
Chapter 1

Linear Operators and Spectra

This chapter recalls some basic concepts of the theory of linear operators in normed
spaces, with emphasis on Hilbert spaces. It also fixes some notation and intro-
duces the concept of a spectrum along with various proofs. Compact operators are
discussed. The readers are supposed to have had a first contact with functional
analysis.

1.1 Bounded Operators

Let F denote either the field of real numbers R or complex numbers C. For z ∈
C, let z denote its complex conjugate. As usual in mathematics, iff will be an
abbreviation for “if and only if.”

Definition 1.1.1. A linear operator between the vector spaces X and Y is a trans-
formation T : dom T ⊂ X → Y , for which its domain dom T is a vector subspace
and T (ξ + αη) = T (ξ) + αT (η), for all ξ, η ∈ dom T and all scalar α ∈ F.

Note that T (0) = 0 for any linear operator T , and that the set of linear
operators with the same domain and codomain is a vector space with pointwise
operations; frequently T (ξ) will also be denoted by Tξ. Simple examples of linear
operators are the identity operator 1 : X → X , with 1(ξ) = ξ, and the null (or
zero) operator Tξ = 0, ∀ξ.

In many cases it is imperative to consider domains dense in another set; so
throughout this text the notation A � B will indicate that A is a dense subset
of B, with respect to the appropriate topology. The natural numbers {1, 2, 3, . . .}
will be denoted by N and the term enumerable indicates the cardinality ℵ0 of the
set of natural numbers, while countable refers to finite numbers (including zero);
so, uncountable indicates that something is infinite and with cardinality different
from ℵ0.
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N ,B,H always denote a normed space, a Banach space and a Hilbert space,
respectively. In any metric space, the sphere, open and closed balls centered at ξ
and of radius r > 0 will be denoted by S(ξ; r), B(ξ; r) and B(ξ; r), respectively.
If A is a subset of a vector space, then Lin(A) denotes the linear subspace spanned
by A.
Example 1.1.2. Let φ ∈ L∞μ (Ω), with μ being σ-finite. Then the multiplication
operator by φ, defined by Mφ : Lpμ(Ω) → Lpμ(Ω),

(Mφψ)(t) := φ(t)ψ(t), ψ ∈ Lpμ(Ω),

is a linear operator ∀ 1 ≤ p ≤ ∞. Note that (Mφψ) ∈ Lpμ for ψ ∈ Lpμ.
Remark 1.1.3. The notation of the Banach spaces Lpμ(Ω), 1 ≤ p ≤ ∞, is standard.
In case Ω ⊂ Rn and the measure is Lebesgue measure, the simplified notation
Lp(Ω) will be employed.
Example 1.1.4. LetX and Y be compact metric spaces and u : Y → X continuous.
Then Tu : C(X) → C(Y ), (Tuψ)(y) = ψ(u(y)), is a linear operator.
Exercise 1.1.5. Let T : dom T ⊂ X → Y be a linear operator. Verify the following
items:

a) The range of T , rng T := T (dom T ) ⊂ Y , and the kernel (or null space) of T ,
N(T ) := {ξ ∈ dom T : Tξ = 0}, are vector spaces.

b) If the dimension dim(dom T ) = n <∞, then dim(rng T ) ≤ n.
c) The inverse operator of T , T−1 : rng T → dom T , exists if, and only if,

Tξ = 0 ⇒ ξ = 0 and, in case it exists, it is also a linear operator.
d) If T, S are invertible linear operators, then (TS)−1 = S−1T−1 (by supposing,

of course, that the operations are well posed).

A rich theory is obtained through the fusion of linear operators with the
natural topology generated by norms. The next result is an example of such fusion;
it shows that if a linear operator is continuous at some point of its domain, then
it is uniformly continuous on its whole domain.

Theorem 1.1.6. Let T : N1 → N2 be a linear operator. Then the following asser-
tions are equivalent:

i) sup‖ξ‖≤1 ‖Tξ‖ <∞.
ii) ∃C > 0 such that ‖Tξ‖ ≤ C‖ξ‖, ∀ξ ∈ N1.
iii) T is uniformly continuous.
iv) T is continuous.
v) T is continuous at zero (i.e., the null vector).

Proof. i) =⇒ ii) Let C = sup‖ξ‖≤1 ‖Tξ‖. If 0 
= ξ ∈ N1, then ‖T (ξ/‖ξ‖)‖ ≤ C,
i.e., ‖Tξ‖ ≤ C‖ξ‖, ∀ξ ∈ N1.

ii) =⇒ iii) If ξ, η ∈ N1, then ‖Tξ − Tη‖ = ‖T (ξ − η)‖ ≤ C‖ξ − η‖.
iii) =⇒ iv) and iv) =⇒ v) are obvious.
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v) =⇒ i) Since T is continuous at zero, there exists δ > 0 with ‖Tξ‖ ≤ 1 if ‖ξ‖ ≤ δ.
Thus, if ‖ξ‖ ≤ 1, it follows that ‖δξ‖ ≤ δ and ‖T (δξ)‖ ≤ 1; therefore, ‖Tξ‖ ≤ 1/δ,
and i) holds. �

Definition 1.1.7. A continuous linear operator is also called bounded, and the set
of bounded linear operators from N1 to N2 will be denoted by B(N1,N2). The
notation B(N ) will also be used as an abbreviation of B(N ,N ).

Note the distinct use of the term bounded linear operator compared to the
use in bounded application in general, i.e., one with bounded range; in the latter
sense every linear (nonzero) operator is not bounded; verify this.

Example 1.1.8. The operator Tu in Example 1.1.4 is continuous, since for all ψ ∈
C(X) one has ‖Tuψ‖∞ = supt∈Y |ψ(u(t))| ≤ supt∈X |ψ(t)| = ‖ψ‖∞, and Tu is
bounded by Theorem 1.1.6(ii).

Exercise 1.1.9. Let X and Y be finite-dimensional vector spaces and T : X → Y
a linear operator. Choose bases in X and Y and show that T can be represented
by a matrix, and discuss how the matrix that represents T changes if other bases
are considered.

Proposition 1.1.10. If T : N1 → N2 be linear and dimN1 <∞, then T is bounded.

Proof. Consider in N1 the norm |‖ξ‖| = ‖ξ‖ + ‖Tξ‖; then there exists C > 0
such that |‖ξ‖| ≤ C‖ξ‖, because all norms on finite-dimensional vector spaces are
equivalent. Hence, ‖Tξ‖ ≤ |‖ξ‖| ≤ C‖ξ‖ and T is bounded. �

Example 1.1.11. For 1 ≤ p < ∞, lp(N) denotes the Banach space of sequences

ξ = (ξj)j∈N so that ‖ξ‖p =
(∑

j |ξj |p
)1/p

< ∞. For p = ∞ the space l∞(N)
carries the norm ‖ξ‖∞ = supj |ξj |. Similarly one defines lp(Z), 1 ≤ p ≤ ∞.

Let T :
{
(ξn) ∈ lp(N) :

∑
n |n2ξn|p <∞

}
→ lp(N), with 1 ≤ p <∞, T (ξn) =

(n2ξn); this operator is linear, but is not continuous, since if {en}∞n=1 denotes
the canonical basis of lp(N), i.e., en = (δj,n)j , then en/n → 0, while Ten does
not converge to zero. Another argument: T is not bounded since ‖en‖p = 1 and
‖Ten‖p = n2, ∀n.
Example 1.1.12 (Shifts). The right (left) shift operator in lp(Z), 1 ≤ p ≤ ∞, is
defined by Sr : lp(Z) → lp(Z) (resp. Sl), η = Srξ (resp. η = Slξ), with ηj = ξj−1

(resp. ηj = ξj+1), j ∈ Z. Note that the shift operator in lp(Z) is a bijective
isometry (i.e., an isometric mapping), so bounded. They are also defined on lp(N)
in an analogous way, but if η = Srξ then it is defined η1 = 0; these operators are
also bounded, but Sr in lp(N) is not onto, although it is isometric.

Note that B(N1,N2) is a vector space with pointwise operations, and it turns
out that

‖T ‖ := sup
ξ∈N1
‖ξ‖≤1

‖Tξ‖
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is a norm on B(N1,N2). In fact, if T ∈ B(N1,N2), ‖T ‖ = 0 ⇐⇒ Tξ = 0, ∀ξ ∈ N1,
that is, T = 0; ‖αT ‖ = |α|‖T ‖ is immediate; if S ∈ B(N1,N2), then

‖T + S‖ = sup
‖ξ‖≤1

‖Tξ + Sξ‖ ≤ sup
‖ξ‖≤1

(‖Tξ‖ + ‖Sξ‖) ≤ ‖T ‖+ ‖S‖.

If a topology is not explicitly given in B(N1,N2), it is supposed that the topology
is the one induced by this norm.
Exercise 1.1.13. a) If T ∈ B(N1,N2), check that

‖T ‖ = inf
C>0

{‖Tξ‖ ≤ C‖ξ‖, ∀ξ ∈ N1} = sup
‖ξ‖=1

‖Tξ‖ = sup
ξ �=0

‖Tξ‖
‖ξ‖ .

b) If T, S are bounded linear operators and TS (the composition, but usually called
product of operators) is defined, show that TS is bounded and ‖TS‖ ≤ ‖T ‖‖S‖.
Therefore, if T n (nth iterate of T ) is defined, then ‖T n‖ ≤ ‖T ‖n.
Example 1.1.14. The zero operator is the unique operator whose norm is zero, and
for the identity operator ‖1‖ = 1 (with N 
= {0}).
Example 1.1.15. Let X be the vector space of polynomials in C[0, 1] and D : X ←↩
the differential operator (Dp)(t) = p′(t), p ∈ X . This operator is linear and does
not belong to B(X), since if pn(t) = tn, then for all n ≥ 1 one has (Dpn)(t) =
ntn−1, ‖pn‖∞ = 1, while ‖Dpn‖∞ = n.
Example 1.1.16. The operator Mφ, with φ ∈ L∞μ (Ω) (see Example 1.1.2) is
bounded in Lpμ(Ω), 1 ≤ p ≤ ∞, and ‖Mφ‖ = ‖φ‖∞ (= sup ess |φ|).

Proof. It will be supposed that ‖φ‖∞ 
= 0 and demonstrated for 1 ≤ p < ∞. The
cases p = ∞ and ‖φ‖∞ = 0 are left as exercises. If ‖ψ‖p = 1, then by

‖Mφψ‖pp =
∫

Ω

|φ(t)|p|ψ(t)|pdμ(t) ≤ ‖φ‖p∞‖ψ‖pp,

one gets that Mφ is bounded and ‖Mφ‖ ≤ ‖φ‖∞.
Let 0 < θ < ‖φ‖∞; then there exists a measurable set A, with 0 < μ(A) <∞

(recall that μ is σ-finite) obeying ‖φ‖∞ ≥ |φ(t)| > θ, ∀t ∈ A. Thus, χA, the
characteristic function of A (i.e., χA(t) = 1 if t ∈ A and χA(t) = 0 if t /∈ A),
belongs to Lpμ(Ω) and

‖MφχA‖pp =
∫
A

|φ(t)|p|χA(t)|pdμ(t) ≥ θp‖χA‖pp ;

so ‖Mφ‖ ≥ θ and, therefore, ‖Mφ‖ = ‖φ‖∞. �
Example 1.1.17. Let K : (Ω,A, μ)×(Ω,A, μ) → F measurable (σ-finite space) and
suppose that there exists C > 0 with∫

Ω

|K(x, y)|dμ(x) ≤ C, for y μ− a.e.
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Then, TK : L1
μ(Ω) ←↩ given by

(TKψ)(x) =
∫

Ω

K(x, y)ψ(y)dμ(y), ψ ∈ L1
μ(Ω),

is bounded and ‖TK‖ ≤ C.

Proof. If ψ ∈ L1
μ(Ω) then

|(TKψ)(x)| ≤
∫

Ω

|K(x, y)ψ(y)|dμ(y);

thus, ‖TKψ‖1 =
∫
Ω
|(TKψ)(x))|dμ(x) ≤

∫∫
|K(x, y)| |ψ(y)|dμ(y)dμ(x). By the Fu-

bini Theorem it is found that

‖TKψ‖1 ≤
∫∫

Ω×Ω

|K(x, y)|dμ(x) |ψ(y)|dμ(y) ≤ C‖ψ‖1.

Therefore ‖TK‖ ≤ C. �
Exercise 1.1.18. Let (en)∞n=1 be the usual basis of l2(N) and (αn)∞n=1 a sequence
in F. Show that the operator T : l2(N) ←↩ with Ten = αnen is bounded if, and
only if, (αn)∞n=1 is a bounded sequence. Verify that, in this case, ‖T ‖ = supn |αn|.
Exercise 1.1.19. Let C1(0, 1) be the set of continuously differentiable real functions
on (0, 1), as a subspace of L2(0, 1) (i.e., use the norm of L2). Apply the differential
operator (Dψ)(t) = ψ′(t), D : C1(0, 1) → L2(0, 1), to functions ψn(t) = sin(nπt)
and conclude that D is not bounded.
Exercise 1.1.20. Show that the differential operatorD : C∞[a, b] ←↩ is not bounded
for any norm on C∞[a, b].

The next result gives a simple answer to an important question. Under which
conditions B(N1,N2) is a Banach space?

Theorem 1.1.21. If N is a normed space and B a Banach space, then B(N ,B) is
Banach.

Proof. Let (Tn)∞n=1 be a Cauchy sequence in B(N ,B). Since for each ξ ∈ N one
has ‖Tnξ−Tkξ‖ ≤ ‖Tn−Tk‖‖ξ‖, then (Tnξ) is Cauchy in B and converges to η ∈ B.
Define T : N → B by Tξ = η, which is clearly linear. It will be shown that this
operator is bounded and Tn → T in B(N ,B).

Given ε > 0 there exists N(ε) such that, if n, k ≥ N(ε), then ‖Tn− Tk‖ < ε.
By the continuity of the norm it follows that

‖Tnξ − Tξ‖ = lim
k→∞

‖Tnξ − Tkξ‖ ≤ ε‖ξ‖, n ≥ N(ε),

and (Tn − T ) ∈ B(N ,B) with ‖Tn − T ‖ ≤ ε. Since B(N ,B) is a vector space,
and T = Tn + (T −Tn), then T ∈ B(N ,B). The inequality ‖Tn−T ‖ ≤ ε, valid for
all n ≥ N(ε), shows that Tn → T and B(N ,B) is complete. �
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Exercise 1.1.22. Suppose that Tn → T in B(N ) and ξn → ξ in N . Show that
Tnξn → Tξ.
Exercise 1.1.23. Let T ∈ B(B). Show that, for all t ∈ F, the operator etT defined
by the series

etT :=
∞∑
j=0

(tT )j

j!

belongs to B(B) and ‖etT ‖ ≤ e|t|‖T‖.
Exercise 1.1.24. Let T ∈ B(B), with ‖T ‖ < 1. Show that the operator defined by
the series S =

∑∞
j=0 T

j belongs to B(B) and S = (1− T )−1.

Uniformly continuous functions on metric spaces have uniformly continuous
extensions to the closure of their domains; in the case of linear operators there is
an analogous result, which is a consequence of the uniform continuity of bounded
operators (Theorem 1.1.6).

Definition 1.1.25. If N is a normed space, then the Banach space B(N ,F) will
be denoted by N ∗ and termed dual space of N . Each element of N ∗ is called a
continuous linear functional on N (Why is N ∗ complete?).

Remark 1.1.26. a) Recall that by the Hahn-Banach theorem N ∗ separates points
of N , that is, if η 
= ξ ∈ N , then there exists f ∈ N ∗ with f(ξ) 
= f(η). In
particular, if f(ξ) = 0 for all f ∈ N ∗, then ξ = 0.

b) The Hahn-Banach theorem can also be used to prove the converse of
Theorem 1.1.21, so that B(N1,N2) is complete iff N2 is a Banach space.
Example 1.1.27. The integral on C[a, b] is an element of the dual of C[a, b], since
ψ �→

∫ b
a ψ(t) dt is linear and continuous. In fact, every finite Borel (complex)

measure μ over [a, b] defines an element of the dual of C[a, b] through the integral
ψ �→

∫ b
a
ψ(t) dμ(t), because∣∣∣∣∣

∫ b

a

ψ(t) dμ(t)

∣∣∣∣∣ ≤ ‖ψ‖∞ |μ|([a, b]).

Example 1.1.28 (Unbounded functional). Consider the linear functional

f : C[−1, 1] ⊂ L1[−1, 1] → F, f(ψ) = ψ(0).

Pick a function ψ ∈ C[−1, 1] with ψ(−1) = ψ(1) = 0 and ψ(0) 
= 0. For each n ≥ 2,
set ψn(t) = ψ(nt) if |t| ≤ 1/n, and equal to zero otherwise. Note that ‖ψn‖1 =∫ 1

−1 |ψn(t)| dt = ‖ψ‖1/n, which converges to zero for n → ∞. However, f(ψn) =
ψ(0) 
= 0 for all n, and f is not continuous.
Example 1.1.29. Let 1 < p < ∞ and 1/p + 1/q = 1. Each φ ∈ Lqμ(Ω) defines an
element of the dual of Lpμ(Ω), since by Hölder inequality the product φψ ∈ L1

μ(Ω),
for all ψ ∈ Lpμ(Ω), and

ψ �→
∫

Ω

φψdμ
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is linear and bounded with norm ≤ ‖φ‖q (again by Hölder). Hence, Lqμ(Ω) ⊂
Lpμ(Ω)∗. The proof is found in books on Integration Theory that Lpμ(Ω)∗ = Lqμ(Ω),
for 1 < p <∞ and, if the measure μ is σ-finite, one also has L1

μ(Ω)∗ = L∞μ (Ω).
Exercise 1.1.30. Show that the dual of lp is lq, with 1 < p <∞ and 1/p+1/q = 1.

Theorem 1.1.31 (Uniform Boundedness Principle). Any family of operators
{Tα}α∈J in B(B,N ) so that, for each ξ ∈ B,

sup
α∈J

‖Tαξ‖ <∞,

satisfies supα∈J ‖Tα‖ <∞.

Proof. Put Ek = {ξ ∈ B : ‖Tαξ‖ ≤ k, ∀α ∈ J}, which is a closed set; indeed, since
Tα is continuous, it is the intersection of the closed sets T−1

α B(0; k) for all α ∈ J .
Since B =

⋃∞
k=1 Ek, by the Baire theorem there exists Em with nonempty interior.

Let BB(ξ0; r) (r > 0) be an open ball contained in Em; then, for any α ∈ J one
has ‖Tαξ‖ ≤ m for all ξ ∈ BB(ξ0; r).

If ξ ∈ B, ‖ξ‖ = 1, it is found that η = ξ0 + rξ/2 belongs to BB(ξ0; r) and

‖Tαξ‖ =
2
r
‖Tαη − Tαξ0‖ ≤ 2

r
(‖Tαη‖ + ‖Tαξ0‖) ≤

4m
r

;

thus ‖Tαξ‖ ≤ 4m/r for all α ∈ J and ‖ξ‖ = 1; it then follows that supα ‖Tα‖ ≤
4m/r <∞. �
Corollary 1.1.32. A subset H ⊂ B∗ = B(B,F) is bounded if, and only if, for
all ξ ∈ B, supf∈H |f(ξ)| <∞.

Proof. If H is bounded, then M = supf∈H ‖f‖ < ∞ and for all ξ ∈ B one has
supf∈H |f(ξ)| ≤ M‖ξ‖ < ∞. To show the other statement, by using the notation
presented in the uniform boundedness principle, it is enough to consider H as the
family Tα in the Banach space B∗. �
Corollary 1.1.33 (Banach-Steinhaus Theorem). Let (Tn)∞n=1 be a sequence in
B(B,N ) so that for each ξ ∈ B there exists the limit

Tξ := lim
n→∞

Tnξ.

Then supn ‖Tn‖ <∞ and T is a bounded operator in B(B,N ).

Proof. Clearly T is linear. Since for all ξ ∈ B there exists limn→∞ Tnξ, then
supn ‖Tnξ‖ <∞, and by the uniform boundedness principle one has supn ‖Tn‖ <
∞. By the definition of T it follows that

‖Tξ‖ ≤ (sup
n

‖Tn‖) ‖ξ‖, ∀ξ ∈ B

and, therefore, T is bounded. �
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Example 1.1.34. Let N be the normed space of the elements ξ = (ξj) ∈ l∞(N)
that have just a finite number of nonzero entries ξj . Define Tn : N → l∞ by
Tnξ = (nξn)j∈N. Then Tn ∈ B(N , l∞) for all n, and for each ξ ∈ N there exists
the limit limn→∞ Tnξ = 0, but limn→∞ ‖Tn‖ = ∞. This shows that the conclusions
of the Banach-Steinhaus theorem (and of the uniform boundedness principle) may
fail if the domain of the operators is not complete.

Exercise 1.1.35. Let Sl : l2(N) ←↩ be the shift

Sl(ξ1, ξ2, ξ3, . . . ) = (ξ2, ξ3, ξ4, . . . )

and Tn = Snl . Find ‖Tnξ‖, and the limit operator described in the Banach-
Steinhaus theorem.

Proposition 1.1.36. Let {Tα}α∈J be a family in B(B,N ) with

sup
α∈J

‖Tα‖ = ∞.

Then the set I = {ξ ∈ B : supα ‖Tαξ‖ <∞} is meager in B (that is, it is a subset
of a countable union of closed subsets of B with empty interior).

Proof. By using the notation of the proof of the uniform boundedness principle,
one has I = ∪∞k=1Ek, and by that proof it follows that the interior of every Ek is
empty, since if not one would get supα∈J ‖Tα‖ <∞. Since Ek is closed, then I is
meager. �

Denote Cp[0, 2π] = {ψ ∈ C[0, 2π] : ψ(0) = ψ(2π)}, which is a closed subspace
of C[0, 2π], so it is Banach, and

(Fψ)n =
1√
2π

∫ 2π

0

e−intψ(t) dt, ψ ∈ Cp[0, 2π].

Corollary 1.1.37. The set of elements ψ ∈ Cp[0, 2π] whose Fourier series∑
n∈Z

(Fψ)n e
int converges for t = 0 is meager.

Proof. By working with trigonometric relations it is found that, for each N , the
partial sum (SNψ)(t) =

∑
|n|≤N (Fψ)n e

int can be written in the form

(SNψ)(t) =
1
2π

∫ 2π

0

sin[(2N + 1)(t− s)/2]
sin[(t− s)/2]

ψ(s) ds.

Note that fN : Cp[0, 2π] → C, fN(ψ) = (SNψ)(0), is an element of the dual
of Cp[0, 2π]; thus, in order to conclude this proof it is enough to show that
supN ‖fN‖ = ∞ and use Proposition 1.1.36 with fN represented by Tα.
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Consider φN (t) = sin[(2N + 1)t/2], an element of Cp[0, 2π] with norm equal
to 1; thus

fN (φN ) =
1
2π

∫ 2π

0

sin2[(2N + 1)s/2]
sin(s/2)

ds

≥ 1
π

∫ 2π

0

sin2[(2N + 1)s/2]
s

ds

=
1
π

∫ (2N+1)π

0

sin2 u

u
du

≥ 1
π

2N+1∑
n=1

∫ nπ

(n−1)π

sin2 u

nπ
du =

1
2π

2N+1∑
n=1

1
n
.

Since the harmonic series is divergent, one concludes that limN→∞ ‖fN‖ = ∞,
and the proof is complete. �
Exercise 1.1.38. Verify that Cp[0, 2π] is a Banach space, and also the validity
of the expression for a partial sum for the Fourier series used in the proof of
Corollary 1.1.37.

Now the famous Riesz representation theorem of Hilbert spaces H, which
shows that every Hilbert space is naturally identified to its dual, is recalled and
demonstrated. In order to fix notation, remember that an inner product in a vector
space X is a map (ξ, η) �→ 〈ξ, η〉, X × X → F, so that for any ξ, η, ζ ∈ X and
α ∈ F it satisfies:

i) 〈αξ + η, ζ〉 = ᾱ〈ξ, ζ〉 + 〈η, ζ〉,
ii) 〈ξ, η〉 = 〈η, ξ〉,
iii) 〈ξ, ξ〉 ≥ 0, and 〈ξ, ξ〉 = 0 iff ξ = 0.

In an inner product space one has the induced norm ‖ξ‖ :=
√
〈ξ, ξ〉, so

that the Cauchy-Schwarz |〈ξ, η〉| ≤ ‖ξ‖‖η‖ and triangular ‖ξ + η‖ ≤ ‖ξ‖ + ‖η‖
inequalities always hold.
Exercise 1.1.39. Show that equality in Cauchy-Schwarz occurs iff {ξ, η} is linearly
dependent, while equality in the triangular occurs iff either ξ = 0 or η = tξ for
some t ≥ 0.

Let {ξα}α∈J be an orthonormal set in H. One of the advantages of the pres-
ence of an inner product in a Hilbert space H is the existence of orthonormal basis
of H, that is, if Lin({ξα}α∈J) = H. The following facts illustrate such advantages
quite well. For each ξ ∈ H, the Bessel inequality

‖ξ‖2 ≥
∑
α∈J

|〈ξα, ξ〉|2

holds; in particular, 〈ξα, ξ〉 
= 0 only for a countable number of indices α ∈ J .
Furthermore, the following assertions are equivalent:
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i) {ξα}α∈J is an orthonormal basis of H.
ii) If ξ ∈ H, then the Fourier series of ξ, with respect to {ξα}α∈J , converges

in H for ξ (and independent of the sum order), that is,

ξ =
∑
α∈J

〈ξα, ξ〉 ξα, ∀ξ ∈ H.

iii) [Parseval Identity] For all ξ ∈ H,

‖ξ‖2 =
∑
α∈J

|〈ξα, ξ〉|2.

Furthermore, if {ξα}α∈J is an orthonormal basis and η =
∑

α∈J〈ξα, η〉ξα,
then

〈ξ, η〉 =
∑
α

〈ξ, ξα〉 〈ξα, η〉.

Theorem 1.1.40 (Riesz Representation). Let H be a Hilbert space and H∗ its dual.
The map γ : H → H∗, γ(ξ) = fξ, for ξ ∈ H, given by

γ(ξ)(η) = fξ(η) = 〈ξ, η〉, ∀η ∈ H,

is an antilinear (i.e., αξ �→ αξ, ∀α ∈ F) and onto isometry on H∗.
Remark 1.1.41. This theorem implies that each element of H∗ is identified to a
unique ξ ∈ H, via fξ, and ‖fξ‖ = ‖ξ‖; one then says such ξ represents fξ. Note that
two distinct notations for this map were introduced: γ(ξ) and fξ; this is convenient
in certain situations.

Proof. If ξ = 0, clearly fξ = 0. If ξ ∈ H, then fξ is a linear functional and
|fξ(η)| = |〈ξ, η〉| ≤ ‖ξ‖‖η‖, so that fξ ∈ H∗ with ‖fξ‖ ≤ ‖ξ‖. In view of ‖ξ‖2 =
fξ(ξ) ≤ ‖fξ‖‖ξ‖ one has ‖fξ‖ ≥ ‖ξ‖. Hence ‖fξ‖ = ‖ξ‖, and the map γ is an
isometry, obviously antilinear (linear in the real case). Then we only need to show
that every f ∈ H∗ is of the form fξ for some ξ ∈ H. If f = 0, then f = fξ
for ξ = 0. If f 
= 0, since the kernel N(f) is a proper closed vector subspace
(since f is continuous) of H, it is found that

H = N(f) ⊕ N(f)⊥,

and there exists ζ ∈ N(f)⊥ with ‖ζ‖ = 1. Now, by noticing that the vector
(f(η)ζ − f(ζ)η) ∈ N(f), for all η ∈ H (this remark is simple but essential in this
proof), one concludes that

〈ζ, f(η)ζ − f(ζ)η〉 = 0, ∀η ∈ H,

that is, f(η) = 〈f(ζ)ζ, η〉. Therefore, f = γ(f(ζ)ζ). �
Exercise 1.1.42. If f ∈ H∗, what is the dimension of N(f)⊥?
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Example 1.1.43. The hypothesis that the inner product space is complete can not
be dispensed with in Theorem 1.1.40. Consider the subspace N of l2(N) whose
elements have just a finite number of nonzero entries; then f : N → F, f(η) =∑∞
j=1 ηj/j, belongs to N ∗, but there is no ξ ∈ N with f = fξ, since the vector

(1, 1/2, 1/3, . . . ) /∈ N .

Now a simple and useful technical result, although it is restricted to complex
inner product spaces, as illustrated by Example 1.1.45.

Lemma 1.1.44. Let (X, 〈·, ·〉) be a complex inner product space. If T : X ←↩ is a
linear operator and 〈Tξ, ξ〉 = 0 for all ξ ∈ X, then T = 0. Hence, if T, S are linear
operators and 〈Tξ, ξ〉 = 〈Sξ, ξ〉 for all ξ ∈ X, then T = S.

Proof. For all α ∈ C and any ξ, η ∈ X one has

0 = 〈T (αξ + η), αξ + η〉 = ᾱ〈Tξ, η〉 + α〈Tη, ξ〉.

By picking, successively, α = 1 and α = −i one obtains

〈Tξ, η〉 + 〈Tη, ξ〉 = 0 and 〈Tξ, η〉 − 〈Tη, ξ〉 = 0,

whose unique solution is 〈Tξ, η〉 = 0, for all ξ, η ∈ X , that is, T is the zero
operator. �

Example 1.1.45. Consider the rotation R by the right angle on R2, so that R 
= 0
while 〈Rξ, ξ〉 = 0, ∀ξ ∈ R2.

Before closing this section, recall the parallelogram law

‖ξ + η‖2 + ‖ξ − η‖2 = 2‖ξ‖2 + 2‖η‖2, ∀ξ, η ∈ X

as well as the polarization identity

〈ξ, η〉 =
1
4
(
‖ξ + η‖2 − ‖ξ − η‖2 + i‖ξ + iη‖2 − i‖ξ − iη‖2

)
,

which hold in any (complex) inner product space.

1.2 Closed Operators

Before discussing closed operators it can be useful to recall the so-called open
mapping theorem. A map between topological spaces is open if the image of every
open subset is also open. There are invertible continuous maps that are not open,
as shown by the following examples.
Example 1.2.1. The identity map between Rn with the discrete topology and Rn

with the usual topology is continuous and invertible, but its inverse map is not
continuous, that is, this bijective continuous map is not open.
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Example 1.2.2. Let X = [−1, 0] ∪ (1, 2] in R and ψ : X → [0, 4], ψ(t) = t2. ψ is a
continuous bijection, but its inverse ψ−1 : [0, 4] → X , given by

ψ−1(t) =
{
−
√
t if 0 ≤ t ≤ 1√
t if 1 < t ≤ 4

,

is not continuous.
Exercise 1.2.3. Show that T : l1(N) ←↩ given by T (ξ1, ξ2, ξ3, . . . ) = (ξ1/1, ξ2/2,
ξ3/3, . . . ) is linear, continuous and invertible, but its inverse T−1, defined on the
range of T , is not a continuous operator.

Theorem 1.2.4 (Open Mapping). If T ∈ B(B1,B2) with rng T = B2, then T is an
open map.

Proof. The following properties will be used, and only the last one is not immedi-
ate:

a) for all r, s > 0 one has TB(0; r) = r
sTB(0; s).

b) for all ξ ∈ B1 and r > 0, one has TB(ξ; r) = Tξ + TB(0; r) (sum of sets).
c) if B(0; ε) ⊂ TB(0; r), then B(0;αε) ⊂ TB(0;αr), for all α > 0. Then if

there is r > 0 so that TB(0; r) contains a neighborhood of the origin, then
TB(0; s) contains a neighborhood of the origin for all s > 0 (note that such
implications also hold without closures of the sets).

d) if B(η0; ε) ⊂ TB(0; r), then there exists δ > 0 so that B(0; δ) ⊂ TB(0; r)
(note that it also holds without closure of the sets).

To prove the last property, pick ξ1 ∈ B(0; r) so that ‖η1−η0‖ < ε/2, with η1 = Tξ1.
Thus,

B(η1; ε/2) ⊂ B(η0; ε) ⊂ TB(0; r),

and so

B(0; ε/2) =B(η1; ε/2)− η1 ⊂ {B(η0; ε) − Tξ1}

⊂
{
TB(0; r) − Tξ1

}
⊂ T [B(0; r) − ξ1] ⊂ TB(0; 2r) .

Then it follows that B(0; ε/2) ⊂ TB(0; 2r) and, therefore, B(0; δ) ⊂ TB(0; r) with
δ = ε/4, proving d).

Lemma 1.2.5. If T ∈ B(N1,N2) and there exists r > 0 so that the interior
of TB(0; r) is nonempty, then T is an open map.

Proof. Since the interior of TB(0; r) 
= ∅, from the above properties it follows
that for all s > 0, TB(0; s) contains an open ball centered at the origin. To show
that T is an open map it is enough to show that for all ξ ∈ N1 and all s > 0,
TB(ξ; s) contains a neighborhood of Tξ. In view of TB(ξ; s) = Tξ + TB(0; s),
one may consider ξ = 0 and verify that for all s > 0 the set TB(0; s) contains a
neighborhood of the origin, but this is exactly what was observed at the beginning
of this proof. �
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By this lemma, to prove the open mapping theorem it is enough to verify
that there exists some r > 0 so that TB(0; r) contains an open ball centered at the
origin. Note that only from this point will the completeness of B1,B2 and that T
is onto be used; the Baire theorem will be crucial.

Since T is onto B2 =
⋃∞
n=1 TB(0;n), and by the Baire theorem there is

some m so that the interior of TB(0;m) is nonempty. By property c) it is possible
to take m = 1.

By property d) one may suppose that there is δ > 0 so that B(0; δ) ⊂
TB(0; 1). The goal now is to show that the relation TB(0; 1) ⊂ TB(0; 2) holds,
which, by Lemma 1.2.5, proves the theorem.

Let η ∈ TB(0; 1). Pick ξ1 ∈ B(0; 1) with

(η − Tξ1) ∈ B(0; δ/2) ⊂ TB(0; 1/2).

In the last step property c) was invoked. Pick now ξ2 in B(0; 1/2) so that (again
by c))

(η − Tξ1 − Tξ2) ∈ B(0; δ/22) ⊂ TB(0; 1/22).

By induction, pick ξn ∈ B(0; 1/2n−1) satisfying⎛⎝η − n∑
j=1

Tξj

⎞⎠ ∈ B(0; δ/2n) ⊂ TB(0; 1/2n).

(
∑n
j=1 ξj)n is a Cauchy sequence and, since B1 is complete, there exists ξ =∑∞
j=1 ξj and, by the continuity of the map T it follows that η = Tξ. Since ‖ξ‖ < 2,

one gets TB(0; 1) ⊂ TB(0; 2). �
By the open mapping theorem the next result is evident; it is sometimes

called the inverse mapping theorem.

Corollary 1.2.6. If T ∈ B(B1,B2) is a bijection between B1 and B2, then T−1 is
also a linear continuous map.

Recall that the cartesian product N1×N2 of two normed spaces has a natural
structure of vector space given by α(ξ, η) = (αξ, αη), α ∈ F, and (ξ1, η1)+(ξ2, η2) =
(ξ1+ξ2, η1+η2); furthermore, this cartesian product becomes a normed space with
the norm ‖(ξ, η)‖ = (‖ξ‖2

N1
+‖η‖2

N2
)

1
2 ; such a norm is equivalent to ‖ξ‖N1 +‖η‖N2

and both may be employed.

Definition 1.2.7. The graph of a linear operator T : dom T ⊂ N1 → N2 is the
vector subspace G(T ) = {(ξ, T ξ) : ξ ∈ dom T } of N1 ×N2. The graph norm of T
on dom T is ‖ξ‖T :=

(
‖Tξ‖2 + ‖ξ‖2

)1/2.
Definition 1.2.8. A linear operator T : dom T ⊂ N1 → N2 is closed if for all con-
vergent sequences (ξn) ⊂ dom T , ξn → ξ ∈ N1, with (Tξn) ⊂ N2 also convergent,
Tξn → η, then ξ ∈ dom T and η = Tξ. In other words, T is closed iff G(T ) is a
closed subspace of N1 ×N2.
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Exercise 1.2.9. a) Show that B1 × B2 with the norm ‖(ξ, η)‖ defined above is a
Banach space. b) Show that T is a closed operator iff dom T with the graph norm
is a Banach space.
Exercise 1.2.10. Verify that G(T ) is a vector subspace of N1 ×N2 and the equiv-
alence quoted in the above definition of closed operator.
Remark 1.2.11. Pay attention to the difference between a continuous and a closed
operator: a linear operator T is continuous if for ξn → ξ in dom T , then nec-
essarily Tξn → Tξ, while for a closed operator it is asked that if both (ξn) ⊂
dom T and (Tξn) are convergent, then necessarily ξ = limn ξn belongs to dom T
and Tξn → Tξ.
Exercise 1.2.12. Consider the linear operator T : dom T ⊂ N1 → N2, and let π1 :
G(T ) → dom T and π2 : G(T ) → rng T be the natural projections π1(ξ, T ξ) = ξ
and π2(ξ, T ξ) = Tξ, for ξ ∈ dom T . Show that such projections are continuous
linear operators.

It is important to give conditions to guarantee that closed operators are
continuous, since the requirement for being closed is in general easier to verify;
the closed graph theorem, presented below, says that such concepts are equivalent
for linear operators between Banach spaces.

A first result in this direction appears in:

Proposition 1.2.13. Any operator T ∈ B(B1,B2) is closed.

Proof. Let ξn → ξ with Tξn → η. Since ξ ∈ dom T and T is continuous, then
Tξn → Tξ = η; thus T is closed. �
Exercise 1.2.14. If dimN1 < ∞, show that every linear operator T : dom T ⊂
N1 → N2 is closed.
Example 1.2.15 (Bounded and nonclosed). Let 1 : dom 1 → B, with dom 1 a
proper dense subspace of B, the identity operator 1(ξ) = ξ for ξ ∈ dom 1; such
operator is bounded. Let (ξn) ⊂ dom 1 with ξn → ξ ∈ B\dom 1. Since ξn →
ξ and 1(ξn) → ξ, but ξ /∈ dom 1, this operator is not closed. It is a rather
artificial example, but it illustrates the difference between bounded and closed
linear operators.
Exercise 1.2.16. If N ⊂ B, show that T ∈ B(N ,B) is closed if, and only if, N is
a Banach space.
Remark 1.2.17. If T ∈ B(N1,B2) with N1 ⊂ B1, then its unique continuous linear
extension T : N 1 → B2 is a closed operator (Proposition 1.2.13). Then, every con-
tinuous linear operator is “basically” closed, and the artificiality in Example 1.2.15
is unavoidable.
Example 1.2.18 (Unbounded and closed). Let C1[0, π] ⊂ C[0, π] (both with the
uniform convergence topology) be the subspace of continuously differentiable func-
tions on [0, π] and D : C1[0, π] → C[0, π], (Dψ)(t) = ψ′(t). D is not continuous,
since the sequence ψn(t) = sin(nt)/n → 0, while (Dψn)(t) = cos(nt) does not
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converge uniformly to zero. However, this operator is closed. In fact, if ψn → ψ
and Dψn = ψ′n → ϕ, then, as these limits are uniform,∫ t

0

ϕ(s) ds =
∫ t

0

lim
n→∞

ψ′n(s) ds = lim
n→∞

∫ t

0

ψ′n(s) ds = ψ(t) − ψ(0).

Thus, ψ ∈ dom D = C1[0, π] and (Dψ)(t) = ϕ(t), ∀t, and D is closed.
Exercise 1.2.19. From Example 1.2.18, show that if (ψj)∞j=1 ⊂ C1[0, π] is such that
the series ψ(t) =

∑∞
j=1 ψj(t) and ϕ(t) =

∑∞
j=1 ψ

′
j(t) converge uniformly, then ψ

is continuously differentiable and ϕ = ψ′.
Example 1.2.20 (Unbounded and nonclosed). Let dom T be the set of continuous
functions in L1[−1, 1] and (Tψ)(t) = ψ(0), ∀t, as element of L1[−1, 1]. This oper-
ator is neither continuous nor closed, since ψn(t) = e−|t|n → 0 in L1[−1, 1], while
(Tψn)(t) = 1, ∀t, for all n. Note that it has no closed extensions.

Theorem 1.2.21 (Closed Graph). If T : B1 → B2 is a linear operator, then T is
continuous if, and only if, T is closed.

Proof. One of the assertions of the closed graph theorem was already discussed;
it is only needed to show that, under such conditions, if the linear operator T is
closed, then it is bounded; the open mapping theorem will be used.

By hypotheses G(T ) is closed in B1 × B2, then G(T ) is also a Banach space.
The projection operators π1 and π2 (see Exercise 1.2.12) are both linear and
continuous. Moreover, π1 is a bijection between the Banach spaces G(T ) and B1;
thus, by the open mapping theorem, its inverse π−1

1 : B1 → G(T ) is continuous.
Since T is the composition

T = π2 ◦ π−1
1 ,

it follows that it is a bounded operator. �
Example 1.2.22 (Unbounded and closed). It is essential that the operator range is
a complete space. The operator T−1 : rng T → l1(N) in Exercise 1.2.3 has closed
graph but is not continuous.
Remark 1.2.23. One could imagine that a linear operator is not closed because its
domain was chosen too small, and by considering the closure G(T ) in N1 ×N2 a
closed operator would result. This may not work, since G(T ) is not necessarily the
graph of an operator; see Example 1.2.20 where the point (0, 1) belongs to G(T ),
however it is not of the form (0, S0) for any linear operator S.
Exercise 1.2.24. Let E be a subspace of N1 ×N2. Show that E is the graph of a
linear operator if, and only if, E does not contain any element of the form (0, η),
with η 
= 0.

Definition 1.2.25.

(a) The linear operators T , for which G(T ) is the graph of a linear extension T
of T , are called closable operators and T is the closure of T (see Proposi-
tion 1.2.27).
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(b) If the operator T : dom T � N1 :→ N2 is closed, a subspace D ⊂ dom T is
called a core of T if T |D = T , that is, if the closure of the restriction T |D is T .

Exercise 1.2.26. Show thatX is a core of the closed operator T iff {(ξ, T ξ) : ξ ∈ X}
is dense in G(T ).

If the linear operator T : dom T ⊂ N1 → N2 is closable, then

D = {ξ ∈ N1 : ∃(ξn) ⊂ dom T, ξn → ξ and exists η ∈ N2 with Tξn → η}

is a subset of all closed extensions of T . Define dom T̃ = D and, for ξ ∈ D,
T̃ ξ := η, and note that, by construction, G(T̃ ) is closed in N1 × N2, and so T̃
is closed. Note also that G(T̃ ) = G(T ). Therefore T̃ is the closure of T , that is,
T̃ = T . In summary:

Proposition 1.2.27. If T : dom T ⊂ N1 → N2 is closable, then G(T ) is the graph
of its closure T , which is the smallest closed extension of T .

Exercise 1.2.28. Show that T is a closed operator acting in H iff dom T with the
graph inner product of T , given by 〈η, ξ〉T := 〈Tη, T ξ〉+ 〈η, ξ〉, is a Hilbert space.
This inner product generates a graph norm (Definition 1.2.7) and the correspond-
ing orthogonality will be denoted by ⊥T .

1.3 Compact Operators

The compact operators have some similarities with operators on finite-dimensional
spaces and so the theory presents several technical simplifications. These operators
are important in many applications, sometimes as integral operators, a historically
important example of compact operator.

It is convenient to recall some definitions and properties – in the form of
exercises – of metric spaces theory. A set A in the metric space (X, d) is relatively
compact, or precompact, if its closure A is compact. A is totally bounded if, for
all ε > 0, A is in the finite union of open balls in X with radii ε; so, any totally
bounded set is also bounded.
Exercise 1.3.1. Show that if A ⊂ (X, d) is precompact, then A is totally bounded
and, so, bounded.
Exercise 1.3.2. If A ⊂ (X, d) is totally bounded, show that, for all ε > 0, A is
in the union of a finite number of open balls of radii ε centered at points of A.
Conclude then that a totally bounded set is separable with the induced topology,
that is, it contains a countable dense subset.

Lemma 1.3.3. Any totally bounded subset of a complete metric space is precompact.

Proof. Let A be a totally bounded set; then its closure is also totally bounded
(from a cover of balls, the family of balls with the same centers but with double
radii covers the closure of the set). Since this set is in a complete metric space,
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to show that its closure is compact it is enough to check that every sequence
(ξn) ⊂ A has a Cauchy subsequence. Such a set being totally bounded, there is a
subsequence (ξ1,n) of (ξn) contained in an open ball of radius 1. In the same way,
there exists a subsequence (ξ2,n) of (ξ1,n) contained in an open ball of radius 1/2;
it is possible to construct subsequences (ξk,n)n≥1 of (ξk−1,n)n≥1 contained in some
open ball of radius 1/k, for all k ∈ N. To finish the proof note that (ξk,k)k≥1 is a
Cauchy subsequence of the original sequence. �
Definition 1.3.4. A linear operator T : N1 → N2 is compact, also called completely
continuous, if the range T (A), of any bounded set A ⊂ N1 is precompact in N2.
The set of such compact operators will be denoted by B0(N1,N2) (or B0(N ) in
case N1 = N2 = N ).

Remark 1.3.5. Equivalently, T : N1 → N2 linear is compact if (Tξn) has a con-
vergent subsequence in N2 for every bounded sequence (ξn) ⊂ N1. Verify this!
Exercise 1.3.6. If dimN = ∞, show that the identity operator 1 : N ←↩ is not
compact (use, for instance, Riesz’s Lemma 1.6.2).

Proposition 1.3.7. Let N1,N2 be normed spaces and T, S : N1 → N2 linear opera-
tors. Then:

i) B0(N1,N2) is a vector subspace of B(N1,N2).
ii) If T is compact and S bounded, then TS and ST are compact operators

(suppose all operations are well posed).

Proof. i) Let T ∈ B0(N1,N2); since T (S(0; 1)) is precompact, it is bounded. Thus,
T ∈ B(N1,N2). The proof that B0(N1,N2) is a vector subspace is left to the
readers.

ii) If A is a bounded set, then S(A) is also bounded and, so, T (S(A)) is
precompact. Therefore, TS is compact.

Given a bounded set A, the range by T of any sequence (ξn) ⊂ A has a
convergent subsequence (Tξnj ), since T is compact. S being continuous, (STξnj )
is also convergent. Therefore, ST (A) is precompact and ST is a compact operator.

�
Remark 1.3.8. A map between metric spaces is compact if the range of bounded
sets is precompact; the Dirichlet function h : R → R, h(t) = 1 if t ∈ Q and
h(t) = 0 otherwise, is compact, but not continuous in any point of its domain (cf.
Proposition 1.3.7).

Important examples of compact operators are the finite-rank operators.

Definition 1.3.9. T ∈ B(N1,N2) is of finite rank if dim rng T < ∞. The vector
space of finite rank operators between these spaces will be denoted by Bf(N1,N2)
(it will also be used the obvious notation Bf(N )).

Proposition 1.3.10. All finite rank operators are compact. In particular N ∗ =
B0(N ,F).
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Proof. Let T ∈ Bf(N1,N2) and A ⊂ N1 a bounded set. Since T is a bounded
operator, T (A) is bounded and its closure T (A) is a closed and bounded set and,
in view of dim rng T <∞, it follows that T (A) is a compact set. �

Lemma 1.3.11. If T ∈ B0(N1,N2), then T (N1) is separable.

Proof. Since N1 =
⋃∞
j=1 B(0; j), then for T : N1 → N2, rng T =

⋃∞
j=1 T (B(0; j)).

In order to conclude the lemma, it is sufficient to show that for each j ∈ N the
set TB(0; j) has a countable dense subset. If T is compact, TB(0; j) is totally
bounded; thus, for each m ∈ N it can be covered by a finite number of open balls
of radii 1/m, centered at points of TB(0; j). The union of the centers of such open
balls for all m ∈ N is a dense countable set of TB(0; j). �

Exercise 1.3.12. Let T : N1 → N2 linear. Show that it is compact if, and only if,
TB(0; 1) is precompact in N2.

Theorem 1.3.13. B0(N ,B) is a closed subspace of B(N ,B); therefore, B0(N ,B) is
a Banach space.

Proof. Let (Tn) ⊂ B0(N ,B), with Tn → T in B(N ,B). It will be shown that
for all r > 0 the set TB(0; r) is totally bounded and, therefore, precompact by
Lemma 1.3.3. From this it follows that T is also a compact operator.

Given ε > 0, there is n such that ‖Tn − T ‖ < ε/r. Since Tn is compact,
the set TnB(0; r) is totally bounded and, so, it is in the union of certain balls
B(Tnξ1; ε), B(Tnξ2; ε), . . . , B(Tnξm; ε), with ξj ∈ B(0; r), for all 1 ≤ j ≤ m. Hence,
if ξ ∈ B(0; r) there is one of these ξj such that Tnξ ∈ B(Tnξj ; ε). From this

‖Tξ − Tξj‖ ≤ ‖Tξ − Tnξ‖ + ‖Tnξ − Tnξj‖ + ‖Tnξj − Tξj‖
< ‖T − Tn‖‖ξ‖ + ε+ ‖Tn − T ‖‖ξj‖
<
ε

r
r + ε+

ε

r
r = 3ε,

showing that TB(0; r) ⊂
⋃m
j=1 B(Tnξj ; 3ε). Therefore TB(0; r) is totally bounded

for all r > 0. �

Corollary 1.3.14. If (Tn) ⊂ Bf(N ,B) and Tn → T in B(N ,B), then the operator
T is compact.

Proof. Combine Proposition 1.3.10 and Theorem 1.3.13. �

Recall that a sequence (ξn)⊂N converges weakly to ξ ∈ N if limn→∞f(ξn)=
f(ξ) for all f ∈ N ∗, and that all weakly convergent sequences are bounded. ξn

w−→
ξ and w − lim ξn = ξ will be used to indicate that (ξn) converges weakly to ξ.
The convergence of (ξn) to ξ in the norm of N will be called strong convergence

and indicated by ξn → ξ, ξn
s−→ ξ and s − lim ξn = ξ.

There are also corresponding notions of convergence of a sequence (Tn) of
bounded operators in B(N ).
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Definition 1.3.15. Let (Tn) be a sequence of operators in B(N1,N2) and T : N1 →
N2 linear. One says that

a) Tn converges uniformly, or in norm, to T if

‖Tn − T ‖ → 0.

The uniform convergence is denoted by Tn → T or limn→∞ Tn = T .
b) Tn converges strongly to T if

‖Tnξ − Tξ‖N2 → 0, ∀ξ ∈ N1.

The strong convergence of linear operators will be denoted by Tn
s−→ T or

s − limn→∞ Tn = T .
c) Tn converges weakly to T if

|f(Tnξ) − f(Tξ)| → 0, ∀ξ ∈ N1, f ∈ N ∗
2 .

The weak convergence of linear operators will be denoted by Tn
w−→ T or

w − limn→∞ Tn = T .

Exercise 1.3.16. Show that in B(N1,N2) the three kinds of limits defined above
are well defined and unique (if they exist, of course). Moreover, verify that the
uniform convergence =⇒ strong convergence =⇒ weak convergence, and with the
same limits.
Example 1.3.17. Let PN : l1(N) ←↩, PNξ = (ξ1, ξ2, . . . , ξN , 0, 0, . . . ), with ξ =
(ξ1, ξ2, ξ3, . . . ). Since ‖PNξ− ξ‖ =

∑∞
j=N+1 |ξj | it is found that PN

s−→ 1. On the
other hand, ‖PNξ − ξ‖ ≤ ‖ξ‖ and ‖PNe(N+1) − e(N+1)‖ = ‖e(N+1)‖ = 1, ∀N, and
then (PN ) is not uniformly convergent ((ej) is the canonical basis of l1(N)). Adapt
it to lp, 1 < p <∞.
Exercise 1.3.18. Show that the sequence of operators Tn : l2(N) ←↩

Tnξ = (0, 0, . . . , 0︸ ︷︷ ︸
n entries

, ξn+1, ξn+2, ξn+3, . . . )

converges strongly to zero, but does not converge uniformly.
Exercise 1.3.19. Show that the sequence of operators Tn : l2(N) ←↩

Tnξ = (0, 0, . . . , 0︸ ︷︷ ︸
n entries

, ξ1, ξ2, ξ3, . . . )

converges weakly to zero, but does not converge strongly.

As a reformulation of the Banach-Steinhaus theorem, one has (by using an
obvious generalization of convergence of operators):

Proposition 1.3.20. If (Tn) in B(B,N ) converges strongly to the operator T : B →
N , then T ∈ B(B,N ).
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Note that due to the Riesz representation Theorem 1.1.40, a sequence (ξn) ⊂
H converges weakly to ξ if, and only if,

lim
n→∞

〈η, ξn〉 = 〈η, ξ〉, ∀η ∈ H.

Exercise 1.3.21. Show that every orthonormal sequence in a Hilbert space con-
verges weakly to zero and has no strongly convergent subsequence.

Recall the Hilbert adjoint T ∗ of a bounded operator T ∈ B(H1,H2). It is
the unique linear operator so that

〈ξ, T η〉 = 〈T ∗ξ, η〉, ∀ξ ∈ H2, η ∈ H1.

Further, T ∗ ∈ B(H2,H1) and ‖T ∗‖ = ‖T ‖. The bounded linear operator T is
self-adjoint if T ∗ = T . See a generalization of the concept of adjoint to certain
unbounded operators in Definition 2.1.2. Finally, recall that an operator P ∈ B(H)
is an orthogonal projection if it is self-adjoint and P 2 = P , and it projects onto
the closed subspace rng P .

Proposition 1.3.22. Let T ∈ B0(H1,H2). If ξn
w−→ ξ in H1, then Tξn → Tξ, i.e.,

a compact operator takes weakly convergent sequences to strongly convergent ones
(this result also holds in normed spaces).

Proof. Suppose ξn
w−→ ξ in H1. If η ∈ H2,

〈η, T ξn〉 = 〈T ∗η, ξn〉 → 〈T ∗η, ξ〉 = 〈η, T ξ〉,

showing that Tξn
w−→ Tξ. If Tξn does not converge strongly to Tξ, there exists ε >

0 and a subsequence (Tξnj ) with ‖Tξnj −Tξ‖ ≥ ε. Since T is a compact operator,
Tξnj has the strongly convergent subsequence and, necessarily, it converges to Tξ.
The contradiction with the above inequality proves the proposition. �

In a Hilbert space the closure (with the usual norm of B(H)) of the vector
space of finite-rank operators coincides with the set of compact operators; to show
this the following technical result will be useful. Remember that a Hilbert space
is separable iff it has a countable orthonormal basis.

Lemma 1.3.23. If T ∈ B0(H1,H2), then rng T and N(T )⊥ are separable vector
spaces.

Proof. rng T is separable by Lemma 1.3.11. Let {eα}α∈J be an orthonormal basis
of N(T )⊥. If J is finite the result is clear.

Suppose that J is not finite; the goal is to show that J is enumerable. Every
sequence (eαj )∞j=1 of pairwise distinct elements of {eα}α∈J weakly converges to
zero (Exercise 1.3.21) and, by Proposition 1.3.22, Teαj → 0, for j → ∞. Thus, for
each n ∈ N there exists only a finite number of α ∈ J with ‖Teα‖ ≥ 1/n. Hence, J
is enumerable, for

J =
∞⋃
n=1

{α : ‖Teα‖ ≥ 1/n}.
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Recall that Teα 
= 0, ∀α ∈ J , since eα ∈ N(T )⊥. �

Remark 1.3.24. If T : H1 → H2 is a finite rank operator of rank N < ∞, then
there exist vectors ξ1, η1, . . . , ξN , ηN so that

Tξ =
N∑
j=1

〈ηj , ξ〉 ξj ,

the so-called canonical form of T . Indeed, if {ξ1, . . . , ξN} is an orthonormal basis
of rng T , then

Tξ =
N∑
j=1

〈ξj , T ξ〉 ξj =
N∑
j=1

〈T ∗ξj , ξ〉 ξj ;

now put ηj = T ∗ξj .

Theorem 1.3.25. An operator T ∈ B(H1,H2) is compact if, and only if, there
is a sequence of finite rank operators (Tn) ⊂ Bf(H1,H2), which converges to T
in B(H1,H2).

Proof. If T is the limit of finite-rank operators, then T is compact by Corol-
lary 1.3.14. Let T ∈ B0(H1,H2) and P the orthogonal projection on N(T )⊥, so that
T = TP . If dim N(T )⊥ < ∞ the result is clear; suppose then that dimN(T )⊥ =
∞ and pick an orthonormal basis (ej)∞j=1 of N(T )⊥, which is enumerable by
Lemma 1.3.23. Denote by Pn the orthogonal projection on Lin({e1, . . . , en}). Thus,
the operator Tn = TPn has finite rank. It will be shown that Tn → T .

For each n there exists ξn ∈ H1, ‖ξn‖ = 1, with

1
2
‖T − Tn‖ ≤ ‖(T − Tn)ξn‖ = ‖T (P − Pn)ξn‖.

Since (Pn − P ) s−→ 0 and for all η ∈ H1,

|〈η, (P − Pn)ξn〉| = |〈(P − Pn)η, ξn〉| ≤ ‖(P − Pn)η‖,

then (P − Pn)ξn
w−→ 0. Since T is a compact operator, by Proposition 1.3.22

it follows that T (P − Pn)ξn → 0 and, by the inequality above, it is found that
‖T − Tn‖ → 0. �
Exercise 1.3.26. Let T ∈ B(H), with H separable. Show that there is a sequence
(Tn) of finite rank operators which converges strongly to T , that is, Tn

s−→ T .

Corollary 1.3.27. Let T ∈ B(H1,H2). Then T is compact if, and only if, its Hilbert
adjoint T ∗ is compact.

Proof. T is compact if, and only if, there exists a sequence (Tn) ⊂ Bf(H1,H2) so
that Tn → T . Since T ∗n has also finite rank and ‖T ∗−T ∗n‖ = ‖(T−Tn)∗‖ = ‖T−Tn‖,
one concludes that T is compact if, and only if, T ∗ is compact. �
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Proposition 1.3.28. Let T be an operator in B(H). Then T is compact if, and only
if, (Tξn) is convergent in H for all weakly convergent sequences (ξn).

Proof. If dimH <∞ the proof is quite simple. Suppose that dimH = ∞. Taking
into account the hypotheses and Proposition 1.3.22, it is enough to show that for
each bounded sequence (ξn) in H the sequence (Tξn) has a convergent subsequence.
Since in a Hilbert space any bounded set has a weakly convergent sequence, (ξn)
has a weakly convergent subsequence (ξnj ); by hypothesis, (Tξnj ) is convergent.
Thus, the image of every bounded sequence admits a convergent subsequence, and
so, T is a compact operator. �

Proposition 1.3.29. Let Sn, S ∈ B(H) with Sn
s−→ S. If T is a compact operator,

then TSn → TS and SnT → ST in the norm of B(H).

Proof. By considering Sn−S it is possible to suppose that S = 0. Since ‖T ∗S∗n‖ =
‖SnT ‖, by Corollary 1.3.27, it is enough to prove that SnT → 0 uniformly. For
each ε > 0 there is an operator Fε ∈ Bf(H) so that T = Tε + Fε, and ‖Tε‖ < ε.
The last preparatory remark is that there exists M > 0 so that supn ‖Sn‖ ≤ M ,
a consequence of the Banach-Steinhaus theorem.

In view of

‖SnT ‖≤ ‖Sn(Fε + Tε)‖
≤ ‖SnFε‖ + ‖Tε‖ ‖Sn‖
≤ ‖SnFε‖ + εM,

it is sufficient to prove that ‖SnFε‖ ≤ ε if n is large enough.

Write Fε(·) =
∑k
j=1〈ηj , ·〉ξj , ηj 
= 0. If ξ ∈ H with ‖ξ‖ = 1 one has

‖SnFεξ‖ ≤
k∑
j=1

|〈ηj , ξ〉| ‖Snξj‖ ≤
k∑
j=1

‖ηj‖ ‖Snξj‖

and since Sn
s−→ 0 if n is large ‖Snξj‖ < ε/(‖ηj‖k), 1 ≤ j ≤ k. Thus, as required,

‖SnFε‖ ≤ ε for n large enough. Thereby the proof of the proposition is complete.
�

Example 1.3.30. Let K : Q → F be continuous, with Q = [a, b] × [a, b]. Then the
integral operator TK : L2[a, b] ←↩ given by

(TKψ)(t) =
∫ b

a

K(t, s)ψ(s) ds, ψ ∈ L2[a, b],

is compact.



1.4. Hilbert-Schmidt Operators 27

Proof. For each t ∈ [a, b] the function s �→ K(t, s) is an element of L2[a, b]. Let
ψ ∈ B(0;R) ⊂ L2[a, b] and M = max(t,s)∈Q |K(t, s)|. For all t ∈ [a, b] one has

|(TKψ)(t)| ≤
∫ b

a

|K(t, s)||ψ(s)| ds

≤
(∫ b

a

|K(t, s)|2 ds
) 1

2

‖ψ‖2 ≤M
√
b− aR,

and TKB(0;R) is a bounded set. This set is also equicontinuous, since for ψ ∈
B(0;R),

|(TKψ)(t) − (TKψ)(r)| ≤ ‖K(t, ·) −K(r, ·)‖2‖ψ‖2 ≤ ε
√
b− aR,

if |t−r| < δ. Hence, by the Ascoli theorem, TKB(0;R) is precompact in (C[a, b], ‖·
‖∞). Since ‖φ‖2 ≤

√
b− a‖φ‖∞, for all continuous φ (especially for φ = TKψ),

then TKB(0;R) is precompact in L2[a, b]. �

Exercise 1.3.31. Show that a precompact set (compact) in (C[a, b], ‖ · ‖∞) is pre-
compact (compact) in L2[a, b]. This occurs because the identity map 1 : (C[a, b], ‖·
‖∞) → L2[a, b] is continuous.

Example 1.3.32. Let K ∈ L2(Q), with Q = [a, b]×[a, b]. Then the integral operator
TK : L2[a, b] ←↩ given by (TKψ)(t) =

∫ b
a
K(t, s)ψ(s)ds, for ψ ∈ L2[a, b], is compact.

Proof. Since the set of continuous functions on Q is dense in L2(Q), there exists a
sequence Kn : Q→ F of continuous functions so that ‖K −Kn‖L2(Q) → 0. Thus,
by defining Tn : L2[a, b] ←↩,

(Tnψ)(t) =
∫ b

a

Kn(t, s)ψ(s) ds, ψ ∈ L2[a, b],

and using estimates similarly to those in preceding examples, one obtains ‖Tnψ−
TKψ‖2 ≤ ‖Kn−K‖L2(Q)‖ψ‖2, and ‖Tn−TK‖ ≤ ‖Kn−K‖L2(Q), which vanishes as
n→ ∞. By Example 1.3.30 each Tn is a compact operator, and so TK is compact
(Theorem 1.3.13). �

1.4 Hilbert-Schmidt Operators

One of the most important classes of compact operators on Hilbert spaces is con-
stituted by the Hilbert-Schmidt operators, discussed in this section. Sometimes
the shortest way to show that an operator on a Hilbert space is compact is to
verify that it is Hilbert-Schmidt.
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Definition 1.4.1. An operator T ∈ B(H1,H2) is Hilbert-Schmidt if there is an
orthonormal basis {ej}j∈J of H1 with

‖T ‖HS :=

⎛⎝∑
j∈J

‖Tej‖2

⎞⎠
1
2

<∞.

The set of Hilbert-Schmidt operators between such Hilbert spaces will be denoted
by HS(H1,H2) or, briefly, by HS(H) if H1 = H2 = H.

Proposition 1.4.2. Let T ∈ B(H1,H2). Then

i) ‖T ‖HS does not depend on the orthonormal basis considered.
ii) T ∈ HS(H1,H2) if, and only if, its adjoint T ∗ ∈ HS(H2,H1). Furthermore,

‖T ‖HS = ‖T ∗‖HS.

Proof. If {ej}j∈J and {fk}k∈K are orthonormal bases of H1 and H2, respectively,
then, by Parseval,∑

j∈J
‖Tej‖2 =

∑
j∈J

k∈K

|〈Tej , fk〉|2 =
∑
j∈J

k∈K

|〈ej , T ∗fk〉|2 =
∑
k∈K

‖T ∗fk‖2.

Since such orthonormal bases are arbitrary ‖T ‖HS = ‖T ∗‖HS, and such values do
not depend on the orthonormal bases considered. �

Corollary 1.4.3. Let S, T be bounded operators between two Hilbert spaces. If one
of them is Hilbert-Schmidt, then the product TS is also Hilbert-Schmidt (assuming
the product is defined).

Proof. If S is Hilbert-Schmidt, then for any orthonormal basis {ej}j∈J of its do-
main

‖TS‖2
HS =

∑
j∈J

‖TSej‖2 ≤ ‖T ‖2
∑
j∈J

‖Sej‖2 = ‖T ‖2‖S‖2
HS,

and TS is Hilbert-Schmidt.
If the operator T is Hilbert-Schmidt, then by Proposition 1.4.2, one has that

S∗T ∗ is Hilbert-Schmidt. Since TS = (S∗T ∗)∗, then TS is Hilbert-Schmidt. �

Theorem 1.4.4. HS(H1,H2) is a vector subspace of B(H1,H2), it is a Hilbert space
with the norm ‖ · ‖HS, which is called Hilbert-Schmidt norm, and it is induced by
the (Hilbert-Schmidt) inner product

〈T, S〉HS :=
∑
j∈J

〈Tej, Sej〉, T, S ∈ HS(H1,H2),

with {ej}j∈J being any orthonormal basis of H1. Furthermore, the inequality
‖T ‖ ≤ ‖T ‖HS holds.



1.4. Hilbert-Schmidt Operators 29

Proof. If T, S ∈ HS(H1,H2), then for any orthonormal basis {ej}j∈J of H1

and all α ∈ F one has (by Cauchy-Schwarz applied to the inner product∑
j∈J ‖Tej‖‖Sej‖ in l2)

‖T + αS‖2
HS ≤

∑
j∈J

‖Tej‖2 + |α|2
∑
j∈J

‖Sej‖2 + 2|α|
∑
j∈J

‖Tej‖‖Sej‖

≤ (‖T ‖HS + |α| ‖S‖HS)2 ,

and so HS(H1,H2) is a vector space. From the same inequality it follows that
‖ · ‖HS is a norm.

Now it will be verified that 〈T, S〉HS is well posed and is independent of the
orthonormal basis considered. By Cauchy-Schwarz∑

j∈J
|〈Tej, Sej〉| ≤

∑
j∈J

‖Tej‖‖Sej‖

≤

⎛⎝∑
j∈J

‖Tej‖2

⎞⎠
1
2
⎛⎝∑
j∈J

‖Sej‖2

⎞⎠
1
2

= ‖T ‖HS ‖S‖HS,

(note that this corresponds to |〈T, S〉HS| ≤ ‖T ‖HS‖S‖HS) and the series defining
〈T, S〉HS converges absolutely. By the polarization identity (or similarly to the
proof of Proposition 1.4.2) it is found that∑

j

〈Tej, Sej〉 =
∑
k

〈S∗fk, T ∗fk〉,

for any orthonormal basis {fk} of H2; so 〈T, S〉HS is independent of the orthonor-
mal basis and, therefore, well posed. The properties of inner product are simple
and left to the reader.

If ξ ∈ H1, ‖ξ‖ = 1, pick an orthonormal basis of H1 of the following form
{ξ, ηl}l. Thus, ‖Tξ‖2 ≤

∑
l ‖Tηl‖2 + ‖Tξ‖2 = ‖T ‖2

HS, and so ‖T ‖ ≤ ‖T ‖HS.
We only need to show that HS(H1,H2) is complete; for this, consider a

Cauchy sequence (Tn) ⊂ HS(H1,H2). From the inequality ‖ · ‖B(H1,H2) ≤ ‖ · ‖HS

it is found that (Tn) is Cauchy in B(H1,H2) and, therefore, it converges to some
T ∈ B(H1,H2). It will be shown that T ∈ HS(H1,H2) and that Tn → T in this
space.

For ε > 0, there exists N(ε) with ‖Tn− Tm‖2
HS < ε if n,m ≥ N(ε). Consider

an orthonormal basis {ej}j∈J of H1. If F ⊂ J is finite,∑
j∈F

‖Tnej − Tmej‖2 ≤ ‖Tn − Tm‖2
HS < ε.

Taking m → ∞ one obtains
∑

j∈F ‖(Tn − T )ej‖2 ≤ ε, for all finite subsets F .
Therefore, ‖Tn−T ‖2

HS =
∑

j∈J ‖(Tn−T )ej‖2 ≤ ε, so that (T −Tn) ∈ HS(H1,H2)
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and (Tn − T ) → 0 in this space. Since HS(H1,H2) is a vector space, then T =
(T − Tn) + Tn belongs to HS(H1,H2), and this space is Hilbert. �

Exercise 1.4.5. Show that ‖ · ‖HS is a norm and that ‖TS‖HS ≤ ‖T ‖HS‖S‖HS.

At this point all the tools necessary to verify that Hilbert-Schmidt operators
are compact are available.

Theorem 1.4.6. HS(H1,H2) ⊂ B0(H1,H2).

Proof. Let T ∈ HS(H1,H2) and (ξn) ⊂ H1, with ξn
w−→ ξ. By Proposition 1.3.28,

in order to show that T is compact it is sufficient to verify that Tξn → Tξ. Note
that, by linearity, it is sufficient to consider the case ξn

w−→ 0.
Let {ej}j∈J be an orthonormal basis of H2. For each n it is known that the

set {j ∈ J : 〈ej , T ξn〉 
= 0} is countable (if it is finite for all n the argument ahead
is easily adapted) and, for notational simplicity, it will be denoted by the natural
numbers. Thus,

‖Tξn‖2 =
∞∑
j=1

|〈ej , T ξn〉|2 ≤
N∑
j=1

|〈T ∗ej, ξn〉|2 +M

∞∑
j=N+1

‖T ∗ej‖2,

with M = supn∈N
‖ξn‖2 (M is finite since every weakly convergent sequence is

bounded).
For ε > 0, pick N with

∑∞
j=N+1 ‖T ∗ej‖2 < ε/M , which exists since T ∗ ∈

HS(H2,H1). Now, in view of ξn
w−→ 0, there exists K so that

∑N
j=1 |〈T ∗ej, ξn〉|2 <

ε if n ≥ K. Thus, if n ≥ K one has ‖Tξn‖2 < 2ε, and one concludes that
Tξn → 0. �

Exercise 1.4.7. Let T : l2(N) ←↩ given by (Tξ)n =
∑∞

j=1 anjξj , n ∈ N, with
(anj)n,j∈N an infinite matrix with

∑
n,j∈N

|anj |2 < ∞. Show that T is a Hilbert-
Schmidt operator and find its Hilbert-Schmidt norm.

The next lemma will be used in the important example ahead.

Lemma 1.4.8. Let H1 = L2
μ(Ω) and H2 = L2

ν(Λ) be separable spaces, with μ, ν
σ-finite measures, and H3 = L2

μ×ν(Ω×Λ). Then, if (ψn) and (φj) are (countable)
orthonormal bases of H1 and H2, respectively, then (ψnφj) is an orthonormal basis
of H3, which is also separable.

Proof. By Fubini (ψnφj) is an orthonormal set of H3. In order to prove this lemma
it is enough to show that if f ∈ H3 satisfies 〈f, ψnφj〉H3 = 0, ∀n, j, then f = 0.
For each s ∈ Λ, denote the function sector fs : Ω → F by fs(t) = f(t, s), which
belongs to H1 for s in a set of total measure ν, and for each n the function Fn(s) =
〈fs, ψn〉H1 (it is measurable since ν is σ−finite), then 〈f, ψnφj〉H3 = 〈Fn, φj〉H2 .
Note that by Cauchy-Schwarz ν−a.e. one has |Fn(s)| ≤ ‖fs‖H1 , so that Fn ∈ H2

for all n, in view of ‖Fn‖2
H2

≤
∫
Λ ‖fs‖2

H1
dν(s) = ‖f‖2

H3
.
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Thus, one obtains the condition 〈Fn, φj〉H2 = 0, ∀n, j; since (φj) is a basis
of H2, for all n one has Fn(s) = 0 ν-a.e. and, therefore, since (ψn) is a basis of H1,
one finds that fs = 0 (in H1) ν-a.e. Then the result ‖f‖H3 = 0 follows. �
Example 1.4.9. Let H1, H2 and H3 be as in Lemma 1.4.8. Then, the operator T ∈
HS(H1,H2) if, and only if, there exits K ∈ H3 so that

(Tψ)(t) = (TKψ)(t) :=
∫

Ω

K(t, s)ψ(s)dμ(s), ψ ∈ H1.

Furthermore, ‖T ‖HS = ‖K‖H3.

Proof. If (ψn) and (φj) are orthonormal bases of H1 and H2, respectively, then,
by Lemma 1.4.8, (ψnφj) is an orthonormal basis of H3. Suppose that T = TK ;
then ∑

n

‖TKψn‖2
H2

=
∑
n,j

|〈TKψn, φj〉H2 |2 =
∑
n,j

|〈K,ψnφj〉H3 |2 = ‖K‖2
H3
,

and so TK ∈ HS(H1,H2) and ‖TK‖HS = ‖K‖H3.
Pick T ∈ HS(H1,H2). By using the above notation, one has∑

n,j

|〈φj , Tψn〉H2 |2 =
∑
n

‖Tψn‖2 = ‖T ‖2
HS <∞,

consequently the function K0(t, s) =
∑
n,j〈φj , Tψn〉H2ψn(s)φj(t) is well defined

in the space H3; note that ‖K0‖H3 = ‖T ‖HS. It will be shown that T = TK0 .
If ψ ∈ H1 and φ ∈ H2, since T is bounded and the inner product is continu-

ous,

〈φ, TK0ψ〉H2 =
∫

Λ

dν(t)
(
φ(t)

∫
Ω

K0(t, s)ψ(s)dμ(s)
)

= 〈φψ,K0〉H3 =
∑
n,j

〈φj , Tψn〉H2〈φψ, φjψn〉H3

=
∑
n,j

〈φj , Tψn〉H2〈φ, φj〉H2〈ψn, ψ〉H1

=

〈∑
j

〈φj , φ〉H2φj ,
∑
n

〈ψn, ψ〉H1Tψn

〉
H2

=

〈
φ,
∑
n

〈ψn, ψ〉H1Tψn

〉
H2

=

〈
φ, T

∑
n

〈ψn, ψ〉H1ψn

〉
H2

= 〈φ, Tψ〉H2
.

Therefore, T = TK0 . �
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Remark 1.4.10. There is a family of compact operators in B(H) for each 1 ≤ p <
∞, with certain norm ‖T ‖p < ∞ (this norm is based on that of lp); the Hilbert-
Schmidt operators are obtained through p = 2. The case p = 1, discussed in
Subsection 9.4.1, is important in mathematical physics, particularly in statistical
mechanics and scattering theory, and such operators are called trace class (‖T ‖1

is a generalization of the trace of the absolute values of the entries of a matrix).
Exercise 1.4.11. Show that HS(H1,H2) is the closure of the set of finite rank
operators with the norm ‖ · ‖HS.
Exercise 1.4.12. Fix η ∈ H with ‖η‖ = 1. Let Tη : H → H be defined by Tηξ =
〈η, ξ〉 η, ξ ∈ H. Show that Tη is a linear Hilbert-Schmidt operator and find its
norm ‖T ‖HS.

Exercise 1.4.13. Let H be separable and T ∈ B(H) an operator whose eigenvectors
form an orthonormal basis (ξj) of H, that is, for all j, Tξj = λjξj , λj ∈ F. Present
conditions for T ∈ HS(H). Verify that on infinite-dimensional Hilbert spaces there
always are compact operators that are not Hilbert-Schmidt.
Exercise 1.4.14. Are there sequences (Tn) ⊂ HS(H) that converge in B(H) but do
not converge in HS(H)?

1.5 The spectrum

Intuitively, the spectrum of a linear operator comprises of “the values in C this
operator assumes;” the very definition of spectrum justifies this interpretation.
The spectrum is a generalization of the set of eigenvalues of linear operators.
The point is that, for a linear operator acting on a finite-dimensional space, the
property of being injective is equivalent to being surjective; however, in infinite
dimensions such properties are not equivalent and the definition of spectrum must
be properly generalized. From now on, vector spaces are assumed complex.

The spectral question is directly related to the solvability and uniqueness of
solutions of linear equations in Banach spaces, boundary problems, approximations
of nonlinear problems by linear versions, stability and, in an essential way, to the
mathematical apparatus of quantum mechanics.

Definition 1.5.1. Let T : dom T ⊂ B → B be linear in the complex Banach
space B 
= {0}. The resolvent set of T , denoted by ρ(T ), is the set of λ ∈ C for
which the resolvent operator of T at λ,

Rλ(T ) : B → dom T, Rλ(T ) := (T − λ1)−1,

exists and is bounded, i.e., Rλ(T ) belongs to B(B).

Definition 1.5.2. The spectrum of T is the set σ(T ) = C\ρ(T ).

Remark 1.5.3. a) If T ∈ B(B) and (T − λ1) is one-to-one with range B, then, by
the Open Mapping Theorem 1.2.6, Rλ(T ) ∈ B(B) and λ ∈ ρ(T ).
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b) Every eigenvalue λ of T (i.e., there is an eigenvector ξ 
= 0 with Tξ = λξ)
belongs to the spectrum of T , for (T − λ1) is not invertible in this case.
c) Notation: if it is clear which operator T is involved, Rλ = Rλ(T ).

The definition of spectrum is not restricted to the real numbers in order
to be nonempty for continuous operators (see Corollary 1.5.17). For example, if
dimB <∞, the spectrum is the set of its eigenvalues, but the rotation by a right
angle operator on R2 has no real eigenvalue (check this!).
Exercise 1.5.4. Let T : B ←↩ be linear with dimB < ∞. Show that σ(T ) is the
set of eigenvalues of T and, by the fundamental theorem of algebra, conclude that
σ(T ) 
= ∅ in this case.
Exercise 1.5.5. Let T : dom T ⊂ B → B be linear. Show that the eigenvectors
{ξj}j∈J of T , corresponding to pairwise distinct eigenvalues {λj}j∈J , form a lin-
early independent set of dom T .

Proposition 1.5.6. If σ(T ) 
= C, then T is a closed operator.

Proof. Pick λ0 ∈ ρ(T ); so Rλ0(T ) ∈ B(B). If (ξn) ⊂ dom T with ξn → ξ and
Tξn → η, then

Rλ0(T )(η − λ0ξ) = lim
n→∞

Rλ0(T )(Tξn − λ0ξn) = lim
n→∞

ξn = ξ;

hence ξ ∈ dom T and

η − λ0ξ = (T − λ01)Rλ0(T )(η − λ0ξ) = (T − λ01)ξ.

Therefore Tξ = η and T is closed. �

The converse of Proposition 1.5.6 may not hold:
Example 1.5.7. Let D : dom D = C1[0, 1] ⊂ C[0, 1] → C[0, 1] and (Dψ)(t) =
ψ′(t), which is a closed and unbounded operator. If λ ∈ C, the function ψλ(t) =
eλt ∈ dom D and Dψλ = λψλ, showing that σ(D) = C and it is constituted
exclusively of eigenvalues. Therefore ρ(D) = ∅.

Given an operator action, the spectrum may drastically depend on the do-
main assigned to it. This is illustrated by Examples 1.5.7 and 1.5.8.
Example 1.5.8. Let dom d = {ψ ∈ (C1[0, 1], ‖ · ‖∞) : ψ(0) = 0}, d : dom d →
C[0, 1], (dψ)(t) = ψ′(t), which is a closed and unbounded operator. If λ ∈ C, the
operator Wλ : C[0, 1] → dom d, (Wλφ)(t) = eλt

∫ t
0 e
−λsφ(s) ds, φ ∈ C[0, 1], is

bounded and satisfies (d − λ1)Wλ = 1 (identity on C[0, 1]) and Wλ(d − λ1) = 1
(identity in dom d). ThereforeWλ is the resolvent operator for d at λ and ρ(d) = C,
showing that σ(d) = ∅ (the resolvent Wλ was obtained by considering the solution
of the differential equation ψ′ − λψ = φ with ψ(0) = 0).

Below there are three useful identities involving resolvent operators; except
the third one, the nomenclature is standard. The first identity relates the resolvent
of a fixed operator at two points in its resolvent set; the second resolvent identity
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relates the resolvent of two different operators at a point in both resolvent sets;
the third identity relates the difference of resolvents of two operators at a point in
both resolvent sets with the difference at another point.

Proposition 1.5.9. Let T : dom T ⊂ B → B. Then for any z, s ∈ ρ(T ) one has the
first resolvent identity (also known as first resolvent equation)

Rz(T ) −Rs(T ) = (z − s)Rz(T )Rs(T ).

Furthermore, Rz(T ) commutes with Rs(T ).

Proof. Write

Rz −Rs =Rz(T − s1)Rs −Rz(T − z1)Rs
=Rz ((T − s1) − (T − z1))Rs = (z − s)RzRs,

which shows the first resolvent identity. The commutation claim is immediate from
this relation. �
Exercise 1.5.10. For linear operators T, S acting in B, with dom S ⊂ dom T , and
λ ∈ ρ(T ) ∩ ρ(S), verify the second resolvent identity

Rλ(T ) −Rλ(S) = Rλ(T )(S − T )Rλ(S).

If dom T = dom S, such identity also equals Rλ(S)(S − T )Rλ(T ).

Proposition 1.5.11. Let S and T be linear operators acting in B. Then, for z, z0 ∈
ρ(T ) ∩ ρ(S) one has the third resolvent identity

Rz(T )−Rz(S)
= (1 + (z − z0)Rz(T )) [Rz0(T ) −Rz0(S)] (1 + (z − z0)Rz(S)) .

Proof. By the first resolvent identity Rz(T ) = (1 + (z − z0)Rz(T ))Rz0(T ) and
Rz(S) = Rz0(S)(1 + (z − z0)Rz(S)). By using such relations on the r.h.s. above
one gets Rz(T ) −Rz(S). �
Theorem 1.5.12. Let T : dom T ⊂ B → B and λ0 ∈ ρ(T ). Then for all λ in the
disk |λ− λ0| < 1/‖Rλ0(T )‖ of the complex plane, Rλ(T ) ∈ B(B) and

Rλ(T ) =
∞∑
j=0

(λ− λ0)jRλ0(T )j+1,

with an absolutely convergent series.

Proof. Note initially that Rλ0(T ) 
= 0, since it is the inverse of an operator. By
the relation

T − λ1 = T − (λ0 + (λ − λ0))1
= (T − λ01) [1 + (λ0 − λ)Rλ0 ] ,
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just formally it would follow that

Rλ =

⎛⎝ ∞∑
j=0

(λ− λ0)jR
j
λ0

⎞⎠Rλ0 .

It is left to justify this expression and show that it defines (T − λ1)−1 in B(B).
For |λ− λ0| < 1/‖Rλ0(T )‖ the series is absolutely convergent in B(B) and defines
an operator satisfying⎛⎝ N∑

j=0

(λ− λ0)jR
j+1
λ0

⎞⎠ (T − λ1) =
N∑
j=0

(λ− λ0)jR
j+1
λ0

(T − (λ0 + (λ− λ0))1)

=
N∑
j=0

(λ− λ0)jR
j
λ0

−
N∑
j=0

(λ − λ0)j+1Rj+1
λ0

= 1− [(λ− λ0)Rλ0 ]
N+1

.

Now limN→∞ [(λ− λ0)Rλ0 ]
N = 0 in B(B), since |λ − λ0| < 1/‖Rλ0(T )‖; then(∑∞

j=0(λ− λ0)jR
j+1
λ0

)
(T − λ1) = 1. Similarly it is shown that

(T − λ1)

⎛⎝ ∞∑
j=0

(λ − λ0)jR
j+1
λ0

⎞⎠ = 1. �

Corollary 1.5.13. ρ(T ) is an open set and σ(T ) is a closed set of C.

Proof. One sees that ρ(T ) is open directly from Theorem 1.5.12, hence σ(T ) is
closed. �
Corollary 1.5.14. The map ρ(T ) → B(B) given by λ �→ Rλ(T ) is continuous and
uniformly holomorphic, i.e., it has a derivative in B(B) defined by the limit

dRλ(T )
dλ

:= lim
h→0

Rλ+h(T ) −Rλ(T )
h

= Rλ(T )2,

for all λ in a neighborhood of each point λ0 ∈ ρ(T ).

Proof. By Theorem 1.5.12, if λ0 ∈ ρ(T ) and |λ− λ0| < 1/‖Rλ0(T )‖,

‖Rλ(T ) −Rλ0(T )‖≤
∞∑
j=1

|λ− λ0|j ‖Rλ0(T )‖j+1

= |λ− λ0| ‖Rλ0(T )‖2
∞∑
j=0

|λ− λ0|j ‖Rλ0(T )‖j

=
|λ− λ0| ‖Rλ0(T )‖2

1 − |λ− λ0| ‖Rλ0(T )‖ −→ 0 as λ→ λ0,

showing that the map λ �→ Rλ(T ) in ρ(T ) is continuous.
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By the first resolvent identity (Rλ+h −Rλ)/h = Rλ+hRλ; taking h → 0
and using the continuity shown above, it follows that the derivative exists and
dRλ(T )/dλ = Rλ(T )2 holds. �
Corollary 1.5.15. If both σ(T ) and ρ(T ) are nonempty, then

‖Rλ(T )‖ ≥ 1/d(λ, σ(T ))

for all λ ∈ ρ(T ) (with d(λ, σ(T )) := infμ∈σ(T ) |μ− λ|).

Proof. By Theorem 1.5.12, if λ0 ∈ ρ(T ) and ‖Rλ0(T )‖ |λ−λ0| < 1, then λ ∈ ρ(T ).
Thus, if λ ∈ σ(T ), necessarily ‖Rλ0(T )‖ |λ− λ0| ≥ 1, that is,

‖Rλ0(T )‖ ≥ 1
|λ− λ0|

, ∀λ ∈ σ(T ),

and (since σ(T ) 
= ∅) the result follows. �

Now certain specific results on the spectrum of bounded operators will be
discussed.

Corollary 1.5.16. Let T ∈ B(B). If |λ| > ‖T ‖, then λ ∈ ρ(T ) and ‖Rλ(T )‖ → 0
for |λ| → ∞.

Proof. Following the proof of the above theorem (write T − λ1 = −λ(1 − T/λ)),
one concludes that the representation of Rλ(T ) by the series, called Neumann’s
series of T ,

Rλ(T ) = − 1
λ

∞∑
j=0

(
T

λ

)j
is absolutely convergent if |λ| > ‖T ‖ and, in this case, that

‖Rλ(T )‖ ≤ 1/|λ|
∑
j≥0

(‖T ‖/λ)j = 1/(|λ| − ‖T ‖).

It then follows that the spectrum σ(T ) ⊂ {λ ∈ C : |λ| ≤ ‖T ‖} and

lim
|λ|→∞

‖Rλ(T )‖ = 0. �

Corollary 1.5.17. If T ∈ B(B), then σ(T ) 
= ∅.

Proof. If f ∈ B(B)∗ (the dual of B(B)) define F : ρ(T ) → C by F (λ) = f(Rλ(T )).
Thus, by Corollary 1.5.14 it is found that

dF (λ)
dλ

= lim
h→0

F (λ+ h) − F (λ)
h

= f
(
Rλ(T )2

)
,

which is continuous; hence, F is holomorphic in ρ(T ). By using the inequality
|F (λ)| ≤ ‖f‖‖Rλ(T )‖ and Corollary 1.5.16, lim|λ|→∞ F (λ) = 0.
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If σ(T ) = ∅, i.e., ρ(T ) = C, by continuity F is bounded in any ball in C,
and since it converges to zero for |λ| → ∞, it is found that F : C → C is an
entire and bounded function, hence constant by Liouville’s Theorem. In view of
lim|λ|→∞ F (λ) = 0, one has F (λ) = f(Rλ(T )) = 0 for all λ ∈ C, f ∈ B(B)∗. By
the Hahn-Banach Theorem one gets Rλ(T ) = 0, ∀λ ∈ C, but this can not occur,
since Rλ(T ) is the inverse of some operator. This contradiction shows that σ(T )
is nonempty. �
Definition 1.5.18. The spectral radius of a bounded linear operator T ∈ B(B) is
rσ(T ) := supλ∈σ(T ) |λ|.

The next result is the so-called spectral radius formula and is due to I.
Gelfand, who has shown it in the context of Banach algebras, around 1940. This
formula is a relation between a limit strongly related to the metric, and the spectral
radius defined via the supremum of a set.

Theorem 1.5.19. If T ∈ B(B), then rσ(T ) = limn→∞ ‖T n‖1/n ≤ ‖T ‖.

Proof. Note, initially, that due to Corollary 1.5.16, rσ(T ) ≤ ‖T ‖. To demonstrate
Theorem 1.5.19 we will use results from the Holomorphic Functions Theory com-
bined with “any weakly convergent sequence is bounded,” and the following simple
observation: if λ ∈ C and λ1, λ2, . . . , λn are its nth roots in C, then

T n − λ1 = (T − λ11)(T − λ21) · · · (T − λn1).

This implies that λ ∈ σ(T n) if, and only if, λj ∈ σ(T ) for some 1 ≤ j ≤ n. Hence,
σ(T n) = σ(T )n := {λn : λ ∈ σ(T )}. From this relation one concludes that for
all n ∈ N one has rσ(T ) = rσ(T n)1/n ≤ ‖T n‖1/n.

For each f in the dual of B(B), define F : ρ(T ) → C by F (λ) = f(Rλ(T )),
which is a holomorphic function (see the proof of Corollary 1.5.17). If |λ| > ‖T ‖,
by using the Neumann series

F (λ) = − 1
λ

∞∑
n=0

1
λn
f(T n),

and by the uniqueness of Laurent expansion the above series converge for all λ ∈ C

in the region |λ| > rσ(T ) (or Taylor expansion if the variable s = 1/λ, with F (0) =
0, is considered).

Given ε > 0, for rσ(T ) < α < rσ(T ) + ε and all f ∈ B(B)∗, the series∑∞
n=0 f(T n/αn) converge. Thus, the sequence T n/αn converges weakly to zero

in B(B); hence it is bounded and there exists C = C(α) > 0 with

‖T n/αn‖ ≤ C =⇒ ‖T n‖1/n ≤ αC1/n, ∀n ∈ N.

Since limn→∞C1/n = 1, there is N(ε) > 0 such that

‖T n‖ 1
n < rσ(T ) + ε, ∀n ≥ N(ε).
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This relation, along with rσ(T ) ≤ ‖T n‖1/n verified above, show that lim
n→∞

‖T ‖1/n

exists and equals rσ(T ). �

Exercise 1.5.20. If all pairs of the operators {T1, . . . , Tn} ⊂ B(B) are commut-
ing, i.e., TjTk = TkTj , ∀j, k, show that the product T1T2 · · ·Tn is invertible with
bounded inverse if, and only if, each Tj is invertible in B(B).

Corollary 1.5.21. If T ∈ B(B), then σ(T n) = σ(T )n and rσ(T n) = rσ(T )n.

Exercise 1.5.22. Present a proof of Corollary 1.5.21.
Example 1.5.23. Let Se : l∞(N) ←↩ be the shift operator

Se(ξ1, ξ2, ξ3, . . . ) = (ξ2, ξ3, ξ4, . . . ).

Since ‖Se‖ = 1, then σ(Se) ⊂ B(0; 1). Every |λ| ≤ 1 is an eigenvalue of Se, for the
equation Seξ

λ = λξλ has the solution ξλ = (1, λ, λ2, λ3, . . . ) in l∞(N). Therefore
σ(Se) = B(0; 1), rσ(Se) = 1, and every point of its spectrum is an eigenvalue.

Example 1.5.24. The Volterra operator T :C[0,1]←↩, given by (Tψ)(t)=
∫ t
0 ψ(s)ds

has no eigenvalues. In fact, by the eigenvalue equation

(Tψ)(t) = λψ(t) =
∫ t

0

ψ(s) ds

one finds λψ′(t) = ψ(t) (ψ is differentiable since it is the integral of a continuous
function). If λ = 0 then ψ = 0 and zero is not an eigenvalue; if λ 
= 0, the solutions
of this differential equation are ψ(t) = C exp(t/λ), and since ψ(0) = 0 it follows
that the constant C = 0, and so ψ = 0 and no λ ∈ C is an eigenvalue of T .

From the inequality |(Tψ)(t)| ≤ t‖ψ‖∞ it is found, by induction, that

|(T 2ψ)(t)| ≤
∫ t

0

s‖ψ‖∞ ds =
t2

2
‖ψ‖∞, |(T nψ)(t)| ≤ tn

n!
‖ψ‖∞.

Thus, ‖T n‖ ≤ 1/n! and rσ(T ) ≤ limn→∞(1/n!)1/n = 0. Therefore rσ(T ) < ‖T ‖,
σ(T ) = {0} (since 
= ∅) and T has no eigenvalues.
Example 1.5.25. Let Mh on L2[0, 1], with h(t) = t. Then Mh has no eigenvalues,
since from Mhψ = λψ it follows that (t− λ)ψ(t) = 0, or ψ(t) = 0 for a.e. t 
= λ,
i.e., ψ = 0 in L2[0, 1].
Exercise 1.5.26. Show that in Example 1.5.25 one has σ(Mh) = [0, 1].
Exercise 1.5.27. If T ∈ B(B), show that lim|λ|→∞ λRλ(T ) = −1.
Exercise 1.5.28. For T ∈ B(B), define V (t) := etT , t ∈ R, as in Exercise 1.1.23.
Show that: a) The map t �→ V (t) ∈ B(B) is continuous with V (0) = 1 and
V (t + s) = V (t)V (s). b) If S ∈ B(B) commutes with T , then it also commutes
with V (t), ∀t. c) This map is uniformly holomorphic and dV (t)/dt = TV (t). See
related results in Section 5.2.
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1.6 Spectra of Compact Operators

As expected, the spectral theory of compact linear operators has many similarities
with the spectral theory on finite-dimensional spaces; for example, with the possi-
ble exception of zero, each eigenvalue of a compact operator has finite multiplicity.
However, there are compact operators with no eigenvalues.

Example 1.6.1. Consider the operator T : l2(N) ←↩,

T (ξ1, ξ2, ξ3, . . . ) = (0, ξ1/1, ξ2/2, ξ3/3, . . . ).

T is compact and 0 ∈ σ(T ) since T−1 is not bounded. However this operator has
no eigenvalues (check this!).

The next lemma is a key tool to construct bounded sequences with no conver-
gent subsequence in infinite-dimensional N . Although there is no explicit notion of
orthogonality, a geometric interpretation is important for turning its proof natural.

Lemma 1.6.2 (Riesz Lemma). Let X be a proper closed vector subspace of a normed
space (N , ‖ · ‖). Then, for each 0 < α < 1 there exists ξ ∈ N \X with ‖ξ‖ = 1 and
infη∈X ‖ξ − η‖ ≥ α.

Proof. Let ζ ∈ N\X and c = infη∈X ‖η − ζ‖. Since X is closed, c > 0. Thus, for
all d > c there exists ω ∈ X with c ≤ ‖ζ−ω‖ ≤ d. The vector ξ = (ζ−ω)/‖ζ−ω‖
belongs to N\X and ‖ξ‖ = 1. Moreover, for all η ∈ X one has

‖ξ − η‖ =
1

‖ζ − ω‖

∥∥∥ζ − (ω + ‖ζ − ω‖η)
∥∥∥ ≥ c

‖ζ − ω‖ ≥ c

d
.

For 0 < α < 1 choose d = c/α and the result follows. �

Theorem 1.6.3. The closed ball B(0; 1) in a normed vector space N is compact if,
and only if, dimN <∞.

Proof. If dimN < ∞, it is known that B(0; 1) is compact. If dimN is not fi-
nite, then Riesz’s lemma will be used to construct a sequence in B(0; 1) with no
convergent subsequence.

Let ξ1 ∈ N , ‖ξ1‖ = 1. By Riesz’s lemma there exists ξ2 ∈ N , with ‖ξ2‖ = 1,
and ‖ξ1 − ξ2‖ ≥ 1/2 (by choosing α = 1/2 in Riesz’s lemma). The vector space
Lin({ξ1, ξ2}) is closed, since its dimension is finite. Again by Riesz’s lemma, there
exists ξ3 ∈ N , with ‖ξ3‖ = 1, ‖ξ3 − ξ1‖ ≥ 1/2 and ‖ξ3 − ξ2‖ ≥ 1/2. In this way, a
sequence (ξn)∞n=1, ‖ξn‖ = 1, ∀n, and ‖ξj − ξk‖ ≥ 1/2 for all j 
= k is constructed.
Since such sequence has no convergent subsequence , the closed ball B(0; 1) is not
compact. �

Proposition 1.6.4. If T ∈ B0(B), then every nonzero eigenvalue of T is of finite
multiplicity, that is, dim N(T − λ1) <∞.
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Proof. Let B1 be the closed ball centered at zero and radius 1 in the vector space
N(T − λ1). It will be shown that B1 is compact and, hence, dim N(T − λ1) < ∞
by Theorem 1.6.3. Since T is compact, for a sequence (ξn) ⊂ B1 (Tξn = λξn),
there is a convergent subsequence (Tξnj ) and, so, (ξnj = Tξnj/λ) also converges
to an element of B1; hence that ball is compact. �
Exercise 1.6.5. Use the next argument as a variant of the proof of Proposi-
tion 1.6.4: suppose that B1 is not compact; thus there exists a sequence (ξn) ⊂ B1

with no convergent subsequence; use the compactness of T to reach a contradic-
tion.

Proposition 1.6.6. If T ∈ B0(B), then for all ε > 0 the number of eigenvalues λ
of T with |λ| ≥ ε is finite.

Proof. Suppose that it is possible to choose ε > 0 so that there are infinitely
many eigenvalues {λj}j∈N of T with absolute values greater than or equal to ε.
By Proposition 1.6.4 one may assume that such eigenvalues are pairwise distinct;
denote by {ξj} the respective eigenvectors. Recall that this set is linearly indepen-
dent (Exercise 1.5.5).

Let E0 = {0} and En = Lin({ξ1, . . . , ξn}); note that such subspaces are closed
for all n. By Riesz’s Lemma 1.6.2 there exists a sequence {ηn}, ηn ∈ En, ‖ηn‖ = 1
and ‖ηn − ξ‖ ≥ 1/2, ∀ξ ∈ En−1. The aim is to show that ‖Tηn − Tηm‖ ≥ ε/2 for
all distinct n,m, which then has no convergent subsequence, a contradiction with
the compactness of T .

Ifm < n, then Tηn−Tηm = λnηn+[(T − λn1)ηn − Tηm] . Clearly Tηm ∈ Em
and, writing ηn =

∑n
j=1 αjξj , one has

(T − λn1)ηn =

⎡⎣n−1∑
j=1

αj(λj − λn)ξj

⎤⎦ ∈ En−1,

so that ζm := −[(T −λn1)ηn−Tηm]/λn belongs to the subspace En−1. Therefore,
‖Tηn − Tηm‖ = |λn|‖ηn − ζm‖ ≥ |λn|

2 ≥ ε/2, and {Tηn} has no convergent
subsequence. �

From such propositions (and some simple extra argument) follows the im-
portant

Corollary 1.6.7. Let T ∈ B0(B) and Λ the set of eigenvalues of T . Then:

i) The unique possible accumulation point of Λ is zero.
ii) Λ is countable and, if λ 
= 0, then dimN(T − λ1) <∞.
iii) If Λ is an infinite set, then the eigenvalues of T can be ordered in a sequence

converging to zero.
iv) If dimB = ∞, then zero belongs to the spectrum of T .

Exercise 1.6.8. Present the details of the proof of Corollary 1.6.7.
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Example 1.6.9. Any finite rank operator is compact and has finite spectrum.
Example 1.6.10. Consider the operator T : l2(N) ←↩,

T (ξ1, ξ2, ξ3, . . . ) = (ξ1/1, ξ2/2, ξ3/3, . . . ).

T is compact and zero is not an eigenvalue of T , however it belongs to its spectrum,
since {1, 1/2, 1/3, . . .} is a subset of σ(T ) (they are eigenvalues) and the spectrum
is closed. It is also possible to infer directly that the resolvent operator R0(T )
exists, with dense domain, but it is not bounded.


