∫

Vn

|wn|Γ dx
) 1

Γ
<

1
n

, (10.39)

|Vn| ≥ V0. (10.40)
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By virtue of (10.39), we have, at least for a chosen subsequence,

wn → w in W 1,p(Ω) where w = |Ω|− 1
p .

Consequently, in particular, ∣∣∣{wn ≤ w

2
}
∣∣∣→ 0. (10.41)

On the other hand, by virtue of (10.39)∣∣∣{wn ≥ w

2
} ∩ Vn

∣∣∣ ≤ (2/w
)Γ
∫

Vn

wΓ
n dx → 0,

in contrast to∣∣∣{wn ≥ w

2
} ∩ Vn

∣∣∣ = ∣∣∣Vn \ {wn <
w

2
}
∣∣∣ ≥ ∣∣∣Vn

∣∣∣− ∣∣∣{wn <
w

2
}
∣∣∣ ≥ V0,

where the last statement follows from (10.40), (10.41). �

Another type of Poincaré inequality concerns norms in the negative Sobolev
spaces in the spirit of Nečas [162].

� Poincaré inequality in negative spaces:

Lemma 10.10. Let Ω be a bounded Lipschitz domain, 1 < p < ∞, and k = 0, 1, . . ..
Let κ ∈ W k,p′

0 (Ω),
∫
Ω κ dx = 1 be a given function.

(i) Then we have

‖f‖W−k,p(Ω) ≤ c
(
‖∇xf‖W−k−1,p(Ω;RN ) +

∣∣∣ ∑
|α|≤k

(−1)|α|
∫

Ω

wα∂ακ dx
∣∣∣)

for any f ∈ W−k,p(Ω), (10.42)

where {wα}|α|≤k, wα ∈ Lp(Ω) is an arbitrary representative of f constructed
in Theorem 0.3, and c is a positive constant depending on p, N , Ω.

(ii) In particular, if k = 0, inequality (10.42) reads

‖f‖Lp(Ω) ≤ c
(
‖∇f‖W−1,p(Ω;RN ) +

∣∣∣ ∫
Ω

fκ dx
∣∣∣).

Proof. Since C∞
c (Ω) is dense in W−k,p(Ω), it is enough to suppose that f is

smooth. By direct calculation, we get

‖f‖W−k,p(Ω) = sup
g∈W k,p′

0 (Ω)

∫
Ω fg dx

‖g‖W k,p′(Ω)
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≤ sup
g∈W k,p′

0 (Ω)

( ∫
Ω f [g − κ

∫
Ω g dx] dx

‖g − κ
∫
Ω

g dx‖W k,p′ (Ω)

×
‖g − κ

∫
Ω g dx‖W k,p′ (Ω)

‖g‖W k,p′(Ω)

)

+ sup
g∈W k,p′

0 (Ω)

(
∫
Ω

g dx)(
∫
Ω

fκ dx)
‖g‖W k,p′(Ω)

≤ c(p, Ω)
(

sup
v∈W k+1,p′

0 (Ω;RN )

∫
Ω

fdivxv dx

‖v‖W k+1,p′(Ω;RN )

+
∣∣∣ ∑
|α|≤k

(−1)α

∫
Ω

wα∂ακ dx
∣∣∣),

where {wα}α≤k is any representative of f (see formula (3) in Theorem 0.3), and
where the quantity W k+1,p′

0 (Ω) � v = B(g − κ
∫

g dx) appearing on the last line
is a solution of problem

divxv = g − κ

∫
Ω

g dx, ‖v‖W k+1,p′Ω) ≤ c(p, Ω)
∥∥∥g − κ

∫
Ω

g dx
∥∥∥

W k,p′ (Ω)

constructed in Theorem 10.11.
The proof of Lemma 10.10 is complete. �

10.9 Korn type inequalities

Korn’s inequality has played a central role not only in the development of linear
elasticity but also in the analysis of viscous incompressible fluid flows. The reader
interested in this topic can consult the review paper of Horgan [116], the recent
article of Dain [53], and the relevant references cited therein. While these results
rely mostly on the Hilbertian L2-setting, various applications in the theory of
compressible fluid flows require a general Lp-setting and even more.

We start with the standard formulation of Korn’s inequality providing a
bound of the Lp-norm of the gradient of a vector field in terms of the Lp-norm of
its symmetric part.

� Korn’s Inequality in Lp
:

Theorem 10.15. Assume that 1 < p < ∞.
(i) There exists a positive constant c = c(p, N) such that

‖∇v‖Lp(RN ;RN×N) ≤ c‖∇v + ∇T v‖Lp(RN ;RN×N)

for any v ∈ W 1,p(RN ; RN ).
(ii) Let Ω ⊂ RN be a bounded Lipschitz domain. Then there exists a positive

constant c = c(p, N, Ω) > 0 such that

‖v‖W 1,p(Ω;RN ) ≤ c
(
‖∇v + ∇T v‖Lp(Ω,RN×N) +

∫
Ω

|v| dx
)

for any v ∈ W 1,p(Ω; RN ).
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Proof. Step 1. Since C∞
c (RN ; RN ) is dense in W 1,p(RN ; RN ), we may suppose that

v is smooth with compact support. We start with the identity

∂xk
∂xj vs = ∂xj Ds,k + ∂xk

Ds,j − ∂xsDj,k, (10.43)
where

D = (Di,j)N
i,j=1, Di,j =

1
2
(∂xj ui + ∂xiuj).

Relation (10.43), rewritten in terms of the Fourier transform, reads

ξkξjFx→ξ(vs) = −i
(
ξjFx→ξ(Ds,k) + ξkFx→ξ(Ds,j) − ξsFx→ξ(Dj,k

)
.

Consequently,

Fx→ξ(∂xk
vs) = Fx→ξ(Ds,k) +

ξjξk

|ξ|2 Fx→ξ(Ds,j) −
ξjξs

|ξ|2 Fx→ξ(Dj,k).

Thus estimate (i) follows directly from the Hörmander-Mikhlin theorem (Theo-
rem 0.7).

Step 2. Similarly to the previous part, it is enough to consider smooth functions
v. Lemma 10.10 applied to formula (10.43) yields

‖∇v‖Lp(Ω;RN×N ) ≤ c
(
‖D‖Lp(Ω;RN×N) +

∣∣∣ ∫
Ω

∇vκ dx
∣∣∣),

where κ ∈ C∞
c (Ω),

∫
Ω κ dx = 1. Consequently, estimate (ii) follows. �

In applications to models of compressible fluids, it is useful to replace the
symmetric gradient in the previous theorem by its traceless part. A satisfactory
result is stated in the following theorem.

� Generalized Korn’s Inequality:

Theorem 10.16. Let 1 < p < ∞, and N > 2.

(i) There exists a positive constant c = c(p, N) such that

‖∇v‖Lp(RN ;RN×N) ≤ c‖∇v + ∇T v − 2
N

divvI‖Lp(RN ;RN×N)

for any v ∈ W 1,p(RN ; RN ), where I = (δi,j)N
i,j=1 is the identity matrix.

(ii) Let Ω ⊂ R
N be a bounded Lipschitz domain. Then there exists a positive

constant c = c(p, N, Ω) > 0 such that

‖v‖W 1,p(Ω;RN ) ≤ c
(
‖∇v + ∇T v − 2

N
divvI‖Lp(Ω;RN×N ) +

∫
Ω

|v| dx
)

for any v ∈ W 1,p(Ω; RN ).
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Remark: As a matter of fact, part (i) of Theorem 10.16 holds for any N ≥ 1. On
the other hand, statement (ii) may fail for N = 2 as shown by Dain [53].

Proof. Step 1. In order to show (i), we suppose, without loss of generality, that v
is smooth and has a compact support in RN . Straightforward algebra yields

∂xk
∂xj vs = ∂xj Ds,k + ∂xk

Ds,j − ∂xsDj,k

+
1
N

(
δs,k∂xj divxv + δs,j∂xk

divxv − δj,k∂xsdivxv
)
,

(10.44)

(N − 2)∂xsdivxv = 2N∂xk
Ds,k − NΔvs, (10.45)

∂xj (Δvs) = ∂xj ∂xk
Ds,k + ΔDj,s − ∂xs∂xk

Dj,k +
1

N − 1
δj,s∂xk

∂xnDk,n, (10.46)

where D = (Di,j)N
i,j=1 denotes the tensor

D =
1
2
(∇xv + ∇T

x v) − 1
N

divxvI.

Moreover, we deduce from (10.44) that

Fx→ξ(∂xk
vs) = Fx→ξ(Ds,k) +

ξkξj

|ξ|2 Fx→ξ(Ds,j) (10.47)

− ξsξj

|ξ|2 Fx→ξ(Dj,k) +
1
N

δs,kFx→ξ(divv),

where, according to (10.45), (10.46),

Fx→ξ(divv) =
N

N − 2
1
|ξ|2Fx→ξ

(
∂s(Δvs)

)
+

2N

N − 2
ξsξj

|ξ|2 Fx→ξ(Ds,j),

with
1
|ξ|2Fx→ξ

(
∂s(Δvs)

)
= −

(
Fx→ξ(Ds,s) +

N

N − 1
ξkξn

|ξ|2 F(Dk,n)
)
.

Thus, estimate (i) follows from (10.47) via the Hörmander-Mikhlin multiplier the-
orem.

Step 2. Similarly to the previous step, it is enough to show (ii) for a smooth v. By
virtue of Lemma 10.10, we have

‖∂xk
vj‖Lp(Ω) ≤ c(p, Ω)

(
‖∇x∂xk

vj‖W−1,p(Ω;RN ) +
∣∣∣ ∫

Ω

∂xk
vjκ dx

∣∣∣), (10.48)

and

‖Δvs‖W−1,p(Ω) ≤ c(p, Ω)
(
‖∇xΔvs‖W−2,p(Ω;RN ) +

∣∣∣ ∫
Ω

Δvsκ̃ dx|
)

(10.49)

for any κ ∈ Lp′
(Ω),

∫
Ω κ dx = 1, κ̃ ∈ W 1,p′

0 (Ω),
∫
Ω κ̃dx = 1.
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Using the basic properties of the W−1,p-norm we deduce from identities
(10.44–10.45) that

‖∇x∂xk
vj‖W−1,p(Ω;RN ) ≤ c

(
‖D‖Lp(Ω;RN ) + ‖Δv‖W−1,p(Ω;RN )

)
,

where the second term at the right-hand side is estimated by help of identity
(10.46) and inequality (10.49). Coming back to (10.48) we get

‖∂xk
vj‖Lp(Ω) ≤ c(p, Ω)

(
‖D‖Lp(Ω;RN ) +

∣∣∣ ∫
Ω

∂xk
vjκ dx

∣∣∣+ ∣∣∣ ∫
Ω

Δvj κ̃ dx
∣∣∣),

which, after by-parts integration and with a particular choice κ ∈ C1
c (Ω), κ̃ ∈

C2
c (Ω), yields estimate (ii). �

We conclude this part with another generalization of the previous results.

� Generalized Korn-Poincaré Inequality:

Theorem 10.17. Let Ω ⊂ RN , N > 2 be a bounded Lipschitz domain, and let
1 < p < ∞, M0 > 0, K > 0, γ > 0.

Then there exists a positive constant c = c(p, M0, K, γ) such that the inequal-
ity

‖v‖W 1,p(Ω;RN ) ≤ c
(∥∥∥∇xv + ∇T

x v − 2
N

divv I

∥∥∥
Lp(Ω;RN )

+
∫

Ω

r|v| dx
)

holds for any v ∈ W 1,p(Ω; RN ) and any non-negative function r such that

0 < M0 ≤
∫

Ω

r dx,

∫
Ω

rγ dx ≤ K for a certain γ > 1. (10.50)

Proof. Without loss of generality, we may assume that γ > max{1, Np
(N+1)p−N }.

Indeed replacing r by Tk(r), where Tk(z) = max{z, k}, we can take k = k(M0, γ)
large enough. Moreover, it is enough to consider smooth functions v.

Fixing the parameters K, M0, γ we argue by contradiction. Specifically, we
construct a sequence wn ∈ W 1,p(Ω; RN ) such that

‖wn‖W 1,p(Ω;RN ) = 1, wn → w weakly in W 1,p(Ω; RN ) (10.51)

and ∥∥∥∇xwn + ∇T
x wn − 2

N
divxwn I

∥∥∥
Lp(Ω;RN )

+
∫

Ω

rn|wn| dx <
1
n

(10.52)

for certain
rn → r weakly in Lγ(Ω),

∫
Ω

r dx ≥ M0 > 0. (10.53)
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Consequently, due to the compact embedding W 1,p(Ω) into Lp(Ω), and by
virtue of Theorem 10.16,

wn → w strongly in W 1,p(Ω; RN ). (10.54)

Moreover, in agreement with (10.51–10.54), the limit w satisfies the identities

‖w‖W 1,p(Ω;RN ) = 1, (10.55)

∇w + ∇T w − 2
N

divwI = 0, (10.56)∫
Ω

r|w| dx = 0. (10.57)

Equation (10.56) which is valid provided N > 2, implies that Δdivw = 0 and
Δw = 2−N

N divw, see (10.45), (10.46). In particular, in agreement with remarks
after Theorem 10.2 in Appendix, w is analytic in Ω. On the other hand, according
to (10.57), w vanishes on the set {x ∈ Ω | r(x) > 0} of a non-zero measure; whence
w ≡ 0 in Ω in contrast with (10.57).

Theorem 10.17 has been proved. �

10.10 Estimating ∇u by means of divxu and curlxu

� Estimating ∇u in Terms of divxu and curlxu:

Theorem 10.18. Assume that 1 < p < ∞.
(i) Then

‖∇u‖Lp(RN ;RN×N) ≤ c(p, N)
(
‖divxu‖Lp(RN ) + ‖curlxu‖Lp(RN ;RN×N )

)
,

for any u ∈ W 1,p(RN ; RN ).
(10.58)

(ii) If Ω ⊂ RN is a bounded domain, then

‖∇u‖Lp(Ω;RN×N ) ≤ c
(
‖divxu‖Lp(Ω) + ‖curlxu‖Lp(Ω;RN×N)

)
,

for any u ∈ W 1,p
0 (Ω; RN ).

(10.59)

Proof. To begin, observe that it is enough to show the estimate for

u ∈ C∞
c (RN ; RN ).

To this end, we write

i
N∑

k=1

ξkFx→ξ(uk) = Fx→ξ(divxu),

i
(
ξkFx→ξ(uj) − ξjFx→ξ(uk)

)
= Fx→ξ([curl]j,ku), j �= k.
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Solving the above system we obtain

i|ξ|2Fx→ξ(uk) = ξkFx→ξ(divu) +
∑
j �=k

ξjFx→ξ([curl]k,ju),

for k = 1, . . . , N . Consequently, we deduce

Fx→ξ(∂xruk) =
ξkξr

|ξ|2 Fx→ξ(divu) +
∑
j �=k

ξjξr

|ξ|2 Fx→ξ([curl]k,ju).

Thus estimate (10.58) is obtained as a direct consequence of the Hörmander-
Mikhlin theorem on multipliers (Theorem 0.7). �

If the trace of u does not vanish on ∂Ω, the estimates of type (10.58) depend
strongly on the geometrical properties of the domain Ω, namely on the values of
its first and second Betti numbers.

For example, the estimate

‖∇u‖Lp(Ω;R3×3) ≤ c(p, N, Ω)
(
‖divxu‖Lp(Ω) + ‖curlxu‖Lp(Ω;R3×3)

)
holds

(i) for any u ∈ W 1,p(Ω; R3), u×n|∂Ω = 0, provided Ω is a bounded domain with
the boundary of class C1,1 and the set R3\Ω is (arcwise) connected (meaning
R3 \ Ω does not contain a bounded (arcwise) connected component);

(ii) for any u ∈ W 1,p(Ω; R3), u · n|∂Ω = 0, if Ω is a bounded domain with the
boundary of class C1,1 whose boundary ∂Ω is a connected and compact two-
dimensional manifold.

The interested reader should consult the papers of von Wahl [201] and Bolik
and von Wahl [25] for a detailed treatment of these questions including more
general results in the case of non-vanishing tangential and/or normal components
of the vector field u.

10.11 Weak convergence and monotone functions

We start with a straightforward consequence of the De la Vallée Poussin criterion
of the L1-weak compactness formulated in Theorem 0.8.

Corollary 10.1. Let Q ⊂ RN be a domain and let {fn}∞n=1 be a sequence in L1(Q)
satisfying

sup
n>0

∫
Q

Φ(|fn|) dx < ∞, (10.60)

where Φ is a non-negative function continuous on [0,∞) such that limz→∞ Φ(z)/z
= ∞.
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Then
sup
n>0

{∫
{|fn|≥k}

|fn(x)|dx
}
→ 0 as k → ∞, (10.61)

in particular,
k sup

n>0
{|{|fn| ≥ k}|} → 0 as k → ∞.

Typically, Φ(z) = zp, p > 1, in which case we have

|{|fn| ≥ k}| ≤ 1
k

∫
{|fn|≥k}

|fn(x)|dx ≤ 1
k

(∫
Q

|fn|pdx
)1/p

|{|fn| ≥ k}|1/p′
.

Consequently, we report the following result.

Corollary 10.2. Let Q ⊂ R
N be a domain and let {fn}∞n=1 be a sequence of func-

tions bounded in Lp(Q), where p ∈ [1,∞).
Then ∫

{|fn|≥k}
|fn|sdx ≤ 1

kp−s
sup
n>0

{
‖fn‖p

Lp(Q)

}
, s ∈ [0, p]. (10.62)

In particular

|{|fn| ≥ k}| ≤ 1
kp

supn>0

{
‖fn‖p

Lp(Q)

}
. (10.63)

In the remaining part of this section, we review some mostly standard mate-
rial based on monotonicity arguments. There are several variants of these results
scattered in the literature, in particular, these arguments have been extensively
used in the monographs of P.-L. Lions [140], or [79], [166]. Our aim is to formulate
these results at such a level of generality that they may be directly applicable to
all relevant situations investigated in this book.

� Weak Convergence and Monotonicity:

Theorem 10.19. Let I ⊂ R be an interval, Q ⊂ RN a domain, and

(P, G) ∈ C(I) × C(I) a couple of non-decreasing functions. (10.64)

Assume that �n ∈ L1(Q; I) is a sequence such that⎧⎪⎪⎨
⎪⎪⎩

P (�n) → P (�),

G(�n) → G(�),

P (�n)G(�n) → P (�)G(�)

⎫⎪⎪⎬
⎪⎪⎭ weakly in L1(Q). (10.65)

(i) Then
P (�) G(�) ≤ P (�)G(�). (10.66)
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(ii) If, in addition,

G ∈ C(R), G(R) = R, G is strictly increasing,
P ∈ C(R), P is non-decreasing,

(10.67)

and
P (�)G(�) = P (�) G(�), (10.68)

then
P (�) = P ◦ G−1(G(�)). (10.69)

(iii) In particular, if G(z) = z, then

P (�) = P (�). (10.70)

Proof. We shall limit ourselves to the case I = (0,∞) already involving all diffi-
culties encountered in other cases.

Step 1. If P is bounded and G strictly increasing, the proof is straightforward.
Indeed, in this case,

0 ≤ lim
n→∞

∫
B

[
P (�n) − (P ◦ G−1)

(
G(�)

)](
G(�n) − G(�)

)
dx

=
∫

B

(
P (�)G(�) − P (�) G(�)

)
dx

− lim
n→∞

∫
B

P ◦ G−1(G(�))
(
G(�n) − G(�)

)
dx, (10.71)

where B is a ball in Q and P ◦ G−1(G(�)) = lims→G(�) P ◦ G−1(s). By virtue
of assumption (10.65), the second term at the right-hand side of the last formula
tends to 0; whence the desired inequality (10.66) follows immediately from the
standard result on the Lebesgue points.

Step 2. If P is bounded and G non-decreasing, we replace G by a strictly increasing
function, say,

Gk(z) = G(z) +
1
k

arctan(z), k > 0.

In accordance with Step 1 we obtain

P (�)G(�) +
1
k

P (�)arctan(�) ≥ P (�) G(�) +
1
k

P (�) arctan(�),

where we have used the De la Vallé Poussin criterion (Theorem 0.8) to guarantee
the existence of the weak limits. Letting k → ∞ in the last formula yields (10.66).

Step 3. If limz→0+ P (z) ∈ R and if P is unbounded, we may approximate P by a
family of bounded non-decreasing functions,

P ◦ Tk, k > 0,
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where

Tk(z) = kT (
z

k
), C1(R) � T (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z if z ∈ [0, 1],
concave in (0,∞),

2 if z ≥ 3,
−T (−z) if z ∈ (−∞, 0).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ . (10.72)

Reasoning as in the previous step, we obtain

(P ◦ Tk)(�)G(�) ≥ (P ◦ Tk)(�) G(�). (10.73)

In order to let k → ∞, we observe first that

‖(P ◦ Tk)(�) − P (�)‖L1(Q)

≤ lim inf
n→∞ ‖(P ◦ Tk)(�n) − P (�n)‖L1(Q) ≤ 2 sup

n∈N

{∫
{�n≥k}

|P (�n)|dx
}

,

where the last integral is arbitrarily small provided k is sufficiently large (see
Theorem 0.8). Consequently,

(P ◦ Tk)(�) → P (�) a.e. in Q.

Similarly,
P ◦ Tk(�)G(�) → P (�)G(�) a.e. in Q.

Thus, letting k → ∞ in (10.73) we obtain again (10.66).

Step 4. Finally, if limz→0+ P (z) = −∞, we approximate P by

Ph(z) =

{
P (h) if z ∈ (−∞, h),
P (z) if z ≥ h

}
, h > 0, (10.74)

so that, according to Step 3,

Ph(�)G(�) ≥ Ph(�) G(�), (10.75)

As in the previous step, in accordance with Theorem 0.8,

‖Ph(�) − P (�)‖L1(Q) ≤ lim inf
n→∞ ‖Ph(�n) − P (�n)‖L1(Q) (10.76)

≤ 2 sup
n∈N

{∫
{|P (�n)|≥|P (h)|}

|P (�n)|dx
}
→ 0 as h → 0+,

and

‖Ph(�)G(�) − P (�)G(�)‖L1(Q) (10.77)

≤ 2 sup
n∈N

{∫
{|P (�n)|≥|P (h)|}

|P (�n)G(�n)|dx
}
→ 0 as h → 0+.

Thus we conclude the proof of part (i) of Theorem 10.19 by letting h → 0+ in
(10.75).
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Step 5. Now we are in a position to prove part (ii). We set

Mk =
{
x ∈ B | sup

s∈[−1,1]

G−1
(
G(�) + s

)
(x) ≤ k

}
,

where B is a ball in Q, and k > 0. Thanks to monotonicity of P and G, we can
write

0 ≤
∫

B

1Mk

[
P (�n) − (P ◦ G−1)

(
G(�) ± εϕ

)]
×
(
G(�n) − G(�) ∓ εϕ

)
dx

=
∫

B

1Mk

(
P (�n)G(�n) − P (�n) G(�)

)
dx

−
∫

B

1Mk
(P ◦ G−1)

(
G(�) ± εϕ

)(
G(�n) − G(�)

)
dx

∓ ε

∫
B

1Mk

[
P (�n) − (P ◦ G−1)

(
G(�) ± εϕ

)]
ϕdx, (10.78)

where ε > 0, ϕ ∈ C∞
c (B) and 1Mk

is the characteristic function of the set Mk.
For n → ∞ in (10.78), the first integral on the right-hand side tends to zero

by virtue of (10.65), (10.68). Recall that 1Mk
G(�) is bounded. On the other hand,

the second integral approaches zero by virtue of (10.65). Recall that 1Mk
(P ◦

G−1)
(
G(�) ± εϕ

)
is bounded.

Thus we are left with∫
B

1Mk

[
P (�) − (P ◦ G−1)

(
G(�) ± εϕ

)]
ϕdx = 0, ϕ ∈ C∞

c (B); (10.79)

whence (10.69) follows by sending ε → 0+ and realizing that ∪k>0Mk = B. This
completes the proof of statement (ii). �

10.12 Weak convergence and convex functions

The idea of monotonicity can be further developed in the framework of convex
functions. Similarly to the preceding section, the material collected here is standard
and may be found in the classical books on convex analysis as, for example, Ekeland
and Temam [70], or Azé [10].

Consider a functional

F : R
M → (−∞,∞], M ≥ 1. (10.80)

We say that F is convex on a convex set O ⊂ RM if

F (tv + (1 − t)w) ≤ tF (v) + (1 − t)F (w) for all v, w ∈ O, t ∈ [0, 1]; (10.81)

F is strictly convex on O if the above inequality is strict whenever v �= w.
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Compositions of convex functions with weakly converging sequences have a
remarkable property of being lower semi-continuous with respect to the weak L1-
topology as shown in the following assertion (cf. similar results in Visintin [199],
Balder [13]).

� Weak Lower Semi-Continuity of Convex Functions:

Theorem 10.20. Let O ⊂ RN be a measurable set and {vn}∞n=1 a sequence of
functions in L1(O; RM ) such that

vn → v weakly in L1(O; RM ).

Let Φ : RM → (−∞,∞] be a lower semi-continuous convex function such that
Φ(vn) ∈ L1(O) for any n, and

Φ(vn) → Φ(v) weakly in L1(O).
Then

Φ(v) ≤ Φ(v) a.a. on O. (10.82)

If, moreover, Φ is strictly convex on an open convex set U ⊂ RM , and

Φ(v) = Φ(v) a.a. on O,

then
vn(y) → v(y) for a.a. y ∈ {y ∈ O | v(y) ∈ U} (10.83)

extracting a subsequence as the case may be.

Proof. Step 1. Any convex lower semi-continuous function with values in (−∞,∞]
can be written as a supremum of its affine minorants:

Φ(z) = sup{a(z) | a an affine function on R
M , a ≤ Φ on R

M} (10.84)

(see Theorem 3.1 of Chapter 1 in [70]). Recall that a function is called affine if it
can be written as a sum of a linear and a constant function.

On the other hand, if B ⊂ O is a measurable set, we have∫
B

Φ(v) dy = lim
n→∞

∫
B

Φ(vn) dy ≥ lim
n→∞

∫
B

a(vn) dy =
∫

B

a(v) dy

for any affine function a ≤ Φ. Consequently,

Φ(v)(y) ≥ a(v)(y)

for any y ∈ O which is a Lebesgue point of both Φ(v) and v.
Thus formula (10.84) yields (10.82).
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Step 2. As any open set U ⊂ RM can be expressed as a countable union of
compacts, it is enough to show (10.83) for

y ∈ MK ≡ {y ∈ O | v(y) ∈ K},

where K ⊂ U is compact.
Since Φ is strictly convex on U , there exists an open set V such that

K ⊂ V ⊂ V ⊂ U,

and Φ : V → R is a Lipschitz function (see Corollary 2.4 of Chapter I in [70]). In
particular, the subdifferential ∂Φ(v) is non-empty for each v ∈ K, and we have

Φ(w) − Φ(v) ≥ ∂Φ(v) · (w − v) for any w ∈ R
M , v ∈ K,

where ∂Φ(v) denotes the linear form in the subdifferential ∂Φ(v) ⊂ (RM )∗ with
the smallest norm (see Corollary 2.4 of Chapter 1 in [70]).

Next, we shall show the existence of a function ω,

ω ∈ C[0,∞), ω(0) = 0,

ω non-decreasing on [0,∞)
and strictly positive on (0,∞),

(10.85)

such that

Φ(w) − Φ(v) ≥ ∂Φ(v) · (w − v) + ω(|w − v|) for all w ∈ V , v ∈ K. (10.86)

Were (10.86) not true, we would be able to find two sequences wn ∈ V ,
zn ∈ K such that

Φ(wn) − Φ(zn) − ∂Φ(zn) · (wn − zn) → 0 for n → ∞

while
|wn − zn| ≥ δ > 0 for all n = 1, 2, . . . .

Moreover, as K is compact, one can assume

zn → z ∈ K, Φ(zn) → Φ(z), wn → w in V , ∂Φ(zn) → L ∈ R
M ,

and, consequently,

Φ(y) − Φ(z) ≥ L · (y − z) for all y ∈ R
M ,

that is L ∈ ∂Φ(z).
Now, the function

Ψ(y) ≡ Φ(y) − Φ(z) − L · (y − z)
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is non-negative, convex, and

Ψ(z) = Ψ(w) = 0, |w − z| ≥ δ.

Consequently, Ψ vanishes on the whole segment [z,w], which is impossible as Φ is
strictly convex on U .

Seeing that the function

a → Φ(z + ay) − Φ(z) − a∂Φ(z) · y

is non-negative, convex and non-decreasing for a ∈ [0,∞), we infer that the esti-
mate (10.86) holds without the restriction w ∈ V . More precisely, there exists ω
as in (10.85) such that

Φ(w) − Φ(v) ≥ ∂Φ(v) · (w − v) + ω(|w − v|) for all w ∈ R
M , v ∈ K. (10.87)

Taking w = vn(y), v = v(y) in (10.87) and integrating over the set MK we
get ∫

MK

ω(|vn − v|) dy ≤
∫

MK

Φ(vn) − Φ(v) − ∂Φ(v) · (vn − v) dy,

where the right-hand side tends to zero for n → ∞. Note that the function ∂Φ(v)
is bounded measurable on Mk as Φ is Lipschitz on V , and

∂Φ(v) = lim
ε→0

∇Φε(v) for any v ∈ V,

where

Φε(v) ≡ min
z∈RM

{1
ε
|z − v| + Φ(z)

}
(10.88)

is a convex, continuously differentiable function on RM (see Propositions 2.6, 2.11
of Chapter 2 in [34]).

Thus ∫
MK

ω(|vn − v|) dy → 0 for n → ∞

which yields pointwise convergence (for a subsequence) of {vn}∞n=1 to v a.a.
on MK . �

10.13 Div-Curl lemma

The celebrated Div-Curl lemma of L. Tartar [187] (see also Murat [161]) is a
cornerstone of the theory of compensated compactness and became one of the
most efficient tools in the analysis of problems with lack of compactness. Here, we
recall its Lp-version.



342 Chapter 10. Appendix

Lemma 10.11. Let Q ⊂ RN be an open set, and 1 < p < ∞. Assume

Un → U weakly in Lp(Q; RN),

Vn → V weakly in Lp′
(Q; RN ).

(10.89)

In addition, let

div Un ≡ ∇ · Un,

curl Vn ≡ (∇Vn −∇T Vn)

}
be precompact in

{
W−1,p(Q),

W−1,p′
(Q; RN×N ).

(10.90)

Then
Un · Vn → U · V in D′(Q).

Proof. Since the result is local, we can assume that Q = RN . We have to show
that ∫

RN

(
H[Un] + H⊥[Un]

)
·
(
H[Vn] + H⊥[Vn]

)
ϕ dx

→
∫

RN

(
H[U] + H⊥[U]

)
·
(
H[V] + H⊥[V]

)
ϕ dx

for any ϕ ∈ C∞
c (RN ), where H, H⊥ are the Helmholtz projections introduced in

Section 10.6. We have

H⊥[Un] = ∇ΨU
n , H⊥[Vn] = ∇ΨV

n ,

where, in accordance with hypothesis (10.90) and the standard elliptic estimates
discussed in Sections 10.2.1, 10.10,

∇ΨU
n → ∇ΨU = H⊥[U] in Lp(B; RN ),

H[Vn] → H[V] in Lp′
(B; RN ),

and
H[Un] → H[U] weakly in Lp(B; RN ),

∇ΨV
n → ∇ΨV = H⊥[V] weakly in Lp′

(B; RN ),

where B ⊂ RN is a ball containing the support of ϕ.
Consequently, it is enough to handle the term H[Un] · ∇xΨV

n ϕ. However,∫
RN

H[Un] · ∇xΨV
n ϕ dx = −

∫
RN

H[Un] · ∇ϕΨV
n dx

→ −
∫

RN

H[U] · ∇ϕΨV dx =
∫

RN

H[U] · ∇xΨV ϕ dx. �
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The following variant of the Div-Curl lemma seems more convenient from
the perspective of possible applications.

� Div-Curl Lemma:

Theorem 10.21. Let Q ⊂ RN be an open set. Assume

Un → U weakly in Lp(Q; RN ),

Vn → V weakly in Lq(Q; RN ),
(10.91)

where
1
p

+
1
q

=
1
r

< 1.

In addition, let

div Un ≡ ∇ · Un,

curl Vn ≡ (∇Vn −∇T Vn)

}
be precompact in

{
W−1,s(Q),

W−1,s(Q; RN×N ),
(10.92)

for a certain s > 1. Then

Un ·Vn → U ·V weakly in Lr(Q).

The proof follows easily from Lemma 10.11 as soon as we observe that pre-
compact sets in W−1,s that are bounded in W−1,p are precompact in W−1,m for
any s < m < p.

10.14 Maximal regularity for parabolic equations

We consider a parabolic problem:⎧⎪⎨
⎪⎩

∂tu − Δu = f in (0, T )× Ω,

u(0, x) = u0(x), x ∈ Ω,

∇xu · n = 0 in (0, T )× ∂Ω,

⎫⎪⎬
⎪⎭ (10.93)

where Ω ⊂ RN is a bounded domain. In the context of the so-called strong solu-
tions, the first equation is satisfied a.e. in (0, T ) × Ω, the initial condition holds
a.e. in Ω, and the homogenous Neumann boundary condition is satisfied in the
sense of traces.
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The following statement holds.

� Maximal Lp − Lq
Regularity:

Theorem 10.22. Let Ω ⊂ R
N be a bounded domain of class C2, 1 < p, q < ∞.

Suppose that

f ∈ Lp(0, T ; Lq(Ω)), u0 ∈ Xp,q, Xp,q = {Lq(Ω);D(ΔN )}1−1/p,p,

D(ΔN ) = {v ∈ W 2,q(Ω) | ∇xv · n|∂Ω = 0},

where {·; ·}·,· denotes the real interpolation space.
Then problem (10.93) admits a solution u, unique in the class

u ∈ Lp(0, T ; W 2,q(Ω)), ∂tu ∈ Lp(0, T ; Lq(Ω)),
u ∈ C([0, T ]; Xp,q).

Moreover, there exists a positive constant c = c(p, q, Ω, T ) such that

‖u(t)‖Xp,q + ‖∂tu‖Lp(0,T ;Lq(Ω)) + ‖Δu‖Lp(0,T ;Lq(Ω))

≤ c
(
‖f‖Lp(0,T ;Lq(Ω)) + ‖u0‖Xp,q

)
(10.94)

for any t ∈ [0, T ].

See Amann [8], [7]. �

For the definition of real interpolation spaces see, e.g., Bergh, Löfström [23,
Chapter 3]. It is well known that

Xp,q =

⎧⎨
⎩ B

2− 2
p

q,p (Ω) if 1 − 2
p − 1

q < 0,

{u ∈ B
2− 2

p
q,p (Ω) | ∇xu · n|∂Ω = 0}, if 1 − 2

p − 1
q > 0,

see Amann [7]. In the above formula, the symbol Bs
q,p(Ω) refers to the Besov space.

For the definition and properties of the scale of Besov spaces Bs
q,p(R

N ) and
Bs

q,p(Ω), s ∈ R, 1 ≤ q, p ≤ ∞ see Bergh and Löfström [23, Section 6.2], Triebel
[190], [191]. A nice overview can be found in Amann [7, Section5]. Many of the
classical spaces are contained as special cases in the Besov scales. It is of interest
for the purpose of this book that

Bs
p,p(Ω) = W s,p(Ω), s ∈ (0,∞) \ N, 1 ≤ p < ∞,

where W s,p(Ω) is the Sobolev-Slobodeckii space.
Extension of Theorem 10.22 to general classes of parabolic equations and

systems as well as to different types of boundary conditions are available. For more
information concerning the Lp−Lq maximal regularity for parabolic systems with
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general boundary conditions, we refer to the book of Amann [8] or to the papers
by Denk, Hieber and Prüss [58], [57], [106].

Maximal regularity in the classes of smooth functions relies on a classical
argument. A result in this direction reads as follows.

� Maximal Hölder Regularity:

Theorem 10.23. Let Ω ⊂ RN be a bounded domain of class C2,ν , ν > 0. Suppose
that

f ∈ C([0, T ]; C0,ν(Ω)), u0 ∈ C2,ν(Ω), ∇xu0 · n|∂Ω = 0.

Then problem (10.93) admits a unique solution

u ∈ C([0, T ]; C2,ν(Ω)), ∂tu ∈ C([0, T ]; C0,ν(Ω)).

Moreover, there exists a positive constant c = c(p, q, Ω, T ) such that

‖∂tu‖C([0,T ];C0,ν(Ω)) + ‖u‖C([0,T ];C2,ν(Ω)) ≤ c
(
‖u0‖C2,ν(Ω) + ‖f‖C([0,T ];C0,ν(Ω))

)
.

(10.95)

See Lunardi [146, Theorem 5.1.2] �
Unlike most of the classical existence theorems that can be found in var-

ious monographs on parabolic equations (see, e.g., Ladyzhenskaya, Solonnikov,
Uralceva [128]), the above results require merely the continuity in time of the
right-hand side. This aspect is very convenient for the applications in this book.

10.15 Quasilinear parabolic equations

In this section we review a well-known result in solvability of the quasilinear
parabolic problem:⎧⎪⎪⎨
⎪⎪⎩

∂tu −∑N
i,j=1 aij(t, x, u)∂xi∂xj u + b(t, x, u,∇xu) = 0 in (0, T ) × Ω,∑N

i,j=1 ni aij∂xj u + ψ = 0 on ST ,

u(0, ·) = u0,

⎫⎪⎪⎬
⎪⎪⎭

(10.96)
where

aij = aij(t, x, u), i, j = 1, . . . , N, ψ = ψ(t, x), b(t, x, u, z) and u0 = u0(x)

are continuous functions of their arguments (t, x) ∈ [0, T ] × Ω, u ∈ R, z ∈ RN ,
ST = [0, T ]× ∂Ω and n = (n1, . . . , nN ) is the outer normal to the boundary ∂Ω.

The results stated below are taken over from the classical book by Ladyzhen-
skaya, Solonnikov and Uralceva [129]. We refer the reader to this work for all de-
tails, and also for the further properties of quasilinear parabolic equations and
systems.
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� Existence and Uniqueness for the Quasilinear

Parabolic Neumann Problem:

Theorem 10.24. Let ν ∈ (0, 1) and let Ω ⊂ R
N be a bounded domain of class C2,ν .

Suppose that

(i) u0 ∈ C2,ν(Ω), ψ ∈ C1([0, T ]×Ω), ∇xψ is Hölder continuous in the vari-
ables t and x with exponents ν/2 and ν, respectively,

N∑
i,j=1

ni(x) aij∂xj (0, x, u0(x)) + ψ(0, x) = 0, x ∈ ∂Ω;

(ii) aij ∈ C1([0, T ]× Ω × R),

∇xaij , ∂uaij are ν-Hölder continuous in the variable x;
(iii) b ∈ C1([0, T ] × Ω × R × RN),

∇xb, ∂ub, ∇zb are ν-Hölder continuous in the variable x;
(iv) there exist positive constants c, c, c1, c2 such that

0 ≤ aij(t, x, u)ξiξj ≤ c|ξ|2, (t, x, u, ξ) ∈ (0, T ] × Ω × R × R
N ,

aij(t, x, u)ξiξj ≥ c|ξ|2, (t, x, u, ξ) ∈ ST × Ω × R × R
N ,

−ub(t, x, u, z) ≤ c0|z|2 + c1u
2 + c2, (t, x, u, ξ) ∈ [0, T ]× Ω × R × R

N ;

(v) for any L > 0 there are positive constants C and C such that

C(L)|ξ|2 ≤ aij(t, x, u)ξiξj , (t, x, u, ξ) ∈ [0, T ]× Ω × [−L, L]× R
N ,∣∣∣b, ∂tb, ∂ub, (1 + z)∇zb

∣∣∣(t, x, u, z)

≤ C(L)(1 + |z|2), (t, x, u, z) ∈ [0, T ]× Ω × [−L, L]× R
N .

Then problem (10.96) admits a unique classical solution u belonging to the
Hölder space C1,ν/2;2,ν([0, T ] × Ω), where the symbol C1,ν/2;2,ν([0, T ] × Ω) stands
for the Banach space with norm

‖u‖C1([0,T ]×Ω) + sup(t,τ,x)∈[0,T ]2×Ω

|∂tu(t, x) − ∂tu(τ, x)|
|t − τ |ν/2

+
3∑

i,j=1

‖∂xi∂xj u‖C([0,T ]×Ω)

+
3∑

i,j=1

sup
(t,x,y)∈[0,T ]×Ω

2
|∂xi∂xj u(t, x) − ∂xi∂xj u(t, y)|

|x − y|ν .

See Ladyzhenskaya, Solonnikov, Uralceva [129, Theorems 7.2, 7.3, 7.4]. �
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10.16 Basic properties of the Riesz transform
and related operators

Various (pseudo) differential operators used in the book are identified through
their Fourier symbols:

• the Riesz transform:

Rj ≈ iξj

|ξ| , j = 1, . . . , N,

meaning that

Rj [v] = F−1
ξ→x

[ iξj

|ξ| Fx→ξ[v]
]
;

• the “double” Riesz transform:

R = {Rk,j}N
k,j=1, R = Δ−1

x ∇x ⊗∇x, Ri,j ≈ ξiξj

|ξ|2 , i, j = 1, . . . , N,

meaning that

Rk,j [v] = F−1
ξ→x

[ξkξj

|ξ|2 Fx→ξ[v]
]
;

• the inverse divergence:

A = {Aj}N
j=1, Aj = ∂xjΔ

−1
x ≈ − iξj

|ξ|2 , j = 1, . . . , N,

meaning that

Aj [v] = −F−1
ξ→x

[ iξj

|ξ|2Fx→ξ[v]
]
;

• the inverse Laplacian:

(−Δ)−1 ≈ 1
|ξ|2 ,

meaning that

(−Δ)−1[v] = F−1
ξ→x

[ 1
|ξ|2Fx→ξ[v]

]
.

In the sequel, we shall investigate boundedness of these pseudo- differen-
tial operators in various function spaces. The following theorem is an immediate
consequence of the Hörmander-Mikhlin theorem (Theorem 0.7).
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� Continuity of the Riesz Operator:

Theorem 10.25. The operators Rk, Rk,j are continuous linear operators mapping
Lp(RN ) into Lp(RN ) for any 1 < p < ∞. In particular, the following estimate
holds true:

‖R[v]‖Lp(RN ) ≤ c(N, p)‖v‖Lp(RN ) for all v ∈ Lp(RN ), (10.97)

where R stands for Rk or Rk,j .

As a next step, we examine the continuity properties of the inverse di-
vergence operator. To begin, we recall that for Banach spaces X and Y , with
norms ‖ · ‖X and ‖ · ‖Y , the sum X + Y = {w = u + v |u ∈ X, v ∈ Y } and
the intersection X ∩ Y can be viewed as Banach spaces endowed with norms
‖w‖X+Y = inf

{
max{‖u‖X, ‖v‖Y },

∣∣∣w = u + v
}

and ‖w‖X∩Y = ‖w‖X + ‖w‖Y ,
respectively.

� Continuity Properties of the Inverse Divergence:

Theorem 10.26. Assume that N > 1.

(i) The operator Ak is a continuous linear operator mapping L1(RN ) ∩ L2(RN )
into L2(RN ) + L∞(RN ), and Lp(RN ) into L

Np
N−p (RN ) for any 1 < p < N .

(ii) In particular,

‖Ak[v]‖L∞(RN )+L2(RN ) ≤ c(N)‖v‖L1(RN )∩L2(RN ) (10.98)

for all v ∈ L1(RN ) ∩ L2(RN ),
and

‖Ak[v]‖
L

Np
N−p (RN )

≤ c(N, p)‖v‖Lp(RN ) (10.99)

for all v ∈ Lp(RN ), 1 < p < N.

(iii) If v, ∂v
∂t ∈ Lp(I × RN ), where I is an (open) interval, then

∂Ak(f)
∂t

(t, x) = Ak

(∂f

∂t

)
(t, x) for a. a. (t, x) ∈ I × RN . (10.100)

Proof. Step 1. We write

−Ak[v] = F−1
ξ→x

[ iξk

|ξ|2 1{|ξ|≤1}Fx→ξ[v]
]

+ F−1
ξ→x

[ iξk

|ξ|2 1{|ξ|>1}Fx→ξ[v]
]
.

Since v belongs to L1(RN ), the function Fx→ξ[v] is uniformly bounded; whence
the quantity iξk

|ξ|2 1{|ξ|≤1}Fx→ξ[v] is integrable. Similarly, v being square integrable,

Fx→ξ[v] enjoys the same property so that iξk

|ξ|2 1{|ξ|>1}Fx→ξ[v] is square integrable
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as well. After these observations, estimate (10.98) follows immediately from the
basic properties of the Fourier transform, see Section 0.5.

Step 2. We introduce E(x) – the fundamental solution of the Laplace operator,
specifically,

ΔxE = δ in D′(RN ), (10.101)

where δ denotes the Dirac distribution. If N ≥ 2, ∂xk
E takes the form

∂xk
E(x) =

1
aN

1
|x|N−1

xk

|x| , where aN =

{
2π if N = 2,

(N − 2)σN if N > 2,

}
(10.102)

with σN being the area of the unit sphere. From (10.101) we easily deduce that

Fx→ξ[∂xk
E ] =

1

(2π)N/2

iξk

|ξ|2 .

Consequently,

∂xk
E ∗ v = F−1

ξ→x

[
Fx→ξ[∂xk

E ∗ v]
]

=
1

(2π)N/2
F−1

ξ→x

[ iξk

|ξ|2Fx→ξ[v]
]

where the weakly singular operator v → ∂xk
E ∗ v is continuous from Lp(RN ) to

Lr(RN ), 1
r = N−1

N + 1
p − 1, provided 1 < p < N as a consequence of the classical

results of harmonic analysis stated in Theorem 10.9. This completes the proof of
parts (i), (ii).

Step 3. If v ∈ C∞
c (I × R

3), statement (iii) follows directly from the theorem
on differentiation of integrals with respect to a parameter. Its Lp-version can be
proved via the density arguments. �

In order to conclude this section, we recall several elementary formulas that
can be verified by means of direct computation.

Rj,k[f ] = ∂jAk[f ] = −Rj

[
Rk[f ]

]
,

Rj

[
Rk[f ]

]
= Rk

[
Rj [f ]

]
,

N∑
k=1

Rk

[
Rk[f ]

]
= f,

∫
Ω

Ak[f ]g dx = −
∫

Ω

fAk[g]) dx,∫
Ω

Rj

[
Rk[f ]

]
g dx =

∫
Ω

fRj

[
Rk[g]

]
dx.

(10.103)

These formulas hold for all f, g ∈ S(RN ) and can be extended by density in
accordance with Theorems 10.26, 10.25 to f ∈ Lp(RN ), g ∈ Lp′

(RN ), 1 < p < ∞,
whenever the left- and right-hand sides make sense. We also notice that functions
Ak(f), Rj,k(f) are real-valued functions provided f is real valued.
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10.17 Commutators involving Riesz operators

This section presents two important results involving Riesz operators. The first one
represents a keystone in the proof of the weak continuity property of the effective
pressure. Its formulation and proof are taken from [78], [87].

� Commutators Involving Riesz Operators, Weak Convergence:

Theorem 10.27. Let

Vε → V weakly in Lp(RN ; RN),

Uε → U weakly in Lq(RN ; RN ),

where 1
p + 1

q = 1
s < 1. Then

Uε · R[Vε] −R[Uε] ·Vε → U · R[V] −R[U] · V weakly in Ls(RN ).

Proof. Writing

Uε · R[Vε] − Vε · R[Uε] =
(
Uε −R[Uε]

)
· R[Vε] −

(
Vε −R[Vε]

)
· R[Uε]

we easily check that

divx

(
Uε −R[Uε]

)
= divx

(
Vε −R[Vε]

)
= 0,

while R[Uε], R[Vε] are gradients, in particular

curlxR[Uε] = curlxR[Vε] = 0.

Thus the desired conclusion follows from the Div-Curl lemma (Theorem 10.21).
�

The following result is in the spirit of Coifman, Meyer [49]. The main ideas
of the proof are taken over from [67].

� Commutators Involving Riesz Operators,

Boundedness in Sobolev-Slobodeckii Spaces:

Theorem 10.28. Let w ∈ W 1,r(RN ) and V ∈ Lp(RN ; RN ) be given, where

1 < r < N, 1 < p < ∞,
1
r

+
1
p
− 1

N
< 1.

Then for any s satisfying

1
r

+
1
p
− 1

N
<

1
s

< 1,
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there exists
β = β(s, p, r) ∈ (0, 1),

β

N
=

1
s

+
1
N

− 1
p
− 1

r

such that ∥∥∥R[wV] − wR[V]
∥∥∥

W β,s(RN ;RN )
≤ c‖w‖W 1,r(RN )‖V‖Lp(RN ;RN ),

where c = c(s, p, r) is a positive constant.

Proof. We may suppose without loss of generality that w ∈ C∞
c (RN ), V ∈

C∞
c (RN ; RN ). First we notice that the norms

‖a‖W 1,m(RN ;RN ) and ‖a‖Lm(RN ;RN ) + ‖curlxa‖Lm(RN ;RN ) + ‖divxa‖Lm(RN )

(10.104)
are equivalent for 1 < m < ∞, see Theorem 10.18. We also verify by a direct
calculation that

[(curlx(R[wV])]j,k = 0, [curlx(wR[V])]j,k = ∂xk
w Rj,s[Vs] − ∂xj w Rk,s[Vs],

(10.105)
and

divx(R[wV]) − divx

(
wR[V]

)
=

N∑
j=1

∂xj w Vj −
N∑

i,j=1

∂xiw Ri,j [Vj ]. (10.106)

Next we observe that for any s, 1
r + 1

p − 1
N < 1

s < 1 there exist 1 ≤ r1 =
r1(s, p) < r < r2 = r2(s, p) < ∞ such that

1
r1

+
1
p
− 1

N
=

1
s

=
1
r2

+
1
p
.

Taking advantage of (10.104–10.106) and using Theorem 10.25 together with
the Hölder inequality, we may infer that∥∥∥R[wV] − wR[V]

∥∥∥
W 1,s(RN ;RN )

≤ c‖w‖W 1,r2 (RN )‖V‖Lp(RN ;RN ). (10.107)

On the other hand, Theorem 10.25 combined with the continuous embedding
W 1,r1(RN ) ↪→ L

Nr1
N−r1 (RN ), and the Hölder inequality yield∥∥∥R[wV] − wR[V]

∥∥∥
Ls(RN ;RN )

≤ c‖w‖W 1,r1(RN )‖V‖Lp(RN ;RN ). (10.108)

We thus deduce that, for any fixed V ∈ Lp(Ω; RN ), the linear operator w →
R[wV] − wR[V] is a continuous linear operator from W 1,r2(Ω) to W 1,s(Ω, RN )
and from W 1,r1(Ω) to Ls(Ω; RN ). Now we conclude by the Riesz-Thorin interpo-
lation theorem (see [190]) that this operator is as well continuous from W 1,r(Ω)
to W β,s(Ω), where β ∈ (0, 1) verifies the formula β

r1
+ 1−β

r2
= 1

r .
This finishes the proof. �
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10.18 Renormalized solutions to the equation
of continuity

In this section we explain the main ideas of the regularization technique developed
by DiPerna and Lions [65] and discuss the basic properties of the renormalized
solutions to the equation of continuity. To begin, we introduce a variant of the
classical Friedrichs commutator lemma.

� Friedrichs’ Commutator Lemma in Space:

Lemma 10.12. Let N ≥ 2, β ∈ [1,∞), q ∈ [1,∞], where 1
q + 1

β = 1
r ∈ (0, 1].

Suppose that
� ∈ Lβ

loc(R
N ), u ∈ W 1,q

loc (RN ; RN ).

Then
divx

(
Sε[�u]

)
− divx

(
Sε[�]u

)
→ 0 in Lr

loc(R
N ), (10.109)

where Sε is the mollifying operator introduced in (10.1–10.2).

Proof. We have

divx

(
Sε[�u]

)
− divx

(
Sε[�]u

)
= Iε − Sε(�)divxu,

where
Iε(x) =

∫
RN

�(y)[u(y) − u(x)] · ∇xζε(x − y)dy. (10.110)

According to Theorem 10.1,

Sε(�)divxu → �divxu in Lr
loc(R

N );

whence it is enough to show that

Iε → �divxu in Lr
loc(R

N ). (10.111)

After a change of variables y = x + εz, formula (10.110) reads

Iε(x) =
∫
|z|≤1

�(x + εz)
u(x + εz) − u(x)

ε
· ∇xζ(z)dz

=
∫ 1

0

∫
|z|≤1

�(x + εz) z · ∇xu(x + εtz) · ∇xζ(z)dz dt, (10.112)

where we have used the Lagrange formula

u(ξ + εz) − u(ξ) = ε

∫ 1

0

z · ∇xu(ξ + εtz)dt.
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From (10.112) we deduce a general estimate

‖Iε‖Ls(BR) ≤ c(r, s, p, q) ‖�‖Lp(Br+1)‖ ‖∇x�u‖Lq(Br+1), (10.113)

where Br is a ball of radius r in RN , and where{
s is arbitrary in [1,∞) if p = q = ∞,

1
s = 1

q + 1
p if 1

q + 1
p ∈ (0, 1]

}
.

Formula (10.113) can be used with �n − � and p = β, q and s = r, where
�n ∈ Cc(RN ), �n → � strongly in Lβ

loc(R
N ), in order to justify that it is enough

to show (10.111), with � belonging to Cc(RN ). For such a �, we evidently have

Iε(x) → [�divxu](x) a. a. in RN

as is easily seen from (10.112). Moreover, formula (10.113) now with p = ∞, yields
Iε bounded in Ls(Br) with s > r. This observation allows us obtain the desired
conclusion by means of Vitali’s convergence theorem. �

In the case of a time dependent scalar field � and a vector field u, Lemma
10.113 gives rise to the following corollary.

� Friedrichs Commutator Lemma in Time-Space:

Corollary 10.3. Let N ≥ 2, β ∈ [1,∞), q ∈ [1,∞], 1
q + 1

β = 1
r ∈ (0, 1]. Suppose

that
� ∈ Lβ

loc((0, T ) × R
N ), u ∈ Lq

loc(0, T ; W 1,q
loc (RN ; RN )).

Then

divx

(
Sε[�u]

)
− divx

(
Sε[�]u

)
→ 0 in Lr

loc((0, T ) × RN), (10.114)

where Sε is the mollifying operator introduced in (10.1–10.2) acting solely on the
space variables.

With Lemma 10.12 and Corollary 10.3 at hand, we can start to investigate
the renormalized solutions to the continuity equation.

� Renormalized Solutions of the Continuity Equation I:

Theorem 10.29. Let N ≥ 2, β ∈ [1,∞), q ∈ [1,∞], 1
q + 1

β ∈ (0, 1]. Suppose that

the functions (�,u) ∈ Lβ
loc((0, T ) × RN ) × Lq

loc(0, T ; W 1,q
loc (RN ; RN )), where � ≥ 0

a.e. in (0, T )× RN , satisfy the transport equation

∂t� + divx(�u) = f in D′((0, T )× RN ), (10.115)

where f ∈ L1
loc((0, T ) × R

N ).
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Then

∂tb(�) + divx

(
(b(�)u

)
+
(
�b′(�) − b(�)

)
divxu = fb′(�) in D′((0, T )× RN )

(10.116)
for any

b ∈ C1([0,∞)) ∩ W 1,∞(0,∞). (10.117)

Proof. Taking convolution of (3.199) with ζε (see (10.1–10.2)), that is to say using
ζε(x − ·) as a test function, we obtain

∂t

(
Sε[�]

)
+ divx

(
Sε[�]u

)
= ℘ε(�,u), (10.118)

where
℘ε(�,u) = divx

(
Sε[�]u

)
− divxSε[�u] a.e. in (0, T ) × R

N .

Equation (10.118) can be multiplied on b′(Sε[�)], where b is a globally Lip-
schitz function on [0,∞); one obtains

∂tb (Sε[�]) + divx [b (Sε[�])u] + [Sε[�]b′ (Sε[�]) − b (Sε[�])]
= ℘ε(�,u) b′ (Sε[�]) . (10.119)

It is easy to check that for ε → 0+ the left-hand side of (10.119) tends to the
desired expression appearing in the renormalized formulation of the continuity
equation (10.116). Moreover, the right-hand side tends to zero as a direct conse-
quence of Corollary 10.3. �

Once the renormalized continuity equation is established for any b belonging
to (10.117), it is satisfied for any “renormalizing” function b belonging a larger
class. This is clarified in the following lemma.

� Renormalized Solutions of the Continuity Equation II:

Lemma 10.13. Let N ≥ 2, β ∈ [1,∞), q ∈ [1,∞], 1
q + 1

β ∈ (0, 1]. Suppose that

the functions (�,u) ∈ Lβ
loc((0, T ) × RN ) × Lq

loc(0, T ; W 1,q
loc (RN ; RN )), where � ≥ 0

a.e. in (0, T )× RN , satisfy the renormalized continuity equation (10.116) for any
b belonging to the class (10.117).

Then we have:

(i) If f ∈ Lp
loc((0, T )×RN) for some p > 1, p′(β

2 −1) ≤ 1, then equation (10.116)
holds for any

b ∈ C1([0,∞)), |b′(s)| ≤ csλ, for s > 1, where λ ≤ β
2 − 1. (10.120)
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(ii) If f = 0, then equation (10.116) holds for any

b ∈ C([0,∞)) ∩ C1((0,∞)),

lim
s→0+

(
sb′(s) − b(s)

)
∈ R,

|b′(s)| ≤ csλ if s ∈ (1,∞) for a certain λ ≤ β
2 − 1

(10.121)

(iii) The function z → b(z) in any of the above statements (i)–(ii) can be replaced
by z → cz + b(z), c ∈ R, where b satisfies (10.120) or (10.121) as the case
may be.

(iv) If f = 0, then

∂t

(
�B(�)

)
+ divx

(
�B(�)u

)
+ b(�)divxu = 0 in D′((0, T ) × RN ) (10.122)

for any

b ∈ C([0,∞)) ∩ L∞(0,∞), B(�) = B(1) +
∫ �

1

b(z)
z2

dz. (10.123)

Proof. Statement (i) can be deduced from (10.116) by approximating conveniently
the functions b satisfying relation (10.120) by functions belonging to the class
C1([0,∞)) ∩ W 1,∞(0,∞) and using consequently the Lebesgue dominated or Vi-
tali’s and the Beppo-Levi monotone convergence theorems. We can take a sequence
S 1

n
(b◦Tn), n → ∞, where Tn is defined by (10.72), and with the mollifying operator

S 1
n

introduced in (10.1–10.2).
Statement (ii) follows from (i): The renormalized continuity equation (10.117)

certainly holds for bh(·) := b(h + ·). Thus we can pass to the limit h → 0+,
take advantage of condition lims→0+(sb′(s) − b(s)) ∈ R, and apply the Lebesgue
dominated convergence.

Statement (iii) results from summing the continuity equation with the renor-
malized continuity equation.

The function z → zB(z) satisfies assumptions (10.121). Statement (iv) thus
follows immediately from (ii). �

Next, we shall investigate the pointwise behavior of renormalized solutions
with respect to time.

� Time Continuity of Renormalized Solutions

Lemma 10.14. Let N ≥ 2, β, q ∈ (1,∞), 1
q + 1

β ∈ (0, 1]. Suppose that the functions

(�,u) ∈ L∞(0, T ; Lβ
loc(R

N )) × Lq(0, T ; W 1,q
loc (RN ; RN )), � ≥ 0 a.a. in (0,T )×RN ,

satisfy continuity equation (10.115) with f ∈ Ls
loc((0, T ) × Ω), s > 1, and renor-

malized continuity equation (10.116) for any b belonging to class (10.117).
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Then
� ∈ Cweak([0, T ]; Lβ(O)) ∩ C([0, T ], Lp(O))

with any 1 ≤ p < β and O any bounded domain in RN .

Proof. According to Lemma 10.13,

∂tσ + divx(σu) =
1
2
σdivxu in D′((0, T ) × RN),

where we have set σ =
√

�; we may therefore assume that

σ ∈ Cweak([0, T ]; L2β(O)) for any bounded domain O ⊂ RN . (10.124)

Regularizing the latter equation over the space variables, we obtain

∂t (Sε[σ]) + divx (Sε[σ]u) =
1
2
Sε [σdivxu] + ℘ε(σ,u) a.a. in (0, T )× RN ,

where Sε and ℘ε are the same as in the proof of Theorem 10.29. Now, applying to
the last equation Theorem 10.29 and Lemma 10.13, we get

∂t (Sε[σ])2 + divx

(
(Sε[σ])2 u

)
(10.125)

= Sε[σ]Sε (σdivxu) + 2Sε[σ]℘ε(σ,u) − (Sε[σ])2 divxu a.a. in (0, T ) × RN .

We employ equation (10.125) together with Theorem 10.1 and Corollary 10.3
to verify that the sequence {

∫
Ω

(Sε[σ])2 η dx}ε>0, η ∈ C∞
c (RN ) satisfies assump-

tions of the Arzelà-Ascoli theorem on C([0, T ]). Combining this information with
separability of Lβ′

(O) and the density argument, we may infer that∫
O

(Sε[σ])2 η dx →
∫

O

σ2(t)η dx in C([0, T ]).

for any η ∈ Lβ′
(O).

On the other hand, Theorem 10.1 yields

(Sε[σ])2 (t) → σ2(t) in Lβ(O) for all t ∈ [0, T ];

therefore
∫

O
σ2η dx =

∫
O

σ2η dx on [0, T ] and

σ2 ∈ Cweak([0, T ]; Lβ(O)). (10.126)

Relations (10.124) and (10.126) yield σ ∈ C([0, T ]; L2(O)), whence we complete
the proof by a simple interpolation argument. �
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We conclude this section with a compactness result involving the renormal-
ized continuity equation.

Theorem 10.30. Let N ≥ 2, β > 2N
N+2 , Ω be a bounded Lipschitz domain in RN ,

T > 0, and

B ∈ C([0, T ] × Ω × [0,∞)), sup
(t,x)∈(0,T )×Ω

|B(t, x, s)| ≤ c(1 + sp), (10.127)

where c is a positive constant, and 0 < p < N+2
2N β is a fixed number.

Suppose that {�n ≥ 0,un}∞n=1 is a sequence with the following properties:

(i) �n → � weakly-(*) in L∞(0, T ; Lβ(Ω)),

un → u weakly in L2(0, T ; W 1,2(Ω; RN )); (10.128)

(ii)
∫ T

0

∫
Ω

(
a(�n)∂tϕ + a(�n)un · ∇xϕ − (�na′(�n) − a(�n))divxun

)
dxdt = 0

(10.129)

for all a ∈ C1([0,∞)) ∩ W 1,∞((0,∞)), and for all ϕ ∈ C∞
c ((0, T ) × Ω).

Then the sequence {B(·, ·, �n)}∞n=1 is precompact in the space Ls(0, T ; W−1,2 (Ω))
for any s ∈ [1,∞).

Proof. Step 1. Due to Corollary 10.2 and in accordance with assumptions (10.127–
10.30),

sup
n∈N

‖B(·, ·, Tk(�n)) − B(·, ·, �n)‖
L

2N
N+2 (Ω)

→ 0 as k → ∞,

where Tk is the truncation function introduced in (10.72). Since Lβ(Ω) ↪→↪→
W−1,2(Ω) whenever β > 2N

N+2 , it is enough to show precompactness of the se-
quence of composed functions B(·, ·, Tk(�n)).

Step 2. According to the Weierstrass approximation theorem, there exists a poly-
nomial Aε on RN+2 such that

‖Aε − B‖C([0,T ]×Ω×[0,2k]) < ε,

where ε > 0. Therefore,

sup
n∈N

‖Aε(·, ·, Tk(�n) − B(·, ·, Tk(�n)‖L∞((0,T )×Ω) < ε.

Consequently, it is merely enough to show precompactness of any sequence of
type a1(t)a2(x)a(�n), where a1 ∈ C1([0, T ]), a2 ∈ C1(Ω), and where a belongs to
C1([0,∞))∩W 1,∞((0,∞)). However, this is equivalent to proving precompactness
of the sequence a(�n), a ∈ C1([0,∞)).

Step 3. Since �n, un solve equation (10.30), we easily check that the functions
t → [

∫
Ω a(�n)ϕdx](t) form a bounded and equi-continuous sequence in C([0, T ])
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for all ϕ ∈ C∞
c (Ω). Consequently, the standard Arzelà-Ascoli theorem combined

with the separability of Lβ′
(Ω) yields, via a density argument and a diagonalization

procedure, the existence of a function a(�) ∈ Cweak([0, T ]; Lβ(Ω)) satisfying∫
Ω

a(�n)ϕdx →
∫

Ω

a(�)ϕdx in C([0, T ]) for all ϕ ∈ Lβ′
(Ω)

at least for a chosen subsequence. Since Lβ(Ω) ↪→↪→ W−1,2(Ω), we deduce that

a(�n)(t, ·) → a(�)(t, ·) strongly in W−1,2(Ω) for all t ∈ [0, T ].

Thus applying Vitali’s theorem to the sequence {‖a(�n)‖W−1,2(Ω)}∞n=1, which
is bounded in L∞(0, T ) completes the proof. �
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Bibliographical Remarks

11.1 Fluid flow modeling

The material collected in Chapter 1 is standard. We refer to the classical mono-
graphs by Batchelor [18] or Lamb [131] for a full account of the mathematical the-
ory of continuum fluid mechanics. A more recent treatment may be found in Trues-
dell and Noll [192] or Truesdell and Rajagopal [193]. An excellent introduction to
the mathematical theory of waves in fluids is contained in Lighthill’s book [135].

The constitutive equations introduced in Section 1.4, in particular, the me-
chanical effect of thermal radiation, are motivated by the mathematical models
in astrophysics (see Battaner [19]). Relevant material may be also found in the
monographs by Bose [27], Mihalas and Weibel-Mihalas [157], Müller and Ruggeri
[160], or Oxenius [169]. A general introduction to the theory of equations of state
is provided by Eliezer et al. [71].

In the present monograph, we focused on thermodynamics of viscous com-
pressible fluids. For the treatment of problems related to inviscid fluids as well
as more general systems of hyperbolic conservation laws, the literature provides
several comprehensive seminal works, for instance, Benzoni-Gavage and Serre [22],
Bressan [32], Chen and Wang [45], Dafermos [52], and Serre [182].

The weak solutions in this book are considered on large time intervals. There
is a vast literature investigating (strong) solutions with “large” regular external
data on short time intervals and/or with “small” regular external data on arbitrary
large time intervals for both the Navier-Stokes equations in the barotropic regime
and for the Navier-Stokes-Fourier system. These studies were originated by the
seminal work of Matsumura and Nishida [151], [152], and further developed by
many authors: Beirao da Veiga [21], Danchin [54], [55], Hoff [107], [108], [109], [110],
[111], [112], [113], Jiang [117] , Matsumura and Padula [153], [164], Padula and Po-
korný [170], Salvi and Straškraba [176], Valli and Zajaczkovski [196], among others.

As far as the singular limits in fluid dynamics are concerned, the mathemat-
ical literature provides two qualitatively different groups of results. The first one
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concerns the investigation of singular limits in passage from the microscopic de-
scription provided by the kinetic models of Boltzmann’s type to the macroscopic
one represented by the Euler, Navier-Stokes, and Navier-Stokes-Fourier equations
and their modifications. The reader may find it interesting to compare the methods
and techniques used in the present monograph to those developed in the context
of kinetic equations and their asymptotic limits by Bardos, Golse and Levermore
[14], [15], [16], Bardos and Ukai [17], Golse and Saint-Raymond [103], Golse and
Levermore [102], P.-L.Lions and Masmoudi [143], [144], see also the review paper
by Villani [197] as well as the references therein. The second group of problems
concerns the relations between models at the same conceptual level provided by
continuum mechanics studied in this book. We refer to Section 11.4 for the corre-
sponding bibliographic remarks.

11.2 Mathematical theory of weak solutions

Variational (weak) solutions represent the most natural framework for a mathe-
matical formulation of the balance laws arising in continuum fluid mechanics, these
being originally formulated in the form of integral identities rather than partial
differential equations. Since the truly pioneering work of Leray [132], the theory
of variational solutions, based on function spaces of Sobolev type and developed
in the work of Ladyzhenskaya [127], Temam [188], Caffarelli et al. [37], Antontsev
et al. [9], and, more recently P.-L. Lions [139], has become an important part of
modern mathematical physics.

Although many of the above cited references concern incompressible fluids,
where weak solutions are expected (but still not proved) to be regular at least for
smooth data, the theory of compressible and/or compressible and heat conducting
fluids supplemented with arbitrarily large data is more likely to rely on the concept
of “genuinely weak” solutions incorporating various types of discontinuities and
other irregular phenomena as the case may be (for relevant examples see Desjardins
[59], Hoff [112], [113], Hoff and Serre [114], Vaigant [194], among others). Pursu-
ing further this direction some authors developed the theory of measure-valued
solutions in order to handle the rapid oscillations that solutions may develop in
a finite time (see DiPerna [63], DiPerna and Majda [66], Málek et al. [148]). The
representation of the basic physical principles in terms of conservation laws has
been discussed in a recent paper by Chen and Tores [46] devoted to the study of
vector fields with divergence measure.

A rigorous mathematical theory of compressible barotropic fluids with large
data was presented only recently in the pioneering work by P.-L. Lions [140] (see
also a very interesting related result by Vaigant and Kazhikhov [195]). The fun-
damental idea discussed already by Hoff [111] and Serre [181] is based on a “weak
continuity” property of a physical quantity that we call effective viscous pressure,
together with a clever use of the renormalized equation of continuity in order to
describe possible density oscillations. A survey of the relevant recent results in this
direction can be found in the monograph [166].
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11.3 Existence theory

The seminal work of P.-L.Lions [140] on existence for compressible viscous baro-
tropic fluids requires certain growth restrictions on the pressure, specifically, the
adiabatic exponent γ ≥ 9

5 in the nonsteady case, and γ > 5
3 in the steady case.

These results have been improved by means of a more precise description of the
density oscillations in [78], [87] up to the adiabatic exponents γ > 3

2 . Finally,
Frehse, Goj, Steinhauer in [89] and Plotnikov, Sokolowski in [173] derived, inde-
pendently, new estimates, which have been quite recently used, at least in the
steady case, to extend the existence theory to smaller adiabatic exponents, see
[174] and [33].

The existence theory presented in this book can be viewed as a part of the
programme originated in the monograph [79]. In comparison with [79], the present
study contains some new material, notably, the constitutive equations are much
more realistic, with structural restrictions based on purely physical principles, and
the transport coefficients are allowed to depend on the temperature. These new
ingredients of the existence theory have been introduced in a series of papers [80],
[81], [82], and [85].

Several new ideas related to the existence problem for the full Navier-Stokes-
Fourier system with density dependent shear and bulk viscosities satisfying a par-
ticular differential relation have been developed recently in a series of papers by
Bresch and Desjardins [30], [29]. Making a clever use of the structure of the equa-
tions, the authors discovered a new integral identity which allows one to obtain
uniform estimates on the density gradient and which may be used to prove exis-
tence of global-in-time solutions.

11.4 Analysis of singular limits

Many recent papers and research monographs explain the role of formal scaling
arguments in the physical and numerical analysis of complex models arising in
mathematical fluid dynamics. This approach has become of particular relevance
in meteorology, where the huge scale differences in atmospheric flows give rise to a
large variety of qualitatively different models, see the survey papers by Klein et al.
[123], Klein [121], [122], the lecture notes of Majda [147], and the monographs by
Chemin et al. [44], Zeytounian [206], [205], [204]. The same is true for applications
in astrophysics, see the classical book of Chandrasekhar [43], or the more recent
treatment by Gilman, Glatzmeier [99], [98], Lignières [136], among others.

The “incompressible limit” Ma → 0 for various systems arising in mathemat-
ical fluid dynamics was rigorously studied in the seminal work by Klainerman and
Majda [120] (see also Ebin [68]). One may distinguish two kinds of qualitatively
different results based on different techniques. The first approach applies to strong
solutions defined on possibly short time intervals, the length of which, however,
is independent of the value of the parameter Ma → 0. In this framework, the
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most recent achievements for the full Navier-Stokes-Fourier system can be found
in the recent papers by Alazard [3], [4] (for earlier results see the survey papers
by Danchin [56], Métivier and Schochet [156], Schochet [180], and the references
cited therein).

The second group of results is based on a global-in-time existence theory
for the weak solutions of the underlying primitive system of equations, asserting
convergence towards solutions of the target system on an arbitrary time interval.
Results of this type for the isentropic Navier-Stokes system have been obtained
by Lions and Masmoudi [141], [142], and later extended by Desjardins et al. [61],
Bresch et al. [31]. For a survey of these as well as of many other related results,
see the review paper by Masmoudi [149].

The investigation of singular limits for the full Navier-Stokes-Fourier sys-
tem in the framework of weak variational solutions originated in [84] and [86].
The spectral analysis of acoustic waves in the presence of strong stratification ex-
posed in Chapter 6 follows the book of Wilcox [202], while the weighted Helmholtz
decomposition used throughout the chapter has been inspired by [165]. Related
results based on the so-called local method were obtained only recently by Mas-
moudi [150]. The refined analysis of the acoustic waves presented in Chapter 7 is
based on the asymptotic expansion technique developed by Vishik and Ljusternik
[198] to handle singular perturbations of elliptic operators, later adopted in the
pioneering paper of Desjardins et al. [61] to the wave operator framework. Related
techniques are presented in the monograph of Métivier [155]. Problems in R

3 were
investigated by Desjardins and Grenier [60].

11.5 Propagation of acoustic waves

There is a vast literature concerning acoustics in fluids, in general, and acoustic
analogies and equations, in particular. In the study of the low Mach number lim-
its, we profited from the theoretical work by Schochet [178], [179], [180]. A nice
introduction to the linear theory of wave propagation is the classical monograph
by Lighthill [135]. The nonlinear acoustic phenomena together with the relevant
mathematical theory are exposed in the book by Enflo and Hedberg [72].

Lighthill’s acoustic analogy in the spirit of Chapter 9 has been used by many
authors, let us mention the numerical results obtained by Golanski et al. [100],
[101].

Clearly, this topic is closely related to the theory of wave equations both in
linear and nonlinear settings. Any comprehensive list of the literature in this area
goes beyond the scope of the present monograph, and we give only a represen-
tative sample of results: Bahouri and Chemin [12], Burq [36], Christodoulou and
Klainerman [48], Smith and Tataru [185].
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cations, I.–III. Dunod, Gautthier-Villars, Paris, 1968.

[139] P.-L. Lions. Mathematical topics in fluid dynamics, Vol.1, Incompressible
models. Oxford Science Publication, Oxford, 1996.

[140] P.-L. Lions. Mathematical topics in fluid dynamics, Vol.2, Compressible
models. Oxford Science Publication, Oxford, 1998.

[141] P.-L. Lions and N. Masmoudi. Incompressible limit for a viscous compress-
ible fluid. J. Math. Pures Appl., 77:585–627, 1998.

[142] P.-L. Lions and N. Masmoudi. On a free boundary barotropic model. Ann.
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lems. Birkhäuser, Berlin, 1995.

[147] A. Majda. Introduction to PDE’s and waves for the atmosphere and ocean.
Courant Lecture Notes in Mathematics 9, Courant Institute, New York,
2003.
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[176] R. Salvi and Straškraba I. Global existence for viscous compressible fluids

and their behaviour as t → ∞. J. Fac. Sci. Univ. Tokyo, 40(1):17–52, 1993.
[177] M. Schechter. On Lp estimates and regularity. I. Amer. J. Math., 85:1–13,

1963.
[178] S. Schochet. The compressible Euler equations in a bounded domain: Ex-

istence of solutions and the incompressible limit. Commun. Math. Phys.,
104:49–75, 1986.

[179] S. Schochet. Fast singular limits of hyperbolic PDE’s. J. Differential Equa-
tions, 114:476–512, 1994.

[180] S. Schochet. The mathematical theory of low Mach number flows. M2AN
Math. Model Numer. Anal., 39:441–458, 2005.

[181] D. Serre. Variation de grande amplitude pour la densité d’un fluid viscueux
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Astérisque, SMF, 282:365–405, 2002.

[198] M.I. Vishik and L.A. Ljusternik. Regular perturbations and a boundary
layer for linear differential equations with a small parameter (in Russian).
Usp. Mat. Nauk, 12:3–122, 1957.

[199] A. Visintin. Strong convergence results related to strict convexity. Commun.
Partial Differential Equations, 9:439–466, 1984.

[200] A. Visintin. Towards a two-scale calculus. ESAIM Control Optim. Calc.
Var., 12(3):371–397 (electronic), 2006.

[201] W. von Wahl. Estimating ∇u by divu and curlu. Math. Meth. Appl. Sci,
15:123–143, 1992.

[202] C.H. Wilcox. Sound propagation in stratified fluids. Appl. Math. Ser. 50,
Springer-Verlag, Berlin, 1984.

[203] S.A. Williams. Analyticity of the boundary for Lipschitz domains without
Pompeiu property. Indiana Univ. Math. J., 30(3):357–369, 1981.



Bibliography 375

[204] R.Kh. Zeytounian. Asymptotic modeling of atmospheric flows. Springer-
Verlag, Berlin, 1990.

[205] R.Kh. Zeytounian. Joseph Boussinesq and his approximation: a contempo-
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Arzelà-Ascoli Theorem, xxi

balance
of entropy, 12, 24
of internal energy, 11
of kinetic energy, 11
of linear momentum, 9, 11, 22
of total energy, 12, 23

balance law, 4–7
weak formulation, 5
with measure source, 7

Bogovskii operator, 36, 93, 211, 315,
323

Boussinesq relation, 134, 149, 169,
184

Buckingham’s theorem, 130
bulk viscosity coefficient, 14, 46

Calderón-Zygmund theorem, 314
characteristic number, 127, 130
coefficient of thermal expansion, 132
commutator

and Riesz operators, 350
and Sobolev spaces, 350
lemma, 100, 350

commutators
and weak convergence, 350
Friedrichs’ lemma, 352

compact operator
spectrum, 309

compactness
weak in L1, xxxiii

comparison principle, 55



Index 379

complete slip boundary condition,
10

composed Sobolev functions, xxvi
compressibility, 15
conservation

of linear momentum, 9
of mass, 8, 25, 153

conservative boundary condition,
149

constitutive relation, 13, 47, 197
convective term, 169
cut-off function, 113
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