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Preface

The spectral theory of linear operators in Hilbert spaces is the most important
tool in the mathematical formulation of quantum mechanics; in fact, linear opera-
tors and quantum mechanics have had a symbiotic relationship. However, typical
physics textbooks on quantum mechanics give just a rough sketch of operator the-
ory, occasionally treating linear operators as matrices in finite-dimensional spaces;
the implicit justification is that the details of the theory of unbounded operators
are involved and those texts are most interested in applications. Further, it is also
assumed that mathematical intricacies do not show up in the models to be dis-
cussed or are skipped by “heuristic arguments.” In many occasions some questions,
such as the very definition of the hamiltonian domain, are not touched, leaving
an open door for controversies, ambiguities and choices guided by personal tastes
and ad hoc prescriptions. All in all, sometimes a blank is left in the mathematical
background of people interested in nonrelativistic quantum mechanics.

Quantum mechanics was the most profound revolution in physics; it is not
natural to our common sense (check, for instance, the wave-particle duality) and
the mathematics may become crucial when intuition fails. Even some very simple
systems present nontrivial questions whose answers need a mathematical approach.
For example, the Hamiltonian of a quantum particle confined to a box involves
a choice of boundary conditions at the box ends; since different choices imply
different physical models, students should be aware of the basic difficulties intrinsic
to this (in principle) very simple model, as well as in more sophisticated situations.
The theory of linear operators and their spectra constitute a wide field and it is
expected that the selection of topics in this book will help to fill this theoretical
gap. Of course this selection is greatly biased toward the preferences of the author.

Besides the customary role of working as a computational instrument, a
mathematically rigorous approach could lead to a more profound insight into the
nature of quantum mechanics, and provide students and researchers with appropri-
ate tools for a better understanding of their own research work. So the first aim of
this book is to present the basic mathematics of nonrelativistic quantum mechan-
ics of one particle, that is, developing the spectral theory of self-adjoint operators
in infinite-dimensional Hilbert spaces from the beginning. The reader is assumed
to have had some contact with functional analysis and, in applications to differ-
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ential operators, with rudiments of distribution theory. Traditional results of the
theory of linear operators in Banach spaces are addressed in Chapter 1, whereas
necessary results of Sobolev spaces are described in Chapter 3. The definition and
basic properties of (unbounded) self-adjoint operators appear in Chapter 2.

The second aim of this book is to give an overview of many of the basic
functional analysis aspects of quantum theory, from its physical principles to the
mathematical methods. This end is illustrated by:

1. The use of von Neumann theory of self-adjoint extensions (2), Fourier trans-
form (3), sesquilinear forms (4), Kato-Rellich and KLMN theorems (6) and
boundary triples (7) as tools to properly define Schrédinger (self-adjoint) op-
erators in quantum mechanics. These matters are developed in the chapters
indicated above in parentheses.

2. The spectral theorem and first applications in Chapters 8 and 9.
3. Convergence of (unbounded) self-adjoint operators in Chapter 10.

4. Spectral decomposition (essential, discrete, continuous and point) in Chap-
ters 11 and 12.

In case of time evolution, which is ruled by the quantum energy operator,
item 1 above is closely related to the question in classical mechanics whether the
motion is unambiguously determined by the force.

Another aim of this book is to strive to present many examples illustrating
concepts and build up confidence with methods. Some examples are simple and
are meant to reduce the effort of beginning graduate students to learn the subject
of spectral theory and its relation to quantum mechanics.

The last aim of the book is to discuss the relation between spectral type of
the hamiltonian (energy) operator and asymptotic quantum dynamics, i.e., the
quantum behavior as time goes to infinity. In Chapter 5, the existence of quantum
dynamics is shown to be equivalent to the self-adjointness of the Hamiltonian, but
the discussion is not restricted to time evolution and the general theory of unitary
evolution groups is addressed in detail. Various aspects of the role played by the
spectral type in quantum dynamics are given in Chapter 13. Some results seem
not to have appeared in book form yet, such as the discussions on precompact
orbits and almost periodic trajectories. Chapters 11, 12 and 13 make heavy use of
spectral measures and are more advanced than previous chapters.

Selected quantum relations are discussed in Chapter 14. The idea is to com-
plement a text that emphasizes mathematics with additional rigorous approaches
to some standard quantum concepts; e.g., why the quantum observables are repre-
sented by self-adjoint operators instead of just hermitian ones. But no exhaustive
presentation of quantum relations should be expected and parallel reading of tra-
ditional books on quantum mechanics is highly recommended.

The book does not offer a quantum mechanics course, but the necessary
quantum concepts are introduced when needed (usually with Planck’s constant
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h =1 and mass particle m = 1/2). Hence, it can also be useful to readers who are
only interested in an introduction to spectral theory, since its focus is mathematics
and proofs of theorems. The level is suitable for graduate students (or advanced
undergraduates) who already have some familiarity with linear functional analysis.
Thus, more advanced methods in spectral theory, mainly those related to singular
continuous and dense point spectra, are not discussed (see [DeKr05] for a collection
of advanced methods and the four volumes by Reed and Simon in the references);
this is the reason for the term “Intermediate” in the title of the book. However, a
certain level of mathematical literacy is desired from the reader.

Different readers may have different backgrounds, and each one will easily
find which sections to skip and a suitable pathway to the particular topics of
interest. But most of them will usually start on the introduction of a spectrum
in Section 1.5 or Chapter 2. After working through this book, a student should
be able to follow more specialized texts and research articles, and should find it
easier to select a topic for future research.

Exercises present different levels of difficulties; many of them are related to
missing details in proofs and examples. Due to the nature of the book, the set of
references includes literature on both physics and mathematics.

Parts of the book have been used in courses addressed to graduate students
interested in spectral theory at the Department of Mathematics of the Federal Uni-
versity of Sao Carlos, in 2004 and 2006; in fact, the book grew out of such lectures.
The author thanks students and colleagues who have attended those courses and
made helpful comments. Partial financial support by a Brazilian federal agency,
CNPq, is very much acknowledged.

I want to thank the patience and support of my wife, Ana Teresa, and our
children, Daniel and Natédlia, that gave me stability during the revisions of the
text.

Hopefully, you, mathematician or physicist, will enjoy reading the book and
will profit from it. The following page on the internet

http://www.dm.ufscar.br/"oliveira/ISTbook.html

is related to this book and it may include a possible errata page. Any remark,
suggestion and correction (including those that have arisen from “copy-paste”
manipulations) from readers will be welcome!

May 2008 Sao Carlos,

César R. de Oliveira



Selected Notation

e The set of natural numbers: N = {1,2,3,...}.

e The term “enumerable” refers to the cardinality of N, whereas “countable”
refers to enumerable or finitely many (including zero).

e “a.e.” abbreviates almost everywhere with respect to some measure.
e N, B, H denote normed, Banach and Hilbert spaces, respectively.

e Y C X means that Y is a dense subset of X.

e The identity operator is denoted by 1.

e The range, domain and kernel (i.e., null set) of a transformation T' will be
denoted by rng T,dom T and N(T'), respectively.

e An action “T in X” means that dom T C X, whereas “I' on X” means
that dom T'= X. They are abbreviations of “T" acting in X” and “T" acting
on X,” respectively.

e An element z of R™ is simply denoted by x = (z1,...,z,) and dz =
dridxsy - - - dx,. Also, the inner product, zy = x1y1 + - - + TpYn-

e A linear operator T in H is symmetric if (T&,n) = (£,Tn), V&, n € dom T. A
hermitian operator is a symmetric one whose domain is dense in H.

e “dominated convergence” always refers to Lebesgue’s dominated convergence
theorem.

e “Schrodinger operator”, “hamiltonian operator” and “energy operator” are
synonymous. The “standard Schrodinger operator” is the formal action H =
—A + V acting in L?(Q), Q C R™.

e r.h.s. (Lh.s.) means “right- (left-) hand side.”

e The end of a proof is signalled by the symbol [J.



A Glance at
Quantum Mechanics

Since this book is closely connected to quantum mechanics, these introductory
words will briefly and informally recall some postulates of this theory. Interested
readers are urged to consult traditional books on quantum mechanics to comple-
ment the discussion ahead and for descriptions of experimental evidence that give
rise to the postulates. In physics there are several “equivalent formulations” of
quantum mechanics, and a catalogue of the most important appears in [Sty02].
The discussion here is restricted to the nonrelativistic case.

Quantum mechanics is the physical theory of microscopic phenomena, and
it was found that nature has peculiarities that were essentially revealed only at
distances of the order of an atomic radius (= 10~ 1%meters); of course there are
interesting pure quantum effects in some macroscopic phenomena as well. Due to
the work of many talented people, a beautiful and, more important, greatly useful
theory has emerged. In the common formulation of a quantum mechanical system
(as proposed by the members — in a broad sense — of the so-called Copenhagen
school), the dynamics is linear with “pure” physical states represented by normal-
ized vectors £ in a complex separable Hilbert space H (with inner product (-, -) and
l€]l = 1), and physical observables (such as position, energy, etc.) by self-adjoint
operators acting in such spaces. Usually these operators are not continuous and
are defined only on a dense subset of H (see Hellinger-Toeplitz Theorem 2.1.27),
which cause subtle and intricate technical difficulties (and, it should be said, rich-
ness of possibilities). Two normalized states £, 7 are equivalent if there is 6 € R so
that &€ = e¥n. Of course the precise forms of the Hilbert space and operators to
be selected depend on details of the system under study.

Let &,n € H be possible states of a quantum system. The linear structure im-
plies that states are additive, which in physics is called the superposition principle;
that is, after normalization, any nonzero linear combination a§ + bn, a,b € C, is
another possible state. If two states £, n are normalized, the transition probability
from & to 1 is [(€,1)|%. More precisely, if the system is in the state ¢, then it can
be observed in any state n with nonzero projection |(£,1)|? # 0, and this quan-
tity is exactly the probability that such quantum transition will occur. It should
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then be clear that one state can interfere with another one and so the “quantum
interpretations are nonlinear!”

If a system is in the (normalized) state £, then a measurement of an observ-
able, represented by the self-adjoint operator T, is not guaranteed to give a unique
answer, due to possible quantum transitions; thus, usually an observable has no
definite value. However, the average value of T' over many measurements over
copies of the system in the same state £ will result in the average value given by

&l = (¢, T¢),

which is called the expectation value of T in the state . Further, Sg is strictly
related to the spectrum of T' and all measurements will result in a definite value
A TE = N, that is, iff £ is an eigenvector of T' with corresponding eigenvalue A
(and in this case é'gT = A). Thus, it becomes clear that there is a close relation
between spectral theory of self-adjoint operators and measurements of physical
observables. More explicitly, the probability that the value of a measurement of
the observable T will result in a value in the set A C R is g1/ (A), with ' denoting
the spectral measure of T' at the quantum state £.

The time evolution of a quantum system is given by a family of unitary
operators U(t) so that U(t+s) = U(t)U(s), with ¢, s € R playing the role of time.
It turns out that U(t) is generated by the total energy observable H of the system,
a prominent self-adjoint operator which is also called a hamiltonian or Schrédinger
operator. The equation governing this time evolution is the famous Schrodinger
equation

0
iho,8(t) = He(t),  £(0) =¢,

whose solution is £(t) = U(t)¢, and one naturally writes U(t) = e~/ denotes
Planck’s constant

The process of associating a quantum system to a classical one is called quan-
tization. It is not always a well-defined process, since a rule and physical arguments
are necessary to associate self-adjoint operators to observables. Consider a stan-
dard quantum system, that is, the Hilbert space is L2(R™) (or L2(A), A C R")
with coordinates x = (z1,...,2,), for which the jth coordinate of the position
operator is just the multiplication by x;, while for the conjugate momentum com-
ponent p; the operator is P; = —ihd/0x;. The quantum version of a function
f(x;,px) should be the operator f(x;, —i0/0x). Therefore, in case of a particle
of mass m under a potential energy V (z), the total (classical) mechanical energy
is p?/(2m) + V(x) and the quantum hamiltonian operator will take the form

h2
H=—-"A
o + V(x),

with A denoting the Laplacian in R™. In this setting the states are normalized
vectors 1 € L2(R™), usually called wave functions, and, according to a proposal
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of Max Born, the probability of finding the particle in A C R™ at time ¢ is
—q 2
Proby)(A) = /A |(e tHz/))(ac)’ dz.

Thus |[¢(x)|? is interpreted as the probability density of the particle position at
time ¢t = 0.

Note that no domain has been assigned to the operators mentioned above,
and it is not at all clear that bona fide domains do exist so that those operators
become self-adjoint. Occasionally there are infinitely many self-adjoint extensions
and finding and interpreting them are of considerable interest. These are some
of the main questions to be considered when a mathematical theory of quantum
mechanics is addressed, and they turn out to be directly connected to a properly
defined unitary time evolution.

Besides the development of the theory of unbounded self-adjoint operators in
Hilbert spaces, including spectral theory, many other related issues are treated in
this book. Some specific quantities (e.g., quantum return probability, expectation
values, test operators) are introduced and motivated on the basis of quantum
interpretations and aim at a better understanding of possible quantum behaviors,
how they depend on the self-adjoint extensions and spectral type, particularly the
asymptotic behavior as time increases.

The above discussion summarizes some important postulates of (nonrelativis-
tic) quantum mechanics and the motivation for writing this book. The physical
discussion is restricted to one-particle systems without spin, so that fermionic
(including Pauli exclusion principle) and bosonic statistics are disregarded in the
text.

There is a huge literature on attempts at an axiomatization of quantum
mechanics aiming at the justification of its postulates. Usually one tries to isolated
a suitable set of ad hoc elements. The book [vonN67], originally published in 1932,
can be considered the first one to attempt a mathematical justification of quantum
postulates; the book [Mac04] (originally published in 1963) is also a classic whose
ideas established the so-called quantum logic. Pleasant pedagogical descriptions of
some modern experiments and interpretations of quantum mechanics can be found
in [GreZ97]; however, experience indicates that one needs some acquaintance with
quantum mechanics to fully understand its interpretations.

It should be mentioned that there have been attempts to formulate quantum
mechanics in terms of real Hilbert spaces [Stue60] and by using Hilbert spaces
over the field of quaternions rather than the field of complex numbers [FJSS62].
These references were cited because they are seminal works.

In spite of such motivations, in this book the theory of linear operators in
Hilbert spaces is presented at an abstract level, so that the reader can have an
introduction to the subject and take advantage of the book even if quantum me-
chanics is not his/her primary interest.



Chapter 1

Linear Operators and Spectra

This chapter recalls some basic concepts of the theory of linear operators in normed
spaces, with emphasis on Hilbert spaces. It also fixes some notation and intro-
duces the concept of a spectrum along with various proofs. Compact operators are
discussed. The readers are supposed to have had a first contact with functional
analysis.

1.1 Bounded Operators

Let F denote either the field of real numbers R or complex numbers C. For z €
C, let Z denote its complex conjugate. As usual in mathematics, iff will be an
abbreviation for “if and only if.”

Definition 1.1.1. A linear operator between the vector spaces X and Y is a trans-
formation T': dom T' C X — Y, for which its domain dom 7" is a vector subspace
and T'(§+ an) =T(&) + oT'(n), for all £,n € dom T and all scalar o € F.

Note that T(0) = 0 for any linear operator T, and that the set of linear
operators with the same domain and codomain is a vector space with pointwise
operations; frequently 7'(£) will also be denoted by T'€. Simple examples of linear
operators are the identity operator 1 : X — X, with 1(§) = &, and the null (or
zero) operator T& =0, VE.

In many cases it is imperative to consider domains dense in another set; so
throughout this text the notation A C B will indicate that A is a dense subset
of B, with respect to the appropriate topology. The natural numbers {1,2,3,...}
will be denoted by N and the term enumerable indicates the cardinality Xy of the
set of natural numbers, while countable refers to finite numbers (including zero);
so, uncountable indicates that something is infinite and with cardinality different
from V.
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N,B,H always denote a normed space, a Banach space and a Hilbert space,
respectively. In any metric space, the sphere, open and closed balls centered at £
and of radius » > 0 will be denoted by S(&;r), B(&;7) and B(€;r), respectively.
If A is a subset of a vector space, then Lin(A) denotes the linear subspace spanned
by A.

Ezample 1.1.2. Let ¢ € L;°(Q), with p being o-finite. Then the multiplication
operator by ¢, defined by My : LE (2) — LE(€2),

(Mp)(t) == o(t)(t), ¢ € LE(€),

is a linear operator ¥V 1 < p < oco. Note that (My) € LE, for ¢ € L.

Remark 1.1.3. The notation of the Banach spaces LfL(Q), 1 <p < 0, is standard.
In case  C R™ and the measure is Lebesgue measure, the simplified notation
LP(§2) will be employed.

Ezxample 1.1.4. Let X and Y be compact metric spaces and v : ¥ — X continuous.
Then T, : C(X) — C(Y), (Tu)(y) = ¥(u(y)), is a linear operator.

Exercise 1.1.5. Let T : dom T'C X — Y be a linear operator. Verify the following
items:

a) The range of T, rng T := T'(dom T') C Y, and the kernel (or null space) of T,

N(T) :={{ € dom T : T¢ = 0}, are vector spaces.

b) If the dimension dim(dom T') = n < oo, then dim(rng T') < n.
c¢) The inverse operator of T, T~! : tng T — dom T, exists if, and only if,

T¢ =0= & =0 and, in case it exists, it is also a linear operator.

d) If T, S are invertible linear operators, then (7'S)~* = S~'T~! (by supposing,
of course, that the operations are well posed).

A rich theory is obtained through the fusion of linear operators with the
natural topology generated by norms. The next result is an example of such fusion;
it shows that if a linear operator is continuous at some point of its domain, then
it is uniformly continuous on its whole domain.

Theorem 1.1.6. Let T : N1 — Na be a linear operator. Then the following asser-
tions are equivalent:

1) supje)<y [|T€]| < oo.
ii) 3C > 0 such that | TE|| < C||€]|, VE € M.
iii) T is uniformly continuous.
iv) T is continuous.
v) T is continuous at zero (i.e., the null vector).

Proof. i) = ii) Let C' = sup¢ <1 ITE|. If 0 # £ € Ny, then || T(/[€])] < C,
Le., [|T¢|l < ClEl, V€ € M.

ii) = iii) If §, 1 € N1, then [|T¢ =T = |T(§ = n)l| < ClI€ =l
ili) = iv) and iv) == v) are obvious.



1.1. Bounded Operators 7

v) = i) Since T is continuous at zero, there exists 6 > 0 with | T¢|| < 1if ||€]] < 6.
Thus, if [|£|| < 1, it follows that ||6&|| < 6 and ||T'(0€)|| < 1; therefore, | T¢|| < 1/5
and 1) holds.

Definition 1.1.7. A continuous linear operator is also called bounded, and the set
of bounded linear operators from N to N2 will be denoted by B(Ni,N3). The
notation B(N) will also be used as an abbreviation of B(N,N).

Note the distinct use of the term bounded linear operator compared to the
use in bounded application in general, i.e., one with bounded range; in the latter
sense every linear (nonzero) operator is not bounded; verify this.

Ezample 1.1.8. The operator T, in Example 1.1.4 is continuous, since for all ¢ €

C(X) one has [|Tyillec = supey |¢(u(t))] < supiex [¢(1)] = [[¢]oc, and T, is
bounded by Theorem 1.1.6(ii).

Ezercise 1.1.9. Let X and Y be finite-dimensional vector spaces and T': X — Y
a linear operator. Choose bases in X and Y and show that T" can be represented
by a matrix, and discuss how the matrix that represents T' changes if other bases
are considered.

Proposition 1.1.10. If T : N7 — N5 be linear and dim N7 < oo, then T is bounded.

Proof. Consider in N the norm ||[£]| = [|&]| + [|T€]); then there exists C' > 0
such that |||€||| < CJ|£]|, because all norms on finite-dimensional vector spaces are
equivalent. Hence, [|T¢|| < |||€]]] < C||£]| and T is bounded. O

Ezample 1.1.11. For 1 < p < oo, IP(N) denotes the Banach space of sequences
1

€ = (€)sen so that e, = (Z,1617) " < 0. For p = oo the space 1=(N)

carries the norm |||l = sup; [¢;]. Similarly one defines ?(Z), 1 < p < occ.

Let T : {(&) € IP(N) : 3, [n?&|P < 00} — IP(N), with 1 < p < o0, T'(&,) =

(n%¢,); this operator is linear, but is not continuous, since if {e,}3%; denotes
the canonical basis of IP(N), ie., e, = (;n);, then en/n — 0, while Te,, does
not converge to zero. Another argument: T is not bounded since |e,||, = 1 and
|Tenl|, =n?, Vn.
Ezample 1.1.12 (Shifts). The right (left) shift operator in [P(Z), 1 < p < o0, is
defined by S, : IP(Z) — [P(Z) (resp. S;), n = Sr& (resp. n = Si€), with n; = &4
(resp. n; = &j41), j € Z. Note that the shift operator in IP(Z) is a bijective
isometry (i.e., an isometric mapping), so bounded. They are also defined on I?(N)
in an analogous way, but if n = S,.£ then it is defined n; = 0; these operators are
also bounded, but S, in [P(N) is not onto, although it is isometric.

Note that B(N7,M2) is a vector space with pointwise operations, and it turns
out that

7| := sup [|T¢]
EENT

llen<1
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is a norm on B(N7,Ns). In fact, if T € BN, N2), [|[T]| =0 <= T¢ =0, VE € N4,
that is, T = 0; ||oT|| = |a|||T|| is immediate; if S € B(N7,N2), then

1T+ S| = Sup IT¢ + 5S¢ < Sup (TEl+ 15l < I+ [1S1-

If a topology is not explicitly given in B(N7,N2), it is supposed that the topology
is the one induced by this norm.

Exercise 1.1.13. a) If T € B(N1,MN3), check that

T
1Tl = inf {I7€] < CliEll, vgeNl}_”Shlpl IT¢| = HllfHH

b) If T, S are bounded linear operators and TS (the composition, but usually called
product of operators) is defined, show that 7'S is bounded and ||T°S|| < ||T||||S]|-
Therefore, if T™ (nth iterate of T') is defined, then || 77| < ||T]|™.

Ezxample 1.1.14. The zero operator is the unique operator whose norm is zero, and
for the identity operator ||1|| = 1 (with N # {0}).

Ezample 1.1.15. Let X be the vector space of polynomials in C[0,1] and D : X «
the differential operator (Dp)(t) = p/(t), p € X. This operator is linear and does
not belong to B(X), since if p,(t) = t", then for all n > 1 one has (Dp,)(t) =
nt" 1 |[pnlle = 1, while || Dpy, |0 = n.

Ezample 1.1.16. The operator My, with ¢ € L3°(Q) (see Example 1.1.2) is
bounded in L (€2),1 < p < oo, and [|My| = [|¢]l (= supess |4]).

Proof. Tt will be supposed that ||¢||s 7# 0 and demonstrated for 1 < p < oo. The
cases p = 0o and |||l = 0 are left as exercises. If ||¢||, = 1, then by

Mol = /Q o[ )P dp(t) < [|olI5 19115,

one gets that M is bounded and |[Mg| < ||¢]co-

Let 0 < 6 < ||¢||o; then there exists a measurable set A, with 0 < p(A4) < oo
(recall that p is o-finite) obeying ||¢]lco > |@(t)| > 6, V& € A. Thus, xa, the
characteristic function of A (i.e., xa(t) = 1if t € A and xa(¢t) = 0if t ¢ A),
belongs to LE(€2) and

[Mgxally = /A 6O Ixa®)[Pdult) = 07lIxally;

0 [[ M| > 6 and, therefore, | M| = ||d||oo- O

Ezample 1.1.17. Let K : (2, A, ) x (2, A, 1) — F measurable (o-finite space) and
suppose that there exists C' > 0 with

/ K (2, 9)ldu(x) < C, for y j— ac.
Q
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Then, Tk : L}, (Q) < given by

(Txd) (& /K (2, )0 (w)du(y), € LL(9),

is bounded and ||Tk| < C.
Proof. If ¢ € L},(Q) then

(Tx) ()] < / K (2, 9)0 () dpu(y);

thus, |Txy(l1 = [, [(Txy)(@)|du(z) < [[1K (2,y)| [¥(y)|dp(y)du(z). By the Fu-
bini Theorem it is found that

Tl < / / K (2, y)ldu() [$(w)lduty) < Ol

Therefore ||Tk|| < C. O

Ezercise 1.1.18. Let (e,)2%; be the usual basis of I2(N) and (,,)%; a sequence
in F. Show that the operator T : [?(N) « with Te, = ane, is bounded if, and
only if, (a,)52; is a bounded sequence. Verify that, in this case, | T|| = sup,, |an |-
Erercise 1.1.19. Let C1(0, 1) be the set of continuously differentiable real functions
n (0,1), as a subspace of L2(0,1) (i.e., use the norm of L?). Apply the differential
operator (Dv)(t) = ¢/(t), D : C*(0,1) — L2(0,1), to functions ,,(t) = sin(nnt)
and conclude that D is not bounded.
Ezercise 1.1.20. Show that the differential operator D : C*°[a, b] < is not bounded
for any norm on C*[a, b].

The next result gives a simple answer to an important question. Under which
conditions B(N7,M>) is a Banach space?

Theorem 1.1.21. If N is a normed space and B a Banach space, then B(N,B) is
Banach.

Proof. Let (T,,)5°; be a Cauchy sequence in B(NV, B). Since for each £ € N one
has || Tn€ —TrE|| < | Tn—Tk||I€]], then (T,€) is Cauchy in B and converges to n € B.
Define T : N' — B by T¢ = 5, which is clearly linear. It will be shown that this
operator is bounded and T}, — T in B(N, B).

Given e > 0 there exists N(g) such that, if n,k > N(e), then |1, — Tk|| < e.
By the continuity of the norm it follows that

IT0€ = T€ll = lim | Tog = Tigl| < eli€ll,  n=N(e),

and (T, — T) € B(N,B) with ||T,, — T'|| < e. Since B(N, B) is a vector space,
and T'="T,, + (T —T,), then T € B(N, B). The inequality ||T,, — T'|| < ¢, valid for
all n > N(e), shows that T;, — T and B(N, B) is complete. O
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Ezercise 1.1.22. Suppose that T,, — T in B(NV) and &, — & in A. Show that
Thén — TE.
Ezercise 1.1.23. Let T € B(B). Show that, for all t € F, the operator e defined

by the series
oo .
i N (1)
e = E i
Jj=0

belongs to B(B) and ||etT| < eITI.
Ezercise 1.1.24. Let T € B(B), with | T|| < 1. Show that the operator defined by
the series S = -7 | T7 belongs to B(B) and S = (1 —T)~".

Uniformly continuous functions on metric spaces have uniformly continuous
extensions to the closure of their domains; in the case of linear operators there is
an analogous result, which is a consequence of the uniform continuity of bounded
operators (Theorem 1.1.6).

Definition 1.1.25. If A/ is a normed space, then the Banach space B(N,TF) will
be denoted by N* and termed dual space of N/. Each element of N'* is called a
continuous linear functional on N' (Why is N* complete?).

Remark 1.1.26. a) Recall that by the Hahn-Banach theorem N* separates points
of NV, that is, if n # £ € N, then there exists f € N* with f(£) # f(n). In
particular, if f(£) =0 for all f € N*, then £ = 0.

b) The Hahn-Banach theorem can also be used to prove the converse of
Theorem 1.1.21, so that B(N7,MN2) is complete iff N3 is a Banach space.

Ezample 1.1.27. The integral on Cfa,b] is an element of the dual of Cla, b], since

Y - fabw(t) dt is linear and continuous. In fact, every finite Borel (complex)
measure y over [a, b] defines an element of the dual of Cfa, b] through the integral

P fab P (t) du(t), because

b
/wmwwswmw@ﬂy

Ezample 1.1.28 (Unbounded functional). Consider the linear functional

Pick a function ¢ € C[—1, 1] with ¢»(—1) = ¢(1) = 0 and ¢(0) # 0. For each n > 2,
set ¥, (t) = ¥(nt) if |t| < 1/n, and equal to zero otherwise. Note that ||¢,]1 =
fil |n ()] dt = ||1||1/m, which converges to zero for n — oco. However, f(1,) =
¥(0) # 0 for all n, and f is not continuous.

Ezample 1.1.29. Let 1 < p < oo and 1/p+1/q = 1. Each ¢ € L{(€2) defines an
element of the dual of L (), since by Holder inequality the product ¢y € L}L(Q),
for all ¢ € L (), and

wHAww
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is linear and bounded with norm < |||, (again by Holder). Hence, Lq( ) C
L7 (©)*. The proof is found in books on Integration Theory that LF (Q)* = L1 (1),
for 1 < p < oo and, if the measure p is o-finite, one also has L! (Q) L°°(Q)

Ezercise 1.1.30. Show that the dual of [P is l9, with 1 < p < oo and 1/p+1/q = 1.

Theorem 1.1.31 (Uniform Boundedness Principle). Any family of operators
{Tw}aes in B(B,N) so that, for each & € B,

sup || To&]| < oo,
acJ

satisfies sup,c ;7 || Ta|| < oo.

Proof. Put E, = {£ € B: || To&|| < k, Yo € J}, which is a closed set; indeed, since
T, is continuous, it is the intersection of the closed sets T, *B(0; k) for all o € J.
Since B = |J;; Ej, by the Baire theorem there exists F,,, with nonempty interior.
Let Br(&o;7) (r > 0) be an open ball contained in E,,; then, for any a € J one
has |[To&|| < m for all £ € Bg(&o; 7).

If € € B, ||€]| = 1, it is found that n = & + r£/2 belongs to Bp(&;r) and

4m
1Taéll = IIT n—Taboll <= (||Ta77|| + 1 Taéoll) <

thus ||Ta&]| < 4m/r for all a € J and ||£|| = 1; it then follows that sup,, ||Ta| <
dm/r < oo. O

Corollary 1.1.32. A subset H C B* = B(B,F) is bounded if, and only if, for
all § € B, supsey [f(§)] < o0,

Proof. If H is bounded, then M = sup;cy || f|| < co and for all £ € B one has
supsep | f(€)] < M||€]| < oo. To show the other statement, by using the notation
presented in the uniform boundedness principle, it is enough to consider H as the
family T, in the Banach space B*. g

Corollary 1.1.33 (Banach-Steinhaus Theorem). Let (7,,)52; be a sequence in
B(B,N) so that for each & € B there exists the limit

T¢ = lim T,
Then sup,, | T,,|| < oo and T is a bounded operator in B(B,N).

Proof. Clearly T is linear. Since for all £ € B there exists lim,_,o 7€, then
sup,, |[Tm&|| < oo, and by the uniform boundedness principle one has sup,, || 75| <
00. By the definition of T it follows that

ITEll < (sup | Tul) Il vE€B

and, therefore, T" is bounded. O
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Ezample 1.1.34. Let N be the normed space of the elements { = (§;) € [*°(N)
that have just a finite number of nonzero entries ;. Define T,, : N' — [* by
T,§ = (n€,)jen. Then T, € B(N,1*) for all n, and for each £ € N there exists
the limit lim,, —, oo 7€ = 0, but lim,,_,« ||T5|] = co. This shows that the conclusions
of the Banach-Steinhaus theorem (and of the uniform boundedness principle) may
fail if the domain of the operators is not complete.

Exercise 1.1.35. Let S : [?(N) < be the shift

Sl(£1a£27£37"') = (52’53354)"')

and T, = Sp'. Find ||T,{||, and the limit operator described in the Banach-
Steinhaus theorem.

Proposition 1.1.36. Let {Ty}acs be a family in B(B,N) with

sup || T || = oo
acJ

Then the set T = {£ € B : sup,, ||[Tué|| < oo} is meager in B (that is, it is a subset
of a countable union of closed subsets of B with empty interior).

Proof. By using the notation of the proof of the uniform boundedness principle,
one has 7 = U2 | By, and by that proof it follows that the interior of every Fj, is
empty, since if not one would get sup,¢ s [|Ta|| < 0o. Since Ej is closed, then 7 is
meager. O

Denote C,[0,27] = {¢ € C[0,27] : ¥(0) = ¥ (27)}, which is a closed subspace
of C[0,2x], so it is Banach, and

(Fv), e Mty dt, P € Cpl0,2m].

“wl

Corollary 1.1.37. The set of elements ¢ € Cpl0,2n] whose Fourier series
> onez (F¥), e converges for t = 0 is meager.

Proof. By working with trigonometric relations it is found that, for each N, the
partial sum (Snyv)(t) = >_ ., <y (F¥), e can be written in the form

2m s _s
(Sn)(t) = % /O Sm[(zi]rvl [(“; i)i’“; = )2 (s) ds.
Note that fn : Cp[0,27] — C, fn(¥) = (Snv¢)(0), is an element of the dual

of Cpl0,27]; thus, in order to conclude this proof it is enough to show that
supy || /x|l = oo and use Proposition 1.1.36 with fy represented by T,.
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Consider ¢n (t) = sin[(2N + 1)¢/2], an element of C,[0, 27] with norm equal
to 1; thus

1 [* sin?[(2N +1)s/2]
d
Inlon) =52 / sin(s/2) s
. 1/2” sin?[(2N + 1)s/2] ds
™ Jo S
1 [CNEDT Gin2y,
= —/ du
™ Jo u
12! sin? vy 123
> = == -,
DU Do
Since the harmonic series is divergent, one concludes that limy_.o || fn| = oo,
and the proof is complete. O

Ezercise 1.1.38. Verify that C,[0,2n] is a Banach space, and also the validity
of the expression for a partial sum for the Fourier series used in the proof of
Corollary 1.1.37.

Now the famous Riesz representation theorem of Hilbert spaces H, which
shows that every Hilbert space is naturally identified to its dual, is recalled and
demonstrated. In order to fix notation, remember that an inner product in a vector
space X is a map (§,n) — (£,1), X x X — T, so that for any £,7,{ € X and
a € F it satisfies:

i) (@€ +n,¢) = al§,¢) + (n,0),
i) (&m) = (n,€),
i) (£,¢) >0, and (£,€) = 0iff £ = 0.
In an inner product space one has the induced norm ||| := /(£, &), so
that the Cauchy-Schwarz [(§,m)| < [[£[[[In]l and triangular [ + 7 < [[€]] + [|n]
inequalities always hold.

Ezercise 1.1.39. Show that equality in Cauchy-Schwarz occurs iff {£,n} is linearly
dependent, while equality in the triangular occurs iff either £ = 0 or n = t£ for
some t > 0.

Let {€q}acs be an orthonormal set in H. One of the advantages of the pres-
ence of an inner product in a Hilbert space H is the existence of orthonormal basis
of H, that is, if Lin({&, }aes) = H. The following facts illustrate such advantages
quite well. For each & € H, the Bessel inequality

I€1° = D 1(as )

acJ

holds; in particular, (£,,&) # 0 only for a countable number of indices a € J.
Furthermore, the following assertions are equivalent:
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i) {€a}tacs is an orthonormal basis of H.
ii) If £ € H, then the Fourier series of £, with respect to {£,}acs, converges
in H for £ (and independent of the sum order), that is,

€= (a8 bar VEEM.

acJ

iii) [Parseval Identity] For all £ € H,

€12 = I{€a, )17

acJ

Furthermore, if {{,}acs is an orthonormal basis and 7 = > . {€a,7)éa,

then
(€m) = (€, &) (€arm)-

[e3%

Theorem 1.1.40 (Riesz Representation). Let H be a Hilbert space and H* its dual.
The map v : H — H*, v(&) = fe, for § € H, given by

V& Mm) = fe(n) =(&mn),  VneH,
is an antilinear (i.e., af — @, Va € F) and onto isometry on H*.

Remark 1.1.41. This theorem implies that each element of H* is identified to a
unique § € H, via fe, and || f¢]| = ||€]|; one then says such £ represents fe. Note that
two distinct notations for this map were introduced: (§) and f; this is convenient
in certain situations.

Proof. If £ = 0, clearly fe = 0. If £ € H, then f¢ is a linear functional and

[feml = 1€, m| < [IElllInll, so that fe € H* with [[fel| < [[¢]|. In view of [|¢]|* =

fe(€) < |Ifellll€]l one has || fe]| > [|€]|. Hence |[fe]| = [|€]|, and the map 7 is an
isometry, obviously antilinear (linear in the real case). Then we only need to show

that every f € H* is of the form f¢ for some £ € H. If f = 0, then f = f;
for £ = 0. If f # 0, since the kernel N(f) is a proper closed vector subspace
(since f is continuous) of H, it is found that

H=N(f) & N(f)*,

and there exists ¢ € N(f)% with ||¢|| = 1. Now, by noticing that the vector
(f(m)C — f(QOn) € N(f), for all n € H (this remark is simple but essential in this
proof), one concludes that

(G fme—f(On =0,  VneH,

that is, f(n) = (f(¢)¢,n). Therefore, f = ~(f(¢)¢)- 0
Ezercise 1.1.42. If f € H*, what is the dimension of N(f)1?
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Ezxample 1.1.43. The hypothesis that the inner product space is complete can not
be dispensed with in Theorem 1.1.40. Consider the subspace A of I2(N) whose
elements have just a finite number of nonzero entries; then f : N — F, f(n) =
Z;’;l nj/j, belongs to N*, but there is no £ € N with f = f¢, since the vector
(1,1/2,1/3,...) ¢ N.

Now a simple and useful technical result, although it is restricted to complex
inner product spaces, as illustrated by Example 1.1.45.

Lemma 1.1.44. Let (X, (-,-)) be a complex inner product space. If T : X <« is a
linear operator and (T&,€) =0 for all§ € X, then T = 0. Hence, if T, S are linear
operators and (T'€,&) = (S€,&) for all§ € X, thenT = S.

Proof. For all a € C and any £,n € X one has

0= (T(a€ +n),af +n) = a(T&,n) + (T, §).

By picking, successively, « = 1 and a = —i one obtains

(T€,m) +(I'm,&§) =0 and (T€,n) — (Tn,§) =0,

whose unique solution is (T¢,n) = 0, for all £,n € X, that is, T is the zero
operator. O

Example 1.1.45. Consider the rotation R by the right angle on R?, so that R # 0
while (R¢, &) =0, V€ € R2.

Before closing this section, recall the parallelogram law
€ +nll* + 1€ = nll* = 2]ll* + 2l VEmeX

as well as the polarization identity

€n)y ==+l = 1€ =l +illg +inll* — il — inl?) ,

1
4

which hold in any (complex) inner product space.

1.2 Closed Operators

Before discussing closed operators it can be useful to recall the so-called open
mapping theorem. A map between topological spaces is open if the image of every
open subset is also open. There are invertible continuous maps that are not open,
as shown by the following examples.

Ezxample 1.2.1. The identity map between R™ with the discrete topology and R™

with the usual topology is continuous and invertible, but its inverse map is not
continuous, that is, this bijective continuous map is not open.
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Ezample 1.2.2. Let X =[-1,0]U (1,2] in R and ¢ : X — [0,4], ¥(t) =t%. ¢ is a
continuous bijection, but its inverse =1 : [0,4] — X, given by

. [=VEifo<t<1
v (t)_{ Vt ifl<t<4’

is not continuous.

Ezercise 1.2.3. Show that T : [}(N) « given by T'(&1, &, &3, ...) = (£1/1, &/2,
&3/3, ...) is linear, continuous and invertible, but its inverse T—!, defined on the
range of T', is not a continuous operator.

Theorem 1.2.4 (Open Mapping). If T' € B(B1, Bs) with rng T = Ba, then T is an
open map.

Proof. The following properties will be used, and only the last one is not immedi-
ate:

a) for all r,s > 0 one has TB(0;7) = LT B(0; s).

b) for all £ € By and r > 0, one has TB(&;r) = T¢+ TB(0;7) (sum of sets).

c) if B(0;e) € TB(0;r), then B(0;ae) C TB(0;ar), for all & > 0. Then if
there is 7 > 0 so that TB(0;r) contains a neighborhood of the origin, then
T B(0;s) contains a neighborhood of the origin for all s > 0 (note that such
implications also hold without closures of the sets).

d) if B(no;e) C TB(0;r), then there exists § > 0 so that B(0;6) C TB(0;r)
(note that it also holds without closure of the sets).

To prove the last property, pick & € B(0;r) so that ||n1 —nol| < £/2, with n; = T¢&;.
Thus,
B(m;:e/2) C B(noie) € TB(0;r),

and so
B(0;¢/2) = B(m;e/2) —m C {B(no;e) — T&1}
c {TB(O; M — T§1} c TB(0;r) —&] c TB(0:2r) .

Then it follows that B(0;¢/2) C TB(0;2r) and, therefore, B(0;0) C T B(0;r) with
0 = ¢/4, proving d).

Lemma 1.2.5. If T € B(Ni1,N2) and there exists r > 0 so that the interior
of TB(0;r) is nonempty, then T is an open map.

Proof. Since the interior of TB(0;r) # (), from the above properties it follows
that for all s > 0, TB(0;s) contains an open ball centered at the origin. To show
that T is an open map it is enough to show that for all £ € N7 and all s > 0,
TB(&; s) contains a neighborhood of T¢. In view of TB(¢;s) = T¢ + T B(0; s),
one may consider £ = 0 and verify that for all s > 0 the set TB(0;s) contains a
neighborhood of the origin, but this is exactly what was observed at the beginning
of this proof. O
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By this lemma, to prove the open mapping theorem it is enough to verify
that there exists some r > 0 so that T'B(0; r) contains an open ball centered at the
origin. Note that only from this point will the completeness of B, B and that T'
is onto be used; the Baire theorem will be crucial.

Since T is onto By = |J,—, TB(0;n), and by the Baire theorem there is
some m so that the interior of TB(0;m) is nonempty. By property c) it is possible
to take m = 1.

By property d) one may suppose that there is § > 0 so that B(0;4) C
TB(0;1). The goal now is to show that the relation TB(0;1) C T'B(0;2) holds,
which, by Lemma 1.2.5, proves the theorem.

Let n € TB(0;1). Pick & € B(0;1) with
(n—T&) € B(0;6/2) C TB(0;1/2).

In the last step property ¢) was invoked. Pick now & in B(0;1/2) so that (again

by ¢))
(n —T& —Té) € B(0;6/2%) € TB(0;1/22).

By induction, pick &, € B(0;1/2"71) satisfying

n— Zn:Tfj € B(0;6/2™) c TB(0;1/2™).

Jj=1

(2?21 &)n is a Cauchy sequence and, since B is complete, there exists { =
E;’;l &; and, by the continuity of the map T it follows that = T¢. Since ||£]| < 2,

one gets TB(0;1) C TB(0;2). O
By the open mapping theorem the next result is evident; it is sometimes
called the inverse mapping theorem.

Corollary 1.2.6. If T € B(By,Bs) is a bijection between By and Ba, then T~ is
also a linear continuous map.

Recall that the cartesian product N7 x N3 of two normed spaces has a natural
structure of vector space given by «(&,n) = (o€, an), a € F, and (&1, m )+ (€2, 1m2) =
(&14&2, 11 +12); furthermore, this cartesian product becomes a normed space with

1 . .
the norm |[(§,m)[| = (I€]1X, +[17l%;,) 2 ; such a norm is equivalent to [|€]lx; +[|7llx;
and both may be employed.

Definition 1.2.7. The graph of a linear operator T' : dom T' C N7 — N3 is the

vector subspace G(T') = {(§,T€) : € € dom T'} of N7 x Na. The graph norm of T
. 1/2

on dom T'is [|¢l| == (IT€]1* + [I¢]1%) "%,

Definition 1.2.8. A linear operator T : dom T' C N7 — N3 is closed if for all con-

vergent sequences (£,) C dom T, &, — £ € N, with (T€,) C N3 also convergent,

T¢, — n, then £ € dom T and n = T€. In other words, T is closed iff G(T) is a
closed subspace of A} x N.
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Ezercise 1.2.9. a) Show that By x Bz with the norm ||(§,n)| defined above is a
Banach space. b) Show that T is a closed operator iff dom T" with the graph norm
is a Banach space.

Ezercise 1.2.10. Verify that G(T') is a vector subspace of N7 x N and the equiv-
alence quoted in the above definition of closed operator.

Remark 1.2.11. Pay attention to the difference between a continuous and a closed
operator: a linear operator T is continuous if for &, — £ in dom 7', then nec-
essarily T¢, — T&, while for a closed operator it is asked that if both (§,) C
dom T and (7¢,,) are convergent, then necessarily £ = lim,, &, belongs to dom T’
and T¢, — TE€.

Exercise 1.2.12. Consider the linear operator T': dom T' C N7 — N3, and let 7y :
G(T) — dom T and 72 : G(T') — rng T be the natural projections 71 (£,7T¢) = &
and mo(§,TE) = T€, for £ € dom T'. Show that such projections are continuous
linear operators.

It is important to give conditions to guarantee that closed operators are
continuous, since the requirement for being closed is in general easier to verify;
the closed graph theorem, presented below, says that such concepts are equivalent
for linear operators between Banach spaces.

A first result in this direction appears in:

Proposition 1.2.13. Any operator T € B(B1, Bs) is closed.

Proof. Let &, — £ with T¢, — 7. Since £ € dom T and T is continuous, then
TE, — TE =n; thus T is closed. O

Exercise 1.2.14. If dimN; < oo, show that every linear operator T : dom T C
N1 — Ny is closed.

Ezample 1.2.15 (Bounded and nonclosed). Let 1 : dom 1 — B, with dom 1 a
proper dense subspace of B, the identity operator 1(§) = ¢ for £ € dom 1; such
operator is bounded. Let (§,) C dom 1 with &, — ¢ € B\dom 1. Since &, —
¢ and 1(&,) — & but € ¢ dom 1, this operator is not closed. It is a rather
artificial example, but it illustrates the difference between bounded and closed
linear operators.

Ezercise 1.2.16. If N' C B, show that T' € B(N, B) is closed if, and only if, N is
a Banach space.

Remark 1.2.17. If T € B(N1, Bs) with A; C By, then its unique continuous linear
extension T : N'i — By is a closed operator (Proposition 1.2.13). Then, every con-
tinuous linear operator is “basically” closed, and the artificiality in Example 1.2.15
is unavoidable.

Ezample 1.2.18 (Unbounded and closed). Let C*[0,7] C C[0,n] (both with the
uniform convergence topology) be the subspace of continuously differentiable func-
tions on [0, 7] and D : C[0,7] — C[0, 7], (Dv)(t) = ¢'(t). D is not continuous,
since the sequence ¥, (t) = sin(nt)/n — 0, while (D¢y,)(t) = cos(nt) does not
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converge uniformly to zero. However, this operator is closed. In fact, if ¢, —
and Dy, = ¢, — ¢, then, as these limits are uniform,

¢ ¢ ¢

/ o(s)ds = / lim ! (s) ds = lim Uy (s) ds = ¥(t) — (0).
0 0 " neeJo

Thus, ¢ € dom D = C[0, 7] and (Dv)(t) = p(t), V¢, and D is closed.

Ezercise 1.2.19. From Example 1.2.18, show that if (¢;)32, C C*'[0,7] is such that

the series ¥(t) = 3272, ¥;(t) and @(t) = -7, ¥ (t) converge uniformly, then ¢

is continuously differentiable and ¢ = 1)'.

Ezample 1.2.20 (Unbounded and nonclosed). Let dom 7' be the set of continuous

functions in L'[—1,1] and (T%)(t) = ¥(0), V¢, as element of L*[—1, 1]. This oper-

ator is neither continuous nor closed, since v, () = e~/ — 0 in L'[~1,1], while

(T )(t) = 1, V¢, for all n. Note that it has no closed extensions.

Theorem 1.2.21 (Closed Graph). If T : By — Bs is a linear operator, then T is
continuous if, and only if, T is closed.

Proof. One of the assertions of the closed graph theorem was already discussed;
it is only needed to show that, under such conditions, if the linear operator T is
closed, then it is bounded; the open mapping theorem will be used.

By hypotheses G(T') is closed in By x Bg, then G(T') is also a Banach space.
The projection operators m; and mo (see Exercise 1.2.12) are both linear and
continuous. Moreover, 7 is a bijection between the Banach spaces G(T') and By;
thus, by the open mapping theorem, its inverse 7; ' : By — G(T)) is continuous.
Since T is the composition

T=mon},

it follows that it is a bounded operator. O

Ezample 1.2.22 (Unbounded and closed). It is essential that the operator range is
a complete space. The operator T~ : rng T — [}(N) in Exercise 1.2.3 has closed
graph but is not continuous.

Remark 1.2.23. One could imagine that a linear operator is not closed because its
domain was chosen too small, and by considering the closure G(T') in A7 x As a
closed operator would result. This may not work, since G(7T') is not necessarily the
graph of an operator; see Example 1.2.20 where the point (0, 1) belongs to G(T'),
however it is not of the form (0, S0) for any linear operator S.

Ezercise 1.2.24. Let E be a subspace of A7 x Na. Show that E is the graph of a

linear operator if, and only if, £ does not contain any element of the form (0,7),
with n # 0.

Definition 1.2.25.

(a) The linear operators T, for which G(T') is the graph of a linear extension T
of T, are called closable operators and T is the closure of T' (see Proposi-
tion 1.2.27).
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(b) If the operator T : dom T' T N; :— N is closed, a subspace D C dom T is
called a core of T'if T|p = T, that is, if the closure of the restriction T'|p, is 7.

Ezercise 1.2.26. Show that X is a core of the closed operator T iff {(¢,T¢) : £ € X}
is dense in G(T).

If the linear operator T : dom T" C N; — N is closable, then
D={¢eN :3(&) Cdom T,&, — £ and exists n € N2 with T¢,, — n}

is a subset of all closed extensions of T'. Define dom T = D and, for ¢ € D,
T¢ := n, and note that, by construction, G(T) is closed in N1 x N3, and so T
is closed. Note also that G(T') = G(T). Therefore T' is the closure of T', that is,

T =T. In summary:

Proposition 1.2.27. If T : dom T C N1 — Na is closable, then G(T) is the graph
of its closure T, which is the smallest closed extension of T .

Exercise 1.2.28. Show that T is a closed operator acting in H iff dom T" with the
graph inner product of T, given by (1, &)1 := (Tn, TE) + (n,£), is a Hilbert space.
This inner product generates a graph norm (Definition 1.2.7) and the correspond-
ing orthogonality will be denoted by L.

1.3 Compact Operators

The compact operators have some similarities with operators on finite-dimensional
spaces and so the theory presents several technical simplifications. These operators
are important in many applications, sometimes as integral operators, a historically
important example of compact operator.

It is convenient to recall some definitions and properties — in the form of
exercises — of metric spaces theory. A set A in the metric space (X, d) is relatively
compact, or precompact, if its closure A is compact. A is totally bounded if, for
all e > 0, A is in the finite union of open balls in X with radii ¢; so, any totally
bounded set is also bounded.

Ezercise 1.3.1. Show that if A C (X,d) is precompact, then A is totally bounded
and, so, bounded.

Ezercise 1.3.2. If A C (X,d) is totally bounded, show that, for all ¢ > 0, A is
in the union of a finite number of open balls of radii € centered at points of A.
Conclude then that a totally bounded set is separable with the induced topology,
that is, it contains a countable dense subset.

Lemma 1.3.3. Any totally bounded subset of a complete metric space is precompact.

Proof. Let A be a totally bounded set; then its closure is also totally bounded
(from a cover of balls, the family of balls with the same centers but with double
radii covers the closure of the set). Since this set is in a complete metric space,
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to show that its closure is compact it is enough to check that every sequence
(€,) C A has a Cauchy subsequence. Such a set being totally bounded, there is a
subsequence (&1,,) of (&,) contained in an open ball of radius 1. In the same way,
there exists a subsequence (§2,,,) of (£1,,) contained in an open ball of radius 1/2;
it is possible to construct subsequences (£x 5 )n>1 Of (§5—1,n)n>1 contained in some
open ball of radius 1/k, for all k € N. To finish the proof note that (& x)r>1 is a
Cauchy subsequence of the original sequence. 0

Definition 1.3.4. A linear operator T : N7 — N> is compact, also called completely
continuous, if the range T'(A), of any bounded set A C A is precompact in N.
The set of such compact operators will be denoted by Bo(N7,N2) (or Bo(N) in
case N1 = Ny = N).

Remark 1.3.5. Equivalently, T : N7 — N3 linear is compact if (T€,) has a con-
vergent subsequence in A for every bounded sequence (£,) C Nj. Verify this!

Ezercise 1.3.6. If dim N = oo, show that the identity operator 1 : N' « is not
compact (use, for instance, Riesz’s Lemma 1.6.2).

Proposition 1.3.7. Let N1, N5 be normed spaces and T, S : N1 — N> linear opera-
tors. Then:

i) Bo(N1,MN2) is a vector subspace of B(N1,N2).
ii) If T is compact and S bounded, then T'S and ST are compact operators
(suppose all operations are well posed).

Proof. i) Let T € Bo(N1,N2); since T'(S(0; 1)) is precompact, it is bounded. Thus,
T € B(Ni,N2). The proof that Bo(N7,N2) is a vector subspace is left to the
readers.

ii) If A is a bounded set, then S(A) is also bounded and, so, T'(S(A)) is
precompact. Therefore, T'S is compact.

Given a bounded set A, the range by T of any sequence (§,) C A has a
convergent subsequence (T'¢,,), since T' is compact. S being continuous, (STE,;)
is also convergent. Therefore, ST (A) is precompact and ST is a compact operator.

O

Remark 1.3.8. A map between metric spaces is compact if the range of bounded
sets is precompact; the Dirichlet function h : R — R, A(t) = 1 if t € Q and
h(t) = 0 otherwise, is compact, but not continuous in any point of its domain (cf.
Proposition 1.3.7).

Important examples of compact operators are the finite-rank operators.
Definition 1.3.9. 7' € B(N1,N2) is of finite rank if dimrng 7' < oo. The vector

space of finite rank operators between these spaces will be denoted by Bf (N7, N2)
(it will also be used the obvious notation B¢(N)).

Proposition 1.3.10. All finite rank operators are compact. In particular N* =

Bo(\, F).
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Proof. Let T € Bg(N1,N3) and A C N; a bounded set. Since T is a bounded
operator, T'(A) is bounded and its closure T'(A) is a closed and bounded set and,

in view of dimrng T' < oo, it follows that T'(A) is a compact set. O

Lemma 1.3.11. If T € Bo(N1,N3), then T(N;) is separable.

Proof. Since N1 = |J;Z; B(0;j), then for T': N1 — No, g T' = U2, T(B(0; ).
In order to conclude the lemma, it is sufficient to show that for each 7 € N the
set TB(0;7) has a countable dense subset. If T is compact, TB(0;j) is totally
bounded; thus, for each m € N it can be covered by a finite number of open balls
of radii 1/m, centered at points of T'B(0; j). The union of the centers of such open
balls for all m € N is a dense countable set of T'B(0; j). O

Ezxercise 1.3.12. Let T : N7 — N> linear. Show that it is compact if, and only if,
TB(0;1) is precompact in N>.

Theorem 1.3.13. By(N, B) is a closed subspace of BN, B); therefore, Bo(N, B) is
a Banach space.

Proof. Let (T,) C Bo(WN,B), with T;, — T in B(N,B). It will be shown that
for all » > 0 the set T'B(0;r) is totally bounded and, therefore, precompact by
Lemma 1.3.3. From this it follows that T is also a compact operator.

Given ¢ > 0, there is n such that |7, — T|| < &/r. Since T,, is compact,
the set T,,B(0;7) is totally bounded and, so, it is in the union of certain balls
B(Tx&15¢), B(Thé2;€), ..., B(Thém; €), with §; € B(0;7), for all 1 < j < m. Hence,
if £ € B(0;r) there is one of these &; such that T,,§ € B(T},¢;;¢). From this

IT€ = T&|| S NTE — Tkl + | Tn€ — Tn&5ll + 1 Tn&s — Tl
<|IT = Talllléll + & + I T0 = T[[1&1]
€ €
<-r+e+-r =3¢,
r T
showing that TB(0;r) C UT:l B(T,&;; 3¢). Therefore T'B(0;r) is totally bounded
for all » > 0. 0

Corollary 1.3.14. If (T,,) C B¢(N,B) and T,, — T in B(N, B), then the operator
T is compact.

Proof. Combine Proposition 1.3.10 and Theorem 1.3.13.

O

Recall that a sequence (£,) CN converges weakly to £ € N if lim, o0 f(&n) =
f(€) for all f € N*, and that all weakly convergent sequences are bounded. &, ——
& and w — lim¢&,, = £ will be used to indicate that (&,) converges weakly to &.
The convergence of (£,) to € in the norm of A will be called strong convergence
and indicated by &, — &, &, — € and s — lim &, = &.

There are also corresponding notions of convergence of a sequence (T3,) of
bounded operators in B(N).
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Definition 1.3.15. Let (T},) be a sequence of operators in B(N7,N3) and T : N7 —
N3 linear. One says that

a) T, converges uniformly, or in norm, to T if
|7, — T — 0.

The uniform convergence is denoted by T, — T or lim, o 1y, =T
b) T, converges strongly to T if

1Tn€ = T¢lln, — 0, VEEN.

The strong convergence of linear operators will be denoted by T, — T or
s—lim,_oTp =1T.
c) T, converges weakly to T if

[f(T08) = F(TE)] — 0, VEE N, fENS.

The weak convergence of linear operators will be denoted by T,, — T or
w—lim, oo T, =T.

Exercise 1.3.16. Show that in B(N7,N>) the three kinds of limits defined above
are well defined and unique (if they exist, of course). Moreover, verify that the
uniform convergence = strong convergence = weak convergence, and with the
same limits.

Example 1.3.17. Let Py : I}(N) <, Pn¢ = (&,&,...,6N,0,0,...), with ¢ =
(€1,62,&,...). Since [|PnE — €[ = Y272 vy [€] it is found that Py —— 1. On the
other hand, |[P¢ — €| < 6]l and [Pev+1) — eyl = e = 1, VN, and
then (Py) is not uniformly convergent ((e;) is the canonical basis of I'(N)). Adapt
it tolP, 1 < p < o0.

Ezercise 1.3.18. Show that the sequence of operators T, : [*(N) <

Tn£ = (0,07 . '70u£n+la£n+27§n+37 .. )
—_——

n entries

converges strongly to zero, but does not converge uniformly.
Ezercise 1.3.19. Show that the sequence of operators T, : [*(N) <

Tné = (0a07"'70a§1a§27£37---)
~——
n entries
converges weakly to zero, but does not converge strongly.

As a reformulation of the Banach-Steinhaus theorem, one has (by using an
obvious generalization of convergence of operators):

Proposition 1.3.20. If (T,,) in B(B,N') converges strongly to the operator T : B —
N, then T € B(B,N).
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Note that due to the Riesz representation Theorem 1.1.40, a sequence (&,,) C
‘H converges weakly to £ if, and only if|

lim (n.&,) = (n.€),  VneMH.

Exercise 1.3.21. Show that every orthonormal sequence in a Hilbert space con-
verges weakly to zero and has no strongly convergent subsequence.

Recall the Hilbert adjoint 7* of a bounded operator T' € B(H1, Hz). It is
the unique linear operator so that

(§,Tn) = (T"¢,m), V¢ € Hayn € Hi.

Further, T* € B(H2,H1) and ||T*|| = ||T||. The bounded linear operator T is
self-adjoint if T* = T. See a generalization of the concept of adjoint to certain
unbounded operators in Definition 2.1.2. Finally, recall that an operator P € B(H)
is an orthogonal projection if it is self-adjoint and P? = P, and it projects onto
the closed subspace rng P.

Proposition 1.3.22. Let T € Bo(H1, Hz). If & — € in Hy, then TE, — TE, i.e.,
a compact operator takes weakly convergent sequences to strongly convergent ones
(this result also holds in normed spaces).

Proof. Suppose &, — ¢ in Hi. If n € Ha,
0, T&n) = (T"n, &) — (T, &) = (n,T¢),

showing that T¢,, — T¢. If T€, does not converge strongly to T¢, there exists ¢ >
0 and a subsequence (T'¢,,;) with ||T'¢,, — T¢|| > . Since T' is a compact operator,
T¢&,, has the strongly convergent subsequence and, necessarily, it converges to T'€.
The contradiction with the above inequality proves the proposition. 0

In a Hilbert space the closure (with the usual norm of B(H)) of the vector
space of finite-rank operators coincides with the set of compact operators; to show
this the following technical result will be useful. Remember that a Hilbert space
is separable iff it has a countable orthonormal basis.

Lemma 1.3.23. If T € Bo(H1,Hs), then tng T and N(T)* are separable vector
spaces.

Proof. tng T is separable by Lemma 1.3.11. Let {e, }ocs be an orthonormal basis
of N(T)L. If J is finite the result is clear.

Suppose that J is not finite; the goal is to show that J is enumerable. Every
sequence (eq, );"’:1 of pairwise distinct elements of {e,}aecs Weakly converges to
zero (Exercise 1.3.21) and, by Proposition 1.3.22, Te,; — 0, for j — oo. Thus, for
each n € N there exists only a finite number of o € J with [|[Te,|| > 1/n. Hence, J
is enumerable, for

J = U{a: |Teql| > 1/n}.

n=1
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Recall that Te, # 0, Vo € J, since e, € N(T)* . O

Remark 1.3.24. If T : H; — Ho is a finite rank operator of rank N < oo, then
there exist vectors &1,m1,...,&N, NN so that

N
T = Z<77j7£> £j7

j=1
the so-called canonical form of T. Indeed, if {&1,...,&x} is an orthonormal basis
of rng T', then
N N
TE= (&, TE) & =Y (T"6;,6) &3
j=1 j=1

now put 7; = T*¢;.

Theorem 1.3.25. An operator T € B(H1,Ha) is compact if, and only if, there
is a sequence of finite rank operators (T,) C Bf(H1,Ha), which converges to T
n B('Hl7 HQ).

Proof. If T is the limit of finite-rank operators, then T is compact by Corol-
lary 1.3.14. Let T' € Bo(H1, Hz) and P the orthogonal projection on N(T)+, so that
T = TP. If dimN(T)t < oo the result is clear; suppose then that dim N(7')+ =
oo and pick an orthonormal basis (e;)72; of N(T)*, which is enumerable by
Lemma 1.3.23. Denote by P, the orthogonal projection on Lin({e1, ..., e, }). Thus,
the operator T3, = T'P,, has finite rank. It will be shown that 7T,, — T.

For each n there exists &, € Hi, ||&|| = 1, with

ST =Tl < (T~ Tl = IT(P ~ Pl

Since (P, — P) - 0 and for all € H;,

then (P — P,)¢, — 0. Since T is a compact operator, by Proposition 1.3.22
it follows that T(P — P,)§, — 0 and, by the inequality above, it is found that
IT =Tl — 0. O
Ezercise 1.3.26. Let T € B('H), with H separable. Show that there is a sequence
(T},) of finite rank operators which converges strongly to 7', that is, T, =T

Corollary 1.3.27. Let T € B(H1, Ha). Then T is compact if, and only if, its Hilbert
adjoint T* is compact.

Proof. T is compact if, and only if, there exists a sequence (T,,) C Bt(H1, Hz) so
that T3, — T. Since T} has also finite rank and | T* T || = |(T-T,,)*|| = [|T—Tnll,
one concludes that T' is compact if, and only if, 7™ is compact. O
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Proposition 1.3.28. Let T be an operator in B(H). Then T is compact if, and only
if, (T€,) is convergent in H for all weakly convergent sequences (&,).

Proof. If dim’H < oo the proof is quite simple. Suppose that dim H = oco. Taking
into account the hypotheses and Proposition 1.3.22, it is enough to show that for
each bounded sequence (&,,) in H the sequence (T€,,) has a convergent subsequence.
Since in a Hilbert space any bounded set has a weakly convergent sequence, (§,,)
has a weakly convergent subsequence (&,;); by hypothesis, (T¢,;) is convergent.
Thus, the image of every bounded sequence admits a convergent subsequence, and
so, T' is a compact operator. U

Proposition 1.3.29. Let S,,, S € B(H) with S,, — S. If T is a compact operator,
then T'S, — TS and S,,T — ST in the norm of B(H).

Proof. By considering S,, — S it is possible to suppose that S = 0. Since | T*S*| =
I1S.T||, by Corollary 1.3.27, it is enough to prove that S, 7 — 0 uniformly. For
each € > 0 there is an operator F, € B¢(H) so that T = T, + F, and || T¢| < e.
The last preparatory remark is that there exists M > 0 so that sup,, ||Sn| < M,
a consequence of the Banach-Steinhaus theorem.

In view of

1SaT|| <|Sn(Fz + T0)||
S|SnFe|| + 1T [ Snl]
<||SnFe|| +eM,

it is sufficient to prove that ||S, F.|| < ¢ if n is large enough.
Write FL(-) = Y25, (n;, )&, nj # 0. If € € H with [|¢]| = 1 one has

k
1S, F-€| < Z 15,6 1|Sn £]||<Z||m||||sn£]||
j=1 j=1

and since S,, — 0 if n is large ||S,&; || < €/(||n;]k), 1 < j < k. Thus, as required,
IS F:|| < e for n large enough. Thereby the proof of the proposition is complete.

O
Ezample 1.3.30. Let K : @ — F be continuous, with @ = [a, b] x [a,b]. Then the
integral operator Tk : L?[a, b] < given by

(Treap)(t / K (t,s) Y € L*[a, b],

is compact.
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Proof. For each t € [a,b] the function s — K(t,s) is an element of L2[a,b]. Let
¥ € B(0; R) C L?[a,b] and M = max seq |K(t, s)|. For all ¢ € [a,b] one has

b
(T ()] < / K (1, 9)][(s)] ds

2

< </b |K(t,8)|2d8> [¥]l2 < MVb—aR,

and Tk B(0; R) is a bounded set. This set is also equicontinuous, since for ¢ €
B(0; R),

[(Tx)(t) = (Te) ()| < [1K(E,-) = K(r; ) [2][¢lls < evb —aR,

if [t —r| < 6. Hence, by the Ascoli theorem, Tk B(0; R) is precompact in (Cla, b, || -
lloo). Since ||¢]l2 < Vb — al|@]leo, for all continuous ¢ (especially for ¢ = Tk)),
then Tk B(0; R) is precompact in L%[a, b]. O

Ezercise 1.3.31. Show that a precompact set (compact) in (Cla,b], | - ||co) is pre-
compact (compact) in L?[a, b]. This occurs because the identity map 1 : (Cla, b], ||-
o) — L?[a, b] is continuous.

Example 1.3.32. Let K € L%(Q), with Q = [a, b] X [a, b]. Then the integral operator
Tk : L?[a,b] < given by (Txv)(t) = fj K (t, s)i(s)ds, for ¢ € L?[a, b], is compact.

Proof. Since the set of continuous functions on @Q is dense in L?(Q), there exists a
sequence K, : Q — F of continuous functions so that || K — K,|[r2(g) — 0. Thus,
by defining T, : L?[a, b] <,

b
(Tu)(t) = / Ko(t,s)p(s)ds, € L2[a, b,

and using estimates similarly to those in preceding examples, one obtains ||T,% —
Tgoll2 < [[Kn—KllL2@) [¥]l2, and || T, =Tk || < || Kn— K||12(q), which vanishes as
n — oo. By Example 1.3.30 each T;, is a compact operator, and so Tk is compact
(Theorem 1.3.13). O

1.4 Hilbert-Schmidt Operators

One of the most important classes of compact operators on Hilbert spaces is con-
stituted by the Hilbert-Schmidt operators, discussed in this section. Sometimes
the shortest way to show that an operator on a Hilbert space is compact is to
verify that it is Hilbert-Schmidt.
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Definition 1.4.1. An operator T' € B(H1,H2) is Hilbert-Schmidt if there is an
orthonormal basis {e;};e; of H; with

ITlls == | D I Tes|* | < oo
JjeJ

The set of Hilbert-Schmidt operators between such Hilbert spaces will be denoted
by HS(H1,Hz) or, briefly, by HS(H) if H1 = Ha = H.

Proposition 1.4.2. Let T € B(H1,Hs). Then

i) [|Tlus does not depend on the orthonormal basis considered.
il) T € HS(H1,Hz) if, and only if, its adjoint T* € HS(Hz, H1). Furthermore,
1Tl = (17 [ 1s-

Proof. 1If {e;}cs and { fi}rex are orthonormal bases of H; and Ha, respectively,
then, by Parseval,

DoITe? = ey, fi)l> =D Wep, T f) > = D 11T fill*.

jeJ Jj€J Jj€J keK
keEK keEK

Since such orthonormal bases are arbitrary || T||us = ||T7||us, and such values do
not depend on the orthonormal bases considered. O

Corollary 1.4.3. Let S,T be bounded operators between two Hilbert spaces. If one
of them is Hilbert-Schmidt, then the product T'S is also Hilbert-Schmidt (assuming
the product is defined).

Proof. If S is Hilbert-Schmidt, then for any orthonormal basis {e;};cs of its do-
main
ITS|Ifs = D 1T Ses1* < ITI Y NSesll® = TN ks,
jed jed
and T'S is Hilbert-Schmidt.

If the operator T is Hilbert-Schmidt, then by Proposition 1.4.2, one has that
S*T* is Hilbert-Schmidt. Since T'S = (S*T*)*, then T'S is Hilbert-Schmidt. O

Theorem 1.4.4. HS(H1, Hs) is a vector subspace of B(H1,Hs), it is a Hilbert space
with the norm || - ||us, which is called Hilbert-Schmidt norm, and it is induced by
the (Hilbert-Schmidt) inner product

(T,S)us :== Y (Tej,Se;),  T,S € HS(Hi,Ha),

jeJ

with {e;};jcs being any orthonormal basis of Hi. Furthermore, the inequality
|T|| < |T|lus holds.



1.4. Hilbert-Schmidt Operators 29

Proof. If T,S € HS(Hi,Hz), then for any orthonormal basis {e;};cs of Hi
and all « € F one has (by Cauchy-Schwarz applied to the inner product

> jes ITe;lll1Sejll in 12)

IT + aS|lfis < Y 1Tell* + laf® Y [1Se;1® +2lal Y [ Te;|ll|Se]
jeJ jeJd jeJd
2
< (IT|lus + lal [|S1s)”
and so HS(Hi,Hs2) is a vector space. From the same inequality it follows that
Il - [ls is a norm.

Now it will be verified that (T, S)us is well posed and is independent of the
orthonormal basis considered. By Cauchy-Schwarz

> Tej, Se)| <Y | Te ]| Se,ll

jeJ jeJ
1 1
2 2
< | Y ITey? > 11Ses1?
jeJ jeJ
=T ||us IS|us,

(note that this corresponds to [(T, S)us| < ||T||lus||S]|us) and the series defining
(T, S)us converges absolutely. By the polarization identity (or similarly to the
proof of Proposition 1.4.2) it is found that

> (Tej,Sej) =D (S* fu, T* fi),
j k
for any orthonormal basis { fi} of Hz; so (T, S)us is independent of the orthonor-
mal basis and, therefore, well posed. The properties of inner product are simple
and left to the reader.

If £ € Hy, ||€]] = 1, pick an orthonormal basis of H; of the following form
{& mbi- Thus, [|T€1? < 32, 1 Tm|? + | T¢|1* = ||T|Is, and so | T[] < || T|s-

We only need to show that HS(H1,Hs2) is complete; for this, consider a
Cauchy sequence (T,,) C HS(H1,H2). From the inequality || - |5, 7,) < | - |lus
it is found that (T;,) is Cauchy in B(H1, Hz) and, therefore, it converges to some
T € B(H1,Hz). It will be shown that T € HS(H1, Hz2) and that T,, — T in this
space.

For & > 0, there exists N(g) with || T}, — T\ |3 < € if n,m > N(g). Consider
an orthonormal basis {e;};es of Hi. If F' C J is finite,

> ITnes — Tones||” < 1T — Tnllfis < e

jEF
Taking m — oo one obtains . [|(Tn — T)ej||? < e, for all finite subsets F.
Therefore, | T, —Tlltis = 2 ;e (T = T)ejl|? < &, so that (T'—T,,) € HS(H1, Ha)
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and (T, —T') — 0 in this space. Since HS(H1, H2) is a vector space, then T' =
(T — T,) + T,, belongs to HS(H1, Hs), and this space is Hilbert. O

Ezercise 1.4.5. Show that || - ||us is a norm and that || T'S||us < || T||us||S||us-

At this point all the tools necessary to verify that Hilbert-Schmidt operators
are compact are available.

Theorem 1.4.6. HS(H1,H2) C Bo(H1, Ha).

Proof. Let T € HS(Hy,Hs) and (&,) C Hy, with &, — &. By Proposition 1.3.28,
in order to show that T is compact it is sufficient to verify that T'¢, — T€¢. Note
that, by linearity, it is sufficient to consider the case &, — 0.

Let {e;};cs be an orthonormal basis of Hs. For each n it is known that the
set {j € J: (e;,TE,) # 0} is countable (if it is finite for all n the argument ahead
is easily adapted) and, for notational simplicity, it will be denoted by the natural
numbers. Thus,

N

I T€> = Z|6JaT§n Z Fej En)* + M Z 7€,

j=1 j=N+1

with M = sup,,cy [|&:]|* (M is finite since every weakly convergent sequence is
bounded).

For ¢ > 0, pick N with Z;’;NH |[T*e;||* < e/M, which exists since T* €
HS(H2, H1). Now, in view of &, —— 0, there exists K so that Z;\f:l (T*e;, &n)|? <
e if n > K. Thus, if n > K one has ||T¢,]|> < 2¢, and one concludes that

Ezxercise 1.4.7. Let T : [2(N) « given by (T€), = Zj’;l an;&;, n € N, with

(anj)n,jen an infinite matrix with »°, lan;|* < co. Show that T is a Hilbert-
Schmidt operator and find its Hilbert-Schmidt norm.

The next lemma will be used in the important example ahead.
Lemma 1.4.8. Let H; = L? (Q) and Ha = L2(A) be separable spaces, with u,v

o-finite measures, and Hs = (Qx A). Then, if (¥n) and (¢;) are (countable)

orthonormal bases of H1 and Ha, respectively, then (mgbj) s an orthonormal basis
of Hs, which is also separable.

p,><z/

Proof. By Fubini (¢,,¢;) is an orthonormal set of Hs. In order to prove this lemma
it is enough to show that if f € Hs satisfies (f, ¥n¢;)n, = 0, Vn,j, then f = 0.
For each s € A, denote the function sector f*: Q — F by f*(t) = f(¢,s), which
belongs to H; for s in a set of total measure v, and for each n the function F,,(s) =
(f%,%n)n, (it is measurable since v is o—finite), then (f,Vn0;)1s = (Fn, d5)Hs-
Note that by Cauchy-Schwarz v—a.e. one has |F,,(s)| < ||f*|l#,, so that F,, € Ha
for all n, in view of | F, |2, < [y I1F*[3, dv(s) = || fI%,.
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Thus, one obtains the condition (F,, ¢;)n, = 0, Vn, j; since (¢;) is a basis
of Ha, for all n one has F,(s) = 0 v-a.e. and, therefore, since (v,,) is a basis of H;,
one finds that f* =0 (in H;) v-a.e. Then the result || f||#, = 0 follows. O

Ezxample 1.4.9. Let H1, H2 and H3 be as in Lemma 1.4.8. Then, the operator T €
HS(H1,Ho) if, and only if, there exits K € Hs so that

(T)(t) = (Tr) (¢ /Kts du(s). e,

Furthermore, ||T|lus = || K || #5-

Proof. 1f (1) and (¢;) are orthonormal bases of H; and Haz, respectively, then,
by Lemma 1.4.8, (¥,¢;) is an orthonormal basis of Hs3. Suppose that T' = Tk;
then

Z ||TKwn”$—¢2 Zl TK"/)nv(bj H2|2 Z| K wn¢j>H3|2 HK”%-L%’

n,j n,j

and so Tg € HS(H1,H2) and ||Tk||us = || K || #s-
Pick T € HS(H1, Hz2). By using the above notation, one has

Z| ¢],T¢n H2|2 Z ||Twn||2 |T||HS < o0,

n,j

consequently the function Ky(t,s) = >, <¢],T1/)n>H21/)n( s)¢;(t) is well defined
in the space Hs; note that ||Ko|x, = ||T||Hs It will be shown that T' = T, .
If v» € Hy and ¢ € H,, since T is bounded and the inner product is continu-

(@ Ty, = [ avto) (500 | Kou,s)ws)du(s))

= (00, Ko)rty = (b5 Tton) 1, (0, 600 ),

n,j

= {5, Tn) 1, (6, 8520 (Wons B)21,

ous,

= <Z<¢j7 RTRIS Z<wmw>H1Twn>
J n Ho
= <¢7Z<¢na¢>H1T¢n> = <¢aTZ<¢na¢>H1’¢)n>
n Ho n Ha
= <¢a T/(/)>H2

Therefore, T' = Tk, . O
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Remark 1.4.10. There is a family of compact operators in B(H) for each 1 <p <
00, with certain norm ||T']|, < oo (this norm is based on that of [?); the Hilbert-
Schmidt operators are obtained through p = 2. The case p = 1, discussed in
Subsection 9.4.1, is important in mathematical physics, particularly in statistical
mechanics and scattering theory, and such operators are called trace class (||T||1
is a generalization of the trace of the absolute values of the entries of a matrix).

Ezercise 1.4.11. Show that HS(H1,H2) is the closure of the set of finite rank
operators with the norm || - ||us.

Ezxercise 1.4.12. Fix n € H with ||n|| = 1. Let T,, : H — H be defined by T;,{ =
(n,&) n, & € H. Show that T;, is a linear Hilbert-Schmidt operator and find its
norm ||T||us.

Ezercise 1.4.13. Let H be separable and T' € B(H) an operator whose eigenvectors
form an orthonormal basis (§;) of H, that is, for all j, T¢; = A\;&;, A; € F. Present
conditions for T' € HS(H). Verify that on infinite-dimensional Hilbert spaces there
always are compact operators that are not Hilbert-Schmidt.

Ezercise 1.4.14. Are there sequences (T;,) C HS(H) that converge in B(H) but do
not converge in HS(H)?

1.5 The spectrum

Intuitively, the spectrum of a linear operator comprises of “the values in C this
operator assumes;” the very definition of spectrum justifies this interpretation.
The spectrum is a generalization of the set of eigenvalues of linear operators.
The point is that, for a linear operator acting on a finite-dimensional space, the
property of being injective is equivalent to being surjective; however, in infinite
dimensions such properties are not equivalent and the definition of spectrum must
be properly generalized. From now on, vector spaces are assumed complex.

The spectral question is directly related to the solvability and uniqueness of
solutions of linear equations in Banach spaces, boundary problems, approximations
of nonlinear problems by linear versions, stability and, in an essential way, to the
mathematical apparatus of quantum mechanics.

Definition 1.5.1. Let T : dom T C B — B be linear in the complex Banach
space B # {0}. The resolvent set of T', denoted by p(T), is the set of A € C for
which the resolvent operator of T at A,

R\(T):B—dom T,  Ry(T):=(T—-\1)"",
exists and is bounded, i.e., Rx(T) belongs to B(B).

Definition 1.5.2. The spectrum of T' is the set o(T") = C\p(T).

Remark 1.5.3. a) If T € B(B) and (T'— A1) is one-to-one with range B, then, by
the Open Mapping Theorem 1.2.6, Rx(T") € B(B) and A € p(T).
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b) Every eigenvalue A of T' (i.e., there is an eigenvector { # 0 with T¢ = A¢)
belongs to the spectrum of T', for (T'— A1) is not invertible in this case.
c¢) Notation: if it is clear which operator T is involved, Ry = Rx(T).

The definition of spectrum is not restricted to the real numbers in order
to be nonempty for continuous operators (see Corollary 1.5.17). For example, if
dim B < oo, the spectrum is the set of its eigenvalues, but the rotation by a right
angle operator on R? has no real eigenvalue (check this!).

Ezercise 1.5.4. Let T : B « be linear with dimB < oco. Show that o(7") is the
set of eigenvalues of T" and, by the fundamental theorem of algebra, conclude that
o(T) # () in this case.

Exercise 1.5.5. Let T : dom T' C B — B be linear. Show that the eigenvectors
{&}jes of T, corresponding to pairwise distinct eigenvalues {\;};cs, form a lin-
early independent set of dom 7.

Proposition 1.5.6. If o(T) # C, then T is a closed operator.

Proof. Pick A\g € p(T); so Ry, (T) € B(B). If (&§,) € dom T with &, — & and
T¢, — n, then

Ray(T)(n = Mo€) = lim Ry (T)(TE, — Ao&n) = lim &, = &
hence ¢ € dom 7' and
n =X = (T' = A1) R, (T)(n — Ao&) = (T — Ao1)&.
Therefore T¢ = n and T is closed. g

The converse of Proposition 1.5.6 may not hold:
Example 1.5.7. Let D : dom D = C'[0,1] ¢ C[0,1] — C[0,1] and (Dv)(t) =
¥’ (t), which is a closed and unbounded operator. If A € C, the function 9, (t) =
eM € dom D and D) = Ay, showing that o(D) = C and it is constituted
exclusively of eigenvalues. Therefore p(D) = {).

Given an operator action, the spectrum may drastically depend on the do-
main assigned to it. This is illustrated by Examples 1.5.7 and 1.5.8.
Ezample 1.5.8. Let dom d = {¢p € (C*[0,1],] - [ls) : ¥(0) = 0}, d : dom d —
C[0,1], (d)(t) = ' (t), which is a closed and unbounded operator. If A € C, the
operator Wy : C[0,1] — dom d, (Wx¢)(t) = e fot e Mé(s) ds, ¢ € C[0,1], is
bounded and satisfies (d — A\1)W) = 1 (identity on C[0,1]) and Wi(d — A1) =1
(identity in dom d). Therefore W) is the resolvent operator for d at A and p(d) = C,
showing that o(d) = () (the resolvent W) was obtained by considering the solution
of the differential equation ¢’ — Adp = ¢ with ¢(0) = 0).

Below there are three useful identities involving resolvent operators; except
the third one, the nomenclature is standard. The first identity relates the resolvent
of a fixed operator at two points in its resolvent set; the second resolvent identity



34 Chapter 1. Linear Operators and Spectra

relates the resolvent of two different operators at a point in both resolvent sets;
the third identity relates the difference of resolvents of two operators at a point in
both resolvent sets with the difference at another point.

Proposition 1.5.9. Let T : dom T C B — B. Then for any z,s € p(T) one has the
first resolvent identity (also known as first resolvent equation)

R.(T) — R(T) = (2 — ) Ro(T)Ru(T).
Furthermore, R.(T) commutes with Ry(T).
Proof. Write
R.— Ry=R.(T — s1)R, — R.(T — 21)R,
=R. (T —s1) = (T = 21)) Ry = (2 — s)R.Rs,

which shows the first resolvent identity. The commutation claim is immediate from
this relation. O

Ezercise 1.5.10. For linear operators T, S acting in B, with dom S C dom T, and
A€ p(T) N p(S), verify the second resolvent identity

RA(T) = RA(S) = RA(T)(S = T)RA(S).
If dom T = dom S, such identity also equals Rx(S)(S — T)Rx(T).

Proposition 1.5.11. Let S and T be linear operators acting in B. Then, for z,zy €
p(T) N p(S) one has the third resolvent identity

R.(T) — R=(5)
=1+ (2 = 20)Ro(T)) [Rzo(T) = Ry (9)] (1 + (2 — 20) R=(5)) -

Proof. By the first resolvent identity R,(T) = (1 + (¢ — 20)R:(T))R,,(T) and
R,(S) = R,,(S)(1 + (2 — z0)R»(S)). By using such relations on the r.h.s. above
one gets R,(T) — R,(S). O

Theorem 1.5.12. Let T : dom T' C B — B and Aoy € p(T). Then for all X\ in the
disk |X — ol < 1/||Bx,(T)|| of the complex plane, Rx(T') € B(B) and

=> (A=) Ry, (T,
=0

with an absolutely convergent series.

Proof. Note initially that Ry, (T") # 0, since it is the inverse of an operator. By
the relation

T—X1=T—(X\+ (A= X))l
= (T = X1) [1+ (Ao — MRy, ],
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just formally it would follow that

oo

Ry= Y _(A=X)R, | Rx,-

Jj=0

It is left to justify this expression and show that it defines (7' — A1)~! in B(B).
For |[XA — Xo| < 1/||Ra, (T')]| the series is absolutely convergent in B(B) and defines
an operator satisfying

N N
D A=) BRI (T = A1) = (A=) B (T = (Mo + (A= 2o))1)
j=0 j=0
=Y (A=) Ry, =) (A=) TR
j=0 j=0

=1—[(A=Xo)Ry, V.
Now Hmy so [(A = Xo)Rx,)" = 0 in B(B), since |A — Ag| < 1/||Rx,(T)]]; then
(Z?i S = Xo)? Rijl) (T — A1) = 1. Similarly it is shown that

(T=A1) [ > A=X) R =1 O
=0

Corollary 1.5.13. p(T) is an open set and o(T) is a closed set of C.

Proof. One sees that p(T') is open directly from Theorem 1.5.12; hence o(T) is
closed. 0

Corollary 1.5.14. The map p(T) — B(B) given by A — Rx(T) is continuous and
uniformly holomorphic, i.e., it has a derivative in B(B) defined by the limit

dRA(T) _ . Ran(T) — RA(T) _ 2
T h = BT

for all X in a neighborhood of each point Ay € p(T).

Proof. By Theorem 1.5.12, if A\g € p(T') and |\ — Ao| < 1/||Rx,(T)]],

IBA(T) = Ry (D)1 < D 1A = ol [ Rog (T)7H
j=1

= 1A= 2ol [Rau (D)7 S I3 = ol 1Ry (T)
§=0
_ A= Mol IR (T2
L— A= 2o| [ B, (D)l
showing that the map A — Ry (T) in p(T) is continuous.

— 0 as A — g,
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By the first resolvent identity (Rayn — Rx)/h = RxinRx; taking h — 0
and using the continuity shown above, it follows that the derivative exists and
dR\(T)/d\ = R\(T)? holds. O

Corollary 1.5.15. If both o(T) and p(T) are nonempty, then
[BA(T)|| = 1/d(A, o(T))
for all X € p(T) (with d(X,o(T)) = inf ;o) [0 — Al).

Proof. By Theorem 1.5.12, if A\g € p(T) and || Rx, (T)|| [N — Ao| < 1, then A € p(T).
Thus, if A € o(T'), necessarily ||Rx,(T)| | — Ao| > 1, that is,

1

| > ———
B30 () 2 =y

VA € o(T),

and (since o(T') # () the result follows. O

Now certain specific results on the spectrum of bounded operators will be
discussed.

Corollary 1.5.16. Let T € B(B). If |\| > ||T||, then A € p(T) and ||RA(T)|| — O
for |\ — oo.

Proof. Following the proof of the above theorem (write T'— A1 = —A\(1 — T/\)),
one concludes that the representation of Ry(T') by the series, called Neumann’s

series of T, ‘
1< /(T
RA(T) = —+ ' ()\)
7=0

is absolutely convergent if |A\| > ||T|| and, in this case, that

IRA(T)I < 1/IA D _IT /2 = 1/(IAL = IT]).
i>0

It then follows that the spectrum o(T) C {A € C: |\ <||T||} and

Jim_[RA(T)] =0, O

Corollary 1.5.17. If T € B(B), then o(T) # 0.

Proof. If f € B(B)* (the dual of B(B)) define F': p(T) — C by F(\) = f(Rx(T)).
Thus, by Corollary 1.5.14 it is found that
dF()\) . F(A+h)—F(N\)

N }LIL% A =f (R/\(T)2),

which is continuous; hence, F' is holomorphic in p(7'). By using the inequality
[F(M)| < IfIIRA(T)|| and Corollary 1.5.16, lim|y|—. F'(X) = 0.
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If o(T) = 0, ie., p(T) = C, by continuity F is bounded in any ball in C,
and since it converges to zero for |[A| — oo, it is found that FF : C — C is an
entire and bounded function, hence constant by Liouville’s Theorem. In view of
lim|y—oo F'(A) = 0, one has F(A) = f(RA(T)) = 0 for all A € C, f € B(B)*. By
the Hahn-Banach Theorem one gets Rx(T) = 0, VA € C, but this can not occur,
since Rx(T') is the inverse of some operator. This contradiction shows that o(T')
is nonempty. U

Definition 1.5.18. The spectral radius of a bounded linear operator T' € B(B) is
7o (T) := supyeo(r) Al

The next result is the so-called spectral radius formula and is due to I.
Gelfand, who has shown it in the context of Banach algebras, around 1940. This
formula is a relation between a limit strongly related to the metric, and the spectral
radius defined via the supremum of a set.

Theorem 1.5.19. If T € B(B), then r,(T) = lim,, . | T"||*/™ < | T

Proof. Note, initially, that due to Corollary 1.5.16, r,(T") < ||T||. To demonstrate
Theorem 1.5.19 we will use results from the Holomorphic Functions Theory com-
bined with “any weakly convergent sequence is bounded,” and the following simple
observation: if A € C and A1, Ao, ..., A\, are its nth roots in C, then

Tm A1 = (T — M1)(T — Xo1) -+ (T — A1)

This implies that A € o(T™") if, and only if, A; € o(T') for some 1 < j < n. Hence,
o(T™) = o(T)" := {\" : XA € o(T)}. From this relation one concludes that for
all n € N one has 74 (T) = 7, (T™)Y™ < || T™||*/".

For each f in the dual of B(B), define F : p(T) — C by F(X) = f(Rx(T)),
which is a holomorphic function (see the proof of Corollary 1.5.17). If |\| > ||T|,
by using the Neumann series

o0

11,
FO) == 30 )
and by the uniqueness of Laurent expansion the above series converge for all A € C
in the region |A| > r(T) (or Taylor expansion if the variable s = 1/, with F(0) =
0, is considered).

Given € > 0, for 75(T) < o < ro(T) 4+ ¢ and all f € B(B)*, the series
Yoot o F(T™/a™) converge. Thus, the sequence T"/a™ converges weakly to zero
in B(B); hence it is bounded and there exists C' = C(a) > 0 with

|T" /™| < C = |T"|Y™ < aCY™,  VYneN.
Since lim,, .o, C'/™ = 1, there is N(g) > 0 such that

IT"* < ro(T)+2,  ¥n > N(e).
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This relation, along with 74 (7)) < ||T™||*/™ verified above, show that lim ||T'||'/™
exists and equals 7, (7). O
Ezercise 1.5.20. If all pairs of the operators {T1,...,T,} C B(B) are commut-

ing, i.e., T;Ty = T}T}, Vj, k, show that the product T1T5 - - - T, is invertible with
bounded inverse if, and only if, each T} is invertible in B(B5).

Corollary 1.5.21. If T € B(B), then o(T") = o(T)" and 7o (T") = ro(T)™.

Exercise 1.5.22. Present a proof of Corollary 1.5.21.
Ezample 1.5.23. Let S : [°°(N) < be the shift operator

Se(€1,82,83,...) = (£2,83,&, ... ).

Since ||Se|| = 1, then o(S.) C B(0;1). Every |A\| < 1 is an eigenvalue of S,, for the
equation S = A& has the solution £* = (1, A, A%, X%, ...) in [°°(N). Therefore
o(Se) = B(0;1), rs(Se) = 1, and every point of its spectrum is an eigenvalue
Ezample 1.5.24. The Volterra operator T:C[0,1] <, given by (T9)(t fo

has no eigenvalues. In fact, by the eigenvalue equation

(Ty)(t) / (s

one finds A\’ (t) = ¢(¢t) (¢ is differentiable since it is the integral of a continuous
function). If A = 0 then ¢ = 0 and zero is not an eigenvalue; if A # 0, the solutions
of this differential equation are 1 (t) = Cexp(t/)\), and since 9(0) = 0 it follows
that the constant C' =0, and so ¥ = 0 and no A € C is an eigenvalue of T.

From the inequality [(T%)(t)] < ¢||¢||o it is found, by induction, that

¢ t2 . t"
(T*9)(1)] < /0 sl[¥lloo ds = 5 [[9lloo, (T") ) < 1P lloo-
Thus, |77 < 1/n! and 7, (T) < lim, o (1/n!)"/® = 0. Therefore r,(T) < ||T|,
o(T) = {0} (since # @) and T has no eigenvalues.
Ezample 1.5.25. Let My, on L2[0, 1], with h(t) = t. Then M}, has no eigenvalues,
since from Mpyp = Ay it follows that (t — M)y (t) = 0, or ¢(t) = 0 for a.e. t # A,
i.e., ¥ =0 in L2[0,1].
Ezercise 1.5.26. Show that in Example 1.5.25 one has o(My) = [0, 1].
Ezercise 1.5.27. If T € B(B), show that limy| . ARA(T) = —1.

Ezercise 1.5.28. For T € B(B), define V(¢) := e'T, t € R, as in Exercise 1.1.23.
Show that: a) The map t — V(t) € B(B) is continuous with V(0) = 1 and
V(it+s) =V(E)V(s). b) If S € B(B) commutes with T, then it also commutes
with V(¢),Vt. ¢) This map is uniformly holomorphic and dV (¢)/dt = TV (t). See
related results in Section 5.2.
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1.6 Spectra of Compact Operators

As expected, the spectral theory of compact linear operators has many similarities
with the spectral theory on finite-dimensional spaces; for example, with the possi-
ble exception of zero, each eigenvalue of a compact operator has finite multiplicity.
However, there are compact operators with no eigenvalues.

Ezample 1.6.1. Consider the operator T : [2(N) «,

T(£17£27§3a"') = (0351/1752/2u£3/37"')'

T is compact and 0 € o(T) since 7! is not bounded. However this operator has
no eigenvalues (check this!).

The next lemma is a key tool to construct bounded sequences with no conver-
gent subsequence in infinite-dimensional A/. Although there is no explicit notion of
orthogonality, a geometric interpretation is important for turning its proof natural.

Lemma 1.6.2 (Riesz Lemma). Let X be a proper closed vector subspace of a normed
space (N, ||-|). Then, for each 0 < a < 1 there exists £ € N\ X with ||| = 1 and
infneX ||£ - 77” 2o

Proof. Let ¢ € N\X and ¢ = inf,cx || — ¢]|. Since X is closed, ¢ > 0. Thus, for
all d > c there exists w € X with ¢ < [|[( —w| < d. The vector { = (( —w)/||¢ —w||
belongs to N\ X and [|£]| = 1. Moreover, for all € X one has

1 c c
le =l = =gyl - e —wln | 2 =0 2 5

For 0 < a < 1 choose d = ¢/a and the result follows. O

Theorem 1.6.3. The closed ball B(0;1) in a normed vector space N is compact if,
and only if, dim N < oo.

Proof. If dim N < oo, it is known that B(0;1) is compact. If dim N is not fi-
nite, then Riesz’s lemma will be used to construct a sequence in B(0;1) with no
convergent subsequence.

Let & € N, [|&]| = 1. By Riesz’s lemma there exists & € N, with ||&f = 1,
and [|&1 — &2| > 1/2 (by choosing @ = 1/2 in Riesz’s lemma). The vector space
Lin({&1,&2}) is closed, since its dimension is finite. Again by Riesz’s lemma, there
exists & € N, with [|&] = 1, [|€&s — &1l = 1/2 and || — &2| > 1/2. In this way, a
sequence (£,)521, [&nll =1, ¥n, and ||&; — &l > 1/2 for all j # k is constructed.
Since such sequence has no convergent subsequence , the closed ball B(0;1) is not
compact. O

Proposition 1.6.4. If T' € Bo(B), then every nonzero eigenvalue of T is of finite
multiplicity, that is, dim N(T — A1) < oo.
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Proof. Let By be the closed ball centered at zero and radius 1 in the vector space
N(T — A\1). It will be shown that By is compact and, hence, dimN(T — A1) < oo
by Theorem 1.6.3. Since T is compact, for a sequence (§,) C By (T&, = A\&),
there is a convergent subsequence (T°¢,,,) and, so, (&, = Ty, /)) also converges
to an element of By; hence that ball is compact. ' O

Exercise 1.6.5. Use the next argument as a variant of the proof of Proposi-
tion 1.6.4: suppose that By is not compact; thus there exists a sequence (&,) C B
with no convergent subsequence; use the compactness of T" to reach a contradic-
tion.

Proposition 1.6.6. If T' € By(B), then for all € > 0 the number of eigenvalues A
of T with |\ > ¢ is finite.

Proof. Suppose that it is possible to choose € > 0 so that there are infinitely
many eigenvalues {\;}jen of T' with absolute values greater than or equal to .
By Proposition 1.6.4 one may assume that such eigenvalues are pairwise distinct;
denote by {£;} the respective eigenvectors. Recall that this set is linearly indepen-
dent (Exercise 1.5.5).

Let Ey = {0} and E,, = Lin({&1, ..., &, }); note that such subspaces are closed
for all n. By Riesz’s Lemma 1.6.2 there exists a sequence {n,}, 7 € En, ||7n]] =1
and ||n, —&|| > 1/2, V€ € E,,_;. The aim is to show that ||Tn, — T > &/2 for
all distinct n, m, which then has no convergent subsequence, a contradiction with
the compactness of T.

If m < n, then T —T1m = Aptin+[(T — A1) — Ti] - Clearly Tn,,, € Ey,
and, writing 1, = >_7_; a;&;, one has

n—1
(T = A1) = Z a;(Aj = An)&s | € En,
j=1

so that ¢, := —[(T — A 1)nn, — T ]/ A, belongs to the subspace E,,_;. Therefore,
177 — Tomll = | Aalllnn — Gnll > I)‘Q—"I > ¢/2, and {Tn,} has no convergent
subsequence. O

From such propositions (and some simple extra argument) follows the im-
portant

Corollary 1.6.7. Let T' € Bo(B) and A the set of eigenvalues of T'. Then:
i) The unique possible accumulation point of A is zero.
ii) A is countable and, if X # 0, then dimN(T — A1) < co.
iii) If A is an infinite set, then the eigenvalues of T can be ordered in a sequence
converging to zero.
iv) If dim B = oo, then zero belongs to the spectrum of T'.

Exercise 1.6.8. Present the details of the proof of Corollary 1.6.7.
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Example 1.6.9. Any finite rank operator is compact and has finite spectrum.
Ezample 1.6.10. Consider the operator T : [?(N) «,

T(§1a§2a§37 .- ) = (51/1752/2753/3’ R )

T is compact and zero is not an eigenvalue of T', however it belongs to its spectrum,
since {1,1/2,1/3,...} is a subset of o(T') (they are eigenvalues) and the spectrum
is closed. It is also possible to infer directly that the resolvent operator Ro(T')
exists, with dense domain, but it is not bounded.



Chapter 2

Adjoint Operator

The basics of (linear) unbounded self-adjoint operators is discussed in this chapter.
Cayley transform, von Neumann criterion on self-adjoint extensions, Weyl spec-
tral criterion and many examples are presented. These are the first steps to the
mathematical formulation of quantum mechanics. From now on the Hilbert spaces
are supposed to be separable and, unless it is explicitly remarked, also complex.

2.1 Adjoint Operator

The concept of Hilbert adjoint will be extended to some unbounded operators.
T always denotes a linear operator.

Definition 2.1.1. A linear operator 7' : dom T' C ‘H — H is symmetric if

(T¢,m) =(&Tn), V&medomT.

T is hermitian if it is symmetric and dom T is dense in H.

Let T : dom T'C H; — Hs and define dom T as the vector space of elements
1 € Hy such that the linear functional

& (n,TE), £edom T,
can be represented by ( € Hy, that is,

(n,TE) = ((,), V¢ € dom T.

Definition 2.1.2. The (Hilbert) adjoint of T is the operator T* with domain
dom T™ defined above and, for n € dom 7™, T*n = (. Hence

(n, TE) = (T*n,§), V¢ € dom T',Vn € dom T™.
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Observe that it is essential that dom T is dense in H for T to be uniquely
defined. If S is also a linear operator and z € C, then T™* is linear and (S + 27)* =
S* 4+ ZT*.

Ezercise 2.1.3. Show that T': dom T' C ‘H — H is hermitian iff T C T* (recall
that, given two operators R, S, then S C R indicates that R is an extension of S).

Remark 2.1.4. Note that n € dom T™* iff the map dom 7' 5 £ +— (1, T¢) is uni-
formly continuous. In fact, since dom 7' is dense in H, this linear map has a unique
continuous extension to H and so, by Riesz’s Theorem 1.1.40, it can be represented
by a unique ¢ € ‘H as above. Then the definition 7%n = (.

Example 2.1.5. The domain of the adjoint can be quite small. Let H = L2[—1, 1],
dom T = C[-1,1] C H and (T9)(xz) = 9(0). Since dom T is dense in H, its
adjoint is well defined. ¢ € dom T* iff the map dom T > ¢ — (g,TY) =

fil g(x) (T)(z) dx = fil g(x) ¥ (0) dz is continuous, i.e.,

1 -
(0) / gla) ds

Since |¢(0)] can be arbitrarily large, then filg(x) dx = 0 and dom T* is the
subspace orthogonal to the constant functions in H. Moreover, for g € dom T*
one has 0 = (g,v(0)) = (9, T¢) = (T™*g,¢), Yo € C[-1,1], so that T*g = 0.

Proposition 2.1.6 shows that the above definition of adjoint actually gener-
alizes the one recalled on page 24 for the specific case of bounded operators.

Proposition 2.1.6. If T € B(H1, Hz), then T* € B(Ha, H1), T** =T and ||T*| =
IT||. Hence

sup
ypedom T, ||4||=1

< Q.

(n,TE) = (T*n,§), VE € Hi,Vn € Ha.

Proof. Clearly, for bounded T one has dom T = Hy. By Riesz’s Theorem 1.1.40,
for each & € Hy one has fr-¢, € H and

1Tl = | fr-e,ll = sup |free,(§1)] = sup [(T7E2,&1)]
[[€1]l=1 [[€1]1=1

= sup [(&, T&)] < [Tl
lexll=1

so T* € B(Ha,H1) and | T < ||T|.
Directly from the definition of adjoint

(T7&2,61) = (&2, T1), V& € Hi, V& € Ha,

and so T** = T. Now | T|| = | T**|| < |T*|); hence |T*| = |IT]I. O
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Definition 2.1.7.
a) A linear operator 7' : dom T' C 'H — H is self-adjoint if T'= T* (including
equality of domains, of course).
b) A bounded linear T : H; — Ho is unitary if rng T = Ha, it is one-to-one and

T =T71.

¢) A bounded linear operator T : H « is normal if T*T = TT™*.
Remark 2.1.8. a) Note that T' : Hy — Hy is unitary iff (T¢,Tn) = ({,T*Tn) =
(&, my, Y¥¢,n € Hy and rng T = Ha; in particular unitary operators are isome-
tries (and so ||T|| = 1) and T~! is also unitary. The unitary operators are the
isomorphisms on Hilbert spaces.

b) T** will denote (7*)* and so on. It is possible to define unbounded normal
operators; see Definition 8.2.9.

¢) If T is self-adjoint (or just symmetric), then (T¢,£) € R for all £ € dom T.
Further, a self-adjoint operator is symmetric and the addition of elements to its
domain will necessarily deform this property (see Theorem 2.1.24).

d) It is usually not difficult to check if an operator is symmetric, however
self-adjointness is a much more subtle property to verify. It turns out that for
bounded operators with domain all H, the concepts of hermitian and self-adjoint
coincide.

Example 2.1.9. Let z € C and 1 be the identity operator on H. The operator z1
is: 1) normal for all z € C; 2) self-adjoint iff z € R; 3) unitary iff |z| = 1.
Ezample 2.1.10. For each fixed 0 # s € R the operator Ty € B(L%(R)), (Tsv)(t) :=
LWt +s)+u(t—s)], ¥ € L*(R), is self-adjoint.

Ezample 2.1.11. The operator S, : [2(N) « given by

ST(£1a§2a§37 .. ) = (07£1v§2’ .- )

is a linear isometry (i.e., an isometric mapping) between Hilbert spaces, but it is
not unitary, because it is not onto.
Proposition 2.1.12.
a) If T € B(H) then | TT*|| = |T*T| = ||T||*. Therefore,
i) T*T =0 if, and only if, T = 0.
ii) If T is normal, then |T?| = ||T||%.
b) If T € B(H) is normal (especially it holds for bounded self-adjoint operators),
then its spectral radius ro(T) = ||T|| (see Definition 1.5.18).

Proof. a) If T € B(H),

ITI1* = sup ||T¢|* = sup (T€,T€) = sup (T"TE, ) < sup 77T [I€]*
llgl=1 [€l=1 llgl=1 lgli=1
=TT < T T =170,
and | T*T|| = ||T||*. By adapting the roles of T and T™* in this relation one obtains
|TT*|| = ||T||?>. Then i) is immediate from such a relation.
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Now, if T' commutes with its adjoint, then for all £ € H one has | T*T¢||? =
(T*TE,T*T¢) = (T%,T2¢) = |T%]|?, consequently ||T%| = 7T = [T,
which is ii).

b) If T is normal then, by ii) above, | T%"| = ||T||*" for all n € N; thus

ro(T) = lim ||T%"|V/*" = ||T.
Recall that, if a limit does exist, then one may use any subsequence to evaluate it.
O
Proposition 2.1.13. If T € B(H) is self-adjoint, then

1T = sup (T¢€,&).
lel=1

Proof. Let k denote the above right-hand side. Thus, [(T€,¢)| < ||T| ||€]|? and so
k < ||T||. Since (T¢,€) € R for all £ € H, by polarization and then using the
parallelogram law,

4|Re (T&m)| = KT (E+n),E+mn) — (T —n), & —n)l
_ £+ £+n> 5 < E-n &— >
=T T

(T Te g e =T e
<k (1€ + 0l +11€ = nlI*) = 2x (€17 + Inl?) -

Hence, if [|£]| = ||n]| = 1 one has |Re (T'¢,n)| < k. By choosing n = T¢/||TE|| it
follows that [|T¢|| < & for all ||£]] = 1. Therefore, ||T|| < « and so |T|| = k. O

Remark 2.1.14. a) The distinction between hermitian and self-adjoint operators
is a famous subtlety in mathematics with outstanding physical and mathematical
implications. See, for instance, Theorem 2.2.17 and Section 14.1.

b) For some applications (especially to quantum mechanics), it may be impor-
tant that the operator in question is self-adjoint. However, often what is initially
supplied is just an operator action (a differential one, for instance) which is her-
mitian on certain domain, and one is left with the hard task of finding suitable
self-adjoint extensions.

Lemma 2.1.15. G(T*) = (JG(T))" in H x H, with J(&,n) = (—n,€) a unitary
operator.

Proof. By the equivalent relations

(m,¢) € G(T7) < (T€,m) = (£, ¢), V¢ € dom T

S((=T&,8),(,0))n =0, V6 € dom T
S(J(ETE, (1,0)yxn =0,V €dom T
& (n,¢) € (JGT))*

the assertion follows. O



2.1. Adjoint Operator 47

Corollary 2.1.16.
a) Let T be a linear operator in H. T* is a closed operator, specifically every
self-adjoint operator is closed.
b) Any hermitian operator is closable and its closure is hermitian.

Proof. a) By Lemma 2.1.15 G(T™) is a closed subspace.

b) Since T' is hermitian then 7' C T* and, by item a), T" is closable. To show
that 1" is hermitian, let §,¢ € dom T, and pick (§), (¢n) C dom T" with &, — ¢,
Co— Cand TE, — TE, T¢, — T(; in view of

it follows that T is hermitian. O

Corollary 2.1.17.
a) Let T be a densely defined linear operator. Then T is closable iff dom T™* is
dense in H. In this case

H x H =JG(T) & G(T*) = G(T) & JG(T*), and T** =T.

b) If T is closable, then (T)* = T*.

Proof. a) Since J is unitary and J? = —1, if T is closable, then G(T') and JG(T)
are closed subspaces and

HxH=JGT)a (Jg(T))L = JG(T) & G(T*) = G(T) & JG(T*).

Let ¢ € (dom T*)*. Thus, (£,¢) =0 = (T*¢,0), V¢ € dom T*, that is,

((0,0), (=T, )y = 0= (0,0) € (JGT™))" = G(T),

so T(0) = ¢ = 0 and dom T* is dense in H. Note that these arguments also show
that if dom T is dense in H, then, for no ¢ # 0, (0,¢) € G(T) so that G(T') is the
graph of an operator and T is closable.
Now (apply Lemma 2.1.15), for T closable T** is well defined and H x H =
JG(T*) @ G(T**); since G(T**) = (JG(T*))* = G(T), it is found that T** =T.
b) By applying Corollary 2.1.16a) once and then item a) twice: T* = T* =
T =T, O

Remark 2.1.18. Due to Corollaries 2.1.16b) and 2.1.17b), in many theoretical dis-
cussions one assumes that hermitian operators are closed.
Ezercise 2.1.19. a) Show that a self-adjoint operator has no proper hermitian

extensions. b) Show that each eigenvalue of a symmetric operator is a real number.
¢) Check that if S C T, then T* C S*.
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Ezercise 2.1.20. If T and S are linear operators in H, define dom (S + T') :=
dom SNdom T, and dom (ST) := {¢ € dom T : T¢ € dom S},

(T+8)E:=T¢+S¢  and  (ST)E = S(T¢),

which are called operator sum and operator product, respectively (of course such
operations are well defined in normed spaces). If these operators are densely de-
fined, show that T%S5* C (ST)*, and if S € B(H) then T*S* = (ST)*.

Ezercise 2.1.21. Let T be a densely defined closed linear operator. Use Corol-
lary 2.1.17 to show that for any pair £, 7' € H there is a unique pair £ € dom T
and n € dom T™ obeying

§=n-T¢ 0 =&4+T.
Moreover, [[£'|2 + [[0/[|> = l€]1* + [T + 19l + [|1T*n]|>.

Definition 2.1.22. A hermitian operator T is essentially self-adjoint if T is self-
adjoint.

Remark 2.1.23. If T is self-adjoint, then a subspace D C dom T is a core of T (see
Definition 1.2.25) iff the restriction T'|,, is essentially self-adjoint.

Let T, S be linear operators. If S C T one has T* C S*, then if T is hermitian
(i.e., T C T*) it follows that T = T** C T*.

If A is a self-adjoint extension of the hermitian operator 7', i.e., T C A, then
A = A* C T*, consequently T* is an extension of all self-adjoint extensions of T'.
Now if T is also essentially self-adjoint with 7' C A, one has

ACT* =T=T"CA=ACT =T,
so that T' = A.
Theorem 2.1.24. Let T be a hermitian operator. Then:

a) T* is an extension of all self-adjoint (or hermitian) extensions of T.

b) If T is essentially self-adjoint, then it has just one self-adjoint extension (see
also Corollary 2.2.14).

c) T is essentially self-adjoint iff T* is hermitian, and in this case T = T** = T*
(so T* is, in fact, self-adjoint).

Proof. Ttems a) and b) were discussed above.
¢) If T is essentially self-adjoint, then 7% = T = T = T** and T* is self-

adjoint, SO_T = T"" = T". Now assume that 7" is hermitian; one has T = T
and, since T is also hermitian, T CT =T*CT** =T,andsoT =T and T is

essentially self-adjoint. O

Thus a hermitian operator has at least two natural closed extensions: a “min-
imal” one given by its closure, and a “maximal” one given by its adjoint. Hence, its
fortuitous self-adjoint extensions are half-way between such minimal and maximal
closed extensions.
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Definition 2.1.25. If there is a unitary operator U : H; — Hs, then these spaces are
said to be unitarily equivalent. In this case, two linear operators 7} : dom T; C
‘H; — Hj, 7 = 1,2, are unitarily equivalent if dom Ty := Udom T} and Ty =
Unu~.

Ezercise 2.1.26. Let U € B(Hi,Hz) be a unitary operator and Ty, T> unitarily
equivalent linear operators. Show that: a) Ts is closed iff Ty is closed. b) T5 is her-
mitian, essentially self-adjoint, self-adjoint iff the corresponding statement holds
for Ty. ¢) T1 and T have the same eigenvalues. d) z € p(T3) iff z € p(T1) and
|R.(T2)|| = ||R-(T1)|); conclude that o(Ts) = o(11).

Now it is interesting to present the Hellinger-Toeplitz argument. It shows that
in the study of the adjoint of an unbounded operator subtle domain questions will
actually appear, since such operators can not be defined on all elements of the
Hilbert space.

Proposition 2.1.27 (Hellinger-Toeplitz). Let T : H < be a linear operator with

(Tn,&) = (0, 7€),  Yn,§ €.
Then T € B(H) and it is self-adjoint.

Proof. From the definitions it follows that T is self-adjoint, so closed. Since its
domain is ‘H, then T is bounded by the Closed Graph Theorem 1.2.21. O

Ezercise 2.1.28. If T : Hy — Hs is linear and there exists S : Hy — Hj, not
necessarily linear, with (T¢,n) = (£,5(n)) for all £ € Hy and n € Ha, conclude
that S is linear, T" and S are bounded and, finally, that 7% = S.

Remark 2.1.29. There are some ongoing attempts to construct an adjoint for
operators on separable Banach spaces that parallels the construction in Hilbert
spaces, also aiming at introducing the notion of self-adjoint operators in Banach
spaces; however, usually some expected properties fail. See [GIBZS04].

2.2 Cayley Transform I

The basic and motivating observation for the developments ahead is that for a
hermitian operator T': dom T'C H — H one has

I(T £ i1)el|? = |T€l + €N = €3 Ve € dom T.
Hence, the operator
U(T) := (T —il)(T +i1)"" : rng (T +41) — rng (T —il)
is one-to-one, linear and isometric.

Definition 2.2.1. U(T') as above is called the Cayley transform of the hermitian
operator T
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Exercise 2.2.2. Show that for a densely defined operator T': dom T'C H — H
one has N(T*) = (rng (T))* .
Definition 2.2.3. Let T be a hermitian operator. The closed linear subspaces

K4 (T) :=N(T*+i1) = (rng (T'Fi1))* are the deficiency subspaces of T and the
integer numbers, given by the respective dimensions,

ny (T):=dim N(T* +i1) = dim(rng (T —i1))*,
n_(T):=dimN(T* —i1) = dim(rng (T +i1))",

are its deficiency indices.

Proposition 2.2.4. Let T be a hermitian operator. Then:
1) T is closed iff rng (T —i1) is closed iff rng (T + i1) is closed.
i) T is self-adjoint iff rng (T +41) = rng (T —i1) = H iff its Cayley transform
is a unitary operator U(T) : H — H.
iii) If there is A € R so that tng (T — A1) = ‘H, then T is essentially self-adjoint
(recall that T is the closure of T').
iv) If there is A€ RN p(T), then T is self-adjoint.

Proof. 1) It is enough to observe that the maps
g (T +i1)> (T +i1)¢— (,TE) € G(T), Eedom T,

are isometric (so one-to-one) and onto.

ii) The two last assertions are clearly equivalent.

Let T = T*; then T is closed and, by Exercise 2.2.2 if £ € (rng (T +i1))* =
N(T*—141) one has T¢ = i€, and £ = 0 since its eigenvalues are real. So rng (T+41)
is dense in H; by i) it is also closed, so rng (T + 1) = H. Similarly one gets
g (T —i1) =H.

For the converse, recall that T' C T™*. If n € dom T, then for all ¢ € dom T,
(n, (T +1i1)g) = ((T* —il)n, ¢). Pick £ € dom T with (T —i1)¢ = (T* —il)n.
Hence

(0, (T +i1)¢) = (T —i1)§,¢) = (&, (T +il)¢), V¢ €domT.

Since rng (T' +41) = H, then { =n and dom T* = dom T
iii) If n € dom (T)*, then for all ¢ € dom T, (n, (T —A1)¢) = ((T* — A\1)n, #).
Pick € € dom T with (T'— A1)¢ = (T* — A\1)n. Hence

(0. (T~ A1)§) = (T~ AL)E.¢) = (6, (T~ AL)g), Vo € dom T.

Since rng (T — A1) = H, it follows that £ =7 and dom T* = dom T’; hence
T is self-adjoint.

iv) Since A € p(T) one has rng (T — A1) = H. The proof then follows the
same lines of iii) above. O



2.2. Cayley Transform I 51

Remark 2.2.5. Due to Proposition 2.2.4ii), ny,n_, Ky, K_ quantify the “lack
of self-adjointness” of a hermitian operator; so the terminology. See also Theo-
rem 2.2.11.

Ezercise 2.2.6. Show that a hermitian operator T is closed iff U(T') is closed.

Ezercise 2.2.7. If T is hermitian, show that T is self-adjoint iff there exists z € C\R
so that rmg (T + 21) =rng (T +z1) = H.

Ezercise 2.2.8. Let T be a hermitian operator. Show that rng (T £ il) =
rng (T' £i1) (the bar denotes closure).

Remark 2.2.9. From the proof of Proposition 2.2.4, one concludes that, if T is
hermitian but not self-adjoint, then either +i or —i (or both) belongs to o (7)),
although neither of them is an eigenvalue of T'. This verification is a nice exercise
left to you.

Theorem 2.2.10. If 'H has an orthonormal basis of eigenvectors of the symmetric
operator T : dom T C H — H, then T is essentially self-adjoint and o(T) is the
closure of the set of eigenvalues of T.

Proof. Note that in this case dom T' C H, so T is in fact hermitian and T exists and
is hermitian. Since its eigenvalues are real numbers, it follows that rng (T £i1) D
rng (T +¢1) contains the subspace spanned by each of such eigenvectors and so it
is dense in H; by Proposition 2.2.4i) rng (T'+41) = H, since those sets are closed.
Hence, by Proposition 2.2.4ii), T is self-adjoint and T is essentially self-adjoint.

Denote by (A;) and (§;) the set of eigenvalues and eigenvectors of T, respec-
tively. If 2 is the closure of the set of such eigenvalues in C, then ¥ C o(T') as the
spectrum is a closed set and eigenvalues of T are also eigenvalues of T. Note that
every vector of H can be written in the form ) a;&;. If z ¢ X, then the operator
S defined on H given by

$|es | -0
J

J

is one-to-one and bounded. Since T is a closed operator, by considering partial

sums of » 7 a;§; a direct verification shows that S = R.(T), so that z ¢ a(T).

Therefore, o(T) = X. O

Now an important result will be stated and its proof postponed to Section 2.5;
this is expected to speed up the presentation. In any case one could try to get some
intuition behind proofs as follows. If T is closed and hermitian, then

H=rng (T +il)® (rmg (T +i1))" =mg (T +il1) & K+ (T),

and the Cayley transform U(T') is an isometry between rng (7' +41) and rng (7" —
i1l). By Proposition 2.2.4ii), in order to get a self-adjoint extension 7" of T" one
needs to extend its domain so that rng (T'+41) = H, that is, U(T) should be a
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unitary map in H. This extension requires n4 (T') = n_(T"). Here is the precise
formulation:

Theorem 2.2.11 (von Neumann). Let T' be a hermitian operator with dom T T 'H
and T its closure. Then:

a) With respect to the graph inner product of T* one has
dom T* = dom T P K+(T> D= K_(T)

So, in case T is also closed: dom T* = dom T &7« K (T) @&« K_(T).

b) T is essentially self-adjoint iff no =n_ =0.

c) T has self-adjoint extensions iff ny = n_, and there exists a one-to-one
correspondence between self-adjoint extensions of T and unitary operators

between K_ and K4 (and so infinitely many self-adjoint extensions if ny =
n_ >1).

Remark 2.2.12. Theorem 2.2.11 was published in 1929 by von Neumann, as a
generalization of a result of Weyl of 1910 for second-order differential operators.
Maybe it should be called the “von Neumann-Weyl theorem.”

Remark 2.2.13. A slightly different proof that “if H has an orthonormal basis (&;)
of eigenvectors of the symmetric operator T : dom T' C 'H — H, with respectively
(real) eigenvalues ();), then T is essentially self-adjoint” is the following: if (T +
i1)n = 0, then for all j one has

0=((T"+il)n, &) =, (T Fi1)&) = (A F)(0, &),
and so n L &; for all j; hence n =0 and ny (T) = 0.

Corollary 2.2.14. The hermitian operator T is essentially self-adjoint iff T has
ezactly one self-adjoint extension.

Proof. Half of the statement is Theorem 2.1.24b). Suppose, now, that T is not
self-adjoint. By Theorem 2.2.11 either n_ # ny or n_ = ny > 1. The former
possibility implies that 7" has no self-adjoint extensions at all. The latter possibility
implies the existence of infinitely many self-adjoint extensions of 7. O

Definition 2.2.15. An antilinear map C : H — H is a conjugation if it is an isometry
and C2 = 1.

Proposition 2.2.16 (von Neumann). If T is hermitian and there exists a conjuga-
tion C such that C(dom T') C dom T and C commutes with T (that is, TC{ = CT¢,
V¢ € dom T'), then T has a self-adjoint extension.

Proof. In view of C(dom T') C dom T one has dom T' = C?(dom T') C Cdom T,
and so C(dom T) = dom T. If ¢ € rng (T — i1)*, then for any € dom T (by
using the polarization identity)

0= (& (T —il)n) = (C&,C(T —il)n) = (C&, (T +i1)Cn),
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and so C¢ € rng (T +i1)1. Hence, C maps rng (T — i1)+ into rng (T + i1)t; a
similar argument concludes that C maps rng (7' 4 i1)* into rng (7" —41)*. Since
C is an isometry it follows that ny = n_. By Theorem 2.2.11, T has self-adjoint
extensions. 0

Before presenting some applications, certain basic spectral properties of self-
adjoint and unitary operators will be addressed. Since a unitary operator is
bounded, its spectrum is nonempty (Corollary 1.5.17); for the corresponding result
in case of unbounded self-adjoint operators see Theorem 2.4.4.

Theorem 2.2.17. Let T be a closed hermitian operator. Then T is self-adjoint iff
o(T) C R. In this case, for z € C\ R, one has

1
[Im z|
Furthermore, if 0 # y € R, then | TR, (T)|| < 1.

Proof. If o(T) C R, then +i € p(T) and rng (T +41) = H; so T is self-adjoint by
Proposition 2.2.4.

Now, assume that T is self-adjoint. Take a complex number z = x+1iy, y # 0;
then

[1R=(T)[| <

T—21=y(S—1il),
where S = (T'—x1)/y is self-adjoint with the same domain as 7. From the relation
N2 2 2 2
1S £ i1)E]]" = [[15]1™ + [I€117 = [I1€]]

and rng (S +£41) = H (Proposition 2.2.4), it is found that Ry;(S) € B(H) and
|[R+:(S)]| < 1. By noting that S — il = (T — 21)/y, one finds 1 > ||R;(9)|| =
I1R=(T)| lyl, and so

Therefore z € p(T') and o(T") C R.
For self-adjoint T" and z € p(T") one has

<§, (T_Zl)’?> = <(T_§1)£an>7 Vﬁﬂ? € dom 7.
Since rng (T'—21) =rng (T —Z1) = H, and taking & = (T —z1)&, m = (T —=21)n
one concludes that
<RZ(T)£1u 771> = <£17 RZ(T)’I?1>, Vé-lv m e Hv
ie, R.(T)" = R=(T).
Finally the last assertion of the theorem; for y # 0 and £ € dom T one has
(T — iy 1)l = | T€” + 2 [1€l* = | T¢)>.

Write £ = Ry, (T')n; then the above inequality leads to ||n|| > | TR, (T)n||, Vn € H,
and so ||TR;,(T)| < 1. O
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Ezercise 2.2.18. Show that if T' is hermitian but not self-adjoint, then R C o(T)
and o(T) \ R # 0.

Corollary 2.2.19. Let T be self-adjoint. Then s — limy_, 400 TR;y(T) = 0, that is,
for all € € H one has limy_, 4o TRiy(T)§ = 0.

Proof. Since dom T is dense in H, given € > 0 write £ = n + ¢, with n € dom T
and ||¢|| < e. Thus, according to Theorem 2.2.17,

1T Riy (T)EN| < 1T Riyy (T)n| + I Riyy (T)C|

|
SRy (T)Tl| + [ICIF < T e

For |y| — oo one gets ||TR;y(T)&|| < e, and the result follows. O

Ezercise 2.2.20. If T is linear and z € p(T), verify that TR.(T) is bounded by
showing that [|[TR.(T)| <1+ |z||R.(T)|-

It is not difficult to check that any eigenvalue of a unitary operator has unity
absolute value. This extends to all points of its spectrum:

Proposition 2.2.21. If U : H — H is a unitary operator, then o(U) is a subset of
{AeC:|A =1}

Proof. Since ||U|| = 1, Corollary 1.5.16 implies that |A| > 1 belongs to the resolvent
set of U. Since U™ = Ry(U) is unitary and UU ! =1 = U~'U, then 0 € p(U)
and if [\ = |\ — 0] < 1/|U~Y|| = 1 it is found, by using Theorem 1.5.12, that A
also belongs to the resolvent set of U. Therefore, if A € o(U), then |A| = 1. O

2.3 Examples

In this section a series of applications of previously discussed results will be pre-
sented. For didactic reasons, sometimes different aspects of an operator will be
separated into more than one example; see also Section 2.6. The Schwartz space
of smooth fast decaying functions (see Section 3.1) on R"™ will be denoted by
S = S(R™), and C§°(2) will indicate the set of functions with compact support
and continuous derivatives of any order in 2 C R™. Keep in mind that physical
observables in quantum mechanics are represented by self-adjoint operators; see
page 1 and Section 14.1.

2.3.1 Momentum and Energy

Ezample 2.3.1. [Standard Schrédinger (energy) operator] Let V : R” — R be a
real function in LZ (R™) and A denote the usual Laplacian. The operator domain

is dom H = C§°(R™) C L?(R™) (the common practice of writing just V instead
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of My will be followed; see Subsection 2.3.2 for a discussion about unbounded
multiplication operators),

(HY)(2) = =(AY)(z) + V(2)P(x), ¢ € dom H,

i.e., H= —A+V is hermitian (use integration by parts) and has at least one self-
adjoint extension. In fact, dom H is dense in L?(R"), and it is enough to apply
Proposition 2.2.16 with C being the complex conjugation. V is called the poten-
tial and —A represents the quantum kinetic energy. These self-adjoint extensions
are candidates for the quantum energy operator. Note that V € L (R") is the
minimum requirement for V4 to be an element of L2(R™) with ¢ € C§°(R™).
Ezample 2.3.2. [Polynomial potential] Example 2.3.1 applies, in particular, to
potentials V(x) given by real polynomials p(z), © € R™. As an alternative, in this
case one can also take dom H = S C L2(R").

Ezample 2.3.3. [Energy operator of the harmonic oscillator] The Hilbert space is
L2(R) and the operator is H = —A + 22, dom H = S; more precisely, for 1) € S,
(Hy)(z) = =" (z) + 229 (z). By Example 2.3.2 this hermitian operator has self-
adjoint extensions. However, more can be said. The eigenvalue equation for this
operator Hi = Ay has the well-known Hermite functions (see [Zei95], [Will03])
2 dje_zQ
(z) = Njeo /2o —— i =0,1,2,...
Tp] (.I‘) i€ dxi ’ J » Ly Sy ’

as solutions (IV; is a normalization constant). The subsequent eigenvalues are
Aj = 2(j 4+ 1/2). Since {1;} form a complete orthonormal set in L*(R), by The-
orem 2.2.10, this operator is essentially self-adjoint, its closure H is the energy
operator of the quantum one-dimensional harmonic oscillator and o(H) = {A;}.
Note that the minimum of the energy spectrum is greater than zero, in contrast
to the classical case whose minimum of the harmonic oscillator energy is zero; this
is a purely quantum fact, as well as the discrete possible values of energy.

After including all physical constants (particle mass m, oscillator frequency
w and Planck constant %), the formal energy operator for the quantum harmonic
oscillator energy looks like

h? 1
H = —%A + §mw2x2,

and its eigenvalues are \; = wh(j + 1/2), so that the minimum energy is wh/2.
All eigenvalues are simple, that is, they have multiplicity 1.

Remark 2.3.4. If in Example 2.3.1 V(x) € L2 (R") and V(z) > 3, for some 3 € R,
then it is shown in Corollary 6.3.5 that the corresponding Schriodinger operator
H = —Av¢ + V is essentially self-adjoint on C§°(R™). This unique self-adjoint
extension plays the unequivocal role of the quantum energy operator in this case.
Ezample 2.3.5. [Free particle energy in the “box” [0, 1] with Dirichlet boundary

conditions] Here H = L2[0,1]. Set dom Tp = {¢ € C?[0,1] : ¥(0) = (1) = 0}
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and (Tpy)(z) = —Ap = —¢”(z). It is a hermitian operator. The set ¢ (z) =
V2sin (jmz), j > 1, is an orthonormal basis of L2[0, 1] and since Tpy? = j*m*y?,
by Theorem 2.2.10, it follows that Tp is essentially self-adjoint and the spectrum
of its unique self-adjoint extension T'p is {j272 : j > 1}; all eigenvalues are simple.
See Example 4.4.3.

Ezample 2.3.6. [Free particle energy in the “box” [0, 1] with Neumann boundary
conditions] Here H = L2[0, 1]. Set dom Ty = {¢ € C?[0,1] : ¥/(0) = /(1) = 0}
and (Tn¢)(x) = —¢"(x). Tt is a hermitian operator. The set ¢ (z) = 1, ¥} (z) =
V2 cos (jmz), j > 1, is an orthonormal basis of L?[0, 1] and since Ty ¢ = j2my),
Vj, it follows that Ty is essentially self-adjoint and the spectrum of its unique self-
adjoint extension Ty is {j272 : j > 0}. All eigenvalues are simple.

Ezample 2.3.7. [Free particle energy in the “box” [0, 1] with periodic boundary
conditions] Here H = L2[0,1]. Set dom Tp = {¢p € C?[0,1] : ¥(0) = (1), ¥'(0) =
¢'(1)} and (Tpy)(z) = —1p"(x). It is a hermitian operator. The set o] (x) =
exp (j2miz), j € Z, is an orthonormal basis of L2[0, 1] and since sz/)f = 45°m? §V7
it follows that T'p is essentially self-adjoint, the spectrum of its unique self-adjoint
extension Tp is {45272 : j > 0} and, except the zero, each eigenvalue has multiplic-
ity 2. This multiplicity can be understood physically: the case of periodic boundary
conditions means the particle is in fact on a circumference, so that given a nonzero
energy value it can be reached by either clockwise or counterclockwise rotations,
so the multiplicity 2. For a description of T'p see Exercise 4.4.4.

Ezample 2.3.8. The operator T': dom TpNdom T — L?[0,1] (see Examples 2.3.5
and 2.3.6), (Ty)(z) = —¢"(z), is hermitian (its domain is dense in the Hilbert
space since it contains C§°(0,1)) and has at least three different self-adjoint ex-
tensions: Tp, Tn and Tp.

Let I C R be an interval and ¢(¥) the kth derivative of the function ¢ : I — C;
the space of absolutely continuous functions on every closed bounded subinterval
of I is denoted by AC(I). Recall that 9 belongs to AC(I) iff it can be written in
the form

ve) = vie)+ | “o(s)ds,  cel, gL (D),

and a.e. ¥'(z) = ¢(z), i.e., the fundamental theorem of calculus holds. Such func-
tions map sets of zero Lebesgue measure into sets of zero Lebesgue measure. In
case of a bounded closed interval I = [a, b] one has ¢’ € L'[a,b] and ¢ € Ca, b].

For m € N, recall the Sobolev spaces H™(I) (more details appear in Sec-
tion 3.2; in this sense the discussion here could be considered premature, but
important for applications), which consists of all ¢ € L2(I) obeying ®*) ¢
AC(I)NL3(I) for k = 0,1,...,m — 1 and (™) € L2(I). The spaces H™(I) are
Hilbert spaces with the norm

Wl = (Z |I¢(’“)Il2>
k=0
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and ¢ € C(I), so that 1 is bounded and, when applicable, lim, .+ ¥(z) = 0.
Furthermore, for ) € H™(I) the above derivatives 1(*) coincide with the corre-
sponding distributional (also called weak) derivatives.

An important property of absolutely continuous functions 1, ¢ is the inte-
gration by parts formula

b b
/ b(s)¢(s) ds = Y (b)p(b) — (a)p(a) —/ V' (s)p(s) ds

The failure of the integration by parts formula is related to the existence of strictly
monotone continuous functions for which the derivatives vanish almost everywhere;
consequently, for H™ it is not enough to ask for functions in L? with derivatives
in L2, and distributional derivatives must be invoked.

As a rule, the rudiments of distributions are assumed to be known. In any
event, it is worth presenting the following fundamental uniqueness result.

Lemma 2.3.9. Let I = (a,b) C R be an open interval (—oo < a < b < o0) and u a
distribution acting on C§°(I) with derivative v’ = 0. Then u is constant.

Proof. Note first that if (;5 € C§°(I), then its primitive ®(x) = f o(t)dt also
belongs to CG°(I) iff [, ¢(t)dt = 0. Recall that (see Sectlon 3 2) v/ = 0 means
(@) == —u(¢') = 0 for all gb e Cg°(I).

Pick ¢ € Cg°(I) with [, ¢o(t)dt = 1, and for each ¢ € C§°(I) consider

b= (/Iqb(t)dt) bo.

Since ¢ € C3°(I) and [, ¥(t)dt = 0 it follows that this function is the derivative
of an element of Co () and SO

0= u(w) = ute) - ( / o(1) dt) u(do).

Therefore, for any ¢ € C§°(I), = [iu ;U t) dt and u is represented by the
constant function u (). O

Remark 2.3.10. a) From the above proof and discussion it should be clear that,
in open intervals in R, the derivative of a distribution u is a locally integrable
function iff u is represented by an absolutely continuous function.

b) Lemma 2.3.9 has a natural generalization for connected open subsets
of R™: if a distribution u has partial distributional derivatives at all points of €2,
that is, 7“ =0,1<j <n, then u is constant.

Ezample 2.3.11. [Momentum operator on R] Let dom Py = C§°(R) C H = L?(R),
(Po)(z) = —iy)/(z), ¥ € dom Py. An integration by parts shows that P is
hermitian. Accept, for a moment, that dom P = H'(R) and Pju = —iu', u €

HY(R).
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Another integration by parts shows that Py is hermitian. Then (see The-
orem 2.1.24c)) Py C P C P;* = Py; denote P = Py. From the first inclusion
FPi* =P C P and so P = Fy* = F§, concluding that P is self-adjoint and so Py
is essentially self-adjoint. The operator P is the quantum momentum operator for
a particle in the line R.

Now we will check the claims about the adjoint Pj. If u € H!(R), a direct
verification implies that v € dom Py and Pju = —iu/; indeed, if ¢ € dom Py its
support is contained in an interval (a,b), consequently

b
<MBWO=/EKEFWK®ﬁh

Now let u € dom Fj; set w = Pju and W(z) = [ w(t)dt, which is abso-
lutely continuous in any bounded interval (—m m) C R. If 1/1 E C§°(—m,m), then
an integration by parts gives us

<UaP01/J> = <P5Ua¢> = <w7¢>
=/'<><w<»m—/ w@)y(z) de

— W(m)u(m) - W(=m) / W) (@) da

/ W (z)yY'(z) dx.

Hence, [ (W (z) +iu(z))y/(z)dz = 0 for all ¢ € C§°(—m,m) and, by Lem-
ma 2.3.9, y(x) = W(z)+iu(z) is a constant function in (—m, m); m being arbitrary,
y(x) is constant in all R. Therefore, u is absolutely continuous in any bounded
interval and 0 =y’ = W' 4 iv’ = Pju + tu, so that Pfu = —iu.

Ezercise 2.3.12. By using P as in Example 2.3.11, compute the deficiency sub-
spaces K_ and K, and show explicitly that n,. = n_ = 0. Conclude again that
Py is essentially self-adjoint.

Ezercise 2.3.13. Verify that the operator dom Py = S(R) C L2(R), with the
action (Poy)(z) = —iY'(x), ¥ € dom Py, is essentially self-adjoint and its unique
self-adjoint extension is the same operator P obtained in Example 2.3.11.
Ezample 2.3.14. [Momentum operator on [0,1]] Let dom P = C§°(0,1) C 'H =
L2[0,1], and (Py)(z) = —iy'(z),9 € dom P. An integration by parts shows that
P is hermitian. By following the lines of the argument used in Example 2.3.11 it
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can be shown that dom P* = H1[0,1] and (P*¢)(z) = —i’(z), € dom P*. The
next step is to calculate its deficiency indices n.

ny: if w € N(P*+4141), then —iu’ = —ju and, since u is a continuous function
this equation implies that it is also continuously differentiable, so u(x) = ce®, for
some constant c; thus ny = 1.

n_:if u € N(P* —41), then —iu’ = iu and, since w is a continuous function,
u(z) =ce ®, and n_ = 1.

Therefore n_ = n4 =1 and P has infinitely many self-adjoint extensions.
Exercise 2.3.15. Verify that the closure of P in Example 2.3.14 has the same action
but with domain {¢ € H?[0,1] : ¥(0) = (1) = 0}.

Ezample 2.3.16. This is P in Example 2.3.14 revisited. Now the deficiency indices
will be obtained by computing (rng (P £ 41))*, that is, with no explicit need of
the adjoint operator. The idea can be adapted to other situations. Let

dom P = C5°(0,1) C 'H = L2[0, 1],

(PY)(x) = —i)'(x),1 € dom P. An integration by parts shows that P is hermi-
tian.

If ¢ € rng (P + i1), then there is ¢ € dom P so that

—i% iy = ¢

—XT

Clearly ¢ € C§°(0,1). After multiplying by the integrating factor e

der),
S @) =i o(),

, one gets

and since 1 has compact support fol e T¢(z)dx = 0. Conversely, if ¢ € C§°(0,1)
satisfies this latter condition, then ¢ (x) = ifoz e(==t) ¢(t)dt belongs to dom P and
(P+1i1)y = ¢. Therefore, (rng (P +1i1))~ is the vector space spanned by e~ and
n_ = 1. Similarly one gets ny = 1. Therefore n_ = n; = 1 and P has infinitely
many self-adjoint extensions.

Ezample 2.3.17. [Momentum operator on [0, 00)?] Let
dom P = C§°(0,00) C 'H = L?[0, 00),

(PY)(x) = —iy)'(x),¢ € dom P. An integration by parts shows that P is her-
mitian. As in Example 2.3.11, it can be shown that dom P* = H'[0,00) and

(P*¢)(z) = =it/ (x),9 € dom P*.

The next step is to calculate its deficiency indices.

ny: if w € N(P* +41), then —iv’ = —iu and, as in Example 2.3.14 one gets
u(x) = ce®*. Since u ¢ H for ¢ # 0, ny = 0.
n_: if u € N(P* —i1), then —iv' = ju and u(z) = ce *; s0 n_ = 1.

Therefore n_ # n4 and P has no self-adjoint extensions!
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Ezample 2.3.18. [Free particle energy operator on R] Let dom H = C{°(R) C
L%(R), (HY)(z) = —¢" (), ¥ € dom H, which is clearly hermitian. Accept, for a
moment, that dom H* = H2(R) and H*y = —1" for ¢ € dom H*; then H* is
hermitian (check it!) so that, by Theorem 2.1.24c), H = H** = H* is the unique
self-adjoint extension of H. H is the free particle energy operator on R.

Now we will check the claims about the adjoint H*; the arguments resemble
those in Example 2.3.11. If u € H?(R) then a direct verification shows that u €
dom H* and H*u = —u”.

Now let u € dom H*, set v = H*u, V(z) = foz v(t)dt, and W(zx) =
L vtydt = [ fg v(s)dsdt. V and W are absolutely continuous in any bounded
interval [-m,m] C R. If ¢ € C§°(—m,m), then integrations by parts imply

(s ) = (. —0") = [ " @) (" (@) dz = (o, 9)

—m

[ vew@ar=- [ v @

—m

| m: W@ (z) du

so that .
/ (@) T W @) (2) dz = 0

and the distributional derivative (u(z) + W(z))” = 0. Hence there exists a con-
stant ¢; so that (u(z) + W(z)) = ¢1 in (—=m,m), so (u(z) + W(z) — c1z) =0
and there is another constant ¢y for which u(z) = =W (x) + c1x + c2. Since W and
W' =V are absolutely continuous functions and W” = v € L2(R), it follows that
u € H?(R) and H*u = v = —u".

Ezample 2.3.19. [Free particle energy operator on [0, 00)] Let
dom H = C§°(0, 00) C L]0, 00),

(HY)(z) = —¢"(x),% € dom H. Integrations by parts show that H is hermitian.
By following the lines of Example 2.3.18, it is found that dom H* = H2[0,00)
and (H*y)(z) = —¢"(2),v € dom H*. The next step is to calculate its deficiency
indices.

n_:if u € N(H* —i1), then —u” = 4u and, since u is a continuously differen-
tiable function, there are exactly two linearly independent solutions, say e(!~9%/ V2
and e’(lfi)x/‘/i; since only the latter belongs to dom H* one gets n_ = 1.

ny: similarly one gets ny = 1.

Therefore, H has infinitely many self-adjoint extensions; they are candidates
for representing the free energy operator for a particle in the half-line [0, c0). See
Exercise 4.4.15. All self-adjoint extensions of H are described in Example 7.3.1.
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Proposition 2.3.20. Let V' : (a,b) — R be a real function (potential energy) in
LZ (a,b) (oo < a < b< +00). Then the minimal operator dom H = C§°(a,b) C
H = L%(a,b) (see Example 2.3.1 and Remark 2.3.4),

(HY)(z) = —¢"(z) + V(z)¥(z), ¢ €dom H,
is hermitian,
dom H* = {4 € L*(a,b) : ¢,¢’ € AC(a,b), (=" + V) € L*(a,b)}
and
(H*Y)(z) = —¢"(2) + V(2)d(z), € dom H".

Proof. Integrations by parts show that the above set is in dom H* and that H*v
is as above for such vectors. Now let v € dom H*; then

(Hp,u) = (=¢" + Vo,u) = (6, H™u), V¢ € C5°(a,b).

Note that u, H*u € L?[a,b] C L (a,b) and since V € L2 (a,b) it follows that
Vue L, (a, b) (check this!); so, for a fixed ¢ € (a,b), the functlon

/ds/ dt ( — (Hu)(t))

and its derivative W'(x) are absolutely continuous in the open interval (a,b), and
Lebesgue a.e. W (z) = V(x)u(z) — (H*u)(x). One can thus integrate by parts to
get

b
/ dz §@)ulz) = (¢ u) = (Vé — H,u)

b
_ / dz 9(z) (H*u)(z) — V(z)u(z))

/dxqzﬁ YW (z /dm¢” (z).

Hence, 0 = f; dx ¢ (u— W) for all ¢ € C5°(a,b), so that the distributional second
derivative (u—W)"” = 0 and, by Lemma 2.3.9, u(x) = W (x) 4 c1z + ¢ for suitable
constants ci1, cp. Since W and W’ are absolutely continuous functions, then wu, u’
are also absolutely continuous in (a,b), and since W” = Vu — H*u, it follows
that —u” + Vu = H*u € L%(a,b). The result is proved. Another proof appears in
Example 3.2.16. |

Remark 2.3.21. Note the general strategy: except if there are strong reasons for
the choice of specific boundary conditions, the domain of the original hermitian
operator does not “touch” the boundary of the region (e.g., for a particle in [0, 00)
one considers C§°(0,00)), so that what happens at the boundary is left for the
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self-adjoint extensions, each one corresponding to a different physical situation. In
fact, more can be said: the self-adjoint extensions that are found are mathematical
indications of the physical possibilities (which are embodied in the choice of the
original domain of the hermitian operator).

Example 2.3.22. In the case of a sum of operators T1£ + T5€ it is possible that
neither T1¢ nor T5¢ is in the Hilbert space, but their sum is, due to suitable
cancellations! For instance, if dom 7' = C§°(0,1) C L2[0, 1],

1
To=—¢" - @qb, ¢ € dom T,

it follows that ¢ (x) = /= € dom T™* (see Proposition 2.3.20); although neither ¢
nor ¢/ (4z%) belong to the Hilbert space, one has T*1) = —¢” — 1539 = 0 € L2[0, 1],
i.e., ¥ is an eigenvector of T*. The self-adjoint extensions of this operator are
discussed in Example 7.4.1.

Exercise 2.3.23. Show that the operator P_v¢ = —it’, with domain

dom P_ = C§°(—00,0) C L?(—o00,0],

is hermitian and has deficiency indices n_ = 0 and ny = 1. Given nonnegative
integers m_,m, use direct sums of this operator P_ and P of Example 2.3.17 to
construct hermitian operators with deficiency indices n_— = m_ and ny = my.

2.3.2 Multiplication Operator

Let p be a positive Borel measure over a metric space X obeying u(F) < oo for all
bounded Borel sets £ C X. Fix a Borel set £ and let ¢ : E — C be a measurable
function; define the multiplication operator by ¢ as the linear operator (cf. the
bounded case in Example 1.1.2)

dom M, :={v € L}(E) : (¢¢) € L2(E)},
(Mpp)(x) :=p(x)(z), ¢ € dom M,,.
A very important example of a multiplication operator is the potential energy
My, with V : E — R, E C R", which will usually be denoted simply by V. The
total mechanical energy is H = Hy + V, with Hy = —A denoting the quantum

kinetic energy, after a suitable domain is provided. This H is commonly referred
to as the standard Schrodinger operator.

Proposition 2.3.24. dom M, is dense in LZ(E) and M," = M.

Proof. Let ¢ € (dom MSO)J‘ and E, = |p|~([0,n)), which is measurable. If
bn = XE, ¢, then ¢,, € dom M, and

0= (. 6n) = / 612 dp,

n
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so that p-a.e. ¢, = 0. By dominated convergence

[ 10 dn=tim [ JoPdu=0
E n—oo Jp

and so ¢ = 0; it follows that dom M, is dense in L7 (E).
Thus, the adjoint operator M, " is well defined and if f € dom M,", there
is g € L2(E) with

(/Www:/%ww:ﬁw@w:@w7 Vi € dom M.
E E

The goal is to verify that Mgf € LZ%(E). Define f, = xg,f € dom Mg =
dom M, and so [, (@fn — My" fn)dp = 0, and by taking ¢ properly one gets
Jg, [9f = My fl¢dpu = 0,50 that p-a.e. in E,, one has [, (2 fn—My" fo)ibdp =0
and (My" f)(z) = ¢(z) f(z). Therefore

f € dom My, Mof=9g=M,"f,
and Mg = M,". O
Corollary 2.3.25. M, is self-adjoint iff ¢ is a real function.

Proof. Tt follows directly by Proposition 2.3.24. It is instructive to mention an
alternative argument. Note that M, is hermitian iff ¢ is real and in this case
M 4+1)-1 is the bounded resolvent operator R;(M,), so that rng (M, +il) =
Lﬁ(E) and M., is self-adjoint by Proposition 2.2.4. O

Definition 2.3.26. The (u-) essential image of ¢ : E — C is the set of all y € C so
that p({x € E : |p(x) —y| <e}) >0, Ve > 0.

Proposition 2.3.27.

a) The spectrum o(M,,) is the essential image of .

b) X is an eigenvalue of My, iff p({e~1(\)}) > 0.
Proof. a) If A ¢ o(M,), then 0 ¢ o(M,_») and there is S € B(L2(E)) with
(SMyu_\)(x) = (x), Voo € dom M,,; for such vectors [|[9|2 < ||S]|? | My_rtp|2.
Thus

[, (i = 160 =3 ) o) due) <.

and so p-a.e. |p(z) — A > ﬁ (e.g., consider ¢ = xg, with E, = ¢~1(—n,n)),
which shows that A does not belong to the essential image of ¢.

On the other hand, if Je¢ > 0 with p-a.e. |p(z) — A| > &, then M 1 is

=
a bounded inverse of M, since M _1_¢| < 2wl V¢ € L (E); therefore
=

A ¢ o(My).

b) A is an eigenvalue of M., iff there exists an element 0 # ¢ € L2 (E) with
(o(z) =N (z)=0 a.e. iff u(p~*(N\)) >0 since one has p({z € E:(z)#£0})>0. O
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Exercise 2.3.28. Let E be a Borel subset of R"”. Show that the subspace of com-
pactly supported functions 1 € L2(E) is a core of My, acting in L7, (E).

Exercise 2.3.29. Let E be an open subset of R” and ¢ : £ — C continuous. For
M, acting in L?(R™), show that 0(M,,) = ng ¢ (the bar indicates closure).

Ezercise 2.3.30. Let ¢ denote Lebesgue measure over R and set
p=~0+61s+0_4

over R (d, denotes the Dirac measure at y, that is, for each A C R, d,(A) =1 if
y € A and 0 otherwise) and

() 2 x>0
Xr) = .
7 3 2<0

Find the spectrum and eigenvalues of M., acting in Li (R).

Ezercise 2.3.31. [Position operator on R] Let ¢ : R — R, ¢(x) = = and M, acting
in L2(R). Then M, is self-adjoint and represents the quantum position operator.
Show that M, has no eigenvalues and that its spectrum is R.

2.4 Weyl Sequences

It is possible to characterize the spectrum of some linear operators, including self-
adjoint and unitary, by means of Weyl sequences, which are especial sequences in
the operator domain that give a flavor of “generalized eigenvalue” for each spectral
point. Before defining them, it will be shown that any self-adjoint operator has
nonempty spectrum.

Lemma 2.4.1. Let T be densely defined in H.

a) If rng T is dense in H and T is one-to-one, then T* is one-to-one and
(T*)~Y = (T~Y*. In particular, if T is self-adjoint and T~ exists, then
T~ is also self-adjoint (recall tng T = H, since H = N(T) @ rng T and if
T exists N(T) = {0}).

b) If z € p(T), then R.(T)* = R=(T").

¢) IfT is closed, then o(T*)=0c(T) (here the bar indicates complex conjugation).

Proof. a) From N(T*) = (rng T)* one gets N(T*) = {0} and so T* is injective.
Since G(T*) = (JG(T))* and G(T~') = WG(T), with W (&,n) = (n, &), which is
unitary and W~! = W, one has
GUT™H") =(JG(T )" = (JWG(T))*
—W(JIGT)) = WG(T") = G(T*)),

so that (T*)~1 = (T1)*.
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b) If z € p(T'), then T — 21 is one-to-one with rng (T — 21) = H. Thus, by
a), (T — 21)* is one-to-one and
(T = 21)"Y) = (T — 1)) = (" —71)7,

that is, R.(T)* = R=(T").
) Recall that here the bar indicates complex conjugation. By b) one has
p(T) C p(T%); since T is closed, T'= T**, and consequently

p(T) C p(T7) C p(T**) = p(T).
This finishes the proof. O

Lemma 2.4.2. Let T be a linear operator in H.

a) If for zo € C the operator T — zo1 is one-to-one, then

o((T = 20) )\ {0} = {(= = 20) " 20 # 2 € o(T)}
b) If zo € p(T) then the spectral radius
1
d(z0,0(T))

Proof. a) It is enough to consider zg = 0. As motivation note that, for nonzero
z,2€C, (7t —z7 )= —2z(z—2)7L.
If z€ p(T), z# 0, then V€ € H,

(T = 27"1)2TR.(T)¢ = —(T — 21)R.(T)¢ = —¢,

ro(R(T)) =

and for T¢ =n € dom T~! = rng T one has
2TR(T) T =271 =TR.(T)(21 - T)¢ = —T¢ = —.

Hence Ry/,(T~') = —2TR.(T) = —z*R.(T) — z1, which is an operator in B(H).
Therefore 2= € p(T~1). Similarly one gets the other inclusion; the statement on
the spectra follows.

b) The result follows at once from a) after recalling that: r, (R, (T)) =
sup{|z|: 2 € 0(R,(T))} and d(z0,0(T)) = inf{|z — 20| : z € o(T)}. O

Ezercise 2.4.3. If 0 # z is an eigenvalue of T, show that 2! is an eigenvalue of
7%

Theorem 2.4.4. Fvery self-adjoint operator has nonempty spectrum (see also The-
orem 8.2.14).

Proof. Let T be self-adjoint. o(T) C R by Theorem 2.2.17. If 0 € o(T'), then there
is nothing to prove. If 0 ¢ o(T), then T is one-to-one, onto H and 0 # T~ ! =
Ro(T) € B(H). So o(T~!) # (0 and there is 0 # X\ € o(T~!) (X € R, since T~!
is also self-adjoint). By Lemma 2.4.2, A=! € o(T) and so the spectrum o(T) is
nonempty. O
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Corollary 2.4.5. If T is self-adjoint and z € p(T'), then

_ 1
1= G0y

Proof. Since R,(T)* = Rz(T), it follows from the first resolvent identity, Proposi-
tion 1.5.9, that R.(T") is a normal operator. Then, by Proposition 2.1.12,
IR.(T)|| = ro(R.(T)). Apply Lemma 2.4.2b) to conclude the equality in the
corollary. In Chapter 9 this result will also be derived as a consequence of the
spectral theorem. O

Ezercise 2.4.6. If T is not hermitian the inequality ||Rx(T)| < 1/d(X, o(T")) may
fail already in the Hilbert space R2. Conclude this by considering the operator
represented by the matrix
Oa
Ta - |:0 0:| bl

whose spectrum is o(T,) = {0}, Va € R, and, for fixed 0 # A € R, show that
|RA(T,)|| — oo as a — oo.

| R-(T)

Definition 2.4.7. Let T be a linear operator in H. A sequence (§,) C dom T is a
Weyl sequence for T" at z € C if

n—oo

A direct verification shows that if 7" is closed and the Weyl sequence (,,) at
z converges to &, then ||€]| =1 and T¢ = z&, so that z is an eigenvalue of T'. Thus,
if there is a Weyl sequence for T at z one interprets z as a generalized eigenvalue;
this is supported by Theorem 2.4.8 and Corollary 2.4.9.

Theorem 2.4.8. Let T be a linear operator in H so that both sets p(T') and o(T)
are nonempty. Then:

a) If there exists a Weyl sequence for T at z € C, then z € o(T).
b) If z belongs to the boundary of o(T') in C, then there exists a Weyl sequence
for T at z (since the spectrum is closed, z € o(T)).

Proof. a) Let (&,) be a Weyl sequence for T at z. If z € p(T') then
L= [lgall = [[R=(T)T = 21)&n | < [|R(T)I(T = 21)&nll;

since the right-hand side vanishes for n — oo, z ¢ p(T).

b) Let (zy,) C p(T') with z,, — z € o(T'). By Corollary 1.5.15, || R, (T)|| — oc;
so there exists a sequence (n,) C H with ||n,] = 1, Vn, and ||R., (T)n,| — oc.
Define ¢, = /|| Rz, (T)nn] and &, = R, (T)¢n; 50§ — 0asn — 00, &, € dom T
and ||&,]| = 1, ¥n. Now, since for n — oo one has

(T' = 21)&, = (T — 2 1)&n + (20 — 2)én = Cn + (20 — 2)én — 0,

it follows that (&,) is a Weyl sequence for T" at z. O
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Corollary 2.4.9. X belongs to the spectrum of a self-adjoint or unitary operator iff
there exists a Weyl sequence for this operator at .

Proof. If the operator is self-adjoint its spectrum is real (Theorem 2.2.17); if it is
unitary its spectrum belongs to the unit circumference in C (Proposition 2.2.21).
In both cases all points in the spectrum are also boundary points. Apply Theo-
rem 2.4.8. g

Ezample 2.4.10. Let P, dom P = H!(R), be the momentum operator on R dis-
cussed in Example 2.3.11. This operator has no eigenvalues; indeed, if A € R (recall
that its spectrum is real) satisfies

(Po)a) = ~92 @) = @), weH'®),

then ¢(z) = ce’*, which belongs to L#(R) iff ¢ = 0; however, by “cutting off”
such v, it will be possible to determine the spectrum of P. It should be noted that
the “cutting off” that follows is a usual procedure.

Now fix A € R and let ¢(z) = (2/7)/4e~"; then 1 = ||¢|2 = Jz |o(x)|? da.

For each n set 1
_ { AT
gn(I) - \/ﬁ¢ (TL> € I

which belongs to dom P and ||&,|| = 1. Since

1
| P& — N ||? = —~ /R |/ (t)|? dt

which vanishes as n — co. Then (&,,) is a Weyl sequence for P at A, and A € o(P).
Therefore, o(P) = R and it has no eigenvalues.

Ezample 2.4.11. Let ¢ : R — R, g(x) = x be the position operator on R (see
Exercise 2.3.31; here an alternative solution to that exercise is discussed). If A € R,
for each n set Ja
n 2 2
_ —n“(z—N)
gn ('T) - 7_‘_1/4 € ?

which belongs to dom My, [|€,]|?> =1 and

1 L
”qgn _)\gn”2 = ﬁnQ / $26 d.’E,
R

vanishes as n — oo, then (&) is a Weyl sequence for g at A. Therefore, o(M,) =R

and it is easy to check that it has no eigenvalues.

Example 2.4.12. If T is a bounded self-adjoint operator so that 72* = 1, for some
k € N, then o(T) C {z € C: 2?) = 1}. In fact, if k = 1 and (&,) is a Weyl sequence
for T at z, then

(1-2%1)6, = (T? = 2°1)&, = (T + 21)(T — 21)&,
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that vanishes as n — oo iff 22 = 1, since [|£,]| = 1. For k = 2 write (1 — 241) =
(T?+221)(T?% — 2%1) = (T?+21)(T +21)(T — 21) and invoke the same argument.
Use induction for the general case.

Recall that the Fourier transform F : L2(R") « (see Section 3.1) is a unitary
operator and F* = 1, s0 o(F) C {i,—i,1,—1} (in fact the spectrum of F is exactly
this set, since it is possible to exhibit eigenvectors of F for each complex quartic
root of 1; try the eigenvectors of the harmonic oscillator).

Exercise 2.4.13. Show that if T is self-adjoint, then A is an eigenvalue of T iff the
closure rng (T — A1) # H.

Ezercise 2.4.14. Let T be self-adjoint. Show that the following assertions are equiv-
alent:

a) z € p(T).

b) g (T — 21) = H.

¢) dec > 0 so that ||(T — 21)¢|| > ¢||€||, V€ € dom T
Exercise 2.4.15. Let T be self-adjoint. Use Exercise 2.4.14 to give an alternative
proof that A € o(T) iff there is a Weyl sequence for T at .

Definition 2.4.16. A hermitian operator T is lower bounded, also called bounded
from below, if there is 8 € R so that (£, T¢) > B||€]|?, V€ € dom T this will be
denoted by T' > B1 and such g is called a lower limit or lower bound of T'. In case
B = 0 the operator T is also called a positive operator.

Exercise 2.4.17. Let T be self-adjoint with T' > 51. Use Weyl sequences, or Exer-
cise 2.4.14, to show that o(T") C [8, x0).

Exercise 2.4.18. If T is self-adjoint or unitary, show that

o(T) C{(,T¢) : § € dom T, [[¢]| = 1}.

2.5 Cayley Transform II

The main goal of this section is to prove Theorem 2.2.11. To reach this, a more
detailed study of the Cayley transform will be performed.

Lemma 2.5.1. Let T be hermitian and the isometry U(T) its Cayley transform
(Definition 2.2.1).
a) U(T) is unitary (with dom U(T) =rng U(T) =H) iff T is self-adjoint.
b) If rng (1 — U(T)) is dense in H, then (1 — U(T)) is one-to-one (so 1 is not
an eigenvalue of U(T)). Note that this holds for any linear isometry.
c) U(T) is closed iff T is closed.
d) S is a hermitian extension of T, i.e., T C S iff U(T) C U(S).

Proof. Write U = U(T).
a) Straight from Proposition 2.2.4.
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b) Suppose £ — U& = 0. Then, for any n € dom (1 —U)

so U¢ = 0 in case rng (1 —U) is dense in H; since || UE|| = ||£]| it follows that & = 0
and 1 — U is one-to-one.

c¢) Since U is an isometry, then it is a closed operator iff its domain and range
(i.e., rng (T'+i1)) are closed subspaces iff G(T) is closed (recall that ||(T£i1)¢|| =
I¢llo).

d) Denote by Z : H x H « the one-to-one map Z(n,£) = (£ + in, & — in).
Thus, for any hermitian operator S one has

GU(S)) ={((S +i1)n, (S —il)y) : n € dom S}
={(+m,&—in): (0,€) € G(5)} = EG(S).

Hence, for hermitian operators T',.S one has G(T') C G(S) iff G(U(T)) C G(U(95)).
g

Proposition 2.5.2. If T is hermitian in H, then rng (1 — U(T)) = dom T, (1 —
U(T)) is injective and

T=i1+UT)Q-U(T) "
Hence rng T =rng (1 + U(T)).
Proof. Write U = U(T). One has

mg (1-U)={(—-Uf: £ €dom U=rng (T +1i1)}
={(T+il)yn— (T —il)n=2in:n € dom T} = dom T.

Since dom T is dense, Lemma 2.5.1b) implies that (1 — U) is one-to-one.
Now for £ € dom T, if n = (T'+i1)¢, then Un = (T —i1)¢,

1-U)n=2i and 1+4+U)n=2T¢.

Hence

2TE =1+ U =2i1+U)1-U)"Y,  VEc€domT,
and T¢ = i(1 + U)(1 — U)~1¢. This concludes the verification. O
Corollary 2.5.3. If S and T' are hermitian operators in H, then S =T iff U(S) =
U(T).

Exercise 2.5.4. Prove Corollary 2.5.3.

Proposition 2.5.5. Let Y be a linear isometry between dom Y C 'H and its range
inH. If rng (1 —Y) is dense in H, then Y is the Cayley transformY = U(T) of
a hermitian operator T :1ng (1 —Y) —rng (1 +Y).
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Proof. Since rng (1 —7Y) is dense in H, by Lemma 2.5.1 (1 —Y) is one-to-one and
the operator

T:=i1+Y)1-Y) " :mg(1-Y) —mg (1+Y)

is well posed and with dense domain. It will be checked that T is hermitian and
Y is its Cayley transform.

For £,1 € dom T, there exist 171,£1 € dom Y obeying n = (1 — Y)n; and
E=(1-Y)&. Then,

(Tn,§) =1 +Y)m,(1-Y)&)

=i ((m, &) + (Y, &) — (m, Yé) — (Y, V)
i((m,Y&) — (Y, &)
i ((m, Yé1) — (Y, &) + (m,61) — (Y, Yé))
(@ =Y)m,i(1+Y)&) = (n,TE),

and 7T is hermitian.
By definition, for £ = (1 —Y)&;, £ € dom T, one has T = (1 + Y)&. A
direct computation leads to

Y(T+i1)§=Y(i(& +Y&) +i& —iY &) =26
=iY& +iY6a =i(Ya + &) +i(Yéa — &)
so that Y((T' 4+ i1)§) = (T —i1)¢, V¢ e dom T, and Y = U(T). O
Corollary 2.5.6. Let T' be a hermitian operator.

a) There is a one-to-one correspondence between hermitian extensions of T and
isometric extensions of its Cayley transform U(T).

b) There is a one-to-one correspondence between self-adjoint extensions of T
and unitary extensions of its Cayley transform U(T).

Proof. a) Let S be a hermitian operator. By Lemma 2.5.1 one has T C S iff
U(T) Cc U(S). If Y is an isometry with U(T) C Y, then rng Y is dense in the
Hilbert space and, by Proposition 2.5.5, Y = U(R) for some hermitian operator
R. By the proof of Lemma 2.5.1d) one has T' C R.

b) It follows directly by a) and Proposition 2.2.4. O

The time is ripe for concluding Theorem 2.2.11.

Proof. [Theorem 2.2.11] a) The inner product in question is

& mr- = (&) + (T T™y), & nedomT™;

see Exercise 1.2.28. Clearly one has {dom T, K_,K_} C dom T™*.
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o If ¢, e Ky =Ky (T) and - € KL =K_(T), then

(€4r 60 = (€4, 6-) +(T764, T7E)
= <§+7£—> + <_Z§+7Z§—> = Oa

so, with respect to this inner product, Ky L« K_.
o If £ € dom T and &4 € K (similarly for £- € K_), then

<§7§+>T* = <§7§+> + <T*53T*§+> = <£a§+> + <T§7 _Z£+>
=(,&4) + (& —iT7E¢4) = (§,€4) +(§, —&4) = 0.

Hence, K+ L7« dom T.

o Let ¢ € (dom T)*7*. Then, for all n € dom T one has 0 = (&, )+ =
(&,m) + (T*E,T*n), so that (T*¢, T*n) = (—&,n). Hence, T*¢ € dom T* and
T*(T*¢) = —¢, which is equivalent to

(T 4+41)(T* —i1)§ =0 = (T™ —i1)(T™ +i1)¢.
Therefore, (T* —i1)¢ € Ky and (T* +41)¢ € K_. Since

£= [T +in)e— (1" —in)e),

one has (dom T)+7* C K; @7~ K_ and, due to T* being closed,
(dom T)*7*+r* =dom T = dom T C dom T*
(the closure dom T with respect to the graph norm of 7*) and item a) follows.

b) and c¢) The Cayley transform U(T) is an isometry and it has unitary
extensions from H onto H iff dimrng (T'+i1)* = dimrng (T —il)", i.e., iff n_ =
n4. There is exactly one extension iff n_ =n4 =0, i.e., the case U(T) is densely
defined and with dense range, so a single unitary extension exists; otherwise there
are infinitely many of them. The other assertion follows directly by Corollary 2.5.6.

O

Ezercise 2.5.7. Let T be a hermitian operator. Show that the closure of dom T
with respect to the graph norm of 7* is dom T'.

Proposition 2.5.8. Let T be hermitian and K4 its deficiency subspaces. If U :
dom U C K_ — rng U C Ky is a linear isometry, then the corresponding hermi-
tian extension Ty of T, associated with Y = U(T) @ U (see Proposition 2.5.5), is
given by

dom Ty ={§+ & —UE :E€dom T, £ € dom U},
Tu(E+E& —UE) =T (E+ & —US) =TE+i& +ildE.
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Proof. The map
Y :mg (T'+il)®dom U — rng (T —il) ®rng U,

Y =UT)alU,

is the Cayley transform of a hermitian operator Ty, that is, Y = U(Ty). Since
T C Ty, by Theorem 2.1.24a), one has Ty C T*. Thus

dom Tyy=rng (1 —-Y) =rng (1 — (U(T) &1+ U))
={(1 = (U(T) ®r- U))(TE+i€) Br- &) : £ € dom T, & € dom U}
={(T¢+i&) &7 &~ — (T€ —i&) - UE-)
:&edom T,¢_ € dom U}
={2i€+¢ - UL edom T,¢_ € dom U}

which is the set in the statement of the proposition (and dense in H). Thus, for
vectors in this domain, since Ty C T,

Tu(€+& —UE) =T (E+ & —UE)
=TE+ T — T UE
=TE¢+i6 +ilde_,

as claimed. O

If T is hermitian and U : K_ — K is unitary onto K, then the subsequent
self-adjoint extension T, has domain

{e+6 —Ut cedmT & €K}

Certainly, in applications it may be interesting to have the closure T' at hand.

Exercise 2.5.9. By following the notation in Proposition 2.5.8, show that if
dimdom U < oo, then

nt (Ty) = ns(T) — dimdom U.

Exercise 2.5.10. Let T be self-adjoint in H. Use that in the graph norm of T" the
operators T+ i1 are unitary, to show that a subspace D C dom T is a core of T'
iff D is dense in dom 7" with respect to the graph norm of T

Ezercise 2.5.11. If T is hermitian and closed with n4 # 0 and n_ = 0 (or vice
versa), show that T has no proper hermitian extensions.

Ezercise 2.5.12. Let T be a hermitian operator. Show that A is an eigenvalue of
T iff (A —14)/(A+ 1) is an eigenvalue of U(T).

Ezercise 2.5.13. Let T be hermitian and T > (1. Show that if the vector space
rng (T — A1) is dense in H for some A < [, then T is essentially self-adjoint.
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Exercise 2.5.14. Show that the mapping

T—1
T z=——0)
T+
is a one-to-one relation between R and {1 # z € C: |z| = 1} whose inverse is

z+1
Z—x=—1 .
z—1

Take this as another motivation for the definition of Cayley transform, giving rise
to a one-to-one relation between self-adjoint and unitary operators for which 1 is
not an eigenvalue.

2.6 Examples

Example 2.6.1. Let A C R™ be an open set and ¢ : A — R a Borel function. Con-
sider the multiplication operator M., (see Subsection 2.3.2); its Cayley transform
is U(M,) = M, with function 7 : A — {z € C: |z| = 1} and action

Since |7(z)| = 1,Vx, M, is a unitary operator and thus M, is self-adjoint. Check
the details.

Ezample 2.6.2. Let H = [*(N) and S, : H < the right shift

ST(§17£2a§3a . ) = (07517527&% s )

Since S, is an isometry and rng (1 — S,.) = H, by Proposition 2.5.5 there is
a hermitian operator T, so that S, = U(T,). In view of dom U(T,) = H and
dim(rng U(T;.))* = 1, it follows that n(7,) = 1 and n_(T},) = 0. Therefore, 7).
has no self-adjoint extensions.

Ezample 2.6.3. This is a standard example for which the role of boundary condi-
tions is apparent. Let H = H[0, 1], dom P, = H![0,1], dom P, = {¢) € H![0,1] :
¥(0) = (1)}, dom P53 = {h € H[0,1] : 9(0) = (1) = 0}, and

dip

(Pjy)(z) = —z%(x), Y edom Py, j=1,2,3.

Ezercise 2.6.4. Show that Py, P, and P3 are closed.
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If g € dom P; C ‘H'[0,1], then for all ¢ € dom Pj, on integrating by parts
one gets the relation

(g, i) = / 7@ (—iv/ (@) de

1
= =i (s00(1) = 00 0)) + [ =iy vta) da
=i (9(e(1) — g(Ow(0)) + (~ig, ).

For self-adjointness the boundary terms must vanish, i.e., the following key relation
must hold true

g(L)Y(1) = g(0)¥(0).

For j = 1 such a relation must hold for all ¥ € H[0,1], so g(0) = g(1) = 0, i.e.,
Pj = P5. Conversely, for j = 3 this relation must hold for all ¢(0) = (1) = 0,
so no boundary condition is imposed on g and Py = P;. For j = 2 it is found
that ¢ must satisfy the same boundary condition as %, that is, g(0) = g(1), so
that P; is self-adjoint; it has “well-balanced” boundary conditions. Note that P
is a self-adjoint extension of P35 and that P; is not hermitian, since P; is a proper
extension of its adjoint Ps.

Ezample 2.6.5. This is Example 2.3.14 continued, i.e., momentum on an interval.
It has become a standard and remarkable illustration of self-adjoint extensions
in quantum mechanics. It is, however, convenient to work with its closure (Exer-
cise 2.3.15) dom P = {¢p € H?[0,1] : ¢(0) = ¢(1) = 0} and

(Py)(x) = —i%(m), ¥ € dom P.
Note that the same notation was kept for the operator closure. Its adjoint is
dom P* = H0,1], P*g = —ig’. The point here is to classify all self-adjoint
extensions of P.

First natural conditions for self-adjointness can be reached by inspection of
the relation g(1)1(1) = g(0)¥(0), as in Example 2.6.3. For a self-adjoint extension
the same conditions must be imposed on both, ¢ and g; rewrite such key relation
so that it becomes evident that there is a complex number « obeying

g(1)  ¥(0)

= = q,

g(0) (1)
that is ¥(0) = (1) and g(1) = ag(0). The latter relation is g(0) = g(1)/@, and
the same condition on ¢ and g is obtained if a = 1/@, or |a|*> = 1, that is, if
a = €% for some 0 < § < 2. As expected, one readily checks that the operators

dom P? = {4 € H'[0,1] : o(0) = (1)}, Py = —iy/,
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are actually self-adjoint. Note that the self-adjoint operator P, in Example 2.6.3
corresponds to 6 = 0.

Arguments using the extensions of the Cayley transform are as follows. The
vector spaces K, (P) and K_(P) are spanned by the normalized vectors

2 2

u+(@) =\ g e u_(z) =

—T

1—e2° 7

respectively, so that ny = n_ = 1 (see Example 2.3.14). All unitary maps U of
K_ onto K4 have the form u_ — e®uy, 0 < w < 2m, i.e., Yu_ = e uy, so that
for each w a self-adjoint extension P, is associated, and by Proposition 2.5.8,

dom P, = {¢ + c(u_ — e™uy) : ¢ € dom P, c € C},
and for g = ¢ + c(u_ — e™uy) € dom P, one gets the expected expression
(Pog) = i)' + cP*u_ — ce™ P*u,
= —it)' +icu_ +ice™u,
=—i(Y +clu_ —e“uy)) = —ig'.

Now note that there is a unique 0 < § < 27 so that for all g = ¥ +c(u_ —e™uy) €
dom P,
Cg(l)  1—eve 4
S 9(0)  e—e
because |k| = 1. Therefore the relation between P, and P? has been uncovered.
Such operators P? (alternatively P,) constitute all self-adjoint extensions of P.
This finishes the example.

)

Ezercise 2.6.6. Show that all points of the complex plane are eigenvalues of the
adjoint operator P* in Example 2.6.5; conclude then that it is not hermitian and
so P is not essentially self-adjoint.
Example 2.6.7. Consider again the free particle energy operator from Exam-
ple 2.3.18: H = —d*/dx? on R, dom H = H?(R). Introduce the function ¢(z) =
(2/m)/4e=*". Given A > 0, for each n set

— 1 £ izVA

&nle) = =0 (1) e

n

)

so that ||&,]| = 1, &, € dom H, and, after some manipulations,

" Q\F "
= &" =Ml < f||¢||+ 3/2||¢ I

which vanishes as n — oo; thus (&,) is a Weyl sequence and A € o(H) by Corol-
lary 2.4.9. Since the spectrum is a closed set, [0,00) C o(H). To deal with A < 0,
note first that (Hv, ) = (',4') >0, Y4 € dom H; so,
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and, by Exercise 2.4.14, it follows that A € p(H) if A < 0. Therefore, o(H) =
[0, 00).
Ezample 2.6.8. [Free particle energy operator on [0, 1]] Let

dom H = C§°(0,1) C L2[0, 1],

(Hy)(x) = —¢"(x),v € dom H. Integrations by parts show that H is hermitian.
By following the lines of Example 2.3.18, it is found that dom H* = H?[0,1] and
(H*yY)(z) = —¢"(x), ¥ € dom H*. For its deficiency indices one has:

n_: if uw € N(H* —il1), then —u” = du and, since u is a continuously
differentiable function, there are just two linearly independent solutions, e.g.,
ul (z) = e=97/V2 and w2 (z) = e~ (1=92/V2; gince both belong to H one gets
n_ =2

ny: similarly one gets ul (z) = e(+D*/V2 42 (z) = e~ (F1D#/V2 and since
both belong to H one gets ny = 2.

Therefore, H has infinitely many self-adjoint extensions; they are candidates
for representing the free energy operator for a particle on the half-line [0, 1]. All

such extensions are described in Example 7.3.4; for particular instances see Ex-
amples 2.3.5, 2.3.6 and 2.3.7.
Ezample 2.6.9. Let v : R «= be a continuous function, dom 7' = C}(R) C L2(R)
and )

(T0)(x) = i (@) +vo(a)b(a), b edom T,
An integration by parts shows that 7' is hermitian. Arguing as in previous examples
leads to dom T* = {¢) € HL(R) : (—iy)’ + vep) € L2(R)} and

d
(T*9)(@) = i (@) + o(@)p(e), ¥ € dom T*.
Now one can either compute the operator deficiency indices n_ = ny = 0 or note

that T is hermitian, in order to conclude that 7' is essentially self-adjoint and
T = T* is its unique self-adjoint extension.

Next let V(z) = [ v(t)dt and U = e”V@ e, U= M, ivw), a unitary
operator, for which U* = ¢?V(®) If P = —id/dz, dom P = H'(R), is the momen-
tum operator on R (Example 2.3.11) one readily checks that U*dom T = dom P
and N N

U*TUY = Py, ¥ € dom T.
Therefore, by Exercise 2.1.26, one finds o(T) = o(P) = R. The latter equality
follows from Example 2.4.10.
Exercise 2.6.10. Check that T in Example 2.6.9 is essentially self-adjoint.
Example 2.6.11. Let H = L?(R?). The initial quantum energy (Schrodinger) op-
erator for the hydrogen atom is

H:_A—”%”, dom H = C5°(R%) C H.
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By Proposition 2.2.16 H has self-adjoint extensions. In the 1950’s Kato proved that
this prominent operator is essentially self-adjoint; its unique self-adjoint extension
has the same action with domain H2(R?). Details are described in Example 6.2.3.

Ezercise 2.6.12 (Free Dirac energy operator). Let I be an interval in R, dom Dy :=
Cg°(I;C?) C L3(I;C?) and

(oo(2)) = (i =) () o

with m representing the mass of the particle and ¢ the speed of light. The ad-
joint operator D{ has the same action as Dy but with dom Dy = H'(I;C?)
(see [BulT90]). Show that Dy is hermitian and find K4 (Dp) to conclude that
ng=n_=0ifIT =R, ny =n_=1ifI =[0,00) andny =n_ =2ifI'isa
bounded closed interval.



Chapter 3

Fourier Transform and
Free Hamiltonian

The standard free energy and momentum operators are also properly defined in R™
through Fourier transform. It is also an opportunity to briefly discuss some aspects
of Sobolev spaces and related differential operators. The definitions of distributions
C§°(2) and tempered distributions S'(€2), as well as their derivatives, are also
recalled.

3.1 Fourier Transform

Fourier transform is a very useful tool in dealing with differential operators in
LP(R™), with especial interest in p = 2. So some of its main properties will be
reviewed and summarized in the first sections, including its relation to Sobolev
spaces. Few simple proofs will be presented. Applications to the quantum free
particle appear in other sections. Details can be found in the references [Ad75]
and [ReeS75]; a nice introduction to distributions and Fourier transform is [Str94].
Readers familiar with the subject are referred to Sections 3.3 and 3.4, which discuss
some (quantum) physical quantities.

Recall that the Fourier transform F = ": L}(R") — L?(R") is a unitary
operator onto L?(R™). This is known as the Plancherel Theorem, and it implies
the Parseval identity

1Fllz = 1]l Vo € LAR™).

Note the two notations for the Fourier transform Fy = 1& For functions v €
L!(R") there is an explicit expression for this transform, that is,

[ etmiw s

F)0) = s
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with p = (p1,...,0n),x = (21,...,2,) € R” and pzx = Z; 1Djxj, i.e., the usual
inner product in R™. Denote the norm [z = (37_; 23)"/2 and 2* = Y7 a3
Similarly for the variable p.

Besides the use of variables x and p, sometimes it is convenient to distinguish
L2(R") from FL2(R™) by denoting the latter by L2(R™); functions ¢ and opera-
tors T acting in LQ(R") are said to be in the position representation, while the
corresponding ¢ and T := FTF ! acting in L2(R™) are said to be in the momen-
tum representation; see Section 3.4 for illustrations that justify the nomenclature.

The inverse Fourier transform F~'L2(R™) = L2(R") has the expression, for
¢ € L'(R"),

1

(F)@) = 6(0) = ooy

[ oot
R’n

again with two different notations. These expressions hold, especially, for functions
in the Schwartz space

§=S®") = {veC*®R"): lm_ ’mmz/)(k) (x)‘ = 0,k,m},

where m = (mq,...,my), k = (k1,..., k,) are multiindices,

okt ... gkngp
dxh .. gl

o = aft a0 =

Also, |m| =mq +---+my, |k| = k1 +- - - + k, (which should not be confused with
the norm ||, |p| above) and 8;-"1/1 may also indicate

_ oMy
oz

J

o =

It is possible to show that FS = S (one-to-one). Since S is a dense subspace
of all LP(R™), 1 < p < o0, any bounded linear operator defined on this space can be
uniquely extended to LP(R™). This holds in particular for the Fourier transform,
and it is the usual road for its definition on such spaces. If p = 2 one has the
Plancherel Theorem, and so many authors consider that this is the natural space
of Fourier transforms. Instead of S it is possible to work with C§°(R™) because
this space is also dense in L2(R™) and also FC§°(R") is dense in L?(R™).

Recall the famous integral fR exp (—t?) dt = /7. A sample of Fourier trans-
form evaluations, which will be used repeated times (e.g., in the proof of Theo-
rem 5.5.1), is

2 1 2 . 2
F(e—wr—zx /2 — _— ,w/(22) jiwp/z—p /(2,2)7
( )p) = e/ ¢
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where w € C and the branch of the complex number z with Re z > 0 has been
chosen so that Re 1/z > 0. It is worth remarking that the linear subspace spanned
by all such functions

{e_“””_z‘"ﬁz/2 cw,z € C,Re z >0}

is dense in L2, and so it is a way to extend (and define) the Fourier transform to

every element of L2. Note that e’ /?isan eigenvector of F with eigenvalue 1 (pick

w = 0 and 2z = 1). More generally, one has that (F21)(z) = ¢(—x), Vip € L2(R"),

so that every even function is an eigenvector corresponding to this eigenvalue.
For computations it is also useful to invoke the limit in L?(R™)

Fo)e) = Jim o3

/ e P ap(x)dr, Vi € LA(R"),
lz|<R
which is usually denoted in the literature by

1 )

Fo)p) =tim oo [ i) d
@)% Jun

l.im. means “limit in the mean.”

Ezercise 3.1.1. Let ¢ € L2(R") and Br = {x € R" : |z| < R} a closed ball. Show
that the function ¥r = ¥xp, is integrable and so the above explicit expression
for the Fourier transform ¢ is valid. This justifies the use of Li.m. above.
Exercise 3.1.2. Find eigenfunctions of the Fourier transform corresponding to the
eigenvalues —1 and =+i.

Many utilities of the Fourier transform come from its property of exchanging
multiplication and differentiation, as in the next propositions, whose simple proofs
are quite instructive. The roots of those properties are the relations

0 _iap 0
e -
31‘j apj
Proposition 3.1.3. Let ¢ € S. Then,
a) (FW)(p) = (=0)Mp*e(p).
b) (F )P (z) = M F 1 (p*e)(p)) (x).
Proposition 3.1.4. Let ¢ € L2(R"). Then, for fived y € R,
a) (Fu(z —))(p) = e~ "i)(p).
b) F(e™Wi(x))(p) = ¥(p —y).
Similar properties hold for the inverse Fourier transform.

Proposition 3.1.5. Let ¢, ¢ € S. Then, for the convolution

—ixp

s —ixp __ —ixp
—ip; € y = .

—ixje

(Y x ¢) () == - Yz —y)dly) dy = - Y(y) p(z —y) dy
one has F (¥ * ¢)(p) = (2m)"/2 ¥ (p) d(p).
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Exercise 3.1.6. Since S C L!(R"), by using the above explicit integral represen-
tation of the Fourier transform, provide proofs of Propositions 3.1.3, 3.1.4 and
3.1.5.

Ezercise 3.1.7. Compute the Fourier transform of the following functions in L (R):
a) P(x) = Xiap) (7).
b) Fora >0, ¢¥(z) =e *if x >0 and ¢(z) =0if z < 0.

Exercise 3.1.8. Parseval identity can be used to compute certain integrals. For a >
0, consider the characteristic function x[_, 4)(7); compute its Fourier transform
X[—a,q) @and use Parseval to show that

. 2
/ (smaz) dr = Ta.
R xr

It is possible to extend the convolution to spaces LP(R™) by using Young’s
inequality, which is now recalled.

Proposition 3.1.9 (Young’s Inequality). Let 1 < p,q,r < oo with 1/p+ 1/q =
14 1/r. If ¢ € LP(R™) and ¢ € LY(R"™), then the convolution v * ¢ € L"(R™) and

19 % Bl < 9]l [|6lq-

The expression for i * ¢ is the same as that in Proposition 3.1.5.

3.2 Sobolev Spaces

In Chapter 2 the particular classes of Sobolev spaces H™(R) were recalled via
distributional (i.e., weak) derivatives and absolutely continuous functions. A main
point is that the existence of sufficiently many weak derivatives in L?(R) im-
plies some derivatives in the classical sense. In this section additional properties
of suitable Sobolev spaces are collected, and the discussion extended to higher
dimensions.

Before going on, for reader’s convenience, the definition of distribution and
its derivatives are suitably recalled. Let 2 be an open subset of R™; a sequence
(¢j); C C5°(9) is said to converge to ¢ € C3° () if there is a compact set K C
so that the support of ¢; is contained in K, Vj, and for each multiindex k the
sequence of derivatives ¢*) — ¢*) uniformly. C§°(€) is called the space of test
functions.

A distribution w on €2, is a linear functional on C§°(£2) that are continuous
under the above sequential convergence, that is, u(¢;) — u(¢) whenever ¢; — ¢
in C§°(2). Tts derivative is the distribution u(®) defined by

uM () = (-1)Flu(®)),  vo € C§(Q).

The space of distributions on €2 is denoted by C§°(Q)".
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A distribution u is represented by a function v € L{ (Q) if

loc

u(g) = /Q O(e) dle)dr, o e C(Q),

and in this case one usually says that « = ¢ in the sense of distributions. Note that
Ll .(€) is naturally included in the space of distributions, and this fact suggests
the extra terminology generalized function for distributions. The fundamental fact
here is that if u € L () and

[u@ e =0.  voecE@),

then v = 0 a.e. in €. This justifies v = 0 in the sense of distributions as well as
u = 1 above. The Dirac ¢§ is a well-known example of a distribution that is not
represented by any function in Llloc'

The statement u € LL () has distributional derivative u®¥) = v € L} _(Q)

loc
() = (~1)¥ / u() 6 () dir = / o(e) () de,

Q Q
for all ¢ € C§°(2). An important result is discussed in Lemma 2.3.9 and Re-
mark 2.3.10, that is, if Q is an open connected set and u is a distribution with null
derivative, then wu is constant.

A sequence of distributions (u;); in C§°(€2)" converges to the distribution «,
in the same space, if for every ¢ € C5°(€2) the sequence (u;(¢)); converges in C
to u(9).
Ezample 3.2.1. To illustrate how weak is the notion of convergence of distributions,
consider the sequence u;(z) = €“® in L] _(R), which has a bad behavior in terms
of convergence as a sequence of functions (e.g., it has constant absolute values and
it does not converge pointwise to any function). However, for each ¢ € C§°(R), on
integrating by parts

luj ()| =

/ e9" ¢(x) dx
R

C
s7¢||¢’||oo —0

= ’;/Reijng’(m)dm

as j — oo, where Cy is the Lebesgue measure of the support of ¢. Hence u; — 0
in the sense of distributions. The mechanism is the fast oscillations as j — oo
implying cancellations in the integral.

Ezample 3.2.2. If 0 < ¢ € L*(R") and [+(z)dz = 1, then ¢;(z) := j™¢ (jz)
converges to Dirac J at the origin as j — oco. Indeed, for ¢ € C§°(R"™),

Uy(0)= | (@) (0la) ~ o0 dr + [ iy(x) 6(0)d
= | (@) (6(z) - 6(0)) d + 0(0),

Rn
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since [4;(z)dz = 1. Now a change of variable gives

- ¥j (@) (o(z) — ¢(0)) dz = - P(z) (¢(z/5) — 6(0)) d

which vanishes as j — oo by dominated convergence. Hence 9;(¢) — ¢(0) for all
¢ € C3°(R™), that is, 1; — § in the sense of distributions.

A sequence (¢;); C S(R™) is said to converge to ¢ € S(R™) if for every
polynomial p : R™ — C and all multiindex k, pz/)gk) — py®*) uniformly. A tempered
distribution w on R™, is a continuous linear functional on S(R™), that is, u(¢;) —
u(y)) whenever ¢; — ¢ in S(R™). The space of tempered distributions is denoted
by S'(R™). Note that S'(R™) C C§°(R™), so that tempered distributions are
indeed distributions.

The exponential function e” is an example of L] (R) function that defines a
distribution but not a tempered distribution.

At last the definition of (some) Sobolev spaces! For positive integers m, one
defines H™(2), for an open  C R™, as the Hilbert spaces of 1) € L2(£2) so that the
weak derivatives ¢(*) exist and *) € L2(Q) for all |k| < m, and it is considered
the norm

[SIE

9l = | 32 o]

[k|<m

In case 2 = R™ the Fourier transform provides another approach to H™(R™).
Proofs of some of the next results will be provided as examples of typical argu-
ments.

Proposition 3.2.3. Let ¢» € H™(R™). Then, for |k| < m one has
FW®)(p) = (=i)*p*d(p),
with ¥®) denoting distributional derivatives.

Proof. 1t is enough to consider that only one k; # 0; the general case follows by
induction. Since the weak derivatives belong to L?(R"™), one can use Plancherel’s
theorem. Let ¢ € C5°(R™). Then, by Proposition 3.1.3,

<]:¢(kj))’¢§> _ <¢(kj)7¢> _ (_1)kj <¢’¢(kj)>
= (1) (§, Fo) = (~1)h (
= ((=i)sp;b. ),

<
—~
d
S~—
B
&
3
ST
ASSY
\/

and the result follows since FCg°(R") is dense in L2(R™). O
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Corollary 3.2.4. If v € H™(R"™), then
PPo(p) e L2RY)  and W) = F Y (—=i)Flpk . Y|k < m.

Corollary 3.2.4 has a converse statement, but for its proof it is necessary to
recall that, for a tempered distributions u € S'(R™), the Fourier transform 4 is
defined by

a(¢) =u(d), Vo€ SR,
and due to Proposition 3.1.3 the relation
F(u®)(p) = (=i)*p*a(p)

follows. The space LP(R™) can be identified with a subset of &’'(R™) (the inclu-
sion LP(R™) +— S’(R™) is a continuous injection). With this, a very important
characterization will be presented.

Proposition 3.2.5. The above norm ||| - |||, in H™(R™) is equivalent to

m

oll = ([ () W0 ap

Proof. Let 1) € S(R™); since [p|* < (1+|p|?)I¥/2, then if pFi) € L2(R™) for |k| < m,

[ o) o= [

< [ sl ]io)| a.

1
2

P < [ ) o)

and there is a constant a > 0 obeying |||, < a|l|¢[|[,,, since S(R™) = H™(R™)
and the norms are continuous, the latter inequality extends to ¢ € H™(R™).
Conversely, if 1 € H2(R™), it follows by the binomial relation that there are
positive constants b; so that

’ 2

1+ 5| = bl [
j=0

and so
m ) . 2
il = 320 [ 19| a,
j=0 R

and because the right-hand side is a linear combination of terms of the form
|[p*4)(p)||3, then, by Proposition 3.2.3, there is b > 0 with [||¢[||’, < b[[|<]],,,. The
proposition is proved. U

Remark 3.2.6. By using the norm ||| - |||', it is possible to define H*(R™) for any
s eR.
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Theorem 3.2.7. Let u be a tempered distribution in S'(R™). Then the following
statements are equivalent:

1. w belongs to H™(R™).
2. ul™ ¢ L%(R") (weak derivative).
3. pFa(p) € L2(R™), V|k| < m.
4. p™i(p) € LA(R™).
Moreover, if such statements hold, then F(u®)(p) = (—i)*Ip*a(p).

Proof. (Sketch) The equivalences 1 < 2 and 3 < 4 will not be discussed here.
1 = 3 is Corollary 3.2.4. Finally, 3 = 1 follows by Proposition 3.2.5. U

Some of the above results show that, for ¢ € L2(R"), the existence of weak
derivatives implies integrability properties of 1. The next discussion is about dif-
ferentiability properties.

Lemma 3.2.8. If ¢ € LY(R"), then p — 1/3(p) is a continuous function and

. - 1 1
9l = s1p [60)] < o rllblh = oy [ (@)l
pER™ R™

(2m)? (2m)?

Similarly, if ¢ € LY(R™), then ¢(x) is a continuous function and

1

6l < g ol

Proof. Write

1

9 +1) = 90 < ooy [

(27r)% e~ ipth)z _ —i(p)x ()| da

and note that, since ¢ is integrable, the right-hand side vanishes by dominated
convergence as h — 0; hence ¢ (p) is continuous. The inequality in the statement
of the proposition is immediate. O

Ezercise 3.2.9. Verify the inequalities in Lemma 3.2.8.
Proposition 3.2.10. Let ¢ € LY(R™). If 2%4(x) is integrable for all |k| < m, then
¥ ®) is a continuous and bounded function, and

(F)® = (<)M Faky(), VK <m.

Proof. 1t is enough to consider k; = 1 for some j and k; = 0 if [ # j; the general
case follows by induction. One has

1

Y(p) = Ol /Rn e Pa(x)dx.



3.2. Sobolev Spaces 87

Consider also the differentiation of this integrand with respect to p;, that is,

1 . —ix
o) = 0(ps) = g [ (im)e P i) d
this integral is ¢(p) = —iF (x;9)(p), which is a continuous function of p; since, by
hypothesis, z;9(x) is integrable (see Lemma 3.2.8). For p; € R, denote 1/3(pj) the
function obtained by keeping fixed py for £ # j. By using Fubini’s theorem it is
found that, for h # 0,

h
=15 | 1oy ot nar

< sup |p(p; +7) — d(ps)l,
[r|<|h]

[W(pj + h) — ¥ (p;)] — o(p;)

1
h

and since ¢(s) is uniformly continuous in any closed interval, the above expression
vanishes as h — 0. Therefore, 9,,¢(p) = ¢(p). O

Corollary 3.2.11. If¢) € L2(R™) and p¥i)(p) is integrable for all |k| < m, then v®)
18 a continuous and bounded function, and

™ =ikl F1pkd(p)), VK| < m.

Proof. This is essentially Proposition 3.2.10 adapted to the inverse Fourier trans-
form. d

The functions ¢ € H™(R"™) are characterized as those that have weak deriva-
tives () e L2(R™) for any |k| < m and, by a set of results called Sobolev em-
bedding theorems (also called Sobolev lemmas), they become more regular with
increasing m. One of such (nontrivial) results is the following one:

Theorem 3.2.12 (Sobolev Embedding). Let Q be an open subset of R™. If ¢ €
H™(Q) and m > r+ 5, then Y*) s a continuous and bounded function for all
|k| < r. Furthermore, in case Q = R™ the inclusion map H™(R™) — C"(R™) is
bounded.

By way of illustration, take n = 1; it follows that if ¢ € H™(R) then ¥(¥) are
bounded continuous functions for 0 < k < m. For n = 3 and ¢ € H?(R?), then
¥»*) is surely continuous only for k& = 0. In case of bounded open intervals (a,b)
one has C(a,b) C H'(a,b) C Cla,b]; so, roughly speaking, for n = 1 the elements
of H! are continuous functions that are primitives of functions in L2.

For the curious readers, Exercise 3.2.13 gives a flavor of how such results can
be obtained; of course it does not replace a specific text about Sobolev spaces.
Ezercise 3.2.13. The case m > r+mn and 2 = R™ in Theorem 3.2.12 has a simpler
proof. The interested reader may follow the steps ahead to prove this restricted
version of the first part of Sobolev’s embedding theorem, that is, if ¥ € H™(R"™)
and m > 7+ n, then 1) is a continuous and bounded function for all |k| < 7.
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1. If ¢» € H™(R™) then, by Corollary 3.2.11, conclude that it is enough to show
that pF¢p € LY(R"), for all |k| < r.
2. Write p*9) = ¢1¢, with

pk

T (L [

p1(p) = () (L+|p; ")) d(p),  ¢2(p)

and show that if |k| < r both ¢; and ¢2 belong to LQ(R"), so that ¢1¢o is
integrable. For ¢1, dominate it by a finite sum of integrable functions of the
form |p;|"i|¢(p)], with 0 < r; < |k|. For ¢, use Fubini’s theorem and note
that . )
Ip L
L+ |p[* = |pl
for |p| large enough.

Ezercise 3.2.14. If Q C R™ is a bounded set, show that () = |¢t|* belongs to
H™(Q) iff (o — m) > —n/2.

It is also worth mentioning (see [Ad75]):

Lemma 3.2.15. Let Q be an open set in R™ with a reqular bounded boundary. Then
the norm |||¢||,,, in H™ () is equivalent to the norm

o= (I03+ X2 o] -

|k|=m

Example 3.2.16. As an application of Sobolev’s embedding theorem, another proof
of Proposition 2.3.20 will be provided. Recall that dom H = C§°(a,b) C H =
L?(a,b), V € L2 (a,b), —o00 < a < b < oo, and

(H)(2) = —" () + V(@)o(a), & € dom H.
The question is to find H*. If ¢ € dom H*, then H*) € L2(a,b) and for all
¢ € C5°(a,b),

b
/ (—¢"(2) + V(2)$(a)) $(z) dz = (G, H*v),
that is
b b
/ ¢ (2)(x) dx = / o(x) (V(2)b(z) — H*) d,

so that the second distributional derivative of 1) belongs to L (a,b); by Sobolev
embedding v, 1)’ are absolutely continuous functions and

W= VY- H,
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that is,
dom H* = {3 € L*(a,) : ¥, ¢ € AC(a, ), (—¢" + V) € L*(a,b) },
(H*Y)(x) = —¢" (z) + V(z)p(z), 1 € dom H*.

Thereby the proof is complete. 0

3.3 Momentum Operator

This section begins with a summary of a very important statement. For ¢ €
H™(R™) there are two equivalent ways of differentiating it: if |k| < m, under
Fourier transform the derivative in the sense of distributions ¢ — 3) corre-
sponds to the multiplication operator 7 — (—i)ks p?j ¥ in L2 (R”) It is also worth
recalling some integration by parts formulae: if ¥, ¢ € H!(R™), then

(@)0j¢(x)de = — | 9;(¢(x)) ¢() dz,
R’Vl R’Vl
and for ¥, ¢ € H?(R™) then
YAy dr = — [ V() V() da.
R’IL R’IL

Two particular cases will be discussed in detail: related to the first derivative
Pjyp = —i0;1, corresponding to the jth component of the quantum momentum

operator and, related to the laplacian Hyyp = —Ay = — Z?Zl 8]21% corresponding

to the quantum kinetic energy in L2(R"™), discussed in Section 3.4.

In L?(R) the quantum momentum operator was previously introduced, in
Chapter 2), as dom P = H!(R),

(PY)(z) = —it)'(x), ¢ € dom P.

See Examples 2.3.11 and 2.4.10. By Fourier transform one gets
(FPY)(p) = pd(p) = Mopd(p),  ¢(p) =p.

Note also that H!(R) = {zﬁ e L2(R) : 1]l < oo}, that is,

1

R 2
oll = ([ (407 i) < o,
which is the graph norm of M) in L2(R), and dom P = F~'H'(R). Then,

(FPF)b(p) =pd(p),  (P¥)(z) = (F 'pF)(),
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and it follows that the momentum operator is unitarily equivalent (via Fourier
transform) to this multiplication operator M, by a continuous real function.
Therefore, see Subsection 2.3.2, it provides another proof that this operator is
self-adjoint with no eigenvalues, and that its spectrum is R, since such properties
hold for M, (see Exercise 2.1.26).

This construction is readily generalized to the jth component of the momen-
tum operator P; in L?(R"™), given by

F(Pi)(p) = pjtb(p) = Mp,d(p),  1<j<nm,

which is also self-adjoint, with no eigenvalues and its spectrum is R. The (total)
momentum operator is defined through the gradient

P:_ZV:_Z(alaaa’n)a

ie, P=FY(p1,....,pn)F = (F I;F,...,F p,F).

3.4 Kinetic Energy and Free Particle

The nonrelativistic quantum kinetic energy operator in L2(R") (or L?(Q), Q an
open subset of R™) is denoted by Hp and (up to a sign) it is the self-adjoint
realization of the laplacian (distributional derivatives), that is, Hy = —A with
domain H?(R").

For the one-dimensional case L?(R) the kinetic energy corresponds to
dom Hy = H%(R) and Hpy = —v”. By using Fourier transform, this operator
is unitarily equivalent to the multiplication operator

FHop = FHoF ' Fip = M,29).

In higher dimensions L?(R™), n > 2, an alternative way of defining the kinetic
energy operator is dom Hp = H?(R") and

(Hoy)(x) = —Av(z) = F L p*b(p)(z), 1 € dom Hy.

That is, it is unitarily equivalent to the multiplication operator FHyy = /\/lpmﬁ
in L2(R"),
Hy=F'p*F.

Since p — p? is a positive continuous function, it follows that its spectrum is
o(Hp) = rng p? = [0, 00); see Exercise 2.3.29. Further, Hy has no eigenvalues.

Note that the unitarity of the Fourier transform allows one to conclude that
if v € L?(R") with Ay € L%(R"), then ¢ € H?(R"); see other comments on
page 197.

Since only kinetic energy is present (there is no interaction among parti-
cles), the operator Hy is also called the Schrédinger operator for the free particle.
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Another terminology is free hamiltonian or free Schrédinger operator. Perturba-
tions of Hy by a potential energy V (z), resulting in the total energy operator, are
considered in other chapters.

Proposition 3.4.1. The operators Tc,Ts with domains C3°(R™) and S(R™), re-
spectively, both with action ¢ — —Av, are essentially self-adjoint and

Tc =Hy=Ts.
In other words, C3°(R™) and S(R™) are cores of Hy.
Proof. If g € dom T;, C L*(R™), then

(9, =A¢) = (Tog,¥), Vi e Cg°(R");

thus the distributional derivative —Ag = T¢g € L?(R™) and so g € H*(R")
and Thg = —Ag = Hyg, so that Tg C Hp. Conversely, if ¢ € H?*(R"™) then
—A¢ € L2(R") and, via integration by parts,

(0, Tcy) = (¢, —A¢) = (A, ¥), VY € CF°(R");

by definition, ¢ € dom T and Th¢ = —A¢ = Ho¢, so that Hy C TF. Hence
T¢ = Hp. Since Hy is self-adjoint, one has To = TE* = Hy, and it is found that
Tc is essentially self-adjoint.

For Ts, note that T C Ts C Hp. Thus, since T is essentially self-adjoint,
TS = Te = Hy, and so Hy C Té C T¢ = Hy. Therefore, Té = Hy and Ty is
essentially self-adjoint (also Ts = T4* = Hy). O

Ezercise 3.4.2. Show that (1 + Hp)S = S.
In view of Hy = F~'pF, one has

1

R.(Ho)=F '—5—
(Ho) P

F,
for the resolvent of Hy at z ¢ [0,00) (check this!). The operator of multiplication

by the functions
1

p?—z

and e~ itP’

corrpspond to important quantum operators in the momentum representation
L2(R™); their actions in the position representation L?(R™) will be discussed in
Subsection 3.4.1 and Section 5.5, respectively.

Ezercise 3.4.3. Use Fourier transform to show that for all complex numbers z ¢
[0, 00) the operator P;R.(Hy) is bounded for any momentum component P;.

For a measurable function f : R — C one defines the operator

dom f(Hy) = F *dom f(p?), f(Ho) :== FLf(p»F;



92 Chapter 3. Fourier Transform and Free Hamiltonian

since dom f(p?) is a dense set and JF is unitary, then dom f(Hy) is dense and if
f(p?) is real valued the operator f(Hp) is also self-adjoint — see Subsection 2.3.2.
If f is a (essentially) bounded function, then f(Hp) € B(H). According to the
nomenclature on page 80, f(p?) is the operator f(Hp) in momentum representa-
tion.

In a similar way one defines the function of momentum operators f(P;) and
f(P), the latter with f : R™ — C. Note, as before, the abuse of notation by
indicating the multiplication operator M, by just f(p).

Erercise 3.4.4. Verify that if f(p) = p*, k € N, then the corresponding operator
f(Hp) in L2(R) is

dom f(Ho) = H™R),  f(Ho)y = (=1)* 4.
Challenge: What about Hg?

3.4.1 Free Resolvent

In this subsection the resolvent of the free hamiltonian R.(Hy) in R?, in position
representation, will be computed from its momentum representation (p? — 2z)~1.
First, a result also of general interest.

Lemma 3.4.5. If f € L2(R"), then the operator f(P) in position representation is
an integral operator whose kernel is 1/(2m)% f(y —x), that is, for all 1 € L2(R™),

PRI =7 [fo0iw] ) = s [ o= ) dy

Proof. Since f1/3 € LI(R") there is an explicit expression for its inverse Fourier
transform. Fix # € R™. Then, since F~! is unitary and by a simple variation of
Proposition 3.1.4,

r)EF (1) @)= [ i) do

This is the desired expression. O

Theorem 3.4.6. Fiz a complex number z ¢ [0,00). Then the resolvent of the free
hamiltonian Hy in L?(R3) at z, in position representation, is given by

eiVzlz—yl
(Reti)@) = 3= [ T v dn, e e LAR?)

with the branch of the square root given by Im /z > 0.
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Proof. The resolvent is (R.(Ho))(z) = F [ (p)(p))(z) with f(p) = (57 — 2)""
which belongs to L?(R?) (and is also bounded). By Lemma 3.4.5, the resolvent is
an integral operator with kernel

Golx —y:2) == 1/(2m) f(z —y).
The task now is to compute
1xp 1xp
X =(2r 3/2f x :l.i.m./ c dp = lim e dp.
(2m)* = f(x) 2 — 2 R Jen P2 — 2

Introduce spherical coordinates xp = |z||p|cos8, r = |p[, 0 <O <7, -7 <I <7
and also a = cosf. Then

zr|:v|a
= lim / / / 2d19da dr
R—oo .

2w lim / ret Tl d 27 i / we' W] d
im ———dr = - im w,
ile| Rooo | p 12— 2 i || R0 cr (W —2)(w+/2)
where Im /z > 0, Cg is the rectangle in the upper half complex plane, delimited

by the vertices (—R,0), (R,0), (R,VR),(—R,VR), and w the complex integration
variable. Then, by residues, one gets

et Vzlz|
X =27 Ei Im /z > 0,
x

so that

1 eiVzlz—yl

Golz —y;2) = ————, Im vz > 0,

Ar |z —y|

and the proof is complete. O

Definition 3.4.7. The function Go(z — y;z), introduced in the proof of Theo-
rem 3.4.6, is called the three-dimensional free Green function. It is the kernel
of the free resolvent operator in L2(IR3).

Exercise 3.4.8. Given a potential V : R3 — R, assume that ¢ € L?(R3) is an
eigenfunction of Hy+ V with eigenvalue A < 0, that is, (Ho+ V)¥ = M and, also,
Vi € L2(R?). Show that

e~ V—=Alz—yl
ve) =4 [ S V@) dy

dm Jps |z —yl
This is an integral equation for ¢ closely related to the Lippmann-Schwinger equa-
tion in scattering theory.

FEzercise 3.4.9. Check that the kernel of the free resolvent operator in L2(R), i.e.,
the one-dimensional free Green function, at z ¢ [0, 00) is

Go(x —y;2) = ﬁ eVl with Im /z > 0.
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Remark 3.4.10. For dimensions different from one and three, the computation of
the free Green function is more difficult to handle; it can be performed in terms
of modified Bessel functions of the second kind. The situation is simpler for odd
dimensions, since spherical Bessel functions can be employed. Nonetheless, they
are not too illuminating. See the full expression in [HiS96] page 164 and details in
[CouH53], and for Bessel functions [Wa62].

Exercise 3.4.11. Check that for L2(R"), n = 1,3, there exists (a.e.) the limit of
the free Green function for z = A +ie, A > 0,

Go(z —y; A £0) := h%li Go(z — y; A + ie).

So the operators Ryio(Hp) are also defined as integral operators with kernels
Go(x—y; A£0). Verify that Ry1o(Ho) # Rx—o(Hp). Are these operators bounded?
Ezercise 3.4.12. Write out the one-dimensional harmonic oscillator energy opera-
tor (Example 2.3.3) (H1)(z) = —¢" (x) + 2%4(x) in the position and momentum
representations.

Remark 3.4.13. The kinetic energy, the j-component of the momentum and the
total momentum operators in L?(R™), with all physical constants included, have
the expressions

h2

H =
0 2m

A,  Pj=—ihd;, P =—ihV,

respectively. For the Green function in L?(R3),

m 1 . V2mz
Go(x_yvz): 2o |$_y|exp ? B |'T_y| )

while in L?(R)

Go ) 1 m o V2mz | |
T—y;z)=—4/—exp |1 T — .

0 Y n\ 22 p Y

Finally, the expression of Fourier transform in L?(R") usually employed in quan-
tum mechanics takes the form

~ 1 PEdd
= — e 'm (x)dx.
00) = oy [ vle)
Remark 3.4.14. In the context of quantum mechanics, usually the term “Green
function” refers to a representation (e.g., in position or momentum representa-
tion) of the resolvent of a self-adjoint operator. The Green function for the hydro-
gen atom Schrédinger operator was studied in [Ho64] and [Schw64] (see Exam-
ple 6.2.3).



Chapter 4

Operators via
Sesquilinear Forms

The basics of self-adjoint extensions via sesquilinear forms are discussed. The main
points are form representations, Friedrichs extensions and examples. Additional
information appears in Sections 6.1, 9.3 and 10.4. Some sesquilinear forms can be
sources of self-adjoint operators related to “singular interactions” and/or ill-posed
operator sums.

4.1 Sesquilinear Forms
Let dom b be a dense subspace of the Hilbert space H. A sesquilinear form in H,
b:dom bx domb— C

is a map linear in the second variable and antilinear in the first one. b is hermitian
if b(&,n) = b(n,&). The map & — b(§,§), £ € dom b, is called the quadratic form
associated with b. Usually dom b is referred to as the domain of b, instead of
dom b x dom b, and only the term form is used as a shorthand for sesquilinear
form. Sometimes the notation b(§) = b(§, &) for the quadratic form is used. Here
all forms are assumed to be densely defined.

Exercise 4.1.1. Verify the polarization identity for sesquilinear forms

4b(§,m) = b(§ +n) = b(& —n) —ib(§ +in) +ib(§ —in),

for all £, € dom b. Use polarization to show that b is hermitian iff the associated
quadratic form is real valued.
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Definition 4.1.2. A sesquilinear form b is bounded if its form norm

|b(£17 £Q)|
bll := sup
1ol oecrcton o [ €zl

is finite, i.e., ||b]] < co.

The standard example of bounded sesquilinear form is the inner product on
a Hilbert space, whose norm is 1. The next result is the structure of bounded
sesquilinear forms; the corresponding results when boundedness is not required
appear in Theorems 4.2.6 and 4.2.9.

Proposition 4.1.3. If b : H x H — C is a bounded sesquilinear form, then there
exists a unique operator Ty, € B(H) obeying

b(&1,&2) = (&1, &2),  V&,& € H.
Furthermore, | Ty|| = ||b]| and if b is hermitian then Ty is self-adjoint.

Proof. For each & € H the functional L¢, : H — C, L¢, (&2) = b(£1,€2) is linear,
and since

|Le, (&2)] = [b(&1, &2)| < [BII1&l 1€zl

then [|Lg, || < ||b]| [|€1]] and Le, € H* (the dual space of H).

By Riesz’s Representation Theorem 1.1.40 there exists a unique 72 € H with
Le, (&) = (m2,&2), for all & € H. Define Ty, : H — H by Tp&1 = 12, for which
b(fl,gg) = <Tb£1,§2>, V§1 S H,§2 S H, and it is linear. Note that T, = 0 if, and
only if, b is null (the definition is clear!).

Thus, if b #£ 0,
Jgisy| [(Tor, Tvéa)|
Ty|| = sup = sup ————— < ||b
175l oz [l61ll ozer &l T ol
Ty&1#0 Ty&1#0
T
BT30S R TV =Y

o#al IEUED o#al €[l 1€2ll

showing that 7}, € B(H) and ||T,|| = ||b||- The uniqueness of the operator follows
from the relation (T, &) = (S&1, &), for any &1, &2, consequently the operators S
and T} coincide.

Now if such b is hermitian then (Tp&,n) = b(€,n) = b(n, &) = (£, Tyn), and T}
is self-adjoint. O

Hence, there is a one-to-one correspondence between such bounded (and
hermitian) sesquilinear forms on H x H and bounded (and self-adjoint) linear
operators on H. Observe that if the sesquilinear form is given by the inner product
on H, then Proposition 4.1.3 gives rise to the identity operator T = 1.
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One then wonders whether it is possible to adapt the above construction to
get unbounded self-adjoint operators from more general forms. In fact, part of this
construction can be carried out for suitable forms, as discussed below; a chief result
will be that there is a one-to-one correspondence between “closed lower bounded
sesquilinear forms” and lower bounded self-adjoint operators. Other motivations
appear in Remark 4.1.14. Now some definitions.

Definition 4.1.4. Let b be a hermitian sesquilinear form. Then b is:

a) positive if the quadratic form b(¢,£) > 0,V€ € dom b.

b) lower bounded if there is 3 € R with b(£,€) > B|/€||?, V€ € dom b, and this
situation will be briefly denoted by b > 3; such ( is called a lower limit or
lower bound of b. Notice that b — 3 defines a positive sesquilinear form by

Exercise 4.1.5. Verify that Cauchy-Schwarz and triangular inequalities

b, )| < BE)Zb(n)E,  bE+n)E <BE)E +b(n)?,

respectively, hold for positive sesquilinear forms (V€,n € dom b).

=

Let b be a hermitian form and (§,) C dom b. Even though b is not neces-
sarily positive, this sequence is called a Cauchy sequence with respect to b (or in
(dom b, b)) if b(&, — &m) — 0 as n,m — oo. It is said that (&,) converges to £ with
respect to b (or in (dom b, b)) if £ € dom b and b(§, — &) — 0 as n — oo.

Definition 4.1.6. A sesquilinear form b is closed if for each Cauchy sequence (&)
in (dom b,b) with &, — £ in H, one has £ € dom b and &, — £ in (dom b,b). b is
closable if it has a closed extension in H.

If 3 is a lower bound of the sesquilinear form b, one introduces the inner
product {-,-)+ on dom b C H by the expression

<£777>+ = b(gun) + (]' - 5)<5777>,
and one has (£,&); = b(£,€) — BlIE]I7 + [I€]* > [|€]1%, so that the norm [[£]|4 :=

VA& S+ = €l
Definition 4.1.7.
a) If b > 3, the abstract completion of the inner product space (dom b, (-,-);)
will be denoted by (H4,b4) .

b) Let b denote a closed and lower bounded form b > 3. A form core of b is a
subset D C dom b which is dense in dom b equipped with the inner product

(504 =bs().
Remark 4.1.8. If b > 3 > 0 is closed and also an inner product, then D is a form

core of b is equivalent to D being dense in (dom b,d), i.e., it is not necessary to
take (-,-)4+. This applies, in particular, when a form core of (-, ). is considered.
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Lemma 4.1.9. Suppose that the hermitian sesquilinear form b > 3, for some € R.
Then the following assertions are equivalent:

i) (dom b, (-,-)4) is a Hilbert space (and so it coincides with (Hy,by)).
ii) b is closed.

Proof. First note that every Cauchy sequence in K := (dom b, (-,-)+) is also a
Cauchy sequence in the other three spaces: H, (dom b, b— ) and also in (dom b, b).
Suppose that i) holds. If (§,) is Cauchy in K then there is £ € dom b so that
&, — €in [C; also ||€, — &|| — 0 and so &, — £ in H. That is, ii) holds.
Conversely, suppose that ii) holds. If (&,) is Cauchy in K, then it is also
Cauchy with respect to b and in H, and so there is £ with §, — & in H. By ii),
¢ €dom b and &, — £ in K. So K is complete, that is, i) holds. O

The above lemma shows that any lower bound 8 can be used to construct
H; in particular if b > G > 0, a preferred choice is the zero lower bound. Note
that b4 (-, ) is the inner product on the Hilbert space H4 and if £, € dom b, then
by (&,m) = (£,m)+; moreover, by is a closed sesquilinear form on H .

Ezample 4.1.10. To a densely defined operator T' one introduces two positive
hermitian sesquilinear forms b,b, with dom b = dom b = dom T, via b(§,n) =
(T¢, Tn) and b(€, n) = (TE, Tn) + (&, n). Since b(&, €) = [[{]|7, i.e., the square of the

graph norm of 7', it is closed iff T' is closed; one has b > 1. See also Example 4.1.11.

Note that b(&, 1) = b(&, 1) + (£, n); this was a motivation for the introduction
of the inner product (£,7)+ and the definition of closed form above.

Example 4.1.11. A hermitian operator T : dom T' C ‘H — H defines a hermitian
sesquilinear form b7 as

bT (&) = (€, Tn), dom b" = dom T.

bT" is lower bounded iff T is (see Definition 2.4.16). Since this b7 is easily
extended to any £ € H and n € dom T, it has a potential advantage over the
forms in Example 4.1.10 while searching extensions of T'. See Theorem 4.3.1.

Definition 4.1.12. If T : dom 7' C ‘H — H is a hermitian operator, the form b7
introduced in Example 4.1.11 is called the sesquilinear form generated by T'.

Remark 4.1.13. In the specific case of positive self-adjoint operators 7' > 0, the
form b7 generated by T will be naturally extended in Section 9.3, and keeping the
same notation b7 and nomenclature, to the form dom b7 = dom T%7 bT(&n) =
<T%£7 T: n), V&, € dom Tz . Refer to Section 9.3 for explanation of these symbols.
Remark 4.1.14. There are many appealing reasons for considering sesquilinear
forms as sources of operators.

e In physics it is a common procedure to deal with “matrix elements” of an
operator, i.e., b7 (£,m) = (€, Tn). Also (¢, T¢) is the expectation value of the
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observable T' (see discussion on page 132) if the system is in the normalized
state £, and one asks how to construct the (self-adjoint) operator T from its
matrix elements. Some authors argue that physically the expectation values
are more fundamental than the square ||T¢||? = (T€, T¢).

e Usually the conditions on the form domain are less restrictive than the ones
on the operator domain. For instance, for the second derivative operator
Y — —1", in suitable subspaces of L?(R), on integrating by parts one can
write (¢, —¢") = (', ¢’), and the right-hand side inner product imposes
conditions only on the first derivative of the functions.

e Given hermitian operators 77,7, and a form b, due to less stringent domain
conditions (e.g., dom T3 Ndom T can be rather small), sesquilinear forms
open the possibility of defining an operator 1" via the sum of forms by im-
posing b7 (¢,1) = bT1(&,n) + bT2(€,m) (see Example 4.2.15, Corollary 9.3.12
and Subsection 9.3.1), and also through b7 (£,m) = bT1(&,n) + b(€,n) even
in some cases b is not directly related to an operator; see Examples 4.1.15,
4.4.9, 6.2.16 and 6.2.19.

The primary point relates to the representation theorems in Section 4.2, which
associate self-adjoint operators to forms. Eventually, other reasons supporting the
use of sesquilinear forms will appear spread over the book.

Ezample 4.1.15. Let dom bs = H'(R) C H = L%(R), and the action

b&(wa dj) = d)(o) QS(O)’ ¢a ¢ € dom b6~

This form is hermitian and positive, but not closable. In fact, the sequence ), () =
e~"*" is contained in dom bs, bs(n — ¥m) — 0 (so a Cauchy sequence with
respect to bs) and converges to zero in H, but bs(¢,) — 1 while b5(0,0) = 0
(apply Lemma 4.1.9). Thus, in contrast to hermitian operators, a (lower bounded)
hermitian form need not be closable.

Nevertheless, by naively pushing on the comparison with b7, one would get
90)0(0) = (.76) = [ DEITo(a)da.
R

and this form should represent an operator T' “generated by the Dirac delta §(x)
at the origin;” such informal association can be useful in some contexts, as in
Examples 4.4.9 and 6.2.16 in attempts to make sense of a Schrédinger operator
with a delta potential. Clearly H!(R) can be replaced by other domains, e.g.,
C§° (R).

Remark 4.1.16. Sometimes it is convenient to put b(¢,&) = oo if £ € H \ dom b.
See Theorem 9.3.11 and Subsection 10.4.1.
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4.2 Operators Associated with Forms

Definition 4.2.1. Consider the lower bounded sesquilinear form b > (. by as above
is compatible with ‘H if H can be identified with a vector subspace of H and the
(linear) inclusion j : H4 — H is continuous.

Lemma 4.2.2. If b, is compatible with H, then the inclusion j : Hy — H can be
taken as the natural inclusion j(§) = &, V&€ € Hy, with ||j]| < 1.

Proof. The natural inclusion j : (dom b, (-,-)) — H, j(£) = &, is linear and
satisfies

€1 = 1171 < (€, &)+ = by (£,6),

and so it is continuous with 7| < 1. Since b, is compatible with 7, j has a unique
linear extension j : Hy — H, with ||j|| < 1.

If £ € Hy, there is a sequence (§) C dom b with & — £ in Hy; the above
inequality implies & — £ in H. Thus,

0= lim j(& — &) = lim j(&) —j(E)
= lim & — j(€) = €~ j(©).

Therefore j(£) = £ and j is clearly injective. O
Ezercise 4.2.3. Let (Hf’f,b5+) be the abstract completion of (dom bs, bs + 1), bs
the form in Example 4.1.15. Show that the extension j of the natural inclusion

7 ¢ (dom bs, (-, -)4) — H, j(€) = &, VE € dom bs, is not injective. Conclude that
bs+ is not compatible with H.

Ezxample 4.2.4. Let T : dom T & 'H — 'H be a hermitian and lower bounded
operator with lower bound 3 € R, that is, 7 > 1. Consider the form b7 generated
by T, the inner product
(& m+ =bT(&m) + (1= B)En)
= (& (T = B1)n) + (&), §nedomT,

and its completion (HT,bT). The subject now is to show that bZ is compatible
with H; consequently b’ is closable.
The linear natural inclusion j : (dom T\ (-,-)+) — H, j(£) = &, satisfies

17N = IIEI* < NIEN* + (€, (T — BL)E) = (€, €)+,

and so it is continuous with ||j|| < 1. Thus j has a unique linear extension j : HT —
H and with ||7]] < 1.If j(&) = 0, then there exists a sequence (§;) C (dom T, (-,-)+)
with & — £ in Hi and & = j(&;) — 0 in H. Thus, for any n € dom T,

b (n,6) = lim bL(n,5(€k)) = lim b3 (n, &)
= lim (9, &)+ = lm ((n, (T = 51)&) + (0, &)
= lim ([T + (1 = 6)1]n, &) = 0.
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Since dom 7' C ‘HZ, it follows that £ = 0. Therefore, besides ||| < 1, it was found
that j is injective and so it is possible to regard HI as a vector subspace of H,
that is, b7 is compatible with H. Finally, by Lemma 4.2.2, j(£) = & for all ¢ € HY.

Given a densely defined operator 7', the sesquilinear form b with dom b =
dom T, b(&,n) :== (0, &) = (T, TE) + (n, &), satisfies b(£, &) > ||€]|2, V€ € dom b,
and it is closed iff T is closed. Now if n € dom (T*T'), then

b(&n) = (& (T"T+1)y),  VEEdomb,

and, on the basis of Example 4.1.11 and Proposition 4.1.3, one is tempted to link
the operator T*7'+1 to b. With this motivation in mind, one has the main theorem
of this section, ensuring that closed lower bounded forms are actually the forms
of lower bounded self-adjoint operators.

Definition 4.2.5. Given a hermitian sesquilinear form b, the operator T}, associated
with b is defined as

dom Ty :={§ € dom b: 3¢ € H with b(n,&) = (n,¢), ¥Yn € dom b},
Ty =, ¢ € dom Ty,

that is, b(n,&) = (0, TpE), Vn € dom b, V¢ € dom T,. Such operator T}, is well
defined since dom b is dense in H.

Note that T} is automatically symmetric; for £, 7 € dom Ty,

(0, To€) = b(n,§) = b(§,n) = (& Tom) = (Tyn; €)-

Furthermore, in case of a bounded hermitian sesquilinear form b, the operator Tj
in Definition 4.2.5 coincides with the one in Proposition 4.1.3.
The next two theorems are known as representations of sesquilinear forms.

Theorem 4.2.6. Let dom b C H and b : dom bxdom b — C be a closed sesquilinear
form with lower bound 8 € R (so hermitian).

Then the operator Ty associated with b is the unique self-adjoint operator with
dom T, C dom b — H so that

b(n,§) = (n, Tv€), Vn € dom b, V¢ € dom T.

Further, T, > B1 and dom T} is a form core of b. The subspace dom b is called
the form domain of Tp.

Proof. Set Hp := (dom b, {(-,-)+), which is a Hilbert space by hypothesis. As re-
marked above, T} is symmetric. For £ € dom Tj, C dom b one has

(&, Th8) = b(&,€) > BEN?,
so that T, > (1.
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For all 1) € H,, one has [[n[I3 = (n,m)+ = (b(n) — Blall?*) + 9l = [Inll*;
thus, for each ¢ € H,

(e, < ol nll < lIolnll+, V0 € Ha,

so that the linear functional fs : Hy — C, fo(n) = (¢,n) is continuous; since Hy
is a Hilbert space, by Riesz’s Theorem 1.1.40 there is a unique ¢, € H; with

(,m) = (6, M)+, Vn € Hy.

The last relation will be crucial in what follows.

We then define a linear map M : H — Hyp, M ¢ := ¢p; since dom b is dense
in H, note that if ¢, = 0, then (¢,n) = 0,Yn € Hp, and so ¢ = 0. Hence M is
invertible, and for M~! : dom M~! = rng M — H write M ‘¢, = ¢, and note
that rng M ~! = ‘H. Further, since ||fs|| < ||¢|| and, by Riesz || fs| = ||¢v]|+, it is
found that ||[Mo|+ = ||os]l+ < ||@|. Thus, M is bounded (with domain H) with
norm < 1.

Now it will be shown that rng M is dense in H. Since rng M C dom b and
-1 < |l |l1, it is enough to show that rng M T Hy,. If n € Hp and (ME&,n)+ =0,
V& € 'H, then, by the above crucial relation,

0= (M&n)+ = (&,m+ = (&),

and so n = 0, which proves that density.
The operator M ! is directly related to Ty. Indeed, if & € dom M ™!, then
for all n € dom b,

<na M_1£b> = <777§> = <777§b>+ = b(nagb) + (1 - ﬂ)<n7£b>7

b(nvgb) = <777 M71£b> - (1 - ﬁ)<777£b> = <777 be>u

where Q := M~ — (1 — )1, with dom @ = dom M ~!. Hence, &, € dom T}, and
Tp€p = Q&; in other words, @@ C Tj. From this relation one infers that T is densely
defined (because dom @ is dense in H), so hermitian, and the operator @ is also
hermitian (because it has a hermitian extension 7p).

Observe that M~! = Q + (1 — 3)1 is also hermitian, and a simple exercise
shows that M is also hermitian; since M is bounded (M € B(H)), it is in fact
self-adjoint. By Lemma 2.4.1 one infers that M ~! is self-adjoint, so @ is also self-
adjoint (very general arguments appear in Theorem 6.1.8 and Exercise 6.1.11).
Finally, the relation @ C Tj implies Q = T}, since a self-adjoint operator has no
proper hermitian extension. The self-adjointness of T3 is hereby verified.

Recall that it was shown above that dom T = dom @ = rng M is dense in
‘Hp, that is, dom Ty is a form core of b.

For the uniqueness, suppose that S is self-adjoint with dom S C dom b and

b(n, &) = (n, SE), Vn € dom b, € € dom S.
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By construction (Definition 4.2.5), £ € dom T}, and Tp{ = SE; thus S C Ty.
Since S is self-adjoint it has no proper hermitian extension; it then follows that
S =T, O

Exercise 4.2.7. Show that if a linear invertible operator is hermitian, then its
inverse is also hermitian.

Exercise 4.2.8. Adapt the statement and proof of Theorem 4.2.6 to the case b >
8 > 0 and (dom b,b) is complete; in this case write H; for (dom b,b) and note
that with such approach the inner product (-,-); does not play any role. Show,
in particular, that dom T}, (T} is the resulting self-adjoint operator, of course) is
a form core of b.

Now the hypothesis of (dom b,b(-,-)) being closed in Theorem 4.2.6 will be
replaced by the assumption that its completion by is compatible with the original
Hilbert space H.

Theorem 4.2.9. Let b be a hermitian sesquilinear form with b> (3 for some B €R, its
completion (Hy,by) as above and Ty, the self-adjoint operator associated with b,

_ If by is compatible with H, then there exists a unique self-adjoint operator
Ty :dom Ty, C 'Hy — H, with

b(n, &) = (n, Tpé), Vn € dom b, V¢ € dom T, N dom b.

Further, T, > 31, dom T, = dom Ty, , Ty, = Ty, — (1 —B3)1 and dom Ty is a form
core of by. Hy is called the form domain of Ty.

Proof. Recall that

()4 = b(n, &) + (L= B)(n,€),  n, & € dom b.

So (n,n)+ > |Inl|?, ¥n € dom b, and since by is compatible with H it follows that,
by Lemma 4.2.2,

by(n,m) > |l Vne€dom by =Hy,

that is, by > 1. Since b, is closed, by Theorem 4.2.6, there is a unique self-adjoint
operator T, with domain dense in H and

by(n,&) =Ty, &), VneHy, {€domTy,.

It also follows that Ty, > 1.
Now define T}, := T} . —(1=p)1, dom T, = dom T, .» which is also self-adjoint
and Tb > (1. In case n € dom b and § € dom bNdom T}, , one has

0, Tp, &) = b1:(n,8) = 0, §)+ = b(n, &) + (1 = B)(n, ),

and so ~
b(n,&) = (n, (T, — (1 = B)1)§) = (n, Tvé);
thus b(n, €) = (n, THE), Vi € dom b, V€ € dom Ty, N dom b.
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Next the uniqueness. Suppose that S : dom S C Hy — H is a self-adjoint
operator with

b(n, &) = (n, S¢), Vn € dom b, V€ € dom S N dom b.

Define S := S + (1 — 3)1; note that S # Ty, iff S # Ty, . The above condition on
S can be rewritten as

Vn € dom b, V¢ € dom S N dom b. Since (H4,by) is complete and S is closed,
together with the continuity of the inner product, one gets

b+(77a§) :<’I'],S§>7 VUEH+,V§€dOm S,

but, by construction, this means that £ € dom Ty, and Ty £ = S¢, that is, S C
Ty . Since both are self-adjoint S = Ty, , so S = T} and such an operator is unique.

Since dom Tb = dom T}, , Theorem 4.2.6 immediately implies that dom Tb is a
form core of b,.. O

Remark 4.2.10. Note that Definition 4.2.5 and the relation
b(n, &) = (n,Ty¢),  V¥n e dom b, V¢ € dom T, Ndom b,
in the statement of Theorem 4.2.6 imply that dom Ty is given by

{§eHy 3¢ e Hwithby(n,§) — (1= P)¢ = (n,(), Vn € dom b},

and Tp€ = C.

Recall that the quantum kinetic energy operator in L2(R") is the operator
Hy = —A with dom Hy = H2(R"™) and both C§°(R"), S(R™) are cores of Hy; the
laplacian A is obtained through distributional derivatives and H? is a Sobolev
space. Below V indicates the distributional gradient operator.

Ezample 4.2.11. Let dom b = H!(R") C L?(R"),

b(¢,v) == (Vo, V), é,% € dom b.

Since b(¢) = ||V ||?, the hermitian sesquilinear form b is positive. Let (¢;) C dom b
be a sequence obeying b(¢; —dx) — 0 and ¢; — ¢ in L2(R™) as j, k — oo. Note that
this is equivalent to ¢; — ¢ in H!(R™), which is a Hilbert space and so ¢ € dom b;
hence the form b is also closed and (dom b, (-, )+ ), with (¢, ¥)+ = b(é, V) + (&, V),
is a Hilbert space (H!(R") in fact!).

It is easily checked that the subsequent self-adjoint operator Tj in Theo-
rem 4.2.6 is Hy; indeed, Hy is positive and self-adjoint, dom Hy = H2(R™) C dom b
and on integrating by parts

b(¢a 1/}) = <¢7 _A¢>7 V(b € dom b, 'L/J € dom Ho.
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Hence, H!(R™) is the form domain of Hy and both C§°(R"), S(R™) are form cores
of b (since these sets are dense in H*(R™)). In summary, T;, = Hy. Usually such
form b is denoted by b0,

Example 4.2.12. Consider the Hilbert space H = L2[0,1]. Let a = (v, 1), ap >
0,1 > 0 (for simplicity), dom b, = H'[0,1] and, for ¢, € dom by,

ba (. ¥) = (¢',9") + a0 ¢(0)¥(0) + a1 ¢(1)¥(1),

which is a densely defined sesquilinear form. For (say!) a > 1, integrations by parts
show the validity of the integral representations

1 1
w(l):/o t“z//(t)dt+/0 at® Lap(t) dt,
1 1
(0) = / (- ) (t) dt + / a(1 — £y 1y(t) dt,

and by Cauchy-Schwarz,

ba (1) 2 [W']I* — a0 [$(0)[* — ax [1(1)?

Qo + a1 2 a® 9
>(1— -
(1= S8 1P - (e + ) ol

and for a large enough the coefficient of ||¢’||? becomes positive so that b, (1)) >

Bl|v]]?, with 8 = —(ag + a1)a?/(2a — 1). In other words, b, is lower bounded.

Now it will be argued that b, is closed, so that it defines a self-adjoint opera-
tor Tp,, as in Theorem 4.2.6. Let (¢,,) be a sequence in dom b, with by, (¢, — ) —
0 and %, — 9 in H as n,m — oco. Write out such conditions to get that (¢),) is
also a Cauchy sequence in H and so 9, — ¢ € H (note that (1,(0)) and (¢,,(1))
are Cauchy in C). The relation (recall that on bounded intervals convergence in
L2 implies convergence in L)

/O o(s)ds = lim [ v (s)ds = 0(1) = 0(0)

n—oo

implies that ¢y € dom b, and ¥’ = ¢. By continuity of the elements of H*[0, 1]
and the above integral representations for 1,(0), %, (1), one has ,(0) — ¥(0)
and ¥, (1) — ¥(1). A direct verification that b, (1, — 1) — 0 concludes that b, is
closed.

The next step is to find Ty, via by (¢, ) = (¢, Ty ). After a formal integra-
tion by parts in the expression of b, (¢, 1) one gets

<¢7 Tba ¢> = ba (¢a ¢) . .
= (¢, =1") + 6(0) (01(0) +¢'(0)) — (1) (12b(1) — ¥'(1)),
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which suggests to try dom Ty, = {v € H?[0,1] : ¥/(0) = —apy(0),7'(1) =
a1p(1)}, Ty, v = —¢”. One can check that this operator Tj_ is actually self-
adjoint; since dom Tp_, C dom b, and

ba(¢, ¢) = <¢7 Tbad)>7 v¢ € dom b(l7 d) € dom Tbon

one has that T}, is the operator associated with the form b, in Theorem 4.2.6, and
H1[0,1] is the form domain of Ty,.

Ezercise 4.2.13. Verify that T} in Example 4.2.12 is self-adjoint (a possible solu-
tion can be obtained from a characterization in Example 7.3.4).

Exercise 4.2.14. Consider the Hilbert space H = L?[0, 1], dom b={y € H'[0,1]:
¥(0) =0=1(1)} and, for ¢, € dom b,

b(p, ¥) = (¢, 0').

Based on Example 4.2.12, show that b is a positive closed form whose correspond-
ing associated operator is dom T, = {¢) € H?[0,1] : ¢(0) = 0 = (1)}, Ty = —¢”,
Y € dom Tj.

Let b1, ba be two closed and lower bounded forms and T3, , 13, the subsequent
self-adjoint operators associated with b; and bs, respectively. It can happen that
the sesquilinear form sum b = by + by, with dom (b; + b2) = dom b; N dom ba,
is either closed and lower bounded or its completion b is compatible with the
original Hilbert space; in either way the operator T} associated with b is self-
adjoint and called the form sum of Tj, and T3,, and denoted by

Ty = Ty, +Tp,

This concept is illustrated in the following example; see also Subsection 6.1.1 and
Remark 9.3.13.

Ezample 4.2.15. Let T,,, = (ag, 1), be the operator obtained in Example 4.2.12,
and consider also T'-, 7 = (19, 71 ), obtained in the same way. The aim here is to
describe the operator T, /2+T /2. First note that T, /2 is the operator associated
with the form b,/2.

Let b= by /2 + b, /2, i.e., dom b = H'[0, 1],

Qg + 70—~ ay+ 71—~

5 9(0)¥(0) + P(1)(1),

b, ) = (¢',9) +

consequently

T, . T, g +T0 o1+ T1
3 v ( 2 2

See also Example 4.4.8.
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4.3 Friedrichs Extension

Given T hermitian, consider the form generated by T, that is, b* (£,71) = (£, Tn),
&,m €dom T if T > 31, one has b7 (£,€) > 3||€]|?, and it is possible to apply The-
orem 4.2.9 in order to get the so-called Friedrichs extension of T' (a fundamental
result by Friedrichs of 1934).

Theorem 4.3.1 (Friedrichs Extension). Let T' be a lower bounded hermitian oper-
ator with T > B1, € R, bT the form generated by T, i.e.,

bU(&m) = (. Tn),  &nedom b’ =dom T,

and (HI, b{) as in Example 4.2.4. Then the operator T has a unique self-adjoint
extension Tr : dom Tr — H with dom Tr C ’H{. Further, Tp > (1 and dom T
s a form core of b_‘T_. Hi is the form domain of Tr.

Proof. Recall that (£,n)+ = bT(&,n) + (1 — B)(&,m), &, € dom T, and its com-
pletion is (HI, bSC) On account of Example 4.2.4, bSC is compatible with H and
b (€,€) > |1€]12, V€ € HE. By Theorem 4.2.9 there is a unique self-adjoint operator

Tp =Ty =Ty —(1-F)1,  dom Tp =dom Tyr CHY,
so that
b7 (n,€) = (9, Tr€),  VYnedom T, € € dom T Ndom Tp.

Since Tbi > 1 one finds that Tr > (1. In order to show that T' C Tr, take note
initially that for £, € dom T,

bL(n,€) = (n,€)+ = (n, [T+ (1 B)1]¢).

By continuity of the inner product, density of dom 7" in ’HJTr and the continuity of
the inclusion j : Hz — H, it follows that, for each £ € dom T,

bY(n,€) = (n, [T + (1 — B)1]¢)

holds true for any n € Hi. Hence, by the construction in Definition 4.2.5, £ €
dom Tyr and Tyré = TE + (1 — B)¢, showing that

T =Tyré — (1- f)E =Tk,  VE€domT.

Hence T' C TF.

Now the uniqueness of Tr. If S is a self-adjoint operator so that T" C S and
dom S C Hz, the above proof that T' C T applies, and so one concludes that
S C Tp; since both operators are self-adjoint, S = Tr. As in Theorem 4.2.6, one
concludes that dom T is a form core of bi. O
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Ezercise 4.3.2. Conclude that (see Remark 4.2.10) dom T is given by

{€ e ML 3¢ e Hwith bI(&,m) — (1= B)(&,m) = (¢,n), ¥n € dom T},

and Tr€ = (. Given £ € dom Tp, by taking (§,) C dom T with &, — ¢ in Hi
show that

bE(&m) — (1= B)(& m) = Tim [0 (&, m) = (1 = B){&nm)]
= (£, Tn), Vn € dom T,
and conclude that dom Tr = dom T* N Hi.

Definition 4.3.3. The self-adjoint operator T introduced in Theorem 4.3.1 is called
the Friedrichs extension of the hermitian and lower bounded 7.

Proposition 4.3.4. Let T > B1 and Ty a lower bounded self-adjoint extension of T'.
Then ’HIF - Hzo, that is, the Friedrichs extension has the smallest form domain
among the form domains of lower bounded self-adjoint extensions of T .

Proof. Assume that ( is the largest lower bound of T" and let a@ € R be strictly
less than a lower bound of Ty; so a < .

It is known that the form domain H? of Tr is the completion of dom T in
the norm (£,&)+ = (&, [T + (1 — B)1]€), which is the same space obtained after
completion of dom 7" in the norm

(&I + (1 —a)1]§) = (& [To + (1 — a)1]E).
Since dom T" C dom Ty and the form domain Hio of Ty is the completion of
dom Ty in the above norm (€, [Ty + (1 — )1]¢), it follows that X" c HI. O

It is interesting to point out that Tr is the only self-adjoint extension of T’
whose domain is dense in Hi; particularly, the only self-adjoint extension whose
form domain is HI. Thus, in this sense and in view of Proposition 4.3.4, T is
canonically constructed.

Corollary 4.3.5. If T is hermitian and lower bounded, then its deficiency indices
are equal.

Proof. Tr is a self-adjoint extension of the operator T'. Now apply Theorem 2.2.11.
O

Exercise 2.4.17 implies an important lower bound of the spectrum of the
Friedrichs extension:

Corollary 4.3.6. Let T > (3 be as in Theorem 4.3.1 and Tr the consequent Fried-
richs extension. Then o(Tg) C [B,00).

However, Example 4.4.13 presents another self-adjoint extension of a lower
bounded hermitian operator 7" with the same spectrum of Tx.

In case the Hilbert space is L?(R"), one can anticipate an important result
if Corollary 6.3.5 is invoked:
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Corollary 4.3.7. If there is 3 € R so that V € L2 _(R") satisfies V(z) > B,
Vx € R™, then the Friedrichs extension of the standard Schrédinger operator

dom H = C§°(R™), Hiyp=—-Ayp+Vy, ¢ €dom H,
is the unique self-adjoint extension of H.

If T € B(H), then T*T is self-adjoint and positive. Form extensions will be
used to adapt this result to a more general case. Recall that dom (T*T) := {¢{ €
dom T : (T€) € dom T*} and (T*T)§ = T*(T€). However, it can happen that
dom (T*T) is not dense in H. See Example 2.1.5; another classical example is the
following.

Ezample 4.3.8 (dom T* is not dense in H). Let H = L?(R), 0 # ¢ € H, ¢(x) =
L,Vz € Rand dom T := {¢ € H : [, [¢|dz < co}. Write (¢,¢)) = [, ¢dz, and
define

(TY)(z) := (¢, ¥) o (), Y € dom T.
Thus, if v € dom T*, then for every ) € dom T one has

(T™u, ) = (u, TY) = (u, (¢, ¥)tho)
= <¢)a ¢> <u? ¢0> = <<d)0a U>¢, ¢> .

Hence, (T*u)(x) = (vo,u)é(z), and it belongs to H iff (¢p,u) = 0. Thus,
dom T* C {1p}* and it is not dense in H. Furthermore, for v € dom T* one
has T*u = 0.

However, if T is closed a remarkable result of von Neumann is found.
Proposition 4.3.9. Let T' be a closed operator with dom T'C H. Then dom (T*T) C
H, T*T is a positive self-adjoint operator and dom T is the form domain of T*T.
Proof. Since T is closed, by taking the form

as the inner graph product, it follows that (H4,b4) = (dom T, b) is a Hilbert space
and b(&) = ||&llr > |||, V€ € dom T. Thus, by Theorem 4.2.6 the operator Ty,
associated with b is self-adjoint, T > 1,

dom T, = {¢ € dom T : 3¢ € Hwith b(n,&) = (n,¢), Vn € dom T}
and Tp¢ = ¢. Explicitly, £ € dom Ty, iff for all n € dom T,

(T, TE) + (n,§) = b(n,€) = (n, 1),
so that
(Tn,T¢) = (n,(Ty —1)§),  Vn€domT.
Therefore, £ € dom Ty, iff T¢ € dom T and T*(T¢) = (Tp — 1)¢, that is,
T*T = T, — 1 is self-adjoint and positive. By Theorem 4.2.6, dom T} is dense

in (dom T, b), and it follows that dom (7*T') is dense in (dom T, b). By construc-
tion, the form domain of T*T is dom T O
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Although the next result could be obtained directly from general theorems,
it is worth presenting a specific short proof.

Corollary 4.3.10. If T is self-adjoint, then for alln € N the operator T?" is positive
and self-adjoint. In particular T? is self-adjoint.

Proof. If T is self-adjoint, Proposition 4.3.9 implies that T% is self-adjoint; use
recursion in j starting from j = 1. O

Proposition 4.3.11. Let T be closed and densely defined.

i) Then dom (T*T) is a core of T.
ii) If T is self-adjoint, then T? is self-adjoint and dom T? is a core of T.

Proof. i) In the graph inner product of T', let

(n,Tn) € {(&,T€) : € € dom (T*T)}".

Thus 0 = (§,n) + (T¢,Tny = (1 + T*T)E,n). Since T*T is a positive self-adjoint
operator, —1 € p(T*T) and so rng (I'*T + 1) = H. Hence n = 0 and, by Exer-
cise 1.2.26 (or Exercise 2.5.10), dom (T*T) is a core of T.

i) Combine Corollary 4.3.10 with i). O

Remark 4.3.12. The following property is attractive. If T' is self-adjoint and
dom T? = dom T, then T is bounded.

Proof. Clearly dom T? C dom T and we introduce the notation h = (dom T} || -
ll7), which is a Hilbert space since T is closed. Pay attention to the following facts:

1. T—il:h — (H,| -|) is bounded. Indeed, for £ € dom T, ||(T —i1)¢||* =
€l + 17¢l* = l1€l17-

2. Since dom 7% = dom T one has Tdom 7' C dom 7 and so the linear mapping
Ri(T): (dom T, - |) —» h
is bounded. Indeed, for £ € dom T use triangular inequality to get

IR:(T)ElI7 = || Ri(T)EN + 1T Ro(T)E]|?
<€l + (T = i) Ri(T)¢ + iRi(T)E]* < 5]I€]1*.

3. Since dom 72 = dom T, define
T:h—h,  T¢&:=T€,

which is a closed operator; indeed, if &, L, ¢ and T¢, LN n, then & €

dom T, T¢, , T, TE, , 7, so that n = T¢. Hence, T is bounded by the
closed graph theorem.
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Now observe that T : (dom T - ||) — (H, || - ||) can be written in the form
T = (T —i1) T Ry(T),
which shows that 7" is bounded. O

Exercise 4.3.13. Let T be a closed hermitian operator with dom 72 dense in H.
Show that T*T is the Friedrichs extension of T2.

Exercise 4.3.14. Let dom a = {¢p € L3(R) : v € ACR),v’ + z¢ € L%(R)},
ath = ' + w1, 1 € dom a. Show that a is a closed operator and that its adjoint
is dom a* = {¢ € L2(R) : ¢ € AC(R), —¢' + z¢p € L2(R)}, a*yp = —' + x1),
1 € dom a*. Find the operator a*a and relate it to the harmonic oscillator. a*, a
are called creation and annihilation operators, respectively.

Exercise 4.3.15. If T is self-adjoint and F is a dense subspace of H, show that
R;(T)E is also dense in H. Observe that dom T"*! = R;(T)dom T" for all n € N,
and conclude that dom 7™ is dense in H.

Exercise 4.3.16. Let T be a closed operator with dom 7' & H. Choose £ = 0
in Exercise 2.1.21 and work to show that (1 +7*T)~! is a bounded self-adjoint
operator. Conclude that T*T is self-adjoint. This is a sketch of a proof of the first
part of Proposition 4.3.9 without using forms.

4.4 Examples

Example 4.4.1. Let ¢ : R — [0,00) be a Borel function and 7" = M, > 0 the
subsequent self-adjoint multiplication operator in L2(R), as in Subsection 2.3.2.
The sesquilinear form generated by T is dom b7 = dom M,

b7 (1, 6) = (1, M) = / @) 9(2)6(z) d.
R

By writing
b (4, 6) = / (@) Fp(e) o) ola) de

one has

<¢a ¢>+ = <M\/¢¢aM\/¢¢> + <¢7 ¢>7 ¢a ¢ € dom T7

which is the graph inner product of M /5 restricted to dom T'. Now, it is possible to
show (Lemma 4.4.2) that dom M, is dense in dom M s and since the operator
M sz is closed, it follows that bf = (-,-); and HT is the domain of M s. In
summary, the form domain of the positive self-adjoint operator M,, (so equal to
its Friedrichs extension) is dom M. Note that, for general function ¢, dom 7" =
dom M, is a proper subset of HT = dom M /& Later on this will be generalized
(see Section 9.3).
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Lemma 4.4.2. Consider all symbols as in Example 4.4.1. In both spaces, H and
Hy = (dom M sz, (-, )m z)s one has dom M, T dom M s (see also general
arguments in Proposition 4.3.11).

Proof. If 1 € dom M,, then, by Cauchy-Schwarz,

Ivew)? = [EWWUW(I) dp(z) <[[Plllledll < oo,

and dom M, C dom M .
Given ¥ € dom ./\/l\/(‘;7 for each positive integer n set E, = {r € £ : 0 <
o(x) < n} and Y, (z) = xg, (x)Y(x). Then ¢, € dom M, and

Ve (W —9)|1* = /Ew(x) 11— X, @) [ (@) dpu(x)

which vanishes as n — oo, by the dominated convergence theorem. In a similar
way one checks that v,, — v in H, that is, in this space dom M, is dense in
dom M 5.

Taking these two convergences together, it follows that

1n = %II% = llv& W¥n = ¥)I” + lln — 9> =570,
which shows that dom M, is dense in dom M in Hy. O

The next examples indicate that occasionally the Friedrichs extension natu-
rally allocates boundary conditions.

Ezample 4.4.3. Let dom P = {¢) € H'[0,1] : ¢(0) = 0 = (1)}, Py = —it)’, and
H = P2, with

dom H ={¢ € dom P : Py € dom P}
={ € H?[0,1] : (0) = ¥(1) = 0 = ¢'(0) = ¥'(1)},

and Hiy = —v”. P is a closed hermitian operator and its adjoint has the same
action but with domain dom P* = H![0, 1]. Therefore, by Proposition 4.3.9, P*P
is self-adjoint,

dom P*P = {1y € H[0,1] : 4(0) (1), ¢ € HY0,1]}
={y e H?[0,1]: 9(0) = 0 = ¢(1)}.

By results of Section 4.3, P*P is the Friedrichs extension of H, i.e., P*P = Hp.
This is the unique self-adjoint extension of the free particle energy operator Tp in
[0, 1], Example 2.3.5, with Dirichlet boundary conditions. This is a general feature
of the Friedrichs extension of differential operators, that is, it corresponds to the
Dirichlet boundary conditions; see other examples below.

0
0
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Exercise 4.4.4. Show that the unique self-adjoint extension of the free particle
energy operator Tp in [0, 1], with periodic boundary conditions of Example 2.3.7,
is the Friedrichs extension of P?, where dom P = {¢ € H[0,1] : ¢¥(0) = (1)},
Py = —i7)’. Find the domain of this extension.

Ezample 4.4.5. [Energy operator on [0,1]] Set H = L2[0,1], dom H = C§°(0, 1),

(Hy)(x) = —¢"(z) + V(2)i(2),

with V' : [0,1] — [0, 00) continuous. Consider the form generated by this operator,
that is, b7 : dom H x dom H — C, b (v, ¢) := (¢, Hp). Thus

H (o, ) /zz) (2) + V(@) (x)) do

- / (/@) + V(@) [b()?) de > Bl

with 0 < 8 = minge(o,1) V(2). Thus H > (1.
Let Hp be the Friedrichs extension of H; so dom Hp C ‘H!!. For ¢ € dom H,
by Cauchy-Schwarz one has

[ ( |—\/w dt]<|x|2(/ (e |2dt)
< Ja] = b (1, )%
Since 9(0) = 0 one has

¥l = sup fu(o ) < b (1, )F < ()2

z€[0,1

thus each Cauchy sequence according to either b (-,-) or (-,-)4 norm converges
uniformly, and so its limit is also continuous and Vanishing at the boundary. Then
this holds for every element of the complete space H , in particular for the ele-
ments of dom Hp. Therefore, null Dirichlet boundary conditions ¥(0)=0=1(1)
hold in dom Hp. Note that the result is in fact valid for more general positive
potentials V().

Ezercise 4.4.6. Let H = L2[0,1], V : [0,1] — [0,00) continuous, dom b = {¢ €
H1[0,1] : 4(0) = 0 = +(1)} and, for ¢, € dom b,

b(¢,v) = (¢, ¥') + (6, V)

Based on Example 4.2.12, show that b is a positive closed form whose respective
associated operator is dom T} = {¢p € H2[0,1] : 9(0) = 0 = (1)}, Ty = —" +
Vi, ¢ € dom Tp. Show that b here is the closure of the form b in Example 4.4.5,
and conclude that T} is the Friedrichs extension Hy of the operator H in that
example.
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Example 4.4.7. Let H = L2[0,1], p,V : [0,1] — R continuous functions, with
p(z) > 0, Vz € [0,1], and continuous derivative p’. Given a > 0, consider the
operator

dom T = {¢p € H?[0,1] : (0) = 0, ¢'(1) = —ayp(1)},
(TY)(z) = —[py'] (z) + V(z)(x), ¢ € dom T.

Integrations by parts show that 7" is hermitian, and since
1 1
(¥, Ty) =ap1)]e(1)) +/ p(@)Y ()] da +/ V() |e(x)]* dz
0 0

1
> / V@)@ de > Bl B=inf{V(z):z < [0, 1]},

it follows that T' > (1. Therefore, this operator has a self-adjoint extension Tr,
its Friedrichs extension, and T% > §1. In particular o(Tr) C [3, c0).

Ezxample 4.4.8. Let T, T, be operators as introduced in Example 4.2.15 and as-
sume that ag # 79, a1 # 71 (recall that they are not zero). Consider the operator
sum (T, + T;)/2, whose domain is

dom (T/2) N dom (T /2) = {4 € H?[0,1] :
¥(0) = S(0) = Zv(0), ¥/ (1) = = FH(1) = —Fo(1)}
= {w € H2[0, 1] :9(0) = 0 = %(1),¥/(0) = 0 = ¥/(1)}.

Since the situation is very similar to Exercise 4.2.14 and Example 4.4.3, one con-
cludes that (T + T5)/2 > 0 and the domain of its Friedrichs extension (T, +
T,)/2)F carries Dirichlet boundary conditions, i.e., ¥(0) = 0 = ¢(1). Therefore

Loy Tr (Lo I0)
2" 2 2 "2 ),

see Example 4.2.15.

Ezample 4.4.9. [Schrédinger operator with delta-function potential] Let ¢ > 0 and
0(x) be the Dirac delta at the origin (see also Example 6.2.16 and Subsection 7.4.2).
A way to interpret the formal energy operator (in L?(R))

2

y R —
dx?

+ cd(x),

under this ¢ potential with positive intensity ¢, is to consider a suitable domain
for T¢, which contains all information on §(z), and then construct a self-adjoint
extension via sesquilinear forms (see Example 4.1.15). Physically, d(z) models a
very strong (positive) interaction concentrated at the origin.
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As a guide for defining such domain, for £ > 0 integrate T formally

[ T (T0) () da = j () da + [ © @) da

=v'(=¢) = '(e) + c(0).

The term c¢t»(0) induces 1. below. If the function (7°°¢) is bounded (so 3. below),
then as ¢ — 0T one gets

0=14/(07) = 9'(0") + cv(0),

and so 2. below. Based on this motivating digression, define dom 7° as the set of
¥ € H?(R\ {0}) obeying

1. 4 is continuously extended at zero, that is, 1(0F) = 4 (07) := 9(0);
2. 9'(0%) = ¥'(07) = c(0);
3. ¢"(0F) — 4" (07) is finite.

This set dom 7 contains C§°(R \ {0}) and so is dense in L?(R). Finally define
T = —ap”, 1 € dom T°.

For v, ¢ € dom T one has, after integration by parts,

=0 = [ s [ e

—B(07) ¢/ (07) — P(07) &'(07) + / T ¢ (2) do
=c(0)¢(0) + (', ¢') = (W, ¢') + cbs(¥, 8),

where b; is the form in Example 4.1.15. Two important conclusions follow. First,
the form b7 (¢, $) is the sum

b (h, ¢) = (', &) + cbs(v, ),

supporting the interpretation of the presence of a § potential with intensity ¢ > 0.
Second, another integration by parts shows that 7 is hermitian, and for ¢ = ¢
one has

(¥, T°) = clpO)]* + [¢'I%,

so that T is a positive operator. Therefore, it has a (Friedrichs) self-adjoint ex-
tension 1'%, a candidate for the energy operator in this situation.

Note that if ¢ is in the domain of this Friedrichs extension and it is meaningful
to write u = —¢” 4+ ¢dp = —¢” + ¢(0), then such functions ¢ have a slope
discontinuity at the origin equal to c(0), so that u € L?(R) even if ¢ and the
constant function ¢t(0) do not.
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Exercise 4.4.10. Consider again the formal operator

2

Te=_2
da?

+ cd(x),
as in Example 4.4.9. A possible way to address the problem of getting a well-
defined self-adjoint operator is to note that formally on the set

E = {$ € H*(R) : ¥(0) = 0},

T¢ coincides with Ty = —d?/dz?. Show that T with dom Ty = F is hermitian, that
its adjoint has the same action but with dom Tp* = {t» € H2(R\ {0}) : ¥(07) =
1 (0%)}. Check that its deficiency indices are both equal to 1; the corresponding
self-adjoint extensions should contain the rigorous definition of T¢ for any ¢ € R.

Ezample 4.4.11. The derivative of the Dirac delta §’(x) acts formally as

/ 5 (@) (@)de =~ (z).

Here a construction will be discussed so that it becomes meaningful to talk about
the energy operator, in L?(R),

S¢ = @ 5

——@—&-c (x), c<0.

Physically ¢'(z) would model a very strong interaction concentrated at the origin
but of positive intensity on the left and of negative intensity on the right, something
like a dipole concentrated at the origin (think of the derivative of a function that
approximates d(x), which has a positive peak on the left and a negative one on
the right).

Introduce dom S¢ as the set of elements ¢ € H?(R \ {0}) obeying ¢’ (0") =
1’'(07) (both lateral limits do exist), so it becomes meaningful to talk about
¢'(0) := ¢/(0") and (a formal integration imposes) ¥(07) — ¥ (07) = —ct’(0).
This subspace is dense in L%(R) since it contains C§°(R \ {0}). On dom S¢ define
the sesquilinear form

bg/(l/), ¢) = _¢/(0)¢/(0)’

heuristically corresponding to a ¢’ potential. Finally, define on dom S°¢ the operator
and subsequent sesquilinear form

S ==y, b7 (1,9) = (1, 5).
On integrating by parts it is found that S¢ is hermitian and

b5 (1, 6) = (&', &) + by (v, 9),

so that .
b (1h,9) = —c|y’ (0)* + |||
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and S¢ is positive for ¢ < 0. Its Friedrichs extension S% is a candidate for the
energy operator in this situation. Additional information about 0" potential can
be obtained from [Se86] and [ExNZ01].

Ezercise 4.4.12. Show that S¢ in Example 4.4.11 is hermitian and positive.
Ezample 4.4.13. Let H = L2[0,1],

dom Ty = {¢p € H?[0,1] : ¢(0) = (1) =
dom T; = {p € H?[0,1] : 9(0) = 0 = 2(1
Ty =—y", Y € dom T}, j =0,1.

0=14'(0) =v'(1)},
)}

Then dom Tg = H?[0, 1], Tp is hermitian, lower bounded, with deficiency indices
n_ = n4 = 2 (see Example 2.6.8), and the Friedrichs extension of Ty is Tr = T;.
In fact, observe that Ty = P2, with P as in Example 4.4.3 and T}, = P*P.

The eigenvectors of T form an orthogonal basis of H and its spectrum is

{(nm)?:n=1,2,3,...} (see Example 2.3.5). Then Tr > 7?1, and the constant
72 cannot be increased. Check this, for instance, by considering an eigenfunction
(of Tr) expansions.

Note, however, that the operator
dom Ty = {¢ € H[0,1] : 9(0) = —¢(1), ¥'(0) = —¢'(1)}

Toyp = —p”, is another self-adjoint extension of Ty, with the same spectrum as
Tr, and so with the same lower bound 72. Therefore, the sole lower bound is
not enough to characterize the Friedrichs extension of lower bounded hermitian
operators.

Ezercise 4.4.14. Fill in the missing details in Example 4.4.13.

Ezercise 4.4.15. This is closely related to Example 2.3.19. The Hilbert space is
H = L2]0, 00),

dom T = {¢ € H?*[0,00) : 4(0) = 0, ¥'(0) = 0},
and Ty = —".

1. Check that this operator is hermitian and positive.

2. Show that its deficiency indices are n_ = ny = 1 and that its self-adjoint
extensions 7T, have the same operator action as T' but with domain labeled
by ¢ € RU {oo} with

dom T, = {¥ € H?*[0,00) : 1(0) = c¥’(0) }, ceR,

and ¢'(0) = 0 for ¢ = co.

3. Find the Friedrichs extension Tr of T and conclude that it corresponds to
c =0, i.e., the Dirichlet boundary condition is selected.
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4.4.1 Hardy’s Inequality

An important inequality will be used in the next example. It has versions for R"”,
n > 3, but with constants different from 1/4 in Lemma 4.4.16; see Exercise 4.4.21
for n = 1.

Lemma 4.4.16 (Hardy’s Inequality). For v € HY(R3) (in particular for 1 €

e b
Jtvvtoras=g [ M5

Proof. By considering the real and imaginary parts of functions, it is possible to
restrict the argument to real-valued 1. Consider first ¢ € C§°(R?).

For z = (21, 72,73) € R? denote r = |z| (standard norm in R?), and recall
that in spherical coordinates (7,6, ) one has dz = 72 sin @ drdfdy. For real-valued
Y € C3°(R?) set ¢ = rz4p, so that

I(Vw)(ﬂv)lz=(5’11/))2 (021)% + (D59)?

Lo - 29 | L,

Since ¢(0) = 0 and there exists R > 0 so that ¢(x) =0 if r > R, then

2 2m 2
/ T128¢ / / sdeGdgo/ aqb
R3

— ¢(0)?

1 1 1 1
V|2 de > = —2d:—/—2d7
/R‘sl vl $74/R37’3¢ o 4 R3T2w *

which implies the desired inequality in case 1 € C§°(R3).

For ¢ € H'(R?), take a sequence (¢;); C C§°(R3) with ¢; — ¢ in H'(R3);
thus both ¢; — 1 and (the components of) Vi; — V¢ in L?(R?), and the
inequality follows for all ¢ € H*(R?). O

Therefore

Ezxercise 4.4.17. Inspect the proof of Hardy’s inequality to show that equality
holds for ¢ € C§°(R3) iff ¢ = 0.

Remark 4.4.18. There is a version of Hardy’s inequality in R™, n > 3, that holds
for all ¢ € H!(R™) and takes the form

5 (n—2)* ()|
/Rn|Vz/)(x)| dr> "7 / o,

and the constant (n — 2)2/4 is the best possible for all ¢ € C§°(R™) [Sh31],
[KaSW75).
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Ezample 4.4.19. [The Friedrichs Extension for the 3D hydrogen atom] Let H =
L%(R?) and consider dom H = C§°(R3) and

h? e?
(HY)(x) = —5—(A0)(@) —aTt(x), v € dom H,
with @ > 0. This is related to the quantum three-dimensional (briefly 3D) hydrogen
atom energy operator (with some physical constants included: Planck constant A,
electron mass m and charge —e). Integration by parts shows that H is hermitian
and, together with Lemma 4.4.16 that, for real-valued ¢ € dom H,

w.tv) = [

R3

(3 190 — o)) do

R o1 e? 9
> o _WE dz.
*/Rs (8m|x|2 “|x|)”’(m) v

Now pick a > 0 so that
ae? h?
— < — V. 0.
o = smap T 7
Thus

. H9) > =a | (@) de = alldl”.
For ¢ = 91 +ips € dom H, with ¢, 19 real-valued, one gets

(Y, H) = (1, Hipr) + i3p1, Hepa) — i(th2, Hepr) + (32, Hiba)
= (1, HY1) + (Yo, Hip2)
> —alltn||* = allya||* = —ally[|?,
and the same relation holds for all elements of dom H. Therefore, it follows that

H > —al and H has the self-adjoint Friedrichs extension Hp. Further, Hp > —al
and its spectrum o(7T%) is lower bounded.

Remark 4.4.20. By using results of Rellich, in the 1950s Tosio Kato showed that H
in Example 4.4.19 with domain C§°(R?) is essentially self-adjoint; this is discussed
in Example 6.2.3.

Ezercise 4.4.21. Let ¢ be a real-valued element of C§°(R\ {0}) or C§°(0,00). On

integrating by parts
1
[o@r 5 dn

and then applying Cauchy-Schwarz, conclude the Hardy’s inequality

i/(qp;x))deS/zp'(xfdx.

The integrations are over R or [0, 00), respectively.




Chapter 5

Unitary Evolution Groups

Unitary evolution groups are in one-to-one correspondence with self-adjoint op-
erators. They are also responsible for the time evolution of quantum states, that
is, the solutions of Schrodinger equations. In this chapter such relations are de-
scribed in detail, including standard examples of unitary evolution groups and
infinitesimal generators. Different continuity assumptions on the unitary groups
are discussed.

5.1 Unitary Evolution Groups

A major interest here is in solutions of the initial value problem

z%(t) =T¢(t), £0)=¢edom T,

for T': dom T'C 'H — 'H a linear self-adjoint operator, with ¢ playing the role of
time. In quantum mechanics this equation is known as the Schrédinger equation
and it rules the dynamics in quantum mechanics; in this setting T corresponds
to the total system energy. The imaginary factor ¢ imposes that the solutions of
this problem are via unitary operators, as discussed below. A mathematical and
physical pertinent question is about the behavior of £(t) for large values of ¢; this
will be one of the main concerns of this text, but first the existence of solutions
must be addressed.

Sometimes integrals of vector and operator-valued functions will be used;
they can be defined via limits of Riemann sums in a similar way to the usual
Riemann integral. Since their definitions and properties are quite similar to the
ordinary case, no attempt will be made to present details of this theory.

Definition 5.1.1. A map G : R — B(H) is a one-parameter unitary evolution
group, or simply a unitary evolution group, on H if G(t) is a unitary operator
onto H and G(t+ s) = G(¢)G(s), Vt,s € R.
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Note that G(0)G(t) = G(t), so G(0) =1, G(—t) = G(t)"! = G(t)*, Vt € R,
and the map ¢ — G(t) is a representation of the abelian group R in B(H).
(

Definition 5.1.2. If G(t) is a unitary evolution group, the operator T' defined by

o1
dom T := {§ GH'H;ILIE%E(G(h) —1)5}7
that is, £ € dom T iff ¢t — G(t)¢ is differentiable at t = 0,
o1
T¢ .:z}lLlLIBE(G(h)—l)S, £edom T,

is called the infinitesimal generator of G(t) (note that dom T is actually a vector
subspace of H and T is uniquely defined).

Since for each t € R the operator G(t) is unitary, so continuous, for £ € dom T
take h — 0 in
1 1

LG 1] G0 = 1[Gl + )~ G(E] = Gle) 3 (G(R) — 1)E,

to conclude that G(t)(dom T') C dom T', V¢t € R; apply G(—t) to this inclusion
and conclude that G(t)(dom T') = dom T'. Explicitly, for h — 0 one gets

G()TE =TG(t)E,  VteR, £ edomT.

The parameter ¢ is not necessarily time; some examples in this chapter will
point out the richness of other possibilities. The case of ¢ actually representing
time is very important in quantum mechanics and, as already mentioned, in this
case the infinitesimal generator is the operator corresponding to the total quantum
energy; see Example 5.4.1. So the terminology “evolution groups.”

Proposition 5.1.3. Lett — G(t) be a unitary evolution group. Then its infinitesimal
generator T is symmetric and for & € dom T the curve £(t) := G(t)€ in H is the
unique solution of

d€

i O =T, £0)=¢

Proof. Since by definition
dg
dt

the preceding discussion has already shown that £(t) is a solution of this initial
value problem. For £, € dom T one has

(1) = lim 5 [G(t + )€~ Gl0)E],

wen =i (1€ = en) = —ifim 1 (GO0 - 1) €

.1
=i Jim (£, (G(~h) = 1))

i (6195 =20) = .7

=1l
h—0
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and so T is a symmetric operator. For the uniqueness of the solution of the initial
value problem, let n(t) be another solution to the problem; then, for all ¢,

10 = ol =2Re (I~ n(0), le0) - (o))
= 2Re ([£(1) — n(t), ~iTIE) ~ () = 0

since T is symmetric (thus, (¢, T¢) € R, V¢ € dom T). So ||£(t) —n(t)| is constant,
and owing to £(0) —n(0) = 0, it is found that £(¢) = n(¢) for all t € R. O

It is interesting to observe that, according to Proposition 5.1.3, the infinites-
imal generator of a unitary evolution group G(t) is symmetric with no explicit
continuity assumption on G(t). Now suitable continuity properties will be required
and some of their consequences explored.

Definition 5.1.4. Let G(t) be a unitary evolution group acting on H. Then the
map t — G(t) is
a) norm (or uniformly) continuous if in B(H) one has lim;_4, |G(t) — G(to)|| =
0, Vto € R.
b) strongly continuous if lim¢_;, G(t)§ = G(t0)¢, Vto € R, V€ € H.
c¢) weakly continuous if lim;_+ (G(t)€,n) = (G(t0)&,n), Vio € R, V€, n € H.
d) measurable if the map R > t — (G(t)€,n) is (Lebesgue) measurable V¢, n €
H.

Ezercise 5.1.5. By using basic properties of G(t) discussed at the beginning of
this section, show that it is enough to consider only ¢y = 0 in items a), b) and ¢)
of Definition 5.1.4.

Example 5.1.6. Let ¢ : E — R be a measurable function and bounded on each
bounded subset of the open set £ C R"; by Corollary 2.3.25, M, is self-adjoint.
Consider U(t) = e~ () := M, u¢, t € R, acting on L2 (E), which is a unitary
evolution group (check this!).

For ¢ € Li(E)7 it follows by the dominated convergence theorem that

. . 2 _ —ihe(z) 24 —
l [0 (k) — w1 = Jim [ [e (@) du(z) = 0.
Hence U(t) is strongly continuous.

Now let T be the infinitesimal generator of U(t), which is symmetric by
Proposition 5.1.3. If ¢ € dom M., then

).

S ‘

Lem @ — 1) — o()| [9(@)? dpu(z).

HURY =) - .

Since [e? — 1] < |y for y € R,

==

Lo 1) — g(a)

> |

@“M”—%+wun<2wm,
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and by dominated convergence one finds that
. 7
tim | L0 (s ) - MwwH 0

and so ¢ € dom T and TY = M1, that is, M, C T. Since T is symmetric and
M, self-adjoint, one has M, = T (see Exercise 2.1.19). By Proposition 5.1.3,
Ul(t)h = e~ @)y is a solution of

a0
dt

and the unique one.

(t) = Myo(t),  $(0) =9 € dom My,

Proposition 5.1.7. If G(t) is a unitary evolution group on the Hilbert space H,
then b), ¢) and d) in Definition 5.1.4 are equivalent.

Proof. Recall that due to the group property it is enough to take to = 0 in b), ¢);
also, H is separable (it is known that d) = ¢) may not hold if H is not separable).
e b) = ¢) = d) They are clear from the definitions.
e ¢) = b) One has

IG()E = €l = IG@EN* + IEll* — (G(1)€, &) — (€, G(1)E)
=2[¢]1* - (G(t)€. &) — (£, G(1)¢),

and if ¢) holds then (£, G(t)¢) — [|€]|? as t — 0 and so ||G(¢)¢ — £|| — 0, that is,
b) holds.

e d) = ¢) This is a rather surprising result of von Neumann. Pick £ € H.
Since t — (G(t)€,n) is measurable and [{G(£)E, )| < ||€]l [Inll, given s > 0 it is
possible to use integration to define the linear functional f : H — C by

o= [ e, Vnen,

which is continuous since | f(n)| < s||€]| ||7]; thus, by Riesz’s Representation 1.1.40,
there is &5 € H so that

(o) = /O LGwEmd,  Vnen.

Note that ||&s]| = || f]] < sll€]]. A similar construction defines & for s < 0.
Denote by S the subspace

S=Lin({{; e H: € H,s €R}).

The next step is to show that S is dense in H. Let {£7}; be a countable orthonormal
basis of H and take ¢ € ST. Thus, for all s € R,

0= (¢,0) =/OS<G<t>stc>dt



5.1. Unitary Evolution Groups 125

and so (G(t)€7,() = 0 Lebesgue a.e. in R, say for t € A; and A; with total
measure. Thus the set A =N;A4; C R also has total Lebesgue measure and

(G()E,¢Q) = (¢,G(—t)¢) =0,  Vj,Vte A

Therefore, G(—t)¢ = 0 if t € A, and since ||| = ||G(—¢t)¢|| = 0, it follows that
¢ =0 and S is dense in H.

Now, for £, € H (for convenience the argument is restricted to s > 0),

@@&mz@ﬂ@mwafwmamwmﬁ
s s+r
=/Xaa+mamﬁ=/°<awamm
0 r

and one gets, for 0 <7 < s,

s+r

(G(r)&s,m) — (&ssm)| =

<<ﬁmﬁ—/7<mmﬂ

A [ e
(fr /) (S ml dt < 2r[¢]ln]

which vanishes as r — 0. Similarly for » < 0. Therefore, for all n € H and all
¢ € S, the maps t — (G(t)$,n) are continuous.

Let £ € H; given € > 0 pick ¢ € S with ||¢ — £|| < e. Since t — G(¢t) is
uniformly bounded, for each n € H,

(G(R)E ) — (& m| <KG(R)E,m) — (G(h)d,n)

+HG(R)g,m) — (& m + 1@ m) — (& 1)
<[|G(R)E = G(R)gll [Inll
+ (G (R)g,m) — (¢, m] + 1€ = oIl lIn]l

<2+ |(G(h)p,n) — (&, n)] .

Since ¢ € S, by continuity there exists hg > 0 so that, if |h| < hg one has
(G(h)¢,n) — (#,m)| < €, consequently

Therefore, limy,_.o(G(h)E,n) = (£,n), V€, n € H, and G(¢) is weakly continuous at
zero. This finishes the proof of the proposition. U
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5.2 Bounded Infinitesimal Generators

If T € B(H) and z € C, the exponential operator e*7 can be defined by the series

i3I
Z V4
eZT = 5

1l
=0 I

which is norm convergent in B(H). Since T is bounded, the manipulations with
such series are very similar to the ones with the corresponding numerical series,
and so one can conclude, for instance, that

1. Te*T = e*TT, vz € C.

2. eHNT — 2T T — ouT 2T Vz,y € C.

3. For t = 0 one has e’T =1, and e T = (e*T) L.
4.

For the adjoint operator

2T\ * - (ET*)] zT™
() = Z 4! =
=0

5. The map R 3 ¢ — e'T is norm differentiable in B(H) (so continuous) with

d ir Lo enyT _ ry i
P '_;?i%h(e —et)=Te", vt e R.

As an illustration of the arguments, consider 2 above. Since the involved
series are norm convergent, one has

E AT T S - TV )"
o= 3 ZPIL S Y
e*e
1l | i'm)
m=0 m k=0 j+m=k J-m
1 k! "
=35 X gaCTren)

k=0 m=0
= 1

=Y o Gyt =T
k=0 """

=3 4 (2T = e
k=0 """

Exercise 5.2.1. Verify the validity of the other properties of e*? presented above.
Note that 5. also holds with t € C.
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In the specific case T is a bounded self-adjoint operator, the map t — e~ %7
is a unitary evolution group, 7 is its infinitesimal generator and the differentiation
can be taken even in the norm of B(H), instead of strongly as in Definition 5.1.2.
This situation is the general one, as discussed in Theorem 5.2.3.
Exercise 5.2.2. For a bounded self-adjoint T, verify that ¢t — e~ T
evolution group and also that 7' is its infinitesimal generator.

is a unitary

Theorem 5.2.3. If G(t) is a unitary evolution group on M, then the following
assertions are equivalent:

i) t — G(t) is norm continuous.
ii) t — G(t) is norm differentiable and there exists T € B(H) with

lim
h—0

% [G(t+ 1) — G(t)] - TH = lim

%[G(h) - TH 0.

So T € B(H) is the infinitesimal generator of G(t).
iii) There exists T € B(H) so that

o0

G(t) = e T = Z jl' (—itT), vt € R.
7=0

Furthermore, T in ii) and iii) is the same operator and self-adjoint.

Proof. By repeating an argument in Proposition 5.1.3, one gets that if ii) holds,
then T' is symmetric with dom 7" = H, so T in ii) is self-adjoint. The implications
ili) = ii) = i) and iii) = i) basically follow by the discussion above. Since iii) =
i), then e =7 in iii) is a unitary evolution group and 7 its self-adjoint infinitesimal
generator. It is then needed only to show that

i) = iii) As a motivation for what follows, note that for z € R, x fOt e~ ds =
i(e”®* — 1) and so iii) allows one to guess

¢
(G — 1) ~ T/ G(s) ds
0
Suppose i) holds. Compute the relation
h t+h h
t)—l)x/ G(s)ds:/ G(s)ds—/ G(s) ds
0 t 0
h t+h t h
:/ G(s)ds+ G(s)ds—/ G(s)ds—/ G(s)ds
0 t

t+h
= G(s ds—/G
h

— (G(h) - 1) /G
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Set .
X =X(h) :/0 G(s)ds.

Fix 0 # |h| small enough so that, by norm continuity of G(¢),

I I

- -1
h/o G(s)ds h/o ds
1 h

E/ (G(s) — 1) ds

0

1
—X —1||=
x|

< sup ||G(s)—1] < 1.
s|<[hl

Hence for such h it follows that X ! is well defined and belongs to B(H) (see
Exercise 1.1.24).

So, after composition with X~ in the above relation, one gets (since all
operators in question commute)

t
(G —1) =Y / G(s) ds,
0
where Y := i(G(h) — 1) X ! € B(H). Therefore G(t) is norm differentiable and

d
iZGH) =YG),  GO)=1,

whose unique solution is G(t) = e~ Y. In fact, one explicitly finds

Ll (Gt)e™) =0, VteR,

dt

so that G(t)e'™ = cte and, together with G(0) = 1, it necessarily follows that
G(t) = e~ Y. Note that both ii) and iii) were obtained and Y is the infinitesimal
generator of G(t). Since ii) follows by iii), Y equals the operator T in ii) and the
last assertion of the theorem is also valid. O

Therefore, if the infinitesimal generator of the unitary evolution group G(t)
is unbounded, then at most strong continuity is possible for ¢t — G(t). Such pos-
sibility will be discussed in the next section. This complements the results in
Proposition 5.1.7.

Ezercise 5.2.4. Provide the details of the proofs that iii) = ii) = i) and iii) = i)
in Theorem 5.2.3.

Ezercise 5.2.5. From G(t) — 1 = —iY fg G(s)ds, T € B(H), in the proof of The-
orem 5.2.3, use iteration under the integral sign to check that G(t) = e~ %Y.

Exercise 5.2.6. Let T, S be bounded operators and ) a bounded operator so that
QT = SQ. Show that Q = e*5Qe*" for all z € C.
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5.3 Stone Theorem

Often a self-adjoint operator T' : dom T" C H — H is given and one tries to
construct a unitary evolution group for which T is its infinitesimal generator. This
is a common situation in quantum mechanics.

Theorem 5.3.1. If T is self-adjoint, there exists a strongly continuous unitary evo-
lution group U(t) for which T is its infinitesimal generator. In this case one writes
Ut)=e T teR.

Remark 5.3.2. The proof of Theorem 5.3.1 will be postponed until after the dis-
cussion of the spectral theorem (see Section 9.2). An alternative proof which does
not use the spectral theorem can be found in [Am81]. Based on Theorem 5.2.3
and Example 5.1.6, given a self-adjoint operator 7" one could try to construct a
unitary evolution group through the series

o0

) 1 .
e =3 — (—itT).

1
=07

However, unlike the case of bounded T, it would make sense only for vectors in
Npdom T, a not simple set to control; see, however, Section 9.9. So, for unitary
evolution groups, the difference between norm continuity and strong continuity
has very important consequences.

The converse of Theorem 5.3.1 is the well-known Stone theorem.
Theorem 5.3.3 (Stone). If U(t) is a measurable unitary evolution group on M,

then its infinitesimal generator T is self-adjoint, that is, U(t) = e~ T (and hence
dom T'C H).

Proof. By Proposition 5.1.7, t — U (t) is strongly continuous. The domain dom T
of its infinitesimal generator 7" is nonempty since the null vector belongs to it. The
proof will be split into three parts, as follows:

1. dom T is dense in H.

2. T is essentially self-adjoint.

3. T =T and so self-adjoint.

e For each n € H and f € C§°(R) the map R > ¢ — f(t)U(t)n is measurable

and integrable. If 1y := [, f(t)U(t)ndt, then

L0 =1y = [ HOUE+ 1) - FOUOInds

h Jr
t—h)— f(t —
Gl e O B T
R h R
In the last passage the dominated convergence theorem was invoked. This shows
that ny € dom T for all f € Cg°(R), n € H.
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Since U(t) is strongly continuous, given ¢ > 0 there exists § > 0 with
SuPie(—s,5) M — U(t)n|| < e, and for a positive g € C5°(R) with support in [, J]
and [, g(t) dt = 1, one has

I =gl = | |, o0 v a

< sup |ln=U®)nl <e.
te[—4,d]
Hence, dom T is dense in H.

e By Proposition 5.1.3, T" is known to be symmetric and, since its domain is
dense in H, T is hermitian. It will be checked that n_(T) = n4.(T) = 0, so that T
is essentially self-adjoint.

Let n € K4 (T) = N(T* 4 ¢1). Then, n € dom T™* and, for all £ € dom T,

S0 ) = (~TU()En) = iU T*n) = U 0)E )

The unique solution of this differential equation with initial condition (£,7) at
t=0Iis

UWE,n) =e"&m,  teR,
and since the left-hand side is bounded we find that (§,7) = 0, V¢ € dom T'. Due
to the density of dom 7" in H, it follows that n = 0 and so n4 = 0. Similarly one
gets n— = 0.

e Let T be the closure of T, which coincides with its unique self-adjoint
extension. By Theorem 5.3.1, T is the (unique) infinitesimal generator of a strongly
continuous unitary evolution group G(t) := e~#”. It will be shown that U(t) =
G(t), Vt, so that necessarily T = T.

Since U(t) and G(t) are unitary operators, we only need to show that U (t)¢ =
G(t)¢ for all ¢ in the dense set dom T' C dom T. For such vectors both U(t)¢ and
G(t)¢ are strongly differentiable and if one denotes

o(t) = U(t)§ — G(t)E,
then, in view of U(t)dom T" = dom T, one has d¢/dt = —iT¢(t), and T being
self-adjoint,
d —
i 1@I* = 2Re (=iTé(1), 6(t)) =0, Vt.
Thus, ||¢(t)| is a constant function and equal to [|¢(0)|| = 0. Therefore, U(t) =
G(t), Vt. Thereby the proof is complete. O

Corollary 5.3.4. Let T be self-adjoint and the infinitesimal generator of the unitary
evolution group U(t). If D T dom T with U(t)D C D, Vt € R, then D is a core
of T.
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Exercise 5.3.5. Prove Corollary 5.3.4. Note that it is a consequence of the proof
of Theorem 5.3.3.

Ezercise 5.3.6. If G(t) and F(t) are strongly continuous unitary evolution groups
on H and there exists ¢ > 0 so that G(t) = F(t) for —e < t < ¢, show that
G(t) = F(t), Vt.

Ezercise 5.3.7. The map R > t — G(t) is a contraction evolution group on H if
G(t)G(s) = G(t+5), ¥s,t € R, G(0) = 1 and ||G(t)|| < 1, V. Show that if G(t) is
a contraction evolution group, then it is in fact a unitary evolution group.
Remark 5.3.8. It follows, by the results of this section, that in a Hilbert space
there is a one-to-one correspondence between the set of measurable (so strongly
continuous) unitary evolution groups and self-adjoint operators. This is another
motivation for the abstract study of self-adjoint operators.

Proposition 5.3.9. Let T' be self-adjoint, U(t) = e~"T E a closed vector subspace
of H and Pg the subsequent orthogonal projection. If U(t)E C E, Vt, then
a) UH)E=FE, Ut)E+t = E+, Vvt
b) PrU(t) = U(t)Pg, Vt, and PgT C T Pg. (If the latter holds one says that E
reduces T or that E is a reducing subspace for T'; see Section 9.8.)

Proof. Apply U(—t) to U(t)E C E, Vt, to show that U(t)E = E, Vt. If n € E+,
then for all £ € F,

and so U(t)E+ C E+ = U(t)E+ = E+, and a) is verified. Note that such relations

also show that PgU(t) = U(t)Pg, Vt.
Now, for £ € dom T,

PpT¢ = Pg hm ( (h)¢—=¢) = hmh( (h) P& — Pgé),

which shows that Pg{ € dom T and PgT¢ = T Pg€; in other symbols, PgT C
T Pg. The proof of b) is complete. O

Ezercise 5.3.10. Let G(t) be a strongly continuous unitary evolution group on H.
For ¢ € 'H show that the function

Rt — f(t) = (,G()§) €C,

is positive definite, i.e., f(t) is continuous, f(—t) = f(t) and for all {t;,...,t,} C R
and {c1,...,cn} CC,
Z f(tj — tk) CjCl > 0.

k,j=1
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5.4 Examples

Ezample 5.4.1. [Schrodinger equation] This equation gives the quantum dynamics
of a system in a Hilbert space H. If the energy observable is represented by the
(usually unbounded) self-adjoint operator H, the so-called Schrodinger operator

(or hamiltonian operator), then the corresponding Schrédinger equation is the
following first-order (with respect to time t¢) linear differential equation

d

i 6(t) = HE(D),  €(0) =€ € dom H.

Previous results show that for £ € dom H, the unique solution of this equation is
Ut)¢ = e ¢ e, it is ruled by a strongly continuous unitary evolution group
whose infinitesimal generator is H.

Note that since e"*Hdom H = dom H, Vt, this solution is global, in the
sense that it is defined for all ¢ € R. So, in contrast to classical mechanics, the
quantum time evolution is globally defined as soon as it exists, which corresponds
to the self-adjointness of the associated energy operator H. Since e~ is unitary,
even for ) ¢ dom H the time evolution n(t) = e "y is still defined, although not
differentiable; in this case it is said that 7(t) is a weak solution of the Schrédinger
equation.

Remark 5.4.2. If H is self-adjoint and represents the energy of a quantum system,
i.e., a Schrédinger operator, then the time evolution is ruled by U(t) = e~ If
¢ € dom H, then the relation

(U HU()E) = (UR)S,UMHE) = (6, HE),  VEeR,

is interpreted as the conservation of energy in quantum mechanics. More precisely,
such relation shows that the expectation value Efq(t) = (&(t), HE(t)) of H in the
state £(t) = e ¢ is a constant function of time.

Ezercise 5.4.3. Let H be the quantum energy operator in H and A € B(H) self-
adjoint representing a physical observable. If

e A = Ao~ H vt € R,
check that the expectation value
52@) _ <efitH£’AefitH£>

is conserved, i.e., it does not depend on time ¢ so that é'fl(t) = 52 (0). How can
we adapt such a “conservation law” to observables represented by unbounded
self-adjoint operators?

An additional word on physical interpretations: the expectation value 53 (1),
introduced in Exercise 5.4.3, is the result obtained by averaging out over a large
number of measurements of the observable A at time ¢ in identical systems, each
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one prepared in the initial quantum state £ € H at ¢ = 0. Quantum states are
assumed normalized, i.e., ||£]| = 1. Finally, the Schrodinger equation with explicit
Planck constant 7 reads

. d
ih 5, (t) = HE(),

so that the unitary evolution group is e~ *#/",

In many situations a one-parameter unitary group is naturally associated
with space transformations, as translations in R. The next examples illustrate
this.

Ezample 5.4.4 (Spatial translations). Let H = L%(R) and, for s € R,
(G(s))(@) =d(xz—s), WDEH.

Then G(s) is a strongly continuous unitary evolution group whose infinitesimal
generator is the momentum operator

P:dom P =H'(R) — H, Py = —iy)/,
discussed in Section 3.3 (see also Examples 2.3.11 and 2.4.10).

Proof. First note that G(s) is clearly a unitary evolution group (Lebesgue mea-
sure is invariant under translations). If ¢, ¢ € C§°(R) one has, by dominated
convergence,

h—0

(Glhyb, 6) = / Bz — 1) dlz) dz "=2 (. ).
Since C§°(R) C H, it follows that

w — lim G(h) = 1.
h—0
By Proposition 5.1.7, G(s) is strongly continuous (another argument can be found
in the proof of Lemma 13.3.2).
Let T be the (self-adjoint) infinitesimal generator of G(s). Thus, for ¢ €
5o (R),

1

FG0) = 1)0(a) = 0@~ 1) =) =5 [ v

and if A > 0 (similarly for A < 0),

=) it

]' * / /
<3| we-vels

and since 1)’ is continuous with compact support, it is uniformly continuous and

SO
%/ W)’(l‘) —¢/(5)|d3 <  sup W)/(JU) _¢/(S)| h—0 0.
z—h —

s€lx—h,x]
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Thus,
T|C§° = Png°7

and since C§°(R) is a core of P, it follows that T' = P. O

Remark 5.4.5. The following formal derivation is instructive. By Taylor series
around s = 0,

5° " s "
V(@ =) =9(z) = s¢'(2) + 59" (@) = 59" (@) + -

= <1+s<—jm> +§ <—$>2+§j <—$>3+--->¢($)

— exp (—s;;)wm = exp (—isP)(2),

and the momentum operator has appeared.

Exercise 5.4.6. Let P be the momentum operator in L2(R). For ¢ € C§°(R),
verify that the Schrédinger equation with momentum P playing the role of “energy
operator”, that is, if G(t) = e~ %P,

d

i (G)Y)(2) = P(G(1)Y)(x),

is just a manifestation of the chain rule:

z%z/)(x —t)=PyY(z—1t)= —iéw(x —1).
Remark 5.4.7. Due to Example 5.4.4, it is often said that “the momentum opera-
tor generates translations in R.” With natural adaptations to different directions
in R™. See also Exercise 5.5.9.

With such interpretation one can intuitively understand the self-adjoint ex-
tensions of the momentum operator P in different types of intervals, that is, the
whole line R, finite interval (say, [0, 1]) and half-line (say, [0, 00)). Such extensions
are discussed in Chapter 2.

Since it is possible to translate wave functions ¢ to both sides in R, the
generator of translations is well posed and so P is essentially self-adjoint. In case
of the bounded interval, one can translate wave functions up to to an end when
they “enter” at the other end with a possible fixed different phase 1(0) = ¢ (1);
each phase e? corresponds to a distinct type of translation and so to a different
self-adjoint extension of P, and there are infinitely many of them. For the half-
line, it is possible to freely translate wave functions to the right, however what
reaches the origin is not able to enter at the other end, since it is infinity; thus,
the translations are ill posed in this case and consequently the momentum can not
be realized as a self-adjoint operator.
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Ezample 5.4.8 (Dilations). Let H = L2(R). The dilation on R is the map z
e *z, s € R, which induces the operator Uy(s) : H — H,

Ua(s)9) (@) = e *Pp(ex), Y eH.

Uq4(s) is a change of scale since x is multiplied by e™*%; the factor e is just to
preserve the norm. Uy(s) is a strongly continuous unitary evolution group, C5°(R)
is a core of its infinitesimal generator T, and, for ¢ € C5°(R),

—s/2

1 1 d
(Tao)a) = 3lap + pa)ote) = (20— § ) olo), =i
The same conclusions hold if C§°(R) is replaced by S(R). The version of the
group of dilations in R™ is given by (Ug(s)y)(z) := e "/?y(e~*z), s € R and
Y € L2(R™).

Proof. Again it is a simple exercise to check that Ug(s) is a unitary evolution
group. If ¢ € C§°(R) one has

(6, Ua(h /¢ e M2p(c ") da.

If |h| < 2, then |¢(x) e " 2¢(e "z)| < e||¢]|loo |¢(x)| € LY(R) and, by dominated

convergence,
h~>0

(¢, Ua(h)g) — (¢,9).

Being that C5°(R) is dense in H, such convergence is valid for every element of H.

By polarization,
h~>0

(¥, Ua(h)p) — (¥, ¢), Vo, ¢ €H,

and Uy(s) is weakly continuous. If Ty is its (self-adjoint) infinitesimal generator,
then for ¢ € C§°(R) one has the pointwise convergence

5 /2g(e %) ¢<x>>

S

L) - ote) = i

= i e o)

ds

1 (—%e_s/qu(e_sx) —e % 2e0y qb’(e_sx))

_ (%i(b(ac) + qus(x)) - (a:p - %) 6(x),

with p¢ = —i¢’. Again by dominated convergence, the above pointwise limit can
be translated into L?(R); then C§°(R) C dom 7T, and since for ¢ € C§°(R) one
has xpo(x) — prd(x) = ig(x), it is found that

s:O.

! xp + pr) ().

(Ta)(x) = 5(
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Finally, since Uy(s)C§°(R) C C§°(R), Vs € R, by Corollary 5.3.4 it follows that
C§°(R) is a core of Ty. O

Ezercise 5.4.9 (Rotation). If (z,y) € R?, the rotation (z,y) — (z,vs), T9 =
xcosf —ysinb, yp = xsinf + ycosf, induces the operator

Ur(0) : L2(R?) <>, (Ur(0)¥)(z,y) = 9 (zo, o).

Show that Ug(#), 6 € R, is a strongly continuous unitary evolution group, C§°(R?)
is a core of its infinitesimal generator T and for ¢ € C5°(R) one has

d d

Tg is identified with the z-component of the angular momentum, and so it is often
said that “the angular momentum generates rotations.”

Example 5.4.10. Let T be a self-adjoint operator with an orthonormal basis (£;);>1
of H constituted of eigenvectors T&; = A;{;. Every vector of H can be written in
the form & = 37.- a;&;, with 37, [a;]* = [|€]]* < co. The vector £ € dom T iff
> Aflaj[? < oo and in this case T = 37,5, Aja;€&;. The claim is that the unitary
evolution group U(t) = e~#T is given by

e e = Z e ag;, V¢ € H.

Jjz1

Actually, define G(t)¢ = Zj>1 e~"ia;&;, which is a strongly continuous uni-
tary evolution group; in fact, (€, G(¢)§) = limn_—co Zév:l e~} ]a;|? is measurable,
since it is the limit of a sequence of continuous functions; by polarization it follows
that ¢t — G(t) is measurable. Let S be its self-adjoint infinitesimal generator and
X = Lin({{;};), which is dense in ‘H. For each j one has G(t)¢; = e~ ¢;, which
is differentiable and

d

S¢; = iEG(t)Sj = N& =T¢;,

t=0

so that S§; = T¢;, Vj. So, for X 3 & = Zjvzl a;&;, one has S¢ = TE. Since
G(t)X C X, it follows that X is a core of S, and, by self-adjointness, T' = S.
Therefore, both unitary evolution groups have the same infinitesimal generator
and so coincide, that is, G(t) = U(t), for all t € R.

Ezample 5.4.11 (Projection as infinitesimal generator). Let E be a closed subspace
of H and Pg the orthogonal projection onto E. Then

G(t) := Pgi +e Py

is a unitary evolution group, whose infinitesimal generator is Pg. In fact, since Pg
is self-adjoint it is the infinitesimal generator of the strongly continuous unitary
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evolution group e~#P#. Taking into account that P2 = Pz and Pg is bounded,
Theorem 5.2.3 implies that

—itps _ N\~ (ZtPE) o~ (—it)
M=y e =1 (Y | Pe
=0 7 =1 7

=1+ (-1+e ") Pg=G(t), VteR.

Note that the trajectory t — G(t)¢ is periodic for all £ € H.

Ezercise 5.4.12. Use the action of G(¢) in Example 5.4.11 to check that it is a
norm continuous unitary evolution group and P is its infinitesimal generator.

Ezercise 5.4.13. Let G(t) : I2(N) — [2(N), defined by

G(t) (517 523 53) e ) = (e_ité-lv e_i2t£27 e_i3t£3a e ) .

Verify that G(t) is a strongly continuous unitary evolution group, but it is not
norm continuous. Find its infinitesimal generator.

Ezercise 5.4.14. Let H = L?[0,1] and for s € R define G(s) : H « given by
G(s)Y(z) = ¥(xz—s), with (z — s) understood mod 1. Show that G(s) is a strongly
continuous unitary group and find its infinitesimal generator.

Ezercise 5.4.15. Let G(t) be a measurable unitary evolution group on H and T
its infinitesimal generator. If W is a unitary operator on H with G(t)W = WG(t),
vVt € R, show that Wdom T" C dom 7" and

WTE=TWE, Ve e dom T.

What can we conclude in case W = G(s)?

Ezercise 5.4.16. Let G(t) and U (t) be two measurable unitary evolution groups on
‘H, and T, A their infinitesimal generators, respectively. Based on Exercises 5.4.15
and 5.4.3, if

Ut)G(s) = G(s)U(t), Vs,t € R,

discuss possible relations between T and A.

5.5 Free Quantum Dynamics

By Example 5.1.6, the map ¢ — e~ is a strong continuous unitary evolution
group on L2(IR™), i.e., in momentum representation, whose infinitesimal generator
is the multiplication operator by p?. Since Hy = F~1p2F (see Section 3.4), one
has

e itHo _ F_le_itPQ}',

which is a unitary evolution group on L?(R"), called a free evolution group, whose
infinitesimal generator is the free hamiltonian Hy.
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In this subsection the free unitary evolution group e~ will be computed
in position representation LZ(R™). Then some consequences on quantum free dy-
namics are derived.

Theorem 5.5.1. If ¢ € LY(R™) N L%(R"), then

—itHo 1 (m4ty>
(e7oy) (x) = (4mt)3/ e’ O(y)dy,  t#£0.

The branch of the square root (4m't)% is chosen so that its real part is positive.

Proof. The proof will be done for n = 1; the general case is similar. Since e —itHo —

Flemitr® F, if ¢ € L'(R) one has

(e 00) @) = g [ e i) ap

However, if ¢ € L2(R), then for any € > 0 the function p e"spzl/;(p) belongs to
L!(R), and since e~ i(t=i9)Ho — F-1¢=i(t=i)p” F one has, for any ¢ € L%(R),

(efi(tfia)Hoqp) (z) = 1

(2m)}

. a2 _ 2 A
/ et TP P te Ep ¢(p) dp.
R

In case 1) € L2(R) NL!'(R), write out the expression of the Fourier transform ¢(p)
and apply Fubini to get

(e—l(t Zs)Hodj) 27T// —ip(y—=) o —p (lt+6)¢( )dp dy

1

= ot LF () v dy

_ 1 ! (v
C(2m): (2(it+¢))2 /Re p( 4(it+s)> Vly) dy-

The idea now is to take ¢ — 07. Note first that for any 1 € L2(R) one has the
convergence in L2(R)

H zt+€)Ho,(/) —thowu _ H]_—( zt+5)Ho¢ —thow>H

:/‘e*‘sp —1
R

as ¢ — 01 by dominated convergence. Then there is a subsequence €; — 0% so
that the convergence is Lebesgue a.e.; note that this convergence is uniform in ¢.

)| dp— o
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For ¢ € L2(R)NL!(R), use the above expression and dominated convergence
again, to get

(efitHod)) (z) = lir%+ (efi(tfiq)Hoqﬁ) () = @477115)5 /Rexp (Z(xlty)2> Y(y) dy,

€5
and the theorem is proven. O

Corollary 5.5.2. If 1) € L2(R"), then

PG 2

(e_itHoz/)) (z) =lim. W /Rn e’ Y(y)dy, t#0.

Ezercise 5.5.3. With respect to the expression for the free unitary evolution group
. o . . S\ . 1
in position representation, verify that (4mit)z = ((4mwit)2)™ equals

|Amit|z e /4 |Amit] 2 e /4,
if t > 0 and t < 0, respectively.
Definition 5.5.4. The function
T Ki(z) = — 5 e' 4
(@) (47it)%

is called the free propagator kernel in L2(R™).

Note that the free unitary evolution group can be written as

(e oy (x) = (Kp %) (2) = Lim. [ K (z—y)¢(y)dy,

R’TL
that is, it is an integral operator whose kernel is the free propagator.
The following result is also a direct consequence of Theorem 5.5.1.

Corollary 5.5.5. Let ¢ € LY(R") N LQ(R"). Then, for each 0 #t € R, one has
)

For ¢ € L(R™)NL2(R") this corollary implies that, in a set of points x € R™
of full Lebesgue measure, |(e~"#04))(z)| vanishes uniformly as ¢t — Foc.

According to quantum mechanics (as proposed by Max Born), if H is the
hamiltonian operator of a particle acting in L2(R"), given a bounded measurable
set A C R"™, if the initial state of the system is ¢, then the probability of finding
the particle in A at time ¢ is

Proby ) (A /’ —itHy), ’ dx.

If /(A) < oo is the Lebesgue measure of A, then by Corollary 5.5.5, for the free
particle one has

o , .e.x € R".
|,|4 gr vl aes

Proby,)(A) < |4(t|)" 9113,
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which decays with rate t~™ for ¢ — oo. The interpretation is that for large times
the particle escapes from every bounded region of R™ and so it goes to infinity,
as expected for a free particle. Later on (see Chapters 12 and 13) it will be seen
that the root of such behavior is the spectral type of the free Schrodinger opera-
tor Hy. For historical details of the transition from classical to quantum mechanics
one is invited to consult [Ste94] and for some pedagogical descriptions of modern
experiments on the quantum foundations [GreZ97].

Exercise 5.5.6. Let H be the hamiltonian operator of a system for which an or-
thonormal basis (¢;);>1 of L2(R™) is comprised of its eigenvectors Hi; = \j1;;
see Example 5.4.10. Verify that for each eigenvector v; the probability of finding
the free particle in a measurable set A C R™ at time ¢,

Proby, (1) (A /| —itHy, | dz,

is constant. This is interpreted as the lack of fast mobility of the particles in this
case, that is, under time evolution they become localized in space. Compare with
the free particle time evolution discussed above.

Ezercise 5.5.7. Verify that the solution for ¢ > 0 of the Schrodinger equation

. d

Z%¢(t) = HO¢(t)’ ’(/)(0) = ¢u’

where ¢, (z) = e_(z_")z, with fixed parameter u € R, is

_ (e—itHo __ 1 e
) = (e70) (@) = (1t 4it)t © :

What is the behavior of these 1 (t) for large t? Compare with the result of Corol-
lary 5.5.5.

Ezercise 5.5.8. For ¢ € C3°(R™), use the change of integration variable y =
z+2[t|'/?s in the expression for the free propagator (Theorem 5.5.1) to show that

lim e~ #Hoy) = 4,
t—0

How general can v be in this (strong) limit?

Ezercise 5.5.9. Show that the position operator M, “generates translations in
R,” that is, (G(t)¥)(p) := (p+1), P € L2(R), is a unitary evolution group whose
infinitesimal generator is M, (cf. Example 5.4.4).

Remark 5.5.10. Taking into account all physical constants, the kinetic energy and
the free unitary evolution group in L2(R™) have the expressions

h2
Ho— ——2A
0 om
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and

(e—itHo/h¢> () = (27:77;'15) 3 /n exp (W) V(y) dy,

respectively.

Remark 5.5.11. The inequality in Corollary 5.5.5 is known as a dispersive bound,
see [Gol06] for a proof of similar estimates, with the same decay rate [t|=3/2, for
H = Hy + V with potentials V € LP(R3) N L4(R3), p < 3/2 < ¢, and additional
hypotheses on V.

5.5.1 Heat Equation

In a situation analogous to the above discussion, the solution of the heat equation
for t > 0 and initial conditions

() = ~(H)(t o), $(0,2) = Ula) € HARY),

is given by

(™M) () = (K xv) (2) = | Kl —y)y(y) dy,

Rn

with

Ky(x) = W exp (-Z-j) .

¥ (x,t) means the temperature distribution at time ¢, given the temperature dis-
tribution ¢ (z) at the initial time 0. K is called the heat kernel. This is the most
traditional model for heat propagation.

Remark 5.5.12. Note that the above expression for (e Hot4))(z) is well posed for
any initial condition in ¢ € L2(R™). With respect to notation, it is also common
to write e~ Hot = At

Exercise 5.5.13. Verify that

%/2 exp (—pt) ¥(p),

F () ) =

for all ¢ € L2(R").

Exercise 5.5.14. Show that e~tH0 is positive preserving, that is, if 01 € L2(R") is
a nonnegative function, then e =04 is also nonzero and nonnegative for all ¢ > 0.

FEzercise 5.5.15. Show that if 1 € H2(R"), then

1
lim = (115 — (0, e~ ")) = Vo3
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5.6 Trotter Product Formula

Let T, S be self-adjoint operators acting in H so that T+ S, with dom (T'+ S) =
dom T'Ndom S, is also self-adjoint; see Chapter 6 for some sufficient conditions.
How do we write e ®T*5) in terms of the individual unitary evolution groups
e T and e~™5? This is a nontrivial question since in general T and S do not
commute and one expects that e #(T+5) £ ¢=#Te=1S (see Example 5.6.1). For
operators in infinite-dimensional spaces, the first results in this direction were
published in [Tr58] and [Tr59], which have a flavor of perturbation results. The
folklore rule that “infinitesimal transformations” do commute even though the
macroscopic transformations do not, plays an intuitive role in Trotter’s formula
ahead.

Ezample 5.6.1 (Weyl form of commutation relation). Let 2 and P be the position
and momentum operators in L?(R), and the corresponding evolution groups e~ "
and e~ %% t s € R. By Example 5.4.4, for all ¢ € L?(R), one has

e—isze—ith(x) —

efitPefisa:,w(x) _

—iszw(x - t)a

7is(w7t)1/)(1‘ . t) _ eistefisa:efitP,w(x)’

that is, e7#Fe 7157 = ¢iste=iTe=itF Thig is called the Weyl form of the canonical
commutation relation of position and momentum, and it is basic to the Stone-
von Neumann representation theorem of canonical commutation relations; see
[Su01], a mathematical justification of the action P = —id/dz. Thus e " e~ £
e—itxe—itP’ t 7& 0

Theorem 5.6.2 (Trotter Product Formula). Suppose that T, S are self-adjoint op-
erators acting in H so that T + S, with dom (T 4+ S) =D := dom T Ndom S, is
also self-adjoint. Then, for each t € R,

—i . _itr _itg\"
e TS — g lim (e wTe ’"S) .
n—oo

Proof. There are two initial key points in the proof of the theorem:

1. For 0 # h € R and £ € D, denote
1 —3 —i —i +
uh(f) = fh (e hT e hS§ —e T S)é) .

The domain D is left invariant by e~*7, e~%9% and e 5(T+59) s e R, and
for £ € D the identity

(e—ihT _ 1)

—ihS __
Uh(g) _ ; §_~_ e—ihT (e 1)

h

(e—ih(T—l-S) _ 1)
h

§— 3

implies limp_.o up(§) = 0. Then define up(§) := 0, £ € D.
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2. For bounded operators A, B and all n € N, one has (expand the r.h.s.)

(efitT/nefitS/n) . (efit(T+S)/n> _ (efitT/nefitS/n> _ o~ it(T+S)

=

. ) J
— (e—th/ne—ztS/n>
Jj=0

) . . ) n—1—j
~ {e—th/ne—ztS/n _ e—zt(T+S)/n:| (e—zt(T+S)/n> )

By 1 above, for each h € R the map uy : D — H is linear and bounded.
For fixed ¢ € D, it is continuous as a function of h € R and one also has the
pointwise convergence up(§) — 0 as h — oo; thus there exists ¢(§) > 0 for which
lun(§)I < c(§), Vh € R.

Since the operator T' 4 S is closed, its domain D is a Banach space in the
graph norm || ||r+s, and so, by the Uniform Boundedness Principle 1.1.31 applied
to the family wup, : (D, || - [|7+s) — H, there is C' > 0 so that

lun(©)] < Cliéllrts,  VheR,£eD.
For each fixed £ € D, introduce the map
RSt & =e T (D, - [lrys);
by properties of unitary evolution groups,
€ = EllTys = 1€ — &P + (T + S)& — (T + S)&|I?
= [l = e CTOTENER 4 (T + §)8 — e CTITTINT + 8)g 2

which vanishes as s — ¢, that is, the map ¢ — & into (D, || - ||r+s) is continuous.
Thus, for fixed t € R, the compactness of the interval [—|t], |¢|] imply that

Jea ={& sl < [t}

is a compact set in (D, || - || 7+s). Hence J¢ 4 is totally bounded in (D, || - [|745), and

the triangular inequality together with the above uniform boundedness conclude

that the restriction to the continuous family of linear operators uj, : Jety — H

vanishes uniformly as h — 0; in other symbols max|s< [|un(§s)|| — 0 as h — 0.
Write h = t/n and note that (n — 1 — j)/n < 1. Thus, by 2 above,

H (efitT/nefitS/n>n§ B efit(TJrS)gH

< max ||n [e‘itT/"e_itS/” — e_it(T+S)/"] e_iS(T+S)§H
T lsIZ e

< |t| max 1 [e_ihTe—ihS - e—ih(T+S)} e~ is(T+8)¢

T sl || R

=t a
| ||§|1§|}§| llun (&)l
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which vanishes as h — 0, that is, as n — oo; therefore
(e—itT/ne—itS/n>n§ N e—it(T+S)§7 vg e D.

Since the involved operators are unitary, this convergence extends to the closure
of D, that is, it holds on H. O

Ezercise 5.6.3. Present details that, in the above proof of the Trotter product
formula, uy, : Jer — H, h € R, satisfies up(§s) — 0 uniformly as h — 0.

The following is a consequence of the proof of the Trotter formula.

Corollary 5.6.4. Let T' and S be as in Theorem 5.6.2. For a fized § € D, the con-
vergence (e*”T/”e’”S/”) € — e IS¢ s uniform for t in compact intervals
[a, b].

A first version of the Trotter formula for matrices was demonstrated by So-
phus Lie, so sometimes it is also called the Lie-Trotter product formula. It can be
used in numerical implementations of the time evolution e~ *(T+5)¢ in case e~ #7T
and e~™% are easier to handle. In Theorem 5.6.2 it is possible to assume that
T + S is just essentially self-adjoint [Ch68]. The above proof of Theorem 5.6.2 is
based on Appendix B of [Nel64]; for recent results and references related to the
Trotter formula see [IchT04]. The version that appears in Exercise 9.9.3 is used in
statistical mechanics to relate quantum and classical spin systems.

Ezercise 5.6.5. Let E, F be two closed subspaces of H with EN F = {0}, and
Pg, Pr the respective orthogonal projections. Show that

nhl{.lo (PgPr)" = Pgnr
and N
s — lim (e_l%PEe_Z%PF> = UPM vVt € R,

n—oo

where M = E® F.



Chapter 6

Kato-Rellich Theorem

In this and the next chapters, the preservation of self-adjointness under hermitian
perturbations are considered. The classical application of Rellich’s theorem by
Kato to a hydrogen atom hamiltonian is discussed in detail. Examples, the virial
and KLMN theorems and an outstanding Kato distributional inequality are also
presented in this chapter.

6.1 Relatively Bounded Perturbations

Self-adjointness is a delicate property. It may not be preserved by a sum of oper-
ators. For instance, if T, S are self-adjoint operators in H, then dom T'Ndom S is
the subspace on which T + S is a priori defined. However, this intersection may
be too small for T'+ B be self-adjoint (e.g., both C§°(R) and the set of simple
functions are both dense in L2?(R), but their intersection contains only the null
vector; see a specific instance in Exercise 6.2.25). It may also happen that such an
intersection is dense but 7'+ S is not self-adjoint.

If T is self-adjoint and B is hermitian, under which conditions is T+ B
self-adjoint? This is the general question to be addressed now. Although the
main interest is in perturbations of the free Schrodinger operators Hy acting in
L2(A),A C R", by potentials V, it is useful to deal with abstract hermitian per-
turbations B of a general self-adjoint operator 7.

The motivation for the next results is the following. Let T' be hermitian;
then T is self-adjoint iff AT is self-adjoint for some (and so any) 0 # A € R. It is
known (Proposition 2.2.4) that a hermitian 7" is self-adjoint iff rng (T'+i1) = H.
One has

T+ B+ i\l = (BRyi\(T) + 1)(T +i)1)
=ANBRLin(T) +1) (%T + il) 7
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so that if for some real A one has ||[BR\(T)|| < 1, then (BR1;A(T)+ 1) has also
a bounded inverse in B(H) and so rng (BR+;\(T) + 1) = H. If T is self-adjoint
rng (T +£iA1) = Arng (T/A +£41) = H, and the above relation implies

mg (T + B+i\l) = H,

so that (T'+ B) would also be self-adjoint. We now explore some details of these
ideas.

Definition 6.1.1. Let T : dom T'C ‘H — H and B : dom B C 'H — H be linear
operators. Then B is T-bounded (or relatively bounded with respect to T) if
dom B D dom T and there exist a,b > 0 so that

1Bl < allTE| +blill, V€ €dom T

The T-bound of B is the infimum Np(B) of the admissible a’s in this inequality.

Remark 6.1.2. An equivalent definition is dom B O dom T and there exist ¢,d > 0
so that
IBEI? < ANTEN? + €)%, VE € dom T

Further, Ny (B) coincides with the infimum of the admissible ¢’s. Therefore, both
formulations will be freely used.

Proof. If the latter relation holds, then
IBENI? < 2|TEN? + d?|[€]|* + 2cd | €] €]
2
<l Tel + dll=l)”,
and one can take a = ¢ and b = d. For the other inequality, consider the following

Lemma 6.1.3. Let £,n € H and s,t > 0. Then, for all v > 0 one has
22 2, ez
2stlnll €]l < r=s™ Inll” + 1€l

Proof. 1t is enough to expand 0 < (rs|[n|| — $||§||)2 O
Suppose then that || BE|| < a||T¢|| + b||£]|. By Lemma 6.1.3 it follows that

IBEI < (@lTel + bl < a1+ 76l 422 (14 5 ) Jel?

and the second relation holds with ¢ = a?(1 + r?) and d? = b*(1 + 1/r?). By
taking r — 0 it is found that the same value of Np(B) is obtained from both
relations. O

Lemma 6.1.4. Let T be a linear operator in H with p(T) # @ and B a closed
operator with dom T C dom B. Then B is T-bounded and Nr(B) < ||BR,(T)|,
Vz € p(T).
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Proof. 1f z € p(T'), then BR,(T) : H < is a closed operator (check this!) and, by
the closed graph theorem, it is bounded. Thus, for £ € dom T and z € p(T) one
has

IBE| = I1BR(T)(T — 21)¢]| < [|BR-(T)I| (1T + |=lI€11) ,

and B is T-bounded. O

Proposition 6.1.5. If T is self-adjoint and dom T' C dom B, then B is T-bounded
iff BR.(T) € B(H) for some z € p(T); in this case BR,(T) € B(H), Vz € p(T),
and N7(B) = lim|y| o [ BRiA(T)|| (A €R).

Proof. If BR,(T) is a bounded operator for some z € p(T"), then by the proof of
Lemma 6.1.4 it follows that B is T-bounded and Ny (B) < ||BR,(T)||; moreover,
by the first resolvent identity,

BRy(T) = BR.(T) + (y — 2) BR=(T)Ry(T),

so that BRy(T) is bounded for all y € p(T"). Hence, since T is self-adjoint one can
consider z = i\, with 0 # A € R, which belongs to p(T).
Suppose now that B is T-bounded, so that there are a,b > 0 obeying, for all
£en,
IBRix(T)E]l < al TRix(T)EI| + bl Rix (T)E ],

and since ||Tn — i||? = |[Tn||> + N2||n||?> > || Tn||?, one has, with n = R;x(T)¢,

IBRiA(T)E]l < all(T — iA1) Ria(T)S | + bl Ria (T) [ 1I€]]

b
< (a+ w) el

and BR;\(T) is bounded (Theorem 2.2.17 was employed). Together with the in-
equality at the beginning of this proof,

b
Nr(B) < |[BRAD < a+ 3

From the definition of Np(B) it then follows that

Nr(B) = lim [[BRi\(T)].

|A|—00
Thereby the proof is complete. 0
Ezercise 6.1.6. If T is a self-adjoint operator, show that |TR;\(T)| < 1,

V0 # X eR.

Exercise 6.1.7. Let T > (1 be self-adjoint, 5 € R. Inspect the proof of Proposi-
tion 6.1.5 and check that for A < 0, |\| large enough, ||[TRA(T)|| < 1, and that
Np(B) = limy—,_ || BRA(T)]|-
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Theorem 6.1.8 (Rellich or Kato-Rellich). Let T be self-adjoint and B hermitian.
If B is T-bounded with Np(B) < 1, then the operator

dom (T + B) = dom T, (T + B) :=T¢ + B¢, V¢ € dom T,
1s self-adjoint.

Proof. Clearly (T'+ B) is hermitian. Since Np(B) < 1, by Proposition 6.1.5 there
exists Ao > 0 so that ||BR;x,(T)|| < 1. Thus, (1 + BRy;x,(T)) is invertible in
B(H) and onto. Hence,

(T + B)+iNl=B+ (T £i)\1)
= (BR4ix,(T)+ 1) (T £iA1)

and so rng (T'+ B+i\g) = H. By Proposition 2.2.4 (see also the discussion at the
beginning of this section), (T+B) is self-adjoint. O

Corollary 6.1.9. Let T and B be as in Theorem 6.1.8. If D C dom T is a core of
T, then D is a core of (T + B).

Proof. Take Ao as in the proof of Thm. 6.1.8. Then the operator (1+BR4;x,(T)) is
a homeomorphism onto H. Thus, if (T'£iA¢1)D is dense in H, then (T'+B=+iAo1)D
is also dense in H. Therefore the deficiency indices of (T'+ B)|p are both zero (see
Theorem 2.2.11), consequently D is a core of (T + B). O

Example 6.1.10. In L2(R") the momentum operators P; = —i0;,1 < j < n, are
Hy-bounded with Ng, (P;) = 0; thus the operator

Hip = Hotp — i\ Y 050
J

is self-adjoint in the domain H?(R™), VA € R. In fact, for » € H*(R™) C dom P;,
| Pj)ll2 = ||lpj2b(p)|l2, and given a > 0 there is b > 0 so that |p;| < (ap® + b), and
so (assume that A # 0)

IAP¢ll2 < aAP*0@)ll2 + b A 1D ()12 = a [\ [|Howl2 + bIA [[9]]2-

Since a > 0 was arbitrary, the result follows by Theorem 6.1.8.
Ezercise 6.1.11. Let T and B be self-adjoint operators in H. If B € B(H), verify
that
a) Np(B)=0.
b) T + B is self-adjoint with dom (T"+ B) = dom T.
¢) Every core of T is also a core of T+ B.
Ezercise 6.1.12.

a) If B is T-bounded with Np(B) < 1, show that B is also (T'+ B)-bounded.
b) If T is self-adjoint and B hermitian and T-bounded with N (B) < 1/2, show
that (T' + 2B) is also self-adjoint.
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Ezercise 6.1.13. Let T be closed and B a T-bounded operator with 7T-bound
Nr(B) < 1. Show that T+ B with domain dom T is closed. If Np(B) = 1 take
B = —T and conclude that 7'+ B can be nonclosed.

6.1.1 KLMN Theorem

This theorem is a partial counterpart for sesquilinear forms of the Kato-Rellich
theorem, and it was dubbed KLMN by J.T. Cannon in 1968 from the initials of
Kato, Lions, Lax, Milgram and Nelson. In this subsection b; and by denote two
(densely defined) hermitian sesquilinear forms in H, with b; lower bounded b, > .
The domain of b; + by is dom b; N dom bs.

Definition 6.1.14. bs is b;-bounded if dom by C dom by and there are a > 0,¢ > 0
so that
b2(E)] < albr(&)| +cll€]]>, V€ € dom by.

The infimum of the admissible a’s in this inequality is called the b;-bound of bs.

Ezercise 6.1.15. Show that the b1-bound of by coincides with the (b; + «)-bound
of by for any a € R.

By Exercise 6.1.15 there is no loss if it is assumed that b; > 0, i.e., that by is
positive.

Lemma 6.1.16. Suppose that by > 0 and by is bi-bounded with bi-bound < 1, that
is, the inequality in Definition 6.1.14 holds for some 0 < a <1 and 0 < ¢ € R.
Then:

i) b1 + b > —c, that is, by + ba is also lower bounded.
ii) by + be is closed iff by is closed.

Proof. For all £ € dom by = dom (by + bs),

—cll€ll* < —clléll* + (1 = a)ba(€) = — (cll€ll* + abi(€)) + b1 (€)

b2(€) +b1(€) = (b1 +b2)(€) < abi(€) + cll€]* + br(€)
= (1+a)bi(€) + cll&ll*.

<
<

Then i) follows at once. By adding (1 + ¢)||£[|? to the terms in the above chain of
inequalities, one gets

(1= a)(ba (&) + [I€*) < (1 = a)bu (§) + €)1
by +b2)(€) + (1 + c)l¢]f?
1+ a)bi(€) + (1 +20)[¢]1*

( 1(6) + ||£||) A =max{l+a,1+ 2c};

thus the norms £ — +/b1(§) +|€]|? and & — \/(bl +b2)(€) + (1 +¢)[€]|* are

equivalent on dom b; and ii) follows (see Lemma 4.1.9). O

—~~
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Theorem 6.1.17 (KLMN). Suppose that by > 0 and by is by -bounded with by -bound
< 1. Then there exists a unique self-adjoint operator T with dom T' T dom by,
whose form domain is dom by, and

(&, Tn) =b1(&,m) + b2(&,m), V¢ € dom by,n € dom T.

Further, T is lower bounded and dom T is a core of by + bs.

Proof. By Lemma 6.1.16, by + by is closed and lower bounded. The operator T is
the one associated with by + by as in Definition 4.2.5. The other statements follow
by Theorem 4.2.6. O

Although the hypotheses of KLMN are weaker than those of Kato-Rellich,
in the latter the domain of the operator sum is explicitly found. Be aware that
in concrete situations it can be a nontrivial task to decide if such theorems are
applicable.

Typical applications of Theorem 6.1.17 involve the definition of the sum of
two hermitian operators 77 > 1 and Ty via b™* + b*2 (see Example 4.1.11), in
particular when Kato-Rellich does not apply, as in Example 6.2.15, and cases of
forms not directly related to a potential, as in Examples 6.2.16 and 6.2.19.

One can roughly think of the KLMN theorem as a definition of an adequate
quantum observable from the addition of expectation values.

6.2 Applications

6.2.1 H-Atom and Virial Theorem

Now the Kato-Rellich Theorem is applied to perturbations of the free particle
hamiltonian
dom Ho=H*[R"),  Hop = —A¢,

discussed in Section 3.4. Recall that, by Proposition 3.4.1, C§°(R™) is a core of Hy.
Besides the Sobolev embedding theorem, the next result gives valuable information
on elements of the Sobolev space H2(R"), n < 3.

Lemma 6.2.1. Ifn < 3, then H*(R") C C(R™)NL>(R™) and for each a > 0 there
exists b > 0 so that

[¥llo < allHoyll +0llwll, Yy € HA(R™).
Proof. Technically, the point of the argument is that for n < 3 the function p —

(1+p?)~t € L2(R™), and also (1 + p?)(p) = F(y + Hot)).
If ¢ € dom Hy, by Cauchy-Schwarz,

(/n |1/3(p)|dp>2 < /n(l + %) () dp /Rn uii%)z < o0,
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and so ¢ € L'(R™). By Lemma 3.2.8 it follows that ¢ € C(R™) N L>(R"). Note
that since ¢» € L?(R") and is continuous, then lim | ¢(z) = 0.

Let A > 1 and x = ||(1 + p?)~!{|2/(27) 2. Then, for ¢ € dom Hy, again by
Cauchy-Schwarz,

1

dp
[Y(x)| = W

(A% +p?)

<(27$n/2 H(A2+P2)”L/AJ(P)H2 ﬁ ,

<5t (e, +[éw],)
)\2_, | Hotll2 + kA% (|92,

/"(A2 +p?)e™" 1) (p)

since the Fourier transform is a unitary operator. Now take A large enough. O

For the potential V' : R® — R in L*°(R"), one associates a bounded self-
adjoint multiplication operator V = My, and so

H:=Hy+YV, dom H := dom Hy,

is self-adjoint (see Exercise 6.1.11). This situation can be generalized to some
unbounded potentials V.

The notation V' € Lj +Lj, means that the function V =V, +V, with V,. € Ly,
and Vs € L}, and it has already been incorporated into the main stream of Schro-
dinger operator theory.

Theorem 6.2.2 (Kato). If n < 3 and V € L*(R") + L*°(R") is a real-valued
function, then V is Hy-bounded with Ny, (V') =0, the operator

H:=Hy+YV, dom H = dom Hy,
is self-adjoint and C§°(R™) is a core of H.
Proof. By hypothesis V = V3 + Vo, with V2 € L%(R") and V., € L>®(R"). Thus,
by Lemma 6.2.1, for all a > 0 there is b > 0 so that, for all ¢ € dom Hy,
[Vibllz < [IVatdllz + [IVoothllz < IVall2 [¥]lcc + [[Vaolloo [[]]2
< [IVallz (al|Howll2 + bllell2) + [[Vacloo 40112
= (allVall2) [[Hotll2 + (0] Vall2 + [[Veollo) lI4]]2-

Since a > 0 is arbitrary, it follows that Ny, (V) = 0. To finish the proof apply
Theorem 6.1.8 and Corollary 6.1.9. 0

Example 6.2.3. Consider the class of negative power potentials in R?,

e
x|

V(z) =— kER, 0<a<3/2
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Fix R > 0; then V = V5, + V, with
Va(z) = V(z)xpo.r) (7)), Vaol®) = V(@) X([R,00) (2])

where y 4 denotes the characteristic function of the set A. Since V5 € L?(R3) and
Voo € L°(R3), it follows that the Schrédinger operator

H=Hy— ﬁ dom H = H2(R?),
is self-adjoint and C§°(R?) is a core of H (recall 0 < a < 3/2).

The very important Coulomb potential & = 1 gives rise to 3D hydrogenic
atoms; if also k > 0, it is briefly referred to as an H-atom Schrodinger operator
Hpy (see Remark 6.2.6); as discussed on page 295, this operator is lower bounded
(see also Remark 11.4.9). The unidimensional version of the H-atom presents
additional technical issues and is addressed in Subsection 7.4.1.

Ezample 6.2.4. The same conclusions of Example 6.2.3 hold for the “generalized
Yukawa-like potential” in R3,
Vy(x):—%efam, kER, 0<a<3/2,a>0,

€T «
since Vy- € L2(R?). Hence the Schrodinger operator H = Hy + Vi with dom H =
H2(R3) is self-adjoint. The genuine Yukawa potential is obtained for x > 0 and
a=1.
Exercise 6.2.5. Apply the Kato-Rellich theorem to the Schrédinger operators of
Example 6.2.3, but in dimensions 1 and 2, i.e., for the cases of Hilbert spaces L?(R)
and L2(R?), respectively. For which values of a > 0 are self-adjoint operators H
obtained?

Remark 6.2.6. The expression for the Coulomb potential above describes the elec-
trostatic interaction between two charged particles, and one of them is supposed
to be at rest at the origin, so heavy with respect to the other that this approxi-
mation is taken. For a hydrogenic atom, that is, with just one electron of mass m
and charge —e (e > 0), and nuclear mass M and charge Ze, with M > m and
Z a positive integer indicating the total number of protons in the nucleus, the
corresponding Schrodinger operator with all physical constants made explicit is
2 2
N <)
2p ||

with K indicating the electrostatic constant, u = mM/(m + M) the so-called
reduced mass, and = corresponding to the relative position between the electron
and the nucleus. Note that in the limit of a fixed nucleus, represented here by the
condition M — oo, one has p — m. Throughout this discussion the center of mass
has been “removed” [Will03], so that only the relative motion remains.

Remark 6.2.7. For R™, n > 4, the Kato Theorem 6.2.2 holds for V € LP(R") +
L>°(R™), with p>2ifn=4and p > n/2if n > 5.
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By using the Virial Theorem 6.2.8, with relatively little effort it is possible
to say something about the spectrum of the H-atom Schrédinger operator. Let
Uq4(s) be the strongly continuous dilation unitary evolution group discussed in
Example 5.4.8, adapted to R”,

(Ua(s)¥)(z) = e_"s/2¢(e_sx), s € R, € L2(R™).

Assume that V' is an Hy-bounded potential with Ny, (V) < 1, so that H := Ho+V
with dom H = H?(R") is self-adjoint.

Theorem 6.2.8 (Virial). Let V' be an Ho-bounded potential with Ng,(V) < 1.
Suppose there exists 0 # o € R so that

Ua(—8)VUy(s) = e~ *V.

If \ is an eigenvalue of H and 1y the subsequent normalized eigenvector, i.e.,
Huy = My, ||l = 1, then

(¥, Hotpa) = =5 (2, Viin)
and

A= (1 2) o) = (1= ) tor, V),

Proof. Note that Uy(—s)HoUq4(s) = e 2°Hy. Since 1) € dom Hy = dom H and
Uq(s)dom Hy = dom Hp, Vs € R, one has

0= (Ua(—5)bx, Mbx) — (Ua(—=s)\bx, ¥x)
= (Ua(—8)tx, Hpx) — (Ua(—s)Hx, ¥)
= (Ua(—8)tx, Hpx) — (Hpx, Ua(s)¥x)
= (Ua(=8)x, Hbx) = (Ua(=8)¥x, Ua(=s)HUqa(s)Px)
= (Ua(—s)Yx, [H — Ug(—s)HUq4(s)] r), Vs € R.

Write out H = Hy 4+ V in the above expression and use the hypothesis on V to
get

0=ty (Ual-3)0n, [~ Va5 HU(o)] 0 )
= (Va2HoYx + aVl/a) ;

so that o
(U, Hopy) = —§<1/1A7V1/J,\>,

which is the first equality in the theorem. Since

A= (¥x, (Ho + V)a) = (¥n, Hotoa) + (¥n, Vi),
the other equality follows. O
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Corollary 6.2.9. Let V and « be as in the virial theorem.

a) If a < 2, then all eigenvalues of H are negative and, if also V' > 0, then H
has no eigenvalues.

b) The Schrédinger operator Hy+V with the negative power potential (Example

6.2.3)
K

x|

V(z)=— 0<a<3/2,

in L2(R?) has no eigenvalues if k < 0 and all its eigenvalues are negative if
k > 0 (note that the H-atom is a particular case).

Proof. 1t is enough to recall that Hy is a positive operator, to note that
Ua(—8)VUy(s) = e~ *V

and apply the conclusions of Theorem 6.2.8. For instance, if @ < 2 and A is an
eigenvalue of H, then the relation

A= (1 - 2) (U, Hoox)

implies A < 0. d

Exercise 6.2.10. Look for an eigenfunction of the hydrogen atom hamiltonian in
the form ¢ (z) = e~*!, for some a > 0. Find the corresponding eigenvalue, which
is the lowest possible energy value (“ground level” in the physicists’ nomenclature)
of the electron (see, for instance, [Will03]).

Ezercise 6.2.11. Verify the relation Uy(—s)HoU4(s) = e 2°Hp, and that
Uq(s)dom Hy = dom Hy, VseR.

Ezercise 6.2.12. Consider the energy expectation value (see the discussion in Sec-
tion 14.1)

€0 = (v, Ho) + (¥, VY), v € CF(R),
and let ¥(s) = Uy(s)y. By taking appropriate values of s, show that

inf £ = -0
ll¥ll=1
in case V(z) = —1/|z|* and o > 2. Comment on the physical meaning of this
result — see Remark 11.4.9.

Ezample 6.2.13. The condition Uy(—s)VUy(s) = e~ **V in the virial theorem is
not strictly necessary. Consider the bounded potential

K

Va(@) = ————,
() T+ a

a >0,
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acting on L2(R). Then Uy(—8)V,Uq(s) = e *V,—s,; if Hipy = My, by following
the proof of Theorem 6.2.8 one gets

1
0< <'¢))\aHO¢)\> = %@ﬁ)\v |.1‘|Va2¢)\>,

and if k < 0 the operator H = Hy + V, has no eigenvalues.
Ezercise 6.2.14. Present the missing details in Example 6.2.13.

The virial theorem is closely related to its version in classical mechanics.
Both relate averages of the potential energy and kinetic energy, and was originally
considered by Clausius in the investigation of problems in molecular physics (re-
call that average kinetic energy is directly related to temperature in equilibrium
statistical mechanics). Restricting to dimension 1, Clausius considered the classi-
cal quantity G = xp, the so-called virial; note that in the quantum version this
quantity corresponds to the infinitesimal generator of Uy(s) — see Example 5.4.8.
Some domain issues are avoided by working directly with the unitary group Uy(s)
(as in the virial theorem above) instead of its infinitesimal generator. It has appli-
cations to thermodynamics and astrophysics, among others. For several aspects of
the quantum virial theorem the reader is referred to [GeoG99).

6.2.2 KLMN: Applications

Let b0 be the (closed and positive) form generated by the free hamiltonian Hy =
—A in L2(R"), so that

bHo (1, @) = (4, —AB), Vi) € dom b0, V¥¢ € dom Hy.
According to Examples 4.2.11 and 9.3.9, dom b0 = H!(R") and

b0 (1, ) = (Vip, Vo),  Vab, ¢ € dom bo.

The following three examples consider form perturbations of b0,

Ezample 6.2.15. In L?(R3) the Kato-Rellich theorem allows the definition of a
self-adjoint realization of Hy + V for

R

x|

Viz)=—- 0<a<3/2,

since such potential belongs to L? + L>°. The KLMN theorem can be used to give
meaning also for 3/2 < o < 2.

Let b, be the form generated by |z|~%. Fix 0 < o < 2 and note that dom b, D
dom b in this case; given a > 0, choose € > 0 so that |z|~® < a|z|~2/4 for all
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|z| < e. By Hardy’s Inequality 4.4.16, for all ¢ € dom bHo = H1(R3),

o R@E, [ @) () ?
b“(”’)‘/w e df”‘/|w|<e e d“/.m e %
< a/ () dx + ia |v(2)|? do
|

z|<e 4|$|2 |z|>e

<o Bobars £ [ o

2 2
<o [ IVe@Pde+ = [ @l de
—ab™() + [

Since a > 0 was arbitrary in the above inequality, the b°-bound of b, is zero.
Hence the KLMN Theorem 6.1.17 defines a self-adjoint realization of Hy — k/|z|*
in L2(R?), 0 < a < 2, given by the operator associated with b0 + b,,.

Ezample 6.2.16 (Delta-function potential in R). In L?(R), perturb the free form
bHo(4h, ) = (', ¢') by the nonclosable form bs(v, ¢) = 1(0)¢(0) of Exam-
ple 4.1.15, which simulates a Dirac delta interaction at the origin. Here dom bs =
dom b0 = H!(R). The KLMN theorem permits the association of a self-adjoint
operator with the form

bHo + aby, a €R,

with domain H!(R); see also Example 4.4.9.
In fact, if v» € H'(R) one has 1(z) — 0 as |z| — oo, and by using Lem-
ma 6.1.3 with s =t =1, =2, for all M > 0,

b5 (1) < |I%(0) M)?| + (M
_ Md 2d
- / 2 (o) d

M 7 N -
/0 (Wﬂr) () + ()Y (m)) dzx

+ (M)

+[(M)?

1
< ()P +2||w'|| lll < QD +el9/[17 + ]
— 00 1

MR I+ 2 I = <t o) + Il

Since € > 0 is arbitrary, it follows that the bo-bound of abs is zero for all o € R. By
KLMN theorem, there is a unique self-adjoint operator T, with dom T}, C H!(R),
whose form domain is H*(R), and

¥, Tad) = (', ¢') + ap(0)9(0), Vo € H'(R), ¢ € dom T,.

Further, T, is lower bounded.
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Ezercise 6.2.17. If o < 0, verify that e®*l/2 is an eigenvector of T, in Exam-
ple 6.2.16, whose corresponding eigenvalue is —a? /4.

Remark 6.2.18. In the KLMN theorem it is strictly necessary that a < 1. In fact,
one has |—bo| < b0 b5 (so a = 1) but the “perturbed” form (b5 +bs)—bHo = b
is not closable.

Example 6.2.19. Let v be a positive Radon measure in R", that is, a Borel, finite on
compact sets and regular measure. Under suitable conditions, the KLMN theorem
will be used to give meaning to the operator

H = Hy+ av,

that is, the interaction potential is ruled by the measure v with intensity a €
R, as proposed in [BraEK94]. The “interaction” form b®" associated with this
“potential” is introduced by the expression

b¥ (¢, ¢) = o | P(x)o(x) dv().

R™

Singular (with respect to Lebesgue measure) v are the most interesting cases,
but in view of the KLMN theorem one faces the difficulty of getting dom b** D
dom b0 = H1(R™), since the elements of H!(R") are not necessarily continuous
and the restriction to the support of v can be meaningless. The idea is to define b*”
as above initially on C§°(R"™), and assume that v is such that there are 0 < a < 1
and ¢ > 0 so that (see Remark 6.2.20)

1+l [ W@Pdvta) <a [ (Ve@Rdete [ (p@)lds

for all ¢ € C§°(R™). Since C§°(R™) is dense in H!(R™), the map J : C§°(R") —
L2(R™), Jt = 1, has a unique extension to a continuous linear map (also denoted
by J; note that 1 is being used to denote elements in both equivalence classes
L2(R") and L2(R"™))

J: HYR™) — L2(R™),

and, by continuity, the above inequality holds for all ) € H!(R™), that is,

-+l [ 1@ P ) <o [ [Vo@Pdee [ o).

n

Finally, the precise definition of the interaction form 6™ is presented: dom " =
H(R™) and for ¥, ¢ € dom b,

b (1), ) = a / To(@) Jé(x) dv(z).

n
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For 1 € H*(R™), one then has

b @)l =lal [ 170 dvia)

alal 5 clal 5
< \Y, d d
< [ve@P s (90 [ e
ale| g, clal 2
= b 0
1+ |al (W) + 1+ |a IW||

Since ala|/(1 + |e|) < 1, for such measures v the KLMN Theorem 6.1.17 provides

a self-adjoint realization of Hy + av rigorously defined by the operator associated
with bHo 4+ pov,

Remark 6.2.20. Sufficient conditions for the above inequality to be valid for posi-
tive Radon measures v in R™ appear in [StoV96]: e.g., all finite measures over R,

lim sup / [In |z — y|| dv(y) =0, n=2,
B(z;e)

€l0 zecRr2

and 1
lim sup / o) =0 n=3
€l0 yxeRn B(zx;e) |~73 - y|

Particular interesting cases are v = uC, that is, a measure concentrated on the
ternary Cantor set in R (see Example 12.2.13), and when v is supported by smooth
curves and other manifolds in R™, which is part of the set of so-called leaky quan-
tum graphs.

6.2.3 Some L2 (R") Potentials

Theorem 6.2.21. Let V : R” — R be a measurable potential and B, = B(z;1)
denote the closed ball of center x € R™ and radius 1.

a) If dom Hy C dom V, then

loc

dwwzwp/|wm%y<w

zeR™ JB,

in particular V € L _(R™).
b) If dom Hy C dom V and limsupy, |« [V(z)| = s < oo, then V € L?(R") +
L>°(R™).

Proof. a) Since V is a closed operator and p(Hy) # 0, by Lemma 6.1.4 there is
¢ > 0 so that

V)2 < e (|Howl? + |0]%), V4 € dom Hy.
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If x € R", pick ¢ € C§°(R™) so that ¢(y) = 1 for y € By, and set ¢,.(y) = ¢p(y— ).
Thus,

/lwmﬁwsw%Ws4WmmMW@m

x

=c ([Hoo|* + [|¢lI*) < oo,

and note that this upper bound does not depend on x. Hence d(V') < co.

b) Let E, = {z € R" : [V(z)| < 25}, Voo = Vxg, and Vo = Vxg., with
E¢ =R"\ Es. Then V = Vo4 Vi, Voo € L(R™) and, by the definition of s, there
exists R > 0 so that Va(x) = 0 if ¢ B(0; R). Pick ¢ € C5°(R™) so that ¢(z) = 1
for x € B(0; R); then ¢ € dom Hy C dom My and

IVal* = /R Va(@)[? |9(2) | do = [|[Va¢* < [[V@I|* < oo,

so that V5 € L2(R"™). O

Ezercise 6.2.22. Show that if limsup),_, [V ()| = 0 in Theorem 6.2.21, then the
L*>(R™) part of V' can be chosen with arbitrarily small L>° norm.

Theorem 6.2.23. Let V and d(V') be as in Theorem 6.2.21. Then for n =1, i.e.,
in L2(R), the following assertions are equivalent:

a) dom Hy C dom V.

b) d(V) < oo.

c) V is Hy-bounded.

d) V is Ho-bounded with Ng,(V) = 0.

Proof. The implications a) = ¢) = b) were already discussed in the proof of
Theorem 6.2.21. d) = a) is clear. It is only needed to show that b) = d).

Assume that b) holds. If ¢ € dom Hy = H2(R), then 1 is continuous and
continuously differentiable. Assume first that v is real valued. By using an idea in
Lemma 6.1.3, given € > 0 for z,y € B, one has

wwP = oGP = [ wer) a=2 [Cow o

gl Y dt+e | (1) dt.
€ JB, B.

By the mean value theorem, choose z € B, so that ¢(z)? = sz P(t)? dt, thus

P(y)? < (1+ i) /B ¢(t)2dt+s/BI Y’ (1) dt.

For complex ¢ € H2(R) one gets, for all ¢ > 0 and all x € R,

[y < (H—i) L |¢(t)|2dt+eﬂ [ (£)]? dt.

P2 Bz
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Hence,

| westr ay<aw) (1+2) [ wopasave [ pora

@ x

and so (denote the set of even integers by 27Z)

Vol = [ IV - Z/ ()2 dy

€27

<a) (1+2) [ wePar+ awye / WO dt,
<av) (14 1) 1P b+ vl

Since 0 < (p* — 1)? it follows that p* < (p* +1)/2 < (p* + 1), and then

111 = P12 = / P12 dp
< 1P + 1902 = | Howll? + 4],

and one obtains
1
Vol < dw) ol + (<414 1) ) ol

Since this holds for all € > 0, d) follows. O

Hence, in order to apply the Kato-Rellich theorem to conclude that H :=
Hy +V, with dom H = dom Hy, is self-adjoint and C5°(R™) is a core of H, it is
necessary that d(V') < oo, and for n = 1 this condition is also sufficient.
Ezample 6.2.24. Let V,(z) = el*l and V,(z) = |z|*, 0 < a < 1/2, z € R; then
d(V.) = oo while d(V,) < oo. Thus, by Theorem 6.2.23, the operator H, :=
Hy + Vo, with domain H?(R) is self-adjoint and C§°(R) is a core of it; however,
H, := Hp + V, can not be defined on H?(R), although C§°(R) is a core of H, by
Corollary 6.3.5.

Ezercise 6.2.25. For z € R, let

o(z) = {1/¢W if o] <1

0, if |7 >1°
Consider the enumeration of rational numbers Q = (r;)52; and the potential
V(z) = Z;‘;l é(z —rj)/27. Show that:
a) V € LY(R) and V is not L? over any open interval in R.
b) If ¢ € (dom V N C(R)), show that ¢) = 0.
Conclude then that dom Hy Ndom V = {0}.
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Ezercise 6.2.26. Discuss for which dimensions n (i.e., spaces L2(R")) each of the
potentials V,,,(z) = |z|, Vi(z) = In|z| and V.(z) = —|z|~! have d(V) < oo.
Remark 6.2.27. Note that V € LZ (R") is the minimum requirement for Vi
to be an element of L?(R") with ¢ € C§°(R™). It is shown in Section 6.3 that if
V € L .(R") and is bounded from below V' (x) > 3, then the operator H = Ho+V
is essentially self-adjoint on C5°(R™).

6.3 Kato’s Inequality and Pointwise Positivity

An outstanding distributional inequality due to Kato will be discussed (the original
reference is [Kat72]; see also [Sim79]). It involves functions and here applications
are restricted to standard hamiltonians in the Hilbert space L2(IR™). It will be used
to show that lower bounded V' € L2 (R") leads to essentially self-adjoint hamilto-

nians —A + V with domain C§°(R"™). See Subsection 9.3.1 for other applications.
In this section a.e. refers to Lebesgue measure.

Definition 6.3.1. A distribution u in R™ is positive if u(¢$) > 0 for all test functions
¢ € C3°(R™) with ¢(x) > 0, Vo € R™. This fact will be denoted by v > 0 and
u > v will indicate (u —v) > 0.
Ezample 6.3.2.
a) If F:R™—[0,00) is continuous, then the distribution up(¢)= [ F(z)¢(z)dz,
¢ € C§°(R™), is positive.
b) If u, > 0, Vn, and u,, — u in the distributional sense (i.e., u,(¢) — u(®),
V¢ € C§°), then u > 0.

If ¢ € L (R"), define the function (sgn)(z) := 0 if ¢ (x) = 0, otherwise

loc
¥(x)
(Sgn w)(m) R NYIRYE)

|9 ()]
which belongs to L>°(R"™) and |¢(x)| = ¥ (x)(sgn¥)(x) (this is the motivation for
introducing the function sgn). Given ¢ > 0, denote ¥ (z) = (J1(z)* + 52)1/2
which converges 9. (z) — |¢(z)| pointwise as ¢ — 0. Denote also sgn _i(x) :=
¥(z) /b (z). In the following, the derivatives of L] _ functions mean distributional
derivatives.

Theorem 6.3.3 (Kato’s Inequality). If both u, Au are elements of L, (R™), then
(sgnu)Au € LE _(R™), so it defines a distribution, and

loc
A((sgnuw)u) = Alul > Re ((sgnu)Au),

set

b

that is to say,

[ u@lad@ds = [ (sgnuiu) o) do

for all 0 < ¢ € Cg°(R™).
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Example 6.3.4. Tt is instructive to play with some standard functions u : R — C
in this inequality. For instance:

1. If u(z) = e+ g b € R, then a straight computation shows that Kato’s
inequality reads a?e®® > (a? — b?)ed®.

2. If u(x) = z, then Kato’s inequality expresses that the Dirac delta distribution
is positive, i.e., é(x) > 0.

3. If u(x) = 23, then it turns into an equality 6|z| = 6|x|.

We leave it as an exercise to check details in the above statements.

A very important consequence of this inequality implies that some standard
Schrédinger operators in L2(R™) are well posed; recall Hy = —A.

Corollary 6.3.5. If there is 8 € R so that V € L2 (R") satisfies V(z) > J,
Vx € R™, then the operator

Hp := Hop + V), ¢ € dom H = C§°(R™),

1s essentially self-adjoint.

Remark 6.3.6. The domain and action of the unique self-adjoint extension of H
in Corollary 6.3.5 are described in Corollary 9.3.17, and its domain can be strictly
smaller than dom Hp = H?(R"), even for n = 1; see Example 6.2.24.

Ezample 6.3.7. a) The operator Ho+ /|z|, k > 0, with domain C§°(R?) is essen-
tially self-adjoint. Compare with Example 6.2.3 where negative « is allowed.

b) The operator Hy + x/|z|?, j,x > 0, with domain C§°(R") is essentially
self-adjoint if n > 25 + 1.
Remark 6.3.8. Note the great generality of Corollary 6.3.5, since the operator sum
H = —A+V is defined on C§°(R") iff V € L2 (R™); hence, if V is bounded from
below, then H is essentially self-adjoint on C§°(R™) iff it is defined (as a sum of
operators)!

Before proceeding to proofs, a rough idea and figurative arguments of how
Theorem 6.3.3 can be used to get Corollary 6.3.5 are presented. Let A € R obeying
A+0 > 0;s0 V+A > 0. By Proposition 2.2.4iii), to show that the deficiency index
ny(H) =0, it will suffice to show that the solution of

(Ho+V + A1) u =0, u € L2(R™) C LY (R™),
is solely u = 0 (recall that (rng T)* = N(T™*)). Since Hy is a positive operator,
one could guess that Hy|u| > 0; the positivity of V 4+ X and Kato’s inequality will
imply Ho|u| < 0, so that Ho|u| = 0 and, since u € L2, u = 0. Now the proofs.

An important step in the proof of Kato’s inequality is first to prove it when
u is smooth, and then use the so-called mollifiers to create sequences of smooth
functions, via convolutions, approximating certain distributions and nonsmooth
functions.
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Let m € C§°(R"), m(x) > 0, Va, with [;, m(z) dz =1 (i.e., m is normalized).
Given r # 0 (usually r > 0) set

1
my(x) == —m (E) , u™ = uxm,,
T

where * denotes the convolution, which was recalled in Section 3.1. The family
r — m, is called a mollifier and m a mollifier generator. The standard example of
mollifier a generator is

m(xz) = Cexp (—1_112)7 lz] < 1,

and m(z) = 0 for |z| > 1; C'is just a normalization constant. Thus, [ m,(z)dz =1,
u(") € C®(R™) for all u € LL _(R™), r # 0, and, by Lemma 6.3.9,

loc
A(u™). > Re (sgns(u(r))Au(T)>.

Lemma 6.3.9. For any v € C*(R") one has, pointwise and in the distributional
sense,

Av. > Re (sgn,.(v) Av).

Proof. Clearly |ve| > |v|. On differentiating v2 = |v]? + &2 one gets 2v. Vv, =
vVv 4+ vVy = 2Re (v Vv). This expression will derive two relations. The first one
is obtained by taking the divergence of it:

|V1}g|2 + v. Ave = Re (T Av) + |Vv|2.

The second one is

[Re (7Vv)| _ [770]

|ve | N

|Vve| = < |Vo|.

Kl
Combine these two relations to get
ve Ave > Re (UAv) = Av. > Re ((sgn . v)Av)

pointwise; thus, for every 0 < ¢ € C5°(R™),

/ veApdr = Av. pdx > Re / (sgn . (v) Av) ¢ dx,
n Rn

and the inequality also holds in the distributional sense. O
Ezercise 6.3.10. If ¢ € C§°(R™), write
6(@) — 67 (w) = [ (8(o) ~ oo~ 1)) maly) d

for a fixed mollifier generator m, and use the uniform continuity of ¢ to show that
lim, o [[¢) = ¢lloe = 0.
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Lemma 6.3.11.
a) For any r > 0 the linear map LP(R™) — LP(R™), u — u("), is bounded and
with norm < 1, for all 1 <p < co.
b) If u € LP(R™), 1 < p < 0o, then lim, o ||[ul™) — ul|, = 0.
¢) Ifu € LP(R™), 1 < p < oo, then Au™) € LP(R™), Vr > 0 (the laplacian can
be replaced by any derivative).
d) Ifu e LL_(R™), then u™ — u in the distributional sense as r | 0.

loc

Proof. a) Since m, € LY(R"), for u € LP(R") it follows by Young’s inequality
(Proposition 3.1.9) that (take “r = p” in Young’s inequality)

Py = llux mrllp < Jullpllmell = [ullp.

b) If ¢ € C§°(R™) and Q4 is the support of ¢, one has

16 = @ll, < 167 — Blloo £(S26)7,

where £(-) denotes Lebesgue measure over R”. Hence ||¢(") — ¢||, — 0 as 7 — 0
(see Exercise 6.3.10). Now take u € LP(R™). Given € > 0, choose ¢ € C§°(R") so
that ||u — ¢||, < €. By triangle inequality and a), for » small enough,

[ul = ullp, < [ = 6, + 167 = 6l + 16 — ullp
<|lu—9|p +e+e < 3e.

Item b) follows.
c) It is a consequence of

iu(r) — i(u * M) = Uk ——My
31‘j 31‘j 31‘j
and Young’s inequality, i.e.,
0 0
F—u| < ully || 5—m.
656]‘ p Ba:j 1

d) Since u(") € C*(R") it also defines a distribution. If ¢ € C§°(R™) and
is the support of ¢, a change of variable and Fubini’s theorem lead to

W) = [ @) o) ds = [ (-1)"ul@)e @) do = (~1)u(e ),

n

and so

[u(@) = u(6)| = |u (6= (1)) | <||6 = (=107

OO/% |u(z)| d.

Note that (—1)"¢(~") = ¢ * m,., where m(z) := m(—z) also satisfies the assump-
tions required for 72, to be a mollifier; so [[¢ — (—=1)"¢(~")||», vanishes as r — 0
by Exercise 6.3.10. Therefore, u(") — w in the distributional sense. O



6.3. Kato’s Inequality and Pointwise Positivity 165

Other properties needed to complete the proof of Corollary 6.3.5 will be
collected in the following proposition.

Proposition 6.3.12. Let u € L (R™) and r | 0. Then:

loc
i) There exists a subsequence u™ (x) obeying u) (x) — u(z) a.c., and so also
(sgn u™)(z) — sgn u(z) a.e.
i) Au = (Au)") and, if also Au € L} (R™), one has Au") — Au in L] (R™)

(that is, [, |u(") — u|dx — 0 for every compact K C R™) and a.e. as well.

Proof. i) Let m be a mollifier generator with support €2,,. Let K be a compact
subset of R™ and y g its characteristic function. By the definition of convolution
and Fubini,

@ =] < [ mio) lute) = e = o))l an

It turns out that |[(u(x) —u(x —ry))xk||,; vanishes as r — 0 (see the proof of
Lemma 13.3.2), and so ||(u") — u)xx||, — 0. Thus, u("”) — u in L*(K), for any
compact K. Hence there is a subsequence with a.e. convergence.

ii) After an interchange of integration and differentiation (by dominated con-
vergence), it is simple to verify that Au(™ = (Au)("). By hypothesis Au € Ll ;

loc?
so the convergences stated in ii) follow by i). O

Proof. [Corollary 6.3.5] Pick A so that A+ 8 > 0 and u € dom H* C L*([R") a
solution of (H 4+ Al)*u = 0, which amounts to

0= ((H +M\)*u,¢) = (u, (H+ \1)¢), Vo€ CP(RM),
and since H + A1 = —A + V + A1 one finds that, in the distributional sense,
0=—-Au+ (V+ Al)u.

Since u, Vu € LL (R"), it follows that Au = (V + Al)u € Li (R") and Theo-

loc loc
rem 6.3.3 implies

Alu] > Re ((sgnu) Au) = Re ((sgnu) (V + Al)u) = (V + A1)|u] > 0.
However, |u| is not ensured to belong to dom A, and a “regularization pro-

cess” is necessary. Thus, for any 7 > 0, Alu|") = Alu| * m, > 0 pointwise and in
the distributional sense; also, by Lemma 6.3.11c), Alu|") € L?(R") and so

<MW%NMW>:/ | Alu|™ dz > 0.
Rn

On the other hand, again by Lemma 6.3.11c), 9|u|(") /dz;, Alu|™) € L2(R™),
consequently |u|("™ € H2(R") = dom Hy (see Section 3.2); hence (recall Hy > 0)

(Iul®, Alul)) <0,
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Combining with the other inequality one finds (|u|", Alu|(") = 0, and thus
|u|(") = 0. Since u € L2(R"), by Lemma 6.3.11b) one can consider a subsequence
and assume that |u|(™) — |u| a.e. as r | 0, so that u = 0. By Proposition 2.2.4, the
deficiency indices of H are null. The corollary is proved. O

Ezercise 6.3.13. Use results of Section 3.4 to show that if ¢ € dom Hy = H?*(R")
and (¢, Hypyp) = 0, then ¢ = 0. This was used in the proof of Corollary 6.3.5.

Proof. [Theorem 6.3.3] Let u,Au € Ll _(R"). Thus, «(") € C*°(R") and, by
Lemma 6.3.9,

A@u®). > Re (sgo () Au),  Ver >0,

that is, for every 0 < ¢ € C3°(R"),
/ u{” A¢dz > Re / (sgn . u™) Au ¢ dz.

The point now is to take the limit | 0 in both terms of this inequality.
Since u, Au € Ll , by Lemma 6.3.11c), d) and Proposition 6.3.12ii), u(” — u
and Au(") = (Au)") — Awu in Ll . and in the distributional sense. By passing to
a subsequence one can suppose that (" — u and Au(") = (Au)") — Au a.e.
Together with the inequality

U(T)—UE — u(r)2_|_82 1/2_ U2+82 1/2
€
[[ut]? = Jul?|
(ju[2 +2) 2 4 (juf? + £2)"/?

< ’|u(r)| - |u|’ < ’u(r) - u‘

the convergence u("™ — u implies that uy) — U in L

subsequence), and so

1

ve and a.e. as r | 0 (for a

/ ul™ A dx — us A¢pdx.

Rn

Taking into account the uniform boundedness of sgn _u(") (that is, |sgn .u("| < 1)
and Au(") — Aw, in a similar way it is found that (for a subsequence)

sgn _(u) (Au(r) — Au) — 0,
in the distributional sense as r | 0. By dominated convergence

/ sgn _(u'")Au ¢ dz — sgn _(u)Au ¢ dz, r— 0.
n Rn



6.3. Kato’s Inequality and Pointwise Positivity 167

By collecting these convergences and taking the appropriate subsequence r | 0,
for 0 < ¢ € C(R™),

Re / (sgn u™) AuM ¢ dr = Re / (sgn u(™) (Au(r) — Au) ¢ dx

n

+Re/ (sgn u™) Aug dx

— sgn (u)Au ¢ dz
RTL

asr | 0, that is,

/ usqudezRe/ ((sgn ,u) Au)¢ dx,

which is equivalent to the distributional inequality
Aue > Re ((sgn u) Au).

Since ue — |u| uniformly as ¢ — 0, the left-hand side in the above integral
inequality converges to [ |u| A¢dz. Now sgn_u — sgnu as ¢ — 0 and since
lsgn  Aul < |Au| and Au € L{ (R"), one can apply dominated convergence on

the right-hand side of the above integral inequality to get

Re / ((sgn ,u) Au)pdr — Re / ((sgnw) Au)¢ dx
as € — 0. Therefore, the final result, i.e., Kato’s inequality, follows by taking the
limit € — 0 in the latter distributional inequality. 0

Remark 6.3.14. In [LeiS81] there is a generalization of Corollary 6.3.5 that in-
cludes magnetic fields; for an introduction to Schrédinger operators with magnetic
fields see Sections 10.5 and 12.4. The Leinfelder-Simader proof also makes use of
Kato’s inequality and their theorem reads as follows: Let V € L2 (R") be bounded

from below, the components of the magnetic vector potential A; € L (R"),

j =1,...,n, and the distributional divergent (}_;0;4;) € L (R™); then the
Schrodinger operator with magnetic field

n 2
J

is essentially self-adjoint.



Chapter 7

Boundary Triples and
Self-Adjointness

A simple variation of the not so popular approach to self-adjoint extensions via
boundary triples is discussed. The idea is exemplified through a series of examples,
including the one-dimensional hydrogen atom, free hamiltonian in an interval and
spherically symmetric potentials. At the end, important self-adjoint extensions of
a quantum particle hamiltonian in a multiply connected domain are found.

7.1 Boundary Forms

If T C S are hermitian operators one has T C S C S* C T%, that is, any
hermitian extension of 7" is a hermitian restriction of 7. The larger the domain
of a hermitian operator the smaller the domain of its adjoint. The choice of the
domain of S has to be properly adjusted in order to get a self-adjoint extension of
T'; recall also that a self-adjoint operator is maximal, in the sense that it has no
proper hermitian extensions.

Definition 7.1.1. Let T be a hermitian operator. The boundary form of T is the
sesquilinear map I' = 'y« : dom T x dom T™* — C given by

I, n) =T n) — (T ), &mnedom T,
I'(¢) will also denote I'(¢, ).

In case T is known, I' can be used to find the closure of T, that is, T.
Since T' = T** C T, by the definition of the adjoint operator 7** one has that
& € dom T iff there is n € ‘H with

(&, T¢) = (n,¢), V¢ € dom T,
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and 7 = T€. Since T C T™* one has n = T*¢ and so the above relation is equivalent
to

0=T(Q) =(T" Q) — ((,T°C), V¢ €dom T,
which is a (anti)linear equation for ¢ € dom 7.
Exercise 7.1.2. Use the above characterization of T to show that the closure of a
hermitian operator is also hermitian.

Proposition 7.1.3. T'({,n) =0, V&, n € dom T, iff T* is self-adjoint, that is, iff T
1s essentially self-adjoint.

Ezercise 7.1.4. Present a proof of Proposition 7.1.3. Hence, the boundary form I"
quantifies the “lack of self-adjointness” of T™.

Proposition 7.1.5. If T is hermitian then
dom T = {¢ € dom T* : T'(&,n+) = 0,Vnt € KL (T)}.

Proof. Recall that if ¢ € dom T*, then ¢ = n + ny + n_, with € dom T, and
N+ € K4 (T) (the deficiency subspaces). Since I'(§,7) = 0 for all £ € dom 7,7 €
dom T, it follows that £ € dom T iff for all ( € dom T*

0=T(,¢) =T&n+ns +n) =T ny +n-).
The result follows. U

Exercise 7.1.6. Show that an operator S so that 7' C S C T™* is hermitian iff
I'¢,n) =0 for all £, € dom S.

Let ¢* =n'+ni +nt and 2 =n* +n3 +n2, with n',»? € dom T, nk,ni €
K, (T), nt,n*> € K_(T), be general elements of dom T*; since T*n+ = Fin, it
follows by Theorem 2.2.11 that

(¢ =Ty +nt,nt +02) =2i ((nh.n7) — (2, n)) .

It is then clear that the nonvanishing of I" is related to the deficiency subspaces.
Boundary forms can be used to determine self-adjoint extensions of T by not-
ing that such extensions are restrictions of T on suitable domains D so that
I'¢,n) =0,V¢,n € D (Lemma 7.1.7). Recall that each self-adjoint extension of T'
is related to a unitary operator ¢ : K_(T) — K4 (T) onto K. (T'); denote by
Ty the corresponding self-adjoint extension, whose domain is dom Ty = {n =
C+n- —Un_:¢€dom T,n_ € K_(T)}. Then, explicitly one has

Lemma 7.1.7. The boundary form I'p« restricted to dom Ty vanishes identically.

Proof. For any two elements 1 = ¢y +7- —Un— and £ = G+ £~ —UE- in dom Ty
(¢1,¢2 € dom T) one has

F(gan) =21 (<u£*au"7*> - <£*a77*>) = Ou

which vanishes since I/ is unitary. g
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Proposition 7.1.8. Assume that T has self-adjoint extensions. Then each self-
adjoint extension of T is of the form

dom Tyy = {{ € dom T* : T'(&,n— —Un-) =0,Vn_ € K_(T)},
Ty& =T%¢, £ € dom Ty (U as above).

Proof. 1f Ty is a self-adjoint extension of T', then dom Ty = {n = (+n-—Un-: ( €
dom T,n_ € K_(T)}; since I restricted to dom Ty, vanishes, by Proposition 7.1.5
one has, for £ € dom Ty,

0=T((+n-—Un-)=T(En-—Un-),  Vn- eK_.

Hence, dom Tyy C A:={{ edom T* : T'(§,n—- —Un-) =0,Vn_ e K_(T)}.
Now, given U, consider the linear equation for (+¢&_ + &4 = £ € dom T* (of
course {1 € K4 (T))
0=0(n-—Un-), V- eK_(I).

By Lemma 7.1.7, any £ € dom Ty, is a solution of this equation. Let £ € dom T
be a solution and write

§=C+& U + & +UE;
thus

0=0L(&n- —Un-) =T —U + & +UEn- —Un-)
=24 (((§+ +UE-) —US-Un-) — (£-,1-))
=20 ((§4 +US, —Un_) + U Un_) — (§-,n-))
=20 (& +UE_, —Un_), VYn_ € K(T).
Since rng U = K, it follows that &, +UE- = 0, or & = —UE_; thus & =
C+ & —UE € dom Ty so that A C dom Ty,. Therefore dom T, = A, and the

proposition is proved. O

Remark 7.1.9. Note that the specification of the self-adjoint extensions T, in
Proposition 7.1.8 does not require the explicit knowledge of T; sometimes this can
be handy and an advantage over the specification presented in Section 2.5.
Example 7.1.10. As an illustration of the above ideas, the simple case of the
momentum differential operator on a bounded interval (a,b) of Example 2.3.14
will be discussed. Let

dom P = C5°(0,1) C 'H = L?[0, 1],

(Py)(z) = —iy)/(z),v € dom P. On integrating by parts it is found that P is
hermitian. One has dom P* = H![0,1] and (P*v¢)(z) = —it)'(x),¢ € dom P*. In
this case the boundary form is

P(,0) =i (1) ~60)6(0), .6 € dom P*.
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By choosing ¢ = ¢ € H![0,1] with ¢(0) = 0 and ¢(1) # 0 one has I'(¢) # 0, and
so P* is not self-adjoint; consequently P is not essentially self-adjoint. Now v is
in the domain of the closure P iff

0=, 0) =i (VDs(1) —BO$(0)), Vo eH'[0,1];

taking ¢ vanishing at only one end, it follows that ¥(0) = 0 = (1), that is,
dom P = {3 € H[0,1] : ¥(0) = 0 = 9(1)}. For the self-adjoint extensions
Proposition 7.1.8 leads exactly to the characterization presented in Example 2.6.5,
although now the specification of dom P is not necessary.

7.1.1 Boundary Triples

A boundary triple is an abstraction of the notion of boundary values in function
spaces; this idea goes back to Calkin in 1939 [Ca39] and Vishik in 1952 [Vi63].

Definition 7.1.11. Let T be a hermitian operator in H with n_(T) = n(T). A
boundary triple (h, p1, p2) for T is composed of a Hilbert space h and two linear
maps pi, p2 : dom T* — h with dense ranges and so that

al'r«(&m) = (p1(§), p1(n)) — (p2(§), p2(n)), V&, n € dom T,

for some constant 0 # a € C. Note that (-,-) is also denoting the inner product
in h.

In general, given a hermitian operator T' with equal deficiency indices, dif-
ferent boundary triples can be associated with it; since for ¢,¢? € dom T* (by
using the above notation)

only the deficiency subspaces effectively appear in the boundary form, conse-
quently one may take either h = K_(T) or h = K, (T) (with p properly chosen);
in this case, say h = K_(T"), by von Neumann theory it is known that self-adjoint
extensions are in one-to-one relation with unitary operators ¢ : K_(T") — K4 (T').
However, it is convenient to allow a general h with dimh = n, (T) (recall that
two Hilbert spaces are unitarily equivalent iff they have the same dimension), and
Theorem 7.1.13 will adapt von Neumann theory to this situation.

Again, self-adjoint extensions of 7" are restrictions of T on suitable domains
D so that I'(¢,n) = 0,V€,n € D, and given a boundary triple for 7', such D are
related to isometric maps U:h—h (which can be taken to be onto; extend it by
continuity, if necessary) so that Up1 (&) = pa(€) and

(p1(©), 1 (0)) = (p2(€), p2(n)) = (Upr (), Upr () ),

V¢, n € D. Next the linearity of U will be established.



7.1. Boundary Forms 173

Lemma 7.1.12. Each U above is a linear and unitary map.

Proof. Note that rng U = h and it will suffice to show that this operator is in-
vertible and linear. To simplify the notation, p; and py will not appear in what
follows.

If U(€) = U(n), then

therefore £ = n and so U is injective and U~':h — h exists.

If LU~1(€1) = € and U~ (1) = 7, since by hypothesis <L?(£)7Z](n)> =(&,n),
V&, n, then (&,m) = <L?’1(§1),L?’1(n1)>; since U is bijective such a relation holds
for every vector in the space. In this relation, if & = 0(52)7 then <L?(§2)7n1> =

<£27Z;{_1(771)>7 again for all vectors of h.
Now, for all ,£,¢ € h and a,b € C, one has

(th(ag + o), ¢) = (ag + b0t (0))
a{ed7Q)) +5{n U7 (©)
=a (U(),¢) +b(Um), ) = (all(€) +bU.C)

showing that U(a& + bn) = ald(€) + bU(n), that is, U is linear. O

Theorem 7.1.13. Let T be a hermitian operator with equal deficiency indices. If
(h, p1, p2) is a boundary triple for T, then the self-adjoint extensions Ty; of T are
precisely

dom Ty = {€ € dom T": po(€) =Up(€) ], Ty =T,

for every unitary map U:h—h.

Proof. A necessary condition for the restriction of T* to a domain D be self-
adjoint is that the corresponding boundary form vanishes identically on D. Given
the boundary triple, taking into account Lemma 7.1.12 and the discussion that
precedes it, Lemma 7.1.7 and Proposition 7.1.8, such D’s are necessarily obtained
through unitary maps U:h— hand it is enough to check that actually each Tp,
is self-adjoint.
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Clearly Tj; is a hermitian extension of T'. If n € dom T, ., one has

<T1};na§> = <na Tzf{£> = <777TZ}; >7 V¢ € dom TZ;I'

Then,

Since p1 has dense range in h, it follows that p1(1) —U*pa(n) = 0, that is, pa(n) =
Up1(n) and n € dom Ty;. Therefore, Ty, is self-adjoint. O

Often a boundary triple for differential operators gives self-adjoint extensions
in terms of boundary conditions, and different choices of the triple correspond
to different parametrizations of such extensions. In applications sometimes it is
convenient to distinguish the spaces p1(h) from p2(h) by different symbols.

Remark 7.1.14. The definition of boundary triple presented here is slightly differ-
ent from the current definition in the literature; maybe the term modified boundary
triple should be used. For the usual approach and related results and references
in case of differential operators see [GorG91] and [BrGP0S].

7.2 Schrodinger Operators on Intervals

Important Schrodinger operators are self-adjoint extensions of the minimal oper-

ator
d2
H=——s+ V(z), dom H = C§°(a,b) C L*(a, b),
T
with —oco < a < b < +o00; the weakest request on the (real-valued) potential is
V € L (a,b), and this will be henceforth supposed in this chapter.

loc

Note that L2(a,b) = L2[a,b] since the set of end points {a,b} has zero
Lebesgue measure. However, in case of bounded intervals one has C§°(a,b) #
C§°la, b] and for absolutely continuous functions AC(a,b) # ACla, b] (recall that
AC(a,b) denotes the set of absolutely continuous functions in every bounded and
closed interval [c,d] C (a,b)). By Proposition 2.2.16, H has equal deficiency in-
dices and so self-adjoint extensions do exist. In this and the next sections some
results related to this matter will be addressed, as well as some ways of getting
self-adjoint extensions of H, mainly illustrated by means of boundary forms. In
this section H always refers to this minimal differential operator.
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Again note the open interval (a,b) and in general V € L _ is allowed to
“drastically diverge” at the end points. For V € LZ (a,b), Proposition 2.3.20
ensures that dom H* equals

{v € L*(a,b) : ¥, 9" € AC(a,b), (—¢" + Vi) € L?(a,b)},

so that if ¢ € dom H* then v, 1)’ are absolutely continuous functions in (a, b), and
in case the potential V' has a discontinuity at a point ¢ € (a,b), then ¢ and v’
must be continuous at ¢ for any ¢ in the domain of a self-adjoint extension of H.
Such continuity conditions at ¢ are habitually imposed on wave functions (i.e., ¢)
in quantum mechanics textbooks, and here the justification is seen to be related
to regularity properties of elements of dom H*.

Lemma 7.2.1. The boundary form of the above minimal operator H is

L(h, @) = W9, 0] = Wa[9, 0], Y, € dom H*,

where W[, @] = ()¢’ (x) — ¥/ (z)p(x) is the wronskian of ¥, ¢ at = € (a,b),
and W[, ] := lim,_, .+ Wi, 0], W[, @] := lim,_,- W[, ¢].

Proof. Let [c,d] C (a,b) and 1, € dom H*. In view of V € LZ (a,b), on inte-
grating by parts one gets that I'(, ¢) is reduced to

d
| (0@ - 5@ ) @) de = Walt. o) - Wl o)

since the integral over the whole interval [a, b] is finite, the limits defining W, [, ¢]
and Wy[1), ] exist (modify the functions so that they vanish in a neighborhood
of a; then W[y, o] exists; similarly for the other end) and I'(y, ) = Wi[y), ] —
Walt), ¢ O

Ezercise 7.2.2. Let H be the above minimal operator and u € L{ (a,b). If ¥, ¢
are solutions of H*1) = u, show that the wronskian W,[¢),p] = 7 is constant.
Furthermore, if {1, ¢} is a linearly independent set, show that such a constant

~v # 0, and given ¢ € (a,b),

is the unique solution of H*1 = u with initial conditions ¢(c) = 0 and ¢'(c) = 0.

7.2.1 Regular and Singular End Points

Definition 7.2.3. The end point a is regular for the differential operator H =
—d?/dz? +V if —0o < a and for some ¢ € (a,b) (and so for all such c) one
has [V (z)|de := limg_+ [; |V (2)|dz < oo; b is regular for H if b < oo and
fcb [V (z)|dz = limg_,- fcd |[V(z)|dz < oco. If an end point is not regular it is
called singular.
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From the theory of differential equations [Na69] it is known that the space
of solutions of the K+-equation

H*) = —" + Vip = +ip, 1) € dom H*,

is two-dimensional and if a is a regular point for H then any solution ¢ has finite
limits ¥(a) := ¥(at) = lim,_ .+ ¥(z) and ¢'(a) := ¢'(at) = lim,_ .+ ¥'(z); if a
is singular then such limits can be divergent.

Recall also that if V' is a continuous function (even complex-valued) on (a, b),
then any solution of

—"+(V=-2)yp=0, z€C,
is a twice continuously differentiable function in (a,b), and in case V € C*(a,b)
then ¢ € C*(a, b).
Proposition 7.2.4. Let H be the above minimal differential operator.

i) The closure of H is given by

dom H = {¢ € dom H* : Wy[h, ] = 0, W, [th, ¢] = 0,V € dom H*},
Hy=H*, Vo dom H.

ii) Let v € dom H*. In case a is a regular end point, then the condition
Wa ¥, @] =0, Yo € dom H*, means (a) = 0 =1'(a) (similarly for b).

Proof. i) Combine Proposition 7.1.5 and Lemma 7.2.1 to get
dom H = {3 € dom H* : W[, p] — Wa[t), ] = 0,V € dom H*}.

Since the behavior of functions in dom H* near a is independent of their values
near b, it follows that the statement Wy[w, o] — Wy, 9] = 0,Ve € dom H*,
is equivalent to Wy, o] = 0 = W[, ¢], Vo € dom H* (e.g., given ¢, pick u €
dom H* that coincides with ¢ in a neighborhood of a and is zero in a neighborhood
of b; then Wa[wv 90] = Wa[%“] = Wb[wvu] = 0)

ii) If a is a regular point, then ¢(a),¢’(a) are well defined (i.e., they have
finite limits) for all ¢ € dom H*; hence 0 = W[, ¢] = ¥(a)¢'(a) — ¢ (a)p(a),
Vo € dom H*, implies ¢¥(a) = 0 = v'(a), since ¢(a), ¢’ (a) can take arbitrary
values. O

Corollary 7.2.5. If both end points a,b are reqular, then
dom H = {¢) € dom H* : ¢p(b) = ¢'(b) =0 =¢(a) = ¢'(a)} .
Corollary 7.2.6. If H has a reqular end point, then its closure H has no eigenvalues.

Proof. Say a is a regular end point. Then the solution of Hy = M), ¢ € dom H,
A € C, must satisfy ¢(a) = 0 = 9'(a), and so, by uniqueness, ¢ is the null
solution. g
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Definition 7.2.7. A measurable function v : (a,b) — C is in L2 near the end point
a if there exists ¢ € (a,b) so that u € L*(a,c) (in fact the restriction uf(q,q) €
L%(a,c)); similarly for u that is L? near b.

Remark 7.2.8. Note that if 1 is a solution of the K_-equation for H, then 1 is a
solution of the corresponding K -equation. So for each solution L2 near a of the
K _-equation corresponds a solution L2 near a of the K -equation and vice versa.
Similarly for the end point b.

Theorem 7.2.9. Let H be the minimal operator introduced on page 174.
i) The deficiency indices of the above minimal operator H are finite and bounded
by0<n_(H)=ny(H)<2.
it) If both end points a,b are reqular, then n_(H) = ny(H) = 2.

Proof. i) By Proposition 2.2.16, n_(H)=n4(H). From the above discussion on
solutions of linear differential equations of second order one has, say, 0<n_(H) <2.
ii) If w is a solution of

H* = —¢" + Vi = —itp, ¢ € dom H*,

then u7u’ are absolutely continuous in (a,b) and so for any [c,d] C (a,b) one
has fd |u(x)|? doz < oo. Since the limits u(a™),u(b™) exist and a,b are finite, one

gets f lu(z |2 dz < oo, consequently all elements of K (H) are in L?[a, b]. Hence
ny(H) =2. By item i), n_(H) = 2. O

Lemma 7.2.10. Let H be the minimal operator introduced on page 174. For each
end point, at least one (nonzero) solution of

H*Y = —" + Vip = Lin), ¥ € dom H*,
is L2 near it.

Proof. Let a,b be the end points and a < a’ < b’ < b; it is enough to consider —i
on the right-hand side of the above equation, since the arguments are the same
for the other possibility.

For the hermitian operator dom S = {1,¢' € AC[a’,¥'] C L?[a,V'] : ¢(a) =
P'a’) =0=19() =¢' (b))},

qu = —¢” + V¢7

a’, b’ are regular end points and, by Theorem 7.2.9, n_(S) = 2 = ny(S). Thus,
g (S +il) = K_(9)t # {0}, and since C§°(a’,b') T L2[a/, V], there exists
¢ € Cg°(a’,b'") with ¢ ¢ rng (S +i1). Let H be a self-adjoint extension of H and
¢ € dom H C dom H* with (H +il)i) = ¢ (recall that g (H 4 i1) = H by
Proposition 2.2.4); note that the support of ¢ does not lie in (a’,b), for otherwise
¥ would belong to dom S and (S +i1)y = ¢, so that a contradiction would arise.
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Now suppose that 1) does not vanish identically on (a, a’) (similarly if it does
not vanish identically on (&',b)). Then the restriction u := 1)|(4,q/) is a solution of
the above equation in the statement of the lemma (recall that HcH *) and it is
L2 near a. The construction of the solution L? near b is as follows.

Consider the operator dom Q = {¢ € dom H : p(z) = 0,Vz € [/,b)} (under
restriction, this set is dense in L2(a,a’)), Q@ := Hldom @; in view of u € dom @
and

Qu=—u"+Vu=—iu,

it is found that @ € dom Q* (the complex conjugate of u above) and

(QF —il)u = 0;
it then follows that rng (@ + 1) is not dense and, as above, there exists ¢ €
Cg°(a,a’) with ¢ ¢ rng (Q +1i1). The self-adjointness of H implies that rng (H +
i1) = L2(a, b), and so there is v € dom H with (H 4 i1)v = ¢. Finally, v does not
vanish identically on [b,b) since ¢ ¢ rng (Q + 1), and so a (nonzero) L? near b

solution of the equation in the statement of the lemma was found. This completes
the proof. O

Corollary 7.2.11. If n_(H) = ny(H) = 0, that is, H is essentially self-adjoint,
then both ends a,b are singular.

Proof. If one end is regular then all solutions of the corresponding K+-equation
are L2 near it and, by Lemma 7.2.10, there is at least one solution of the above
equation that is L2 near the other end point, so at least one solution belongs to
L%(a,b) and ny (H) > 1. Both ends being singular is the only remaining possibility
ifn_ = ny = 0. O

7.2.2 Limit Point, Limit Circle

Corollary 7.2.11 shows that a necessary condition for H to be essentially self-
adjoint is that both ends a,b are singular. This is related to interesting results
by Weyl (around 1910) and further developed by Levinson, Friedrichs and many
others. For details justifying the terms in the next definition — although not im-
mediate, they are quite interesting — consult [CoL55] or [Pea88].

Definition 7.2.12. The minimal differential operator H is in the limit point (resp.
limit circle) at one end point if the vector space of solutions of the Ki-equation
that are L2 near this end point is unidimensional (resp. two-dimensional).

Theorem 7.2.13 (Weyl). The operator H is essentially self-adjoint iff it is in the
limit point at both ends a and b.

Proof. By Corollary 7.2.11 and the proof of Lemma 7.2.10, if H is essentially self-
adjoint, then both ends are limit point and the unique nonzero solution ¢ of the
K -equation that is L? near a and the unique nonzero solution v that is L? near
b compose a linearly independent set, so that no solution belongs to L?(a, b).



7.2. Schrodinger Operators on Intervals 179

The task now is to show that if H is limit point at both end points, then
n_ = n4 = 0, which is equivalent to H* being self-adjoint.
By Lemma 7.2.1,

FH*(¢a<p) :Wb[/wa@]_wa[/wa@]’ Vz/),goedom H*v

also H* is self-adjoint iff the boundary form I+ vanishes identically. Let ¢ € (a, )
and A, B be operators with the same action as H but domains dom B = C§°(a, ¢)
and dom A = {p € C*®(a,c) : p(c) = 0,3 > 0,¢(x) =0, Yz € (a,a + €)}. Since
B C Aonehas B C A.

Claim. A is self-adjoint.

In fact, by hypothesis the solutions of —¢” 4+ V¢ = +i¢ that are L2 near
a constitute a one-dimensional subspace, and since c¢ is a regular end point, all
solutions are L2 near ¢; hence n_(B) = 1 = ny(B). By noting that A is a proper
hermitian extension of B (there are functions ¢ in dom A with ¢/(c) # 0, but
not in dom B; see Proposition 7.2.4), it follows that ni(A) < n+(B) (because
n+(B) < oo) and the unique possibility is then n_(A) = 0 = n, (A), and so A is
self-adjoint.

Let ¥, ¢ € dom H*. Pick ¢., p. € C§°(a,b) so that both functions ¥ := 1)+
Ve, P2 = @+ . vanish at c¢. Then, 12, pa € dom A and in view of We[1a, @a] = 0
one finds

Wa[¢v 90] = Wa[w2 — Pe, P2 — ‘PC] = Wa[%, 902]
= Walta, p2] = We[tha, p2] = —T'z(12, 02) = 0,

since A is self-adjoint (see Lemma 7.1.7). Similar arguments show that W;[¢), ] =
0, so that I'g~ vanishes identically on dom H* and H* is self-adjoint. Thereby the
proof is complete. O

Exercise 7.2.14. Show that H has deficiency indices ny = n_ = 1 iff it is limit
circle at one end and limit point at the other.

Ezxample 7.2.15. If V is a real polynomial and Hy = —¢" + Vi, dom H =
C§°(a,b) and (a,b) a bounded interval, then both ends are regular and so ny =
n_ = 2. Note that such a conclusion holds also for any continuous potential in
[a, b], including the free particle in the interval, that is, V' = 0 (cf. Example 2.6.8).

Ezample 7.2.16. Let V(z) = sln(yx), & # 0,7 > 0, and dom H = C§°(0,1).

Since V' is regular at both end points, it follows that n_ =ny = 2.

Ezercise 7.2.17. Show that the deficiency indices of H in (0,1) with potential
V(z) = k(lnz)? are equal to 2. Generalize for V(z) = k(Inz)™, for any k €
R,m e N.

Ezample 7.2.18. Let V(z) = r/2% k # 0, and H with dom H = C§°(0,1). By
Proposition 2.3.20, dom H* = {¢p € L?(0,1) : ¢,¢’ € AC(0,1), (—¢" + k/x?) €
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L2(0,1)}. The end point 1 is regular, while 0 is not; so H is limit circle at 1. For
the end point 0 one needs to determine the solutions of the Ky-equation

K .
Hg = =" 4 S5 = iy
x
if one searches for solutions in the form ¢ (z) = z%, it follows that
—a(a — 1)z + k2 Fiz*? = 0,

so that, whether for 2 — 0 the term z%*2 could be ignored in comparison with the
other terms, then one has approximately —a(a — 1) + x = 0, whose solutions are
ay =1/2(1++/1+4k). If —1/4 < k < 3/4 both solutions are independent and L2
near 0 (so limit circle), whereas for k > 3/4 only one of them is in L? near 0 (so
limit point). Hence, n_ =ny =1ifk >3/4dandn_ =ny =21if —1/4 < k < 3/4.
Now a justification of the above procedure for x — 0. If ¢ € dom H*, then

w=H" =4+ = € L7(0,1)

this may be thought of as a nonhomogeneous second-order linear differential equa-
tion for 1. Note that the independent solutions of the homogeneous equation are
exactly the above ¥4 (z) = 2%+ and ¥ _(z) = 2*-. By the well-known variation of
parameters technique one obtains the general solution, that is,

Y(x) =brtpy(z) + b 1/’ ( )

{ / — () Wdt] ,
Wt erv 0 Wt W}Jru 1/}*]
for some constants by. A direct calculation gives Wiy, -] = —, Vt, with

= V1+4k. Write ||ull2e = (J; |u |2dt) and note that |lull2, — 0 as
x — 0T. The absolute value of the term in square brackets is estimated from
above by using Cauchy-Schwarz,

ol <|w+ ([ 1o ) 1o ([ rtor) )

4 [[wll2, 3/2 1
2 , < < —
-2y C ittty

The case k = 3/4 is left as an exercise. Since such a term is in L2 near 0, the
final analysis of ¢ near 0 is left to the solutions of the homogeneous equation
Yy (x) = 2% and ¥_(z) = 2%, which is exactly the analysis performed above.
Ezercise 7.2.19. Discuss the case k = 3/4 in Example 7.2.18 (see also Exer-
cise 7.2.23).

Ezercise 7.2.20. For ¢ € dom H* in Example 7.2.18, find the behavior of ¢’(z)
for x — 0T,
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Example 7.2.21. This is the potential of Example 7.2.18, but on the half-line. Let
V(z) = k/2?, k # 0, and H with dom H = C§°(0,00). The same conclusions
about the end point 0 as in Example 7.2.18 are obtained. For the other end point
consider the K_-equation
—22" + k) = iz,

for x — oo its solutions are governed by the equation —1)” = i1) whose solutions
are ug (z) = e*(1£)7/V2: gince only one of them is in L2 near oo (analogously
to the K,i-equation), one concludes that H is in the limit point at oo for all
k # 0. Therefore, if kK > 3/4 the operator H is essentially self-adjoint, whereas
no=ny=1if -1/4 <k < 3/4.

For the justification of the above argument in case x — oo, apply Proposi-
tion 7.5.3 and Exercise 7.5.6.

Exercise 7.2.22. Check that
uy(z) = /x cos(tInz)/Vt, us(z) = /x sin(tInx)/Vt,

with ¢ = \/—k — 1/4, K < —1/4, are solutions of —¢" + Z51) = 0.
Ezercise 7.2.23. Show that the deficiency indices of dom H = C§°(0,00), Hy =

—" — 4/ (42?) are n_ = 1 = n,. Note that ¥, (z) = \/z and ¢_(x) = /xr Inz
are solutions of H*t = 0.

7.3 Regular Examples

In this section boundary triples will be used to get explicitly self-adjoint extensions
of H with regular end points. The ideas can be adapted to other situations.

Ezample 7.3.1. [Free particle on a half-line] The initial energy operator is Hiy =
—¢”, dom H = C§°(0,00); by Example 2.3.19, n_ = ny = 1. Also dom H* =
H2[0, 00) and the boundary form, for ¥, ¢ € dom H*, is readily seem to be

T(¢, ) = Wa[1h, @] — W1, ] = 9/ (0)(0) — ¥ (0)¢'(0),

since the elements of dom H* vanish at infinity. Now define the vector spaces
X = {¥ = ¢(0) —iy)’(0) : v» € dom H*} and the map Y = p(X) := {p(¥) =
¥(0) +41'(0) : ¥ € X}, and observe that

(W, @) — (p(¥), p(®)) = 2L (¢, )

(of course @ = p(0) — i¢’'(0)), so that a boundary triple was found (with respect
to Definition 7.1.11, think of X = p;(dom H*) and Y = pa(dom H*) = p(X)).
Now, according to Theorem 7.1.13, a domain D so that H*|p is self-adjoint
is characterized by unitary maps between X and Y. Since X and Y are unidimen-
sional, such unitary maps are multiplication by €% for some 0 < § < 27. Therefore,
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the domain of self-adjoint extensions of H are so that ¥ = () for all ¥ € X.
Writing out such a relation

»(0) — ' (0) = e ((0) +iv'(0))
and so (1 — €)1 (0) = i(1 + €¥)y’(0); if @ # 0 one has
(14 ')

Therefore the self-adjoint extensions H) of H are characterized by the following
boundary conditions

dom Hy = {¢ € H*[0,00) : 9(0) = X'(0)},  Hatp = —¢",

$(0) = \/(0),  A=i eR.

for each A € RU{oo}. The value A = oo is for including 6 = 0, which corresponds
to Neumann boundary condition ¢’(0) = 0. A Dirichlet boundary condition occurs
for A = 0. Exercises 7.3.2 and 11.6.11 discuss the spectra of such operators.
Exercise 7.3.2. Show that the self-adjoint operators H) in Example 7.3.1 have an
eigenvalue E iff A < 0 and E = —1/\?, whose eigenfunction is ¢ (z) = ¢®/*. The
existence of a negative value in the spectrum can be considered rather unexpected,
since the actions of H) indirectly suggest they are positive operators; the question
is the boundary condition choice. Maybe, someone could discard such possibilities
on the basis of physical arguments.

Ezercise 7.3.3. Check that if in Example 7.2.21 one takes x = 0, then Exam-
ple 7.3.1 is recovered.

Ezample 7.3.4. [Free particle on an interval] The initial energy operator is H
—¢”, dom H = C§°(0,1); by Example 7.2.15, n_ = ny = 2. Also dom H* =
H2[0,1] and the boundary form is, for ¢, p € dom H*,

F(%@) :Wl[/wa@] - Wo[Tl),QO] _ _
=¥(1)¢'(1) = ¢/ (L)e(1) — 1(0)¢'(0) + 1'(0)(0).

Based on Example 7.3.1, define the two-dimensional vector spaces of elements

T (1//(0) —w«n) ’ () = (W(O) +i¢(0)> ’

P'(1) +ip(1) P(1) — (1)

for ¢ € dom H*. A direct evaluation of inner products leads to

<\I/, (I)> - <p(\Il)7p(<I>)> = —22'1—‘(1/)7 90)’

and a boundary triple was found.

By Theorem 7.1.13, a domain D so that H*|p is self-adjoint is characterized
by a unitary 2 x 2 matrix U so that ¥ = Up(\Il) for all U; recall that the general
form of such matrices is

U = e (Z _ab> ., 0€]0,27), a,b€ C,la|* + |b]* = 1.
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Writing out such a relation one obtains the boundary conditions

- ¢’(0)> ’ 7 (—(0)
1-0) =-i(1+0)
( (W(l) ¥(1)
and the domain of the corresponding self-adjoint extension Hy of H is composed
of the elements ¢ € H?[0,1] so that the above boundary conditions are satisfied;
also Hyvp = —". Some particular choices of U appear in exercises.
In case (14 U) is invertible (similarly if (1 — U) is invertible) one can write
the above boundary conditions as

A(0)- (). a=10+0)"(-0).

with A a self-adjoint 2 x 2 matrix. By allowing some entries of A that take the
value oo, it is possible to recover some cases (1 +U ) that are not invertible;

nevertheless, it is not always a simple task to recover all such cases, so that the
boundary conditions in terms of U seem preferable.

Exercise 7.3.5. Show that A above is actually a self-adjoint matrix. Note that it
recalls the inverse Cayley transform.

Exercise 7.3.6. Check that the choices for the matrix U

01 0 -1
a) 1, b) —1, c) (1())7 d) (_1 O)’

impose, respectively, the boundary conditions: a) ¥(0) = 0 = ¥(1) (Dirichlet); b)
¢'(0) = 0 = /(1) (Neumann); ¢) ¢(0) = (1) and ¢'(0) = ¢'(1) (periodic); d)
¥(0) = —¢(1) and ¥’ (0) = —¢’'(1) (antiperiodic).

Exercise 7.3.7. With respect to Exercise 7.3.6, find the spectra of all those op-
erators by solving the corresponding eigenvalue equations; confirm that they are
formed solely of eigenvalues. Check that cases a) and b) have the same spectra,
except for E = 0 that is an eigenvalue only in case b) and, in both cases, all

eigenvalues are simple. Note that the multiplicity of all eigenvalues in case d) is
two.

Example 7.3.8. If the potential V' is such that both end points 0,1 are regular,
then the deficiency indices of Hy) = —¢"” + Vb, dom H = C§°(0, 1), are equal to
2, and for any ¢ € dom H* the boundary values 1(0),%(1),4'(0),%'(1) are well
defined. Thus, its self-adjoint extensions can be characterized in the same way as
in Example 7.3.4, through the same boundary conditions. Particular cases are

V(z) =rlnz, V(z) = k/x®, a<l, keR.

Ezample 7.3.9. Let V() be continuous and lower bounded with |V (x)| < |z|~¢,
for some 0 < a < 1/2, and HyYp = —¢"” 4+ V¢, dom H = C§°(R). By Theo-
rem 6.2.23, H is in the limit point case at both end points —oo, 400, so that H*
is self-adjoint, with dom H* = H2(R) and H*y) = —" + V).
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7.4 Singular Examples and All That

For singular endpoints the limit values of 1, 1)’ could not exist, so that the strategy
presented in the examples in Section 7.3 is not guaranteed to work. However, in
some cases it is possible to properly adapt that strategy in order to get self-adjoint
extensions. This will be illustrated in this section through a series of examples,
including some point interactions.

Ezample 7.4.1. The self-adjoint extensions of dom H = C§°(0, 1),
1
(H)(x) = () ~ rgwle), € dom H,
will be found (cf., Example 7.2.18 and Exercise 7.2.23). If ¢ € dom H* = {¢ €
L2(Oa 1) : 1% W € AC(O7 1)a (—W’ - ¢/(4$2)) € L2(Oa 1)} one has
* 1 2
u=H ¢=—¢H—@¢€L (0,1),

which is a nonhomogeneous second-order linear differential equation for 1; the
general solution of the corresponding homogeneous equation H*y = 0 is byt (z) +
botha (), b1,by € C, with 91 (z) = /z and ¥s(z) = /z Inz, whose wronskian is

Walth1,12] = 1, Va € [0, 1]. Introduce ¢ = v /+/z so that

1
Ve + 7?;0/ = —u,
or
(2¢') = 29" + ¢’ = —V/au,
and since v/zu € L[0,1], on integrating one gets
b

/ 2 1 *
=2 _ - ds.
) =21 [ Veutas
By Cauchy-Schwarz, the function z — 1 foz Vsu(s)ds is also integrable in [0, 1],
so that ®gs [0
<p(ac)=b1+b21nx—/ ?S/ Vitu(t) dt
0 0

and, finally, ¢(z) = biv/x + bay/x Inz + vy (z), (note that b; = b;(¢¥), j = 1,2)
with vy denoting the differentiable function

vy () = —\/E/Om %/Osx/iu(t)dt.

By Cauchy-Schwarz again,

ool <va [ | [ Viuw| a

Tds s x3/2
<vz —— ||u|l2 = —= ||u||2,
<va [ E Ll = e ful

1/2

so that vy (z) ~ 23/2, vy () ~ /% as x — 0.
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The boundary form of H is, for ¥, ¢ € dom H*,
P(x) = bi(¥)Ve + b (¥)Va Ina + vy (z)

o(x) = bi(p)VE + ba(p) Ve Inx 4 v, (2),

and

F(¢7 410) = Wl [¢a QD] - WO[¢7 410]
=3¢ (1) - T M) + lim (-B)¢ (@) + P @)e() )

z—0t

=9(D)¢'(1) =" (V)e(1) = bi(¥)b2(p) + bi(p)b2 ().

Remark 7.4.2. The above procedure, to deal with functions in dom H*, was an
alternative to the use of the variation of parameters formula employed in Exam-
ple 7.2.18.

Based on Example 7.3.1, define the two-dimensional vector spaces of elements

(o) — by () o) + b ()
@‘(wm+wm>’ ““‘(W@—wm>’

for ¢ € dom H*. A direct evaluation of inner products leads to
(W, @) — (p(¥), p(®)) = =2iL'(¥, ),

and a boundary triple for H was found. The self-adjoint extensions Hy of H are
associated with 2 x 2 unitary matrices U that entail the boundary conditions

N 52(1/’)) , 2\ (—b1(v)
1- U) — (1 + U) :
( (¢’(1) ¥(1)
that is, the domain of the self-adjoint extension Hy of H is composed of the
elements 1) € dom H* so that the above boundary conditions are satisfied; also

Hpyp = H*, Vip € dom Hp. The reader can play with different choices of U in
order to get explicit self-adjoint extensions. What about some with by = 07

7.4.1 One-dimensional H-Atom
The operator with domain dom H = C§°(R \ {0}) and action
H = —d?/dz® — k/|z|, k>0, xe€R\{0},

is known as the (initial) one-dimensional hydrogen atom hamiltonian. It easily
follows that H is hermitian and the question is to determine its self-adjoint exten-
sions. In the way of finding such extensions, some typical difficulties encountered
when dealing with more realistic potentials will appear. This model has a contro-
versial history which can be traced through the references in the article [LoCdO06].
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First the deficiency indices will be handled. Write
Co°(R\{0}) = C5°(—00,0) & C5°(0, 00)

and set Hy = H|Cg°(—oo,0) and Hy = H|C§°(O7oo)a so that H = H; & Hs. By

Proposition 2.3.20, dom Hi = {¢ € L%(—00,0) : ¢,v’ € AC(—o0,0), (1" —

k/|z) € L2(—00,0)}, dom Hi = {¢ € L?(0,00) : ¢,%' € AC(0,00), (—¢" —

k/|z|w) € L2(0,00)} and
(H;y)(z) = —¢"(2) — -¥(z), ¢ edomH}, j=1,2.

Hence, dom H* = {¢) € L2(R) : ¥,¢’ € AC(R\ {0}), (—¢" — x/|z|v)) € L3(R)}

and H* with the same action as H.

By using Whittaker functions [GraR80] (solutions of a particular confluent
hypergeometric equation) in [Mos93] it was shown that for ¢ € dom H* the lateral
limits ¢(0%) := lim,_,o+ ¥(x) are finite while v(z) has logarithmic divergences
as * — 0F. Furthermore, lim, .+ ¢¥(x) = 0, lim, 4o ¢'(x) = 0. With such
information, a characterization of 1’(0%) is possible. The following lemma is an
alternative way of getting such information.

Lemma 7.4.3. If 1) € dom H*, then the lateral limits 1)(0%) = lim, o+ ¥ (x) and
$(0%) := lim_(¢/(x) £ wep(x) In(|ra]))

z—0*F
exist and are finite.

Proof. We will discuss the case z > 0; the other < 0 is similar. For ¢ € dom H*
one has
d21/1

—H*w_ + 1/) = u € L*0,00),

and one can write 1) = 1)1 + 19 Wlth P! =wu,¥1(07) = 0 and ¥4 + x/z = 0. Since
V; € H*(e,00), j = 1,2, for all € > 0, and u € L?, it follows that these functions
are of class C'(0, o).

Consider an interval [z, ¢, 0 < z < ¢ < o0; ¢ will be fixed later on. Since

i) — vl = [ u(s) ds,

¥} (z) has a lateral limit

0T = (e Cus s.
w1<0>—w<>+/0 (s)d

On integrating successively twice over the interval [z, c] one gets

vhle) /1"
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and then
a(o) = va(e) — (e~ gl — [ o [ s P
—ale) (e~ 0puhle) ~x [ dsits) .
and since o < (s—a)/s < 1, by dominated convergence the last integral converges
to [} t(s) as @ — 0F. Therefore ¢h(0*) exists and
52(0%) = ale) ~ cgle) — [ ve)ds
Now,

x) — + z|Yh(c)| + ' s)|ds + kx CSL(S)'
wﬂ>wm>u|%uwléwmm+ Ld )

Taking into account that ¢ is bounded, say |¢(z)| < C, Va, Cauchy-Schwarz in
L? implies

| 1wias = [ 1iuolas < ova.
0 0

and so, for 0 < x small enough and fixing ¢ = 1,
f(/) ~
C(c/Inc|+ z|Inz|) < CV/z,
for some constant C. Such inequalities imply ¥ (z) = $(0%) + O(/z), and on

substituting this into
1
vy =+ [ M

(recall that 1] (07") is finite) it is found that there is b so that, as z — 0T,
Y (x) = ' (1) — k(07 In(kz) + b+ o(1);

thus, the derivative ¢’ has a logarithmic divergence as r — 0 and the statement
in the lemma also follows. 0

By means of Whittaker’s functions [Mos93] one gets the values n_(H;) =
1 =n4(Hy) and n_(Hz2) = 1 = ny(Hs), so that n_(H) = 2 = ny(H). Similarly
to Example 7.3.4, taking into account that 1,1’ vanish at +oo, it follows that
L(1h,0) = Wor [¢, @] = Wo- [, ¢]
o ’ EYYTERY . 7 _ ’
= lim ((@)¢!(2) ~ W (@)p(a)) + lm (V(@)ee) ~ o) (@)
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Though the right-hand side is finite, each lateral limit may diverge. However,
invoking Lemma 7.4.3 and since one readily checks that

L(4, ) = $(0%)p(07) = 9 (0+)p(0F) + (07 )ip(07) — 9 (07)(07),

but now each lateral limit is finite, again by following Example 7.3.4 a boundary
triple was constructed. The self-adjoint extensions Hy of H are associated with

2 X 2 unitary matrices U that entail the boundary conditions

7\ (LO7)) _ . 7\ (—(07)
(1-0) (o)) =~ @+ 0) ().
and the domain of the self-adjoint extension Hy of H is composed of the elements
Y € dom H* so that the above boundary conditions are satisfied; also Hyv =
H*4. Dirichlet boundary conditions ¥(0~) = 0 = ¢(0") are obtained by choosing
U = 1. Some boundary conditions mix the right and left half-lines, which are
interpreted as quantum permeability of the singularity at the origin, that is, the

particle is allowed to pass through the origin; see more details in Exercise 14.4.10
and [deOV08]. The above discussion also holds for £ < 0.

Exercise 7.4.4. Based on the arguments used to conclude Corollary 7.2.5, find
the closure of the initial operator for the one-dimensional H-atom, that is, H =
—d?/dx? — k/|z| with domain C§°(R \ {0}).

7.4.2 Some Point Interactions

Roughly speaking, point interactions are a kind of potential concentrated on a
single point of R™, which are also called zero-range potentials and delta-function
potentials. Often they are properly defined via the choice of domains and bound-
ary conditions at the point in question, and it is a possible way to describe a
hamiltonian with a Dirac § potential.

Physically, the main consequence of extracting a point of R™ is that trans-
lation invariance is lost, which has impressive consequences on some quantum
observables (i.e., operators) since the unique self-adjointness can also be lost (at
least in dimensions n < 3).

Different approaches for associating self-adjoint operators to point interac-
tions are discussed in [Zor80]; more information can be obtained from the books
[AGKHO05] and [AIKO0O]. In those references, in case of R™, n < 3, self-adjoint
extensions of hermitian (Schrédinger) operators with point interactions are char-
acterized and their spectral properties explicitly computed. Hence, point interac-
tions have been called “solvable models” and used to approximately study physical
systems with “very short range” potentials.

Here a few of the simplest cases will be discussed; Example 4.4.9 can be
considered the first instance of point interaction in this book.
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Ezample 7.4.5. Let T = —id/dx with
dom T = CF(R\ {0}) = C§°(—00,0) & C5°(0, 00).

One point was removed and the self-adjoint extensions are obtained from dom 7
through suitable matching conditions at the origin (recall that in case the domain
is C§°(R) the operator T is essentially self-adjoint; see Section 3.3). Set T1 =
T'|oge(—00,0) and T2 = T'|z0(0,00), 80 that 7' = T; @ Tz. One has dom T = {¢ €
AC(R\ {0}) : ¢ € LA(R)}, Ty = —in'.
Exercise 7.4.6. Check that

dom T} = {¢p € AC(—00,0) : ¢’ € L?(—00,0]},

dom Ty = {) € AC(0,00) : ¢’ € L?[0,00)},

and verify that 7™ is the above operator.

In order to determine the deficiency indices consider the K. -equations
(T3 £il)ps =0,

whose solutions are proportional to ¢+ (z) = e*®. Similarly for T;. Hence n_ (T}) =
0 = ny(T2), n_(T2) = 1 = ny(T1), and combining these values one obtains
n_(T)=1=ny(T).

Ezercise 7.4.7. Follow the proof of Lemma 7.4.3 to show that, for ¥ € dom T,
the lateral limits ¢(07),1(07), exist.

Now, for ¥, € dom T* the boundary form is found (on integrating by
parts):

o
([]
=i (V(07)p(0") ~ B0 )(07))
Introduce the one-dimensional vector spaces X = {¢(07) : ¢» € dom T*} and

Y = {¢(07) = p(¢(01) : ¢ € dom T*} and note that I'(y), ¢) = 0 is equivalent to
the equality of inner products

($(07), 0(07)) = {p(x(07)), p((07)).

Self-adjoint extensions are obtained on domains D C dom T so that I'(v, ¢) = 0,
Y, p € D,{ that is, X and Y are related by unitary maps e, 0 < 6 < 2m; explicitly
»(0%) = ep(07).
Therefore, the family of operators
dom Ty = {y € AC(R\ {0}) : ¢ € L}(R),¢(0") = e®9(07)},

ﬂ
dz’

(¥, T*p)

) ) do (@) ele) - D) (i (2)))

Totp=—1
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constitutes the self-adjoint extensions of T'. The case §# = 0 agrees with the mo-
mentum operator P (see Example 2.3.11 and Section 3.3) defined without point
interaction, that is, with initial domain C§°(R).

Ezercise 7.4.8. Find the self-adjoint extensions of the hermitian operator dom T =
C§°(R\ {0}), Ty = —¢”. Show that its deficiency indices are n_ = ny = 2.
Exercise 7.4.9. A circumference with one point removed can be considered a seg-
ment, say [0, 1], with the ends identified. Write 0 = 0" and 1 = 0™, and construct
the possible hamiltonians of a free particle on this circumference as self-adjoint
extensions of dom H = C§°(07,07), Hyp = —".

Ezample 7.4.10. This should be compared with Example 7.4.5. It is another pos-
sible way to define self-adjoint realizations of T = —i-L in L2(R) with the origin
removed. Here one takes dom T = {¢ € H}(R) : ¢(0) = 0}. It also illustrates an-
other way of finding self-adjoint extensions. By using Fourier transform, this oper-
ator (see Section 3.3) is rewritten as a specific multiplication operator S = F~'TF
so that

dom S = {¢ € dom P=H'R):0= / o(p dp} (S¢)(p) = po(p).

Recall that for 1 € H*(R) one has 1(0) = m fR p) dp, whose integral means

lim s o0 fiV[M ¥ (p) dp; this explains dom S.
Ezercise 7.4.11. Show that S (and so T') is a hermitian operator.

Lemma 7.4.12. a) S is a closed opemtor

b) The solutions u € L ((R) (or Li,.(R)) of [, ¢(p)u(p)dp =0, V¢ € dom S,
are the constant functions.

Proof. a) Let 1, — ¢ and Sv,, — ¢, ¥, € dom S. For each M > 0 one has
| — 9| < 1/M if n is large enough. By Cauchy-Schwarz,

M 2
’/ (v = ) da| < (2M)'2lebn — 9|l </ 77
-M

Since [p, 1 dz =0, ¥n, choose n so that ‘fin P dx’ < \/2/M; thus

M M 2
dx| < +/ ndr| < 24/ —
[Mw x 7M1/J x ”M

and it follows that [ ¥ dz = 0. Denote [[|¢||l,, := (fﬂi\/[ ]2 dm) 1/2. Pick n so large
that || Sy, — ¢|| < 1/MY? and ||¢) — || < 1/M; then
P lllar <Mlp® = Pa)lllar + lpon = blllas + Nl lar
< M2l = galll g+ 11S%n = Sllps + ||¢||

< MY2 = pul| + 15¢n — 0l + 16l <

M

7 9l
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and for M — oo one obtains || S| < ||#||, consequently ¢ € dom S. Similarly, by
picking n large enough so that ||t/ — 1,|| < 1/M and ||St, — ¢|| < 1/M'/2, one
gets
115% = @lllar < NSY = Stnlllpr + 15%n — Slll 5
2
<MY |jgp = | + (1S — 8| < M2
Therefore S = ¢ and S is a closed operator.

b) Note that the problem has no nonzero solution u € L?(R), since such u
would be orthogonal to the dense set dom S. Further, dom S contains the deriva-
tive ¢’ of all ¢ € C§°(R) (since [ ¢'dz = 0), and so the distributional derivative
u’ of any solution u is null; the result then follows by applying Lemma 2.3.9. O

The deficiency spaces are K4 (S) = rng (S Fi1)*+. Thus, for uy € K4 (S) one
has, for all ¢ € dom S,

0= (S Fil)b,us) = / T 090) usx(p) dp

R
1

= [ 501 0 usto) do > us) =

Lemma 7.4.12 was employed and, actually, the above ug linearly spans K4 (5), so
that n_ = ny = 1; note that ||u_|| = ||uy|. Thus the self-adjoint extensions Sy of
S are parametrized by e, 0 < § < 27, and given by (see Proposition 2.5.8)
dom Sp={¢p = ¢+ c(u_ —e“uy): ¢ € dom S,c € C},
(Soce) () = pé(p) + ci (u-(p) + e“us(p)) .

By recalling of Section 3.3, the following question naturally arises: For which values
of # do Sy act as multiplication by p? Since ug (p) = 1/(p £4) one has

0 p(1+ ) +i(1 —e?)
So(u— —euy)(p) =i 14 p2

and by imposing that it equals p(u_ — e®uy)(p), it follows that 6§ = 0. Surely
So corresponds to the usual multiplication operator M,, acting in LQ(R)7 which is
the usual momentum operator P (see Example 2.3.11 and Section 3.3), clearly a
self-adjoint extension of T'.

Exercise 7.4.13. Apply the procedure in Example 7.4.10 to find all self-adjoint
extensions of Ty = —Ay, dom T = {¢p € H*(R") : ¢(0) = 0}, for n € N. Note
that there is a problem for n > 4, since by Sobolev embedding the functions in
dom T are not ensured to be continuous; in any event, for all n the following
operators obtained after Fourier transforming are well defined:

dom S = {qb €dom P:0= - o(p) dp} , (S¢)(p) = p*o(p).
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What is it possible to conclude about the operator S for n > 47 See Remark 7.4.14
for related issues.

Remark 7.4.14. In [Far75], page 33, it is shown that the set C5°(R™\ {0}) is dense
in H?(R™) iff n > 4. From this it follows that H = —A, dom H = C§°(R™ \ {0}),
is essentially self-adjoint iff n > 4, and in this case its unique self-adjoint extension
is Hy = —A, dom Hy = H?(R"). As a matter of fact, clearly Hy is a self-adjoint
extension of H, and since the graph norm of Hy is equivalent to the norm of
H2(R™), C5°(R™\ {0}) is a core of Hy iff this set is dense in H2(R"); so, iff n > 4.
Remark 7.4.15. The procedures discussed in Examples 7.4.5 and 7.4.10 to remove
the origin are not equivalent in general. When applied to the operator Ty = —1”
in R (see Exercises 7.4.8 and 7.4.13), the former procedure results in deficiency
indices n_ = 2 = ny, whereas the latter in n_ =1 =n.

7.5 Spherically Symmetric Potentials

A potential v : R™ — R is spherically symmetric (also called radial or central) if
its values depend only on r = |z|, that is, if there exists V : [0,00) — R so that
v(x) =V (r).

It is convenient to exclude the origin and take as the initial hamiltonian
operator

H=-A+V(r), dom H = C{°(R™ \ {0}).

It is natural to introduce the radius r and n—1 angle variables Q = {w1,...,wp—1}
for the description of the system. For instance, if n = 3 one passes from carte-
sian © = (x1,2,r3) to spherical (r,¢,8) coordinates x;1 = rsinfcosyp, xo =
rsinf cosp, x3 = rcosf, so that L2(R?) is unitarily equivalent to

E3 = L§2dr([0? OO)) ® LEIQ(SQ)7

with S? denoting the umit sphere in R3 and d) = sinfdfdp. If n = 2 polar
coordinates x; = rcosp, To = rsing are introduced so that L?(R?) is unitarily
equivalent to

E2 = der(m? OO)) ® LZ@(Sl)7
with S! denoting the unit circumference in R?. Here only n = 2,3 will be consid-
ered, although many results have straight counterparts in higher dimensions; see,
e.g., [Mu66.

By Lemma 1.4.8 the set of finite linear combinations of the functions
R(r)®(0,¢) € E® (resp. R(r)®(p) € E?) is dense in L2(R?) (resp. L?(R?)) and
the spherical harmonics Y;,,(6,¢), | € NU {0}, =1 < m < I, (resp. en(p) =
e"™? /21, m € Z) form an orthonormal basis of L?(S?) (resp. L2(S')). For func-
tions R(r)Yim (0, ), R € C§°(0,00), in case n = 3, the well-known expression of
the laplacian A in spherical coordinates implies that (see, e.g., [Will03])

2 2d 1(+1)
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and after the unitary transformation ug : L2, ([0, 00)) — L2, ([0,00)), (usR)(r) =
rR(r), one obtains for uzHus* restricted to the subspace spanned by Y, (note
that uz(C5°(0,00)) C C§°(0,00))

N 2 1(l+1)
Hyp =
! dr? + 72

For n = 2 one has

+ Vi(r), dom Hj,, = C§°(0,00).

d? 1d m?
H m) = |~ 39 ;. 5 ms
(Rem) ( W rdr + 2 —|—V(r)> Re
and after the unitary transformation us : L2, ([0,00)) — L2 ([0,00)), with
(uzR)(r) = \/7R(r), one obtains for ugHu; ' restricted to the subspace spanned
by em,

N 2 m?-1/4 7 oo
Hy = —og ==+ V(). dom H, = C5(0,00).

In both cases, i.e., n = 2,3, the original problem is reduced to the study of in-

finitely many Schrédinger operators on the half-line [0, 00) with suitable effective
potentials V,,, or V} ,,; e.g., in the two-dimensional case,

Vin () = (m? — 1/4) /1% + V (1), m € Z.
The previous discussions in this chapter, about Schrédinger operators on intervals,
apply to H,, and Hy,,.
Remark 7.5.1. Note that the radial momentum operator —id/dr is not defined
as a physical quantity on C§°(0,00), since it has no self-adjoint extensions (see
Example 2.3.17 and an intuitive digression in Remark 5.4.7).
Ezercise 7.5.2. Consider H;,, and H,, in R® and R2, respectively, for the free
particle, i.e., V' = 0 identically. Use results of this chapter to show that Hjn,
(resp. H,,) is not essentially self-adjoint only if [ = 0 (resp. m = 0). Find the
corresponding deficiency indices. What can be said about H = —A, dom H =
C§e(R™\ {0}), n = 2,37 Cf. Exercise 7.4.8.

Now some particular cases of minimal operators dom H = C§° £07 o0), HY =
—"” + V(r)y will be discussed (think of the above notation with V replaced by
V). In the remainder of this section, H always denotes this operator.

Proposition 7.5.3. If V € L?(0,00), thenn_(H) =1=n,(H) and
L (v, ) = =Wolt, ¢l Y, € dom H*.

Lemma 7.5.4. Fiz ¢ > 0. If V € L2(0,00), then for each ¢ € dom H* there exists
0<C < so that
‘1#’(56)

NG

<C, Yz > c.
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Proof. For 1) € dom H* one has —" + Vi) = u € L?(0,00); integrating u and
taking into account that V4 € L'(0, c0) one obtains (z > c)

v =@+ [ "tV () - / Cdtu(t),

and by Cauchy-Schwarz,

W< @)+ [ ae v+ [

C

<+ vl + ([ a |u<t>|2)1/2 ([ dt>1/2

<Y ()| + VY| + Julls VE —c.

Hence,
Y| [+ VYl n [ull2 v& — ¢
vz | T vz vz
[W' (o) + IVl
<-— = .
< e + |lu|lz := C, x>c
The lemma is proved. g

Proof. [Proposition 7.5.3] Since 0 is a regular point of H it is in the limit circle
case (and ¥(0), ¢’ (0) take finite values). So the deficiency indices are equal either
to 1 or to 2. It will be checked that W [1),¢] = 0, Vb, € dom H*, so that
Cu«(, ) = =Wole, ] = ¢(0)¢'(0) — ¢’ (0)¥(0) and, as in Example 7.3.1, the
self-adjoint extensions of H are parametrized by the complex numbers e?; thus
the deficiency indices of H are equal to 1. As a subproduct it follows that H is in
the limit point case at oc.

Let ¢ € dom H*; it is known that W[, ¢] is finite. Suppose = > ¢; by
Lemma 7.5.4,

I m— S e

= WJZ ) = - S 2 )

\/El [, ]l = |¢(2) NN P(z)| <20 ()]
so that the right-hand side belongs to L?(c, 00), but the left-hand side does not
belong to L2(c, 00) if W1, ] # 0. Hence, Weo[1), ¢] = 0, V2b € dom H*. O

Ezxercise 7.5.5. If V € L2(0,00), find all self-adjoint extensions of H (see Exam-
ple 7.3.1).

Ezercise 7.5.6. Show that if the potential V' € L2 (0,00) is in L? near oo, then

loc

T (v, 0) = =Wov, @], Vi, € dom H*. Conclude that if V is regular at 0, then
the deficiency indices of H are equal to 1.
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Remark 7.5.7. As discussed in [Win47], for a class of negative potentials V(x),
x € R, satisfying a technical condition and lim, ., V(x) = —o0, the differential
operator H is limit circle at infinity iff, for some 29 > 0, f;; (—V(:L“))fl/2 dzx < oo.
In case of V(z) = —ka®, 2 > 0 and k > 0, > 0, H is then limit point at oo iff
a < 2 (this case is included in Wintner’s class).

This characterization of limit point at infinity has a counterpart in classical
mechanics that is worth mentioning (and appreciating). For a classical particle of
mass m and total mechanical energy E under this potential V' (z), the travel time
from the initial position z¢ > 0 to oo is

=5 [ e

This follows from conservation of mechanical energy (check this!). If o > 1 so
that |V (z)| > E, Vo > x¢ (since lim, o, V(x) = —o0), one has

fm / < dx

Too R 4| — _—,

~ 2 o V —V(.Z‘)
that is, the condition 7o, = oo coincides with the limit point criterion, which,
in its turn, is a necessary condition for the existence of just one self-adjoint ex-
tension of H. Hence, for such potentials, a finite travel time to reach infinity in
classical mechanics is reflected in the quantum limit circle at infinity, inferring the
quantum ambiguity of more than one self-adjoint extension of H. However, there

are counterexamples to this correspondence between essential self-adjointness and
finite travel time to infinity [RaR73].

A discussion, from a physical point of view, of the unitary evolution group
generated by H with negative potentials so that 7., < oo can be found in
[CFGM90].

Additional criteria for limit point and limit circle can be found in [Na69],
[ReeS75] and [DuS63]. See also [BaZG04].

7.5.1 A Multiply Connected Domain

Some self-adjoint extensions of a hermitian operator with infinite deficiency index
will be found. It will combine the spherical symmetry with the topological property
of multiply connectedness. Some specific results on Sobolev traces will be invoked;
see [Bre99, Ad75] and Chapters 1 and 2 of the first volume of [LiM72]. Nevertheless
we think the set of presented results will make this subsection worthwhile; except
for Section 10.5, they will not be needed for other parts of the text.

Let A = R%\ B(0;a), a > 0 (i.e., the plane with a circular hole), and its
closure A = R? \ B(0;a); its boundary A is the circumference S = {(z1,72) €
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R2: 7 = (22 +22)2 = a}. The potential will be a bounded continuous V : A — R,
with V(z) = V(r), and the initial hamiltonian is the hermitian operator

H=-A+YV, dom H = C{°(A).

What are the self-adjoint extensions of H?

~ As above, polar coordinates x1 = 7 cos ¢, T2 = rsin ¢ are introduced so that
L?(A) is unitarily equivalent to L7, ([a,00)) ® L7, (S), and consider the functions

rdr

em(p) = e™? /21, 0 < ¢ < 27, m € Z, so that

2 1d m?
H(Rep,) = (—er Tt V(r)) Re,.

After performing the unitary transformation uy : L2, ([a,00)) — L2 ([a,0)),
(ugR)(r) = \/rR(r), the operator usHu, ' restricted to the subspace spanned by
e takes the form

B d m?-1/4 - o
Hm = _W T"‘V(T), dom Hm :CO (a, OO)

The original problem is thus reduced to the study of infinitely many Schrédinger
operators on [a,00) with potentials

Vin(r) = (m? — 1/4)/r* + V (1), m € Z.

One then easily checks that, for all m, the deficiency indices of H,, are equal to 1
(the point here is that a > 0, instead of a = 0 previously discussed), so that
ny(H)=00=n_(H).

The subject now is to recall Sobolev traces in a convenient way. Although a
P(r, @) € HY(A) is not necessarily continuous, it is possible to give a meaning to
the restriction 1 (a, ) = ¥]ga(p) € L2(S) via the so-called Sobolev trace of 1 (see
below), that is, the trace of 1 is interpreted as its value on the boundary of A.

Let RCZ(R?) be the restriction of C(R?) to CL(A) (see the references for
details); it turns out that there is a continuous linear map v : RC (R?) € H(A) —
L2(S), v(¢(r,¢)) = ¢(a, ), that is, there is C' > 0 so that

7¢llL2(s) = llo(a, )llLz(s) < C ROl (a)s ¢ € Cj(R?).

Note that for ¢ € C§(R?) the boundary values ¢(a, ) are well defined for any
angular value ¢. By density, this map has a unique continuous extension (keeping
the same notation) v : HY(A) — L2(S), called the Sobolev trace map, and one
defines the trace of 1 as 9¥(a, ) := (1) for all t» € H'(A). The essential charac-
teristics here are smoothness and compactness of the boundary A [Bre99]; some
important properties of the trace are as follows.



7.5. Spherically Symmetric Potentials 197

i) For ¢» € H'(A) the trace is not defined in a pointwise manner, only as a
function in L2(S). General elements of L?(A) do not have a trace defined.

ii) rng v is dense in L2(S) and the Green formula

9 (z) p(x) [
/A oz; ¢(m)dm+A¢(I) oz, dz=a ; ¥(a, p)o(a, @) do

holds for all ¥, ¢ € H'(A), j =1,2.
iii) The kernel of the trace operator is

Ho(A) = {¥ € H'(A) : v(¥) = ¥(a, ) = 0},

which is a Hilbert space that can also be defined as the closure of C§°(A) in
H(A).

iv) In a similar way, if 1) € H2(A) one has a well-defined trace (dv/9r), which
will be denoted by 9v/9r(a, ), which stands for the normal derivative with
respect to OA (this is used in the adaptation to more general A) and belongs
to L2(0A).

v) The ranges of both trace maps H?(A) > ¢ — v(a,¢) and H?(A) > ¢ —
v /0r(a, ) are dense in L2(S), and the Green formula

=a u 8—¢ a a
[ Av@ot s+ [ Voo s = [ e pote e

holds for all ¥, ¢ € HZ(A).

Now a subtlety must be mentioned. At first sight one could (wrongly) guess
that the domain of the adjoint H* is H2(A). However, for open sets  C R",
Q # R" and n > 2, there are functions ¢ € L?(Q2) with distributional laplacian
A € L2(Q2) that do not belong to H2(£2); the point is that other derivatives, as
first derivatives, of ¥ need not exist as functions! It turns out that

dom H* = {3y € L*(A) : (—A¢ + V) € L*(A)}

and H*p=—Ayp+V1), 9 € dom H*, and this domain is strictly larger than H?(A).
See [Gru06], [Gru08] and references therein.

By using the above characterization of H*, some self-adjoint extensions of H
will be found via suitable restrictions of H*. The boundary form of H, for ¥, ¢ €
dom H*, is

T(, ) = (A + V)i, 6) — (¥, (A + V)g).

By restricting to those self-adjoint extensions whose domains are contained in
H2(A), Sobolev traces can be invoked, the continuity of the potential guarantees
that V|sa = V(a) is well posed and the above Green formula can be used to
compute, for ¥, ¢ € H?(A),

2m a5,
r.0) = | (Fer e - Gela et ) de
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Introduce p; : H*(A) — L%(9), j = 1,2, by
0

pL(¥) =vla, @) +im-(a,9),
p2(¥) = (e 0) — 15 (,0),

and so
(2i/a) L (¥, ¢) = (p1(¥), Pl(¢)>L2(s) — (p2(), P2(¢)>L2(s) :

Ezercise 7.5.8. Verify the above two expressions for the boundary form I'(%, ¢)
of H, for 1, ¢ € H?(A).

A boundary triple for H in the Sobolev space H2(A) has been found with
h = L2(S). As before (i.e., by Theorem 7.1.13), from this boundary triple the
self-adjoint extensions Hy of H in H?(A) are characterized by unitary operators
U : L2(S) < so that py(v)) = Upa(vp), Vb € dom Hy, and Hytp = H*ip. After
writing out this relation one finds

oy

A =0)d(a,¢) = —i(1+U)5 (a,¢).

Therefore, all self-adjoint extensions of H with domain in H2(A) were found and
they are realized through suitable boundary conditions on 9A; such boundary
conditions are in terms of traces of elements of H?(A). Below some explicit self-
adjoint extensions are described.

1. U=-1.
In this case
dom Hy = { € H*(A) : ¢(a, p) = 0} = H*(A) NHy(A),
Hyyp = (—A+ V), v € dom Hy. This is the so-called Dirichlet realization
(of the laplacian if V' = 0) in A.
2. U=1.
In this case dom Hy = {¢p € H?*(A) : 9v/0r(a,¢) = 0}, Hyyp =
(—A + V)2p. This is the so-called Neumann realization.
3. (1 +U) is invertible.
In this case one gets that for each self-adjoint operator A : dom A C
L2(S) — L2(S) corresponds a self-adjoint extension H4. In fact, first pick
a unitary operator Uy so that A = —i(1 — Ua)(1 + Ua)™!, dom A =
rng (14 U,4) and rng A = rng (1 —Ua); recall the Cayley transform in Chap-
ter 2. Now, dom H* is the set of ¢ € H?(A) with “0/0r(a,-) = A(a,-),”
prudently understood in the sense that

(1= Ua)b(a ) = —i(1 + Un) 3o a0, 0),

in order to avoid domain questions. Of course the quotation marks can be
removed in case the operator A is bounded.
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Similarly, for each self-adjoint B acting in L2(S) there corresponds a
unitary Ug, and if (1 — Ug) is invertible, then there corresponds the self-
adjoint extension HP of H with dom H? the set of ¢ € H2(A) so that
“h(a,-) = B%—lfr(a, -),” in the sense that

(1~ Un)v(a ) = ~i(1 + Un) 5o a0, 9)

Again the quotation marks can be removed in case the operator B is bounded.

Note that 4 below is, in fact, particular cases of 3 in which A = My
and B = M,,.

4. U is a multiplication operator.
Given a real-valued (measurable) function u(p) put U = M iue. If
{¢ : exp(iu(yp)) = —1} has measure zero, then
1 — etule)

fle) = —im

is (measurable) well defined and real valued. The domain of the corresponding
self-adjoint extension is

dom Hy = { € H*(A) : 0y/0r(a, ) = f(p)¥(a,0)} .
Similarly, if {¢ : exp(iu(p)) = 1} has measure zero,

1 4 etul)

g(@) =1 1 _ etuly)

is real valued and the domain of the subsequent self-adjoint extension is

dom Hy = {1 € H*(A) : ¢(a, @) = g(p)0v/dr(a, ¢)}.

Special cases are given by constant functions f,g.

5. A = —id/dp with domain H(S) = {u € H(0,27) : w(0) = u(2m)}. The
corresponding self-adjoint extension has domain

{verw v eris). Gap =i,

Ezercise 7.5.9. Show that A = —id/dy in 5 above is self-adjoint.

Since the deficiency indices of H are infinite, there is a plethora of self-adjoint
extensions of the laplacian in the multiply connected domain A = R? \ B(0;a).
Some of them can be quite unusual and hard to understand from the physical and
mathematical points of view.
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Remark 7.5.10. The choice of A = R?\ B(0;a) was for notational convenience.
In a similar way one finds expressions for the boundary form of H = —A +V
with domain C§°(R2\ ), with Q C R? an open set with compact boundary 952 of
class C*; when restricted to domains in H?(R? \ ), Sobolev traces are properly
defined in this setting, and one can also consider R™, n > 2. For such more general
multiply connected regions, one must consider the normal derivative 9 /0n at the
boundary 912, instead of 9¢/9r, and also the corresponding modifications in the
expressions of Green formulae [Bre99], [LiM72].

Remark 7.5.11. The above approach to the self-adjoint extensions of the laplacian
in H?(A) was borrowed from [deO08], as well as the variation of the concept of
boundary triple. However, by using a continuous extension of the trace maps to the
dual Sobolev spaces H~/2(9A) and H~3/2(0A), in [Gru06] one finds references
and comments to her previous works on all self-adjoint extensions of the laplacian
in terms of self-adjoint operators from closed subspaces of H~/2(9A).

FExercise 7.5.12. Let 0 < a < b < co and
Ay = {(ml,xg) €ER?:a< (a2 +a2)2 < b}

be an annulus in R2. Find the self-adjoint extensions of the laplacian Hy = —A,
dom Hy = C§°(Aap), whose domains are contained in H?(Ayp).



Chapter 8

Spectral Theorem

A discussion of the spectral theorem for self-adjoint operators is presented, includ-
ing details of the resolution of the identity and functions of self-adjoint operators.
Although a complete proof of this theorem for a given operator is not presented,
different approaches to the proof are indicated. Spectral measures of some simple
examples are discussed. Chapter 9 is devoted to some consequences of the spectral
theorem. A denotes the o-algebra of Borel sets in R.

8.1 Compact Self-Adjoint Operators

In this section the particular case of compact self-adjoint operators on a Hilbert
space H is considered. The spectral theorem for such operators will be presented;
besides its own interest, it will serve as a motivating guide for the noncompact
case discussed ahead. With a little additional effort compact normal operators will
also be discussed.

Lemma 8.1.1. Every nonzero compact and self-adjoint operator T € B(H) has a
nonzero eigenvalue, since either —||T|| or | T|| is an eigenvalue of T.

Proof. The spectrum of T is real and by Proposition 2.1.12, its spectral radius is
IT|, so either —||T|| or ||T|| belongs to the spectrum of T. By the compactness
of T it will follow that one of them is an eigenvalue, which is equivalent to finding
0 # ¢ € H with (T? — || T]|?1)¢ = 0.

Let (&), |1€n]l = 1, Vn, so that | T¢,|| — || T|. Since T is compact, there exists
a convergent subsequence of (T'€,), also denoted by (T, ); since T is continuous,
(T?¢,) also converges.

The estimate

2
0< || 7260 — IT6a)1%60]|” = 1 T2 )12 — |1 T€]1*
<|TPITER]? = || Tén]* — 0 as n — oo,
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shows that the sequence n,, = T2¢,, — ||T¢,||%€, converges to zero and so

&n = (T2£n - nn) /||T§n||2

converges to a vector ¢ with ||| = 1. Therefore, denoting A = || T|| and recalling
that T is continuous, 0 = T?(—||T||*¢ = Th\T- (. Hence either T ¢ = 0 and —||T||
is an eigenvalue of T', or T_»( # 0 and ||T'|| is an eigenvalue of T'. O

Theorem 8.1.2 (Hilbert-Schmidt). Let T' € Bo(H) be compact and self-adjoint and
A the set of eigenvalues of T. Then

H=| @ NI\ | &NT).

0#ANEA

Proof. Since T is self-adjoint N(T%) L N(T},) if A # p, and the direct sum above is
well defined (recall that Ty = Tx1). Set E = @_ycp N(T2); if n € E+, then for
all £, € N(T)) one has (T, &) = (n, T = An,€\) = 0, and so Ty € N(Ty)*.
Since this occurs for all A € A, then Tn € E+, that is, B+ is invariant under T’
further H = E @ E*.

Note that E+ > N(T'); the proof ends by showing that E+ = N(T'). Since E
is also invariant under 7', then S = T'| g1, the restriction of T to E*, is well defined
and is a self-adjoint compact operator. If S # 0, by Lemma 8.1.1 there exists an
eigenvector 0 # ¢ of S with nonzero eigenvalue; thus, by construction, ( € E and
¢ € E+, and necessarily ¢ = 0. Then S = 0, that is, B+ = N(T). d

Corollary 8.1.3. Let T € Bo(H) be self-adjoint and A the set of eigenvalues of T.
Then 'H has an orthonormal basis of eigenvectors of T'.

Proof. For each eigenvalue A # 0 of T, denote by d) = dim N(T)) < oo and pick

an orthonormal basis {f;‘};l;l of N(T). Let {n;};es be an orthonormal basis of

the kernel of T. By Theorem 8.1.2,
U {53\}?;1 U{n;tjes
0#AEA

is an orthonormal basis of H. O

Theorem 8.1.4 (Spectral Theorem for Compact Operators). Let T be a (nonzero)
self-adjoint compact operator on H, {\;} C R the nonzero eigenvalues of T and
P; the orthogonal projections onto N(Ty,), Vj (recall that dim N(T;) < o). Then

T=> X\Pj,
J

and the series converges in the norm of B(H).
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Proof. Let Py be the orthogonal projection onto N(7"). By Corollary 8.1.3 one has
1= P+ ;P thus, for all { € H,

TE=TRE+TY Pie =Y T(Pg) =Y MNP
J J J

From this and PjP, = 0, j # k, it is found that (with j running over N, for
simplicity)

2
=S NP = 3 EIRE
j=1 j=n+1
2 12 2 2
< (e ) 32 1Rel? < (o P ) el

j=n+1

Therefore, |7 — 377 AjPj||* < max;>ny1|Aj[°. Since A; constitutes a se-
quence that vanishes as j — oo, then T’ = limy, oo Y5 A; P; in B(H). O

Corollary 8.1.5. If T € Bo(H) is positive, then there exists a compact positive
operator S so that S* = T (S is called a square root operator of T, and often
denoted by T'/? or /T).

Proof. Since T is positive, then it is self-adjoint with all nonzero eigenvalues A; >
0. By the spectral theorem T' = Zj A;j Pj. Define the operator S by S = Zj VAP,
which is compact since A\; — 0 for j — oo, and S can be approximated by finite
rank operators in B(H) (explicitly by Z;;l \VAjPj). The property S? =T is left
as an exercise; for uniqueness see Section 8.3. O

Ezercise 8.1.6. Let T € Bo(H) be positive. Find the spectrum of v/7?
Remark 8.1.7. Let T € Bo(H) be self-adjoint. For each bounded function f :
o(T) — C, one defines the operator f(T) := >, f(A;)P;. Which is the spectrum
of f(T)?

A specific class of functions of a compact self-adjoint operator T is (A € A,
that is, it is a Borel set in R)

PT(8) = (D) = 3. P,
X EA

which has properties similar to a measure, but projection-valued. E.g., PT(R) = 1,
if Ay N Ay = 0, then PT(A; N Ay) = 0 = PT(A;)PT(As) (null operator) and
PT(Ay U Ay) = PT(Ay) + PT(Ay). A possibility is to reverse the construction,
that is, to use PT to build an operator-valued integration theory of functions f
and then define f(7). This program will be described in other sections of this
chapter; see in particular Definition 8.2.1 and the whole Section 8.2.
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8.1.1 Compact Normal Operators

It is a small step to generalize Corollary 8.1.3 to compact normal operators, and it
will be used in future chapters. Nevertheless, the spectral theorem in the general
case will be restricted to self-adjoint operators, by far the most important case to
quantum mechanics.

Lemma 8.1.8. If R, S € Bo(H) are self-adjoint and commuting, then H has an
orthonormal basis of simultaneous eigenvectors of R and S.

Proof. For each eigenvalue X of S, S¢* = A\é*, one has S(REY) = R(SEY) = AREX,
and N(S,) is invariant under R (as well as its orthogonal complement). Since the
restriction operator R|y(s,) is self-adjoint and compact, pick an orthonormal basis
of N(S,) (as in Corollary 8.1.3) composed of eigenvectors of R and, of course, also
eigenvectors of S. Taking the union over all eigenvalues of S the result follows,
again by Corollary 8.1.3. g

Corollary 8.1.9. If T €By(H) is normal, then H has an orthonormal basis of eigen-
vectors of T and the decomposition of H as in Hilbert-Schmidt Theorem 8.1.2 holds.

Proof. Tt is enough to recall that T' = Tx + i1y, with T, T} self-adjoint and
compact (since T is also compact by Corollary 1.3.27) and since T is normal Tx
commutes with 77, and then apply Lemma 8.1.8. Note that if T¢* = \¢*, then
Tre = (Re M\)¢N and TrE» = (Im A\)EA, and those eigenvectors corresponding to
different eigenvalues are orthogonal. 0

Exercise 8.1.10. Enunciate and prove a version of Theorem 8.1.4 for compact
normal operators. Verify, furthermore, that the corresponding operator is self-
adjoint if, and only if, {\;} C R.

Ezercise 8.1.11. Let T' € B(H), with dim H = oo. Show that if there exists C > 0
with [|T¢|| > CJ|£]| for all £ € H, then T is not compact.

Ezercise 8.1.12 (Fredholm alternative). Let T € Bo(H) be a normal operator.
Consider the equation Té—A¢ = n, A € C,n € 'H, and the subsequent homogeneous
equation T¢ — A = 0. Show that for each A # 0, one, and only one, of the following
possibilities occurs (note that, in this case, uniqueness implies the existence of a
solution!):

i) The homogeneous equation has only the trivial solution and the original
equation has a unique solution for each n € H.

ii) The homogeneous equation has 0 < dimN(7») < oo linearly independent
solutions, and the original equation either has infinite many solutions or no
solution at all.

Exercise 8.1.13. Let 0 # ¢ € L2[0,1] and K(t,s) = cp(t)@, t,s € [0,1]. Show
that A = ||<,0||2 is the unique nonzero eigenvalue of the operator Tk : L2[0,1] «
(Try)(t fo s) ds. Find the corresponding eigenfunction (note that 1t
is usual for the term e1genfunct1on to designate an eigenvector in a function vector
space). Determine also the eigenfunctions corresponding to the zero eigenvalue.
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Exercise 8.1.14. Fix n € H with ||n|| = 1. Let T;, : H — H defined by T,,§ = (1, &),
& € 'H. Determine the spectrum and the spectral radius of T},.

Ezxercise 8.1.15. Let T : 12(Z) — 12(Z) given by

(Tg)n =— (£n+l - fn—1)7

with & = (...,€-2,6-1,&0,&1,&2,...). Show that T is bounded and self-adjoint;
then find its spectral radius.

Ezercise 8.1.16. Let U € B(H) be unitary, so normal. Show that if it is compact
then dimH < oo.

Remark 8.1.17. It was F. Riesz who developed most of the spectral theory of
compact operators on Hilbert and Banach spaces around 1920.

8.2 Resolution of the Identity

The spectral theorem for self-adjoint operators gives a complete description of such
operators, and it is a sophisticated infinite-dimensional analogue of the fact that
hermitian matrices in finite-dimensional Hilbert spaces can be diagonalized. This
theorem also reduces many questions about self-adjoint operators to questions
about multiplication operators, where the situation can be more transparent.

As discussed in Chapter 13, the characterization of self-adjoint operators via
spectral measures (see below) is an important step to suitable spectral classifica-
tion and its relation to the dynamical behavior of solutions of the corresponding
Schrodinger equation for large times.

Another consequence directly related to the spectral theorem is the possibil-
ity of defining functions of self-adjoint operators, as discussed in Section 3.4 for
momentum and free hamiltonian operators; there, the main tool was the Fourier
transform, a unitary operator on L?(R").

Write Proj(H) for the set of orthogonal projection operators on the Hilbert
space H, that is, Py € Proj(H) iff Py € B(H), is self-adjoint and P§ = P, (and
so rng Py is a closed subspace of H). A denotes the Borel o-algebra in R and
for pairwise disjoint sets A; the symbol ) ; A; indicates their union. Finally, x a
denotes the characteristic function of the set A.

Definition 8.2.1. A (spectral) resolution of the identity on H is a map
P: A— Proj(H)
so that

) P(R) =1, and
ii) If A =372 Ay, with A; € A, Vj, then one has the strong limit

P(A)=s— lim Y P(A;).
j=1
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Remark 8.2.2. A resolution of the identity is also called spectral family, spectral
decomposition, spectral resolution and projection-valued measure.

Exercise 8.2.3. Verify:
a) PR\ A)=1- P(A) and P()) = 0 (null operator).
b) P(A1UAg) + P(A1NAs) =P(A1) + P(A).
c) P(A1)P(A2) = P(A1NAy).

For item c) consider first A; N Ay = () and use b).

Given a resolution of the identity P, to each £ € H one associates a finite
positive Borel measure p¢ in R by

A A pe(A) = (€, P(A)E);

note that jie(A) = (¢, P(A)P(A)E) = | P(A)E]? and pie(R) = [[€]|%. To each pair
&,n € 'H one associates the complex Borel measure

pen(A) := (&, P(A)n),
and by polarization

1

pen(A) = 7 [Hen(A) = pe—n(A) +1 (He—in(A) = pgtin (A))]-

Clearly ¢ = pig ¢ and [pe (M) < [[€]] [In]-

Definition 8.2.4. The above ¢ and pe , are called spectral measures of the reso-
lution of the identity P associated with £ and the pair £, € H, respectively.

It is important to recognize that all spectral measures p¢ are regular, that
is, pe(A) = inf{pe(U) : U C Risopen, A CU} and pe(A) = sup{ue(K) :
K is compact, K C A}, for all A € A [Ru74].

With such spectral measures at hand one can integrate functions and so
define the integral with respect to P; different notations will be used to indicate
this integral. For a measurable simple function f = 2?21 a;xa, one defines

P = [ 10dP@) = [ raPi= 3 0P,

Note that P(xa) = P(A), which gives grounds for keeping the same notation P for
the resolution of identity and subsequent integrals. This map f — P(f) is linear
and satisfies

(€ P(f)E) = / £(8) dpe (1),

and since

1P = [ 1F0F dus(t) = 15125, < (sup L) 11,
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it follows that the linear map P :{simple functions}— B(H) is continuous (the
simple functions with the sup norm).

Let B*°(R) denote the vector space of bounded Borel functions on R with
the norm || f|loo := sup;cg | f(t)]. Since the simple functions constitute a dense set
in B> (R), there exists a unique extension of P to a bounded linear operator (and
using the same notation) P : B> (R) — B(H), so that, for all f € B>®(R),

0 = / £(8) dpie (1)

1Pl = [150P aueo) < (suplro?) el

and

with strong convergence on the left-hand side and uniform convergence of functions
on the right one.

Ezercise 8.2.5. By first considering simple functions and then taking limits, verify
that for f,g € B*(R) and any £,n € H, one has

i) dupge, P(f)n =9/ due, n( )

ii) (P(9)¢, = [9(t)f(t) dpen(t)-
i) P(fg) = P(f)P(g) = P(g)P(f)-

) P(f

iii

(f
(f) = P(f)* (and so for a real-valued function f € B*(R) the operator
(f) is bounded and self-adjoint).

(H)*P(f) = P(IfI?) = P(f)P(f)* (and so P(f) is a normal operator for
any f € B®(R)).

vi) P(1) = 1 (1 denotes the constant function: 1(t) = 1,V¢t € R) and if f is
invertible with f~1 € B®(R), then P(f~1) = P(f)~%.

iv
P
v) P

Lemma 8.2.6. If P is a resolution of the identity, consider the map P : B (R) —
B(H). If (fn) C B*®(R) with (|| fnllec) @ bounded sequence with pointwise conver-
gence fp, — f, then f € B®(R) and

s— lim P(f,) = P(f).

n—oo

Proof. A direct verification shows that f € B®(R). If £ € H,

IP(f)€ — PUE? = [ (P(fa) — P(f >>£||2
/Ifn — SO due(t) — 0

as n — oo by the dominated convergence theorem. Note that if f,, — f in the
norm of B> (R), i.e., uniform convergence, the result would be immediate. O
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The next step is to extend the map P to unbounded Borel functions f : R —
C. Define

domf::{geH:feLis(R)}:{56H:/|f|2du§<oo},

which is a vector space, since fiqe(A) = |a|?ue(A) and by using the triangular
inequality pein(A) < 2(ue(A) + pn(A)) (to get it use the relation 0 < ((€ —

n), P(A)(§ —n))).
Set

Ay =An(f) :={t eR:|f(¥)] < n}, fn = fxa,,
and for £ € dom f this sequence of functions converges to f in Li . (R) by domi-

nated convergence. Hence (f,) is a Cauchy sequence in L? . (R). Since f, € B*(R)
and

IPUER = [ 1 due = 1fallEz,

it follows that (P(fn)¢). is a Cauchy sequence in H, so that it converges to a
vector P(f)&, which defines the desired extension with dom P(f) = dom f. Note
that such extension f — P(f) is linear, continuous and, with the notation P(f) :=
| f dP, by taking n — oo in the above equality

1P = [ 1517 due = 1712,

Ezercise 8.2.7. Show that for any (g,) C B*(R) with g, — f in Lis (R), one has

P(gn)€ — P(f)E, for any £ € dom f, so that P(f) above, for f € Lig (R), is well
defined.

Lemma 8.2.8. For every Borel function f: R — C one has dom f T H. Thus the
adjoint P(f)* is well posed.

Proof. Let A,, be as above. If £ € H, by considering &, = P(A,,)¢ one has pg, =
XA, te. Thus

/ PO dpe, (1) = / FOP due(t) < n?€]]? < oo,
R

n

and so &, € dom f. Since xa, — 1 in Las (R), and

=6l = [ 11—, (OF duc
one obtains that &, — £ in H by dominated convergence. This shows that dom f
is dense in H. O

Definition 8.2.9. A linear operator 7' : dom T' C ‘H — H is normal if dom T =
dom T* and ||T¢|| = || T*¢||, V€ € dom T.
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Lemma 8.2.10.

a) Any normal operator is closed.
b) If T is a normal operator, then T*T = TT* (where both compositions are

defined).
Proof. a) Since T is closed (dom T*,|| - ||7~) is a complete space. Since T is
normal, then the norms || - || = || - ||7+ coincide on dom 7', so (dom T, || - ||7) is

complete as well, and then T is also closed.
b) If T is normal then, by polarization,

(T¢,Tn) =(T"E,T™y),  V&mn€domT.
Since T is closed, T =T = T**; so if
& edom (T*T)Ndom (T™*T*) = dom (T*T) Ndom (TT),
then
(T*TE, ) =(T*T*¢,n) = (TT*E, n), Vn € dom T,
so that T*T¢ = TT*E; consequently T*T = TT*. O
Remark 8.2.11. Bounded normal operators were introduced in Definition 2.1.7.

Ezercise 8.2.12. Show that a normal operator has no proper normal extension.

Exercise 8.2.13. If T is normal, show that T' — 21 is also normal for any z € C.
Theorem 8.2.14. Fvery normal operator has nonempty spectrum.
Ezercise 8.2.15. Adapt the proof of Theorem 2.4.4 to conclude Theorem 8.2.14.

Proposition 8.2.16. Let P be a resolution of the identity.
a) For every Borel function f : R — C the operator P(f) is normal (so closed)
and P(f)* = P(f).
b) For every real-valued Borel function f : R — R the operator P(f) is self-
adjoint.

Proof. b) follows straightly from a).
a) If fn, = fxa,, An as defined on page 208, it follows that f, € B>(R),
fo — fin L3, (R), P(fn)* = P(fn) (see Exercise 8.2.5) and, thus, (£, P(fa)n) =

<P(ﬁ)£an>v Vf,n e H.
If V¢,n € dom P(f), by the dominated convergence theorem P(f,)n —

P(f)n, P(fn)€ — P(f)¢ and, by continuity of the inner product

(& P(f)m) = (P(F)En),
and so P(f) C P(f)*.
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Now, if £ € dom P(f)* there is n € H with

(& P(f)C) =, ¢), V¢ edom P(f).
By considering f,, again, for m > n,

= lim {6, P(f) P(A)C) = (& P(H)P(An)C)

= (P(An)P(f)"€.C),
consequently P(f,)¢ = P(A,)P(f)*€. The limit lim, .o ||P(An)P(f)*€||? exists
by Lemma 8.2.6; thus

IP(FEI? = lim [P(A)P(F)E = tim [P(F)e]?
= Jlim [ 1fn(t) dpe(t) / |F (O dpe(t)

and f € L7 (R), that is, £ € dom P(f). Therefore, dom P(f)* C dom P(f) and
so P(f) = P(f)*. If ¢ € dom f, then

IP(f)EN? =/|f|2dug = IP(f)Ell?

which implies dom P(f) = dom P(f). Hence P(f) is normal. O

It is worth emphasizing the following characterization:

Lemma 8.2.17. A vector £ € dom P(f) iff

HHMW=AVW%M®<w

Proof. 1t is a direct consequence of the definition of P(f), Proposition 8.2.16 and
its proof. O

Exercise 8.2.18. Let f,, and f be as in the proof of Proposition 8.2.16. Clearly one
has the pointwise convergence f,, — f. Show that f, — f in Lis (R) too.

Lemma 8.2.19. Let P be a resolution of the identity, f,g : R — C be Borel functions
and a,b complex numbers. Then

a) aP(f) ?—)bP(g) C P(af + bg), with dom (aP(f) + bP(g)) = dom P(f) N
dom P(g).

b) P(f)P(g) C P(fg), with dom (P(f)P(g)) =
that if dom P(g) Ddom P(fg), then P(f)P(g
with domain dom P(fg).

dom P(g) Ndom P(fg). Note
)=P(f9)=P(gf)=P(9)P(f)
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Proof. Let A, and f, be as defined on page 208 and ¢,, the corresponding functions
for g. Recall that if f,g € B*(R), then P(f)P(g) = P(fg) and P(f + g) =
P(f) + P(g)-

a) If £ € dom (aP(f) 4+ bP(g)) =dom P(f)Ndom P(g) = f,g € Lis(R) =
(af +bg) € Lis (R) = £ € dom P(af + bg). Thus,

Plaf +bg)§= lim P(afn + bgn)€
— lim (aP(f,)¢ +bP(g.)6) = aP(f)é + bP(g):.
b) For Borel functions f,g, if £ € dom (P(f)P(g)) then £ € dom P(g) and

P(g)¢ € dom P(f). Since fn, g, € B¥(R) and fogr — fag in L}, (R) as k — oo,
one has

P(f)P(9)¢ = lim P(fn) lim P(gp)¢ = lim lim P(fn)P(gr)¢
= lim klim P(fngr)é = lim P(fng)¢;
thus the last limit exists and so the sequence (f,g), is Cauchy in Lig (R). As
the pointwise convergence f,g — fg holds, it follows that fg € Lﬁ . (R) and so

¢ € dom P(fg),
P()P(g)¢ = lim P(fug)¢ = P(f9)¢.

Hence P(f)P(g) C P(fg) and dom (P(f)P(g)) C dom P(g) Ndom P(fg).
Now if £ € dom P(g) Ndom P(fg) one has
P(fg)¢= lim lim P(fygx)€
= lim lim P(f,)P(gr)§ = lim P(fa)P(9)§

n—o0 k—oo

so that feL? (R). Hence P(g)¢ edom P(f) and therefore £ €dom (P(f)P(g)).

KP(g)¢

The equality dom (P(f)P(g)) = dom P(f) Ndom P(fg) is proved. O

8.3 Spectral Theorem

Given a spectral family P and & € H, denote

He = {P(f)E: fe L2 (R},

Ezercise 8.3.1. Check that H¢ is a closed vector subspace of H.

Definition 8.3.2. H_ is called the cyclic subspace spanned by & for P, and if He = H
then £ is called a cyclic vector for P.
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Given £ € H and P, consider the operator
Ue:He — L2, (R),  Ue(P(f)¢) = F.

Since

VPO, = [ 197 due =PI,

U¢ is an isometry onto Li . (R), so a unitary operator between such spaces. Fur-
thermore, for n € He¢, there exists a g € Lis (R) with n = P(g)¢, hence (since
P(f)P(g9) C P(fg); see Lemma 8.2.19)

(UeP(U ") 9 = UeP(£)P(9)€ = UeP(f9)€ = fg = My,

that is,
UeP(NUS = My,

with dom My = Ugdom (P(f)NHe) = {f € Lis(R) i fg € Lig(R)}, and P(f)
is unitarily equivalent to the multiplication operator M acting in L? ((R) (see
Section 2.3.2). Write 1 for the constant function 1(¢) = 1, V¢ € R, so that Ug& =
UeP(1)¢ = 1, which is cyclic in LZﬁ(R) in the sense that {M;1 = f : f €
dom (1) = Lis (R)} = Lis (R). Summing up:

Theorem 8.3.3. If the resolution of the identity P has a cyclic vector & € H, then
there is a unitary operator Ug : H — Lig (R) so that UgP(f)Ugl = M. Further,
Ue(€) =1 is a cyclic vector for P in Lﬁg (R).

What if there is no cyclic vector for P?

Definition 8.3.4. A maximal orthogonal family of vectors {&;};e; C H with He, L
He,, if j # k, is called a spectral basis of P. P has simple spectrum if it has a
cyclic vector.

Remark 8.3.5. By Zorn’s Lemma, independently of the Hilbert dimension of H, a
spectral basis always exists and, if {;} ;e is a spectral basis, then H = @, ; He, -

Remark 8.3.6. If (¢;)71,, with N € NU {oo}, is an orthonormal countable (since

'H is supposed separable) spectral basis of P, define the measure
Y1
p= PY YT

27
Jj=1

so that L2(R x {1,2,3,...,N}) = @}, L7 (R).

Since the direct sum of unitary operators is unitary and the direct sum of
multiplication operators is also a multiplication operator (check this!), one has
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Theorem 8.3.7. For each resolution of the identity P, on the separable Hilbert
space H, there exists a countable spectral basis (@)f’:l, with N € NU {oo} and

€511 = 1/27, so that H = @;\/21 He,; and the unitary operator

N N
U=PU, : "~ DL ®),
j=1 j=1

satisfies

UP(f)U™ = My,

with My = @jv:l My a multiplication operator acting in @jv:l Lis_ (R), for all
J
Borel f : R — C.

Let P be a resolution of the identity on H. Among the self-adjoint operators
defined via P(f), a special role is played by

T /thP(t),

that is, it is an expression of T = P(h) for h(t) = t. One of the forms of the
spectral theorem is to show that such relation is one-to-one:

Theorem 8.3.8 (Spectral Theorem). To each self-adjoint operator T : dom T T
H — H corresponds a unique resolution of the identity PT on H, so that T =
[tdPT(t).

Thus, each self-adjoint operator 7' is unitarily equivalent to the multiplication
operator My, h(t) = t, acting in L2, (R x {1,2,3,..., N}),  a probability measure,
and

dom T = {SEH:/th,u?(t) < oo},
where '“g,n are the spectral measures of the resolution of the identity P7T.

Definition 8.3.9. The spectral measures i/, defined by means of P*, are called
the spectral measures of T. Further, T is said to have simple spectrum if PT has
simple spectrum.

This structure of T" as a multiplication operator is called spectral representa-
tion. Basically, by changing the self-adjoint operator, what changes in the spectral
representation are the spectral measures ugT, so that they carry fundamental in-
formation about T'.

The spectral theorem allows one to define measurable functions of 7" through
f(T) := PT(f). PT is called the resolution of the identity of T. Instead of prov-
ing the spectral theorem, it was opted to discuss different strategies of proofs in
Section 8.5.
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Proposition 8.3.10. Let P be a spectral resolution on H. If f : R — C is the
polynomial f(t) = Z;‘L:o a;jt’, aj € C,Yj, then P(f) = E?:o a;T7, where T :=
P(h) with h(t) =

Proof. Induction. For n = 0 one has P(ag) = apl. Assume now it holds for all
polynomials of degree < (n — 1). Thus, if g(t) = Z?:l a;jt'~1 and h(t) = t, one
has f(t) = h(t)g(t) + ap and, by Lemma 8.2.19,

P(f) > P(h)P(g) + P(ao) Z%Tﬂ

Since for n > 1 one has dom P(h) D dom P(hg), by Lemma 8.2.19 again,
dom P(f)=dom P(hg) = dom (P(h)P(g))
and it follows that P(f) = P(h)P(g) + P(ao) = >7_, a;T7. O

Given a self-adjoint operator T', Proposition 8.3.10 validates the notation

F(T) = PT(f)

for Borel functions f : R — C. For Borel sets A C R one has PT(A) = yA(T),
and such operators are orthogonal projections called the spectral projections of T'.
Note that if 7" is bounded and f(7T') can be defined by convergent power series,
then this definition via series coincides with the one given by the spectral theorem,
since the partial series sums are the same operators in both approaches.

In a very short statement: measurable functions f(t) are approximated by
simple functions Z?:I a;jxa, (t), whereas normal operators f(1') are approximated
by the corresponding linear combinations of projections 2?21 ajxa, (T).
Example 8.3.11. Let T be a compact self-adjoint operator and {\;} the set of
its eigenvalues. Let d; = dimN(T — A;1) < oo be the corresponding multiplicity
and pick an orthonormal basis {5;9" }Zj _, of N(T'— A;1). From the discussion in
Section 8.1, it is found for ]’?, k=1,...,d;, (strictly, the index should be k;) the
spectral measures

/fé =0y,

(8x is the Dirac measure at A;). On the space L (R), with (k fixed)
IR BPSER N I
=gk = 2yt
J j

whose elements 1(t) are determined by sequences (1(\;));, the operator T acts
as a multiplication by My (¢), h(t) = t, that is,

Ty = (A\v(A))),
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which is a consequence of the decomposition T' = Zj A;j P; presented in Theo-
rem 8.1.4. Note that for the spectral representation, for each d; > 1 one needs
d; — 1 additional copies of R (so just one copy of R suffices iff all eigenvalues are
simple, i.e., d; = 1, ¥j). See also Subsection 8.4.2.

Remark 8.3.12. It was concluded that a linear operator 7' is self-adjoint iff it is
unitarily equivalent to a multiplication operator M, (with real-valued ¢) acting
in some Lﬁ(E), with finite p. More precisely, by the spectral theorem one can take
@ = h, h(t) = t, acting in the space LZ(R x {1,2,3,...,N}). However, in many
situations most information on the operator T can be extracted if (hopefully!)
some @ — not necessarily equal to h above — can be found. For an example, see
Subsection 8.4.1, in particular the discussion about the free hamiltonian.

Theorem 8.3.13. If T is self-adjoint, then its spectrum is the support of the reso-
lution of identity PT, that is,

o(T)={teR:PT(t —c,t+¢&) = X(t—ect1e)(T) # 0, Ve > 0} .

Furthermore, PT(0(T)) = Xo(1)(T) = 1 and PT(p(T) NR) = 0 (which will also
simply be denoted by P (p(T)) = 0).

Proof. If PT(tg—¢,to+e) # 0 for all € > 0, then there exists a normalized sequence
(&) with

1 1
§j€PT(to—37to+5>H, Vj € N.
Hence PT (t —%,to+%> ¢; = ¢ and since
T T 1 1
e, (A) = (&, P7 (M) P to—;,fo+3 &)

it follows that e, (R\ (to— L to + §)) — 0. Thus, by Lemma 8.2.17,

2
(T — to1)g; |12 = / (t — t0)? due, (1)
(to—F,to+3)
< I €11 = I =0,

that is, (§;) is a Weyl sequence for T at tg, and so tg € o(T) by Corollary 2.4.9.

Assume now that for ¢ty € R there exists ¢g > 0 so that the projection
PT(ty — eo,to +€0) = 0. Then pe((to — €0, to + €0)) = 0, V€ € H. If (&) is a
normalized sequence in H, then

(T~ tol)¢ | = / (t — to)? due, (1)

- / (t—t0)? due, (£) > 22 &% = <2,
R\ (to—¢o0,to+<€0)

Therefore there is no Weyl sequence for T" at to, consequently to € p(7T').
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Since p(T) N R is an open set in R, it can be written as a countable union of
disjoint intervals

p(T)NR = (aj,b)),
J
and, as just discussed, PT(a;,b;) = 0,Vj, so that PT(p(T)) = 0. Finally, o(T) =
R\ p(T) and PT(R) = 1, and it immediately follows that PT(c(T)) = 1. O

Remark 8.3.14. Let T be self-adjoint and tg € R. Then ty € p(T) iff the map
R > t — PT(—00,] is constant in a neighbourhood of tg, that is, there is ¢ > 0 so
that PT(—o0,t] = PT(—o00,s] for all t,s € (tg — €,tg + €).

Exercise 8.3.15. Prove the statement in Remark 8.3.14.

Theorem 8.3.13 justifies why P is called the spectral projections of T'; it also
correctly indicates that PT(A) = x(T) will play a distinguished role in spectral
issues in this and other chapters. Now a simple but useful result.

Lemma 8.3.16. Let T' be a self-adjoint operator.
a) If A is a bounded Borel set in R, then rng xA(T) C dom T.
b) If thdu?(t) >0 for all £ € dom T, then /,Lg(—oo,O) =0, V¢ € dom T.

Proof. a) If £ € H then
AT = [ iy

:/ 2 due(t) < ﬂ?(A) sup A\? < oo
A AEA

since A is bounded. Hence, xA(T)§ € dom T', V¢ € H.

b) Suppose ,ug(—oo70) > 0; then there exists a bounded interval (a,b) C
(—00,0) with b < 0 and ug(a,b) > 0, and also a vector £ € dom T so that
0#n=PT(a,b)¢, and n € dom T by a). Since PT(a,b)n =n,

py (A) = (0, PT(N)n) = (n, PT(A)P" (a, b))
= (n, PT(A N (a,0))n) = g (AN (a,)),
and so p] (R \ (a,b)) = 0. Thus,
[rasor = [ eaiw <[ audo =l <o
R (a7b) a,b
This contradiction proves the lemma. O
Corollary 8.3.17. Let T be self-adjoint in H. Then:
a) For each Borel function f : R — C,

(T = / o FPT = PO )

particularly, for € € dom f(T), one has (£, f(T)E) = fg(T) fdu?.
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b) A real number to € p(T') iff there exists €9 > 0 so that
ﬂ?(to —€0,to + 80) =0, V¢ € dom T.

Proof. a) Since X,(1) € B®(R), Lemma 8.2.19 implies that dom P (xy(r)f) =
dom f and

PT(XU(T)f) = PT(xo(r))PT(f) = 1PT(f) = PT(f).
Therefore, f(T) = [, ) fdPT. If ¢ € H, then

pg (M) = (&, PT(A)E) = (&, PT (M) PT(a(T))8)
= (& PT(ANa(T))E) = uf (AN a(T)),
hence

_ T
T@—mew@ v € dom f(T).

b) By Theorem 8.3.13, to € p(T) NR iff PT(ty — £o,t0 + o) = 0 for some
0 < g iff for all € € H,

0 = [|[P"(to — 0, to + £0)&||” = (&, P (to — €0, to + €0)€)
= e (to — €0, to + €0).

This proves b). O

Ezercise 8.3.18. Show that the spectrum of T is the smallest closed set A for which
PT(A) =1.
Corollary 8.3.19 (functional calculus). Let T be self-adjoint in H. Then there is a

unique linear map B®(R) — B(H), f — f(T), so that the items a) to f) below
are satisfied:

) fg— f(T)g(T) = g(T)f(T).

b) F(T) = f(T)".

) 1A DI < [Iflloo-

d) If z € p(T), then - — R.(T) and

o

@m@mz/mlw@w

t—2z

e) If support(f)No(T) =0, then f(T) =0
f) If fn is a bounded sequence in B>®(R) and f, — f pointwise, then s —
lim,, oo frn(T) = f(T).

Furthermore,

1) If 0 then f(T) >0 (so, if f > g then f(T) > g(T)).
2) If TE\ = Ny and f is continuous, then f(T)&x = f(A)Ea.
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Proof. Note that a), b), ¢), e) and f) (e.g., for f) see Lemma 8.2.6) were already
discussed in some way. The uniqueness follows by the spectral theorem, since by
taking f = xa the unique resolution of identity P7 is obtained.

d) By Proposition 8.3.10 one has PT(t — z) = T — 21, and using Lemma
8.2.19b) with f(t) =t — z and g(t) = 1/(t — 2),

1=PT(1)=pPT ((t—z)t ! )

—ZzZ

=PT(t—2)PT (t_lz> = (T - 21)PT (tiz> .

It is then found that PT (tiz> = R.(T).
1) For f >0

.1 = [ OG0 >0

Hence, f(T) > 0.
2) Since, by Lemma 8.2.17,

0= (T — M)& 2 =/

|t - )‘|2 dug(t)a
o(T)

there is a positive constant ¢ so that pe, = cdy, where d, is the Dirac measure
concentrated at A, that is, 05 (A) = 1 if A € A and 0 otherwise. In view of (£, &)\) =
fU(T) dpig, , it follows that ¢ = ||€,]|?. Thus, again by Lemma 8.2.17 (with P(f) =
f(T) in this case),

IF(T)er — FONE? = / ) — FO2 il (1)

o(T)

—c / F(8) — FV doa(t) =0,
o(T)

and so f(T)ér = FNén. 0

Ezercise 8.3.20. Verify that items b), e), 1) and 2) of Corollary 8.3.19 hold for
unbounded Borel functions f.

Proposition 8.3.21. Let T be self-adjoint and recall that xx(T) = PT(A). Then:
a) T > (1, that is, (€, T€) > B||€||1?, V€ € dom T, iff xa(T) = 0 for any Borel
set A C (—o0, B). Similarly in case (£, TE) < ~|&|*.
b) T € B(H) iff there are 3,7 € R so that xa(T) = 0 for any Borel set A C
(=00, B) U (7,00)) (i-e., X[,4)(T) = 1).
c) T € B(H) iff o(T) is a bounded set in R.
d) If f : R — R is Borel, then xa(f(T)) = x5-1(a)(T) for any Borel set A C R.
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Proof. a) Since dom T is dense in H:

(&, T€) > B€&|I?, V€ € dom T
T T
— /th,ug (t) > ﬂ/Rd,ug (t), V€ € dom T

= /(t—ﬁ)dug(t) >0, V¢ edom T
R

<= (by Lemma 8.3.16b))
0=l ((—00,8)) = | PT(~o00, B)E||?, V€ € dom T
— PT(—OO75) = 0.

b) Note that
Tl < CPlelR, ¥ € 1 = [ (= e duf (1) <0, ¥ € .
R

The former relation is equivalent to T being bounded while the latter (by a vari-
ation of Lemma 8.3.16) to uf (R \ [-C,C]) = 0, V¢ € H, that is x{_¢c,c)(T) = 1
(see the proof of item a)).

c) is equivalent to b).

d) This is a direct consequence of the relation x(f(t)) = xf-1(a)(t), which
is valid for complex-valued functions.

Exercise 8.3.22. Let T be self-adjoint and £ € dom T'. Use the spectral theorem
to show that the family & := e~ #T¢, t € R, is uniformly continuous in the space
(dom T, || - ||7); note that, by the functional calculus, the unitary evolution group
e T = £(T) with f;(x) = e~ =,

Exercise 8.3.23. Let T be self-adjoint, A an isolated point of the spectrum of T’
(so an eigenvalue) and o(T') # {\}. Show that there is a bounded operator S # 0
such that SX{)\}(T) =0=Xxq (T)S and (T —X1)S=1-— X{)\}(T).

8.4 Examples

This section is devoted to some examples of resolutions of the identity. A practical
and simple recipe for finding explicitly the resolutions of identity for most self-
adjoint operators is certainly a dream of many people!

8.4.1 Multiplication Operator

Consider the self-adjoint operator M, for ¢ : E — R, acting in LZ(E)7 defined
in Subsection 2.3.2. In the following it will be verified that the map

A5 A— P(A) = Xp-1(A)

is a resolution of the identity.
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Since characteristic functions can assume only the real values 1 and 0, it
follows that the just defined P(A) are bounded self-adjoint operators and also
P(A)? = P(A), i.e., they are orthogonal projections acting on L2 (E). As ¢~ '(R) =
E, xp(z) =1, Vx € E, it follows that P(R) = 1; in fact, for all Y e L2(E),

IP®R)Y — |2 = [E () — 12 (@) ? dp(r) =

Now, if A = 3772, Aj, due to the pointwise convergence Y27 Xo-1(a;)(%) —
Xo-1(a)(Z), as n — oo, for any ¢ € L2 (E),
2

> P(A)u — P(A)

2
= [ 13 xe 0@ ~ xora @) (@) die)
which vanishes as n — oo by dominated convergence. Hence
ZP ) — P(A)),

and so P is a resolution of the identity. For a Borel function f : R — C one has
the normal operator f(M,) = Mo,.

Position Operator. In the particular case F = R with du = dz (i.e., Lebesgue
measure), one has the position operator ¢(r) = M, acting in L%(R) (Exam-
ple 2.3.31). Then the above construction leads to the resolution of the identity
A>3 A~ PI(A) = x4, so that

WP = [P b eLA®),
and
(. ) = / elo(@)dr, € domg
R
Consequently, the spectral measures of the position operator are

dpi () = (@) de.

Note that they are absolutely continuous with respect to Lebesgue measure, for
[(x)|? € LY(R). It is worth observing that actually

domq=(sqerz, @} ={v: [ PP <o).

Given a Borel function f : R — C one has the normal operator f(q) = M ().
Such construction generalizes at once to the components of the position operator
in L%(R").
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Momentum Operator. Recall the momentum operator in L?(R) (see Section 3.3),
here denoted by P, and given by dom P = F~1H!(R),

(FPF)b(p) =pd(p),  (PY)(x) = (F'pF(a).

Hence, based on the above construction for the position operator, the spectral
resolution of the momentum is P¥ (A)y(x) = F~1ya(p)y(p), and for the spectral

measures consider
2
/ ¥ (p)|? dp,

(¥, PP (M)g) = (&, F~'xa(p)

= ($(p), xa(P)?(p)
so that its spectral measures are dpy(p) = [1)(p)|? dp, again absolutely continuous
with respect to Lebesgue measure. For a Borel function f : R — C one has the
normal operator f(P) = F~' Mg,y F, in accord with the discussion in Section 3.4.

1/?(
) (p)

Kinetic Energy Operator. The free hamiltonian Hy in L?(R™) (Section 3.4) is

(Ho)(x) = —Atp(x) = F ! [Mped(p)](x), ¢ € dom Hy,

dom Hy = H2(R"™), that is, Hy is unitarily equivalent to the multiplication oper-
ator by the function ¢(p) = p? in L2(R"). Therefore, its resolution of identity is

A3 A PTO(A) = F X1 T

note the simple expression p~*(A) = {p € R"™: p? € A}. From this and Parseval’s
identity, it is found for its spectral measures

s (A) = (6, PP (A)) = / (o) ? dp,
p2eA

which are also absolutely continuous with respect to Lebesgue measure and only
Borel sets A C [0, 00) can have nonzero spectral measures.
For simplicity consider n = 1. If ¢ € dom Hj write

0 oo
_ 21,7 2 — 21,7 2 21,7 2
o) = [ P = [ e+ [ )R

and introduce the variable t = p? (i.e., p = —V/t and p = v/, in the first and
second integrals, respectively) so that

< (s 2. 2\ dt
wte) = [ o (ol + i) ) 2
If ¢ is an odd or even function one has
* 2 dt
wo) = [ e fpva) S
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Introduce the Hilbert spaces L (resp. L_) of functions 1 € L2(R) so that ¢ are
even (resp. odd) functions, both with the inner product

O dt
b= [ S T
0 Vi
and on each of such subspaces Hy becomes the multiplication operator My, h(t) =
t. Since every function ¥ = ¢, ®1_, with ¢, even and ¢)_ odd functions and (by
using the same change of variable above)
. <. 2 dt > 2 dt
el =917 = [ [o- /] T+ ua
0 vVt Jo Vi
the direct sum Ly @ L_ is isomorphic to L?(R) and the space where Hy acts as
M, was made explicit. Further, for ¢ € dom f(Hy), in Ly one has

ol %

By considering f = xa, it is found that the spectral measures of Hy at ¢ can be
written in the form (one can consider ¢ € R)

b (VB)|

(6, F(Ho)b) = / T

2 dt
\/i’
which are clearly absolutely continuous with respect to Lebesgue measure. Note

the presence of two subspaces in this decomposition, indicating that the spectrum
of Hy is not simple.

duﬁo (t) = X(0,00) (?) 1/3(\/5)’

Ezercise 8.4.1. Spectral measures of the free hamiltonian Hy in L2(R3). Introduce
spherical coordinates (7,9), # = [p|,Q = (6, %) in the momentum space R3, so
thAat LQ(RL?))A: L2,,.[0,00)) ® LZQ(S’Q), where 52 is the unit sphere in R3 and
dQ) = sin 0 dfdp. Write

woos) = [ o) ap= [ arit [

perform the change of variable ¢t = #* and conclude that

(7, Q)

(¥, Hyy)) = /R tdpy°(t),

° is given by

dp° (t) = (/S o

Ezercise 8.4.2. Find the spectral measures f¢ , for the position, momentum and
kinetic energy operators in L2(R).

where /,Lg

dt
—.

-
G m

) Xm0 (0)
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8.4.2 Purely Point Operators

The discussion in this subsection is directly related, especially, to compact self-
adjoint operators discussed in Section 8.1 and to standard Schrédinger operators
H = —A +V, with lower bounded and unbounded potentials V', considered in
Section 11.5.

Let T be a self-adjoint operator in H and (§;); an orthonormal basis of
‘H composed of eigenvectors of 1" corresponding to the eigenvalues Aj, that is,
TE¢ = A&, |I&]l = 1. Such operators are called purely point operators and will be
considered in later chapters. Suppose that A\; # \g if j # k (that is, all eigenvalues
are simple) and denote by P; the orthogonal projection onto the one-dimensional
subspace generated by &;. For a Borel set A C R the map (infinite sums are
understood as strong limits)

— Z P;

AjEA

defines the resolution of the identity of T'. In fact, since P; Py = 6y ;P; it follows
that PT(A) is an orthogonal projection. Every ¢ € H can be ertten as £ =
>; a;&5, with €N? = > laj|?, so that P;¢ = a;¢; and if £ € dom T one has
TE=3";70a;& =225 A P§ (since T is closed). Thus

T=> \P= / tdPT(t)
7 R
For a continuous function f : R — C one has (see Corollary 8.3.19)

:Zf(Aj)Pja )¢ = Zf )a;&;
J

and
¢ €dom f(T <:>Z|f Ila;|? < oo.

Especially, T' = f(h), h(t) = t, which conﬁrms that the above resolution of identity
is actually the resolution of identity of 7". The spectral measures are

Ng( ) = (&, PT(A Z |aj|2(5>\ —Z|aj| x, (A
AjEA

with dy, denoting the Dirac measure at A;. Thus,
pE =Y la;* oy,
J

and for the eigenvectors {; one has ﬂg; = 0y,- Such spectral measures are not
absolutely continuous with respect to Lebesgue measure (they are called purely
point measures or atomic measures).
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Exercise 8.4.3. Find the resolution of the identity and spectral measures for the
harmonic oscillator energy operator, Example 2.3.3.

Ezercise 8.4.4. Find the resolution of the identity and spectral measures of the
identity operator 1 : H — H, 1§ =&, V€ € H.

Exercise 8.4.5. Discuss the adaptations needed in the above construction if there
are eigenvalues that are not simple, that is, with multiplicity greater than 1.
Exercise 8.4.6. Show that every operator Zj APy, with A\; € R, P; orthogonal
projections onto pairwise orthogonal finite-dimensional spaces, with > j P =1
and lim; .o A; = 0, is compact and self-adjoint.

Ezercise 8.4.7. Find the resolution of identity and spectral measures of self-adjoint
operators on a Hilbert space of finite dimension.

8.4.3 Tight-Binding Kinetic Energy

The tight-binding Schrédinger kinetic energy operator hg (also called discrete ki-
netic energy) acting on the Hilbert space of sequences [2(Z) is

(how); = ujsr +uj—r,  u=(u;) € 1*(2).

It is a bounded self-adjoint operator. It is a specific case of operators acting on £2
spaces and called Jacobi matrices, which have been extensively considered in the
framework of random Schrédinger operators [CaL90].

By means of Fourier series it is possible to translate hg as a multiplication
operator. Recall that the Fourier series F : L?[—m, 1] — [%(Z),

(F1); “ITY() da

\/ 27T [ﬂ'
is a unitary operator and that (F~lu)(z) = > u;e® [\2m. 1 e = (8.5)kez
denotes an element of canonical basis of 12(Z), then (F~le;)(x) = €™** /y/27 and
(€™*® /A/2T) ez is an orthonormal basis of L2[—m, 71]. A direct calculation leads to

(FilhoF)’(/)(l‘) = Ms cosz¢(I)'

Hence hg is unitarily equivalent to the multiplication operator Mascos, in
L%[—7, 7], so that (see Section 2.3.2) o(hg) = [~2,2], and it has no eigenval-
ues. Again by Fourier series, if ) = F~1u, |Ju|| = 1, with the change of variable
t = 2cosx one gets

(u, hou)z = (1, F 1 hoF)) 12
0 T
:/ 2008x|¢(x)|2dx+/ 2cosz (@) do

i oot

= ‘1/) (arccos t)

2 2

dt
N
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so that [2(Z) is isomorphic to L?[—m, 7] = L%[—, 0] & L2[0, 7] which in its turn is
isomorphic to
dt

Va— 2
and in this space hg acts as the multiplication operator My, h(t) = t.
Ezercise 8.4.8. Show that hg is self-adjoint and ||hg|| = 2.

L[QL[_27 2] @ Li[_Qv 2]7 dp,(t) =

8.5 Comments on Proofs

Instead of a detailed proof of the spectral theorem, a short discussion of ideas
involved in different proofs will be presented. The expectation is that the reader
could get an overall flavor of different strategies, and what follows should be con-
sidered just a guide to different presentations. A few historical remarks will also
be inserted and references to complete proofs are of course provided. As it should
be clear from the discussion of purely point operators in Subsection 8.4.2, the chief
difficulty is the presence of continuous spectra.

The spectral theorem has many nuances spread among different presentations
in the literature. A nice discussion about various aspects can be found in the first
volume of the Reed-Simon books [ReeS81], and additional information including
the Hahn-Hellinger theorem and multiplicity function of spectral measures can
also be found in [Sun97] and [Hel86].

Given a self-adjoint operator T'; often the main point is the construction of the
resolution of identity P, and so spectral measures and integration theory follow by
standard arguments (including functions f(7")). Also, by standard arguments of in-
tegration theory, it is enough to define P ((a, b)) for intervals (a, b] in R and impos-
ing a strong continuity from the right, i.e., P ((a,b]) = s —lim._ o+ PT((a,b+<]).

There are two general approaches to proofs of the spectral theorem:

A1l Proofs that consider first bounded self-adjoint operators. Then it is extended
to a version for unitary operators. The unbounded self-adjoint case is ob-
tained by means of a Cayley transform (Definition 2.2.1); this approach was
pioneered by von Neumann.

A2 Proofs that work directly for both bounded and unbounded operators.

The version of the spectral theorem for unitary operators expresses that they
are equivalent to multiplication operators M. on some suitable spaces L2[—, 7].

The first general proofs of the spectral theorem were due to independent
works by von Neumann, Stone and F. Riesz; the first version on unbounded op-
erators was published around 1930. Since then other proofs have appeared, and
the most important proposals are mentioned below. E. Schmidt was the first to
note that a restriction to self-adjoint operators was necessary, and T. Carleman
(around 1920) had a first version of this theorem for some singular integral oper-
ators with symmetric kernels. The proof by Stone relies on some ideas developed
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in such works of Carleman. There is in fact a version of the spectral theorem for
unbounded normal operators; in this case the resolution of identity is a function
on the Borel sets in the complex plane; see [Con85].

In some sense, the history of the spectral theorem began with the problem
of finding the principal axes of an ellipsoid; in modern language, the problem of
diagonalizing symmetric matrices.

Via Resolvent Operator. This approach to the proof of the spectral theorem
applies to bounded as well as unbounded self-adjoint operators. The main ideas
have appeared in a proof due to Doob and Koopman of 1934. Given a self-adjoint
operator T' and & € H, consider the matrix element of the resolvent R, (T),

Fe(2) == (& R(T)E), 2z €p(T),

which is a holomorphic function on p(T'), satisfies F¢(z) = F¢(Z), and

HE
I
Im 2’

so that the complex upper half-plane is invariant under F¢. Such function is an
instance of the so-called Herglotz functions and so it is the Borel transform of a
Borel positive measure p¢ on A, that is,

Fe) = [ 2 duele)

t—2z

|[Fe(2)] < m Fe(z) = Im z | R-(T)E|1%,

A related argument gives the measure p¢ via the (inversion) formula

b+0
b)) = 1li lim — Im Fiyie (T) dt.
pa,t) = Jim tim = [ Fe(r)
The measures p¢ are actually spectral measures of 1" from which the resolution of
identity PT can be defined by

@ﬂ0m=/mwww»
R

Since the measures ¢ follow uniquely from the resolvent R.(T), the construction
of PT is unique.
Proofs along these lines appear, for example, in [Wei80] and [Te08].

Via Polar Decomposition. This proof can be classified in A2 above and has be-
come a standard one; see [Kat80]. First it is shown that every positive self-adjoint
operator T has a positive square root T2, i.e., T'/? is a positive self-adjoint op-
erator so that 7V/271/2 = T'; this is not an easy task. The second step is to show
that every self-adjoint operator T' admits a polar decomposition, i.e., T'= W|T,
where |T'| is a positive operator and W : rng |T| — rng T is unitary. Explicitly
|T| = (T*T)'/? (note that T*T is positive).



8.5. Comments on Proofs 227

Now for each t € R consider the self-adjoint operator
Tt =T —t1 = Wt|Tt|7
where W;|T;| is the polar decomposition of T;. Finally, define

PT((—o00,t]) :=1— % (Wy + W2),

and it is possible to check that PT is actually the resolution of identity of 7. The
motivation for such choices comes from the position operator on L?(R), M., for
which P((—o00,t]) is just the projection onto = < ¢. In this particular case

-1, ifx<t
M, —t1 =W, —tl, W, = ’ - .
d@)le =1 () {1, ifox >t

Then, since Wy(z)? =1,

P (00, ) =1 — 5 (Wala) = Wi(a)?) = 5 (1= Wi(e)) = X(-oo1(x),
and the expected projection operator is obtained. There are small variations of this
program, and in case it is first carried out to bounded self-adjoint operators, the
Cayley transform is used to transfer the results to the unbounded case; a detailed
proof along these lines can be found in [Kr78].

In Chapter 9 the square root and polar decomposition will be derived as
consequences of the spectral theorem. This is valid since this theorem can be
obtained by means of different arguments.

Via C*-Algebras. For bounded self-adjoint operators there is a proof of the spec-
tral theorem based on representations of abelian C*-algebras, which was first de-
veloped by I.M. Gel’fand and M.A. Naimark beginning in 1943. It is a beautiful
approach that gives more information than just the theorem itself and, with little
additional effort, can be extended to normal operators. Very briefly, the involved
ideas go as follows: if T" is bounded and self-adjoint, the construction begins with
the set J/. of polynomials p(T"), and its closure Jr in B(H), which is an abelian
C*-algebra with identity 1 (obtained from the constant polynomial p(t) = 1). A
fundamental step is the proof that there is a unique isomorphism of C*-algebras
between Jr and C(o(T)), that is, the set of continuous functions defined on the
spectrum of 7" with the sup norm, so that p(7') is mapped to p(t). Thus, elements
of Jp are interpreted as continuous functions f(7"). The analogous to the cyclic
subspaces H¢ above can be defined as the closure of

{p(T)¢ : p a polynomial function},

and if the latter equals H then £ is said to be cyclic. In case a cyclic vector
exists, the just mentioned isomorphism can be combined with the Riesz-Markov
theorem to provide spectral measures, which then allow the definition of f(T") for
some measurable functions; in particular for x(7), i.e., the resolution of identity
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PT emerges. If no cyclic vector exists, direct sums should be considered as in
Theorem 8.3.7.

If T is normal and bounded, then polynomials p(T,T*) are well posed since
TT* =T*T, and the results for normal operators follow similar lines as the ones
just sketched.

Such a point of view has other advantages, for instance, it is a natural setting
for discussions about complete systems of observables in quantum mechanics as
well as the Hahn-Hellinger theorem.

See detailed proofs in [Sun97] and [Con85).

Via Bochner Theorem. First a proof for unitary operators is presented, and then
Cayley transform is used to get a version for the self-adjoint case. If U is unitary,
then for each £ € H the sequence t, = ({,U"&), n € Z, is positive definite (see
Exercise 5.3.10) and so by the Bochner theorem there is a finite positive measure
Ve so that

27 )
(£, U"¢) = /0 e"" dug(s), Vn € Z.

The unitary analogue to He is the closure of {U"{ : n € Z}, and a construction
shows that U is unitarily equivalent to the multiplication operator M.« on some
space LZ[—m, 7], and so on. Given T self-adjoint, such a construction can be trans-
ferred from its Cayley transform U(T) to T itself, so that spectral measures of T
as well as PT follow. See, for instance, [AkG93], [Que87] and [Hel86].

Leinfelder’s Geometric Proof. In 1935 Lengyel and Stone presented a proof of
the spectral theorem for bounded self-adjoint operators which used only intrinsic
properties of Hilbert spaces [LenS36]; the main point was the consideration of
suitable invariant subspaces, and so the term “geometric proof.” In [Lei79] that
proof was generalized to the unbounded case.

As an illustration of how the spectral projections arise, the case of positive
operators will be mentioned. Let T" be a closed hermitian operator, D>®(T") =
Np>1dom T™ and, for A > 0,

F(T,A) ={£ € D=(T) - |IT"¢]| < A"[I€lln = 1,2,...}.

It is then shown that F'(T, ) is a closed invariant subspace, and U,>1 F(T, n) is
dense in ‘H iff T is self-adjoint.

In case T is self-adjoint, let Q(T, \) denote the orthogonal projection onto
F(T, ). If also T > 0, then it is shown that PT(—co,\] = Q(T,)), A > 0, and
PT(—00,)\] = 0 if A < 0 (of course!); for general self-adjoint operators a limiting
process is needed.

Via the Helffer-Sjostrand Formula. This is a rather new proof based on a formula,
deduced by Helffer and Sjostrand in 1989, which gives smooth functions f(T) as
an integral over resolvents, and can be extended to a somewhat large class of
functions f. It works for bounded as well as unbounded self-adjoint operators.
Details and references can be found in [Dav95].



Chapter 9

Applications of the
Spectral Theorem

Several applications of the spectral theorem will be discussed in this chapter;
some are as strong as simple to get, thanks to the functional calculus. Additional
applications will appear in other chapters. Recall that A denotes the Borel o-
algebra in R.

9.1 Quantum Interpretation of Spectral Measures

Strictly speaking, this is not an application of the spectral theorem, but an in-
terpretation based on quantum postulates. Given a self-adjoint operator T' repre-
senting a quantum observable and A € A, according to quantum mechanics, if the
system is in the state £ € dom T C H, then the quantities

Exa(ME), (& TE),

are the probability that a measurement of T' results in a value in A and the
expectation valued of T', respectively (see a discussion on page 132). By the spectral
theorem such quantities are written in terms of the spectral measure of T at &,
that is,

Exa(T)E) = uT(h),  (6.T€) = / LG

Therefore, t — u?((—oo,t]) is the probability distribution of the possible values
of the observable represented by 7" when the system is in the state £. Note that
since p (R \ o(T)) = 0, for all n € H, actually all measurements of T result in
values in the spectrum of T'.

It is interesting to have a closer look at the case T is pure point, discussed in
Subsection 8.4.2. Let (§;); be an orthonormal basis of H composed of eigenvectors
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of T corresponding to the eigenvalues \;, that is, T'¢; = \;§;, [|&]| = 1. If the
system is in the normalized state { € dom T', one has { = 3, a;§;, with 1 =

€17 = 32, la;|* and
T¢ = ZajAjgj.
J

The spectral measure is

N? = Z |aj|2 Ox; -
J

If A\, € A and if A\; ¢ A for j # k, then the probability of a measurement of T
resulting in a value in A is ,ug(A) = |ax|?, in other words, |ay|? is the probability
of \; being the measured value of T'. It is also interpreted as the probability of the
system being found in the state {; upon measurement; this is called a quantum
reduction of the state £ to §;, one of the many mysteries of quantum mechanics!
Note that such interpretation is compatible with the expression

> Ajlagl?
7

for the expectation value of T'. More generally, > f (Aj)|a;|? is the expectation
value of f(T).

Remark 9.1.1. Another interesting interpretation related to spectral measures ap-
pears in Section 14.2.

9.2 Proof of Theorem 5.3.1

As an application of the spectral theorem the proof of Theorem 5.3.1 will be
presented.

Proof. Let T be self-adjoint. For each ¢t € R let f;(x) = e~ and define U(t) :=
f+(T), which will also be denoted by e~*T. By the functional calculus, Corol-
lary 8.3.19, these are bounded normal operators and for all s,¢ € R,

UtU(s) =U(t+ s), Ut =U(-t)=U(t)",

(since fs(x)fi(z) = fsrt(x); note that U(0) = 1) so that ¢ — U(t) is a unitary
evolution group. The next step is to show that this map is strongly continuous. If
& € H, then

U () — €2 = / =it — 17 du? (2)

o(T)

which vanishes as h — 0 by dominated convergence. Hence ¢t — U(t) is strongly
continuous.
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If n € H and h # 0, then

2 2

1 —ihx
E(e he _ 1) dug(a@).

i
h

(U(h) = 1)n

Since

/U(T)
1

pe )] <l

and for h — 0 one has the pointwise limit

% (e*““C — 1) — x,

the above integral converges as h — 0 iff the function f(z) = z, € R, belongs
to LiT (R). In fact, if f € LiT (R), then the convergence holds by dominated
n n

convergence, and if f ¢ LZT (R) it does not converge by Fatou’s lemma. Hence, it
n

converges iff n € dom T, since T = f(x) for f(x) = x. The same argument also
implies, for n € dom T,
/o(T)

and T is actually the infinitesimal generator of U(t). O

2 . 2
¥ (emihe 1) —=x dug(x) }ZQO,

7

E(U(h) —1)n—"Tn

Exercise 9.2.1. Present details of the following alternative proof of Theorem 5.3.1.
If T is self-adjoint, by the spectral theorem it is unitarily equivalent to My, h(z) =
x, acting in some Lﬁ. Define U(t) = M,-it= and use Example 5.1.6.

9.3 Form Domain of Positive Operators

First the square root operator must be addressed.

Proposition 9.3.1. Let T' > 0 be a self-adjoint operator. Then, for eachn € N, there
exists a unique self-adjoint operator S > 0 so that S™ =T. Such S is denoted by
S =T",

Proof. For the existence consider the function f(x) = zw, x>0, and zero for z <
0, and define S = f(T'), which is a positive operator since, by Proposition 8.3.21,
o(T) C Ry =[0,00) and

€59= [ L) =0, veedon s

By Proposition 8.3.10, S™ = T'. Moreover, since on R the function f is one-to-one,
for any Borel set A € A, A C R,

Xa(S) = xg-1 () (T),
and xA(S) =0if A C (—00,0).
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For uniqueness, consider a self-adjoint operator A > 0 obeying A™ = T'; then,
XA(T) = xa(A") = xr)(4), A CRy,
and xA(T) =0if A C (—o0,0). Since on Ry the function f is one-to-one,

Xa(A) = xp-1a)(T), A€ A,

so that xa(A) = xa(5), VA € A. By the uniqueness of the resolution of the
identity, S = A. O

Remark 9.3.2. In case n = 2 in Proposition 9.3.1 one gets the (positive) square
root operator of T, also denoted by vT. If A is closed and densely defined, by
Proposition 4.3.9, A*A is self-adjoint and positive, and the absolute value of A,
denoted by |A|, is defined by |A| := v A* A.

Remark 9.3.3. If T > 0 is compact, by uniq