
Chapter 3

Fourier Transform and
Free Hamiltonian

The standard free energy and momentum operators are also properly defined in Rn

through Fourier transform. It is also an opportunity to briefly discuss some aspects
of Sobolev spaces and related differential operators. The definitions of distributions
C∞0 (Ω)′ and tempered distributions S′(Ω), as well as their derivatives, are also
recalled.

3.1 Fourier Transform

Fourier transform is a very useful tool in dealing with differential operators in
Lp(Rn), with especial interest in p = 2. So some of its main properties will be
reviewed and summarized in the first sections, including its relation to Sobolev
spaces. Few simple proofs will be presented. Applications to the quantum free
particle appear in other sections. Details can be found in the references [Ad75]
and [ReeS75]; a nice introduction to distributions and Fourier transform is [Str94].
Readers familiar with the subject are referred to Sections 3.3 and 3.4, which discuss
some (quantum) physical quantities.

Recall that the Fourier transform F = ˆ : L2(Rn) → L2(Rn) is a unitary
operator onto L2(Rn). This is known as the Plancherel Theorem, and it implies
the Parseval identity

‖Fψ‖2 = ‖ψ‖2, ∀ψ ∈ L2(Rn).

Note the two notations for the Fourier transform Fψ = ψ̂. For functions ψ ∈
L1(Rn) there is an explicit expression for this transform, that is,

(Fψ)(p) =
1

(2π)
n
2

∫
Rn

e−i xp ψ(x) dx,
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with p = (p1, . . . , pn), x = (x1, . . . , xn) ∈ Rn and px =
∑n
j=1 pjxj , i.e., the usual

inner product in Rn. Denote the norm |x| = (
∑n

j=1 x
2
j )

1/2 and x2 =
∑n
j=1 x

2
j .

Similarly for the variable p.
Besides the use of variables x and p, sometimes it is convenient to distinguish

L2(Rn) from FL2(Rn) by denoting the latter by L2(R̂n); functions ψ and opera-
tors T acting in L2(Rn) are said to be in the position representation, while the
corresponding ψ̂ and T̂ := FTF−1 acting in L2(R̂n) are said to be in the momen-
tum representation; see Section 3.4 for illustrations that justify the nomenclature.

The inverse Fourier transform F−1L2(R̂n) = L2(Rn) has the expression, for
φ ∈ L1(R̂n),

(F−1φ)(x) = φ̌(x) =
1

(2π)
n
2

∫
Rn

ei xp φ(p) dp,

again with two different notations. These expressions hold, especially, for functions
in the Schwartz space

S = S(Rn) = {ψ ∈ C∞(Rn) : lim
|x|→∞

∣∣∣xmψ(k)(x)
∣∣∣ = 0, ∀k,m},

where m = (m1, . . . ,mn), k = (k1, . . . , kn) are multiindices,

xm = xm1
1 · · ·xmn

n , ψ(k)(x) =
∂k1 · · · ∂knψ

∂xk11 · · ·∂xkn
n

(x).

Also, |m| = m1 + · · ·+mn, |k| = k1 + · · ·+ kn (which should not be confused with
the norm |x|, |p| above) and ∂kj

j ψ may also indicate

∂
kj

j ψ =
∂kjψ

∂x
kj

j

.

It is possible to show that FS = S (one-to-one). Since S is a dense subspace
of all Lp(Rn), 1 ≤ p <∞, any bounded linear operator defined on this space can be
uniquely extended to Lp(Rn). This holds in particular for the Fourier transform,
and it is the usual road for its definition on such spaces. If p = 2 one has the
Plancherel Theorem, and so many authors consider that this is the natural space
of Fourier transforms. Instead of S it is possible to work with C∞0 (Rn) because
this space is also dense in L2(Rn) and also FC∞0 (Rn) is dense in L2(R̂n).

Recall the famous integral
∫

R
exp (−t2) dt =

√
π. A sample of Fourier trans-

form evaluations, which will be used repeated times (e.g., in the proof of Theo-
rem 5.5.1), is

F(e−wx−zx
2/2)(p) =

1√
z
ew

2/(2z) eiwp/z−p
2/(2z),
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where w ∈ C and the branch of the complex number z with Re z > 0 has been
chosen so that Re

√
z > 0. It is worth remarking that the linear subspace spanned

by all such functions

{e−wx−zx
2/2 : w, z ∈ C,Re z > 0}

is dense in L2, and so it is a way to extend (and define) the Fourier transform to
every element of L2. Note that e−x

2/2 is an eigenvector of F with eigenvalue 1 (pick
w = 0 and z = 1). More generally, one has that (F2ψ)(x) = ψ(−x), ∀ψ ∈ L2(Rn),
so that every even function is an eigenvector corresponding to this eigenvalue.

For computations it is also useful to invoke the limit in L2(Rn)

(Fψ)(p) = lim
R→∞

1
(2π)

n
2

∫
|x|≤R

e−i xp ψ(x) dx, ∀ψ ∈ L2(Rn),

which is usually denoted in the literature by

(Fψ)(p) = l.i.m.
1

(2π)
n
2

∫
Rn

e−i xp ψ(x) dx.

l.i.m. means “limit in the mean.”
Exercise 3.1.1. Let ψ ∈ L2(Rn) and BR = {x ∈ Rn : |x| ≤ R} a closed ball. Show
that the function ψR = ψχBR is integrable and so the above explicit expression
for the Fourier transform ψ̂R is valid. This justifies the use of l.i.m. above.
Exercise 3.1.2. Find eigenfunctions of the Fourier transform corresponding to the
eigenvalues −1 and ±i.

Many utilities of the Fourier transform come from its property of exchanging
multiplication and differentiation, as in the next propositions, whose simple proofs
are quite instructive. The roots of those properties are the relations

∂

∂xj
e−i xp = −ipj e−i xp,

∂

∂pj
e−i xp = −ixj e−i xp.

Proposition 3.1.3. Let ψ ∈ S. Then,
a) (Fψ(k))(p) = (−i)|k|pkψ̂(p).
b) (F−1ψ)(k)(x) = i|k|F−1(pkψ̂(p))(x).

Proposition 3.1.4. Let ψ ∈ L2(Rn). Then, for fixed y ∈ Rn,

a) (Fψ(x − y))(p) = e−iypψ̂(p).
b) F(eixyψ(x))(p) = ψ̂(p− y).

Similar properties hold for the inverse Fourier transform.

Proposition 3.1.5. Let ψ, φ ∈ S. Then, for the convolution

(ψ ∗ φ)(x) :=
∫

Rn

ψ(x− y)φ(y) dy =
∫

Rn

ψ(y)φ(x − y) dy

one has F(ψ ∗ φ)(p) = (2π)n/2 ψ̂(p) φ̂(p).
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Exercise 3.1.6. Since S ⊂ L1(Rn), by using the above explicit integral represen-
tation of the Fourier transform, provide proofs of Propositions 3.1.3, 3.1.4 and
3.1.5.
Exercise 3.1.7. Compute the Fourier transform of the following functions in L1(R):

a) ψ(x) = χ[a,b](x).
b) For a > 0, ψ(x) = e−ax if x ≥ 0 and ψ(x) = 0 if x < 0.

Exercise 3.1.8. Parseval identity can be used to compute certain integrals. For a >
0, consider the characteristic function χ[−a,a](x); compute its Fourier transform
χ̂[−a,a] and use Parseval to show that∫

R

(
sin ax
x

)2

dx = πa.

It is possible to extend the convolution to spaces Lp(Rn) by using Young’s
inequality, which is now recalled.

Proposition 3.1.9 (Young’s Inequality). Let 1 ≤ p, q, r ≤ ∞ with 1/p + 1/q =
1 + 1/r. If ψ ∈ Lp(Rn) and φ ∈ Lq(Rn), then the convolution ψ ∗ φ ∈ Lr(Rn) and

‖ψ ∗ φ‖r ≤ ‖ψ‖p ‖φ‖q.

The expression for ψ ∗ φ is the same as that in Proposition 3.1.5.

3.2 Sobolev Spaces

In Chapter 2 the particular classes of Sobolev spaces Hm(R) were recalled via
distributional (i.e., weak) derivatives and absolutely continuous functions. A main
point is that the existence of sufficiently many weak derivatives in L2(R) im-
plies some derivatives in the classical sense. In this section additional properties
of suitable Sobolev spaces are collected, and the discussion extended to higher
dimensions.

Before going on, for reader’s convenience, the definition of distribution and
its derivatives are suitably recalled. Let Ω be an open subset of Rn; a sequence
(φj)j ⊂ C∞0 (Ω) is said to converge to φ ∈ C∞0 (Ω) if there is a compact set K ⊂ Ω
so that the support of φj is contained in K, ∀j, and for each multiindex k the
sequence of derivatives φ(k) → φ(k) uniformly. C∞0 (Ω) is called the space of test
functions.

A distribution u on Ω, is a linear functional on C∞0 (Ω) that are continuous
under the above sequential convergence, that is, u(φj) → u(φ) whenever φj → φ
in C∞0 (Ω). Its derivative is the distribution u(k) defined by

u(k)(φ) := (−1)|k|u(φ(k)), ∀φ ∈ C∞0 (Ω).

The space of distributions on Ω is denoted by C∞0 (Ω)′.
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A distribution u is represented by a function ψ ∈ L1
loc(Ω) if

u(φ) =
∫

Ω

ψ(x)φ(x) dx, ∀φ ∈ C∞0 (Ω),

and in this case one usually says that u = ψ in the sense of distributions. Note that
L1

loc(Ω) is naturally included in the space of distributions, and this fact suggests
the extra terminology generalized function for distributions. The fundamental fact
here is that if u ∈ L1

loc(Ω) and∫
Ω

u(x)φ(x) dx = 0, ∀φ ∈ C∞0 (Ω),

then u = 0 a.e. in Ω. This justifies u = 0 in the sense of distributions as well as
u = ψ above. The Dirac δ is a well-known example of a distribution that is not
represented by any function in L1

loc.
The statement u ∈ L1

loc(Ω) has distributional derivative u(k) = v ∈ L1
loc(Ω)

means
u(k)(φ) := (−1)|k|

∫
Ω

u(x)φ(k)(x) dx =
∫

Ω

v(x)φ(x) dx,

for all φ ∈ C∞0 (Ω). An important result is discussed in Lemma 2.3.9 and Re-
mark 2.3.10, that is, if Ω is an open connected set and u is a distribution with null
derivative, then u is constant.

A sequence of distributions (uj)j in C∞0 (Ω)′ converges to the distribution u,
in the same space, if for every φ ∈ C∞0 (Ω) the sequence (uj(φ))j converges in C

to u(φ).
Example 3.2.1. To illustrate how weak is the notion of convergence of distributions,
consider the sequence uj(x) = eijx in L1

loc(R), which has a bad behavior in terms
of convergence as a sequence of functions (e.g., it has constant absolute values and
it does not converge pointwise to any function). However, for each φ ∈ C∞0 (R), on
integrating by parts

|uj(φ)| =
∣∣∣∣∫

R

eijx φ(x) dx
∣∣∣∣ =

∣∣∣∣1j
∫

R

eijx φ′(x) dx
∣∣∣∣

≤ Cφ
j
‖φ′‖∞ −→ 0

as j → ∞, where Cφ is the Lebesgue measure of the support of φ. Hence uj → 0
in the sense of distributions. The mechanism is the fast oscillations as j → ∞
implying cancellations in the integral.
Example 3.2.2. If 0 ≤ ψ ∈ L1(Rn) and

∫
ψ(x) dx = 1, then ψj(x) := jnψ (jx)

converges to Dirac δ at the origin as j → ∞. Indeed, for φ ∈ C∞0 (Rn),

ψj(φ) =
∫

Rn

ψj(x) (φ(x) − φ(0)) dx +
∫

Rn

ψj(x)φ(0) dx

=
∫

Rn

ψj(x) (φ(x) − φ(0)) dx + φ(0),



84 Chapter 3. Fourier Transform and Free Hamiltonian

since
∫
ψj(x) dx = 1. Now a change of variable gives∫

Rn

ψj(x) (φ(x) − φ(0)) dx =
∫

Rn

ψ(x) (φ(x/j) − φ(0)) dx

which vanishes as j → ∞ by dominated convergence. Hence ψj(φ) → φ(0) for all
φ ∈ C∞0 (Rn), that is, ψj → δ in the sense of distributions.

A sequence (ψj)j ⊂ S(Rn) is said to converge to ψ ∈ S(Rn) if for every
polynomial p : Rn → C and all multiindex k, pψ(k)

j → pψ(k) uniformly. A tempered
distribution u on Rn, is a continuous linear functional on S(Rn), that is, u(ψj) →
u(ψ) whenever ψj → ψ in S(Rn). The space of tempered distributions is denoted
by S′(Rn). Note that S′(Rn) ⊂ C∞0 (Rn)′, so that tempered distributions are
indeed distributions.

The exponential function ex is an example of L1
loc(R) function that defines a

distribution but not a tempered distribution.
At last the definition of (some) Sobolev spaces! For positive integers m, one

defines Hm(Ω), for an open Ω ⊂ Rn, as the Hilbert spaces of ψ ∈ L2(Ω) so that the
weak derivatives ψ(k) exist and ψ(k) ∈ L2(Ω) for all |k| ≤ m, and it is considered
the norm

|‖ψ‖|m :=

⎛⎝ ∑
|k|≤m

∥∥∥ψ(k)
∥∥∥2

2

⎞⎠
1
2

.

In case Ω = Rn the Fourier transform provides another approach to Hm(Rn).
Proofs of some of the next results will be provided as examples of typical argu-
ments.

Proposition 3.2.3. Let ψ ∈ Hm(Rn). Then, for |k| ≤ m one has

F(ψ(k))(p) = (−i)|k|pkψ̂(p),

with ψ(k) denoting distributional derivatives.

Proof. It is enough to consider that only one kj 
= 0; the general case follows by
induction. Since the weak derivatives belong to L2(Rn), one can use Plancherel’s
theorem. Let φ ∈ C∞0 (Rn). Then, by Proposition 3.1.3,〈

Fψ(kj)), φ̂
〉

=
〈
ψ(kj), φ

〉
= (−1)kj

〈
ψ, φ(kj)

〉
= (−1)kj

〈
ψ̂,Fφ(kj)

〉
= (−1)kj

〈
ψ̂, (−i)kjp

kj

j φ̂
〉

=
〈
(−i)kjp

kj

j ψ̂, φ̂
〉
,

and the result follows since FC∞0 (Rn) is dense in L2(R̂n). �
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Corollary 3.2.4. If ψ ∈ Hm(Rn), then

pkψ̂(p) ∈ L2(R̂n) and ψ(k) = F−1(−i)|k|pkFψ, ∀|k| ≤ m.

Corollary 3.2.4 has a converse statement, but for its proof it is necessary to
recall that, for a tempered distributions u ∈ S′(Rn), the Fourier transform û is
defined by

û(φ) = u(φ̂), ∀φ ∈ S(Rn),

and due to Proposition 3.1.3 the relation

F(u(k))(p) = (−i)|k|pkû(p)

follows. The space Lp(Rn) can be identified with a subset of S′(Rn) (the inclu-
sion Lp(Rn) �→ S′(Rn) is a continuous injection). With this, a very important
characterization will be presented.

Proposition 3.2.5. The above norm |‖ · ‖|m in Hm(Rn) is equivalent to

|‖ψ‖|′m :=
(∫

Rn

(
1 + |p|2

)m |ψ̂(p)|2 dp
) 1

2

.

Proof. Let ψ ∈ S(Rn); since |p|k ≤ (1+|p|2)|k|/2, then if pkψ̂ ∈ L2(R̂n) for |k| ≤ m,∫
Rn

∣∣∣ψ(k)(x)
∣∣∣2 dx=

∫
Rn

∣∣∣pkψ̂(p)
∣∣∣2 dp ≤ ∫

Rn

(1 + |p|2)|k|
∣∣∣ψ̂(p)

∣∣∣2 dp
≤
∫

Rn

(1 + |p|2)m
∣∣∣ψ̂(p)

∣∣∣2 dp,
and there is a constant a > 0 obeying |‖ψ‖|m ≤ a|‖ψ‖|′m, since S(Rn) � Hm(Rn)
and the norms are continuous, the latter inequality extends to ψ ∈ Hm(Rn).
Conversely, if ψ ∈ H2(Rm), it follows by the binomial relation that there are
positive constants bj so that

(1 + |p|2)m
∣∣∣ψ̂(p)

∣∣∣2 =
m∑
j=0

bj |p|2j
∣∣∣ψ̂(p)

∣∣∣2
and so

|‖ψ‖|′2m =
m∑
j=0

bj

∫
Rn

|p|2j
∣∣∣ψ̂(p)

∣∣∣2 dp,
and because the right-hand side is a linear combination of terms of the form
‖pkψ̂(p)‖2

2, then, by Proposition 3.2.3, there is b > 0 with |‖ψ‖|′m ≤ b|‖ψ‖|m. The
proposition is proved. �
Remark 3.2.6. By using the norm |‖ · ‖|′, it is possible to define Hs(Rn) for any
s ∈ R.
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Theorem 3.2.7. Let u be a tempered distribution in S′(Rn). Then the following
statements are equivalent:

1. u belongs to Hm(Rn).
2. u(m) ∈ L2(Rn) (weak derivative).

3. pkû(p) ∈ L2(R̂n), ∀|k| ≤ m.

4. pmû(p) ∈ L2(R̂n).

Moreover, if such statements hold, then F(u(k))(p) = (−i)|k|pkû(p).

Proof. (Sketch) The equivalences 1 ⇔ 2 and 3 ⇔ 4 will not be discussed here.
1 ⇒ 3 is Corollary 3.2.4. Finally, 3 ⇒ 1 follows by Proposition 3.2.5. �

Some of the above results show that, for ψ ∈ L2(Rn), the existence of weak
derivatives implies integrability properties of ψ̂. The next discussion is about dif-
ferentiability properties.

Lemma 3.2.8. If ψ ∈ L1(Rn), then p �→ ψ̂(p) is a continuous function and

‖ψ̂‖∞ = sup
p∈Rn

|ψ̂(p)| ≤ 1
(2π)

n
2
‖ψ‖1 =

1
(2π)

n
2

∫
Rn

|ψ(x)| dx.

Similarly, if φ ∈ L1(R̂n), then φ̌(x) is a continuous function and

‖φ̌‖∞ ≤ 1
(2π)

n
2
‖φ‖1.

Proof. Write

|ψ̂(p+ h) − ψ̂(p)| ≤ 1
(2π)

n
2

∫
Rn

∣∣∣e−i(p+h)x − e−i(p)x
∣∣∣ |ψ(x)| dx

and note that, since ψ is integrable, the right-hand side vanishes by dominated
convergence as h → 0; hence ψ̂(p) is continuous. The inequality in the statement
of the proposition is immediate. �
Exercise 3.2.9. Verify the inequalities in Lemma 3.2.8.

Proposition 3.2.10. Let ψ ∈ L1(Rn). If xkψ(x) is integrable for all |k| ≤ m, then
ψ̂(k) is a continuous and bounded function, and

(Fψ)(k) = (−i)|k| F(xkψ(x)), ∀|k| ≤ m.

Proof. It is enough to consider kj = 1 for some j and kl = 0 if l 
= j; the general
case follows by induction. One has

ψ̂(p) =
1

(2π)
n
2

∫
Rn

e−i xp ψ(x) dx.
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Consider also the differentiation of this integrand with respect to pj , that is,

φ(p) = φ(pj) =
1

(2π)
n
2

∫
Rn

(−ixj)e−i xp ψ(x) dx;

this integral is φ(p) = −iF(xjψ)(p), which is a continuous function of pj since, by
hypothesis, xjψ(x) is integrable (see Lemma 3.2.8). For pj ∈ R, denote ψ̂(pj) the
function obtained by keeping fixed pk for k 
= j. By using Fubini’s theorem it is
found that, for h 
= 0,∣∣∣∣ 1h [ψ̂(pj + h) − ψ̂(pj)] − φ(pj)

∣∣∣∣=
∣∣∣∣∣1h
∫ h

0

[φ(pj + r) − φ(pj)] dr

∣∣∣∣∣
≤ sup
|r|≤|h|

|φ(pj + r) − φ(pj)| ,

and since φ(s) is uniformly continuous in any closed interval, the above expression
vanishes as h→ 0. Therefore, ∂pj ψ̂(p) = φ(p). �

Corollary 3.2.11. If ψ ∈ L2(Rn) and pkψ̂(p) is integrable for all |k| ≤ m, then ψ(k)

is a continuous and bounded function, and

ψ(k) = i|k|F−1(pkψ̂(p)), ∀|k| ≤ m.

Proof. This is essentially Proposition 3.2.10 adapted to the inverse Fourier trans-
form. �

The functions ψ ∈ Hm(Rn) are characterized as those that have weak deriva-
tives ψ(k) ∈ L2(R̂n) for any |k| ≤ m and, by a set of results called Sobolev em-
bedding theorems (also called Sobolev lemmas), they become more regular with
increasing m. One of such (nontrivial) results is the following one:

Theorem 3.2.12 (Sobolev Embedding). Let Ω be an open subset of Rn. If ψ ∈
Hm(Ω) and m > r + n

2 , then ψ(k) is a continuous and bounded function for all
|k| ≤ r. Furthermore, in case Ω = Rn the inclusion map Hm(Rn) �→ Cr(Rn) is
bounded.

By way of illustration, take n = 1; it follows that if ψ ∈ Hm(R) then ψ(k) are
bounded continuous functions for 0 ≤ k < m. For n = 3 and ψ ∈ H2(R3), then
ψ(k) is surely continuous only for k = 0. In case of bounded open intervals (a, b)
one has C(a, b) ⊂ H1(a, b) ⊂ C[a, b]; so, roughly speaking, for n = 1 the elements
of H1 are continuous functions that are primitives of functions in L2.

For the curious readers, Exercise 3.2.13 gives a flavor of how such results can
be obtained; of course it does not replace a specific text about Sobolev spaces.
Exercise 3.2.13. The case m > r+n and Ω = Rn in Theorem 3.2.12 has a simpler
proof. The interested reader may follow the steps ahead to prove this restricted
version of the first part of Sobolev’s embedding theorem, that is, if ψ ∈ Hm(Rn)
and m > r + n, then ψ(k) is a continuous and bounded function for all |k| ≤ r.
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1. If ψ ∈ Hm(Rn) then, by Corollary 3.2.11, conclude that it is enough to show
that pkψ̂ ∈ L1(R̂n), for all |k| ≤ r.

2. Write pkψ̂ = φ1φ2, with

φ1(p) =
(
Πk
j=1

(
1 + |pj |1+kj

))
ψ̂(p), φ2(p) =

pk

Πk
j=1 (1 + |pj |1+kj )

,

and show that if |k| ≤ r both φ1 and φ2 belong to L2(R̂n), so that φ1φ2 is
integrable. For φ1, dominate it by a finite sum of integrable functions of the
form |pj|rj |ψ̂(p)|, with 0 ≤ rj ≤ |k|. For φ2 use Fubini’s theorem and note
that

|p|n
1 + |p|1+n ≤ 1

|p|
for |p| large enough.

Exercise 3.2.14. If Ω ⊂ Rn is a bounded set, show that ψ(t) = |t|α belongs to
Hm(Ω) iff (α−m) > −n/2.

It is also worth mentioning (see [Ad75]):

Lemma 3.2.15. Let Ω be an open set in Rn with a regular bounded boundary. Then
the norm |‖ψ‖|m in Hm(Ω) is equivalent to the norm

[ψ]m :=

⎛⎝‖ψ‖2
2 +

∑
|k|=m

∥∥∥ψ(k)
∥∥∥2

2

⎞⎠ 1
2

.

Example 3.2.16. As an application of Sobolev’s embedding theorem, another proof
of Proposition 2.3.20 will be provided. Recall that dom H = C∞0 (a, b) ⊂ H =
L2(a, b), V ∈ L2

loc(a, b), −∞ ≤ a < b ≤ ∞, and

(Hψ)(x) = −ψ′′(x) + V (x)ψ(x), ψ ∈ dom H.

The question is to find H∗. If ψ ∈ dom H∗, then H∗ψ ∈ L2(a, b) and for all
φ ∈ C∞0 (a, b), ∫ b

a

(−φ′′(x) + V (x)φ(x)) ψ(x) dx = 〈φ,H∗ψ〉,

that is ∫ b

a

φ′′(x)ψ(x) dx =
∫ b

a

φ(x) (V (x)ψ(x) −H∗ψ) dx,

so that the second distributional derivative of ψ belongs to L2
loc(a, b); by Sobolev

embedding ψ, ψ′ are absolutely continuous functions and

ψ′′ = V ψ −H∗ψ,
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that is,

dom H∗ =
{
ψ ∈ L2(a, b) : ψ, ψ′ ∈ AC(a, b), (−ψ′′ + V ψ) ∈ L2(a, b)

}
,

(H∗ψ)(x) = −ψ′′(x) + V (x)ψ(x), ψ ∈ dom H∗.

Thereby the proof is complete. �

3.3 Momentum Operator

This section begins with a summary of a very important statement. For ψ ∈
Hm(Rn) there are two equivalent ways of differentiating it: if |k| ≤ m, under
Fourier transform the derivative in the sense of distributions ψ �→ ψ(kj) corre-
sponds to the multiplication operator ψ̂ �→ (−i)kjp

kj

j ψ̂ in L2(R̂n). It is also worth
recalling some integration by parts formulae: if ψ, φ ∈ H1(Rn), then∫

Rn

ψ(x)∂jφ(x) dx = −
∫

Rn

∂j(ψ(x))φ(x) dx,

and for ψ, φ ∈ H2(Rn) then∫
Rn

ψ(x)Δφ(x) dx = −
∫

Rn

∇ψ(x) · ∇ψ(x) dx.

Two particular cases will be discussed in detail: related to the first derivative
Pjψ = −i∂jψ, corresponding to the jth component of the quantum momentum
operator and, related to the laplacian H0ψ = −Δψ = −

∑n
j=1 ∂

2
jψ, corresponding

to the quantum kinetic energy in L2(Rn), discussed in Section 3.4.
In L2(R) the quantum momentum operator was previously introduced, in

Chapter 2), as dom P = H1(R),

(Pψ)(x) = −iψ′(x), ψ ∈ dom P.

See Examples 2.3.11 and 2.4.10. By Fourier transform one gets

(FPψ)(p) = pψ̂(p) = Mϕ(p)ψ̂(p), ϕ(p) = p.

Note also that H1(R̂) =
{
ψ̂ ∈ L2(R̂) : |‖ψ‖|′1 <∞

}
, that is,

|‖ψ‖|′1 =
(∫

R

(
1 + |p|2

)
|ψ̂(p)|2 dp

) 1
2

<∞,

which is the graph norm of Mϕ(p) in L2(R̂), and dom P = F−1H1(R̂). Then,

(FPF−1)ψ̂(p) = pψ̂(p), (Pψ)(x) = (F−1pF)ψ(x),
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and it follows that the momentum operator is unitarily equivalent (via Fourier
transform) to this multiplication operator Mp by a continuous real function.
Therefore, see Subsection 2.3.2, it provides another proof that this operator is
self-adjoint with no eigenvalues, and that its spectrum is R, since such properties
hold for Mp (see Exercise 2.1.26).

This construction is readily generalized to the jth component of the momen-
tum operator Pj in L2(Rn), given by

F(Pjψ)(p) = pjψ̂(p) = Mpj ψ̂(p), 1 ≤ j ≤ n,

which is also self-adjoint, with no eigenvalues and its spectrum is R. The (total)
momentum operator is defined through the gradient

P = −i∇ = −i (∂1, . . . , ∂n),

i.e., P = F−1(p1, . . . , pn)F = (F−1p1F , . . . ,F−1pnF).

3.4 Kinetic Energy and Free Particle

The nonrelativistic quantum kinetic energy operator in L2(Rn) (or L2(Ω), Ω an
open subset of Rn) is denoted by H0 and (up to a sign) it is the self-adjoint
realization of the laplacian (distributional derivatives), that is, H0 = −Δ with
domain H2(Rn).

For the one-dimensional case L2(R) the kinetic energy corresponds to
dom H0 = H2(R) and H0ψ = −ψ′′. By using Fourier transform, this operator
is unitarily equivalent to the multiplication operator

FH0ψ = FH0F−1Fψ = Mp2 ψ̂.

In higher dimensions L2(Rn), n ≥ 2, an alternative way of defining the kinetic
energy operator is dom H0 = H2(Rn) and

(H0ψ)(x) = −Δψ(x) = F−1[p2ψ̂(p)](x), ψ ∈ dom H0.

That is, it is unitarily equivalent to the multiplication operator FH0ψ = Mp2 ψ̂

in L2(R̂n),
H0 = F−1p2F .

Since p �→ p2 is a positive continuous function, it follows that its spectrum is
σ(H0) = rng p2 = [0,∞); see Exercise 2.3.29. Further, H0 has no eigenvalues.

Note that the unitarity of the Fourier transform allows one to conclude that
if ψ ∈ L2(Rn) with Δψ ∈ L2(Rn), then ψ ∈ H2(Rn); see other comments on
page 197.

Since only kinetic energy is present (there is no interaction among parti-
cles), the operator H0 is also called the Schrödinger operator for the free particle.
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Another terminology is free hamiltonian or free Schrödinger operator. Perturba-
tions of H0 by a potential energy V (x), resulting in the total energy operator, are
considered in other chapters.

Proposition 3.4.1. The operators TC , TS with domains C∞0 (Rn) and S(Rn), re-
spectively, both with action ψ �→ −Δψ, are essentially self-adjoint and

TC = H0 = TS .

In other words, C∞0 (Rn) and S(Rn) are cores of H0.

Proof. If g ∈ dom T ∗C ⊂ L2(Rn), then

〈g,−Δψ〉 = 〈T ∗Cg, ψ〉, ∀ψ ∈ C∞0 (Rn);

thus the distributional derivative −Δg = T ∗Cg ∈ L2(Rn) and so g ∈ H2(Rn)
and T ∗Cg = −Δg = H0g, so that T ∗C ⊂ H0. Conversely, if φ ∈ H2(Rn) then
−Δφ ∈ L2(Rn) and, via integration by parts,

〈φ, TCψ〉 = 〈φ,−Δψ〉 = 〈−Δφ, ψ〉, ∀ψ ∈ C∞0 (Rn);

by definition, φ ∈ dom T ∗C and T ∗Cφ = −Δφ = H0φ, so that H0 ⊂ T ∗C . Hence
T ∗C = H0. Since H0 is self-adjoint, one has TC = T ∗∗C = H0, and it is found that
TC is essentially self-adjoint.

For TS , note that TC ⊂ TS ⊂ H0. Thus, since TC is essentially self-adjoint,
T ∗C = TC = H0, and so H0 ⊂ T ∗S ⊂ T ∗C = H0. Therefore, T ∗S = H0 and TS is
essentially self-adjoint (also TS = T ∗∗S = H0). �
Exercise 3.4.2. Show that (1 +H0)S = S.

In view of H0 = F−1p2F , one has

Rz(H0) = F−1 1
p2 − z

F ,

for the resolvent of H0 at z /∈ [0,∞) (check this!). The operator of multiplication
by the functions

1
p2 − z

and e−itp
2

correspond to important quantum operators in the momentum representation
L2(R̂n); their actions in the position representation L2(Rn) will be discussed in
Subsection 3.4.1 and Section 5.5, respectively.
Exercise 3.4.3. Use Fourier transform to show that for all complex numbers z /∈
[0,∞) the operator PjRz(H0) is bounded for any momentum component Pj .

For a measurable function f : R → C one defines the operator

dom f(H0) = F−1dom f(p2), f(H0) := F−1f(p2)F ;
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since dom f(p2) is a dense set and F is unitary, then dom f(H0) is dense and if
f(p2) is real valued the operator f(H0) is also self-adjoint – see Subsection 2.3.2.
If f is a (essentially) bounded function, then f(H0) ∈ B(H). According to the
nomenclature on page 80, f(p2) is the operator f(H0) in momentum representa-
tion.

In a similar way one defines the function of momentum operators f(Pj) and
f(P ), the latter with f : Rn → C. Note, as before, the abuse of notation by
indicating the multiplication operator Mf(p) by just f(p).

Exercise 3.4.4. Verify that if f(p) = pk, k ∈ N, then the corresponding operator
f(H0) in L2(R) is

dom f(H0) = H2k(R), f(H0)ψ = (−1)kψ(2k).

Challenge: What about
√
H0?

3.4.1 Free Resolvent

In this subsection the resolvent of the free hamiltonian Rz(H0) in R3, in position
representation, will be computed from its momentum representation (p2 − z)−1.
First, a result also of general interest.

Lemma 3.4.5. If f ∈ L2(Rn), then the operator f(P ) in position representation is
an integral operator whose kernel is 1/(2π)

n
2 f̌(y− x), that is, for all ψ ∈ L2(Rn),

(f(P )ψ)(x) := F−1
[
f(p)ψ̂(p)

]
(x) =

1
(2π)

n
2

∫
Rn

f̌(y − x)ψ(y) dy.

Proof. Since fψ̂ ∈ L1(R̂n) there is an explicit expression for its inverse Fourier
transform. Fix x ∈ Rn. Then, since F−1 is unitary and by a simple variation of
Proposition 3.1.4,

(2π)
n
2 F−1

[
f(p)ψ̂(p)

]
(x) =

∫
Rn

ei xpf(p)ψ̂(p) dp

=
〈
e−i xpf(p), ψ̂(p)

〉
=
〈
F−1(e−i xpf(p))(y), ψ(y)

〉
=
〈
f̌(y − x), ψ(y)

〉
=
∫

Rn

f̌(y − x)ψ(y) dy.

This is the desired expression. �
Theorem 3.4.6. Fix a complex number z /∈ [0,∞). Then the resolvent of the free
hamiltonian H0 in L2(R3) at z, in position representation, is given by

(Rz(H0)ψ)(x) =
1
4π

∫
R3

ei
√
z|x−y|

|x− y| ψ(y) dy, ∀ψ ∈ L2(R3),

with the branch of the square root given by Im
√
z > 0.
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Proof. The resolvent is (Rz(H0)ψ)(x) = F−1[f(p)ψ̂(p)](x) with f(p) = (p2 − z)−1

which belongs to L2(R3) (and is also bounded). By Lemma 3.4.5, the resolvent is
an integral operator with kernel

G0(x− y; z) := 1/(2π)
3
2 f̌(x− y).

The task now is to compute

X = (2π)3/2f̌(x) = l.i.m.
∫

R3

ei xp

p2 − z
dp = lim

R→∞

∫
|p|≤R

ei xp

p2 − z
dp.

Introduce spherical coordinates xp = |x||p| cos θ, r = |p|, 0 ≤ θ ≤ π, −π ≤ ϑ < π
and also a = cos θ. Then

X = lim
R→∞

∫ R

0

∫ 1

−1

∫ π

−π

ei r|x|a

r2 − z
r2dϑda dr

=
2π
i |x| lim

R→∞

∫ R

−R

rei r|x|

r2 − z
dr =

2π
i |x| lim

R→∞

∫
CR

wei w|x|

(w −
√
z)(w +

√
z)
dw,

where Im
√
z > 0, CR is the rectangle in the upper half complex plane, delimited

by the vertices (−R, 0), (R, 0), (R,
√
R), (−R,

√
R), and w the complex integration

variable. Then, by residues, one gets

X = 2π2 e
i
√
z|x|

|x| , Im
√
z > 0,

so that

G0(x− y; z) =
1
4π

ei
√
z |x−y|

|x− y| , Im
√
z > 0,

and the proof is complete. �
Definition 3.4.7. The function G0(x − y; z), introduced in the proof of Theo-
rem 3.4.6, is called the three-dimensional free Green function. It is the kernel
of the free resolvent operator in L2(R3).

Exercise 3.4.8. Given a potential V : R3 → R, assume that ψ ∈ L2(R3) is an
eigenfunction of H0 +V with eigenvalue λ < 0, that is, (H0 +V )ψ = λψ and, also,
V ψ ∈ L2(R3). Show that

ψ(x) = − 1
4π

∫
R3

e−
√
−λ|x−y|

|x− y| V (y)ψ(y) dy.

This is an integral equation for ψ closely related to the Lippmann-Schwinger equa-
tion in scattering theory.
Exercise 3.4.9. Check that the kernel of the free resolvent operator in L2(R), i.e.,
the one-dimensional free Green function, at z /∈ [0,∞) is

G0(x− y; z) =
i

2
√
z
ei
√
z |x−y|, with Im

√
z > 0.
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Remark 3.4.10. For dimensions different from one and three, the computation of
the free Green function is more difficult to handle; it can be performed in terms
of modified Bessel functions of the second kind. The situation is simpler for odd
dimensions, since spherical Bessel functions can be employed. Nonetheless, they
are not too illuminating. See the full expression in [HiS96] page 164 and details in
[CouH53], and for Bessel functions [Wa62].
Exercise 3.4.11. Check that for L2(Rn), n = 1, 3, there exists (a.e.) the limit of
the free Green function for z = λ+ iε, λ > 0,

G0(x− y;λ± 0) := lim
ε→0±

G0(x− y;λ+ iε).

So the operators Rλ±0(H0) are also defined as integral operators with kernels
G0(x−y;λ±0). Verify that Rλ+0(H0) 
= Rλ−0(H0). Are these operators bounded?
Exercise 3.4.12. Write out the one-dimensional harmonic oscillator energy opera-
tor (Example 2.3.3) (Hψ)(x) = −ψ′′(x) + x2ψ(x) in the position and momentum
representations.
Remark 3.4.13. The kinetic energy, the j-component of the momentum and the
total momentum operators in L2(Rn), with all physical constants included, have
the expressions

H0 = − �2

2m
Δ, Pj = −i�∂j, P = −i�∇,

respectively. For the Green function in L2(R3),

G0(x− y; z) =
m

�22π
1

|x− y| exp

(
i

√
2mz
�

|x− y|
)
,

while in L2(R)

G0(x− y; z) =
i

�

√
m

2z
exp

(
i

√
2mz
�

|x− y|
)
.

Finally, the expression of Fourier transform in L2(Rn) usually employed in quan-
tum mechanics takes the form

ψ̂(p) =
1

(2π�)
n
2

∫
Rn

e−i
xp
� ψ(x) dx.

Remark 3.4.14. In the context of quantum mechanics, usually the term “Green
function” refers to a representation (e.g., in position or momentum representa-
tion) of the resolvent of a self-adjoint operator. The Green function for the hydro-
gen atom Schrödinger operator was studied in [Ho64] and [Schw64] (see Exam-
ple 6.2.3).


