
Chapter 6

Kato-Rellich Theorem

In this and the next chapters, the preservation of self-adjointness under hermitian
perturbations are considered. The classical application of Rellich’s theorem by
Kato to a hydrogen atom hamiltonian is discussed in detail. Examples, the virial
and KLMN theorems and an outstanding Kato distributional inequality are also
presented in this chapter.

6.1 Relatively Bounded Perturbations

Self-adjointness is a delicate property. It may not be preserved by a sum of oper-
ators. For instance, if T, S are self-adjoint operators in H, then dom T ∩ dom S is
the subspace on which T + S is a priori defined. However, this intersection may
be too small for T + B be self-adjoint (e.g., both C∞0 (R) and the set of simple
functions are both dense in L2(R), but their intersection contains only the null
vector; see a specific instance in Exercise 6.2.25). It may also happen that such an
intersection is dense but T + S is not self-adjoint.

If T is self-adjoint and B is hermitian, under which conditions is T + B
self-adjoint? This is the general question to be addressed now. Although the
main interest is in perturbations of the free Schrödinger operators H0 acting in
L2(Λ),Λ ⊂ Rn, by potentials V , it is useful to deal with abstract hermitian per-
turbations B of a general self-adjoint operator T .

The motivation for the next results is the following. Let T be hermitian;
then T is self-adjoint iff λT is self-adjoint for some (and so any) 0 
= λ ∈ R. It is
known (Proposition 2.2.4) that a hermitian T is self-adjoint iff rng (T ± i1) = H.
One has

T +B ± iλ1 = (BR±iλ(T ) + 1)(T ± iλ1)

= λ(BR±iλ(T ) + 1)
(

1
λ
T ± i1

)
,
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so that if for some real λ one has ‖BR±iλ(T )‖ < 1, then (BR±iλ(T )+ 1) has also
a bounded inverse in B(H) and so rng (BR±iλ(T ) + 1) = H. If T is self-adjoint
rng (T ± iλ1) = λ rng (T/λ± i1) = H, and the above relation implies

rng (T +B ± iλ1) = H,

so that (T + B) would also be self-adjoint. We now explore some details of these
ideas.

Definition 6.1.1. Let T : dom T � H → H and B : dom B � H → H be linear
operators. Then B is T -bounded (or relatively bounded with respect to T ) if
dom B ⊃ dom T and there exist a, b ≥ 0 so that

‖Bξ‖ ≤ a‖Tξ‖ + b‖ξ‖, ∀ξ ∈ dom T.

The T -bound of B is the infimum NT (B) of the admissible a’s in this inequality.

Remark 6.1.2. An equivalent definition is dom B ⊃ dom T and there exist c, d ≥ 0
so that

‖Bξ‖2 ≤ c2‖Tξ‖2 + d2‖ξ‖2, ∀ξ ∈ dom T.

Further, NT (B) coincides with the infimum of the admissible c’s. Therefore, both
formulations will be freely used.

Proof. If the latter relation holds, then

‖Bξ‖2 ≤ c2‖Tξ‖2 + d2‖ξ‖2 + 2cd ‖Tξ‖ ‖ξ‖
≤ (c‖Tξ‖ + d‖x‖)2 ,

and one can take a = c and b = d. For the other inequality, consider the following

Lemma 6.1.3. Let ξ, η ∈ H and s, t > 0. Then, for all r > 0 one has

2st‖η‖ ‖ξ‖ ≤ r2s2 ‖η‖2 +
t2

r2
‖ξ‖2.

Proof. It is enough to expand 0 ≤
(
rs‖η‖ − t

r‖ξ‖
)2. �

Suppose then that ‖Bξ‖ ≤ a‖Tξ‖ + b‖ξ‖. By Lemma 6.1.3 it follows that

‖Bξ‖2 ≤ (a‖Tξ‖+ b‖ξ‖)2 ≤ a2
(
1 + r2

)
‖Tξ‖2 + b2

(
1 +

1
r2

)
‖ξ‖2

and the second relation holds with c2 = a2(1 + r2) and d2 = b2(1 + 1/r2). By
taking r → 0 it is found that the same value of NT (B) is obtained from both
relations. �
Lemma 6.1.4. Let T be a linear operator in H with ρ(T ) 
= ∅ and B a closed
operator with dom T ⊂ dom B. Then B is T -bounded and NT (B) ≤ ‖BRz(T )‖,
∀z ∈ ρ(T ).
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Proof. If z ∈ ρ(T ), then BRz(T ) : H ←↩ is a closed operator (check this!) and, by
the closed graph theorem, it is bounded. Thus, for ξ ∈ dom T and z ∈ ρ(T ) one
has

‖Bξ‖ = ‖BRz(T )(T − z1)ξ‖ ≤ ‖BRz(T )‖ (‖Tξ‖+ |z|‖ξ‖) ,

and B is T -bounded. �

Proposition 6.1.5. If T is self-adjoint and dom T ⊂ dom B, then B is T -bounded
iff BRz(T ) ∈ B(H) for some z ∈ ρ(T ); in this case BRz(T ) ∈ B(H), ∀z ∈ ρ(T ),
and NT (B) = lim|λ|→∞ ‖BRiλ(T )‖ (λ ∈ R).

Proof. If BRz(T ) is a bounded operator for some z ∈ ρ(T ), then by the proof of
Lemma 6.1.4 it follows that B is T -bounded and NT (B) ≤ ‖BRz(T )‖; moreover,
by the first resolvent identity,

BRy(T ) = BRz(T ) + (y − z)BRz(T )Ry(T ),

so that BRy(T ) is bounded for all y ∈ ρ(T ). Hence, since T is self-adjoint one can
consider z = ±iλ, with 0 
= λ ∈ R, which belongs to ρ(T ).

Suppose now that B is T -bounded, so that there are a, b ≥ 0 obeying, for all
ξ ∈ H,

‖BRiλ(T )ξ‖ ≤ a‖TRiλ(T )ξ‖ + b‖Riλ(T )ξ‖,

and since ‖Tη − iλη‖2 = ‖Tη‖2 + λ2‖η‖2 ≥ ‖Tη‖2, one has, with η = Riλ(T )ξ,

‖BRiλ(T )ξ‖ ≤ a‖(T − iλ1)Riλ(T )ξ‖ + b‖Riλ(T )‖ ‖ξ‖

≤
(
a+

b

|λ|

)
‖ξ‖,

and BRiλ(T ) is bounded (Theorem 2.2.17 was employed). Together with the in-
equality at the beginning of this proof,

NT (B) ≤ ‖BRiλ(T )‖ ≤ a+
b

|λ| .

From the definition of NT (B) it then follows that

NT (B) = lim
|λ|→∞

‖BRiλ(T )‖.

Thereby the proof is complete. �

Exercise 6.1.6. If T is a self-adjoint operator, show that ‖TRiλ(T )‖ ≤ 1,
∀0 
= λ ∈ R.
Exercise 6.1.7. Let T ≥ β1 be self-adjoint, β ∈ R. Inspect the proof of Proposi-
tion 6.1.5 and check that for λ < 0, |λ| large enough, ‖TRλ(T )‖ < 1, and that
NT (B) = limλ→−∞ ‖BRλ(T )‖.
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Theorem 6.1.8 (Rellich or Kato-Rellich). Let T be self-adjoint and B hermitian.
If B is T -bounded with NT (B) < 1, then the operator

dom (T +B) = dom T, (T +B)ξ := Tξ +Bξ, ∀ξ ∈ dom T,

is self-adjoint.

Proof. Clearly (T +B) is hermitian. Since NT (B) < 1, by Proposition 6.1.5 there
exists λ0 > 0 so that ‖BRiλ0(T )‖ < 1. Thus, (1 + BR±iλ0 (T )) is invertible in
B(H) and onto. Hence,

(T +B) ± iλ01 =B + (T ± iλ01)
= (BR±iλ0(T ) + 1) (T ± iλ01)

and so rng (T +B± iλ0) = H. By Proposition 2.2.4 (see also the discussion at the
beginning of this section), (T+B) is self-adjoint. �
Corollary 6.1.9. Let T and B be as in Theorem 6.1.8. If D ⊂ dom T is a core of
T , then D is a core of (T +B).

Proof. Take λ0 as in the proof of Thm. 6.1.8. Then the operator (1+BR±iλ0(T )) is
a homeomorphism onto H. Thus, if (T±iλ01)D is dense in H, then (T+B±iλ01)D
is also dense in H. Therefore the deficiency indices of (T +B)|D are both zero (see
Theorem 2.2.11), consequently D is a core of (T +B). �
Example 6.1.10. In L2(Rn) the momentum operators Pj = −i∂j, 1 ≤ j ≤ n, are
H0-bounded with NH0(Pj) = 0; thus the operator

Hψ = H0ψ − iλ
∑
j

∂jψ

is self-adjoint in the domain H2(Rn), ∀λ ∈ R. In fact, for ψ ∈ H2(Rn) ⊂ dom Pj ,
‖Pjψ‖2 = ‖pjψ̂(p)‖2, and given a > 0 there is b ≥ 0 so that |pj | ≤ (ap2 + b), and
so (assume that λ 
= 0)

‖λPjψ‖2 ≤ a |λ| ‖p2ψ̂(p)‖2 + b |λ| ‖ψ̂(p)‖2 = a |λ| ‖H0ψ‖2 + b |λ| ‖ψ‖2.

Since a > 0 was arbitrary, the result follows by Theorem 6.1.8.
Exercise 6.1.11. Let T and B be self-adjoint operators in H. If B ∈ B(H), verify
that

a) NT (B) = 0.
b) T +B is self-adjoint with dom (T +B) = dom T .
c) Every core of T is also a core of T +B.

Exercise 6.1.12.

a) If B is T -bounded with NT (B) < 1, show that B is also (T +B)-bounded.
b) If T is self-adjoint and B hermitian and T -bounded with NT (B) < 1/2, show

that (T + 2B) is also self-adjoint.
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Exercise 6.1.13. Let T be closed and B a T -bounded operator with T -bound
NT (B) < 1. Show that T + B with domain dom T is closed. If NT (B) = 1 take
B = −T and conclude that T +B can be nonclosed.

6.1.1 KLMN Theorem

This theorem is a partial counterpart for sesquilinear forms of the Kato-Rellich
theorem, and it was dubbed KLMN by J.T. Cannon in 1968 from the initials of
Kato, Lions, Lax, Milgram and Nelson. In this subsection b1 and b2 denote two
(densely defined) hermitian sesquilinear forms in H, with b1 lower bounded b1 ≥ β.
The domain of b1 + b2 is dom b1 ∩ dom b2.

Definition 6.1.14. b2 is b1-bounded if dom b1 ⊂ dom b2 and there are a ≥ 0, c ≥ 0
so that

|b2(ξ)| ≤ a |b1(ξ)| + c‖ξ‖2, ∀ξ ∈ dom b1.

The infimum of the admissible a′s in this inequality is called the b1-bound of b2.

Exercise 6.1.15. Show that the b1-bound of b2 coincides with the (b1 + α)-bound
of b2 for any α ∈ R.

By Exercise 6.1.15 there is no loss if it is assumed that b1 ≥ 0, i.e., that b1 is
positive.

Lemma 6.1.16. Suppose that b1 ≥ 0 and b2 is b1-bounded with b1-bound < 1, that
is, the inequality in Definition 6.1.14 holds for some 0 ≤ a < 1 and 0 ≤ c ∈ R.
Then:

i) b1 + b2 ≥ −c, that is, b1 + b2 is also lower bounded.
ii) b1 + b2 is closed iff b1 is closed.

Proof. For all ξ ∈ dom b1 = dom (b1 + b2),

−c‖ξ‖2 ≤−c‖ξ‖2 + (1 − a)b1(ξ) = −
(
c‖ξ‖2 + a b1(ξ)

)
+ b1(ξ)

≤ b2(ξ) + b1(ξ) = (b1 + b2)(ξ) ≤ a b1(ξ) + c‖ξ‖2 + b1(ξ)
= (1 + a) b1(ξ) + c‖ξ‖2.

Then i) follows at once. By adding (1 + c)‖ξ‖2 to the terms in the above chain of
inequalities, one gets

(1 − a)(b1(ξ) + ‖ξ‖2)≤ (1 − a)b1(ξ) + ‖ξ‖2

≤ (b1 + b2)(ξ) + (1 + c)‖ξ‖2

≤ (1 + a)b1(ξ) + (1 + 2c)‖ξ‖2

≤A
(
b1(ξ) + ‖ξ‖2

)
, A = max{1 + a, 1 + 2c};

thus the norms ξ �→
√
b1(ξ) + ‖ξ‖2 and ξ �→

√
(b1 + b2)(ξ) + (1 + c)‖ξ‖2 are

equivalent on dom b1 and ii) follows (see Lemma 4.1.9). �
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Theorem 6.1.17 (KLMN). Suppose that b1 ≥ 0 and b2 is b1-bounded with b1-bound
< 1. Then there exists a unique self-adjoint operator T with dom T � dom b1,
whose form domain is dom b1, and

〈ξ, T η〉 = b1(ξ, η) + b2(ξ, η), ∀ξ ∈ dom b1, η ∈ dom T.

Further, T is lower bounded and dom T is a core of b1 + b2.

Proof. By Lemma 6.1.16, b1 + b2 is closed and lower bounded. The operator T is
the one associated with b1 + b2 as in Definition 4.2.5. The other statements follow
by Theorem 4.2.6. �

Although the hypotheses of KLMN are weaker than those of Kato-Rellich,
in the latter the domain of the operator sum is explicitly found. Be aware that
in concrete situations it can be a nontrivial task to decide if such theorems are
applicable.

Typical applications of Theorem 6.1.17 involve the definition of the sum of
two hermitian operators T1 ≥ β1 and T2 via bT1 + bT2 (see Example 4.1.11), in
particular when Kato-Rellich does not apply, as in Example 6.2.15, and cases of
forms not directly related to a potential, as in Examples 6.2.16 and 6.2.19.

One can roughly think of the KLMN theorem as a definition of an adequate
quantum observable from the addition of expectation values.

6.2 Applications

6.2.1 H-Atom and Virial Theorem

Now the Kato-Rellich Theorem is applied to perturbations of the free particle
hamiltonian

dom H0 = H2(Rn), H0ψ = −Δψ,

discussed in Section 3.4. Recall that, by Proposition 3.4.1, C∞0 (Rn) is a core of H0.
Besides the Sobolev embedding theorem, the next result gives valuable information
on elements of the Sobolev space H2(Rn), n ≤ 3.

Lemma 6.2.1. If n ≤ 3, then H2(Rn) ⊂ C(Rn)∩L∞(Rn) and for each a > 0 there
exists b > 0 so that

‖ψ‖∞ ≤ a‖H0ψ‖ + b‖ψ‖, ∀ψ ∈ H2(Rn).

Proof. Technically, the point of the argument is that for n ≤ 3 the function p �→
(1 + p2)−1 ∈ L2(Rn), and also (1 + p2)ψ̂(p) = F(ψ +H0ψ).

If ψ ∈ dom H0, by Cauchy-Schwarz,(∫
Rn

|ψ̂(p)| dp
)2

≤
∫

Rn

(1 + p2)2|ψ̂(p)|2 dp
∫

Rn

dp

(1 + p2)2
<∞,
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and so ψ̂ ∈ L1(Rn). By Lemma 3.2.8 it follows that ψ ∈ C(Rn) ∩ L∞(Rn). Note
that since ψ ∈ L2(Rn) and is continuous, then lim|x|→∞ ψ(x) = 0.

Let λ > 1 and κ = ‖(1 + p2)−1‖2/(2π)
n
2 . Then, for ψ ∈ dom H0, again by

Cauchy-Schwarz,

|ψ(x)| = 1
(2π)n/2

∣∣∣∣∫
Rn

(λ2 + p2)eipx ψ̂(p)
dp

(λ2 + p2)

∣∣∣∣
≤ 1

(2π)n/2

∥∥∥(λ2 + p2) ψ̂(p)
∥∥∥

2

∥∥∥∥ 1
(λ2 + p2)

∥∥∥∥
2

≤ κ

λ2−n
2

(
λ2
∥∥∥ψ̂(p)

∥∥∥
2

+
∥∥∥p2ψ̂(p)

∥∥∥
2

)
=

κ

λ2−n
2
‖H0ψ‖2 + κλ

n
2 ‖ψ‖2,

since the Fourier transform is a unitary operator. Now take λ large enough. �

For the potential V : Rn → R in L∞(Rn), one associates a bounded self-
adjoint multiplication operator V = MV , and so

H := H0 + V, dom H := dom H0,

is self-adjoint (see Exercise 6.1.11). This situation can be generalized to some
unbounded potentials V .

The notation V ∈ Lrμ+Lsμ means that the function V = Vr+Vs with Vr ∈ Lrμ
and Vs ∈ Lsμ, and it has already been incorporated into the main stream of Schrö-
dinger operator theory.

Theorem 6.2.2 (Kato). If n ≤ 3 and V ∈ L2(Rn) + L∞(Rn) is a real-valued
function, then V is H0-bounded with NH0(V ) = 0, the operator

H := H0 + V, dom H = dom H0,

is self-adjoint and C∞0 (Rn) is a core of H.

Proof. By hypothesis V = V2 + V∞ with V2 ∈ L2(Rn) and V∞ ∈ L∞(Rn). Thus,
by Lemma 6.2.1, for all a > 0 there is b ≥ 0 so that, for all ψ ∈ dom H0,

‖V ψ‖2 ≤ ‖V2ψ‖2 + ‖V∞ψ‖2 ≤ ‖V2‖2 ‖ψ‖∞ + ‖V∞‖∞ ‖ψ‖2

≤ ‖V2‖2 (a‖H0ψ‖2 + b‖ψ‖2) + ‖V∞‖∞ ‖ψ‖2

= (a‖V2‖2) ‖H0ψ‖2 + (b‖V2‖2 + ‖V∞‖∞) ‖ψ‖2.

Since a > 0 is arbitrary, it follows that NH0(V ) = 0. To finish the proof apply
Theorem 6.1.8 and Corollary 6.1.9. �
Example 6.2.3. Consider the class of negative power potentials in R3,

V (x) = − κ

|x|α , κ ∈ R, 0 < α < 3/2.



152 Chapter 6. Kato-Rellich Theorem

Fix R > 0; then V = V2 + V∞, with

V2(x) = V (x)χ[0,R)(|x|), V∞(x) = V (x)χ[R,∞)(|x|),

where χA denotes the characteristic function of the set A. Since V2 ∈ L2(R3) and
V∞ ∈ L∞(R3), it follows that the Schrödinger operator

H = H0 −
κ

|x|α , dom H = H2(R3),

is self-adjoint and C∞0 (R3) is a core of H (recall 0 < α < 3/2).
The very important Coulomb potential α = 1 gives rise to 3D hydrogenic

atoms; if also κ > 0, it is briefly referred to as an H-atom Schrödinger operator
HH (see Remark 6.2.6); as discussed on page 295, this operator is lower bounded
(see also Remark 11.4.9). The unidimensional version of the H-atom presents
additional technical issues and is addressed in Subsection 7.4.1.
Example 6.2.4. The same conclusions of Example 6.2.3 hold for the “generalized
Yukawa-like potential” in R3,

VY (x) = − κ

|x|α e
−a|x|, κ ∈ R, 0 < α < 3/2, a > 0,

since VY ∈ L2(R3). Hence the Schrödinger operator H = H0 + VY with dom H =
H2(R3) is self-adjoint. The genuine Yukawa potential is obtained for κ > 0 and
α = 1.
Exercise 6.2.5. Apply the Kato-Rellich theorem to the Schrödinger operators of
Example 6.2.3, but in dimensions 1 and 2, i.e., for the cases of Hilbert spaces L2(R)
and L2(R2), respectively. For which values of α > 0 are self-adjoint operators H
obtained?
Remark 6.2.6. The expression for the Coulomb potential above describes the elec-
trostatic interaction between two charged particles, and one of them is supposed
to be at rest at the origin, so heavy with respect to the other that this approxi-
mation is taken. For a hydrogenic atom, that is, with just one electron of mass m
and charge −e (e > 0), and nuclear mass M and charge Ze, with M " m and
Z a positive integer indicating the total number of protons in the nucleus, the
corresponding Schrödinger operator with all physical constants made explicit is

HH = − �2

2μ
Δ − KZe2

|x| ,

with K indicating the electrostatic constant, μ = mM/(m + M) the so-called
reduced mass, and x corresponding to the relative position between the electron
and the nucleus. Note that in the limit of a fixed nucleus, represented here by the
condition M → ∞, one has μ→ m. Throughout this discussion the center of mass
has been “removed” [Will03], so that only the relative motion remains.
Remark 6.2.7. For Rn, n ≥ 4, the Kato Theorem 6.2.2 holds for V ∈ Lp(Rn) +
L∞(Rn), with p > 2 if n = 4 and p ≥ n/2 if n ≥ 5.
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By using the Virial Theorem 6.2.8, with relatively little effort it is possible
to say something about the spectrum of the H-atom Schrödinger operator. Let
Ud(s) be the strongly continuous dilation unitary evolution group discussed in
Example 5.4.8, adapted to Rn,

(Ud(s)ψ)(x) = e−ns/2ψ(e−sx), s ∈ R, ψ ∈ L2(Rn).

Assume that V is an H0-bounded potential with NH0(V ) < 1, so that H := H0+V
with dom H = H2(Rn) is self-adjoint.

Theorem 6.2.8 (Virial). Let V be an H0-bounded potential with NH0(V ) < 1.
Suppose there exists 0 
= α ∈ R so that

Ud(−s)V Ud(s) = e−αsV.

If λ is an eigenvalue of H and ψλ the subsequent normalized eigenvector, i.e.,
Hψλ = λψλ, ‖ψλ‖ = 1, then

〈ψλ, H0ψλ〉 = −α
2
〈ψλ, V ψλ〉

and

λ =
(

1 − 2
α

)
〈ψλ, H0ψλ〉 =

(
1 − α

2

)
〈ψλ, V ψλ〉.

Proof. Note that Ud(−s)H0Ud(s) = e−2sH0. Since ψλ ∈ dom H0 = dom H and
Ud(s)dom H0 = dom H0, ∀s ∈ R, one has

0 = 〈Ud(−s)ψλ, λψλ〉 − 〈Ud(−s)λψλ, ψλ〉
= 〈Ud(−s)ψλ, Hψλ〉 − 〈Ud(−s)Hψλ, ψλ〉
= 〈Ud(−s)ψλ, Hψλ〉 − 〈Hψλ, Ud(s)ψλ〉
= 〈Ud(−s)ψλ, Hψλ〉 − 〈Ud(−s)ψλ, Ud(−s)HUd(s)ψλ〉
= 〈Ud(−s)ψλ, [H − Ud(−s)HUd(s)]ψλ〉, ∀s ∈ R.

Write out H = H0 + V in the above expression and use the hypothesis on V to
get

0 = lim
s→0

〈
Ud(−s)ψλ,

1
s

[H − Ud(−s)HUd(s)]ψλ
〉

= 〈ψλ2H0ψλ + αV ψλ〉 ,

so that
〈ψλ, H0ψλ〉 = −α

2
〈ψλ, V ψλ〉,

which is the first equality in the theorem. Since

λ = 〈ψλ, (H0 + V )ψλ〉 = 〈ψλ, H0ψλ〉 + 〈ψλ, V ψλ〉,

the other equality follows. �
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Corollary 6.2.9. Let V and α be as in the virial theorem.

a) If α < 2, then all eigenvalues of H are negative and, if also V ≥ 0, then H
has no eigenvalues.

b) The Schrödinger operator H0 +V with the negative power potential (Example
6.2.3)

V (x) = − κ

|x|α , 0 < α < 3/2,

in L2(R3) has no eigenvalues if κ < 0 and all its eigenvalues are negative if
κ > 0 (note that the H-atom is a particular case).

Proof. It is enough to recall that H0 is a positive operator, to note that

Ud(−s)V Ud(s) = e−αsV

and apply the conclusions of Theorem 6.2.8. For instance, if α < 2 and λ is an
eigenvalue of H , then the relation

λ =
(

1 − 2
α

)
〈ψλ, H0ψλ〉

implies λ < 0. �

Exercise 6.2.10. Look for an eigenfunction of the hydrogen atom hamiltonian in
the form ψ(x) = e−a|x|, for some a > 0. Find the corresponding eigenvalue, which
is the lowest possible energy value (“ground level” in the physicists’ nomenclature)
of the electron (see, for instance, [Will03]).
Exercise 6.2.11. Verify the relation Ud(−s)H0Ud(s) = e−2sH0, and that

Ud(s)dom H0 = dom H0, ∀ s ∈ R.

Exercise 6.2.12. Consider the energy expectation value (see the discussion in Sec-
tion 14.1)

Eψ = 〈ψ,H0ψ〉 + 〈ψ, V ψ〉, ψ ∈ C∞0 (Rn),

and let ψ(s) = Ud(s)ψ. By taking appropriate values of s, show that

inf
‖ψ‖=1

Eψ = −∞

in case V (x) = −1/|x|α and α > 2. Comment on the physical meaning of this
result – see Remark 11.4.9.
Example 6.2.13. The condition Ud(−s)V Ud(s) = e−αsV in the virial theorem is
not strictly necessary. Consider the bounded potential

Va(x) = − κ

|x| + a
, a > 0,
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acting on L2(R). Then Ud(−s)VaUd(s) = e−sVe−sa; if Hψλ = λψλ, by following
the proof of Theorem 6.2.8 one gets

0 ≤ 〈ψλ, H0ψλ〉 =
1
2κ

〈ψλ, |x|V 2
a ψλ〉,

and if κ < 0 the operator H = H0 + Va has no eigenvalues.

Exercise 6.2.14. Present the missing details in Example 6.2.13.

The virial theorem is closely related to its version in classical mechanics.
Both relate averages of the potential energy and kinetic energy, and was originally
considered by Clausius in the investigation of problems in molecular physics (re-
call that average kinetic energy is directly related to temperature in equilibrium
statistical mechanics). Restricting to dimension 1, Clausius considered the classi-
cal quantity G = xp, the so-called virial; note that in the quantum version this
quantity corresponds to the infinitesimal generator of Ud(s) – see Example 5.4.8.
Some domain issues are avoided by working directly with the unitary group Ud(s)
(as in the virial theorem above) instead of its infinitesimal generator. It has appli-
cations to thermodynamics and astrophysics, among others. For several aspects of
the quantum virial theorem the reader is referred to [GeoG99].

6.2.2 KLMN: Applications

Let bH0 be the (closed and positive) form generated by the free hamiltonian H0 =
−Δ in L2(Rn), so that

bH0(ψ, φ) = 〈ψ,−Δφ〉, ∀ψ ∈ dom bH0 , ∀φ ∈ dom H0.

According to Examples 4.2.11 and 9.3.9, dom bH0 = H1(Rn) and

bH0(ψ, φ) = 〈∇ψ,∇φ〉, ∀ψ, φ ∈ dom bH0 .

The following three examples consider form perturbations of bH0 .

Example 6.2.15. In L2(R3) the Kato-Rellich theorem allows the definition of a
self-adjoint realization of H0 + V for

V (x) = − κ

|x|α , 0 < α < 3/2,

since such potential belongs to L2 + L∞. The KLMN theorem can be used to give
meaning also for 3/2 ≤ α < 2.

Let bα be the form generated by |x|−α. Fix 0 < α < 2 and note that dom bα ⊃
dom bH0 in this case; given a > 0, choose ε > 0 so that |x|−α ≤ a|x|−2/4 for all
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|x| ≤ ε. By Hardy’s Inequality 4.4.16, for all ψ ∈ dom bH0 = H1(R3),

bα(ψ) =
∫

R3

|ψ(x)|2
|x|α dx =

∫
|x|≤ε

|ψ(x)|2
|x|α dx+

∫
|x|>ε

|ψ(x)|2
|x|α dx

≤ a

∫
|x|≤ε

|ψ(x)|2
4|x|2 dx+

1
εα

∫
|x|>ε

|ψ(x)|2 dx

≤ a

∫
R3

|ψ(x)|2
4|x|2 dx+

1
εα

∫
R3

|ψ(x)|2 dx

≤ a

∫
R3

|∇ψ(x)|2 dx+
1
εα

∫
R3

|ψ(x)|2 dx

= a bH0(ψ) +
1
εα

‖ψ‖2.

Since a > 0 was arbitrary in the above inequality, the bH0 -bound of bα is zero.
Hence the KLMN Theorem 6.1.17 defines a self-adjoint realization of H0 − κ/|x|α
in L2(R3), 0 < α < 2, given by the operator associated with bH0 + bα.
Example 6.2.16 (Delta-function potential in R). In L2(R), perturb the free form
bH0(ψ, φ) = 〈ψ′, φ′〉 by the nonclosable form bδ(ψ, φ) = ψ(0)φ(0) of Exam-
ple 4.1.15, which simulates a Dirac delta interaction at the origin. Here dom bδ =
dom bH0 = H1(R). The KLMN theorem permits the association of a self-adjoint
operator with the form

bH0 + αbδ, α ∈ R,

with domain H1(R); see also Example 4.4.9.
In fact, if ψ ∈ H1(R) one has ψ(x) → 0 as |x| → ∞, and by using Lem-

ma 6.1.3 with s = t = 1, ε = r2, for all M > 0,

|bδ(ψ)| = |ψ(0)|2 ≤
∣∣|ψ(0)|2 − |ψ(M)|2

∣∣+ |ψ(M)|2

=

∣∣∣∣∣
∫ M

0

d

dx
|ψ(x)|2 dx

∣∣∣∣∣+ |ψ(M)|2

=

∣∣∣∣∣
∫ M

0

(
ψ′(x)ψ(x) + ψ(x)ψ′(x)

)
dx

∣∣∣∣∣+ |ψ(M)|2

≤ |ψ(M)|2 + 2‖ψ′‖ ‖ψ‖ ≤ |ψ(M)|2 + ε ‖ψ′‖2 +
1
ε
‖ψ‖2

M→∞−→ ε ‖ψ′‖2 +
1
ε
‖ψ‖2 = ε bH0(ψ) +

1
ε
‖ψ‖2.

Since ε > 0 is arbitrary, it follows that the bH0-bound of αbδ is zero for all α ∈ R. By
KLMN theorem, there is a unique self-adjoint operator Tα with dom Tα � H1(R),
whose form domain is H1(R), and

〈ψ, Tαφ〉 = 〈ψ′, φ′〉 + αψ(0)φ(0), ∀ψ ∈ H1(R), φ ∈ dom Tα.

Further, Tα is lower bounded.
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Exercise 6.2.17. If α < 0, verify that eα|x|/2 is an eigenvector of Tα in Exam-
ple 6.2.16, whose corresponding eigenvalue is −α2/4.

Remark 6.2.18. In the KLMN theorem it is strictly necessary that a < 1. In fact,
one has |−bH0 | ≤ bH0+bδ (so a = 1) but the “perturbed” form (bH0+bδ)−bH0 = bδ
is not closable.

Example 6.2.19. Let ν be a positive Radon measure in Rn, that is, a Borel, finite on
compact sets and regular measure. Under suitable conditions, the KLMN theorem
will be used to give meaning to the operator

H = H0 + αν,

that is, the interaction potential is ruled by the measure ν with intensity α ∈
R, as proposed in [BraEK94]. The “interaction” form bα,ν associated with this
“potential” is introduced by the expression

bα,ν(ψ, φ) = α

∫
Rn

ψ(x)φ(x) dν(x).

Singular (with respect to Lebesgue measure) ν are the most interesting cases,
but in view of the KLMN theorem one faces the difficulty of getting dom bα,ν ⊃
dom bH0 = H1(Rn), since the elements of H1(Rn) are not necessarily continuous
and the restriction to the support of ν can be meaningless. The idea is to define bα,ν

as above initially on C∞0 (Rn), and assume that ν is such that there are 0 ≤ a < 1
and c ≥ 0 so that (see Remark 6.2.20)

(1 + |α|)
∫

Rn

|ψ(x)|2 dν(x) ≤ a

∫
Rn

|∇ψ(x)|2 dx + c

∫
Rn

|ψ(x)|2 dx

for all ψ ∈ C∞0 (Rn). Since C∞0 (Rn) is dense in H1(Rn), the map J : C∞0 (Rn) →
L2
ν(R

n), Jψ = ψ, has a unique extension to a continuous linear map (also denoted
by J ; note that ψ is being used to denote elements in both equivalence classes
L2(Rn) and L2

ν(Rn))
J : H1(Rn) → L2

ν(R
n),

and, by continuity, the above inequality holds for all ψ ∈ H1(Rn), that is,

(1 + |α|)
∫

Rn

|Jψ(x)|2 dν(x) ≤ a

∫
Rn

|∇ψ(x)|2 dx+ c

∫
Rn

|ψ(x)|2 dx.

Finally, the precise definition of the interaction form bα,ν is presented: dom bα,ν =
H1(Rn) and for ψ, φ ∈ dom bα,ν ,

bα,ν(ψ, φ) := α

∫
Rn

Jψ(x)Jφ(x) dν(x).
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For ψ ∈ H1(Rn), one then has

|bα,ν(ψ)|= |α|
∫

Rn

|Jψ(x)|2 dν(x)

≤ a|α|
1 + |α|

∫
Rn

|∇ψ(x)|2 dx+
c|α|

1 + |α|

∫
Rn

|ψ(x)|2 dx

=
a|α|

1 + |α| b
H0(ψ) +

c|α|
1 + |α| ‖ψ‖

2.

Since a|α|/(1 + |α|) < 1, for such measures ν the KLMN Theorem 6.1.17 provides
a self-adjoint realization of H0 +αν rigorously defined by the operator associated
with bH0 + bα,ν.

Remark 6.2.20. Sufficient conditions for the above inequality to be valid for posi-
tive Radon measures ν in Rn appear in [StoV96]: e.g., all finite measures over R,

lim
ε↓0

sup
x∈R2

∫
B(x;ε)

|ln |x− y|| dν(y) = 0, n = 2,

and

lim
ε↓0

sup
x∈Rn

∫
B(x;ε)

1
|x− y|n−2 dν(y) = 0, n ≥ 3.

Particular interesting cases are ν = μC , that is, a measure concentrated on the
ternary Cantor set in R (see Example 12.2.13), and when ν is supported by smooth
curves and other manifolds in Rn, which is part of the set of so-called leaky quan-
tum graphs.

6.2.3 Some L2
loc(R

n) Potentials

Theorem 6.2.21. Let V : Rn → R be a measurable potential and Bx = B(x; 1)
denote the closed ball of center x ∈ Rn and radius 1.

a) If dom H0 ⊂ dom V , then

d(V ) := sup
x∈Rn

∫
Bx

|V (y)|2 dy <∞,

in particular V ∈ L2
loc(R

n).
b) If dom H0 ⊂ dom V and lim sup|x|→∞ |V (x)| = s < ∞, then V ∈ L2(Rn) +

L∞(Rn).

Proof. a) Since V is a closed operator and ρ(H0) 
= ∅, by Lemma 6.1.4 there is
c > 0 so that

‖V ψ‖2 ≤ c
(
‖H0ψ‖2 + ‖ψ‖2

)
, ∀ψ ∈ dom H0.
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If x ∈ Rn, pick φ ∈ C∞0 (Rn) so that φ(y) = 1 for y ∈ B0, and set φx(y) = φ(y−x).
Thus, ∫

Bx

|V (y)|2 dy ≤ ‖V φx‖2 ≤ c
(
‖H0φx‖2 + ‖φx‖2

)
= c
(
‖H0φ‖2 + ‖φ‖2

)
<∞,

and note that this upper bound does not depend on x. Hence d(V ) <∞.
b) Let Es = {x ∈ Rn : |V (x)| ≤ 2s}, V∞ = V χEs and V2 = V χEc

s
, with

Ecs = Rn \Es. Then V = V2 +V∞, V∞ ∈ L∞(Rn) and, by the definition of s, there
exists R > 0 so that V2(x) = 0 if x /∈ B(0;R). Pick φ ∈ C∞0 (Rn) so that φ(x) = 1
for x ∈ B(0;R); then φ ∈ dom H0 ⊂ dom MV and

‖V2‖2 =
∫

Rn

|V2(x)|2 |φ(x)|2 dx = ‖V2φ‖2 ≤ ‖V φ‖2 <∞,

so that V2 ∈ L2(Rn). �
Exercise 6.2.22. Show that if lim sup|x|→∞ |V (x)| = 0 in Theorem 6.2.21, then the
L∞(Rn) part of V can be chosen with arbitrarily small L∞ norm.

Theorem 6.2.23. Let V and d(V ) be as in Theorem 6.2.21. Then for n = 1, i.e.,
in L2(R), the following assertions are equivalent:

a) dom H0 ⊂ dom V .
b) d(V ) <∞.
c) V is H0-bounded.
d) V is H0-bounded with NH0(V ) = 0.

Proof. The implications a) ⇒ c) ⇒ b) were already discussed in the proof of
Theorem 6.2.21. d) ⇒ a) is clear. It is only needed to show that b) ⇒ d).

Assume that b) holds. If ψ ∈ dom H0 = H2(R), then ψ is continuous and
continuously differentiable. Assume first that ψ is real valued. By using an idea in
Lemma 6.1.3, given ε > 0 for z, y ∈ Bx, one has

ψ(y)2 − ψ(z)2 =
∫ y

z

(
ψ(t)2

)′
dt = 2

∫ y

z

ψ(t)ψ′(t) dt

≤ 1
ε

∫
Bx

ψ(t)2 dt+ ε

∫
Bx

ψ′(t)2 dt.

By the mean value theorem, choose z ∈ Bx so that ψ(z)2 =
∫
Bx
ψ(t)2 dt, thus

ψ(y)2 ≤
(

1 +
1
ε

)∫
Bx

ψ(t)2 dt+ ε

∫
Bx

ψ′(t)2 dt.

For complex ψ ∈ H2(R) one gets, for all ε > 0 and all x ∈ R,

|ψ(y)|2 ≤
(

1 +
1
ε

)∫
Bx

|ψ(t)|2 dt+ ε

∫
Bx

|ψ′(t)|2 dt.
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Hence,∫
Bx

|V (y)ψ(y)|2 dy ≤ d(V )
(

1 +
1
ε

)∫
Bx

|ψ(t)|2 dt+ d(V )ε
∫
Bx

|ψ′(t)|2 dt,

and so (denote the set of even integers by 2Z)

‖V ψ‖2 =
∫

R

|V (y)ψ(y)|2 dy =
∑
x∈2Z

∫
Bx

|V (y)ψ(y)|2 dy

≤ d(V )
(

1 +
1
ε

)∫
R

|ψ(t)|2 dt+ d(V )ε
∫

R

|ψ′(t)|2 dt,

≤ d(V )
(

1 +
1
ε

)
‖ψ‖2 dt+ d(V )ε‖ψ′‖2.

Since 0 ≤ (p2 − 1)2 it follows that p2 ≤ (p4 + 1)/2 < (p4 + 1), and then

‖ψ′‖2 = ‖pψ̂(p)‖2 =
∫

R

p2|ψ̂(p)|2 dp

≤ ‖p2ψ̂(p)‖2 + ‖ψ̂‖2 = ‖H0ψ‖2 + ‖ψ‖2,

and one obtains

‖V ψ‖2 ≤ ε d(V ) ‖H0ψ‖2 +
(
ε+ 1 +

1
ε

)
d(V ) ‖ψ‖2.

Since this holds for all ε > 0, d) follows. �

Hence, in order to apply the Kato-Rellich theorem to conclude that H :=
H0 + V , with dom H = dom H0, is self-adjoint and C∞0 (Rn) is a core of H , it is
necessary that d(V ) <∞, and for n = 1 this condition is also sufficient.
Example 6.2.24. Let Ve(x) = e|x| and Vα(x) = |x|α, 0 < α < 1/2, x ∈ R; then
d(Ve) = ∞ while d(Vα) < ∞. Thus, by Theorem 6.2.23, the operator Hα :=
H0 + Vα with domain H2(R) is self-adjoint and C∞0 (R) is a core of it; however,
He := H0 + Ve can not be defined on H2(R), although C∞0 (R) is a core of He by
Corollary 6.3.5.
Exercise 6.2.25. For x ∈ R, let

φ(x) =

{
1/
√
|x|, if |x| ≤ 1

0, if |x| > 1
.

Consider the enumeration of rational numbers Q = (rj)∞j=1 and the potential
V (x) :=

∑∞
j=1 φ(x− rj)/2j. Show that:

a) V ∈ L1(R) and V is not L2 over any open interval in R.
b) If ψ ∈ (dom V ∩ C(R)), show that ψ ≡ 0.

Conclude then that dom H0 ∩ dom V = {0}.
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Exercise 6.2.26. Discuss for which dimensions n (i.e., spaces L2(Rn)) each of the
potentials Vm(x) = |x|, Vl(x) = ln |x| and Vc(x) = −|x|−1 have d(V ) <∞.
Remark 6.2.27. Note that V ∈ L2

loc(R
n) is the minimum requirement for V ψ

to be an element of L2(Rn) with ψ ∈ C∞0 (Rn). It is shown in Section 6.3 that if
V ∈ L2

loc(R
n) and is bounded from below V (x) ≥ β, then the operatorH = H0+V

is essentially self-adjoint on C∞0 (Rn).

6.3 Kato’s Inequality and Pointwise Positivity

An outstanding distributional inequality due to Kato will be discussed (the original
reference is [Kat72]; see also [Sim79]). It involves functions and here applications
are restricted to standard hamiltonians in the Hilbert space L2(Rn). It will be used
to show that lower bounded V ∈ L2

loc(R
n) leads to essentially self-adjoint hamilto-

nians −Δ + V with domain C∞0 (Rn). See Subsection 9.3.1 for other applications.
In this section a.e. refers to Lebesgue measure.

Definition 6.3.1. A distribution u in Rn is positive if u(φ) ≥ 0 for all test functions
φ ∈ C∞0 (Rn) with φ(x) ≥ 0, ∀x ∈ Rn. This fact will be denoted by u ≥ 0 and
u ≥ v will indicate (u− v) ≥ 0.

Example 6.3.2.
a) If F :Rn→ [0,∞) is continuous, then the distribution uF (φ)=

∫
F (x)φ(x)dx,

φ ∈ C∞0 (Rn), is positive.
b) If un ≥ 0, ∀n, and un → u in the distributional sense (i.e., un(φ) → u(φ),

∀φ ∈ C∞0 ), then u ≥ 0.
If ψ ∈ L1

loc(R
n), define the function (sgnψ)(x) := 0 if ψ(x) = 0, otherwise

set

(sgnψ)(x) :=
ψ(x)
|ψ(x)| ,

which belongs to L∞(Rn) and |ψ(x)| = ψ(x)(sgnψ)(x) (this is the motivation for
introducing the function sgn). Given ε > 0, denote ψε(x) :=

(
|ψ(x)|2 + ε2

)1/2,
which converges ψε(x) → |ψ(x)| pointwise as ε → 0. Denote also sgn εψ(x) :=
ψ(x)/ψε(x). In the following, the derivatives of L1

loc functions mean distributional
derivatives.

Theorem 6.3.3 (Kato’s Inequality). If both u,Δu are elements of L1
loc(R

n), then
(sgnu)Δu ∈ L1

loc(R
n), so it defines a distribution, and

Δ((sgnu)u) = Δ|u| ≥ Re ((sgnu)Δu),

that is to say, ∫
Rn

|u(x)|Δφ(x) dx ≥
∫

Rn

((sgnu)Δu(x))φ(x) dx

for all 0 ≤ φ ∈ C∞0 (Rn).
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Example 6.3.4. It is instructive to play with some standard functions u : R → C

in this inequality. For instance:

1. If u(x) = eax+ibx, a, b ∈ R, then a straight computation shows that Kato’s
inequality reads a2eax ≥ (a2 − b2)eax.

2. If u(x) = x, then Kato’s inequality expresses that the Dirac delta distribution
is positive, i.e., δ(x) ≥ 0.

3. If u(x) = x3, then it turns into an equality 6|x| = 6|x|.

We leave it as an exercise to check details in the above statements.

A very important consequence of this inequality implies that some standard
Schrödinger operators in L2(Rn) are well posed; recall H0 = −Δ.

Corollary 6.3.5. If there is β ∈ R so that V ∈ L2
loc(R

n) satisfies V (x) ≥ β,
∀x ∈ Rn, then the operator

Hψ := H0ψ + V ψ, ψ ∈ dom H = C∞0 (Rn),

is essentially self-adjoint.

Remark 6.3.6. The domain and action of the unique self-adjoint extension of H
in Corollary 6.3.5 are described in Corollary 9.3.17, and its domain can be strictly
smaller than dom H0 = H2(Rn), even for n = 1; see Example 6.2.24.
Example 6.3.7. a) The operator H0 +κ/|x|, κ > 0, with domain C∞0 (R3) is essen-
tially self-adjoint. Compare with Example 6.2.3 where negative κ is allowed.

b) The operator H0 + κ/|x|j , j, κ > 0, with domain C∞0 (Rn) is essentially
self-adjoint if n ≥ 2j + 1.
Remark 6.3.8. Note the great generality of Corollary 6.3.5, since the operator sum
H = −Δ + V is defined on C∞0 (Rn) iff V ∈ L2

loc(R
n); hence, if V is bounded from

below, then H is essentially self-adjoint on C∞0 (Rn) iff it is defined (as a sum of
operators)!

Before proceeding to proofs, a rough idea and figurative arguments of how
Theorem 6.3.3 can be used to get Corollary 6.3.5 are presented. Let λ ∈ R obeying
λ+β > 0; so V +λ > 0. By Proposition 2.2.4iii), to show that the deficiency index
n±(H) = 0, it will suffice to show that the solution of

(H0 + V + λ1)∗ u = 0, u ∈ L2(Rn) ⊂ L2
loc(R

n),

is solely u = 0 (recall that (rng T )⊥ = N(T ∗)). Since H0 is a positive operator,
one could guess that H0|u| ≥ 0; the positivity of V + λ and Kato’s inequality will
imply H0|u| ≤ 0, so that H0|u| = 0 and, since u ∈ L2, u = 0. Now the proofs.

An important step in the proof of Kato’s inequality is first to prove it when
u is smooth, and then use the so-called mollifiers to create sequences of smooth
functions, via convolutions, approximating certain distributions and nonsmooth
functions.
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Letm ∈ C∞0 (Rn),m(x) ≥ 0, ∀x, with
∫

Rn m(x) dx = 1 (i.e.,m is normalized).
Given r 
= 0 (usually r > 0) set

mr(x) :=
1
rn
m
(x
r

)
, u(r) := u ∗mr,

where ∗ denotes the convolution, which was recalled in Section 3.1. The family
r �→ mr is called a mollifier and m a mollifier generator. The standard example of
mollifier a generator is

m(x) = C exp
(
− 1

1 − x2

)
, |x| < 1,

andm(x) = 0 for |x| ≥ 1; C is just a normalization constant. Thus,
∫
mr(x)dx = 1,

u(r) ∈ C∞(Rn) for all u ∈ L1
loc(R

n), r 
= 0, and, by Lemma 6.3.9,

Δ(u(r))ε ≥ Re
(
sgn ε(u

(r))Δu(r)
)
.

Lemma 6.3.9. For any v ∈ C∞(Rn) one has, pointwise and in the distributional
sense,

Δvε ≥ Re (sgn ε(v)Δv) .

Proof. Clearly |vε| ≥ |v|. On differentiating v2
ε = |v|2 + ε2 one gets 2vε∇vε =

v∇v + v∇v = 2Re (v∇v). This expression will derive two relations. The first one
is obtained by taking the divergence of it:

|∇vε|2 + vε Δvε = Re (vΔv) + |∇v|2.

The second one is

|∇vε| =
|Re (v∇v)|

|vε|
≤ |v∇v|

|v| ≤ |∇v|.

Combine these two relations to get

vεΔvε ≥ Re (vΔv) =⇒ Δvε ≥ Re ((sgn εv)Δv)

pointwise; thus, for every 0 ≤ φ ∈ C∞0 (Rn),∫
Rn

vεΔφdx =
∫

Rn

Δvε φdx ≥ Re
∫

Rn

(sgn ε(v)Δv)φdx,

and the inequality also holds in the distributional sense. �
Exercise 6.3.10. If φ ∈ C∞0 (Rn), write

φ(x) − φ(r)(x) =
∫

Rn

(φ(x) − φ(x − y)) mr(y) dy,

for a fixed mollifier generator m, and use the uniform continuity of φ to show that
limr↓0 ‖φ(r) − φ‖∞ = 0.
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Lemma 6.3.11.

a) For any r > 0 the linear map Lp(Rn) �→ Lp(Rn), u �→ u(r), is bounded and
with norm ≤ 1, for all 1 ≤ p <∞.

b) If u ∈ Lp(Rn), 1 ≤ p <∞, then limr↓0 ‖u(r) − u‖p = 0.
c) If u ∈ Lp(Rn), 1 ≤ p < ∞, then Δu(r) ∈ Lp(Rn), ∀r > 0 (the laplacian can

be replaced by any derivative).
d) If u ∈ L1

loc(R
n), then u(r) → u in the distributional sense as r ↓ 0.

Proof. a) Since mr ∈ L1(Rn), for u ∈ Lp(Rn) it follows by Young’s inequality
(Proposition 3.1.9) that (take “r = p” in Young’s inequality)

‖u(r)‖p = ‖u ∗mr‖p ≤ ‖u‖p‖mr‖1 = ‖u‖p.

b) If φ ∈ C∞0 (Rn) and Ωφ is the support of φ, one has

‖φ(r) − φ‖p ≤ ‖φ(r) − φ‖∞ �(Ωφ)
1
p ,

where �(·) denotes Lebesgue measure over Rn. Hence ‖φ(r) − φ‖p → 0 as r → 0
(see Exercise 6.3.10). Now take u ∈ Lp(Rn). Given ε > 0, choose φ ∈ C∞0 (Rn) so
that ‖u− φ‖p < ε. By triangle inequality and a), for r small enough,

‖u(r) − u‖p ≤ ‖u(r) − φ(r)‖p + ‖φ(r) − φ‖p + ‖φ− u‖p
< ‖u− φ‖p + ε+ ε < 3ε.

Item b) follows.
c) It is a consequence of

∂

∂xj
u(r) =

∂

∂xj
(u ∗mr) = u ∗ ∂

∂xj
mr

and Young’s inequality, i.e.,∥∥∥∥ ∂

∂xj
u(r)

∥∥∥∥
p

≤ ‖u‖p
∥∥∥∥ ∂

∂xj
mr

∥∥∥∥
1

.

d) Since u(r) ∈ C∞(Rn) it also defines a distribution. If φ ∈ C∞0 (Rn) and Ωφ
is the support of φ, a change of variable and Fubini’s theorem lead to

u(r)(φ) =
∫

Rn

u(r)(x)φ(x) dx =
∫

Rn

(−1)nu(x)φ(−r)(x) dx = (−1)nu(φ(−r)),

and so∣∣∣u(φ) − u(r)(φ)
∣∣∣ =

∣∣∣u(φ− (−1)nφ(−r)
)∣∣∣ ≤ ∥∥∥φ− (−1)nφ(−r)

∥∥∥
∞

∫
Ωφ

|u(x)| dx.

Note that (−1)nφ(−r) = φ ∗ m̃r, where m̃(x) := m(−x) also satisfies the assump-
tions required for m̃r to be a mollifier; so ‖φ − (−1)nφ(−r)‖∞ vanishes as r → 0
by Exercise 6.3.10. Therefore, u(r) → u in the distributional sense. �
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Other properties needed to complete the proof of Corollary 6.3.5 will be
collected in the following proposition.

Proposition 6.3.12. Let u ∈ L1
loc(R

n) and r ↓ 0. Then:

i) There exists a subsequence u(r)(x) obeying u(r)(x) → u(x) a.e., and so also
(sgn εu(r))(x) → sgn εu(x) a.e.

ii) Δu(r) = (Δu)(r) and, if also Δu ∈ L1
loc(R

n), one has Δu(r) → Δu in L1
loc(R

n)
(that is,

∫
K
|u(r) − u| dx→ 0 for every compact K ⊂ Rn) and a.e. as well.

Proof. i) Let m be a mollifier generator with support Ωm. Let K be a compact
subset of Rn and χK its characteristic function. By the definition of convolution
and Fubini,∥∥∥(u(r) − u)χK

∥∥∥
1
≤
∫

Ωm

m(y) ‖(u(x) − u(x− ry))χK‖1 dy.

It turns out that ‖(u(x) − u(x− ry))χK‖1 vanishes as r → 0 (see the proof of
Lemma 13.3.2), and so

∥∥(u(r) − u)χK
∥∥

1
→ 0. Thus, u(r) → u in L1(K), for any

compact K. Hence there is a subsequence with a.e. convergence.
ii) After an interchange of integration and differentiation (by dominated con-

vergence), it is simple to verify that Δu(r) = (Δu)(r). By hypothesis Δu ∈ L1
loc;

so the convergences stated in ii) follow by i). �

Proof. [Corollary 6.3.5] Pick λ so that λ + β > 0 and u ∈ dom H∗ ⊂ L2(Rn) a
solution of (H + λ1)∗u = 0, which amounts to

0 = 〈(H + λ1)∗u, φ〉 = 〈u, (H + λ1)φ〉, ∀φ ∈ C∞0 (Rn),

and since H + λ1 = −Δ + V + λ1 one finds that, in the distributional sense,

0 = −Δu+ (V + λ1)u.

Since u, V u ∈ L1
loc(R

n), it follows that Δu = (V + λ1)u ∈ L1
loc(R

n) and Theo-
rem 6.3.3 implies

Δ|u| ≥ Re ((sgnu)Δu) = Re ((sgnu) (V + λ1)u) = (V + λ1)|u| ≥ 0.

However, |u| is not ensured to belong to dom Δ, and a “regularization pro-
cess” is necessary. Thus, for any r > 0, Δ|u|(r) = Δ|u| ∗mr ≥ 0 pointwise and in
the distributional sense; also, by Lemma 6.3.11c), Δ|u|(r) ∈ L2(Rn) and so〈

|u|(r),Δ|u|(r)
〉

=
∫

Rn

|u|(r)Δ|u|(r) dx ≥ 0.

On the other hand, again by Lemma 6.3.11c), ∂|u|(r)/∂xj ,Δ|u|(r) ∈ L2(Rn),
consequently |u|(r) ∈ H2(Rn) = dom H0 (see Section 3.2); hence (recall H0 ≥ 0)〈

|u|(r),Δ|u|(r)
〉
≤ 0.
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Combining with the other inequality one finds 〈|u|(r),Δ|u|(r)〉 = 0, and thus
|u|(r) = 0. Since u ∈ L2(Rn), by Lemma 6.3.11b) one can consider a subsequence
and assume that |u|(r) → |u| a.e. as r ↓ 0, so that u = 0. By Proposition 2.2.4, the
deficiency indices of H are null. The corollary is proved. �
Exercise 6.3.13. Use results of Section 3.4 to show that if ψ ∈ dom H0 = H2(Rn)
and 〈ψ,H0ψ〉 = 0, then ψ = 0. This was used in the proof of Corollary 6.3.5.

Proof. [Theorem 6.3.3] Let u,Δu ∈ L1
loc(R

n). Thus, u(r) ∈ C∞(Rn) and, by
Lemma 6.3.9,

Δ(u(r))ε ≥ Re
(
sgn ε(u

(r))Δu(r)
)
, ∀ε, r > 0,

that is, for every 0 ≤ φ ∈ C∞0 (Rn),∫
Rn

u(r)
ε Δφdx ≥ Re

∫
Rn

(sgn εu
(r))Δu(r)φdx.

The point now is to take the limit r ↓ 0 in both terms of this inequality.
Since u,Δu ∈ L1

loc, by Lemma 6.3.11c), d) and Proposition 6.3.12ii), u(r) → u
and Δu(r) = (Δu)(r) → Δu in L1

loc and in the distributional sense. By passing to
a subsequence one can suppose that u(r) → u and Δu(r) = (Δu)(r) → Δu a.e.
Together with the inequality

|u(r)
ε − uε|=

∣∣∣∣(|u(r)|2 + ε2
)1/2

−
(
|u|2 + ε2

)1/2∣∣∣∣
=

∣∣|u(r)|2 − |u|2
∣∣(

|u(r)|2 + ε2
)1/2 + (|u|2 + ε2)1/2

≤
∣∣∣|u(r)| − |u|

∣∣∣ ≤ ∣∣∣u(r) − u
∣∣∣

the convergence u(r) → u implies that u(r)
ε → uε in L1

loc and a.e. as r ↓ 0 (for a
subsequence), and so ∫

Rn

u(r)
ε Δφdx →

∫
Rn

uεΔφdx.

Taking into account the uniform boundedness of sgn εu
(r) (that is, |sgn εu

(r)| ≤ 1)
and Δu(r) → Δu, in a similar way it is found that (for a subsequence)

sgn ε(u
(r))

(
Δu(r) − Δu

)
→ 0,

in the distributional sense as r ↓ 0. By dominated convergence∫
Rn

sgn ε(u
(r))Δuφdx→

∫
Rn

sgn ε(u)Δuφdx, r → 0.
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By collecting these convergences and taking the appropriate subsequence r ↓ 0,
for 0 ≤ φ ∈ C∞0 (Rn),

Re
∫

Rn

(sgn εu
(r))Δu(r)φdx = Re

∫
Rn

(sgn εu
(r))

(
Δu(r) − Δu

)
φdx

+ Re
∫

Rn

(sgn εu
(r))Δuφdx

→
∫

Rn

sgn ε(u)Δuφdx

as r ↓ 0, that is, ∫
Rn

uεΔφdx ≥ Re
∫

Rn

((sgn εu)Δu)φdx,

which is equivalent to the distributional inequality

Δuε ≥ Re ((sgn εu)Δu).

Since uε → |u| uniformly as ε → 0, the left-hand side in the above integral
inequality converges to

∫
|u|Δφdx. Now sgn εu → sgnu as ε → 0 and since

|sgn εΔu| ≤ |Δu| and Δu ∈ L1
loc(R

n), one can apply dominated convergence on
the right-hand side of the above integral inequality to get

Re
∫

Rn

((sgn εu)Δu)φdx→ Re
∫

Rn

((sgnu)Δu)φdx

as ε → 0. Therefore, the final result, i.e., Kato’s inequality, follows by taking the
limit ε→ 0 in the latter distributional inequality. �
Remark 6.3.14. In [LeiS81] there is a generalization of Corollary 6.3.5 that in-
cludes magnetic fields; for an introduction to Schrödinger operators with magnetic
fields see Sections 10.5 and 12.4. The Leinfelder-Simader proof also makes use of
Kato’s inequality and their theorem reads as follows: Let V ∈ L2

loc(R
n) be bounded

from below, the components of the magnetic vector potential Aj ∈ L4
loc(R

n),
j = 1, . . . , n, and the distributional divergent (

∑
j ∂jAj) ∈ L2

loc(R
n); then the

Schrödinger operator with magnetic field

H =
n∑
j=1

(
−i ∂
∂xj

− e

c
Aj

)2

+ V, dom H = C∞0 (Rn),

is essentially self-adjoint.


