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1. Introduction

Let the real function ϕ be defined on some nonempty interval I of the real line R.
We say that ϕ is convex on I if

ϕ (λx + (1− λ) y) ≤ λϕ (x) + (1− λ)ϕ (y)

holds for all x, y ∈ I and λ ∈ [0, 1] .
An important property of convex functions is the existence of the left and

the right derivative on the interior I̊ of I (see [11]). If ϕ : I → R is convex then for
any x ∈ I̊ the left derivative ϕ′− (x) and the right derivative ϕ′+ (x) are increasing
on I̊ and

ϕ′− (x) ≤ ϕ′+ (x) for all x ∈ I̊ .
It can be also proved that for any convex function ϕ : I → R the inequalities

ϕ (z) + c (z) (y − z) ≤ ϕ (y) , c (z) ∈
[
ϕ′− (z) , ϕ′+ (z)

]
(1.1)

ϕ (y) ≤ ϕ (z) + c (y) (y − z) , c (y) ∈
[
ϕ′− (y) , ϕ′+ (y)

]
(1.2)

hold for all y, z ∈ I̊ .
One consequence of (1.1) and (1.2) is that ϕ : I → R is convex if and only

if there is at least one line of support for ϕ at each x0 ∈ I̊ . Furthermore, ϕ is
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differentiable if and only if the line of support at x0 ∈ I̊ is unique. In this case,
the line of support is

A (x) = ϕ (x0) + ϕ′ (x0) (x− x0) .

There are many known inequalities for convex functions, but surely the most
important of them is Jensen’s inequality. In its integral form it is stated as follows
(see [10, p. 45]).

Theorem A. (Jensen) Let (Ω,A, μ) be a measure space with 0 < μ (Ω) < ∞, and
let u : Ω → I, I ⊂ R, be a function from L1 (μ). Then for any convex function
ϕ : I → R the inequality

ϕ

(
1

μ (Ω)

∫
Ω

udμ

)
≤ 1
μ (Ω)

∫
Ω

(ϕ ◦ u) dμ (1.3)

holds.

One of the inequalities which are strongly related to Jensen’s inequality is the
Jensen-Steffensen inequality for convex functions. An integral version was proved
by Steffensen, but here we consider a variant given by R.P. Boas in [3].

Theorem B. (Steffensen-Boas) Let f : [α, β] → (a, b) be a continuous and mono-
tonic function, where −∞ < α < β < +∞ and −∞ ≤ a < b ≤ +∞, and let
ϕ : (a, b) → R be a convex function. If λ : [α, β] → R is either continuous or of
bounded variation satisfying

(∀x ∈ [α, β]) λ (α) ≤ λ (x) ≤ λ (β) , λ (β)− λ (α) > 0, (1.4)

then

ϕ

(∫ β

α f (t) dλ (t)∫ β

α
dλ (t)

)
≤

∫ β

α ϕ (f (t)) dλ (t)∫ β

α
dλ (t)

. (1.5)

In [7] a couple of companion inequalities to Jensen’s inequality in its discrete
and integral form were proved. The main result in its discrete form is stated as
follows.

Theorem C. (Matić, Pečarić) Let ϕ : C → R be a convex function defined on an
open convex subset C in a normed real linear space X. For the given vectors xi ∈
C, i = 1, 2, . . . , n, and a nonnegative real n-tuple p such that Pn =

∑n
i=1pi > 0

let

x =
1
Pn

n∑
i=1

pixi, y =
1
Pn

n∑
i=1

piϕ (xi) .

If c,d ∈ C are arbitrarily chosen vectors, then

ϕ (c) + a∗ (c; x− c) ≤ y ≤ ϕ (d) +
1
Pn

n∑
i=1

pia
∗ (xi; xi − d) . (1.6)
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Also, when ϕ is strictly convex we have equality in the first inequality in (1.6) if
and only if xi = c for all indices i with pi > 0, while equality holds in the second
inequality in (1.6) if and only if xi = d for all indices i with pi > 0.

In the rest of the paper without any loss of generality for the convex function
ϕ : (a, b)→ R we denote

ϕ′ (x) := ϕ′+ (x) , x ∈ (a, b) .

Theorem D. (Klaričić, Matić, Pečarić) Let ϕ : (a, b)→ R,−∞ ≤ a < b ≤ +∞, be
a convex function and p ∈ Rn (n ≥ 2) such that

0 ≤ Pk =
∑k

i=1pi ≤ Pn, k = 1, . . . , n, Pn > 0. (1.7)

Then for any x ∈ (a, b)n such that

x1 ≤ x2 ≤ · · · ≤ xn or x1 ≥ x2 ≥ · · · ≥ xn

the inequalities

ϕ (c) + ϕ′ (c) (x− c) ≤ 1
Pn

n∑
i=1

piϕ (xi) ≤ ϕ (d) +
1
Pn

n∑
i=1

piϕ
′ (xi) (xi − d) (1.8)

hold for all c, d ∈ (a, b).

Under the stated assumptions on x and p the inequalities in (1.8) are valid
for all c, d ∈ (a, b) , so in the first inequality in (1.8) we may choose c = x thus
obtaining the discrete Jensen-Steffensen inequality. Moreover, the choice c = x is
the best possible since

ϕ (c) + ϕ′ (c) (x− c) ≤ ϕ (x)

for all c ∈ (a, b) .

The integral version of Theorem D, stated in Theorem E, has been also proved
in [6].

Theorem E. (Klaričić, Matić, Pečarić) Suppose that f, ϕ and λ are as in Theorem
B. Then x and y given by

x =
1

λ (β) − λ (α)

∫ β

α

f (t) dλ (t) ,

y =
1

λ (β) − λ (α)

∫ β

α

ϕ (f (t)) dλ (t)

are well defined and x ∈ (a, b) . Furthermore, if ϕ′ (f) and λ have no common
discontinuity points, then the inequalities

ϕ (c) + ϕ′ (c) (x− c)

≤ y ≤ ϕ (d) +
1

λ (β)− λ (α)

∫ β

α

ϕ′ (f (t)) [f (t)− d] dλ (t) (1.9)

hold for each c, d ∈ (a, b).
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In [9] the following theorem was proved.

Theorem F. (Pečarić) Suppose that ϕ is convex on (a, b) and a < x1 ≤ · · · ≤
xn < b. If p1, . . . , pn are real numbers such that the conditions (1.7) hold and if

∑n

i=1
piϕ

′ (xi) 
= 0, x̃ =

∑n

i=1
pixiϕ

′
(xi)∑n

i=1
piϕ′ (xi)

∈ (a, b) ,

then
1
Pn

n∑
i=1

piϕ (xi) ≤ ϕ (x̃) .

In paper [8] A. Mercer proved the following variant of Jensen’s inequality:

ϕ

(
x1 + xn −

n∑
i=1

wixi

)
≤ ϕ (x1) + ϕ (xn)−

n∑
i=1

wiϕ (xi) , (1.10)

which holds whenever ϕ is a convex function on an interval containing the n-tuple
x such that 0 < x1 ≤ x2 ≤ · · · ≤ xn and where w is a positive n-tuple with∑n

i=1 wi = 1. His result was generalized for weights satisfying the conditions as in
the Jensen-Steffensen inequality in [1], and two alternative proofs of (1.10) were
given in [13] and [2].

2. The results

The goal of this paper is to obtain Mercer-type variants of Theorems C, D, E
and F.

In the following with (Ω,A, μ) we denote a measure space with 0 < μ (Ω) <∞
and for a, b,m,M ∈ R we always assume ∞ ≤ a < m < M < b ≤ ∞.
Theorem 1. Let ϕ : (a, b) → R be a convex function and let u : Ω → [m,M ] be a
measurable function such that ϕ′ ◦ u belongs to L1 (μ) . Then the inequalities

ϕ (c) + ϕ′ (c)
(
m+M − c− 1

μ (Ω)

∫
Ω

udμ

)
≤ ϕ (m) + ϕ (M)− 1

μ (Ω)

∫
Ω

(ϕ ◦ u) dμ (2.1)

≤ ϕ (d) + ϕ′ (m) (m− d) + ϕ′ (M) (M − d)− 1
μ (Ω)

∫
Ω

(u (t)− d) (ϕ′ ◦ u) dμ

hold for all c, d ∈ [m,M ] .

Proof. We prove the first inequality in (2.1) .
For all u (t) ∈ [m,M ] , t ∈ Ω, we can write

u (t) = λtm+ (1− λt)M, λt ∈ [0, 1]

hence

(ϕ ◦ u) (t) = ϕ (λtm+ (1− λt)M) ≤ λtϕ (m) + (1− λt)ϕ (M)
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for all t ∈ Ω. Also

ϕ (m+M − u (t)) = ϕ ((1− λt)m+ λtM) ≤ (1− λt)ϕ (m) + λtϕ (M)

= ϕ (m) + ϕ (M)− [λtϕ (m) + (1− λt)ϕ (M)]

≤ ϕ (m) + ϕ (M)− (ϕ ◦ u) (t) .

If in (1.1) we choose z = c and y = m+M − u (t) we obtain

ϕ (c) + ϕ′ (c) (m+M − u (t)− c) (2.2)

≤ ϕ (m+M − u (t)) ≤ ϕ (m) + ϕ (M)− (ϕ ◦ u) (t) .

Integrating over Ω and dividing by μ (Ω) we obtain

ϕ (c) + ϕ′ (c)
(
m+M − c− 1

μ (Ω)

∫
Ω

udμ

)
≤ 1
μ (Ω)

∫
Ω

ϕ (m+M − u (t)) dμ ≤ ϕ (m) + ϕ (M)− 1
μ (Ω)

∫
Ω

(ϕ ◦ u) dμ.

Now it remains to prove the second inequality in (2.1). Let d, u (t) ∈ [m,M ],
t ∈ Ω.

We consider two cases.

Case 1. u (t) ≥ d. From (1.2) we have

ϕ (m)− ϕ (d) ≤ ϕ′ (m) (m− d) ,
ϕ (M)− (ϕ ◦ u) (t) ≤ ϕ′ (M) (M − u (t)) ,

hence

ϕ (m) + ϕ (M)− (ϕ ◦ u) (t)

= ϕ (d) + ϕ (m)− ϕ (d) + ϕ (M)− (ϕ ◦ u) (t)

≤ ϕ (d) + ϕ′ (m) (m− d) + ϕ′ (M) (M − u (t))

= ϕ (d) + ϕ′ (m) (m− d) + ϕ′ (M) (M − d)− ϕ′ (M) (u (t)− d) . (2.3)

Since ϕ is convex the derivative ϕ′ is nondecreasing and we know that from u (t) ≤
M follows (ϕ′ ◦ u) (t) ≤ ϕ′ (M) , hence (2.3) implies

ϕ (m) + ϕ (M)− (ϕ ◦ u) (t)

≤ ϕ (d) + ϕ′ (m) (m− d) + ϕ′ (M) (M − d)− (ϕ′ ◦ u) (t) (u (t)− d) . (2.4)

Case 2. u (t) < d. Similarly as in the previous case we can write

ϕ (m) + ϕ (M)− (ϕ ◦ u) (t)

= ϕ (d) + ϕ (m)− (ϕ ◦ u) (t) + ϕ (M)− ϕ (d)

≤ ϕ (d) + ϕ′ (m) (m− u (t)) + ϕ′ (M) (M − d)
= ϕ (d) + ϕ′ (m) (m− d) + ϕ′ (M) (M − d) + ϕ′ (m) (d− u (t)) .
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From m ≤ u (t) we have ϕ′ (m) ≤ (ϕ′ ◦ u) (t) , hence

ϕ (m) + ϕ (M)− (ϕ ◦ u) (t)

≤ ϕ (d) + ϕ′ (m) (m− d) + ϕ′ (M) (M − d) + (ϕ′ ◦ u) (t) (d− u (t))

= ϕ (d) + ϕ′ (m) (m− d) + ϕ′ (M) (M − d)− (ϕ′ ◦ u) (t) (u (t)− d) ,

which is again (2.4) .
In other words, for any d, u (t) ∈ [m,M ] the inequality in (2.4) holds. In-

tegrating (2.4) over Ω and dividing by μ (Ω) we obtain the second inequality in
(2.1) . The proof is complete. �

Corollary 1. Let ϕ : (a, b)→ R be a convex function. If p ∈ Rn
+ and x ∈ [m,M ]n

then the inequalities

ϕ (c) + ϕ′ (c)
(
m+M − c− 1

Pn

n∑
i=1

pixi

)

≤ ϕ (m) + ϕ (M)− 1
Pn

n∑
i=1

piϕ (xi) (2.5)

≤ ϕ (d) + ϕ′ (m) (m− d) + ϕ′ (M) (M − d)− 1
Pn

n∑
i=1

piϕ
′ (xi) (xi − d)

hold for all c, d ∈ [m,M ] .

Proof. This is a straightforward consequence of Theorem 1. We simply choose

Ω = {1, 2, . . . , n} ,
μ ({i}) = pi, i = 1, 2, . . . , n,

u (i) = xi, i = 1, 2, . . . , n. �

Corollary 2. The following inequalities are valid under the assumptions of Corol-
lary 1:

0 ≤ ϕ (m) + ϕ (M)− 1
Pn

n∑
i=1

piϕ (xi)− ϕ (x)

≤ ϕ′ (m) (m− x) + ϕ′ (M) (M − x)− 1
Pn

n∑
i=1

piϕ
′ (xi) (xi − x) ,

where x = m+M − 1/Pn

n∑
i=1

pixi.
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Corollary 3. Suppose that the conditions of Corollary 1 are satisfied and addition-
ally assume ∑n

i=1
piϕ

′ (xi) 
= Pn

[
ϕ

′
(m) + ϕ

′
(M)

]
,

x̃ =
Pn

[
mϕ

′
(m) +Mϕ

′
(M)

]
−

∑n

i=1
pixiϕ

′
(xi)

Pn [ϕ′ (m) + ϕ′ (M)]−
∑n

i=1
piϕ′ (xi)

∈ [m,M ] .

Then

ϕ (m) + ϕ (M)− 1
Pn

n∑
i=1

piϕ (xi) ≤ ϕ (x̃) .

The inequalities obtained in Corollary 2 and 3 are the Mercer-type variants
of the corresponding inequalities given in [4] and [12].

Theorem 2. Let ϕ : (a, b)→ R be a convex function and w ∈ Rl such that

0 ≤Wk =
k∑

i=1

wi ≤Wl, k = 1, . . . , l, Wl > 0.

Let ξ ∈ [m,M ]l be such that ξ1 ≤ ξ2 ≤ · · · ≤ ξl or ξ1 ≥ ξ2 ≥ · · · ≥ ξl. Then the
inequalities

ϕ (c) + ϕ′ (c)

(
m+M − c− 1

Wl

l∑
i=1

wiξi

)

≤ ϕ (m) + ϕ (M)− 1
Wl

l∑
i=1

wiϕ (ξi) (2.6)

≤ ϕ (d) + ϕ′ (m) (m− d) + ϕ′ (M) (M − d)− 1
Wl

l∑
i=1

wiϕ
′ (ξi) (ξi − d)

hold for all c, d ∈ [m,M ] .

Proof. For n = l+ 2 we define

x1 = m, x2 = ξ1, x3 = ξ2, . . . xn−1 = ξl, xn = M
p1 = 1, p2 = −w1/Wl, p2 = −w2/Wl, . . . pn−1 = −wl/Wl, pn = 1 .

It is obvious that x1 ≤ x2 ≤ · · · ≤ xn if ξ1 ≤ ξ2 ≤ · · · ≤ ξl or x1 ≥ x2 ≥ · · · ≥
xn if ξ1 ≥ ξ2 ≥ · · · ≥ ξl and that

0 ≤ Pk =
k∑

i=1

pi ≤ Pn, k = 1, 2, . . . , n, Pn = 1 > 0,

hence we can apply Theorem D on ϕ, x and p thus obtaining (2.6) . �
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Note that under the conditions of Theorem 2 we also have

ξ = m+M − 1
Wl

l∑
i=1

wiξi ∈ [m,M ] ,

which means that in (2.6) we can choose c = ξ in which case the first inequality in
(2.6) becomes the generalized Mercer inequality as it was stated in [1]. Mercer’s
inequality itself can be obtained in the same way as a special case of Corollary 1.

Corollary 4. The following inequalities are valid under the assumptions of Theo-
rem 2:

0 ≤ ϕ (m) + ϕ (M)− 1
Wl

l∑
i=1

wiϕ (ξi)− ϕ
(
ξ
)

≤ ϕ′ (m)
(
m− ξ

)
+ ϕ′ (M)

(
M − ξ

)
− 1
Wl

l∑
i=1

wiϕ
′ (ξi)

(
ξi − ξ

)
,

where

ξ = m+M − 1
Wl

l∑
i=1

wiξi.

Corollary 5. Suppose that the conditions of Theorem 2 are satisfied and addition-
ally assume ∑l

i=1
wiϕ

′ (ξi) 
= Wl

[
ϕ

′
(m) + ϕ

′
(M)

]
,

ξ̃ =
Wl

[
mϕ

′
(m) +Mϕ

′
(M)

]
−

∑l

i=1
wiξiϕ

′
(ξi)

Wl [ϕ′ (m) + ϕ′ (M)]−
∑l

i=1
wiϕ′ (ξi)

∈ (m,M) .

Then

ϕ (m) + ϕ (M)− 1
Wl

l∑
i=1

wiϕ (ξi) ≤ ϕ
(
ξ̃
)
.

The inequalities given in Corollary 4 are the Mercer type variants of a result
from [5] and the inequality given in Corollary 5 is the Mercer type variant of
Theorem F.

Now we prove the integral case of Theorem 2.

Theorem 3. Suppose that f : [α, β]→ [m,M ] , ϕ, λ, x and y are all as in Theorem E
and additionally assume that ϕ is continuously differentiable. Then the inequalities

ϕ (c) + ϕ′ (c) (m+M − c− x) ≤ ϕ (m) + ϕ (M)− y
≤ ϕ (d) + ϕ′ (m) (m− d) + ϕ′ (M) (M − d)

− 1
λ (β)− λ (α)

∫ β

α

ϕ′ (f (t)) [f (t)− d] dλ (t) (2.7)

hold for each c, d ∈ [m,M ] .
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Proof. Suppose that f is nondecreasing (for f nonincreasing the proof is analo-
gous). For arbitrary α̃, β̃ ∈ R such that α̃ < α and β̃ > β we define a new function
f̃ : [α̃, β̃]→ [m,M ] by

f̃(t) =

⎧⎪⎨⎪⎩
m+ f(α)−m

α−α̃ (t− α̃) , t ∈ [α̃, α],
f (t) , t ∈ [α, β],

M + M−f(β)

β̃−β
(t− β̃), t ∈ [β, β̃].

It can be easily seen that the function f̃ is continuous and nondecreasing.
Next we define two new functions λ̃s : [α̃, β̃]→ R and λ̃c : [α̃, β̃]→ R by

λ̃s (t) =

⎧⎨⎩
1, t = α̃,

0, t ∈ (α̃, β̃),
−1, t = β̃,

and

λ̃c (t) =

⎧⎪⎨⎪⎩
1, t ∈ [α̃, α],

λ(β)−λ(t)
λ(β)−λ(α) , t ∈ [α, β],

0, t ∈ [β, β̃].

Note that for any function g : [α̃, β̃] → R continuous at the points α̃ and β̃ we
have ∫ β̃

α̃

g (t) dλ̃s (t) = g (α̃) [λ̃s (α̃+ 0)− λ̃s (α̃)] + g(β̃)[λ̃s(β̃)− λ̃s(β̃ − 0)]

= −g (α̃)− g(β̃). (2.8)

Also, if λ is continuous on [α, β] then λ̃c is continuous on [α̃, β̃], and if λ is of
bounded variation on [α, β] then λ̃c is of bounded variation on [α̃, β̃]. This means
that for any continuous and piecewise monotonic function g : [α̃, β̃] → R the

integral
∫ β̃

α̃ g(t)dλ̃c(t) is well defined and∫ β̃

α̃

g (t) dλ̃c (t) =
∫ α

α̃

g (t) dλ̃c (t) +
∫ β

α

g (t) dλ̃c (t) +
∫ β̃

β

g (t) dλ̃c (t)

=
∫ β

α

g (t) dλ̃c (t) =
∫ β

α

g (t) d
[
λ (β)− λ (t)
λ (β)− λ (α)

]
= − 1

λ (β)− λ (α)

∫ β

α

g (t) dλ (t) . (2.9)

Now we define λ̃ : [α̃, β̃]→ R by

λ̃ (t) = λ̃c (t)− λ̃s (t) , t ∈ [α̃, β̃].
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From (2.8) and (2.9) we conclude that the integral
∫ β̃

α̃
g(t)dλ̃(t) is well defined for

any continuous and piecewise monotonic function g : [α̃, β̃]→ R and∫ β̃

α̃

g (t) dλ̃ (t) =
∫ β̃

α̃

g (t) dλ̃c (t)−
∫ β̃

α̃

g (t) dλ̃s (t)

= − 1
λ (β)− λ (α)

∫ β

α

g (t) dλ (t) + g (α̃) + g(β̃). (2.10)

We also have

λ̃(β̃)− λ̃ (α̃) = λ̃c(β̃)− λ̃c (α̃)− λ̃s(β̃) + λ̃s (α̃) = 0− 1 + 1 + 1 = 1.

If we apply Theorem E on the functions f̃ , ϕ and λ̃ (we can do that even if the
function λ̃ is neither continuous nor of bounded variation since all the integrals
are well defined) we obtain

ϕ (c) + ϕ′ (c) (x̃− c)

≤ ỹ ≤ ϕ (d) +
1

λ̃ (β)− λ̃ (α)

∫ β̃

α̃

ϕ′
(
f̃ (t)

) [
f̃ (t)− d

]
dλ̃ (t)

where

x̃ =
1

λ̃
(
β̃
)
− λ̃ (α̃)

∫ β̃

α̃

f̃ (t) dλ̃ (t) =
∫ β̃

α̃

f̃ (t) dλ̃ (t)

= − 1
λ (β)− λ (α)

∫ β

α

f (t) dλ (t) + f̃ (α̃) + f̃(β̃)

= m+M − x

and

ỹ =
1

λ̃
(
β̃
)
− λ̃ (α̃)

∫ β̃

α̃

ϕ
(
f̃ (t)

)
dλ̃ (t) =

∫ β̃

α̃

ϕ
(
f̃ (t)

)
dλ̃ (t)

= ϕ (m) + ϕ (M)− y.

Now we have

ϕ (c) + ϕ′ (c) (m+M − c− x) ≤ ϕ (m) + ϕ (M)− y

≤ ϕ (d) +
∫ β̃

α̃

ϕ′
(
f̃ (t)

) [
f̃ (t)− d

]
dλ̃ (t) , (2.11)

and if in the second inequality in (2.11) we apply (2.10) for the function g : [α̃, β̃]→
R defined by

g (t) = ϕ′
(
f̃ (t)

) [
f̃ (t)− d

]
we obtain (2.7) . The proof is complete. �
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Department of Mathematics
Faculty of Natural Sciences, Mathematics and Education
University of Split
Teslina 12
21000 Split, Croatia

e-mail: milica@pmfst.hr
e-mail: mmatic@fesb.hr

Josip Pečarić
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