
Chapter 7

Boundary Triples and
Self-Adjointness

A simple variation of the not so popular approach to self-adjoint extensions via
boundary triples is discussed. The idea is exemplified through a series of examples,
including the one-dimensional hydrogen atom, free hamiltonian in an interval and
spherically symmetric potentials. At the end, important self-adjoint extensions of
a quantum particle hamiltonian in a multiply connected domain are found.

7.1 Boundary Forms

If T ⊂ S are hermitian operators one has T ⊂ S ⊂ S∗ ⊂ T ∗, that is, any
hermitian extension of T is a hermitian restriction of T ∗. The larger the domain
of a hermitian operator the smaller the domain of its adjoint. The choice of the
domain of S has to be properly adjusted in order to get a self-adjoint extension of
T ; recall also that a self-adjoint operator is maximal, in the sense that it has no
proper hermitian extensions.

Definition 7.1.1. Let T be a hermitian operator. The boundary form of T is the
sesquilinear map Γ = ΓT∗ : dom T ∗ × dom T ∗ → C given by

Γ(ξ, η) := 〈T ∗ξ, η〉 − 〈ξ, T ∗η〉 , ξ, η ∈ dom T ∗.

Γ(ξ) will also denote Γ(ξ, ξ).

In case T ∗ is known, Γ can be used to find the closure of T , that is, T .
Since T = T ∗∗ ⊂ T ∗, by the definition of the adjoint operator T ∗∗ one has that
ξ ∈ dom T iff there is η ∈ H with

〈ξ, T ∗ζ〉 = 〈η, ζ〉 , ∀ζ ∈ dom T ∗,
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and η = Tξ. Since T ⊂ T ∗ one has η = T ∗ξ and so the above relation is equivalent
to

0 = Γ(ξ, ζ) = 〈T ∗ξ, ζ〉 − 〈ξ, T ∗ζ〉 , ∀ζ ∈ dom T ∗,

which is a (anti)linear equation for ξ ∈ dom T .
Exercise 7.1.2. Use the above characterization of T to show that the closure of a
hermitian operator is also hermitian.

Proposition 7.1.3. Γ(ξ, η) = 0, ∀ξ, η ∈ dom T ∗, iff T ∗ is self-adjoint, that is, iff T
is essentially self-adjoint.

Exercise 7.1.4. Present a proof of Proposition 7.1.3. Hence, the boundary form Γ
quantifies the “lack of self-adjointness” of T ∗.

Proposition 7.1.5. If T is hermitian then

dom T = {ξ ∈ dom T ∗ : Γ(ξ, η±) = 0, ∀η± ∈ K±(T )}.

Proof. Recall that if ζ ∈ dom T ∗, then ζ = η + η+ + η−, with η ∈ dom T , and
η± ∈ K±(T ) (the deficiency subspaces). Since Γ(ξ, η) = 0 for all ξ ∈ dom T ∗, η ∈
dom T , it follows that ξ ∈ dom T iff for all ζ ∈ dom T ∗

0 = Γ(ξ, ζ) = Γ(ξ, η + η+ + η−) = Γ(ξ, η+ + η−).

The result follows. �
Exercise 7.1.6. Show that an operator S so that T ⊂ S ⊂ T ∗ is hermitian iff
Γ(ξ, η) = 0 for all ξ, η ∈ dom S.

Let ζ1 = η1 + η1
+ + η1

− and ζ2 = η2 + η2
+ + η2

−, with η1, η2 ∈ dom T , η1
+, η

2
+ ∈

K+(T ), η1
−, η

2
− ∈ K−(T ), be general elements of dom T ∗; since T ∗η± = ∓iη±, it

follows by Theorem 2.2.11 that

Γ(ζ1, ζ2) = Γ(η1
+ + η1

−, η
2
+ + η2

−) = 2i
(
〈η1

+, η
2
+〉 − 〈η1

−, η
2
−〉
)
.

It is then clear that the nonvanishing of Γ is related to the deficiency subspaces.
Boundary forms can be used to determine self-adjoint extensions of T by not-
ing that such extensions are restrictions of T ∗ on suitable domains D so that
Γ(ξ, η) = 0, ∀ξ, η ∈ D (Lemma 7.1.7). Recall that each self-adjoint extension of T
is related to a unitary operator U : K−(T ) → K+(T ) onto K+(T ); denote by
TU the corresponding self-adjoint extension, whose domain is dom TU = {η =
ζ + η− − Uη− : ζ ∈ dom T , η− ∈ K−(T )}. Then, explicitly one has

Lemma 7.1.7. The boundary form ΓT∗ restricted to dom TU vanishes identically.

Proof. For any two elements η = ζ1 + η−−Uη− and ξ = ζ2 + ξ−−Uξ− in dom TU
(ζ1, ζ2 ∈ dom T ) one has

Γ(ξ, η) = 2i (〈Uξ−,Uη−〉 − 〈ξ−, η−〉) = 0,

which vanishes since U is unitary. �
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Proposition 7.1.8. Assume that T has self-adjoint extensions. Then each self-
adjoint extension of T is of the form

dom TU = {ξ ∈ dom T ∗ : Γ(ξ, η− − Uη−) = 0, ∀η− ∈ K−(T )},

TUξ = T ∗ξ, ξ ∈ dom TU (U as above).

Proof. If TU is a self-adjoint extension of T , then dom TU = {η = ζ+η−−Uη− : ζ ∈
dom T , η− ∈ K−(T )}; since Γ restricted to dom TU vanishes, by Proposition 7.1.5
one has, for ξ ∈ dom TU ,

0 = Γ(ξ, ζ + η− − Uη−) = Γ(ξ, η− − Uη−), ∀η− ∈ K−.

Hence, dom TU ⊂ A := {ξ ∈ dom T ∗ : Γ(ξ, η− − Uη−) = 0, ∀η− ∈ K−(T )}.
Now, given U , consider the linear equation for ζ + ξ−+ ξ+ = ξ ∈ dom T ∗ (of

course ξ± ∈ K±(T ))

0 = Γ(ξ, η− − Uη−), ∀η− ∈ K−(T ).

By Lemma 7.1.7, any ξ ∈ dom TU is a solution of this equation. Let ξ ∈ dom T ∗

be a solution and write

ξ = ζ + ξ− − Uξ− + ξ+ + Uξ−;

thus

0 = Γ(ξ, η− − Uη−) = Γ(ξ− − Uξ− + ξ+ + Uξ−, η− − Uη−)
= 2i (〈(ξ+ + Uξ−) − Uξ−,Uη−〉 − 〈ξ−, η−〉)
= 2i (〈ξ+ + Uξ−,−Uη−〉 + 〈Uξ−,Uη−〉 − 〈ξ−, η−〉)
= 2i 〈ξ+ + Uξ−,−Uη−〉, ∀η− ∈ K(T ).

Since rng U = K+, it follows that ξ+ + Uξ− = 0, or ξ+ = −Uξ−; thus ξ =
ζ + ξ− − Uξ− ∈ dom TU so that A ⊂ dom TU . Therefore dom TU = A, and the
proposition is proved. �
Remark 7.1.9. Note that the specification of the self-adjoint extensions TU in
Proposition 7.1.8 does not require the explicit knowledge of T ; sometimes this can
be handy and an advantage over the specification presented in Section 2.5.
Example 7.1.10. As an illustration of the above ideas, the simple case of the
momentum differential operator on a bounded interval (a, b) of Example 2.3.14
will be discussed. Let

dom P = C∞0 (0, 1) � H = L2[0, 1],

(Pψ)(x) = −iψ′(x), ψ ∈ dom P. On integrating by parts it is found that P is
hermitian. One has dom P ∗ = H1[0, 1] and (P ∗ψ)(x) = −iψ′(x), ψ ∈ dom P ∗. In
this case the boundary form is

Γ(ψ, φ) = i
(
ψ(1)φ(1) − ψ(0)φ(0)

)
, ψ, φ ∈ dom P ∗.
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By choosing ψ = φ ∈ H1[0, 1] with φ(0) = 0 and φ(1) 
= 0 one has Γ(φ) 
= 0, and
so P ∗ is not self-adjoint; consequently P is not essentially self-adjoint. Now ψ is
in the domain of the closure P iff

0 = Γ(ψ, φ) = i
(
ψ(1)φ(1) − ψ(0)φ(0)

)
, ∀φ ∈ H1[0, 1];

taking φ vanishing at only one end, it follows that ψ(0) = 0 = ψ(1), that is,
dom P = {ψ ∈ H1[0, 1] : ψ(0) = 0 = ψ(1)}. For the self-adjoint extensions
Proposition 7.1.8 leads exactly to the characterization presented in Example 2.6.5,
although now the specification of dom P is not necessary.

7.1.1 Boundary Triples

A boundary triple is an abstraction of the notion of boundary values in function
spaces; this idea goes back to Calkin in 1939 [Ca39] and Vishik in 1952 [Vi63].

Definition 7.1.11. Let T be a hermitian operator in H with n−(T ) = n+(T ). A
boundary triple (h, ρ1, ρ2) for T is composed of a Hilbert space h and two linear
maps ρ1, ρ2 : dom T ∗ → h with dense ranges and so that

aΓT∗(ξ, η) = 〈ρ1(ξ), ρ1(η)〉 − 〈ρ2(ξ), ρ2(η)〉, ∀ξ, η ∈ dom T ∗,

for some constant 0 
= a ∈ C. Note that 〈·, ·〉 is also denoting the inner product
in h.

In general, given a hermitian operator T with equal deficiency indices, dif-
ferent boundary triples can be associated with it; since for ζ1, ζ2 ∈ dom T ∗ (by
using the above notation)

Γ(ζ1, ζ2) = 2i
(
〈η1

+, η
2
+〉 − 〈η1

−, η
2
−〉
)
,

only the deficiency subspaces effectively appear in the boundary form, conse-
quently one may take either h = K−(T ) or h = K+(T ) (with ρ properly chosen);
in this case, say h = K−(T ), by von Neumann theory it is known that self-adjoint
extensions are in one-to-one relation with unitary operators U : K−(T ) → K+(T ).
However, it is convenient to allow a general h with dimh = n+(T ) (recall that
two Hilbert spaces are unitarily equivalent iff they have the same dimension), and
Theorem 7.1.13 will adapt von Neumann theory to this situation.

Again, self-adjoint extensions of T are restrictions of T ∗ on suitable domains
D so that Γ(ξ, η) = 0, ∀ξ, η ∈ D, and given a boundary triple for T , such D are
related to isometric maps Û : h → h (which can be taken to be onto; extend it by
continuity, if necessary) so that Ûρ1(ξ) = ρ2(ξ) and

〈ρ1(ξ), ρ1(η)〉 = 〈ρ2(ξ), ρ2(η)〉 =
〈
Ûρ1(ξ), Ûρ1(η)

〉
,

∀ξ, η ∈ D. Next the linearity of Û will be established.
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Lemma 7.1.12. Each Û above is a linear and unitary map.

Proof. Note that rng Û = h and it will suffice to show that this operator is in-
vertible and linear. To simplify the notation, ρ1 and ρ2 will not appear in what
follows.

If Û(ξ) = Û(η), then

0 =
〈
Û(ξ) − Û(η), Û(ξ) − Û(η)

〉
=
〈
Û(ξ), Û(ξ)

〉
−
〈
Û(ξ), Û(η)

〉
−
〈
Û(η), Û(ξ)

〉
+
〈
Û(η), Û(η)

〉
= 〈ξ, ξ〉 − 〈ξ, η〉 − 〈η, ξ〉 + 〈η, η〉 = ‖ξ − η‖2;

therefore ξ = η and so Û is injective and Û−1 : h → h exists.

If Û−1(ξ1) = ξ and Û−1(η1) = η, since by hypothesis
〈
Û(ξ), Û(η)

〉
= 〈ξ, η〉,

∀ξ, η, then 〈ξ1, η1〉 =
〈
Û−1(ξ1), Û−1(η1)

〉
; since Û is bijective such a relation holds

for every vector in the space. In this relation, if ξ1 = Û(ξ2), then
〈
Û(ξ2), η1

〉
=〈

ξ2, Û−1(η1)
〉
, again for all vectors of h.

Now, for all η, ξ, ζ ∈ h and a, b ∈ C, one has〈
Û(aξ + bη), ζ

〉
=
〈
aξ + bη, Û−1(ζ)

〉
= ā

〈
ξ, Û−1(ζ)

〉
+ b̄
〈
η, Û−1(ζ)

〉
= ā

〈
Û(ξ), ζ

〉
+ b̄
〈
Û(η), ζ

〉
=
〈
a Û(ξ) + b Û(η), ζ

〉
,

showing that Û(aξ + bη) = a Û(ξ) + b Û(η), that is, Û is linear. �

Theorem 7.1.13. Let T be a hermitian operator with equal deficiency indices. If
(h, ρ1, ρ2) is a boundary triple for T , then the self-adjoint extensions TÛ of T are
precisely

dom TÛ =
{
ξ ∈ dom T ∗ : ρ2(ξ) = Ûρ1(ξ)

}
, TÛξ = T ∗ξ,

for every unitary map Û : h → h.

Proof. A necessary condition for the restriction of T ∗ to a domain D be self-
adjoint is that the corresponding boundary form vanishes identically on D. Given
the boundary triple, taking into account Lemma 7.1.12 and the discussion that
precedes it, Lemma 7.1.7 and Proposition 7.1.8, such D’s are necessarily obtained
through unitary maps Û : h → h and it is enough to check that actually each TÛ
is self-adjoint.
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Clearly TÛ is a hermitian extension of T . If η ∈ dom T ∗Û one has

〈T ∗Ûη, ξ〉 = 〈η, TÛξ〉 = 〈η, T ∗Ûξ〉, ∀ξ ∈ dom TÛ .

Then,

0 = ΓT∗
Û
(η, ξ) = 〈T ∗Ûη, ξ〉 − 〈η, T ∗Ûξ〉

= 〈ρ1(η), ρ1(ξ)〉 − 〈ρ2(η), ρ2(ξ)〉
= 〈ρ1(η), ρ1(ξ)〉 − 〈ρ2(η), Ûρ1(ξ)〉
= 〈ρ1(η), ρ1(ξ)〉 − 〈Û∗ρ2(η), ρ1(ξ)〉
= 〈ρ1(η) − Û∗ρ2(η), ρ1(ξ)〉, ∀ξ ∈ dom TÛ .

Since ρ1 has dense range in h, it follows that ρ1(η)−Û∗ρ2(η) = 0, that is, ρ2(η) =
Ûρ1(η) and η ∈ dom TÛ . Therefore, TÛ is self-adjoint. �

Often a boundary triple for differential operators gives self-adjoint extensions
in terms of boundary conditions, and different choices of the triple correspond
to different parametrizations of such extensions. In applications sometimes it is
convenient to distinguish the spaces ρ1(h) from ρ2(h) by different symbols.

Remark 7.1.14. The definition of boundary triple presented here is slightly differ-
ent from the current definition in the literature; maybe the term modified boundary
triple should be used. For the usual approach and related results and references
in case of differential operators see [GorG91] and [BrGP08].

7.2 Schrödinger Operators on Intervals

Important Schrödinger operators are self-adjoint extensions of the minimal oper-
ator

H = − d2

dx2
+ V (x), dom H = C∞0 (a, b) � L2(a, b),

with −∞ ≤ a < b ≤ +∞; the weakest request on the (real-valued) potential is
V ∈ L2

loc(a, b), and this will be henceforth supposed in this chapter.
Note that L2(a, b) = L2[a, b] since the set of end points {a, b} has zero

Lebesgue measure. However, in case of bounded intervals one has C∞0 (a, b) 
=
C∞0 [a, b] and for absolutely continuous functions AC(a, b) 
= AC[a, b] (recall that
AC(a, b) denotes the set of absolutely continuous functions in every bounded and
closed interval [c, d] ⊂ (a, b)). By Proposition 2.2.16, H has equal deficiency in-
dices and so self-adjoint extensions do exist. In this and the next sections some
results related to this matter will be addressed, as well as some ways of getting
self-adjoint extensions of H , mainly illustrated by means of boundary forms. In
this section H always refers to this minimal differential operator.
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Again note the open interval (a, b) and in general V ∈ L2
loc is allowed to

“drastically diverge” at the end points. For V ∈ L2
loc(a, b), Proposition 2.3.20

ensures that dom H∗ equals{
ψ ∈ L2(a, b) : ψ, ψ′ ∈ AC(a, b), (−ψ′′ + V ψ) ∈ L2(a, b)

}
,

so that if ψ ∈ dom H∗ then ψ, ψ′ are absolutely continuous functions in (a, b), and
in case the potential V has a discontinuity at a point c ∈ (a, b), then ψ and ψ′

must be continuous at c for any ψ in the domain of a self-adjoint extension of H .
Such continuity conditions at c are habitually imposed on wave functions (i.e., ψ)
in quantum mechanics textbooks, and here the justification is seen to be related
to regularity properties of elements of dom H∗.

Lemma 7.2.1. The boundary form of the above minimal operator H is

Γ(ψ, ϕ) = Wb[ψ, ϕ] −Wa[ψ, ϕ], ψ, ϕ ∈ dom H∗,

where Wx[ψ, ϕ] = ψ(x)ϕ′(x) − ψ′(x)ϕ(x) is the wronskian of ψ, ϕ at x ∈ (a, b),
and Wa[ψ, ϕ] := limx→a+ Wx[ψ, ϕ], Wb[ψ, ϕ] := limx→b− Wx[ψ, ϕ].

Proof. Let [c, d] ⊂ (a, b) and ψ, ϕ ∈ dom H∗. In view of V ∈ L2
loc(a, b), on inte-

grating by parts one gets that Γ(ψ, φ) is reduced to∫ d

c

(
(H∗ψ)(x)ϕ(x) − ψ(x)(H∗ϕ)(x)

)
dx = Wd[ψ, ϕ] −Wc[ψ, ϕ];

since the integral over the whole interval [a, b] is finite, the limits defining Wa[ψ, ϕ]
and Wb[ψ, ϕ] exist (modify the functions so that they vanish in a neighborhood
of a; then Wb[ψ, ϕ] exists; similarly for the other end) and Γ(ψ, ϕ) = Wb[ψ, ϕ] −
Wa[ψ, ϕ]. �
Exercise 7.2.2. Let H be the above minimal operator and u ∈ L1

loc(a, b). If ψ, ϕ
are solutions of H∗ψ = u, show that the wronskian Wx[ψ, ϕ] = γ is constant.
Furthermore, if {ψ, ϕ} is a linearly independent set, show that such a constant
γ 
= 0, and given c ∈ (a, b),

φ(x) :=
1
γ

∫ x

c

[ψ(x)ϕ(t) − ϕ(x)ψ(t)] u(t) dt

is the unique solution of H∗ψ = u with initial conditions φ(c) = 0 and φ′(c) = 0.

7.2.1 Regular and Singular End Points

Definition 7.2.3. The end point a is regular for the differential operator H =
−d2/dx2 + V if −∞ < a and for some c ∈ (a, b) (and so for all such c) one
has

∫ c
a
|V (x)| dx := limd→a+

∫ c
d
|V (x)| dx < ∞; b is regular for H if b < ∞ and∫ b

c |V (x)| dx := limd→b−
∫ d
c |V (x)| dx < ∞. If an end point is not regular it is

called singular.



176 Chapter 7. Boundary Triples and Self-Adjointness

From the theory of differential equations [Na69] it is known that the space
of solutions of the K∓-equation

H∗ψ = −ψ′′ + V ψ = ±iψ, ψ ∈ dom H∗,

is two-dimensional and if a is a regular point for H then any solution ψ has finite
limits ψ(a) := ψ(a+) = limx→a+ ψ(x) and ψ′(a) := ψ′(a+) = limx→a+ ψ′(x); if a
is singular then such limits can be divergent.

Recall also that if V is a continuous function (even complex-valued) on (a, b),
then any solution of

−ψ′′ + (V − z)ψ = 0, z ∈ C,

is a twice continuously differentiable function in (a, b), and in case V ∈ C∞(a, b)
then ψ ∈ C∞(a, b).

Proposition 7.2.4. Let H be the above minimal differential operator.

i) The closure of H is given by

dom H = {ψ ∈ dom H∗ : Wb[ψ, ϕ] = 0,Wa[ψ, ϕ] = 0, ∀ϕ ∈ dom H∗} ,
Hψ =H∗ψ, ∀ψ ∈ dom H.

ii) Let ψ ∈ dom H∗. In case a is a regular end point, then the condition
Wa[ψ, ϕ] = 0, ∀ϕ ∈ dom H∗, means ψ(a) = 0 = ψ′(a) (similarly for b).

Proof. i) Combine Proposition 7.1.5 and Lemma 7.2.1 to get

dom H = {ψ ∈ dom H∗ : Wb[ψ, ϕ] −Wa[ψ, ϕ] = 0, ∀ϕ ∈ dom H∗} .

Since the behavior of functions in dom H∗ near a is independent of their values
near b, it follows that the statement Wb[ψ, ϕ] − Wa[ψ, ϕ] = 0, ∀ϕ ∈ dom H∗,
is equivalent to Wb[ψ, ϕ] = 0 = Wa[ψ, ϕ], ∀ϕ ∈ dom H∗ (e.g., given ϕ, pick u ∈
dom H∗ that coincides with ϕ in a neighborhood of a and is zero in a neighborhood
of b; then Wa[ψ, ϕ] = Wa[ψ, u] = Wb[ψ, u] = 0).

ii) If a is a regular point, then ϕ(a), ϕ′(a) are well defined (i.e., they have
finite limits) for all ϕ ∈ dom H∗; hence 0 = Wa[ψ, ϕ] = ψ(a)ϕ′(a) − ψ′(a)ϕ(a),
∀ϕ ∈ dom H∗, implies ψ(a) = 0 = ψ′(a), since ϕ(a), ϕ′(a) can take arbitrary
values. �
Corollary 7.2.5. If both end points a, b are regular, then

dom H = {ψ ∈ dom H∗ : ψ(b) = ψ′(b) = 0 = ψ(a) = ψ′(a)} .

Corollary 7.2.6. IfH has a regular end point, then its closureH has no eigenvalues.

Proof. Say a is a regular end point. Then the solution of Hψ = λψ, ψ ∈ dom H ,
λ ∈ C, must satisfy ψ(a) = 0 = ψ′(a), and so, by uniqueness, ψ is the null
solution. �
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Definition 7.2.7. A measurable function u : (a, b) → C is in L2 near the end point
a if there exists c ∈ (a, b) so that u ∈ L2(a, c) (in fact the restriction u|(a,c) ∈
L2(a, c)); similarly for u that is L2 near b.

Remark 7.2.8. Note that if ψ is a solution of the K−-equation for H , then ψ is a
solution of the corresponding K+-equation. So for each solution L2 near a of the
K−-equation corresponds a solution L2 near a of the K+-equation and vice versa.
Similarly for the end point b.

Theorem 7.2.9. Let H be the minimal operator introduced on page 174.

i) The deficiency indices of the above minimal operator H are finite and bounded
by 0 ≤ n−(H) = n+(H) ≤ 2.

ii) If both end points a, b are regular, then n−(H) = n+(H) = 2.

Proof. i) By Proposition 2.2.16, n−(H)=n+(H). From the above discussion on
solutions of linear differential equations of second order one has, say, 0≤n−(H)≤2.

ii) If u is a solution of

H∗ψ = −ψ′′ + V ψ = −iψ, ψ ∈ dom H∗,

then u, u′ are absolutely continuous in (a, b) and so for any [c, d] ⊂ (a, b) one
has

∫ d
c
|u(x)|2 dx < ∞. Since the limits u(a+), u(b−) exist and a, b are finite, one

gets
∫ b
a
|u(x)|2 dx <∞, consequently all elements of K+(H) are in L2[a, b]. Hence

n+(H) = 2. By item i), n−(H) = 2. �

Lemma 7.2.10. Let H be the minimal operator introduced on page 174. For each
end point, at least one (nonzero) solution of

H∗ψ = −ψ′′ + V ψ = ±iψ, ψ ∈ dom H∗,

is L2 near it.

Proof. Let a, b be the end points and a < a′ < b′ < b; it is enough to consider −i
on the right-hand side of the above equation, since the arguments are the same
for the other possibility.

For the hermitian operator dom S = {ψ, ψ′ ∈ AC[a′, b′] ⊂ L2[a′, b′] : ψ(a′) =
ψ′(a′) = 0 = ψ(b′) = ψ′(b′)},

Sψ = −ψ′′ + V ψ,

a′, b′ are regular end points and, by Theorem 7.2.9, n−(S) = 2 = n+(S). Thus,
rng (S + i1) = K−(S)⊥ 
= {0}, and since C∞0 (a′, b′) � L2[a′, b′], there exists
φ ∈ C∞0 (a′, b′) with φ /∈ rng (S + i1). Let Ĥ be a self-adjoint extension of H and
ψ ∈ dom Ĥ ⊂ dom H∗ with (Ĥ + i1)ψ = φ (recall that rng (Ĥ + i1) = H by
Proposition 2.2.4); note that the support of ψ does not lie in (a′, b′), for otherwise
ψ would belong to dom S and (S + i1)ψ = φ, so that a contradiction would arise.
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Now suppose that ψ does not vanish identically on (a, a′) (similarly if it does
not vanish identically on (b′, b)). Then the restriction u := ψ|(a,a′) is a solution of
the above equation in the statement of the lemma (recall that Ĥ ⊂ H∗) and it is
L2 near a. The construction of the solution L2 near b is as follows.

Consider the operator dom Q = {ϕ ∈ dom Ĥ : ϕ(x) = 0, ∀x ∈ [b′, b)} (under
restriction, this set is dense in L2(a, a′)), Q := Ĥ|dom Q; in view of u ∈ dom Q
and

Qu = −u′′ + V u = −iu,
it is found that ū ∈ dom Q∗ (the complex conjugate of u above) and

(Q∗ − i1)ū = 0;

it then follows that rng (Q + i1) is not dense and, as above, there exists φ ∈
C∞0 (a, a′) with φ /∈ rng (Q+ i1). The self-adjointness of Ĥ implies that rng (Ĥ +
i1) = L2(a, b), and so there is v ∈ dom Ĥ with (Ĥ + i1)v = φ. Finally, v does not
vanish identically on [b′, b) since φ /∈ rng (Q + i1), and so a (nonzero) L2 near b
solution of the equation in the statement of the lemma was found. This completes
the proof. �
Corollary 7.2.11. If n−(H) = n+(H) = 0, that is, H is essentially self-adjoint,
then both ends a, b are singular.

Proof. If one end is regular then all solutions of the corresponding K∓-equation
are L2 near it and, by Lemma 7.2.10, there is at least one solution of the above
equation that is L2 near the other end point, so at least one solution belongs to
L2(a, b) and n+(H) ≥ 1. Both ends being singular is the only remaining possibility
if n− = n+ = 0. �

7.2.2 Limit Point, Limit Circle

Corollary 7.2.11 shows that a necessary condition for H to be essentially self-
adjoint is that both ends a, b are singular. This is related to interesting results
by Weyl (around 1910) and further developed by Levinson, Friedrichs and many
others. For details justifying the terms in the next definition – although not im-
mediate, they are quite interesting – consult [CoL55] or [Pea88].

Definition 7.2.12. The minimal differential operator H is in the limit point (resp.
limit circle) at one end point if the vector space of solutions of the K±-equation
that are L2 near this end point is unidimensional (resp. two-dimensional).

Theorem 7.2.13 (Weyl). The operator H is essentially self-adjoint iff it is in the
limit point at both ends a and b.

Proof. By Corollary 7.2.11 and the proof of Lemma 7.2.10, if H is essentially self-
adjoint, then both ends are limit point and the unique nonzero solution ϕ of the
K+-equation that is L2 near a and the unique nonzero solution ψ that is L2 near
b compose a linearly independent set, so that no solution belongs to L2(a, b).
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The task now is to show that if H is limit point at both end points, then
n− = n+ = 0, which is equivalent to H∗ being self-adjoint.

By Lemma 7.2.1,

ΓH∗(ψ, ϕ) = Wb[ψ, ϕ] −Wa[ψ, ϕ], ∀ψ, ϕ ∈ dom H∗;

also H∗ is self-adjoint iff the boundary form ΓH∗ vanishes identically. Let c ∈ (a, b)
and A,B be operators with the same action as H but domains dom B = C∞0 (a, c)
and dom A = {ϕ ∈ C∞(a, c) : ϕ(c) = 0, ∃ε > 0, ϕ(x) = 0, ∀x ∈ (a, a + ε)}. Since
B ⊂ A one has B ⊂ A.

Claim. A is self-adjoint.

In fact, by hypothesis the solutions of −ϕ′′ + V ϕ = ±iϕ that are L2 near
a constitute a one-dimensional subspace, and since c is a regular end point, all
solutions are L2 near c; hence n−(B) = 1 = n+(B). By noting that A is a proper
hermitian extension of B (there are functions ϕ in dom A with ϕ′(c) 
= 0, but
not in dom B; see Proposition 7.2.4), it follows that n±(A) < n±(B) (because
n±(B) < ∞) and the unique possibility is then n−(A) = 0 = n+(A), and so A is
self-adjoint.

Let ψ, ϕ ∈ dom H∗. Pick ψc, ϕc ∈ C∞0 (a, b) so that both functions ψ2 := ψ+
ψc, ϕ2 := ϕ+ϕc vanish at c. Then, ψ2, ϕ2 ∈ dom A and in view of Wc[ψ2, ϕ2] = 0
one finds

Wa[ψ, ϕ] =Wa[ψ2 − ψc, ϕ2 − ϕc] = Wa[ψ2, ϕ2]
=Wa[ψ2, ϕ2] −Wc[ψ2, ϕ2] = −ΓA(ψ2, ϕ2) = 0,

since A is self-adjoint (see Lemma 7.1.7). Similar arguments show that Wb[ψ, ϕ] =
0, so that ΓH∗ vanishes identically on dom H∗ and H∗ is self-adjoint. Thereby the
proof is complete. �

Exercise 7.2.14. Show that H has deficiency indices n+ = n− = 1 iff it is limit
circle at one end and limit point at the other.
Example 7.2.15. If V is a real polynomial and Hψ = −ψ′′ + V ψ, dom H =
C∞0 (a, b) and (a, b) a bounded interval, then both ends are regular and so n+ =
n− = 2. Note that such a conclusion holds also for any continuous potential in
[a, b], including the free particle in the interval, that is, V = 0 (cf. Example 2.6.8).

Example 7.2.16. Let V (x) = κ ln(γ x), κ 
= 0, γ > 0, and dom H = C∞0 (0, 1).
Since V is regular at both end points, it follows that n− = n+ = 2.

Exercise 7.2.17. Show that the deficiency indices of H in (0, 1) with potential
V (x) = κ(lnx)2 are equal to 2. Generalize for V (x) = κ(lnx)m, for any κ ∈
R,m ∈ N.

Example 7.2.18. Let V (x) = κ/x2, κ 
= 0, and H with dom H = C∞0 (0, 1). By
Proposition 2.3.20, dom H∗ = {ψ ∈ L2(0, 1) : ψ, ψ′ ∈ AC(0, 1), (−ψ′′ + κ/x2ψ) ∈
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L2(0, 1)}. The end point 1 is regular, while 0 is not; so H is limit circle at 1. For
the end point 0 one needs to determine the solutions of the K∓-equation

H∗ψ = −ψ′′ + κ

x2
ψ = ±iψ;

if one searches for solutions in the form ψ(x) = xa, it follows that

−a(a− 1)xa + κxa ∓ ixa+2 = 0,

so that, whether for x→ 0 the term xa+2 could be ignored in comparison with the
other terms, then one has approximately −a(a− 1) + κ = 0, whose solutions are
a± = 1/2(1±

√
1 + 4κ). If −1/4 < κ < 3/4 both solutions are independent and L2

near 0 (so limit circle), whereas for κ ≥ 3/4 only one of them is in L2 near 0 (so
limit point). Hence, n− = n+ = 1 if κ ≥ 3/4 and n− = n+ = 2 if −1/4 < κ < 3/4.

Now a justification of the above procedure for x→ 0. If ψ ∈ dom H∗, then

u = H∗ψ = −ψ′′ + κ

x2
ψ ∈ L2(0, 1);

this may be thought of as a nonhomogeneous second-order linear differential equa-
tion for ψ. Note that the independent solutions of the homogeneous equation are
exactly the above ψ+(x) = xa+ and ψ−(x) = xa− . By the well-known variation of
parameters technique one obtains the general solution, that is,

ψ(x) = b+ψ+(x) + b−ψ−(x)

+
[
ψ+(x)

∫ x

0

ψ−(t)u(t)
Wt[ψ+, ψ−]

dt− ψ−(x)
∫ x

0

ψ+(t)u(t)
Wt[ψ+, ψ−]

dt

]
,

for some constants b±. A direct calculation gives Wt[ψ+, ψ−] = −γ, ∀t, with
γ =

√
1 + 4κ. Write ‖u‖2,x =

(∫ x
0 |u(t)|2dt

)1/2
and note that ‖u‖2,x → 0 as

x → 0+. The absolute value of the term in square brackets is estimated from
above by using Cauchy-Schwarz,

‖u‖2,x

γ
×
(
|ψ+(x)|

(∫ x

0

|ψ−(t)|2
)1/2

+ |ψ−(x)|
(∫ x

0

|ψ+(t)|2
)1/2

)

≤ 4
|4 − γ2|

‖u‖2,x

γ
x3/2, −1

4
< κ <

3
4
.

The case κ = 3/4 is left as an exercise. Since such a term is in L2 near 0, the
final analysis of ψ near 0 is left to the solutions of the homogeneous equation
ψ+(x) = xa+ and ψ−(x) = xa− , which is exactly the analysis performed above.
Exercise 7.2.19. Discuss the case κ = 3/4 in Example 7.2.18 (see also Exer-
cise 7.2.23).
Exercise 7.2.20. For ψ ∈ dom H∗ in Example 7.2.18, find the behavior of ψ′(x)
for x→ 0+.
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Example 7.2.21. This is the potential of Example 7.2.18, but on the half-line. Let
V (x) = κ/x2, κ 
= 0, and H with dom H = C∞0 (0,∞). The same conclusions
about the end point 0 as in Example 7.2.18 are obtained. For the other end point
consider the K−-equation

−x2ψ′′ + κψ = ix2ψ;

for x → ∞ its solutions are governed by the equation −ψ′′ = iψ whose solutions
are u±(x) = e±(1±i)x/

√
2; since only one of them is in L2 near ∞ (analogously

to the K+-equation), one concludes that H is in the limit point at ∞ for all
κ 
= 0. Therefore, if κ ≥ 3/4 the operator H is essentially self-adjoint, whereas
n− = n+ = 1 if −1/4 < κ < 3/4.

For the justification of the above argument in case x → ∞, apply Proposi-
tion 7.5.3 and Exercise 7.5.6.

Exercise 7.2.22. Check that

u1(x) =
√
x cos(t lnx)/

√
t, u2(x) =

√
x sin(t ln x)/

√
t,

with t =
√
−κ− 1/4, κ < −1/4, are solutions of −ψ′′ + κ

x2ψ = 0.

Exercise 7.2.23. Show that the deficiency indices of dom H = C∞0 (0,∞), Hψ =
−ψ′′ − ψ/(4x2) are n− = 1 = n+. Note that ψ+(x) =

√
x and ψ−(x) =

√
x lnx

are solutions of H∗ψ = 0.

7.3 Regular Examples

In this section boundary triples will be used to get explicitly self-adjoint extensions
of H with regular end points. The ideas can be adapted to other situations.

Example 7.3.1. [Free particle on a half-line] The initial energy operator is Hψ =
−ψ′′, dom H = C∞0 (0,∞); by Example 2.3.19, n− = n+ = 1. Also dom H∗ =
H2[0,∞) and the boundary form, for ψ, ϕ ∈ dom H∗, is readily seem to be

Γ(ψ, ϕ) = W∞[ψ, ϕ] −W0[ψ, ϕ] = ψ′(0)ϕ(0) − ψ(0)ϕ′(0),

since the elements of dom H∗ vanish at infinity. Now define the vector spaces
X := {Ψ = ψ(0) − iψ′(0) : ψ ∈ dom H∗} and the map Y = ρ(X) := {ρ(Ψ) =
ψ(0) + iψ′(0) : Ψ ∈ X}, and observe that

〈Ψ,Φ〉 − 〈ρ(Ψ), ρ(Φ)〉 = 2iΓ(ψ, ϕ)

(of course Φ = ϕ(0) − iϕ′(0)), so that a boundary triple was found (with respect
to Definition 7.1.11, think of X = ρ1(dom H∗) and Y = ρ2(dom H∗) = ρ(X)).

Now, according to Theorem 7.1.13, a domain D so that H∗|D is self-adjoint
is characterized by unitary maps between X and Y . Since X and Y are unidimen-
sional, such unitary maps are multiplication by eiθ for some 0 ≤ θ < 2π. Therefore,
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the domain of self-adjoint extensions of H are so that Ψ = eiθρ(Ψ) for all Ψ ∈ X .
Writing out such a relation

ψ(0) − iψ′(0) = eiθ (ψ(0) + iψ′(0)) ,

and so (1 − eiθ)ψ(0) = i(1 + eiθ)ψ′(0); if θ 
= 0 one has

ψ(0) = λψ′(0), λ = i
(1 + eiθ)
(1 − eiθ)

∈ R.

Therefore the self-adjoint extensions Hλ of H are characterized by the following
boundary conditions

dom Hλ = {ψ ∈ H2[0,∞) : ψ(0) = λψ′(0)}, Hλψ = −ψ′′,

for each λ ∈ R∪ {∞}. The value λ = ∞ is for including θ = 0, which corresponds
to Neumann boundary condition ψ′(0) = 0. A Dirichlet boundary condition occurs
for λ = 0. Exercises 7.3.2 and 11.6.11 discuss the spectra of such operators.
Exercise 7.3.2. Show that the self-adjoint operators Hλ in Example 7.3.1 have an
eigenvalue E iff λ < 0 and E = −1/λ2, whose eigenfunction is ψE(x) = ex/λ. The
existence of a negative value in the spectrum can be considered rather unexpected,
since the actions of Hλ indirectly suggest they are positive operators; the question
is the boundary condition choice. Maybe, someone could discard such possibilities
on the basis of physical arguments.
Exercise 7.3.3. Check that if in Example 7.2.21 one takes κ = 0, then Exam-
ple 7.3.1 is recovered.
Example 7.3.4. [Free particle on an interval] The initial energy operator is Hψ =
−ψ′′, dom H = C∞0 (0, 1); by Example 7.2.15, n− = n+ = 2. Also dom H∗ =
H2[0, 1] and the boundary form is, for ψ, ϕ ∈ dom H∗,

Γ(ψ, ϕ) =W1[ψ, ϕ] −W0[ψ, ϕ]
= ψ(1)ϕ′(1) − ψ′(1)ϕ(1) − ψ(0)ϕ′(0) + ψ′(0)ϕ(0).

Based on Example 7.3.1, define the two-dimensional vector spaces of elements

Ψ =
(
ψ′(0) − iψ(0)
ψ′(1) + iψ(1)

)
, ρ(Ψ) =

(
ψ′(0) + iψ(0)
ψ′(1) − iψ(1)

)
,

for ψ ∈ dom H∗. A direct evaluation of inner products leads to

〈Ψ,Φ〉 − 〈ρ(Ψ), ρ(Φ)〉 = −2iΓ(ψ, ϕ),

and a boundary triple was found.
By Theorem 7.1.13, a domain D so that H∗|D is self-adjoint is characterized

by a unitary 2 × 2 matrix Û so that Ψ = Ûρ(Ψ) for all Ψ; recall that the general
form of such matrices is

Û = eiθ
(
a−b̄
b ā

)
, θ ∈ [0, 2π), a, b ∈ C, |a|2 + |b|2 = 1.
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Writing out such a relation one obtains the boundary conditions(
1− Û

)(
ψ′(0)
ψ′(1)

)
= −i

(
1 + Û

)(−ψ(0)
ψ(1)

)
and the domain of the corresponding self-adjoint extension HÛ of H is composed
of the elements ψ ∈ H2[0, 1] so that the above boundary conditions are satisfied;
also HÛψ = −ψ′′. Some particular choices of Û appear in exercises.

In case (1 + Û) is invertible (similarly if (1− Û) is invertible) one can write
the above boundary conditions as

A

(
ψ′(0)
ψ′(1)

)
=
(
−ψ(0)
ψ(1)

)
, A = i

(
1 + Û

)−1 (
1− Û

)
,

with A a self-adjoint 2 × 2 matrix. By allowing some entries of A that take the
value ∞, it is possible to recover some cases

(
1 + Û

)
that are not invertible;

nevertheless, it is not always a simple task to recover all such cases, so that the
boundary conditions in terms of Û seem preferable.
Exercise 7.3.5. Show that A above is actually a self-adjoint matrix. Note that it
recalls the inverse Cayley transform.
Exercise 7.3.6. Check that the choices for the matrix Û

a) 1, b) − 1, c)
(

0 1
1 0

)
, d)

(
0 −1
−1 0

)
,

impose, respectively, the boundary conditions: a) ψ(0) = 0 = ψ(1) (Dirichlet); b)
ψ′(0) = 0 = ψ′(1) (Neumann); c) ψ(0) = ψ(1) and ψ′(0) = ψ′(1) (periodic); d)
ψ(0) = −ψ(1) and ψ′(0) = −ψ′(1) (antiperiodic).
Exercise 7.3.7. With respect to Exercise 7.3.6, find the spectra of all those op-
erators by solving the corresponding eigenvalue equations; confirm that they are
formed solely of eigenvalues. Check that cases a) and b) have the same spectra,
except for E = 0 that is an eigenvalue only in case b) and, in both cases, all
eigenvalues are simple. Note that the multiplicity of all eigenvalues in case d) is
two.
Example 7.3.8. If the potential V is such that both end points 0, 1 are regular,
then the deficiency indices of Hψ = −ψ′′ + V ψ, dom H = C∞0 (0, 1), are equal to
2, and for any ψ ∈ dom H∗ the boundary values ψ(0), ψ(1), ψ′(0), ψ′(1) are well
defined. Thus, its self-adjoint extensions can be characterized in the same way as
in Example 7.3.4, through the same boundary conditions. Particular cases are

V (x) = κ lnx, V (x) = κ/xα, α < 1, κ ∈ R.

Example 7.3.9. Let V (x) be continuous and lower bounded with |V (x)| ≤ |x|−α,
for some 0 < α < 1/2, and Hψ = −ψ′′ + V ψ, dom H = C∞0 (R). By Theo-
rem 6.2.23, H is in the limit point case at both end points −∞,+∞, so that H∗

is self-adjoint, with dom H∗ = H2(R) and H∗ψ = −ψ′′ + V ψ.
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7.4 Singular Examples and All That

For singular endpoints the limit values of ψ, ψ′ could not exist, so that the strategy
presented in the examples in Section 7.3 is not guaranteed to work. However, in
some cases it is possible to properly adapt that strategy in order to get self-adjoint
extensions. This will be illustrated in this section through a series of examples,
including some point interactions.
Example 7.4.1. The self-adjoint extensions of dom H = C∞0 (0, 1),

(Hψ)(x) = −ψ′′(x) − 1
4x2

ψ(x), ψ ∈ dom H,

will be found (cf., Example 7.2.18 and Exercise 7.2.23). If ψ ∈ dom H∗ = {ψ ∈
L2(0, 1) : ψ, ψ′ ∈ AC(0, 1), (−ψ′′ − ψ/(4x2)) ∈ L2(0, 1)} one has

u = H∗ψ = −ψ′′ − 1
4x2

ψ ∈ L2(0, 1),

which is a nonhomogeneous second-order linear differential equation for ψ; the
general solution of the corresponding homogeneous equation H∗ψ = 0 is b1ψ1(x)+
b2ψ2(x), b1, b2 ∈ C, with ψ1(x) =

√
x and ψ2(x) =

√
x lnx, whose wronskian is

Wx[ψ1, ψ2] = 1, ∀x ∈ [0, 1]. Introduce ϕ = ψ/
√
x so that

√
xϕ′′ +

1√
x
ϕ′ = −u,

or
(xϕ′)′ = xϕ′′ + ϕ′ = −

√
xu,

and since
√
xu ∈ L1[0, 1], on integrating one gets

ϕ′(x) =
b2
x

− 1
x

∫ x

0

√
s u(s) ds.

By Cauchy-Schwarz, the function x �→ 1
x

∫ x
0

√
su(s) ds is also integrable in [0, 1],

so that
ϕ(x) = b1 + b2 lnx−

∫ x

0

ds

s

∫ s

0

√
t u(t) dt

and, finally, ψ(x) = b1
√
x + b2

√
x lnx + vψ(x), (note that bj = bj(ψ), j = 1, 2)

with vψ denoting the differentiable function

vψ(x) = −
√
x

∫ x

0

ds

s

∫ s

0

√
t u(t) dt.

By Cauchy-Schwarz again,

|vψ(x)| ≤
√
x

∫ x

0

ds

s

∣∣∣∣∫ s

0

√
t u(t)

∣∣∣∣ dt
≤
√
x

∫ x

0

ds

s

s√
2
‖u‖2 =

x3/2

√
2

‖u‖2,

so that vψ(x) ∼ x3/2, v′ψ(x) ∼ x1/2 as x→ 0.
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The boundary form of H is, for ψ, ϕ ∈ dom H∗,

ψ(x) = b1(ψ)
√
x+ b2(ψ)

√
x lnx+ vψ(x)

and
ϕ(x) = b1(ϕ)

√
x+ b2(ϕ)

√
x lnx+ vϕ(x),

Γ(ψ, ϕ) =W1[ψ, ϕ] −W0[ψ, ϕ]

= ψ(1)ϕ′(1) − ψ′(1)ϕ(1) + lim
x→0+

(
−ψ(x)ϕ′(x) + ψ′(x)ϕ(x)

)
= ψ(1)ϕ′(1) − ψ′(1)ϕ(1) − b1(ψ)b2(ϕ) + b1(ϕ)b2(ψ).

Remark 7.4.2. The above procedure, to deal with functions in dom H∗, was an
alternative to the use of the variation of parameters formula employed in Exam-
ple 7.2.18.

Based on Example 7.3.1, define the two-dimensional vector spaces of elements

Ψ =
(
b2(ψ) − ib1(ψ)
ψ′(1) + iψ(1)

)
, ρ(Ψ) =

(
b2(ψ) + ib1(ψ)
ψ′(1) − iψ(1)

)
,

for ψ ∈ dom H∗. A direct evaluation of inner products leads to

〈Ψ,Φ〉 − 〈ρ(Ψ), ρ(Φ)〉 = −2iΓ(ψ, ϕ),

and a boundary triple for H was found. The self-adjoint extensions HÛ of H are
associated with 2 × 2 unitary matrices Û that entail the boundary conditions(

1 − Û
)(

b2(ψ)
ψ′(1)

)
= −i

(
1 + Û

)(−b1(ψ)
ψ(1)

)
,

that is, the domain of the self-adjoint extension HÛ of H is composed of the
elements ψ ∈ dom H∗ so that the above boundary conditions are satisfied; also
HÛψ = H∗ψ, ∀ψ ∈ dom HÛ . The reader can play with different choices of Û in
order to get explicit self-adjoint extensions. What about some with b2 = 0?

7.4.1 One-dimensional H-Atom

The operator with domain dom H = C∞0 (R \ {0}) and action

H = −d2/dx2 − κ/|x|, κ > 0, x ∈ R \ {0},

is known as the (initial) one-dimensional hydrogen atom hamiltonian. It easily
follows that H is hermitian and the question is to determine its self-adjoint exten-
sions. In the way of finding such extensions, some typical difficulties encountered
when dealing with more realistic potentials will appear. This model has a contro-
versial history which can be traced through the references in the article [LoCdO06].
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First the deficiency indices will be handled. Write

C∞0 (R \ {0}) = C∞0 (−∞, 0) ⊕ C∞0 (0,∞)

and set H1 = H |C∞
0 (−∞,0) and H2 = H |C∞

0 (0,∞), so that H = H1 ⊕ H2. By
Proposition 2.3.20, dom H∗1 = {ψ ∈ L2(−∞, 0) : ψ, ψ′ ∈ AC(−∞, 0), (−ψ′′ −
κ/|x|ψ) ∈ L2(−∞, 0)}, dom H∗2 = {ψ ∈ L2(0,∞) : ψ, ψ′ ∈ AC(0,∞), (−ψ′′ −
κ/|x|ψ) ∈ L2(0,∞)} and

(H∗j ψ)(x) = −ψ′′(x) − κ

|x|ψ(x), ψ ∈ dom H∗j , j = 1, 2.

Hence, dom H∗ = {ψ ∈ L2(R) : ψ, ψ′ ∈ AC(R \ {0}), (−ψ′′ − κ/|x|ψ) ∈ L2(R)}
and H∗ with the same action as H .

By using Whittaker functions [GraR80] (solutions of a particular confluent
hypergeometric equation) in [Mos93] it was shown that for ψ ∈ dom H∗ the lateral
limits ψ(0±) := limx→0± ψ(x) are finite while ψ′(x) has logarithmic divergences
as x → 0±. Furthermore, limx→±∞ ψ(x) = 0, limx→±∞ ψ′(x) = 0. With such
information, a characterization of ψ′(0±) is possible. The following lemma is an
alternative way of getting such information.

Lemma 7.4.3. If ψ ∈ dom H∗, then the lateral limits ψ(0±) = limx→0± ψ(x) and

ψ̃(0±) := lim
x→0±

(ψ′(x) ± κψ(x) ln(|κx|))

exist and are finite.

Proof. We will discuss the case x > 0; the other x < 0 is similar. For ψ ∈ dom H∗

one has

−H∗ψ =
d2ψ

dx2
+
κ

x
ψ := u ∈ L2(0,∞),

and one can write ψ = ψ1 +ψ2 with ψ′′1 = u, ψ1(0+) = 0 and ψ′′2 +κ/xψ = 0. Since
ψj ∈ H2(ε,∞), j = 1, 2, for all ε > 0, and u ∈ L2, it follows that these functions
are of class C1(0,∞).

Consider an interval [x, c], 0 < x < c <∞; c will be fixed later on. Since

ψ′1(x) − ψ′1(c) =
∫ c

x

u(s) ds,

ψ′1(x) has a lateral limit

ψ′1(0
+) = ψ′(c) +

∫ c

0

u(s) ds.

On integrating successively twice over the interval [x, c] one gets

ψ′2(c) − ψ′2(x) = −κ
∫ c

x

ψ(s)
s

ds,
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and then

ψ2(x) = ψ2(c) − (c− x)ψ′2(c) − κ

∫ c

x

dv

∫ c

v

ds
ψ(s)
s

= ψ2(c) − (c− x)ψ′2(c) − κ

∫ c

x

dsψ(s)
s− x

s
,

and since 0 ≤ (s−x)/s < 1, by dominated convergence the last integral converges
to
∫ 1

0
ψ(s) as x→ 0+. Therefore ψ2(0+) exists and

ψ2(0+) = ψ2(c) − cψ′2(c) − κ

∫ c

0

ψ(s) ds.

Now,

∣∣ψ2(x) − ψ2(0+)
∣∣ ≤ x|ψ′2(c)| + κ

∫ x

0

|ψ(s)| ds+ κx

∫ c

x

ds
|ψ(s)|
s

.

Taking into account that ψ is bounded, say |ψ(x)| ≤ C, ∀x, Cauchy-Schwarz in
L2 implies ∫ x

0

|ψ(s)|ds =
∫ x

0

1 |ψ(s)|ds ≤ C
√
x,

and so, for 0 < x small enough and fixing c = 1,∫ c

x

ds
ψ(s)
s

≤ C (c| ln c| + x| lnx|) ≤ C̃
√
x,

for some constant C̃. Such inequalities imply ψ(x) = ψ(0+) + O(
√
x), and on

substituting this into

ψ′(x) = ψ′(1) + κ

∫ 1

x

ψ(s)
s

ds

(recall that ψ′1(0
+) is finite) it is found that there is b so that, as x→ 0+,

ψ′(x) = ψ′(1) − κψ(0+) ln(κx) + b+ o(1);

thus, the derivative ψ′ has a logarithmic divergence as r → 0 and the statement
in the lemma also follows. �

By means of Whittaker’s functions [Mos93] one gets the values n−(H1) =
1 = n+(H1) and n−(H2) = 1 = n+(H2), so that n−(H) = 2 = n+(H). Similarly
to Example 7.3.4, taking into account that ψ, ψ′ vanish at ±∞, it follows that

Γ(ψ, ϕ) =W0+ [ψ, ϕ] −W0− [ψ, ϕ]

= lim
x→0+

(
ψ(x)ϕ′(x) − ψ′(x)ϕ(x)

)
+ lim
x→0−

(
ψ′(x)ϕ(x) − ψ(x)ϕ′(x)

)
.
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Though the right-hand side is finite, each lateral limit may diverge. However,
invoking Lemma 7.4.3 and since one readily checks that

Γ(ψ, ϕ) = ψ(0+)ϕ̃(0+) − ψ̃(0+)ϕ(0+) + ψ̃(0−)ϕ(0−) − ψ(0−)ϕ̃(0−),

but now each lateral limit is finite, again by following Example 7.3.4 a boundary
triple was constructed. The self-adjoint extensions HÛ of H are associated with
2 × 2 unitary matrices Û that entail the boundary conditions(

1− Û
)(

ψ̃(0−)
ψ̃(0+)

)
= −i

(
1 + Û

)(−ψ(0−)
ψ(0+)

)
,

and the domain of the self-adjoint extension HÛ of H is composed of the elements
ψ ∈ dom H∗ so that the above boundary conditions are satisfied; also HÛψ =
H∗ψ. Dirichlet boundary conditions ψ(0−) = 0 = ψ(0+) are obtained by choosing
Û = 1. Some boundary conditions mix the right and left half-lines, which are
interpreted as quantum permeability of the singularity at the origin, that is, the
particle is allowed to pass through the origin; see more details in Exercise 14.4.10
and [deOV08]. The above discussion also holds for κ < 0.

Exercise 7.4.4. Based on the arguments used to conclude Corollary 7.2.5, find
the closure of the initial operator for the one-dimensional H-atom, that is, H =
−d2/dx2 − κ/|x| with domain C∞0 (R \ {0}).

7.4.2 Some Point Interactions

Roughly speaking, point interactions are a kind of potential concentrated on a
single point of Rn, which are also called zero-range potentials and delta-function
potentials. Often they are properly defined via the choice of domains and bound-
ary conditions at the point in question, and it is a possible way to describe a
hamiltonian with a Dirac δ potential.

Physically, the main consequence of extracting a point of Rn is that trans-
lation invariance is lost, which has impressive consequences on some quantum
observables (i.e., operators) since the unique self-adjointness can also be lost (at
least in dimensions n ≤ 3).

Different approaches for associating self-adjoint operators to point interac-
tions are discussed in [Zor80]; more information can be obtained from the books
[AGKH05] and [AlK00]. In those references, in case of Rn, n ≤ 3, self-adjoint
extensions of hermitian (Schrödinger) operators with point interactions are char-
acterized and their spectral properties explicitly computed. Hence, point interac-
tions have been called “solvable models” and used to approximately study physical
systems with “very short range” potentials.

Here a few of the simplest cases will be discussed; Example 4.4.9 can be
considered the first instance of point interaction in this book.
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Example 7.4.5. Let T = −id/dx with

dom T = C∞0 (R \ {0}) = C∞0 (−∞, 0) ⊕ C∞0 (0,∞).

One point was removed and the self-adjoint extensions are obtained from dom T ∗

through suitable matching conditions at the origin (recall that in case the domain
is C∞0 (R) the operator T is essentially self-adjoint; see Section 3.3). Set T1 =
T |C∞

0 (−∞,0) and T2 = T |C∞
0 (0,∞), so that T = T1 ⊕ T2. One has dom T ∗ = {ψ ∈

AC(R \ {0}) : ψ′ ∈ L2(R)}, T ∗ψ = −iψ′.
Exercise 7.4.6. Check that

dom T ∗1 = {ψ ∈ AC(−∞, 0) : ψ′ ∈ L2(−∞, 0]},
dom T ∗2 = {ψ ∈ AC(0,∞) : ψ′ ∈ L2[0,∞)},

and verify that T ∗ is the above operator.

In order to determine the deficiency indices consider the K±-equations

(T ∗2 ± i1)ψ± = 0,

whose solutions are proportional to ψ±(x) = e±x. Similarly for T1. Hence n−(T1) =
0 = n+(T2), n−(T2) = 1 = n+(T1), and combining these values one obtains
n−(T ) = 1 = n+(T ).
Exercise 7.4.7. Follow the proof of Lemma 7.4.3 to show that, for ψ ∈ dom T ∗,
the lateral limits ψ(0−), ψ(0+), exist.

Now, for ψ, ϕ ∈ dom T ∗ the boundary form is found (on integrating by
parts):

Γ(ψ, ϕ) = 〈T ∗ψ, ϕ〉 − 〈ψ, T ∗ϕ〉

=

(∫ 0−

−∞
+
∫ ∞

0+

)
dx
(
(−iψ′(x))ϕ(x) − ψ(x)(−iϕ′(x))

)
= i
(
ψ(0+)ϕ(0+) − ψ(0−)ϕ(0−)

)
.

Introduce the one-dimensional vector spaces X = {ψ(0+) : ψ ∈ dom T ∗} and
Y = {ψ(0−) = ρ(ψ(0+) : ψ ∈ dom T ∗} and note that Γ(ψ, ϕ) = 0 is equivalent to
the equality of inner products

〈ψ(0+), ϕ(0+)〉 = 〈ρ(ψ(0+)), ρ(ϕ(0+)〉.

Self-adjoint extensions are obtained on domains D ⊂ dom T ∗ so that Γ(ψ, ϕ) = 0,
∀ψ, ϕ ∈ D, that is, X and Y are related by unitary maps eiθ, 0 ≤ θ < 2π; explicitly
ψ(0+) = eiθψ(0−).

Therefore, the family of operators

dom Tθ =
{
ψ ∈ AC(R \ {0}) : ψ′ ∈ L2(R), ψ(0+) = eiθψ(0−)

}
,

Tθψ =−idψ
dx
,
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constitutes the self-adjoint extensions of T . The case θ = 0 agrees with the mo-
mentum operator P (see Example 2.3.11 and Section 3.3) defined without point
interaction, that is, with initial domain C∞0 (R).
Exercise 7.4.8. Find the self-adjoint extensions of the hermitian operator dom T =
C∞0 (R \ {0}), Tψ = −ψ′′. Show that its deficiency indices are n− = n+ = 2.
Exercise 7.4.9. A circumference with one point removed can be considered a seg-
ment, say [0, 1], with the ends identified. Write 0 = 0+ and 1 = 0−, and construct
the possible hamiltonians of a free particle on this circumference as self-adjoint
extensions of dom H = C∞0 (0+, 0−), Hψ = −ψ′′.
Example 7.4.10. This should be compared with Example 7.4.5. It is another pos-
sible way to define self-adjoint realizations of T = −i ddx in L2(R) with the origin
removed. Here one takes dom T = {ψ ∈ H1(R) : ψ(0) = 0}. It also illustrates an-
other way of finding self-adjoint extensions. By using Fourier transform, this oper-
ator (see Section 3.3) is rewritten as a specific multiplication operator S = F−1TF
so that

dom S =
{
φ ∈ dom P = H1(R̂) : 0 =

∫
R

φ(p) dp
}
, (Sφ)(p) = pφ(p).

Recall that for ψ ∈ H1(R) one has ψ(0) = 1√
2π

∫
R
ψ̂(p) dp, whose integral means

limM→∞
∫M
−M ψ̂(p) dp; this explains dom S.

Exercise 7.4.11. Show that S (and so T ) is a hermitian operator.

Lemma 7.4.12. a) S is a closed operator.
b) The solutions u ∈ L2

loc(R̂) (or L1
loc(R̂)) of

∫
R
φ(p)u(p) dp = 0, ∀φ ∈ dom S,

are the constant functions.

Proof. a) Let ψn → ψ and Sψn → φ, ψn ∈ dom S. For each M > 0 one has
‖ψn − ψ‖ < 1/M if n is large enough. By Cauchy-Schwarz,∣∣∣∣∣

∫ M

−M
(ψ − ψn) dx

∣∣∣∣∣ ≤ (2M)1/2‖ψn − ψ‖ <
√

2
M
.

Since
∫

R
ψn dx = 0, ∀n, choose n so that

∣∣∣∫M−M ψn dx
∣∣∣ <√2/M ; thus∣∣∣∣∣

∫ M

−M
ψ dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ M

−M
(ψ − ψn) dx

∣∣∣∣∣+
∣∣∣∣∣
∫ M

−M
ψn dx

∣∣∣∣∣ < 2

√
2
M

and it follows that
∫

R
ψ dx = 0. Denote |‖ϕ‖|M :=

(∫M
M

|ϕ|2 dx
)1/2

. Pick n so large

that ‖Sψn − φ‖ < 1/M1/2, and ‖ψ − ψn‖ < 1/M ; then

|‖pψ‖|M ≤ |‖p(ψ − ψn)‖|M + |‖pψn − φ‖|M + |‖φ‖|M
≤M1/2|‖ψ − ψn‖|M + |‖Sψn − φ‖|M + ‖φ‖

≤M1/2‖ψ − ψn‖ + ‖Sψn − φ‖ + ‖φ‖ < 2
M1/2

+ ‖φ‖,
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and for M → ∞ one obtains ‖Sψ‖ ≤ ‖φ‖, consequently ψ ∈ dom S. Similarly, by
picking n large enough so that ‖ψ − ψn‖ < 1/M and ‖Sψn − φ‖ < 1/M1/2, one
gets

|‖Sψ − φ‖|M ≤ |‖Sψ − Sψn‖|M + |‖Sψn − φ‖|M
≤M1/2‖ψ − ψn‖ + ‖Sψn − φ‖ < 2

M1/2
.

Therefore Sψ = φ and S is a closed operator.
b) Note that the problem has no nonzero solution u ∈ L2(R̂), since such u

would be orthogonal to the dense set dom S. Further, dom S contains the deriva-
tive φ′ of all φ ∈ C∞0 (R) (since

∫
φ′ dx = 0), and so the distributional derivative

u′ of any solution u is null; the result then follows by applying Lemma 2.3.9. �

The deficiency spaces are K±(S) = rng (S∓ i1)⊥. Thus, for u± ∈ K±(S) one
has, for all φ ∈ dom S,

0 = 〈(S ∓ i1)φ, u±〉 =
∫

R

(p∓ i)φ(p)u±(p) dp

=
∫

R

φ(p) (p± i)u±(p) dp =⇒ u±(p) =
1

p± i
.

Lemma 7.4.12 was employed and, actually, the above u± linearly spans K±(S), so
that n− = n+ = 1; note that ‖u−‖ = ‖u+‖. Thus the self-adjoint extensions Sθ of
S are parametrized by eiθ, 0 ≤ θ < 2π, and given by (see Proposition 2.5.8)

dom Sθ = {φθ = φ+ c(u− − eiθu+) : φ ∈ dom S, c ∈ C},
(Sθφθ)(p) = pφ(p) + ci

(
u−(p) + eiθu+(p)

)
.

By recalling of Section 3.3, the following question naturally arises: For which values
of θ do Sθ act as multiplication by p? Since u±(p) = 1/(p± i) one has

Sθ(u− − eiθu+)(p) = i
p(1 + eiθ) + i(1 − eiθ)

1 + p2
,

and by imposing that it equals p(u− − eiθu+)(p), it follows that θ = 0. Surely
S0 corresponds to the usual multiplication operator Mp acting in L2(R̂), which is
the usual momentum operator P (see Example 2.3.11 and Section 3.3), clearly a
self-adjoint extension of T .
Exercise 7.4.13. Apply the procedure in Example 7.4.10 to find all self-adjoint
extensions of Tψ = −Δψ, dom T = {ψ ∈ H2(Rn) : ψ(0) = 0}, for n ∈ N. Note
that there is a problem for n ≥ 4, since by Sobolev embedding the functions in
dom T are not ensured to be continuous; in any event, for all n the following
operators obtained after Fourier transforming are well defined:

dom S =
{
φ ∈ dom P : 0 =

∫
Rn

φ(p) dp
}
, (Sφ)(p) = p2φ(p).



192 Chapter 7. Boundary Triples and Self-Adjointness

What is it possible to conclude about the operator S for n ≥ 4? See Remark 7.4.14
for related issues.
Remark 7.4.14. In [Far75], page 33, it is shown that the set C∞0 (Rn \{0}) is dense
in H2(Rn) iff n ≥ 4. From this it follows that Ḣ = −Δ, dom Ḣ = C∞0 (Rn \ {0}),
is essentially self-adjoint iff n ≥ 4, and in this case its unique self-adjoint extension
is H0 = −Δ, dom H0 = H2(Rn). As a matter of fact, clearly H0 is a self-adjoint
extension of Ḣ , and since the graph norm of H0 is equivalent to the norm of
H2(Rn), C∞0 (Rn \ {0}) is a core of H0 iff this set is dense in H2(Rn); so, iff n ≥ 4.
Remark 7.4.15. The procedures discussed in Examples 7.4.5 and 7.4.10 to remove
the origin are not equivalent in general. When applied to the operator Tψ = −ψ′′
in R (see Exercises 7.4.8 and 7.4.13), the former procedure results in deficiency
indices n− = 2 = n+, whereas the latter in n− = 1 = n+.

7.5 Spherically Symmetric Potentials

A potential v : Rn → R is spherically symmetric (also called radial or central) if
its values depend only on r = |x|, that is, if there exists V : [0,∞) → R so that
v(x) = V (r).

It is convenient to exclude the origin and take as the initial hamiltonian
operator

H = −Δ + V (r), dom H = C∞0 (Rn \ {0}).
It is natural to introduce the radius r and n−1 angle variables Ω = {ω1, . . . , ωn−1}
for the description of the system. For instance, if n = 3 one passes from carte-
sian x = (x1, x2, x3) to spherical (r, ϕ, θ) coordinates x1 = r sin θ cosϕ, x2 =
r sin θ cosϕ, x3 = r cos θ, so that L2(R3) is unitarily equivalent to

E3 = L2
r2dr([0,∞)) ⊗ L2

dΩ(S2),

with S2 denoting the unit sphere in R3 and dΩ = sin θdθdϕ. If n = 2 polar
coordinates x1 = r cosϕ, x2 = r sinϕ are introduced so that L2(R2) is unitarily
equivalent to

E2 = L2
rdr([0,∞)) ⊗ L2

dϕ(S1),
with S1 denoting the unit circumference in R2. Here only n = 2, 3 will be consid-
ered, although many results have straight counterparts in higher dimensions; see,
e.g., [Mu66].

By Lemma 1.4.8 the set of finite linear combinations of the functions
R(r)Φ(θ, ϕ) ∈ E3 (resp. R(r)Φ(ϕ) ∈ E2) is dense in L2(R3) (resp. L2(R2)) and
the spherical harmonics Ylm(θ, ϕ), l ∈ N ∪ {0}, −l ≤ m ≤ l, (resp. em(ϕ) =
eimϕ/

√
2π, m ∈ Z) form an orthonormal basis of L2(S2) (resp. L2(S1)). For func-

tions R(r)Ylm(θ, ϕ), R ∈ C∞0 (0,∞), in case n = 3, the well-known expression of
the laplacian Δ in spherical coordinates implies that (see, e.g., [Will03])

H(RYlm) =
(
− d2

dr2
− 2
r

d

dr
+
l(l+ 1)
r2

+ V (r)
)
RYlm,
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and after the unitary transformation u3 : L2
r2dr([0,∞)) → L2

dr([0,∞)), (u3R)(r) =
rR(r), one obtains for u3Hu

−1
3 restricted to the subspace spanned by Ylm (note

that u3(C∞0 (0,∞)) ⊂ C∞0 (0,∞))

Ĥlm = − d2

dr2
+
l(l+ 1)
r2

+ V (r), dom Ĥlm = C∞0 (0,∞).

For n = 2 one has

H(Rem) =
(
− d2

dr2
− 1
r

d

dr
+
m2

r2
+ V (r)

)
Rem,

and after the unitary transformation u2 : L2
rdr([0,∞)) → L2

dr([0,∞)), with
(u2R)(r) =

√
rR(r), one obtains for u2Hu

−1
2 restricted to the subspace spanned

by em,

Ĥm = − d2

dr2
+
m2 − 1/4

r2
+ V (r), dom Ĥm = C∞0 (0,∞).

In both cases, i.e., n = 2, 3, the original problem is reduced to the study of in-
finitely many Schrödinger operators on the half-line [0,∞) with suitable effective
potentials V̂m or V̂l,m; e.g., in the two-dimensional case,

V̂m(r) = (m2 − 1/4)/r2 + V (r), m ∈ Z.

The previous discussions in this chapter, about Schrödinger operators on intervals,
apply to Ĥm and Ĥlm.
Remark 7.5.1. Note that the radial momentum operator −id/dr is not defined
as a physical quantity on C∞0 (0,∞), since it has no self-adjoint extensions (see
Example 2.3.17 and an intuitive digression in Remark 5.4.7).
Exercise 7.5.2. Consider Ĥlm and Ĥm in R3 and R2, respectively, for the free
particle, i.e., V = 0 identically. Use results of this chapter to show that Ĥlm

(resp. Ĥm) is not essentially self-adjoint only if l = 0 (resp. m = 0). Find the
corresponding deficiency indices. What can be said about H = −Δ, dom H =
C∞0 (Rn \ {0}), n = 2, 3? Cf. Exercise 7.4.8.

Now some particular cases of minimal operators dom H = C∞0 (0,∞), Hψ =
−ψ′′ + V (r)ψ will be discussed (think of the above notation with V̂ replaced by
V ). In the remainder of this section, H always denotes this operator.

Proposition 7.5.3. If V ∈ L2(0,∞), then n−(H) = 1 = n+(H) and

ΓH∗(ψ, ϕ) = −W0[ψ, ϕ], ∀ψ, ϕ ∈ dom H∗.

Lemma 7.5.4. Fix c > 0. If V ∈ L2(0,∞), then for each ψ ∈ dom H∗ there exists
0 ≤ C <∞ so that ∣∣∣∣ψ′(x)√

x

∣∣∣∣ ≤ C, ∀x > c.



194 Chapter 7. Boundary Triples and Self-Adjointness

Proof. For ψ ∈ dom H∗ one has −ψ′′ + V ψ = u ∈ L2(0,∞); integrating u and
taking into account that V ψ ∈ L1(0,∞) one obtains (x > c)

ψ′(x) = ψ′(c) +
∫ x

c

dt V (t)ψ(t) −
∫ x

c

dt u(t),

and by Cauchy-Schwarz,

|ψ′(x)| ≤ |ψ′(c)| +
∫ x

c

dt |V (t)ψ(t)| +
∫ x

c

dt |u(t)|

≤ |ψ′(c)| + ‖V ψ‖1 +
(∫ x

c

dt |u(t)|2
)1/2 (∫ x

c

dt

)1/2

≤ |ψ′(c)| + ‖V ψ‖1 + ‖u‖2

√
x− c.

Hence, ∣∣∣∣ψ′(x)√
x

∣∣∣∣≤ |ψ′(c)| + ‖V ψ‖1√
x

+
‖u‖2

√
x− c√
x

≤ |ψ′(c)| + ‖V ψ‖1√
c

+ ‖u‖2 := C, x > c.

The lemma is proved. �

Proof. [Proposition 7.5.3] Since 0 is a regular point of H it is in the limit circle
case (and ψ(0), ψ′(0) take finite values). So the deficiency indices are equal either
to 1 or to 2. It will be checked that W∞[ψ, ϕ] = 0, ∀ψ, ϕ ∈ dom H∗, so that
ΓH∗(ψ, ϕ) = −W0[ψ, ϕ] = ϕ(0)ψ′(0) − ϕ′(0)ψ(0) and, as in Example 7.3.1, the
self-adjoint extensions of H are parametrized by the complex numbers eiθ; thus
the deficiency indices of H are equal to 1. As a subproduct it follows that H is in
the limit point case at ∞.

Let ψ ∈ dom H∗; it is known that W∞[ψ, ϕ] is finite. Suppose x > c; by
Lemma 7.5.4,

1√
x
|Wx[ψ, ϕ]| =

∣∣∣∣∣ψ(x)
ψ′(x)√
x

− ψ′(x)√
x
ψ(x)

∣∣∣∣∣ ≤ 2C |ψ(x)| ,

so that the right-hand side belongs to L2(c,∞), but the left-hand side does not
belong to L2(c,∞) if W∞[ψ, ϕ] 
= 0. Hence, W∞[ψ, ϕ] = 0, ∀ψ ∈ dom H∗. �

Exercise 7.5.5. If V ∈ L2(0,∞), find all self-adjoint extensions of H (see Exam-
ple 7.3.1).
Exercise 7.5.6. Show that if the potential V ∈ L2

loc(0,∞) is in L2 near ∞, then
ΓH∗(ψ, ϕ) = −W0[ψ, ϕ], ∀ψ, ϕ ∈ dom H∗. Conclude that if V is regular at 0, then
the deficiency indices of H are equal to 1.
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Remark 7.5.7. As discussed in [Win47], for a class of negative potentials V (x),
x ∈ R, satisfying a technical condition and limx→∞ V (x) = −∞, the differential
operator H is limit circle at infinity iff, for some x0 > 0,

∫∞
x0

(−V (x))−1/2
dx <∞.

In case of V (x) = −κxα, x > 0 and κ > 0, α > 0, H is then limit point at ∞ iff
α ≤ 2 (this case is included in Wintner’s class).

This characterization of limit point at infinity has a counterpart in classical
mechanics that is worth mentioning (and appreciating). For a classical particle of
mass m and total mechanical energy E under this potential V (x), the travel time
from the initial position x0 > 0 to ∞ is

τ∞ =
√
m

2

∫ ∞

x0

dx√
E − V (x)

.

This follows from conservation of mechanical energy (check this!). If x0 " 1 so
that |V (x)| " E, ∀x ≥ x0 (since limx→∞ V (x) = −∞), one has

τ∞ ≈
√
m

2

∫ ∞

x0

dx√
−V (x)

,

that is, the condition τ∞ = ∞ coincides with the limit point criterion, which,
in its turn, is a necessary condition for the existence of just one self-adjoint ex-
tension of H . Hence, for such potentials, a finite travel time to reach infinity in
classical mechanics is reflected in the quantum limit circle at infinity, inferring the
quantum ambiguity of more than one self-adjoint extension of H . However, there
are counterexamples to this correspondence between essential self-adjointness and
finite travel time to infinity [RaR73].

A discussion, from a physical point of view, of the unitary evolution group
generated by H with negative potentials so that τ∞ < ∞ can be found in
[CFGM90].

Additional criteria for limit point and limit circle can be found in [Na69],
[ReeS75] and [DuS63]. See also [BaZG04].

7.5.1 A Multiply Connected Domain

Some self-adjoint extensions of a hermitian operator with infinite deficiency index
will be found. It will combine the spherical symmetry with the topological property
of multiply connectedness. Some specific results on Sobolev traces will be invoked;
see [Bre99, Ad75] and Chapters 1 and 2 of the first volume of [LiM72]. Nevertheless
we think the set of presented results will make this subsection worthwhile; except
for Section 10.5, they will not be needed for other parts of the text.

Let Λ = R2 \ B(0; a), a > 0 (i.e., the plane with a circular hole), and its
closure Λ = R2 \ B(0; a); its boundary ∂Λ is the circumference S = {(x1, x2) ∈
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R2 : r = (x2
1 + x2

2)
1
2 = a}. The potential will be a bounded continuous V : Λ → R,

with V (x) = V (r), and the initial hamiltonian is the hermitian operator

H = −Δ + V, dom H = C∞0 (Λ).

What are the self-adjoint extensions of H?
As above, polar coordinates x1 = r cosϕ, x2 = r sinϕ are introduced so that

L2(Λ) is unitarily equivalent to L2
rdr([a,∞))⊗ L2

dϕ(S), and consider the functions
em(ϕ) = eimϕ/

√
2π, 0 ≤ ϕ ≤ 2π,m ∈ Z, so that

H(Rem) =
(
− d2

dr2
− 1
r

d

dr
+
m2

r2
+ V (r)

)
Rem.

After performing the unitary transformation u2 : L2
rdr([a,∞)) → L2

dr([a,∞)),
(u2R)(r) =

√
rR(r), the operator u2Hu

−1
2 restricted to the subspace spanned by

em takes the form

Ĥm = − d2

dr2
+
m2 − 1/4

r2
+ V (r), dom Ĥm = C∞0 (a,∞).

The original problem is thus reduced to the study of infinitely many Schrödinger
operators on [a,∞) with potentials

V̂m(r) = (m2 − 1/4)/r2 + V (r), m ∈ Z.

One then easily checks that, for all m, the deficiency indices of Hm are equal to 1
(the point here is that a > 0, instead of a = 0 previously discussed), so that
n+(H) = ∞ = n−(H).

The subject now is to recall Sobolev traces in a convenient way. Although a
ψ(r, ϕ) ∈ H1(Λ) is not necessarily continuous, it is possible to give a meaning to
the restriction ψ(a, ϕ) = ψ|∂Λ(ϕ) ∈ L2(S) via the so-called Sobolev trace of ψ (see
below), that is, the trace of ψ is interpreted as its value on the boundary of Λ.

Let RC1
0 (R2) be the restriction of C1

0 (R2) to C1
0 (Λ) (see the references for

details); it turns out that there is a continuous linear map γ : RC1
0 (R2) ⊂ H1(Λ) →

L2(S), γ(φ(r, ϕ)) = φ(a, ϕ), that is, there is C > 0 so that

‖γφ‖L2(S) = ‖φ(a, ϕ)‖L2(S) ≤ C ‖Rφ‖H1(Λ), φ ∈ C1
0 (R2).

Note that for φ ∈ C1
0 (R2) the boundary values φ(a, ϕ) are well defined for any

angular value ϕ. By density, this map has a unique continuous extension (keeping
the same notation) γ : H1(Λ) → L2(S), called the Sobolev trace map, and one
defines the trace of ψ as ψ(a, ϕ) := γ(ψ) for all ψ ∈ H1(Λ). The essential charac-
teristics here are smoothness and compactness of the boundary ∂Λ [Bre99]; some
important properties of the trace are as follows.
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i) For ψ ∈ H1(Λ) the trace is not defined in a pointwise manner, only as a
function in L2(S). General elements of L2(Λ) do not have a trace defined.

ii) rng γ is dense in L2(S) and the Green formula∫
Λ

∂ψ(x)
∂xj

φ(x) dx +
∫

Λ

ψ(x)
∂φ(x)
∂xj

dx = a

∫ 2π

0

ψ(a, ϕ)φ(a, ϕ) dϕ

holds for all ψ, φ ∈ H1(Λ), j = 1, 2.
iii) The kernel of the trace operator is

H1
0(Λ) := {ψ ∈ H1(Λ) : γ(ψ) = ψ(a, ϕ) = 0},

which is a Hilbert space that can also be defined as the closure of C∞0 (Λ) in
H1(Λ).

iv) In a similar way, if ψ ∈ H2(Λ) one has a well-defined trace γ(∂ψ/∂r), which
will be denoted by ∂ψ/∂r(a, ϕ), which stands for the normal derivative with
respect to ∂Λ (this is used in the adaptation to more general Λ) and belongs
to L2(∂Λ).

v) The ranges of both trace maps H2(Λ) � ψ �→ ψ(a, ϕ) and H2(Λ) � ψ �→
∂ψ/∂r(a, ϕ) are dense in L2(S), and the Green formula∫

Λ

Δψ(x)φ(x) dx +
∫

Λ

∇ψ(x)∇φ(x) dx = a

∫ 2π

0

∂ψ

∂r
(a, ϕ)φ(a, ϕ) dϕ

holds for all ψ, φ ∈ H2(Λ).

Now a subtlety must be mentioned. At first sight one could (wrongly) guess
that the domain of the adjoint H∗ is H2(Λ). However, for open sets Ω ⊂ Rn,
Ω 
= Rn and n ≥ 2, there are functions ψ ∈ L2(Ω) with distributional laplacian
Δψ ∈ L2(Ω) that do not belong to H2(Ω); the point is that other derivatives, as
first derivatives, of ψ need not exist as functions! It turns out that

dom H∗ =
{
ψ ∈ L2(Λ) : (−Δψ + V ψ) ∈ L2(Λ)

}
andH∗ψ=−Δψ+V ψ, ψ ∈ dom H∗, and this domain is strictly larger than H2(Λ).
See [Gru06], [Gru08] and references therein.

By using the above characterization of H∗, some self-adjoint extensions of H
will be found via suitable restrictions of H∗. The boundary form of H , for ψ, φ ∈
dom H∗, is

Γ(ψ, φ) := 〈(−Δ + V )ψ, φ〉 − 〈ψ, (−Δ + V )φ〉.
By restricting to those self-adjoint extensions whose domains are contained in
H2(Λ), Sobolev traces can be invoked, the continuity of the potential guarantees
that V |∂Λ = V (a) is well posed and the above Green formula can be used to
compute, for ψ, φ ∈ H2(Λ),

Γ(ψ, φ) = a

∫ 2π

0

(
ψ(a, ϕ)

∂φ

∂r
(a, ϕ) − ∂ψ

∂r
(a, ϕ)φ(a, ϕ)

)
dϕ.
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Introduce ρj : H2(Λ) → L2(S), j = 1, 2, by

ρ1(ψ) = ψ(a, ϕ) + i
∂ψ

∂r
(a, ϕ),

ρ2(ψ) = ψ(a, ϕ) − i
∂ψ

∂r
(a, ϕ),

and so
(2i/a) Γ(ψ, φ) = 〈ρ1(ψ), ρ1(φ)〉L2(S) − 〈ρ2(ψ), ρ2(φ)〉L2(S) .

Exercise 7.5.8. Verify the above two expressions for the boundary form Γ(ψ, φ)
of H , for ψ, φ ∈ H2(Λ).

A boundary triple for H in the Sobolev space H2(Λ) has been found with
h = L2(S). As before (i.e., by Theorem 7.1.13), from this boundary triple the
self-adjoint extensions HU of H in H2(Λ) are characterized by unitary operators
U : L2(S) ←↩ so that ρ1(ψ) = Uρ2(ψ), ∀ψ ∈ dom HU , and HUψ = H∗ψ. After
writing out this relation one finds

(1 − U)ψ(a, ϕ) = −i(1 + U)
∂ψ

∂r
(a, ϕ).

Therefore, all self-adjoint extensions of H with domain in H2(Λ) were found and
they are realized through suitable boundary conditions on ∂Λ; such boundary
conditions are in terms of traces of elements of H2(Λ). Below some explicit self-
adjoint extensions are described.

1. U = −1.
In this case

dom HU = {ψ ∈ H2(Λ) : ψ(a, ϕ) = 0} = H2(Λ) ∩H1
0(Λ),

HUψ = (−Δ + V )ψ, ψ ∈ dom HU . This is the so-called Dirichlet realization
(of the laplacian if V = 0) in Λ.

2. U = 1.
In this case dom HU = {ψ ∈ H2(Λ) : ∂ψ/∂r(a, ϕ) = 0}, HUψ =

(−Δ + V )ψ. This is the so-called Neumann realization.
3. (1 + U) is invertible.

In this case one gets that for each self-adjoint operator A : dom A �
L2(S) → L2(S) corresponds a self-adjoint extension HA. In fact, first pick
a unitary operator UA so that A = −i(1 − UA)(1 + UA)−1, dom A =
rng (1+UA) and rng A = rng (1−UA); recall the Cayley transform in Chap-
ter 2. Now, dom HA is the set of ψ ∈ H2(Λ) with “∂ψ/∂r(a, ·) = Aψ(a, ·),”
prudently understood in the sense that

(1− UA)ψ(a, ϕ) = −i(1 + UA)
∂ψ

∂r
(a, ϕ),

in order to avoid domain questions. Of course the quotation marks can be
removed in case the operator A is bounded.
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Similarly, for each self-adjoint B acting in L2(S) there corresponds a
unitary UB, and if (1 − UB) is invertible, then there corresponds the self-
adjoint extension HB of H with dom HB the set of ψ ∈ H2(Λ) so that
“ψ(a, ·) = B ∂ψ

∂r r(a, ·),” in the sense that

(1− UB)ψ(a, ϕ) = −i(1 + UB)
∂ψ

∂r
(a, ϕ).

Again the quotation marks can be removed in case the operatorB is bounded.

Note that 4 below is, in fact, particular cases of 3 in which A = Mf

and B = Mg.

4. U is a multiplication operator.

Given a real-valued (measurable) function u(ϕ) put U = Meiu(ϕ) . If
{ϕ : exp(iu(ϕ)) = −1} has measure zero, then

f(ϕ) = −i1 − eiu(ϕ)

1 + eiu(ϕ)

is (measurable) well defined and real valued. The domain of the corresponding
self-adjoint extension is

dom HU =
{
ψ ∈ H2(Λ) : ∂ψ/∂r(a, ϕ) = f(ϕ)ψ(a, ϕ)

}
.

Similarly, if {ϕ : exp(iu(ϕ)) = 1} has measure zero,

g(ϕ) = i
1 + eiu(ϕ)

1 − eiu(ϕ)

is real valued and the domain of the subsequent self-adjoint extension is

dom HU = {ψ ∈ H2(Λ) : ψ(a, ϕ) = g(ϕ)∂ψ/∂r(a, ϕ)}.

Special cases are given by constant functions f, g.

5. A = −id/dϕ with domain H1(S) = {u ∈ H1(0, 2π) : u(0) = u(2π)}. The
corresponding self-adjoint extension has domain{

ψ ∈ H2(Λ) : ψ(a, ϕ) ∈ H1(S), “
∂ψ

∂r
(a, ϕ) = −idψ

dϕ
(a, ϕ)”

}
.

Exercise 7.5.9. Show that A = −id/dϕ in 5 above is self-adjoint.

Since the deficiency indices of H are infinite, there is a plethora of self-adjoint
extensions of the laplacian in the multiply connected domain Λ = R2 \ B(0; a).
Some of them can be quite unusual and hard to understand from the physical and
mathematical points of view.
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Remark 7.5.10. The choice of Λ = R2 \ B(0; a) was for notational convenience.
In a similar way one finds expressions for the boundary form of H = −Δ + V
with domain C∞0 (R2 \Ω), with Ω ⊂ R2 an open set with compact boundary ∂Ω of
class C1; when restricted to domains in H2(R2 \ Ω), Sobolev traces are properly
defined in this setting, and one can also consider Rn, n ≥ 2. For such more general
multiply connected regions, one must consider the normal derivative ∂ψ/∂n at the
boundary ∂Ω, instead of ∂ψ/∂r, and also the corresponding modifications in the
expressions of Green formulae [Bre99], [LiM72].
Remark 7.5.11. The above approach to the self-adjoint extensions of the laplacian
in H2(Λ) was borrowed from [deO08], as well as the variation of the concept of
boundary triple. However, by using a continuous extension of the trace maps to the
dual Sobolev spaces H−1/2(∂Λ) and H−3/2(∂Λ), in [Gru06] one finds references
and comments to her previous works on all self-adjoint extensions of the laplacian
in terms of self-adjoint operators from closed subspaces of H−1/2(∂Λ).
Exercise 7.5.12. Let 0 < a < b <∞ and

Λab =
{
(x1, x2) ∈ R2 : a < (x2

1 + x2
2)

1
2 < b

}
be an annulus in R2. Find the self-adjoint extensions of the laplacian H0 = −Δ,
dom H0 = C∞0 (Λab), whose domains are contained in H2(Λab).


