
Chapter 4

Operators via
Sesquilinear Forms

The basics of self-adjoint extensions via sesquilinear forms are discussed. The main
points are form representations, Friedrichs extensions and examples. Additional
information appears in Sections 6.1, 9.3 and 10.4. Some sesquilinear forms can be
sources of self-adjoint operators related to “singular interactions” and/or ill-posed
operator sums.

4.1 Sesquilinear Forms

Let dom b be a dense subspace of the Hilbert space H. A sesquilinear form in H,

b : dom b× dom b→ C

is a map linear in the second variable and antilinear in the first one. b is hermitian
if b(ξ, η) = b(η, ξ). The map ξ �→ b(ξ, ξ), ξ ∈ dom b, is called the quadratic form
associated with b. Usually dom b is referred to as the domain of b, instead of
dom b × dom b, and only the term form is used as a shorthand for sesquilinear
form. Sometimes the notation b(ξ) = b(ξ, ξ) for the quadratic form is used. Here
all forms are assumed to be densely defined.

Exercise 4.1.1. Verify the polarization identity for sesquilinear forms

4b(ξ, η) = b(ξ + η) − b(ξ − η) − ib(ξ + iη) + ib(ξ − iη),

for all ξ, η ∈ dom b. Use polarization to show that b is hermitian iff the associated
quadratic form is real valued.
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Definition 4.1.2. A sesquilinear form b is bounded if its form norm

‖b‖ := sup
0�=ξ1∈dom b

0�=ξ2∈dom b

|b(ξ1, ξ2)|
‖ξ1‖ ‖ξ2‖

is finite, i.e., ‖b‖ <∞.

The standard example of bounded sesquilinear form is the inner product on
a Hilbert space, whose norm is 1. The next result is the structure of bounded
sesquilinear forms; the corresponding results when boundedness is not required
appear in Theorems 4.2.6 and 4.2.9.

Proposition 4.1.3. If b : H × H → C is a bounded sesquilinear form, then there
exists a unique operator Tb ∈ B(H) obeying

b(ξ1, ξ2) = 〈Tbξ1, ξ2〉, ∀ξ1, ξ2 ∈ H.

Furthermore, ‖Tb‖ = ‖b‖ and if b is hermitian then Tb is self-adjoint.

Proof. For each ξ1 ∈ H the functional Lξ1 : H → C, Lξ1(ξ2) = b(ξ1, ξ2) is linear,
and since

|Lξ1(ξ2)| = |b(ξ1, ξ2)| ≤ ‖b‖‖ξ1‖ ‖ξ2‖,

then ‖Lξ1‖ ≤ ‖b‖ ‖ξ1‖ and Lξ1 ∈ H∗ (the dual space of H).
By Riesz’s Representation Theorem 1.1.40 there exists a unique η2 ∈ H with

Lξ1(ξ2) = 〈η2, ξ2〉, for all ξ2 ∈ H. Define Tb : H → H by Tbξ1 = η2, for which
b(ξ1, ξ2) = 〈Tbξ1, ξ2〉, ∀ξ1 ∈ H, ξ2 ∈ H, and it is linear. Note that Tb = 0 if, and
only if, b is null (the definition is clear!).

Thus, if b 
= 0,

‖Tb‖= sup
0�=ξ1

Tbξ1 �=0

‖Tbξ1‖
‖ξ1‖

= sup
0�=ξ1

Tbξ1 �=0

|〈Tbξ1, Tbξ1〉|
‖ξ1‖ ‖Tbξ1‖

≤ ‖b‖

= sup
0�=ξ1
0�=ξ2

|〈Tbξ1, ξ2〉|
‖ξ1‖ ‖ξ2‖

≤ sup
0�=ξ1
0�=ξ2

‖Tbξ1‖ ‖ξ2‖
‖ξ1‖ ‖ξ2‖

= ‖Tb‖,

showing that Tb ∈ B(H) and ‖Tb‖ = ‖b‖. The uniqueness of the operator follows
from the relation 〈Tbξ1, ξ2〉 = 〈Sξ1, ξ2〉, for any ξ1, ξ2, consequently the operators S
and Tb coincide.

Now if such b is hermitian then 〈Tbξ, η〉 = b(ξ, η) = b(η, ξ) = 〈ξ, Tbη〉, and Tb
is self-adjoint. �

Hence, there is a one-to-one correspondence between such bounded (and
hermitian) sesquilinear forms on H × H and bounded (and self-adjoint) linear
operators on H. Observe that if the sesquilinear form is given by the inner product
on H, then Proposition 4.1.3 gives rise to the identity operator Tb = 1.
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One then wonders whether it is possible to adapt the above construction to
get unbounded self-adjoint operators from more general forms. In fact, part of this
construction can be carried out for suitable forms, as discussed below; a chief result
will be that there is a one-to-one correspondence between “closed lower bounded
sesquilinear forms” and lower bounded self-adjoint operators. Other motivations
appear in Remark 4.1.14. Now some definitions.

Definition 4.1.4. Let b be a hermitian sesquilinear form. Then b is:

a) positive if the quadratic form b(ξ, ξ) ≥ 0, ∀ξ ∈ dom b.
b) lower bounded if there is β ∈ R with b(ξ, ξ) ≥ β‖ξ‖2, ∀ξ ∈ dom b, and this

situation will be briefly denoted by b ≥ β; such β is called a lower limit or
lower bound of b. Notice that b − β defines a positive sesquilinear form by
(b − β)(ξ, η) := b(ξ, η) − β〈ξ, η〉.

Exercise 4.1.5. Verify that Cauchy-Schwarz and triangular inequalities

|b(ξ, η)| ≤ b(ξ)
1
2 b(η)

1
2 , b(ξ + η)

1
2 ≤ b(ξ)

1
2 + b(η)

1
2 ,

respectively, hold for positive sesquilinear forms (∀ξ, η ∈ dom b).

Let b be a hermitian form and (ξn) ⊂ dom b. Even though b is not neces-
sarily positive, this sequence is called a Cauchy sequence with respect to b (or in
(dom b, b)) if b(ξn− ξm) → 0 as n,m→ ∞. It is said that (ξn) converges to ξ with
respect to b (or in (dom b, b)) if ξ ∈ dom b and b(ξn − ξ) → 0 as n→ ∞.

Definition 4.1.6. A sesquilinear form b is closed if for each Cauchy sequence (ξn)
in (dom b, b) with ξn → ξ in H, one has ξ ∈ dom b and ξn → ξ in (dom b, b). b is
closable if it has a closed extension in H.

If β is a lower bound of the sesquilinear form b, one introduces the inner
product 〈·, ·〉+ on dom b ⊂ H by the expression

〈ξ, η〉+ := b(ξ, η) + (1 − β)〈ξ, η〉,

and one has 〈ξ, ξ〉+ = b(ξ, ξ) − β‖ξ‖2 + ‖ξ‖2 ≥ ‖ξ‖2, so that the norm ‖ξ‖+ :=√
〈ξ, ξ〉+ ≥ ‖ξ‖.

Definition 4.1.7.

a) If b ≥ β, the abstract completion of the inner product space (dom b, 〈·, ·〉+)
will be denoted by (H+, b+) .

b) Let b denote a closed and lower bounded form b ≥ β. A form core of b is a
subset D ⊂ dom b which is dense in dom b equipped with the inner product
〈·, ·〉+ = b+(·).

Remark 4.1.8. If b ≥ β ≥ 0 is closed and also an inner product, then D is a form
core of b is equivalent to D being dense in (dom b, b), i.e., it is not necessary to
take 〈·, ·〉+. This applies, in particular, when a form core of 〈·, ·〉+ is considered.
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Lemma 4.1.9. Suppose that the hermitian sesquilinear form b ≥ β, for some β ∈ R.
Then the following assertions are equivalent:

i) (dom b, 〈·, ·〉+) is a Hilbert space (and so it coincides with (H+, b+)).
ii) b is closed.

Proof. First note that every Cauchy sequence in K := (dom b, 〈·, ·〉+) is also a
Cauchy sequence in the other three spaces: H, (dom b, b−β) and also in (dom b, b).

Suppose that i) holds. If (ξn) is Cauchy in K then there is ξ ∈ dom b so that
ξn → ξ in K; also ‖ξn − ξ‖ → 0 and so ξn → ξ in H. That is, ii) holds.

Conversely, suppose that ii) holds. If (ξn) is Cauchy in K, then it is also
Cauchy with respect to b and in H, and so there is ξ with ξn → ξ in H. By ii),
ξ ∈ dom b and ξn → ξ in K. So K is complete, that is, i) holds. �

The above lemma shows that any lower bound β can be used to construct
H+; in particular if b ≥ β > 0, a preferred choice is the zero lower bound. Note
that b+(·, ·) is the inner product on the Hilbert space H+ and if ξ, η ∈ dom b, then
b+(ξ, η) = 〈ξ, η〉+; moreover, b+ is a closed sesquilinear form on H+.

Example 4.1.10. To a densely defined operator T one introduces two positive
hermitian sesquilinear forms b, b̃, with dom b = dom b̃ = dom T, via b(ξ, η) =
〈Tξ, T η〉 and b̃(ξ, η) = 〈Tξ, T η〉+〈ξ, η〉. Since b̃(ξ, ξ) = ‖ξ‖2

T , i.e., the square of the
graph norm of T , it is closed iff T is closed; one has b̃ ≥ 1. See also Example 4.1.11.

Note that b̃(ξ, η) = b(ξ, η)+ 〈ξ, η〉; this was a motivation for the introduction
of the inner product 〈ξ, η〉+ and the definition of closed form above.

Example 4.1.11. A hermitian operator T : dom T � H → H defines a hermitian
sesquilinear form bT as

bT (ξ, η) := 〈ξ, T η〉, dom bT = dom T.

bT is lower bounded iff T is (see Definition 2.4.16). Since this bT is easily
extended to any ξ ∈ H and η ∈ dom T , it has a potential advantage over the
forms in Example 4.1.10 while searching extensions of T . See Theorem 4.3.1.

Definition 4.1.12. If T : dom T � H → H is a hermitian operator, the form bT

introduced in Example 4.1.11 is called the sesquilinear form generated by T .

Remark 4.1.13. In the specific case of positive self-adjoint operators T ≥ 0, the
form bT generated by T will be naturally extended in Section 9.3, and keeping the
same notation bT and nomenclature, to the form dom bT = dom T

1
2 , bT (ξ, η) =

〈T 1
2 ξ, T

1
2 η〉, ∀ξ, η ∈ dom T

1
2 . Refer to Section 9.3 for explanation of these symbols.

Remark 4.1.14. There are many appealing reasons for considering sesquilinear
forms as sources of operators.

• In physics it is a common procedure to deal with “matrix elements” of an
operator, i.e., bT (ξ, η) = 〈ξ, T η〉. Also 〈ξ, T ξ〉 is the expectation value of the
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observable T (see discussion on page 132) if the system is in the normalized
state ξ, and one asks how to construct the (self-adjoint) operator T from its
matrix elements. Some authors argue that physically the expectation values
are more fundamental than the square ‖Tξ‖2 = 〈Tξ, T ξ〉.

• Usually the conditions on the form domain are less restrictive than the ones
on the operator domain. For instance, for the second derivative operator
ψ �→ −ψ′′, in suitable subspaces of L2(R), on integrating by parts one can
write 〈ψ,−φ′′〉 = 〈ψ′, φ′〉, and the right-hand side inner product imposes
conditions only on the first derivative of the functions.

• Given hermitian operators T1, T2 and a form b, due to less stringent domain
conditions (e.g., dom T1 ∩ dom T2 can be rather small), sesquilinear forms
open the possibility of defining an operator T via the sum of forms by im-
posing bT (ξ, η) = bT1(ξ, η) + bT2(ξ, η) (see Example 4.2.15, Corollary 9.3.12
and Subsection 9.3.1), and also through bT (ξ, η) = bT1(ξ, η) + b(ξ, η) even
in some cases b is not directly related to an operator; see Examples 4.1.15,
4.4.9, 6.2.16 and 6.2.19.

The primary point relates to the representation theorems in Section 4.2, which
associate self-adjoint operators to forms. Eventually, other reasons supporting the
use of sesquilinear forms will appear spread over the book.

Example 4.1.15. Let dom bδ = H1(R) ⊂ H = L2(R), and the action

bδ(ψ, φ) = ψ(0)φ(0), ψ, φ ∈ dom bδ.

This form is hermitian and positive, but not closable. In fact, the sequence ψn(x) =
e−nx

2
is contained in dom bδ, bδ(ψn − ψm) → 0 (so a Cauchy sequence with

respect to bδ) and converges to zero in H, but bδ(ψn) → 1 while bδ(0, 0) = 0
(apply Lemma 4.1.9). Thus, in contrast to hermitian operators, a (lower bounded)
hermitian form need not be closable.

Nevertheless, by naively pushing on the comparison with bT , one would get

ψ(0)φ(0) = 〈ψ, Tφ〉 =
∫

R

ψ(x)Tφ(x) dx,

and this form should represent an operator T “generated by the Dirac delta δ(x)
at the origin;” such informal association can be useful in some contexts, as in
Examples 4.4.9 and 6.2.16 in attempts to make sense of a Schrödinger operator
with a delta potential. Clearly H1(R) can be replaced by other domains, e.g.,
C∞0 (R).

Remark 4.1.16. Sometimes it is convenient to put b(ξ, ξ) = ∞ if ξ ∈ H \ dom b.
See Theorem 9.3.11 and Subsection 10.4.1.
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4.2 Operators Associated with Forms

Definition 4.2.1. Consider the lower bounded sesquilinear form b ≥ β. b+ as above
is compatible with H if H+ can be identified with a vector subspace of H and the
(linear) inclusion j : H+ → H is continuous.

Lemma 4.2.2. If b+ is compatible with H, then the inclusion j : H+ → H can be
taken as the natural inclusion j(ξ) = ξ, ∀ξ ∈ H+, with ‖j‖ ≤ 1.

Proof. The natural inclusion ĵ : (dom b, 〈·, ·〉+) → H, ĵ(ξ) = ξ, is linear and
satisfies

‖ξ‖2 = ‖ĵ(ξ)‖2 ≤ 〈ξ, ξ〉+ = b+(ξ, ξ),

and so it is continuous with ‖ĵ‖ ≤ 1. Since b+ is compatible with H, ĵ has a unique
linear extension j : H+ → H, with ‖j‖ ≤ 1.

If ξ ∈ H+, there is a sequence (ξk) ⊂ dom b with ξk → ξ in H+; the above
inequality implies ξk → ξ in H. Thus,

0 = lim
k→∞

j(ξk − ξ) = lim
k→∞

j(ξk) − j(ξ)

= lim
k→∞

ξk − j(ξ) = ξ − j(ξ).

Therefore j(ξ) = ξ and j is clearly injective. �
Exercise 4.2.3. Let (Hbδ

+ , bδ+) be the abstract completion of (dom bδ, bδ + 1), bδ
the form in Example 4.1.15. Show that the extension j of the natural inclusion
ĵ : (dom bδ, 〈·, ·〉+) → H, ĵ(ξ) = ξ, ∀ξ ∈ dom bδ, is not injective. Conclude that
bδ+ is not compatible with H.
Example 4.2.4. Let T : dom T � H → H be a hermitian and lower bounded
operator with lower bound β ∈ R, that is, T ≥ β1. Consider the form bT generated
by T , the inner product

〈ξ, η〉+ = bT (ξ, η) + (1 − β)〈ξ, η〉
= 〈ξ, (T − β1)η〉 + 〈ξ, η〉, ξ, η ∈ dom T,

and its completion (HT
+, b

T
+). The subject now is to show that bT+ is compatible

with H; consequently bT is closable.
The linear natural inclusion ĵ : (dom T, 〈·, ·〉+) → H, ĵ(ξ) = ξ, satisfies

‖ĵ(ξ)‖2 = ‖ξ‖2 ≤ ‖ξ‖2 + 〈ξ, (T − β1)ξ〉 = 〈ξ, ξ〉+,
and so it is continuous with ‖ĵ‖ ≤ 1. Thus ĵ has a unique linear extension j : HT

+ →
H and with ‖j‖ ≤ 1. If j(ξ) = 0, then there exists a sequence (ξk) ⊂ (dom T, 〈·, ·〉+)
with ξk → ξ in HT

+ and ξk = j(ξk) → 0 in H. Thus, for any η ∈ dom T ,

bT+(η, ξ) = lim
k→∞

bT+(η, j(ξk)) = lim
k→∞

bT+(η, ξk)

= lim
k→∞

〈η, ξk〉+ = lim
k→∞

(〈η, (T − β1)ξk〉 + 〈η, ξk〉)

= lim
k→∞

〈[T + (1 − β)1]η, ξk〉 = 0.
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Since dom T � HT
+, it follows that ξ = 0. Therefore, besides ‖j‖ ≤ 1, it was found

that j is injective and so it is possible to regard HT
+ as a vector subspace of H,

that is, bT+ is compatible with H. Finally, by Lemma 4.2.2, j(ξ) = ξ for all ξ ∈ HT
+.

Given a densely defined operator T , the sesquilinear form b̃ with dom b̃ =
dom T , b̃(ξ, η) := 〈η, ξ〉T = 〈Tη, T ξ〉 + 〈η, ξ〉, satisfies b̃(ξ, ξ) ≥ ‖ξ‖2, ∀ξ ∈ dom b̃,
and it is closed iff T is closed. Now if η ∈ dom (T ∗T ), then

b̃(ξ, η) = 〈ξ, (T ∗T + 1)η〉, ∀ξ ∈ dom b̃,

and, on the basis of Example 4.1.11 and Proposition 4.1.3, one is tempted to link
the operator T ∗T+1 to b̃. With this motivation in mind, one has the main theorem
of this section, ensuring that closed lower bounded forms are actually the forms
of lower bounded self-adjoint operators.

Definition 4.2.5. Given a hermitian sesquilinear form b, the operator Tb associated
with b is defined as

dom Tb := {ξ ∈ dom b : ∃ζ ∈ H with b(η, ξ) = 〈η, ζ〉, ∀η ∈ dom b} ,
Tbξ := ζ, ξ ∈ dom Tb,

that is, b(η, ξ) = 〈η, Tbξ〉, ∀η ∈ dom b, ∀ξ ∈ dom Tb. Such operator Tb is well
defined since dom b is dense in H.

Note that Tb is automatically symmetric; for ξ, η ∈ dom Tb,

〈η, Tbξ〉 = b(η, ξ) = b(ξ, η) = 〈ξ, Tbη〉 = 〈Tbη, ξ〉.

Furthermore, in case of a bounded hermitian sesquilinear form b, the operator Tb
in Definition 4.2.5 coincides with the one in Proposition 4.1.3.

The next two theorems are known as representations of sesquilinear forms.

Theorem 4.2.6. Let dom b � H and b : dom b×dom b→ C be a closed sesquilinear
form with lower bound β ∈ R (so hermitian).

Then the operator Tb associated with b is the unique self-adjoint operator with
dom Tb � dom b �→ H so that

b(η, ξ) = 〈η, Tbξ〉, ∀η ∈ dom b, ∀ξ ∈ dom Tb.

Further, Tb ≥ β1 and dom Tb is a form core of b. The subspace dom b is called
the form domain of Tb.

Proof. Set Hb := (dom b, 〈·, ·〉+), which is a Hilbert space by hypothesis. As re-
marked above, Tb is symmetric. For ξ ∈ dom Tb ⊂ dom b one has

〈ξ, Tbξ〉 = b(ξ, ξ) ≥ β‖ξ‖2,

so that Tb ≥ β1.
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For all η ∈ Hb one has ‖η‖2
+ = 〈η, η〉+ = (b(η) − β‖η‖2) + ‖η‖2‖ ≥ ‖η‖2;

thus, for each φ ∈ H,

|〈φ, η〉| ≤ ‖φ‖ ‖η‖ ≤ ‖φ‖ ‖η‖+, ∀η ∈ Hb,

so that the linear functional fφ : Hb → C, fφ(η) = 〈φ, η〉 is continuous; since Hb

is a Hilbert space, by Riesz’s Theorem 1.1.40 there is a unique φb ∈ Hb with

〈φ, η〉 = 〈φb, η〉+, ∀η ∈ Hb.

The last relation will be crucial in what follows.
We then define a linear map M : H → Hb, Mφ := φb; since dom b is dense

in H, note that if φb = 0, then 〈φ, η〉 = 0, ∀η ∈ Hb, and so φ = 0. Hence M is
invertible, and for M−1 : dom M−1 = rng M → H write M−1φb = φ, and note
that rng M−1 = H. Further, since ‖fφ‖ ≤ ‖φ‖ and, by Riesz ‖fφ‖ = ‖φb‖+, it is
found that ‖Mφ‖+ = ‖φb‖+ ≤ ‖φ‖. Thus, M is bounded (with domain H) with
norm ≤ 1.

Now it will be shown that rng M is dense in H. Since rng M ⊂ dom b and
‖ · ‖ ≤ ‖ · ‖1, it is enough to show that rng M � Hb. If η ∈ Hb and 〈Mξ, η〉+ = 0,
∀ξ ∈ H, then, by the above crucial relation,

0 = 〈Mξ, η〉+ = 〈ξb, η〉+ = 〈ξ, η〉,

and so η = 0, which proves that density.
The operator M−1 is directly related to Tb. Indeed, if ξb ∈ dom M−1, then

for all η ∈ dom b,

〈η,M−1ξb〉 = 〈η, ξ〉 = 〈η, ξb〉+ = b(η, ξb) + (1 − β)〈η, ξb〉,

or
b(η, ξb) = 〈η,M−1ξb〉 − (1 − β)〈η, ξb〉 = 〈η,Qξb〉,

where Q := M−1 − (1 − β)1, with dom Q = dom M−1. Hence, ξb ∈ dom Tb and
Tbξb = Qξb; in other words, Q ⊂ Tb. From this relation one infers that Tb is densely
defined (because dom Q is dense in H), so hermitian, and the operator Q is also
hermitian (because it has a hermitian extension Tb).

Observe that M−1 = Q + (1 − β)1 is also hermitian, and a simple exercise
shows that M is also hermitian; since M is bounded (M ∈ B(H)), it is in fact
self-adjoint. By Lemma 2.4.1 one infers that M−1 is self-adjoint, so Q is also self-
adjoint (very general arguments appear in Theorem 6.1.8 and Exercise 6.1.11).
Finally, the relation Q ⊂ Tb implies Q = Tb, since a self-adjoint operator has no
proper hermitian extension. The self-adjointness of Tb is hereby verified.

Recall that it was shown above that dom Tb = dom Q = rng M is dense in
Hb, that is, dom Tb is a form core of b.

For the uniqueness, suppose that S is self-adjoint with dom S ⊂ dom b and

b(η, ξ) = 〈η, Sξ〉, ∀η ∈ dom b, ξ ∈ dom S.
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By construction (Definition 4.2.5), ξ ∈ dom Tb and Tbξ = Sξ; thus S ⊂ Tb.
Since S is self-adjoint it has no proper hermitian extension; it then follows that
S = Tb. �
Exercise 4.2.7. Show that if a linear invertible operator is hermitian, then its
inverse is also hermitian.
Exercise 4.2.8. Adapt the statement and proof of Theorem 4.2.6 to the case b ≥
β > 0 and (dom b, b) is complete; in this case write Hb for (dom b, b) and note
that with such approach the inner product 〈·, ·〉+ does not play any role. Show,
in particular, that dom Tb (Tb is the resulting self-adjoint operator, of course) is
a form core of b.

Now the hypothesis of (dom b, b(·, ·)) being closed in Theorem 4.2.6 will be
replaced by the assumption that its completion b+ is compatible with the original
Hilbert space H.

Theorem 4.2.9. Let b be a hermitian sesquilinear form with b≥β for some β∈R, its
completion (H+, b+) as above and Tb+ the self-adjoint operator associated with b+.

If b+ is compatible with H, then there exists a unique self-adjoint operator
T̃b : dom T̃b � H+ → H, with

b(η, ξ) = 〈η, T̃bξ〉, ∀η ∈ dom b, ∀ξ ∈ dom T̃b ∩ dom b.

Further, T̃b ≥ β1, dom T̃b = dom Tb+, T̃b = Tb+ − (1− β)1 and dom T̃b is a form
core of b+. H+ is called the form domain of T̃b.

Proof. Recall that

〈η, ξ〉+ = b(η, ξ) + (1 − β)〈η, ξ〉, ∀η, ξ ∈ dom b.

So 〈η, η〉+ ≥ ‖η‖2, ∀η ∈ dom b, and since b+ is compatible with H it follows that,
by Lemma 4.2.2,

b+(η, η) ≥ ‖η‖2, ∀η ∈ dom b+ = H+,

that is, b+ ≥ 1. Since b+ is closed, by Theorem 4.2.6, there is a unique self-adjoint
operator Tb+ with domain dense in H+ and

b+(η, ξ) = 〈η, Tb+ξ〉, ∀η ∈ H+, ξ ∈ dom Tb+ .

It also follows that Tb+ ≥ 1.
Now define T̃b := Tb+−(1−β)1, dom T̃b = dom Tb+ , which is also self-adjoint

and T̃b ≥ β1. In case η ∈ dom b and ξ ∈ dom b ∩ dom Tb+ , one has

〈η, Tb+ξ〉 = b+(η, ξ) = 〈η, ξ〉+ = b(η, ξ) + (1 − β)〈η, ξ〉,

and so
b(η, ξ) = 〈η, (Tb+ − (1 − β)1)ξ〉 = 〈η, T̃bξ〉;

thus b(η, ξ) = 〈η, T̃bξ〉, ∀η ∈ dom b, ∀ξ ∈ dom T̃b ∩ dom b.
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Next the uniqueness. Suppose that S̃ : dom S̃ � H+ → H is a self-adjoint
operator with

b(η, ξ) = 〈η, S̃ξ〉, ∀η ∈ dom b, ∀ξ ∈ dom S̃ ∩ dom b.

Define S := S̃ + (1 − β)1; note that S̃ 
= T̃b iff S 
= Tb+ . The above condition on
S̃ can be rewritten as

b+(η, ξ) = 〈η, S̃ξ〉 + (1 − β)〈η, ξ〉 = 〈η, Sξ〉,

∀η ∈ dom b, ∀ξ ∈ dom S ∩ dom b. Since (H+, b+) is complete and S is closed,
together with the continuity of the inner product, one gets

b+(η, ξ) = 〈η, Sξ〉, ∀η ∈ H+, ∀ξ ∈ dom S;

but, by construction, this means that ξ ∈ dom Tb+ and Tb+ξ = Sξ, that is, S ⊂
Tb+ . Since both are self-adjoint S = Tb+ , so S̃ = T̃b and such an operator is unique.
Since dom T̃b = dom Tb+ , Theorem 4.2.6 immediately implies that dom T̃b is a
form core of b+. �
Remark 4.2.10. Note that Definition 4.2.5 and the relation

b(η, ξ) = 〈η, T̃bξ〉, ∀η ∈ dom b, ∀ξ ∈ dom T̃b ∩ dom b,

in the statement of Theorem 4.2.6 imply that dom T̃b is given by

{ξ ∈ H+ : ∃ζ ∈ H with b+(η, ξ) − (1 − β)ξ = 〈η, ζ〉, ∀η ∈ dom b} ,

and T̃bξ = ζ.

Recall that the quantum kinetic energy operator in L2(Rn) is the operator
H0 = −Δ with dom H0 = H2(Rn) and both C∞0 (Rn),S(Rn) are cores of H0; the
laplacian Δ is obtained through distributional derivatives and H2 is a Sobolev
space. Below ∇ indicates the distributional gradient operator.
Example 4.2.11. Let dom b = H1(Rn) � L2(Rn),

b(φ, ψ) := 〈∇φ,∇ψ〉, φ, ψ ∈ dom b.

Since b(φ) = ‖∇φ‖2, the hermitian sesquilinear form b is positive. Let (φj) ⊂ dom b
be a sequence obeying b(φj−φk) → 0 and φj → φ in L2(Rn) as j, k → ∞. Note that
this is equivalent to φj → φ in H1(Rn), which is a Hilbert space and so φ ∈ dom b;
hence the form b is also closed and (dom b, 〈·, ·〉+), with 〈φ, ψ〉+ = b(φ, ψ)+ 〈φ, ψ〉,
is a Hilbert space (H1(Rn) in fact!).

It is easily checked that the subsequent self-adjoint operator Tb in Theo-
rem 4.2.6 isH0; indeed,H0 is positive and self-adjoint, dom H0 = H2(Rn) � dom b
and on integrating by parts

b(φ, ψ) = 〈φ,−Δψ〉, ∀φ ∈ dom b, ψ ∈ dom H0.
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Hence, H1(Rn) is the form domain of H0 and both C∞0 (Rn),S(Rn) are form cores
of b (since these sets are dense in H1(Rn)). In summary, Tb = H0. Usually such
form b is denoted by bH0 .

Example 4.2.12. Consider the Hilbert space H = L2[0, 1]. Let α = (α0, α1), α0 >
0, α1 > 0 (for simplicity), dom bα = H1[0, 1] and, for φ, ψ ∈ dom bα,

bα(φ, ψ) := 〈φ′, ψ′〉 + α0 φ(0)ψ(0) + α1 φ(1)ψ(1),

which is a densely defined sesquilinear form. For (say!) a > 1, integrations by parts
show the validity of the integral representations

ψ(1) =
∫ 1

0

taψ′(t) dt+
∫ 1

0

ata−1ψ(t) dt,

ψ(0) =
∫ 1

0

−(1 − t)aψ′(t) dt+
∫ 1

0

a(1 − t)a−1ψ(t) dt,

and by Cauchy-Schwarz,

bα(ψ)≥ ‖ψ′‖2 − α0 |ψ(0)|2 − α1 |ψ(1)|2

≥
(

1 − α0 + α1

2a+ 1

)
‖ψ′‖2 − (α0 + α1)

a2

2a− 1
‖ψ‖2,

and for a large enough the coefficient of ‖ψ′‖2 becomes positive so that bα(ψ) ≥
β‖ψ‖2, with β = −(α0 + α1)a2/(2a− 1). In other words, bα is lower bounded.

Now it will be argued that bα is closed, so that it defines a self-adjoint opera-
tor Tbα as in Theorem 4.2.6. Let (ψn) be a sequence in dom bα with bα(ψn−ψm) →
0 and ψn → ψ in H as n,m → ∞. Write out such conditions to get that (ψ′n) is
also a Cauchy sequence in H and so ψ′n → φ ∈ H (note that (ψn(0)) and (ψn(1))
are Cauchy in C). The relation (recall that on bounded intervals convergence in
L2 implies convergence in L1)∫ t

0

φ(s) ds = lim
n→∞

∫ t

0

ψ′n(s) ds = ψ(t) − ψ(0)

implies that ψ ∈ dom bα and ψ′ = φ. By continuity of the elements of H1[0, 1]
and the above integral representations for ψn(0), ψn(1), one has ψn(0) → ψ(0)
and ψn(1) → ψ(1). A direct verification that bα(ψn −ψ) → 0 concludes that bα is
closed.

The next step is to find Tbα via bα(φ, ψ) = 〈φ, Tbαψ〉. After a formal integra-
tion by parts in the expression of bα(φ, ψ) one gets

〈φ, Tbαψ〉= bα(φ, ψ)
= 〈φ,−ψ′′〉 + φ(0) (α0ψ(0) + ψ′(0)) − φ(1)(α1ψ(1) − ψ′(1)),
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which suggests to try dom Tbα = {ψ ∈ H2[0, 1] : ψ′(0) = −α0ψ(0), ψ′(1) =
α1ψ(1)}, Tbαψ = −ψ′′. One can check that this operator Tbα is actually self-
adjoint; since dom Tbα � dom bα and

bα(φ, ψ) = 〈φ, Tbαψ〉, ∀φ ∈ dom bα, ψ ∈ dom Tbα ,

one has that Tα is the operator associated with the form bα in Theorem 4.2.6, and
H1[0, 1] is the form domain of Tα.

Exercise 4.2.13. Verify that Tbα in Example 4.2.12 is self-adjoint (a possible solu-
tion can be obtained from a characterization in Example 7.3.4).

Exercise 4.2.14. Consider the Hilbert space H = L2[0, 1], dom b̃ = {ψ ∈ H1[0, 1] :
ψ(0) = 0 = ψ(1)} and, for φ, ψ ∈ dom b̃,

b̃(φ, ψ) = 〈φ′, ψ′〉.

Based on Example 4.2.12, show that b̃ is a positive closed form whose correspond-
ing associated operator is dom Tb̃ = {ψ ∈ H2[0, 1] : ψ(0) = 0 = ψ(1)}, Tb̃ψ = −ψ′′,
ψ ∈ dom Tb̃.

Let b1, b2 be two closed and lower bounded forms and Tb1 , Tb2 the subsequent
self-adjoint operators associated with b1 and b2, respectively. It can happen that
the sesquilinear form sum b = b1 + b2, with dom (b1 + b2) = dom b1 ∩ dom b2,
is either closed and lower bounded or its completion b+ is compatible with the
original Hilbert space; in either way the operator Tb associated with b is self-
adjoint and called the form sum of Tb1 and Tb2 , and denoted by

Tb = Tb1+̇Tb2 .

This concept is illustrated in the following example; see also Subsection 6.1.1 and
Remark 9.3.13.

Example 4.2.15. Let Tα, α=(α0,α1), be the operator obtained in Example 4.2.12,
and consider also Tτ , τ = (τ0, τ1), obtained in the same way. The aim here is to
describe the operator Tα/2+̇Tτ/2. First note that Tα/2 is the operator associated
with the form bα/2.

Let b = bα/2 + bτ/2, i.e., dom b = H1[0, 1],

b(φ, ψ) = 〈φ′, ψ′〉 +
α0 + τ0

2
φ(0)ψ(0) +

α1 + τ1
2

φ(1)ψ(1),

consequently
Tα
2

+̇
Tτ
2

= Tω, ω =
(
α0 + τ0

2
,
α1 + τ1

2

)
.

See also Example 4.4.8.
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4.3 Friedrichs Extension

Given T hermitian, consider the form generated by T , that is, bT (ξ, η) = 〈ξ, T η〉,
ξ, η ∈ dom T ; if T ≥ β1, one has bT (ξ, ξ) ≥ β‖ξ‖2, and it is possible to apply The-
orem 4.2.9 in order to get the so-called Friedrichs extension of T (a fundamental
result by Friedrichs of 1934).

Theorem 4.3.1 (Friedrichs Extension). Let T be a lower bounded hermitian oper-
ator with T ≥ β1, β ∈ R, bT the form generated by T , i.e.,

bT (ξ, η) = 〈ξ, T η〉, ξ, η ∈ dom bT = dom T,

and (HT
+, b

T
+) as in Example 4.2.4. Then the operator T has a unique self-adjoint

extension TF : dom TF → H with dom TF � HT
+. Further, TF ≥ β1 and dom TF

is a form core of bT+. HT
+ is the form domain of TF .

Proof. Recall that 〈ξ, η〉+ = bT (ξ, η) + (1 − β)〈ξ, η〉, ξ, η ∈ dom T , and its com-
pletion is (HT

+, b
T
+). On account of Example 4.2.4, bT+ is compatible with H and

bT+(ξ, ξ) ≥ ‖ξ‖2, ∀ξ ∈ HT
+. By Theorem 4.2.9 there is a unique self-adjoint operator

TF = T̃bT := TbT
+
− (1 − β)1, dom TF = dom TbT

+
� HT

+,

so that

bT (η, ξ) = 〈η, TF ξ〉, ∀η ∈ dom T, ξ ∈ dom T ∩ dom TF .

Since TbT
+
≥ 1 one finds that TF ≥ β1. In order to show that T ⊂ TF , take note

initially that for ξ, η ∈ dom T ,

bT+(η, ξ) = 〈η, ξ〉+ = 〈η, [T + (1 − β)1]ξ〉 .

By continuity of the inner product, density of dom T in HT
+ and the continuity of

the inclusion j : HT
+ → H, it follows that, for each ξ ∈ dom T ,

bT+(η, ξ) = 〈η, [T + (1 − β)1]ξ〉

holds true for any η ∈ HT
+. Hence, by the construction in Definition 4.2.5, ξ ∈

dom TbT
+

and TbT
+
ξ = Tξ + (1 − β)ξ, showing that

Tξ = TbT
+
ξ − (1 − β)ξ = TF ξ, ∀ξ ∈ dom T.

Hence T ⊂ TF .
Now the uniqueness of TF . If S is a self-adjoint operator so that T ⊂ S and

dom S ⊂ HT
+, the above proof that T ⊂ TF applies, and so one concludes that

S ⊂ TF ; since both operators are self-adjoint, S = TF . As in Theorem 4.2.6, one
concludes that dom TF is a form core of bT+. �
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Exercise 4.3.2. Conclude that (see Remark 4.2.10) dom TF is given by{
ξ ∈ HT

+ : ∃ζ ∈ H with bT+(ξ, η) − (1 − β)〈ξ, η〉 = 〈ζ, η〉, ∀η ∈ dom T
}
,

and TF ξ = ζ. Given ξ ∈ dom TF , by taking (ξn) ⊂ dom T with ξn → ξ in HT
+,

show that

bT+(ξ, η) − (1 − β)〈ξ, η〉 = lim
n→∞

[bT+(ξn, η) − (1 − β)〈ξn, η〉]

= 〈ξ, T η〉, ∀η ∈ dom T,

and conclude that dom TF = dom T ∗ ∩HT
+.

Definition 4.3.3. The self-adjoint operator TF introduced in Theorem 4.3.1 is called
the Friedrichs extension of the hermitian and lower bounded T .

Proposition 4.3.4. Let T ≥ β1 and T0 a lower bounded self-adjoint extension of T .
Then HTF

+ ⊂ HT0
+ , that is, the Friedrichs extension has the smallest form domain

among the form domains of lower bounded self-adjoint extensions of T .

Proof. Assume that β is the largest lower bound of T and let α ∈ R be strictly
less than a lower bound of T0; so α < β.

It is known that the form domain HTF
+ of TF is the completion of dom T in

the norm 〈ξ, ξ〉+ = 〈ξ, [T + (1 − β)1]ξ〉, which is the same space obtained after
completion of dom T in the norm

〈ξ, [T + (1 − α)1]ξ〉 = 〈ξ, [T0 + (1 − α)1]ξ〉.
Since dom T ⊂ dom T0 and the form domain HT0

+ of T0 is the completion of
dom T0 in the above norm 〈ξ, [T0 + (1 − α)1]ξ〉, it follows that HTF

+ ⊂ HT0
+ . �

It is interesting to point out that TF is the only self-adjoint extension of T
whose domain is dense in HT

+; particularly, the only self-adjoint extension whose
form domain is HT

+. Thus, in this sense and in view of Proposition 4.3.4, TF is
canonically constructed.

Corollary 4.3.5. If T is hermitian and lower bounded, then its deficiency indices
are equal.

Proof. TF is a self-adjoint extension of the operator T . Now apply Theorem 2.2.11.
�

Exercise 2.4.17 implies an important lower bound of the spectrum of the
Friedrichs extension:

Corollary 4.3.6. Let T ≥ β be as in Theorem 4.3.1 and TF the consequent Fried-
richs extension. Then σ(TF ) ⊂ [β,∞).

However, Example 4.4.13 presents another self-adjoint extension of a lower
bounded hermitian operator T with the same spectrum of TF .

In case the Hilbert space is L2(Rn), one can anticipate an important result
if Corollary 6.3.5 is invoked:
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Corollary 4.3.7. If there is β ∈ R so that V ∈ L2
loc(R

n) satisfies V (x) ≥ β,
∀x ∈ Rn, then the Friedrichs extension of the standard Schrödinger operator

dom H = C∞0 (Rn), Hψ = −Δψ + V ψ, ψ ∈ dom H,

is the unique self-adjoint extension of H.

If T ∈ B(H), then T ∗T is self-adjoint and positive. Form extensions will be
used to adapt this result to a more general case. Recall that dom (T ∗T ) := {ξ ∈
dom T : (Tξ) ∈ dom T ∗} and (T ∗T )ξ = T ∗(Tξ). However, it can happen that
dom (T ∗T ) is not dense in H. See Example 2.1.5; another classical example is the
following.
Example 4.3.8 (dom T ∗ is not dense in H). Let H = L2(R), 0 
= ψ0 ∈ H, φ(x) =
1, ∀x ∈ R and dom T := {ψ ∈ H :

∫
R
|ψ|dx < ∞}. Write 〈φ, ψ〉 =

∫
R
ψdx, and

define
(Tψ)(x) := 〈φ, ψ〉ψ0(x), ψ ∈ dom T.

Thus, if u ∈ dom T ∗, then for every ψ ∈ dom T one has

〈T ∗u, ψ〉= 〈u, Tψ〉 = 〈u, 〈φ, ψ〉ψ0〉
= 〈φ, ψ〉〈u, ψ0〉 = 〈〈ψ0, u〉φ, ψ〉 .

Hence, (T ∗u)(x) = 〈ψ0, u〉φ(x), and it belongs to H iff 〈ψ0, u〉 = 0. Thus,
dom T ∗ ⊂ {ψ0}⊥ and it is not dense in H. Furthermore, for u ∈ dom T ∗ one
has T ∗u = 0.

However, if T is closed a remarkable result of von Neumann is found.

Proposition 4.3.9. Let T be a closed operator with dom T � H. Then dom (T ∗T ) �
H, T ∗T is a positive self-adjoint operator and dom T is the form domain of T ∗T .

Proof. Since T is closed, by taking the form

b(ξ, η) := 〈ξ, η〉T = 〈Tξ, T η〉+ 〈ξ, η〉

as the inner graph product, it follows that (H+, b+) = (dom T, b) is a Hilbert space
and b(ξ) = ‖ξ‖T ≥ ‖ξ‖, ∀ξ ∈ dom T . Thus, by Theorem 4.2.6 the operator Tb
associated with b is self-adjoint, Tb ≥ 1,

dom Tb = {ξ ∈ dom T : ∃φ ∈ Hwith b(η, ξ) = 〈η, φ〉, ∀η ∈ dom T }

and Tbξ = φ. Explicitly, ξ ∈ dom Tb iff for all η ∈ dom T ,

〈Tη, T ξ〉+ 〈η, ξ〉 = b(η, ξ) = 〈η, Tbξ〉,

so that
〈Tη, T ξ〉 = 〈η, (Tb − 1)ξ〉, ∀η ∈ dom T.

Therefore, ξ ∈ dom Tb iff Tξ ∈ dom T ∗ and T ∗(Tξ) = (Tb − 1)ξ, that is,
T ∗T = Tb − 1 is self-adjoint and positive. By Theorem 4.2.6, dom Tb is dense
in (dom T, b), and it follows that dom (T ∗T ) is dense in (dom T, b). By construc-
tion, the form domain of T ∗T is dom T . �
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Although the next result could be obtained directly from general theorems,
it is worth presenting a specific short proof.

Corollary 4.3.10. If T is self-adjoint, then for all n ∈ N the operator T 2n

is positive
and self-adjoint. In particular T 2 is self-adjoint.

Proof. If T j is self-adjoint, Proposition 4.3.9 implies that T 2j is self-adjoint; use
recursion in j starting from j = 1. �

Proposition 4.3.11. Let T be closed and densely defined.

i) Then dom (T ∗T ) is a core of T .
ii) If T is self-adjoint, then T 2 is self-adjoint and dom T 2 is a core of T .

Proof. i) In the graph inner product of T , let

(η, T η) ∈ {(ξ, T ξ) : ξ ∈ dom (T ∗T )}⊥ .

Thus 0 = 〈ξ, η〉 + 〈Tξ, T η〉 = 〈(1 + T ∗T )ξ, η〉. Since T ∗T is a positive self-adjoint
operator, −1 ∈ ρ(T ∗T ) and so rng (T ∗T + 1) = H. Hence η = 0 and, by Exer-
cise 1.2.26 (or Exercise 2.5.10), dom (T ∗T ) is a core of T .

ii) Combine Corollary 4.3.10 with i). �

Remark 4.3.12. The following property is attractive. If T is self-adjoint and
dom T 2 = dom T , then T is bounded.

Proof. Clearly dom T 2 ⊂ dom T and we introduce the notation h = (dom T, ‖ ·
‖T ), which is a Hilbert space since T is closed. Pay attention to the following facts:

1. T − i1 : h → (H, ‖ · ‖) is bounded. Indeed, for ξ ∈ dom T , ‖(T − i1)ξ‖2 =
‖ξ‖2 + ‖Tξ‖2 = ‖ξ‖2

T .
2. Since dom T 2 = dom T one has Tdom T ⊂ dom T and so the linear mapping

Ri(T ) : (dom T, ‖ · ‖) → h

is bounded. Indeed, for ξ ∈ dom T use triangular inequality to get

‖Ri(T )ξ‖2
T = ‖Ri(T )ξ‖2 + ‖TRi(T )ξ‖2

≤ ‖ξ‖2 + ‖(T − i1)Ri(T )ξ + iRi(T )ξ‖2 ≤ 5‖ξ‖2.

3. Since dom T 2 = dom T , define

T̃ : h → h, T̃ ξ := Tξ,

which is a closed operator; indeed, if ξn
h−→ ξ and Tξn

h−→ η, then ξ ∈
dom T , Tξn

H−→ Tξ, Tξn
H−→ η, so that η = Tξ. Hence, T̃ is bounded by the

closed graph theorem.
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Now observe that T : (dom T, ‖ · ‖) → (H, ‖ · ‖) can be written in the form

T = (T − i1) T̃ Ri(T ),

which shows that T is bounded. �

Exercise 4.3.13. Let T be a closed hermitian operator with dom T 2 dense in H.
Show that T ∗T is the Friedrichs extension of T 2.
Exercise 4.3.14. Let dom a = {ψ ∈ L2(R) : ψ ∈ AC(R), ψ′ + xψ ∈ L2(R)},
aψ = ψ′ + xψ, ψ ∈ dom a. Show that a is a closed operator and that its adjoint
is dom a∗ = {ψ ∈ L2(R) : ψ ∈ AC(R),−ψ′ + xψ ∈ L2(R)}, a∗ψ = −ψ′ + xψ,
ψ ∈ dom a∗. Find the operator a∗a and relate it to the harmonic oscillator. a∗, a
are called creation and annihilation operators, respectively.
Exercise 4.3.15. If T is self-adjoint and E is a dense subspace of H, show that
Ri(T )E is also dense in H. Observe that dom T n+1 = Ri(T )dom T n for all n ∈ N,
and conclude that dom T n is dense in H.
Exercise 4.3.16. Let T be a closed operator with dom T � H. Choose ξ′ = 0
in Exercise 2.1.21 and work to show that (1 + T ∗T )−1 is a bounded self-adjoint
operator. Conclude that T ∗T is self-adjoint. This is a sketch of a proof of the first
part of Proposition 4.3.9 without using forms.

4.4 Examples

Example 4.4.1. Let ϕ : R → [0,∞) be a Borel function and T = Mϕ ≥ 0 the
subsequent self-adjoint multiplication operator in L2(R), as in Subsection 2.3.2.
The sesquilinear form generated by T is dom bT = dom Mϕ,

bT (ψ, φ) = 〈ψ,Mϕφ〉 =
∫

R

ψ(x)ϕ(x)φ(x) dx.

By writing

bT (ψ, φ) =
∫

R

ϕ(x)
1
2ψ(x) ϕ(x)

1
2φ(x) dx

one has
〈ψ, φ〉+ = 〈M√

ϕψ,M√
ϕφ〉 + 〈ψ, φ〉, ψ, φ ∈ dom T,

which is the graph inner product of M√
ϕ restricted to dom T . Now, it is possible to

show (Lemma 4.4.2) that dom Mϕ is dense in dom M√
ϕ and since the operator

M√
ϕ is closed, it follows that bT+ = 〈·, ·〉+ and HT

+ is the domain of M√
ϕ. In

summary, the form domain of the positive self-adjoint operator Mϕ (so equal to
its Friedrichs extension) is dom M√

ϕ. Note that, for general function ϕ, dom T =
dom Mϕ is a proper subset of HT

+ = dom M√
ϕ. Later on this will be generalized

(see Section 9.3).
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Lemma 4.4.2. Consider all symbols as in Example 4.4.1. In both spaces, H and
H+ = (dom M√

ϕ, 〈·, ·〉M√
ϕ
), one has dom Mϕ � dom M√

ϕ (see also general
arguments in Proposition 4.3.11).

Proof. If ψ ∈ dom Mϕ then, by Cauchy-Schwarz,

‖√ϕψ‖2 =
∫
E

ψ(x)ϕ(x)ψ(x) dμ(x) ≤ ‖ψ‖‖ϕψ‖ <∞,

and dom Mϕ ⊂ dom M√
ϕ.

Given ψ ∈ dom M√
ϕ, for each positive integer n set En = {x ∈ E : 0 ≤

ϕ(x) ≤ n} and ψn(x) = χEn(x)ψ(x). Then ψn ∈ dom Mϕ and

‖√ϕ (ψn − ψ)‖2 =
∫
E

ϕ(x) |1 − χEn(x)|2 |ψ(x)|2 dμ(x)

which vanishes as n → ∞, by the dominated convergence theorem. In a similar
way one checks that ψn → ψ in H, that is, in this space dom Mϕ is dense in
dom M√

ϕ.
Taking these two convergences together, it follows that

‖ψn − ψ‖2
+ = ‖√ϕ (ψn − ψ)‖2 + ‖ψn − ψ‖2 n→∞−→ 0,

which shows that dom Mϕ is dense in dom M√
ϕ in H+. �

The next examples indicate that occasionally the Friedrichs extension natu-
rally allocates boundary conditions.
Example 4.4.3. Let dom P = {ψ ∈ H1[0, 1] : ψ(0) = 0 = ψ(1)}, Pψ = −iψ′, and
H = P 2, with

dom H = {ψ ∈ dom P : Pψ ∈ dom P}
= {ψ ∈ H2[0, 1] : ψ(0) = ψ(1) = 0 = ψ′(0) = ψ′(1)},

and Hψ = −ψ′′. P is a closed hermitian operator and its adjoint has the same
action but with domain dom P ∗ = H1[0, 1]. Therefore, by Proposition 4.3.9, P ∗P
is self-adjoint,

dom P ∗P = {ψ ∈ H1[0, 1] : ψ(0) = 0 = ψ(1), ψ′ ∈ H1[0, 1]}
= {ψ ∈ H2[0, 1] : ψ(0) = 0 = ψ(1)}.

By results of Section 4.3, P ∗P is the Friedrichs extension of H , i.e., P ∗P = HF .
This is the unique self-adjoint extension of the free particle energy operator TD in
[0, 1], Example 2.3.5, with Dirichlet boundary conditions. This is a general feature
of the Friedrichs extension of differential operators, that is, it corresponds to the
Dirichlet boundary conditions; see other examples below.
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Exercise 4.4.4. Show that the unique self-adjoint extension of the free particle
energy operator TP in [0, 1], with periodic boundary conditions of Example 2.3.7,
is the Friedrichs extension of P 2, where dom P = {ψ ∈ H1[0, 1] : ψ(0) = ψ(1)},
Pψ = −iψ′. Find the domain of this extension.
Example 4.4.5. [Energy operator on [0, 1]] Set H = L2[0, 1], dom H = C∞0 (0, 1),

(Hψ)(x) := −ψ′′(x) + V (x)ψ(x),

with V : [0, 1] → [0,∞) continuous. Consider the form generated by this operator,
that is, bH : dom H × dom H → C, bH(ψ, φ) := 〈ψ,Hφ〉. Thus

bH(ψ, ψ) =
∫ 1

0

ψ(x) (−ψ′′(x) + V (x)ψ(x)) dx

=
∫ 1

0

(
|ψ′(x)|2 + V (x)|ψ(x)|2

)
dx ≥ β‖ψ‖2,

with 0 ≤ β = minx∈[0,1] V (x). Thus H ≥ β1.
Let HF be the Friedrichs extension ofH ; so dom HF ⊂ HH

+ . For ψ ∈ dom H ,
by Cauchy-Schwarz one has

|ψ(x) − ψ(0)|=
∣∣∣∣∫ x

0

ψ′(t)dt
∣∣∣∣ ≤ |x| 12

(∫ x

0

|ψ′(t)|2 dt
) 1

2

≤ |x| 12 bH(ψ, ψ)
1
2 .

Since ψ(0) = 0 one has

‖ψ‖∞ = sup
x∈[0,1]

|ψ(x)| ≤ bH(ψ, ψ)
1
2 ≤ 〈ψ, ψ〉

1
2
+;

thus each Cauchy sequence according to either bH(·, ·) or 〈·, ·〉+ norm converges
uniformly, and so its limit is also continuous and vanishing at the boundary. Then
this holds for every element of the complete space HH

+ , in particular for the ele-
ments of dom HF . Therefore, null Dirichlet boundary conditions ψ(0) = 0 = ψ(1)
hold in dom HF . Note that the result is in fact valid for more general positive
potentials V (x).
Exercise 4.4.6. Let H = L2[0, 1], V : [0, 1] → [0,∞) continuous, dom b = {ψ ∈
H1[0, 1] : ψ(0) = 0 = ψ(1)} and, for φ, ψ ∈ dom b,

b(φ, ψ) = 〈φ′, ψ′〉 + 〈φ, V ψ〉

Based on Example 4.2.12, show that b is a positive closed form whose respective
associated operator is dom Tb = {ψ ∈ H2[0, 1] : ψ(0) = 0 = ψ(1)}, Tbψ = −ψ′′ +
V ψ, ψ ∈ dom Tb. Show that b here is the closure of the form b in Example 4.4.5,
and conclude that Tb is the Friedrichs extension HF of the operator H in that
example.
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Example 4.4.7. Let H = L2[0, 1], p, V : [0, 1] → R continuous functions, with
p(x) ≥ 0, ∀x ∈ [0, 1], and continuous derivative p′. Given a ≥ 0, consider the
operator

dom T = {ψ ∈ H2[0, 1] : ψ(0) = 0, ψ′(1) = −aψ(1)},
(Tψ)(x) = −[pψ′]′(x) + V (x)ψ(x), ψ ∈ dom T.

Integrations by parts show that T is hermitian, and since

〈ψ, Tψ〉= a p(1)|ψ(1)|2 +
∫ 1

0

p(x)|ψ′(x)|2 dx+
∫ 1

0

V (x)|ψ(x)|2 dx

≥
∫ 1

0

V (x)|ψ(x)|2 dx ≥ β‖ψ‖2, β = inf{V (x) : x ∈ [0, 1]},

it follows that T ≥ β1. Therefore, this operator has a self-adjoint extension TF ,
its Friedrichs extension, and TF ≥ β1. In particular σ(TF ) ⊂ [β,∞).

Example 4.4.8. Let Tα, Tτ be operators as introduced in Example 4.2.15 and as-
sume that α0 
= τ0, α1 
= τ1 (recall that they are not zero). Consider the operator
sum (Tα + Tτ )/2, whose domain is

dom (Tα/2) ∩ dom (Tτ/2) =
{
ψ ∈ H2[0, 1] :

ψ′(0) =
α0

2
ψ(0) =

τ0
2
ψ(0), ψ′(1) = −α1

2
ψ(1) = −τ1

2
ψ(1)

}
= {ψ ∈ H2[0, 1] : ψ(0) = 0 = ψ(1), ψ′(0) = 0 = ψ′(1)}.

Since the situation is very similar to Exercise 4.2.14 and Example 4.4.3, one con-
cludes that (Tα + Tτ )/2 ≥ 0 and the domain of its Friedrichs extension ((Tα +
Tτ )/2)F carries Dirichlet boundary conditions, i.e., ψ(0) = 0 = ψ(1). Therefore

Tα
2

+̇
Tτ
2


=
(
Tα
2

+
Tτ
2

)
F

;

see Example 4.2.15.

Example 4.4.9. [Schrödinger operator with delta-function potential] Let c > 0 and
δ(x) be the Dirac delta at the origin (see also Example 6.2.16 and Subsection 7.4.2).
A way to interpret the formal energy operator (in L2(R))

T c = − d2

dx2
+ c δ(x),

under this δ potential with positive intensity c, is to consider a suitable domain
for T c, which contains all information on δ(x), and then construct a self-adjoint
extension via sesquilinear forms (see Example 4.1.15). Physically, δ(x) models a
very strong (positive) interaction concentrated at the origin.
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As a guide for defining such domain, for ε > 0 integrate T cψ formally∫ ε

−ε
(T cψ)(x) dx=

∫ ε

−ε
−ψ′′(x) dx +

∫ ε

−ε
c δ(x)ψ(x) dx

= ψ′(−ε) − ψ′(ε) + c ψ(0).

The term cψ(0) induces 1. below. If the function (T cψ) is bounded (so 3. below),
then as ε→ 0+ one gets

0 = ψ′(0−) − ψ′(0+) + c ψ(0),

and so 2. below. Based on this motivating digression, define dom T c as the set of
ψ ∈ H2(R \ {0}) obeying

1. ψ is continuously extended at zero, that is, ψ(0+) = ψ(0−) := ψ(0);
2. ψ′(0+) − ψ′(0−) = cψ(0);
3. ψ′′(0+) − ψ′′(0−) is finite.

This set dom T c contains C∞0 (R \ {0}) and so is dense in L2(R). Finally define

T cψ := −ψ′′, ψ ∈ dom T c.

For ψ, φ ∈ dom T c one has, after integration by parts,

bT
c

(ψ, φ) = 〈ψ, T cφ〉 = −
∫ 0−

−∞
ψ(x)φ′′(x) dx −

∫ ∞

0+
ψ(x)φ′′(x) dx

= ψ(0+)φ′(0+) − ψ(0−)φ′(0−) +
∫

R

ψ′(x)φ′(x) dx

= c ψ(0)φ(0) + 〈ψ′, φ′〉 = 〈ψ′, φ′〉 + c bδ(ψ, φ),

where bδ is the form in Example 4.1.15. Two important conclusions follow. First,
the form bT

c

(ψ, φ) is the sum

bT
c

(ψ, φ) = 〈ψ′, φ′〉 + c bδ(ψ, φ),

supporting the interpretation of the presence of a δ potential with intensity c > 0.
Second, another integration by parts shows that T c is hermitian, and for ψ = φ
one has

〈ψ, T cψ〉 = c |ψ(0)|2 + ‖ψ′‖2,

so that T c is a positive operator. Therefore, it has a (Friedrichs) self-adjoint ex-
tension T cF , a candidate for the energy operator in this situation.

Note that if ψ is in the domain of this Friedrichs extension and it is meaningful
to write u = −ψ′′ + cδψ = −ψ′′ + cψ(0), then such functions ψ have a slope
discontinuity at the origin equal to cψ(0), so that u ∈ L2(R) even if ψ′′ and the
constant function cψ(0) do not.
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Exercise 4.4.10. Consider again the formal operator

T c = − d2

dx2
+ c δ(x),

as in Example 4.4.9. A possible way to address the problem of getting a well-
defined self-adjoint operator is to note that formally on the set

E = {ψ ∈ H2(R) : ψ(0) = 0},

T c coincides with T0 = −d2/dx2. Show that T0 with dom T0 = E is hermitian, that
its adjoint has the same action but with dom T0

∗ = {ψ ∈ H2(R \ {0}) : ψ(0−) =
ψ(0+)}. Check that its deficiency indices are both equal to 1; the corresponding
self-adjoint extensions should contain the rigorous definition of T c for any c ∈ R.
Example 4.4.11. The derivative of the Dirac delta δ′(x) acts formally as∫

δ′(x)ψ(x)dx = −ψ′(x).

Here a construction will be discussed so that it becomes meaningful to talk about
the energy operator, in L2(R),

Sc = − d2

dx2
+ c δ′(x), c < 0.

Physically δ′(x) would model a very strong interaction concentrated at the origin
but of positive intensity on the left and of negative intensity on the right, something
like a dipole concentrated at the origin (think of the derivative of a function that
approximates δ(x), which has a positive peak on the left and a negative one on
the right).

Introduce dom Sc as the set of elements ψ ∈ H2(R \ {0}) obeying ψ′(0+) =
ψ′(0−) (both lateral limits do exist), so it becomes meaningful to talk about
ψ′(0) := ψ′(0+) and (a formal integration imposes) ψ(0+) − ψ(0−) = −cψ′(0).
This subspace is dense in L2(R) since it contains C∞0 (R \ {0}). On dom Sc define
the sesquilinear form

bδ′(ψ, φ) := −ψ′(0)φ′(0),

heuristically corresponding to a δ′ potential. Finally, define on dom Sc the operator
and subsequent sesquilinear form

Scψ := −ψ′′, bS
c

(ψ, φ) := 〈ψ, Scφ〉.

On integrating by parts it is found that Sc is hermitian and

bS
c

(ψ, φ) = 〈ψ′, φ′〉 + c bδ′(ψ, φ),

so that
bS

c

(ψ, ψ) = −c|ψ′(0)|2 + ‖ψ′‖2
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and Sc is positive for c < 0. Its Friedrichs extension ScF is a candidate for the
energy operator in this situation. Additional information about δ′ potential can
be obtained from [Še86] and [ExNZ01].
Exercise 4.4.12. Show that Sc in Example 4.4.11 is hermitian and positive.
Example 4.4.13. Let H = L2[0, 1],

dom T0 = {ψ ∈ H2[0, 1] : ψ(0) = ψ(1) = 0 = ψ′(0) = ψ′(1)},
dom T1 = {ψ ∈ H2[0, 1] : ψ(0) = 0 = ψ(1)},

Tjψ= −ψ′′, ψ ∈ dom Tj, j = 0, 1.

Then dom T ∗0 = H2[0, 1], T0 is hermitian, lower bounded, with deficiency indices
n− = n+ = 2 (see Example 2.6.8), and the Friedrichs extension of T0 is TF = T1.
In fact, observe that T0 = P 2, with P as in Example 4.4.3 and T1 = P ∗P .

The eigenvectors of TF form an orthogonal basis of H and its spectrum is
{(nπ)2 : n = 1, 2, 3, . . .} (see Example 2.3.5). Then TF ≥ π21, and the constant
π2 cannot be increased. Check this, for instance, by considering an eigenfunction
(of TF ) expansions.

Note, however, that the operator

dom T2 =
{
ψ ∈ H2[0, 1] : ψ(0) = −ψ(1), ψ′(0) = −ψ′(1)

}
,

T2ψ = −ψ′′, is another self-adjoint extension of T0, with the same spectrum as
TF , and so with the same lower bound π2. Therefore, the sole lower bound is
not enough to characterize the Friedrichs extension of lower bounded hermitian
operators.
Exercise 4.4.14. Fill in the missing details in Example 4.4.13.
Exercise 4.4.15. This is closely related to Example 2.3.19. The Hilbert space is
H = L2[0,∞),

dom T =
{
ψ ∈ H2[0,∞) : ψ(0) = 0, ψ′(0) = 0

}
,

and Tψ = −ψ′′.

1. Check that this operator is hermitian and positive.
2. Show that its deficiency indices are n− = n+ = 1 and that its self-adjoint

extensions Tc have the same operator action as T but with domain labeled
by c ∈ R ∪ {∞} with

dom Tc =
{
ψ ∈ H2[0,∞) : ψ(0) = cψ′(0)

}
, c ∈ R,

and ψ′(0) = 0 for c = ∞.
3. Find the Friedrichs extension TF of T and conclude that it corresponds to
c = 0, i.e., the Dirichlet boundary condition is selected.
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4.4.1 Hardy’s Inequality

An important inequality will be used in the next example. It has versions for Rn,
n > 3, but with constants different from 1/4 in Lemma 4.4.16; see Exercise 4.4.21
for n = 1.

Lemma 4.4.16 (Hardy’s Inequality). For ψ ∈ H1(R3) (in particular for ψ ∈
C∞0 (R3)) ∫

R3
|∇ψ(x)|2 dx ≥ 1

4

∫
R3

|ψ(x)|2
|x|2 dx.

Proof. By considering the real and imaginary parts of functions, it is possible to
restrict the argument to real-valued ψ. Consider first ψ ∈ C∞0 (R3).

For x = (x1, x2, x3) ∈ R3 denote r = |x| (standard norm in R3), and recall
that in spherical coordinates (r, θ, ϕ) one has dx = r2 sin θ drdθdϕ. For real-valued
ψ ∈ C∞0 (R3) set φ = r

1
2ψ, so that

|(∇ψ)(x)|2 = (∂1ψ)2 + (∂2ψ)2 + (∂3ψ)2

=
1
r
|∇φ|2 − 1

r2
∂(φ2)
∂r

+
1

4r3
(φ2).

Since φ(0) = 0 and there exists R > 0 so that φ(x) = 0 if r ≥ R, then∫
R3

1
r2
∂(φ2)
∂r

dx=
∫ 2π

0

∫ π

0

sin θ dθdϕ
∫ R

0

∂(φ2)
∂r

dr

= π
(
φ(R)2 − φ(0)2

)
= 0.

Therefore ∫
R3

|∇ψ|2 dx ≥ 1
4

∫
R3

1
r3
φ2 dx =

1
4

∫
R3

1
r2
ψ2 dx,

which implies the desired inequality in case ψ ∈ C∞0 (R3).
For ψ ∈ H1(R3), take a sequence (ψj)j ⊂ C∞0 (R3) with ψj → ψ in H1(R3);

thus both ψj → ψ and (the components of) ∇ψj → ∇ψ in L2(R3), and the
inequality follows for all ψ ∈ H1(R3). �

Exercise 4.4.17. Inspect the proof of Hardy’s inequality to show that equality
holds for ψ ∈ C∞0 (R3) iff ψ = 0.
Remark 4.4.18. There is a version of Hardy’s inequality in Rn, n ≥ 3, that holds
for all ψ ∈ H1(Rn) and takes the form∫

Rn

|∇ψ(x)|2 dx ≥ (n− 2)2

4

∫
Rn

|ψ(x)|2
|x|2 dx,

and the constant (n − 2)2/4 is the best possible for all ψ ∈ C∞0 (Rn) [Sh31],
[KaSW75].
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Example 4.4.19. [The Friedrichs Extension for the 3D hydrogen atom] Let H =
L2(R3) and consider dom H = C∞0 (R3) and

(Hψ)(x) = − �2

2m
(Δψ)(x) − α

e2

|x|ψ(x), ψ ∈ dom H,

with α > 0. This is related to the quantum three-dimensional (briefly 3D) hydrogen
atom energy operator (with some physical constants included: Planck constant �,
electron mass m and charge −e). Integration by parts shows that H is hermitian
and, together with Lemma 4.4.16 that, for real-valued ψ ∈ dom H ,

〈ψ,Hψ〉 =
∫

R3

(
�2

2m
|∇ψ(x)|2 − α

e2

|x|ψ(x)2
)
dx

≥
∫

R3

(
�2

8m
1

|x|2 − α
e2

|x|

)
ψ(x)2 dx.

Now pick a > 0 so that

αe2

|x| ≤ �2

8m|x|2 + a, ∀x 
= 0.

Thus
〈ψ,Hψ〉 ≥ −a

∫
R3
ψ(x)2 dx = −a‖ψ‖2.

For ψ = ψ1 + iψ2 ∈ dom H, with ψ1, ψ2 real-valued, one gets

〈ψ,Hψ〉= 〈ψ1, Hψ1〉 + i〈ψ1, Hψ2〉 − i〈ψ2, Hψ1〉 + 〈ψ2, Hψ2〉
= 〈ψ1, Hψ1〉 + 〈ψ2, Hψ2〉
≥−a‖ψ1‖2 − a‖ψ2‖2 = −a‖ψ‖2,

and the same relation holds for all elements of dom H . Therefore, it follows that
H ≥ −a1 and H has the self-adjoint Friedrichs extension HF . Further, HF ≥ −a1
and its spectrum σ(TF ) is lower bounded.
Remark 4.4.20. By using results of Rellich, in the 1950s Tosio Kato showed that H
in Example 4.4.19 with domain C∞0 (R3) is essentially self-adjoint; this is discussed
in Example 6.2.3.
Exercise 4.4.21. Let ψ be a real-valued element of C∞0 (R \ {0}) or C∞0 (0,∞). On
integrating by parts ∫

ψ(x)2
1
x2
dx,

and then applying Cauchy-Schwarz, conclude the Hardy’s inequality

1
4

∫ (
ψ(x)
x

)2

dx ≤
∫
ψ′(x)2 dx.

The integrations are over R or [0,∞), respectively.


