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Preface

The spectral theory of linear operators in Hilbert spaces is the most important
tool in the mathematical formulation of quantum mechanics; in fact, linear opera-
tors and quantum mechanics have had a symbiotic relationship. However, typical
physics textbooks on quantum mechanics give just a rough sketch of operator the-
ory, occasionally treating linear operators as matrices in finite-dimensional spaces;
the implicit justification is that the details of the theory of unbounded operators
are involved and those texts are most interested in applications. Further, it is also
assumed that mathematical intricacies do not show up in the models to be dis-
cussed or are skipped by “heuristic arguments.” In many occasions some questions,
such as the very definition of the hamiltonian domain, are not touched, leaving
an open door for controversies, ambiguities and choices guided by personal tastes
and ad hoc prescriptions. All in all, sometimes a blank is left in the mathematical
background of people interested in nonrelativistic quantum mechanics.

Quantum mechanics was the most profound revolution in physics; it is not
natural to our common sense (check, for instance, the wave-particle duality) and
the mathematics may become crucial when intuition fails. Even some very simple
systems present nontrivial questions whose answers need a mathematical approach.
For example, the Hamiltonian of a quantum particle confined to a box involves
a choice of boundary conditions at the box ends; since different choices imply
different physical models, students should be aware of the basic difficulties intrinsic
to this (in principle) very simple model, as well as in more sophisticated situations.
The theory of linear operators and their spectra constitute a wide field and it is
expected that the selection of topics in this book will help to fill this theoretical
gap. Of course this selection is greatly biased toward the preferences of the author.

Besides the customary role of working as a computational instrument, a
mathematically rigorous approach could lead to a more profound insight into the
nature of quantum mechanics, and provide students and researchers with appropri-
ate tools for a better understanding of their own research work. So the first aim of
this book is to present the basic mathematics of nonrelativistic quantum mechan-
ics of one particle, that is, developing the spectral theory of self-adjoint operators
in infinite-dimensional Hilbert spaces from the beginning. The reader is assumed
to have had some contact with functional analysis and, in applications to differ-
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ential operators, with rudiments of distribution theory. Traditional results of the
theory of linear operators in Banach spaces are addressed in Chapter 1, whereas
necessary results of Sobolev spaces are described in Chapter 3. The definition and
basic properties of (unbounded) self-adjoint operators appear in Chapter 2.

The second aim of this book is to give an overview of many of the basic
functional analysis aspects of quantum theory, from its physical principles to the
mathematical methods. This end is illustrated by:

1. The use of von Neumann theory of self-adjoint extensions (2), Fourier trans-
form (3), sesquilinear forms (4), Kato-Rellich and KLMN theorems (6) and
boundary triples (7) as tools to properly define Schrödinger (self-adjoint) op-
erators in quantum mechanics. These matters are developed in the chapters
indicated above in parentheses.

2. The spectral theorem and first applications in Chapters 8 and 9.

3. Convergence of (unbounded) self-adjoint operators in Chapter 10.

4. Spectral decomposition (essential, discrete, continuous and point) in Chap-
ters 11 and 12.

In case of time evolution, which is ruled by the quantum energy operator,
item 1 above is closely related to the question in classical mechanics whether the
motion is unambiguously determined by the force.

Another aim of this book is to strive to present many examples illustrating
concepts and build up confidence with methods. Some examples are simple and
are meant to reduce the effort of beginning graduate students to learn the subject
of spectral theory and its relation to quantum mechanics.

The last aim of the book is to discuss the relation between spectral type of
the hamiltonian (energy) operator and asymptotic quantum dynamics, i.e., the
quantum behavior as time goes to infinity. In Chapter 5, the existence of quantum
dynamics is shown to be equivalent to the self-adjointness of the Hamiltonian, but
the discussion is not restricted to time evolution and the general theory of unitary
evolution groups is addressed in detail. Various aspects of the role played by the
spectral type in quantum dynamics are given in Chapter 13. Some results seem
not to have appeared in book form yet, such as the discussions on precompact
orbits and almost periodic trajectories. Chapters 11, 12 and 13 make heavy use of
spectral measures and are more advanced than previous chapters.

Selected quantum relations are discussed in Chapter 14. The idea is to com-
plement a text that emphasizes mathematics with additional rigorous approaches
to some standard quantum concepts; e.g., why the quantum observables are repre-
sented by self-adjoint operators instead of just hermitian ones. But no exhaustive
presentation of quantum relations should be expected and parallel reading of tra-
ditional books on quantum mechanics is highly recommended.

The book does not offer a quantum mechanics course, but the necessary
quantum concepts are introduced when needed (usually with Planck’s constant
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� = 1 and mass particle m = 1/2). Hence, it can also be useful to readers who are
only interested in an introduction to spectral theory, since its focus is mathematics
and proofs of theorems. The level is suitable for graduate students (or advanced
undergraduates) who already have some familiarity with linear functional analysis.
Thus, more advanced methods in spectral theory, mainly those related to singular
continuous and dense point spectra, are not discussed (see [DeKr05] for a collection
of advanced methods and the four volumes by Reed and Simon in the references);
this is the reason for the term “Intermediate” in the title of the book. However, a
certain level of mathematical literacy is desired from the reader.

Different readers may have different backgrounds, and each one will easily
find which sections to skip and a suitable pathway to the particular topics of
interest. But most of them will usually start on the introduction of a spectrum
in Section 1.5 or Chapter 2. After working through this book, a student should
be able to follow more specialized texts and research articles, and should find it
easier to select a topic for future research.

Exercises present different levels of difficulties; many of them are related to
missing details in proofs and examples. Due to the nature of the book, the set of
references includes literature on both physics and mathematics.

Parts of the book have been used in courses addressed to graduate students
interested in spectral theory at the Department of Mathematics of the Federal Uni-
versity of São Carlos, in 2004 and 2006; in fact, the book grew out of such lectures.
The author thanks students and colleagues who have attended those courses and
made helpful comments. Partial financial support by a Brazilian federal agency,
CNPq, is very much acknowledged.

I want to thank the patience and support of my wife, Ana Teresa, and our
children, Daniel and Natália, that gave me stability during the revisions of the
text.

Hopefully, you, mathematician or physicist, will enjoy reading the book and
will profit from it. The following page on the internet

http://www.dm.ufscar.br/~oliveira/ISTbook.html

is related to this book and it may include a possible errata page. Any remark,
suggestion and correction (including those that have arisen from “copy-paste”
manipulations) from readers will be welcome!

May 2008 São Carlos,
César R. de Oliveira



Selected Notation

• The set of natural numbers: N = {1, 2, 3, . . .}.
• The term “enumerable” refers to the cardinality of N, whereas “countable”

refers to enumerable or finitely many (including zero).
• “a.e.” abbreviates almost everywhere with respect to some measure.
• N ,B,H denote normed, Banach and Hilbert spaces, respectively.
• Y � X means that Y is a dense subset of X .
• The identity operator is denoted by 1.
• The range, domain and kernel (i.e., null set) of a transformation T will be

denoted by rng T, dom T and N(T ), respectively.
• An action “T in X” means that dom T ⊂ X , whereas “T on X” means

that dom T = X . They are abbreviations of “T acting in X” and “T acting
on X ,” respectively.

• An element x of Rn is simply denoted by x = (x1, . . . , xn) and dx =
dx1dx2 · · · dxn. Also, the inner product, xy = x1y1 + · · · + xnyn.

• A linear operator T in H is symmetric if 〈Tξ, η〉 = 〈ξ, T η〉, ∀ξ, η ∈ dom T . A
hermitian operator is a symmetric one whose domain is dense in H.

• “dominated convergence” always refers to Lebesgue’s dominated convergence
theorem.

• “Schrödinger operator”, “hamiltonian operator” and “energy operator” are
synonymous. The “standard Schrödinger operator” is the formal action H =
−Δ + V acting in L2(Ω), Ω ⊂ Rn.

• r.h.s. (l.h.s.) means “right- (left-) hand side.”
• The end of a proof is signalled by the symbol �.



A Glance at
Quantum Mechanics

Since this book is closely connected to quantum mechanics, these introductory
words will briefly and informally recall some postulates of this theory. Interested
readers are urged to consult traditional books on quantum mechanics to comple-
ment the discussion ahead and for descriptions of experimental evidence that give
rise to the postulates. In physics there are several “equivalent formulations” of
quantum mechanics, and a catalogue of the most important appears in [Sty02].
The discussion here is restricted to the nonrelativistic case.

Quantum mechanics is the physical theory of microscopic phenomena, and
it was found that nature has peculiarities that were essentially revealed only at
distances of the order of an atomic radius (≈ 10−10meters); of course there are
interesting pure quantum effects in some macroscopic phenomena as well. Due to
the work of many talented people, a beautiful and, more important, greatly useful
theory has emerged. In the common formulation of a quantum mechanical system
(as proposed by the members – in a broad sense – of the so-called Copenhagen
school), the dynamics is linear with “pure” physical states represented by normal-
ized vectors ξ in a complex separable Hilbert space H (with inner product 〈·, ·〉 and
‖ξ‖ = 1), and physical observables (such as position, energy, etc.) by self-adjoint
operators acting in such spaces. Usually these operators are not continuous and
are defined only on a dense subset of H (see Hellinger-Toeplitz Theorem 2.1.27),
which cause subtle and intricate technical difficulties (and, it should be said, rich-
ness of possibilities). Two normalized states ξ, η are equivalent if there is θ ∈ R so
that ξ = eiθη. Of course the precise forms of the Hilbert space and operators to
be selected depend on details of the system under study.

Let ξ, η ∈ H be possible states of a quantum system. The linear structure im-
plies that states are additive, which in physics is called the superposition principle;
that is, after normalization, any nonzero linear combination aξ + bη, a, b ∈ C, is
another possible state. If two states ξ, η are normalized, the transition probability
from ξ to η is |〈ξ, η〉|2. More precisely, if the system is in the state ξ, then it can
be observed in any state η with nonzero projection |〈ξ, η〉|2 
= 0, and this quan-
tity is exactly the probability that such quantum transition will occur. It should
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then be clear that one state can interfere with another one and so the “quantum
interpretations are nonlinear!”

If a system is in the (normalized) state ξ, then a measurement of an observ-
able, represented by the self-adjoint operator T , is not guaranteed to give a unique
answer, due to possible quantum transitions; thus, usually an observable has no
definite value. However, the average value of T over many measurements over
copies of the system in the same state ξ will result in the average value given by

ETξ = 〈ξ, T ξ〉,

which is called the expectation value of T in the state ξ. Further, ETξ is strictly
related to the spectrum of T and all measurements will result in a definite value
λ iff Tξ = λξ, that is, iff ξ is an eigenvector of T with corresponding eigenvalue λ
(and in this case ETξ = λ). Thus, it becomes clear that there is a close relation
between spectral theory of self-adjoint operators and measurements of physical
observables. More explicitly, the probability that the value of a measurement of
the observable T will result in a value in the set Λ ⊂ R is μTξ (Λ), with μTξ denoting
the spectral measure of T at the quantum state ξ.

The time evolution of a quantum system is given by a family of unitary
operators U(t) so that U(t+ s) = U(t)U(s), with t, s ∈ R playing the role of time.
It turns out that U(t) is generated by the total energy observable H of the system,
a prominent self-adjoint operator which is also called a hamiltonian or Schrödinger
operator. The equation governing this time evolution is the famous Schrödinger
equation

i�
∂

∂t
ξ(t) = Hξ(t), ξ(0) = ξ,

whose solution is ξ(t) = U(t)ξ, and one naturally writes U(t) = e−itH/�. � denotes
Planck’s constant

The process of associating a quantum system to a classical one is called quan-
tization. It is not always a well-defined process, since a rule and physical arguments
are necessary to associate self-adjoint operators to observables. Consider a stan-
dard quantum system, that is, the Hilbert space is L2(Rn) (or L2(Λ), Λ ⊂ Rn)
with coordinates x = (x1, . . . , xn), for which the jth coordinate of the position
operator is just the multiplication by xj , while for the conjugate momentum com-
ponent pj the operator is Pj = −i�∂/∂xj. The quantum version of a function
f(xj , pk) should be the operator f(xj ,−i∂/∂xk). Therefore, in case of a particle
of mass m under a potential energy V (x), the total (classical) mechanical energy
is p2/(2m) + V (x) and the quantum hamiltonian operator will take the form

H = − �2

2m
Δ + V (x),

with Δ denoting the Laplacian in Rn. In this setting the states are normalized
vectors ψ ∈ L2(Rn), usually called wave functions, and, according to a proposal
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of Max Born, the probability of finding the particle in Λ ⊂ Rn at time t is

Probψ(t)(Λ) =
∫

Λ

∣∣(e−itHψ)(x)
∣∣2 dx.

Thus |ψ(x)|2 is interpreted as the probability density of the particle position at
time t = 0.

Note that no domain has been assigned to the operators mentioned above,
and it is not at all clear that bona fide domains do exist so that those operators
become self-adjoint. Occasionally there are infinitely many self-adjoint extensions
and finding and interpreting them are of considerable interest. These are some
of the main questions to be considered when a mathematical theory of quantum
mechanics is addressed, and they turn out to be directly connected to a properly
defined unitary time evolution.

Besides the development of the theory of unbounded self-adjoint operators in
Hilbert spaces, including spectral theory, many other related issues are treated in
this book. Some specific quantities (e.g., quantum return probability, expectation
values, test operators) are introduced and motivated on the basis of quantum
interpretations and aim at a better understanding of possible quantum behaviors,
how they depend on the self-adjoint extensions and spectral type, particularly the
asymptotic behavior as time increases.

The above discussion summarizes some important postulates of (nonrelativis-
tic) quantum mechanics and the motivation for writing this book. The physical
discussion is restricted to one-particle systems without spin, so that fermionic
(including Pauli exclusion principle) and bosonic statistics are disregarded in the
text.

There is a huge literature on attempts at an axiomatization of quantum
mechanics aiming at the justification of its postulates. Usually one tries to isolated
a suitable set of ad hoc elements. The book [vonN67], originally published in 1932,
can be considered the first one to attempt a mathematical justification of quantum
postulates; the book [Mac04] (originally published in 1963) is also a classic whose
ideas established the so-called quantum logic. Pleasant pedagogical descriptions of
some modern experiments and interpretations of quantum mechanics can be found
in [GreZ97]; however, experience indicates that one needs some acquaintance with
quantum mechanics to fully understand its interpretations.

It should be mentioned that there have been attempts to formulate quantum
mechanics in terms of real Hilbert spaces [Stue60] and by using Hilbert spaces
over the field of quaternions rather than the field of complex numbers [FJSS62].
These references were cited because they are seminal works.

In spite of such motivations, in this book the theory of linear operators in
Hilbert spaces is presented at an abstract level, so that the reader can have an
introduction to the subject and take advantage of the book even if quantum me-
chanics is not his/her primary interest.



Chapter 1

Linear Operators and Spectra

This chapter recalls some basic concepts of the theory of linear operators in normed
spaces, with emphasis on Hilbert spaces. It also fixes some notation and intro-
duces the concept of a spectrum along with various proofs. Compact operators are
discussed. The readers are supposed to have had a first contact with functional
analysis.

1.1 Bounded Operators

Let F denote either the field of real numbers R or complex numbers C. For z ∈
C, let z denote its complex conjugate. As usual in mathematics, iff will be an
abbreviation for “if and only if.”

Definition 1.1.1. A linear operator between the vector spaces X and Y is a trans-
formation T : dom T ⊂ X → Y , for which its domain dom T is a vector subspace
and T (ξ + αη) = T (ξ) + αT (η), for all ξ, η ∈ dom T and all scalar α ∈ F.

Note that T (0) = 0 for any linear operator T , and that the set of linear
operators with the same domain and codomain is a vector space with pointwise
operations; frequently T (ξ) will also be denoted by Tξ. Simple examples of linear
operators are the identity operator 1 : X → X , with 1(ξ) = ξ, and the null (or
zero) operator Tξ = 0, ∀ξ.

In many cases it is imperative to consider domains dense in another set; so
throughout this text the notation A � B will indicate that A is a dense subset
of B, with respect to the appropriate topology. The natural numbers {1, 2, 3, . . .}
will be denoted by N and the term enumerable indicates the cardinality ℵ0 of the
set of natural numbers, while countable refers to finite numbers (including zero);
so, uncountable indicates that something is infinite and with cardinality different
from ℵ0.
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N ,B,H always denote a normed space, a Banach space and a Hilbert space,
respectively. In any metric space, the sphere, open and closed balls centered at ξ
and of radius r > 0 will be denoted by S(ξ; r), B(ξ; r) and B(ξ; r), respectively.
If A is a subset of a vector space, then Lin(A) denotes the linear subspace spanned
by A.
Example 1.1.2. Let φ ∈ L∞μ (Ω), with μ being σ-finite. Then the multiplication
operator by φ, defined by Mφ : Lpμ(Ω) → Lpμ(Ω),

(Mφψ)(t) := φ(t)ψ(t), ψ ∈ Lpμ(Ω),

is a linear operator ∀ 1 ≤ p ≤ ∞. Note that (Mφψ) ∈ Lpμ for ψ ∈ Lpμ.
Remark 1.1.3. The notation of the Banach spaces Lpμ(Ω), 1 ≤ p ≤ ∞, is standard.
In case Ω ⊂ Rn and the measure is Lebesgue measure, the simplified notation
Lp(Ω) will be employed.
Example 1.1.4. LetX and Y be compact metric spaces and u : Y → X continuous.
Then Tu : C(X) → C(Y ), (Tuψ)(y) = ψ(u(y)), is a linear operator.
Exercise 1.1.5. Let T : dom T ⊂ X → Y be a linear operator. Verify the following
items:

a) The range of T , rng T := T (dom T ) ⊂ Y , and the kernel (or null space) of T ,
N(T ) := {ξ ∈ dom T : Tξ = 0}, are vector spaces.

b) If the dimension dim(dom T ) = n <∞, then dim(rng T ) ≤ n.
c) The inverse operator of T , T−1 : rng T → dom T , exists if, and only if,

Tξ = 0 ⇒ ξ = 0 and, in case it exists, it is also a linear operator.
d) If T, S are invertible linear operators, then (TS)−1 = S−1T−1 (by supposing,

of course, that the operations are well posed).

A rich theory is obtained through the fusion of linear operators with the
natural topology generated by norms. The next result is an example of such fusion;
it shows that if a linear operator is continuous at some point of its domain, then
it is uniformly continuous on its whole domain.

Theorem 1.1.6. Let T : N1 → N2 be a linear operator. Then the following asser-
tions are equivalent:

i) sup‖ξ‖≤1 ‖Tξ‖ <∞.
ii) ∃C > 0 such that ‖Tξ‖ ≤ C‖ξ‖, ∀ξ ∈ N1.
iii) T is uniformly continuous.
iv) T is continuous.
v) T is continuous at zero (i.e., the null vector).

Proof. i) =⇒ ii) Let C = sup‖ξ‖≤1 ‖Tξ‖. If 0 
= ξ ∈ N1, then ‖T (ξ/‖ξ‖)‖ ≤ C,
i.e., ‖Tξ‖ ≤ C‖ξ‖, ∀ξ ∈ N1.

ii) =⇒ iii) If ξ, η ∈ N1, then ‖Tξ − Tη‖ = ‖T (ξ − η)‖ ≤ C‖ξ − η‖.
iii) =⇒ iv) and iv) =⇒ v) are obvious.
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v) =⇒ i) Since T is continuous at zero, there exists δ > 0 with ‖Tξ‖ ≤ 1 if ‖ξ‖ ≤ δ.
Thus, if ‖ξ‖ ≤ 1, it follows that ‖δξ‖ ≤ δ and ‖T (δξ)‖ ≤ 1; therefore, ‖Tξ‖ ≤ 1/δ,
and i) holds. �

Definition 1.1.7. A continuous linear operator is also called bounded, and the set
of bounded linear operators from N1 to N2 will be denoted by B(N1,N2). The
notation B(N ) will also be used as an abbreviation of B(N ,N ).

Note the distinct use of the term bounded linear operator compared to the
use in bounded application in general, i.e., one with bounded range; in the latter
sense every linear (nonzero) operator is not bounded; verify this.

Example 1.1.8. The operator Tu in Example 1.1.4 is continuous, since for all ψ ∈
C(X) one has ‖Tuψ‖∞ = supt∈Y |ψ(u(t))| ≤ supt∈X |ψ(t)| = ‖ψ‖∞, and Tu is
bounded by Theorem 1.1.6(ii).

Exercise 1.1.9. Let X and Y be finite-dimensional vector spaces and T : X → Y
a linear operator. Choose bases in X and Y and show that T can be represented
by a matrix, and discuss how the matrix that represents T changes if other bases
are considered.

Proposition 1.1.10. If T : N1 → N2 be linear and dimN1 <∞, then T is bounded.

Proof. Consider in N1 the norm |‖ξ‖| = ‖ξ‖ + ‖Tξ‖; then there exists C > 0
such that |‖ξ‖| ≤ C‖ξ‖, because all norms on finite-dimensional vector spaces are
equivalent. Hence, ‖Tξ‖ ≤ |‖ξ‖| ≤ C‖ξ‖ and T is bounded. �

Example 1.1.11. For 1 ≤ p < ∞, lp(N) denotes the Banach space of sequences

ξ = (ξj)j∈N so that ‖ξ‖p =
(∑

j |ξj |p
)1/p

< ∞. For p = ∞ the space l∞(N)
carries the norm ‖ξ‖∞ = supj |ξj |. Similarly one defines lp(Z), 1 ≤ p ≤ ∞.

Let T :
{
(ξn) ∈ lp(N) :

∑
n |n2ξn|p <∞

}
→ lp(N), with 1 ≤ p <∞, T (ξn) =

(n2ξn); this operator is linear, but is not continuous, since if {en}∞n=1 denotes
the canonical basis of lp(N), i.e., en = (δj,n)j , then en/n → 0, while Ten does
not converge to zero. Another argument: T is not bounded since ‖en‖p = 1 and
‖Ten‖p = n2, ∀n.
Example 1.1.12 (Shifts). The right (left) shift operator in lp(Z), 1 ≤ p ≤ ∞, is
defined by Sr : lp(Z) → lp(Z) (resp. Sl), η = Srξ (resp. η = Slξ), with ηj = ξj−1

(resp. ηj = ξj+1), j ∈ Z. Note that the shift operator in lp(Z) is a bijective
isometry (i.e., an isometric mapping), so bounded. They are also defined on lp(N)
in an analogous way, but if η = Srξ then it is defined η1 = 0; these operators are
also bounded, but Sr in lp(N) is not onto, although it is isometric.

Note that B(N1,N2) is a vector space with pointwise operations, and it turns
out that

‖T ‖ := sup
ξ∈N1
‖ξ‖≤1

‖Tξ‖
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is a norm on B(N1,N2). In fact, if T ∈ B(N1,N2), ‖T ‖ = 0 ⇐⇒ Tξ = 0, ∀ξ ∈ N1,
that is, T = 0; ‖αT ‖ = |α|‖T ‖ is immediate; if S ∈ B(N1,N2), then

‖T + S‖ = sup
‖ξ‖≤1

‖Tξ + Sξ‖ ≤ sup
‖ξ‖≤1

(‖Tξ‖ + ‖Sξ‖) ≤ ‖T ‖+ ‖S‖.

If a topology is not explicitly given in B(N1,N2), it is supposed that the topology
is the one induced by this norm.
Exercise 1.1.13. a) If T ∈ B(N1,N2), check that

‖T ‖ = inf
C>0

{‖Tξ‖ ≤ C‖ξ‖, ∀ξ ∈ N1} = sup
‖ξ‖=1

‖Tξ‖ = sup
ξ �=0

‖Tξ‖
‖ξ‖ .

b) If T, S are bounded linear operators and TS (the composition, but usually called
product of operators) is defined, show that TS is bounded and ‖TS‖ ≤ ‖T ‖‖S‖.
Therefore, if T n (nth iterate of T ) is defined, then ‖T n‖ ≤ ‖T ‖n.
Example 1.1.14. The zero operator is the unique operator whose norm is zero, and
for the identity operator ‖1‖ = 1 (with N 
= {0}).
Example 1.1.15. Let X be the vector space of polynomials in C[0, 1] and D : X ←↩
the differential operator (Dp)(t) = p′(t), p ∈ X . This operator is linear and does
not belong to B(X), since if pn(t) = tn, then for all n ≥ 1 one has (Dpn)(t) =
ntn−1, ‖pn‖∞ = 1, while ‖Dpn‖∞ = n.
Example 1.1.16. The operator Mφ, with φ ∈ L∞μ (Ω) (see Example 1.1.2) is
bounded in Lpμ(Ω), 1 ≤ p ≤ ∞, and ‖Mφ‖ = ‖φ‖∞ (= sup ess |φ|).

Proof. It will be supposed that ‖φ‖∞ 
= 0 and demonstrated for 1 ≤ p < ∞. The
cases p = ∞ and ‖φ‖∞ = 0 are left as exercises. If ‖ψ‖p = 1, then by

‖Mφψ‖pp =
∫

Ω

|φ(t)|p|ψ(t)|pdμ(t) ≤ ‖φ‖p∞‖ψ‖pp,

one gets that Mφ is bounded and ‖Mφ‖ ≤ ‖φ‖∞.
Let 0 < θ < ‖φ‖∞; then there exists a measurable set A, with 0 < μ(A) <∞

(recall that μ is σ-finite) obeying ‖φ‖∞ ≥ |φ(t)| > θ, ∀t ∈ A. Thus, χA, the
characteristic function of A (i.e., χA(t) = 1 if t ∈ A and χA(t) = 0 if t /∈ A),
belongs to Lpμ(Ω) and

‖MφχA‖pp =
∫
A

|φ(t)|p|χA(t)|pdμ(t) ≥ θp‖χA‖pp ;

so ‖Mφ‖ ≥ θ and, therefore, ‖Mφ‖ = ‖φ‖∞. �
Example 1.1.17. Let K : (Ω,A, μ)×(Ω,A, μ) → F measurable (σ-finite space) and
suppose that there exists C > 0 with∫

Ω

|K(x, y)|dμ(x) ≤ C, for y μ− a.e.
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Then, TK : L1
μ(Ω) ←↩ given by

(TKψ)(x) =
∫

Ω

K(x, y)ψ(y)dμ(y), ψ ∈ L1
μ(Ω),

is bounded and ‖TK‖ ≤ C.

Proof. If ψ ∈ L1
μ(Ω) then

|(TKψ)(x)| ≤
∫

Ω

|K(x, y)ψ(y)|dμ(y);

thus, ‖TKψ‖1 =
∫
Ω
|(TKψ)(x))|dμ(x) ≤

∫∫
|K(x, y)| |ψ(y)|dμ(y)dμ(x). By the Fu-

bini Theorem it is found that

‖TKψ‖1 ≤
∫∫

Ω×Ω

|K(x, y)|dμ(x) |ψ(y)|dμ(y) ≤ C‖ψ‖1.

Therefore ‖TK‖ ≤ C. �
Exercise 1.1.18. Let (en)∞n=1 be the usual basis of l2(N) and (αn)∞n=1 a sequence
in F. Show that the operator T : l2(N) ←↩ with Ten = αnen is bounded if, and
only if, (αn)∞n=1 is a bounded sequence. Verify that, in this case, ‖T ‖ = supn |αn|.
Exercise 1.1.19. Let C1(0, 1) be the set of continuously differentiable real functions
on (0, 1), as a subspace of L2(0, 1) (i.e., use the norm of L2). Apply the differential
operator (Dψ)(t) = ψ′(t), D : C1(0, 1) → L2(0, 1), to functions ψn(t) = sin(nπt)
and conclude that D is not bounded.
Exercise 1.1.20. Show that the differential operatorD : C∞[a, b] ←↩ is not bounded
for any norm on C∞[a, b].

The next result gives a simple answer to an important question. Under which
conditions B(N1,N2) is a Banach space?

Theorem 1.1.21. If N is a normed space and B a Banach space, then B(N ,B) is
Banach.

Proof. Let (Tn)∞n=1 be a Cauchy sequence in B(N ,B). Since for each ξ ∈ N one
has ‖Tnξ−Tkξ‖ ≤ ‖Tn−Tk‖‖ξ‖, then (Tnξ) is Cauchy in B and converges to η ∈ B.
Define T : N → B by Tξ = η, which is clearly linear. It will be shown that this
operator is bounded and Tn → T in B(N ,B).

Given ε > 0 there exists N(ε) such that, if n, k ≥ N(ε), then ‖Tn− Tk‖ < ε.
By the continuity of the norm it follows that

‖Tnξ − Tξ‖ = lim
k→∞

‖Tnξ − Tkξ‖ ≤ ε‖ξ‖, n ≥ N(ε),

and (Tn − T ) ∈ B(N ,B) with ‖Tn − T ‖ ≤ ε. Since B(N ,B) is a vector space,
and T = Tn + (T −Tn), then T ∈ B(N ,B). The inequality ‖Tn−T ‖ ≤ ε, valid for
all n ≥ N(ε), shows that Tn → T and B(N ,B) is complete. �
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Exercise 1.1.22. Suppose that Tn → T in B(N ) and ξn → ξ in N . Show that
Tnξn → Tξ.
Exercise 1.1.23. Let T ∈ B(B). Show that, for all t ∈ F, the operator etT defined
by the series

etT :=
∞∑
j=0

(tT )j

j!

belongs to B(B) and ‖etT ‖ ≤ e|t|‖T‖.
Exercise 1.1.24. Let T ∈ B(B), with ‖T ‖ < 1. Show that the operator defined by
the series S =

∑∞
j=0 T

j belongs to B(B) and S = (1− T )−1.

Uniformly continuous functions on metric spaces have uniformly continuous
extensions to the closure of their domains; in the case of linear operators there is
an analogous result, which is a consequence of the uniform continuity of bounded
operators (Theorem 1.1.6).

Definition 1.1.25. If N is a normed space, then the Banach space B(N ,F) will
be denoted by N ∗ and termed dual space of N . Each element of N ∗ is called a
continuous linear functional on N (Why is N ∗ complete?).

Remark 1.1.26. a) Recall that by the Hahn-Banach theorem N ∗ separates points
of N , that is, if η 
= ξ ∈ N , then there exists f ∈ N ∗ with f(ξ) 
= f(η). In
particular, if f(ξ) = 0 for all f ∈ N ∗, then ξ = 0.

b) The Hahn-Banach theorem can also be used to prove the converse of
Theorem 1.1.21, so that B(N1,N2) is complete iff N2 is a Banach space.
Example 1.1.27. The integral on C[a, b] is an element of the dual of C[a, b], since
ψ �→

∫ b
a ψ(t) dt is linear and continuous. In fact, every finite Borel (complex)

measure μ over [a, b] defines an element of the dual of C[a, b] through the integral
ψ �→

∫ b
a
ψ(t) dμ(t), because∣∣∣∣∣

∫ b

a

ψ(t) dμ(t)

∣∣∣∣∣ ≤ ‖ψ‖∞ |μ|([a, b]).

Example 1.1.28 (Unbounded functional). Consider the linear functional

f : C[−1, 1] ⊂ L1[−1, 1] → F, f(ψ) = ψ(0).

Pick a function ψ ∈ C[−1, 1] with ψ(−1) = ψ(1) = 0 and ψ(0) 
= 0. For each n ≥ 2,
set ψn(t) = ψ(nt) if |t| ≤ 1/n, and equal to zero otherwise. Note that ‖ψn‖1 =∫ 1

−1 |ψn(t)| dt = ‖ψ‖1/n, which converges to zero for n → ∞. However, f(ψn) =
ψ(0) 
= 0 for all n, and f is not continuous.
Example 1.1.29. Let 1 < p < ∞ and 1/p + 1/q = 1. Each φ ∈ Lqμ(Ω) defines an
element of the dual of Lpμ(Ω), since by Hölder inequality the product φψ ∈ L1

μ(Ω),
for all ψ ∈ Lpμ(Ω), and

ψ �→
∫

Ω

φψdμ
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is linear and bounded with norm ≤ ‖φ‖q (again by Hölder). Hence, Lqμ(Ω) ⊂
Lpμ(Ω)∗. The proof is found in books on Integration Theory that Lpμ(Ω)∗ = Lqμ(Ω),
for 1 < p <∞ and, if the measure μ is σ-finite, one also has L1

μ(Ω)∗ = L∞μ (Ω).
Exercise 1.1.30. Show that the dual of lp is lq, with 1 < p <∞ and 1/p+1/q = 1.

Theorem 1.1.31 (Uniform Boundedness Principle). Any family of operators
{Tα}α∈J in B(B,N ) so that, for each ξ ∈ B,

sup
α∈J

‖Tαξ‖ <∞,

satisfies supα∈J ‖Tα‖ <∞.

Proof. Put Ek = {ξ ∈ B : ‖Tαξ‖ ≤ k, ∀α ∈ J}, which is a closed set; indeed, since
Tα is continuous, it is the intersection of the closed sets T−1

α B(0; k) for all α ∈ J .
Since B =

⋃∞
k=1 Ek, by the Baire theorem there exists Em with nonempty interior.

Let BB(ξ0; r) (r > 0) be an open ball contained in Em; then, for any α ∈ J one
has ‖Tαξ‖ ≤ m for all ξ ∈ BB(ξ0; r).

If ξ ∈ B, ‖ξ‖ = 1, it is found that η = ξ0 + rξ/2 belongs to BB(ξ0; r) and

‖Tαξ‖ =
2
r
‖Tαη − Tαξ0‖ ≤ 2

r
(‖Tαη‖ + ‖Tαξ0‖) ≤

4m
r

;

thus ‖Tαξ‖ ≤ 4m/r for all α ∈ J and ‖ξ‖ = 1; it then follows that supα ‖Tα‖ ≤
4m/r <∞. �
Corollary 1.1.32. A subset H ⊂ B∗ = B(B,F) is bounded if, and only if, for
all ξ ∈ B, supf∈H |f(ξ)| <∞.

Proof. If H is bounded, then M = supf∈H ‖f‖ < ∞ and for all ξ ∈ B one has
supf∈H |f(ξ)| ≤ M‖ξ‖ < ∞. To show the other statement, by using the notation
presented in the uniform boundedness principle, it is enough to consider H as the
family Tα in the Banach space B∗. �
Corollary 1.1.33 (Banach-Steinhaus Theorem). Let (Tn)∞n=1 be a sequence in
B(B,N ) so that for each ξ ∈ B there exists the limit

Tξ := lim
n→∞

Tnξ.

Then supn ‖Tn‖ <∞ and T is a bounded operator in B(B,N ).

Proof. Clearly T is linear. Since for all ξ ∈ B there exists limn→∞ Tnξ, then
supn ‖Tnξ‖ <∞, and by the uniform boundedness principle one has supn ‖Tn‖ <
∞. By the definition of T it follows that

‖Tξ‖ ≤ (sup
n

‖Tn‖) ‖ξ‖, ∀ξ ∈ B

and, therefore, T is bounded. �
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Example 1.1.34. Let N be the normed space of the elements ξ = (ξj) ∈ l∞(N)
that have just a finite number of nonzero entries ξj . Define Tn : N → l∞ by
Tnξ = (nξn)j∈N. Then Tn ∈ B(N , l∞) for all n, and for each ξ ∈ N there exists
the limit limn→∞ Tnξ = 0, but limn→∞ ‖Tn‖ = ∞. This shows that the conclusions
of the Banach-Steinhaus theorem (and of the uniform boundedness principle) may
fail if the domain of the operators is not complete.

Exercise 1.1.35. Let Sl : l2(N) ←↩ be the shift

Sl(ξ1, ξ2, ξ3, . . . ) = (ξ2, ξ3, ξ4, . . . )

and Tn = Snl . Find ‖Tnξ‖, and the limit operator described in the Banach-
Steinhaus theorem.

Proposition 1.1.36. Let {Tα}α∈J be a family in B(B,N ) with

sup
α∈J

‖Tα‖ = ∞.

Then the set I = {ξ ∈ B : supα ‖Tαξ‖ <∞} is meager in B (that is, it is a subset
of a countable union of closed subsets of B with empty interior).

Proof. By using the notation of the proof of the uniform boundedness principle,
one has I = ∪∞k=1Ek, and by that proof it follows that the interior of every Ek is
empty, since if not one would get supα∈J ‖Tα‖ <∞. Since Ek is closed, then I is
meager. �

Denote Cp[0, 2π] = {ψ ∈ C[0, 2π] : ψ(0) = ψ(2π)}, which is a closed subspace
of C[0, 2π], so it is Banach, and

(Fψ)n =
1√
2π

∫ 2π

0

e−intψ(t) dt, ψ ∈ Cp[0, 2π].

Corollary 1.1.37. The set of elements ψ ∈ Cp[0, 2π] whose Fourier series∑
n∈Z

(Fψ)n e
int converges for t = 0 is meager.

Proof. By working with trigonometric relations it is found that, for each N , the
partial sum (SNψ)(t) =

∑
|n|≤N (Fψ)n e

int can be written in the form

(SNψ)(t) =
1
2π

∫ 2π

0

sin[(2N + 1)(t− s)/2]
sin[(t− s)/2]

ψ(s) ds.

Note that fN : Cp[0, 2π] → C, fN(ψ) = (SNψ)(0), is an element of the dual
of Cp[0, 2π]; thus, in order to conclude this proof it is enough to show that
supN ‖fN‖ = ∞ and use Proposition 1.1.36 with fN represented by Tα.
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Consider φN (t) = sin[(2N + 1)t/2], an element of Cp[0, 2π] with norm equal
to 1; thus

fN (φN ) =
1
2π

∫ 2π

0

sin2[(2N + 1)s/2]
sin(s/2)

ds

≥ 1
π

∫ 2π

0

sin2[(2N + 1)s/2]
s

ds

=
1
π

∫ (2N+1)π

0

sin2 u

u
du

≥ 1
π

2N+1∑
n=1

∫ nπ

(n−1)π

sin2 u

nπ
du =

1
2π

2N+1∑
n=1

1
n
.

Since the harmonic series is divergent, one concludes that limN→∞ ‖fN‖ = ∞,
and the proof is complete. �
Exercise 1.1.38. Verify that Cp[0, 2π] is a Banach space, and also the validity
of the expression for a partial sum for the Fourier series used in the proof of
Corollary 1.1.37.

Now the famous Riesz representation theorem of Hilbert spaces H, which
shows that every Hilbert space is naturally identified to its dual, is recalled and
demonstrated. In order to fix notation, remember that an inner product in a vector
space X is a map (ξ, η) �→ 〈ξ, η〉, X × X → F, so that for any ξ, η, ζ ∈ X and
α ∈ F it satisfies:

i) 〈αξ + η, ζ〉 = ᾱ〈ξ, ζ〉 + 〈η, ζ〉,
ii) 〈ξ, η〉 = 〈η, ξ〉,
iii) 〈ξ, ξ〉 ≥ 0, and 〈ξ, ξ〉 = 0 iff ξ = 0.

In an inner product space one has the induced norm ‖ξ‖ :=
√
〈ξ, ξ〉, so

that the Cauchy-Schwarz |〈ξ, η〉| ≤ ‖ξ‖‖η‖ and triangular ‖ξ + η‖ ≤ ‖ξ‖ + ‖η‖
inequalities always hold.
Exercise 1.1.39. Show that equality in Cauchy-Schwarz occurs iff {ξ, η} is linearly
dependent, while equality in the triangular occurs iff either ξ = 0 or η = tξ for
some t ≥ 0.

Let {ξα}α∈J be an orthonormal set in H. One of the advantages of the pres-
ence of an inner product in a Hilbert space H is the existence of orthonormal basis
of H, that is, if Lin({ξα}α∈J) = H. The following facts illustrate such advantages
quite well. For each ξ ∈ H, the Bessel inequality

‖ξ‖2 ≥
∑
α∈J

|〈ξα, ξ〉|2

holds; in particular, 〈ξα, ξ〉 
= 0 only for a countable number of indices α ∈ J .
Furthermore, the following assertions are equivalent:
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i) {ξα}α∈J is an orthonormal basis of H.
ii) If ξ ∈ H, then the Fourier series of ξ, with respect to {ξα}α∈J , converges

in H for ξ (and independent of the sum order), that is,

ξ =
∑
α∈J

〈ξα, ξ〉 ξα, ∀ξ ∈ H.

iii) [Parseval Identity] For all ξ ∈ H,

‖ξ‖2 =
∑
α∈J

|〈ξα, ξ〉|2.

Furthermore, if {ξα}α∈J is an orthonormal basis and η =
∑

α∈J〈ξα, η〉ξα,
then

〈ξ, η〉 =
∑
α

〈ξ, ξα〉 〈ξα, η〉.

Theorem 1.1.40 (Riesz Representation). Let H be a Hilbert space and H∗ its dual.
The map γ : H → H∗, γ(ξ) = fξ, for ξ ∈ H, given by

γ(ξ)(η) = fξ(η) = 〈ξ, η〉, ∀η ∈ H,

is an antilinear (i.e., αξ �→ αξ, ∀α ∈ F) and onto isometry on H∗.
Remark 1.1.41. This theorem implies that each element of H∗ is identified to a
unique ξ ∈ H, via fξ, and ‖fξ‖ = ‖ξ‖; one then says such ξ represents fξ. Note that
two distinct notations for this map were introduced: γ(ξ) and fξ; this is convenient
in certain situations.

Proof. If ξ = 0, clearly fξ = 0. If ξ ∈ H, then fξ is a linear functional and
|fξ(η)| = |〈ξ, η〉| ≤ ‖ξ‖‖η‖, so that fξ ∈ H∗ with ‖fξ‖ ≤ ‖ξ‖. In view of ‖ξ‖2 =
fξ(ξ) ≤ ‖fξ‖‖ξ‖ one has ‖fξ‖ ≥ ‖ξ‖. Hence ‖fξ‖ = ‖ξ‖, and the map γ is an
isometry, obviously antilinear (linear in the real case). Then we only need to show
that every f ∈ H∗ is of the form fξ for some ξ ∈ H. If f = 0, then f = fξ
for ξ = 0. If f 
= 0, since the kernel N(f) is a proper closed vector subspace
(since f is continuous) of H, it is found that

H = N(f) ⊕ N(f)⊥,

and there exists ζ ∈ N(f)⊥ with ‖ζ‖ = 1. Now, by noticing that the vector
(f(η)ζ − f(ζ)η) ∈ N(f), for all η ∈ H (this remark is simple but essential in this
proof), one concludes that

〈ζ, f(η)ζ − f(ζ)η〉 = 0, ∀η ∈ H,

that is, f(η) = 〈f(ζ)ζ, η〉. Therefore, f = γ(f(ζ)ζ). �
Exercise 1.1.42. If f ∈ H∗, what is the dimension of N(f)⊥?
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Example 1.1.43. The hypothesis that the inner product space is complete can not
be dispensed with in Theorem 1.1.40. Consider the subspace N of l2(N) whose
elements have just a finite number of nonzero entries; then f : N → F, f(η) =∑∞
j=1 ηj/j, belongs to N ∗, but there is no ξ ∈ N with f = fξ, since the vector

(1, 1/2, 1/3, . . . ) /∈ N .

Now a simple and useful technical result, although it is restricted to complex
inner product spaces, as illustrated by Example 1.1.45.

Lemma 1.1.44. Let (X, 〈·, ·〉) be a complex inner product space. If T : X ←↩ is a
linear operator and 〈Tξ, ξ〉 = 0 for all ξ ∈ X, then T = 0. Hence, if T, S are linear
operators and 〈Tξ, ξ〉 = 〈Sξ, ξ〉 for all ξ ∈ X, then T = S.

Proof. For all α ∈ C and any ξ, η ∈ X one has

0 = 〈T (αξ + η), αξ + η〉 = ᾱ〈Tξ, η〉 + α〈Tη, ξ〉.

By picking, successively, α = 1 and α = −i one obtains

〈Tξ, η〉 + 〈Tη, ξ〉 = 0 and 〈Tξ, η〉 − 〈Tη, ξ〉 = 0,

whose unique solution is 〈Tξ, η〉 = 0, for all ξ, η ∈ X , that is, T is the zero
operator. �

Example 1.1.45. Consider the rotation R by the right angle on R2, so that R 
= 0
while 〈Rξ, ξ〉 = 0, ∀ξ ∈ R2.

Before closing this section, recall the parallelogram law

‖ξ + η‖2 + ‖ξ − η‖2 = 2‖ξ‖2 + 2‖η‖2, ∀ξ, η ∈ X

as well as the polarization identity

〈ξ, η〉 =
1
4
(
‖ξ + η‖2 − ‖ξ − η‖2 + i‖ξ + iη‖2 − i‖ξ − iη‖2

)
,

which hold in any (complex) inner product space.

1.2 Closed Operators

Before discussing closed operators it can be useful to recall the so-called open
mapping theorem. A map between topological spaces is open if the image of every
open subset is also open. There are invertible continuous maps that are not open,
as shown by the following examples.
Example 1.2.1. The identity map between Rn with the discrete topology and Rn

with the usual topology is continuous and invertible, but its inverse map is not
continuous, that is, this bijective continuous map is not open.
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Example 1.2.2. Let X = [−1, 0] ∪ (1, 2] in R and ψ : X → [0, 4], ψ(t) = t2. ψ is a
continuous bijection, but its inverse ψ−1 : [0, 4] → X , given by

ψ−1(t) =
{
−
√
t if 0 ≤ t ≤ 1√
t if 1 < t ≤ 4

,

is not continuous.
Exercise 1.2.3. Show that T : l1(N) ←↩ given by T (ξ1, ξ2, ξ3, . . . ) = (ξ1/1, ξ2/2,
ξ3/3, . . . ) is linear, continuous and invertible, but its inverse T−1, defined on the
range of T , is not a continuous operator.

Theorem 1.2.4 (Open Mapping). If T ∈ B(B1,B2) with rng T = B2, then T is an
open map.

Proof. The following properties will be used, and only the last one is not immedi-
ate:

a) for all r, s > 0 one has TB(0; r) = r
sTB(0; s).

b) for all ξ ∈ B1 and r > 0, one has TB(ξ; r) = Tξ + TB(0; r) (sum of sets).
c) if B(0; ε) ⊂ TB(0; r), then B(0;αε) ⊂ TB(0;αr), for all α > 0. Then if

there is r > 0 so that TB(0; r) contains a neighborhood of the origin, then
TB(0; s) contains a neighborhood of the origin for all s > 0 (note that such
implications also hold without closures of the sets).

d) if B(η0; ε) ⊂ TB(0; r), then there exists δ > 0 so that B(0; δ) ⊂ TB(0; r)
(note that it also holds without closure of the sets).

To prove the last property, pick ξ1 ∈ B(0; r) so that ‖η1−η0‖ < ε/2, with η1 = Tξ1.
Thus,

B(η1; ε/2) ⊂ B(η0; ε) ⊂ TB(0; r),

and so

B(0; ε/2) =B(η1; ε/2)− η1 ⊂ {B(η0; ε) − Tξ1}

⊂
{
TB(0; r) − Tξ1

}
⊂ T [B(0; r) − ξ1] ⊂ TB(0; 2r) .

Then it follows that B(0; ε/2) ⊂ TB(0; 2r) and, therefore, B(0; δ) ⊂ TB(0; r) with
δ = ε/4, proving d).

Lemma 1.2.5. If T ∈ B(N1,N2) and there exists r > 0 so that the interior
of TB(0; r) is nonempty, then T is an open map.

Proof. Since the interior of TB(0; r) 
= ∅, from the above properties it follows
that for all s > 0, TB(0; s) contains an open ball centered at the origin. To show
that T is an open map it is enough to show that for all ξ ∈ N1 and all s > 0,
TB(ξ; s) contains a neighborhood of Tξ. In view of TB(ξ; s) = Tξ + TB(0; s),
one may consider ξ = 0 and verify that for all s > 0 the set TB(0; s) contains a
neighborhood of the origin, but this is exactly what was observed at the beginning
of this proof. �
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By this lemma, to prove the open mapping theorem it is enough to verify
that there exists some r > 0 so that TB(0; r) contains an open ball centered at the
origin. Note that only from this point will the completeness of B1,B2 and that T
is onto be used; the Baire theorem will be crucial.

Since T is onto B2 =
⋃∞
n=1 TB(0;n), and by the Baire theorem there is

some m so that the interior of TB(0;m) is nonempty. By property c) it is possible
to take m = 1.

By property d) one may suppose that there is δ > 0 so that B(0; δ) ⊂
TB(0; 1). The goal now is to show that the relation TB(0; 1) ⊂ TB(0; 2) holds,
which, by Lemma 1.2.5, proves the theorem.

Let η ∈ TB(0; 1). Pick ξ1 ∈ B(0; 1) with

(η − Tξ1) ∈ B(0; δ/2) ⊂ TB(0; 1/2).

In the last step property c) was invoked. Pick now ξ2 in B(0; 1/2) so that (again
by c))

(η − Tξ1 − Tξ2) ∈ B(0; δ/22) ⊂ TB(0; 1/22).

By induction, pick ξn ∈ B(0; 1/2n−1) satisfying⎛⎝η − n∑
j=1

Tξj

⎞⎠ ∈ B(0; δ/2n) ⊂ TB(0; 1/2n).

(
∑n
j=1 ξj)n is a Cauchy sequence and, since B1 is complete, there exists ξ =∑∞
j=1 ξj and, by the continuity of the map T it follows that η = Tξ. Since ‖ξ‖ < 2,

one gets TB(0; 1) ⊂ TB(0; 2). �
By the open mapping theorem the next result is evident; it is sometimes

called the inverse mapping theorem.

Corollary 1.2.6. If T ∈ B(B1,B2) is a bijection between B1 and B2, then T−1 is
also a linear continuous map.

Recall that the cartesian product N1×N2 of two normed spaces has a natural
structure of vector space given by α(ξ, η) = (αξ, αη), α ∈ F, and (ξ1, η1)+(ξ2, η2) =
(ξ1+ξ2, η1+η2); furthermore, this cartesian product becomes a normed space with
the norm ‖(ξ, η)‖ = (‖ξ‖2

N1
+‖η‖2

N2
)

1
2 ; such a norm is equivalent to ‖ξ‖N1 +‖η‖N2

and both may be employed.

Definition 1.2.7. The graph of a linear operator T : dom T ⊂ N1 → N2 is the
vector subspace G(T ) = {(ξ, T ξ) : ξ ∈ dom T } of N1 ×N2. The graph norm of T
on dom T is ‖ξ‖T :=

(
‖Tξ‖2 + ‖ξ‖2

)1/2.
Definition 1.2.8. A linear operator T : dom T ⊂ N1 → N2 is closed if for all con-
vergent sequences (ξn) ⊂ dom T , ξn → ξ ∈ N1, with (Tξn) ⊂ N2 also convergent,
Tξn → η, then ξ ∈ dom T and η = Tξ. In other words, T is closed iff G(T ) is a
closed subspace of N1 ×N2.
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Exercise 1.2.9. a) Show that B1 × B2 with the norm ‖(ξ, η)‖ defined above is a
Banach space. b) Show that T is a closed operator iff dom T with the graph norm
is a Banach space.
Exercise 1.2.10. Verify that G(T ) is a vector subspace of N1 ×N2 and the equiv-
alence quoted in the above definition of closed operator.
Remark 1.2.11. Pay attention to the difference between a continuous and a closed
operator: a linear operator T is continuous if for ξn → ξ in dom T , then nec-
essarily Tξn → Tξ, while for a closed operator it is asked that if both (ξn) ⊂
dom T and (Tξn) are convergent, then necessarily ξ = limn ξn belongs to dom T
and Tξn → Tξ.
Exercise 1.2.12. Consider the linear operator T : dom T ⊂ N1 → N2, and let π1 :
G(T ) → dom T and π2 : G(T ) → rng T be the natural projections π1(ξ, T ξ) = ξ
and π2(ξ, T ξ) = Tξ, for ξ ∈ dom T . Show that such projections are continuous
linear operators.

It is important to give conditions to guarantee that closed operators are
continuous, since the requirement for being closed is in general easier to verify;
the closed graph theorem, presented below, says that such concepts are equivalent
for linear operators between Banach spaces.

A first result in this direction appears in:

Proposition 1.2.13. Any operator T ∈ B(B1,B2) is closed.

Proof. Let ξn → ξ with Tξn → η. Since ξ ∈ dom T and T is continuous, then
Tξn → Tξ = η; thus T is closed. �
Exercise 1.2.14. If dimN1 < ∞, show that every linear operator T : dom T ⊂
N1 → N2 is closed.
Example 1.2.15 (Bounded and nonclosed). Let 1 : dom 1 → B, with dom 1 a
proper dense subspace of B, the identity operator 1(ξ) = ξ for ξ ∈ dom 1; such
operator is bounded. Let (ξn) ⊂ dom 1 with ξn → ξ ∈ B\dom 1. Since ξn →
ξ and 1(ξn) → ξ, but ξ /∈ dom 1, this operator is not closed. It is a rather
artificial example, but it illustrates the difference between bounded and closed
linear operators.
Exercise 1.2.16. If N ⊂ B, show that T ∈ B(N ,B) is closed if, and only if, N is
a Banach space.
Remark 1.2.17. If T ∈ B(N1,B2) with N1 ⊂ B1, then its unique continuous linear
extension T : N 1 → B2 is a closed operator (Proposition 1.2.13). Then, every con-
tinuous linear operator is “basically” closed, and the artificiality in Example 1.2.15
is unavoidable.
Example 1.2.18 (Unbounded and closed). Let C1[0, π] ⊂ C[0, π] (both with the
uniform convergence topology) be the subspace of continuously differentiable func-
tions on [0, π] and D : C1[0, π] → C[0, π], (Dψ)(t) = ψ′(t). D is not continuous,
since the sequence ψn(t) = sin(nt)/n → 0, while (Dψn)(t) = cos(nt) does not
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converge uniformly to zero. However, this operator is closed. In fact, if ψn → ψ
and Dψn = ψ′n → ϕ, then, as these limits are uniform,∫ t

0

ϕ(s) ds =
∫ t

0

lim
n→∞

ψ′n(s) ds = lim
n→∞

∫ t

0

ψ′n(s) ds = ψ(t) − ψ(0).

Thus, ψ ∈ dom D = C1[0, π] and (Dψ)(t) = ϕ(t), ∀t, and D is closed.
Exercise 1.2.19. From Example 1.2.18, show that if (ψj)∞j=1 ⊂ C1[0, π] is such that
the series ψ(t) =

∑∞
j=1 ψj(t) and ϕ(t) =

∑∞
j=1 ψ

′
j(t) converge uniformly, then ψ

is continuously differentiable and ϕ = ψ′.
Example 1.2.20 (Unbounded and nonclosed). Let dom T be the set of continuous
functions in L1[−1, 1] and (Tψ)(t) = ψ(0), ∀t, as element of L1[−1, 1]. This oper-
ator is neither continuous nor closed, since ψn(t) = e−|t|n → 0 in L1[−1, 1], while
(Tψn)(t) = 1, ∀t, for all n. Note that it has no closed extensions.

Theorem 1.2.21 (Closed Graph). If T : B1 → B2 is a linear operator, then T is
continuous if, and only if, T is closed.

Proof. One of the assertions of the closed graph theorem was already discussed;
it is only needed to show that, under such conditions, if the linear operator T is
closed, then it is bounded; the open mapping theorem will be used.

By hypotheses G(T ) is closed in B1 × B2, then G(T ) is also a Banach space.
The projection operators π1 and π2 (see Exercise 1.2.12) are both linear and
continuous. Moreover, π1 is a bijection between the Banach spaces G(T ) and B1;
thus, by the open mapping theorem, its inverse π−1

1 : B1 → G(T ) is continuous.
Since T is the composition

T = π2 ◦ π−1
1 ,

it follows that it is a bounded operator. �
Example 1.2.22 (Unbounded and closed). It is essential that the operator range is
a complete space. The operator T−1 : rng T → l1(N) in Exercise 1.2.3 has closed
graph but is not continuous.
Remark 1.2.23. One could imagine that a linear operator is not closed because its
domain was chosen too small, and by considering the closure G(T ) in N1 ×N2 a
closed operator would result. This may not work, since G(T ) is not necessarily the
graph of an operator; see Example 1.2.20 where the point (0, 1) belongs to G(T ),
however it is not of the form (0, S0) for any linear operator S.
Exercise 1.2.24. Let E be a subspace of N1 ×N2. Show that E is the graph of a
linear operator if, and only if, E does not contain any element of the form (0, η),
with η 
= 0.

Definition 1.2.25.

(a) The linear operators T , for which G(T ) is the graph of a linear extension T
of T , are called closable operators and T is the closure of T (see Proposi-
tion 1.2.27).
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(b) If the operator T : dom T � N1 :→ N2 is closed, a subspace D ⊂ dom T is
called a core of T if T |D = T , that is, if the closure of the restriction T |D is T .

Exercise 1.2.26. Show thatX is a core of the closed operator T iff {(ξ, T ξ) : ξ ∈ X}
is dense in G(T ).

If the linear operator T : dom T ⊂ N1 → N2 is closable, then

D = {ξ ∈ N1 : ∃(ξn) ⊂ dom T, ξn → ξ and exists η ∈ N2 with Tξn → η}

is a subset of all closed extensions of T . Define dom T̃ = D and, for ξ ∈ D,
T̃ ξ := η, and note that, by construction, G(T̃ ) is closed in N1 × N2, and so T̃
is closed. Note also that G(T̃ ) = G(T ). Therefore T̃ is the closure of T , that is,
T̃ = T . In summary:

Proposition 1.2.27. If T : dom T ⊂ N1 → N2 is closable, then G(T ) is the graph
of its closure T , which is the smallest closed extension of T .

Exercise 1.2.28. Show that T is a closed operator acting in H iff dom T with the
graph inner product of T , given by 〈η, ξ〉T := 〈Tη, T ξ〉+ 〈η, ξ〉, is a Hilbert space.
This inner product generates a graph norm (Definition 1.2.7) and the correspond-
ing orthogonality will be denoted by ⊥T .

1.3 Compact Operators

The compact operators have some similarities with operators on finite-dimensional
spaces and so the theory presents several technical simplifications. These operators
are important in many applications, sometimes as integral operators, a historically
important example of compact operator.

It is convenient to recall some definitions and properties – in the form of
exercises – of metric spaces theory. A set A in the metric space (X, d) is relatively
compact, or precompact, if its closure A is compact. A is totally bounded if, for
all ε > 0, A is in the finite union of open balls in X with radii ε; so, any totally
bounded set is also bounded.
Exercise 1.3.1. Show that if A ⊂ (X, d) is precompact, then A is totally bounded
and, so, bounded.
Exercise 1.3.2. If A ⊂ (X, d) is totally bounded, show that, for all ε > 0, A is
in the union of a finite number of open balls of radii ε centered at points of A.
Conclude then that a totally bounded set is separable with the induced topology,
that is, it contains a countable dense subset.

Lemma 1.3.3. Any totally bounded subset of a complete metric space is precompact.

Proof. Let A be a totally bounded set; then its closure is also totally bounded
(from a cover of balls, the family of balls with the same centers but with double
radii covers the closure of the set). Since this set is in a complete metric space,
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to show that its closure is compact it is enough to check that every sequence
(ξn) ⊂ A has a Cauchy subsequence. Such a set being totally bounded, there is a
subsequence (ξ1,n) of (ξn) contained in an open ball of radius 1. In the same way,
there exists a subsequence (ξ2,n) of (ξ1,n) contained in an open ball of radius 1/2;
it is possible to construct subsequences (ξk,n)n≥1 of (ξk−1,n)n≥1 contained in some
open ball of radius 1/k, for all k ∈ N. To finish the proof note that (ξk,k)k≥1 is a
Cauchy subsequence of the original sequence. �
Definition 1.3.4. A linear operator T : N1 → N2 is compact, also called completely
continuous, if the range T (A), of any bounded set A ⊂ N1 is precompact in N2.
The set of such compact operators will be denoted by B0(N1,N2) (or B0(N ) in
case N1 = N2 = N ).

Remark 1.3.5. Equivalently, T : N1 → N2 linear is compact if (Tξn) has a con-
vergent subsequence in N2 for every bounded sequence (ξn) ⊂ N1. Verify this!
Exercise 1.3.6. If dimN = ∞, show that the identity operator 1 : N ←↩ is not
compact (use, for instance, Riesz’s Lemma 1.6.2).

Proposition 1.3.7. Let N1,N2 be normed spaces and T, S : N1 → N2 linear opera-
tors. Then:

i) B0(N1,N2) is a vector subspace of B(N1,N2).
ii) If T is compact and S bounded, then TS and ST are compact operators

(suppose all operations are well posed).

Proof. i) Let T ∈ B0(N1,N2); since T (S(0; 1)) is precompact, it is bounded. Thus,
T ∈ B(N1,N2). The proof that B0(N1,N2) is a vector subspace is left to the
readers.

ii) If A is a bounded set, then S(A) is also bounded and, so, T (S(A)) is
precompact. Therefore, TS is compact.

Given a bounded set A, the range by T of any sequence (ξn) ⊂ A has a
convergent subsequence (Tξnj ), since T is compact. S being continuous, (STξnj )
is also convergent. Therefore, ST (A) is precompact and ST is a compact operator.

�
Remark 1.3.8. A map between metric spaces is compact if the range of bounded
sets is precompact; the Dirichlet function h : R → R, h(t) = 1 if t ∈ Q and
h(t) = 0 otherwise, is compact, but not continuous in any point of its domain (cf.
Proposition 1.3.7).

Important examples of compact operators are the finite-rank operators.

Definition 1.3.9. T ∈ B(N1,N2) is of finite rank if dim rng T < ∞. The vector
space of finite rank operators between these spaces will be denoted by Bf(N1,N2)
(it will also be used the obvious notation Bf(N )).

Proposition 1.3.10. All finite rank operators are compact. In particular N ∗ =
B0(N ,F).
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Proof. Let T ∈ Bf(N1,N2) and A ⊂ N1 a bounded set. Since T is a bounded
operator, T (A) is bounded and its closure T (A) is a closed and bounded set and,
in view of dim rng T <∞, it follows that T (A) is a compact set. �

Lemma 1.3.11. If T ∈ B0(N1,N2), then T (N1) is separable.

Proof. Since N1 =
⋃∞
j=1 B(0; j), then for T : N1 → N2, rng T =

⋃∞
j=1 T (B(0; j)).

In order to conclude the lemma, it is sufficient to show that for each j ∈ N the
set TB(0; j) has a countable dense subset. If T is compact, TB(0; j) is totally
bounded; thus, for each m ∈ N it can be covered by a finite number of open balls
of radii 1/m, centered at points of TB(0; j). The union of the centers of such open
balls for all m ∈ N is a dense countable set of TB(0; j). �

Exercise 1.3.12. Let T : N1 → N2 linear. Show that it is compact if, and only if,
TB(0; 1) is precompact in N2.

Theorem 1.3.13. B0(N ,B) is a closed subspace of B(N ,B); therefore, B0(N ,B) is
a Banach space.

Proof. Let (Tn) ⊂ B0(N ,B), with Tn → T in B(N ,B). It will be shown that
for all r > 0 the set TB(0; r) is totally bounded and, therefore, precompact by
Lemma 1.3.3. From this it follows that T is also a compact operator.

Given ε > 0, there is n such that ‖Tn − T ‖ < ε/r. Since Tn is compact,
the set TnB(0; r) is totally bounded and, so, it is in the union of certain balls
B(Tnξ1; ε), B(Tnξ2; ε), . . . , B(Tnξm; ε), with ξj ∈ B(0; r), for all 1 ≤ j ≤ m. Hence,
if ξ ∈ B(0; r) there is one of these ξj such that Tnξ ∈ B(Tnξj ; ε). From this

‖Tξ − Tξj‖ ≤ ‖Tξ − Tnξ‖ + ‖Tnξ − Tnξj‖ + ‖Tnξj − Tξj‖
< ‖T − Tn‖‖ξ‖ + ε+ ‖Tn − T ‖‖ξj‖
<
ε

r
r + ε+

ε

r
r = 3ε,

showing that TB(0; r) ⊂
⋃m
j=1 B(Tnξj ; 3ε). Therefore TB(0; r) is totally bounded

for all r > 0. �

Corollary 1.3.14. If (Tn) ⊂ Bf(N ,B) and Tn → T in B(N ,B), then the operator
T is compact.

Proof. Combine Proposition 1.3.10 and Theorem 1.3.13. �

Recall that a sequence (ξn)⊂N converges weakly to ξ ∈ N if limn→∞f(ξn)=
f(ξ) for all f ∈ N ∗, and that all weakly convergent sequences are bounded. ξn

w−→
ξ and w − lim ξn = ξ will be used to indicate that (ξn) converges weakly to ξ.
The convergence of (ξn) to ξ in the norm of N will be called strong convergence

and indicated by ξn → ξ, ξn
s−→ ξ and s − lim ξn = ξ.

There are also corresponding notions of convergence of a sequence (Tn) of
bounded operators in B(N ).



1.3. Compact Operators 23

Definition 1.3.15. Let (Tn) be a sequence of operators in B(N1,N2) and T : N1 →
N2 linear. One says that

a) Tn converges uniformly, or in norm, to T if

‖Tn − T ‖ → 0.

The uniform convergence is denoted by Tn → T or limn→∞ Tn = T .
b) Tn converges strongly to T if

‖Tnξ − Tξ‖N2 → 0, ∀ξ ∈ N1.

The strong convergence of linear operators will be denoted by Tn
s−→ T or

s − limn→∞ Tn = T .
c) Tn converges weakly to T if

|f(Tnξ) − f(Tξ)| → 0, ∀ξ ∈ N1, f ∈ N ∗
2 .

The weak convergence of linear operators will be denoted by Tn
w−→ T or

w − limn→∞ Tn = T .

Exercise 1.3.16. Show that in B(N1,N2) the three kinds of limits defined above
are well defined and unique (if they exist, of course). Moreover, verify that the
uniform convergence =⇒ strong convergence =⇒ weak convergence, and with the
same limits.
Example 1.3.17. Let PN : l1(N) ←↩, PNξ = (ξ1, ξ2, . . . , ξN , 0, 0, . . . ), with ξ =
(ξ1, ξ2, ξ3, . . . ). Since ‖PNξ− ξ‖ =

∑∞
j=N+1 |ξj | it is found that PN

s−→ 1. On the
other hand, ‖PNξ − ξ‖ ≤ ‖ξ‖ and ‖PNe(N+1) − e(N+1)‖ = ‖e(N+1)‖ = 1, ∀N, and
then (PN ) is not uniformly convergent ((ej) is the canonical basis of l1(N)). Adapt
it to lp, 1 < p <∞.
Exercise 1.3.18. Show that the sequence of operators Tn : l2(N) ←↩

Tnξ = (0, 0, . . . , 0︸ ︷︷ ︸
n entries

, ξn+1, ξn+2, ξn+3, . . . )

converges strongly to zero, but does not converge uniformly.
Exercise 1.3.19. Show that the sequence of operators Tn : l2(N) ←↩

Tnξ = (0, 0, . . . , 0︸ ︷︷ ︸
n entries

, ξ1, ξ2, ξ3, . . . )

converges weakly to zero, but does not converge strongly.

As a reformulation of the Banach-Steinhaus theorem, one has (by using an
obvious generalization of convergence of operators):

Proposition 1.3.20. If (Tn) in B(B,N ) converges strongly to the operator T : B →
N , then T ∈ B(B,N ).
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Note that due to the Riesz representation Theorem 1.1.40, a sequence (ξn) ⊂
H converges weakly to ξ if, and only if,

lim
n→∞

〈η, ξn〉 = 〈η, ξ〉, ∀η ∈ H.

Exercise 1.3.21. Show that every orthonormal sequence in a Hilbert space con-
verges weakly to zero and has no strongly convergent subsequence.

Recall the Hilbert adjoint T ∗ of a bounded operator T ∈ B(H1,H2). It is
the unique linear operator so that

〈ξ, T η〉 = 〈T ∗ξ, η〉, ∀ξ ∈ H2, η ∈ H1.

Further, T ∗ ∈ B(H2,H1) and ‖T ∗‖ = ‖T ‖. The bounded linear operator T is
self-adjoint if T ∗ = T . See a generalization of the concept of adjoint to certain
unbounded operators in Definition 2.1.2. Finally, recall that an operator P ∈ B(H)
is an orthogonal projection if it is self-adjoint and P 2 = P , and it projects onto
the closed subspace rng P .

Proposition 1.3.22. Let T ∈ B0(H1,H2). If ξn
w−→ ξ in H1, then Tξn → Tξ, i.e.,

a compact operator takes weakly convergent sequences to strongly convergent ones
(this result also holds in normed spaces).

Proof. Suppose ξn
w−→ ξ in H1. If η ∈ H2,

〈η, T ξn〉 = 〈T ∗η, ξn〉 → 〈T ∗η, ξ〉 = 〈η, T ξ〉,

showing that Tξn
w−→ Tξ. If Tξn does not converge strongly to Tξ, there exists ε >

0 and a subsequence (Tξnj ) with ‖Tξnj −Tξ‖ ≥ ε. Since T is a compact operator,
Tξnj has the strongly convergent subsequence and, necessarily, it converges to Tξ.
The contradiction with the above inequality proves the proposition. �

In a Hilbert space the closure (with the usual norm of B(H)) of the vector
space of finite-rank operators coincides with the set of compact operators; to show
this the following technical result will be useful. Remember that a Hilbert space
is separable iff it has a countable orthonormal basis.

Lemma 1.3.23. If T ∈ B0(H1,H2), then rng T and N(T )⊥ are separable vector
spaces.

Proof. rng T is separable by Lemma 1.3.11. Let {eα}α∈J be an orthonormal basis
of N(T )⊥. If J is finite the result is clear.

Suppose that J is not finite; the goal is to show that J is enumerable. Every
sequence (eαj )∞j=1 of pairwise distinct elements of {eα}α∈J weakly converges to
zero (Exercise 1.3.21) and, by Proposition 1.3.22, Teαj → 0, for j → ∞. Thus, for
each n ∈ N there exists only a finite number of α ∈ J with ‖Teα‖ ≥ 1/n. Hence, J
is enumerable, for

J =
∞⋃
n=1

{α : ‖Teα‖ ≥ 1/n}.



1.3. Compact Operators 25

Recall that Teα 
= 0, ∀α ∈ J , since eα ∈ N(T )⊥. �

Remark 1.3.24. If T : H1 → H2 is a finite rank operator of rank N < ∞, then
there exist vectors ξ1, η1, . . . , ξN , ηN so that

Tξ =
N∑
j=1

〈ηj , ξ〉 ξj ,

the so-called canonical form of T . Indeed, if {ξ1, . . . , ξN} is an orthonormal basis
of rng T , then

Tξ =
N∑
j=1

〈ξj , T ξ〉 ξj =
N∑
j=1

〈T ∗ξj , ξ〉 ξj ;

now put ηj = T ∗ξj .

Theorem 1.3.25. An operator T ∈ B(H1,H2) is compact if, and only if, there
is a sequence of finite rank operators (Tn) ⊂ Bf(H1,H2), which converges to T
in B(H1,H2).

Proof. If T is the limit of finite-rank operators, then T is compact by Corol-
lary 1.3.14. Let T ∈ B0(H1,H2) and P the orthogonal projection on N(T )⊥, so that
T = TP . If dim N(T )⊥ < ∞ the result is clear; suppose then that dimN(T )⊥ =
∞ and pick an orthonormal basis (ej)∞j=1 of N(T )⊥, which is enumerable by
Lemma 1.3.23. Denote by Pn the orthogonal projection on Lin({e1, . . . , en}). Thus,
the operator Tn = TPn has finite rank. It will be shown that Tn → T .

For each n there exists ξn ∈ H1, ‖ξn‖ = 1, with

1
2
‖T − Tn‖ ≤ ‖(T − Tn)ξn‖ = ‖T (P − Pn)ξn‖.

Since (Pn − P ) s−→ 0 and for all η ∈ H1,

|〈η, (P − Pn)ξn〉| = |〈(P − Pn)η, ξn〉| ≤ ‖(P − Pn)η‖,

then (P − Pn)ξn
w−→ 0. Since T is a compact operator, by Proposition 1.3.22

it follows that T (P − Pn)ξn → 0 and, by the inequality above, it is found that
‖T − Tn‖ → 0. �
Exercise 1.3.26. Let T ∈ B(H), with H separable. Show that there is a sequence
(Tn) of finite rank operators which converges strongly to T , that is, Tn

s−→ T .

Corollary 1.3.27. Let T ∈ B(H1,H2). Then T is compact if, and only if, its Hilbert
adjoint T ∗ is compact.

Proof. T is compact if, and only if, there exists a sequence (Tn) ⊂ Bf(H1,H2) so
that Tn → T . Since T ∗n has also finite rank and ‖T ∗−T ∗n‖ = ‖(T−Tn)∗‖ = ‖T−Tn‖,
one concludes that T is compact if, and only if, T ∗ is compact. �
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Proposition 1.3.28. Let T be an operator in B(H). Then T is compact if, and only
if, (Tξn) is convergent in H for all weakly convergent sequences (ξn).

Proof. If dimH <∞ the proof is quite simple. Suppose that dimH = ∞. Taking
into account the hypotheses and Proposition 1.3.22, it is enough to show that for
each bounded sequence (ξn) in H the sequence (Tξn) has a convergent subsequence.
Since in a Hilbert space any bounded set has a weakly convergent sequence, (ξn)
has a weakly convergent subsequence (ξnj ); by hypothesis, (Tξnj ) is convergent.
Thus, the image of every bounded sequence admits a convergent subsequence, and
so, T is a compact operator. �

Proposition 1.3.29. Let Sn, S ∈ B(H) with Sn
s−→ S. If T is a compact operator,

then TSn → TS and SnT → ST in the norm of B(H).

Proof. By considering Sn−S it is possible to suppose that S = 0. Since ‖T ∗S∗n‖ =
‖SnT ‖, by Corollary 1.3.27, it is enough to prove that SnT → 0 uniformly. For
each ε > 0 there is an operator Fε ∈ Bf(H) so that T = Tε + Fε, and ‖Tε‖ < ε.
The last preparatory remark is that there exists M > 0 so that supn ‖Sn‖ ≤ M ,
a consequence of the Banach-Steinhaus theorem.

In view of

‖SnT ‖≤ ‖Sn(Fε + Tε)‖
≤ ‖SnFε‖ + ‖Tε‖ ‖Sn‖
≤ ‖SnFε‖ + εM,

it is sufficient to prove that ‖SnFε‖ ≤ ε if n is large enough.

Write Fε(·) =
∑k
j=1〈ηj , ·〉ξj , ηj 
= 0. If ξ ∈ H with ‖ξ‖ = 1 one has

‖SnFεξ‖ ≤
k∑
j=1

|〈ηj , ξ〉| ‖Snξj‖ ≤
k∑
j=1

‖ηj‖ ‖Snξj‖

and since Sn
s−→ 0 if n is large ‖Snξj‖ < ε/(‖ηj‖k), 1 ≤ j ≤ k. Thus, as required,

‖SnFε‖ ≤ ε for n large enough. Thereby the proof of the proposition is complete.
�

Example 1.3.30. Let K : Q → F be continuous, with Q = [a, b] × [a, b]. Then the
integral operator TK : L2[a, b] ←↩ given by

(TKψ)(t) =
∫ b

a

K(t, s)ψ(s) ds, ψ ∈ L2[a, b],

is compact.



1.4. Hilbert-Schmidt Operators 27

Proof. For each t ∈ [a, b] the function s �→ K(t, s) is an element of L2[a, b]. Let
ψ ∈ B(0;R) ⊂ L2[a, b] and M = max(t,s)∈Q |K(t, s)|. For all t ∈ [a, b] one has

|(TKψ)(t)| ≤
∫ b

a

|K(t, s)||ψ(s)| ds

≤
(∫ b

a

|K(t, s)|2 ds
) 1

2

‖ψ‖2 ≤M
√
b− aR,

and TKB(0;R) is a bounded set. This set is also equicontinuous, since for ψ ∈
B(0;R),

|(TKψ)(t) − (TKψ)(r)| ≤ ‖K(t, ·) −K(r, ·)‖2‖ψ‖2 ≤ ε
√
b− aR,

if |t−r| < δ. Hence, by the Ascoli theorem, TKB(0;R) is precompact in (C[a, b], ‖·
‖∞). Since ‖φ‖2 ≤

√
b− a‖φ‖∞, for all continuous φ (especially for φ = TKψ),

then TKB(0;R) is precompact in L2[a, b]. �

Exercise 1.3.31. Show that a precompact set (compact) in (C[a, b], ‖ · ‖∞) is pre-
compact (compact) in L2[a, b]. This occurs because the identity map 1 : (C[a, b], ‖·
‖∞) → L2[a, b] is continuous.

Example 1.3.32. Let K ∈ L2(Q), with Q = [a, b]×[a, b]. Then the integral operator
TK : L2[a, b] ←↩ given by (TKψ)(t) =

∫ b
a
K(t, s)ψ(s)ds, for ψ ∈ L2[a, b], is compact.

Proof. Since the set of continuous functions on Q is dense in L2(Q), there exists a
sequence Kn : Q→ F of continuous functions so that ‖K −Kn‖L2(Q) → 0. Thus,
by defining Tn : L2[a, b] ←↩,

(Tnψ)(t) =
∫ b

a

Kn(t, s)ψ(s) ds, ψ ∈ L2[a, b],

and using estimates similarly to those in preceding examples, one obtains ‖Tnψ−
TKψ‖2 ≤ ‖Kn−K‖L2(Q)‖ψ‖2, and ‖Tn−TK‖ ≤ ‖Kn−K‖L2(Q), which vanishes as
n→ ∞. By Example 1.3.30 each Tn is a compact operator, and so TK is compact
(Theorem 1.3.13). �

1.4 Hilbert-Schmidt Operators

One of the most important classes of compact operators on Hilbert spaces is con-
stituted by the Hilbert-Schmidt operators, discussed in this section. Sometimes
the shortest way to show that an operator on a Hilbert space is compact is to
verify that it is Hilbert-Schmidt.
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Definition 1.4.1. An operator T ∈ B(H1,H2) is Hilbert-Schmidt if there is an
orthonormal basis {ej}j∈J of H1 with

‖T ‖HS :=

⎛⎝∑
j∈J

‖Tej‖2

⎞⎠
1
2

<∞.

The set of Hilbert-Schmidt operators between such Hilbert spaces will be denoted
by HS(H1,H2) or, briefly, by HS(H) if H1 = H2 = H.

Proposition 1.4.2. Let T ∈ B(H1,H2). Then

i) ‖T ‖HS does not depend on the orthonormal basis considered.
ii) T ∈ HS(H1,H2) if, and only if, its adjoint T ∗ ∈ HS(H2,H1). Furthermore,

‖T ‖HS = ‖T ∗‖HS.

Proof. If {ej}j∈J and {fk}k∈K are orthonormal bases of H1 and H2, respectively,
then, by Parseval,∑

j∈J
‖Tej‖2 =

∑
j∈J

k∈K

|〈Tej , fk〉|2 =
∑
j∈J

k∈K

|〈ej , T ∗fk〉|2 =
∑
k∈K

‖T ∗fk‖2.

Since such orthonormal bases are arbitrary ‖T ‖HS = ‖T ∗‖HS, and such values do
not depend on the orthonormal bases considered. �

Corollary 1.4.3. Let S, T be bounded operators between two Hilbert spaces. If one
of them is Hilbert-Schmidt, then the product TS is also Hilbert-Schmidt (assuming
the product is defined).

Proof. If S is Hilbert-Schmidt, then for any orthonormal basis {ej}j∈J of its do-
main

‖TS‖2
HS =

∑
j∈J

‖TSej‖2 ≤ ‖T ‖2
∑
j∈J

‖Sej‖2 = ‖T ‖2‖S‖2
HS,

and TS is Hilbert-Schmidt.
If the operator T is Hilbert-Schmidt, then by Proposition 1.4.2, one has that

S∗T ∗ is Hilbert-Schmidt. Since TS = (S∗T ∗)∗, then TS is Hilbert-Schmidt. �

Theorem 1.4.4. HS(H1,H2) is a vector subspace of B(H1,H2), it is a Hilbert space
with the norm ‖ · ‖HS, which is called Hilbert-Schmidt norm, and it is induced by
the (Hilbert-Schmidt) inner product

〈T, S〉HS :=
∑
j∈J

〈Tej, Sej〉, T, S ∈ HS(H1,H2),

with {ej}j∈J being any orthonormal basis of H1. Furthermore, the inequality
‖T ‖ ≤ ‖T ‖HS holds.
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Proof. If T, S ∈ HS(H1,H2), then for any orthonormal basis {ej}j∈J of H1

and all α ∈ F one has (by Cauchy-Schwarz applied to the inner product∑
j∈J ‖Tej‖‖Sej‖ in l2)

‖T + αS‖2
HS ≤

∑
j∈J

‖Tej‖2 + |α|2
∑
j∈J

‖Sej‖2 + 2|α|
∑
j∈J

‖Tej‖‖Sej‖

≤ (‖T ‖HS + |α| ‖S‖HS)2 ,

and so HS(H1,H2) is a vector space. From the same inequality it follows that
‖ · ‖HS is a norm.

Now it will be verified that 〈T, S〉HS is well posed and is independent of the
orthonormal basis considered. By Cauchy-Schwarz∑

j∈J
|〈Tej, Sej〉| ≤

∑
j∈J

‖Tej‖‖Sej‖

≤

⎛⎝∑
j∈J

‖Tej‖2

⎞⎠
1
2
⎛⎝∑
j∈J

‖Sej‖2

⎞⎠
1
2

= ‖T ‖HS ‖S‖HS,

(note that this corresponds to |〈T, S〉HS| ≤ ‖T ‖HS‖S‖HS) and the series defining
〈T, S〉HS converges absolutely. By the polarization identity (or similarly to the
proof of Proposition 1.4.2) it is found that∑

j

〈Tej, Sej〉 =
∑
k

〈S∗fk, T ∗fk〉,

for any orthonormal basis {fk} of H2; so 〈T, S〉HS is independent of the orthonor-
mal basis and, therefore, well posed. The properties of inner product are simple
and left to the reader.

If ξ ∈ H1, ‖ξ‖ = 1, pick an orthonormal basis of H1 of the following form
{ξ, ηl}l. Thus, ‖Tξ‖2 ≤

∑
l ‖Tηl‖2 + ‖Tξ‖2 = ‖T ‖2

HS, and so ‖T ‖ ≤ ‖T ‖HS.
We only need to show that HS(H1,H2) is complete; for this, consider a

Cauchy sequence (Tn) ⊂ HS(H1,H2). From the inequality ‖ · ‖B(H1,H2) ≤ ‖ · ‖HS

it is found that (Tn) is Cauchy in B(H1,H2) and, therefore, it converges to some
T ∈ B(H1,H2). It will be shown that T ∈ HS(H1,H2) and that Tn → T in this
space.

For ε > 0, there exists N(ε) with ‖Tn− Tm‖2
HS < ε if n,m ≥ N(ε). Consider

an orthonormal basis {ej}j∈J of H1. If F ⊂ J is finite,∑
j∈F

‖Tnej − Tmej‖2 ≤ ‖Tn − Tm‖2
HS < ε.

Taking m → ∞ one obtains
∑

j∈F ‖(Tn − T )ej‖2 ≤ ε, for all finite subsets F .
Therefore, ‖Tn−T ‖2

HS =
∑

j∈J ‖(Tn−T )ej‖2 ≤ ε, so that (T −Tn) ∈ HS(H1,H2)



30 Chapter 1. Linear Operators and Spectra

and (Tn − T ) → 0 in this space. Since HS(H1,H2) is a vector space, then T =
(T − Tn) + Tn belongs to HS(H1,H2), and this space is Hilbert. �

Exercise 1.4.5. Show that ‖ · ‖HS is a norm and that ‖TS‖HS ≤ ‖T ‖HS‖S‖HS.

At this point all the tools necessary to verify that Hilbert-Schmidt operators
are compact are available.

Theorem 1.4.6. HS(H1,H2) ⊂ B0(H1,H2).

Proof. Let T ∈ HS(H1,H2) and (ξn) ⊂ H1, with ξn
w−→ ξ. By Proposition 1.3.28,

in order to show that T is compact it is sufficient to verify that Tξn → Tξ. Note
that, by linearity, it is sufficient to consider the case ξn

w−→ 0.
Let {ej}j∈J be an orthonormal basis of H2. For each n it is known that the

set {j ∈ J : 〈ej , T ξn〉 
= 0} is countable (if it is finite for all n the argument ahead
is easily adapted) and, for notational simplicity, it will be denoted by the natural
numbers. Thus,

‖Tξn‖2 =
∞∑
j=1

|〈ej , T ξn〉|2 ≤
N∑
j=1

|〈T ∗ej, ξn〉|2 +M

∞∑
j=N+1

‖T ∗ej‖2,

with M = supn∈N
‖ξn‖2 (M is finite since every weakly convergent sequence is

bounded).
For ε > 0, pick N with

∑∞
j=N+1 ‖T ∗ej‖2 < ε/M , which exists since T ∗ ∈

HS(H2,H1). Now, in view of ξn
w−→ 0, there exists K so that

∑N
j=1 |〈T ∗ej, ξn〉|2 <

ε if n ≥ K. Thus, if n ≥ K one has ‖Tξn‖2 < 2ε, and one concludes that
Tξn → 0. �

Exercise 1.4.7. Let T : l2(N) ←↩ given by (Tξ)n =
∑∞

j=1 anjξj , n ∈ N, with
(anj)n,j∈N an infinite matrix with

∑
n,j∈N

|anj |2 < ∞. Show that T is a Hilbert-
Schmidt operator and find its Hilbert-Schmidt norm.

The next lemma will be used in the important example ahead.

Lemma 1.4.8. Let H1 = L2
μ(Ω) and H2 = L2

ν(Λ) be separable spaces, with μ, ν
σ-finite measures, and H3 = L2

μ×ν(Ω×Λ). Then, if (ψn) and (φj) are (countable)
orthonormal bases of H1 and H2, respectively, then (ψnφj) is an orthonormal basis
of H3, which is also separable.

Proof. By Fubini (ψnφj) is an orthonormal set of H3. In order to prove this lemma
it is enough to show that if f ∈ H3 satisfies 〈f, ψnφj〉H3 = 0, ∀n, j, then f = 0.
For each s ∈ Λ, denote the function sector fs : Ω → F by fs(t) = f(t, s), which
belongs to H1 for s in a set of total measure ν, and for each n the function Fn(s) =
〈fs, ψn〉H1 (it is measurable since ν is σ−finite), then 〈f, ψnφj〉H3 = 〈Fn, φj〉H2 .
Note that by Cauchy-Schwarz ν−a.e. one has |Fn(s)| ≤ ‖fs‖H1 , so that Fn ∈ H2

for all n, in view of ‖Fn‖2
H2

≤
∫
Λ ‖fs‖2

H1
dν(s) = ‖f‖2

H3
.
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Thus, one obtains the condition 〈Fn, φj〉H2 = 0, ∀n, j; since (φj) is a basis
of H2, for all n one has Fn(s) = 0 ν-a.e. and, therefore, since (ψn) is a basis of H1,
one finds that fs = 0 (in H1) ν-a.e. Then the result ‖f‖H3 = 0 follows. �
Example 1.4.9. Let H1, H2 and H3 be as in Lemma 1.4.8. Then, the operator T ∈
HS(H1,H2) if, and only if, there exits K ∈ H3 so that

(Tψ)(t) = (TKψ)(t) :=
∫

Ω

K(t, s)ψ(s)dμ(s), ψ ∈ H1.

Furthermore, ‖T ‖HS = ‖K‖H3.

Proof. If (ψn) and (φj) are orthonormal bases of H1 and H2, respectively, then,
by Lemma 1.4.8, (ψnφj) is an orthonormal basis of H3. Suppose that T = TK ;
then ∑

n

‖TKψn‖2
H2

=
∑
n,j

|〈TKψn, φj〉H2 |2 =
∑
n,j

|〈K,ψnφj〉H3 |2 = ‖K‖2
H3
,

and so TK ∈ HS(H1,H2) and ‖TK‖HS = ‖K‖H3.
Pick T ∈ HS(H1,H2). By using the above notation, one has∑

n,j

|〈φj , Tψn〉H2 |2 =
∑
n

‖Tψn‖2 = ‖T ‖2
HS <∞,

consequently the function K0(t, s) =
∑
n,j〈φj , Tψn〉H2ψn(s)φj(t) is well defined

in the space H3; note that ‖K0‖H3 = ‖T ‖HS. It will be shown that T = TK0 .
If ψ ∈ H1 and φ ∈ H2, since T is bounded and the inner product is continu-

ous,

〈φ, TK0ψ〉H2 =
∫

Λ

dν(t)
(
φ(t)

∫
Ω

K0(t, s)ψ(s)dμ(s)
)

= 〈φψ,K0〉H3 =
∑
n,j

〈φj , Tψn〉H2〈φψ, φjψn〉H3

=
∑
n,j

〈φj , Tψn〉H2〈φ, φj〉H2〈ψn, ψ〉H1

=

〈∑
j

〈φj , φ〉H2φj ,
∑
n

〈ψn, ψ〉H1Tψn

〉
H2

=

〈
φ,
∑
n

〈ψn, ψ〉H1Tψn

〉
H2

=

〈
φ, T

∑
n

〈ψn, ψ〉H1ψn

〉
H2

= 〈φ, Tψ〉H2
.

Therefore, T = TK0 . �
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Remark 1.4.10. There is a family of compact operators in B(H) for each 1 ≤ p <
∞, with certain norm ‖T ‖p < ∞ (this norm is based on that of lp); the Hilbert-
Schmidt operators are obtained through p = 2. The case p = 1, discussed in
Subsection 9.4.1, is important in mathematical physics, particularly in statistical
mechanics and scattering theory, and such operators are called trace class (‖T ‖1

is a generalization of the trace of the absolute values of the entries of a matrix).
Exercise 1.4.11. Show that HS(H1,H2) is the closure of the set of finite rank
operators with the norm ‖ · ‖HS.
Exercise 1.4.12. Fix η ∈ H with ‖η‖ = 1. Let Tη : H → H be defined by Tηξ =
〈η, ξ〉 η, ξ ∈ H. Show that Tη is a linear Hilbert-Schmidt operator and find its
norm ‖T ‖HS.

Exercise 1.4.13. Let H be separable and T ∈ B(H) an operator whose eigenvectors
form an orthonormal basis (ξj) of H, that is, for all j, Tξj = λjξj , λj ∈ F. Present
conditions for T ∈ HS(H). Verify that on infinite-dimensional Hilbert spaces there
always are compact operators that are not Hilbert-Schmidt.
Exercise 1.4.14. Are there sequences (Tn) ⊂ HS(H) that converge in B(H) but do
not converge in HS(H)?

1.5 The spectrum

Intuitively, the spectrum of a linear operator comprises of “the values in C this
operator assumes;” the very definition of spectrum justifies this interpretation.
The spectrum is a generalization of the set of eigenvalues of linear operators.
The point is that, for a linear operator acting on a finite-dimensional space, the
property of being injective is equivalent to being surjective; however, in infinite
dimensions such properties are not equivalent and the definition of spectrum must
be properly generalized. From now on, vector spaces are assumed complex.

The spectral question is directly related to the solvability and uniqueness of
solutions of linear equations in Banach spaces, boundary problems, approximations
of nonlinear problems by linear versions, stability and, in an essential way, to the
mathematical apparatus of quantum mechanics.

Definition 1.5.1. Let T : dom T ⊂ B → B be linear in the complex Banach
space B 
= {0}. The resolvent set of T , denoted by ρ(T ), is the set of λ ∈ C for
which the resolvent operator of T at λ,

Rλ(T ) : B → dom T, Rλ(T ) := (T − λ1)−1,

exists and is bounded, i.e., Rλ(T ) belongs to B(B).

Definition 1.5.2. The spectrum of T is the set σ(T ) = C\ρ(T ).

Remark 1.5.3. a) If T ∈ B(B) and (T − λ1) is one-to-one with range B, then, by
the Open Mapping Theorem 1.2.6, Rλ(T ) ∈ B(B) and λ ∈ ρ(T ).
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b) Every eigenvalue λ of T (i.e., there is an eigenvector ξ 
= 0 with Tξ = λξ)
belongs to the spectrum of T , for (T − λ1) is not invertible in this case.
c) Notation: if it is clear which operator T is involved, Rλ = Rλ(T ).

The definition of spectrum is not restricted to the real numbers in order
to be nonempty for continuous operators (see Corollary 1.5.17). For example, if
dimB <∞, the spectrum is the set of its eigenvalues, but the rotation by a right
angle operator on R2 has no real eigenvalue (check this!).
Exercise 1.5.4. Let T : B ←↩ be linear with dimB < ∞. Show that σ(T ) is the
set of eigenvalues of T and, by the fundamental theorem of algebra, conclude that
σ(T ) 
= ∅ in this case.
Exercise 1.5.5. Let T : dom T ⊂ B → B be linear. Show that the eigenvectors
{ξj}j∈J of T , corresponding to pairwise distinct eigenvalues {λj}j∈J , form a lin-
early independent set of dom T .

Proposition 1.5.6. If σ(T ) 
= C, then T is a closed operator.

Proof. Pick λ0 ∈ ρ(T ); so Rλ0(T ) ∈ B(B). If (ξn) ⊂ dom T with ξn → ξ and
Tξn → η, then

Rλ0(T )(η − λ0ξ) = lim
n→∞

Rλ0(T )(Tξn − λ0ξn) = lim
n→∞

ξn = ξ;

hence ξ ∈ dom T and

η − λ0ξ = (T − λ01)Rλ0(T )(η − λ0ξ) = (T − λ01)ξ.

Therefore Tξ = η and T is closed. �

The converse of Proposition 1.5.6 may not hold:
Example 1.5.7. Let D : dom D = C1[0, 1] ⊂ C[0, 1] → C[0, 1] and (Dψ)(t) =
ψ′(t), which is a closed and unbounded operator. If λ ∈ C, the function ψλ(t) =
eλt ∈ dom D and Dψλ = λψλ, showing that σ(D) = C and it is constituted
exclusively of eigenvalues. Therefore ρ(D) = ∅.

Given an operator action, the spectrum may drastically depend on the do-
main assigned to it. This is illustrated by Examples 1.5.7 and 1.5.8.
Example 1.5.8. Let dom d = {ψ ∈ (C1[0, 1], ‖ · ‖∞) : ψ(0) = 0}, d : dom d →
C[0, 1], (dψ)(t) = ψ′(t), which is a closed and unbounded operator. If λ ∈ C, the
operator Wλ : C[0, 1] → dom d, (Wλφ)(t) = eλt

∫ t
0 e
−λsφ(s) ds, φ ∈ C[0, 1], is

bounded and satisfies (d − λ1)Wλ = 1 (identity on C[0, 1]) and Wλ(d − λ1) = 1
(identity in dom d). ThereforeWλ is the resolvent operator for d at λ and ρ(d) = C,
showing that σ(d) = ∅ (the resolvent Wλ was obtained by considering the solution
of the differential equation ψ′ − λψ = φ with ψ(0) = 0).

Below there are three useful identities involving resolvent operators; except
the third one, the nomenclature is standard. The first identity relates the resolvent
of a fixed operator at two points in its resolvent set; the second resolvent identity
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relates the resolvent of two different operators at a point in both resolvent sets;
the third identity relates the difference of resolvents of two operators at a point in
both resolvent sets with the difference at another point.

Proposition 1.5.9. Let T : dom T ⊂ B → B. Then for any z, s ∈ ρ(T ) one has the
first resolvent identity (also known as first resolvent equation)

Rz(T ) −Rs(T ) = (z − s)Rz(T )Rs(T ).

Furthermore, Rz(T ) commutes with Rs(T ).

Proof. Write

Rz −Rs =Rz(T − s1)Rs −Rz(T − z1)Rs
=Rz ((T − s1) − (T − z1))Rs = (z − s)RzRs,

which shows the first resolvent identity. The commutation claim is immediate from
this relation. �
Exercise 1.5.10. For linear operators T, S acting in B, with dom S ⊂ dom T , and
λ ∈ ρ(T ) ∩ ρ(S), verify the second resolvent identity

Rλ(T ) −Rλ(S) = Rλ(T )(S − T )Rλ(S).

If dom T = dom S, such identity also equals Rλ(S)(S − T )Rλ(T ).

Proposition 1.5.11. Let S and T be linear operators acting in B. Then, for z, z0 ∈
ρ(T ) ∩ ρ(S) one has the third resolvent identity

Rz(T )−Rz(S)
= (1 + (z − z0)Rz(T )) [Rz0(T ) −Rz0(S)] (1 + (z − z0)Rz(S)) .

Proof. By the first resolvent identity Rz(T ) = (1 + (z − z0)Rz(T ))Rz0(T ) and
Rz(S) = Rz0(S)(1 + (z − z0)Rz(S)). By using such relations on the r.h.s. above
one gets Rz(T ) −Rz(S). �
Theorem 1.5.12. Let T : dom T ⊂ B → B and λ0 ∈ ρ(T ). Then for all λ in the
disk |λ− λ0| < 1/‖Rλ0(T )‖ of the complex plane, Rλ(T ) ∈ B(B) and

Rλ(T ) =
∞∑
j=0

(λ− λ0)jRλ0(T )j+1,

with an absolutely convergent series.

Proof. Note initially that Rλ0(T ) 
= 0, since it is the inverse of an operator. By
the relation

T − λ1 = T − (λ0 + (λ − λ0))1
= (T − λ01) [1 + (λ0 − λ)Rλ0 ] ,
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just formally it would follow that

Rλ =

⎛⎝ ∞∑
j=0

(λ− λ0)jR
j
λ0

⎞⎠Rλ0 .

It is left to justify this expression and show that it defines (T − λ1)−1 in B(B).
For |λ− λ0| < 1/‖Rλ0(T )‖ the series is absolutely convergent in B(B) and defines
an operator satisfying⎛⎝ N∑

j=0

(λ− λ0)jR
j+1
λ0

⎞⎠ (T − λ1) =
N∑
j=0

(λ− λ0)jR
j+1
λ0

(T − (λ0 + (λ− λ0))1)

=
N∑
j=0

(λ− λ0)jR
j
λ0

−
N∑
j=0

(λ − λ0)j+1Rj+1
λ0

= 1− [(λ− λ0)Rλ0 ]
N+1

.

Now limN→∞ [(λ− λ0)Rλ0 ]
N = 0 in B(B), since |λ − λ0| < 1/‖Rλ0(T )‖; then(∑∞

j=0(λ− λ0)jR
j+1
λ0

)
(T − λ1) = 1. Similarly it is shown that

(T − λ1)

⎛⎝ ∞∑
j=0

(λ − λ0)jR
j+1
λ0

⎞⎠ = 1. �

Corollary 1.5.13. ρ(T ) is an open set and σ(T ) is a closed set of C.

Proof. One sees that ρ(T ) is open directly from Theorem 1.5.12, hence σ(T ) is
closed. �
Corollary 1.5.14. The map ρ(T ) → B(B) given by λ �→ Rλ(T ) is continuous and
uniformly holomorphic, i.e., it has a derivative in B(B) defined by the limit

dRλ(T )
dλ

:= lim
h→0

Rλ+h(T ) −Rλ(T )
h

= Rλ(T )2,

for all λ in a neighborhood of each point λ0 ∈ ρ(T ).

Proof. By Theorem 1.5.12, if λ0 ∈ ρ(T ) and |λ− λ0| < 1/‖Rλ0(T )‖,

‖Rλ(T ) −Rλ0(T )‖≤
∞∑
j=1

|λ− λ0|j ‖Rλ0(T )‖j+1

= |λ− λ0| ‖Rλ0(T )‖2
∞∑
j=0

|λ− λ0|j ‖Rλ0(T )‖j

=
|λ− λ0| ‖Rλ0(T )‖2

1 − |λ− λ0| ‖Rλ0(T )‖ −→ 0 as λ→ λ0,

showing that the map λ �→ Rλ(T ) in ρ(T ) is continuous.
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By the first resolvent identity (Rλ+h −Rλ)/h = Rλ+hRλ; taking h → 0
and using the continuity shown above, it follows that the derivative exists and
dRλ(T )/dλ = Rλ(T )2 holds. �
Corollary 1.5.15. If both σ(T ) and ρ(T ) are nonempty, then

‖Rλ(T )‖ ≥ 1/d(λ, σ(T ))

for all λ ∈ ρ(T ) (with d(λ, σ(T )) := infμ∈σ(T ) |μ− λ|).

Proof. By Theorem 1.5.12, if λ0 ∈ ρ(T ) and ‖Rλ0(T )‖ |λ−λ0| < 1, then λ ∈ ρ(T ).
Thus, if λ ∈ σ(T ), necessarily ‖Rλ0(T )‖ |λ− λ0| ≥ 1, that is,

‖Rλ0(T )‖ ≥ 1
|λ− λ0|

, ∀λ ∈ σ(T ),

and (since σ(T ) 
= ∅) the result follows. �

Now certain specific results on the spectrum of bounded operators will be
discussed.

Corollary 1.5.16. Let T ∈ B(B). If |λ| > ‖T ‖, then λ ∈ ρ(T ) and ‖Rλ(T )‖ → 0
for |λ| → ∞.

Proof. Following the proof of the above theorem (write T − λ1 = −λ(1 − T/λ)),
one concludes that the representation of Rλ(T ) by the series, called Neumann’s
series of T ,

Rλ(T ) = − 1
λ

∞∑
j=0

(
T

λ

)j
is absolutely convergent if |λ| > ‖T ‖ and, in this case, that

‖Rλ(T )‖ ≤ 1/|λ|
∑
j≥0

(‖T ‖/λ)j = 1/(|λ| − ‖T ‖).

It then follows that the spectrum σ(T ) ⊂ {λ ∈ C : |λ| ≤ ‖T ‖} and

lim
|λ|→∞

‖Rλ(T )‖ = 0. �

Corollary 1.5.17. If T ∈ B(B), then σ(T ) 
= ∅.

Proof. If f ∈ B(B)∗ (the dual of B(B)) define F : ρ(T ) → C by F (λ) = f(Rλ(T )).
Thus, by Corollary 1.5.14 it is found that

dF (λ)
dλ

= lim
h→0

F (λ+ h) − F (λ)
h

= f
(
Rλ(T )2

)
,

which is continuous; hence, F is holomorphic in ρ(T ). By using the inequality
|F (λ)| ≤ ‖f‖‖Rλ(T )‖ and Corollary 1.5.16, lim|λ|→∞ F (λ) = 0.
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If σ(T ) = ∅, i.e., ρ(T ) = C, by continuity F is bounded in any ball in C,
and since it converges to zero for |λ| → ∞, it is found that F : C → C is an
entire and bounded function, hence constant by Liouville’s Theorem. In view of
lim|λ|→∞ F (λ) = 0, one has F (λ) = f(Rλ(T )) = 0 for all λ ∈ C, f ∈ B(B)∗. By
the Hahn-Banach Theorem one gets Rλ(T ) = 0, ∀λ ∈ C, but this can not occur,
since Rλ(T ) is the inverse of some operator. This contradiction shows that σ(T )
is nonempty. �
Definition 1.5.18. The spectral radius of a bounded linear operator T ∈ B(B) is
rσ(T ) := supλ∈σ(T ) |λ|.

The next result is the so-called spectral radius formula and is due to I.
Gelfand, who has shown it in the context of Banach algebras, around 1940. This
formula is a relation between a limit strongly related to the metric, and the spectral
radius defined via the supremum of a set.

Theorem 1.5.19. If T ∈ B(B), then rσ(T ) = limn→∞ ‖T n‖1/n ≤ ‖T ‖.

Proof. Note, initially, that due to Corollary 1.5.16, rσ(T ) ≤ ‖T ‖. To demonstrate
Theorem 1.5.19 we will use results from the Holomorphic Functions Theory com-
bined with “any weakly convergent sequence is bounded,” and the following simple
observation: if λ ∈ C and λ1, λ2, . . . , λn are its nth roots in C, then

T n − λ1 = (T − λ11)(T − λ21) · · · (T − λn1).

This implies that λ ∈ σ(T n) if, and only if, λj ∈ σ(T ) for some 1 ≤ j ≤ n. Hence,
σ(T n) = σ(T )n := {λn : λ ∈ σ(T )}. From this relation one concludes that for
all n ∈ N one has rσ(T ) = rσ(T n)1/n ≤ ‖T n‖1/n.

For each f in the dual of B(B), define F : ρ(T ) → C by F (λ) = f(Rλ(T )),
which is a holomorphic function (see the proof of Corollary 1.5.17). If |λ| > ‖T ‖,
by using the Neumann series

F (λ) = − 1
λ

∞∑
n=0

1
λn
f(T n),

and by the uniqueness of Laurent expansion the above series converge for all λ ∈ C

in the region |λ| > rσ(T ) (or Taylor expansion if the variable s = 1/λ, with F (0) =
0, is considered).

Given ε > 0, for rσ(T ) < α < rσ(T ) + ε and all f ∈ B(B)∗, the series∑∞
n=0 f(T n/αn) converge. Thus, the sequence T n/αn converges weakly to zero

in B(B); hence it is bounded and there exists C = C(α) > 0 with

‖T n/αn‖ ≤ C =⇒ ‖T n‖1/n ≤ αC1/n, ∀n ∈ N.

Since limn→∞C1/n = 1, there is N(ε) > 0 such that

‖T n‖ 1
n < rσ(T ) + ε, ∀n ≥ N(ε).
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This relation, along with rσ(T ) ≤ ‖T n‖1/n verified above, show that lim
n→∞

‖T ‖1/n

exists and equals rσ(T ). �

Exercise 1.5.20. If all pairs of the operators {T1, . . . , Tn} ⊂ B(B) are commut-
ing, i.e., TjTk = TkTj , ∀j, k, show that the product T1T2 · · ·Tn is invertible with
bounded inverse if, and only if, each Tj is invertible in B(B).

Corollary 1.5.21. If T ∈ B(B), then σ(T n) = σ(T )n and rσ(T n) = rσ(T )n.

Exercise 1.5.22. Present a proof of Corollary 1.5.21.
Example 1.5.23. Let Se : l∞(N) ←↩ be the shift operator

Se(ξ1, ξ2, ξ3, . . . ) = (ξ2, ξ3, ξ4, . . . ).

Since ‖Se‖ = 1, then σ(Se) ⊂ B(0; 1). Every |λ| ≤ 1 is an eigenvalue of Se, for the
equation Seξ

λ = λξλ has the solution ξλ = (1, λ, λ2, λ3, . . . ) in l∞(N). Therefore
σ(Se) = B(0; 1), rσ(Se) = 1, and every point of its spectrum is an eigenvalue.

Example 1.5.24. The Volterra operator T :C[0,1]←↩, given by (Tψ)(t)=
∫ t
0 ψ(s)ds

has no eigenvalues. In fact, by the eigenvalue equation

(Tψ)(t) = λψ(t) =
∫ t

0

ψ(s) ds

one finds λψ′(t) = ψ(t) (ψ is differentiable since it is the integral of a continuous
function). If λ = 0 then ψ = 0 and zero is not an eigenvalue; if λ 
= 0, the solutions
of this differential equation are ψ(t) = C exp(t/λ), and since ψ(0) = 0 it follows
that the constant C = 0, and so ψ = 0 and no λ ∈ C is an eigenvalue of T .

From the inequality |(Tψ)(t)| ≤ t‖ψ‖∞ it is found, by induction, that

|(T 2ψ)(t)| ≤
∫ t

0

s‖ψ‖∞ ds =
t2

2
‖ψ‖∞, |(T nψ)(t)| ≤ tn

n!
‖ψ‖∞.

Thus, ‖T n‖ ≤ 1/n! and rσ(T ) ≤ limn→∞(1/n!)1/n = 0. Therefore rσ(T ) < ‖T ‖,
σ(T ) = {0} (since 
= ∅) and T has no eigenvalues.
Example 1.5.25. Let Mh on L2[0, 1], with h(t) = t. Then Mh has no eigenvalues,
since from Mhψ = λψ it follows that (t− λ)ψ(t) = 0, or ψ(t) = 0 for a.e. t 
= λ,
i.e., ψ = 0 in L2[0, 1].
Exercise 1.5.26. Show that in Example 1.5.25 one has σ(Mh) = [0, 1].
Exercise 1.5.27. If T ∈ B(B), show that lim|λ|→∞ λRλ(T ) = −1.
Exercise 1.5.28. For T ∈ B(B), define V (t) := etT , t ∈ R, as in Exercise 1.1.23.
Show that: a) The map t �→ V (t) ∈ B(B) is continuous with V (0) = 1 and
V (t + s) = V (t)V (s). b) If S ∈ B(B) commutes with T , then it also commutes
with V (t), ∀t. c) This map is uniformly holomorphic and dV (t)/dt = TV (t). See
related results in Section 5.2.
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1.6 Spectra of Compact Operators

As expected, the spectral theory of compact linear operators has many similarities
with the spectral theory on finite-dimensional spaces; for example, with the possi-
ble exception of zero, each eigenvalue of a compact operator has finite multiplicity.
However, there are compact operators with no eigenvalues.

Example 1.6.1. Consider the operator T : l2(N) ←↩,

T (ξ1, ξ2, ξ3, . . . ) = (0, ξ1/1, ξ2/2, ξ3/3, . . . ).

T is compact and 0 ∈ σ(T ) since T−1 is not bounded. However this operator has
no eigenvalues (check this!).

The next lemma is a key tool to construct bounded sequences with no conver-
gent subsequence in infinite-dimensional N . Although there is no explicit notion of
orthogonality, a geometric interpretation is important for turning its proof natural.

Lemma 1.6.2 (Riesz Lemma). Let X be a proper closed vector subspace of a normed
space (N , ‖ · ‖). Then, for each 0 < α < 1 there exists ξ ∈ N \X with ‖ξ‖ = 1 and
infη∈X ‖ξ − η‖ ≥ α.

Proof. Let ζ ∈ N\X and c = infη∈X ‖η − ζ‖. Since X is closed, c > 0. Thus, for
all d > c there exists ω ∈ X with c ≤ ‖ζ−ω‖ ≤ d. The vector ξ = (ζ−ω)/‖ζ−ω‖
belongs to N\X and ‖ξ‖ = 1. Moreover, for all η ∈ X one has

‖ξ − η‖ =
1

‖ζ − ω‖

∥∥∥ζ − (ω + ‖ζ − ω‖η)
∥∥∥ ≥ c

‖ζ − ω‖ ≥ c

d
.

For 0 < α < 1 choose d = c/α and the result follows. �

Theorem 1.6.3. The closed ball B(0; 1) in a normed vector space N is compact if,
and only if, dimN <∞.

Proof. If dimN < ∞, it is known that B(0; 1) is compact. If dimN is not fi-
nite, then Riesz’s lemma will be used to construct a sequence in B(0; 1) with no
convergent subsequence.

Let ξ1 ∈ N , ‖ξ1‖ = 1. By Riesz’s lemma there exists ξ2 ∈ N , with ‖ξ2‖ = 1,
and ‖ξ1 − ξ2‖ ≥ 1/2 (by choosing α = 1/2 in Riesz’s lemma). The vector space
Lin({ξ1, ξ2}) is closed, since its dimension is finite. Again by Riesz’s lemma, there
exists ξ3 ∈ N , with ‖ξ3‖ = 1, ‖ξ3 − ξ1‖ ≥ 1/2 and ‖ξ3 − ξ2‖ ≥ 1/2. In this way, a
sequence (ξn)∞n=1, ‖ξn‖ = 1, ∀n, and ‖ξj − ξk‖ ≥ 1/2 for all j 
= k is constructed.
Since such sequence has no convergent subsequence , the closed ball B(0; 1) is not
compact. �

Proposition 1.6.4. If T ∈ B0(B), then every nonzero eigenvalue of T is of finite
multiplicity, that is, dim N(T − λ1) <∞.
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Proof. Let B1 be the closed ball centered at zero and radius 1 in the vector space
N(T − λ1). It will be shown that B1 is compact and, hence, dim N(T − λ1) < ∞
by Theorem 1.6.3. Since T is compact, for a sequence (ξn) ⊂ B1 (Tξn = λξn),
there is a convergent subsequence (Tξnj ) and, so, (ξnj = Tξnj/λ) also converges
to an element of B1; hence that ball is compact. �
Exercise 1.6.5. Use the next argument as a variant of the proof of Proposi-
tion 1.6.4: suppose that B1 is not compact; thus there exists a sequence (ξn) ⊂ B1

with no convergent subsequence; use the compactness of T to reach a contradic-
tion.

Proposition 1.6.6. If T ∈ B0(B), then for all ε > 0 the number of eigenvalues λ
of T with |λ| ≥ ε is finite.

Proof. Suppose that it is possible to choose ε > 0 so that there are infinitely
many eigenvalues {λj}j∈N of T with absolute values greater than or equal to ε.
By Proposition 1.6.4 one may assume that such eigenvalues are pairwise distinct;
denote by {ξj} the respective eigenvectors. Recall that this set is linearly indepen-
dent (Exercise 1.5.5).

Let E0 = {0} and En = Lin({ξ1, . . . , ξn}); note that such subspaces are closed
for all n. By Riesz’s Lemma 1.6.2 there exists a sequence {ηn}, ηn ∈ En, ‖ηn‖ = 1
and ‖ηn − ξ‖ ≥ 1/2, ∀ξ ∈ En−1. The aim is to show that ‖Tηn − Tηm‖ ≥ ε/2 for
all distinct n,m, which then has no convergent subsequence, a contradiction with
the compactness of T .

Ifm < n, then Tηn−Tηm = λnηn+[(T − λn1)ηn − Tηm] . Clearly Tηm ∈ Em
and, writing ηn =

∑n
j=1 αjξj , one has

(T − λn1)ηn =

⎡⎣n−1∑
j=1

αj(λj − λn)ξj

⎤⎦ ∈ En−1,

so that ζm := −[(T −λn1)ηn−Tηm]/λn belongs to the subspace En−1. Therefore,
‖Tηn − Tηm‖ = |λn|‖ηn − ζm‖ ≥ |λn|

2 ≥ ε/2, and {Tηn} has no convergent
subsequence. �

From such propositions (and some simple extra argument) follows the im-
portant

Corollary 1.6.7. Let T ∈ B0(B) and Λ the set of eigenvalues of T . Then:

i) The unique possible accumulation point of Λ is zero.
ii) Λ is countable and, if λ 
= 0, then dimN(T − λ1) <∞.
iii) If Λ is an infinite set, then the eigenvalues of T can be ordered in a sequence

converging to zero.
iv) If dimB = ∞, then zero belongs to the spectrum of T .

Exercise 1.6.8. Present the details of the proof of Corollary 1.6.7.
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Example 1.6.9. Any finite rank operator is compact and has finite spectrum.
Example 1.6.10. Consider the operator T : l2(N) ←↩,

T (ξ1, ξ2, ξ3, . . . ) = (ξ1/1, ξ2/2, ξ3/3, . . . ).

T is compact and zero is not an eigenvalue of T , however it belongs to its spectrum,
since {1, 1/2, 1/3, . . .} is a subset of σ(T ) (they are eigenvalues) and the spectrum
is closed. It is also possible to infer directly that the resolvent operator R0(T )
exists, with dense domain, but it is not bounded.



Chapter 2

Adjoint Operator

The basics of (linear) unbounded self-adjoint operators is discussed in this chapter.
Cayley transform, von Neumann criterion on self-adjoint extensions, Weyl spec-
tral criterion and many examples are presented. These are the first steps to the
mathematical formulation of quantum mechanics. From now on the Hilbert spaces
are supposed to be separable and, unless it is explicitly remarked, also complex.

2.1 Adjoint Operator

The concept of Hilbert adjoint will be extended to some unbounded operators.
T always denotes a linear operator.

Definition 2.1.1. A linear operator T : dom T ⊂ H → H is symmetric if

〈Tξ, η〉 = 〈ξ, T η〉, ∀ξ, η ∈ dom T.

T is hermitian if it is symmetric and dom T is dense in H.

Let T : dom T � H1 → H2 and define dom T ∗ as the vector space of elements
η ∈ H2 such that the linear functional

ξ �→ 〈η, T ξ〉, ξ ∈ dom T,

can be represented by ζ ∈ H1, that is,

〈η, T ξ〉 = 〈ζ, ξ〉, ∀ξ ∈ dom T.

Definition 2.1.2. The (Hilbert) adjoint of T is the operator T ∗ with domain
dom T ∗ defined above and, for η ∈ dom T ∗, T ∗η = ζ. Hence

〈η, T ξ〉 = 〈T ∗η, ξ〉, ∀ξ ∈ dom T, ∀η ∈ dom T ∗.
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Observe that it is essential that dom T is dense in H for T ∗ to be uniquely
defined. If S is also a linear operator and z ∈ C, then T ∗ is linear and (S+zT )∗ =
S∗ + zT ∗.

Exercise 2.1.3. Show that T : dom T � H → H is hermitian iff T ⊂ T ∗ (recall
that, given two operators R,S, then S ⊂ R indicates that R is an extension of S).

Remark 2.1.4. Note that η ∈ dom T ∗ iff the map dom T � ξ �→ 〈η, T ξ〉 is uni-
formly continuous. In fact, since dom T is dense in H, this linear map has a unique
continuous extension to H and so, by Riesz’s Theorem 1.1.40, it can be represented
by a unique ζ ∈ H as above. Then the definition T ∗η = ζ.

Example 2.1.5. The domain of the adjoint can be quite small. Let H = L2[−1, 1],
dom T = C[−1, 1] � H and (Tψ)(x) = ψ(0). Since dom T is dense in H, its
adjoint is well defined. g ∈ dom T ∗ iff the map dom T � ψ �→ 〈g, Tψ〉 =∫ 1

−1
g(x) (Tψ)(x) dx =

∫ 1

−1
g(x)ψ(0) dx is continuous, i.e.,

sup
ψ∈dom T, ‖ψ‖=1

∣∣∣∣ψ(0)
∫ 1

−1

g(x) dx
∣∣∣∣ <∞.

Since |ψ(0)| can be arbitrarily large, then
∫ 1

−1 g(x) dx = 0 and dom T ∗ is the
subspace orthogonal to the constant functions in H. Moreover, for g ∈ dom T ∗

one has 0 = 〈g, ψ(0)〉 = 〈g, Tψ〉 = 〈T ∗g, ψ〉, ∀ψ ∈ C[−1, 1], so that T ∗g = 0.

Proposition 2.1.6 shows that the above definition of adjoint actually gener-
alizes the one recalled on page 24 for the specific case of bounded operators.

Proposition 2.1.6. If T ∈ B(H1,H2), then T ∗ ∈ B(H2,H1), T ∗∗ = T and ‖T ∗‖ =
‖T ‖. Hence

〈η, T ξ〉 = 〈T ∗η, ξ〉, ∀ξ ∈ H1, ∀η ∈ H2.

Proof. Clearly, for bounded T one has dom T ∗ = H2. By Riesz’s Theorem 1.1.40,
for each ξ2 ∈ H2 one has fT∗ξ2 ∈ H∗1 and

‖T ∗ξ2‖= ‖fT∗ξ2‖ = sup
‖ξ1‖=1

|fT∗ξ2(ξ1)| = sup
‖ξ1‖=1

|〈T ∗ξ2, ξ1〉|

= sup
‖ξ1‖=1

|〈ξ2, T ξ1〉| ≤ ‖T ‖‖ξ2‖,

so T ∗ ∈ B(H2,H1) and ‖T ∗‖ ≤ ‖T ‖.
Directly from the definition of adjoint

〈T ∗ξ2, ξ1〉 = 〈ξ2, T ξ1〉, ∀ξ1 ∈ H1, ∀ξ2 ∈ H2,

and so T ∗∗ = T . Now ‖T ‖ = ‖T ∗∗‖ ≤ ‖T ∗‖; hence ‖T ∗‖ = ‖T ‖. �
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Definition 2.1.7.

a) A linear operator T : dom T � H → H is self-adjoint if T = T ∗ (including
equality of domains, of course).

b) A bounded linear T : H1 → H2 is unitary if rng T = H2, it is one-to-one and
T ∗ = T−1.

c) A bounded linear operator T : H ←↩ is normal if T ∗T = TT ∗.

Remark 2.1.8. a) Note that T : H1 → H2 is unitary iff 〈Tξ, T η〉 = 〈ξ, T ∗Tη〉 =
〈ξ, η〉, ∀ξ, η ∈ H1 and rng T = H2; in particular unitary operators are isome-
tries (and so ‖T ‖ = 1) and T−1 is also unitary. The unitary operators are the
isomorphisms on Hilbert spaces.

b) T ∗∗ will denote (T ∗)∗ and so on. It is possible to define unbounded normal
operators; see Definition 8.2.9.

c) If T is self-adjoint (or just symmetric), then 〈Tξ, ξ〉 ∈ R for all ξ ∈ dom T .
Further, a self-adjoint operator is symmetric and the addition of elements to its
domain will necessarily deform this property (see Theorem 2.1.24).

d) It is usually not difficult to check if an operator is symmetric, however
self-adjointness is a much more subtle property to verify. It turns out that for
bounded operators with domain all H, the concepts of hermitian and self-adjoint
coincide.
Example 2.1.9. Let z ∈ C and 1 be the identity operator on H. The operator z1
is: 1) normal for all z ∈ C; 2) self-adjoint iff z ∈ R; 3) unitary iff |z| = 1.
Example 2.1.10. For each fixed 0 
= s ∈ R the operator Ts ∈ B(L2(R)), (Tsψ)(t) :=
1
2s [ψ(t+ s) + ψ(t− s)], ψ ∈ L2(R), is self-adjoint.
Example 2.1.11. The operator Sr : l2(N) ←↩ given by

Sr(ξ1, ξ2, ξ3, . . . ) = (0, ξ1, ξ2, . . . )

is a linear isometry (i.e., an isometric mapping) between Hilbert spaces, but it is
not unitary, because it is not onto.

Proposition 2.1.12.

a) If T ∈ B(H) then ‖TT ∗‖ = ‖T ∗T ‖ = ‖T ‖2. Therefore,
i) T ∗T = 0 if, and only if, T = 0.
ii) If T is normal, then ‖T 2‖ = ‖T ‖2.

b) If T ∈ B(H) is normal (especially it holds for bounded self-adjoint operators),
then its spectral radius rσ(T ) = ‖T ‖ (see Definition 1.5.18).

Proof. a) If T ∈ B(H),

‖T ‖2 = sup
‖ξ‖=1

‖Tξ‖2 = sup
‖ξ‖=1

〈Tξ, T ξ〉 = sup
‖ξ‖=1

〈T ∗Tξ, ξ〉 ≤ sup
‖ξ‖=1

‖T ∗T ‖ ‖ξ‖2

= ‖T ∗T ‖ ≤ ‖T ∗‖ ‖T ‖ = ‖T ‖2,

and ‖T ∗T ‖ = ‖T ‖2. By adapting the roles of T and T ∗ in this relation one obtains
‖TT ∗‖ = ‖T ‖2. Then i) is immediate from such a relation.
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Now, if T commutes with its adjoint, then for all ξ ∈ H one has ‖T ∗Tξ‖2 =
〈T ∗Tξ, T ∗Tξ〉 = 〈T 2ξ, T 2ξ〉 = ‖T 2ξ‖2, consequently ‖T 2‖ = ‖T ∗T ‖ = ‖T ‖2,
which is ii).

b) If T is normal then, by ii) above, ‖T 2n‖ = ‖T ‖2n

for all n ∈ N; thus

rσ(T ) = lim
n→∞

‖T 2n‖1/2n

= ‖T ‖.

Recall that, if a limit does exist, then one may use any subsequence to evaluate it.
�

Proposition 2.1.13. If T ∈ B(H) is self-adjoint, then

‖T ‖ = sup
‖ξ‖=1

〈Tξ, ξ〉.

Proof. Let κ denote the above right-hand side. Thus, |〈Tξ, ξ〉| ≤ ‖T ‖ ‖ξ‖2 and so
κ ≤ ‖T ‖. Since 〈Tξ, ξ〉 ∈ R for all ξ ∈ H, by polarization and then using the
parallelogram law,

4 |Re 〈Tξ, η〉| = |〈T (ξ + η), ξ + η〉 − 〈T (ξ − η), ξ − η〉|

=
∣∣∣∣〈T ξ + η

‖ξ + η‖ ,
ξ + η

‖ξ + η‖

〉
‖ξ + η‖2 −

〈
T

ξ − η

‖ξ − η‖ ,
ξ − η

‖ξ − η‖

〉
‖ξ − η‖2

∣∣∣∣
≤ κ

(
‖ξ + η‖2 + ‖ξ − η‖2

)
= 2κ

(
‖ξ‖2 + ‖η‖2

)
.

Hence, if ‖ξ‖ = ‖η‖ = 1 one has |Re 〈Tξ, η〉| ≤ κ. By choosing η = Tξ/‖Tξ‖ it
follows that ‖Tξ‖ ≤ κ for all ‖ξ‖ = 1. Therefore, ‖T ‖ ≤ κ and so ‖T ‖ = κ. �
Remark 2.1.14. a) The distinction between hermitian and self-adjoint operators
is a famous subtlety in mathematics with outstanding physical and mathematical
implications. See, for instance, Theorem 2.2.17 and Section 14.1.

b) For some applications (especially to quantum mechanics), it may be impor-
tant that the operator in question is self-adjoint. However, often what is initially
supplied is just an operator action (a differential one, for instance) which is her-
mitian on certain domain, and one is left with the hard task of finding suitable
self-adjoint extensions.

Lemma 2.1.15. G(T ∗) = (JG(T ))⊥ in H × H, with J(ξ, η) = (−η, ξ) a unitary
operator.

Proof. By the equivalent relations

(η, φ) ∈ G(T ∗)⇔〈Tξ, η〉 = 〈ξ, φ〉, ∀ξ ∈ dom T

⇔〈(−Tξ, ξ), (η, φ)〉H×H = 0, ∀ξ ∈ dom T

⇔〈J(ξ, T ξ), (η, φ)〉H×H = 0, ∀ξ ∈ dom T

⇔ (η, φ) ∈ (JG(T ))⊥

the assertion follows. �
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Corollary 2.1.16.

a) Let T be a linear operator in H. T ∗ is a closed operator, specifically every
self-adjoint operator is closed.

b) Any hermitian operator is closable and its closure is hermitian.

Proof. a) By Lemma 2.1.15 G(T ∗) is a closed subspace.
b) Since T is hermitian then T ⊂ T ∗ and, by item a), T is closable. To show

that T is hermitian, let ξ, ζ ∈ dom T , and pick (ξn), (ζn) ⊂ dom T with ξn → ξ,
ζn → ζ and Tξn → Tξ, Tζn → Tζ; in view of

〈Tζ, ξ〉 = lim
n→∞

〈Tζn, ξn〉 = lim
n→∞

〈ζn, T ξn〉 = 〈ζ, T ξ〉,

it follows that T is hermitian. �

Corollary 2.1.17.

a) Let T be a densely defined linear operator. Then T is closable iff dom T ∗ is
dense in H. In this case

H×H = JG(T ) ⊕ G(T ∗) = G(T ) ⊕ JG(T ∗), and T ∗∗ = T .

b) If T is closable, then (T )∗ = T ∗.

Proof. a) Since J is unitary and J2 = −1, if T is closable, then G(T ) and JG(T )
are closed subspaces and

H×H = JG(T ) ⊕
(
JG(T )

)⊥
= JG(T ) ⊕ G(T ∗) = G(T ) ⊕ JG(T ∗).

Let ζ ∈ (dom T ∗)⊥. Thus, 〈ξ, ζ〉 = 0 = 〈T ∗ξ, 0〉, ∀ξ ∈ dom T ∗, that is,

〈(0, ζ), (−T ∗ξ, ξ)〉H×H = 0 ⇒ (0, ζ) ∈ (JG(T ∗))⊥ = G(T ),

so T (0) = ζ = 0 and dom T ∗ is dense in H. Note that these arguments also show
that if dom T ∗ is dense in H, then, for no ζ 
= 0, (0, ζ) ∈ G(T ) so that G(T ) is the
graph of an operator and T is closable.

Now (apply Lemma 2.1.15), for T closable T ∗∗ is well defined and H×H =
JG(T ∗) ⊕ G(T ∗∗); since G(T ∗∗) = (JG(T ∗))⊥ = G(T ), it is found that T ∗∗ = T .

b) By applying Corollary 2.1.16a) once and then item a) twice: T ∗ = T ∗ =
T ∗∗∗ = T

∗
. �

Remark 2.1.18. Due to Corollaries 2.1.16b) and 2.1.17b), in many theoretical dis-
cussions one assumes that hermitian operators are closed.
Exercise 2.1.19. a) Show that a self-adjoint operator has no proper hermitian
extensions. b) Show that each eigenvalue of a symmetric operator is a real number.
c) Check that if S ⊂ T , then T ∗ ⊂ S∗.
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Exercise 2.1.20. If T and S are linear operators in H, define dom (S + T ) :=
dom S ∩ dom T , and dom (ST ) := {ξ ∈ dom T : Tξ ∈ dom S},

(T + S)ξ := Tξ + Sξ and (ST )ξ := S(Tξ),

which are called operator sum and operator product, respectively (of course such
operations are well defined in normed spaces). If these operators are densely de-
fined, show that T ∗S∗ ⊂ (ST )∗, and if S ∈ B(H) then T ∗S∗ = (ST )∗.
Exercise 2.1.21. Let T be a densely defined closed linear operator. Use Corol-
lary 2.1.17 to show that for any pair ξ′, η′ ∈ H there is a unique pair ξ ∈ dom T
and η ∈ dom T ∗ obeying

ξ′ = η − Tξ, η′ = ξ + T ∗η.

Moreover, ‖ξ′‖2 + ‖η′‖2 = ‖ξ‖2 + ‖Tξ‖2 + ‖η‖2 + ‖T ∗η‖2.

Definition 2.1.22. A hermitian operator T is essentially self-adjoint if T is self-
adjoint.

Remark 2.1.23. If T is self-adjoint, then a subspace D ⊂ dom T is a core of T (see
Definition 1.2.25) iff the restriction T |D is essentially self-adjoint.

Let T, S be linear operators. If S ⊂ T one has T ∗ ⊂ S∗, then if T is hermitian
(i.e., T ⊂ T ∗) it follows that T = T ∗∗ ⊂ T ∗.

If A is a self-adjoint extension of the hermitian operator T , i.e., T ⊂ A, then
A = A∗ ⊂ T ∗, consequently T ∗ is an extension of all self-adjoint extensions of T .
Now if T is also essentially self-adjoint with T ⊂ A, one has

A ⊂ T ∗ ⇒ T = T ∗∗ ⊂ A⇒ A ⊂ T
∗

= T ,

so that T = A.

Theorem 2.1.24. Let T be a hermitian operator. Then:

a) T ∗ is an extension of all self-adjoint (or hermitian) extensions of T .
b) If T is essentially self-adjoint, then it has just one self-adjoint extension (see

also Corollary 2.2.14).
c) T is essentially self-adjoint iff T ∗ is hermitian, and in this case T = T ∗∗ = T ∗

(so T ∗ is, in fact, self-adjoint).

Proof. Items a) and b) were discussed above.
c) If T is essentially self-adjoint, then T ∗ = T

∗
= T = T ∗∗ and T ∗ is self-

adjoint, so T = T ∗∗ = T ∗. Now assume that T ∗ is hermitian; one has T ∗ = T
∗

and, since T is also hermitian, T ⊂ T
∗

= T ∗ ⊂ T ∗∗ = T , and so T = T
∗

and T is
essentially self-adjoint. �

Thus a hermitian operator has at least two natural closed extensions: a “min-
imal” one given by its closure, and a “maximal” one given by its adjoint. Hence, its
fortuitous self-adjoint extensions are half-way between such minimal and maximal
closed extensions.
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Definition 2.1.25. If there is a unitary operator U : H1 → H2, then these spaces are
said to be unitarily equivalent. In this case, two linear operators Tj : dom Tj ⊂
Hj → Hj , j = 1, 2, are unitarily equivalent if dom T2 := Udom T1 and T2 =
UT1U

∗.

Exercise 2.1.26. Let U ∈ B(H1,H2) be a unitary operator and T1, T2 unitarily
equivalent linear operators. Show that: a) T2 is closed iff T1 is closed. b) T2 is her-
mitian, essentially self-adjoint, self-adjoint iff the corresponding statement holds
for T1. c) T1 and T2 have the same eigenvalues. d) z ∈ ρ(T2) iff z ∈ ρ(T1) and
‖Rz(T2)‖ = ‖Rz(T1)‖; conclude that σ(T2) = σ(T1).

Now it is interesting to present the Hellinger-Toeplitz argument. It shows that
in the study of the adjoint of an unbounded operator subtle domain questions will
actually appear, since such operators can not be defined on all elements of the
Hilbert space.

Proposition 2.1.27 (Hellinger-Toeplitz). Let T : H ←↩ be a linear operator with

〈Tη, ξ〉 = 〈η, T ξ〉, ∀η, ξ ∈ H.

Then T ∈ B(H) and it is self-adjoint.

Proof. From the definitions it follows that T is self-adjoint, so closed. Since its
domain is H, then T is bounded by the Closed Graph Theorem 1.2.21. �
Exercise 2.1.28. If T : H1 → H2 is linear and there exists S : H2 → H1, not
necessarily linear, with 〈Tξ, η〉 = 〈ξ, S(η)〉 for all ξ ∈ H1 and η ∈ H2, conclude
that S is linear, T and S are bounded and, finally, that T ∗ = S.
Remark 2.1.29. There are some ongoing attempts to construct an adjoint for
operators on separable Banach spaces that parallels the construction in Hilbert
spaces, also aiming at introducing the notion of self-adjoint operators in Banach
spaces; however, usually some expected properties fail. See [GiBZS04].

2.2 Cayley Transform I

The basic and motivating observation for the developments ahead is that for a
hermitian operator T : dom T � H → H one has

‖(T ± i1)ξ‖2 = ‖Tξ‖2 + ‖ξ‖2 = ‖ξ‖2
T , ∀ξ ∈ dom T.

Hence, the operator

U(T ) := (T − i1)(T + i1)−1 : rng (T + i1) → rng (T − i1)

is one-to-one, linear and isometric.

Definition 2.2.1. U(T ) as above is called the Cayley transform of the hermitian
operator T .
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Exercise 2.2.2. Show that for a densely defined operator T : dom T � H → H
one has N(T ∗) = (rng (T ))⊥.

Definition 2.2.3. Let T be a hermitian operator. The closed linear subspaces
K±(T ) := N(T ∗± i1) = (rng (T ∓ i1))⊥ are the deficiency subspaces of T and the
integer numbers, given by the respective dimensions,

n+(T ) := dimN(T ∗ + i1) = dim(rng (T − i1))⊥,
n−(T ) := dimN(T ∗ − i1) = dim(rng (T + i1))⊥,

are its deficiency indices.

Proposition 2.2.4. Let T be a hermitian operator. Then:

i) T is closed iff rng (T − i1) is closed iff rng (T + i1) is closed.
ii) T is self-adjoint iff rng (T + i1) = rng (T − i1) = H iff its Cayley transform

is a unitary operator U(T ) : H → H.
iii) If there is λ ∈ R so that rng (T − λ1) = H, then T is essentially self-adjoint

(recall that T is the closure of T ).
iv) If there is λ ∈ R ∩ ρ(T ), then T is self-adjoint.

Proof. i) It is enough to observe that the maps

rng (T ± i1) � (T ± i1)ξ �→ (ξ, T ξ) ∈ G(T ), ξ ∈ dom T,

are isometric (so one-to-one) and onto.
ii) The two last assertions are clearly equivalent.
Let T = T ∗; then T is closed and, by Exercise 2.2.2 if ξ ∈ (rng (T + i1))⊥ =

N(T ∗−i1) one has Tξ = iξ, and ξ = 0 since its eigenvalues are real. So rng (T+i1)
is dense in H; by i) it is also closed, so rng (T + i1) = H. Similarly one gets
rng (T − i1) = H.

For the converse, recall that T ⊂ T ∗. If η ∈ dom T ∗, then for all φ ∈ dom T ,
〈η, (T + i1)φ〉 = 〈(T ∗ − i1)η, φ〉. Pick ξ ∈ dom T with (T − i1)ξ = (T ∗ − i1)η.
Hence

〈η, (T + i1)φ〉 = 〈(T − i1)ξ, φ〉 = 〈ξ, (T + i1)φ〉, ∀φ ∈ dom T.

Since rng (T + i1) = H, then ξ = η and dom T ∗ = dom T .
iii) If η ∈ dom (T )∗, then for all φ ∈ dom T , 〈η, (T −λ1)φ〉 = 〈(T ∗−λ1)η, φ〉.

Pick ξ ∈ dom T with (T − λ1)ξ = (T ∗ − λ1)η. Hence

〈η, (T − λ1)φ〉 = 〈(T − λ1)ξ, φ〉 = 〈ξ, (T − λ1)φ〉, ∀φ ∈ dom T .

Since rng (T − λ1) = H, it follows that ξ = η and dom T ∗ = dom T ; hence
T is self-adjoint.

iv) Since λ ∈ ρ(T ) one has rng (T − λ1) = H. The proof then follows the
same lines of iii) above. �
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Remark 2.2.5. Due to Proposition 2.2.4ii), n+, n−,K+,K− quantify the “lack
of self-adjointness” of a hermitian operator; so the terminology. See also Theo-
rem 2.2.11.
Exercise 2.2.6. Show that a hermitian operator T is closed iff U(T ) is closed.
Exercise 2.2.7. If T is hermitian, show that T is self-adjoint iff there exists z ∈ C\R

so that rng (T + z1) = rng (T + z1) = H.
Exercise 2.2.8. Let T be a hermitian operator. Show that rng (T ± i1) =
rng (T ± i1) (the bar denotes closure).
Remark 2.2.9. From the proof of Proposition 2.2.4, one concludes that, if T is
hermitian but not self-adjoint, then either +i or −i (or both) belongs to σ(T ),
although neither of them is an eigenvalue of T . This verification is a nice exercise
left to you.

Theorem 2.2.10. If H has an orthonormal basis of eigenvectors of the symmetric
operator T : dom T ⊂ H → H, then T is essentially self-adjoint and σ(T ) is the
closure of the set of eigenvalues of T .

Proof. Note that in this case dom T � H, so T is in fact hermitian and T exists and
is hermitian. Since its eigenvalues are real numbers, it follows that rng (T ± i1) ⊃
rng (T ± i1) contains the subspace spanned by each of such eigenvectors and so it
is dense in H; by Proposition 2.2.4i) rng (T ± i1) = H, since those sets are closed.
Hence, by Proposition 2.2.4ii), T is self-adjoint and T is essentially self-adjoint.

Denote by (λj) and (ξj) the set of eigenvalues and eigenvectors of T , respec-
tively. If Σ is the closure of the set of such eigenvalues in C, then Σ ⊂ σ(T ) as the
spectrum is a closed set and eigenvalues of T are also eigenvalues of T . Note that
every vector of H can be written in the form

∑
j ajξj . If z /∈ Σ, then the operator

S defined on H given by

S

⎛⎝∑
j

ajξj

⎞⎠ =
∑
j

aj
(λj − z)

ξj

is one-to-one and bounded. Since T is a closed operator, by considering partial
sums of

∑
j ajξj a direct verification shows that S = Rz(T ), so that z /∈ σ(T ).

Therefore, σ(T ) = Σ. �

Now an important result will be stated and its proof postponed to Section 2.5;
this is expected to speed up the presentation. In any case one could try to get some
intuition behind proofs as follows. If T is closed and hermitian, then

H = rng (T ± i1) ⊕ (rng (T ± i1))⊥ = rng (T ± i1) ⊕ K∓(T ),

and the Cayley transform U(T ) is an isometry between rng (T + i1) and rng (T −
i1). By Proposition 2.2.4ii), in order to get a self-adjoint extension T̃ of T one
needs to extend its domain so that rng (T̃ ± i1) = H, that is, U(T̃ ) should be a
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unitary map in H. This extension requires n+(T ) = n−(T ). Here is the precise
formulation:

Theorem 2.2.11 (von Neumann). Let T be a hermitian operator with dom T � H
and T its closure. Then:

a) With respect to the graph inner product of T ∗ one has

dom T ∗ = dom T ⊕T∗ K+(T ) ⊕T∗ K−(T ).

So, in case T is also closed: dom T ∗ = dom T ⊕T∗ K+(T ) ⊕T∗ K−(T ).
b) T is essentially self-adjoint iff n+ = n− = 0.
c) T has self-adjoint extensions iff n+ = n−, and there exists a one-to-one

correspondence between self-adjoint extensions of T and unitary operators
between K− and K+ (and so infinitely many self-adjoint extensions if n+ =
n− ≥ 1).

Remark 2.2.12. Theorem 2.2.11 was published in 1929 by von Neumann, as a
generalization of a result of Weyl of 1910 for second-order differential operators.
Maybe it should be called the “von Neumann-Weyl theorem.”
Remark 2.2.13. A slightly different proof that “if H has an orthonormal basis (ξj)
of eigenvectors of the symmetric operator T : dom T ⊂ H → H, with respectively
(real) eigenvalues (λj), then T is essentially self-adjoint” is the following: if (T ∗±
i1)η = 0, then for all j one has

0 = 〈(T ∗ ± i1)η, ξn〉 = 〈η, (T ∓ i1)ξn〉 = (λj ∓ i)〈η, ξj〉,

and so η ⊥ ξj for all j; hence η = 0 and n±(T ) = 0.

Corollary 2.2.14. The hermitian operator T is essentially self-adjoint iff T has
exactly one self-adjoint extension.

Proof. Half of the statement is Theorem 2.1.24b). Suppose, now, that T is not
self-adjoint. By Theorem 2.2.11 either n− 
= n+ or n− = n+ ≥ 1. The former
possibility implies that T has no self-adjoint extensions at all. The latter possibility
implies the existence of infinitely many self-adjoint extensions of T . �
Definition 2.2.15. An antilinear map C : H → H is a conjugation if it is an isometry
and C2 = 1.

Proposition 2.2.16 (von Neumann). If T is hermitian and there exists a conjuga-
tion C such that C(dom T ) ⊂ dom T and C commutes with T (that is, TCξ = CTξ,
∀ξ ∈ dom T ), then T has a self-adjoint extension.

Proof. In view of C(dom T ) ⊂ dom T one has dom T = C2(dom T ) ⊂ Cdom T ,
and so C(dom T ) = dom T . If ξ ∈ rng (T − i1)⊥, then for any η ∈ dom T (by
using the polarization identity)

0 = 〈ξ, (T − i1)η〉 = 〈Cξ, C(T − i1)η〉 = 〈Cξ, (T + i1)Cη〉,
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and so Cξ ∈ rng (T + i1)⊥. Hence, C maps rng (T − i1)⊥ into rng (T + i1)⊥; a
similar argument concludes that C maps rng (T + i1)⊥ into rng (T − i1)⊥. Since
C is an isometry it follows that n+ = n−. By Theorem 2.2.11, T has self-adjoint
extensions. �

Before presenting some applications, certain basic spectral properties of self-
adjoint and unitary operators will be addressed. Since a unitary operator is
bounded, its spectrum is nonempty (Corollary 1.5.17); for the corresponding result
in case of unbounded self-adjoint operators see Theorem 2.4.4.

Theorem 2.2.17. Let T be a closed hermitian operator. Then T is self-adjoint iff
σ(T ) ⊂ R. In this case, for z ∈ C \ R, one has

‖Rz(T )‖ ≤ 1
|Im z| and Rz(T )∗ = Rz(T ).

Furthermore, if 0 
= y ∈ R, then ‖TRiy(T )‖ ≤ 1.

Proof. If σ(T ) ⊂ R, then ±i ∈ ρ(T ) and rng (T ± i1) = H; so T is self-adjoint by
Proposition 2.2.4.

Now, assume that T is self-adjoint. Take a complex number z = x+iy, y 
= 0;
then

T − z1 = y(S − i1),

where S = (T −x1)/y is self-adjoint with the same domain as T . From the relation

‖(S ± i1)ξ‖2 = ‖Sξ‖2 + ‖ξ‖2 ≥ ‖ξ‖2

and rng (S ± i1) = H (Proposition 2.2.4), it is found that R±i(S) ∈ B(H) and
‖R±i(S)‖ ≤ 1. By noting that S − i1 = (T − z1)/y, one finds 1 ≥ ‖Ri(S)‖ =
‖Rz(T )‖ |y|, and so

‖Rz(T )‖ ≤ 1
|Im z| .

Therefore z ∈ ρ(T ) and σ(T ) ⊂ R.
For self-adjoint T and z ∈ ρ(T ) one has

〈ξ, (T − z1)η〉 = 〈(T − z1)ξ, η〉, ∀ξ, η ∈ dom T.

Since rng (T −z1) = rng (T −z1) = H, and taking ξ1 = (T −z1)ξ, η1 = (T −z1)η
one concludes that

〈Rz(T )ξ1, η1〉 = 〈ξ1, Rz(T )η1〉, ∀ξ1, η1 ∈ H,

i.e., Rz(T )∗ = Rz(T ).
Finally the last assertion of the theorem; for y 
= 0 and ξ ∈ dom T one has

‖(T − iy1)ξ‖2 = ‖Tξ‖2 + y2‖ξ‖2 ≥ ‖Tξ‖2.

Write ξ = Riy(T )η; then the above inequality leads to ‖η‖ ≥ ‖TRiy(T )η‖, ∀η ∈ H,
and so ‖TRiy(T )‖ ≤ 1. �



54 Chapter 2. Adjoint Operator

Exercise 2.2.18. Show that if T is hermitian but not self-adjoint, then R ⊂ σ(T )
and σ(T ) \ R 
= ∅.

Corollary 2.2.19. Let T be self-adjoint. Then s − limy→±∞ TRiy(T ) = 0, that is,
for all ξ ∈ H one has limy→±∞ TRiy(T )ξ = 0.

Proof. Since dom T is dense in H, given ε > 0 write ξ = η + ζ, with η ∈ dom T
and ‖ζ‖ < ε. Thus, according to Theorem 2.2.17,

‖TRiy(T )ξ‖ ≤ ‖TRiy(T )η‖ + ‖TRiy(T )ζ‖

≤ ‖Riy(T )Tη‖ + ‖ζ‖ < ‖Tη‖
|y| + ε.

For |y| → ∞ one gets ‖TRiy(T )ξ‖ ≤ ε, and the result follows. �

Exercise 2.2.20. If T is linear and z ∈ ρ(T ), verify that TRz(T ) is bounded by
showing that ‖TRz(T )‖ ≤ 1 + |z|‖Rz(T )‖.

It is not difficult to check that any eigenvalue of a unitary operator has unity
absolute value. This extends to all points of its spectrum:

Proposition 2.2.21. If U : H → H is a unitary operator, then σ(U) is a subset of
{λ ∈ C : |λ| = 1}.

Proof. Since ‖U‖ = 1, Corollary 1.5.16 implies that |λ| > 1 belongs to the resolvent
set of U . Since U−1 = R0(U) is unitary and UU−1 = 1 = U−1U , then 0 ∈ ρ(U)
and if |λ| = |λ − 0| < 1/‖U−1‖ = 1 it is found, by using Theorem 1.5.12, that λ
also belongs to the resolvent set of U . Therefore, if λ ∈ σ(U), then |λ| = 1. �

2.3 Examples

In this section a series of applications of previously discussed results will be pre-
sented. For didactic reasons, sometimes different aspects of an operator will be
separated into more than one example; see also Section 2.6. The Schwartz space
of smooth fast decaying functions (see Section 3.1) on Rn will be denoted by
S = S(Rn), and C∞0 (Ω) will indicate the set of functions with compact support
and continuous derivatives of any order in Ω ⊂ Rn. Keep in mind that physical
observables in quantum mechanics are represented by self-adjoint operators; see
page 1 and Section 14.1.

2.3.1 Momentum and Energy

Example 2.3.1. [Standard Schrödinger (energy) operator] Let V : Rn → R be a
real function in L2

loc(R
n) and Δ denote the usual Laplacian. The operator domain

is dom H = C∞0 (Rn) � L2(Rn) (the common practice of writing just V instead
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of MV will be followed; see Subsection 2.3.2 for a discussion about unbounded
multiplication operators),

(Hψ)(x) = −(Δψ)(x) + V (x)ψ(x), ψ ∈ dom H,

i.e., H = −Δ+V is hermitian (use integration by parts) and has at least one self-
adjoint extension. In fact, dom H is dense in L2(Rn), and it is enough to apply
Proposition 2.2.16 with C being the complex conjugation. V is called the poten-
tial and −Δ represents the quantum kinetic energy. These self-adjoint extensions
are candidates for the quantum energy operator. Note that V ∈ L2

loc(R
n) is the

minimum requirement for V ψ to be an element of L2(Rn) with ψ ∈ C∞0 (Rn).
Example 2.3.2. [Polynomial potential] Example 2.3.1 applies, in particular, to
potentials V (x) given by real polynomials p(x), x ∈ Rn. As an alternative, in this
case one can also take dom H = S ⊂ L2(Rn).
Example 2.3.3. [Energy operator of the harmonic oscillator] The Hilbert space is
L2(R) and the operator is H = −Δ + x2, dom H = S; more precisely, for ψ ∈ S,
(Hψ)(x) = −ψ′′(x) + x2ψ(x). By Example 2.3.2 this hermitian operator has self-
adjoint extensions. However, more can be said. The eigenvalue equation for this
operator Hψ = λψ has the well-known Hermite functions (see [Zei95], [Will03])

ψj(x) = Nj e
x2/2 d

je−x
2

dxj
, j = 0, 1, 2, . . . ,

as solutions (Nj is a normalization constant). The subsequent eigenvalues are
λj = 2(j + 1/2). Since {ψj} form a complete orthonormal set in L2(R), by The-
orem 2.2.10, this operator is essentially self-adjoint, its closure H is the energy
operator of the quantum one-dimensional harmonic oscillator and σ(H) = {λj}.
Note that the minimum of the energy spectrum is greater than zero, in contrast
to the classical case whose minimum of the harmonic oscillator energy is zero; this
is a purely quantum fact, as well as the discrete possible values of energy.

After including all physical constants (particle mass m, oscillator frequency
ω and Planck constant �), the formal energy operator for the quantum harmonic
oscillator energy looks like

H = − �2

2m
Δ +

1
2
mω2x2,

and its eigenvalues are λj = ω�(j + 1/2), so that the minimum energy is ω�/2.
All eigenvalues are simple, that is, they have multiplicity 1.
Remark 2.3.4. If in Example 2.3.1 V (x) ∈ L2

loc(R
n) and V (x) ≥ β, for some β ∈ R,

then it is shown in Corollary 6.3.5 that the corresponding Schrödinger operator
H = −Δψ + V is essentially self-adjoint on C∞0 (Rn). This unique self-adjoint
extension plays the unequivocal role of the quantum energy operator in this case.
Example 2.3.5. [Free particle energy in the “box” [0, 1] with Dirichlet boundary
conditions] Here H = L2[0, 1]. Set dom TD = {ψ ∈ C2[0, 1] : ψ(0) = ψ(1) = 0}
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and (TDψ)(x) = −Δψ = −ψ′′(x). It is a hermitian operator. The set ψDj (x) =√
2 sin (jπx), j ≥ 1, is an orthonormal basis of L2[0, 1] and since TDψDj = j2π2ψDj ,

by Theorem 2.2.10, it follows that TD is essentially self-adjoint and the spectrum
of its unique self-adjoint extension TD is {j2π2 : j ≥ 1}; all eigenvalues are simple.
See Example 4.4.3.
Example 2.3.6. [Free particle energy in the “box” [0, 1] with Neumann boundary
conditions] Here H = L2[0, 1]. Set dom TN = {ψ ∈ C2[0, 1] : ψ′(0) = ψ′(1) = 0}
and (TNψ)(x) = −ψ′′(x). It is a hermitian operator. The set ψN0 (x) = 1, ψNj (x) =√

2 cos (jπx), j ≥ 1, is an orthonormal basis of L2[0, 1] and since TNψNj = j2π2ψNj ,
∀j, it follows that TN is essentially self-adjoint and the spectrum of its unique self-
adjoint extension TN is {j2π2 : j ≥ 0}. All eigenvalues are simple.
Example 2.3.7. [Free particle energy in the “box” [0, 1] with periodic boundary
conditions] Here H = L2[0, 1]. Set dom TP = {ψ ∈ C2[0, 1] : ψ(0) = ψ(1), ψ′(0) =
ψ′(1)} and (TPψ)(x) = −ψ′′(x). It is a hermitian operator. The set ψPj (x) =
exp (j2πix), j ∈ Z, is an orthonormal basis of L2[0, 1] and since TPψPj = 4j2π2ψNj ,
it follows that TP is essentially self-adjoint, the spectrum of its unique self-adjoint
extension TP is {4j2π2 : j ≥ 0} and, except the zero, each eigenvalue has multiplic-
ity 2. This multiplicity can be understood physically: the case of periodic boundary
conditions means the particle is in fact on a circumference, so that given a nonzero
energy value it can be reached by either clockwise or counterclockwise rotations,
so the multiplicity 2. For a description of TP see Exercise 4.4.4.
Example 2.3.8. The operator T : dom TD∩dom TN → L2[0, 1] (see Examples 2.3.5
and 2.3.6), (Tψ)(x) = −ψ′′(x), is hermitian (its domain is dense in the Hilbert
space since it contains C∞0 (0, 1)) and has at least three different self-adjoint ex-
tensions: TD, TN and TP .

Let I ⊂ R be an interval and ψ(k) the kth derivative of the function ψ : I → C;
the space of absolutely continuous functions on every closed bounded subinterval
of I is denoted by AC(I). Recall that ψ belongs to AC(I) iff it can be written in
the form

ψ(x) = ψ(c) +
∫ x

c

φ(s) ds, c ∈ I, φ ∈ L1
loc(I),

and a.e. ψ′(x) = φ(x), i.e., the fundamental theorem of calculus holds. Such func-
tions map sets of zero Lebesgue measure into sets of zero Lebesgue measure. In
case of a bounded closed interval I = [a, b] one has ψ′ ∈ L1[a, b] and ψ ∈ C[a, b].

For m ∈ N, recall the Sobolev spaces Hm(I) (more details appear in Sec-
tion 3.2; in this sense the discussion here could be considered premature, but
important for applications), which consists of all ψ ∈ L2(I) obeying ψ(k) ∈
AC(I) ∩ L2(I) for k = 0, 1, . . . ,m − 1 and ψ(m) ∈ L2(I). The spaces Hm(I) are
Hilbert spaces with the norm

|‖ψ‖|m :=

(
m∑
k=0

‖ψ(k)‖2

) 1
2
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and ψ ∈ C(I), so that ψ is bounded and, when applicable, limx→±∞ ψ(x) = 0.
Furthermore, for ψ ∈ Hm(I) the above derivatives ψ(k) coincide with the corre-
sponding distributional (also called weak) derivatives.

An important property of absolutely continuous functions ψ, ϕ is the inte-
gration by parts formula∫ b

a

ψ(s)ϕ′(s) ds = ψ(b)ϕ(b) − ψ(a)ϕ(a) −
∫ b

a

ψ′(s)ϕ(s) ds.

The failure of the integration by parts formula is related to the existence of strictly
monotone continuous functions for which the derivatives vanish almost everywhere;
consequently, for Hm it is not enough to ask for functions in L2 with derivatives
in L2, and distributional derivatives must be invoked.

As a rule, the rudiments of distributions are assumed to be known. In any
event, it is worth presenting the following fundamental uniqueness result.

Lemma 2.3.9. Let I = (a, b) ⊂ R be an open interval (−∞ ≤ a < b ≤ ∞) and u a
distribution acting on C∞0 (I) with derivative u′ = 0. Then u is constant.

Proof. Note first that if φ ∈ C∞0 (I), then its primitive Φ(x) =
∫ x
a
φ(t)dt also

belongs to C∞0 (I) iff
∫
I φ(t) dt = 0. Recall that (see Section 3.2) u′ = 0 means

u′(φ) := −u(φ′) = 0 for all φ ∈ C∞0 (I).
Pick φ0 ∈ C∞0 (I) with

∫
I
φ0(t) dt = 1, and for each φ ∈ C∞0 (I) consider

ψ = φ−
(∫

I

φ(t) dt
)
φ0.

Since ψ ∈ C∞0 (I) and
∫
I ψ(t) dt = 0 it follows that this function is the derivative

of an element of C∞0 (I) and so

0 = u(ψ) = u(φ) −
(∫

I

φ(t) dt
)
u(φ0).

Therefore, for any φ ∈ C∞0 (I), u(φ) =
∫
I
u(φ0)φ(t) dt and u is represented by the

constant function u(φ0). �
Remark 2.3.10. a) From the above proof and discussion it should be clear that,
in open intervals in R, the derivative of a distribution u is a locally integrable
function iff u is represented by an absolutely continuous function.

b) Lemma 2.3.9 has a natural generalization for connected open subsets Ω
of Rn: if a distribution u has partial distributional derivatives at all points of Ω,
that is, ∂u

∂xj
= 0, 1 ≤ j ≤ n, then u is constant.

Example 2.3.11. [Momentum operator on R] Let dom P0 = C∞0 (R) � H = L2(R),
(P0ψ)(x) = −iψ′(x), ψ ∈ dom P0. An integration by parts shows that P0 is
hermitian. Accept, for a moment, that dom P ∗0 = H1(R) and P ∗0 u = −iu′, u ∈
H1(R).



58 Chapter 2. Adjoint Operator

Another integration by parts shows that P ∗0 is hermitian. Then (see The-
orem 2.1.24c)) P0 ⊂ P ∗0 ⊂ P ∗∗0 = P0; denote P = P0. From the first inclusion
P ∗∗0 = P ⊂ P ∗0 and so P = P ∗∗0 = P ∗0 , concluding that P is self-adjoint and so P0

is essentially self-adjoint. The operator P is the quantum momentum operator for
a particle in the line R.

Now we will check the claims about the adjoint P ∗0 . If u ∈ H1(R), a direct
verification implies that u ∈ dom P ∗0 and P ∗0 u = −iu′; indeed, if ψ ∈ dom P0 its
support is contained in an interval (a, b), consequently

〈u, P0ψ〉=
∫ b

a

u(x)(−iψ′(x)) dx

= −i
[
u(b)ψ(b) − u(a)ψ(z) −

∫ b

a

u′(x)ψ(x)

]

=
∫ b

a

−iu′(x)ψ(x).

Now let u ∈ dom P ∗0 ; set w = P ∗0 u and W (x) =
∫ x
0 w(t) dt, which is abso-

lutely continuous in any bounded interval (−m,m) ⊂ R. If ψ ∈ C∞0 (−m,m), then
an integration by parts gives us

〈u, P0ψ〉= 〈P ∗0 u, ψ〉 = 〈w,ψ〉

=
∫ m

−m
u(x)(−iψ′(x)) dx =

∫ m

−m
w(x)ψ(x) dx

=W (m)ψ(m) −W (−m)ψ(−m) −
∫ m

−m
W (x)ψ′(x) dx

=−
∫ m

−m
W (x)ψ′(x) dx.

Hence,
∫m
−m(W (x) + iu(x))ψ′(x) dx = 0 for all ψ ∈ C∞0 (−m,m) and, by Lem-

ma 2.3.9, y(x) = W (x)+iu(x) is a constant function in (−m,m);m being arbitrary,
y(x) is constant in all R. Therefore, u is absolutely continuous in any bounded
interval and 0 = y′ = W ′ + iu′ = P ∗0 u+ iu, so that P ∗0 u = −iu.
Exercise 2.3.12. By using P ∗0 as in Example 2.3.11, compute the deficiency sub-
spaces K− and K+ and show explicitly that n+ = n− = 0. Conclude again that
P0 is essentially self-adjoint.
Exercise 2.3.13. Verify that the operator dom P0 = S(R) � L2(R), with the
action (P0ψ)(x) = −iψ′(x), ψ ∈ dom P0, is essentially self-adjoint and its unique
self-adjoint extension is the same operator P obtained in Example 2.3.11.
Example 2.3.14. [Momentum operator on [0, 1]] Let dom P = C∞0 (0, 1) � H =
L2[0, 1], and (Pψ)(x) = −iψ′(x), ψ ∈ dom P. An integration by parts shows that
P is hermitian. By following the lines of the argument used in Example 2.3.11 it
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can be shown that dom P ∗ = H1[0, 1] and (P ∗ψ)(x) = −iψ′(x), ψ ∈ dom P ∗. The
next step is to calculate its deficiency indices n±.

n+: if u ∈ N(P ∗+ i1), then −iu′ = −iu and, since u is a continuous function
this equation implies that it is also continuously differentiable, so u(x) = cex, for
some constant c; thus n+ = 1.

n−: if u ∈ N(P ∗ − i1), then −iu′ = iu and, since u is a continuous function,
u(x) = ce−x, and n− = 1.

Therefore n− = n+ = 1 and P has infinitely many self-adjoint extensions.
Exercise 2.3.15. Verify that the closure of P in Example 2.3.14 has the same action
but with domain {ψ ∈ H2[0, 1] : ψ(0) = ψ(1) = 0}.
Example 2.3.16. This is P in Example 2.3.14 revisited. Now the deficiency indices
will be obtained by computing (rng (P ± i1))⊥, that is, with no explicit need of
the adjoint operator. The idea can be adapted to other situations. Let

dom P = C∞0 (0, 1) � H = L2[0, 1],

(Pψ)(x) = −iψ′(x), ψ ∈ dom P. An integration by parts shows that P is hermi-
tian.

If φ ∈ rng (P + i1), then there is ψ ∈ dom P so that

−idψ
dx

+ iψ = φ.

Clearly φ ∈ C∞0 (0, 1). After multiplying by the integrating factor e−x, one gets

d(e−xψ)
dx

(x) = ie−xφ(x),

and since ψ has compact support
∫ 1

0
e−xφ(x) dx = 0. Conversely, if φ ∈ C∞0 (0, 1)

satisfies this latter condition, then ψ(x) = i
∫ x
0 e

(x−t)φ(t)dt belongs to dom P and
(P + i1)ψ = φ. Therefore, (rng (P + i1))⊥ is the vector space spanned by e−x and
n− = 1. Similarly one gets n+ = 1. Therefore n− = n+ = 1 and P has infinitely
many self-adjoint extensions.
Example 2.3.17. [Momentum operator on [0,∞)?] Let

dom P = C∞0 (0,∞) � H = L2[0,∞),

(Pψ)(x) = −iψ′(x), ψ ∈ dom P. An integration by parts shows that P is her-
mitian. As in Example 2.3.11, it can be shown that dom P ∗ = H1[0,∞) and
(P ∗ψ)(x) = −iψ′(x), ψ ∈ dom P ∗.

The next step is to calculate its deficiency indices.

n+: if u ∈ N(P ∗ + i1), then −iu′ = −iu and, as in Example 2.3.14 one gets
u(x) = cex. Since u /∈ H for c 
= 0, n+ = 0.

n−: if u ∈ N(P ∗ − i1), then −iu′ = iu and u(x) = ce−x; so n− = 1.

Therefore n− 
= n+ and P has no self-adjoint extensions!
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Example 2.3.18. [Free particle energy operator on R] Let dom H = C∞0 (R) �
L2(R), (Hψ)(x) = −ψ′′(x), ψ ∈ dom H , which is clearly hermitian. Accept, for a
moment, that dom H∗ = H2(R) and H∗ψ = −ψ′′ for ψ ∈ dom H∗; then H∗ is
hermitian (check it!) so that, by Theorem 2.1.24c), H = H∗∗ = H∗ is the unique
self-adjoint extension of H . H is the free particle energy operator on R.

Now we will check the claims about the adjoint H∗; the arguments resemble
those in Example 2.3.11. If u ∈ H2(R) then a direct verification shows that u ∈
dom H∗ and H∗u = −u′′.

Now let u ∈ dom H∗, set v = H∗u, V (x) =
∫ x
0
v(t) dt, and W (x) =∫ x

0
V (t) dt =

∫ x
0

∫ t
0
v(s) ds dt. V and W are absolutely continuous in any bounded

interval [−m,m] ⊂ R. If ψ ∈ C∞0 (−m,m), then integrations by parts imply

〈u,Hψ〉= 〈u,−ψ′′〉 =
∫ m

−m
u(x)(−ψ′′(x)) dx = 〈v, ψ〉

=
∫ m

−m
v(x)ψ(x) dx = −

∫ m

−m
V (x)ψ′(x) dx

=
∫ m

−m
W (x)ψ′′(x) dx

so that ∫ m

−m
(u(x) +W (x))ψ′′(x) dx = 0

and the distributional derivative (u(x) +W (x))′′ = 0. Hence there exists a con-
stant c1 so that (u(x) +W (x))′ = c1 in (−m,m), so (u(x) +W (x) − c1x)′ = 0
and there is another constant c2 for which u(x) = −W (x)+ c1x+ c2. Since W and
W ′ = V are absolutely continuous functions and W ′′ = v ∈ L2(R), it follows that
u ∈ H2(R) and H∗u = v = −u′′.
Example 2.3.19. [Free particle energy operator on [0,∞)] Let

dom H = C∞0 (0,∞) � L2[0,∞),

(Hψ)(x) = −ψ′′(x), ψ ∈ dom H. Integrations by parts show that H is hermitian.
By following the lines of Example 2.3.18, it is found that dom H∗ = H2[0,∞)
and (H∗ψ)(x) = −ψ′′(x), ψ ∈ dom H∗. The next step is to calculate its deficiency
indices.

n−: if u ∈ N(H∗− i1), then −u′′ = iu and, since u is a continuously differen-
tiable function, there are exactly two linearly independent solutions, say e(1−i)x/

√
2

and e−(1−i)x/
√

2; since only the latter belongs to dom H∗ one gets n− = 1.
n+: similarly one gets n+ = 1.
Therefore, H has infinitely many self-adjoint extensions; they are candidates

for representing the free energy operator for a particle in the half-line [0,∞). See
Exercise 4.4.15. All self-adjoint extensions of H are described in Example 7.3.1.
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Proposition 2.3.20. Let V : (a, b) → R be a real function (potential energy) in
L2

loc(a, b) (−∞ ≤ a < b ≤ +∞). Then the minimal operator dom H = C∞0 (a, b) ⊂
H = L2(a, b) (see Example 2.3.1 and Remark 2.3.4),

(Hψ)(x) = −ψ′′(x) + V (x)ψ(x), ψ ∈ dom H,

is hermitian,

dom H∗ =
{
ψ ∈ L2(a, b) : ψ, ψ′ ∈ AC(a, b), (−ψ′′ + V ψ) ∈ L2(a, b)

}
and

(H∗ψ)(x) = −ψ′′(x) + V (x)ψ(x), ψ ∈ dom H∗.

Proof. Integrations by parts show that the above set is in dom H∗ and that H∗ψ
is as above for such vectors. Now let u ∈ dom H∗; then

〈Hφ, u〉 = 〈−φ′′ + V φ, u〉 = 〈φ,H∗u〉, ∀φ ∈ C∞0 (a, b).

Note that u,H∗u ∈ L2[a, b] ⊂ L1
loc(a, b) and since V ∈ L2

loc(a, b) it follows that
V u ∈ L1

loc(a, b) (check this!); so, for a fixed c ∈ (a, b), the function

W (x) :=
∫ x

c

ds

∫ s

c

dt (V (t)u(t) − (H∗u)(t))

and its derivative W ′(x) are absolutely continuous in the open interval (a, b), and
Lebesgue a.e. W ′′(x) = V (x)u(x) − (H∗u)(x). One can thus integrate by parts to
get ∫ b

a

dxφ′′(x)u(x) = 〈φ′′, u〉 = 〈V φ−Hφ, u〉

=
∫ b

a

dxφ(x) ((H∗u)(x) − V (x)u(x))

=
∫ b

a

dxφ(x)W ′′(x) =
∫ b

a

dxφ′′(x)W (x).

Hence, 0 =
∫ b
a
dxφ′′ (u −W ) for all φ ∈ C∞0 (a, b), so that the distributional second

derivative (u−W )′′ = 0 and, by Lemma 2.3.9, u(x) = W (x)+c1x+c2 for suitable
constants c1, c2. Since W and W ′ are absolutely continuous functions, then u, u′

are also absolutely continuous in (a, b), and since W ′′ = V u − H∗u, it follows
that −u′′ + V u = H∗u ∈ L2(a, b). The result is proved. Another proof appears in
Example 3.2.16. �
Remark 2.3.21. Note the general strategy: except if there are strong reasons for
the choice of specific boundary conditions, the domain of the original hermitian
operator does not “touch” the boundary of the region (e.g., for a particle in [0,∞)
one considers C∞0 (0,∞)), so that what happens at the boundary is left for the
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self-adjoint extensions, each one corresponding to a different physical situation. In
fact, more can be said: the self-adjoint extensions that are found are mathematical
indications of the physical possibilities (which are embodied in the choice of the
original domain of the hermitian operator).
Example 2.3.22. In the case of a sum of operators T1ξ + T2ξ it is possible that
neither T1ξ nor T2ξ is in the Hilbert space, but their sum is, due to suitable
cancellations! For instance, if dom T = C∞0 (0, 1) ⊂ L2[0, 1],

Tφ = −φ′′ − 1
4x2

φ, φ ∈ dom T,

it follows that ψ(x) =
√
x ∈ dom T ∗ (see Proposition 2.3.20); although neither ψ′′

nor ψ/(4x2) belong to the Hilbert space, one has T ∗ψ = −ψ′′− 1
4x2ψ = 0 ∈ L2[0, 1],

i.e., ψ is an eigenvector of T ∗. The self-adjoint extensions of this operator are
discussed in Example 7.4.1.
Exercise 2.3.23. Show that the operator P−ψ = −iψ′, with domain

dom P− = C∞0 (−∞, 0) ⊂ L2(−∞, 0],

is hermitian and has deficiency indices n− = 0 and n+ = 1. Given nonnegative
integers m−,m+, use direct sums of this operator P− and P of Example 2.3.17 to
construct hermitian operators with deficiency indices n− = m− and n+ = m+.

2.3.2 Multiplication Operator

Let μ be a positive Borel measure over a metric space X obeying μ(E) <∞ for all
bounded Borel sets E ⊂ X . Fix a Borel set E and let ϕ : E → C be a measurable
function; define the multiplication operator by ϕ as the linear operator (cf. the
bounded case in Example 1.1.2)

dom Mϕ :=
{
ψ ∈ L2

μ(E) : (ϕψ) ∈ L2
μ(E)

}
,

(Mϕψ)(x) := ϕ(x)ψ(x), ψ ∈ dom Mϕ.

A very important example of a multiplication operator is the potential energy
MV , with V : E → R, E ⊂ Rn, which will usually be denoted simply by V . The
total mechanical energy is H = H0 + V , with H0 = −Δ denoting the quantum
kinetic energy, after a suitable domain is provided. This H is commonly referred
to as the standard Schrödinger operator.

Proposition 2.3.24. dom Mϕ is dense in L2
μ(E) and Mϕ

∗ = Mϕ.

Proof. Let φ ∈ (dom Mϕ)⊥ and En := |ϕ|−1([0, n)), which is measurable. If
φn = χEnφ, then φn ∈ dom Mϕ and

0 = 〈φ, φn〉 =
∫
En

|φ|2 dμ,
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so that μ-a.e. φn = 0. By dominated convergence∫
E

|φ|2 dμ = lim
n→∞

∫
En

|φ|2 dμ = 0

and so φ = 0; it follows that dom Mϕ is dense in L2
μ(E).

Thus, the adjoint operator Mϕ
∗ is well defined and if f ∈ dom Mϕ

∗, there
is g ∈ L2

μ(E) with∫
E

ϕf ψ dμ =
∫
E

f ϕψ dμ = 〈f,Mϕψ〉 = 〈g, ψ〉, ∀ψ ∈ dom Mϕ.

The goal is to verify that Mϕf ∈ L2
μ(E). Define fn = χEnf ∈ dom Mϕ =

dom Mϕ, and so
∫
E(ϕfn −Mϕ

∗fn)ψ dμ = 0, and by taking ψ properly one gets∫
En

|ϕf −Mϕ
∗f |ψ dμ = 0, so that μ-a.e. in En one has

∫
E(ϕfn−Mϕ

∗fn)ψ dμ = 0
and (Mϕ

∗f)(x) = ϕ(x)f(x). Therefore

f ∈ dom Mϕ, Mϕf = g = Mϕ
∗f,

and Mϕ = Mϕ
∗. �

Corollary 2.3.25. Mϕ is self-adjoint iff ϕ is a real function.

Proof. It follows directly by Proposition 2.3.24. It is instructive to mention an
alternative argument. Note that Mϕ is hermitian iff ϕ is real and in this case
M(ϕ±i1)−1 is the bounded resolvent operator R±i(Mϕ), so that rng (Mϕ ± i1) =
L2
μ(E) and Mϕ is self-adjoint by Proposition 2.2.4. �

Definition 2.3.26. The (μ-) essential image of ϕ : E → C is the set of all y ∈ C so
that μ ({x ∈ E : |ϕ(x) − y| < ε}) > 0, ∀ε > 0.

Proposition 2.3.27.

a) The spectrum σ(Mϕ) is the essential image of ϕ.
b) λ is an eigenvalue of Mϕ iff μ({ϕ−1(λ)}) > 0.

Proof. a) If λ /∈ σ(Mϕ), then 0 /∈ σ(Mϕ−λ) and there is S ∈ B(L2
μ(E)) with

(SMϕ−λψ)(x) = ψ(x), ∀ψ ∈ dom Mϕ; for such vectors ‖ψ‖2 ≤ ‖S‖2 ‖Mϕ−λψ‖2.
Thus ∫

E

(
1

‖S‖2
− |ϕ(x) − λ|2

)
|ψ(x)|2 dμ(x) ≤ 0,

and so μ-a.e. |ϕ(x) − λ| ≥ 1
‖S‖ (e.g., consider ψ = χEn with En = ϕ−1(−n, n)),

which shows that λ does not belong to the essential image of ϕ.
On the other hand, if ∃ε0 > 0 with μ-a.e. |ϕ(x) − λ| ≥ ε0, then M 1

ϕ−λ
is

a bounded inverse of Mϕ−λ, since ‖M 1
ϕ−λ

ψ‖ ≤ 1
ε0
‖ψ‖, ∀ψ ∈ L2

μ(E); therefore
λ /∈ σ(Mϕ).

b) λ is an eigenvalue of Mϕ iff there exists an element 0 
= ψ ∈ L2
μ(E) with

(ϕ(x)−λ)ψ(x)=0 a.e. iff μ(ϕ−1(λ))>0 since one has μ({x∈E :ψ(x) 
=0})>0. �
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Exercise 2.3.28. Let E be a Borel subset of Rn. Show that the subspace of com-
pactly supported functions ψ ∈ L2

μ(E) is a core of Mϕ acting in L2
μ(E).

Exercise 2.3.29. Let E be an open subset of Rn and ϕ : E → C continuous. For
Mϕ acting in L2(Rn), show that σ(Mϕ) = rng ϕ (the bar indicates closure).
Exercise 2.3.30. Let � denote Lebesgue measure over R and set

μ = �+ δ4 + δ−4

over R (δy denotes the Dirac measure at y, that is, for each Λ ⊂ R, δy(Λ) = 1 if
y ∈ Λ and 0 otherwise) and

ϕ(x) =

{
x2 x ≥ 0
3 x < 0

.

Find the spectrum and eigenvalues of Mϕ acting in L2
μ(R).

Exercise 2.3.31. [Position operator on R] Let q : R → R, q(x) = x and Mq acting
in L2(R). Then Mq is self-adjoint and represents the quantum position operator.
Show that Mq has no eigenvalues and that its spectrum is R.

2.4 Weyl Sequences

It is possible to characterize the spectrum of some linear operators, including self-
adjoint and unitary, by means of Weyl sequences, which are especial sequences in
the operator domain that give a flavor of “generalized eigenvalue” for each spectral
point. Before defining them, it will be shown that any self-adjoint operator has
nonempty spectrum.

Lemma 2.4.1. Let T be densely defined in H.

a) If rng T is dense in H and T is one-to-one, then T ∗ is one-to-one and
(T ∗)−1 = (T−1)∗. In particular, if T is self-adjoint and T−1 exists, then
T−1 is also self-adjoint (recall rng T = H, since H = N(T ) ⊕ rng T and if
T−1 exists N(T ) = {0}).

b) If z ∈ ρ(T ), then Rz(T )∗ = Rz(T ∗).
c) If T is closed, then σ(T ∗)=σ(T ) (here the bar indicates complex conjugation).

Proof. a) From N(T ∗) = (rng T )⊥ one gets N(T ∗) = {0} and so T ∗ is injective.
Since G(T ∗) = (JG(T ))⊥ and G(T−1) = WG(T ), with W (ξ, η) = (η, ξ), which is
unitary and W−1 = W , one has

G((T−1)∗) = (JG(T−1)⊥ = (JWG(T ))⊥

=W (JG(T ))⊥ = WG(T ∗) = G((T ∗)−1),

so that (T ∗)−1 = (T−1)∗.



2.4. Weyl Sequences 65

b) If z ∈ ρ(T ), then T − z1 is one-to-one with rng (T − z1) = H. Thus, by
a), (T − z1)∗ is one-to-one and(

(T − z1)−1
)∗

= ((T − z1)∗)−1 = (T ∗ − z1)−1,

that is, Rz(T )∗ = Rz(T ∗).
c) Recall that here the bar indicates complex conjugation. By b) one has

ρ(T ) ⊂ ρ(T ∗); since T is closed, T = T ∗∗, and consequently

ρ(T ) ⊂ ρ(T ∗) ⊂ ρ(T ∗∗) = ρ(T ).

This finishes the proof. �
Lemma 2.4.2. Let T be a linear operator in H.

a) If for z0 ∈ C the operator T − z01 is one-to-one, then

σ((T − z0)−1) \ {0} =
{
(z − z0)−1 : z0 
= z ∈ σ(T )

}
.

b) If z0 ∈ ρ(T ) then the spectral radius

rσ(Rz0(T )) =
1

d(z0, σ(T ))
.

Proof. a) It is enough to consider z0 = 0. As motivation note that, for nonzero
x, z ∈ C, (x−1 − z−1)−1 = −zx(x− z)−1.

If z ∈ ρ(T ), z 
= 0, then ∀ξ ∈ H,

(T−1 − z−11)zTRz(T )ξ = −(T − z1)Rz(T )ξ = −ξ,

and for Tξ = η ∈ dom T−1 = rng T one has

zTRz(T )(T−1 − z−11)η = TRz(T )(z1− T )ξ = −Tξ = −η.

Hence R1/z(T−1) = −zTRz(T ) = −z2Rz(T ) − z1, which is an operator in B(H).
Therefore z−1 ∈ ρ(T−1). Similarly one gets the other inclusion; the statement on
the spectra follows.

b) The result follows at once from a) after recalling that: rσ(Rz0(T )) =
sup{|z| : z ∈ σ(Rz0(T ))} and d(z0, σ(T )) = inf{|z − z0| : z ∈ σ(T )}. �
Exercise 2.4.3. If 0 
= z is an eigenvalue of T , show that z−1 is an eigenvalue of
T−1.

Theorem 2.4.4. Every self-adjoint operator has nonempty spectrum (see also The-
orem 8.2.14).

Proof. Let T be self-adjoint. σ(T ) ⊂ R by Theorem 2.2.17. If 0 ∈ σ(T ), then there
is nothing to prove. If 0 /∈ σ(T ), then T is one-to-one, onto H and 0 
= T−1 =
R0(T ) ∈ B(H). So σ(T−1) 
= ∅ and there is 0 
= λ ∈ σ(T−1) (λ ∈ R, since T−1

is also self-adjoint). By Lemma 2.4.2, λ−1 ∈ σ(T ) and so the spectrum σ(T ) is
nonempty. �
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Corollary 2.4.5. If T is self-adjoint and z ∈ ρ(T ), then

‖Rz(T )‖ =
1

d(z, σ(T ))
.

Proof. Since Rz(T )∗ = Rz(T ), it follows from the first resolvent identity, Proposi-
tion 1.5.9, that Rz(T ) is a normal operator. Then, by Proposition 2.1.12,
‖Rz(T )‖ = rσ(Rz(T )). Apply Lemma 2.4.2b) to conclude the equality in the
corollary. In Chapter 9 this result will also be derived as a consequence of the
spectral theorem. �
Exercise 2.4.6. If T is not hermitian the inequality ‖Rλ(T )‖ ≤ 1/d(λ, σ(T )) may
fail already in the Hilbert space R2. Conclude this by considering the operator
represented by the matrix

Ta =
[
0 a
0 0

]
,

whose spectrum is σ(Ta) = {0}, ∀a ∈ R, and, for fixed 0 
= λ ∈ R, show that
‖Rλ(Ta)‖ → ∞ as a→ ∞.

Definition 2.4.7. Let T be a linear operator in H. A sequence (ξn) ⊂ dom T is a
Weyl sequence for T at z ∈ C if

‖ξn‖ = 1, ∀n, and lim
n→∞

(T − z1)ξn = 0.

A direct verification shows that if T is closed and the Weyl sequence (ξn) at
z converges to ξ, then ‖ξ‖ = 1 and Tξ = zξ, so that z is an eigenvalue of T . Thus,
if there is a Weyl sequence for T at z one interprets z as a generalized eigenvalue;
this is supported by Theorem 2.4.8 and Corollary 2.4.9.

Theorem 2.4.8. Let T be a linear operator in H so that both sets ρ(T ) and σ(T )
are nonempty. Then:

a) If there exists a Weyl sequence for T at z ∈ C, then z ∈ σ(T ).
b) If z belongs to the boundary of σ(T ) in C, then there exists a Weyl sequence

for T at z (since the spectrum is closed, z ∈ σ(T )).

Proof. a) Let (ξn) be a Weyl sequence for T at z. If z ∈ ρ(T ) then

1 = ‖ξn‖ = ‖Rz(T )(T − z1)ξn‖ ≤ ‖Rz(T )‖‖(T − z1)ξn‖;

since the right-hand side vanishes for n→ ∞, z /∈ ρ(T ).
b) Let (zn) ⊂ ρ(T ) with zn → z ∈ σ(T ). By Corollary 1.5.15, ‖Rzn(T )‖ → ∞;

so there exists a sequence (ηn) ⊂ H with ‖ηn‖ = 1, ∀n, and ‖Rzn(T )ηn‖ → ∞.
Define ζn = ηn/‖Rzn(T )ηn‖ and ξn = Rzn(T )ζn; so ζn → 0 as n→ ∞, ξn ∈ dom T
and ‖ξn‖ = 1, ∀n. Now, since for n→ ∞ one has

(T − z1)ξn = (T − zn1)ξn + (zn − z)ξn = ζn + (zn − z)ξn → 0,

it follows that (ξn) is a Weyl sequence for T at z. �
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Corollary 2.4.9. λ belongs to the spectrum of a self-adjoint or unitary operator iff
there exists a Weyl sequence for this operator at λ.

Proof. If the operator is self-adjoint its spectrum is real (Theorem 2.2.17); if it is
unitary its spectrum belongs to the unit circumference in C (Proposition 2.2.21).
In both cases all points in the spectrum are also boundary points. Apply Theo-
rem 2.4.8. �
Example 2.4.10. Let P , dom P = H1(R), be the momentum operator on R dis-
cussed in Example 2.3.11. This operator has no eigenvalues; indeed, if λ ∈ R (recall
that its spectrum is real) satisfies

(Pψ)(x) = −idψ
dx

(x) = λψ(x), ψ ∈ H1(R),

then ψ(x) = ceiλx, which belongs to L2(R) iff c = 0; however, by “cutting off”
such ψ, it will be possible to determine the spectrum of P . It should be noted that
the “cutting off” that follows is a usual procedure.

Now fix λ ∈ R and let φ(x) = (2/π)1/4e−x
2
; then 1 = ‖φ‖2 =

∫
R
|φ(x)|2 dx.

For each n set
ξn(x) =

1√
n
φ
(x
n

)
eiλx,

which belongs to dom P and ‖ξn‖ = 1. Since

‖Pξn − λξn‖2 =
1
n2

∫
R

|φ′(t)|2 dt

which vanishes as n→ ∞. Then (ξn) is a Weyl sequence for P at λ, and λ ∈ σ(P ).
Therefore, σ(P ) = R and it has no eigenvalues.
Example 2.4.11. Let q : R → R, q(x) = x be the position operator on R (see
Exercise 2.3.31; here an alternative solution to that exercise is discussed). If λ ∈ R,
for each n set

ξn(x) =
√
n

π1/4
e−n

2(x−λ)2 ,

which belongs to dom Mq, ‖ξn‖2 = 1 and

‖qξn − λξn‖2 =
1√
π n2

∫
R

x2 e−x
2
dx,

vanishes as n→ ∞, then (ξn) is a Weyl sequence for q at λ. Therefore, σ(Mq) = R

and it is easy to check that it has no eigenvalues.
Example 2.4.12. If T is a bounded self-adjoint operator so that T 2k = 1, for some
k ∈ N, then σ(T ) ⊂ {z ∈ C : z2k = 1}. In fact, if k = 1 and (ξn) is a Weyl sequence
for T at z, then

(1 − z21)ξn = (T 2 − z21)ξn = (T + z1)(T − z1)ξn
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that vanishes as n → ∞ iff z2 = 1, since ‖ξn‖ = 1. For k = 2 write (1 − z41) =
(T 2+z21)(T 2−z21) = (T 2+z21)(T +z1)(T−z1) and invoke the same argument.
Use induction for the general case.

Recall that the Fourier transform F : L2(Rn) ←↩ (see Section 3.1) is a unitary
operator and F4 = 1, so σ(F) ⊂ {i,−i, 1,−1} (in fact the spectrum of F is exactly
this set, since it is possible to exhibit eigenvectors of F for each complex quartic
root of 1; try the eigenvectors of the harmonic oscillator).
Exercise 2.4.13. Show that if T is self-adjoint, then λ is an eigenvalue of T iff the
closure rng (T − λ1) 
= H.
Exercise 2.4.14. Let T be self-adjoint. Show that the following assertions are equiv-
alent:

a) z ∈ ρ(T ).
b) rng (T − z1) = H.
c) ∃c > 0 so that ‖(T − z1)ξ‖ ≥ c‖ξ‖, ∀ξ ∈ dom T .

Exercise 2.4.15. Let T be self-adjoint. Use Exercise 2.4.14 to give an alternative
proof that λ ∈ σ(T ) iff there is a Weyl sequence for T at λ.

Definition 2.4.16. A hermitian operator T is lower bounded, also called bounded
from below, if there is β ∈ R so that 〈ξ, T ξ〉 ≥ β‖ξ‖2, ∀ξ ∈ dom T ; this will be
denoted by T ≥ β1 and such β is called a lower limit or lower bound of T . In case
β = 0 the operator T is also called a positive operator.

Exercise 2.4.17. Let T be self-adjoint with T ≥ β1. Use Weyl sequences, or Exer-
cise 2.4.14, to show that σ(T ) ⊂ [β,∞).
Exercise 2.4.18. If T is self-adjoint or unitary, show that

σ(T ) ⊂ {〈ξ, T ξ〉 : ξ ∈ dom T, ‖ξ‖ = 1}.

2.5 Cayley Transform II

The main goal of this section is to prove Theorem 2.2.11. To reach this, a more
detailed study of the Cayley transform will be performed.

Lemma 2.5.1. Let T be hermitian and the isometry U(T ) its Cayley transform
(Definition 2.2.1).

a) U(T ) is unitary (with dom U(T ) = rng U(T ) = H) iff T is self-adjoint.
b) If rng (1 − U(T )) is dense in H, then (1 − U(T )) is one-to-one (so 1 is not

an eigenvalue of U(T )). Note that this holds for any linear isometry.
c) U(T ) is closed iff T is closed.
d) S is a hermitian extension of T , i.e., T ⊂ S iff U(T ) ⊂ U(S).

Proof. Write U = U(T ).
a) Straight from Proposition 2.2.4.
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b) Suppose ξ − Uξ = 0. Then, for any η ∈ dom (1− U)

0 = 〈Uξ − ξ, η〉 = 〈Uξ, η〉 − 〈ξ, η〉
= 〈Uξ, η〉 − 〈Uξ, Uη〉 = 〈Uξ, (1 − U)η〉,

so Uξ = 0 in case rng (1−U) is dense in H; since ‖Uξ‖ = ‖ξ‖ it follows that ξ = 0
and 1− U is one-to-one.

c) Since U is an isometry, then it is a closed operator iff its domain and range
(i.e., rng (T ±i1)) are closed subspaces iff G(T ) is closed (recall that ‖(T ±i1)ξ‖ =
‖ξ‖T ).

d) Denote by Ξ : H × H ←↩ the one-to-one map Ξ(η, ξ) = (ξ + iη, ξ − iη).
Thus, for any hermitian operator S one has

G(U(S)) = {((S + i1)η, (S − i1)η) : η ∈ dom S}
= {(ξ + iη, ξ − iη) : (η, ξ) ∈ G(S)} = ΞG(S).

Hence, for hermitian operators T, S one has G(T ) ⊂ G(S) iff G(U(T )) ⊂ G(U(S)).
�

Proposition 2.5.2. If T is hermitian in H, then rng (1 − U(T )) = dom T , (1 −
U(T )) is injective and

T = i(1 + U(T ))(1− U(T ))−1.

Hence rng T = rng (1 + U(T )).

Proof. Write U = U(T ). One has

rng (1 − U) = {ξ − Uξ : ξ ∈ dom U = rng (T + i1)}
= {(T + i1)η − (T − i1)η = 2iη : η ∈ dom T } = dom T.

Since dom T is dense, Lemma 2.5.1b) implies that (1 − U) is one-to-one.
Now for ξ ∈ dom T , if η = (T + i1)ξ, then Uη = (T − i1)ξ,

(1 − U)η = 2iξ and (1 + U)η = 2Tξ.

Hence
2Tξ = (1 + U)η = 2i(1 + U)(1 − U)−1ξ, ∀ξ ∈ dom T,

and Tξ = i(1 + U)(1− U)−1ξ. This concludes the verification. �
Corollary 2.5.3. If S and T are hermitian operators in H, then S = T iff U(S) =
U(T ).

Exercise 2.5.4. Prove Corollary 2.5.3.

Proposition 2.5.5. Let Y be a linear isometry between dom Y ⊂ H and its range
in H. If rng (1 − Y ) is dense in H, then Y is the Cayley transform Y = U(T ) of
a hermitian operator T : rng (1 − Y ) → rng (1 + Y ).
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Proof. Since rng (1−Y ) is dense in H, by Lemma 2.5.1 (1−Y ) is one-to-one and
the operator

T := i(1 + Y )(1 − Y )−1 : rng (1− Y ) → rng (1 + Y )

is well posed and with dense domain. It will be checked that T is hermitian and
Y is its Cayley transform.

For ξ, η ∈ dom T , there exist η1, ξ1 ∈ dom Y obeying η = (1 − Y )η1 and
ξ = (1 − Y )ξ1. Then,

〈Tη, ξ〉= 〈i(1 + Y )η1, (1− Y )ξ1〉
=−i (〈η1, ξ1〉 + 〈Y η1, ξ1〉 − 〈η1, Y ξ1〉 − 〈Y η1, Y ξ1〉)
= i (〈η1, Y ξ1〉 − 〈Y η1, ξ1〉)
= i (〈η1, Y ξ1〉 − 〈Y η1, ξ1〉 + 〈η1, ξ1〉 − 〈Y η1, Y ξ1〉)
= 〈(1 − Y )η1, i(1 + Y )ξ1〉 = 〈η, T ξ〉,

and T is hermitian.
By definition, for ξ = (1 − Y )ξ1, ξ ∈ dom T , one has Tξ = i(1 + Y )ξ1. A

direct computation leads to

Y (T + i1)ξ = Y (i(ξ1 + Y ξ1) + iξ1 − iY ξ1)) = 2iY ξ1
= iY ξ1 + iY ξ1 = i(Y ξ1 + ξ1) + i(Y ξ1 − ξ1)
= Tξ − iξ,

so that Y ((T + i1)ξ) = (T − i1)ξ, ∀ξ ∈ dom T, and Y = U(T ). �
Corollary 2.5.6. Let T be a hermitian operator.

a) There is a one-to-one correspondence between hermitian extensions of T and
isometric extensions of its Cayley transform U(T ).

b) There is a one-to-one correspondence between self-adjoint extensions of T
and unitary extensions of its Cayley transform U(T ).

Proof. a) Let S be a hermitian operator. By Lemma 2.5.1 one has T ⊂ S iff
U(T ) ⊂ U(S). If Y is an isometry with U(T ) ⊂ Y , then rng Y is dense in the
Hilbert space and, by Proposition 2.5.5, Y = U(R) for some hermitian operator
R. By the proof of Lemma 2.5.1d) one has T ⊂ R.

b) It follows directly by a) and Proposition 2.2.4. �

The time is ripe for concluding Theorem 2.2.11.

Proof. [Theorem 2.2.11] a) The inner product in question is

〈ξ, η〉T∗ = 〈ξ, η〉 + 〈T ∗ξ, T ∗η〉, ξ, η ∈ dom T ∗;

see Exercise 1.2.28. Clearly one has {dom T,K−,K−} ⊂ dom T ∗.
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• If ξ+ ∈ K+ = K+(T ) and ξ− ∈ K− = K−(T ), then

〈ξ+, ξ−〉T∗ = 〈ξ+, ξ−〉 + 〈T ∗ξ+, T ∗ξ−〉
= 〈ξ+, ξ−〉 + 〈−iξ+, iξ−〉 = 0,

so, with respect to this inner product, K+ ⊥T∗ K−.
• If ξ ∈ dom T and ξ+ ∈ K+ (similarly for ξ− ∈ K−), then

〈ξ, ξ+〉T∗ = 〈ξ, ξ+〉 + 〈T ∗ξ, T ∗ξ+〉 = 〈ξ, ξ+〉 + 〈Tξ,−iξ+〉
= 〈ξ, ξ+〉 + 〈ξ,−iT ∗ξ+〉 = 〈ξ, ξ+〉 + 〈ξ,−ξ+〉 = 0.

Hence, K± ⊥T∗ dom T .
• Let ξ ∈ (dom T )⊥T∗ . Then, for all η ∈ dom T one has 0 = 〈ξ, η〉T∗ =
〈ξ, η〉 + 〈T ∗ξ, T ∗η〉, so that 〈T ∗ξ, T ∗η〉 = 〈−ξ, η〉. Hence, T ∗ξ ∈ dom T ∗ and
T ∗(T ∗ξ) = −ξ, which is equivalent to

(T ∗ + i1)(T ∗ − i1)ξ = 0 = (T ∗ − i1)(T ∗ + i1)ξ.

Therefore, (T ∗ − i1)ξ ∈ K+ and (T ∗ + i1)ξ ∈ K−. Since

ξ =
1
2i

[(T ∗ + i1)ξ − (T ∗ − i1)ξ] ,

one has (dom T )⊥T∗ ⊂ K+ ⊕T∗ K− and, due to T ∗ being closed,

(dom T )⊥T∗⊥T∗ = dom T = dom T ⊂ dom T ∗

(the closure dom T with respect to the graph norm of T ∗) and item a) follows.

b) and c) The Cayley transform U(T ) is an isometry and it has unitary
extensions from H onto H iff dim rng (T + i1)⊥ = dim rng (T − i1)⊥, i.e., iff n− =
n+. There is exactly one extension iff n− = n+ = 0, i.e., the case U(T) is densely
defined and with dense range, so a single unitary extension exists; otherwise there
are infinitely many of them. The other assertion follows directly by Corollary 2.5.6.

�
Exercise 2.5.7. Let T be a hermitian operator. Show that the closure of dom T
with respect to the graph norm of T ∗ is dom T .

Proposition 2.5.8. Let T be hermitian and K± its deficiency subspaces. If U :
dom U ⊂ K− → rng U ⊂ K+ is a linear isometry, then the corresponding hermi-
tian extension TU of T , associated with Y = U(T ) ⊕ U (see Proposition 2.5.5), is
given by

dom TU = {ξ + ξ− − Uξ− : ξ ∈ dom T, ξ− ∈ dom U} ,
TU(ξ + ξ− − Uξ−) = T ∗(ξ + ξ− − Uξ−) = Tξ + iξ− + iUξ−.
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Proof. The map

Y : rng (T + i1) ⊕ dom U → rng (T − i1) ⊕ rng U ,

Y := U(T ) ⊕ U ,
is the Cayley transform of a hermitian operator TU , that is, Y = U(TU). Since
T ⊂ TU , by Theorem 2.1.24a), one has TU ⊂ T ∗. Thus

dom TU = rng (1− Y ) = rng (1− (U(T ) ⊕T∗ U))
= {(1− (U(T ) ⊕T∗ U))((Tξ + iξ) ⊕T∗ ξ−) : ξ ∈ dom T, ξ− ∈ dom U}
= {(Tξ + iξ) ⊕T∗ ξ− − ((Tξ − iξ) ⊕T∗ Uξ−)
: ξ ∈ dom T, ξ− ∈ dom U}
= {2iξ + ξ− − Uξ− : ξ ∈ dom T, ξ− ∈ dom U}

which is the set in the statement of the proposition (and dense in H). Thus, for
vectors in this domain, since TU ⊂ T ∗,

TU(ξ + ξ− − Uξ−) = T ∗(ξ + ξ− − Uξ−)
= Tξ + T ∗ξ− − T ∗Uξ−
= Tξ + iξ− + iUξ−,

as claimed. �

If T is hermitian and U : K− → K+ is unitary onto K+, then the subsequent
self-adjoint extension TU has domain{

ξ + ξ− − Uξ− : ξ ∈ dom T , ξ− ∈ K−
}
.

Certainly, in applications it may be interesting to have the closure T at hand.
Exercise 2.5.9. By following the notation in Proposition 2.5.8, show that if
dimdom U <∞, then

n±(TU ) = n±(T ) − dimdom U .

Exercise 2.5.10. Let T be self-adjoint in H. Use that in the graph norm of T the
operators T ± i1 are unitary, to show that a subspace D ⊂ dom T is a core of T
iff D is dense in dom T with respect to the graph norm of T .
Exercise 2.5.11. If T is hermitian and closed with n+ 
= 0 and n− = 0 (or vice
versa), show that T has no proper hermitian extensions.
Exercise 2.5.12. Let T be a hermitian operator. Show that λ is an eigenvalue of
T iff (λ − i)/(λ+ i) is an eigenvalue of U(T ).
Exercise 2.5.13. Let T be hermitian and T ≥ β1. Show that if the vector space
rng (T − λ1) is dense in H for some λ < β, then T is essentially self-adjoint.
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Exercise 2.5.14. Show that the mapping

x �→ z =
x− i

x+ i
,

is a one-to-one relation between R and {1 
= z ∈ C : |z| = 1} whose inverse is

z �→ x = −i z + 1
z − 1

.

Take this as another motivation for the definition of Cayley transform, giving rise
to a one-to-one relation between self-adjoint and unitary operators for which 1 is
not an eigenvalue.

2.6 Examples

Example 2.6.1. Let Λ ⊂ Rn be an open set and ϕ : Λ → R a Borel function. Con-
sider the multiplication operator Mϕ (see Subsection 2.3.2); its Cayley transform
is U(Mϕ) = Mτ , with function τ : Λ → {z ∈ C : |z| = 1} and action

τ(x) =
ϕ(x) − i

ϕ(x) + i
.

Since |τ(x)| = 1, ∀x, Mτ is a unitary operator and thus Mϕ is self-adjoint. Check
the details.

Example 2.6.2. Let H = l2(N) and Sr : H ←↩ the right shift

Sr(ξ1, ξ2, ξ3, . . . ) = (0, ξ1, ξ2, ξ3, . . . ).

Since Sr is an isometry and rng (1 − Sr) = H, by Proposition 2.5.5 there is
a hermitian operator Tr so that Sr = U(Tr). In view of dom U(Tr) = H and
dim(rng U(Tr))⊥ = 1, it follows that n+(Tr) = 1 and n−(Tr) = 0. Therefore, Tr
has no self-adjoint extensions.

Example 2.6.3. This is a standard example for which the role of boundary condi-
tions is apparent. Let H = H1[0, 1], dom P1 = H1[0, 1], dom P2 = {ψ ∈ H1[0, 1] :
ψ(0) = ψ(1)}, dom P3 = {ψ ∈ H1[0, 1] : ψ(0) = ψ(1) = 0}, and

(Pjψ)(x) = −idψ
dx

(x), ψ ∈ dom Pj , j = 1, 2, 3.

Exercise 2.6.4. Show that P1, P2 and P3 are closed.
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If g ∈ dom P ∗j ⊂ H1[0, 1], then for all ψ ∈ dom Pj , on integrating by parts
one gets the relation

〈g, Pjψ〉=
∫ 1

0

g(x) (−iψ′(x)) dx

=−i
(
g(1)ψ(1) − g(0)ψ(0)

)
+
∫ 1

0

−ig′(x)ψ(x) dx

=−i
(
g(1)ψ(1) − g(0)ψ(0)

)
+ 〈−ig′, ψ〉.

For self-adjointness the boundary terms must vanish, i.e., the following key relation
must hold true

g(1)ψ(1) = g(0)ψ(0).

For j = 1 such a relation must hold for all ψ ∈ H1[0, 1], so g(0) = g(1) = 0, i.e.,
P ∗1 = P3. Conversely, for j = 3 this relation must hold for all ψ(0) = ψ(1) = 0,
so no boundary condition is imposed on g and P ∗3 = P1. For j = 2 it is found
that g must satisfy the same boundary condition as ψ, that is, g(0) = g(1), so
that P2 is self-adjoint; it has “well-balanced” boundary conditions. Note that P2

is a self-adjoint extension of P3 and that P1 is not hermitian, since P1 is a proper
extension of its adjoint P3.
Example 2.6.5. This is Example 2.3.14 continued, i.e., momentum on an interval.
It has become a standard and remarkable illustration of self-adjoint extensions
in quantum mechanics. It is, however, convenient to work with its closure (Exer-
cise 2.3.15) dom P = {ψ ∈ H2[0, 1] : ψ(0) = ψ(1) = 0} and

(Pψ)(x) = −idψ
dx

(x), ψ ∈ dom P.

Note that the same notation was kept for the operator closure. Its adjoint is
dom P ∗ = H1[0, 1], P ∗g = −ig′. The point here is to classify all self-adjoint
extensions of P .

First natural conditions for self-adjointness can be reached by inspection of
the relation g(1)ψ(1) = g(0)ψ(0), as in Example 2.6.3. For a self-adjoint extension
the same conditions must be imposed on both, ψ and g; rewrite such key relation
so that it becomes evident that there is a complex number α obeying

g(1)
g(0)

=
ψ(0)
ψ(1)

= α,

that is ψ(0) = αψ(1) and g(1) = αg(0). The latter relation is g(0) = g(1)/α, and
the same condition on ψ and g is obtained if α = 1/α, or |α|2 = 1, that is, if
α = eiθ for some 0 ≤ θ < 2π. As expected, one readily checks that the operators

dom P θ =
{
ψ ∈ H1[0, 1] : ψ(0) = eiθψ(1)

}
, P θψ = −iψ′,
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are actually self-adjoint. Note that the self-adjoint operator P2 in Example 2.6.3
corresponds to θ = 0.

Arguments using the extensions of the Cayley transform are as follows. The
vector spaces K+(P ) and K−(P ) are spanned by the normalized vectors

u+(x) =

√
2

e2 − 1
ex, u−(x) =

√
2

1 − e−2
e−x,

respectively, so that n+ = n− = 1 (see Example 2.3.14). All unitary maps U of
K− onto K+ have the form u− �→ eiωu+, 0 ≤ ω < 2π, i.e., Uu− = eiωu+, so that
for each ω a self-adjoint extension Pω is associated, and by Proposition 2.5.8,

dom Pω = {ψ + c(u− − eiωu+) : ψ ∈ dom P, c ∈ C},

and for g = ψ + c(u− − eiωu+) ∈ dom Pω , one gets the expected expression

(Pωg) =−iψ′ + cP ∗u− − ceiωP ∗u+

=−iψ′ + icu− + iceiωu+

=−i(ψ + c(u− − eiωu+))′ = −ig′.

Now note that there is a unique 0 ≤ θ < 2π so that for all g = ψ+c(u−−eiωu+) ∈
dom Pω,

κ :=
g(1)
g(0)

=
1 − eiωe

e− eiω
= eiθ,

because |κ| = 1. Therefore the relation between Pω and P θ has been uncovered.
Such operators P θ (alternatively Pω) constitute all self-adjoint extensions of P .
This finishes the example.
Exercise 2.6.6. Show that all points of the complex plane are eigenvalues of the
adjoint operator P ∗ in Example 2.6.5; conclude then that it is not hermitian and
so P is not essentially self-adjoint.
Example 2.6.7. Consider again the free particle energy operator from Exam-
ple 2.3.18: H = −d2/dx2 on R, dom H = H2(R). Introduce the function φ(x) =
(2/π)1/4e−x

2
. Given λ > 0, for each n set

ξn(x) =
1√
n
φ
(x
n

)
eix
√
λ,

so that ‖ξn‖ = 1, ξn ∈ dom H , and, after some manipulations,

‖ − ξ′′ − λξn‖ ≤ 2
√
λ√
n
‖φ′‖ +

1
n3/2

‖φ′′‖,

which vanishes as n → ∞; thus (ξn) is a Weyl sequence and λ ∈ σ(H) by Corol-
lary 2.4.9. Since the spectrum is a closed set, [0,∞) ⊂ σ(H). To deal with λ < 0,
note first that 〈Hψ,ψ〉 = 〈ψ′, ψ′〉 ≥ 0, ∀ψ ∈ dom H ; so,

0 ≤
〈
(H − λ1 + λ1)ψ, ψ

〉
=⇒ −λ‖ψ‖2 ≤

〈
(H − λ1)ψ, ψ

〉
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and, by Exercise 2.4.14, it follows that λ ∈ ρ(H) if λ < 0. Therefore, σ(H) =
[0,∞).
Example 2.6.8. [Free particle energy operator on [0, 1]] Let

dom H = C∞0 (0, 1) � L2[0, 1],

(Hψ)(x) = −ψ′′(x), ψ ∈ dom H. Integrations by parts show that H is hermitian.
By following the lines of Example 2.3.18, it is found that dom H∗ = H2[0, 1] and
(H∗ψ)(x) = −ψ′′(x), ψ ∈ dom H∗. For its deficiency indices one has:

n−: if u ∈ N(H∗ − i1), then −u′′ = iu and, since u is a continuously
differentiable function, there are just two linearly independent solutions, e.g.,
u1
−(x) = e(1−i)x/

√
2 and u2

−(x) = e−(1−i)x/
√

2; since both belong to H one gets
n− = 2.

n+: similarly one gets u1
+(x) = e(i+1)x/

√
2, u2

+(x) = e−(i+1)x/
√

2, and since
both belong to H one gets n+ = 2.

Therefore, H has infinitely many self-adjoint extensions; they are candidates
for representing the free energy operator for a particle on the half-line [0, 1]. All
such extensions are described in Example 7.3.4; for particular instances see Ex-
amples 2.3.5, 2.3.6 and 2.3.7.
Example 2.6.9. Let v : R ←↩ be a continuous function, dom T = C1

0 (R) � L2(R)
and

(Tψ)(x) = −idψ
dx

(x) + v(x)ψ(x), ψ ∈ dom T.

An integration by parts shows that T is hermitian. Arguing as in previous examples
leads to dom T ∗ = {ψ ∈ H1(R) : (−iψ′ + vψ) ∈ L2(R)} and

(T ∗ψ)(x) = −idψ
dx

(x) + v(x)ψ(x), ψ ∈ dom T ∗.

Now one can either compute the operator deficiency indices n− = n+ = 0 or note
that T ∗ is hermitian, in order to conclude that T is essentially self-adjoint and
T = T ∗ is its unique self-adjoint extension.

Next let V (x) =
∫ x
0
v(t) dt and U = e−iV (x), i.e., U = Me−iV (x) , a unitary

operator, for which U∗ = eiV (x). If P = −id/dx, dom P = H1(R), is the momen-
tum operator on R (Example 2.3.11) one readily checks that U∗dom T = dom P
and

U∗TUψ = Pψ, ψ ∈ dom T .

Therefore, by Exercise 2.1.26, one finds σ(T ) = σ(P ) = R. The latter equality
follows from Example 2.4.10.
Exercise 2.6.10. Check that T in Example 2.6.9 is essentially self-adjoint.
Example 2.6.11. Let H = L2(R3). The initial quantum energy (Schrödinger) op-
erator for the hydrogen atom is

H = −Δ − γ

‖x‖ , dom H = C∞0 (R3) � H.
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By Proposition 2.2.16H has self-adjoint extensions. In the 1950’s Kato proved that
this prominent operator is essentially self-adjoint; its unique self-adjoint extension
has the same action with domain H2(R3). Details are described in Example 6.2.3.
Exercise 2.6.12 (Free Dirac energy operator). Let I be an interval in R, dom D0 :=
C∞0 (I; C2) � L2(I; C2) and(

D0

(
ψ1

ψ2

))
(x) =

(
mc2 −ic ddx
−ic ddx −mc2

)(
ψ1

ψ2

)
(x),

with m representing the mass of the particle and c the speed of light. The ad-
joint operator D∗0 has the same action as D0 but with dom D∗0 = H1(I; C2)
(see [BulT90]). Show that D0 is hermitian and find K±(D0) to conclude that
n+ = n− = 0 if I = R, n+ = n− = 1 if I = [0,∞) and n+ = n− = 2 if I is a
bounded closed interval.
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Fourier Transform and
Free Hamiltonian

The standard free energy and momentum operators are also properly defined in Rn

through Fourier transform. It is also an opportunity to briefly discuss some aspects
of Sobolev spaces and related differential operators. The definitions of distributions
C∞0 (Ω)′ and tempered distributions S′(Ω), as well as their derivatives, are also
recalled.

3.1 Fourier Transform

Fourier transform is a very useful tool in dealing with differential operators in
Lp(Rn), with especial interest in p = 2. So some of its main properties will be
reviewed and summarized in the first sections, including its relation to Sobolev
spaces. Few simple proofs will be presented. Applications to the quantum free
particle appear in other sections. Details can be found in the references [Ad75]
and [ReeS75]; a nice introduction to distributions and Fourier transform is [Str94].
Readers familiar with the subject are referred to Sections 3.3 and 3.4, which discuss
some (quantum) physical quantities.

Recall that the Fourier transform F = ˆ : L2(Rn) → L2(Rn) is a unitary
operator onto L2(Rn). This is known as the Plancherel Theorem, and it implies
the Parseval identity

‖Fψ‖2 = ‖ψ‖2, ∀ψ ∈ L2(Rn).

Note the two notations for the Fourier transform Fψ = ψ̂. For functions ψ ∈
L1(Rn) there is an explicit expression for this transform, that is,

(Fψ)(p) =
1

(2π)
n
2

∫
Rn

e−i xp ψ(x) dx,
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with p = (p1, . . . , pn), x = (x1, . . . , xn) ∈ Rn and px =
∑n
j=1 pjxj , i.e., the usual

inner product in Rn. Denote the norm |x| = (
∑n

j=1 x
2
j )

1/2 and x2 =
∑n
j=1 x

2
j .

Similarly for the variable p.
Besides the use of variables x and p, sometimes it is convenient to distinguish

L2(Rn) from FL2(Rn) by denoting the latter by L2(R̂n); functions ψ and opera-
tors T acting in L2(Rn) are said to be in the position representation, while the
corresponding ψ̂ and T̂ := FTF−1 acting in L2(R̂n) are said to be in the momen-
tum representation; see Section 3.4 for illustrations that justify the nomenclature.

The inverse Fourier transform F−1L2(R̂n) = L2(Rn) has the expression, for
φ ∈ L1(R̂n),

(F−1φ)(x) = φ̌(x) =
1

(2π)
n
2

∫
Rn

ei xp φ(p) dp,

again with two different notations. These expressions hold, especially, for functions
in the Schwartz space

S = S(Rn) = {ψ ∈ C∞(Rn) : lim
|x|→∞

∣∣∣xmψ(k)(x)
∣∣∣ = 0, ∀k,m},

where m = (m1, . . . ,mn), k = (k1, . . . , kn) are multiindices,

xm = xm1
1 · · ·xmn

n , ψ(k)(x) =
∂k1 · · · ∂knψ

∂xk11 · · ·∂xkn
n

(x).

Also, |m| = m1 + · · ·+mn, |k| = k1 + · · ·+ kn (which should not be confused with
the norm |x|, |p| above) and ∂kj

j ψ may also indicate

∂
kj

j ψ =
∂kjψ

∂x
kj

j

.

It is possible to show that FS = S (one-to-one). Since S is a dense subspace
of all Lp(Rn), 1 ≤ p <∞, any bounded linear operator defined on this space can be
uniquely extended to Lp(Rn). This holds in particular for the Fourier transform,
and it is the usual road for its definition on such spaces. If p = 2 one has the
Plancherel Theorem, and so many authors consider that this is the natural space
of Fourier transforms. Instead of S it is possible to work with C∞0 (Rn) because
this space is also dense in L2(Rn) and also FC∞0 (Rn) is dense in L2(R̂n).

Recall the famous integral
∫

R
exp (−t2) dt =

√
π. A sample of Fourier trans-

form evaluations, which will be used repeated times (e.g., in the proof of Theo-
rem 5.5.1), is

F(e−wx−zx
2/2)(p) =

1√
z
ew

2/(2z) eiwp/z−p
2/(2z),
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where w ∈ C and the branch of the complex number z with Re z > 0 has been
chosen so that Re

√
z > 0. It is worth remarking that the linear subspace spanned

by all such functions

{e−wx−zx
2/2 : w, z ∈ C,Re z > 0}

is dense in L2, and so it is a way to extend (and define) the Fourier transform to
every element of L2. Note that e−x

2/2 is an eigenvector of F with eigenvalue 1 (pick
w = 0 and z = 1). More generally, one has that (F2ψ)(x) = ψ(−x), ∀ψ ∈ L2(Rn),
so that every even function is an eigenvector corresponding to this eigenvalue.

For computations it is also useful to invoke the limit in L2(Rn)

(Fψ)(p) = lim
R→∞

1
(2π)

n
2

∫
|x|≤R

e−i xp ψ(x) dx, ∀ψ ∈ L2(Rn),

which is usually denoted in the literature by

(Fψ)(p) = l.i.m.
1

(2π)
n
2

∫
Rn

e−i xp ψ(x) dx.

l.i.m. means “limit in the mean.”
Exercise 3.1.1. Let ψ ∈ L2(Rn) and BR = {x ∈ Rn : |x| ≤ R} a closed ball. Show
that the function ψR = ψχBR is integrable and so the above explicit expression
for the Fourier transform ψ̂R is valid. This justifies the use of l.i.m. above.
Exercise 3.1.2. Find eigenfunctions of the Fourier transform corresponding to the
eigenvalues −1 and ±i.

Many utilities of the Fourier transform come from its property of exchanging
multiplication and differentiation, as in the next propositions, whose simple proofs
are quite instructive. The roots of those properties are the relations

∂

∂xj
e−i xp = −ipj e−i xp,

∂

∂pj
e−i xp = −ixj e−i xp.

Proposition 3.1.3. Let ψ ∈ S. Then,
a) (Fψ(k))(p) = (−i)|k|pkψ̂(p).
b) (F−1ψ)(k)(x) = i|k|F−1(pkψ̂(p))(x).

Proposition 3.1.4. Let ψ ∈ L2(Rn). Then, for fixed y ∈ Rn,

a) (Fψ(x − y))(p) = e−iypψ̂(p).
b) F(eixyψ(x))(p) = ψ̂(p− y).

Similar properties hold for the inverse Fourier transform.

Proposition 3.1.5. Let ψ, φ ∈ S. Then, for the convolution

(ψ ∗ φ)(x) :=
∫

Rn

ψ(x− y)φ(y) dy =
∫

Rn

ψ(y)φ(x − y) dy

one has F(ψ ∗ φ)(p) = (2π)n/2 ψ̂(p) φ̂(p).
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Exercise 3.1.6. Since S ⊂ L1(Rn), by using the above explicit integral represen-
tation of the Fourier transform, provide proofs of Propositions 3.1.3, 3.1.4 and
3.1.5.
Exercise 3.1.7. Compute the Fourier transform of the following functions in L1(R):

a) ψ(x) = χ[a,b](x).
b) For a > 0, ψ(x) = e−ax if x ≥ 0 and ψ(x) = 0 if x < 0.

Exercise 3.1.8. Parseval identity can be used to compute certain integrals. For a >
0, consider the characteristic function χ[−a,a](x); compute its Fourier transform
χ̂[−a,a] and use Parseval to show that∫

R

(
sin ax
x

)2

dx = πa.

It is possible to extend the convolution to spaces Lp(Rn) by using Young’s
inequality, which is now recalled.

Proposition 3.1.9 (Young’s Inequality). Let 1 ≤ p, q, r ≤ ∞ with 1/p + 1/q =
1 + 1/r. If ψ ∈ Lp(Rn) and φ ∈ Lq(Rn), then the convolution ψ ∗ φ ∈ Lr(Rn) and

‖ψ ∗ φ‖r ≤ ‖ψ‖p ‖φ‖q.

The expression for ψ ∗ φ is the same as that in Proposition 3.1.5.

3.2 Sobolev Spaces

In Chapter 2 the particular classes of Sobolev spaces Hm(R) were recalled via
distributional (i.e., weak) derivatives and absolutely continuous functions. A main
point is that the existence of sufficiently many weak derivatives in L2(R) im-
plies some derivatives in the classical sense. In this section additional properties
of suitable Sobolev spaces are collected, and the discussion extended to higher
dimensions.

Before going on, for reader’s convenience, the definition of distribution and
its derivatives are suitably recalled. Let Ω be an open subset of Rn; a sequence
(φj)j ⊂ C∞0 (Ω) is said to converge to φ ∈ C∞0 (Ω) if there is a compact set K ⊂ Ω
so that the support of φj is contained in K, ∀j, and for each multiindex k the
sequence of derivatives φ(k) → φ(k) uniformly. C∞0 (Ω) is called the space of test
functions.

A distribution u on Ω, is a linear functional on C∞0 (Ω) that are continuous
under the above sequential convergence, that is, u(φj) → u(φ) whenever φj → φ
in C∞0 (Ω). Its derivative is the distribution u(k) defined by

u(k)(φ) := (−1)|k|u(φ(k)), ∀φ ∈ C∞0 (Ω).

The space of distributions on Ω is denoted by C∞0 (Ω)′.
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A distribution u is represented by a function ψ ∈ L1
loc(Ω) if

u(φ) =
∫

Ω

ψ(x)φ(x) dx, ∀φ ∈ C∞0 (Ω),

and in this case one usually says that u = ψ in the sense of distributions. Note that
L1

loc(Ω) is naturally included in the space of distributions, and this fact suggests
the extra terminology generalized function for distributions. The fundamental fact
here is that if u ∈ L1

loc(Ω) and∫
Ω

u(x)φ(x) dx = 0, ∀φ ∈ C∞0 (Ω),

then u = 0 a.e. in Ω. This justifies u = 0 in the sense of distributions as well as
u = ψ above. The Dirac δ is a well-known example of a distribution that is not
represented by any function in L1

loc.
The statement u ∈ L1

loc(Ω) has distributional derivative u(k) = v ∈ L1
loc(Ω)

means
u(k)(φ) := (−1)|k|

∫
Ω

u(x)φ(k)(x) dx =
∫

Ω

v(x)φ(x) dx,

for all φ ∈ C∞0 (Ω). An important result is discussed in Lemma 2.3.9 and Re-
mark 2.3.10, that is, if Ω is an open connected set and u is a distribution with null
derivative, then u is constant.

A sequence of distributions (uj)j in C∞0 (Ω)′ converges to the distribution u,
in the same space, if for every φ ∈ C∞0 (Ω) the sequence (uj(φ))j converges in C

to u(φ).
Example 3.2.1. To illustrate how weak is the notion of convergence of distributions,
consider the sequence uj(x) = eijx in L1

loc(R), which has a bad behavior in terms
of convergence as a sequence of functions (e.g., it has constant absolute values and
it does not converge pointwise to any function). However, for each φ ∈ C∞0 (R), on
integrating by parts

|uj(φ)| =
∣∣∣∣∫

R

eijx φ(x) dx
∣∣∣∣ =

∣∣∣∣1j
∫

R

eijx φ′(x) dx
∣∣∣∣

≤ Cφ
j
‖φ′‖∞ −→ 0

as j → ∞, where Cφ is the Lebesgue measure of the support of φ. Hence uj → 0
in the sense of distributions. The mechanism is the fast oscillations as j → ∞
implying cancellations in the integral.
Example 3.2.2. If 0 ≤ ψ ∈ L1(Rn) and

∫
ψ(x) dx = 1, then ψj(x) := jnψ (jx)

converges to Dirac δ at the origin as j → ∞. Indeed, for φ ∈ C∞0 (Rn),

ψj(φ) =
∫

Rn

ψj(x) (φ(x) − φ(0)) dx +
∫

Rn

ψj(x)φ(0) dx

=
∫

Rn

ψj(x) (φ(x) − φ(0)) dx + φ(0),



84 Chapter 3. Fourier Transform and Free Hamiltonian

since
∫
ψj(x) dx = 1. Now a change of variable gives∫

Rn

ψj(x) (φ(x) − φ(0)) dx =
∫

Rn

ψ(x) (φ(x/j) − φ(0)) dx

which vanishes as j → ∞ by dominated convergence. Hence ψj(φ) → φ(0) for all
φ ∈ C∞0 (Rn), that is, ψj → δ in the sense of distributions.

A sequence (ψj)j ⊂ S(Rn) is said to converge to ψ ∈ S(Rn) if for every
polynomial p : Rn → C and all multiindex k, pψ(k)

j → pψ(k) uniformly. A tempered
distribution u on Rn, is a continuous linear functional on S(Rn), that is, u(ψj) →
u(ψ) whenever ψj → ψ in S(Rn). The space of tempered distributions is denoted
by S′(Rn). Note that S′(Rn) ⊂ C∞0 (Rn)′, so that tempered distributions are
indeed distributions.

The exponential function ex is an example of L1
loc(R) function that defines a

distribution but not a tempered distribution.
At last the definition of (some) Sobolev spaces! For positive integers m, one

defines Hm(Ω), for an open Ω ⊂ Rn, as the Hilbert spaces of ψ ∈ L2(Ω) so that the
weak derivatives ψ(k) exist and ψ(k) ∈ L2(Ω) for all |k| ≤ m, and it is considered
the norm

|‖ψ‖|m :=

⎛⎝ ∑
|k|≤m

∥∥∥ψ(k)
∥∥∥2

2

⎞⎠
1
2

.

In case Ω = Rn the Fourier transform provides another approach to Hm(Rn).
Proofs of some of the next results will be provided as examples of typical argu-
ments.

Proposition 3.2.3. Let ψ ∈ Hm(Rn). Then, for |k| ≤ m one has

F(ψ(k))(p) = (−i)|k|pkψ̂(p),

with ψ(k) denoting distributional derivatives.

Proof. It is enough to consider that only one kj 
= 0; the general case follows by
induction. Since the weak derivatives belong to L2(Rn), one can use Plancherel’s
theorem. Let φ ∈ C∞0 (Rn). Then, by Proposition 3.1.3,〈

Fψ(kj)), φ̂
〉

=
〈
ψ(kj), φ

〉
= (−1)kj

〈
ψ, φ(kj)

〉
= (−1)kj

〈
ψ̂,Fφ(kj)

〉
= (−1)kj

〈
ψ̂, (−i)kjp

kj

j φ̂
〉

=
〈
(−i)kjp

kj

j ψ̂, φ̂
〉
,

and the result follows since FC∞0 (Rn) is dense in L2(R̂n). �
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Corollary 3.2.4. If ψ ∈ Hm(Rn), then

pkψ̂(p) ∈ L2(R̂n) and ψ(k) = F−1(−i)|k|pkFψ, ∀|k| ≤ m.

Corollary 3.2.4 has a converse statement, but for its proof it is necessary to
recall that, for a tempered distributions u ∈ S′(Rn), the Fourier transform û is
defined by

û(φ) = u(φ̂), ∀φ ∈ S(Rn),

and due to Proposition 3.1.3 the relation

F(u(k))(p) = (−i)|k|pkû(p)

follows. The space Lp(Rn) can be identified with a subset of S′(Rn) (the inclu-
sion Lp(Rn) �→ S′(Rn) is a continuous injection). With this, a very important
characterization will be presented.

Proposition 3.2.5. The above norm |‖ · ‖|m in Hm(Rn) is equivalent to

|‖ψ‖|′m :=
(∫

Rn

(
1 + |p|2

)m |ψ̂(p)|2 dp
) 1

2

.

Proof. Let ψ ∈ S(Rn); since |p|k ≤ (1+|p|2)|k|/2, then if pkψ̂ ∈ L2(R̂n) for |k| ≤ m,∫
Rn

∣∣∣ψ(k)(x)
∣∣∣2 dx=

∫
Rn

∣∣∣pkψ̂(p)
∣∣∣2 dp ≤ ∫

Rn

(1 + |p|2)|k|
∣∣∣ψ̂(p)

∣∣∣2 dp
≤
∫

Rn

(1 + |p|2)m
∣∣∣ψ̂(p)

∣∣∣2 dp,
and there is a constant a > 0 obeying |‖ψ‖|m ≤ a|‖ψ‖|′m, since S(Rn) � Hm(Rn)
and the norms are continuous, the latter inequality extends to ψ ∈ Hm(Rn).
Conversely, if ψ ∈ H2(Rm), it follows by the binomial relation that there are
positive constants bj so that

(1 + |p|2)m
∣∣∣ψ̂(p)

∣∣∣2 =
m∑
j=0

bj |p|2j
∣∣∣ψ̂(p)

∣∣∣2
and so

|‖ψ‖|′2m =
m∑
j=0

bj

∫
Rn

|p|2j
∣∣∣ψ̂(p)

∣∣∣2 dp,
and because the right-hand side is a linear combination of terms of the form
‖pkψ̂(p)‖2

2, then, by Proposition 3.2.3, there is b > 0 with |‖ψ‖|′m ≤ b|‖ψ‖|m. The
proposition is proved. �
Remark 3.2.6. By using the norm |‖ · ‖|′, it is possible to define Hs(Rn) for any
s ∈ R.
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Theorem 3.2.7. Let u be a tempered distribution in S′(Rn). Then the following
statements are equivalent:

1. u belongs to Hm(Rn).
2. u(m) ∈ L2(Rn) (weak derivative).

3. pkû(p) ∈ L2(R̂n), ∀|k| ≤ m.

4. pmû(p) ∈ L2(R̂n).

Moreover, if such statements hold, then F(u(k))(p) = (−i)|k|pkû(p).

Proof. (Sketch) The equivalences 1 ⇔ 2 and 3 ⇔ 4 will not be discussed here.
1 ⇒ 3 is Corollary 3.2.4. Finally, 3 ⇒ 1 follows by Proposition 3.2.5. �

Some of the above results show that, for ψ ∈ L2(Rn), the existence of weak
derivatives implies integrability properties of ψ̂. The next discussion is about dif-
ferentiability properties.

Lemma 3.2.8. If ψ ∈ L1(Rn), then p �→ ψ̂(p) is a continuous function and

‖ψ̂‖∞ = sup
p∈Rn

|ψ̂(p)| ≤ 1
(2π)

n
2
‖ψ‖1 =

1
(2π)

n
2

∫
Rn

|ψ(x)| dx.

Similarly, if φ ∈ L1(R̂n), then φ̌(x) is a continuous function and

‖φ̌‖∞ ≤ 1
(2π)

n
2
‖φ‖1.

Proof. Write

|ψ̂(p+ h) − ψ̂(p)| ≤ 1
(2π)

n
2

∫
Rn

∣∣∣e−i(p+h)x − e−i(p)x
∣∣∣ |ψ(x)| dx

and note that, since ψ is integrable, the right-hand side vanishes by dominated
convergence as h → 0; hence ψ̂(p) is continuous. The inequality in the statement
of the proposition is immediate. �
Exercise 3.2.9. Verify the inequalities in Lemma 3.2.8.

Proposition 3.2.10. Let ψ ∈ L1(Rn). If xkψ(x) is integrable for all |k| ≤ m, then
ψ̂(k) is a continuous and bounded function, and

(Fψ)(k) = (−i)|k| F(xkψ(x)), ∀|k| ≤ m.

Proof. It is enough to consider kj = 1 for some j and kl = 0 if l 
= j; the general
case follows by induction. One has

ψ̂(p) =
1

(2π)
n
2

∫
Rn

e−i xp ψ(x) dx.
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Consider also the differentiation of this integrand with respect to pj , that is,

φ(p) = φ(pj) =
1

(2π)
n
2

∫
Rn

(−ixj)e−i xp ψ(x) dx;

this integral is φ(p) = −iF(xjψ)(p), which is a continuous function of pj since, by
hypothesis, xjψ(x) is integrable (see Lemma 3.2.8). For pj ∈ R, denote ψ̂(pj) the
function obtained by keeping fixed pk for k 
= j. By using Fubini’s theorem it is
found that, for h 
= 0,∣∣∣∣ 1h [ψ̂(pj + h) − ψ̂(pj)] − φ(pj)

∣∣∣∣=
∣∣∣∣∣1h
∫ h

0

[φ(pj + r) − φ(pj)] dr

∣∣∣∣∣
≤ sup
|r|≤|h|

|φ(pj + r) − φ(pj)| ,

and since φ(s) is uniformly continuous in any closed interval, the above expression
vanishes as h→ 0. Therefore, ∂pj ψ̂(p) = φ(p). �

Corollary 3.2.11. If ψ ∈ L2(Rn) and pkψ̂(p) is integrable for all |k| ≤ m, then ψ(k)

is a continuous and bounded function, and

ψ(k) = i|k|F−1(pkψ̂(p)), ∀|k| ≤ m.

Proof. This is essentially Proposition 3.2.10 adapted to the inverse Fourier trans-
form. �

The functions ψ ∈ Hm(Rn) are characterized as those that have weak deriva-
tives ψ(k) ∈ L2(R̂n) for any |k| ≤ m and, by a set of results called Sobolev em-
bedding theorems (also called Sobolev lemmas), they become more regular with
increasing m. One of such (nontrivial) results is the following one:

Theorem 3.2.12 (Sobolev Embedding). Let Ω be an open subset of Rn. If ψ ∈
Hm(Ω) and m > r + n

2 , then ψ(k) is a continuous and bounded function for all
|k| ≤ r. Furthermore, in case Ω = Rn the inclusion map Hm(Rn) �→ Cr(Rn) is
bounded.

By way of illustration, take n = 1; it follows that if ψ ∈ Hm(R) then ψ(k) are
bounded continuous functions for 0 ≤ k < m. For n = 3 and ψ ∈ H2(R3), then
ψ(k) is surely continuous only for k = 0. In case of bounded open intervals (a, b)
one has C(a, b) ⊂ H1(a, b) ⊂ C[a, b]; so, roughly speaking, for n = 1 the elements
of H1 are continuous functions that are primitives of functions in L2.

For the curious readers, Exercise 3.2.13 gives a flavor of how such results can
be obtained; of course it does not replace a specific text about Sobolev spaces.
Exercise 3.2.13. The case m > r+n and Ω = Rn in Theorem 3.2.12 has a simpler
proof. The interested reader may follow the steps ahead to prove this restricted
version of the first part of Sobolev’s embedding theorem, that is, if ψ ∈ Hm(Rn)
and m > r + n, then ψ(k) is a continuous and bounded function for all |k| ≤ r.
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1. If ψ ∈ Hm(Rn) then, by Corollary 3.2.11, conclude that it is enough to show
that pkψ̂ ∈ L1(R̂n), for all |k| ≤ r.

2. Write pkψ̂ = φ1φ2, with

φ1(p) =
(
Πk
j=1

(
1 + |pj |1+kj

))
ψ̂(p), φ2(p) =

pk

Πk
j=1 (1 + |pj |1+kj )

,

and show that if |k| ≤ r both φ1 and φ2 belong to L2(R̂n), so that φ1φ2 is
integrable. For φ1, dominate it by a finite sum of integrable functions of the
form |pj|rj |ψ̂(p)|, with 0 ≤ rj ≤ |k|. For φ2 use Fubini’s theorem and note
that

|p|n
1 + |p|1+n ≤ 1

|p|
for |p| large enough.

Exercise 3.2.14. If Ω ⊂ Rn is a bounded set, show that ψ(t) = |t|α belongs to
Hm(Ω) iff (α−m) > −n/2.

It is also worth mentioning (see [Ad75]):

Lemma 3.2.15. Let Ω be an open set in Rn with a regular bounded boundary. Then
the norm |‖ψ‖|m in Hm(Ω) is equivalent to the norm

[ψ]m :=

⎛⎝‖ψ‖2
2 +

∑
|k|=m

∥∥∥ψ(k)
∥∥∥2

2

⎞⎠ 1
2

.

Example 3.2.16. As an application of Sobolev’s embedding theorem, another proof
of Proposition 2.3.20 will be provided. Recall that dom H = C∞0 (a, b) ⊂ H =
L2(a, b), V ∈ L2

loc(a, b), −∞ ≤ a < b ≤ ∞, and

(Hψ)(x) = −ψ′′(x) + V (x)ψ(x), ψ ∈ dom H.

The question is to find H∗. If ψ ∈ dom H∗, then H∗ψ ∈ L2(a, b) and for all
φ ∈ C∞0 (a, b), ∫ b

a

(−φ′′(x) + V (x)φ(x)) ψ(x) dx = 〈φ,H∗ψ〉,

that is ∫ b

a

φ′′(x)ψ(x) dx =
∫ b

a

φ(x) (V (x)ψ(x) −H∗ψ) dx,

so that the second distributional derivative of ψ belongs to L2
loc(a, b); by Sobolev

embedding ψ, ψ′ are absolutely continuous functions and

ψ′′ = V ψ −H∗ψ,
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that is,

dom H∗ =
{
ψ ∈ L2(a, b) : ψ, ψ′ ∈ AC(a, b), (−ψ′′ + V ψ) ∈ L2(a, b)

}
,

(H∗ψ)(x) = −ψ′′(x) + V (x)ψ(x), ψ ∈ dom H∗.

Thereby the proof is complete. �

3.3 Momentum Operator

This section begins with a summary of a very important statement. For ψ ∈
Hm(Rn) there are two equivalent ways of differentiating it: if |k| ≤ m, under
Fourier transform the derivative in the sense of distributions ψ �→ ψ(kj) corre-
sponds to the multiplication operator ψ̂ �→ (−i)kjp

kj

j ψ̂ in L2(R̂n). It is also worth
recalling some integration by parts formulae: if ψ, φ ∈ H1(Rn), then∫

Rn

ψ(x)∂jφ(x) dx = −
∫

Rn

∂j(ψ(x))φ(x) dx,

and for ψ, φ ∈ H2(Rn) then∫
Rn

ψ(x)Δφ(x) dx = −
∫

Rn

∇ψ(x) · ∇ψ(x) dx.

Two particular cases will be discussed in detail: related to the first derivative
Pjψ = −i∂jψ, corresponding to the jth component of the quantum momentum
operator and, related to the laplacian H0ψ = −Δψ = −

∑n
j=1 ∂

2
jψ, corresponding

to the quantum kinetic energy in L2(Rn), discussed in Section 3.4.
In L2(R) the quantum momentum operator was previously introduced, in

Chapter 2), as dom P = H1(R),

(Pψ)(x) = −iψ′(x), ψ ∈ dom P.

See Examples 2.3.11 and 2.4.10. By Fourier transform one gets

(FPψ)(p) = pψ̂(p) = Mϕ(p)ψ̂(p), ϕ(p) = p.

Note also that H1(R̂) =
{
ψ̂ ∈ L2(R̂) : |‖ψ‖|′1 <∞

}
, that is,

|‖ψ‖|′1 =
(∫

R

(
1 + |p|2

)
|ψ̂(p)|2 dp

) 1
2

<∞,

which is the graph norm of Mϕ(p) in L2(R̂), and dom P = F−1H1(R̂). Then,

(FPF−1)ψ̂(p) = pψ̂(p), (Pψ)(x) = (F−1pF)ψ(x),
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and it follows that the momentum operator is unitarily equivalent (via Fourier
transform) to this multiplication operator Mp by a continuous real function.
Therefore, see Subsection 2.3.2, it provides another proof that this operator is
self-adjoint with no eigenvalues, and that its spectrum is R, since such properties
hold for Mp (see Exercise 2.1.26).

This construction is readily generalized to the jth component of the momen-
tum operator Pj in L2(Rn), given by

F(Pjψ)(p) = pjψ̂(p) = Mpj ψ̂(p), 1 ≤ j ≤ n,

which is also self-adjoint, with no eigenvalues and its spectrum is R. The (total)
momentum operator is defined through the gradient

P = −i∇ = −i (∂1, . . . , ∂n),

i.e., P = F−1(p1, . . . , pn)F = (F−1p1F , . . . ,F−1pnF).

3.4 Kinetic Energy and Free Particle

The nonrelativistic quantum kinetic energy operator in L2(Rn) (or L2(Ω), Ω an
open subset of Rn) is denoted by H0 and (up to a sign) it is the self-adjoint
realization of the laplacian (distributional derivatives), that is, H0 = −Δ with
domain H2(Rn).

For the one-dimensional case L2(R) the kinetic energy corresponds to
dom H0 = H2(R) and H0ψ = −ψ′′. By using Fourier transform, this operator
is unitarily equivalent to the multiplication operator

FH0ψ = FH0F−1Fψ = Mp2 ψ̂.

In higher dimensions L2(Rn), n ≥ 2, an alternative way of defining the kinetic
energy operator is dom H0 = H2(Rn) and

(H0ψ)(x) = −Δψ(x) = F−1[p2ψ̂(p)](x), ψ ∈ dom H0.

That is, it is unitarily equivalent to the multiplication operator FH0ψ = Mp2 ψ̂

in L2(R̂n),
H0 = F−1p2F .

Since p �→ p2 is a positive continuous function, it follows that its spectrum is
σ(H0) = rng p2 = [0,∞); see Exercise 2.3.29. Further, H0 has no eigenvalues.

Note that the unitarity of the Fourier transform allows one to conclude that
if ψ ∈ L2(Rn) with Δψ ∈ L2(Rn), then ψ ∈ H2(Rn); see other comments on
page 197.

Since only kinetic energy is present (there is no interaction among parti-
cles), the operator H0 is also called the Schrödinger operator for the free particle.
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Another terminology is free hamiltonian or free Schrödinger operator. Perturba-
tions of H0 by a potential energy V (x), resulting in the total energy operator, are
considered in other chapters.

Proposition 3.4.1. The operators TC , TS with domains C∞0 (Rn) and S(Rn), re-
spectively, both with action ψ �→ −Δψ, are essentially self-adjoint and

TC = H0 = TS .

In other words, C∞0 (Rn) and S(Rn) are cores of H0.

Proof. If g ∈ dom T ∗C ⊂ L2(Rn), then

〈g,−Δψ〉 = 〈T ∗Cg, ψ〉, ∀ψ ∈ C∞0 (Rn);

thus the distributional derivative −Δg = T ∗Cg ∈ L2(Rn) and so g ∈ H2(Rn)
and T ∗Cg = −Δg = H0g, so that T ∗C ⊂ H0. Conversely, if φ ∈ H2(Rn) then
−Δφ ∈ L2(Rn) and, via integration by parts,

〈φ, TCψ〉 = 〈φ,−Δψ〉 = 〈−Δφ, ψ〉, ∀ψ ∈ C∞0 (Rn);

by definition, φ ∈ dom T ∗C and T ∗Cφ = −Δφ = H0φ, so that H0 ⊂ T ∗C . Hence
T ∗C = H0. Since H0 is self-adjoint, one has TC = T ∗∗C = H0, and it is found that
TC is essentially self-adjoint.

For TS , note that TC ⊂ TS ⊂ H0. Thus, since TC is essentially self-adjoint,
T ∗C = TC = H0, and so H0 ⊂ T ∗S ⊂ T ∗C = H0. Therefore, T ∗S = H0 and TS is
essentially self-adjoint (also TS = T ∗∗S = H0). �
Exercise 3.4.2. Show that (1 +H0)S = S.

In view of H0 = F−1p2F , one has

Rz(H0) = F−1 1
p2 − z

F ,

for the resolvent of H0 at z /∈ [0,∞) (check this!). The operator of multiplication
by the functions

1
p2 − z

and e−itp
2

correspond to important quantum operators in the momentum representation
L2(R̂n); their actions in the position representation L2(Rn) will be discussed in
Subsection 3.4.1 and Section 5.5, respectively.
Exercise 3.4.3. Use Fourier transform to show that for all complex numbers z /∈
[0,∞) the operator PjRz(H0) is bounded for any momentum component Pj .

For a measurable function f : R → C one defines the operator

dom f(H0) = F−1dom f(p2), f(H0) := F−1f(p2)F ;



92 Chapter 3. Fourier Transform and Free Hamiltonian

since dom f(p2) is a dense set and F is unitary, then dom f(H0) is dense and if
f(p2) is real valued the operator f(H0) is also self-adjoint – see Subsection 2.3.2.
If f is a (essentially) bounded function, then f(H0) ∈ B(H). According to the
nomenclature on page 80, f(p2) is the operator f(H0) in momentum representa-
tion.

In a similar way one defines the function of momentum operators f(Pj) and
f(P ), the latter with f : Rn → C. Note, as before, the abuse of notation by
indicating the multiplication operator Mf(p) by just f(p).

Exercise 3.4.4. Verify that if f(p) = pk, k ∈ N, then the corresponding operator
f(H0) in L2(R) is

dom f(H0) = H2k(R), f(H0)ψ = (−1)kψ(2k).

Challenge: What about
√
H0?

3.4.1 Free Resolvent

In this subsection the resolvent of the free hamiltonian Rz(H0) in R3, in position
representation, will be computed from its momentum representation (p2 − z)−1.
First, a result also of general interest.

Lemma 3.4.5. If f ∈ L2(Rn), then the operator f(P ) in position representation is
an integral operator whose kernel is 1/(2π)

n
2 f̌(y− x), that is, for all ψ ∈ L2(Rn),

(f(P )ψ)(x) := F−1
[
f(p)ψ̂(p)

]
(x) =

1
(2π)

n
2

∫
Rn

f̌(y − x)ψ(y) dy.

Proof. Since fψ̂ ∈ L1(R̂n) there is an explicit expression for its inverse Fourier
transform. Fix x ∈ Rn. Then, since F−1 is unitary and by a simple variation of
Proposition 3.1.4,

(2π)
n
2 F−1

[
f(p)ψ̂(p)

]
(x) =

∫
Rn

ei xpf(p)ψ̂(p) dp

=
〈
e−i xpf(p), ψ̂(p)

〉
=
〈
F−1(e−i xpf(p))(y), ψ(y)

〉
=
〈
f̌(y − x), ψ(y)

〉
=
∫

Rn

f̌(y − x)ψ(y) dy.

This is the desired expression. �
Theorem 3.4.6. Fix a complex number z /∈ [0,∞). Then the resolvent of the free
hamiltonian H0 in L2(R3) at z, in position representation, is given by

(Rz(H0)ψ)(x) =
1
4π

∫
R3

ei
√
z|x−y|

|x− y| ψ(y) dy, ∀ψ ∈ L2(R3),

with the branch of the square root given by Im
√
z > 0.
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Proof. The resolvent is (Rz(H0)ψ)(x) = F−1[f(p)ψ̂(p)](x) with f(p) = (p2 − z)−1

which belongs to L2(R3) (and is also bounded). By Lemma 3.4.5, the resolvent is
an integral operator with kernel

G0(x− y; z) := 1/(2π)
3
2 f̌(x− y).

The task now is to compute

X = (2π)3/2f̌(x) = l.i.m.
∫

R3

ei xp

p2 − z
dp = lim

R→∞

∫
|p|≤R

ei xp

p2 − z
dp.

Introduce spherical coordinates xp = |x||p| cos θ, r = |p|, 0 ≤ θ ≤ π, −π ≤ ϑ < π
and also a = cos θ. Then

X = lim
R→∞

∫ R

0

∫ 1

−1

∫ π

−π

ei r|x|a

r2 − z
r2dϑda dr

=
2π
i |x| lim

R→∞

∫ R

−R

rei r|x|

r2 − z
dr =

2π
i |x| lim

R→∞

∫
CR

wei w|x|

(w −
√
z)(w +

√
z)
dw,

where Im
√
z > 0, CR is the rectangle in the upper half complex plane, delimited

by the vertices (−R, 0), (R, 0), (R,
√
R), (−R,

√
R), and w the complex integration

variable. Then, by residues, one gets

X = 2π2 e
i
√
z|x|

|x| , Im
√
z > 0,

so that

G0(x− y; z) =
1
4π

ei
√
z |x−y|

|x− y| , Im
√
z > 0,

and the proof is complete. �
Definition 3.4.7. The function G0(x − y; z), introduced in the proof of Theo-
rem 3.4.6, is called the three-dimensional free Green function. It is the kernel
of the free resolvent operator in L2(R3).

Exercise 3.4.8. Given a potential V : R3 → R, assume that ψ ∈ L2(R3) is an
eigenfunction of H0 +V with eigenvalue λ < 0, that is, (H0 +V )ψ = λψ and, also,
V ψ ∈ L2(R3). Show that

ψ(x) = − 1
4π

∫
R3

e−
√
−λ|x−y|

|x− y| V (y)ψ(y) dy.

This is an integral equation for ψ closely related to the Lippmann-Schwinger equa-
tion in scattering theory.
Exercise 3.4.9. Check that the kernel of the free resolvent operator in L2(R), i.e.,
the one-dimensional free Green function, at z /∈ [0,∞) is

G0(x− y; z) =
i

2
√
z
ei
√
z |x−y|, with Im

√
z > 0.
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Remark 3.4.10. For dimensions different from one and three, the computation of
the free Green function is more difficult to handle; it can be performed in terms
of modified Bessel functions of the second kind. The situation is simpler for odd
dimensions, since spherical Bessel functions can be employed. Nonetheless, they
are not too illuminating. See the full expression in [HiS96] page 164 and details in
[CouH53], and for Bessel functions [Wa62].
Exercise 3.4.11. Check that for L2(Rn), n = 1, 3, there exists (a.e.) the limit of
the free Green function for z = λ+ iε, λ > 0,

G0(x− y;λ± 0) := lim
ε→0±

G0(x− y;λ+ iε).

So the operators Rλ±0(H0) are also defined as integral operators with kernels
G0(x−y;λ±0). Verify that Rλ+0(H0) 
= Rλ−0(H0). Are these operators bounded?
Exercise 3.4.12. Write out the one-dimensional harmonic oscillator energy opera-
tor (Example 2.3.3) (Hψ)(x) = −ψ′′(x) + x2ψ(x) in the position and momentum
representations.
Remark 3.4.13. The kinetic energy, the j-component of the momentum and the
total momentum operators in L2(Rn), with all physical constants included, have
the expressions

H0 = − �2

2m
Δ, Pj = −i�∂j, P = −i�∇,

respectively. For the Green function in L2(R3),

G0(x− y; z) =
m

�22π
1

|x− y| exp

(
i

√
2mz
�

|x− y|
)
,

while in L2(R)

G0(x− y; z) =
i

�

√
m

2z
exp

(
i

√
2mz
�

|x− y|
)
.

Finally, the expression of Fourier transform in L2(Rn) usually employed in quan-
tum mechanics takes the form

ψ̂(p) =
1

(2π�)
n
2

∫
Rn

e−i
xp
� ψ(x) dx.

Remark 3.4.14. In the context of quantum mechanics, usually the term “Green
function” refers to a representation (e.g., in position or momentum representa-
tion) of the resolvent of a self-adjoint operator. The Green function for the hydro-
gen atom Schrödinger operator was studied in [Ho64] and [Schw64] (see Exam-
ple 6.2.3).



Chapter 4

Operators via
Sesquilinear Forms

The basics of self-adjoint extensions via sesquilinear forms are discussed. The main
points are form representations, Friedrichs extensions and examples. Additional
information appears in Sections 6.1, 9.3 and 10.4. Some sesquilinear forms can be
sources of self-adjoint operators related to “singular interactions” and/or ill-posed
operator sums.

4.1 Sesquilinear Forms

Let dom b be a dense subspace of the Hilbert space H. A sesquilinear form in H,

b : dom b× dom b→ C

is a map linear in the second variable and antilinear in the first one. b is hermitian
if b(ξ, η) = b(η, ξ). The map ξ �→ b(ξ, ξ), ξ ∈ dom b, is called the quadratic form
associated with b. Usually dom b is referred to as the domain of b, instead of
dom b × dom b, and only the term form is used as a shorthand for sesquilinear
form. Sometimes the notation b(ξ) = b(ξ, ξ) for the quadratic form is used. Here
all forms are assumed to be densely defined.

Exercise 4.1.1. Verify the polarization identity for sesquilinear forms

4b(ξ, η) = b(ξ + η) − b(ξ − η) − ib(ξ + iη) + ib(ξ − iη),

for all ξ, η ∈ dom b. Use polarization to show that b is hermitian iff the associated
quadratic form is real valued.
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Definition 4.1.2. A sesquilinear form b is bounded if its form norm

‖b‖ := sup
0�=ξ1∈dom b

0�=ξ2∈dom b

|b(ξ1, ξ2)|
‖ξ1‖ ‖ξ2‖

is finite, i.e., ‖b‖ <∞.

The standard example of bounded sesquilinear form is the inner product on
a Hilbert space, whose norm is 1. The next result is the structure of bounded
sesquilinear forms; the corresponding results when boundedness is not required
appear in Theorems 4.2.6 and 4.2.9.

Proposition 4.1.3. If b : H × H → C is a bounded sesquilinear form, then there
exists a unique operator Tb ∈ B(H) obeying

b(ξ1, ξ2) = 〈Tbξ1, ξ2〉, ∀ξ1, ξ2 ∈ H.

Furthermore, ‖Tb‖ = ‖b‖ and if b is hermitian then Tb is self-adjoint.

Proof. For each ξ1 ∈ H the functional Lξ1 : H → C, Lξ1(ξ2) = b(ξ1, ξ2) is linear,
and since

|Lξ1(ξ2)| = |b(ξ1, ξ2)| ≤ ‖b‖‖ξ1‖ ‖ξ2‖,

then ‖Lξ1‖ ≤ ‖b‖ ‖ξ1‖ and Lξ1 ∈ H∗ (the dual space of H).
By Riesz’s Representation Theorem 1.1.40 there exists a unique η2 ∈ H with

Lξ1(ξ2) = 〈η2, ξ2〉, for all ξ2 ∈ H. Define Tb : H → H by Tbξ1 = η2, for which
b(ξ1, ξ2) = 〈Tbξ1, ξ2〉, ∀ξ1 ∈ H, ξ2 ∈ H, and it is linear. Note that Tb = 0 if, and
only if, b is null (the definition is clear!).

Thus, if b 
= 0,

‖Tb‖= sup
0�=ξ1

Tbξ1 �=0

‖Tbξ1‖
‖ξ1‖

= sup
0�=ξ1

Tbξ1 �=0

|〈Tbξ1, Tbξ1〉|
‖ξ1‖ ‖Tbξ1‖

≤ ‖b‖

= sup
0�=ξ1
0�=ξ2

|〈Tbξ1, ξ2〉|
‖ξ1‖ ‖ξ2‖

≤ sup
0�=ξ1
0�=ξ2

‖Tbξ1‖ ‖ξ2‖
‖ξ1‖ ‖ξ2‖

= ‖Tb‖,

showing that Tb ∈ B(H) and ‖Tb‖ = ‖b‖. The uniqueness of the operator follows
from the relation 〈Tbξ1, ξ2〉 = 〈Sξ1, ξ2〉, for any ξ1, ξ2, consequently the operators S
and Tb coincide.

Now if such b is hermitian then 〈Tbξ, η〉 = b(ξ, η) = b(η, ξ) = 〈ξ, Tbη〉, and Tb
is self-adjoint. �

Hence, there is a one-to-one correspondence between such bounded (and
hermitian) sesquilinear forms on H × H and bounded (and self-adjoint) linear
operators on H. Observe that if the sesquilinear form is given by the inner product
on H, then Proposition 4.1.3 gives rise to the identity operator Tb = 1.
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One then wonders whether it is possible to adapt the above construction to
get unbounded self-adjoint operators from more general forms. In fact, part of this
construction can be carried out for suitable forms, as discussed below; a chief result
will be that there is a one-to-one correspondence between “closed lower bounded
sesquilinear forms” and lower bounded self-adjoint operators. Other motivations
appear in Remark 4.1.14. Now some definitions.

Definition 4.1.4. Let b be a hermitian sesquilinear form. Then b is:

a) positive if the quadratic form b(ξ, ξ) ≥ 0, ∀ξ ∈ dom b.
b) lower bounded if there is β ∈ R with b(ξ, ξ) ≥ β‖ξ‖2, ∀ξ ∈ dom b, and this

situation will be briefly denoted by b ≥ β; such β is called a lower limit or
lower bound of b. Notice that b − β defines a positive sesquilinear form by
(b − β)(ξ, η) := b(ξ, η) − β〈ξ, η〉.

Exercise 4.1.5. Verify that Cauchy-Schwarz and triangular inequalities

|b(ξ, η)| ≤ b(ξ)
1
2 b(η)

1
2 , b(ξ + η)

1
2 ≤ b(ξ)

1
2 + b(η)

1
2 ,

respectively, hold for positive sesquilinear forms (∀ξ, η ∈ dom b).

Let b be a hermitian form and (ξn) ⊂ dom b. Even though b is not neces-
sarily positive, this sequence is called a Cauchy sequence with respect to b (or in
(dom b, b)) if b(ξn− ξm) → 0 as n,m→ ∞. It is said that (ξn) converges to ξ with
respect to b (or in (dom b, b)) if ξ ∈ dom b and b(ξn − ξ) → 0 as n→ ∞.

Definition 4.1.6. A sesquilinear form b is closed if for each Cauchy sequence (ξn)
in (dom b, b) with ξn → ξ in H, one has ξ ∈ dom b and ξn → ξ in (dom b, b). b is
closable if it has a closed extension in H.

If β is a lower bound of the sesquilinear form b, one introduces the inner
product 〈·, ·〉+ on dom b ⊂ H by the expression

〈ξ, η〉+ := b(ξ, η) + (1 − β)〈ξ, η〉,

and one has 〈ξ, ξ〉+ = b(ξ, ξ) − β‖ξ‖2 + ‖ξ‖2 ≥ ‖ξ‖2, so that the norm ‖ξ‖+ :=√
〈ξ, ξ〉+ ≥ ‖ξ‖.

Definition 4.1.7.

a) If b ≥ β, the abstract completion of the inner product space (dom b, 〈·, ·〉+)
will be denoted by (H+, b+) .

b) Let b denote a closed and lower bounded form b ≥ β. A form core of b is a
subset D ⊂ dom b which is dense in dom b equipped with the inner product
〈·, ·〉+ = b+(·).

Remark 4.1.8. If b ≥ β ≥ 0 is closed and also an inner product, then D is a form
core of b is equivalent to D being dense in (dom b, b), i.e., it is not necessary to
take 〈·, ·〉+. This applies, in particular, when a form core of 〈·, ·〉+ is considered.
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Lemma 4.1.9. Suppose that the hermitian sesquilinear form b ≥ β, for some β ∈ R.
Then the following assertions are equivalent:

i) (dom b, 〈·, ·〉+) is a Hilbert space (and so it coincides with (H+, b+)).
ii) b is closed.

Proof. First note that every Cauchy sequence in K := (dom b, 〈·, ·〉+) is also a
Cauchy sequence in the other three spaces: H, (dom b, b−β) and also in (dom b, b).

Suppose that i) holds. If (ξn) is Cauchy in K then there is ξ ∈ dom b so that
ξn → ξ in K; also ‖ξn − ξ‖ → 0 and so ξn → ξ in H. That is, ii) holds.

Conversely, suppose that ii) holds. If (ξn) is Cauchy in K, then it is also
Cauchy with respect to b and in H, and so there is ξ with ξn → ξ in H. By ii),
ξ ∈ dom b and ξn → ξ in K. So K is complete, that is, i) holds. �

The above lemma shows that any lower bound β can be used to construct
H+; in particular if b ≥ β > 0, a preferred choice is the zero lower bound. Note
that b+(·, ·) is the inner product on the Hilbert space H+ and if ξ, η ∈ dom b, then
b+(ξ, η) = 〈ξ, η〉+; moreover, b+ is a closed sesquilinear form on H+.

Example 4.1.10. To a densely defined operator T one introduces two positive
hermitian sesquilinear forms b, b̃, with dom b = dom b̃ = dom T, via b(ξ, η) =
〈Tξ, T η〉 and b̃(ξ, η) = 〈Tξ, T η〉+〈ξ, η〉. Since b̃(ξ, ξ) = ‖ξ‖2

T , i.e., the square of the
graph norm of T , it is closed iff T is closed; one has b̃ ≥ 1. See also Example 4.1.11.

Note that b̃(ξ, η) = b(ξ, η)+ 〈ξ, η〉; this was a motivation for the introduction
of the inner product 〈ξ, η〉+ and the definition of closed form above.

Example 4.1.11. A hermitian operator T : dom T � H → H defines a hermitian
sesquilinear form bT as

bT (ξ, η) := 〈ξ, T η〉, dom bT = dom T.

bT is lower bounded iff T is (see Definition 2.4.16). Since this bT is easily
extended to any ξ ∈ H and η ∈ dom T , it has a potential advantage over the
forms in Example 4.1.10 while searching extensions of T . See Theorem 4.3.1.

Definition 4.1.12. If T : dom T � H → H is a hermitian operator, the form bT

introduced in Example 4.1.11 is called the sesquilinear form generated by T .

Remark 4.1.13. In the specific case of positive self-adjoint operators T ≥ 0, the
form bT generated by T will be naturally extended in Section 9.3, and keeping the
same notation bT and nomenclature, to the form dom bT = dom T

1
2 , bT (ξ, η) =

〈T 1
2 ξ, T

1
2 η〉, ∀ξ, η ∈ dom T

1
2 . Refer to Section 9.3 for explanation of these symbols.

Remark 4.1.14. There are many appealing reasons for considering sesquilinear
forms as sources of operators.

• In physics it is a common procedure to deal with “matrix elements” of an
operator, i.e., bT (ξ, η) = 〈ξ, T η〉. Also 〈ξ, T ξ〉 is the expectation value of the
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observable T (see discussion on page 132) if the system is in the normalized
state ξ, and one asks how to construct the (self-adjoint) operator T from its
matrix elements. Some authors argue that physically the expectation values
are more fundamental than the square ‖Tξ‖2 = 〈Tξ, T ξ〉.

• Usually the conditions on the form domain are less restrictive than the ones
on the operator domain. For instance, for the second derivative operator
ψ �→ −ψ′′, in suitable subspaces of L2(R), on integrating by parts one can
write 〈ψ,−φ′′〉 = 〈ψ′, φ′〉, and the right-hand side inner product imposes
conditions only on the first derivative of the functions.

• Given hermitian operators T1, T2 and a form b, due to less stringent domain
conditions (e.g., dom T1 ∩ dom T2 can be rather small), sesquilinear forms
open the possibility of defining an operator T via the sum of forms by im-
posing bT (ξ, η) = bT1(ξ, η) + bT2(ξ, η) (see Example 4.2.15, Corollary 9.3.12
and Subsection 9.3.1), and also through bT (ξ, η) = bT1(ξ, η) + b(ξ, η) even
in some cases b is not directly related to an operator; see Examples 4.1.15,
4.4.9, 6.2.16 and 6.2.19.

The primary point relates to the representation theorems in Section 4.2, which
associate self-adjoint operators to forms. Eventually, other reasons supporting the
use of sesquilinear forms will appear spread over the book.

Example 4.1.15. Let dom bδ = H1(R) ⊂ H = L2(R), and the action

bδ(ψ, φ) = ψ(0)φ(0), ψ, φ ∈ dom bδ.

This form is hermitian and positive, but not closable. In fact, the sequence ψn(x) =
e−nx

2
is contained in dom bδ, bδ(ψn − ψm) → 0 (so a Cauchy sequence with

respect to bδ) and converges to zero in H, but bδ(ψn) → 1 while bδ(0, 0) = 0
(apply Lemma 4.1.9). Thus, in contrast to hermitian operators, a (lower bounded)
hermitian form need not be closable.

Nevertheless, by naively pushing on the comparison with bT , one would get

ψ(0)φ(0) = 〈ψ, Tφ〉 =
∫

R

ψ(x)Tφ(x) dx,

and this form should represent an operator T “generated by the Dirac delta δ(x)
at the origin;” such informal association can be useful in some contexts, as in
Examples 4.4.9 and 6.2.16 in attempts to make sense of a Schrödinger operator
with a delta potential. Clearly H1(R) can be replaced by other domains, e.g.,
C∞0 (R).

Remark 4.1.16. Sometimes it is convenient to put b(ξ, ξ) = ∞ if ξ ∈ H \ dom b.
See Theorem 9.3.11 and Subsection 10.4.1.



100 Chapter 4. Operators via Sesquilinear Forms

4.2 Operators Associated with Forms

Definition 4.2.1. Consider the lower bounded sesquilinear form b ≥ β. b+ as above
is compatible with H if H+ can be identified with a vector subspace of H and the
(linear) inclusion j : H+ → H is continuous.

Lemma 4.2.2. If b+ is compatible with H, then the inclusion j : H+ → H can be
taken as the natural inclusion j(ξ) = ξ, ∀ξ ∈ H+, with ‖j‖ ≤ 1.

Proof. The natural inclusion ĵ : (dom b, 〈·, ·〉+) → H, ĵ(ξ) = ξ, is linear and
satisfies

‖ξ‖2 = ‖ĵ(ξ)‖2 ≤ 〈ξ, ξ〉+ = b+(ξ, ξ),

and so it is continuous with ‖ĵ‖ ≤ 1. Since b+ is compatible with H, ĵ has a unique
linear extension j : H+ → H, with ‖j‖ ≤ 1.

If ξ ∈ H+, there is a sequence (ξk) ⊂ dom b with ξk → ξ in H+; the above
inequality implies ξk → ξ in H. Thus,

0 = lim
k→∞

j(ξk − ξ) = lim
k→∞

j(ξk) − j(ξ)

= lim
k→∞

ξk − j(ξ) = ξ − j(ξ).

Therefore j(ξ) = ξ and j is clearly injective. �
Exercise 4.2.3. Let (Hbδ

+ , bδ+) be the abstract completion of (dom bδ, bδ + 1), bδ
the form in Example 4.1.15. Show that the extension j of the natural inclusion
ĵ : (dom bδ, 〈·, ·〉+) → H, ĵ(ξ) = ξ, ∀ξ ∈ dom bδ, is not injective. Conclude that
bδ+ is not compatible with H.
Example 4.2.4. Let T : dom T � H → H be a hermitian and lower bounded
operator with lower bound β ∈ R, that is, T ≥ β1. Consider the form bT generated
by T , the inner product

〈ξ, η〉+ = bT (ξ, η) + (1 − β)〈ξ, η〉
= 〈ξ, (T − β1)η〉 + 〈ξ, η〉, ξ, η ∈ dom T,

and its completion (HT
+, b

T
+). The subject now is to show that bT+ is compatible

with H; consequently bT is closable.
The linear natural inclusion ĵ : (dom T, 〈·, ·〉+) → H, ĵ(ξ) = ξ, satisfies

‖ĵ(ξ)‖2 = ‖ξ‖2 ≤ ‖ξ‖2 + 〈ξ, (T − β1)ξ〉 = 〈ξ, ξ〉+,
and so it is continuous with ‖ĵ‖ ≤ 1. Thus ĵ has a unique linear extension j : HT

+ →
H and with ‖j‖ ≤ 1. If j(ξ) = 0, then there exists a sequence (ξk) ⊂ (dom T, 〈·, ·〉+)
with ξk → ξ in HT

+ and ξk = j(ξk) → 0 in H. Thus, for any η ∈ dom T ,

bT+(η, ξ) = lim
k→∞

bT+(η, j(ξk)) = lim
k→∞

bT+(η, ξk)

= lim
k→∞

〈η, ξk〉+ = lim
k→∞

(〈η, (T − β1)ξk〉 + 〈η, ξk〉)

= lim
k→∞

〈[T + (1 − β)1]η, ξk〉 = 0.
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Since dom T � HT
+, it follows that ξ = 0. Therefore, besides ‖j‖ ≤ 1, it was found

that j is injective and so it is possible to regard HT
+ as a vector subspace of H,

that is, bT+ is compatible with H. Finally, by Lemma 4.2.2, j(ξ) = ξ for all ξ ∈ HT
+.

Given a densely defined operator T , the sesquilinear form b̃ with dom b̃ =
dom T , b̃(ξ, η) := 〈η, ξ〉T = 〈Tη, T ξ〉 + 〈η, ξ〉, satisfies b̃(ξ, ξ) ≥ ‖ξ‖2, ∀ξ ∈ dom b̃,
and it is closed iff T is closed. Now if η ∈ dom (T ∗T ), then

b̃(ξ, η) = 〈ξ, (T ∗T + 1)η〉, ∀ξ ∈ dom b̃,

and, on the basis of Example 4.1.11 and Proposition 4.1.3, one is tempted to link
the operator T ∗T+1 to b̃. With this motivation in mind, one has the main theorem
of this section, ensuring that closed lower bounded forms are actually the forms
of lower bounded self-adjoint operators.

Definition 4.2.5. Given a hermitian sesquilinear form b, the operator Tb associated
with b is defined as

dom Tb := {ξ ∈ dom b : ∃ζ ∈ H with b(η, ξ) = 〈η, ζ〉, ∀η ∈ dom b} ,
Tbξ := ζ, ξ ∈ dom Tb,

that is, b(η, ξ) = 〈η, Tbξ〉, ∀η ∈ dom b, ∀ξ ∈ dom Tb. Such operator Tb is well
defined since dom b is dense in H.

Note that Tb is automatically symmetric; for ξ, η ∈ dom Tb,

〈η, Tbξ〉 = b(η, ξ) = b(ξ, η) = 〈ξ, Tbη〉 = 〈Tbη, ξ〉.

Furthermore, in case of a bounded hermitian sesquilinear form b, the operator Tb
in Definition 4.2.5 coincides with the one in Proposition 4.1.3.

The next two theorems are known as representations of sesquilinear forms.

Theorem 4.2.6. Let dom b � H and b : dom b×dom b→ C be a closed sesquilinear
form with lower bound β ∈ R (so hermitian).

Then the operator Tb associated with b is the unique self-adjoint operator with
dom Tb � dom b �→ H so that

b(η, ξ) = 〈η, Tbξ〉, ∀η ∈ dom b, ∀ξ ∈ dom Tb.

Further, Tb ≥ β1 and dom Tb is a form core of b. The subspace dom b is called
the form domain of Tb.

Proof. Set Hb := (dom b, 〈·, ·〉+), which is a Hilbert space by hypothesis. As re-
marked above, Tb is symmetric. For ξ ∈ dom Tb ⊂ dom b one has

〈ξ, Tbξ〉 = b(ξ, ξ) ≥ β‖ξ‖2,

so that Tb ≥ β1.
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For all η ∈ Hb one has ‖η‖2
+ = 〈η, η〉+ = (b(η) − β‖η‖2) + ‖η‖2‖ ≥ ‖η‖2;

thus, for each φ ∈ H,

|〈φ, η〉| ≤ ‖φ‖ ‖η‖ ≤ ‖φ‖ ‖η‖+, ∀η ∈ Hb,

so that the linear functional fφ : Hb → C, fφ(η) = 〈φ, η〉 is continuous; since Hb

is a Hilbert space, by Riesz’s Theorem 1.1.40 there is a unique φb ∈ Hb with

〈φ, η〉 = 〈φb, η〉+, ∀η ∈ Hb.

The last relation will be crucial in what follows.
We then define a linear map M : H → Hb, Mφ := φb; since dom b is dense

in H, note that if φb = 0, then 〈φ, η〉 = 0, ∀η ∈ Hb, and so φ = 0. Hence M is
invertible, and for M−1 : dom M−1 = rng M → H write M−1φb = φ, and note
that rng M−1 = H. Further, since ‖fφ‖ ≤ ‖φ‖ and, by Riesz ‖fφ‖ = ‖φb‖+, it is
found that ‖Mφ‖+ = ‖φb‖+ ≤ ‖φ‖. Thus, M is bounded (with domain H) with
norm ≤ 1.

Now it will be shown that rng M is dense in H. Since rng M ⊂ dom b and
‖ · ‖ ≤ ‖ · ‖1, it is enough to show that rng M � Hb. If η ∈ Hb and 〈Mξ, η〉+ = 0,
∀ξ ∈ H, then, by the above crucial relation,

0 = 〈Mξ, η〉+ = 〈ξb, η〉+ = 〈ξ, η〉,

and so η = 0, which proves that density.
The operator M−1 is directly related to Tb. Indeed, if ξb ∈ dom M−1, then

for all η ∈ dom b,

〈η,M−1ξb〉 = 〈η, ξ〉 = 〈η, ξb〉+ = b(η, ξb) + (1 − β)〈η, ξb〉,

or
b(η, ξb) = 〈η,M−1ξb〉 − (1 − β)〈η, ξb〉 = 〈η,Qξb〉,

where Q := M−1 − (1 − β)1, with dom Q = dom M−1. Hence, ξb ∈ dom Tb and
Tbξb = Qξb; in other words, Q ⊂ Tb. From this relation one infers that Tb is densely
defined (because dom Q is dense in H), so hermitian, and the operator Q is also
hermitian (because it has a hermitian extension Tb).

Observe that M−1 = Q + (1 − β)1 is also hermitian, and a simple exercise
shows that M is also hermitian; since M is bounded (M ∈ B(H)), it is in fact
self-adjoint. By Lemma 2.4.1 one infers that M−1 is self-adjoint, so Q is also self-
adjoint (very general arguments appear in Theorem 6.1.8 and Exercise 6.1.11).
Finally, the relation Q ⊂ Tb implies Q = Tb, since a self-adjoint operator has no
proper hermitian extension. The self-adjointness of Tb is hereby verified.

Recall that it was shown above that dom Tb = dom Q = rng M is dense in
Hb, that is, dom Tb is a form core of b.

For the uniqueness, suppose that S is self-adjoint with dom S ⊂ dom b and

b(η, ξ) = 〈η, Sξ〉, ∀η ∈ dom b, ξ ∈ dom S.



4.2. Operators Associated with Forms 103

By construction (Definition 4.2.5), ξ ∈ dom Tb and Tbξ = Sξ; thus S ⊂ Tb.
Since S is self-adjoint it has no proper hermitian extension; it then follows that
S = Tb. �
Exercise 4.2.7. Show that if a linear invertible operator is hermitian, then its
inverse is also hermitian.
Exercise 4.2.8. Adapt the statement and proof of Theorem 4.2.6 to the case b ≥
β > 0 and (dom b, b) is complete; in this case write Hb for (dom b, b) and note
that with such approach the inner product 〈·, ·〉+ does not play any role. Show,
in particular, that dom Tb (Tb is the resulting self-adjoint operator, of course) is
a form core of b.

Now the hypothesis of (dom b, b(·, ·)) being closed in Theorem 4.2.6 will be
replaced by the assumption that its completion b+ is compatible with the original
Hilbert space H.

Theorem 4.2.9. Let b be a hermitian sesquilinear form with b≥β for some β∈R, its
completion (H+, b+) as above and Tb+ the self-adjoint operator associated with b+.

If b+ is compatible with H, then there exists a unique self-adjoint operator
T̃b : dom T̃b � H+ → H, with

b(η, ξ) = 〈η, T̃bξ〉, ∀η ∈ dom b, ∀ξ ∈ dom T̃b ∩ dom b.

Further, T̃b ≥ β1, dom T̃b = dom Tb+, T̃b = Tb+ − (1− β)1 and dom T̃b is a form
core of b+. H+ is called the form domain of T̃b.

Proof. Recall that

〈η, ξ〉+ = b(η, ξ) + (1 − β)〈η, ξ〉, ∀η, ξ ∈ dom b.

So 〈η, η〉+ ≥ ‖η‖2, ∀η ∈ dom b, and since b+ is compatible with H it follows that,
by Lemma 4.2.2,

b+(η, η) ≥ ‖η‖2, ∀η ∈ dom b+ = H+,

that is, b+ ≥ 1. Since b+ is closed, by Theorem 4.2.6, there is a unique self-adjoint
operator Tb+ with domain dense in H+ and

b+(η, ξ) = 〈η, Tb+ξ〉, ∀η ∈ H+, ξ ∈ dom Tb+ .

It also follows that Tb+ ≥ 1.
Now define T̃b := Tb+−(1−β)1, dom T̃b = dom Tb+ , which is also self-adjoint

and T̃b ≥ β1. In case η ∈ dom b and ξ ∈ dom b ∩ dom Tb+ , one has

〈η, Tb+ξ〉 = b+(η, ξ) = 〈η, ξ〉+ = b(η, ξ) + (1 − β)〈η, ξ〉,

and so
b(η, ξ) = 〈η, (Tb+ − (1 − β)1)ξ〉 = 〈η, T̃bξ〉;

thus b(η, ξ) = 〈η, T̃bξ〉, ∀η ∈ dom b, ∀ξ ∈ dom T̃b ∩ dom b.
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Next the uniqueness. Suppose that S̃ : dom S̃ � H+ → H is a self-adjoint
operator with

b(η, ξ) = 〈η, S̃ξ〉, ∀η ∈ dom b, ∀ξ ∈ dom S̃ ∩ dom b.

Define S := S̃ + (1 − β)1; note that S̃ 
= T̃b iff S 
= Tb+ . The above condition on
S̃ can be rewritten as

b+(η, ξ) = 〈η, S̃ξ〉 + (1 − β)〈η, ξ〉 = 〈η, Sξ〉,

∀η ∈ dom b, ∀ξ ∈ dom S ∩ dom b. Since (H+, b+) is complete and S is closed,
together with the continuity of the inner product, one gets

b+(η, ξ) = 〈η, Sξ〉, ∀η ∈ H+, ∀ξ ∈ dom S;

but, by construction, this means that ξ ∈ dom Tb+ and Tb+ξ = Sξ, that is, S ⊂
Tb+ . Since both are self-adjoint S = Tb+ , so S̃ = T̃b and such an operator is unique.
Since dom T̃b = dom Tb+ , Theorem 4.2.6 immediately implies that dom T̃b is a
form core of b+. �
Remark 4.2.10. Note that Definition 4.2.5 and the relation

b(η, ξ) = 〈η, T̃bξ〉, ∀η ∈ dom b, ∀ξ ∈ dom T̃b ∩ dom b,

in the statement of Theorem 4.2.6 imply that dom T̃b is given by

{ξ ∈ H+ : ∃ζ ∈ H with b+(η, ξ) − (1 − β)ξ = 〈η, ζ〉, ∀η ∈ dom b} ,

and T̃bξ = ζ.

Recall that the quantum kinetic energy operator in L2(Rn) is the operator
H0 = −Δ with dom H0 = H2(Rn) and both C∞0 (Rn),S(Rn) are cores of H0; the
laplacian Δ is obtained through distributional derivatives and H2 is a Sobolev
space. Below ∇ indicates the distributional gradient operator.
Example 4.2.11. Let dom b = H1(Rn) � L2(Rn),

b(φ, ψ) := 〈∇φ,∇ψ〉, φ, ψ ∈ dom b.

Since b(φ) = ‖∇φ‖2, the hermitian sesquilinear form b is positive. Let (φj) ⊂ dom b
be a sequence obeying b(φj−φk) → 0 and φj → φ in L2(Rn) as j, k → ∞. Note that
this is equivalent to φj → φ in H1(Rn), which is a Hilbert space and so φ ∈ dom b;
hence the form b is also closed and (dom b, 〈·, ·〉+), with 〈φ, ψ〉+ = b(φ, ψ)+ 〈φ, ψ〉,
is a Hilbert space (H1(Rn) in fact!).

It is easily checked that the subsequent self-adjoint operator Tb in Theo-
rem 4.2.6 isH0; indeed,H0 is positive and self-adjoint, dom H0 = H2(Rn) � dom b
and on integrating by parts

b(φ, ψ) = 〈φ,−Δψ〉, ∀φ ∈ dom b, ψ ∈ dom H0.
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Hence, H1(Rn) is the form domain of H0 and both C∞0 (Rn),S(Rn) are form cores
of b (since these sets are dense in H1(Rn)). In summary, Tb = H0. Usually such
form b is denoted by bH0 .

Example 4.2.12. Consider the Hilbert space H = L2[0, 1]. Let α = (α0, α1), α0 >
0, α1 > 0 (for simplicity), dom bα = H1[0, 1] and, for φ, ψ ∈ dom bα,

bα(φ, ψ) := 〈φ′, ψ′〉 + α0 φ(0)ψ(0) + α1 φ(1)ψ(1),

which is a densely defined sesquilinear form. For (say!) a > 1, integrations by parts
show the validity of the integral representations

ψ(1) =
∫ 1

0

taψ′(t) dt+
∫ 1

0

ata−1ψ(t) dt,

ψ(0) =
∫ 1

0

−(1 − t)aψ′(t) dt+
∫ 1

0

a(1 − t)a−1ψ(t) dt,

and by Cauchy-Schwarz,

bα(ψ)≥ ‖ψ′‖2 − α0 |ψ(0)|2 − α1 |ψ(1)|2

≥
(

1 − α0 + α1

2a+ 1

)
‖ψ′‖2 − (α0 + α1)

a2

2a− 1
‖ψ‖2,

and for a large enough the coefficient of ‖ψ′‖2 becomes positive so that bα(ψ) ≥
β‖ψ‖2, with β = −(α0 + α1)a2/(2a− 1). In other words, bα is lower bounded.

Now it will be argued that bα is closed, so that it defines a self-adjoint opera-
tor Tbα as in Theorem 4.2.6. Let (ψn) be a sequence in dom bα with bα(ψn−ψm) →
0 and ψn → ψ in H as n,m → ∞. Write out such conditions to get that (ψ′n) is
also a Cauchy sequence in H and so ψ′n → φ ∈ H (note that (ψn(0)) and (ψn(1))
are Cauchy in C). The relation (recall that on bounded intervals convergence in
L2 implies convergence in L1)∫ t

0

φ(s) ds = lim
n→∞

∫ t

0

ψ′n(s) ds = ψ(t) − ψ(0)

implies that ψ ∈ dom bα and ψ′ = φ. By continuity of the elements of H1[0, 1]
and the above integral representations for ψn(0), ψn(1), one has ψn(0) → ψ(0)
and ψn(1) → ψ(1). A direct verification that bα(ψn −ψ) → 0 concludes that bα is
closed.

The next step is to find Tbα via bα(φ, ψ) = 〈φ, Tbαψ〉. After a formal integra-
tion by parts in the expression of bα(φ, ψ) one gets

〈φ, Tbαψ〉= bα(φ, ψ)
= 〈φ,−ψ′′〉 + φ(0) (α0ψ(0) + ψ′(0)) − φ(1)(α1ψ(1) − ψ′(1)),
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which suggests to try dom Tbα = {ψ ∈ H2[0, 1] : ψ′(0) = −α0ψ(0), ψ′(1) =
α1ψ(1)}, Tbαψ = −ψ′′. One can check that this operator Tbα is actually self-
adjoint; since dom Tbα � dom bα and

bα(φ, ψ) = 〈φ, Tbαψ〉, ∀φ ∈ dom bα, ψ ∈ dom Tbα ,

one has that Tα is the operator associated with the form bα in Theorem 4.2.6, and
H1[0, 1] is the form domain of Tα.

Exercise 4.2.13. Verify that Tbα in Example 4.2.12 is self-adjoint (a possible solu-
tion can be obtained from a characterization in Example 7.3.4).

Exercise 4.2.14. Consider the Hilbert space H = L2[0, 1], dom b̃ = {ψ ∈ H1[0, 1] :
ψ(0) = 0 = ψ(1)} and, for φ, ψ ∈ dom b̃,

b̃(φ, ψ) = 〈φ′, ψ′〉.

Based on Example 4.2.12, show that b̃ is a positive closed form whose correspond-
ing associated operator is dom Tb̃ = {ψ ∈ H2[0, 1] : ψ(0) = 0 = ψ(1)}, Tb̃ψ = −ψ′′,
ψ ∈ dom Tb̃.

Let b1, b2 be two closed and lower bounded forms and Tb1 , Tb2 the subsequent
self-adjoint operators associated with b1 and b2, respectively. It can happen that
the sesquilinear form sum b = b1 + b2, with dom (b1 + b2) = dom b1 ∩ dom b2,
is either closed and lower bounded or its completion b+ is compatible with the
original Hilbert space; in either way the operator Tb associated with b is self-
adjoint and called the form sum of Tb1 and Tb2 , and denoted by

Tb = Tb1+̇Tb2 .

This concept is illustrated in the following example; see also Subsection 6.1.1 and
Remark 9.3.13.

Example 4.2.15. Let Tα, α=(α0,α1), be the operator obtained in Example 4.2.12,
and consider also Tτ , τ = (τ0, τ1), obtained in the same way. The aim here is to
describe the operator Tα/2+̇Tτ/2. First note that Tα/2 is the operator associated
with the form bα/2.

Let b = bα/2 + bτ/2, i.e., dom b = H1[0, 1],

b(φ, ψ) = 〈φ′, ψ′〉 +
α0 + τ0

2
φ(0)ψ(0) +

α1 + τ1
2

φ(1)ψ(1),

consequently
Tα
2

+̇
Tτ
2

= Tω, ω =
(
α0 + τ0

2
,
α1 + τ1

2

)
.

See also Example 4.4.8.
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4.3 Friedrichs Extension

Given T hermitian, consider the form generated by T , that is, bT (ξ, η) = 〈ξ, T η〉,
ξ, η ∈ dom T ; if T ≥ β1, one has bT (ξ, ξ) ≥ β‖ξ‖2, and it is possible to apply The-
orem 4.2.9 in order to get the so-called Friedrichs extension of T (a fundamental
result by Friedrichs of 1934).

Theorem 4.3.1 (Friedrichs Extension). Let T be a lower bounded hermitian oper-
ator with T ≥ β1, β ∈ R, bT the form generated by T , i.e.,

bT (ξ, η) = 〈ξ, T η〉, ξ, η ∈ dom bT = dom T,

and (HT
+, b

T
+) as in Example 4.2.4. Then the operator T has a unique self-adjoint

extension TF : dom TF → H with dom TF � HT
+. Further, TF ≥ β1 and dom TF

is a form core of bT+. HT
+ is the form domain of TF .

Proof. Recall that 〈ξ, η〉+ = bT (ξ, η) + (1 − β)〈ξ, η〉, ξ, η ∈ dom T , and its com-
pletion is (HT

+, b
T
+). On account of Example 4.2.4, bT+ is compatible with H and

bT+(ξ, ξ) ≥ ‖ξ‖2, ∀ξ ∈ HT
+. By Theorem 4.2.9 there is a unique self-adjoint operator

TF = T̃bT := TbT
+
− (1 − β)1, dom TF = dom TbT

+
� HT

+,

so that

bT (η, ξ) = 〈η, TF ξ〉, ∀η ∈ dom T, ξ ∈ dom T ∩ dom TF .

Since TbT
+
≥ 1 one finds that TF ≥ β1. In order to show that T ⊂ TF , take note

initially that for ξ, η ∈ dom T ,

bT+(η, ξ) = 〈η, ξ〉+ = 〈η, [T + (1 − β)1]ξ〉 .

By continuity of the inner product, density of dom T in HT
+ and the continuity of

the inclusion j : HT
+ → H, it follows that, for each ξ ∈ dom T ,

bT+(η, ξ) = 〈η, [T + (1 − β)1]ξ〉

holds true for any η ∈ HT
+. Hence, by the construction in Definition 4.2.5, ξ ∈

dom TbT
+

and TbT
+
ξ = Tξ + (1 − β)ξ, showing that

Tξ = TbT
+
ξ − (1 − β)ξ = TF ξ, ∀ξ ∈ dom T.

Hence T ⊂ TF .
Now the uniqueness of TF . If S is a self-adjoint operator so that T ⊂ S and

dom S ⊂ HT
+, the above proof that T ⊂ TF applies, and so one concludes that

S ⊂ TF ; since both operators are self-adjoint, S = TF . As in Theorem 4.2.6, one
concludes that dom TF is a form core of bT+. �
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Exercise 4.3.2. Conclude that (see Remark 4.2.10) dom TF is given by{
ξ ∈ HT

+ : ∃ζ ∈ H with bT+(ξ, η) − (1 − β)〈ξ, η〉 = 〈ζ, η〉, ∀η ∈ dom T
}
,

and TF ξ = ζ. Given ξ ∈ dom TF , by taking (ξn) ⊂ dom T with ξn → ξ in HT
+,

show that

bT+(ξ, η) − (1 − β)〈ξ, η〉 = lim
n→∞

[bT+(ξn, η) − (1 − β)〈ξn, η〉]

= 〈ξ, T η〉, ∀η ∈ dom T,

and conclude that dom TF = dom T ∗ ∩HT
+.

Definition 4.3.3. The self-adjoint operator TF introduced in Theorem 4.3.1 is called
the Friedrichs extension of the hermitian and lower bounded T .

Proposition 4.3.4. Let T ≥ β1 and T0 a lower bounded self-adjoint extension of T .
Then HTF

+ ⊂ HT0
+ , that is, the Friedrichs extension has the smallest form domain

among the form domains of lower bounded self-adjoint extensions of T .

Proof. Assume that β is the largest lower bound of T and let α ∈ R be strictly
less than a lower bound of T0; so α < β.

It is known that the form domain HTF
+ of TF is the completion of dom T in

the norm 〈ξ, ξ〉+ = 〈ξ, [T + (1 − β)1]ξ〉, which is the same space obtained after
completion of dom T in the norm

〈ξ, [T + (1 − α)1]ξ〉 = 〈ξ, [T0 + (1 − α)1]ξ〉.
Since dom T ⊂ dom T0 and the form domain HT0

+ of T0 is the completion of
dom T0 in the above norm 〈ξ, [T0 + (1 − α)1]ξ〉, it follows that HTF

+ ⊂ HT0
+ . �

It is interesting to point out that TF is the only self-adjoint extension of T
whose domain is dense in HT

+; particularly, the only self-adjoint extension whose
form domain is HT

+. Thus, in this sense and in view of Proposition 4.3.4, TF is
canonically constructed.

Corollary 4.3.5. If T is hermitian and lower bounded, then its deficiency indices
are equal.

Proof. TF is a self-adjoint extension of the operator T . Now apply Theorem 2.2.11.
�

Exercise 2.4.17 implies an important lower bound of the spectrum of the
Friedrichs extension:

Corollary 4.3.6. Let T ≥ β be as in Theorem 4.3.1 and TF the consequent Fried-
richs extension. Then σ(TF ) ⊂ [β,∞).

However, Example 4.4.13 presents another self-adjoint extension of a lower
bounded hermitian operator T with the same spectrum of TF .

In case the Hilbert space is L2(Rn), one can anticipate an important result
if Corollary 6.3.5 is invoked:



4.3. Friedrichs Extension 109

Corollary 4.3.7. If there is β ∈ R so that V ∈ L2
loc(R

n) satisfies V (x) ≥ β,
∀x ∈ Rn, then the Friedrichs extension of the standard Schrödinger operator

dom H = C∞0 (Rn), Hψ = −Δψ + V ψ, ψ ∈ dom H,

is the unique self-adjoint extension of H.

If T ∈ B(H), then T ∗T is self-adjoint and positive. Form extensions will be
used to adapt this result to a more general case. Recall that dom (T ∗T ) := {ξ ∈
dom T : (Tξ) ∈ dom T ∗} and (T ∗T )ξ = T ∗(Tξ). However, it can happen that
dom (T ∗T ) is not dense in H. See Example 2.1.5; another classical example is the
following.
Example 4.3.8 (dom T ∗ is not dense in H). Let H = L2(R), 0 
= ψ0 ∈ H, φ(x) =
1, ∀x ∈ R and dom T := {ψ ∈ H :

∫
R
|ψ|dx < ∞}. Write 〈φ, ψ〉 =

∫
R
ψdx, and

define
(Tψ)(x) := 〈φ, ψ〉ψ0(x), ψ ∈ dom T.

Thus, if u ∈ dom T ∗, then for every ψ ∈ dom T one has

〈T ∗u, ψ〉= 〈u, Tψ〉 = 〈u, 〈φ, ψ〉ψ0〉
= 〈φ, ψ〉〈u, ψ0〉 = 〈〈ψ0, u〉φ, ψ〉 .

Hence, (T ∗u)(x) = 〈ψ0, u〉φ(x), and it belongs to H iff 〈ψ0, u〉 = 0. Thus,
dom T ∗ ⊂ {ψ0}⊥ and it is not dense in H. Furthermore, for u ∈ dom T ∗ one
has T ∗u = 0.

However, if T is closed a remarkable result of von Neumann is found.

Proposition 4.3.9. Let T be a closed operator with dom T � H. Then dom (T ∗T ) �
H, T ∗T is a positive self-adjoint operator and dom T is the form domain of T ∗T .

Proof. Since T is closed, by taking the form

b(ξ, η) := 〈ξ, η〉T = 〈Tξ, T η〉+ 〈ξ, η〉

as the inner graph product, it follows that (H+, b+) = (dom T, b) is a Hilbert space
and b(ξ) = ‖ξ‖T ≥ ‖ξ‖, ∀ξ ∈ dom T . Thus, by Theorem 4.2.6 the operator Tb
associated with b is self-adjoint, Tb ≥ 1,

dom Tb = {ξ ∈ dom T : ∃φ ∈ Hwith b(η, ξ) = 〈η, φ〉, ∀η ∈ dom T }

and Tbξ = φ. Explicitly, ξ ∈ dom Tb iff for all η ∈ dom T ,

〈Tη, T ξ〉+ 〈η, ξ〉 = b(η, ξ) = 〈η, Tbξ〉,

so that
〈Tη, T ξ〉 = 〈η, (Tb − 1)ξ〉, ∀η ∈ dom T.

Therefore, ξ ∈ dom Tb iff Tξ ∈ dom T ∗ and T ∗(Tξ) = (Tb − 1)ξ, that is,
T ∗T = Tb − 1 is self-adjoint and positive. By Theorem 4.2.6, dom Tb is dense
in (dom T, b), and it follows that dom (T ∗T ) is dense in (dom T, b). By construc-
tion, the form domain of T ∗T is dom T . �
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Although the next result could be obtained directly from general theorems,
it is worth presenting a specific short proof.

Corollary 4.3.10. If T is self-adjoint, then for all n ∈ N the operator T 2n

is positive
and self-adjoint. In particular T 2 is self-adjoint.

Proof. If T j is self-adjoint, Proposition 4.3.9 implies that T 2j is self-adjoint; use
recursion in j starting from j = 1. �

Proposition 4.3.11. Let T be closed and densely defined.

i) Then dom (T ∗T ) is a core of T .
ii) If T is self-adjoint, then T 2 is self-adjoint and dom T 2 is a core of T .

Proof. i) In the graph inner product of T , let

(η, T η) ∈ {(ξ, T ξ) : ξ ∈ dom (T ∗T )}⊥ .

Thus 0 = 〈ξ, η〉 + 〈Tξ, T η〉 = 〈(1 + T ∗T )ξ, η〉. Since T ∗T is a positive self-adjoint
operator, −1 ∈ ρ(T ∗T ) and so rng (T ∗T + 1) = H. Hence η = 0 and, by Exer-
cise 1.2.26 (or Exercise 2.5.10), dom (T ∗T ) is a core of T .

ii) Combine Corollary 4.3.10 with i). �

Remark 4.3.12. The following property is attractive. If T is self-adjoint and
dom T 2 = dom T , then T is bounded.

Proof. Clearly dom T 2 ⊂ dom T and we introduce the notation h = (dom T, ‖ ·
‖T ), which is a Hilbert space since T is closed. Pay attention to the following facts:

1. T − i1 : h → (H, ‖ · ‖) is bounded. Indeed, for ξ ∈ dom T , ‖(T − i1)ξ‖2 =
‖ξ‖2 + ‖Tξ‖2 = ‖ξ‖2

T .
2. Since dom T 2 = dom T one has Tdom T ⊂ dom T and so the linear mapping

Ri(T ) : (dom T, ‖ · ‖) → h

is bounded. Indeed, for ξ ∈ dom T use triangular inequality to get

‖Ri(T )ξ‖2
T = ‖Ri(T )ξ‖2 + ‖TRi(T )ξ‖2

≤ ‖ξ‖2 + ‖(T − i1)Ri(T )ξ + iRi(T )ξ‖2 ≤ 5‖ξ‖2.

3. Since dom T 2 = dom T , define

T̃ : h → h, T̃ ξ := Tξ,

which is a closed operator; indeed, if ξn
h−→ ξ and Tξn

h−→ η, then ξ ∈
dom T , Tξn

H−→ Tξ, Tξn
H−→ η, so that η = Tξ. Hence, T̃ is bounded by the

closed graph theorem.
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Now observe that T : (dom T, ‖ · ‖) → (H, ‖ · ‖) can be written in the form

T = (T − i1) T̃ Ri(T ),

which shows that T is bounded. �

Exercise 4.3.13. Let T be a closed hermitian operator with dom T 2 dense in H.
Show that T ∗T is the Friedrichs extension of T 2.
Exercise 4.3.14. Let dom a = {ψ ∈ L2(R) : ψ ∈ AC(R), ψ′ + xψ ∈ L2(R)},
aψ = ψ′ + xψ, ψ ∈ dom a. Show that a is a closed operator and that its adjoint
is dom a∗ = {ψ ∈ L2(R) : ψ ∈ AC(R),−ψ′ + xψ ∈ L2(R)}, a∗ψ = −ψ′ + xψ,
ψ ∈ dom a∗. Find the operator a∗a and relate it to the harmonic oscillator. a∗, a
are called creation and annihilation operators, respectively.
Exercise 4.3.15. If T is self-adjoint and E is a dense subspace of H, show that
Ri(T )E is also dense in H. Observe that dom T n+1 = Ri(T )dom T n for all n ∈ N,
and conclude that dom T n is dense in H.
Exercise 4.3.16. Let T be a closed operator with dom T � H. Choose ξ′ = 0
in Exercise 2.1.21 and work to show that (1 + T ∗T )−1 is a bounded self-adjoint
operator. Conclude that T ∗T is self-adjoint. This is a sketch of a proof of the first
part of Proposition 4.3.9 without using forms.

4.4 Examples

Example 4.4.1. Let ϕ : R → [0,∞) be a Borel function and T = Mϕ ≥ 0 the
subsequent self-adjoint multiplication operator in L2(R), as in Subsection 2.3.2.
The sesquilinear form generated by T is dom bT = dom Mϕ,

bT (ψ, φ) = 〈ψ,Mϕφ〉 =
∫

R

ψ(x)ϕ(x)φ(x) dx.

By writing

bT (ψ, φ) =
∫

R

ϕ(x)
1
2ψ(x) ϕ(x)

1
2φ(x) dx

one has
〈ψ, φ〉+ = 〈M√

ϕψ,M√
ϕφ〉 + 〈ψ, φ〉, ψ, φ ∈ dom T,

which is the graph inner product of M√
ϕ restricted to dom T . Now, it is possible to

show (Lemma 4.4.2) that dom Mϕ is dense in dom M√
ϕ and since the operator

M√
ϕ is closed, it follows that bT+ = 〈·, ·〉+ and HT

+ is the domain of M√
ϕ. In

summary, the form domain of the positive self-adjoint operator Mϕ (so equal to
its Friedrichs extension) is dom M√

ϕ. Note that, for general function ϕ, dom T =
dom Mϕ is a proper subset of HT

+ = dom M√
ϕ. Later on this will be generalized

(see Section 9.3).
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Lemma 4.4.2. Consider all symbols as in Example 4.4.1. In both spaces, H and
H+ = (dom M√

ϕ, 〈·, ·〉M√
ϕ
), one has dom Mϕ � dom M√

ϕ (see also general
arguments in Proposition 4.3.11).

Proof. If ψ ∈ dom Mϕ then, by Cauchy-Schwarz,

‖√ϕψ‖2 =
∫
E

ψ(x)ϕ(x)ψ(x) dμ(x) ≤ ‖ψ‖‖ϕψ‖ <∞,

and dom Mϕ ⊂ dom M√
ϕ.

Given ψ ∈ dom M√
ϕ, for each positive integer n set En = {x ∈ E : 0 ≤

ϕ(x) ≤ n} and ψn(x) = χEn(x)ψ(x). Then ψn ∈ dom Mϕ and

‖√ϕ (ψn − ψ)‖2 =
∫
E

ϕ(x) |1 − χEn(x)|2 |ψ(x)|2 dμ(x)

which vanishes as n → ∞, by the dominated convergence theorem. In a similar
way one checks that ψn → ψ in H, that is, in this space dom Mϕ is dense in
dom M√

ϕ.
Taking these two convergences together, it follows that

‖ψn − ψ‖2
+ = ‖√ϕ (ψn − ψ)‖2 + ‖ψn − ψ‖2 n→∞−→ 0,

which shows that dom Mϕ is dense in dom M√
ϕ in H+. �

The next examples indicate that occasionally the Friedrichs extension natu-
rally allocates boundary conditions.
Example 4.4.3. Let dom P = {ψ ∈ H1[0, 1] : ψ(0) = 0 = ψ(1)}, Pψ = −iψ′, and
H = P 2, with

dom H = {ψ ∈ dom P : Pψ ∈ dom P}
= {ψ ∈ H2[0, 1] : ψ(0) = ψ(1) = 0 = ψ′(0) = ψ′(1)},

and Hψ = −ψ′′. P is a closed hermitian operator and its adjoint has the same
action but with domain dom P ∗ = H1[0, 1]. Therefore, by Proposition 4.3.9, P ∗P
is self-adjoint,

dom P ∗P = {ψ ∈ H1[0, 1] : ψ(0) = 0 = ψ(1), ψ′ ∈ H1[0, 1]}
= {ψ ∈ H2[0, 1] : ψ(0) = 0 = ψ(1)}.

By results of Section 4.3, P ∗P is the Friedrichs extension of H , i.e., P ∗P = HF .
This is the unique self-adjoint extension of the free particle energy operator TD in
[0, 1], Example 2.3.5, with Dirichlet boundary conditions. This is a general feature
of the Friedrichs extension of differential operators, that is, it corresponds to the
Dirichlet boundary conditions; see other examples below.
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Exercise 4.4.4. Show that the unique self-adjoint extension of the free particle
energy operator TP in [0, 1], with periodic boundary conditions of Example 2.3.7,
is the Friedrichs extension of P 2, where dom P = {ψ ∈ H1[0, 1] : ψ(0) = ψ(1)},
Pψ = −iψ′. Find the domain of this extension.
Example 4.4.5. [Energy operator on [0, 1]] Set H = L2[0, 1], dom H = C∞0 (0, 1),

(Hψ)(x) := −ψ′′(x) + V (x)ψ(x),

with V : [0, 1] → [0,∞) continuous. Consider the form generated by this operator,
that is, bH : dom H × dom H → C, bH(ψ, φ) := 〈ψ,Hφ〉. Thus

bH(ψ, ψ) =
∫ 1

0

ψ(x) (−ψ′′(x) + V (x)ψ(x)) dx

=
∫ 1

0

(
|ψ′(x)|2 + V (x)|ψ(x)|2

)
dx ≥ β‖ψ‖2,

with 0 ≤ β = minx∈[0,1] V (x). Thus H ≥ β1.
Let HF be the Friedrichs extension ofH ; so dom HF ⊂ HH

+ . For ψ ∈ dom H ,
by Cauchy-Schwarz one has

|ψ(x) − ψ(0)|=
∣∣∣∣∫ x

0

ψ′(t)dt
∣∣∣∣ ≤ |x| 12

(∫ x

0

|ψ′(t)|2 dt
) 1

2

≤ |x| 12 bH(ψ, ψ)
1
2 .

Since ψ(0) = 0 one has

‖ψ‖∞ = sup
x∈[0,1]

|ψ(x)| ≤ bH(ψ, ψ)
1
2 ≤ 〈ψ, ψ〉

1
2
+;

thus each Cauchy sequence according to either bH(·, ·) or 〈·, ·〉+ norm converges
uniformly, and so its limit is also continuous and vanishing at the boundary. Then
this holds for every element of the complete space HH

+ , in particular for the ele-
ments of dom HF . Therefore, null Dirichlet boundary conditions ψ(0) = 0 = ψ(1)
hold in dom HF . Note that the result is in fact valid for more general positive
potentials V (x).
Exercise 4.4.6. Let H = L2[0, 1], V : [0, 1] → [0,∞) continuous, dom b = {ψ ∈
H1[0, 1] : ψ(0) = 0 = ψ(1)} and, for φ, ψ ∈ dom b,

b(φ, ψ) = 〈φ′, ψ′〉 + 〈φ, V ψ〉

Based on Example 4.2.12, show that b is a positive closed form whose respective
associated operator is dom Tb = {ψ ∈ H2[0, 1] : ψ(0) = 0 = ψ(1)}, Tbψ = −ψ′′ +
V ψ, ψ ∈ dom Tb. Show that b here is the closure of the form b in Example 4.4.5,
and conclude that Tb is the Friedrichs extension HF of the operator H in that
example.
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Example 4.4.7. Let H = L2[0, 1], p, V : [0, 1] → R continuous functions, with
p(x) ≥ 0, ∀x ∈ [0, 1], and continuous derivative p′. Given a ≥ 0, consider the
operator

dom T = {ψ ∈ H2[0, 1] : ψ(0) = 0, ψ′(1) = −aψ(1)},
(Tψ)(x) = −[pψ′]′(x) + V (x)ψ(x), ψ ∈ dom T.

Integrations by parts show that T is hermitian, and since

〈ψ, Tψ〉= a p(1)|ψ(1)|2 +
∫ 1

0

p(x)|ψ′(x)|2 dx+
∫ 1

0

V (x)|ψ(x)|2 dx

≥
∫ 1

0

V (x)|ψ(x)|2 dx ≥ β‖ψ‖2, β = inf{V (x) : x ∈ [0, 1]},

it follows that T ≥ β1. Therefore, this operator has a self-adjoint extension TF ,
its Friedrichs extension, and TF ≥ β1. In particular σ(TF ) ⊂ [β,∞).

Example 4.4.8. Let Tα, Tτ be operators as introduced in Example 4.2.15 and as-
sume that α0 
= τ0, α1 
= τ1 (recall that they are not zero). Consider the operator
sum (Tα + Tτ )/2, whose domain is

dom (Tα/2) ∩ dom (Tτ/2) =
{
ψ ∈ H2[0, 1] :

ψ′(0) =
α0

2
ψ(0) =

τ0
2
ψ(0), ψ′(1) = −α1

2
ψ(1) = −τ1

2
ψ(1)

}
= {ψ ∈ H2[0, 1] : ψ(0) = 0 = ψ(1), ψ′(0) = 0 = ψ′(1)}.

Since the situation is very similar to Exercise 4.2.14 and Example 4.4.3, one con-
cludes that (Tα + Tτ )/2 ≥ 0 and the domain of its Friedrichs extension ((Tα +
Tτ )/2)F carries Dirichlet boundary conditions, i.e., ψ(0) = 0 = ψ(1). Therefore

Tα
2

+̇
Tτ
2


=
(
Tα
2

+
Tτ
2

)
F

;

see Example 4.2.15.

Example 4.4.9. [Schrödinger operator with delta-function potential] Let c > 0 and
δ(x) be the Dirac delta at the origin (see also Example 6.2.16 and Subsection 7.4.2).
A way to interpret the formal energy operator (in L2(R))

T c = − d2

dx2
+ c δ(x),

under this δ potential with positive intensity c, is to consider a suitable domain
for T c, which contains all information on δ(x), and then construct a self-adjoint
extension via sesquilinear forms (see Example 4.1.15). Physically, δ(x) models a
very strong (positive) interaction concentrated at the origin.



4.4. Examples 115

As a guide for defining such domain, for ε > 0 integrate T cψ formally∫ ε

−ε
(T cψ)(x) dx=

∫ ε

−ε
−ψ′′(x) dx +

∫ ε

−ε
c δ(x)ψ(x) dx

= ψ′(−ε) − ψ′(ε) + c ψ(0).

The term cψ(0) induces 1. below. If the function (T cψ) is bounded (so 3. below),
then as ε→ 0+ one gets

0 = ψ′(0−) − ψ′(0+) + c ψ(0),

and so 2. below. Based on this motivating digression, define dom T c as the set of
ψ ∈ H2(R \ {0}) obeying

1. ψ is continuously extended at zero, that is, ψ(0+) = ψ(0−) := ψ(0);
2. ψ′(0+) − ψ′(0−) = cψ(0);
3. ψ′′(0+) − ψ′′(0−) is finite.

This set dom T c contains C∞0 (R \ {0}) and so is dense in L2(R). Finally define

T cψ := −ψ′′, ψ ∈ dom T c.

For ψ, φ ∈ dom T c one has, after integration by parts,

bT
c

(ψ, φ) = 〈ψ, T cφ〉 = −
∫ 0−

−∞
ψ(x)φ′′(x) dx −

∫ ∞

0+
ψ(x)φ′′(x) dx

= ψ(0+)φ′(0+) − ψ(0−)φ′(0−) +
∫

R

ψ′(x)φ′(x) dx

= c ψ(0)φ(0) + 〈ψ′, φ′〉 = 〈ψ′, φ′〉 + c bδ(ψ, φ),

where bδ is the form in Example 4.1.15. Two important conclusions follow. First,
the form bT

c

(ψ, φ) is the sum

bT
c

(ψ, φ) = 〈ψ′, φ′〉 + c bδ(ψ, φ),

supporting the interpretation of the presence of a δ potential with intensity c > 0.
Second, another integration by parts shows that T c is hermitian, and for ψ = φ
one has

〈ψ, T cψ〉 = c |ψ(0)|2 + ‖ψ′‖2,

so that T c is a positive operator. Therefore, it has a (Friedrichs) self-adjoint ex-
tension T cF , a candidate for the energy operator in this situation.

Note that if ψ is in the domain of this Friedrichs extension and it is meaningful
to write u = −ψ′′ + cδψ = −ψ′′ + cψ(0), then such functions ψ have a slope
discontinuity at the origin equal to cψ(0), so that u ∈ L2(R) even if ψ′′ and the
constant function cψ(0) do not.
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Exercise 4.4.10. Consider again the formal operator

T c = − d2

dx2
+ c δ(x),

as in Example 4.4.9. A possible way to address the problem of getting a well-
defined self-adjoint operator is to note that formally on the set

E = {ψ ∈ H2(R) : ψ(0) = 0},

T c coincides with T0 = −d2/dx2. Show that T0 with dom T0 = E is hermitian, that
its adjoint has the same action but with dom T0

∗ = {ψ ∈ H2(R \ {0}) : ψ(0−) =
ψ(0+)}. Check that its deficiency indices are both equal to 1; the corresponding
self-adjoint extensions should contain the rigorous definition of T c for any c ∈ R.
Example 4.4.11. The derivative of the Dirac delta δ′(x) acts formally as∫

δ′(x)ψ(x)dx = −ψ′(x).

Here a construction will be discussed so that it becomes meaningful to talk about
the energy operator, in L2(R),

Sc = − d2

dx2
+ c δ′(x), c < 0.

Physically δ′(x) would model a very strong interaction concentrated at the origin
but of positive intensity on the left and of negative intensity on the right, something
like a dipole concentrated at the origin (think of the derivative of a function that
approximates δ(x), which has a positive peak on the left and a negative one on
the right).

Introduce dom Sc as the set of elements ψ ∈ H2(R \ {0}) obeying ψ′(0+) =
ψ′(0−) (both lateral limits do exist), so it becomes meaningful to talk about
ψ′(0) := ψ′(0+) and (a formal integration imposes) ψ(0+) − ψ(0−) = −cψ′(0).
This subspace is dense in L2(R) since it contains C∞0 (R \ {0}). On dom Sc define
the sesquilinear form

bδ′(ψ, φ) := −ψ′(0)φ′(0),

heuristically corresponding to a δ′ potential. Finally, define on dom Sc the operator
and subsequent sesquilinear form

Scψ := −ψ′′, bS
c

(ψ, φ) := 〈ψ, Scφ〉.

On integrating by parts it is found that Sc is hermitian and

bS
c

(ψ, φ) = 〈ψ′, φ′〉 + c bδ′(ψ, φ),

so that
bS

c

(ψ, ψ) = −c|ψ′(0)|2 + ‖ψ′‖2
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and Sc is positive for c < 0. Its Friedrichs extension ScF is a candidate for the
energy operator in this situation. Additional information about δ′ potential can
be obtained from [Še86] and [ExNZ01].
Exercise 4.4.12. Show that Sc in Example 4.4.11 is hermitian and positive.
Example 4.4.13. Let H = L2[0, 1],

dom T0 = {ψ ∈ H2[0, 1] : ψ(0) = ψ(1) = 0 = ψ′(0) = ψ′(1)},
dom T1 = {ψ ∈ H2[0, 1] : ψ(0) = 0 = ψ(1)},

Tjψ= −ψ′′, ψ ∈ dom Tj, j = 0, 1.

Then dom T ∗0 = H2[0, 1], T0 is hermitian, lower bounded, with deficiency indices
n− = n+ = 2 (see Example 2.6.8), and the Friedrichs extension of T0 is TF = T1.
In fact, observe that T0 = P 2, with P as in Example 4.4.3 and T1 = P ∗P .

The eigenvectors of TF form an orthogonal basis of H and its spectrum is
{(nπ)2 : n = 1, 2, 3, . . .} (see Example 2.3.5). Then TF ≥ π21, and the constant
π2 cannot be increased. Check this, for instance, by considering an eigenfunction
(of TF ) expansions.

Note, however, that the operator

dom T2 =
{
ψ ∈ H2[0, 1] : ψ(0) = −ψ(1), ψ′(0) = −ψ′(1)

}
,

T2ψ = −ψ′′, is another self-adjoint extension of T0, with the same spectrum as
TF , and so with the same lower bound π2. Therefore, the sole lower bound is
not enough to characterize the Friedrichs extension of lower bounded hermitian
operators.
Exercise 4.4.14. Fill in the missing details in Example 4.4.13.
Exercise 4.4.15. This is closely related to Example 2.3.19. The Hilbert space is
H = L2[0,∞),

dom T =
{
ψ ∈ H2[0,∞) : ψ(0) = 0, ψ′(0) = 0

}
,

and Tψ = −ψ′′.

1. Check that this operator is hermitian and positive.
2. Show that its deficiency indices are n− = n+ = 1 and that its self-adjoint

extensions Tc have the same operator action as T but with domain labeled
by c ∈ R ∪ {∞} with

dom Tc =
{
ψ ∈ H2[0,∞) : ψ(0) = cψ′(0)

}
, c ∈ R,

and ψ′(0) = 0 for c = ∞.
3. Find the Friedrichs extension TF of T and conclude that it corresponds to
c = 0, i.e., the Dirichlet boundary condition is selected.
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4.4.1 Hardy’s Inequality

An important inequality will be used in the next example. It has versions for Rn,
n > 3, but with constants different from 1/4 in Lemma 4.4.16; see Exercise 4.4.21
for n = 1.

Lemma 4.4.16 (Hardy’s Inequality). For ψ ∈ H1(R3) (in particular for ψ ∈
C∞0 (R3)) ∫

R3
|∇ψ(x)|2 dx ≥ 1

4

∫
R3

|ψ(x)|2
|x|2 dx.

Proof. By considering the real and imaginary parts of functions, it is possible to
restrict the argument to real-valued ψ. Consider first ψ ∈ C∞0 (R3).

For x = (x1, x2, x3) ∈ R3 denote r = |x| (standard norm in R3), and recall
that in spherical coordinates (r, θ, ϕ) one has dx = r2 sin θ drdθdϕ. For real-valued
ψ ∈ C∞0 (R3) set φ = r

1
2ψ, so that

|(∇ψ)(x)|2 = (∂1ψ)2 + (∂2ψ)2 + (∂3ψ)2

=
1
r
|∇φ|2 − 1

r2
∂(φ2)
∂r

+
1

4r3
(φ2).

Since φ(0) = 0 and there exists R > 0 so that φ(x) = 0 if r ≥ R, then∫
R3

1
r2
∂(φ2)
∂r

dx=
∫ 2π

0

∫ π

0

sin θ dθdϕ
∫ R

0

∂(φ2)
∂r

dr

= π
(
φ(R)2 − φ(0)2

)
= 0.

Therefore ∫
R3

|∇ψ|2 dx ≥ 1
4

∫
R3

1
r3
φ2 dx =

1
4

∫
R3

1
r2
ψ2 dx,

which implies the desired inequality in case ψ ∈ C∞0 (R3).
For ψ ∈ H1(R3), take a sequence (ψj)j ⊂ C∞0 (R3) with ψj → ψ in H1(R3);

thus both ψj → ψ and (the components of) ∇ψj → ∇ψ in L2(R3), and the
inequality follows for all ψ ∈ H1(R3). �

Exercise 4.4.17. Inspect the proof of Hardy’s inequality to show that equality
holds for ψ ∈ C∞0 (R3) iff ψ = 0.
Remark 4.4.18. There is a version of Hardy’s inequality in Rn, n ≥ 3, that holds
for all ψ ∈ H1(Rn) and takes the form∫

Rn

|∇ψ(x)|2 dx ≥ (n− 2)2

4

∫
Rn

|ψ(x)|2
|x|2 dx,

and the constant (n − 2)2/4 is the best possible for all ψ ∈ C∞0 (Rn) [Sh31],
[KaSW75].
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Example 4.4.19. [The Friedrichs Extension for the 3D hydrogen atom] Let H =
L2(R3) and consider dom H = C∞0 (R3) and

(Hψ)(x) = − �2

2m
(Δψ)(x) − α

e2

|x|ψ(x), ψ ∈ dom H,

with α > 0. This is related to the quantum three-dimensional (briefly 3D) hydrogen
atom energy operator (with some physical constants included: Planck constant �,
electron mass m and charge −e). Integration by parts shows that H is hermitian
and, together with Lemma 4.4.16 that, for real-valued ψ ∈ dom H ,

〈ψ,Hψ〉 =
∫

R3

(
�2

2m
|∇ψ(x)|2 − α

e2

|x|ψ(x)2
)
dx

≥
∫

R3

(
�2

8m
1

|x|2 − α
e2

|x|

)
ψ(x)2 dx.

Now pick a > 0 so that

αe2

|x| ≤ �2

8m|x|2 + a, ∀x 
= 0.

Thus
〈ψ,Hψ〉 ≥ −a

∫
R3
ψ(x)2 dx = −a‖ψ‖2.

For ψ = ψ1 + iψ2 ∈ dom H, with ψ1, ψ2 real-valued, one gets

〈ψ,Hψ〉= 〈ψ1, Hψ1〉 + i〈ψ1, Hψ2〉 − i〈ψ2, Hψ1〉 + 〈ψ2, Hψ2〉
= 〈ψ1, Hψ1〉 + 〈ψ2, Hψ2〉
≥−a‖ψ1‖2 − a‖ψ2‖2 = −a‖ψ‖2,

and the same relation holds for all elements of dom H . Therefore, it follows that
H ≥ −a1 and H has the self-adjoint Friedrichs extension HF . Further, HF ≥ −a1
and its spectrum σ(TF ) is lower bounded.
Remark 4.4.20. By using results of Rellich, in the 1950s Tosio Kato showed that H
in Example 4.4.19 with domain C∞0 (R3) is essentially self-adjoint; this is discussed
in Example 6.2.3.
Exercise 4.4.21. Let ψ be a real-valued element of C∞0 (R \ {0}) or C∞0 (0,∞). On
integrating by parts ∫

ψ(x)2
1
x2
dx,

and then applying Cauchy-Schwarz, conclude the Hardy’s inequality

1
4

∫ (
ψ(x)
x

)2

dx ≤
∫
ψ′(x)2 dx.

The integrations are over R or [0,∞), respectively.



Chapter 5

Unitary Evolution Groups

Unitary evolution groups are in one-to-one correspondence with self-adjoint op-
erators. They are also responsible for the time evolution of quantum states, that
is, the solutions of Schrödinger equations. In this chapter such relations are de-
scribed in detail, including standard examples of unitary evolution groups and
infinitesimal generators. Different continuity assumptions on the unitary groups
are discussed.

5.1 Unitary Evolution Groups

A major interest here is in solutions of the initial value problem

i
dξ

dt
(t) = Tξ(t), ξ(0) = ξ ∈ dom T,

for T : dom T � H → H a linear self-adjoint operator, with t playing the role of
time. In quantum mechanics this equation is known as the Schrödinger equation
and it rules the dynamics in quantum mechanics; in this setting T corresponds
to the total system energy. The imaginary factor i imposes that the solutions of
this problem are via unitary operators, as discussed below. A mathematical and
physical pertinent question is about the behavior of ξ(t) for large values of t; this
will be one of the main concerns of this text, but first the existence of solutions
must be addressed.

Sometimes integrals of vector and operator-valued functions will be used;
they can be defined via limits of Riemann sums in a similar way to the usual
Riemann integral. Since their definitions and properties are quite similar to the
ordinary case, no attempt will be made to present details of this theory.

Definition 5.1.1. A map G : R → B(H) is a one-parameter unitary evolution
group, or simply a unitary evolution group, on H if G(t) is a unitary operator
onto H and G(t+ s) = G(t)G(s), ∀t, s ∈ R.
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Note that G(0)G(t) = G(t), so G(0) = 1, G(−t) = G(t)−1 = G(t)∗, ∀t ∈ R,
and the map t �→ G(t) is a representation of the abelian group R in B(H).

Definition 5.1.2. If G(t) is a unitary evolution group, the operator T defined by

dom T :=
{
ξ ∈ H : ∃ lim

h→0

1
h

(G(h) − 1) ξ
}
,

that is, ξ ∈ dom T iff t �→ G(t)ξ is differentiable at t = 0,

Tξ := i lim
h→0

1
h

(G(h) − 1) ξ, ξ ∈ dom T,

is called the infinitesimal generator of G(t) (note that dom T is actually a vector
subspace of H and T is uniquely defined).

Since for each t ∈ R the operatorG(t) is unitary, so continuous, for ξ ∈ dom T
take h→ 0 in

1
h

[G(h) − 1]G(t)ξ =
1
h

[G(t+ h)ξ −G(t)ξ] = G(t)
1
h

(G(h) − 1)ξ,

to conclude that G(t)(dom T ) ⊂ dom T , ∀t ∈ R; apply G(−t) to this inclusion
and conclude that G(t)(dom T ) = dom T . Explicitly, for h→ 0 one gets

G(t)Tξ = TG(t)ξ, ∀t ∈ R, ξ ∈ dom T.

The parameter t is not necessarily time; some examples in this chapter will
point out the richness of other possibilities. The case of t actually representing
time is very important in quantum mechanics and, as already mentioned, in this
case the infinitesimal generator is the operator corresponding to the total quantum
energy; see Example 5.4.1. So the terminology “evolution groups.”

Proposition 5.1.3. Let t �→ G(t) be a unitary evolution group. Then its infinitesimal
generator T is symmetric and for ξ ∈ dom T the curve ξ(t) := G(t)ξ in H is the
unique solution of

i
dξ

dt
(t) = Tξ(t), ξ(0) = ξ.

Proof. Since by definition

dξ

dt
(t) := lim

h→0

1
h

[G(t+ h)ξ −G(t)ξ] ,

the preceding discussion has already shown that ξ(t) is a solution of this initial
value problem. For ξ, η ∈ dom T one has

〈Tξ, η〉= lim
h→0

〈
i
G(h) − 1

h
ξ, η

〉
= −i lim

h→0

1
h
〈(G(h) − 1) ξ, η〉

=−i lim
h→0

1
h
〈ξ, (G(−h) − 1) η〉

= lim
h→0

〈
ξ, i

G(−h) − 1
−h η

〉
= 〈ξ, T η〉,
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and so T is a symmetric operator. For the uniqueness of the solution of the initial
value problem, let η(t) be another solution to the problem; then, for all t,

d

dt
‖ξ(t) − η(t)‖2 = 2Re

〈
[ξ(t) − η(t)],

d

dt
[ξ(t) − η(t)]

〉
= 2Re 〈[ξ(t) − η(t)],−iT [ξ(t) − η(t)]〉 = 0

since T is symmetric (thus, 〈φ, Tφ〉 ∈ R, ∀φ ∈ dom T ). So ‖ξ(t)−η(t)‖ is constant,
and owing to ξ(0) − η(0) = 0, it is found that ξ(t) = η(t) for all t ∈ R. �

It is interesting to observe that, according to Proposition 5.1.3, the infinites-
imal generator of a unitary evolution group G(t) is symmetric with no explicit
continuity assumption on G(t). Now suitable continuity properties will be required
and some of their consequences explored.

Definition 5.1.4. Let G(t) be a unitary evolution group acting on H. Then the
map t �→ G(t) is

a) norm (or uniformly) continuous if in B(H) one has limt→t0 ‖G(t)−G(t0)‖ =
0, ∀t0 ∈ R.

b) strongly continuous if limt→t0 G(t)ξ = G(t0)ξ, ∀t0 ∈ R, ∀ξ ∈ H.
c) weakly continuous if limt→t0〈G(t)ξ, η〉 = 〈G(t0)ξ, η〉, ∀t0 ∈ R, ∀ξ, η ∈ H.
d) measurable if the map R � t �→ 〈G(t)ξ, η〉 is (Lebesgue) measurable ∀ξ, η ∈

H.

Exercise 5.1.5. By using basic properties of G(t) discussed at the beginning of
this section, show that it is enough to consider only t0 = 0 in items a), b) and c)
of Definition 5.1.4.
Example 5.1.6. Let ϕ : E → R be a measurable function and bounded on each
bounded subset of the open set E ⊂ Rn; by Corollary 2.3.25, Mϕ is self-adjoint.
Consider U(t) = e−itϕ(x) := Me−itϕ , t ∈ R, acting on L2

μ(E), which is a unitary
evolution group (check this!).

For ψ ∈ L2
μ(E), it follows by the dominated convergence theorem that

lim
h→0

‖U(h)ψ − ψ‖2 = lim
h→0

∫
E

∣∣∣e−ihϕ(x) − 1
∣∣∣2 |ψ(x)|2 dμ(x) = 0.

Hence U(t) is strongly continuous.
Now let T be the infinitesimal generator of U(t), which is symmetric by

Proposition 5.1.3. If ψ ∈ dom Mϕ, then∥∥∥∥ ih (U(h)ψ − ψ) −Mϕψ

∥∥∥∥2

=
∫
E

∣∣∣∣ ih (e−ihϕ(x) − 1) − ϕ(x)
∣∣∣∣2 |ψ(x)|2 dμ(x).

Since |eiy − 1| ≤ |y| for y ∈ R,∣∣∣∣ ih (e−ihϕ(x) − 1) − ϕ(x)
∣∣∣∣ ≤ ∣∣∣∣ 1h (e−ihϕ(x) − 1)

∣∣∣∣+ |ϕ(x)| ≤ 2 |ϕ(x)| ,
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and by dominated convergence one finds that

lim
h→0

∥∥∥∥ ih (U(h)ψ − ψ) −Mϕψ

∥∥∥∥ = 0

and so ψ ∈ dom T and Tψ = Mϕψ, that is, Mϕ ⊂ T . Since T is symmetric and
Mϕ self-adjoint, one has Mϕ = T (see Exercise 2.1.19). By Proposition 5.1.3,
U(t)ψ = e−itϕ(x)ψ is a solution of

i
dψ

dt
(t) = Mϕψ(t), ψ(0) = ψ ∈ dom Mϕ,

and the unique one.

Proposition 5.1.7. If G(t) is a unitary evolution group on the Hilbert space H,
then b), c) and d) in Definition 5.1.4 are equivalent.

Proof. Recall that due to the group property it is enough to take t0 = 0 in b), c);
also, H is separable (it is known that d) ⇒ c) may not hold if H is not separable).

• b) ⇒ c) ⇒ d) They are clear from the definitions.
• c) ⇒ b) One has

‖G(t)ξ − ξ‖2 = ‖G(t)ξ‖2 + ‖ξ‖2 − 〈G(t)ξ, ξ〉 − 〈ξ,G(t)ξ〉
= 2‖ξ‖2 − 〈G(t)ξ, ξ〉 − 〈ξ,G(t)ξ〉,

and if c) holds then 〈ξ,G(t)ξ〉 → ‖ξ‖2 as t → 0 and so ‖G(t)ξ − ξ‖ → 0, that is,
b) holds.

• d) ⇒ c) This is a rather surprising result of von Neumann. Pick ξ ∈ H.
Since t �→ 〈G(t)ξ, η〉 is measurable and |〈G(t)ξ, η〉| ≤ ‖ξ‖ ‖η‖, given s > 0 it is
possible to use integration to define the linear functional f : H → C by

f(η) =
∫ s

0

〈G(t)ξ, η〉 dt, ∀η ∈ H,

which is continuous since |f(η)| ≤ s‖ξ‖ ‖η‖; thus, by Riesz’s Representation 1.1.40,
there is ξs ∈ H so that

〈ξs, η〉 =
∫ s

0

〈G(t)ξ, η〉 dt, ∀η ∈ H.

Note that ‖ξs‖ = ‖f‖ ≤ s‖ξ‖. A similar construction defines ξs for s ≤ 0.
Denote by S the subspace

S = Lin ({ξs ∈ H : ξ ∈ H, s ∈ R}) .

The next step is to show that S is dense in H. Let {ξj}j be a countable orthonormal
basis of H and take ζ ∈ S⊥. Thus, for all s ∈ R,

0 = 〈ξjs , ζ〉 =
∫ s

0

〈G(t)ξj , ζ〉 dt
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and so 〈G(t)ξj , ζ〉 = 0 Lebesgue a.e. in R, say for t ∈ Aj and Aj with total
measure. Thus the set A = ∩jAj ⊂ R also has total Lebesgue measure and

〈G(t)ξj , ζ〉 = 〈ξj , G(−t)ζ〉 = 0, ∀j, ∀t ∈ A.

Therefore, G(−t)ζ = 0 if t ∈ A, and since ‖ζ‖ = ‖G(−t)ζ‖ = 0, it follows that
ζ = 0 and S is dense in H.

Now, for ξ, η ∈ H (for convenience the argument is restricted to s > 0),

〈G(r)ξs, η〉= 〈ξs, G(−r)η〉 =
∫ s

0

〈G(t)ξ,G(−r)η〉 dt

=
∫ s

0

〈G(t+ r)ξ, η〉 dt =
∫ s+r

r

〈G(t)ξ, η〉 dt,

and one gets, for 0 ≤ r < s,

|〈G(r)ξs, η〉 − 〈ξs, η〉| =
∣∣∣∣∫ s+r

r

〈G(t)ξ, η〉 dt −
∫ s

0

〈G(t)ξ, η〉 dt
∣∣∣∣

=
∣∣∣∣(∫ s+r

r

−
∫ s

r

−
∫ r

0

)
〈G(t)ξ, η〉 dt

∣∣∣∣
≤
(∫ s+r

s

+
∫ r

0

)
|〈G(t)ξ, η〉| dt ≤ 2 r‖ξ‖ ‖η‖

which vanishes as r → 0. Similarly for r < 0. Therefore, for all η ∈ H and all
φ ∈ S, the maps t �→ 〈G(t)φ, η〉 are continuous.

Let ξ ∈ H; given ε > 0 pick φ ∈ S with ‖φ − ξ‖ < ε. Since t �→ G(t) is
uniformly bounded, for each η ∈ H,

|〈G(h)ξ, η〉 − 〈ξ, η〉| ≤ |〈G(h)ξ, η〉 − 〈G(h)φ, η〉|
+ |〈G(h)φ, η〉 − 〈φ, η〉| + |〈φ, η〉 − 〈ξ, η〉|
< ‖G(h)ξ −G(h)φ‖ ‖η‖
+ |〈G(h)φ, η〉 − 〈φ, η〉| + ‖ξ − φ‖ ‖η‖
≤ 2ε+ |〈G(h)φ, η〉 − 〈φ, η〉| .

Since φ ∈ S, by continuity there exists h0 > 0 so that, if |h| < h0 one has
|〈G(h)φ, η〉 − 〈φ, η〉| ≤ ε, consequently

|〈G(h)ξ, η〉 − 〈ξ, η〉| ≤ 3ε, |h| < h0.

Therefore, limh→0〈G(h)ξ, η〉 = 〈ξ, η〉, ∀ξ, η ∈ H, and G(t) is weakly continuous at
zero. This finishes the proof of the proposition. �
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5.2 Bounded Infinitesimal Generators

If T ∈ B(H) and z ∈ C, the exponential operator ezT can be defined by the series

ezT =
∞∑
j=0

zjT j

j!
,

which is norm convergent in B(H). Since T is bounded, the manipulations with
such series are very similar to the ones with the corresponding numerical series,
and so one can conclude, for instance, that

1. TezT = ezTT , ∀z ∈ C.
2. e(z+y)T = ezT eyT = eyT ezT , ∀z, y ∈ C.

3. For t = 0 one has e0T = 1, and e−zT = (ezT )−1.
4. For the adjoint operator

(ezT )∗ =
∞∑
j=0

(zT ∗)j

j!
= ezT

∗
.

5. The map R � t �→ etT is norm differentiable in B(H) (so continuous) with

d

dt
etT := lim

h→0

1
h

(e(t+h)T − etT ) = TetT , ∀t ∈ R.

As an illustration of the arguments, consider 2 above. Since the involved
series are norm convergent, one has

ezT eyT =
∞∑

m,j=0

zjT j

j!
ymTm

m!
=

∞∑
k=0

∑
j+m=k

(zT )j(yT )m

j!m!

=
∞∑
k=0

1
k!

∑
j+m=k

k!
j!m!

(zT )j(yT )m

=
∞∑
k=0

1
k!

k∑
m=0

k!
m! (k −m)!

(zT )k−m(yT )m

=
∞∑
k=0

1
k!

((z + y)T )k = e(z+y)T

=
∞∑
k=0

1
k!

((y + z)T )k = e(y+z)T .

Exercise 5.2.1. Verify the validity of the other properties of ezT presented above.
Note that 5. also holds with t ∈ C.
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In the specific case T is a bounded self-adjoint operator, the map t �→ e−itT

is a unitary evolution group, T is its infinitesimal generator and the differentiation
can be taken even in the norm of B(H), instead of strongly as in Definition 5.1.2.
This situation is the general one, as discussed in Theorem 5.2.3.
Exercise 5.2.2. For a bounded self-adjoint T , verify that t �→ e−itT is a unitary
evolution group and also that T is its infinitesimal generator.

Theorem 5.2.3. If G(t) is a unitary evolution group on H, then the following
assertions are equivalent:

i) t �→ G(t) is norm continuous.
ii) t �→ G(t) is norm differentiable and there exists T ∈ B(H) with

lim
h→0

∥∥∥∥ ih [G(t+ h) −G(t)] − T

∥∥∥∥ = lim
h→0

∥∥∥∥ ih [G(h) − 1] − T

∥∥∥∥ = 0.

So T ∈ B(H) is the infinitesimal generator of G(t).
iii) There exists T ∈ B(H) so that

G(t) = e−itT =
∞∑
j=0

1
j!

(−itT )j, ∀t ∈ R.

Furthermore, T in ii) and iii) is the same operator and self-adjoint.

Proof. By repeating an argument in Proposition 5.1.3, one gets that if ii) holds,
then T is symmetric with dom T = H, so T in ii) is self-adjoint. The implications
iii) ⇒ ii) ⇒ i) and iii) ⇒ i) basically follow by the discussion above. Since iii) ⇒
ii), then e−itT in iii) is a unitary evolution group and T its self-adjoint infinitesimal
generator. It is then needed only to show that

i) ⇒ iii) As a motivation for what follows, note that for x ∈ R, x
∫ t
0 e
−isx ds =

i(e−itx − 1) and so iii) allows one to guess

i(G(t) − 1) ≈ T

∫ t

0

G(s) ds.

Suppose i) holds. Compute the relation

(G(t) − 1) ×
∫ h

0

G(s) ds=
∫ t+h

t

G(s) ds−
∫ h

0

G(s) ds

=
∫ h

t

G(s) ds+
∫ t+h

h

G(s) ds−
∫ t

0

G(s) ds−
∫ h

t

G(s) ds

=
∫ t+h

h

G(s) ds−
∫ t

0

G(s) ds

= (G(h) − 1) ×
∫ t

0

G(s) ds.
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Set

X = X(h) =
∫ h

0

G(s) ds.

Fix 0 
= |h| small enough so that, by norm continuity of G(t),∥∥∥∥ 1
h
X − 1

∥∥∥∥=

∥∥∥∥∥ 1
h

∫ h

0

G(s) ds− 1
h

∫ h

0

1 ds

∥∥∥∥∥
=

∥∥∥∥∥ 1
h

∫ h

0

(G(s) − 1) ds

∥∥∥∥∥ ≤ sup
|s|≤|h|

‖G(s) − 1‖ < 1.

Hence for such h it follows that X−1 is well defined and belongs to B(H) (see
Exercise 1.1.24).

So, after composition with X−1 in the above relation, one gets (since all
operators in question commute)

i(G(t) − 1) = Y

∫ t

0

G(s) ds,

where Y := i(G(h) − 1)X−1 ∈ B(H). Therefore G(t) is norm differentiable and

i
d

dt
G(t) = Y G(t), G(0) = 1,

whose unique solution is G(t) = e−itY . In fact, one explicitly finds

d

dt

(
G(t)eitY

)
= 0, ∀t ∈ R,

so that G(t)eitY = cte and, together with G(0) = 1, it necessarily follows that
G(t) = e−itY . Note that both ii) and iii) were obtained and Y is the infinitesimal
generator of G(t). Since ii) follows by iii), Y equals the operator T in ii) and the
last assertion of the theorem is also valid. �

Therefore, if the infinitesimal generator of the unitary evolution group G(t)
is unbounded, then at most strong continuity is possible for t �→ G(t). Such pos-
sibility will be discussed in the next section. This complements the results in
Proposition 5.1.7.
Exercise 5.2.4. Provide the details of the proofs that iii) ⇒ ii) ⇒ i) and iii) ⇒ i)
in Theorem 5.2.3.
Exercise 5.2.5. From G(t) − 1 = −iY

∫ t
0 G(s) ds, T ∈ B(H), in the proof of The-

orem 5.2.3, use iteration under the integral sign to check that G(t) = e−itY .
Exercise 5.2.6. Let T, S be bounded operators and Q a bounded operator so that
QT = SQ. Show that Q = ezSQe−zT for all z ∈ C.
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5.3 Stone Theorem

Often a self-adjoint operator T : dom T � H → H is given and one tries to
construct a unitary evolution group for which T is its infinitesimal generator. This
is a common situation in quantum mechanics.

Theorem 5.3.1. If T is self-adjoint, there exists a strongly continuous unitary evo-
lution group U(t) for which T is its infinitesimal generator. In this case one writes
U(t) = e−itT , t ∈ R.

Remark 5.3.2. The proof of Theorem 5.3.1 will be postponed until after the dis-
cussion of the spectral theorem (see Section 9.2). An alternative proof which does
not use the spectral theorem can be found in [Am81]. Based on Theorem 5.2.3
and Example 5.1.6, given a self-adjoint operator T one could try to construct a
unitary evolution group through the series

e−itT =
∞∑
j=0

1
j!

(−itT )j.

However, unlike the case of bounded T , it would make sense only for vectors in
∩ndom T n, a not simple set to control; see, however, Section 9.9. So, for unitary
evolution groups, the difference between norm continuity and strong continuity
has very important consequences.

The converse of Theorem 5.3.1 is the well-known Stone theorem.

Theorem 5.3.3 (Stone). If U(t) is a measurable unitary evolution group on H,
then its infinitesimal generator T is self-adjoint, that is, U(t) = e−itT (and hence
dom T � H).

Proof. By Proposition 5.1.7, t �→ U(t) is strongly continuous. The domain dom T
of its infinitesimal generator T is nonempty since the null vector belongs to it. The
proof will be split into three parts, as follows:

1. dom T is dense in H.
2. T is essentially self-adjoint.
3. T = T and so self-adjoint.

• For each η ∈ H and f ∈ C∞0 (R) the map R � t �→ f(t)U(t)η is measurable
and integrable. If ηf :=

∫
R
f(t)U(t)η dt, then

1
h

(U(h) − 1)ηf =
1
h

∫
R

[f(t)U(t+ h) − f(t)U(t)] η dt

=
∫

R

f(t− h) − f(t)
h

U(t)η dt h→0−→ −
∫

R

f ′(t)U(t)η dt.

In the last passage the dominated convergence theorem was invoked. This shows
that ηf ∈ dom T for all f ∈ C∞0 (R), η ∈ H.
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Since U(t) is strongly continuous, given ε > 0 there exists δ > 0 with
supt∈[−δ,δ] ‖η − U(t)η‖ < ε, and for a positive g ∈ C∞0 (R) with support in [−δ, δ]
and

∫
R
g(t) dt = 1, one has

‖η − ηg‖ =

∥∥∥∥∥
∫

[−δ,δ]
g(t)[η − U(t)η] dt

∥∥∥∥∥
≤ sup
t∈[−δ,δ]

‖η − U(t)η‖ < ε.

Hence, dom T is dense in H.
• By Proposition 5.1.3, T is known to be symmetric and, since its domain is

dense in H, T is hermitian. It will be checked that n−(T ) = n+(T ) = 0, so that T
is essentially self-adjoint.

Let η ∈ K+(T ) = N(T ∗ + i1). Then, η ∈ dom T ∗ and, for all ξ ∈ dom T ,

d

dt
〈U(t)ξ, η〉 = 〈−iTU(t)ξ, η〉 = i〈U(t)ξ, T ∗η〉 = 〈U(t)ξ, η〉.

The unique solution of this differential equation with initial condition 〈ξ, η〉 at
t = 0 is

〈U(t)ξ, η〉 = et〈ξ, η〉, t ∈ R,

and since the left-hand side is bounded we find that 〈ξ, η〉 = 0, ∀ξ ∈ dom T . Due
to the density of dom T in H, it follows that η = 0 and so n+ = 0. Similarly one
gets n− = 0.

• Let T be the closure of T , which coincides with its unique self-adjoint
extension. By Theorem 5.3.1, T is the (unique) infinitesimal generator of a strongly
continuous unitary evolution group G(t) := e−itT . It will be shown that U(t) =
G(t), ∀t, so that necessarily T = T .

Since U(t) and G(t) are unitary operators, we only need to show that U(t)ξ =
G(t)ξ for all ξ in the dense set dom T ⊂ dom T . For such vectors both U(t)ξ and
G(t)ξ are strongly differentiable and if one denotes

φ(t) = U(t)ξ −G(t)ξ,

then, in view of U(t)dom T = dom T , one has dφ/dt = −iTφ(t), and T being
self-adjoint,

d

dt
‖φ(t)‖2 = 2Re 〈−iTφ(t), φ(t)〉 = 0, ∀t.

Thus, ‖φ(t)‖ is a constant function and equal to ‖φ(0)‖ = 0. Therefore, U(t) =
G(t), ∀t. Thereby the proof is complete. �
Corollary 5.3.4. Let T be self-adjoint and the infinitesimal generator of the unitary
evolution group U(t). If D � dom T with U(t)D ⊂ D, ∀t ∈ R, then D is a core
of T .
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Exercise 5.3.5. Prove Corollary 5.3.4. Note that it is a consequence of the proof
of Theorem 5.3.3.

Exercise 5.3.6. If G(t) and F (t) are strongly continuous unitary evolution groups
on H and there exists ε > 0 so that G(t) = F (t) for −ε < t < ε, show that
G(t) = F (t), ∀t.
Exercise 5.3.7. The map R � t �→ G(t) is a contraction evolution group on H if
G(t)G(s) = G(t+ s), ∀s, t ∈ R, G(0) = 1 and ‖G(t)‖ ≤ 1, ∀t. Show that if G(t) is
a contraction evolution group, then it is in fact a unitary evolution group.

Remark 5.3.8. It follows, by the results of this section, that in a Hilbert space
there is a one-to-one correspondence between the set of measurable (so strongly
continuous) unitary evolution groups and self-adjoint operators. This is another
motivation for the abstract study of self-adjoint operators.

Proposition 5.3.9. Let T be self-adjoint, U(t) = e−itT , E a closed vector subspace
of H and PE the subsequent orthogonal projection. If U(t)E ⊂ E, ∀t, then

a) U(t)E = E, U(t)E⊥ = E⊥, ∀t.
b) PEU(t) = U(t)PE , ∀t, and PET ⊂ TPE. (If the latter holds one says that E

reduces T or that E is a reducing subspace for T ; see Section 9.8.)

Proof. Apply U(−t) to U(t)E ⊂ E, ∀t, to show that U(t)E = E, ∀t. If η ∈ E⊥,
then for all ξ ∈ E,

〈U(t)η, ξ〉 = 〈η, U(−t)ξ〉 = 0,

and so U(t)E⊥ ⊂ E⊥ ⇒ U(t)E⊥ = E⊥, and a) is verified. Note that such relations
also show that PEU(t) = U(t)PE , ∀t.

Now, for ξ ∈ dom T ,

PETξ = PE lim
h→0

i

h
(U(h)ξ − ξ) = lim

h→0

i

h
(U(h)PEξ − PEξ),

which shows that PEξ ∈ dom T and PETξ = TPEξ; in other symbols, PET ⊂
TPE. The proof of b) is complete. �

Exercise 5.3.10. Let G(t) be a strongly continuous unitary evolution group on H.
For ξ ∈ H show that the function

R � t �−→ f(t) = 〈ξ,G(t)ξ〉 ∈ C,

is positive definite, i.e., f(t) is continuous, f(−t) = f(t) and for all {t1, . . . , tn} ⊂ R

and {c1, . . . , cn} ⊂ C,
n∑

k,j=1

f(tj − tk) cjck ≥ 0.
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5.4 Examples

Example 5.4.1. [Schrödinger equation] This equation gives the quantum dynamics
of a system in a Hilbert space H. If the energy observable is represented by the
(usually unbounded) self-adjoint operator H , the so-called Schrödinger operator
(or hamiltonian operator), then the corresponding Schrödinger equation is the

following first-order (with respect to time t) linear differential equation

i
d

dt
ξ(t) = Hξ(t), ξ(0) = ξ ∈ dom H.

Previous results show that for ξ ∈ dom H , the unique solution of this equation is
U(t)ξ = e−itHξ, i.e., it is ruled by a strongly continuous unitary evolution group
whose infinitesimal generator is H .

Note that since e−itHdom H = dom H , ∀t, this solution is global, in the
sense that it is defined for all t ∈ R. So, in contrast to classical mechanics, the
quantum time evolution is globally defined as soon as it exists, which corresponds
to the self-adjointness of the associated energy operator H . Since e−itH is unitary,
even for η /∈ dom H the time evolution η(t) = e−itHη is still defined, although not
differentiable; in this case it is said that η(t) is a weak solution of the Schrödinger
equation.
Remark 5.4.2. If H is self-adjoint and represents the energy of a quantum system,
i.e., a Schrödinger operator, then the time evolution is ruled by U(t) = e−itH . If
ξ ∈ dom H , then the relation

〈U(t)ξ,HU(t)ξ〉 = 〈U(t)ξ, U(t)Hξ〉 = 〈ξ,Hξ〉, ∀t ∈ R,

is interpreted as the conservation of energy in quantum mechanics. More precisely,
such relation shows that the expectation value EξH(t) := 〈ξ(t), Hξ(t)〉 of H in the
state ξ(t) = e−itHξ is a constant function of time.
Exercise 5.4.3. Let H be the quantum energy operator in H and A ∈ B(H) self-
adjoint representing a physical observable. If

e−itHA = Ae−itH , ∀t ∈ R,

check that the expectation value

EξA(t) =
〈
e−itHξ, Ae−itHξ

〉
is conserved, i.e., it does not depend on time t so that EξA(t) = EξA(0). How can
we adapt such a “conservation law” to observables represented by unbounded
self-adjoint operators?

An additional word on physical interpretations: the expectation value EξA(t),
introduced in Exercise 5.4.3, is the result obtained by averaging out over a large
number of measurements of the observable A at time t in identical systems, each
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one prepared in the initial quantum state ξ ∈ H at t = 0. Quantum states are
assumed normalized, i.e., ‖ξ‖ = 1. Finally, the Schrödinger equation with explicit
Planck constant � reads

i�
d

dt
ξ(t) = Hξ(t),

so that the unitary evolution group is e−itH/�.
In many situations a one-parameter unitary group is naturally associated

with space transformations, as translations in R. The next examples illustrate
this.
Example 5.4.4 (Spatial translations). Let H = L2(R) and, for s ∈ R,

(G(s)ψ)(x) := ψ(x− s), ψ ∈ H.

Then G(s) is a strongly continuous unitary evolution group whose infinitesimal
generator is the momentum operator

P : dom P = H1(R) → H, Pψ = −iψ′,

discussed in Section 3.3 (see also Examples 2.3.11 and 2.4.10).

Proof. First note that G(s) is clearly a unitary evolution group (Lebesgue mea-
sure is invariant under translations). If ψ, φ ∈ C∞0 (R) one has, by dominated
convergence,

〈G(h)ψ, φ〉 =
∫

R

ψ(x− h)φ(x) dx h→0−→ 〈ψ, φ〉.

Since C∞0 (R) � H, it follows that

w − lim
h→0

G(h) = 1.

By Proposition 5.1.7, G(s) is strongly continuous (another argument can be found
in the proof of Lemma 13.3.2).

Let T be the (self-adjoint) infinitesimal generator of G(s). Thus, for ψ ∈
C∞0 (R),

i

h
(G(h) − 1)ψ(x) =

i

h
(ψ(x− h) − ψ(x)) = − i

h

∫ x

x−h
ψ′(s) ds,

and if h > 0 (similarly for h < 0),∣∣∣∣iG(h) − 1
h

ψ(x) + iψ′(x)
∣∣∣∣ ≤ 1

h

∫ x

x−h
|ψ′(x) − ψ′(s)| ds

and since ψ′ is continuous with compact support, it is uniformly continuous and
so

1
h

∫ x

x−h
|ψ′(x) − ψ′(s)| ds ≤ sup

s∈[x−h,x]
|ψ′(x) − ψ′(s)| h→0−→ 0.
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Thus,
T |C∞

0
= P |C∞

0
,

and since C∞0 (R) is a core of P , it follows that T = P . �

Remark 5.4.5. The following formal derivation is instructive. By Taylor series
around s = 0,

ψ(x− s) = ψ(x) − sψ′(x) +
s2

2
ψ′′(x) − s3

3!
ψ′′′(x) + · · ·

=

(
1 + s

(
− d

dx

)
+
s2

2

(
− d

dx

)2

+
s3

3!

(
− d

dx

)3

+ · · ·
)
ψ(x)

= exp
(
−s d

dx

)
ψ(x) = exp (−isP )ψ(x),

and the momentum operator has appeared.
Exercise 5.4.6. Let P be the momentum operator in L2(R). For φ ∈ C∞0 (R),
verify that the Schrödinger equation with momentum P playing the role of “energy
operator”, that is, if G(t) = e−itP ,

i
d

dt
(G(t)ψ)(x) = P (G(t)ψ)(x),

is just a manifestation of the chain rule:

i
d

dt
ψ(x− t) = Pψ(x− t) = −i d

dx
ψ(x− t).

Remark 5.4.7. Due to Example 5.4.4, it is often said that “the momentum opera-
tor generates translations in R.” With natural adaptations to different directions
in Rn. See also Exercise 5.5.9.

With such interpretation one can intuitively understand the self-adjoint ex-
tensions of the momentum operator P in different types of intervals, that is, the
whole line R, finite interval (say, [0, 1]) and half-line (say, [0,∞)). Such extensions
are discussed in Chapter 2.

Since it is possible to translate wave functions ψ to both sides in R, the
generator of translations is well posed and so P is essentially self-adjoint. In case
of the bounded interval, one can translate wave functions up to to an end when
they “enter” at the other end with a possible fixed different phase ψ(0) = eiθψ(1);
each phase eiθ corresponds to a distinct type of translation and so to a different
self-adjoint extension of P , and there are infinitely many of them. For the half-
line, it is possible to freely translate wave functions to the right, however what
reaches the origin is not able to enter at the other end, since it is infinity; thus,
the translations are ill posed in this case and consequently the momentum can not
be realized as a self-adjoint operator.
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Example 5.4.8 (Dilations). Let H = L2(R). The dilation on R is the map x �→
e−sx, s ∈ R, which induces the operator Ud(s) : H → H,

(Ud(s)ψ)(x) := e−s/2ψ(e−sx), ψ ∈ H.

Ud(s) is a change of scale since x is multiplied by e−s; the factor e−s/2 is just to
preserve the norm. Ud(s) is a strongly continuous unitary evolution group, C∞0 (R)
is a core of its infinitesimal generator Td and, for φ ∈ C∞0 (R),

(Tdφ)(x) =
1
2
(xp+ px)φ(x) =

(
xp− i

2

)
φ(x), p = −i d

dx
.

The same conclusions hold if C∞0 (R) is replaced by S(R). The version of the
group of dilations in Rn is given by (Ud(s)ψ)(x) := e−ns/2ψ(e−sx), s ∈ R and
ψ ∈ L2(Rn).

Proof. Again it is a simple exercise to check that Ud(s) is a unitary evolution
group. If φ ∈ C∞0 (R) one has

〈φ,Ud(h)φ〉 =
∫

R

φ(x) e−h/2φ(e−hx) dx.

If |h| ≤ 2, then |φ(x) e−h/2φ(e−hx)| ≤ e ‖φ‖∞ |φ(x)| ∈ L1(R) and, by dominated
convergence,

〈φ,Ud(h)φ〉 h→0−→ 〈φ, φ〉.
Being that C∞0 (R) is dense in H, such convergence is valid for every element of H.
By polarization,

〈ψ,Ud(h)φ〉 h→0−→ 〈ψ, φ〉, ∀ψ, φ ∈ H,
and Ud(s) is weakly continuous. If Td is its (self-adjoint) infinitesimal generator,
then for φ ∈ C∞0 (R) one has the pointwise convergence

i

s
(Ud(s) − 1)φ(x) = i

(
e−s/2φ(e−sx) − φ(x)

s

)
s→0−→ i

d

ds
(e−s/2φ(e−sx))

∣∣∣
s=0

.

= i

(
−1

2
e−s/2φ(e−sx) − e−s/2e−sxφ′(e−sx)

) ∣∣∣
s=0

.

=
(
−i
2
φ(x) + xpφ(x)

)
=
(
xp− i

2

)
φ(x),

with pφ = −iφ′. Again by dominated convergence, the above pointwise limit can
be translated into L2(R); then C∞0 (R) ⊂ dom Td and since for φ ∈ C∞0 (R) one
has xpφ(x) − pxφ(x) = iφ(x), it is found that

(Tdφ)(x) =
1
2
(xp+ px)φ(x).
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Finally, since Ud(s)C∞0 (R) ⊂ C∞0 (R), ∀s ∈ R, by Corollary 5.3.4 it follows that
C∞0 (R) is a core of Td. �

Exercise 5.4.9 (Rotation). If (x, y) ∈ R2, the rotation (x, y) �→ (xθ, yθ), xθ =
x cos θ − y sin θ, yθ = x sin θ + y cos θ, induces the operator

UR(θ) : L2(R2) ←↩, (UR(θ)ψ)(x, y) := ψ(xθ, yθ).

Show that UR(θ), θ ∈ R, is a strongly continuous unitary evolution group, C∞0 (R2)
is a core of its infinitesimal generator TR and for φ ∈ C∞0 (R) one has

(TRφ)(x, y) = (xpy − ypx)φ(x, y), px = −i d
dx
, py = −i d

dy
.

TR is identified with the z-component of the angular momentum, and so it is often
said that “the angular momentum generates rotations.”
Example 5.4.10. Let T be a self-adjoint operator with an orthonormal basis (ξj)j≥1

of H constituted of eigenvectors Tξj = λjξj . Every vector of H can be written in
the form ξ =

∑
j≥1 ajξj , with

∑
j |aj |2 = ‖ξ‖2 < ∞. The vector ξ ∈ dom T iff∑

j λ
2
j |aj |2 <∞ and in this case Tξ =

∑
j≥1 λjajξj . The claim is that the unitary

evolution group U(t) = e−itT is given by

e−itT ξ =
∑
j≥1

e−itλjajξj , ∀ξ ∈ H.

Actually, define G(t)ξ :=
∑

j≥1 e
−itλjajξj , which is a strongly continuous uni-

tary evolution group; in fact, 〈ξ,G(t)ξ〉 = limN→∞
∑N
j=1 e

−itλj |aj |2 is measurable,
since it is the limit of a sequence of continuous functions; by polarization it follows
that t �→ G(t) is measurable. Let S be its self-adjoint infinitesimal generator and
X = Lin({ξj}j), which is dense in H. For each j one has G(t)ξj = e−itλj ξj , which
is differentiable and

Sξj = i
d

dt
G(t)ξj

∣∣∣∣
t=0

= λjξj = Tξj,

so that Sξj = Tξj, ∀j. So, for X � ξ =
∑N

j=1 ajξj , one has Sξ = Tξ. Since
G(t)X ⊂ X , it follows that X is a core of S, and, by self-adjointness, T = S.
Therefore, both unitary evolution groups have the same infinitesimal generator
and so coincide, that is, G(t) = U(t), for all t ∈ R.
Example 5.4.11 (Projection as infinitesimal generator). Let E be a closed subspace
of H and PE the orthogonal projection onto E. Then

G(t) := PE⊥ + e−itPE

is a unitary evolution group, whose infinitesimal generator is PE . In fact, since PE
is self-adjoint it is the infinitesimal generator of the strongly continuous unitary
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evolution group e−itPE . Taking into account that P 2
E = PE and PE is bounded,

Theorem 5.2.3 implies that

e−itPE =
∞∑
j=0

(−itPE)j

j!
= 1 +

⎛⎝ ∞∑
j=1

(−it)j
j!

⎞⎠PE

= 1 +
(
−1 + e−it

)
PE = G(t), ∀t ∈ R.

Note that the trajectory t �→ G(t)ξ is periodic for all ξ ∈ H.
Exercise 5.4.12. Use the action of G(t) in Example 5.4.11 to check that it is a
norm continuous unitary evolution group and PE is its infinitesimal generator.
Exercise 5.4.13. Let G(t) : l2(N) → l2(N), defined by

G(t) (ξ1, ξ2, ξ3, . . . ) :=
(
e−itξ1, e

−i2tξ2, e
−i3tξ3, . . .

)
.

Verify that G(t) is a strongly continuous unitary evolution group, but it is not
norm continuous. Find its infinitesimal generator.
Exercise 5.4.14. Let H = L2[0, 1] and for s ∈ R define G(s) : H ←↩ given by
G(s)ψ(x) = ψ(x−s), with (x−s) understood mod 1. Show that G(s) is a strongly
continuous unitary group and find its infinitesimal generator.
Exercise 5.4.15. Let G(t) be a measurable unitary evolution group on H and T
its infinitesimal generator. If W is a unitary operator on H with G(t)W = WG(t),
∀t ∈ R, show that Wdom T ⊂ dom T and

WTξ = TWξ, ∀ξ ∈ dom T.

What can we conclude in case W = G(s)?
Exercise 5.4.16. Let G(t) and U(t) be two measurable unitary evolution groups on
H, and T,A their infinitesimal generators, respectively. Based on Exercises 5.4.15
and 5.4.3, if

U(t)G(s) = G(s)U(t), ∀s, t ∈ R,

discuss possible relations between T and A.

5.5 Free Quantum Dynamics

By Example 5.1.6, the map t �→ e−itp
2

is a strong continuous unitary evolution
group on L2(R̂n), i.e., in momentum representation, whose infinitesimal generator
is the multiplication operator by p2. Since H0 = F−1p2F (see Section 3.4), one
has

e−itH0 = F−1e−itp
2
F ,

which is a unitary evolution group on L2(Rn), called a free evolution group, whose
infinitesimal generator is the free hamiltonian H0.
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In this subsection the free unitary evolution group e−itH0 will be computed
in position representation L2(Rn). Then some consequences on quantum free dy-
namics are derived.

Theorem 5.5.1. If ψ ∈ L1(Rn) ∩ L2(Rn), then

(
e−itH0ψ

)
(x) =

1
(4πit)

n
2

∫
Rn

ei
(x−y)2

4t ψ(y) dy, t 
= 0.

The branch of the square root (4πit)
1
2 is chosen so that its real part is positive.

Proof. The proof will be done for n = 1; the general case is similar. Since e−itH0 =
F−1e−itp

2F , if ψ̂ ∈ L1(R̂) one has

(
e−itH0ψ

)
(x) =

1
(2π)

1
2

∫
R

ei xpe−ip
2t ψ̂(p) dp.

However, if ψ ∈ L2(R), then for any ε > 0 the function p �→ e−εp
2
ψ̂(p) belongs to

L1(R̂), and since e−i(t−iε)H0 = F−1e−i(t−iε)p
2F one has, for any ψ ∈ L2(R),(

e−i(t−iε)H0ψ
)

(x) =
1

(2π)
1
2

∫
R

ei xpe−ip
2te−εp

2
ψ̂(p) dp.

In case ψ ∈ L2(R)∩L1(R), write out the expression of the Fourier transform ψ̂(p)
and apply Fubini to get(

e−i(t−iε)H0ψ
)

(x) =
1
2π

∫
R

∫
R

e−ip(y−x)e−p
2(it+ε)ψ(y) dp dy

=
1

(2π)
1
2

∫
R

F
(
e−p

2(it+ε)
)

(y − x)ψ(y) dy

=
1

(2π)
1
2

1
(2(it+ ε))

1
2

∫
R

exp
(
− (x − y)2

4(it+ ε)

)
ψ(y) dy.

The idea now is to take ε → 0+. Note first that for any ψ ∈ L2(R) one has the
convergence in L2(R)∥∥∥e−(it+ε)H0ψ − e−itH0ψ

∥∥∥2

2
=
∥∥∥F (e−(it+ε)H0ψ − e−itH0ψ

)∥∥∥2

2

=
∫

R

∣∣∣e−εp2 − 1
∣∣∣2 ∣∣∣ψ̂(p)

∣∣∣2 dp −→ 0

as ε → 0+ by dominated convergence. Then there is a subsequence εj → 0+ so
that the convergence is Lebesgue a.e.; note that this convergence is uniform in t.
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For ψ ∈ L2(R)∩L1(R), use the above expression and dominated convergence
again, to get(
e−itH0ψ

)
(x) = lim

εj→0+

(
e−i(t−iεj)H0ψ

)
(x) =

1
(4πit)

1
2

∫
R

exp
(
i
(x− y)2

4t

)
ψ(y) dy,

and the theorem is proven. �

Corollary 5.5.2. If ψ ∈ L2(Rn), then(
e−itH0ψ

)
(x) = l.i.m.

1
(4πit)

n
2

∫
Rn

ei
(x−y)2

4t ψ(y) dy, t 
= 0.

Exercise 5.5.3. With respect to the expression for the free unitary evolution group
in position representation, verify that (4πit)

n
2 = ((4πit)

1
2 )n equals

|4πit|n
2 einπ/4, |4πit|n

2 e−inπ/4,

if t > 0 and t < 0, respectively.

Definition 5.5.4. The function

x �→ Kt(x) :=
1

(4πit)
n
2
ei

x2
4t

is called the free propagator kernel in L2(Rn).

Note that the free unitary evolution group can be written as(
e−itH0ψ

)
(x) = (Kt ∗ ψ)(x) = l.i.m.

∫
Rn

Kt(x− y)ψ(y) dy,

that is, it is an integral operator whose kernel is the free propagator.
The following result is also a direct consequence of Theorem 5.5.1.

Corollary 5.5.5. Let ψ ∈ L1(Rn) ∩ L2(Rn). Then, for each 0 
= t ∈ R, one has∣∣(e−itH0ψ
)
(x)
∣∣ ≤ 1

|4πt|n
2
‖ψ‖1, a.e. x ∈ Rn.

For ψ ∈ L1(Rn)∩L2(Rn) this corollary implies that, in a set of points x ∈ Rn

of full Lebesgue measure,
∣∣(e−itH0ψ)(x)

∣∣ vanishes uniformly as t→ ±∞.
According to quantum mechanics (as proposed by Max Born), if H is the

hamiltonian operator of a particle acting in L2(Rn), given a bounded measurable
set Λ ⊂ Rn, if the initial state of the system is ψ, then the probability of finding
the particle in Λ at time t is

Probψ(t)(Λ) =
∫

Λ

∣∣(e−itHψ)(x)
∣∣2 dx.

If �(Λ) < ∞ is the Lebesgue measure of Λ, then by Corollary 5.5.5, for the free
particle one has

Probψ(t)(Λ) ≤ �(Λ)
|4πt|n ‖ψ‖2

1,
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which decays with rate t−n for t → ∞. The interpretation is that for large times
the particle escapes from every bounded region of Rn and so it goes to infinity,
as expected for a free particle. Later on (see Chapters 12 and 13) it will be seen
that the root of such behavior is the spectral type of the free Schrödinger opera-
tor H0. For historical details of the transition from classical to quantum mechanics
one is invited to consult [Ste94] and for some pedagogical descriptions of modern
experiments on the quantum foundations [GreZ97].

Exercise 5.5.6. Let H be the hamiltonian operator of a system for which an or-
thonormal basis (ψj)j≥1 of L2(Rn) is comprised of its eigenvectors Hψj = λjψj ;
see Example 5.4.10. Verify that for each eigenvector ψj the probability of finding
the free particle in a measurable set Λ ⊂ Rn at time t,

Probψj(t)(Λ) =
∫

Λ

∣∣(e−itHψj)(x)∣∣2 dx,
is constant. This is interpreted as the lack of fast mobility of the particles in this
case, that is, under time evolution they become localized in space. Compare with
the free particle time evolution discussed above.

Exercise 5.5.7. Verify that the solution for t > 0 of the Schrödinger equation

i
d

dt
ψ(t) = H0ψ(t), ψ(0) = φu,

where φu(x) = e−(x−u)2 , with fixed parameter u ∈ R, is

ψ(t) =
(
e−itH0φu

)
(x) =

1
(1 + 4it)

1
2
e−

(x−u)2

1+4it .

What is the behavior of these ψ(t) for large t? Compare with the result of Corol-
lary 5.5.5.

Exercise 5.5.8. For ψ ∈ C∞0 (Rn), use the change of integration variable y =
x+2|t|1/2s in the expression for the free propagator (Theorem 5.5.1) to show that

lim
t→0

e−itH0ψ = ψ.

How general can ψ be in this (strong) limit?

Exercise 5.5.9. Show that the position operator Mx “generates translations in
R̂,” that is, (Ĝ(t)ψ̂)(p) := ψ̂(p+ t), ψ̂ ∈ L2(R̂), is a unitary evolution group whose
infinitesimal generator is Mx (cf. Example 5.4.4).

Remark 5.5.10. Taking into account all physical constants, the kinetic energy and
the free unitary evolution group in L2(Rn) have the expressions

H0 = − �2

2m
Δ,
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and (
e−itH0/�ψ

)
(x) =

( m

2π�it

)n
2
∫

Rn

exp
(
im(x− y)2

2�t

)
ψ(y) dy,

respectively.

Remark 5.5.11. The inequality in Corollary 5.5.5 is known as a dispersive bound;
see [Gol06] for a proof of similar estimates, with the same decay rate |t|−3/2, for
H = H0 + V with potentials V ∈ Lp(R3) ∩ Lq(R3), p < 3/2 < q, and additional
hypotheses on V .

5.5.1 Heat Equation

In a situation analogous to the above discussion, the solution of the heat equation
for t > 0 and initial conditions

∂

∂t
ψ(t, x) = −(H0ψ)(t, x), ψ(0, x) = ψ(x) ∈ H2(Rn),

is given by

(
e−H0tψ

)
(x) := (Kt ∗ ψ) (x) =

∫
Rn

Kt(x− y)ψ(y) dy,

with

Kt(x) :=
1

(4πt)n/2
exp

(
−x

2

4t

)
.

ψ(x, t) means the temperature distribution at time t, given the temperature dis-
tribution ψ(x) at the initial time 0. Kt is called the heat kernel. This is the most
traditional model for heat propagation.

Remark 5.5.12. Note that the above expression for (e−H0tψ)(x) is well posed for
any initial condition in ψ ∈ L2(Rn). With respect to notation, it is also common
to write e−H0t = eΔt.

Exercise 5.5.13. Verify that

F
(
eΔtψ

)
(p) =

1
(2π)n/2

exp
(
−p2t

)
ψ̂(p),

for all ψ ∈ L2(Rn).

Exercise 5.5.14. Show that e−tH0 is positive preserving, that is, if 0 
=ψ∈L2(Rn) is
a nonnegative function, then e−tH0ψ is also nonzero and nonnegative for all t > 0.

Exercise 5.5.15. Show that if ψ ∈ H2(Rn), then

lim
h↓0

1
h

(
‖ψ‖2

2 − 〈ψ, e−H0hψ〉
)

= ‖∇ψ‖2
2.
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5.6 Trotter Product Formula

Let T, S be self-adjoint operators acting in H so that T + S, with dom (T + S) =
dom T ∩ dom S, is also self-adjoint; see Chapter 6 for some sufficient conditions.
How do we write e−it(T+S) in terms of the individual unitary evolution groups
e−itT and e−itS? This is a nontrivial question since in general T and S do not
commute and one expects that e−it(T+S) 
= e−itT e−itS (see Example 5.6.1). For
operators in infinite-dimensional spaces, the first results in this direction were
published in [Tr58] and [Tr59], which have a flavor of perturbation results. The
folklore rule that “infinitesimal transformations” do commute even though the
macroscopic transformations do not, plays an intuitive role in Trotter’s formula
ahead.

Example 5.6.1 (Weyl form of commutation relation). Let x and P be the position
and momentum operators in L2(R), and the corresponding evolution groups e−itP

and e−isx, t, s ∈ R. By Example 5.4.4, for all ψ ∈ L2(R), one has

e−isxe−itPψ(x) = e−isxψ(x− t),
e−itP e−isxψ(x) = e−is(x−t)ψ(x− t) = eiste−isxe−itPψ(x),

that is, e−itP e−isx = eiste−isxe−itP . This is called the Weyl form of the canonical
commutation relation of position and momentum, and it is basic to the Stone-
von Neumann representation theorem of canonical commutation relations; see
[Su01], a mathematical justification of the action P = −id/dx. Thus e−itP e−itx 
=
e−itxe−itP , t 
= 0

Theorem 5.6.2 (Trotter Product Formula). Suppose that T, S are self-adjoint op-
erators acting in H so that T + S, with dom (T + S) = D := dom T ∩ dom S, is
also self-adjoint. Then, for each t ∈ R,

e−it(T+S) = s − lim
n→∞

(
e−i

t
nT e−i

t
nS
)n

.

Proof. There are two initial key points in the proof of the theorem:

1. For 0 
= h ∈ R and ξ ∈ D, denote

uh(ξ) :=
1
h

(
e−ihT e−ihSξ − e−ih(T+S)ξ

)
.

The domain D is left invariant by e−isT , e−isS and e−is(T+S), ∀s ∈ R, and
for ξ ∈ D the identity

uh(ξ) =
(e−ihT − 1)

h
ξ + e−ihT

(e−ihS − 1)
h

ξ − (e−ih(T+S) − 1)
h

ξ

implies limh→0 uh(ξ) = 0. Then define u0(ξ) := 0, ξ ∈ D.
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2. For bounded operators A,B and all n ∈ N, one has (expand the r.h.s.)(
e−itT/ne−itS/n

)n
−
(
e−it(T+S)/n

)n
=
(
e−itT/ne−itS/n

)n
− e−it(T+S)

=
n−1∑
j=0

(
e−itT/ne−itS/n

)j
×
[
e−itT/ne−itS/n − e−it(T+S)/n

] (
e−it(T+S)/n

)n−1−j
.

By 1 above, for each h ∈ R the map uh : D → H is linear and bounded.
For fixed ξ ∈ D, it is continuous as a function of h ∈ R and one also has the
pointwise convergence uh(ξ) → 0 as h → ∞; thus there exists c(ξ) > 0 for which
‖uh(ξ)‖ ≤ c(ξ), ∀h ∈ R.

Since the operator T + S is closed, its domain D is a Banach space in the
graph norm ‖·‖T+S , and so, by the Uniform Boundedness Principle 1.1.31 applied
to the family uh : (D, ‖ · ‖T+S) → H, there is C > 0 so that

‖uh(ξ)‖ ≤ C‖ξ‖T+S, ∀h ∈ R, ξ ∈ D.

For each fixed ξ ∈ D, introduce the map

R � t �→ ξt := e−it(T+S)ξ ∈ (D, ‖ · ‖T+S);

by properties of unitary evolution groups,

‖ξt − ξs‖2
T+S = ‖ξt − ξs‖2 + ‖(T + S)ξt − (T + S)ξs‖2

= ‖ξ − e−i(s−t)(T+S)ξ‖2 + ‖(T + S)ξ − e−i(s−t)(T+S)(T + S)ξ‖2

which vanishes as s → t, that is, the map t �→ ξt into (D, ‖ · ‖T+S) is continuous.
Thus, for fixed t ∈ R, the compactness of the interval [−|t|, |t|] imply that

Jξ,t = {ξs : |s| ≤ |t|}

is a compact set in (D, ‖·‖T+S). Hence Jξ,t is totally bounded in (D, ‖·‖T+S), and
the triangular inequality together with the above uniform boundedness conclude
that the restriction to the continuous family of linear operators uh : Jξ,t → H
vanishes uniformly as h→ 0; in other symbols max|s|≤|t| ‖uh(ξs)‖ → 0 as h→ 0.

Write h = t/n and note that (n− 1 − j)/n ≤ 1. Thus, by 2 above,∥∥∥(e−itT/ne−itS/n)n ξ − e−it(T+S)ξ
∥∥∥

≤ max
|s|≤|t|

∥∥∥n [e−itT/ne−itS/n − e−it(T+S)/n
]
e−is(T+S)ξ

∥∥∥
≤ |t| max

|s|≤|t|

∥∥∥∥ 1
h

[
e−ihT e−ihS − e−ih(T+S)

]
e−is(T+S)ξ

∥∥∥∥
= |t| max

|s|≤|t|
‖uh(ξs)‖
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which vanishes as h→ 0, that is, as n→ ∞; therefore(
e−itT/ne−itS/n

)n
ξ → e−it(T+S)ξ, ∀ξ ∈ D.

Since the involved operators are unitary, this convergence extends to the closure
of D, that is, it holds on H. �
Exercise 5.6.3. Present details that, in the above proof of the Trotter product
formula, uh : Jξ,t → H, h ∈ R, satisfies uh(ξs) → 0 uniformly as h→ 0.

The following is a consequence of the proof of the Trotter formula.

Corollary 5.6.4. Let T and S be as in Theorem 5.6.2. For a fixed ξ ∈ D, the con-
vergence

(
e−itT/ne−itS/n

)n
ξ → e−it(T+S)ξ is uniform for t in compact intervals

[a, b].

A first version of the Trotter formula for matrices was demonstrated by So-
phus Lie, so sometimes it is also called the Lie-Trotter product formula. It can be
used in numerical implementations of the time evolution e−it(T+S)ξ in case e−itT

and e−itS are easier to handle. In Theorem 5.6.2 it is possible to assume that
T + S is just essentially self-adjoint [Ch68]. The above proof of Theorem 5.6.2 is
based on Appendix B of [Nel64]; for recent results and references related to the
Trotter formula see [IchT04]. The version that appears in Exercise 9.9.3 is used in
statistical mechanics to relate quantum and classical spin systems.
Exercise 5.6.5. Let E,F be two closed subspaces of H with E ∩ F = {0}, and
PE , PF the respective orthogonal projections. Show that

lim
n→∞

(PEPF )n = PE∩F

and
s − lim

n→∞

(
e−i

t
nPEe−i

t
nPF

)n
= e−itPM , ∀t ∈ R,

where M = E ⊕ F .



Chapter 6

Kato-Rellich Theorem

In this and the next chapters, the preservation of self-adjointness under hermitian
perturbations are considered. The classical application of Rellich’s theorem by
Kato to a hydrogen atom hamiltonian is discussed in detail. Examples, the virial
and KLMN theorems and an outstanding Kato distributional inequality are also
presented in this chapter.

6.1 Relatively Bounded Perturbations

Self-adjointness is a delicate property. It may not be preserved by a sum of oper-
ators. For instance, if T, S are self-adjoint operators in H, then dom T ∩ dom S is
the subspace on which T + S is a priori defined. However, this intersection may
be too small for T + B be self-adjoint (e.g., both C∞0 (R) and the set of simple
functions are both dense in L2(R), but their intersection contains only the null
vector; see a specific instance in Exercise 6.2.25). It may also happen that such an
intersection is dense but T + S is not self-adjoint.

If T is self-adjoint and B is hermitian, under which conditions is T + B
self-adjoint? This is the general question to be addressed now. Although the
main interest is in perturbations of the free Schrödinger operators H0 acting in
L2(Λ),Λ ⊂ Rn, by potentials V , it is useful to deal with abstract hermitian per-
turbations B of a general self-adjoint operator T .

The motivation for the next results is the following. Let T be hermitian;
then T is self-adjoint iff λT is self-adjoint for some (and so any) 0 
= λ ∈ R. It is
known (Proposition 2.2.4) that a hermitian T is self-adjoint iff rng (T ± i1) = H.
One has

T +B ± iλ1 = (BR±iλ(T ) + 1)(T ± iλ1)

= λ(BR±iλ(T ) + 1)
(

1
λ
T ± i1

)
,
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so that if for some real λ one has ‖BR±iλ(T )‖ < 1, then (BR±iλ(T )+ 1) has also
a bounded inverse in B(H) and so rng (BR±iλ(T ) + 1) = H. If T is self-adjoint
rng (T ± iλ1) = λ rng (T/λ± i1) = H, and the above relation implies

rng (T +B ± iλ1) = H,

so that (T + B) would also be self-adjoint. We now explore some details of these
ideas.

Definition 6.1.1. Let T : dom T � H → H and B : dom B � H → H be linear
operators. Then B is T -bounded (or relatively bounded with respect to T ) if
dom B ⊃ dom T and there exist a, b ≥ 0 so that

‖Bξ‖ ≤ a‖Tξ‖ + b‖ξ‖, ∀ξ ∈ dom T.

The T -bound of B is the infimum NT (B) of the admissible a’s in this inequality.

Remark 6.1.2. An equivalent definition is dom B ⊃ dom T and there exist c, d ≥ 0
so that

‖Bξ‖2 ≤ c2‖Tξ‖2 + d2‖ξ‖2, ∀ξ ∈ dom T.

Further, NT (B) coincides with the infimum of the admissible c’s. Therefore, both
formulations will be freely used.

Proof. If the latter relation holds, then

‖Bξ‖2 ≤ c2‖Tξ‖2 + d2‖ξ‖2 + 2cd ‖Tξ‖ ‖ξ‖
≤ (c‖Tξ‖ + d‖x‖)2 ,

and one can take a = c and b = d. For the other inequality, consider the following

Lemma 6.1.3. Let ξ, η ∈ H and s, t > 0. Then, for all r > 0 one has

2st‖η‖ ‖ξ‖ ≤ r2s2 ‖η‖2 +
t2

r2
‖ξ‖2.

Proof. It is enough to expand 0 ≤
(
rs‖η‖ − t

r‖ξ‖
)2. �

Suppose then that ‖Bξ‖ ≤ a‖Tξ‖ + b‖ξ‖. By Lemma 6.1.3 it follows that

‖Bξ‖2 ≤ (a‖Tξ‖+ b‖ξ‖)2 ≤ a2
(
1 + r2

)
‖Tξ‖2 + b2

(
1 +

1
r2

)
‖ξ‖2

and the second relation holds with c2 = a2(1 + r2) and d2 = b2(1 + 1/r2). By
taking r → 0 it is found that the same value of NT (B) is obtained from both
relations. �
Lemma 6.1.4. Let T be a linear operator in H with ρ(T ) 
= ∅ and B a closed
operator with dom T ⊂ dom B. Then B is T -bounded and NT (B) ≤ ‖BRz(T )‖,
∀z ∈ ρ(T ).
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Proof. If z ∈ ρ(T ), then BRz(T ) : H ←↩ is a closed operator (check this!) and, by
the closed graph theorem, it is bounded. Thus, for ξ ∈ dom T and z ∈ ρ(T ) one
has

‖Bξ‖ = ‖BRz(T )(T − z1)ξ‖ ≤ ‖BRz(T )‖ (‖Tξ‖+ |z|‖ξ‖) ,

and B is T -bounded. �

Proposition 6.1.5. If T is self-adjoint and dom T ⊂ dom B, then B is T -bounded
iff BRz(T ) ∈ B(H) for some z ∈ ρ(T ); in this case BRz(T ) ∈ B(H), ∀z ∈ ρ(T ),
and NT (B) = lim|λ|→∞ ‖BRiλ(T )‖ (λ ∈ R).

Proof. If BRz(T ) is a bounded operator for some z ∈ ρ(T ), then by the proof of
Lemma 6.1.4 it follows that B is T -bounded and NT (B) ≤ ‖BRz(T )‖; moreover,
by the first resolvent identity,

BRy(T ) = BRz(T ) + (y − z)BRz(T )Ry(T ),

so that BRy(T ) is bounded for all y ∈ ρ(T ). Hence, since T is self-adjoint one can
consider z = ±iλ, with 0 
= λ ∈ R, which belongs to ρ(T ).

Suppose now that B is T -bounded, so that there are a, b ≥ 0 obeying, for all
ξ ∈ H,

‖BRiλ(T )ξ‖ ≤ a‖TRiλ(T )ξ‖ + b‖Riλ(T )ξ‖,

and since ‖Tη − iλη‖2 = ‖Tη‖2 + λ2‖η‖2 ≥ ‖Tη‖2, one has, with η = Riλ(T )ξ,

‖BRiλ(T )ξ‖ ≤ a‖(T − iλ1)Riλ(T )ξ‖ + b‖Riλ(T )‖ ‖ξ‖

≤
(
a+

b

|λ|

)
‖ξ‖,

and BRiλ(T ) is bounded (Theorem 2.2.17 was employed). Together with the in-
equality at the beginning of this proof,

NT (B) ≤ ‖BRiλ(T )‖ ≤ a+
b

|λ| .

From the definition of NT (B) it then follows that

NT (B) = lim
|λ|→∞

‖BRiλ(T )‖.

Thereby the proof is complete. �

Exercise 6.1.6. If T is a self-adjoint operator, show that ‖TRiλ(T )‖ ≤ 1,
∀0 
= λ ∈ R.
Exercise 6.1.7. Let T ≥ β1 be self-adjoint, β ∈ R. Inspect the proof of Proposi-
tion 6.1.5 and check that for λ < 0, |λ| large enough, ‖TRλ(T )‖ < 1, and that
NT (B) = limλ→−∞ ‖BRλ(T )‖.
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Theorem 6.1.8 (Rellich or Kato-Rellich). Let T be self-adjoint and B hermitian.
If B is T -bounded with NT (B) < 1, then the operator

dom (T +B) = dom T, (T +B)ξ := Tξ +Bξ, ∀ξ ∈ dom T,

is self-adjoint.

Proof. Clearly (T +B) is hermitian. Since NT (B) < 1, by Proposition 6.1.5 there
exists λ0 > 0 so that ‖BRiλ0(T )‖ < 1. Thus, (1 + BR±iλ0 (T )) is invertible in
B(H) and onto. Hence,

(T +B) ± iλ01 =B + (T ± iλ01)
= (BR±iλ0(T ) + 1) (T ± iλ01)

and so rng (T +B± iλ0) = H. By Proposition 2.2.4 (see also the discussion at the
beginning of this section), (T+B) is self-adjoint. �
Corollary 6.1.9. Let T and B be as in Theorem 6.1.8. If D ⊂ dom T is a core of
T , then D is a core of (T +B).

Proof. Take λ0 as in the proof of Thm. 6.1.8. Then the operator (1+BR±iλ0(T )) is
a homeomorphism onto H. Thus, if (T±iλ01)D is dense in H, then (T+B±iλ01)D
is also dense in H. Therefore the deficiency indices of (T +B)|D are both zero (see
Theorem 2.2.11), consequently D is a core of (T +B). �
Example 6.1.10. In L2(Rn) the momentum operators Pj = −i∂j, 1 ≤ j ≤ n, are
H0-bounded with NH0(Pj) = 0; thus the operator

Hψ = H0ψ − iλ
∑
j

∂jψ

is self-adjoint in the domain H2(Rn), ∀λ ∈ R. In fact, for ψ ∈ H2(Rn) ⊂ dom Pj ,
‖Pjψ‖2 = ‖pjψ̂(p)‖2, and given a > 0 there is b ≥ 0 so that |pj | ≤ (ap2 + b), and
so (assume that λ 
= 0)

‖λPjψ‖2 ≤ a |λ| ‖p2ψ̂(p)‖2 + b |λ| ‖ψ̂(p)‖2 = a |λ| ‖H0ψ‖2 + b |λ| ‖ψ‖2.

Since a > 0 was arbitrary, the result follows by Theorem 6.1.8.
Exercise 6.1.11. Let T and B be self-adjoint operators in H. If B ∈ B(H), verify
that

a) NT (B) = 0.
b) T +B is self-adjoint with dom (T +B) = dom T .
c) Every core of T is also a core of T +B.

Exercise 6.1.12.

a) If B is T -bounded with NT (B) < 1, show that B is also (T +B)-bounded.
b) If T is self-adjoint and B hermitian and T -bounded with NT (B) < 1/2, show

that (T + 2B) is also self-adjoint.
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Exercise 6.1.13. Let T be closed and B a T -bounded operator with T -bound
NT (B) < 1. Show that T + B with domain dom T is closed. If NT (B) = 1 take
B = −T and conclude that T +B can be nonclosed.

6.1.1 KLMN Theorem

This theorem is a partial counterpart for sesquilinear forms of the Kato-Rellich
theorem, and it was dubbed KLMN by J.T. Cannon in 1968 from the initials of
Kato, Lions, Lax, Milgram and Nelson. In this subsection b1 and b2 denote two
(densely defined) hermitian sesquilinear forms in H, with b1 lower bounded b1 ≥ β.
The domain of b1 + b2 is dom b1 ∩ dom b2.

Definition 6.1.14. b2 is b1-bounded if dom b1 ⊂ dom b2 and there are a ≥ 0, c ≥ 0
so that

|b2(ξ)| ≤ a |b1(ξ)| + c‖ξ‖2, ∀ξ ∈ dom b1.

The infimum of the admissible a′s in this inequality is called the b1-bound of b2.

Exercise 6.1.15. Show that the b1-bound of b2 coincides with the (b1 + α)-bound
of b2 for any α ∈ R.

By Exercise 6.1.15 there is no loss if it is assumed that b1 ≥ 0, i.e., that b1 is
positive.

Lemma 6.1.16. Suppose that b1 ≥ 0 and b2 is b1-bounded with b1-bound < 1, that
is, the inequality in Definition 6.1.14 holds for some 0 ≤ a < 1 and 0 ≤ c ∈ R.
Then:

i) b1 + b2 ≥ −c, that is, b1 + b2 is also lower bounded.
ii) b1 + b2 is closed iff b1 is closed.

Proof. For all ξ ∈ dom b1 = dom (b1 + b2),

−c‖ξ‖2 ≤−c‖ξ‖2 + (1 − a)b1(ξ) = −
(
c‖ξ‖2 + a b1(ξ)

)
+ b1(ξ)

≤ b2(ξ) + b1(ξ) = (b1 + b2)(ξ) ≤ a b1(ξ) + c‖ξ‖2 + b1(ξ)
= (1 + a) b1(ξ) + c‖ξ‖2.

Then i) follows at once. By adding (1 + c)‖ξ‖2 to the terms in the above chain of
inequalities, one gets

(1 − a)(b1(ξ) + ‖ξ‖2)≤ (1 − a)b1(ξ) + ‖ξ‖2

≤ (b1 + b2)(ξ) + (1 + c)‖ξ‖2

≤ (1 + a)b1(ξ) + (1 + 2c)‖ξ‖2

≤A
(
b1(ξ) + ‖ξ‖2

)
, A = max{1 + a, 1 + 2c};

thus the norms ξ �→
√
b1(ξ) + ‖ξ‖2 and ξ �→

√
(b1 + b2)(ξ) + (1 + c)‖ξ‖2 are

equivalent on dom b1 and ii) follows (see Lemma 4.1.9). �
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Theorem 6.1.17 (KLMN). Suppose that b1 ≥ 0 and b2 is b1-bounded with b1-bound
< 1. Then there exists a unique self-adjoint operator T with dom T � dom b1,
whose form domain is dom b1, and

〈ξ, T η〉 = b1(ξ, η) + b2(ξ, η), ∀ξ ∈ dom b1, η ∈ dom T.

Further, T is lower bounded and dom T is a core of b1 + b2.

Proof. By Lemma 6.1.16, b1 + b2 is closed and lower bounded. The operator T is
the one associated with b1 + b2 as in Definition 4.2.5. The other statements follow
by Theorem 4.2.6. �

Although the hypotheses of KLMN are weaker than those of Kato-Rellich,
in the latter the domain of the operator sum is explicitly found. Be aware that
in concrete situations it can be a nontrivial task to decide if such theorems are
applicable.

Typical applications of Theorem 6.1.17 involve the definition of the sum of
two hermitian operators T1 ≥ β1 and T2 via bT1 + bT2 (see Example 4.1.11), in
particular when Kato-Rellich does not apply, as in Example 6.2.15, and cases of
forms not directly related to a potential, as in Examples 6.2.16 and 6.2.19.

One can roughly think of the KLMN theorem as a definition of an adequate
quantum observable from the addition of expectation values.

6.2 Applications

6.2.1 H-Atom and Virial Theorem

Now the Kato-Rellich Theorem is applied to perturbations of the free particle
hamiltonian

dom H0 = H2(Rn), H0ψ = −Δψ,

discussed in Section 3.4. Recall that, by Proposition 3.4.1, C∞0 (Rn) is a core of H0.
Besides the Sobolev embedding theorem, the next result gives valuable information
on elements of the Sobolev space H2(Rn), n ≤ 3.

Lemma 6.2.1. If n ≤ 3, then H2(Rn) ⊂ C(Rn)∩L∞(Rn) and for each a > 0 there
exists b > 0 so that

‖ψ‖∞ ≤ a‖H0ψ‖ + b‖ψ‖, ∀ψ ∈ H2(Rn).

Proof. Technically, the point of the argument is that for n ≤ 3 the function p �→
(1 + p2)−1 ∈ L2(Rn), and also (1 + p2)ψ̂(p) = F(ψ +H0ψ).

If ψ ∈ dom H0, by Cauchy-Schwarz,(∫
Rn

|ψ̂(p)| dp
)2

≤
∫

Rn

(1 + p2)2|ψ̂(p)|2 dp
∫

Rn

dp

(1 + p2)2
<∞,
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and so ψ̂ ∈ L1(Rn). By Lemma 3.2.8 it follows that ψ ∈ C(Rn) ∩ L∞(Rn). Note
that since ψ ∈ L2(Rn) and is continuous, then lim|x|→∞ ψ(x) = 0.

Let λ > 1 and κ = ‖(1 + p2)−1‖2/(2π)
n
2 . Then, for ψ ∈ dom H0, again by

Cauchy-Schwarz,

|ψ(x)| = 1
(2π)n/2

∣∣∣∣∫
Rn

(λ2 + p2)eipx ψ̂(p)
dp

(λ2 + p2)

∣∣∣∣
≤ 1

(2π)n/2

∥∥∥(λ2 + p2) ψ̂(p)
∥∥∥

2

∥∥∥∥ 1
(λ2 + p2)

∥∥∥∥
2

≤ κ

λ2−n
2

(
λ2
∥∥∥ψ̂(p)

∥∥∥
2

+
∥∥∥p2ψ̂(p)

∥∥∥
2

)
=

κ

λ2−n
2
‖H0ψ‖2 + κλ

n
2 ‖ψ‖2,

since the Fourier transform is a unitary operator. Now take λ large enough. �

For the potential V : Rn → R in L∞(Rn), one associates a bounded self-
adjoint multiplication operator V = MV , and so

H := H0 + V, dom H := dom H0,

is self-adjoint (see Exercise 6.1.11). This situation can be generalized to some
unbounded potentials V .

The notation V ∈ Lrμ+Lsμ means that the function V = Vr+Vs with Vr ∈ Lrμ
and Vs ∈ Lsμ, and it has already been incorporated into the main stream of Schrö-
dinger operator theory.

Theorem 6.2.2 (Kato). If n ≤ 3 and V ∈ L2(Rn) + L∞(Rn) is a real-valued
function, then V is H0-bounded with NH0(V ) = 0, the operator

H := H0 + V, dom H = dom H0,

is self-adjoint and C∞0 (Rn) is a core of H.

Proof. By hypothesis V = V2 + V∞ with V2 ∈ L2(Rn) and V∞ ∈ L∞(Rn). Thus,
by Lemma 6.2.1, for all a > 0 there is b ≥ 0 so that, for all ψ ∈ dom H0,

‖V ψ‖2 ≤ ‖V2ψ‖2 + ‖V∞ψ‖2 ≤ ‖V2‖2 ‖ψ‖∞ + ‖V∞‖∞ ‖ψ‖2

≤ ‖V2‖2 (a‖H0ψ‖2 + b‖ψ‖2) + ‖V∞‖∞ ‖ψ‖2

= (a‖V2‖2) ‖H0ψ‖2 + (b‖V2‖2 + ‖V∞‖∞) ‖ψ‖2.

Since a > 0 is arbitrary, it follows that NH0(V ) = 0. To finish the proof apply
Theorem 6.1.8 and Corollary 6.1.9. �
Example 6.2.3. Consider the class of negative power potentials in R3,

V (x) = − κ

|x|α , κ ∈ R, 0 < α < 3/2.
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Fix R > 0; then V = V2 + V∞, with

V2(x) = V (x)χ[0,R)(|x|), V∞(x) = V (x)χ[R,∞)(|x|),

where χA denotes the characteristic function of the set A. Since V2 ∈ L2(R3) and
V∞ ∈ L∞(R3), it follows that the Schrödinger operator

H = H0 −
κ

|x|α , dom H = H2(R3),

is self-adjoint and C∞0 (R3) is a core of H (recall 0 < α < 3/2).
The very important Coulomb potential α = 1 gives rise to 3D hydrogenic

atoms; if also κ > 0, it is briefly referred to as an H-atom Schrödinger operator
HH (see Remark 6.2.6); as discussed on page 295, this operator is lower bounded
(see also Remark 11.4.9). The unidimensional version of the H-atom presents
additional technical issues and is addressed in Subsection 7.4.1.
Example 6.2.4. The same conclusions of Example 6.2.3 hold for the “generalized
Yukawa-like potential” in R3,

VY (x) = − κ

|x|α e
−a|x|, κ ∈ R, 0 < α < 3/2, a > 0,

since VY ∈ L2(R3). Hence the Schrödinger operator H = H0 + VY with dom H =
H2(R3) is self-adjoint. The genuine Yukawa potential is obtained for κ > 0 and
α = 1.
Exercise 6.2.5. Apply the Kato-Rellich theorem to the Schrödinger operators of
Example 6.2.3, but in dimensions 1 and 2, i.e., for the cases of Hilbert spaces L2(R)
and L2(R2), respectively. For which values of α > 0 are self-adjoint operators H
obtained?
Remark 6.2.6. The expression for the Coulomb potential above describes the elec-
trostatic interaction between two charged particles, and one of them is supposed
to be at rest at the origin, so heavy with respect to the other that this approxi-
mation is taken. For a hydrogenic atom, that is, with just one electron of mass m
and charge −e (e > 0), and nuclear mass M and charge Ze, with M " m and
Z a positive integer indicating the total number of protons in the nucleus, the
corresponding Schrödinger operator with all physical constants made explicit is

HH = − �2

2μ
Δ − KZe2

|x| ,

with K indicating the electrostatic constant, μ = mM/(m + M) the so-called
reduced mass, and x corresponding to the relative position between the electron
and the nucleus. Note that in the limit of a fixed nucleus, represented here by the
condition M → ∞, one has μ→ m. Throughout this discussion the center of mass
has been “removed” [Will03], so that only the relative motion remains.
Remark 6.2.7. For Rn, n ≥ 4, the Kato Theorem 6.2.2 holds for V ∈ Lp(Rn) +
L∞(Rn), with p > 2 if n = 4 and p ≥ n/2 if n ≥ 5.
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By using the Virial Theorem 6.2.8, with relatively little effort it is possible
to say something about the spectrum of the H-atom Schrödinger operator. Let
Ud(s) be the strongly continuous dilation unitary evolution group discussed in
Example 5.4.8, adapted to Rn,

(Ud(s)ψ)(x) = e−ns/2ψ(e−sx), s ∈ R, ψ ∈ L2(Rn).

Assume that V is an H0-bounded potential with NH0(V ) < 1, so that H := H0+V
with dom H = H2(Rn) is self-adjoint.

Theorem 6.2.8 (Virial). Let V be an H0-bounded potential with NH0(V ) < 1.
Suppose there exists 0 
= α ∈ R so that

Ud(−s)V Ud(s) = e−αsV.

If λ is an eigenvalue of H and ψλ the subsequent normalized eigenvector, i.e.,
Hψλ = λψλ, ‖ψλ‖ = 1, then

〈ψλ, H0ψλ〉 = −α
2
〈ψλ, V ψλ〉

and

λ =
(

1 − 2
α

)
〈ψλ, H0ψλ〉 =

(
1 − α

2

)
〈ψλ, V ψλ〉.

Proof. Note that Ud(−s)H0Ud(s) = e−2sH0. Since ψλ ∈ dom H0 = dom H and
Ud(s)dom H0 = dom H0, ∀s ∈ R, one has

0 = 〈Ud(−s)ψλ, λψλ〉 − 〈Ud(−s)λψλ, ψλ〉
= 〈Ud(−s)ψλ, Hψλ〉 − 〈Ud(−s)Hψλ, ψλ〉
= 〈Ud(−s)ψλ, Hψλ〉 − 〈Hψλ, Ud(s)ψλ〉
= 〈Ud(−s)ψλ, Hψλ〉 − 〈Ud(−s)ψλ, Ud(−s)HUd(s)ψλ〉
= 〈Ud(−s)ψλ, [H − Ud(−s)HUd(s)]ψλ〉, ∀s ∈ R.

Write out H = H0 + V in the above expression and use the hypothesis on V to
get

0 = lim
s→0

〈
Ud(−s)ψλ,

1
s

[H − Ud(−s)HUd(s)]ψλ
〉

= 〈ψλ2H0ψλ + αV ψλ〉 ,

so that
〈ψλ, H0ψλ〉 = −α

2
〈ψλ, V ψλ〉,

which is the first equality in the theorem. Since

λ = 〈ψλ, (H0 + V )ψλ〉 = 〈ψλ, H0ψλ〉 + 〈ψλ, V ψλ〉,

the other equality follows. �
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Corollary 6.2.9. Let V and α be as in the virial theorem.

a) If α < 2, then all eigenvalues of H are negative and, if also V ≥ 0, then H
has no eigenvalues.

b) The Schrödinger operator H0 +V with the negative power potential (Example
6.2.3)

V (x) = − κ

|x|α , 0 < α < 3/2,

in L2(R3) has no eigenvalues if κ < 0 and all its eigenvalues are negative if
κ > 0 (note that the H-atom is a particular case).

Proof. It is enough to recall that H0 is a positive operator, to note that

Ud(−s)V Ud(s) = e−αsV

and apply the conclusions of Theorem 6.2.8. For instance, if α < 2 and λ is an
eigenvalue of H , then the relation

λ =
(

1 − 2
α

)
〈ψλ, H0ψλ〉

implies λ < 0. �

Exercise 6.2.10. Look for an eigenfunction of the hydrogen atom hamiltonian in
the form ψ(x) = e−a|x|, for some a > 0. Find the corresponding eigenvalue, which
is the lowest possible energy value (“ground level” in the physicists’ nomenclature)
of the electron (see, for instance, [Will03]).
Exercise 6.2.11. Verify the relation Ud(−s)H0Ud(s) = e−2sH0, and that

Ud(s)dom H0 = dom H0, ∀ s ∈ R.

Exercise 6.2.12. Consider the energy expectation value (see the discussion in Sec-
tion 14.1)

Eψ = 〈ψ,H0ψ〉 + 〈ψ, V ψ〉, ψ ∈ C∞0 (Rn),

and let ψ(s) = Ud(s)ψ. By taking appropriate values of s, show that

inf
‖ψ‖=1

Eψ = −∞

in case V (x) = −1/|x|α and α > 2. Comment on the physical meaning of this
result – see Remark 11.4.9.
Example 6.2.13. The condition Ud(−s)V Ud(s) = e−αsV in the virial theorem is
not strictly necessary. Consider the bounded potential

Va(x) = − κ

|x| + a
, a > 0,
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acting on L2(R). Then Ud(−s)VaUd(s) = e−sVe−sa; if Hψλ = λψλ, by following
the proof of Theorem 6.2.8 one gets

0 ≤ 〈ψλ, H0ψλ〉 =
1
2κ

〈ψλ, |x|V 2
a ψλ〉,

and if κ < 0 the operator H = H0 + Va has no eigenvalues.

Exercise 6.2.14. Present the missing details in Example 6.2.13.

The virial theorem is closely related to its version in classical mechanics.
Both relate averages of the potential energy and kinetic energy, and was originally
considered by Clausius in the investigation of problems in molecular physics (re-
call that average kinetic energy is directly related to temperature in equilibrium
statistical mechanics). Restricting to dimension 1, Clausius considered the classi-
cal quantity G = xp, the so-called virial; note that in the quantum version this
quantity corresponds to the infinitesimal generator of Ud(s) – see Example 5.4.8.
Some domain issues are avoided by working directly with the unitary group Ud(s)
(as in the virial theorem above) instead of its infinitesimal generator. It has appli-
cations to thermodynamics and astrophysics, among others. For several aspects of
the quantum virial theorem the reader is referred to [GeoG99].

6.2.2 KLMN: Applications

Let bH0 be the (closed and positive) form generated by the free hamiltonian H0 =
−Δ in L2(Rn), so that

bH0(ψ, φ) = 〈ψ,−Δφ〉, ∀ψ ∈ dom bH0 , ∀φ ∈ dom H0.

According to Examples 4.2.11 and 9.3.9, dom bH0 = H1(Rn) and

bH0(ψ, φ) = 〈∇ψ,∇φ〉, ∀ψ, φ ∈ dom bH0 .

The following three examples consider form perturbations of bH0 .

Example 6.2.15. In L2(R3) the Kato-Rellich theorem allows the definition of a
self-adjoint realization of H0 + V for

V (x) = − κ

|x|α , 0 < α < 3/2,

since such potential belongs to L2 + L∞. The KLMN theorem can be used to give
meaning also for 3/2 ≤ α < 2.

Let bα be the form generated by |x|−α. Fix 0 < α < 2 and note that dom bα ⊃
dom bH0 in this case; given a > 0, choose ε > 0 so that |x|−α ≤ a|x|−2/4 for all
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|x| ≤ ε. By Hardy’s Inequality 4.4.16, for all ψ ∈ dom bH0 = H1(R3),

bα(ψ) =
∫

R3

|ψ(x)|2
|x|α dx =

∫
|x|≤ε

|ψ(x)|2
|x|α dx+

∫
|x|>ε

|ψ(x)|2
|x|α dx

≤ a

∫
|x|≤ε

|ψ(x)|2
4|x|2 dx+

1
εα

∫
|x|>ε

|ψ(x)|2 dx

≤ a

∫
R3

|ψ(x)|2
4|x|2 dx+

1
εα

∫
R3

|ψ(x)|2 dx

≤ a

∫
R3

|∇ψ(x)|2 dx+
1
εα

∫
R3

|ψ(x)|2 dx

= a bH0(ψ) +
1
εα

‖ψ‖2.

Since a > 0 was arbitrary in the above inequality, the bH0 -bound of bα is zero.
Hence the KLMN Theorem 6.1.17 defines a self-adjoint realization of H0 − κ/|x|α
in L2(R3), 0 < α < 2, given by the operator associated with bH0 + bα.
Example 6.2.16 (Delta-function potential in R). In L2(R), perturb the free form
bH0(ψ, φ) = 〈ψ′, φ′〉 by the nonclosable form bδ(ψ, φ) = ψ(0)φ(0) of Exam-
ple 4.1.15, which simulates a Dirac delta interaction at the origin. Here dom bδ =
dom bH0 = H1(R). The KLMN theorem permits the association of a self-adjoint
operator with the form

bH0 + αbδ, α ∈ R,

with domain H1(R); see also Example 4.4.9.
In fact, if ψ ∈ H1(R) one has ψ(x) → 0 as |x| → ∞, and by using Lem-

ma 6.1.3 with s = t = 1, ε = r2, for all M > 0,

|bδ(ψ)| = |ψ(0)|2 ≤
∣∣|ψ(0)|2 − |ψ(M)|2

∣∣+ |ψ(M)|2

=

∣∣∣∣∣
∫ M

0

d

dx
|ψ(x)|2 dx

∣∣∣∣∣+ |ψ(M)|2

=

∣∣∣∣∣
∫ M

0

(
ψ′(x)ψ(x) + ψ(x)ψ′(x)

)
dx

∣∣∣∣∣+ |ψ(M)|2

≤ |ψ(M)|2 + 2‖ψ′‖ ‖ψ‖ ≤ |ψ(M)|2 + ε ‖ψ′‖2 +
1
ε
‖ψ‖2

M→∞−→ ε ‖ψ′‖2 +
1
ε
‖ψ‖2 = ε bH0(ψ) +

1
ε
‖ψ‖2.

Since ε > 0 is arbitrary, it follows that the bH0-bound of αbδ is zero for all α ∈ R. By
KLMN theorem, there is a unique self-adjoint operator Tα with dom Tα � H1(R),
whose form domain is H1(R), and

〈ψ, Tαφ〉 = 〈ψ′, φ′〉 + αψ(0)φ(0), ∀ψ ∈ H1(R), φ ∈ dom Tα.

Further, Tα is lower bounded.
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Exercise 6.2.17. If α < 0, verify that eα|x|/2 is an eigenvector of Tα in Exam-
ple 6.2.16, whose corresponding eigenvalue is −α2/4.

Remark 6.2.18. In the KLMN theorem it is strictly necessary that a < 1. In fact,
one has |−bH0 | ≤ bH0+bδ (so a = 1) but the “perturbed” form (bH0+bδ)−bH0 = bδ
is not closable.

Example 6.2.19. Let ν be a positive Radon measure in Rn, that is, a Borel, finite on
compact sets and regular measure. Under suitable conditions, the KLMN theorem
will be used to give meaning to the operator

H = H0 + αν,

that is, the interaction potential is ruled by the measure ν with intensity α ∈
R, as proposed in [BraEK94]. The “interaction” form bα,ν associated with this
“potential” is introduced by the expression

bα,ν(ψ, φ) = α

∫
Rn

ψ(x)φ(x) dν(x).

Singular (with respect to Lebesgue measure) ν are the most interesting cases,
but in view of the KLMN theorem one faces the difficulty of getting dom bα,ν ⊃
dom bH0 = H1(Rn), since the elements of H1(Rn) are not necessarily continuous
and the restriction to the support of ν can be meaningless. The idea is to define bα,ν

as above initially on C∞0 (Rn), and assume that ν is such that there are 0 ≤ a < 1
and c ≥ 0 so that (see Remark 6.2.20)

(1 + |α|)
∫

Rn

|ψ(x)|2 dν(x) ≤ a

∫
Rn

|∇ψ(x)|2 dx + c

∫
Rn

|ψ(x)|2 dx

for all ψ ∈ C∞0 (Rn). Since C∞0 (Rn) is dense in H1(Rn), the map J : C∞0 (Rn) →
L2
ν(R

n), Jψ = ψ, has a unique extension to a continuous linear map (also denoted
by J ; note that ψ is being used to denote elements in both equivalence classes
L2(Rn) and L2

ν(Rn))
J : H1(Rn) → L2

ν(R
n),

and, by continuity, the above inequality holds for all ψ ∈ H1(Rn), that is,

(1 + |α|)
∫

Rn

|Jψ(x)|2 dν(x) ≤ a

∫
Rn

|∇ψ(x)|2 dx+ c

∫
Rn

|ψ(x)|2 dx.

Finally, the precise definition of the interaction form bα,ν is presented: dom bα,ν =
H1(Rn) and for ψ, φ ∈ dom bα,ν ,

bα,ν(ψ, φ) := α

∫
Rn

Jψ(x)Jφ(x) dν(x).
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For ψ ∈ H1(Rn), one then has

|bα,ν(ψ)|= |α|
∫

Rn

|Jψ(x)|2 dν(x)

≤ a|α|
1 + |α|

∫
Rn

|∇ψ(x)|2 dx+
c|α|

1 + |α|

∫
Rn

|ψ(x)|2 dx

=
a|α|

1 + |α| b
H0(ψ) +

c|α|
1 + |α| ‖ψ‖

2.

Since a|α|/(1 + |α|) < 1, for such measures ν the KLMN Theorem 6.1.17 provides
a self-adjoint realization of H0 +αν rigorously defined by the operator associated
with bH0 + bα,ν.

Remark 6.2.20. Sufficient conditions for the above inequality to be valid for posi-
tive Radon measures ν in Rn appear in [StoV96]: e.g., all finite measures over R,

lim
ε↓0

sup
x∈R2

∫
B(x;ε)

|ln |x− y|| dν(y) = 0, n = 2,

and

lim
ε↓0

sup
x∈Rn

∫
B(x;ε)

1
|x− y|n−2 dν(y) = 0, n ≥ 3.

Particular interesting cases are ν = μC , that is, a measure concentrated on the
ternary Cantor set in R (see Example 12.2.13), and when ν is supported by smooth
curves and other manifolds in Rn, which is part of the set of so-called leaky quan-
tum graphs.

6.2.3 Some L2
loc(R

n) Potentials

Theorem 6.2.21. Let V : Rn → R be a measurable potential and Bx = B(x; 1)
denote the closed ball of center x ∈ Rn and radius 1.

a) If dom H0 ⊂ dom V , then

d(V ) := sup
x∈Rn

∫
Bx

|V (y)|2 dy <∞,

in particular V ∈ L2
loc(R

n).
b) If dom H0 ⊂ dom V and lim sup|x|→∞ |V (x)| = s < ∞, then V ∈ L2(Rn) +

L∞(Rn).

Proof. a) Since V is a closed operator and ρ(H0) 
= ∅, by Lemma 6.1.4 there is
c > 0 so that

‖V ψ‖2 ≤ c
(
‖H0ψ‖2 + ‖ψ‖2

)
, ∀ψ ∈ dom H0.
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If x ∈ Rn, pick φ ∈ C∞0 (Rn) so that φ(y) = 1 for y ∈ B0, and set φx(y) = φ(y−x).
Thus, ∫

Bx

|V (y)|2 dy ≤ ‖V φx‖2 ≤ c
(
‖H0φx‖2 + ‖φx‖2

)
= c
(
‖H0φ‖2 + ‖φ‖2

)
<∞,

and note that this upper bound does not depend on x. Hence d(V ) <∞.
b) Let Es = {x ∈ Rn : |V (x)| ≤ 2s}, V∞ = V χEs and V2 = V χEc

s
, with

Ecs = Rn \Es. Then V = V2 +V∞, V∞ ∈ L∞(Rn) and, by the definition of s, there
exists R > 0 so that V2(x) = 0 if x /∈ B(0;R). Pick φ ∈ C∞0 (Rn) so that φ(x) = 1
for x ∈ B(0;R); then φ ∈ dom H0 ⊂ dom MV and

‖V2‖2 =
∫

Rn

|V2(x)|2 |φ(x)|2 dx = ‖V2φ‖2 ≤ ‖V φ‖2 <∞,

so that V2 ∈ L2(Rn). �
Exercise 6.2.22. Show that if lim sup|x|→∞ |V (x)| = 0 in Theorem 6.2.21, then the
L∞(Rn) part of V can be chosen with arbitrarily small L∞ norm.

Theorem 6.2.23. Let V and d(V ) be as in Theorem 6.2.21. Then for n = 1, i.e.,
in L2(R), the following assertions are equivalent:

a) dom H0 ⊂ dom V .
b) d(V ) <∞.
c) V is H0-bounded.
d) V is H0-bounded with NH0(V ) = 0.

Proof. The implications a) ⇒ c) ⇒ b) were already discussed in the proof of
Theorem 6.2.21. d) ⇒ a) is clear. It is only needed to show that b) ⇒ d).

Assume that b) holds. If ψ ∈ dom H0 = H2(R), then ψ is continuous and
continuously differentiable. Assume first that ψ is real valued. By using an idea in
Lemma 6.1.3, given ε > 0 for z, y ∈ Bx, one has

ψ(y)2 − ψ(z)2 =
∫ y

z

(
ψ(t)2

)′
dt = 2

∫ y

z

ψ(t)ψ′(t) dt

≤ 1
ε

∫
Bx

ψ(t)2 dt+ ε

∫
Bx

ψ′(t)2 dt.

By the mean value theorem, choose z ∈ Bx so that ψ(z)2 =
∫
Bx
ψ(t)2 dt, thus

ψ(y)2 ≤
(

1 +
1
ε

)∫
Bx

ψ(t)2 dt+ ε

∫
Bx

ψ′(t)2 dt.

For complex ψ ∈ H2(R) one gets, for all ε > 0 and all x ∈ R,

|ψ(y)|2 ≤
(

1 +
1
ε

)∫
Bx

|ψ(t)|2 dt+ ε

∫
Bx

|ψ′(t)|2 dt.
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Hence,∫
Bx

|V (y)ψ(y)|2 dy ≤ d(V )
(

1 +
1
ε

)∫
Bx

|ψ(t)|2 dt+ d(V )ε
∫
Bx

|ψ′(t)|2 dt,

and so (denote the set of even integers by 2Z)

‖V ψ‖2 =
∫

R

|V (y)ψ(y)|2 dy =
∑
x∈2Z

∫
Bx

|V (y)ψ(y)|2 dy

≤ d(V )
(

1 +
1
ε

)∫
R

|ψ(t)|2 dt+ d(V )ε
∫

R

|ψ′(t)|2 dt,

≤ d(V )
(

1 +
1
ε

)
‖ψ‖2 dt+ d(V )ε‖ψ′‖2.

Since 0 ≤ (p2 − 1)2 it follows that p2 ≤ (p4 + 1)/2 < (p4 + 1), and then

‖ψ′‖2 = ‖pψ̂(p)‖2 =
∫

R

p2|ψ̂(p)|2 dp

≤ ‖p2ψ̂(p)‖2 + ‖ψ̂‖2 = ‖H0ψ‖2 + ‖ψ‖2,

and one obtains

‖V ψ‖2 ≤ ε d(V ) ‖H0ψ‖2 +
(
ε+ 1 +

1
ε

)
d(V ) ‖ψ‖2.

Since this holds for all ε > 0, d) follows. �

Hence, in order to apply the Kato-Rellich theorem to conclude that H :=
H0 + V , with dom H = dom H0, is self-adjoint and C∞0 (Rn) is a core of H , it is
necessary that d(V ) <∞, and for n = 1 this condition is also sufficient.
Example 6.2.24. Let Ve(x) = e|x| and Vα(x) = |x|α, 0 < α < 1/2, x ∈ R; then
d(Ve) = ∞ while d(Vα) < ∞. Thus, by Theorem 6.2.23, the operator Hα :=
H0 + Vα with domain H2(R) is self-adjoint and C∞0 (R) is a core of it; however,
He := H0 + Ve can not be defined on H2(R), although C∞0 (R) is a core of He by
Corollary 6.3.5.
Exercise 6.2.25. For x ∈ R, let

φ(x) =

{
1/
√
|x|, if |x| ≤ 1

0, if |x| > 1
.

Consider the enumeration of rational numbers Q = (rj)∞j=1 and the potential
V (x) :=

∑∞
j=1 φ(x− rj)/2j. Show that:

a) V ∈ L1(R) and V is not L2 over any open interval in R.
b) If ψ ∈ (dom V ∩ C(R)), show that ψ ≡ 0.

Conclude then that dom H0 ∩ dom V = {0}.
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Exercise 6.2.26. Discuss for which dimensions n (i.e., spaces L2(Rn)) each of the
potentials Vm(x) = |x|, Vl(x) = ln |x| and Vc(x) = −|x|−1 have d(V ) <∞.
Remark 6.2.27. Note that V ∈ L2

loc(R
n) is the minimum requirement for V ψ

to be an element of L2(Rn) with ψ ∈ C∞0 (Rn). It is shown in Section 6.3 that if
V ∈ L2

loc(R
n) and is bounded from below V (x) ≥ β, then the operatorH = H0+V

is essentially self-adjoint on C∞0 (Rn).

6.3 Kato’s Inequality and Pointwise Positivity

An outstanding distributional inequality due to Kato will be discussed (the original
reference is [Kat72]; see also [Sim79]). It involves functions and here applications
are restricted to standard hamiltonians in the Hilbert space L2(Rn). It will be used
to show that lower bounded V ∈ L2

loc(R
n) leads to essentially self-adjoint hamilto-

nians −Δ + V with domain C∞0 (Rn). See Subsection 9.3.1 for other applications.
In this section a.e. refers to Lebesgue measure.

Definition 6.3.1. A distribution u in Rn is positive if u(φ) ≥ 0 for all test functions
φ ∈ C∞0 (Rn) with φ(x) ≥ 0, ∀x ∈ Rn. This fact will be denoted by u ≥ 0 and
u ≥ v will indicate (u− v) ≥ 0.

Example 6.3.2.
a) If F :Rn→ [0,∞) is continuous, then the distribution uF (φ)=

∫
F (x)φ(x)dx,

φ ∈ C∞0 (Rn), is positive.
b) If un ≥ 0, ∀n, and un → u in the distributional sense (i.e., un(φ) → u(φ),

∀φ ∈ C∞0 ), then u ≥ 0.
If ψ ∈ L1

loc(R
n), define the function (sgnψ)(x) := 0 if ψ(x) = 0, otherwise

set

(sgnψ)(x) :=
ψ(x)
|ψ(x)| ,

which belongs to L∞(Rn) and |ψ(x)| = ψ(x)(sgnψ)(x) (this is the motivation for
introducing the function sgn). Given ε > 0, denote ψε(x) :=

(
|ψ(x)|2 + ε2

)1/2,
which converges ψε(x) → |ψ(x)| pointwise as ε → 0. Denote also sgn εψ(x) :=
ψ(x)/ψε(x). In the following, the derivatives of L1

loc functions mean distributional
derivatives.

Theorem 6.3.3 (Kato’s Inequality). If both u,Δu are elements of L1
loc(R

n), then
(sgnu)Δu ∈ L1

loc(R
n), so it defines a distribution, and

Δ((sgnu)u) = Δ|u| ≥ Re ((sgnu)Δu),

that is to say, ∫
Rn

|u(x)|Δφ(x) dx ≥
∫

Rn

((sgnu)Δu(x))φ(x) dx

for all 0 ≤ φ ∈ C∞0 (Rn).
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Example 6.3.4. It is instructive to play with some standard functions u : R → C

in this inequality. For instance:

1. If u(x) = eax+ibx, a, b ∈ R, then a straight computation shows that Kato’s
inequality reads a2eax ≥ (a2 − b2)eax.

2. If u(x) = x, then Kato’s inequality expresses that the Dirac delta distribution
is positive, i.e., δ(x) ≥ 0.

3. If u(x) = x3, then it turns into an equality 6|x| = 6|x|.

We leave it as an exercise to check details in the above statements.

A very important consequence of this inequality implies that some standard
Schrödinger operators in L2(Rn) are well posed; recall H0 = −Δ.

Corollary 6.3.5. If there is β ∈ R so that V ∈ L2
loc(R

n) satisfies V (x) ≥ β,
∀x ∈ Rn, then the operator

Hψ := H0ψ + V ψ, ψ ∈ dom H = C∞0 (Rn),

is essentially self-adjoint.

Remark 6.3.6. The domain and action of the unique self-adjoint extension of H
in Corollary 6.3.5 are described in Corollary 9.3.17, and its domain can be strictly
smaller than dom H0 = H2(Rn), even for n = 1; see Example 6.2.24.
Example 6.3.7. a) The operator H0 +κ/|x|, κ > 0, with domain C∞0 (R3) is essen-
tially self-adjoint. Compare with Example 6.2.3 where negative κ is allowed.

b) The operator H0 + κ/|x|j , j, κ > 0, with domain C∞0 (Rn) is essentially
self-adjoint if n ≥ 2j + 1.
Remark 6.3.8. Note the great generality of Corollary 6.3.5, since the operator sum
H = −Δ + V is defined on C∞0 (Rn) iff V ∈ L2

loc(R
n); hence, if V is bounded from

below, then H is essentially self-adjoint on C∞0 (Rn) iff it is defined (as a sum of
operators)!

Before proceeding to proofs, a rough idea and figurative arguments of how
Theorem 6.3.3 can be used to get Corollary 6.3.5 are presented. Let λ ∈ R obeying
λ+β > 0; so V +λ > 0. By Proposition 2.2.4iii), to show that the deficiency index
n±(H) = 0, it will suffice to show that the solution of

(H0 + V + λ1)∗ u = 0, u ∈ L2(Rn) ⊂ L2
loc(R

n),

is solely u = 0 (recall that (rng T )⊥ = N(T ∗)). Since H0 is a positive operator,
one could guess that H0|u| ≥ 0; the positivity of V + λ and Kato’s inequality will
imply H0|u| ≤ 0, so that H0|u| = 0 and, since u ∈ L2, u = 0. Now the proofs.

An important step in the proof of Kato’s inequality is first to prove it when
u is smooth, and then use the so-called mollifiers to create sequences of smooth
functions, via convolutions, approximating certain distributions and nonsmooth
functions.
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Letm ∈ C∞0 (Rn),m(x) ≥ 0, ∀x, with
∫

Rn m(x) dx = 1 (i.e.,m is normalized).
Given r 
= 0 (usually r > 0) set

mr(x) :=
1
rn
m
(x
r

)
, u(r) := u ∗mr,

where ∗ denotes the convolution, which was recalled in Section 3.1. The family
r �→ mr is called a mollifier and m a mollifier generator. The standard example of
mollifier a generator is

m(x) = C exp
(
− 1

1 − x2

)
, |x| < 1,

andm(x) = 0 for |x| ≥ 1; C is just a normalization constant. Thus,
∫
mr(x)dx = 1,

u(r) ∈ C∞(Rn) for all u ∈ L1
loc(R

n), r 
= 0, and, by Lemma 6.3.9,

Δ(u(r))ε ≥ Re
(
sgn ε(u

(r))Δu(r)
)
.

Lemma 6.3.9. For any v ∈ C∞(Rn) one has, pointwise and in the distributional
sense,

Δvε ≥ Re (sgn ε(v)Δv) .

Proof. Clearly |vε| ≥ |v|. On differentiating v2
ε = |v|2 + ε2 one gets 2vε∇vε =

v∇v + v∇v = 2Re (v∇v). This expression will derive two relations. The first one
is obtained by taking the divergence of it:

|∇vε|2 + vε Δvε = Re (vΔv) + |∇v|2.

The second one is

|∇vε| =
|Re (v∇v)|

|vε|
≤ |v∇v|

|v| ≤ |∇v|.

Combine these two relations to get

vεΔvε ≥ Re (vΔv) =⇒ Δvε ≥ Re ((sgn εv)Δv)

pointwise; thus, for every 0 ≤ φ ∈ C∞0 (Rn),∫
Rn

vεΔφdx =
∫

Rn

Δvε φdx ≥ Re
∫

Rn

(sgn ε(v)Δv)φdx,

and the inequality also holds in the distributional sense. �
Exercise 6.3.10. If φ ∈ C∞0 (Rn), write

φ(x) − φ(r)(x) =
∫

Rn

(φ(x) − φ(x − y)) mr(y) dy,

for a fixed mollifier generator m, and use the uniform continuity of φ to show that
limr↓0 ‖φ(r) − φ‖∞ = 0.
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Lemma 6.3.11.

a) For any r > 0 the linear map Lp(Rn) �→ Lp(Rn), u �→ u(r), is bounded and
with norm ≤ 1, for all 1 ≤ p <∞.

b) If u ∈ Lp(Rn), 1 ≤ p <∞, then limr↓0 ‖u(r) − u‖p = 0.
c) If u ∈ Lp(Rn), 1 ≤ p < ∞, then Δu(r) ∈ Lp(Rn), ∀r > 0 (the laplacian can

be replaced by any derivative).
d) If u ∈ L1

loc(R
n), then u(r) → u in the distributional sense as r ↓ 0.

Proof. a) Since mr ∈ L1(Rn), for u ∈ Lp(Rn) it follows by Young’s inequality
(Proposition 3.1.9) that (take “r = p” in Young’s inequality)

‖u(r)‖p = ‖u ∗mr‖p ≤ ‖u‖p‖mr‖1 = ‖u‖p.

b) If φ ∈ C∞0 (Rn) and Ωφ is the support of φ, one has

‖φ(r) − φ‖p ≤ ‖φ(r) − φ‖∞ �(Ωφ)
1
p ,

where �(·) denotes Lebesgue measure over Rn. Hence ‖φ(r) − φ‖p → 0 as r → 0
(see Exercise 6.3.10). Now take u ∈ Lp(Rn). Given ε > 0, choose φ ∈ C∞0 (Rn) so
that ‖u− φ‖p < ε. By triangle inequality and a), for r small enough,

‖u(r) − u‖p ≤ ‖u(r) − φ(r)‖p + ‖φ(r) − φ‖p + ‖φ− u‖p
< ‖u− φ‖p + ε+ ε < 3ε.

Item b) follows.
c) It is a consequence of

∂

∂xj
u(r) =

∂

∂xj
(u ∗mr) = u ∗ ∂

∂xj
mr

and Young’s inequality, i.e.,∥∥∥∥ ∂

∂xj
u(r)

∥∥∥∥
p

≤ ‖u‖p
∥∥∥∥ ∂

∂xj
mr

∥∥∥∥
1

.

d) Since u(r) ∈ C∞(Rn) it also defines a distribution. If φ ∈ C∞0 (Rn) and Ωφ
is the support of φ, a change of variable and Fubini’s theorem lead to

u(r)(φ) =
∫

Rn

u(r)(x)φ(x) dx =
∫

Rn

(−1)nu(x)φ(−r)(x) dx = (−1)nu(φ(−r)),

and so∣∣∣u(φ) − u(r)(φ)
∣∣∣ =

∣∣∣u(φ− (−1)nφ(−r)
)∣∣∣ ≤ ∥∥∥φ− (−1)nφ(−r)

∥∥∥
∞

∫
Ωφ

|u(x)| dx.

Note that (−1)nφ(−r) = φ ∗ m̃r, where m̃(x) := m(−x) also satisfies the assump-
tions required for m̃r to be a mollifier; so ‖φ − (−1)nφ(−r)‖∞ vanishes as r → 0
by Exercise 6.3.10. Therefore, u(r) → u in the distributional sense. �
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Other properties needed to complete the proof of Corollary 6.3.5 will be
collected in the following proposition.

Proposition 6.3.12. Let u ∈ L1
loc(R

n) and r ↓ 0. Then:

i) There exists a subsequence u(r)(x) obeying u(r)(x) → u(x) a.e., and so also
(sgn εu(r))(x) → sgn εu(x) a.e.

ii) Δu(r) = (Δu)(r) and, if also Δu ∈ L1
loc(R

n), one has Δu(r) → Δu in L1
loc(R

n)
(that is,

∫
K
|u(r) − u| dx→ 0 for every compact K ⊂ Rn) and a.e. as well.

Proof. i) Let m be a mollifier generator with support Ωm. Let K be a compact
subset of Rn and χK its characteristic function. By the definition of convolution
and Fubini,∥∥∥(u(r) − u)χK

∥∥∥
1
≤
∫

Ωm

m(y) ‖(u(x) − u(x− ry))χK‖1 dy.

It turns out that ‖(u(x) − u(x− ry))χK‖1 vanishes as r → 0 (see the proof of
Lemma 13.3.2), and so

∥∥(u(r) − u)χK
∥∥

1
→ 0. Thus, u(r) → u in L1(K), for any

compact K. Hence there is a subsequence with a.e. convergence.
ii) After an interchange of integration and differentiation (by dominated con-

vergence), it is simple to verify that Δu(r) = (Δu)(r). By hypothesis Δu ∈ L1
loc;

so the convergences stated in ii) follow by i). �

Proof. [Corollary 6.3.5] Pick λ so that λ + β > 0 and u ∈ dom H∗ ⊂ L2(Rn) a
solution of (H + λ1)∗u = 0, which amounts to

0 = 〈(H + λ1)∗u, φ〉 = 〈u, (H + λ1)φ〉, ∀φ ∈ C∞0 (Rn),

and since H + λ1 = −Δ + V + λ1 one finds that, in the distributional sense,

0 = −Δu+ (V + λ1)u.

Since u, V u ∈ L1
loc(R

n), it follows that Δu = (V + λ1)u ∈ L1
loc(R

n) and Theo-
rem 6.3.3 implies

Δ|u| ≥ Re ((sgnu)Δu) = Re ((sgnu) (V + λ1)u) = (V + λ1)|u| ≥ 0.

However, |u| is not ensured to belong to dom Δ, and a “regularization pro-
cess” is necessary. Thus, for any r > 0, Δ|u|(r) = Δ|u| ∗mr ≥ 0 pointwise and in
the distributional sense; also, by Lemma 6.3.11c), Δ|u|(r) ∈ L2(Rn) and so〈

|u|(r),Δ|u|(r)
〉

=
∫

Rn

|u|(r)Δ|u|(r) dx ≥ 0.

On the other hand, again by Lemma 6.3.11c), ∂|u|(r)/∂xj ,Δ|u|(r) ∈ L2(Rn),
consequently |u|(r) ∈ H2(Rn) = dom H0 (see Section 3.2); hence (recall H0 ≥ 0)〈

|u|(r),Δ|u|(r)
〉
≤ 0.
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Combining with the other inequality one finds 〈|u|(r),Δ|u|(r)〉 = 0, and thus
|u|(r) = 0. Since u ∈ L2(Rn), by Lemma 6.3.11b) one can consider a subsequence
and assume that |u|(r) → |u| a.e. as r ↓ 0, so that u = 0. By Proposition 2.2.4, the
deficiency indices of H are null. The corollary is proved. �
Exercise 6.3.13. Use results of Section 3.4 to show that if ψ ∈ dom H0 = H2(Rn)
and 〈ψ,H0ψ〉 = 0, then ψ = 0. This was used in the proof of Corollary 6.3.5.

Proof. [Theorem 6.3.3] Let u,Δu ∈ L1
loc(R

n). Thus, u(r) ∈ C∞(Rn) and, by
Lemma 6.3.9,

Δ(u(r))ε ≥ Re
(
sgn ε(u

(r))Δu(r)
)
, ∀ε, r > 0,

that is, for every 0 ≤ φ ∈ C∞0 (Rn),∫
Rn

u(r)
ε Δφdx ≥ Re

∫
Rn

(sgn εu
(r))Δu(r)φdx.

The point now is to take the limit r ↓ 0 in both terms of this inequality.
Since u,Δu ∈ L1

loc, by Lemma 6.3.11c), d) and Proposition 6.3.12ii), u(r) → u
and Δu(r) = (Δu)(r) → Δu in L1

loc and in the distributional sense. By passing to
a subsequence one can suppose that u(r) → u and Δu(r) = (Δu)(r) → Δu a.e.
Together with the inequality

|u(r)
ε − uε|=

∣∣∣∣(|u(r)|2 + ε2
)1/2

−
(
|u|2 + ε2

)1/2∣∣∣∣
=

∣∣|u(r)|2 − |u|2
∣∣(

|u(r)|2 + ε2
)1/2 + (|u|2 + ε2)1/2

≤
∣∣∣|u(r)| − |u|

∣∣∣ ≤ ∣∣∣u(r) − u
∣∣∣

the convergence u(r) → u implies that u(r)
ε → uε in L1

loc and a.e. as r ↓ 0 (for a
subsequence), and so ∫

Rn

u(r)
ε Δφdx →

∫
Rn

uεΔφdx.

Taking into account the uniform boundedness of sgn εu
(r) (that is, |sgn εu

(r)| ≤ 1)
and Δu(r) → Δu, in a similar way it is found that (for a subsequence)

sgn ε(u
(r))

(
Δu(r) − Δu

)
→ 0,

in the distributional sense as r ↓ 0. By dominated convergence∫
Rn

sgn ε(u
(r))Δuφdx→

∫
Rn

sgn ε(u)Δuφdx, r → 0.
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By collecting these convergences and taking the appropriate subsequence r ↓ 0,
for 0 ≤ φ ∈ C∞0 (Rn),

Re
∫

Rn

(sgn εu
(r))Δu(r)φdx = Re

∫
Rn

(sgn εu
(r))

(
Δu(r) − Δu

)
φdx

+ Re
∫

Rn

(sgn εu
(r))Δuφdx

→
∫

Rn

sgn ε(u)Δuφdx

as r ↓ 0, that is, ∫
Rn

uεΔφdx ≥ Re
∫

Rn

((sgn εu)Δu)φdx,

which is equivalent to the distributional inequality

Δuε ≥ Re ((sgn εu)Δu).

Since uε → |u| uniformly as ε → 0, the left-hand side in the above integral
inequality converges to

∫
|u|Δφdx. Now sgn εu → sgnu as ε → 0 and since

|sgn εΔu| ≤ |Δu| and Δu ∈ L1
loc(R

n), one can apply dominated convergence on
the right-hand side of the above integral inequality to get

Re
∫

Rn

((sgn εu)Δu)φdx→ Re
∫

Rn

((sgnu)Δu)φdx

as ε → 0. Therefore, the final result, i.e., Kato’s inequality, follows by taking the
limit ε→ 0 in the latter distributional inequality. �
Remark 6.3.14. In [LeiS81] there is a generalization of Corollary 6.3.5 that in-
cludes magnetic fields; for an introduction to Schrödinger operators with magnetic
fields see Sections 10.5 and 12.4. The Leinfelder-Simader proof also makes use of
Kato’s inequality and their theorem reads as follows: Let V ∈ L2

loc(R
n) be bounded

from below, the components of the magnetic vector potential Aj ∈ L4
loc(R

n),
j = 1, . . . , n, and the distributional divergent (

∑
j ∂jAj) ∈ L2

loc(R
n); then the

Schrödinger operator with magnetic field

H =
n∑
j=1

(
−i ∂
∂xj

− e

c
Aj

)2

+ V, dom H = C∞0 (Rn),

is essentially self-adjoint.



Chapter 7

Boundary Triples and
Self-Adjointness

A simple variation of the not so popular approach to self-adjoint extensions via
boundary triples is discussed. The idea is exemplified through a series of examples,
including the one-dimensional hydrogen atom, free hamiltonian in an interval and
spherically symmetric potentials. At the end, important self-adjoint extensions of
a quantum particle hamiltonian in a multiply connected domain are found.

7.1 Boundary Forms

If T ⊂ S are hermitian operators one has T ⊂ S ⊂ S∗ ⊂ T ∗, that is, any
hermitian extension of T is a hermitian restriction of T ∗. The larger the domain
of a hermitian operator the smaller the domain of its adjoint. The choice of the
domain of S has to be properly adjusted in order to get a self-adjoint extension of
T ; recall also that a self-adjoint operator is maximal, in the sense that it has no
proper hermitian extensions.

Definition 7.1.1. Let T be a hermitian operator. The boundary form of T is the
sesquilinear map Γ = ΓT∗ : dom T ∗ × dom T ∗ → C given by

Γ(ξ, η) := 〈T ∗ξ, η〉 − 〈ξ, T ∗η〉 , ξ, η ∈ dom T ∗.

Γ(ξ) will also denote Γ(ξ, ξ).

In case T ∗ is known, Γ can be used to find the closure of T , that is, T .
Since T = T ∗∗ ⊂ T ∗, by the definition of the adjoint operator T ∗∗ one has that
ξ ∈ dom T iff there is η ∈ H with

〈ξ, T ∗ζ〉 = 〈η, ζ〉 , ∀ζ ∈ dom T ∗,
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and η = Tξ. Since T ⊂ T ∗ one has η = T ∗ξ and so the above relation is equivalent
to

0 = Γ(ξ, ζ) = 〈T ∗ξ, ζ〉 − 〈ξ, T ∗ζ〉 , ∀ζ ∈ dom T ∗,

which is a (anti)linear equation for ξ ∈ dom T .
Exercise 7.1.2. Use the above characterization of T to show that the closure of a
hermitian operator is also hermitian.

Proposition 7.1.3. Γ(ξ, η) = 0, ∀ξ, η ∈ dom T ∗, iff T ∗ is self-adjoint, that is, iff T
is essentially self-adjoint.

Exercise 7.1.4. Present a proof of Proposition 7.1.3. Hence, the boundary form Γ
quantifies the “lack of self-adjointness” of T ∗.

Proposition 7.1.5. If T is hermitian then

dom T = {ξ ∈ dom T ∗ : Γ(ξ, η±) = 0, ∀η± ∈ K±(T )}.

Proof. Recall that if ζ ∈ dom T ∗, then ζ = η + η+ + η−, with η ∈ dom T , and
η± ∈ K±(T ) (the deficiency subspaces). Since Γ(ξ, η) = 0 for all ξ ∈ dom T ∗, η ∈
dom T , it follows that ξ ∈ dom T iff for all ζ ∈ dom T ∗

0 = Γ(ξ, ζ) = Γ(ξ, η + η+ + η−) = Γ(ξ, η+ + η−).

The result follows. �
Exercise 7.1.6. Show that an operator S so that T ⊂ S ⊂ T ∗ is hermitian iff
Γ(ξ, η) = 0 for all ξ, η ∈ dom S.

Let ζ1 = η1 + η1
+ + η1

− and ζ2 = η2 + η2
+ + η2

−, with η1, η2 ∈ dom T , η1
+, η

2
+ ∈

K+(T ), η1
−, η

2
− ∈ K−(T ), be general elements of dom T ∗; since T ∗η± = ∓iη±, it

follows by Theorem 2.2.11 that

Γ(ζ1, ζ2) = Γ(η1
+ + η1

−, η
2
+ + η2

−) = 2i
(
〈η1

+, η
2
+〉 − 〈η1

−, η
2
−〉
)
.

It is then clear that the nonvanishing of Γ is related to the deficiency subspaces.
Boundary forms can be used to determine self-adjoint extensions of T by not-
ing that such extensions are restrictions of T ∗ on suitable domains D so that
Γ(ξ, η) = 0, ∀ξ, η ∈ D (Lemma 7.1.7). Recall that each self-adjoint extension of T
is related to a unitary operator U : K−(T ) → K+(T ) onto K+(T ); denote by
TU the corresponding self-adjoint extension, whose domain is dom TU = {η =
ζ + η− − Uη− : ζ ∈ dom T , η− ∈ K−(T )}. Then, explicitly one has

Lemma 7.1.7. The boundary form ΓT∗ restricted to dom TU vanishes identically.

Proof. For any two elements η = ζ1 + η−−Uη− and ξ = ζ2 + ξ−−Uξ− in dom TU
(ζ1, ζ2 ∈ dom T ) one has

Γ(ξ, η) = 2i (〈Uξ−,Uη−〉 − 〈ξ−, η−〉) = 0,

which vanishes since U is unitary. �
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Proposition 7.1.8. Assume that T has self-adjoint extensions. Then each self-
adjoint extension of T is of the form

dom TU = {ξ ∈ dom T ∗ : Γ(ξ, η− − Uη−) = 0, ∀η− ∈ K−(T )},

TUξ = T ∗ξ, ξ ∈ dom TU (U as above).

Proof. If TU is a self-adjoint extension of T , then dom TU = {η = ζ+η−−Uη− : ζ ∈
dom T , η− ∈ K−(T )}; since Γ restricted to dom TU vanishes, by Proposition 7.1.5
one has, for ξ ∈ dom TU ,

0 = Γ(ξ, ζ + η− − Uη−) = Γ(ξ, η− − Uη−), ∀η− ∈ K−.

Hence, dom TU ⊂ A := {ξ ∈ dom T ∗ : Γ(ξ, η− − Uη−) = 0, ∀η− ∈ K−(T )}.
Now, given U , consider the linear equation for ζ + ξ−+ ξ+ = ξ ∈ dom T ∗ (of

course ξ± ∈ K±(T ))

0 = Γ(ξ, η− − Uη−), ∀η− ∈ K−(T ).

By Lemma 7.1.7, any ξ ∈ dom TU is a solution of this equation. Let ξ ∈ dom T ∗

be a solution and write

ξ = ζ + ξ− − Uξ− + ξ+ + Uξ−;

thus

0 = Γ(ξ, η− − Uη−) = Γ(ξ− − Uξ− + ξ+ + Uξ−, η− − Uη−)
= 2i (〈(ξ+ + Uξ−) − Uξ−,Uη−〉 − 〈ξ−, η−〉)
= 2i (〈ξ+ + Uξ−,−Uη−〉 + 〈Uξ−,Uη−〉 − 〈ξ−, η−〉)
= 2i 〈ξ+ + Uξ−,−Uη−〉, ∀η− ∈ K(T ).

Since rng U = K+, it follows that ξ+ + Uξ− = 0, or ξ+ = −Uξ−; thus ξ =
ζ + ξ− − Uξ− ∈ dom TU so that A ⊂ dom TU . Therefore dom TU = A, and the
proposition is proved. �
Remark 7.1.9. Note that the specification of the self-adjoint extensions TU in
Proposition 7.1.8 does not require the explicit knowledge of T ; sometimes this can
be handy and an advantage over the specification presented in Section 2.5.
Example 7.1.10. As an illustration of the above ideas, the simple case of the
momentum differential operator on a bounded interval (a, b) of Example 2.3.14
will be discussed. Let

dom P = C∞0 (0, 1) � H = L2[0, 1],

(Pψ)(x) = −iψ′(x), ψ ∈ dom P. On integrating by parts it is found that P is
hermitian. One has dom P ∗ = H1[0, 1] and (P ∗ψ)(x) = −iψ′(x), ψ ∈ dom P ∗. In
this case the boundary form is

Γ(ψ, φ) = i
(
ψ(1)φ(1) − ψ(0)φ(0)

)
, ψ, φ ∈ dom P ∗.
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By choosing ψ = φ ∈ H1[0, 1] with φ(0) = 0 and φ(1) 
= 0 one has Γ(φ) 
= 0, and
so P ∗ is not self-adjoint; consequently P is not essentially self-adjoint. Now ψ is
in the domain of the closure P iff

0 = Γ(ψ, φ) = i
(
ψ(1)φ(1) − ψ(0)φ(0)

)
, ∀φ ∈ H1[0, 1];

taking φ vanishing at only one end, it follows that ψ(0) = 0 = ψ(1), that is,
dom P = {ψ ∈ H1[0, 1] : ψ(0) = 0 = ψ(1)}. For the self-adjoint extensions
Proposition 7.1.8 leads exactly to the characterization presented in Example 2.6.5,
although now the specification of dom P is not necessary.

7.1.1 Boundary Triples

A boundary triple is an abstraction of the notion of boundary values in function
spaces; this idea goes back to Calkin in 1939 [Ca39] and Vishik in 1952 [Vi63].

Definition 7.1.11. Let T be a hermitian operator in H with n−(T ) = n+(T ). A
boundary triple (h, ρ1, ρ2) for T is composed of a Hilbert space h and two linear
maps ρ1, ρ2 : dom T ∗ → h with dense ranges and so that

aΓT∗(ξ, η) = 〈ρ1(ξ), ρ1(η)〉 − 〈ρ2(ξ), ρ2(η)〉, ∀ξ, η ∈ dom T ∗,

for some constant 0 
= a ∈ C. Note that 〈·, ·〉 is also denoting the inner product
in h.

In general, given a hermitian operator T with equal deficiency indices, dif-
ferent boundary triples can be associated with it; since for ζ1, ζ2 ∈ dom T ∗ (by
using the above notation)

Γ(ζ1, ζ2) = 2i
(
〈η1

+, η
2
+〉 − 〈η1

−, η
2
−〉
)
,

only the deficiency subspaces effectively appear in the boundary form, conse-
quently one may take either h = K−(T ) or h = K+(T ) (with ρ properly chosen);
in this case, say h = K−(T ), by von Neumann theory it is known that self-adjoint
extensions are in one-to-one relation with unitary operators U : K−(T ) → K+(T ).
However, it is convenient to allow a general h with dimh = n+(T ) (recall that
two Hilbert spaces are unitarily equivalent iff they have the same dimension), and
Theorem 7.1.13 will adapt von Neumann theory to this situation.

Again, self-adjoint extensions of T are restrictions of T ∗ on suitable domains
D so that Γ(ξ, η) = 0, ∀ξ, η ∈ D, and given a boundary triple for T , such D are
related to isometric maps Û : h → h (which can be taken to be onto; extend it by
continuity, if necessary) so that Ûρ1(ξ) = ρ2(ξ) and

〈ρ1(ξ), ρ1(η)〉 = 〈ρ2(ξ), ρ2(η)〉 =
〈
Ûρ1(ξ), Ûρ1(η)

〉
,

∀ξ, η ∈ D. Next the linearity of Û will be established.
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Lemma 7.1.12. Each Û above is a linear and unitary map.

Proof. Note that rng Û = h and it will suffice to show that this operator is in-
vertible and linear. To simplify the notation, ρ1 and ρ2 will not appear in what
follows.

If Û(ξ) = Û(η), then

0 =
〈
Û(ξ) − Û(η), Û(ξ) − Û(η)

〉
=
〈
Û(ξ), Û(ξ)

〉
−
〈
Û(ξ), Û(η)

〉
−
〈
Û(η), Û(ξ)

〉
+
〈
Û(η), Û(η)

〉
= 〈ξ, ξ〉 − 〈ξ, η〉 − 〈η, ξ〉 + 〈η, η〉 = ‖ξ − η‖2;

therefore ξ = η and so Û is injective and Û−1 : h → h exists.

If Û−1(ξ1) = ξ and Û−1(η1) = η, since by hypothesis
〈
Û(ξ), Û(η)

〉
= 〈ξ, η〉,

∀ξ, η, then 〈ξ1, η1〉 =
〈
Û−1(ξ1), Û−1(η1)

〉
; since Û is bijective such a relation holds

for every vector in the space. In this relation, if ξ1 = Û(ξ2), then
〈
Û(ξ2), η1

〉
=〈

ξ2, Û−1(η1)
〉
, again for all vectors of h.

Now, for all η, ξ, ζ ∈ h and a, b ∈ C, one has〈
Û(aξ + bη), ζ

〉
=
〈
aξ + bη, Û−1(ζ)

〉
= ā

〈
ξ, Û−1(ζ)

〉
+ b̄
〈
η, Û−1(ζ)

〉
= ā

〈
Û(ξ), ζ

〉
+ b̄
〈
Û(η), ζ

〉
=
〈
a Û(ξ) + b Û(η), ζ

〉
,

showing that Û(aξ + bη) = a Û(ξ) + b Û(η), that is, Û is linear. �

Theorem 7.1.13. Let T be a hermitian operator with equal deficiency indices. If
(h, ρ1, ρ2) is a boundary triple for T , then the self-adjoint extensions TÛ of T are
precisely

dom TÛ =
{
ξ ∈ dom T ∗ : ρ2(ξ) = Ûρ1(ξ)

}
, TÛξ = T ∗ξ,

for every unitary map Û : h → h.

Proof. A necessary condition for the restriction of T ∗ to a domain D be self-
adjoint is that the corresponding boundary form vanishes identically on D. Given
the boundary triple, taking into account Lemma 7.1.12 and the discussion that
precedes it, Lemma 7.1.7 and Proposition 7.1.8, such D’s are necessarily obtained
through unitary maps Û : h → h and it is enough to check that actually each TÛ
is self-adjoint.
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Clearly TÛ is a hermitian extension of T . If η ∈ dom T ∗Û one has

〈T ∗Ûη, ξ〉 = 〈η, TÛξ〉 = 〈η, T ∗Ûξ〉, ∀ξ ∈ dom TÛ .

Then,

0 = ΓT∗
Û
(η, ξ) = 〈T ∗Ûη, ξ〉 − 〈η, T ∗Ûξ〉

= 〈ρ1(η), ρ1(ξ)〉 − 〈ρ2(η), ρ2(ξ)〉
= 〈ρ1(η), ρ1(ξ)〉 − 〈ρ2(η), Ûρ1(ξ)〉
= 〈ρ1(η), ρ1(ξ)〉 − 〈Û∗ρ2(η), ρ1(ξ)〉
= 〈ρ1(η) − Û∗ρ2(η), ρ1(ξ)〉, ∀ξ ∈ dom TÛ .

Since ρ1 has dense range in h, it follows that ρ1(η)−Û∗ρ2(η) = 0, that is, ρ2(η) =
Ûρ1(η) and η ∈ dom TÛ . Therefore, TÛ is self-adjoint. �

Often a boundary triple for differential operators gives self-adjoint extensions
in terms of boundary conditions, and different choices of the triple correspond
to different parametrizations of such extensions. In applications sometimes it is
convenient to distinguish the spaces ρ1(h) from ρ2(h) by different symbols.

Remark 7.1.14. The definition of boundary triple presented here is slightly differ-
ent from the current definition in the literature; maybe the term modified boundary
triple should be used. For the usual approach and related results and references
in case of differential operators see [GorG91] and [BrGP08].

7.2 Schrödinger Operators on Intervals

Important Schrödinger operators are self-adjoint extensions of the minimal oper-
ator

H = − d2

dx2
+ V (x), dom H = C∞0 (a, b) � L2(a, b),

with −∞ ≤ a < b ≤ +∞; the weakest request on the (real-valued) potential is
V ∈ L2

loc(a, b), and this will be henceforth supposed in this chapter.
Note that L2(a, b) = L2[a, b] since the set of end points {a, b} has zero

Lebesgue measure. However, in case of bounded intervals one has C∞0 (a, b) 
=
C∞0 [a, b] and for absolutely continuous functions AC(a, b) 
= AC[a, b] (recall that
AC(a, b) denotes the set of absolutely continuous functions in every bounded and
closed interval [c, d] ⊂ (a, b)). By Proposition 2.2.16, H has equal deficiency in-
dices and so self-adjoint extensions do exist. In this and the next sections some
results related to this matter will be addressed, as well as some ways of getting
self-adjoint extensions of H , mainly illustrated by means of boundary forms. In
this section H always refers to this minimal differential operator.
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Again note the open interval (a, b) and in general V ∈ L2
loc is allowed to

“drastically diverge” at the end points. For V ∈ L2
loc(a, b), Proposition 2.3.20

ensures that dom H∗ equals{
ψ ∈ L2(a, b) : ψ, ψ′ ∈ AC(a, b), (−ψ′′ + V ψ) ∈ L2(a, b)

}
,

so that if ψ ∈ dom H∗ then ψ, ψ′ are absolutely continuous functions in (a, b), and
in case the potential V has a discontinuity at a point c ∈ (a, b), then ψ and ψ′

must be continuous at c for any ψ in the domain of a self-adjoint extension of H .
Such continuity conditions at c are habitually imposed on wave functions (i.e., ψ)
in quantum mechanics textbooks, and here the justification is seen to be related
to regularity properties of elements of dom H∗.

Lemma 7.2.1. The boundary form of the above minimal operator H is

Γ(ψ, ϕ) = Wb[ψ, ϕ] −Wa[ψ, ϕ], ψ, ϕ ∈ dom H∗,

where Wx[ψ, ϕ] = ψ(x)ϕ′(x) − ψ′(x)ϕ(x) is the wronskian of ψ, ϕ at x ∈ (a, b),
and Wa[ψ, ϕ] := limx→a+ Wx[ψ, ϕ], Wb[ψ, ϕ] := limx→b− Wx[ψ, ϕ].

Proof. Let [c, d] ⊂ (a, b) and ψ, ϕ ∈ dom H∗. In view of V ∈ L2
loc(a, b), on inte-

grating by parts one gets that Γ(ψ, φ) is reduced to∫ d

c

(
(H∗ψ)(x)ϕ(x) − ψ(x)(H∗ϕ)(x)

)
dx = Wd[ψ, ϕ] −Wc[ψ, ϕ];

since the integral over the whole interval [a, b] is finite, the limits defining Wa[ψ, ϕ]
and Wb[ψ, ϕ] exist (modify the functions so that they vanish in a neighborhood
of a; then Wb[ψ, ϕ] exists; similarly for the other end) and Γ(ψ, ϕ) = Wb[ψ, ϕ] −
Wa[ψ, ϕ]. �
Exercise 7.2.2. Let H be the above minimal operator and u ∈ L1

loc(a, b). If ψ, ϕ
are solutions of H∗ψ = u, show that the wronskian Wx[ψ, ϕ] = γ is constant.
Furthermore, if {ψ, ϕ} is a linearly independent set, show that such a constant
γ 
= 0, and given c ∈ (a, b),

φ(x) :=
1
γ

∫ x

c

[ψ(x)ϕ(t) − ϕ(x)ψ(t)] u(t) dt

is the unique solution of H∗ψ = u with initial conditions φ(c) = 0 and φ′(c) = 0.

7.2.1 Regular and Singular End Points

Definition 7.2.3. The end point a is regular for the differential operator H =
−d2/dx2 + V if −∞ < a and for some c ∈ (a, b) (and so for all such c) one
has

∫ c
a
|V (x)| dx := limd→a+

∫ c
d
|V (x)| dx < ∞; b is regular for H if b < ∞ and∫ b

c |V (x)| dx := limd→b−
∫ d
c |V (x)| dx < ∞. If an end point is not regular it is

called singular.
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From the theory of differential equations [Na69] it is known that the space
of solutions of the K∓-equation

H∗ψ = −ψ′′ + V ψ = ±iψ, ψ ∈ dom H∗,

is two-dimensional and if a is a regular point for H then any solution ψ has finite
limits ψ(a) := ψ(a+) = limx→a+ ψ(x) and ψ′(a) := ψ′(a+) = limx→a+ ψ′(x); if a
is singular then such limits can be divergent.

Recall also that if V is a continuous function (even complex-valued) on (a, b),
then any solution of

−ψ′′ + (V − z)ψ = 0, z ∈ C,

is a twice continuously differentiable function in (a, b), and in case V ∈ C∞(a, b)
then ψ ∈ C∞(a, b).

Proposition 7.2.4. Let H be the above minimal differential operator.

i) The closure of H is given by

dom H = {ψ ∈ dom H∗ : Wb[ψ, ϕ] = 0,Wa[ψ, ϕ] = 0, ∀ϕ ∈ dom H∗} ,
Hψ =H∗ψ, ∀ψ ∈ dom H.

ii) Let ψ ∈ dom H∗. In case a is a regular end point, then the condition
Wa[ψ, ϕ] = 0, ∀ϕ ∈ dom H∗, means ψ(a) = 0 = ψ′(a) (similarly for b).

Proof. i) Combine Proposition 7.1.5 and Lemma 7.2.1 to get

dom H = {ψ ∈ dom H∗ : Wb[ψ, ϕ] −Wa[ψ, ϕ] = 0, ∀ϕ ∈ dom H∗} .

Since the behavior of functions in dom H∗ near a is independent of their values
near b, it follows that the statement Wb[ψ, ϕ] − Wa[ψ, ϕ] = 0, ∀ϕ ∈ dom H∗,
is equivalent to Wb[ψ, ϕ] = 0 = Wa[ψ, ϕ], ∀ϕ ∈ dom H∗ (e.g., given ϕ, pick u ∈
dom H∗ that coincides with ϕ in a neighborhood of a and is zero in a neighborhood
of b; then Wa[ψ, ϕ] = Wa[ψ, u] = Wb[ψ, u] = 0).

ii) If a is a regular point, then ϕ(a), ϕ′(a) are well defined (i.e., they have
finite limits) for all ϕ ∈ dom H∗; hence 0 = Wa[ψ, ϕ] = ψ(a)ϕ′(a) − ψ′(a)ϕ(a),
∀ϕ ∈ dom H∗, implies ψ(a) = 0 = ψ′(a), since ϕ(a), ϕ′(a) can take arbitrary
values. �
Corollary 7.2.5. If both end points a, b are regular, then

dom H = {ψ ∈ dom H∗ : ψ(b) = ψ′(b) = 0 = ψ(a) = ψ′(a)} .

Corollary 7.2.6. IfH has a regular end point, then its closureH has no eigenvalues.

Proof. Say a is a regular end point. Then the solution of Hψ = λψ, ψ ∈ dom H ,
λ ∈ C, must satisfy ψ(a) = 0 = ψ′(a), and so, by uniqueness, ψ is the null
solution. �
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Definition 7.2.7. A measurable function u : (a, b) → C is in L2 near the end point
a if there exists c ∈ (a, b) so that u ∈ L2(a, c) (in fact the restriction u|(a,c) ∈
L2(a, c)); similarly for u that is L2 near b.

Remark 7.2.8. Note that if ψ is a solution of the K−-equation for H , then ψ is a
solution of the corresponding K+-equation. So for each solution L2 near a of the
K−-equation corresponds a solution L2 near a of the K+-equation and vice versa.
Similarly for the end point b.

Theorem 7.2.9. Let H be the minimal operator introduced on page 174.

i) The deficiency indices of the above minimal operator H are finite and bounded
by 0 ≤ n−(H) = n+(H) ≤ 2.

ii) If both end points a, b are regular, then n−(H) = n+(H) = 2.

Proof. i) By Proposition 2.2.16, n−(H)=n+(H). From the above discussion on
solutions of linear differential equations of second order one has, say, 0≤n−(H)≤2.

ii) If u is a solution of

H∗ψ = −ψ′′ + V ψ = −iψ, ψ ∈ dom H∗,

then u, u′ are absolutely continuous in (a, b) and so for any [c, d] ⊂ (a, b) one
has

∫ d
c
|u(x)|2 dx < ∞. Since the limits u(a+), u(b−) exist and a, b are finite, one

gets
∫ b
a
|u(x)|2 dx <∞, consequently all elements of K+(H) are in L2[a, b]. Hence

n+(H) = 2. By item i), n−(H) = 2. �

Lemma 7.2.10. Let H be the minimal operator introduced on page 174. For each
end point, at least one (nonzero) solution of

H∗ψ = −ψ′′ + V ψ = ±iψ, ψ ∈ dom H∗,

is L2 near it.

Proof. Let a, b be the end points and a < a′ < b′ < b; it is enough to consider −i
on the right-hand side of the above equation, since the arguments are the same
for the other possibility.

For the hermitian operator dom S = {ψ, ψ′ ∈ AC[a′, b′] ⊂ L2[a′, b′] : ψ(a′) =
ψ′(a′) = 0 = ψ(b′) = ψ′(b′)},

Sψ = −ψ′′ + V ψ,

a′, b′ are regular end points and, by Theorem 7.2.9, n−(S) = 2 = n+(S). Thus,
rng (S + i1) = K−(S)⊥ 
= {0}, and since C∞0 (a′, b′) � L2[a′, b′], there exists
φ ∈ C∞0 (a′, b′) with φ /∈ rng (S + i1). Let Ĥ be a self-adjoint extension of H and
ψ ∈ dom Ĥ ⊂ dom H∗ with (Ĥ + i1)ψ = φ (recall that rng (Ĥ + i1) = H by
Proposition 2.2.4); note that the support of ψ does not lie in (a′, b′), for otherwise
ψ would belong to dom S and (S + i1)ψ = φ, so that a contradiction would arise.
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Now suppose that ψ does not vanish identically on (a, a′) (similarly if it does
not vanish identically on (b′, b)). Then the restriction u := ψ|(a,a′) is a solution of
the above equation in the statement of the lemma (recall that Ĥ ⊂ H∗) and it is
L2 near a. The construction of the solution L2 near b is as follows.

Consider the operator dom Q = {ϕ ∈ dom Ĥ : ϕ(x) = 0, ∀x ∈ [b′, b)} (under
restriction, this set is dense in L2(a, a′)), Q := Ĥ|dom Q; in view of u ∈ dom Q
and

Qu = −u′′ + V u = −iu,
it is found that ū ∈ dom Q∗ (the complex conjugate of u above) and

(Q∗ − i1)ū = 0;

it then follows that rng (Q + i1) is not dense and, as above, there exists φ ∈
C∞0 (a, a′) with φ /∈ rng (Q+ i1). The self-adjointness of Ĥ implies that rng (Ĥ +
i1) = L2(a, b), and so there is v ∈ dom Ĥ with (Ĥ + i1)v = φ. Finally, v does not
vanish identically on [b′, b) since φ /∈ rng (Q + i1), and so a (nonzero) L2 near b
solution of the equation in the statement of the lemma was found. This completes
the proof. �
Corollary 7.2.11. If n−(H) = n+(H) = 0, that is, H is essentially self-adjoint,
then both ends a, b are singular.

Proof. If one end is regular then all solutions of the corresponding K∓-equation
are L2 near it and, by Lemma 7.2.10, there is at least one solution of the above
equation that is L2 near the other end point, so at least one solution belongs to
L2(a, b) and n+(H) ≥ 1. Both ends being singular is the only remaining possibility
if n− = n+ = 0. �

7.2.2 Limit Point, Limit Circle

Corollary 7.2.11 shows that a necessary condition for H to be essentially self-
adjoint is that both ends a, b are singular. This is related to interesting results
by Weyl (around 1910) and further developed by Levinson, Friedrichs and many
others. For details justifying the terms in the next definition – although not im-
mediate, they are quite interesting – consult [CoL55] or [Pea88].

Definition 7.2.12. The minimal differential operator H is in the limit point (resp.
limit circle) at one end point if the vector space of solutions of the K±-equation
that are L2 near this end point is unidimensional (resp. two-dimensional).

Theorem 7.2.13 (Weyl). The operator H is essentially self-adjoint iff it is in the
limit point at both ends a and b.

Proof. By Corollary 7.2.11 and the proof of Lemma 7.2.10, if H is essentially self-
adjoint, then both ends are limit point and the unique nonzero solution ϕ of the
K+-equation that is L2 near a and the unique nonzero solution ψ that is L2 near
b compose a linearly independent set, so that no solution belongs to L2(a, b).
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The task now is to show that if H is limit point at both end points, then
n− = n+ = 0, which is equivalent to H∗ being self-adjoint.

By Lemma 7.2.1,

ΓH∗(ψ, ϕ) = Wb[ψ, ϕ] −Wa[ψ, ϕ], ∀ψ, ϕ ∈ dom H∗;

also H∗ is self-adjoint iff the boundary form ΓH∗ vanishes identically. Let c ∈ (a, b)
and A,B be operators with the same action as H but domains dom B = C∞0 (a, c)
and dom A = {ϕ ∈ C∞(a, c) : ϕ(c) = 0, ∃ε > 0, ϕ(x) = 0, ∀x ∈ (a, a + ε)}. Since
B ⊂ A one has B ⊂ A.

Claim. A is self-adjoint.

In fact, by hypothesis the solutions of −ϕ′′ + V ϕ = ±iϕ that are L2 near
a constitute a one-dimensional subspace, and since c is a regular end point, all
solutions are L2 near c; hence n−(B) = 1 = n+(B). By noting that A is a proper
hermitian extension of B (there are functions ϕ in dom A with ϕ′(c) 
= 0, but
not in dom B; see Proposition 7.2.4), it follows that n±(A) < n±(B) (because
n±(B) < ∞) and the unique possibility is then n−(A) = 0 = n+(A), and so A is
self-adjoint.

Let ψ, ϕ ∈ dom H∗. Pick ψc, ϕc ∈ C∞0 (a, b) so that both functions ψ2 := ψ+
ψc, ϕ2 := ϕ+ϕc vanish at c. Then, ψ2, ϕ2 ∈ dom A and in view of Wc[ψ2, ϕ2] = 0
one finds

Wa[ψ, ϕ] =Wa[ψ2 − ψc, ϕ2 − ϕc] = Wa[ψ2, ϕ2]
=Wa[ψ2, ϕ2] −Wc[ψ2, ϕ2] = −ΓA(ψ2, ϕ2) = 0,

since A is self-adjoint (see Lemma 7.1.7). Similar arguments show that Wb[ψ, ϕ] =
0, so that ΓH∗ vanishes identically on dom H∗ and H∗ is self-adjoint. Thereby the
proof is complete. �

Exercise 7.2.14. Show that H has deficiency indices n+ = n− = 1 iff it is limit
circle at one end and limit point at the other.
Example 7.2.15. If V is a real polynomial and Hψ = −ψ′′ + V ψ, dom H =
C∞0 (a, b) and (a, b) a bounded interval, then both ends are regular and so n+ =
n− = 2. Note that such a conclusion holds also for any continuous potential in
[a, b], including the free particle in the interval, that is, V = 0 (cf. Example 2.6.8).

Example 7.2.16. Let V (x) = κ ln(γ x), κ 
= 0, γ > 0, and dom H = C∞0 (0, 1).
Since V is regular at both end points, it follows that n− = n+ = 2.

Exercise 7.2.17. Show that the deficiency indices of H in (0, 1) with potential
V (x) = κ(lnx)2 are equal to 2. Generalize for V (x) = κ(lnx)m, for any κ ∈
R,m ∈ N.

Example 7.2.18. Let V (x) = κ/x2, κ 
= 0, and H with dom H = C∞0 (0, 1). By
Proposition 2.3.20, dom H∗ = {ψ ∈ L2(0, 1) : ψ, ψ′ ∈ AC(0, 1), (−ψ′′ + κ/x2ψ) ∈
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L2(0, 1)}. The end point 1 is regular, while 0 is not; so H is limit circle at 1. For
the end point 0 one needs to determine the solutions of the K∓-equation

H∗ψ = −ψ′′ + κ

x2
ψ = ±iψ;

if one searches for solutions in the form ψ(x) = xa, it follows that

−a(a− 1)xa + κxa ∓ ixa+2 = 0,

so that, whether for x→ 0 the term xa+2 could be ignored in comparison with the
other terms, then one has approximately −a(a− 1) + κ = 0, whose solutions are
a± = 1/2(1±

√
1 + 4κ). If −1/4 < κ < 3/4 both solutions are independent and L2

near 0 (so limit circle), whereas for κ ≥ 3/4 only one of them is in L2 near 0 (so
limit point). Hence, n− = n+ = 1 if κ ≥ 3/4 and n− = n+ = 2 if −1/4 < κ < 3/4.

Now a justification of the above procedure for x→ 0. If ψ ∈ dom H∗, then

u = H∗ψ = −ψ′′ + κ

x2
ψ ∈ L2(0, 1);

this may be thought of as a nonhomogeneous second-order linear differential equa-
tion for ψ. Note that the independent solutions of the homogeneous equation are
exactly the above ψ+(x) = xa+ and ψ−(x) = xa− . By the well-known variation of
parameters technique one obtains the general solution, that is,

ψ(x) = b+ψ+(x) + b−ψ−(x)

+
[
ψ+(x)

∫ x

0

ψ−(t)u(t)
Wt[ψ+, ψ−]

dt− ψ−(x)
∫ x

0

ψ+(t)u(t)
Wt[ψ+, ψ−]

dt

]
,

for some constants b±. A direct calculation gives Wt[ψ+, ψ−] = −γ, ∀t, with
γ =

√
1 + 4κ. Write ‖u‖2,x =

(∫ x
0 |u(t)|2dt

)1/2
and note that ‖u‖2,x → 0 as

x → 0+. The absolute value of the term in square brackets is estimated from
above by using Cauchy-Schwarz,

‖u‖2,x

γ
×
(
|ψ+(x)|

(∫ x

0

|ψ−(t)|2
)1/2

+ |ψ−(x)|
(∫ x

0

|ψ+(t)|2
)1/2

)

≤ 4
|4 − γ2|

‖u‖2,x

γ
x3/2, −1

4
< κ <

3
4
.

The case κ = 3/4 is left as an exercise. Since such a term is in L2 near 0, the
final analysis of ψ near 0 is left to the solutions of the homogeneous equation
ψ+(x) = xa+ and ψ−(x) = xa− , which is exactly the analysis performed above.
Exercise 7.2.19. Discuss the case κ = 3/4 in Example 7.2.18 (see also Exer-
cise 7.2.23).
Exercise 7.2.20. For ψ ∈ dom H∗ in Example 7.2.18, find the behavior of ψ′(x)
for x→ 0+.
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Example 7.2.21. This is the potential of Example 7.2.18, but on the half-line. Let
V (x) = κ/x2, κ 
= 0, and H with dom H = C∞0 (0,∞). The same conclusions
about the end point 0 as in Example 7.2.18 are obtained. For the other end point
consider the K−-equation

−x2ψ′′ + κψ = ix2ψ;

for x → ∞ its solutions are governed by the equation −ψ′′ = iψ whose solutions
are u±(x) = e±(1±i)x/

√
2; since only one of them is in L2 near ∞ (analogously

to the K+-equation), one concludes that H is in the limit point at ∞ for all
κ 
= 0. Therefore, if κ ≥ 3/4 the operator H is essentially self-adjoint, whereas
n− = n+ = 1 if −1/4 < κ < 3/4.

For the justification of the above argument in case x → ∞, apply Proposi-
tion 7.5.3 and Exercise 7.5.6.

Exercise 7.2.22. Check that

u1(x) =
√
x cos(t lnx)/

√
t, u2(x) =

√
x sin(t ln x)/

√
t,

with t =
√
−κ− 1/4, κ < −1/4, are solutions of −ψ′′ + κ

x2ψ = 0.

Exercise 7.2.23. Show that the deficiency indices of dom H = C∞0 (0,∞), Hψ =
−ψ′′ − ψ/(4x2) are n− = 1 = n+. Note that ψ+(x) =

√
x and ψ−(x) =

√
x lnx

are solutions of H∗ψ = 0.

7.3 Regular Examples

In this section boundary triples will be used to get explicitly self-adjoint extensions
of H with regular end points. The ideas can be adapted to other situations.

Example 7.3.1. [Free particle on a half-line] The initial energy operator is Hψ =
−ψ′′, dom H = C∞0 (0,∞); by Example 2.3.19, n− = n+ = 1. Also dom H∗ =
H2[0,∞) and the boundary form, for ψ, ϕ ∈ dom H∗, is readily seem to be

Γ(ψ, ϕ) = W∞[ψ, ϕ] −W0[ψ, ϕ] = ψ′(0)ϕ(0) − ψ(0)ϕ′(0),

since the elements of dom H∗ vanish at infinity. Now define the vector spaces
X := {Ψ = ψ(0) − iψ′(0) : ψ ∈ dom H∗} and the map Y = ρ(X) := {ρ(Ψ) =
ψ(0) + iψ′(0) : Ψ ∈ X}, and observe that

〈Ψ,Φ〉 − 〈ρ(Ψ), ρ(Φ)〉 = 2iΓ(ψ, ϕ)

(of course Φ = ϕ(0) − iϕ′(0)), so that a boundary triple was found (with respect
to Definition 7.1.11, think of X = ρ1(dom H∗) and Y = ρ2(dom H∗) = ρ(X)).

Now, according to Theorem 7.1.13, a domain D so that H∗|D is self-adjoint
is characterized by unitary maps between X and Y . Since X and Y are unidimen-
sional, such unitary maps are multiplication by eiθ for some 0 ≤ θ < 2π. Therefore,
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the domain of self-adjoint extensions of H are so that Ψ = eiθρ(Ψ) for all Ψ ∈ X .
Writing out such a relation

ψ(0) − iψ′(0) = eiθ (ψ(0) + iψ′(0)) ,

and so (1 − eiθ)ψ(0) = i(1 + eiθ)ψ′(0); if θ 
= 0 one has

ψ(0) = λψ′(0), λ = i
(1 + eiθ)
(1 − eiθ)

∈ R.

Therefore the self-adjoint extensions Hλ of H are characterized by the following
boundary conditions

dom Hλ = {ψ ∈ H2[0,∞) : ψ(0) = λψ′(0)}, Hλψ = −ψ′′,

for each λ ∈ R∪ {∞}. The value λ = ∞ is for including θ = 0, which corresponds
to Neumann boundary condition ψ′(0) = 0. A Dirichlet boundary condition occurs
for λ = 0. Exercises 7.3.2 and 11.6.11 discuss the spectra of such operators.
Exercise 7.3.2. Show that the self-adjoint operators Hλ in Example 7.3.1 have an
eigenvalue E iff λ < 0 and E = −1/λ2, whose eigenfunction is ψE(x) = ex/λ. The
existence of a negative value in the spectrum can be considered rather unexpected,
since the actions of Hλ indirectly suggest they are positive operators; the question
is the boundary condition choice. Maybe, someone could discard such possibilities
on the basis of physical arguments.
Exercise 7.3.3. Check that if in Example 7.2.21 one takes κ = 0, then Exam-
ple 7.3.1 is recovered.
Example 7.3.4. [Free particle on an interval] The initial energy operator is Hψ =
−ψ′′, dom H = C∞0 (0, 1); by Example 7.2.15, n− = n+ = 2. Also dom H∗ =
H2[0, 1] and the boundary form is, for ψ, ϕ ∈ dom H∗,

Γ(ψ, ϕ) =W1[ψ, ϕ] −W0[ψ, ϕ]
= ψ(1)ϕ′(1) − ψ′(1)ϕ(1) − ψ(0)ϕ′(0) + ψ′(0)ϕ(0).

Based on Example 7.3.1, define the two-dimensional vector spaces of elements

Ψ =
(
ψ′(0) − iψ(0)
ψ′(1) + iψ(1)

)
, ρ(Ψ) =

(
ψ′(0) + iψ(0)
ψ′(1) − iψ(1)

)
,

for ψ ∈ dom H∗. A direct evaluation of inner products leads to

〈Ψ,Φ〉 − 〈ρ(Ψ), ρ(Φ)〉 = −2iΓ(ψ, ϕ),

and a boundary triple was found.
By Theorem 7.1.13, a domain D so that H∗|D is self-adjoint is characterized

by a unitary 2 × 2 matrix Û so that Ψ = Ûρ(Ψ) for all Ψ; recall that the general
form of such matrices is

Û = eiθ
(
a−b̄
b ā

)
, θ ∈ [0, 2π), a, b ∈ C, |a|2 + |b|2 = 1.
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Writing out such a relation one obtains the boundary conditions(
1− Û

)(
ψ′(0)
ψ′(1)

)
= −i

(
1 + Û

)(−ψ(0)
ψ(1)

)
and the domain of the corresponding self-adjoint extension HÛ of H is composed
of the elements ψ ∈ H2[0, 1] so that the above boundary conditions are satisfied;
also HÛψ = −ψ′′. Some particular choices of Û appear in exercises.

In case (1 + Û) is invertible (similarly if (1− Û) is invertible) one can write
the above boundary conditions as

A

(
ψ′(0)
ψ′(1)

)
=
(
−ψ(0)
ψ(1)

)
, A = i

(
1 + Û

)−1 (
1− Û

)
,

with A a self-adjoint 2 × 2 matrix. By allowing some entries of A that take the
value ∞, it is possible to recover some cases

(
1 + Û

)
that are not invertible;

nevertheless, it is not always a simple task to recover all such cases, so that the
boundary conditions in terms of Û seem preferable.
Exercise 7.3.5. Show that A above is actually a self-adjoint matrix. Note that it
recalls the inverse Cayley transform.
Exercise 7.3.6. Check that the choices for the matrix Û

a) 1, b) − 1, c)
(

0 1
1 0

)
, d)

(
0 −1
−1 0

)
,

impose, respectively, the boundary conditions: a) ψ(0) = 0 = ψ(1) (Dirichlet); b)
ψ′(0) = 0 = ψ′(1) (Neumann); c) ψ(0) = ψ(1) and ψ′(0) = ψ′(1) (periodic); d)
ψ(0) = −ψ(1) and ψ′(0) = −ψ′(1) (antiperiodic).
Exercise 7.3.7. With respect to Exercise 7.3.6, find the spectra of all those op-
erators by solving the corresponding eigenvalue equations; confirm that they are
formed solely of eigenvalues. Check that cases a) and b) have the same spectra,
except for E = 0 that is an eigenvalue only in case b) and, in both cases, all
eigenvalues are simple. Note that the multiplicity of all eigenvalues in case d) is
two.
Example 7.3.8. If the potential V is such that both end points 0, 1 are regular,
then the deficiency indices of Hψ = −ψ′′ + V ψ, dom H = C∞0 (0, 1), are equal to
2, and for any ψ ∈ dom H∗ the boundary values ψ(0), ψ(1), ψ′(0), ψ′(1) are well
defined. Thus, its self-adjoint extensions can be characterized in the same way as
in Example 7.3.4, through the same boundary conditions. Particular cases are

V (x) = κ lnx, V (x) = κ/xα, α < 1, κ ∈ R.

Example 7.3.9. Let V (x) be continuous and lower bounded with |V (x)| ≤ |x|−α,
for some 0 < α < 1/2, and Hψ = −ψ′′ + V ψ, dom H = C∞0 (R). By Theo-
rem 6.2.23, H is in the limit point case at both end points −∞,+∞, so that H∗

is self-adjoint, with dom H∗ = H2(R) and H∗ψ = −ψ′′ + V ψ.



184 Chapter 7. Boundary Triples and Self-Adjointness

7.4 Singular Examples and All That

For singular endpoints the limit values of ψ, ψ′ could not exist, so that the strategy
presented in the examples in Section 7.3 is not guaranteed to work. However, in
some cases it is possible to properly adapt that strategy in order to get self-adjoint
extensions. This will be illustrated in this section through a series of examples,
including some point interactions.
Example 7.4.1. The self-adjoint extensions of dom H = C∞0 (0, 1),

(Hψ)(x) = −ψ′′(x) − 1
4x2

ψ(x), ψ ∈ dom H,

will be found (cf., Example 7.2.18 and Exercise 7.2.23). If ψ ∈ dom H∗ = {ψ ∈
L2(0, 1) : ψ, ψ′ ∈ AC(0, 1), (−ψ′′ − ψ/(4x2)) ∈ L2(0, 1)} one has

u = H∗ψ = −ψ′′ − 1
4x2

ψ ∈ L2(0, 1),

which is a nonhomogeneous second-order linear differential equation for ψ; the
general solution of the corresponding homogeneous equation H∗ψ = 0 is b1ψ1(x)+
b2ψ2(x), b1, b2 ∈ C, with ψ1(x) =

√
x and ψ2(x) =

√
x lnx, whose wronskian is

Wx[ψ1, ψ2] = 1, ∀x ∈ [0, 1]. Introduce ϕ = ψ/
√
x so that

√
xϕ′′ +

1√
x
ϕ′ = −u,

or
(xϕ′)′ = xϕ′′ + ϕ′ = −

√
xu,

and since
√
xu ∈ L1[0, 1], on integrating one gets

ϕ′(x) =
b2
x

− 1
x

∫ x

0

√
s u(s) ds.

By Cauchy-Schwarz, the function x �→ 1
x

∫ x
0

√
su(s) ds is also integrable in [0, 1],

so that
ϕ(x) = b1 + b2 lnx−

∫ x

0

ds

s

∫ s

0

√
t u(t) dt

and, finally, ψ(x) = b1
√
x + b2

√
x lnx + vψ(x), (note that bj = bj(ψ), j = 1, 2)

with vψ denoting the differentiable function

vψ(x) = −
√
x

∫ x

0

ds

s

∫ s

0

√
t u(t) dt.

By Cauchy-Schwarz again,

|vψ(x)| ≤
√
x

∫ x

0

ds

s

∣∣∣∣∫ s

0

√
t u(t)

∣∣∣∣ dt
≤
√
x

∫ x

0

ds

s

s√
2
‖u‖2 =

x3/2

√
2

‖u‖2,

so that vψ(x) ∼ x3/2, v′ψ(x) ∼ x1/2 as x→ 0.
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The boundary form of H is, for ψ, ϕ ∈ dom H∗,

ψ(x) = b1(ψ)
√
x+ b2(ψ)

√
x lnx+ vψ(x)

and
ϕ(x) = b1(ϕ)

√
x+ b2(ϕ)

√
x lnx+ vϕ(x),

Γ(ψ, ϕ) =W1[ψ, ϕ] −W0[ψ, ϕ]

= ψ(1)ϕ′(1) − ψ′(1)ϕ(1) + lim
x→0+

(
−ψ(x)ϕ′(x) + ψ′(x)ϕ(x)

)
= ψ(1)ϕ′(1) − ψ′(1)ϕ(1) − b1(ψ)b2(ϕ) + b1(ϕ)b2(ψ).

Remark 7.4.2. The above procedure, to deal with functions in dom H∗, was an
alternative to the use of the variation of parameters formula employed in Exam-
ple 7.2.18.

Based on Example 7.3.1, define the two-dimensional vector spaces of elements

Ψ =
(
b2(ψ) − ib1(ψ)
ψ′(1) + iψ(1)

)
, ρ(Ψ) =

(
b2(ψ) + ib1(ψ)
ψ′(1) − iψ(1)

)
,

for ψ ∈ dom H∗. A direct evaluation of inner products leads to

〈Ψ,Φ〉 − 〈ρ(Ψ), ρ(Φ)〉 = −2iΓ(ψ, ϕ),

and a boundary triple for H was found. The self-adjoint extensions HÛ of H are
associated with 2 × 2 unitary matrices Û that entail the boundary conditions(

1 − Û
)(

b2(ψ)
ψ′(1)

)
= −i

(
1 + Û

)(−b1(ψ)
ψ(1)

)
,

that is, the domain of the self-adjoint extension HÛ of H is composed of the
elements ψ ∈ dom H∗ so that the above boundary conditions are satisfied; also
HÛψ = H∗ψ, ∀ψ ∈ dom HÛ . The reader can play with different choices of Û in
order to get explicit self-adjoint extensions. What about some with b2 = 0?

7.4.1 One-dimensional H-Atom

The operator with domain dom H = C∞0 (R \ {0}) and action

H = −d2/dx2 − κ/|x|, κ > 0, x ∈ R \ {0},

is known as the (initial) one-dimensional hydrogen atom hamiltonian. It easily
follows that H is hermitian and the question is to determine its self-adjoint exten-
sions. In the way of finding such extensions, some typical difficulties encountered
when dealing with more realistic potentials will appear. This model has a contro-
versial history which can be traced through the references in the article [LoCdO06].
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First the deficiency indices will be handled. Write

C∞0 (R \ {0}) = C∞0 (−∞, 0) ⊕ C∞0 (0,∞)

and set H1 = H |C∞
0 (−∞,0) and H2 = H |C∞

0 (0,∞), so that H = H1 ⊕ H2. By
Proposition 2.3.20, dom H∗1 = {ψ ∈ L2(−∞, 0) : ψ, ψ′ ∈ AC(−∞, 0), (−ψ′′ −
κ/|x|ψ) ∈ L2(−∞, 0)}, dom H∗2 = {ψ ∈ L2(0,∞) : ψ, ψ′ ∈ AC(0,∞), (−ψ′′ −
κ/|x|ψ) ∈ L2(0,∞)} and

(H∗j ψ)(x) = −ψ′′(x) − κ

|x|ψ(x), ψ ∈ dom H∗j , j = 1, 2.

Hence, dom H∗ = {ψ ∈ L2(R) : ψ, ψ′ ∈ AC(R \ {0}), (−ψ′′ − κ/|x|ψ) ∈ L2(R)}
and H∗ with the same action as H .

By using Whittaker functions [GraR80] (solutions of a particular confluent
hypergeometric equation) in [Mos93] it was shown that for ψ ∈ dom H∗ the lateral
limits ψ(0±) := limx→0± ψ(x) are finite while ψ′(x) has logarithmic divergences
as x → 0±. Furthermore, limx→±∞ ψ(x) = 0, limx→±∞ ψ′(x) = 0. With such
information, a characterization of ψ′(0±) is possible. The following lemma is an
alternative way of getting such information.

Lemma 7.4.3. If ψ ∈ dom H∗, then the lateral limits ψ(0±) = limx→0± ψ(x) and

ψ̃(0±) := lim
x→0±

(ψ′(x) ± κψ(x) ln(|κx|))

exist and are finite.

Proof. We will discuss the case x > 0; the other x < 0 is similar. For ψ ∈ dom H∗

one has

−H∗ψ =
d2ψ

dx2
+
κ

x
ψ := u ∈ L2(0,∞),

and one can write ψ = ψ1 +ψ2 with ψ′′1 = u, ψ1(0+) = 0 and ψ′′2 +κ/xψ = 0. Since
ψj ∈ H2(ε,∞), j = 1, 2, for all ε > 0, and u ∈ L2, it follows that these functions
are of class C1(0,∞).

Consider an interval [x, c], 0 < x < c <∞; c will be fixed later on. Since

ψ′1(x) − ψ′1(c) =
∫ c

x

u(s) ds,

ψ′1(x) has a lateral limit

ψ′1(0
+) = ψ′(c) +

∫ c

0

u(s) ds.

On integrating successively twice over the interval [x, c] one gets

ψ′2(c) − ψ′2(x) = −κ
∫ c

x

ψ(s)
s

ds,
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and then

ψ2(x) = ψ2(c) − (c− x)ψ′2(c) − κ

∫ c

x

dv

∫ c

v

ds
ψ(s)
s

= ψ2(c) − (c− x)ψ′2(c) − κ

∫ c

x

dsψ(s)
s− x

s
,

and since 0 ≤ (s−x)/s < 1, by dominated convergence the last integral converges
to
∫ 1

0
ψ(s) as x→ 0+. Therefore ψ2(0+) exists and

ψ2(0+) = ψ2(c) − cψ′2(c) − κ

∫ c

0

ψ(s) ds.

Now,

∣∣ψ2(x) − ψ2(0+)
∣∣ ≤ x|ψ′2(c)| + κ

∫ x

0

|ψ(s)| ds+ κx

∫ c

x

ds
|ψ(s)|
s

.

Taking into account that ψ is bounded, say |ψ(x)| ≤ C, ∀x, Cauchy-Schwarz in
L2 implies ∫ x

0

|ψ(s)|ds =
∫ x

0

1 |ψ(s)|ds ≤ C
√
x,

and so, for 0 < x small enough and fixing c = 1,∫ c

x

ds
ψ(s)
s

≤ C (c| ln c| + x| lnx|) ≤ C̃
√
x,

for some constant C̃. Such inequalities imply ψ(x) = ψ(0+) + O(
√
x), and on

substituting this into

ψ′(x) = ψ′(1) + κ

∫ 1

x

ψ(s)
s

ds

(recall that ψ′1(0
+) is finite) it is found that there is b so that, as x→ 0+,

ψ′(x) = ψ′(1) − κψ(0+) ln(κx) + b+ o(1);

thus, the derivative ψ′ has a logarithmic divergence as r → 0 and the statement
in the lemma also follows. �

By means of Whittaker’s functions [Mos93] one gets the values n−(H1) =
1 = n+(H1) and n−(H2) = 1 = n+(H2), so that n−(H) = 2 = n+(H). Similarly
to Example 7.3.4, taking into account that ψ, ψ′ vanish at ±∞, it follows that

Γ(ψ, ϕ) =W0+ [ψ, ϕ] −W0− [ψ, ϕ]

= lim
x→0+

(
ψ(x)ϕ′(x) − ψ′(x)ϕ(x)

)
+ lim
x→0−

(
ψ′(x)ϕ(x) − ψ(x)ϕ′(x)

)
.
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Though the right-hand side is finite, each lateral limit may diverge. However,
invoking Lemma 7.4.3 and since one readily checks that

Γ(ψ, ϕ) = ψ(0+)ϕ̃(0+) − ψ̃(0+)ϕ(0+) + ψ̃(0−)ϕ(0−) − ψ(0−)ϕ̃(0−),

but now each lateral limit is finite, again by following Example 7.3.4 a boundary
triple was constructed. The self-adjoint extensions HÛ of H are associated with
2 × 2 unitary matrices Û that entail the boundary conditions(

1− Û
)(

ψ̃(0−)
ψ̃(0+)

)
= −i

(
1 + Û

)(−ψ(0−)
ψ(0+)

)
,

and the domain of the self-adjoint extension HÛ of H is composed of the elements
ψ ∈ dom H∗ so that the above boundary conditions are satisfied; also HÛψ =
H∗ψ. Dirichlet boundary conditions ψ(0−) = 0 = ψ(0+) are obtained by choosing
Û = 1. Some boundary conditions mix the right and left half-lines, which are
interpreted as quantum permeability of the singularity at the origin, that is, the
particle is allowed to pass through the origin; see more details in Exercise 14.4.10
and [deOV08]. The above discussion also holds for κ < 0.

Exercise 7.4.4. Based on the arguments used to conclude Corollary 7.2.5, find
the closure of the initial operator for the one-dimensional H-atom, that is, H =
−d2/dx2 − κ/|x| with domain C∞0 (R \ {0}).

7.4.2 Some Point Interactions

Roughly speaking, point interactions are a kind of potential concentrated on a
single point of Rn, which are also called zero-range potentials and delta-function
potentials. Often they are properly defined via the choice of domains and bound-
ary conditions at the point in question, and it is a possible way to describe a
hamiltonian with a Dirac δ potential.

Physically, the main consequence of extracting a point of Rn is that trans-
lation invariance is lost, which has impressive consequences on some quantum
observables (i.e., operators) since the unique self-adjointness can also be lost (at
least in dimensions n ≤ 3).

Different approaches for associating self-adjoint operators to point interac-
tions are discussed in [Zor80]; more information can be obtained from the books
[AGKH05] and [AlK00]. In those references, in case of Rn, n ≤ 3, self-adjoint
extensions of hermitian (Schrödinger) operators with point interactions are char-
acterized and their spectral properties explicitly computed. Hence, point interac-
tions have been called “solvable models” and used to approximately study physical
systems with “very short range” potentials.

Here a few of the simplest cases will be discussed; Example 4.4.9 can be
considered the first instance of point interaction in this book.
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Example 7.4.5. Let T = −id/dx with

dom T = C∞0 (R \ {0}) = C∞0 (−∞, 0) ⊕ C∞0 (0,∞).

One point was removed and the self-adjoint extensions are obtained from dom T ∗

through suitable matching conditions at the origin (recall that in case the domain
is C∞0 (R) the operator T is essentially self-adjoint; see Section 3.3). Set T1 =
T |C∞

0 (−∞,0) and T2 = T |C∞
0 (0,∞), so that T = T1 ⊕ T2. One has dom T ∗ = {ψ ∈

AC(R \ {0}) : ψ′ ∈ L2(R)}, T ∗ψ = −iψ′.
Exercise 7.4.6. Check that

dom T ∗1 = {ψ ∈ AC(−∞, 0) : ψ′ ∈ L2(−∞, 0]},
dom T ∗2 = {ψ ∈ AC(0,∞) : ψ′ ∈ L2[0,∞)},

and verify that T ∗ is the above operator.

In order to determine the deficiency indices consider the K±-equations

(T ∗2 ± i1)ψ± = 0,

whose solutions are proportional to ψ±(x) = e±x. Similarly for T1. Hence n−(T1) =
0 = n+(T2), n−(T2) = 1 = n+(T1), and combining these values one obtains
n−(T ) = 1 = n+(T ).
Exercise 7.4.7. Follow the proof of Lemma 7.4.3 to show that, for ψ ∈ dom T ∗,
the lateral limits ψ(0−), ψ(0+), exist.

Now, for ψ, ϕ ∈ dom T ∗ the boundary form is found (on integrating by
parts):

Γ(ψ, ϕ) = 〈T ∗ψ, ϕ〉 − 〈ψ, T ∗ϕ〉

=

(∫ 0−

−∞
+
∫ ∞

0+

)
dx
(
(−iψ′(x))ϕ(x) − ψ(x)(−iϕ′(x))

)
= i
(
ψ(0+)ϕ(0+) − ψ(0−)ϕ(0−)

)
.

Introduce the one-dimensional vector spaces X = {ψ(0+) : ψ ∈ dom T ∗} and
Y = {ψ(0−) = ρ(ψ(0+) : ψ ∈ dom T ∗} and note that Γ(ψ, ϕ) = 0 is equivalent to
the equality of inner products

〈ψ(0+), ϕ(0+)〉 = 〈ρ(ψ(0+)), ρ(ϕ(0+)〉.

Self-adjoint extensions are obtained on domains D ⊂ dom T ∗ so that Γ(ψ, ϕ) = 0,
∀ψ, ϕ ∈ D, that is, X and Y are related by unitary maps eiθ, 0 ≤ θ < 2π; explicitly
ψ(0+) = eiθψ(0−).

Therefore, the family of operators

dom Tθ =
{
ψ ∈ AC(R \ {0}) : ψ′ ∈ L2(R), ψ(0+) = eiθψ(0−)

}
,

Tθψ =−idψ
dx
,
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constitutes the self-adjoint extensions of T . The case θ = 0 agrees with the mo-
mentum operator P (see Example 2.3.11 and Section 3.3) defined without point
interaction, that is, with initial domain C∞0 (R).
Exercise 7.4.8. Find the self-adjoint extensions of the hermitian operator dom T =
C∞0 (R \ {0}), Tψ = −ψ′′. Show that its deficiency indices are n− = n+ = 2.
Exercise 7.4.9. A circumference with one point removed can be considered a seg-
ment, say [0, 1], with the ends identified. Write 0 = 0+ and 1 = 0−, and construct
the possible hamiltonians of a free particle on this circumference as self-adjoint
extensions of dom H = C∞0 (0+, 0−), Hψ = −ψ′′.
Example 7.4.10. This should be compared with Example 7.4.5. It is another pos-
sible way to define self-adjoint realizations of T = −i ddx in L2(R) with the origin
removed. Here one takes dom T = {ψ ∈ H1(R) : ψ(0) = 0}. It also illustrates an-
other way of finding self-adjoint extensions. By using Fourier transform, this oper-
ator (see Section 3.3) is rewritten as a specific multiplication operator S = F−1TF
so that

dom S =
{
φ ∈ dom P = H1(R̂) : 0 =

∫
R

φ(p) dp
}
, (Sφ)(p) = pφ(p).

Recall that for ψ ∈ H1(R) one has ψ(0) = 1√
2π

∫
R
ψ̂(p) dp, whose integral means

limM→∞
∫M
−M ψ̂(p) dp; this explains dom S.

Exercise 7.4.11. Show that S (and so T ) is a hermitian operator.

Lemma 7.4.12. a) S is a closed operator.
b) The solutions u ∈ L2

loc(R̂) (or L1
loc(R̂)) of

∫
R
φ(p)u(p) dp = 0, ∀φ ∈ dom S,

are the constant functions.

Proof. a) Let ψn → ψ and Sψn → φ, ψn ∈ dom S. For each M > 0 one has
‖ψn − ψ‖ < 1/M if n is large enough. By Cauchy-Schwarz,∣∣∣∣∣

∫ M

−M
(ψ − ψn) dx

∣∣∣∣∣ ≤ (2M)1/2‖ψn − ψ‖ <
√

2
M
.

Since
∫

R
ψn dx = 0, ∀n, choose n so that

∣∣∣∫M−M ψn dx
∣∣∣ <√2/M ; thus∣∣∣∣∣

∫ M

−M
ψ dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ M

−M
(ψ − ψn) dx

∣∣∣∣∣+
∣∣∣∣∣
∫ M

−M
ψn dx

∣∣∣∣∣ < 2

√
2
M

and it follows that
∫

R
ψ dx = 0. Denote |‖ϕ‖|M :=

(∫M
M

|ϕ|2 dx
)1/2

. Pick n so large

that ‖Sψn − φ‖ < 1/M1/2, and ‖ψ − ψn‖ < 1/M ; then

|‖pψ‖|M ≤ |‖p(ψ − ψn)‖|M + |‖pψn − φ‖|M + |‖φ‖|M
≤M1/2|‖ψ − ψn‖|M + |‖Sψn − φ‖|M + ‖φ‖

≤M1/2‖ψ − ψn‖ + ‖Sψn − φ‖ + ‖φ‖ < 2
M1/2

+ ‖φ‖,
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and for M → ∞ one obtains ‖Sψ‖ ≤ ‖φ‖, consequently ψ ∈ dom S. Similarly, by
picking n large enough so that ‖ψ − ψn‖ < 1/M and ‖Sψn − φ‖ < 1/M1/2, one
gets

|‖Sψ − φ‖|M ≤ |‖Sψ − Sψn‖|M + |‖Sψn − φ‖|M
≤M1/2‖ψ − ψn‖ + ‖Sψn − φ‖ < 2

M1/2
.

Therefore Sψ = φ and S is a closed operator.
b) Note that the problem has no nonzero solution u ∈ L2(R̂), since such u

would be orthogonal to the dense set dom S. Further, dom S contains the deriva-
tive φ′ of all φ ∈ C∞0 (R) (since

∫
φ′ dx = 0), and so the distributional derivative

u′ of any solution u is null; the result then follows by applying Lemma 2.3.9. �

The deficiency spaces are K±(S) = rng (S∓ i1)⊥. Thus, for u± ∈ K±(S) one
has, for all φ ∈ dom S,

0 = 〈(S ∓ i1)φ, u±〉 =
∫

R

(p∓ i)φ(p)u±(p) dp

=
∫

R

φ(p) (p± i)u±(p) dp =⇒ u±(p) =
1

p± i
.

Lemma 7.4.12 was employed and, actually, the above u± linearly spans K±(S), so
that n− = n+ = 1; note that ‖u−‖ = ‖u+‖. Thus the self-adjoint extensions Sθ of
S are parametrized by eiθ, 0 ≤ θ < 2π, and given by (see Proposition 2.5.8)

dom Sθ = {φθ = φ+ c(u− − eiθu+) : φ ∈ dom S, c ∈ C},
(Sθφθ)(p) = pφ(p) + ci

(
u−(p) + eiθu+(p)

)
.

By recalling of Section 3.3, the following question naturally arises: For which values
of θ do Sθ act as multiplication by p? Since u±(p) = 1/(p± i) one has

Sθ(u− − eiθu+)(p) = i
p(1 + eiθ) + i(1 − eiθ)

1 + p2
,

and by imposing that it equals p(u− − eiθu+)(p), it follows that θ = 0. Surely
S0 corresponds to the usual multiplication operator Mp acting in L2(R̂), which is
the usual momentum operator P (see Example 2.3.11 and Section 3.3), clearly a
self-adjoint extension of T .
Exercise 7.4.13. Apply the procedure in Example 7.4.10 to find all self-adjoint
extensions of Tψ = −Δψ, dom T = {ψ ∈ H2(Rn) : ψ(0) = 0}, for n ∈ N. Note
that there is a problem for n ≥ 4, since by Sobolev embedding the functions in
dom T are not ensured to be continuous; in any event, for all n the following
operators obtained after Fourier transforming are well defined:

dom S =
{
φ ∈ dom P : 0 =

∫
Rn

φ(p) dp
}
, (Sφ)(p) = p2φ(p).
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What is it possible to conclude about the operator S for n ≥ 4? See Remark 7.4.14
for related issues.
Remark 7.4.14. In [Far75], page 33, it is shown that the set C∞0 (Rn \{0}) is dense
in H2(Rn) iff n ≥ 4. From this it follows that Ḣ = −Δ, dom Ḣ = C∞0 (Rn \ {0}),
is essentially self-adjoint iff n ≥ 4, and in this case its unique self-adjoint extension
is H0 = −Δ, dom H0 = H2(Rn). As a matter of fact, clearly H0 is a self-adjoint
extension of Ḣ , and since the graph norm of H0 is equivalent to the norm of
H2(Rn), C∞0 (Rn \ {0}) is a core of H0 iff this set is dense in H2(Rn); so, iff n ≥ 4.
Remark 7.4.15. The procedures discussed in Examples 7.4.5 and 7.4.10 to remove
the origin are not equivalent in general. When applied to the operator Tψ = −ψ′′
in R (see Exercises 7.4.8 and 7.4.13), the former procedure results in deficiency
indices n− = 2 = n+, whereas the latter in n− = 1 = n+.

7.5 Spherically Symmetric Potentials

A potential v : Rn → R is spherically symmetric (also called radial or central) if
its values depend only on r = |x|, that is, if there exists V : [0,∞) → R so that
v(x) = V (r).

It is convenient to exclude the origin and take as the initial hamiltonian
operator

H = −Δ + V (r), dom H = C∞0 (Rn \ {0}).
It is natural to introduce the radius r and n−1 angle variables Ω = {ω1, . . . , ωn−1}
for the description of the system. For instance, if n = 3 one passes from carte-
sian x = (x1, x2, x3) to spherical (r, ϕ, θ) coordinates x1 = r sin θ cosϕ, x2 =
r sin θ cosϕ, x3 = r cos θ, so that L2(R3) is unitarily equivalent to

E3 = L2
r2dr([0,∞)) ⊗ L2

dΩ(S2),

with S2 denoting the unit sphere in R3 and dΩ = sin θdθdϕ. If n = 2 polar
coordinates x1 = r cosϕ, x2 = r sinϕ are introduced so that L2(R2) is unitarily
equivalent to

E2 = L2
rdr([0,∞)) ⊗ L2

dϕ(S1),
with S1 denoting the unit circumference in R2. Here only n = 2, 3 will be consid-
ered, although many results have straight counterparts in higher dimensions; see,
e.g., [Mu66].

By Lemma 1.4.8 the set of finite linear combinations of the functions
R(r)Φ(θ, ϕ) ∈ E3 (resp. R(r)Φ(ϕ) ∈ E2) is dense in L2(R3) (resp. L2(R2)) and
the spherical harmonics Ylm(θ, ϕ), l ∈ N ∪ {0}, −l ≤ m ≤ l, (resp. em(ϕ) =
eimϕ/

√
2π, m ∈ Z) form an orthonormal basis of L2(S2) (resp. L2(S1)). For func-

tions R(r)Ylm(θ, ϕ), R ∈ C∞0 (0,∞), in case n = 3, the well-known expression of
the laplacian Δ in spherical coordinates implies that (see, e.g., [Will03])

H(RYlm) =
(
− d2

dr2
− 2
r

d

dr
+
l(l+ 1)
r2

+ V (r)
)
RYlm,



7.5. Spherically Symmetric Potentials 193

and after the unitary transformation u3 : L2
r2dr([0,∞)) → L2

dr([0,∞)), (u3R)(r) =
rR(r), one obtains for u3Hu

−1
3 restricted to the subspace spanned by Ylm (note

that u3(C∞0 (0,∞)) ⊂ C∞0 (0,∞))

Ĥlm = − d2

dr2
+
l(l+ 1)
r2

+ V (r), dom Ĥlm = C∞0 (0,∞).

For n = 2 one has

H(Rem) =
(
− d2

dr2
− 1
r

d

dr
+
m2

r2
+ V (r)

)
Rem,

and after the unitary transformation u2 : L2
rdr([0,∞)) → L2

dr([0,∞)), with
(u2R)(r) =

√
rR(r), one obtains for u2Hu

−1
2 restricted to the subspace spanned

by em,

Ĥm = − d2

dr2
+
m2 − 1/4

r2
+ V (r), dom Ĥm = C∞0 (0,∞).

In both cases, i.e., n = 2, 3, the original problem is reduced to the study of in-
finitely many Schrödinger operators on the half-line [0,∞) with suitable effective
potentials V̂m or V̂l,m; e.g., in the two-dimensional case,

V̂m(r) = (m2 − 1/4)/r2 + V (r), m ∈ Z.

The previous discussions in this chapter, about Schrödinger operators on intervals,
apply to Ĥm and Ĥlm.
Remark 7.5.1. Note that the radial momentum operator −id/dr is not defined
as a physical quantity on C∞0 (0,∞), since it has no self-adjoint extensions (see
Example 2.3.17 and an intuitive digression in Remark 5.4.7).
Exercise 7.5.2. Consider Ĥlm and Ĥm in R3 and R2, respectively, for the free
particle, i.e., V = 0 identically. Use results of this chapter to show that Ĥlm

(resp. Ĥm) is not essentially self-adjoint only if l = 0 (resp. m = 0). Find the
corresponding deficiency indices. What can be said about H = −Δ, dom H =
C∞0 (Rn \ {0}), n = 2, 3? Cf. Exercise 7.4.8.

Now some particular cases of minimal operators dom H = C∞0 (0,∞), Hψ =
−ψ′′ + V (r)ψ will be discussed (think of the above notation with V̂ replaced by
V ). In the remainder of this section, H always denotes this operator.

Proposition 7.5.3. If V ∈ L2(0,∞), then n−(H) = 1 = n+(H) and

ΓH∗(ψ, ϕ) = −W0[ψ, ϕ], ∀ψ, ϕ ∈ dom H∗.

Lemma 7.5.4. Fix c > 0. If V ∈ L2(0,∞), then for each ψ ∈ dom H∗ there exists
0 ≤ C <∞ so that ∣∣∣∣ψ′(x)√

x

∣∣∣∣ ≤ C, ∀x > c.
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Proof. For ψ ∈ dom H∗ one has −ψ′′ + V ψ = u ∈ L2(0,∞); integrating u and
taking into account that V ψ ∈ L1(0,∞) one obtains (x > c)

ψ′(x) = ψ′(c) +
∫ x

c

dt V (t)ψ(t) −
∫ x

c

dt u(t),

and by Cauchy-Schwarz,

|ψ′(x)| ≤ |ψ′(c)| +
∫ x

c

dt |V (t)ψ(t)| +
∫ x

c

dt |u(t)|

≤ |ψ′(c)| + ‖V ψ‖1 +
(∫ x

c

dt |u(t)|2
)1/2 (∫ x

c

dt

)1/2

≤ |ψ′(c)| + ‖V ψ‖1 + ‖u‖2

√
x− c.

Hence, ∣∣∣∣ψ′(x)√
x

∣∣∣∣≤ |ψ′(c)| + ‖V ψ‖1√
x

+
‖u‖2

√
x− c√
x

≤ |ψ′(c)| + ‖V ψ‖1√
c

+ ‖u‖2 := C, x > c.

The lemma is proved. �

Proof. [Proposition 7.5.3] Since 0 is a regular point of H it is in the limit circle
case (and ψ(0), ψ′(0) take finite values). So the deficiency indices are equal either
to 1 or to 2. It will be checked that W∞[ψ, ϕ] = 0, ∀ψ, ϕ ∈ dom H∗, so that
ΓH∗(ψ, ϕ) = −W0[ψ, ϕ] = ϕ(0)ψ′(0) − ϕ′(0)ψ(0) and, as in Example 7.3.1, the
self-adjoint extensions of H are parametrized by the complex numbers eiθ; thus
the deficiency indices of H are equal to 1. As a subproduct it follows that H is in
the limit point case at ∞.

Let ψ ∈ dom H∗; it is known that W∞[ψ, ϕ] is finite. Suppose x > c; by
Lemma 7.5.4,

1√
x
|Wx[ψ, ϕ]| =

∣∣∣∣∣ψ(x)
ψ′(x)√
x

− ψ′(x)√
x
ψ(x)

∣∣∣∣∣ ≤ 2C |ψ(x)| ,

so that the right-hand side belongs to L2(c,∞), but the left-hand side does not
belong to L2(c,∞) if W∞[ψ, ϕ] 
= 0. Hence, W∞[ψ, ϕ] = 0, ∀ψ ∈ dom H∗. �

Exercise 7.5.5. If V ∈ L2(0,∞), find all self-adjoint extensions of H (see Exam-
ple 7.3.1).
Exercise 7.5.6. Show that if the potential V ∈ L2

loc(0,∞) is in L2 near ∞, then
ΓH∗(ψ, ϕ) = −W0[ψ, ϕ], ∀ψ, ϕ ∈ dom H∗. Conclude that if V is regular at 0, then
the deficiency indices of H are equal to 1.
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Remark 7.5.7. As discussed in [Win47], for a class of negative potentials V (x),
x ∈ R, satisfying a technical condition and limx→∞ V (x) = −∞, the differential
operator H is limit circle at infinity iff, for some x0 > 0,

∫∞
x0

(−V (x))−1/2
dx <∞.

In case of V (x) = −κxα, x > 0 and κ > 0, α > 0, H is then limit point at ∞ iff
α ≤ 2 (this case is included in Wintner’s class).

This characterization of limit point at infinity has a counterpart in classical
mechanics that is worth mentioning (and appreciating). For a classical particle of
mass m and total mechanical energy E under this potential V (x), the travel time
from the initial position x0 > 0 to ∞ is

τ∞ =
√
m

2

∫ ∞

x0

dx√
E − V (x)

.

This follows from conservation of mechanical energy (check this!). If x0 " 1 so
that |V (x)| " E, ∀x ≥ x0 (since limx→∞ V (x) = −∞), one has

τ∞ ≈
√
m

2

∫ ∞

x0

dx√
−V (x)

,

that is, the condition τ∞ = ∞ coincides with the limit point criterion, which,
in its turn, is a necessary condition for the existence of just one self-adjoint ex-
tension of H . Hence, for such potentials, a finite travel time to reach infinity in
classical mechanics is reflected in the quantum limit circle at infinity, inferring the
quantum ambiguity of more than one self-adjoint extension of H . However, there
are counterexamples to this correspondence between essential self-adjointness and
finite travel time to infinity [RaR73].

A discussion, from a physical point of view, of the unitary evolution group
generated by H with negative potentials so that τ∞ < ∞ can be found in
[CFGM90].

Additional criteria for limit point and limit circle can be found in [Na69],
[ReeS75] and [DuS63]. See also [BaZG04].

7.5.1 A Multiply Connected Domain

Some self-adjoint extensions of a hermitian operator with infinite deficiency index
will be found. It will combine the spherical symmetry with the topological property
of multiply connectedness. Some specific results on Sobolev traces will be invoked;
see [Bre99, Ad75] and Chapters 1 and 2 of the first volume of [LiM72]. Nevertheless
we think the set of presented results will make this subsection worthwhile; except
for Section 10.5, they will not be needed for other parts of the text.

Let Λ = R2 \ B(0; a), a > 0 (i.e., the plane with a circular hole), and its
closure Λ = R2 \ B(0; a); its boundary ∂Λ is the circumference S = {(x1, x2) ∈
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R2 : r = (x2
1 + x2

2)
1
2 = a}. The potential will be a bounded continuous V : Λ → R,

with V (x) = V (r), and the initial hamiltonian is the hermitian operator

H = −Δ + V, dom H = C∞0 (Λ).

What are the self-adjoint extensions of H?
As above, polar coordinates x1 = r cosϕ, x2 = r sinϕ are introduced so that

L2(Λ) is unitarily equivalent to L2
rdr([a,∞))⊗ L2

dϕ(S), and consider the functions
em(ϕ) = eimϕ/

√
2π, 0 ≤ ϕ ≤ 2π,m ∈ Z, so that

H(Rem) =
(
− d2

dr2
− 1
r

d

dr
+
m2

r2
+ V (r)

)
Rem.

After performing the unitary transformation u2 : L2
rdr([a,∞)) → L2

dr([a,∞)),
(u2R)(r) =

√
rR(r), the operator u2Hu

−1
2 restricted to the subspace spanned by

em takes the form

Ĥm = − d2

dr2
+
m2 − 1/4

r2
+ V (r), dom Ĥm = C∞0 (a,∞).

The original problem is thus reduced to the study of infinitely many Schrödinger
operators on [a,∞) with potentials

V̂m(r) = (m2 − 1/4)/r2 + V (r), m ∈ Z.

One then easily checks that, for all m, the deficiency indices of Hm are equal to 1
(the point here is that a > 0, instead of a = 0 previously discussed), so that
n+(H) = ∞ = n−(H).

The subject now is to recall Sobolev traces in a convenient way. Although a
ψ(r, ϕ) ∈ H1(Λ) is not necessarily continuous, it is possible to give a meaning to
the restriction ψ(a, ϕ) = ψ|∂Λ(ϕ) ∈ L2(S) via the so-called Sobolev trace of ψ (see
below), that is, the trace of ψ is interpreted as its value on the boundary of Λ.

Let RC1
0 (R2) be the restriction of C1

0 (R2) to C1
0 (Λ) (see the references for

details); it turns out that there is a continuous linear map γ : RC1
0 (R2) ⊂ H1(Λ) →

L2(S), γ(φ(r, ϕ)) = φ(a, ϕ), that is, there is C > 0 so that

‖γφ‖L2(S) = ‖φ(a, ϕ)‖L2(S) ≤ C ‖Rφ‖H1(Λ), φ ∈ C1
0 (R2).

Note that for φ ∈ C1
0 (R2) the boundary values φ(a, ϕ) are well defined for any

angular value ϕ. By density, this map has a unique continuous extension (keeping
the same notation) γ : H1(Λ) → L2(S), called the Sobolev trace map, and one
defines the trace of ψ as ψ(a, ϕ) := γ(ψ) for all ψ ∈ H1(Λ). The essential charac-
teristics here are smoothness and compactness of the boundary ∂Λ [Bre99]; some
important properties of the trace are as follows.
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i) For ψ ∈ H1(Λ) the trace is not defined in a pointwise manner, only as a
function in L2(S). General elements of L2(Λ) do not have a trace defined.

ii) rng γ is dense in L2(S) and the Green formula∫
Λ

∂ψ(x)
∂xj

φ(x) dx +
∫

Λ

ψ(x)
∂φ(x)
∂xj

dx = a

∫ 2π

0

ψ(a, ϕ)φ(a, ϕ) dϕ

holds for all ψ, φ ∈ H1(Λ), j = 1, 2.
iii) The kernel of the trace operator is

H1
0(Λ) := {ψ ∈ H1(Λ) : γ(ψ) = ψ(a, ϕ) = 0},

which is a Hilbert space that can also be defined as the closure of C∞0 (Λ) in
H1(Λ).

iv) In a similar way, if ψ ∈ H2(Λ) one has a well-defined trace γ(∂ψ/∂r), which
will be denoted by ∂ψ/∂r(a, ϕ), which stands for the normal derivative with
respect to ∂Λ (this is used in the adaptation to more general Λ) and belongs
to L2(∂Λ).

v) The ranges of both trace maps H2(Λ) � ψ �→ ψ(a, ϕ) and H2(Λ) � ψ �→
∂ψ/∂r(a, ϕ) are dense in L2(S), and the Green formula∫

Λ

Δψ(x)φ(x) dx +
∫

Λ

∇ψ(x)∇φ(x) dx = a

∫ 2π

0

∂ψ

∂r
(a, ϕ)φ(a, ϕ) dϕ

holds for all ψ, φ ∈ H2(Λ).

Now a subtlety must be mentioned. At first sight one could (wrongly) guess
that the domain of the adjoint H∗ is H2(Λ). However, for open sets Ω ⊂ Rn,
Ω 
= Rn and n ≥ 2, there are functions ψ ∈ L2(Ω) with distributional laplacian
Δψ ∈ L2(Ω) that do not belong to H2(Ω); the point is that other derivatives, as
first derivatives, of ψ need not exist as functions! It turns out that

dom H∗ =
{
ψ ∈ L2(Λ) : (−Δψ + V ψ) ∈ L2(Λ)

}
andH∗ψ=−Δψ+V ψ, ψ ∈ dom H∗, and this domain is strictly larger than H2(Λ).
See [Gru06], [Gru08] and references therein.

By using the above characterization of H∗, some self-adjoint extensions of H
will be found via suitable restrictions of H∗. The boundary form of H , for ψ, φ ∈
dom H∗, is

Γ(ψ, φ) := 〈(−Δ + V )ψ, φ〉 − 〈ψ, (−Δ + V )φ〉.
By restricting to those self-adjoint extensions whose domains are contained in
H2(Λ), Sobolev traces can be invoked, the continuity of the potential guarantees
that V |∂Λ = V (a) is well posed and the above Green formula can be used to
compute, for ψ, φ ∈ H2(Λ),

Γ(ψ, φ) = a

∫ 2π

0

(
ψ(a, ϕ)

∂φ

∂r
(a, ϕ) − ∂ψ

∂r
(a, ϕ)φ(a, ϕ)

)
dϕ.
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Introduce ρj : H2(Λ) → L2(S), j = 1, 2, by

ρ1(ψ) = ψ(a, ϕ) + i
∂ψ

∂r
(a, ϕ),

ρ2(ψ) = ψ(a, ϕ) − i
∂ψ

∂r
(a, ϕ),

and so
(2i/a) Γ(ψ, φ) = 〈ρ1(ψ), ρ1(φ)〉L2(S) − 〈ρ2(ψ), ρ2(φ)〉L2(S) .

Exercise 7.5.8. Verify the above two expressions for the boundary form Γ(ψ, φ)
of H , for ψ, φ ∈ H2(Λ).

A boundary triple for H in the Sobolev space H2(Λ) has been found with
h = L2(S). As before (i.e., by Theorem 7.1.13), from this boundary triple the
self-adjoint extensions HU of H in H2(Λ) are characterized by unitary operators
U : L2(S) ←↩ so that ρ1(ψ) = Uρ2(ψ), ∀ψ ∈ dom HU , and HUψ = H∗ψ. After
writing out this relation one finds

(1 − U)ψ(a, ϕ) = −i(1 + U)
∂ψ

∂r
(a, ϕ).

Therefore, all self-adjoint extensions of H with domain in H2(Λ) were found and
they are realized through suitable boundary conditions on ∂Λ; such boundary
conditions are in terms of traces of elements of H2(Λ). Below some explicit self-
adjoint extensions are described.

1. U = −1.
In this case

dom HU = {ψ ∈ H2(Λ) : ψ(a, ϕ) = 0} = H2(Λ) ∩H1
0(Λ),

HUψ = (−Δ + V )ψ, ψ ∈ dom HU . This is the so-called Dirichlet realization
(of the laplacian if V = 0) in Λ.

2. U = 1.
In this case dom HU = {ψ ∈ H2(Λ) : ∂ψ/∂r(a, ϕ) = 0}, HUψ =

(−Δ + V )ψ. This is the so-called Neumann realization.
3. (1 + U) is invertible.

In this case one gets that for each self-adjoint operator A : dom A �
L2(S) → L2(S) corresponds a self-adjoint extension HA. In fact, first pick
a unitary operator UA so that A = −i(1 − UA)(1 + UA)−1, dom A =
rng (1+UA) and rng A = rng (1−UA); recall the Cayley transform in Chap-
ter 2. Now, dom HA is the set of ψ ∈ H2(Λ) with “∂ψ/∂r(a, ·) = Aψ(a, ·),”
prudently understood in the sense that

(1− UA)ψ(a, ϕ) = −i(1 + UA)
∂ψ

∂r
(a, ϕ),

in order to avoid domain questions. Of course the quotation marks can be
removed in case the operator A is bounded.
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Similarly, for each self-adjoint B acting in L2(S) there corresponds a
unitary UB, and if (1 − UB) is invertible, then there corresponds the self-
adjoint extension HB of H with dom HB the set of ψ ∈ H2(Λ) so that
“ψ(a, ·) = B ∂ψ

∂r r(a, ·),” in the sense that

(1− UB)ψ(a, ϕ) = −i(1 + UB)
∂ψ

∂r
(a, ϕ).

Again the quotation marks can be removed in case the operatorB is bounded.

Note that 4 below is, in fact, particular cases of 3 in which A = Mf

and B = Mg.

4. U is a multiplication operator.

Given a real-valued (measurable) function u(ϕ) put U = Meiu(ϕ) . If
{ϕ : exp(iu(ϕ)) = −1} has measure zero, then

f(ϕ) = −i1 − eiu(ϕ)

1 + eiu(ϕ)

is (measurable) well defined and real valued. The domain of the corresponding
self-adjoint extension is

dom HU =
{
ψ ∈ H2(Λ) : ∂ψ/∂r(a, ϕ) = f(ϕ)ψ(a, ϕ)

}
.

Similarly, if {ϕ : exp(iu(ϕ)) = 1} has measure zero,

g(ϕ) = i
1 + eiu(ϕ)

1 − eiu(ϕ)

is real valued and the domain of the subsequent self-adjoint extension is

dom HU = {ψ ∈ H2(Λ) : ψ(a, ϕ) = g(ϕ)∂ψ/∂r(a, ϕ)}.

Special cases are given by constant functions f, g.

5. A = −id/dϕ with domain H1(S) = {u ∈ H1(0, 2π) : u(0) = u(2π)}. The
corresponding self-adjoint extension has domain{

ψ ∈ H2(Λ) : ψ(a, ϕ) ∈ H1(S), “
∂ψ

∂r
(a, ϕ) = −idψ

dϕ
(a, ϕ)”

}
.

Exercise 7.5.9. Show that A = −id/dϕ in 5 above is self-adjoint.

Since the deficiency indices of H are infinite, there is a plethora of self-adjoint
extensions of the laplacian in the multiply connected domain Λ = R2 \ B(0; a).
Some of them can be quite unusual and hard to understand from the physical and
mathematical points of view.
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Remark 7.5.10. The choice of Λ = R2 \ B(0; a) was for notational convenience.
In a similar way one finds expressions for the boundary form of H = −Δ + V
with domain C∞0 (R2 \Ω), with Ω ⊂ R2 an open set with compact boundary ∂Ω of
class C1; when restricted to domains in H2(R2 \ Ω), Sobolev traces are properly
defined in this setting, and one can also consider Rn, n ≥ 2. For such more general
multiply connected regions, one must consider the normal derivative ∂ψ/∂n at the
boundary ∂Ω, instead of ∂ψ/∂r, and also the corresponding modifications in the
expressions of Green formulae [Bre99], [LiM72].
Remark 7.5.11. The above approach to the self-adjoint extensions of the laplacian
in H2(Λ) was borrowed from [deO08], as well as the variation of the concept of
boundary triple. However, by using a continuous extension of the trace maps to the
dual Sobolev spaces H−1/2(∂Λ) and H−3/2(∂Λ), in [Gru06] one finds references
and comments to her previous works on all self-adjoint extensions of the laplacian
in terms of self-adjoint operators from closed subspaces of H−1/2(∂Λ).
Exercise 7.5.12. Let 0 < a < b <∞ and

Λab =
{
(x1, x2) ∈ R2 : a < (x2

1 + x2
2)

1
2 < b

}
be an annulus in R2. Find the self-adjoint extensions of the laplacian H0 = −Δ,
dom H0 = C∞0 (Λab), whose domains are contained in H2(Λab).



Chapter 8

Spectral Theorem

A discussion of the spectral theorem for self-adjoint operators is presented, includ-
ing details of the resolution of the identity and functions of self-adjoint operators.
Although a complete proof of this theorem for a given operator is not presented,
different approaches to the proof are indicated. Spectral measures of some simple
examples are discussed. Chapter 9 is devoted to some consequences of the spectral
theorem. A denotes the σ-algebra of Borel sets in R.

8.1 Compact Self-Adjoint Operators

In this section the particular case of compact self-adjoint operators on a Hilbert
space H is considered. The spectral theorem for such operators will be presented;
besides its own interest, it will serve as a motivating guide for the noncompact
case discussed ahead. With a little additional effort compact normal operators will
also be discussed.

Lemma 8.1.1. Every nonzero compact and self-adjoint operator T ∈ B(H) has a
nonzero eigenvalue, since either −‖T ‖ or ‖T ‖ is an eigenvalue of T .

Proof. The spectrum of T is real and by Proposition 2.1.12, its spectral radius is
‖T ‖, so either −‖T ‖ or ‖T ‖ belongs to the spectrum of T . By the compactness
of T it will follow that one of them is an eigenvalue, which is equivalent to finding
0 
= ζ ∈ H with (T 2 − ‖T ‖21)ζ = 0.

Let (ξn), ‖ξn‖ = 1, ∀n, so that ‖Tξn‖ → ‖T ‖. Since T is compact, there exists
a convergent subsequence of (Tξn), also denoted by (Tξn); since T is continuous,
(T 2ξn) also converges.

The estimate

0 ≤
∥∥T 2ξn − ‖Tξn‖2ξn

∥∥2
= ‖T 2ξn‖2 − ‖Tξn‖4

≤ ‖T ‖2‖Tξn‖2 − ‖Tξn‖4 −→ 0 as n→ ∞,



202 Chapter 8. Spectral Theorem

shows that the sequence ηn = T 2ξn − ‖Tξn‖2ξn converges to zero and so

ξn =
(
T 2ξn − ηn

)
/‖Tξn‖2

converges to a vector ζ with ‖ζ‖ = 1. Therefore, denoting λ = ‖T ‖ and recalling
that T is continuous, 0 = T 2ζ−‖T ‖2ζ = TλT−λζ. Hence either T−λζ = 0 and −‖T ‖
is an eigenvalue of T , or T−λζ 
= 0 and ‖T ‖ is an eigenvalue of T . �
Theorem 8.1.2 (Hilbert-Schmidt). Let T ∈ B0(H) be compact and self-adjoint and
Λ the set of eigenvalues of T . Then

H =

⎡⎣ ⊕
0�=λ∈Λ

N(Tλ)

⎤⎦⊕ N(T ).

Proof. Since T is self-adjoint N(Tλ) ⊥ N(Tμ) if λ 
= μ, and the direct sum above is
well defined (recall that Tλ = Tλ1). Set E =

⊕
0�=λ∈Λ N(Tλ); if η ∈ E⊥, then for

all ξλ ∈ N(Tλ) one has 〈Tη, ξλ〉 = 〈η, T ξλ〉 = λ〈η, ξλ〉 = 0, and so Tη ∈ N(Tλ)⊥.
Since this occurs for all λ ∈ Λ, then Tη ∈ E⊥, that is, E⊥ is invariant under T ;
further H = E ⊕ E⊥.

Note that E⊥ ⊃ N(T ); the proof ends by showing that E⊥ = N(T ). Since E
is also invariant under T , then S = T |E⊥ , the restriction of T to E⊥, is well defined
and is a self-adjoint compact operator. If S 
= 0, by Lemma 8.1.1 there exists an
eigenvector 0 
= ζ of S with nonzero eigenvalue; thus, by construction, ζ ∈ E and
ζ ∈ E⊥, and necessarily ζ = 0. Then S = 0, that is, E⊥ = N(T ). �
Corollary 8.1.3. Let T ∈ B0(H) be self-adjoint and Λ the set of eigenvalues of T .
Then H has an orthonormal basis of eigenvectors of T .

Proof. For each eigenvalue λ 
= 0 of T , denote by dλ = dimN(Tλ) < ∞ and pick
an orthonormal basis {ξλj }dλ

j=1 of N(Tλ). Let {ηj}j∈J be an orthonormal basis of
the kernel of T . By Theorem 8.1.2,⎡⎣ ⋃

0�=λ∈Λ

{ξλj }dλ
j=1

⎤⎦ ∪ {ηj}j∈J

is an orthonormal basis of H. �
Theorem 8.1.4 (Spectral Theorem for Compact Operators). Let T be a (nonzero)
self-adjoint compact operator on H, {λj} ⊂ R the nonzero eigenvalues of T and
Pj the orthogonal projections onto N(Tλj ), ∀j (recall that dimN(Tλj ) <∞). Then

T =
∑
j

λjPj ,

and the series converges in the norm of B(H).
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Proof. Let P0 be the orthogonal projection onto N(T ). By Corollary 8.1.3 one has
1 = P0 +

∑
j Pj ; thus, for all ξ ∈ H,

Tξ = TP0ξ + T
∑
j

Pjξ =
∑
j

T (Pjξ) =
∑
j

λjPjξ.

From this and PjPk = 0, j 
= k, it is found that (with j running over N, for
simplicity)∥∥∥∥∥∥(T −

n∑
j=1

λjPj)ξ

∥∥∥∥∥∥
2

=
∞∑

j=n+1

|λj |2‖Pjξ‖2

≤
(

max
j≥n+1

|λj |2
) ∞∑
j=n+1

‖Pjξ‖2 ≤
(

max
j≥n+1

|λj |2
)
‖ξ‖2.

Therefore, ‖T −
∑n

j=1 λjPj‖2 ≤ maxj≥n+1 |λj |2. Since λj constitutes a se-
quence that vanishes as j → ∞, then T = limn→∞

∑n
j=1 λjPj in B(H). �

Corollary 8.1.5. If T ∈ B0(H) is positive, then there exists a compact positive
operator S so that S2 = T (S is called a square root operator of T , and often
denoted by T 1/2 or

√
T ).

Proof. Since T is positive, then it is self-adjoint with all nonzero eigenvalues λj >
0. By the spectral theorem T =

∑
j λjPj . Define the operator S by S =

∑
j

√
λjPj ,

which is compact since λj → 0 for j → ∞, and S can be approximated by finite
rank operators in B(H) (explicitly by

∑n
j=1

√
λjPj). The property S2 = T is left

as an exercise; for uniqueness see Section 8.3. �
Exercise 8.1.6. Let T ∈ B0(H) be positive. Find the spectrum of

√
T?

Remark 8.1.7. Let T ∈ B0(H) be self-adjoint. For each bounded function f :
σ(T ) → C, one defines the operator f(T ) :=

∑
j f(λj)Pj . Which is the spectrum

of f(T )?

A specific class of functions of a compact self-adjoint operator T is (Λ ∈ A,
that is, it is a Borel set in R)

PT (Λ) = χΛ(T ) :=
∑
λj∈Λ

Pj ,

which has properties similar to a measure, but projection-valued. E.g., PT (R) = 1,
if Λ1 ∩ Λ2 = ∅, then PT (Λ1 ∩ Λ2) = 0 = PT (Λ1)PT (Λ2) (null operator) and
PT (Λ1 ∪ Λ2) = PT (Λ1) + PT (Λ2). A possibility is to reverse the construction,
that is, to use PT to build an operator-valued integration theory of functions f
and then define f(T ). This program will be described in other sections of this
chapter; see in particular Definition 8.2.1 and the whole Section 8.2.
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8.1.1 Compact Normal Operators

It is a small step to generalize Corollary 8.1.3 to compact normal operators, and it
will be used in future chapters. Nevertheless, the spectral theorem in the general
case will be restricted to self-adjoint operators, by far the most important case to
quantum mechanics.

Lemma 8.1.8. If R,S ∈ B0(H) are self-adjoint and commuting, then H has an
orthonormal basis of simultaneous eigenvectors of R and S.

Proof. For each eigenvalue λ of S, Sξλ = λξλ, one has S(Rξλ) = R(Sξλ) = λRξλ,
and N(Sλ) is invariant under R (as well as its orthogonal complement). Since the
restriction operator R|N(Sλ) is self-adjoint and compact, pick an orthonormal basis
of N(Sλ) (as in Corollary 8.1.3) composed of eigenvectors of R and, of course, also
eigenvectors of S. Taking the union over all eigenvalues of S the result follows,
again by Corollary 8.1.3. �
Corollary 8.1.9. If T ∈B0(H) is normal, then H has an orthonormal basis of eigen-
vectors of T and the decomposition of H as in Hilbert-Schmidt Theorem 8.1.2 holds.

Proof. It is enough to recall that T = TR + iTI , with TR, TI self-adjoint and
compact (since T ∗ is also compact by Corollary 1.3.27) and since T is normal TR
commutes with TI , and then apply Lemma 8.1.8. Note that if Tξλ = λξλ, then
TRξ

λ = (Re λ)ξλ and TIξ
λ = (Im λ)ξλ, and those eigenvectors corresponding to

different eigenvalues are orthogonal. �
Exercise 8.1.10. Enunciate and prove a version of Theorem 8.1.4 for compact
normal operators. Verify, furthermore, that the corresponding operator is self-
adjoint if, and only if, {λj} ⊂ R.
Exercise 8.1.11. Let T ∈ B(H), with dimH = ∞. Show that if there exists C > 0
with ‖Tξ‖ ≥ C‖ξ‖ for all ξ ∈ H, then T is not compact.
Exercise 8.1.12 (Fredholm alternative). Let T ∈ B0(H) be a normal operator.
Consider the equation Tξ−λξ = η, λ ∈ C, η ∈ H, and the subsequent homogeneous
equation Tξ−λξ = 0. Show that for each λ 
= 0, one, and only one, of the following
possibilities occurs (note that, in this case, uniqueness implies the existence of a
solution!):

i) The homogeneous equation has only the trivial solution and the original
equation has a unique solution for each η ∈ H.

ii) The homogeneous equation has 0 < dimN(Tλ) < ∞ linearly independent
solutions, and the original equation either has infinite many solutions or no
solution at all.

Exercise 8.1.13. Let 0 
= ϕ ∈ L2[0, 1] and K(t, s) = ϕ(t)ϕ(s), t, s ∈ [0, 1]. Show
that λ = ‖ϕ‖2

2 is the unique nonzero eigenvalue of the operator TK : L2[0, 1] ←↩,
(TKψ)(t) =

∫ 1

0
K(t, s)ψ(s) ds. Find the corresponding eigenfunction (note that it

is usual for the term eigenfunction to designate an eigenvector in a function vector
space). Determine also the eigenfunctions corresponding to the zero eigenvalue.
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Exercise 8.1.14. Fix η ∈ H with ‖η‖ = 1. Let Tη : H → H defined by Tηξ = 〈η, ξ〉η,
ξ ∈ H. Determine the spectrum and the spectral radius of Tη.
Exercise 8.1.15. Let T : l2(Z) → l2(Z) given by

(Tξ)n = −i (ξn+1 − ξn−1),

with ξ = (. . . , ξ−2, ξ−1, ξ0, ξ1, ξ2, . . . ). Show that T is bounded and self-adjoint;
then find its spectral radius.
Exercise 8.1.16. Let U ∈ B(H) be unitary, so normal. Show that if it is compact
then dimH <∞.
Remark 8.1.17. It was F. Riesz who developed most of the spectral theory of
compact operators on Hilbert and Banach spaces around 1920.

8.2 Resolution of the Identity

The spectral theorem for self-adjoint operators gives a complete description of such
operators, and it is a sophisticated infinite-dimensional analogue of the fact that
hermitian matrices in finite-dimensional Hilbert spaces can be diagonalized. This
theorem also reduces many questions about self-adjoint operators to questions
about multiplication operators, where the situation can be more transparent.

As discussed in Chapter 13, the characterization of self-adjoint operators via
spectral measures (see below) is an important step to suitable spectral classifica-
tion and its relation to the dynamical behavior of solutions of the corresponding
Schrödinger equation for large times.

Another consequence directly related to the spectral theorem is the possibil-
ity of defining functions of self-adjoint operators, as discussed in Section 3.4 for
momentum and free hamiltonian operators; there, the main tool was the Fourier
transform, a unitary operator on L2(Rn).

Write Proj(H) for the set of orthogonal projection operators on the Hilbert
space H, that is, P0 ∈ Proj(H) iff P0 ∈ B(H), is self-adjoint and P 2

0 = P0 (and
so rng P0 is a closed subspace of H). A denotes the Borel σ-algebra in R and
for pairwise disjoint sets Λj the symbol

∑
j Λj indicates their union. Finally, χA

denotes the characteristic function of the set A.

Definition 8.2.1. A (spectral) resolution of the identity on H is a map

P : A → Proj(H)

so that

i) P (R) = 1, and
ii) If Λ =

∑∞
j=1 Λj , with Λj ∈ A, ∀j, then one has the strong limit

P (Λ) = s − lim
n→∞

n∑
j=1

P (Λj).
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Remark 8.2.2. A resolution of the identity is also called spectral family, spectral
decomposition, spectral resolution and projection-valued measure.
Exercise 8.2.3. Verify:

a) P (R \ Λ) = 1− P (Λ) and P (∅) = 0 (null operator).
b) P (Λ1 ∪ Λ2) + P (Λ1 ∩ Λ2) = P (Λ1) + P (Λ2).
c) P (Λ1)P (Λ2) = P (Λ1 ∩ Λ2).

For item c) consider first Λ1 ∩ Λ2 = ∅ and use b).

Given a resolution of the identity P , to each ξ ∈ H one associates a finite
positive Borel measure μξ in R by

A � Λ �→ μξ(Λ) := 〈ξ, P (Λ)ξ〉;

note that μξ(Λ) = 〈ξ, P (Λ)P (Λ)ξ〉 = ‖P (Λ)ξ‖2 and μξ(R) = ‖ξ‖2. To each pair
ξ, η ∈ H one associates the complex Borel measure

μξ,η(Λ) := 〈ξ, P (Λ)η〉,

and by polarization

μξ,η(Λ) =
1
4

[μξ+η(Λ) − μξ−η(Λ) + i (μξ−iη(Λ) − μξ+iη(Λ))] .

Clearly μξ = μξ,ξ and |μξ,η(Λ)| ≤ ‖ξ‖ ‖η‖.
Definition 8.2.4. The above μξ and μξ,η are called spectral measures of the reso-
lution of the identity P associated with ξ and the pair ξ, η ∈ H, respectively.

It is important to recognize that all spectral measures μξ are regular, that
is, μξ(Λ) = inf{μξ(U) : U ⊂ R is open, Λ ⊂ U} and μξ(Λ) = sup{μξ(K) :
K is compact, K ⊂ Λ}, for all Λ ∈ A [Ru74].

With such spectral measures at hand one can integrate functions and so
define the integral with respect to P ; different notations will be used to indicate
this integral. For a measurable simple function f =

∑n
j=1 ajχΛj one defines

P (f) =
∫

R

f(t) dP (t) =
∫
f dP :=

n∑
j=1

ajP (Λj).

Note that P (χΛ) = P (Λ), which gives grounds for keeping the same notation P for
the resolution of identity and subsequent integrals. This map f �→ P (f) is linear
and satisfies

〈ξ, P (f)ξ〉 =
∫

R

f(t) dμξ(t),

and since

‖P (f)ξ‖2 =
∫

R

|f(t)|2 dμξ(t) = ‖f‖2
L2

μξ

≤
(

sup
t∈R

|f(t)|2
)
‖ξ‖2,
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it follows that the linear map P :{simple functions}→ B(H) is continuous (the
simple functions with the sup norm).

Let B∞(R) denote the vector space of bounded Borel functions on R with
the norm ‖f‖∞ := supt∈R |f(t)|. Since the simple functions constitute a dense set
in B∞(R), there exists a unique extension of P to a bounded linear operator (and
using the same notation) P : B∞(R) → B(H), so that, for all f ∈ B∞(R),

〈ξ, P (f)η〉 =
∫
f(t) dμξ,η(t)

and

‖P (f)ξ‖2 =
∫

|f(t)|2 dμξ(t) ≤
(

sup
t∈R

|f(t)|2
)
‖ξ‖2,

with strong convergence on the left-hand side and uniform convergence of functions
on the right one.

Exercise 8.2.5. By first considering simple functions and then taking limits, verify
that for f, g ∈ B∞(R) and any ξ, η ∈ H, one has

i) dμP (g)ξ,P (f)η = gf dμξ,η(t).

ii) 〈P (g)ξ, P (f)η〉 =
∫
g(t)f(t) dμξ,η(t).

iii) P (fg) = P (f)P (g) = P (g)P (f).

iv) P (f) = P (f)∗ (and so for a real-valued function f ∈ B∞(R) the operator
P (f) is bounded and self-adjoint).

v) P (f)∗P (f) = P (|f |2) = P (f)P (f)∗ (and so P (f) is a normal operator for
any f ∈ B∞(R)).

vi) P (1) = 1 (1 denotes the constant function: 1(t) = 1, ∀t ∈ R) and if f is
invertible with f−1 ∈ B∞(R), then P (f−1) = P (f)−1.

Lemma 8.2.6. If P is a resolution of the identity, consider the map P : B∞(R) →
B(H). If (fn) ⊂ B∞(R) with (‖fn‖∞) a bounded sequence with pointwise conver-
gence fn → f , then f ∈ B∞(R) and

s − lim
n→∞

P (fn) = P (f).

Proof. A direct verification shows that f ∈ B∞(R). If ξ ∈ H,

‖P (fn)ξ − P (f)ξ‖2 = ‖(P (fn) − P (f))ξ‖2

=
∫

R

|fn(t) − f(t)|2 dμξ(t) −→ 0

as n → ∞ by the dominated convergence theorem. Note that if fn → f in the
norm of B∞(R), i.e., uniform convergence, the result would be immediate. �
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The next step is to extend the map P to unbounded Borel functions f : R →
C. Define

dom f :=
{
ξ ∈ H : f ∈ L2

μξ
(R)
}

=
{
ξ ∈ H :

∫
|f |2dμξ <∞

}
,

which is a vector space, since μaξ(Λ) = |a|2μξ(Λ) and by using the triangular
inequality μξ+η(Λ) ≤ 2(μξ(Λ) + μη(Λ)) (to get it use the relation 0 ≤ 〈(ξ −
η), P (Λ)(ξ − η)〉).

Set
Λn = Λn(f) := {t ∈ R : |f(t)| ≤ n}, fn := f χΛn ,

and for ξ ∈ dom f this sequence of functions converges to f in L2
μξ

(R) by domi-
nated convergence. Hence (fn) is a Cauchy sequence in L2

μξ
(R). Since fn ∈ B∞(R)

and
‖P (fn)ξ‖2 =

∫
|fn|2 dμξ = ‖fn‖2

L2
μξ

,

it follows that (P (fn)ξ)n is a Cauchy sequence in H, so that it converges to a
vector P (f)ξ, which defines the desired extension with dom P (f) = dom f. Note
that such extension f �→ P (f) is linear, continuous and, with the notation P (f) :=∫
f dP , by taking n→ ∞ in the above equality

‖P (f)ξ‖2 =
∫

|f |2 dμξ = ‖f‖2
L2

μξ

.

Exercise 8.2.7. Show that for any (gn) ⊂ B∞(R) with gn → f in L2
μξ

(R), one has
P (gn)ξ → P (f)ξ, for any ξ ∈ dom f , so that P (f) above, for f ∈ L2

μξ
(R), is well

defined.

Lemma 8.2.8. For every Borel function f : R → C one has dom f � H. Thus the
adjoint P (f)∗ is well posed.

Proof. Let Λn be as above. If ξ ∈ H, by considering ξn = P (Λn)ξ one has μξn =
χΛnμξ. Thus ∫

R

|f(t)|2 dμξn(t) =
∫

Λn

|f(t)|2 dμξ(t) ≤ n2‖ξ‖2 <∞,

and so ξn ∈ dom f . Since χΛn → 1 in L2
μξ

(R), and

‖ξ − ξn‖2 =
∫

R

|1 − χΛn(t)|2 dμξ,

one obtains that ξn → ξ in H by dominated convergence. This shows that dom f
is dense in H. �
Definition 8.2.9. A linear operator T : dom T � H → H is normal if dom T =
dom T ∗ and ‖Tξ‖ = ‖T ∗ξ‖, ∀ξ ∈ dom T.
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Lemma 8.2.10.

a) Any normal operator is closed.
b) If T is a normal operator, then T ∗T = TT ∗ (where both compositions are

defined).

Proof. a) Since T ∗ is closed (dom T ∗, ‖ · ‖T∗) is a complete space. Since T is
normal, then the norms ‖ · ‖T = ‖ · ‖T∗ coincide on dom T , so (dom T, ‖ · ‖T ) is
complete as well, and then T is also closed.

b) If T is normal then, by polarization,

〈Tξ, T η〉 = 〈T ∗ξ, T ∗η〉, ∀ξ, η ∈ dom T.

Since T is closed, T = T = T ∗∗; so if

ξ ∈ dom (T ∗T ) ∩ dom (T ∗∗T ∗) = dom (T ∗T ) ∩ dom (TT ∗),

then
〈T ∗Tξ, η〉 = 〈T ∗∗T ∗ξ, η〉 = 〈TT ∗ξ, η〉, ∀η ∈ dom T,

so that T ∗Tξ = TT ∗ξ; consequently T ∗T = TT ∗. �

Remark 8.2.11. Bounded normal operators were introduced in Definition 2.1.7.

Exercise 8.2.12. Show that a normal operator has no proper normal extension.

Exercise 8.2.13. If T is normal, show that T − z1 is also normal for any z ∈ C.

Theorem 8.2.14. Every normal operator has nonempty spectrum.

Exercise 8.2.15. Adapt the proof of Theorem 2.4.4 to conclude Theorem 8.2.14.

Proposition 8.2.16. Let P be a resolution of the identity.

a) For every Borel function f : R → C the operator P (f) is normal (so closed)
and P (f)∗ = P (f).

b) For every real-valued Borel function f : R → R the operator P (f) is self-
adjoint.

Proof. b) follows straightly from a).
a) If fn = f χΛn , Λn as defined on page 208, it follows that fn ∈ B∞(R),

fn → f in L2
μξ

(R), P (fn)∗ = P (fn) (see Exercise 8.2.5) and, thus, 〈ξ, P (fn)η〉 =
〈P (fn)ξ, η〉, ∀ξ, η ∈ H.

If ∀ξ, η ∈ dom P (f), by the dominated convergence theorem P (fn)η →
P (f)η, P (fn)ξ → P (f)ξ and, by continuity of the inner product

〈ξ, P (f)η〉 = 〈P (f)ξ, η〉,

and so P (f) ⊂ P (f)∗.
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Now, if ξ ∈ dom P (f)∗ there is η ∈ H with

〈ξ, P (f)ζ〉 = 〈η, ζ〉, ∀ζ ∈ dom P (f).

By considering fn again, for m ≥ n,

〈P (fn)ξ, ζ〉 = 〈ξ, P (fn)ζ〉 = 〈ξ, P (fnχΛn)ζ〉 = 〈ξ, P (fmχΛn)ζ〉
= lim
m→∞

〈ξ, P (fm)P (Λn)ζ〉 = 〈ξ, P (f)P (Λn)ζ〉

= 〈P (Λn)P (f)∗ξ, ζ〉,

consequently P (fn)ξ = P (Λn)P (f)∗ξ. The limit limn→∞ ‖P (Λn)P (f)∗ξ‖2 exists
by Lemma 8.2.6; thus

‖P (f)∗ξ‖2 = lim
n→∞

‖P (Λn)P (f)∗ξ‖2 = lim
n→∞

‖P (fn)ξ‖2

= lim
n→∞

∫
R

|fn(t)|2 dμξ(t) =
∫

R

|f(t)|2 dμξ(t),

and f ∈ L2
μξ

(R), that is, ξ ∈ dom P (f). Therefore, dom P (f)∗ ⊂ dom P (f) and
so P (f) = P (f)∗. If ξ ∈ dom f , then

‖P (f)ξ‖2 =
∫

|f |2 dμξ = ‖P (f)ξ‖2

which implies dom P (f) = dom P (f). Hence P (f) is normal. �

It is worth emphasizing the following characterization:

Lemma 8.2.17. A vector ξ ∈ dom P (f) iff

‖P (f)ξ‖2 =
∫

R

|f(t)|2 dμξ(t) <∞.

Proof. It is a direct consequence of the definition of P (f), Proposition 8.2.16 and
its proof. �

Exercise 8.2.18. Let fn and f be as in the proof of Proposition 8.2.16. Clearly one
has the pointwise convergence fn → f . Show that fn → f in L2

μξ
(R) too.

Lemma 8.2.19. Let P be a resolution of the identity, f, g : R → C be Borel functions
and a, b complex numbers. Then

a) aP (f) + bP (g) ⊂ P (af + bg), with dom (aP (f) + bP (g)) = dom P (f) ∩
dom P (g).

b) P (f)P (g) ⊂ P (fg), with dom (P (f)P (g)) = dom P (g) ∩ dom P (fg). Note
that if dom P (g)⊃dom P (fg), then P (f)P (g)=P (fg)=P (gf)=P (g)P (f)
with domain dom P (fg).
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Proof. Let Λn and fn be as defined on page 208 and gn the corresponding functions
for g. Recall that if f, g ∈ B∞(R), then P (f)P (g) = P (fg) and P (f + g) =
P (f) + P (g).

a) If ξ ∈ dom (aP (f) + bP (g)) = dom P (f) ∩ dom P (g) ⇒ f, g ∈ L2
μξ

(R) ⇒
(af + bg) ∈ L2

μξ
(R) ⇒ ξ ∈ dom P (af + bg). Thus,

P (af + bg)ξ = lim
n→∞

P (afn + bgn)ξ

= lim
n→∞

(aP (fn)ξ + bP (gn)ξ) = aP (f)ξ + bP (g)ξ.

b) For Borel functions f, g, if ξ ∈ dom (P (f)P (g)) then ξ ∈ dom P (g) and
P (g)ξ ∈ dom P (f). Since fn, gn ∈ B∞(R) and fngk → fng in L2

μξ
(R) as k → ∞,

one has

P (f)P (g)ξ = lim
n→∞

P (fn) lim
k→∞

P (gk)ξ = lim
n→∞

lim
k→∞

P (fn)P (gk)ξ

= lim
n→∞

lim
k→∞

P (fngk)ξ = lim
n→∞

P (fng)ξ;

thus the last limit exists and so the sequence (fng)n is Cauchy in L2
μξ

(R). As
the pointwise convergence fng → fg holds, it follows that fg ∈ L2

μξ
(R) and so

ξ ∈ dom P (fg),
P (f)P (g)ξ = lim

n→∞
P (fng)ξ = P (fg)ξ.

Hence P (f)P (g) ⊂ P (fg) and dom (P (f)P (g)) ⊂ dom P (g) ∩ dom P (fg).
Now if ξ ∈ dom P (g) ∩ dom P (fg) one has

P (fg)ξ = lim
n→∞

lim
k→∞

P (fngk)ξ

= lim
n→∞

lim
k→∞

P (fn)P (gk)ξ = lim
n→∞

P (fn)P (g)ξ

so that f ∈L2
μP (g)ξ

(R). Hence P (g)ξ∈dom P (f) and therefore ξ∈dom (P (f)P (g)).
The equality dom (P (f)P (g)) = dom P (f) ∩ dom P (fg) is proved. �

8.3 Spectral Theorem

Given a spectral family P and ξ ∈ H, denote

Hξ :=
{
P (f)ξ : f ∈ L2

μξ
(R)
}
.

Exercise 8.3.1. Check that Hξ is a closed vector subspace of H.

Definition 8.3.2. Hξ is called the cyclic subspace spanned by ξ for P , and if Hξ = H
then ξ is called a cyclic vector for P .
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Given ξ ∈ H and P , consider the operator

Uξ : Hξ → L2
μξ

(R), Uξ(P (f)ξ) := f.

Since

‖Uξ(P (f)ξ)‖2
L2

μξ

=
∫

|f |2 dμξ = ‖P (f)ξ‖2,

Uξ is an isometry onto L2
μξ

(R), so a unitary operator between such spaces. Fur-
thermore, for η ∈ Hξ, there exists a g ∈ L2

μξ
(R) with η = P (g)ξ, hence (since

P (f)P (g) ⊂ P (fg); see Lemma 8.2.19)(
UξP (f)U−1

ξ

)
g = UξP (f)P (g)ξ = UξP (fg)ξ = fg = Mfg,

that is,
UξP (f)U−1

ξ = Mf ,

with dom Mf = Uξdom (P (f) ∩Hξ) = {f ∈ L2
μξ

(R) : fg ∈ L2
μξ

(R)}, and P (f)
is unitarily equivalent to the multiplication operator Mf acting in L2

μξ
(R) (see

Section 2.3.2). Write 1 for the constant function 1(t) = 1, ∀t ∈ R, so that Uξξ =
UξP (1)ξ = 1, which is cyclic in L2

μξ
(R) in the sense that {Mf1 = f : f ∈

dom (1) = L2
μξ

(R)} = L2
μξ

(R). Summing up:

Theorem 8.3.3. If the resolution of the identity P has a cyclic vector ξ ∈ H, then
there is a unitary operator Uξ : H → L2

μξ
(R) so that UξP (f)U−1

ξ = Mf . Further,
Uξ(ξ) = 1 is a cyclic vector for P in L2

μξ
(R).

What if there is no cyclic vector for P?

Definition 8.3.4. A maximal orthogonal family of vectors {ξj}j∈J ⊂ H with Hξj ⊥
Hξk

, if j 
= k, is called a spectral basis of P . P has simple spectrum if it has a
cyclic vector.

Remark 8.3.5. By Zorn’s Lemma, independently of the Hilbert dimension of H, a
spectral basis always exists and, if {ξj}j∈J is a spectral basis, then H =

⊕
j∈J Hξj .

Remark 8.3.6. If (ξj)Nj=1, with N ∈ N ∪ {∞}, is an orthonormal countable (since
H is supposed separable) spectral basis of P , define the measure

μ :=
N∑
j=1

1
2j
μξj ,

so that L2
μ(R × {1, 2, 3, . . . , N}) =

⊕N
j=1 L2

μξj
(R).

Since the direct sum of unitary operators is unitary and the direct sum of
multiplication operators is also a multiplication operator (check this!), one has
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Theorem 8.3.7. For each resolution of the identity P , on the separable Hilbert
space H, there exists a countable spectral basis (ξj)Nj=1, with N ∈ N ∪ {∞} and
‖ξj‖ = 1/2j, so that H =

⊕N
j=1 Hξj and the unitary operator

U :=
N⊕
j=1

Uξj : H →
N⊕
j=1

L2
μξj

(R),

satisfies
UP (f)U−1 = M̃f ,

with M̃f =
⊕N

j=1 Mf a multiplication operator acting in
⊕N

j=1 L2
μξj

(R), for all
Borel f : R → C.

Let P be a resolution of the identity on H. Among the self-adjoint operators
defined via P (f), a special role is played by

T :=
∫

R

t dP (t),

that is, it is an expression of T = P (h) for h(t) = t. One of the forms of the
spectral theorem is to show that such relation is one-to-one:

Theorem 8.3.8 (Spectral Theorem). To each self-adjoint operator T : dom T �
H → H corresponds a unique resolution of the identity PT on H, so that T =∫
t dPT (t).

Thus, each self-adjoint operator T is unitarily equivalent to the multiplication
operator Mh, h(t) = t, acting in L2

μ(R×{1, 2, 3, . . . , N}), μ a probability measure,
and

dom T =
{
ξ ∈ H :

∫
t2 dμTξ (t) <∞

}
,

where μTξ,η are the spectral measures of the resolution of the identity PT .

Definition 8.3.9. The spectral measures μTξ,η defined by means of PT , are called
the spectral measures of T . Further, T is said to have simple spectrum if PT has
simple spectrum.

This structure of T as a multiplication operator is called spectral representa-
tion. Basically, by changing the self-adjoint operator, what changes in the spectral
representation are the spectral measures μTξ , so that they carry fundamental in-
formation about T .

The spectral theorem allows one to define measurable functions of T through
f(T ) := PT (f). PT is called the resolution of the identity of T . Instead of prov-
ing the spectral theorem, it was opted to discuss different strategies of proofs in
Section 8.5.
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Proposition 8.3.10. Let P be a spectral resolution on H. If f : R → C is the
polynomial f(t) =

∑n
j=0 ajt

j, aj ∈ C, ∀j, then P (f) =
∑n

j=0 ajT
j, where T :=

P (h) with h(t) = t.

Proof. Induction. For n = 0 one has P (a0) = a01. Assume now it holds for all
polynomials of degree ≤ (n − 1). Thus, if g(t) =

∑n
j=1 ajt

j−1 and h(t) = t, one
has f(t) = h(t)g(t) + a0 and, by Lemma 8.2.19,

P (f) ⊃ P (h)P (g) + P (a0) =
n∑
j=0

ajT
j.

Since for n ≥ 1 one has dom P (h) ⊃ dom P (hg), by Lemma 8.2.19 again,

dom P (f) = dom P (hg) = dom (P (h)P (g))

and it follows that P (f) = P (h)P (g) + P (a0) =
∑n

j=0 ajT
j. �

Given a self-adjoint operator T , Proposition 8.3.10 validates the notation

f(T ) = PT (f)

for Borel functions f : R → C. For Borel sets Λ ⊂ R one has PT (Λ) = χΛ(T ),
and such operators are orthogonal projections called the spectral projections of T .
Note that if T is bounded and f(T ) can be defined by convergent power series,
then this definition via series coincides with the one given by the spectral theorem,
since the partial series sums are the same operators in both approaches.

In a very short statement: measurable functions f(t) are approximated by
simple functions

∑n
j=1 ajχΛj (t), whereas normal operators f(T ) are approximated

by the corresponding linear combinations of projections
∑n
j=1 ajχΛj (T ).

Example 8.3.11. Let T be a compact self-adjoint operator and {λj} the set of
its eigenvalues. Let dj = dim N(T − λj1) < ∞ be the corresponding multiplicity
and pick an orthonormal basis {ξkj

j }dj

kj=1 of N(T − λj1). From the discussion in
Section 8.1, it is found for ξkj , k = 1, . . . , dj , (strictly, the index should be kj) the
spectral measures

μTξk
j

= δλj

(δλ is the Dirac measure at λj). On the space L2
μ(R), with (k fixed)

μ =
∑
j

1
2j
μTξk

j
=
∑
j

1
2j
δλj ,

whose elements ψ(t) are determined by sequences (ψ(λj))j , the operator T acts
as a multiplication by Mh(t), h(t) = t, that is,

Tψ = (λjψ(λj)),
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which is a consequence of the decomposition T =
∑
j λjPj presented in Theo-

rem 8.1.4. Note that for the spectral representation, for each dj > 1 one needs
dj − 1 additional copies of R (so just one copy of R suffices iff all eigenvalues are
simple, i.e., dj = 1, ∀j). See also Subsection 8.4.2.
Remark 8.3.12. It was concluded that a linear operator T is self-adjoint iff it is
unitarily equivalent to a multiplication operator Mϕ (with real-valued ϕ) acting
in some L2

μ(E), with finite μ. More precisely, by the spectral theorem one can take
ϕ = h, h(t) = t, acting in the space L2

μ(R × {1, 2, 3, . . . , N}). However, in many
situations most information on the operator T can be extracted if (hopefully!)
some ϕ – not necessarily equal to h above – can be found. For an example, see
Subsection 8.4.1, in particular the discussion about the free hamiltonian.

Theorem 8.3.13. If T is self-adjoint, then its spectrum is the support of the reso-
lution of identity PT , that is,

σ(T ) =
{
t ∈ R : PT (t− ε, t+ ε) = χ(t−ε,t+ε)(T ) 
= 0, ∀ε > 0

}
.

Furthermore, PT (σ(T )) = χσ(T )(T ) = 1 and PT (ρ(T ) ∩ R) = 0 (which will also
simply be denoted by PT (ρ(T )) = 0).

Proof. If PT (t0−ε, t0+ε) 
= 0 for all ε > 0, then there exists a normalized sequence
(ξj) with

ξj ∈ PT
(
t0 −

1
j
, t0 +

1
j

)
H, ∀j ∈ N.

Hence PT
(
t0 − 1

j , t0 + 1
j

)
ξj = ξj and since

μξj (Λ) =
〈
ξj , P

T (Λ)PT
(
t0 −

1
j
, t0 +

1
j

)
ξj

〉
,

it follows that μξj

(
R \ (t0 − 1

j , t0 + 1
j )
)

= 0. Thus, by Lemma 8.2.17,

‖(T − t01)ξj‖2 =
∫

(t0− 1
j ,t0+

1
j )

(t− t0)2 dμξj (t)

≤ 1
j2

‖ξj‖2 =
1
j2

j→∞−→ 0,

that is, (ξj) is a Weyl sequence for T at t0, and so t0 ∈ σ(T ) by Corollary 2.4.9.
Assume now that for t0 ∈ R there exists ε0 > 0 so that the projection

PT (t0 − ε0, t0 + ε0) = 0. Then μξ((t0 − ε0, t0 + ε0)) = 0, ∀ξ ∈ H. If (ξj) is a
normalized sequence in H, then

‖(T − t01)ξj‖2 =
∫

R

(t− t0)2 dμξj (t)

=
∫

R\(t0−ε0,t0+ε0)

(t− t0)2 dμξj (t) ≥ ε20 ‖ξj‖2 = ε20.

Therefore there is no Weyl sequence for T at t0, consequently t0 ∈ ρ(T ).
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Since ρ(T )∩ R is an open set in R, it can be written as a countable union of
disjoint intervals

ρ(T ) ∩ R =
∑
j

(aj , bj),

and, as just discussed, PT (aj , bj) = 0, ∀j, so that PT (ρ(T )) = 0. Finally, σ(T ) =
R \ ρ(T ) and PT (R) = 1, and it immediately follows that PT (σ(T )) = 1. �
Remark 8.3.14. Let T be self-adjoint and t0 ∈ R. Then t0 ∈ ρ(T ) iff the map
R � t �→ PT (−∞, t] is constant in a neighbourhood of t0, that is, there is ε > 0 so
that PT (−∞, t] = PT (−∞, s] for all t, s ∈ (t0 − ε, t0 + ε).
Exercise 8.3.15. Prove the statement in Remark 8.3.14.

Theorem 8.3.13 justifies why PT is called the spectral projections of T ; it also
correctly indicates that PT (Λ) = χΛ(T ) will play a distinguished role in spectral
issues in this and other chapters. Now a simple but useful result.

Lemma 8.3.16. Let T be a self-adjoint operator.
a) If Λ is a bounded Borel set in R, then rng χΛ(T ) ⊂ dom T .
b) If

∫
R
t dμTξ (t) ≥ 0 for all ξ ∈ dom T , then μTξ (−∞, 0) = 0, ∀ξ ∈ dom T .

Proof. a) If ξ ∈ H then

‖TχΛ(T )ξ‖2 =
∫

R

t2 dμχΛ(T )ξ(t)

=
∫

Λ

t2 dμξ(t) ≤ μTξ (Λ) sup
λ∈Λ

λ2 <∞

since Λ is bounded. Hence, χΛ(T )ξ ∈ dom T , ∀ξ ∈ H.
b) Suppose μTξ (−∞, 0) > 0; then there exists a bounded interval (a, b) ⊂

(−∞, 0) with b < 0 and μTξ (a, b) > 0, and also a vector ξ ∈ dom T so that
0 
= η = PT (a, b)ξ, and η ∈ dom T by a). Since PT (a, b)η = η,

μTη (Λ) = 〈η, PT (Λ)η〉 = 〈η, PT (Λ)PT (a, b)η〉
= 〈η, PT (Λ ∩ (a, b))η〉 = μTη (Λ ∩ (a, b)),

and so μTη (R \ (a, b)) = 0. Thus,∫
R

t dμTη (t) =
∫

(a,b)

t dμTη (t) ≤ b

∫
(a,b)

dμTη (t) = b‖η‖2 < 0.

This contradiction proves the lemma. �
Corollary 8.3.17. Let T be self-adjoint in H. Then:

a) For each Borel function f : R → C,

f(T ) =
∫
σ(T )

f dPT := PT (χσ(T )f);

particularly, for ξ ∈ dom f(T ), one has 〈ξ, f(T )ξ〉 =
∫
σ(T )

f dμTξ .
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b) A real number t0 ∈ ρ(T ) iff there exists ε0 > 0 so that

μTξ (t0 − ε0, t0 + ε0) = 0, ∀ξ ∈ dom T.

Proof. a) Since χσ(T ) ∈ B∞(R), Lemma 8.2.19 implies that dom PT (χσ(T )f) =
dom f and

PT (χσ(T )f) = PT (χσ(T ))PT (f) = 1PT (f) = PT (f).

Therefore, f(T ) =
∫
σ(T )

f dPT . If ξ ∈ H, then

μTξ (Λ) = 〈ξ, PT (Λ)ξ〉 = 〈ξ, PT (Λ)PT (σ(T ))ξ〉
= 〈ξ, PT (Λ ∩ σ(T ))ξ〉 = μTξ (Λ ∩ σ(T )),

hence
〈ξ, f(T )ξ〉 =

∫
σ(T )

f dμTξ , ∀ξ ∈ dom f(T ).

b) By Theorem 8.3.13, t0 ∈ ρ(T ) ∩ R iff PT (t0 − ε0, t0 + ε0) = 0 for some
0 < ε0 iff for all ξ ∈ H,

0 = ‖PT (t0 − ε0, t0 + ε0)ξ‖2 = 〈ξ, PT (t0 − ε0, t0 + ε0)ξ〉
= μTξ (t0 − ε0, t0 + ε0).

This proves b). �
Exercise 8.3.18. Show that the spectrum of T is the smallest closed set Λ for which
PT (Λ) = 1.

Corollary 8.3.19 (functional calculus). Let T be self-adjoint in H. Then there is a
unique linear map B∞(R) → B(H), f �→ f(T ), so that the items a) to f) below
are satisfied:

a) fg �→ f(T )g(T ) = g(T )f(T ).
b) f(T ) = f(T )∗.
c) ‖f(T )‖ ≤ ‖f‖∞.
d) If z ∈ ρ(T ), then 1

t−z �→ Rz(T ) and

〈ξ, Rz(T )ξ〉 =
∫
σ(T )

1
t− z

dμTξ (t).

e) If support(f) ∩ σ(T ) = ∅, then f(T ) = 0.
f) If fn is a bounded sequence in B∞(R) and fn → f pointwise, then s −

limn→∞ fn(T ) = f(T ).

Furthermore,

1) If f ≥ 0 then f(T ) ≥ 0 (so, if f ≥ g then f(T ) ≥ g(T )).
2) If Tξλ = λξλ and f is continuous, then f(T )ξλ = f(λ)ξλ.
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Proof. Note that a), b), c), e) and f) (e.g., for f) see Lemma 8.2.6) were already
discussed in some way. The uniqueness follows by the spectral theorem, since by
taking f = χΛ the unique resolution of identity PT is obtained.

d) By Proposition 8.3.10 one has PT (t − z) = T − z1, and using Lemma
8.2.19b) with f(t) = t− z and g(t) = 1/(t− z),

1 = PT (1) = PT
(

(t− z)
1

t− z

)
= PT (t− z)PT

(
1

t− z

)
= (T − z1)PT

(
1

t− z

)
.

It is then found that PT
(

1
t−z

)
= Rz(T ).

1) For f ≥ 0

〈ξ, f(T )ξ〉 =
∫
σ(T )

f(t) dμTξ (t) ≥ 0.

Hence, f(T ) ≥ 0.
2) Since, by Lemma 8.2.17,

0 = ‖(T − λ1)ξλ‖2 =
∫
σ(T )

|t− λ|2 dμTξ (t),

there is a positive constant c so that μξλ
= cδλ, where δλ is the Dirac measure

concentrated at λ, that is, δλ(Λ) = 1 if λ ∈ Λ and 0 otherwise. In view of 〈ξλ, ξλ〉 =∫
σ(T )

dμξλ
, it follows that c = ‖ξλ‖2. Thus, again by Lemma 8.2.17 (with P (f) =

f(T ) in this case),

‖f(T )ξλ − f(λ)ξλ‖2 =
∫
σ(T )

|f(t) − f(λ)|2 dμTξ (t)

= c

∫
σ(T )

|f(t) − f(λ)|2 dδλ(t) = 0,

and so f(T )ξλ = f(λ)ξλ. �
Exercise 8.3.20. Verify that items b), e), 1) and 2) of Corollary 8.3.19 hold for
unbounded Borel functions f .

Proposition 8.3.21. Let T be self-adjoint and recall that χΛ(T ) = PT (Λ). Then:

a) T ≥ β1, that is, 〈ξ, T ξ〉 ≥ β‖ξ‖2, ∀ξ ∈ dom T , iff χΛ(T ) = 0 for any Borel
set Λ ⊂ (−∞, β). Similarly in case 〈ξ, T ξ〉 ≤ γ‖ξ‖2.

b) T ∈ B(H) iff there are β, γ ∈ R so that χΛ(T ) = 0 for any Borel set Λ ⊂
((−∞, β) ∪ (γ,∞)) (i.e., χ[β,γ](T ) = 1).

c) T ∈ B(H) iff σ(T ) is a bounded set in R.
d) If f : R → R is Borel, then χΛ(f(T )) = χf−1(Λ)(T ) for any Borel set Λ ⊂ R.



8.4. Examples 219

Proof. a) Since dom T is dense in H:

〈ξ, T ξ〉 ≥ β‖ξ‖2, ∀ξ ∈ dom T

⇐⇒
∫

R

t dμTξ (t) ≥ β

∫
R

dμTξ (t), ∀ξ ∈ dom T

⇐⇒
∫

R

(t− β) dμTξ (t) ≥ 0, ∀ξ ∈ dom T

⇐⇒ (by Lemma 8.3.16b))
0 = μTξ ((−∞, β)) = ‖PT (−∞, β)ξ‖2, ∀ξ ∈ dom T

⇐⇒ PT (−∞, β) = 0.

b) Note that

‖Tξ‖2 ≤ C2‖ξ‖2, ∀ξ ∈ H ⇐⇒
∫

R

(t2 − C2) dμTξ (t) ≤ 0, ∀ξ ∈ H.

The former relation is equivalent to T being bounded while the latter (by a vari-
ation of Lemma 8.3.16) to μTξ (R \ [−C,C]) = 0, ∀ξ ∈ H, that is χ[−C,C](T ) = 1
(see the proof of item a)).

c) is equivalent to b).
d) This is a direct consequence of the relation χΛ(f(t)) = χf−1(Λ)(t), which

is valid for complex-valued functions. �
Exercise 8.3.22. Let T be self-adjoint and ξ ∈ dom T . Use the spectral theorem
to show that the family ξt := e−itT ξ, t ∈ R, is uniformly continuous in the space
(dom T, ‖ · ‖T ); note that, by the functional calculus, the unitary evolution group
e−itT = ft(T ) with ft(x) = e−itx.
Exercise 8.3.23. Let T be self-adjoint, λ an isolated point of the spectrum of T
(so an eigenvalue) and σ(T ) 
= {λ}. Show that there is a bounded operator S 
= 0
such that Sχ{λ}(T ) = 0 = χ{λ}(T )S and (T − λ1)S = 1− χ{λ}(T ).

8.4 Examples

This section is devoted to some examples of resolutions of the identity. A practical
and simple recipe for finding explicitly the resolutions of identity for most self-
adjoint operators is certainly a dream of many people!

8.4.1 Multiplication Operator

Consider the self-adjoint operator Mϕ, for ϕ : E → R, acting in L2
μ(E), defined

in Subsection 2.3.2. In the following it will be verified that the map

A � Λ �→ P (Λ) := χϕ−1(Λ)

is a resolution of the identity.
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Since characteristic functions can assume only the real values 1 and 0, it
follows that the just defined P (Λ) are bounded self-adjoint operators and also
P (Λ)2 = P (Λ), i.e., they are orthogonal projections acting on L2

μ(E). As ϕ−1(R) =
E, χE(x) = 1, ∀x ∈ E, it follows that P (R) = 1; in fact, for all ψ ∈ L2

μ(E),

‖P (R)ψ − ψ‖2 =
∫
E

|χE(x) − 1|2 |ψ(x)|2 dμ(x) = 0.

Now, if Λ =
∑∞
j=1 Λj , due to the pointwise convergence

∑n
j=1 χϕ−1(Λj)(x) →

χϕ−1(Λ)(x), as n→ ∞, for any ψ ∈ L2
μ(E),∥∥∥∥∥∥

n∑
j=1

P (Λj)ψ − P (Λ)ψ

∥∥∥∥∥∥
2

=
∫
E

∣∣∣∣∣∣
n∑
j=1

χϕ−1(Λj)(x) − χϕ−1(Λ)(x)

∣∣∣∣∣∣
2

|ψ(x)|2 dμ(x)

which vanishes as n→ ∞ by dominated convergence. Hence
n∑
j=1

P (Λj)ψ → P (Λ)ψ,

and so P is a resolution of the identity. For a Borel function f : R → C one has
the normal operator f(Mϕ) = Mf◦ϕ.

Position Operator. In the particular case E = R with dμ = dx (i.e., Lebesgue
measure), one has the position operator q(x) = Mx acting in L2(R) (Exam-
ple 2.3.31). Then the above construction leads to the resolution of the identity
A � Λ �→ P q(Λ) = χΛ, so that

〈ψ, P q(Λ)ψ〉 =
∫

Λ

|ψ(x)|2 dx, ψ ∈ L2(R),

and
〈ψ, qψ〉 =

∫
R

x|ψ(x)|2 dx, ψ ∈ dom q.

Consequently, the spectral measures of the position operator are

dμψ(x) = |ψ(x)|2 dx.
Note that they are absolutely continuous with respect to Lebesgue measure, for
|ψ(x)|2 ∈ L1(R). It is worth observing that actually

dom q = {ψ : q ∈ L2
μψ

(R)} =
{
ψ :
∫

R

x2|ψ(x)|2 dx <∞
}
.

Given a Borel function f : R → C one has the normal operator f(q) = Mf(x).
Such construction generalizes at once to the components of the position operator
in L2(Rn).
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Momentum Operator. Recall the momentum operator in L2(R) (see Section 3.3),
here denoted by P , and given by dom P = F−1H1(R̂),

(FPF−1)ψ̂(p) = pψ̂(p), (Pψ)(x) = (F−1pF)ψ(x).

Hence, based on the above construction for the position operator, the spectral
resolution of the momentum is PP(Λ)ψ(x) = F−1χΛ(p)ψ̂(p), and for the spectral
measures consider

〈ψ, PP (Λ)ψ〉= 〈ψ,F−1χΛ(p)ψ̂(p)〉

= 〈ψ̂(p), χΛ(p)ψ̂(p)〉 =
∫

Λ

|ψ̂(p)|2 dp,

so that its spectral measures are dμψ(p) = |ψ̂(p)|2 dp, again absolutely continuous
with respect to Lebesgue measure. For a Borel function f : R → C one has the
normal operator f(P) = F−1Mf(p)F , in accord with the discussion in Section 3.4.

Kinetic Energy Operator. The free hamiltonian H0 in L2(Rn) (Section 3.4) is

(H0ψ)(x) := −Δψ(x) = F−1[Mp2ψ̂(p)](x), ψ ∈ dom H0,

dom H0 = H2(Rn), that is, H0 is unitarily equivalent to the multiplication oper-
ator by the function ϕ(p) = p2 in L2(R̂n). Therefore, its resolution of identity is

A � Λ �→ PH0(Λ) = F−1χϕ−1(Λ)F ;

note the simple expression ϕ−1(Λ) = {p ∈ R̂n : p2 ∈ Λ}. From this and Parseval’s
identity, it is found for its spectral measures

μψ(Λ) = 〈ψ, PH0(Λ)ψ〉 =
∫
p2∈Λ

|ψ̂(p)|2 dp,

which are also absolutely continuous with respect to Lebesgue measure and only
Borel sets Λ ⊂ [0,∞) can have nonzero spectral measures.

For simplicity consider n = 1. If ψ ∈ dom H0 write

〈ψ,H0ψ〉=
∫

R

p2|ψ̂(p)|2 dp =
∫ 0

−∞
p2|ψ̂(p)|2 dp+

∫ ∞

0

p2|ψ̂(p)|2 dp,

and introduce the variable t = p2 (i.e., p = −
√
t and p =

√
t, in the first and

second integrals, respectively) so that

〈ψ,H0ψ〉 =
∫ ∞

0

t

(∣∣∣ψ̂(−
√
t)
∣∣∣2 +

∣∣∣ψ̂(
√
t)
∣∣∣2) dt

2
√
t
.

If ψ̂ is an odd or even function one has

〈ψ,H0ψ〉 =
∫ ∞

0

t
∣∣∣ψ̂(

√
t)
∣∣∣2 dt√

t
.
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Introduce the Hilbert spaces L+ (resp. L−) of functions ψ ∈ L2(R) so that ψ̂ are
even (resp. odd) functions, both with the inner product

[φ, ψ] :=
∫ ∞

0

φ̂(
√
t) ψ̂(

√
t)
dt√
t
,

and on each of such subspaces H0 becomes the multiplication operator Mh, h(t) =
t. Since every function ψ̂ = ψ̂+ ⊕ ψ̂−, with ψ̂+ even and ψ̂− odd functions and (by
using the same change of variable above)

‖ψ‖2 = ‖ψ̂‖2 =
∫ ∞

0

∣∣∣ψ̂−(
√
t)
∣∣∣2 dt√

t
+
∫ ∞

0

∣∣∣ψ̂+(
√
t)
∣∣∣2 dt√

t
,

the direct sum L+ ⊕ L− is isomorphic to L2(R) and the space where H0 acts as
Mh was made explicit. Further, for ψ ∈ dom f(H0), in L± one has

〈ψ, f(H0)ψ〉 =
∫ ∞

0

f(t)
∣∣∣ψ̂(

√
t)
∣∣∣2 dt√

t
.

By considering f = χΛ, it is found that the spectral measures of H0 at ψ can be
written in the form (one can consider t ∈ R)

dμH0
ψ (t) = χ(0,∞)(t)

∣∣∣ψ̂(
√
t)
∣∣∣2 dt√

t
,

which are clearly absolutely continuous with respect to Lebesgue measure. Note
the presence of two subspaces in this decomposition, indicating that the spectrum
of H0 is not simple.
Exercise 8.4.1. Spectral measures of the free hamiltonian H0 in L2(R3). Introduce
spherical coordinates (r̂, Ω̂), r̂ = |p|, Ω̂ = (θ̂, ϕ̂) in the momentum space R̂3, so
that L2(R̂3) = L2

r̂2dr[0,∞)) ⊗ L2
dΩ̂

(Ŝ2), where Ŝ2 is the unit sphere in R̂3 and
dΩ̂ = sin θ̂ dθ̂dϕ̂. Write

〈ψ,H0ψ〉 =
∫

R

p2
∣∣∣ψ̂(p)

∣∣∣2 dp =
∫ ∞

0

dr̂ r̂4
∫
Ŝ2

∣∣∣ψ̂(r̂, Ω̂)
∣∣∣2 dΩ̂,

perform the change of variable t = r̂4 and conclude that

〈ψ,H0ψ〉 =
∫

R

t dμH0
ψ (t),

where μH0
ψ is given by

dμH0
ψ (t) =

(∫
Ŝ2
dΩ̂
∣∣∣ψ̂(t

1
4 , Ω̂)

∣∣∣2) χ(0,∞)(t)
dt

4t
3
4
.

Exercise 8.4.2. Find the spectral measures μξ,η for the position, momentum and
kinetic energy operators in L2(R).
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8.4.2 Purely Point Operators

The discussion in this subsection is directly related, especially, to compact self-
adjoint operators discussed in Section 8.1 and to standard Schrödinger operators
H = −Δ + V , with lower bounded and unbounded potentials V , considered in
Section 11.5.

Let T be a self-adjoint operator in H and (ξj)j an orthonormal basis of
H composed of eigenvectors of T corresponding to the eigenvalues λj , that is,
Tξj = λjξj , ‖ξj‖ = 1. Such operators are called purely point operators and will be
considered in later chapters. Suppose that λj 
= λk if j 
= k (that is, all eigenvalues
are simple) and denote by Pj the orthogonal projection onto the one-dimensional
subspace generated by ξj . For a Borel set Λ ⊂ R the map (infinite sums are
understood as strong limits)

PT (Λ) =
∑
λj∈Λ

Pj

defines the resolution of the identity of T . In fact, since PjPk = δk,jPj it follows
that PT (Λ) is an orthogonal projection. Every ξ ∈ H can be written as ξ =∑
j ajξj , with ‖ξ‖2 =

∑
j |aj |2, so that Pjξ = ajξj and if ξ ∈ dom T one has

Tξ =
∑

j λjajξj =
∑

j λjPjξ (since T is closed). Thus

T =
∑
j

λjPj =
∫

R

t dPT (t).

For a continuous function f : R → C one has (see Corollary 8.3.19)

f(T ) =
∑
j

f(λj)Pj , f(T )ξ =
∑
j

f(λj)ajξj ,

and
ξ ∈ dom f(T ) ⇐⇒

∑
j

|f(λj)|2|aj |2 <∞.

Especially, T = f(h), h(t) = t, which confirms that the above resolution of identity
is actually the resolution of identity of T . The spectral measures are

μTξ (Λ) = 〈ξ, PT (Λ)ξ〉 =
∑
λj∈Λ

|aj |2 δλj =
∑
j

|aj |2 δλj (Λ),

with δλj denoting the Dirac measure at λj . Thus,

μTξ =
∑
j

|aj |2 δλj ,

and for the eigenvectors ξj one has μTξj
= δλj . Such spectral measures are not

absolutely continuous with respect to Lebesgue measure (they are called purely
point measures or atomic measures).



224 Chapter 8. Spectral Theorem

Exercise 8.4.3. Find the resolution of the identity and spectral measures for the
harmonic oscillator energy operator, Example 2.3.3.
Exercise 8.4.4. Find the resolution of the identity and spectral measures of the
identity operator 1 : H → H, 1ξ = ξ, ∀ξ ∈ H.
Exercise 8.4.5. Discuss the adaptations needed in the above construction if there
are eigenvalues that are not simple, that is, with multiplicity greater than 1.
Exercise 8.4.6. Show that every operator

∑
j λjPj , with λj ∈ R, Pj orthogonal

projections onto pairwise orthogonal finite-dimensional spaces, with
∑

j Pj = 1
and limj→∞ λj = 0, is compact and self-adjoint.
Exercise 8.4.7. Find the resolution of identity and spectral measures of self-adjoint
operators on a Hilbert space of finite dimension.

8.4.3 Tight-Binding Kinetic Energy

The tight-binding Schrödinger kinetic energy operator h0 (also called discrete ki-
netic energy) acting on the Hilbert space of sequences l2(Z) is

(h0u)j = uj+1 + uj−1, u = (uj) ∈ l2(Z).

It is a bounded self-adjoint operator. It is a specific case of operators acting on �2

spaces and called Jacobi matrices, which have been extensively considered in the
framework of random Schrödinger operators [CaL90].

By means of Fourier series it is possible to translate h0 as a multiplication
operator. Recall that the Fourier series F : L2[−π, π] → l2(Z),

(Fψ)j =
1√
2π

∫ π

−π
e−ijxψ(x) dx,

is a unitary operator and that (F−1u)(x) =
∑

j uje
ijx/

√
2π. If ek = (δj,k)k∈Z

denotes an element of canonical basis of l2(Z), then (F−1ek)(x) = eikx/
√

2π and
(eikx/

√
2π)k∈Z is an orthonormal basis of L2[−π, π]. A direct calculation leads to

(F−1h0F)ψ(x) = M2 cosxψ(x).

Hence h0 is unitarily equivalent to the multiplication operator M2 cos x in
L2[−π, π], so that (see Section 2.3.2) σ(h0) = [−2, 2], and it has no eigenval-
ues. Again by Fourier series, if ψ = F−1u, ‖u‖ = 1, with the change of variable
t = 2 cosx one gets

〈u, h0u〉l2 = 〈ψ,F−1h0Fψ〉L2

=
∫ 0

−π
2 cosx |ψ(x)|2 dx+

∫ π

0

2 cosx |ψ(x)|2 dx

=
∫ 2

−2

t

∣∣∣∣ψ(arccos
t

2

)∣∣∣∣2 dt√
4 − t2

+
∫ 2

−2

t

∣∣∣∣ψ(arccos
t

2

)∣∣∣∣2 dt√
4 − t2

,
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so that l2(Z) is isomorphic to L2[−π, π] = L2[−π, 0]⊕ L2[0, π] which in its turn is
isomorphic to

L2
μ[−2, 2]⊕ L2

μ[−2, 2], dμ(t) =
dt√

4 − t2
,

and in this space h0 acts as the multiplication operator Mh, h(t) = t.
Exercise 8.4.8. Show that h0 is self-adjoint and ‖h0‖ = 2.

8.5 Comments on Proofs

Instead of a detailed proof of the spectral theorem, a short discussion of ideas
involved in different proofs will be presented. The expectation is that the reader
could get an overall flavor of different strategies, and what follows should be con-
sidered just a guide to different presentations. A few historical remarks will also
be inserted and references to complete proofs are of course provided. As it should
be clear from the discussion of purely point operators in Subsection 8.4.2, the chief
difficulty is the presence of continuous spectra.

The spectral theorem has many nuances spread among different presentations
in the literature. A nice discussion about various aspects can be found in the first
volume of the Reed-Simon books [ReeS81], and additional information including
the Hahn-Hellinger theorem and multiplicity function of spectral measures can
also be found in [Sun97] and [Hel86].

Given a self-adjoint operator T , often the main point is the construction of the
resolution of identity PT , and so spectral measures and integration theory follow by
standard arguments (including functions f(T )). Also, by standard arguments of in-
tegration theory, it is enough to define PT ((a, b]) for intervals (a, b] in R and impos-
ing a strong continuity from the right, i.e., PT ((a, b]) = s− limε→0+ PT ((a, b+ ε]).

There are two general approaches to proofs of the spectral theorem:

A1 Proofs that consider first bounded self-adjoint operators. Then it is extended
to a version for unitary operators. The unbounded self-adjoint case is ob-
tained by means of a Cayley transform (Definition 2.2.1); this approach was
pioneered by von Neumann.

A2 Proofs that work directly for both bounded and unbounded operators.

The version of the spectral theorem for unitary operators expresses that they
are equivalent to multiplication operators Meit on some suitable spaces L2

ν [−π, π].
The first general proofs of the spectral theorem were due to independent

works by von Neumann, Stone and F. Riesz; the first version on unbounded op-
erators was published around 1930. Since then other proofs have appeared, and
the most important proposals are mentioned below. E. Schmidt was the first to
note that a restriction to self-adjoint operators was necessary, and T. Carleman
(around 1920) had a first version of this theorem for some singular integral oper-
ators with symmetric kernels. The proof by Stone relies on some ideas developed
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in such works of Carleman. There is in fact a version of the spectral theorem for
unbounded normal operators; in this case the resolution of identity is a function
on the Borel sets in the complex plane; see [Con85].

In some sense, the history of the spectral theorem began with the problem
of finding the principal axes of an ellipsoid; in modern language, the problem of
diagonalizing symmetric matrices.

Via Resolvent Operator. This approach to the proof of the spectral theorem
applies to bounded as well as unbounded self-adjoint operators. The main ideas
have appeared in a proof due to Doob and Koopman of 1934. Given a self-adjoint
operator T and ξ ∈ H, consider the matrix element of the resolvent Rz(T ),

Fξ(z) := 〈ξ, Rz(T )ξ〉, z ∈ ρ(T ),

which is a holomorphic function on ρ(T ), satisfies Fξ(z) = Fξ(z), and

|Fξ(z)| ≤
‖ξ‖2

Im z
, Im Fξ(z) = Im z ‖Rz(T )ξ‖2,

so that the complex upper half-plane is invariant under Fξ. Such function is an
instance of the so-called Herglotz functions and so it is the Borel transform of a
Borel positive measure μξ on A, that is,

Fξ(z) :=
∫

R

1
t− z

dμξ(t).

A related argument gives the measure μξ via the (inversion) formula

μξ((a, b]) = lim
δ→0+

lim
ε→0+

1
π

∫ b+δ

a+δ

Im Ft+iε(T ) dt.

The measures μξ are actually spectral measures of T from which the resolution of
identity PT can be defined by

〈ξ, PT (Λ)ξ〉 =
∫

R

χΛ(t) dμξ(t).

Since the measures μξ follow uniquely from the resolvent Rz(T ), the construction
of PT is unique.

Proofs along these lines appear, for example, in [Wei80] and [Te08].

Via Polar Decomposition. This proof can be classified in A2 above and has be-
come a standard one; see [Kat80]. First it is shown that every positive self-adjoint
operator T has a positive square root T 1/2, i.e., T 1/2 is a positive self-adjoint op-
erator so that T 1/2T 1/2 = T ; this is not an easy task. The second step is to show
that every self-adjoint operator T admits a polar decomposition, i.e., T = W |T |,
where |T | is a positive operator and W : rng |T | → rng T is unitary. Explicitly
|T | = (T ∗T )1/2 (note that T ∗T is positive).



8.5. Comments on Proofs 227

Now for each t ∈ R consider the self-adjoint operator

Tt := T − t1 = Wt|Tt|,

where Wt|Tt| is the polar decomposition of Tt. Finally, define

PT ((−∞, t]) := 1− 1
2
(
Wt +W 2

t

)
,

and it is possible to check that PT is actually the resolution of identity of T . The
motivation for such choices comes from the position operator on L2(R), Mx, for
which P ((−∞, t]) is just the projection onto x ≤ t. In this particular case

Mx − t1 = Wt(x)|x − t|, Wt(x) =

{
−1, if x ≤ t

1, if x > t
.

Then, since Wt(x)2 = 1,

PT ((−∞, t]) = 1− 1
2
(
Wt(x) −Wt(x)2

)
=

1
2

(1−Wt(x)) = χ(−∞,t](x),

and the expected projection operator is obtained. There are small variations of this
program, and in case it is first carried out to bounded self-adjoint operators, the
Cayley transform is used to transfer the results to the unbounded case; a detailed
proof along these lines can be found in [Kr78].

In Chapter 9 the square root and polar decomposition will be derived as
consequences of the spectral theorem. This is valid since this theorem can be
obtained by means of different arguments.

Via C∗-Algebras. For bounded self-adjoint operators there is a proof of the spec-
tral theorem based on representations of abelian C∗-algebras, which was first de-
veloped by I.M. Gel’fand and M.A. Naimark beginning in 1943. It is a beautiful
approach that gives more information than just the theorem itself and, with little
additional effort, can be extended to normal operators. Very briefly, the involved
ideas go as follows: if T is bounded and self-adjoint, the construction begins with
the set J ′T of polynomials p(T ), and its closure JT in B(H), which is an abelian
C∗-algebra with identity 1 (obtained from the constant polynomial p(t) = 1). A
fundamental step is the proof that there is a unique isomorphism of C∗-algebras
between JT and C(σ(T )), that is, the set of continuous functions defined on the
spectrum of T with the sup norm, so that p(T ) is mapped to p(t). Thus, elements
of JT are interpreted as continuous functions f(T ). The analogous to the cyclic
subspaces Hξ above can be defined as the closure of

{p(T )ξ : p a polynomial function},

and if the latter equals H then ξ is said to be cyclic. In case a cyclic vector
exists, the just mentioned isomorphism can be combined with the Riesz-Markov
theorem to provide spectral measures, which then allow the definition of f(T ) for
some measurable functions; in particular for χΛ(T ), i.e., the resolution of identity
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PT emerges. If no cyclic vector exists, direct sums should be considered as in
Theorem 8.3.7.

If T is normal and bounded, then polynomials p(T, T ∗) are well posed since
TT ∗ = T ∗T , and the results for normal operators follow similar lines as the ones
just sketched.

Such a point of view has other advantages, for instance, it is a natural setting
for discussions about complete systems of observables in quantum mechanics as
well as the Hahn-Hellinger theorem.

See detailed proofs in [Sun97] and [Con85].

Via Bochner Theorem. First a proof for unitary operators is presented, and then
Cayley transform is used to get a version for the self-adjoint case. If U is unitary,
then for each ξ ∈ H the sequence tn = 〈ξ, Unξ〉, n ∈ Z, is positive definite (see
Exercise 5.3.10) and so by the Bochner theorem there is a finite positive measure
νξ so that

〈ξ, Unξ〉 =
∫ 2π

0

eisn dνξ(s), ∀n ∈ Z.

The unitary analogue to Hξ is the closure of {Unξ : n ∈ Z}, and a construction
shows that U is unitarily equivalent to the multiplication operator Meit on some
space L2

ν [−π, π], and so on. Given T self-adjoint, such a construction can be trans-
ferred from its Cayley transform U(T ) to T itself, so that spectral measures of T
as well as PT follow. See, for instance, [AkG93], [Que87] and [Hel86].

Leinfelder’s Geometric Proof. In 1935 Lengyel and Stone presented a proof of
the spectral theorem for bounded self-adjoint operators which used only intrinsic
properties of Hilbert spaces [LenS36]; the main point was the consideration of
suitable invariant subspaces, and so the term “geometric proof.” In [Lei79] that
proof was generalized to the unbounded case.

As an illustration of how the spectral projections arise, the case of positive
operators will be mentioned. Let T be a closed hermitian operator, D∞(T ) =
∩n≥1dom T n and, for λ ≥ 0,

F (T, λ) = {ξ ∈ D∞(T ) : ‖T nξ‖ ≤ λn‖ξ‖, n = 1, 2, . . . } .
It is then shown that F (T, λ) is a closed invariant subspace, and ∪n≥1F (T, n) is
dense in H iff T is self-adjoint.

In case T is self-adjoint, let Q(T, λ) denote the orthogonal projection onto
F (T, λ). If also T ≥ 0, then it is shown that PT (−∞, λ] = Q(T, λ), λ ≥ 0, and
PT (−∞, λ] = 0 if λ < 0 (of course!); for general self-adjoint operators a limiting
process is needed.

Via the Helffer-Sjöstrand Formula. This is a rather new proof based on a formula,
deduced by Helffer and Sjöstrand in 1989, which gives smooth functions f(T ) as
an integral over resolvents, and can be extended to a somewhat large class of
functions f . It works for bounded as well as unbounded self-adjoint operators.
Details and references can be found in [Dav95].



Chapter 9

Applications of the
Spectral Theorem

Several applications of the spectral theorem will be discussed in this chapter;
some are as strong as simple to get, thanks to the functional calculus. Additional
applications will appear in other chapters. Recall that A denotes the Borel σ-
algebra in R.

9.1 Quantum Interpretation of Spectral Measures

Strictly speaking, this is not an application of the spectral theorem, but an in-
terpretation based on quantum postulates. Given a self-adjoint operator T repre-
senting a quantum observable and Λ ∈ A, according to quantum mechanics, if the
system is in the state ξ ∈ dom T ⊂ H, then the quantities

〈ξ, χΛ(T )ξ〉, 〈ξ, T ξ〉,

are the probability that a measurement of T results in a value in Λ and the
expectation valued of T , respectively (see a discussion on page 132). By the spectral
theorem such quantities are written in terms of the spectral measure of T at ξ,
that is,

〈ξ, χΛ(T )ξ〉 = μTξ (Λ), 〈ξ, T ξ〉 =
∫
σ(T )

t dμTξ (t).

Therefore, t �→ μTξ ((−∞, t]) is the probability distribution of the possible values
of the observable represented by T when the system is in the state ξ. Note that
since μTη (R \ σ(T )) = 0, for all η ∈ H, actually all measurements of T result in
values in the spectrum of T .

It is interesting to have a closer look at the case T is pure point, discussed in
Subsection 8.4.2. Let (ξj)j be an orthonormal basis of H composed of eigenvectors
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of T corresponding to the eigenvalues λj , that is, Tξj = λjξj , ‖ξj‖ = 1. If the
system is in the normalized state ξ ∈ dom T , one has ξ =

∑
j ajξj , with 1 =

‖ξ‖2 =
∑
j |aj |2 and

Tξ =
∑
j

ajλjξj .

The spectral measure is
μTξ =

∑
j

|aj |2 δλj .

If λk ∈ Λ and if λj /∈ Λ for j 
= k, then the probability of a measurement of T
resulting in a value in Λ is μTξ (Λ) = |ak|2, in other words, |ak|2 is the probability
of λk being the measured value of T . It is also interpreted as the probability of the
system being found in the state ξj upon measurement; this is called a quantum
reduction of the state ξ to ξj , one of the many mysteries of quantum mechanics!
Note that such interpretation is compatible with the expression∑

j

λj |aj |2

for the expectation value of T . More generally,
∑

j f(λj)|aj |2 is the expectation
value of f(T ).

Remark 9.1.1. Another interesting interpretation related to spectral measures ap-
pears in Section 14.2.

9.2 Proof of Theorem 5.3.1

As an application of the spectral theorem the proof of Theorem 5.3.1 will be
presented.

Proof. Let T be self-adjoint. For each t ∈ R let ft(x) = e−itx and define U(t) :=
ft(T ), which will also be denoted by e−itT . By the functional calculus, Corol-
lary 8.3.19, these are bounded normal operators and for all s, t ∈ R,

U(t)U(s) = U(t+ s), U(t)∗ = U(−t) = U(t)−1,

(since fs(x)ft(x) = fs+t(x); note that U(0) = 1) so that t �→ U(t) is a unitary
evolution group. The next step is to show that this map is strongly continuous. If
ξ ∈ H, then

‖U(h)ξ − ξ‖2 =
∫
σ(T )

∣∣e−ihx − 1
∣∣2 dμTξ (x)

which vanishes as h → 0 by dominated convergence. Hence t �→ U(t) is strongly
continuous.
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If η ∈ H and h 
= 0, then∥∥∥∥ ih (U(h) − 1)η
∥∥∥∥2

=
∫
σ(T )

∣∣∣∣ 1h (e−ihx − 1)
∣∣∣∣2 dμTη (x).

Since ∣∣∣∣ ih (e−ihx − 1)
∣∣∣∣ ≤ |x|

and for h→ 0 one has the pointwise limit

i

h

(
e−ihx − 1

)
→ x,

the above integral converges as h → 0 iff the function f(x) = x, x ∈ R, belongs
to L2

μT
η
(R). In fact, if f ∈ L2

μT
η
(R), then the convergence holds by dominated

convergence, and if f /∈ L2
μT

η
(R) it does not converge by Fatou’s lemma. Hence, it

converges iff η ∈ dom T , since T = f(x) for f(x) = x. The same argument also
implies, for η ∈ dom T ,∥∥∥∥ ih (U(h) − 1)η − Tη

∥∥∥∥2

=
∫
σ(T )

∣∣∣∣ ih (e−ihx − 1) − x

∣∣∣∣2 dμTη (x) h→0−→ 0,

and T is actually the infinitesimal generator of U(t). �
Exercise 9.2.1. Present details of the following alternative proof of Theorem 5.3.1.
If T is self-adjoint, by the spectral theorem it is unitarily equivalent to Mh, h(x) =
x, acting in some L2

μ. Define U(t) = Me−itx and use Example 5.1.6.

9.3 Form Domain of Positive Operators

First the square root operator must be addressed.

Proposition 9.3.1. Let T ≥ 0 be a self-adjoint operator. Then, for each n ∈ N, there
exists a unique self-adjoint operator S ≥ 0 so that Sn = T . Such S is denoted by
S = T 1/n.

Proof. For the existence consider the function f(x) = x
1
n , x ≥ 0, and zero for x <

0, and define S = f(T ), which is a positive operator since, by Proposition 8.3.21,
σ(T ) ⊂ R+ = [0,∞) and

〈ξ, Sξ〉 =
∫
σ(T )

x
1
n dμTξ (x) ≥ 0, ∀ξ ∈ dom S.

By Proposition 8.3.10, Sn = T . Moreover, since on R+ the function f is one-to-one,
for any Borel set Λ ∈ A, Λ ⊂ R+,

χΛ(S) = χf−1(Λ)(T ),

and χΛ(S) = 0 if Λ ⊂ (−∞, 0).
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For uniqueness, consider a self-adjoint operator A ≥ 0 obeying An = T ; then,

χΛ(T ) = χΛ(An) = χf(Λ)(A), Λ ⊂ R+,

and χΛ(T ) = 0 if Λ ⊂ (−∞, 0). Since on R+ the function f is one-to-one,

χΛ(A) = χf−1(Λ)(T ), Λ ∈ A,

so that χΛ(A) = χΛ(S), ∀Λ ∈ A. By the uniqueness of the resolution of the
identity, S = A. �

Remark 9.3.2. In case n = 2 in Proposition 9.3.1 one gets the (positive) square
root operator of T , also denoted by

√
T . If A is closed and densely defined, by

Proposition 4.3.9, A∗A is self-adjoint and positive, and the absolute value of A,
denoted by |A|, is defined by |A| :=

√
A∗A.

Remark 9.3.3. If T ≥ 0 is compact, by uniqueness the square root T 1/2 coincides
with the operator described in Corollary 8.1.5 and it is also compact.

Exercise 9.3.4. If T ≥ 0 is invertible and self-adjoint, show that T
1
n is also invert-

ible.

Proposition 9.3.5. If T ≥ 0 is self-adjoint, then dom T � dom T
1
2 , with the latter

equipped with both the graph norm ‖ · ‖T 1/2 and the norm of H, and so dom T is
a core of T 1/2. See also Example 4.4.1.

Proof. Since dom T ⊂ dom T
1
2 and both are densely defined in H, it is clear that

dom T � dom T
1
2 with the norm of H. The other statement is a direct consequence

of Proposition 4.3.11, since T
1
2 is self-adjoint and T =

(
T

1
2

)2

. �

In the study of sesquilinear forms in Chapter 4, it was considered that
bT (ξ, η) = 〈ξ, T η〉 for a self-adjoint operator T ≥ 0, ξ, η ∈ dom T , and (see Exam-
ples 4.1.11 and 4.2.4)

〈ξ, η〉+ = 〈ξ, T η〉 + 〈ξ, η〉,

as well as its completion (HT
+, b

T
+). Note that

〈ξ, η〉+ =
〈
T

1
2 ξ, T

1
2 η
〉

+ 〈ξ, η〉 = 〈ξ, η〉
T

1
2
, ξ, η ∈ dom T,

and since T
1
2 is self-adjoint (so closed), dom T ⊂ dom T

1
2 and dom T is dense

in dom T
1
2 with the graph norm ‖ · ‖

T
1
2

(Proposition 9.3.5), one concludes that

‖ξ‖+ = 〈ξ, η〉
1
2
+ coincides with the graph norm of T

1
2 restricted to dom T , whose

completion is then

HT
+ = dom T

1
2 , bT+(·, ·) = 〈·, ·〉

T
1
2
,
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and so (HT
+, b

T
+) has been uncovered. Hence, for positive self-adjoint operators T

it is natural to consider the form generated by T , i.e., bT (see Definition 4.1.12),
extended from dom T to

bT (ξ, η) =
〈
T

1
2 ξ, T

1
2 η
〉
, ξ, η ∈ dom T

1
2 .

The same notation bT was kept and this extension is also called “the form gener-
ated by T .”

Conversely:

Proposition 9.3.6. Let b be a positive closed hermitian form and Tb ≥ 0 the self-
adjoint operator associated with b (Definition 4.2.5). Then, dom b = dom T

1/2
b

and b(ξ, η) = 〈T 1/2
b ξ, T

1/2
b η〉, ∀ξ, η ∈ dom b.

Proof. Given b and so Tb, define the hermitian form

dom b0 = dom T
1/2
b , b0(ξ, η) :=

〈
T

1/2
b ξ, T

1/2
b η

〉
,

which is closed and positive, since T 1/2
b is closed. By Theorem 4.2.6, dom Tb is a

core of b, and since dom Tb is a core of T
1
2 (Proposition 9.3.5), it follows that it is

also a core of b0.
To finish the proof, it is enough to note that

b(ξ, η) = 〈ξ, Tbη〉 =
〈
T

1/2
b ξ, T

1/2
b η

〉
= b0(ξ, η), ∀ξ, η ∈ dom Tb,

that is, b and b0 are closed and coincide on a common core; thus b = b0. �

In summary:

Theorem 9.3.7. There is a one-to-one correspondence between the set of positive
closed hermitian forms b and the set of positive self-adjoint operators T , in the
following sense:

• Given b ≥ 0, it corresponds to T = Tb, i.e., the operator associated with b,
so that dom b = dom T

1/2
b and b(ξ, η) = 〈T 1/2

b ξ, T
1/2
b η〉.

• Given T ≥ 0, it corresponds to b = bT , i.e., the form generated by T , so that
dom bT = dom T 1/2 and bT (ξ, η) = 〈T 1/2ξ, T 1/2η〉.

This discussion adapts also to Theorem 4.2.6 and its lower-bounded operator
Tb; it also reveals why the form b is asked to be lower bounded, for if T − β1 ≥ 0
then (T − β1)1/2 ≥ 0 is well defined and the above discussion applies.

Remark 9.3.8. If T ≥0 is self-adjoint, then dom bT =dom T
1
2 . By Remark 4.3.12,

dom bT = dom T iff T is bounded. In other words, if T is unbounded, then dom T
is a proper subset of its form domain dom bT .
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Example 9.3.9. This is Example 4.2.11 revisited. Let dom H0 = H2(R), H0ψ =
−ψ′′ and dom P = H1(R), Pψ = −iψ′ be the free hamiltonian and momentum
operators on R. By using Fourier transform one has ‖H1/2

0 ψ‖ = ‖Pψ‖ for any
ψ ∈ dom bH0 = dom H

1/2
0 ; since the converse also holds, and P 2 = H0, dom P =

H1(R), Pψ = −iψ′ (by Proposition 4.3.9, P 2 ⊂ H0, but since both are self-adjoint
the equality follows), the form domain of H0 is dom bH0 = H1(R) and

bH0(ψ, ϕ) = 〈ψ′, ϕ′〉, ∀ψ, ϕ ∈ dom bH0 .

Note that functions in the form domain of the kinetic energy operator H0 on R

are continuous. Similarly, in Rn one has dom bH0 = H1(Rn) and bH0(ψ, ϕ) =
〈∇ψ,∇ϕ〉.

As another application of the fact that the form domain of T ≥ 0 is dom T 1/2,
it will be shown that such a subspace is invariant under the unitary evolution group
generated by T .

Proposition 9.3.10. Let T ≥ 0 be self-adjoint and HT
+ the form domain of T . Then

e−itTHT
+ ⊂ HT

+ for all t ∈ R.

Proof. Recall that e−itT is unitary and ξ ∈ HT
+ iff ‖T 1/2ξ‖ <∞. Since dom e−itT =

H, for every ξ ∈ HT
+ Lemma 8.2.19b) implies that

∞ > ‖T 1/2ξ‖ = ‖e−itTT 1/2ξ‖ = ‖T 1/2e−itT ξ‖;

hence e−itT ξ ∈ HT
+, ∀t. �

As mentioned before, for positive hermitian sesquilinear forms b, it is some-
times convenient to assume that b(ξ) = +∞ if ξ /∈ dom b; see, for instance,
Theorem 9.3.11. Recall that a function f : N → R ∪ {∞}, defined on a normed
space N , is lower semicontinuous if for each t ∈ R the set {ξ : f(ξ) > t} is open,
which is equivalent to f(ξ) ≤ lim infη→ξ f(η), ∀ξ ∈ N . An important consequence
of the definition is that the supremum of a collection of lower semicontinuous
functions is also lower semicontinuous; clearly, every continuous function is lower
semicontinuous. The next result was adapted from [Dav95].

Theorem 9.3.11. If b is a hermitian positive sesquilinear form with dom b � H,
then the following assertions are equivalent:

i) b is closed.
ii) b is the sesquilinear form generated by a positive self-adjoint operator T , that

is, b(ξ, η) = 〈T 1/2ξ, T 1/2η〉, ξ, η ∈ dom b = dom T 1/2.
iii) H � ξ �→ b(ξ) is a lower semicontinuous function (recall that b(ξ) = +∞ if

ξ /∈ dom b).
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Proof. i) ⇒ ii) follows by Theorem 4.2.6 and the above discussion.
ii) ⇒ iii) Since −n ∈ ρ(T ), n ∈ N, by the spectral theorem and dominated

convergence one has, for n→ ∞,

〈nTR−n(T )ξ, ξ〉=
∫

[0,∞)

nx

x+ n
dμTξ (x) −→

∫
[0,∞)

xdμTξ (x)

= ‖T 1
2 ξ‖2 = b(ξ, ξ), ∀ξ ∈ dom b,

so b(ξ) is the limit of a monotonically increasing sequence of continuous functions
(since TR−n(T ) ∈ B(H)) and hence b is lower semicontinuous.

iii) ⇒ i) If (ξn) in dom b is a Cauchy sequence with respect to the inner
product 〈ξ, η〉+ = b(ξ, η) + 〈ξ, η〉, given ε > 0 there exists N so that

‖ξn − ξm‖2
+ = b(ξn − ξm) + ‖ξn − ξm‖2 < ε2, ∀m,n ≥ N.

Thus it is also a Cauchy sequence in H and so ξn → ξ in H. Since b is lower
semicontinuous, it follows that b(ξn − ξ) ≤ lim infm→∞ b(ξn − ξm) (accepting the
possible value +∞) and the above inequality implies

b(ξn − ξ) + ‖ξn − ξ‖2 ≤ ε2, n ≥ N,

which shows that (ξ−ξn) ∈ dom b, ξ = [(ξ−ξn)+ξn] ∈ dom b and limn→∞ b(ξn−
ξ) = 0. Therefore b is closed by Lemma 4.1.9. �

Corollary 9.3.12. Let (Tj)Nj=1, N <∞, be positive self-adjoint operators so that

D :=
N⋂
j=1

dom T
1
2
j

is dense in H. Then there is a unique positive and self-adjoint operator T so that
dom T � dom T

1
2 = D and

bT (ξ, η) =
〈
T

1
2 ξ, T

1
2 η
〉

:=
N∑
j=1

〈
T

1
2
j ξ, T

1
2
j η
〉
, ∀ξ, η ∈ D.

Proof. A finite sum of lower semicontinuous functions is lower semicontinuous, so
the sum on the right-hand side defines a (densely defined) positive closed sesquilin-
ear form (assume 〈T

1
2
j ξ, T

1
2
j ξ〉 = ∞ in case ξ /∈ dom T

1
2
j ). The result then follows

by Theorem 9.3.11. �

Remark 9.3.13. (a) The operator T constructed in Corollary 9.3.12 is the form
sum of Tj’s and denoted by

T = T1+̇T2+̇ · · · +̇TN ;
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see also page 106. It can happen that ∩jdom Tj = {0}, consequently the form
sum can become useful in order to define “generalized sum of operators;” see
Subsection 9.3.1 for the domain of T1+̇T2 in some situations.

(b) Sometimes it is possible to adapt this result for N = ∞ even though D
is a proper subspace of H, as discussed in Subsection 10.4.1.

Exercise 9.3.14. Let T = T1+̇T2. Show that dom T1 ∩ dom T2 ⊂ dom T , and if
ξ ∈ dom T1 ∩ dom T2, then Tξ = T1ξ+T2ξ.

Example 9.3.15. Let H = L2(Rn) and 0 ≤ V ∈ L1
loc(R

n). Then C∞0 (Rn) ⊂
dom H

1/2
0 ∩dom V 1/2 and this intersection is dense in H. By Corollary 9.3.12 the

operator Hf = H0+̇V is self-adjoint and positive. See details in Subsection 9.3.1.

9.3.1 Domain of Form Sum of Operators

In this subsection Kato’s inequality will be used to find the domain of some form
sum of standard Schrödinger operators in L2(Rn). Let V ∈ L1

loc(R
n) be a positive

potential (the argument can be adapted to lower bounded potentials). The goal is
to give a meaning to the expression “H0 + V ” and to determine its domain, even
though V φ is not necessarily in L2(Rn) for φ ∈ C∞0 (Rn); below, this is the main
technical point to be dealt with.

Since bothH0 and V are positive self-adjoint operators, one can construct the
self-adjoint realization Hf := −Δ+̇V , given by the form sum in Corollary 9.3.12,
whose domain

dom Hf ⊂ D = dom H
1
2
0 ∩ dom V

1
2 .

According to Corollary 9.3.12, the sesquilinear form bHf generated by Hf is

bHf (ψ, φ) = 〈∇ψ,∇φ〉 + 〈V 1
2ψ, V

1
2φ〉, ∀ψ, φ ∈ D,

and note that for ψ ∈ dom Hf one has V 1/2ψ ∈ L2(Rn) and, since V 1/2 ∈
L2

loc(R
n), it follows that V ψ = V 1/2

(
V 1/2ψ

)
∈ L1

loc(R
n).

For ψ ∈ dom Hf and φ ∈ C∞0 (Rn), by writing out the inner products as
integrals,

bHf (ψ, φ) = 〈ψ,−Δφ〉 + 〈V 1
2ψ, V

1
2φ〉

=
∫

Rn

ψ(x)(−Δ + V )φ(x) dx.

Since bHf (ψ, φ) = 〈Hfψ, φ〉, for all ψ ∈ dom Hf and all φ ∈ C∞0 (Rn),∫
R

Hfψ(x)φ(x) dx =
∫

Rn

ψ(x) (−Δ + V )φ(x) dx,

and so Hfψ = (−Δ + V )ψ in the sense of distributions.
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Theorem 9.3.16. Let 0 ≤ V ∈ L1
loc(R

n) and Hf be as above. Then dom Hf = Df ,
with

Df =
{
ψ ∈ L2(Rn) : (V ψ) ∈ L1

loc(R
n), (−Δ + V )ψ ∈ L2(Rn)

}
,

and the (−Δ + V )ψ in the sense of distributions.

Proof. The above discussion showed that dom Hf ⊂ Df . Now, let h be the opera-
tor dom h = Df , hψ = (−Δψ+ V )ψ, ψ ∈ Df , so that Hf ⊂ h. Since Hf ≥ 0, one
has −1 ∈ ρ(Hf ) and so rng (Hf + 1) = L2(Rn). Thus, given ζ ∈ Df , there exists
ψ ∈ dom Hf with

(h+ 1)ζ = (Hf + 1)ψ = (h+ 1)ψ,

and so (h+ 1)(ζ − ψ) = 0. By denoting u = ζ − ψ, one finds

−Δu = hu− V u = −(u+ V u) ∈ L1
loc(R

n).

Hence it is possible to apply Kato’s inequality, Theorem 6.3.3, to get

Δ|u| ≥ Re (sgnu)Δu = Re [(sgnu)(u+ V u)] = (V + 1)|u| ≥ 0.

The same arguments used at the end of the proof of Corollary 6.3.5 imply that
u = 0, consequently ψ = ζ and ζ ∈ dom Hf . Therefore, Df ⊂ dom Hf and the
theorem is proved. �
Corollary 9.3.17. Let V be a positive potential with V ∈ L2

loc(R
n), and consider

the initial operator

dom H = C∞0 (Rn), Hψ = −Δψ + V ψ.

Then H is essentially self-adjoint and its unique self-adjoint extension is given by
(as before, with distributional operation)

dom H =
{
ψ ∈ L2(Rn) : (−Δ + V )ψ ∈ L2(Rn)

}
,

Hψ = (−Δ + V )ψ, ψ ∈ dom H.

Proof. Apply some known facts: V ∈ L2
loc(R

n) implies the operator sum H is
defined on C∞0 (Rn), it is essentially self-adjoint (Corollary 6.3.5) and its unique
self-adjoint extension is its closure H ; since L2

loc(R
n) ⊂ L1

loc(R
n) (check this!), this

extension coincides with the form sum extension Hf given by Theorem 9.3.16;
since in this case (V ψ) ∈ L1

loc(R
n) for all ψ ∈ L2(Rn), this condition may be

omitted in Df and the form extension Hf is exactly the operator in the statement
of the corollary. �
Remark 9.3.18. If the potential V ∈ L2

loc(R
n) (not necessarily bounded from be-

low), then it is possible to show that (see Chapter VII of [EdE87]) the adjoint of
the standard energy operator dom H = C∞0 (Rn), Hψ = H0ψ+V ψ, has the same
action as H but with dom H∗ = {ψ ∈ L2(Rn) : V ψ ∈ L1

loc(R
n), (H0ψ + V ψ) ∈

L2(Rn)}. In case V is bounded from below, according to Corollary 9.3.17, the
adjoint H∗ is the only self-adjoint extension of H .
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9.4 Polar Decomposition

This is the analogue, for closed operators, of the well-known decomposition z =
eiθ|z| for complex numbers. In order to motivate what follows, let T be a closed
operator; then |z| = (z̄z)1/2 should correspond to |T | = (T ∗T )1/2 and eiθ =
z/|z| to W = T (T ∗T )−1/2. Although |T | is actually well defined, one still has to
understand W . In any event, the formal computation

‖Wξ‖2 =
〈
T (T ∗T )−1/2ξ, T (T ∗T )−1/2ξ

〉
=
〈
ξ, (T ∗T )−1/2T ∗T (T ∗T )−1/2ξ

〉
= ‖ξ‖2

suggests that W is an isometry.

Definition 9.4.1. A bounded linear operator W : H1 → H2 is a partial isometry
if it is an isometry on the orthogonal complement of its kernel N(W ). The space
N(W )⊥ is called the initial space of the partial isometry W .

Exercise 9.4.2. Show that if W : H1 → H2 is a partial isometry then W ∗W is the
projection onto rng W ∗W . Give conditions on W so that it is a unitary operator.

Proposition 9.4.3. Let T : dom T � H → H be a closed operator. Then T has a
unique decomposition in the form T = W S, with S a positive self-adjoint operator
(in fact S = |T |) and W ∈ B(H) a partial isometry with initial space rng S and
range rng T (and Wξ = 0 if ξ ∈ (rng S)⊥).

Proof. Since T is closed, by Proposition 4.3.9 the operator T ∗T ≥ 0 is self-adjoint
and so |T | =

√
T ∗T is well defined.

Uniqueness: If T = WS, then the partial isometry W is uniquely determined by
WSξ = Tξ, ξ ∈ dom T . If ξ, η ∈ rng S, since W is a partial isometry,

〈ξ, η〉 = 〈Wξ,Wη〉 = 〈ξ,W ∗Wη〉,

or 〈ξ, (1 −W ∗W )η〉 = 0, ∀ξ ∈ rng S, and so (1 −W ∗W )η ∈ (rng S)⊥. On the
other hand, rng W ∗ ⊂ rng S (check this!) and it follows that

(1 −W ∗W )η ∈ (rng S)⊥ ∩ rng S = {0};

thus W ∗Wη = η and W ∗W is the orthogonal projection onto rng S.
Now T ∗T = S∗W ∗WS = S2 (because S is self-adjoint and W ∗W is the

orthogonal projection onto rng S) and, since S ≥ 0, S = |T | by Proposition 9.3.1.
The uniqueness follows.

Existence: Note first that |T |2 = |T | |T | = T ∗T . If ξ ∈ dom |T |2 = dom (T ∗T ),
then

‖|T |ξ‖2 = 〈|T |ξ, |T |ξ〉 = 〈|T |2ξ, ξ〉 = 〈T ∗Tξ, ξ〉 = ‖Tξ‖2.

By Proposition 4.3.9, the graph norms ‖ · ‖T and ‖ · ‖|T | coincide in dom (T ∗T ),
which is a core of both |T | and T (Proposition 4.3.11). Hence dom |T | = dom T
and ‖|T |ξ‖ = ‖Tξ‖, ∀ξ ∈ dom T .
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Thus, the map W ′ : rng |T | → rng T defined by

W ′(|T |ξ) := Tξ

is an isometry that has a unique isometric extension W ′′ : rng |T | → rng T . Define

W (ξ + η) := W ′′ξ, ξ ∈ rng |T |, η ∈
(
rng |T |

)⊥
,

so that W |T | = T with W a partial isometry. �
Definition 9.4.4. If T is closed then T = W |T |, as in Proposition 9.4.3, is called
the polar decomposition of T .

Example 9.4.5. Let T : H → H be the operator of rank 1,

Tξ = 〈η, ξ〉 ζ, ‖η‖ = ‖ζ‖ = 1.

Then T ∗ξ = 〈ζ, ξ〉 η and (T ∗T )(ξ) = 〈η, ξ〉 η. In this case |T |ξ = 〈η, ξ〉 η, since it
is self-adjoint, 〈ξ, |T |ξ〉 = |〈η, ξ〉|2 ≥ 0 and |T |2 = T ∗T . Since rng |T | = Lin({η})
and rng T = Lin({ζ}), the polar decomposition of T is

T = W |T |,

with W : Lin({η}) → Lin({ζ}), W (aη) = aζ, a ∈ C. Remember Wξ = 0 if
ξ ∈ Lin({ζ})⊥.
Exercise 9.4.6. Discuss the alterations in Example 9.4.5 if ζ and η are not nor-
malized.
Exercise 9.4.7. Let Sr : l2(Z) ←↩ be the right shift operator in Example 1.1.12.
Find |Sr| and its polar decomposition. What does happen for Sr : l2(N) ←↩?
Remark 9.4.8. The reader should be aware that, even for 2× 2 real matrices T, S,
it is possible that |T + S| ≤ |T | + |S| does not hold! Try to find an example.

9.4.1 Trace-Class Operators

The polar decomposition allows one to introduce some subspaces of compact op-
erators B0(H). If T is a compact operator, then |T | is compact and self-adjoint;
the nonzero eigenvalues 0 < �j = �j(T ) of |T | are called the singular numbers
of T = W |T | (this is the polar decomposition of T ). By the spectral theorem
for compact self-adjoint operators, if ζj are the corresponding eigenvectors, i.e.,
|T |ζj = �jζj , ∀j, one has

|T |ξ =
∑
j

�j〈ζj , ξ〉 ζj ,

and so
Tξ = W |T |ξ =

∑
j

�j〈ζj , ξ〉 ξj , ξj = Wζj .

This expression is called the canonical form of T .
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Definition 9.4.9. The trace of the positive operator Q ∈ B(H) is

trQ :=
∑
j

〈ej , Qej〉 =
∑
j

‖Q1/2ξj‖2,

where {ej}j is an orthonormal basis of H. An operator B ∈ B(H) is trace class if
tr |B| <∞.

By Proposition 1.4.2 the above trace of positive operators is well defined
since trQ = ‖Q1/2‖HS and the Hilbert-Schmidt norm is independent of the chosen
orthonormal basis.

Proposition 9.4.10. If an operator B is trace class, then it is compact, Hilbert-
Schmidt and

tr |B| =
∑
j

�j(B).

Further, |B|1/2 is also Hilbert-Schmidt.

Proof. Since B is trace class it is immediate that |B|1/2 is Hilbert-Schmidt, so
compact. Thus, |B| = |B|1/2|B|1/2 is compact by Proposition 1.3.7ii). Let (ξj)j be
the set of normalized eigenvectors of |B|; then

tr |B| =
∑
j

〈ξj , |B|ξj〉 =
∑
j

�j(B).

On the other hand,

‖B‖2
HS =

∑
j

‖Bξj‖2 =
∑
j

‖ |B| ξj‖2

=
∑
j

�j(B)2.

Therefore, since tr |B| < ∞ one has �j < 1 for large j, so �2
j < �j and the

convergence of the sum ‖B‖2
HS <∞ follows. �

Proposition 9.4.11. B ∈ B(H) is trace class iff it is a product of two Hilbert-
Schmidt operators.

Proof. If B is trace class, then |B|1/2 and W |B|1/2 are Hilbert-Schmidt and B =
W |B|1/2|B|1/2 is the product of two elements of HS(H).

Now, if B1, B2 ∈ HS(H), use polar decomposition to write B1B2 = W |B1B2|
and note that B∗1W ∈ HS(H) (Proposition 1.3.7). Pick an orthonormal basis (ej)j
of H and make use of Cauchy-Schwarz inequality and then of Hölder inequality
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to get

tr |B1B2|=
∑
j

〈ej , |B1B2|ej〉 =
∑
j

〈ej ,W ∗B1B2ej〉

=
∑
j

|〈B∗1Wej , B2ej〉| ≤
∑
j

(‖B∗Wej‖ ‖B2ej‖)

≤

⎛⎝∑
j

‖B∗1Wej‖2
∑
n

‖B2en‖2

⎞⎠
1
2

= ‖B∗1W‖HS ‖B2‖HS <∞.

Hence B1B2 is trace class. �

Exercise 9.4.12. If B is trace class, define its trace by trB =
∑

j〈ej , Bej〉 and show
that this series is absolutely convergent and independent of the orthonormal basis
(ej)j (hint: write B = B∗1B2, B1, B2 ∈ HS(H), and argue as for HS operators).
Exercise 9.4.13. Let B be a trace-class operator. Show that tr (BU) = tr (UB)
for any unitary operator U and use Proposition 9.5.12 to conclude that tr (BT ) =
tr (TB) for any T ∈ B(H) (use tr (A+B) = trA+ trB).
Exercise 9.4.14. Check that any finite rank operator is trace class. Find those
projections P that has trP = 1.
Remark 9.4.15. In statistical mechanics (and in other settings as well) one usually
does not know exactly what is the state of a system. This lack of information about
the system is taken into account by means of a density matrix, which is a positive
trace-class operator ρ on H with tr ρ = 1. In this case its singular values coincide
with its eigenvalues pj and

∑
j pj = 1. A density matrix is used to describe mixed

states and, given a bounded self-adjoint operator T , the average measured value
of T over many realizations of the system is assumed to be tr (ρT ). For instance,
if (ξj)j is an orthonormal basis of H, Pξj the projection onto Lin({ξj}), and the
system is supposed to be prepared in ξj with probability pj ,

∑
j pj = 1, then on

physical grounds the average expectation value of T is∑
j

pj ETξj
=
∑
j

pj 〈ξj , T ξj〉 ,

and in this situation an effective description is given in terms of the density matrix
ρ =

∑
j pjPξj , since ρξj = pjξj , ∀j, and

tr (ρT ) =
∑
j

〈ρξj , T ξj〉 =
∑
j

pjETξj
.

For other results related to trace-class operators, generalizations and appli-
cations see [Scha60] and [Sim05].
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9.5 Miscellanea

Throughout this section T is a self-adjoint operator acting in the Hilbert space
H. Some relations involving integrals of operator quantities and spectral measures
will be presented. Lemmas 8.2.6 and 8.2.17 as well as the dominated convergence
theorem will be often invoked. As customary, the use of the spectral theorem
means the use of any related results presented in Chapter 8.

The following lemma will be employed ahead, sometimes implicitly, and its
proof illustrates the usual arguments for passing from functions to operators.

Lemma 9.5.1. Let J ⊂ R be an interval and g : J × R → C be a (uniformly)
bounded Borel function such that for each x the function t �→ g(t, x) is integrable
with respect to Lebesgue measure. If G(x) :=

∫
J g(t, x) dt, then

G(T ) =
∫
J

g(t, T ) dt.

Proof. Since g is a bounded function, g(t, T ) is a bounded (normal) operator for
any t ∈ J . For any ξ, η ∈ H, by continuity of the inner product,〈

ξ,

∫
J

g(t, T ) dt η
〉

=
∫
J

〈ξ, g(t, T ) η〉 dt

=
∫
J

∫
σ(T )

g(t, x) dμTξ,η(x) dt

Fubini=
∫
σ(T )

∫
J

g(t, x) dt dμTξ,η(x)

=
∫
σ(T )

G(x)μTξ,η(x) = 〈ξ,G(T )η〉 .

Hence, G(T ) =
∫
J
g(t, T ) dt. �

Resolvent and Distance to the Spectrum. For quite general operators S, that is,
if both σ(S) and ρ(S) are nonempty, Corollary 1.5.15 provides a simple proof that

‖Rλ(S)‖ ≥ 1/d(λ, σ(S)), ∀λ ∈ ρ(S);

recall that d(λ, σ(S)) := infμ∈σ(S) |μ−λ|. For self-adjoint operators T the spectral
theorem can be used to prove a complement to this result, i.e., another proof of
Corollary 2.4.5.

Proposition 9.5.2. If T is self-adjoint, then

‖Rλ(T )‖ = 1/d(λ, σ(T ))

for all λ ∈ ρ(T ).
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Proof. Note that Rλ(T )=rλ(T ), with rλ(x)=(x−λ)−1. For ξ∈H Lemma 8.2.17
implies

‖Rλ(T )ξ‖2 =
∫
σ(T )

|rλ(x)|2 dμTξ (x)

≤
∫
σ(T )

1
d(λ, σ(T ))2

dμTξ (x) ≤ 1
d(λ, σ(T ))2

‖ξ‖2.

Hence,
‖Rλ(T )‖ ≤ 1/d(λ, σ(T )),

and the result follows by combining with Corollary 1.5.15. �
Exercise 9.5.3. Let T be self-adjoint and z ∈ ρ(T ). Use the spectral theorem to
recover the known results

‖Rz(T )‖ ≤ 1
|Im z| , Im z 
= 0, and TRz(T ) ∈ B(H).

Find un upper bound of the norm of TRz(T ).
Exercise 9.5.4. Let T be self-adjoint.

(a) Show that for any ξ ∈ dom T one has ‖(T − λ1)ξ‖ ≥ d(λ, σ(T ))‖ξ‖, for
all λ ∈ C.

(b) Let ε > 0. If for some μ ∈ C there is a 0 
= ξ ∈ dom T with ‖(T −μ1)ξ‖ <
ε‖ξ‖, show that there is a λ ∈ σ(T ) so that |λ− μ| < ε.

Spectral Projection onto a Single Point. For t, t0 ∈ R, ε > 0 let

ut0+iε(t) =
−iε

t− (t0 + iε)
.

Since
lim
ε→0

−iε
t− (t0 + iε)

= χ{t0}(t),

then by the spectral theorem one obtains the relation

s − lim
ε→0

−iεRt0+iε(T ) = χ{t0}(T ),

that is, the spectral projection of T at the point t0. Indeed, note that ut0+iε(T ) =
−iεRt0+iε(T ) and for any ξ ∈ H,∥∥−iεRt0+iε(T )ξ − χ{t0}(T )ξ

∥∥2 =
∫
σ(T )

∣∣ut0+iε(t) − χ{t0}(t)
∣∣2 dμTξ (t)

which vanishes as ε → 0 by dominated convergence. The relation is proved. It is
worth mentioning that, by Theorem 11.2.1, χ{t0}(T ) is the orthogonal projection
onto the eigenspace associated with t0.
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Boundary Values of the Borel Transform. The Borel transform of a finite (posi-
tive) measure μ on A is the map

Fμ(z) :=
∫

R

dμ(t)
t− z

, z ∈ C \ R.

In the specific case of spectral measures μTξ , for ε > 0 and t0 ∈ R one has

FμT
ξ
(t0 + iε) = 〈ξ, Rt0+iε(T )ξ〉 =

∫
R

dμTξ (t)
t− (t0 + iε)

=
∫

R

t− t0
(t− t0)2 + ε2

dμTξ (t) + iε

∫
R

dμTξ (t)
(t− t0)2 + ε2

.

Hence, by dominated convergence, the following boundary values are obtained:

lim
ε→0+

ε Re FμT
ξ
(t0 + iε) = 0

and
lim
ε→0+

ε Im FμT
ξ
(t0 + iε) = μTξ ({t0}).

Note that the relation ‖Rt0+iε(T )‖ ≤ 1/|ε| shows that the resolventRt0+iε(T )
cannot have limits in B(H) as ε→ 0.

Stone Formula. For −∞ < a < b < ∞ and ε > 0, consider the function defined
on R

vε(x) =
1

2πi

∫ b

a

(
1

x− (t+ iε)
− 1
x− (t− iε)

)
dt,

which is uniformly bounded as a function of ε and the following pointwise conver-
gence holds

lim
ε→0+

vε(x) =

⎧⎪⎨⎪⎩
0 if x /∈ [a, b]
1
2 if x ∈ {a, b}
1 if x ∈ (a, b)

.

By Lemma 9.5.1 one gets the Stone formula

1
2
(
χ[a,b](T ) + χ(a,b)(T )

)
= s − lim

ε→0+

1
2πi

∫ b

a

(Rt+iε(T ) −Rt−iε(T )) dt.

Exercise 9.5.5. Show that

χ(a,b)(T ) = s − lim
δ→0+

s − lim
ε→0+

1
2πi

∫ b−δ

a+δ

(Rt+iε(T ) −Rt−iε(T )) dt.
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Mean Ergodic Theorem. This relation is due to von Neumann and known as the
mean ergodic theorem. Since for t0, x ∈ R,

lim
M→∞

1
M

∫ M

0

eist0e−isx ds = χ{t0}(x),

by the spectral theorem and Lemma 9.5.1,

χ{t0}(T ) = s − lim
M→∞

1
M

∫ M

0

eist0e−isT ds.

This is a relation between the spectral projection of T at the point t0 and the uni-
tary evolution group e−isT whose infinitesimal generator is T (by Theorem 11.2.1,
χ{t0}(T ) is the orthogonal projection onto the eigenspace associated with t0).
Exercise 9.5.6. Verify that the average in the mean ergodic theorem can be taken
as 1

2M

∫M
−M .

Evolution Group and Resolvent. Again Fubini’s Theorem and Lemma 9.5.1 will
be invoked. Let z ∈ C with Im z > 0. Since for x ∈ R,

1
x− z

= −i
∫ ∞

0

eisze−isx ds,

then for all ξ, η ∈ H one has

〈ξ, Rz(T )η〉 =
∫
σ(T )

1
x− z

dμTξ,η(x)

=
∫
σ(T )

(
−i
∫ ∞

0

eisze−isx ds

)
dμTξ,η(x)

Fubini= −i
∫ ∞

0

eisz

(∫
σ(T )

e−isx dμTξ,η(x)

)
ds

= −i
∫ ∞

0

eisz〈ξ, e−isT η〉 ds =
〈
ξ,

(
−i
∫ ∞

0

eisze−isT ds

)
η

〉
,

and the following relation between the resolvent operator and the unitary evolution
group is obtained,

Rz(T ) = −i
∫ ∞

0

eisze−isT ds.

Exercise 9.5.7. What changes in the above relation if Im z < 0?
Exercise 9.5.8. Let ξ ∈ H. Since the map

z �→ 〈ξ, Rz(T )ξ〉, z ∈ C \ R,

is holomorphic, show that

Rz(T )2 =
∫ ∞

0

seisze−isT ds, Im z > 0.
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Riesz Projections. Assume that Λ is a (nonempty) compact subset of σ(T ), and
Γ a closed piecewise smooth Jordan curve in the complex plane C (positively
oriented) whose intersection of its interior with σ(T ) is Λ, and also Γ ∩ σ(T ) = ∅.
Hence Λ is separated by a gap from the remainder of the spectrum of T .

Proposition 9.5.9. The following equality holds,

χΛ(T ) =
i

2π

∮
Γ

Rz(T ) dz.

The right-hand side is called the Riesz projection onto Λ.

Proof. Let (a, b) be the (bounded) open interval obtained by the intersection of
the interior of Γ with the real axis (the proof is almost the same if more than one
such interval is present); so Λ ⊂ (a, b). For ξ ∈ H the spectral theorem and Fubini
imply

Z :=
〈
ξ,

1
2πi

∮
Γ

Rz(T ) dz ξ
〉

=
1

2πi

∮
Γ

〈ξ, Rz(T )ξ〉 dz

=
1

2πi

∮
Γ

∫
σ(T )

1
t− z

dμTξ (t) dz

= −
∫
σ(T )

[
1

2πi

∮
Γ

dz

z − t

]
dμTξ (t).

By the Cauchy integral formula, the term given in brackets equals 1 if t ∈ (a, b)
and zero if t ∈ R \ [a, b]. Thus, the term in brackets is the characteristic function
χ(a,b). Hence

Z =−
∫
σ(T )

χ(a,b)(t) dμTξ (t) = −〈ξ, χ(a,b)(T )ξ〉

=−〈ξ, χΛ(T )ξ〉.

An application of Lemma 1.1.44 implies the proposition. �

An especially interesting case is of an isolated (with respect to the spectrum)
eigenvalue t0 of T . Then, for 0 < r small enough, if S(t0; r) is the sphere, in the
complex plane, of radius r and centered at t0, the orthogonal projection onto the
eigenspace associated with t0 is

χ{t0}(T ) =
i

2π

∮
S(t0;r)

Rz(T ) dz;

see also Theorem 11.2.1 and Corollary 11.2.3. Note that if the eigenvalue t0 is not
isolated in the spectrum of T , it is not possible to construct χ{t0}(T ) as a Riesz
projection.
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Exercise 9.5.10. Let Λ,Γ and T be as in Proposition 9.5.9, and f : C → C an
entire function. Show the following characterization of the operator χΛ(T )f (n)(T )
(f (n) is the nth derivative of f)

χΛ(T )f (n)(T ) =
(−1)n+1n!

2πi

∮
Γ

f(z)Rz(T )n+1 dz,

for all n ∈ N.

Perturbation of Bounded from Below Operators. Let B be a hermitian and T -
bounded operator with NT (B) < 1. Then, by the Kato-Rellich theorem, the op-
erator T +B with dom (T +B) = dom T is self-adjoint.

Proposition 9.5.11. Under the above conditions, if T ≥ β1, then there exists γ ∈ R

so that T +B ≥ γ1. In particular if σ(T ) ⊂ [β,∞), then σ(T +B) ⊂ [γ,∞).

Proof. By hypotheses, T is self-adjoint and there exist 0 ≤ a < 1 and b ≥ 0
obeying

‖Bξ‖ ≤ a‖Tξ‖ + b‖ξ‖, ∀ξ ∈ dom T.

By Proposition 8.3.21, σ(T ) ⊂ [β,∞). Let λ < β; for all ξ ∈ H,

‖TRλ(T )ξ‖2 =
∫

[β,∞)

t2

(t− λ)2
dμTξ (t) ≤

∫
[β,∞)

dμTξ (t) = ‖ξ‖2,

so that ‖TRλ(T )‖ ≤ 1 (see also Exercise 6.1.7) and, by Proposition 9.5.2,
‖Rλ(T )‖ ≤ 1/|β − λ|.

Such inequalities imply, for all ξ ∈ H,

‖BRλ(T )ξ‖ ≤ a‖TRλ(T )ξ‖ + b‖Rλ(T )ξ‖ ≤
(
a+

b

|β − λ|

)
‖ξ‖

and for large |λ| one has ‖BRλ(T )‖ < 1. Finally, from the relation

T +B − λ1 = (1 +BRλ(T )) (T − λ1)

it follows that
Rλ(T +B) = Rλ(T ) (1 +BRλ(T ))−1

belongs to B(H) and so λ ∈ ρ(T + B). Therefore there exists γ ∈ R so that
(−∞, γ) ⊂ ρ(T +B). The proposition is proved. �

Characterization of Bounded Operators

Proposition 9.5.12. Any S ∈ B(H) is expressible as the linear combination of
no more than two self-adjoint operators and also of no more than four unitary
operators.
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Proof. If S is the zero operator it is self-adjoint and equals (U − U) for any
unitary U , and the conclusions follow in this specific case. Assume that S 
= 0.
Write S = S1 + S2, with

S1 =
1
2
(S + S∗), S2 =

i

2
i(S∗ − S),

so that S is a linear combination of two bounded self-adjoint operators. To finish
the proof it is enough to show that any bounded self-adjoint operator is the linear
combination of no more than two unitary operators.

If 0 
= T is bounded and self-adjoint, then by considering T/‖T ‖ one can
suppose that ‖T ‖ = 1, so that (1 − T 2) ≥ 0. Then, if f±(t) = t ± i(1 − t2)1/2,
−1 ≤ t ≤ 1, the bounded operators

T± := T ± i
(
1− T 2

) 1
2 = f±(T )

satisfy T = 1
2 (T+ + T−). Such operators T± are invertible, since if T−ξ = 0

(similarly for T+) then Tξ = i(1− T 2)1/2ξ and so

T 2ξ = i(1− T 2)1/2Tξ = i(1− T 2)1/2i(1− T 2)1/2ξ
=−ξ + T 2ξ =⇒ ξ = 0.

Since T ∗± = f±(T ) = f∓(T ) = T∓, it follows that T ∗±T± = 1 = T±T
∗
±, and these

operators are actually unitary. �

9.6 Spectral Mapping

The next result generalizes item 2) in Proposition 8.3.19 and it is often called
spectral mapping; sometimes this terminology is used for the restricted set of
polynomial functions.

Proposition 9.6.1 (Spectral Mapping Theorem). Let T be self-adjoint and f ∈
C(σ(T )). Then (the bar indicates closure)

σ(f(T )) = f(σ(T )) := {f(λ) : λ ∈ σ(T )}.

Proof. Since the spectrum of two unitarily equivalent operators are the same, by
the spectral theorem it is possible to assume that T = Mh, h(t) = t, t ∈ R, a
multiplication operator acting in some L2

μ(E). Hence f(T ) = Mf(t).
Recall that, by Proposition 2.3.27, λ ∈ σ(Mϕ(t)) iff for all open neighbour-

hood V of λ in C one has μ(ϕ−1(V )) > 0.
If λ ∈ σ(T ) and y = f(λ), then for all open neighbourhoods V of y one has

μ(f−1(V )) 
= 0, since f−1(V ) is an open neighbourhood of λ; thus y ∈ σ(Mf(t)) =
σ(f(T )). Hence f(σ(T )) ⊂ σ(f(T )). Since σ(f(T )) is a closed set,

f(σ(T )) ⊂ σ(f(T )).
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Now let z ∈ ρ(f(T )) = ρ(Mf(t)). Then there exists an open neighbourhood
V of z so that μ(f−1(V )) = 0; but this implies that f−1(V ) ⊂ ρ(T ), and so
z ∈ f(ρ(T )). Thus

ρ(f(T )) ⊂ f(ρ(T )).

The above two inclusions infer that σ(f(T )) = f(σ(T )). �

Corollary 9.6.2. If in Proposition 9.6.1 the operator T is bounded and f is contin-
uous, then

σ(f(T )) = f(σ(T )).

Proof. If T is bounded then σ(T ) is a compact set; since f is continuous f(σ(T ))
is also compact, so closed. Thus f(σ(T )) = f(σ(T )). Apply Proposition 9.6.1. �

Corollary 9.6.3. Let U(t) be a strongly continuous unitary evolution group on H.
If T is its infinitesimal generator, then for each t ∈ R one has

σ(U(t)) = closure {e−itσ(T )}.

Exercise 9.6.4. Use the spectral mapping theorem to show that if T is an idem-
potent self-adjoint operator and T 
= 0,1, then σ(T ) = {0, 1}.
Exercise 9.6.5. Let T be self-adjoint and f : C → C continuous. Give necessary
and sufficient conditions so that the equation

f(T )ξ = η,

has unique solution ξ = ξ(η), for each η ∈ H, that depends continuously on η.

9.7 Duhamel Formula

Let T be self-adjoint and B a hermitian operator so that T +B is self-adjoint with

dom (T +B) ⊂ dom T ∩ dom B.

Then the evolution groups e−itT and e−it(T+B) are well defined (see Section 9.2)
and the task here is to compare them. It is a kind of perturbation of the unitary
evolution group when the infinitesimal generator is perturbed.

Let ξ ∈ dom (T +B). First note that e−it(T+B)ξ ∈ dom T ∩ dom B, ∀t ∈ R,
so the following manipulations are justified (see Proposition 5.1.3). Begin with the
derivative

d

dt

(
eitT e−it(T+B)ξ

)
= iT eitT e−it(T+B)ξ − ieitT (T +B)e−it(T+B)ξ

= −ieitTBe−it(T+B)ξ,
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then integrate between 0 and t, to obtain

eitT e−it(T+B)ξ − ξ = −i
∫ t

0

eiuTBe−iu(T+B)ξ du,

and finally the so-called Duhamel formula follows

e−it(T+B)ξ = e−itT ξ − i

∫ t

0

e−iT (t−u)Be−iu(T+B)ξ du.

Note that this formula is a direct consequence of the fundamental theorem of
calculus in this context!

In case B is also a bounded operator, one gets∥∥∥e−it(T+B)ξ − e−itT ξ
∥∥∥≤ ∣∣∣∣∫ t

0

∥∥∥Be−iu(T+B)ξ
∥∥∥ du∣∣∣∣

≤ |t| ‖B‖‖ξ‖,

which could be useful for small |t|.
Exercise 9.7.1. Deduce

eitT e−it(T+B)ξ − eisT e−is(T+B)ξ = −i
∫ t

s

eiuTBe−iu(T+B)ξ du .

9.8 Reducing Subspaces

Let T be a self-adjoint operator acting in H. The main goal of this section is
to present some important subspaces E of H invariant under T , i.e., Tξ ∈ E if
ξ ∈ E ∩ dom T .

Let E be a closed subspace of H and PE the orthogonal projection onto E;
thus

H = E ⊕ E⊥, 1 = PE + PE⊥ .

Next a preparation for introducing important concepts in Definition 9.8.1. If
A : dom A ⊂ H → H is a linear operator, then

dom A = PE(dom A) + PE⊥(dom A).

If PE(dom A) ⊂ dom A, then PE⊥(dom A) = (1 − PE)dom A ⊂ dom A and so

A(dom A) = APE(dom A) +APE⊥(dom A),

that is Aξ = APEξ +APE⊥ξ for all ξ ∈ dom A.
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Definition 9.8.1. The closed subspace E is called a reducing subspace of the oper-
ator A, or E reduces A, if

PE(dom A) ⊂ dom A, APE(dom A) ⊂ E, and APE⊥(dom A) ⊂ E⊥.

In this case the restriction operators AE := A|E = APE and AE⊥ := A|E⊥ =
APE⊥ are well defined.

Exercise 9.8.2. Show that E reduces A iff E⊥ reduces A, and in this case
(dom A|E) ⊥ (dom A|E⊥) and dom A = dom AE + dom AE⊥ .

The next theorem summarizes important properties of some reducing sub-
spaces of self-adjoint operators. Its proof will be postponed to the end of this
section.

Theorem 9.8.3. Let T be a self-adjoint operator and E ⊂ H a closed subspace.

a) If E reduces T , then TE and TE⊥ are self-adjoint operators, and in this case
one writes T = TE ⊕ TE⊥ .

b) For any Borel set Λ ∈ A the subspace rng χΛ(T ) reduces T .

Now some (preparatory) results of independent interest, which will be used
in other chapters.

Lemma 9.8.4. Let E be a closed subspace of H and A : dom A � H → H a linear
operator.

a) E reduces A iff PEA ⊂ APE .

b) If A is hermitian, then E reduces A iff

PE(dom A) ⊂ dom A and APE(dom A) ⊂ E.

Proof. a) If E reduces A, for each ξ ∈ dom A one has PEξ ∈ dom A, APEξ ∈ E
and APE⊥ξ = A(1− PE)ξ ∈ E⊥; thus

(1 − PE)APEξ = 0 = PEAPE⊥ξ = PEA(1 − PE)ξ

and so APEξ = PEAξ, that is, PEA ⊂ APE .
Assume now that PEA ⊂ APE ; so PE⊥A = A − PEA ⊂ A− APE = APE⊥ .

Hence PE(dom A) ⊂ dom A and PE⊥(dom A) ⊂ dom A (see the above discus-
sion). If ξ ∈ dom A one has APEξ = PEAξ ∈ E, and so APE(dom A) ⊂ E.
Analogously to E⊥.

b) Assume that A is hermitian. If E reduces A then the statement in the
lemma follows immediately. Suppose that

PE(dom A) ⊂ dom A and APE(dom A) ⊂ E;

then for ξ ∈ dom A one has APEξ ∈ E and so PEAPEξ = APEξ. Thus, for all
η ∈ dom A,

〈PEAPEξ, η〉 = 〈ξ, PEAPEη〉 = 〈ξ, APEη〉 = 〈PEAξ, η〉,



252 Chapter 9. Applications of the Spectral Theorem

and since dom A is dense in the Hilbert space PEAPEξ = PEAξ. Since APEξ ∈ E,
it follows that APEξ = PEAξ, that is, APE ⊃ PEA. By item a), E reduces A. �

Proposition 9.8.5. Let T be self-adjoint and E ⊂ H a closed subspace. Then E
reduces T iff

PEχ(a,b)(T ) = χ(a,b)(T )PE
for all open intervals (a, b) ⊂ R with −∞ < a < b <∞.

Proof. If PEχ(a,b)(T ) = χ(a,b)(T )PE , for all bounded (a, b) ⊂ R, it follows that
PEχΩ(T ) = χΩ(T )PE for all open sets Ω ⊂ R, since every bounded open set is a
countable pairwise disjoint union of such intervals and for an unbounded interval
one takes a limit procedure, e.g., χ(a,∞)(T ) = s − limn→∞ χ(a,n)(T ).

If ξ ∈ dom T , then

μTPEξ(Ω) = ‖χΩ(T )PEξ‖2 = ‖PEχΩ(T )ξ‖2

≤ ‖χΩ(T )ξ‖2 = μTξ (Ω),

and since the spectral measures are regular (recall that every finite Borel measure
over R is regular) it is found that

μTPEξ(Λ) ≤ μTξ (Λ), ∀Λ ∈ A.

Therefore,

‖TPEξ‖2 =
∫
σ(T )

t2 dμTPEξ(t) ≤
∫
σ(T )

t2 dμTξ (t) = ‖Tξ‖2 <∞,

and so PEξ ∈ dom T . Since PE is a bounded operator, dom (TPE) ⊃ dom T =
dom (PET ).

Let h(t) = t, t ∈ R. By Lemma 9.8.6 ahead, there is a sequence (fn) of
simple functions with fn → h in L2

μξ
(R) so that PEfn(T ) = fn(T )PE ; the above

inequality between spectral measures implies that fn → h in L2
μPE ξ

(R) as n→ ∞.
Thus, for ξ ∈ dom T ,

PETξ = PEh(T )ξ = PE lim
n→∞

fn(T )ξ = lim
n→∞

PEfn(T )ξ

= lim
n→∞

fn(T )PEξ = TPEξ,

that is, PET ⊂ TPE and, by Lemma 9.8.4, it is found that E is a reducing subspace
of T .

Suppose now that E reduces T . Then PET ⊂ TPE and for all z ∈ ρ(T ) one
has

Rz(T )PE =Rz(T )PE(T − z1)Rz(T ) ⊂ Rz(T )(T − z1)PERz(T ) = PERz(T ),

and since dom (Rz(T )PE) = H one has Rz(T )PE = PERz(T ). Since χ(a,b)(T ) is
a continuous operator, by using the Stone formula (see Exercise 9.5.5) it is found
that PEχ(a,b)(T ) = χ(a,b)(T )PE . This finishes the proof. �
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Lemma 9.8.6. Let h(t) = t, t ∈ R, T be self-adjoint and the projection PE so that

PEχ(a,b)(T ) = χ(a,b)(T )PE ,

for all open intervals (a, b) ⊂ R with −∞ < a < b <∞. Then there is a sequence
(fn) of simple functions with fn → h in L2

μξ
(R), as n → ∞, for any ξ ∈ dom T ,

and further
PEfn(T ) = fn(T )PE , ∀n.

Proof. First note the pointwise limit χ(a,b](t) = limn→∞ χ(a,b+1/n)(t), which im-
plies

χ(a,b](T )ξ = lim
n→∞

χ(a,b+1/n)(T )ξ, ∀ξ ∈ H.

Thus, since PE is bounded, for all ξ ∈ H,

PEχ(a,b](T )ξ = PE lim
n→∞

χ(a,b+1/n)(T )ξ

= lim
n→∞

χ(a,b+1/n)(T )PEξ = χ(a,b](T )PEξ,

that is, χ(a,b](T )PE = PEχ(a,b](T ). Similar arguments show that

χJ (T )PE = PEχJ(T )

for all intervals J ⊂ R (bounded or not).
For n ∈ N and −n2n + 1 ≤ j ≤ n2n, define

An = (−∞,−n), Bn = [n,∞), Jn,j = [
j − 1
2n

,
j

2n
),

and set

fn(t) = −nχAn(t) +
n2n∑

−n2n+1

χJn,j(t) + nχBn(t).

Note that fn are simple functions, fn(t) → h(t) as n → ∞ for every t ∈ R, and
since PE commutes with each term in the (finite) sum

fn(T ) = −nχAn(T ) +
n2n∑

−n2n+1

χJn,j(T ) + nχBn(T ),

it follows that PEfn(T ) = fn(T )PE , ∀n. �

Exercise 9.8.7. Give the arguments to conclude that

χJ (T )PE = PEχJ(T )

for all intervals J ⊂ R, which was used in the proof of Lemma 9.8.6.
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Exercise 9.8.8. Show that E reduces the self-adjoint operator T iff

PEχ(−∞,t](T ) = χ(−∞,t](T )PE , ∀t ∈ R.

Finally the proof of Theorem 9.8.3 will be presented.

Proof. [Theorem 9.8.3] Let T be a self-adjoint operator.
a) Let E be a reducing subspace of T . Then TE and TE⊥ are hermitian and

T ∗E : dom T ∗E � E → E. If η ∈ dom T ∗E and ξ ∈ dom T , then, since TPE⊥ξ ∈ E⊥,

〈η, T ξ〉= 〈η, TPEξ〉 + 〈η, TPE⊥ξ〉 = 〈η, TPEξ〉
= 〈η, TEξ〉 = 〈T ∗Eη, ξ〉,

hence η ∈ (dom T ∗ ∩ E) = (dom T ∩ E) = dom TE (by definition). Therefore,
dom T ∗E = dom TE and TE is self-adjoint. In a similar way one checks that TE⊥

is self-adjoint.
b) If E = rng χΛ(T ), then PE = χΛ(T ) and PEχ(a,b)(T ) = χ(a,b)(T )PE .

Apply Proposition 9.8.5. �
Exercise 9.8.9. If E is a closed subspace that reduces the self-adjoint operator
T , then is E a spectral subspace of T , that is, is there Λ ∈ A such that E =
rng χΛ(T )?

9.9 Sequences and Evolution Groups

In this section T denotes a self-adjoint operator.

Evolution Group via Power Series. Let PT (Λ) be the resolution of identity of T .
By Lemma 8.3.16a), for each ξ ∈ H one has PT ([−M,M ])ξ ∈ dom T , ∀M > 0,
and since

lim
M→∞

PT ([−M,M ])ξ = ξ,

it follows that

Z =
∞⋃

M=1

PT ([−M,M ])H,

is dense in H and Z ⊂ dom T . Further, if η ∈ Z, then there exists M so that
η ∈ PT ([−M,M ])H; by Theorem 9.8.3, PT ([−M,M ])H reduces T and since on
such subspace T is a bounded operator (see the proof of Lemma 8.3.16a)), then –
see also Theorem 5.2.3 –

e−itT η =
∞∑
j=0

(−itT )j

j!
η.

Note that the convergence is in fact uniform on PT ([−M,M ])H. Therefore, even
though T is unbounded, on a dense set of vectors Z � H this unitary evolution
group can be obtained via the power series of the exponential.
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Evolution Group via a Bounded Sequence. It will be checked that for each fixed
real t the sequence of bounded (resolvent) operators(

1 + it
T

n

)−n
strongly converges to the unitary evolution group e−itT . This sequence can be
a starting point of a proof of Theorem 5.3.1 without using the spectral theorem
[Am81].

Recall that for each x ∈ R the sequence of functions
(
1 + it xn

)−n pointwise
converges to e−itx as n→ ∞. If ξ ∈ H, by the spectral theorem,∥∥∥∥∥

(
1 + it

T

n

)−n
ξ − e−itT ξ

∥∥∥∥∥
2

=
∫
σ(T )

∣∣∣∣(1 + it
x

n

)−n
− e−itx

∣∣∣∣2 dμTξ (x)

which vanishes as n→ ∞ by dominated convergence. Hence

s − lim
n→∞

(
1 + it

T

n

)−n
= e−itT .

Exercise 9.9.1. Verify that
∥∥∥(1 + itTn

)−n∥∥∥ ≤ 1 for any n ∈ N.

Exercise 9.9.2. Assume that T ≥ 0.
(a) Show that for any t > 0 (see Subsection 5.5.1)

e−tT = s − lim
n→∞

(
1 + t

T

n

)−n
.

(b) Use the spectral theorem to show that, for any λ, s > 0,

R−λ(T )s =
1

Γ(s)

∫ ∞

0

ts−1e−tλe−tT dt,

with Γ(s) =
∫∞
0 ts−1e−t dt denoting the usual gamma function.

Trotter Product Formula. There is a version of Trotter product formula, dis-
cussed in Section 5.6, for real exponential of bounded from below operators. Follow
the proof of Theorem 5.6.2 to solve the following exercise.
Exercise 9.9.3. Let T, S and T + S be as in Theorem 5.6.2. Assume that T and S
are bounded from below.

a) Show that for each t ≥ 0 the operators e−tT , e−tS and e−t(T+S) are bounded.
b) Show that

e−t(T+S) = s − lim
n→∞

(
e−

t
nT e−

t
nS
)n
, ∀t ≥ 0.



Chapter 10

Convergence of
Self-Adjoint Operators

In this chapter Tn and T denote (usually unbounded) self-adjoint operators acting
in H. Due to domain intricacies, alternative concepts of operator convergence
are introduced. The strong convergences in the resolvent and dynamical senses
are shown to be equivalent. Some relations with spectrum are also discussed.
Convergence to operators with shrinking domains are discussed with the help
of sesquilinear forms, with application to the Aharonov-Bohm effect.

10.1 Resolvent and Dynamical Convergences

It is not a simple task to give a precise definition of a sequence of unbounded
Schrödinger operators Tn approaching another one T . For instance, the simple
adaptation of the strong convergence of operators ‖Tnξ − Tξ‖ → 0 is only mean-
ingful for ξ ∈ ∩ndom Tn, which could consist only of the null vector! A common
procedure when dealing with unbounded operators is to rest the concepts upon
the corresponding resolvents Rz(Tn) (z ∈ C \ R) and/or unitary evolution groups
e−itTn , which are bounded operators and defined everywhere. This seems natural
because it is expected that two self-adjoint operators are “close” if their resolvents
are close and/or their unitary evolution groups are close. This approach has be-
come traditional and fruitful and is followed here; it will be supported by a series
of properties and examples presented in this chapter.

Definition 10.1.1.

a) Tn converges to T in the strong resolvent sense (SR) if Ri(Tn)
s−→ Ri(T ),

and this will be denoted by Tn
SR−→ T .
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b) Tn converges to T in the strong dynamical sense (SD) if, for each t ∈ R,
e−itTn

s−→ e−itT , and this will be denoted by Tn
SD−→ T .

Remark 10.1.2. The definitions of convergence in the weak resolvent sense (WR),
norm resolvent sense (NR), weak dynamical sense (WD) and norm dynamical sense
(ND) are similar; it is enough to exchange strong convergence in Definition 10.1.1
by the appropriate convergence type. For instance, Tn

WD−→ T indicates that, for
each t ∈ R, e−itTn

w−→ e−itT , and norm convergence refers to convergence in B(H).
Each of such convergences is also called generalized convergence.
Remark 10.1.3. The norm resolvent convergence is also called uniform resolvent
convergence. Most definitions and results on convergence of sequences of operators
discussed in this chapter hold for convergence with respect to a parameter λ ∈
R, e.g., for λ → λ0. The reader will find no special difficulty in adapting the
arguments.
Exercise 10.1.4. Let S,Q be two linear operators with domain in H and codomain
H. Show that if Rz(T ) = Rz(S), for some z ∈ ρ(T )∩ ρ(S), then T = S. Conclude
that the above limits in the resolvent sense are unique. What about the uniqueness
of the limits in the dynamical sense?

The relations among the above defined types of convergence of self-adjoint
operators are summarized in Theorems 10.1.15 and 10.1.16.

Lemma 10.1.5. Tn
SR−→ T iff R−i(Tn)

s−→ R−i(T ).

Proof. Since Ri(T ) = r(T ), for r(t) = (t − i)−1, which is a bounded normal
operator (see Definition 8.2.9) and Ri(T )∗ = R−i(T ), one has

‖Ri(T )ξ‖ = ‖Ri(T )∗ξ‖ = ‖R−i(T )ξ‖, ∀ξ ∈ H.

Hence,

‖(Ri(Tn) −Ri(T ))ξ‖ = ‖(Ri(Tn) −Ri(T ))∗ξ‖ = ‖(R−i(Tn) −R−i(T ))ξ‖

∀ξ ∈ H, and the result follows. �
Exercise 10.1.6. Let Bn, B ∈ B(H) be normal operators; show that Bn

s−→ B iff
B∗n

s−→ B∗.
Exercise 10.1.7. Show that

a) Tn
NR−→ T iff R−i(Tn) → R−i(T ) in B(H).

b) Tn
WR−→ T iff R−i(Tn)

w−→ R−i(T ).

One of the goals of this chapter is to prove the following equivalence, related
to strong convergences and due to H. Trotter in 1958. Theorem 10.1.15 presents
an extension of this result. Such equivalence may not happen in case of norm
convergence, as illustrated by Example 10.3.1.
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Proposition 10.1.8. Tn
SR−→ T iff Tn

SD−→ T .

Proof. By a relation between the resolvent operator and the evolution group in
Section 9.5, for any ξ ∈ H one obtains

‖Ri(Tn)ξ −Ri(T )ξ‖=
∥∥∥∥−i ∫ ∞

0

e−s
(
e−isTnξ − e−isT ξ

)
ds

∥∥∥∥
≤
∫ ∞

0

e−s
∥∥e−isTnξ − e−isT ξ

∥∥ ds.
Since

∥∥e−isTnξ − e−isT ξ
∥∥ ≤ 2‖ξ‖, the dominated convergence theorem implies

that if Tn
SD−→ T , then Tn

SR−→ T .

The converse relation will follow from the fact that if Tn
SR−→T then f(Tn)

s−→
f(T ) for all bounded and continuous f : R → C, proved in Proposition 10.1.9.
Indeed, for fixed t, just take f(x) = e−itx to conclude that if Tn

SR−→ T , then
Tn

SD−→ T . �

Proposition 10.1.9. Tn
SR−→ T iff f(Tn)

s−→ f(T ) for all bounded and continuous
f : R → C.

Proof. Let r : R → C denote the function r(t) = (t− i)−1. So r(t) = (t+ i)−1,

Ri(T ) = r(T ) and R−i(T ) = r(T ).

Since r is a bounded continuous function one implication in the proposition is
trivial.

Suppose then that Tn
SR−→ T ; the task is to pass from r to all bounded

continuous functions. Note that r separates points of R (i.e., if t, s ∈ R, t 
= s,
then r(t) 
= r(s)) and lim|t|→∞ r(t) = 0. Thus, by the Stone-Weierstrass theorem
[Simm63] the set of polynomials pε(r(t), r(t)) in the variables r(t) and r(t) is
dense in the space C∞(R), that is, the space of continuous functions that vanish
at infinity with the sup norm ‖ · ‖∞ (i.e., if ψ ∈ C∞(R), then for each ε > 0 there
is M > 0 so that |ψ(x)| < ε if |x| ≥M).

Hence, if φ ∈ C∞(R), for each ε > 0 there exists a polynomial pε(r(t), r(t))
with

‖φ− pε‖∞ < ε,

and by the spectral theorem (see Corollary 8.3.19) the two inequalities

‖φ(T ) − pε(Ri(T ), R−i(T ))‖ < ε,

and
‖φ(Tn) − pε(Ri(Tn), R−i(Tn))‖ < ε, ∀n,

hold simultaneously. If Tn
SR−→ T , then Ri(Tn)

s−→ Ri(T ) and R−i(Tn)
s−→

R−i(T ), and one concludes that

pε(Ri(Tn), R−i(Tn))
s−→ pε(Ri(T ), R−i(T )), n→ ∞.
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By collecting these inequalities together with the triangle inequality, it follows that
φ(Tn)

s−→ φ(T ) for all φ ∈ C∞(R).
Let f : R → C be bounded and continuous. By the spectral theorem ‖f(T )‖ ≤

‖f‖∞ and ‖f(Tn)‖ ≤ ‖f‖∞, ∀n. Pick a monotone increasing sequence φj in C∞0 (R)
with 0 ≤ φj ≤ 1 with φj(t) ↑ 1, ∀t ∈ R, as j → ∞. Thus, φj(T ) s−→ 1 and
φj(Tn)

s−→ 1, ∀n.
Since the product function f(t)φj(t) ∈ C∞(R) one has

f(Tn)φj(Tn)
s−→ f(T )φj(T ), ∀j.

If ξ ∈ H it follows that

‖f(Tn)ξ − f(T )ξ‖≤ ‖f(Tn)ξ − f(Tn)φj(T )ξ‖
+ ‖f(Tn)φj(T )ξ − f(Tn)φj(Tn)ξ‖
+ ‖f(Tn)φj(Tn)ξ − f(T )φj(T )ξ‖ + ‖f(T )φj(T )ξ − f(T )ξ‖
≤ ‖f(Tn)‖ (‖ξ − φj(T )ξ‖ + ‖φj(T )ξ − φj(Tn)ξ‖)
+ ‖f(Tn)φj(Tn)ξ − f(T )φj(T )ξ‖ + ‖f(T )‖‖φj(T )ξ − ξ‖.

Given ε > 0, take j so that ‖ξ−φj(T )ξ‖ < ε/‖f‖∞. Then, for n large enough,
one has ‖φj(T )ξ − φj(Tn)ξ‖ < ε/‖f‖∞ and

‖f(Tn)φj(Tn)ξ − f(T )φj(T )ξ‖ < ε.

Hence,
‖f(Tn)ξ − f(T )ξ‖ < 4ε.

Since ε > 0 was arbitrary, f(Tn)ξ → f(T )ξ. Thereby the proof of the proposition
is complete. �

Remark 10.1.10. Note that the definition of SR and/or SD convergence could be
defined as f(Tn)

s−→ f(T ) for all bounded and continuous f : R → C; this is
an important support to the use of resolvents in convergence of operators, as in
Definition 10.1.1. What makes the resolvent work here is its property related to
the Stone-Weierstrass theorem.
Exercise 10.1.11. Verify that

pε(Ri(Tn), R−i(Tn))
s−→ pε(Ri(T ), R−i(T )), n→ ∞,

used in the proof of Proposition 10.1.9.

Exercise 10.1.12. Use Proposition 10.1.9 to show that if Tn
SR−→ T , then

Rz(Tn)
s−→ Rz(T ), ∀z ∈ C \ R.

See Exercise 10.1.17 for a generalization.
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The next result confirms that strong convergence in the resolvent and dy-
namical senses are adequate generalizations of strong convergence of bounded
self-adjoint operators. This is also in favor of the concepts introduced in Defini-
tion 10.1.1.

Proposition 10.1.13. Let Tn, T ∈ B(H) be self-adjoint.

a) If Tn
s−→ T , then Tn

SR−→ T .

b) If supn ‖Tn‖ <∞ and Tn
SR−→ T , then Tn

s−→ T .

Proof. a) By Theorem 2.2.17 (or Exercise 9.5.3) ‖Ri(Tn)‖ ≤ 1 for all n. Then, for
each ξ ∈ H the second resolvent identity implies

Ri(Tn)ξ −Ri(T )ξ = Ri(Tn)(T − Tn)Ri(T )ξ

and so
‖Ri(Tn)ξ −Ri(T )ξ‖ ≤ ‖(T − Tn)η‖, η = Ri(T )ξ,

which vanishes as n→ ∞ since Tn
s−→ T . a) follows.

b) Let M = supn ‖Tn‖ <∞. Write

Tn − T = (Tn − i1)(Ri(T ) −Ri(Tn))(T − i1).

For each ξ ∈ H denote η = (T − i1)ξ; so

‖Tnξ − Tξ‖ ≤ (M + 1) ‖(Ri(T ) −Ri(Tn))η‖,

which vanishes as n → ∞ since Tn
SR−→ T . b) follows. Note that in this case

necessarily T ∈ B(H) by Banach-Steinhaus 1.1.33.
�

Exercise 10.1.14. Let Tn, T be self-adjoint. Show that:
a) If Tn, T ∈ B(H), then Tn

NR−→ T iff Tn → T in B(H).
b) If Tn

NR−→ T , then ‖f(Tn) − f(T )‖ → 0, ∀f ∈ C∞(R). See also Remark 10.2.7.

Theorem 10.1.15. For self-adjoint operators Tn, T , the following assertions are
equivalent:

i) Tn
SR−→ T . ii)Tn

WR−→ T . iii) Tn
SD−→ T iv) Tn

WD−→ T .

Proof. • i) ⇒ ii) is clear.
• i) ⇔ iii) is Proposition 10.1.8.
• iii) ⇔ iv) Since all the operators involved in the convergence are unitary,

the weak convergence is equivalent to strong convergence (see the proof of Propo-
sition 5.1.7), and so iii) is equivalent to iv).

• ii) ⇒ i) Suppose Tn
WR−→ T . If ξ ∈ H, one has

‖Ri(Tn)ξ −Ri(T )ξ‖2 = ‖Ri(Tn)ξ‖2 + ‖Ri(T )ξ‖2

− 〈Ri(Tn)ξ, Ri(T )ξ〉 − 〈Ri(T )ξ, Ri(Tn)ξ〉.
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Both sequences 〈Ri(Tn)ξ, Ri(T )ξ〉 and 〈Ri(T )ξ, Ri(Tn)ξ〉 converge to ‖Ri(T )ξ‖2

as n→ ∞. Thus, the task becomes to check that

‖Ri(Tn)ξ‖2 → ‖Ri(T )ξ‖2

if w − limn→∞Ri(Tn)ξ = Ri(T )ξ. Indeed, by the first resolvent identity (and
Exercise 10.1.14)

‖Ri(Tn)ξ‖2 = 〈Ri(Tn)ξ, Ri(Tn)ξ〉 = 〈ξ, R−i(Tn)Ri(Tn)ξ〉

=
〈
ξ,

1
2i

(R−i(Tn) −Ri(Tn)) ξ
〉

=
1
2i

(〈Ri(Tn)ξ, ξ〉 − 〈ξ, Ri(Tn)ξ〉)

n→∞−→
〈
ξ,

1
2i

(R−i(T ) − Ri(T )) ξ
〉

= 〈Ri(T )ξ, Ri(T ))ξ〉

= ‖Ri(T )ξ‖2.

Therefore ‖Ri(Tn)ξ −Ri(T )ξ‖ → 0 and i) follows. �
Theorem 10.1.16. The ND and NR convergences of self-adjoint operators are not
equivalent in general, although ND convergence implies NR convergence.

Proof. Let Tn, T be self-adjoint operators. If Tn
ND−→ T , from the proof of Propo-

sition 10.1.8 one has, for all ξ ∈ H,

‖Ri(Tn)ξ −Ri(T )ξ‖≤
∫ ∞

0

e−s
∥∥e−isTnξ − e−isT ξ

∥∥ ds
≤
(∫ ∞

0

e−s
∥∥e−isTn − e−isT

∥∥ ds) ‖ξ‖.

Since
∥∥e−isTn − e−isT

∥∥ ≤ 2, ∀s ∈ R, if Tn
ND−→ T , by dominated convergence the

above integral vanishes as n→ ∞, which implies that Tn
NR−→ T .

Example 10.3.1 shows the NR convergence does not necessarily imply ND
convergence. �
Exercise 10.1.17. If z0 ∈ C \ R and T is self-adjoint, recall that

Rz(T ) =
∞∑
j=0

(z − z0)jRz0(T )j+1,

and since ‖Rz0(T )‖ ≤ 1/|Im z0|, this series is convergent if |z − z0| < |Im z0|. Use
these facts to show that if Rz0(Tn)

s−→ Rz0(T ) (or in norm), then Rz(Tn)
s−→

Rz(T ) (in norm, resp.) for any z ∈ C \ R. Discuss the implications of this result
to the convergence of self-adjoint operators.
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It can be a nontrivial task to compute resolvents of linear operators. So the
next result, in which the operators themselves intervene, can be quite useful.

Proposition 10.1.18. Let D be a core of the self-adjoint operator T . If Tn are
self-adjoint, D ⊂ dom Tn, ∀n, and Tnξ → Tξ, ∀ξ ∈ D, then Tn

SR−→ T .

Proof. First note that C = (T − i1)D is a dense set in H (since the deficiency
indices of T |D are zero). For each ξ ∈ D denote ηξ = (T − i1)ξ ∈ C. Thus, by
Theorem 2.2.17 and the second resolvent identity, for all ηξ in the dense set C,

‖(Ri(Tn) −Ri(T )) ηξ‖= ‖Ri(Tn) (Tn − T ) ξ‖
≤ ‖(Tn − T )ξ‖ → 0, n→ ∞.

Since the set of such resolvent operators is uniformly bounded, i.e.,

sup {‖Ri(T )‖, ‖Ri(Tn)‖} ≤ 1,

the convergence in the dense set C can be extended to H, that is, (Ri(Tn) −
Ri(T ))η → 0 for all η ∈ H. The proposition is proved. �
Example 10.1.19. Let S be an unbounded self-adjoint operator and Tn = S/n, so
that Tnξ → 0 for any ξ ∈ dom S. Since dom S is dense in the Hilbert space, it is
a core of the bounded operator T = 0; by Proposition 10.1.18, Tn

SR−→ T . This is
an instance of a sequence of unbounded operators that converges in the SR sense
to a bounded one. See also Example 10.3.4.
Remark 10.1.20. The conditions in Proposition 10.1.18 are not necessary for SR
convergence, as shown by an example in [Gol72].
Exercise 10.1.21. Let Vn, V ∈ L∞(Rn) be real-valued so that there is C > 0 with
‖Vn‖∞ ≤ C, ∀n, and Vn(x) → V (x) pointwise a.e. Show that H0 +Vn

SR−→ H0 +V .
Exercise 10.1.22. a) Inspect the proof of Proposition 10.1.18 and show that if
D ⊂ dom T is a core of T , and for each ξ ∈ D there exists m so that ξ ∈ dom Tn

if n ≥ m, and Tnξ → Tξ, then that Tn
SR−→ T .

b) Use Proposition 10.1.18 to show that Tn, T are bounded and Tn
s−→ T , then

Tn
SR−→ T .

Finally, a word in case the convergence of the resolvents of self-adjoint oper-
ators is known for a point in the real line.

Proposition 10.1.23. If Tj , T are self-adjoint operators in a Hilbert space H with

Rλ(Tj)
s−→ Rλ(T ) in H for some real λ, then Tj

SR−→ T (λ is supposed to belong
to the resolvent set of all involved operators).

Proof. It is a direct application of the third resolvent identity (Proposition 1.5.11)
with z0 = λ and z = ±i. Note that, by the Uniform Boundedness Principle 1.1.31,
supj ‖Rλ(Tj)‖ <∞, an ingredient used to complete this proof. �
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10.2 Resolvent Convergence and Spectrum

If Tn and T are self-adjoint and Tn → T via resolvent or unitary evolution groups,
a natural question is about the relation between the spectra of T and its approx-
imating Tn. This section discusses some of such relations.

Theorem 10.2.1 (Rellich-Sz.-Nagy). Let Tn and T be self-adjoint. If Tn
SR−→ T and

Λ ⊂ R is an open set with
Λ ⊂

⋂
n≥N

ρ(Tn),

for some N , then Λ ⊂ ρ(T ).

Proof. Note that it is enough to consider intervals Λ = (a, b). For ε > 0 small
enough, put Λε = (a− ε, b− ε). Let fε ∈ C∞0 (R) with 0 ≤ χΛε ≤ fε ≤ χ(a,b); thus,
by Theorem 8.3.13, for n ≥ N one has

0 = χ(a,b)(Tn) ≥ fε(Tn).

By Proposition 10.1.9, fε(Tn)
s−→ fε(T ). Thus fε(T ) = 0.

Since 0 ≤ χΛε(T ) ≤ fε(T ) = 0, by Theorem 8.3.13 again, Λε ⊂ ρ(T ). As
ε > 0 was arbitrarily small, (a, b) ⊂ ρ(T ). �

Corollary 10.2.2. Let Tn and T be self-adjoint. If Tn
SR−→ T and t0 ∈ σ(T ), then

there exists a sequence (tn) ⊂ R, with tn ∈ σ(Tn), ∀n, so that tn → t0.

Proof. If t0 ∈ σ(T ), then by Theorem 10.2.1, for all j ≥ 1 the interval (t0−1/j, t0+
1/j) is not a subset of

WN := ∩n≥N ρ(Tn), ∀N.

Thus, for all j,N ,

∅ 
= (t0 − 1/j, t0 + 1/j) ∩ (R \WN )
= (t0 − 1/j, t0 + 1/j) ∩ (∪n≥Nσ(Tn)) .

Hence there is tnj ∈ σ(Tnj ) so that tnj → t0.
Suppose now that the subsequence tnj can not be replaced by the full se-

quence tn, tn ∈ σ(Tn), ∀n, and with tn → t0. Then there is a subsequence (nk) so
that no choice tnk

∈ σ(Tnk
) does converge to t0; set W̃ = ∩nk

ρ(Tnk
). Thus there

is ε > 0, so that (take a subsequence if necessary)

∅ = (t0 − ε, t0 + ε) ∩ (∪nk
σ(Tnk

)) ,

then
(t0 − ε, t0 + ε) ⊂ R \ (∪nk

σ(Tnk
)) = W̃ .

Since Tnk

SR−→ T , Theorem 10.2.1 implies that t0 ∈ ρ(T ). This contradiction
finishes the proof of the proposition. �
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It is common to refer to the result of Corollary 10.2.2 as “the spectrum does
not increase under strong resolvent limits.”

Exercise 10.2.3. If for all n one has Tn ≥ β1 and Tn
SR−→ T , show that T ≥ β1.

Use this to give another proof that if Tn is a uniformly bounded sequence in B(H)
and Tn

SR−→ T , then T ∈ B(H).

Proposition 10.2.4. If Tn
NR−→ T , then:

a) If t0 ∈ σ(T ), then there is a sequence tn → t0 with tn ∈ σ(Tn).
b) If t0 ∈ ρ(T ), then t0 ∈ ρ(Tn) for all n sufficiently large.

Proof. a) follows by Corollary 10.2.2, since convergence in the NR sense implies
convergence in the SR sense and with the same limit.

b) It is possible to restrict the discussion to t0 ∈ R. If t0 ∈ ρ(T ) take ε > 0
so that Λ2ε := (t0 − 2ε, t0 + 2ε) ⊂ ρ(T ). Pick fε ∈ C∞0 (R) so that

χΛε ≤ fε ≤ χΛ2ε .

Hence
0 ≤ χΛε(T ) ≤ fε(T ) ≤ χΛ2ε(T ) = 0.

By Exercise 10.1.14, fε(Tn) → fε(T ) = 0 uniformly, so for n large enough one has
‖fε‖∞ < 1.

Thus, for all ξ ∈ H, ‖ξ‖ = 1, Cauchy-Schwarz implies

‖χΛε(Tn)ξ‖2 = 〈ξ, χΛε(Tn)ξ〉
≤ 〈ξ, fε(Tn)ξ〉 ≤ ‖fε(Tn)‖,

and ‖χΛε(Tn)‖ < 1 for large n. Since χΛε(Tn) are projection operators, it follows
that χΛε(Tn) = 0 and so t0 ∈ ρ(Tn) for all n large enough. This finishes the proof.
Note that the norm convergence was crucial in the argument. �

The conclusions of Proposition 10.2.4b) may not hold if only strong conver-
gence is required. See Examples 10.3.3 and 10.3.4.

Corollary 10.2.5. Let Tn
NR−→ T . Then:

a) If (a, b) ⊂ ρ(T ), then χ(a,b)(Tn) = 0 for n sufficiently large.
b) σ(T ) is the set of t0 ∈ R for which there is a sequence tn → t0 with tn ∈

σ(Tn).
c) If {a, b} ⊂ ρ(T ), then χ(a,b)(Tn) → χ(a,b)(T ) in B(H).

Proof. a) was presented in the proof of Proposition 10.2.4.
b) is just a restatement of Proposition 10.2.4.
c) Since ρ(T ) is an open set, there is ε > 0 so that (a, a + ε) and (b − ε, b)

are subsets of ρ(T ). Let Ωε = [a+ ε, b− ε] and fε ∈ C∞0 (R) with

χΩε ≤ fε ≤ χ(a,b).
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Thus χ(a,b)(T ) = fε(T ) and by a) one has χ(a,b)(Tn) = fε(Tn) for n sufficiently
large. Hence

‖χ(a,b)(T ) − χ(a,b)(Tn)‖ = ‖fε(Tn) − fε(T )‖
which vanishes as n→ ∞ (see Exercise 10.1.14). �

Exercise 10.2.6. If Tn
NR−→ T and {a, b} ⊂ ρ(T ), show that μTn

ξ (a, b) → μTξ (a, b),
∀ξ ∈ H.
Remark 10.2.7. With respect to these types of convergences of self-adjoint opera-
tors, it is found that weak/strong can be combined with resolvent/dynamical sense
resulting in equivalent concepts. However, in general norm resolvent convergence
is not equivalent to strong resolvent convergence and, as Example 10.3.1 shows,
convergence in the NR sense is not equivalent to ND sense either.
Remark 10.2.8. There are other notions of convergence of unbounded operators,
e.g., graph convergence, usually related to convergence in the resolvent sense. See
[Kat80],[ReeS81] and [Dav80].

10.3 Examples

Example 10.3.1. let H = L2(R). Consider Tn = Mx−x/n and T = Mx, x ∈ R. A
simple calculation shows that

Ri(Tn) −Ri(T ) = Mϕn ,

with
ϕn(x) =

1
n

x

(1 − 1
n )x2 − 1 + ix( 1

n − 2)
,

which converges uniformly to the zero function for n → ∞. Hence, Tn
NR−→ T .

However, since for any t ∈ R (see Example 1.1.16),∥∥e−itT − e−itTn
∥∥ =

∥∥∥e−itx − e−itx(1−1/n)
∥∥∥
∞

= 2, ∀n,

convergence in the norm dynamical sense does not take place. Therefore, the NR
convergence does not infer ND convergence.
Exercise 10.3.2. Show that NR convergence implies SD convergence (cf. Exam-
ple 10.3.1).
Example 10.3.3. Let (ξn) be an orthonormal basis of H, dimH = ∞, and Pn the
orthogonal projection onto the subspace spanned by the vectors {ξ1, . . . , ξn}; then
Pn

s−→ 1 and so Pn
SR−→ 1 (Proposition 10.1.13). Now, σ(Pn) = {0, 1}, ∀n, while

σ(1) = {1}.
Example 10.3.4. Consider the multiplication operators Tn = Mx/n and T = 0 in

L2(R). By Example 10.1.19, Tn
SR−→ T . Now, σ(Tn) = R, ∀n, while σ(T ) = {0};

thus, by Proposition 10.2.4, Tn does not converge in the norm resolvent sense to T .
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Remark 10.3.5. The above examples show that Tn
SR−→ T does not ensure the

strong convergence of spectral projections χΛ(Tn)
s−→ χΛ(T ) (cf. Prop. 10.1.9).

Exercise 10.3.6. Let T = Mx in L2(R) and Tn(x) = χ[−n,n](x)Mx. Show that,
for each ψ ∈ L2(R),

Ri(Tn)ψ −Ri(T )ψ → 0, n→ ∞.

It is a sequence Tn of bounded operators that converges in the strong resolvent
sense to an unbounded operator T . Discuss the relation between the spectra of Tn
and T .
Exercise 10.3.7. Let T be a self-adjoint operator and T (λ) = λT , λ ∈ R. Show
that, in the strong resolvent sense, T (λ) converges to the null operator as λ → 0
and that it does not converge to any operator as |λ| → ∞.
Example 10.3.8 (Perturbation of a self-adjoint operator). Let T be self-adjoint
and D a core of T . Let B be symmetric with D ⊂ dom B. Suppose that T + λB
is self-adjoint, for all real λ in a neighborhood of zero, with D ⊂ dom (T + λB).

Proposition 10.3.9. Under the above conditions one has

i) (T + λB) SR−→ T as λ→ 0.

ii) If B ∈ B(H), then (T + λB) NR−→ T as λ→ 0.

Proof. Note first that W := (T − i1)D is dense in H (the deficiency indices of T |D
are zero). For η ∈ W one has η = (T − i1)ξ, ξ ∈ D, and by the second resolvent
identity,

Ri(T )η −Ri(T + λB)η = λRi(T + λB)BRi(T )η
= λRi(T + λB)Bξ.

i) Since ‖Ri(T + λB)‖ ≤ 1, ∀λ (including λ = 0):

‖Ri(T )η −Ri(T + λB)η‖ ≤ |λ| ‖Bξ‖

which vanishes as λ → 0. Since these resolvent operators are uniformly bounded,
this strong convergence on the dense set W extends to H and i) follows.

ii) Similarly to i) one gets

‖Ri(T ) −Ri(T + λB)‖ ≤ |λ| ‖Ri(T + λB)‖ ‖B‖ ‖Ri(T )‖ ≤ |λ| ‖B‖,

which vanishes as λ→ 0 and ii) follows. �
Corollary 10.3.10. Under the conditions in Proposition 10.3.9:

i) If t0 ∈ σ(T ), then there exists tλ ∈ σ(T + λB) with

t0 = lim
λ→0

tλ.
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ii) For all continuous and bounded functions f : R → C one has

f(T )ξ = lim
λ→0

f(T + λB)ξ, ∀ξ ∈ H.

This holds, in particular, for the evolution groups

lim
λ→0

e−it(T+λB)ξ = e−itT ξ, ∀ξ ∈ H,

for each fixed t ∈ R.

In case B is T -bounded with NT (B) < 1, the Kato-Rellich Theorem 6.1.8
holds and so the above results apply. In particular if T = H0 in L2(Rn), n ≤ 3
(the free energy), and B ∈ L2(Rn) + L∞(Rn) (see Kato’s Theorem 6.2.2).
Example 10.3.11. Consider the free energy operatorH0 in L2(R) and Vλ(x) = λx2.
The Schwartz space S(R) is a core of H0 (Proposition 3.4.1) and is in the domain
of Vλ for all λ ∈ R. The “perturbed” operator

(Hλψ)(x) = (H0ψ)(x) + (Vλψ)(x) = −ψ′′(x) + λx2ψ(x)

is a harmonic oscillator (Example 2.3.3) if λ > 0. By Proposition 10.3.9 it follows
that

Hλ
SR−→ H0, λ→ 0, λ ∈ R.

Recall that σ(H0) = [0,∞) while for λ > 0,

σ(Hλ) = {
√
λ (2j + 1) : j = 0, 1, 2, . . .}.

Note the interesting changing of the spectrum of Hλ at λ = 0 and its relation to
Corollary 10.3.10.
Exercise 10.3.12. Based on Example 2.3.3, confirm the above spectrum σ(Hλ) for
λ > 0.
Example 10.3.13. Let dom HD = {ψ ∈ H2[0, 1] : ψ(0) = 0 = ψ(1)}, dom HN =
{ψ ∈ H2[0, 1] : ψ′(0) = 0 = ψ′(1)} and both operators with the same action
ψ �→ −ψ′′. Both are self-adjoint operators (see, for instance, Example 7.3.1).

By Example 4.4.3, the self-adjoint Friedrichs extension of the operator sum
H = HN +HD, dom H = dom HD ∩ dom HN = {ψ ∈ H2[0, 1] : ψ(0) = ψ′(0) =
0 = ψ(1) = ψ′(1)}, Hψ = −ψ′′, is the operator HD.

If (HN + λHD)F denotes the Friedrichs extension of HN + λHD, then the
above remark implies that for any λ > 0,

(HN + λHD)F = (1 + λ)HD;

by Proposition 10.1.18 (or Proposition 10.3.9), it is found that

(HN + λHD)F
SR−→ HD, λ→ 0.

This example illustrates how “fragile” the sum of operators via sesquilinear forms
can be!
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10.3.1 Nonrelativistic Limit of Dirac Operator

Consider the one-dimensional free Dirac operator D0 = D0(c) that has appeared
in Exercise 2.6.12, where c > 0 denotes the speed of light. D0 is self-adjoint, acting
on some two-component functions (the meaning of the notation should be clear)
given by

dom D0 = H1(R; C2) � H := L2(R; C2) = L2(R) ⊕ L2(R),

independent of c > 0, and action

D0 := −ic d
dx
σ1 +mc2σ3,

with

σ1 =
(

0 1
1 0

)
and σ3 =

(
1 0
0−1

)
denoting standard Pauli matrices and m the mass of the particle. Note that
Planck’s constant � = 1. If P = −id/dx denotes the momentum operator on
R (see Example 2.3.11 and Section 3.3), in a compact form one has

D0(c) =
(
mc2 −ic ddx
−ic ddx −mc2

)
=
(
mc2 cP
cP −mc2

)
.

The Dirac operator is a relativistic version of the Schrödinger operator for par-
ticles of spin 1/2; details can be found, for instance, in [Tha92]. Dirac’s original
arguments [Dir58] to get his operator is a masterpiece in physics.

The question here is the nonrelativistic limit of D0(c), which is characterized
by taking c → ∞ (try directly from the action of D0!) and relating it to the free
Schrödinger operator H0 via convergence in the resolvent sense. Some pertinent
notation is introduced:

12 =
(

1 0
0 1

)
, F+ =

(
1 0
0 0

)
, F− =

(
0 0
0 1

)
are the 2 × 2 identity matrix and the projections F± onto the upper (“positive
energy”) and lower (“negative energy”) components of vectors in L2(R; C2), re-
spectively. Write also

W = Pσ1 and D̃0(c) = D0 −mc212.

Sincemc2 is the particle rest energy, a pure relativistic factor, it must be subtracted
from D0 before taking c→ ∞, so the importance of considering the operator D̃0.

Introduce the operators

A± = D̃0 ± i12 = cW ± 2mc2F± ± i12,



270 Chapter 10. Convergence of Self-Adjoint Operators

and check that

A+A− = A−A+ = c2W 2 −
(
2mc2i− 1

)
12.

Since R∓i(D̃0) = A−1
± = A∓ (A±A∓)−1, one gets

R∓i(D̃0) =
1

2mc2
A∓

(
1

2m
W 2 −

(
i− 1

2mc2

)
12

)−1

.

Using the relation
(A+B)−1 = (1 +A−1B)−1A−1

with
A =

1
2m

W 2 − i12, B =
1

2mc2
12,

it follows that the resolvent operator can be put in the form

Ri

(
D̃0

)
=

1
2mc2

A+

(
1− Ri(h)

2mc2

)−1(
W 2

2m
− i1

)−1

=
(
F+ +

cW − i12

2mc2

)(
1 +

1
2mc2

Ri(h)
)−1

Ri(h),

where

h =
1

2m
W 2 =

(
H0 0
0 H0

)
,

with H0 = −Δ/(2m) denoting the self-adjoint (nonrelativistic) free hamiltonian
operator on R with domain H2(R) (see Section 3.4) and explicit mass term 1/(2m).

Since h is self-adjoint ‖Ri(h)‖ ≤ 1 and so, in the norm of B(H), one obtains

lim
c→∞

(
1 +

1
2mc2

Ri(h)
)−1

= 1.

Now, by the spectral theorem one has ‖WRi(W 2)‖ ≤ 1; consequently, in B(H),

lim
c→∞

cW − i12

2mc2
Ri(h) = 0.

Therefore,
lim
c→∞

Ri

(
D̃0(c)

)
= F+Ri (h) .

Similarly one gets R−i
(
D̃0(c)

)
→ F+R−i (h). Such results can be interpreted

as the convergence of D̃0(c) to the positive energy component of h in the norm
resolvent sense. This supports the nonrelativistic theory, since it means that the
free Dirac D0(c) has the free Schrödinger operator H0 as the limiting case of light
travelling at infinite speed.
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Remark 10.3.14. If D̂0(c) = D0 + mc212 is considered, one gets that Ri(D̂0(c))
converges to F−Ri (−h) in the norm as c→ ∞; to some extent, the interpretations
of such positive and negative components of the free energy in Dirac theory are as
controversial as interesting, but will not be discussed here [Tha92]. The presence
of some potentials (i.e., D(c) = D0(c)+V 12), instead of just the free case, as well
as Dirac operators in Rn, n ≥ 1, are allowed and nonrelativistic limits dealt with
in a somewhat similar way.
Remark 10.3.15. Readers are recommended to check the traditional (and formal)
prescription for the nonrelativistic limit of the Dirac operator in textbooks on
quantum mechanics for physicists.
Exercise 10.3.16. Verify the relation

(A+B)−1 = (1 +A−1B)−1A−1

used in the above nonrelativistic limit.
Exercise 10.3.17. If T is self-adjoint, show that ‖TRi(T 2)‖ ≤ 1.

10.4 Sesquilinear Form Convergence

In some cases of monotone sequences of positive self-adjoint operators, it is possible
to conclude convergence in the strong resolvent sense from the convergence of the
corresponding generated sesquilinear forms. Such an approach has the advantage
that sometimes nondense domains in the underlying Hilbert space H are allowed!
This phenomenon will be illustrated by a physical application in Section 10.5.
Most of the results reported here have their roots in [Kat80], [Dav80], [Rob71]
and [Sim78].

10.4.1 Nondecreasing Sequences

Let b be a closed positive sesquilinear form with domain dom b ⊂ H and H0 =
dom b, which does not necessarily coincide with H. Thus, by Theorem 4.2.6, b
is the sesquilinear form associated with a positive self-adjoint operator T with
dom T � H0. If P0 denotes the orthogonal projection onto H0, for λ > 0 one
defines the pseudoresolvent operator R̃−λ(T ) on H by

〈R̃−λ(T )ξ, η〉 :=
〈
(T + λ1)−1

P0ξ, P0η
〉
, ξ, η ∈ H.

Definition 10.4.1. Let H0 be a closed subspace of H, P0 the orthogonal projection
onto H0, Tj, T be positive self-adjoint operators with dom Tj � H and dom T �
H0. The expression “Tj converges in the strong convergence sense to T in H0” (or

in symbols “Tj
SR−→ T in H0”) will indicate that

lim
j→∞

R−λ(Tj)P0ξ = R̃−λ(T )ξ, ∀ξ ∈ H, ∀λ > 0.
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Similarly for other types of convergence, e.g., NR in H0. R̃−λ(Tj) will be a short-
hand for R−λ(Tj)P0.

The main result in this section, i.e., Theorem 10.4.2, is related to the following
setting. Suppose (Tj) is a nondecreasing sequence of positive self-adjoint operators
with dom Tj � H so that dom Tj ⊃ dom Tj+1, and Tj ≤ Tj+1 (i.e., 〈Tjξ, ξ〉 ≤
〈Tj+1ξ, ξ〉, ∀ξ ∈ dom Tj+1), ∀j ∈ N. Write bj = bTj for the sesquilinear form
generated by Tj (see Section 9.3), that is,

bj(ξ, η) =
〈
T

1
2
j ξ, T

1
2
j η
〉
, ξ, η ∈ dom bj = dom T

1
2
j ,

and set

D :=

⎧⎨⎩ξ ∈⋂
j

dom bj : lim
j→∞

bj(ξ) <∞

⎫⎬⎭ ,

and let H0 be the closure of D in H; D is not supposed to be dense in H. For
sesquilinear forms the relation bj ≤ bj+1 means bj(ξ) ≤ bj+1(ξ), ∀ξ ∈ H (recall that
b(ξ) = ∞ if ξ /∈ dom b); note that this automatically implies dom bj+1 ⊂ dom bj .

Theorem 10.4.2 (Kato-Robinson). Let (Tj), D, H and H0 be as described above.
Then, there is a positive self-adjoint operator T with dom T � H0, dom T

1
2 = D,

so that Tj
SR−→ T in H0 and the form generated by T is given by the limit

bT (ξ) :=
〈
T

1
2 ξ, T

1
2 ξ
〉

= lim
j→∞

〈
T

1
2
j ξ, T

1
2
j ξ
〉
, ∀ξ ∈ D.

First some preparatory facts for the proof of this theorem.

Lemma 10.4.3. Let S,Q ∈ B(H) be (self-adjoint) positive and invertible in B(H).
If Q ≥ S ≥ 0, then S−1 ≥ Q−1 ≥ 0.

Proof. Introduce the self-adjoint operator C := Q−1/2SQ−1/2. Then C ≤ 1, since
for all ξ ∈ H,

〈ξ, Cξ〉 =
〈
Q−1/2ξ, SQ−1/2ξ

〉
≤
〈
Q−1/2ξ,QQ−1/2ξ

〉
= 〈ξ,1ξ〉 .

By the spectral theorem (see Proposition 8.3.21), 〈ξ, Cξ〉 =
∫
[0,1]

xdμCξ (x) and so

〈
ξ, C−1ξ

〉
=
∫

[0,1]

1
x
dμCξ (x) ≥

∫
[0,1]

1 dμCξ (x) = 〈ξ,1ξ〉,

that is, Q1/2S−1Q1/2 = C−1 ≥ 1. Now,〈
ξ, S−1ξ

〉
=
〈
Q−1/2ξ, C−1Q−1/2ξ

〉
≥
〈
Q−1/2ξ,Q−1/2ξ

〉
=
〈
ξ,Q−1ξ

〉
, ∀ξ ∈ H,

and S−1 ≥ Q−1. �
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Lemma 10.4.4. Let T1, T2 be two positive self-adjoint operators with domains dense
in the closed subspace H0 of H, and b1, b2 the sesquilinear forms generated by
T1, T2, respectively. Then, for any λ > 0, b1 ≤ b2 iff R̃−λ(T2) ≤ R̃−λ(T1).

Proof. Since λ > 0 the resolvent operators in the statement of the lemma are
bounded, self-adjoint and positive. Assume first that R̃−λ(T2) ≤ R̃−λ(T1) and
denote by P0 the orthogonal projection onto H0. Since

R̃−λ(T2) +
1
n
1 ≤ R̃−λ(T1) +

1
n
1, ∀n,

by Lemma 10.4.3 one has the inequality

0 ≤
(
R̃−λ(T1) +

1
n
1
)−1

≤
(
R̃−λ(T2) +

1
n
1
)−1

,

and the functional calculus implies, for j = 1, 2,

lim
n→∞

〈(
R̃−λ(Tj) +

1
n
1
)−1

ξ, ξ

〉
= lim
n→∞

[〈n (Tj + λ1)R−λ−n(Tj)P0ξ, P0ξ〉 + n 〈(1− P0)ξ, ξ〉]

= (bj + λ)(ξ, ξ), ∀ξ ∈ H.

Recall that (bj + λ)(ξ, η) := bj(ξ, η) + λ〈ξ, η〉 and bj(ξ) = ∞ iff ξ /∈ dom bj ,
j = 1, 2. Together with the above inequality, it follows that b1 ≤ b2 (the mo-
tivation for considering the operator in the above square brackets comes from
(1/(x+ λ) + 1/n)−1 = n(x+ λ)/(x + n+ λ)).

Now assume that b1 ≤ b2, which implies that dom T2 ⊂ dom T1. For ξ ∈ H0

set ξj = R̃−λ(Tj)ξ, j = 1, 2, and note that ξ1, ξ2 ∈ dom T1 ⊂ H0. By Cauchy-
Schwarz (Exercise 4.1.5),〈

R̃−λ(T2)ξ, ξ
〉2

= 〈ξ2, (T1 + λ1)ξ1〉2 =
(
(b1 + λ)(ξ2, ξ1)

)2
≤ (b1 + λ)(ξ2) (b1 + λ)(ξ1)
≤ (b2 + λ)(ξ2) (b1 + λ)(ξ1)

=
〈
R̃−λ(T2)ξ, ξ

〉 〈
R̃−λ(T1)ξ, ξ

〉
,

and so
〈
R̃−λ(T2)ξ, ξ

〉
≤
〈
R̃−λ(T1)ξ, ξ

〉
, ∀ξ ∈ H0. This also holds for ξ ∈ H since

both sides vanish as ξ ∈ H⊥0 . This proves R̃−λ(T2) ≤ R̃−λ(T1). �

Proof. [Theorem 10.4.2] Define the positive form b by the monotone increasing
limit

b(ξ) := lim
j→∞

bj(ξ), ∀ξ ∈ H.
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Note that b(ξ) < ∞ iff ξ ∈ D, so that D = dom b. By Theorem 9.3.11, each
function ξ �→ bj(ξ) is lower semicontinuous, so that b is also positive and lower
semicontinuous; define b(ξ, η) by polarization (Exercise 4.1.1). Again by Theo-
rem 9.3.11, b is the form generated by a positive self-adjoint operator T with
dom T � H0, and so the notation b = bT will be used.

Since bj ≤ bj+1 ≤ bT , ∀j, by Lemma 10.4.4, for any λ > 0 one has R̃−λ(T ) ≤
R̃−λ(Tj+1) ≤ R̃−λ(Tj), ∀j, so

lim
j→∞

〈
R̃−λ(Tj)ξ, ξ

〉
= inf

j

〈
R̃−λ(Tj)ξ, ξ

〉
≥
〈
R̃−λ(T )ξ, ξ

〉
and the limit is finite for ξ ∈ H0; note that〈

R̃−λ(Tj)ξ, ξ
〉

=
〈
R̃−λ(Tj)1/2ξ, R̃−λ(Tj)1/2ξ

〉
=
∥∥∥R̃−λ(Tj)1/2ξ∥∥∥2

.

Hence, by polarization, there exists the limit

t(ξ, η) := lim
j→∞

〈
R̃−λ(Tj)ξ, η

〉
, ∀ξ, η ∈ H0,

which defines a positive (hermitian) sesquilinear form t, and since

t(ξ, ξ) ≤ lim
j→∞

‖R̃−λ(Tj)‖‖ξ‖2 ≤ 1
λ
‖ξ‖2,

t is bounded and ‖t‖ ≤ 1/λ. By Proposition 4.1.3 there is a unique bounded and
self-adjoint operator C = C(λ) ∈ B(H0) so that ‖C‖ ≤ 1/λ and 〈Cξ, η〉 = t(ξ, η),
∀ξ, η ∈ H0. Explicitly

〈Cξ, η〉 = lim
j→∞

〈
R̃−λ(Tj)ξ, η

〉
,

and R̃−λ(Tj) converges weakly to C. Note the following properties of C:

• 〈Cξ, ξ〉 ≥
〈
R̃−λ(T )ξ, ξ

〉
, for all ξ ∈ H0.

• C is invertible. To check this, suppose Cξ = 0 for some ξ ∈ H0; then 0 =
〈Cξ, ξ〉 ≥

〈
R̃−λ(T )ξ, ξ

〉
. Write η = R̃−λ(T )ξ; since T is positive, one has

0 ≥ 〈η, (T + λ1)η〉 ≥ λ‖η‖2, so η = 0 and then ξ = 0. Hence C is invertible.

If bS is the sesquilinear form generated by S = C−1 − λ1, from the relation
R̃−λ(Tj) ≥ C ≥ R̃−λ(T ) and Lemma 10.4.4 one finds bj ≤ bS ≤ bT , and since
bT = limj b

j it follows that bS = bT , so T = S and C = R̃−λ(T ). Therefore,
R̃−λ(Tj) converges weakly to R̃−λ(T ) in H0.

Lemma 10.4.5. For all λ > 0, R̃−λ(Tj) converges strongly to R̃−λ(T ) in H0.
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Proof. All arguments are restricted to H0. Since R̃−λ(Tj) is a uniformly bounded
sequence of self-adjoint operators (by Proposition 9.5.2, ‖R̃−λ(Tj)‖ ≤ 1/|λ|), it
follows that Aj := R̃−λ(Tj) − R̃−λ(T ) is a positive sequence of bounded self-
adjoint operators that converges weakly to zero. Let aj(ξ, η) = 〈ξ, Ajη〉, ξ, η ∈ H0,
be the positive sesquilinear form generated by Aj ; note that ‖aj‖ ≤ 2/|λ|, ∀j. By
Cauchy-Schwarz (Exercise 4.1.5),

‖Ajξ‖4 = |aj(Ajξ, ξ)|2 ≤ |aj(ξ)| |aj(Ajξ)|

≤ |〈Ajξ, ξ〉| ‖aj‖ ‖Ajξ‖2 ≤ 2
|λ| |〈Ajξ, ξ〉| ‖Ajξ‖

2,

consequently

‖Ajξ‖2 ≤ 2
|λ| |〈Ajξ, ξ〉|

j→∞−→ 0, ∀ξ ∈ H0.

This proves the lemma. �

Combine Proposition 10.1.23 and Lemma 10.4.5 to get the convergence Tj
SR−→ T

in H0. �

Exercise 10.4.6. Adapt the proof of Lemma 10.4.5 to show that if a sequence of
uniformly bounded and positive self-adjoint operators converges weakly to zero,
then it actually converges strongly to zero.

Exercise 10.4.7. Use Hellinger-Toeplitz (Proposition 2.1.27) to show that the op-
erator C, defined in the proof of Theorem 10.4.2 as the weak limit of R̃−λ(Tj), is
bounded, that is, C ∈ B(H0).

Remark 10.4.8. Note that a solution to Exercise 10.4.6 can be obtained as a
consequence of Theorem 10.1.15. The alternative proof that relies on Lemma 10.4.5
is of independent interest.

This subsection ends with a sufficient condition for norm resolvent conver-
gence in the Kato-Robinson Theorem.

Proposition 10.4.9. Let Tj , T be as in Theorem 10.4.2. If for some λ > 0 the

operators R̃−λ(Tj) −R−λ(T ) are compact in H0, ∀j, then Tj
NR−→ T in H0.

Proof. By Kato-Robinson, the sequence of bounded self-adjoint and positive op-
erators

Cj := R̃−λ(Tj) −R−λ(T ) ≥ 0

converges strongly to zero in H0; also Cj ≥ Cj+1, ∀j. Since C1 is compact, given
ε > 0 the spectral theorem for compact operators, Theorem 8.1.4, and Proposi-
tion 1.6.6 imply that there is a finite-dimensional subspace Eε that reduces C1

and ‖C1η‖ < ε‖η‖ for all η ∈ E⊥ε .
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For ξ ∈ H0 write ξ = ξε + ξ⊥ε , with ξε ∈ Eε and ξ⊥ε ∈ E⊥ε . Thus

0 ≤ 〈Cjξ, ξ〉 =
∥∥∥C1/2

j (ξε + ξ⊥ε )
∥∥∥2

≤
(∥∥∥C1/2

j ξε

∥∥∥+
∥∥∥C1/2

j ξ⊥ε

∥∥∥)2

=
∥∥∥C1/2

j ξε

∥∥∥2

+
∥∥∥C1/2

j ξ⊥ε

∥∥∥2

+ 2
∥∥∥C1/2

j ξε

∥∥∥ ∥∥∥C1/2
j ξ⊥ε

∥∥∥
≤ 2

∥∥∥C1/2
j ξε

∥∥∥2

+ 2
∥∥∥C1/2

j ξ⊥ε

∥∥∥2

= 2〈Cjξε, ξε〉 + 2〈Cjξ⊥ε , ξ⊥ε 〉.

For all j one has 0 ≤ 〈Cjξ⊥ε , ξ⊥ε 〉 ≤ 〈C1ξ
⊥
ε , ξ

⊥
ε 〉 ≤ ε‖ξ⊥ε ‖2. On the other hand, since

Eε is finite dimensional, the convergence of the restriction Cj |Eε → 0 is uniform;
so there is N > 0 with ‖Cjξε‖ ≤ ε‖ξε‖, ∀ξε, if j ≥ N . Summing up

0≤ 〈Cjξ, ξ〉 ≤ 2
(
〈Cjξε, ξε〉 +

〈
Cjξ

⊥
ε , ξ

⊥
ε

〉)
≤ 2

(
ε‖ξε‖2 + ε‖ξ⊥ε ‖2

)
= 2ε‖ξ‖2, ∀ξ ∈ H0.

Now, by Proposition 2.1.13, ‖Cj‖ ≤ 2ε for j ≥ N and so Cj → 0 in the norm of
the space B(H0). �

10.4.2 Nonincreasing Sequences

The main result in this section is related to the following setting. Suppose (Tj)
is a sequence of positive self-adjoint operators acting in H with Tj+1 ≤ Tj , i.e.,
dom Tj ⊂ dom Tj+1 ⊂ H and 0 ≤ 〈Tj+1ξ, ξ〉 ≤ 〈Tjξ, ξ〉, ∀ξ ∈ dom Tj. The
results are easily adapted for a uniformly lower bounded (nonincreasing) sequence
of operators, i.e., there is β ∈ R so that Tj ≥ β1, ∀j.

Write bj for the sesquilinear form generated by Tj, that is,

bj(ξ, η) =
〈
T

1/2
j ξ, T

1/2
j η

〉
, ∀ξ, η ∈ dom bj = dom T

1/2
j ;

thus bj+1 ≤ bj. Set D := ∪j dom bj, which is dense in H.

Theorem 10.4.10. Let (Tj) be as above. There is a positive self-adjoint operator T ,

with dom T ⊂ D, so that Tj
SR−→ T .

Remark 10.4.11. Evidently one could begin with a nonincreasing sequence of pos-
itive and closed forms bj, associate Tj to them and then conclude the existence of
T as in Theorem 10.4.10.

Lemma 10.4.12. Let ∅ 
= Λ ⊂ C and S : Λ → B(H), λ �→ Sλ, be a linear map
satisfying the first resolvent identity

Sω − Sλ = (ω − λ)SωSλ, ∀ω, λ ∈ Λ,

and suppose that Sλ0 is injective for some λ0 ∈ Λ. Then, there exists a unique
closed operator T , with dom T ⊂ H, so that Λ ⊂ ρ(T ) and Rλ(T ) = Sλ, ∀λ ∈ Λ.



10.4. Sesquilinear Form Convergence 277

Proof. The above equation for the family Sλ implies SλSω = SωSλ, ∀λ, ω ∈ Λ,
and that there are subspaces I, N ⊂ H so that for the range and kernel os Sλ one
has

rng Sλ = I, N(Sλ) = N, ∀λ ∈ Λ.

The hypothesis Sλ0 is injective implies N = {0}, and so all Sλ are injective. Thus,
for η ∈ I fixed, there is a unique ξλ ∈ H so that η = Sλξλ for each λ ∈ Λ; hence
ξλ = S−1

λ η. By the first resolvent identity,

SλSω (ξω − ξλ) = Sλη − Sωη = (λ − ω)SλSωη,

and
SλSω [ξω − ξλ − (λ− ω)η] = 0,

so that ξλ + λη = ξω + ωη, ∀λ, ω ∈ Λ. Thus, the linear operator T : I → H,
Tη := ξλ + λη, is well posed and it also follows that

(T − λ1)η = ξλ = S−1
λ η, ∀η ∈ I.

Therefore Sλ = Rλ(T ). Since Sλ ∈ B(H), by Proposition 1.2.13, it is a closed
operator, so its inverse is also closed; this implies T is closed. Uniqueness is im-
mediate. �
Exercise 10.4.13. Check that in the proof of Lemma 10.4.12 one has rng Sλ =
I, N(Sλ) = N, ∀λ ∈ Λ.
Exercise 10.4.14. With respect to Lemma 10.4.12, discuss the particular case in
which Λ has just one element.
Exercise 10.4.15. Let (Sj), (Qj) be uniformly bounded sequences in B(H). If
Sj

s−→ S and Qj
s−→ Q, with S,Q ∈ B(H), show that SjQj

s−→ SQ.

Proof. [Theorem 10.4.10] Since the sequence of sesquilinear forms bj is nonin-
creasing and for λ > 0 the sequence of self-adjoint operators R−λ(Tj) is uniformly
bounded ‖R−λ(Tj)‖ ≤ 1/|λ|, ∀j, by Lemma 10.4.4 one has

0 ≤ R−λ(Tj) ≤ R−λ(Tj+1) ≤
1
|λ|1, ∀j.

Hence, as in the proof of Theorem 10.4.2 (combined with Exercise 10.4.6) one
concludes that R−λ(Tj) strongly converges to a bounded self-adjoint operator S−λ
and 0 ≤ R−λ(Tj) ≤ S−λ. Since for each j the bounded operators R−λ(Tj) satisfy
the first resolvent identity, the strong limit imposes that (see Exercise 10.4.15)

S−ω − S−λ = (−ω + λ)S−ωS−λ, ∀ω, λ > 0.

If S−λξ = 0, fix j0 and set R−λ(Tj0)ξ = η. Since R−λ(Tj0) is positive and self-
adjoint,

0 = 〈S−λξ, ξ〉 ≥ 〈R−λ(Tj0)ξ, ξ〉

=
〈
R−λ(Tj0)

1
2 ξ, R−λ(Tj0)

1
2 ξ
〉

=
∥∥∥R−λ(Tj0) 1

2 ξ
∥∥∥2

,
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hence R−λ(Tj0)ξ = R−λ(Tj0)
1
2R−λ(Tj0)

1
2 ξ = 0 and so ξ = 0; it follows that S−λ

is injective. By Lemma 10.4.12, the family S−λ is the resolvent of a closed linear
operator T at −λ, that is, S−λ = (T + λ1)−1, and since S−λ is self-adjoint, by
Lemma 2.4.1, T is self-adjoint. Further, T is positive since −λ ∈ ρ(T ) for all λ > 0.
Note that dom T = rng S−λ ⊂ D, for otherwise the corresponding form would be
infinity, a contradiction with the nonincreasing hypothesis on bj . This concludes
the proof. �

Example 10.4.16. Let H0ψ = −ψ′′, dom H0 = H2(R) so that dom bH0 = H1(R),
bH0(ψ, ϕ) = 〈H1/2

0 ψ,H
1/2
0 ϕ〉 (see Example 9.3.9). Let V (x) = 1/|x| and bV be the

subsequent generated positive sesquilinear form, whose action is

bV (ψ, ϕ) =
∫

R

1
|x|ψ(x)ϕ(x) dx.

Since each ψ ∈ dom bH0 is continuous, if ψ ∈ Q := dom bH0∩dom bV the condition

bV (ψ) =
∫

R

|ψ(x)|2
|x| dx <∞

implies ψ(0) = 0, i.e., Dirichlet boundary condition at the origin.
For each n ∈ N let Hn be the operator associated with the closure of the

positive form, dom bH0+ 1
nV = Q,

bH0+ 1
nV (ψ, ϕ) = bH0(ψ, ϕ) + b

1
nV (ψ, ϕ),

that is, Hn is the Friedrichs extension of H0 + 1
nV . This sequence is nonincreasing

and so, by Theorem 10.4.10, there is a positive self-adjoint operator T so that
Hn

SR−→ T as n→ ∞. By an adaptation of the arguments in Example 4.4.5 (see a
hint in Exercise 10.4.17), it is found that the Dirichlet boundary condition at the
origin is imposed on dom Hn, ∀n, in fact imposed on the completion HHn

+ and so
also on

dom T ⊂ D =
⋃
n

HHn
+ .

Thus, the elements of dom T vanish at the origin. Since such a condition does not
appear on dom H0, it follows that for n→ ∞ one has(

H0 +
1
n
V

)
F

SR−→ T 
= H0.

Exercise 10.4.17. Let a > 0 be sufficiently large. For ψ ∈ H1(R), integrate
ψ′(t)/(1 + t)a by parts to check that

ψ(0) = a

∫ ∞

0

ψ(t)
(1 + t)1+a

dt−
∫ ∞

0

ψ′(t)
(1 + t)a

dt,
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and so, by Cauchy-Schwarz, that there is C > 0 for which (∀ψ ∈ dom bV , V the
potential in Example 10.4.16)

|ψ(0)|2 ≤C (‖ψ‖ + ‖ψ′‖)2 ≤ 2C
(
‖ψ‖2 + ‖ψ′‖2

)
≤ 2C

(
‖ψ‖2 + ‖ψ′‖2 +

1
n

∫
R

1
|x| |ψ(x)|2 dx

)
= 2C〈ψ, ψ〉+.

Hence |ψ(0)| ≤
√

2C 〈ψ, ψ〉1/2+ and use this inequality to conclude that all elements
ψ ∈ HHn

+ , Hn as in Example 10.4.16, vanish at the origin, that is, the Dirichlet
boundary condition at the origin is imposed on the completion HHn

+ , ∀n.
Remark 10.4.18. In Theorem 10.4.10 the limiting form is not ensured to be closed
(see Example 10.4.19), so there is less information when compared with Theo-
rem 10.4.2; in the latter the nondecreasing property imposed that the limiting form
was lower semicontinuous and so closed by Theorem 9.3.11. See Example 10.4.19.
Example 10.4.19. Consider the sequence of forms bj with domain H1(R),

bj :=
1
j
bH0 + bδ,

discussed in Example 6.2.16. Such forms are closed, since bH0 is closed and the
bH0-bound of bδ is zero; apply Lemma 6.1.16. As j → ∞ this sequence is decreasing
to bδ which is not closable (Example 4.1.15); in particular bδ is not closed.
Remark 10.4.20. Let Tj be the operator associated with bj in Example 10.4.19.
By using the notion of a regular part of a hermitian form, introduced in [Sim78], it
is possible to show that Tj converges to the zero operator in the strong resolvent
sense. That is, the operator T in Theorem 10.4.10 is the zero operator. What
about taking the verification of this convergence as a small challenging project?

10.5 Application to the Aharonov-Bohm Effect

Let A = (A1, A2, A3), Aj : R3 → R, be a continuous function for j = 1, 2, 3, and
V = χC the characteristic function of the closed cylindric C = {(x1, x2, x3) ∈
R3 : x2

1 + x2
2 ≤ 1} of radius 1. The interest is in the investigation of the limiting

operator H∞ of

Hn =
(
−i∇− e

c
A
)2

+ nV =
3∑
j=1

(
−i ∂
∂xj

− e

c
Aj

)2

+ nV,

as n → ∞; a precise formulation appears below. For n = 0 the corresponding
operator describes the hamiltonian of a charged particle in R3 under a magnetic
field B = ∇× A, i.e., the curl of the vector field A, which is the so-called vector
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potential in electrodynamics. Recall that in classical mechanics the magnetic field
is an agent that changes the momentum particle, so the way the vector potential
appears in Hn and in other magnetic hamiltonian operators. The letters e,c denote
the charge of the particle and speed of light, respectively, and in what follows in
this section both are set to 1.

A particular choice A = AS ahead yields the magnetic field BS of an infinitely
long (cylindrical) solenoid given by the border of C. The potential nV represents
a barrier to the particle motion, and for n → ∞ an impenetrable solenoid is
modeled. Explicitly, from electrodynamics one has (write r2 = x2

1 + x2
2)

AS(x1, x2, x3) =

{
B
2 (−x2, x1, 0), 0 ≤ r ≤ 1
B

2r2 (−x2, x1, 0), 1 ≤ r
,

with B a constant, which turns out to be the intensity of the magnetic field inside
the solenoid

BS(x1, x2, x3) =

{
(0, 0, B), 0 ≤ r < 1
(0, 0, 0), 1 < r

.

In what follows A = AS.
An interesting point in the physical context is that AS yields a nonzero mag-

netic field only inside the impenetrable region C. Whereas in classical mechanics
a null magnetic field imposes a null force, in 1959 Y. Aharonov and D. Bohm pro-
posed that in quantum mechanics the vector potentials should play a key role so
that some measurable effects should be imputed exclusively to them; this is called
the Aharonov-Bohm effect (in spite of the fact that related questions had been
considered previously by W. Ehrenberg and R.E. Siday in 1949 and W. Franz in
1939) and it is directly related to the acceptance of H∞ below as the quantum
model of such a situation. As the expression of Hn above indicates, the source
of the (possible) effect is the presence of the vector potential A in the energy
operator, instead of the magnetic field B itself.

There is a vast literature about this Aharonov-Bohm effect, with debates
and conflicting views; it is one of the most widely discussed topics of quantum
mechanics. The interested reader is referred to the article [MaVG95] for an inter-
esting discussion and as a starting point for tracking references; the application
that follows was borrowed from that work.

In order to precisely define Hn consider the self-adjoint momentum operators
(see Section 3.3) Pj given by the closure of dom P̃j = C∞0 (R3), P̃jψ = −i∂ψ/∂xj,
and

dom Tj = dom Pj , Tjψ := Pjψ −Ajψ, j = 1, 2, 3,

which are self-adjoint since Aj are bounded continuous functions (so bounded
multiplication operators). Note that ∩jdom Pj = H1(R3).

By a simple variation of Proposition 4.3.9, the operator H =
∑3

j=1 T
2
j ,

dom H =
{
ψ ∈ H1(R3) : Tjψ ∈ dom Tj, j = 1, 2, 3

}
= H2(R3), is self-adjoint and
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the sesquilinear form generated by H is

bH(ψ, ϕ) =
3∑
j=1

〈Tjψ, Tjϕ〉, dom bH = H1(R3).

Note that from this expression (see also Section 9.3) the form bH is automatically
closed and positive, since it is a sum of three positive closed forms. Now, for each
n the potential nV = nχC is bounded, so

Hnψ := Hψ + nV ψ, dom Hn = dom H = H2(R3),

is a nondecreasing sequence of positive self-adjoint operators whose quadratic
forms are (write bn = bHn)

bn(ψ) = bH(ψ) + n

∫
C

|ψ(x)|2 d3x, dom bn = H1(R3).

To apply Theorem 10.4.2, introduce

D :=
{
ϕ ∈ ∩ndom bn : lim

n→∞
bn(ϕ) <∞

}
and note that ψ ∈ D iff

sup
n≥1

bn(ψ) = sup
n≥1

(
bH(ψ) + n

∫
C

|ψ(x)|2 d3x

)
<∞,

so that D =
{
ψ ∈ H1(R3) : ψ(x) = 0 a.e. in C

}
, and so

H0 := D = L2(R3 \ C) 
= H = L2(R3).

Note that H0 is the space H1
0(R

3 \ C) mentioned in Subsection 7.5.1 and this
space realizes, in the sense of Sobolev traces, Dirichlet boundary conditions on the
solenoid border.

By Theorem 10.4.2, there exists a self-adjoint operator H∞ with Hn
SR−→ H∞

in H0 whose quadratic form is

b∞(ψ) =
〈
H1/2
∞ ψ,H1/2

∞ ψ
〉

:= lim
n→∞

bn(ψ)

= bH(ψ) =
3∑
j=1

〈Tjψ, Tjϕ〉 , ψ ∈ dom b∞ = dom H1/2
∞ = D.

Since dom H∞ ⊂ dom H
1/2
∞ ,H∞ also carries Dirichlet boundary conditions; more-

over, it is possible to give an explicit action of this operator.
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Since Tj with domain {ψ ∈ dom Pj : ψ(x) = 0 a.e. inC} is closed (check
this!), by Proposition 4.3.9, T ∗j Tj is self-adjoint and one obtains

H∞ψ =
3∑
j=1

T ∗j Tjψ = (−i∇− A)2 ψ,

dom H∞ =
{
ψ ∈ D : Tjψ ∈ dom T ∗j , j = 1, 2, 3

}
.

Therefore Dirichlet boundary conditions have been naturally assigned to the limit-
ing operator H∞, which should describe the quantum motion of a particle outside
an impenetrable and infinitely long solenoid carrying a constant magnetic field
inside. Finally, note that everything works in case no magnetic field is present, as
well as for other shapes of region C.
Remark 10.5.1. A more realistic modeling would be considering penetrable (i.e.,
n < ∞) solenoids of finite length L > 0, so that there is a nonzero magnetic field
outside the solenoid, and then take both limits L→ ∞, n→ ∞. This was carried
out in [deOPe08] and it was shown that both limits commute and also lead to H∞
above.
Remark 10.5.2. It is intriguing that the convergence of the limiting processes to
H∞ has led different authors to extremely opposite conclusions: whereas Magni
and Valz-Gris ([MaVG95], pp. 185–186) concluded that “The way of coming to that
hamiltonian, however, makes it clear that there is no cogent reason to attribute
vector potentials any physical activity. . . ,” Berry [Ber86] argues that similar limits
justify the exclusive quantum role of potentials!



Chapter 11

Spectral Decomposition I

In this chapter the decomposition of a self-adjoint operator in discrete and essential
parts is discussed, with an important application to the hydrogen atom hamilto-
nian. Other applications include the discrete spectrum in case of unbounded po-
tentials in Rn and the comparison of the spectra of different self-adjoint extensions
(in case of finite deficiency indices).

11.1 Spectral Reduction

Let T be self-adjoint, E a (closed) reducing subspace of T and PE the orthogonal
projection onto E, as discussed in Section 9.8. Recall that if E reduces T , then
the restrictions TE = T |E := TPE : dom T ∩ E → E and TE⊥ = T |E⊥ := TPE⊥ :
dom T ∩ E⊥ → E⊥ are well-defined self-adjoint operators.

Accompanying such operator decomposition T = TE ⊕ TE⊥ , there is the
following spectral reduction, which will play an important role in this and the
next chapters.

Proposition 11.1.1. Let T be self-adjoint and E a closed subspace of H that reduces
T . Then

σ(T ) = σ(TE) ∪ σ(TE⊥).

Proof. If ξ ∈ dom T and t ∈ R, then

‖(T − t1)ξ‖2 = ‖(TE − t1)PEξ‖2 + ‖(TE⊥ − t1)PE⊥ξ‖2
.

If t ∈ σ(TE) there exists a Weyl sequence (ξEj ) ⊂ dom TE for TE at t (see Sec-
tion 2.4); since PE⊥ξEj = 0, ∀j, it follows that this sequence is also a Weyl sequence
for T at t, and so t ∈ σ(T ). In a similar way one gets σ(TE⊥) ⊂ σ(T ). Hence,
σ(T ) ⊃ σ(TE) ∪ σ(TE⊥).
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Now, if t ∈ σ(T ) and (ξj) is a Weyl sequence for T at t, then

1 = ‖ξj‖2 = ‖PEξj‖2 + ‖PE⊥ξj‖2

and one has, for each j,

1 ≥ max
{
‖PEξj‖2, ‖PE⊥ξj‖2

}
≥ 1

2
,

and there exists a subsequence of nonzero vectors of either (PEξj) or (PE⊥ξj).
Say PEξjk 
= 0 and with ‖PEξjk‖2 ≥ 1/2, ∀k (similarly for the other possibility).
Normalize it and define

ηk =
PEξjk
‖PEξjk‖

.

Again from the equality at the beginning of this proof, it is found that

2 ‖(T − t1)ξjk‖
2 ≥

∥∥∥∥(T − t1)
ξjk

‖ξjk‖

∥∥∥∥2

= ‖(TE − t1)ηk‖2

and so (ηk) is a Weyl sequence for TE at t and t ∈ σ(TE). Hence σ(T ) ⊂ σ(TE) ∪
σ(TE⊥). This finishes the proof. �

In case of infinitely many (Ej)∞j=1 pairwise orthogonal reducing subspaces of
the self-adjoint operator T , with H =

⊕
j Ej , the following version of Proposi-

tion 11.1.1 holds:

Proposition 11.1.2. Let T be self-adjoint and H =
⊕

j Ej as above. Then σ(T ) =
∪∞j=1σ(TEj ) (the bar indicates closure).

Proof. As in the proof of Proposition 11.1.1 , σ(TEj ) ⊂ σ(T ), and since σ(T ) is
closed σ(T ) ⊃ ∪∞j=1σ(TEj ). However, a new argument is needed for the other half
of the proof; note that the argument here also applies to Proposition 11.1.1, and
it is instructive to keep both proofs.

If t /∈ ∪∞j=1σ(TEj ), then there is ε > 0 such that

|t− λ| > ε, ∀λ ∈ ∪∞j=1σ(TEj ).

By Proposition 9.5.2, the resolvent operators Rt(TEj ) form a uniformly bounded
family with ‖Rt(TEj )‖ ≤ 1/ε, for all j. It then follows that

Rt(T ) =
⊕
j

Rt(TEj )

is bounded. Therefore t ∈ ρ(T ), which finishes the proof. �
Exercise 11.1.3. Check that if E reduces T and λ is an eigenvalue of TE , then λ
is an eigenvalue of T .
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11.2 Discrete and Essential Spectra

In this section T will always denote a self-adjoint operator. In this case it is known
that λ ∈ σ(T ) iff χ(λ−ε,λ+ε)(T ) 
= 0, ∀ε > 0 (Theorem 8.3.13). The spectral
projections χΛ(T ) can be used to introduce spectral decompositions of T , and the
interest in such decompositions resides mainly in three aspects:

1. They help to better understand the spectrum.

2. Some kinds of spectra are invariant under suitable perturbations of T .

3. The behavior of the time evolution e−itT ξ, for large values of time t, may be
strongly dependent on the spectral type.

Theorem 11.2.1. If T is self-adjoint, the following assertions are equivalent:

i) λ is an eigenvalue of T , i.e., there is 0 
= ξλ ∈ H so that Tξλ = λξλ.
ii) The spectral measure of T at λ is μξλ

= ‖ξλ‖2δλ (δλ is the Dirac measure
at λ and ξλ 
= 0).

iii) χ{λ}(T ) 
= 0, and so there is ξλ 
= 0 obeying χ{λ}(T )ξλ = ξλ.
Moreover, in this case rng χ{λ}(T ) = {ξ ∈ H : χ{λ}(T )ξ = ξ} is the
eigenspace corresponding to the eigenvalue λ, and its dimension is (by defi-
nition) the multiplicity of λ (if the multiplicity is 1 the eigenvalue is said to
be simple).

Proof. i) ⇒ ii) If i) holds, then λ ∈ σ(T ),

0 = ‖Tξλ − λξλ‖2 =
∫
σ(T )

|t− λ|2 dμξλ
(t),

and so μξλ
= cδλ for some c ≥ 0. Since

μξλ
(σ(T )) = ‖ξλ‖2 = cδλ(σ(T )) = c,

item ii) follows.
ii) ⇒ i) If ii) holds, then

‖Tξλ − λξλ‖2 =
∫
σ(T )

|t− λ|2 ‖ξλ‖2dδλ(t) = 0,

and so Tξλ − λξλ = 0.
ii) ⇒ iii) Suppose that ii) holds; then

‖ξλ‖2 = μξλ
({λ}) =

〈
ξλ, χ{λ}(T )ξλ

〉
= ‖χ{λ}(T )ξλ‖2,

and so χ{λ}(T ) 
= 0, and since this operator is a projection, by such equality it
follows that χ{λ}(T )ξλ = ξλ (check this!).



286 Chapter 11. Spectral Decomposition I

iii) ⇒ ii) If the projection χ{λ}(T ) 
= 0 there is 0 
= η ∈ H with χ{λ}(T )η = η.
Thus

μη(R) = ‖η‖2 = 〈η, χ{λ}(T )η〉 = μη({λ}).
Hence, μη(R \ {λ}) = 0, which implies μη = cδλ. As in the above argument for i)
⇒ ii), it is found that c = ‖η‖2. Finally, set ξλ = η. �
Exercise 11.2.2. Verify that the relation

rng χ{λ}(T ) =
{
ξ ∈ H : χ{λ}(T )ξ = ξ

}
= {ξ : Tξ = λξ}

follows from the arguments in the proof of Theorem 11.2.1.

A very interesting consequence is

Corollary 11.2.3. Let T be self-adjoint. If λ is an isolated point of σ(T ), then λ is
an eigenvalue of T .

Proof. Since λ is an isolated point of σ(T ) there exists ε > 0 so that

(λ− ε, λ+ ε) ∩ σ(T ) = {λ}.

On the other hand, by Theorem 8.3.13,

0 
= χ(λ−ε,λ+ε)(T ) = χ(λ−ε,λ)(T ) + χ{λ}(T ) + χ(λ,λ+ε)(T ),

and since (λ−ε, λ) and (λ, λ+ε) are subsets of ρ(T ), again by Theorem 8.3.13 it is
found that 0 
= χ{λ}(T ). Therefore λ is an eigenvalue of T by Theorem 11.2.1. �
Exercise 11.2.4. If S is a closed operator in H, show that λ is an eigenvalue of S iff
there exists a Cauchy sequence (ξn) ⊂ dom S, ‖ξn‖ = 1, ∀n, with (S − λ1)ξn → 0
as n→ ∞. This holds especially for self-adjoint operators.

The time is ripe for the first spectral decomposition alluded to in the title of
this chapter.

Definition 11.2.5. Let T be a self-adjoint operator.

a) The essential spectrum of T is the set σess(T ) of the accumulation points of
σ(T ) together with the eigenvalues of T of infinite multiplicity.

b) The discrete spectrum of T is the set σd(T ) := σ(T ) \ σess(T ), that is, the
set of isolated eigenvalues of T , each of them of finite multiplicity.

c) If σess(T ) = ∅, then T is said to have purely discrete spectrum; if σd(T ) = ∅,
then T is said to have purely essential spectrum.

Clearly σess(T ) ⊂ σ(T ) since the latter is a closed set. Suppose that for a
subset Λ ⊂ R one has σess(T )∩Λ = ∅ (resp. σd(T )∩Λ = ∅), then the operator T is
said to have purely discrete (resp. essential) spectrum in Λ. The above definitions
of discrete and essential spectra apply to any linear operator, not necessarily self-
adjoint.
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Example 11.2.6. Suppose dimH = ∞. Then:

i) The operator 1 has purely essential spectra: σ(1) = {1} and 1 is an isolated
eigenvalue of infinite multiplicity. Similarly for the null operator.

ii) 0 ∈ σess(T ) for any compact self-adjoint operator T ; the other points in its
spectrum belong to the discrete part. Refer to Section 1.6 for details.

The next result presents important characterizations of the essential spec-
trum, including one via particular Weyl sequences.

Theorem 11.2.7. If T is self-adjoint, the following assertions are equivalent:

i) λ ∈ σess(T ).
ii) There exists a normalized sequence (ξn) ⊂ dom T (i.e., ‖ξn‖ = 1, ∀n) so that

w − limn→∞ ξn = 0 and

(T − λ1)ξn → 0, n→ ∞.

Such a sequence is called a singular Weyl sequence for T at λ.
iii) For all ε > 0, dim rng χ(λ−ε,λ+ε)(T ) = ∞.

Proof. i) ⇒ ii) There are only two possibilities for λ ∈ σess(T ):

• λ is an eigenvalue of T of infinite multiplicity. In this case there is an or-
thonormal sequence (ξλn)n ⊂ dom T of eigenvectors Tξλn = λξλn and ii) clearly
holds.

• λ is an accumulation point of σ(T ). In this case there exists a sequence
(λn) ⊂ σ(T ), λn 
= λm if n 
= m, with λn → λ (and λ 
= λn). Pick εn → 0+

so that, for n 
= m,

(λn − εn, λn + εn) ∩ (λm − εm, λm + εm) = ∅,

and since Pn := χ(λn−εn,λn+εn)(T ) 
= 0, there exists ξn ∈ rng Pn ⊂ dom T
(Lemma 8.3.16) with ‖ξn‖ = 1, ∀n. For n 
= m one has PnPm = 0; thus

〈ξn, ξm〉 = 〈Pnξn, Pmξm〉 = 〈ξn, PnPmξm〉 = 0,

and (ξn) is an orthonormal sequence. Now, since

μξn(R \ (λn − εn, λn + εn)) = 0,

it follows that

‖Tξn − λξn‖2 =
∫

(λn−εn,λn+εn)

|t− λ|2 dμξn(t)

≤
∫

(λn−εn,λn+εn)

(|t− λn| + |λn − λ|)2 dμξn(t)

≤ (εn + |λn − λ|)2 ‖ξn‖2 = (εn + |λn − λ|)2 ,

which vanishes as n→ ∞. Hence (ξn) is a singular Weyl sequence for T at λ.
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ii) ⇒ iii) Let (ξn) be as in ii). If there exists ε0 > 0 so that

dim rng χ(λ−ε0,λ+ε0)(T ) <∞,

then P0(T ) := χ(λ−ε0,λ+ε0)(T ) is a compact operator since it has finite range; since
(ξn) is orthonormal ξn

w−→ 0 and by Proposition 1.3.22 one has P0(T )ξn → 0.
Hence

‖Tξn − λξn‖2 =
∫

R

|t− λ|2 dμξn(t)

≥
∫

R\(λn−ε0,λn+ε0)

|t− λ|2 dμξn(t)

=
∫

R

(1 − P0(t)) |t− λ|2 dμξn(t) ≥ ε20

∫
R

(1 − P0(t)) dμξn(t)

= ε20
(
‖ξn‖2 − ‖P0(T )ξn‖2

)
= ε20

(
1 − ‖P0(T )ξn‖2

)
,

and Tξn − λξn does not converge to zero as n → ∞ (recall that P0(T )ξn → 0).
This contradiction shows that iii) follows from ii).

iii) ⇒ i) If iii) holds, by Theorem 11.2.1, λ may be an eigenvalue of T with
infinity multiplicity, so an element of σess(T ). If this is not the case, then for all
ε > 0 either

dim rng χ(λ−ε,λ)(T ) = ∞ or dim rng χ(λ,λ+ε)(T ) = ∞,

or both. In other words, there is a point of σ(T ), different from λ, and at a distance
less then ε of λ. Since it holds for arbitrarily small ε > 0, then λ is an accumulation
point of σ(T ) and λ ∈ σess(T ). The proof is finished. �
Exercise 11.2.8. Verify that an orthonormal sequence (ξn) ⊂ dom T so that
(T − λ1)ξn → 0 works as a singular Weyl sequence of T at λ.
Exercise 11.2.9. Discuss the spectral possibilities if for all ε > 0 one has

dim rng χ(λ−ε,λ+ε)(T ) > 0.

Corollary 11.2.10. If T is self-adjoint, then σess(T ) is a closed subset of R.

Proof. If λ /∈ σess(T ), then there exists ε0 with

dim rng χ(λ−ε0,λ+ε0)(T ) <∞.

Thus, for each t ∈ (λ− ε0, λ+ ε0) one can choose εt > 0 so that

(t− εt, t+ εt) ⊂ (λ − ε0, λ+ ε0).

In view of

dim rng χ(t−εt,t+εt)(T ) ≤ dim rng χ(λ−ε0,λ+ε0)(T ) <∞,

it follows that t /∈ σess(T ), that is, R \ σess(T ) is an open set. �
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Exercise 11.2.11. Let T be self-adjoint. Discuss if σd(T ) is a closed subset of R.
What about compact operators?
Exercise 11.2.12. a) Show that if 0 < dim rng χ(a,b)(T ) <∞, then

σ(T ) ∩ (a, b) ⊂ σd(T ).

b) Show that if 0 < dim rng χ(a,b)(T ) = ∞, then σess(T ) ∩ [a, b] 
= ∅.

11.3 Essential Spectrum and Compact Perturbations

Let T 0 be a self-adjoint operator and λ0 ∈ σd(T 0); then λ0 is an isolated eigen-
value of multiplicity m <∞, and denote its eigenspace by M = Lin({ξ1, . . . , ξm}),
T 0ξj = λ0ξj , 1 ≤ j ≤ m. Thus M = rng χ{λ0}(T 0). By Propositions 9.8.5
and 11.1.1, M reduces T 0 and

σ(T 0) = σ(T 0
M ) ∪ σ(T 0

M⊥) = {λ0} ∪ σ(T 0
M⊥);

further, {λ0} ∩ σ(T 0
M⊥) = ∅.

For ε ∈ R, |ε| < d(λ0, σ(T 0
M⊥)), denote Λε = R \ (λ0 − ε, λ0 + ε) so that

M⊥ = rng χΛε(T 0). Consider the self-adjoint operator

T ε = T 0 + εχ{λ0}(T 0).

Since T ε = fε(T 0), with fε(t) = t+ εχ{λ0}(t), one has χΛ(T ε) = χf−1
ε (Λ)(T

0), for
any Borel set Λ ⊂ R. In view of f−1

ε (Λε) = Λε, one has χΛε(T ε) = χΛε(T 0) and
so, for any interval (a, b),

χΛε(T
0)χ(a,b)(T ε) = χ(a,b)(T ε)χΛε(T

0);

thus, by Proposition 9.8.5, M⊥ reduces T ε. This, together with T εM⊥ = T 0
M⊥ ,

imply
σ(T ε) = σ(T εM ) ∪ σ(T εM⊥) = {λ0 + ε} ∪ σ(T 0

M⊥).

Since λ0 is an isolated point of σ(T 0), if 0 
= |ε| is small enough (as above)
one has λ0 /∈ σ(T ε) and this point was “removed” from the spectrum of T 0 by a
finite rank perturbation εχ{λ0}(T 0) of arbitrarily small norm. In contrast to this
discussion, it will be seen that the essential spectrum is invariant under any com-
pact perturbation (the so-called Weyl criterion, i.e., Corollary 11.3.6 and Propo-
sition 11.6.2)!
Exercise 11.3.1. If T is self-adjoint and λ ∈ σd(T ), argue that there are self-
adjoint finite rank perturbations B ∈ Bf(H), with norm arbitrarily small, so that
λ /∈ σd(T +B), and also that there exists δ > 0 for which

σ(T +B) ∩ (λ− δ, λ+ δ)

consists of a finite number of simple eigenvalues.
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Definition 11.3.2. Let A,B be linear operators in H and ρ(A) 
= ∅. Then B is said
to be A-compact (or relatively compact with respect to A) if dom A ⊂ dom B
and BRz(A) is a compact operator for some z ∈ ρ(A).

Example 11.3.3. If B is a compact operator, then B is A-compact for all linear
operators A with nonempty resolvent set.

Theorem 11.3.4. Let T be self-adjoint and B a T -compact operator. Then:

i) BRz(T ) is compact for all z ∈ ρ(T ).
ii) If B is also hermitian, then B is T -bounded with NT (B) = 0.
iii) If B is also hermitian, then T +B with dom (T+B) = dom T is self-adjoint.

Proof. i) If BRz0 is compact for some z0 ∈ ρ(T ), then if z ∈ ρ(T ) the first resolvent
identity implies

BRz(T ) = BRz0(T ) + (z − z0)BRz0(T )Rz(T ),

which is compact by Proposition 1.3.7, since Rz(T ) is a bounded operator.
ii) If λ ∈ R, then

BRiλ(T ) = BRi(T )(T − i1)Riλ(T );

now BRi(T ) is compact and since (T − i1)Riλ(T ) s−→ 0 as λ→ ∞ by the spectral
theorem (write (T − i1)Riλ(T ) = f(T ) with f(t) = (t − i)/(t − iλ)) or Corol-
lary 2.2.19, it follows that limλ→∞ ‖BRiλ(T )‖ = 0 (by Proposition 1.3.29). Propo-
sition 6.1.5 implies NT (B) = 0.

iii) It follows by ii) and the Kato-Rellich Theorem 6.1.8. �

Exercise 11.3.5. Verify that Theorem 11.3.4i) holds even if T is not self-adjoint.

Corollary 11.3.6 (Weyl). Let T be self-adjoint and B hermitian. If B is T -compact,
then σess(T +B) = σess(T ).

Proof. Let λ ∈ σess(T ) and (ξn) a singular Weyl sequence for T at λ. Thus

(T +B − λ1)ξn = (T − λ1)ξn +BRi+λ(T )(T − (i+ λ)1)ξn
= (T − λ1)ξn +BRi+λ(T )(T − λ1)ξn − iBRi+λ(T )ξn

which vanishes as n→ ∞ since BRi+λ(T ) is a compact operator. Hence (ξn) is a
singular Weyl sequence for (T +B) at λ and so σess(T ) ⊂ σess(T +B).

In order to exchange the roles of T and T + B in the above argument, it
is necessary to show that B is also (T + B)-compact, and then use that T =
(T +B) −B.

Pick λ0 ∈ R obeying ‖BRiλ0(T )‖ < 1. Thus, from the relation

T +B − iλ01 = (1 +BRiλ0 (T ))(T − iλ01)



11.3. Essential Spectrum and Compact Perturbations 291

one gets
BRiλ0 (T +B) = BRiλ0 (T ) (1 +BRiλ0 (T ))−1

,

and so B is (T + B)-compact since BRiλ0(T ) is compact. Hence σess(T ) ⊃
σess(T +B). The corollary is proved. �

Corollary 11.3.7. Let T be self-adjoint. If B is compact and self-adjoint, then
σess(T +B) = σess(T ).

Proof. If z ∈ C \ R then BRz(T ) is compact. The conclusion follows by Weyl’s
result 11.3.6. �

Exercise 11.3.8. If T is self-adjoint,B is hermitian and T -bounded withNT (B) < 1
and K is T -compact, show that K is (T +B)-compact.
Exercise 11.3.9. Suppose dimH = ∞. Let T be self-adjoint with purely discrete
spectrum. Show that T is not T -compact.

Exercise 11.3.10. If T ∈B(H) is self-adjoint and dimH=∞, show that σess(T ) 
=∅.
Exercise 11.3.11. Show that if Rz0(T ) is a compact operator for some z0 ∈ ρ(T ),
then Rz(T ) is compact for any z ∈ ρ(T ).

Exercise 11.3.12. If T is self-adjoint and E is a reducing subspace of T , show that
σess(TE) ⊂ σess(T ).

11.3.1 Operators With Compact Resolvent

The subject now is a characterization of the self-adjoint operators with empty
essential spectrum; due to such a characterization these operators are also called
operators with compact resolvent.

Theorem 11.3.13. Let T : dom T � H → H be self-adjoint and assume that
dimH = ∞. Then, the following assertions are equivalent:

i) σess(T ) = ∅.
ii) There is an orthonormal basis (ξj)∞j=1 of H built of eigenvectors of T , Tξj =

λjξj , ∀j, with real eigenvalues λj , counting their multiplicities, satisfying
limj→∞ |λj | = ∞ (and so each of them of finite multiplicity).

iii) Rz(T ) is a compact operator for some z ∈ ρ(T ) (and so for all z ∈ ρ(T )).

Proof. i) ⇒ ii) If i) holds then σ(T ) is purely discrete and so consists of a sequence
Λ = (λj) ⊂ R of eigenvalues of T of finite multiplicity Tξj = λjξj , and one may
assume that (ξj) is an orthonormal sequence. Thus, with multiplicities, there is a
finite number of eigenvalues in [−n, n] for all n ∈ N, which implies |λj | → ∞ as
j → ∞.

Note that the closed subspace E := rng χΛ(T ) = Lin((ξj)j) reduces T and
so

σ(T ) = σ(TE) ∪ σ(TE⊥).
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One has σess(TE) = ∅. If E 
= H, there would exist additional eigenvalues of T
outside Λ (those of TE⊥). This contradiction shows that (ξj) is an orthonormal
basis of H.

ii) ⇒ i) Order each eigenvalue of T according to its distance to the origin.
Since |λj | → ∞, each λj has finite multiplicity and is isolated. Thus Λ = {λj : j ∈
N} is a discrete set and hence a closed subset of R. By Theorem 2.2.10 one has
σ(T ) = Λ = Λ. Therefore σess(T ) = ∅.

ii) ⇒ iii) Since the eigenvalues of T are real, infj |λj − i| ≥ 1. Note that, by
Corollary 8.3.19, for all j one has Ri(T )ξj = 1/(λj − i)ξj .

For each n ∈ N the operator Sn : H ←↩ defined by

Snξ =
∑
|λj |≤n

〈ξj , ξ〉
λj − i

ξj ,

is bounded and of finite rank, so compact. Since (see the proof of Theorem 2.2.10)

Rλ(T )ξ =
∑
j

〈ξj , ξ〉
λj − i

ξj ,

for all ξ ∈ H one has

‖Ri(T )ξ − Snξ‖2 ≤

∥∥∥∥∥∥
∑
|λj |>n

〈ξj , ξ〉
λj − i

ξj

∥∥∥∥∥∥
2

≤ 1
n2

∑
|λj |>n

|〈ξj , ξ〉|2 ≤ 1
n2

‖ξ‖2.

Therefore,

‖Ri(T ) − Sn‖ ≤ 1
n
→ 0,

and Ri(T ) is compact by Corollary 1.3.14.
iii) ⇒ ii) If Rz(T ) is compact for some fixed z ∈ ρ(T ), since it is also a normal

operator, Corollary 8.1.9 implies the existence of an orthonormal basis (ξj) of H
of eigenvectors of Rz(T ) whose corresponding eigenvalues zj , i.e., Rz(T )ξj = zjξj ,
are of finite multiplicity and zj → 0 as j → ∞. Further, all zj 
= 0 since Rz(T ) =
(T − z1)−1 is the inverse of a linear operator. Therefore,

ξj = (T − z1)Rz(T )ξj = (Tξj − zξj)zj ,

consequently

Tξj =
(
z +

1
zj

)
ξj , ∀j.

This implies σess(T ) = ∅, for (ξj)j is a basis of H. �
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Example 11.3.14. Consider the self-adjoint operator T : dom T ⊂ l2(N) → l2(N),

dom T = {ξ ∈ l2(N) : (Tξ) ∈ l2(N)},

given by

T (ξ1, ξ2, ξ3, . . . ) = (1ξ1, 1ξ2, 2ξ3, 1ξ4, 2ξ5, 3ξ6, 1ξ7, 2ξ8, 3ξ9, 4ξ10, 1ξ11, . . . ).

Its spectrum σ(T ) = N is purely essential, and each point of N is an (isolated)
eigenvalue of infinite multiplicity. For any compact self-adjoint operator K one
has σ(T +K) ⊃ N.
Example 11.3.15. The harmonic oscillator (Example 8.4.3) has purely discrete
spectrum.
Exercise 11.3.16. Consider finite rank (hermitian) perturbations of the operator
in Example 11.3.14 and discuss the possible spectral variations.
Exercise 11.3.17. If T is self-adjoint, show that T has purely discrete spectrum iff
its Cayley transform U(T ) is a compact perturbation of the identity, i.e., U(T ) =
1 +K, with K a compact operator.

In Theorem 11.5.6 it will be shown that if V ∈ L2
loc(R

n) is bounded from be-
low and lim|x|→∞ V (x) = ∞, then the subsequent standard Schrödinger operator
−Δ + V has purely discrete spectrum.

11.4 Applications

11.4.1 Eigenvalues of the H-Atom

Let dom H0 = H2(Rn), H0 = −Δ be the usual free particle hamiltonian operator
on Rn (see Section 3.4). If f(p) = p2, recall that by using Fourier transform F one
has (

FH0F−1
)
φ(p) = p2φ(p) = Mfφ(p), φ ∈ dom p2.

By the discussion in Chapter 3 (see also Proposition 2.3.27), one concludes

Proposition 11.4.1. σ(H0) = σess(H0) = [0,∞).

One of the goals of this section is to show that the Coulomb potential is
H0-compact and, by Weyl criterion, the essential spectrum of the hydrogen atom
Schrödinger operator is [0,∞). For this a rather general sufficient condition for
H0-compactness of perturbations will be addressed.

If f, g ∈ B∞(Rn) (bounded Borel functions with the sup norm), denote by
f(x) the operator Mf on L2(Rn), by g(p) the operator Mg on L2(R̂n) and by
f(x)g(p) and g(p)f(x) the operators (both with domain L2(Rn))

(f(x)g(p)ψ) (x) := f(x)F−1
[
g(p)ψ̂(p)

]
(x),

(g(p)f(x)ψ) (x) := F−1 [g(p)F(f(x)ψ(x))] (x),
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respectively. These operators are bounded, but with additional assumptions they
become compact. Write B∞∞(Rn) for the elements of B∞(Rn) that vanish at infin-
ity, that is, f ∈ B∞(Rn) for which given ε > 0 there is r > 0 so that |f(x)| < ε if
|x| > r.

Roughly speaking, Lemma 11.4.2 and Exercise 11.4.5 indicate that compact
operators in L2(Rn) “vanish in phase space (x, p) as both |p|, |x| → ∞.”

Lemma 11.4.2. Consider the functions f, g : Rn → C in B∞(Rn). If one of them
belongs to L2(Rn) and the other to L2(Rn)+B∞∞(Rn), then the operators f(x)g(p)
and g(p)f(x) are compact.

Proof. Note first that g(p)f(x) = (f(x) g(p))∗; thus, by Corollary 1.3.27, it is
enough to show that f(x)g(p) is compact. Assume, initially, that f, g ∈ L2(Rn).
In this case, for any ψ ∈ L2(Rn) one has gψ̂ ∈ L1(Rn) and so

(2π)(n/2)(g(p)ψ)(x) =
∫

Rn

eiqxg(q)ψ̂(q) dq

=
〈
e−iqxg(q), ψ̂(q)

〉
=
〈
F−1e−iqxg(q), ψ(q)

〉
=
〈
ǧ(x− q), ψ(q)

〉
=
∫

Rn

ǧ(x − q)ψ(q) dq.

Thus, f(x)g(p)ψ(x) =
∫

Rn K(x, q)ψ(q) dq is an integral operator with kernel

K(x, q) =
1

(2π)n/2
f(x)ǧ(x− q),

which belongs to L2(Rn ×Rn) and so f(x)g(p) is a compact operator (see Exam-
ple 1.4.9 and Theorem 1.4.6).

Now suppose that f ∈ B∞∞(Rn) and g ∈ L2(Rn). Then, for all r > 0 the
function fr(x) := f(x)χ{|x|<r}(x) belongs to L2(Rn), and given ε > 0 there exists
rε > 0 so that |f(x)| < ε if |x| ≥ rε. Thus, ‖f − frε‖∞ ≤ ε and for all ψ ∈ L2(Rn)
one has

‖(frε(x)g(p) − f(x)g(p))ψ‖2 =
∥∥χ{|x|≥rε}(x)f(x)g(p)ψ

∥∥
2

≤ ε ‖g(p)ψ‖2 ≤ ε ‖g‖2 ‖ψ‖2,

and thus ‖frε(x)g(p) − f(x)g(p)‖ ≤ ε. Hence f(x)g(p) is a uniform limit (as ε→ 0)
of compact operators frε(x)g(p), so it is also compact by Theorem 1.3.13. Similarly
one deals with the case g ∈ B∞∞(Rn) and f ∈ L2(Rn). The lemma is proved. �
Exercise 11.4.3. Verify that g(p)f(x) = (f(x) g(p))∗.
Exercise 11.4.4. Based on the proof of Lemma 11.4.2, show that f(x)g(p) and
g(p)f(x) are in fact Hilbert-Schmidt operators if both f, g ∈ L2(Rn).
Exercise 11.4.5. By considering fr(x)gr(p) (notation as in the proof of Lemma
11.4.2), show that the conclusions of Lemma 11.4.2 hold if f, g ∈ B∞∞(Rn).
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Exercise 11.4.6. Let H0 be the free hamiltonian in L2(Rn). Show that the operator
f(x)(H0 + λ1)−γ = f(x)(p2 + λ)−γ is compact for all f ∈ B∞∞(Rn) and λ, γ > 0.

Next an important application to standard Schrödinger operators with po-
tentials that include the 3D hydrogen atom HH energy operator.

Theorem 11.4.7. Let V ∈ L2(R3)+B∞∞(R3) be real-valued. Then V is H0-compact,
H = H0 + V with dom H = dom H0 is self-adjoint and σess(H) = [0,∞).

Proof. The operator H is self-adjoint by the Kato-Rellich theorem. By an ap-
plication of Lemma 11.4.2, V Ri(H0) = f(x)g(p), with f(x) = V (x) and g(p) =(
p2 − i

)−1, is a compact operator since f ∈ L2(R3) + B∞∞(R3) and g ∈ B∞∞(R3).
Hence the potential V is H0-compact and σess = [0,∞) by Corollary 11.3.6 and
Proposition 11.4.1. �
Exercise 11.4.8. If V ∈ B∞∞(Rn), show that H = H0 + V is self-adjoint and
σess(H) = [0,∞).

Note that such results apply to the Coulomb and Yukawa potentials in R3

(see Subsection 6.2.1). Now the Coulomb case

V (x) = − κ

|x|

will get a closer inspection. Fix R > 0 and write V = V2 + V∞, with

V2(x) = V (x)χ[0,R)(|x|), V∞(x) = V (x)χ[R,∞)(|x|),

so that V2 ∈ L2(R3), V∞ ∈ B∞∞(R3), and Theorem 11.4.7 applies. By Corol-
lary 6.2.9, if κ < 0 the operator

Hκ := H0 −
κ

|x|

has no eigenvalues, hence σ(Hκ) = [0,∞). For κ > 0 (which includes the Schrö-
dinger operators for atoms with just one electron) all eigenvalues are negative and,
since H0 is lower bounded, it follows that Hκ is also lower bounded (Proposition
9.5.11) and so its eigenvalues belong to [a, 0) for some a < 0. Hence χ(−∞,0)(Hκ) =
χ[a,0)(Hκ); recall that rng χ[a,0)(Hκ) reduces Hκ. Further, such eigenvalues belong
to the discrete spectrum and so each of them is of finite multiplicity.
Remark 11.4.9. The 3D H-atom Schrödinger (energy) operator has a lowest spec-
tral point, which is an eigenvalue in the discrete spectrum. In general quantum
systems, the eigenvectors corresponding to the lowest possible energy (if they do
exist) are called ground states. In physics it is assumed that, in practice, a system
under small influence of its surroundings loses energy and in the limit it approaches
a ground state; in many situations these are the only states of interest. In classical
mechanics the coulombian system has no lowest energy and the electron could col-
lapse onto the nucleus. The existence of a lowest possible quantum energy avoids
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this electron-nucleus “collision” and is then interpreted as stability of the H-atom,
an outstanding achievement of quantum mechanics. Compare with Exercise 6.2.12.

Let Ud(s) be the dilation unitary group in R3 of Example 5.4.8, that is,

(Ud(s)ψ) (x) = e−3s/2ψ(e−sx).

From the discussion on the Virial Theorem 6.2.8, if ϕ ∈ C∞0 (R3), ‖ϕ‖2 = 1, and
with support in [1, 2], one has

〈Ud(s)ϕ,HκUd(s)ϕ〉 = e−2s〈ϕ,H0ϕ〉 − κe−s
〈
ϕ,

1
|x|ϕ

〉
.

If κ > 0 this expression is negative for s large enough. Note that the support of
Ud(s)ϕ is in [es, 2es]; thus, by taking a sequence sj → ∞ so that the functions in the
sequence (Ud(sj)ϕ)j have pairwise disjoint supports, it follows that such a sequence
is orthonormal and so dim rng χ(−∞,0)(Hκ) = ∞; according to Theorem 11.2.1,
this is the sum of the multiplicities of the eigenvalues of Hκ. Since the spectrum
of Hκ in [a, 0) is discrete and 0 ∈ σess(Hκ), zero is the unique accumulation point
of its eigenvalues. Summing up

Corollary 11.4.10. Consider Hκ as above.

i) If κ < 0, then σ(Hκ) = [0,∞) and it has no eigenvalues.
ii) If κ > 0, then σ(Hκ) = {λj}∞j=1 ∪ [0,∞), with λ1 < λ2 < λ3 < · · · , λj → 0,

and each λj is an eigenvalue of Hκ of finite multiplicity; finally, there are no
positive eigenvalues.

Remark 11.4.11. By solving explicitly the eigenvalue equation for Hκ, with κ > 0,

one obtains λj = −
(
κ
2j

)2

, j ≥ 1. Most books on quantum mechanics present
details of this calculation; see, for instance, [Will03], [LaL58]. The eigenvalues of
3D hydrogenic atoms, with physical constants included, are

λj = −m
2

(
Ze2

�j

)2

, j ∈ N,

where Z is the atomic number (i.e., number of protons in the nucleus), m and e
the electron mass and electric charge, respectively, and finally � denotes Planck’s
constant; further, the multiplicity of λj is j2. It was Hermann Weyl who helped
Schrödinger in the first calculation of such eigenvalues λj , and the subsequent
agreement with the experimental spectral lines of the H-atom was very important
to validate Schrödinger’s proposal for his quantum energy operator.

Exercise 11.4.12. If (λj) are eigenvalues of a self-adjoint operator T and λj → λ,
use the corresponding eigenvectors to construct a Weyl singular sequence (see
Theorem 11.2.7) for T at λ.
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11.4.2 Embedded Eigenvalue

In Subsection 11.4.1 the virial was used to exclude eigenvalues embedded in the
essential spectrum of some Schrödinger operators, including the hydrogen atom in
R3. Now an example of an embedded eigenvalue in the essential spectrum will be
presented; it has its roots in a paper by von Neumann and Wigner of 1929. Al-
though for standard energy operators −Δ+V , with vanishing potential at infinity,
physically one should expect no eigenvalue embedded in the interior of the positive
essential spectrum (see the discussion in the example ahead and Remark 13.6.12),
and to prove it mathematically has been a difficult problem. Nevertheless, the ab-
sence of such embedded eigenvalues has been proved for a large class of “physically
reasonable” potentials. For general results on embedding eigenvalues the reader is
referred to [EaK82], [Sta96], [CrHM02] and references therein.

For each a > 0 define the potential in R3 (set r = |x|, x ∈ R3)

V a(x) = V a(r) = 32 sin r
(sin r − (a+ r) cos r)
(2a+ 2r − sin 2r)2

,

which has the following properties:

a) V a is a bounded and continuous function.

b) For large r one has V a(r) ∼ −4 sin(2r)/r.

c) Given ε > 0 there is m > 0 so that ‖V a‖∞ < ε if a > m.

Thus, V a ∈ B∞∞(R3), V a can be made arbitrarily small (take a large) and it is
oscillating with decaying amplitude; in such a situation, the motion of a particle
under V a in classical mechanics with energy equal to 1 would be quite similar to
a free motion, since V a acts as a very small perturbation. In quantum mechanics,
by Theorem 11.4.7, the operator

dom Ha = dom H0, Ha = H0 + V a,

is self-adjoint and σess(Ha) = [0,∞), for all a > 0 (or by Proposition 11.4.15).
As discussed below, the operator Ha has an eigenvector corresponding to the

eigenvalue 1 for all a > 0. Since the free energy operator H0 has no eigenvalues
and classically the motion with energy equal to 1 is quite similar to the free
one, it is suggested that such an eigenvalue should not exist! The oscillations
of the potential, even if of small amplitude (again for large a) and decaying for
r → ∞, are responsible for such an eigenvalue. Further, the dynamical behavior
of eigenvectors is different from the dynamics of vectors in subspaces with no
eigenvectors, as discussed in Chapter 13.

The function

ψa(x) = ψa(r) =
2 sin r

r(2a+ 2r − sin 2r)
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is an element of dom H0 and a direct calculation shows that

Haψa = ψa,

and ψa is an eigenvector of Ha corresponding to the eigenvalue 1. Note that
it is convenient to use spherical coordinates and the unitary transformation u3,
discussed in Section 7.5, in order to perform such a calculation; also, ψa carries
the values l = m = 0 so that the spherical harmonic Y00 is a constant function.
Exercise 11.4.13. Consider the potential

V (x) = 2
3x2 − 1

(1 + x2)2
, x ∈ R.

Check that H = H0 + V , dom H = dom H0, is self-adjoint, σess(H) = [0,∞) and
ψ(x) = 1/(1 + x2) is an eigenvector of H with eigenvalue zero.

11.4.3 Three Simple Classes of Potentials

In classical mechanics, if the potential V in Rn is lower bounded by β, i.e., V (x) ≥
β, ∀x ∈ Rn, then the mechanical energy E = p2 + V (x) of the particle clearly can
not be smaller than β (otherwise p2 < 0). Its quantum mechanical version is:

Proposition 11.4.14. If T ≥ 0 is a self-adjoint operator in L2(Rn) and V : Rn →
[β,∞) is so that T + V is self-adjoint with dom (T + V ) = dom T , then

(−∞, β) ⊂ ρ(T + V ).

This holds, in particular, if T = H0, i.e., the free particle hamiltonian.

Proof. Let t < β and ξ ∈ dom T with ‖ξ‖ = 1. Then,

〈ξ, (T + V − t1)ξ〉= 〈ξ, T ξ〉 + 〈ξ, (V − t1)ξ〉
≥ 〈ξ, (β − t)ξ〉 = (β − t),

and so
0 < (β − t) ≤ 〈ξ, (T + V − t1)ξ〉 ≤ ‖(T + V − t1)ξ‖.

Therefore, there is no Weyl sequence for T + V at t. By Corollary 2.4.9, t ∈
ρ(T + V ). �
Proposition 11.4.15. Let H0 be the free particle Schrödinger operator in L2(Rn)
and the potential V ∈ L2

loc(R
n). If H is a self-adjoint extension of H0 + V ,

dom (H0 + V ) = C∞0 (Rn), and lim|x|→∞ V (x) = a, then

[a,∞) ⊂ σess(H).

Recall that if V is lower bounded, then H0 +V is essentially self-adjoint by Corol-
lary 6.3.5.
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Proof. A Weyl sequence for H at each t > a will be constructed. Pick t > a and
k ∈ Rn obeying k2 = t− a. Then uk(x) := eikx satisfies (H0 + a1)uk(x) = tuk(x)
(since H0uk = −Δuk), and hence

lim
|x|→∞

(H0 + V (x) − t1)uk(x) = 0.

By considering V (x) − a it is possible to assume that a = 0 in what follows. Note
that uk /∈ L2(Rn). Pick 0 
= φ ∈ C∞0 (Rn) with support in the closed ball B(0; 1).
For each m = (m1, . . . ,mn) ∈ Rn denote |m| = |m1 + · · · + |mn| and define, for
m 
= 0,

φm(x) = φ

(
x−m√

|m|

)
, ψm(x) =

1
‖φ‖2 |m|n/4 φm(x)uk(x).

The function ψm ∈ dom H , for any self-adjoint extension H of H0 + V , and it is
normalized with support in the ball Bm := B(m;

√
|m|). Note that there exists

C > 0 so that
‖∇φm‖∞ ≤ C√

|m|
, ‖H0φm‖∞ ≤ C

|m| ,

and if � denotes Lebesgue measure, �(Bm) ≤ C|m|n/2. Further, given ε > 0, if |m|
is large enough then |V (x)| ≤ ε for all x ∈ Bm.

A direct computation leads to

(H − t1)ψm(x) = (H0 + V − t1)ψm(x)

=
uk(x)

‖φ‖2 |m|n/4 [(H0 + V )φm(x) − ik · (∇φm)(x)] ,

and so, for |m| large enough,

‖(H0 + V − t1)ψm‖∞ ≤ C

‖φ‖2|m|n/4

[
1
|m| + ε+ |k| 1

|m|1/2

]
.

Again for |m| large enough,

‖(H0 + V − t1)ψm‖2
2 ≤ ‖(H0 + V − t1)ψm‖2

∞ × �(Bm)

≤ C2

‖φ‖2
2

[
1
|m| + ε+ |k| 1

|m|1/2

]2
≤ C2

‖φ‖2
2

(3ε)2.

This shows that (ψm) is a Weyl sequence for H at t, and so t ∈ σ(H). Since the
essential spectrum is closed, the result follows. �
Exercise 11.4.16. If V ∈ L2

loc(R) and limx→∞ V (x) = a (the behavior of V on
the negative half-line does not matter!), show that [a,∞) ⊂ σess(H), for any
self-adjoint extension H of (H0 + V ) with dom (H0 + V ) = C∞0 (R). Note that
everything works in L2[0,∞). How to generalize this to Rn?
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Proposition 11.4.17. Let h0 be the tight-binding Schrödinger kinetic energy opera-
tor acting on l2(Z) and discussed in Subsection 8.4.3. If V is a real sequence that
is nonzero only at a finite number of entries, then σess(h0 + V ) = [−2, 2].

Proof. It is known that σ(h0) = [−2, 2]. Since such V is a finite rank operator on
l2(Z), it is compact. Therefore the result follows by Corollary 11.3.7. �
Exercise 11.4.18. Let V (n) be a real-valued sequence in l2(Z). Show that σess(h0+
V ) = [−2, 2].

11.4.4 Existence of Negative Eigenvalues

In this subsection V is assumed to be anH0-compact potential in Rn andH = H0+
V the subsequent self-adjoint operator with dom H = H2(Rn). Then, σess(H) =
[0,∞). A sufficient condition for the existence of negative eigenvalues of H will
be given; such eigenvalues belong to σd(H) and are important due to their phys-
ical meaning discussed in Chapter 13 and the possibility of existence of ground
states. By Theorem 8.3.13, this goal is attained by showing that the projection
χ(−∞,0)(H) 
= 0; note that dim rng χ(−∞,0)(H) is exactly the number of nega-
tive eigenvalues, counted with multiplicities, since this subspace is spanned by
the corresponding eigenvectors. In this subsection it will be used that, for a > 0,
g(a) =

∫
R
e−ax

2
dx =

√
π/a and the derivatives g(n)(a) = (−1)n

∫
R
x2ne−ax

2
dx.

Theorem 11.4.19. Let V be a potential in Rn as above. If there is a > 0 so that∫
Rn

V (x)e−2a2x2
dx < −na2−n

(π
2

)n/2
,

then H has (at least) one negative isolated eigenvalue of finite multiplicity.

Proof. χ(−∞,0)(H) 
= 0 is equivalent to 〈Hψ,ψ〉 < 0 for some ψ ∈ dom H . Thus,
the idea is to consider the trial function ψ(x) = e−a

2x2
, a > 0, which belongs

to dom H . Now, 〈Hψ,ψ〉 = 〈H0ψ, ψ〉 + 〈V ψ, ψ〉 = ‖∇ψ‖2
2 + 〈V ψ, ψ〉. By direct

computation

〈H0ψ, ψ〉= ‖∇ψ‖2
2 = ‖i2a2e−a

2x2
x‖2

2 = 4a4

∫
Rn

x2e−2a2x2
dx

= n4a4

∫
R

t2e−2a2t2 dt×
(∫

R

e−2a2t2 dt

)n−1

= n4a4 ×
√
π/2

4a3
×
(√

π/2
a

)n−1

= na2−n
(π

2

)n/2
.

Hence

〈Hψ,ψ〉 = na2−n
(π

2

)n/2
+
∫

Rn

V (x)e−2a2x2
dx,

and the hypothesis in the theorem implies 〈Hψ,ψ〉 < 0. �



11.4. Applications 301

This criterion is particularly useful in the one-dimensional case, since the
condition on the potential reads∫

R

V (x)e−2a2x2
dx < −a

√
π

2
,

and the right-hand side vanishes as a→ 0. This observation leads to the following
consequences.

Corollary 11.4.20. Let H be the above operator in L2(R) with potential V (x) ≤ 0,
∀x ∈ R.

a) If there is an interval J ⊂ R obeying
∫
J
V (x) dx < 0, then H has a negative

eigenvalue.
b) If

∫
R
V (x) dx < 0, then H has a negative eigenvalue.

Proof. Note that b) follows at once from a). One has∫
R

V (x)e−2a2x2
dx ≤

∫
J

V (x)e−2a2x2
dx,

which converges to
∫
J V (x) dx < 0 as a → 0 by dominated convergence, and so,

for a small enough, ∫
R

V (x)e−2a2x2
dx < −a

√
π

2

and the condition in Theorem 11.4.19 is satisfied. This proves a). �

Exercise 11.4.21. Check that, in the one-dimensional case, any (nonzero) contin-
uous potential V ≤ 0 of compact support leads to a Schrödinger operator H with
a negative eigenvalue.

Exercise 11.4.22. Give examples of potentials V in Rn so that H has a negative
eigenvalue.

Remark 11.4.23. The idea in the proof of Theorem 11.4.19 can be elaborated in
order to get conditions on V ensuring the existence of infinitely many negative
eigenvalues as well as finitely many. For instance, in one-dimension, if there is c so
that V (x) ≤ 0 for x > c with

∫
[c,∞) V (x) dx = −∞, then dim rng χ(−∞,0)(H) =

∞ [Sche81]. See [BlaS], [DeK08], the book [ReeS78] and the review [Lie80] for
additional information and references related to this vast area of research.

Remark 11.4.24. By a simple adaptation of Exercise 11.4.21, a nonzero continuous
V ≤ 0 in R always produces a negative eigenvalue for H ; it turns out that the same
is true in R2. However, in Rn, n ≥ 3, there are cases of negative V with no negative
eigenvalues for H ; more explicitly, no such eigenvalue is present if

∫
Rn |V (x)|n/2 dx

is sufficiently small [Cw77, Lie80]. Interesting heuristic arguments can be found in
Section 45 of the book [LaL58].
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Exercise 11.4.25. In R3 let the radial potential V (r) = −bχ[0,a](r) (r = |x|, a > 0
and χ is a characteristic function) and H = H0 + V , dom H = H2(R3), a self-
adjoint operator. Consider the eigenvalue equation Hψ = λψ and show that if
b > 0 is small enough, then H has no eigenvalues [LaL58].
Example 11.4.26. In case Planck’s constant � > 0 is taken into account one has
H = H(�) = −�2Δ + V . Assume that the potential V : Rn → R is continu-
ous, bounded from below, H0-compact and that there is x0 ∈ Rn with V (x0) =
minx∈Rn V (x) < 0. Denote the unique self-adjoint extension of H(�) by the
same symbol. Thus dom H ⊃ C∞0 (Rn) and σess(H(�)) = [0,∞). In spite of Re-
mark 11.4.24, if � is small enough a negative eigenvalue is always present. In fact,
let ψ ∈ C∞0 (Rn) with support Sψ in a neighborhood of x0 with V (x) ≤ V (x0)/2,
∀x ∈ Sψ; then

〈ψ,H(�)ψ〉 = �2‖∇ψ‖2 +
∫

Rn

|ψ(x)|2V (x) dx

= �2‖∇ψ‖2 +
∫
Sψ

|ψ(x)|2V (x) dx

≤ �2‖∇ψ‖2 +
1
2
V (x0)‖ψ‖2

is negative for � small enough and a negative eigenvalue does exist (and it belongs
to the discrete spectrum). The general study of small �, including the limit � ≈ 0,
is called the semiclassical limit of H(�). See also Section 14.5.
Exercise 11.4.27. By picking ψj ∈ C∞0 (Rn) with pairwise disjoint supports, show
that given a positive integer k it is possible to take Planck’s constant small enough
so that H(�), in Example 11.4.26, has at least k negative eigenvalues.

In some cases it is possible to characterize the eigenvalues below the essential
spectrum by means of a variational approach described in Proposition 11.4.28.
Occasionally this characterization can be used to estimate the eigenvalues from
above, as indicated in an exercise.

Proposition 11.4.28. Let T be a bounded from below self-adjoint operator acting in
H. Suppose that, up to multiplicities, the eigenvalues of T are

λ0 < λ1 < λ2 < · · · < inf σess(T ).

Then

λ0 = inf
0�=ξ∈dom T

〈ξ, T ξ〉/‖ξ‖2, E0 := N(T − λ01),

λ1 = inf
0�=ξ∈dom T∩E⊥

0

〈ξ, T ξ〉/‖ξ‖2, E1 := E0 ⊕ N(T − λ11),

λk = inf
0�=ξ∈dom T∩E⊥

k−1

〈ξ, T ξ〉/‖ξ‖2,

where Ek−1 := Ek−2 ⊕ N(T − λk−11).
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Proof. The proof begins with λ0 and then repeats the procedure. If Tξ0 = λ0ξ0,
ξ0 
= 0, then

inf
0�=ξ∈dom T

〈ξ, T ξ〉/‖ξ‖2 ≤ 〈ξ0, T ξ0〉/‖ξ0‖2 = λ0.

Since λ0 is the lower bound of the spectrum of T , then T ≥ λ01 and consequently

0 ≤ inf
0�=ξ∈dom T

〈ξ, (T − λ01)ξ〉/‖ξ‖2;

hence λ0 ≤ inf0�=ξ∈dom T 〈ξ, T ξ〉/‖ξ‖2, and the expression for λ0 in the theorem
follows.

Now, note that χ{λ0}(T ) is the projection onto E0 and it reduces T ; so write
T = TE0 ⊕ TE⊥

0
and, by Proposition 11.1.1,

σ(TE⊥
0

) = {λ1, λ2, . . . } ∪ σess(T ).

Apply the above steps to get the first eigenvalue of TE⊥
0
, that is,

λ1 = inf
0�=ξ∈dom T

E⊥
0

〈ξ, TE⊥
0
ξ〉/‖ξ‖2

= inf
0�=ξ∈dom T∩E⊥

0

〈ξ, T ξ〉/‖ξ‖2.

Note that E1 := E0⊕N(T−λ11) = rng χ{λ0,λ1}(T ) and use the same procedure to
get λ2 as well as the remaining eigenvalues below the essential spectrum of T . �
Exercise 11.4.29. Get an upper bound for the first eigenvalue of the operators
H2ψ = −ψ′′ + x2 and H4ψ = −ψ′′ + x4 in L2(R) by considering the function
ψa(x) = e−ax

2
, a > 0, and minimizing 〈ψa, Hjψa〉, j = 2, 4, with respect to the

parameter a (by Theorem 11.5.6, both operators are purely discrete).
Exercise 11.4.30. Let T be self-adjoint and ETξ = 〈ξ, T ξ〉/‖ξ‖2 the expectation
value of T with 0 
= ξ ∈ dom T (see page 132 for a physical interpretation). If for
all η ∈ dom T one has

d

ds
ETξ+sη

∣∣∣∣
s=0

= 0,

show that Tξ = ETξ ξ, that is, ξ is an eigenvector of T whose corresponding eigen-
value is ETξ .

11.4.5 Resolvent Convergence and Essential Spectrum

In this subsection Tn, T denote self-adjoint operators.

Proposition 11.4.31. Suppose Tn
NR−→ T .

i) If σ(Tn) is discrete in (a, b) for all n, then σ(T ) is discrete in (a, b).
ii) If σess(Tn) = [a, b], −∞ ≤ a ≤ b ≤ ∞, ∀n, then σess(T ) = [a, b].
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The proof will make use of the following lemma which is of independent
interest.

Lemma 11.4.32. T has purely discrete spectrum in (a, b) iff f(T ) is a compact
operator for all continuous f with support in (a, b).

Proof. It is enough to assume that f has support [ã, b̃] ⊂ (a, b). If T has discrete
spectrum in (a, b), then the spectrum of T has only a finite number of eigenvalues
t1, . . . , tk in [ã, b̃], each of them of finite multiplicity. Hence,

χ[ã,b̃](T )T =
k∑
j=1

tjχ{tj}(T )

has finite rank and so is a compact operator. By noting that

f(T ) = χ[ã,b̃](T )f(T ) =
k∑
j=1

f(tj)χ{tj}(T )

has also finite rank, it follows that f(T ) is compact.
Suppose now that every f(T ) is compact (f as in the lemma). Given [ã, b̃] ⊂

(a, b) take a continuous function f so that

χ[ã,b̃] ≤ f ≤ χ(a,b).

Then the projection χ[ã,b̃](T ) = χ[ã,b̃](T )f(T ) is a compact operator, since it is
the product of a bounded operator (itself) by the compact one f(T ). Necessarily
a compact projection has finite rank, and so any t ∈ [ã, b̃] ∩ σ(T ) is an isolated
eigenvalue of T of finite multiplicity. Since this holds for any compact subinterval
of (a, b), T has discrete spectrum in this interval. �

Proof. [Proposition 11.4.31] i) If f is continuous with support in (a, b), then
f(Tn) → f(T ) in B(H) (see Exercise 10.1.14). By Lemma 11.4.32, f(Tn) is compact
for any n, and Theorem 1.3.13 implies that f(T ) is compact. Apply Lemma 11.4.32
again.

ii) By Corollary 10.2.5, [a, b] ⊂ σess(T ). By i), R \ [a, b] ⊂ σd(T ). Combine
these two statements. �

Exercise 11.4.33. Adapt the proof of Proposition 11.4.31ii) to the case σess(Tn) =
[an, bn], Tn

NR−→ T , and conclude that σess(T ) = [a, b] for some −∞ ≤ a ≤ b ≤ ∞.
Conclude also that necessarily one has a = limn→∞ an and b = limn→∞ bn.

Example 11.4.34. In case of just strong convergence in the resolvent sense, Exam-
ple 10.3.4 shows that it may occur that σess(Tn) = R, ∀n, and σess(T ) = {0}.
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11.5 Discrete Spectrum for Unbounded Potentials

The main goal of this section is to show that for potentials V ∈ L2
loc(R

n), bounded
from below V (x) ≥ β > −∞ and with

lim
|x|→∞

V (x) = ∞,

the corresponding Schrödinger operators H , given by the unique self-adjoint ex-
tension of H0 + V with domain C∞0 (Rn) (see Corollary 6.3.5), has purely discrete
spectrum. An important especial case is given by the harmonic oscillator potential
V (x) = κ|x|2, κ > 0. By considering V − β, it is possible to assume that V ≥ 0 in
what follows, and this will be done.

Before proceeding to a detailed proof, a prominent decomposition of such
unbounded potentials will be underlined. For any given λ > 0, define

Vλ(x) = min {V (x) − λ, 0} , V λ(x) = max {V (x) − λ, 0} ,

so that V − λ = V λ + Vλ, V λ ≥ 0 and the support of Vλ, denoted by Ωλ =
{x ∈ Rn : Vλ(x) 
= 0}, is a compact subset of Rn if lim|x|→∞ V (x) = ∞. The latter
property will be crucial in the proof of discrete spectrum.

Lemma 11.5.1. Let V ∈ L2
loc(R

n), V (x) ≥ 0, and H the unique self-adjoint exten-
sion of H0 + V , dom (H0 + V ) = C∞0 (Rn). Then:

a) The operator H1/2
0 R−1(H)1/2 is bounded with norm ≤ 1.

b) For each bounded borelian Λ ⊂ R, the operator χΛ(x)R−1(H
1/2
0 ) is compact.

Proof. Note that H ≥ 0 and both R−1(H0) and R−1(H) are bounded self-adjoint
operators.

a) For ψ ∈ C∞0 (Rn),

‖H1/2
0 ψ‖2 = 〈ψ,H0ψ〉 ≤ 〈ψ,Hψ〉

≤ 〈ψ, (H + 1)ψ〉 = ‖(H + 1)1/2ψ‖2.

Write ψ = R−1(H)1/2φ; thus∥∥∥H1/2
0 R−1(H)1/2φ

∥∥∥ ≤ ‖φ‖, ∀φ ∈ D = (H + 1)1/2C∞0 (Rn).

Since dom H is a core of H1/2 it follows that D is dense in L2(Rn), so the above
inequality holds for all φ ∈ L2(Rn). Therefore

∥∥∥H1/2
0 R−1(H)1/2

∥∥∥ ≤ 1.

b) It is a consequence of Lemma 11.4.2, with f(x) = χΛ(x) and g(p) =
(|p| + 1)−1, since f ∈ L2(Rn) and g ∈ B∞∞(Rn). �
Exercise 11.5.2. Present details of the conclusion that the subspace D in the proof
of Lemma 11.5.1 is dense in the Hilbert space; see Proposition 9.3.5.
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Definition 11.5.3. A self-adjoint operator T , acting in L2(Rn), for which

χΛ(x)Rz(T )

is a compact operator for some z ∈ ρ(T ) (and so for all z ∈ ρ(T )) and all bounded
borelian Λ ⊂ R is called locally compact.

Example 11.5.4. H1/2
0 and the operator H in Lemma 11.5.1 are locally compact.

Proof. The case of H1/2
0 is immediate from Lemma 11.5.1. Now the operator H .

For any bounded borelian Λ ⊂ R one has

χΛ(x)R−1(H) = χΛ(x)R−1(H)
1
2 R−1(H)

1
2 = ABR−1(H)

1
2 ,

with, by Lemma 11.5.1, A = χΛ(x)R−1(H
1/2
0 ) a compact operator and B =

(H1/2
0 +1)R−1(H)1/2 a bounded operator. It follows that χΛ(x)R−1(H) is compact

by Proposition 1.3.7. �
Exercise 11.5.5. Show that H0 is a locally compact operator.

Theorem 11.5.6. Let V ∈ L2
loc(R

n), V (x) ≥ 0, and H the unique self-adjoint
extension of H0 + V , dom (H0 + V ) = C∞0 (Rn). If lim|x|→∞ V (x) = ∞, then H
has purely discrete spectrum.

Proof. Let λ > 0 and Hλ the unique (see Corollary 6.3.5) self-adjoint extension of
H0 +V λ with dom (H0 +V λ) = C∞0 (Rn). Vλ is a bounded multiplication operator
(see the beginning of this section for notation),

H − λ1 = Hλ + Vλ

and Ωλ is a compact subset of Rn. By Example 11.5.4, χΩλ
(x)R−1(Hλ) is a com-

pact operator. Thus

Vλ(x)R−1(Hλ) = Vλ(x)χΩλ
(x)R−1(Hλ)

is also compact; hence, Vλ is Hλ-compact. Since Hλ ≥ 0, by Weyl criterion, that
is, Corollary 11.3.6,

σess(H − λ1) = σess(Hλ) ⊂ [0,∞),

and so
σess(H) ⊂ [λ,∞).

Since this holds true for all λ > 0, it follows that σess(H) = ∅. �

Theorem 11.3.13 implies

Corollary 11.5.7. Let H be as in Lemma 11.5.1 with lim|x|→∞ V (x) = ∞. Then
Rz(H) is compact for all z ∈ ρ(H).

Example 11.5.8. If V (x) is a real polynomial with lim|x|→∞ V (x) = ∞, then the
unique self-adjoint extension of H0 + V has purely discrete spectrum.
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Exercise 11.5.9. The harmonic oscillator hamiltonian H = H0 + x2 in L2(R),
discussed in Example 2.3.3, has purely discrete spectrum and ψ0(x) = e−x

2/2 is
an eigenfunction of H with Hψ0 = ψ0. Verify that H1 = H0 + x2 + ε|x| (resp.
H4 = H0 +x2 +εx4), ε ≥ 0, are purely discrete operators and use Exercise 9.5.4 to
show that H1 (resp. H4) has an eigenvalue in the interval [1−εa, 1+εa], a =

√
π/2

(resp. a = 105
√
π/16).

Remark 11.5.10. The condition lim|x|→∞ V (x) = ∞, with bounded below V ∈
L2

loc, is not necessary for discrete spectrum, since oscillations are admissible. In
L2(R) a necessary and sufficient condition for discrete spectrum given in [Mol53] is

lim
|x|→∞

∫ a+ε

a

V (x)dx = ∞, ∀ε > 0;

there are also conditions in L2(Rn). For corresponding conditions on operators
with magnetic fields see [KoMS04].
Exercise 11.5.11. Let T1, T2 be positive self-adjoint operators and assume that
b1 ≤ b2, as in Lemma 10.4.4. Show that if T1 has purely discrete spectrum, then
T2 is also purely discrete. Hint: For ξ ∈ dom T2, show that

‖R−1(T1)
1
2 ξ‖2 ≤ ‖R−1(T2)

1
2 ξ‖2,

and for η ∈ H, write ξ = R−1(T2)
1
2 η and conclude that A = (T1 +1)

1
2R−1(T2)

1
2 is

bounded. Write R−1(T2)
1
2 = R−1(T1)

1
2A and conclude that R−1(T2) is compact.

11.6 Spectra of Self-Adjoint Extensions

In this section some relations among the spectra of self-adjoint extensions of a given
hermitian operator S : dom S � H → H will be discussed. It will be assumed that
S is closed and with equal deficiency indices n+(S) and n−(S). In this case denote
d(S) := n+(S) = n−(S).

It is clear that the eigenvalues of an operator are preserved by its extensions.
In the case of hermitian operators more can be said. Before the rigorous argu-
ments, it is worth saying something at an intuitive level. If S is a closed hermitian
operator, by Theorem 2.2.11,

dom S∗ = dom S ⊕S∗ K+(S) ⊕S∗ K−(S),

so if T1 and T2 are self-adjoint extensions of S, then X = T1 − T2 is the zero
operator on dom S; if d(S) < ∞, since both T1, T2 ⊂ S∗, the operator X can be
nonzero only on a subspace of the finite-dimensional K+(S) ⊕S∗ K−(S), so its
spectrum should be discrete there. I.e., if this intuitive reasoning is correct, the
multiplicity of each eigenvalue (including new ones) of T1 and/or T2 increases at
most by a finite amount with respect to S, and the essential spectrum of T1 and
T2 coincide. Now the correct statements and proofs.
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Proposition 11.6.1. Let S be hermitian and closed. If λ is an eigenvalue of S of
multiplicity m, then λ is also an eigenvalue of each of its self-adjoint extensions T
and of multiplicity ≤ m+ d(S).

Proof. By Proposition 2.5.8, dim(dom T/dom S) = d(S) (see also the remark that
follows that proposition). Put

M(λ) := N(T − λ1) ∩ N(S − λ1)⊥,

and note that
N(T − λ1) = N(S − λ1) ⊕M(λ).

The task is to show that d(S) is an upper bound to dimM(λ). Since N(S−λ1) =
N(T −λ1)∩dom S it follows that M(λ)∩dom S = {0}. Now M(λ) ⊂ dom T and
dom S ⊂ dom T , so

M(λ) + dom S := {ξ + η : ξ ∈M(λ), η ∈ dom S} ⊂ dom T.

Hence, dimM(λ) ≤ dim(dom T/dom S) = d(S). �

For the discussion of the essential spectrum the following variation of Weyl’s
criterion 11.3.6 will be used.

Proposition 11.6.2. Let T, S be self-adjoint operators. If Ri(T )−Ri(S) is a compact
operator, then σess(S) = σess(T ).

Proof. Put Q := Ri(T ) − Ri(S). If t ∈ σess(T ), then there exists a singular Weyl
sequence (ξj) for T at t. Note that Qξj → 0, as j → ∞, and

Ri(T )ξj −
1

t− i
ξj =

Ri(T )
t− i

[(t− i)1− (T − i1)] ξj

=−Ri(T )
t− i

(T − t1) ξj → 0,

which implies

lim
j→∞

‖Ri(T )ξj‖ =
1

|t− i| > 0.

The goal is to show that t ∈ σess(S). Since

lim
j→∞

‖Ri(S)ξj‖ = lim
j→∞

‖Ri(T )ξj −Qξj‖ =
1

|t− i| ,

then for sufficiently large j one has

‖Ri(S)ξj‖ ≥ 1
2|t− i|

and the sequence

ηj :=
Ri(S)ξj

‖Ri(S)ξj‖
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is normalized with ηj
w−→ 0; in fact, for any ζ ∈ H,

〈ηj , ζ〉 =
1

‖Ri(S)ξj‖
〈ξj , R−i(S)ζ〉

which vanishes for j → ∞ since ξj
w−→ 0 and ‖Ri(S)ξj‖ → 1/|t− i|.

Next it will be checked that (S − t1)ηj → 0, so that, by Exercise 11.2.8, (ηj)
is a singular Weyl sequence for S at t and t ∈ σess(S). Indeed,

(S − t1)ηj = (S − i1)ηj + (i− t)ηj

=
t− i

‖Ri(S)ξj‖

(
ξj
t− i

−Ri(S)ξj

)
=

t− i

‖Ri(S)ξj‖

(
ξj
t− i

−Ri(T )ξj +Qξj

)
→ 0.

Hence σess(T ) ⊂ σess(S). Exchange the roles of S and T to get σess(S) ⊂ σess(T ).
The proposition is proved. �

Exercise 11.6.3. Show that i in Proposition 11.6.2 can be replaced by any z ∈
ρ(T ) ∩ ρ(S).

Exercise 11.6.4. Show that if (T−S) is T -compact, then Rz(T )−Rz(S) is compact
for any z ∈ ρ(T ) ∩ ρ(S). Thus, in principle, Proposition 11.6.2 is a generalization
of Weyl criterion 11.3.6.

Lemma 11.6.5. If T1 and T2 are two self-adjoint extensions of the closed and
hermitian operator S, then Q := Ri(T1) −Ri(T2) is an operator of rank ≤ d(S).

Proof. First note that Q (rng (S − i1)) = 0; by continuity of the operator Q one
has Q(rng (S − i1)) = 0, and so

rng Q = Q [rng (S − i1)]⊥ = QK+,

where K+ is a deficiency subspace of S. Since dim K+ = d(S), the rank of Q is
≤ d(S). �

Theorem 11.6.6. If T1 and T2 are two self-adjoint extensions of the closed and
hermitian operator S with d(S) <∞, then σess(T1) = σess(T2).

Proof. By Lemma 11.6.5, Ri(T1) − Ri(T2) is a finite rank operator, so compact.
Apply Proposition 11.6.2. �

Corollary 11.6.7. If a self-adjoint extension of a closed and hermitian operator S,
with d(S) < ∞, has purely discrete spectrum, then this holds for all self-adjoint
extensions of S.
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Remark 11.6.8. If the deficiency indices n− = n+ = ∞, there are many possi-
bilities for the spectra of the corresponding self-adjoint extensions. Based on the
intuitive discussion on page 307, since in this case self-adjoint extensions differ on
their action on the infinite-dimensional deficiency subspaces, a richness of spectral
possibilities should be expected. For precise results see [BraN96].

11.6.1 Green Function and a Free Compact Resolvent

In this subsection the Green function of a particular self-adjoint extension HN of
the free energy operator on [0, 1] (see Example 7.3.4) will be computed, and the
corresponding resolvent operator shown to be compact. It will follow, by Theo-
rem 11.3.13, that this operator HN has purely discrete spectrum and, by Corol-
lary 11.6.7, that all self-adjoint extensions HÛ have empty essential spectra. This
simple example illustrates quite well the involved ideas and, as a subproduct, the
eigenvalues of this self-adjoint extension HN are found.

Recall that the initial energy operator is Hψ = −ψ′′, dom H = C∞0 (0, 1),
n− = n+ = 2, dom H∗ = H2[0, 1] and its self-adjoint extensions HÛ are labeled
by the 2 × 2 unitary matrix Û . The dom HÛ is the subspace of ψ ∈ H2[0, 1] so
that (

1− Û
)(ψ′(0)

ψ′(1)

)
= −i

(
1 + Û

)(−ψ(0)
ψ(1)

)
,

and HÛψ = −ψ′′.
For z ∈ C and ψ ∈ L2[0, 1], write Rz(HÛ )ψ = φ ∈ dom HÛ so that

(HÛ − z1)φ(x) = −φ′′(x) − zφ(x) = ψ(x),

which is a second-order linear differential equation for φ. For z 
= 0, the solutions
of the homogeneous equation are linearly spanned by φ±(x) = exp (±i

√
z x); fix,

say, Im
√
z ≥ 0. Note that ψ ∈ L1[0, 1].

The wronskian Wx[φ+, φ−] = −2i
√
z and, by the variation of parameters

technique (see page 180), there are constants b± so that

φ(x) = b+φ+(x) + b−φ−(x)

− 1
2i
√
z

∫ x

0

(
ei
√
z (x−s) − e−i

√
z (x−s)

)
ψ(s) ds

= b+φ+(x) + b−φ−(x) − 1√
z

∫ x

0

sin
(√
z (x− s)

)
ψ(s) ds.

Thus,

φ′(x) = i
√
z (b+φ+ − b−φ−) −

∫ x

0

cos(
√
z (x − s))ψ(s) ds.

Up to this point no specific self-adjoint extension was selected; by choosing the
Neumann boundary condition φ′(0) = 0 = φ′(1), i.e., Û = −1 above, and denoting
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HN = HÛ=−1, it follows that

b+ = b− = − 1
2
√
z sin

√
z

∫ 1

0

cos(
√
z (1 − s))ψ(s) ds.

Hence

φ(x) =− 1√
z

[
cos

√
zx

sin
√
z

∫ 1

0

cos(
√
z(1 − s))ψ(s)ds

+
∫ x

0

sin
(√
z (x− s)

)
ψ(s) ds

]
=
∫ 1

0

G(x, s; z)ψ(s) ds = (Rz(HN )ψ)(x),

where G(x, s; z) is the Green function of such a self-adjoint extension, which is
given by (recall z 
= 0)

G(x, s; z) =

⎧⎨⎩−1√
z

[
cos
√
zx

sin
√
z

cos(
√
z(1 − s)) + sin(

√
z (x− s))

]
, s < x

− cos
√
zx√

z sin
√
z

cos(
√
z(1 − s)), s > x

.

Similarly, for z = 0 one gets φ+(x) = 1, φ−(x) = x,

φ(x) = b+ + b−x+
∫ x

0

sψ(s) ds− x

∫ x

0

ψ(s) ds,

φ′(x) = b−−
∫ x
0
ψ(s) ds, and imposing Neumann conditions it follows that b− = 0,

and 0 = φ′(1) = −
∫ 1

0
ψ(s) dx, so that φ(1) = b+ +

∫ 1

0
sψ(s) ds. Since this holds for

all b+ ∈ C, and φ is a continuous function, the resolvent operator is not defined
for z = 0; in fact, the constant function ψ(x) = 1 is an eigenvector of HN with
zero eigenvalue and 0 ∈ σ(HN ) (check this!).

Thus the resolvent operator Rz(HN ) is an integral operator whose kernel is
the Green function; note that for z = 1 (or take any value z ∈ C \R) the function
G(x, s; 1) ∈ L2([0, 1] × [0, 1]), and so, by Example 1.4.9, it is a Hilbert-Schmidt
operator, in particular a compact one. By applying successively Theorems 11.3.13
and 11.6.6 it follows that all self-adjoint extensions HÛ have purely discrete spec-
tra.

Furthermore, in case of Neumann conditions dealt with above, by including
the eigenvalue λ0 = 0, one sees that the Green function is not defined (it has
poles) at λn so that sin

√
λn = 0, that is, λn = n2π2, n = 0, 1, 2, . . . . Therefore,

each λn belongs to the spectrum of this self-adjoint operator HN ; since they are
isolated points in the spectrum, σ(HN ) = {λn}, and Corollary 11.2.3 implies they
are eigenvalues.
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Exercise 11.6.9. Redo the above analysis for the Dirichlet self-adjoint extension
HD = HÛ=1, and check that the Green function is well defined for z = 0, so that
zero belongs to the resolvent of HD.
Exercise 11.6.10. Compute the Green function and spectra of all self-adjoint ex-
tensions for the momentum operator on the interval [0, 1], as discussed in Exam-
ple 2.6.5. Check that such Green functions are Hilbert-Schmidt operators.
Exercise 11.6.11. Show that for any λ ∈ R ∪ {∞} the free energy operator Hλ

on [0,∞), discussed in Example 7.3.1, has σess(Hλ) = [0,∞). Note that it is
enough to consider a fixed value of λ, say λ = ∞, check that, for z > 0, for any
0 
= ψ ∈ L2[0,∞) one has Rz(Hλ)ψ /∈ L2[0,∞), so that z ∈ σ(Hλ) for any z > 0,
and combine this with Corollary 11.6.7 and Exercise 7.3.2.
Exercise 11.6.12. Let T be self-adjoint and λ0 ∈ σd(T ) with eigenfunction ψ0. Use
Corollary 1.5.14 to show that the function

C � z �→ 〈ψ0, Rz(T )ψ0〉

is meromorphic on a neighbourhood of λ0 with a pole at λ0.



Chapter 12

Spectral Decomposition II

The prominent spectral decomposition of a self-adjoint operator into a point part,
an absolutely continuous part, and a singular continuous part is discussed in de-
tail. Some basic criteria are presented. At the end of the chapter, the Weyl-von
Neumann and wonderland theorems are proved. Dynamical consequences of this
spectral decomposition are described in Chapter 13.

12.1 Point, Absolutely Continuous and
Singular Continuous Subspaces

Given two (finite) measures μ, ν, the standard notations

μ ⊥ ν and μ( ν

indicate that μ and ν are mutually singular and that μ is absolutely continuous
with respect to ν, respectively. In case μ ( ν the respective Radon-Nikodym
derivative will be denoted by dμ/dν, as usual.

Let � denote the Lebesgue measure over the Borel sets A of R. Recall that, by
Lebesgue decomposition, a Borel measure μ over R can be (uniquely) decomposed
as μ = μp +μc, with μc and μp denoting its continuous part (that is, μc({t}) = 0,
∀t ∈ R) and point part (that is, there is a countable set Ω so that μp(R \Ω) = 0),
respectively. Note that μp ⊥ �, that is, they are mutually singular measures. By
Lebesgue decomposition one has (uniquely) μc = μac + μsc, with μac ( � and
μsc ⊥ �, so that

μ = μp + μac + μsc.

μac is called the absolutely continuous component of μ (with the complement “with
respect to Lebesgue measure” being understood), while μsc is the singular contin-
uous component of μ. Such decompositions will be used to perform corresponding
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decompositions of self-adjoint operators, via their respective spectral measures,
since their spectra are nonempty and real.

In this chapter T : dom T � H → H will always denote a self-adjoint operator
acting in the separable Hilbert space H and μξ = μTξ the spectral measures of T
at ξ ∈ H.

Definition 12.1.1. The point subspace of T is Hp = Hp(T ) ⊂ H given by the
closure of the linear subspace spanned by the eigenvectors of T . Its orthogonal
complement Hc = Hc(T ) := Hp(T )⊥ is the continuous subspace of T . PTp and
PTc will denote the respective orthogonal projection operators.

Theorem 12.1.2. Let T be self-adjoint.

i) There exists a countable set Λ ⊂ R so that

Hp(T ) = {ξ ∈ H : μξ(R \ Λ) = 0}.

Λ can be taken as the set of eigenvalues of T .
ii) Hc(T ) = {ξ ∈ H : μξ({t}) = 0, ∀t ∈ R}, that is, the function

t �→ ‖χ(−∞,t](T )ξ‖ is continuous.
iii) H = Hp(T ) ⊕Hc(T ) and both Hp(T ) and Hc(T ) reduce T .

Proof. Let Λ = {λj}j be the set of eigenvalues of T , i.e., Tξj = λjξj , ‖ξj‖ = 1,
ξj ∈ dom T , ∀j.

i) If ξ ∈ Hp, then ξ =
∑
j ajξj ,

∑
j |aj |2 = ‖ξ‖2. Thus χΛ(T )ξ = ξ and

μξ(R \ Λ) = 0.
Now, if for ξ ∈ H there exists a countable set Ω = {tj}j, tj 
= tk if j 
= k,

with μξ(R \ Ω) = 0, one has

ξ = χΩ(T )ξ =
∑
j

χ{tj}(T )ξ.

By Theorem 11.2.1, for each tj so that χ{tj}(T )ξ 
= 0, the vector χ{tj}(T )ξ is an
eigenvector of T with eigenvalue tj , so it follows that tj ∈ Λ and ξ ∈ Hp(T ).

ii) By definition Hc(T ) contains no eigenvector of T , so if ξ ∈ Hc one has
χ{t}(T )ξ = 0 for all t ∈ R. Thus, μξ({t}) = 〈ξ, χ{t}(T )ξ〉 = 0.

If μξ({t}) = 0 for all t ∈ R, then if Tη = λη it follows that

〈η, ξ〉 = 〈χ{λ}(T )η, ξ〉 = 〈η, χ{λ}(T )ξ〉 = 0,

and so ξ ∈ Hp(T )⊥ = Hc(T ).
iii) Let ξ ∈ H. Then PTp ξ ∈ Hp(T ) and by i) one has χΛ(T )PTp ξ = PTp ξ.

Thus, for any Borel set Ω ∈ A,

χΩ(T )PTp ξ = χΩ(T )χΛ(T )PTp ξ = χΛ(T )χΩ(T )PTp ξ ∈ Hp(T ).
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Hence (from the left-hand side of this relation) χΩ(T )PTp = PTp χΩ(T )PTp . By
taking the adjoint of this equality it follows that

χΩ(T )PTp = PTp χΩ(T ), ∀Ω ∈ A,

and so, by Proposition 9.8.5, Hp(T ) reduces T . Since PTc = 1−PTp , it is immediate
that Hc(T ) = Hp(T )⊥ also reduces T . �

Due to Theorem 12.1.2ii) Hp(T ) is also called the discontinuous subspace
of T . One then has the decomposition

T = Tp ⊕ Tc, Tp := TPTp , Tc := TPTc ,

as in Theorem 9.8.3.

Definition 12.1.3. The point spectrum of T is σp(T ) := σ(Tp), and the continuous
spectrum of T is σc(T ) := σ(Tc).

Note that Tc has no eigenvalues and, by Proposition 11.1.1,

σ(T ) = σp(T ) ∪ σc(T ).

These sets are not necessarily disjoint.
Example 12.1.4. Let H = C ⊕ L2[−1, 1], h : [−1, 1] ←↩ be the function h(t) = t,
and T : H ←↩ given by T (z, ψ) := (0,Mhψ), z ∈ C and ψ ∈ L2[−1, 1]. Then,
since Mh has no eigenvalues and T (z, 0) = 0, it is found that σp(T ) = {0},
σc(T ) = σ(Mh) = [−1, 1] and σp(T ) ∩ σc(T ) 
= ∅.

Definition 12.1.5. Let T be self-adjoint.

i) The singular subspace of T is

Hs(T ) := {ξ ∈ H : μξ ⊥ �}.

So, Hp(T ) ⊂ Hs(T ).
ii) The absolutely continuous subspace of T is

Hac(T ) := {ξ ∈ H : μξ ( �}.

So, Hac(T ) ⊂ Hc(T ).
iii) The singular continuous subspace of T , denoted by Hsc(T ), is the set of ξ ∈ H

so that μξ(R\Ω) = 0 for some Borel set Ω ⊂ R with �(Ω) = 0 and μξ(Λ) = 0
for all countable sets Λ ⊂ R. Hence, μξ is a singular continuous measure. So,
Hsc(T ) ⊂ Hc(T ) ∩Hs(T ).

Exercise 12.1.6. Check that Hp(T ) ⊂ Hs(T ), Hac(T ) ⊂ Hc(T ) and Hsc(T ) ⊂
Hc ∩Hs(T ).
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Lemma 12.1.7. Hs(T ), Hac(T ) and Hsc(T ) are closed vector subspaces of H. The
respective orthogonal projections will be denoted by PTs , P

T
ac and PTsc .

Proof. The proof will be in three steps.

• If ξ, η ∈ Hs(T ) there exist Borel sets Ωξ and Ωη with �(Ωξ) = 0 = �(Ωη) and
χΩξ

(T )ξ = ξ, χΩη (T )η = η. Thus, for any a, b ∈ C, χΩξ∪Ωη (T )(aξ + bη) =
aξ + bη and so (aξ + bη) ∈ Hs(T ); therefore, Hs(T ) is a vector subspace.

Take a sequence (ξj) ⊂ Hs(T ) with ξj → ξ; then there exist Borel sets
Ωj ∈ A with �(Ωj) = 0 and χΩj (T )ξj = ξj , ∀j. Put Ω = ∪jΩj and note that
�(Ω) = 0 and

χΩ(T )ξ = lim
j→∞

χΩ(T )ξj = lim
j→∞

ξj = ξ,

so that ξ ∈ Hs(T ) and this subspace is closed.
• In view of Hsc(T ) ⊂ Hc(T ) (so Hsc ∩Hp = {0}), the proof that Hsc(T ) is a

closed subspace follows the same lines as above.
• If ξ, η ∈ Hac(T ), then for a ∈ C one has μaξ = |a|2μξ ( �, and aξ ∈ Hac(T ).

Now, for all Ω ∈ A one has

〈(ξ + η), χΩ(T )(ξ + η)〉 = μξ(Ω) + μη(Ω) + μη,ξ(Ω) + μξ,η(Ω).

Since |μξ,η(Ω)| ≤ ‖ξ‖ ‖χΩ(T )η‖ = ‖ξ‖μη(Ω)1/2, it follows that if �(Ω) =
0 then μξ,η(Ω) = 0; hence μξ+η(Ω) = 0 and so (ξ + η) ∈ Hac(T ). Therefore,
Hac(T ) is a vector space.

Suppose (ξj) ⊂ Hac(T ) with ξj → ξ. Let Ω ∈ A. Then,∣∣μξj (Ω) − μξ(Ω)
∣∣= |〈ξj , χΩ(T )ξj〉 − 〈ξ, χΩ(T )ξ〉|
= |〈(ξj − ξ), χΩ(T )ξj〉 + 〈ξ, χΩ(T )(ξj − ξ)〉|
≤ ‖ξj − ξ‖ (‖ξj‖ + ‖ξ‖) −→ 0

as j → ∞, consequently μξj (Ω) → μξ(Ω). If �(Ω) = 0, then

μξ(Ω) = lim
j→∞

μξj (Ω) = 0

and μξ ( �. Therefore, Hac(T ) is a closed subspace.

Thereby the proof is complete. �
Theorem 12.1.8. Let T be self-adjoint.

i) Hs(T ) = Hp(T ) ⊕Hsc(T ).
ii) Hc(T ) = Hac(T ) ⊕Hsc(T ).
iii) H = Hp(T ) ⊕Hac(T ) ⊕Hsc(T ).
iv) Each of these subspaces, i.e., Hκ(T ) with κ ∈ {s, c, p, ac, sc}, reduces the op-

erator T . Denote the corresponding orthogonal projections PTκ and define the
self-adjoint restrictions Tκ := TPTκ .
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Proof. Recall that H = Hp(T )⊕Hc(T ) and every measure can be uniquely written
as μ = μp + μac + μsc. Hence, from Hsc ⊂ Hc and Hac ⊂ Hc one has Hp(T ) ⊥
Hac(T ) and Hp(T ) ⊥ Hsc(T ).

If ξ ∈ Hsc(T ) there exists a (Lebesgue) measure zero set Λ ⊂ R with
χΛ(T )ξ = ξ; thus, if η ∈ Hac(T ) one has χΛ(T )η = 0 and

〈ξ, η〉 = 〈χΛ(T )ξ, η〉 = 〈ξ, χΛ(T )η〉 = 0,

and so Hsc(T ) ⊥ Hac(T ).
i) If ξ ∈ Hs ∩Hp

⊥, then μξ ⊥ � and μξ(Λ) = 0 for all countable sets Λ ⊂ R.
Therefore, due to the decomposition of measures mentioned above, μξ is purely
singular continuous and ξ ∈ Hsc(T ), that is, i) follows.

ii) If ξ ∈ Hc ∩Hac
⊥, then the point part of μξ is zero and μξ ⊥ �. Therefore,

μξ is a singular continuous measure and ξ ∈ Hsc(T ), that is, ii) follows.
iii) follows straightly from ii) and the definitions of Hp and Hc.
iv) It is known that Hp(T ) is a reducing subspace of T . Due to the above

relations, it is enough to show that Hs(T ) reduces T . But this proof is quite similar
to that for Hp(T ) in Theorem 12.1.2, just take Λ as a set with �(Λ) = 0 instead
of a countable set. �
Exercise 12.1.9. Present the details of the proof of Theorem 12.1.8iv).

By Theorem 12.1.8 one has the decomposition

T = Tp ⊕ Tac ⊕ Tsc

alluded in the title of this chapter.

Definition 12.1.10. The absolutely continuous spectrum of T is σac(T ) := σ(Tac)
and the singular continuous spectrum of T is σsc(T ) := σ(Tsc).

Hence σ(T ) = σp(T ) ∪ σac(T ) ∪ σsc(T ). Now some additional nomenclature:
The operator T has purely point spectrum if σac(T ) = ∅ = σsc(T ); purely ab-
solutely continuous spectrum if σp(T ) = ∅ = σsc(T ); purely singular continuous
spectrum if σac(T ) = ∅ = σp(T ). It is also common to say that T is pure point,
and so on. The concept of pure point (and so on) spectrum in a set Λ, similar to
the ones on page 286, will also be employed.
Remark 12.1.11. Note that σp(T ), σac(T ) and σsc(T ) are closed subsets of R, since
they are the spectra of self-adjoint operators (i.e., convenient restrictions of T ).
Note also that σp(T ) is the closure of the set of its eigenvalues; see Example 12.2.2.
Remark 12.1.12. Up to the 1970s, the singular continuous spectrum was considered
a pathology in quantum mechanics and was occasionally named exotic in the
literature; currently they appear, for instance, related to models of quasicrystals.
See Example 12.2.13 for a purely singular continuous operator (one that should
be kept in mind when thinking of such kind of spectrum) and Section 12.6 for an
existential result.
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Exercise 12.1.13. Show that:

a) σd(T ) ⊂ σp(T ).
b) σess(T ) = σc(T ) ∪ {σp(T ) \ σd(T )}.

Conclude then that σc(T ) ⊂ σess(T ).
Exercise 12.1.14. Show that for any Borel set Ω ⊂ R one has

χΩ(Tκ) = PTκ χΩ(T ),

for κ ∈ {p, s, c, ac, sc}.
Exercise 12.1.15. If T, S are two unitarily equivalent self-adjoint operators, show
that σκ(T ) = σκ(S) for κ ∈ {p, s, c, ac, sc, d, ess}.

12.2 Examples

Example 12.2.1. If T is a self-adjoint and compact operator, then T is pure point.
Example 12.2.2. If {qj}j is an enumeration of the rational numbers in [−1, 1],
then T : l2(Z) ←↩, Tej = qjej ({ej}j is the canonical basis of l2(Z)) is self-adjoint,
bounded, pure point and, since the spectrum is a closed set,

σ(T ) = σp(T ) = σess(T ) = [−1, 1].

Note that this operator has point spectrum larger than the set of its eigenvalues.
Example 12.2.3. The hydrogen atom Schrödinger operator HH , discussed in Sub-
section 11.4.1, has continuous spectrum σc(HH) = [0,∞), nonempty discrete spec-
trum σd(HH) ⊂ (−∞, 0) and point spectrum σp(HH) = σd(HH)∪ {0}. Note that
zero is a common element of the point and continuous spectra of this operator.
See Remark 12.3.19.
Example 12.2.4. [Position operator in R] Let T = Mh in L2(R), h : R ←↩, h(t) = t.
Then, for all ψ ∈ L2(R) and Borel sets Λ ⊂ R, one has

μψ(Λ) = 〈ψ, χΛ(T )ψ〉 =
∫

R

χΛ(t) |ψ(t)|2 dt =
∫

Λ

|ψ(t)|2 dt,

so that the spectral measures μψ ( � with dμψ

d� = |ψ(t)|2, a positive function in
L1(R). Therefore T is purely absolutely continuous and σ(T ) = σac(T ) = R.

Exercise 12.2.5. Show that the momentum operator in L2(R) (see Example 2.3.11
and Section 3.3) has purely absolutely continuous spectrum.
Example 12.2.6. [Free fall] The potential V (x) = −gx, x ∈ R, describes a constant
gravitational field of intensity g > 0. The total energy in this case, for a particle
of unity mass and other convenient units, is p2 − gx, implying the formal action
−ψ′′(x) − gxψ(x) for the quantum energy operator. In this case it is convenient
to use Fourier transform (see Chapter 3) to precisely define the energy operator.
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Beginning with dom H̃ = C∞0 (R̂), (H̃ψ)(p) = p2ψ(p) − giψ′(p) (the prime
indicates derivative with respect to p), it is found that its adjoint H = H̃∗ is
given by

dom H =
{
ψ ∈ L2(R̂) : ψ ∈ AC(R̂), (p2ψ(p) − giψ′(p)) ∈ L2(R̂)

}
,

(Hψ)(p) = p2ψ(p) − giψ′(p), ψ ∈ dom H.

An integration by parts shows that this operator is symmetric, so, by Theo-
rem 2.1.24, it is self-adjoint and H̃ is essentially self-adjoint. H is the Schrödinger
operator describing the free fall in a constant gravitational field.

Now let ψλ ∈ dom H be an eigenvector Hψλ = λψλ, for some λ ∈ R. Then

p2ψλ(p) − giψ′λ(p) = λψλ(p),

whose solutions are ψλ(p) = c exp(i(λp − p3/3)/g), c ∈ R, and since ψλ ∈ L2(R̂)
iff c = 0, it follows that H has purely continuous spectrum. Example 12.3.15
complements this result.
Exercise 12.2.7. Based on Example 2.3.11 and Proposition 2.3.20, confirm the
adjoint operator H̃∗ in Example 12.2.6.
Example 12.2.8. Let T 2 denote the two-dimensional torus, i.e., the square [−π, π]×
[−π, π] with the usual identifications (−π, y) ∼ (π, y), ∀y, and (x,−π) ∼ (x, π),
∀x. A continuous function f : R2 → C is 2π-periodic if f(x+ 2π, y) = f(x, y) and
f(x, y + 2π) = f(x, y), ∀x, y ∈ R; its restriction to T 2 will simply be abbreviated
to f : T 2 → C. It is known that the Sobolev space H1(T 2) is dense in H = L2(T 2).

Let α ∈ R and V : T 2 → R be a continuous and real 2π-periodic function.
Consider the self-adjoint operator TV = TV (α) given by

TV ψ := −iα ∂

∂x
ψ − i

∂

∂y
ψ + V (x, y)ψ, ψ ∈ dom TV ,

where dom TV = H1(T 2).
The standard orthonormal basis of H is{

φn,m(x, y) = e−i(nx+my)/(2π) : n,m ∈ Z
}
,

and any ψ ∈ H has the Fourier series expansion

ψ(x, y) =
∑
n,m

an,m φn,m(x, y), ‖ψ‖2
2 =

∑
n,m

|an,m|2.

If V = 0 (null function), then

T0 φn,m = (nα+m)φn,m,

and T0 has purely point spectrum. Note that if α ∈ Q, then each eigenvalue is
isolated and of infinite multiplicity, while if α is an irrational number, then its
eigenvalues are simple but they form a dense set in R, so that σ(T0) = R. In both
cases the spectra are purely essential.
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Proposition 12.2.9. Let α ∈ R \ Q and V as above. If σp(TV ) 
= ∅, then TV is a
purely point operator and σ(TV ) = R.

Proof. By hypothesis there exists an eigenvalue λ ∈ R of TV , that is, there exists
0 
= ψλ ∈ dom TV with TV ψλ = λψλ. Thus

−iα ∂

∂x
ψλ − i

∂

∂y
ψλ + V (x, y)ψλ = λψλ,

iα
∂

∂x
ψλ + i

∂

∂y
ψλ + V (x, y)ψλ = λψλ,

and after multiplying the first of these equations by ψλ, the second by ψλ and
subtracting the first from the second, one gets(

α
∂

∂x
+

∂

∂y

)
ϕ = 0, ϕ := |ψλ|2.

Note that ϕ ∈ L1(T ) and so it can be expressed by Fourier series

ϕ(x, y) =
∑
n,m

an,m φn,m(x, y);

after inserting this into the above equation one gets

−i
∑
n,m

(αn+m) an,m φn,m(x, y) = 0,

so that (αn+m) an,m = 0, ∀(n,m). Since α is an irrational number (αn+m) = 0
iff n = m = 0, consequently an,m = 0 if (n,m) 
= (0, 0). Hence ϕ(x, y) = a0,0 and
it is a constant function.

Therefore the eigenfunction ψλ has constant modulus and by assuming
|ψλ(x, y)| = 1, ∀(x, y), the multiplication operator Ξ : H ←↩, (Ξψ)(x, y) =
ψλ(x, y)ψ(x, y), is unitary and a direct calculation shows that

Ξ−1TV Ξ = T0 + λ1,

that is, TV is unitarily equivalent to T0 +λ1, and since the latter is pure point, so
is TV . Thereby the proof is complete. �

In what follows a characterization of some potentials V so that TV has purely
point spectrum will be presented. For this α will be supposed to be a diophantine
number, that is, there are γ, σ > 0 so that∣∣∣α− n

m

∣∣∣ > γ

|m|σ , ∀ n
m

∈ Q .

Proposition 12.2.10. If V is a Cr function, r > 3, and α is a diophantine number
with σ < r−2, then TV has purely point spectrum and its eigenvalues are precisely
those of T0 plus the average V0,0 =

∫
T V (x, y)dxdy.
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Proof. Note that TV = T0 + V . The idea is to find a continuously differentiable
real function g(x, y) so that e−igTV eig = T0 + λ1; since multiplication by eig is a
unitary operator on H, if one also shows that λ = V0,0, then the spectral assertions
follow.

By imposing that

(T0 + λ1)ψ = e−igTV e
igψ = T0ψ + i (α∂xg + ∂yg + V )ψ,

for ψ ∈ dom TV , one obtains

(α∂xg + ∂yg) = −V + λ,

that is, a differential equation for g. By using Fourier series, write

g(x, y) =
∑
n,m

gn,m e
i(mx+ny), V (x, y) =

∑
n,m

Vn,m e
i(mx+ny)

and insert these expressions into the above differential equation to get∑
n,m

[i(mα+ n) gm,n + Vm,n] ei(mx+ny) = λ.

Hence, λ = V0,0 (the average of V ) and

gm,n = i
Vm,n
αm+ n

, (m,n) 
= (0, 0).

Since V is a Cr function, there is C > 0 so that |Vm,n| ≤ C/(|m|+ |n|)r, ∀(m,n) 
=
(0, 0), and taking into account the diophantine condition on α with σ < r − 2,

|gm,n| =
|Vm,n|

|m| |α+ n/m| ≤
1
|m| ×

C

(|m| + |n|)r × |m|σ
γ

=
C

γ

|m|σ−1

(|m| + |n|)r ≤ C

γ

|m|r−3

(|m| + |n|)r

≤ C

γ

1
(|m| + |n|)3 .

Such decaying properties of the Fourier coefficients gm,n imply g is continuously
differentiable and all manipulations above are justified, including e−igTV e

ig =
T0 + V001. �

Under additional assumptions on α and differentiability of V , more informa-
tion about TV can be obtained.

Corollary 12.2.11. If σ > 2 and r > σ + 2, then TV in Proposition 12.2.10 has
purely point spectrum for α in a set of full Lebesgue measure over R.
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Proof. Fix σ > 2. Note that it is possible to restrict the argument for 0 < α < 1
and 0 < n/m < 1. Let Aγ be the set of such α that the diophantine condition
does not hold with γ; if Aγm, m ≥ 1, is the set of 0 < α < 1 such that there exists
n ∈ {0, 1, . . . ,m− 1} with ∣∣∣α− n

m

∣∣∣ ≤ γ

mσ
,

then Aγ = ∪m≥1A
γ
m. Hence

�(Aγm) ≤
m∑
n=0

2γ
mσ

=
2γ

mσ−1
,

and so �(Aγ) ≤
∑∞
m=1 �(A

γ
m) = 2γ

∑∞
m=1 1/mσ−1 := γC(σ) is convergent since

σ > 2. Therefore, the set of α ∈ (0, 1) so that the diophantine condition holds
with γ > 0 containing (0, 1) \Aγ ; now

�((0, 1) \Aγ) = 1 − �(Aγ) ≥ 1 − γC(σ).

Since this must hold for all γ > 0, it follows that the set of diophantine numbers
in (0, 1), with σ > 2, has full Lebesgue measure there. If additionally V ∈ Cr,
with r > σ + 2, then Proposition 12.2.10 infers that TV (α) is pure point for α in
a set of full Lebesgue measure. �

To close the discussion of Example 12.2.8, note that (for irrational α) Propo-
sition 12.2.10 deals with perturbations of operators with dense point spectrum,
often a difficult question!
Exercise 12.2.12. With respect to Example 12.2.8, check that Ξ is a unitary op-
erator and that Ξ−1TV Ξ = T0 + λ1. Check also that g in the proof of Proposi-
tion 12.2.10 is continuously differentiable.
Example 12.2.13. [Purely singular continuous operator] Let

J = [0, 1/3]∪ [2/3, 1], c : [0, 1] → R, c(t) := χJ (t),

so that if C is the well-known ternary Cantor set, one has for its characteristic
function

χC(t) =
∞∏
j=0

c(3jt (mod 1)) .

Recall that �(C) = 0 and that C is nonempty, compact, with empty interior and it
has no isolated points; also, it has the same cardinality as R.

By defining

cj(t) =
3
2
c(3jt (mod 1)) ,

one has
∫ 1

0

∏n
j=0 cj(t) dt = 1, ∀n, and if I ⊂ [0, 1] is an interval, then

n �→
∫
I

⎛⎝ n∏
j=0

cj(t)

⎞⎠ dt
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is a nonincreasing sequence so that there exists a positive measure μC defined on
intervals by

μC(I) := lim
n→∞

∫
I

n∏
j=0

cj(t) dt,

and we can apply the standard procedure for extending μC from intervals I to
measurable sets Λ. This measure is, intuitively, “the measure uniformly distributed
over C.”

μC is singular (with respect to Lebesgue), since μC ([0, 1] \ C) = 0 and �(C) =
0, and it is also continuous, since for every interval Ik with �(Ik) ≤ 1/3k one has
μC(Ik) ≤ 1/2k, so that μC({t}) = 0 for every t ∈ [0, 1]. Therefore, μC is singular
continuous.

Consider now the operator T = Mh : L2
μC [0, 1] ←↩, with h(t) = t. Then T is

purely singular continuous since for every ψ ∈ L2
μC [0, 1] the corresponding spectral

measure μTψ of T is

μTψ(Λ) = ‖χΛ(T )ψ‖2 =
∫

Λ

|ψ|2 dμC ,

that is, μTψ = |ψ|2dμC , which is a singular continuous measure (in fact,
μTψ ([0, 1] \ C) = 0 and μTψ({t}) = 0 for every t ∈ [0, 1]). Further, by Proposi-
tion 2.3.27, σ(T ) = σsc(T ) = C.
Exercise 12.2.14. Set Cj(x) =

∫ x
0
cj(t) dt. Show that:

a) Cj(0) = 0, Cj(1) = 1, ∀j, and t �→ Cj(t) is nondecreasing for all t.
b) If Ek = {t ∈ [0, 1] : ck(t) = 1}, i.e., the k-th subset in the well-known

construction of the ternary Cantor set C, then if t /∈ Ek one has Ck(t) =
Ck+j(t), ∀j ≥ 0, and derivative C′k(t) = 0.

c) The map t �→ Ck(t) is continuous and there exists a continuous C : [0, 1] ←↩
so that Ck → C uniformly as k → ∞, and C(0) = 0, C(1) = 1, C′(t) = 0 for
t /∈ C, C′ ∈ L1[0, 1] and∫ x

0

C′(t) dt = 0 < 1 = C(1) − C(0).

Conclude that C is a singular continuous function, the so-called ternary Can-
tor function. Conclude also that C(x) = μC([0, x]).

The ternary Cantor function is a standard example of a continuous function in
a compact interval, differentiable a.e. with respect to Lebesgue measure, but not
absolutely continuous.
Example 12.2.15. The operator Mh on L2

ν [0, 1], with h(t) = t and ν = μC+�+δ1/2
(δ1/2 is a Dirac measure) has mixed spectrum, since σac(Mh) = [0, 1], σsc(Mh) =
C and σp(Mh) = { 1

2}.
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Exercise 12.2.16. Verify the details in Example 12.2.15.
Remark 12.2.17. A sophisticated and interesting construction that recalls of Ex-
ample 12.2.13 appears in [Pea78a]; Pearson considered measures

μn(I) =
∫
I

n∏
j=0

(1 + gj sin(Njt)) dt

in [0, 1], with 0 < gj < 1 and gj → 0. For subintervals I ⊂ [0, 1] define μ(I) =
limn→∞ μn(I). Then, if Nj increase sufficiently rapidly, it was shown that

1. μ is singular continuous provided
∑∞

j=1 g
2
j = ∞,

2. μ is absolutely continuous provided
∑∞
j=1 g

2
j <∞.

Remark 12.2.18. Most examples of singular continuous spectrum are obtained
rather indirectly, i.e., through proofs of absence of absolutely continuous and ab-
sence of point spectra.

12.3 Some Absolutely Continuous Spectra

For all n the Lebesgue measure over (subsets of) Rn will be denoted by the same
symbol �.

12.3.1 Multiplication Operators

The discussion that follows is closely related to examples in Subsection 8.4.1.
Initially a general result about spectral measures.

Proposition 12.3.1. Let T be self-adjoint in H.

i) If ξ ∈ Hκ(T ), κ ∈ {p, s, c, ac, sc}, and η ∈ H, then

|μξ,η(Λ)|2 ≤ μξ(Λ)μPT
κ η

(Λ), ∀Λ ∈ A.

ii) If ξ ∈ Hac(T ) and η ∈ H, then μξ,η ( �.

iii) If ξ ∈ Hc(T ) and η ∈ H, then μξ,η is a continuous measure.

Proof. i) In view of χΛ(T )2 = χΛ(T ), (PTκ )2 = PTκ , both are self-adjoint,
PTκ χΛ(T ) = χΛ(T )PTκ and, by hypothesis, PTκ ξ = ξ, one has

|μξ,η(Λ)|= |〈χΛ(T )ξ, η〉| = |〈χΛ(T )2PTκ ξ, η〉|
= |〈χΛ(T )PTκ ξ, χΛ(T )η〉| = |〈χΛ(T )ξ, PTκ χΛ(T )η〉|
≤ ‖χΛ(T )ξ‖ ‖χΛ(T )PTκ η‖ =

(
μξ(Λ)μPT

κ η
(Λ)
)1/2

.

ii) and iii) follow by i) since if ξ ∈ Hac(T ) then μξ ( � and if ξ ∈ Hc(T ) then
μξ({t}) = 0, ∀t ∈ R. �
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Theorem 12.3.2. Let E ⊂ Rn be a Borel set with �(E) > 0 and ϕ : E → R a
measurable function. Consider the multiplication operator Mϕ in L2(E). Then, if
�(A) = 0 implies �(ϕ−1(A)) = 0 (A ∈ A), then Mϕ is purely absolutely continu-
ous.

Proof. If ψ ∈ L2(E), for every Borel set A ⊂ R, one has

μψ(A) = 〈ψ, χA(Mϕ)ψ〉

=
∫
E

χA(ϕ(x)) |ψ(x)|2dx =
∫
ϕ−1(A)

|ψ(x)|2dx;

so, if �(A) = 0 ⇒ �(ϕ−1(A)) = 0, then μψ(A) = 0 and μψ ( �. �

Corollary 12.3.3. The free particle hamiltonian H0 in L2(Rn) has purely absolutely
continuous spectrum and σac(H0) = [0,∞).

Proof. Since (F−1H0F)(p) = p2 =
∑n
j=1 p

2
j in L2(R̂n), the results follow by The-

orem 12.3.2 and Proposition 11.4.1. �

Remark 12.3.4. The same argument in Corollary 12.3.3 shows that the operators
Mxk and Mpk , k ∈ N (which includes the position and momentum operators), in
L2(Rn) have purely absolutely continuous spectrum. It is interesting to note that,
in spite of the absolutely continuous spectra of x2 and p2, the sum H = p2 + x2

acting in L2(R) (i.e., the harmonic oscillator hamiltonian – Example 11.3.15) is
purely discrete!

Now the free particle in Z, discussed in Subsection 8.4.3, will be considered.
The corresponding tight-binding Schrödinger operator is h0 : l2(Z) ←↩,

h0 := Sl + Sr, (Slu)j = uj+1, (Sru)j = uj−1,

for u = (uj) ∈ l2(Z), so that h0 is bounded, self-adjoint and ‖h0‖ = 2. By
means of Fourier series (see Subsection 8.4.3 for notation) one has

(
F−1SlF

)
(x) =

Me−ix ,
(
F−1SrF

)
(x) = Meix , so that(

F−1h0F
)
(x) = M2 cos x, x ∈ [−π, π].

Hence, by Theorem 12.3.2 one concludes the

Corollary 12.3.5. The free particle operator h0 in l2(Z) has purely absolutely con-
tinuous spectrum and σ(h0) = σac(h0) = [−2, 2].

Exercise 12.3.6. Use Fourier series to show that for every m ∈ N, and every
ek = (δj,k)j∈Z, that is, the elements of canonical basis of l2(Z),

〈ek, (h0)mek〉 =
2
π

∫ π

0

(2 cos(x))m dx =
∫ 2

−2

sm

π

ds√
4 − s2

.
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Conclude that μek
( � with Radon-Nikodym derivative

dμek

d�
(s) =

{(
π
√

4 − s2
)−1 |s| < 2

0 |s| ≥ 2
.

Exercise 12.3.7. Show that the operator T = cos(−id/dx) in L2(R) has spec-
trum [−1, 1] and it is purely absolutely continuous. This operator is related to the
continuous Harper equation.

12.3.2 Putnam Commutator Theorem

Two technical conditions, related to boundary values in R of the resolvent operator,
that guarantee the presence of absolutely continuous spectrum will be discussed.
Then a result due to Putnam (around 1960) will be derived.

Proposition 12.3.8. Let T be self-adjoint and (a, b) ⊂ R. If for some ξ ∈ H there
exists 0 ≤ c(ξ) <∞ so that

lim inf
ε→0+

sup
t∈(a,b)

ε ‖Rt+iε(T )ξ‖2 ≤ c(ξ),

then χ(a,b)(T )ξ ∈ Hac(T ).

Proof. Consider bounded intervals [ã, b̃] ⊂ (a, b). By the Stone formula (see Sec-
tion 9.5) and the first resolvent identity,

μξ((ã, b̃)) = 〈ξ, χ(ã,b̃)(T )ξ〉

≤ lim
ε→0+

ε

π

∫
(ã,b̃)

〈ξ, Rt−iε(T )Rt+iε(T )ξ〉 dt

= lim
ε→0+

ε

π

∫
(ã,b̃)

‖Rt+iε(T )ξ‖2 dt ≤ 1
π
c(ξ) �((ã, b̃)).

Since every open set in R can be expressed as a countable disjoint union of open
intervals, this inequality holds for any open set Λ ⊂ (a, b). By regularity of the
spectral measure it follows that

μξ(Λ) ≤ 1
π
c(ξ) �(Λ), ∀Λ ⊂ (a, b), Λ ∈ A.

Therefore, μ(χ(a,b)(T )ξ)(·) = μξ((a, b) ∩ ·) ( �. �

Recall that
Fμξ

(t+ iε) = 〈ξ, Rt+iε(T )ξ〉

is the Borel transform of the spectral measure μξ at t + iε, as introduced in
Section 9.5.



12.3. Some Absolutely Continuous Spectra 327

Corollary 12.3.9. Let T be self-adjoint and (a, b) a bounded interval in R. If for
some p > 1 one has

ua,b := sup
0<ε<1

∫
(a,b)

∣∣Im Fμξ
(t+ iε)

∣∣p dt <∞,

then χ(a,b)(T )ξ ∈ Hac(T ).

Proof. By the second resolvent identity

Im Fμξ
(t+ iε) =

1
2i

(Fμξ
(t+ iε) − Fμξ

(t− iε))

= 〈ξ, εRt−iε(T )Rt+iε(T )ξ〉 ,

and, as in the proof of Proposition 12.3.8,

μξ((ã, b̃)) = 〈ξ, χ(ã,b̃)(T )ξ〉

≤ lim
ε→0+

1
π

∫
(ã,b̃)

Im Fμξ
(t+ iε) dt.

If 1/q + 1/p = 1, by Hölder inequality,

μξ((ã, b̃))≤ lim
ε→0+

1
π

(∫
(ã,b̃)

∣∣Im Fμξ
(t+ iε)

∣∣p dt)1/p

�((ã, b̃))1/q

≤ 1
π
u

1/p
a,b �((ã, b̃))

1/q,

and the proof can be finished as the proof of Proposition 12.3.8. �
Theorem 12.3.10 (Putnam). If T and S are bounded self-adjoint operators so that

i(TS − ST ) = B∗B,

for some invertible operator B ∈ B(H), then T is purely absolutely continuous.

Proof. Since B is invertible one has N(B) = {0} and so (rng B∗)⊥ = N(B∗∗) =
N(B) = {0} and rng B∗ is a dense set in H. For ξ = B∗η, η ∈ H, ε > 0, by
Propositions 2.1.12a) and 2.1.6,

ε‖Rt+iε(T )ξ‖2 = ε‖Rt+iε(T )B∗η‖2 ≤ ε‖Rt+iε(T )B∗‖2‖η‖2

= ε‖Rt+iε(T )B∗BRt−iε(T )‖ ‖η‖2

= ε‖Rt−iε(T )B∗BRt+iε(T )‖ ‖η‖2.

On account of Proposition 12.3.8, the goal is to find a (finite) uniform upper
bound for

C(ε) := ε ‖Rt−iε(T )B∗BRt+iε(T )‖
= ε ‖Rt−iε(T )(TS − ST )Rt+iε(T )‖ .
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By Theorem 2.2.17,

C(ε) = ε ‖[1 + (t− iε)Rt−iε(T )]SRt+iε(T )
−Rt−iε(T )S [1 + (t+ iε)Rt+iε(T )] ‖

= ε ‖SRt+iε(T ) − 2iεRt−iε(T )SRt+iε(T ) −Rt−iε(T )S‖

≤ ε ‖S‖1
ε

+
2
ε2
ε2‖S‖ + ε‖S‖1

ε
= 4‖S‖, ∀ε > 0, t ∈ R.

Now apply Proposition 12.3.8 with any interval (a, b) ⊂ R. �
Remark 12.3.11. In Theorem 12.3.10, given T one has to determine S so that
their commutator times i is a positive operator B∗B. Although it is hard to get
immediate applications of this result, it is related to interesting developments
due to Mourre on absence of singular continuous spectra [Mou81], [Mou83]. Such
developments were applied to somewhat involved situations as N -body Schröding-
er operators.
Exercise 12.3.12. If B in Theorem 12.3.10 is not invertible, conclude that
rng B∗ ⊂ Hac(T ).
Exercise 12.3.13. Show that the closure of the set of ξ ∈ H so that there exists
0 < c(ξ) < ∞ for which ‖Rt+iε(T )ξ‖ ≤ c(ξ)/

√
ε for all z = t+ iε ∈ C, t ∈ R and

0 < ε < 1, is contained in Hac(T ).
Remark 12.3.14. The condition in Exercise 12.3.13 is also necessary for ξ ∈
Hac(T ), as discussed in [GuJ74]. Compare with the condition for point spectrum
presented in [AleM78]: if (λk) are the eigenvalues of T , then T is a purely point
operator iff ∑

λk

lim
ε→0+

ε2‖Rλk+iε(T )ξ‖2 = ‖ξ‖2, ∀ξ ∈ H.

Example 12.3.15. It will be shown that for all gravitational intensity g > 0 the free
fall Schrödinger operator (Hψ)(p) = p2ψ(p) − giψ′(p), ψ ∈ dom H , introduced in
Example 12.2.6, has purely absolutely continuous spectrum and σac(H) = R. Two
different proofs will be provided. First a representation of the resolvent of H at
z ∈ C \ R, as an integral operator, will be derived.

(1) For ψ ∈ C∞0 (R̂), let φ(p) = (Rz(H)ψ)(p) so that (H − z1)φ(p) = ψ(p),
which is a differential equation for φ whose solution one searches in terms of an
integral operator representation.

The function R � r �→ v(r) := 1/(r−z) is square integrable and so its Fourier
transform (defined via limit in the mean – see Section 3.1)

v̂z(p) =
1√
2π

∫
R

dr

r − z
e−irp

is well defined and v̂z ∈ L2(R̂). Now it will be checked that

φz(p) =
1√
2π

∫
R

ds v̂z

(
s− p

g

)
e−i(p

3−s3)/(3g) ψ(s)
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equals Rz(H)ψz(p), that is φz(p) = Rz(H)ψ(p). Indeed,

(H − z1)φz(p) =
(
−ig d

dp
+ p2 − z1

)
φz(p)

=
1
2π

∫
R

ds

∫
R

dr

r − z

[
−ig

(
i

g
r − i

g
p2

)
+ p2 − z

]
× eir(p−s)/g e−i(p

3−s3)/(3g) ψ(s)

=
∫

R

ds

(
1
2π

∫
R

dr eir(p−s)/g
)
e−i(p

3−s3)/(3g) ψ(s) = ψ(p),

after using the distributional identity

1
2π

∫
R

dr eir(p−s)/g = δ((p− s)/g).

By Fubini’s theorem,

|φz(p)|=
1
2π

∣∣∣∣∫
R

dr
eirp/g

r − z

∫
R

ds e−irs/ge−i(p
3−s3)/(3g) ψ(s)

∣∣∣∣
≤ 1

2π

∣∣∣∣∫
R

dr
eirp/g

r − z

∣∣∣∣ ‖ψ‖1 =
g

2π

∣∣∣∣∫
R

dr
eirp

gr − z

∣∣∣∣ ‖ψ‖1,

and for z = t + iε, ε > 0, by the Plancherel theorem (note the presence of the
inverse Fourier transform of r �→ 1/(gr − z)),

‖Rz(H)ψ‖2 = ‖φz(p)‖2 =
∫

R

dp |φz(p)|2

≤
(
g‖ψ‖1

2π

)2 ∫
R

dr
1

|gr − z|2

=
(
g‖ψ‖1

2π

)2 ∫
R

dr
1

(gr − t)2 + ε2

=
g

ε 8π
‖ψ‖2

1, ∀t ∈ R.

Therefore, for any interval (a, b) one has

sup
t∈(a,b)

ε ‖Rt+iε(T )ψ‖2 ≤ g

8π
‖ψ‖2

1,

and ψ ∈ Hac(H) by Proposition 12.3.8. Since C∞0 (R̂) � L2(R̂) and this holds for
all intervals (a, b), it follows that Hac(H) = L2(R) and σac(H) = R. Finally, note
that all arguments can be easily adapted for g < 0.



330 Chapter 12. Spectral Decomposition II

(2) Now a shorter argument for Hac(H) = L2(R), which does not use the
above distributional identity, will be presented. Let x and P denote the position
and momentum operator on R and consider the unitary evolution group Us =
e−isP

3
, s ∈ R. Set o(s) := U−sxUs with dom o(s) = S(R). Note that o(0) = x and

d

ds
o(s) = iU−s

(
P 3x− xP 3

)
Us = 3P 2,

so, on S(R) one has o(s) = o(0)+3sP 2 = x+3sP 2. By Example 12.2.6, for all s ∈ R

the operator o(s) is essentially self-adjoint, and with the choice s = sg = −1/(3g),

−1
g
P 2 + x = U−sgxUsg =⇒ P 2 − gx = U−sg (−gx)Usg ,

and the free fall operator P 2 − gx is unitarily equivalent to the operator −gx.
Since x is purely absolutely continuous with σac(x) = R, the result follows.
Exercise 12.3.16. Let g > 0. For n ∈ N, n ≥ 2, consider the operator dom H̃n =
C∞0 (R̂), (H̃nψ)(p) = pn−1ψ(p) − giψ′(p). Show that its adjoint Hn = H̃∗n is given
by dom Hn = {ψ ∈ L2(R̂) : ψ ∈ AC(R̂), (pn−1ψ(p) − giψ′(p)) ∈ L2(R̂)},

(Hnψ)(p) = pn−1ψ(p) − giψ′(p), ψ ∈ dom H,

and that this operator is hermitian, so that it is self-adjoint and H̃n is essentially
self-adjoint. Check explicitly that σp(Hn) = ∅. Then verify that for z ∈ C \ R,
ψ ∈ C∞0 (R̂) and v̂z as in Example 12.3.15, one has

Rz(Hn)ψ(p) =
1√
2π

∫
R

ds v̂z

(
s− p

g

)
e−i[p

n−sn]/(ng) ψ(s),

and finally, that Hn is purely absolutely continuous with σac(Hn) = R.
Remark 12.3.17. Note that in Example 12.3.16 and Exercise 12.3.16 the Green
functions of some Schrödinger operators were found.
Exercise 12.3.18. Let x and P denote, respectively, the position and momentum
operator on Rn. By considering o(s) = U−sx

2Us, Us = e−iP
2s, acting on the

Schwartz space S(Rn), show that the perturbation of the harmonic oscillator

H = −4s2Δ2 + x2 + i2s(x∇ + ∇x), s ∈ R,

is essentially self-adjoint on S(Rn) and its unique self-adjoint extension is purely
absolutely continuous with spectrum [0,∞), ∀n.
Remark 12.3.19. There is an extension of the dilation evolution group which, in
conjunction with Proposition 12.3.8, can be applied to conclude that the essential
spectrum [0,∞) of the H-atom Schrödinger operator is, in fact, absolutely contin-
uous. Details can be found in [BaC71],[Thi81], and a variation that uses Mourre
estimates in [CyFKS87].
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12.3.3 Scattering and Kato-Rosenblum Theorem

Some tools of scattering theory will be used to discuss the presence of an absolutely
continuous spectrum. General references to the mathematics of scattering theory
are [AmJS77], [ReeS79], [Ya92]. Most quantum mechanics textbooks present a
detailed picture of basic scattering processes [LaL58], [AmJS77].

Let T and B be two self-adjoint operators in H, with B ∈ B(H) (this is just
to simplify technicalities, e.g., dom (T + B) = dom T and T + B is self-adjoint),
and PTac, P

T+B
ac the corresponding projections onto their absolutely continuous

subspaces Hac(T ), Hac(T + B). The motivating aim of scattering theory is to
compare the large time behavior of the “free” time evolution e−itT ξ± with the
“perturbed” time evolution e−it(T+B)ξ. Under some conditions, it is physically
expected that for “scattering states ξ” the time evolution e−it(T+B)ξ should behave
as free vectors ξ±, that is, as e−itT ξ±, as time t→ ±∞. So one writes∥∥∥e−it(T+B)ξ − e−itT ξ±

∥∥∥ =
∥∥∥ξ − eit(T+B)e−itT ξ±

∥∥∥
and defines:

Definition 12.3.20. The wave operators are the strong limits

W±(T +B, T ) := s − lim
t→±∞

eit(T+B)e−itTPTac,

if they exist. Their domains are maximal, that is,

dom W±(T +B, T ) =
{
ξ ∈ H : ∃ lim

t→±∞
eit(T+B)e−itTPTacξ

}
.

Wave operators were introduced in a purely physical context by Møller in
1945; sometimes they are called Møller operators and here the shorthand notation
W± will also be used. A possibility of violation of such asymptotic free conditions
would be an event in which a free particle as t→ −∞ gets captured by the scatter,
e.g., by an eigenstate of T +B for t ≥ 0.

On writing ξ ∈ dom W± it will be implicitly assumed that ξ ∈ Hac(T ),
since on Hac(T )⊥ the wave operators W±(T +B, T ) act as the null operator. The
interpretations are as follows:

• dom W− is the set of incoming asymptotic states.
• dom W+ is the set of outgoing asymptotic states.
• rng W− is the set of the states that have an incoming free asymptotic state.
• rng W+ is the set of the states that have an outgoing free asymptotic state.

Definition 12.3.21. The wave operators W±(T + B, T ) are said to be complete if
dom W±(T + B, T ) = Hac(T ) and rng W±(T + B, T ) = Hac(T + B), that is, if
the set of free states is Hac(T ) and the set of states that have both incoming and
outgoing free asymptotic states is exactly Hac(T +B).
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Since for ξ ∈ dom W± one has

‖W±ξ‖ = lim
t→±∞

∥∥∥eit(T+B)e−itTPTacξ
∥∥∥ = ‖ξ‖,

it follows that W± : dom W± → rng W± are partial isometries.
Exercise 12.3.22. Show that dom W±(T + B, T ) are closed subspaces (hint: if
ξ ∈ dom W± show that t �→ eit(T+B)e−itT ξ is Cauchy). Since these operators are
isometries, conclude that rng W± are also closed.
Remark 12.3.23. A similar theory of scattering can be developed if in Defini-
tion 12.3.20 PTac is replaced by a general projection P that commutes with the
“free” time evolution e−itT , provided it is possible to describe the asymptotic be-
havior of such vectors. In L2(Rn) a convincing choice would be the projection onto
Hscatt(T ) introduced in Definition 13.6.1! Besides the results ahead, the option PTac
here is mainly guided by the standard (purely absolutely continuous) free hamil-
tonian H0 in L2(Rn) so that one expects that the general “free” dynamics should
be governed by this spectral type.

Thus W±W∗
± are the projections onto rng W±, and restricted to these spaces

W∗
± = W−1

± . Further, if ξ ∈ dom W±, then for any t ∈ R,

lim
s→±∞

eis(T+B)e−isT e−itT ξ = lim
s→±∞

e−it(T+B)ei(t+s)(T+B)e−i(t+s)T ξ

so that

W±e
−itT ξ = e−it(T+B)W±ξ, ∀ξ ∈ dom W±(T +B, T ),

also e−itTdom W± ⊂ dom W± and e−it(T+B)rng W± ⊂ rng W±. By Propo-
sition 5.3.9 and its proof, it follows that dom W±(T + B, T ) reduces T while
rng W±(T + B, T ) reduces T + B. Upon differentiating the above equality with
respect to t one finds the so-called intertwining property of the wave operators,
that is, for all ξ ∈ dom W± ∩ dom T ,

W±(T +B, T )Tξ = (T +B)W±(T +B, T )ξ.

This relation implies

Proposition 12.3.24. If W±(T + B, T ) are complete, then Tac and (T + B)ac are
unitarily equivalent (so they have the same absolutely continuous spectra).

Exercise 12.3.25. Let ξ ∈ dom T be an eigenvector of T . Show that the limit
limt→∞ eit(T+B)e−itT ξ exists iff ξ is an eigenvector of T +B with the same eigen-
value. Conclude that Bξ = 0. This is one reason to include PTac in the definition
of wave operators.

The operator S := W∗
+W− connects free asymptotic states in the remote

past with free asymptotic states in the remote future, and it is called a scattering
operator or S-matrix.
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Lemma 12.3.26. For all z ∈ C \ R,

W±(T +B, T )Rz(T ) = Rz(T +B)W±(T +B, T ),

and for any open set Λ ⊂ R,

W±(T +B, T )χΛ(T ) = χΛ(T +B)W±(T +B, T ),

with both relations acting on dom W±(T +B, T ).

Proof. Write W± = W±(T + B, T ). According to the spectral theorem (see page
245), for ξ ∈ dom W± and Im z > 0,

W±Rz(T )ξ =−i
∫ ∞

0

eiszW±e
−isT ξ ds

=−i
∫ ∞

0

eisze−is(T+B)W±ξ ds

=Rz(T +B)W±ξ.

Similarly if Im z < 0. By the Stone formula (see Exercise 9.5.5) it follows that
W±χ(a,b)(T ) = χ(a,b)(T + B)W± for all bounded intervals (a, b) in R; the final
result follows by taking strong limits and recalling that any open set in R is a
countable union of pairwise disjoint open intervals. �
Lemma 12.3.27. Assume that W±(T +B, T ) exist with domain Hac(T ). Then such
wave operators are complete iff W±(T, T +B) exist with domain Hac(T +B).

Proof. If ξ ∈ Hac(T ), then

η± = lim
t→±∞

eit(T+B)e−itT ξ = W±ξ

is equivalent to
lim

t→±∞
‖e−itT ξ − e−it(T+B)η±‖ = 0

which is equivalent to

ξ = lim
t→±∞

eitT e−it(T+B)η± = W∗
±η± = W±(T, T +B)η±.

By Lemma 12.3.26, for all open sets Λ ⊂ R,

μT+B
η± (Λ) = 〈η±, χΛ(T +B)η±〉

=
〈
η±,W±χΛ(T )W∗

±η±
〉

= 〈ξ, χΛ(T )ξ〉 = μTξ (Λ),

and so the equality μT+B
η± (Λ) = μTξ (Λ) extends to all Borel sets Λ ∈ A (e.g., use

the regularity of such measures). This shows that the spectral measures μT+B
η± are

absolutely continuous since μTξ is, and so η± ∈ Hac(T +B). Thus, for ξ ∈ Hac(T )
the limits W±(T, T+B)ξ exist iff ξ ∈ rng W±(T+B, T ), but the above calculation
shows that this range is in Hac(T +B). This proves the lemma. �
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From the proof of Lemma 12.3.27 follows the

Corollary 12.3.28. rng W±(T +B, T ) ⊂ Hac(T +B).

Theorem 12.3.29 (Kato-Rosenblum). Let T and B be self-adjoint. If B is trace
class, then the wave operators W±(T +B, T ) exist and are complete. Hence T and
T +B have the same absolutely continuous spectra.

Proof. This proof will make use of some facts discussed in Chapter 13 and the
proof will be for W+(T + B, T ); the discussion on W−(T + B, T ) being similar.
Write W (t) = eit(T+B)e−iT . It will be shown that W (t)PTacξ is Cauchy, and since
W (t) is unitary for all t ∈ R, it is enough to check this for all ξ ∈ Hac(T ) such
that the Radon-Nikodym derivative dμTξ /d� is bounded, since by Exercise 13.5.4
this is a dense subset of Hac(T ). In the following ξ is supposed to belong to this
set and we write |‖ξ‖| := ‖dμTξ /d�‖∞.

By noting that

‖(W (t) −W (s)) ξ‖2 = 〈W (t)ξ, (W (t) −W (s))ξ〉 − 〈W (s)ξ, (W (t) −W (s))ξ〉,

it follows that it is enough to show that 〈ξ,W (t)∗(W (t) −W (s))ξ〉 vanishes as
t, s→ ∞; with no loss it will be assumed that t ≥ s.

Introduce G(u) := eiuTW (t)∗W (s)e−iuT , u ∈ R is an auxiliary parameter,
and check that (hint: add and subtract B to T in the expression of Y )

dG

du
(u) = eiuTY (t, s)e−iuT ,

with Y (t,s)=−i
[
eitTBe−i(t−s)(T+B)e−isT −eitT e−i(t−s)(T+B)Be−isT

]
, and upon

integrating
W (t)∗W (s) = eiτTW (t)∗W (s)e−iτT − Iτ [Y (t, s)],

where

Iτ [X ] :=
∫ τ

0

eiuTXe−iuT du, τ ≥ 0.

Hence

〈ξ,W (t)∗(W (t) −W (s))ξ〉
= 〈W (t)e−iτT ξ, (W (t) −W (s))e−iτT ξ〉
+ 〈ξ, Iτ [Y (t, s)]ξ〉.

Since B is trace class it is compact, and so (as in the Duhamel formula, differentiate
and then integrate W (t))

W (t) −W (s) = i

∫ t

s

eiu(T+B)Be−iuT du
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is also compact. Taking τ → ∞ one has (W (t) −W (s))e−iτT ξ → 0 by RAGE
Theorem 13.4.1ii), and this result consequently shows that

〈ξ,W (t)∗(W (t) −W (s))ξ〉 = 〈ξ, I∞[Y (t, s)] ξ〉,

with well-posed limit τ → ∞.
Note that 〈ξ, I∞[Y (t, s)]ξ〉 is a sum of terms of the form

〈ξ, I∞[Z(t, s)Be−isT ] ξ〉

with Z(t, s) = eitT e−i(t−s)(T+B), and their complex conjugates, and Z(t, s) are
unitary operators. Hence, the proof finishes if one shows that (recall that s ≤ t)

lim
s→∞

〈
ξ, I∞[Z(t, s)Be−isT ] ξ

〉
= 0.

Write B(·) =
∑
j �j〈ηj , ·〉ξj , with {ηj}j and {ξj}j orthonormal sets in H and∑

j |�j | < ∞, that is, the canonical form of the trace-class operator B. Thus, by
Cauchy-Schwarz inequality,∣∣〈ξ, I∞[Z(t, s)Be−isT ] ξ

〉∣∣2
=

∣∣∣∣∣∣
∑
j

�j

∫ ∞

0

〈
ηj , e

−i(u+s)T ξ
〉 〈
e−iuT ξ, Z(t, s)ξj

〉
du

∣∣∣∣∣∣
2

≤

⎛⎝∫ ∞

s

du
∑
j

|�j |
∣∣〈ηj , e−iuT ξ〉∣∣2

⎞⎠⎛⎝∑
j

|�j |
∫

R

du
∣∣〈Z(t, s)ξj , e−iuT ξ

〉∣∣2⎞⎠
and by Exercise 13.5.4,∑

j

|�j |
∫

R

du
∣∣〈Z(t, s)ξj , e−iuT ξ

〉∣∣2
≤ 2π‖Z(t, s)‖2

⎛⎝∑
j

|�j|

⎞⎠ |‖ξ‖|2 = 2π tr |B| |‖ξ‖|2

so that ∣∣〈ξ, I∞[Z(t, s)Be−isT ] ξ
〉∣∣2

≤ 2π

⎛⎝∫ ∞

s

du
∑
j

|�j|
∣∣〈ηj , e−iuT ξ〉∣∣2

⎞⎠ tr |B| |‖ξ‖|2 ,

and since
∑

j |�j |
∣∣〈ηj ,e−iuT ξ〉∣∣2 belongs to L1(R) (once more by Exercise 13.5.4),

the above right-hand side vanishes as s → ∞. This proves that W+(T + B, T )
does exist.
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The same proof works for W±(T, T +B) since T −(T +B) = −B is also trace
class. Combining with Lemma 12.3.27, the completeness of such wave operators
follows. �

Remark 12.3.30. If instead of trace-class perturbations one considers Hilbert-
Schmidt perturbations, then the conclusions of the Kato-Rosenblum theorem are
false by the Weyl-von Neumann Theorem 12.5.2; see also Remark 12.5.5.

Remark 12.3.31. In an interesting work [How86] it was shown that the Kato-
Rosenblum theorem has no simple generalization to a singular spectrum; for in-
stance, if B is compact and the subsequent singular parts Ts and (T + B)s are
unitarily equivalent for every self-adjoint T , then B = 0. In fact, much more is
concluded in that work.

Remark 12.3.32. The original proof of Theorem 12.3.29 was published in [Kat57]
and [Ros57]; the above proof is based on a useful generalization of the Kato-
Rosenblum theorem in [Pea78b]. There is also a version of this theorem for unitary
operators in [BiK62].

Of particular interest is the case of the free particle hamiltonian T = H0 in
L2(Rn), so that for any trace-class perturbation B, the absolutely continuous part
of H0 +B is unitarily equivalent to H0. However, if B = V , that is, multiplication
by a potential function, the Kato-Rosenblum theorem does not apply, since it
assumes that the perturbation is a trace-class operator, so compact. In any event,
there are generalizations that are powerful in standard quantum mechanics, e.g.,
it is enough that Ri(H0) −Ri(H) is trace class [Sim05].

For potential V scattering one must have V (x) → 0 sufficiently fast as
|x| → ∞, so that states leave the region of influence of the potential and move
asymptotically as free ones and scattering occurs (the so-called short-range po-
tentials). However, the important Coulomb potential influences particles even far
away, and a modification of the wave operators is necessary; this modification was
introduced in [Doll64] and a detailed discussion appears in [AmJS77].

While talking about scattering in quantum mechanics it becomes imperative
to mention at least a version of the so-called Cook’s lemma [Coo57]; this refer-
ence can be considered the genesis of mathematical scattering theory. The proof
of Theorem 12.3.33 is a simple version of Cook’s approach to existence of wave
operators for potentials V in R3.

Theorem 12.3.33. Let V ∈ L2(R3), H0 the free hamiltonian and H = H0 +V with
domain H2(R3). Then the strong limits

W±(H,H0) = s − lim
t→±∞

eitHe−itH0

exist in L2(R3).
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Proof. First note that PH0
ac = 1 and, by Theorem 6.2.2, H is self-adjoint. By the

Duhamel formula, if ψ ∈ dom H and t > s,

∥∥eitHe−itH0ψ − eisHe−isH0ψ
∥∥

2
=
∥∥∥∥i ∫ t

s

eiuHV e−iuH0ψ du

∥∥∥∥
2

≤
∫ t

s

∥∥V e−iuH0ψ
∥∥

2
du

≤ ‖V ‖2

∫ t

s

‖e−iuH0ψ‖∞ du.

If ψ ∈ D = H2(R3) ∩ L1(R3), by Corollary 5.5.5 the function u �→ ‖e−iuH0ψ‖∞ is
integrable over R, consequently t �→ eitHe−itH0ψ is Cauchy as t→ ±∞. Hence the
limits W±(H,H0)ψ exist for any ψ ∈ D. Since D is dense in L2(R3) and eitHe−itH0

is an isometry for any t, W±(H,H0)ψ exist for any ψ ∈ L2(R3). �

Corollary 12.3.34. Let V ∈ L2(R3). The hamiltonian H = H0 + V with domain
H2(R3) has nonempty absolutely continuous spectrum.

Proof. By Theorem 12.3.33, W±(H,H0) exist with domain L2(R3). Since the wave
operators are isometries, one has {0} 
= rng W±(H,H0) ⊂ Hac(H). �

Remark 12.3.35. A simple condition to state, although not immediate to prove,
that guarantees the existence and completeness of wave operators in case of L2(R)
and l2(Z), is whether the potential V ∈ L1(R) ∩ L2(R) or V ∈ l1(Z), respectively.
For example, σac(H0 + V ) = σac(H0) = [0,∞) if V is continuous and |V (x)| ≤
C/(1 + |x|)a, a > 1. Similarly for the discrete case. For references and results in
this direction refer to [Rem98]. Sufficient conditions on V for absolutely continuous
spectra of H = H0 + V in L2(R3) appear, for instance, in [Pea88] and [ReeS78].

12.4 Magnetic Field: Landau Levels

The Schrödinger operator corresponding to a charged particle in a homogeneous
magnetic field of intensity B will be considered; homogeneous means that the mag-
netic field is the same at all points of space (usually the term “constant magnetic
field” means that B does not depend on time, so “homogeneous” is employed).

First suppose that the particle motion is restricted to R2, with coordinates
x, y, and B perpendicular to this plane. As in Section 10.5 the vector potential A
is the quantity that appears in the hamiltonian operator; in this case a convenient
choice is A = (Ax, Ay) = (−By, 0) so that B = ∂Ay/∂x − ∂Ax/∂y. The Hilbert
space is L2(R2) and it will be interesting to make explicit some physical constants,
such as the mass m of the particle, speed of light c and electric charge e; Planck’s
constant will be set � = 1. The intention here is just to provide a flavor of the vast
area of magnetic phenomena.
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Remark 12.4.1. In case of R3 (or R2) with a homogeneous magnetic field B, a
popular choice of the vector potential is A = 1

2B × x, with x = (x, y, z) and “×”
indicates vector product. Recall that B = ∇× A.

The initial energy operator H = H(A) is dom H = S(R2) (the Schwartz
space; see Section 3.1),

(Hψ)(x, y) =
1

2m

(
−i∇− e

c
A
)2

ψ(x, y)

=
1

2m

[(
−i ∂
∂x

+
eB

c
y

)2

− ∂2

∂y2

]
ψ(x, y), ψ ∈ dom H.

Apply Fourier transform Fx in the variable x, going to the space L2(R̂ × R),
ψ̂(p1, y) := Fxψ(x, y) ∈ S(R̂ × R), and

(Ĥψ̂)(p1, y) := (FxHF−1
x )ψ̂(p1, y)

=
1

2m

(
p1 +

eB

c
y

)2

ψ̂(p1, y) −
1

2m
∂2

∂y2
ψ̂(p1, y)

= − 1
2m

∂2

∂y2
ψ̂(p1, y) +

mω2

2

(
y +

cp1

eB

)2

ψ̂(p1, y),

with ω = eB/(mc). This operator acts as a multiplication operator in the variable
p1 and as a harmonic oscillator with frequency ω in the variable y − cp1/(eB); in
fact, Ĥ is a direct integral of some one-dimensional operators. By Example 2.3.3,
for any φ ∈ S(R̂) the operator Ĥ has eigenfunctions

ψ̂j(p1, y) := ψj

(
y +

cp1

eB

)
φ(p1), Ĥψ̂j = ω

(
j +

1
2

)
ψ̂j ,

where ψj(y) are the usual Hermite functions for j = 0, 1, 2, . . . , i.e., eigenfunctions
of the harmonic oscillator.

Since φ is quite general (e.g., consider functions in C∞0 (R2) with pairwise
disjoint support), each eigenvalue has infinite multiplicity; it was crucial that the
eigenvalues do not depend on p1. Note also that even a constant φ(p1) = 1 can be
considered, since the very ψj (y + cp1/(eB)) ∈ S(R̂×R); in this case physicists like
to relate the infinite multiplicity of eigenvalues to different choices of momentum
p1 (the analogy with classical mechanics is mentioned ahead).

Since the set of all possible ψ̂j is dense in L2(R̂×R) (see Theorem 2.2.10), it
follows that Ĥ , and so also its unitarily equivalent H , are essentially self-adjoint
and their closures have the same spectra, i.e.,

σ(H) = {(j + 1/2)ω : j = 0, 1, 2, . . .} ,

which is pure point and also pure essential. These eigenvalues are called Landau
levels, named after L. Landau who found them in 1930; since they were also



12.4. Magnetic Field: Landau Levels 339

discussed by Fock two years before Landau, maybe it would be correct to say
Fock-Landau levels. Note that the ground state energy (i.e., the lowest eigenvalue)
is ω/2 and has infinite multiplicity.
Remark 12.4.2. In case the vector potential components Ax, Ay belong to C∞(R2)
and the magnetic field tends to a nonzero constant as x2 + y2 → ∞, in [Iwa83] it
was shown that the corresponding Schrödinger operator has also purely essential
and also purely point spectra.

In classical mechanics the planar motion of a particle under such homoge-
neous B corresponds to a circumference of fixed center which, of course, depends
on the initial conditions (x0, px,0, y0, py,0); the y component of the center of this
circumference is given by y0− cpx,0/(eB), which is directly related to the quantity
the variable y represents in the above quantum eigenfunctions (i.e., the center
of the gaussian in the Hermite functions). It is then interpreted that the infinite
multiplicity of eigenvalues is related to different classical (circular) motions.

A natural question is about the role played by the x components of such
centers; why they did not show up here? The answer is the choice of vector poten-
tial A; other choices are possible, e.g., A = (0, xB), since they generate the same
homogeneous magnetic field B = ∇× A. The latter choice would have led to the
appearance of the x component of the center of classical orbits in the quantum
energy eigenfunctions.

To be more precise, consider the case of three dimensions (the two-dimen-
sional case is similar); two vector potentials A1 and A2 generate the same B iff
∇× (A1 − A2) = 0, which amounts to

A1 = A2 + ∇χ,

that is, the addition of the gradient of some real-valued smooth function χ : R3 →
R. Each χ is known as a gauge function which generates a gauge transformation
defined as the passage from A2 to A1 via ∇χ, and classical physics is clearly
invariant under gauge transformations, since only the magnetic fields appear in
the expression of Lorenz force (e/c)v×B. The next exercise clarifies the situation
in quantum mechanics. For some controversial situations see the discussion in
Section 10.5. General discussions about quantum magnetic gauge transformations
are found in [Lei83].
Exercise 12.4.3. Let A1 = A2 +∇χ, with both defining self-adjoint hamiltonians
H(A1) and H(A2) (see general results in [LeiS81]).

Show that e−ieχ(x)/cdom H(A1) = dom H(A2) and(
−i∇− e

c
A1
)2

= eieχ/c
(
−i∇− e

c
A2
)2

e−ieχ/c,

that is, the energy operators corresponding to two vector potentials that differ by a
gauge transformation are unitarily equivalent, so physically equivalent. Sometimes,
by proper selections of χ one can impose suitable conditions on vector potentials
A, for instance, the so-called Coulomb gauge for which the divergent ∇ ·A = 0.
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Exercise 12.4.4. Repeat the above discussion on quantum eigenfunctions for a
charged quantum particle in R2, but now with the gauge selection A = (0, xB).

The corresponding problem in R3, with variables (x,y,z) and A=(−yB,0,0),
generates the homogeneous magnetic field B = (0, 0, B), and the initial hamilto-
nian is

H3ψ =
1

2m

(
−i ∂
∂x

+
eB

c
y

)2

ψ − 1
2m

∂2

∂y2
ψ − 1

2m
∂2

∂z2
ψ,

with ψ ∈ S(R3). One then gets the same problem in R2, but with an additional
term corresponding to a free particle in the z direction. It turns out that the spec-
trum will be formed by the addition of the same eigenvalues of the two-dimensional
case with the absolutely continuous part [0,∞) coming from the free motion. Thus,
the resulting spectrum is [ω/2,∞), absolutely continuous with embedded eigenval-
ues of infinite multiplicity. The classical motion is formed by helical orbits, which
are composed by uniform rotation in the plane (x, y) and uniform translations in
the z direction (i.e., the direction parallel to the homogeneous magnetic field).
Remark 12.4.5. A detailed verification of the spectral properties of the above
magnetic Schrödinger operator H3 in R3 involves the concept of tensor products
[ReeS81]. Think of a small challenging project: consider a Fourier transform in the
variables x and z, and follow the proof of Proposition 11.1.1 as a starting way to
check the missing technical details with respect to the spectrum of H3.
Exercise 12.4.6. Consider the operator (−id/dx− eA(x)/c)2 in R, with a contin-
uous function A. If χ(x) = −

∫ x
0 A(s) ds, verify that

eieχ/c
(
−i d
dx

− eA(x)/c
)2

e−ieχ/c = − d2

dx2
,

that is, the “vector potential A can be removed by a gauge transformation.” This
is interpreted as absence of magnetic phenomena in R – see also Example 12.4.8.
Exercise 12.4.7. Use the construction in Exercise 12.4.6 to present another solution
to Exercise 12.3.18 (that is, select a proper gauge).
Example 12.4.8. Although magnetic phenomena are absent in R, it is present in
the unit circumference S1 = {(x, y) ∈ R2 : x2 + y2 = 1}, which is also a one-
dimensional system. The simplest case is a constant magnetic vector potential A
(think of a restriction to S1 of a radial vector potential A(x, y) = A(r), r =√
x2 + y2 ). If ϕ is the polar angle that parametrizes S1, 0 ≤ ϕ ≤ 2π, the Schrö-

dinger operator is the unique self-adjoint extension of (set A = A(1))

H =
(
−i d
dϕ

− e

c
A

)2

, dom H = C∞(S1).

This operator is essentially self-adjoint since em(ϕ) = eimϕ, m ∈ Z, form an
orthogonal basis of L2(S1) and Hem = (m− eA/c)2em (see Theorem 2.2.10).
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The effect of A can be measured in the eigenvalues; if 0 ≤ eA/c ≤ 1/2 the
ground state (i.e., the lowest eigenvalue) is (eA/c)2 which has multiplicity 1 except
for A = c/(2e), where the multiplicity is 2. What is the ground state for general
A ∈ R?
Example 12.4.9. It is possible to have a purely point spectrum in case of pla-
nar magnetic fields that vanish at infinity. This can be illustrated by the vector
potential (set r =

√
x2 + y2)

A =
(

y

(1 + r)γ
,

−x
(1 + r)γ

)
, 0 < γ < 1,

so that the subsequent Schrödinger operator is

H =
(
−i ∂
∂x

− y

(1 + r)γ

)2

+
(
−i ∂
∂y

+
x

(1 + r)γ

)2

.

It will be argued that H , with domain C∞0 (R2), is essentially self-adjoint and its
unique self-adjoint extension is pure point. The magnetic field intensity is

B(x, y) = B(r) =
2

(1 + r)γ
+

r

(1 + r)1+γ
,

and clearly limr→∞B(r) = 0.
By passing to polar coordinates (r, ϕ) and expanding H one gets

H = H0 +
r2

(1 + r)2γ
+

2
(1 + r)γ

L,

where H0 = −Δ is the usual free hamiltonian and

L = −i ∂
∂ϕ

= −i(x∂/∂y − y∂/∂x).

Consider the realization of L with periodic boundary conditions (similar to
Example 2.6.5 with α = 1), so that it is self-adjoint with discrete spectrum σ(L) =
Z (see Section 7.5), and eigenfunctions em(ϕ) = eimϕ, m ∈ Z.

Restricted to the subspace spanned by em(ϕ), which is invariant under H ,
one obtains the operator

Hm = H0 +
r2

(1 + r)2γ
+

2m
(1 + r)γ

= H0 + Vm(r),

which is a Schrödinger operator with effective potential Vm(r) (and H = ⊕mHm).
Since Vm ∈ L2

loc(R
2) and is lower bounded with limr→∞ Vm(r) = ∞, Theo-

rem 11.5.6 implies Hm is essentially self-adjoint and with discrete spectrum, for
all m. Therefore, H is essentially self-adjoint (with dom H = C∞0 (R)) and its
closure H has purely point spectrum by Proposition 11.1.2. Other values of γ give
different spectral properties, as discussed in [MiS80].
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12.4.1 Magnetic Resolvent Convergence

In this subsection, the convergence of H with a homogeneous magnetic field B to
H0, as B → 0, will be discussed; then the limit of very intense vector potentials.

Theorem 12.4.10. Let A be a vector potential in R2 corresponding to a homoge-
neous magnetic field of intensity B; denote H(B) = H(A) and H0 = H(0) = −Δ.
Then, as B → 0:

i) H(B) SR−→ H0.
ii) H(B) does not converge to H0 in the norm resolvent sense.

Proof. Fix the gauge A = 1
2B × x, so that

H(B) = H0 +
B2

4
(x2 + y2) −BL,

L as in Example 12.4.9.
i) Recall that S(R2) is a core of both H(B) and H0. If ψ ∈ S(R2), then a

direct computation leads to ‖H(B)ψ − H0ψ‖ → 0 as B → 0, and so Proposi-
tion 10.1.18 implies H(B) SR−→ H0.

ii) Restricted to the subspace spanned by em(ϕ) = eimϕ, which is invariant
under both H(B) and H0, one obtains the operator

H(B)|m = H0|m +
B2

4
(x2 + y2) −Bm,

which is a standard Schrödinger operator with effective potential

Vm(B;x, y) =
B2

4
(x2 + y2) −Bm.

For B 
= 0 this operator has compact resolvent (see Theorem 11.5.6), while for
B = 0 it is purely absolutely continuous (Corollary 12.3.3) and so its resolvent is
not compact. Hence, by Theorem 1.3.13, Ri(H(B)) does not converge in norm to
Ri(H0) as B → 0. �
Exercise 12.4.11. Let V (x) be a real polynomial in Rn with lim|x|→∞ V (x) = ∞
and H(λ), λ > 0, the unique self-adjoint extension ofH0+λV ; see Example 11.5.8.
Show that, H(λ) SR−→ H0 as λ ↓ 0, but does not converge in the norm resolvent
sense. A particular case is the unidimensional harmonic oscillator V (x) = x2/2.

The next result discusses the limit of very intense vector potentials. Rather
unexpected, in case of intense homogeneous vector potentials the hamiltonian
converges to the zero operator in the strong resolvent sense, even though they lead
to zero magnetic fields! Since through a gauge transformation such homogeneous
vector potentials can be put to zero, the “correct gauge choices” are still left to
be investigated; see discussions in [HemH95].
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Proposition 12.4.12. For a homogeneous A 
= 0 in R3 and λ ∈ R, write H(λA) =
(−i∇− λA)2. Then H(λA) SR−→ 0 as λ→ ∞.

Proof. The resolvent of the zero operator at −1 is R−1(0) = 1. For ψ ∈ C∞0 (R3),

‖R−1(H(λA))ψ − 1ψ‖ ≤
∥∥∥R−1(H(λA))ψ −

(
(λA)2 + 1

)−1
ψ
∥∥∥

+
∥∥∥((λA)2 + 1

)−1
ψ − ψ

∥∥∥ ,
and the second term on the right-hand side vanishes as λ → ∞. By expanding
the square in H(λA), using the second resolvent identity and taking into account
that A is homogeneous, the first term gets the expression

R−1(H(λA))ψ −
(
(λA)2 + 1

)−1
ψ =

(−Δψ − 2λA · ∇ψ)
(λA)2 + 1

which also vanishes in the Hilbert space as λ→ ∞.
Hence ‖R−1(H(λA))ψ − 1ψ‖ → 0 as λ→ ∞ in C∞0 (R3); since this subspace

is dense in L2(R3) and the involved operators form a uniformly bounded family,
the proposition is proved. �
Exercise 12.4.13. If A is homogeneous, find a gauge transformation so that the
new vector potential is null. Based on Proposition 12.4.12, conclude that the strong
resolvent convergence for operators with vector potentials is not “well behaved”
under unitary transformations performed through gauge transformations.
Remark 12.4.14. In higher dimensions Rn, n > 3, it is convenient to define the
vector potential as the one-form

A =
n∑
j=1

Aj(x) dxj ,

and the magnetic field is then defined by the two-form

B = dA =
∑
j<k

(∂jAk − ∂kAj) dxj ∧ dxk.

Clearly this also works for n = 2, 3.
Remark 12.4.15. An important result, first proved in [AvHS78], states that if the
lower bounded potential V is such that H(0) + V is purely discrete, then H =
H(A)+V has also purely discrete spectrum for quite general vector potentials A.

12.5 Weyl-von Neumann Theorem

A consequence of the Weyl-von Neumann theorem, presented in this section, is
that any operator with purely continuous spectrum can be (in some sense) ap-
proximated by operators with purely point spectrum. More precisely, the origi-
nal operator is perturbed by arbitrarily small Hilbert-Schmidt operators and the
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resulting operators have point spectra dense in the continuous spectrum of the
unperturbed one. Such a result – and the wonderland theorem in Section 12.6 –
gives an indication of how intricate perturbations of continuous spectra can be.
Exercise 12.5.1. In case of strong convergence of bounded operators there is a
somewhat direct argument to get some approximations by purely point operators.
Let T ∈ B(H) be self-adjoint with σ(T ) = [−‖T ‖, ‖T ‖], {ξj} an orthonormal basis
of H and Pn the orthogonal projection onto Lin({ξ1, . . . , ξn}). If {qj} is the set
of rational numbers in [−‖T ‖, ‖T ‖], define the self-adjoint operator S ∈ B(H) by
Sξj = qjξj , for all j. Finally, write

Tn := PnTPn + (1 − Pn)S(1 − Pn).

Show that Tn is self-adjoint with purely point spectrum σp(Tn) = [−‖T ‖, ‖T ‖],
and Tn

s−→ T . Generalize to the case σ(T ) ⊂ [−‖T ‖, ‖T ‖].
If S is a self-adjoint Hilbert-Schmidt operator (see Section 1.4), its normalized

eigenvectors {ξj}j , Sξj = λjξj , can be taken as an orthonormal basis of H and
consequently its HS-norm is given by

‖S‖HS =

⎛⎝∑
j

|λj |2
⎞⎠

1
2

.

Recall Theorem 1.4.6, that is, HS(H) ⊂ B0(H).

Theorem 12.5.2 (Weyl-von Neumann). Let T be self-adjoint. For any ε > 0 there
exists a self-adjoint Hilbert-Schmidt operator S, with ‖S‖HS < ε, so that T + S
has purely point spectrum.

If T has purely continuous spectrum, then σ(T ) has no isolated points and,
since S in Theorem 12.5.2 is compact, the invariance of the essential spectrum
implies that σ(T ) ⊂ σ(T + S) (see Corollary 11.3.7) and the spectrum of T + S
is pure point. For instance, if H0 denotes the free hamiltonian in Rn, it is known
that it has purely absolutely continuous spectrum and σac(H0) = [0,∞); then, by
the Weyl-von Neumann theorem, for any ε > 0, there is a self-adjoint operator
B ∈ HS(L2(Rn)) with ‖B‖HS < ε and H0 +B is pure point, hence a subset of its
eigenvalues is dense in [0,∞).

Now a preliminary result for the proof of the Weyl-von Neumann theorem.

Lemma 12.5.3. Let T be self-adjoint. For any ξ ∈ H and ε > 0, there exist a
finite-dimensional subspace E ⊂ H and a self-adjoint Hilbert-Schmidt operator S
so that ‖S‖HS < ε, ‖(1− PE)ξ‖ < ε and E reduces T + S.

Proof. [Theorem 12.5.2] The idea is to use Lemma 12.5.3 to find finite-dimension-
al subspaces Ej that reduce T + S and so that H = ⊕jEj . Since the restrictions
(T + S)|Ej are pure point, the result follows.
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First fix some notations: if En is a closed subspace of H, Pn will denote
the corresponding orthogonal projection, P⊥n = 1 − Pn; so if En ⊥ Em, then
(Pn + Pm)⊥ = 1− (Pn + Pm).

Pick ε > 0. Let {ξj} be a dense set in H and put H1 = H. Apply Lemma
12.5.3 to T, ξ1,H1, ε/21, then resulting in E1 ⊂ H1, S1 ∈ HS(H1) so that ‖S1‖HS <
ε/21, ‖P⊥1 ξ1‖ < ε/21 and E1 reduces T + S1. Write H2 = P⊥1 H.

Now apply Lemma 12.5.3 to T + S1, P
⊥
1 ξ2,H2, ε/22, then resulting in E2 ⊂

H2, S2 ∈ HS(H2), and extend S2 and P2 by zero to H, so that ‖S2‖HS < ε/22,
‖P⊥2 P⊥1 ξ2‖ = ‖(P1 + P2)⊥ξ2‖ < ε/22 and both E1 and E2 reduce T + S1 + S2

(note that E1 ⊥ E2). Denote H3 = (P1 + P2)⊥H.
After constructing En−1, Hn = (P1 + · · ·+Pn−1)⊥H and Sn−1, the nth step

is an application of Lemma 12.5.3 to

T + S1 + · · · + Sn−1, (P1 + · · · + Pn−1)⊥ξn,Hn, ε/2n,

then resulting in En ⊂ Hn, Sn ∈ HS(Hn). Extend Sn and Pn by zero to H, so that
‖Sn‖HS < ε/2n, ‖(P1 + · · · + Pn)⊥ξn‖ < ε/2n and all the subspaces E1, . . . , En
reduce T + S1 + · · · + Sn.

One has Ej = PjH and H = ⊕jEj , which is equivalent to the strong limit∑
j Pj = 1. In order to check this, let η ∈ H and pick ξn with ‖η − ξn‖ < ε/2n

(recall that {ξj} is dense in H); thus

‖η − (P1 + · · · + Pn)η‖ = ‖(P1 · · · + Pn)⊥η‖
≤ ‖(P1 · · · + Pn)⊥(η − ξn)‖ + ‖(P1 · · · + Pn)⊥ξn‖
< ‖η − ξn‖ +

ε

2n
<

ε

2n−1
.

This implies η =
∑
j Pjη, as required.

Define S :=
∑

j Sj , which is convergent in HS(H) since (Sj) is a Cauchy
sequence in this space (exercise for the reader), so S is also Hilbert-Schmidt and
‖S‖HS ≤

∑
j ‖Sj‖HS < ε.

Assume that each Ej = PjH reduces T + S. Since Ej is finite dimensional,
the spectrum of T + S restricted to Ej is pure point, and since H = ⊕jEj the
eigenvectors of T +S can be arranged in order to form an orthonormal basis of H.
Hence T + S is pure point.

To see that Ej reduces T + S, note that Ej is a finite-dimensional subspace
of (P1 + · · · + Pj−1)⊥H which reduces T + S1 + · · · + Sj , and in this setting it
amounts to Pj(T + S1 + · · · + Sj)Pj = (T + S1 + · · · + Sj)Pj . Since S =

∑
n Sn

and PjSn = 0 = SnPj for n > j, it follows that Pj(T + S)Pj = (T + S)Pj and so
Ej reduces T + S. �

Lemma 12.5.4. If S ∈ Bf(H) is a self-adjoint finite rank operator, of rank m, then
‖S‖HS ≤

√
m ‖S‖.
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Proof. Let λ1, . . . , λm be the nonzero eigenvalues of S and

t = max{|λ1|, . . . , |λm|}.

By Proposition 2.1.12, its spectral radius rσ(S) = ‖S‖ = t. Hence

‖S‖2 = t2 =
m∑
j=1

t2

m
≥

m∑
j=1

|λj |2
m

=
1
m
‖S‖2

HS,

and the result follows. �

Proof. [Lemma 12.5.3] Given ξ ∈ H and ε > 0, take a > 0 so that

‖ξ − χ[−a,a)(T )ξ‖ < ε.

For n ∈ N set (some dependences on n will be kept implicit)

Ωj =
[(

2(j − 1)
n

− 1
)
a,

(
2j
n

− 1
)
a

)
, j = 1, 2, . . . , n,

and Ej = rng χΩj (T ).
If χΩj (T )ξ 
= 0, set ηj = χΩj (T )ξ/‖χΩj(T )ξ‖; such ηj constitute an or-

thonormal set and let E := Lin({η1, . . . , ηn}), with ηj = 0 in case χΩj (T )ξ = 0.
For simplicity, from now on it is assumed that all ηj 
= 0, and note that E does
not necessarily coincide with the subspace spanned by the set of all Ej . Thus

0 = (1 − PE)
n∑
j=1

‖χΩj (T )ξ‖ηj = (1− PE)χ[−a,a)(T )ξ

and so, since ‖1− PE‖ ≤ 1,

‖(1− PE)ξ‖=
∥∥(1− PE)

(
1− χ[−a,a)(T )

)
ξ
∥∥

≤
∥∥(1− χ[−a,a)(T )

)
ξ
∥∥ < ε.

This last step is fundamental, since it shows that in the relation ‖ξ−χ[−a,a)(T )ξ‖ <
ε the operator χ[−a,a)(T ) “can be replaced” by a finite-dimensional projection PE .

Now introduce the self-adjoint operator

S := −(1− PE)TPE − PET (1− PE)

of rank n, and note that

T = (1− PE + PE)T (1− PE + PE)
= PETPE + (1 − PE)T (1− PE) − S.

The term PETPE +(1−PE)T (1−PE) is reduced by E, and so is T +S. To finish
the proof it will be shown that, for n large enough, ‖S‖HS < ε.



12.5. Weyl-von Neumann Theorem 347

The following facts will be used:

1. For any t ∈ Ωj , by the spectral theorem,

‖(T − t1)ηj‖2 =
∫

Ωj

|x− t|2 dμTηj
(x) ≤

(
2a
n

)2

.

2. In view of (1 − PE)ηj = 0, one has,

‖(1− PE)Tηj‖= ‖(1− PE)(T − t1)ηj‖

≤ ‖(T − t1)ηj‖ ≤ 2a
n
, ∀t ∈ Ωj.

3. For j 
= k, 〈(1 − PE)Tηj, (1 − PE)Tηk〉 = 0. In fact, since Ej ⊥ Ek, j 
= k,
Ej reduces T and Tηj ∈ Ej , ∀j, it follows that (1 − PE)Tηj ∈ Ej , and so
this orthogonality follows.

Now, for any η ∈ H, PEη =
∑

j〈ηj , η〉 ηj , by 3 and 2 above, and then Bessel
inequality,

‖(1− PE)TPEη‖2 =
∥∥∥∑

j
〈ηj , η〉(1 − PE)Tηj

∥∥∥2

=
∑

j
|〈ηj , η〉|2 ‖(1− PE)Tηj‖2 ≤ 4a2

n2
‖η‖2,

i.e., ‖(1− PE)TPE‖ ≤ 2a/n. By Lemma 12.5.4,

‖(1− PE)TPE‖HS ≤
√
n ‖(1− PE)TPE‖ ≤ 2a√

n
.

Since PET (1 − PE) = ((1− PE)TPE)∗ and this operator is also of rank n, one
has ‖PET (1 − PE)‖HS ≤ 2a/

√
n. Hence, by choosing n large enough, the very

definition of S and triangle inequality imply that ‖S‖HS ≤ 4a/
√
n < ε. �

Remark 12.5.5. Theorem 12.5.2 can be generalized by considering the so-called
p-Schatten norm [Scha60]

‖S‖p =

⎛⎝∑
j

|�j(S)|p
⎞⎠

1
p

, 1 < p <∞,

where �j(S) are the singular numbers of S (see Subsection 9.4.1). p = 1, the
trace-norm, must in fact be excluded by the Kato-Rosenblum Theorem 12.3.29.
Kuroda has shown that this theorem holds if the Hilbert-Schmidt norm is replaced
by any cross-norm not equivalent to the trace-norm [Ku58].
Exercise 12.5.6. If S is a self-adjoint finite rank operator, of rank m, generalize
Lemma 12.5.4 by showing that ‖S‖p ≤ m

1
p ‖S‖. With such information, is it

possible to replace the Hilbert-Schmidt norm by ‖ · ‖p, p > 1, in the Weyl-von
Neumann Theorem? What about p = 1?
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12.6 Wonderland Theorem

This is an existential result due to B. Simon who named it “wonderland” [Sim95].
Given a complete metric space (X, d) of self-adjoint operators, acting in the sepa-
rable Hilbert space H, under certain conditions it guarantees that operators in X
whose spectrum is purely singular continuous is generic, that is, a dense Gδ set
(recall that a set is a Gδ if it is the countable intersection of open sets). So, on
the basis of the Baire category theorem, there is a strong indication that in some
situations such kind of spectrum is not a pathology, as it was usually considered
in the 1960s and 1970s. At that time a singular continuous spectrum was also
“undesirable” in the mathematical theory of quantum mechanics.

The proof relies on two technical results (that is, Propositions 12.6.1 and
12.6.2) that have independent interest; although the proof of one of them (a version
that appeared in [DeBF98]) will make use of a result of Chapter 13, it seems that
here is the right place for presenting this set of results.

To be more precise, in this section (X, d) is assumed to be a complete metric
space of self-adjoint operators, acting in the infinite-dimensional Hilbert space H,
such that metric d convergence implies strong resolvent convergence.

Proposition 12.6.1. The set Y := {T ∈ X : σp(T ) = ∅} is a Gδ in X.

Proof. Given a self-adjoint operator T : dom T � H → H, denote the average
return probability

〈
pTξ
〉
(t) =

1
t

∫ t

0

∣∣〈ξ, e−isT ξ〉∣∣2 ds, ξ ∈ H.

By Theorem 10.1.15, strong resolvent convergence is equivalent to strong dynami-
cal convergence, so for each ξ ∈ H, t > 0, the map X � T �→

〈
pTξ

〉
(t) is continuous

and {T ∈ X : 〈pTξ 〉(t) < 1/n} is an open set in X .
Let (ξj)j≥1 be an orthonormal basis of H. By Theorem 13.3.7, σp(T ) = ∅ iff

limt→∞〈pTξj
〉(t) = 0 for each ξj (the limit does exist). Since

Y =
⋂
j,n∈N

⋂
t∈N

{
T ∈ X :

〈
pTξj

〉
(t) < 1/n

}
,

it follows that Y is a Gδ. �
Proposition 12.6.2. The set W := {T ∈ X : σac(T ) = ∅} is a Gδ in X.

Lemma 12.6.3. A finite (positive) Borel measure 0 
= μ in R and Lebesgue measure
� are mutually singular (in symbols μ ⊥ �) iff there exists a sequence of continuous
functions fn : R → [0, 1], n ≥ 1, so that

i)
∫

R

fn d� <
1
2n

and ii)
∫

R

fn dμ > μ(R) − 1
2n
.
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Proof. Assume that such a sequence of continuous functions exists. Put Cn = {x ∈
R : fn(x) > 1/2}. Thus

�(Cn) = 2
∫
Cn

1
2
d� ≤ 2

∫
R

fn d�
i)
<

1
2n−1

;

so �(Cn) < 2−(n−1) and

μ(R \ Cn) = μ(R \ Cn) −
∫

R\Cn

fn dμ+
∫

R\Cn

fn dμ

=
∫

R\Cn

(1 − fn) dμ+
∫

R\Cn

fn dμ

ii)
<

1
2n

+
μ(R \ Cn)

2
,

hence μ(R \Cn) < 2−(n−1). Set C = ∩m≥1 ∪n≥m Cn so that R \C = ∪m≥1 ∩n≥m
(R \Cn). Since (∪n≥mCn)m is a nonincreasing sequence and �(∪n≥1Cn) <∞, one
has

�(C) = lim
m→∞

�(∪n≥mCn) ≤ lim
m→∞

∑
n≥m

1
2n−1

= 0,

while
μ (∩n≥m(R \ Cn)) ≤ lim

m→∞
μ(R \ Cm) = lim

m→∞

1
2m−1

= 0,

so that μ(R \ C) = 0; this shows that C 
= ∅ and, together with �(C) = 0, also
that μ ⊥ �.

Assume now that μ ⊥ �, that is, there is a Borel set C ⊂ R with �(C) = 0 and
μ(R \ C) = 0. Since such measures are regular, there exist sequences of compact
sets (Kn)n≥1 and open sets (On)n≥1 with

Kn ⊂ C ⊂ On, �(On) <
1
2n

and μ(R \Kn) <
1
2n
.

By the Uryshon lemma, there exists a sequence of continuous functions fn : R →
[0, 1] with fn(x) = 1, ∀x ∈ Kn and fn(x) = 0 for all x ∈ R \On. Thus∫

R

fn d� ≤ �(On) <
1
2n

and
∫

R

(1 − fn) dμ < μ(R \Kn) <
1
2n
.

Therefore i) and ii) hold. �

Proof. [Proposition 12.6.2] For ξ ∈ H set Q(ξ) := {T ∈ X : μTξ ⊥ �}. If f : R →
[0, 1] is continuous, write

Un(f, ξ) :=
{
T ∈ X : 〈ξ, (1 − f(T ))ξ〉 = μTξ (R) −

∫
R

f dμTξ <
1
2n

}
;

finally denote by Dn the set of continuous f : R → [0, 1] with
∫

R
f d� < 2−n.
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By Lemma 12.6.3,
Q(ξ) =

⋂
n≥2

⋃
f∈Dn

Un(f, ξ)

and if (ξj)j≥1 is an orthonormal basis of H one has W = ∩jQ(ξj). To complete
the proof it will suffice to verify that given ξ ∈ H the set Un(f, ξ) is open, ∀n,
which is equivalent to show that the complement of Un(f, ξ), i.e.,

Un(f, ξ)c =
{
T ∈ X : 〈ξ, (1 − f(T ))ξ〉 ≥ 1

2n

}
,

is a closed set for any f ∈ Dn.

Let Tk be a sequence in Un(f, ξ)c with Tk → T in X . By hypothesis Tk
SR−→ T

and, by Proposition 10.1.9, f(Tk)
s−→ f(T ) for all f ∈ Dn. Since the inner product

is continuous
1
2n

≤ 〈ξ, (1 − f(Tk))ξ〉 −→ 〈ξ, (1 − f(T ))ξ〉

so that T ∈ Un(f, ξ)c, that is, Un(f, ξ)c is closed. �

Theorem 12.6.4 (Wonderland). Let (X, d) be as before. If both sets

• Cp of T ∈ X with purely point spectrum, and
• Cac of T ∈ X with purely absolutely continuous spectrum,

are dense in X, then the set Csc of T ∈ X with purely singular continuous spectrum
is generic in X.

Proof. Since Cp ⊂ W , by Proposition 12.6.2, W is generic. Since Cac ⊂ Y , by
Proposition 12.6.1, Y is generic. Now it is enough to observe that Csc = Y ∩W ,
which is also generic (by the Baire theorem a countable intersection of generic sets
is also generic). �

In applications one has to prove the presence of operators with purely point
and purely absolutely continuous spectra in dense sets. Sometimes the Weyl-von
Neumann theorem can be used to get purely point operators, and the absolutely
continuous ones by some kind of periodicity (“periodic operators” have a tendency
to absolutely continuous spectrum; see [ReeS78]) or other techniques not discussed
in this text. For interesting applications of the wonderland theorem the reader is
referred to the original paper [Sim95].
Example 12.6.5. Just as an illustration, consider the operator

TV (α)ψ := −iα ∂

∂x
ψ − i

∂

∂y
ψ + V (x, y)ψ, ψ ∈ dom TV (α),

discussed in Example 12.2.8. Fix V of class Cr with r large enough and σ > 2, and
consider TV (α) as function of the real parameter α. This forms a complete metric
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spaceX(V ) with distance d(TV (α), TV (β)) := |α−β|. Since dom TV (α) = H1(T 2),
∀α,

‖TV (α)ψ − TV (β)ψ‖ = |α− β| ‖∂ψ/∂x‖,

by Proposition 10.1.18, it follows that convergence in the metric d implies conver-
gence in the strong resolvent sense in X(V ).

By Corollary 12.2.11, TV (α) is purely point in a dense set of parameters α;
on the other hand, it is shown in [GeH97] (see also [Bell85]) that for a large set
of choices of V (under the above conditions) the operator TV (α) has a purely ab-
solutely continuous spectrum iff α ∈ Q, so for a dense set of operators. Hence, for
each V in a “large set,” the wonderland theorem ensures the presence of purely sin-
gular continuous spectrum for a generic set of TV (α)’s in X(V ) (another argument
appears in [deO93]).

Example 12.6.6. Fix H and let X01 be the subset of B(H) of self-adjoint operators
T with σ(T ) = [0, 1]. It will be argued that the set of operators with purely singular
continuous spectrum is generic in X01.

Exercise 12.6.7. Based on Proposition 10.2.4 and Exercise 10.1.14, show that X01

is a closed subset of B(H). Conclude that it is a complete metric space with
distance d(T, S) = ‖T − S‖, T, S ∈ X01, which implies convergence in the strong
resolvent sense.

Given T ∈ X01 and ε > 0, by the Weyl-von Neumann theorem there is T1 ∈
HS(H) so that T+T1 has purely point spectrum and ‖T1‖ ≤ ‖T1‖HS < ε. Although
T +T1 may have eigenvalues in (−ε, 0)∪(1, 1+ε), one changes such eigenvalues to
0 or 1 by adding a self-adjoint operator T2 with ‖T2‖ < ε. Hence T +T1+T2 ∈ X01

has purely point spectrum and d(T, T + T1 + T2) ≤ ‖T1‖ + ‖T2‖ < 2ε. Therefore,
the set of operators in X01 with purely point spectrum is dense in X01.

In order to check that the set of purely absolutely continuous operators is
dense in X01, it is enough to show that in X01 purely point operators can be ar-
bitrarily approximated by operators with purely absolutely continuous spectrum.
If T ∈ X01 has purely point spectrum, Tξk = λkξk, (ξk) an orthonormal basis of
H, for each n let Jj = [j/2n, (j+1)/2n), j = 0, 1, . . . , 2n− 2, J2n−1 = [1− 1/2n, 1]
and Hj := rng χJj(T ). Since σ(T ) = [0, 1], the set of eigenvalues (λk) of T is dense
in [0, 1] and so dimHj = ∞, ∀j, that is, χJj (T ) is the identity operator on the
infinite-dimensional subspace Hj . Further,

∑
j χJj (T ) = 1, that is, H = ⊕jHj .

Let cj = j/2n denote the left end of Jj .
Define the self-adjoint operator Sn :

⊕
j Hj → H by

Sn =
2n−1⊕
j=0

cj χJj(T )

and note that the restriction Sn|Hj is the multiple of the identity cj 1 on Hj , so
that Snξk = cjξk, if λk ∈ Jj , and ‖Sn − T ‖ ≤ 2−n.
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Now, if Aj ∈ B(Hj) is a self-adjoint operator with purely absolutely contin-
uous spectrum [0, 1/2n], then ‖Aj‖ = 1/2n, ∀j, and the operator

Kn :=
2n−1⊕
j=0

(
cj χJj(T ) + Aj

)
belongs to X01, has purely absolutely continuous spectrum and

‖T −Kn‖ ≤ ‖T − Sn‖ + ‖Sn −Kn‖

≤ 1
2n

+ max
j

‖Aj‖ ≤ 1
2n−1

.

Since n is arbitrarily large, the set of absolutely continuous operators is dense
in X01. Therefore, by the wonderland theorem, the set of operators in X01 with
purely singular continuous spectrum is generic in X01.
Exercise 12.6.8. Verify that, for any j, the operators(

cj χJj (T ) +Aj
)

= cj1 +Aj ∈ B(Hj),

is purely absolutely continuous. Conclude that Kn in Example 12.6.6 is purely
absolutely continuous and belongs to X01.
Exercise 12.6.9. Adapt Example 12.6.6 for the set of self-adjoint operators Xab ⊂
B(H) with spectrum [a, b], a < b.



Chapter 13

Spectrum and
Quantum Dynamics

Different spectral subspaces of a self-adjoint operator T in general entail differ-
ent behaviors of the unitary evolution group e−itT (particularly as |t| → ∞). In
this chapter many such dynamical issues are discussed; the main motivation is
when T corresponds to the Schrödinger operator of a quantum system. Some re-
lated physical concepts, such as quantum return probability and test operators,
are used to probe the large-time behaviors. The cornerstones of such results are
the concepts of precompactness, almost periodicity and the Wiener and Riemann-
Lebesgue lemmas.

13.1 Point Subspace: Precompact Orbits

Fix a self-adjoint operator T in the Hilbert space H. It will be seen that even the
time evolution of linear combinations of eigenstates of T can present rich behavior.

Definition 13.1.1. The orbit of ξ ∈ H under T is the set

O(ξ) =
{
e−itT ξ : t ∈ R

}
,

and its trajectory is the map R � t �→ ξ(t) = e−itT ξ.

Lemma 13.1.2. Every trajectory is uniformly continuous.

Proof. Since the unitary evolution group e−itT is strongly continuous, then every
trajectory ξ(t) is continuous, and so continuous at the origin t = 0. Thus, given
ε > 0, there is δ > 0 so that ‖ξ(r)−ξ‖ < ε for all |r| < δ. Now, for any t ∈ R one has
‖ξ(t+ r)− ξ(t)‖ = ‖ξ(r)− ξ‖ < ε if |r| < δ, and ξ(t) is uniformly continuous. �
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Note that if ξλ is an eigenvector of T , i.e., Tξλ = λξλ, then its orbit

O(ξλ) = {e−itλξλ : t ∈ R} = {e−itλξλ : t ∈ [0, 2π/λ]}

is a compact subset of H, since it is a continuous image of the compact set [0, 2π/λ]
(the case λ = 0 is trivial). This remark motivates the

Definition 13.1.3. Hpc(T ) will denote the vector subspace (check!) of ξ ∈ H with
precompact orbit O(ξ), i.e., O(ξ) is a compact subset of H.

Recall that in a complete metric space a subset A is precompact iff A is
totally bounded iff every sequence in A has a Cauchy subsequence.

Lemma 13.1.4. Hpc(T ) is a closed subspace of H.

Proof. Let (ξn) ⊂ Hpc with ξn → ξ. For εn → 0+ choose ξn (or a subsequence
if necessary) so that ‖ξn − ξ‖ < εn/4. Since O(ξ1) is precompact, there exists an
increasing sequence t1j ⊂ R so that (e−it

1
jT ξ1)j is a Cauchy sequence. So, there is

M1 so that ∥∥∥e−it1jT ξ1 − e−it
1
kT ξ1

∥∥∥ < ε1
2
, ∀t1j , t1k ≥M1.

Since O(ξ2) is precompact, there exists a Cauchy subsequence (e−it
2
jT ξ2)j of

(e−it
1
jT ξ2)j , consequently there is M2 > M1 (choose M2 ∈ (t2j)j) with∥∥∥e−it2jT ξ2 − e−it

2
kT ξ2

∥∥∥ < ε2
2
, ∀t2j , t2k ≥M2.

Follow this pattern and construct (tnj )j , a subsequence of (tn−1
j )j , and Mn accord-

ingly, for all n ∈ N.
Consider the sequence (e−iMnT ξ) ⊂ O(ξ). It then follows that, for k, n ≥ m,∥∥e−iMnT ξ − e−iMkT ξ

∥∥≤ ∥∥e−iMnT (ξ − ξm)
∥∥

+
∥∥e−iMnT ξm − e−iMkT ξm

∥∥+
∥∥e−iMkT (ξm − ξ)

∥∥
<
εm
4

+
εm
2

+
εm
4

= εm.

Hence O(ξ) has a Cauchy subsequence and so it is precompact. �
Lemma 13.1.5. If ξ ∈ Hpc(T ), then for all ε > 0 there exists an orthogonal pro-
jection Fε, onto a finite-dimensional subspace of H, so that∥∥(1− Fε)e−itT ξ

∥∥ < ε, ∀t ∈ R.

Proof. Since e−itT is a unitary operator for every t ∈ R, it follows that O(ξ)
is a subset of the sphere centered at the origin and radius ‖ξ‖, so a bounded
set. It is then possible to assume that ‖ξ‖ = 1 (the case ξ = 0 is trivial). Let
(ηj)∞j=1 be an orthonormal sequence in O(ξ) and Pn the orthogonal projection



13.1. Point Subspace: Precompact Orbits 355

onto Lin({η1, . . . , ηn}). If such a sequence does not exist (i.e., it is finite), then
O(ξ) is a subset of a finite-dimensional subspace and the result is immediate.
Assume that it exists and put

Mn := sup{‖η‖ : η ∈ (1 − Fn)O(ξ)}.

The proof ends if it is shown that Mn → 0 as n→ ∞.
If Mn does not vanish, there exist ε0 > 0 and an orthogonal sequence (ξnk

)
so that

ξnk
∈ O(ξ) ∩ rng (1− Pnk

), ‖ξnk
‖ ≥ ε0, ∀nk.

Since by construction the sequence (ξnk
) is bounded and orthogonal, it converges

weakly to zero, ξnk

w−→ 0 (like orthonormal sequences). Further, (ξnk
) has a con-

vergent subsequence (denoted with the same symbols) in H since it is a subset of
the orbit of ξ, a precompact set. Hence, ξnk

→ 0, which is a contradiction with
the above lower bound ‖ξnk

‖ ≥ ε0. This finishes the proof of the lemma. �

For the proof of the main result of this section, i.e., Theorem 13.1.6, RAGE
Theorem 13.4.1 will be employed.

Theorem 13.1.6. If T is self-adjoint, then Hp(T ) = Hpc(T ).

Proof. Since the orbit of each eigenvector of T is compact and Hpc(T ) is a closed
subspace, it follows that Hp(T ) ⊂ Hpc(T ).

Now pick ξ ∈ Hpc(T ). Given ε > 0, let Fε be as in Lemma 13.1.5. For each
η ∈ Hc(T ) one has (assume t > 0 for simplicity)

〈η, ξ〉 =
1
t

∫ t

0

〈η, ξ〉 ds =
1
t

∫ t

0

〈
(Fε + 1− Fε) e−isT η, e−isT ξ

〉
ds

=
1
t

∫ t

0

〈
Fεe

−isT η, e−isT ξ
〉
ds+

1
t

∫ t

0

〈
e−isT η, (1 − Fε)e−isT ξ

〉
ds.

Thus,

|〈η, ξ〉| ≤ ‖ξ‖
t

∫ t

0

∥∥Fεe−isT η∥∥ ds+
‖η‖
t

∫ t

0

∥∥(1− Fε)e−isT ξ
∥∥ ds,

and by Cauchy-Schwarz and RAGE Theorem 13.4.1, for t sufficiently large,

1
t

∫ t

0

1 ×
∥∥Fεe−isT η∥∥ ds ≤ (1

t

∫ t

0

∥∥Fεe−isT η∥∥2
ds

)1/2

< ε.

This inequality and an appropriate choice of Fε in Lemma 13.1.5 imply

|〈η, ξ〉| ≤ ε (‖ξ‖ + ‖η‖) .

Since this holds for arbitrarily ε > 0 one has 〈η, ξ〉 = 0. It was then shown
that Hpc(T ) ⊥ Hc(T ), that is, Hpc(T ) ⊂ Hp(T ). This finishes the proof of the
theorem. �
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The interpretation of this result is that the elements of the point subspace
Hp(T ) are those whose trajectories, up to any given “small error” ε, spend long
times in finite-dimensional subspaces of H. It will be seen that the trajectories of el-
ements of Hc(T ) escape, in time average, from all finite-dimensional subspaces (see
page 363). This is an attractive way of viewing the orthogonality Hp(T ) ⊥ Hc(T ).

13.2 Almost Periodic Trajectories

Let T be a self-adjoint operator acting in the Hilbert space H.

Definition 13.2.1. Let ξ ∈ H and R � t �→ ξ(t) := e−itT ξ its trajectory.

a) Given ε > 0, an ε-almost period of ξ(t) is a τ ∈ R so that

‖ξ(t+ τ) − ξ(t)‖ < ε, ∀t ∈ R.

b) ξ(t) is almost periodic if, for all ε > 0, there exists L = L(ε) > 0 so that for
each s ∈ R the interval [s, s+ L] ⊂ R contains an ε-almost period of ξ(t).

It is also convenient to denote by ξτ the trajectory ξτ (t) := ξ(t+ τ), and so
τ is an ε-almost period iff supt ‖ξτ (t) − ξ(t)‖ ≤ ε.

Example 13.2.2.
a) τ = 0 is always an ε-almost period of ξ(t).
b) If ξ(t) is periodic with period r, that is, ξ(t) = ξr(t), ∀t ∈ R, then r is

an ε-almost period for all ε > 0. Thus, every periodic trajectory is almost
periodic, since nr is an ε-almost period for all n ∈ Z (that is, L(ε) = |r|,
∀ε > 0).

The next result is a main motivation for considering almost periodic trajec-
tories in this context.

Proposition 13.2.3. If Tξλ = λξλ, then ξλ(t) is periodic and so almost periodic. If
λ 
= 0, the period is 2π/λ.

Proof. If λ = 0 the trajectory is constant, and so periodic. If λ 
= 0, then ξλ(t) =
e−iλtξλ = ξλ(t+ 2π/λ), ∀t. �

Lemma 13.2.4. τ is an ε-almost period of ξ(t) iff

‖(1− e−iτT )ξ‖ < ε.

If ξ(t) is almost periodic it is uniformly continuous and recurrent, that is,
there exists a sequence tj → ∞ with limj→∞ e−itjT ξ = ξ.
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Proof. τ is an ε-almost period of ξ(t) iff, for all t ∈ R,

ε > ‖ξ(t+ τ) − ξ(t)‖ = ‖e−i(t+τ)T ξ − e−itT ξ‖ = ‖e−iτT ξ − ξ‖,

since e−itT is a unitary operator.
ξ(t) is uniformly continuous by Lemma 13.1.2. Finally, take a sequence εj →

0+ and τj > τj−1 +1 a corresponding sequence of εj-almost periods. Then τj → ∞
and, for each j one has

‖(1− e−iτjT )ξ‖ < εj;

hence ξ(t) is recurrent. �

The main result of this section is another characterization of the point sub-
space of a self-adjoint operator.

Theorem 13.2.5. The trajectory ξ(t) is almost periodic iff the orbit O(ξ) is pre-
compact.

Corollary 13.2.6. Hp(T ) = {ξ ∈ H : ξ(t) is almost periodic} .

Proof. It follows directly from Theorems 13.1.6 and 13.2.5. �

Proof. [Theorem 13.2.5] Suppose that ξ(t) is almost periodic; then given ε > 0 let
L = L(ε) be an ε-almost period. By Lemma 13.2.4, ξ(t) is uniformly continuous
and so there exists a finite set

F := {t1, . . . , tN} ⊂ [−L(ε), 0], N <∞,

so that
⋃N
j=1 B(ξ(tj); ε) is an open cover of {ξ(t) : t ∈ [−L(ε), 0]}. It is claimed

that
⋃N
j=1 B(ξ(tj); 2ε) is an open cover of O(ξ), that is, that this orbit is totally

bounded, thus precompact in H.
If s ∈ R let τ = τ(s, ε) be an ε-almost period of ξ(t) in the interval [s, s+L(ε)].

Thus, since (s − τ) ∈ [−L(ε), 0] there exists tj ∈ F with ‖ξ(s − τ) − ξ(tj)‖ < ε.
Therefore,

‖ξ(s) − ξ(tj)‖ ≤ ‖ξ(s) − ξ(s− τ)‖ + ‖ξ(s− τ) − ξ(tj)‖
< ‖e−iτT (ξ(s) − ξ(s− τ))‖ + ε = ‖ξ(s+ τ) − ξ(s)‖ + ε

< ε+ ε = 2ε.

Since this holds for any s ∈ R, the above claim follows. Hence O(ξ) is totally
bounded.

Suppose now that O(ξ) is precompact; thus for each ε > 0 there are open
balls

B(ξ(t1); ε), . . . , B(ξ(tN ); ε),
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centered at points of O(ξ), whose union covers this orbit. It happens that every
closed interval in R of length M(ε) := 2 max1≤j≤N |tj | has an ε-almost period of
ξ(T ); in fact, for each s ∈ R there is a tj in [s, s+M(ε)] with

‖ξ(t) − ξ(t+ τ)‖ = ‖ξ(0) − ξ(τ)‖ = ‖ξ(tj) − ξ(tj + τ)‖
= ‖ξ(tj) − ξ(s+M/2)‖ < ε,

that is, ξ(t) is almost periodic. �

Remark 13.2.7. The following reasoning gives some insight into precompact orbits
and almost periodic trajectories for vectors in the point subspace of T , i.e., ξ =∑∞
j=1 ajξj , Tξj = λjξj , ∀j, and (ξj) orthonormal. By Example 5.4.10 its time

evolution is ξ(t) =
∑∞

j=1 aje
−itλjξj .

1. For all t ∈ R one has

‖ξ(t)‖2 =
∞∑
j=1

|e−itλjaj |2 =
∞∑
j=1

|aj |2.

Given ε > 0 there is N so that
∑N
j=1 |e−itλjaj |2 > (1 − ε), ∀t, and a large

part of the orbit lives in a finite-dimensional subspace (of dimension ≤ N).
Compare with Lemma 13.1.5.

2. Note that in Hilbert space, ξ(t) = limM→∞ ξM (t) with uniform convergence
in t, where ξM (t) =

∑M
j=1 aje

−itλj ξj is quasiperiodic, i.e., a linear combi-
nation of (finitely many) periodic trajectories. The almost periodicity “is
obtained in the limit of infinitely many periods M → ∞.”

Remark 13.2.8. The equivalence between almost periodic trajectory and precom-
pact orbit extends to time-periodic Schrödinger operatorsH(t); however, there are
counterexamples in case the time dependence of the Schrödinger operator H(t) is
quasiperiodic; these results are discussed in [deOS07b]. See [Katz76] and [Cor89]
for a general treatment of almost periodic functions.

13.3 Quantum Return Probability

Let T be self-adjoint, η, ξ ∈ H and μξ = μTξ , μξ,η = μTξ,η the corresponding
spectral measures. Without loss of generality the initial condition of the Schrö-
dinger equation

i
dξ

dt
(t) = Tξ(t), ξ(0) = ξ ∈ dom T,

will be supposed to be given at initial time t0 = 0. The main quantities considered
to probe the large time behavior of the dynamics e−itT ξ will be:
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1. The (quantum) return probability to the initial condition ξ, at time t,

pξ(t) :=
∣∣〈ξ, e−itT ξ〉∣∣2 ,

and more generally pη,ξ(t) :=
∣∣〈η, e−itT ξ〉∣∣2 .

2. The average return probability up to time t 
= 0,

〈pξ〉 (t) :=
1
t

∫ t

0

pξ(s) ds,

and similarly one defines 〈pη,ξ〉 (t).
3. The total return probability to the initial state ξ,∫

R

pξ(t) dt,

also called sojourn time at the initial state.
4. A test operator is an unbounded self-adjoint operator A ≥ 0 with com-

pact resolvent, that is, with positive and purely discrete spectrum, so that
e−itTdom A ⊂ dom A, ∀t ∈ R. One considers the expectation value of A in
the state ξ at time t to be

EξA(t) :=
〈
e−itT ξ, Ae−itT ξ

〉
.

5. The time average for A is〈
EξA
〉

(t) :=
1
t

∫ t

0

EξA(s) ds.

Remark 13.3.1. It is important to notice that in both notations EξA(t) and pξ(t) the
self-adjoint operator T , the (infinitesimal) generator of the time unitary evolution
group e−itT , is not explicitly indicated.

A crucial relation for what follows comes from the spectral theorem

pξ(t) = |μ̂ξ(t)|2 :=

∣∣∣∣∣
∫
σ(T )

e−itx dμξ(x)

∣∣∣∣∣
2

.

μ̂ξ(t) =
∫
σ(T ) e

−itλ dμξ(λ) is called the Fourier transform of the measure μξ, so that
the behavior of the return probability and expectation values of test operators are
naturally related to spectral measures of T through

〈
ξ, e−itT ξ

〉
= μ̂ξ(t). Two gen-

eral results on Borel measures over R are important here: the Riemann-Lebesgue
lemma (around 1900) and the Wiener lemma (around 1935).

Lemma 13.3.2 (Riemann-Lebesgue). If f ∈ L1(R) and f̂ denotes its Fourier trans-
form, then f̂ is continuous and lim|p|→∞ f̂(p) = 0; in other symbols f̂ ∈ C∞(R̂).
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Proof. The Fourier transform f̂ is continuous by Lemma 3.2.8.
For a function f ∈ L1(R), denote fh(t) = f(t + h). First note that for

φ ∈ C∞0 (R) one has ‖φh − φ‖1 → 0 as h → 0 (by the uniform continuity of
φ). Now since C∞0 (R) is dense in L1(R), given ε > 0 pick φ ∈ C∞0 (R) with
‖f − φ‖1 < ε; by the invariance of Lebesgue measure under translations one has
‖fh − φh‖1 = ‖f − φ‖1 < ε. Take |h| sufficiently small so that ‖φh − φ‖1 < ε.
Gathering these facts, one has

‖fh − f‖1 ≤ ‖fh − φh‖1 + ‖φh − φ‖1 + ‖φ− f‖1 < 3ε.

This shows that ‖fh − f‖1 → 0 as h → 0, ∀f ∈ L1(R). Note that this property
holds for all Lq(R), 1 ≤ q <∞; the proof is the same.

For p 
= 0 one has

√
2π f̂(p) =

∫
R

e−ixpf(x) dx = −
∫

R

e−i(x+π/p)pf(x) dx = −
∫

R

e−ixpf

(
x− π

p

)
dx,

and so

2
√

2π |f̂(p)|=
∣∣∣∣∫

R

e−ixp
(
f(x) − f

(
x− π

p

))
dx

∣∣∣∣
≤
∥∥∥∥f(x) − f

(
x− π

p

)∥∥∥∥
1

,

which vanishes as |p| → ∞. �

Exercise 13.3.3. If f(x) = χ[a,b](x), write out its Fourier transform f̂(p) and check
that lim|p|→∞ f̂(p) = 0. This is a seed of another proof of the Riemann-Lebesgue
lemma.
Exercise 13.3.4. Follow the indicated steps to show that there are continuous
functions g ∈ C∞(R̂) for which there is no f ∈ L1(R) with f̂ = g. In other words,
the bounded map F : L1(R) → C∞(R̂) (see the proof of Proposition 10.1.9 for
notation) is not onto.

1) Check that such map is invertible.
2) Assume it is onto. Since C∞(R̂) is a Banach space, conclude that F−1 :

C∞(R̂) → L1(R) is bounded by Corollary 1.2.6, i.e., the open mapping the-
orem.

3) For each n ∈ N pick fn ∈ C∞0 (R̂) with fn(p) = 1 if |p| ≤ n and f(p) = 0 if
|p| ≥ n+ 1/n, fast decaying in the gaps (−n− 1/n,−n) and (n, n+ 1/n), so
that ‖fn‖∞ = 1 and

√
2π
∥∥f̌n∥∥1

≈
∫

R

∣∣∣∣∫ n

−n
dp eixpfn(p)

∣∣∣∣ dx = 2
∫

R

dx

∣∣∣∣ sinnxx

∣∣∣∣ .
4) Conclude that

∥∥f̌n∥∥1
diverges as n → ∞, thus getting a contradiction with

the boundedness of F−1, which implies rng F is a proper subset of C∞(R̂).
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Lemma 13.3.5 (Wiener). If μ is a finite Borel (real or complex) measure over R,
and Λ = {λ ∈ R : μ({λ}) 
= 0}, then

lim
t→∞

1
t

∫ t

0

|μ̂(s)|2 ds =
∑
λ∈Λ

|μ({λ})|2 .

Proof. Since μ is finite, Λ is a countable set (check this!). Since μ̂(t)=
∫

R
e−itxdμ(x)

one has, by the Fubini theorem, (μ is the complex conjugate of μ)

1
t

∫ t

0

ds |μ̂(s)|2 =
1
t

∫ t

0

ds

∫ ∫
dμ(u) dμ(v) e−i(u−v)s

=
∫ ∫

dμ(u) dμ(v) g(u, v, t),

with g(u, u, t) = 1 and

g(u, v, t) = −i1 − e−i(u−v)t

t(u− v)
, u 
= v.

Since limt→∞ g(u, v, t) = χ{u}v), and this function is dominated by the constant
function 1 which belongs to L1

μ×μ̄(R × R), by dominated convergence one obtains

lim
t→∞

1
t

∫ t

0

ds |μ̂(s)|2 =
∫ ∫

dμ(u) dμv)χ{u}v)

=
∫
μ({v}) dμv) =

∑
v∈Λ

|μ({v})|2 .

The lemma is proved. �
Lemma 13.3.6. If ξ, η ∈ H, then there exists g ∈ L2

μξ
(R) ∩ L1

μξ
(R) so that

〈η, e−itT ξ〉 =
∫
σ(T )

e−itxg(x) dμξ(x).

Further, ‖g‖L2
μξ

≤ ‖η‖.

Proof. Let Hξ be the cyclic subspace spanned by ξ, as discussed in Section 8.3.
Hξ reduces T and is unitarily equivalent to L2

μξ
(R). In this space T , that is,

T |Hξ
, is represented by the multiplication operator Mh, h(x) = x, the vector ξ is

represented in L2
μξ

(R) by the constant function 1(x) = 1 and the unitary evolution
group e−itT by Me−itx .

If Pξ is the orthogonal projection onto Hξ, then for η ∈ H the vector Pξη is
represented by a function g ∈ L2

μξ
(R) (so ‖g‖L2

μξ
≤ ‖η‖). Thus, since e−itT ξ ∈ Hξ,

〈η, e−itT ξ〉= 〈Pξη, e−itT ξ〉 = 〈g(x), e−itx1〉L2
μξ

=
∫
σ(T )

g(x)e−itx dμξ(x).

By taking t = 0 it follows that g ∈ L1
μξ

(R). �



362 Chapter 13. Spectrum and Quantum Dynamics

Now a prominent result with respect to the large-time behavior of the re-
turn probability will be presented. Some dynamical differences between point and
continuous subspaces are noteworthy.

Theorem 13.3.7. Let T be self-adjoint.

i) For any ξ ∈ H the limit
Xξ := lim

t→∞
〈pξ〉 (t)

exists. Furthermore, Xξ = 0 iff ξ ∈ Hc(T ).
ii) If ξ ∈ Hac(T ), then limt→∞ pξ(t) = 0.

Proof. i) It follows immediately by the Wiener Lemma 13.3.5 and the crucial
relation on page 359. In particular, Xξ = 0 iff μξ is a continuous measure and, by
Theorem 12.1.2, iff ξ ∈ Hc(T ).

ii) One has ξ ∈ Hac(T ) iff μξ ( � iff there exists f ∈ L1(R), f ≥ 0, with
dμξ

d� = f . Thus

pξ(t) = 〈ξ, e−itT ξ〉 =
∫

R

e−itx dμξ(x) =
∫

R

e−itxf(x) dx,

which vanishes as t→ ∞ by Riemann-Lebesgue 13.3.2. �
Corollary 13.3.8. Let T be self-adjoint.

i) ξ ∈ Hc(T ) iff limt→∞〈pη,ξ〉(t) = 0, ∀η ∈ H.
ii) If ξ ∈ Hac(T ), then limt→∞ pη,ξ(t) = 0, ∀η ∈ H, in other words,

w − lim
t→∞

e−itT ξ = 0.

Proof. If ξ ∈ Hc(T ), by Proposition 12.3.1, μξ,η is a continuous measure and i)
follows by the Wiener lemma and Theorem 13.3.7.

If ξ ∈ Hac(T ) then μη,ξ ( � and we write dμη,ξ(x) = f(x)dx, f ∈ L1(R); by
Lemma 13.3.6,

〈η, e−itT ξ〉 =
∫

R

e−itxg(x) dμξ(x) =
∫

R

e−itxg(x)f(x) dx.

By considering t = 0 it follows that fg ∈ L1(R) and so

pη,ξ(t) =
∣∣∣∣∫

R

e−itxg(x)f(x) dx
∣∣∣∣2 −→ 0, t→ ∞,

by Riemann-Lebesgue. �
Exercise 13.3.9. Show that

1
t

∫ t

0

∣∣〈η, e−isT ξ〉∣∣ ds ≤ ( 〈pη,ξ〉 (t)
) 1

2 , ∀η ∈ H,

and conclude that ξ ∈ Hc(T ) iff limt→∞
1
t

∫ t
0

∣∣〈η, e−isT ξ〉∣∣ ds = 0.
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Such results are interpreted as follows. Under time evolution e−itT ξ, any
state η (in particular the initial state ξ) is completely abandoned in time average
if ξ ∈ Hc(T ), since 〈pη,ξ〉(t) → 0 as t→ ∞; for elements of Hac(T ) the time average
is not necessary. Sometimes such properties are associated with instabilities, e.g.,
atomic ionization. On the other hand, for elements ξ ∈ Hp(T ) one has Xξ > 0 and
so the initial state is not “forgotten,” in accordance with their almost periodic
trajectories, as discussed in Section 13.2.
Remark 13.3.10. All occurrences of t→ ∞ above can be replaced by t→ −∞.

13.4 RAGE Theorem and Test Operators

The RAGE theorem is an important tool in the study of the time asymptotics of
expectation values of test operators, which were introduced in Section 13.3.

Theorem 13.4.1 (RAGE). Let T be a self-adjoint operator in H.

i) ξ ∈ Hc(T ) iff for every compact operator K : H ←↩,

lim
t→∞

1
t

∫ t

0

∥∥Ke−iTsξ∥∥2
ds = 0.

ii) If ξ ∈ Hac(T ), then for every compact operator K : H ←↩,

lim
t→∞

Ke−itT ξ = 0.

Proof. K can be approximated in the norm of B(H) by finite-rank operators,
and by induction and the triangle inequality, it is sufficient to consider rank-one
operators

Kξ = 〈η, ξ〉ζ,

for some η, ζ ∈ H. In this case

‖Ke−itT ξ‖ = ‖〈η, e−itT ξ〉ζ‖ = ‖ζ‖ |〈η, e−itT ξ〉|,

and the result follows by Corollary 13.3.8. �
Exercise 13.4.2. Discuss the missing details in the proof of Theorem 13.4.1.
Remark 13.4.3. The term RAGE comes from the initials of D. Ruelle, W.O. Am-
rein, V. Georgescu and V. Enss. The RAGE theorem has applications to localiza-
tion in scattering theory in Rn; see Section 13.6.

Important compact operators are the projections onto finite-dimensional sub-
spaces of H; so the elements of Hc(T ) can be interpreted as those whose trajectories
escape, in time average, from every finite-dimensional subspace (again, the aver-
age is not necessary for the absolutely continuous subspace). Compare with the
corresponding remark about the point subspace on page 356.
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Corollary 13.4.4. Let T be self-adjoint and A a test operator. If Pc(T )ξ 
= 0 (i.e.,
ξ has a nonzero component in the continuous subspace of T ), then

i) The function t �→ EξA(t) is unbounded.
ii) lim|t|→∞〈EξA〉(t) = ∞.

Proof. Note that i) is a consequence of ii); then it will suffice to prove the latter
assertion.

Let 0 ≤ λ1 < λ2 < λ3 · · · denote the eigenvalues of A and QN the orthogonal
projection onto the subspaces spanned by the eigenvectors of A associated with its
eigenvalues ≤ λN . Since A has purely discrete spectrum, limj→∞ λj = ∞. Then
QN has finite rank, so is a compact operator, and QNA = AQN . Denote ξc = Pcξ
and ξp = Ppξ; by hypothesis ξc 
= 0.

Denote ξ(t) = e−itT ξ and similarly for ξp(t) and ξc(t). Thus

EξA(t) = 〈ξ(t), Aξ(t)〉
= 〈(1 −QN +QN )ξ(t), A(1 −QN +QN)ξ(t)〉
= 〈QNξ(t), AQN ξ(t)〉 + 〈(1 −QN )ξ(t), A(1 −QN )ξ(t)〉
≥ 〈(1 −QN )ξ(t), A(1 −QN )ξ(t)〉 ≥ λN‖QNξ(t)‖2

= λN
(
1 − ‖QNξc(t)‖2 − ‖QNξp(t)‖2

)
≥ λN

(
1 − ‖QNξc(t)‖2 − ‖ξp‖2

)
.

By RAGE Theorem 13.4,

lim
t→∞

1
t

∫ t

0

‖QNξc(s)‖2 ds = 0,

and so
lim inf
t→∞

〈
EξA
〉

(t) ≥ λN
(
1 − ‖ξp‖2

)
= λN‖ξc‖2,

and since this holds for any N , ii) follows. �

By following the same kind of arguments, one obtains

Corollary 13.4.5. If Pac(T )ξ 
= 0, then lim|t|→∞ EξA(t) = ∞.

Exercise 13.4.6. Prove Corollary 13.4.5.
Remark 13.4.7. Contrary to what could be expected on account of the above
results, pure point spectrum does not guarantee that the function t �→ EξA(t) is
bounded; under certain conditions the time evolution could push ξ(t) to outside
dom A as |t| → ∞. The first (mathematically rigorous) example of an operator
with purely point spectrum and unbounded EξA(t) has appeared in Section 9 of
[delR96]; for a generalization in a framework of potentials generated by some
dynamical systems and under short range perturbations, consult [deOPr07]. The
same phenomenon was found in the random dimer model [JSBS03]. Corresponding
results in case of time-periodic quantum systems have appeared in [deOS07a]. This
is an interesting current area of research.
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Exercise 13.4.8. Let T be self-adjoint in H, K a compact operator and B(t) ∈
B(H) uniformly bounded, that is, there is C > 0 so that ‖B(t)‖ ≤ C, ∀t ∈ R.
Show that

lim
t→∞

∥∥∥∥1
t

∫ t

0

B(s)Ke−isTPc(T )ξ ds
∥∥∥∥ = 0, ∀ξ ∈ H.

13.5 Continuous Subspace: Return Probability Decay

The main goal of this section is to present characterizations of the continuous
subspaces, of a self-adjoint operator T , in terms of the decay rate of the return
probability to zero as |t| → ∞. Recall that F denotes the Fourier transform (see
Chapter 3), � is Lebesgue measure and A the Borel sets in R. If the measures
μ( ν, the Radon-Nikodym derivative is denoted by dμ/dν.

First some technical preparation for the main results. Note that sometimes
the results are formulated in terms of the return probability pη,ξ(t), and in other
instances in terms of 〈η, e−itT ξ〉.

Lemma 13.5.1. Let T be self-adjoint. Let ξ ∈ Hac(T ) and η ∈ H. Then:

i) 〈η, e−itT ξ〉 =
√

2πF
(
dμη,ξ

d�

)
(t), and hence

pη,ξ(t) = 2π
∣∣∣∣F (dμη,ξd�

)
(t)
∣∣∣∣2 .

ii) Lebesgue a.e.∣∣∣∣dμη,ξd�

∣∣∣∣2 ≤ dμη
d�

dμξ
d�

, with
dμη
d�

= 0 if η ∈ Hac(T )⊥.

Proof. i) Since μη,ξ ( � one has

〈η, e−itT ξ〉=
∫

R

e−itx dμη,ξ(x) =
∫

R

e−itx
dμη,ξ
d�

(x) dx

=
√

2πF
(
dμη,ξ
d�

)
(t).

ii) If η ∈ Hac(T )⊥, then μη,ξ = 0; thus it is possible to assume that η ∈
Hac(T ) (alternatively work with Pac(T )η). For every Borel set Λ ∈ A, Cauchy-
Schwarz implies

|μη,ξ(Λ)|2 = |〈η, χΛ(T )ξ〉|2 = |〈χΛ(T )η, χΛ(T )ξ〉|2

≤ ‖χΛ(T )η‖2 ‖χΛ(T )ξ‖2

= 〈η, χΛ(T )η〉 〈ξ, χΛ(T )ξ〉 = μη(Λ)μξ(Λ).
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By taking Λ = Jx, i.e., an open interval that contains x, one has∣∣∣∣μη,ξ(Jx)�(Jx)

∣∣∣∣2 ≤ μη(Jx)
�(Jx)

μξ(Jx)
�(Jx)

,

and for �(Jx) → 0 it is found that �-a.e. (see, e.g., [Ru74], Chapter 8)∣∣∣∣dμη,ξd�

∣∣∣∣2 ≤ dμη
d�

dμξ
d�

,

since the involved functions are absolutely continuous. �
Lemma 13.5.2. Let ξ, η ∈ H. If the function t �→ s(t) = 〈η, e−itT ξ〉 is an element
of L2(R), then the spectral measure μη,ξ ( �.

Proof. Assume that s ∈ L2(R). Then for all ψ ∈ L2(R) the function s(t)ψ(t) ∈
L1(R) and the linear map

ψ �→ L(ψ) :=
∫

R

ψ(t) s(t) dt

is bounded since |L(ψ)| ≤ ‖s‖2 ‖ψ‖2. By Riesz’s Representation Theorem 1.1.40,
there exists φ ∈ L2(R) so that∫

R

φ(t)ψ(t) dt = 〈φ, ψ〉 = L(ψ);

by Fubini’s theorem,

L(ψ) =
∫

R

ψ(t)
(∫

R

e−itx dμη,ξ(x)
)
dt

=
√

2π
∫

R

ψ̂(x) dμη,ξ(x) =
√

2π 〈η, ψ̂(T )ξ〉.

Given a bounded interval (a, b) ⊂ R, take a sequence 0 ≤ ψ̂n ∈ C∞0 (R̂) so
that pointwise ψ̂n ↑ χ(a,b); thus, by Lemma 8.2.6 and dominated convergence,

√
2π μη,ξ((a, b)) =

√
2π 〈η, χ(a,b)(T )ξ〉

=
√

2π lim
n→∞

〈η, ψ̂n(T )ξ〉 = lim
n→∞

L(ψn)

= lim
n→∞

∫
R

φ(t)ψn(t) dt

= lim
n→∞

∫
R

φ̂(t) ψ̂n(t) dt =
∫

(a,b)

φ̂(t) dt.

Since this holds for all bounded (a, b) and μη,xi is finite (although in general it is

complex), it follows that φ̂ ∈ L1(R), dμη,ξ/d� = φ̂ and μη,ξ ( �. �
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Theorem 13.5.3. Let T be self-adjoint. Then ξ ∈ Hac(T ) iff there exists a dense set
E(ξ) � H so that the function t �→ pη,ξ(t) is an element of L1(R) for all η ∈ E(ξ).

Proof. Suppose such E(ξ) exists. Then by Lemma 13.5.2 μη,ξ ( � for each η ∈
E(ξ). Thus, for any Λ ∈ A,

μη,ξ(Λ) = 〈η, χΛ(T )ξ〉
= 〈η, χΛ(T )Pac(T )ξ〉 + 〈η, χΛ(T )Pp(T )ξ〉 + 〈η, χΛ(T )Psc(T )ξ〉,

and since μη,ξ ( � it follows, by Proposition 12.3.1,

〈η, χΛ(T )Pp(T )ξ〉 = 〈η, χΛ(T )Psc(T )ξ〉 = 0, ∀η ∈ E(ξ).

Hence, since E(ξ) is dense in H, Ppξ = 0 = Pscξ and so ξ ∈ Hac(T ).
Suppose now that ξ ∈ Hac(T ) and let E(ξ) be defined as in the statement of

the theorem, that is, the vectors η so that t �→ pη,ξ(t) is an element of L1(R). It
will be shown that E(ξ) is dense in H. If η ∈ Hp(T ) ⊕ Hsc(T ), then pη,ξ(t) = 0,
∀t; hence it is enough to consider η ∈ Hac(T ) and verify the result for η in a dense
subset of Hac(T ).

By Lemma 13.5.1i) and Plancherel, one has

pη,ξ ∈ L1(R) ⇐⇒ dμη,ξ
d�

∈ L2(R).

For each vector η ∈ Hac(T ) that there exists M = M(η) <∞ so that for �-a.e.

0 ≤ dμη
d�

(x) ≤M,

one has, by Lemma 13.5.1ii), that∥∥∥∥dμη,ξd�

∥∥∥∥2

2

≤M(η)
∥∥∥∥dμξd�

∥∥∥∥
1

<∞.

Since such a set of η is dense in Hac(T ) (see Exercise 13.5.4), the result follows. �

Exercise 13.5.4. For ξ ∈ Hac(T ) set Ωn := {x ∈ R : dμξ

d� (x) ≤ n}. Use dominated
convergence to show that ξn := χΩn(T )ξ → ξ as n→ ∞ in H. Conclude that{

η ∈ Hac(T ) :
dμη
d�

is a bounded function
}

� Hac(T ),

and for η in this set,
∫

R
pζ,η(t) dt ≤ 2π‖ζ‖2‖dμη/d�‖2

∞, for all ζ ∈ H.

The following interesting characterizations of the continuous subspaces, in
terms of the time decay rate of the return probability, are consequences of the
above results.
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Corollary 13.5.5. Let T be self-adjoint.

i) Hac(T ) = {ξ ∈ H : pξ(t) ∈ L1(R)}.
ii) If there exist c, ε > 0 so that for large |t|,

pξ(t) ≤
c

|t|1+ε ,

then ξ ∈ Hac(T ).

Proof. i) By Lemma 13.5.2 the set

Ω = {ξ ∈ H : pξ(t) ∈ L1(R)} ⊂ Hac(T ),

and since Hac(T ) is a closed subspace Ω ⊂ Hac(T ). From the proof of Theo-
rem 13.5.3 it follows that every η ∈ Hac(T ) with bounded Radon-Nikodym deriva-
tive dμη

d� belongs to Ω, but this set is dense in Hac(T ). Hence Ω = Hac(T ).
ii) It is immediate from i) since in this case the given (bounded) function

t �→ pξ(t) belongs to L1(R). �
Corollary 13.5.6. Let T be self-adjoint.

i) ξ ∈ Hc(T ) with Psc(T )ξ 
= 0 iff Xξ = 0 and there exists an open set ∅ 
=
X(ξ) ⊂ H so that ∫

R

pη,ξ(t) dt = ∞, ∀η ∈ X.

ii) If 0 
= ξ ∈ Hsc(T ), then Xξ = 0 and
∫

R
pξ(t) dt = ∞.

Proof. By Theorem 13.3.7, Xξ = 0 iff ξ ∈ Hc(T ). Theorem 13.5.3 implies the
existence of the open set X(ξ), and i) follows. If ξ ∈ Hsc(T ), then pξ /∈ L1(R) by
Corollary 13.5.5; this is ii). �

Note that if ξ ∈ Hp(T ), then
∫

R
pξ(t) dt = ∞ but Xξ 
= 0; this is obvious for

eigenvectors, and the general case follows by Corollary 13.5.5i). The elements of
the singular continuous subspace present a “weak time recurrence,” characterized
by a null average return probability Xξ = 0 and infinite sojourn time (defined on
page 359)!

Exercise 13.5.7. Define Hw(T ) := {ξ ∈ H : e−itT ξ w−→ 0 as t→ ∞}. Show that:

a) Hw(T ) = {ξ ∈ H : pξ(t) → 0 as t → ∞}.
b) e−itTHw(T ) = Hw(T ), ∀t ∈ R, and Hac ⊂ Hw ⊂ Hc.

Remark 13.5.8.

i) There are examples [Sin77] of vectors 0 
= ξ ∈ Hsc(T ) so that, for large |t|,

pξ(t) ∼
(ln t)4

t
,

and so “pξ(t) ∼ 1/t1−ε for any ε > 0.” Compare with Corollary 13.5.5.
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ii) There are examples of singular continuous measures for which the time aver-
age is necessary in Wiener’s lemma. For instance, some measures associated
with Riesz products [Que87] or the autocorrelation measure of the Thue-
Morse substitution sequence [AlMF95].

iii) The elements of Hw(T ) are those for which the conclusion of the Riemann-
Lebesgue lemma holds for their spectral measures. Such measures are called
Rajchman measures and in general Hw(T ) is strictly larger than Hac(T )
[Sin77]. See [Pol01] for a discussion about stability of Rajchman spectral
measures.

Exercise 13.5.9. Let μ be a Borel measure over R.

i) If μ is continuous, show that

1
t

∫ t

0

μ̂(s) ds → 0, t→ ∞.

ii) If μ ( � and its support is a Cantor set (i.e., nonempty, closed with empty
interior and no isolated points), show that μ̂(t) /∈ L1(R).

To summarize, roughly, i.e., up to accumulation points, one dynamically char-
acterizes the spectral subspaces discussed above as:

• Hp are the vectors ξ ∈ H with nonzero asymptotic return probability

lim
t→∞

pξ(t) 
= 0,

including an infinite sojourn time
∫

R
pξ(t) dt = ∞.

• Hac are the vectors ξ ∈ H with zero average return probability Xξ = 0 and
a finite sojourn time

∫
R
pξ(t) dt <∞.

• The “exotic” subspace Hsc are the vectors ξ ∈ H with zero average return
probability Xξ = 0, but with an infinite sojourn time

∫
R
pξ(t) dt = ∞. A

possible quantum interpretation is that this case presents to the particle a
barrier into which it particle may penetrate arbitrarily far but is eventually
reflected.

Exercise 13.5.10. By using the expression of the free evolution group e−itH0 dis-
cussed in Section 5.5, conclude that H0 is purely absolutely continuous.

13.6 Bound and Scattering States in Rn

As discussed in Example 12.2.3, [0,∞) is the continuous spectrum of the energy
operatorHH of the hydrogen atom and its point spectrum is contained in (−∞, 0].
Then, by following previous interpretations in this chapter, negative energy val-
ues of HH should correspond to the electron linked to the nucleus, while positive
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energy values should correspond to an ionized atom. Definition 13.6.1 and Exam-
ple 13.6.10 provide a rigorous geometrical version of such statements.

Note also that, in the case of Coulomb interaction between two particles with
electric charges of the same sign, the parameter κ < 0 and, by Corollary 6.2.9,
there is no point spectrum for the subsequent Schrödinger operator. I.e., it is a
mathematical proof that the particle is not bound to the nucleus in such case, a
physically expected result.

For a large class of Schrödinger operators in L2(Rn) the above discussion has
a geometrical appealing viewpoint. Throughout this section H = L2(Rn) and T is
a self-adjoint operator in H, and for ψ ∈ H its trajectory is t �→ ψ(t) = e−itTψ.

The idea is to investigate whether the time evolution of an (normalized) initial
condition ψ remains localized in some ball B(0; r) for large times t, or whether it
leaves any of such balls as t→ ∞. Set

Fr(x) := χB(0;r)(x),

which is a bounded multiplication operator on H, in fact an orthogonal projection;
so

|〈ψ(t), Frψ(t)〉|2 = ‖Frψ(t)‖2

is interpreted in quantum mechanics as the probability of finding the system, with
initial state ψ, in the ball B(0; r) at time t. If Fr is replaced by 1 − Fr in this
expression, then one gets the probability of finding the system outside the ball
B(0; r). The following concepts have been introduced in the literature (see, for
instance, [AmG73]).

Definition 13.6.1. With respect to the self-adjoint T in L2(Rn), the elements of

Hbound(T ) =
{
ψ ∈ H : lim

r→∞
sup
t∈R

‖(1− Fr)ψ(t)‖2 = 0
}

are called bound states, while the elements of

Hscatt(T ) =
{
ψ ∈ H : lim

τ→∞

1
2τ

∫ τ

−τ
‖Frψ(t)‖2 dt = 0, ∀r > 0

}
are called scattering or evanescent states.

Remark 13.6.2. The presence of time average in the definition of Hscatt(T ) is
directly related to the Wiener Lemma 13.3.5 and the singular continuous subspace.
Of course it is possible to include a definition without time average and it would
be related mainly to the absolutely continuous spectrum; the interested reader is
referred to [AmG73],[Am81].
Exercise 13.6.3.

a) Check that s − limr→∞ Fr = 1.
b) If φ ∈ Hscatt(T ), show that for all bounded borelian Λ ⊂ Rn,

lim
τ→∞

1
2τ

∫ τ

−τ
‖FΛφ(t)‖2 dt = 0.
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Exercise 13.6.4. Since for real numbers a, b one has 2ab ≤ a2 + b2, use the triangle
inequality to conclude that, if ξ, η are vectors in a Hilbert space, then ‖ξ + η‖2 ≤
2‖ξ‖2 + 2‖η‖2.

Proposition 13.6.5. Let T be self-adjoint in L2(Rn).

i) Hbound(T ) and Hscatt(T ) are closed subspaces of H and, for all t ∈ R,

e−itTHbound(T ) = Hbound(T ), e−itTHscatt(T ) = Hscatt(T ),

that is, both subspaces are invariant under time evolution.
ii) Hbound(T ) ⊥ Hscatt(T ).
iii) Hbound(T ) ⊃ Hp(T ) and Hscatt(T ) ⊂ Hc(T ).

Proof. i) A simple use of the triangle inequality shows that both sets are linear
subspaces and their invariances under time evolution follow at once from the cor-
responding definitions. Now suppose that (ψj) ⊂ Hbound(T ) with ψj → ψ. Let
ε > 0. Thus

‖(1− Fr)ψ(t)‖2 ≤ 2‖(1− Fr)(ψ(t) − ψj(t))‖2 + 2‖(1− Fr)ψj(t)‖2;

since the time evolution is unitary, take j large so that

sup
t

‖(1− Fr)(ψ(t) − ψj(t))‖2 ≤ sup
t

‖ψ(t) − ψj(t)‖2

= ‖ψ − ψj‖2 < ε,

and then r large enough so that supt ‖(1− Fr)ψj(t)‖2 < ε. Hence,

sup
t

‖(1− Fr)ψ(t)‖2 < 4ε

for r large enough. This shows that ψ ∈ Hbound(T ), consequently Hbound(T ) is
closed. In a similar way one shows that Hscatt(T ) is closed.

ii) Let ψ ∈ Hbound(T ) and φ ∈ Hscatt(T ). Pick ε > 0. Since the time evolution
is unitary,

|〈ψ, φ〉|2 =
1
2τ

∫ τ

−τ
|〈ψ, φ〉|2 dt =

1
2τ

∫ τ

−τ
|〈ψ(t), φ(t)〉|2 dt

=
1
2τ

∫ τ

−τ
|〈ψ(t), Frφ(t)〉 + 〈ψ(t), (1 − Fr)φ(t)〉|2 dt

≤ 2‖ψ‖2

2τ

∫ τ

−τ
‖Frφ(t)‖2 dt+

2‖φ‖2

2τ

∫ τ

−τ
‖(1− Fr)ψ(t)‖2 dt.

For r large enough supt ‖(1− Fr)ψ(t)‖2 < ε so we take τ large so that

1/(2τ)
∫ τ

−τ
‖Frφ(t)‖2 dt < ε,

resulting in |〈ψ, φ〉|2 < 2ε(‖ψ‖2 + ‖φ‖2). It follows that 〈ψ, φ〉 = 0.
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iii) If ψλ is an eigenfunction of T with Tψλ = λψλ, then ψλ(t) = e−itλψλ
and so, for all t ∈ R, ‖(1− Fr)ψλ(t)‖ = ‖(1 − Fr)ψλ‖ which vanishes for r → ∞.
Thus any eigenfunction of T belongs to Hbound(T ), and since this vector space is
closed one obtains Hp(T ) ⊂ Hbound(T ). By ii),

Hscatt(T ) ⊂ Hbound(T )⊥ ⊂ Hp(T )⊥ = Hc(T ),

and the proof is complete. �
Theorem 13.6.6. If T is a (self-adjoint) locally compact operator in L2(Rn) (Defi-
nition 11.5.3), then Hbound(T ) = Hp(T ) and Hscatt(T ) = Hc(T ).

Proof. Let φ ∈ D := Hc(T ) ∩ dom T ; so (T − i1)φ ∈ Hc(T ). By hypothesis, the
operator FrRi(T ) is compact and the RAGE Theorem 13.4.1 implies that, for each
r > 0,

lim
τ→∞

1
2τ

∫ τ

−τ
‖Frφ(t)‖2 dt= lim

τ→∞

1
2τ

∫ τ

−τ
‖FrRi(T )(T − i1)φ(t)‖2 dt

= lim
τ→∞

1
2τ

∫ τ

−τ
‖FrRi(T )e−itT (T − i1)φ‖2 dt = 0.

Hence φ ∈ Hscatt(T ) and, since D is dense in Hc(T ) and Hscatt(T ) is closed, it
follows that Hc(T ) ⊂ Hscatt(T ). Combine with Proposition 13.6.5 to get Hc(T ) =
Hscatt(T ).

Finally, again by Proposition 13.6.5,

Hbound(T ) ⊂ Hscatt(T )⊥ = Hc(T )⊥ = Hp(T )

and Hp(T ) = Hbound(T ) is found. �
Corollary 13.6.7. If V ∈ L2

loc(R
n), V ≥ β > −∞, and H is the unique self-adjoint

extension of H0 + V , dom (H0 + V ) = C∞0 (Rn), then Hbound(H) = Hp(H) and
Hscatt(H) = Hc(H).

Proof. Combine Example 11.5.4 and Theorem 13.6.6. �
Example 13.6.8. For the free hamiltonian H0 one has Hscatt(H0) = L2(Rn), while
for V ∈ L2

loc(R
n), V ≥ β > −∞ with lim|x|→∞ V (x) = ∞, by Theorem 11.5.6, one

has Hbound(H) = L2(Rn), where H is the unique self-adjoint extension of H0 +V .

Corollary 13.6.9. If n ≤ 3, V ∈ L2(Rn)+L∞(Rn), and H is the unique self-adjoint
extension of H0 + V , dom (H0 + V ) = C∞0 (Rn), then Hbound(H) = Hp(H) and
Hscatt(H) = Hc(H).

Proof. Recall that, by Theorem 6.2.2, the self-adjoint operator H is well posed
and dom H = dom H0 = H2(Rn). Let Λ be a bounded borelian subset of Rn and
FΛ(x) := χΛ(x). The second resolvent identity implies

FΛRi(H) = FΛRi(H0) − FΛRi(H0)V Ri(H).
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Since H0 is locally compact and, by Exercise 6.1.12a), V Ri(H) ∈ B(H), it follows
that FΛRi(H) is compact. Hence H is also locally compact and the result follows
by Theorem 13.6.6. �

Example 13.6.10. For the hamiltonian H of the hydrogen atom in R3 (see Subsec-
tion 6.2.1 and Corollary 11.4.10) one has Hbound(H) = Hp(H) and Hscatt(H) =
Hc(H). A parallel between classical and quantum mechanics of the hydrogen atom
is particularly enlightening. The classical orbits with negative energy are ellipses
(including the circumference), so they are bounded motions, whereas the orbits
with positive energy are hyperbolas and parabolas, so they are unbounded mo-
tions. In quantum mechanics the negative part of the spectrum corresponds to
Hbound(H), while the positive to Hscatt(H). How general such close classical-
quantum correspondence holds is always an interesting question; see also Re-
mark 13.6.11.
Remark 13.6.11. It is instructive to compare (a) and (b) below.

(a) The classical planar motions of a charged particle in a homogeneous mag-
netic field (perpendicular to the plane) is composed exclusively of circular motions,
so one could expect pure point spectrum of the quantum energy operator. This
was actually found in Section 12.4 with the Landau levels. Since for a fixed energy
such circular motions are widespread over all R2, one has a classical interpretation
of the quantum infinite multiplicity of Landau levels.

(b) For a “friendly” lower-bounded potential V with V (x) → ∞ as |x| → ∞
in Rn, one gets only bounded classical motion so that purely point spectrum is
expected for the quantum energy operator. Moreover, in contrast to the case of
Landau levels, for a fixed energy the classical motions are restricted to a bounded
set of Rn, and one gets a classical interpretation of the found discrete spectrum
proved in Theorem 11.5.6.
Remark 13.6.12. Recall that embedded eigenvalues are possible, as mentioned in
Subsection 11.4.2. On account of the interpretations of Hbound and Hscatt one
might guess that, from the physical point of view, eigenvalues embedded in the
continuous spectrum should not occur; this makes the subject of embedded eigen-
values challenging and interesting.
Example 13.6.13. For some operators depending only on the position with purely
continuous spectrum, say T = Mx2 , since Fre−itx

2
= e−itx

2
Fr one has, for any

ψ ∈ L2(Rn),

‖(1− Fr)e−itTψ‖ = ‖e−itx2
(1− Fr)ψ‖ = ‖(1− Fr)ψ‖

which vanishes as r → ∞. Hence Hbound(T ) = Hc(T ) = L2(Rn). Consider the
classical hamiltonian equations of motion (i.e., ẋ = ∂T/∂p, ṗ = −∂T/∂x) corre-
sponding to the hamiltonian T (x, p) = x2 and “interpret this equality.”
Exercise 13.6.14. Show that the conclusions in Example 13.6.13 hold for all T =
Mϕ, with ϕ : Rn → R continuous.
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13.7 α-Hölder Spectral Measures

At this point it is clear that there are sensible dynamical differences accomplished
by point, absolutely and singular continuous spectra. Most of the results discussed
so far are qualitative, in the sense of vanishing return probability or growth of ex-
pectation values of test operators (as defined in Section 13.3). Although some
quantitative results (i.e., rate of vanishing or growth) have been discussed in Sec-
tion 13.5, it should be interesting and useful to obtain more refined estimates;
currently this is an active research area.

A way of getting such estimates is to assume specific hypotheses on spectral
measures. Here, some dynamical consequences of an important ingredient, rep-
resented by the so-called uniformly α-Hölder measures (UαH, for short), will be
discussed; related and more advanced material can be found in the references. In
this section, several positive constants will be denoted by the same symbol C.

Definition 13.7.1. Let α ∈ [0, 1]. A (σ-finite positive) borelian measure μ over R

is uniformly α-Hölder if there exists a constant C > 0 so that

μ(I) ≤ C �(I)α,

for any interval I ⊂ R with Lebesgue measure �(I) < 1.

Exercise 13.7.2. a) If μ is UαH, conclude that μ is UβH for any 0 ≤ β < α.
b) Show that a purely point measure is UαH only for α = 0.
c) If μ ( � with bounded Radon-Nikodym derivative dμ/d�, show that μ is

U1H; this holds, in particular, for Lebesgue measure �.

Exercise 13.7.2 indicates that, in some sense, the UαH measures μ interpolate
between purely point measures (α = 0) and absolutely continuous measures (α =
1; at least for those with bounded density dμ/d�). The point here is to assume that
spectral measures μTξ of a self-adjoint operator T are UαH and so get “interpolated
dynamical behavior” of e−itT ξ. This idea was pioneered by Guarneri in a special
case [Gua89], which was noticed by Combes to be directly related to a result in
[Str90]; later on a simpler proof of the Strichartz result in case of finite measures
appeared in [Las96] and is reproduced below.

Roughly speaking, UαH measures allow upper bounds of the decay rate of
Fourier transforms of measures in Wiener’s lemma. The time average of a function
u(t) of time t will be denoted by

〈u〉(t) =
1
t

∫ t

0

u(s) ds.

Theorem 13.7.3 (Strichartz). If μ is a finite and UαH measure, then there is a
constant Cμ > 0 so that, for all f ∈ L2

μ(R),〈∣∣∣∣∫
R

e−ixsf(x) dμ(x)
∣∣∣∣2
〉

(t) ≤ Cμ
‖f‖2

2

tα
, ∀t > 0.



13.7. α-Hölder Spectral Measures 375

Before proving Theorem 13.7.3, some application to the dynamics generated
by a self-adjoint operator T , acting in H, are discussed. The corresponding spectral
measures will simply be denoted by μξ, ξ ∈ H.

Corollary 13.7.4. If the spectral measure μξ is absolutely continuous with respect to
a UαH measure μ, with dμξ/dμ = f ∈ L2

μ(R), then the average return probability
satisfies

〈pξ〉(t) ≤
C

tα
,

for some C > 0 and all t > 0.

Proof. Since

pξ(t) =
∣∣〈ξ, e−itT ξ〉∣∣2 =

∣∣∣∣∫
R

e−itx dμξ(x)
∣∣∣∣2 =

∣∣∣∣∫
R

e−itxf(x) dμξ(x)
∣∣∣∣2

and μξ is finite, the result follows immediately from Theorem 13.7.3, with C =
Cμξ

‖f‖2
2. �

Corollary 13.7.5. If μξ is UαH, then there exists a constant C = C(ξ) > 0 so that
for all η ∈ H, ‖η‖ = 1, one has

〈pξ,η〉(t) ≤
C

tα
, ∀t > 0.

Proof. By Lemma 13.3.6, for each η ∈ H there is g ∈ L2
μξ

(R) ∩ L1
μξ

(R) so that
‖g‖L2

μξ
≤ 1 and

〈η, e−itT ξ〉 =
∫
σ(T )

e−itxg(x) dμξ(x).

An application of Theorem 13.7.3 completes the proof. �
Remark 13.7.6. a) If α > 0, then Corollary 13.7.5 gives a more detailed version of
the limit Xξ = 0 in Theorem 13.3.7i).

b) In case of a purely point spectral measure one has α = 0, and so Corol-
lary 13.7.5 is consistent with the nonvanishing of the average return probability.
Note that this can be used to give a solution to Exercise 13.7.2b).

In case of UαH spectral measures it is possible to say something about the
growth rate of the expectation values of test operators A (see Section 13.3). Let
0 ≤ λ1 < λ2 < λ3 · · · denote the eigenvalues of the test operator A. For s ∈ R set
λ(s) := λ[s], where [s] indicates the integer part of s. First, a simple preparatory
result.

Lemma 13.7.7. Assume that μξ is UαH and let ξ(t) = e−itT ξ be the orbit of ξ.
Then there exists C = C(ξ) > 0 so that for any orthogonal projection PF onto a
finite-dimensional subspace F of H, of dimension N , the time average〈

‖PF ξ(t)‖2
〉

(t) ≤ CN

tα
, ∀t > 0.
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Proof. Let {η1, . . . , ηN} be an orthonormal basis of the subspace rng PF , so that
PF (·) =

∑N
j=1〈ηj , ·〉 ηj . Thus,

‖PF ξ(t)‖2 = 〈ξ(t), PF ξ(t)〉 =
N∑
j=1

|〈ηj , ξ(t)〉|2 =
N∑
j=1

pηj ,ξ(t).

Now take the time average and apply Corollary 13.7.5 to each pηj ,ξ. �
Corollary 13.7.8. Let T be the self-adjoint generator of a unitary time evolution
group, and A a test operator. If μξ is UαH, then there is a constant C = C(ξ) > 0
so that 〈

EξA
〉

(t) ≥ 1
2
λ (C tα) , ∀t > 1.

Proof. Let QN be the orthogonal projection onto the subspace spanned by the
eigenvectors of A associated with its eigenvalues ≤ λN . Since A has discrete spec-
trum, QN is a projection onto a finite-dimensional subspace; for simplicity of
notation, assume that N is its dimension. Thus,

〈ξ(t), Aξ(t)〉 = 〈QNξ(t), AQNξ(t)〉 + 〈(1−QN )ξ(t), A(1 −QN)ξ(t)〉
≥ λN 〈(1 −QN )ξ(t), (1 −QN )ξ(t)〉
= λN‖(1−QN )ξ(t)‖2 = λN

[
1 − ‖QNξ(t)‖2

]
.

Taking the time average and using Lemma 13.7.7, it is found that〈
EξA
〉

(t) ≥
(

1 − CN

tα

)
λN =

(
1 − CN

tα

)
λ(N), ∀N.

Now choose N = [tα/(2C)] and rename 1/(2C) as C. Thereby the proof is com-
plete. �
Example 13.7.9. A typical application of the above results is to self-adjoint (tight-
binding) hamiltonians H : l2(Z) → l2(Z) and test operator A = M , the second
moment of the position operator, that is, if (ej)j∈Z is the canonical basis of l2(Z),
then

M(·) =
∑
j∈Z

j2〈ej , ·〉 ej.

Assume ‖ξ‖ = 1; a large value of M(ξ) means that the vector ξ is spread over large
values of |j| in Z. The eigenvalues of M are the squares of integers and, except
the null eigenvalue that is simple, the others have multiplicity 2. In this case, for
s > 0, λ(s) = [s]2, and if for an initial condition ξ ∈ l2(Z) the corresponding
spectral measure is UαH, Corollary 13.7.8 implies〈

EξM
〉

(t) ≥ Ct2α.

This is a quantitative account, in case of a UαH spectral measure, of transport
properties of ξ(t) over Z as t→ ∞.
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Remark 13.7.10. i) Note that the bounds in Corollaries 13.7.5 and 13.7.8 are quite
suitable to numerical simulations; after the selection of a model, often one searches
for a time exponent by plotting, for instance, ln[〈EξA〉(t)] as a function of ln t.

ii) UαH measures are closely related to singular continuous and α-continuous
measures, as well as to many “fractal-like dimensions” that have been proposed
in the literature; see [Las96] and [Gua96]. For applications to specific models of
one-dimensional quasicrystals see [DaL03] and references therein.
Remark 13.7.11. Some techniques have been proposed for the study of the growth
of expectation values of test operators with no explicit mention of the spectral
type; see the papers [GerKT04] and [DaT05].

Proof. [Theorem 13.7.3] Recall that, for a > 0, b ∈ R,∫
R

e−ax
2+ibx dx =

√
π

a
e−b

2/(4a)

and that μ̂ denotes the Fourier transform of the measure μ. Note that the left-hand
side of the inequality in Theorem 13.7.3 is

〈
|f̂μ|2

〉
(t), that is, the time average of

the Fourier transform of the measure fμ.
Since 1 ≤ ee−s

2/t2 for 0 ≤ s ≤ t and f ∈ L2
μ(R), one has a first estimate:〈

|f̂μ|2
〉

(t) =
1
t

∫ t

0

|f̂μ(s)|2 ds ≤ 1
t

∫ t

0

ee−s
2/t2 |f̂μ(s)|2 ds

≤ e

t

∫
R

ds e−s
2/t2 |f̂μ(s)|2

=
e

t

∫
R

ds e−s
2/t2

∫
R2
dμ(x)dμ(y) f(x)f(y) e−i(x−y)s

=
e

t

∫
R2
dμ(x)dμ(y) f(x)f(y)

∫
R

ds e−s
2/t2e−i(x−y)s

=
e

t

∫
R2
dμ(x)dμ(y) f(x)f(y)

√
π t e−t

2(x−y)2/4

= e
√
π

∫
R2
dμ(x)dμ(y) f(x)f(y) e−t

2(x−y)2/4

≤ e
√
π

∫
R2
dμ(x)dμ(y)

(
|f(x)|e−t2(x−y)2/8

)(
|f(y)|e−t2(x−y)2/8

)
CS
≤ e

√
π

(∫
R2
dμ(x)dμ(y) |f(x)|2 e−t

2(x−y)2/4
) 1

2

×
(∫

R2
dμ(x)dμ(y) |f(y)|2 e−t

2(x−y)2/4
) 1

2

= e
√
π

∫
R

dμ(x) |f(x)|2
∫

R

dμ(y) e−t
2(x−y)2/4;

CS stands for Cauchy-Schwarz inequality.
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Now a second estimate. For fixed x, put

Ωn =
{
y ∈ R :

n

t
≤ |x− y| < n+ 1

t

}
.

Since μ is UαH and for t > 1 one has �(Ωn) ≤ 1/t < 1, then∫
R

dμ(y) e−t
2(x−y)2/4 =

∞∑
n=0

∫
Ωn

dμ(y) e−t
2(x−y)2/4

≤
∞∑
n=0

e−n
2/4

∫
Ωn

dμ(y) ≤
∞∑
n=0

e−n
2/4 C

tα
≤ C

tα
.

Together both estimates imply〈
|f̂μ|2

〉
(t) ≤ C

tα
‖f‖2

2, t > 1,

thereby completing the proof. �
Remark 13.7.12. If μ is a finite UαH measure, by taking f = 1 in the Strichartz
theorem, the dynamical estimate

〈|μ̂|2〉(t) ≤ C

tα

follows, and it implies some quantitative quantum estimates for the decay of the
average return probability and lower bounds for expectation values of test opera-
tors. In [Las96] it is shown that such a dynamical estimate implies that μ is Uα

2 H
and not UβH for β > α

2 .



Chapter 14

Some Quantum Relations

Selected traditional quantum relations are discussed. The intention is roughly
to complement a text connected to quantum dynamics with mathematical ap-
proaches to some quantum concepts; of course no exhaustive presentation should
be expected and parallel reading of traditional books on quantum mechanics is
highly recommended.

14.1 Hermitian × Self-Adjoint Operators

Starting with some quantum interpretations, in this short section a selection of
arguments will be gathered together (maybe the best term should be “recalled”)
in order to justify the representation of quantum observables by self-adjoint oper-
ators, instead of just hermitian ones. It will consist of a combination of physical
motivations and “reasonable assumptions,” and the role played by the spectrum
of such operators will arise in a rather natural way.

The usual space of quantum states of a particle is built of functions ψ : Rn →
C (or defined on subsets of Rn). If a certain particle system is in the state ψ and
T is a linear operator that should represent a physical observable, according to
quantum physics the quantities

EψT := 〈ψ, Tψ〉 and Probψ(Λ) =
∫

Λ

|ψ(x)|2 dx

correspond, respectively, to the expectation value of measurements of T and the
probability of finding the particle in the measurable set Λ ⊂ Rn. Since the particle
must be found somewhere in Rn (i.e., “it exists”), one has total probability

1 = Probψ(Rn) =
∫

Rn

|ψ(x)|2 dx = ‖ψ‖2,
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so the Hilbert space L2(Rn) naturally appears and the states are supposed to be
normalized ‖ψ‖ = 1. Since EψT is directly related to measurements in a laboratory
(see a discussion on page 132), it should be a real number; so T is asked to be a
hermitian operator, since in this case 〈ψ, Tψ〉 = 〈Tψ, ψ〉 = 〈ψ, Tψ〉.

The time evolution of the initial state ψ is dictated by Schrödinger’s equation

i
∂

∂t
ψ(x, t) = Hψ(x, t), ψ(x, 0) = ψ,

with H the operator representing the total energy. Of course the normalization

Probψ(x,t)(Rn) =
∫

Rn

|ψ(x, t)|2 dx = 1

necessarily holds for all times t, and so the necessity ofH being (besides hermitian)
self-adjoint in order to have a unitary time evolution; see Chapter 5. Further, by the
whole discussion regarding the spectral theorem, in case T is self-adjoint the values
taken by EψT are computed from the spectrum σ(T ) of T (see also Exercise 2.4.18).

For an observable T with pure point spectrum and, say, eigenvalue Tψλ =
λψλ, ‖ψλ‖ = 1, one has

Eψλ

T = 〈ψλ, Tψλ〉 = λ〈ψλ, ψλ〉 = λ,

that is, the eigenvalues are especial expectation values, and in this particular case
all measurements of T in the state ψλ will result in the value λ (transitions to
states ψλ′ corresponding to different eigenvalues do not occur since 〈ψλ, ψλ′〉 =
δλ,λ′). Since there are operators with no eigenvalues, it is assumed that the whole
spectrum of a general observable is composed of possible measurable values. By
Theorem 2.2.17, among closed hermitian operators the self-adjoint ones are exactly
those with real spectrum, so self-adjointness is actually imposed to all observables;
this is also supported by the fact that all spectral values of self-adjoint operators
are approximate eigenvalues (Corollary 2.4.9). It is worth emphasizing that, as
above, the particular case of eigenvalues has historically oriented the establishment
of the role of the spectrum in quantum postulates.

Observe that expectation values do not necessarily belong to the spectrum.
For example, if T is self-adjoint with two distinct eigenvalues λ1, λ2, λ1 < λ2, and
corresponding normalized eigenvectors ξ1, ξ2, then ξ = (ξ1 + ξ2)/

√
2, is a possible

normalized state of the system and (recall ξ1 ⊥ ξ2)

EξT =
1
2
(λ1 + λ2),

and if σ(T ) ∩ (λ1, λ2) = ∅, then EξT /∈ σ(T ).
It was not the intention of the above discussion to begin with “first quantum

principles” and logically deduce the mathematical foundations of quantum me-
chanics. Whether or not the discussion has illustrated that there is an attractive
reciprocal link between the mathematical apparatus presented in this book and
the physics of quantum mechanics, it was worthwhile!
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14.2 Uncertainty Principle

In this section T and S are self-adjoint operators acting in the Hilbert space H.
Think of them as quantum observables. In general terms, the uncertainty prin-
ciple states that if T, S do not commute, then in any experiment one can not
measure both observables simultaneously with arbitrary precision. In what follows
a quite general relation will be derived and then a specific case and physical conse-
quences are discussed. The first version of the uncertainty principle was proposed
by Heisenberg around 1925.

Theorem 14.2.1 (Uncertainty Principle). For any u, v ∈ R and ξ ∈ dom (ST ) ∩
dom (TS),

‖(T − u1)ξ‖ ‖(S − v1)ξ‖ ≥ 1
2
|〈(TS − ST )ξ, ξ〉| .

Equality occurs iff there is a ∈ R ∪ {∞} so that (S − v1)ξ = ia(T − u1)ξ.

Proof. Write T − u = T − u1. A direct computation leads to

〈(TS − ST )ξ, ξ〉= 〈[(T − u)(S − v) − (S − v)(T − u)]ξ, ξ〉
= 〈(S − v)ξ, (T − u)ξ〉 − 〈(T − u)ξ, (S − v)ξ〉
= 2i Im 〈(S − v)ξ, (T − u)ξ〉.

Now,
|〈(TS − ST )ξ, ξ〉| ≤ 2 |〈(S − v)ξ, (T − u)ξ〉| ,

with equality iff 〈(S−v)ξ, (T −u)ξ〉 is a purely imaginary number and, by Cauchy-
Schwarz,

2 |〈(S − v)ξ, (T − u)ξ〉| ≤ 2‖(S − v)ξ‖ ‖(T − u)ξ‖,

with equality iff the set {(S − v)ξ, (T − u)ξ} is linearly dependent. Combining
these inequalities and properties the result follows. �

Exercise 14.2.2. Discuss details of the case a = ∞, i.e., 1/a = 0, in the uncertainty
principle.

The purely quantum nature of such a “principle” is evident by the presence
of the commutator [T, S] := TS − ST (see Section 14.3), which is always null in
classical mechanics (where compositions are defined).

The spectral theorem implies

‖(T − u1)ξ‖ =

(∫
σ(T )

(x− u)2dμTξ (x)

) 1
2

,

which is the second moment (also called standard deviation) of the spectral mea-
sure at u and can be interpreted as how disperses T is around u. Note that this
dispersion ‖(T − u1)ξ‖ is zero iff ξ is an eigenvector of T with eigenvalue u.
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A particularly interesting choice of u is the expectation value u0 = EξT =
〈ξ, T ξ〉 at the initial time zero (see page 359 and Section 14.1). The same for
v = v0 = EξS in case of the observable S. It is important to realize that such
dispersion is physically obtained through the average of measured values of T over
a large set of identical systems, all prepared in the initial state ξ.

With such understanding, it should be clear that the uncertainty principle
refers to statistical statements with respect to dispersion of average quantities,
e.g., ‖(T − u01)ξ‖. More precisely, in case T, S do not commute, such a principle
states that in quantum mechanics the dispersion of T around u and the dispersion
of S around v may not be simultaneously arbitrarily small, so that their product
has the lower bound 1

2 |〈(TS − ST )ξ, ξ〉| (note that this lower bound does not
depend on u, v). Thus, the greater precision of observable T implies less precision
of S and vice versa.
Exercise 14.2.3. Discuss the uncertainty principle in case TSξ0 = STξ0 or (TSξ0−
STξ0) ⊥ ξ0 for a particular normalized vector ξ0.

The failure to uncover simultaneous values of T and S in quantum mechanics
is not interpreted as the lack of success of measuring the corresponding properties
of the system, but rather that the system does not have such properties exactly!
For instance, one should avoid the supposition that an electron always has simul-
taneously a position and a momentum (see Corollary 14.2.4). These properties are
in clear contrast to classical mechanics, for which all observables can, in principle,
be simultaneously measured with arbitrary precision.

Vectors ξ for which equality in Theorem 14.2.1 holds, that is, solutions of the
equation (T − u1)ξ = ia(S − v1)ξ, are called minimum uncertainty states.

In case T = x is the position operator in L2(R) and S = P = −i� d
dx , the

momentum operator with Planck constant � included, the uncertainty principle is
important due to physical interpretations as well as historically.

Corollary 14.2.4. If ψ ∈ dom (xP ) ∩ dom (Px), then for any u, v ∈ R,

‖(x− u1)ψ‖ ‖(P − v1)ψ‖ ≥ �

2
‖ψ‖2,

with minimum uncertainty states ψu,v(x) = Ceivx/�e−a(x−u)2/�, for some C ∈ C

and a > 0. Note that S(R) ⊂ dom (xP ) ∩ dom (Px).

Proof. The inequality follows by Theorem 14.2.1 and Pxψ−xPψ = −i�ψ. Equal-
ity holds iff ia(x − u)ψ = (P − v)ψ, a ∈ R, and since x and P do not have
eigenvalues, a 
= 0 and a 
= ∞. Hence

ψ′(x) = −a
�
(x− u)ψ(x) + i

v

�
ψ(x),

whose solutions are those in the statement of the corollary and belongs to L2(R)
iff a > 0. �
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Remark 14.2.5. The realization of momentum in L2(R) as P = −id/dx with do-
main H2(R), and position as multiplication operator by x, is called Schrödinger
representation; it appeared through the “wave-particle duality” in the initial de-
velopment of quantum mechanics. From the mathematical side, important steps
for such representations were introduction of the formal commutation relation
Px − xP = −i1 by Dirac [Dir58], followed by its version in terms of the corre-
sponding unitary evolution groups (see Example 5.6.1)

e−itP e−isx = eiste−isxe−itP , t, s ∈ R,

which are called the Weyl form of this canonical commutation relation and cause no
domain problems; finally von Neumann proved that, up to multiplicities, all pairs
G(t), U(s) of unitary evolution groups that satisfy Weyl relations are unitarily
equivalent to e−itP and e−isx, respectively [Su01]. This result is considered the
rigorous justification of the Schrödinger representation.
Remark 14.2.6. i) Quantum mechanics should somehow approach classical me-
chanics as � → 0. Note that this formally agrees with Corollary 14.2.4 and quan-
tum effects are expected to be disregarded as � → 0.

ii) Quantum mechanics did not show up earlier in physics, with explicit man-
ifestation of noncommutativity, because

� = 1.054 × 10−34 joule · second

is too small for such effects to be readily observable.
iii) The interpretation of the uncertainty principle in case of position-momen-

tum operators is that if the particle position stays close to its average position,
then the momentum will largely fluctuate. Recall that both operators x and P have
purely absolutely continuous spectrum so that both ‖(x−u1)ψ‖ and ‖(P −v1)ψ‖
are never zero.

iv) The uncertainty principle for position-momentum operators comes from
the fact that functions localized in space Rn are not localized in Fourier space R̂n,
and conversely.

v) Corollary 14.2.4 has a direct generalization to the components of position
xj and momentum Pj = −i� ∂

∂xj
in L2(Rn). The resulting inequalities are called

Heisenberg relations.
Exercise 14.2.7.
(a) Show that the inequality in the position-momentum uncertainty principle is

equivalent to
‖xψ‖2 + ‖Pψ‖2 ≥ �‖ψ‖2.

(b) Consider the harmonic oscillator hamiltonian H = P 2 + x2, P = −i� d
dx .

If ψ is a normalized minimum uncertainty state in Corollary 14.2.4, use (a)
to show that the expectation value EψH = 〈ψ,Hψ〉 = �, exactly the first
eigenvalue of H ; cf. Example 2.3.3.
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Exercise 14.2.8. Consider the position-momentum variables on the circumference
parametrized by 0 ≤ x < 1, P = −i ddx . If ψ ∈ dom P , then it is an absolutely
continuous function and so ψ(0) = ψ(1). Show that ‖xψ‖ ≤ ‖ψ‖, ∀ψ, and for
ψ ∈ dom (xP ) ∩ dom (Px) one has ψ(0) = ψ(1) = 0. Verify the uncertainty
relation (as in Corollary 14.2.4 with u = v = 0) for ψ(x) = sin(2πx). What about
the eigenfunctions eimx, m ∈ Z, of this “angular” momentum operator P?
Remark 14.2.9. Weyl was the first to recognize that Heisenberg’s uncertainty prin-
ciple could be stated in terms of second moments, but in the particular case of
position and momentum operators. Then, Wiener noted that Weyl’s approach
was a relation between functions and their Fourier transforms and, in 1933, Hardy
quantified this by proving, among other results, Hardy’s inequality (Lemma 4.4.16)
which is sometimes called the uncertainty principle lemma.
Remark 14.2.10. There is in physics a time-energy uncertainty relation, usually
written in the form

Δt ΔE ≥ �

2
.

However, there are controversies with respect to its interpretation and formaliza-
tion. In fact, a complete quantum mechanical theory of time measurements has
not yet been elaborated. Nevertheless, there is a “popular” interpretation of such
an uncertainty relation: Δt is interpreted as the duration of a perturbation process
and ΔE is the obtained uncertainty of the energy in the system; for example, for
an exact measurement of energy E, an infinite interval of time Δt is necessary.

The nature of such a time-energy uncertainty relation is quite different from
the position-momentum uncertainty relation, since while the latter comes from
the noncommutation of the respective operators, time appears in the theory as
a parameter and there is no “time operator” in quantum mechanics. So “t” is
referred to as “external time,” the one measured by a clock.

As already indicated, currently there is no satisfactory mathematical formu-
lation of time-energy uncertainty. The interested reader may consult the review
[Bus07] and references therein.

For a survey of different versions of the uncertainty principle in mathematics
consult [FS97], and for general results close to the optimal localization of both
position and momentum (simultaneously) in the uncertainty principle see [BeP06].

14.3 Commuting Observables

If ξ0 is a simultaneous (normalized) eigenvector of both self-adjoint operators T, S,

Tξ0 = uξ0, Sξ0 = vξ0,

then the subsequent expectation values are Eξ0T = u, Eξ0S = v and TSξ0 = vT ξ0 =
vuξ0 = STξ0, and consequently

[T, S]ξ0 = TSξ0 − STξ0 = 0.
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This and the uncertainty principle motivate one important physical aspect
of quantum mechanics: two observables can be simultaneously measured if the
corresponding operators commute. However, due to domain intricacies, the notion
of commuting observables is not self-evident for unbounded operators.

The next goal is to give a precise definition of commuting observables that
includes the case of unbounded self-adjoint operators. If T, S are bounded opera-
tors in B(H) the definition is clear: they commute if TSξ = STξ, for all ξ ∈ H;
in what follows, this is the meaning whenever two bounded operators are said to
commute. Now this definition will be written in a suitable form (Lemma 14.3.1) so
that the extension to unbounded operators becomes feasible (Definition 14.3.2);
then its plausibility will be discussed (Propositions 14.3.3 and 14.3.5).

Lemma 14.3.1.

i) T, S ∈ B(H) commute iff Rλ(T ), Rμ(S) commute for all λ ∈ ρ(T ) and all
μ ∈ ρ(S).

ii) Let T be self-adjoint and S ∈ B(H). If for some λ ∈ ρ(T ) the operators
Rλ(T ), S commute, then S(dom T ) ⊂ dom T and STξ = TSξ, ∀ξ ∈ dom T .

Proof. i) If T, S commute, then

(S − μ1)(T − λ1) = (T − λ1)(S − μ1),

and since inverses are defined in B(H) one gets

Rλ(T )Rμ(S) = Rμ(S)Rλ(T ).

Conversely, if Rλ(T )Rμ(S) = Rμ(S)Rλ(T ) it follows that

(S − μ1)(T − λ1) = (T − λ1)(S − μ1),

consequently ST = TS.

ii) If ξ ∈ dom T write ξ = Rλ(T )η, η ∈ H. Thus

Sξ = SRλ(T )η = Rλ(T )Sη

and so Sξ ∈ dom T ; hence S(dom T ) ⊂ dom T . Now

STξ = S ((T − λ1) + λ1)Rλ(T )η = Sη + λSRλ(T )η
= Sη + λRλ(T )Sη = (T − λ1)Rλ(T )Sη + λRλ(T )Sη
= TRλ(T )Sη = TSRλ(T )η = TSξ.

This concludes the proof of the lemma. �
Definition 14.3.2. Two (possible unbounded) self-adjoint operators T and S com-
mute if Rλ(T ), Rμ(S) commute for all λ, μ ∈ C \ R, that is, if their (bounded)
resolvents commute. In this case it is also said that T, S are commuting observ-
ables.
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The definition of commuting observables has also a dynamical flavor, which
supports this definition:

Proposition 14.3.3. Let T, S be self-adjoint operators and Ut = e−itT , Vs = e−isS,
t, s ∈ R, the corresponding unitary evolution groups. Then, T, S commute iff Ut, Vs
commute for all s, t ∈ R.

Proof. Recall that (see Section 9.9), for all ξ ∈ H,

e−itT ξ = lim
n→∞

(
1 + it

T

n

)−n
ξ, e−isSξ = lim

n→∞

(
1 + is

S

n

)−n
ξ.

These expressions immediately infer that Ut, Vs commute if T, S commute.
The formula (see page 245)

Rz(T ) = −i
∫ ∞

0

eisze−isT ds

is valid for Im z > 0, and an analogous formula for Im z < 0, together with
Fubini’s theorem, imply that T, S commute if Ut, Vs commute. �

Exercise 14.3.4. Present the missing details in the proof of Proposition 14.3.3.

Proposition 14.3.5. If T, S commute, then:

i) χΛ(T ), χΩ(S) commute for all open sets Λ,Ω in R.
ii) f(T ), g(S) commute for all bounded continuous functions f, g : R → C.

Proof. i) For bounded open intervals (a, b) one has, as a consequence of the Stone
formula (see page 244),

χ(a,b)(T ) = s − lim
δ→0+

s − lim
ε→0+

1
2πi

∫ b−δ

a+δ

(Rt+iε(T ) −Rt−iε(T )) dt.

This expression (along with one analogous to S) and Fubini’s theorem prove i)
for bounded intervals. Since every open set is a countable pairwise disjoint union of
such intervals (for an unbounded interval take a limit procedure, e.g., χ(a,∞)(T ) =
s − limn→∞ χ(a,n)(T )), the general case follows.

ii) Some results deduced in the proof of Proposition 10.1.9 will be used.
If φ, ψ ∈ C∞(R), there are sequences of polynomials

pφj (Ri(T ), R−i(T )), pψk (Ri(S), R−i(S)),

so that

φ(T ) = lim
j→∞

pφj (Ri(T ), R−i(T )), ψ(S) = lim
k→∞

pψk (Ri(S), R−i(S))
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with convergence in B(H). By hypothesis, pφj , p
ψ
k commute for all j, k. Thus, for

each k,
φ(T )pψk = lim

j→∞
pφj p

ψ
k = pψk lim

j→∞
pφj = pψkφ(T ),

and taking k → ∞ one gets φ(T )ψ(S) = ψ(S)φ(T ), since φ(T ) is a bounded
operator. Hence φ(T ), ψ(S) commute in case φ, ψ ∈ C∞(R).

If f, g are bounded continuous functions, there exist sequences fj, gk in
C∞(R) with

f(T ) = s − lim
j→∞

fj(T ), g(S) = s − lim
k→∞

gk(S),

and fj(T ), gk(S) commute, ∀j, k. Repeat the above argument to interchange the
strong limits to conclude that f(T ), g(S) commute. �

Note that Proposition 14.3.3 follows by Proposition 14.3.5ii). It is possible
to generalize such results, as indicated in Exercise 14.3.6. This subject is directly
related to the quantum concept of a complete set of observables; see [deO90] and
references therein.
Exercise 14.3.6. If T, S commute, show that χ{t0}(T ), χ{s0}(S) also commute for
all t0, s0 ∈ R.
Remark 14.3.7. It is natural to speculate whether T, S commute in case there is
a common core D (and invariant under) of T and S and TSξ = STξ, ∀ξ ∈ D.
However this is false; see the famous Nelson counterexample in [ReeS81].

Proposition 14.3.3 has a nice application to conservation laws. Let H be a
hamiltonian of a quantum system and suppose S is a self-adjoint operator that
commutes with H . Given an initial condition ξ ∈ H and the resulting weak so-
lution ξ(t) = e−itHξ of the Schrödinger equation for H idξ(t)/dt = Hξ(t) (see
Example 5.4.1), then for any s ∈ R the trajectory ξs(t) := e−isSξ(t) is also a
solution; indeed,

ξs(t) = e−isSe−itHξ = e−itHe−isSξ

and so ξs(t) is the weak solution with initial condition e−isSξ. Another nomencla-
ture of commuting observables is given in

Definition 14.3.8. A unitary evolution group e−isS that commutes with e−itH ,
∀s, t ∈ R, is called a symmetry of H , or a symmetry of the corresponding Schrö-
dinger equation for H .

Exercise 14.3.9. If e−isS is a symmetry of H , show that e−itHdom S = dom S for
all t ∈ R.

Theorem 14.3.10 (Noether Theorem). Let e−isS be a symmetry of the self-adjoint
operator H. If ξ ∈ dom S, then the expectation value

EξS(t) = 〈ξ(t), Sξ(t)〉 = EξS(0), ξ(t) = e−itHξ,

i.e., the expectation value of the infinitesimal generator of the symmetry is constant
with respect to time (a “conservation law” was found).
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Proof. Since 0 = e−isSe−itHξ − e−itHe−isSξ, ∀s, t, one has

0 =
d

ds

(
e−isSe−itHξ − e−itHe−isSξ

)
=−ie−isS

(
Sξ(t) − e−itHSξ

)
.

Thus Sξ(t) = e−itHξSξ for all t, and so

EξS(t) = 〈ξ(t), Sξ(t)〉 =
〈
e−itHξ, e−itHSξ

〉
= 〈ξ, Sξ〉 = EξS(0).

The theorem is proved. �
Exercise 14.3.11. Let e−isS be a symmetry ofH . If ξλ is an eigenvectorHξλ = λξλ,
show that for all s ∈ R the vectors e−isSξλ are also eigenvectors ofH corresponding
to the same eigenvalue λ. This is a strategy to find eigenvalues of large multiplicity,
so that often it is said that “symmetry implies repeated eigenvalues.” What if ξλ
is also an eigenvector of S?

14.4 Probability Current

In this section the Hilbert space is H = L2(Rn) (or L2(Ω) with Ω ⊂ Rn) and H
will denote a self-adjoint realization of −Δ + V (x) in H with dom H ⊂ H2(Rn),
meaning the energy operator of a particle. If ψ ∈ dom H is normalized, then the
unique solution to the Schrödinger equation (see Example 5.4.1)

i
∂ψ

∂t
(x, t) = Hψ(x, t), ψ(x, 0) = ψ(x),

is ψ(x, t) = e−itHψ(x), and the probability of finding the particle in a measurable
set Λ ⊂ Rn at time t is

Probψ(t)(Λ) =
∫

Λ

|ψ(x, t)|2 dx.

Since the time evolution is unitary, Probψ(t)(Rn) = ‖ψ(x, t)‖2 = 1 for all
t ∈ R. This leads to two interesting remarks. First x �→ |ψ(x, t)|2 is interpreted as
a probability density at time t; second, in general the probability density changes
with time t and position x and so some kind of “probability flux” should pass
through the boundaries of sets Λ. The concept of probability current quantifies
such flux.

Definition 14.4.1. The probability current (or probability current density) of ψ ∈
dom H , with Hψ = −Δψ + V ψ, is

j(x, t) := −i
(
ψ∇ψ − ψ∇ψ

)
(x, t) = 2Re

(
−iψ(x, t)∇ψ(x, t)

)
.

Although not explicitly indicated, j does depend on ψ.
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Proposition 14.4.2. If ψ ∈ dom H, then j satisfies the continuity equation

∂|ψ(x, t)|2
∂t

+ ∇ · j(x, t) = 0.

Proof. One has

∂|ψ(x, t)|2
∂t

=
∂ψ(x, t)
∂t

ψ(x, t) + ψ(x, t)
∂ψ(x, t)
∂t

.

Since ψ(x, t) satisfies Schrödinger equation and

−i∂ψ
∂t

(x, t) = −Δψ(x, t) + V (x)ψ(x, t),

it is found that

∂|ψ(x, t)|2
∂t

= i
(
ψ(x, t)Δψ(x, t) − ψ(x, t)Δψ(x, t)

)
= i∇ ·

(
ψ(x, t)∇ψ(x, t) − ψ(x, t)∇ψ(x, t)

)
=−∇ · j(x, t).

The proposition is proved. �

Thus the probability current satisfies a continuity equation, which has ana-
logues in many areas of science, and has the following consequence. Consider a
bounded volume Λ in R3 whose boundary is the “smooth” closed surface ∂Λ; then
the probability that the particle will enter Λ per unit time is dProbψ(t)(Λ)/dt,
which, by the Gauss divergence theorem,

d

dt
Probψ(t)(Λ) =

∫
Λ

∂

∂t
|ψ(x, t)|2 dx = −

∫
Λ

∇ · j dx = −
∫
∂Λ

j · ds.

Hence the surface integral of j(x, t) is the probability that the particle will
cross this surface per unit time. So, if n̂(x) is the unit vector normal to the surface
and pointing to the outside direction, then j(x, t) · n̂(x) is the probability density
of the particle crossing unit area of this surface (from inside to outside) per unit
time, supporting the promised interpretation of the current probability density.
This construction can be generalized to Rn; for instance, in case of an interval
Λ = (a, b) ⊂ R one has (since ψ ∈ H2)

d

dt
Probψ(t)(a, b) = −

∫ b

a

∂j
∂x

(x, t) dx = j(a, t) − j(b, t).

Furthermore, since the momentum operator is P = −i∇, which can be
thought of as a velocity operator (recall that in classical mechanics P = mv,
v denoting the particle velocity and here the mass m = 1), one has

j(x, t) = 2Re
(
ψ(x, t)Pψ(x, t)

)
and the probability current looks like the velocity P times a probability density.
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Remark 14.4.3. If g(x) is a vector field in R3 given by the curl of a continuously
differentiable vector field u, that is, g = ∇×u, then ∇·g = 0 and j+g also satisfies
the continuity equation. Hence, j is not uniquely defined; one concludes that the
flux of j through a (proper) piece of a surface ∂Λ depends on the choice of g and
so can not be a physical observable. Nevertheless, due to the Gauss divergence
theorem, the probability of the particle crossing the whole closed surface ∂Λ, i.e.,∫
∂Λ

j · ds, does not depend on the choice of g and so it is a physical observable
quantity. In summary, only variations of probability in volumes Λ are meaningful.
Here j always means j = −i

(
ψ∇ψ − ψ∇ψ

)
.

Exercise 14.4.4. Work out the one-dimensional version of Remark 14.4.3.
Exercise 14.4.5. If ψλ is an eigenfunction Hψλ = λψλ in L2(R3), show that the
probability density |ψ(x, t)|2 is constant in time, inferring null probability flux
across all smooth closed surfaces ∂Λ, that is,∫

∂Λ

j · ds = 0.

Note that this is in accordance with the dynamical properties of states in the point
subspace Hp(H) that were discussed in Chapter 13.
Exercise 14.4.6. Check that j = 0 if ψ is a real function.
Exercise 14.4.7. Show that, for V ∈ L2

loc(a, b), −∞ ≤ a < b ≤ +∞, and H as
above, the map x �→ j(x, t) is continuous for any ψ ∈ dom H .

Sometimes the probability current j can be used to select some self-adjoint
extensions of a hermitian operator, as the following example illustrates.
Example 14.4.8. The self-adjoint extensions of the operator C∞0 (0, 1) � ψ �→
Hψ = −ψ′′ were found in Example 7.3.4; the deficiency indices are equal to 2 and
so there are infinitely many self-adjoint extensions. Such extensions are candidates
for describing the free energy particle operator in the interval (0, 1).

From the discussion in Example 7.3.4, those self-adjoint extensions are char-
acterized by vanishing boundary form (for suitable ψ, ϕ ∈ dom H∗)

0 = Γ(ψ, ϕ) = ψ(1)ϕ′(1) − ψ′(1)ϕ(1) − ψ(0)ϕ′(0) + ψ′(0)ϕ(0).

Since in this one-dimensional case j = −i(ψψ′−ψψ′), the vanishing of the bound-
ary form Γ(ψ, ψ) is equivalent to the physical condition of no net probability flux
across the boundary (the set {0, 1} is the boundary of (0, 1)), that is,

0 = −iΓ(ψ, ψ) = j(1, t) − j(0, t) =
∫ 1

0

∇ · j dx.

What are the self-adjoint extensions of H that satisfy j(0, t) = 0 = j(1, t), ∀t,
for all ψ in their domains? This condition is equivalent to

ψ(0)ψ′(0) − ψ(0)ψ′(0) = 0 = ψ(1)ψ′(1) − ψ(1)ψ′(1).
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Thus, there are κ, γ ∈ R ∪ {∞} so that ψ′(0) = κψ(0) and ψ′(1) = γψ(1); the
Dirichlet boundary condition at 0, say, corresponds to κ = ∞ (similarly for γ =
∞). Hence, these are necessary conditions on elements of the domains of the
required self-adjoint extensions and actually they correspond to the self-adjoint
extensions Hκ,γ of H presented in the following.

For fixed κ, γ put

dom Hκ,γ = {ψ ∈ dom H∗ : ψ′(0) = κψ(0), ψ′(1) = γψ(1)}

and Hκ,γψ = −ψ′′. It is then found that Γ(ψ, ϕ) = 0 for all ψ, ϕ ∈ dom Hκ,γ , and
these are the self-adjoint extensions for which j(0, t) = 0 = j(1, t), as required. Note
that such conditions hold true at any instant of time t, for the domain of each
self-adjoint extension Hκ,γ is invariant under the corresponding time evolution
e−itHκ,γ .
Exercise 14.4.9. Check the existence of κ, γ in Example 14.4.8, and that Hκ,γ are
self-adjoint extensions as indicated therein.
Exercise 14.4.10. Consider the self-adjoint extensions HÛ of the initial energy
operator of the one-dimensional H-atom, discussed in Subsection 7.4.1. Show that:

1. 0 = 〈HÛϕ, ϕ〉 = 〈ϕ,HÛϕ〉 = i limε→0[j(ε) − j(−ε)], ∀ϕ ∈ dom HÛ , and
conclude that j(0) can be defined so that j is continuous at the origin. Since
j(±∞) = 0,

j(0) = j(0−) =
∫ 0

−∞
∇ · j dx

and j(0) represents the net probability flux leaving (−∞, 0); similarly it is
concluded that j(0) represents the net probability flux leaving (0,∞). Hence,
a zero value of j(0) means that the origin is impermeable so that the Coulomb
singularity acts as a barrier that does not allow the electron to pass through
it.

2. j(0) = limx→0± Im [ϕ(x)ϕ′(x)] = limx→0± Im [ϕ(x)ϕ̃(x)].

3. In case (1 − Û) is invertible, write A = i
(
1 + Û

)−1 (
1− Û

)
, a self-adjoint

matrix, so it can be put in the form

A =
(
a z
z̄ b

)
, a, b ∈ R, z ∈ C,

and
j(0) = lim

x→0+
Im [zϕ̃(x)ϕ′(x)], ϕ ∈ dom HÛ .

4. Conclude that if z = 0 then j(0) = 0 for all ϕ ∈ dom HÛ , that is, the origin
is impermeable for such self-adjoint extensions.

Finally, discuss the analogous situation in case (1 + Û) is invertible.
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Exercise 14.4.11. Write ψ(x, t) = |ψ(x, t)| eiθ(x,t) and show that (suppose all op-
erations are meaningful)

j(x, t) = |ψ(x, t)|2 ∇θ(x, t).

Conclude that j points to the direction of maximum increasing phase θ.
Remark 14.4.12. With all physical constants included, the probability current
density takes the form

j(x, t) = −i �

2m

(
ψ(x, t)∇ψ(x, t) − ψ(x, t)∇ψ(x, t)

)
.

14.5 Ehrenfest Theorem

It is hard not to consider the relations between classical and quantum mechanics
interesting. Quantum mechanics was, in fact, built on classical considerations, with
suitable adaptations and innovative concepts; however, at first sight it does not
sound natural that the laplacian −Δ plays the role of quantum kinetic energy
in L2(Rn). The study of the classical-quantum relations, in one form or another,
still occupies many people and with different types of results. Here a very few
aspects will be mentioned in order to illustrate how such relations can emerge: the
Ehrenfest theorem and the WKB approximation.

The force generated by a given potential V : Rn → R on a classical particle
of mass m is F (x) = −∇V (x). If P denotes the particle momentum, Newton’s
second law reads

dP

dt
(t) = m

d2x

dt2
(t) = F (x(t)).

There is a quantum version of this law, the so-called Ehrenfest theorem, with
the limitations naturally imposed by the uncertainty principle and quantum in-
terpretations. In any event, it is a support for the Schrödinger equation and the
usual operator correspondences for positions, momenta and energy in quantum
mechanics.

Consider the expectation values

Eψx (t) = 〈ψt, xψt〉, EψP (t) = 〈ψt, Pψt〉, EψF (t) = 〈ψt, F (x)ψt〉,

with ψt = e−itHψ and H a self-adjoint realization of 1
2mP

2 +V (x) in L2(Rn) with
initial domain S(Rn); also assume that V (S(Rn)) ⊂ S(Rn).

Theorem 14.5.1 (Ehrenfest Theorem). If ψt ∈ S(Rn) for all t ∈ (a, b), then for
t in such an interval the function t �→ EψP (t) is differentiable, t �→ Eψx (t) is twice
differentiable and the following relations hold

d

dt
EψP (t) = EψF (t), m

d

dt
Eψx (t) = EψP (t), m

d2

dt2
Eψx (t) = EψF (t).
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Proof. Compute

d

dt
EψP (t) = 〈−iHψt, Pψt〉 + 〈ψt, P (−iH)ψt〉

= 〈ψt, i(HP − PH)ψt〉 = 〈ψt, F (x)ψt〉,

since i(HP − PH) = −∇V (x) = F (x), and the first relation follows if such
manipulations are justified. Note that the hypotheses on ψt imply that, for all
t ∈ (a, b), {xψt, Pψt, Hψt} ⊂ S(Rn) and so

ψt ∈ dom (HP − PH) ∩ dom (Hx− xH), ∀t ∈ (a, b),

justifying the above manipulations. The second relation is obtained in a similar
way, taking into account that im(Hx− xH)ψt = Pψt. The third relation follows
by differentiating the second one. �

Therefore, it was found that under certain conditions Newton’s law and the
relation mdx/dt = P have a quantum parallel in terms of expectation values.

Another way some traditional equations of classical mechanics show up in
quantum mechanics is via the WKB approximation (after Wentzel, Kramers and
Brillouin; sometimes the name of Jeffreys is added to this list). Since this ap-
proximation is a “semiclassical” one, the parameter � will appear explicitly. Here
the derivations will have the general character of formal calculations and physical
heuristic arguments. Write

ψt(x) = A(x, t)eiS(x,t)/�

in terms of two unknown real functions A(x, t), S(x, t), and insert into the Schrö-
dinger equation

−i�∂ψ
∂t

(x, t) = − �2

2m
Δψ(x, t) + V (x)ψ(x, t),

so that, after some algebra,

i�
∂A

∂t
−A

∂S

∂t
= − �2

2m

(
ΔA+ 2

i

�
∇A · ∇S +

i

�
AΔS − 1

�2
A(∇S)2

)
+ V A.

Equating real and imaginary parts one finds two equations

�2

2mA
ΔA=

∂S

∂t
+

1
2m

(∇S)2 + V,

0 =
∂A

∂t
+

A

2m
ΔS +

1
m
∇A · ∇S.

Multiply the second of these equations by 2A and rewrite it as

∂A2

∂t
+ ∇ ·

(
A2

m
∇S
)

= 0,
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and one recognizes the continuity equation for the probability current discussed
in Section 14.4 (note that |ψt|2 = A2; see Exercise 14.4.11). By looking at the
first equation one sees that the left-hand side is proportional to �2, while this
parameter does not appear on the right; by neglecting the term proportional to
�2 the Hamilton-Jacobi equation of classical mechanics

∂S

∂t
+

1
2m

(∇S)2 + V = 0

is obtained; hence S is identified with the classical action. Often, the use of these
solutions is called the semiclassical approximation. In summary, in such an ap-
proximation the wave function phase S is calculated directly from solutions of the
classical Hamilton-Jacobi equation of motion and the amplitude A from the conti-
nuity equation (in many situations A can be calculated from S through van Vleck
formula!), and they provide a way to understand the transition from classical to
quantum mechanics.

Customarily, the term semiclassical physics may refer to two different ap-
proaches to the classical-quantum connection. Starting from quantum mechanics
one tries to recover the classical one when � → 0, whereas in the other proce-
dure classical mechanics is used to get estimations of the quantum behaviour for
small �. Rather recently the search for a quantum counterpart of “chaotic motion”
in classical mechanics has increased the interest in the subject; from the purely
physical point of view see [Gut90] and [BraB03].

Different approaches to mathematical aspects of the semiclassical limit are
exemplified with the references [Hag85], [Hel88] and [HiS96]; a recent approach
that emphasizes pseudodifferential operators is discussed in [Ro98].
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Quantum Physics. AIP Press, New York, 1994.

[BraB03] M. Brack and R.K. Bhaduri, Semiclassical physics. Frontiers in
Physics 96. Westview Press, Boulder, CO, 2003.

[BraEK94] J. Brasche, P. Exner, Yu.A. Kuperin and P. Šeba, Schrödinger oper-
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263–267 (1977).

[Sta96] A.A. Stahlhofen, A remark on von Neumann-Wigner type potentials.
J. Phys. A 29, L581–L584 (1996).

[Ste94] P. Stehle, Order Chaos Order. The Transition from Classical to Quan-
tum Physics. Oxford Univ. Press, Oxford, 1994.

[StoV96] P. Stollmann and J. Voigt, Perturbation of Dirichlet forms by mea-
sures. Potential Anal. 5, 109–138 (1996).

[Str90] R.S. Strichartz, Fourier asymptotics of fractal measures. J. Funct.
Anal. 89, 154–187 (1990).

[Str94] R.S. Strichartz, A Guide to Distribution Theory and Fourier Trans-
forms. CRC Press, Boca Raton, 1994.

[Stue60] E.C.-G. Stueckelberg, Quantum theory in real Hilbert space. Helv.
Phys. Acta 33, 727–752 (1960).

[Sty02] D.F. Styer et al., Nine formulations of quantum mechanics. Amer. J.
Phys. 70, 288–297 (2002).

[Su01] S.J. Summers, On the Stone-von Neumann uniqueness theorem and
its ramifications. John von Neumann and the foundations of quan-
tum physics (Budapest, 1999), 135–152, Vienna Circ. Inst. Yearb., 8,
Kluwer Acad. Publ., Dordrecht, 2001.



404 Bibliography

[Sun97] V.S. Sunder, Functional Analysis, Spectral Theory. Birkhäuser,
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time-energy uncertainty, 384
total return probability, 359
totally bounded, 20
trace class, 32, 240
trace map, 196
trajectory, 353
triangular inequality, 13, 97
Trotter product formula, 142

uncertainty principle, 381
uncertainty principle lemma, 384
uniform boundedness principle, 11
uniform convergence, 23
uniform resolvent convergence, 258
uniformly α-Hölder, 374

uniformly continuous group, 123
uniformly holomorphic, 35
unitarily equivalent, 49
unitary evolution group, 121, 386
unitary operator, 45

vanish at infinity, 259, 294
variation of parameters, 180
variational approach, 302
vector potential, 280
virial, 153, 296
Volterra operator, 38

wave functions, 2
wave operators, 331
weak convergence, 22, 23
weak resolvent convergence, 258
weak solution, 132
weakly continuous group, 123
Weyl commutation relation, 142,

383
Weyl criterion, 289, 293, 308
Weyl sequence, 75, 299
Weyl singular sequence, 287
Weyl-von Neumann theorem, 351
Wiener lemma, 361
WKB, 393
wonderland theorem, 350
wronskian, 175

Young’s inequality, 82
Yukawa potential, 152

zero operator, 5
zero-range potentials, 188
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